Errata

Title & Document Type: 54505B/06B/10B/12B Digitizing Oscilloscope Programming Reference

Manual Part Number: 54512-90905

Revision Date: May 1992

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

Programming Reference

HP 54505B and HP 54506B
500 MSa/s Digitizing Oscilloscopes
and
HP 54510B and HP 54512B
1 GSa/s Digitizing Oscilloscopes

© Copyright Hewlett-Packard Company 1992 Microsoft® is a U.S. registered trademark of Microsoft Corporation

Publication 54512-90905

Printed in the U.S.A. May 1992

Printing History

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional and replacement pages to be merged into the manual by the customer. The dates on the title page change only when a new edition is published.

A software code may be printed before the date; this indicates the version of the software product at the time the manual or update was issued. Many product updates and fixes do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one correspondence between product updates and manual updates.

Edition 1

May 1992

54512-90905

List of Effective Pages

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom of the page. If an update is incorporated when a new edition of the manual is printed, the change dates are removed from the bottom of the pages and the new edition date is listed in the Printing History and on the title page.

Pages

Effective Date

Product Warranty

This Hewlett-Packard product has a warranty against defects in material and workmanship for a period of three years from date of shipment. During warranty period, Hewlett-Packard Company will, at its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard. However, warranty service for products installed by Hewlett-Packard and certain other products designated by Hewlett-Packard will be performed at the Buyer's facility at no charge within the Hewlett-Packard service travel area. Outside Hewlett-Packard service travel areas, warranty service will be performed at the Buyer's facility only upon Hewlett-Packard's prior agreement and the Buyer shall pay Hewlett-Packard's round trip travel expenses.

For products returned to Hewlett-Packard for warranty service, the Buyer shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by Hewlett-Packard for use with an instrument will execute its programming instructions when properly installed on that instrument. Hewlett-Packard does not warrant that the operation of the instrument software, or firmware will be uninterrupted or error-free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Remedies

Exclusive THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Safety

This product has been designed and tested according to International Safety Requirements. To ensure safe operation and to keep the product safe, the information, cautions, and warnings in this manual must be heeded.

Contents

Introduction

How to Use This Manual

Chapter 1:	Introduction to Programming an Instrument
•	Introduction1-1
	Talking to the Instrument1-2
	Program Message Syntax1-3
	Output Command1-3
	Device Address1-4
	Instructions1-4
	Instruction Header1-4
	White Space (Separator)1-5
	Program Data
	Header Types1-5
	Combining Commands from the Same Subsystem1-7
	Duplicate Mnemonics1-7
	Query Command1-8
	Program Header Options1-9
	Program Data Syntax Rules1-10
	Character Program Data1-10
	Numeric Program Data1-11
	Embedded Strings1-11
	Program Message Terminator1-12
	Selecting Multiple Subsystems1-12
Chapter 2:	Programming an Instrument
Chapter 2.	•
	Introduction2-1
	Initialization2-1
	Autoscale2-2
	Setting Up the Instrument2-2
	Example Program2-3
	Program Overview2-4
	Using the Digitize Command2-4
	Receiving Information from the Instrument2-6
	Response Header Options2-7

HP 54505B/54506B/54510B/54512B Programming Reference

Contents-1

	Response Data Formats	2-8
	String Variables	2-9
	Numeric Variables	.2-10
	Definite-Length Block Response Data	
	Multiple Queries	.2-12
	Instrument Status	. 2-12
Chapter 3:	Interface Functions	
	Introduction	3-1
	Interface Capabilities	
	Command and Data Concepts	3-1
	Addressing	3-2
	Communicating Over the Bus (HP 9000 Series 200/300 Controller)	.3-2
	Remote, Local and Local Lockout	3-3
	Bus Commands	3-4
	Device Clear	3-4
	Group Execute Trigger (GET)	3-4
	Interface Clear (IFC)	
	Status Annunciators	
Chapter 4:	Programming and Documentation Conventions	
Onapici T.	r rogianning and bocumentation conventions	
-	Introduction	.4-1
	Introduction	
•	Truncation Rules	. 4-1
·	Truncation Rules	4-1 4-2
	Truncation Rules	4-1 4-2 . 4-10
	Truncation Rules	4-1 4-2 .4-10 .4-10
	Truncation Rules Front Panel to Command Cross-Reference The Command Tree Command Types Tree Traversal Rules	4-1 4-2 .4-10 .4-10
	Truncation Rules Front Panel to Command Cross-Reference The Command Tree Command Types Tree Traversal Rules Examples	4-1 4-2 .4-10 .4-10 .4-14
	Truncation Rules Front Panel to Command Cross-Reference The Command Tree Command Types Tree Traversal Rules Examples Infinity Representation	4-1 4-2 .4-10 .4-10 .4-14 .4-14
	Truncation Rules Front Panel to Command Cross-Reference The Command Tree Command Types Tree Traversal Rules Examples Infinity Representation Sequential and Overlapped Commands	4-1 4-2 .4-10 .4-14 .4-14 .4-16
	Truncation Rules Front Panel to Command Cross-Reference The Command Tree Command Types Tree Traversal Rules Examples Infinity Representation	4-1 4-2 .4-10 .4-14 .4-14 .4-16 .4-16
	Truncation Rules Front Panel to Command Cross-Reference The Command Tree Command Types Tree Traversal Rules Examples Infinity Representation Sequential and Overlapped Commands Response Generation Notation Conventions and Definitions	4-1 4-2 .4-10 .4-14 .4-14 .4-16 .4-16 .4-16 .4-17
	Truncation Rules Front Panel to Command Cross-Reference The Command Tree Command Types Tree Traversal Rules Examples Infinity Representation Sequential and Overlapped Commands Response Generation	4-1 4-2 .4-10 .4-14 .4-14 .4-16 .4-16 .4-17 .4-18

Contents-2

Chapter 5:	Example Programs	
·	Introduction	5-1
	Order of Commands	5-2
	HP Basic Initialize Program	5-4
	HP Basic Digitize Program	5-6
	Microsoft QuickBASIC Initialize Program	5-9
	Microsoft QuickBASIC Digitize Program	5-11
	Microsoft QuickBASIC Initialize Program	5-16
	Microsoft QuickC Initialize Program	5-19
	Microsoft QuickC Digitize Program	5-21
	Microsoft QuickC Initialize Program	5-26
Chapter 6:	Common Commands	
onapioi oi	Introduction	6-1
	Common Commands	6-3
	*CLS	6-4
	*DMC	6-5
	*EMC	6-6
	*ESE	6-7
	*ESR	6-9
	*GMC	6-11
	*IDN	
	*LMC	
	*LRN	6-14
	*OPC	
	*OPT	
	*PMC	
	*RCL	
	*RST	
	*SAV	
	*SRE	
	*STB	
	*TRG	
	*TST	
	*XX A T	6-29

HP 54505B/54506B/54510B/54512B Programming Reference Contents-3

Chapter 7:	Root Level Commands	
•	Introduction	7-1
	AUToscale	
	BEEPer	
	BLANk	
	BNC	
	DIGitize	7-9
	ERASe	
	LER	
	LTER	
	MENU	
	MERGe	
	PLOT	
	PRINt	
	RUN	
	SERial	
	STATus	
	STOP	
	STORe	
	TER	
	VIEW	
Chapter 8:	System Subsystem	
•	Introduction	8-1
	DATE	
	DSP	
	ERRor	
	HEADer	
	KEY	
	LONGform	
	PIMacro	
	SETup	
	TIME	

Contents-4

Chapter 9:	Acquire Subsystem	
·	Introduction	9-
	Acquire Type and Count	
	(Normal) Persistence Mode	
	Averaging Mode	9-2
	Envelope Mode	
	Rawdata Mode	
	COMPlete	
	COUNt	
	POINts	
	TYPE	9-10
Chapter 10:	Calibrate Subsystem	
•	Introduction	
	DATA:ASCii	
	SETup	
	TNULI	
Chapter 11:	Channel Subsystem	
•	Introduction	
	COUPling	
	DISPlay	
	ECL	
	HFReject	11-7
	LFReject	
	OFFSet	
	PROBe	
	RANGe	
	SETup	
	TTI.	

Chapter 12:	Display Subsystem	
	Introduction	
	COLumn	12-5
	CONNect	12-6
	DATA	12-7
	FORMat	12-9
	GRATicule	
	INVerse	
	LINE	
	MASK	
	PERSistence	
	ROW	
	SCReen	
	SETup	
	SOURce	
	STRing	
	TEXT	
	MARKer TMARker VMARker	12-23
Chapter 13:	Function Subsystem	
	Introduction	13-1
	ADD	
	DIFF	13-6
	DISPLay	13-7
	FFT	13-8
	FREQuency	
	INTegrate	
	INVert	
	LEVel	
	MAGNify	
	MULTiply	
	OFFSet	
	ONLY	
	PEAK	
	POINts	13_18

Contents-6

	RANGe SETup SPAN SUBTract VERSus WINDow	13-22 13-23 13-24 13-25
Chapter 14:	Hardcopy Subsystem	
	Introduction	1.4_1
	LENGth	
	MODE	
	PAGE	
	PLOT:AREA	
	PLOT:INITialize	
	PLOT:PEN COLor	
Chapter 15:	Measure Subsystem	
	Introduction	15-1
	Measurement Setup	15-10
	User-Defined Measurements	15-10
	Measurement Error	15-10
	Making Measurements	15-11
	ALL	15-13
	COMPare	15-14
	CURSor	15-16
	DEFine	15-17
	DELay	
	DESTination	
	DUTycycle	
	ESTArt	
	ESTOp	15-25
	FALLtime	15-27
	FREQuency	15-28
	LIMittest	
	LOWer	
	MODE	
	NWIDth	
	OVERshoot	15-33

HP 54505B/54506B/54510B/54512B Programming Reference Contents-7

POSTfailure	.15-35
PREShoot	.15-36
PWIDth	.15-37
RESults	.15-38
RISetime	.15-39
SCRatch	.15-40
SOURce	. 15-41
STATistics	.15-42
TDELta	.15-43
TMAX	.15-44
TMIN	.15-45
TSTArt	.15-46
TSTOp	.15-47
TVOLt	
UNITs	
UPPer	
VACRms	
VAMPlitude	
VAVerage	
VBASe	
VDCRms	
VDELta	. 15-57
VFIFty	. 15-58
VMAX	
VMIN	
VPP	
VRELative	
VRMS	
VSTArt	
VSTOp	
VTIMe	
VTOP	
WCOMpare	
WCOMpare:ALLowance	15-70
WCOMpare:COMpare	15-71
WCOMpare:DESTination	15-72
WCOMpare:POSTfailure	15-74
WCOMpare:TEST	

Contents-8

Chapter 16:	Timebase Subsystem	
	Introduction	16-1
	DELay	16-3
	MODE	16-4
	RANGe	
	REFerence	16-6
	SAMPle	
	SAMPle	16-8
Chapter 17:	Trigger Subsystem	
onapto: Tr.	Introduction	17-1
	Trigger Mode	
	The EDGE Trigger Mode	17-8
	The Pattern Trigger Mode	17.0
	The State Trigger Mode	
	The Delay Trigger Mode	
	The Delay Trigger Mode	
	The TV Trigger Mode	
	The Glitch Trigger Mode	
	CENTered	
	COUPling	17-18
	DELay	17-10
	DELay:SLOPe	17-20
	DELay:SOURce	17-21
	FIELd	
	GLITch	17-23
	GLITch:CENTered	17-24
	GLITch:HOLDoff	17-25
	GLITch:LEVel	
	GLITch:SOURce	17-27
	GLITch:WIDTh	17-28
	HOLDoff	17-29
	LEVel	17-30
	LINE	17-31
	LOGic	17-32
	MODE	
	OCCurrence	
	OCCurrence:SI OPe	

HP 54505B/54506B/54510B/54512B Programming Reference Contents-9

	000	26
	OCCurrence:SOURce	
	POLarity	
	PROBe	
	QUALify	
	SENSitivity	
	SETup	
	SLOPe	
	SOURce	
	STANdard17-4	 Ci
hapter 18:	Waveform Subsystem	
-	Introduction18-	-1
	Waveform Data and Preamble18-	
	Data Acquisition Types18-	
	Realtime Mode	
	Repetitive Modes18-	
	Rawdata	
	Data Conversion18-	
	Conversion from Data Value to Voltage18-	
	Conversion from Data Value to Time18-	.8
	Data Format for HP-IB Transfer18-	.9
	WORD Format18-	.9
	BYTE Format	0.
	COMPRESSED Format	.0
	ASCII Format	0.
	DATA	1
	FORMat	3
	POINts18-1	4
	PREamble18-1	5
	SOURce18-1	.7
	TYPE	8.
	XINCrement18-1	9
	XORigin18-2	0
	XREFerence	.1
	YINCrement	.2
	YORigin18-2	3
	YREFerence 18-2	4

Contents-10

Chapter 19:	Waveform Memory Subsystem	
	Introduction	19-1
	DISPlay	19-3
	GET	19-4
	PROTect	19-5
	SETup	
	XOFFset	19-7
	XRANge	19-8
	YOFFset	19-9
	YRANge	
Chapter 20:	Pixel Memory Subsystem	
Onapioi 20.	• •	20.1
	Introduction	20-1 20-2
	DISPlay	20-2 20.3
	MERGe	20-3 20-4
	SETup	20-5 20-5
	SETup	20-3
Chapter 21:	Multiple Memory Subsystem	
	Introduction	21-1
	DISPlay	
	FNUMber	21-3
	SOURce	21-4
	STORe	21-5
Chapter 20:	Occupation Outpourse	
Chapter 22:	Sequential Subsystem	22.1
	Introduction	22-1
	DISPlay	
	EXCLude	
	INCLude	22-6
	NPOints	
	NSEGments	22-9
	SETup	22-11
	SNUMber	
	SOURce	22-13

HP 54505B/54506B/54510B/54512B Programming Reference Contents-11

Chapter 23:	Marker Subsystem
	Introduction 23-1 DISPlay 23-3 SETup 23-4 XDELta 23-5 X1Position 23-6 X2Position 23-7 X1Y1source 23-8 X2Y2source 23-9 YDELta 23-10 Y1Position 23-11 Y2Position 23-12
Chapter 24:	Status Reporting Introduction 24-1 Bit Definitions 24-3 Operation Complete (*OPC) 24-4 Trigger Bit (TRG) 24-4 Serial Poll 24-5 Using Serial Poll 24-5
Chapter 25:	Error Messages
Chapter 26:	Algorithms 26-1 Introduction 26-1 Measurement Setup 26-1 Making Measurements 26-1 Automatic Top-Base 26-2 Edge Definition 26-2 Algorithm Definitions 26-3 delay 26-3 + width 26-4 - width 26-4 Period 26-5 Frequency 26-5 Duty Cycle 26-5
Contents-12	HP 54505B/54506B/54510B/54512B Programming Reference

	Quick Reference Guide	
	Common Commands	27
	Device Talking Syntax27-2	21
	Device Listening Syntax	
	Syntax Overview	
	Syntax Diagrams27	
	Protocol Exceptions27	
	Protocol Operation	
	Protocol Overview27	
	Functional Elements27	
	Protocols	
	Introduction27	-1
Chapter 27:	Message Communication and System Functions	
	Differentiate	-6
	Integrate	-6
	Vrms (dc)26	
	Vrms (ac)	-6
	Vavg	
	Vamp	
	Vbase	
	Vtop	
	Vp-p	
	Vmin	
	Vmax	
	Fall time	
	Rise time	-5

HP 54505B/54506B/54510B/54512B Programming Reference

Index

Introduction

The HP 54505B/54506B 500 MSa/s and HP 54510B/54512B 1 GSa/s Digitizing Oscilloscopes are general purpose repetitive and realtime oscilloscopes. Full HP-IB programmability is incorporated into both oscilloscopes and may be used in a broad range of HP-IB applications, from high-speed ATE to device characterization in research and development environments. This manual explains how to program the oscilloscope over HP-IB and lists the commands and queries associated with this instrument.

How to Use This Manual

This manual is divided into 27 chapters. The first two chapters introduce you to the programming syntax and some basic programming concepts to help get you started programming.

Chapter 3 describes the interface functions and some general concepts of HP-IB.

Chapter 4 covers the conventions which are used to program the instrument as well as conventions used in the remainder of this manual. This chapter also includes a complete command tree and alphabetic command cross-reference.

Chapter 5 contains example programs using the command set from the oscilloscope.

Chapters 6 through 23 list the commands and queries associated with the oscilloscope, including their corresponding arguments and returned formats.

Chapter 24 describes the status reporting features of the oscilloscope that are available over the HP-IB.

Chapter 25 lists the **error messages** that are returned by the parser on the oscilloscope.

Chapter 26 provides details on how automatic measurements are calculated and offers some tips on how to improve results.

HP 54505B/54506B/54510B/54512B Programming Reference

Introduction-1

Chapter 27 describes the operation of instruments that operate in compliance with the IEEE 488.2 standard.

At the end of the manual is Quick Reference Guide that lists the commands and queries with their corresponding arguments and returned formats. Also, at the end of the manual is a complete index for easy reference of commands and functions.

HP 54505B/54506B/54510B/54512B Programming Reference

Introduction-2

Introduction to Programming an Instrument

Introduction

Chapters 1 and 2 introduce you to the basics of remote programming. The programming instructions explained in this manual conform to the IEEE 488.2 Standard Digital Interface for Programmable Instrumentation. These programming instructions provide a means of remotely controlling the oscilloscopes. There are four basic operations that can be done with a controller and an oscilloscope via HP-IB. You can:

- Set up the instrument and start measurements.
- Retrieve setup information and measurement results.
- Digitize a waveform and pass the data to the controller.
- Send measurement data to the instrument.

Other more complicated tasks are accomplished with a combination of these four basic functions.

This chapter introduces you to the basic concepts of HP-IB communication and provides information and examples to get you started programming. The exact mnemonics for the commands are listed in chapters 6 through 23.

Chapter 2 deals mainly with how to set up the instrument, how to retrieve setup information and measurement results, how to digitize a waveform, and how to pass data to the controller. Refer to chapter 15, "Measure Subsystem" for information on sending measurement data to the instrument.

The programming examples in this manual are written in HP BASIC 5.0 for an HP 9000 Series 200/300 Controller.

HP 54505B/54506B/54510B/54512B Programming Reference Introduction to Programming an Instrument

Talking to the Instrument

In general, computers acting as controllers communicate with the instrument by sending and receiving messages over a remote interface. Instructions for programming the oscilloscope normally appear as ASCII character strings embedded inside the output statements of a "host" language available on your controller. The input statements of the host language are used to read in responses from the oscilloscope.

For example, HP 9000 Series 200/300 BASIC uses the OUTPUT statement for sending commands and queries to the oscilloscope. After a query is sent, the response is usually read in using the ENTER statement.

Messages are placed on the bus using an output command and passing the device address, program message, and terminator. Passing the device address ensures that the program message is sent to the correct interface and instrument.

The following BASIC statement sends a command which turns the command headers on:

OUTPUT < device address > :":SYSTEM:HEADER ON"<terminator>

The < device address > represents the address of the device being programmed. Each of the other parts of the above statement are explained in the following pages.

Program Message **Syntax**

To program the instrument remotely, you must have an understanding of the command format and structure expected by the instrument. The IEEE 488.2 syntax rules govern how individual elements such as headers, separators, program data, and terminators may be grouped together to form complete instructions. Syntax definitions are also given to show how query responses are formatted. Figure 1-1 shows the main syntactical parts of a typical program statement.

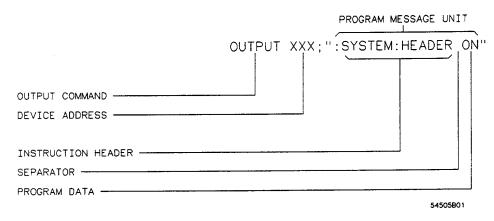


Figure 1-1. Program Message Syntax

Output Command

The output command is entirely dependent on the language you are using. Throughout this manual HP 9000 Series 200/300 BASIC 5.0 is used in the programming examples. If you are using another language, you will need to find the equivalents of BASIC commands like OUTPUT, ENTER, and CLEAR in order to convert the examples. The instructions listed in this manual for the oscilloscopes are always shown between quotes in the example programs.

Device Address

The location where the device address must be specified is also dependent on which host language you are using. In some languages, this may be specified outside the output command. In BASIC, this is always specified after the keyword OUTPUT. The examples in this manual assume the oscilloscope is at device address 707. When writing programs, the address you use varies according to how you have configured the bus for your application.

Instructions

Instructions (both commands and queries) normally appear as a string embedded in a statement of your host language, such as BASIC, Pascal, or C. The only time a parameter is not meant to be expressed as a string is when the instruction's syntax definition specifies < block data >. There are only a few instructions which use block data.

Instructions are composed of two main parts:

- The header, which specifies the command or query to be sent.
- The program data, which provide additional information needed to clarify the meaning of the instruction.

Instruction Header

The instruction header is one or more mnemonics separated by colons (:) that represent the operation to be performed by the instrument. The command tree in figure 4-1 illustrates how all the mnemonics can be joined together to form a complete header (see chapter 4, "Programming and Documentation Conventions").

The example in figure 1-1 shows a command. Queries are indicated by adding a question mark (?) to the end of the header. Many instructions can be used as either commands or queries, depending on whether or not you have included the question mark. The command and query forms of an instruction usually have different program data. Many queries do not use any program data.

White Space (Separator)

White space is used to separate the instruction header from the program data. If the instruction does not require any program data parameters, you do not need to include any white space. In this manual, white space is defined as one or more spaces. ASCII defines a space to be character 32 (in decimal).

Program Data

Program data are used to clarify the meaning of the command or query. They provide necessary information, such as whether a function should be on or off, or which waveform is to be displayed. Each instruction's syntax definition shows the program data, as well as the values they accept. The section "Program Data Syntax Rules" in this chapter has all of the general rules about acceptable values.

When there is more than one data parameter, they are separated by commas (,). Spaces can be added around the commas to improve readability.

Header Types

There are three types of headers:

- Simple Command headers.
- Compound Command headers
- · Common Command headers.

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and DIGITIZE are examples of simple command headers typically used in this instrument. The syntax is:

When program data must be included with the simple command header (for example, :DIGITIZE CHAN1), white space is added to separate the data from the header. The syntax is:

program mnemonic><separator>program data<terminator>

Compound Command Header

Compound command headers are a combination of two or more program mnemonics. The first mnemonic selects the subsystem, and the last mnemonic selects the function within that subsystem. Additional mnemonics may appear between the subsystem mnemonic and the function mnemonic when there are additional levels within the subsystem that must be traversed. The mnemonics within the compound message are separated by colons. For example:

To execute a single function within a subsystem:

:<subsystem>:<function><separator><program data><terminator>

(For example :SYSTEM:LONGFORM ON)

To traverse down a level of a subsystem to execute a subsystem within that subsystem:

:<subsystem>:<subsystem>:<function><separator><program data><terminator>

(For example :TRIGGER:DELAY:SOURCE CHAN1)

Common Command Header

Common command headers control IEEE 488.2 functions within the instrument (such as clear status, etc.). Their syntax is:

No space or separator is allowed between the asterisk (*) and the command header. *CLS is an example of a common command header.

^{*&}lt;command header><terminator>

Combining Commands from the Same Subsystem

To execute more than one function within the same subsystem a semi-colon (;) is used to separate the functions:

:<subsystem>:<function><separator><data>;<function><separator><data><terminator>

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Duplicate Mnemonics

Identical function mnemonics can be used for more than one subsystem. For example, the function mnemonic RANGE may be used to change the vertical range or to change the horizontal range:

:CHANNEL1:RANGE .4

- sets the vertical range of channel 1 to 0.4 volts full scale.

:TIMEBASE:RANGE 1

- sets the horizontal time base to 1 second full scale.

CHANNEL1 and TIMEBASE are subsystem selectors and determine which range is being modified.

Query Command

Command headers immediately followed by a question mark (?) are queries. After receiving a query, the instrument interrogates the requested function and places the answer in its output queue. The answer remains in the output queue until it is read or another command is issued. When read, the answer is transmitted across the bus to the designated listener (typically a controller). For example, the query:TIMEBASE:RANGE? places the current time base setting in the output queue. In BASIC, the controller input statement:

ENTER < device address > ; Range

passes the value across the bus to the controller and places it in the variable Range.

Query commands are used to find out how the instrument is currently configured. They are also used to get results of measurements made by the instrument, with the query actually activating the measurement. For example, the command :MEASURE:RISETIME? instructs the instrument to measure the rise time of your waveform and place the result in the output queue.

The output queue must be read before the next program message is sent. For example, when you send the query :MEASURE:RISETIME? you must follow that query with an input statement. In BASIC, this is usually done with an ENTER statement immediately followed by a variable name. This statement reads the result of the query and places the result in a specified variable.

Sending another command or query before reading the result of a query causes the output buffer to be cleared and the current response to be lost. This also generates an error in the error queue.

Program Header Options

Program headers can be sent using any combination of uppercase or lowercase ASCII characters. Instrument responses, however, are always returned in uppercase.

Program command and query headers may be sent in either long form (complete spelling), short form (abbreviated spelling), or any combination of long form and short form. Either of the following examples turn the headers on.

:SYSTEM:HEADER ON - long form

:SYST:HEAD ON - short form

Programs written in long form are easily read and are almost self-documenting. The short form syntax conserves the amount of controller memory needed for program storage and reduces the amount of I/O activity.

The rules for the short form syntax are shown in chapter 4, "Programming and Documentation Conventions."

Program Data Syntax Rules

Program data is used to convey a variety of types of parameter information related to the command header. At least one space must separate the command header or query header from the program data.

When a program mnemonic or query has multiple program data a comma separates sequential program data.

For example, :TRIGGER:DELAY TIME,1.23E-01 has two program data: TIME and 1.23E-01.

There are two main types of program data which are used in HP 54505B, HP 54506B, HP 54510B, and HP 54512B commands: character and numeric program data.

Character Program Data

Character program data is used to convey parameter information as alpha or alphanumeric strings. For example, the TIMEBASE:MODE command can be set to auto, trigger, or single. The character program data in this case may be AUTO, TRIGGER, or SINGLE. :TIMEBASE:MODE SINGLE sets the time base mode to single.

The available mnemonics for character program data are always included with the instruction's syntax definition. When sending commands, either the long form or short form (if one exists) may be used. Upper-case and lower-case letters may be mixed freely. When receiving responses, upper-case letters are used exclusively. The use of long form or short form in a response depends on the setting you last specified with the SYSTem:LONGform command.

Numeric Program Data

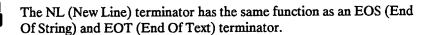
Some command headers require program data to be expressed numerically. For example, :TIMEBASE:RANGE requires the desired full scale range to be expressed numerically.

For numeric program data, you have the option of using exponential notation or using suffix multipliers to indicate the numeric value. The following numbers are all equal:

$$28 = 0.28E2 = 280e-1 = 28000m = 0.028K = 28e-3K.$$

When a syntax definition specifies that a number is an integer, that means that the number should be whole. Any fractional part would be ignored, truncating the number. Numeric data parameters which accept fractional values are called real numbers. For more information see chapter 27, "Message Communication and System Functions."

All numbers are expected to be strings of ASCII characters. Thus, when sending the number 9, you would send a byte representing the ASCII code for the character "9" (which is 57). A three-digit number like 102 would take up three bytes (ASCII codes 49, 48, and 50). This is taken care of automatically when you include the entire instruction in a string.


Embedded Strings

Embedded strings contain groups of alphanumeric characters which are treated as a unit of data by the oscilloscope. For example, the line of text written to the advisory line of the instrument with the :SYSTEM:DSP command. Embedded strings may be delimited with either single (') or double (") quotes. These strings are case-sensitive and spaces act as legal characters just like any other character.

Program Message **Terminator**

The program instructions within a data message are executed after the program message terminator is received. The terminator may be either an NL (New Line) character, an EOI (End-Or-Identify) asserted, or a combination of the two. All three ways are equivalent with the exact encodings for the program terminators listed in chapter 27, "Message Communication and System Functions." Asserting the EOI sets the EOI control line low on the last byte of the data message. The NL character is an ASCII linefeed (decimal 10).

Note

Selecting Multiple **Subsystems**

You can send multiple program commands and program queries for different subsystems on the same line by separating each command with a semicolon. The colon following the semicolon enables you to enter a new subsystem. For example:

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

Note

Multiple commands may be any combination of compound and simple commands.

Programming an Instrument

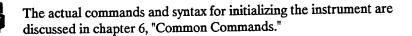
Introduction

This chapter deals mainly with how to set up the instrument, how to retrieve setup information and measurement results, how to digitize a waveform, and how to pass data to the controller. Refer to chapter 15, "Measure Subsystem" for information on sending measurement data to the instrument.

Note

The programming examples in this manual are written in HP BASIC 5.0 for an HP 9000 Series 200/300 Controller.

Initialization


To make sure the bus and all appropriate interfaces are in a known state, begin every program with an initialization statement. BASIC provides a CLEAR command which clears the interface buffer. For example:

CLEAR 707 ! initializes the interface of the instrument.

When you are using HP-IB, CLEAR also resets the oscilloscope's parser. The parser is the program which reads in the instructions which you send it.

After clearing the interface, initialize the instrument to a preset state. For example:

OUTPUT 707;"*RST" ! initializes the instrument to a preset state.

Refer to your controller manual and programming language reference manual for information on initializing the interface.

HP 54505B/54506B/54510B/54512B **Programming Reference**

Programming an Instrument

Autoscale

The AUTOSCALE feature of Hewlett-Packard digitizing oscilloscopes performs a very useful function on unknown waveforms by setting up the vertical channel, time base, and trigger level of the instrument.

The syntax for Autoscale is:

:AUTOSCALE<terminator>

Setting Up the Instrument

A typical oscilloscope setup would set the vertical range and offset voltage, the horizontal range, delay time, delay reference, trigger mode, trigger level, and slope. A typical example of the commands sent to the oscilloscope are:

:CHANNEL1:RANGE 0.64;OFFSET 0.25<terminator>

:TIMEBASE:RANGE 1E-6;DELAY 20E-9;MODE TRIGGERED <terminator>

:TRIGGER:LEVEL 0.25;SLOPE POSITIVE<terminator>

This example sets the vertical to 0.64 volts full-scale (80 mV/div) centered at 0.25 V. The horizontal time is set to 1 ms full-scale with 20 ns delay. The time base mode is set to triggered, and the trigger circuit is set to trigger at 0.25 volts on a positive slope.

Example **Program**

This program demonstrates the basic command structure used to program the oscilloscope. It assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a 10:1 probe.

```
! Initialize instrument interface
      CLEAR 707
10
                                                    ! Initialize instrument to preset state
      OUTPUT 707;"*RST"
20
                                                   ! BNC output to probe mode
      OUTPUT 707;":BNC PROBE"
      OUTPUT 707;":TIMEBASE:MODE TRIGGERED"
                                                   ! Triggered time base mode
40
                                                   ! Time base to 50 us/div
      OUTPUT 707;":TIMEBASE:RANGE 5E-4"
50
      OUTPUT 707;":TIMEBASE:DELAY 0"
OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":CHANNEL1:PROBE 10"
                                                   ! Delay to zero
60
                                                   ! Display reference at center
                                                   ! Probe attenuation to 10:1
80
                                                    ! Vertical range to 1.6 V full scale
      OUTPUT 707;":CHANNEL1:RANGE 1.6"
90
                                                   ! Offset to -0.4
      OUTPUT 707;":CHANNEL1:OFFSET -.4"
100
                                                   ! Coupling to DC
      OUTPUT 707;":CHANNEL1:COUPLING DC"
110
      OUTPUT 707;":TRIGGER:MODE EDGE"
                                                   ! Edge triggering
120
                                                    ! Trigger level to -0.4
      OUTPUT 707;":TRIGGER:LEVEL -.4"
130
      OUTPUT 707:":TRIGGER:SLOPE POSITIVE"
                                                    ! Trigger on positive slope
140
                                                    ! Capture data
150
      OUTPUT 707;":DIGITIZE CHAN1"
                                                    ! Perform Vpeak measurement
      OUTPUT 707;":MEASURE VPP?"
160
                                                   ! Enter measurement result
170
      ENTER 707; Value
                                                   ! Print measurement result
      PRINT "Vpp = "; Value
180
190
      END
```

Program Overview

Line 10 initializes the instrument interface to a known state.

Line 20 initializes the instrument to a preset state.

Line 30 selects the Probe mode for the BNC output on the rear panel. Lines 40 through 70 set the time base mode to triggered with the horizontal time at $50 \,\mu\text{s/div}$ with 0 s of delay referenced at the center of the graticule.

Lines 80 through 110 set the vertical range to 1.6 volts full scale centered at -0.4 volts with 10:1 probe attenuation and DC coupling.

Lines 120 through 140 configures the instrument to trigger at -0.4 volts on a positive edge.

Line 150 captures the measurement data.

Line 160 runs the measurement and acquires the data.

Using the Digitize Command

The Digitize command is a macro that captures data satisfying the specifications set up by the acquire subsystem. When the digitize process is complete, the acquisition is stopped. The captured data can then be measured by the instrument or transferred to the controller for further analysis. The captured data consists of two parts: the waveform data record and the preamble.

Note

After changing the oscilloscope configuration, the waveform buffers are cleared. Before doing a measurement, the Digitize command must be sent to ensure new data has been collected.

When the DIGITIZE command is sent to an instrument, the specified channel signal is digitized with the current ACQUIRE parameters. To transfer waveform data across the bus, you must setup the WAVEFORM:SOURCE and WAVEFORM:FORMAT parameters for the waveform data prior to sending the :WAVEFORM:DATA? query.

The number of data points comprising a waveform varies according to the number requested in the ACQUIRE subsystem. The ACQUIRE subsystem determines the number of data points, type of acquisition, and number of averages used by the DIGITIZE command. This allows you to specify exactly what the digitized information contains. The following program example shows a typical setup:

```
OUTPUT 707:":TIMEBASE:SAMPLE REPETITIVE"<terminator>
OUTPUT 707;":ACQUIRE:TYPE AVERAGE"<terminator>
OUTPUT 707;":ACQUIRE:COMPLETE 100"<terminator>
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:FORMAT ASCII"<terminator>
OUTPUT 707:":ACQUIRE:COUNT 4"<terminator>
OUTPUT 707;":ACQUIRE:POINTS 500"<terminator>
OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>
OUTPUT 707:":WAVEFORM:DATA?"<terminator>
```

This setup places the instrument into the repetitive averaged mode with four averages and defines the data record to be 500 points. This means that when the DIGITIZE command is received, the waveform is not complete into memory until 500 points have been averaged at least four times.

After receiving the :WAVEFORM:DATA? query, the instrument will start passing the waveform information when addressed to talk.

Digitized waveforms are passed from the instrument to the controller by sending a numerical representation of each digitized point. The format of the numerical representation is controlled with the :WAVEFORM:FORMAT command and may be selected as ASCII, WORD, BYTE, or COMPRESSED.

A digitize operation may be aborted by pressing the "LOCAL" key, then any other key on the front panel, or by sending a Device Clear over the bus. Digitize operations with :ACQUIRE:TYPE RAWDATA can only be aborted with a Device Clear.

Programming Reference

Receiving Information from the Instrument

After receiving a query (command header followed by a question mark), the instrument interrogates the requested function and places the answer in its output queue. The answer remains in the output queue until it is read or another command is issued. When read, the answer is transmitted across the bus to the designated listener (typically a controller). The input statement for receiving a response message from an instrument's output queue typically has two parameters; the device address, and a format specification for handling the response message. For example, to read the result of the query command :SYSTEM:LONGFORM? you would execute the BASIC statement:

ENTER <device address> ;Setting\$

where < device address > represents the address of your device. This would enter the current setting for the LONGFORM command in the string variable Setting\$.

All results for queries sent in a program message must be read before another program message is sent. For example, when you send the query:MEASURE:RISETIME?, you must follow that query with an input statement. In BASIC, this is usually done with an ENTER statement.

Sending another command before reading the result of the query causes the output buffer to be cleared and the current response to be lost. This also causes an error to be placed in the error queue.

Executing an input statement before sending a query causes the controller to wait indefinitely.

The format specification for handling response messages is dependent on both the controller and the programming language.

Response Header Options

The format of the returned ASCII string depends on the current settings of the SYSTEM HEADER and LONGFORM commands. The general format is:

<header><separator><data>terminator>

The header identifies the data that follows and is controlled by issuing a :SYSTEM:HEADER ON/OFF command. If the state of the header command is OFF, only the data is returned by the query.

The format of the header is controlled by the :SYSTEM:LONGFORM ON/OFF command. If long form is OFF, the header is in its short form and the header varies in length depending on the particular query. The separator between the header and the data always consists of one space.

The following examples show some possible responses for a :MEASURE:FREQUENCY? frequency measurement query:

A command or query may be sent in either long form or short form, or in any combination of long form and short form. The HEADER and LONGFORM commands only control the format of the returned data and have no effect on the way commands are sent.

Refer to chapter 8, "System Subsystem" for information on turning the HEADER and LONGFORM commands on and off.

Response Data Formats

Both numeric and character data are returned as a series of ASCII characters, as described in the following sections. Mnemonics in the program data are returned in the same format as the header, as specified by the LONGform command. Like the headers, the mnemonics are always in upper-case.

The following examples are possible responses to the :TRIGGER:SLOPE? query:

:TRIGGER:SLOPE POSITIVE <terminator>

(with HEADER ON/LONGFORM ON)

:TRIG:SLOP POS<terminator>

(with HEADER ON/LONGFORM OFF)

POSITIVE<terminator>

(with HEADER OFF/LONGFORM ON)

POS<terminator>

(with HEADER OFF/LONGFORM OFF)

Refer to the individual commands in this manual for information on the format (alpha or numeric) of the data returned from each query.

String Variables

If you want to transfer the headers for queries, you must bring the returned data into a string variable. Reading queries into string variables is simple and straightforward, requiring little attention to formatting. For example:

ENTER <device address>;Result\$

places the output of the query in the string variable Result\$.

Note U

In HP BASIC 5.0, string variables are case sensitive and must be expressed exactly the same each time they are used.

The output of the instrument may be numeric or character data depending on what is queried. Refer to the specific commands for the formats and types of data returned from queries.

For the example programs, assume that the device being programmed is at device address 707. The actual address varies according to how you have configured the bus for your own application.

The following example shows the data being returned to a string variable with headers on:

- 10 DIM Rang\$[30]
- 20 OUTPUT 707;":SYSTEM:HEADER ON" 30 OUTPUT 707;":CHANNEL1:RANGE?"
- 40 ENTER 707; Rang\$
- 50 PRINT Rang\$
- 60 END

After running this program, the controller will typically display:

CHANNEL1:RANGE +8.00000E-01

Numeric Variables

If you do not need to see the headers when a numeric value is returned from the instrument, then you can use a numeric variable. When you are receiving numeric data into a numeric variable, turn the headers off.

When you are receiving numeric data into numeric variables, the headers should be turned off. Otherwise the headers may cause misinterpretation of returned data.

The following example shows the data being returned to a numeric variable:

- 10 OUTPUT 707;":SYSTEM:HEADER OFF"
- 20 OUTPUT 707;":CHANNEL1:RANGE?"
- 30 ENTER 707; Rang
- 40 PRINT Rang
- 50 END

After running this program, the controller will typically display:

8.

Definite-Length Block Response Data

Definite-length block response data allows any type of device-dependent data to be transmitted over the system interface as a series of 8-bit binary data bytes. This is particularly useful for sending large quantities of data or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed by a non-zero digit representing the number of digits in the decimal integer. After the non-zero digit is the decimal integer that states the number of 8-bit data bytes being sent. This is followed by the actual data.

For example, for transmitting 80 bytes of data, the syntax would be:

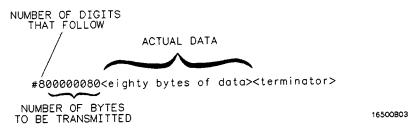


Figure 2-1. Definite-Length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the number of bytes to be transmitted.

Multiple Queries

You can send multiple queries to the instrument within a single program message, but you must also read them back within a single program message. This can be accomplished by either reading them back into a string variable or into multiple numeric variables. For example, you could read the result of the query :TIMEBASE:RANGE?;DELAY? into the string variable Results\$ with the command:

ENTER 707: Results\$

When you read the result of multiple queries into string variables, each response is separated by a semicolon. For example, the response of the query:TIMEBASE:RANGE?;DELAY? with HEADER and LONGFORM on would be:

:TIMEBASE:RANGE <range value>;:TIMEBASE:DELAY <delay_value>

If you do not need to see the headers when the numeric values are returned, read the result of the query into numeric variables. For example, use the following program message to read the query :TIMEBASE:RANGE?;DELAY? into multiple numeric variables:

ENTER 707; Result1, Result2

When you are receiving numeric data into numeric variables, the headers should be turned off. Otherwise the headers may cause misinterpretation of returned data.

Instrument Status

Status registers track the current status of the instrument. By checking the instrument status, you can find out whether an operation has been completed, whether the instrument is receiving triggers, and more. Chapter 24, "Status Reporting" explains how to check the status of the instrument.

Programming an Instrument 2-12

Interface Functions

Introduction

This section describes the interface functions and some general concepts of the HP-IB. In general, these functions are defined by IEEE 488.1. They deal with general bus management issues, as well as messages which can be sent over the bus as bus commands.

Interface Capabilities

The interface capabilities of the HP 54505B, HP 54506B, HP 54510B, and HP 54512B, as defined by IEEE 488.1, are SH1, AH1, T5, L4, SR1, RL1, DC1, DT1, C0, and E2.

Command and Data Concepts

The HP-IB has two modes of operation:

- command mode.
- data mode.

The bus is in the command mode when the ATN line is true. The command mode is used to send talk and listen addresses and various bus commands, such as a group execute trigger (GET).

The bus is in the data mode when the ATN line is false. The data mode is used to convey device-dependent messages across the bus. The device-dependent messages include all of the instrument commands and responses found in chapters 6 through 23 of this manual.

Addressing

By using the front-panel controls, the instrument can be placed in either the talk-only mode or addressed (talk/listen) mode (see your front-panel reference). Talk-only mode should be used when you want the instrument to talk directly to a printer without the aid of a controller. Addressed mode is used when the instrument operates in conjunction with a controller. When the instrument is in the addressed mode, the following is true:

- Each device on the HP-IB resides at a particular address, ranging from 0 to 30.
- The active controller specifies which devices talk and which listen.
- An instrument may be talk addressed, listen addressed, or unaddressed by the controller.

If the controller addresses the instrument to talk, the instrument remains configured to talk until it receives an interface clear message (IFC), another instrument's talk address (OTA), its own listen address (MLA), or a universal untalk command (UNT).

If the controller addresses the instrument to listen, the instrument remains configured to listen until it receives an interface clear message (IFC), its own talk address (MTA), or a universal unlisten command (UNL).

Communicating Over the Bus (HP 9000 Series 200/300 Controller)

Since HP-IB can address multiple devices through the same interface card, the device address passed with the program message must include not only the correct interface select code, but also the correct instrument address.

Interface Select Code (Selects Interface)

Each interface card has a unique interface select code. This code is used by the controller to direct commands and communications to the proper interface. The default is typically "7" for HP-IB controllers.

Interface Functions 3-2

Instrument Address (Selects Instrument)

Each instrument on an HP-IB bus must have a unique instrument address between decimal 0 and 30. The device address passed with the program message must include not only the correct instrument address, but also the correct interface select code.

DEVICE ADDRESS = (Interface Select Code * 100) + (Instrument Address)

For example, if the instrument address for the oscilloscope is 4 and the interface select code is 7, when the program message is passed, the routine performs its function on the instrument at device address 704.

For the HP 54505B, HP 54506B, HP 54510B, and HP 54512B, the instrument address is typically set to "7" at the factory. This address can be changed in the HP-IB menu of the Utility menu.

Note

The examples in this manual assume the oscilloscope is at device address 707.

Remote, Local and Local Lockout

The remote, local, and remote with local lockout modes may be used for various degrees of front-panel control while a program is running. The instrument accepts and executes bus commands while in local mode, and the front panel is entirely active. If the oscilloscope is in the remote mode, all controls (except the power switch and the LOCAL key) are entirely locked out. Local control can only be restored by the controller or pressing the front-panel LOCAL key.

Note

Cycling the power also restores local control, but this also resets certain HP-IB states.

The instrument is placed in the remote mode by setting the REN bus control line true, and then addressing the instrument to listen. The instrument is placed in the local lockout mode by sending the local lockout command (LLO). The instrument can be returned to the local mode by either setting the REN line false, or sending the go-to-local command (GTL) to the instrument.

HP 54505B/54506B/54510B/54512B Programming Reference Interface Functions 3-3

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE 488.2 defines many of the actions which are taken when these commands are received by the instrument.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the input and output buffers, reset the parser, and clear any pending commands. If either of these commands is sent during a digitize operation, the digitize operation is aborted.

Group Execute Trigger (GET)

The group execute trigger (GET) command arms the trigger which is the same action produced by sending the RUN command.

Interface Clear

(IFC) The interface clear (IFC) command halts all bus activity. This includes unaddressing all listeners and the talker, disabling serial poll on all devices, and returning control to the system controller.

Status Annunciators

The oscilloscope displays the HP-IB status on the screen. The message indicates whether the instrument is in the remote mode, whether talk or listen is addressed, and whether the instrument has requested service. When the instrument is in the local mode only the SRQ annunciator is displayed.

Programming and Documentation Conventions

Introduction

This chapter covers conventions which are used in programming the instrument, as well as conventions used in the remainder of this manual. This chapter contains a detailed description of the command tree and command tree traversal. For more information on command syntax refer to chapter 27, "Message Communication and System Functions."

Truncation Rules

The truncation rule for the mnemonics used in headers and alpha arguments is:

The mnemonic is the first four characters of the keyword unless:

The fourth character is a vowel, then the mnemonic is the first three characters of the keyword.

This rule is not used if the length of the keyword is exactly four characters.

Some examples of how the truncation rule is applied to various commands are shown in table 4-1.

Table 4-1. Mnemonic Truncation

Long Form	Short Form
RANGE	RANG
PATTERN	PATT
TIME	TIME
DELAY	DEL

Front Panel to Command Cross-Reference

Table 4-2 lists the front-panel functions for the oscilloscope in alphabetical order with their corresponding programming commands.

Table 4-2. Front-Panel Function to Command Cross-Reference

Table 4-2. Front-Panel Function to Command Cross-Reference		
Front-Panel Function	Location	Command
1 2 3 4 EXT	Channel menu	:BLANk
1 2 3 4 EXT	Channel menu	:CHANnel[:DISPlay]
1 2 3 4 EXT	Channel menu	:VIEW
1 2 3 4 EXT	Delay Trigger menu (edge)	:TRIGger:DELay:SOURce
1 2 3 4 EXT LINE	Edge Trigger menu	:TRIGger:SOURce
1 2 3 4 EXT	State Trigger menu	:TRIGger:SOURce
1 ΜΩ 50Ω DC	Channel menu	:TRIGger:COUPling
525 625 lines	TV Trigger menu	:TRIGger:LINE
Δt ΔV	Marker menu	:MARKer:XDELta
Δι ΔΥ	Marker menu	:MEASure:TDELta
Δt ΔV	Marker menu	:MARKer:YDELta
Δt ΔV	Marker menu	:MEASure:VDELta
Δt ΔV	front-panel key	:MENU:DELTa
At markers	Marker menu	:DISPlay:TMARker
Δt markers	Marker menu	:MARKer[:DISPlay]
Δt markers	Marker menu	:MEASure:ESTArt
At markers	Marker menu	:MEASure:ESTOp
Δt markers	Marker menu	:MARKer:X1Position
At markers	Marker menu	:MEASure:TSTArt
Δt markers	Marker menu	:MARKer:X2Position
Δt markers	Marker menu	:MEASure:TSTOp
ΔV markers	Marker menu	:DISPlay:VMARker
ΔV markers	Marker menu	:MARKer[:DISPlay]
AV markers	Marker menu	:MARKer:Y1Position
ΔV markers	Marker menu	:MEASure:VSTArt
AV markers	Marker menu	:MARKer:Y2Position
ΔV markers	Marker menu	:MEASure:VSTOp
- subtract	Waveform Math menu	:FUNCtion:SUBTract
- WIDTH	front-panel key	:MEASure:NWIDth
# of avg	Display menu (avg)	:ACQuire:COUNt
# of points	Timebase menu	:SEQuential:NPOints
# of points	Waveform Math menu (FFT)	:FUNCtion:POINts

Programming and Documentation Conventions 4-2

Table 4-2. Front-Panel Function to Command Cross-Reference

Front-Panel Function	Location	Command
# of screens	Display menu	:DISPlay:FORMat
# of segments	Display menu (avg single-shot)	:ACQuire:TYPE
# of segments	Timebase menu	:SEQuential:NSEGments
% volts	Define Meas menu (meas def)	:MEASure:UNITs
+ add	Waveform Math menu	:FUNCtion:ADD
+ WIDTH	front-panel key	:MEASure:PWIDth
↑ X X X	Delay Trigger menu (state)	:TRIGger:LOGic
$ \uparrow x x x $	State Trigger menu	:TRIGger:LOGic
AC BNC	Utility menu	:BNC
ac dc	Channel menu	:CHANnel:COUPling
add +	Waveform Math menu	:FUNCtion:ADD
address	Utility menu (HP-IB menu)	(front panel only)
addressed talk only	Utility menu (HP-IB menu)	program language specific
add to memory	Waveform Save menu (pixel)	:MERGe
add to memory	Waveform Save menu (pixel)	:PMEMory:MERGe
adjust	Edge Trigger menu	:TRIGger:LEVel
adjust	Glitch Trigger menu	:TRIGger:GLITch:LEVel
after fail	Define Meas menu (compare)	:MEAS:WCOM:POSTfailure
after fail	Define Meas menu (meas limit)	:MEASure:POSTfailure
allowance	Define Meas menu (compare)	:MEAS:WCOM:ALLowance
attenuation	Utility menu (probe cal menu)	(front panel only)
AUTOSCALE	front-panel key	:AUToscale
auto trig'd	Trigger menu	:TIMebase:MODE
avg env norm	Display menu	:ACQuire:TYPE
axes grid off frame	Display menu	:DISPlay:GRATicule
BW lim	Channel menu	:CHANnel:HFReject
center	Edge Trigger menu	:TRIGger:CENTered
center	Glitch Trigger menu	:TRIGger:GLITch:CENTered
center freq	Waveform Math menu (FFT)	:FUNCtion:FREQ
CHAN	front-panel key	:MENU:CHANnel
channel	Utility menu (probe cal menu)	:CALibrate:TNULl
CLEAR DISPLAY	front-panel key	:ERASe pmem0
clear memory	Waveform Save menu (pixel)	:ERASe
clicker	Utility menu	:BEEPer
clock	Delay Trigger menu (state)	:TRIGger:DELay:SOURce
clock	State Trigger menu	:TRIGger:SOURce
CLR MEAS	front-panel key	:MEASure:SCRatch
color	Utility menu (HP-IB menu)	:HARDcopy:PLOT:COLor
compare	Define Meas menu (compare)	:MEAS:WCOMpare:COMPare
connect dots	Display menu	:DISPlay:CONNect

HP 54505B/54506B/54510B/54512B Programming Reference **Programming and Documentation Conventions**

Table 4-2. Front-Panel Function to Command Cross-Reference

Front-Panel Function	Location	Command
continuous	Define Meas menu (meas)	(see specific measurement)
count	Delay Trigger menu	:TRIGger:OCCurrence
date	Utility menu (system menu)	:SYSTem:DATE
delac	Channel menu	:CHANnel:COUPling
define	Define Meas menu	:MEASure:DEFine
DEFINE MEAS	front-panel key	:MENU:MEASure
delay + width - width	Define Meas menu (meas def)	:MEASure:DEFine
DELAY	front-panel key	:MEASure:DELay
delay	Timebase menu	:TIMebase:DELay
delay	Delay Trigger menu	:TRIGger:DELay
delay	Waveform Save menu	:WMEMory:XOFFset
	(waveform)	·
delay tv edge pattern state	Trigger menu	:TRIGger:MODE
delta t (x) delta v (y) Δt ΔV	Marker menu	:MARKer:XDELta
delta t (x) delta v (y) Δt ΔV	Marker menu	:MEASure:TDELta
delta t (x) delta v (y) Δt ΔV	Marker menu	:MARKer:YDELta
delta t (x) delta v (y) $\Delta t \Delta V$	Marker menu	:MEASure:VDELta
delta t (x) delta v (y) $\Delta t \Delta V$	Marker menu	:MENU DELTa
delta t (x) markers	Marker menu	:DISPlay:TMARker
delta t (x) markers	Marker menu	:MARKer[:DISPlay]
delta t (x) markers	Marker menu	:MEASure:ESTArt
delta t (x) markers	Marker menu	:MEASure:ESTOp
delta t (x) markers	Marker menu	:MARKer:X1Position
delta t (x) markers	Marker menu	:MEASure:TSTArt
delta t (x) markers	Marker menu	:MARKer:X2Position
delta t (x) markers	Marker menu	:MEASure:TSTOp
delta V (y) markers	Marker menu	:DISPlay:VMARker
delta V (y) markers	Marker menu	:MARKer[:DISPlay]
delta V (y) markers	Marker menu	:MARKer:Y1Position
delta V (y) markers	Marker menu	:MEASure:VSTArt
delta V (y) markers	Marker menu	:MARKer:Y2Position
delta V (y) markers	Marker menu	:MEASure:VSTOp
device mode	Utility menu (HP-IB menu)	:HARDcopy:MODE
device mode	Utility menu	:PLOT
device mode	Utility menu	:PRINt
diff	Waveform Math menu	:FUNCtion:DIFF
DISPLAY	front-panel key	:MENU DISPlay
display off	Waveform Math menu	:FUNCtion[:DISPlay]
display off	Waveform Math menu	:BLANk
display off	Waveform Save menu	:BLANk
Laisbias off	Wayelulii Saye illellu	LIVERNIN

Programming and Documentation Conventions 4-4

Table 4-2. Front-Panel Function to Command Cross-Reference

Front-Panel Function	Location	Command
	Waveform Save menu (pixel)	:PMEMory[:DISPlay]
display off	Waveform Save menu	:WMEMory[:DISPlay]
display off	(waveform)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Y 1	Waveform Math menu	:FUNCtion[:DISPlay]
display on	Waveform Math menu	:VIEW
display on	Waveform Save menu	:VIEW
display on	Waveform Save menu (pixel)	:PMEMory[:DISPlay]
display on	Waveform Save menu (pixel)	:WMEMory[:DISPlay]
display on	1	. WIVIEWOIY[.DIGI my]
	(waveform)	:MEASure:DUTycycle
DUTY CY	front-panel key	:CHANnel:ECL
ECL	Channel menu	:TRIGger:MODE
edge pattern state delay tv	Trigger menu	front panel only
enter changes	Display menu (seq single-shot)	:ACQuire:TYPE
env norm avg	Display menu	:SEQuential:EXCLude
exclude	Display menu (seq single-shot)	
execute changes	Display menu (seq single-shot)	front panel only
fail if >	Define Meas menu (meas limit)	:MEASure:COMPare
failure #	Waveform Save menu	:MMEMory:FNUMber
	(multiple)	DETAG PATTAINS
FALLTIME	front-panel key	:MEASure:FALLtime
FFT	Waveform Math menu	:FUNCtion:FFT
field	TV Trigger menu	:TRIGger:FIELd
FINE	front-panel key	(front panel only)
f1 f2 f3 f4	Waveform Math menu	:FUNCtion < n >
form feed	Utility menu (HP-IB menu)	:HARDcopy:PAGE
frame axes grid off	Display menu	DISPlay:GRATicule
freq span	Waveform Math menu (FFT)	:FUNCtion:SPAN
FREQ	front-panel key	:MEASure:FREQuency
from	Define Meas menu (meas def)	:MEASure:DEFine
from	Display menu (seq single-shot)	:SEQuential:EXCLude
from	Display menu (seq single-shot)	:SEQuential:INCLude
grid off frame axes	Display menu	DISPlay:GRATicule
HARDCOPY	front-panel key	:PLOT
HARDCOPY	front-panel key	:PRINt
H X X X	Delay Trigger menu (pattern)	:TRIGger:LOGic
H X X X	Pattern Trigger menu	:TRIGger:LOGic
holdoff	Edge Trigger menu	:TRIGger:HOLDoff
holdoff	Glitch Trigger menu	:TRIGger:GLITch:HOLDoff
holdoff	Pattern Trigger menu	:TRIGger:HOLDoff
holdoff	State Trigger menu	:TRIGger:HOLDoff

HP 54505B/54506B/54510B/54512B Programming Reference Programming and Documentation Conventions 4-5

Table 4-2. Front-Panel Function to Command Cross-Reference

Front-Panel Function	Location	Command
holdoff	TV Trigger menu	:TRIGger:HOLDoff
horix magnify	Waveform Math menu (FFT)	:FUNCtion:MAGNify
HP-IB menu	Utility menu	(see specific functions)
include	Display menu (seq single-shot)	:SEQuential:INCLude
initialize	Utility menu (HP-IB menu)	:HARDcopy:PLOT:INITialize
int	Waveform Math menu	:FUNCtion:INTegrate
interpolation	Utility menu (system menu)	front panel only
inv	Waveform Math menu	:FUNCtion:INVert
level	Edge Trigger menu	:TRIGger:LEVel
level	Glitch Trigger menu	:GLITch:TRIGger:LEVel
level	TV Trigger menu	:TRIGger:LEVel
LF rej	Channel menu	:CHANnel:LFReject
limit	Define Meas menu	:MEASure:COMPare
line	TV Trigger menu	:TRIGger:OCCurrence
LOCAL	front-panel key	:SYSTem:KEY
lower threshold	Define Meas menu (meas def)	:MEASure:LOWer
magnify	Waveform Math menu	:FUNCtion:MAGNify
marker menu on off	Marker menu	:MARKer[:DISPlay]
mask menu	Waveform Save menu	front panel only
measure	Define Meas menu	(see specific functions)
measurements	Define Meas menu (meas def)	(see specific measurements)
multiply X	Waveform Math menu	:FUNCtion:MULTiply
noise reject	Edge Trigger menu	:TRIGger:SENSitivity
nonvolatile	Waveform Save menu	:STORe
	(waveform/multiple)	
norm avg env	Display menu	:ACQuire:TYPE
off on	Channel menu	:CHANnel[:DISPlay]
off frame axes grid	Display menu	DISPlay:GRATicule
offset	Channel menu	:CHANnel:OFFSet
offset	Waveform Math menu	:FUNCtion:OFFSet
on fail, save	Define Meas menu (compare)	:MEAS:WCOMP:DESTination
on fail, save	Define Meas menu (meas limit)	:MEASure:DESTination
or if <	Define Meas menu (meas limit)	:MEASure:COMPare
paper length	Utility menu (HP-IB menu)	:HARDcopy:LENGth
pattern state delay tv edge	Trigger menu	:TRIGger:MODE
peak search	Waveform Math menu (FFT)	:FUNCtion:PEAK
pen	Utility menu (HP-IB)	:HARDcopy:PLOT:PEN
PERIOD	front-panel key	:MEASure:PERiod
persistence	Display menu (norm)	:DISPlay:PERSistence
pixel	Waveform Save menu	:MERGe

Programming and Documentation Conventions 4-6

Table 4-2. Front-Panel Function to Command Cross-Reference

Front Porol Function Location Command		
Front-Panel Function	Location	Сомпана
polarity	TV Trigger menu	:TRIGger:POLarity
plot	Utility menu (HP-IB menu)	:HARDcopy:PLOT:AREA
present	State Trigger menu	:TRIGger:CONDition
probe	Channel menu	:CHANnel:PROBe
probe cal menu	Utility menu	(see specific functions)
protect	Waveform Save menu	:MMEMory:PROTect
f =	(multiple)	
protect	Waveform Save menu	:WMEMory:PROTect
	(waveform)	
qualify on	Delay Trigger menu	:TRIGger:QUALify
qualify on	TV Trigger menu	:TRIGger:QUALify
realtime repetitive	Timebase menu	:TIMebase:SAMPle
RECALL	front-panel key	*RCL
RECALL/CLEAR	front-panel keys	*RST
reference	Timebase menu	:TIMebase:REFerence
registration form	Utility menu (system menu)	front panel only
repetitive realtime	Timebase menu	:TIMebase:SAMPle
RISETIME	front-panel key	:MEASure:RISetime
rms	Define Meas menu (meas)	:MEASure:VACRms
rms	Define Meas menu (meas)	:MEASure:VDCRms
rms	Define Meas menu (meas)	:MEASure:VRMS
RUN/STOP	front-panel key	:RUN
RUN/STOP	front-panel key	:STOP
SAVE	front-panel key	*SAV
saved source	Waveform Save menu	:MMEMory:SOURce
saved source	(multiple)	
scale-delay	Waveform Save menu	:WMEMory:XOFFset
scale-timebase	Waveform Save menu	:WMEMory:XRANge
s/div	Timebase menu	:TIMebase:RANGe
search level	Waveform Math menu (FFT)	:FUNCtion:LEVel
seconds s	Utility menu (probe cal menu)	:CALibrate:TNULl
seconds per division	Timebase menu	:TIMebase:RANGe
segment #	Display menu (norm seq	:SEQuential:NSEGments
segment #	single-shot)	
self cal menu	Utility menu	(front panel only)
self cai menu selftest menu	Utility menu	*TST
	Waveform Math menu	:FUNCtion:RANGe
sensitivity	Timebase menu	:SEQuential[:DISPlay]
sequential service menu	Utility menu	(front panel only)
	Define Meas menu (meas limit)	(see specific measurements)
set	1 Define Meas ment (meas mint)	TIMA DIAMINA INAMANA ANTONIO

HP 54505B/54506B/54510B/54512B Programming Reference Programming and Documentation Conventions 4-7

Table 4-2. Front-Panel Function to Command Cross-Reference

Front-Panel Function	Location	Command
SHOW	front-panel key	:MENU SHOW
SINGLE	front-panel key	:TIMebase:MODE
slope	Delay Trigger menu	:TRIGger:DELay:SLOPe
slope	Edge Trigger menu	:TRIGger:SLOPe
source	Display menu (seq single-shot)	:SEQuential:SOURce
source	Edge Trigger menu	:TRIGger:SOURce
source	Marker menu	:MARKer:X1Y1source
source	Marker menu	:MARKer:X2Y2source
source	TV Trigger menu	:TRIGger:SOURce
source	Waveform Save menu	:STORe
1	(waveform)	
source-state	Glitch Trigger menu	:GLITch:TRIGger:SOURce
standard	Define Meas menu (meas def)	:MEASure:MODE
start cal	Utility menu (probe cal menu)	(front panel only)
start marker	Marker menu	:MARKER:X1Position
start marker	Marker menu	:MEASure:ESTArt
start marker	Marker menu	:MEASure:TSTArt
state delay tv edge pattern	Trigger menu	:TRIGger:MODE
statistics	Define Meas menu (meas)	:MEASure:STATistics
stop marker	Marker menu	:MARKer:X2Position
stop marker	Marker menu	:MEASure:ESTOp
stop marker	Marker menu	:MEASure:TSTOp
store	Waveform Save menu	:WMEMory:GET
	(waveform)	•
store	Waveform Save menu	:STORe
	(waveform)	
store failure	Waveform Save menu	:MMEMory:STORe
	(multiple)	•
subtract -	Waveform Math menu	:FUNCtion:SUBTract
talk only addressed	Utility menu (HP-IB menu)	(program language specific)
test	Define Meas menu (compare)	:MEAS:WCOMpare:WTESt
test	Define Meas menu (meas limit)	:MEASure:LIMittest
test all	Utility menu (selftest menu)	*TST
threshold	Define Meas menu (meas def)	:MEASure:DEFine
thresholds	Define Meas menu (meas def)	:MEASure:LOWer
thresholds	Define Meas menu (meas def)	:MEASure:UPPer
TIMEBASE	front-panel key	:MENU TIMebase
timebase	Waveform Save menu	:WMEMory:XRANge
	(waveform)	
time	Ùtility menu (system menu)	:SYSTem:TIME

Programming and Documentation Conventions4-8

Table 4-2. Front-Panel Function to Command Cross-Reference

Front-Panel Function	Location	Command
time null	Utility menu (probe cal menu)	:CALibrate:TNULl
to	Define Meas menu (meas def)	:MEASure:DEFine
to	Define Meas menu (compare)	:MEAS:WCOMpare:COMPare
to	Display menu (seq single-shot)	:SEQuential:EXCLude
to	Display menu (seq single-shot)	:SEQuential:INCLude
TRIG	front-panel key	:MENU:TRIGger
trig'd auto	Trigger menu	:TIMebase:MODE
trigger on	Delay Trigger menu	:TRIGger:OCCurrence
trigger on	Delay Trigger menu	:TRIGger:OCCurrence:SLOPe
trigger on	Delay Trigger menu	:TRIG:OCCurrence:SOURce
trigger on	TV Trigger menu	:TRIGger:OCCurrence
trigger on	TV Trigger menu	:TRIGger:OCCurrence:SLOPe
TTL	Channel menu	:CHANnel:TTL
tv edge pattern state delay	Trigger menu	:TRIGger:MODE
upper threshold	Define Meas menu (meas def)	:MEASure:UPPer
user defined	Define Meas menu (meas def)	:MEASure:MODE
UTIL	front-panel key	:MENU UTILity
V AMP	front-panel key	:MEASure:VAMPlitude
V AVG	front-panel key	:MEASure:VAVerage
V BASE	front-panel key	:MEASure:VBASe
V/div	Channel menu	:CHANnel:RANGe
versus vs (WFORM MATH)	Waveform Math menu	:FUNCtion:VERSus
V marker 1	Marker menu	:MARKer:Y1Position
V marker 1	Marker menu	:MEASure:VSTArt
V marker 2	Marker menu	:MARKer:Y2Position
V marker 2	Marker menu	:MEASure:VSTOp
V MAX	front-panel key	:MEASure:VMAX
VMIN	front-panel key	:MEASure:VMIN
view failures	Waveform Save menu	:MMEMory:FNUMber
	(multiple)	
volatile	Waveform Save menu (pixel)	:MERGe
volts %	Define Meas menu (meas def)	:MEASure:UNITs
volts per division	Channel menu	:CHANnel:RANGe
V P-P	front-panel key	:MEASure:VPP
V RMS	front-panel key	:MEASure:VRMS
V TOP	front-panel key	:MEASure:VTOP
waveform	Waveform Save menu	:STORe
when	Delay Trigger menu	:TRIGger:LOGic
when	Glitch Trigger menu	:TRIGger:GLITch:CONDition
when	Pattern Trigger menu	:TRIGger:CONDition

HP 54505B/54506B/54510B/54512B Programming Reference **Programming and Documentation Conventions**

Table 4-2. Front-Panel Function to Command Cross-Reference

Front-Panel Function	Location	Command
when	State Trigger menu	:TRIGger:LOGic
width	Glitch Trigger menu	:TRIGger:GLITch:WIDTh
window	Waveform Math menu (FFT)	:FUNCtion:WINDow
WFORM MATH	front-panel key	:MENU MATH
WFORM SAVE	front-panel key	:MENU SAVE
X multiply	Waveform Math menu	:FUNCtion:MULTiply
x delta	Marker menu	:MARKer:XDELta
x delta	Marker menu	:MEASure:TDELta
x marker	Marker menu	:DISPlay:TMARker
x marker	Marker menu	:MARKer[:DISPlay]
x1 marker	Marker menu	:MARKer:X1Position
x1 marker	Marker menu	:MEASure:TSTArt
x2 marker	Marker menu	:MARKer:X2Position
x2 marker	Marker menu	:MEASure:TSTOp
y delta	Marker menu	:MARKer:YDELta
y delta	Marker menu	:MEASure:VDELta
y marker	Marker menu	:DISPlay:VMARker
y marker	Marker menu	:MARKer[:DISPlay]
y1 marker	Marker menu	:MARKer:Y1Position
y1 marker	Marker menu	:MEASure:VSTArt
y2 marker	Marker menu	:MARKer:Y2Position
v2 marker	Marker menu	:MEASure:VSTOp

The Command Tree

The command tree in figure 4-1 shows all of the commands in the HP 54505B/54506B/54510B/54512B, and the relationship of the commands to each other. The IEEE 488.2 common commands are not listed as part of the command tree since they do not affect the position of the parser within the tree. When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a leading colon (:) is sent to the instrument, the parser is set to the "root" of the command tree.

Command Types

The commands for this instrument can be placed into three types:

- Common commands.
- Root level commands.
- Subsystem commands.

Programming and Documentation Conventions 4-10

Common Commands

The common commands are the commands defined by IEEE 488.2. These commands control some functions that are common to all IEEE 488.2 instruments.

Common commands are independent of the tree, and do not affect the position of the parser within the tree. These commands differ from root level commands in that root level commands place the parser back at the root of the command tree.

Example:

*RST.

Root Level Commands

The root level commands control many of the basic functions of the instrument. These commands reside at the root of the command tree. Root level commands are always parsable if they occur at the beginning of a program message, or are preceded by a colon.

Example:

:AUTOSCALE

Subsystem Commands

Subsystem commands are grouped together under a common node of the command tree, such as the TIMEBASE commands. Only one subsystem may be selected at any given time. When the instrument is initially turned on, the command parser is set to the root of the command tree, therefore, no subsystem is selected.

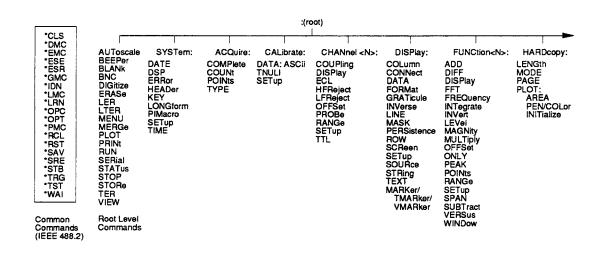


Figure 4-1. HP54505B/54506B/54510B/54512B Command Tree

Programming and Documentation Conventions 4-12

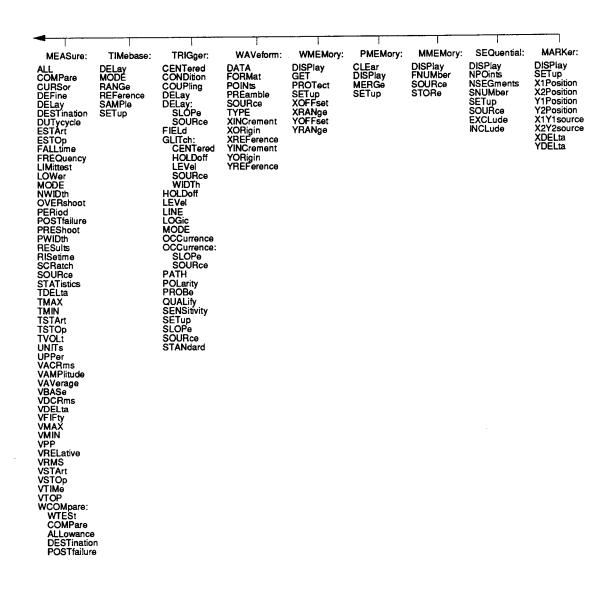


Figure 4-1.HP54505B/54506B/54510B/54512B Command Tree (cont)

HP 54505B/54506B/54510B/54512B Programming Reference

Programming and Documentation Conventions

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal command header from the command tree in figure 4-1 would be: CHANNEL1:RANGE. This is referred to as a compound header. A compound header is a header made of two or more mnemonics separated by colons. The mnemonic created contains no spaces. The following rules apply to traversing the tree:

- A leading colon or a < program message terminator > (either an < NL > or EOI true on the last byte) places the parser at the root of the command tree. A leading colon is a colon that is the first character of a program header.
- Executing a subsystem command places you in that subsystem until a leading colon or a < program message terminator > is found. In the Command Tree, figure 4-1, use the last mnemonic in the compound header as a reference point (for example, RANGE). Then find the last colon above that mnemonic (CHANNEL < N >:). That is the point where the parser resides. Any command below that point can be sent within the current program message without sending the mnemonics which appear above them (for example, OFFSET).

Examples

The OUTPUT statements in the examples are written using HP BASIC 5.0 on a HP 9000 Series 200/300 Controller. The quoted string is placed on the bus, followed by a carriage return and linefeed (CRLF).

Example 1:

OUTPUT 707: ": CHANNEL1: RANGE 0.5; OFFSET 0"

Comments:

The colon between CHANNEL1 and RANGE is necessary because CHANNEL1:RANGE is a compound command. The semicolon between the RANGE command and the OFFSET command is the required program message unit separator. The OFFSET command does not need CHANNEL1 preceding it, since the CHANNEL1:RANGE command sets the parser to the CHANNEL1 node in the tree.

Programming and Documentation Conventions4-14

Example 2:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;DELAY 0.00001"

or

OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:DELAY 0.00001"

Comments:

In the first line of example 2, the "subsystem selector" is implied for the DELAY command in the compound command. The DELAY command must be in the same program message as the REFERENCE command, since the program message terminator places the parser back at the root of the command tree.

A second way to send these commands is by placing TIMEBASE: before the DELAY command as shown in the second part of example 2.

Example 3:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;:CHANNEL1:OFFSET 0"

Comments:

The leading colon before CHANNEL1 tells the parser to go back to the root of the command tree. The parser can then see the CHANNEL1:OFFSET command.

Infinity Representation

The representation of infinity is 9.99999E + 37. This is also the value returned when a measurement cannot be made.

Sequential and Overlapped Commands

IEEE 488.2 makes the distinction between sequential and overlapped commands. Sequential commands finish their task before the execution of the next command starts. Overlapped commands run concurrently. Commands following an overlapped command may be started before the overlapped command is completed. All of the commands of the oscilloscope are sequential.

Response Generation

As defined by IEEE 488.2, query responses may be buffered for the following conditions:

- When the query is parsed by the instrument.
- When the controller addresses the instrument to talk so that it may read the response.

The oscilloscope buffers responses to a query when the query is parsed.

Notation Conventions and Definitions

The following conventions and definitions are used in this manual in descriptions of remote HP-IB operation:

Conventions

< > Angle brackets enclose words or characters that symbolize a program code parameter or an HP-IB command.

::= "is defined as." For example, < A > ::= < B > indicates that < A > can be replaced by < B > in any statement containing < A >.

| "or." Indicates a choice of one element from a list. For example, <A> | indicates <A> or , but not both.

... An ellipsis (trailing dots) indicates that the preceding element may be repeated one or more times.

- [] Square brackets indicate that the enclosed items are optional.
- { } When several items are enclosed by braces, one, and only one of these elements must be selected.

Definitions

d::= A single ASCII numeric character, 0-9.

n ::= A single ASCII non-zero, numeric character, 1-9.

<NL> ::= Newline or Linefeed (ASCII decimal 10).

< sp > ::= < white space >

<white space> ::= 0 through 32 (decimal) except linefeed
(decimal 10).

Syntax Diagrams

Chapters 6 through 23 contain syntax diagrams showing the proper syntax for each command. All characters contained in a circle or oblong are literals, and must be entered exactly as shown. Words and phrases contained in rectangles are names of items used with the command and are described in the accompanying text of each command. Each line can only be entered from one direction as indicated by the arrow on the entry line. Any combination of commands and arguments that can be generated by following the lines in the proper direction is syntactically correct. An argument is optional if there is a path around it. Where there is a rectangle which contains the word "space," a white space character must be entered. White space is optional in many other places.

Program Examples

The program examples given for each command in chapters 6 through 23 were written on an HP 9000 Series 200/300 controller using the HP BASIC 5.0 programming language. The programs always assume the oscilloscope is at address 707. If a printer is used, it is always assumed to be at address 701.

In these examples, pay special attention to the ways in which the command or query can be sent. The way the instrument is set up to respond to a command or query has no bearing on how you send the command or query. That is, the command or query can be sent using the long form or short form, if a short form exists for that command. You can send the command or query using upper case (capital) letters or lower case (small) letters. Also, the data can be sent using almost any form you wish. If you are sending a channel 1 range value of 100 mV, that value could be sent using a decimal (.1), or an exponential (1e-1 or 1.0E-1), or a suffix (100 mV or 100MV).

As an example, set channel 1 range to 100 mV by sending one of the following:

• Commands in long form using the decimal format.

OUTPUT 707;":CHANNEL1:RANGE .1"

• Commands in short form using an exponential format.

OUTPUT 707;":CHAN1:RANG 1E-1"

• Commands using lower case letters, short forms, and a suffix.

OUTPUT 707;":chan1:rang 100 mV"

Note

In these examples, the colon as the first character of the command is optional. The space between RANGE and the argument is required.

If you want to observe the headers for the queries, you must bring the returned data into a string variable. Generally, you should dimension all string variables before reading the data.

If you do not need to see the headers and a numeric value is returned from the oscilloscope, then you should use a numeric variable. In this case the headers should be turned off.

Command Set Organization

The command set for the oscilloscope is divided into common commands, root level commands and 16 sets of subsystem commands. Each of the 18 groups of commands is described in the following chapters. Each of the chapters contain a brief description of the subsystem, a set of syntax diagrams for the commands, and the commands for each subsystem in alphabetic order.

The commands are shown in the long form and short form using upper and lowercase letters. As an example, AUToscale indicates that the long form of the command is AUTOSCALE and the short form of the command is AUT. Each command listing contains a description of the command and its arguments, the command syntax, and a programming example.

HP 54505B/54506B/54510B/54512B Programming Reference Programming and Documentation Conventions 4-19

The sixteen subsystems in the HP 54505B, HP 54506B, HP 54510B, and HP 54512B are listed below:

SYSTem - controls some basic functions of the oscilloscope.

ACQuire - sets the parameters for acquiring and storing data.

CALibrate - sets the time nulls (channel-to-channel skew) and returns the instrument's calibration data.

CHANnel - controls all Y-axis oscilloscope functions.

DISPlay - controls how waveforms, voltage and time markers, graticule, and text are displayed and written on the screen.

FUNCtion - controls the waveform math functions of the oscilloscope.

HARDcopy - controls the parameters used during the plotting or printing of waveforms.

MEASure - selects the automatic measurements to be made.

TIMebase - controls all X-axis oscilloscope functions.

TRIGger - controls the trigger modes and parameters for each trigger mode.

WAVeform - provides access to waveform data, including active data from channels and functions as well as static data from waveform memories.

WMEMory - controls waveform memory functions.

PMEMory - controls pixel memory functions.

MMEMory - controls multiple memory functions.

SEQuential - controls sequential memory mode configuration and display parameters.

MARKer - controls x- and y-marker functions.

Table 4-3 lists the commands for the oscilloscope in alphabetical order with their corresponding subsystem or command type.

Table 4-3. Alphabetic Command Cross-Reference

Command	Where Used
ADD	FUNCtion Subsystem
ALL	MEASure Subsystem
AUToscale	Root Level Command
BEEPer	Root Level Command
BLANk	Root Level Command
BNC	Root Level Command
CENTered	TRIGger Subsystem
CLEar	PMEMory Subsystem
*CLS	Common Command
COLumn	DISPlay Subsystem
COMPare	MEASure Subsystem
COMPlete	ACQuire Subsystem
CONDition	TRIGger Subsystem
CONNect	DISPlay Subsystem
COUNt	ACQuire Subsystem
COUPling	CHANnel Subsystem
COUPling	TRIGger Subsystem
CURSor	MEASure Subsystem
DATA	DISPlay Subsystem
DATA	WAVeform Subsystem
DATA:ASCii	CALibrate Subsystem
DATE	SYSTem Sunsystem
DEFine	MEASure Subsystem
DELay	MEASure Subsystem
DELay	TIMebase Subsystem
DELay	TRIGger Subsystem
DELay:SLOPe	TRIGger Subsystem
DELay:SOURce	TRIGger Subsystem
DESTination	MEASure Subsystem
DIFF	FUNCtion Subsystem
DIGitize	Root Level Command
[DISPlay]	CHANnel Subsystem
[DISPlay]	FUNCtion Subsystem
[DISPlay]	MARKer Subsystem
[DISPlay]	MMEMory Subsystem
[DISPlay]	PMEMory Subsystem
[DISPlay]	SEQuential Subsystem
[DISPlay]	WMEMory Subsystem
*DMC	Common Command
DSP	SYSTem Subsystem

Programming and Documentation Conventions 4-22

Table 4-3. Alphabetic Command Cross-Reference

Table 4-3. Alphabetic Command Cross-Acterence		
Command	Where Used	
DUTycycle	MEASure Subsystem	
ECL	CHANnel Subsystem	
ERASe	Root Level Command	
ERRor	SYSTem Subsystem	
*EMC	Common Command	
*ESE	Common Command	
*ESR	Common Command	
ESTArt	MEASure Subsystem	
ESTOp	MEASure Subsystem	
EXCLude	SEQuential Subsystem	
FALLtime	MEASure Subsystem	
FFT	FUNCtion Subsystem	
FIELd	TRIGger Subsystem	
FNUMber	MMEMory	
FORMat	DISPlay Subsystem	
FORMat	WAVeform Subsystem	
FREQuency	FUNCtion Subsystem	
FREQuency	MEASure Subsystem	
GET	WMEMory Subsystem	
GLITch	TRIGger Subsystem	
GLITch:CENTered	TRIGger Subsystem	
GLITch:HOLDoff	TRIGger Subsystem	
GLITch:LEVel	TRIGger Subsystem	
GLITch:SOURce	TRIGger Subsystem	
GLITch:WIDTh	TRIGger Subsystem	
*GMC	Common Command	
GRATicule	DISPlay Subsystem	
HEADer	SYSTem Subsystem	
HFReject	CHANnel Subsystem	
HOLDoff	TRIGger Subsystem	
*IDN	Common Command	
INCLude	SEQuential Subsystem	
INTegrate	FUNCtion Subsystem	
INVerse	DISPlay Subsystem	
INVert	FUNCtion Subsystem	
KEY	SYSTem Subsystem	
LENGth	HARDcopy Subsystem	
LER	Root Level Command	
LEVel	FUNCtion Subsystem	
LEVel	TRIGger Subsystem	

HP 54505B/54506B/54510B/54512B Programming Reference Programming and Documentation Conventions 4-23

Table 4-3. Alphabetic Command Cross-Reference

Command Where Used	
Command	
LFReject	CHANnel Subsystem
LIMittest	MEASure Subsystem
LINE	DISPlay Subsystem
LINE	TRIGger Subsystem
*LMC	Common Command
LOGic	TRIGger Subsystem
LONGform	SYSTem Subsystem
LOWer	MEASure Subsystem
*LRN	Common Command
LTER	Root Level Command
MAGNify	FUNCtion Subsystem
MASK	DISPlay Subsystem
MENU	Root Level Command
MERGe	PMEMory Subsystem
MERGe	Root Level Command
MODE	HARDcopy Subsystem
MODE	MEASure Subsystem
MODE	TIMebase Subsystem
MODE	TRIGger Subsystem
MULTiply	FUNCtion Subsystem
NPOints	SEQuential Subsystem
NSEGments	SEQuential Subsystem
NWIDth	MEASure Subsystem
OCCurrence	TRIGger Subsystem
OCCurrence:SLOPe	TRIGger Subsystem
OCCurrence:SOURce	TRIGger Subsystem
OFFSet	CHANnel Subsystem
OFFSet	FUNCtion Subsystem
ONLY	FUNCtion Subsystem
*OPC	Common Command
*OPT	Common Command
OVERshoot	MEASure Subsystem
PAGE	HARDcopy Subsystem
PATH	TRIGger Subsystem
PEAK	FUNCtion Subsystem
PERiod	MEASure Subsystem
PERSistence	DISPlay Subsystem
PIMacro	SYSTem Subsystem
PLOT	Root Level Command
PLOT:AREA	HARDcopy Subsystem

Programming and Documentation Conventions 4-24

Table 4-3. Alphabetic Command Cross-Reference

Table 4-5. Alphabetic Co			
Command	Where Used		
PLOT:COLor	HARDcopy Subsystem		
PLOT:INITialize	HARDcopy Subsystem		
PLOT:PEN COLor	HARDcopy Subsystem		
*PMC	Common Commands		
POINts	ACQuire Subsystem		
POINts	FUNCtion Subsystem		
POINts	WAVeform Subsystem		
POLarity	TRIGger Subsystem		
POSTfailure	MEASure Subsystem		
PREamble	WAVeform Subsystem		
PREShoot	MEASure Subsystem		
PRINt	Root Level Command		
PROBe	CHANnel Subsystem		
PROBe	TRIGger Subsystem		
PROTect	MEMory Subsystem		
PWIDth	MEASure Subsystem		
QUALify	TRIGger Subsystem		
RANGe	CHANnel Subsystem		
RANGe	FUNCtion Subsystem		
RANGe	TIMebase Subsystem		
*RCL	Common Command		
REFerence	TIMebase Subsystem		
RESults	MEASure Subsystem		
RISetime	MEASure Subsystem		
ROW	DISPlay Subsystem		
*RST	Common Command		
RUN	Root Level Command		
SAMPle	TIMebase Subsystem		
*SAV	Common Command		
SCRatch	MEASure Subsystem		
SCReen	DISPlay Subsystem		
SENSitivity	TRIGger Subsystem		
SERial	Root Level Command		
SETup	CALibrate Subsystem		
SETup	CHANnel Subsystem		
SETup	DISPlay Subsystem		
SETup	FUNCtion Subsystem		
SETup	MARKer Subsystem		
SETup	PMEMory Subsystem		
SETup	SEOuential Subsystem		

HP 54505B/54506B/54510B/54512B Programming Reference Programming and Documentation Conventions
4-25

Table 4-3. Alphabetic Command Cross-Reference

Command	Where Used		
SETup	SYSTem Subsystem		
SETup	TIMebase Subsystem		
SETup	TRIGger Subsystem		
SETup	WMEMory Subsystem		
SLOPe	TRIGger Subsystem		
SPAN	FUNCtion Subsystem		
SNUMber	SEQuential Subsystem		
SOURce	DISPlay Subsystem		
SOURce	MEASure Subsystem		
SOURce	MMEMory Subsystem		
SOURce	SEQuential Subsystem		
SOURce	TRIGger Subsystem		
SOURce	WAVeform Subsystem		
*SRE	Common Command		
STANdard	TRIGger Subsystem		
STATistics	MEASure Subsystem		
STATus	Root Level Command		
*STB	Common Command		
STOP	Root Level Command		
STORe	MMEMory Subsystem		
STORe	Root Level Command		
STRing	DISPlay Subsystem		
SUBTract	FUNCtion Subsystem		
TDELta	MEASure Subsystem		
TER	Root Level Command		
TEXT	DISPlay Subsystem		
TIME	SYSTem Subsystem		
TMARker	DISPlay Subsystem		
TMAX	MEASure Subsystem		
TMIN	MEASure Subsystem		
TNULI	CALibrate Subsystem		
*TRG	Common Command		
*TST	Common Command		
TSTArt	MEASure Subsystem		
TSTOp	MEASure Subsystem		
TTL	CHANnel Subsystem		
TVOLt	MEASure Subsystem		
TYPE	ACQuire Subsystem		
TYPE	WAVeform Subsystem		
UNITs	MEASure Subsystem		

Programming and Documentation Conventions 4-26

Table 4-3. Alphabetic Command Cross-Reference

Command Where Used				
	V. 2010			
UPPer	MEASure Subsystem			
VACRms	MEASure Subsystem			
VAMPlitude	MEASure Subsystem			
VAVerage	MEASure Subsystem			
VBASe	MEASure Subsystem			
VDCRms	MEASure Subsystem			
VDELta	MEASure Subsystem			
VERSus	FUNCtion Subsystem			
VFIFty	MEASure Subsystem			
VIEW	Root Level Command			
VMARker	DISPlay Subsystem			
VMAX	MEASure Subsystem			
VMIN	MEASure Subsystem			
VPP	MEASure Subsystem			
VRELative	MEASure Subsystem			
VRMS	MEASure Subsystem			
VSTArt	MEASure Subsystem			
VSTOp	MEASure Subsystem			
VTIMe	MEASure Subsystem			
VTOP	MEASure Subsystem			
*WAI	Common Command			
WCOMpare	MEASure Subsystem			
WCOMpare:WTESt	MEASure Subsystem			
WCOMpare:COMPare	MEASure Subsystem			
WCOMpare:ALLowance	MEASure Subsystem			
WCOMpare:DESTination	MEASure Subsystem			
WCOMpare:POSTfailure	MEASure Subsystem			
WINDow	FUNCtion Subsystem			
XDELta	MARKer Subsystem			
XINCrement	WAVeform Subsystem			
XOFFset	WMEMory Subsystem			
XORigin	WAVeform Subsystem			
XRANge	WMEMory Subsystem			
XREFerence	WAVeform Subsystem			
X1Position	MARKer Subsystem			
X1Y1source	MARKer Subsystem			
X2Position	MARKer Subsystem			
X2Y2source	MARKer Subsystem			
YDELta	MARKer Subsystem			
YINCrement	WAVeform Subsystem			

HP 54505B/54506B/54510B/54512B Programming Reference Programming and Documentation Conventions 4-27

Table 4-3. Alphabetic Command Cross-Reference

Command	Where Used
YOFFset YORigin YRANge YREFerence Y1Position	WMEMory Subsystem WAVeform Subsystem WMEMory Subsystem WAVeform Subsystem MARKer Subsystem
Y2Position YREFerence	MARKer Subsystem WAVeform Subsystem

Introduction

This chapter contains example programs using the command set for the HP 54505B, HP 54506B, HP 54510B, and HP 54512B. In general, the programs use the long form of the command with alpha (as opposed to numeric) arguments. Each command has a separate output statement for clarity. To optimize speed, switch to the concatenated short form numerics.

Throughout these examples, the oscilloscope is assumed to be at address 7, the hardcopy devices at address 1. The HP-IB system bus address is assumed to be at 7, and the national interface address is derived using the IBDEV command. The input signal used is the AC CAL signal from the rear panel of the instrument. This signal is connected to channel 1 through a coaxial cable (or 1:1 probe).

The programs are categorized by programming language used, and by the interface module used. Examples in the three different platforms are shown:

- HP BASIC 5.0 running on an HP Series 200/300 controller.
- Microsoft QuickBASIC 4.5 running on IBM PC or compatibles.
- Microsoft QuickC 2.5 running on IBM PC or compatibles.

Two 3.5 inch floppy disks are included with this manual, one in DOS format for the PC environment, and one in LIF format for the HP Series 200/300 controller environment.

- The DOS disk contains all the Microsoft QuickBASIC and Microsoft QuickC programs as well as copies of the HP-BASIC programs (HP-BASIC will not execute on DOS).
- The LIF disk contains only the HP-BASIC programs.

The sample programs are stored on the DOS disk in the following sample directories:

• HP-BASIC contains examples on HP BASIC 5.0 running on an HP Series 200/300 controller.

- QB-HPIB contains examples on Microsoft QuickBASIC 4.5 running on IBM PC or compatibles using the HP 82335A HP-IB interface module.
- QB-NI contains examples on Microsoft QuickBASIC 4.5 running on IBM PC or compatibles using the National Instruments PCII or PCIIA IEEE 488.2 interface module.
- QC-HPIB contains examples on Microsoft QuickC 2.5 running on IBM PC or compatibles using the HP 82335A HP-IB interface module.
- QC-NI contains examples on Microsoft QuickC 2.5 running on IBM PC or compatibles using the National Instruments PCII or PCIIA IEEE 488.2 interface module.

To use the QuickBASIC and QuickC programs on the HP-IB interface, you must have the HP 82335A HP-IB Command Library installed in your PC. See the manual for HP 82335A for information on how to use the library with QuickBASIC and QuickC.

There are more example files contained on the diskette. In each sub-directory, there is a text file called README. It contains the latest information concerning the example files.

Order of Commands

The order of the commands in a program may be critical to the task you are trying to accomplish. If your commands do not follow the proper order, later commands may cancel out earlier commands and conditions you thought were setup are no longer valid. Table 5-1 lists the order of some commonly used commands in the TIMebase, CHANnel, TRIGger, ACQuire, and WAVeform subsystems. For more information, refer to the specific commands in this manual.

To use the table, select the appropriate commands you need from one subsystem at a time, working from top to bottom. Then move to the next subsystem, working from left to right. It is not necessary to use all of the commands, but the order in which you use the commands is critical.

Example Programs 5-2

Table 5-1. Order of Commands

	First	Second	Third	Fourth	Fifth
Subsystem:	:TIMebase	:CHANnel {1 2 3 4}	:TRIGger	:ACQuire	:WAVeform
First	:MODE AUTO TRIGgered SINGle	:PROBe (ratio to one: .9 - 1000)	:MODE EDGE PATTern STATe DELay GLITch TV	:TYPE NORMal AVERage ENVelope RAWData (len,acq,type)	:FORMat ASCii WORD BYTE COMPressed
Second	:SAMPling REALtime REPetitive	:RANGe (Volts/screen)	:SOURce CHANnel1 CHANnel2 CHANnel3 CHANnel4 EXTernal	:COMPlete (0 to 100%)	:SOURce CHANnel1 CHANnel2 CHANnel3 CHANnel4 WAVeform1 WAVeform2 WAVeform3
Third	:REFerence LEFT CENTer RIGHt	:OFFSet (Volts @ center screen)	:LEVel (trigger@Volts)	:POINts (500/8000)	
Fourth	:RANGe (s/screen)	:COUPling AC DC DCFifty	:SLOPe POSitive NEGative	:COUNt (1 - 2048)	
Fifth	:DELay (delay value)				

HP Basic Initialize Program

This sample program demonstrates how to initialize the interface and oscilloscope, digitize the input signal (in this case channel 1), then measure frequency and print the result. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable.

```
HP Basic program
      !INIT
10
20
      !MAIN PROGRAM
30
40
      CLEAR SCREEN
50
      PRINT "This example program will perform the following tasks:"
60
      PRINT "
                      a. initialize the interface and scope"
70
      PRINT "
                      b. digitize signal
80
                      c. measure and print the frequency
      PRINT "
90
100
      PRINT
      PRINT "The program assumes the system is configured as:"
110
      PRINT "
                      HP-IB address = 7"
120
      PRINT "
                      scope address = 7"
130
      PRINT "
                      signal attached to channel 1"
140
150
      PRINT
      PRINT "If the addresses are not correct for your configuration, change"
160
      PRINT "the ASSIGN statements in the Initialize function."
170
180
      PRINT
      PRINT "Press Continue when ready to start program, or Shitf/Break to terminate."
190
200
      PAUSE
                                          !initialize interface and scope
210
      GOSUB Initialize
                                          !digitize signal
      GOSUB Get waveform
220
                                          !measure and print frequency
      GOSUB Measure
230
240
      STOP
250
      !INITIALIZE INTERFACE AND SCOPE
260
270
280 Initialize:
                                          !scope address
290 ASSIGN @Scope TO 707
                                           !HP-IB address
      ASSIGN @Isc TO 7
300
                                           !clear HPIB interface
310
      CLEAR @Isc
                                           !set scope to default config
      OUTPUT @Scope; "*RST"
320
      OUTPUT @Scope;":AUTOSCALE"
OUTPUT @Scope;":SYST:HEADER OFF"
                                          ! AUTOSCALE
330
                                          !turn headers off
340
                                           !clear screen
      CLEAR SCREEN
350
360
      RETURN
370
         !DIGITIZE waveform to acquire data and stop scope for further
380
         !measurement. Measurement is NOT displayed on front panel.
390
```

Example Programs 5-4

```
400 !
410 Get waveform:
420 OUTPUT @Scope;":WAVEFORM:SOURCE CHAN1" !set source to channel 1
430 OUTPUT @Scope;":DIGITIZE CHAN1" !macro to acquire data &
                                                       !macro to acquire data & stop
440 RETURN
       !
450
         !have scope to a frequency measurement and read results into
460
470
         !controller.
480
         !
490 Measure:
500 OUTPUT @Scope;":MEASURE:FREQUENCY?"
                                                       !FREQUENCY query
510 ENTER @Scope: Value
                                                       !read from scope
520 PRINT "FREQUENCY = ";Value;"Hz"
521 OUTPUT @Scope;":MEAS:VPP?"
522 ENTER @Scope;Value
                                                       !Vpp query
523 PRINT "Vpp = "; Value; "V"
530 RETURN
540
      END
```

HP Basic Digitize Program

This sample program demonstrates how to initialize the interface and oscilloscope, digitize and acquire the input data (in this case channel 1), then store the acquired data on disk. The stored data is then retrieved and the input signal is displayed on the computer screen. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable.

```
!DIG
10
                      HP Basic program
20
      1
      !MAIN PROGRAM
30
40
                                         !array for preamble information
      REAL Preamble(1:10)
50
60
70
      CLEAR SCREEN
      PRINT "This example program will perform the following tasks:"
80
      PRINT "
                           a. initialize interface and scope"
90
      PRINT "
                           b. digitize and acquire data"
100
      PRINT "
                           c. store data to disk"
110
                           d. retrieve data from disk"
      PRINT "
120
      PRINT "
130
                           e. draw signal on computer"
140
      PRINT
      PRINT "This program assumes the system is configured as:"
150
      PRINT "
160
                 HP-IB address = 7"
      PRINT "
                 scope address = 7"
170
      PRINT "
180
                 signal attached to channel 1"
190
      PRINT
      PRINT "If the addresses are not correct, change the ASSIGN "
200
      PRINT "statements in the Initialize function."
210
220
      PRINT
      PRINT "Press Continue when ready to start"
230
240
      PAUSE
                                          !initialize interface and scope
250
      GOSUB Initialize
                                          !dig & acquire signal
260
      GOSUB Get_waveform
270
      GOSUB Save_waveform
                                          !store to disk
280
290
      CLEAR SCREEN
300
      PRINT "The waveform data and preamble information have now been"
      PRINT "read from the scope and stored in the computer's disk."
310
      PRINT "This information will now be retrieved from the disk, and"
320
      PRINT "will be used to plot the waveform, calculate and plot the"
330
340
      PRINT "integral, as well as calculate scaling information."
      PRINT "Press CONTINUE to continue."
350
360
     PAUSE
                                          !retrieve from disk
370
      GOSUB Retrieve_wave
380
      GOSUB Graph
                                          !draw waveform
```

Example Programs 5-6

```
390 STOP
400
410
    !INITIALIZE INTERFACE AND SCOPE
420 Initialize:
430 PRINT "INITIALIZE"
                                          !Interface Select Code = 7
     ASSIGN @Isc TO 7
                                          !scope address
450
     ASSIGN @Scope TO 707
                                          !clear HP-IB interface
460
     CLEAR @Isc
     OUTPUT @Scope;"*RST"
                                          !set scope to default config
470
      OUTPUT @Scope:":AUTOSCALE"
                                          !AUTOSCALE
480
      OUTPUT @Scope:":system:header off" !turn headers off
490
500
        !the following 4 commands are the default configuration setting
510
        !that the RST sets up; but, they are included here for clarity and
520
        !completeness. This ensures scope is configured for DIGITIZE, if
530
540
        !*RST was not done.
550
      OUTPUT @Scope;":WAVEFORM:SOURCE CHAN1"
                                               !set source to channel 1
560
      OUTPUT @Scope;":ACQUIRE:TYPE NORMAL"
                                               !set to normal acquisition mode
570
      OUTPUT @Scope;":ACQUIRE:COMPLETE 100"
                                               !set complete criteria
                                               !set # of pts to 4000
      OUTPUT @Scope:":ACQUIRE:POINTS 500"
600
       !
                                               !acquired data in word format
      OUTPUT @Scope;":WAVEFORM:FORMAT COMP"
610
620
      CLEAR SCREEN
630
      RETURN
640 !
650
      !complete scope configuration; DIGITIZE and acquire waveform data
660
      !and preamble (voltage/timing) information into computer.
670
680
690 Get waveform:
700 OUTPUT @Scope;":DIGITIZE CHAN1"
710 OUTPUT @Scope;":WAVEFORM:DATA?"
                                                !macro to acquire data & stop
                                                !query scope for data
                                                !strip off header & size
      ENTER @Scope USING "#,1A,";One_char$
720
      IF One char$="#" THEN Found_pound
730
      PRINT "BAD DATA"
740
750
      STOP
                      !read record length from header
760 Found pound:
      ENTER @Scope USING "#,1D";Digits
                                                !get length of record
      ENTER @Scope USING "#,"&VAL$(Digits)&"D";Length
780
      PRINT "reading ";Length;" bytes from scope"
790
800
      !allocate an array for the waveform data. After the array has been
810
      !read in, one extra byte read is done to input the line feed (10)
820
830
      !attached to the end of the scope's output buffer.
840
850 ALLOCATE INTEGER Waveform(1:Length)
      ENTER @Scope USING "#,B";Waveform(*)
ENTER @Scope USING "-K,B";End$
                                                !read waveform information
860
                                                !get last byte (line feed)
```

HP 54505B/54506B/54510B/54512B Programming Reference

```
!query for preamble
880 OUTPUT @Scope;":WAVEFORM:PREAMBLE?"
                                             !read preamble information
890 ENTER @Scope; Preamble(*)
900 RETURN
910
     Ţ
920
930
      !plot waveform data to display
    !
940
950 Graph:
                                             !initialize graphics
960 GCLEAR
970 CLEAR SCREEN
980 GINIT
990 GRAPHICS ON
1000 VIEWPORT 0,130,35,100
1010 WINDOW 1, Preamble(3), 0, 255
1020 FRAME
1030 PEN 4
1040 MOVE 0.0
1050 FOR I=1 TO Preamble(3)
                                            !plot data points
1060
      MOVE I, Waveform(I)
1070
       DRAW I, Waveform(I)
1080 NEXT I
1090 Srange=Preamble(3)*Preamble(5)/10
1100 Vrange=256*Preamble(8)
1110 Offset=(128-Preamble(10))*Preamble(8)+Preamble(9)
1120 PRINT TABXY(0,18), "Vertical="; Vrange/8;" V/div"; TAB(50), "Offset = "; Offset; "V"
1130 PRINT TABXY(0,19), "Time="; Srange; s/div"
1140 RETURN
1150
        !save waveform data and preamble information to computer disk
1160
1170
1180 Save_waveform:
1190 ON ERROR GOTO 1210
1200 PURGE "WAVESAMPLE"
1210 OFF ERROR
1220 CREATE BDAT "WAVESAMPLE",1,4080
1230 ASSIGN @Path TO "WAVESAMPLE"
1240 OUTPUT @Path; Waveform(*), Preamble(*)
1250 RETURN
1260 !
1270 I retrieve waveform data and preamble infromation from disk 1280 !
1290 Retrieve wave:
1300 ASSIGN @Path TO "WAVESAMPLE"
1310 ENTER @Path; Waveform(*), Preamble(*)
1320 RETURN
1330 END
```

Microsoft QuickBASIC Initialize **Program**

This sample program demonstrates how to initialize the interface and oscilloscope, digitize the input signal (in this case channel 1), then measure frequency and print the results. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable, and that the HP 82335A HP-IB interface module is being used.

```
DECLARE SUB get.waveform ()
DECLARE SUB measure ()
DECLARE SUB Initialize ()
DECLARE SUB send (cmd$)
'Filename : \QB-HPIB\INIT.bas
REM $INCLUDE: 'c:\hpib\qbsetup'
DIM SHARED isc&, scope&
CLS
                                           'clear screen
PRINT "This example program will perform the following tasks:"
PRINT "

    a. initialize the interface and scope"

PRINT "
                b. digitize signal"
               c. measure and print the frequency"
PRINT "
PRINT
PRINT "The sample program assumes the following address settings:"
PRINT "
            HP-IB interface select code = 7"
PRINT "
            scope address = 707"
PRINT "Set these variables as needed for your system."
PRINT "PRESS: 1 TO CONTINUE"
PRINT "
            2 TO TERMINATE"
PRINT "?";
BEEP
LINE INPUT cmd$
IF cmd$ = "2" THEN
                       SYSTEM
isc& = 7
                                        'HP-IB interface select code
scope& = 707
                                        'isc& *100 + scope address
                                        'initialize interface and scope
CALL Initialize
                                        'tell scope to acquire data
CALL get.waveform
                                        'measure frequency of input signal
CALL measure
END
SUB get.waveform
                                              'tell scope to acquire data
  send (":digitize channell")
END SUB
```

HP 54505B/54506B/54510B/54512B **Programming Reference**

Example Programs

5-9

```
SUB Initialize
SHARED pcib.err, pcib.baserr, noerr
  CALL ioreset(isc&)
                                               'set interface to start-up state
  IF pcib.err noerr THEN ERROR pcib.baserr 'check for error
  timeout! = 10!
  CALL iotimeout(isc&, timeout!)
                                           'set timeout to 10 seconds
  IF pcib.err noerr THEN ERROR pcib.baserr 'check for error
                                               'clear devices attached to the interfaces to known
  CALL ioclear(isc&)
state
  IF pcib.err noerr THEN ERROR pcib.baserr 'check for error
  CLS
   send ("*cls")
                                                'clear status registers
  send ("*RST")
send (":autoscale")
                                               'reset the scope
                                               'autoscale the input signal
                                               'turn headers off
  send (":system:header off")
  'The following acquire subsystem commands are used to specify
  'the acquisition mode, percent completion, and number of points
  'for the DIGITIZE. These are the defaults set by the *RST, but
  'are included here to stress the fact that you can control them.
  send (":acquire:type normal")
send (":acquire:complete 100")
                                               'normal acquisition mode
                                             '100% completion criteria
  send (":acquire:points 500")
                                              "500 points acquired
                                               'clear PC screen
  CLS
END SUB
SUB measure
SHARED pcib.err, pcib.baserr, noerr
  send (":measure:frequency?")
                                               'Query for result of frequency mesurement
  CALL ioenter(scope&, freq!)
                                               'Get the number from the scope
  IF pcib.err noerr THEN ERROR pcib.baserr 'Check if any error occur
  PRINT "Frequency = "; freq!; " Hz"
                                               'Print out the result
  send (":measure:vpp?")
                                               'query for result of Vpp
  CALL icenter(scope&, vpp!)
                                               'get result from scope
  IF pcib.err noerr THEN ERROR pcib.baserr
 PRINT "Vpp = "; vpp!; " V"
END SUB
SUB send (cmd$)
SHARED pcib.err, pcib.baserr, noerr
 CALL iooutputs(scope&, cmd$, LEN(cmd$))
                                             'send command to scope
  IF pcib.err noerr THEN ERROR pcib.baserr 'check for any error
END SUB
```

Microsoft QuickBASIC Digitize Program

This sample program demonstrates how to initialize the interface and oscilloscope, digitize and acquire the input data (in this case channel 1), then perform a Vpp and frequency measurement. The waveform is also stored on disk. The stored waveform is then retrieved and displayed on the computer screen. Then the integral is calculated and displayed on the computer screen. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable, and that the HP 82335A HP-IB interface module is being used.

```
DECLARE SUB initialize ()
DECLARE SUB capture.waveform ()
DECLARE SUB measure ()
DECLARE SUB get.waveform ()
DECLARE SUB save.waveform ()
DECLARE SUB retrieve.waveform ()
DECLARE SUB graph ()
DECLARE SUB integrate ()
DECLARE SUB send (cmd$)
'Filename : \QB-HPIB\DIGI.bas
REM $INCLUDE: 'c:\hpib\qbsetup'
DIM SHARED preamble!(10)
                                    'preamble data array
DIM SHARED waveform%(8000)
                                    'waveform data array
DIM SHARED scope&, isc&
                                    'scope/hpib address variable
'MAIN PROGRAM
CLS
                                    'clear screen
PRINT "This sample program will perform the following tasks:"
PRINT "
             a. initialize the HP-IB interface and scope"
PRINT "
             b. digitize the signal"
PRINT "
             c. do a Vpp and frequency"
PRINT "
             d. transfer waveform data to PC"
PRINT "
             e. store waveform data on PC disk"
PRINT "
             f. retrieve waveform data from PC disk"
             g. draw signal on PC display"
PRINT "
PRINT "
             h. calculate and display integral"
PRINT
PRINT "The sample program assumes the following address settings:"
PRINT "
           HP-IB interface select code = 7"
```

HP 54505B/54506B/54510B/54512B Programming Reference

```
PRINT "
           scope address = 7"
PRINT "Set these variables as needed for your system."
PRINT
PRINT "PRESS: 1 to CONTINUE "
PRINT " 2 to TERMINATE"
BEEP
PRINT "?":
LINE INPUT cmd$
IF cmd$ = "2" THEN SYSTEM
isc\& = 7
                                   'HP-IB Interface Select Code
                                   'isc& * 100 + scope address
scope& = 707
                                    'initialize interface & scope
CALL initialize
                                    'digitize signal
CALL capture.waveform
CALL measure
                                   'do Vpp and Frequency measurement
                                   'bring waveform & preamble into computer
CALL get.waveform
CALL save.waveform
                                   'store preamble & waveform to disk
                                   'retrieve preamble & waveform from disk
CALL retrieve.waveform
                                   'plot waveform data & scaling info
CALL graph
CALL integrate
                                    'calculate & plot integral
END
SUB capture.waveform
send (":digitize channell")
                                     'capture data for channel 1
END SUB
SUB get.waveform SHARED PCIB.ERR, PCIB.BASERR, NOERR
send (":waveform:format word")
                                     '16 bit word format
send (":waveform:preamble?")
                                   'query for config information
max.len\% = 10
actual.len% = 0
CALL ioentera(scope&, SEG preamble!(1), max.len%, actual.len%)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
send (":waveform:data?")
                                     'query for waveform data
                                     'max size of data block
max.len\% = 8000
actual.len\% = 0
CALL ioenterab(scope&, SEG waveform%(1), max.len%, actual.len%, 2)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
                                     'get new line char at end of data block
\max.len\% = 1
actual.len\% = 0
msg$ = SPACE$(max.len%)
                                     'allocate the space
CALL ioenters(scope&, msg$, max.len%, actual.len%)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
END SUB
```

```
SUB graph
SCREEN 9
                                             'set screen mode to EGA 64k
                                            '640 x 350 x 16
VIEW (1, 1)-(500, 256), , 15
                                             'set viewport and draw the border
WINDOW (0, 0)-(10, 8)
                                             'prepare to draw the grid
COLOR 8
                                             'set color
FOR i\% = 1 TO 9
 LINE (i%, 0)-(i%, 8)
NEXT i%
FOR i\% = 1 \text{ TO } 7
 LINE (0, i%)-(10, i%)
NEXT i%
WINDOW (1, 0)-(preamble!(3), 32767)
                                           'use window to set coordinates
COLOR 10
FOR i\% = 1 TO preamble!(3)
 PSET (i%, waveform%(i%))
                                           'draw data point
NEXT i%
WIDTH 80, 25
VIEW PRINT 20 TO 24
send (":chan1:range?")
                                            'query scope for vertical sensitivity
CALL ioenter(scope&, vrange!)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
LOCATE 20, 1
PRINT vrange! / 8; " V/div"
send (":chan1:offset?")
CALL ioenter(scope&, offset!)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
PRINT "Offset = "; offset!; " V"
send (":timebase:range?")
CALL ioenter(scope&, trange!)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
LOCATE 20, 41
PRINT trange! / 10; " S/div"
send (":timebase:delay?")
CALL ioenter(scope&, delay!)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
LOCATE 21, 41
PRINT " Delay = "; delay!; " S"
PRINT "press a key to see the integral of the signal plotted"
LINE INPUT dummy$
END SUB
SUB initialize
SHARED PCIB.ERR, PCIB.BASERR, NOERR
CLS
                                   'reset HP-IB interface
CALL ioreset(isc&)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
```

HP 54505B/54506B/54510B/54512B Programming Reference

```
timeout.val! = 10!
CALL iotimeout(isc&, timeout.val!) 'set timeout to 10 second
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
                                    'clear interface & scope
CALL ioclear(isc&)
IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
send ("*c1s")
                                    'clear status registers
send ("*rst")
                                    'reset scope to default configuration
send (":autoscale")
                                    'perform autoscale to find signal
send (":system:header off")
                                   'for 54500: turn headers off
                                   'acquisition type normal (default)
send (":acquire:type normal")
send (":acquire:points 500")
                                  'set number of points to 500
send (":waveform:source channell") 'source of data is channel 1 (default)
END SUB
SUB integrate
DIM math!(preamble(3))
                                            'define integral array
                                            'initialize for summation
math!(0) = 0
FOR i\% = 1 TO preamble!(3)
  math!(i\%) = math!(i\% - 1) + (waveform\%(i\%) - preamble!(10)) * preamble!(8) + preamble!(9)
NEXT i%
max! = math!(1)
min! = math!(1)
FOR i\% = 1 TO preamble!(3)
  IF math!(i%) max! THEN max! = math!(i%)
  IF math!(i%) min! THEN min! = math!(i%)
NEXT i%
WINDOW (1, min!)-(preamble!(3), max!)
                                            'set up proper scale
COLOR 12
FOR i% = 1 TO preamble!(3)
 PSET (i%, math!(i%))
NEXT i%
BEEP
END SUB
SUB measure
SHARED PCIB.ERR, PCIB.BASERR, NOERR
 send (":measure:vpp?")
                                            'query scope for Vpp
CALL ioenter(scope&, vpp.value!)
                                           'input Vpp
 IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
 send (":measure:frequency?")
                                            'query scope for frequency
CALL ioenter(scope&, frequency!)
                                            'input frequency
 IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
 PRINT "Vpp = "; vpp.value!
                                            'print Vpp
PRINT "frequency = "; frequency; " Hz"
                                           'print frequency
```

```
PRINT
BEEP
                                           'read keypad
INPUT "PRESS Enter TO CONTINUE:", a$
END SUB
SUB retrieve.waveform
OPEN "wave.dat" FOR BINARY AS #2
FOR count% = 1 TO 10
  GET #2, , preamble!(count%)
NEXT count%
FOR count% = 1 TO preamble!(3)
  GET #2, , waveform%(count%)
NEXT count%
CLOSE #2
END SUB
SUB save.waveform
OPEN "wave.dat" FOR BINARY AS #2
 FOR count% = 1 TO 10
  PUT #2, , preamble!(count%)
 NEXT count%
 FOR count% = 1 TO preamble!(3)
 PUT #2, , waveform%(count%)
NEXT count%
 CLOSE #2
END SUB
SUB send (cmd$)
SHARED PCIB.ERR, PCIB.BASERR, NOERR
 CALL iooutputs(scope&, cmd$, LEN(cmd$))
 IF PCIB.ERR NOERR THEN ERROR PCIB.BASERR
END SUB
```

Microsoft QuickBASIC Initialize Program

This sample program demonstrates how to initialize the interface and oscilloscope, digitize the input signal (in this case channel 1), then measure frequency and Vpp and print the results. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable, and that the National Instruments PCII or PCIIA IEEE 488.2 interface module is being used.

```
DECLARE SUB measure ()
DECLARE SUB digitize ()
DECLARE SUB GPIBERR (MSG$)
DECLARE SUB initialize ()
DECLARE SUB send.to.scope (CMD$)
'Filename : \QB-NI\INIT.BAS
REM $INCLUDE: 'C:\GPIB-PC\QBDECL.BAS'
DIM SHARED scope%
                                   'scope address variable
'MAIN PROGRAM
                                  'initialize interface & scope
CALL initialize
CALL digitize
                                  'have scope acquire a signal
                                  'find Vpp and Frequency
CALL measure
CALL IBLOC(scope%)
IF (IBSTA% AND EERR) THEN CALL GPIBERR("IBLOC ERROR")
CALL IBONL(scope%, 0)
IF (IBSTA% AND EERR) THEN CALL GPIBERR("IBONL ERROR")
END
SUB digitize
                                              'tell scope to acquire data
send.to.scope (":digitize channell")
END SUB
SUB GPIBERR (MSG$) STATIC
PRINT MSG$
PRINT "IBSTA=&H"; HEX$(IBSTA%); "< ";
IF IBSTA% AND EERR THEN PRINT " ERR";
IF IBSTA% AND TIMO THEN PRINT " TIMO";
IF IBSTA% AND EEND THEN PRINT " END";
IF IBSTA% AND SRQI THEN PRINT " SRQI";
IF IBSTA% AND RQS THEN PRINT " RQS";
IF IBSTA% AND CMPL THEN PRINT " CMPL";
IF IBSTA% AND LOK THEN PRINT " LOK";
```

Example Programs 5-16

```
IF IBSTA% AND RREM THEN PRINT " REM";
IF IBSTA% AND CIC THEN PRINT " CIC":
IF IBSTA% AND AATN THEN PRINT " ATN";
IF IBSTA% AND TACS THEN PRINT " TACS";
IF IBSTA% AND LACS THEN PRINT " LACS":
IF IBSTA% AND DTAS THEN PRINT " DTAS";
IF IBSTA% AND DCAS THEN PRINT " DCAS";
PRINT "> "
PRINT "IBERR="; IBERR%;
IF IBERR% = EDVR THEN PRINT " EDVR <DOS Error>"
IF IBERR% = ECIC THEN PRINT " <Not CIC>"
IF IBERR% = ENOL THEN PRINT " ENOL <No Listener>"
IF IBERR% = EADR THEN PRINT " EADR <Address error>"
IF IBERR% = EARG THEN PRINT " EARG <Invalid argument>"
IF IBERR% = ESAC THEN PRINT " ESAC <Not Sys Ctrlr>"
IF IBERR% = EABO THEN PRINT " EABO <Op. aborted>"
IF IBERR% = ENEB THEN PRINT " ENEB <No GPIB board>"
IF IBERR% = EOIP THEN PRINT " EOIP <Async I/O in prg>"
IF IBERR% = ECAP THEN PRINT " ECAP <No capability>"
IF IBERR% = EFSO THEN PRINT " EFSO <File sys. error>"
IF IBERR% = EBUS THEN PRINT " EBUS <Command error>"
IF IBERR% = ESTB THEN PRINT " ESTB <Status byte lost>"
IF IBERR% = ESRQ THEN PRINT " ESRQ <SRQ stuck on>"
IF IBERR% = ETAB THEN PRINT " ETAB <Table Overflow>"
PRINT "IBCNT="; IBCNT%
' Call the IBONL function to disable the device DVM.
CALL IBONL (DVM%, 0)
STOP
END SUB
SUB initialize
DIM reading AS STRING * 30
CLS
'use ibdev or ibfind to set scope address
     'gpib card = 0
    'scope = 7
     'secondary address = don't care
     'timeout = 3 implies 3 s wait; see IBTIMEOUT FOR VALUES
'end of message enabled = 1 'end of string mode disabled = 0
     'name of scope = scope%
CALL IBDEV(0, 7, 0, 12, 1, 0, scope%)
CALL IBCLR(scope%)
                                     'reset scope to default configuration
send.to.scope ("*rst")
send.to.scope ("*cls")
                                     'clear status registers
                                     'perform autoscale to find signal
send.to.scope (":autoscale")
'The following 3 commands are added for clarity and completeness
 'but are the default values set by the *RST command.
```

```
send.to.scope (":acquire:points 500")
                                               'set # of points to 500
send.to.scope (":acquire:type normal")
send.to.scope (":acquire:complete 100")
                                               'normal acquisition mode
                                          'completion criteria set
PRINT "scope is initialized. Press enter to continue"
LINE INPUT dummy$
END SUB
SUB measure
CLS
send.to.scope (":MEAS:VPP?")
                                      'vpp query
reading$ = SPACE$(100)
CALL ibrd(scope%, reading$)
IF (IBSTA% AND EERR) THEN CALL GPIBERR("read of vpp ERROR")
vpp = VAL(reading$)
                                      'convert string
PRINT "vpp = "; vpp; " V"
send.to.scope (":MEAS:FREQ?")
                                       'vpp query
CALL ibrd(scope%, reading$)
 IF (IBSTA% AND EERR) THEN CALL GPIBERR("read of freq ERROR")
freq = VAL(reading$)
                                       'convert string
PRINT "freq = "; freq; " Hz"
PRINT
END SUB
SUB send.to.scope (CMD$)
CALL IBWRT(scope%, CMD$)
 IF (IBSTA% AND EERR) THEN CALL GPIBERR("send.to.scope ERROR")
END SUB
```

Microsoft QuickC Initialize Program

This sample program demonstrates how to initialize the interface and oscilloscope, digitize the input signal (in this case channel 1), then measure frequency and Vpp and print the results. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable, and that the HP 82335A HP-IB interface module is being used.

```
#include "c:\hpib\chpib.h"
#include "c:\hpib\cfunc.h"
#include <stdio.h>
#include <graph.h>
send (char *cmd);
initialize();
get waveform();
measure();
/*Filename : \QC-HPIB\INIT.C
*/
                                      /* select code of HP-IB interface */
#define ISC
#define SCOPE
                                      /* isc*100 + scope address */
main()
 char ch;
 _clearscreen(_GCLEARSCREEN);
                                           /* clear screen of PC
  printf ("This example program will perform the following tasks:\n");
 printf ("

    initialize the interface and scope\n");

  printf ("
               digitize the signal\n");
  printf ("
              measure and print the frequency and VPP\n");
 printf ("The sample program assumes the following address settings:\n");
 printf ("
             HP-IB interface select code = 7\n");
  printf ("
               scope address = 7\n");
 printf ("Set these constants in the define statements for your system\n");
 printf ("PRESS Enter TO CONTINUE OR Ctrl C TO TERMINATE\n\n");
 ch = getch();
                                     /* initialization of interface & scope
  initialize();
  get_waveform();
                                     /* tell scope to get waveform */
 measure();
                                     /* make measurement and print result
error handler(int error, char *routine)
```

HP 54505B/54506B/54510B/54512B Programming Reference

```
char
        ch;
if (error != NOERR)
     printf("Error in call to %s \n", routine);
     printf("%d %s \n", error, errstr(error));
     printf("Press Enter to continue: ");
     scanf ("%c", &ch);
}
initialize()
{
  char ch;
  error_handler(IORESET(ISC), "ioreset");
                                                    /* reset interface */
  error_handler(IOTIMEOUT(ISC, (double)10), "iotimeout"); /* timeout */
  error_handler(IOCLEAR(ISC), "ioclear");
                                               /* clear interface */
  send ("*RST");
send ("*CLS");
                                              /* reset scope to default */
                                             /* clear status registers */
  send (":autoscale");
send (":system:header off");
                                             /* autoscale input signal */
                                             /* turn headers off
                                             /* clear screen of PC
  _clearscreen(_GCLEARSCREEN);
get_waveform()
  send (":digitize channell");
measure()
 float
               freq, vpp;
   send (":measure:frequency?");
                                                     /* query frequency of input signal */
 error_handler(IOENTER(SCOPE, &freq), "ioenter"); /* get the freq. from scope */
                                                     /* noted that freq must be passed by ref */
 printf ("Frequency = %e Hz \n", freq);
                                                    /* print it out */
 send (":measure:vpp?");
                                                    /* query Vpp of input signal */
 error_handler(IOENTER(SCOPE,&vpp), "ioenter");
                                                    /* get vpp from scope */
 printf ("Vpp = %f V \n", vpp);
                                                    /* print Vpp */ }
send(char *cmd)
\{ /* this subroutine send the char string pointed by cmd to scope */
  error_handler(IOOUTPUTS(SCOPE, cmd, strlen(cmd)), cmd);
```

Microsoft QuickC Digitize Program

This sample program demonstrates how to initialize the interface and oscilloscope, digitize and acquire the input data (in this case channel 1), then perform a Vpp and frequency measurement. The waveform is also stored on disk. The stored waveform is then retrieved and displayed on the computer screen. Then the integral is calculated and displayed on the computer screen. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable, and that the HP 82335A HP-IB interface module is being used.

```
#include "c:\hpib\chpib.h"
#include "c:\hpib\cfunc.h"
#include stdio.h
#include <graph.h>
initialize();
get_waveform();
save waveform();
retrieve waveform();
graph_waveform();
integrate_waveform();
send (char *cmd);
 Filename : \QUICK_C\DIGI.C
#define ISC
                                 /* select code of HP-IB interface */
                7L
                707L
                                 /* isc*100 + scope address */
#define SCOPE
#define TRUE
                1
                                       /* array to hold the preamble data */
                preamble[10];
float
                                       /* array to hold the waveform data */
                waveform[8000];
unsigned char
                                       /*array for integral calculation*/
                math[8001];
float
void main()
  char ch;
  clearscreen ( GCLEARSCREEN);
                                     /* clear PC's screen */
  printf ("This sample program will perform the following tasks:\n");

 a. initialize the HP-IB interface and scope\n");

  printf ("
               b. digitize the signal\n");
  printf ("
               c. do a Vpp and Frequency measurement on the signal\n");d. transfer waveform data to PC\n");
  printf ("
  printf ("
  printf ("
               e. store waveform data on PC file\n");
  printf ("
               f. retrieve waveform data from PC file\n");
  printf ("
               q. draw signal of PC display\n");
```

HP 54505B/54506B/54510B/54512B Programming Reference

```
printf ("
               h. calculate and display integral\n\n");
  printf ("The sample program assumes the following address settings:\n");
  printf ("
               HP-IB interface select code = 7\n");
  printf ("
               scope address = 7\n");
  printf ("Set these constants as needed for your system.\n\n");
  printf ("PRESS Enter TO CONTINUE OR Ctrl C TO TERMINATE\n\n");
  ch = getch();
                                          /* initialize scope and interface */
  initialize();
                                          /* digitize signal
  capture_waveform();
  measure();
                                          /* measure Vpp and Freq
                                          /^{\star} get the waveform from scope /^{\star} save the waveform to a file
  get waveform();
  save_waveform();
                                          /* retrieve the waveform from file*/
  retrieve waveform();
                                          /* display the data
  graph_waveform();
                                          /* integrate the waveform and display it */
  integrate_waveform();
  _settextcolor (15); }
error_handler(int error, char *routine)
 char
  if (error != NOERR) {
                                           /* check for errors */
     printf("Error in call to %s \n", routine); /*print error info */
     printf("%d %s \n", error, errstr(error));
     printf("Press Enter to continue: ");
     printf ("%c", ch = getchar());
                                                 /* wait for enter key */
 }
}
initialize()
{
 char ch:
 error_handler(IORESET(ISC),"ioreset");
                                               /* reset HP-IB interface
 error_handler(IOTIMEOUT(ISC.(double)10),"iotimeout"); /* 10 s timeout
 error_handler(IOCLEAR(ISC),"ioclear");
                                              /* clear interface
 send ("*rst");
send ("*cls");
                                               /* reset scope
                                               /* clear status registers */
 send (":autoscale");
                                               /* autoscale input signal */
                                               /* headers off
 send (":system:header off");
   /* The following four commands are added for clarity. They are the
     default values after the *RST command, except for points which is 500
     instead of 8000.
 */
 send (":acquire:points 500");
                                         /* get 500 points from scope */
 send (":acquire:type normal");
                                         /* set acquisition type to normal */
  send (":acquire:complete 100");
                                         /* get data until 100% completion */
 send (":waveform:source channel1"); /* get data from channel 1 */
```

```
_clearscreen (_GCLEARSCREEN);
}
                                      /* clear PC's screen */
send(char *cmd)
{ /* this routine is added to make sending the command to scope easier to
     read */
  error_handler(IOOUTPUTS(SCOPE, cmd, strlen(cmd)), cmd);
capture_waveform()
                                       /* tell scope to gather data */
 send (":digitize channell");
measure()
  float
               freq, vpp;
  char
               ch;
  send (":measure:frequency?");
                                     /* query frequency of input signal */
  error handler(IOENTER(SCOPE, &freq), "ioenter"); /* get the freq. */
                           /* note: that freq must be passed by ref */
  printf ("Frequency = %e Hz \n", freq); /* print it out */
                                        /* query Vpp of input signal */
  send (":measure:vpp?");
  error handler(IOENTER(SCOPE,&vpp), "ioenter"); /* get vpp from scope */
                                                   /* print Vpp */
  printf ("Vpp = %f V \n", vpp);
  printf ("\nPRESS Enter TO CONTINUE\n");
  ch = getch();
}
get_waveform()
  int length;
  char msg[20];
 send (":waveform:format comp");
send (":waveform:preamble?");
                                        /* use the 8-bit byte format */
                                        /* ask for info about data */
                                        /* totally 10 parameters */
  length = 10;
  error_handler(IOENTERA(SCOPE.preamble.&length), "ioentera");
                                         /* ask for the waveform data */
  send (":waveform:data?");
                                        /* max. is 8000 bytes */
  length = 8000:
  error_handler(IOENTERAB(SCOPE, waveform, & length, 1), "ioenterab");
                                        /* get the last newline char */
  length = 1;
 error_handler(IOENTERS(SCOPE,msg,&length), "ioenters");
save_waveform() { FILE *fp;
```

HP 54505B/54506B/54510B/54512B Programming Reference

```
fp = fopen("wave.dat", "wb");
                                         /* open a file for storage */
fwrite(preamble.sizeof(preamble[0]),10,fp); /*write the preamble to file*/ /* write the data,
preamble[2] contains the number of data */ fwrite (waveform, sizeof(waveform[0]),
(unsigned)preamble[2], fp); fclose (fp);
                                                                          /* close the file */ }
retrieve_waveform()
 FILE *fp;
 char ch;
printf("Waveform data has been saved to a file. The program will retrieve\n");
printf("the data, graph it, and perform integration. All subsequence operations\n");
printf ("are based on the saved informations. Press <ENTER>to continue.\n");
printf ("%c", ch = getchar());
 fp = fopen("wave.dat", "rb");
                                                /* open the file */
 fread(preamble, sizeof(preamble[0]), 10, fp);
                                                /* get the preambles */
 /* retrieve the waveform data, preamble[2] contains number of points */
 fread (waveform, sizeof(waveform[0]), (unsigned)preamble[2], fp);
 fclose(fp);
                                                /* close the file */
graph_waveform()
      i;
 char ch;
 _setvideomode(_ERESCOLOR);
                                             /* set screen mode to EGA */
 _rectangle (_GBORDER, 0.0, 501,257);
                                             /* draw border */
 _setviewport(1,1,500,256);
                                             /* set viewport */
  _setwindow (TRUE, 0,0,10,8);
                                            /* set mapping co-ordinates */
                                             /* set color to dark gary */
  setcolor (8);
                                          /* draw the grid */
 for (i=1;i;i++) {
    _moveto_w(i,0);
    _lineto_w(i,8);
 for (i=1;i;i++) {
    _moveto_w(0,i);
    _lineto_w(10,i);
 _setwindow(TRUE, 1,0,preamble[2],255);
                                            /* set mapping co-ordinates */
                                             /* set color to bright green */
  setcolor(10);
                                            /* draw the pixels */
 for (i=0;i<preamble[2];i++) {
    _setpixel_w (i,waveform[i]);
 _settextwindow(20,1,24,80);
                                            /* set text window */
                                            /* set color to bright white */
 _settextcolor (15);
 _settextposition(1,1);
                                            /* position cursor */
 printf ("V/Div = %f V \n", 32*preamble[7]);
```

```
printf ("Offset= %11.3e V \n",
                                 (128 - preamble[9])*preamble[7]+preamble[8]);
 _settextposition(1,41);
 printf ("S/Div = \%11.3e S \n", preamble[2]*preamble[4]/10);
 _settextposition(2,41);
 printf ("\nPRESS Enter to plot integral\n");
 ch = getch();
integrate_waveform ()
                                   /* define array to hold math data */
 float
              min. max:
  int
               i;
                                                 /* starting from zero */
  math[0] = 0;
                                                /* each elt. = last elt + curr wf data */
 for (i=0;iipreamble[2];i++) {
    math[i+1] = math[i] + (waveform[i]-preamble[9])*preamble[7] + preamble[8];
                                                /* find out the max & min of integrate */
 max = math[1];
                                                /* in order to have the proper scale */
 min = math[1];
 for (i=1; i<=preamble[2]; i++) {
     if (math[i] max) {max = math[i];}
     if (math[i] min) {min = math[i];}
 _setwindow(TRUE, 1, min, preamble[2], max);
                                                /* set up proper mapping */
                                                /* use red color */
  _setcolor(12);
 for (i=1; i<=preamble[2]; i++)</pre>
                                                /* draw the integrate */
     _setpixel_w(i, math[i]);
                                                /* print out information about integrate */,
  settextposition (3,1);
}
```

Microsoft QuickC Initialize Program

This sample program demonstrates how to initialize the interface and oscilloscope, digitize the input signal (in this case channel 1), then measure frequency and Vpp and print the results. The program assumes that the AC CAL signal from the rear panel of the instrument is connected to channel 1 through a coaxial cable, and that the National Instruments PCII or PCIIA IEEE 488.2 interface module is being used.

```
#include <stdio.h>
#include <stdio.h>
#include <graph.h >
#include "C:\gpib-pc\decl.h"
/* Filename : \QC-NI\INIT.C */
                                                                         */
unsigned int scope;
                               /*scope address set in intialize
void main()
    char ch;
                                                 /* clear PC's screen */
   _clearscreen (_GCLEARSCREEN);
  printf ("This sample program will perform the following tasks:\n");
  printf (" a. initialize the HP-IB interface and scope\n");
printf (" b. digitize the signal\n");
printf (" c. do a Vpp and Frequency measurement on the signal\n");
  printf ("PRESS Enter TO CONTINUE OR Ctrl C TO TERMINATE\n\n");
  ch = getch();
   initialize();
                                 /* initialize scope and interface */
  capture_waveform();
                                 /* digitize signal
                                                                              measure();
/* measure Vpp and Freq
   ibloc(scope);
  exit(0);
}
send (char *cmd)
 /*this routine is added to made sending commands easier to read ^{\star}/
ibwrt(scope,cmd,(long)strlen(cmd));
if (ibsta & ERR)
    gpiberr("ibwrt error");
   exit (1);
}
initialize()
int i;
```

Example Programs 5-26

```
char ch;
/*ibdev or ibfind to set address of scope */
if ((scope = ibdev(0,7,0,13,1,0)) 0)
   gpiberr("ibfind Error");
   exit(1);
 /*clear the device*/
if (ibclr(scope) & ERR)
  gpiberr("ibclr Error");
  exit(1);
 }
                                 /* clear socpe status reg
send ("*cls");
                                 /* reset set to default config*/
send ("*rst");
                                 /* autoscale
send ("aut");
                                 /* headers off
                                                                 */
send (":system:header off");
send (":acquire:points 500"); /* get 500 pts on digitize send (":acquire:type normal"); /* normal acq mode
send (":acquire:complete 100"); /* set completion criteria
_clearscreen(_GCLEARSCREEN); /* clear pc screen
capture_waveform()
 send(":digitize channel1"); /* acquire data on channel 1 */
measure()
 char buffer[15];
 float result;
 char ch;
                                                               */
 send(":measure:frequency?");
                                    /* query freq
 ibrd(scope,buffer,15);
 if (ibsta & ERR)
        gpiberr("ibrd error");
        exit(1);
    }
 result = (float)atof(buffer);
 printf("\nfrequency = %e Hz \n",result); /*print frequency*/
 send(":measure:vpp?");
                                    /* query vpp
 ibrd(scope,buffer,15);
 if (ibsta & ERR)
      gpiberr("Ibrd error");
      exit(1);
```

HP 54505B/54506B/54510B/54512B Programming Reference

```
result = (float)atof(buffer);
  printf("Vpp = %e V \n",result);
gpiberr(char *msg) {
char ch;
/* This routine would notify you that an IB call failed.
  printf ("%s\n", msg);
  printf ( "ibsta=&H%x "
                             ibsta):
  if (ibsta & ERR ) printf (" ERR");
  if (ibsta & TIMO) printf (" TIMO");
  if (ibsta & END ) printf (" END");
  if (ibsta & SRQI) printf (" SRQI");
  if (ibsta & RQS ) printf (" RQS");
  if (ibsta & CMPL) printf (" CMPL");
  if (ibsta & LOK ) printf (" LOK");
  if (ibsta & REM ) printf (" REM");
  if (ibsta & CIC ) printf (" CIC");
 if (ibsta & ATN ) printf (" ATN");
if (ibsta & TACS) printf (" TACS");
  if (ibsta & LACS) printf (" LACS");
  if (ibsta & DTAS) printf (" DTAS");
  if (ibsta & DCAS) printf (" DCAS");
  printf (" \n");
  printf ("iberr= %d", iberr);
  if (iberr == EDVR) printf (" EDVR <DOS Error>\n");
  if (iberr == ECIC) printf (" ECIC <Not CIC>\n");
 if (iberr == ENOL) printf (" ENOL <No Listener>\n");
if (iberr == EADR) printf (" EADR <Address error>\n");
if (iberr == EARG) printf (" EARG <Invalid argument\n")>;
 if (iberr == ESAC) printf (" ESAC <Not Sys Ctrlr>\n");
  if (iberr == EABO) printf (" EABO <0p. aborted>\n");
 if (iberr == ENEB) printf (" ENEB <No GPIB board>\n");
 if (iberr == EOIP) printf (" EOIP <Async I/O in prg>\n");
 if (iberr == ECAP) printf (" ECAP <No capability>\n");
if (iberr == EFSO) printf (" EFSO File sys. error>\n");
 if (iberr == EBUS) printf (" EBUS <Command error>\n");
 if (iberr == ESTB) printf (" ESTB <Status byte lost>\n");
 if (iberr == ESRQ) printf (" ESRQ <SRQ stuck on>\n");
 if (iberr == ETAB) printf (" ETAB <Table Overflow>\n");
 printf ("ibcnt= %d\n", ibcntl);
 printf ("\n");
/* Call the ibonl function to disable the hardware
 and software.
                                                                   */
 ibon1 (scope,0);
 printf("Press Enter to continue: ");
                                        /* wait for enter key */
 printf ("%c", ch = getchar());
```

Common Commands

Introduction

The common commands are defined by the IEEE 488.2 standard. These commands are common to all instruments that comply with the IEEE 488.2 standard. They control some of the basic instrument functions, such as instrument identification and reset, reading the learn (instrument setup) string, how status is read and cleared, and how commands and queries are received and processed by the instrument.

The following common commands are implemented in the HP 54505B, HP 54506B, HP 54510B, and HP 54512B:

- *CLS (Clear Status)
- *DMC (Define Macro)
- *EMC (Enable Macro)
- *ESE (Event Status Enable)
- *ESR (Event Status Register)
- *GMC (Get Macro Contents)
- *IDN (Identification Number)
- *LMC (Learn Macro)
- *LRN (Learn)
- *OPC (Operation Complete)
- *OPT (Option)
- *PMC (Purge Macro)
- *RCL (Recall)
- *RST (Reset)
- *SAV (Save)
- *SRE (Service Request Enable)
- *STB (Status Byte)
- *TRG (Trigger)
- *TST (Test)
- *WAI (Wait)

Figure 6-1 lists the syntax diagrams for the common commands.

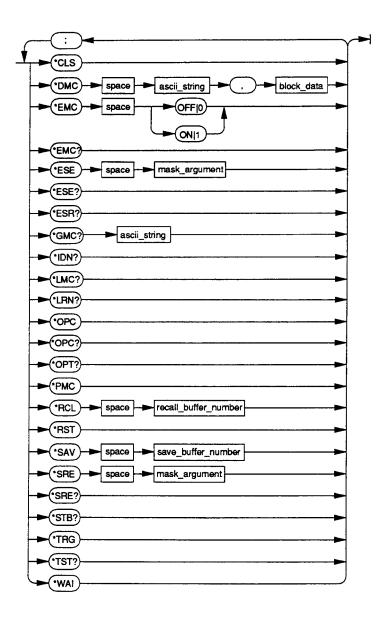


Figure 6-1. Common Commands Syntax Diagram

mask argument = An integer, 0 through 255. This number is the sum of all of the bits in

the mask corresponding to conditions that are enabled. Refer to *ESE and *SRE commands for bit definitions in the enable registers.

recall_buffer_number = An integer, 0 through 9.

save_buffer_number = An integer, 1 through 9.

ascii_string = A quoted string.

block_data = block data in IEEE 488.2 # format.

Figure 6-1. Common Commands Syntax Diagram (continued)

Common Commands

Common commands can be received and processed by the oscilloscope whether they are sent over the HP-IB as separate program messages or within other program messages. If an instrument subsystem has been selected and a common command is received by the instrument, the instrument remains in the selected subsystem. For example, if the program message ":ACQUIRE:TYPE AVERAGE; *CLS; COUNT 1024" is received by the instrument, the instrument sets the acquire type and count, then clears the status information without leaving the selected subsystem.

If some other type of command is received within the program message, you must reenter the original subsystem after the command. For example, the program message ":ACQUIRE:TYPE AVERAGE; :AUTOSCALE; :ACQUIRE:COUNT 1024" sets the acquire type, completes the autoscale, then sets the acquire count. In this example, :ACQUIRE must be sent again after the AUTOSCALE command in order to reenter the acquire subsystem and set the count.

Each of the status registers mentioned in this chapter has an enable (mask) register. By setting the bits in the enable register, you can select the status information you wish to use. For a complete discussion of how to read the status registers and how to use the status information available from this instrument refer to chapter 24, "Status Reporting."

*CLS

(Clear Status)

command

The *CLS (clear status) common command clears the status data structures, including the device-defined error queue. This command also clears the Request-for-OPC flag.

If the *CLS command immediately follows a program message terminator, the output queue and the MAV (message available) bit are cleared.

Command Syntax:

*CLS

Example:

OUTPUT 707;"*CLS"

Note

Refer to chapter 24, "Status Reporting" for a complete discussion of status.

*DMC

(Define Macro)

command

The *DMC (define macro) common command assigns a sequence of zero or more program message unit elements to a macro label.

Command Syntax: *DMC <quoted acsii string>,<binary block data in # format>

Example: OUTPUT 707; "*DMC 'SETUPTB', #232TIM:RANG 10NS; DELAY 0; REF CENTER"

*EMC

(Enable Macro)

command/query

The *EMC (enable macro) common command enables and disables expansion macros. Macro definitions are not affected by this command. *EMC can be used to turn off macro expansion in order to execute a device specific command with the same name as a macro.

Command Syntax: *EMC {{ON | 1} | {OFF | 0}

Example: OUTPUT 707;"*EMC 1"

Query Syntax: *EMC?

Returned Format: {1 | 0}<NL>

Example: OUTPUT 707; "*DMC 'STORE', #228*EMC 0; STORE \$1; WMEM4; *EMC 1"

OUTPUT 707:"STORE CHAN1"
OUTPUT 707:"*EMC?"
ENTER 707:Macro
PRINT Macro

*ESE

(Event Status Enable)

command/query

The *ESE command sets the bits in the Standard Event Status Enable Register. The Standard Event Status Enable Register contains a mask value for the bits to be enabled in the Standard Event Status Register. A one in the Standard Event Status Enable Register enables the corresponding bit in the Standard Event Status Register. A zero disables the bit. Refer to table 6-1 for information about the Standard Event Status Enable Register bits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the register.

Command Syntax:

*ESE <mask>

Where:

mask> ::= 0 to 255

Example:

OUTPUT 707;"*ESE 64"

In this example, the *ESE 64 command enables URQ (user request) bit 6 of the Standard Event Status Enable Register. Therefore, when a front panel key is pressed, the ESB (event summary bit) in the Status

Byte Register is also set.

Query Syntax: *ESE?

Returned Format: <mask><NL>

Where:

<mask> ::= 0 to 255 (integer - NR1 format)

Example: OUTPUT 707; "*ESE?"

ENTER 707; Event PRINT Event

Table 6-1. Standard Event Status Enable Register

Event Status Enable Register (High - Enables the ERS bit)		
Bit	Weight	Enables
7	128	PON - Power On
6	64	URQ - User Request
5	32	CME - Command Error
4	16	EXE - Execution Error
3	8	DDE - Device Dependent Error
2	4	QYE - Query Error
1	2	RQC - Request Control
0	1	OPC - Operation Complete

Refer to chapter 24, "Status Reporting" for a complete discussion of status.

Common Commands 6-8

HP 54505B/54506B/54510B/54512B Programming Reference

*ESR

(Event Status Register)

query

The *ESR query returns the contents of the Standard Event Status Register.

When you read the Event Status Register, the value returned is the total bit weights of all of the bits that are high at the time you read the byte. Table 6-2 shows each bit in the Event Status Register and its bit weight.

Note

Reading the register clears the Standard Event Status Register.

Query Syntax:

*ESR?

Returned Format:

<status><NL>

Where:

<status> ::= 0 to 255 (integer - NR1 format)

Example:

OUTPUT 707;"*ESR?" ENTER 707;Event PRINT Event

Table 6-2. Standard Event Status Register

Bit	Bit Weight	Bit Name	Condition
7	128	PON	1 = OFF to ON transition has occurred.
6	64	URQ	 0 = no front-panel key has been pressed. 1 = a front-panel key has been pressed.
5	32	CME	 0 = no command errors. 1 = a command error has been detected.
4	16	EXE	0 = no execution error. 1 = an execution error has been detected.
3	8	DDE	 0 = no device dependent errors. 1 = a device dependent error has been detected.
2	4	QYE	0 = no query errors.1 = a query error has been detected.
1	2	RQC	0 = request control - NOT used - always 0
0	1	OPC	0 = operation is not complete. 1 = operation is complete.
0 = False = Low		w	1 = True = High

*GMC

(Get Macro Contents)

query

The *GMC query retrieves the current definition of a macro from the oscilloscope.

Query Syntax: *GMC? "<Macro_name>

Returned Format: <block_data><NL>

Where:

<block_data> ::= binary block data in # format

Example: DIM Def\$[50]

DIM Def\$[50] OUTPUT 707;"*GMC? 'STORE'"

ENTER 707; Def\$ PRINT Def\$

*IDN

(Identification Number)

query

The *IDN query identifies the instrument type, serial number, and software version by returning the following string:

"HEWLETT-PACKARD, 545XXB, <XXXXAYYYYY>, <MMDD>"

Where:

 $\rm XXB=05B~(HP~54505B),~06B~(HP~54506B),~10B~(HP~54510B),~or~12B~(HP~54512B) < XXXXAYYYYY> ::= the serial number of the instrument.$

 $\mbox{<}\mbox{MMDD>} ::=$ the software revision of the instrument. The first two parameters represent the month and the second two parameters represent the day of the month.

An *IDN query must be the last query in a message. Any queries after the *IDN query in a program message are ignored.

Query Syntax: *IDN?

Returned Format: HEWLETT-PACKARD, 545XXB, XXXXAYYYYY, MMDD<NL>

Example: DIM Id\$[50]

OUTPUT 707;"*IDN?" ENTER 707;Id\$ PRINT Id\$

(Learn Macro) query *LMC

The *LMC query returns the currently defined macro labels.

Query Syntax: *LMC?

Returned Format: <ascii_scring><NL>

Where:

<ascii_scring> ::= string list separated by commas

Example:

DIM Labe1\$[50] OUTPUT 707;"*LMC?" ENTER 707;Labe1\$ PRINT Label\$

(Learn) *LRN query

> The *LRN query returns a program message that contains the current state of the instrument.

This query performs the same function as the :SYSTEM:SETUP? query. It allows you to store an instrument setup in the controller. The stored setup can then be returned to the instrument at a later time using the :SYSTEM:SETUP command.

The returned header for the *LRN query is :SYSTEM:SETUP. The :SYSTEM:HEADER command does not affect this returned header.

Query Syntax: *LRN?

Returned Format: :SYSTem:SETup <setup><NL>

Where:

<setup> ::= #800001703<learn string><NL> <learn string> ::= 1703 data bytes in length.

Example: DIM Lrn\$[2000]

OUTPUT 707;"*LRN?"

ENTER 707 USING "-K";Lrn\$

*OPC

(Operation Complete)

command/query

The *OPC (operation complete) command sets the operation complete bit in the Standard Event Status Register when all pending device operations have finished.

The *OPC query places an ASCII "1" in the output queue when all pending device operations have finished.

Command Syntax: *OPC

Example: OUTPUT 707;"*OPC"

Query Syntax: *OPC?

Returned Format: 1<NL>

Example: OUTPUT 707;":AUTOSCALE; *OPC?"

ENTER 707; Op\$

*OPT

(Option)

query

The *OPT query reports the options installed in the instrument. This query always returns a zero because the oscilloscope does not have any possible options to report.

Query Syntax:

*0PT?

Returned Format:

0<NL>

Example:

OUTPUT 707;"*OPT?" ENTER 707;Value PRINT Value *PMC

(Purge Macro)

command

The *PMC (purge macros) common command deletes all macros that have been previously defined using the *DMC common command, and removes all stored macro command sequences and labels from the oscilloscope's memory.

Command Syntax: *PMC

Where:

Example: OUTPUT 707;"*PMC"

*RCL

(Recall)

command

The *RCL command restores the state of the instrument from the specified save/recall register. An instrument setup must have been stored previously in the specified register. Registers 1 through 9 are general purpose and can be used with the *SAV command. Register 0 is special because it recalls the state that existed before the last AUTOSCALE, RECALL, ECL, or TTL operation.

An error message appears on the screen if nothing has been previously saved in the specified register.

Command Syntax:

*RCL {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

Example: OUTPUT 707;"*RCL 3"

(Reset) command *RST

> The *RST command places the instrument in a known state. Refer to table 6-3 for the reset conditions.

Command Syntax:

Example: OUTPUT 707;"*RST"

Table 6-3. Reset Conditions

Timebase Menu	
time/division	$100\mu\mathrm{s}$
delay	0.00 s
reference	cntr
sample rate	realtime
sequential	off
Channel Menu	
Channel 1	on
Channel 2	off
Channel 3 (HP 54506B/54512B)	off
Channel 4 (HP 54506B/54512B)	off
volts/division	500 mV
offset	0.00
coupling	dc
input resistance	$1\mathrm{M}\Omega$
probe attenuation	1.000:1

Table 6-3. Reset Conditions (continued)

The state of the s	
Trigger Menu	
triggering	auto
mode	edge
source	Channel 1
level	0.0 V
slope	positive
noise reject	off
holdoff	40 ns
.	
Display Menu	1.*
mode	realtime
persistence	minimum
# of screens	1
off/frame/axes/grid	axes
connect dots	off
Δt/ΔV Menu	
Markers	off
Waveform Math Menu	
f1	off
f2	off
ß	off
f4	off
display	off
chan/mem	chan 1
operator	+
chan/mem	chan 1
function sensitivity	1.00 V/div
function offset	0.0 V

Table 6-3. Reset Conditions (continued)

Waveform Save Menu	
waveform/pixel/multiple/mask	waveform
nonvolatile	m1
display	off
source	chan 1
protect	off
Define Meas Menu	measure
measure/define/limit/compare	on
continuous	off
rms	ac
standard/user defined	standard
Utility Menu (System Submenu)	
clicker	on
AC BNC	probe comp
interpolation	on

*SAV (Save) command

The *SAV command stores the current state of the device in a save register. The data parameter is the number of the save register where the data will be saved. Registers 1 through 9 are valid for this command.

Command Syntax: *SAV {1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

Example: OUTPUT 707;"*SAV 3"

*SRE

(Service Request Enable)

command/query

The *SRE command sets the bits in the Service Request Enable Register. The Service Request Enable Register contains a mask value for the bits to be enabled in the Status Byte Register. A one in the Service Request Enable Register enables the corresponding bit in the Status Byte Register. A zero disables the bit. Table 6-4 lists the bits in the Service Request Enable Register and what they mask.

The *SRE query returns the current value.

Command Syntax:

*SRE <mask>

Where:

mask> ::= 0 to 255

Example: OUTPUT 707;"*SRE 16"

Note 15

This example enables a service request to be generated when a message is available in the output queue. When a message is available the MAV bit is high.

Query Syntax: *SRE?

Returned Format: <mask><NL>

Where:

smask> ::= sum of all bits that are set - 0 through 255 (integer - NR1

format)

OUTPUT 707; "*SRE?" Example:

ENTER 707; Value PRINT Value

Table 6-4. Service Request Enable Register

Service Request Enable Register (High - Enables the SRE bit)		
Bit	Weight	Enables
7	128	not used
6	64	RQS - Request Service
5	32	ESB - Event Status Bit
4	16	MAV - Message Available
3	8	LTF - Limit Test Failure
2	4	MSG - Message
1	2	LCL - Local
0	1	TRG - Trigger

*STB

(Status Byte)

query

The *STB query returns the current value of the instrument's status byte. The MSS (Master Summary Status) bit is reported on bit 6 instead of the RQS (request service) bit. The MSS indicates whether or not the device has at least one reason for requesting service. Refer to table 6-5 for the meaning of the bits in the status byte.

Note

To read the instrument's status byte with RQS reported on bit 6, use the HP-IB Serial Poll.

Query Syntax:

*STB?

Returned Format:

<value><NL>

Where:

<value> ::= 0 through 255 (integer - NR1)

Example:

OUTPUT 707;"*STB?" ENTER 707;Value PRINT Value

Table 6-5. Status Byte Register

Bit	Bit Weight	Bit Name	Condition
7	128		0 = not used.
6	64	RQS/MSS	 0 = instrument has no reason for service. 1 = instrument is requesting service.
5	32	ESB	0 = no event status conditions have occurred. 1 = an enabled event status condition has occurred.
4	16	MAV	0 = no output messages are ready. 1 = an output message is ready.
3	8	LTF	0 = no limit test has failed. 1 = limit test has failed.
2	4	MSG	0 = no message has been displayed.1 = message has been displayed.
1	2	LCL	0 = a remote-to-local transition has not occurred. 1 = a remote-to-local transition has occurred.
0	1	TRG	0 = no trigger has occurred. 1 = a trigger has occurred.
	0 = False = Low		1 = True = High

*TRG (Trigger) command

The *TRG command has the same effect as the Group Execute Trigger

(GET). That effect is as if the RUN command had been sent.

Command Syntax: *TRG

Example: OUTPUT 707;"*TRG"

*TST (Test) query

The *TST query performs a self-test on the instrument. The result of the test is placed in the output queue.

Note (

Disconnect all front-panel inputs before sending this command.

A zero indicates the test passed and a non-zero value indicates the test failed.

If a test fails, refer to the troubleshooting section of the HP 54505B/54506B and HP 54510B/54512B Service Manual.

Query Syntax: *TST?

Where:

<result> ::= 0 or non-zero value

Where:

O indicates the test passed. non-zero indicates the test failed.

Example: OUTPUT 707;"*TST?"

ENTER 707; Result PRINT Result

*WAI (Wait) command

The *WAI command has **no function** in the HP 54505B, HP 54506B, HP 54510B, or HP 54512B, but is parsed for compatibility with other instruments.

Command Syntax: *WAI

Example: OUTPUT 707;"*WAI"

Root Level Commands

Introduction

Root Level commands control many of the basic operations of the oscilloscope. These commands are always recognized by the parser if they are prefixed with a colon, regardless of current command tree position. After executing a root level command, the parser is positioned at the root of the command tree.

The following Root Level commands are implemented in the HP 54505B, HP 54506B, HP 54510B, and HP 54512B:

- AUToscale
- BEEPer
- BLANk
- BNC
- DIGitize
- ERASe
- LER
- LTER
- MENU
- MERGe
- PLOT
- PRINt
- RUN
- SERial
- STATus
- STOP
- STORe
- TER
- VIEW

Figure 7-1 lists the syntax diagrams for the Root Level commands.

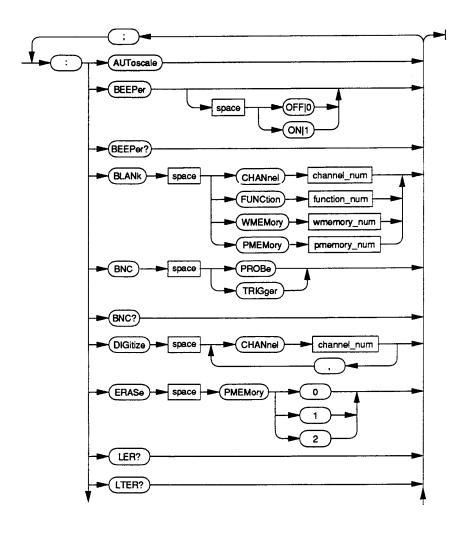


Figure 7-1. Root Level Commands Syntax Diagram

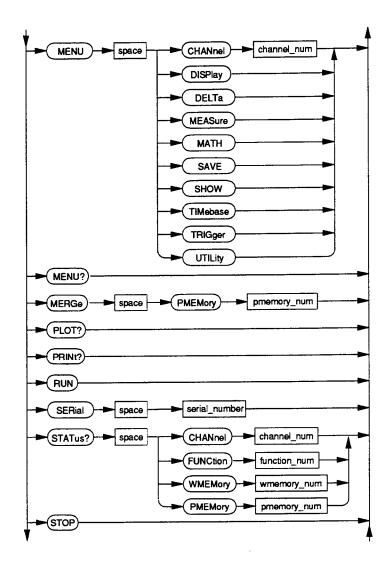
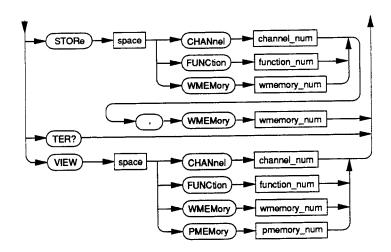



Figure 7-1. Root Level Commands Syntax Diagram (continued)

channel_num = an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4

(HP 54506B/54512B).

function_num = an integer, 1 through 4.

wmemory_num = an integer, 1 through 4.

pmemory_num = an integer, 1 or 2.

serial number = a 10 character quoted string.

Figure 7-1. Root Level Commands Syntax Diagram (continued)

Root Level Commands 7-4

HP 54505B/54506B/54510B/54512B Programming Reference AUToscale command

The AUTOSCALE command evaluates all input signals and sets the correct conditions to display the signals. When the AUTOSCALE command is sent the following conditions are set:

- The vertical sensitivity.
- The vertical offset.
- The trigger to edge mode.
- The trigger level, holdoff, and slope.
- The sweep speed of the displayed channel.
- The time base reference to center.
- The time base delay to 0.0 s.

In addition, the AUTOSCALE command turns off the following items:

- Markers.
- All measurements.
- Functions.
- Windows.
- Memories.
- Connect the dots.
- Limit test.
- Waveform compare test.

If input signals are present on more than one vertical input, the sweep is triggered on the lowest channel that a signal is present on. For example, if a signal is not present on channel 1, then the oscilloscope look for a signal on channel 2. If no signals are found on any vertical input, the oscilloscope is returned to its former state.

Command Syntax:

:AUToscale

Example:

OUTPUT 707;":AUTOSCALE"

HP 54505B/54506B/54510B/54512B Programming Reference Root Level Commands 7-5

BEEPer command/query

The BEEPER command sets the beeper mode, which controls the sound function of the instrument. The beeper can be set to on or off. If the BEEPER command is sent without an argument the beeper will be sounded without effecting the current mode of the instrument.

The BEEPER query returns the current state of the beeper mode.

Command Syntax: :BEEPer [{{ON | 1} | {OFF | 0}}]

Example: OUTPUT 707;":BEEPER 1"

Query Syntax: :BEEPer?

Returned Format: [:BEEPer] {1 | 0}<NL>

Example: DIM Click\$[50]

OUTPUT 707;":BEEP?" ENTER 707;Click\$ PRINT Click\$

BLANk command

The BLANK command turns off (stops displaying) the specified channel, function, pixel memory, or waveform memory. To turn off a channel display, use the command:BLANK CHANNEL{1|2|3|4}. To turn off a waveform memory display, use the command:BLANK WMEMORY{1|2|3|4}. To turn off a pixel memory display, use the command:BLANK PMEMORY{1|2}. To turn off a function, use the command:BLANK FUNCTION{1|2|3|4}.

Use the VIEW command to turn on (start displaying) an active channel, function, pixel memory, or waveform memory.

Command Syntax:

:BLANk <display>

Where:

<display> ::= {CHANne1{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} |
WMEMory{1 | 2 | 3 | 4} | PMEMory{1 | 2 }}

Example:

OUTPUT 707;":BLANK CHANNEL1"

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

command/query **BNC**

> The BNC command sets the output mode of the rear-panel BNC to PROBE or TRIGGER. The PROBE mode outputs a square wave signal. The TRIGGER mode outputs a rising edge when an internal

trigger occurs.

The BNC query returns the current mode for the rear-panel BNC.

Command Syntax: :BNC {PROBe | TRIGger}

> OUTPUT 707;":BNC PROBE" Example:

Query Syntax: :BNC?

[:BNC] {PROBe | TRIGger}<NL> Returned Format:

Example:

DIM Mode\$[50] OUTPUT 707;":BNC?" ENTER 707; Mode\$ PRINT Mode\$

DIGitize command

The DIGITIZE command is used to acquire waveform data for transfer over the HP-IB. Sending the command causes an acquisition to take place on the specified channels with the resulting data being placed in the channel buffer. Sending the DIGITIZE command also turns off any unused channels.

The sources for the :DIGITIZE command are channels 1 and 2 (HP 54505B/54510B) or channels 1 through 4 (HP 54506B/54512B).

During a digitize operation, connect the dots, infinite persistence, and variable persistence are disabled so that the screen more accurately reflects the data transferred. Disabling these functions also simplifies and speeds up the digitize operation.

When the digitize operation is complete the instrument is placed in the stopped mode. When the instrument is restarted, with a RUN command or the front panel RUN key, the digitized data stored in the channel buffers is overwritten. Therefore, ensure all operations that require the digitized data are completed before restarting the oscilloscope.

The ACQUIRE subsystem commands are used to set up conditions such as TYPE, number of POINTS, and COUNT for the next DIGITIZE command. See the ACQUIRE subsystem for a description of these commands. To determine the actual number of points that are acquired and how the data is transferred, refer to the WAVEFORM subsystem commands.

If you only want data, you can improve the speed by turning the screen off with the command: DISPLAY:SCREEN OFF prior to sending the DIGITIZE command. In this case, nothing is plotted on the screen.

For more information on the DIGITIZE command refer to the section on the DIGITIZE command in chapter 2, "Programming an Instrument."

DIGitize

Command Syntax: :DIGitize CHANnel<N>[,CHANnel<N>[,CHANnel<N>[,CHANnel<N><N>]]]

Where:

<N> ::= 1 through 4.

Example: OUTPUT 707;":DIGITIZE CHANNEL1, CHANNEL2"

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

command **ERASe**

The ERASE command erases a specified pixel memory.

Erasing pixel memory 0 is a special case, which is the same as pressing the CLEAR DISPLAY key on the front panel. If the scope is running and being triggered and ERASE PMEMORY0 is executed, the instrument momentarily stops acquiring data, clears the screen, then restarts the data acquisition.

Erasing pixel memory 1 or 2 clears the specified pixel memory and anything on the display from that pixel memory.

Once you erase pixel memory 1 or 2, there is no way to retrieve the original information.

Command Syntax:

:ERASe {PMEMory0 | PMEMory1 | PMEMory2}

Example:

OUTPUT 707;":ERASE PMEMORY1"

LER

(Local Event Register)

query

The LER query reads the LCL (Local) Event Register. After the LCL Event Register is read, it is cleared. A one indicates a remote to local transition has taken place due to the front-panel LOCAL key being pressed. A zero indicates a remote to local transition has not taken place.

Once this bit is set it can only be cleared by reading the Event Register or sending a *CLS command.

A Service Request (SRQ) can only be generated when the bit transitions from 0 to 1. Therefore, the bit must be cleared each time you want a new Service Request to be generated.

Query Syntax: :LER?

Returned Format: [:LER] {1 | 0}<NL>

Example: DIM Event\$[50]

OUTPUT 707;":LER?" ENTER 707;Event\$ PRINT Event\$

LTER

(Limit Test Event Register)

query

The LTER query reads the Limit Test Event Register. The Limit Test Event Register contains the Limit Test Fail bit. This bit is set when either the limit test or waveform compare test is active, and the test has failed. After the Limit Test Event Register is read, it is cleared.

A Service Request (SRQ) can only be generated when the bit transitions from 0 to 1; therefore, the bit must be cleared each time you would like a new Service Request to be generated.

Query Syntax:

:LTER?

Returned Format:

[:LTER] {1 | 0}<NL>

Example:

DIM Lmt\$[50]

OUTPUT 707;":LTER?" ENTER 707;Lmt\$ PRINT Lmt\$

MENU

command/query

The MENU command selects one of the 10 menus on the front panel.

The MENU query returns the name of the currently displayed menu.

Command Syntax:

:MENU <name>

Where:

<name> ::= {CHANnel [1|2|3|4] | TIMebase | CHANnel | TRIGger | DISPlay | DELTa | MATH | SAVE | MEASure | UTILity | SHOW}

Example:

OUTPUT 707; ": MENU DISPLAY"

Query Syntax:

:MENU?

Returned Format:

[:MENU] <name><NL>

Where:

<name> ::= {CHANnel [1|2|3|4] | TIMebase | CHANnel | TRIGger | DISPlay | DELTa | MATH | SAVE | MEASure | UTILity | SHOW}

Example:

DIM Name\$[50] OUTPUT 707;":MENU?" ENTER 707; Name\$

PRINT Name\$

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

Root Level Commands 7-14

MERGe command

The MERGE command stores the contents of the active display into the specified pixel memory. The pixel memories are PMEMORY 1 or PMEMORY 2.

The function of this command is similar to the function of the "add to memory" key in the pixel menu of the Waveform Save menu.

Command Syntax: :MERGe {PMEMory1 | PMEMory2}

Example: OUTPUT 707;":MERGE PMEMORY2"

PLOT

The PLOT query outputs a copy of the display as soon as the oscilloscope is addressed to talk. The portion of the waveform to be copied must be placed on the display before sending the PLOT query. The plotter output includes the displayed waveforms, the graticule, time and voltage markers, trigger setup, and measurement results.

Query Syntax: :PLOT?

WAIT 6

END

OUTPUT 707;":SYST:DSP ''"

180

190 200

Example:

CLEAR 707! Initialize instrument interface 10 ON INTR 7,5 GOTO 160! Exit printing routine after SRQ 20 ENABLE INTR 7:2! Enable SRQ on bus #7 OUTPUT 707;"*CLS"! Clear status data structures
OUTPUT 707;"*ESE 1"! Enable OPC 40 OUTPUT 707;"*SRE 32"! Enable Event Status Register Interrupt 60 OUTPUT 707: ": HARDCOPY: PAGE AUTOMATIC" 70 OUTPUT 707;":HARDCOPY:LENGTH 12" OUTPUT 707;":PLOT?; *OPC"! Set OPC when plot is complete 90 100 SEND 7; UNT UNL! Clear bus SEND 7: TALK 7! Scope to talk mode 110 120 SEND 7; LISTEN 1! Printer to listen mode 130 SEND 7; DATA! Lower ATN line @ controller 140 GOTO 140! Loop until printing is 150 ! complete, then generate interrupt A=SPOLL(707)! Clear service request 160 OUTPUT 707; ": SYST: DSP 'PRINT IS COMPLETE'" 170

query **PRINt**

> The PRINT query outputs a copy of the display as soon as the oscilloscope is addressed to talk. The portion of the waveform to be copied must be placed on the display before sending the PRINT query. The printer output includes the displayed waveforms, the graticule, time and voltage markers, trigger setup, and measurement results.

Query Syntax: :PRINt?

> Example: CLEAR 707! Initialize instrument interface 10

ON INTR 7,5 GOTO 160! Exit printing routine after SRQ 20

ENABLE INTR 7;2! Enable SRQ on bus #7 30

40

50

OUTPUT 707;"*CLS"! Clear status data structures
OUTPUT 707;"*ESE 1"! Enable OPC
OUTPUT 707;"*SRE 32"! Enable Event Status Register Interrupt 60

OUTPUT 707: ": HARDCOPY: PAGE AUTOMATIC" 70

OUTPUT 707;":HARDCOPY:LENGTH 12" 80

OUTPUT 707;":PRINT?; *OPC"! Set OPC when print is complete 90

100 SEND 7; UNT UNL! Clear bus

SEND 7; TALK 7! Scope to talk mode 110

SEND 7;LISTEN 1! Printer to listen mode 120

130 SEND 7; DATA! Lower ATN line @ controller

140 GOTO 140! Loop until printing is

! complete, then generate interrupt 150

A=SPOLL(707)! Clear service request 160

OUTPUT 707;":SYST:DSP 'PRINT IS COMPLETE'" 170

180 WAIT 6

OUTPUT 707;":SYST:DSP ''" 190

200 END RUN command

The RUN command acquires data for the active waveform display. The data is acquired as defined by the time base mode.

If the time base mode is in SINGLE, the RUN command enables the trigger once and displays the acquired data on the screen. This also occurs when the front panel SINGLE key is pressed while the instrument is STOPPED.

If the time base mode is set to AUTO or TRIGGERED, the RUN command enables the trigger repeatedly and displays the data it acquires continuously on the screen. This is the same thing that happens when the front panel RUN key is pressed. For a description of the various modes, see the :TIMEBASE:MODE command in chapter 16, "Timebase Subsystem."

Command Syntax:

:RUN

Example:

OUTPUT 707;":RUN"

SERial (Serial Number) command

The SERIAL command allows you to enter a serial number in the instrument. The serial number is placed in protected non-volatile RAM, so the protection switch on the rear panel must be in the unprotected position to write a new serial number to the instrument.

A serial number corresponding to the serial number of the board in the HP 54505B, HP 54506B, HP 54510B, or HP 54512B is loaded at the factory. Do not use this command unless you need to serialize the instrument for a different application.

The serial number is part of the string returned for the *IDN query.

Command Syntax: :SERial <string>

Where:

<string> ::= 10 character alphanumeric serial number within quotes.

Example: OUTPUT 707;":SER ""1234A56789"""

STATus query

> The STATUS query indicates whether a channel, function, wmemory, or pmemory is ON or OFF. A one indicates ON and a zero indicates

OFF.

Query Syntax: :STATus? <display>

Where:

<display> ::= {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | WMEMory{1

2 3 4 PMEMory{1 2}}

Returned Format: [:STATus] {0 | 1}<NL>

Example:

DIM Status\$[50] OUTPUT 707;":STATUS? CHANNEL1"

ENTER 707; Status\$ PRINT Status\$

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

Root Level Commands 7-20

STOP command

The STOP command stops the data acquisition.

The RUN command must be executed to restart the acquisition.

Command Syntax: :STOP

Example: OUTPUT 707;":STOP"

STORe command

The STORE command moves a stored waveform, channel, or function to a waveform memory. This command has two parameters:

- The first parameter is the source of the waveform, which can be specified as any channel, function, or waveform memory.
- The second parameter is the destination of the waveform, which can only be waveform memory 1 through 4.

Command Syntax:

:STORe <source>,<destination>

where:

<source> ::= {CHANne1{1|2|3|4} | FUNCtion{1|2|3|4} | WMEMory{1|2|3|4}}
<destination> ::= WMEMory {1|2|3|4}

Example:

OUTPUT 707;":STORE CHANNEL2, WMEMORY4"

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

TER

(Trigger Event Register)

query

The TER query reads the Trigger Event Register. After the Trigger Event Register is read, it is cleared. A one indicates a trigger has occurred. A zero indicates a trigger has not occurred.

If a trigger event is not found and the sweep is auto-triggering, the Trigger Event Register bit is not set.

A Service Request (SRQ) can only be generated when the Trigger Event Register bit transitions from 0 to 1; therefore, the bit must be cleared each time you would like a new Service Request to be generated.

Query Syntax: :TER?

Returned Format: [:TER] {1 | 0}<NL>

Example: DIM Trg_event\$[50]

OUTPUT 707;":TER?"
ENTER 707;Trg_event\$
PRINT Trg_event\$

VIEW command

The VIEW command turns on (starts displaying) an active channel, function, pixel memory, or waveform memory.

To display a channel use the command: VIEW CHANnel $\{1 \mid 2 \mid 3 \mid 4\}$. To display a waveform memory, use the command: VIEW WMEMory $\{1 \mid 2 \mid 3 \mid 4\}$. To display a pixel memory, use the command: VIEW PMEMory $\{1 \mid 2\}$. To display a function use the command: VIEW FUNCtion $\{1 \mid 2 \mid 3 \mid 4\}$.

Use the BLANK command to turn off (stop displaying) a specified channel, function, pixel memory, or waveform memory.

Command Syntax:

:VIEW <display>

Where:

<display> ::= {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} |
PMEMory{1 | 2} | WMEMory{1 | 2 | 3 | 4}}

Example: OUTPUT 707;":VIEW CHANNEL1"

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

Introduction

SYSTEM subsystem commands control the way in which query responses are formatted, simulate front panel key presses, allows setting of the real time clock, and enable reading and writing to the advisory line of the instrument.

The System subsystem contains the following commands:

- DATE
- DSP
- ERRor
- HEADer
- KEY
- LONGform
- PIMacro
- SETup
- TIME

Figure 8-1 lists the syntax diagrams for the System subsystem commands.

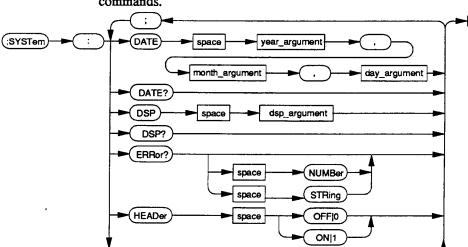
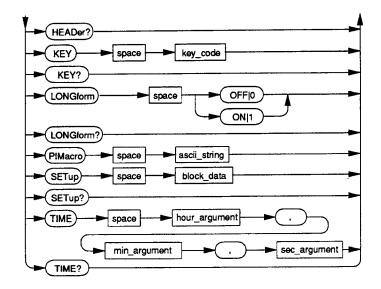



Figure 8-1. System Subsystem Commands Syntax Diagram

dsp_argument = any quoted string.

key_code = an integer, 1 through 44.

ascii_string = any quoted string.

block_data = block data in IEEE 488.2 # format.

year_argument = an integer, 1990 through 2059.

month_argument = an integer, 1 through 12.

day_argument = an integer, 1 through 31.

hour_argument = an integer, 0 through 23.

minute_argument = an integer, 1 through 59.

second_argument = an integer, 1 through 59.

Figure 8-1. System Subsystem Commands Syntax Diagram (continued)

System Subsystem 8-2

DATE

command/query

The :SYSTEM:DATE command sets the oscilloscope's realtime clock. This is the date used when data is stored in memory, and on hard copy outputs. The realtime clock is maintained even when the oscilloscope is off or removed from line power.

The SYSTEM:DATE query returns the current date.

Command Syntax:

:SYSTem:DATE <year>,<month>,<day>

Where:

<year> ::=1990 to 2059 qmonth> ::=1 to 12 <day> ::=1 to 31

Example:

OUTPUT 707;":SYSTEM:DATE 1992,2,29"

Query Syntax:

:SYSTem:DATE?

Returned Format:

[:SYSTem:DATE] "DDMMMYYYY"<NL>

Where:

YYYY ::=1990 through 2059 (integer - NR1) MMM ::=three digit alphabetic month DD ::=1 through 31 (integer - NR1)

Example:

DIM Date\$[20]

OUTPUT 707;":SYSTEM:DATE?"

ENTER 707; Date\$ PRINT Date\$

command/query **DSP**

> The :SYSTEM:DSP command writes a quoted string, excluding quotes, to the advisory line (line 1) of the screen.

The DSP query returns the last string written to the advisory line. This may be a string written with a DSP command or an internally generated advisory.

The string is actually read from the message queue. The message queue is cleared when it is read. Therefore, the displayed message can only be read once over the bus.

Command Syntax: :SYSTem:DSP <quoted ASCII string>

> OUTPUT 707;":SYSTEM:DSP ""This is a message""" Example:

Query Syntax: :SYSTem:DSP?

Returned Format: [:SYSTem:DSP] <string><NL>

Where:

<string> ::= string response data containing the last information written

on the advisory line.

Example:

DIM Display\$[100] OUTPUT 707;":SYSTEM:DSP?" ENTER 707: Display\$ PRINT Display\$

ERRor query

The :SYSTEM:ERROR query outputs the next error number in the error queue over the HP-IB. This instrument has an error queue that is 30 errors deep and operates on a first-in, first-out basis. Repeatedly sending the query :SYSTEM:ERROR? returns the error numbers in the order that they occurred until the queue is empty. Any further queries then return zeros until another error occurs.

When the NUMBER parameter is used in the query, only the numeric error code is output. When the STRING parameter is used, the error number is output followed by a comma and a quoted string. If no parameter is specified, then only the numeric error code is output. Not specifying a parameter is the same as specifying NUMBER.

See table 8-1 for the error numbers and descriptions.

Query Syntax: :SYSTem:ERRor? {NUMBer | STRing | (no_parameter)}

Returned Format: [:SYSTem:ERRor] <error>[,<quoted string>]<NL>

Where:

<error> ::= an integer error code.

<quoted string> ::= an alpha string specifying the error condition.

Example: DIM Emsg\$[50]

OUTPUT 707;":SYSTEM:ERROR?"

ENTER 707; Emsg\$
PRINT Emsg\$

Table 8-1. Error Messages

Error Number	Description			
11	Questionable horizontal scaling			
12	Edges required not found			
13	Not a 545XXB command			
70	RAM write protected			
-100	Command error (unknown command)			
-101	Invalid character			
-102	Syntax error			
-103	Invalid separator			
-104	Data type error			
-105	GET not allowed			
-108	Parameter not allowed			
-109	Missing parameter			
-112	Program mnemonic too long			
-113	Undefined header			
-121	Invalid character in number			
-123	Numeric overflow			
-124	Too many digits			
-128	Numeric data not allowed			
-130	Suffix error			
-131	Invalid suffix			
-138	Suffix not allowed			
-140	Character data error			
-141	Invalid character data			
-144	Character data too long			
-148	Character data not allowed			
-150	String data error			
-151	Invalid string data			
-158	String data not allowed			

System Subsystem 8-6

Table 8-1. Error Messages (Continued)

Error Number	Description			
-160	Block data error			
-161	Invalid block data			
-168	Block data not allowed			
-170	Expression error			
-171	Invalid expression			
-178	Expression data not allowed			
-200	Execution error			
-211	Trigger ignored			
-221	Settings conflict			
-222	Data out of range			
-223	Too much data			
-310	System error			
-350	Too many errors			
-400	Query error			
-410	Query INTERRUPTED			
-420	Query UNTERMINATED			
-430	Query DEADLOCKED			
-440	Query UNTERMINATED after indefinite response			

HEADer

command/query

The :SYSTEM:HEADER command turns the command headers for query responses on and off. When the HEADER is set to ON, query

responses include the command header.

The HEADER query returns the state of the HEADER command.

Command Syntax:

:SYSTem:HEADer {{ ON | 1 } | { OFF | 0 }}

Example:

OUTPUT 707;":SYSTEM:HEADER ON"

Query Syntax:

:SYSTem:HEADer?

Returned Format:

[:SYSTem:HEADer] {1 | 0 }<NL>

Where:

1 ::= ON 0 ::= OFF

Example:

DIM Hdr\$[20]

OUTPUT 707;":SYSTEM:HEADER?"

ENTER 707;Hdr\$
PRINT Hdr\$

The following example shows the response to the query :CHANNEL1:RANGE? with the headers on and off.

With headers set to ON; long form ON:

:CHANNEL1:RANGE 6.40000E-01

With headers set to ON; long form OFF:

:CHAN1:RANG 6.40000E-01

With headers set to OFF:

6.40000E-01

Headers should be turned off when returning values to numeric variables. Otherwise, the headers may be misinterpreted as part of returned data.

System Subsystem 8-8

KEY command/query

The :SYSTEM:KEY command simulates the pressing of a specified front-panel key. Key commands may be sent over the HP-IB in any order that are legal key presses from the front panel. Make sure the instrument is in the desired state before executing the KEY command.

The KEY query returns the key code for the last key pressed from the front panel or returns the last simulated key press over the HP-IB. Key codes range from 1 to 44. Zero represents no key and is returned after power up.

Refer to table 8-2 for key codes.

Note

The :SYSTEM:KEY 39 command will not return the instrument to the "Local" mode when the instrument is in the "Local Lockout" mode.

Command Syntax:

:SYSTem:KEY <keycode>

Where:

<keycode> ::= 1 to 44

Example:

OUTPUT 707;":SYSTEM:KEY 2"

Query Syntax:

:SYSTem:KEY?

Returned Format:

[:SYSTem:KEY] <keycode><NL>

Where:

<keycode> ::= 0 through 44 (integer - NR1 format)

Example:

DIM Input\$[50]

OUTPUT 707;":SYSTEM:KEY?"

ENTER 707; Input\$
PRINT Input\$

Table 8-2. Oscilloscope Front-Panel Key Codes

Key	Key Code	Key	Key Code
Menus - TIMEBASE	1	"-" (minus)	24
Menus - CHAN	2	"." (decimal point)	25
Menus - TRIG	3	0	26
Menus - DISPLAY	4	1	27
Menus - Δt ΔV	5	2	28
Menus - WFORM MATH	6	3	29
Menus - WFORM SAVE	7	4	30
Menus - DEFINE MEAS	8	5	31
Menus - UTIL	9	6	32
Function Select 1	10	7	33
Function Select 2	11	8	34
Function Select 3	12	9	35
Function Select 4	13	RUN/STOP	36
Function Select 5	14	SINGLE	37
Function Select 6	15	CLEAR DISPLAY	38
Function Select 7	16	LOCAL	39
FINE	17	HARDCOPY	40
s V	18	AUTO-SCALE	41
ms mV	19	RECALL	42
μs	20	SAVE	43
ns	21	SHOW	44
CLEAR	22	no key	0
Shift (blue key)	23		
	l .		

The function select keys are at the right of the screen and are numbered from the top (10) to the bottom (16).

System Subsystem 8-10

LONGform

command/query

The :SYSTEM:LONGFORM command sets the long form variable for formatting query responses. If the LONGFORM command is set to OFF, command headers and alpha arguments are sent from the oscilloscope in the short form. If the LONGFORM command is set to ON, the whole word is output. This command does not affect the input data messages to the oscilloscope. Headers and arguments may be sent to the oscilloscope in either the long form or short form, regardless of how the LONGFORM command is set. For more information, refer to the HEADER command in this chapter.

The LONGFORM query returns the state of the LONGFORM command.

Command Syntax: :SYSTem:LONGform {{ ON | 1 } | { OFF | 0 }}

Example: OUTPUT 707;":SYST:LONG ON"

Query Syntax: :SYSTem:LONGform?

Returned Format: [:SYSTem:LONGform] {1 | 0}<NL>

Where:

1 ::= ON 0 ::= OFF

Example: DIM Long\$[30]

OUTPUT 707; ": SYSTEM: LONGFORM?"

ENTER 707; Long\$
PRINT Long\$

PIMacro command

The :SYSTEM:PIMacro command purges the macro described by the string name.

Command Syntax: :SYSTem:PIMacro <quoted ASCII string>

Where:

<quoted ASCII string> ::= name of the defined macro

Example: OUTPUT 707;":SYSTEM:PIMacro ""STORE"""

SETup command/query

The :SYSTEM:SETUP command sets the oscilloscope as defined by the data in the setup (learn) string sent from the controller. The setup string contains 1703 bytes of setup data. The 1703 bytes do not include the header or "#800001703."

The setup string does not change the HP-IB mode, HP-IB address, fine key setting, waveform format, or waveform source.

The SETUP query operates the same as the *LRN? query. It outputs the current oscilloscope setup in the form of a learn string to the controller.

The setup (learn) string is sent and received as a binary block of data. The format for the data transmission is the # format defined in the IEEE 488.2 specification.

Command Syntax:

:SYSTem:SETup <setup>

Where:

<setup> ::= #800001703<setup data string>

Query Syntax: :SYSTem:SETup?

Returned Format: [:SYSTem:SETup] <setup><NL>

Where:

<setup> ::= #800001703<setup data string>

Example:

10 DIM Set\$[2000]

20 !Setup the instrument as desired 30 OUTPUT 707;":SYST:HEAD OFF" 40 OUTPUT 707;":SYSTEM:SETUP?"

50 !Transfer the instrument setup to controller 60 ENTER 707 USING "-K";Set\$!Store the setup

70 PAUSE

80 OUTPUT 707 USING "#,K";":SYST:SETUP ";Set\$ 90 !Returns the instrument to the first setup

100 END

The logical order for this instruction is to send the query, followed by the command, at a time of your choosing. The query causes the learn string to be sent to the controller and the command causes the learn string to be returned to the oscilloscope.

TIME command/query

The :SYSTEM:TIME command sets the oscilloscope's realtime clock in 24-hour format. This is the time used when data is stored in memory, and on hard copy outputs. The realtime clock is maintained even when the oscilloscope is off or removed from line power.

The SYSTEM:TIME query returns the current time.

Command Syntax: :SYSTem:TIME <hour>, <minute>, <second>

Where:

<hour> ::=0 to 23
<minute> ::=0 to 59
<second> ::=0 to 59

Example: OUTPUT 707;":SYSTEM:TIME 12,0,0"

Query Syntax: :SYSTem:TIME?

Returned Format: [:SYSTem:TIME] "HH:MM:SS"<NL>

Where:

HH ::=0 through 23 (integer - NR1) MM ::=0 through 59 (integer - NR1) SS ::=0 through 59 (integer - NR1)

Example: DIM Time\$[20]

OUTPUT 707;":SYSTEM:TIME?"

ENTER 707; Time\$
PRINT Time\$

Acquire Subsystem

Introduction

The ACQUIRE subsystem commands set up conditions for executing a DIGITIZE root level command to acquire waveform data.

The Acquire subsystem selects the type of data, the number of averages, and the number of data points.

This subsystem contains the following commands:

- COMPlete
- COUNt
- POINts
- TYPE

Figure 9-1 lists the syntax diagrams for the Acquire subsystem commands.

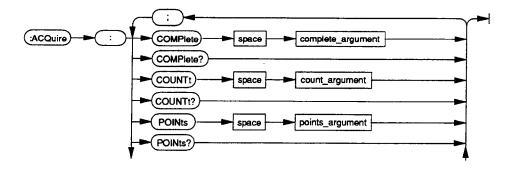
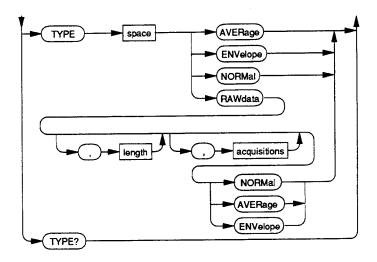



Figure 9-1. Acquire Subsystem Commands Syntax Diagram

acquisitions = dependent on the length of the acquisitions and the buffer size.

complete_argument = an integer, 0 through 100.

count_argument = an integer, 1 to 2048. It specifies the number of values to average for

each time point when in the averaged mode or number of hits per

time bucket in envelope mode.

length = an integer, 4 to 8000.

points_argument = 500 in the repetitive mode.

500 or 8000 in the realtime mode.

Figure 9-1. Acquire Subsystem Commands Syntax Diagram (continue)

Acquire Type and Count

The ACQUIRE subsystem is the only HP-IB control for two display parameters: Display Mode and Number of Averages. There is a coupling between the front panel Display menu and the ACQUIRE subsystem parameters. This means that when the HP-IB parameters for ACQUIRE TYPE or COUNT are changed, the front panel changes. Also, when the front-panel parameters are changed, the HP-IB parameters change.

(Normal) Persistence Mode

The :ACQUIRE:TYPE NORMAL command sets the oscilloscope to the variable persistence mode when the instrument is operating in the repetitive time base mode. You can activate the same mode from the front panel by selecting the Display menu, then setting the display mode to Normal. The persistence time is set over the HP-IB in the DISPLAY subsystem using the :DISPLAY:PERSISTENCE command.

The :ACQUIRE:COUNT can be set in the variable persistence mode, but has no impact on the current display mode or HP-IB acquisition. The :ACQUIRE:COUNT query always returns a 1 when the acquisition type is set to NORMAL.

Averaging Mode

The :ACQUIRE:TYPE AVERAGE command sets the oscilloscope to the Averaging mode. The averaging mode is available only when the :TIMEBASE:SAMPLE is set to REPETITIVE.

COUNT can be set in the AVERAGE mode by sending the :ACQUIRE:COUNT command followed by the number of averages. In this mode, the value is rounded to the nearest power of two. The COUNT value determines the number of averages that must be acquired.

Envelope Mode

The :ACQUIRE:TYPE ENVELOPE command sets the oscilloscope to the Envelope mode. The envelope mode is only available when the :TIMEBASE:SAMPLE is set to REPETITIVE. In envelope mode, the ACQUIRE:COUNT command specifies how many times each time bucket is hit.

Rawdata Mode

The :ACQUIRE:TYPE RAWDATA command is a special command that allows you to get unfiltered, 16-bit binary data over the bus. The RAWDATA command has three optional parameters: Length, Acquisitions, and Mode.

- Length specifies the number of points of each acquisition.
 Acquisitions specify the number of acquisitions to be taken in a single digitize operation.
- The maximum number of acquisitions is a function of the length of the acquisitions and number of channels being acquired.
 Buffer size is the limiting factor. The total rawdata buffer size is 800,000 bytes. The maximum number of acquisitions must satisfy the following condition:

$$\max acquisition = \frac{800,000}{(((\# of points) * 2) + 74)} * \# of active channels$$

Mode choices are NORMal, AVERage, or ENVelope. Mode is
used to select how the acquired data is processed. When
NORMal is selected, each individual data acquisition is available.
When AVERage is selected, all acquisitions are averaged, and
the resulting data is available. In envelope, the maximum and
minimum points of all acquisition are determined, and the
resulting data is available.

The parameters for RAWDATA are optional, but are also dependent on one another. For example, if you specify the number of acquisitions, then you must specify the length. The length parameter can be specified without specifying the number of acquisitions.

The command: WAVEFORM: FORMAT has no effect in the rawdata mode. Data is always transferred in the WORD format.

The Rawdata mode is exited using SEQUENTIAL[:DISPLAY] OFF.

Acquire Subsystem 9-4

It is highly recommended that the SEQuential Subsystem (see Chapter 22) be used when using sequential-shot mode (Rawdata mode). Rawdata commands are included only for compatibility between oscilloscopes.

COMPlete command/query

The :ACQUIRE:COMPLETE command specifies the minimum completion criteria for an acquisition. The parameter determines what percentage of the time buckets need to be "full" before an acquisition is considered complete. If you are in the NORMAL mode, the instrument only needs one data point per time bucket for that time bucket to be considered full. In order for the time bucket to be considered full in the AVERAGE or ENVELOPE mode, a specified number of data points (COUNT) must be acquired.

The range for the COMPLETE command is 0 to 100 and indicates the minimum percentage of time buckets that must be "full" before the acquisition is considered complete. If the complete value is set to 100%, all time buckets must contain data for the acquisition to be considered complete. If the complete value is set to zero, then one acquisition cycle will take place.

Note

The :ACQUIRE:COMPLETE command specifies the minimum completion criteria for an acquisition. In the realtime mode, and in the repetitive mode at sweep speeds slower than 50 ns per division, 100% of the time buckets are always filled in a single acquisition. This is due to the fast sample rate of the oscilloscope and does not vary with the value specified by the :ACQUIRE:COMPLETE command.

The COMPLETE query returns the completion criteria for the currently selected mode.

HP 54505B/54506B/54510B/54512B Programming Reference Acquire Subsystem 9-5

COMPlete

Command Syntax: :ACQuire:COMPlete <comp>

Where:

<comp> ::= 0 to 100 percent

OUTPUT 707;":ACQUIRE:COMPLETE 85" Example:

Query Syntax: :ACQuire:COMPlete?

Returned Format: [:ACQuire:COMP lete] <comp><NL>

Where:

<comp> ::= 0 to 100 (integer - NR1 format)

Example:

DIM Cmp\$[50] OUTPUT 707;":ACQUIRE:COMPLETE?" ENTER 707;Cmp\$

PRINT Cmp\$

command/query COUNT

In the average mode, the :ACQUIRE:COUNT command specifies the number of values to be averaged for each time bucket before the acquisition is considered complete for that time bucket. The :ACQUIRE:COUNT command is only valid in the repetitive mode.

When the acquisition type is set to ENVELOPE, the count can be any value between 1 and 2048 and represents the number of hits per bucket.

When the acquisition type is set to AVERAGE, the count can range from 1 to 2048. Any value can be sent in this mode; however, the value will be rounded to the nearest power of two.

When the acquisition type is set to NORMAL, the count is 1.

The COUNT query returns the currently selected count value.

Command Syntax: :ACQuire:COUNt <count>

Where:

<count> ::= 1 to 2048 (depending on the acquisition type)

!select sampling mode OUTPUT 707;":TIMEBASE:SAMPLE REPETITIVE Example:

!select acquisition type OUTPUT 707:":ACQUIRE:TYPE AVERAGE"

OUTPUT 707;":ACQUIRE:COUNT 1024"

Query Syntax: :ACQuire:COUNt?

Returned Format: [:ACQuire:COUNt] <count><NL>

Where:

<count> ::= 1 through 2048 (integer - NR1 format)

Example: DIM Cnt\$[50]

OUTPUT 707;":ACQ:COUNT?"

ENTER 707; Cnt\$ PRINT Cnt\$

POINts

command/query

The :ACQUIRE:POINTS command specifies the number of time buckets for each acquisition record. When operating in the repetitive mode, the legal setting is 500. When operating in the real-time mode, the legal settings are 500 and 8000.

If a value is sent in the repetitive mode that is not a legal value, the value is set to 500. If a value is sent in the real-time mode that is not a legal value, the value is set according to one of the following conditions:

- If the value is less than or equal to 1023, the value is set to 500.
- If the value is greater than or equal to 1024, the value is set to 8000.

The POINTS query returns the number of time buckets to be acquired.

Always query the Waveform Subsystem Points value to determine the actual number of acquired time buckets.

Command Syntax:

:ACQuire:POINts <points_argument>

Where:

<points_argument>::= 500 in the repetitive mode.
500 or 8000 in the real-time mode.

Example:

OUTPUT 707;":TIMEBASE:SAMPLE REPETITIVE"
OUTPUT 707;":ACQ:POINTS 500"

!select sample mode

Acquire Subsystem 9-8

Query Syntax: :ACQuire:POINts?

Returned Format: [:ACQuire:POINts] <points_argument >> NL>

Where:

Example: DIM Pnts\$[50]
OUTPUT 707;":ACQUIRE:POINTS?"
ENTER 707;Pnts\$

PRINT Pnts\$

TYPE command/query

The :ACQUIRE:TYPE command selects the type of acquisition that is to take place when a :DIGITIZE root level command is executed. There are four acquisition types: NORMAL, AVERAGE, ENVELOPE, and RAWDATA.

Refer to the discussion on Acquire Type and Count for information on the different ACQUIRE:TYPE choices.

To get a correct PREAMBLE with the corresponding 8000 point realtime acquisition, you must send the DIGITIZE command or STOP the acquisition before sending the WAVEFORM:DATA query.

The :ACQUIRE:TYPE query returns the current acquisition type except in the RAWDATA mode. In the RAWDATA mode it returns the acquisition type, length, and number of acquisitions.

Command Syntax:

:ACQuire:TYPE {NORMal | AVERage | ENVelope |

RAWData[[[,<length>][,<acquisitions>][,{NORMal | AVERage | Envelope}]}

Where:

<le><length> ::= 4 to 8000

<acquisitions> ::= dependent on length of acquisitions and buffer size as

shown on previous page.

Example:

OUTPUT 707;":ACQUIRE:TYPE ENVELOPE"

Query Syntax:

:ACQuire:TYPE?

Returned Format:

[:ACQuire:TYPE] {NORMal | AVERage | ENVelope |

RAWData, < length>, <acquisitions><NL>

Where:

<length> ::= 4 to 8000 (integer - NR1 format).

<acquisitions> ::= dependent on length of acquisitions and buffer size as

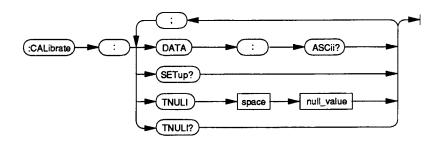
shown on previous page.

Example:

DIM Tpe\$[50]

OUTPUT 707;":ACQUIRE:TYPE?"

ENTER 707; Tpe\$
PRINT Tpe\$


Calibrate Subsystem

Introduction

The CALIBRATE subsystem contains only two commands/queries: :DATA:ASCii, SETup, and TNULl. This subsystem calibrates the instrument for different probes, cables, or setups.

Note

The time null is set in the Probe Cal menu of the Utility menus. For more information refer to the HP 54505B/54510B and HP 54506B/54512B Front-Panel Reference.

null_value =

channel 1 to channel 2 (HP 54505B/54510B) or channel 1 to channel 2 through 4 (HP 54506B/54512B) skew.

Figure 10-1. Calibrate Subsystem Commands Syntax Diagram

query DATA: ASCII

The :CALIBRATE:DATA:ASCII query returns the instrument's

calibration data.

Query Syntax: :CALibrate:DATA:ASCii?

[:CALibrate:DATA:ASCii] <data>,<data>,...<NL> Returned Format:

Where:

<data> ::= calibration data

Example:

DIM Data\$[20000] OUTPUT 707;":CAL:DATA:ASCII?" ENTER 707;Data\$

PRINT Data\$

SETup

The :CALIBRATE:SETUP query returns the current settings for the

Calibrate Subsystem commands.

Query Syntax: :CALibrate:SETup?

Returned Format: :CALibrate:TNUL<null_value2>,<null_value3>,<null_value4><NL>

Example: DIM Stp\$[100]

OUTPUT 707;":CAL:SET?" ENTER 707;Stp\$

ENTER 707;St PRINT Stp\$

<null_value3> and <null_value4> returned only when the

oscilloscope is an HP 54506B/54512B.

TNULI

command/query

The :CALIBRATE:TNULL command sends the time null (channel-to-channel skew) values to the oscilloscope. The time null values should have been obtained from the instrument during a previous setup.

The TNULL query tells the instrument to output the time null values to the controller.

Command Syntax:

:CALibrate:TNULl <null_value2>,<null_value3>,<null_value4>

Where:

```
<null_value2> ::= channel 1 to channel 2 skew (ALL)
<null_value3> ::= channel 1 to channel 3 skew (HP 54506B/54512B only)
<null_value4> ::= channel 1 to channel 4 skew (HP 54506B/54512B only)
```

Example:

OUTPUT 707;":CAL:TNUL 5NS

Query Syntax:

:CALibrate:TNUL1?

Returned Format:

[:CALibrate:TNUL]] <null_value2>,<null_value3>,<null_value4><NL>

Where:

```
<null_value2> ::= channel 1 to channel 2 skew (exponential - NR3 format)
<null_value3> ::= channel 1 to channel 3 skew (exponential - NR3 format)
<null_value4> ::= channel 1 to channel 4 skew (exponential - NR3 format)
```

Example:

DIM N11\$[50]

OUTPUT 707;":CALIBRATE:TNULL?"

ENTER 707;N11\$
PRINT N11\$

Note

<null_value3> and <null_value4> applicable only when the oscilloscope is an HP 54506B/54512B.

Calibrate Subsystem 10-4

HP 54505B/54506B/54510B/54512B Programming Reference

Channel Subsystem

Introduction

The CHANNEL subsystem commands control the channel display and vertical or Y-axis of the oscilloscope. Each channel is independently programmable for all offset, probe, coupling, and range functions. The channel number specified in the command selects the channel that is affected by the command.

The channel displays are toggled on and off with the root level commands VIEW and BLANK, or using the CHANnel[:DISPlay] command.

The Channel subsystem contains the following commands:

- COUPling
- DISPlay
- ECL
- HFReject
- LFReject
- OFFSet
- PROBe
- RANGe
- SETup
- TTL

Figure 11-1 lists the syntax diagrams for the Channel subsystem commands.

Commands for channels 3 and 4 are only available when the oscilloscope is an HP 54506B/54512B.

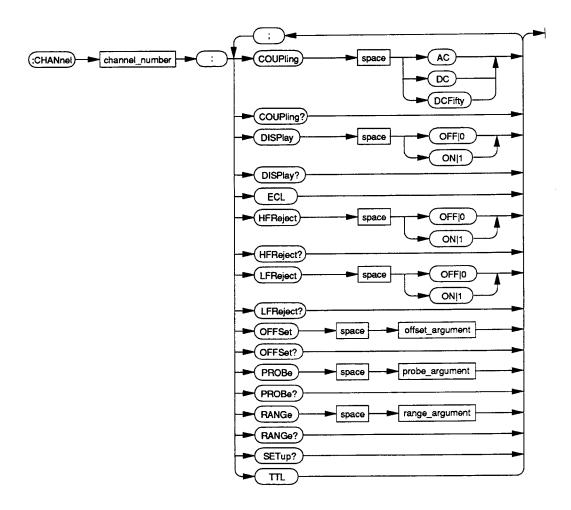


Figure 11-1. Channel Subsystem Commands Syntax Diagram

channel_number =	an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B).
offset_argument =	a real number defining the voltage at the center of the display range.
probe_argument =	a real number from 0.9 to 1000.0 specifying the probe attenuation with respect to 1.
range_argument =	a real number specifying the size of the acquisition window in volts.

Figure 11-1. Channel Subsystem Commands Syntax Diagram (Continued)

COUPling

command/query

The :CHANNEL < N > :COUPLING command selects the input coupling for the specified channel. The coupling for each channel can be set to AC, DC, or DCFIFTY. DCFIFTY places an internal 50 Ω load on the input.

The COUPLING query returns the current coupling for the specified channel.

Command Syntax:

:CHANne1<N>:COUPling {AC | DC | DCFifty}

Where:

< N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Example:

OUTPUT 707;":CHAN2:COUP DC"

Query Syntax:

:CHANnel<N>:COUPling?

Where:

< N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Returned Format:

[:CHANnel<N>:COUPling] {AC | DC | DCFifty}<NL>

Example:

DIM Ch\$[50] OUTPUT 707;":CHAN2:COUPLING?" ENTER 707;Ch\$

PRINT Ch\$

[DISPlay]

command/query

The :CHANNEL < N > [:DISPLAY] command controls the individual channel displays. On starts displaying, and off stops displaying the channel selected.

The DISPLAY query returns the current setting of the command.

Note

Because [:DISPlay] is an implied command, only the parameters need be sent to turn a selected channel on or off. For example, to turn channel 1 display on send either ":CHAN1:DISP ON" or ":CHAN1 ON".

Command Syntax:

:CHANnel<N>[:DISPlay] {{ON | 1} | {OFF | 0}}

Where:

<N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Example: OUTPUT 707;":CHANNEL2:DISP ON"

Query Syntax: :CHANne1<N>[:DISPlay]?

Where:

<N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Returned Format: [:CHANnel<N>[:DISPlay]] {1 | 0}<NL>

Example: DIM Disp\$[50]

OUTPUT 707;":CHAN1?" ENTER 707;Disp\$ PRINT Disp\$ ECL command

The :CHANNEL < N > :ECL command sets the vertical range, offset, channel coupling, and trigger level of the selected channel for optimum viewing of ECL signals. The channel offset and trigger level are set to -1.3 volts and the range is set to 1.6 volts full scale. Channel coupling is set to DC.

There is no query form of this command.

Command Syntax: :CHANne1<N>:ECL

Where:

< N > ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Example: OUTPUT 707;":CHAN1:ECL"

HFReject

command/query

The :CHANNEL < N > :HFREJECT command controls an internal low-pass filter. When the filter is ON, the bandwidth of the specified channel is limited to approximately 20 MHz. The bandwidth limit filter may be used when either AC, DC, or DCFIFTY coupling is used.

The HFREJECT query returns the current setting of the command.

Command Syntax:

:CHANne1<N>:HFReject {{ON | 1} | {OFF | 0}}

Where:

<N> ::= 1 or 2 (HP 545058/54510B) or 1 through 4 (HP 54506B/54512B)

Example:

OUTPUT 707;":CHANNEL2:HFR ON"

Query Syntax:

:CHANnel<N>:HFReject?

Where:

< N > ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Returned Format:

[:CHANnel<N>:HFReject] {1 | 0}<NL>

Example:

DIM Hf\$[50] OUTPUT 707;":CHAN1:HFR?"

ENTER 707;Hf\$ PRINT HF\$

LFReject

command/query

The :CHANNEL < N > :LFREJECT command controls an internal high-pass filter. When the filter is ON, the bandwidth of the specified channel is limited to approximately 400 Hz. The bandwidth limit filter may be used only when AC coupling is used. Otherwise, the bandwidth limit filter is automatically turned off.

The LFREJECT query returns the current setting of the command.

Command Syntax:

:CHANnel<N>:LFReject {{0N | 1} | {0FF | 0}}

Where:

< N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Example:

OUTPUT 707;":CHANNEL2:COUPLING AC" !select AC coupling

OUTPUT 707;":CHANNEL2:LFREJECT ON"

Query Syntax:

:CHANnel<N>:LFReject?

Where:

< N > ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Returned Format:

[:CHANnel<N>:LFReject] {1 | 0}<NL>

Example: 1

DIM Lf\$[50] OUTPUT 707;":CHAN1:LFR?"

ENTER 707;Lf\$
PRINT Lf\$

OFFSet

command/query

The :CHANNEL < N > :OFFSET command sets the voltage that is represented at center screen for the selected channel. The range of legal values vary with the value set with the RANGE command. If you set the offset to a value outside of the legal range, the offset value is automatically set to the nearest legal value.

The OFFSET query returns the current offset value for the selected channel.

Command Syntax:

:CHANnel<N>:OFFSet <value>

Where:

< N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

<value> ::= offset value

Examples:

OUTPUT 707;":CHAN1:OFFS 200M"

OUTPUT 707;":CHAN2:OFFSET 20E-3"

Query Syntax:

:CHANnel<N>:OFFSet?

Returned Format:

[:CHANnel<N>:OFFSet] <value><NL>

Where:

<N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B) <value> ::= offset value in volts (exponential - NR3 format)

Example:

OUTPUT 707;":SYSTEM:HEADERS OFF"
OUTPUT 707;":CHANNEL2:OFFSET?"

!turn headers off

ENTER 707;Offset PRINT Offset

PROBe

command/query

The :CHANNEL < N > :PROBE command specifies the probe attenuation factor for the selected channel. The range of the probe attenuation factor is from 0.9 to 1000.0. This command does not change the actual input sensitivity of the oscilloscope. It changes the reference constants for scaling the display factors, for making automatic measurements, for setting trigger levels, etc.

The PROBE query returns the current probe attenuation factor for the selected channel.

Command Syntax:

:CHANnel<N>:PROBe <attenuation>

Where:

< N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

<attenuation> ::= 0.9 to 1000

Example:

OUTPUT 707;":CHANNEL2:PROBE 10"

Query Syntax:

:CHANne1<N>:PROBe?

Where:

< N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Returned Format:

[:CHANnel<N>:PROBe] <attenuation><NL>

Where:

< N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

<attenuation> ::= 0.9 to 1000 (exponential - NR3 format)

Example:

DIM Prb\$[50]
OUTPUT 707;":CHANNEL1:PROBE?"

ENTER 707; Prb\$ PRINT Prb\$

Channel Subsystem 11-10

HP 54505B/54506B/54510B/54512B **Programming Reference**

RANGe

command/query

The :CHANNEL < N > :RANGE command defines the full-scale vertical axis of the selected channel. The RANGE for any channel can be set to any value from 8 mV to 40 V when using 1:1 probe attenuation. If the probe attenuation is changed, the range value is multiplied by the probe attenuation factor.

The RANGE query returns the current full-scale range setting for the specified channel.

Command Syntax:

:CHANne1<N>:RANGe <range>

Where:

N> := 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

<range> ::= full-scale range value

Examples: :OUTPUT 707;":CHANNEL1:RANGE 0.64"

:OUTPUT 707;":CHANNEL2:RANGE 1.2 V"

Query Syntax: :CHANne1<N>:RANGe?

Returned Format: [:CHANne]<N>:RANGe] <range><NL>

Where:

<N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B) <range> ::= full-scale range value (exponential - NR3 format)

Example: DIM Rng\$[50]

OUTPUT 707;":CHAN2:RANGE?"

ENTER 707; Rng\$
PRINT Rng\$

SETup

The :CHANnel < N > :SETUP query returns the current settings for

the CHANnel Subsystem commands.

Query Syntax: :CHANne1<N>:SETup?

Returned Format: :CHANne1<N>:DISPlay{ON | OFF}; RANGe<range>; OFFset<value>; COUP{AC | DC | DCF | ifty}; HF

Reject{ON|OFF};LFReject{ON|OFF};PROBE<attenuation><NL>

Where:

<N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)
<range> ::= full-scale range value (exponential - NR3 format)
<value> ::= offset value in volts (exponential - NR3 format)
<attenuation> ::= 0.9 to 1000 (exponential - NR3 format)

Example: DIM Stp\$[300]

OUTPUT 707;":CHAN1:SET?"

ENTER 707;Stp\$
PRINT Stp\$

TTL command

The :CHANNEL < N >: TTL command sets the vertical range, offset, channel coupling, and trigger level of the selected channel for optimum viewing of TTL signals. The channel offset is set to 2.5 volts. The trigger level is set to 1.4 volts and the range is set to 8.0 volts full scale. Channel coupling is set to DC.

There is no query form of this command.

Command Syntax: :CHANne1<N>:TTL

Where:

<N> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

Example: OUTPUT 707;":CHAN1:TTL"

Display Subsystem

Introduction

The DISPLAY subsystem is used to control the display of data, markers, text, and graticules.

The Display mode can be selected with the :ACQUIRE:TYPE command. The number of averages can be specified with the ACQUIRE:COUNT command.

The Display subsystem contains the following commands:

- COLumn
- CONNect
- DATA
- FORMat
- GRATicule
- INVerse
- LINE
- MASK
- PERSistence
- ROW
- SETup
- SCReen
- SOURce
- STRing
- TEXT
- MARKer | TMARker | VMARker

Figure 12-1 lists the syntax diagrams for the Display subsystem commands.

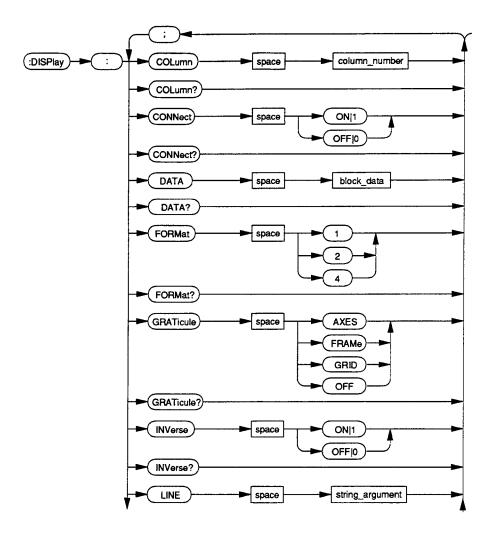


Figure 12-1. Display Subsystem Commands Syntax Diagram

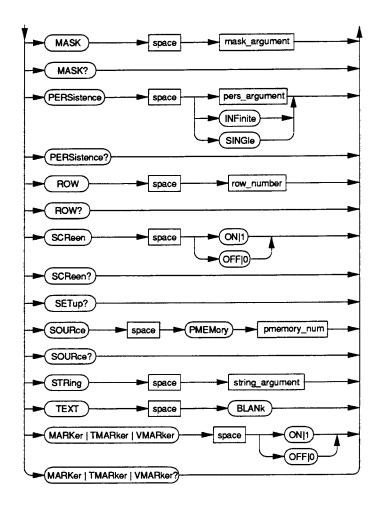


Figure 12-1. Display Subsystem Commands Syntax Diagram (continued)

column_number = an integer, 0 through 72.

block_data = block data in IEEE 488.2 # format.

mask_argument = an integer, 0 through 255.

pers_argument = a real number, 0.1 through 11.

pmemory_num = an integer, 0 through 3.

row_number = an integer, 0 through 24.

string_argument = any quoted string.

Figure 12-1. Display Subsystem Commands Syntax Diagram (continued)

COLumn

command/query

The :DISPLAY:COLUMN command specifies the starting column for

subsequent STRING and LINE commands.

The COLUMN query returns the column where the next LINE or

STRING will start.

Command Syntax:

:DISPlay:COLumn <number>

Where:

<number> ::= 0 through 72

Example:

OUTPUT 707;":DISPLAY:COLUMN 50"

Query Syntax:

:DISPlay:COLumn?

Returned Format:

[:DISPlay:COLumn] <number><NL>

Where:

<number> ::= 0 through 72 (integer - NR1 format)

Example:

DIM C1mn\$[30]

OUTPUT 707;":DISPLAY:COLUMN?"

ENTER 707; Clmn\$ PRINT Clmn\$

CONNect

command/query

The :DISPLAY:CONNECT command turns the connect-the-dots

function on and off.

The CONNECT query returns the current setting of the

connect-the-dots function. The returned status is indicated by using a 1

for on and a 0 for off.

Command Syntax:

:DISPlay:CONNect {{ON | 1} | {OFF | 0}}

Example:

OUTPUT 707;":DISPLAY:CONNECT ON"

Query Syntax:

:DISPlay:CONNect?

Returned Format:

[:DISPlay:CONNect] {1 | 0}<NL>

Example:

DIM Cnn\$[50] OUTPUT 707;":DISP:CONNECT?"

ENTER 707; Cnn\$ PRINT Cnn\$

DATA command/query

The :DISPLAY:DATA command writes waveform data to one of the pixel planes in the oscilloscope. The DATA command is followed by a block of binary data that is transferred from the controller to a specific plane in the oscilloscope. The data can be written to pixel memories 1 and 2. The data is in the IEEE 488.2 definite block form with 16576 bytes of data preceded by seven block header bytes. The block header contains the ASCII characters "#800016576" and is sent prior to the data.

The :DISPLAY:DATA query is used to write waveform data from one of the pixel planes in the oscilloscope. The pixel planes available are planes 0 through 3. The DATA query causes the oscilloscope to output pixel data from the specified plane. If plane 0 is specified, the oscilloscope transfers the active display. If PMEMORY1 or PMEMORY2 is specified that memory is transferred. When PMEMORY3 is specified the half-bright portion of the display (graticule, markers, and displayed memories) is transferred.

The pixel planes (PMEMORY0 through PMEMORY3) are specified with the :DISPLAY:SOURCE command.

Command Syntax:

:DISPlay:DATA

binary block>

Where:

<binary block> ::= block data in IEEE 488.2 # format

Query Syntax: :DISPlay:DATA?

[:DISPlay:DATA] #800016576<16576 bytes of binary data><NL> Returned Format:

Example: 10 CLEAR 707

DIM Plane\$[17000]

OUTPUT 707;":SYST:HEAD OFF"

OUTPUT 707;":DISPLAY:SOURCE PMEMORYO;DATA?"

ENTER 707 "SIDISPLAY: SOURCE PMEMORYO;DATA?"

60 OUTPUT 707;":DISPLAY:SOURCE PMEM1"

70 OUTPUT 707 USING "#,-K";":DISPLAY:DATA ";Plane\$

80 END

This example transfers data from the active display memory to the controller, then transfers the data back to pixel memory 1 in the oscilloscope.

In program line 70, the space after :DISPLAY:DATA and before the quotation mark is required.

FORMat command/query

The :DISPLAY:FORMAT command sets the number of display areas on the screen. FORMAT 1 provides one display area and uses eight divisions for the full-scale range. FORMAT 2 sets the number of screens to 2 and uses four divisions for the full-scale range. FORMAT 4 sets the number of screens to 4 and uses two divisions for the

full-scale range.

The FORMAT query returns the current display format.

Command Syntax: :DISPlay:FORMat {1 | 2 | 4}

Example: OUTPUT 707;":DISP:FORMAT 1"

Query Syntax: :DISPlay:FORMat?

Returned Format: [:DISPlay:FORMat] {1 | 2 | 4}<NL>

Example: DIM Frmt\$[30]

OUTPUT 707;":DISPLAY:FORMAT?"

ENTER 707; Frmt\$
PRINT Frmt\$

GRATicule

GRATicule

command/query

The :DISPLAY:GRATICULE command selects the type of graticule

that is displayed.

The GRATICULE query returns the type of graticule that is currently

displayed.

Command Syntax:

:DISPlay:GRATicule {OFF | GRID | AXES | FRAMe}

Example:

OUTPUT 707;":DISPLAY:GRATICULE AXES"

Query Syntax:

:DISPlay:GRATicule?

Returned Format:

[:DISPlay:GRATicule] {OFF | GRID | AXES | FRAMe}<NL>

Example:

DIM Grt\$[30] OUTPUT 707;":DISPLAY:GRATICULE?" ENTER 707;Grt\$

PRINT Grt\$

INVerse command/query

The :DISPLAY:INVERSE command determines whether text sent with the LINE or STRING command in the DISPLAY subsystem is to be written with the INVERSE attribute. If the inverse attribute is ON

the text will be written in inverse video.

The INVERSE query returns the current state of this command.

Command Syntax: :DISPlay:INVerse {{0N | 1} | {0FF | 0}}

Example: OUTPUT 707;":DISPLAY:INVERSE OFF"

Query Syntax: :DISPlay: INVerse?

Returned format: [:DISP lay: INVerse] {1 | 0}<NL>

Example: DIM Iv\$[30]

DIM Iv\$[30] OUTPUT 707;":DISP:INVERSE?"

ENTER 707; Iv\$
PRINT Iv\$

LINE command

The :DISPLAY:LINE command writes a text string to the screen. The text is displayed starting at the location of the current row and column. The row and column can be set by the :DISPLAY:ROW and :DISPLAY:COLUMN commands prior to sending the :DISPLAY:LINE command. Text can be written over the entire screen with the LINE command.

If the text string is longer than the available space on the current line, the text wraps around to the start of the same line. In any case, the ROW value is incremented by one and the COLUMN value remains the same. The next :DISPLAY:LINE command will write on the next line of the display starting at the same column as the previous text. After writing line 24, the last line in the display area, ROW is reset to 0.

Command Syntax:

:DISPlay:LINE <quoted string>

Where:

<quoted string> ::= any series of ASCII characters enclosed in quotes.

Example: OUTPUT 707;":DISPLAY:LINE ""ENTER PROBE ATTENUATION"""

MASK command/query

The :DISPLAY:MASK command inhibits the instrument from writing to selected areas of the screen. Text sent over the HP-IB with the line and string commands, or the SYSTEM:DSP command, is not affected by this command. The purpose of the command is to allow HP-IB text to be written anywhere on the screen, and to prevent the instrument from overwriting the text through its normal operation.

The mask parameter is an 8-bit integer in which each bit controls writing to an area of the screen. A zero inhibits writing to the area represented by the bit, and a 1 enables writing to that area.

The MASK query returns the current value of the MASK command.

Command Syntax:

:DISPlay:MASK <value>

Where:

<value> ::= 0 to 255 (integer - NR1 format)

Example: OUTPUT

OUTPUT 707;":DISPLAY:MASK 67"

The previous example enables writing to the Menu Area (bit 6), the

Status Line (bit 1), and the Advisory Area (bit 0).

Query Syntax:

:DISPlay:MASK?

Return Format:

[:DISPlay:MASK] <value><NL>

Where:

<value> ::= 0 to 255 (integer - NR1 format)

Example:

DIM Msk\$[30]

OUTPUT 707;":DISP:MASK?"

ENTER 707; Msk\$

PRINT Msk\$

Table 12-1. Display Mask Byte.

Bit	Weight	Screen Area Affected
7	128	unused
6	64	Menu Area
5	32	Timebase Information
4	16	Measurement Result Area
3	8	Graticule Area
2	4	unused
1	2	Status Line
0	1	Advisory Area

PERSistence

command/query

The :DISPLAY:PERSISTENCE command sets the display persistence. The PERSISTENCE command is only effective in the Normal display mode.

In the real-time time base mode, the parameters for this command are the keywords INFINITE or SINGLE.

In the repetitive time base mode, the parameter for this command is the keyword INFINITE, or real numbers from 0.5 through 10.0 representing the persistence in seconds. Any value less than 0.45 sets the PERSISTENCE to MINIMUM. Any value greater than 10 seconds sets the PERSISTENCE to INFINITE.

When the key word SINGLE is sent as the argument for this command, the persistence value is set to minimum.

In the real-time time base mode the PERSISTENCE query returns the actual mnemonic: SINGle or INFinite.

In the repetitive time base mode the PERSISTENCE query returns the current persistence value. When Minimum is displayed, the value returned is 0. When Infinite is displayed, the value returned is 11.

Command Syntax:

:DISPlay:PERSistence {SINGle | INFinite | 0.1 through 11}

Example:

OUTPUT 707;":TIMEBASE:SAMPLE REPETITIVE" !select time base mode

OUTPUT 707;":DISPLAY:PERSISTENCE 3.0"

Query Syntax: :DISPlay:PERSistence?

Returned Format: [:DISPlay:PERSistence] <value><NL>

Where:

<value> ::= $\{0 \mid .5 \text{ to } 10 \mid 11\}$ (exponential - NR3 format) in the

repetitive mode

Where:

1.100E+1 = infinite

<value> ::= {SINGle | INFinite} in the real-time mode

Example:

DIM Prs\$[50] OUTPUT 707;":DISPLAY:PERSISTENCE?" ENTER 707;Prs\$

PRINT Prs\$

ROW command/query

The :DISPLAY:ROW command specifies the starting row on the screen for subsequent STRING and LINE commands. The ROW number remains constant until another ROW command is received, or until it is incremented by the LINE command. The ROW value can be

set to 0 through 24.

The ROW query returns the current ROW number.

Command Syntax:

:DISPlay:ROW < row number>

Where:

<row number> ::= 0 through 24

Example:

OUTPUT 707;":DISPLAY:ROW 10"

Query Syntax:

:DISPLAY:ROW?

Returned Format:

[:DISPlay:ROW] <row number><NL>

Where:

<row number> ::= 0 through 24 (integer - NR1 format)

Example:

DIM Rw\$[30]

OUTPUT 707;":DISPLAY:ROW?"

ENTER 707; Rw\$
PRINT Rw\$

SCReen

command/query

The :DISPLAY:SCREEN command turns the displayed screen on and off. The status line is the only part of the screen that remains on after the :DISPLAY:SCREEN OFF command is executed. The screen can be turned on again with the ON parameter.

The SCREEN query returns the current setting of this function. The returned status is indicated by using a 1 for on and a 0 for off.

The command: DISPLAY: TEXT BLANK removes only the text from the display.

Command Syntax:

:DISPlay:SCReen {{ON | 1} | {OFF | 0}}

Example:

OUTPUT 707;":DISPLAY:SCREEN ON"

Query Syntax:

:DISPlay:SCReen?

Returned Format:

[:DISP lay: SCReen] {1 | 0}<NL>

Example:

DIM Srn\$[50]

OUTPUT 707;":DISP:SCREEN?"

ENTER 707; Srn\$ PRINT Srn\$ SETup query

The :DISPLAY:SETUP query returns the current settings for the

Display Subsystem commands.

Query Syntax: :DISPlay:SETup?

Returned Format: :DISPlay:ROW {1 to 24};COL {0 to 72};FORMat {1|2|4};INVerse

{ON|OFF};GRATicule {OFF|GRID|AXES|FREMe};PERS {<value>};SCReen {ON|OFF};SOURce {PMEMory{0|1|2|3};MASK <mask>;MARKer {ON|OFF} (<NL>

Where:

<value> ::= {0 \mid .5 to 10 \mid 11} (exponential - NR3 format) in the

repetitive mode

1.100E+1 = infinite

<value> ::= {SINGle | INFinite} in the real-time mode

smask> ::=0 to 255 (integer - NR1 format)

Example: DIM Stp\$[300]

DIM Stp\$[300] OUTPUT 707;":DISP:SET?"

ENTER 707; Stp\$
PRINT Stp\$

SOURce

command/query

The :DISPLAY:SOURCE command specifies the source or destination for the :DISPLAY:DATA query and command. The SOURCE command has one parameter which can be set to PMEMORY0 through PMEMORY3.

The SOURCE query returns the currently specified SOURCE.

Command Syntax:

:DISPlay:SOURce PMEMory{0 | 1 | 2 | 3}

Where:

PMEMory0 ::= active display PMEMory1 ::= pixel memory 1 PMEMory2 ::= pixel memory 2

PMEMory3 ::= half-bright portion of the display (graticule, markers, and

displayed memories)

Example:

- 10 CLEAR 707
- 20 DIM Plane\$[17000]
- 30 OUTPUT 707;":SYSTEM:HEADER OFF"
 40 OUTPUT 707;":DISPLAY:SOURCE PMEMORYO;DATA?"
- 50 ENTER 707 USING "-K"; Plane\$
- 60 OUTPUT 707;":DISPLAY:SOURCE PMEM1"
- 70 OUTPUT 707 USING "#,-K";":DISPLAY:DATA ";Plane\$

This example transfers data from the active display to the controller, then transfers it back to pixel memory 1 in the oscilloscope.

Query Syntax:

:DISPlay:SOURce?

Returned Format:

[:DISPlay:SOURce] PMEMory{0 | 1 | 2 | 3}<NL>

Example: DIM Src\$[30]

OUTPUT 707;":DISP:SOUR?"

ENTER 707; Src\$ PRINT Src\$

Display Subsystem 12-20

STRing command

The :DISPLAY:STRING command writes a text string to the screen of the oscilloscope. The text is written starting at the current ROW and COLUMN values. If the column limit is reached (column 72), the excess text is written over the text on the left side of that line. If 90 or more characters are sent, the error -144, "Character data too long" is produced. The STRING command does not increment the ROW value; however, the LINE command does.

Command Syntax: :DISPlay:STRing <quoted string>

Example: OUTPUT 707;":DISP:STRING 'INPUT SIGNAL TO CHANNEL 2"

TEXT

The :DISPLAY:TEXT command blanks the user text area on the screen. When this command is sent, all text on the entire screen is blanked. This command has only one parameter: BLANk.

There is no query form of this command.

The :DISPLAY:SCREEN ON command restores the user text to the

screen.

Command Syntax: :DISPlay:TEXT BLANK

Example: OUTPUT 707;":DISPLAY:TEXT BLAN"

MARKer | TMARker | VMARker

command/query

The :DISPLAY:MARKER | TMARKER | VMARKER command turns the all markers (x1/y1 and x2/y2) on and off.

Note #

All three commands perform the identical function, and are included only for compatibility with other oscilloscopes.

The MARKer | TMARker | VMARker query returns the current state of the specified marker.

Command Syntax:

:DISPlay:MARKer TMARKer VMARKer {{ON | 1} | {OFF | 0}}

Example:

OUTPUT 707;":DISP:TMAR OFF"

Query Syntax:

:DISPlay:MARKer TMARker VMARker?

Returned Format:

[:DISPlay:MARKer|TMARker|VMARker] {0 | 1}<NL>

Example:

DIM Mkr\$[30]

OUTPUT 707;":DISP:MARK?"

ENTER 707; Mkr\$
PRINT Mkr\$

It is a recommended pratice to turn the selected marker on before attempting to set them using a :MEASURE:(T/V)START or MEASURE:(T/V) STOP command. Also see MARKer subsystem for more information on using markers.

Function Subsystem

Introduction

The FUNCTION subsystem defines functions using the displayed channels or waveform memories as operands. All available channels and waveform memories are available for functions.

Functions are turned on/off with the VIEW/BLANK commands (see Chapter 7, "Root Level Commands"), or by using the FUNCtion[:DISPlay] command (in this chapter).

Some of the commands apply only when the FFT function is selected. The Function subsystem contains the following commands:

- ADD
- DIFFerentiate
- DISPlay
- FFT (fast Fourier transform)
- FREQuency (FFT function)
- INTegrate
- INVert
- LEVel (FFT function)
- MAGNify (FFT function)
- MULTiply
- OFFSet
- ONLY
- PEAK (FFT function)
- POINts (FFT function)
- RANGe
- SETup
- SPAN (FFT function)
- SUBTract
- VERSus
- WINDow (FFT function)

Figure 13-1 lists the syntax diagrams for the Function subsystem commands.

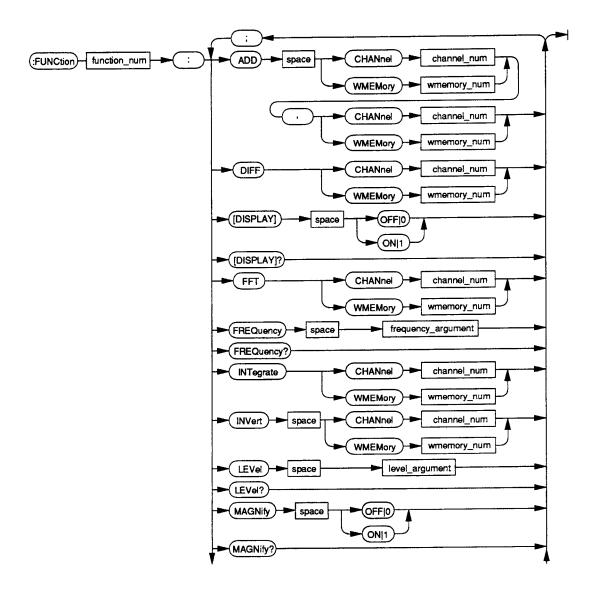


Figure 13-1. Function Subsystem Commands Syntax Diagram

Function Subsystem 13-2

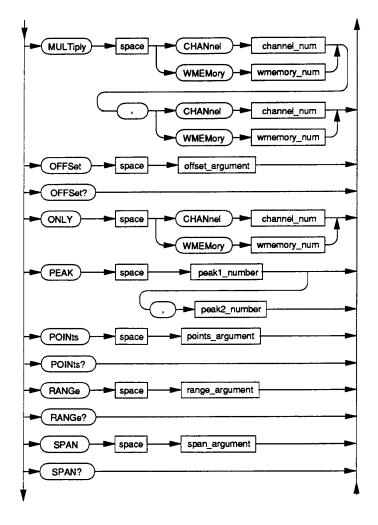
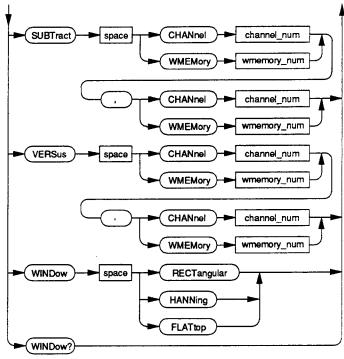



Figure 13-1. Function Subsystem Commands Syntax Diagram (continued)

channel_num = an integer, 1 through 4.

frequency_argument center frequency in Hz.

function_num = an integer, 1 through 4.

level_argument = $0 \text{ to } \pm 600 \text{ dBm}$.

offset_argument = $0 \text{ to } \pm \text{ voltage full scale, or } 0 \text{ to } \pm 200 \text{ dBm for FFT functions.}$

 $\mathbf{peak_num} = 1 \text{ to } 99.$

points_num = 512, 1024, 2048, 4096, or 8192.

range argument = full screen voltage, or full screen dB for FFT functions.

span_argument frequncy span in Hz.

wmemory_num = an integer, 1 through 4.

Figure 13-1. Function Subsystem Commands Syntax Diagram (continued)

Function Subsystem 13-4

ADD command

The :FUNCTION < N > :ADD command algebraically adds the two

defined operands.

Command Syntax: :FUNCtion<N>:ADD

Where:

<N> ::= 1 through 4

<operand> ::= {CHANnel1 | CHANnel2 | CHANnel3 | CHANnel 4 | WMEMory1 |

WMEMory2 | WMEMory3 | WMEMory4}

Example: OUTPUT 707;":FUNCTION2:ADD WMEMORY3, WMEMORY4"

Note

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

DIFF command

The :FUNCTION < N > :DIFF command computes the voltage differences between consecutive points in time divided by the time bucket width, Δt .

$$d_1 = 0$$

$$d_{\rm n} = \frac{c(n) - c(n-1)}{\Delta t}$$

The equation calculates the differential waveform of the operand, where d represents the differential waveform and c represents the operand voltage.

The differential function will magnify signal noise. This noise will be less in the real time mode.

Command Syntax:

:FUNCtion<N>:DIFF <operand>

Where:

<N> ::= 1 through 4
<operand> ::= {CHANnel1 | CHANnel2 | CHANnel3 | CHANnel 4 | WMEMory1 |
WMEMory2 | WMEMory3 | WMEMory4}

Example:

OUTPUT 707;":FUNCTION2:DIFF WMEMORY4"

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

[DISPlay]

command/query

The :FUNCTION < N > [:DISPLAY] command controls the individual function displays. On starts displaying, and off stops displaying the selected function.

The DISPLAY query returns the current setting of the command.

Note Because [:DISPlay] is an implied command, only the parameters need to be sent to turn a selected function on or off. For example, to turn function 1 display on send either ":FUNC1:DISP ON" or ":FUNC1 ON".

Command Syntax:

:FUNCtion<N>[:DISPlay] {{ON | 1} | {OFF | 0}}

Where:

<N> ::= 1 through 4

Example: OUTPUT 707; ": FUNCTION2: DISP ON"

Query Syntax:

:FUNCtion1<N>[:DISPlay]?

Where:

<N> ::= 1 through 4

Returned Format:

[:FUNCtion<N>[:DISPlay]] {1 | 0}<NL>

Example:

DIM Disp\$[50] OUTPUT 707;":FUNC1?" ENTER 707; Disp\$ PRINT Disp\$

FFT command

The :FUNCTION <N>:FFT computes the fast Fourier transform function of the specified channel or memory. The FFT takes the digitized time record of the specified channel and transforms it to the frequency domain.

When the function is turned on and the :FUNCTION < N >:FFT command is sent to the oscilloscope, the FFT spectrum is plotted on the oscilloscope display as dBm versus frequency.

An example FFT program is in Chapter 5, "Example Programs".

Command Syntax:

:FUNCTION<N>:FFT<operand>

Where:

<N>::= 1 through 4

<operand> ::= {CHANnell | CHANnel2 | CHANnel3 | CHANnel4 | WMEMory1 |
WMEMory2 | WMEMory3 | WMEMory3 | WMEMory4}

Example:

OUTPUT 707; "FUNCTION1: FFT CHANNEL1"

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

FREQuency

command/query

This command is used when an FFT function is selected. See FFT

command.

The :FUNCTION < N > :FREQ command sets the center frequency when the FFT magnify mode is selected. See MAGNify command.

Command Syntax: :FI

:FUNCtion<N>:FREQuency<value>

Where:

<N>::=1 through 4

<value>::= frequency from 0 Hz to 1.5X of frequency span

Example:

OUTPUT 707;"FUNCTION1:FREQ 25E6"

Query Syntax:

:FUNCtion<N>:FREQ?

Returned Format:

[FUNCtion<N>:FREQuency] <value><NL>

Example:

DIM Frq\$[50]

OUTPUT 707; "FUNCTION2: FREQ?"

ENTER 707; Frq\$ PRINT Frq\$

INTegrate command

The :FUNCTION < N > :INTEGRATE command computes the integral of the specified waveform. The integral is calculated by adding voltage points multiplied by the time bucket width, Δt .

$$I_n = \sum_{i=0}^{n-1} C_i \ \Delta t$$

The equation calculates the integral of the operand, where I represents the integral and C represents the operand data points.

Command Syntax:

:FUNCtion<N>:INTegrate <operand>

Where:

<N> ::= 1 through 4

<operand> ::= {CHANnel1 | CHANnel2 | CHANnel3 | CHANnel4 | WMEMory1 |

WMEMory2 | WMEMory3 | WMEMory4}

Example:

OUTPUT 707;":FUNCTION2:INTEGRATE WMEMORY4"

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

INVert command

The :FUNCTION < N >: INVERT command inverts the operand.

Command Syntax: :FUNCtion<N>:INVert <operand>

Where:

<N> ::= 1 through 4

<operand> ::= {CHANnell | CHANnel2 | CHANnel3 | CHANnel4 | WMEMoryl |

WMEMory2 | WMEMory3 | WMEMory4}

Example: OUTPUT 707;":FUNCTION2:INVERT WMEMORY3"

Note **

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

LEVel command/query

This command is used when an FFT function is selected. See FFT command.

The :FUNCTION < N > :LEVEL command sets the minimum search level for the peak search. The oscilloscope will search for peaks above the level specified with this command. To qualify as a peak, both positive and negative edges of the peak must be at least one vertical display divison high (or one-half a display division in split screen), and be above the search level.

Command Syntax: :FUNCtion<N>:LEVel <level>

Where:

<N>::= 1 through 4

<level>::= level value 0 to \pm 600 dBm

Example: OUTPUT 707; "FUNCTION1: LEVEL -25"

Query Syntax: :FUNCTION<N>:LEVEL?

Where:

<N>::= 1 through 4

Returned Format: [FUNCTION<N>:LEVEL]<level><NL>

Example: DIM Lv 1\$[50]

OUTPUT 707;":FUNCTION1:LEVEL?"

ENTER 707;Lv1\$
PRINT Lv1\$

MAGNify

command/query

This command is used when an FFT function is selected. See FFT command.

The :FUNCTION < N > :MAGNify command magnifies a particular frequency range of interest.

In the magnify mode, 500 points of the FFT are displayed. For POINTS = 512, half of the 500 points displayed in the magnify mode are interpolated. When the magnify is off, a compression algorithm is used to compress all the FFT points into 500 points. The compression algorithm accurately displays peaks and most noise. However, low points in the noise may occasionally be missed.

Command Syntax:

:FUNCTION<N>:MAGNIFY {{ON | 1} | {OFF | 0}}

Where:

<N>::= 1 through 4

Example:

OUTPUT 707: "FUNCTION1: MAGNIFY ON"

Query Syntax:

:FUNCTION<N>:MAGNIFY?

Where:

<N>::= 1 through 4

Returned Format:

[:FUNCtion<N>:MAGNify] {1|0}<NL>

Example:

DIM Mfy\$[50]

OUTPUT 707; "FUNCTION1: MAGNIFY?"

ENTER 707; Mfy\$ PRINT Mfy\$

MULTiply command

The :FUNCTION < N > : MULTIPLY command algebraically

multiplies the two defined operands.

Where:

<N> ::= 1 through 4

<operand> ::= {CHANnell | CHANnell | CHANnell | WMEMoryl |

WMEMory2 | WMEMory3 | WMEMory4}

Example: OUTPUT 707; ": FUNCTION2: MULTIPLY CHANNEL1, CHANNEL2"

vote

< operand > 's CHANnel3 and CHANnel4 are only available when the
oscilloscope is an HP 54506B/54512B.

OFFSet

command/query

The :FUNCTION < N >: OFFSET command sets the voltage or, if the FFT function is selected, the dBm value represented at the center of

the screen for the selected function.

The OFFSET query returns the current offset value for the selected

function.

Command Syntax:

:FUNCtion<N>:OFFSet <offset>

Where:

<N> ::= 1 through 4

<offset> ::= offset value of 0 to \pm voltage full scale, or 0 to \pm 200 dBm

for FFT function

Example:

OUTPUT 707;":FUNCTION1:OFFSET 650E-4"

Query Syntax:

:FUNCtion<N>:OFFSet?

Where:

<N> ::= 1 through 4

Returned Format:

[:FUNCtion<N>:OFFSet] <offset><NL>

Where:

<N> ::= 1 through 4

<offset> ::= offset value (see above) (exponential - NR3 format)

Example:

DIM Off\$[50]

OUTPUT 707;":FUNCTION2:OFFSET?"

ENTER 707; Off\$ PRINT Off\$

command ONLY

> The :FUNCTION < N >: ONLY command produces another copy of the operand and places it in the specified function. The ONLY command is useful for scaling channels and memories with the :FUNCTION < N > :RANGE and :FUNCTION < N > :OFFSET commands.

Command Syntax:

:FUNCtion<N>:ONLY

Where:

<N> ::= 1 through 4

<operand> ::= {CHANne11 | CHANne12 | CHANne13 | CHANne14 | WMEMory1 |
WMEMory2 | WMEMory3 | WMEMory4}

OUTPUT 707; ": FUNCTION2: ONLY WMEMORY4" Example:

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

PEAK command

This command is used when an FFT function of the oscilloscope is selected. See FFT command.

The :FUNCTION < N > :PEAK command causes a peak search to be performed. The peak search sets Vmarker1 (y1) and the start marker on the first peak specified and sets Vmarker2 (y2) and the stop marker on the second peak specified. Peaks from 1 to 99 can be specified.

The marker values in frequency and dBm are automatically displayed at the bottom of the oscilloscope screen. The difference in frequency and dBm between the two peaks is also displayed.

The marker values can be read over the bus using the VSTART, VSTOP, VDELTA, TSTART, TSTOP, and TDELTA queries. See Chapter 15, "Measure Subsystem".

If a peak is not found a message is displayed on the screen. The vertical marker is set to the right edge of the screen and the horizontal marker is set to the bottom of the screen.

For maximum frequency accuracy, the FFT horizontal magnify function should be turned on. See MAGNIFY command.

Command Syntax:

:FUNCtion<N>:PEAK <peak 1 number>, <peak 2 number>

Where:

<N> ::= 1 through 4
<peak_number> ::= 1 through 99

Example: OUTPUT 707;":FUNCTION1:PEAK 5, 7"

POINts command/query

This command is used when the FFT function is selected. See FFT command.

The :FUNCTION < N > :POINTS < points_number > assigns the number of data points in the record to be used for the FFT computation. The number of points affects the computation speed, frequency resolution, and the noise floor. The frequency resolution of an FFT is $\frac{F_s}{N}$, where: F_s is the sampling frequency and N is the number points. The maximum signal-to-noise ratio for an FFT is also related to the number of points and the A/D converter bits of resolution.

An FFT performed on a small number of points can be computed faster. An FFT performed on a large number of points has better frequency resolution and a lower noise floor. The resolution affects how accurately frequencies can be measured and how well two frequencies that are close together can be resolved.

If the oscilloscope is in repetitive mode, or the operand is a memory that was stored from the repetitive mode, the number of points defaults to 512 and cannot be changed.

When the operand is a repetitive source, on-screen data is used for the FFT. When the operand is real time, the FFT is performed on data in the 8k record, but not necessarily data that is displayed on the screen. The points used from the source record for the FFT are based on the TIMEBASE reference setting of left, center, or right. See also :TIMebase:REFerence command.

When ":TIMebase:REFerence LEFT" is sent, data from the beginning of the record is used. When "TIMebase:REFerence CENTer" is sent, data from the middle of the record is used. When "TIMebase:REFerence RIGHt" is sent, data from the end of the record is used. The memory bar above the graticule indicates the portion of the data record used for the FFT. The memory bar showing the FFT record is displayed whenever the FFT menu with the # of points key is on

Function Subsystem 13-18

When it is necessary to window the data, the LEFT REFerence is a good choice since the FFT record then begins on the left side of the screen.

An FFT with an input record of N points becomes a frequency record of N points. Because half of the points are above the Nyquist frequency (sample frequency/2) and provide redundant information, they are not used so the number of frequency points are half the number of input points.

The FFTs are computed on records that are powers of two. If a repetitive source (500 points) or an entire record (8000 points) is selected, the record is zero padded at the ends to achieve 512 and 8192 points.

If the number of FFT points is 512, 256 additional frequency points are created by interpolating between the actual points to generate 512 frequency points. Table 13-1 lists the number of input points and the resultant number of frequency points.

Table 13-1. FFT Points

INPUT POINTS	FREQUENCY POINTS
512 (repetitive)	512
512 (real time)	512
1024	512
2048	1024
4096	2048
8192	4096

POINts

Command Syntax: :FUNCtion<N>:POINts <points_number>

Where:

<N>::= 1 through 4

<points_number>::={512 | 1024 | 2048 | 4096 | 8192}

Example: OUTPUT 707;":FUNCTION1:POINTS 2048"

Query Syntax: :FUNCtion<N>:POINts?

Where:

<N>::= 1 through 4

Returned Format: [:FUNCtion<N>:POINts] <number of points>

Where:

<N>::= 1 through 4

<number of points>::= {512 | 1024 | 2048 | 4096 | 8192}

Example: DIM Pts\$[50]

OUTPUT 707; "FUNCTION1: POINTS?"

ENTER 707;Pts\$ PRINT Pts\$

Function Subsystem 13-20

RANGe command/query

The :FUNCTION < N > : RANGE command defines the full scale

vertical axis of the selected function.

The RANGE query returns the current range setting for the specified

function.

Command Syntax: :FUNCtion<N>:RANGe <range>

Where:

<N> ::= 1 through 4

<range> ::= full scale vertical range in volts, dB, or dBm

Example: OUTPUT 707;":FUNCTION2:RANGE 400E-3"

Query Syntax: :FUNCtion<N>:RANGe?

Where:

<N> ::= 1 through 4

Returned Format: [:FUNCtion<N>:RANGe] <range><NL>

Where:

<N> ::= 1 through 4

<range> ::= current range setting (exponential - NR3 format)

Example: DIM Rng\$[50]

OUTPUT 707;":FUNCTION2:RANGE?"

ENTER 707; Rng\$ PRINT Rng\$ SETup query

The :FUNCTION < N > :SETUP query returns the current settings for

the FUNCTION Subsystem commands.

Query Syntax: :FUNCtion < N > :SETup?

Returned Format: :FUNCtion<N>:FREQuency<value>; LEVe1<leve1>;MAGNify{ON|OFF};OFFSet<offset>;POI

Nts<points>;RANGe<range>;SPAN<frequency>;WINDow{RECT | HANN | FLAT}<NL>

Where:

<N> ::= 1 through 4

<value> ::=freq in hertz from 0 to 1.5X span (exponential - NR3 format)

<level> ::=0 +\-600 dBm

<offset> ::= offset value in volts or +\-200 dBm for FFT (exp - NR3 format)

<points> ::= 512 | 1024 | 2048 | 4096 | 8192

<range> ::= full-scale range value (exponential - NR3 format)
<frequency> ::= freq in hertz (exponential - NR3 format)

Example: DIM Stp\$[200]

DIM Stp\$[200] OUTPUT 707;":FUNC1:SET?"

ENTER 707;Stp\$
PRINT Stp\$

SPAN command/query

This command is used when the FFT function is selected. See FFT command.

The :FUNCTION < N > :SPAN command controls the frequency span of the FFT record. Changing the span for an FFT function with a channel source causes the timebase to change. The span is the sample frequency divided by two. Since the sample frequency for memories is fixed once a record is stored, the span is also fixed and cannot be changed for FFT functions with a memory source.

Command Syntax: :FUNCtion<N>:SPAN<frequency>

Where:

<N> ::= 1 through 4

<frequency> ::= number in Hertz

Example: OUTPUT 707:;"FUNCTION1:SPAN 25E6"

Query Syntax: :FUNCTION<N>:SPAN?

Returned Format: [FUNCTION<N>:SPAN]<frequency><NL>

Example: DIM Spn\$[50]

OUTPUT 707:":FUNCTION1:SPAN?"

ENTER 707; Spn\$
PRINT Spn\$

command **SUBTract**

> The:FUNCTION<N>:SUBTRACT command algebraically subtracts operand 2 from operand 1.

Command Syntax: :FUNCtion<N>:SUBTract <operand1>,<operand2>

Where:

<N> ::= 1 through 4

<operand1> ::= {CHANnel1 | CHANnel2 | CHANnel3 | CHANnel4 | WMEMory1 |

WMEMory2 | WMEMory3 | WMEMory4} <operand2> ::= {CHANnel1 | CHANnel2 | CHANnel3 | CHANnel4 | WMEMory1 |

WMEMory2 | WMEMory3 | WMEMory4}

OUTPUT 707; ": FUNCTION2: SUBTRACT WMEMORY3, WMEMORY2" Example:

In this example, Waveform Memory 2 is algebraically subtracted from

Waveform Memory 3.

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

VERSus command

The :FUNCTION < N > :VERSUS command allows X vs Y displays with two operands. The first operand defines the Y-axis and the second defines the X-axis. The Y-axis range and offset is initially equal to that of the first operand, and can be adjusted with the FUNCTION < N > :RANGE and FUNCTION < N > :OFFSET commands.

The X-axis range and offset is always equal to that of the second operand. They can only be changed by changing the vertical settings of the second operand.

Command Syntax:

:FUNCtion<N>:VERSus <Y_operand>,<X_operand>

Where:

< N> ::= 1 or 2

<Y_operand> ::= {CHANne11 | CHANne12 | CHANne13 | CHANne14 | WMEMory1 |
WMEMory2 | WMEMory3 | WMEMory4}

<X_operand> ::= {CHANne11 | CHANne12 | CHANne13 | CHANne14 | WMEMory1 |
WMEMory2 | WMEMory3 | WMEMory4}

Example:

OUTPUT 707;":FUNCTION2:VERSUS CHAN1,CHAN2"

< operand > 's CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

WINDow command/query

> This command is used when the FFT function is selected. See FFT command.

The :FUNCTION < N > :WINDOW command allows selection of three windows for the FFT function.

The FFT operation assumes that the time record repeats. Unless there is an integer number of cycles of the sampled waveform in the record, a discontinuity is created at the end of the record. This introduces additional frequency components into the spectrum about the actual peaks. This is referred to as leakage. In order to minimize leakage, windows that approach zero smoothly at the beginning and end of the record are employed as filters to the FFTs.

Each window is useful for certain classes of input signals.

The rectangular window is essentially no window, all points are multiplied by 1. The rectangular window is useful for transient signals and signals where there are an integral number of cycles in the time record. The hanning window is useful for frequency resolution and general purpose use. It is good for resolving two frequencies that are close together or for making frequency measurements. The flattop window is best for making accurate amplitude measurements of frequency peaks.

Command Syntax: :FUNCtion<N>:WINDow {RECTangular | HANNing | FLATtop}

> Example: OUTPUT 707;":FUNCTION<N>:WINDOW RECT

Query Syntax: :FUNCtion<N>:WINDow?"

> Example: DIM Wnd\$ [50]

OUTPUT 707;":FUNCTION1:WINDOW?"

ENTER 707; Wnd\$ PRINT Wnd\$

Function Subsystem 13-26

Hardcopy Subsystem

Introduction

The HARDCOPY subsystem commands set various parameters for printing and plotting waveforms from the HP 54505B, HP 54506B, HP 54510B and HP 54512B.

To actually make the hardcopy print or plot, refer to the root level commands: PRINT and: PLOT for the sequence of bus commands that actually get the data to the printer or plotter.

The Hardcopy subsystem contains the following commands:

- LENGth
- MODE
- PAGE
- PLOT:AREA
- PLOT:INITialize
- PLOT:PEN | COLor

Figure 14-1 lists the syntax diagrams for the Hardcopy subsystem commands.

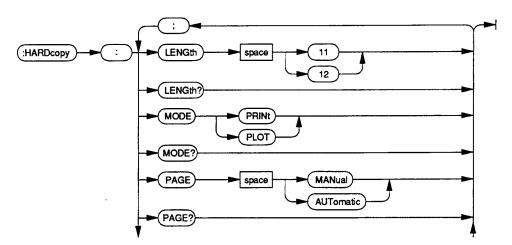


Figure 14-1. Hardcopy Subsystem Commands Syntax Diagram

HP 54505B/54506B/54510B/54512B Programming Reference

Hardcopy Subsystem 14-1

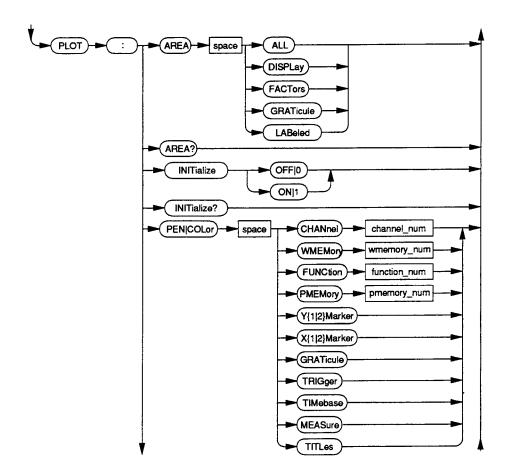
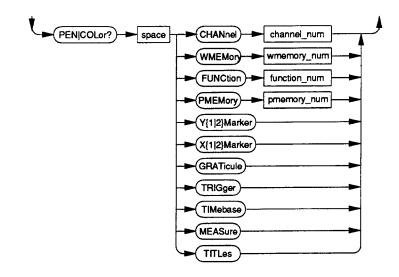



Figure 14-1. Hardcopy Subsystem Commands Syntax Diagram (continued)

Hardcopy Subsystem 14-2

channel_num = an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B).

(III 54500B/54512B).

function_num = an integer, 1 through 4.

pen_num = an integer, 0 to 8.

pmemory_num = an integer, 1 or 2.

wmemory_num = an integer, 1 to 4.

Figure 14-1. Hardcopy Subsystem Commands Syntax Diagram (continued)

HP 54505B/54506B/54510B/54512B Programming Reference Hardcopy Subsystem 14-3

LENGth

LENGth command/query

The :HARDCOPY:LENGTH command sets the length of the page to

either 11 inches or 12 inches.

The LENGTH query returns the current length setting.

Command Syntax: :HARDcopy:LENGth {11 | 12}

> Example: OUTPUT 707;":HARDCOPY:LENGTH 12"

Query Syntax: :HARDcopy:LENGth?

Returned Format: [:HARDcopy:LENGth] {11 | 12}<NL>

Example:

DIM Lgth\$[50] OUTPUT 707;":HARDCOPY:LENGTH?" ENTER 707;Lgth\$

PRINT Lgth\$

command/query **MODE**

The :HARDCOPY:MODE command sets the HP-IB device mode for

a printer or plotter output.

The MODE query returns the current setting of the MODE command.

Command Syntax: :HARDcopy:MODE {PRINt | PLOT}

> OUTPUT 707;":HARD:MODE PRINT" Example:

Query Syntax: :HARDcopy:MODE?

Returned Format: [:HARDcopy:MODE] {PRINt | PLOT}<NL>

Example:

DIM Md\$[30] OUTPUT 707;":HARDCOPY:MODE?" ENTER 707;Md\$

PRINT Md\$

PAGE command/query

The :HARDCOPY:PAGE command configures the oscilloscope to

send a formfeed to the printer after it outputs a hardcopy.

If the PAGE command is set to AUTomatic, a formfeed occurs at the end of the hardcopy; otherwise, the page scrolls up by 4 lines.

The PAGE query returns the current state of the PAGE command.

Command Syntax: :HARDcopy:PAGE {MANual | AUTomatic}

Example: OUTPUT 707;":HARD:PAGE AUT"

Query Syntax: :HARDcopy:PAGE?

Returned Format: [:HARDcopy:PAGE] {MANual | AUTomatic}<NL>

Example: DIM Pg\$[30]

OUTPUT 707;":HARDCOPY:PAGE?"

ENTER 707;Pg\$
PRINT Pg\$

PLOT:AREA

command/query

The :HARDCOPY:PLOT:AREA command selects the area to be

plotted.

The PLOT:AREA query returns the current selection for the

PLOT: AREA command.

Command Syntax: :HARDcopy:PLOT:AREA {ALL | DISPlay | FACTors | GRATicule | LABeled}

Example: OUTPUT 707;":HARD:PLOT:AREA ALL"

Query Syntax: :HARDcopy:PLOT:AREA?

Returned Format: [:HARDcopy:PLOT:AREA] {ALL | DISPlay | FACTors | GRATicule | LABeled}<NL>

Example: DIM P1\$[50]

DIM P1\$[50] OUTPUT 707;":HARDCOPY:PLOT:AREA?"

ENTER 707;P1\$
PRINT P1\$

PLOT:INITialize

PLOT: INITialize

command/query

The :HARDCOPY:PLOT:INITialize command sets the plotter to a

known state. Sending the command

:HARDCOPY:PLOT:INITIALIZE ON sends the "IN" command to the plotter which sets P1 and P2 to the default value. Sending the command :HARDCOPY:PLOT:INITIALIZE OFF sends the "DF" command to the plotter and does not set P1 and P2 to the default value.

The PLOT:INITIALIZE query returns the current setting of the

command.

Command Syntax: :HARDcopy:PLOT:INITialize {{ON | 1} | {OFF | 0}}

Example: OUTPUT 707;":HARD:PLOT:INITIALIZE ON"

Query Syntax: :HARDcopy:PLOT:INITialize?

Returned Format: [:HARDcopy:PLOT:INITialize] {1 | 0}<NL>

Example: DIM P1\$[50]
OUTPUT 707;":HARDCOPY:PLOT:INIT?"

ENTER 707;P1\$ PRINT P1\$

Hardcopy Subsystem 14-8

PLOT:PEN | COLor

command/query

The :HARDCOPY:PLOT:PEN | COLOR command selects the plotter pen to plot individual items on the screen. By selecting the appropriate plotter pen, you can plot different items on the screen in different colors to distinguish them from each other. Pen/color numbers 1 through 8 select the corresponding pens on the plotter. Pen/color number 0 returns the plotter pen to its carousel without plotting the selected item.

The PLOT:PEN | COLOR query returns the current pen/color selection for an individual item on the screen.

Command Syntax:

:HARDcopy:PLOT:PEN | COLor < item>, <pen_number>

Where:

```
<item> ::= {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | PMEMory{1 | 2} | Y{1|2}Marker | X{1|2}Marker | GRATicule | TRIGger | TIMebase | MEASure | TITLes}
<pin_number> ::= 0 through 8
```

Example:

OUTPUT 707;":HARD:PLOT:COLOR CHANNEL1,2"

Query Syntax:

:HARDcopy:PLOT:COLor? <item>

Returned Format:

[:HARDcopy:PLOT:PEN|COLor] <pen_number><NL>

Where:

```
<item> ::= {CHANne1{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | PMEMory{1 | 2} | Y{1|2}Marker | X{1|2}Marker | GRATicule |
TRIGger | TIMebase | MEASure | TITLes}
<pen_number> ::= 0 through 8 (integer - NR1)
```

Example:

DIM P1\$[50] OUTPUT 707;":HARDCOPY:PLOT:COLOR? CHANNEL1"

ENTER 707; P1\$ PRINT P1\$

Note CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

HP 54505B/54506B/54510B/54512B **Programming Reference**

Hardcopy Subsystem 14-9

Measure Subsystem

Introduction

The commands in the MEASURE subsystem are used to make parametric measurements on displayed waveforms and to report the settings of the voltage and time markers. Some commands in this subsystem can be used to set the voltage and time markers to specified voltages, times, or events.

The Measure subsystem contains the following commands:

ALL TDELta TMAX COMPare **TMIN** CURSor TSTArt DEFine TSTOp DELay • TVOLt DESTination UNITs DUTycycle • UPPer ESTArt ESTOp VACRms VAMPlitude FALLtime • VAVerage FREQuency LIMittest VBASe VDCRms LOWer • VDELta MODE NWIDth VFIFty VMAX OVERshoot VMIN PERiod VPP POSTfailure PREShoot VRELative PWIDth VRMS RESults VSTArt RISetime VSTOp VTIMe SCRatch SOURce VTOP WCOMpare STATistics

Figure 15-1 lists the syntax diagrams for the Measure subsystem commands.

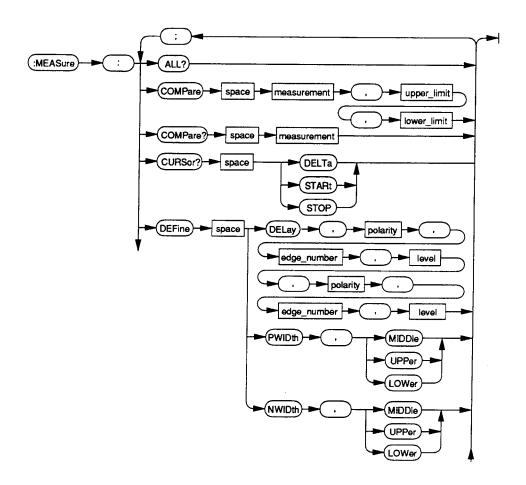


Figure 15-1. Measure Subsystem Commands Syntax Diagram

Measure Subsystem 15-2

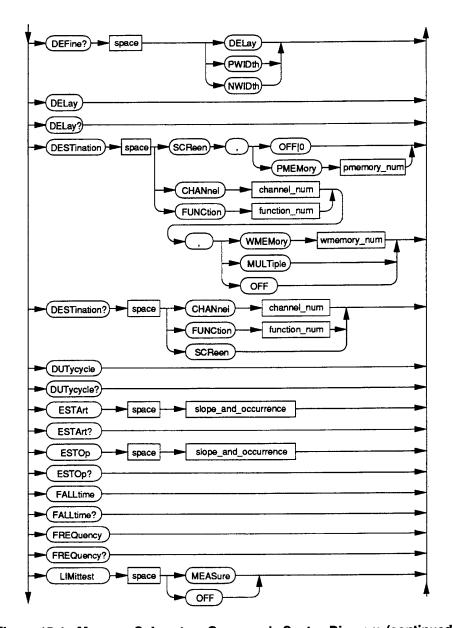


Figure 15-1. Measure Subsystem Commands Syntax Diagram (continued)

HP 54505B/54506B/54510B/54512B Programming Reference Measure Subsystem 15-3

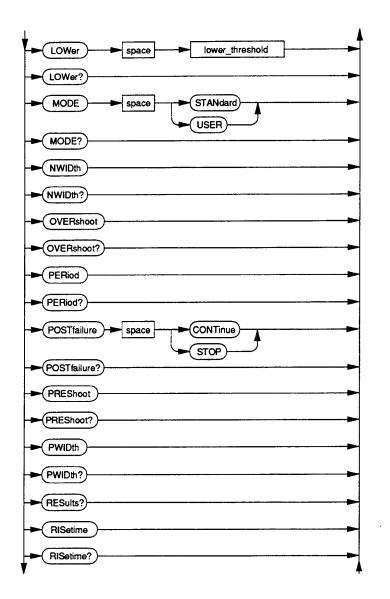


Figure 15-1. Measure Subsystem Commands Syntax Diagram (continued)

Measure Subsystem 15-4

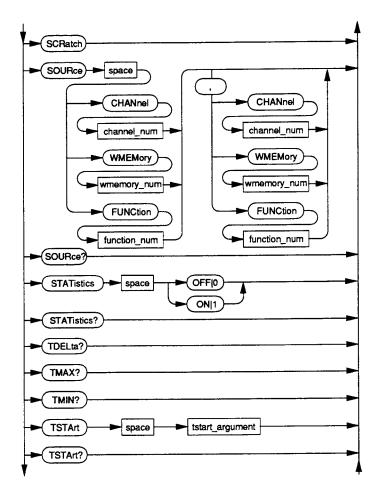


Figure 15-1. Measure Subsystem Commands Syntax Diagram (continued)

HP 54505B/54506B/54510B/54512B Programming Reference Measure Subsystem 15-5

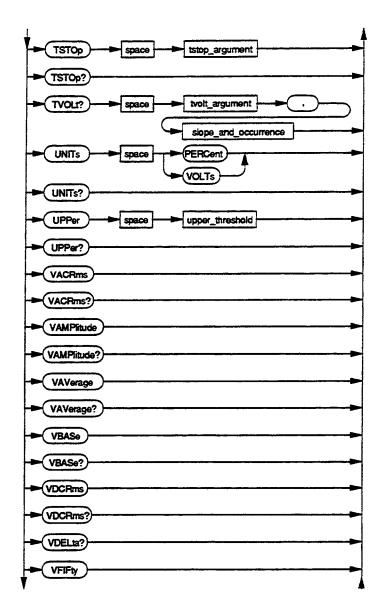


Figure 15-1. Measure Subsystem Commands Syntax Diagram (continued)

Measure Subsystem 15-6

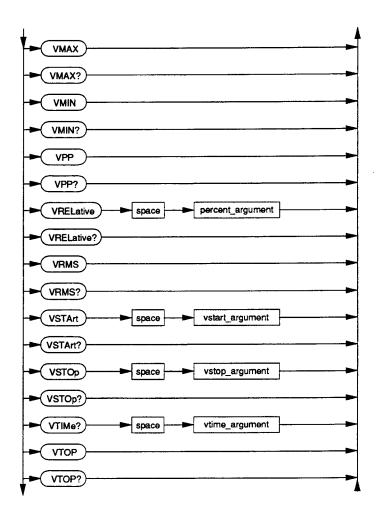


Figure 15-1. Measure Subsystem Commands Syntax Diagram (continued)

HP 54505B/54506B/54510B/54512B Programming Reference Measure Subsystem 15-7

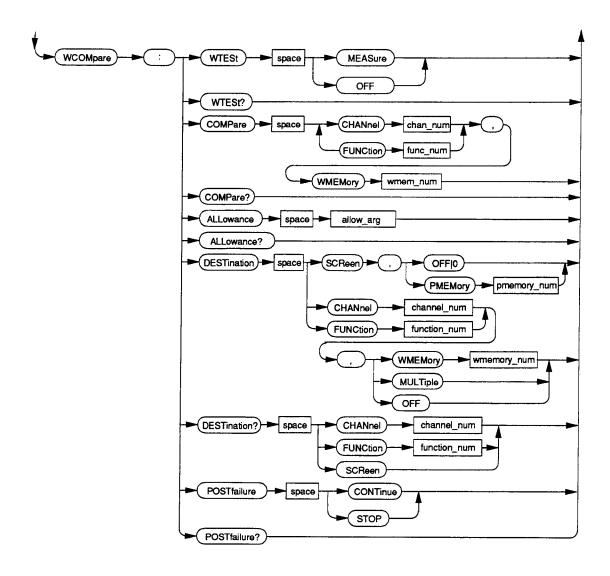


Figure 15-1. Measure Subsystem Commands Syntax Diagram (continued)

Measure Subsystem 15-8

channel num = an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4

(HP 54506B/54512B).

edge_number = an integer, 1 to 4000.

function_num = an integer, 1 through 4.

level = MIDDle, UPPer, or LOWer.

lower limit = lower limit for compare.

lower_threshold = lower threshold value in percent or volts.

measurement = name of the measurement to be compared.

percent_argument = an integer, 0 to 100.

pmemory_num = an integer, 1 or 2.

polarity = POSitive or NEGative.

slope and occurrence = an integer, -4000 to 4000 (excluding 0) specifying a displayed edge.

tstart_argument = time in seconds from the trigger.

tstop_argument = time in seconds from the trigger.

tvolt_argument = a real number specifying voltage.

upper_limit = upper limit for compare.

upper_threshold = upper threshold value in percent or volts.

vstart_argument = a real number within the voltage range.

vstop_argument = a real number within the voltage range.

vtime_argument = a real number in the horizontal display window.

wmemory_num = an integer, 1 through 4.

Figure 15-1. Measure Subsystem Commands Syntax Diagram (continued)

HP 54505B/54506B/54510B/54512B Programming Reference

Measure Subsystem 15-9

Measurement Setup

To make a measurement, the portion of the waveform required for that measurement must be displayed on the oscilloscope:

- For a period or frequency measurement, at least one complete cycle must be displayed.
- For a pulse width measurement, the entire pulse must be displayed.
- For a rise time measurement, the leading (positive-going) edge of the waveform must be displayed.
- For a fall time measurement, the trailing (negative-going) edge of the waveform must be displayed.

User-Defined Measurements

When User-Defined Measurements are made, the defined parameters must be set before actually sending the measurement command or query.

In User-Defined Measurements, the mid-threshold is the mid point between the upper and lower threshold when the lower threshold value is less than the upper threshold value.

Measurement Error

If a measurement cannot be made, the value +9.99999E+37 is returned for that parameter. This will be returned when no data is available, or if the measurement cannot be performed. For example, when performing a Vpp? measurement on a clipped waveform, or a FREQ? measurement without a full cycle present.

Measure Subsystem 15-10

Making Measurements

If more than one waveform, edge, or pulse is displayed, time measurements are made on the first (left-most) portion of the displayed waveform.

When any of the defined measurements are requested, the oscilloscope first determines the top (100%) and base (0%) voltages of the waveform. From this information, it can determine the other important voltage values (10%, 90%, and 50% voltage values) for making measurements.

The 10% and 90% voltage values are used in the rise time and fall time measurements when standard measurements are selected. The 50% voltage value is used for measuring frequency, period, pulse width, and duty cycle with standard measurements selected.

The measurements can also be made using user-defined parameters instead of the standard measurement values.

When the command form of the measurement or front-panel measurements are used, the instrument is placed into the continuous measurement mode. When the query form of these measurements is used, the continuous measurement mode is turned off. Then the measurement is made one time, and the measurement result is returned.

Except for VAVERAGE, VRMS, VACRMS, and VDCRMS measurements, which use only one cycle, voltage measurements are made using the entire display. Therefore, if you want to make a measurement on a particular cycle, display only that cycle on the screen.

All voltage values are returned in volts. Returned voltage values are measured with zero volts as the reference. The value returned for the VDELTA? query is the difference between y1marker and y2marker in volts

All time values are returned in seconds. Returned time values are measured with the trigger point (time 0) as the reference. The value returned for TDELTA? is the time difference between the x2marker and x1marker.

Measurements are made on the displayed waveforms specified by the SOURCE command. The SOURCE command allows two sources to be specified. When two sources are specified, y1marker is assigned to the first specified source and y2marker is assigned to the second specified source.

Most measurements can only be made on a single source. If one of these measurements is made with two sources specified, the measurement is made on the first source specified.

If the horizontal scaling is questionable, an "error 11" is placed in the error queue. In this case, the value returned is the most accurate value that can be made using the current scaling. You might be able to obtain a more accurate measurement by rescaling the horizontal to obtain more data points on the edge.

For more information about measurement algorithms, refer to chapter 26, "Algorithms."

Measure Subsystem 15-12

ALL query

The :MEASURE:ALL query makes a set of measurements on the displayed signal and buffers the measurement results for output over the HP-IB.

To make a measurement, the portion of the waveform required for the measurement must be displayed. Time measurements are made on the first (left-most) displayed edges of the waveforms. To obtain the most accurate measurement possible, use proper horizontal scaling.

Refer to the individual commands for information on how the measurements are made and how the measurement results are returned.

Query Syntax: :M

:MEASure:ALL?

Returned Format:

[:MEASure:FREQuency] <result>; [PERiod] <result>; [PWIDth] <result>; [NWIDth]

<result>;[RISetime] <result>;[FALLtime] <result>;[VAMP]itude]

<result>; [VPP] <result>; [PREShoot] <result>; [OVERshoot]
<result>; [DUTycycle] <result>; [VRMS] <result>; [VMAX] <result>; [VMIN]
<result>; [VTOP] <result>; [VBASe] <result>; [VAVerage] <result>

Where

<result> ::= individual measurement results (exponential - NR3 format)

Example: DIM A\$ [500]

OUTPUT 707;":MEASURE:ALL?"

ENTER 707; A\$
PRINT A\$

These values can be returned as numeric variables instead of the string variables as shown. If numeric variables are used, the headers must be turned off.

COMPare

command/query

The :MEASURE:COMPARE command specifies the measurement and limits to be used for the measurement comparison (limit test). The first limit is the upper limit, the second is the lower limit.

This command does not start the test, but only sets the test parameters.

The COMPARE query returns the current specification.

Command Syntax:

:MEASure:COMPare <measurement>,<upper_limit>,<lower_limit>

Where:

<measurement> ::= {RISetime | FALLtime | FREQuency | PERiod | PWIDth |
NWIDth | VAMPlitude | VBASe | VTOP | VPP | VAVerage | VMAX | VMIN | VRMS |
DUTycycle | DELay}

<upper_limit> ::= high limit value.
<lower_limit> ::= low limit value.

The suffix "HZ" can be used when setting the limits for FREQUENCY.

Example:

OUTPUT 707;":MEASURE:COMPARE RISETIME,10ns,2ns"

Query Syntax: :MEASure:COMPare? measurement>

Where:

smeasurement> ::= {RISetime | FALLtime | FREQuency | PERiod | PWIDth | NWIDth | VAMPlitude | VBASe | VTOP | VPP | VAVerage | VMAX | VMIN | VRMS |

DUTycycle | DELAY}

[:MEASure:COMPare] qmeasurement>, <upper_limit>, <lower_limit><NL> Returned Format:

> Example: DIM Cmp\$[50]

OUTPUT 707; ": MEASure: COMPare? VPP"

ENTER 707; Cmp\$ PRINT Cmp\$

For example, the sequence required to do a limit test on frequency is:

OUTPUT 707;":MEASURE:SCRATCH" !clear measurements OUTPUT 707;":MEASURE:FREQ"!Select measurement

OUTPUT 707;":MEASURE:COMPARE FREQ,1000HZ,10HZ"!Set measurement limits

OUTPUT 707;":MEASURE:LIMITTEST MEASURE"!Start test
OUTPUT 707;":RUN" !start acquisition

When a limit test failure occurs, bit 3 of the status byte is set to a 1.

CURSor query

The :MEASURE:CURSOR query returns the time and voltage values of the specified marker as an ordered pair of time/voltage values.

- If DELTA is specified, the instrument returns the value of delta V (y) and delta T (x).
- If START is specified, the positions of the x1marker and y1marker are returned.
- If STOP is specified, the positions of the x2marker and y2marker are returned.

When the CURSOR query is sent, no measurement is made and the cursors are not moved.

Query Syntax:

:MEASure:CURSor? {DELTa | STARt | STOP}

Returned Format:

[:MEASure:CURSor] <time>,<voltage><NL>

Where:

<time> ::= delta time, xlmarker time, or x2marker time

<voltage> ::= delta voltage, ylmarker voltage, or y2marker voltage

Example:

OUTPUT 707;":MEAS:SOURCE CHAN1" !select measurement source

OUTPUT 707; ": MEAS: CURSOR? START"

ENTER 707; Tme, Vlt PRINT Tme, Vlt

DEFine

command/query

The :MEASURE:DEFINE command defines the setup for a measurement.

The DEFINE query returns the current setup.

Command Syntax:

:MEASure:DEFine <measurement_spec>

Where:

<measurement_spec> ::= {DELay, <polarity>, <edge_number>, <level>,
<polarity>, <edge_number>, <level> | PWIDth, <level> | NWIDth, <level>}

Where:

<polarity> ::= {POSitive | NEGative}

<edge number> ::= an integer, 1 to 4000 specifying a displayed edge

<level> ::= {MIDDle | UPPer | LOWer}

Example:

OUTPUT 707; ":MEAS:DEFINE DELAY, POSITIVE, 1, UPPER, NEGATIVE, 2, MIDDLE"

This example sets the parameters for a time measurement from the first positive edge at the upper threshold level to the second negative edge at the middle threshold. If one source is specified, both parameters apply to that signal. If two sources are specified, the measurement is from the first positive edge on source 1 to the second negative edge on source 2.

...

The :MEASure:MODE command must be set to USER before :LOWer, :UPPer, :UNITs, or :DEFine :MEASure commands will be in effect.

Query Syntax: :MEASure:DEFine? {DELay | PWIDth | NWIDth}

Returned Format: [:MEASure:DEFine] <measurement_spec><NL>

Where:

<measurement_spec> ::= {DELay, <polarity>, <edge_number>, <level>,
<polarity>, <edge_number>, <level> | PWIDth, <level> | NWIDth, <level>}

Where:

<polarity> ::= {POSitive | NEGative}
<edge_number> ::= 1 to 4000 (integer - NR1 format)
<level> ::= {MIDDle | UPPer | LOWer}

Example: DIM Dfn\$[100]

OUTPUT 707;":MEASURE:DEFINE? DELAY"
ENTER 707;Dfn\$

PRINT Dfn\$

command/query **DELay**

The :MEASURE:DELAY command determines the delay from the first specified edge on one source to the next specified edge on the same source, or to the first specified edge on another source.

One or two sources can be specified with the :MEASURE:SOURCE command.

If user-defined measurement specifications are selected, make sure the defined measurement is displayed.

The DELAY query returns the specified delay value.

Command Syntax: :MEASure:DELay

> OUTPUT 707;":MEAS:DEL" Example:

Query Syntax: :MEASure:DELay?

Returned Format: [:MEASure:DELay] <delay_value><NL>

Where:

<delay value> ::= time value in seconds (exponential - NR3 format)

DIM Dly\$[50] OUTPUT 707;":MEASURE:DELAY?" Example:

ENTER 707; D1y\$

DESTination

command/query

The :MEASURE:DESTINATION command specifies the source and destination to be used when a comparison violation is found.

Source choices include the screen, any channel, or any function.

Destination choices are as follows:

- Waveform memory: when selected, the memory is overwritten each time a violation is found. Can only be selected when the source is CHANnel or FUNCtion.
- Multiple memory: when selected, up to 665 records may be saved.
 If multiple failures occur and MEASure:POSTfailure STOP is selected, 665 records are saved and the test stops. If multiple failures occur and MEASure:POSTfailure CONTinue is selected, the data records wrap around. Can only be selected when the source is CHANnel or FUNCtion.
- Pixel memory: when selected, an accumulated save occurs. Can only be selected when the source is SCReen.
- Off: when selected, no save occurs.

The DESTINATION query returns the destination currently selected for the specified source.

Command Syntax:

```
:MEASure:DESTination {{CHANnel{ 1 | 2 | 3 | 4 } | FUNCtion{ 1 | 2 | 3 | 4 }, {0FF | WMEMory{ 1 | 2 | 3 | 4 } | MULTiple}} | {{SCReen}, {0FF | PMEMory{ 1 | 2 }}}
```

Example:

OUTPUT 707;":MEAS:DEST CHAN1, MULT"

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

Measure Subsystem 15-20

:MEASure:DESTination {CHANnel{ 1 | 2 | 3 | 4 } | FUNCtion{ 1 | 2 | 3 | 4 } | SCReen}? **Query Syntax:**

[:MEASure:DESTination {CHANnel{ 1 | 2 | 3 | 4 } | FUNCtion{ 1 | 2 | 3 | 4 } | SCReen}] {WMEMory{ 1 | 2 | 3 | 4 }|PMEMory{ 1 | 2 }|MULTiple | OFF}<NL> **Returned Format:**

Example:

DIM Dst\$[50] OUTPUT 707;":MEAS:DEST?" ENTER 707;Dst\$

PRINT Dst\$

DUTycycle

command/query

The :MEASURE:DUTYCYCLE command places the instrument in the continuous measurement mode and starts the duty cycle measurement.

The DUTYCYCLE query measures and outputs the duty cycle of the signal specified by the SOURCE command. The signal must be displayed for the measurement to be made. The value returned for duty cycle is the ratio of the positive pulse width to the period.

The positive pulse width and the period of the specified signal are measured, then the duty cycle is calculated with the following formula:

duty cycle = + pulse width/period

Command Syntax:

:MEASure:DUTycycle

Example:

OUTPUT 707;":MEASURE:DUTYCYCLE"

Query Syntax:

:MEASure:DUTycycle?

Returned Format:

[:MEASure:DUTycycle] <value><NL>

Where:

<value> ::= ratio of positive pulse width to period (exponential - NR3

format)

Example:

DIM Dc\$[50]

OUTPUT 707;":MEASURE:DUTYCYCLE?"

ENTER 707;Dc\$ PRINT Dc\$

Measure Subsystem 15-22

ESTArt

command/query

The :MEASURE:ESTART command positions the x1marker on the specified edge and slope of the displayed waveform. All edges must be displayed and are counted from the left edge of the display. The x1marker is positioned where y1marker intersects the waveform. The desired edge is specified by sending an integer value after the command name. If a positive integer is sent, the x1marker is placed on a positive-going waveform edge. If a negative integer is sent, the x1marker is placed on a negative-going waveform edge. If y1marker does not intersect the waveform as specified, the error message "Edges required not found" is displayed.

The ESTART query returns the currently specified edge.

Note

The short form of this command, ESTA, does not follow the defined short form convention. The normal short form "EST" is the same for ESTART and ESTOP. Sending EST for the ESTART command produces an error.

Command Syntax:

:MEASure:ESTArt <edge>

Where:

<edge> ::= -4000 to 4000 excluding 0 (if a positive value is sent the + sign may be omitted or a space may be used)

Example:

OUTPUT 707;":MEASURE:ESTART 2"

This example places the x1marker at the second displayed positive-going intersection of the waveform and y1marker.

Query Syntax: :MEASure:ESTArt?

Returned Format: [:MEASure:ESTArt] <edge><NL>

Where:

<edge> ::= edge number (integer - NR1 format)

Example: OUTPUT 707;":MEAS:ESTART?"

ENTER 707; Value PRINT Value

ESTOp

command/query

The :MEASURE:ESTOP command positions the x2marker on the specified edge and slope of the displayed waveform. All edges must be displayed and are counted from the left edge of the display. The x2marker is positioned where y2marker intersects the waveform. The desired edge is specified by sending an integer value after the command name. If a positive integer is sent, the oscilloscope places the x2marker on a positive-going waveform edge. If a negative integer is sent, the x2marker is placed on a negative-going waveform edge.

If the y2marker does not intersect the waveform as specified, the error message "Edges required not found" is displayed.

The ESTOP query returns the currently specified edge.

Note 15

The short form of this command, ESTO, does not follow the defined short form convention. The normal short form "EST" is the same for ESTART and ESTOP. Sending EST for the ESTOP command produces an error.

Command Syntax:

:MEASure:ESTOp <edge>

Where:

<edge> ::= -4000 to 4000 excluding 0 (if a positive value is sent the + sign may be omitted or a space may be used)

Example:

OUTPUT 707;":MEAS:ESTOP -2"

This example places the x2marker at the second displayed negative-going intersection of the waveform and the y2marker.

ESTOp

Query Syntax: :MEASure:ESTOp?

Returned Format: [:MEASure:ESTOp] <edge><NL>

Where:

<edge> ::= edge number (integer - NR1 format)

Example: OUTPUT 707;":MEASURE:ESTOP?"

ENTER 707; Value PRINT Value

FALLtime command/query

The :MEASURE:FALLTIME command places the instrument in the continuous measurement mode and starts a fall time measurement.

The FALLTIME query measures and outputs the fall time of the first displayed falling (negative-going) edge. For highest measurement accuracy, set the sweep speed as fast as possible while leaving the falling edge of the waveform on the display. The fall time is determined by measuring the time at the upper threshold of the falling edge, then measuring the time at the lower threshold of the falling edge and calculating the fall time with the following formula:

fall time = time at lower threshold point - time at upper threshold point.

Command Syntax: :MEASure:FALLtime

Example: OUTPUT 707;":MEAS:FALL"

Query Syntax: :MEASure:FALLtime?

Returned Format: [:MEASure:FALLtime] <value><NL>

Where:

<value> ::= time in seconds between lower threshold and upper threshold

voltage points (exponential - NR3 format)

Example: DIM F11\$[50]

OUTPUT 707; ":MEASURE: FALLTIME?"

ENTER 707;F11\$
PRINT F11\$

FREQuency

command/query

The :MEASURE:FREQUENCY command places the instrument in the continuous measurement mode and starts a frequency measurement.

The FREQUENCY query measures and outputs the frequency of the first complete cycle on the screen. This command uses the 50% levels when Standard measurements are selected and the mid-threshold value when User-Defined measurements are selected.

The algorithm is:

if first edge on screen is rising
then
 frequency = 1/(time at second rising edge - time at first rising
 edge)
else

frequency = 1/(time at second falling edge - time at first falling edge)

Command Syntax: :MEASure:FREQuency

Example: OUTPUT 707;":MEASURE:FREQ"

Query Syntax: :MEASURE: FREQuency?

Returned Format: [:MEASure:FREQuency] <value><NL>

Where:

<value> ::= frequency in Hertz (exponential - NR3 format)

Example: DIM Frq\$[50]

OUTPUT 707; ": MEASURE: FREQUENCY?"

ENTER 707;Frq\$ PRINT Frq\$

command **LIMittest**

> The :MEASURE:LIMITTEST command is used to start or stop a limit test. To perform a limit test, the following conditions must be satisfied:

- The measurement must be selected.
- The measurement comparison must be specified.
- The instrument must be acquiring data.

If LIMITTEST is sent with the MEASURE parameter, then the instrument starts the test. If the OFF parameter is sent, the test is stopped.

The LTF (limit test failure) bit of the status byte is set when a failure is found. This bit can be read with a *STB? or LTER? query, or by doing an HP-IB Serial Poll. The *STB? query does not clear the bit, and the results require some additional evaluation. Where as, the LTER? query returns the actual value of the bit and clears the bit so that the next limit test failure can be monitored. For greater speed, the *SRE command can be used in conjunction with an HP-IB Serial Poll. For more information, refer to the individual commands, queries, or functions.

Command Syntax:

:MEASure:LIMittest {MEASure | OFF}

Example:

OUTPUT 707;":MEASURE:COMPARE RISETIME,10NS,2NS" !Specify measurement limits OUTPUT 707;":RUN" !Acquire data

OUTPUT 707;":MEAS:LIM MEAS"

LOWer

command/query

The :MEASURE:LOWER command sets the lower measurement threshold. This command sends a value to the instrument in the units selected with the UNITS command.

Note #5

Set the measurement units with the :MEASURE:UNITS command prior to sending the lower threshold value.

The LOWER query returns the current setting of the lower measurement threshold.

Command Syntax:

:MEASure:LOWer < lower_threshold>

Where:

<lower_threshold> ::= user defined lower threshold in percent or volts

Example:

OUTPUT 707;":MEASURE:MODE USER" OUTPUT 707;":MEASURE:UNITS PERC" OUTPUT 707;":MEASURE:LOWER 47"

Query Syntax:

:MEASure:LOWer?

Returned Format:

[:MEASure:LOWer] < lower_threshold >< NL>

Where:

<lower_threshold> ::= user defined lower threshold in percent or volts

Example:

DIM Lwr\$[50] OUTPUT 707;":MEAS:LOW?"

ENTER 707; Lwr\$ PRINT Lwr\$

Measure Subsystem 15-30

MODE command/query

The :MEASURE:MODE command selects standard or user-defined definitions and thresholds for voltage and time measurements.

The MODE query returns the current measurement mode setting.

Command Syntax: :MEASure:MODE {STANdard | USER}

Example: OUTPUT 707;":MEAS:MODE STAN"

Query Syntax: :MEASure:MODE?

Returned Format: [:MEASure:MODE] {STANdard | USER}<NL>

Example: DIM Md\$[50]

OUTPUT 707;":MEASURE:MODE?"

ENTER 707; Md\$ PRINT Md\$

Note

The :MEASure:MODE command must be set to USER before :LOWer, :UPPer, :UNITs, or :DEFine :MEASure commands will be in effect.

NWIDth

command/query

The :MEASURE:NWIDTH command places the instrument in the continuous measurement mode and starts an NWIDTH measurement.

If Standard measurements are selected, the NWIDTH query measures and outputs the width of the first negative pulse on the screen using the 50% levels.

If User Defined measurements are selected, the measurement is made at the threshold value currently selected using the :MEASure:DEFine, :UPPer, and :LOWer commands.

The algorithm is:

if the first edge on screen is rising

then

width = (time at second rising edge - time at first falling edge)

else

width = (time at first rising edge - time at first falling edge)

Command Syntax: :MEASure: NWIDth

Example: OUTPUT 707;":MEAS:NWIDTH"

Query Syntax: :MEASure: NWIDth?

Returned Format: [:MEASure:NWIDth] <value><NL>

Where:

<value> ::= negative pulse width in seconds (exponential - NR3 format)

Example: DIM Nwd\$[50]

DIM Nwd\$[50] OUTPUT 707;":MEASURE:NWIDTH?"

ENTER 707; Nwd\$ PRINT Nwd\$

Measure Subsystem 15-32

HP 54505B/54506B/54510B/54512B Programming Reference

OVERshoot

command/query

The :MEASURE:OVERSHOOT command places the instrument in the continuous measurement mode and selects the overshoot measurement.

The OVERSHOOT query measures and outputs the overshoot of the first displayed edge of the selected signal. Overshoot is measured with the following algorithm:

if the first edge on screen is rising

then

overshoot = (Vmax - Vtop)/Vamplitude

else

overshoot = (Vbase - Vmin)/Vamplitude

Command Syntax: :MEASure: OVERshoot

Example: OUTPUT 707;":MEAS:OVER"

Query Syntax: :MEASure: OVERshoot?

Returned Format: [:MEASure:OVERshoot] <value><NL>

Where:

<value> ::= ratio of overshoot to Vamplitude (exponential - NR3 format)

Example: DIM Ovr\$[50]

OUTPUT 707;":MEASURE:OVERSHOOT?"

ENTER 707; Ovr\$
PRINT Ovr\$

PERiod

command/query

The :MEASURE:PERIOD command places the instrument in the continuous measurement mode and selects the period measurement.

The PERIOD query measures and outputs the period of the first complete cycle on the screen. The period is measured at the 50% point when standard measurements are selected and at the mid-threshold voltage level of the waveform when user-defined measurements are selected.

The algorithm for this measurement is:

if the first edge on screen is rising

then

period = (time at second rising edge - time at first rising edge)

else

period = (time at second falling edge - time at first falling edge)

Command Syntax: :MEASure:PERiod

Example: OUTPUT 707;":MEAS:PERIOD"

Query Syntax: :MEASure:PERiod?

Returned Format: [:MEASure:PERiod] <value><NL>

Where:

<value> ::= waveform period in seconds (exponential - NR3 format)

Example: DIM Prd\$ [50]

DIM Prd\$[50] OUTPUT 707: ":MEASURE:PERIOD?"

ENTER 707;Prd\$ PRINT Prd\$

POSTfailure

command/query

The :MEASURE:POSTFAILURE command specifies what the instrument will do after a violation is found by the limit test.

- If STOP is selected, the instrument stops the limit test when the first violation is found. If multiple memory is selected as the destination, then the test will terminate after all available memory space is filled.
- If CONTINUE is selected and a violation is found, the violation is written to the desired location, and the instrument continues to look for another violation. If a waveform memory is selected as the destination, then all subsequent violations will overwrite the previous violation. If multiple memory is selected as the destination, then the data records will wrap around.

The destination can be specified with the :MEASURE:DESTINATION command.

The POSTFAILURE query returns the current selection.

Command Syntax: :MEASure:POSTfailure {CONTinue | STOP}

Example: OUTPUT 707;":MEAS:POST"

Query Syntax: :MEASure:POSTfailure?

Returned Format: [:MEASure:POSTfailure] {CONTinue | STOP}<NL>

Example: DIM Pf\$[50]

DIM Pf\$[50] OUTPUT 707;":MEASURE:POSTFAILURE?"

ENTER 707;Pf\$
PRINT Pf\$

PREShoot

command/query

The :MEASURE:PRESHOOT command places the instrument in the continuous measurement mode and starts the preshoot measurement.

The PRESHOOT query measures and outputs the preshoot of the first displayed edge of the selected signal. Preshoot is measured with the following algorithm:

if the first edge on screen is rising preshoot = (Vbase - Vmin)/Vamplitude

else

preshoot = (Vmax - Vtop)/Vamplitude

Command Syntax: :MEASure:PREShoot

> Example: OUTPUT 707;":MEASURE:PRES"

Query Syntax: :MEASure:PREShoot?

Returned Format: [:MEASure:PREShoot] <value><NL>

Where:

<value> ::= ratio of preshoot to Vamplitude (exponential - NR3 format)

Example: DIM Prs\$[50]

OUTPUT 707;":MEASURE:PRESHOOT?"

ENTER 707; Prs\$ PRINT Prs\$

PWIDth command/query

The :MEASURE:PWIDTH command places the instrument in the continuous measurement mode and starts the Pwidth measurement.

The PWIDTH query measures and outputs the width of the first displayed positive pulse. Pulse width is measured at the 50% voltage level with standard measurements selected. If User Defined measurements are selected, the measurement is made at the threshold value currently selected using the :MEASure:DEFine, :UPPer, and :LOWer commands.

The algorithm for this measurement is:

if the first edge on screen is falling

then

width = (time at second falling edge - time at first rising edge)

else

width = (time at first falling edge - time at first rising edge)

Command Syntax: :MEASure:PWIDth

Example: OUTPUT 707;":MEAS:PWIDTH"

Query Syntax: :MEASure:PWIDth?

Returned Format: [:MEASure:PWIDth] <value><NL>

Where:

<value> ::= width of positive pulse in seconds (exponential - NR3 format)

Example: DIM Pwd\$ [50]

OUTPUT 707;":MEASURE:PWIDTH?"

ENTER 707; Pwd\$ PRINT Pwd\$ RESults query

The :MEASURE:RESULTS query returns the currently active measurements. If statistics are on, the minimum, maximum, and average is returned for each measurement. If the limit test is on and POSTFAILURE is set to CONTINUED, the pass ratio is returned instead of the average.

If the number of measurements returned is 0, then no measurements are returned.

Query Syntax: :MEASure:RESults?

Returned Format: [:MEASure:RESults] <No. of Meas>[;<measurement>]...<NL>

Where:

<No. of Meas> ::= number of measurements displayed on the screen, 0 through 8 (integer - NR1 format)

<measurement> ::= measurement_name measurement_result.

Example: DIM Mr\$[100]

OUTPUT 707;":MEASURE:RESULTS?"

ENTER 707;Mr\$
PRINT Mr\$

measurement_results returned are dependent on the current :MEASure:STATistics selection. When ON, the current, minimum, maximum, and average (or pass) measurements are returned. When OFF, only the current measurement is returned.

RISetime

command/query

The :MEASURE:RISETIME command places the instrument in the continuous measurement mode and starts a rise time measurement.

The RISETIME query measures and outputs the rise time of the first displayed rising (positive-going) edge. For maximum measurement accuracy set the sweep speed as fast as possible while leaving the leading edge of the waveform on the display. The rise time is determined by measuring the time at the lower threshold of the rising edge and the time at the upper threshold of the rising edge, then calculating the rise time with the following formula:

rise time = (time at upper threshold point - time at lower threshold point)

Command Syntax: :MEASure:RISet ime

Example: OUTPUT 707;":MEAS:RIS"

Query Syntax: :MEASure:RISet ime?

Returned Format: [:MEASure:RISetime] <value><NL>

Where:

<value> ::= rise time in seconds (exponential - NR3 format)

Example: DIM Rs\$[50]

OUTPUT 707;":MEAS:RIS?"

ENTER 707;Rs\$ PRINT Rs\$ SCRatch command

The :MEASURE:SCRATCH command clears the measurement

results from the oscilloscope display.

Command Syntax: :MEASure:SCRatch

Example: OUTPUT 707;":MEASURE:SCRATCH"

SOURce

command/query

The :MEASURE:SOURCE command selects the sources for the measurements. The specified source becomes the source for the MEASURE subsystem commands.

Two sources can be specified with this command. All measurements except DELAY are made on the first specified source. The DELAY measurement uses two sources if two have been specified. If only one source is specified, the DELAY measurement uses that source for both of its parameters.

The SOURCE query returns the current source selection. If the specified sources are different, both are returned. Otherwise, one source is returned.

Command Syntax:

:MEASure:SOURce <source1>[,<source2>]

Where:

<source1> and <source2> ::= {CHANne1{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4}}

Example: OUTPUT 707;":MEASURE:SOURCE CHANNEL1, WMEMORY1"

Query Syntax: :MEASure:SOURce?

Returned Format: [:MEASure:SOURce] <source1>[,<source2>]<NL>

Where:

<source1> and <source2> ::= {CHANne1{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4}}

Example: D

DIM Src\$[50]

OUTPUT 707;":MEAS:SOUR?"

ENTER 707;Src\$ PRINT Src\$

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

HP 54505B/54506B/54510B/54512B Programming Reference

Measure Subsystem 15-41

STATistics

command/query

The :MEASURE:STATISTICS command turns the statistics function on and off. When this mode is on, and the measurements are in the continuous mode, the minimum, maximum, average, and current measurements are shown as the active measurements. If a RESULTS query is executed, all of the displayed data is returned to the controller.

The STATISTICS query returns the current mode.

"Average" is replaced by "pass ratio" when the "limit test" is selected and "after failure" is set to continue. Pass ratio lists the percentage of times a certain test passed.

Command Syntax: :MEASure:STATistics {{ON | 1} |{OFF | 0}}

> Example: OUTPUT 707;":MEASURE:STAT ON"

Query Syntax: :MEASure:STATistics?

Returned Format: [:MEASure:STATistics] {1 | 0}<NL>

> Example: DIM Stt\$[50]

OUTPUT 707; ": MEASURE: STAT?"

ENTER 707; Stt\$ PRINT Stt\$

TDELta query

The :MEASURE:TDELTA query returns the time difference between the x1 and x2 time markers:

Tdelta = x1marker - x2marker

This is the same value that is displayed as delta x on the front panel screen.

lote 📲

This command is identical to the MARKER:XDELTA command, and is provided for compatibility with other oscilloscopes.

Query Syntax: :MEASure:TDELta?

Returned Format: [:MEASure:TDELta] <value><NL>

Where:

<value> ::= difference between x1 and x2 markers (exponential - NR3 format)

Example: DIM Td1\$[50]

OUTPUT 707;":MEASURE:TDELTA?"

ENTER 707; Td1\$
PRINT Td1\$

TMAX query

The :MEASURE:TMAX query returns the time at which the first

maximum voltage occurred.

Query Syntax: :MEASure:TMAX?

Returned Format: [:MEASure:TMAX] <time><NL>

Where:

<time> ::= time at maximum voltage.

Example:

DIM Tmx\$[50]
OUTPUT 707;":MEASURE:TMAX?"
ENTER 707;Tmx\$

PRINT Tmx\$

query **TMIN**

The :MEASURE:TMIN query returns the time at which the first

minimum voltage occurred.

Query Syntax: :MEASure:TMIN?

Returned Format: [:MEASure:TMIN] <time><NL>

Where:

<time> ::= time at minimum voltage.

Example:

DIM Tmn\$[50] OUTPUT 707;":MEAS:TMIN?" ENTER 707;Tmn\$

PRINT Tmn\$

TSTArt

command/query

The :MEASURE:TSTART command moves the x1marker to the specified time with respect to the trigger time.

Note 15

This command is identical to the MARKER:X1POSITION command, and is provided for compatibility with other oscilloscopes.

The TSTART query returns the time at the x1marker.

Note

The short form of this command, TSTA, does not follow the defined short form convention. The normal short form "TST" is the same for TSTART and TSTOP. Sending TST for the TSTART command produces an error.

Command Syntax:

:MEASure:TSTArt <start marker time>

Where:

<start marker time> ::= time at x1marker in seconds

Example:

OUTPUT 707;":MEASURE:TSTART 30 NS"

Query Syntax:

:MEASure:TSTArt?

Returned Format:

[:MEASure:TSTArt] <value><NL>

Where:

<value> ::= time at x1marker in seconds (exponential - NR3 format)

Example:

DIM Tst\$

OUTPUT 707;":MEASURE:TSTART?"

ENTER 707; Tst\$ PRINT Tst\$

Measure Subsystem 15-46

HP 54505B/54506B/54510B/54512B **Programming Reference**

TSTOp

command/query

The :MEASURE:TSTOP command moves the x2marker to the specified time with respect to the trigger time.

This command is identical to the MARKER:X2POSITION command, and is provided for compatibility with other oscilloscopes.

The TSTOP query returns the time at the x2marker.

Note

The short form of this command, TSTO, does not follow the defined short form convention. The normal short form "TST" is the same for TSTART and TSTOP. Sending TST for the TSTOP command produces an error.

Command Syntax:

:MEASure:TSTOp <stop marker time>

Where:

<stop marker time> ::= time at x2marker in seconds

Example: OUTPUT 707;":MEAS:TSTOP 40 NS"

Query Syntax: :MEASure:TSTOp?

[:MEASure:TSTOp] <value><NL> Returned Format:

Where:

<value> ::= time at x2marker in seconds (exponential - NR3 format)

Example: DIM Tst\$[50]

OUTPUT 707;":MEASURE:TSTOP?"

ENTER 707; Tst\$ PRINT Tst\$

TVOLt query

When the :MEASURE:TVOLT query is sent, the displayed signal is searched for the defined voltage level and transition. The time interval between the trigger event and this defined occurrence is returned as the response to this query.

The voltage can be specified as a negative or positive voltage. To specify a negative voltage, use a minus (-) sign. The sign of the slope selects a rising (+) or falling (-) edge.

The magnitude of occurrence defines the occurrence to be reported. For example, +3 returns the time for the third time the waveform crosses the specified voltage level in the positive direction. Once this voltage crossing is found, the oscilloscope outputs the time at that crossing in seconds, with the trigger point (time zero) as the reference.

If the specified crossing cannot be found, the oscilloscope outputs +9.99999E+37. This value is returned if the waveform does not cross the specified voltage, or if the waveform does not cross the specified voltage for the specified number of times in the specified direction.

Query Syntax:

:MEASure:TVOLt? <voltage>, <slope><occurrence>

Where:

<voltage> ::= positive or negative voltage level that the waveform must cross.

<slope> ::= direction of the waveform when <voltage> is crossed - rising (sp or +) or falling (-)

<occurrence> ::= number of crossings to be reported (if one - the first
crossing is reported, if two - the second crossing is reported, etc.)

Returned Format: [:MEASure:TVOLt] <time><NL>

Where:

<time> ::= time in seconds of specified voltage crossing (exponential - NR3

Example:

DIM Tv1t\$[50]
OUTPUT 707;":MEASURE:TVOLT? -.250,+3"
ENTER 707;Tv1t\$

PRINT Tvlt\$

command/query **UNITs**

The :MEASURE:UNITS command sets the measurement threshold units when the user defined measurement mode is selected. The

UNITS can be set to PERCENT or VOLTS.

The UNITS query returns the currently selected units.

Command Syntax: :MEASure:UNITs {PERCent | VOLTs}

Example:

OUTPUT 707;":MEASURE:MODE USER"
OUTPUT 707;":MEASURE:UNITS PERCENT"

Query Syntax: :MEASure:UNITs?

Returned Format: [:MEASure:UNITs] {PERCent | VOLTs}<NL>

Example:

DIM Unt\$[50] OUTPUT 707;":MEASURE:UNITS?"

ENTER 707; Unt\$ PRINT Unt\$

The :MEASure:MODE command must be set to USER before :LOWer, :UPPer, :UNITs, or :DEFine :MEASure commands will be in effect.

UPPer command/query

The :MEASURE:UPPER command sets the upper measurement threshold.

Note

Set the measurement units with the :MEASURE:UNITS command prior to sending the upper threshold value.

The UPPER query returns the value of the upper measurement

threshold.

Command Syntax: :MEASure:UPPer <upper_threshold>

Where:

<upper_threshold> ::= upper threshold value in percent or volts

Example: OUTPUT 707;":MEAS:UPPER 90"

Query Syntax: :MEASure: UPPer?

Returned Format: [:MEASure:UPPer] <upper_threshold><NL>

Where:

<upper_threshold> ::= upper threshold value in percent or volts

(exponential - NR3 format)

Example: DIM Up\$[50]

OUTPUT 707;":MEAS:UPP?"

ENTER 707;Up\$
PRINT Up\$

Note

The :MEASure:MODE command must be set to USER before :LOWer, :UPPer, :UNITs, or :DEFine :MEASure commands will be in

effect.

VACRms command/query

The :MEASURE:VACRMS command and query perform the same functions as the VRMS command and query.

The :MEASURE:VACRMS command places the instrument in the continuous measurement mode and starts an ac rms voltage measurement.

The VACRMS query measures and outputs the AC RMS voltage of the selected waveform. The AC RMS voltage is measured on the first cycle of the displayed signal. If a complete cycle is not present, the oscilloscope computes the RMS value on all displayed data points.

Note

The VACRMS measurement is an AC RMS measurement. This means that the average value of the waveform is subtracted from each data point before the RMS voltage is computed.

Command Syntax: :MEASure:VACRms

Example: OUTPUT 707;":MEAS:VACRMS"

Query Syntax: :MEASure: VACRms?

Returned Format: [:MEASure:VACRms] <value><NL>

Where:

<value> ::= calculated ac rms voltage (exponential - NR3 format)

Example: DIM Vrm\$[50]

OUTPUT 707;":MEASURE:VACRMS?"

ENTER 707;Vmm\$ PRINT Vmm\$

Measure Subsystem 15-52

HP 54505B/54506B/54510B/54512B Programming Reference

VAMPlitude

command/query

The :MEASURE:VAMPLITUDE command places the instrument in the continuous measurement mode and starts a Vamplitude measurement.

The VAMPLITUDE query returns the difference between the top and base voltage of the displayed signal. The VAMPLITUDE value is not normally the same as the Vp-p value when the input signal is a pulse.

The Vamplitude value is calculated with the formula:

Vamplitude = Vtop - Vbase

Command Syntax:

:MEASure:VAMPlitude

Example:

OUTPUT 707;":MEAS:VAMP"

Query Syntax:

:MEASure:VAMPlitude?

Returned Format:

[:MEASure:VAMPlitude] <value><NL>

Where:

<value> ::= difference between top and base voltages (exponential - NR3

format)

Example:

DIM Vmp\$[50]

OUTPUT 707;":MEASURE:VAMPLITUDE?"

ENTER 707; Vmp\$
PRINT Vmp\$

VAVerage

VAVerage

command/query

The :MEASURE:VAVERAGE command places the instrument in the continuous measurement mode and starts a Vaverage measurement.

The VAVERAGE query measures the average voltage of the first cycle

of the displayed signal. If a complete cycle is not present, the

oscilloscope averages all data points.

Command Syntax:

:MEASure:VAVerage

Example:

OUTPUT 707;":MEAS:VAV"

Query Syntax:

:MEASure:VAVerage?

Returned Format:

[:MEASure:VAVerage] <average_voltage><NL>

Where:

<average_voltage> ::= calculated average voltage (exponential - NR3 format)

Example:

DIM Vv\$[50]

OUTPUT 707;":MEAS: VAV?"

ENTER 707; Vv\$
PRINT Vv\$

VBASe

command/query

The :MEASURE:VBASE command places the instrument in the continuous measurement mode and starts a Vbase measurement.

The VBASE query measures and outputs the voltage value at the base of the waveform. The base voltage of a pulse is normally not the same as the minimum value.

Command Syntax:

:MEASure:VBASe

Example:

OUTPUT 707;":MEAS:VBASE"

Query Syntax:

:MEASure:VBASe?

Returned Format:

[:MEASure:VBASe] <base_voltage><NL>

Where:

<base_voltage> ::= voltage at base of selected waveform (exponential - NR3

format)

Example:

DIM Vbs\$[50] OUTPUT 707;":MEASURE:VBASE?"

ENTER 707; Vbs\$ PRINT Vbs\$

VDCRms

command/query

The :MEASURE:VDCRMS command places the instrument in the continuous measurement mode and starts a dc rms voltage measurement.

The VDCRMS query measures and outputs the RMS voltage of the selected waveform. The RMS voltage is measured on the first cycle of the displayed signal. If a complete cycle is not present, the oscilloscope computes the RMS value on all displayed data points.

The VDCRMS measurement is a true RMS measurement.

Command Syntax: :MEASure:VDCRms

> Example: OUTPUT 707;":MEAS:VDCRMS"

Query Syntax: :MEASure:VDCRms?

Returned Format: [:MEASure:VDCRms] <value><NL>

Where:

<value> ::= calculated dc rms voltage (exponential - NR3 format)

Example: DIM Vrm\$[50]

OUTPUT 707;":MEASURE:VDCRMS?"

ENTER 707; Vrm\$ PRINT Vrm\$

VDELta query

The :MEASURE:VDELTA query outputs the voltage difference between the y1marker and y2marker. No measurement is made when the VDELTA query is received by the oscilloscope. The delta voltage value that is output is the current value. This is the same value as the front panel delta y value.

VDELTA = y2marker - y1marker 1

Note

This command is identical to the MARKER:YDELTA command, and is provided for compatibility with other oscilloscopes.

Query Syntax:

:MEASure:VDELta?

Returned Format:

[:MEASure:VDELta] <value><NL>

Where:

<value> ::= delta V value in volts (exponential - NR3 format)

Example:

DIM Vd1\$[50]

OUTPUT 707;":MEAS:VDELTA?"

ENTER 707; Vd1\$
PRINT Vd1\$

VFIFty command

The :MEASURE:VFIFTY command finds the top and base values of the specified waveforms, then places the y1 and y2markers at the 50% voltage point on the specified sources.

If only one source has been specified with the source command, the VFIFty command sets both y1 and y2 markers to the 50% voltage level on that source.

If two sources are specified with the source command, the y1marker is set to the 50% level of the first specified source and the y2arker is set to the 50% level of the second specified source.

There is no query form of this command.

Command Syntax:

:MEASure:VFIFty

Example:

OUTPUT 707;":MEASURE:VFIFTY"

command/query **VMAX**

The :MEASURE:VMAX command places the instrument in the continuous measurement mode and starts a Vmax measurement.

The VMAX query measures and outputs the absolute maximum

voltage present on the selected waveform.

Command Syntax: :MEASure:VMAX

> Example: OUTPUT 707;":MEAS:VMAX"

Query Syntax: :MEASure:VMAX?

Returned Format: [:MEASure:VMAX] <value><NL>

Where:

<value> ::= maximum voltage of selected waveform (exponential - NR3 format)

Example:

DIM Vmx\$[50] OUTPUT 707;":MEASURE:VMAX?" ENTER 707;Vmx\$

PRINT Vmx\$

VMIN command/query

The :MEASURE:VMIN command places the instrument in the continuous measurement mode and starts a VMIN measurement.

The VMIN query measures and outputs the absolute minimum voltage

present on the selected waveform.

Command Syntax: :MEASure: VMIN

Example: OUTPUT 707;":MEAS:VMIN"

Query Syntax: :MEASure: VMIN?

Returned Format: [:MEASure:VMIN] <value>NL>

Where:

<value> ::= minimum voltage value of the selected waveform

(exponential - NR3 format)

Example: DIM Vmn\$[50]

OUTPUT 707;":MEASURE:VMIN?"

ENTER 707; Vmn\$
PRINT Vmn\$

VPP command/query

The :MEASURE:VPP command places the instrument in the continuous measurement mode and starts a VPP measurement.

The VPP query measures the maximum and minimum voltages for the selected source, then calculates the peak-to-peak voltage and outputs that value. The peak-to-peak voltage (Vpp) is calculated with the following formula:

Vpp = Vmax - Vmin

Vmax and Vmin are the maximum and minimum voltages present on the selected source.

Command Syntax: :MEASure: VPP

Example: OUTPUT 707;":MEAS:VPP"

Query Syntax: :MEASure: VPP?

Returned Format: [:MEASure: VPP] <va lue><NL>

Where:

<value> ::= voltage peak to peak (exponential - NR3 format)

Example: DIM Vp\$[50]

OUTPUT 707;":MEAS:VPP?"

ENTER 707; Vp\$
PRINT Vp\$

VRELative

command/query

The :MEASURE:VRELATIVE command moves the y1 and y2markers to the specified percentage points of their last established position. The last established position is not necessarily on the currently displayed waveform.

For example, after a :MEASURE:VAMPLITUDE? query is sent, the y1marker is located at the base (0%) of the signal and the y2marker is at the top (100%) of the signal. If the VRELATIVE 10 command is executed, the y1marker is moved to the 10% level and the y2marker to the 90% level of the signal.

Any value between 0% and 100% can be used. If VRELATIVE 0 is sent, the ymarkers are not moved because the command indicates 0% movement from the current position.

As an example, when the following values are sent, the markers are moved to the following percentage values of their current position:

- 10 moves y1marker to 10% and y2marker to 90%
- 20 moves y1marker to 20% and y2marker to 80%
- 50 moves both markers to 50%
- 80 moves y1marker to 20% and y2marker to 80%
- 90 moves y1marker to 10% and y2marker to 90%

The starting position of the markers must be known for this command to be meaningful. The markers can be set to a known position on the selected waveform using the :MEASURE:VAMPLITUDE? query.

The VRELATIVE query returns the current relative position of VMarker2, which is always in the range of 50% through 100%.

The VRELATIVE command does not affect the upper and lower thresholds selected by the UPPER and LOWER commands.

Measure Subsystem 15-62

HP 54505B/54506B/54510B/54512B Programming Reference Command Syntax: :MEASure: VRELative <percent>

Where:

<percent> ::= {0 through 100}

Example: OUTPUT 707;":MEASURE:VRELATIVE 20"

Query Syntax: :MEASure: VRELative?

Returned Format: [:MEASure:VRELative] <value>NL>

Where:

<value> ::= Vmarker 2 relative position in percent {50 through 100}

(integer - NR1 format)

Example: DIM Vr 1\$ [50]

DIM Vr1\$[50] OUTPUT 707;":MEAS:VREL?"

ENTER 707; Vrl\$
PRINT Vrl\$

VRMS

command/query

The :MEASURE:VRMS command and query perform the same functions as the VACRMS command and query.

The :MEASURE:VRMS command places the instrument in the continuous measurement mode and starts an ac rms voltage measurement.

The VRMS query measures and outputs the RMS voltage of the selected waveform. The RMS voltage is measured on the first cycle of the displayed signal. If a complete cycle is not present, the oscilloscope computes the RMS value on all displayed data points.

Note

The VRMS measurement is an AC RMS measurement. This means that the average value of the waveform is subtracted from each data point before the RMS voltage is computed.

Command Syntax:

:MEASure:VRMS

Example:

OUTPUT 707;":MEAS:VRMS"

Query Syntax:

:MEASure:VRMS?

Returned Format:

[:MEASure:VRMS] <value><NL>

Where:

<value> ::= calculated ac rms voltage (exponential - NR3 format)

Example:

DIM Vrm\$ [50]

OUTPUT 707;":MEASURE:VRMS?"

ENTER 707; Vrm\$
PRINT Vrm\$

Measure Subsystem 15-64

HP 54505B/54506B/54510B/54512B Programming Reference

VSTArt

command/query

The :MEASURE:VSTART command moves the y1marker to the specified voltage. The values are limited to the currently defined channel, function, or memory range.

Note

This command is identical to the MARKER:Y1POSITION command, and is provided for compatibility with other oscilloscopes.

The VSTART query returns the current voltage level of the ylmarker.

Note

The short form of this command, VSTA, does not follow the defined short form convention. The normal short form "VST" is the same for VSTART and VSTOP. Sending VST for the VSTART command produces an error.

Command Syntax:

:MEASure:VSTArt <voltage>

Where:

<voltage> ::= voltage value for ylmarker

Example:

OUTPUT 707;":MEAS:VSTA -10MV"

Query Syntax:

:MEASure:VSTArt?

Returned Format:

[:MEASure:VSTArt] <value><NL>

Where:

<value> ::= voltage at ylmarker (exponential - NR3 format)

Example:

DIM Vst\$[50]

OUTPUT 707;":MEASURE:VSTART?"

ENTER 707; Vst\$ PRINT Vst\$

HP 54505B/54506B/54510B/54512B **Programming Reference**

Measure Subsystem 15-65

VSTOp

command/query

The :MEASURE:VSTOP command move sthe y2marker to the specified voltage.

This command is identical to the MARKER: Y2POSITION command, and is provided for compatibility with other oscilloscopes.

The VSTOP query returns the current voltage level of the y2marker.

Note

The short form of this command, VSTO, does not follow the defined short form convention. The normal short form "VST" is the same for VSTART and VSTOP. Sending VST for the VSTOP command produces an error.

Command Syntax:

:MEASure:VSTOp <voltage>

Where:

<voltage> ::= voltage value for y2marker

Example:

OUTPUT 707;":MEAS:VSTO -100MV"

Query Syntax:

:MEASure:VSTOp?

Returned Format:

[:MEASure:VSTOp] <value><NL>

Where:

<value> ::= voltage at y2marker (exponential - NR3 format)

Example:

DIM Vst\$[50] OUTPUT 707;":MEASURE:VSTOP?"

ENTER 707; Vst\$ PRINT Vst\$

Measure Subsystem 15-66

HP 54505B/54506B/54510B/54512B **Programming Reference**

VTIMe query

The :MEASURE:VTIME query returns the voltage at a specified time. The specified time must be on screen and is referenced to the trigger

event.

Query Syntax: :MEASure:VTIMe? <time>

Where:

<time> ::= displayed time from trigger in seconds

Returned Format: [:MEASure:VTIMe] <voltage><NL>

Where:

<voltage> ::= voltage at specified time (exponential - NR3 format)

Example: DIM Vtm\$[50]

DIM Vtm\$[50] OUTPUT 707;":MEASURE:VTIME? .001"

ENTER 707; Vtm\$ PRINT Vtm\$ VTOP command/query

The :MEASURE:VTOP command places the instrument in the continuous measurement mode and starts a Vtop measurement.

The VTOP query returns the voltage at the top of a waveform.

Command Syntax: :MEASure:VTOP

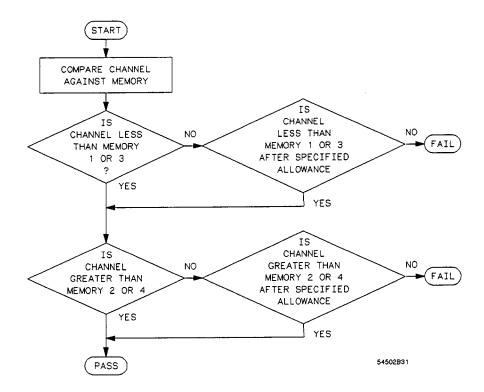
Example: OUTPUT 707;":MEASURE:VTOP"

Query Syntax: :MEASure:VTOP?

Returned Format: [:MEASure:VTOP] <value>NL>

Where:

<value> ::= voltage at the top of the waveform (exponential - NR3 format)


Example: DIM Vtp\$[50]

DIM Vtp\$[50] OUTPUT 707;":MEASURE:VTOP?"

ENTER 707; Vtp\$
PRINT Vtp\$

WCOMpare subsystem

When a waveform comparison test fails, a second test is performed on the waveform data and memory against a specified tolerance or allowance, called a Waveform Comparison Test. The chart in figure 15-2 lists the flow for the waveform comparison test.

15-2. Waveform Compare Flowchart

HP 54505B/54506B/54510B/54512B Programming Reference

Measure Subsystem 15-69

WCOMpare:ALLowance

command/query

The :MEASURE:WCOMPARE:ALLOWANCE command allows you to specify an allowance representing the allowable number of divisions that the waveform comparison test can deviate and still pass. The allowance value that you specify over the bus is automatically rounded to the nearest 0.025 divisions. The chart in figure 14-3 lists the flow for the waveform comparison test.

Command Syntax:

:MEASure:WCOMpare:ALLowance <allow_value>

Where:

<allow_value> ::= real number representing number of divisions of allowance

(0.0 to 8.0)

Example:

OUTPUT 707;":MEAS:WCOM:ALLOWANCE 0.0"

Query Syntax:

:MEASure:WCOMpare:ALLowance?

Returned Format:

[:MEASure:WCOMpare:ALLowance] {<allow_value>}<NL>

Where:

<allow_value> ::= real number representing number of divisions of allowance

(0.0 to 8.0)

Example: DIM Wc 1\$ [50]

OUTPUT 707:":MEAS:WCOM:ALL?"

ENTER 707; Wc 1\$

PRINT Wc1?

WCOMpare:COMPare

command/query

The :MEASURE:WCOMPARE:COMPARE command selects the channel and memory pair to be compared by the waveform comparison test. Specifying wmemory1 or wmemory2 selects both wmemory1 (m1) and wmemory2 (m2) as the mask pair that the channel will be compared to. Specifying wmemory3 or wmemory4 selects both wmemory3 (m3) and wmemory4 (m4) as the mask pair that the channel will be compared to.

Command Syntax:

:MEASure:WCOMpare:COMPare CHANnel<chan_num> | FUNCtion<func_num>,

WMEMory<wmem num>

Where:

<chan num> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

<func_num> ::= 1 through 4 <wmem num> ::= 1 through 4

Example: OUTPUT 707;":MEAS:WCOM:COMP CHAN1, WMEM1"

Query Syntax: :MEASure:WCOMPare:COMpare?

Returned Format: [:MEASure:WCOMpare] {<chan_num> | <func_num>, <wmem_num>} <NL>

Where:

<chan num> ::= 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B)

<func num> ::= 1 through 4 <wmem_num> ::= 1 through 4

Example:

DIM Wcc\$[50] OUTPUT 707;":MEAS:WCOM:COMP?"

ENTER 707; Wcc\$ PRINT Wcc\$

WCOMpare: DESTination

command/query

The :MEASURE:WCOMPARE:DESTINATION command specifies the source and destination to be used when a waveform comparison violation is found. Data may be stored to one of the waveform memories, but not to the pair of memories used for the mask in the comparison test. Data can also be stored to one of the pixel memories, the multiple memories, or discarded by specifying OFF.

Source choices include the screen, any channel, or any function.

Destination choices are as follows:

- Waveform memory: when selected, the memory is overwritten each time a violation is found. Can only be selected when the source is CHANnel or FUNCtion.
- Multiple memory: when selected, up to 665 records may be saved.
 If multiple failures occur and MEASure:POSTfailure STOP is selected, records are saved until available memory is filled and the test stops. If multiple failures occur and MEASure:POSTfailure CONTinue is selected, the data records wrap around. Can only be selected when the source is CHANnel or FUNCtion.
- Pixel memory: when selected, an accumulated save occurs. Can only be selected when the source is SCReen.
- Off: when selected, no save occurs.

If the waveform memory selected for the destination is the same as the waveform memories used for the mask, the destination is set to OFF. Otherwise, failure information would be written into the mask.

The DESTINATION query returns the destination currently selected for the specified source.

Measure Subsystem 15-72

WCOMpare:DESTination

:MEASure:WCOMpare:DESTination {{CHANne1{ 1 | 2 | 3 | 4 } | FUNCtion{ 1 | 2 | 3 | 4 },{OFF | WMEMory{ 1 | 2 | 3 | 4 } | MULTiple}} | {{SCReen},{OFF|PMEMory{ 1 | 2 }}} **Command Syntax:**

Example: OUTPUT 707; ": MEAS: WCOM: DEST CHAN1, MULT"

:MEASure:WCOMpare:DESTination? {CHANnel{ 1 | 2 | 3 | 4 } | FUNCtion{ 1 | 2 **Query Syntax:**

3 4 } | SCReen}

[:MEASure:WCOMpare:DESTination] {WMEMory{ 1 | 2 | 3 | 4 }|PMEMory{ 1 | 2 Returned Format:

} | MULTiple | OFF } < NL >

Example:

DIM Dst\$[50] OUTPUT 707;":MEAS:WCOM:DEST? CHAN1"

ENTER 707; Dst\$ PRINT Dst\$

CHANnel3 and CHANnel4 are only available when the oscilloscope is

an HP 54506B/54512B.

WCOMpare:POSTfailure

command/query

The :MEASURE:WCOMPARE:POSTFAILURE command specifies what will occur after a violation has been found by the waveform comparison test.

- If STOP is selected, the instrument stops the waveform comparison test and acquisition when the first violation is found. If multiple memory is selected as the destination, then the test will terminate after all available memory space is filled.
- If CONTINUE is selected and a violation is found, the violation is written to the desired location, and the instrument continues to look for another violation. If a waveform memory is selected as the destination, then all subsequent violations will overwrite the previous violation. If multiple memory is selected as the destination, then the data records will wrap around.

The destination can be specified with the :MEASURE:WCOMPARE:DESTINATION command.

Command Syntax: :MEASure:WCOMpare:POSTfailure {CONTinue | STOP}

Example: OUTPUT 707;":MEASURE:WCOMPARE:POST CONT"

Query Syntax: :MEASure:WCOMpare:POSTfailure?

Returned Format: [:MEASure:WCOMpare:POSTfailure] {CONTinue | STOP}<NL>

Example: DIM Pst\$

OUTPUT 707;":MEAS:WCOM:POST?"

ENTER 707; Pst\$ PRINT Pst\$

WCOMpare:WTESt

command/query

The :MEASURE:WCOMPARE:WTEST command turns the waveform compare test on and off. When the waveform compare test is on, the channel data is compared with either memories 1 and 2, or memories 3 and 4. To pass the test, the channel data must be less than the first memory data (memory 1 or 3) and greater than the second memory data (memory 2 or 4) plus or minus the value set by the :WCOMPARE:ALLOWANCE command. The chart in figure 14-2 lists the flow for the waveform comparison test.

The WCOMPARE:WTEST runs only on 500 or 501 point records. The WCOMPARE:WTEST will not run in the expand mode (2000 points) or on digitized data if the count is not at 500. If the COMPARE:WTEST is on and the record sizes are not 500 or 501, the error message "Er 2" will be displayed in the upper-left hand corner of the screen.

LIMITTEST and WCOMPARE:WTEST cannot run simultaneously. Only one test may be on at one time. If you attempt to run these tests simultaneously, the error message "legal command but safety conflict" (error 211) appears on the screen.

Command Syntax:

:MEASure:WCOMpare:WTESt {MEASure | OFF}

Example:

OUTPUT 707;":MEASURE:WCOM:WTEST OFF"

Query Syntax:

:MEASure:WCOMpare:WTESt?

Returned Format:

[MEASure:WCOMpare:WTESt] {MEASure | OFF}<NL>

Example:

DIM Wte\$

OUTPUT 707; ":MEAS:WCOM:WTE?"

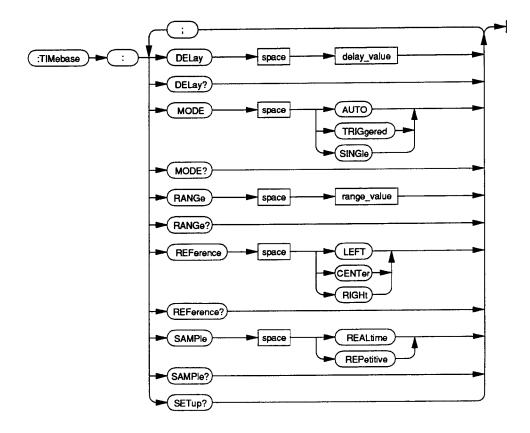
ENTER 707; Wte\$
PRINT Wte\$

The LTER bit is set when a failure occurs in the :WCOMPARE:WTEST. This bit will remain set after a failure until it is read by the :LTER query.

HP 54505B/54506B/54510B/54512B Programming Reference

Measure Subsystem 15-75

Timebase Subsystem


Introduction

The TIMEBASE subsystem commands control the horizontal or X-axis oscilloscope functions.

The Timebase subsystem contains the following commands:

- DELay
- MODE
- RANGe
- REFerence
- SAMPle
- SETup

Figure 16-1 lists the syntax diagrams for the Timebase subsystem commands.

delay_value = a real number, the maximum value depends on the sweep range.

range_value = a real number, 10 ns through 50 s (in a 1, 2, 5 sequence).

Figure 16-1. Timebase Subsystem Commands Syntax Diagram

Timebase Subsystem 16-2

DELay

command/query

The :TIMEBASE:DELAY command sets the time base delay. This delay is the internal time between the trigger event and the on-screen delay reference point. The delay reference point is the left edge of the display, the right edge of the display, or the center of the display, and is set with the :TIMEBASE:REFERENCE command.

The DELAY query returns the current delay value.

Command Syntax:

:TIMebase:DELay <delay>

Where:

<delay> ::= time in seconds from trigger to the on screen delay reference

point. The maximum value depends on the time/division setting.

Example:

OUTPUT 707;":TIM:DEL 2MS"

Query Syntax:

:TIMebase:DELay?

Returned Format:

[:TIMebase:DELay] <delay><NL>

Where:

<delay> ::= time from trigger to display reference in seconds. Display

reference is left, center, or right (exponential - NR3 format)

Example:

DIM D1\$[50]

OUTPUT 707;":TIMEBASE:DELAY?"

ENTER 707;D1\$
PRINT D1\$

MODE command/query

The :TIMEBASE:MODE command selects the time base mode. This function is the same as the Auto/Trig'd key in the trigger menu and the SINGLE key on the front panel.

If the AUTO mode is selected, a baseline is provided on the display in the absence of a signal. If a signal is present but the oscilloscope is not triggered, the unsynchronized signal is displayed instead of a baseline.

If the TRIGGERED mode is selected and no trigger is present, the instrument does not sweep, and the data acquired on the previous trigger remains on the screen.

If the SINGLE mode is selected, the screen is cleared and the instrument is stopped. The RUN command arms the trigger, and data is acquired when the trigger is found. The RUN command must be sent to make a single acquisition.

The MODE query returns the current mode.

Command Syntax: :TIMebase:MODE {AUTO | TRIGgered | SINGle}

Example: OUTPUT 707;":TIM:MODE TRIGGERED"

Query Syntax: :TIMebase:MODE?

Returned Format: [:TIMebase:MODE] {AUTO | TRIGgered | SINGle}<NL>

Example: DIM Mode\$[30]

OUTPUT 707;":TIMEBASE:MODE?"

ENTER 707; Mode\$
PRINT Mode\$

RANGe command/query

The :TIMEBASE:RANGE command sets the full-scale horizontal time in seconds. The RANGE value is ten times the time per division.

The RANGE query returns the current full-scale range value.

Command Syntax: :TIMebase:RANGe <range>

Where:

<range> ::= 10 ns to 50 s in a 1,2,5 sequence"

Example: OUTPUT 707;":TIM:RANG 100 MS"

Query Syntax: :TIMebase:RANGe?

Returned Format: [:TIMebase:RANGe] <range><NL>

Where:

<range> ::= 10 ns to 50 s (exponential - NR3 format)

Example:

DIM Rng\$[50] OUTPUT 707;":TIMEBASE:RANGE?" ENTER 707;Rng\$

PRINT Rng\$

REFerence

REFerence

command/query

The :TIMEBASE:REFERENCE command sets the display reference to the left side of the screen, to the right side of the screen, or to the

center of the screen.

The REFERENCE query returns the current display reference.

Command Syntax:

:TIMebase:REFerence {LEFT | CENTer | RIGHt}

Example:

OUTPUT 707;":TIMEBASE:REFERENCE LEFT"

Query Syntax:

:TIMebase:REFerence?

Returned Format:

[:TIMebase:REFerence] {LEFT | CENTer | RIGHt}<NL>

Example:

DIM Rf\$[30] OUTPUT 707;":TIMEBASE:REFERENCE?"

ENTER 707;Rf\$ PRINT Rf\$

SAMPle

command/query

The :TIMEBASE:SAMPLE command controls the sampling mode of the instrument. Two sample modes are available: REALTIME and REPETITIVE. Realtime implies "Single-Shot" capture of data, which means that a complete data record is collected on one trigger event. Repetitive implies that the instrument is in a repetitive or equivalent time mode. In this mode the data record is collected over multiple trigger events.

The SAMPle query returns the current sampling mode.

Command Syntax: :TIMebase:SAMPle {REALtime | REPetitive}

Example: OUTPUT 707;":TIMEBASE:SAMPLE REAL"

Query Syntax: :TIMebase: SAMP le?

Returned Format: [:TIMebase:SAMPle] {REALtime | REPetitive}<NL>

Example: DIM Smp\$[30]

OUTPUT 707; ":TIMEBASE: SAMPLE?"

ENTER 707; Smp\$
PRINT Smp\$

SETup

The :TIMEBASE:SETUP query returns the current settings for all the

Timebase Subsystem commands.

Query Syntax: :TIMebase:SETup?

Returned Format: :TIMebase:MODE {AUTO|TRIG|SING};RANGe <range>;DELay <delay>;REF

{LEFT | CENT | RIGH}; SAMPle {REAL | REP} < NL>

Where:

<range> ::= 10ns to 50s (exponential - NR3 format)

<delay> ::= time from trigger to display reference in seconds (exponential

- NR3 format)

Example: DIM Stp\$[300]

OUTPUT 707;":TIM:SET?"

ENTER 707; Stp\$
PRINT Stp\$

Trigger Subsystem

Introduction

The commands in the TRIGGER subsystem are used to define the conditions for a trigger. Many of the commands in the Trigger subsystem are valid in more than one of the trigger modes. If the command is a valid command for a trigger mode, that setting is accepted. If the command is not valid for a trigger mode, an error is generated. This subsystem contains the following commands:

- CENTered
- CONDition
- COUPling*
- DELay
- DELay:SLOPe
- DELay:SOURce
- FIELd
- GLITch
- GLITch:CENTered
- GLITch:HOLDoff
- GLITch:LEVel
- GLITch:SOURce
- GLITch:WIDth
- HOLDoff
- LEVel
- LINE
- LOGic
- MODE
- OCCurrence
- OCCurrence:SLOPe
- OCCurrence:SOURce
- PATH
- POLarity
- PROBe*

^{*} Available only when the oscilloscope is an HP 54505B/54510B

- QUALify
- SENSitivity
- SETup
- SLOPe
- SOURce
- STANdard

Figure 17-1 lists the syntax diagrams for the Trigger subsystem commands.

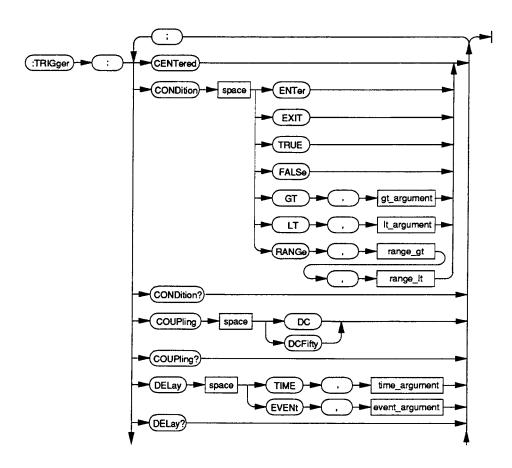


Figure 17-1. Trigger Subsystem Commands Syntax Diagram

Trigger Subsystem 17-2

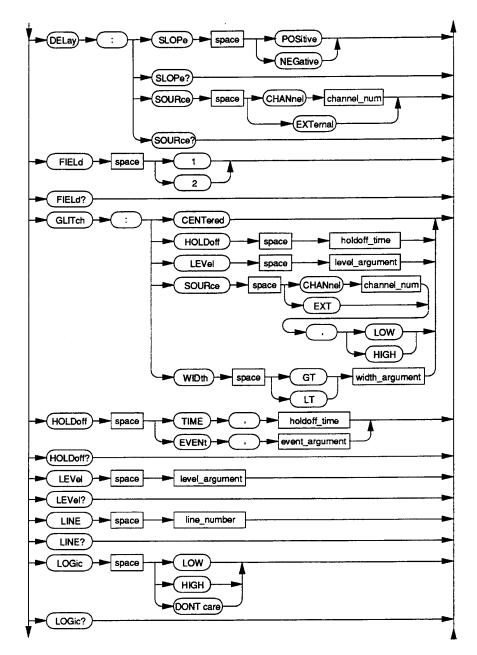


Figure 17-1. Trigger Subsystem Commands Syntax Diagram (continued)

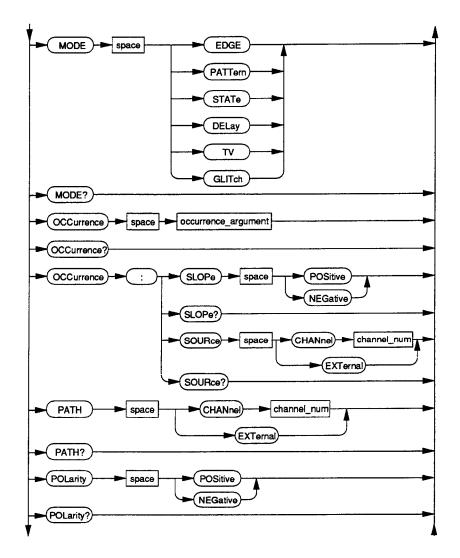


Figure 17-1. Trigger Subsystem Commands Syntax Diagram (continued)

Trigger Subsystem 17-4

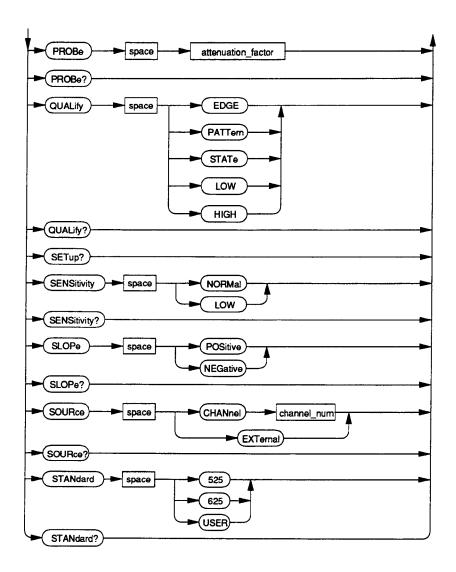


Figure 17-1. Trigger Subsystem Commands Syntax Diagram (continued)

attenuation_factor = a real number, 0.9 to 1000.

channel_num = an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4

(HP 54506B/54512B).

event argument = an integer, 1 to 16000000.

gt_argument = a time value, 20 ns to 160 ms.

holdoff_time = a time value, 40 ns to 320 ms.

level_argument = a real number specifying the trigger level in volts.

line_number = an integer, 1 to 625 (depending on the video STANDARD selected).

lt_argument = a time value, 20 ns to 160 ms.

range_gt = a time value, 20 ns to 159.999 ms (the value must be less than

range lt).

range lt = a time value, 30 ns to 160 ms (the value must be greater than

range_gt).

time_argument = a time value, 30 ns to 160 ms.

occurrence_argument = an integer, 1 to 16000000.

width_argument = a time value, 5 ns to 160 ms.

Figure 17-1. Trigger Subsystem Commands Syntax Diagram (continued)

Trigger Mode

Make sure the instrument is in the proper trigger mode for the command you want to send. The instrument can be placed in the trigger mode from the front panel or over the HP-IB. One method of insuring the instrument is in the proper trigger mode is to send the :TRIGGER:MODE command in the same program message as the parameter to be set. For example,

places the instrument in the TV Trigger Mode and sets the trigger level to 200 mV. This process is necessary because the LEVEL command is also valid for some of the other trigger modes.

Trigger Subsystem 17-6

[&]quot;:TRIGGER:MODE TV; LEVEL 200 MV"

The trigger modes are described on the next few pages prior to the descriptions of the individual commands. Table 17-1 lists the different TRIGGER subsystem commands that are available for each trigger mode.

Auto or triggered mode is selected with the TIMEBASE:MODE command. For more information, refer to chapter 16, "Timebase Subsystem."

Table 17-1. Valid Commands for Specific Trigger Modes

EDGE	PATTERN	STATE	DELAY	TV	GLITCH		
CENTered	CENTered	CENTered	CENTered	CENTered	COUPling*		
COUPling*	CONDition	CONDition	CONDition	CONDition	GLITch:CENTered		
HOLDoff	COUPling*	COUPling*	COUPling	COUPling*	GLITch:HOLDoff		
LEVel	HOLDoff	HOLDoff	DELay	FIELd	GLITch:LEVel		
PROBe*	LEVel	LEVel	DELay:SLOPe	HOLDoff	GLITch:SOURce		
SENSitivity	LOGic	LOGic	DELay:SOURce	LEVel	GLITch:WIDth		
SLOPe	PATH	PATH	LEVel	LINE	PROBe*		
SOURce	PROBe*	PROBe*	LOGic	OCCurrence	SENSitivity		
	SENSitivity	SENSitivity	OCCurrence	OCCurrence:SLOPe			
		SLOPe	OCCurrence:SLOPe	POLarity			
		SOURce	OCCurrence:SOURce	PROBe*			
			PATH	QUALify			
			PROBe*	SENSitivity			
			QUALify	SOURce			
			SENSitivity	STANdard			
ĺ			SLOPe				
			SOURce				
* = Available only when oscilloscope is an HP 54505B/54510B.							

The EDGE Trigger Mode

The Edge Trigger Mode is the easiest trigger mode to understand and use from the front panel or over the HP-IB, because it has the least number of parameters to be set. This explanation of the trigger mode commands follow the front-panel keys very closely. Refer to the HP 54505B/54506B and HP 54510B/54512B Front-Panel Reference for further explanations of the trigger operation.

In the Edge Trigger Mode you must set the trigger source using the :TRIGGER:SOURCE command. This selects the source that the oscilloscope triggers on. The argument for the :TRIGGER:SOURCE command is channel1, channel2, or external (HP 54505B/54510B); or channel1 through channel4 (HP 54506B/54512B).

After setting the trigger source, you need to set the trigger level. This value is set using the :TRIGGER:LEVEL command and can be set for each trigger source. The trigger level values that are set in the Edge Trigger Mode are used for all modes except the TV and Glitch Trigger Mode. Conversely, the levels set in the PATTERN, STATE, or DELAY modes set the levels for the EDGE mode.

The actual edge that creates the trigger is set with the :TRIGGER:SLOPE command. This command can be set to POSITIVE or NEGATIVE for each of the sources.

The last setting in the Edge Trigger Mode is the Trigger Holdoff value. This value is used only for the EDGE mode.

The Pattern Trigger Mode

This description of the Pattern Trigger Mode follows the front-panel keys very closely. There are additional parameters in this mode that are not used in the Edge Trigger Mode and one parameter that is carried over from the Edge Trigger Mode. The one parameter that carries over is LEVEL. If the level command is used in this mode it also changes the level value for that source in the Edge Trigger Mode. In this trigger mode, the :TRIGGER:LEVEL command defines the voltage that determines if the input voltage is a logic high or logic low for the logic triggers.

The logic pattern for the Pattern Trigger Mode is set using the PATH and LOGIC commands. The PATH command specifies which of the two inputs is selected for the logic pattern. Once the path is selected, the pattern can be set using the LOGIC command. The LOGIC command uses the arguments HIGH, LOW, and DONTCARE to set the "trigger on" bit pattern.

The CONDITION command sets the "when" field on the front panel. This command is used in several of the trigger modes; therefore, it has parameters that are not valid in this mode. The valid parameters for the CONDITION command in the Pattern Trigger Mode are ENTER, EXIT, GT (Greater Than), LT (Less Than), and RANGE.

When the command :TRIGGER:CONDITION ENTER or :TRIGGER:CONDITION EXIT is sent, the Entered or Exited parameter is set on the front panel. When the GT or LT option is used, a time value must be sent to define the limit. When the RANGE option is used, two time values must be sent to define the lower and upper limit. The correct syntax for the RANGE option is :TRIGGER:CONDITION RANGE, < range_low>, < range_high>.

The holdoff time is set in the Pattern Trigger Mode with the :TRIGGER:HOLDOFF command.

The State Trigger Mode

When the State Trigger Mode is selected, the :TRIGGER:SOURCE command is used to select the clock source. The syntax for selecting channel 2 as the clock source is :TRIGGER:SOURCE CHANNEL2.

After the clock source is selected, the correct edge for the clock can be selected using the :TRIGGER:SLOPE command, which can be set to NEGATIVE or POSITIVE.

The :TRIGGER:PATH command can be used with the :TRIGGER:LOGIC command to set the three bit logic pattern to qualify the clock trigger. These commands can be sent using the syntax :TRIGGER:PATH CHAN2;:TRIGGER:LOGIC LOW, or :TRIGGER:PATH CHAN2; LOGIC LOW.

In this trigger mode, the :TRIGGER:LEVEL command defines the voltage that determines if the input voltage is a logic high or a logic low for the logic triggers.

The :TRIGGER:CONDITION command sets the "is/is not present" state using the parameters TRUE for "is present" and FALSE for "is not present."

In the State Trigger Mode, a holdoff value can be set as in all other modes.

The Delay Trigger Mode

In the Delay Trigger Mode, the TRIGGER:QUALIFY command can be used to select the EDGE, PATTERN, or STATE mode as a qualifier. When the EDGE qualifier is selected, all Edge parameters and commands can be used to set the Source and Slope. When the PATTERN qualifier is selected, all Pattern commands can be used to set the pattern mode parameters. When the STATE qualifier is selected, all State commands can be used to set the state mode parameters.

The next settings (in front panel order) are the delay settings. The DELAY command is used to set the Time or Count parameter and the amount of delay. To set the delay to time use the command:TRIGGER:DELAY TIME, < time >. To set the delay to count use the command:TRIGGER:DELAY EVENT < number_events >.

If the trigger delay is set to Event (count) you can then set the delay source and slope. To set the delay source, use the command :TRIGGER:DELAY:SOURCE CHANNEL2. To set the delay slope, use the command TRIGGER:DELAY:SLOPE POSITIVE.

The values within the front-panel "trigger on" field are set with the OCCURRENCE command. To set the number of occurrences to 3333, use the command syntax TRIGGER:OCCURRENCE 3333. To set the source for the number of occurrences to channel 2, use the command syntax:TRIGGER:OCCURRENCE:SOURCE CHANNEL2. To set the slope of the trigger occurrence to negative, use the command syntax:TRIGGER:OCCURRENCE:SLOPE NEGATIVE.

The TV Trigger Mode

The TV Trigger Mode is used for triggering on clamped television signals. This mode allows you to select one of the TV signal frames and one of the lines within that frame.

Once the TV Trigger Mode is selected, the Television Signal Standard can be selected using the :TRIGGER:STANDARD command. The three parameters for this command are 525, 625, and USER. Any of these modes allow you to select the trigger level and the source of the trigger signal.

The trigger level is set by sending the command:TRIGGER:LEVEL < value >.

The trigger source is set by sending the :TRIGGER:SOURCE command. This command allows you to select channel 1 or channel 2 as the trigger source.

With the standard set to 525 or 625, the commands that can be used are POLARITY, FIELD, and LINE. The POLARITY command sets the edge for the trigger. This edge can be set to NEGATIVE or POSITIVE. The FIELD command selects the first or second field of the television signal. The LINE command specifies the horizontal line in which the instrument will trigger on. Refer to the LINE command to determine the correct values.

The HOLDOFF value can also be set in the TV trigger mode, as in all modes.

When the USER (user defined) standard is selected, the source and level are set in the same manner as before.

The QUALIFY command is used to set the "qualify on" field. This command can be set to HIGH or LOW.

The edge defined by the QUALIFY command must occur within the range of time values that are displayed in the front panel field. The TRIGGER:CONDITION RANGE command sets the greater than and less than time values. In order to actually generate a trigger, the qualified conditions must be met within the specified time. To set the time values, send the command:TRIGGER:CONDITION RANGE, < greater_than_value >, < less_than_value >.

The field, "trigger on," is set with the OCCURRENCE command and OCCURRENCE:SLOPE command. To set the number of occurrences, send the command:TRIGGER:OCCURRENCE < number > . To set the slope for the occurrences, send the command:TRIGGER:OCCURRENCE:SLOPE < slope > . The slope can be set to POSITIVE or NEGATIVE.

The description for each command tells you in which modes that command is valid.

The Glitch Trigger Mode

When the Glitch Trigger Mode is selected, the :TRIGGER:GLITCH:SOURCE command is used to select both the trigger source and the pattern state. The syntax for selecting channel 2 as the trigger source, and high as the state, is :TRIGGER:GLITCH:SOURCE CHANNEL2,HIGH.

The trigger level is set by sending the command: TRIGGER:GLITCH:LEVEL < value >.

The condition under which a trigger is generated is set using the TRIGGER:GLITCH:WIDTH command. This command is used to specify that the trigger will be generated if the glitch width is less than (LT) or greater than (GT) a specified time value. The correct syntax for the WIDTH option is:TRIGGER:GLITCH:WIDTH {GT|LT}, < width >.

The holdoff time is set in the Glitch Trigger Mode with the :TRIGGER:GLITCH:HOLDOFF command.

Trigger Subsystem 17-14

CENTered command

The :TRIGGER:CENTERED command sets the trigger level to the centered mode (at the center of the graph) when the internal source is selected. This command is not valid when the external source is selected.

Note

de T

To return to the ADJUST mode, specify a level with the TRIGGER:LEVEL command.

Command Syntax:

:TRIGger:CENTered

Example:

OUTPUT 707;":TRIGGER:SOURCE CHANNEL1"

!select trigger source

OUTPUT 707;":TRIGGER:CENTERED"

CONDition

command/query

The :TRIGGER:CONDITION command is valid in the PATTERN, STATE, DELAY, and TV trigger modes. The time values entered using this command are rounded to the nearest 10 ns.

In the **Pattern Trigger Mode**, the valid arguments for the CONDITION command are ENTER, EXIT, GT, LT, RANGE.

In the Pattern Trigger Mode, the CONDITION command is used to specify whether the trigger is generated upon entering (ENTER) or leaving (EXIT) the specified logic pattern. Also, the CONDITION command specifies whether the pattern must be present for a specified amount of time. The time in the pattern trigger mode can be greater than a value (GT), less then a value (LT), or between two values (RANGE). These settings can also be specified from the front panel using the "when" key in the Pattern Trigger Mode.

In the **State Trigger Mode**, the valid parameters for the CONDITION command are TRUE (is present) and FALSE (is not present).

In the **Delay Trigger Mode**, the CONDITION command is valid when PATTERN or STATE is selected as the qualifier. All arguments for this command that are valid in the Pattern or State Trigger Modes are valid here.

In the TV Trigger Mode, the CONDITION command is used to set the range of time values on which the trigger occurs. This command is only valid in the "user defined" mode.

The CONDITION query returns the currently selected condition for the currently selected mode.

Trigger Subsystem 17-16

Query Syntax: :TRIGger:CONDition?

Returned Format: [:TRIGger:CONDition] <argument><NL>

Where in PATTERN or DELAY PATTERN mode:

<argument> ::= {ENTer | EXIT | GT,<value> | LT,<value> |
RANGe,<range_gt>,<range_lt>}

Where in STATE or DELAY STATE mode:

<argument> ::= {TRUE | FALSe}

Where in TV mode:

<argument> ::= RANGe,<range_gt>,<range_lt>

Where:

<value> ::= 20 ns to 160 ms

<range_gt> ::= 20 ns to 159.999 ms (must be less than range_lt)
<range_lt> ::= 30 ns to 160 ms (must be greater than range_gt)

Example: DIM Con\$[50]

OUTPUT 707;":TRIGGER:CONDITION?"

ENTER 707; Con\$ PRINT Con\$

COUPling command/query

The :TRIGGER:COUPLING command (HP 54505B/54510B only) selects the input coupling for the selected external trigger source. The coupling can be set to DC or DCFifty. The DCFifty parameter places

a 50 Ω load on the trigger input.

The COUPLING query returns the current selection.

Command Syntax: :TRIGger:COUPling {DC | DCFifty}

> Example: OUTPUT 707;":TRIGGER:COUPLING DC"

Query Syntax: :TRIGger:COUPling?

Returned Format: [:TRIGger:COUPling] {DC | DCFifty}<NL>

Example:

DIM Mode\$[50] OUTPUT 707;":TRIG:COUP?"

ENTER 707; Mode\$ PRINT Mode\$

DELay command/query

The :TRIGGER:DELAY command is valid only in the **Delay Trigger Mode.** This command sets a delay value in either time or number of events. In the time delay mode, this command specifies the delay value in seconds. In the events delay mode, this command specifies the delay value in number of trigger events.

The DELAY query returns the current delay value.

Command Syntax: :TRIGger:DELay {TIME,<time_value> | EVENt,<event_value>}

Where:

<tirme_value> ::= amount of delay from 30 ns to 160 ms <event_value> ::= number of events from 1 to 16000000

Example: OUTPUT 707;":TRIGGER:MODE DELAY" !select trigger mode

OUTPUT 707;":TRIGGER:DELAY TIME,1.23E-01"

Query Syntax: :TRIGger:DELay?

Returned Format: [:TRIGger:DELay] {TIME,<time_value> | EVENt,<event_value>}<NL>

Where:

<time_value> ::= amount of delay from 30 ns to 160 ms
<event_value> ::= number of events from 1 to 16000000

Example: DIM Value\$[50]

OUTPUT 707;":TRIG:DELAY?"

ENTER 707; Value\$
PRINT Value\$

DELay:SLOPe

command/query

The :TRIGGER:DELAY:SLOPE command selects the edge that will be counted by the delay command. The parameters for this command are NEGATIVE or POSITIVE. This command is only valid in the

Delay Trigger Mode.

The DELAY:SLOPE query returns the current delay slope.

Command Syntax:

:TRIGger:DELay:SLOPe {POSitive | NEGative}

Example:

OUTPUT 707;":TRIGGER:MODE DELAY"
OUTPUT 707;":TRIG:DEL:SLOP POS"

!select trigger mode

Query Syntax:

:TRIGger:DELay:SLOPe?

Returned Format:

[:TRIGger:DELay:SLOPe] {POSitive | NEGative}<NL>

Example:

DIM Tos\$[50]

OUTPUT 707;":TRIGGER:DELAY:SLOP?" ENTER 707;Tos\$

PRINT Tos\$

DELay:SOURce

command/query

The :TRIGGER:DELAY:SOURCE command selects the source that is counted by the delay command. The parameters for this command

are CHANNEL1, CHANNEL2, or EXTERNAL

(Hp 54505B/54510B); or CHANNEL1 through CHANNEL4

(HP 54506B/54512B). This command is only valid in the Delay Trigger

Mode.

The DELAY:SOURCE query returns the source of the delay in the

Delay Trigger Mode.

Command Syntax:

:TRIGger:DELay:SOURce {CHANnell | CHANnell | EXTernal} (HP 54505B/54510B)

:TRIGger:DELay:SOURce {CHANnell | CHANnell | CHANnell | CHANnell | CHANnell |

(HP 54506B/54512B)

Example:

OUTPUT 707;":TRIGGER:MODE DELAY" !sr
OUTPUT 707;":TRIG:DEL:SOURCE CHANNEL2" !select trigger mode

Query Syntax:

:TRIGger:DELay:SOURce?

Returned Format:

[:TRIGger:DELay:SOURce] {CHANnell | CHANnell | EXTernal}<NL>

(HP 54505B/54510B)

[:TRIGger:DELay:SOURce] {CHANnell | CHANnell | CHANNell

(HP 54506B/54512B)

Example:

DIM Tos\$[50]

OUTPUT 707;":TRIGGER:DELAY:SOUR?"

ENTER 707; Tos\$ PRINT Tos\$

FIELd command/query

The :TRIGGER:FIELD command is only valid in the TV Trigger Mode. This command selects the field of the TV signal when the STANDARD is set to 525 or 625. The valid parameters for this command are 1 or 2.

If the :TRIGGER:FIELD command is set in any other trigger mode, error -221, "Settings conflict," is placed in the error queue.

The FIELD query returns the current setting of the FIELD command.

Command Syntax: :TRIGger:FIELd { 1 | 2 }

> OUTPUT 707;":TRIGGER:MODE TV"
> OUTPUT 707;":TRIGGER:FIEL 2" Example: !select trigger mode

Query Syntax: :TRIGger:FIELd?

Returned Format: [:TRIGger:FIELd] { 1 | 2 }<NL>

Example:

DIM F\$[50] OUTPUT 707;":TRIG:FIELD?"

ENTER 707;F\$ PRINT F\$

GLITch subsystem

The :TRIGGER:GLITch commands are used to define the conditions for a trigger in the Glitch Trigger Mode. All of the commands in the Glitch Trigger subsystem are not used in any of the other trigger modes. This subsystem contains the following commands:

- GLITch:CENTered
- GLITch:HOLDoff
- GLITch:LEVel
- GLITch:SOURce
- GLITch:WIDth

GLITch:CENTered

command

The :TRIGGER:GLITCH:CENTERED command sets the trigger level to the centered mode (at the center of the graph). This command is not valid when the external source is selected (HP 54505B/54510B only). This command is only valid in the Glitch Trigger Mode.

To return to the ADJUST mode, specify a level with the TRIGGER:GLITCH:LEVEL command.

Command Syntax: :TRIGger:GLITch:CENTered

Example: OUTPUT 707;":TRIGGER:GLITCH:SOURCE CHANNEL1,HIGH" !select trigger source

and state

OUTPUT 707;":TRIGGER:GLITCH:CENTERED"

GLITch:HOLDoff

command/query

The :TRIGGER:GLITch:HOLDOFF command is used to enter a the amount of time the trigger circuit is disabled after the trigger event has occurred. This command is only valid in the Glitch Trigger Mode.

The GLITCH:HOLDOFF query returns the value of the holdoff for

the Glitch Trigger Mode.

Command Syntax:

:TRIGger:GLITch:HOLDoff <value>

Where:

<value> ::= 40 ns to 320 ms rounded to nearest 20 ns increment.

Example:

OUTPUT 707;":TRIGGER:GLITCH:HOLDOFF 216 US"

Query Syntax:

:TRIGger:GLITch:HOLDoff?

Returned Format:

[:TRIGger:GLITch:HOLDoff] <value><NL>

Where:

<value> ::= 40 ns to 320 ms (exponential - NR3 format)

Example:

DIM Ho\$[50]

OUTPUT 707;":TRIGGER:GLITCH:HOLD?"

ENTER 707; Ho\$
PRINT Ho\$

GLITch:LEVel

command/query

The :TRIGGER:GLITCH:LEVEL command sets the trigger level voltage for the glitch trigger mode. This command is only valid in the Glitch Trigger Mode.

The GLITCH:LEVEL query returns the trigger level of the Glitch Trigger Mode.

Command Syntax:

:TRIGger:GLITch:LEVel <level>

Where:

<level> ::= for internal triggers, $\pm 1.5 \times \text{full-scale}$ voltage from center screen.

for external triggers (HP 54510B only), ± 2 volts with probe attenuation at

1:1.

Examples: OUTPUT 707;":TRIGGER:GLITCH:LEVEL .30"

OUTPUT 707;":TRIGGER:GLIT:LEV 300MV"

OUTPUT 707;":TRIG:GLIT:LEV 3E-1"

Refer to chapter 27, "Message Communication and System Functions"

for the syntax of using values with multipliers.

Query Syntax:

:TRIGger:GLITch:LEVel?

Returned Format:

[:TRIGger:GLITch:LEVel] <level>NL>

Where:

<level> ::= trigger level in volts (exponential - NR3 format)

Example:

DIM Tleve 1\$[30]

OUTPUT 707;":TRIGGER:GLITCH:LEVEL?"

ENTER 707;Tlevel\$
PRINT Tlevel\$

Trigger Subsystem 17-26

HP 54505B/54506B/54510B/54512B Programming Reference

GLITch:SOURce

command/query

The :TRIGGER:GLITCH:SOURCE command selects the channel and pattern state that will actually produce the trigger. This command is only valid in the Glitch Trigger Mode.

- The source parameters for this command are CHANNEL1, CHANNEL2, or EXTERNAL (HP 54505B/54510B); or CHANNEL1 through CHANNEL4 (HP 54506B/54512B).
- The state for the source selected can be specified as either HIGH or LOW, where HIGH is higher than the current GLITCH:LEVEL value, and LOW is lower than the current GLITCH:LEVEL value.

The GLITCH:SOURCE query returns the current source for the Glitch Trigger Mode.

Command Syntax:

:TRIGger:GLITch:SOURce {CHANnell | CHANnell | EXTernal}, {HIGH | LOW}

(HP 54505B/54510B)

:TRIGger:GLITch:SOURce {CHANne11|CHANne12|CHANne13|CHANne14},{HIGH|LOW}

(HP 54506B/54512B)

Example: OUTPUT 707;":TRIGGER:GLITCH:SOURCE CHAN2,LOW"

Query Syntax: :TRIGger:GLITCH:SOURce?

Returned Format: [:TRIGger:GLITch:SOURce] {CHANnell|CHANnell|EXTernal}, {HIGH|LOW}

(HP 54505B/54510B)

[:TRIGger:GLITch:SOURce] {CHANnell|CHANnel2|CHANnel3|CHANnel4},{HIGH|LOW}

(HP 54506B/54512B)

Example: DIM Src\$[30]

OUTPUT 707;":TRIGGER:GLITCH:SOURCE?"

ENTER 707; Src\$
PRINT Src\$

GLITch:WIDth

GLITch:WIDth

command/query

The :TRIGGER:GLITCH:WIDTH command is used to specify whether the trigger is generated when the pattern is present for greater than (GT), or less than (LT) a specified amount of time.

The GLITCH:WIDTH query returns the current condition and time

value for the Glitch Trigger Mode.

Command Syntax:

:TRIGger:GLITch:WIDTh {GT LT}, <width>

Where:

<width> ::= 5 ns to 160 ms

Example:

OUTPUT 707;":TRIG:GLIT:WIDT GT,33ms"

Query Syntax:

:TRIGger:GLITch:WIDTh?

Returned Format:

[:TRIGger:GLITch:WIDTh] {GT|LT},<width><NL>

Where:

<width> ::= 5 ns to 160 ms (exponential - NR3 format)

Example:

DIM Con\$[50] OUTPUT 707;":TRIGGER:GLITCH:WIDTH?"

ENTER 707; Con\$ PRINT Con\$

HOLDoff

command/query

The :TRIGGER:HOLDOFF command is valid in the Edge, Pattern, State, and TV Trigger Modes. The HOLDOFF command enters a

holdoff value in terms of time or events.

The HOLDOFF query returns the value of the holdoff for the current

mode.

Command Syntax:

:TRIGger:HOLDoff {TIME, < holdoff_value> | EVENt, < event_argument>}

Where:

<holdoff_value> ::= 40 ns to 320 ms rounded to nearest 20 ns increment.

<event_argument> ::= 1 to 16000000

Examples:

OUTPUT 707; ": TRIGGER: HOLDOFF TIME, 216 US"

OUTPUT 707;":TRIGGER:HOLDOFF EVENT,10"

Query Syntax:

:TRIGger:HOLDoff?

Returned Format:

[:TRIGger:HOLDoff] {TIME, <holdoff_value> | EVENt, <event_argument>} <NL>

Where:

<holdoff_value> ::= 40 ns to 320 ms (exponential - NR3 format)
<event_argument> ::= 1 to 16000000 (integer - NR1 format)

Example:

DIM Ho\$[50]

OUTPUT 707;":TRIGGER:HOLD?"

ENTER 707; Ho\$ PRINT Ho\$

LEVel

command/query

The :TRIGGER:LEVEL command sets the trigger level voltage of the active trigger. This command can be sent in any mode; however, only two separate levels are stored. One value is kept for the TV Trigger Mode and another value is kept for all other modes (except Glitch). If you are in the Pattern Trigger Mode and set a trigger level value, that level is also used for the Edge, State, and Delay Trigger Modes.

The LEVEL query returns the trigger level of the current trigger mode.

Command Syntax:

:TRIGger:LEVel <level>

Where:

<|eve|> ::= for internal triggers, $\pm 1.5 \times \text{full-scale}$ voltage from center

screen.

for external triggers, ± 2 volts with probe attenuation at 1:1.

Examples: OUTPUT 707;":TRIGGER:LEVEL .30"

OUTPUT 707;":TRIGGER:LEV 300MV"
OUTPUT 707;":TRIG:LEV 3E-1"

Refer to chapter 27, "Message Communication and System Functions"

for the syntax of using values with multipliers.

Query Syntax: :TRIGger:LEVel?

Returned Format: [:TRIGger:LEVel] <level><NL>

Where:

<level> ::= trigger level in volts (exponential - NR3 format)

Example: DIM Tleve 1\$ [30]

OUTPUT 707;":TRIGGER:LEVEL?"

ENTER 707; Tlevel\$
PRINT Tlevel\$

Trigger Subsystem 17-30

HP 54505B/54506B/54510B/54512B Programming Reference

LINE command/query

The :TRIGGER:LINE command specifies the horizontal line in which the instrument will trigger on. The LINE command is valid in the TV Trigger Mode when the STANDARD selected is 525 or 625. If one of the these standards is selected when the TV Trigger Mode is entered, the line value is set in that standard and selected field.

The LINE query returns the current line of the selected standard.

Command Syntax: :TRIGger:LINE < line number>

Where:

line number> ::= 1 to 625 (depends on STANDARD and FIELD selection).

Example:

OUTPUT 707;":TRIGGER:MODE TV"
OUTPUT 707;":TRIGGER:STANDARD 525"
OUTPUT 707;":TRIG:LINE 22" !select trigger mode !select TV signal standard

Query Syntax: :TRIGger:LINE?

Returned Format: [:TRIGger:LINE] line_number><NL>

Where:

line_number> ::= 1 to 625 (depends on STANDARD and FIELD selection).

(integer - NR1 format)

Example: DIM Ln\$[50]

OUTPUT 707;":TRIGGER:LINE?"

ENTER 707;Ln\$ PRINT Ln\$

LOGic

command/query

The :TRIGGER:LOGIC command is valid in the Pattern and State
Trigger Modes, as well as the DELAY Trigger Mode when qualifying
by PATTERN or STATE. The LOGIC command specifies the
relationship between the signal and the defined voltage level that must
exist before that part of the pattern is considered valid. If the signal on
a selected path is greater than the trigger level, that signal is considered
HIGH. If the signal is less than the trigger level, it is considered LOW.

The LOGIC query returns the last specified logic level of the currently

enabled path.

Command Syntax:

:TRIGger:LOGic {HIGH | LOW | DONTcare}

Example:

OUTPUT 707;":TRIGGER:MODE DELAY"

!select trigger mode !qualify trigger

OUTPUT 707;":TRIGGER:QUALIFY PATTERN"
OUTPUT 707;":TRIG:LOGIC DONT"

Query Syntax:

:TRIGger:LOGic?

Returned Format:

[:TRIGger:LOGic] {HIGH | LOW | DONTcare}<NL>

Example:

DIM L\$[50]

OUTPUT 707;":TRIGGER:LOGIC?"

ENTER 707;L\$ PRINT L\$

command/query **MODE**

The :TRIGGER:MODE command selects the trigger mode. This

command can be sent from any trigger mode.

The MODE query returns the currently selected trigger mode.

Command Syntax:

:TRIGger:MODE {EDGE | PATTern | STATe | DELay | TV | GLITch}

Example:

OUTPUT 707;":TRIGGER:MODE PATT"

Query Syntax:

:TRIGger:MODE?

Returned Format:

[:TRIGger:MODE] {EDGE | PATTern | STATe | DELay | TV | GLITch}<NL>

Example:

DIM Mode\$[50] OUTPUT 707;":TRIGGER:MODE?"

ENTER 707; Mode\$ PRINT Mode\$

OCCurrence

command/query

The :TRIGGER:OCCURRENCE command sets the number of trigger events that must occur before the oscilloscope is actually triggered. This command is valid in the Delay Trigger Mode and in the TV Trigger Mode.

The OCCURRENCE query returns the current value of the OCCURRENCE command when the oscilloscope is in the Delay Trigger Mode, or in the TV Trigger Mode with USER DEFINED

selected.

Command Syntax:

:TRIGger:OCCurrence <occ number>

Where:

<occ_number> ::= 1 to 16000000

Example:

OUTPUT 707;":TRIGGER:MODE DELAY" !select trigger mode

OUTPUT 707;":TRIGGER:OCC 14"

Query Syntax:

:TRIGger:OCCurrence?

Returned Format:

[:TRIGger:OCCurrence] <occ_number><NL>

Where:

<occ_number> ::= 1 to 16000000 (integer - NR1 format)

Example:

DIM Oc\$[50]

OUTPUT 707;":TRIGGER:OCCURRENCE?"

ENTER 707; Oc\$ PRINT Oc\$

OCCurrence:SLOPe

command/query

The :TRIGGER:OCCURRENCE:SLOPE command selects the edge that will be counted by the occurrence command. The parameters for this command are NEGATIVE or POSITIVE. This command is valid in the Delay Trigger Mode and the TV Trigger Mode.

The OCCURRENCE:SLOPE query returns the slope of the current

mode.

Command Syntax: :TRIGger:OCCurrence:SLOPe {POSitive | NEGative}

Example: OUTPUT 707;":TRIGGER:MODE DELAY" !select trigger mode

OUTPUT 707; ": TRIG: OCC: SLOP POS"

Query Syntax: :TRIGger:OCCurrence:SLOPe?

Returned Format: [:TRIGger:OCCurrence:SLOPe] {POSitive | NEGative}<NL>

Example: DIM Tos\$[50]

OUTPUT 707;":TRIGGER:OCCURRENCE:SLOP?"

ENTER 707; Tos\$
PRINT Tos\$

OCCurrence:SOURce

command/query

The :TRIGGER:OCCURRENCE:SOURCE command selects the source that will be counted by the occurrence command. The parameters for this command are CHANNEL1, CHANNEL2, or EXTERNAL (HP 54505B/54510B); or CHANNEL1 through CHANNEL4 (HP 54506B/54512B). This command is valid only in the Delay Trigger Mode.

The OCCURRENCE:SOURCE query returns the source of the occurrence in the Delay Trigger Mode.

Command Syntax:

:TRIGger:OCCurrence:SOURce {CHANne11|CHANne12|EXTerna1} (HP 54505B/54510B)

:TRIGger:OCCurrence:SOURce {CHANne11 | CHANne12 | CHANne13 | CHANne14}

(HP 54506B/54512B)

Example:

OUTPUT 707;":TRIGGER:MODE DELAY" !select trigger mode

OUTPUT 707;":TRIG:OCC:SOURCE CHANNEL2"

Query Syntax:

:TRIGger:OCCurrence:SOURce?

Returned Format:

[:TRIGger:OCCurrence:SOURce] {CHANnell|CHANnel2|EXTernal}<NL>

(HP 54505B/54510B)

[:TRIGger:OCCurrence:SOURce] {CHANnell|CHANnel2|CHANnel3|CHANnel4}<NL>

(HP 54506B/54512B)

Example:

DIM Tos\$[50] OUTPUT 707;":TRIGGER:OCCURRENCE:SOUR?"

ENTER 707; Tos\$ PRINT Tos\$

PATH

command/query

The :TRIGGER:PATH command is valid in the Pattern Trigger Mode, State Trigger Mode, and Delay Trigger Mode when "qualify on" pattern or state is selected. This command selects a pattern bit as the source for future logic commands.

The PATH query returns the current trigger source of the present mode.

Command Syntax:

:TRIGger:PATH {CHANnell|CHANnell|EXTernal} (HP 54505B/54510B)

:TRIGger:PATH {CHANnell | CHANnell | CHANNel

Example:

OUTPUT 707;":TRIGGER:MODE PATTERN"

!select trigger mode

OUTPUT 707;":TRIGGER:PATH CHANNEL2"
OUTPUT 707;":TRIGGER:LOGIC HIGH"

!select logic level

Query Syntax:

:TRIGger:PATH?

Returned Format:

[:TRIGger:PATH] {CHANne11 | CHANne12 | EXTerna 1} < NL> (HP 54505B/54510B) [:TRIGger:PATH] {CHANne11 | CHANne12 | CHANne13 | CHANne14 | < NL> (HP 54506B/54512B)

Example:

DIM Tp\$[50]

OUTPUT 707;":TRIG:PATH?"

ENTER 707;Tp\$ PRINT Tp\$

POLarity

command/query

The :TRIGGER:POLARITY command is valid only in the TV Trigger

Mode. This command sets the polarity for the trigger when the STANDARD is set to 525 or 625. The valid parameters for this

command are POSITIVE and NEGATIVE.

The POLARITY query returns the current polarity setting.

Command Syntax: :TRIGger:POLarity {POSitive | NEGative}

> OUTPUT 707;":TRIGGER:MODE TV" !:
> OUTPUT 707;":TRIGGER:POL NEGATIVE" !select trigger mode Example:

Query Syntax: :TRIGger:POLarity?

[:TRIGger:POLarity] {POSitive | NEGative}<NL> Returned Format:

> Example: DIM Tp\$[50]

OUTPUT 707;":TRIG:POL?"

ENTER 707;Tp\$ PRINT Tp\$

PROBe command/query

The:TRIGGER:PROBE command (HP 54505B/54510B only) is valid only for external triggers. It specifies the attenuation factor for the

external trigger probe.

The PROBE query returns the current setting.

Command Syntax: :TRIGger:PROBe <attenuation_factor>

Where:

<attenuation_factor> ::= .9 to 1000 (exponential - NR3 format)

Example: OUTPUT 707;":TRIGGER:SOURCE EXTERNAL" !select trigger source

OUTPUT 707;":TRIGGER:PROBE 10"

Query Syntax: :TRIGger:PROBe?

Returned Format: [:TRIGger:PROBe] <attenuation_factor><NL>

Where:

<attenuation_factor> ::= .9 to 1000 (exponential - NR3 format)

Example: DIM Af\$[50]

OUTPUT 707;":TRIG:PROB?"

ENTER 707; Af\$

PRINT Af\$

QUALify

command/query

The :TRIGGER:QUALIFY command is valid in the **Delay** and **TV Trigger Mode**. When you are in the Delay Trigger Mode, the parameters for this command are:

- EDGE
- PATTERN
- STATE

In the TV Trigger Mode, the parameters for this command are:

- LOW
- HIGH

The QUALIFY query returns the current setting of the QUALIFY command in the currently selected mode.

Command Syntax:

:TRIGger:QUALify <qualify_parameter>

Where in Delay Trigger Mode:

<qualify parameter> ::= {EDGE | PATTern | STATe}

Where in TV Trigger Mode:

<qualify_parameter> ::= {LOW | HIGH}

Example:

OUTPUT 707;":TRIGGER:MODE DELAY" !select trigger mode

OUTPUT 707;":TRIGGER:QUALIFY PATT"

Query Syntax:

:TRIGger:QUALify?

Returned Format:

[:TRIGger:QUALify] {EDGE | PATTern | STATe | LOW | HIGH}<NL>

Example:

DIM Tq\$[50]

OUTPUT 707;":TRIG:QUALIFY?"

ENTER 707:Tq\$
PRINT Tq\$

Trigger Subsystem 17-40

HP 54505B/54506B/54510B/54512B Programming Reference

SENSitivity

command/query

The :TRIGGER:SENSITIVITY command sets the trigger sensitivity for the selected source. NORMAL corresponds to noise reject off and LOW corresponds to noise reject on.

The SENSITIVITY query returns the current sensitivity for the selected source.

Trigger sensitivity cannot be set for the EXTERNAL trigger source (HP 54505B/54510B only).

Command Syntax: :TRIGger:SENSitivity {NORMal | LOW}

Example: OUTPUT 707;":TRIGGER:SOURCE CHANNEL1" !select trigger source

OUTPUT 707;":TRIGGER:SENSITIVITY LOW"

Query Syntax: :TRIGger:SENSitivity?

Returned Format: [:TRIGger:SENSitivity] {NORMal | LOW}<NL>

Example: DIM Sens\$[50]

OUTPUT 707;":TRIG:SENS?"

ENTER 707; Sens\$
PRINT Sens\$

SETup query

The :TRIGGER:SETUP query returns the current settings for the Trigger Subsystem commands.

Query Syntax: :TRIGger:SETup?

Returned Format:

:TRIGger:COND <argument>;COUP {DC|DCF};DEL {TIME, <time_value>|EVEN, <event_value>};DEL:SLOP {POS|NEG};DEL:SOUR <source>;FIEL {1|2};GLIT:HOLD <holdoff_value>;GLIT:LEV <level>;GLIT:SOUR <source>;GLIT:WIDT {GT|LT}, <width>;HOLD {TIME, <holdoff_value>|EVEN, <event_argument>};LEV <level>;LINE line_number>;LOG {HIGH|LOW|DONT};MODE {EDGE|PATT|STAT|DEL|TV|GLIT};OCC <occ_value>;OCC:SLOP {POS|NEG};OCC:SOUR <source>;PATH <source>;POL {POS|NEG};PROBE <attenuation_factor>;QUAL <qualify_parameter>;SENS {NORM|LOW};SLOP {NEG|POS};SOUR <source>;STAN {525|625|USER}<NL>

Where:

<argument> ::=dependent on trigger mode (refer to TRIGger:CONDition command) <time value> ::=amount of delay from 30ns to 160ms (exp - NR3 format) <event_value> ::= number of events from 1 to 16000000 (int - NR1 format) <source> ::= CHAN1, CHAN2, EXT (HP 54505B/54510B) <source> ::= CHAN1 | CHAN2 | CHAN3 | CHAN4 (HP 54506B/54512B) <holdoff value> ::= 40 ns to 320 ms rounded to nearest 20 ns increment (exponential - NR3 format) <level> ::= trigger level in volts (exponential - NR3 format) <width> ::= 5 ns to 160 ms (exponential - NR3 format) <event_argument> ::= 1 to 16000000 (int - NR1 format) <attenuation_factor> ::= .9 to 1000 (exponential - NR3 format)<line_number> ::= 1 to 625 (depends on STANDARD and FIELD selection) (int - NR1 format) <occ_value> ::= 1 to 16000000 (integer - NR1 format) command)

Example:

DIM Stp\$[500]

OUTPUT 707;":TRIG:SET?"

ENTER 707;Stp\$
PRINT Stp\$

COUPling and PROBe are returned only if the oscilloscope is an HP 54505B/54510B.

Trigger Subsystem 17-42

HP 54505B/54506B/54510B/54512B Programming Reference

command/query **SLOPe**

The :TRIGGER:SLOPE command specifies the slope of the edge for the trigger. The SLOPE command is valid in the Edge Trigger Mode, State Trigger Mode, and Delay Trigger Mode when EDGE or STATE

is selected as the qualifier.

The SLOPE query returns the current slope for the currently selected

trigger mode.

Command Syntax: :TRIGger:SLOPe {NEGative | POSitive}

Example:

OUTPUT 707;":TRIGGER:MODE DELAY"
OUTPUT 707;":TRIGGER:QUALIFY EDGE"
OUTPUT 707;":TRIGGER:SLOPE POSITIVE" !select trigger mode !qualify trigger

Query Syntax: :TRIGger:SLOPe?

[:TRIGger:SLOPe] {POSitive | NEGative}<NL> Returned Format:

> Example: DIM Ts\$[50]

OUTPUT 707;":TRIG:SLOP?"

ENTER 707;Ts\$ PRINT Ts\$

SOURce command/query

The :TRIGGER:SOURCE command selects the channel that actually produces the trigger. The SOURCE command is valid in the Edge Trigger Mode, State Trigger Mode, Delay Trigger Mode, and TV Trigger Mode. In the Delay Trigger Mode this command is valid when EDGE or STATE is selected as the qualifier.

The SOURCE query returns the current source for the selected trigger mode.

Command Syntax: :TRIGger:SOURce {CHANnell | CHANnell | EXTernal | LINE} (HP 54505B/54510B)

:TRIGger:SOURce {CHANnell | CHANnell | CHANN

(HP 54506B/54512B)

Example: OUTPUT 707;":TRIGGER:SOURCE CHAN2"

Query Syntax: :TRIGger:SOURce?

Returned Format: [:TRIGger:SOURce] {CHANnell|CHANnell|EXTernal|LINE}<NL> (HP_54505B/54510B)

[:TRIGger:SOURce] {CHANne11 | CHANne12 | CHANne13 | CHANne14 | LINE} <NL>

(HP 54506B/54512B)

Example: DIM Src\$[30]

OUTPUT 707;":TRIGGER:SOURCE?"

ENTER 707;Src\$ PRINT Src\$

STANdard

command/query

The :TRIGGER:STANDARD command selects the television signal standard to be used in the TV Trigger Mode. The valid parameters for

this command 525, 625, and USER (user defined).

The STANDARD query returns the currently selected standard.

Command Syntax:

:TRIGger:STANdard {525 | 625 | USER}

Example:

OUTPUT 707;":TRIGGER:MODE TV"
OUTPUT 707;":TRIGGER:STAN USER"

!select trigger mode

Query Syntax:

:TRIGger:STANdard?

Returned Format:

[:TRIGger:STANdard] {525 | 625 | USER}<NL>

Example:

DIM Ts\$[50] OUTPUT 707;":TRIG:STANDARD?"

ENTER 707;Ts\$ PRINT Ts\$

Waveform Subsystem

Introduction

The WAVEFORM subsystem is used to transfer waveform data between a controller and the oscilloscope's waveform memories. This subsystem contains the following commands:

- DATA
- FORMat
- POINts
- PREamble
- SOURce
- TYPE
- XINCrement
- XORigin
- XREFerence
- YINCrement
- YORigin
- YREFerence

Figure 18-1 lists the syntax diagrams for the Waveform subsystem commands.

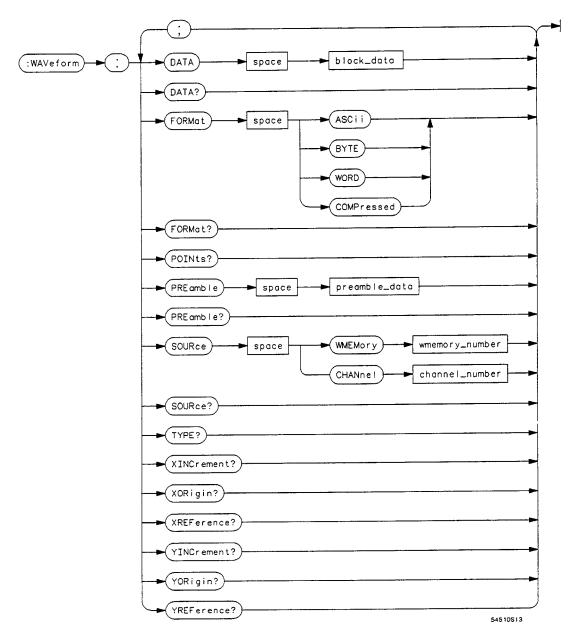


Figure 18-1. Waveform Subsystem Commands Syntax Diagram

Waveform Subsystem 18-2

HP 54505B/54506B/54510B/54512B Programming Reference channel number =

an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4

(HP 54506B/54512B).

block_data =

block data in IEEE 488.2 # format.

preamble data =

refer to the PREAMBLE command.

wmemory number =

an integer, 1 through 4.

Figure 18-1. Waveform Subsystem Commands Syntax Diagram (continued)

Waveform Data and Preamble

The waveform record is actually contained in two portions: the waveform data and the preamble. The waveform data is the actual data acquired for each point in the specified source. The preamble contains the information for interpreting the waveform data, which includes the number of points acquired, format of acquired data, and type of acquired data. The preamble also contains the X and Y increments, origins, and references for the acquired data, so that the raw data can be translated to time and voltage values.

The values set in the preamble are determined when the :DIGITIZE command is executed or when the front-panel STORE key is pressed. The preamble values are based on the settings of variables in the ACQUIRE subsystem, or they are based on the front-panel setup when the STORE key is pressed.

Although the preamble values can be changed with a controller, the way the data is acquired cannot be changed. Changing the preamble values cannot change the type of data that was actually acquired, the number of points actually acquired, etc. Therefore, you must use extreme caution when changing any waveform preamble values to ensure the data is still useful. For example, setting POINTS in the preamble to a value different from the actual number of points in the waveform results in inaccurate data.

HP 54505B/54506B/54510B/54512B Programming Reference Waveform Subsystem 18-3

The waveform data and preamble must be read by the controller or sent to the oscilloscope with two separate commands, DATA and PREAMBLE.

Sending consecutive: DIGITIZE commands may improve the data throughput. Refer to the Root Level Command: DIGITIZE in chapter 7 for more information.

Data Acquisition Types

There are four types of waveform acquisition that can be selected with the :ACQUIRE:TYPE command: NORMAL, AVERAGE, ENVELOPE, and RAWDATA. When the data is acquired using the DIGITIZE command, the data is placed in the channel buffer of the specified source. However, during a RAWDATA acquisition, data is placed in a special rawdata buffer.

After a DIGITIZE command, the instrument is stopped. If the instrument is restarted, over the HP-IB or the front panel, the data acquired with the DIGITIZE command is overwritten.

With the exception of the rawdata mode, waveforms in the oscilloscope are either 500 or 8000 points long. The 8000 point record is available only in the real-time mode. The 500 point record is available in the repetitive or real-time mode.

Realtime Mode

8000 Points

A realtime waveform consists of 8000 sample points. If the following conditions are met, all 8000 points are transferred over the bus:

- :ACQUIRE:POINTS is set to 8000.
- :WAVEFORM:DATA is requested.
- The specific channel or waveform memory contains realtime data.

During normal operation, only 500 or less of these 8000 points are displayed on screen. To get the points on screen, send the command :ACQUIRE:POINTS 500.

Waveform Subsystem 18-4

HP 54505B/54506B/54510B/54512B Programming Reference

500 Points

When :ACQUIRE:POINTS is set to 500, the on-screen time is divided into 500 time buckets as in the repetitive mode. If less than 500 points of the realtime waveform fall into the on-screen time, an interpolation filter is applied to create exactly 500 points. Pan and zoom, as described in the front-panel reference, can be used to display more than 500 points on screen. In this case, the 500 points are the last points placed in each time bucket.

Repetitive Modes

In the repetitive mode, the on-screen time is divided into 500 time buckets and all waveforms contain 500 points.

Normal

Normal data consists of the last data point (hit) in each time bucket. This data is transmitted over HP-IB in a linear fashion starting with time bucket 0 and going through time bucket n-1, where n is the number returned by the WAVEFORM:POINTS query. Only the magnitude values of each data point are transmitted. The first voltage value corresponds to the first time bucket on the left of the screen and the last value corresponds to the next to last time bucket on the right side of the screen. Time buckets that do not have data in them return -1.

The time values for each data point correspond to the position of the data point in the data array. These values are not transmitted.

Average

Average data consists of the average of the first n hits in a time bucket, where n is the value returned by the ACQUIRE:COUNT query. Time buckets that have fewer than n hits return the average of what data they do have. If the :ACQUIRE:COMPLETE parameter is set to 100%, then each time bucket must contain the number of data hits specified with the :ACQUIRE:COUNT command. If a time bucket does not have any data in it, it returns -1. This data is transmitted over the HP-IB in a linear fashion, starting with time bucket 0 and proceeding through time bucket n-1, where n is the number returned by the WAVEFORM:POINTS query. The first value corresponds to a point at the left side of the screen and the last value corresponds to one point away from the right side of the screen.

HP 54505B/54506B/54510B/54512B Programming Reference Waveform Subsystem 18-5

Envelope

Envelope data consists of two arrays of data: one containing the minimum hits in each time bucket, and the other containing the maximum hits in each time bucket. If a time bucket does not have any hits in it, then -1 is returned for both the minimum and maximum values. The two arrays are transmitted one at a time over the HP-IB linearly, starting with time bucket 0 (on the left side of the screen) and proceeding through time bucket m-1, where m is the value returned by the WAVEFORM:POINTS query. The array with the minimum values is sent first. The first value of each array corresponds to the data point on the left of the screen. The last value is one data point away from the right side of the screen.

The data is transferred from the channel buffer to a controller using the WAVEFORM:DATA query. Data is transferred into the instrument from a controller using the WAVEFORM:DATA command. Envelope data can be transferred into Waveform Memories 1 and 2, if WMEMORY 1 is specified as the source. If WMEMORY 3 is specified as the source, the envelope data can be transferred into Waveform Memories 3 and 4.

The data is transferred as two arrays. If Waveform Memory 1 is specified as the source, the first array is transferred into Waveform Memory 1 and the second array is transferred into Waveform Memory 2. If Waveform Memory 3 is specified as the source, the first array is transferred into Waveform Memory 3 and the second array is transferred into Waveform Memory 4. The data type is then changed to normal for each of the waveform memories.

Rawdata

Rawdata is acquired with special routines that are optimized for quick fiso unloading. These routines do not filter the data.

While acquiring data in the Rawdata mode, data is stored as uncalibrated 8-bit Gray code data in a large buffer. When all acquisitions are complete, the buffer is translated into unfiltered, calibrated 16-bit binary data and sent over the bus in the WORD format. The :WAVEFORM:FORMAT command has no effect in the Rawdata mode.

Waveform Subsystem 18-6

HP 54505B/54506B/54510B/54512B Programming Reference The RAWDATA command has three parameters: length, acquisitions, and mode. Length specifies the number of points of each acquisition. Acquisitions specify the number of acquisitions to be taken in a single digitize operation. Mode specifies how the data is processed. The data is transferred from the oscilloscope in a single IEEE 488.2 data block. The number of bytes in the block can be determined with the following equation:

Number of Bytes = Acquisitions \times (Length \times 2 + 8)

The data block consists of two arrays. The first array consists of double precision 64-bit floating point numbers. This array contains the xorigin values of the waveform records to follow. It can read directly into a double precision real array in a controller allocated by the BASIC command ALLOCATE REAL Xorigins(1:Acquisitions). The xorigin values are also available in ASCII format using the :WAVEFORM:XORIGIN query. These xorigin values are accurate to within the timing resolution of the oscilloscope. A less accurate single xorigin value to within one sample time is supplied in the preamble for the rawdata record. All xorigin values in the array will be greater than or equal to the single xorigin value in the preamble.

The second array consists of 16-bit integer numbers. This data is transmitted in a linear fashion over HP-IB. It starts with sample zero of the first acquisition and continues through sample length-1 of the this acquisition. Then it continues in a similar fashion with sample zero through sample length-1 of the each following acquisition through the last acquisition. This array can be read directly into a two dimensional integer array allocated by the BASIC command ALLOCATE INTEGER Waveforms(1:Acquisitions, 1:Points).

Data Conversion

Data sent from the oscilloscope must be scaled for useful interpretation. The values used to interpret the data are the X and Y references, X and Y origins, and X and Y increments. These values are read from the waveform preamble.

Conversion from Data Value to Voltage

The following formula converts a data value from waveform memories 1 through 4, or channels 1 or 2, to a voltage value:

voltage = [(data value - yreference)*yincrement] + yorigin.

Conversion from Data Value to Time

The time value of a data point can be determined by the position of the data point. As an example, the fourth data point sent with XORIGIN = 16 ns, XREFERENCE = 0, and XINCREMENT = 2 ns can be calculated using the following formula:

time = [(data point number - xreference)*xincrement] + xorigin,

This would result in the following calculation:

time =
$$[(3-0)*2 \text{ ns}] + 16 \text{ ns} = 22 \text{ ns}.$$

Data Format for HP-IB Transfer

There are four formats for transferring waveform data over the HP-IB: WORD, BYTE, COMPRESSED, and ASCII.

WORD, BYTE, and COMPRESSED formatted waveform records are transmitted using the arbitrary block program data format specified in IEEE 488.2. ASCII format block data does not use a block header.

When you use the block data format, the ASCII character string "#8<DD...D>" is sent prior to sending the actual data. The 8 indicates how many D's follow. The D's are ASCII numbers which indicate how many data bytes follow.

For example, if 500 points were acquired and the BYTE format was specified, the block header "#800000500" would be sent. The 8 indicates that eight length bytes follow, and 500 indicates that 500 binary data bytes follow.

WORD Format

In the WORD format, the number of data bytes is twice the number of words (data points). The number of data points is the value returned by the :WAVEFORM:POINTS? query. The number of data bytes is followed by a sequence of bytes representing the data points, with the most significant byte of each word transmitted first. In this format the data is shifted so that the most significant bit after the sign bit contains the most significant bit of the data. If there is a hole in the data, the hole is represented by the 16-bit value of -1. The range of data in the WORD format is from 0 to 32640.

WORD format is useful in applications where the information is read directly into an integer array in a controller.

WORD and ASCII formatted data returns the most accurate data values.

BYTE Format

The BYTE format allows only seven bits to be used to represent the voltage values, with the first bit being the sign bit. If there is a hole in the data, the hole is represented by a value of -1.

The BYTE-formatted data transfers over the HP-IB faster than WORD-formatted data, since one byte per point is transferred in BYTE format and two bytes per point are transferred in WORD format. The BYTE-formatted data has less resolution than WORD-formatted data.

COMPRESSED

The number of bytes transmitted when the format is COMPRESSED is **Format** the same as the value returned by the WAVEFORM:POINTS? query.

> Eight bits of resolution are retained in the COMPRESSED format. So that a hole in the data may be represented, a data value of 255 is mapped to 254, and 255 is used to represent a hole. This mode gives greater vertical precision than BYTE-formatted data, with faster transfer times than WORD-formatted data. On the other hand, the COMPRESSED mode probably requires more time after the transfer for data to be unpacked.

ASCII Format

Waveform records in the ASCII format are transmitted one value at a time, separated by a comma. The data values transmitted are the same as the values sent in the WORD FORMAT except that they are converted to an integer ASCII format (six or less characters) before being sent over the HP-IB.

ASCII values cannot be used to transfer data into a controller.

DATA command/query

The :WAVEFORM:DATA command transfers a waveform data record to the instrument over the HP-IB and stores it in the previously specified waveform memory. The waveform memory is specified with the :WAVEFORM:SOURCE command. Only waveform memories can have waveform data sent to them.

Note

The oscilloscope only accepts 500 or 8000 point records. If you try to send variable length records (RAWDATA acquisition type) back into the oscilloscope, an error message appears on the screen.

The format of the data being sent must match the format previously specified by the waveforms preamble for the destination memory. The :WAVEFORM:DATA command does not accept ASCII data.

However, the ASCII format can be specified for data output.

The DATA query outputs a waveform record to the controller over the HP-IB that is stored in a waveform memory or channel buffer previously specified with the :WAVEFORM:SOURCE command.

Command Syntax:

:WAVeform:DATA <binary block data in # format>

Query Syntax:

:WAVeform:DATA?

Returned Format:

[:WAVeform:DATA]

cbinary block length bytes><binary block><NL>

Example: The following program moves data from the oscilloscope to the controller and then back to the oscilloscope with the :WAVEFORM:DATA query and command.

```
! Reset the oscilloscope
      *RST
                                                     ! Initialize instrument interface
      CLEAR 707
10
      OUTPUT 707;":TIMEBASE:SAMPLE REPETITIVE" ! Select sample mode
20
      ! Setup the Acquire subsystem
                                                     ! Display mode to NORMAL
      OUTPUT 707;":ACQUIRE:TYPE NORMAL"
      OUTPUT 707;":ACQUIRE:COUNT 1"
50
      OUTPUT 707;":ACQUIRE:POINTS 500"
OUTPUT 707;":DIGITIZE CHANNEL1"
OUTPUT 707;":SYSTEM:HEADER OFF"
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
60
                                                     ! Acquire data
70
                                                     ! Headers off
                                                     ! Channel 1 as waveform source
90
      OUTPUT 707;":WAVEFORM:FORMAT WORD"
                                                     ! WORD format
100
      OUTPUT 707:":WAVEFORM:DATA?"
110
      ENTER 707 USING "#,2A,8D"; Headers$, Bytes ! Read length byte
120
130
      Length=Bytes
140
      Length=Length/2
      ALLOCATE INTEGER Waveform(1:Length)
150
      ENTER 707 USING "#,W":Waveform(*)
ENTER 707 USING "-K,B";End$
                                                     ! Enter wavefrom data to integer array
160
170
                                                     ! Dimension variable
180
      DIM Preamble$[200]
                                                     ! Output waveform preamble to controller
      OUTPUT 707;":WAVEFORM:PREAMBLE?"
190
      ENTER 707 USING "-K";Preamble$
200
      OUTPUT 707;":WAVEFORM:SOURCE WMEMORY4"
                                                     ! Waveform memory 4 as source
210
      OUTPUT 707 USING "#,K";":WAVEFORM:PREAMBLE ";Preamble$! Send preamble
220
                                                     ! from controller to WMEMORY 4
221
      OUTPUT 707 USING "#.K";":WAVEFORM:DATA #800001000"! Send header
230
      OUTPUT 707 USING "W"; Waveform(*) ! Send waveform data to WMEMORY 4
240
      OUTPUT 707;":BLANK CHANNEL1"
OUTPUT 707;":VIEW WMEMORY4"
                                                    ! Turn channel 1 off
250
                                                   ! Turn WMEMORY 4 on
260
270
```


In program line 220, the space after :WAVEFORM:PREAMBLE and before the quotation mark is required.

Waveform Subsystem 18-12

HP 54505B/54506B/54510B/54512B Programming Reference

FORMat

command/query

The :WAVEFORM:FORMAT command sets the data transmission mode for waveform data output. This command controls how the data is formatted on the HP-IB when sent from the oscilloscope.

When the ASCII mode is selected, the data consists of ASCII digits with each data value separated by a comma. The ASCII mode cannot be used to transfer data into a controller.

WORD formatted data transfers as 16-bit binary integers in two bytes, with the most significant byte of each word sent first.

BYTE and COMPRESSED formatted data is transferred as 8-bit bytes.

The FORMAT query returns the current output format for the transfer of waveform data.

The :WAVEFORM:FORMAT command has no effect in the Rawdata mode. In this mode, data is always transferred in the WORD format.

Command Syntax:

:WAVeform:FORMat {ASCii | WORD | BYTE | COMPressed}

Example:

OUTPUT 707;":WAVEFORM:FORMAT WORD"

Query Syntax:

:WAVeform:FORMat?

Returned Format:

[:WAVeform:FORMat] {ASCii | WORD | BYTE | COMPressed}<NL>

Example:

DIM Frmt\$[30]

OUTPUT 707;":WAV:FORMAT?"

ENTER 707; Frmt\$
PRINT Frmt\$

query **POINts**

> The :WAVEFORM:POINTS query returns the points value in the currently selected waveform preamble. The points value is the number

of time buckets contained in the waveform selected with the

WAVEFORM:SOURCE command.

Query Syntax: :WAVeform:POINts?

Returned Format: [:WAVeform:POINts] {500 | 8000}<NL>

Example:

Dim Pts\$[50] OUTPUT 707;":WAV:POINTS?" ENTER 707;Pts\$

PRINT Pts\$

PREamble

command/query

The :WAVEFORM:PREAMBLE command sends a waveform preamble to a previously selected waveform memory in the instrument.

The PREAMBLE query sends a waveform preamble to the controller from the waveform source.

In the Rawdata mode, the format is always 2 for WORD, and the number of acquisitions is returned by the count parameter. The count parameter returns 1 in all other modes.

Command Syntax:

Where:

Query Syntax:

:WAVeform: PREamble?

Returned Format:

Where:

Where:

<format> ::= 0 for ASCII format
1 for BYTE format
2 for WORD format
4 for COMPRESSED format

Example:

This example program uses both the command and query form of the PREAMBLE command. First the preamble is queried (output to the controller). Then, the preamble is returned to a previously selected waveform memory.

```
10 OUTPUT 707;":WAVEFORM:SOURCE WMEM1"
20 DIM Pre$[120]
30 OUTPUT 707;":SYSTEM:HEADER OFF"
40 OUTPUT 707;":WAVEFORM:PREAMBLE?"
50 ENTER 707 USING "-K";Pre$
60 OUTPUT 707 USING "#,K";":WAVEFORM:PREAMBLE ";Pre$
70 END
```


In line 60 of the program example, a space is inserted between the word "PREAMBLE" and the closed quotation mark. This space must be inside the quotation mark because in this format (#,K) the data is packed together. Failure to add the space produces a word that is not a proper command word.

Example: The following program example places the preamble in a numeric array.

```
10 OUTPUT 707;":WAVEFORM:SOURCE WMEM1"
20 DIM Preamble(1:10)
30 OUTPUT 707;":SYSTEM:HEADER OFF"
40 OUTPUT 707;":WAVEFORM:PREAMBLE?"
50 ENTER 707 ;Preamble(*)
60 OUTPUT 707;":WAVEFORM:PREAMBLE ";Preamble(*)
70 END
```

SOURce command/query

The :WAVEFORM:SOURCE command selects the channel or waveform memory to be used as the source for the waveform commands. This command also selects the destination for data being transferred over the bus.

The SOURCE query returns the currently selected source for the

Example: OUTPUT 707;":WAV:SOURCE WMEMORY3"

Query Syntax: :WAVeform: SOURce?

Returned Format: [:WAVeform:SOURce] {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4}}<NL>

Example: DIM Src\$[30]

OUTPUT 707;":WAVEFORM:SOURCE?"

ENTER 707;Src\$ PRINT Src\$

CHANnel3 and CHANnel4 are only available if the oscilloscope is an HP 54506B/54512B.

TYPE query

The :WAVEFORM:TYPE query returns the data type for the

previously specified waveform source.

Query Syntax: :WAVeform:TYPE?

[:WAVeform:TYPE] {INValid | AVERage | ENVelope | NORMal | RAWData}<NL> Returned Format:

Example:

DIM Typ\$[30] OUTPUT 707;":WAVEFORM:TYPE?" ENTER 707;Typ\$ PRINT Typ\$

XINCrement query

> The :WAVEFORM:XINCREMENT query returns the current x-increment value in the preamble for the current specified source. This value is the time difference between consecutive data points for NORMAL, AVERAGE, ENVELOPE, or RAWDATA.

For a 500 point waveform, the x-increment pixel width is in seconds. For 8000 point waveforms and RAWDATA waveforms, the xincrement value is the sample period. Therefore, these waveforms never contain the interpolated data points.

Query Syntax: :WAVeform:XINCrement?

Returned Format: [:WAVeform:XINCrement] <value><NL>

Where:

<value> ::= x-increment in the current preamble (exponential - NR3 format)

Example:

DIM Xin\$[50] OUTPUT 707;":WAV:XINCREMENT?"

ENTER 707;Xin\$

PRINT Xin\$

XORigin query

The :WAVEFORM:XORIGIN query returns the current x-origin value in the preamble for the current specified source. For a 500 point record, the x-origin value is the time of the first data point in the memory with respect to the trigger point. For an 8000 point record, the x-origin value is the point referenced by x-reference.

In the RAWDATA mode, the :WAVEFORM:XORIGIN query may return multiple values depending on the number of acquisitions specified. In this mode, the x-origin value is the time of the first data point in each acquisition.

In the rawdata mode, the x-origin value returned by the preamble is the minimum time of the first point in memory that occurs in any acquired data record.

Query Syntax: :WAVeform:XORigin?

Returned Format: [:WAVeform:XORigin] <value>[,<value>]...<NL>

Where:

<value> ::= x-origin value in the current preamble (exponential - NR3

format)

Example: DIM Xr\$[50]

OUTPUT 707;":WAV:XORIGIN?"

ENTER 707;Xr\$
PRINT Xr\$

XREFerence query

The :WAVEFORM:XREFERENCE query returns the current x-reference value in the preamble for the current specified source. This value specifies the number of the first point on the screen. For 500 point waveforms and the rawdata mode, xreference is zero. For 8000 point waveforms, xreference is the number of the first data point appearing on screen. This x-reference value is between zero and 7999. The exact number depends on the sweep speed; left, center, or right reference; and the pan and zoom if the waveform is stopped.

Query Syntax: :WAVeform: XREFerence?

Returned Format: [:WAVeform:XREFerence] <value><NL>

Where:

<value> ::= x-reference value in the current preamble (integer - NR1 format)

Example: DIM Xrf\$[50]

OUTPUT 707;":WAV:XREFERENCE?"

ENTER 707;Xrf\$ PRINT Xrf\$ YINCrement query

The :WAVEFORM:YINCREMENT query returns the current y-increment value in the preamble for the current specified source. This value is the voltage difference between consecutive data points.

Query Syntax:

:WAVeform:YINCrement?

Returned Format:

[:WAVeform:YINCrement] <value><NL>

Where:

format)

Example:

DIM Yin\$[50]

OUTPUT 707;":WAV:YINCREMENT?"

ENTER 707; Yin\$
PRINT Yin\$

YORigin

The :WAVEFORM:YORIGIN query returns the current y-origin value in the preamble for the current specified source. This value is the

voltage at the center of the screen.

Query Syntax: :WAVeform: YOR igin?

Returned Format: [:WAVeform:YORigin] <value><NL>

Where:

<value> ::= y-origin in the current preamble (exponential - NR3 format)

Example: Dim Yr\$[50

Dim Yr\$[50] OUTPUT 707;":WAV:YORIGIN?"

ENTER 707;Yr\$
PRINT Yr\$

YREFerence query

The :WAVEFORM:YREFERENCE query returns the current y-reference value in the preamble for the current specified source. This value specifies the data point where the y-origin occurs.

Query Syntax:

:WAVeform: YREFerence?

Returned Format:

[:WAVeform:YREFerence] <value><NL>

Where:

<value> ::= y-reference value in the current preamble (integer - NR1 format)

Example:

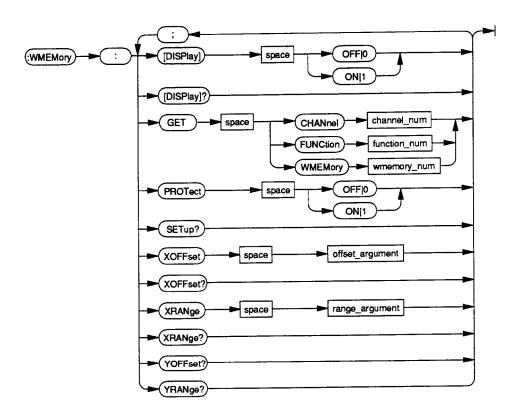
DIM Yrf\$[50]

OUTPUT 707;":WAV:YREFERENCE?"

ENTER 707;Yrf\$
PRINT Yrf\$

Waveform Memory Subsystem

Introduction


The WMEMORY subsystem commands control the four nonvolatile waveform memories of the oscilloscope. Each memory is independently programmable for protect, offset, and range functions. The memory number specified in the command selects the memory that is affected by the command.

The channel displays are toggled on and off with the root level commands VIEW and BLANK, or using the WMEMORY[:DISPLAY] command.

The Waveform Memory subsystem contains the following commands:

- DISPlay
- GET
- PROTect
- SETup
- XOFFset
- XRANge
- YOFFset
- YRANge

Figure 19-1 lists the syntax diagrams for the Waveform Memory subsystem commands.

channel_number = an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4 (HP 54506B/54512B).

function_number = an integer, 1 through 4.

wmemory number = an integer, 1 through 4.

offset_argument = a real number, the maximum value depends on the range selected.

range_argument = a real number, 10 ns through 50 s (in a 1, 2, 5 sequence).

Figure 19-1. Waveform Memory Subsystem Commands Syntax Diagram

Waveform Memory Subsystem 19-2

HP 54505B/54506B/54510B/54512B Programming Reference

[DISPlay]

command/query

The: WMEMORY < N > [:DISPLAY] command controls the individual waveform memory displays. On starts displaying, and off stops displaying the memory selected.

The DISPLAY query returns the current setting of the command.

Note Because [:DISPlay] is an implied command, only the parameters need be sent to turn a selected waveform memory on or off. For example, to turn waveform memory 1 display on send either ":WMEM1:DISP ON" or ":WMEM1 ON".

Command Syntax:

:WMEMory<N>[:DISPlay] {{ON | 1} | {OFF | 0}}

Where:

<N> ::= 1 through 4

Example:

OUTPUT 707;":WMEM2:DISP ON"

Query Syntax:

:WMEMory<N>[:DISPlay]?

Where:

<N> ::= 1 through 4

Returned Format:

[:WMEMory<N>[:DISPlay]] {1 | 0}<NL>

Example:

DIM Disp\$[50] OUTPUT 707;":WMEM1?" ENTER 707; Disp\$ PRINT Disp\$

GET command

The :WMEMORY < N > :GET command transfers selected channel, function, or waveform memory data into the waveform memory specified. When executed, an immediate erase of the waveform memory selected is performed, followed by a write of the new data. An error is generated if the destination waveform memory write protect is set to ON.

Command Syntax: :WMEMory<N>:GET {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4} |

FUNCtion{1 | 2 | 3 | 4}

Example: OUTPUT 707;":WMEM1:GET CHANNEL3"

Note CHANnel3 and CHANnel4 are only available if the oscilloscope is an

HP 54506B/54512B.

PROTect

command/query

The: WMEMORY < N > PROTECT command controls the write protect state of the selected nonvolatile memory. On enables the selected waveform memories write protect state. When on, any attempted save will generate an error, and the contents remain unchanged.

The PROTECT query returns the current setting of the command.

Command Syntax: :WMEMory<N>PROTect {{ON | 1} | {OFF | 0}}

Where:

<N> ::= 1 through 4

Example: OUTPUT 707;":WMEM2:PROT ON"

Query Syntax: :WMEMory<N>PROTect?

Where:

<N> ::= 1 through 4

Returned Format: [:WMEMory<N>PROTect] {1 | 0}<NL>

Example:

DIM Disp\$[50] OUTPUT 707;":WMEM:PROT?" ENTER 707; Disp\$

PRINT Disp\$

SETup

The :WMEMORY < N > :SETUP query returns the current settings for the WMEMory Subsystem commands.

Query Syntax: :WMEMory<N>:SETup?

Returned Format: :WMEMory<N>:DISPlay{ON | OFF};PROTect{ON | OFF};XRANGe <xrange>;XOFFset

<xoffset>;YRANGe <xrange>;YOFFset <xoffset><NL>

Where:

<N> ::= 1 through 4

<xrange> ::= 10 ns to 50 sec(exponential - NR3 format)

<xoffset> ::= time from trigger to display reference in seconds. Display

reference is left, center, or right (exponential - NR3 format) <yrange> ::= full-scale range value (exponential - NR3 format) <yoffset> ::= offset value in volts (exponential - NR3 format)

Example: DIM Stp\$[300]

OUTPUT 707;":WMEM1:SET?"

ENTER 707;Stp\$ PRINT Stp\$

XOFFset command/query

The :WMEMORY < N >: XOFFSET command sets the time base delay for the waveform memory selected, on 8000 point waveforms in realtime mode. This delay is the internal time between the trigger event and the on-screen delay reference point. The delay reference point is the left edge of the display, the right edge of the display, or the center of the display, and is set with the :TIMEBASE:REFERENCE command when the waveform was stored.

The XOFFSET query returns the current offset value.

Command Syntax: :WMEMory<N>:X0FFset <xoffset>

Where:

<N> ::= 1 through 4

<xoffset> ::= time in seconds from trigger to the on screen delay reference

point. The maximum value depends on the :WMEMory:XRANge setting.

Example: OUTPUT 707;":WMEM:X0FF 2MS"

Query Syntax: :WMEMory<N>:X0FFset?

Returned Format: [:WMEMory<N>:X0FFset] <xoffset><NL>

Where:

<N> ::= 1 through 4

<xoffset> ::= time from trigger to display reference in seconds. Display

reference is left, center, or right (exponential - NR3 format)

Example: DIM Xofst\$[50]

OUTPUT 707;":WMEM1:XOFF?"

ENTER 707;Xofst\$
PRINT Xofst\$

XRANge command/query

The :WMEMORY < N > :XRANGE command sets the full-scale horizontal time in seconds for the waveform memory selected, on 8000 point waveforms in realtime mode. The XRANGE value is ten times the time per division.

The XRANGE query returns the current full-scale range value.

Command Syntax: :WMEMory<N>:XRANge <xrange>

Where:

<N> ::= 1 through 4

<xrange> ::= 10 ns to 50 s in a 1,2,5 sequence"

Example: OUTPUT 707;":WMEM:RAN 100 MS"

Query Syntax: :WMEMory<N>:XRANge?

Returned Format: [:WMEMory<N>:XRANge] <xrange>NL>

Where:

<N> ::= 1 through 4

<xrange> ::= 10 ns to 50 s (exponential - NR3 format)

Example: DIM Xrng\$[50]

OUTPUT 707;":WMEMORY:XRANGE?"

ENTER 707;Xrng\$ PRINT Xrng\$ YOFFset query

The :WMEMORY < N > :YOFFSET query returns the voltage that is represented at center screen for the selected waveform memory.

Query Syntax: :WMEMory<N>:Y0FFset?

Returned Format: [:WMEMory<N>:Y0FFset] <yoffset><NL>

Where:

<N> ::= 1 through 4

<yoffset> ::= $\overline{\text{offset value in volts (exponential - NR3 format)}}$

Example: DIM Yofst\$[50]

OUTPUT 707;":WMEMORY2:YOFFSET?"

ENTER 707; Yofst\$
PRINT Yofst\$

YRANge query

The :WMEMORY < N > :YRANGE query returns the full-scale vertical axis of the selected waveform memory.

Query Syntax: :WMEMory<N>:YRANge?

Returned Format: [:WMEMory<N>:YRANge] <yrange>NL>

Where:

<N> ::= 1 through 4

<yrange> ::= full-scale range value (exponential - NR3 format)

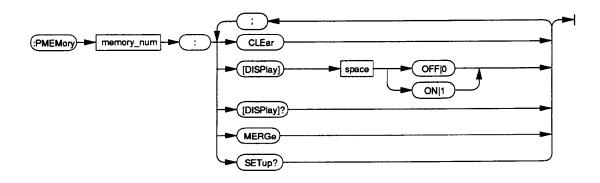
Example: DIM Yrng\$[50]

OUTPUT 707;":WMEM2:YRAN?"

ENTER 707; Yrng\$ PRINT Yrng\$

Pixel Memory Subsystem

Introduction


The PMEMORY subsystem commands control the two volatile pixel memories of the oscilloscope. The memory number specified in the command selects the memory that is affected by the command.

The pixel displays are toggled on and off with the root level commands VIEW and BLANK, or using the PMEMORY[:DISPLAY] command.

The Pixel Memory subsystem contains the following commands:

- CLEar
- DISPlay
- MERGe
- SETup

Figure 20-1 lists the syntax diagrams for the Pixel Memory subsystem commands.

 $memory_number = an integer, 1 or 2.$

Figure 20-1. Pixel Memory Subsystem Commands Syntax Diagram

HP 54505B/54506B/54510B/54512B Programming Reference

Pixel Memory Subsystem 20-1

CLEar command

The :PMEMORY < N > :CLEAR command clears the contents of the selected pixel memory.

Command Syntax: :PMEMory<N>:CLEar

Where:

< N> ::= 1 or 2

Example: OUTPUT 707;":PMEM1:CLE"

[DISPlay]

command/query

The :PMEMORY < N > [:DISPLAY] command controls the individual pixel memory displays. On displays, and off blanks the memory selected.

The DISPLAY query returns the current setting of the command.

Note Because [:DISPlay] is an implied command, only the parameters need be sent to turn a selected waveform memory on or off. For example, to turn waveform memory 1 display on send either ":PMEM1:DISP ON" or ":PMEM1 ON".

Command Syntax:

:PMEMory<N>[:DISPlay] {{ON | 1} | {OFF | 0}}

Where:

< N> ::= 1 or 2

Example:

OUTPUT 707;":PMEM2:DISP ON"

Query Syntax:

:PMEMory<N>[:DISPlay]?

Where:

< N > ::= 1 or 2

Returned Format:

[:PMEMory<N>[:DISPlay]] {1 | 0}<NL>

Example:

DIM Disp\$[50] OUTPUT 707;":PMEM1?" ENTER 707; Disp\$ PRINT Disp\$

MERGe command

The :PMEMORY < N>:MERGe command adds the contents of the active display to the current contents of the specified pixel memory.

This command is similar to the MERGe root command.

Command Syntax: :PMEMory<N>:MERGe

Where:

< N> ::= 1 or 2

Example: OUTPUT 707;":PMEM2:MERG"

SETup

The :PMEMORY < N > :SETUP query returns the current settings for

the PMEMory Subsystem commands.

Query Syntax: :PMEMory<N>:SETup?

Returned Format: :PMEMory<N>:DISPlay{ON | OFF}<NL>

Example: DIM Stp\$[30]

DIM Stp\$[30] OUTPUT 707;":PMEM1:SET?"

ENTER 707;Stp\$
PRINT Stp\$

Multiple Memory Subsystem

Introduction

The MMEMORY subsystem commands control the up to 665 volatile multiple memories of the oscilloscope. Multiple memories contain 501 points of waveform information resulting from the compare and limit test violations. Failure data stored in multiple memory can be displayed on screen, or transferred to nonvolatile waveform memory.

The Multiple Memory subsystem contains the following commands:

- DISPlay
- FNUMber
- SOURce
- STORe

Figure 21-1 lists the syntax diagrams for the Multiple Memory subsystem commands.

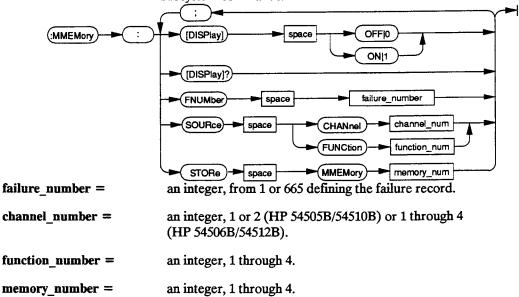


Figure 21-1. Multiple Memory Subsystem Commands Syntax Diagram

HP 54505B/54506B/54510B/54512B Programming Reference Multiple Memory Subsystem 21-1

[DISPlay]

command/query

The :MMEMORY[:DISPLAY] command controls the multiple memory display. On allows failure data to be displayed on the screen. Specific failure data is selected using the MMEMORY:FNUMBER and :MMEMORY:SOURCE commands.

The DISPLAY query returns the current setting of the command.

Note

Because [:DISPlay] is an implied command, only the parameters need be sent to turn the multiple memory on or off. For example, to turn on the multiple memory display, send either ":MMEM:DISP ON" or ":MMEM ON". Valid data MUST be present before selecting multiple memory or an error will be generated.

Command Syntax: :MMEMory[:DISPlay] {{ON | 1} | {OFF | 0}}

Example: OUTPUT 707;":MMEM:DISP ON"

Query Syntax: :MMEMory[:DISPlay]?

Returned Format: [:MMEMory[:DISPlay]] {1 | 0}<NL>

Example: DIM Disp\$[50]

OUTPUT 707;":MMEM?" ENTER 707;Disp\$ PRINT Disp\$

FNUMber

command/query

The :MMEMORY:FNUMBER command selects the specific multiple memory failure to be viewed or transferred. Source of the failure is specified using the :MMEMORY:SOURCE command.

The FNUMBER query returns the currently selected failure for the multiple memory commands. A returned "0" indicates that there is not any failure data available for the source selected.

Command Syntax:

:MMEMory:FNUMber <failure>

Where:

<failure> ::= 1 to 665

OUTPUT 707;":MMEM:SOUR CHAN1" Example:

OUTPUT 707;":MMEM:FNUM 35"

Query Syntax: :MMEMory:FNUMber?

Returned Format: [:MMEMory:FNUMber] <failure><NL>

Where:

<failure> ::= 0 to 665 (integer - NR1 format)

Example: OUTPUT 707;":MMEM:FNUM?"

ENTER 707; Fail PRINT Fail

SOURce

command/query

The :MMEMORY:SOURCE command selects the channel or function to be used for the source of the multiple memory commands.

Specific failure number is selected using the :MMEMORY:FNUMBER command.

The SOURCE query returns the currently selected source for the

multiple memory commands.

 $\textbf{Command Syntax:} \quad : \texttt{MMEMory:SOURce } \{\texttt{CHANne1}\{1|2|3|4\} \mid \{\texttt{FUNCtion}\{1|2|3|4\} \mid \{\texttt{FUNCtio$

Example: OUTPUT 707;":MMEM:SOUR CHAN1"

Query Syntax: :MMEMory:SOURce?

Returned Format: [:MMEMory:SOURce] {CHANnel{1|2|3|4} | {FUNCtion{1|2|3|4}<NL>

Example: DIM Src\$[30]
OUTPUT 707:":MMEM:SOUR?"

ENTER 707; Src\$ PRINT Src\$

Note

CHANnel3 and CHANnel4 are only available when the oscilloscope is an HP 54506B/54512B.

STORe Command

The :MMEMORY:STORe command moves the selected multiple memory record (source and failure number) to a waveform memory. Specific multiple memory source and failure number is selected using the :MMEMORY:SOURCE and MMEMORY:FNUMBER

commands.

Command Syntax: :MMEMory:STORe

Example: OUTPUT 707;":MMEM:SOUR CHAN1"

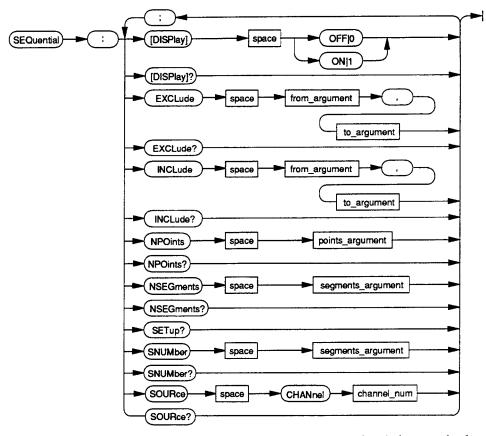
OUTPUT 707;":MMEM:FNUM 35" OUTPUT 707;":MMEM:STOR WMEM1"

Sequential Subsystem

Introduction

The Sequential subsystem commands control how data is acquired, captured, and defined during sequential single-shot mode operation on the HP 54505B, HP 54506B, HP 54510B, and HP 54512B.

Sequential single-shot is available only when :TIMEBASE:SAMPLE is set to REALtime. When sequential single-shot mode is selected (:SEQUENTIAL[:DISPLAY] ON), all data acquisition is stopped. The acquisition is defined using the :SEQUENTIAL:NPOINTS and :SEQUENTIAL:NSEGMENTS commands. Data is acquired when the DIGITIZE root command is executed.


The :ACQUIRE:TYPE currently selected determines how the captured data is processed. See Chapter 9 "Acquire Subsystem" for more information on acquisition type available. Individual segment selection is possible using the :SEQUENTIAL:INCLude, :SEQUENTIAL:EXCLude, and :SEQUENTIAL:SNUMber commands.

Captured and processed segments can be displayed on the screen (DISPLAY Subsystem), measured (MEASURE Subsystem), and/or have waveform math functions (FUNCtion Subsystem) performed using the appropriate subsystem commands.

The Sequential subsystem contains the following commands:

- DISPlay
- EXCLude
- INCLude
- NPOints
- NSEGments
- SETup
- SNUMber
- SOURce

Figure 22-1 lists the syntax diagrams for the Sequential subsystem commands.

points_argument = an integer, from 4 to 8000 defining the points being acquired.

segments argument = an integer, from 1 to 8888 dependent on the points_argument.

channel number = an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4

(HP 54506B/54512B).

from argument = an integer, dependent on the segments argument.

to_argument = an integer, dependent on the segments_argument.

Figure 22-1. Sequential Subsystem Commands Syntax Diagram

Sequential Subsystem 22-2

[DISPlay]

command/query

The :SEQUENTIAL[:DISPLAY] command controls sequential single-shot mode operation. On places the oscilloscope in sequential single-shot mode, and stops all data acquisition.

After data has been acquired (using the DIGITIZE root command), captured segments are displayed on the screen. The type of data displayed is selected using the :ACQUIRE:TYPE command. When :ACQUIRE:TYPE is NORMal, a specific segment can be selected using the :SEQUENTIAL:SNUMber command.

The DISPLAY query returns the current setting of the command.

Because [:DISPlay] is an implied command, only the parameters need be sent to turn the sequential single-shot mode display on or off. For example, to turn on the display, send either ":SEQ:DISP ON" or ":SEQ ON".

Command Syntax:

:SEQuential[:DISPlay] {{ON | 1} | {OFF | 0}}

Example:

OUTPUT 707;":SEQ:DISP ON"

Query Syntax:

:SEQuential[:DISPlay]?

Returned Format:

[:SEQuential[:DISPlay]] {1 | 0}<NL>

Example:

DIM Disp\$[50] OUTPUT 707;":SEQ?" ENTER 707;Disp\$ PRINT Disp\$

EXCLude

command/query

The :SEQUENTIAL:EXCLUDE command selects a range of previously captured segments that WILL NOT BE USED for future sequential single-shot operations.

When entering the range of segment numbers:

- All segment numbers specified must have been previously acquired (as defined by the SEQUENTIAL:NSEGMENTS command).
- The "from segment" specified cannot exceed the "to segment"

The EXCLUDE query returns a list of currently selected excluded segments for the sequential single-shot commands.

Command Syntax:

:SEQuential:EXCLude <from_argument>,<to_argument>

Where:

<from_argument> ::= any previously captured segment number less than or equal to the <to_argument> specified. <to_argument> := any previously captured segment number greater than or

Example:

equal to the <from_argument> specified.

OUTPUT 707;":TIMEBASE:SAMPLE REALTIME"
OUTPUT 707;":SEQ ON
OUTPUT 707;":ACQUIRE:TYPE AVER" OUTPUT 707;":SEQUENTIAL:NPOINTS 500" OUTPUT 707;":SEQUENTIAL:NSEGMENTS 10"
OUTPUT 707;":SEQUENTIAL:SOURCE CHAN1"
OUTPUT 707;":DIGITIZE CHAN1"
OUTPUT 707;":SEQUENTIAL:EXCLUDE 5,10"

EXCLude

Query Syntax: :SEQuential:EXCLude?

[:SEQuential:EXCLude] <exclude_list><NL> Returned Format:

Where:

<exclude_list> ::= a list of previously captured segment numbers separated by commas (integer - NR1 format).

Example:

DIM Exc\$[50] OUTPUT 707;":SEQ:EXCL?"

ENTER 707; Exc\$
PRINT Exc\$

INCLude

command/query

The :SEQUENTIAL:INCLUDE command selects a range of previously captured and excluded segments that WILL BE USED for future sequential single-shot operations.

Note

Because all segments are initially acquired as INCLUDE, this command should only be used to include segments that were previously excluded using the :SEQUENTIAL:EXCLUDE command.

When entering the range of segment numbers:

- All segment numbers specified must have been previously acquired (as defined by the SEQUENTIAL:NSEGMENTS command).
- The "from segment" specified cannot exceed the "to segment" specified.

The INCLUDE query returns a list of currently selected included segments for the sequential single-shot commands.

Command Syntax:

:SEQuential:INCLude <from_argument>,<to_argument>

Where:

<from_argument> ::= any previously captured segment number less than or
equal to the <to_argument> specified.
<to_argument> ::= any previously captured segment number greater than or
equal to the <from_argument> specified.

Example:

OUTPUT 707;"::SEQUENTIAL:INCLUDE 5,10"

Sequential Subsystem 22-6

INCLude

Query Syntax: :SEQuential:INCLude?

[:SEQuential:INCLude] <include_list><NL> Returned Format:

Where:

<include_list> ::= a list of previously captured segment numbers separated
by commas (integer - NR1 format).

Example: DIM Inc\$[50]
OUTPUT 707;":SEQ:INCL?"

ENTER 707; Inc\$ PRINT Inc\$

NPOints

command/query

The :SEQUENTIAL:NPOINTS command specifies the number of time buckets for each acquired segment. The number of points specified also effects the total number of SEQUENTIAL:NSEGMENTS available.

The NPOINTS query returns the number of time buckets to be acquired.

501 points are acquired for a normal screen display.

Command Syntax:

:SEQuential:NPOints <points_argument>

Where:

<points argument>::= 4 to 8000.

Example: OUTPUT 707;":SEQUENTIAL:NPOINTS 500"

Query Syntax: :SEQuential:NPOints?

Where:

<points_argument>::= 4 to 8000 (integer - NR1 format).

Example: DIM Pts\$[50]

OUTPUT 707;":SEQ:NPO?" ENTER 707;Pts\$

PRINT Pts\$

NSEGments

command/query

The :SEQUENTIAL:NSEGMENTS command specifies the number of segments that will be acquired for the sequential single-shot mode. The number of time buckets acquired for each segment is specified using the :SEQUENTIAL:NPOINTS command.

The specified number of segments are acquired when the RUN command is executed. After data acquisition, the oscilloscope is placed in the stopped state.

The NSEGMENTS query returns the number of segments to be acquired.

The range of segment numbers is from 1 to 8888; however, the maximum number of segments allowable is dependent on the current number of points specified using the SEQUENTIAL:NPOINTS command, and the active channel.

Command Syntax:

:SEQuential:NSEGments <segments_argument>

Where:

<segments_argument>::= 1 to 8888 dependent on the SEQUENTIAL:NPOINTS
selection.

Example:

OUTPUT 707;":SEQUENTIAL:NPOINTS 8000"
OUTPUT 707;":SEQUENTIAL:NSEGMENTS 49"

NSEGments

Query Syntax: :SEQuential:NSEGments?

Returned Format: [:SEQuential:NSEGments <segments_argument><NL>

Where:

<segments_argument>::= 1 to 8888 dependent on the SEQUENTIAL:NPOINTS

selection (integer - NR1 format).

Example:

DIM Seg\$[50] OUTPUT 707;":SEQ:NSEG?" ENTER 707;Seg\$ PRINT Seg\$

SETup

The :SEQUENTIAL:SETUP query returns the current settings for the SEQuential Subsystem commands.

Query Syntax: :SEQuential:SETup?

Returned Format: :SEQuential:DISPlay {ON|OFF};EXCLude <exclude_list>;INCLude

<include_list>;NPOints <points>;NSEGments <segment>;SNUMber <number>;SOURce

{CHANne11 | 2 | 3 | 4}<NL>

Where:

<points>::= 4 to 8000 (integer - NR1 format)

<segments>::= 1 to 8888 dependent on the points selected (integer - NR1

format)

<number>::= 1 to 8888 dependent on the segment selected (integer - NR1

format)

<include_list> ::= a list of previously captured segment numbers separated

by commas (integer - NR1 format)

<exclude_list> ::= a list of previously captured segment numbers separated

by commas (integer - NR1 format)

Example: DIM Stp\$[300]

OUTPUT 707;":SEQ:SET?"

ENTER 707;Stp\$
PRINT Stp\$

CHANnel3 and CHANnel4 are returned only when the oscilloscope is an HP 54506B/54512B.

SNUMber command/query

The :SEQUENTIAL:SNUMBER command selects one previously defined and captured segment. ACQUIRE:TYPE NORMAL must be specified to select an individual segment.

The SNUMBER query returns a segment number dependent on the ACQUIRE:TYPE currently selected.

- ACQUIRE:TYPE NORMAL: returns the segment number selected using the :SEQUENTIAL:SNUMBER command.
- ACQUIRE:TYPE AVERAGE or ENVELOPE: returns the total number of segments used to generate the data.

Command Syntax: :SEQuential:SNUMber <segment_number>

Where:

<segment_number> ::= 1 to 8888 dependent on the number of segments acquired.

Example: OUTPUT 707;":SEQUENTIAL:SNUMBER 5"

Query Syntax: :SEQuential:SNUMber?

Returned Format: [:SEQuential:SNUMber] <segment_number><NL>

Where:

<segment_number> ::= 1 to 8888 dependent on the number of segments acquired

and ACQUIRE: TYPE currently selected (integer - NR1 format).

Example: DIM Seg\$[10]

DIM Seg\$[10] OUTPUT 707;":SEQ:SNUM?"

ENTER 707; Seg\$ PRINT Seg\$

SOURce

command/query

The :SEQUENTIAL:SOURCE command selects the channel to be used for the source of the sequential single-shot commands. Data can only be acquired from an active channel. Attempting to acquire data from a channel turned off will cause an error to be generated.

The SOURCE query returns the currently selected source for the

sequential single-shot commands.

Command Syntax: :SEQuential:SOURce {CHANnel{1|2|3|4}

Example: OUTPUT 707;":SEQ:SOUR CHAN1"

Query Syntax: :SEQuential:SOURce?

Returned Format: [:SEQuential:SOURce] {CHANnel{1|2|3|4}<NL>

Example: DIM Src\$[30]
OUTPUT 707;":SEQ:SOUR?"

ENTER 707; Src\$
PRINT Src\$

CHANnel3 and CHANnel4 are available only when the oscilloscope is an HP 54506B/54512B.

Marker Subsystem

Introduction

The Marker subsystem commands control the two x-axis (vertical) and y-axis (horizontal) markers. Each set of markers are independently programmable for source and position.

The Marker subsystem contains the following commands:

- DISPlay
- SETup
- XDELta
- X1Position
- X2Position
- X1Y1source
- X2Y2source
- YDELta
- Y1Position
- Y2Position

Figure 23-1 lists the syntax diagrams for the Sequential subsystem commands.

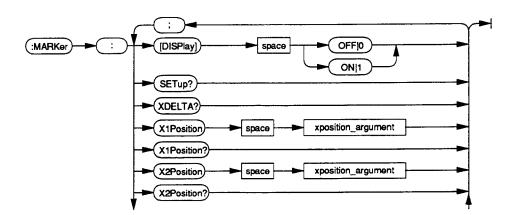
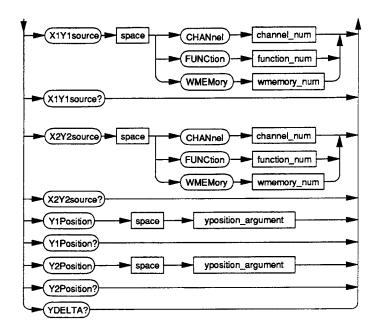



Figure 23-1. Marker Subsystem Commands Syntax Diagram

xposition_argument = time in seconds from the trigger

yposition_argument = a real number within the voltage range.

channel_number = an integer, 1 or 2 (HP 54505B/54510B) or 1 through 4

(HP 54506B/54512B).

function_number = an integer, 1 through 4.

wmemory_number = an integer, 1 through 4.

Figure 23-1. Marker Subsystem Commands Syntax Diagram (continued)

Marker Subsystem 23-2

[DISPlay]

command/query

The :MARKER[:DISPLAY] command controls the marker displayed on the screen. On displays x/y markers, menus, and current position and statistic data on the screen.

The DISPLAY query returns the current setting of the command.

Because [:DISPlay] is an implied command, only the parameters need be sent to turn the marker display on or off. For example, to turn on the display, send either ":MARK:DISP ON" or ":MARK ON".

Command Syntax:

:MARKer[:DISPlay] {{ON | 1} | {OFF | 0}}

Example:

OUTPUT 707;":MARK:DISP ON"

Query Syntax:

:MARKer[:DISPlay]?

Returned Format:

[:MARKer[:DISPlay]] {1 | 0}<NL>

Example:

DIM Disp\$[50] OUTPUT 707;":MARK?" ENTER 707;Disp\$ PRINT Disp\$ SETup

The :MARKER:SETUP query returns the current settings for the MARKer Subsystem commands.

Query Syntax: :M

:MARKer:SETup?

Returned Format:

:MARKer:DISPlay {ON|OFF};XDELta <xdelta>;X1Position <xposition>;X2Position <xposition>;X1Y1source {CHANnell|2|3|4} | {FUNCtion1|2|3|4} | {WMEMoryl|2|3|4};X2Y2source {CHANnell|2|3|4} | {FUNCtion1|2|3|4} | {WMEMoryl|2|3|4};YDELta <ydelta>;Y1Position <yposition>;Y2Position

<yposition> <NL>

Where:

<xdelta>::= difference between x1 and x2 markers (exponential - NR3 format)
<xposition>::= xmarker in seconds or hertz (exponential - NR3 format)
<ydelta>::= difference between y1 and y2 markers (exponential - NR3 format)
<yposition>::= ymarker in volts or power (exponential - NR3 format)

Example:

DIM Stp\$[300]

OUTPUT 707;":MARK:SET?"

ENTER 707; Stp\$
PRINT Stp\$

CHANnel3 and CHANnel4 are returned only when the oscilloscope is an HP 54506B/54512B.

XDELta query

The :MARKER:XDELTA query returns the time or frequency difference between the x1 and x2 markers:

xdelta = x2marker - x1marker

Time is returned in seconds for all modes except FFT, where frequency is returned in hertz. If the returned value is negative, x1marker is located at a point previous to the x2marker.

This command is identical to the MEASURE:TDELTA command, and is provided for compatibility with other oscilloscopes.

Query Syntax: :MARKer:XDELta?

Returned Format: [:MARKer:XDELta] <xvalue><NL>

Where:

<xvalue> ::= difference between x1 and x2 markers (exponential - NR3 format)

Example: DIM Xd1\$[50]

OUTPUT 707;":MARKER:XDELTA?"

ENTER 707;Xd1\$ PRINT Xd1\$

X1Position

command/query

The :MARKER:X1POSITION command moves the x1marker to the specified time with respect to the trigger time. Positive values set the marker to to right of the trigger point (post-trigger), while negative values set the marker to the left of the trigger point (pre-trigger). Trigger point is set using the TIMEBASE:REFERENCE command.

The X1POSITION query returns the position of the x1marker. Time is returned in seconds for all modes except FFT, where frequency is returned in hertz.

This command is identical to the MEASURE:TSTART command, and is provided for compatibility with other oscilloscopes.

Command Syntax:

:MARKer:X1Position <xposition>

Where:

<xposition>::= xmarker time in seconds (all modes except FFT)

<xposition>::=frequency in hertz (FFT mode)

Example:

OUTPUT 707;":MARKER:X1POSITION 30 NS"

Query Syntax:

:MARKer:X1Position?

Returned Format:

Where:

<xposition>::= xmarker time in seconds, or frequency in hertz (exponential

- NR3 format)

Example:

DIM X1p\$

OUTPUT 707;":MARKER:X1POSITION?"

ENTER 707;X1p\$
PRINT X1p\$

Marker Subsystem 23-6

X2Position

command/query

The :MARKER:X2POSITION command moves the x2marker to the specified time with respect to the trigger time. Positive values set the marker to to right of the trigger point (post-trigger), while negative values set the marker to the left of the trigger point (pre-trigger). Trigger point is set using the TIMEBASE:REFERENCE command.

The X2POSITION query returns the position of the x1marker. Time is returned in seconds for all modes except FFT, where frequency is returned in hertz.

This command is identical to the MEASURE:TSTOP command, and is provided for compatibility with other oscilloscopes.

Command Syntax:

:MARKer:X2Position <xposition>

Where:

<xposition>::= xmarker time in seconds (all modes except FFT)
<xposition>::=frequency in hertz (FFT mode)

Example:

OUTPUT 707;":MARKER:X2POSITION 40 NS"

Query Syntax:

:MARKer:X2Position?

Returned Format:

[:MARKer:X2Position] <mpcsition><NL>

Where:

<xposition>::= xmarker time in seconds, or frequency in hertz (exponential)

- NR3 format)

Example:

DIM X2p\$

OUTPUT 707;":MARKER:X2POSITION?"

ENTER 707;X2p\$
PRINT X2p\$

HP 54505B/54506B/54510B/54512B Programming Reference Marker Subsystem 23-7

X1Y1source

X1Y1source

command/query

The :MARKER:X1Y1SOURCE command selects the channel, function, or waveform memory to be used for the source of the X1 and Y1 marker commands.

The X1Y1SOURCE query returns the currently selected source for the X1 and Y1 marker commands.

Command Syntax:

:MARKer:X1Y1source {CHANne1{1|2|3|4} | FUNCtion{1|2|3|4} | WMEMory{1|2|3|4}

Example: (

OUTPUT 707;":MARK:X1Y1 CHAN1"

Query Syntax:

:MARKer:X1Y1source?

Returned Format:

[:MARKer:X1Y1source] {CHANnel{1|2|3|4} | FUNCtion $\{1|2|3|4\}$ |

WMEMory{1 2 3 4 4 < NL>

Example:

DIM Src\$[30]

OUTPUT 707;":MARK:X1Y1?"

ENTER 707;Src\$ PRINT Src\$

Note

CHANnel3 and CHANnel4 are available only when the oscilloscope is an HP 54506B/54512B.

X2Y2source

command/query

The :MARKER:X2Y2SOURCE command selects the channel, function, or waveform memory to be used for the source of the X2 and Y2 marker commands.

The X2Y2SOURCE query returns the currently selected source for the

X2 and Y2 marker commands.

Command Syntax: :MARKer:X2Y2source {CHANne1{1|2|3|4} | FUNCtion{1|2|3|4} | WMEMory{1|2|3|4}

Example: OUTPUT 707;":MARK:X2Y2 CHAN1"

Query Syntax: :MARKer:X2Y2source?

Returned Format: [:MARKer:X2Y2source] {CHANnel{1|2|3|4} | FUNCtion{1|2|3|4} |

WMEMory{1 | 2 | 3 | 4}<NL>

Example: DIM Src\$[30]

OUTPUT 707;":MARK:X2Y2?"

ENTER 707;Src\$ PRINT Src\$

Note ¶

CHANnel3 and CHANnel4 are available only when the oscilloscope is an HP 54506B/54512B.

YDELta query

The :MARKER:YDELTA query returns the voltage or power difference between the y1 and y2 markers:

ydelta = y2marker - y1marker

Level is returned in volts for all modes except FFT, where power is returned in dBm. If the returned value is negative, the y1marker is located at a lower level than the y2marker.

This command is identical to the MEASURE:VDELTA command, and is provided for compatibility with other oscilloscopes.

Query Syntax: :MARKer:YDELta?

Returned Format: [:MARKer:YDELta] <yvalue><NL>

Where:

<yvalue> ::= difference between y1 and y2 markers (exponential - NR3 format)

Example: DIM Yd1\$[50]

OUTPUT 707;":MARKER:YDELTA?"

ENTER 707;Yd1\$
PRINT Yd1\$

Y1Position

command/query

The :MARKER:Y1POSITION command moves the y1marker to the specified level. The acceptable values are limited to the currently defined channel, function, or waveform memory range.

The Y1POSITION query returns the position of the y1marker. Level is returned in volts for all modes except FFT, where power is returned in dBm.

This command is identical to the MEASURE:VSTART command, and is provided for compatibility with other oscilloscopes.

Command Syntax:

:MARKer:ylPosition <yposition>

Where:

<yposition>::= ymarker voltage (all modes except FFT)

<yposition>::=power in dBm (FFT mode)

Example: OUTPUT 707; ": MARKER: y1POSITION -10MV"

Query Syntax: :MARKer:y1Position?

Returned Format: [:MARKer:y1Position] <yposition><NL>

Where:

<yposition>::= ymarker level in volts, or power in dBm (exponential - NR3

format)

Example: DIM Y1p\$[50]

OUTPUT 707;":MARKER:Y1POSITION?"

ENTER 707;X1p\$ PRINT Y1p\$

Y2Position

command/query

The :MARKER:Y2POSITION command moves the y2marker to the specified level. The acceptable values are limited to the currently defined channel, function, or waveform memory range.

The Y2POSITION query returns the position of the y2marker. Level is returned in volts for all modes except FFT, where power is returned in dBm.

Note

This command is identical to the MEASURE: VSTOP command, and is provided for compatibility with other oscilloscopes.

Command Syntax:

:MARKer:y2Position <yposition>

Where:

<yposition>::= ymarker voltage (all modes except FFT)

<yposition>::=power in dBm (FFT mode)

Example:

OUTPUT 707; ": MARKER: y2POSITION -10MV"

Query Syntax:

:MARKer:y2Position?

Returned Format:

[:MARKer:y2Position] <yposition><NL>

Where:

<yposition>::= ymarker level in volts, or power in dBm (exponential - NR3

format)

Example:

DIM Y2p\$[50]

OUTPUT 707;":MARKER:Y2POSITION?"

ENTER 707; Y2p\$ PRINT Y2p\$

Marker Subsystem 23-12

Status Reporting

Introduction

IEEE 488.2 defines data structures, commands, and common bit definitions for status reporting. There are also instrument-defined structures and bits.

The bits in the status byte act as summary bits for the data structures residing behind them. In the case of queues, the summary bit is set if the queue is not empty. For registers, the summary bit is set if any enabled bit in the event register is set. The events are enabled with the corresponding event enable register. Events captured by an event register remain set until the register is read or cleared. Registers are read with their associated commands. The *CLS command clears all event registers and all queues except the output queue. If *CLS is sent immediately following a program message terminator, the output queue is also cleared.

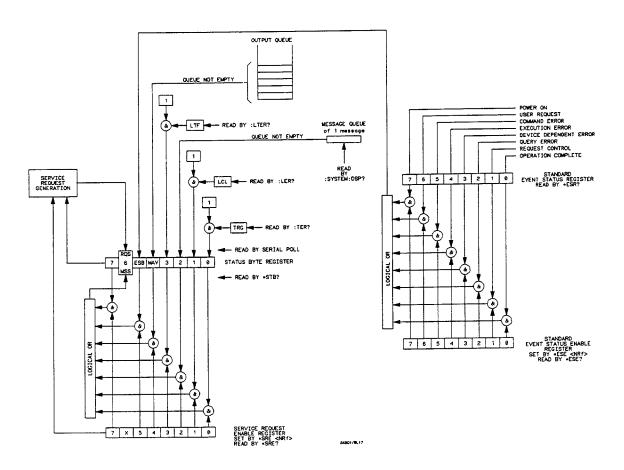


Figure 24-1. Status Reporting Data Structures

Bit Definitions

MAV - message available. Indicates whether there is a response in the output queue.

ESB - event status bit. Indicates if any of the conditions in the Standard Event Status Register are set and enabled.

MSS - master summary status. Indicates whether the device has a reason for requesting service. This bit is returned for the *STB? query.

RQS - request service. Indicates if the device is requesting service. This bit is returned during a serial poll. RQS is set to 0 after it is read via a serial poll (MSS is not reset by *STB?).

MSG - Message. Indicates whether there is a message in the message queue.

PON - power on. Always 0 in the HP 5451XB.

URQ - user request. Indicates whether a front-panel key has been pressed.

CME - command error. Indicates whether the parser detected an error.

EXE - execution error. Indicates whether a parameter was out of range, or inconsistent with the current settings.

DDE - device specific error. Indicates whether the device was unable to complete an operation for device dependent reasons.

QYE - query error. Indicates whether the protocol for queries has been violated.

RQC - request control. Indicates whether the device is requesting control. The HP 54510A never requests control.

OPC - operation complete. Indicates whether the device has completed all pending operations.

LCL - local. Indicates whether a remote-to-local transition has occurred.

TRG - trigger. Indicates whether a trigger has been received.

LTF - limit test failure. Indicates whether a limit test or compare test failure has occurred.

HP 54505B/54506B/54510B/54512B Programming Reference Status Reporting 24-3

Operation Complete (*OPC)

The IEEE 488.2 structure provides one technique which can be used to find out if any operation is finished. The *OPC command, when sent to the instrument after the operation of interest, sets the OPC bit in the Standard Event Status Register when all pending device operations have finished. If the OPC bit and the RQS bit have been enabled, a service request is generated.

```
OUTPUT 707;"*SRE 32; *ESE 1" !enables an OPC service request !initiates data acquisition, and !generates a SRQ when the !acquisition is complete
```

Trigger Bit (TRG)

The Trigger (TRG) bit indicates if the device has received a trigger. The TRG event register will stay set after receiving a trigger until it is cleared by reading it or using the *CLS command. If your application needs to detect multiple triggers, the TRG event register must be cleared after each one.

If you are using the Service Request to interrupt a program or controller operation when the trigger bit is set, then you must clear the event register after each time it has been set.

```
OUTPUT 707;"*SRE 1"
! enables a trigger service request.
! the next trigger will generate an SRQ.

OUTPUT 707;":TER?"
! queries the TRG event register, thus
! clearing it.
! the next trigger can now generate an
! SRO
```

Status Byte

If the device is requesting service (RQS set), and the controller serial polls the device, the RQS bit is cleared. The MSS bit (read with *STB?) is not cleared by reading it. The status byte is not cleared when read, except for the RQS bit.

Serial Poll

The HP 54505B, HP 54506, HP 54510B, and HP 54512B each support the IEEE 488.1 serial poll feature. When a serial poll of the instrument is requested, the RQS bit is returned on bit 6 of the status byte.

Using Serial Poll

This example shows how to use the service request by conducting a serial poll of all instruments on the bus. In this example, assume that there are two instruments on the bus: an oscilloscope at address 7 and a printer at address 1. These address assumptions are made throughout this manual. It is also assumed that you are operating on Interface Select Code 7.

The program command for serial poll using HP BASIC 5.0 is Stat = SPOLL(707). The address 707 is the address of the oscilloscope in this example. The command for checking the printer is Stat = SPOLL(701) because the address of that instrument is 01 on bus address 7. This command reads the contents of the HP-IB Status Register into the variable called Stat. At that time bit 6 of the variable Stat can be tested to see if it is set (bit 6=1).

The serial poll operation can be conducted in the following manner:

- 1. Enable interrupts on the bus. This allows the controller to "see" the SRO line.
- 2. If the SRQ line is high (some instrument is requesting service) then check the instrument at address 1 to see if bit 6 of its status register is high.
- 3. Disable interrupts on the bus.

4. To check whether bit 6 of an instrument's status register is high, use the following command line.

IF BIT (Stat, 6) then

- 5. If bit 6 of the instrument at address 1 is not high, then check the instrument at address 7 to see if bit 6 of its status register is high.
- 6. As soon as the instrument with status bit 6 high is found, check the rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than simply reading the register. This command clears the bus, automatically addresses the talker and listener, sends SPE (serial poll enable) and SPD (serial poll disable) bus commands, and reads the data. For more information about serial poll, refer to your controller manual and programming language reference manuals.

After the serial poll is completed, the RQS bit in the oscilloscope's Status Byte Register is reset if it was set. Once a bit in the Status Byte Register is set, it remains set until the status is cleared with a *CLS command, or the instrument is reset. If these bits do not get reset, they cannot generate another SRQ.

Error Messages

This chapter lists the error messages that are returned by the parser on the HP 54505B, HP 54506B, HP 54510B, and HP 54512B digitizing oscilloscope.

Error Number	Description
11	Questionable horizontal scaling
12	Edges required not found
70	RAM write protected
-100	Command error (unknown command)
-101	Invalid character
-102	Syntax error
-103	Invalid separator
-104	Data type error
-105	GET not allowed
-108	Parameter not allowed
-109	Missing parameter
-112	Program mnemonic too long
-113	Undefined header
-121	Invalid character in number
-123	Numeric overflow
-124	Too many digits
-128	Numeric data not allowed
-130	Suffix error
-131	Invalid suffix
-138	Suffix not allowed
-140	Character data error
-141	Invalid character data
-144	Character data too long
-148	Character data not allowed

HP 54505B/54506B/54510B/54512B Programming Reference

Error Messages 25-1

Error Number	Description
-150	String data error
-151	Invalid string data
-158	String data not allowed
-160	Block data error
-161	Invalid block data
-168	Block data not allowed
-170	Expression error
-171	Invalid expression
-178	Expression data not allowed
-200	Execution error
-211	Trigger ignored
-221	Settings conflict
-222	Data out of range
-223	Too much data
-310	System error
-350	Too many errors
-400	Query error
-410	Query INTERRUPTED
-420	Query UNTERMINATED
-430	Query DEADLOCKED
-440	Query UNTERMINATED after indefinite response

Error Messages 25-2

Algorithms

Introduction

One of the primary features of the oscilloscope is its ability to make automatic measurements on displayed waveforms. This chapter provides details on how automatic measurements are calculated and offers some tips on how to improve results.

Measurement Setup

Measurements typically should be made at the fastest possible sweep speed for the most accurate measurement results. The entire portion of the waveform that is to be measured must be displayed on the oscilloscope:

- At least one complete cycle must be displayed for period or frequency measurements.
- The entire pulse must be displayed for width measurements.
- The leading edge of the waveform must be displayed for rise time measurements and all other edge measurements.
- The trailing edge of the waveform must be displayed for fall time measurements and all other edge measurements.

Making Measurements

If more than one waveform, edge, or pulse is displayed, the measurements are made on the first (leftmost) portion of the displayed waveform that can be used. If there are not enough data points, the oscilloscope displays ≤ with the measurement results. This is to remind you that the results may not be as accurate as possible. It is recommended that you re-scale the displayed waveform and make your measurement again.

When any of the standard measurements are requested, the oscilloscope first determines the top-base voltage levels at 100%-0%. From this information, it can determine the other important voltage values (10%, 90%, and 50%) needed to make the measurements. The 10% and 90% voltage values are used in the rise time and fall time measurements, as well as in all other edge measurements. The 10% and 90% values are also used to determine the 50% value. The 50% voltage value is used for measuring frequency, period, pulse width, and duty cycle.

Automatic Top-Base

Top-Base is the heart of most automatic measurements. It is used to determine V_{top} and V_{base} , the 0% and 100% voltage levels at the top and bottom of the waveform. From this information the oscilloscope can determine the 10%, 50%, and 90% points, which are also used in most measurements. The top or base of the waveform is not necessarily the maximum or minimum voltage present on the waveform. Consider a pulse that has slight overshoot. It would be wrong to select the highest point of the waveform as the top since the waveform normally rests below the perturbation.

Top-Base performs a histogram on the waveform and finds the most prevalent point above and below the waveform midpoint. The most prevalent point is one that represents greater than approximately 5% of the total display points (501) and is considered to be either the top or base. If no point accounts for more than 5% of the total, then the top is chosen as the absolute maximum and the base is chosen as the absolute minimum.

Edge Definition

Both rising and falling edges are defined as transitional edges that must cross three thresholds.

A rising edge must cross the lower threshold in a positive direction (defining it as a rising edge), cross the mid threshold (any number of crossings, both positive and negative are permissible) and then cross the upper threshold without any additional crossing of the lower threshold.

Algorithms 26-2

A falling edge must cross the upper threshold in a negative direction, cross the mid threshold (any number of times), and then cross the lower threshold without any additional crossing of the upper threshold.

Note

Most time measurements are made based on the position of the first crossing of the middle threshold.

Algorithm Definitions

This section lists the definitions that the measurements in the HP 54505B, HP 54506B, HP 54510B, and HP 54512B are based on.

delay There are three types of delay measurements:

- Jitter.
- Standard.
- User-defined.

Jitter occurs only under the following circumstances:

- The standard/user-defined key is set to standard.
- Two delay parameters are the same.
- The display mode is set to envelope.

if

first edge on minimum waveform is rising

then

delay = mid-threshold of first rising edge of max waveform minus mid-threshold of first rising edge on min waveform

else

delay = mid-threshold of first falling edge on min waveform minus mid-threshold of first falling edge on max waveform

HP 54505B/54506B/54510B/54512B Programming Reference Algorithms 26-3

The standard delay measurement occurs in the standard mode (not user-defined) and is not a jitter measurement.

standard delay = mid-threshold of the first edge of the second parameter minus the mid-threshold of the first edge of the first parameter

Note

Negative delay is possible.

User defined delay = second channel edge minus first channel edge

+ width

The + width algorithm has standard and user-defined considerations.

if

first edge is rising

then

+ width = mid-threshold crossing of first falling edge minus mid-threshold crossing of first rising edge

else

+ width = mid-threshold crossing of second falling edge minus mid-threshold crossing of first rising edge

The user-defined definition is the same as the standard definition except for the user-defined threshold.

- width

The - width algorithm has standard and user-defined considerations:

if

first edge is rising

then

-width = second rising edge minus first falling edge

else

- width = first rising edge minus first falling edge

Algorithms 26-4

Period if

first edge is rising

then

period = second rising edge minus first rising edge

else

period = second falling edge minus first falling edge

Frequency

frequency = 1/period

Duty Cycle

duty cycle = (+ width/period) * 100

Note

The + width for duty cycle is always calculated using the mid-threshold.

Rise time

rise time = time at upper threshold minus time at lower threshold

Fall time

fall time = time at lower threshold minus time at upper threshold

V_{max}

 V_{max} = voltage of the maximum point on the screen

Vmin

 V_{min} = voltage of the minimum point on the screen

 V_{p-p}

 $V_{p-p} = V_{max} minus V_{min}$

V_{top}

 $V_{top} = most prevalent point above waveform midpoint$

V_{base}

Vbase = most prevalent point below waveform midpoint

Vamp

 $V_{amp} = V_{top} minus V_{base}$

Vavg The average voltage of the first cycle of the displayed signal is measured. If a complete cycle is not present, the oscilloscope averages all data points.

Vrms (ac) The ac rms voltage of the first cycle of the displayed signal is measured. If a complete cycle is not present, the measurement computes ac rms on all data points.

$$V_{\rm rms}(ac) = \left[\frac{1}{n} \sum_{j=0}^{n-1} V_j^2 - \left(\frac{1}{n} \sum_{j=0}^{n-1} V_j^2 \right)^2 \right]^{\frac{1}{2}}$$

Vrms (dc) The true rms voltage of the first cycle of the displayed signal is measured.

$$V_{\text{rms}}(dc) = \left[\frac{1}{n} \sum_{j=0}^{n-1} (V_j)^{2} \right]^{\frac{1}{2}}$$

Integrate $I_n = \sum_{i=0}^{n-1} C_i \Delta t$

The equation is the integral of the channel, where I represents the integral and C represents the channel. The integral is calculated by adding the voltage points multiplied by the time bucket width, Δt .

Differentiate $d_1 = 0$

$$d_{\rm n} = \frac{c(n) - c(n-1)}{\Delta t}$$

The equation is the differential waveform of the channel, where d represents the differential and c represents the channel. The differential is the voltage differences between consecutive points in time divided by the time bucket width, Δt .

Message Communication and System Functions

Introduction

This chapter describes the operation of instruments that operate in compliance with the IEEE 488.2 standard. Instruments that are compatible with IEEE 488.2 must also be compatible with IEEE 488.1; however, IEEE 488.1 compatible instruments may or may not conform to the IEEE 488.2 standard. The IEEE 488.2 standard defines the message exchange protocols by which the instrument and the controller communicate. It also defines some common capabilities, which are found in all IEEE 488.2 instruments. This chapter also contains a few items which are not specifically defined by IEEE 488.2, but deal with message communication or system functions.

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the controller and the instrument to communicate. This includes defining when it is appropriate for devices to talk or listen, and what happens when the protocol is not followed.

Functional Elements

Before proceeding with the description of the protocol, a few system components should be understood.

Input Buffer

The input buffer of the instrument is the memory area where commands and queries are stored prior to being parsed and executed. It allows a controller to send a string of commands to the instrument which could take some time to execute, and then proceed to talk to another instrument while the first instrument is parsing and executing commands. The oscilloscope's input buffer holds 300 characters or bytes of data.

Output Queue

The output queue of the instrument is the memory area where all output data (response messages) are stored until read by the controller. The oscilloscope's output queue holds 300 characters; however, the instrument will handle block data of greater than 300 characters where appropriate.

Parser

The instrument's parser is the component that interprets the commands sent to the instrument and decides what actions should be taken. "Parsing" refers to the action taken by the parser to achieve this goal. Parsing and executing of commands begins when either the instrument sees a program message terminator (defined later in this chapter) or the input buffer becomes full. If you wish to send a long sequence of commands to be executed and then talk to another instrument while they are executing, you should send all the commands before sending the program message terminator.

Protocol Overview

The instrument and controller communicate using program messages and response messages. These messages serve as the containers into which sets of program commands or instrument responses are placed. Program messages are sent by the controller to the instrument, and response messages are sent from the instrument to the controller in response to a query message. A "query message" is defined as being a program message which contains one or more queries. The instrument only talks when it has received a valid query message, and therefore has something to say. The controller should only attempt to read a response after sending a complete query message, but before sending another program message. The basic rule to remember is that the instrument only talks when prompted to, and it then expects to talk before being told to do something else.

Protocol Operation

When the instrument is turned on or when it receives a device clear command, the input buffer and output queue are cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete program messages and response messages. This means that the controller should always terminate a program message before attempting to read a response. The instrument terminates response messages except during a hardcopy output.

If a query message is sent, the next message passing over the bus should be the response message. The controller should always read the complete response message associated with a query message before sending another program message to the same instrument.

The instrument allows the controller to send multiple queries in one query message. This is referred to as sending a "compound query." Multiple queries in a query message are separated by semicolons. The responses to each of the queries in a compound query are also separated by semicolons.

Commands are executed in the order they are received. This also applies to the group execute trigger (GET) bus command. The group execute trigger command should not be sent in the middle of a program message.

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be completed in a normal manner. Some of the protocol exceptions are shown below.

Addressed to talk with nothing to say

If the instrument is addressed to talk before it receives a query, the instrument will indicate a query error and will not send any bytes over the bus. If the instrument has nothing to say because queries requested were unable to be executed due to an error, the device does not indicate a query error, but simply waits to receive the next message from the controller.

Addressed to talk with no listeners on the bus

If the instrument is addressed to talk and there are no listeners on the bus, the instrument will wait for a listener to listen, or for the controller to take control.

Command Error

A command error is reported if the instrument detects a syntax error or an unrecognized command header.

Execution Error

An execution error is reported if a parameter is found to be out of range, or if the current settings do not allow execution of a requested command or query.

Device-Specific Error

A device-specific error is reported if the instrument is unable to execute a command for a strictly device dependent reason.

Query Error

A query error is reported if the proper protocol for reading a query is not followed. This includes the interrupted and unterminated conditions described below.

Unterminated Condition

If the controller attempts to read a response message before terminating the program message, a query error is generated. The parser resets itself, and the response is cleared from the output queue of the instrument without being sent over the bus.

Interrupted Condition

If the controller does not read the entire response message generated by a query message and then attempts to send another program message, the device generates a query error. The unread portion of the response is then discarded by the instrument. The interrupting program message is not affected.

Buffer Deadlock

The instrument may become deadlocked if the input buffer and output queue both become full. This condition can occur if a very long program message is sent containing queries that generate a great deal of response data. The instrument cannot accept any more bytes, and the controller cannot read any of the response data until it has completed sending the entire program message. Under this condition the instrument breaks the deadlock by clearing the output queue, and continuing to discard responses until it comes to the end of the current program message. The query error bit is also set.

Syntax Diagrams

The syntax diagrams in this chapter are similar to the syntax diagrams in the IEEE 488.2 specification. Commands and queries are sent to the instrument as a sequence of data bytes. The allowable byte sequence for each functional element is defined by the syntax diagram that is shown with the element description.

The allowable byte sequence can be determined by following a path in the syntax diagram. The proper path through the syntax diagram is any path that follows the direction of the arrows. If there is a path around an element, that element is optional. If there is a path from right to left around one or more elements, that element or those elements may be repeated as many times as desired.

Syntax Overview

This overview is intended to give a quick glance at the syntax defined by IEEE 488.2. It should allow you to understand many of the things about the syntax you need to know. This chapter also contains details of the IEEE 488.2 defined syntax.

IEEE 488.2 defines the blocks used to build messages which are sent to the instrument. A whole string of commands can therefore be broken up into individual components.

HP 54505B/54506B/54510B/54512B Programming Reference

Figure 27-1 shows a breakdown of an example program message. There are a few key items to notice:

- 1. A semicolon separates commands from one another. Each program message unit serves as a container for one command. The program message units are separated by a semicolon.
- 2. A program message is terminated by an < NL> (new line), an < NL> with EOI asserted, or EOI being asserted on the last byte of the message. The recognition of the program message terminator, or PMT, by the parser serves as a signal for the parser to begin execution of commands. The PMT also affects command tree traversal (see chapter 4, "Programming and Documentation Conventions").
- 3. Multiple data parameters are separated by a comma.
- 4. The first data parameter is separated from the header with one or more spaces.
- 5. The header :MEAS:SOURCE is a compound header. It places the parser in the measure subsystem until the <NL> is encountered.

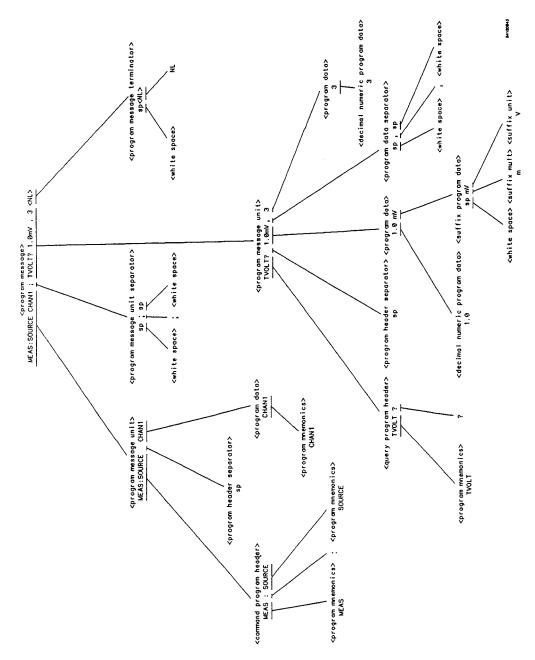


Figure 27-1. Program Message Tree

HP 54505B/54506B/54510B/54512B Programming Reference

Device Listening Syntax

The listening syntax of IEEE 488.2 is designed to be more forgiving than the talking syntax. This allows greater flexibility in writing programs, as well as allowing them to be easier to read.

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic RANGE has the same semantic meaning as the mnemonic range.

White Space

White space is defined to be one or more characters from the ASCII set of 0 - 32 decimal, excluding 10 decimal (NL). White space is used by several instrument listening components of the syntax. It is usually optional, and can be used to increase the readability of a program.

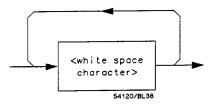


Figure 27-2. White Space

Program Message

The program message is a complete message to be sent to the instrument. The instrument will begin executing commands once it has a complete program message, or when the input buffer becomes full. The parser is also repositioned to the root of the command tree after executing a complete program message. For more information, refer to the Tree Traversal Rules in chapter 4, "Programming and Documentation Conventions."

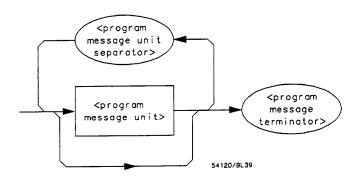


Figure 27-3. Program Message

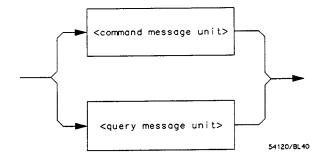


Figure 27-4. Program Message Unit

HP 54505B/54506B/54510B/54512B Programming Reference

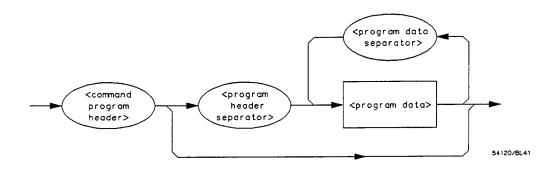


Figure 27-5. Command Message Unit

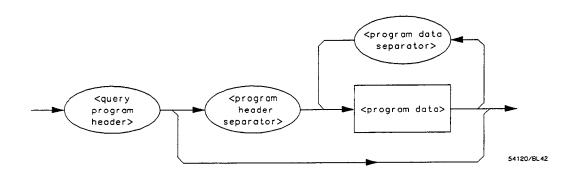


Figure 27-6. Query Message Unit

Program Message Unit

The program message unit is the container for individual commands within a program message.

Message Communication and System Functions 27-10

Program Message Unit Separator

A semicolon separates program message units, or individual commands.

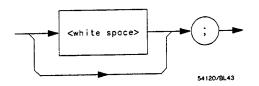


Figure 27-7. Program Message Unit Separator

Command Program Header/Query Program Header

These elements serve as the headers of commands or queries. They represent the action to be taken.

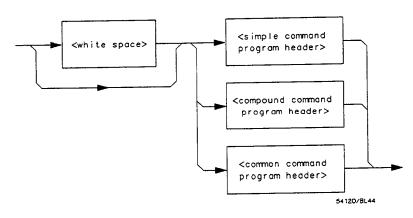
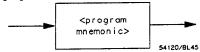
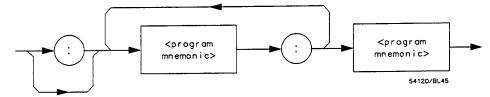
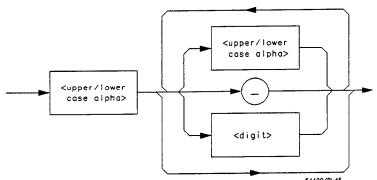




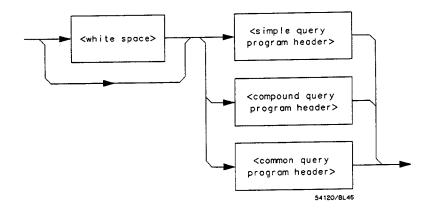
Figure 27-8. Command Program Header

Where simple command program header is defined as


Where compound command program header is defined as

Where common command program header is defined as

Where program mnemonic is defined as


Where upper/lower case alpha is defined as a single ASCII encoded byte in the range 41 - 5A, 61 - 7A (65 - 90, 97 - 122 decimal).

Where digit is defined as a single ASCII encoded byte in the range 30 - 39 (48 - 57 decimal).

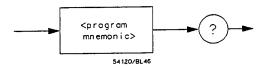
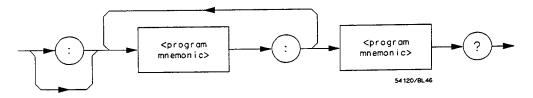

Where () represents an "underscore," a single ASCII-encoded byte with the value 5F (95 decimal).

Figure 27-8. Command Program Header (continued)


Message Communication and System Functions 27-12

Where simple query program header is defined as

Where compound query program header is defined as

Where common query program header is defined as

Figure 27-9. Query Program Header

HP 54505B/54506B/54510B/54512B Programming Reference

Program Data

The program data element represents the possible types of data which may be sent to the instrument. The oscilloscope accepts the following data types: character program data, decimal numeric program data, suffix program data, string program data, and arbitrary block program data.

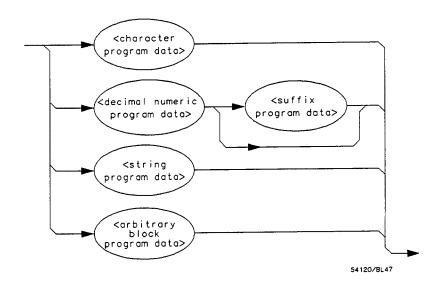
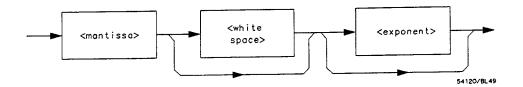



Figure 27-10. Program Data

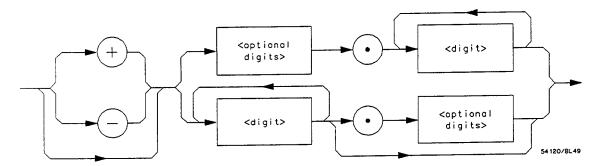
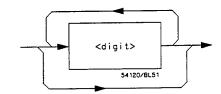


Figure 27-11. Character Program Data


Message Communication and System Functions 27-14

Where mantissa is defined as

Where optional digits is defined as

Where exponent is defined as

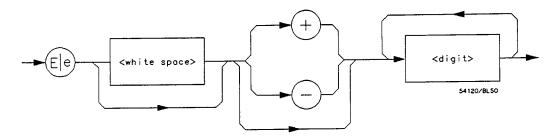


Figure 27-12. Decimal Numeric Program Data

HP 54505B/54506B/54510B/54512B Programming Reference

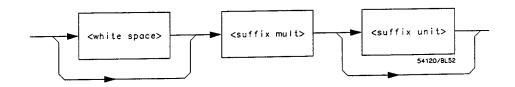
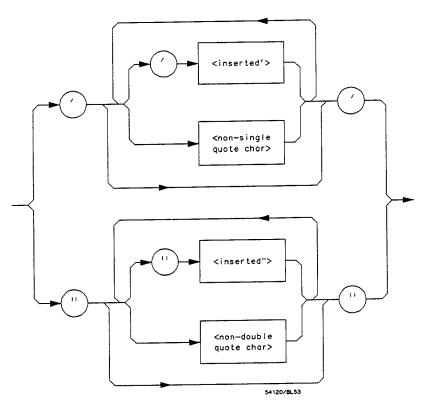


Figure 27-13. Suffix Program Data

Suffix Multiplier

The suffix multipliers that the instrument accepts are shown in table 27-1.

Table 27-1. Suffix Multiplier


Value	Mnemonic
1E18	EX
1E15	PE
1E12	T
1 E 9	G
1E6	MA
1E3	K
1E-3	M
1E-6	U
1E-9	N
1E-12	P
1E-15	F
1E-18	A

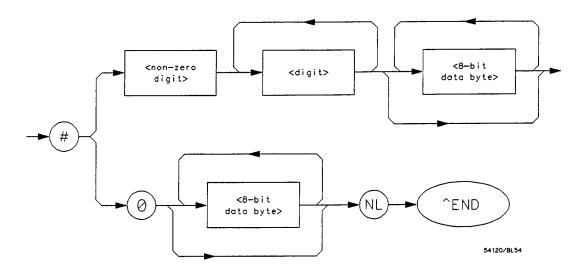
Suffix Unit

The suffix units that the instrument accepts are shown in table 27-2.

Table 27-2. Suffix Unit

Suffix	Referenced Unit	Suffix	Reference Unit
V	Volt	HZ	Hertz
S	Second	PCT	Percent

Where <inserted' > is defined as a single ASCII character with the value 27 (39 decimal).


Where < non-single quote char > is defined as a single ASCII character of any value except 27 (39 decimal).

Where <inserted"> is defined as a single ASCII character with the value 22 (34 decimal).

Where <non-double quote char> is defined as a single ASCII character of any value except 22 (34 decimal).

Figure 27-14. String Program Data

HP 54505B/54506B/54510B/54512B Programming Reference

Where <non-zero digit> is defined as a single ASCII encoded byte in the range 31 - 39 (49 - 57 decimal).

Where < 8-bit byte > is defined as an 8-bit byte in the range 00 -ff (0 - 255 decimal).

Figure 27-15. Arbitrary Block Program Data

Program Data Separator

A comma separates multiple data parameters of a command from one another.

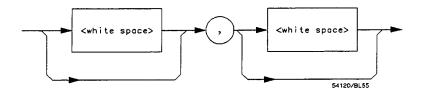


Figure 27-16. Program Data Separator

Message Communication and System Functions 27-18

Program Header Separator

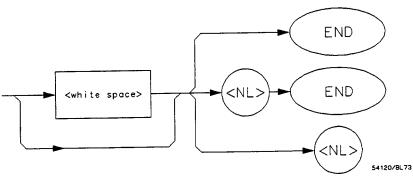

A space (ASCII decimal 32) separates the header from the first or only parameter of the command.

Figure 27-17. Program Header Separator

Program Message Terminator

The program message terminator or PMT serves as the terminator to a complete program message. When the parser sees a complete program message it begins execution of the commands within that message. The PMT also resets the parser to the root of the command tree.

Where < NL> is defined as a single ASCII-encoded byte 0A (10 decimal).

Figure 27-18. Program Message Terminator



Figure 27-19. Response Message Tree

Message Communication and System Functions 27-20

Device Talking Syntax

The talking syntax of IEEE 488.2 is designed to be more precise than the listening syntax. This allows the programmer to write routines which can easily interpret and use the data the instrument is sending. One of the implications of this is the absence of white space in the talking formats. The instrument does not pad messages which are being sent to the controller with spaces.

Response Message

This element serves as a complete response from the instrument. It is the result of the instrument executing and buffering the results from a complete program message. The complete response message should be read before sending another program message to the instrument.

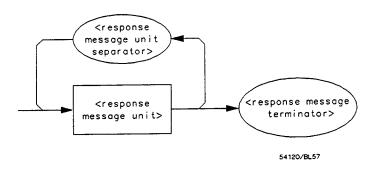
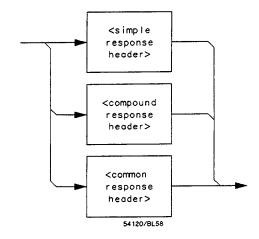
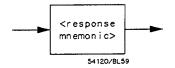


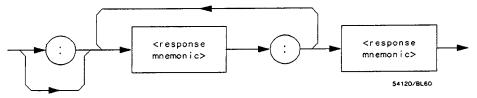
Figure 27-20. Response Message


Response Message Unit

This element serves as the container of individual pieces of a response. Typically a query message unit generates one response message unit, although a query message unit may generate multiple response message units.


Response Header

The response header, when returned, indicates what the response data represents.


HP 54505B/54506B/54510B/54512B Programming Reference

Where <simple response mnenomic> is defined as

Where < compound response header > is defined as

Where < common response header > is defined as

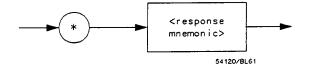
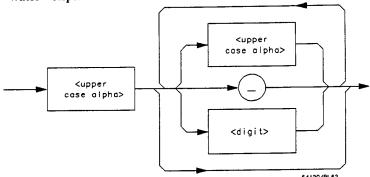



Figure 27-21. Response Message Unit

Message Communication and System Functions 27-22

Where < response mnemonic > is defined as

Where < uppercase alpha > is defined as a single ASCII encoded byte in the range 41 - 5A (65 - 90 decimal).

Where () represents an "underscore", a single ASCII encoded byte with the value 5F (95 decimal).

Figure 27-21. Response Message Unit (continued)

Response Data

The response data element represents the various types of data which the instrument may return. These types include: character response data, nr1 numeric response data (integer), nr3 numeric response data (exponential), string response data, definite length arbitrary block response data, and arbitrary ASCII response data.

Figure 27-22. Character Response Data

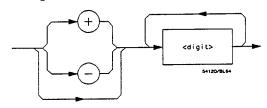


Figure 27-23. NR1 Numeric Response Data

HP 54505B/54506B/54510B/54512B Programming Reference

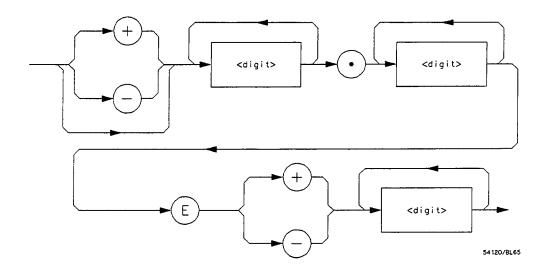


Figure 27-24. NR3 Numeric Response Data

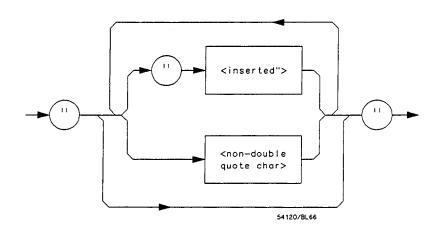


Figure 27-25. String Response Data

Message Communication and System Functions 27-24

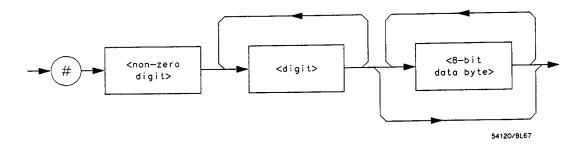
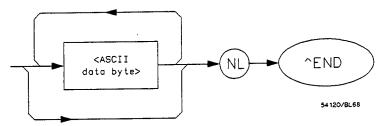



Figure 27-26. Definite Length Arbitrary Block

Where < ASCII data type> represents any ASCII-encoded byte except < NL> (0A, 10 decimal).

- 1. The END message provides an umambiguous termination to an element that contains arbitrary ASCII characters.
- The IEEE 488.1 END message serves the dual function for terminating this element as well as terminating the <RESPONSE MESSAGE>. It is only sent once with the last byte of the indefinite block data. The NL is presented for consistency with the <RESPONSE MESSAGE TERMINATOR>.

Figure 27-27. Arbitrary ASCII Response Data

Response Data Separator

A comma separates multiple pieces of response data within a single response message unit.

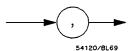


Figure 27-28. Response Data Separator

Response Header Separator

A space (ASCII decimal 32) delimits the response header, if returned, from the first or only piece of data.

Figure 27-29. Response Header Separator

Response Message Unit Separator

A semicolon delimits the response message units if multiple responses are returned.

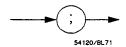


Figure 27-30. Response Message Unit Separator

Response Message Terminator

A response message terminator (NL) terminates a complete response message. It should be read from the instrument along with the response itself.

If you do not read the response message terminator, the oscilloscope produces an interrupted error on the next message.

Message Communication and System Functions 27-26

Common Commands

IEEE 488.2 defines a set of common commands. These commands perform functions which are common to any type of instrument. They can therefore be implemented in a standard way across a wide variety of instrumentation. All the common commands of IEEE 488.2 begin with an asterisk. There is one key difference between the IEEE 488.2 common commands and the rest of the commands found in this instrument. The IEEE 488.2 common commands do not affect the parser's position within the command tree. More information about the command tree and tree traversal can be found in chapter 4, "Programming and Documentation Conventions."

Table 22-3. HP 54505B/54506B/54510B/54512B IEEE 488.2 Common Commands

Command	Command Name	
*CLS	Clear Status Command	
*DMC	Define Macro Command	
*EMC	Enable Macro Command	
*EMC?	Enable Macro Query	
*ESE	Event Status Enable Command	
*ESE?	Event Status Enable Query	
*ESR?	Event Status Register Query	
*GMC?	Get Macro Contents Query	
*IDN	Identification Query	
*LMC?	Learn Macro Query	
*LRN?	Learn Device Setup Query	
*OPC	Operation Complete Command	
*OPC?	Operation Complete Query	
*OPT?	Option Identification Query	
*PMC	Purge Macro Command	
*RCL	Recall Command	
*RST	Reset Command	
*SAV	Save Command	
*SRE	Service Request Enable Command	
*SRE?	Service Request Enable Query	
*STB?	Read Status Byte Query	

HP 54505B/54506B/54510B/54512B Programming Reference

Table 22-3. HP 54505B/54506B/54510B/54512B IEEE 488.2 Common Commands (continued)

Command	Command Name	
*TRG	Trigger Command	
*TST?	Self-Test Query	
*WAI	Wait-to-Continue Command	

Quick Reference Guide

Introduction

The following section lists the commands and queries with their corresponding arguments and returned formats. The arguments for each command list the minimum argument required. The part of the command or query listed in uppercase letters refers to the short form of that command or query. The long form is the combination of uppercase and lowercase letters.

Conventions

The following conventions are used in this section:

< > Angular brackets enclose words or characters that symbolize a program code parameter or an HP-IB command.

::= "is defined as." For example, $\langle A \rangle$::= $\langle B \rangle$ indicates that $\langle A \rangle$ can be replaced by $\langle B \rangle$ in any statement containing $\langle A \rangle$.

| "or." Indicates a choice of one element from a list. For example, <A> | indicates <A> or but not both.

... An ellipsis (trailing dots) indicate that the preceding element may be repeated one or more times.

- [] Square brackets indicate that the enclosed items are optional.
- { } When several items are enclosed by braces, one, and only one of these elements may be selected.

Suffix Multipliers

The suffix multipliers available for arguments are:

EX ::= 1E18	M := 1E-3
PE ::= 1E15	U := 1E-6
T := 1E12	N := 1E-9
G := 1E9	P := 1E-12
MA := 1E6	F := 1E-15
K ::= 1E3	A ::= 1E-18

For more information on specific commands or queries, refer to chapters 6 through 23 of this manual.

HP 54505B/54506B/54510B/54512B Programming Reference

*CLS	(Clear Status)	command
Command Syntax:	*CLS	
*DMC	(Define Macro)	command
Command Syntax:	*DMC <ascii_string>,<block_data></block_data></ascii_string>	
*EMC	(Enable Macro)	command/query
Command Syntax: Query Syntax: Returned Format:	*EMC {{ON 1} {OFF 0}} *EMC? {1 0} <nl></nl>	
*ESE	(Event Status Enable)	command/query
Command Syntax: Query Syntax: Returned Format:	*ESE {0 to 255} *ESE? {integer, 0 to 255} <nl></nl>	
*ESR	(Event Status Register)	query
Query Syntax: Returned Format:	*ESR? {integer, 0 to 255} <nl></nl>	
*GMC	(Get Macro Contents)	query
Query Syntax: Returned Format:	*GMC? <macro_name> <block_data><nl></nl></block_data></macro_name>	
*IDN	(Identification Number)	query
Query Syntax: Returned Format:	*IDN? HEWLETT-PACKARD,545XXB,XXXXAYYYYY,MMDD <nl></nl>	
*LMC	(Learn Macro Contents)	query
Query Syntax: Returned Format:	*LMC? <ascii_string><nl></nl></ascii_string>	

HP 54505B/54506B/54510B/54512B Programming Reference

command (*PMC) *PMC Command Syntax: query (Learn) *LRN **Query Syntax:** :SYSTem:SETup #800001703<learn string><NL> **Returned Format:** command/query (Operation Complete) *OPC **Command Syntax:** *OPC **Query Syntax:** *OPC? Returned Format: 1<NL> (Option) query *OPT **Query Syntax:** *0PT? **Returned Format:** command (Recall) *RCL *RCL {0 to 9} **Command Syntax:** command (Reset) *RST **Command Syntax:** command *SAV (Save) *SAV {1 to 9} **Command Syntax:** command/query (Service Request Enable) *SRE **Command Syntax:** *SRE {0 to 255} **Query Syntax:** *SRE? Returned Format: <mask><NL> Where: qmask> ::= sum of all bits set - integer, 0 to 255

HP 54505B/54506B/54510B/54512B Programming Reference

*STB (Status Byte) query

> **Query Syntax:** *STB?

Returned Format: {integer, 0 to 255}<NL>

*TRG (Trigger) command

Command Syntax: *TRG

*TST (Test) query

> **Query Syntax:** *TST?

Returned Format: {0 or non-zero value}<NL>

> Where: 0 ::= test passed

non-zero ::= test failed

*WAI (Wait) command

Command Syntax: *WAI

:ACQuire:COMPlete command/query

Command Syntax: :ACQuire:COMPlete {0 to 100}

Query Syntax: :ACQuire:COMPlete?

Returned Format: [:ACQuire:COMPlete] {integer, 0 to 100}<NL>

:ACQuire:COUNt command/query

Command Syntax: :ACQuire:COUNt {1 to 2048}

Query Syntax: :ACQuire:COUNt?

Returned Format: [:ACQuire:COUNt] {integer, 1 to 2048}<NL>

:ACQuire:POINts command/query

Command Syntax: :ACQuire:POINts <points argument>

Query Syntax: :ACQuire:POINts?

Returned Format: [:ACQuire:POINts] <points_argument><NL>

Where: 500 in repetitive mode <points_argument> ::=

500 or 8000 in real-time mode

HP 54505B/54506B/54510B/54512B **Quick Reference Guide-4 Programming Reference**

:ACQuire:TYPE command/query

Command Syntax: :ACQuire:TYPE {NORMa1 | AVERage | ENVelope |

RAWData[,<length>][,<acquisitions>][{NORMal | AVERage | ENVelope }]

Query Syntax: :ACQuire:TYPE?

Returned Format: [:ACQuire:TYPE] {NORMal | AVERage | ENVelope |

RAWData, < length>, <acquisitions>}<NL>

Where: <length> := integer, 4 to 8000.

<acquisitions> ::= dependent on length of acquisitions and buffer size.

:AUToscale command

Command Syntax: :AUToscale

:BEEPer command/query

Command Syntax: :BEEPer [{{ON | 1} | {OFF | 0}}]

Query Syntax: :BEEPer?

Returned Format: [:BEEPer] {1 | 0}<NL>

:BLANk command

Command Syntax: :BLANk {CHANne]{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3

| 4} | PMEMory{1 | 2}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54512B

:BNC command/query

Command Syntax: :BNC {PROBe | TRIGger}

Query Syntax: :BNC?

Returned Format: [:BNC] {PROBe | TRIGger}<NL>

:CALibrate:DATA:ASCii query

Query Syntax: :CALibrate:DATA:ASCii?

Returned Format: [:CALibrate:DATA:ASCii] <calibration_data>,<calibration_data>,...<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:CALibrate:SETup query

Query Syntax: :CALibrate:SETup?

Returned Format: :CALibrate:TNUL1] <null_value2>,<null_value3>,<null_value4><NL>

Where: <null_value> ::= channel 1 to channel 2, 3, and 4 skew

NOTE: <null_value3> and <null_value4> available only on HP 54506B/54512B

:CALibrate:TNULI command/query

Command Syntax: :CAL ibrate:TNUL1 <null_value2>,<null_value3>,<null_value4>

Query Syntax: :CALibrate:TNUL??

Returned Format: [:CALibrate:TNUL1] <null_value2>,<null_value3>,<null_value4><NL>

Where: <null_value> ::= channel 1 to channel 2, 3, and 4 skew

NOTE: <null_value3> and <null_value4> available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}:COUPling

command/query

Command Syntax: :CHANnel{1 | 2 | 3 | 4}:COUPling {AC | DC | DCFifty}

Query Syntax: :CHANnel{1 | 2 | 3 | 4}:COUPling?

Returned Format: [:CHANnel{1 | 2 | 3 | 4}:COUPling] {AC | DC | DCFifty}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}[:DISPLay]

command/query

Command Syntax: :CHANne1{1 | 2 | 3 | 4}[:DISPlay] {{ON | 1} | {OFF |0}}

Query Syntax: :CHANne1{1 | 2 | 3 | 4}[:DISPlay]?

Returned Format: [:CHANne1{1 | 2 | 3 | 4}[:DISP lay] {1 | 0}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}:ECL

command

Command Syntax: :CHANne1{1 | 2 | 3 | 4}:ECL

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

HP 54505B/54506B/54510B/54512B Programming Reference

:CHANnel{1 | 2 | 3 | 4}:HFReject

command/query

Command Syntax: :CHANnel{1 | 2 | 3 | 4}:HFReject {{0N | 1} | {0FF | 0}}

Query Syntax: :CHANne1{1 | 2 | 3 | 4}:HFReject?

Returned Format: [:CHANne1{1 | 2 | 3 | 4}:HFReject] {1 | 0}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}:LFReject

command/query

Command Syntax: :CHANnel{1 | 2 | 3 | 4}:LFReject {{0N | 1} | {0FF | 0}}

Query Syntax: :CHANnel{1 | 2 | 3 | 4}:LFReject?

Returned Format: [:CHANnel{1 | 2 | 3 | 4}:LFReject] {1 | 0}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}:OFFSet

command/query

Command Syntax: :CHANnel{1 | 2 | 3 | 4}:OFFSet <offset value>

Query Syntax: :CHANne1{1 | 2 | 3 | 4}:0FFSet?

Returned Format: [:CHANnel{1 | 2 | 3 | 4}:OFFSet] <offset value><NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}:PROBe

command/query

Command Syntax: :CHANne1{1 | 2 | 3 | 4}:PROBe {0.9 to 1000}

Query Syntax: :CHANne1{1 | 2 | 3 | 4}:PROBe?

Returned Format: [:CHANnel{1 | 2 | 3 | 4}:PROBe] {exponential, 0.9 to 1000}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}:RANGe

command/query

Command Syntax: :CHANnel{1 | 2 | 3 | 4}:RANGe <full-scale range>

Query Syntax: :CHANnel{1 | 2 | 3 | 4}:RANGe?

Returned Format: [:CHANnel{1 | 2 | 3 | 4}:RANGe] <exponential full-scale range><NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

HP 54505B/54506B/54510B/54512B Programming Reference

:CHANnel{1 | 2 | 3 | 4}:SETup

query

Query Syntax:

:CHANne1{1 | 2 | 3 | 4}:SETup?

Returned Format:

:CHANnel{1 | 2 | 3 | 4}:DISPlay {ON|OFF};RANGe <range>;OFFset <value>;COUP

{AC|DC|DCFifty};HFReject {ON|OFF};LFReject {ON|OFF};PROBE <attenuation><NL>

Where:

<range> ::= exponential full-scale range value
<value> ::= exponential offset value in volts
<attenuation> ::= exponential, 0.9 to 1000

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:CHANnel{1 | 2 | 3 | 4}:TTL

command

Command Syntax:

:CHANnel{1 | 2 | 3 | 4}:TTL

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:DIGitize

command

Command Syntax:

:DIGitize CHANnel{1 | 2 | 3 | 4}[,CHANnel{1 | 2 | 3 | 4}],CHANnel{1 | 2 | 3

| 4}],CHANnel{1 | 2 | 3 | 4}]]]

:DISPlay:COLumn

command/query

Command Syntax:

:DISPlay:COLumn {0 to 72}

Query Syntax:

:DISPlay:COLumn?

Returned Format:

[:DISPlay:COLumn] {integer, 0 to 72}<NL>

:DISPlay:CONNect

command/query

command/query

Command Syntax:

:DISPlay:CONNect {{ON | 1} | {OFF | 0}}

Query Syntax:

:DISPlay:CONNect?

Returned Format:

[:DISPlay:CONNect] {1 | 0}<NL>

:DISPlay:DATA

:DISPlay:DATA #800016576<data>

Command Syntax:

Query Syntax:

:DISPlay:DATA?

Returned Format:

[:DISPlay:DATA] #800016576<data><NL>

HP 54505B/54506B/54510B/54512B Programming Reference

command/query :DISPlay:FORMat

Command Syntax: :DISPlay:FORMat {1 | 2 | 4}

Query Syntax: :DISPlay:FORMat?

[:DISPlay:FORMat] {1 | 2 | 4}<NL> Returned Format:

command/query :DISPlay:GRATicule

:DISPlay:GRATicule {OFF | GRID | AXES | FRAMe} **Command Syntax:**

Query Syntax: :DISPlay:GRATicule?

[:DISPlay:GRATicule] {OFF | GRID | AXES | FRAMe}<NL> Returned Format:

command/query :DISPlay:INVerse

:DISPlay:INVerse {{ON | 1} | {OFF | 0}} Command Syntax:

Query Syntax: :DISPlay:INVerse?

Returned Format: [:DISPlay:INVerse] {1 | 0}<NL>

command :DISPlay:LINE

Command Syntax: :DISPlay:LINE <quoted string>

command/query :DISPlay:MASK

Command Syntax: :DISPlay:MASK {0 to 255}

Query Syntax: :DISPlay:MASK?

[:DISPlay:MASK] {integer, 0 to 255}<NL> Returned Format:

command/query :DISPlay:PERSistence

:DISPlay:PERSistence {SINGle | INFinite | 0.1 to 11} **Command Syntax:**

Query Syntax: :DISPlay:PERSistence?

Returned Format: [:DISPlay:PERSistence] <value><NL>

{0 | 0.5 to 10 | 11} in repetitive mode Where: <value> ::=

{SINGle | INFinite} in real-time mode

command/query :DISPlay:ROW

Command Syntax: :DISPlay:ROW {0 to 24}

Query Syntax: :DISPlay:ROW?

[:DISPlay:ROW] {integer, 0 to 24}<NL> **Returned Format:**

HP 54505B/54506B/54510B/54512B **Programming Reference**

:DISPlay:SCReen command/query

Command Syntax: :DISPlay:SCReen {{ON | 1} | {OFF | 0}}

Query Syntax: :DISPlay:SCReen?

Returned Format: [:DISP lay: SCReen] {1 | 0}<NL>

:DISPlay:SETup query

Query Syntax: :DISPlay:SETup?

Returned Format: :DISPlay:ROW {1 to 24};COL {0 to 72};FORMat {1|2|4};INVerse

{ON|OFF};GRATicule {OFF|GRID|AXES|FREMe};PERS {<value>};SCReen {ON|OFF};SOURce {PMEMory{0|1|2|3};MASK <mask>;MARKer {ON|OFF} <NL>

Where: <value> ::= exponential, {0 | .5 to 10 | 11} in the repetitive mode

1.100E+1 = infinite

<value> ::= {SINGle | INFinite} in the real-time mode

mask> ::= (integer, 0 to 255)

:DISPlay:SOURce command/query

Command Syntax: :DISPlay:SOURce PMEMory{0 | 1 | 2 | 3}

Query Syntax: :DISPlay:SOURce?

Returned Format: [:DISP lay: SOURce] PMEMory{0 | 1 | 2 | 3}<NL>

:DISPlay:STRing command

Command Syntax: :DISPlay:STRing <quoted string>

:DISPlay:TEXT command

Command Syntax: :DISP lay: TEXT BLANK

:DISPlay:MARKer | TMARker | VMARker | command/query

Command Syntax: :DISPlay:MARKer | TMARKer | VMARKer | {(ON | 1) | {OFF | 0}}

Query Syntax: :DISPlay:MARKer | TMARker | VMARker?

Returned Format: [:DISP lay: MARKer | TMARker | VMARker] {1 | 0}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference :ERASe command

Command Syntax: :ERASe PMEMory{0 | 1 | 2}

:FUNCtion{1 | 2 | 3 | 4}:ADD

command

Where: $\langle perand \rangle ::= \{CHANne1\{1 \mid 2 \mid 3 \mid 4\} \mid WMEMory\{1 \mid 2 \mid 3 \mid 4\} \}$

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:DIFF

command

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:DIFF {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 |

4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}[:DISPLay]

command/query

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}[:DISPlay] {{ON | 1} | {OFF | 0}}

Query Syntax: :FUNCtion{1 | 2 | 3 | 4}[:DISPlay]?

Returned Format: [:FUNCtion{1 | 2 | 3 | 4}[:DISPlay] {1 | |0}<NL>

:FUNCtion{1 | 2 | 3 | 4}:FFT

command

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:FFT {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 |

4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:FREQuency

command/query

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:FREQuency <center freq value>

Query Syntax: :FUNCtion{1 | 2 | 3 | 4}:FREQuency?

Returned Format: [:FUNCtion{1 | 2 | 3 | 4}:FREQuency] <center freq value><NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:FUNCtion{1 | 2 | 3 | 4}:INTegrate

command

Command Syntax:

:FUNCtion{1 | 2 | 3 | 4}:INTegrate {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2

3 | 4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:INVert

command

Command Syntax:

 $: FUNCtion\{1 \ | \ 2 \ | \ 3 \ | \ 4\}: INVert \ \{CHANnel\{1 \ | \ 2 \ | \ 3 \ | \ 4\} \ | \ WMEMory\{1 \ | \ 2 \ | \ 3$

| 4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:LEVel

command/query

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:LEVel <search level value>

Query Syntax:

:FUNCtion{1 | 2 | 3 | 4}:LEVel?

Returned Format:

[:FUNCtion{1 | 2 | 3 | 4}:LEVel] <search level value><NL>

:FUNCtion{1 | 2 | 3 | 4}:MAGNify

command/query

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:MAGNify {{ON | 1} | {OFF | 0}}

Query Syntax: :FUNCtion{1 | 2 | 3 | 4}:MAGNify?

Returned Format:

[:FUNCtion{1 | 2 | 3 | 4}:MAGNify] {1 | 0}<NL>

:FUNCtion{1 | 2 | 3 | 4}:MULTiply

command

Where:

<operand> ::= {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:OFFSet

command/query

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:0FFSet <offset value>

Query Syntax:

:FUNCtion{1 | 2 | 3 | 4}:0FFSet?

Returned Format:

[:FUNCtion{1 | 2 | 3 | 4}:OFFSet] <exponential offset value><NL>

HP 54505B/54506B/54510B/54512B **Programming Reference**

:FUNCtion{1 | 2 | 3 | 4}:ONLY

command

Command Syntax:

:FUNCtion{1 | 2 | 3 | 4}:ONLY {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 |

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:PEAK

command

Command Syntax:

:FUNCtion{1 | 2 | 3 | 4}:PEAK <peak1>,<peak2>

Where: <peak> ::= {1 through 99}

:FUNCtion{1 | 2 | 3 | 4}:POINts

command/query

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:POINts (512 | 1024 | 2048 | 4096 | 8192}

Query Syntax:

:FUNCtion{1 | 2 | 3 | 4}:POINts?

Returned Format:

[:FUNCtion{1 | 2 | 3 | 4}:POINts] (512 | 1024 | 2048 | 4096 | 8192}<NL>

:FUNCtion{1 | 2 | 3 | 4}:RANGe

command/query

Command Syntax:

:FUNCtion{1 \mid 2 \mid 3 \mid 4}:RANGe <range setting>

Query Syntax:

:FUNCtion{1 | 2 | 3 | 4}:RANGe?

Returned Format:

[:FUNCtion{1 | 2 | 3 | 4}:RANGe] <exponential range setting><NL>

:FUNCtion{1 | 2 | 3 | 4}:SETup

query

Query Syntax:

:FUNCtion{1 | 2 | 3 | 4}:SETup?

Returned Format:

:FUNCtion<N>:FREQuency<value>;LEVel<level>;MAGNify{ON|OFF};OFFSet<offset>;POI

Nts<points>;RANGe<range>;SPAN<frequency>;WINDow{RECT | HANN | FLAT}<NL>

Where:

exponential freq in hertz from 0 to 1.5X span <value> ::=

0 +\-600 dBm <level> ::=

exponential offset value in volts or +\-200 dBm for FFT <offset> ::=

{512 | 1024 | 2048 | 4096 | 8192} <points> ::= exponential full-scale range value <range> ::=

<frequency>::= exponential freq in hertz

:FUNCtion{1 | 2 | 3 | 4}:SPAN

command/query

Command Syntax: :FUNCtion{1 | 2 | 3 | 4}:SPAN < freq value>

Query Syntax:

:FUNCtion{1 | 2 | 3 | 4}:SPAN?

Returned Format:

[:FUNCtion{1 | 2 | 3 | 4}:SPAN] <freq value><NL>

HP 54505B/54506B/54510B/54512B **Programming Reference**

:FUNCtion{1 | 2 | 3 | 4}:SUBTract

command

Command Syntax: :FUNCtion{1 | 2}:SUBTract coperand

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:VERSus

command

Command Syntax: :FUNCt ion{1 | 2}:VERSus <perand>, <perand>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:FUNCtion{1 | 2 | 3 | 4}:WINDow

command/query

Command Syntax: :FUNCtion:WINDow {RECTangular | HANNing | FLATtop}

Query Syntax: :FUNCtion:WINDow?

Returned Format: [:HARDcopy:PAGE] {RECTangular | HANNing | FLATtop}<NL>

:HARDcopy:LENGth

command/query

Command Syntax: :HARDcopy:LENGth {11 | 12}

Query Syntax: :HARDcopy:LENGth?

Returned Format: [:HARDcopy:LENGth] {11 | 12}<NL>

:HARDcopy:MODE

command/query

Command Syntax: :HARDcopy:MODE {PRINt | PLOT}

Query Syntax: :HARDcopy:MODE?

Returned Format: [:HARDcopy:MODE] {PRINt | PLOT}<NL>

:HARDcopy:PAGE

command/query

Command Syntax: :HARDcopy:PAGE {MANual | AUTomatic}

Query Syntax: :HARDcopy:PAGE?

Returned Format: [:HARDcopy:PAGE] {MANua1 | AUTomatic}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:HARDcopy:PLOT:AREA

command/query

:HARDcopy:PLOT:AREA {ALL | DISPlay | FACTors | GRATicule | LABeled} **Command Syntax:**

:HARDcopy:PLOT:AREA? **Query Syntax:**

[:HARDcopy:PLOT:AREA] {ALL | DISPlay | FACTors | GRATicule | LABeled}<NL> **Returned Format:**

:HARDcopy:PLOT:INITialize

command/query

:HARDcopy:PLOT:INITialize $\{\{0N \mid 1\} \mid \{0FF \mid 0\}\}$ Command Syntax:

Query Syntax: :HARDcopy:PLOT:INITialize?

Returned Format: [:HARDcopy:PLOT:INITialize] {1 | 0}<NL>

:HARDcopy:PLOT:PEN|COLor

command/query

:HARDcopy:PLOT:PEN|COLor <item>,{0 to 8} **Command Syntax:**

Query Syntax: :HARDcopy:PLOT:PEN COLor? <item>

[:HARDcopy:PLOT:PEN|COLor] {0 to 8}<NL> Returned Format:

 $\verb|\citem> ::= \{ CHANnel \{ 1 \ | \ 2 \ | \ 3 \ | \ 4 \} \ | \ WMEMory \{ 1 \ | \ 2 \ | \ 3 \ | \ 4 \} \ | \ FUNCtion \{ 1 \ | \ 2 \ | \ 3 \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 2 \ | \ 3 \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 2 \ | \ 3 \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ FUNCTION \{ 1 \ | \ 4 \} \ | \ 4 \} \ | \ 4 \} \ | \ 4 \} \ | \ 4 \} \ | \ 4 \} \ | \ 4 \} \ | \ 4 \} \ | \ 4 \} \ | \ 4$ Where: 2 | 3 | 4} | PMEMory{1 | 2} | VMARker{1 | 2} | STARtmarker | STOPmarker |

GRATicule | TRIGger | TIMebase | MEASure | TITLes}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

(Local Event Register) query :LER

> **Query Syntax:** :LER?

Returned Format: [:LER] {1 | 0}<NL>

(Limit Test Event Register) query :LTER

Query Syntax: :LTER?

Returned Format: [:LTER] {1 | 0}<NL>

command/query :MARKer[:DISPlay]

:MARKer[:DISPlay] {{ON | 1} | {OFF | 0}} **Command Syntax:**

Query Syntax: :MARKer[:DISPlay]?

Returned Format: [:MARKer[:DISPlay]] {1 | 0}<NL>

HP 54505B/54506B/54510B/54512B **Programming Reference**

:MARKer:SETup query

Query Syntax: :MARKer:SETup?

Returned Format: :MARKer:DISPlay {ON OFF};XDELta <xdelta>;X1Position <xposition>;X2Position

<yposition><NL>

Where: <xdelta>::= exponential difference between x1 and x2 markers

<xposition>::= exponential xmarker position in seconds or hertz
<ydelta>::= exponential difference between y1 and y2 markers
<yposition>::= exponential ymarker position in volts or power

:MARKer:XDELta query

Query Syntax: :MARKer:XDELta?

Returned Format: [:MARKer:XDELta] <xdelta><NL>

Where: <xdelta>::= exponential difference between x1 and x2 markers

:MARKer:X1Position command/query

Query Syntax: :MARKer:X1Position?

:MARKer:X2Position command/query

Command Syntax: :MARKer:X2Position

Query Syntax: :MARKer:X2Position?

:MARKer:X1Y1source command/query

Command Syntax: :MARKer:X1Y1source {CHANne1{1 | 2 | 3 | 4} | {FUNCtion{1 | 2 | 3 | 4} |

WMEMory{1 | 2 | 3 | 4}}

Query Syntax: :MARKer:X1Y1source?

Returned Format: [:MARKer:X1Y1source] {CHANne1{1 | 2 | 3 | 4} | {FUNCtion{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4}}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

HP 54505B/54506B/54510B/54512B
Programming Reference

:MARKer:X2Y2source

command/query

Command Syntax: :MARKer:X2Y2source {CHANne1{1 | 2 | 3 | 4} | {FUNCtion{1 | 2 | 3 | 4} |

WMEMory{1 | 2 | 3 | 4}}

Query Syntax: :MARKer:X2Y2source?

Returned Format: [:MARKer:X2Y2source] {CHANnel{1 | 2 | 3 | 4} | {FUNCtion{1 | 2 | 3 | 4} |

WMEMory{1 | 2 | 3 | 4}}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:MARKer:YDELta query

Query Syntax: :MARKer:YDELta?

Returned Format: [:MARKer:YDELta] <ydelta >< NL>

Where: <ydelta>::= exponential difference between y1 and y2 markers

:MARKer:Y1Position command/query

Command Syntax: :MARKer:Y1Position <yposition>

Query Syntax: :MARKer:Y1Position?

Returned Format: [:MARKer:Y1Position] <yposition><NL>

Where: <yposition>::= exponential ylmarker position in volts or power

:MARKer:Y2Position command/query

Command Syntax: :MARKer:Y2Position <yposition>

Query Syntax: :MARKer:Y2Position?

Returned Format: [:MARKer:Y2Position] <yposition><NL>

Where: <yposition>::= exponential ylmarker position in volts or power

:MEASure:ALL query

Query Syntax: :MEASure:ALL?

Returned Format: [:MEASure:FREQuency] <result>; [PERiod] <result>; [PWIDth] <result>; [NWIDth]

<result>;[RISetime] <result>;[FALLtime] <result>;[VAMPlitude]

<result>;[VPP] <result>;[PREShoot] <result>;[OVERshoot]

<result>;[DUTycycle] <result>;[VRMS] <result>;[VMAX] <result>;[VMIN]
<result>;[VTOP] <result>;[VBASe] <result>;[VAVerage] <result><NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:COMPare

command/query

Command Syntax: :MEASure:COMPare <measurement>,<upper_limit>,<lower_limit>

Query Syntax: :MEASure:COMPare? <measurement>

Where: <measurement> ::= {RISetime | FALLtime | FREQuency | PERiod | PWIDth |

NWIDth | VAMPlitude | VBASe | VTOP | VPP | VAVerage | VMAX | VMIN | VRMS |

DUTycycle | DELay}

:MEASure:CURSor query

Query Syntax: :MEASure:CURSor? {DELTa | STARt | STOP}
Returned Format: [:MEASure:CURSor] <time>,<voltage><NL>

:MEASure:DEFine command/query

Command Syntax: :MEASure:DEFine <measurement_spec>

Query Syntax: :MEASure:DEFine? {DELay | PWIDth | NWIDth}

Returned Format: [:MEASure:DEFine] smeasurement_spec<<NL>

Where: measurement spec> ::= {DELay, <polarity>, <edge_number>, <level>, <polarity>,

<edge number>,<level> | PWIDth,<level> | NWIDth,<level>}

<polarity> ::= {POSitive | NEGative}
<edge_number> ::= integer, 1 to 4000
<level> ::= {MIDDle | UPPer | LOWer}

:MEASure:DELay command/query

Command Syntax: :MEASure:DELay
Query Syntax: :MEASure:DELay?

Returned Format: [:MEASure:DELay] <delay_value><NL>

:MEASure:DESTination

command/query

Command Syntax: :MEASure:DESTination {CHANne1{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4} |

PMEMory{1 | 2} | OFF}

Query Syntax: :MEASure: DESTination?

Returned Format: [:MEASure:DESTination] {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4} |

PMEMory{1 | 2} | OFF}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:DUTycycle command/query

Command Syntax: :MEASure:DUTycycle
Query Syntax: :MEASure:DUTycycle?

Returned Format: [:MEASure:DUTycycle] <value><NL>

:MEASure:ESTArt command/query

Command Syntax: :MEASure:ESTArt <edge_number>

Query Syntax: :MEASure:ESTArt?

Returned Format: [:MEASure:ESTArt] <edge_number><NL>

:MEASure:ESTOp command/query

Command Syntax: :MEASure:ESTOp <edge_number>

Query Syntax: :MEASure:ESTOp?

Returned Format: [:MEASure:ESTOp] <edge_number><NL>

:MEASure:FALLtime command/query

Command Syntax: :MEASure:FALLtime
Query Syntax: :MEASure:FALLtime?

Returned Format: [:MEASure:FALLtime] <value><NL>

:MEASure:FREQuency command/query

Command Syntax: :MEASure:FREQuency
Query Syntax: :MEASure:FREQuency?

Returned Format: [:MEASure:FREQuency] <value><NL>

:MEASure:LIMittest command

Command Syntax: :MEASure:LIMittest {MEASure | OFF}

:MEASure:LOWer command/query

Command Syntax: :MEASure:LOWer < lower_threshold>

Query Syntax: :MEASure:LOWer?

Returned Format: [:MEASure:LOWer] <lower_threshold>NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:MODE command/query

Command Syntax: :MEASure:MODE {STANdard | USER}

Query Syntax: :MEASure:MODE?

Returned Format: [:MEASure:MODE] {STANdard | USER}<NL>

:MEASure:NWIDth command/query

Command Syntax: :MEASure:NWIDth
Query Syntax: :MEASure:NWIDth?

Returned Format: [:MEASure:NWIDth] <negative_width><NL>

:MEASure:OVERshoot command/query

Command Syntax: :MEASure:0VERshoot
Query Syntax: :MEASure:0VERshoot?

Returned Format: [:MEASure:OVERshoot] <value>NL>

:MEASure:PERiod command/query

Command Syntax: :MEASure:PERiod
Query Syntax: :MEASure:PERiod?

Returned Format: [:MEASure:PERiod] <value><NL>

:MEASure:POSTfailure command/query

Command Syntax: :MEASure:POSTfailure {CONTinue | STOP}

Query Syntax: :MEASure:POSTfailure?

Returned Format: [:MEASure:POSTfailure] {CONTinue | STOP}<NL>

:MEASure:PREShoot command/query

Command Syntax: :MEASure:PREShoot
Query Syntax: :MEASure:PREShoot?

Returned Format: [:MEASure:PREShoot] <value>NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:PWIDth command/query

Command Syntax: :MEASure:PWIDth
Query Syntax: :MEASure:PWIDth?

Returned Format: [:MEASure:PWIDth] <positive_width><NL>

:MEASure:RESults query

Query Syntax: :MEASure:RESults?

Returned Format: [:MEASure:RESults] {integer, 0 to 8}[;<measurement> <result>]...<NL>

:MEASure:RISetime command/query

Command Syntax: :MEASure:RISet ime
Query Syntax: :MEASure:RISet ime?

Returned Format: [:MEASure:RISetime] <value><NL>

:MEASure:SCRatch (Clear Results) command

Command Syntax: :MEASure:SCRatch

:MEASure:SOURce command/query

Command Syntax: :MEASure:SOURce <source>[, <source>]

Query Syntax: :MEASure:SOURce?

Returned Format: [:MEASure:SOURce] <source>[,<source>]<NL>

Where: <source> ::= {CHANne1{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | WMEMory{1

| 2 | 3 | 4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:MEASure:STATistics command/query

Command Syntax: :MEASure:STATistics {{ON | 1} | {OFF | 0}}

Query Syntax: :MEASure:STATistics?

Returned Format: [:MEASure:STATistics] {1 | 0}<NL>

:MEASure:TDELta query

Query Syntax: :MEASure:TDELta?

Returned Format: [:MEASure:TDELta] <value><NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:TMAX query

Query Syntax: :MEASure:TMAX?

Returned Format: [:MEASure:TMAX] <time at maximum voltage><NL>

:MEASure:TMIN query

Query Syntax: :MEASure: TMIN?

Returned Format: [:MEASure:TMIN] <time at minimum voltage><NL>

:MEASure:TSTArt command/query

Command Syntax: :MEASure:TSTArt <start marker time>

Query Syntax: :MEASure:TSTArt?

Returned Format: [:MEASure:TSTArt] <start marker time><NL>

:MEASure:TSTOp command/query

Command Syntax: :MEASure:TSTOp <stop marker time>

Query Syntax: :MEASure:TSTOp?

Returned Format: [:MEASure:TSTOp] <stop marker time><NL>

:MEASure:TVOLt query

Query Syntax: :MEASure:TVOLt? <voltage>,<slope><occurrence>
Returned Format: [:MEASure:TVOLt] <time of voltage crossing><NL>

:MEASure:UNITs command/query

Command Syntax: :MEASure:UNITs {PERCent | VOLTs}

Query Syntax: :MEASure:UNITs?

Returned Format: [:MEASure:UNITs] {PERCent | VOLTs}<NL>

:MEASure:UPPer command/query

Command Syntax: :MEASure:UPPer <upper_threshold>

Query Syntax: :MEASure:UPPer?

Returned Format: [:MEASure:UPPer] <upper_threshold><NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:VACRms

command/query

Command Syntax:

:MEASure:VACRms

Query Syntax:

:MEASure:VACRms?

Returned Format:

[:MEASure:VACRms] <ac_rms voltage><NL>

:MEASure:VAMPlitude

command/query

Command Syntax:

Query Syntax:

:MEASure:VAMPlitude :MEASure:VAMPlitude?

Returned Format:

[:MEASure:VAMPlitude] <value><NL>

:MEASure:VAVerage

command/query

Command Syntax:

:MEASure:VAVerage

Query Syntax:

:MEASure:VAVerage?

Returned Format:

[:MEASure:VAVerage] <average voltage><NL>

:MEASure:VBASe

command/query

command/query

Command Syntax:

:MEASure:VBASe

Query Syntax:

:MEASure:VBASe?

Returned Format:

[:MEASure:VBASe] <base voltage><NL>

:MEASure:VDCRms

Command Syntax:

:MEASure:VDCRms

Query Syntax: Returned Format:

:MEASure:VDCRms? [:MEASure:VDCRms] <dc_nms voltage><NL>

:MEASure:VDELta

query

Query Syntax:

:MEASure:VDELta?

Returned Format:

[:MEASure:VDELta] <value><NL>

:MEASure:VFIFty

command

Command Syntax:

:MEASure:VFIFty

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:VMAX command/query

Command Syntax: :MEASure:VMAX
Query Syntax: :MEASure:VMAX?

Returned Format: [:MEASure:VMAX] <maximum voltage><NL>

:MEASure:VMIN command/query

Command Syntax: :MEASure:VMIN

Query Syntax: :MEASure:VMIN?

Returned Format: [:MEASure:VMIN] <minimum voltage><NL>

:MEASure:VPP command/query

Command Syntax: :MEASure: VPP

Query Syntax: :MEASure: VPP?

Returned Format: [:MEASure:VPP] <peak-to-peak voltage><NL>

:MEASure:VRELative command/query

Command Syntax: :MEASure:VRELative {0 to 100}

Query Syntax: :MEASure: VRELative?

Returned Format: [:MEASure:VRELative] {integer, 50 to 100}<NL>

:MEASure:VRMS (AC RMS) command/query

Command Syntax: :MEASure:VRMS
Query Syntax: :MEASure:VRMS?

Returned Format: [:MEASure:VRMS] <ac rms voltage>NL>

:MEASure:VSTArt command/query

Command Syntax: :MEASure:VSTArt <y1marker voltage>

Query Syntax: :MEASure: VSTArt?

Returned Format: [:MEASure:VSTArt] <ylmarker voltage><NL>

:MEASure:VSTOp command/query

Command Syntax: :MEASure:VSTOp <y2marker voltage>

Query Syntax: :MEASure:VSTOp?

Returned Format: [:MEASure:VSTOp] <y2marker voltage><NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:VTIMe query

Query Syntax: :MEASure:VTIMe? <time from trigger>

Returned Format: [:MEASure:VTIMe] <voltage at specified time><NL>

:MEASure:VTOP command/query

Command Syntax: :MEASure:VTOP

Query Syntax: :MEASure:VTOP?

Returned Format: [:MEASure:VTOP] <top_voltage><NL>

:MEASure:WCOMpare:ALLowance

command/query

Command Syntax: :MEASure:WCOMpare:ALLowance <allow value>

Query Syntax: :MEASure:WCOMpare:ALLowance?

Returned Format: [:MEASure:WCOMpare:ALLowance] <allow value><NL>

:MEASure:WCOMpare:COMPare

command/query

Command Syntax: :MEASure:WCOMpare:COMPare {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4}

| WMEMory{1 | 2 | 3 | 4}}

Query Syntax: :MEASure:WCOMpare:COMPare?

Returned Format: [:MEASure:WCOMpare:COMPare] {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 |

4 | WMEMory{1 | 2 | 3 | 4}}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:MEASure:WCOMpare:DESTination

command/query

Command Syntax: :MEASure:WCOMpare:DESTination {{CHANne1{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3

4},{OFF | WMEMory{1 | 2 | 3 | 4} | MULTiple}} | {{SCReen},{OFF |

PMEMory{1 | 2}}}

Query Syntax: :MEASure: WCOMpare: DESTination? {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3

| 4} | SCReen}

Returned Format: [:MEASure:WCOMpare:DESTination] {WMEMory{1 | 2 | 3 | 4} | PMEMory{1 | 2} |

MULTiple | OFF}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

HP 54505B/54506B/54510B/54512B Programming Reference

:MEASure:WCOMpare:POSTfailure

command/query

Command Syntax: :MEASure:WCOMpare

:MEASure:WCOMpare:POSTfailure {CONTinue | STOP}

Query Syntax:

:MEASure:WCOMpare:POSTfailure?

Returned Format:

[:MEASure:WCOMpare:POSTfailure] {CONTinue | STOP}<NL>

:MEASure:WCOMpare:WTESt

command/query

Command Syntax:

:MEASure:WCOMpare:WTESt {MEASure | OFF}

Query Syntax:

:MEASure:WCOMpare:WTESt?

Returned Format:

[:MEASure:WCOMpare:WTESt] {MEASure | OFF}<NL>

:MENU

command/query

Command Syntax:

:MENU {TIMebase | CHANnel | TRIGger | DISPlay | DELTa | MATH | SAVE |

MEASure | UTILity | SHOW}

Query Syntax:

:MENU?

Returned Format:

[:MENU] {TIMebase | CHANnel | TRIGger | DISPlay | DELTA | MATH | SAVE |

MEASure | UTILity | SHOW}<NL>

:MERGe

command

Command Syntax:

:MERGe PMEMory{1 | 2}

:MMEMory[:DISPlay]

command/query

Command Syntax:

:MMEMory[:DISPlay] {{ON | 1} | {OFF | 0}}

Query Syntax:

:MMEMory[:DISPlay]?

Returned Format:

[:MMEMory[:DISPlay]] {1 | 0}<NL>

:MMEMory:FNUMber

command/query

Command Syntax:

:MMEMory:FNUMber {integer, 1 to 665}

Query Syntax:

:MMEMory:FNUMber?

Returned Format:

[:MMEMory:FNUMber {integer, 1 to 665}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

command/query :MMEMory:SOURce :MMEMory:SOURce {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} Command Syntax: Query Syntax: :MMEMory:SOURce? [:MMEMory:SOURce] {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} Returned Format: NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B command :MMEMory:STORe Command Syntax: :MMEMory:STORe command :PMEMory{1 | 2}:CLEar Command Syntax: :PMEMory{1 | 2}:CLEar command/query :PMEMory{1 | 2}[:DISPlay] :PMEMory{1 | 2}[:DISPlay] {{ON | 1} | {OFF | 0}} Command Syntax: Query Syntax: :PMEMory{1 | 2}[:DISPlay]? Returned Format: [:PMEMory{1 | 2}[:DISPlay]] {1 | 0}<NL> command :PMEMory{1 | 2}:MERGe Command Syntax: :PMEMory{1 | 2}:MERGe query **:PMEMOry**{1 | 2}**:SETup** Query Syntax: :PMEMory{1 | 2}SETup? Returned Format: PMEMory{1 | 2}:DISPlay {ON | OFF}

:PLOT query

Query Syntax: :PLOT?

:PRINt query

Query Syntax: :PRINt?

HP 54505B/54506B/54510B/54512B Programming Reference

:RUN command

Command Syntax: :RUN

:SEQuential[:DISPlay]

command/query

Command Syntax: :SEQuential[:DISPlay] {{ON | 1} | {OFF | 0}}

Query Syntax: :SEQuential[:DISPlay]?

Returned Format: [:SEQuential[:DISPlay]] {1 | 0}<NL>

:SEQuential:EXCLude

command/query

Command Syntax: :SEQuential:EXCLude <from>,<to>

Query Syntax: :SEQuential:EXCLude?

Returned Format: [:SEQuential:EXCLude] <exclude list <NL>

Where: <fram> ::= interer, any previously captured segment number less than or

equal to the value of <to>

<to> ::= interer, any previously captured segment number greater than or

equal to the value of <from>

<exclude list> ::= list of excluded segments separated by commas

:SEQuential:INCLude

command/query

Command Syntax: :SEQuential:INCLude <from>,<to>

Query Syntax: :SEQuential:INCLude?

Returned Format: [:SEQuential:INCLude] <include list >> NL>

Where: <fram> ::= interer, any previously captured segment number less than or

equal to the value of <to>

<to> ::= interer, any previously captured segment number greater than or

equal to the value of <from>

<exclude list> ::= list of included segments separated by commas

:SEQuential:NPOints

command/query

Command Syntax: :SEQuential:NPOints {4 to 8000}

Query Syntax: :SEQuential:NPOints?

Returned Format: [:SEQuential:NPOints] {integer, 4 to 8000}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:SEQuential:NSEGments

command/query

Command Syntax: :SEQuential:NSEGments {1 to 8888}

Query Syntax: :SEQuential:NSEGments?

Returned Format: [:SEQuential:NSEGments] {integer, 1 to 8888}<NL>

:SEQuential:SETup

query

Query Syntax: :SEQuential:SETup?

Returned Format: :SEQuential:DISPlay {ON | OFF}; EXCLude <exclude_list>; INCLude

<include_list>;NPOints <points>;NSEGments <segment>;SNUMber <number>;SOURce

{CHANne11 | 2 | 3 | 4}<NL>

Where: <points>::= integer, 4 to 8000

<segments>::= integer, 1 to 8888
<number>::= integer, 1 to 8888

<include_list> ::= integer list of included segment numbers separated by

commas

<exclude_list> ::= integer list of excluded segment numbers separated by

commas

:SEQuential:SNUMber

command/query

Command Syntax: :SEQuential:SNUMber {1 to 8888}

Query Syntax: :SEQuential:SNUMber?

Returned Format: [:SEQuential:SNUMber] {integer, 1 to 8888}<NL>

:SEQuential:SOURce

command/query

Command Syntax: :SEQuential:SOURce {CHANnel{1 | 2 | 3 | 4}

Query Syntax: :SEQuential:SOURce?

Returned Format: [:SEQuential:SOURce] {CHANnel{1 | 2 | 3 | 4}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:SERial

(Serial Number)

command

Command Syntax: :SERial <string>

Where: <string> := 10 character alphanumeric serial number within quotes

HP 54505B/54506B/54510B/54512B Programming Reference

:STATus query

Query Syntax: :STATus? {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | WMEMory{1 | 2

| 3 | 4} | PMEMory{1 | 2}}

Returned Format: [:STATus] {0 | 1}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:STOP command

Command Syntax: :STOP

:STORe command

Command Syntax: :STORe <source>,<destination>

Where: <source> ::= {CHANne1{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | WMEMory{1}

| 2 | 3 | 4}}

<destination> ::= WMEMory{1 | 2 | 3 | 4}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:SYSTem:DATE command/query

Command Syntax: :SYSTem: DATE <year>, <month>, <day>

Query Syntax: :SYSTem:DATE?

Returned Format: [:SYSTem:DATE] "DD,MMM,YYYY"<NL>

:SYSTem:DSP command/query

Command Syntax: :SYSTem:DSP <quoted ASCII string>

Query Syntax: :SYSTem:DSP?

Returned Format: [:SYSTem:DSP] <string><NL>

Where: <string> ::= last information written on the advisory line

:SYSTem:ERRor query

Query Syntax: :SYSTem:ERRor {NUMBer | STRing | (no_parameter)}

Returned Format: :SYSTem:ERRor] <error code>[,<quoted string>]<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:SYSTem:HEADer command/query

Command Syntax: :SYSTem:HEADer {{0N | 1} | {0FF | 0}}

Query Syntax: :SYSTem:HEADer?

Returned Format: [:SYSTem:HEADer] {1 | 0}<NL>

:SYSTem:KEY command/query

Command Syntax: :SYSTem:KEY {1 to 44}

Query Syntax: :SYSTem:KEY?

Returned Format: [:SYSTem:KEY] {integer, 0 to 44}<NL>

:SYSTem:LONGform command/query

Command Syntax: :SYSTem:LONGform {{ON | 1} | {OFF | 0}}

Query Syntax: :SYSTem:LONGform?

Returned Format: [:SYSTem:LONGform] {1 | 0}<NL>

:SYSTem:PIMacro command

Command Syntax: :SYSTem:PIMacro <quoted ascii string>

:SYSTem:SETup command/query

Command Syntax: :SYSTem:SETup #800001703<setup data string>

Query Syntax: :SYSTem:SETup?

Returned Format: [:SYSTem:SETup] #800001703<setup data string><NL>

:SYSTem:TIME command/query

Command Syntax: :SYSTem:TIME <hour>, <minute>, <second>

Query Syntax: :SYSTem:TIME?

Returned Format: [:SYSTem:TIME] "HH:MM:SS"<NL>

:TER (Trigger Event Register) query

Query Syntax: :TER?

Returned Format: [:TER] {1 | 0}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:TIMebase:DELay command/query

Command Syntax: :TIMebase:DELay <delay time>

Query Syntax: :TIMebase:DELay?

Returned Format: [:TIMebase:DELay] <delay time><NL>

:TIMebase:MODE command/query

Command Syntax: :TIMebase:MODE {AUTO | TRIGgered | SINGle}

Query Syntax: :TIMebase:MODE?

Returned Format: [:TIMebase:MODE] {AUTO | TRIGgered | SINGle}<NL>

:TIMebase:RANGe command/query

Command Syntax: :TIMebase:RANGe {10 ns to 50 s}

Query Syntax: :TIMebase:RANGe?

Returned Format: [:TIMebase:RANGe] {exponential, 10 ns to 50 s}<NL>

:TIMebase:REFerence command/query

Command Syntax: :TIMebase:REFerence {LEFT | CENTer | RIGHt}

Query Syntax: :TIMebase:REFerence?

Returned Format: [:TIMebase:REFerence] {LEFT | CENTer | RIGHt}<NL>

:TIMebase:SAMPle command/query

Command Syntax: :TIMebase:SAMPle {REALtime | REPetitive}

Query Syntax: :TIMebase:SAMPle?

Returned Format: [:TIMebase:SAMPle] {REALtime | REPetitive}<NL>

:TIMebase:SETup query

Query Syntax: :TIMebase:SETup?

Returned Format: :TIMebase:MODE {AUTO|TRIG|SING};RANGe <range>;DELay <delay>;REF

{LEFT | CENT | RIGH}; SAMPle {REAL | REP} < NL>

Where: <range> ::= exponential, 10ns to 50s

<delay> ::= time from trigger to display reference in seconds

HP 54505B/54506B/54510B/54512B Programming Reference

command :TRIGger:CENTered

Command Syntax: :TRIGger:CENTered

command/query :TRIGger:CONDition

Command Syntax: :TRIGger:CONDition <argument>

Query Syntax: :TRIGger:CONDition?

Returned Format: [:TRIGger:CONDition] <argument><NL>

<argument> ::= {ENTer | EXIT | GT, <value> | LT, <value> | Where:

RANGe, < range_greater_than > , < range_less_than > | TRUE | FALSe }

command/query :TRIGger:COUPling

:TRIGger:COUPling {DC | DCFifty} **Command Syntax:**

Query Syntax: :TRIGger:COUPling?

[:TRIGger:COUPling] {DC | DCFifty}<NL> Returned Format:

command/query :TRIGger:DELay

:TRIGger:DELay {TIME,<time_value> | EVENt,<event_value>} **Command Syntax:**

Query Syntax: :TRIGger:DELay?

[:TRIGger:DELay] {TIME,<time_value> | EVENt,<event_value>}<NL> **Returned Format:**

<time_value> ::= time of delay - exponential, 30 ns to 160 ms Where:

<event_value> ::= number of events - integer, 1 to 16000000

:TRIGger:DELay:SLOPe

command/query

:TRIGger:DELay:SLOPe {POSitive | NEGative} Command Syntax:

Query Syntax: :TRIGger:DELay:SLOPe?

[:TRIGger:DELay:SLOPe] {POSitive | NEGative}<NL> Returned Format:

command/query :TRIGger:DELay:SOURce :TRIGger:DELay:SOURce {CHANnel{1 | 2 | 3 | 4} | EXTernal} **Command Syntax:**

Query Syntax: :TRIGger:DELay:SOURce?

[:TRIGger:DELay:SOURce] {CHANnel{1 | 2 | 3 | 4} | EXTernal}<NL> **Returned Format:**

NOTE: EXTernal available only on HP 54505B/54510B. CHANnel3 and CHANnel4

available only on HP 54506B/54512B

HP 54505B/54506B/54510B/54512B **Programming Reference**

:TRIGger:FIELd command/query

Command Syntax: :TRIGger:FIELd { 1 | 2 }

Query Syntax: :TRIGger:FIELd?

Returned Format: [:TRIGger:FIELd] { 1 | 2 }<NL>

:TRIGger:GLITch:CENTered

Command Syntax: :TRI6ger:GLITch:CENTered

:TRIGger:GLITch:HOLDoff

Command Syntax: :TRIGger:GLITch:HOLDoff <holdoff>
Query Syntax: :TRIGger:GLITch:HOLDoff?

Query Syntax: :TRIGger:GLITch:HOLDoff?

Returned Format: [:TRIGger:GLITch:HOLDoff] <holdoff><NL>

Where: <holdoff> ::= exponential, 40 ns to 320 ms

:TRIGger:GLITch:LEVel

command/query

command/query

command

Command Syntax: :TRIGger:GLITch:LEVel <level>
Query Syntax: :TRIGger:GLITch:LEVel?

Returned Format: [:TRIGger:GLITch:LEVe]] <level><NL>

Where: <level> ::= trigger level in volts

:TRIGger:GLITch:SOURce

command/query

Command Syntax: :TRIGger:GLITch:SOURce {CHANnel{1 | 2 | 3 | 4} | EXTernal}, {HIGH | LOW}

Query Syntax: :TRIGger:GLITch:SOURce?

Returned Format: [:TRIGger:GLITch:SOURce] {CHANnel{1 | 2 | 3 | 4} | EXTernal},{HIGH |

LOW}<NL>

NOTE: EXTernal available only on HP 54505B/54510B. CHANnel3 and CHANnel4

available only on HP 54506B/54512B

:TRIGger:GLITch:WIDth

command/query

Command Syntax: :TRIGger:GLITch:WIDth {GT | LT}, <width>

Query Syntax: :TRIGger:GLITch:WIDth?

Returned Format: [:TRIGger:GLITch:WIDth] {GT | LT}, <width><NL>

Where: <width> ::= exponential, 5 ns to 160 ms

HP 54505B/54506B/54510B/54512B Programming Reference

:TRIGger:HOLDoff

command/query

Command Syntax:

:TRIGger:HOLDoff {TIME, <holdoff_value> | EVENt, <event_argument>}

Query Syntax:

:TRIGger:HOLDoff?

Returned Format:

[:TRIGger:HOLDoff] {TIME,<holdoff_value> | EVENt,<event_argument>}<NL>

Where:

<holdoff value> ::= exponential, 40 ns to 320 ms

<event_argument> ::= integer, 1 to 16000000

:TRIGger:LEVel

:TRIGger:LEVel <level>

Command Syntax: Query Syntax:

:TRIGger:LEVel?

Returned Format:

[:TRIGger:LEVel] < leve >>NL>

Where:

<level> ::= trigger level in volts

:TRIGger:LINE

command/query

command/query

Command Syntax:

:TRIGger:LINE {1 to 625}

Query Syntax:

:TRIGger:LINE?

Returned Format:

[:TRIGger:LINE] {integer, 1 to 625}<NL>

:TRIGger:LOGic

command/query

Command Syntax:

:TRIGger:LOGic {HIGH | LOW | DONTcare}

Query Syntax:

:TRIGger:LOGic?

Returned Format:

[:TRIGger:LOGic] {HIGH | LOW | DONTcare}<NL>

:TRIGger:MODE

command/query

Command Syntax:

:TRIGger:MODE {EDGE | PATTern | STATe | DELay | TV | GLITch}

Query Syntax:

:TRIGger:MODE?

Returned Format:

[:TRIGger:MODE] {EDGE | PATTern | STATe | DELay | TV | GILTch}<NL>

:TRIGger:OCCurrence

command/query

Command Syntax:

:TRIGger:OCCurrence {1 to 16000000}

Query Syntax:

:TRIGger:OCCurrence?

Returned Format:

[:TRIGger:OCCurrence] {integer, 1 to 16000000}<NL>

HP 54505B/54506B/54510B/54512B **Programming Reference**

:TRIGger:OCCurrence:SLOPe

command/query

Command Syntax: :TRIGger:OCCurrence:SLOPe {POSitive | NEGative}

Query Syntax: :TRIGger: OCCurrence: SLOPe?

Returned Format: [:TRIGger:OCCurrence:SLOPe] {POSitive | NEGative}<NL>

:TRIGger:OCCurrence:SOURce

command/query

Command Syntax: :TRIGger: OCCurrence: SOURce {CHANne1{1 | 2 | 3 | 4} | EXTerna1}

Query Syntax: :TRIGger: OCCurrence: SOURce?

Returned Format: [:TRIGger:OCCurrence:SOURce] {CHANne1{1 | 2 | 3 | 4} | EXTerna1}<NL>

NOTE: EXTernal available only on HP 54505B/54510B. CHANnel3 and CHANnel4

available only on HP 54506B/54512B

:TRIGger:PATH

command/query

Command Syntax: :TRIGger:PATH {CHANnel{1 | 2 | 3 | 4} | EXTernal}

Query Syntax: :TRIGger:PATH?

Returned Format: [:TRIGger:PATH] {CHANnel{1 | 2 | 3 | 4} | EXTernal}<NL>

NOTE: EXTernal available only on HP 54505B/54510B. CHANnel3 and CHANnel4

available only on HP 54506B/54512B

:TRIGger:POLarity

command/query

Command Syntax: :TRIGger:POLarity {POSitive | NEGative}

Query Syntax: :TRIGger:POLarity?

Returned Format: [:TRIGger:POLarity] {POSitive | NEGative}<NL>

:TRIGger:PROBe

command/query

Command Syntax: :TRIGger:PROBe {0.9 to 1000}

Query Syntax: :TRIGger:PROBe?

Returned Format: [:TRIGger:PROBe] {exponential, 0.9 to 1000}<NL>

:TRIGger:QUALify

command/query

Command Syntax: :TRIGger:QUALify {EDGE | PATTern | STATe | LOW | HIGH}

Query Syntax: :TRIGger:QUALify?

Returned Format: [:TRIGger:QUALify] {EDGE | PATTern | STATe | LOW | HIGH}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:TRIGger:SENSitivity

command/query

Command Syntax: :TRIGger:SENSitivity {NORMal | LOW}

Query Syntax: :TRIGger:SENSitivity?

Returned Format: [:TRIGger:SENSitivity] {NORMal | LOW}<NL>

:TRIGger:SETup

query

Query Syntax:

:TRIGger:SETup?

Returned Format:

:TRIGger:COND <argument>;COUP {DC|DCF};DEL {TIME, <time_value>|EVEN, <event_value>};DEL:SLOP {POS|NEG};DEL:SOUR <source>;FIEL {1|2};GLIT:HOLD

<holdoff_value>;GLIT:LEV <level>;GLIT:SOUR <source>;GLIT:WIDT
{GT|LT},<width>;HOLD {TIME,<holdoff_value>|EVEN,<event_argument>};LEV

{EDGE | PATT | STAT | DEL | TV | GLIT }; OCC < occ value >; OCC:SLOP {POS | NEG}; OCC:SOUR < source >; PATH < source >; POS | NEG | ; PROBE < attenuation factor >; QUAL < qualify_parameter >; SENS {NORM | LOW}; SLOP {NEG | POS}; SOUR < source >; STAN

{525 | 625 | USER} < NL>

Where:

<argument> ::=dependent on trigger mode (refer to TRIGger:CONDition command)

<time_value> ::=exponential, 30ms to 160ms <event_value> ::= integer,1 to 16000000

<source> ::= CHANnel1, CHANnel2, EXTernal (HP 54505B/54510B)
<source> ::= CHANnel1|CHANnel2|CHANnel3|CHANnel4 (HP 54506B/54512B)

<holdoff_value> ::= exponential, 40 ns to 320 ms

<level> ::= trigger level in volts
<width> ::= exponential, 5 ns to 160 ms
<event_argument> ::= integer,1 to 16000000
<attenuation_factor> ::= exponential, 0.9 to 1000

line_number> ::= integer,1 to 625
<occ_value> ::= integer, 1 to 16000000

<qualify_parameter> ::=dependent on trigger mode (refer to

TRIGger:QUALify command)

:TRIGger:SLOPe

command/query

Command Syntax: :TRIGger:SLOPe {NEGative | POSitive}

Query Syntax: :TRIGger:SLOPe?

Returned Format: [:TRIGger:SLOPe] {POSitive | NEGative}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:TRIGger:SOURce command/query

Command Syntax: :TRIGger:SOURce {CHANnel{1 | 2 | 3 | 4} | EXTernal | LINE}

Query Syntax: :TRIGger:SOURce?

Returned Format: [:TRIGger:SOURce] {CHANnel{1 | 2 | 3 | 4} | EXTernal | LINE}<NL>

NOTE: EXTernal available only on HP 54505B/54510B. CHANnel3 and CHANnel4

available only on HP 54506B/54512B

:TRIGger:STANdard command/query

Command Syntax: :TRIGger:STANdard {525 | 625 | USER}

Query Syntax: :TRIGger:STANdard?

Returned Format: [:TRIGger:STANdard] {525 | 625 | USER}<NL>

:VIEW command

Command Syntax: :VIEW {CHANnel{1 | 2 | 3 | 4} | FUNCtion{1 | 2 | 3 | 4} | PMEMory{1 | 2} |

WMEMory{1 | 2 | 3 | 4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:WAVeform:DATA command/query

Command Syntax: :WAVeform:DATA

dinary block data in # format>

Query Syntax: :WAVeform: DATA?

Returned Format: [:WAVeform:DATA] <binary block length bytes><binary block><NL>

:WAVeform:FORMat command/query

Command Syntax: :WAVeform:FORMat {ASCii | WORD | BYTE | COMPressed}

Query Syntax: :WAVeform: FORMat?

Returned Format: [:WAVeform:FORMat] {ASCii | WORD | BYTE | COMPressed}<NL>

:WAVeform:POINts query

Query Syntax: :WAVeform: POINts?

Returned Format: [:WAVeform:POINts] {500 | 8000}<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:WAVeform:PREamble

command/query

Query Syntax: :WAVeform:PREamble?

NR1>,<xincrement NR3>,<xorigin NR3>,<xreference NR1>,<yincrement

NR3>,<yorigin NR3>,<yreference NR1>

<format> ::= 0 for ASCII format

1 for BYTE format 2 for WORD format 4 for COMPRESSED format

<type> ::= 0 for INVALID type

1 for NORMAL type or REALTIME

2 for AVERAGE type 3 for ENVELOPE type 4 for RAWDATA type

:WAVeform:SOURce

command/query

Command Syntax: :WAVeform: SOURce {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4}}

Query Syntax: :WAVeform: SOURce?

Returned Format: [:WAVeform:SOURce] {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | 4}}<NL>

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:WAVeform:TYPE query

Query Syntax: :WAVeform: TYPE?

Returned Format: [:WAVeform:TYPE] {INValid | AVERage | ENVelope | NORMal | RAWData}<NL>

:WAVeform:XINCrement query

Query Syntax: :WAVeform:XINCrement?

Returned Format: [:WAVeform:XINCrement] <x-increment value><NL>

:WAVeform:XORigin query

Query Syntax: :WAVeform:XORigin?

Returned Format: [:WAVeform:XORigin] <x-origin value>[,<x-origin value>]...<NL>

HP 54505B/54506B/54510B/54512B Programming Reference

:WAVeform:XREFerence query **Query Syntax:** :WAVeform: XREFerence? **Returned Format:** [:WAVeform:XREFerence] <x-reference value><NL> :WAVeform:YINCrement query **Query Syntax:** :WAVeform:YINCrement? **Returned Format:** [:WAVeform:YINCrement] <y-increment value><NL> :WAVeform:YORigin query **Query Syntax:** :WAVeform: YOR igin? **Returned Format:** [:WAVeform:YORigin] <y-origin value><NL> :WAVeform:YREFerence query Query Syntax: :WAVeform: YREFerence? Returned Format: [:WAVeform:YREFerence] <y-reference value><NL> command/query :WMEMory{1 | 2 | 3 | 4}[:DISPlay] Command Syntax: :WMEMory{1 | 2 | 3 | 4}[:DISPlay] {{ON | 1} | {OFF | 0}} Query Syntax: : WMEMory{1 | 2 | 3 | 4}[:DISPlay]? **Returned Format:** [:WMEMory{1 | 2 | 3 | 4}[:DISP lay]] {1 | 0}<NL>

:WMEMory{1 | 2 | 3 | 4}:GET

command

:WMEMory{1 | 2 | 3 | 4}:GET {CHANnel{1 | 2 | 3 | 4} | WMEMory{1 | 2 | 3 | **Command Syntax:**

4} | FUNCtion{1 | 2 | 3 | 4}}

NOTE: CHANnel3 and CHANnel4 available only on HP 54506B/54512B

:WMEMory{1 | 2 | 3 | 4}:PROTect

command/query

Command Syntax: :WMEMory{1 | 2 | 3 | 4}:PROTect {{ON | 1} | {OFF | 0}}

Query Syntax: :WMEMory{1 | 2 | 3 | 4}:PROTect?

Returned Format: [:WMEMory{1 | 2 | 3 | 4}:PROTect] {1 | 0}<NL>

HP 54505B/54506B/54510B/54512B **Programming Reference**

:WMEMory{1 | 2 | 3 | 4}:SETup

query

Query Syntax: :WMEMory{1 | 2 | 3 | 4}:SETup?

Returned Format: :WMEMory{1 | 2 | 3 | 4}:DISPlay{0N | 0FF};PROTect {0N | 0FF};XRANGe

<xrange>;X0FFset <xoffset>;YRANGe <xrange>;Y0FFset <xoffset><NL>

Where: <xrange> ::= exponential, 10 ns to 50 s

<xoffset> ::= exponentialtime from trigger to display reference in seconds.

Display reference is left, center, or right

<yrange> ::= exponential full-scale range value
<yoffset> ::= exponential offset value in volts

:WMEMory{1 | 2 | 3 | 4}:XOFFset

command/query

Command Syntax: :WMEMory{1 | 2 | 3 | 4}:X0FFset <xoffset>

Query Syntax: :WMEMory{1 | 2 | 3 | 4}:X0FFset?

Returned Format: [:\MMEMory{1 | 2 | 3 | 4}:XOFFset] <xoffset><NL>

Where: <xoffset> ::= exponentialtime from trigger to display reference in seconds.

Display reference is left, center, or right

:WMEMory{1 | 2 | 3 | 4}:XRANge

command/query

Command Syntax: :WMEMory{1 | 2 | 3 | 4}:XRANge <xrange>

Query Syntax: :WMEMory{1 | 2 | 3 | 4}:XRANge?

Returned Format: [:WMEMory{1 | 2 | 3 | 4}:XRANge] <xrange><NL>

:WMEMory{1 | 2 | 3 | 4}:YOFFset

query

Query Syntax: :WMEMory{1 | 2 | 3 | 4}:Y0FFset?

Returned Format: [:\MEMory{1 | 2 | 3 | 4}:YOFFset] <yoffset><NL>

Where: <yoffset> ::= exponential offset value in volts

:WMEMory{1 | 2 | 3 | 4}:YRANge

query

Query Syntax: :WMEMory{1 | 2 | 3 | 4}:YRANge?

Returned Format: [:WMEMory{1 | 2 | 3 | 4}:YRANge] <yrange><NL>

Where: <yrange> ::= exponential full-scale range value

HP 54505B/54506B/54510B/54512B Programming Reference

A

BASIC, 1-2 AC RMS, 15-52, 15-64 BEEPer Command/Query, 7-6 Acquire Subsystem, 9-1 BLANk Command, 7-7, 7-24 COMPlete Command/Query, 9-6 Block data, 1-4, 2-11, 27-23 COUNt Command/Query, 9-7 BNC Command/Query, 7-8 POINts Command/Query, 9-9 Buffer Deadlock, 27-5 Syntax Diagram, 9-1 BYTE format, 18-9 TYPE Command/Query, 9-11 ADD Command, 13-4 add to memory, 7-15 C Addressing, 3-2 Addressing the instrument, 3-2 adjust trigger mode, 17-15 Calibrate Subsystem, 10-1 advisory line, 8-4 DATA: ASCii Query, 10-2 Algorithms, 26-1 SETup Query, 10-3 ALL Query, 15-13 Syntax Diagram, 10-1 alpha argument, 4-1 TNULl Command/Query, 10-3 arbitrary ASCII response data, 27-23 carriage return, 4-14 arbitrary block program data, 27-14 CENTered Command, 17-15 Arguments, 1-5 Channel Subsystem, 11-1 ASCII format, 18-9 COUPling Command/Query, 11-4 AUTO time base mode, 16-4 DISPlay Command/Query, 11-5 automatic measurements, 26-1 ECL Command, 11-6 Automatic Top-Base, 26-2 HFReject Command/Query, 11-7 Autoscale LFReject Command/Query, 11-8 undo, 6-18 OFFSet Command/Query, 11-9 AUToscale Command, 7-5 PROBe Command/Query, 11-10 **AVERAGE Type, 18-4** RANGE Command/Query, 11-11 Averaging Mode, 9-4

B

SETup Query, 11-12 Syntax Diagram, 11-2 TTL Command, 11-13 Character data, 1-10, 2-8

HP 54505B/54506B/54510B/54512B Programming Reference index-1

Command (continued) Character program data, 1-10, 2-8, 27-14 DISPlay: GRATicule, 12-10 character response data, 27-23 DISPlay:INVerse, 12-11 CLEAR DISPLAY, 7-11 DISPlay:LINE, 12-12 Clear measurement, 15-40 DISPlay:MASK, 12-13 *CLS (clear status) Command, 6-4 DISPlay:MARKer, 12-23 CME - command error, 24-3 DISPlay:PERSistence, 12-15 COLumn Command/Query, 12-5 DISPlay:ROW, 12-17 Combining commands, 1-7 DISPlay:SCReen, 12-18 comma, 27-6 DISPlay:SETup, 12-19 Command, 1-3, 2-7 DISPlay:SOURce, 12-20 Acquire Subsystem, 9-1 DISPlay:STRing, 12-21 ACOuire: COMPlete, 9-6 DISPlay:TEXT, 12-22 ACQuire:COUNt, 9-7 DISPlay:TMARker, 12-23 ACQuire:POINts, 9-8 DISPlay:VMARker, 12-23 ACQuire:TYPE, 9-10 *DMC, 6-5 AUToscale, 7-5 *EMC, 6-6 BEEPer, 7-6 BLANk, 7-7 EOI, 4-28 ERASe, 7-11 BNC, 7-8 *ESE, 6-7 Calibrate Subsystem, 10-1 *ESR, 6-9 CALibrate:TNULl, 10-4 Function Subsystem, 13-1 Channel Subsystem, 11-1 FUNCtionN:ADD, 13-5 CHANnelN:COUPling, 11-4 FUNCtionN:DIFF, 13-6 CHANnelN:ECL, 11-6 FUNCtionN:DISPlay, 13-7 CHANnelN:HFReject, 11-7 FUNCtionN:FFT, 13-8 CHANnelN:LFReject, 11-8 FUNCtionN:FREQuency, 13-9 CHANnelN:OFFSet, 11-9 CHANnelN:PROBe, 11-10 FUNCtionN:INTegrate, 13-10 FUNCtionN:INVert, 13-11 CHANnelN:RANGe, 11-11 FUNCtionN:LEVel, 13-12 CHANnelN:SETup, 11-12 FUNCtionN:MAGNify, 13-13 CHANnelN:TTL, 11-13 FUNCtionN:MULTiply, 13-14 *CLS, 6-3 / 6-4 FUNCtionN:OFFSet, 13-15 Common Commands, 4-10, 6-1 DATA:ASCii, 10-2 FUNCtionN:ONLY, 13-16 FUNCtionN:PEAK, 13-17 **DESTination**, 15-20 FUNCtionN:POINts, 13-18 DIGitize, 2-4, 7-9 FUNCtionN:RANGe, 13-21 Display Subsystem, 12-1 FUNCtionN:SETup, 13-22 DISPlay:COLumn, 12-5 FUNCtionN:SPAN, 13-23 DISPlay: CONNect, 12-6 FUNCtionN:SUBTract, 13-24 DISPlay:DATA, 12-7 FUNCtionN:VERSus, 13-25 DISPlay:FORMat, 12-9

Command (continued) Command (continued) MEASure:SOURce, 15-41 FUNCtionN:WINDow, 13-26 MEASure:STATistics, 15-42 Hardcopy Subsystem, 14-1 MEASure:TDELta, 15-43 HARDcopy:LENGth, 14-4 MEASure:TMAX, 15-44 HARDcopy:MODE, 14-5 MEASure: TMIN, 15-45 HARDcopy:PAGE, 14-6 MEASure:TSTArt, 15-46 HARDcopy:PLOT:AREA, 14-7 MEASure:TSTOp, 15-47 HARDcopy:PLOT:INITialize, 14-8 MEASure:TVOLt, 15-48 HARDcopy:PLOT:PEN | COLor, 14-9 MEASure: UNITs, 15-50 HEADer, 2-7, 8-8 MEASure:UPPer, 15-51 *IDN, 6-12 MEASure: VACRms, 15-52 *IST, 4-28 MEASure: VAMPlitude, 15-53 LER, 7-12 MEASure: VAVerage, 15-54 *LMC, 6-13 MEASure: VBASe, 15-55 LONGform, 2-7, 8-11 MEASure: VDCRms, 15-56 *LRN, 6-14 MEASure: VDELta, 15-57 LTER, 7-13 MEASure: VFIFty, 15-58 Measure Subsystem, 15-1 MEASure:VMAX, 15-59 MEASure: ALL, 15-13 MEASure:VMIN, 15-60 MEASure: COMPare, 15-14 MEASure: VPP, 15-61 MEASure: CURSor, 15-16 MEASure: VRELative, 15-62 MEASure: DEFine, 15-17 MEASure: VRMS, 15-64 MEASure: DELay, 15-19 MEASure: VSTArt, 15-65 MEASure: DESTination, 15-20 MEASure:DUTycycle, 15-22 MEASure: VSTOp, 15-66 MEASure: VTIMe, 15-67 MEASure:ESTArt, 15-23 MEASure: VTOP, 15-68 MEASure:ESTOp, 15-25 MEASure: WCOMpare, 15-69 MEASure:FALLtime, 15-27 MEASure: WCOMpare: ALLowance, 15-70 MEASure:FREQuency, 15-28 MEASure: WCOMpare: COMPare, 15-71 MEASure:LIMittest, 15-29 MEASure: WCOMpare: DESTination, 15-72 MEASure:LOWer, 15-30 MEASure:POSTfailure,15-74 MEASure: MODE, 15-31 MEASure:WCOMpare:WTESt,15-75 MEASure: NWIDth, 15-32 MENU, 7-14 MEASure: OVERshoot, 15-33 **MERGe**, 7-15 MEASure:PERiod, 15-34 *OPC, 6-15 MEASure: POST failure, 15-35 *OPT, 6-16 MEASure:PREShoot, 15-36 parsing, 27-1 MEASure:PWIDth, 15-37 PLOT, 7-16 MEASure: RESults, 15-38 *PMC, 6-17 MEASure: RISetime, 15-39 PRINt, 7-17

HP 54505B/54506B/54510B/54512B **Programming Reference**

MEASure: SCRatch, 15-40

Command (continued) Command (continued) TRIGger:GLITch:CENTered, 17-24 *RCL, 6-18 Root Level Commands, 4-10, 7-1 TRIGger:GLITch:HOLDoff, 17-25 TRIGger:GLITch:LEVel, 17-26 *RST, 6-19 RUN, 7-18 TRIGger:GLITch:SOURce, 17-27 TRIGger:GLITch:WIDTh, 17-28 *SAV, 6-22 TRIGGER:HOLDOFF, 17-9, 17-26 SERial, 7-19 *SRE, 6-23 TRIGGER:LEVEL, 17-6, 17-8 / 17-9, 17-30 **STATus**, 7-20 TRIGger:LINE, 17-31 *STB, 6-25 TRIGGER:LOGIC, 17-10, 17-32 TRIGger: MODE, 17-33 STOP, 7-21 TRIGGER:OCCURRENCE, 17-14, 17-13, 17-34 STORe, 7-22 TRIGGER:OCCURRENCE:SLOPE, 17-11, Subsystem Commands, 4-10 System Subsystem, 8-1 17-14, 17-35 SYSTem:DATE, 8-3 TRIGGER:OCCURRENCE:SOURCE, 17-11, SYSTem:DSP, 8-4 SYSTem: ERRor, 8-5 TRIGGER:PATH, 17-9, 17-10, 17-37 TRIGGER:POLARITY, 17-12, 17-38 SYSTem: HEADer, 8-8 SYSTem:KEY, 8-9 TRIGger:PROBe, 17-39 TRIGGER:QUALIFY, 17-11, 17-14, 17-40 SYSTem:LONGform, 8-11 SYSTem:PIMacro, 8-12 TRIGger:SENSitivity, 17-41 TRIGger:SETup, 17-42 SYSTem:SETup, 8-13 TRIGGER:SLOPE, 17-8, 17-43 SYSTem:TIME, 8-15 TRIGGER:SOURCE, 17-8, 17-12, 17-44 TER, 7-23 **TRIGGER:STANDARD, 17-12, 17-45** Timebase Subsystem, 16-1 TIMebase: DELay, 16-3 TRIGGER:TIME, 17-11 *TST, 6-28 TIMebase: MODE, 16-4 VIEW, 7-24 TIMebase: RANGe, 16-5 *WAI, 6-29 TIMebase: REFerence, 16-6 TIMebase:SAMPle, 16-7 Waveform Subsystem, 18-1 WAVeform: COUNt. 4-24 *TRG, 6-27 Trigger Mode, 17-6 WAVeform: DATA, 18-11 Trigger Subsystem, 17-1 WAVeform:FORMat, 18-13 TRIGger:CENTered, 17-14 WAVeform: POINts, 18-14 TRIGGER:CONDITION, 17-9, 17-10, 17-16 WAVeform:PREamble, 18-15 WAVeform: SOURce, 18-17 TRIGger: COUPling, 17-18 TRIGGER:DELAY, 17-11, 17-19 WAVeform: TYPE, 18-18 TRIGger: DELay: SLOPe, 17-20 WAVeform:XINCrement, 18-19 TRIGger:DELay:SOURce, 17-21 WAVeform: XORIGin, 18-20 WAVeform: XREFerence, 18-21 TRIGGER:FIELD, 17-12, 17-22 TRIGger:GLITch, 17-23 WAVeform: YINCrement, 18-22

Command (continued) WAVeform: YORigin, 18-23 WAVeform:YREFerence, 18-24 Command and Data Concepts, 3-1 command error, 27-4 Command structure, 2-3 command tree, 4-1, 4-10 Command Types, 4-10 Common command header, 1-6 common commands, 4-10, 6-1, 27-27 *CLS Command, 6-4 *DMCCommand, 6-5 *EMC Command/Query, 6-6 *ESE Command/Query, 6-7 *ESR Query, 6-9 *GMC Query, 6-11 *IDN Query, 6-12 *LMC Query, 6-13 *LRN Query, 6-14 *OPC Command/Query, 6-15 *OPT Query, 6-16 *PMC Command, 6-17 *RCL Command, 6-18 *RST Command, 6-19 *SAV Command, 6-22 *SRE Command/Query, 6-23 *STB, 6-25 Syntax Diagram, 6-1 *TRG Command, 6-27 *TST, 6-28 *WAI Command, 6-29 Communication, 1-2 COMPare Command/Query, 15-14 COMPlete Command/Query, 9-6 Compound command header, 1-6 compound header, 4-14 compound query, 27-3 COMPRESSED format, 18-9 CONDition Command/Query, 17-16 CONNect Command/Query, 12-6

COUNt Command/Query, 9-7 COUPling Command/Query, 11-4, 17-18 Cross-Reference Front Panel to Command, 4-2 CURSor Query, 15-16

D

Data Acquisition Types, 18-4
DATA Command/Query, 12-7, 18-11
DATA:ASCii Query, 10-2
DC RMS, 15-56
DDE - device specific error, 24-3
deadlock, 27-5
decimal numeric program data, 27-14
DEFine Command/Query, 15-17
definite length arbitrary block response data, 27-23
Definite-length block response data, 2-11
DELay Command/Query, 15-19, 16-3, 17-19
Delay Trigger Mode, 17-11, 17-15
DELay:SLOPe Command/Query, 17-20

DELay:SOURce Command/Query, 17-21
DESTination Command/Query, 15-20
Device address, 1-4
HP-IB, 3-3
device clear command, 27-3
Device Listening Syntax, 27-8
Device Talking Syntax, 27-19
device-specific error, 27-4
DIFF Command, 13-6
differentiate, 13-6
Digitize, 5-11
DIGitize Command, 2-4, 7-9, 9-1, 18-4
display mode, 9-3

HP 54505B/54506B/54510B/54512B Programming Reference

Controllers, 1-2

Display Subsystem, 12-1	error number, 8-5
COLumn Command/Query, 12-5	ERRor query, 8-5
CONNect Command/Query, 12-6	error queue, 6-4
DATA Command/Query, 12-7	ESB - event status bit, 24-3
FORMat Command/Query, 12-9	*ESE Command
GRATicule Command/Query, 12-10	Command/Query, 6-7
INVerse Command/Query, 12-11	*ESR Query, 6-9
LINE Command, 12-12	ESR, event summary, 6-9
MARKer Command/Query, 12-23	ESTArt Command/Query, 15-23
MASK Command/Query, 12-13	ESTOp Command/Query, 15-25
PERSistence Command/Query, 12-15	Event Status Register, 6-7
ROW Command/Query, 12-17	Example Program, 2-3, 5-1
SCReen Command/Query, 12-18	Digitize, 5-6, 5-11, 5-21
SETup Query, 12-19	Initialize, 5-4, 5-9, 5-16, 5-19, 5-26
SOURce Command/Query, 12-20	EXE - execution error, 24-3
STRing command, 12-21	execution error, 27-4
Syntax Diagram, 12-2	Exited, 17-9
TEXT Command, 12-22	exponential - NR3, 27-23
TMARker Command/Query, 12-23	Exponents, 1-11
VMARker Command/Query, 12-23	
DISPlay:SCReen, 12-18	F
DSP Command/Query, 8-4	Ľ
Duplicate mnemonics, 1-7	

 \mathbf{E}

DUTycycle Command/Query, 15-22

duty cycle, 26-5

ECL undo, 6-18
ECL Command, 11-6
Edge Definition, 26-2
Embedded strings, 1-2, 1-4, 1-11
Enter statement, 1-2
Entered, 17-9
Envelope Mode, 9-5
ENVELOPE Type, 18-4
EOI, 1-12
ERASe Command, 7-11
ERASE PMEMORY0, 7-11

fall time, 26-5 fall time measurement, 15-11 fall time measurements, 26-1 FALLtime Command/Query, 15-27 FIELd Command/Query, 17-22 FORMat Command/Query, 12-9, 18-13 Fractional values, 1-11 frequency, 26-5 FREQuency Command/Query, 15-28 frequency measurement, 15-11 Front Panel to Command Cross-Reference, 4-2 Function Subsystem, 13-1 ADD Command, 13-5 DIFF Command, 13-6 DISPlay Command/Query, 13-7 FFT Command, 13-8 FREQuency Command/Query, 13-9

Index-6

H Function Subsystem (continued) INTegrate Command, 13-10 INVert Command, 13-11 LEVel Command/Query, 13-12 Hardcopy Plot, 7-16 MAGNify Command/Query, 13-13 Hardcopy Print, 7-17 Hardcopy Subsystem, 14-1 MULTiply Command, 13-14 LENGth Command/Query, 14-4 OFFSet Command/Query, 13-15 ONLY Command, 13-16 MODE Command/Query, 14-5 PEAK Command, 13-17 PAGE Command/Query, 14-6 PLOT: AREA Command/Query, 14-7 POINts Command/Query, 13-18 PLOT:INITialize Command/Query, 14-8 RANGe Command/Query, 13-21 PLOT:PEN | COLor Command/Query, 14-9 SETup Query, 13-22 Syntax Diagram, 14-1 SPAN Command/Query, 13-23 SUBTract Command, 13-24 HEADer command, 2-7 HEADer Command/Query, 8-7 Syntax Diagram, 13-2 Headers, 1-4, 1-5, 4-1 VERSus Command, 13-25 HFReject Command/Query, 11-7 **Functional Elements** HOLDoff Command/Query, 17-29 Input Buffer, 27-1 Host language, 1-4 Output Queue, 27-2 HP-IB, 3-2 Parser, 27-2 I G *IDN Query, 6-12, 7-19 GET command, 27-3 IEEE 488.1, 27-1 GLITch Subsystem, 17-23 IEEE 488.2, 4-10, 27-5 GLITch:CENTered, 17-24 Standard, 1-1, 27-1 GLITch:HOLDoff, 17-25 GLITch:LEVel, 17-26 Syntax, 27-5 Infinity Representation, 4-16 GLITch:SOURce, 17-27 Initialization, 2-1 GLITch:WIDTh, 17-28 Glitch Trigger, 17-14 input

vertical, 7-5

Input Buffer, 27-1, 27-3, 27-5

Instruction headers, 1-4

serial number, 6-12 Instrument address HP-IB, 3-3

Instruction syntax, 1-4 Instructions, 1-4 instrument

HP 54505B/54506B/54510B/54512B Programming Reference

GRATicule Command/Query, 12-10

group execute trigger (GET), 27-3

*GMC Query, 6-11

GT (Greater Than), 17-9

integer - NR1, 27-23
integrate, 13-10
INTegrate Command, 13-10
Interface Capabilities, 3-1
Interface select code
HP-IB, 3-2
Interrupted Condition, 27-4
interrupted error, 27-26
INVerse Command/Query, 12-11
INVert Command, 13-11

K

key codes, 8-9 KEY Command/Query, 8-9

L

LCL - local, 24-3 leading colon, 4-14 X1Position, 23-6 learn string, 6-14 LENGth Command/Query, 14-4 LER Query, 7-12 level, trigger, 7-5 LEVel Command/Query, 17-30 LFReject Command/Query, 11-8 Limit Test Event Register, 7-13 LIMittest Command, 15-29 LINE Command, 12-12 LINE Command/Query, 17-31 linefeed, 4-14 linefeed (CRLF), 4-12 *LMC Query, 6-13 Local, 3-3, 8-9 LOGic Command/Query, 17-32 Long form, 1-9 LONGform command, 2-7

LONGform Command/Query, 8-11 LOWer Command/Query, 15-30 Lowercase, 1-9 *LRN Query, 6-14 LT (Less Than), 17-9 LTER Query, 7-13 LTF - limit test failure, 24-3

M

Making Measurements, 15-11, 26-1 Marker Subsystem, 23-1 DISPlay Command/Query, 23-3 SETup Query, 23-4 Syntax Diagram, 23-1 XDELta Query, 23-5 X1Position Command/Query, 23-6 X2Position Command/Query, 23-7 X1Y1source Command/Query, 23-8 X2Y2source Command/Query, 23-9 YDELta Query, 23-10 Y1Position Command/Query, 23-11 Y2Position Command/Query, 23-12 MASK Command/Query, 12-13 MAV - message available, 24-3 Measure Subsystem, 15-1 ALL Query, 15-13 COMPare Command/Query, 15-14 CURSor Query, 15-16 DEFine Command/Query, 15-17 DELay Command/Query, 15-19 **DESTination Command/Query, 15-20** DUTycycle Command/Query, 15-22 ESTArt Command/Ouerv, 15-23 ESTOp Command/Query, 15-25 FALLtime Command/Query, 15-27 FREQuency Command/Query, 15-28 LIMittest Command, 15-29 LOWer Command/Query, 15-30 MODE Command/Query, 15-31

Index-8

Measure Subsystem (continued)	Measure Subsystem (continued)
NWIDth Command/Query, 15-32	WCOMpare, 15-69
OVERshoot Command/Query, 15-33	WCOMpare:ALLowance, 15-70
PERiod Command/Query, 15-34	WCOMpare:COMpare, 15-71
POSTfailure Command/Query, 15-35	WCOMpare:DESTination, 15-72
PRECision, nonimplemented, 4-28	WCOMpare:POSTfailure, 15-74
PREShoot Command/Query, 15-36	WCOMpare:WTEST, 15-75
PWIDth Command/Query, 15-37	Measurement Error, 15-10
RESults Query, 15-38	Measurement Setup, 5-7, 15-10, 26-1
RISetime Command/Query, 15-39	MENU Command/Query, 7-14
SCRatch Command, 15-40	MERGe Command, 7-15
SOURce Command/Query, 15-41	message exchange protocols, 27-1
STATistics Command/Query, 15-42	– width, 26-4
Syntax Diagram, 15-2	MMEMory Subsystem, 21-1
TDELta Query, 15-43	mnemonic, 4-1
TMAX Query, 15-44	Mode
TMIN Query, 15-45	Delay Trigger, 17-11
TSTArt Command/Query, 15-46	Glitch Trigger, 17-14
TSTOp Command/Query, 15-47	Pattern Trigger, 17-9
TVOLt Query, 15-48	Mode (continued)
UNITs Command/Query, 15-50	State Trigger, 17-10
UPPer Command/Query, 15-51	TV Trigger, 17-12
VACRms Command/Query, 15-52	MODE Command/Query, 14-5, 15-31, 16-4, 17-33
VAMPlitude Command/Query, 15-53	MSG - message, 24-3
VAVerage Command/Query, 15-54	MSS (Master Summary Status), 6-25
VBASe Command/Query, 15-55	MSS - master summary status, 24-3
VDCRms Command/Query, 15-56	Multiple numeric variables, 2-12
VDELta Query, 15-57	Multiple Memory Subsystem, 21-1
VFIFty Command, 15-58	DISPlay Command/Query, 21-2
VMAX Command/Query, 15-59	FNUMber Command/Query, 21-3
VMIN Command/Query, 15-60	SOURce Command/Query, 21-4
VPP Command/Query, 15-61	STORe Command, 21-5
VRELative Command/Query, 15-62	Syntax Diagram, 21-1
VRMS Command/Query, 15-64	Multiple program commands, 1-12
VSTArt Command/Query, 15-65	Multiple program data, 1-10
VSTOp Command/Query, 15-66	Multiple queries, 2-12, 27-3
VTIMe Query, 15-67	Multiple subsystems, 1-12
VTOP Command/Query, 15-68	MULTiply Command, 13-14

N P

11.1 04.4	DACE Common 1/0
- width, 26-4	PAGE Command/Query, 14-6
NL, 1-12, 4-10, 4-14, 27-6	Parallel Poll, 24-5
Noise Reject, 17-41	Parameters, 1-5
Nonimplemented Command, 4-16	Parser, 2-1, 27-2, 27-9
Normal Persistence mode, 9-3	parsing, 27-1 / 27-2
NORMAL Type, 18-4	PATH Command/Query, 17-37
Notation Conventions and Definitions, 4-17	Pattern Trigger Mode, 17-9, 17-16
nr1 numeric response data, 27-23	period, 26-5
nr3 numeric response data, 27-23	PERiod Command/Query, 15-34
number of averages, 9-3	period measurement, 15-11
Numeric data, 1-11	PERSistence Command/Query, 12-15
Numeric program data, 1-11	Pixel Memory Subsystem, 20-1
Numeric variables, 2-10	CLEar Command, 20-2
NWIDth Command/Query, 15-32	DISPlay Command/Query, 20-3
·	MERGe Command, 20-4
•	SETup Query, 20-5
0	Syntax Diagram, 20-1
	PLOT Query, 7-16
	PLOT:AREA Command/Query, 14-7
OCCurrence Command/Query, 17-34	· · · · · · · · · · · · · · · · · · ·
	PLOT:INITialize Command/Ouerv, 14-8
OCCurrence:SLOPe Command/Query, 17-35	PLOT:INITialize Command/Query, 14-8 PLOT:PEN COLor Command/Query, 14-9
OCCurrence:Source Command/Query, 17-36	PLOT:PEN COLor Command/Query, 14-9
	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4
OCCurrence:Source Command/Query, 17-36	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4 PMEMory Subsystem, 20-1
OCCurrence:Source Command/Query, 17-36 offset	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4 PMEMory Subsystem, 20-1 POINts Command/Query, 9-8
OCCurrence:Source Command/Query, 17-36 offset vertical, 7-5	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4 PMEMory Subsystem, 20-1 POINts Command/Query, 9-8 POINts Query, 18-14
OCCurrence:Source Command/Query, 17-36 offset vertical, 7-5 OFFSet Command/Query, 11-9, 13-15	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4 PMEMory Subsystem, 20-1 POINts Command/Query, 9-8 POINts Query, 18-14 POLarity Command/Query, 17-38
OCCurrence:Source Command/Query, 17-36 offset vertical, 7-5 OFFSet Command/Query, 11-9, 13-15 ONLY Command, 13-16	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4 PMEMory Subsystem, 20-1 POINts Command/Query, 9-8 POINts Query, 18-14 POLarity Command/Query, 17-38 PON - power on, 24-3
OCCurrence:Source Command/Query, 17-36 offset vertical, 7-5 OFFSet Command/Query, 11-9, 13-15 ONLY Command, 13-16 *OPC, 6-15 OPC - operation complete, 24-3	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4 PMEMory Subsystem, 20-1 POINts Command/Query, 9-8 POINts Query, 18-14 POLarity Command/Query, 17-38 PON - power on, 24-3 POSTfailure Command/Query, 15-35
OCCurrence:Source Command/Query, 17-36 offset vertical, 7-5 OFFSet Command/Query, 11-9, 13-15 ONLY Command, 13-16 *OPC, 6-15	PLOT:PEN COLor Command/Query, 14-9 + width, 26-4 PMEMory Subsystem, 20-1 POINts Command/Query, 9-8 POINts Query, 18-14 POLarity Command/Query, 17-38 PON - power on, 24-3

Initialize, 5-4, 5-9, 5-16, 5-19, 5-26 program message, 4-14, 27-2 / 27-3, 27-6, 27-9 Program message syntax, 1-3

Program data, 1-5, 1-10, 27-14

Program example, 2-3, 5-1

Digitize, 5-6, 5-11, 5-21

PROBe Command/Query, 11-10, 17-39

PRINt Query, 7-17

HP 54505B/54506B/54510B/54512B Programming Reference

Order of commands, 5-2

OUTPUT statement, 1-2

output queue, 6-15, 27-2, 27-5

Overlapped Commands, 4-16

OVERshoot Command/Query, 15-33

Output command, 1-3

Program message terminator, 1-12, 4-12, 27-2 program message unit, 27-6, 27-10 program message unit separator, 4-12, 27-11 Program syntax, 1-3 Protocols, 27-1 pulse width measurement, 15-11 PWIDth Command/Query, 15-37

Q

QUALify Command/Query, 17-40
Queries
Nonimplemented, 4-28
Query, 1-4, 1-8, 2-7
Query command, 1-8
query error, 27-3 / 27-4
query message, 27-2 / 27-3
query message unit, 27-21
query program header, 27-11
Query response, 2-6
query responses, 4-16
Question mark, 1-8
QYE - query error, 24-3

R

RANGE, 17-9
RANGe Command/Query, 11-11, 13-21, 16-5
Rawdata Mode, 9-5, 18-7, 18-15
RAWDATA Type, 18-4
*RCL Command, 6-18
Realtime, 16-7
Recall
undo, 6-18
RECord, nonimplemented, 4-28
REFerence Command/Query, 16-6
Repetitive, 16-7
Response data, 2-11, 27-23

response data separator, 27-25 Response Generation, 4-16 Response header, 27-21 response header separator, 27-26 response message, 27-2 / 27-3, 27-21 response message terminator, 27-26 response message unit, 27-21 response message unit separator, 27-26 response messages, 27-2 RESults Query, 15-38 rise time, 26-5 rise time measurement, 15-11 rise time measurements, 26-1 RISetime Command/Query, 15-39 Root Level commands, 4-10, 7-1 AUToscale Command, 7-5 BEEPer Command/Query, 7-6 BLANk Command, 7-7 BNC Command/Query, 7-8 DIGitize Command, 7-9 ERASe Command, 7-11 LER Query, 7-12 LTER Query, 7-13 MENU Command/Query, 7-14 MERGe Command, 7-15 PLOT Query, 7-16 PRINt Query, 7-17 RUN Command, 7-18 SERial Command, 7-19 STATus Query, 7-20 STOP Command, 7-21 STORe Command, 7-22 Syntax Diagram, 7-1 TER Query, 7-23 VIEW Command, 7-24 ROW Command/Query, 12-17 RQC - request control, 24-3 RQS - request service, 24-3 *RST Command, 6-19 **RUN Command, 7-18**

HP 54505B/54506B/54510B/54512B Programming Reference

S	*SRE Command/Query, 6-23 standard + width, 26-4 standard - width, 26-4
SAMPle Command/Query, 16-7	STANdard Command/Query, 17-45
*SAV Command, 6-22	Standard Event Status Enable Register, 6-7
save register, 6-22	Standard Event Status Register, 6-7, 6-10
save/recall register, 6-18	State Trigger Mode, 17-10, 17-16
SCRatch Command, 15-40	STATistics Command/Query, 15-42
SCReen Command/Query, 12-18	Status, 2-12
seconds/division, 16-5	Status Byte, 6-23, 24-4
semicolon, 27-6	status data structures, 6-4
sensitivity	STATus Query, 7-20
vertical, 7-5	status register, 6-3
SENSitivity Command/Query, 17-41	Status registers, 2-12
Separator, 1-5	Status Reporting, 24-1
Sequential commands, 4-16	*STB Command, 6-25
Sequential single-shot, 22-1	STOP Command, 7-21
Sequential Subsystem, 22-1	STORe Command, 7-22
DISPlay Command/Query, 22-3	STRing command, 12-21
EXCLude Command/Query, 22-4	string program data, 27-14
INCLude Command/Query, 22-6	string response data, 27-23
NPOints Command/Query, 22-8	String variables, 2-9
NSEGments Command/Query, 22-9	Subsystem
SETup Query, 22-11	Acquire, 9-1
SNUMber Command/Query, 22-12	Calibrate, 10-1
SOURce Command/Query, 22-13	Channel, 11-1
Syntax Diagram, 22-1	Display, 12-1
SERial Command, 7-19	Function, 13-1
serial number, 6-12, 7-19	HARDcopy, 14-1
Serial Poll, 24-5	Marker, 23-1
Service, 6-23	Measure, 15-1
SETup Command/Query, 8-13	Multiple Memory, 21-1
707 (device address), 2-9	Pixel Memory, 20-1
Short form, 1-9	Sequential, 22-1
Simple command header, 1-5	System, 8-1
SINGLE time base mode, 16-4	Timebase, 16-1
SLOPe Command/Query, 17-35	Trigger, 17-1
SOURce Command/Query, 12-20, 15-41, 17-36,	Waveform, 18-1
18-17	Waveform Memory, 19-1
space, 27-6	Subsystem commands, 4-10
Spaces, 1-5	Subsystem:Channel, 11-1

SUBTract Command, 13-24	Т
suffix multipliers, 27-16	
suffix program data, 27-14	
suffix units, 27-16	Talking to the instrument, 1-2
sweep speed, 7-5	TDELta Query, 15-43
Syntax Diagram	TER Query, 7-23
Acquire Subsystem, 9-1	Terminator, 1-12
Calibrate Subsystem, 10-1	TEXT Command, 12-22
Channel Subsystem, 11-2	Timebase Subsystem, 16-1
Common Commands, 6-1	DELay Command/Query, 16-3
Display Subsystem, 12-2	MODE Command/Query, 16-4
Function Subsystem, 13-2	RANGe Command/Query, 16-5
Hardcopy Subsystem, 14-1	REFerence Command/Query, 16-6
Marker Subsystem, 23-1	SAMPle Command/Query, 16-7
Measure Subsystem, 15-2	SETup Query, 16-8
Multiple Memory Subsystem, 21-1	TMARker Command/Query, 12-23
Pixel Memory Subsystem, 20-1	TMAX Query, 15-44
Root Level Commands, 7-1	TMIN Query, 15-45
Sequential Subsystem, 22-2	TNULl Command/Query, 10-4
System Subsystem, 8-1	*TRG Command, 6-27
Waveform Subsystem, 18-2	TRG - trigger, 24-3
Waveform Memory Subsystem, 19-2	Trigger Bit, 24-4
Syntax Diagram:Trigger Subsystem, 17-2	Trigger Condition command, 17-9 / 17-10
syntax diagrams, 27-5	Trigger Delay command, 17-11
syntax error, 27-4	Trigger Delay Source command, 17-11
Syntax Overview, 27-5	Trigger Event, 17-11
System Subsystem, 8-1	Trigger Event command, 17-11
DATE Command/Query, 8-3	Trigger Field command, 17-12
DSP Command/Query, 8-4	Trigger Holdoff, 17-9
ERRor Query, 8-5	trigger level, 7-5
HEADer Command/Query, 8-8	Trigger Level command, 17-6, 17-8
KEY Command/Query, 8-9	Trigger Logic command, 17-9 / 17-10
LONGform Command/Query, 8-11	Trigger Mode, 17-6
PIMacro Command, 8-12	EDGE, 17-6, 17-8
SETup Command/Query, 8-13	TV, 17-6
Syntax Diagram, 8-2	Valid Commands, 17-7
TIME Command/Query, 8-15	Trigger Occurrence command, 17-11, 17-13
	Trigger Occurrence Slope command, 17-13
	Trigger Path command, 17-9 / 17-10
	Trigger Polarity command, 17-12
	Trigger Qualify command, 17-11, 17-13

TSTOp Command/Query, 15-47 Trigger Slope command, 17-8 TTL Trigger Source command, 17-8, 17-11 Trigger Standard command, 17-12 undo, 6-18 Trigger Subsystem, 17-1 TTL Command, 11-13 TV Trigger Mode, 17-6, 17-12, 17-16 CENTered Command, 17-15 TVOLT Query, 15-48 CONDition Command/Query, 17-16 TYPE Command/Query, 9-10 COUPling Command/Query, 17-18 DELay Command/Query, 17-19 TYPE Query, 18-18 DELay:SLOPe Command/Query, 17-20 DELay SOURce Command/Query, 17-21 U FIELd Command/Query, 17-22 GLITch, 17-23 GLITch:CENTered, 17-24 UNITs Command/Query, 15-50 GLITch:HOLDoff, 17-25 Unterminated Condition, 27-4 GLITch:LEVel, 17-26 UPPer Command/Query, 15-51 GLITch:SOURce, 17-27 upper/lower case equivalence, 27-8 GLITch:WIDTh, 17-28 Uppercase, 1-9 HOLDoff Command/Query, 17-29 URQ - user request, 24-3 LEVel Command/Query, 17-30 URQ, user request, 6-7 LINE Command/Query, 17-31 User-Defined Measurements, 15-10 LOGic Command/Query, 17-32 MODE Command/Query, 17-33 OCCurrence Command/Query, 17-34 V OCCurrence:SLOPe Command/Query, 17-35 OCCurrence: SOURce Command/Query, 17-36 PATH Command/Query, 17-37 VACRms Command/Query, 15-52 POLarity Command/Query, 17-38 Vamp, 26-5 PROBe Command/Query, 17-39 VAMPlitude Command/Query, 15-53 QUALify Command/Query, 17-40 VAVerage Command/Query, 15-54 SENSitivity Command/Query, 17-41 Vavg, 26-6 SETup Query, 17-42 Vbase, 26-5 SLOPe Command/Query, 17-43 VBASe Command/Query, 15-55 SOURce Command/Query, 17-44 VDCRms Command/Query, 15-56 STANdard Command/Query, 17-45 VDELta Query, 15-57 Syntax Diagram, 17-2 VERSus Command, 13-25 Trigger Time command, 17-11 vertical input, 7-5 TRIGGERED time base mode, 16-4 vertical offset, 7-5 True RMS, 15-56 vertical sensitivity, 7-5 Truncation Rules, 4-1 VFIFty Command, 15-58 *TST Query, 6-28 VIEW command, 7-7, 7-24

> HP 54505B/54506B/54510B/54512B Programming Reference

VMARker Command/Query, 12-23

TSTArt Command/Query, 15-46

Vmax, 26-5
VMAX Command/Query, 15-59
Vmin, 26-5
VMIN Command/Query, 15-60
Voltage measurements, 15-13
Vp-p, 26-5
VPP Command/Query, 15-61
VRELative Command/Query, 15-62
Vrms, 26-6
VRMS Command/Query, 15-64
VSTArt Command/Query, 15-65
VSTOp Command/Query, 15-65
VTOP Command/Query, 15-67
Vtop, 26-5
VTOP Command/Query, 15-68

W

*WAI Command, 6-29 Waveform Data Conversion, 18-8 Waveform Compare Flowchart, 15-69 Waveform Subsystem, 18-2 COUNt, nonimplemented, 4-22 DATA Command/Query, 18-11 FORMat Command/Query, 18-13 POINts Query, 18-14 PREamble Command/Query, 18-15 SOURce Command/Query, 18-17 Syntax Diagram, 18-2 TYPE Query, 18-18 XINCrement Query, 18-19 XORigin Query, 18-20 XREFerence Query, 18-21 YINCrement Query, 18-22 YORigin Query, 18-23 YREFerence Query, 18-24 Waveform Memory Subsystem, 19-1 DISPlay Command/Query, 19-3 GET Command, 19-4 PROTect Command/Query, 19-5

SETup Query, 19-6 Syntax Diagram, 19-2 XOFFset Command/Query, 19-7 XRANge Command/Query, 19-8 YOFFset Query, 19-9 YRANge Query, 19-10 White space, 1-5, 27-8 — width, 26-4 + width, 26-4 WMEMory Subsystem, 19-1 WORD format, 18-9

X

XDELta Query, 23-5 XINCrement Query, 18-19 xmarkers, 23-6, 23-7 XORigin Query, 18-20 XREFerence Query, 18-21

Y

YDELta Query, 23-10 YINCrement Query, 18-22 ymarkers, 23-11, 23-12 YORigin Query, 18-23 YREFerence Query, 18-24

HP 54505B/54506B/54510B/54512B Programming Reference