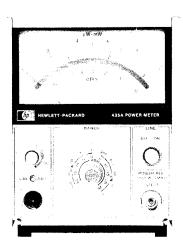
About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual is the best copy we could find; it may be incomplete or contain dated information. If we find a more recent copy in the future, we will add it to the Agilent website.


Support for Your Product

Agilent no longer sells or supports this product. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available. You will find any other available product information on the Agilent Test & Measurement website, www.tm.agilent.com.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. In other documentation, to reduce potential confusion, the only change to product numbers and names has been in the company name prefix: where a product number/name was HP XXXX the current name/number is now Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

POWER METER 435A

HEWLETT hp PACKARD

OPERATING AND SERVICE MANUAL

POWER METER 435A

(Including Options 001, 002, 003, 009, 010, 011, 012, and 013)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1312A.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 1234A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MAN-UAL in Section I.

Copyright HEWLETT-PACKARD COMPANY 1973 1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

MANUAL PART NO. 00435-90011
Microfiche Part No. 00435-90012
Operating Information Supplement Part No. 00435-90006
Overall Schematic Part No. 00435-90007

Printed: JULY 1974

CONTENTS

Section	Page	Section	Page
I. GENERAL INFORMATION	. 1-1	4-3. Equipment Required	. 4-1
1-1. Introduction		4-5. Test Record	
1-7. Instruments Covered by Manual		4-7. Performance Tests	
1-13. Description		4-10. Power Reference Output Test	
1-16. Options		4-11. Zero Carryover Test	
1-17. Battery		4-12. Instrumentation Accuracy Test	•
1-20. Input-Output Options		Without Calibrator	4-3
1-23. Cable Options		4-13. Instrumentation Accuracy Test	•
1-25. Accessories Supplied		With Calibrator	4-5
1-27. Equipment Required But Not Supplied		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1-29. Equipment Available		V ADJUSTMENTS	. 5-1
1-32. Recommended Test Equipment		5-1. Introduction	. 5-1
1-34. Safety Considerations	. 1-3	5-5. Safety Considerations	. 5-1
** ************************************		5-11. Equipment Required	
II INSTALLATION		5-13. Factory Selected Components	
2-1. Introduction		5-15. Adjustment Locations	
2-3. Initial Inspection		5-17. Power Meter Adjustments with 50Ω	
2-5. Preparation for Use		Power Sensor	
2-6. Meter Zeroing		5-18. Power Meter Adjustments with Calibrator .	
2-8. Power Requirements	. 2-1	0-10. Tower Meter Adjustificitis with Cambrator .	. 0-1
2-10. Line Voltage Selection	. 2-1	VI REPLACEABLE PARTS	. 6-1
2-12. Power Cable	. 2-1	6-1. Introduction	
2-14. Interconnections	. 2-1	6-3. Abbreviations	
2-17. Operating Environment	. 2-2	6-5. Replaceable Parts List	
2-19. Bench Operation	. 2-2	6-7. Ordering Instructions	
2-21. Rack Mounting		6-10. Parts Provisioning	
2-25. Battery Operation		0-10. Turbs Hovistoning	. 01
2-29. Storage and Shipment	. 2-3		
2-30. Environment		VII MANUAL CHANGES	. 7-1
2-32. Packaging		7-1. Introduction	. 7-1
		7-3. Manual Changes	
III OPERATION	. 3-1	7-6. Manual Change Instructions	
3-1. Introduction		7-7. Modification of A4 Assembly	
3-3. Panel Features		(Serial Prefix 1234A)	. 7-3
3-5. Operator's Checks		,	
3-7. Operating Instructions			
3-9. Power Measurement Accuracy	. 3-1	VIII SERVICE	. 8-1
3-11. Sources of Error and Measurement	. 0-1	8-1. Introduction	
Uncertainty	. 3-1	8-4. Safety Considerations	
3-17. Corrections for Error		8-10. Service Sheets	
3-22. Calculating Total Uncertainty		8-14. Principles of Operation	
3-28. Operator's Maintenance			
		e e	
3-31. Fuses	. 3-3	8-21. Recommended Test Equipment	
3-33. Lamp Replacement	. 3-3	8-23. Repair	
3-35. Battery Replacement	. 3-3	8-26. General Service Information	
W. BEDUODILLAND WEST		8-27. Etched Circuit Boards	
IV PERFORMANCE TESTS		8-29. Component Replacement	
4-1. Introduction	. 4-1	8-31. Operational Amplifiers	. 8-3

Contents Model 435A

ILLUSTRATIONS

Figu	e Page	Figure	Page
1 1	HP Model 435A and Accessories Supplied 1.0	7-3. P/O A3 Assembly Schematic	
1.2	Voltage Divider Network 1-4	(Part of Change A)	. 7-3
2.1	Aine Voltage Selection 22	8-1. A4 Assembly Extended for Service	. 8-2
2.2	Power Cable HP Part Numbers Versus	8-2. Operational Amplifier Equivalent Circuit	. 8-5
	Mains Plugs Available 2-2	8-3. Schematic Diagram Notes	. 8-6
2.3	435 A With Battery Installed 2-3	8-4. Troubleshooting Block Diagram	. 8-9
3.1	Line Switch Lamp Replacement	8-5. P/O A2 Range Switch Assembly	
3.2	Front Panel Controls, Connectors, and	(Attenuator) Component Locations	8-11
	Indicators	8-6. P/O A4 Assembly (DC Ampl/Sync Detector)	
3 3.	Rear Panel Controls, Connectors, and	Component and Test Point Locations	8-11
	Indicators 3-5	8-7. P/O A4 Assembly (AC Ampl/Sync Detector)	
3-4.	Operator's Checks	Schematic Diagram	. 8-11
3-5.	Operating Instructions 3-7	8-8 A2 RANGE Switch Assembly (Low Pass	
3-6.	Calculating Measurement Uncertainties 3-9	Filters) Component Locations	. 8-12
3-7.	The Effect of Power Sensor Mismatch on	8-9. A1 Cal Factor Switch Assembly	
	Measurement Accuracy	Component Locations	. 8-13
3-8.	Calculating Measurement Uncertainty	8-10. P/O A4 Assembly (DC Ampl/Auto Zero)	
	(Uncertainty in dB Known) 3-12	Component and Test Point Locations	. 8-13
4-1.	Zero Carryover Test Setup 4-2	8-11. P/O A4 Assembly (DC Ampl/Auto Zero)	
4-2.	Instrumentation Accuracy Test Setup	Schematic Diagram	. 8-13
	Without Calibrator 4-3	8-12. A3 Power Reference Assembly Component	
4-3.	Instrumentation Accuracy Test Setup	and Test Point Locations	. 8-15
	With Calibrator 4-5	8-13. A3 Power Reference Assembly,	
5-1.	Power Meter Adjustment Setup	Schematic Diagram	. 8-15
	Without Calibrator 5-3	8-14. P/O A4 Assembly (Power Supply) Compo-	
5-2 .	435A Adjustment Setup With Calibrator 5-4	nent and Test Point Locations	. 8-17
6-1.	Cabinet Parts, Exploded View 6-8	8-15. P/O A4 Assembly (Power Supply)	
7-1.	P/O A4 Assembly Schematic (Part of Change A) . 7-2	Schematic Diagram	. 8-17
7-2.	P/O A4 Assembly Schematic	8-16. Assembly, Chassis and Adjustable Components,	
	(Part of Change A) 7-2	and Test Point Locations	. 8-19
	TA	BLES	
Tabl	e Page	Table	Page
1-1.	Specifications	6-3. Code List of Manufacturers	. 6-10
1-2.	Recommended Test Equipment 1-4	7-1. Manual Changes by Serial Number	
4-1.	Performance Test Record 4-6	8-1. Etched Circuit Soldering	
5-1.	Factory Selected Components 5-2	Equipment	. 8-4
6-1.	Reference Designations and Abbreviations 6-2	8-2. Assembly, and Chassis and Adjustable	
6-2.	Replaceable Parts 6-4	Component Locations	. 8-19

WARNINGS

SAFETY

If this instrument is to be energized via an autotransformer for voltage reduction, make sure the common terminal is connected to the earthed pole of the power source.

BEFORE SWITCHING ON THIS INSTRUMENT, the protective earth terminals of this instrument must be connected to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding).

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc) are used for replacement. The use of repaired fuses and the short-circuiting of fuse holders must be avoided.

Whenever it is likely that the protection offered by fuses has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

GROUNDING

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal is likely to make this instrument dangerous. Intentional interruption is prohibited.

HIGH VOLTAGE

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

Adjustments and service described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

CAUTIONS

LINE VOLTAGE SELECTION

BEFORE SWITCHING ON THIS INSTRUMENT, make sure the instrument is set to the voltage of the power source.

GROUNDING

BEFORE SWITCHING ON THIS INSTRUMENT, ensure that all devices connected to this instrument are connected to the protective (earth) ground.

BEFORE SWITCHING ON THIS INSTRUMENT, ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient.)

POWER SENSOR INPUT

See Operating Precautions in Power Sensor Operating and Service Manuals for maximum power levels which may be safely coupled to this system. Levels which exceed the limits may damage the Power Sensor, Power Meter, or both.

General Information Model 435A

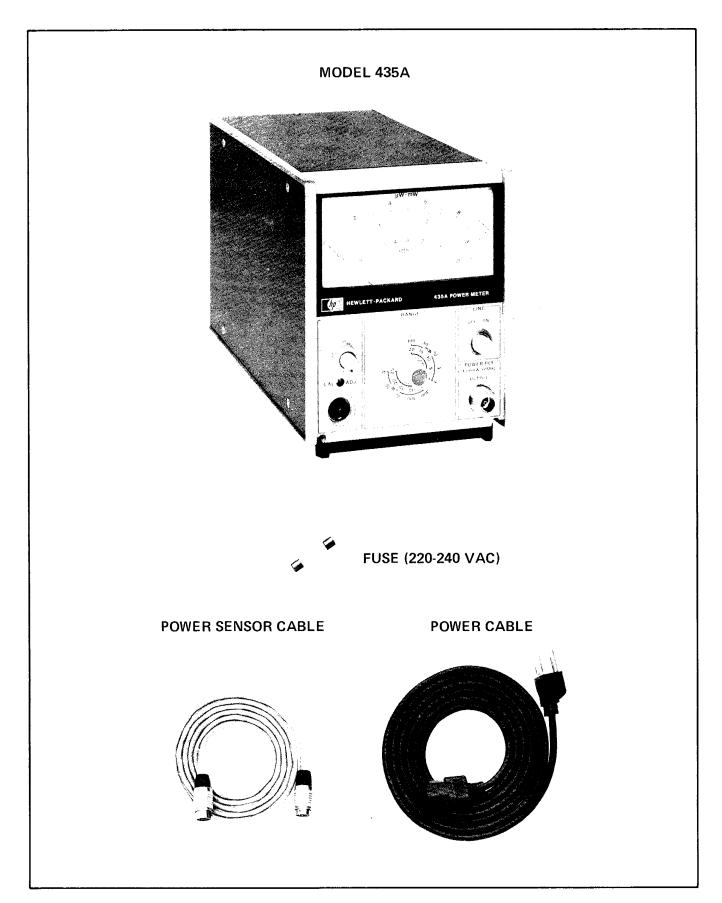


Figure 1-1. HP Model 435A and Accessories Supplied

Model 435A General Information

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

- 1-2. This manual provides information pertaining to the installation, operation, testing, adjustment and maintenance of the HP Model 435A Power Meter.
- 1-3. Figure 1-1 shows the 435A with accessories supplied.
- 1-4. Packaged with this manual is an Operating Information Supplement. This is simply a copy of the first three sections of this manual. This supplement should be kept with the instrument for use by the operator. Also included with the manual is an overall schematic diagram. Additional copies of both the Operating Information Supplement and the Overall Schematic Diagram may be ordered separately through your nearest Hewlett-Packard office. The part numbers are listed on the title page of this manual.
- 1-5. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4x6-inch microfilm transparencies of the manual. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.
- 1-6. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument may be tested.

1-7. INSTRUMENTS COVERED BY MANUAL

- 1-8. Options 001, 002, 003, 009, 010, 011, 012, and 013 of the 435A are documented in this manual. The differences are noted in the appropriate location such as OPTIONS in Section I, the Replaceable Parts List, and the schematic diagrams.
- 1-9. This instrument has a two-part serial number. The first four digits and the letter comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix(es) as listed under SERIAL NUMBERS on the title page.

- 1-10. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains change information that documents the differences.
- 1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to the manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.
- 1-12. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-13. DESCRIPTION

- 1-14. The Power Meter and a compatible Power Sensor are interconnected with the Power Sensor Cable to form a power measurement system. The system power level range, frequency response, and load impedance are dependent on the Power Sensor.
- 1-15. Accuracy of the power measurement system is ensured by the following Power Meter characteristics:
- a. An internal automatic zeroing circuit which removes error due to the ambient temperature output of the Power Sensor's power sensing device.
- b. A calibration factor adjustment which accounts for error due to the frequency response of the power sensing device.
- c. An internal calibration reference which has an output of 1 mW \pm 0.7% (50 $\!\Omega$).

Table 1-1. Specifications

SPECIFICATIONS

System Accuracy:

Instrumentation Uncertainty: $\pm 1\%$ of full scale on all ranges (0 to 55 degrees C).

Zero Carryover: $\pm 0.5\%$ of full scale when zeroed on the most sensitive range.

Reference Oscillator Accuracy:

 $\pm 0.70\%$ (1 mW at 50 MHz, traceable to National Bureau of Standards).

Power Range: 55 dB with 10 full-scale ranges of 3, 10, 30, 100, and 300 μ W; 1, 3, 10, 30, and 100 mW; also calibrated in dB from -25 dBm to +20 dBm full scale in 5 dB steps.

Reference Oscillator: Internal oscillator with Type N female connector on front panel or rear panel (Option 003 only). Power output 1.00 mW ± 0.70% at 50 MHz.

Stability: $\pm 0.02\%/^{\circ}$ C to 55° C).

Noise and Drift: Typically 1.5% of full-scale peak on $3 \mu W$ range, less on higher ranges (at constant temperature).

Response Time: 2 seconds on $3 \mu W$ range, 0.75 second on $10 \mu W$ range, 0.40 second on $30 \mu W$ range,

and 100 milliseconds on all orhter ranges. (Typical, time constant measured at recorder output).

Cal Factor: 16-position switch normalizes meter reading to account for Calibration Factor or Effective Efficiency. Range is 100% to 85% in 1% steps. 100% position corresponds to Calibration Factor at 50 MHz.

Cal Adj: Front panel adjustment provides capability to adjust gain of meter to match power sensor in use.

Recorder Output: Proportional to indicated power with 1 volt corresponding to full scale; $1 \text{ k}\Omega$ output impedance, BNC connector.

RF Blanking Output: Provides a contact closure to ground when auto-zero mode is engaged.

Power: 100, 120, 220, or 240 Vac +5%, -10%, 48 to 440 Hz, less than 10 VA.

Weight: Net, 5 lb, 12 oz (2,6 kg).

1-16. OPTIONS

1-17. Battery

1-18. The Model 435A, Option 001 Power Meter is supplied with a rechargeable battery that provides up to 16 hours continuous operation from a full charge.

1-19. If the 435A was purchased without the battery option, it may be ordered in kit form under HP part number 00435-60012. The kit includes the battery, the battery clamp, a 6-32 x 1/2-inch pan head machine screw and installation instructions.

1-20. Input-Output Options

1-21. Option 002. A rear panel input connector is connected in parallel with the front panel input connector.

1-22. Option 003. A rear panel input connector replaces the standard front panel input connector; a rear panel POWER REF OUTPUT connector replaces the standard front panel connector.

1-23. Cable Options

1-24. A 5-foot Power Sensor cable is normally supplied. The 5-foot cable is omitted with any cable option. The option and cable length are shown in the table.

Option	Cable Length (feet)
009	10
010	20
011	50
012	100
013	200
1	1

Model 435A General Information

1-25. ACCESSORIES SUPPLIED

1-26. The accessories supplied with the 435A are shown in Figure 1-1.

- a. The 5-foot Power Sensor Cable, HP 00435-60011, is used to couple the Power Sensor to the 435A. The 5-foot cable is omitted with any cable option.
- b. The line power cable may be supplied in one of four configurations. Refer to the paragraph entitled Power Cables in Section II.
- c. A fuse with 1/8A rating for 220/240 Vac (HP 2110-0027) is supplied. It may replace the factory installed 1/4A fuse (HP 2110-0004) for 100/120 Vac. Refer to Line Voltage Selection in Section II.

1-27. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-28. To form a complete RF power measurement system, a Power Sensor such as the HP Model 8481A must be connected to the Power Meter via the Power Sensor Cable.

1-29. EQUIPMENT AVAILABLE

1-30. The HP Model 11683A Range Calibrator is recommended for performance testing, adjusting, and troubleshooting the 435A. The Power Meter's

range-to-range accuracy and auto-zero operation can easily be verified with the Calibrator. It also has the capability of supplying a full-scale test signal for each range.

1-31. An extender board (HP part number 5060-0683) may be used to place the A4 assembly printed circuit board in a position that allows easy access to test points and components.

1-32. RECOMMENDED TEST EQUIPMENT

1-33. The test equipment shown in Table 1-2 is recommended for use during performance testing, adjustments, and troubleshooting. To ensure optimum performance of the 435A, the specifications of a substitute instrument must equal or exceed the critical specifications shown in the table.

1-34. SAFETY CONSIDERATIONS

- 1-35. The 435A is a Safety Class I instrument. This instrument has been designed according to international safety standards and has been supplied in safe condition.
- 1-36. This operating and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to retain the instrument in safe condition.

General Information Model 435A

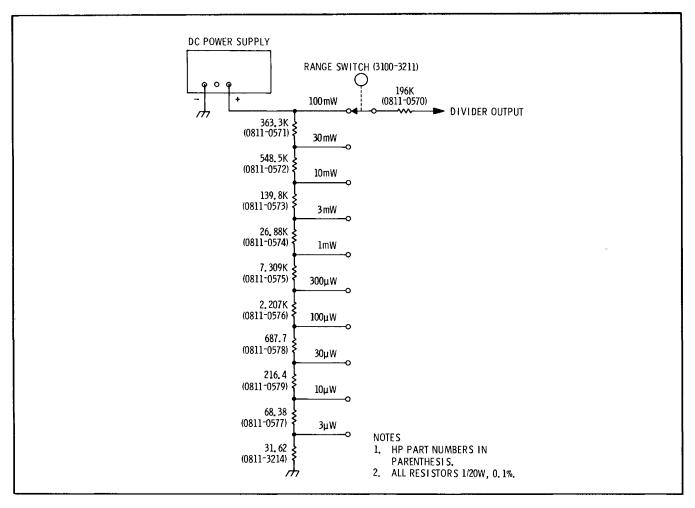


Figure 1-2. Voltage Divider Network

Table 1-2. Recommended Test Equipment

Instrument Type	Critical Specifications	Suggested Model	Use*
Digital Voltmeter	Ranges 100 mVdc , 1000 mVdc 10 M ohm input impedance 4-digit resolution $\pm (0.05\% \text{ of reading } \pm 0.02\% \text{ of range})$.	HP 3480A/ 3482A	P, A, T
Oscilloscope	Bandwidth dc to 50 MHz Vertical sensitivity 0.2 V/division Horizontal sensitivity 1 ms/division	HP 180A/ 1801A/1821A	P, A, T
Range Calibrator		HP 11683A	
Voltage Divider Network	$\pm0.1\%$ resistors	See Figure 1-2	P
DC Power Supply	Voltage Range 0 to 20 Vdc Load regulation ±0.01% +4 mV	HP 6204A	P

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section includes information on the initial inspection, preparation for use, and storage and shipment instructions of the HP Model 435A.

2-3. INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. Procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection. The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE

2-6. Meter Zeroing

2-7. With the LINE switch set to OFF, the meter pointer should be positioned directly over zero. If necessary, insert a screwdriver into the mechanical Meter Zero control (beneath the meter) and align the pointer with zero. Back the adjustment off slightly. The backlash in the control ensures against a meter indication error caused by jarring the instrument.

2-8. Power Requirements

2-9. The 435A requires a power source of 100, 120, 220, or 240 Vac, +5% -10%, 48 to 440 Hz single phase. Power consumption is less than 10 VA.

WARNING

If this instrument is to be energized via an autotransformer for voltage reduction, make sure the common terminal is connected to the earthed pole of the power source.

2-10. Line Voltage Selection

CAUTION

BEFORE SWITCHING ON THIS IN-STRUMENT, make sure the instrument is set to the voltage of the power source.

2-11. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection card and the proper fuse are factory installed for 120 Vac operation.

2-12. Power Cable

2-13. In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to Figure 2-2 for the part numbers of the power cable plugs available.

WARNING

BEFORE SWITCHING ON THIS INSTRUMENT, the protective earth terminals of this instrument must be connected to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding).

2-14. Interconnections

2-15. The Power Meter and a Power Sensor are integral parts of this measurement system. Before measurements can be performed the Power Meter and Sensor must be connected together with the Power Sensor Cable. (The cable is supplied with the Power Meter.)

2-16. The power sensor cable couples the dc supply and sampling gate drive from the 435A to

Installation Model 435A

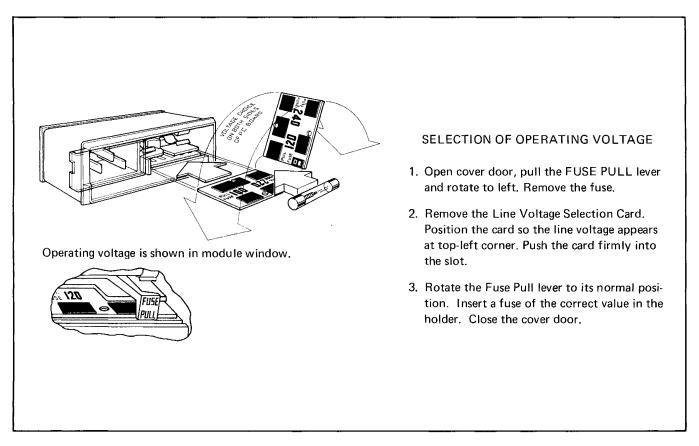


Figure 2-1. Line Voltage Selection

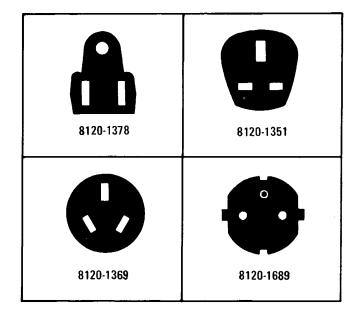


Figure 2-2. Power Cable HP Part Numbers Versus Mains Plugs Available

the Power Sensor and the 220 Hz ac output signal from the Power Sensor to the 435A.

CAUTION

The maximum voltage which may be safely coupled to the Power Meter input from the Power Sensor is 18 mVrms.

2-17. Operating Environment

2-18. The operating environment should be within the following limitations:

Temperature	•								0 to 55	°C
Humidity										
Altitude .								<1	5,000 fe	eet

2-19. Bench Operation

2-20. The instrument cabinet has plastic feet and a fold-away tilt stand for convenience in bench

Model 435A Installation

operation. (The plastic feet are shaped to ensure self-aligning of the instruments when stacked.) The tilt stand raises the front of the instrument for easier viewing of the control panel.

2-21. Rack Mounting

- 2-22. Instruments that are narrower than full rack-width may be rack-mounted using Hewlett-Packard adapter frames or combining cases.
- 2-23. Adaptor Frames. Hewlett-Packard accessory adaptor frames are an economical means of rack mounting instruments that are narrower than full rack-width. A set of spacer clamps, supplied with each adaptor frame, permits instruments of different dimensions to be combined and rack mounted as a unit. Accessory blank panels are available for filling unused spaces.
- 2-24. Combining Cases. Model 1051A and 1052A Combining Cases are metal enclosures that allow combinations of one-third and one-half rack-width instruments to be assembled for use on a workbench or for mounting in a rack of standard 19-inch spacing. Each case includes a set of partitions for positioning and retaining instruments and a rack mounting kit. No tools are required for installing the partitions. For bench use the cases have the same convenient features as full rackwidth instruments, (i.e., fold-away tilt stands and specially designed feet for easier instrument stacking). Accessories available for the combining cases include blank filler panels and snap-on full width control panel covers.

2-25. Battery Operation

- 2-26. To operate the 435A on battery power, the battery must be installed and charged, the line power cable must be disconnected, and the LINE switch must be ON.
- **2-27.** Battery Installation. The battery is installed in the 435A as follows:
- a. Hold the battery above the 435A, just behind and parallel to the printed circuit board. (The battery terminal lugs must face the circuit board.)
- b. Loosen the lugs. Move the battery down into place and guide the lugs into the slots on the circuit board. The battery should now rest on the aluminum deck.

- c. Place the battery clamp over the battery and secure it. The two prongs fit into slots on the rear panel and the 6-32 by ½-inch pan head machine screw holds the forward end of the clamp in place.
- d. The battery terminal lugs should be tightened by hand.

Figure 2-3 shows the 435A with battery installed.

2-28. Battery Charging. The battery is being charged if the battery has been installed, the line power cable is connected to the available line power, and the LINE switch is ON. In the fully charged condition, (24-hour charge time), the battery will supply power for a minimum of 16 hours.

2-29. STORAGE AND SHIPMENT

2-30. Environment

2-31. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

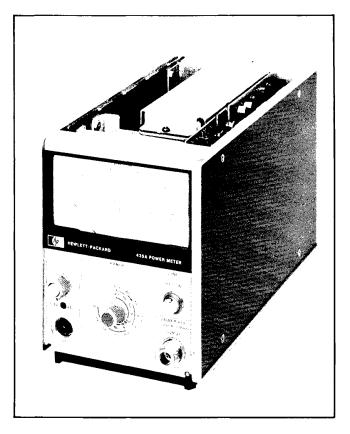


Figure 2-3. 435A With Battery Installed

Installation Model 435A

2-32. Packaging

- 2-33. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence refer to the instrument by model number and full serial number.
- **2-34.** Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:
- a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or

service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)

- b. Use a strong shipping container. A double-wall carton made of 275-pound test material is adequate.
- c. Use enough shock-absorbing material (3 to 4-inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
 - d. Seal the shipping container securely.
- e. Mark the shipping container FRAGILE to assure careful handling.

SECTION III OPERATION

MTRODUCTION

The metton provides complete operating when for the HP Model 435A Power Meter. Extractions consist of: panel features, operating instructions, power measurement, and operator's maintenance.

MANEL FEATURES

In Figures 3-2 and 3-3. These figures a detailed description of the controls, and connectors.

PERATOR'S CHECKS

More recept of the instrument, or to check Meter for an indication of normal more follow the operational procedure shown 3-1. These procedures are designed to the operator with the 435A and to give understanding of the operating capabilities.

MERATING INSTRUCTIONS

contained operating instructions are contained in the instructions will familiarize the with the basic practices used when operation 436 A.

WARNING

Interruption of the protective (pounding) conductor (inside or outside instrument) or disconnecting the instrument terminal is likely to make instrument dangerous. Intentional interruption is prohibited.

POWER MEASUREMENT ACCURACY

A power measurement is never free from meertainty. Any RF system has RF losses, mismatch uncertainty, instrumentmentment and calibration uncertainty. Instrument errors as high as 50% are not only they are highly likely unless the error are understood, and as much as possible,

3-11. Sources of Error and Measurement Uncertainty

3-12. RF Losses. Some of the RF power that enters the Power Sensor is not dissipated in the power sensing elements. This RF loss is caused by dissipation in the walls of waveguide power sensors, in the center conductor of coaxial power sensors, in the dielectric of capacitors, connections within the sensor, and radiation losses.

3-13. Mismatch. The result of mismatched impedances between the device under test and the power sensor is that some of the power fed to the sensor is reflected before it is dissipated in the load. Mismatches affect the measurement in two ways. First, the initial reflection is a simple loss and is called mismatch loss. Second, the power reflected from the sensor mismatch travels back up the transmission line until it reaches the source. There, most of it is dissipated in the source impedance, but some of it is re-reflected by the source mismatch. The re-reflected power returns to the power sensor and adds to, or subtracts from, the incident power. For all practical purposes, the effect the re-reflected power has upon the power measurement is unpredictable. This effect is called mismatch uncertainty.

3-14. Instrumentation Uncertainty. Instrumentation uncertainty describes the ability of the metering circuits to accurately measure the do output from the Power Sensor's power sensing device. In the 435A, this error is less than $\pm 1\%$. It is important to realize, however, that a 1% meter does not automatically give 1% overall measurement accuracy.

3-15. Power Reference Uncertainty. The uncertainty of the output level of the Power Reference Oscillator is $\pm 0.70\%$. This reference is normally used to calibrate the system and is, therefore, a part of the systems total measurement uncertainty.

3-16. Cal Factor Switch Resolution Error. The resolution of the CAL FACTOR switch contributes a significant error to the total measurement because the switch has 1% steps. The maximum error possible in each position is $\pm 0.5\%$.

Operation Model 435A

3-17. Corrections for Error

3-18. Calibration Factor and Effective Efficiency. The two correction factors basic to power meters are calibration factor and effective efficiency. Effective efficiency is the correction factor for RF losses within the Power Sensor. Calibration factor takes into account the effective efficiency and mismatch losses.

- 3-19. Calibration factor is expressed as a percentage with 100% meaning the power sensor has no losses. Normally the calibration factor will be 100% at 50 MHz, the operating frequency of the internal reference oscillator.
- 3-20. The Power Sensors used with the 435A have individually calibrated calibration factor curves placed on their covers. To correct for RF and mismatch losses, simply find the Power Sensor's calibration factor at the measurement frequency from the curve or the table that is supplied with the Power Sensor, and set the CAL FACTOR switch to this value. The measurement error due to this error is now minimized.
- 3-21. The CAL FACTOR Switch resolution error of $\pm 0.5\%$ may be reduced by one of the following methods:
- 1) Leave the CAL FACTOR switch on 100% after calibration, then make the measurement, and record the reading. Use the reflection coefficient, magnitude and phase angle, from the table supplied with the Power Sensor to calculate the corrected power level.
- 2) Set the CAL FACTOR Switch to the nearest positions above and below the correction factor given on the table. Interpolating between the power levels measured provides the corrected power level.

3-22. Calculating Total Uncertainty

- 3-23. Certain errors in calculating the total measurement uncertainty have been ignored in this discussion because they are beyond the scope of this manual. Application note AN-64, "Microwave Power Measurement", delves deeper into the calculation of power measurement uncertainties. It is available, on request, from your nearest HP office.
- **3-24.** Known Uncertainties. The known uncertainies which account for part of the total power measurement uncertainty are:

- a. Instrumentation uncertainty $\pm 1\%$ or ± 0.05 dB.
- b. Power reference uncertainty $\pm 0.7\%$ or $\pm 0.03~dB.$
- c. CAL FACTOR switch resolution $\pm 0.5\%$ or ± 0.02 dB.

The total uncertainty from these sources is $\pm 2.2\%$ or ± 0.1 dB.

- 3-25. Calculating Mismatch Uncertainty. Mismatch uncertainty is the result of the source mismatch interacting with the Power Sensor mismatch. The magnitude of uncertainty is related to the magnitudes of the source and Power Sensor reflection coefficients, which can be calculated from VSWR. Figure 3-6 shows how the calculations are to be made and Figure 3-7 illustrates mismatch uncertainty and total calculated uncertainty for two cases. In the first case, the Power Sensor's VSWR = 1.5. and in the second case, the Power Sensor's VSWR = 1.25. In both cases the source has a VSWR of 2.0. The example shows the effect on power measurement accuracy a poorly matched power sensor will have as compared to one with low mismatch.
- 3-26. A faster, easier way to find mismatch uncertainty is to use the HP Mismatch Error (uncertainty) Limits/Reflectometer Calculator. The calculator may be obtained, on request, from your nearest Hewlett-Packard office by using HP part number 5952-0448.
- 3-27. The method of calculating measurement uncertainty from the uncertainty in dB is shown by Figure 3-8. This method would be used when the initial uncertainty calculations were made with the Mismatch Error/Reflectometer Calculator.

3-28. OPERATOR'S MAINTENANCE

- 3-29. The only maintenance responsibilities the operator should normally perform are primary power fuse replacement, LINE switch lamp replacement, and rechargeable battery replacement.
- 3-30. Battery replacement is the only undertaking that requires tools, and then only a Pozidriv screwdriver is needed.

Model 435A Operation

3-31. Fuses

3-32. The primary power fuse is found within the $\Lambda5$ Power Module Assembly on the Power Meter's rear panel. For instructions on how to change the fuse, refer to the paragraph entitled Line Voltage Selection in Section II.

CAUTION

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuse-holders must be avoided.

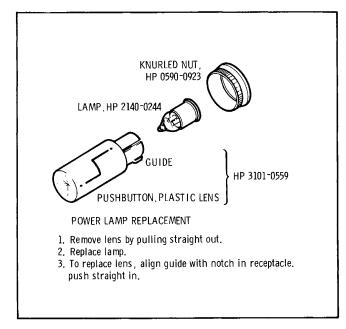
3-33. Lamp Replacement

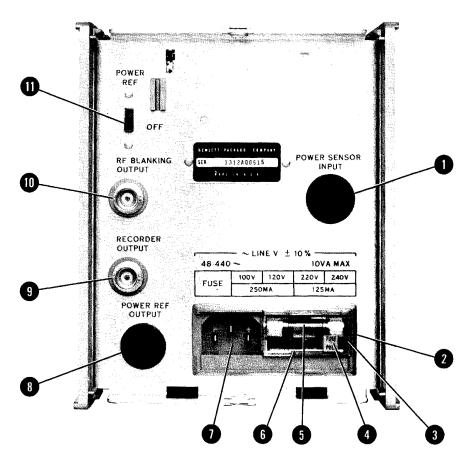
3-34. The lamp is contained in the white plastic lens which doubles for a pushbutton on the LINE switch. When the 435A LINE switch is ON and is being operated by the available line power, the lamp should be illuminated. Figure 3-1 illustrates how to remove and install the lamp.

3-35. Battery Replacement

3-36. If the meter indicates that the battery is discharged by a full downscale reading, and after

charging the battery still will only power the 435A for a short period of time, the battery is probably defective. The replacement battery, BT1 (HP Part Number 1420-0096), may be ordered through the nearest Hewlett-Packard office. Refer to Battery Installation in Section II.




Figure 3-1. Line Switch Lamp Replacement

- 1 Meter. Normally indicates average RF power in dBm or watts. During battery operation the meter continuously indicates battery condition. A normal reading indicates the battery is charged; a full down-scale reading indicates the battery is discharged or is defective.
- 2 Meter Zero. Mechanical adjustment used to zero the meter when the LINE switch is OFF.
- 3 LINE Switch. Connects line or battery power to the 435A circuits when the LINE switch is ON. During battery operation, the lamp contained within the LINE switch will not be illuminated when the INSTRUMENT is ON.
- 4 RANGE Switch. Selects desired power range; keyed to meter full-scale deflection.

- **POWER REF OUTPUT.** RF output of 1.00 mW 0.70% into 50Ω at 50 MHz from an internal reference oscillator. Available for system calibration.
- 6 Input Connector. Input from the Power Sensor via the Power Sensor Cable.
- OCAL ADJ. Screwdriver adjustment for calibrating any Power Sensor and 435A as a system, to a known standard.
- 8 ZERO Switch. The ZERO switch activates a feedback circuit, which automatically zeros the meter pointer, and a rear panel RF blanking signal.
- 9 CAL FACTOR Switch. Changes the gain of the 435A amplifier circuits to compensate for mismatch losses and effective efficiency of the Power Sensor.

REAR PANEL FEATURES

- POWER SENSOR INPUT. Option 002 has a rear panel input connector wired in parallel with the front panel input connector. In Option 003, this connector replaces the input front panel connector.
- 2 Power Module Assembly.
- 3 Window. Safety interlock; fuse cannot be removed while power cable is connected to 435A.
- **FUSE PULL Handle.** Mechanical interlock to guarantee fuse has been removed before Line Voltage Selection Card can be removed.
- 5 Fuse. 1/4A for 100/120 Vac; 1/8A for 220/240 Vac.
- **b** Line Voltage Selection Card. Matches transformer primary to available line voltage.
- 1 Receptacle. For Power Cable connection to available line voltage.

- 8 POWER REF OUTPUT. Takes the place of the front panel POWER REF OUTPUT connector (Option 003 only).
- 9 RECORDER OUTPUT. Provides a linear output with respect to the input power. +1.00 Vdc corresponds to meter full-scale. The minimum load which may be coupled to the output is $1 \text{ M}\Omega$.
- RF BLANKING OUTPUT. Contact closure to ground when ZERO switch is pressed. May be used to remove RF input signal during automatic zeroing operation.
- **11) POWER REF Switch.** Opens or closes the circuit from the power supply to the Power Reference Oscillator. Reduces current drain during battery operation when OFF.

OPERATOR'S CHECKS

1. BEFORE SWITCHING ON THIS INSTRUMENT, ensure that the power transformer primary is matched to the available line voltage, the correct fuse is installed, and the safety precautions are taken. See Power Requirements, Line Voltage Selection, Power Cables, and associated warnings and cautions in Section II.

CAUTION

- 1. BEFORE CONNECTING LINE POWER TO THIS INSTRU-MENT, ensure that all devices connected to this instrument are connected to the protective (earth) ground.
- 2. BEFORE SWITCHING ON THIS INSTRUMENT, ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient.)
- 2. Set the meter indication to zero with the mechanical Meter Zero control. Back the control off slightly.
- 3. Connect the Power Sensor to the 435A with the Power Sensor Cable.
- 4. Connect the Power Cable to the power outlet and Power Module receptacles. Set the LINE switch to ON; the lamp within the switch lens should be illuminated.
- 5. Set the Power Meter controls as follows:

RANGE switch position							. 3 μW
CAL FACTOR switch							. 100%
POWER REF switch							. OFF

- 6. Press the ZERO switch and verify that the meter pointer moves to zero (0) and the RF BLANKING OUTPUT is shorted to ground.
- 7. Set the RANGE switch to the 3 mW position.
- 8. Connect the Power Sensor to the POWER REF OUTPUT, set the rear panel POWER REF switch to (ON), and verify the meter indicates approximately a 1 mW output (50Ω Power Sensor).
- 9. Step the CAL FACTOR switch through its range noting a small increase in meter reading with each successive step. Reset the CAL FACTOR switch to 100%.
- 10. Set the RANGE switch to the 1 mW position. Adjust the CAL ADJ control for a full-scale meter reading (50Ω Power Sensors).
- 11. Check at the rear panel RECORDER OUTPUT jack for an output of $\approx 1~Vdc$.
- 12. To check operation using battery power, disconnect the power cable from the rear panel Power Module receptacle and set the LINE switch to ON (the lamp within the switch lens will not be illuminated). When a power measurement is made, a normal upscale reading indicates normal operation; a full downscale reading indicates the battery is discharged.

OPERATING INSTRUCTIONS

1. BEFORE SWITCHING ON THIS INSTRUMENT, ensure that the power transformer primary is matched to the available line voltage, the correct fuse is installed, and safety precautions are taken. See Power Requirement, Line Voltage Selection, Power Cables, and associated warnings and cautions in Section II.

CAUTION

- 1. BEFORE CONNECTING LINE POWER TO THIS INSTRU-MENT, ensure that all devices connected to this instrument are connected to the protective (earth) ground.
- 2. BEFORE SWITCHING ON THIS INSTRUMENT, ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient.)
- 2. Set the meter indication to zero with the mechanical Meter Zero control. Back the control off slightly.
- 3. Connect the Power Sensor to the 435A with the Power Sensor Cable.
- 4. Connect the Power Cable to the power outlet and Power Module receptacles. Set the LINE switch to ON; the lamp within the switch lens should be illuminated.
- 5. Set the Power Meter switches as follows:

RANGE position								. 3 μW
CAL FACTOR								. 100%
POWER REF								. OFF

- 6. Press the ZERO switch, allow 5-seconds for the zeroing operation to take place, and release the switch.
- 7. Set the RANGE switch to the 1 mW position, connect the Power Sensor to the POWER REF OUTPUT, set the rear panel POWER REF switch to (ON), and adjust the CAL ADJ control for a full-scale reading (50Ω Power Sensors only). The meter pointer should be aligned with the CAL mark (full-scale reading) on the meter face.
- 8. Disconnect the Power Sensor from the POWER REF OUTPUT and set the POWER REF switch to OFF.
- 9. Locate the calibration curve on the Power Sensor cover. Find the CAL FACTOR for the measurement frequency; set the CAL FACTOR switch accordingly.

OPERATING INSTRUCTIONS

10. Set the RANGE switch such that full scale is greater than the power level to be measured.

See Operating Precautions in the Power Sensor Operating and Service Manuals for maximum power levels which may be safely coupled to this system. Levels which exceed the limits may damage the Power Sensor, Power Meter or both.

11. Connect the Power Sensor to the RF source. Read the power level in dBm, μ W, or mW on the panel meter.

NOTE

When the battery is being used as the power supply for the Power Meter, an automatic test circuit continually monitors battery condition. When the battery voltage is above a predetermined level, the meter indicates the correct power level. When the voltage drops below the threshold level, the meter reading is full downscale.

Model 435A Operation

CALCULATING MEASUREMENT UNCERTAINTY

1. Calculate the reflection coefficient from the given VSWR.

$$\rho = \frac{\text{VSWR} - 1}{\text{VSWR} + 1}$$

Power Sensor #1

Power Sensor #2

Power Source

$$\rho_{1} = \frac{1.5 - 1}{1.5 + 1} \qquad \rho_{2} = \frac{1.25 - 1}{1.25 + 1} \qquad \rho_{8} = \frac{2.0 - 1}{2.0 + 1}$$

$$= \frac{0.5}{2.5} \qquad = \frac{0.25}{2.25} \qquad = \frac{1.0}{3.0}$$

$$= 0.2 \qquad = 0.111 \qquad = 0.333$$

2. Calculate the relative power and percentage power mismatch uncertainties from the reflection coefficients. An initial reference level of 1 is assumed.

Relative Power Uncertainty

$$PU = [1 \pm (\rho_{n}\rho_{s})]^{2}$$

$$PU_{1} = \{1 \pm [(0.2)(0.333)]\}^{2} \qquad PU_{2} = \{1 \pm [(0.111)(0.333)]\}^{2}$$

$$= \{1 \pm 0.067\}^{2} \qquad = \{1.067\}^{2} \text{ and } \{0.933\}^{2}$$

$$= \{1.037\}^{2} \text{ and } \{0.963\}^{2}$$

$$= 1.138 \quad \text{and} \quad 0.870 \qquad = 1.073 \quad \text{and} \quad 0.928$$

Percentage Power Uncertainty

$$\% PU = (PU-1) \ 100\% \ for \ PU > 1 \qquad and \qquad -(1-PU) \ 100\% \ for \ PU < 1$$

$$\% PU_1 = (1.138-1) \ 100\% \qquad and \qquad -(1-0.870) \ 100\%$$

$$= (0.138) \ 100\% \qquad and \qquad -(0.130) \ 100\%$$

$$= 13.8\% \qquad and \qquad -13.0\%$$

$$\% PU_2 = (1.073-1) \ 100\% \qquad and \qquad -(1-0.928) \ 100\%$$

$$= (0.073) \ 100\% \qquad and \qquad -(0.072) \ 100\%$$

$$= 7.3\% \qquad and \qquad -7.2\%$$

Figure 3-6. Calculating Measurement Uncertainties (1 of 2)

Operation Model 435A

CALCULATING MEASUREMENT UNCERTAINTY

3. Calculate the Measurement Uncertainty in dB.

$$\begin{array}{l} \text{MU = } 10 \; \left[\log_{10} \left(\frac{P_1}{P_0} \right) \; \right] \; \text{dB for} \; \frac{P_1}{P_0} > 1 \\ \\ = \; 10 \; \left[\log \left(\frac{10P_1}{10P_0} \right) \; \right] \; \text{dB} \\ \\ = \; 10 \; \left[\log \left(10P_1 \right) - \log \left(10P_0 \right) \right] \; \text{dB for} \; \frac{P_1}{P_0} \; < 1 \end{array}$$

-0.32 dB

and

Figure 3-6. Calculating Measurement Uncertainties (2 of 2)

= +0.31 dB

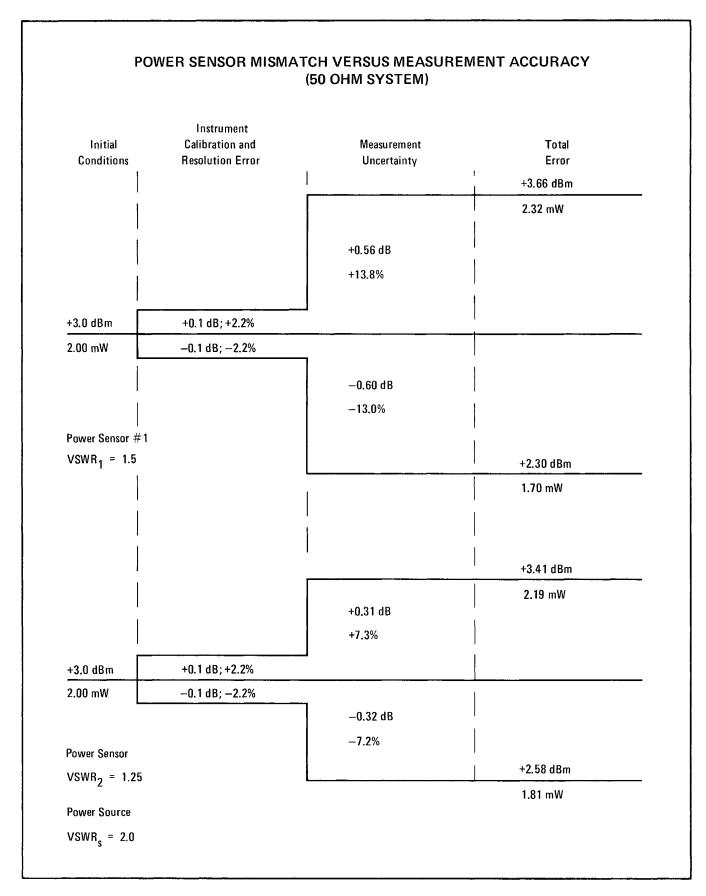


Figure 3-7. The Effect of Power Sensor Mismatch on Measurement Accuracy

CALCULATING MEASUREMENT UNCERTAINTY

- 1. For this example the known values are: source VSWR, 2.2 and power sensor VSWR, 1.16. From the Mismatch Error Calculator the mismatch uncertainty is found to be +0.24, -0.25 dB.
- 2. Add the known uncertainties from paragraph 3-26, (± 0.10 dB). Our total measurement uncertainty is +0.34, -0.35 dB.
- 3. Calculate the relative measurement uncertainty from the following formula:

$$dB = 10 \log \left(\frac{P_1}{P_0}\right)$$

$$\frac{dB}{10} = \log \left(\frac{P_1}{P_0}\right)$$

$$\frac{P_1}{P_0} = \log^{-1} \left(\frac{dB}{10}\right)$$

If dB is positive then:
$$P_{1} > P_{0}; \text{ let } P_{0} = 1$$

$$MU = P_{1} = \log^{-1}\left(\frac{dB}{10}\right)$$

$$= \log^{-1}\left(\frac{0.34}{10}\right)$$

$$= 1.081$$
If dB is negative then:
$$P_{1} < P_{0}; \text{ let } P_{1} = 1$$

$$MU = P_{0} = \frac{1}{\log^{-1}\left(\frac{dB}{10}\right)}$$

$$= \frac{1}{\log^{-1}\left(\frac{0.35}{10}\right)}$$

$$= \frac{1}{1.082}$$

4. Calculate the percentage Measurement Uncertainty.

For
$$P_1 > P_0$$
 For $P_1 < P_0$
%MU = $(P_1 - P_0) 100$ %MU = $-(P_1 - P_0) 100$
= $(1.081 - 1) 100$ = $-(1 - 0.923) 100$
= $+8.1\%$ = -7.7%

Figure 3-8. Calculating Measurement Uncertainty (Uncertainty in dB Known)

Model 435A Performance Tests

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. The procedures in this section test the electrical performance of the HP Model 435A using the specifications of Table 1-1 as performance standards. All tests can be performed without access to the interior of the instrument. A simpler operational test is included in Section III under Operator's Checks.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in Table 1-2, Recommended Test Equipment. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-5. TEST RECORD

4-6. Results of the performance tests may be tabulated on the Test Record at the end of the test procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance, trouble-shooting, and after repairs or adjustments.

4-7. PERFORMANCE TESTS

4-8. The performance tests given in this section are suitable for incoming inspection, troubleshooting, or preventative maintenance. During any performance test, all shields and connecting hardware must be in place. The tests are designed to verify published instrument specifications. Perform the tests in the order given and record the data on the test card and/or in the data spaces provided at the end of each procedure.

NOTE

The 485A must have a half-hour warmup and the line voltage must be within +5%, -10% of nominal if the performance tests are to be considered valid.

4-9. Each test is arranged so that the specification is written as it appears in Table 1-1. Next, a description of the test and any special instructions or problem areas are included. Each test that requires test equipment has a setup drawing and a list of the required equipment. The initial steps of each procedure give control settings required for that particular test.

PERFORMANCE TESTS

4-10. POWER REFERENCE OUTPUT TEST

SPECIFICATION:

+0.70% (1 mW at 50 MHz, traceable to the National Bureau of Standards).

DESCRIPTION:

A test normally cannot be performed to check the accuracy of the POWER REF OUTPUT level due to the inaccuracy of power measurement systems. To set the output level Hewlett-Packard employs a special system accurate to $\pm 0.5\%$ and traceable to the National Bureau of Standards. A transfer error of $\pm 0.2\%$ is introduced when the level is set, therefore the total error of the reference level is $\pm 0.7\%$. Hewlett-Packard

NOTES

- 1. A system with total error of ±0.7% or less, and traceable to NBS (including calibration transfer error) may be used to set the POWER REF OUT-
- 2. The 435A may be returned to Hewlett-Packard through the nearest HP office to have the reference oscillator checked and/or adjusted. Refer to Section II, PACKAGING.

Performance Tests Model 435A

PERFORMANCE TESTS

4-11. ZERO CARRYOVER TEST

SPECIFICATION:

 $\pm 0.5\%$ (0 \pm 5 mVdc) on all ranges when zeroed in the most sensitive range.

DESCRIPTION:

After the 435A is initially zeroed, the change in the meter reading is monitored at the RECORDER OUTPUT as the instrument is stepped through its ranges. The meter readings take into account noise and drift because zero carryover and the noise drift readings cannot be separated.

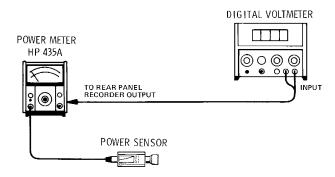


Figure 4-1. Zero Carryover Test Setup

EQUIPMENT:

PROCEDURE:

- 1. Set the DVM RANGE control to 100 mVdc.
- 2. Set the Power Meter switches as follows:

CAL FACTOR											. 1	100%
RANGE position												3 μW
POWER REF (real	r par	iel)			_		_					OFF

- 3. Connect the equipment as shown in Figure 4-1.
- 4. Press the front panel ZERO switch and wait for the meter indicator's position to stabilize. Verify that the DVM reads 0 ± 0.9 mVdc. Release the ZERO switch.
- 5. Verify that the RECORDER OUTPUT falls within the limits shown on the table for each range. Record the readings.

Model 435A Performance Tests

PERFORMANCE TESTS

4-11. ZERO CARRYOVER TEST (cont'd)

RANGE		Results RANGE Switch	Results						
Switch Position	Min	Actual	Max	Position	Min	Actual	Max		
	mVdc	mVdc	mVdc		mVdc	mVdc	mVdc		
$3 \mu W$	-15		+15	1 mW	-5		+5		
10 μW	—17		+17	3 mW	— 5		+5		
30 μW	-14		+14	10 mW	— 5		+5		
100 μW	-11		+11	30 mW	— 5		+5		
300 μW	- 8		+ 8	100 mW	— 5		+5		

4-12. INSTRUMENTATION ACCURACY TEST WITHOUT CALIBRATOR

SPECIFICATION:

±1% of full scale on all ranges (0 to 55°C).

DESCRIPTION:

A well regulated dc voltage is coupled through a voltage divider network to the sampling gate circuit of the power sensor. The CAL ADJ control is used to set the meter to full scale on the 1 mW range position. Accuracy on the other ranges is verified within $\pm 1\%$ plus noise and drift.

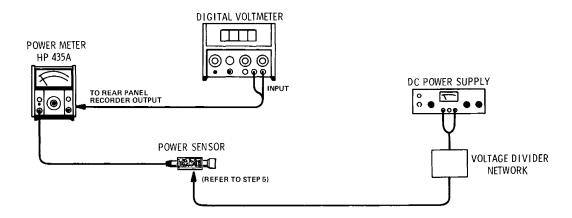


Figure 4-2. Instrumentation Accuracy Test Setup Without Calibrator

EQUIPMENT:

Digital Voltmeter	•								HP 3480A/3482	ίA
Power Supply				•					HP 6204	ŧΒ
Voltage Divider N	let	wo	rk						(See Figure 1-2	2).

Performance Tests Model 435A

PERFORMANCE TESTS

4-12. INSTRUMENTATION ACCURACY TEST WITHOUT CALIBRATOR (cont'd)

PROCEDURE:

- Remove the top cover of the Power Sensor. Refer to paragraph on REPAIR in the Power Sensor manual.
- 2. Set the DVM Range switch to 1000 mVdc.
- 3. Set the Power Meter RANGE switch to the 3 μW position, press the ZERO switch and release after 5 seconds.
- 4. Set the Power Meter and Voltage Divider Network range switches to the 1 mW position; set the Power Supply controls for a +15.0 Vdc output.

NOTE

The Voltage Divider Network is shown in Figure 1-2.

- 5. Connect the equipment as shown in Figure 4-2. The dc output voltage from the Voltage Divider Network is coupled to the Power Sensor's sampling gate input (positive output of power sensing device). Refer to the schematic and the component location diagram in the Power Sensor manual.
- 6. With the Power Meter CAL ADJ control, set the DVM reading to 1000 ± 2 mVdc.
- 7. Change the Power Meter and Voltage Divider Range switches in sequence to each range position; verify that the DVM readings fall within the tolerances shown in the following table.

CAUTION

To avoid damage to the meter, set the RANGE control of the Power Meter first when changing to a higher range. Select the Voltage Divider Network range first when changing to a lower range.

RANGE Switch		Results		RANGE Switch		Results	
Position	Min	Actual	Max	Position	Min	Actual	Max
	mVdc	mVdc	mVdc	ļ	mVdc	mVdc	mVdc
$3~\mu\mathrm{W}$	+975		+1025	1 mW	+998		+1002
$10~\mu\mathrm{W}$	+978		+1022	3 mW	+990		+1010
$30 \mu W$	+981		+1019	10 mW	+990		+1010
$100~\mu\mathrm{W}$	+984		+1016	30.mW	+990		+1010
$300~\mu\mathrm{W}$	+987		+1013	100 mW	+990		+1010
•							1

Model 435A Performance Tests

PERFORMANCE TESTS

4-13. INSTRUMENTATION ACCURACY TEST WITH CALIBRATOR

SPECIFICATION:

1% of full scale on all ranges (0 to 55°C).

DESCRIPTION:

Instrumentation accuracy is verified by coupling a full-scale reference input from the HP 11683A Calibrator to the 435A on each range. Verify that the RECORDER OUTPUT level is within ±1% plus noise and drift.

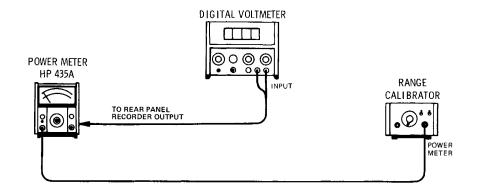


Figure 4-3. Instrumentation Accuracy Test Setup With Calibrator

EQUIPMENT:

PROCEDURE:

- 1. Set the 11683A RANGE switch to 1 mW, the FUNCTION switch to CALIBRATE, and the POLARITY switch to NORMAL.
- 2. Set the 435A RANGE switch to the 1 mW position.
- 3. Set the DVM Range switch to 1000 mVdc.
- 4. Connect the equipment as shown in Figure 4-3.
- 5. The front panel CAL ADJ control is adjusted to provide a reading of 1000 ± 2 mVdc on the DVM.

To avoid damage to the meter, set the Calibrator's FUNCTION control to STANDBY while changing the RANGE control settings on the Power Meter and Calibrator.

6. Set the 435A RANGE switch to each possible position in turn. Set the 11683A RANGE switch to the same position and verify that the DVM reading, which includes noise and drift, is within the limits shown in the table on the following page.

PERFORMANCE TESTS

4 13. INSTRUMENTATION ACCURACY TEST (WITH CALIBRATOR) (cont'd)

RANGE		Results		RANGE Switch		Results	
Switch Position	Min	Actual	Max	Position	Min	Actual	Max
	mVdc	mVdc	mVdc		mVdc	mVdc	mVdc
$3~\mu\mathrm{W}$	+975		+1025	1 mW	+998		+1002
$10~\mu\mathrm{W}$	+978		+1022	3 mW	+990		+1010
$30~\mu\mathrm{W}$	+981		+1019	10 mW	+990		+1010
$100~\mu\mathrm{W}$	+984		+1016	30 mW	+990		+1010
$300~\mu\mathrm{W}$	+987		+1013	100 mW	+990		+1010

Table 4-1. Performance Test Record

Hewlett-Packard Model 435A Power Meter Tested By					
Serial Numb	Date				
Para. No.	Test	Results			
		Min.	Actual	Max.	
4-11.	Zero Carryover $\begin{array}{c} 3 \ \mu W \\ 10 \ \mu W \\ 30 \ \mu W \\ 100 \ \mu W \\ 300 \ \mu W \\ 1 \ mW \\ 3 \ mW \\ 10 \ mW \\ 30 \ mW \\ \end{array}$	mVdc -15 -17 -14 -11 -8 -5 -5 -5	mVdc	mVdc +15 +17 +14 +11 +8 +5 +5 +5	
4-12. or 4-13.	Instrumentation Accuracy $\begin{array}{c} 3~\mu W \\ 10~\mu W \\ 30~\mu W \\ 100~\mu W \\ 300~\mu W \\ 1~mW \\ 3~mW \\ 10~mW \\ 30~mW \\ 100~mW \\ \end{array}$	-5 mVdc +975 +978 +981 +984 +987 +998 +990 +990 +990 +990	mVdc	+5 mVdc +1025 +1022 +1019 +1016 +1013 +1002 +1010 +1010 +1010 +1010	

SECTION V ADJUSTMENTS

MTRODUCTION

the Power Meter to peak operating after repairs are completed.

the adjustments are to be considered valid, Meter must have a half hour warmup line voltage must be within +5 to -10% of

Adjustments With 50Ω Power Sensor" is to commod only when the HP Model 11683A Collinator is not available.

EAPLTY CONSIDERATIONS

Although this instrument has been designed in the with international safety standards, this contains information, cautions, and warnatch must be followed to ensure safe and to retain the instrument in safe the Sections II and III). Service and thould be performed only by qualified personnel.

WARNING

Interruption of the protective bunding) conductor (inside or outside instrument) or disconnection of the locative earth terminal is likely to make instrument dangerous. Intentional impropriate in prohibited.

Any adjustment, maintenance, and repair of pened instrument under voltage should be much as possible and, when inevitable, the carried out only by a skilled person who of the hazard involved.

even if the instrument has been disconfrom its source of supply.

Make sure that only fuses with the required purrent and of the specified type (normal lime delay, etc.) are used for replacement. Of repaired fuses and the shortcircuiting of makers must be avoided.

5-10. Whenever it is likely that the protection offered by fuses has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

WARNING

Adjustments described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

5-11. EQUIPMENT REQUIRED

5-12. The test equipment required for the adjustment procedures is listed in Table 1-2, Recommended Test Equipment. The critical specifications of substitute test instruments must meet or exceed the standards listed in the table if the 435A is to meet the standards set forth in Table 1-1, Specifications.

5-13. FACTORY SELECTED COMPONENTS

5-14. Factory selected components are indicated on the schematic and replaceable parts list with an asterisk immediately following the reference designator. The nominal value of the component is listed. Table 5-1 lists the parts by reference designator and provides an explanation of how the component is selected, the normal value range, and a reference to the appropriate service sheet. The Manual Changes supplement will update any changes to factory selected component information.

5-15. ADJUSTMENT LOCATIONS

5-16. All the adjustments for the 435A are contained on the A4 assembly except the front panel CAL ADJ control and POWER REF OUTPUT level control. The last foldout in this manual contains a table which cross-references all pictorial and schematic locations of the adjustment controls. The accompanying figure shows the locations of the adjustable controls, assemblies, and chassismounted parts.

Table 5-1. Factory Selected Components

Reference Designator	Selected For	Normal Value Range	Service Sheet
A4R66	A fullscale reading (100 mW) with an accurate 100 mW input after the adjustment procedure has been completed. Hewlett-Packard recommends using a Model 11683A Calibrator to achieve the needed accuracy for selecting this resistor. The DVM reading at the 435A's RECORDER OUTPUT will be 1000 ±3 mVdc with the correct resistor in place.	150K to 250K	2
A3R15	A POWER REF OUTPUT of 1 mW when the LEVEL control is full ccw. Needed if the highest output level possible is <1 mW.	50K to 200K	. 4
A3R16	A POWER REF OUTPUT of 1 mW when the LEVEL control is full cw. Needed if the lowest output level possible is >1 mW.	50K to 200K	4

ADJUSTMENTS

5-17. POWER METER ADJUSTMENTS WITH 50Ω POWER SENSOR

REFERENCE:

Service Sheets 2 and 3.

DESCRIPTION:

- 1. The Balance control is centered to remove the dc offset introduced by the Auto Zero circuit.
- 2. The DC Offset control removes any dc voltage introduced by the DC Amplifier.
- 3. The CAL ADJ control is used to set a level of +1.00 Vdc at the rear panel RECORDER OUTPUT jack with a full scale input.
- 4. The Meter control sets the meter reading to full scale when the RECORDER OUTPUT level is +1.00 Vdc.
- 5. The Auto Zero Offset adjustment removes any dc voltage introducted by the Auto Zero circuits when the ZERO switch is pressed.
- 6. The Balance control centers the Auto Zero circuits output voltage range. The Auto Zero output is forced to its negative extreme and the Balance control sets the RECORDER OUTPUT voltage below center-range (+1.00 Vdc) by one-half the total range.

ADJUSTMENTS

5-17. POWER METER ADJUSTMENTS WITH 50 Ω POWER SENSOR (cont'd)

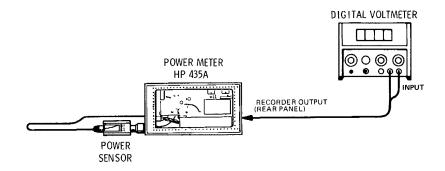


Figure 5-1. Power Meter Adjustment Setup without Calibrator

EQUIPMENT:

PROCEDURE:

- 1. Set the LINE switch to OFF, wait a few seconds, and adjust the mechanical meter zero control for a meter reading of zero.
- 2. Set the DVM Range switch to 1000 mVdc.
- 3. Set the Power Meter CAL FACTOR switch to 100%.
- 4. Remove the right side cover of the 435A and connect the equipment as shown in Figure 5-1.
- 5. Set the LINE switch to (ON).
- 6. Center the Power Meter Balance Control A4R46.
- 7. Set the Power Meter RANGE switch to the 100 mW position, and adjust A4R32, DC Offset control, for a DVM reading of 0 ± 0.2 mVdc.
- 8. Set the RANGE switch to the 1 mW position and the rear panel POWER REF switch to (ON).
- 9. Adjust the front panel CAL ADJ control to read 1000 ± 1 mVdc on the DVM.
- 10. Adjust A4R35, Meter control, to give a full-scale meter reading.
- 11. Set the rear panel POWER REF switch to OFF; the RANGE switch to the 3 µW position.
- 12. Press the front panel ZERO switch, hold it in, and adjust the Auto Zero Offset control A4R42 for a DVM reading of 0 ± 1 mVdc.
- 13. Set the RANGE switch to the 1 mW position; set the rear panel POWER REF switch to (ON).

ADJUSTMENTS

5-17. POWER METER ADJUSTMENTS WITH 50Ω POWER SENSOR (cont'd)

- 14. Press the ZERO switch, hold it in, and adjust the Balance Adjustment, A4R46, until the DVM reading is 961 ± 1 mVdc.
- 15. Set the rear panel POWER REF switch to OFF and disconnect the Power Sensor from the POWER REF OUTPUT.

5-18. POWER METER ADJUSTMENTS WITH CALIBRATOR

REFERENCE:

Service Sheets 2 and 3.

DESCRIPTION:

- 1. The Balance control is centered to remove the dc offset introduced by the Auto Zero circuits.
- 2. The DC Offset control removes any dc voltage introduced by the DC Amplifier.
- 3. The CAL ADJ control is used to set a level of +1.00 Vdc at the rear panel RECORDER OUTPUT jack with a full scale input from the Model 11683A Range Calibrator.
- 4. The Meter control sets the meter reading to full scale when the RECORDER OUTPUT level is +1.00 Vdc.
- 5. The Auto-Zero Offset adjustment removes any dc voltage that is introduced by the auto-zero circuits while the ZERO switch is pressed.
- 6. The Balance control centers the Auto-zero circuit's output voltage range. The Auto-zero output is forced to its negative extreme. The Balance Control sets the RECORDER OUTPUT voltage below the center (+1.00 Vdc) by one-half the total possible voltage swing.

Figure 5-2. 435A Adjustment Setup With Calibrator

EQUIPMENT:

Digital Voltmeter							. HP 3480A/3482A
Range Calibrator							HP 11683A (ONLY)

ADJUSTMENTS

5-18. POWER METER ADJUSTMENTS WITH CALIBRATOR (cont'd)

PROCEDURE:

- 1. Set the Power Meter LINE switch to OFF and adjust the mechanical Meter Zero control for a meter reading of zero.
- 2. Set the Power Meter switches as follows:

CAL FACTOR									. 100%
RANGE position									100 mW
POWER REF .									. OFF

- Set the Range Calibrator RANGE switch to 1 mW, FUNCTION switch to STANDBY, and POLARITY switch to NORMAL.
- 4. Set the DVM Range switch to 1000 mVdc.
- 5. Remove the right side cover of the Power Meter, connect the equipment as shown in Figure 5-2, and set the LINE switch to ON.
- 6. Center the Power Meter Balance control, A4R46.
- 7. Adjust A4R32 DC Offset control for a DVM reading of 0 ± 0.2 mVdc.
- 8. Set the Power Meter RANGE switch to the 1 mW position.
- 9. Set the Range Calibrator FUNCTION switch to CALIBRATE.
- 10. Adjust the Power Meter front panel CAL ADJ control for a DVM reading of 1000 ± 1 mVdc.
- 11. Adjust the Meter control A4R35 for a full-scale meter reading.
- 12. Set the Range Calibrator FUNCTION switch to STANDBY.
- 13. Set the Power Meter RANGE switch to the 3 μ W position, press and hold the ZERO switch, and adjust A4R42 Auto Zero Offset control for a DVM reading of 0 ± 1 mVdc.
- 14. Set the Power Meter RANGE switch to the 1 mW position; set the Range Calibrator's FUNCTION switch to CALIBRATE.
- 15. Press and hold the Power Meter ZERO switch and adjust the A4R46 Balance control for a DVM reading of 961 ± 3 mVdc.
- 16. Set the Range Calibrator FUNCTION switch to STANDBY.

Model 435A Replaceable Parts

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering replacement parts for the HP Model 435A Power Meter. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufacturer's code number.

6-3. ABBREVIATIONS

6-4. Table 6-1 gives a list of abbreviations used in the parts list, schematics, and throughout the manual. In some cases, two forms of the abbreviations are given, one all capital letters and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-5. REPLACEABLE PARTS LIST

- 6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
- a. Electrical assemblies and their components in alpha-numeric order by reference designation.
- b. Chassis-mounted parts in alpha-numeric order by reference designation.
 - c. Miscellaneous parts.
 - d. Illustrated parts breakdown.

The information given for each part consists of the following:

a. The Hewlett-Packard part number.

- b. The total quantity (Qty) used in the instrument.
 - c. The description of the part.
- d. Typical manufacturer of the part in a five-digit code.
 - e. Manufacturer code number for the part.

The total quantity for each part is given only once; at the first appearance of the part number in the list.

6-7. ORDERING INSTRUCTIONS

- 6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-10. PARTS PROVISIONING

6-11. Stocking spare parts for an instrument is often done to insure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are based on failure reports and repair data, and parts support for one year. A complimentary "Recommended Spares" list for this instrument may be obtained on request, and the "Spare Parts Kit" may be ordered through your nearest Hewlett-Packard office.

Replaceable Parts Model 435A

Table 6-1. Reference Designations and Abbreviations (1 of 2)

REFERENCE DESIGNATIONS

ABBREVIATIONS

A ampere	COEF coefficient	EDP electronic data	1NT internal
ac alternating current	COM common	processing	kg kilogram
ACCESS accessory	COMP composition	ELECT electrolytic	kHz kilohertz
ADJ adjustment	COMPL complete	ENCAP encapsulated	kΩ kilohm
A/D analog-to-digital	CONN connector	EXT external	kV kilovolt
AF audio frequency	CP cadmium plate	F farad	lb pound
AFC automatic	CRT cathode-ray tube	FET field-effect	LC inductance-
frequency control	CTL complementary	transistor	capacitance
AGC automatic gain	transistor logic	F/F flip-flop	LED light-emitting diode
control	CW continuous wave	FH flat head	LF low frequency
AL aluminum	cw clockwise	FIL H fillister head	LG long
ALC automatic level	cm centimeter	FM., frequency modulation	LH left hand
control	D/A digital-to-analog	FP front panel	LIM limit
AM amplitude modula-	dB decibel	FREQ frequency	LIN linear taper (used
tion	dBm decibel referred	FXD fixed	in parts list)
AMPL amplifier	to 1 mW	g gram	lin linear
APC automatic phase	dc direct current	GE germanium	LK WASH lock washer
control	deg degree (temperature	GHz gigahertz	LO low; local oscillator
ASSY assembly	interval or differ-	GL glass	LOG logrithmic taper
AUX auxiliary	o ence)	GRD ground(ed)	(used in parts list)
avg average	degree (plane	H henry	log logrithm(ic)
AWG American wire	angle)	h hour	LPF low pass filter
gauge	C degree Celsius	HET heterodyne	LV low voltage
BAL balance	(centigrade)	HEX hexagonal	m meter (distance)
BCD binary coded	F degree Fahrenheit	HD head	mA milliampere
decimal	K degree Kelvin	HDW hardware	MAX maximum
BD board	DEPC deposited carbon	HF high frequency	MΩ megohm
BE CU beryllium	DET detector	HG mercury	MEG meg (10 ⁶) (used
copper	diam diameter	HIhigh	in parts list)
BFO beat frequency	DIA diameter (used in	HP Hewlett-Packard	MET FLM metal film
oscillator	parts list)	HPF high pass filter	MET OX metallic oxide
BH binder head	DIFF AMPL differential	HR hour (used in	MF medium frequency;
BKDN breakdown	amplifier	parts list)	microfarad (used in
BP bandpass	div division	HV high voltage	parts list)
BPF bandpass filter	DPDT double-pole.	Hz Hertz	MFR manufacturer
BRS brass	double-throw	IC integrated circuit	mg milligram
BWO backward-wave	DR drive	ID inside diameter	MHz megahertz
oscillator	DSB double sideband	1F intermediate	mH millihenry
CAL calibrate	DTL diode transistor	frequency	mho mho
ccw counter-clockwise	logic	IMPG impregnated	MIN minimum
CER ceramic	DVM digital voltmeter	in inch	min minute (time)
CHAN channel	ECL emitter coupled	INCD incandescent	' minute (plane
cm centimeter	logic	INCL include(s)	angle)
CMO cabinet mount only	EMF electromotive force	INP input	MINAT minature
COAX coaxial		INS insulation	mm millimeter
,,			

NOTE

All abbreviations in the parts list will be in upper-case.

Model 435A Replaceable Parts

Table 6-1. Reference Designations and Abbreviations (2 of 2)

	modulation	compensating	
tion	PWM pulse-width	TC temperature	True L. O. CONTO.
OBD order by descrip-	modulation	TA tantalum	impedance
ns nanosecond	PT point PTM pulse-time	SYNC synchronize T timed (slow-blow fuse)	YIG yttrium-iron-garr Z ₀ characteris
replaceable	ps picosecond	SWR standing-wave ratio	W/O without
NSR not separately	rate	SQ square	WW wirewou
ment	PRR pulse repetition	STL steel	voltage
for field replace-	frequency	SST stainless steel	WIV working inve
NRFR not recommended	PRF pulse-repetition	SSB single sideband	W/ w
ture coefficient)	PREAMPL preamplifier	single-throw	W
zero (zero tempera-	modulation	SPST single-pole,	V(X) volts, switch
NPO negative-positive	PPM pulse-position	SR split ring	voltmeter
negative-positive-	in parts list)	SPG spring	VTVM vacuum-tu
NORM normal NPN negative-positive-	p-p peak-to-peak PP peak-to-peak (used	SPDT single-pole, double-throw	oscillator
VOM nominal	POT potentiometer	SNR signal-to-noise ratio	wave ratio VTO voltage-tur
I/O normally open	POSN position	SL slide	VSWR voltage stand
NI PL nickel plate	(used in parts list)	SIL silver	Vrms volts, r
F nanofarad	POS positive; position(s)	SI silicon	Vp-p volts, peak-to-pe
NEG negative	PORC porcelain	quency	Vpk volts, pe
NE neon	POLY polystyrene	SHF superhigh fre-	quency
N/C normally closed	P/O part of	ductor	VHF very-high f
NC no connection	positive	SEMICON semicon-	oscillator
A nanoampere	PNP positive-negative-	SECT sections	VFO variable-frequen
lW microwatt	PM phase modulation	SE selenium	V(F) volts, filter
Wrms microvolt, rms	oscillator	rectifier; screw	(used in parts l
to-peak	PLO phase lock	SCR silicon controlled	VDCW. volts, dc, work
Vp-p microvolt, peak-	PL phase lock	(used in parts list)	Vdc volts,
Vpk microvolt, peak	pk peak	S-B slow-blow (fuse)	oscillator
lVdc microvolt, dc	voltage	" . second (plane angle)	VCO voltage-control
Wac microvolt, ac	PIV peak inverse	s second (time)	VAR varia
(V microvolt	negative	S scattering parameter	Vac voltamp
ls microsecond	PIN positive-intrinsic-	voltage	VA voltamp
tH microhenry	PH BRZ phosphor bronze PHL Phillips	R&P rack and panel RWV reverse working	UNREG unregulat
IF microfarad	pF picofarad	ROM read-only memory	UHF ultrahigh frequer
A microampere	modulation	RND round	parts list)
MY mylar	PDM pulse-duration	rms root-mean-square	UF microfarad (used
MUX multiplex	modulation	RMO rack mount only	in parts list)
nW milliwatt	tion; pulse-count	capacitance	$U \dots micro (10^{-6})$ (us
nVrms millivolt, rms	PCM . pulse-code modula-	inductance-	TWT traveling wave tu
to-peak	PC printed circuit	RLC resistance-	TVI television interferer
nVp-p millivolt, peak-	modulation	hand	TV televisi
nVpk millivolt, peak	PAM pulse-amplitude	RH round head; right	logic
nVdc millivolt, dc	list)	interference	TTL transistor-transis
nVac millivolt, ac	P peak (used in parts	RFI radio frequency	TSTR transist
nV millivolt	Ω ohm	RF radio frequency	TRIM trimn
device)	oz ounce	REPL replaceable	TOL tolerar
MTR meter (indicating	OX oxide	REG regulated	TI titaniu
MTG mounting	OSC oscillator	REF reference	THRU throu
ns millisecond	amplifier OPT option	capacitance RECT rectifier	TGL togg
MOS metal-oxide semiconductor	OP AMPL operational	RC resistance-	TFT thin-film transist
	OH oval head	voltage	TERM termin
MOM momentary			

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
T	tera	1012
G	giga	10^{9}
M	mega	106
k	kilo	10^{3}
da	deka	10
d	deci	10^{-1}
c	centi	102
m	milli	$_{10}$
μ	micro	10^{-6}
n	nano	10-9
р	pico	10-12
f	femto	10-15
a	atto	10-18

Table 6-2. Replaceable Paris

Reference Designation	HP Part Number	City	Description	Mfr Code	Wfr Part Number
^ 1	00435-60005	1	CAL FACTOR SHITCH ASSY	28480	004 35-60005
1181 1182 1183 1184 1185	0757-0346 0757-0346 0757-0346 0757-0346 0757-0346	15	RESISTOR 10 OHM 1% 0125M F TUBULAR RESISTUR 10 OHM 1% 0125M F TUBULAR RESISTOR 10 OHM 1% 0125M F TUBULAR RESISTOR 10 OHM 1% 0125M F TUBULAR RESISTOR 10 OHM 1% 0125M F TUBULAR	24545 24546 24546 24546 24546	C4-1/8-T0-10RC-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F
4 1R6 A1R7 4 1R8 A1R9 A1R 20	0757-0346 0757-0346 0757-0346 0757-0346 0757-0346	17 T T T T T T T T T T T T T T T T T T T	RESISTOR 10 OHM 18 .125M F TUBULAR RESISTOR 10 OHM 18 .125M F TUBULAR RESISTOR 10 OHM 18 .125M F TUBULAR RESISTUR 10 OHM 18 .125M F TUBULAR RESISTOR 10 OHM 18 .125M F TUBULAR	24546 24546 24546 24546 24546	C4-1/8-T0-10RC-F C4-1/8-T0-10RO-F C4-1/8-T0-10RO-F C4-1/8-T0-10RO-F C4-1/8-T0-10RO-F
ALRII ALRI2 ALRI3 ALRI4 ALRI5	0757-0346 0757-0346 0757-0346 0757-0346 0757-0346		RESISTOR 10 OHM 1% -125M F TUBULAR	24546 24546 24546 24546 24546	C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F
A 1 S 1	3100-3073	1	SWITCH: ROTARY	28480	3100~3073
A 2	00435-60009	1	RANGE SWITCH ASSY	28 480	00435-60009
A 2C 1 A 2C 2 A 2C 3 A 2C 4 A 2C 5	0180-1704 0180-1746 0180-0374 0180-0374 0180-0229	1 4 2	CAPACITOR-FXD; 47UF - 10% 6VDC TA-SOLID CAPACITOR-FXD; 15UF - 10% 20VDC TA-SOLID CAPACITOR-FXD; 10UF - 10% 20VDC TA-SOLID CAPACITOR-FXD; 10UF - 10% 20VDC TA-SOLID CAPACITOR-FXD; 33UF - 10% 10VDC TA-SOLID	56289 56289 56289 56289 56289	1500476X900682 1500156X902082 1500106X902082 1500106X902082 1500136X901082
A 2R 1 A 2R 2 A 2R 3 A 2R 4 A 2R 5	0811-3202 0811-3203 0311-3204 0811-3205 0811-3206	1	RESISTOR 30.615K .1% .025W PWW TUBULAR RESISTOR 968 OHM .1% .025W PWW TUBULAR RESISTOR 21.616K .1% .025W PWW TUBULAR RESISTOR 6.836K .1% .025W PWW TUBULAR RESISTOR 2.162K .1% .025W PWW TUBULAR	14140 14140 14140 14140 14140	1409-1/40-30615R-B 1409-1/40-968R-B 1409-1/40-21616R-B 1409-1/40-6836R-B 1409-1/40-6836R-B
A2R6 A2R7 A2R6 A2R9 A2R10	0757-0279 0757-0279 0698-7284 0757-0465 0698-7284	7 2	RESISTOR 3.16K 1% .125W F TUBULAR RESISTOR 3.16K 1% .125W F TUBULAR RESISTOR 100K 2% .125W F TUBULAR RESISTOR 100K 1% .125W F TUBULAR RESISTOR 100K 2% .125W F TUBULAR	24546 24546 24546 24546 24546	C4-1/8-T0-3161-F C4-1/8-T0-3161-F C3-1/8-T0-1003-G C4-1/8-T0-1003-F C3-1/8-T0-1003-G
A 2 R 1 1 A 2 R 1 2 A 2 R 1 3 A 2 R 1 4	0757-0465 0757-0465 0757-0279 0757-0280	5	RESISTOR LOOK 1% -125W F TUBULAR RESISTOR LOOK 1% -125W F TUBULAR RESISTOR 3-16K 1% -125W F TUBULAR RESISTOR 1K 1% -125W F TUBULAR	24546 24546 24546 24546 24546	C4-1/8-T0-1003-F C4-1/8-T0-1003-F C4-1/8-T0-3161-F C4-1/8-T0-1001-F
A 25 1	3100-3090	Ł	SWITCH: ROTARY	28480	3100-3090
A2W1 A2W2	00435-60014 00435-60015	1	CABLE ASSY, GREEN CABLE ASSY, BLUE	28480 28480	00435-60014 00435-60015
A 3	00435-60003	1	POHER REFERENCE ASSY	28480	00435-60003
A3C1 A3C2 A3C3 A3C4 A3C5	0160-3964 0160-3964 0160-3879 0160-2207 0160-2204	2 3 1 2	CAPACITOR-FXD .002UF+100-0% 300WVDC CAPACITOR-FXD .002UF+100-0% 300WVDC CAPACITOR-FXD .01UF+-20% 100WVDC CAPACITOR-FXD 300F6-5% 300WVDC CAPACITOR-FXD 100F8-5% 300WVDC	28480 28480 28480 28480 28480 28480	0160-3964 0160-3964 0160-3879 0160-2207 0160-2204
A3C6 A3C7 A3C8 A3C9 A3C10	0180-0100 0160-2251 0160-3878 0160-2150 0160-4006	1 1 1	CAPACITOR-FXD; 4°7UF 4-10% 35 VDC TA CAPACITOR-FXD 5°6PF+-25PF 500WVDC CAPACITOR-FXD 0°01UF 4-20R 100WVC CAPACITOR-FXD 33PF+5°3 300WVDC CAPACITUR-FXD 34PF 4-5% 300WVDC	56289 28480 28480 28480 28480	1500475x903582 0160-2251 0160-3878 0160-2150 0160-4006
A3C11 A3C12	0160-4007 0160-3879	1	CAPACITUR-FXD 200FF+-5% 300WVDC CAPACITOR-FXD .01UF+-20% 100WVDC	28480 28480	0160-4007 0160-3879
A3CR1 A3CR2 A3CR3	1901-0518 1901-0518 0122-0255	4,	DIODE-SCHOTTKY DIODE-SCHOTTKY DIODE-YVC; SI INS194	28480 28480 04713	1901-0518 1901-0513 1N5144
A3J1	1250-1220	1	CONNECTOR-COAX; SMC; 50 GHM MALE	98291	50-051-0109
A38.8 A38.2 A38.3	9140-0144 9100-2232 00435-80001	1 1	COIL: FXD; MOLDED RF CHOKE; 4.7UH 10% COIL; FXD; MOLDED RF CHOKE; .56UH 10% INDUCTOR, 33 UH	24225 24225 28480	10/471 15/560 00435-80001
A 3PP1	00435-00010	2.	SHEELD: CAN	26480	00435-00010
1 98 A	1854-0247	1	TRANSISTOR NPM SI TO-39 PD=18 FT=800MMZ	28480	1854-0247
A 3R 1 A 3R 2 A 3R 3 A 3R 4 A 3R 5	9757-0420 0811-3234 2100-3154 0811-3235 0692-3155	And the transfer of the SA test	RESISTOR 750 OHM 1% 0125W F TUBULAR RESISTOR 10K 1% 05W PWW TUBULAR RESISTOR; VAR; TRAR; 1KOHM 10% C RESISTOR 705K 1% 05W PWW TUBULAR RESISTOR 4064K 1% 0125W F TUBULAR	24546 20940 32997 20940 16299	C4-1/6-T0-751-F 140-1/20-1002-F 3006P-1-102 140-1/20-7501-F C4-1/8-T0-4641-F

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3R 6	0757-0465		RESISTOR 100K 1% -125W F TUBULAR	24546	C4-1/8-T0-1003-F
A3R7	0757-0465		RESISTOR 100K 1% .125W F TUBULAR	24546	C4-1/8-T0-1003-F
A3R8 A3R9	0757-0280 0757-0280		RESISTOR 1K 1% .125W F TUBULAR RESISTOR 1K 1% .125W F TUBULAR	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A3R 10	0757-0442	10	RESISTOR 10K 1% .125W F TUBULAR	24546	C4-1/8-T0-1002-F
42011	0698-0083	2	RESISTOR 1.96K 1% .125W F TUBULAR	16299	C4-1/8-TO-1961-F
A3R11 A3R12	0757-0398	1	RESISTOR 75 OHM 1% .125W F TUBULAR	24346	C4-1/8-T0-75R0-F
A3R13	0698-3445	1	RESISTOR 348 OHM 1% .125W F TUBULAR	16299	C4-1/8-T0-348R-F
A3R 14	0698-3566	1 10	RESISTOR 53 OHM 1% -125W F TUBULAR	03888 24546	PME55-1/8-T0-53R0-F C4-1/8-T0-1003-F
A3R15*	0757-0465	10	RESISTOR 100K 1% -125W F TUBULAR * FACTORY SELECTED PART	24346	C4-17 8-10-1003-1
A3R16*	0757-0465	1	RESISTOR 100K 1% .125W F TUBULAR	24546	C4-1/8-T0-1003-F
ASKID*	0151-0405		* FACTORY SELECTED PART	24340	C4-178-10-1003-1
A3TP1	0360-1514	48	TERMINAL; SLDR STUD	28480	0360-1514
A3TP2	0360-1514	"	TERMINAL; SLDR STUD	28480	036 0-1514
A3U1	1826-0013	6	IC;LIN;OPERATIONAL AMPLIFIER	28480	1826-0013
A3U2	1820-0223	2	IC; LIN; OPERATIONAL AMPLIFIER	27014	LM3 01 AH
A3VR1	1902-0033	1	DIODE; ZENER; 6.2V VZ; .25W MAX PD	03877	1N823
A4	00435-60001	1	AMPLIFIER/POWER SUPPLY ASSY	28480	00435-60001
A4C1	0180-2206	2	CAPACITOR-FXD; 60UF-10% 6VDC TA-SOLID	56289	150D606X9006B2
A4C2	0180-0228	3	CAPACITOR-FXD; 22UF+-10% 15VDC TA-SOLID	56289	150D226X9015B2
A4C3	0160-2055	1 2	CAPACITOR-FXD .OLUF+80-20% 100WVDC CAPACITOR-FXD .O39UF+-10% 200WVDC	28480 56289	016 0-2 055
A4C4 A4C5	0160-0164 0160-0160	2	CAPACITUR-FXD +0390F+-10% 200WVDC	56289	292P39392 292P82292
	, i	_		54.000	
A4C6 A4C7	0180-0229 0170-0040	2	CAPACITOR-FXD; 33UF+-10% 10VDC TA-SULID CAPACITOR-FXD .047UF+-10% 200WVDC	56289 56289	1500336X9010B2 292P47392
A4C8	0160-0164	- "	CAPACITOR-FXD .039UF+-10% 200WVDC	56289	292 P3 93 92
A4C9	0180-0197	4	CAPACITOR-FXD; 2.2UF+-10% 20VDC TA	56289	1500225X9020A2
A4C10	0180-0197		CAPACITOR-FXD; 2.2UF+-1C% 20VDC TA	56 289	150D225X9020A2
A4C11	0160-0161	1	CAPACITOR-FXD .OLUF+-10% 200WVDC	56289	292P10392
A4C12 A4C13	0180-0116 0180-0116	4	CAPACITOR-FXD; 6.8UF+-10% 35VDC TA CAPACITOR-FXD; 6.8UF+-10% 35VDC TA	56289 56289	150D685X9035B2 150D685X9035B2
A4C14	0160-0160		CAPACITOR-FXD .0082UF+-10% ZOOWVDC	56289	2 92 P82 2 92
A4C 15	0170-0040		CAPACITOR-FXD .047UF+-10% 200WVDC	562 89	292P47392
A4C16	0180-0374		CAPACITOR-FXD; 10UF+-10% 20VDC TA-SOLID	56289	150D106X9020B2
A4C 17	0180-0197		CAPACITOR-FXD: 2.2UF+-10% 20VDC TA	562 89	1500225X9020A2
A4C18	0180-0373	1	CAPACITOR-FXD: .68UF+-10% 35VDC TA	56289	150D684X9035A2
A4C19 A4C20	0180-0116 0180-0116		CAPACITOR-FXD; 6.8UF+-10% 35VDC TA CAPACITOR-FXD; 6.8UF+-10% 35VDC TA	56289 56289	150D685X903582 150D685X903582
				28480	
A4C21 A4C22	0160-3456 0180-1997	1	CAPACITOR-FXD .001UF+-10% 1000WVDC CAPACITOR-FXD; 20UF+50-10% 150VDC AL	28480	0160-3456 0180-1997
A4C23	0180-0197	_	CAPACITOR-FXD; 2.2UF+-10% 20VDC TA	56289	1500225X9020A2
A4C24	0180-0374	1	CAPACITOR-FXD; 10UF+-10% 20VDC TA-SOLID CAPACITOR-FXD .15UF+-10% 80WVDC	56289 56289	150D106X9020B2 292P1549R8
A4C 25	0160-2290		CAPACITOR-PAD -150FF-104 GONADC		·
A4C26	0160-2204		CAPACITOR-FXD 100PF+-5% 300WVDC	28480	0160-2204
A4C27 A4C28	0160-3879 0180-0228		CAPACITOR-FXD .01UF+-20% 100WVDC CAPACITOR-FXD; 22UF+-10% 15VDC TA-SOLID	2 84 80 56 289	016 0-3 8 7 9 1 5 0 D 2 2 6 X 9 0 1 5 B 2
A4C 29	0180-0228		CAPACITOR-FXD; 22UF+-10% 15VDC TA-SOLID	562 89	150D226X9015B2
A4C30	0180-2206	·	CAPACITOR-FXD; 60UF+-10% 6VDC TA-SOLID	56289	150D606X9006B2
A4CR1	1901-0518		DI ODE-SCHOTTKY	28480	1901-0518
A4CR2	1901-0518	_	DIODE-SCHOTTKY	28480	1901-0518
A4CR3 A4CR4	1901-0033 1901-0033	5	DIODE-GEN PRP 180V 200MA DIODE-GEN PRP 180V 200MA	28480 28480	1901-0033 1901-0033
A4CR5	1901-0033	1	DIODE; MULT; FULL WAVE BRIDGE RECTIFIER	04713	SDA 10185-4
A4CR6	1901-0033		DIODE-GEN PRP 180V 200MA	28480	1901-0033
A4CR7	1901-0033		DIDDE-GEN PRP 180V 200MA	28480	1901-0033
A4CR8	1902-0184	1	DIODE-ZNR 16.2V 5% DO-7 PD=.4W	28480 28480	1902-0184 1901-0033
A4CR9	1901+0033		DIODE-GEN PRP 180V 200MA	1	
A4J1 A4J2	0360-1514 0360-1514		TERMINAL; SLDR STUD TERMINAL; SLDR STUD	28480 28480	0360-1514 0360-1514
A4K1	0490-0916	1	RELAY; REED; 1A .5A 50V CONT; 5V COIL	2 84 80	0490-0916
		1			
A4MP1 A4MP2	1205-0085 1205-0085	2	HEAT-DISSIPATOR; SGL; TO-49 PKG HEAT-DISSIPATOR; SGL; TO-49 PKG	28480 28480	1205-0085 1205-0085
A4P1	0362-0063	11	TERMINAL, CRP, QDISC FEM, 0.046 TAB,	91886	122-0192-019
A4P2	0362-0063	''	TERMINAL, CRP, QDISC FEM, 0.046 TAB,	91886	122-0192-019
A4Q1	1853-0020	3	TRANSISTOR PNP SI CHIP PD=300MW	28480	1853-0020
A4Q2	1853-0020		TRANSISTOR PNP SI CHIP PD=300MW	28480	1853-0020
A4Q3	1854-0071	5	TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480	1854-0071
A4C4 A4C5	1854-0071 1854-0071	l	TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480	1854-0071 1854-0071
		1			
		1			
	.1	.1		L	

Table 6-2. Replaceable Parts

HP Part Number 18 55-00 20 18 55-00 20 18 53-00 11 18 54-00 3 18 53-00 12 18 53-00 12 18 54-00 72 18 54-00 71	2 1 1 2	Description TRANSISTOR; J-FET N-CHAN, D-MODE SI TRANSISTOR; J-FET N-CHAN, D-MODE SI TRANSISTOR PNP SI CHIP TO-39 PD=600 MW	Mfr Code 2 84 80 2 84 80	Mfr Part Number
1.855-0020 1.853-0001 1.854-0003 1.853-0012 1.853-0012 1.853-0052 1.853-0052 1.853-0052	1 1	TRANSISTOR; J-FET N-CHAN, D-MODE SI TRANSISTOR PNP SI CHIP TO-39 PD=600MW		1855-0020
1854-0072 1853-0052 1854-0071		TRANSISTOR NPN SI TO-39 PD=800MW TRANSISTOR PNP 2N2904A SI CHIP	28480 28480 01295	1855-0020 1853-0001 1854-0003 2N2 904 A
1854-0071	1 1	TRANSISTOR PNP 2N2904A SI CHIP TRANSISTOR NPN 2N3054 SI PD=25W TRANSISTOR PNP 2N3740 SI CHIP PD=25W TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	01295 02735 04713 28480 28480	2N2904A 2N3054 2N3740 1854-0071 185 4-0071
1854-0090 1853-0038 1853-0020	1	TRANSISTOR NPN SI TO-39 PD=1W FT=100MHZ TRANSISTOR PNP SI CHIP TO-39 PD=1W TRANSISTOR PNP SI CHIP PD=300MW	2 84 80 2 84 80 2 84 80	1854-0090 1853-0038 1853-0020
0698-3160 0698-3156 0757-0288 0698-3150 0698-3152	3 1 1 2 1	RESISTOR 31.6K L% -125W F TUBULAR RESISTOR 14.7K 1% -125W F TUBULAR RESISTOR 9.09K 1% -125W F TUBULAR RESISTOR 2.37K 1% -125W F TUBULAR RESISTOR 2.47K 1% -125W F TUBULAR RESISTOR 3.48K 1% -125W F TUBULAR	16299 16299 30983 16299 16299	C4-1/8-T0-3162-F C4-1/8-T0-1472-F MF4C1/8-T0-9091-F C4-1/8-T0-2371-F C4-1/8-T0-3481-F
0757-0459 0757-0465 0757-0444 0757-0442 0698-3159	2 1 3	RESISTOR 56.2K 1%.125W F TUBULAR RESISTOR 100K 1%.125W F TUBULAR RESISTOR 12.1K 1%.125W F TUBULAR RESISTOR 10K 1%.125W F TUBULAR RESISTOR 26.1K 1%.125W F TUBULAR	24546 24546 24546 24546 16299	C4-1/8-T0-5622-F C4-1/8-T0-1003-F C4-1/8-T0-1212-F C4-1/8-T0-1002-F C4-1/8-T0-2612-F
0698-3159 0757-0279 0757-0442 0698-3446 0757-0462	1 2	RESISTOR 26.1K 1% .125W F TUBULAR RESISTOR 3.16K 1% .125W F TUBULAR RESISTOR 10K 1% .125W F TUBULAR RESISTOR 363 0HM 1% .125W F TUBULAR RESISTOR 363 0HM 1% .125W F TUBULAR	162 99 24546 24546 16 299 24546	C4-1/8-T0-2612-F C4-1/8-T0-3161-F C4-1/8-T0-1002-F C4-1/8-T0-383R-F C4-1/8-T0-7502-F
0757-0279 0757-0462 0757-0442 0811-3214 0811-3218	1 1	RESISTOR 3.16K 1% .125W F TUBULAR RESISTOR 75K 1% .125W F TUBULAR RESISTOR 10K 1% .125W F TUBULAR RESISTOR 31.62 OHM .1% .025W PWW RESISTOR 1K .1% .0125W PWW TUBULAR	24546 24546 24546 14140 14140	C4-1/8-T0-3161-F C4-1/8-T0-7502-F C4-1/8-T0-1002-F 1409-1/40-31R62-B 1409-1/80-1001-B
0757-0290 0698-3450 0757-0278 0757-0438 0698-3162	1 2 2 1 2	RESISTOR 6.19K 1% -125W F TUBULAR RESISTOR 42-2K 1% -125W F TUBULAR RESISTOR 1.76K 1% -125W F TUBULAR RESISTOR 5.11K 1% -125W F TUBULAR RESISTOR 46.4K 1% -125W F TUBULAR	30983 16299 24546 24546 16299	MF4C1/8-T0-6191-F C4-1/8-T0-4222-F C4-1/8-T0-1781-F C4-1/8-T0-5111-F C4-1/8-T0-4642-F
0757-0280 0698-3450 0757-0278 0757-0442 0757-0442		RESISTOR 1K 1% -125W F TUBULAR RESISTOR 42-2K 1% -125W F TUBULAR RESISTOR 1-75K 1% -125W F TUBULAR RESISTOR 10K 1% -125W F TUBULAR RESISTOR 10K 1% -125W F TUBULAR	24546 16299 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-4222-F C4-1/8-T0-1781-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
0698-3158 2100-1738 0698-8300 0757-0280 2100-2061	2 2 1	RESISTOR 23.7K 1% .125W F TUBULAR RESISTOR; VAR; TRMR; 10K0HM 10% C RESISTOR 840 0HM 1% .125W F TUBULAR RESISTOR 1K 1% .125W F TUBULAR RESISTOR; VAR; TRMR; 200 0HM 10% C	16299 19701 30983 24546 30983	C4-1/8-T0-2372-F ET50W103 MF4C1/8-T0-840R-F C4-1/8-T0-1001-F ET50W201
0757-0419 0757-0399 0698-3154 0698-3150	1 1 1	RESISTOR 681 OHM 1% -125W F TUBULAR RESISTOR 62-5 OHM 1% -125W F TUBULAR RESISTOR 4-22K 1% -125W F TUBULAR RESISTOR 2-37K 1% -125W F TUBULAR NOT ASSIGNED	24546 24546 16299 16299	C4-1/8-T0-681R-F C4-1/8-T0-82R5-F C4-1/8-T0-4221-F C4-1/8-T0-2371-F
2100-1738 0683-2265 0698-3160 0757-0467	1	NOT ASSIGNED RESISTOR; VAR; TRMR; 10KOHM 10% C RESISTOR 22M 5% .25W CC TUBULAR RESISTOR 31.6K 1% .125W F TUBULAR RESISTOR 121K 1% .125W F TUBULAR	19701 01121 16299 24546	ET50W103 CB2265 C4-1/8-T0-3162-F C4-1/8-T0-1213-F
2100-2031 0757-0841 0757-1000 0633-0685 0757-0465	1 1 1	RESISTOR; VAR; TRMR; 50KOHM 10% C RESISTOR 12-1K 1% -5W F TUBULAR RESISTOR 51-1 OHM 1% -5W F TUBULAR RESISTOR 6-8 OHM 5% -25W CC TUBULAR RESISTOR 100K 1% -125W F TUBULAR	30983 30983 30983 01121 24546	ET50M503 MF7C1/2-T0-1212-F MF7C1/2-T0-51R1-F C86865 C4-1/8-T0-1003-F
0757-0465 0698-3157 0757-0279 0698-3159 0683-1555	1	RESISTOR 100K 1% -125W F TUBULAR RESISTOR 19-6K 1% -125W F TUBULAR RESISTOR 3-16K 1% -125W F TUBULAR RESISTOR 26-1K 1% -125W F TUBULAR RESISTOR 1-5M 5% -25W CC TUBULAR	24546 16299 24546 16299 01121	C4-1/8-T0-1003-F C4-1/8-T0-1962-F C4-1/8-T0-3161-F C4-1/8-T0-2612-F C81555
0757-0442 0757-0441 0757-0428 0698-3155 0698-3162	1 1	RESISTOR 10K 1% .125W F TUBULAR RESISTOR 8.25K 1% .125W F TUBULAR RESISTOR 1.62K 1% .125W F TUBULAR RESISTOR 4.64K 1% .125W F TUBULAR RESISTOR 4.64K 1% .125W F TUBULAR	24546 24546 24546 16299 16299	C4-1/8-T0-1002-F C4-1/8-T0-8251-F C4-1/8-T0-1621-F C4-1/8-T0-4641-F C4-1/8-T0-4642-F
0757-1094 0698-3449 0757-0442 0757-0442 0757-0403	1 1	RESISTOR 1.47K 1% -125W F TUBULAR RESISTOR 28.7K 1% -125W F TUBULAR RESISTOR 10K 1% -125W F TUBULAR RESISTOR 10K 1% -125W F TUBULAR RESISTOR 10Z 10HM 1% -125W F TUBULAR	24546 16299 24546 24546 24546	C4-1/8-T0-1471-F C4-1/8-T0-2872-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-121R-F
	757-0288 698-3152 757-0459 757-0465 757-0442 698-3159 698-3159 698-3159 698-3159 757-0279 757-0462 757-0462 757-0462 757-0462 757-0462 757-0462 757-0462 757-0462 757-0462 757-0462 757-0463 100-1738 698-3450 757-0278 757-0442 698-3159 698-3150 100-2061 757-0399 698-3150 100-2061 757-0467 100-2031 757-0399 698-3150 100-2061 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467 100-2031 757-0467	757-0288 1 698-3150 2 757-0459 757-0465 757-0444 1 757-0442 698-3159 3 698-3159 757-0279 757-0442 698-3466 1 757-0462 757-0462 757-0462 757-0462 757-0462 811-3218 1 811-3218 1 757-0279 757-0279 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0278 757-0280 698-3152 698-3158 100-1738 20698-3158 100-1738 698-3159 100-2061 1757-0399 1698-3154 698-3150 100-2061 1757-0399 1698-3154 698-3155 1757-0447 1757-0391 1757-0391 1757-0467 1100-2031 1757-0391 1757-0467 1100-2031 1757-0467 1100-2031 1757-0467 1100-2031 1757-0467 1100-2031 1757-0467 1100-2031 1757-0467 11757-0467	T57-0288 1 RESISTOR 9-09K IX -125M F TUBULAR	RESISTOR 9.09K 1% .125M F TUBULAR

Table 6-2. Replaceable Parts

1avie 6-2. Replaceavie Faris									
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number				
A4R66	0698-3453	1	RESISTOR 196K 1% -125W F TUBULAR * FACTORY SELECTED PART	16299	C4-1/8-T0-1963-F				
A4R67 A4R68 A4R69	0698-0084 0698-0083 0683-3355	1	RESISTOR 2.15K 1% .125W F TUBULAR RESISTOR 1.96K 1% .125W F TUBULAR RESISTOR 3.3M 5% .25W CC TUBULAR	16299 16299 01121	C4-1/8-T0-2151-F C4-1/8-T0-1961-F C83355				
A4R70 A4R71 A4R72 A4R73 A4R74	0757-0279 0757-0442 0698-3160 0757-0274 0698-3440	1	RESISTOR 3-16K 1% -125W F TUBULAR RESISTOR 10K 1% -125W F TUBULAR RESISTOR 31-6K 1% -125W F TUBULAR RESISTOR 1-21K 1% -125W F TUBULAR RESISTOR 196 OHM 1% -125W F TUBULAR	24546 24546 16299 24546 16299	C4-1/8-T0-3161-F C4-1/8-T0-1002-F C4-1/8-T0-3162-F C4-1/8-T0-1213-F C4-1/8-T0-196R-F				
A4R 75	0698-3158		RESISTOR 23.7K 1% .125W F TUBULAR	16299	C 4-1/8-T 0-2372-F				
A4RT1	0839-0011	1	THERMISTOR, NEG TC, 100 OHM DISC	83186	21E23				
A4TP1 A4TP2 A4TP3 A4TP4 A4TP5	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL; SLDR STUD	28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514				
A4TP6 A4TP7 A4TP8 A4TP9 A4TP10	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL; SLDR STUD	28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514				
A4TP11 A4TP12	0360-1514 0360-1514		TERMINAL; SLDR STUD TERMINAL; SLDR STUD	28480 28480	036 0-1514 0360-1514				
A4U1 A4U2 A4U3 A4U4 A4U5	1826-0013 1826-0013 1826-0013 1826-0092 1826-0013	1	IC;LIN;OPERATIONAL AMPLIFIER IC;LIN;OPERATIONAL AMPLIFIER IC;LIN;OPERATIONAL AMPLIFIER IC;LIN;OPERATIONAL AMPLIFIER IC;LIN;OPERATIONAL AMPLIFIER	28480 28480 28480 04713 28480	1826-0013 182€-0013 1826-0013 MC7812CP 1826-0013				
A4U6 A4U7	1826-0013 1820-0223		IC;LIN;OPERATIONAL AMPLIFIER IC;LIN;OPERATIONAL AMPLIFIER	28480 27014	1826-0013 LM3 01 AH				
A4VR1 , VR2 A4VR3 A4VR4 A4W1	1902-3002 1902-0041 1902-3182 00435-60013	2 1 1 1	DIODE-ZNR 2.37V 5% DO-7 PD=.4W TC= DIODE-ZNR 5.11V 5% DO-7 PD=.4W TC= DIODE-ZNR 12.1V 5% DO-7 PD=.4W CABLE, GRAY SHIELDED, 2-CONDUCTOR	04713 04713 04713 28480	SZ 10939-2 SZ 10939-98 SZ 10939-206 00435-60013				
A4A1 A4A1C1 A4A1C2 A4A1C3 A4A1C4	00435-60010	1	AUTO ZERO ASSY NSR, P/O A4A1 ASSY NSR, P/O 44A1 ASSY NSR, P/O A4A1 ASSY NSR, P/O A4A1 ASSY	28480	00435-60010				
A4A1CR1			NSR, P/O A4A1 ASSY						
A4A1K1			NSR, P/O A4A1 ASSY						
A4A1Q1			NSR, P/O A4A1 ASSY						
A4A1R1 A4A1R2 A4A1R3 A4A1R4			NSR, P/O A4A1 ASSY NSR, P/O A4A1 ASSY NSR, P/O A4A1 ASSY NSR, P/O A4A1 ASSY						
A5	5060-9409	1	POWER MODULE ASSY, JADE GRAY	28480	5060-9409				
A5J1 A5J2 A5J3 A5J4 A5J5	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL; SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514				
A5J6 A5J7 A5J8 A5J9 A5J10	0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL; SLDR STUD TERMINAL; SLDR STUD TERMINAL; SLDR STUD TERMINAL; SLDR STUD NSR, PART OF A5 ASSY	28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514				
			CHASSIS PARTS						
811	1420~0096	1	BATTERY:28.8V (FOR OPT 001)	2 84 80	1420-0096				
051	2140-0244	1	LAMP, GLOW, BULB T-2, 105V (PART OF S1)	87034	A 1H				
f1	2110-0004	1	FUSE .25A 250V (FOR 100,120 VAC OPERATION)	71400	AGC-1/4				
F1	2110-0027	1	FUSE -125A 250V (FOR 220,240 VAC OPERATION)	71400	AGC 1/8				
		<u> </u>		L					

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Wfr Part Number
31 32	1251-3228	2	CONNECTOR: 12-CONT; FEM; CIRC AUDID (P/O Wi; SEE MP4) NSR P/O W3 OR W9; SEE MP3 AND MP6.	13511	917 3638-1000
14 13	1250-0118 1250-0118	2	SIAMET MHO OF SOME SACO-FORMED SACO-FORMED SACO-FORMED BLAKE	9D949 9D949	31-2221-1022 31-2221-1022
J5	1251-3228		CONNECTOR, 12-CONT, FEM, CIRC AUDIO (P/O W6, SEE MP4)	13511	91 73638-1000
Ml	1120-1513	-	METER	28480	3220-1513
MF1	0370-1100	1	KNUB, BASE-CONC PTR, 55 IN, JGK {CAL FACTOR SWITCH}	28480	0370-1100
MP2	03 70-2388	1	KNOB:BAR SKIRTED, JADE GRAY (RANGE SWITCH)	28480	0370-2388
MP3	0590-0011	1	NUT; KNRLD R 5/8-24 a125 X a75; BRS; NE (USED WITH J2)	28480	0590-0011
MP4	1251-3362	1	NUT:HEX (USED WITH J1 AND J5)	28480	1251-3362
MF5	0590-0923	1	(P/O S1)	28480	0590-0923
MP6	2950~0079	1	NUT; HEX 5/8-24 .125 X .75; BRS (P/U WO DR W9, USED WITH J2)	76854	169597-002

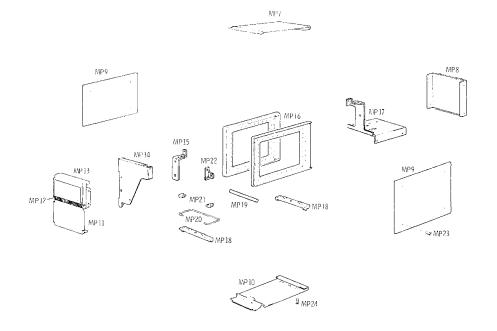


Figure 6-1. Cabinet Parts, Exploded View

			g 1		1 1	
	794	5060-8555	1	COVER ASSY: FOP 5 X 11	28480	5060-8555
	MP8	00435-00003	1	PANEL, REAR	28480	00435-00003
ļ	MPS	5000-8565	2	COVER:SIDE	28480	5000-8565
ł	MP10	5000-8571	1 1	COVER:BOTTOM 5 X 11	28480	500C-8571
ì	PPII	00435-00001	1 1	PANEL, FRONT	28480	00435-00001
į	MP12	00435-000L1	1	GUSSET, FRONT PANEL	28480	00435-00011
ŀ		1	1			
	MP13	5020-7633	1 1	METER TRIM:THIRD MODULE	28480	5020-7633
i	NF14	00435-00004	1 1	BRACKET, SWITCH	28480	00435-00004
ŀ	MP15	00435-00005	1	BRACKET MOUNTING, MICROSWITCH	28480	00435-00005
	MP16	5060-0703	2	FRAME ASSY: 6 X 11 SM	28480	5060-0703
i	MP17	00435-00007	1	DECK, CHASSIS	28480	00435-00007
				FOOT ACCU	28480	5060-0727
ŀ	MF18	5060-0727	2	FOOT ASSY	4	5020-0700
ì	PP19	5020-0700	1 1	SPACER: CABINET	28480	
Į	MP20	1490-0031	1 + 1	SPRING WERM .156-UD SST	28480	1490-0031
	MP21	5040-0700	2	HINGE	28480	5040-0700
i i	MP22	00435-00002	1	BRACKET MOUNTING: CAL POT	28480	00435-00002
1	MP23	2360-0190	8	SCREW-MACH 6-32 100 DEG FL MD POZE REC	28480	2360-0190
į	VF24	2360-0194	2	SCREW-MACH 6-32 100 DEG FL HC POZI REC	28480	2360-0194
í	F Y 4-7	2300 0174	-	SOME TIMOTION SE SE SECONE TIE TOEL THE	1	

Table 6-2. Replaceable Parts

Table 6-2. Replaceable Parts					
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
P1 P2 P3 P4	0362~0063 0362~0063 0362~0063 0362~0063 0362~0063		TERMINAL, CRP, QDISC FEM, 0.046 TAB, IERMINAL, CRP, QDISC FEM, 0.046 TAB, TERMINAL, CRP, QDISC FEM, 0.046 TAB, TERMINAL, CRP, QDISC FEM, 0.046 TAB, TERMINAL, CRP, QDISC FEM, 0.046 TAB,	91886 91886 91886 91886 91886	122-0192-019 122-0192-019 122-0192-019 122-0192-019 122-0192-019
P6 P7 P8 P9 P10	0362-0063 0362-0063 0362-0063 0362-0063 1250-1411	1	TERMINAL, CRP, QDISC FEM, 0.046 TAB, CUNNECTOR-COAX; SMC; 50 UHM FEMALE (P/O W3 OR W9)	91886 91886 91886 91886 98291	122-0192-019 122-0192-019 122-0192-019 122-0192-019 50-328-3188
R1 R2	2100-3342 0757-0459	1	R:VAR 10K GHM 5% 10-TURN RESISTOR 56.2K 1% -125W F TUBULAR (P/O W2)	28480 24546	2100-3342 C4-1/8-T0-5622-F
51 52	3101-1395 3102-0006	1	SWITCH; PB 1-SIA RECT DPDT (P/O W2, INCLUDES DS1 AND MP5) SWITCH-SENS SPDT SUBMIN .5A 28VDC	87034 28480	53-67280-121/A1H 3102-0006
27	00435-00006 00435-40001	1 1	(ZERO) SPRING, PUSHBUTTON PUSHBUTTON, MICROSWITCH	28480 28480	00435~00006 00435~40001
53	03603-2004 3101-0070	1	NUT PLATE, MICROSWITCH SWITCH; SL; DPDT NS; -5A 125 VAC/DC (POWER REF. SWITCH)	28480 79727	03603-2004 GF-126-0000
11	9100-3391	1	TRANSFURMER	28480	9100-3391
181	5020-8122	1	LINE VOLTAGE SELECTION CARD	2 84 80	5020-8122
W2	00435-60006	1	CABLE, IMPUT, GRAY (INCL J1, SEE MP4, OMITTED ON OPT 003) CABLE, POWER PRIMARY	28480 28480	00435-60006 00435-60007
H3	00435-60004	1	(INCLUDES R2 AND S1) CABLE, POMER REFERENCE (INCLUDES J2, PlO AND MP6, SEE MP3, OMITTED ON OPT 003)	28480	00435-60004
W4	00435-60011	1	CABLE, POWER SENSOR, 54, STANDARD	28480	0043560011
	00435-60020 00435-60021 00435-60022 00435-60023 00435-60024	1 1 1 1	(OMIT ON OPT 009,010,011,012 & 013) CABLE, POWER SENSOR, 10' (UPT 010 ONLY) CABLE, POWER SENSOR, 20' (UPT 010 ONLY) CABLE, POWER SENSOR, 50' (OPT 011 ONLY) CABLE, POWER SENSOR, 100' (OPT 012 ONLY) CABLE, POWER SENSOR, 200' (OPT 013 ONLY)	28430 28480 28480 28480 28480	00435-60020 00435-60021 00435-60022 00435-60023 00435-60023
N 5 N 6	8120-1378 00435-60027	1	CABLE; UNSHLD 3-COND 18AWG CABLE, INPUT, GRAY (INCL J5, SEE MP4, FOR UPT 002 & 003)	28480 28480	8120-1378 00435-60027
₩ 7 ₩8	00435-60025 00435-60026	1 1	CABLE, GREEN CABLE, BLUE, 2-CONDUCTOR	28480 28480	004 35-60025 004 35-60026
h 9	00435-60028	1	CABLE, POWER REFERENCE (INGL J2, P10 AND MP6), SEE MP3, OPT 003 ONLY).	28480	CO435-60028
xA4	1251-0233	1	CONNECTOR; PC EDGE; 22-CONT; SOLDER EYE MISCELLANEOUS PARTS	71785	251-22-30-261
	0403-0131 6960-0010 6960-0024 5040-0345 00435-00009	2 1 1 4	GUIDE, P.C. BOARD, GRAY PLUG, HOLE, STANDARD HD, .625 DIA STEEL PLUG, HOLE, STANDARD HD, .688 DIA NYLON INSULATOR:CONNECTOR GLAMP, BATTERY (OPT 001 UNLY)	28480 77122 28520 28480 28480	0403-0131 P-687 5040-0345 00435-00009
	L	1			

Replaceable Parts Model 435A

Table 6-3. Code List of Manufacturers

MER			Z1P
NO.	MANUFACTURER NAME	ADDRE SS	CODE
01121	ALLEN BRADLEY CO	MILWAUKEE WI	53212
11295	TEXAS INSTR INC SEMICOND CMPNT DIV	DALLAS TX	75231
02735	RCA CORP SOLID STATE DIV	SOMMERVILLE NJ	08876
03877	TRANSITRON ELECTRONIC CORP	WAKEFIELD MA	01880
03888	PYPDFILM COPP	WHIPPANY NJ	07981
04713	MOTOROLA SEMICINDUCTOR PRODUCTS	PHOFNIX AZ	85008
14140	EDISON ELEK DIV MCGRAW-EDISON	MANCHESTER NH	03130
16299	CORNING GL WK ELEC CMPNT DIV	RALEIGH NC	27604
19701	MEPCO/ELECTRA CORP	MINERAL WELLS TX	76067
20940	MICRO-OHM CURP	FL MONTE CA	91731
24226	GOWANDA ELECTRONICS CORP	GOWANDA NY	14070
24546	CORNING GLASS WORKS	BRADFORD PA	16701
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA CA	95051
28480	HEWLETT-PACKARD OU CORPORATE HQ	PALO ALTO CA	94304
28520	HEYMAN MEG CO	KENILWORTH NJ	07033
30983	MEPCO/ELECTRA CORP	SAN DIEGO CA	92121
32997	SOURNS INC TRIMPOT PROD DIV	RIVERSIDE CA	92507
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS MA	01247
71400	BUSSMAN MEG DIV OF MCGRAW-EDISON CO	ST LOUIS MO	63017
71785	TRW ELEK COMPONENTS CINCH DIV	ELK GROVE VILLAGE IL	60007
76854	DAK IND INC SW DIV	CRYSTAL LAKE IL	60014
77122	PAENUT CO UNITED-CARR DIV TRW INC	MOUNTAINSIDE NJ	07092
7 9727	C-W INDUSTRIES	WARMINSTER PA	18974
83186	VICTORY ENGINEERING CORP	SPRINGFIELD NJ	07081
87034	MARCO-DAK DIV DAK IND INC	ANAHEIM CA	92803
9D949	AMPHENDL SALES DIV OF BUNKER-RAMO	HAZELWOOD MO	63042
91886	MALCO MEG CO INC	CHICAGO IL	60650
98291	SEALECTRO CORP	MAMARONECK NY	10544

Model 435A Manual Changes

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains information for adapting this manual to instruments for which the content does not apply directly. In addition, information about recommended modifications for improvements to the instruments is provided.

7-3. MANUAL CHANGES

7-4. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual

changes listed opposite your instrument serial number.

7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1 below, it may be documented in a yellow MANUAL CHANGES supplement. For additional important information about serial number coverage refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number

Serial Prefix or Number	Make Manual Change
1234A	A

MANUAL CHANGES

7-6. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Table 6-2:

Change:

A3R14 to 0698-5068, R: FXD 50 OHM 1% 1/8W F TUBULAR, 30983, MF4C1/8-T9-50R0-F. A4R67 to 0757-0280, RESISTOR, FXD 1K 1% 1/8W F TUBULAR, 24546, C4-1/8-TO-1001-F. A4R68 to 0757-0444, RESISTOR, FXD 12.1K 1% 1/8W F TUBULAR, 24546, C4-1/8-TO-1302-F. A4U4 to 1826-0013, INTEGRATED CIRCUIT; LINEAR OP AMP, 28480, 1826-0013.

Delete A3L3, A4C30, A4R74, and A4R75.

Figure 8-7, (Service Sheet 2):

Change the diagram as shown by the partial schematics, Figures 7-1 and 7-2.

Figure 8-11 (Service Sheet 3):

Delete A4R74 (The connection is made directly from A4A1 output to XA4 pin 40).

Figure 8-13 (Service Sheet 4):

Change the diagram as shown by the partial schematic, Figure 7-3.

MANUAL CHANGES

CHANGE A (cont'd)

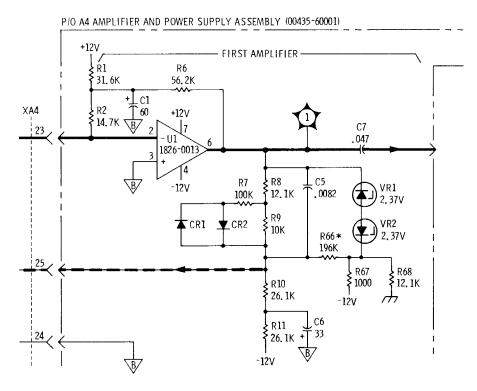


Figure 7-1. P/O A4 Assembly Schematic (Part of Change A)

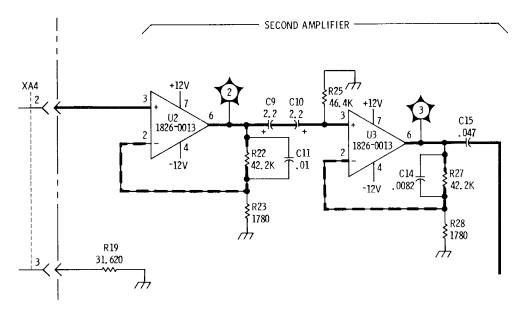


Figure 7-2. P/O A4 Assembly Schematic (Part of Change A)

Model 435A Manual Changes

MANUAL CHANGES

CHANGE A (cont'd)

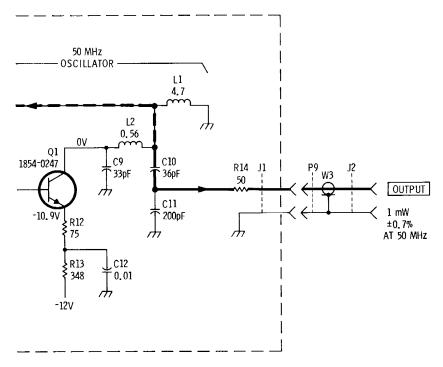


Figure 7-3. P/O A 3 Assembly Schematic (Part of Change A)

INSTRUMENT MODIFICATIONS

7-7. MODIFICATION OF A4 ASSEMBLY (SERIAL PREFIX 1234A)

7-8. The Power Meter's A4 assembly must be changed to HP Part Number 00435-60001 Revision B (B-130304) when used with a Power Sensor Cable of length greater than 5-feet. The new board, which may be used without further modification, may be ordered through your nearest Hewlett-Packard office.

NOTE

Perform the adjustments in Section V after installing the new board.

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. Service information is provided in this section. General service information relates to troubleshooting. Repair information relates to performance testing and adjustments after repairs are made. The service sheets include principles of operation and troubleshooting information, location diagrams, and a schematic diagram.

8-3. The last foldout in the manual includes a table, which cross-references all pictorial and schematic locations of each assembly, and chassis mounted and adjustable component. The foldout also shows the location of each assembly, chassis mounted component, and adjustable component.

8-4. SAFETY CONSIDERATIONS

8-5. Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition (see Sections II, III, and V). Service and adjustments should be performed only by qualified service personnel.

WARNING

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited.

- 8-6. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.
- 8-7. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
- 8-8. Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement.

The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

8-9. Whenever it is likely that this protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

WARNING

The service information is often used with power supplied and protective covers removed from the instrument. Energy available at many points may, if contacted, result in personal injury.

8-10. SERVICE SHEETS

- 8-11. The service sheets normally include principles of operation and troubleshooting information, a component location diagram, and a schematic, all of which apply to a specific portion of circuitry within the instrument.
- 8-12. Service Sheet 1 includes an overview of the instrument operation, troubleshooting on an assembly or stage level, and a troubleshooting block diagram. The block diagram also serves as an "index" for the other service sheets.
- 8-13. The Schematic Diagram Notes, Figure 8-3, aids in interpreting the schematics.

8-14. Principles of Operation

8-15. The operation of the circuitry shown by the schematic diagram is explained in the Principles of Operation. This information is outlined by using assembly and stage names. These names also separate circuit areas on the schematic diagrams.

8-16. Troubleshooting

8-17. This information is in the form of hints and suggestions pertaining to problems one may encounter while troubleshooting the 435A. The troubleshooting information is located on the left-hand foldout of the service sheet following the Principles of Operation.

8.18 On Service Sheet 1, a malfunction is isolated to an assembly or stage. After turning to the appropriate service sheet, troubleshooting continues on a stage and/or component level.

8-19. DC voltages and in some cases, ac voltages and waveforms are included on the schematics. Test points are physically located on printed circuit boards and have assigned reference designators

and symbols on the schematics. The waveforms and/or voltages refer to the test points and other important circuit junctions.

8-20. A circuit board extender, which provides easy access for troubleshooting, is shown in Figure 8-1. The extender may be ordered through your nearest HP office. Refer to Equipment Available in Section I.

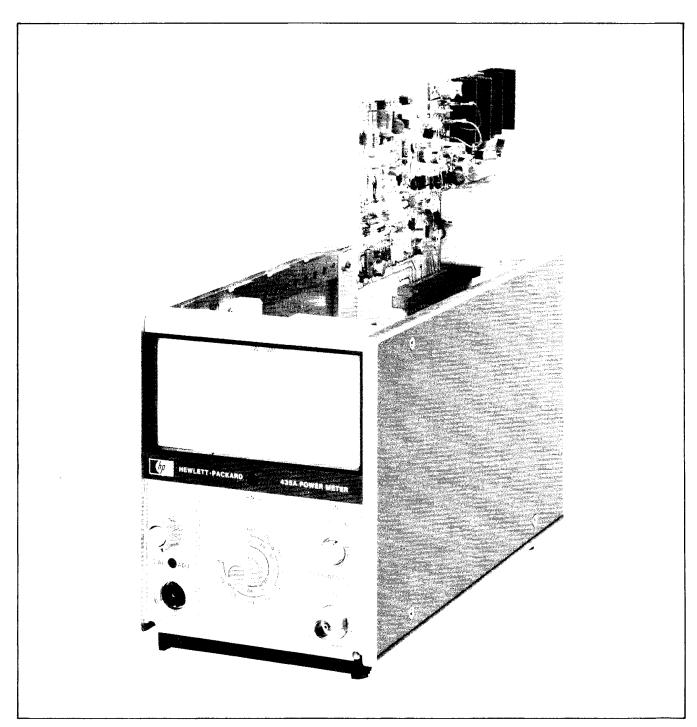


Figure 8-1. A4 Assembly Extended for Service

Model 435A Service

8-21. RECOMMENDED TEST EQUIPMENT

8-22. Equipment recommended in Table 1-3 should be used for testing and troubleshooting the 435A, to ensure that it is operating within the limits set forth in the specifications listed in Table 1-1. Test equipment that meets or exceeds the critical specifications listed may be used in place of the recommended equipment.

8-23. REPAIR

8-24. After repairing any circuitry within the 435A, refer to Section V and perform the adjustments.

8-25. Perform the tests in Section IV to ensure that the instrument is operating within the specified limits.

NOTE

If the A3 Power Reference Assembly is repaired, see the Power Reference Output test in Section IV for instructions on setting the power output level.

8-26. GENERAL SERVICE INFORMATION

8-27. Etched Circuit Boards

8-28. The etched circuit boards used in Hewlett-Packard equipment are the plated-through type consisting of metallic conductors bonded to both sides of an insulating material. The metallic conductors are extended through the component holes or interconnect holes by a plating process. Soldering can be performed on either side of the board with equally good results. Table 8-1 lists recommended tools and materials for use in repairing etched circuit boards. Following are recommendations and precautions pertinent to etched circuit repair work.

- a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components.
- b. Do not use a high power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board or a component.

CAUTION

Do not use a sharp metal object such as an awl or twist drill to remove solder from component mounting holes. Sharp objects may damage the plated-through conductor.

- c. Use a suction device or wooden toothpick to remove solder from component mounting holes.
- d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion.

8-29. Component Replacement

8-30. The following procedures are recommended when component replacement is necessary:

- a. Remove defective component from board.
- b. If component was unsoldered, remove solder from mounting holes with a suction device or a wooden toothpick.
- c. Shape leads of replacement component to match mounting hole spacing.

NOTE

Although not recommended when both sides of the circuit board are accessible, axial lead components such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads near body of defective component, remove component and straighten leads left in board. Wrap leads of replacement component one turn around original leads. Solder wrapped connection and clip off excess lead.

d. Insert component leads into mounting holes and position component as original was positioned. Do not force leads into mounting holes; sharp lead ends may damage the plated-through conductor.

8-31. Operational Amplifiers

8-32. Operational Amplifiers Function. Operational amplifiers are used to provide such functions as summing and offsetting voltages, as buffer amplifiers, detectors, and in power supplies. The particular function is determined by the external circuit connections. Equivalent circuit and functional diagrams for typical operational amplifiers are contained in Figure 8-2. Circuit A is a noninverting buffer amplifier with gain of one. Circuit B is a non-inverting amplifier with gain determined by the resistance of R1 and R2. Circuit C is an inverting amplifier with gain determined by R1 and R2, with the input impedance equal to R2. Circuit D contains the functional

circuitry and pin connection information with an operational amplifier review. Circuit D contains the functional circuitry and pin connection information with an operational amplifier review.

NOTE

It is assumed that the amplifier has high gain, low output impedance and high input impedance.

8-33. Troubleshooting. An operational amplifier can be characterized as an ideal voltage amplifier amplifier having low output impedance, high input impedance, and very high gain. Also the output voltage is proportional to the difference in the voltages *applied* to the input terminals. In use, the

amplifier drives the input voltage difference close to zero.

8-34. When troubleshooting an operational amplifier, measure the voltages at the two inputs with no signal applied; the difference between these voltages should be less than 10 mV. A difference voltage much greater than 10 mV indicates trouble in the amplifier or its external circuitry. Usually this difference will be several volts and one of the inputs will be very close to an applied circuit operating voltage (for example, +20V, -12V).

8-35. Measure the amplifier's output voltage. It will probably be close to one of the supply voltages

Table 8-1. Etched Circuit Soldering Equipment

Item	Use	Specification	Item Recommended
Soldering tool	Soldering Unsoldering	Wattage rating: $47\frac{1}{2} - 56\frac{1}{2}$ Tip Temp: $850 - 900$ degrees	Ungar No. 776 handle with *Ungar No. 4037 Heating Unit
Soldering* tip	Soldering Unsoldering	*Shape: pointed	*Ungar No. PL111
De-soldering Aid	To remove molten solder from connection	Suction device	Soldapult by Edsyn Co. Arleta, California
Resin (flux)	Remove excess flux from soldered area before application of protective coating.	Must not dissolve etched circuit base board material or conductor bonding agent.	Freon, Aceton, Lacquer Thinner, Isopropyl Alcohol (100% dry)
Solder	Component replacement Circuit board repair Wiring	Resin (flux) core, high tin content (60/40 tin/lead), 18 gauge (SWG) preferred	
Protective Contamination, coating corrision protection		Good electrical insulation, corrosion-prevention properties	Silicone Resin such as GE DRI-FILM**88

^{*}For working on etched boards; for general purpose work, use Ungar No. 1237 Heating Unit (37.5W, tip temperature of 750-800 degrees) and Ungar No. PL113, 1/8-inch chisel tip.

^{**}General Electric Co., Silicone Products Dept., Waterford, New York, U.S.A.

or ground. Verify that the output voltage follows the input voltages, i.e., if the non-inverting input voltage is more positive than normal and/or if the inverting input voltage is more negative than normal, then the change in output voltage should be more positive. If the non-inverting input is less positive and/or the inverting input voltage is less negative, the change in output voltage should be less positive. The preceding symptoms indicate the defective component is in the external circuitry. If the symptoms as stated are absent, the operational amplifier is probably defective.

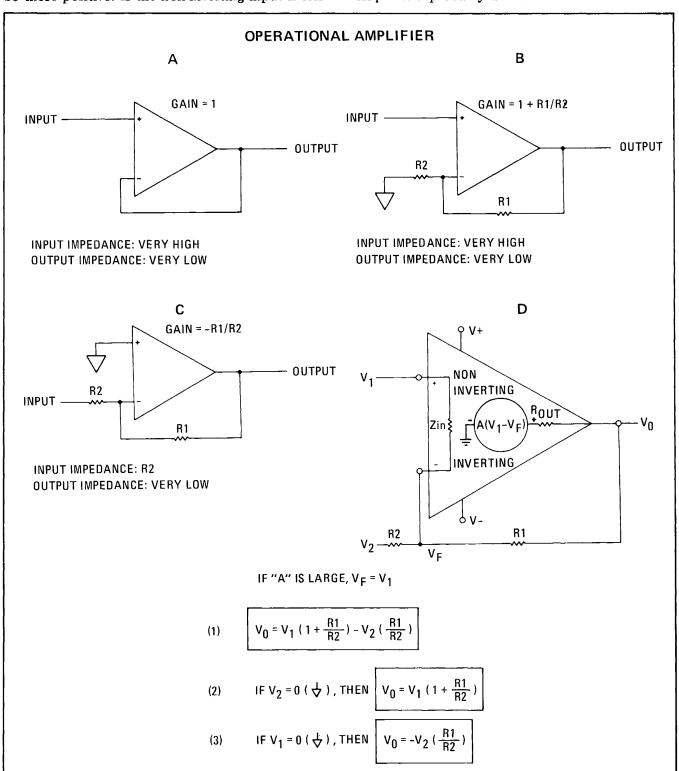


Figure 8-2. Operational Amplifier Equivalent Circuit

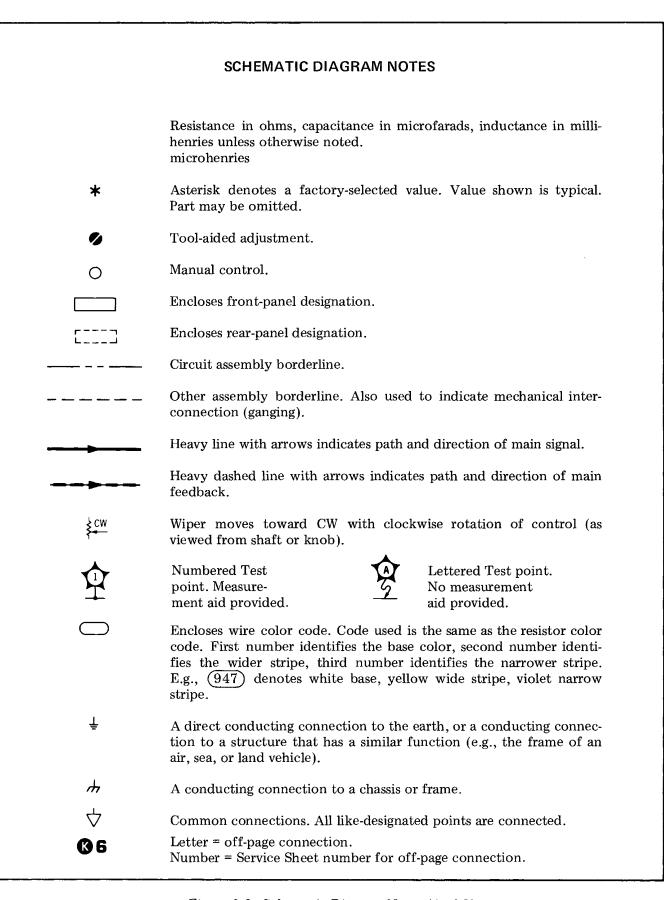


Figure 8-3. Schematic Diagram Notes (1 of 3)

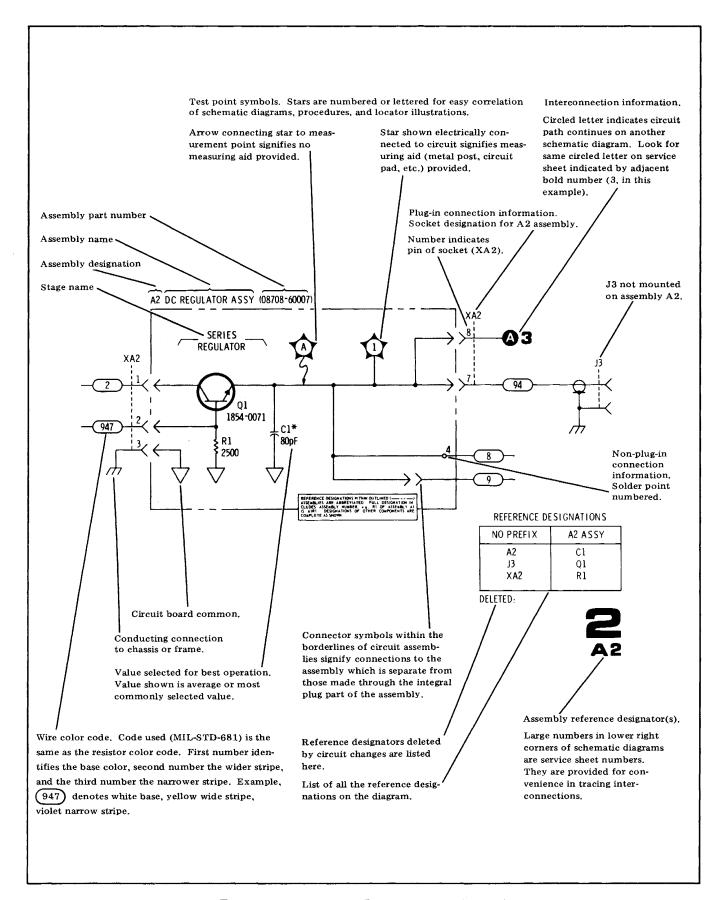


Figure 8-3. Schematic Diagram Notes (2 of 3)

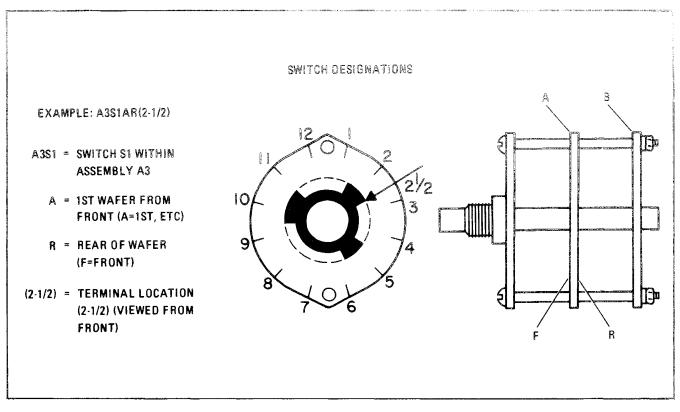


Figure 8-3. Schematic Diagram Notes (3 of 3)

SERVICE SHEET I

PRINCIPLES OF OPERATION

General

The Power Meter and a compatible Power Sensor are used to measure RF power levels. For example, the power range of the HP Model 8481A is from -35 to +20 dBm ($\approx 0.3~\mu W$ to 100 mW) into 50Ω ; the frequency range is from 10 MHz to 18 GHz.

Power Sensor

The power sensing device dissipates the input RF energy into 50 ohms and produces a dc voltage proportional to the power level. This dc voltage is sampled creating an ac signal which is coupled to the Input Amplifier for amplification.

AC Amplifiers/A2 Range Switch Assembly

The ac signal is amplified by the Power Sensor's Input Amplifier and the Power Meter's First, Second, and Third Amplifiers. The RANGE switch attenuators which are placed between the First and Second and Second and Third amplifiers are used to set the range-to-range gain of the Power Meter amplifiers.

DC Circuits

The Synchronous Detector converts the ac signal back to dc. The output is coupled to the DC Amplifier via a Low Pass Filter network which is part of the A2 Range Switch Assembly. The DC Amplifier drives the meters, the Servo Amplifier, and possibly an external device through the RECORDER OUTPUT jack.

Servo Amplifier/Aut

The Servo Amplific output. When the pressed, the Servo at to the auto zero circ zeroing feedback lc voltage (error signitemperature output sensing device. The the feedback loop output to ground When the zero swit circuits hold the error

Power Reference As

The A3 Power Refe MHz oscillator wit providing an except calibrated output is

Power Supply

The Power Supply i shunt regulator conshunt regulator plabetween the 24V viding supply outpubattery charging and operative with the b

TROUBLESHOOT!

General

Before beginning to remove the cover instrument and mea at TP9 and TP10.

When a malfunction assembly or stage, r Sheet for componen

Block Diagram Trou

The waveforms and when operating under

SERVICE SHEET 2 (cont'd)

of the waveform varies slightly, the performance of the system will not be degraded. Measuring and recording dc voltages and comparing them with the normal levels shown on the schematic may help to isolate defective components. Refer to General Service Information (in Section VIII) with regard to operations amplifier circuits.

The waveforms and voltages shown on the schematic are normal when operating under the following conditions.

NOTE

To exhibit the correct waveforms in the RANGE switch positions indicated, the Power Sensor (as part of the measurement system) must measure power from -35 to +20 dBm into a 50Ω load.

- a. POWER METER AND SENSOR. Set the Power Meter RANGE switch to the 1 mW position, CAL FACTOR switch t 100%, and the rear panel POWER REF switch to (ON). Connec the Power Sensor to the Power Meter's POWER REF OUTPU jack.
- b. POWER METER AND HP MODEL 11683A RANG CALIBRATOR. Set the Power Meter's RANGE switch to the mW position and CAL FACTOR switch to 100%. Set the Rang Calibrator's RANGE switch to 1 mW, POLARITY switch t NORMAL, and FUNCTION switch to STANDBY. Connect th Range Calibrator to the Power Meter with the Power Sensor Cable Set the Range Calibrator FUNCTION switch to CALIBRATE.

First Amplifier

To troubleshoot the hybrid operational amplifier effectively consider the complete amplifier as shown on the schematic on th opposite foldout and the Power Sensor's schematic.

The bias levels may be used most effectively to isolate the probler to the Power Meter. If the dc voltage at TP1 is correct but the a voltage is incorrect, a defective component probably exists in th Power Sensor before the signal is input to the hybrid amplifier.

A dc voltage coupled with a positive voltage (\(\approx +3 \) Vdc) at A4U pin 2 would indicate a defect in the Power Sensor's hybri amplifier input or the interconnect cable. If the voltage at pin 2 about 0.0 Vdc, the defective component is probably in the Power Meter's First Amplifier.

A positive voltage at TP1 indicates the malfunction is probably i the Power Meter's First Amplifier.

SERVICE SHEET 2 (cont'd) NOTE

Do not overlook the possibility that a problem can exist in the Auto-zero circuits shown on Service Sheet 3.

An increased noise level may be caused by C1, C6, or C30 line noise filters.

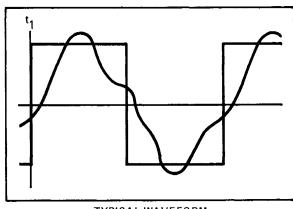
Range-to-range inaccuracy between the 100 mW range and another range may be due to a shaping circuit defect.

A2 Range Switch Assembly

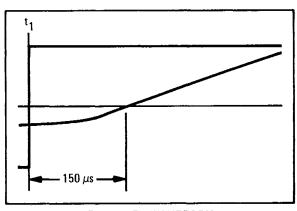
Range-to-range inaccuracy which is caused by the RANGE switch attenuators can easily be isolated by performing one of the Instrumentation Accuracy Performance Tests (refer to Section IV).

Third Amplifier

Adjust the CAL ADJ control from its present setting to the ccw stop. Then adjust the control the cw stop. The meter reading will normally change by \pm 2 dB (> 4 dB from stop to stop). The ac voltage at TP4 will change from the nominal setting to approximately -35% (ccw stop) and +70% (cw stop).


Synchronous Detector

The phase change of the 220 Hz signal between the Power Sensor's sampling gate and the Synchronous Detector cannot be measured directly because the detector output is dc rather than ac. However, the phase difference at TP4 (the input to the detector circuit) can be measured. Because the phase change between TP4 and the detector is known, the phase relationship between the drive signal (TP7) and the TP4 signal indicates the total phase shift through the ac amplifiers. This is the step-by-step procedure for checking phase shift.


- a. Set the Power Meter and (if used) the Range Calibrator controls as shown in the general troubleshooting information above.
- b. Connect the oscilloscope's vertical inputs to the 220 Hz drive (TP7) through a divide-by-ten probe (Channel A) and to TP4 through a one-to-one probe (Channel B).
- c. Set the oscilloscope controls as follows: Channel A sensitivity to 0.05 V/division with ac coupling, Channel B sensitivity to 0.2 V/division, horizontal sweep to 0.5 ms/division, and the

display mode to Channel A and B, chopped with triggering from B.

- d. Adjust the vertical position controls until both traces are symmetrical with respect to the horizontal center line (refer to the typical waveform below).
- e. Set the time base magnifier control to X10. The horizontal scale is now 50 μ /division (refer to the expanded waveform below).

TYPICAL WAVEFORM

EXPANDED WAVEFORM

- f. Set the Power Meter's rear panel POWER REF switch to OFF or set the Range Calibrator's FUNCTION switch to STANDBY. With the Oscilloscopes Channel A position control, set the trace representing a zero input at TP4 to the grid horizontal center line.
- g. Set the Power Meter's POWER REF switch to (ON) or set the Range Calibrator's FUNCTION switch to CALIBRATE. The zero crossing of the Channel A (TP4) trace should lag the drive signal by $150 \pm 75~\mu s$.

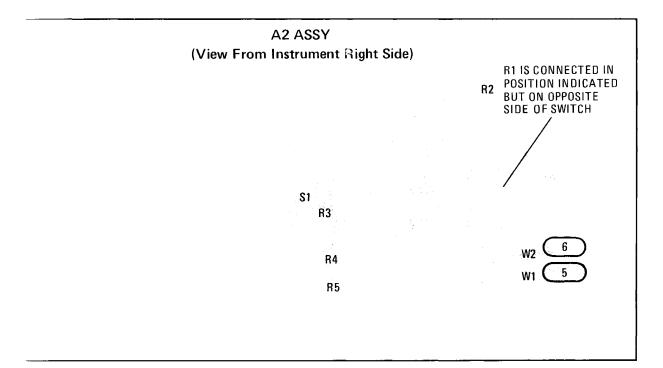


Figure 8-5. P/O A2 Range Switch Assembly (Attenuator) Component Locations

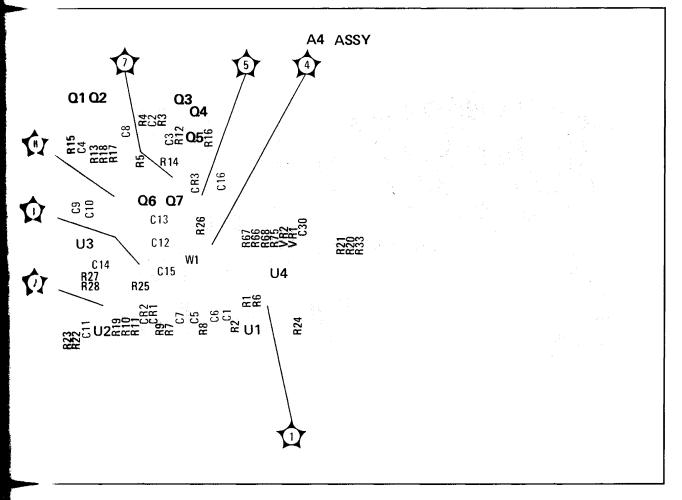


Figure 8-6. P/O A4 Assembly (DC Ampl/Sync Detector) Component and Test Point Locations

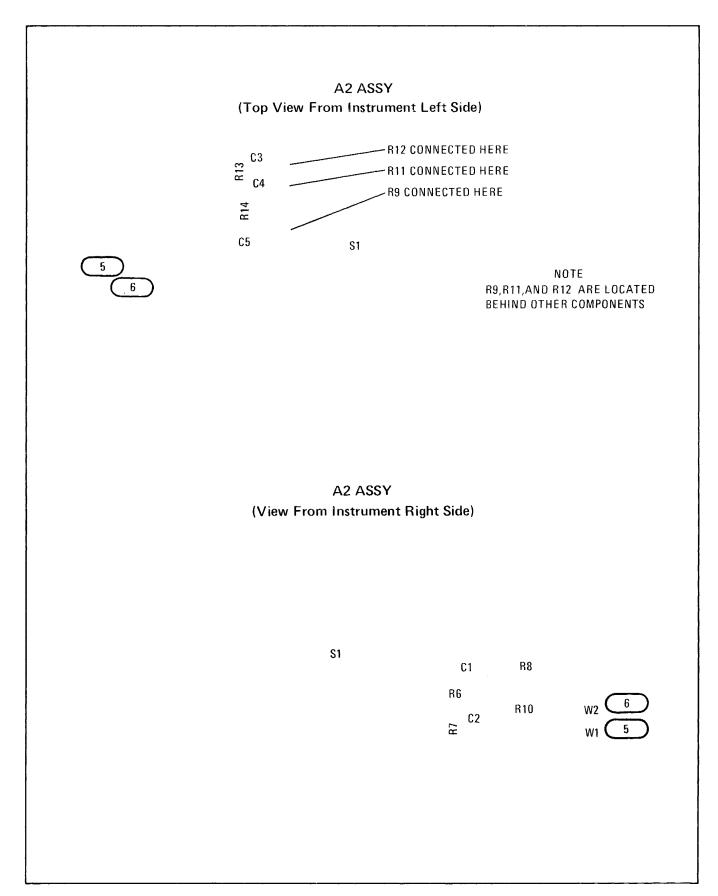


Figure 8-8. A2 RANGE Switch Assembly (Low Pass Filters) Component Locations

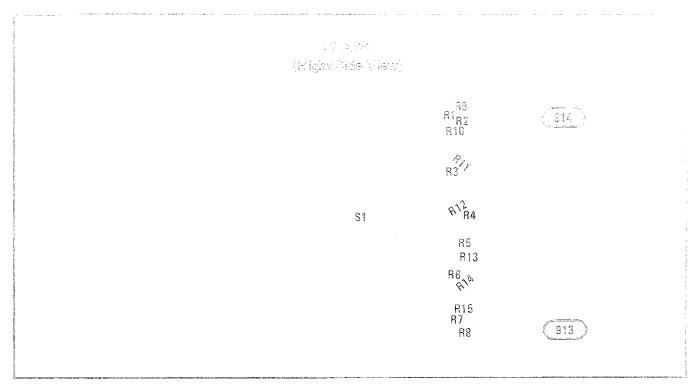


Figure 8-9. A1 Cal Factor Switch Assembly Component Locations

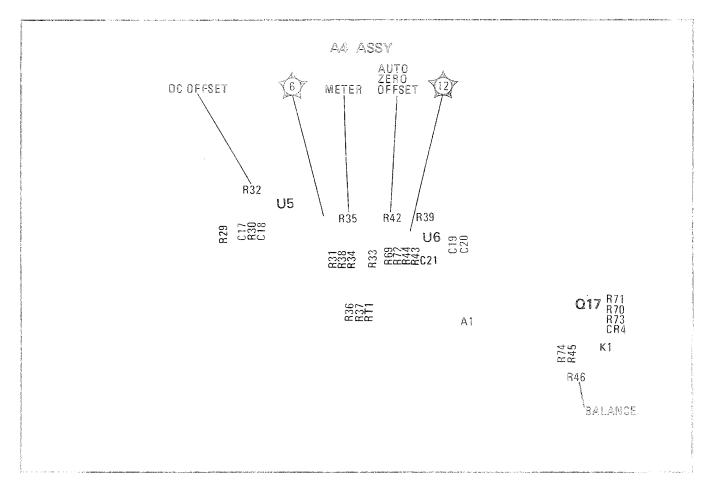


Figure 8-10. P/O A4 Assembly (DC Ampl/Auto Tero) Coroponent and Test Point Locations

Figure 8-10.

SERVICE SHEET 4

PRINCIPLES OF OPERATION

General

The A3 assembly provides a 50 ± 5 MHz output at 1 mW ± 0.7 The oscillator output is held constant by an ALC loop made up a peak detector CR2 and comparator U2. The comparareference input is from a very stable +5V power supply compos of U1, VR1, and their associated components. The LEV control R3 sets the comparator reference which controls a oscillator feedback level and thereby controls the A3 assemble POWER REFERENCE OUTPUT level.

50 MHz Oscillator

The oscillator circuit is made up of common emitter amplifier and its associated components. Resistors R10, R11, R12 and R bias Q1 for an emitter current of approximately 5 mA. In π -network tuned circuit, C9, L2, C10, and C11 determines operating frequency. The amplifier ac gain is set by the operation circuit impedance across the tuned circuit and the emitter resis R12 (which is ac coupled to ground by C12). The posit feedback required to sustain oscillation is satisfied in this circ. Phase shift of 180° is a characteristic of both common-emit transistor amplifiers and π -network tuned circuits. This feedback coupled through C7 and C8, back to the base of Q1.

ALC Loop

At the positive peak of each cycle, current momentarily flo from the feedback loop through peak detector diode CR2 to The resultant stored charge is coupled, as a dc input voltage. pin 3 of U2. The detector output is compared to a very sta reference input by comparator U2. Any difference between comparator's input voltages produces an error voltage at the output. The comparator output is coupled to a reactance volt divider, capacitor C7 and varactor CR3. As the error out voltage goes more positive the capacitive reactance of (decreases, which reduces the oscillator feedback. Conversely more negative output voltage will increase the feedback. example, if the oscillator output were to suddenly increase, detector output would become more positive. The compara output would become more positive, a lower CR3 reactance wo decrease the feedback to Q1 which forces the oscillator out level back to its original level. If the R3 LEVEL control v adjusted for a more positive reference voltage, the compara output would go more negative, the feedback would incre allowing the oscillator output to increase. Therefore, the r detector output would increase until it equals the comparreference level input, thus establishing a higher leveled-out signal from the oscillator.

SERVICE SHEET 4 (cont'd)

Frequency shaping components R7, R8, R9, and C6 determine the upper limit of frequency response of the ALC loop which prevents spurious oscillations.

+5V Power Supply

A3VR1 provides a reference voltage of —6.2 Vdc to the power supply reference amplifier A3U1. The gain of the reference amplifier is set by R2, R3, and R4 and is approximately —0.8 with R3 centered. The very stable output is coupled through CR1 as the reference voltage input to comparator U2. Diode CR1 temperature compensates CR2.

TROUBLESHOOTING

General

Before trying to troubleshoot the A3 assembly, verify the presence of +12 Vdc and -12 Vdc on the circuit board.

If a defect in the A3 assembly is isolated and repaired, the correct output level (1 mW \pm 0.7%) must be set by a very accurate power measurement system. Hewlett-Packard employs a special system, accurate to $\pm 0.5\%$ and traceable to the National

Bureau of Standards. When setting the power level, a transfer error of $\pm 0.2\%$ is introduced making the total error $\pm 0.7\%$. If a system this accurate is available it may be used to set the proper output level. Otherwise, Hewlett-Packard recommends returning the Power Meter so it can be reset at the factory. Contact your nearest Hewlett-Packard office for more information.

50 MHz Oscillator

Malfunctions of the oscillator circuits will occur as a wrong output frequency or as an abnormal output level. The voltage at TP2 will indicate if the ALC loop is trying to compensate for an incorrect output level.

Modulation of the 50 MHz signal or spurious signals, which are part of the output, may be caused by defects in R7, R8, R9, or C6 in the ALC loop.

ALC Loop and Power Supply

Isolating problems in the ALC Loop and Power Supply circuits may be quickly isolated by measuring dc voltages at the inputs and outputs of the integrated circuits. For added information on troubleshooting integrated circuits, refer to General Service Information in Section VIII.

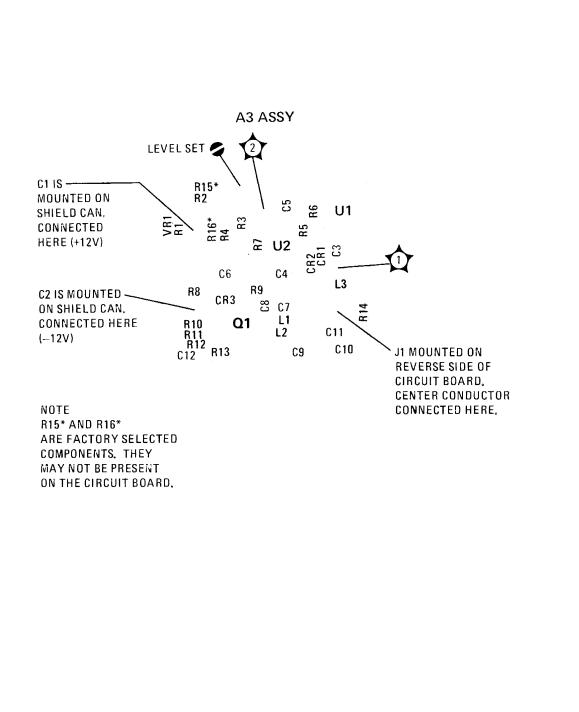


Figure 8-12. A3 Power Reference Assembly Component and Test Point Locations

C

N S

C

0

SERVICE SHEET 5

PRINCIPLES OF OPERATION

General

Power Sources for the Power Meter are line (Mains) power or the rechargeable battery. If the battery is being used as a power source, it will receive a charging current anytime the line voltage is coupled to the instrument and the LINE switch is set to ON. When the line voltage is disconnected, the battery automatically becomes the power source.

CAUTION

A voltmeter or oscilloscope which is used to measure the 24V output across the +12V terminals must have a floating ground input.

The 12V Shunt Regulator establishes a reference ground at the half voltage point of the 24V Series Regulator output and thus establishes the +12 and -12 Vdc outputs with respect to ground.

24V Series Regulator

NOTE

The explanation of the 24V Series Regulator is based on the assumption that TP9 is the reference ground and the regulator output is -24 Vdc at TP10.

A reference voltage of -12 Vdc is established on the base of Q11 by VR4. Because Q10 and Q11 are a differential amplifier pair a difference in voltage between the base of Q11 and the base of Q10, half the 24V output (refer to the note above), produces an error output on the collector of Q11. This error voltage is coupled to Q16, the regulator driver, and from there to Q13, the series regulator. If, for example, the output voltage suddenly decreased to -23 volts, the current through Q11 would increase and the collector voltage would become less negative. Current flow through Q16 increases and the collector voltage goes more negative. The emitter voltage of Q13 follows the collector voltage of Q16 and approaches -24V. As the output voltage becomes more negative, the Q10 base voltage also becomes more negative until it equals the base voltage of Q11. At this instant, the output voltage is -24 Vdc and the circuit action (voltage change) ceases.

Regulating action of the 24V supply is started by CR9, R58, and R60. When the LINE switch is set to ON, current begins to flow through R60 and VR4. As the voltage increases across VR4, current begins to flow through Q11 which biases Q13 and Q16 on. The regulator output begins to increase in a negative direction. The output voltage biases CR9 which, in turn, causes the voltage across VR4 to increase. The resulting rapid increase in voltage on the base of Q11 keeps it ahead of that on the base of Q10. When the Q11 base voltage stabilizes at -12Vdc, the lower voltage on Q10 keeps the output level increasing until it approaches -24Vdc. At this point the base voltages of Q10 and Q11 become equal, the differential amplifiers error output goes to zero, and the output is stabilized at -24V.

 $Fig\iota$

A3 Power Reference Assembly SERVICE SHEET 4

SERVICE SHEET 5 (cont'd)

C25 and R61 form a low pass filter which reduces the high gain of the circuit at high frequencies thus preventing unwanted oscillations. R59 and C24 form a noise filter for the zener diode.

The input voltage to the 24V regulator may be as high as 70 Vdc from the line voltage or as low as 26 Vdc from the battery.

12V Shunt Regulator

U7 is connected as a voltage follower circuit through the base-emitter junctions of Q8 and Q9. Chassis ground is coupled to the inverting input of U7 and the non-inverting input is coupled across half the 24V series regulator output by a voltage divider R63 and 64. If the voltage input to pin 3 tries to shift toward +12 or -12 Vdc, the output from U7 would cause either Q9 or Q8 respectively to conduct and bring the voltage at U7 pin 3 back to ground potential. For example, if the voltage at pin 3 goes positive, the output follows the input and goes positive which biases Q9 on and the current flow through Q9 brings U7 pin 3 back to ground potential.

Battery Test

NOTE

The battery test circuit is in operation any time the LINE switch is set to ON, however the only time the meter indication is meaningful is when the battery is supplying power.

When the battery is supplying power for the Power Meter circuits, and the battery is defective or discharged, the battery test circuit removes the positive (+12Vdc) supply voltage from the DC Amplifier (A4U5). This causes a full downscale meter indication.

The test circuit measures a percentage of the voltage difference between the -12V output and the negative battery terminal. As this voltage difference decreases to approximately 3 Vdc, Q14 begins to turn off. The collector voltage begins to go positive and the change is transmitted through R51 and CR8 to Q18. As Q18 begins to turn off, its collector goes more negative. A negative going

transient is coupled through R55 to the base of Q14 which speeds up the turn-off time. The positive supply voltage is removed from the collector of Q18 and also the DC Amplifier. As the battery voltage is further reduced, the series regulated output begins to decrease faster than the battery voltage and, eventually, the 3 volt threshold voltage is exceeded. Q14 is then biased on, but because the battery voltage is less than 20 Vdc, the knee voltage of CR8 cannot be reached. Therefore, CR8 does not conduct and Q18 remains biased off.

Battery Charger

If a battery has been placed in the Power Meter as a secondary power source, it is always being charged whenever the line voltage is coupled to the instrument and the LINE switch is ON. With ac line (Mains) power supplying energy, VR3 is turned on which biases Q12 for a charging current of approximately 90 mA. This current is supplied through CR6 to the battery BT1. CR7 is reversed biased while the battery is being charged. When the line voltage is removed, CR7 is forward biased by the current flowing to the Power Meter circuits from the battery. CR6 is turned off and no current flows through the charging circuit.

Current Limiter

If the current flow through the 24V regulator were to suddenly increase to approximately 90 mA, Q15 would turn on and draw the drive current away from Q16. Consequently, the current flow to Q13 would disappear and the regulator output would be reduced.

TROUBLESHOOTING

Set the line switch to off and remove A4P1 (red wire) from A4J1 and A4P2 (blue wire) from A4J2. This disconnects the load from the power supply. If the supply voltages are now correct, the malfunction is not in the power supply.

If, after removing the load, the output voltages measured are less than normal but of equal and opposite polarity, the malfunction is probably in the series regulator circuits.

Voltages shown in parenthesis are for battery operation only.

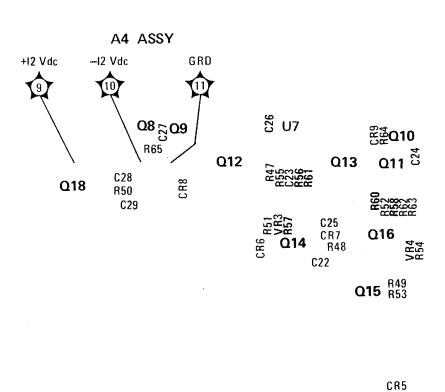


Figure 8-14. P/O A4 Assembly (Power Supply) Component and Test Point Locations

Table 8-2. Assembly and Chassis and Adjustable Component Locations

Assembly or Component Reference Designator	Service Sheet	Figure	Remarks	
A1 Assembly	3	8-9		
A2 Assembly	2, 3	8-5, 8, 16		
A2W1	2	8-5, 8, 16	8-16 Front Panel Int. View	
A2W2	2	8-5, 8, 16	8-16 Front Panel Int. View	
A3 Assembly A3R3 LEVEL SET CONTROL	4 4	8-12, 16 8-12, 16	8-16 Top View	
A4 Assembly A4R32 DC OFFSET CONTROL	2, 3, 5	8-6, 10, 14, 16		
ATR35 METER CONTROL	3	8-10, 16	8-16 Right Side View	
ATR 12 AUTO ZERO OFFSET	3	8-10, 16	8-16 Right Side View	
CONTROL ATR46 BALANCE CONTROL	3 3	8-10, 16 8-10, 16	8-16 Right Side View 8-16 Right Side View	
			o-10 Right Side View	
A1M Assembly	3	8-10, 16		
Ab Assembly	5	8-16		
J1	2	8-16		
#2 #3	$\frac{4}{3}$	8-16 8-16	8-16 Rear Panel Int. View	
31	3	8-16	8-16 Rear Panel Int. View	
.1 (1	2		Rear Panel Connector	
MII	3	8-16		
P1 9	5		Cable coupling from S1 & T1 to A5 Assembly	
! '10	4	8-16	8-16 Front Panel Int. View	
ICI CAL FACTOR CONTROL	2	8-16		
103	5	_ _	Connected to S1 inside safety cover	
N1	5	8-16		
82	3	8-16		
N.I	4	8-16	8-16 Rear Panel Int. View	
111	5	8-16	8-16 Rear Panel Int. View	
W 1	2	8-16		
W2	5	8-16		
W3	$rac{4}{2}$	8-16	Power Sensor Cable	
Wb	5		Power Cable	
Wei	2		Rear Panel INPUT CONNECTOR (Opt. 002, 003 only)	
W7 W8	$\frac{2}{2}$		Coupled to R1 and XA4 pin 8 Coupled to R1 and XA4	
Wp	4		pins 27 and 28 Takes place of W3 (Opt. 003 only)	
XAT	2, 3, 5	8-16		

HEWLETT hp PACKARD