
Abstract

Errata

Title \& Document Type: 8559A Spectrum Analyzer Operation and Service Manual

Manual Part Number: 08559-90013

Revision Date: January 1984

\section*{HP References in this Manual}

This manual may contain references to HP or Hewlett-Packard. Please note that HewlettPackard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test \& Measurement website:
www.tm.agilent.com
Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

Agilent Technologies

OPERATION AND SERVICE MANUAL

8559A SPECTRUM ANALYZER . $01-21 \mathrm{GHz}$

OPERATION AND SERVICE MANUAL

8559A
 SPECTRUM ANALYZER
 0.1 - 21 GHz

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2347A.

With modifications described in Section VII, this manual also applies to instruments with serial number prefixes 1909Athrough 2320A.

For additional information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section I.

COPYRIGHT© HEWLETT-PACKARD COMPANY, 1979,1983
1424 FOUNTAINGROVEPARKWAY, SANTA ROSA, CALIFORNIA, 95401, USA

CONTENTS

Section Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-3. Description 1-1
1-6. Manual Organization 1-1
1-9. Specifications 1-1
1-11. Safety Considerations 1-2
1-13. Instruments Covered by Manual 1-2
1-14. Serial Numbers 1-2
1-16. Manual Updating Supplement 1-2
1-19. Manual Backdating Changes 1-2
1-22. Accessories Supplied 1-2
1-26. Equipment Required Not Supplied 1-10
1-27. Display Mainframe
1-30. Extender Cable Assembly 1-10
1-32. Equipment and Accessories Available 1-10
1-33. Input Limiter 1-10
1-37. Modification Kit (Option 807 Connections) 1-10
1-39. Oscilloscope Camera 1-10
1-41. Service Accessories 1-10
1-43. Recommended Test Equipment 1-10
II INSTALLATION AND OPERATION VERIFICATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Preparation for Use 2-1
2-6. Installation 2-1
2-9. Side Stop Kits. 2-1
2-14. Graticule Overlays 2-3
2-17. Operating Environment 2-3
2-19. Modifications 2-3
2-21. Storage and Shipment 2-4
2-22. Environment 2-4
2-24. Packaging 2-4
2-27. Operation Verification 2-4
III OPERATION 3-1
3-1 Introduction 3-1
3-4 Description 3-1
3-5 HP 8559A Spectrum Analyzer 3-1
3-7 HP 853A Spectrum Analyzer Display 3-1
3-9 HP.IB 3-1
3-11 Controls, Indicators, and Connectors 3-1
3-12 Control Grouping 3-1
3-20 Operating Precautions 3-2
3-21 Signal Input 3-2
3-23 Line Power On 3-2
3-27 Front-Panel Adjustment Procedure 3-2
Section
3-29. Display Adjustments-HP 853A
Page

Spectrum Analyzer Display

Spectrum Analyzer Display
3-30. Display Adjustments-HP 180-SeriesDisplay Mainframe. 3-3
3-31. Frequency and Amplitude Adjustments. 3-4
IV PERFORMANCE TESTS 4-1
4-1. Introduction 4-1
4-3. Instruments Tested 4-1
4-5. Equipment Required 4-1
4-7. Test Record 4-1
4-9. Calibration Cycle. 4-1
4-11. Frequency SpanAccuracy 4-2
4-12. Tuning Accuracy 4-7
4-13. Residual FM 4-10
4-14. Noise Sidebands 4-12
4-15. Resolution Bandwidth Accuraacy 4-14
4-16. Resolution Bandwidth Selectivity 4-20
4-17. Average Noise Level 4-25
4-18. Residual Responses 4-28
4-19. Frequency Response 4-30
4-20. GainCompression 4-39
4-21. Bandwidth Switching (Amplitude Variation) 4-42
4-22. Input Attenuator Accuracy 4-44
4-23. Reference Level Accuracy 4-47
4-24. Sweep Time Accuracy 4-52
4-25. Calibrator Output Accuracy 4-57
4-26. Display Fidelity 4-58
v ADJUSTMENTS. 5-1
5-1. Introduction 5-1
5-4. Equipment Required 5-1
5-6. Adjustment Tools 5-1
5-9. Extender Cable Installation 5-1
5-13. Related Adjustments 5-2
5-14. Factory Selected Components 5-2
5-17. Power Supply Checks and Adjustments 5-11
5-18. Calibrated Sweep Time Adjustment 5-14
5-19. Log Amplifier Log and Linear Adjustments 5-17
5-20. 1-dB Offset Adjustment 5-24
5-21. Bandwidth Filter Adjustments 5-26
5-22. 3-dB Bandwidth Adjustments 5-33
5-23. RF Gain Adjustment 5-38
5-24. Step Gain Adjustments 5-41
5-25. First Converter Adjsutments 5-44
5-26. Second Converter Adjustments 5-49
5-27. Third Converter Adjustments 5-54
5-28. Frequency Response Adjustments 5-57

CONTENTS

Section Page Section Page5-29. Cal Output and Ref Level CalAdjustments.
VIII SERVICE 8-1
8-1. Introduction. 8-1
8-3. Schematic Symbols, Terminology. and Voltage Levels. 8-1
8-5. Test Equipment 8-1
8-7. Major Assembly Locations 8-1
8-9. Troubleshooting 8-1
8-10. General Information 8-1
8-12. Printed Circuit Board Edge Connector Contact Cleaning 8-2
The HP 8559A Spectrum Analyzer Theory of Operation 8-9
Troubleshooting Hints 8-12

SAFETY SYMBOLS

The following safety symbols are used throughout this manual and in the instrument. Familiarize yourself with each of the symbols and its meaning before operating this instrument.

Instruction manual symbol. The instrument will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect the instrument against damage. Location of pertinent information within the manual is indicated by use of this symbol in the table of contents.

Indicates dangerous voltages are present. Be extremely careful.

The CAUTION sign denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

GENERAL SAFETY CONSIDERATIONS

WARNING

BEFORE THIS INSTRUMENT IS SWITCHED ON, make sure it has been properly grounded through the protective conductor of the ac power cable to a socket outlet provided with protective earth contact. Any interruption of the protective (grounding) conductor, inside or outside the instrument, or disconnection of the protective earth terminal can result in personal injury.

WARNING

There are voltages at many points in the instrument which can, if contacted, cause personal injury. Be extremely careful. Any adjustments or service procedures that require operation of the instrument with protective covers removed should be performed only by trained service personnel.

CAUTION

BEFORE THIS INSTRUMENT IS SWITCHED ON, make sure its primary power circuitry has been adapted to the voltage of the ac power source. Failure to set the ac power input to the correct voltage could cause damage to the instrument when the ac power cable is plugged in.

FIGURE 1-1. HP MODEL8559ASPECTRUM ANALYZER AND ACCESSORIES SUPPLIED

SECTIONI GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This Operation and Service manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard 8559A Spectrum Analyzer. Figure 1-1 shows the instrument and accessories supplied. This section covers instrument identification, description, options, accessories, specifications, and other basic information.

1-3. DESCRIPTION

1-4. The H P 8559A displays the amplitude and frequency of each component of an input signal on a CRT. This display gives quantitative information often not available from a conventional oscilloscope. The HP 8559A is capable of measuring signals from -112 dBm to +30 dBm over a frequency range of 10 MHz to 21 GHz .

1-5. The complete measuring system includes the HP 8559A Spectrum Analyzer plugged into a compatible Hewlett-Packard display mainframe.

1-6. MANUAL ORGANIZATION

1-7. This manual is divided into eight sections as follows:

SECTION I, GENERAL INFORMATION; contains the instrument description and specifications, explains accessories and options, and lists recommended test equipment.

SECTION II, INSTALLATION AND OPERATION VERIFICATION; contains information concerning initial mechanical inspection, preparation for use, operating environment, packaging and shipping, and operation verification.

SECTION III, OPERATION; contains detailed operating instructions for operation of the instrument.

SECTION IV, PERFORMANCE TESTS; contains the necessary tests to verify that the electrical operation of the instrument is in accordance with published specifications.

SECTION V, ADJUSTMENTS; contains the necessary adjustment procedures to properly adjust the instrument after repair.

SECTION VI, REPLACEABLE PARTS; contains the information necessary to order parts and/or assemblies for the instrument.

SECTION VII, MANUAL BACKDATING CHANGES; contains backdating information to make this manual compatible with earlier equipment configurations.

SECTION VIII, SERVICE; contains schematic diagrams, block diagrams, component location illustrations, circuit descriptions, and troubleshooting information to aid in repair of the instrument.

1-8. On the title page of this manual, below the manual part number, is a microfiche part number. This number may be used to order 4- by 6-inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Updating supplement.

1-9. SPECIFICATIONS

1-10. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Table 1-2 lists supplemental characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user.

NOTE

To ensure that the HP 8559A meets the specifications listed in Table 1-1, performancetests (Section IV) should be performedevery six months.

1-11. SAFETY CONSIDERATIONS

1-12. Before operating this instrument, you should familiarize yourself with the safety markings on the instrument and safety instructions in this manual. This instrument has been manufactured and tested according to international safety standards. However, to ensure safe operation of the instrument and personal safety of the user and service personnel, the cautions and warnings in this manual must be followed. Refer to the summary of safety considerations at the beginning of this section. Refer also to individual sections of this manual for detailed safety notation concerning the use of the instrument as described in those individual sections.

1-13. INSTRUMENTS COVERED BY MANUAL

1-14. Serial Numbers

1-15. Attached to the rear of this instrument is a mylar serial number label. The serial number is in two parts. The first four digits and letter are the serial number prefix; the last five digits are the suffix. (Refer to Figure 1-2.) The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to

SERIAL NUMBER

PREFIX SUFFIX
SER 2203AO1726
OPT
$[(h p)]$ HEWLE T T•PACKARD

FIGURE 1-2. TYPICALSERIALNUMBER LABEL
instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-16. Manual Updating Supplement

1-17. An instrument manufactured after the printing of this manual might have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a yellow

Manual Updating supplement. This supplement contains change information that explains how to adapt the manual to the newer instrument.

1-18. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Updating supplement. The supplement carries a manual identification block that includes the model number, print date of the manual, and manual part number. Complimentary copies of the supplement are available from Hewlett-Packard. Addresses of Hewlett-Packard offices are located at the back of this manual.

1-19. Manual Backdating Changes

1-20. Instruments manufactured before the printing of this manual have been assigned serial number prefixes other than those for which this manual was written directly. Manual backdating information is provided in Section VII to adapt this manual to earlier serial number prefixes.

1-21. This information should not be confused with information contained in the yellow Manual Updating supplement, which is intended to adapt this manual to instruments manufactured after the printing of this manual.

1-22. ACCESSORIES SUPPLIED

1-23. A type-N male to BNC female adapter, HP Part Number 1250-0780, is supplied with the standard instrument for the use of lightweight cables with BNC connectors.

1-24. Side stop kit, H P Part Number 08558-60131, is supplied to prevent the spectrum analyzer from sliding out of the mainframe. When the side stops are installed, the plug-in cannot be removed from the mainframe. Refer to Section II for installation or removal of the side stops.

1-25. Three graticule overlays provide the operator with reference-level labels for the CRT. HP Part Number 5020-8565 is the overlay for HP 180-series display mainframes. HP Part Number 5020-8566 is the overlay for HP 181-series display mainframes. HP Part Number 5020-8567 is the overlay for HP 182 -series display mainframes. For proper installation of the graticule overlay, refer to Section II.

SPECIFICATIONS

FREQUENCYSPECIFICATIONS

FREQUENCY RANGE

10 MHz to 21 GHz , covered in six pushbuttonselectable ranges:

Frequency Band	Mixing Mode (n)	Lowest Freq(GHz) [ALTIF]	Highest Freq (GHz)
$.01 \mathbf{- 3}$	$\mathbf{1 -}$	0.010	3.060
		$[0.025]$	
$\mathbf{6 - 9}$	$\mathbf{1 +}$	6.035	9.060
		$[6.020]$	
$\mathbf{3 - 9}$	$\mathbf{2 -}$	3.033	9.120
		$[3.048]$	
$\mathbf{9 - 1 5}$	$\mathbf{2 +}$	9.058	15.120
		$[9.043]$	
$\mathbf{6 - 1 5}$	$\mathbf{3 -}$	6.055	15.180
		$[6.070]$	21.000
$\mathbf{1 2 . 1 - 2 1}$	$\mathbf{3 +}$	12.080	$[12.065]$
FREQUENCYSPANS			

FullSpan(F)

Entire frequency band displayed with frequency of tunable marker indicated by Frequency GHz readout.

Per Division(MHz/Div, kHz/Div)

14 frequency scale calibrations in 1-2-5 sequence from $10 \mathrm{kHz} /$ div to $200 \mathrm{MHz} /$ div. Center frequency is set with the TUNING control and indicated by the FREQUENCY GHz readout.

Zero Span (0)

Analyzer functions as a manually tuned receiver, at the frequency indicated by the FREQUENCY GHz readout, for time-domain display of signal modulation.

FREQUENCYACCURACY

Tuning Accuracy

Frequency GHz readout (center or marker frequency), after zeroing on the LO feedthrough:
$0.01-3.0 \mathrm{GHz}: \quad \pm(1 \mathrm{MHz}+0.3 \%$ of center frequency) $3.0-21.0 \mathrm{GHz}: \quad \pm(5 \mathrm{MHz}+0.2 \%$ of center frequency)

Frequency Readout Resolution 1 MHz

Frequency Span Accuracy
$\pm 5 \%$ of displayed frequency separation

SPECTRAL RESOLUTION AND STABILITY
 ResolutionBandwidths

Eight selectable resolution (3-dB) bandwidths in $1-3$ sequence from 1 kHz to 3 MHz . Bandwidth may be selected independently or coupled with frequency span. Optimum ratio of frequency span to resolution bandwidth is indicated by alignment of markers (X) n the two controls.

Resolution Bandwidth Accuracy:

Individual resolution bandwidth 3-dB points:
$< \pm 15 \%$ ($< \pm 30 \%$ for $3-\mathrm{MHz}$ bandwidth)

Selectivity:

$60-\mathrm{dB} / 3-\mathrm{dB}$ resolution bandwidth ratio: <15:1

Stability

For fundamental mixing ($\mathrm{n}=1-$ or $1+$):

Residual FM:

$<2 \mathrm{kHz}$ p-p in 0.1 second'

Noise Sidebands:

$\geq 70 \mathrm{~dB}$ down, $>30 \mathrm{kHz}$ from center of CW signal with 1 kHz resolution bandwidth and video filter at MAX (not in detent).

Video Filter

Post-detection low-pass filter averages displayed noise for a smooth trace. The MAX (detent) position selects a video filter bandwidth of approximately 1.5 Hz for noise level measurement.

AMPLITUDESPECIFICATIONS

AMPLITUDERANGE

-111 dBm to +30 dBm .

[^0]TABLE 1-1. HP MODEL 8559ASPECIFICATIONS(2OF4)

Maximum Input (without damage) Levels

 Total Power:+20 dBm (O.IW, 2.2 Vrms) with 0 dB input attenuation
+30 dBm (1W, 7.1 Vrms) with $\geq 10 \mathrm{~dB}$ input attenuation
DC: $\pm 7.1 \mathrm{~V}$
AC (<100 Hz): 7.1 Vrms
Peak Pulse Power:
$+50 \mathrm{dBm}(100 \mathrm{~W},<10 \mu \mathrm{sec}$ pulse width, 0.01% duty cycle) with input attenuation $\geq 30 \mathrm{~dB}$

Gain Compression

$<0.5 \mathrm{~dB}$ for a -10 dBm input level with 0 dB input attenuation.

Average Noise Level

The displayed average noise level determines sensitivity (minimum discernible signal). Signals at this input level peak approximately 3 dB above the displayed noise.
Maximum average noise level with 1 kHz resolution bandwidth, 0 dB input attenuation, and video filter at MAX (detent):

Frequency Band (GHz)	Harmonic Mode	Average Noise Level (dBrn)
$01-3$	$1-$	-111
$6-9$	$1+$	-108
$3-9$	$2-$	-103
$9-15$	$2+$	-98
$6-15$	$3-$	-93
$121-18$	$3+$	-92
$18-21$	$3+$	-90

Calibrated Display Range Log (from Reference Level):

70 dB with $10 \mathrm{~dB} /$ DIV Amplitude Scale 8 dB with $1 \mathrm{~dB} /$ DIV Amplitude Scale
Linear:
8 divisions with LIN Amplitude Scale

AMPLITUDE ACCURACY

With AUTO sweep time selected, amplitude accuracy is determined by one or more of the following factors, depending on the measurement technique.'

2Whenswitching to or from the Alternate IF, the REF LEVEL CAL and the FREQ CAL should be readjusted. Without readjustment, an additional reference level error of $\pm 1 \mathrm{~dB}$ and an additional frequency readout error of $\pm 1 \mathrm{MHz}$ may result.

Calibrator Output

$-10 \mathrm{dBm} \pm 0.3 \mathrm{~dB}$ (into 50Ω)
$35 \mathrm{MHz} \pm 400 \mathrm{kHz}$

Reference Level

$10-\mathrm{dB}$ steps and a $12-\mathrm{dB}$ vernier for calibrated Reference Level adjustment from -112 dBm to +60 dBm .'
Step Accuracy (with 0 dB input attenuation):
-10 dBm to $-80 \mathrm{dBm}: \quad \pm 0.5 \mathrm{~dB}$
-10 dB mto- $100 \mathrm{dBm}: \quad \pm 1.0 \mathrm{~dB}$
Vernier Accuracy:
$\pm 0.5 \mathrm{~dB}$

Frequency Response

Frequency response, measured with 0 or 10 dB input attenuation, includes input attenuator flatness, mixer flatness, and band-to-band amplitude variation:

Frequency Band GHz	Frequency Response $(\pm \mathbf{d B}$ MAX.)
$01-3$	10
$6-9$	10
$3-9$	15
$9-15$	18
$6-15$	21
$121-18$	23
$18-21$	30

Input Attenuator

0 dB to 70 dB of input attenuation selectable in $10-$ dB steps

Step Accuracy:

0 dB to $60 \mathrm{~dB}, 0.01$ to 18.0 GHz : $< \pm 1.0 \mathrm{~dB}$ per $10-\mathrm{dB}$ step

Maximum Cumulative Step Error:

0 dB to $60 \mathrm{~dB}, 0.01$ to $18.0 \mathrm{GHz}: \quad< \pm 2.4 \mathrm{~dB}$

Bandwidth Switching (Amplitude Variation)

Bandwidths 3 MHz to $300 \mathrm{kHz}: \quad< \pm 0.5 \mathrm{~dB}$
Bandwidths 3 MHz to $1 \mathrm{kHz}:< \pm 1.0 \mathrm{~dB}$

[^1]
Display Fidelity

CRT linearity and log or linear fidelity affect amplitude accuracy at levels other than Reference Level.
Log Incremental Accuracy:
$\pm 0.1 \mathrm{~dB}$ per dB from Reference Level
Log Maximum Cumulative Error:
$\leq \pm 1.5 \mathrm{~dB}$ over entire $70-\mathrm{dB}$ range
Linear Accuracy:
$\pm 3 \%$ of Reference Level

RESIDUAL RESPONSES

$<-90 \mathrm{dBm}(0.01-3.06 \mathrm{GHz})^{4}$ with 0 dB input attenuation and no signal present at input.

SWEEP SPECIFICATIONS

SWEEP TIME

Automatic(AUTO):

Sweep time adjusted automatically to maintain absolute amplitude calibration for any combination of frequency span, resolution bandwidth, and video filter bandwidth.

Calibrated Sweep Times (sec/Div, mSec/Div, μ Sec/Div):

20 selectable sweep times in 1-2-5 sequence from $2 \mu \mathrm{sec} / \mathrm{div}$ to $10 \mathrm{sec} /$ div (excluding $2 \mathrm{sec} /$ div), provided primarily for time-domain calibration in zero span (0).
Sweep time accuracy: $\pm 10 \%$ ($\pm 20 \%$ for 5 and $10 \mathrm{sec} / \mathrm{div}$)

GENERALSPECIFICATIONS

TEMPERATURERANGE

Operating: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

HUMIDITY RANGE

Type-tested from 50% to 95% relative humidity $\left(\leq+40^{\circ} \mathrm{C}\right)$ per requirements of MIL-STD-810C, Method 507.1, Procedure IV.

EMI

Conducted and radiated interference is in compliance with MIL-STD 461A, Methods CEO3 and RE02, CISPR Publication 11 (1975) and Messempfaenger Postverfuegung 526/527/79 (Kennzeichnung Mit F-Nummer/Funkschutzzeichen).

POWER REQUIREMENTS

HP Model 853A Display with HP Model 8559A

 Spectrum Analyzer:100 or $120 \mathrm{Vac}+5 \%-10 \%$, 48 to 66 Hz , singlephase. Power consumption less than 200 Voltamperes with plug-in installed.
HP Model 182T/180TR Display with HP Model 8559A Spectrum Analyzer:

115 or $230 \mathrm{Vac} \pm 10 \%, 48-440 \mathrm{~Hz}$. Power consumption less than 200 Volt-amperes with plugin installed, convectioncooled.
HP Model 181T/181TR Display with HP Model 8559A Spectrum Analyzer:

115 or 230 Vac $\pm 10 \%, 48-440 \mathrm{~Hz}$. Power consumption less than 225 Volt-amperes with plugin installed, convection cooled.

WEIGHT

HP Model 8559A Spectrum Analyzer:
Net: $5.5 \mathrm{~kg}(12.1 \mathrm{lbs})$
Shipping: 9.1 kg (20 lbs)
HP Model 853A Display:
Net: $\quad 15.9 \mathrm{~kg}$ (35 lbs)
Shipping: 18.6 kg (41 lbs)
HP Model 853A Option 001 Display:
Net: $\quad 14.5 \mathrm{~kg}(32 \mathrm{lbs})$
Shipping: 17.3 kg (38 lbs)
HP Model 182T Display:
Net: $12.5 \mathrm{~kg}(27 \mathrm{lbs})$
Shipping: $16.5 \mathrm{~kg}(36 \mathrm{lbs})$
HP Model 181T Display:
Net: $\quad 11.0 \mathrm{~kg}(24 \mathrm{lbs})$
Shipping: 15.5 kg (34 lbs)
HP Model 181TR Display:
Net: $\quad 12.0 \mathrm{~kg}(26 \mathrm{lbs})$
Shipping: 17.5 kg (38 lbs)
HP Model 180TR Display:
Net: $\quad 12.0 \mathrm{~kg}$ (26lbs)
Shipping: $\quad 17.5 \mathrm{~kg}(38 \mathrm{lbs})$

TABLE 1.1. HP MODEL8559ASPECIFICATIONS(4OF 4)
DIMENSIONS

HP Model 8559A Spectrum Analyzer:

HP Model 853A Display:

HP Model 853A Option 001 Display:

HP Model 182T Display:

HP Model 181T Display:

HP Model 180TR/181TR Display:

SUPPLEMENTALCHARACTERISTICS

NOTE: Values in this table are not specifications. They are typical characteristics included for user information.

FREQUENCY CHARACTERISTICS

FREQUENCY ACCURACY

Frequency Cal

Adjusts digital FREQUENCY GHz readout. FREQUENCY CAL control may be used to calibrate the frequency readout on a known signal or on the 35 MHz CAL OUTPUT signal.

FREQUENCY RANGE

Alternate IF
Regular IF approximately 3.0075 GHz . Alternate IF available at approximately 2.9925 GHz for all frequency bands (minimum frequency 25 MHz).

SPECTRAL RESOLUTION AND STABILITY

Frequency Drift

(Fundamentalmixing-n=1- or 1+)
At fixed center frequency after 2-hour warmup: $< \pm 25 \mathrm{kHz} / 10$ minutes
With temperature changes: $<200 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$

Resolution Bandwidth Shape

Approximately gaussian (synchronously-tuned, 4 -pole filter).

Spectral Resolution

The following graph shows typical spectrum analyzer resolution for different resolution bandwidths.

SIGNAL RESOLUTIONVS. FREQUENCYSEPARATION

AMPLITUDECHARACTERISTICS

AMPLITUDE RANGE AND ACCURACY

Dynamic Range

Maximum power ratio of two signals simultaneously present at the input that may be measured within the limits of specified accuracy, sensitivity, and distortion (i.e., spurious responses): $>70 \mathrm{~dB}$.

Frequency Response and Average Noise Level
The following graph shows typical frequency response and average noise level versus frequency.

AVERAGENOISELEVELANDFREQUENCYRESPONSE

Amplitude Scale Switching

Reference Level variation is typically less than $+/-1 \mathrm{~dB}$ for any change in Amplitude Scale.

SPURIOUSRESPONSES

(with 0 dB input attenuation)
Second Harmonic Distortion

Input Power	Relative Distortion
-40 dBm	$<-70 \mathrm{~dB}$

TABLE 1-2. MODEL8559A/180-SERIES SUPPLEMENTAL CHARACTERISTICS(2OF3)

SUPPLEMENTAL CHARACTERISTICS

NOTE: Values in this table are not specifications. They are typical characteristics included for user information.

Third Order IntermodulationDistortion

For Two Input Signals with		Relative Disortion
Input Power	Signal Sep.	
-30 dBm	50 kHz	$<-70 \mathrm{~dB}$

Signal Identifier

Signal identifier provided over entire frequency range and in all Frequency Span/Div settings. Correct signal response is a 1 MHz shift to the left and approximately a 6 dB lower amplitude.

SWEEP CHARACTERISTICS

MANUAL SWEEP

Spectrum analyzer may be swept manually, in either direction, with front panel control.

SWEEP TRIGGER

Free Run

End of each sweep triggers new sweep.

Line

Sweep triggered at ac line frequency.

Video

Sweep triggered on post-detection video waveform. One-half major division of vertical deflection required to trigger sweep.

Single

Single sweep started or reset by turning SWEEP TRIGGER clockwise momentarily.

FRONT PANEL INPUT AND OUTPUT CHARACTERISTICS

SIGNAL INPUT

Input Impedance

50 ohms nominal; Precision Type N female connector.

Input SWR
<2.0 SWR with OdB input attenuation
<1.3 SWR with $\geq 10 \mathrm{~dB}$ input attenuation
LO Emission (3.0 - 6.1 GHz)
$\leq-8 \mathrm{dBm}$ with 0 dB input attenuation

REAR PANEL OUTPUT

CHARACTERISTICS'

VERTICAL, PENLIFTIBLANKING, AND HORIZONTALOUTPUTS(AUX A, B, D)

These outputs are compatible with and may be used to drive HP X-Y Recorders (using positive pencoils or TTL penlift input) and CRT monitors.

AUX A VERTICAL OUTPUT

BNC output provides detected video signal from a 50 -ohm output impedance. Typical $0-800 \mathrm{mV}$ range corresponds to full 8 -division CRT vertical deflection.

AUX B PENLIFT/BLANKING OUTPUT

BNC output provides a +15 V penlift/blanking signal from a 10 K -ohm output impedance when CRT trace is blanked. Otherwise, output is low at OV (low impedance, 150 mA max.) for an unblanked trace.
'Rear panel outputs refer to 180T-series display mainframes and other 180-series mainframes with Option 807 installed. Horizontal, vertical, and blanking outputs, attenuated and shifted in dc level, are available on other 180 -series mainframes at the MAIN SWEEP, MAIN GATE, and DELAYED GATE outputs, respectively. DO NOT connect an X-Y recorder to the DELAYED GATE OUTPUT, or damage will result.

TABLE 1-2. MODEL 8559A1180-SERIES SUPPLEMENTALCHARACTERISTICS(30F3)

SUPPLEMENTALCHARACTERISTICS

NOTE: Values in this table are not specifications. They are typical characteristics included for user information.

AUX C 21.4 MHz IF OUTPUT

BNC output provides 21.4 MHz IF signal (linearly related to spectrum analyzer RF input) from a 50 -ohm output impedance. Output bandwidth controlled by spectrum analyzer RESOLUTION BW setting; output amplitude controlled by INPUT ATTEN, REFERENCE LEVEL FINE, and first six REFERENCE LEVEL positions (i.e., -10 through -60 dBm
with 0 dB input attenuation). Output level is approximately -10 dBm into 50 ohms with a signal displayed at Reference Level.

AUX D HORIZONTALOUTPUT

BNC output provides horizontal sweep voltage from a SK-ohm output impedance. -5 V to $+\mathbf{S V}$ range corresponds to full 10-division CRT horizontal deflection.

1-26. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-27. Display Mainframe

1-28. An HP 853A digital Spectrum Analyzer Display is recommended for use with the HP 8559A. The rear panel of the HP 853A mainframe provides the following output connections: HORIZ (SWEEP), VERTICAL (VIDEO), BLANK (PENLIFT), 21.4 MHz IF, and HP-IB interface connector.

1-29. An HP 180T-series display mainframe (180TR, 181T, 181TR, or 182T) is also designed for use with the HP 8559A. In the HP 180T-series mainframe, the rear-panel auxiliary output connectors (AUX A, AUX B, AUX C, and AUX D) provide, respectively, Vertical Output, Pen Lift Output, 21.4 MHz IF Output, and Horizontal Output. A standard HP 180-series display mainframe (HP 180A/AR, HP 180C/D, HP 181A/AR, HP 182A/C, or HP 184A/B) provides only horizontal, vertical, and blanking rear panel outputs. Furthermore, these outputs are attenuated and shifted in dc level. Unbuffered rear panel outputs (similar to the HP 180Tseries) are provided only if Option 807 is installed.

1.30. Extender Cable Assembly

1-31. An Extender Cable Assembly (Figure 1-3), HP Part Number 5060-0303, allows operation of the HP 8559A outside the display mainframe. This provides access to the HP 8559A for necessary adjustments and some performance tests. This cable is also useful for troubleshooting.

1-32. EQUIPMENT AND ACCESSORIES AVAILABLE

1-33. Input Limiter

FIGURE 1.3. HP 11683A LIMITER

1-34. The HP 11693A Limiter can be used with the HP 8559A to prevent input mixer damage due to inadvertent application of strong signals. Frequency
response flatness is degraded by less than $\pm 0.5 \mathrm{~dB}$ from 100 MHz to 12.4 GHz ; the limiter is usable from 10 MHz to 18 GHz . Input levels of 1 watt average or 75 watts peak can be tolerated.

1.35. Low Pass Filter

FIGURE 1-4. HP 11870A LOW PASS FILTER
1-36. The HP 11870A Low Pass Filter (dc-2.6 GHz) can be used with the HP 8559A to reject signals above 3 GHz by more than $\mathbf{6 0} \mathrm{dB}$ for image-free measurements over the 10 MHz to 2.6 GHz range.

1-37. Modification Kit (Option 807 Connections)

1-38. A modification kit, HP Part Number 0018069503 , provides the materials and information necessary to install unbuffered rear panel connections (formerly included in Option 807) in the following display mainframes: HP 180A/AR, HP 180C/D, HP 181A/AR, HP 182A/C, and HP 184A/B. Refer to Table 1-3 for a description of parts included in the modification kit.

1-39. Oscilloscope Camera

FIGURE 1-5. HP 197B Opt 002,006 OSCILLOSCOPECAMERA

1-40. The HP 197B, Option 002, General Purpose Camera can be used with HP 180- and HP 181-series display mainframes to make a permanent record of measurements. The HP 10367A adapter allows the camera to be used with HP 182-series mainframes.

TABLE 1-3. PARTSINCLUDEDIN MODIFICATION KIT 00180-69503

Quantity	Description	HP Part Number
1	Output Amplifier Assembly (Auxiliary Output Board)	$00180-66551$
1	Label	$7120-3116$
2	$3 / 4$ inch pieces of shrink tubing	$0890-0720$
1	Service Note	$180 \mathrm{~A} / \mathrm{AR}-10,180 \mathrm{C} / \mathrm{D}-2,181 \mathrm{~A} / \mathrm{AR} 8$, similar for all instruments listed)

1-41. SERVICE ACCESSORIES

1-42. Service accessories are shown in Figure 1-6.
1-43. RECOMMENDEDTEST EQUIPMENT

1-44. Table 1-4 lists all of the equipment required for testing, adjusting and troubleshooting the Hewlett-Packard Model 8559A Spectrum Analyzer. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

FIGURE 16. SERVICEACCESSORIES(10F 2)

TABLE1-4. RECOMMENDEDTESTEQUIPMENT (1OF 4)

Instrument	Critical Specifications	Recommended Model	Use*
Display Mainframe	HP 180 Series with Variable Persistence	HP 181 T/TR	P, A, T
Sweep Oscillator	Mainframe for RF Plug-Ins below. External Sweep Adjustable Sweep range (Marker Sweep)	HP 8620C	P, A
R F Plug-In	Compatible with mainframe above. Output Frequency: 0.01 to 2.4 GHz Output Amplitude: 0 to +10 dBm adjustable FM and Phase Lock Internal and External leveling (both crystal detector and power meter)	HP 86222A/B	P, A
RF Plug-In	Compatible with mainframe above. Output Frequency: 2 to 21 GHz Output Amplitude: Band 1,0 to +10 dBm adjustable Band 2,0 to +10 dBm adjustable Band 3, 0 to +3 dBm adjustable Band 4,0 to +3 dBm adjustable FM and Phase Lock Internal and External leveling (both crystal detector and power meter)	HP 86290B-H08 ${ }^{1}$	P, A
Signal Generator	Output Frequency: 21.4 MHz and 321.4 MHz Output Amplitude: -40 to 0 dBm adjustable	HP 8640B	P, A, T
Function Generator	Output Frequency: 1 Hz to 1 MHz adjustable Output Amplitude: 0 to 15 V p-p adjustable Triangle-Wave Output	HP 3310A	P, A
Comb Generator	1 MHz comb teeth to 3 GHz 100 MHz comb teeth to 21 GHz	HP 8406A	P, A
Spectrum Analyzer	Frequency Range: 20 MHz to 6 GHz Maximum Input Level: $\geqslant 0 \mathrm{dBm}$ Amplitude Scale: Log $10 \mathrm{~dB} /$ DIV and $1 \mathrm{~dB} /$ DIV Minimum Resolution Bandwidth: $\leqslant 300 \mathrm{kHz}$ Adjustable Reference Level	HP 8569B	A, T
Synchronizer	Input Frequency: 21.4 MHz Sensitivity: $6 \mathrm{MHz} /$ Volt Error Voltage Output Polarity: + and - Selectable	HP $8709 \mathrm{~A} \cdot \mathrm{H} 10^{2}$	A
* $\mathrm{P}=$ Performance Test; $\mathrm{A}=$ Adjustments; $\mathrm{T}=$ Troubleshooting ${ }^{1}$ Option H08 extends the frequency range of the standard HP 86290 B from 18.6 GHz to 22 GHz . A standard (18.6 GHz) may be used if Option $\mathrm{H} 08(22 \mathrm{GHz}$) is not available. ${ }^{2}$ Option H 10 changes input frequency to 21.4 MHz and adds error voltage output polarity selection capability.			

TABLE 1-4. RECOMMENDEDTESTEQUIPMENT (2OF 4)

instrument	Critical Specifications	Recommended Model	Use"
Oscilloscope	Frequency: 500 Hz Display Amplitude: -15 Vdc Single-Channel	HP 1740A	A, T
Frequency Counter	Frequency Range: 20 MHz to 23 GHz Sensitivity: -15 dBm Resolution: 0.1 MHz	HP 5342A-005	P, A, T
Universal Counter	Time Interval Measurement from 1 ms to 500 ms	HP 5300B/5302A	P, A
Digital Voltmeter	Range: -12 to +15 Vdc Accuracy: $\pm 1 \mathrm{mV}$	HP 3456A	P, A, T
Power Meter	Range: -20 to +10 dBm Resolution: 0.1 dB	HP 435A/B	P, A
Power Sensor	$\begin{aligned} & \text { Frequency Range: } 50 \mathrm{MHz} \text { to } 26.5 \mathrm{GHz} \\ & \text { Maximum SWR: } \\ & 1.15,50 \mathrm{MHz} \text { to } 100 \mathrm{MHz} \\ & 1.10,100 \mathrm{MHz} \text { to } 2 \mathrm{GHz} \\ & 1.15,2 \text { to } 12.4 \mathrm{GHz} \\ & 1.20,12.4 \text { to } 18 \mathrm{GHz} \\ & 1.25,18 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	HP 8485A	P, A
Power Sensor	Frequency Range: 10 MHz to 18 GHz Maximum SWR: $\begin{aligned} & \text { 1.40, } 10 \mathrm{MHz} \text { to } 30 \mathrm{MHz} \\ & 1.18,30 \mathrm{MHz} \text { to } 50 \mathrm{MHz} \\ & 1.10,50 \mathrm{MHz} \text { to } 2 \mathrm{GHz} \\ & 1.18,2 \text { to } 12.4 \mathrm{GHz} \\ & 1.28,12.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	HP 8481A	P, A
Power Splitter	Frequency Range: 10 MHz to 18 GHz Tracking between output arms: $\leqslant 0.25 \mathrm{~dB}$ Connectors: Type $N(f)$ input, Type $N(m)$ outputs	HP 11667A-C16 ${ }^{3}$	P, A
Step Attenuator	Frequency Range: 20 MHz to 350 MHz Attenuation Range: 0 to 90 dB in 10 dB steps Step Accuracy: kO.1 dB Overall Accuracy (0 to 90 dB): $\pm 0.2 \mathrm{~dB}$	HP 355D-H82 ${ }^{4}$	P, A
Step Attenuator	Frequency Range: 20 MHz to 350 MHz Attenuation Range: 0 to 12 dB in 1 dB steps Step Accuracy: k0.05 dB Overall Accuracy (0 to 12 dB): kO.l dB	HP 355C-H80 ${ }^{5}$	P, A
${ }^{*} \mathrm{P}=$ Performance Test; $\mathrm{A}=$ Adjustments; $\mathrm{T}=$ Troubleshooting ${ }^{3}$ Option C16 provides Type $\mathrm{N}(\mathrm{m})$ output connectors to eliminate the use of adapters. ${ }^{4}$ Option H82 is selected for best attenuation accuracy and provides calibration data at 30 MHz and 280 MHz . ${ }^{5}$ Option H 80 is selected for best attenuation accuracy and provides calibration data at 100 MHz .			

TABLE 1-4. RECOMMENDED TEST EQUIPMENT (3OF 4)

Instrument	Critical Specifications	$\begin{aligned} & \text { Recommended } \\ & \text { Model } \end{aligned}$	Use*
Fixed Attenuator (2 required)	Frequency Range: 10 MHz to 18 GHz Attenuation: $20 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$ Connectors: Type $\mathrm{N}(\mathrm{m})(f)$	$\begin{aligned} & \text { HP 8491B } \\ & \text { Option } 020^{6} \end{aligned}$	P, A
Fixed Attenuator	Frequency Range: 10 MHz to 18 GHz Attenuation: $10 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ Connectors: Type $\mathrm{N}(\mathrm{m})$ (f)	HP 8491B Option 010^{6}	P, A
Crystal Detector	Frequency Range: 10 MHz to 21 GHz Frequency Response: $\pm 0.6 \mathrm{~dB}, .01$ to 18 GHz Maximum SWR: $\leqslant 1.5, .01$ to 18 GHz Output Polarity: Negative Connectors: APC - 3.5 (SMR) (m) input, SMC (m) output	HP 33330C	P, A
Termination	Frequency Range: 10 MHz to 18 GHz Impedance: 5052 Connector: Type N(m)	$\begin{aligned} & \text { HP 909A } \\ & \text { Option } 012^{7} \end{aligned}$	P
Tuning Voltage Circuit	Refer to Figure 5-17	None	A
Crystal Bypass Networks	Refer to Figure 5-6	None	A
Special Extender Board	Refer to Figure 5-9	None	A
Extender Cable	Extends Spectrum Analyzer Plug-In for Servicing Refer to Figure 1-3.	HP 5060-0303	P, A, T
Cable	Frequency Range: 10 MHz to 21 GHz Maximum SWR: $\leqslant 1.4$ at 21 GHz Length: 61 cm (24 inches) Connectors: SMA (m) both ends	HP 8120-1578	P, A
Cable	BNC (m) to SMC (f), 36 inches long	HP 11592-60001	P, A
Cable	48 inch, 50Ω coaxial cable with BNC (m) connectors on both ends (3 required)	HP 10503A	P, A, T
Cable	RG-214/U with Type N connectors (2 required)	HP 11500A	P, A
Cable	BNC (m) to Banana Plug	HP 10111A	P, A, T
Test Cable	Connectors: BNC (m) to SMB (f) Length: $\geqslant 61 \mathrm{~cm}$ (24 inches)	HP 85680-60093	A, T
* $\mathrm{P}=$ Performance Test; A = Adjustments; $\mathrm{T}=$ Troubleshooting ${ }^{6}$ Option number specifies attenuation value. ${ }^{7}$ Option 012 provides type N male connector.			

TABLE1-4. RECOMMENDEDTESTEQUIPMENT(4OF 4)

Instrument	Critical Specifications	Recommended Model	Use*
Adapter	Type $\mathrm{N}(\mathrm{m})$ to BNC (f) (2 required)	HP 1250-0780	P, A, T
Adapter	Type $\mathrm{N}(\mathrm{m})$ to SMA (f) (2 required)	HP 1250-1250	P, A
Adapter	Type N (f) to SMA (f) (2 required)	HP 1250-1745	P, A
Adapter	Type $\mathrm{N}(\mathrm{f})$ to Type N (f) (2 required)	HP 1250-1472	P, A
Adapter	Type N(f) to BNC (m)	HP 1250-1477	P
Adapter	BNC (f) to SMC (m)	HP 1250-0832	A
Adapter	BNC (f) to BNC (f)	HP 1250-0080	P
Adapter	BNC (f) to alligator clips (2 required)	HP 8120-1292	A, T
Adapter	BNC (f) to SMB (f)	HP 1250-1236	P
Adapter	SMB (m) to SMB (m)	HP 1250-0669	A
Adapter	SMB (f) to SMB (f)	HP 1250-0672	A
Adapter	SMC (m) to SMC (m)	HP 1250-0827	A
Adapter	BNC Tee	HP 1250-0781	P, A
Tuning Tool	Allen Driver inserted through drilled-out 5/16" nut driver	HP 08555-60107	A

Bes]e

SECTION II INSTALLATION AND OPERATION VERIFICATION

2.1. INTRODUCTION

2-2. This section includes information on initial inspection, preparation for use, and storage and shipping requirements for the HP 8559A.

2-3. INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. The electrical performance is checked by the Operation Verification procedure in this section. If the contents are incomplete, or if the instrument does not pass Operation Verification tests, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATIONFOR USE

2-6. Installation

2-7. When properly installed, the spectrum analyzer obtains all necessary power from the display mainframe. The rear panel connector provides the interface.

CAUTION

BEFORE SWITCHING ON THIS INSTRUMENT, make sure it is adapted to the voltage of the ac power source to be used and the proper fuse is installed. Failure to set the ac power input of the instrument for the correct voltage level could cause damage to the instrument when plugged in. Refer to the display mainframe Operation and Service Manual for line voltage and fuse selection.

2-8. To install the spectrum analyzer in the mainframe:
a. Set display mainframe LINE switch to OFF.
b. Pull out lock knob and slide plug-in toward rear of compartment until it is seated firmly in place.
c. Push in lock knob to secure spectrum analyzer in mainframe.

2-9. Side Stop Kits

2-10. Side stops unique to the installation of this instrument into the HP 853A Spectrum Analyzer Display are included with the HP 853A. Refer to the HP 853A Operation and Service Manual for further information.

2-11. Installation of a Side Stop Kit, HP Part Number 08558-60131, prevents the removal of the analyzer from the HP 180-series mainframe without the use of hand tools. This kit contains two side stops, mounting hardware, label, and installation instructions. (Refer to Table 2-1 for part numbers of individual items.)

TABLE 2-1. SIDE STOPKIT (08558-60131)

Quantity	Description	HP Part Number	C D
2	SIDE STOP	$08558-00094$	7
4	MACHINE SCREW,	$2200-0168$	9
1	4-40, .438 IN-LG		
1	82 DEG FLATHEAD		
1	LABEL, FRONT-PANEL	$7120-8131$	7
LABEL, INSTRUCTIONS	$7120-8215$	8	

2-12. To install side stops:

WARNING

Before removing covers from display mainframe, disconnect line power by removing ac power cord.

1. Remove side covers from bottom section of mainframe. (Remove only right side cover if mainframe is a rack-mounted model.)
2. Use flathead machine screws to install side stops as shown in Figure 2-1.
3. Reinstall side covers on mainframe.
4. Place label on front panel of spectrum analyzer (upper right-hand corner) to indicate that the plug-in is secured with side stops.

2-13. To remove side stops:
WARNING
Before removing covers from display mainframe, disconnect line power by removing ac power cord.

1. Remove side covers from bottom section of mainframe. (Remove only right side cover if mainframe is a rack-mounted model.)
2. Remove side stops. See Figure 2-1.
3. Reinstall side covers on display mainframe.

* ONLY ONE SIDE STOP AND TWO SCREWS ARE USED FOR RACKMOUNT MODELS

2-14. GraticuleOverlays

2-15. To install a graticule overlay:

1 Select proper overlay. HP Part Number 50208565 is for HP 180TR display mainframes, HP Part Number 5020-8566 is for HP 181T/TR display mainframes, and HP Part Number 5020-8567 is for HP 182 T display mainframes.
2. For HP 180TR and HP 181T/TR mainframes, remove CRT bezel and metallic-mesh contrast filter. Insert proper overlay and replace contrast filter and CRT bezel.
3. For HP 182T mainframes, grasp top portion of CRT bezel and pull straight up. Remove metal-lic-mesh contrast filter and insert proper overlay and contrast filter. (Either the metallic-mesh contrast filter or a light blue contrast filter may be used.)
4. Slide bezel back into place to retain overlay and filter.

2-16. When the HP 8559A is properly installed in the display mainframe, the interconnections are as listed in Table 2-2.

2-17. Operating Environment

2-18. Temperature. This instrument has been type tested for 95 percent relative humidity at $40^{\circ} \mathrm{C}$ for five days. The operating environment should be within the following limits:

Temperature 0 to $55^{\circ} \mathrm{C}$ Altitude <4572 meters (15,000 feet)

2-19. Modifications

2-20. A Modification Kit, HP Part Number 0018069503, provides materials and information necessary to add Option 807 rear-panel connections to the standard HP 180-series display. Refer to Table 1-3 in Section I. Option 807 is factory-installed in HP 180TR, HP 181T, HP 181TR, and HP 182 T mainframes. The modification kit is required for use with other mainframes if all four rear-panel outputs are needed.

TABLE2-2. HP MODEL 8559A MAINFRAME INTERCONNECTIONS

Pin on P1	Signal or Voltage	Pin on P1	Signal or Voltage
1	CRT HORIZ (adjusted horizontal signal)	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	BLANKING NC
2	GROUND from mainframe (jumpered to pin 8)	19	GROUND from mainframe (jumpered to pin 24)
3	NC	20	AUTO SWP
4	L NORM	21	BEAM FINDER
5	Y NORM	22	NC
6	NC	23	NC
7	SING SWP	24	GROUND from mainframe
8	GROUND from mainframe (jumpered to pin 2)	25	(jumpered to pin 19) NC
9	MAN SWP	26	NC
10	NC	27	NC
11	AUX D Horizontal Output (to mainframe rear panel)	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	-12.6 VDC from mainframe +15 VDC from mainframe
12	AUX C 21.4 MHz IF Output (to mainframe rear panel)	30	+100 VDC from mainframe 30 V p-p from mainframe
13	AUX B Penlift/Blanking Output (to mainframe rear panel)	32	(for LINE TRIGGER) NC
14	AUX A Vertical Output (to mainframe rear panel)	$\begin{gathered} \text { W5 } \\ (2 \text { contacts }) \end{gathered}$	+VERT (top contact, yellow wire)
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { GROUND } \end{aligned}$		- VERT (bottom contact, orange wire)

2-21. STORAGE AND SHIPMENT

2-22. Environment

2-23. The instrument may be stored or shipped in environments within the following limits:

Temperature: $\quad-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Altitude: <7620 meters $(25,000$ feet $)$
The instrument should also be protected from temperature extremes which cause condensation within the instrument.

2-24. Packaging

2-25. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. A supply of these tags is provided at the end of this section. Also mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-26. Other Packaging. The following general instructions should be used for repackaging with commercially available materials:

1. Wrap the instrument in heavy paper or plastic. If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number. A supply of these tags is provided at the end of this section.
2. Use a strong shipping container. A double-wall carton made of 350 -pound test material is adequate.
3. Use enough shock-absorbing material (3-inch to 4-inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
4. Seal the shipping container securely.
5. Mark the shipping container FRAGILE to assure careful handling.

2-27. OPERATION VERIFICATION

2-28. The Operation Verification tests only the most critical specifications and operating features of the instrument. It requires much less time and equipment than the complete performance tests provided in Section IV, and is recommended for verification of overall instrument operation, either as part of incoming inspection or after repair. Operation Verification consists of the following performance tests:

- Paragraph 4-11, Frequency Span Accuracy
- Paragraph 4-17, Average Noise Level
- Paragraph 4-21, Bandwidth Switching (Amplitude Variation)
- Paragraph 4-22, Input Attenuator Accuracy
- Paragraph 4-25, Calibrator Accuracy
- Paragraph 4-26, Display Fidelity

FIGURE2.2. PACKAGINGFORSHIPMENTUSING FACTORYPACKAGINGMATERIALS

Beslek

Bes.e]

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section provides operating information for the HP 8559A Spectrum Analyzer plug-in. It also provides a brief description of display mainframe controls. For a detailed description of the display mainframe, refer to its manual.

3-3. The HP 8559A Spectrum Analyzer plug-in can be used with either the 180 -series display mainframes or the HP 853A Spectrum Analyzer Display mainframe.

3-4. DESCRIPTION

3-5. HP 8559A Spectrum Analyzer

3-6. The HP 8559A employs harmonic mixing to cover a measurement range of 10 MHz to 21 GHz in six frequency bands. It can display frequency spans as narrow as 100 kHz , and as wide as 9 GHz (the latter in full span mode). A five-digit LED readout indicates the spectrum analyzer center frequency with a resolution of 1 MHz . The HP 8559A can be used to measure signals over an amplitude range of -111 dBm to +30 dBm .

3-7. HP 853A Spectrum Analyzer Display

3-8. The HP 853A Spectrum Analyzer Display is a large-screen, digital storage display mainframe for use exclusively with the HP 8559A, 8558B, and 8557A Spectrum Analyzer plug-ins. Digital memory provides buffer storage for two independent traces, both of which can be displayed or blanked as desired. Digital processing also provides push-button features such as maximum signal hold, digital averaging, and trace normalization. A conventional ana\log display mode can also be selected.

3-9. HP.IB

3-10. The HP 853A has limited HP-IB capabilities. CRT trace and graticule data is dumped directly to a listen-only HP-IB plotter by pressing two front-panel push buttons. Control settings on the spectrum analyzer plug-in cannot be monitored via the HP-IB;
however, all digital display functions are programmable via a controller, and two lines of annotation can be displayed on the CRT for labelling purposes or operator prompting. In addition, controller commands allow transfer of trace data for analysis or storage.

3-11. CONTROLS, INDICATORS, AND CONNECTORS

3-12. Control Grouping

3-13. The Spectrum Analyzer plug-in and Display mainframe front-panel controls fall into three general groups: those that deal with the display, those that deal with frequency, and those that deal with amplitude. These controls are shown in Figure 3-1 and accompanied by detailed explanations of their use.

3-14. Display. The display group consists of:
SWEEP TIME/DIV
SWEEP TRIGGER
VERT POSN

VERT GAIN
MANUALSWEEP
HORIZ GAIN (rear
panel of HP 8559A)

VIDEO FILTER
BASELINE CLIPPER HORIZONTAL POSITION INTENSITY FOCUS TRACE ALIGN

3-15. The display group enables the operator to calibrate the display and to select a variety of scan and display conditions. However, when the SWEEP TIME/DIV Control is placed in the AUTO position, sweep time is controlled by the RESOLUTION BW, FREQ SPAN/DIV, and VIDEO FILTER controls.

3-16. Frequency. The frequency group consists of:

TUNING
FREQUENCYBAND GHz
ALT IF
SIG IDENT
RESOLUTIONBW
FREQ SPAN/DIV

3-17. The frequency group enables the operator to control how the Spectrum Analyzer displays the frequency domain. The RESOLUTION BW and FREQ SPAN/DIV controls, when pushed in, are coupled together, and moving either control moves the other. When the SWEEP TIME/DIV control is in the AUTO position, varying the RESOLUTION BW or the FREQ SPAN/DIV (coupled or uncoupled) will change the sweep time to maintain calibration. With the two controls coupled together in the optimum position, RESOLUTION BW's of 3 MHz to 1 kHz will be automatically selected as the FREQ SPAN/ DIV is narrowed from F (Full) to 0 (Zero). TUNING controls coarse and fine (coarse is larger knob) set the center frequency of the displayed spectrum. RESOLUTION BW control determines the resolution of the signals on the CRT.

3-18. Amplitude. The amplitude group consists of:

REFERENCE LEVEL dBm
 INPUT ATTEN
 REF LEVEL FINE
 REF LEVEL CAL
 $10 \mathrm{~dB} /$ DIV - $1 \mathrm{~dB} /$ DIV - LIN (Amplitude Scale)

3-19. The amplitude group enables the operator to measure signal amplitude in units of either voltage or dBm .

3-20. OPERATING PRECAUTIONS

3-21. Signal Input

3-22. The HP 8559A Spectrum Analyzer plug-in is a sensitive measuring instrument. Overloading the input with too much power, peak voltage, or dc voltage will permanertly damage the input circuits. Do not exceed the input levels specified below:

Maximum Input (Damage) Levels

HP 8559A

Total Power:
$+20 \mathrm{dBm}(0.1 \mathrm{~W}, 2.2 \mathrm{Vrms})$ with 0 dB input attenuation
$+30 \mathrm{dBm}(1 \mathrm{~W}, 7.1 \mathrm{Vrms})$ with $\geq 10 \mathrm{~dB}$ input attenuation
dc or ac ($<100 \mathrm{~Hz}$): $\quad \pm 7.1 \mathrm{~V}$
Peak Pulse Power: $\quad+50 \mathrm{dBm}(100 \mathrm{~W},>10 \mu \mathrm{sec}$ pulse width, 0.01% duty cycle) with $\geq 30 \mathrm{~dB}$ input attenuation

NOTE

When you are measuring input signals of unknown power levels, a preliminary instrument setting of ≥ 30 dB INPUT ATTEN is recommended.

CAUTION

Although the spectrum analyzer's reference level can be set for power levels up to +60 dBm , the total input power must not exceed the absolute maximum limits listed above.

3-23. Line Power On

3-24. Before connecting the line power cord, make sure the proper line voltage and line fuse have been selected for the display mainframe. Failure to set the ac power input selector on the display mainframe to correspond with the level of the ac source voltage could cause damage to the instrument when the power cord is plugged in.

WARNING

> The spectrum analyzer and any device connected to it must be connected to power line ground. Failure to ensure proper grounding could result in a shock hazard to personnel or damage to the instrument.

3-25. LINE power is switched at the display mainframe front panel. A safety indicator lights when the ac power is on. NEVER remove a spectrum analyzer plug-in from the display mainframe without first switching the ac LINE power switch to OFF.

3-26. For optimum performance, you should allow the spectrum analyzer to warm up for at least 30 minutes before using it to make measurements.

3-27. FRONT-PANEL ADJUSTMENT PROCEDURE

3-28. The front-panel adjustment procedure adapts the HP 8559A Spectrum Analyzer plug-in to a particular display mainframe, and should be performed daily after instrument warm-up. The step-by-step adjustment is also an excellent way for new users to become acquainted with the various spectrum analyzer controls. Once the procedure is completed, the
spectrum analyzer is calibrated for absolute amplitude and frequency measurements. Set the controls as shown in Table 1 before you start the adjustment procedure.

TABLE 1. ADJUSTMENTSETTINGS

Function	Setting
Spectrum Analyzer Plug-In INPUT ATTEN (dB)* REFERENCE LEVEL Option 002 REF LEVEL FINE Amplitude Scale FREQ SPAN/DIV RESOLUTION BW SWEEP TIME/DIV SWEEP TRIGGER START-CENTER (8558B, 8557A) FREQUENCY BAND GHz (8559A) TUNING BASELINE CLIPPER VIDEO FILTER *On older plug-ins, set OPTIMUM INPUT to $-\mathbf{3 0} \mathrm{dBm}$.	10 dB 0 dBm +50 dBmV 0 dBm LIN $\mathbf{1 0 ~ M H z}$ (uncoupled) 1 MHz (uncoupled) AUTO FREE RUN CENTER $.01-3$ $>\mathbf{8 0 ~ M H z}$ OFF OFF
HP 853A Spectrum Analyzer Display TRACE A TRACE B DGTL AVG INPUT-B $\rightarrow \mathrm{A}$	WRITE STORE BLANK OFF OFF
HP 180-Series Display Mainframe DISPLAY MAGNIFIER SCALE (180TR, 182T) PERSISTENCE(181T/TR) Display Mode (181T/TR)	$\begin{gathered} \text { INT } \\ \text { X1 } \\ \text { OFF } \\ \text { MIN } \\ \text { WRITE } \end{gathered}$

3-29. Display Adjustments-HP 853A Spectrum Analyzer Display

1. Switch LINE power OFF then ON while holding PLOT GRAT push button depressed to activate the digital test routines. The "\#0" that appears on the left side of the CRT means digital test routine \#0 is now activated.
2. Press and release the PLOT GRAT push button four times to step to digital test routine \#4, as indicated by the "\#4" displayed on the left side of the CRT.
3. With an adjustment tool, adjust the FOCUS control as necessary to make the characters on the CRT as clear as possible.
4. Adjust the X POSN and Y POSN controls the align the square trace pattern with the outermost CRT graticule lines.
5. Momentarily press the PLOT GRAT and PLOT TRACE push buttons simultaneously to exit the digital test routines.

3-30. Display Adjustments - HP 180-Series Display Mainframe

1. With an adjustment tool, adjust the VERTICAL POSN control to place the CRT trace on a horizontal graticule line near the CRT center.
2. Reduce the INTENSITY and set the SWEEP TIME/DIV control to MAN. Use the MAN SWEEP knob to center the CRT dot.

CAUTION

Leaving a dot on the CRT for prolonged periods at high intensity can burn the phosphor.
3. Adjust FOCUS and ASTIG controls for the smallest round dot possible.
4. Reset the SWEEP TIME/DIV control to AUTO and increase the INTENSITY for an optimum CRT trace. Adjust the HORIZONTAL POSITION control to center the CRT trace. If the horizontal deflection is not exactly 10 divisions, adjust the HORIZ GAIN control located on the rear panel of the spectrum analyzer plug-in.

NOTE

To adjust the HORIZ GAIN, you must switch the LINE power OFF, then remove the spectrum analyzer plug-in from the mainframe.
5. Adjust TRACE ALIGN so that the CRT trace is parallel to the horizontal graticule line.

3-31. Frequency and Amplitude Adjustments

1. Adjust VERTICAL POSN to align the CRT trace with the bottom graticule line.
2. Center the LO feedthrough (i.e., the "signal" at 0 MHz) on the CRT with the TUNING control.
3. Narrow the FREQ SPAN/DIV to 200 kHz . Adjust the REF LEVEL FINE control as necessary to position the signal peak near the top CRT graticule line.
4. Center the LO feedthrough again, if necessary, and adjust the FREQ ZERO to calibrate the FREQUENCY MHz readout at 00.0 MHz .
5. Set the FREQ SPAN/DIV control to 1 MHz and the REF LEVEL FINE control to 0. Adjust the TUNING control for a FREQUENCY MHz readout of approximately 250 MHz .
6. Press the 10 dB /DIV Amplitude Scale push button, and set the REFERENCE LEVEL control to $-20 \mathrm{dBm}(+30 \mathrm{dBmV}$ for Option 002 instruments).
7. Connect the 250 MHz CAL OUTPUT to the spectrum analyzer input, and center the signal on the CRT with the TUNING control. The FREQUENCY MHz readout will indicate 250 $\mathrm{MHz} \pm 3 \mathrm{MHz}$.
8. Press the LIN Amplitude Scale push button. Adjust the REF LEVEL FINE control to place the signal peak at the top CRT graticule line.
9. Press the $10 \mathrm{~dB} /$ DIV Amplitude Scale push button. Adjust VERTICAL GAIN to place the signal peak at the top CRT graticule line.
10. Repeat steps 8 and 9 until the signal peak remains at the top CRT graticule line when the Amplitude Scale is alternated between $10 \mathrm{~dB} /$ DIV and LIN.
11. Set the REF LEVEL FINE control to 0, and the REFERENCE LEVEL control to -30 dBm (+20 dBmV for Option 002 instruments).
12. Press the LIN Amplitude Scale push button, and adjust REF LEVEL CAL to place the signal peak at the top CRT graticule line.

SECTIONIV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. The procedures in this section test the electrical performance of the instrument using the specifications in Section I as the performance standards. The performance tests included in this section are listed in Table 4-1. Most of the tests can be performed without access to the interior of the instrument. If a test measurement is marginal, perform the appropriate adjustment procedures in Section V.

TABLE 4-1. PERFORMANCETESTS

Paragraph	Test
$4-11$	Frequency Span Accuracy
$4-12$	Tuning Accuracy
$4-13$	Residual FM
$4-14$	Noise Sidebands
$4-15$	Resolution Bandwidth Accuracy
$4-16$	Resolution Bandwidth Selectivity
$4-17$	Average Noise Level
$4-18$	Residual Responses
$4-19$	Frequency Response
$4-20$	Gain Compression
$4-21$	Bandwidth Switching (Amplitude Variation)
$4-22$	Input Attenuator Accuracy
$4-23$	Reference Level Accuracy
$4-24$	Sweep Time Accuracy
$4-25$	Calibrator Output Accuracy
$4-26$	Display Fidelity

4-3. INSTRUMENTSTESTED

4-4. Since a compatible display mainframe is required for operation of the HP Model 8559A Spectrum Analyzer plug-in, the specifications listed in Table 1-1 apply when both instruments are functioning together. Consequently, the performance tests in this section verify the proper operation of both the HP 8559A and the display mainframe.

4.5. EQUIPMENT REQUIRED

4-6. The equipment required for the performance tests is listed under Recommended Test Equipment in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

4.7. TEST RECORD

4-8. Results of the performance tests may be tabulated in the Performance Test Record at the end of this section. The test record lists test specifications and acceptable limits.

4.9. CALIBRATIONCYCLE

4-10. This instrument requires periodic calibration. Calibration should be verified every six months by means of the performance tests.

PERFORMANCE TESTS

NOTE

Perform the Front Panel Adjustment Procedure in Section III before proceeding with performance tests. Allow at least 30 minutes warmup time.

4-11. FREQUENCY SPAN ACCURACY

SPECIFICATION:

There are 14 calibrated spans ranging from 10 kHz per division to 200 MHz per division in a $1,2,5$ sequence. Frequency error between any two points on the display is within ± 5 percent of the indicated frequency separation.

DESCRIPTION:

Wide span widths are checked using the $100-10-$, and $1-\mathrm{MHz}$ outputs of a comb generator. Narrow span widths are checked using the output of a comb generator modulated by a function generator. Since the comb generator produces frequency components separated by a precisely determined frequency interval, the resultant spectral lines displayed on the CRT are evenly spaced when no span error exists in the instrument. Thus, span error is the cumulative variation of distance among the spectral line intervals displayed across the CRT. The amount of span error is determined by comparing the distance of the first nine graticule divisions with the displayed distance of the corresponding spectral line intervals.

FIGURE 4.1. FREQUENCY SPAN ACCURACY TEST SETUP

EQUIPMENT:

Comb Generator HP 8406A
Frequency Counter
Function Generator HP 3310A
BNC Tee HP 1250-0781
Adapter, Type N (m) to BNC (f) (2 required) HP 1250-0780

PERFORMANCE TESTS

4-11. FREQUENCY SPAN ACCURACY (Cont'd)

PROCEDURE:

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz 01 - 3
TUNING . 1.5 GHz
FREQ SPAN/DIV . 200 MHz
RESOLUTION BW OPTIMUM, coupled (pushed in)
INPUTATTEN 0 dB
REFERENCELEVEL ... -10 dB
REFLEVELFINE ... 0
AmplitudeScale ... $10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV . AUTO
SWEEPTRIGGER .. FREE RUN
ALTIF .. OFF

BLCLIP OFF
VIDEOFILTER ... OFF

Comb Generator:
COMB FREQUENCY - MHz . 100 MC
INTERPOLATION AMPLITUDE -1 MHz .. OFF
OUTPUTAMPLITUDE . 10 o'clock

Function Generator:
FUNCTION .. SINE
RANGE . 10K
Frequency ... 200 kHz
DCOFFSETLEVEL .. 0
2. Connect equipment as shown in Figure 4-1 but do not connect function generator to comb generator.

PERFORMANCE TESTS

4-11. FREQUENCY SPAN ACCURACY (Cont'd)

3. Adjust spectrum analyzer TUNING control to position one spectral line (from comb generator) at first graticule line (left-hand edge of display). Measure the error between 17 th spectral line and 9 th graticule line as shown in Figure 4-2. Error should be no greater than ± 0.4 division.

CENTERFREQUENCY
FIGURE 4-2. FREQUENCYSPAN ACCURACYMEASUREMENT FOR SEVENTEENTHSPECTRALLINE
4. Set FREQ SPAN/DIV to 100 MHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between ninth spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div
5. Set FREQ SPAN/DIV to 50 MHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between fifth spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div
6. Set comb generator COMB FREQUENCY - MHz for $10-\mathrm{MHz}$ comb. Set spectrum analyzer FREQ SPAN/DIV to 20 MHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between 17th spectral line and ninth graticule line as shown in Figure 4-3. Error should be no greater than ± 0.4 division.
\qquad div
7. Set FREQ SPAN/DIV to 10 MHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between ninth spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div

PERFORMANCE TESTS

4-11. FREQUENCY SPAN ACCURACY (Cont'd)

CENTERFREQUENCY
FIGURE 4-3. FREQUENCY SPAN ACCURACY MEASUREMENTFOR NINTH SPECTRALLINE
8. Set FREQ SPAN/DIV to 5 MHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between fifth spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div
9. Set comb generator COMB FREQUENCY - MHz for $1-\mathrm{MHz}$ comb and increase OUTPUT AMPLITUDE control to maximum setting. Set spectrum analyzer FREQ SPAN/DIV to 2 MHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between 17th spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div
10. Set FREQ SPAN/DIV to I MHz. Adjust TUNING control to position one spectral line at first graticule line. Measure the error between ninth spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div
11. Set FREQ SPAN/DIV to 500 kHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between fifth spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div
12. Set comb generator COMB FREQUENCY - MHz for $10-\mathrm{MHz}$ comb. Adjust spectrum analyzer TUNING to position an in-band spectral line on the center graticule line (use SIG IDENT if necessary).

PERFORMANCE TESTS

4-11. FREQUENCY SPAN ACCURACY (Cont'd)

13. Set function generator frequency to $200 \mathrm{kHz}(\pm 0.5)^{\circ}$ using frequency counter. Connect function generator output to comb generator MODULATION input. Set function generator OUTPUT LEVEL for a clean $200-\mathrm{kHzcomb}$ on the spectrum analyzer display.

NOTE

To obtain a clean comb on the spectrum analyzer display, use either the LOW or HIGH output of the function generator and readjust the OUTPUT LEVEL control as necessary.
14. Set spectrum analyzer FREQ SPAN/DIV to 200 kHz . Adjust TUNING control to position one spectral line on the first graticule line. Measure the error between ninth spectral line and ninth graticule line. Error should be no greater than ± 0.4 division.
\qquad div
15. Using the procedure of NOTE in step 13, vary spectrum analyzer FREQ SPAN/DIV and function generator output frequency in accordance with Table 4-2. Adjust spectrum analyzer TUNING control to position one spectral line on the first graticule line. Measure the span error between ninth spectral line and ninth graticule line.

NOTE

Disconnect function generator from comb generator when setting frequency with frequency counter. Increase spectrum analyzer REFERENCE LEVEL control setting as necessary for the lowest frequencies.

TABLE4-2. NARROW SPAN WIDTHERROR MEASUREMENT

Spectrum Analyzer		Function Generator Output Frequency*	Span Width Error	
FREO SPAN/DIV	RESOLUTION BW		Maximum	Actual
100 kHz	OPTIMUM	100 kHz	k0.4 div.	_ div.
50 kHz	OPTIMUM	50 kHz	± 0.4 div.	div.
20 kHz	OPTIMUM	20 kHz	± 0.4 div.	_div.
10 kHz	OPTIMUM	10 kHz	k0.4 div.	__div.

[^2]
PERFORMANCE TESTS

4-12. TUNING ACCURACY

SPECIFICATION:

$0.1-3.0 \mathrm{GHz}: \quad \pm(1 \mathrm{MHz}+0.3 \%$ of center frequency)
$3.0-21.0 \mathrm{GHz}: \quad \pm(5 \mathrm{MHz}+0.2 \%$ of center frequency)

DESCRIPTION:

An external RF source is used to provide a frequency-calibrated input signal to the spectrum analyzer for three points on each frequency band. The digital FREQUENCY GHz readout is compared with the known test frequency to find the amount of readout (or tuning) error. The 10 dB attenuator is necessary to reduce LO emission from the spectrum analyzer to the frequency counter when using the sweep oscillator.

NOTE
The HP 8350A Sweep Oscillator may be substituted for the HP 8620C in this procedure.

EQUIPMENT

Comb Generator HP 8406A
Sweep Oscillator HP 8620C
RF Plug-In HP 86290B, Opt. HO8
Frequency Counter HP 5342A, Opt. 005
Power Splitter HP 11667A-C16
10-dB Attenuator HP 8491B, Opt. 010
Cable Assembly, RG-214/U, with Type N Connectors (2 required) HP 11500A
Adapter, Type N(f) to N(f) HP 1250-1472
Adapter, Type N(m) to BNC (f) (2 required) HP 1250-0780

PERFORMANCE TESTS

4-12. TUNING ACCURACY (Cont'd)

PROCEDURE:

1. Set spectrum analyzer controls as follows:
FREQUENCY BAND GHz $01-3$
TUNING 0.035 GHz
FREQ SPAN/DIV 200 kHz
RESOLUTIONBW OPTIMUM, coupled (pushed in)
INPUT ATTEN 10 dB
REFERENCELEVEL $-10 \mathrm{dBm}$
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} /$ DIV
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER OFF
2. Connect CAL OUTPUT signal of spectrum analyzer to INPUT 50R. Adjust TUNING control to position signal at center graticule line of display. Adjust FREQ CAL potentiometer for a FREQUENCY GHz display of 0.035 .
3. Connect comb generator to spectrum analyzer INPUT 50Ω as shown in Figure 4-4.
4. Set comb generator controls as follows:

> COMB GENERATOR - MHz 10 MC
> INTERPOLATION AMPLITUDE - 1 MHz . OFF
> OUTPUT AMPLITUDE . Full clockwise
5. Adjust spectrum analyzer TUNING control to center $10-\mathrm{MHz}$ comb tooth. FREQUENCY GHz readout should indicate:

Min.	Actual	Max.
0.09		0.011

6. Set comb generator COMB FREQUENCY - MHz for 100 MHz comb. Set spectrum analyzer FREQ SPAN/DIV to 1 MHz , and adjust TUNING control to position $1.5-\mathrm{GHz}$ comb tooth at center graticule line of display. FREQUENCY GHz readout should indicate:

Min.	Actual	Max.
1.94		1.506

7. Connect sweep oscillator to spectrum analyzer INPUT 50Ω as shown in Figure 4-4.

PERFORMANCE TESTS

4-12. TUNING ACCURACY (Cont'd)

NOTE

The 10 dB attenuator should be connected directly to the INPUT 50Ω of the spectrum analyzer and the 11667A power splitter (no cable assembly should be used between attenuator and analyzer or power splitter).
8. Adjust sweep oscillator for CW output at 3.000 GHz , as measured by frequency counter. Vary POWER LEVEL control as required for accurate measurement. Adjust spectrum analyzer TUNING control to center signal on display. FREQUENCY GHz readout should indicate:

Min.	Actual	Max.
2.90		3.010

9. Using procedure of step 8 , check spectrum analyzer tuning accuracy at remaining frequencies listed in Table 4-3. Indication on FREQUENCY GHz readout must fall within corresponding test limits at each frequency.

NOTE

Use SIG IDENT to verify that spectrum analyzer is tuned to desired in-band signal response whenever tuning error appears excessive.

TABLE 4-3 TUNING ACCURACY MEASUREMENT

Spectrum Analyzer	RF Source	FREQUENCY GHz READOUT		
FREQUENCY BAND (GHz)*	Frequency (GHz)"'"	Minimum (GHz)	Actual (GHz)	$\begin{aligned} & \text { Maximum } \\ & (\mathrm{GHz}) \end{aligned}$
0.01-3	$\begin{gathered} 0.01 \\ 1.5 \\ 3.0 \end{gathered}$	$\begin{aligned} & 0.009 \\ & 1.494 \\ & 2.990 \end{aligned}$		$\begin{aligned} & 0.011 \\ & 1.506 \\ & 3.010 \end{aligned}$
6-9	$\begin{aligned} & 6.1 \\ & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 6.083 \\ & 7.480 \\ & 8.977 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.117 \\ & 7.520 \\ & 9.023 \\ & \hline \end{aligned}$
3-9	$\begin{aligned} & 3.1 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.089 \\ & 5.983 \\ & 8.977 \end{aligned}$		$\begin{aligned} & 3.110 \\ & 6.017 \\ & 9.023 \end{aligned}$
9-15	$\begin{gathered} \hline 9.1 \\ 12.0 \\ 15.0 \end{gathered}$	$\begin{gathered} \hline 9.077 \\ 11.971 \\ 14.965 \end{gathered}$		$\begin{gathered} \hline 9.123 \\ 12.029 \\ 15.035 \end{gathered}$
6-15	$\begin{gathered} \hline 6.1 \\ 10.5 \\ 15.0 \end{gathered}$	$\begin{gathered} \hline 6.083 \\ 10.474 \\ 14.965 \end{gathered}$		$\begin{gathered} \hline 6.117 \\ 10.526 \\ 15.035 \end{gathered}$
12.1-21	$\begin{aligned} & \hline 12.1 \\ & 17.0 \\ & 21.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12.071 \\ & 16.961 \\ & 20.953 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 12.129 \\ & 17.039 \\ & 21.047 \\ & \hline \end{aligned}$

PERFORMANCE TESTS

4-13. RESIDUAL FM

SPECIFICATION:

Less than 2 kHz peak-to-peak for a time interval ≤ 0.1 second; less than 2 kHz peak-to-peak in a 180 -series display mainframe with 220/240 line voltage.

DESCRIPTION:

This test measures the inherent short-term instability (residual FM) of the LO system in the spectrum analyzer. A stable signal (supplied by a comb generator) is applied to the spectrum analyzer input and slope-detected with the linear portion of the $10-\mathrm{kHz}$ bandwidth filter in zero span (fixed-tuned receiver - see Figure 4-6). Variations of the spectrum analyzer's LO frequency (residual FM) can be measured as an amplitude shift on the CRT display ($1 \mathrm{kHz} \approx 0.7$ major division with LIN Amplitude Scale).

EQUIPMENT:

> Comb Generator . $1250-0780$ Adapter, Type N (m) to BNC (f) (2 required)

PROCEDURE:

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz . $01-3$
TUNING . 3.000 GHz
FREQUENCY SPAN/DIV . 100 kHz
RESOLUTIONBW 10 kHz
INPUT ATTEN . 30 dB
REFERENCELEVEL . 20 dBm
REFLEVELFINE ... 0
Amplitude Scale .
SWEEP TIME/DIV . AUTO
SWEEPTRIGGER . FREE RUN
ALTIF .. OFF
SIGIDENT ... OFF
BLCLIP . OFF
VIDEOFILTER OFF

PERFORMANCE TESTS

4-13. RESIDUAL FM (Cont'd)

Comb Generator:
COMB FREQUENCY - MHz . 100 MC
INTERPOLATIONAMPLITUDE - 1 MHz ... OFF
OUTPUT AMPLITUDE .. Full clockwise
2. Connect OUTPUT of comb generator to spectrum analyzer INPUT 50Ω as shown in Figure 4-5.

NOTE

The 8559 A is sensitive to vibration. Be sure spectrum analyzer is in a vibration-free environment.
3. Adjust spectrum analyzer TUNING control to display 3.0 GHz signal produced by comb generator. Adjust REFERENCE LEVEL and REF LEVEL FINE controls to position peak of signal at top graticule line.
4. Keep 3.0 GHz signal centered on CRT with TUNING control while reducing FREQ SPAN/DIV to zero.
5. Set RESOLUTIONBW to 10 kHz and SWEEP TIME/DIV to 0.1 sec .
6. Slightly readjust spectrum analyzer FINE TUNING control until trace appears between fourth and seventh graticule lines. Peak-to-peak variation of trace should not exceed 1.4 vertical division for each horizontal division (see Figure 4-7).
\qquad div

NOTE

For 2201240 line voltages, peak-to-peak variation of trace should not exceed 1.4 vertical divisions $(2 \mathrm{kHz})$ in a 180 -series display mainframe.

FIGURE46. RESIDUALFM TO AM CONVERSIONDISPLAY

FIGURE4-7. RESIDUALFM DISPLAY

PERFORMANCE TESTS

4-14. NOISE SIDEBANDS

SPECIFICATION:

Noise sidebands are at least 70 dB below a CW signal, 30 kHz or more away from the signal with a 1 kHz resolution bandwidth and full video filtering.

DESCRIPTION:

A stable 1.8 GHz CW signal is applied at a -20 dBm level to the spectrum analyzer and displayed on the CRT. The amplitudes of noise-associated sidebands and unwanted responses near the signal are measured.

EQUIPMENT:

> Comb Generator
> HP 8406A
> Adapter, Type N (m) to BNC (f) (2 required)
> HP 1250-0780

PROCEDURE:

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz $01-3$
TUNING 1.8 GHz
FREQ SPAN/DIV 1 MHz
RESOLUTION BW 30 kHz , uncoupled
INPUT ATTEN0 dB
REFERENCELEVEL $-20 \mathrm{dBm}$
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} /$ DIV
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER OFF

PERFORMANCE TESTS

4-14. NOISE SIDEBANDS(Cont'd)

Comb Generator:

> COMB FREQUENCY - MHz 100 MC
> INTERPOLATION AMPLITUDE $-1 \mathrm{MHz} . ~ O F F$
> OUTPUT AMPLITUDE
> Full clockwise
2. Connect equipment as shown in Figure 4-8.
3. Adjust TUNING control to locate $1.8-\mathrm{GHz}$ comb tooth on CRT.
4. Adjust REFERENCE LEVEL and REF LEVEL FINE controls to position peak of $1.8-\mathrm{GHz}$ signal at top graticule line.
5. Decrease FREQ SPAN/DIV to $\mathbf{2 0} \mathrm{kHz}$ and RESOLUTION BW to 1 kHz . Adjust TUNING as necessary to keep signal centered.
6. Position signal at center of display. Set VIDEO FILTER control fully clockwise (not in MAX detent position). Measure noise sidebands existing more than 1.5 divisions ($\mathbf{3 0} \mathrm{kHz}$) from $1.8-\mathrm{GHz}$ signal. Noise sidebands should be more than 70 dB (7 divisions) down from top graticule line.
\qquad div. down

PERFORMANCE TESTS

4-15. RESOLUTION BANDWIDTH ACCURACY

SPECIFICATION:

Individual resolution bandwidth $3-\mathrm{dB}$ points are calibrated to $\pm 15 \%$ ($\pm 30 \%$ for 3 MHz bandwidth).

DESCRIPTION:

Resolution bandwidth accuracy is measured in the linear mode to eliminate log amplifier errors. Since signal level at the $3-\mathrm{dB}$ points (half-power points) is related to peak signal level by a voltage ratio of 0.707:1.O, a peak level of 7.1 vertical divisions on the spectrum analyzer display gives a half-power level of 5 vertical divisions:

$$
\begin{aligned}
0.707(\text { voltage ratio }) & =X \operatorname{div} / 7.1 \operatorname{div} \\
X \operatorname{div} & =(7.1)(0.707) \\
& \approx 5 \operatorname{div}
\end{aligned}
$$

In the $30-, 10-, 3-$, and $1-\mathrm{kHz}$ bandwidths, a 21.4 MHz signal (final IF) is injected directly into Bandwidth Filter No. 1 Assembly A11 to provide the stability required for measurement of narrow resolution bandwidths.

FIGURE4-9. RESOLUTIONBANDWIDTHACCURACYTESTSETUP,3MHz TO 100 kHz

EQUIPMENT:

Signal Generator HP 8640B
Extender Cable Assembly
Adapter, Type $\mathrm{N}(\mathrm{m})$ to BNC (f) (2 required) HP 1250-0780
Adapter, Type SMB (f) to BNC (f) HP 1250-1236

PERFORMANCE TESTS

4-15. RESOLUTIONBANDWIDTH ACCURACY (Cont'd)

PROCEDURE:

WARNING

> Part of this test must be performed with power supplied to the instrument and with protective covers removed. The test should be performed only by sewice-trainedpersonnelwho are aware of the hazards involved.

1. Set equipment controls as follows:

Spectrum Analyzer:FREQUENCY BAND GHz . 01 - 3
TUNING 0.035 GHz
FREQ SPAN/DIV 0
RESOLUTIONBW 3 MHz
INPUTATTEN 10 dB
REFERENCELEVEL 0 dBm
REFLEVELFINE 0
AmplitudeScale LIN
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER OFF
Signal Generator:
COUNTERMODE INT, EXPAND X10
AM OFF
FM OFF
FREQUENCYTUNE 35 MHz
RF ON
OUTPUTLEVEL 0 dBm
2. Connect equipment as shown in Figure 4-9.
3. Adjust spectrum analyzer TUNING control to locate peak of $35-\mathrm{MHz}$ signal on CRT. Reduce signal generator output if necessary.

NOTE

If necessary, select $10 \mathbf{d B} / D I V$ to locate signal, then switch to LIN.
4. Adjust signal generator OUTPUT LEVEL to position trace at 7.1 divisions above graticule baseline.

PERFORMANCE TESTS

4-15. RESOLUTION BANDWIDTH ACCURACY (Cont'd)

5. Tune signal generator frequency until trace drops to 5 divisions above graticule baseline. Record signal generator frequency
\qquad MHz
6. Tune signal generator frequency in direction opposite to that of step 5 until trace peaks (7.1 divisions above graticule baseline) and then drops to 5 divisions above graticule baseline. Record signal generator frequency.

NOTE

The bandwidths recorded in this performance test are required for calculations in 4-16 Resolution Bandwidth Selectivityperformancetest.
7. Calculate and record resolution bandwidth at $3-\mathrm{dB}$ points (difference between frequencies recorded in steps 5 and 6).

Min.	Actual	Max.
2.0		3.90 MHz

8. Select ALT IF (switch pushed in), leaving FREQ SPAN/DIV set to 0 . Set signal generator to 35 MHz and repeat steps 3 through 7 .

Min.	Actual	Max.
2.0		3.90 MHz

9. Return ALT IF switch to OFF position. Set RESOLUTION BW to 1 MHz , leaving FREQ SPAN/DIV set to 0 . Set signal generator to 35 MHz and repeat steps 3 through 7 .

Min.	Actual	Max.
850		1150 kHz

10. Set RESOLUTION BW to 300 kHz , leaving FREQ SPAN/DIV set to 0 . Set signal generator to 35 MHz and repeat steps 3 through 7 .

Min.	Actual	Max.
255		345 kHz

11. Set RESOLUTION BW to 100 kHz , leaving FREQ SPAN/DIV set to 0 . Set signal generator to 35 MHz and repeat steps 3 through 7 .

Min.	Actual	Max.
85		115 kHz

PERFORMANCE TESTS

4-15. RESOLUTION BANDWIDTH ACCURACY (Cont'd)

FIGURE4-10. RESOLUTIONBANDWIDTHACCURACY TESTSETUP, 30 kHz TO 1 kHz

WARNING

In the following procedure, the plug-in must be removed from the display mainframe and connected through the extender cable assembly. Be very careful; the energy at some points in the instrument will, if contacted, cause personal injury. This test should be performed only by a skilled person who knows the hazard involved.
12. Set equipment controlsas follows:

Spectrum Analyzer:

FREQUENCY BAND GHz 01-3
TUNING $>0.010 \mathrm{GHz}$
FREQ SPAN/DIV 0 kHz
RESOLUTIONBW 30 kHz
INPUT ATTEN 10 dB
REFERENCELEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale LIN
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER OFF

PERFORMANCE TESTS

4.15. RESOLUTIONBANDWIDTH ACCURACY (Cont'd)

SignalGenerator:
COUNTERMODE INT, EXPAND X10
AM OFF
FM OFF
FREQUENCYTUNE 21.4 MHz
RF ON
OUTPUTLEVEL $\approx-3 \mathrm{dBm}$
13. Connect equipment as shown in Figure 4-10.

NOTE

For early instruments that do not feature A16J3, a $21.4-\mathrm{MHz}$ signal can be injected directly into the 300-MHz output (A10J1) of Third Converter Assembly A10. Set the signal generator OUTPUT LEVEL to $\mathbf{0 ~ d B m}$ and use the spectrum analyzer REFERENCE LEVEL and REF LEVEL FINE controls in step $14(\approx-40 \mathbf{d B m})$ to position the trace at 7.1 divisions above the graticule baseline.
14. Adjust signal generator frequency until spectrum analyzer trace is at peak. Set signal generator OUTPUT LEVEL to position trace at 7.1 divisions above graticule baseline. Set COUNTER MODE to EXPAND X 100 (most significant digit will overflow).
15. Tune signal generator frequency until trace drops to 5 divisions above graticule baseline. Record signal generator frequency.
\qquad
16. Tune signal generator frequency in direction opposite to that of step 15 until trace peaks (7.1 divisions above graticule baseline) and then drops to 5 divisions above graticule baseline. Record signal generator frequency.
$\xrightarrow{-} \mathrm{MHz}$
17. Calculate and record resolution bandwidth at $3-\mathrm{dB}$ points (difference between frequencies recorded in steps 15 and 16).

Min.	Actual	Max.
25.0 kHz		34.50 kHz

18. Set RESOLUTION BW to 10 kHz , leaving FREQ SPAN/DIV set to 0 . Repeat steps 14 through 17 .

Min.	Actual	Max.
8.0 kHz		11.50 kHz

PERFORMANCE TESTS

4-15. RESOLUTION BANDWIDTH ACCURACY (Cont'd)

19. Set RESOLUTION BW to $3 \mathbf{k H z}$, leaving FREQ SPAN/DIV set to $\mathbf{0}$. Repeat steps 14 through 17 .

Min.	Actual	Max.
$2.5 \mathbf{~ k H z}$		$3.45 \mathbf{~ k H z}$

20. Set RESOLUTION BW to $\mathbf{1} \mathbf{k H z}$, leaving FREQ SPAN/DIV set to $\mathbf{0}$. Repeat steps 14 through 17 .

Min.	Actual	Max.
$0.5 \mathbf{k H z}$		
		$1.15 \mathbf{k H z}$

21. Leave signal generator connected to A 16 J 3 if continuing on with next performance test.

PERFORMANCE TESTS

4-16. RESOLUTIONBANDWIDTHSELECTIVITY

SPECIFICATION:

$60-\mathrm{dB} / 3-\mathrm{dB}$ resolution bandwidth ratio: $<15: 1$

DESCRIPTION:

The $60-\mathrm{dB}$ bandwidth is measured for all resolution bandwidths. The $60-$ to $3-\mathrm{dB}$ resolution bandwidth ratio (shape factor) is then computed for each bandwidth by dividing the $3-\mathrm{dB}$ value (from the Resolution Bandwidth Accuracy test) into the $60-\mathrm{dB}$ value.

In the $30-10-, 3-$, and $1-\mathrm{kHz}$ bandwidths, a $21.4-\mathrm{MHz}$ signal (final IF) is injected into Bandwidth Filter No. 1 Assembly A11 to provide the stability required for the measurement of narrow resolution bandwidths.

FIGURE 4-11. RESOLUTIONBANDWIDTH SELECTIVITYTESTSETUP, 1 kHz TO 30 kHz

WARNING

In the following procedure, the plug-in must be removed from the display mainframe and connected through the extender cable assembly. Be very careful; the energy at some points in the instrument will, if contacted, cause personal injury. This test should be performed only by a skilled person who knows the hazard involved.

EQUIPMENT:

Signal Generator
Extender Cable Assembly
Adapter, SMB (f) to BNC (f) HP 1250-1236
Adapter, Type N (m) to BNC (f) (2 required) HP 1250-0780

PERFORMANCE TESTS

4-16. RESOLUTION BANDWIDTH SELECTIVITY (Cont'd)

PROCEDURE:

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz $.01-3$
TUNING $>0.010 \mathrm{GHz}$
FREQ SPAN/DIV 0
RESOLUTIONBW 1 kHz
INPUTATTEN 10 dB
REFERENCELEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} /$ DIV
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIGIDENT OFF
BLCLIP OFF
VIDEOFILTER 12 o'clock
Signal Generator:
COUNTERMODE INT, EXPAND X10
AM OFF
FM OFF
FREQUENCYTUNE 21.4 MHz
RF ON
OUTPUTLEVEL $\approx-3 \mathrm{dBm}$
2. Connect equipment as shown in Figure 4-11.

NOTE

For early instruments that do not feature A16J3, a $321.4 \mathrm{MHz},-25 \mathrm{dBm}$ signal can be injected directly into the input of Third Converter Assembly A10 at blue cable A10W1. Set signal generator COUNTER MODE to EXPAND X100(most significant digit will overflow).
3. Adjust signal generator frequency until spectrum analyzer trace is at peak. Put signal generator OUTPUT LEVEL to position trace at top graticule line.
4. Tune signal generator until trace drops to 2 divisions above graticule baseline. Record signal generator frequency.

PERFORMANCE TESTS

4-16. RESOLUTION BANDWIDTH SELECTIVITY (Cont'd)

5. Tune signal generator in direction opposite to that of step 4 until trace peaks (top graticule line) and then drops to 2 divisions above graticule baseline. Record signal generator frequency.
\qquad
6. Calculate and record resolution bandwidth at $60-\mathrm{dB}$ points (difference between frequencies recorded in steps 4 and 5).
\qquad kHz
7. Set RESOLUTION BW to 3 kHz , leaving FREQ SPAN/DIV set to 0 . Repeat steps 3 through 6 .
\qquad kHz
8. Set RESOLUTIONBW to 10 kHz , leaving FREQ SPAN/DIV set to 0 . Repeat steps 3 through 6 .
\qquad kHz
9. Set RESOLUTION BW to 30 kHz , leaving FREQ SPAN/DIV set to 0 . Repeat steps 3 through 6 .
10. Disconnect signal generator from A16J3. Set the display's LINE power to OFF and remove extender cable assembly. Install plug-in in mainframe and set LINE power to ON.
11. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz $.01-3$
TUNING 0.035 GHz
FREQ SPAN/DIV 0
RESOLUTION BW 100 kHz
INPUT ATTEN 10 dB
REFERENCELEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER 12 o'clock

PERFORMANCE TESTS

4.16. RESOLUTION BANDWIDTHSELECTIVITY (Cont'd)

Signal Generator:

COUNTERMODE	INT, EXPAND X10
AM	OFF
FM	. OFF
FREQUENCYTUNE	35 MHz
RF	ON
OUTPUTLEVEL	0 dBm

12. Connect equipment as shown in Figure 4-12.

FIGURE 4-12. RESOLUTIONBANDWIDTHSELECTIVITYTESTSETUP, 100 kHz TO3MHz
13. Adjust spectrum analyzer TUNING to locate peak of $35-\mathrm{MHz}$ signal on CRT. Reduce signal generator output if necessary.
14. Adjust signal generator OUTPUT LEVEL to position trace at top graticule line.
15. Tune signal generator frequency until trace drops to 2 divisions above graticule baseline. Record signal generator frequency.
\qquad MHz
16. Tune signal generator frequency in direction opposite to that of step 16 until trace peaks (top graticule line) and then drops to $\mathbf{2}$ divisions above graticule baseline. Record signal generator frequency.
\qquad MHz
17. Calculate and record resolution bandwidth at $60-\mathrm{dB}$ points (difference between frequencies recorded in steps 16 and 17).

PERFORMANCE TESTS

4-16. RESOLUTION BANDWIDTHSELECTIVITY(Cont'd)

18. Set RESOLUTION BW to 300 kHz , leaving FREQ SPAN/DIV set to 0. Repeat steps 14 through 18 .
\qquad kHz
19. Set RESOLUTION BW to 1 MHz , leaving FREQ SPAN/DIV set to 0 . Repeat steps 14 through 18 .
\qquad MHz
20. Select ALT IF (switch pushed in). Set RESOLUTION BW to 3 MHz , leaving FREQ SPAN/DIV set to 0 . Repeat steps 14 through 18.
\qquad
21. Return ALT IF switch to OFF position. With RESOLUTION BW still in 3 MHz and FREQ SPAN/DIV set to 0 , repeat steps 14 through 18 .
\qquad MHz
22. In Table 4-4, record 3-dB bandwidths computed in 4-15 Resolution Bandwidth Accuracy test.
23. In Table 4-4, record $60-\mathrm{dB}$ bandwidths recorded in this procedure.
24. For each resolution bandwidth, divide $60-\mathrm{dB}$ bandwidth by $3-\mathrm{dB}$ bandwidth to obtain Resolution Bandwidth Ratio. Each ratio should be less than 15: 1 .

TABLE4-4. RESOLUTIONBANDWIDTH SELECTIVITY

RESOLUTION BW Setting	Actual 3 dB BW	Actual 60 dB BW	Resolution Bandwidth Ratio ($60 \mathrm{~dB} / 3 \mathrm{~dB}$ BW)
$3 \mathbf{~ M H z}$ $\mathbf{3} \mathbf{~ M H z}$ (ALT IF) $1 \mathbf{~ M H z}$ $\mathbf{3 0 0} \mathbf{~ k H z}$ $\mathbf{1 0 0} \mathrm{kHz}$ 30 kHz 10 kHz 3 kHz 1 kHz			

PERFORMANCE TESTS

4-17. AVERAGENOISE LEVEL

SPECIFICATION:

The maximum average noise level for each frequency band, with 1 kHz resolution bandwidth and 0 dB attenuation, is given in Table 4-5.

DESCRIPTION:

The average noise level of the spectrum analyzer is checked by observing the average noise power level displayed on the CRT when no input signal is applied to the instrument.

FIGURE 4-13. AVERAGE NOISELEVEL MEASUREMENT,. $01-3 \mathrm{GHz}$

EQUIPMENT:

NOTE

The HP 853A Spectrum Analyzer Display may be substituted for the HP 181T/TR in this procedure.

NOTE

This test can be performed with no input termination if INPUT ATTEN is set to $\mathbf{2 0 ~ d B}$. Note that the input attenuation must then be taken into consideration in establishing the equivalent REFERENCE LEVEL control setting for the measurement. A REFERENCE LEVEL setting of -40 dBm with 20 dB INPUT ATTEN is equivalent to a REFERENCE LEVEL setting of $\mathbf{- 6 0} \mathbf{~ d B m}$ with $\mathbf{0 d B}$ INPUT ATTEN.

PERFORMANCE TESTS

4-17. AVERAGE NOISE LEVEL (Cont'd)

PROCEDURE:

1. Set spectrum analyzer controls as follows:
FREQUENCY BAND GHz $.01-3$
TUNING 0.010 GHz
FREQ SPAN/DIV F
RESOLUTIONBW 3 MHz , uncoupled
INPUTATTEN 0 dB
REFERENCE LEVEL $-60 \mathrm{dBm}$
REF LEVEL FINE 0
Amplitude Scale $10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BL CLIP OFF
VIDEOFILTER Full CW (not in detent)
2. With FREQ SPAN/DIV set to F, set VIDEO FILTER fully clockwise, but not in detent. Adjust TUNING to position marker at frequency where displayed average noise level is highest.

NOTE
 Do not tune marker beyond specified band edge.

3. Set VIDEO FILTER to detent and FREQ SPAN/DIV to 0.
4. Set RESOLUTIONBW to 1 kHz .
5. Measure average noise level displayed on CRT (see Figure 4-13) and record results in Table 4-5.
6. Set FREQUENCY BAND GHz to 6-9 and repeat steps 2 through 5 .
7. Set FREQUENCY BAND GHz to $3-9$ and repeat steps 2 through 5 .
8. Set FREQUENCY BAND GHz to 9-15 and repeat steps $\mathbf{2}$ through 5 .
9. Set FREQUENCY BAND GHz to 6-15 and repeat steps 2 through 5.
10. Set FREQUENCY BAND GHz to $12.1-21$ and repeat steps 2 through 5 for the frequency range of 12.1 - 18.0 GHz .

PERFORMANCE TESTS

4-17. AVERAGE NOISELEVEL (Cont'd)

NOTE

Do not tune above 18.0 GHz for this step.

11. Repeat steps 2 through 5 for the frequency range of $18.0-21.0 \mathrm{GHz}$.
12. Repeat entire procedure with ALT IF on.

TABLE 4-5. AVERAGENOISELEVEL

$\begin{gathered} \text { FREQUENCY } \\ \text { BAND GHz } \\ \text { Setting } \end{gathered}$	Specified Frequency Range (GHz)		Average Noise Level		
	Reg. IF	ALTIF	Maximum	Actual (Reg. IF)	Actual (ALT IF)
.01-3	0.010-3.060	0.025-3.060	$-111 \mathrm{dBm}$	- \quad dBm	- \quad dBm
6-9	6.035-9.060	6.020-9.060	$-108 \mathrm{dBm}$	-	-
3-9	3.033-9.120	3.048-9.120	$-103 \mathrm{dBm}$	- _ dBm	- _ dBm
9-15	9.058-15.120	9.043-15.120	$-98 \mathrm{dBm}$	$-\quad$ _ dBm	- _ CBm
6-15	6.055-15.180	6.070-15.180	$-93 \mathrm{dBm}$	-	- _ \quad dBm
12.1-21	12.080-18.000	12.065-18.000	$-92 \mathrm{dBm}$	- __dBm	- _ dBm
12.1-21	18.000-21.000	18.000-21.000	$-90 \mathrm{dBm}$	- ___ dBm	- ___dBm

PERFORMANCE TESTS

4-18. RESIDUAL RESPONSES

SPECIFICATION:

Residual responses are less than $-90 \mathrm{dBm}(0.01-3.06 \mathrm{GHz})$ with 0 dB input attenuation and no signal present at input. They are less than $-90 \mathrm{dBm}(0.025-3.06 \mathrm{GHz})$ with ALT IF selected.

DESCRIPTION:

Signals present on the display without an input signal applied to the spectrum analyzer are residual responses. The $. \mathrm{Ol}-3 \mathrm{GHz}$ frequency band is checked for residual responses greater than -90 dBm .

EQUIPMENT:

> Variable Persistence/Storage Display . 909 AP , Opt. 012 50Ω Termination, Type (m). . .

NOTE
The HP 853A Spectrum Analyzer Display may be substituted for the HP 181T/TR in this procedure.

NOTE

This test can be performed with no input termination if INPUT ATTEN is set to 20 dB . Note that the input attenuation must then be taken into consideration in establishing the equivalent REFERENCE LEVEL control setting for the measurement. A REFERENCE LEVEL setting of $-40 \mathbf{d B m}$ with 20 dB INPUT ATTEN is equivalent to a REFERENCE LEVEL setting of $-60 \mathbf{d B m}$ with $\mathbf{0 d B}$ INPUT ATTEN.

PROCEDURE:

1. Set spectrum analyzer controls as follows:

FREQUENCY BAND GHz	. $01-3$
TUNING	0.050 GHz
FREQ SPAN/DIV	10 MHz
RESOLUTION BW	1 MHz , uncoupled
INPUTATTEN	0 dB
REFERENCELEVEL	$-60 \mathrm{dBm}$
REFLEVELFINE 0
AmplitudeScale	$10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV	AUTO
SWEEPTRIGGER	FREE RUN
ALTIF OFF
SIGIDENT	. OFF
BLCLIP	OFF
VIDEOFILTER	.. 12 o'clock

PERFORMANCE TESTS

4-18. RESIDUAL RESPONSES(Cont'd)

2. Terminate INPUT 50Ω connector with 50 -ohm termination.
3. Adjust TUNING control to position LO feedthrough signal on leftmost vertical graticule line.
4. Set RESOLUTION BW control to 10 kHz , leaving FREQ SPAN/DIV set to 10 MHz . Adjust BL CLIP control clockwise until just the peaks of the noise are displayed. Set the SWEEP TRIGGER control to SINGLE and display PERSISTENCE control to MAX.
5. Set display to WRITE and momentarily press ERASE. Turn SWEEP TRIGGER control clockwise to trigger a single sweep, adjusting BL CLIP and display INTENSITY controls until just the peaks of the noise are displayed. Press ERASE and trigger another sweep.
6. Set display to VIEW and check for residual responses greater than -90 dBm . Record frequency and amplitude of residual response with the greatest amplitude.
\qquad
\qquad
dBm

NOTE

Residual responses are often visible within 10 MHz of the HP 8559A LO feedthrough signal (25 MHz with ALT IF selected). These residual responses are not within the instrument's specified frequency range and should be excluded from consideration in this performance test.
7. Increase TUNING control setting in $100-\mathrm{MHz}$ increments and use procedure of steps $5-7$ to check for residual responses from 10 MHz to $3.060 \mathrm{GHz}(25 \mathrm{MHz}-3.060 \mathrm{GHz}$ with ALT IF selected).

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE

SPECIFICATION:

Frequency response measured with 0 or 10 dB of input attenuation includes input attenuator flatness, mixer flatness, and band-to-band amplitude variation. Table 4-6 shows the frequency response specifications.

TABLE46. FREQUENCYRESPONSESPECIFICATIONS

FREQUENCY BAND (GHz)	Frequency Response ($\pm \mathrm{dB}$ Maximum)
$.01-3$	1.0
$6-9$	1.0
$3-9$	1.5
$9-15$	1.8
$6-15$	2.1
$12.1-18.0$	2.3
$18.0-21.0$	3.0

DESCRIPTION:

Frequency response is checked in each frequency band. With the spectrum analyzer set to full sweep, an RF input signal is very slowly swept across the entire frequency band. The resulting display is a series of narrow signals that vary in height across the CRT. Since the RF source is leveled and held flat across each frequency band, variations in amplitude on the display represent variations in the frequency response of the spectrum analyzer. Leveling within reasonable limits becomes difficult from 18 GHz to 21 GHz , so the RF output at the power splitter is characterized and compensated for when making the measurement of this frequency range.

FIGURE4-14. FREQUENCY RESPONSE TESTSETUP

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE(Cont'd)

NOTE
 The HP 853A Spectrum Analyzer Display is not recommended for use in this procedure.
 The HP 8350A Sweep Oscillator may be substituted for the HP 8620C in this procedure, if necessary.

EQUIPMENT:

Variable Persistence/Storage Display	HP 181T/TR
Sweep Oscillator	HP 8620C
RF Plug-in	HP 86222A
RF Plug-in	HP 86290B-H08
Power Meter	HP 435A/B
Power Sensor	HP 8485A
Power Splitter	HP 11667A, Opt. C16
Attenuator, 20-dB	HP 8491B, Opt. 020
Crystal Detector	HP 33330C
Adapter, Type N(m) to SMA (f) (2 requ	HP 1250-1250
Adapter, Type N(f) to SMA(f)	HP 1250-1745
Adapter, Type N(m) to N (m)	HP 1250-0778
Test Cable, SMC (m) to BNC (m)	HP 11592-60001
Cable Assembly, SMA (m) to SMA (m)	. HP 8120-1578

PROCEDURE:

1. Set equipment controls as follows:

Spectrum Analyzer:

FREQUENCY BAND GHz 01-3
TUNING 0.000 GHz
FREQ SPAN/DIV 10 MHz
RESOLUTIONBW 300 kHz , coupled
INPUT ATTEN 0 dB
REFERENCELEVEL $-20 \mathrm{dBm}$
REFLEVELFINE - 4
Amplitude Scale $10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIGIDENT OFF
BLCLIP OFF
VIDEO FILTER Full CW (not in detent)

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE(Cont'd)

Sweep Oscillator:

2. Center LO feedthrough signal on CRT with spectrum analyzer TUNING control. Adjust FREQ CAL for a FREQUENCY GHz readout of $\mathbf{0 . 0 0 0}$.

FIGURE4-15. TYPICALFREQUENCY RESPONSE FOR . 01 TO 2.4 GHz
3. Using $0.01-2.4 \mathrm{GHz}$ sweep oscillator plug-in, connect equipment as shown in Figure 4-14. Connect output of power splitter, through $20-\mathrm{dB}$ attenuator, to spectrum analyzer input. Turn sweep oscillator RF power ON and adjust ALC GAIN control for leveled output indication.

NOTE

Use maximum possible ALC GAIN to avoid leveling errors during swept measurements.

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE(Cont'd)

4. Adjust spectrum analyzer TUNING control for a FREQUENCY GHz readout of 0.100 . Set sweep oscillator to CW with frequency of 100 MHz and use CW control to center signal on spectrum analyzer display.
5. Calibrate and zero power sensor and meter. Disconnect power splitter from 20-dB attenuator and connect to power sensor. Adjust sweep oscillator POWER LEVEL control for a power meter indication of -8 dBm .
6. Connect output of power splitter through $20-\mathrm{dB}$ attenuator directly (do not use cable) to spectrum analyzer input. Select Amplitude Scale setting of $1 \mathrm{~dB} /$ DIV, and adjust REF LEVEL FINE control as necessary to place peak of 100 MHz signal at center horizontal graticule line of spectrum analyzer display.
7. Adjust spectrum analyzer TUNING control for a FREQUENCY GHz readout of 0.060 . Adjust sweep oscillator CW control for 60 MHz signal, centered on spectrum analyzer display.
8. Set sweep oscillator AF control for 100 MHz sweep. Adjust spectrum analyzer display PERSISTENCE control fully clockwise. Adjust sweep oscillator SWEEP TIME vernier for slow sweep (30 seconds or longer) and trigger a sweep. Record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (10 MHz to 110 MHz).
Maximum ___ divisions
Minimum___ divisions
9. Adjust spectrum analyzer TUNING control for a FREQUENCY GHz readout of 0.100 . Set sweep oscillator to CW with frequency of 100 MHz and use CW control to center signal on spectrum analyzer display.
10. Set spectrum analyzer FREQ SPAN/DIV control to F (full band) and RESOLUTION BW control to 3 MHz . Adjust TUNING control fully clockwise to position tuning marker at high end of selected frequency band. Adjust REF LEVEL FINE control as necessary to place peak of 100 MHz signal (near LO feedthrough signal) at center horizontal graticule line of spectrum analyzer display.
11. Set sweep oscillator for FULL BAND (10 MHz to 2.4 GHz) and trigger a sweep. Record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (10 MHz to 2.4 GHz). Record deviation of signal peak located at 8th vertical graticule line (approximately 2.1 GHz).
Maximum__ divisions
Minimum \quad divisions
8th graticule line__ divisions
12. Remove $0.01-2.4 \mathrm{GHz}$ RF Plug-in from sweep oscillator mainframe and replace with $\mathbf{2 - 2 2} \mathbf{~ G H z ~ R F}$ Plug-in. Select band $4(2.0-22 \mathrm{GHz})$ on HP 8620C sweep oscillator.
13. Set sweep oscillator to CW with frequency of 2.1 GHz and use CW control to position signal on 8th vertical graticule line of spectrum analyzer display. Adjust ALC GAIN control for leveled sweep oscillator output and adjust POWER LEVEL control to place signal peak at same amplitude measured in step 11.

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE(Cont'd)

NOTE
Use maximum possible ALC GAIN to avoid leveling errors during swept measurements.

Do not adjust spectrum analyzer REF LEVEL FINE control or sweep oscillator POWER LEVEL control during the remaining steps of this performance test.
14. Adjust spectrum analyzer TUNING control fully counterclockwise to position tuning marker at low end of selected frequency band. Set sweep oscillator CW control to 2.5 GHz and AF control for 1 GHz sweep. Trigger a sweep, and record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (2 GHz to 3 GHz).
Maximum___ divisions
Minimum___ divisions

NOTE

It is normal for the HP 8559A to exhibit baseline lift with an input signal at approximately 3.0075 GHz (2.9925 with ALT IF selected). Adjust sweep oscillator sweep range as necessary to avoid baseline lift during frequency response measurements.

If frequency response appears out of specification near a band edge, use a frequency counter with sweep oscillator in CW to ensure the frequency in question is within the specified band.
15. Compare values recorded in steps 8,11 , and 14 , and record overall greatest positive and greatest negative deviation from center horizontal graticule line for entire $.01-3 \mathrm{GHz}$ frequency band. Frequency response (deviation from center horizontal graticule line) should not exceed $\pm 1.0 \mathrm{~dB}$ (± 1.0 division).
Maximum ___ divisions $(.01-3 \mathrm{GHz})$
Minimum ___ divisions $(.01-3 \mathrm{GHz})$
16. Calculate mean deviation for $.01-3 \mathrm{GHz}$ frequency band using maximum and minimum values recorded in step 15. (For example, a maximum of +0.5 and a minimum of -0.7 results in a mean deviation of -0.1)

PERFORMANCE TESTS

4.19. FREQUENCY RESPONSE (Cont'd)

Frequency Response, 3-18 GHz

NOTE

For the higher frequency bands, multiple responses may appear on spectrum analyzer display during frequency response measurement. Adjust INTENSITY control as necessary for optimum display of in-band signal peaks.
17. Select $6-9 \mathrm{GHz}$ frequency band on spectrum analyzer. Set sweep oscillator to $\mathbf{C W}$ and frequency to 7.5 GHz . Use CW control to center signal on spectrum analyzer display. Set AF control for 3 GHz and trigger a sweep. Adjust spectrum analyzer TUNING control clockwise several turns to reposition tuning marker. Trigger another sweep. Record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (neglect deviations caused by tuning marker).
Maximum___ divisions
Minimum__ divisions
18. To calculate frequency response for $6-9 \mathrm{GHz}$ frequency band, subtract mean deviation of step 16 from maximum and minimum values recorded in step 17. Frequency response should not exceed $\pm 1.0 \mathrm{~dB}$ (± 1.0 division).
Maximum___ divisions $(6-9 \mathrm{GHz})$
Minimum__ divisions $(6-9 \mathrm{GHz})$
19. Select $3-9 \mathrm{GHz}$ frequency band on spectrum analyzer. Set sweep oscillator to $\mathbf{C W}$ and frequency to 6.0 GHz . Use $\mathbf{C W}$ control to center signal on spectrum analyzer display. Set AF control for 6 GHz and trigger a sweep. Adjust spectrum analyzer TUNING control to reposition tuning marker. Trigger another sweep. Record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (neglect deviations caused by tuning marker).
Maximum___ divisions
Minimum__ divisions
20. Subtract mean deviation of step 16 from maximum and minimum values recorded in step 19. Frequency response for $3-9 \mathrm{GHz}$ frequency band should not exceed $\pm 1.5 \mathrm{~dB}$ (± 1.5 divisions).
Maximum __ divisions $(3-9 \mathrm{GHz})$
Minimum__ divisions $(3-9 \mathrm{GHz})$

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE (Cont'd)

21. Select $9-15 \mathrm{GHz}$ frequency band on spectrum analyzer. Set sweep oscillator to $\mathbf{C W}$ and frequency to 12.0 GHz . Use CW control to center signal on spectrum analyzer display. Trigger a 6 GHz sweep. Adjust spectrum analyzer TUNING control to reposition tuning marker. Trigger another sweep. Record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (neglect deviations caused by tuning marker).
Maximum ___ divisions
Minimum ___ divisions
22. Subtract mean deviation of step 16 from maximum and minimum values recorded in step 21. Frequency response for $9-15 \mathrm{GHz}$ frequency band should not exceed $\pm 1.8 \mathrm{~dB}$ (± 1.8 divisions).
Maximum ___ divisions $(9-15 \mathrm{GHz})$
Minimum ___ divisions $(9-15 \mathrm{GHz})$
23. Select $6-15 \mathrm{GHz}$ frequency band on spectrum analyzer. Set sweep oscillator to $\mathbf{C W}$ and frequency to 10.5 GHz . Use $\mathbf{C W}$ control to center signal on spectrum analyzer display. Set AF control for 9 GHz and trigger a sweep. Adjust spectrum analyzer TUNING control several turns to reposition tuning marker. Trigger another sweep. Record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (neglect deviations caused by tuning marker).
Maximum ___ divisions
Minimum ___ divisions
24. Subtract mean deviation of step 16 from maximum and minimum values recorded in step 23. Frequency response for 6-15 GHz frequency band should not exceed $\pm 2.1 \mathrm{~dB}$ (± 2.1 divisions).
Maximum___ \quad divisions $(6-15 \mathrm{GHz})$
Minimum___ divisions $(6-15 \mathrm{GHz})$
25. Select $12.1-21 \mathrm{GHz}$ frequency band on spectrum analyzer and adjust TUNING control fully clockwise. Set sweep oscillator to $\mathbf{C W}$ and frequency to 15 GHz . Set AF control for 6 GHz and trigger a sweep. Record greatest positive and greatest negative deviation of signal peaks from center horizontal graticule line (12.1 GHz to 18 GHz).
Maximum ___ divisions
Minimum___ divisions

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE (Cont'd)

26. Subtract mean deviation of step 16 from maximum and minimum values recorded in step 25. Frequency response for $12.1-18 \mathrm{GHz}$ portion of $12.1-21 \mathrm{GHz}$ frequency band should not exceed $\pm 2.3 \mathrm{~dB}(\pm 2.3$ divisions).
Maximum ___ divisions $(12.1-18 \mathrm{GHz})$
Minimum ___ divisions $(12.1-18 \mathrm{GHz})$

Frequency Response, 18 - 21 GHz

27. Disconnect power splitter from $20-\mathrm{dB}$ attenuator and connect it to the power sensor. Set sweep oscillator to CW with frequency of 18.0 GHz and measure output at power splitter with power meter.
\qquad
28. Use CW control to slowly tune sweep oscillator from 18 GHz to 21 GHz . Note all peak deviations from reference power level (recorded in step 27) and the frequencies at which they occur. Record frequencies and power levels in Table 4-7.
29. Connect output of power splitter through $20-\mathrm{dB}$ attenuator to spectrum analyzer input. Adjust spectrum analyzer TUNING control counterclockwise several turns. Use CW control to tune sweep oscillator to frequencies recorded in step 28 and record deviation of signal peak from center horizontal graticule line.
30. Set sweep oscillator to $\mathbf{C W}$ with frequency of 19.5 GHz . Set AF control for 3 GHz and trigger a sweep. Note greatest positive and greatest negative deviation of signal peaks (18 GHz to 21 GHz). Use sweep oscillator CW control to tune to points of greatest deviation. Record frequencies and deviations from center horizontal graticule line in Table 4-7.
31. Disconnect power splitter from $20-\mathrm{dB}$ attenuator and connect it to the power sensor. Use $\mathbf{C W}$ control to tune sweep oscillator to frequencies recorded in step 30 and record power levels in Table 4-7.
32. Algebraically subtract reference power level recorded in step 27 from each power meter indicated recorded in Table 4-7. Record results in Power Deviation column (see example). Add corresponding deviation from center horizontal graticule line to each power deviation and record results in Sum of Deviations column. Subtract mean deviation of step 16 from each value in Sum of Deviations column and record results in Deviation from Mean column. Frequency response for $18-21 \mathrm{GHz}$ portion of $12.1-21 \mathrm{GHz}$ frequency band should not exceed $\pm 3.0 \mathrm{~dB}$ (± 3 divisions).

PERFORMANCE TESTS

4-19. FREQUENCY RESPONSE (Cont'd)

TABLE 4.7. CORRECTINGFOR FREQUENCY RESPONSEOF SIGNALSOURCE

*deviation relative to power meter indication at 18.0 GHz , recorded in step 27.

EXAMPLE(MEAN DEVIATIONOF -0.1dB)

Frequency (GHz)	Power Meter Indication $\mathbf{(d B m})$	Power Deviation (dB)	Deviation from Center Graticule Line (divisions or dB)	Sum of Deviations (dB)	Deviation from Mean (dB)
18.0	-8.0	$\mathbf{0}$ (Ref.)	-0.4	-0.4	-0.3
18.6	-9.0	-1.0	-1.0	-2.0	-1.9
19.6	-8.5	-0.5	-1.0	-1.5	-1.4
20.1	-7.0	+1.0	0.0	+1.0	+1.1
21.8	-9.0	-1.0	-0.4	-1.4	-1.3
20.6	-8.5	-0.5	-2.0	-2.5	-2.4
21.2	-7.5	+0.5	+1.5	+2.0	+2.1

PERFORMANCE TESTS

4.20. GAIN COMPRESSION

SPECIFICATION:

Gain compression is less than 0.5 dB for a -10 dBm input level with 0 dB attenuation.

DESCRIPTION:

Gain compression is measured by changing the power level at the spectrum analyzer input from -20 dBm to -10 dBm . The displayed signal level will change by less than 10 dB , indicating gain compression in the input mixer. Since a $10-\mathrm{dB}$ change in IF gain is used to keep the signal trace near the same point on the display when the input power is increased, the error due to this IF gain change is first measured, then subtracted from the displayed deviation to give the deviation due only to gain compression.

FIGURE4-16. GAINCOMPRESSIONTESTSETUP

EQUIPMENT:

Signal Generator	HP 8640B
Power Meter .	HP 435A/B
Power Sensor	HP 8481A
Power Splitter	HP 11667A, Opt. C16
20-dB Attenuator	HP 8491B, Opt. 010
Adapter, Type $\mathrm{N}(\mathrm{m})$ to BNC (f) (2 required).	HP 1250-0780
Adapter, Type $\mathrm{N}(\mathrm{f})$ to $\mathrm{N}(\mathrm{f})$	HP 1250-1472

PERFORMANCE TESTS

4-20. GAIN COMPRESSION (Cont'd)

PROCEDURE:

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz $01-3$
TUNING 0.050 GHz
FREQ SPAN/DIV 100 kHz
RESOLUTION BW 300 kHz , uncoupled
INPUTATTEN 10 dB
REFERENCE LEVEL 10 dBm
REFLEVELFINE -10
Amplitude Scale $10 \mathrm{~dB} /$ DIV
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALT IF OFF
SIGIDENT OFF
BLCLIP OFF
VIDEOFILTER OFF
Signal Generator:
COUNTERMODE INT
AM OFF
FM OFF
FREQUENCYTUNE 50 MHz
RF ON
OUTPUTLEVEL $-4 \mathrm{dBm}$
2. Connect equipment as shown in Figure $4-16$. Note that the $10-\mathrm{dB}$ attenuator is placed between the power splitter and spectrum analyzer INPUT 50Ω connector.
3. Adjust signal generator OUTPUT LEVEL control for a power meter reading of $-10 \mathrm{dBm}(-20 \mathrm{dBm}$ at spectrum analyzer INPUT 50Ω connector).
4. Adjust spectrum analyzer TUNING control to center 50 MHz signal on CRT. Set Amplitude Scale control to $1 \mathrm{~dB} / \mathrm{DIV}$ and adjust REF LEVEL FINE control to place peak of signal at a convenient horizontal graticule line other than top graticule line.
5. Adjust signal generator OUTPUT LEVEL control for a power meter reading of $0 \mathrm{dBm}(-10 \mathrm{dBm}$ at spectrum analyzer INPUT 50及 connector).
6. Set spectrum analyzer REFERENCE LEVEL control to 0 dBm , leaving REF LEVEL FINE control at setting established in step 4. Record deviation of signal peak from reference graticule line of step 4 (stepgain error). Values above reference line are positive (+); those below are negative (-).

PERFORMANCE TESTS

4-20. GAIN COMPRESSION(Cont'd)

7. Adjust signal generator OUTPUT LEVEL control for a power meter reading of $-10 \mathrm{dBm}(-20 \mathrm{dBm}$ at spectrum analyzer 50Qconnector).
8. Set spectrum analyzer INPUT ATTEN control to 0 dBm , REFERENCE LEVEL control to -20 dBm , and REF LEVEL FINE control to 0 . Adjust REF LEVEL CAL control to place peak of signal at reference graticule line of step 4 .
9. Adjust signal generator OUTPUT LEVEL control for a power meter reading of $0 \mathrm{dBm}(-10 \mathrm{dBm}$ at spectrum analyzer 50Qconnector).
10. Set spectrum analyzer REFERENCE LEVEL control to - 10 dBm . Record deviation of signal peak from reference graticule line of step 4 .
11. Calculate gain compression by algebraically subtracting step-gain error (step 4) from deviation of signal peak (step 7). Gain compression should be less than 0.5 dB ,
\qquad dB
12. Set spectrum analyzer INPUT ATTEN control to 10 dB and REFERENCE LEVEL control to -10 dBm . Connect CAL OUTPUT to INPUT 50Ω connector and recalibrate REF LEVEL CAL control setting.

PERFORMANCE TESTS

4-21. BANDWIDTH SWITCHING (AMPLITUDE VARIATION)

SPECIFICATION:

Bandwidths 3 MHz to $300 \mathrm{kHz}: \quad< \pm 0.5 \mathrm{~dB}$
Bandwidths 3 MHz to $1 \mathrm{kHz}: \quad< \pm 1.0 \mathrm{~dB}$

DESCRIPTION:

The CAL OUTPUT signal is applied to INPUT 50Ω connector and displayed on CRT. The peak of displayed $35-\mathrm{MHz}$ signal is centered on CRT and adjusted for a vertical deflection of several divisions. The amplitude variation of the signal is measured for each RESOLUTION BW control setting. The overall variation between RESOLUTION BW settings of 3 MHz through 300 kHz should be less than 1.0 dB ($\pm 0.5 \mathrm{~dB}$). The overall variation between RESOLUTION BW settings of 3 MHz through 1 kHz should be less than $2.0 \mathrm{~dB}(\pm 1.0 \mathrm{~dB})$.

PROCEDURE:

1. Set spectrum analyzer controls as follows:
FREQUENCY BAND GHz $.01-3$
TUNING 0.035 GHz
FREQ SPAN/DIV 1 MHz
RESOLUTION BW oupled
INPUT ATTEN 10 dB
REFERENCE LEVEL 0 dBm
REFLEVELFINE -10
Amplitude Scale $1 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER OFF
2. Connect CAL OUTPUT signal to INPUT 50Ω connector.
3. Adjust TUNING control to center $35-\mathrm{MHz}$ signal on CRT.
4. Adjust REF LEVEL FINE control to position peak of signal seven divisions above graticule baseline.
5. Set RESOLUTION BW and FREQ SPAN/DIV controls to settings indicated in Table 4-8. Record deviation of signal peak from referencegraticule line for each RESOLUTION BW control setting. Values above reference line set in step 4 are positive $(+)$; values below reference line are negative $(-)$.
6. To find overall variation in Table 4-8, algebraically subtract greatest negative amplitude deviation from greatest positive amplitude deviation. If all changes in amplitude are of the same sign, overall variation is largest positive or largest negative change in amplitude. Overall variation between 3 MHz and 300 kHz RESOLUTION BW setting should be $<1.0 \mathrm{~dB}(\pm 0.5 \mathrm{~dB})$. Overall variation between 3 MHz and 1 kHz RESOLUTION BW settings should be $<2.0 \mathrm{~dB}(\pm 1.0 \mathrm{~dB})$.

PERFORMANCE TESTS

4-21. BANDWIDTH SWITCHING (AMPLITUDE VARIATION)(Cont'd)

TABLE 4.8. BANDWIDTHSWITCHING (AMPLITUDE VARIATION)

$\begin{gathered} \text { RESOLUTION } \\ \text { BW } \\ \text { Setting } \end{gathered}$	FREQ SPAN/DIV Setting	Amplitude Deviation (dB)	Overall Variation Between 3 MHz and 300 kHz RESOLUTION BW Settings (dB)	Overall Variation Between 3 MHz and 1 kHz RESOLUTION BW Settings (dB)
$\begin{array}{r} 3 \mathrm{MHz} \\ 1 \mathrm{MHz} \\ 300 \mathrm{kHz} \end{array}$	$\begin{array}{r} 1 \mathrm{MHz} \\ 500 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$	\qquad	\qquad	
100 kHz 30 kHz 10 kHz $\mathbf{3 k H z}$ 1 kHz	50 kHz 10 kHz 10 kHz 10 kHz 10 kHz			

PERFORMANCE TESTS

4-22. INPUT ATTENUATOR ACCURACY

SPECIFICATION

Step Accuracy (0 dB to 60 dB): $\quad< \pm 1.0 \mathrm{~dB}$ per $10-\mathrm{dB}$ step, 0.01 to 18.0 GHz Maximum CumulativeStep Error (0 dB to 60 dB): $\quad< \pm 2.4 \mathrm{~dB}, 0.01$ to 18.0 GHz

DESCRIPTION

The input attenuator accuracy is tested over the range of 0 to 60 dB using an RF substitution method. A step attenuator that has been calibrated at 30 MHz by a Standards Laboratory is used for substitution. The known error of the calibrated attenuator is taken into account when computing the input attenuator accuracy.

FIGURE4-17. INPUT ATTENUATOR ACCURACY TESTSETUP

EQUIPMENT:

Signal Generator	HP 8640B
Step Attenuator ($10 \mathrm{~dB} /$ step)	HP 355D, Opt. H82
10-dB Attenuator	HP 8491B, Opt. 010
Adapter, Type N (m) to BNC (f) (2 required)	HP 1250-0780

PERFORMANCE TESTS

4-22. INPUT ATTENUATOR ACCURACY (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 4-17 and set controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz . $01-3$
TUNING . 30 MHz
FREQ SPAN/DIV . 2 MHz
RESOLUTIONBW .. 1 MHz
INPUTATTEN . 60 dB
REFERENCELEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale . 10 dB dDIV
SWEEP TIME/DIV . AUTO
SWEEPTRIGGER . FREE RUN
ALTIF .. OFF

BLCLIP . OFF
VIDEOFILTER . 2 o'clock
Signal Generator:
COUNTER MODE INT EXPAND X10
AM OFF
FM OFF
FREQUENCYTUNE 30.0 MHz
RF ON
OUTPUTLEVEL 0 dBm
2. Set step attenuator to 0 dB and use spectrum analyzer TUNING control to center 30 MHz signal from signal generator on CRT display. Set FREQ SPAN/DIV to 20 kHz , RESOLUTION BW to 10 kHz , and Amplitude Scale to $1 \mathrm{~dB} / \mathrm{DIV}$.
3. Adjust signal generator OUTPUT LEVEL control to position peak of signal seven divisions above graticule baseline.
4. Set step attenuator and INPUT ATTEN control to settings indicated in Table 4-9. For each setting, record deviation of signal peak from reference graticule line set in step 3 .

NOTE

The REFERENCE LEVEL control setting changes by 10 dB for every $10-\mathrm{dB}$ change in INPUT ATTEN. Do not change the REFERENCE LEVEL setting after changing the INPUT ATTEN setting.

PERFORMANCE TESTS

4.22. INPUT ATTENUATOR ACCURACY (Cont'd)

TABLE 4-9. INPUT ATTENUATOR ACCURACY

INPUT ATTEN Setting (dB)	Step Attenuator Setting (dB)	Amplitude Deviation (dB)	Step Attenuator Error (Calibration)"	Corrected Deviation (dB)
60	0	0 (Ref)	(Ref)	0 (Ref)
50	10		-	
40	20			
30	30			-
20	40			
10	50			
0	60			
*Attenuations > dial settings are positive (+). Attenuations < dial settings are negative (-). For example, 9.99 dB calibration for a $\mathbf{1 0 ~ d B}$ attenuator setting represents an error of $\mathbf{- 0 . 0 1} \mathbf{d B}$.				

5. To compute corrected deviation for each setting, add step attenuator error to amplitude deviation. Corrected deviation should not exceed $\pm 1.0 \mathrm{~dB}$ between any two adjacent INPUT ATTEN setting.
\qquad dB Maximum Error per 10-dB Step
6. Record maximum positive and maximum negative corrected deviation values. Difference between these two values (maximum cumulative step error) should not exceed 2.4 dB .
\qquad dB Maximum PositiveCorrected Deviation
\qquad dB Maximum Negative Corrected Deviation
\qquad dB Maximum Cumulative Step Error

PERFORMANCE TESTS

4-23. REFERENCE LEVEL ACCURACY

SPECIFICATION:

Step Accuracy (steps referenced with 0 dB input attenuation):
-10 dBm to $-80 \mathrm{dBm}: \quad \pm 0.5 \mathrm{~dB}$
-10 dBm to $-100 \mathrm{dBm}: \pm 1.0 \mathrm{~dB}$
Vernier Accuracy: $\pm 0.5 \mathrm{~dB}$

DESCRIPTION:

The reference level accuracy is tested over the range of -10 dBm to -100 dBm by checking the IF gain steps in $1 \mathrm{~dB} /$ DIV (Log) and in LIN. The resulting maximum deviation in each case must be less than $\pm 0.5 \mathrm{~dB}$ from -10 dBm to -80 dBm and less than $\pm 1.0 \mathrm{~dB}$ from -10 dBm to -100 dBm .

FIGURE4-18. REFERENCELEVELACCURACYTEST SETUP

EQUIPMENT:

Signal Generator HP 8640B
10-dB Attenuator HP 8491B, Opt. 010
Step Attenuator ($1 \mathrm{~dB} /$ step)
Step Attenuator ($10 \mathrm{~dB} /$ step) HP 355D, Opt. H82
Adapter, Type $\mathrm{N}(\mathrm{m})$ to BNC (f) (2 required) HP 1250-0780

PERFORMANCE TESTS

4-23. REFERENCE LEVEL ACCURACY (Cont'd)

PROCEDURE:

Step Accuracy in Log Mode

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz $.01-3$
TUNING 30 MHz
FREQ SPAN/DIV 100 kHz
RESOLUTION BW 30 kHz , uncoupled
INPUTATTEN 0 dB
REFERENCE LEVEL $-10 \mathrm{dBm}$
REFLEVELFINE 0
Amplitude Scale $1 \mathrm{~dB} /$ DIV
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER 2 o'clock
Signal Generator:
COUNTERMODE INT, EXPAND X10
AM OFF
FM OFF
FREQUENCYTUNE 30 MHz
RF ON
OUTPUTLEVEL $-2 \mathrm{dBm}$
2. Connect equipment as shown in Figure $4-18$ using $10-\mathrm{dB}$ step attenuator. Set step attenuator to 0 dB and adjust spectrum analyzer TUNING control to center 30 MHz signal on CRT Set FREQ SPAN/DIV control to 10 kHz and RESOLUTION BW control to 3 kHz , adjusting TUNING control as necessary to keep signal centered on CRT
3. Adjust signal generator OUTPUT LEVEL control to position peak of signal 6 divisions above graticule baseline. Set step attenuator and spectrum analyzer REFERENCE LEVEL control to settings indicated in Table 4-10. Record deviation of signal peak from 6th division for each setting.
4. To calculate Corrected Deviation, add Step Attenuator Error (calibration data at 30 MHz) to Deviation from 6th Division for each setting. Corrected Deviation should not exceed $\pm 0.5 \mathrm{~dB}$ from -10 dBm to -80 dBm , and should not exceed $\pm 1.0 \mathrm{~dB}$ from -10 dBm to -100 dBm . Record maximum values.

PERFORMANCE TESTS

4-23. REFERENCE LEVEL ACCURACY (Cont'd)

TABLE4-10. IFGAIN ACCURACYIN LOG MODE

REFERENCE LEVEL Setting (dBm)	Step Attenuator Setting (dB)	Deviation from 6th Division (dB)	Step Attenuator Error (Calibration)" (dB)	Corrected Deviation (dB)
-10	0	0 (Ref)	(Ref)	0 (Ref)
-20	10			
-30	20		-	
-40	30		-	
-50	40		-	
-60	50	-		
-70	60		-	
-80	70			
-90	80			
-100	90			

Step Accuracy in Linear Mode

5. Set spectrum analyzer Amplitude Scale switch to LIN and REFERENCE LEVEL control to -10 dBm . Set step attenuator to 0 dB . Readjust signal generator OUTPUT LEVEL control to position peak of signal 6 divisions above graticule baseline.
6. Set step attenuator and spectrum analyzer REFERENCE LEVEL control to settings indicated in Table 4-11. Record deviation of signal peak from 6th division for each setting.
7. Using Table 4-12, convert Deviation from 6th Division in Linear Mode to Deviation in dB for each setting. Record dB values in Table 4-11.
8. To calculate Corrected Deviation, add Step Attenuator Error to Deviation from 6th Division in dB for each setting. Corrected Deviation should not exceed $\pm 0.5 \mathrm{~dB}$ from -10 dBm to -80 dBm and $\pm 1.0 \mathrm{~dB}$ from -10 dBm to -100 dBm . Record maximum values.

$$
\begin{aligned}
& \text { 工 } \\
& \mathrm{dB}(-10 \mathrm{dBm} \text { to }-80 \mathrm{dBm}) \\
& \mathrm{dB}(-10 \mathrm{dBm} \text { to }-100 \mathrm{dBm})
\end{aligned}
$$

PERFORMANCE TESTS

4-23. REFERENCELEVEL ACCURACY (Cont'd)
TABLE4.11. IFGAIN ACCURACYIN LINEAR MODE

REFERENCE LEVEL Setting (dBm)	Step Attenuator Setting (dB)	Deviation from 6th Division Linear Mode (div.)	Deviation from 6th Division in dB*	Step Attenuator Error (Calibration)**(dB)	Corrected Deviation (dB)
-10	0	0 (Pef.)	0 (Pef.)	Ref.	0 (Pef.)
-20	10	$\underline{-}$		-	
-30	20				
-40	30				
-50	40				
-60	50	-	\square	\longrightarrow	-
-70	60				
-80	70				
-90	80				
-100	90				

*Use Table 4-12 to convert deviation in linear mode to deviation in dB.
${ }^{* *}$ Attenuations $>$ dial settings are positive (+). Attenuations $<$ dial settings are negative (-).

TABLE 4-12. CONVERSIONTABLE, DEVIATION IN LINEAR MODE

POSITIVE DEVIATIONS (Above 6th division from graticule baseline)		NEGATIVE DEVIATIONS (Below 6th division from graticule baseline)	
Linear (Divisions)	dB	Linear (Divisions)	dB
0	0	0	0
+.1	+0.14	-.1	-0.15
+.2	+0.28	-.2	-0.29
+.3	+0.42	-.3	-0.45
+.4	+0.56	-.4	-0.60
+.5	+0.70	-.5	-0.76
+.6	+0.82	-.6	-0.92
+.7	+0.96	-.7	-1.08
+.8	+1.09	-.8	-1.24
+.9	+1.21	-.9	-1.41
+1.0	+1.34	-1.0	-1.58
+1.1	+1.46	-1.1	-1.76
+1.2	+1.58	-1.2	-1.94
+1.3	+1.70		
+1.4	+1.82		
+1.5	+1.94		

PERFORMANCE TESTS

4-23. REFERENCE LEVEL ACCURACY (Cont'd)

Vernier Accuracy

9. Replace $10-\mathrm{dB}$ step attenuator with $1-\mathrm{dB}$ step attenuator. Set spectrum analyzer controls as follows:

FREQUENCY BAND GHz	. $01-3$
TUNING	0.030 GHz
FREQ SPAN/DIV	50 kHz
RESOLUTIONBW	300 kHz , uncoupled
INPUTATTEN	. 0 dB
REFERENCE LEVEL	$-10 \mathrm{dBm}$
REFLEVELFINE	0
AmplitudeScale	$1 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV	... AUTO
SWEEPTRIGGER	FREE RUN
ALT IF	. . OFF
SIGIDENT	. OFF
BLCLIP	OFF
VIDEOFILTER	2 o'clock

10. Set step attenuator to 0 dB . Center signal on CRT and adjust signal generator OUTPUT LEVEL control to position peak of signal 6 divisions above graticule baseline. Set step attenuator and spectrum analyzer REFERENCE LEVEL FINE control to settings indicated in Table 4-13. Record deviation of signal peak from 6th division for each setting.
11. To compute Corrected Deviation, add Step Attenuator Error to Deviation from 6th Division for each setting. Corrected Deviation should not exceed $\pm 0.5 \mathrm{~dB}$ for each setting. Record maximum value.

TABLE 4-13. VERNIER ACCURACY

Step Attenuator Setting (dB)	REFERENCE LEVEL FINE Setting	Deviation from 6th Division (dB)	Step Attenuator Error (Calibration)* (dB)	Corrected Deviation (dB)
0	0	0 (Ref)	(Ref)	0 (Ref)
1	-1			
2	-2			
3	-3			
4	-4			
5	-5			
6	-6			
- 7	-7			
8	-8			
9	-9			
10	-10			
11	-11			
12	-12			

[^3]
PERFORMANCE TESTS

4-24. SWEEP TIME ACCURACY

SPECIFICATION:

There are 20 selectable and calibrated sweep times in a $1-2-5$ sequence from $2 \mu \mathrm{sec} / \mathrm{DIV}$ to $10 \mathrm{sec} / \mathrm{DIV}$ (excluding $2 \mathrm{sec} /$ DIV).

Sweep time accuracy: $\pm 10 \%$ ($\pm 20 \%$ for 5 and $10 \mathrm{sec} /$ DIV)

DESCRIPTION:

For SWEEP TIME/DIV control settings of 10 msec and less, the triangle-wave output of a function generator is used to modulate a $100-\mathrm{MHz}$ signal applied to the spectrum analyzer input. This signal is demodulated in zero span, displaying a triangular waveform on the CRT. The function genertor is tuned to align the waveform with the vertical CRT graticule lines. The period of the function generator output is then measured with a counter to determine the sweep time.
For SWEEP TIME/DIV control settings of 20 msec and greater, the display (AUX B) PENLIFT/BLANKING output is connected directly to the counter. The blanking signal is "low" during a spectrum analyzer sweep; the time interval between the falling and rising edges is measured to determine the sweep speed.

EQUIPMENT:

Signal G	HP 8640B
Function Generator	HP 3310A
50 MHz Universal Counter	HP 5300B/5302A
BNC Tee	HP 1250-0781
Cable Assembly RG-214/U	HP 11500A

PERFORMANCE TESTS

4-24. SWEEP TIME ACCURACY (Cont'd)

PROCEDURE:

1. Set equipment controls as follows:
Spectrum Analyzer:
FREQUENCY BAND GHz 01-3
TUNING 0.100 GHz
FREQ SPAN/DIV 10 MHz
RESOLUTIONBW 3 MHz , uncoupled
INPUTATTEN 10 dB
REFERENCELEVEL $-10 \mathrm{dBm}$
REFLEVELFINE 0
AmplitudeScale LIN
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIGIDENT OFF
BLCLIP OFF
VIDEOFILTER OFF
Signal Generator:
COUNTERMODE INT, EXPAND X10
AM OFF
FM 100 MHz
FREQUENCYTUNE ON
OUTPUT LEVEL $-10 \mathrm{dBm}$
Function Generator:
FUNCTION TRI
RANGE 10K
Frequency 250 kHz
DCOFFSETLEVEL 0
50 MHz Universal Counter:
FUNCTION PERAVGB
SAMPLE RATE Full counterclockwiseTIME BASE
1 ms
SENSITIVITY (A) 9 o'clock
A 50 MHz Input (falling edge)SENSITIVITY (B)
B 10 MHz Input
\square (rising edge)

PERFORMANCE TESTS

4-24. SWEEP TIME ACCURACY (Cont'd)

2. Connect equipment as shown in Figure 4-19. Connect counter's B 10 MHz input to the function generator low output and the signal generator's AM input.
3. Adjust spectrum analyzer TUNING control to center $100-\mathrm{MHz}$ signal on CRT Set FREQ SPAN/DIV control to 0, leaving RESOLUTION BW control at 3 MHz setting. Set SWEEP TIME/DIV control to 2 $\mu \mathrm{sec}$.
4. Set AM switch of HP 8640B to AC position. Adjust function generator AMPLITUDE control and signal generator AM MODULATION control for 50 percent modulation as indicated on the signal generator meter.
5. Set spectrum analyzer SWEEP TRIGGER control to VIDEO. Adjust REFERENCE LEVEL and REF LEVEL FINE controls to center waveform on CRT
6. Adjust function generator Frequency vernier to display exactly five cycles of triangle wave modulation on CRT, as shown in Figure 4-20a. Counter should indicate an average period of $4.00 \pm 0.04 \mathrm{ps}$.

FIGURE 4-20. SWEEPTIME ACCURACY
7. Calculate actual sweep time per division by dividing average period from step 6 by 2 . Record value in Table 4-14.
8. For spectrum analyzer SWEEP TIME/DIV control settings of 5 psec through 10 msec , adjust function generator RANGE and frequency controls to display exactly 10 cycles of triangle wave modulation on CRT, as shown in Figure 4-20b. Average period readings displayed on counter correspond to actual sweep time per division. Record values in Table 4-14.

PERFORMANCE TESTS

4-24. SWEEP TIME ACCURACY (Cont'd)

TABE 4-14. SWEEP TIME ACORACY, 2μ SEC THROUGH 10 MSEC

SWEEP TIME/DIV Setting	Function Generator Frequency (Approx.)	Sweep Time per Division		
		Minimum	Actual	Maximum
2 psec	250 kHz	1.80 psec	\ldots - $\mu \mathrm{sec}$	2.20 psec
5 psec	200 kHz	4.40 psec	$\ldots \mu \mathrm{sec}$	5.50 psec
10 psec	100 kHz	9.00 psec	$\ldots \mathrm{sec}$	11.00 psec
20 psec	50 kHz	18.00 psec	\ldots - $\mu \mathrm{sec}$	22.00 psec
50 psec	20 kHz	45.00 psec	$\ldots \mu \mathrm{sec}$	55.00 psec
. 1 msec	10 kHz	90.0 psec	- $\mu \mathrm{sec}$	110.0 psec
. 2 msec	5 kHz	180.0 psec	- $\mu \mathrm{sec}$	220.0 psec
. 5 msec	2 kHz	450.0 psec	_ $\mu \mathrm{sec}$	550.0 psec
1 msec	1 kHz	900 psec	- $\mu \mathrm{sec}$	1100 psec
2 msec	500 Hz	1800 psec	$\ldots \mu \mathrm{sec}$	2200 psec
5 msec	200 Hz	4500 psec	$\ldots \mathrm{sec}$	5500 psec
10 msec	100 Hz	9.00 msec	_ msec	11.00 msec

9. Connect display rear-panel AUX B PENLIFT/BLANKING output to BNC tee at counter's B 10 MHz input. Connect other side of tee to counter's A 50 MHz input.
10. Set counter controls as follows:

FUNCTION	T.I. A to B
SAMPLE RATE	Full counterclockwise
TIME BASE	0.1 ms
SENSITIVITY (A)	9 o'clock
A 50 MHz Input	(falling edge)
SENSITIVITY (B)	9 o'clock
B 10 MHz Input	L(rising edge)

11. Set spectrum analyzer SWEEP TIME/DIV to 20 msec . Adjust counter's SENSITIVITY controls for a time interval reading of $0.2000 \pm 0.0200 \mathrm{sec}$. Record sweep time value in Table 4-15.
12. Verify remaining spectrum analyzer SWEEP TIME/DIV control settings of 50 msec through 10 sec , recording sweep time values in Table 4-15.

PERFORMANCE TESTS

4-24. SWEEP TIME ACCURACY (Cont'd)

TABLE 4-15. SWEEPTIME ACCURACY,20 MSECTHROUGH10SEC

WEEP TIME/DIV Setting	Sweep Time		
	Minimum	Actual	Maximum
20 msec 50 msec .1 sec .2 sec .5 sec 1 sec 5 sec 10 sec	$\begin{gathered} 0.180 \mathrm{sec} \\ 0.450 \mathrm{sec} \\ 0.90 \mathrm{sec} \\ 1.80 \mathrm{sec} \\ 4.50 \mathrm{sec} \\ 9.0 \mathrm{sec} \\ 40.0 \mathrm{sec} \\ 80.0 \mathrm{sec} \end{gathered}$		$\begin{gathered} 0.220 \mathrm{sec} \\ 0.550 \mathrm{sec} \\ 1.10 \mathrm{sec} \\ 2.20 \mathrm{sec} \\ 5.50 \mathrm{sec} \\ 11.0 \mathrm{sec} \\ 60.0 \mathrm{sec} \\ 120.0 \mathrm{sec} \end{gathered}$

PERFORMANCE TESTS

4-25. CALIBRATOR OUTPUT ACCURACY

SPECIFICATION:

Amplitude: $\quad-10 \mathrm{dBm} \pm 0.3 \mathrm{~dB}$
Frequency: $35 \mathrm{MHz} \pm 400 \mathrm{kHz}$

DESCRIPTION:

The frequency of the calibrator output signal is measured with a microwave counter. The calibrator output level is measured using a power meter.

FIGURE 4-21. CALIBRATOR ACCURACY TEST SETUP

EQUIPMENT:

$$
\begin{aligned}
& \text { Frequency Counter .. HP 5342A, Opt. } 005 \\
& \text { Power Meter... HP 435A/B } \\
& \text { Power Sensor . HP 8481A }
\end{aligned}
$$

PROCEDURE:

1. Connect spectrum analyzer CAL OUTPUT to frequency counter's $10 \mathrm{~Hz}-500 \mathrm{MHz}(50 \Omega)$ input as shown in Figure 4-20. Measured output frequency should be $35 \mathrm{MHz} \pm 400 \mathrm{kHz}$.
2. Zero and calibrate power meter. Connect power sensor, through adapter, to spectrum analyzer's CAL OUTPUT and measure power level. Calibrator output level should be $-10 \mathrm{dBm} \pm 0.3 \mathrm{~dB}$.
\qquad

PERFORMANCE TESTS

4-26. DISPLAY FIDELITY

SPECIFICATION:

Log Incremental Accuracy: $\pm 0.1 \mathrm{~dB}$ per dB from Reference Level Log Maximum Cumulative Error: $< \pm 1.5 \mathrm{~dB}$ over entire $70-\mathrm{dB}$ range Linear Accuracy; $\pm 3 \%$ of Reference Level

DESCRIPTION:

The amplitude of the log display amplifier is tested by connecting a DVM to the display (AUX A) VERTICAL OUTPUT connector. A wide resolution bandwidth setting is selected so the signal appears as a straight horizontal line on the CRT. The DVM is used to provide good resolution when checking for +1 dB per 10 dB step $(0.1$ $d B / d B)$.

EQUIPMENT

Signal Generator
Digital Voltmeter
Step Attenuator ($10 \mathrm{~dB} /$ step) HP 355D, Opt. H82
Adapter, Type N(m) to BNC(f) (2 required) HP 1250-0780
Cable, BNC to Banana Plug HP 11001A

PROCEDURE:

Log Display Accuracy

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz $01-3$
TUNING .. 0.030 GHz

PERFORMANCE TESTS

4-26. DISPLAY FIDELITY (Cont'd)

FREQ SPAN/DIV 500 kHz
RESOLUTION BW 300 kHz , uncoupled
INPUT ATTEN 10 dB
REFERENCE LEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale LIN
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BL CLIP OFF
VIDEO FILTER OFF
Digital Voltmeter:
RANGE 100
FUNCTION V (DC)
AUTO CAL AUTO
TRIGGER INTERNAL
MATH OFF
Signal Generator:
COUNTERMODE INT
AM OFF
FM OFF
FREQUENCYTUNE 30 MHz
RF ON
OUTPUT LEVEL 0 dBm
2. With no signal at spectrum analyzer's INPUT 5052, measure and record offset voltage at (AUX A) VERTICAL OUTPUT connector.
\qquad
mV
3. Connect equipment as shown in Figure 4-22. Set step attenuator to 0 dB .
4. Set spectrum analyzer's Amplitude Scale to $10 \mathrm{~dB} /$ DIV and adjust TUNING control to center signal on CRT display.
5. Set spectrum analyzer's FREQ SPAN/DIV control to zero (0), VIDEO FILTER full CW (not in detent), and RESOLUTION BW control to 1 MHz . Adjust TUNING control for maximum reading on DVM.
6. Set signal generator OUTPUT LEVEL control for DVM reading of $(+800 \mathrm{mV}+$ offset (step 2$) \pm 0.5$ mV). Trace should be approximately at top CRT graticule line.
7. Record DVM readings for step attenuator settings, from 0 dB through 70 dB , in Table 4-16.

PERFORMANCE TESTS

4-26. DISPLAY FIDELITY (Cont'd)

TABLE4-16. AMPLITUDELOG DISPLAY ACCURACY

Attenuator Setting (dB)	DVM Reading (mV)	Corrected DVM Reading* (mV)	Theoretical Reading (mV)	Theoretical Reading Subtracted From Corrected DVM Reading (mV)	Difference Between Adjacent Readings (mV)
0		+800 (Ref.)	+800	0	
10			+700		
20			+600		-
30			+500		
40			+400		
50			+300		-
60			+200		
70			+100		

*DVM Reading minus offset recorded in step 2.

EXAMPLETABLEOF 4.16

Attenuator Setting $\mathbf{(d B)}$	DVM Reading $(\mathbf{m V})$	Corrected DVM Reading $(\mathbf{m V})$	Theoretical Reading $(\mathbf{m V})$	Theoretical Reading Subtracted From Corrected DVM Reading $(\mathbf{m V})$	Difference Between
0	+805	+800	+800	0	Adjacent Readings $(\mathbf{m V})$
10	+708	+703	+700	+3	
20	+599	+594	+600	-6	-3
30	+497	+492	+500	-8	+9
40	+406	+401	+400	+1	+2

*DVM Reading minus offset recorded in step 2.
8. After recording DVM readings for step attenuator settings from 0 dB through 70 dB , calculate each Corrected DVM Reading by algebraically subtracting offset recorded in step 2. Record results in Table 4-16 (see sample computations).
9. Algebraically subtract corresponding Theoretical Reading from each Corrected DVM Reading, recording results in Table 4-16. Maximum value should not exceed $\pm 15 \mathrm{mV}$, corresponding to $\pm 1.5 \mathrm{~dB}$. Divide maximum value by 10 to calculate Log Maximum Cumulative Error (in dB).
\qquad dB Log Maximum Cumulative Error

PERFORMANCE TESTS

4-26. DISPLAY FIDELITY (Cont'd)

10. Algebraically subtract each converted reading (Theoretical Reading Subtracted from Corrected DVM Reading) from previous converted reading. Record results in Table 4-16 (see sample computations). Maximum difference between adjacent readings should not exceed +10 mV , corresponding to $\pm 1 \mathrm{~dB} / 10 \mathrm{~dB}$ or $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$. Divide maximum value by 100 to calculate Log Incremental Error (in $\mathrm{dB} / \mathrm{dB}$).
\qquad $\mathrm{dB} / \mathrm{dB}$ Log Incremental Error
11. Replace $10-\mathrm{dB}$ step attenuator with $1-\mathrm{dB}$ step attenuator. Set step attenuator to 0 dB .
12. Set spectrum analyzer Amplitude Scale to LIN and adjust TUNING control for maximum reading on DVM.
13. Adjust signal generator OUTPUT LEVEL for DVM reading of $800 \mathrm{mV}+$ offset (step 2) $\pm 0.5 \mathrm{mV}$. Trace should be approximately at top CRT graticule line.
14. Record DVM reading for step attenuator settings of 6 dB and 12 dB in Table 4-17.
15. Calculate each Corrected DVM Reading by algebraically subtracting offset recorded in step 2. Record results in Table 4-17.
16. Algebraically subtract corresponding Theoretical Reading from each Corrected DVM Reading, recording results in Table 4-17. Maximum value should not exceed $\pm 24 \mathrm{mV}$, corresponding to $\pm 3 \%$ of 800 mV Reference Level. Divide maximum value by 8 to calculate Percent Linear Error.
\qquad \% of Reference Level Linear Error
TABLE4-17. AMPLITUDELINEARDISPLAY ACCURACY

Attenuator Setting (dB)	DV M Reading (mV)	Corrected DVM Reading $(\mathbf{m V})$	Theoretical Reading $(\mathbf{m V})$	Theoretical Reading Subtracted From Corrected DV M Reading (mV)
0	-	$+800($ Ref. $)$	+800 +401 6 6 12	-201

*DVM Reading minus offset recorded in step 2.

TABLE4-18. PERFORMANCETESTRECORD (10F4)

Hewlett-Packard Company
Model 8559A
Spectrum Analyzer . $01-21 \mathrm{GHz}$

TABLE4-18. PERFORMANCETESTRECORD(2OF4)

TABLE 4-18. PERFORMANCE TESTRECORD(3OF 4)

Para. No.	Test Description	Results		
		Min.	Actual	Max.
4-18.	Residual Responses 6. Residual Responses, Ol GHz to 3 GHz 7. Residual Responses, Ol GHz to 3 GHz (ALT IF)			
				-90 dBm -90 dBm
4-19.	Frequency Response 15. Frequency Response, .01 to 3.0 GHz 18. Frequency Response, 6.0 to 9.0 GHz 20. Frequency Response, 3.0 to 9.0 GHz 22. Frequency Response, 9.0 to 15.0 GHz 24. Frequency Response, 6.0 to 15.0 GHz 26. Frequency Response, 12.1 to 18.0 GHz 32. Frequency Response, 18.0 to 21.0 GHz			
				$\pm 1.0 \mathrm{~dB}$
				$\pm 1.0 \mathrm{~dB}$
				$\pm 1.5 \mathrm{~dB}$
				$\pm 1.8 \mathrm{~dB}$
				$\pm 2.1 \mathrm{~dB}$
				$\pm 2.3 \mathrm{~dB}$
				$\pm 3.0 \mathrm{~dB}$
4-20.	Gain Compression			
	11. Gain Compression			0.5 dB
4-21.	Bandwidth Switching (Amplitude Variation)			
	6. 3 MHz to 300 kHz (overall variation) 3 MHz to 1 kHz (overall variation)	$\begin{aligned} & -0.5 \mathrm{~dB} \\ & -1.0 \mathrm{~dB} \end{aligned}$		$+0.5 \mathrm{~dB}$
				+1.0 dB
4-22.	Input Attenuator Accuracy			
	5. Maximum Error per $10-\mathrm{dB}$ step $(0 \mathrm{~dB}-60 \mathrm{~dB})$ 6. Maximum Cumulative Step Error $(0 \mathrm{~dB}-60 \mathrm{~dB})$	$-1.0 \mathrm{~dB}$		+1.0 dB +2.4 dB
4-23.	Reference Level Variation			
	4. Reference Level Error in Log (-10 dBm to -80 dBm)	$-0.5 \mathrm{~dB}$		$+0.5 \mathrm{~dB}$
	$(-10 \mathrm{dBm} \text { to }-100 \mathrm{dBm})$ 8. Reference Level Error in LIN	$-1.0 \mathrm{~dB}$		$+1.0 \mathrm{~dB}$
	(-10 dBm to -80 dBm) Reference Level Error in LIN	$-0.5 \mathrm{~dB}$		$+0.5 \mathrm{~dB}$
	(-10 dBm to -100 dBm)	$-1.0 \mathrm{~dB}$		$+1.0 \mathrm{~dB}$
	11. Vernier Error	$-0.5 \mathrm{~dB}$		+0.5 dB

TABLE4-18. PERFORMANCETESTRECORD (4OF4)

Bescelk

SECTION V
 ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section describes the adjustments used to restore the HP 8559A to its peak operating condition after a repair or to compensate for changes resulting from component aging. Illustrations showing the appropriate test setups are included in the adjustment procedures. Table 5-1 lists all the adjustments by adjustment name, adjustment reference designator, and by the paragraph number of the adjustment procedure. Included in the table is a brief description of the purpose of the adjustment.

5-3. Data taken during an adjustment should be recorded in the spaces provided in the procedure. Comparison of initial data with data taken during later adjustments is useful for preventative maintenance and troubleshooting.

WARNING

The adjustments in this section require the HP 8559A to be removed from the display mainframe and connected through an extender cable assembly. Be very careful; the energy at some points in the instrument will, if contacted, cause personal injury. The adjustments in this section should be performed only by a skilled person who knows the hazard involved.

NOTE

Before performing any adjustments, allow 1 hour warmup time, unless otherwise noted.

5-4. EQUIPMENTREQUIRED

5-5. Test equipment and accessories required for the adjustment procedures are listed in Table 1-3. If the listed equipment is not available, substitute
equipment may be used provided it meets the minimum specifications given in the table.

5-6. Adjustment Tools

5-7. Required service accessories, with part numbers, are illustrated in Section I.

5-8. For adjustments that require a non-metallic tuning tool, use fiber tuning tool, HP Part Number 8710-0033 (check digit 4). When a non-metallic tuning tool is not required, you may use an ordinary small, flat-bladed screwdriver or other suitable tool. Regardless of the tool used, do not try to force any adjustment control. Slug-tuning inductors and variable capacitors, especially, are easily damaged by excessive force.

5.9. Extender Cable Installation

WARNING

Disconnect display mainframe line power cord before installation of extender cable assembly.

5-10. Pull out the lock knob and slide the spectrum analyzer out of the display mainframe. If side stops are installed, refer to Section II for removal.

5-11. Carefully slide the extender cable assembly, HP Part Number 5060-0303, into the display mainframe, aligning the metal guide plate with the slotted side rails of the mainframe. Firmly seat the extender cable assembly to ensure good contact.
$5-12$. Connect the opposite end of the cable to the spectrum analyzer. The plug is keyed so it will go on correctly and will not make contact upside down. Remove the orange and the yellow leads from pins 3 and 4 on the A15 board at the rear of the spectrum analyzer. Connect the corresponding leads from the extender cable assembly to these pins by means of the insulated alligator clips.

5-13. RELATED ADJUSTMENTS

5-14. These adjustments should be performed when the troubleshooting information in Section VIII indicates that an adjustable circuit is not operating correctly. Perform the adjustments after repair or replacement of the circuit. The troubleshooting procedures and Table 5-2 specify the required adjustments.

5-15. FACTORY SELECTED COMPONENTS

$5-16$. Table 5-3 is a list of factory selected components used in the HP 8559A. The components are listed by reference designator, related adjustment paragraph, and by basis of selection. Factory selected components are identified by an asterisk (*) in the schematic diagrams in Section VIII and in the Replaceable Parts list in Section VIII. Part numbers for standard values of selected components are listed in Table 5-4.

TABLE 5-1. ADJUSTABLECOMPONENTS(10F3)

Adjustment Name	Reference Designator	Adjustment Paragraph	Description
GAIN	A1A2R28	5-30	Adjusts DPM high indication.
OFFSET	A1A2R29	5-30	Adjusts DPM low indication.
2nd MIXER MATCH	A5L2	$5-26$	Adjusts Second Converter output match.
Z1	A5Z1	5-26	Adjusts First IF Bandpass Filter Response.
Z2	A5Z2	5-26	Adjusts First IF Bandpass Filter Response.
Z3	A5Z3	5-26	Adjusts First IF Bandpass Filter Response.
2nd LO FREQUENCY	A5Z4	5-26	Adjusts Second LO Frequency.
3 GHz	A7R8	5-25	Adjusts YTO low-end frequency.
- lov	A7R29	5-17	Adjusts -lOV Power Supply output.
+14.5V	A7R41	5-17	Adjusts +14.5V Power Supply output.
6 GHzC	A7R47	5-25	Coarse adjusts YTO high-end frequency.
6 GHz F	A7R75	5-25	Fine adjusts YTO high-end frequency.
MO	A7R81	5-25	Adjusted to optimize centering between wide and narrow frequency spans.
DC	A7R83	5-25	Adusts delay compensation.
FM	A7R92	5-25	Adjusts YTO linearity.
REG	A8R34	5-26	Adjusts varactor bias voltage for proper Second LO Shift between Regular and Alternate IF.
OFF	A8R39	5-26	Adjusts varactor bias voltage (offset) for Second LO frequency with Regular IF.
SIG ID	A8R40	5-26	Adjusts Second LO shift for signal identifier 1 MHz below signal.
DPM ZERO	A8R61	$5 \cdot 30$	Adjusts DPM Driver output for OV with OV input (offset adjustment).
Vo	A8R62	5.17	Adjusts varactor bias voltage (offset) with Alternate IF
$+10 \mathrm{~V}$	A9R2	5-17	Adjusts +10V Power Supply output.
1 ms	A9R10	5-18	Adjusts sweep ramp to calibrate $1 \mathrm{~ms} /$ DIV sweep time.
5 ms	A9R13	5-18	Adjusts sweep ramp to calibrate $5 \mathrm{~ms} / \mathrm{DIV}$ sweep time.
XTL	A9R72	5-21, 5-22	Adjusts 3 kHz IF bandwidth.
LC	A9R85	5-21, 5-22	Adjusts 1 MHz IF bandwidth.
C9	A10C9	5-27	Adjusts Second IF Bandpass Filter Response.
C10	A10C10	5-27	Adjusts Second IF Bandpass Filter Response.
C11	A10C11	5-27	Adjusts Second IF Bandpass Filter Response.
C12	A10C12	5-27	Adjusts Second IF Bandpass Filter Response.
CAL FREQ	A10C46	5-29	Adjusts CAL OUTPUT frequency.
LO ADJ	A10L12	5-27	Adjusts Third LO frequency.
CAL AMPL	A10R13	$5 \cdot 29$	Adjusts CAL OUTPUT amplitude.
SYM	A11C15	5-21	Adjusts symmetry of first crystal bandwidth filter stage.
LC CTR	A11C23	$5-21$	Adjusts centering of first LC bandwidth filter stage.
CTR	A11C25	5-21	Adjusts centering of first crystal bandwidth filter stage.

TABLE5-1. ADJUSTABLECOMPONENTS(2OF3)

Adjustment Name	Reference Designator	Adjustment Paragraph	Description
SYM	A11C38	5-21	Adjusts symmetry of second crystal bandwidth filter stage.
LC CTR	A11C45	5-21	Adjusts centering of second LC bandwidth filter stage.
CTR	A11C54	5-21	Adjusts centering of second crystal bandwidth filter stage.
C73 (LC DIP)	A11C73	5-21	Dip adjusts first LC bandwidth filter stage.
C74 (LC DIP)	A11C74	5-21	Dip adjusts second LC bandwidth filter stage.
LC	AllR26	5-21	Adjusts LC feedback of bandwidth filter.
XTL	A11R31	$5-21$	Adjusts crystal feedback of bandwidth filter.
RF GAIN	A12R5	$5-23$	Adjusts overall gain of step gain amplifiers.
10D (10 dB)	A12R6	5-24	Adjusts 10 dB step gain amplifier.
20D (20 dB)	A12R21	5-24	Adjusts first 20 dB step gain amplifier.
40D (40 dB)	A12R29	5-24	Adjusts second 20 dB step gain amplifier.
LC CTR	A13C23	5-21	Adjusts centering of first LC bandwidth filter stage.
CTR	A13C25	5-21	Adjusts centering of first crystal bandwidth filter stage.
SYM	A13C38	5-21	Adjusts symmetry of second crystal bandwidth filter stage.
LC CTR	A13C45	5-21	Adjusts centering of second LC bandwidth filter stage.
CTR	A13C54	5-21	Adjusts centering of second crystal bandwidth filter stage.
C73 (LC DIP)	A13C73	5-21	Dip adjusts first LC bandwidth filter stage.
C74 (LC DIP)	A13C74	5-21	Dip adjusts second LC bandwidth filter stage.
LC	A13R26	5-21	Adjusts LC feedback of bandwidth filter.
XTL	A13R31	5-21	Adjusts crystal feedback of bandwidth filter.
OFFSET	A14R10	5-19	Adjusts -8 V temperature compensated supply.
TC	A14R21		Adjusts gain of +1 V supply to provide temperature compensation for log mode temperature controlled variable gain amplifier. (Factory adjustable only.)
SLOPE	A14R23	5-19	Adjusts gain of log mode temperature controlled gain amplifier.
G6	A14R27	5-19	Adjusts combined gain of 2 nd and 3 rd stages in linear mode.
G5	A14R30	5-19	Adjusts gain of 4th stage in linear mode.
G4	A14R33	5-19	Adjusts gain of 5th stage in linear mode.
LIN	A14R34	5-19	Adjusts combined gain of 6th and 7th stages in linear mode.
$-10 \mathrm{~dB}$	A14R39	5-19	Adjusts shape of log fidelity curve at -10 dB .
$-30 \mathrm{~dB}$	A14R69	5-19	Adjusts shape of log fidelity curve at -30 dB .
1 VT	A14R88		Adjusts voltage at A14TP1 for approximately +1 V . (Factory adjustable only.)

TABLE5-1. ADJUSTABLECOMPONENTS(3OF3)

Adjustment Name	Reference Designator	Adjustment Paragraph	Description
LOG GAIN	A14R121	5-19	Adjusts dc offset circuitry at output of Log Amplifier Assembly A14 for 10 dB steps in log mode.
1 dB (offset)	A15R1	5-20	Adjusts LOG $10 \mathrm{~dB} /$ DIV translation.
$\mathrm{OD}(0 \mathrm{~dB})$	A12R35	5-24	Adjusts variable gain amplifier for 0 dB with REF LEVEL FINE control set to 0 dB .
$-12 \mathrm{D}(-12 \mathrm{~dB})$	A12R39	$5-24$	Adjusts variable gain amplifier for -12 dB with REF LEVEL FINE control set to -12dB.
1B	A12R47	5-28	Adjusts slope of Band 1 response.
2B	A12R48	5-28	Adjusts slope of Band 2 response.
3B	A12R49	5-28	Adjusts slope of Band 3 response.
4B	A12R51	5-28	Adjusts slope of Band 4 response.
5B	A12R53	5-28	Adjusts slope of Band 5 response.
5 C	A12R54	5-28	Adjusts highend breakpoint in slope of Band 5 response.
6B	A12R55	5-28	Adjusts slope of Band 6 response.
6 C	A12R56	5-28	Adjusts high-end breakpoint in slope of Band 6 response.
1 A	A12R57	5-28	Adjusts gain of Band 1.
2 A	A12R58	5-28	Adjusts gain of Band 2.
3A	A12R59	5-28	Adjusts gain of Band 3.
4A	A12R60	5-28	Adjusts gain of Band 4.
5 A	A12R61	5-28	Adjusts gain of Band 5.
6A	A12R62	5-28	Adjusts gain of Band 6 .
v3+	A12R70	5-28	Adjusts diode bias for Band 6.
v 3 -	A12R71	5-28	Adjusts diode bias for Band 5.
V1	A12R72	5-28	Adjusts diode bias for Bands 1 and 2.
v 2 -	A12R83	5-28	Adjusts diode bias for Band 3.
v2+	A12R87	5-28	Adjusts diode bias for Band 4.
SYM	A13C15	5-21	Adjusts symmetry of first crystal bandwidth filter stage.

TABLE5-2. RELATEDADJUSTMENTS

Assembly Replaced or Repaired		Perform the Following Related Adjustments	Paragraph Number
A1A1	DPM Display	Frequency Display Adjustments	5-30
A1A2	DPM Driver	Frequency Display Adjustments	5-30
A2	Front Panel Switch Assembly	First Converter Adjustments CAL OUTPUT and REF LEVEL CAL Adjustments	$\begin{aligned} & 5-25 \\ & 5-29 \end{aligned}$
A3	Input Attenuator	Frequency Response Adjustments	5-28
A4	First Mixer	First Converter Adjustments Frequency Response Adjustments CAL OUTPUT and REF LEVEL CAL Adjustments	$\begin{aligned} & 5-25 \\ & 5-28 \\ & 5-29 \end{aligned}$
A5	Second Converter	Second Converter Adjustments CAL OUTPUT and REF LEVEL CAL Adjustments	$\begin{aligned} & 5-26 \\ & 5-29 \end{aligned}$
A6	YIG-Tuned Oscillator	First Converter Adjustments Frequency Response Adjustments CAL OUTPUT and REF LEVEL CAL Adjustments	$\begin{aligned} & 5-25 \\ & 5-28 \\ & 5-29 \end{aligned}$
A7	Frequency Control	Power Supply Checks and Adjustments First Converter Adjustments	$\begin{aligned} & 5-17 \\ & 5-25 \end{aligned}$
A8	Marker	First Converter Adjustments	5-25
A9	Sweep Generator/ Bandwidth Control	Power Supply Checks and Adjustments Calibrated Sweep Time Adjustments 3-dB Bandwidth Adjustments	$\begin{aligned} & 5-17 \\ & 5-18 \\ & 5-22 \end{aligned}$
A10	Third Converter	Third Converter Adjustments CAL OUTPUT and REF LEVEL CAL Adjustments	$\begin{aligned} & 5-27 \\ & 5-29 \end{aligned}$
$\begin{aligned} & \text { A11, } \\ & \text { A13* } \end{aligned}$	Bandwidth Filters	Bandwidth Filter Adjustments 3-dB Bandwidth Adjustments	$\begin{aligned} & 5-21 \\ & 5-22 \end{aligned}$
A12	Step Gain	RF Gain Adjustments Step Gain Adjustments CAL OUTPUT and REF LEVEL CAL Adjustments	$\begin{aligned} & 5-23 \\ & 5-24 \\ & 5-29 \end{aligned}$
A14	Log Amplifier	Log Amplifier Log and Linear Adjustments 1-dB Offset Adjustment CAL OUTPUT and REF LEVEL CAL Adjustments	$\begin{aligned} & 5-19 \\ & 5-20 \\ & 5-29 \end{aligned}$
A15	Vertical Driver/ Blanking	I-dB Offset Adjustment	5-20
A16	Motherboard	No related adjustments	

TABLE53. FACTORYSELECTEDCOMPONENTSIN ALPHA-NUMERICALORDER

CAPACITORS					
RANGE: 1 to 24 pF TYPE: Tubular TOLERANCE: $\begin{aligned} & 1 \text { to } 9.1 \mathrm{pF}= \pm .25 \mathrm{pF} \\ & 10 \text { to } 24 \mathrm{pF}= \pm 5 \% \end{aligned}$			RANGE: 27 to 680 pF TYPE: Dipped Mica TOLERANCE: $\pm 5 \%$		
Value (pF)	HP Part Number	C	Value (pF)	HP Part Number	C
1.01.21.51.82.0	$0160-2236$ $0160-2237$ $0150-0091$ $0160-2239$ $0160-2240$	89814	$\begin{aligned} & 27 \\ & 30 \\ & 33 \\ & 36 \\ & 39 \end{aligned}$	0160-2306	3
				0160-2199	2
				0160-2150	5
				0160-2308	5
				0140-0190	7
2.2	0160-2241	5	43	$\begin{aligned} & 0160-2200 \\ & 0160-2307 \end{aligned}$	6 4
2.4	0160-2242	6	47	$\begin{aligned} & 0160-2307 \\ & 0160-2201 \end{aligned}$	4 7
$\begin{aligned} & 2.7 \\ & 3.0 \end{aligned}$	0160-2243	7	51	0140.0191	7 8
	0160-2244	8	62	0140-0205	5
3.3	0150-0059	8			
			68	0140-0192	9
3.6	0160-2246	0	75	0160-2202	8
3.9	0160-2247	1	82	0140-0193	0
4.3	0160-2248	2	91	0160-2203	0
4.7	0160-2249	3	100	0160-2204	
5.1	0160-2250	6		0140-0194	
			120	0160-2205	1
5.6	0160-2251	7	130	0140-0195	2
6.2	$0160 \cdot 2252$	8	150	0140-0196	3
6.8	0160-2253	9	160	0160-2206	2
7.5	0160-2254	0			
8.2	0160-2255	1	180	0140-0197	4
			200	0140-0198	5
9.1	0100-2256	2	220	0160-0134	1
10.0	0160-2257	3	240	0140-0199	6
11.0	0160-2258	4	270	0140-0210	2
12.0	0160-2259			0160-2207	
13.0	0160-2260	8	330	0160-2208	4
			360	0160-2209	5
15.0	0160-2261	9	390	0140-0200	0
16.0	0160-2262	0	430	0160-0939	4
18.0	0160-2263	1			
20.0	0160-2264	2	470	0160-3533	0
22.0	0160-2265	3	510	0160-3534	1
			560	0160-3535	2
24.0	0160-2266	4	$\begin{aligned} & 620 \\ & 680 \end{aligned}$	$0160-3536$ $0160-3537$	3 4
				0160-3537	

TABLE 5-4. HPPART NUMBERSOFSTANDARDVALUE REPLACEMENTCOMPONENTS(2OF3)

RESISTORS								
RANGE: 10 to 464K Ohms TYPE: Fixed-Film WATTAGE: .125 at $125^{\circ} \mathrm{C}$ TOLERANCE: $\pm 1.0 \%$								
Value (Ω)	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Value (Ω)	HP Part Number	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	Value (Ω)	HP Part Number	C
10.0	0757.0346	2	464	0698-0082	7	21.5 K	0757-0199	3
11.0	0757-0378	0	511	0757-0416	7	23.7 K	0698-3158	4
12.1	0757-0379	1	562	$0757-0417$	8	26.1K	0698-3159	5
13.3	0698-3427	0	619	0757-0418	9	28.7 K	0698-3449	6
14.7	0698-3428	1	681	0757-0419	0	31.6 K	0698-3160	8
16.2	0757-0382	6	750	0757-0420	3	34.8 K	0757-0123	3
17.8	0757-0294	9	825	0757-0421	4	38.3 K	0698-3161	9
19.6	0698-3429	2	909	0757-0422	5	42.2 K	0698-3450	9
21.5	0698-3430	5	1.0 K	0757-0280	3	46.4 K	0698-3162	0
23.7	0698-3431	6	1.1 K	0757-0424	7	51.1 K	0757-0458	7
26.1	0698-3432	7	1.21 K	0757-0274	5	56.2K	0757-0459	8
28.7	0698-3433	8	1.33 K	0757-0317	7	61.9 K	0757-0460	1
31.6	0757-0180	2	1.47 K	0757-1094	9	68.1 K	0757-0461	2
34.8	0698-3434	9	1.62 K	0757-0428	1	75.OK	0757.0462	3
38.3	0698-3435	0	1.78 K	0757-0278	9	82.5 K	0757-0463	4
42.2	0757-0316	6	1.96K	0698-0083	8	90.9 K	0757-0464	5
46.4	0698.4037	0	2.15 K	0698-0084	9	100 K	0757-0465	6
51.1	0757-0394	0	2.37 K	0698-3150	6	110 K	0757-0466	7
56.2	0757-0395	1	2.61 K	0698-0085	0	121 K	0757-0467	8
61.9	0757-0276	7	2.87 K	0698-3151	7	133K	0698-3451	0
68.1	0757-0397	3	3.16 K	0757-0279	0	147K	0698.3452	1
75.0	0757-0398	4	3.48 K	0698-3152	8	162K	0757-0470	3
82.5	0757-0399	5	3.83 K	0698-3153	9	178K	0698.3243	8
90.9	0757-0400	9	4.22 K	0698-3154	0	196K	0698-3453	2
100	0757-0401	0	4.64 K	0698-3155	1	215 K	0698-3454	3
110	0757-0402	1	5.11 K	0757-0438	3	237K	0698-3266	5
121	0757-0403	2	5.62 K	0757-0200	7	261K	0698-3455	4
133	0698-3437	2	6.19 K	0757-0290	5	287K	0698-3456	5
147	0698-3438	3	6.81 K	0757-0439	4	316 K	0698-3457	6
162	0757-0405	4	7.50 K	0757-0440	7	348K	0698-3458	7
178	0698-3439	4	8.25 K	0757-0441	8	383K	0698-3459	8
196	0698-3440	7	9.09 K	0757-0288	1	422K	0698.3460	1
215	0698-3441	8	10.0K	0757-0442	9	464 K	0698-3260	9
237	0698-3442	9	11.0K	0757-0443	0			
261	0698.3132	4	12.1 K	0757-0444	1			
287	0698-3443	0	13.3K	0757-0289	2			
316	0698-3444	1	14.7K	0698.3156	2			
348	0698-3445	2	16.2K	0757-0447	4			
383	0698-3446	3	17.8K	0698-3136	8			
422	0698-3447	4	19.6K	0698.3157	3			

TABLE5-4. HPPART NUMBERS OF STANDARDVALUEREPLACEMENTCOMPONENTS(3OF 3)

RESISTORS											
	RANSE: TYPE: F WATTAG TOLERAN		$\begin{aligned} & 1.47 \mathrm{M} \\ & \mathrm{~m} \\ & \text { it } 125^{\circ} \mathrm{C} \\ & 1 \% \end{aligned}$				目N				
Value (Ω)	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Value (Ω)	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Value (Ω)	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Value (Ω)	HP Part Number	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$
10.0	0757-0984	4	215	0698-3401	0	4.64 K	0698-3348	4	110K	0757-0859	2
11.0	0575-0985	5	237	0698-3102	8	5.11 K	0757-0833	2	121 K	0757-0860	5
12.1	0757.0986	6	261	0757-1090	5	5.62 K	0757-0834	3	133K	0757-0310	0
13.3	0757.0001	6	287	0757-1092	7	6.19 K	0757-0196	0	147 K	0698-3175	5
14.7	0698-3388	2	316	0698-3402	1	6.81 K	0757-0835	4	162K	0757-0130	2
16.2	0757-0989	9	348	0698-3403	2	7.50 K	0757-0836	5	178K	0757.0129	9
17.8	0698-3389	3	383	0698-3404	3	8.25 K	0757.0837	6	196K	0757-0063	0
19.6	0698-3390	6	422	0698-3405	4	9.09 K	0757-0838	7	215K	0757-0127	7
21.5	0698-3391	7	464	0698-0090	7	10.0 K	0757-0839	8	237K	0698-3424	7
23.7	0698-3392	8	511	0757-0814	9	12.1 K	0757-0841	2	261 K	0757-0064	1
26.1	0757-0003	8	562	0757-0815	0	13.3 K	0698-3413	4	287 K	0757-0154	0
28.7	0698-3393	9	619	0757-0158	4	14.7 K	0698-3414	5	316 K	0698-3425	8
31.6	0698-3394	0	681	0757.0816	1	16.2 K	0757-0844	5	348K	0757.0195	9
34.8	0698-3395	1	750	0757-0817	2	17.8 K	0698-0025	8	383 K	0757.0133	5
38.3	0698-3396	2	825	0757-0818	3	19.6K	0698-3415	6	422 K	0757-0134	6
42.2	0698-3397	3	909	0757.0819	4	21.5 K	0698-3416	7	464 K	0698-3426	9
46.4	0698-3398	4	1.00 K	0757-0159	5	23.7 K	0698.3417	8	511 K	0757-0135	7
51.1	0757-1000	7	1.10 K	0757-0820	7	26.1K	0698-3418	9	562 K	0757-0868	3
56.2	0757-1001	8	1.21 K	0757-0821	8	28.7K	0698-3103	9	619 K	0757-0136	8
61.9	0757-1002	9	1.33 K	0698-3406	5	31.6 K	0698-3419	0	681 K	0757-0869	4
68.1	0757-0794	4	1.47 K	0757-1078	9	34.8 K	0698-3420	3	750K	0757.0137	9
75.0	0757-0795	5	1.62 K	0757-0873	0	38.3 K	0698-3421	4	825 K	0757-0870	7
82.5	0757-0796	6	1.78 K	0698-0089	4	42.2K	0698-3422	5	909K	0757-0138	0
90.0	0757.0797	7	1.96 K	0698-3407	6	46.4 K	0698-3423	6	1M	0757-0059	4
100	0757-0198	2	2.15 K	0698-3408	7	51.1 K	0757-0853	6	1.1M	0757.0139	1
110	0757-0798	8	2.37 K	0698-3409	8	56.2 K	0757-0854	7	1.21 M	0757.0871	8
121	0757-0799	9	2.61 K	0698-0024	7	61.9 K	0757-0309	7	1.33 M	0757-0194	8
133	0698-3399	5	2.87 K	0698.3101	7	68.1 K	0757-0855	8	1.47M	0698-3464	5
147	0698-3400	9	3.16 K	0698-3410	1	75.OK	0757.0856	9			
162	0757-0802	5	3.48 K	0698-3411	2	82.5K	0757-0857	0			
178	0698-3334	8	3.83 K	0698-3412	3	90.9 K	0757.0858	1			
196	0757-1060	9	4.22 K	0698-3346	2	100K	0757-0367	7			

ADJUSTMENTS

5-17. POWER SUPPLY CHECKS AND ADJUSTMENTS

REFERENCE:

A7, A8, A9 Schematics

DESCRIPTION:

The +14.5 V and -10 V regulated power supplies on Frequency Control Assembly A7 are adjusted. The (dependent) -12 V power supply is then checked for proper dc output (with less than $\pm 50 \mathrm{mV}$ variation) while the spectrum analyzer is tuned from 10 MHz to 3 GHz . The +10 V power supply on Sweep Generator/Bandwidth Control Assembly A9 and the VO (Varactor Offset) voltage on Marker Assembly A8 are then adjusted. Both the +10 V power supply voltage and the VO voltage are temperature-dependentand must be adjusted during the first five minutes after the spectrum analyzer is turned on (cold instrument).

FIGURE 5-1. POWERSUPPLYCHECKS AND ADJUSTMENTSTEST SETUP

EQUIPMENT:

Digital Voltmeter HP 3456A
Extender Cable HP 5060-0303
Cable Assembly, BNC (m) to Banana Plug .Adapter, BNC (f) to Alligator ClipsHP 8120-1292

ADJUSTMENTS

5-17. POWER SUPPLY CHECKS AND ADJUSTMENTS(Cont'd)

PROCEDURE:

1. Set spectrum analyzer controls as follows:
FREQUENCY BAND GHz $.01-3$
TUNING 0.010 GHz
FREQ SPAN/DIV F (full)
RESOLUTION BW coupled
INPUT ATTEN 10 dB
REFERENCE LEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV MAN
SWEEPTRIGGER FREE RUN
ALTIF OFF
SIGIDENT OFF
BLCLIP OFF
VIDEOFILTER OFF

NOTE

In all following adjustments, connect negative terminal of digital voltmeter to spectrum analyzer chassis unless otherwise instructed.

2. Connect equipment as shown in Figure 5-1. Install Frequency Control Assembly A7 on extender board and connect digital voltmeter to +14.5 V test points A7TP3.
3. Adjust +14.5 V potentiometer A7R41 for a voltmeter indication of $+14.500 \pm 0.002 \mathrm{Vdc}$.
4. Connect digital voltmeter to -10 V test point A 7 TP 2 and adjust -10 V potentiometer A 7 R 29 for a voltmeter indication of $-10.000 \pm 0.005 \mathrm{Vdc}$.
5. Use digital voltmeter to check for -12.0 ± 0. I Vdc at collector (case) of transistor A7Q7, located near center of Frequency Control Assembly A7. Vary MAN SWEEP control over entire range and verify that voltage indication varies no more than $\pm 0.05 \mathrm{Vdc}$.
6. Remove extender board and reinstall Frequency Control Assembly A7.

ADJUSTMENTS

5-17. POWER SUPPLY CHECKS AND ADJUSTMENTS(Cont'd)

Abstract

NOTE The two following voltage adjustments, +10 V and VO (Varactor Offset), must be performed while the spectrum analyzer is still cold (during first five minutes after turn-on). If the instrument has been operating longer than five minutes, turn off the display mainframe, remove A8 and A9 assemblies, and let them cool on bench for 15 minutes. Replace the two assemblies and proceed with adjustment of A9R2 and A8R62 during the first five minutes after turn-on.

7. Connect digital voltmeter to +10 V test point A9TP7 and adjust +10 V potentiometer A 9 R 2 for a voltmeter indication of $+10.000 \pm 0.100 \mathrm{Vdc}$.
8. Connect digital voltmeter to VO test point A8TP2. Set spectrum analyzer SWEEP TIME/DIV control to 10 ms and SWEEP TRIGGER control to SINGLE. Turn ALT IF and SIG IDENT on (pushbuttons depressed).
9. Voltage at A8TP2 will alternate between two values each time a sweep is triggered. Trigger sweep a few times until voltmeter indicates least negative VO voltage. Adjust VO potentiometer A8R62 for a voltmeter indication of $-2.00 \pm 0.10 \mathrm{Vdc}$.

ADJUSTMENTS

5-18. CALIBRATED SWEEP TIME ADJUSTMENT

REFERENCE:
A9 Schematic

DESCRIPTION:

A counter is used to adjust the time interval of the 1 millisecond per division and 5 milliseconds per division sweep times. Calibrated sweep times from 0.1 milliseconds through 50 milliseconds are then checked using the counter time-interval (T.I.) function.

FIGURE 5.2. CALIBRATED SWEEP TIME ADJUSTMENT TEST SETUP

EQUIPMENT:

50 MHz Universal Counter
HP 5300B/5302A
Extender Cable Assembly
HP 5060-0303
BNC Tee
HP 1250-0781

PROCEDURE:

Since the calibrated sweep time adjustments are dependent on the +14.5 V and -10 V power supplies, the Power Supply Checks and Adjustments (paragraph 5-17) should be performed before starting this procedure.

ADJUSTMENTS

5-18. CALIBRATEDSWEEP TIME ADJUSTMENT(Cont'd)

1. Set equipment controls as follows:

NOTE

If an HP 853A Spectrum Analyzer Display mainframe is used, and a sweep time faster than 10 msec is selected, an error message will appear on the analyzer's CRT and the analyzer will go into mixed mode.

Spectrum Analyzer:
FREQUENCY BAND GHz $.01-3$
TUNING $>0.010 \mathrm{GHz}$
FREQ SPAN/DIV F (full)
RESOLUTION BW Optimum, coupled10 dB
REFERENCE LEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV 1 msec
SWEEP TRIGGER FREE RUN
ALTIF OFF
SIGIDENT OFF
BLCLIP OFF
VIDEOFILTER OFF
50 MHz Universal Counter:
FUNCTION TI. A to B
SAMPLE RATE Full counterclockwise
TIME BASE $10 \mu \mathrm{~S}$
SENSITIVITY (A) 9 o'clock
A 50 MHz INPUT
(falling edge)SENSITIVITY (B)9 o'clock
B 10 MHz INPUT(rising edge)
2. Connect equipment as shown in Figure 5-2.
3. Adjust counter SENSITIVITY controls (both channels) as necessary until counter triggers and indicates a time interval of approximately 10.00 ms .
4. Adjust 1 ms potentiometer A9R 10 for a time interval indication of $10.00 \pm 0.80 \mathrm{~ms}$

ADJUSTMENTS

5-18. CALIBRATEDSWEEP TIME ADJUSTMENT(Cont'd)

NOTE

In early instruments, A9R13 is labeled " 2 ms." The adjustment of A9R13, however, should be performed with SWEEP TIME/DIV set at 5 ms .
5. Set spectrum analyzer SWEEP TIME/DIV control to 5 msec . Readjust counter SENSITIVITY controls as necessary and adjust 5 ms potentiometer A9R13 for a time interval indication of $50.00 \pm 4.00 \mathrm{~ms}$.
6. Check time interval for each SWEEP TIME/DIV control setting listed in Table 5-5. Readjust 1 ms potentiometer A9R10 and 5 ms potentiometer A9R13 as necessary if test limits are exceeded.

TABLE 5-5. CALIBRATED SWEEP TIME TESTLIMITS

SWEEP TIME/DIV Setting	Sweep Time (ms)
.1 m s	1.00 ± 0.10
.2 ms	2.00 ± 0.20
.5 ms	5.00 ± 0.40
1 ms	10.00 ± 0.80
2 ms	20.00 ± 1.50
5 ms	50.00 ± 4.00
10 ms	100.00 ± 8.00
20 ms	200.00 ± 16.00
50 ms	500.00 ± 40.00

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTS

REFERENCE:

A14 and A15 Schematics

DESCRIPTION:

Step attenuators are used to change the level of the input signal to the spectrum analyzer in calibrated steps. The output of Vertical Driver and Blanking Assembly A15 is monitored, and adjustments are performed to calibrate Log Amplifier Assembly A14.

FIGURE53. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTSTEST SETUP

EQUIPMENT:

Signal Generator HP 8640B
Digital Voltmeter HP 3456A
Step Attenuator ($10-\mathrm{dB} /$ step) HP 355D, Opt. H82
Step Attenuator (1-dB/step) HP 355C, Opt. H80
Cable Assembly, Banana Plug to BNC (m) HP 11001A
Adapter, Type N(m) to BNC (f) HP 1250-0780
Adapter, SMC (m) to BNC (f) HP 1250-0832
Extender Cable Assembly HP 5060-0303

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTS(Cont'd)

PROCEDURE:

1. Set equipment controls as follows:

Spectrum Analyzer:
FREQUENCY BAND GHz . 01 - 3
TUNING . $>0.010 \mathrm{GHz}$
FREQ SPAN/DIV . 0
RESOLUTION BW . 300 kHz , uncoupled
INPUTATTEN . 10 dB
REFERENCELEVEL . 50 dBm
REFLEVELFINE 0
Amplitude Scale .
SWEEP TIME/DIV . AUTO
SWEEPTRIGGER . FREE RUN
ALTIF OFF
SIG IDENT . OFF
BLCLIP... . OFF
VIDEOFILTER .. . OFF
Signal Generator:
COUNTERMODE .. . INT
AM OFF
FM OFF
FREQUENCY TUNE 321.4 MHz
RF... ON
OUTPUTLEVEL .. approx. -28 dBm
2. Set $1-\mathrm{dB}$ step attenuator to 10 dB and $10-\mathrm{dB}$ step attenuator to 0 dB . Remove AlOWl (blue cable) from A5J2 and connect equipment as shown in Figure 5-3, using adapter to connect step attenuator to A10W1.

NOTE

The HP 355C 10 dB attenuation is included to compensate for 10 dB of gain on Step Gain Assembly A12 with the TEST-NORM switch in TEST.

3. Set TEST-NORM switch on Step Gain Assembly A12 to TEST position. Adjust signal generator FREQUENCY TUNE control for maximum signal amplitude on display with $10-\mathrm{dB}$ step attenuator set to 0 dB (reduce signal generator OUTPUT LEVEL control setting as necessary to bring signal on-screen).

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTS (Cont'd)

4. Disconnect signal generator output from step attenuator. Adjust spectrum analyzer VERTICAL POSN control to position signal trace at bottom CRT graticule line. Measure dc offset voltage at A15TP1 and record.
\qquad
mV
5. Connect signal generator to step attenuator and adjust signal generator FINE TUNE control to peak signal on CRT display.
6. Adjust signal generator OUTPUT LEVEL for digital voltmeter (DVM) reading ($\pm 1 \mathrm{mV}$) of 800 mV plus offset recorded in step 4, as measured at A15TP1. Adjust spectrum analyzer VERTICAL GAIN control to position signal trace at top graticule line.
7. Set spectrum analyzer Amplitude Scale control to $10 \mathrm{~dB} /$ DIV.
8. Set $10-\mathrm{dB}$ step attenuator to 0 dB and adjust SLOPE potentiometer A14R23 for DVM reading ($\pm 1 \mathrm{mV}$) of 800 mV plus offset recorded in step 4, as measured at A15TP1.
9. Set $10-\mathrm{dB}$ step attenuator to 60 dB and adjust OFFSET potentiometer A14R 10 for DVM reading ($\pm 1 \mathrm{mV}$) of 200 mV plus offset recorded in step 4, as measured at A15TP1.
10. Repeat steps 8 and 9 until no further adjustment is necessary.
11. Set $10-\mathrm{dB}$ step attenuator to 30 dB and adjust SLOPE potentiometer A14R23 for DVM reading ($\pm 1 \mathrm{mV}$) of 500 mV plus offset recorded in step 4, as measured at A15TP1.
12. Set $10-\mathrm{dB}$ step attenuator to 60 dB and adjust OFFSET potentiometer A14R 10 for DVM reading ($\pm 1 \mathrm{mV}$) of 200 mV plus offset recorded in step 4.
13. Repeat steps 11 and 12 until no further adjustment is necessary.
14. Set $10-\mathrm{dB}$ step attenuator to 10 dB and adjust -30 dB potentiometer A14R69 for DVM reading ($\pm 1 \mathrm{mV}$) of 700 mV plus offset recorded in step 4 .
15. Set $10-\mathrm{dB}$ step attenuator to 0 dB and adjust -10 dB potentiometer A14R 39 for DVM reading $(\pm 1 \mathrm{mV})$ of 800 mV plus offset recorded in step 4.
16. Set $10-\mathrm{dB}$ step attenuator to 60 dB and adjust OFFSET potentiometer A14R 10 for DVM reading ($\pm 1 \mathrm{mV}$) of 200 mV plus offset recorded in step 4.
17. Set $10-\mathrm{dB}$ step attenuator to 0 dB and adjust SLOPE potentiometer A14R23 for DVM reading ($\pm 1 \mathrm{mV}$) of 800 mV plus offset recorded in step 4 .
18. Repeat steps 16 and 17 until no further adjustment is necessary.
19. Check log fidelity per Table 5-6. If test limits are not met, repeat steps 8 through 18 .

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTS(Cont'd)

TABLE5-6: LOG FIDELITYCHECK

Step Attenuator Setting (dB)	DVM Readipg	Corrected DVM Reading* (mV)	Test Limits (mV)	Theoretical Reading (mV)	Theoretical Reading Subtracted from Corrected DVM Reading (mV)	Difference Between Adjacent Readings*" (mV)
0			800 ± 1	800		
10			700 ± 3	700		
20			600 ± 4	600		
30			500 ± 4	500		
40			400 ± 5	400		
50			300 ± 6	300		
60			200 ± 7	200		
70			100 ± 8	100		
DVM readin All values i	nus offset Difference	ed in step 4 een Adjace	dings col	must be less	r equal to $\pm 10 \mathrm{mV}$.	

Example (+5 mV offset):

TABLE5-7. SAMPLECOMPUTATIONSOF AMPLITUDELOG DISPLAY ACCURACY

Step Attenuator Setting $(\mathbf{d B})$	DVM Reading $(\mathbf{m V})$	Corrected DVM Reading* $(\mathbf{m V})$	Theoretical Reading $(\mathbf{m V})$	Theoretical Reading Subtracted from Corrected DVM Reading $(\mathbf{m V})$	Difference Between Adjacent Readings*" $(\mathbf{m V})$
0	+805	+800	+800	0	
10	+708	+703	+700	$-\mathbf{+ 3}$	$-\mathbf{- 3}$
20	+599	+594	+600	$-\mathbf{- 6}$	$-\mathbf{+ 9}$
30	+497	+492	+500	$-\mathbf{- 8}$	$-\mathbf{+ 2}$
40	+406	+401	+400	$-\mathbf{+ 1}$	$-\mathbf{- 9}$

[^4]
ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTS(Cont'd)

Linear Output and Linear Step Gain

20. Disconnect A10W1 from step attenuator and reconnect to A5J2.

CAUTION

When reconnecting A10W1 to A5J2, do not tighten to over 6 inch pounds of torque; A5J2 can be damaged if the connector is overtightened.

Set spectrum analyzer controls as follows:

```
INPUT ATTEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 dB
REFERENCE LEVEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... . . - - 50 dBm
FREQ SPAN/DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
```


Set signal generator controls as follows:

```
OUTPUT LEVEL approx. -5 dBm
FREQUENCY ................................................................................ 30 MHz
```

Set $10-\mathrm{dB}$ step attenuator to 0 dB .
21. Remove adapter from step attenuator and connect step attenuator to spectrum analyzer input. Adjust the signal generator OUTPUT LEVEL for a DVM reading ($\pm 1 \mathrm{mV}$) of 800 mV plus offset recorded in step 4 (measured at A15TPI).
22. Set spectrum analyzer amplitude scale for Linear display (LIN) and adjust LIN control A14R34 for DVM reading $(\pm 1 \mathrm{mV})$ of 800 mV plus offset recorded in step 4 .
23. Make adjustments indicated in Table 5-8, then recheck that all steps meet the DVM test limits. Between adjustments, recheck tuning of spectrum analyzer to be certain signal remains peaked.

TABLE 5.8. LINEAR GAIN ADJUSTMENTS

Adjustment	Step Attenuator	Reference Level (dBm)	DVM Reading"		
A14R34	0	-50	Ref: $800 \pm 1 \mathrm{mV}$		
A14R33	10	-60	$800 \pm 5 \mathrm{mV}$		
A14R30	20	-70	$800 \pm 5 \mathrm{mV}$		
A14R27	30	-80	$800 \pm 5 \mathrm{mV}$		
No adjustment	40	-90	$800 \pm 20 \mathrm{mV}$		
*After subtracting offset.				$.$	
:---					

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTS(Cont'd)

Log Gain

24. Set spectrum analyzer controls as follows:

> REFERENCE LEVEL . 50 dBm
> Amplitude Scale. 1 db /DIV
25. Set $10-\mathrm{dB}$ step attenuator to 0 dB . Retune spectrum analyzer to peak signal. Adjust signal generator OUTPUT LEVEL for DVM reading ($\pm 1 \mathrm{mV}$) of 800 mV plus offset recorded in step 4 , as measured at A15TP1.
26. Set $10-\mathrm{dB}$ step attenuator to 40 dB . Set REFERENCE LEVEL to -90 dBm and adjust LOG GAIN control A14R121 for DVM reading of 800 mV plus offset recorded in step 4, as measured at A15TP1.
27. Check log gain steps according to Table 5-9. If limits are not met, repeat steps 25 through $\mathbf{2 7}$. If limits still are not met, return to step 1 .

TABLE 59. LOGGAIN ADJUSTMENTLIMITS

Step Attenuator	Reference Level (dBm)	DVM Reading* *
0	-50	Ref: $800 \pm 1 \mathrm{mV}$
10	-60	$800+30 \mathrm{mV}$
20	-70	$800+30 \mathrm{mV}$
30	-80	$800+30 \mathrm{mV}$
40	-90	$800+30 \mathrm{mV}$
*After subtracting offset.		

28. Set spectrum analyzer controls as follows:

29. Set both step attenuators to 0 dB . Reduce signal generator OUTPUT LEVEL until signal appears at top of display. Adjust spectrum analyzer FINE TUNE to peak trace on display and adjust signal generator OUTPUT LEVEL for DVM reading ($\pm 1 \mathrm{mV}$) of 800 mV plus offset recorded in step 4 , as measured at A15TP1. Increase attenuation in 1-dB steps as shown in Table 5-10 and take DVM readings to check log amplifier output.
30. Return TEST-NORM switch A12S1 to NORM.

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTS(Cont'd)

TABLE5-10. LOG AMPLIFIER OUTPUT LIMITS

Step Attenuator Setting (dB)	D V M Reading (mV)	Corrected DVM Reading* (mV)	Test Limits (mV)	Theoretical Reading (mV)	Theoretical Reading Subtracted from Corrected D V M Reading (mV)	Difference Between Adjacent Readings** (mV)
0			800 ± 1	+800	0	
1			700 ± 10	+700		
2			600 ± 20	+600		
3			500 ± 30	+500		
4			400 ± 30	+400		
5			300 ± 30	+300		
6			200 ± 30	+200		
7			100 ± 30	+100		

* DVM Reading minus offset.
**All values in the Difference Between Adjacent Readings column must be less than or equal to $\pm 10 \mathrm{mV}$

ADJUSTMENTS

5-20. 1-dB OFFSET ADJUSTMENT

REFERENCE:

A15 Schematic

DESCRIPTION:

Reference is set in 10 dB /DIV amplitude scale and 1 dB offset is adjusted in 1 dB /DIV for the same full display reference.

FIGURE 5-4. 1-dB OFFSET ADJUSTMENTTEST SETUP

EQUIPMENT:

> Adapter, Type N (m) to BNC (f) . HP 1250-0780
> Extender Cable Assembly HP 5060-0303
> BNC Cable, 9-Inch HP 10502A

PROCEDURE:

1. Set spectrum analyzer controls as follows:
FREQUENCY BAND GHz $01-3$
TUNING $>60 \mathrm{MHz}$
FREQ SPAN/DIV 1 MHz
RESOLUTION BW 1 MHz , uncoupled
INPUTATTEN 10 dB
REFERENCE LEVEL 0 dBm
REFLEVELFINE 0
Amplitude Scale LIN
SWEEP TIME/DIV AUTO
SWEEP TRIGGER FREE RUN
ALTIF OFF
SIG IDENT OFF
BLCLIP OFF
VIDEOFILTER OFF

ADJUSTMENTS

5-20. $\quad 1$-dB OFFSET ADJUSTMENT (Cont'd)

2. Connect equipment as shown in Figure 5-4.
3. Adjust vertical position to align trace on bottom graticule.
4. Set tuning to 35 MHz . Set TUNING control to center the trace on the display. Set REF LEVEL FINE for a full-screen trace (signal at top graticule line).
5. Set AmplitudeScale to 10 dB /DIV. Adjust VERT GAIN if necessary for full screen trace.
6. Repeat steps 3 and 4 until the trace is full screen in both LIN and 10 dB /DIV.

NOTE

1 dBIDIV will read approximately 0.5 dB (0.5 division) low when using extender cable assembly. Adjusting A15R1 1 dB OFFSET for a trace 0.5 division down from top graticule line should place signal at top graticule line when HP 8559A is properly installed in display mainframe.
7. Set Amplitude Scale to $1 \mathrm{~dB} /$ DIV. Adjust A15R1 1 dB OFFSET for a trace 0.5 division down from top graticule line.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS

REFERENCE:

A9, A11, and A13 Schematics

DESCRIPTION:

The crystal and LC bandwidth filter circuits are adjusted for symmetry, center, and peak. The 3-dB bandwidths are adjusted with Sweep Generator/Bandwidth Control Assembly A9 (paragraph 5-22).

FIGURE5-5. CRYSTALANDLC BANDWIDTHFILTER ADJUSTMENTSTESTSETUP

EQUIPMENT:

```
Adapter, Type N(m) to BNC (f)
HP 1250-0780
Crystal Short (3 required)
See Figure 5-6
Extender Cable Assembly
HP 5060-0303
```


NOTE

A crystal short consists of a $.01 \mu \mathrm{~F}$ capacitor (HP Part Number 0160-0161) and a 90.9 ohm resistor (HP Part Number 0757-0400) connected in series. Two square terminal connectors (HP Part Number 0362-0265) are used to connect the crystal short across the test points.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(Cont'd)

FIGURE5-6. CRYSTALSHORTCONFIGURATION

PROCEDURE:

NOTE
Allow 30 minutes warmup time before performing adjustments.

1. Set spectrum analyzer controls as follows:
FREQUENCYBAND $.01-3 \mathrm{GHz}$
TUNING 35 MHz
FREQ SPAN/DIV 200 kHz
RESOLUTIONBW MHz
INPUTATTEN 10 dB
REFERENCELEVEL 0 dBm
Amplitude Scale LIN
SWEEP TIME/DIV 10 msec
SWEEPTRIGGER FREE RUN
Crystal Alignment
2. Connect equipment as shown in Figure 5-5.

NOTE
If Sweep Generator A9 has been replaced or adjusted, perform steps 3 through 8. If not, proceed to step 9.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(Cont'd)

3. Center the signal with TUNING control. Using REF LEVEL FINE control, place signal peak at 7.1 divisions (0.9 division from top graticule line).
4. Adjust A9R85 LC until signal is five divisions wide at the fifth graticule line ($\mathbf{1} \mathrm{MHz}$ wide at $3-\mathrm{dB}$ points).
5. Set FREQ SPAN/DIV to 10 kHz and RESOLUTION BW to 10 kHz .
6. Center the signal with FINE TUNING control.
7. Using REF LEVEL FINE control, place signal peak at 7.1 divisions.
8. Adjust A9R72 XTL until signal is one division wide at the fifth graticule line ($\mathbf{1 0} \mathrm{kHz}$ wide at $3-\mathrm{dB}$ points).
9. Set FREQ SPAN/DIV to 20 kHz and RESOLUTION BW to 30 kHz .
10. Center signal with TUNING control.
11. Adjust REF LEVEL FINE control to place signal at sixth graticule line.
12. Remove top guide rail. Connect crystal shorts (through cover access holes) across the following pairs of test points: A13TP1/TP2, A11TP1/TP2, and A11TP4/TP5.

NOTE

Keep crystal spike centered during adjustments. The SYM and CTR adjustments for each crystal interact(the signal also drifts in this narrow span).
13. Adjust front-panel TUNING control to center bandpass spike (Figure 5-7) on the CRT display.

NOTE

A non-metallic tuning tool is required for adjustments on the AII and A13 bandwidth filter assemblies.
14. Adjust A13C54 CTR for minimum signal amplitude. Then adjust A13C38 SYM and A13C54 CTR for a centered and symmetrical bandpass as shown in Figure 5-7.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(Cont'd)

FIGURE5-7. ADJUSTINGCRYSTALSYMMETRY AND CRYSTALCENTERING
15. Removecrystal short from A13TP1/TP2 and connect it across A13TP4/TP5.
16. Adjust A13C25 CTR for minimum signal amplitude. Then adjust A13C15 SYM and A13C25 CTR for a centered and symmetrical bandpass.
17. Removecrystal short from A11TP4/TP5 and connect it across A13TP1/TP2.
18. Adjust A11C54 CTR for minimum signal amplitude. Then adjust A11C38 SYM and A11C54 CTR for a centered and symmetrical bandpass.
19. Remove crystal short from A11TP1/TP2 and connect it across A11TP4/TP5.
20. Adjust A11C25 CTR for minimum signal amplitude. Then adjust A11C15 SYM and A11C25 CTR for a centered and symmetrical bandpass.
21. Remove the crystal shorts.
22. Set FREQ SPAN/DIV to 10 kHz and RESOLUTION BW to 30 kHz . Center signal on CRT with TUNING control.
23. Switch RESOLUTION BW from 30 kHz to 10 kHz and back several times. Verify that signal shift does not exceed 3 kHz (0.3 divisions). If signal shift is out of tolerance, return to step 11.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS (Cont'd)

LC Alignment

CAUTION

Accidentally shorting the case of A9Q1 (directly below A9TP6) to ANY test point will cause catastrophic failure to Sweep Generator Assembly A9.
24. Set RESOLUTION BW control to 100 kHz . Jumper A9TP6 to A9TP8. This forces the BW7 line to + 15V. Set FREQ SPAN/DIV to 100 kHz .

NOTE
When Bandwidth Filter Assemblies A11 and A13 are installed with covers in place, midget copper alligator clips (HP Part Number 1400-0483)can be used to short test points to the cover.
25. Perform preliminary LC filter adjustments as follows:

NOTE
It might be necessary to adjust the REF LEVEL FINE control to obtain an onscreendisplay during the following adjustments.
a. Remove $\mathrm{A}!3$ cover and install A13 on extender board.
b. Short to ground the following test points: A13TP6, A11TP3, and A11TP6. (This widens all but one LC pole).
c. Center signal on CRT with TUNING control. Adjust A13C73 for minimum signal amplitude.
d. Disconnect short from A13TP6 and short to ground A13TP3.
e. Adjust A13C74 for minimum signal amplitude. Remove shorts from A13TP3, A11TP3, and AllTP6.
f. Reinstall A13 and cover. Short A13TP3 and A13TP6 to ground. Remove A11 cover and install All on extender board.
g. Short Al1TP6 to ground.
h. Adjust A11C73 for minimum signal amplitude.
i. Disconnect short from A11TP6 and short to ground A11TP3.
j. Adjust A11C74 for minimum signal amplitude.
k. Disconnect shorts from test points and reinstall A11 and cover. Leave jumper from A9TP6 to A9TP8 in place.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(Cont'd)

26. Short to ground A11TP3, A11TP6, and A13TP3. Set RESOLUTION BW to 100 kHz and set FREQ SPAN/DIV to 20 kHz .
27. Center signal on CRT with TUNING control. Adjust A13C45 LC CTR for symmetrical bandpass display on CRT. Use FINE TUNING control to keep crystal spike centered.

NOTE

The crystal spike represents the center frequency of the crystal poles. In this procedure we are aligning the LC poles with the crystal poles. On some instruments, the crystal spike may not be very pronounced, in which case the center frequency of the 100 kHz RBW will have to be compared to the center frequency of the 30 kHz RBW.
28. Move short from A13TP3 to A13TP6. Leave other shorts in place. Center signal on CRT with TUNING control. Adjust A13C23 LC CTR for symmetrical bandpass display on CRT, keeping crystal spike centered.
29. Move short from A11TP6 to A13TP3. Leave other shorts in place. Center signal on CRT with TUNING control. Adjust A1lC45 LC CTR for symmetrical bandpass display on CRT, keeping crystal spike centered.
30. Move short from A11TP3 to A11TP6. Leave other shorts in place. Center signal on CRT with TUNING control. Adjust A11C23 LC CTR for symmetrical bandpass display on CRT, keeping crystal spike centered.
31. Disconnect shorts from A11TP6, A13TP3, A13TP6, and from ground. Remove jumper from A9TP6 and A9TP8.
32. Set FREQ SPAN/DIV to 10 kHz and RESOLUTION BW to 30 kHz . Center signal on CRT with TUNING control. Set RESOLUTION BW to 100 kHz and note where signal crosses center vertical graticule line.
33. Adjust A11C23, A11C45, A13C23, and A13C45 in succession so that amplitude of signal is peaked where it crosses center vertical CRT graticule line, repeating step 32 between adjustments as necessary.
34. Repeat steps 32 and 33 until 30 kHz and 100 kHz bandwidths are centered with each other. If signal shift between 30 kHz and 100 kHz bandwidths is greater than 10 kHz (1 division), repeat steps 24 through 33.

Bandwidth Amplitude

35. Set AmplitudeScale switch to $1 \mathrm{~dB} /$ DIV and jumper A9TP6 to A9TP8.
36. Short A11TP3, A11TP6, A13TP3, and A13TP6 to ground.
37. Set RESOLUTION BW to 100 kHz and FREQ SPAN/DIV to 200 kHz .

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(Cont'd)

38. Adjust FINE TUNING and REF LEVEL FINE controls for a centered signal at 7 divisions from bottom graticule line.
39. Remove shorts from A13TP3 and A13TP6 and center signal with FINE TUNING control. Adjust A13R26 LC for a signal amplitude of 7 divisions. Replace shorts on A13TP3 and A13TP6.
40. Remove shorts from A11TP3 and A11TP6. Adjust A11R26 LC for a signal amplitude of 7 divisions.
41. Repeat steps 36 through 40 until no further adjustment is necessary. Remove shorts from A11TP3, A11TP6, A13TP3, and A13TP6.
42. Adjust A11R31 XTL and A13R31 XTL fully counterclockwise.
43. Set RESOLUTION BW to 1 kHz and FREQ SPAN/DIV to 10 kHz . Center signal with FINE TUNING control. Adjust A11R31 XTL and A13R31 XTL equally for a signal amplitude of 7 divisions. Each potentiometer should be adjusted to accomplish half the necessary increase in signal amplitude.
44. Remove jumper from A9TP6 and A9TP8.
45. Set FREQ SPAN/DIV to 500 kHz and RESOLUTION BW to 3 MHz .
46. Center signal with TUNING control. Adjust REF LEVEL FINE control for a signal amplitude of 7 divisions.
47. Step down RESOLUTION BW from 3 MHz tp 300 kHz . Variation in signal amplitude should be less than $\pm 0.4 \mathrm{~dB}$.
48. Set FREQ SPAN/DIV to 10 kHz , TIME/DIV to AUTO, and step down RESOLUTION BW from 100 kHz to 1 kHz . Variation of signal amplitude should be less than $\pm 0.7 \mathrm{~dB}$ from the 7 th division reference.
49. Repeat steps 35 through 46 until variation in signal amplitude is within limits.

NOTE

If amplitude variation between crystal and LC poles exceeds specification, A11R7*IA13R7* can be replaced to bring the crystal poles to the amplitude of the LC poles.

ADJUSTMENTS

5-22. 3-dB BANDWIDTH ADJUSTMENTS

REFERENCE:

A9 Schematic

DESCRIPTION:

The $3-\mathrm{dB}$ bandwidths for the 3 MHz through the 30 kHz RESOLUTION BW settings are adjusted using the CAL OUTPUT as the signal source. The 3-dB bandwidths for the $10 \mathrm{kHz}, 3 \mathrm{kHz}$, and 1 kHz RESOLUTION BW settings are adjusted by injecting a stable 321.4 MHz signal into the Third Converter (A10) of the spectrum analyzer.

FIGURE5-8. 3-dBBANDWIDTH ADJUSTMENTTESTSETUP

EQUIPMENT:
Signal Generator HP 8640BFrequency Counter5342A
Step Attenuator HP 355D
Adapter, Type N (m) to BNC (f) (2 required) HP 1250-0780
Extender Cable Assembly HP 5060-0303
Test Cable, BNC to SMB HP 85680-60093
BNC Tee HP 1250-0781

ADJUSTMENTS

5-22. 3-dB BANDWIDTH ADJUSTMENTS (Cont'd)

PROCEDURE:

1. Set spectrum analyzer controls as follows:

FREQUENCYBAND	$0.01-3 \mathrm{GHz}$
TUNING	35 MHz
FREQ SPAN/DIV	200 kHz
RESOLUTIONBW	1 MHz
INPUTATTEN	10 dB
REFERENCELEVEL	0 dBm
Amplitude Scale	LIN
SWEEP TIME/DIV	2 msec
SWEEPTRIGGER	FREE RUN
VIDEOFILTER	OFF
BASELINECLIPPER	... OFF
853A (if used)	G DISPLAY)

2. Connect CAL OUTPUT to spectrum analyzer INPUT
3. Set a 7.1 division signal level on display with REF LEVEL FINE control. Signal will be 0.9 division from top graticule line.
4. Adjust A9R85 LC control for a 5 division wide signal at fifth graticule line.
5. Set RESOLUTION BW to 3 MHz and FREQ SPAN/DIV to 500 kHz . If necessary, reset signal level to 7.1 divisions with REF LEVEL FINE control. The bandwidth at the fifth graticule line should be between 5.4 and 6.6 divisions.

NOTE

A9R85 LC may be further adjusted to bring the 3 MHz and 300 kHz bandwidths within limits; however, the final measurement of the 1 MHz bandwidth must be between 4.5 and 5.5 division at the fifth graticule line. (If the 3 MHz bandwidth cannot be brought within limits by adjustment of A9R85 LC, change the value of factory-selected resistor A9R120*. If the 300 kHz bandwidth cannot be brought within limits by adjustment of A9R85 LC, change the value of A9R116*.)
6. Set RESOLUTIONBW to 300 kHz and FREQ SPAN/DIV to 50 kHz . If necessary, reset signal level to 7.1 divisions with REF LEVEL FINE control. The bandwidth should be between 5.4 and 6.6 divisions at the fifth graticule line.
7. Set RESOLUTION BW to 100 kHz and FREQ SPAN/DIV to 20 kHz . If necessary, reset signal level to 7.1 divisions with REF LEVEL FINE control. The bandwidth should be between 4.3 and 5.7 divisions at the fifth graticule line.

ADJUSTMENTS

5-22. 3-dB BANDWIDTH ADJUSTMENTS(Cont'd)

NOTE

If the 100 kHz bandwidth is not within the specified limits, change the values of factory-selected resistors A11R19*, A11R43*, A13R19*, and A13R43*. If the bandwidth is too wide, increase the value of the resistors; if the bandwidth is too narrow, decrease the value of the resistors. The fac-tory-selected resistors need not be of equal value, but each must be within one standard value of the others.
8. Set RESOLUTION BW to 30 kHz and FREQ SPAN/DIV to 10 kHz . If necessary, reset signal level with REF LEVEL FINE control. The bandwidth should be between 2.6 and 3.4 divisions at the fifth graticule line.

NOTE

If the 30 kHz bandwidth is not within the specified limits, change the values of factory-selectedresistors A11R23*, A11R48*, A13R23*, and A13R48*. If the bandwidth is too wide, decrease the value of the factory-selectedresistors; if the bandwidth is too narrow, increase the value of the resistors. The factory-selectedresistors must be within three standard values of the nominal value.
9. Connect signal generator as shown in Figure 5-8. Tune signal generator to approximately 21.4 MHz . Set the signal generator to approximately 0 dBm and the step attenuator to 10 dB . Set COUNTER MODE to EXPAND X 100.
10. Place spectrum analyzer on right side and connect test cable to Third Converter 21.4 MHz output connector A16J3. If connector is not present (some early instruments were not so supplied), remove AlOWl from A5J2 and connect AlOWl through a 10 dB step attenuator set to 30 dB and the signal generator set for a -10 dBm output level. The 10 dB step attenuator between BNC tee and frequency counter can be eliminated.
11. Set HP 8559A RESOLUTION BW to 1 MHz . Tune signal generator to peak signal on CRT display (near 21.4 MHz) (321.4 MHz if injecting into A10W1). Adjust the output level of signal generator to place the signal at 7.1 divisions.
12. Set RESOLUTION BW to 3 kHz . Tune signal generator to peak signal on CRT display.
13. Adjust REF LEVEL FINE to place signal at 7.1 divisions.
14. Note the counter frequency and tune the signal generator 1500 Hz below the center frequency noted. Record the new counter frequency.

ADJUSTMENTS

5-22. 3-dB BANDWIDTH ADJUSTMENTS(Cont'd)

15. Adjust A9R72 XTL to bring signal level to the fifth graticule line (three divisions from the top graticule line).
16. Increase signal generator frequency until signal on CRT display peaks and then decreases to the fifth graticule line. Record counter frequency.
17. Compare new frequency with frequency recorded in step 14. The difference between the two frequencies should be 2800 to 3200 Hz . If the bandwidth is not within limits, repeat steps 12 through 17, slightly readjusting A9R72 XTL, until the specified limits are achieved.
18. Set RESOLUTION BW to 10 kHz . Tune signal generator to peak signal on CRT display.
19. Adjust REF LEVEL FINE to place signal at 7.1 divisions.
20. Decrease signal generator frequency until the signal on the CRT display is at the fifth graticule line. Record this frequency.
21. Increase the signal generator frequency until the signal on the CRT display peaks and then decreases to the fifth graticule line. Record this frequency.
22. Compare new frequency with frequency recorded in step 20. The difference between the two frequencies should be 9.000 kHz to 11.000 kHz .

NOTE

> A9R72 XTL may be further adjusted to bring the 10 kHz and 1 kHz bandwidths within limits; however, the final measurement of the 3 kHz bandwidth must be between 2700 Hz and 3300 Hz . (If the 10 kHz bandwidth cannot be brought within limits by adjusting A9R72 XTL, change the value of factoryselected resistor A9R111*. If the 1 kHz bandwidth cannot be brought within limits by adjusting A9R72 XTL, change the value of A9R109*.)
23. Set RESOLUTION BW to 1 kHz . Tune signal generator to peak signal on CRT display.
24. Adjust REF LEVEL FINE to place signal at 7.1 divisions.
25. Record the counter frequency.

ADJUSTMENTS

5-22. 3-dB BANDWIDTH ADJUSTMENTS(Cont'd)

26. Increase signal generator frequency until signal on CRT display decreases to the fifth graticule line. Record the counter frequency.
27. Compare new frequency with frequency originally noted in step 25 . The difference between the two frequencies should be 450 Hz to 550 Hz .

ADJUSTMENTS

5-23. RF GAIN ADJUSTMENT

REFERENCE:

A12 Schematic

DESCRIPTION

The RF gain (sensitivity) of Step Gain Assembly A12 is adjusted by injecting a 21.4 MHz signal at XA10P1. Third Converter Assembly A10 is removed and replaced with a special extender board for applying the 21.4 MHz signal from the signal generator.

FIGURE 5-9. RF GAIN ADJUSTMENT TEST SETUP

EQUIPMENT:

Signal Generator HP 8640B
Digital Voltmeter HP 3456A
Power Meter HP 435A/B
Power Sensor HP 8481A
Special Extender Boardwith 51.1 ohm resistor
Test Cable, BNC (m) to Banana Plug HP 10111A
Extender Cable Assembly HP 5060-0303
Adapter, BNC (f) to Alligator Clips (2 required) HP 8120-1292

ADJUSTMENTS

5-23. RF GAIN ADJUSTMENT (Cont'd)

NOTE
To make special extender board, solder 51.1 ohm resistor from pin 18 to pin 22 of standard 24 pin extender board, HP Part No. 5060-0258. Leave resistor leads long for easy connection of clip leads.

PROCEDURE:

1. Set spectrum analyzer controls as follows:
FREQUENCY BAND GHz $01-3$
FREQ SPAN/DIV 1 MHz
RESOLUTIONBW 1 MHz
INPUTATTEN 0 dB
REF LEVEL dBm -10
REFLEVELFINE 0
Amplitude Scale LIN
SWEEP TIME/DIV AUTO
SWEEPTRIGGER FREE RUN
VIDEOFILTER MIN
2. Connect equipment as shown in Figure 5-9. Resistor on extender board should be toward rear of HP 8559A.
3. Set signal generator frequency to 21.4 MHz . Set output level for approximately -5 dBm .

NOTE

To remove Third Converter Assembly A10, it will be necessary to disconnect A10W1 from A5J2 and temporarily remove Marker Assembly A8 and Sweep Generator/Res BW Assembly A9.
4. Connect output of signal generator across 51.1 ohm resistor on special board using BNC to clip-lead adapter. The red lead (center conductor) should be connected to pin 18 of extender board.
5. Set signal generator frequency for peak amplitude on CRT display. Connect output of signal generator to power meter through a power sensor and set output level to $\mathbf{- 3} \mathrm{dBm}$. Reconnect signal generator output to clip-lead adapter.
6. Adjust A12R5 GAIN adjustment for signal one division from top graticule line. DVM should indicate $+700 \mathrm{mV} \pm 30 \mathrm{mV}$. Remove special extender board and replace Third Converter Assembly A10.

NOTE
If step gain adjustments will be performed next, do not reconnect A10W1 to A5J2.

ADJUSTMENTS

5-23. RF GAIN ADJUSTMENT (Cont'd)

CAUTION

When reconnecting A10W1 to A5J2, exercise caution; the connector should not be torqued more than 6 inch-pounds, otherwise damage to A5J2 will result.

Abstract

NOTE Front panel VERTICAL GAIN and POSN control settings can affect the voltage measured at A15TP1. Vertical calibration should be checked after adjusting A12R5 for $700 \mathbf{m V}$ (Refer to Section III).

ADJUSTMENTS

5-24. STEP GAIN ADJUSTMENTS

REFERENCE:

A12 Schematic

DESCRIPTION:

REF LEVEL FINE, 0 dB , and -12 dB adjustments are properly set and step gains of $10 \mathrm{~dB}, 20 \mathrm{~dB}$, and 40 dB are adjusted.

FIGURE5-10. STEPGAIN ADJUSTMENTSTEST SETUP

EQUIPMENT:

Signal Generator HP 8640B
Step Attenuator ($1 \mathrm{~dB} /$ Step) HP 355C, Option H80
Step Attenuator ($10 \mathrm{~dB} /$ Step) HP 355D, Option H82
Digital Voltmeter HP 3456A
Adapter, Type N(m) to BNC (f) HP 1250-0780
Adapter, BNC (m) to SMC (m) HP 1250-0831
Cable, BNC (m) to Banana Plug HP 10111A
Extender Cable Assembly HP 5060-0303
Adapter, BNC (f) to Alligator Clips HP 8120-1292

ADJUSTMENTS

5-24. STEP GAIN ADJUSTMENTS (Cont'd)

PROCEDURE:

1. Set spectrum analyzer controls as follows:

FREQ SPAN/DIV	1 MHz
RESOLUTIONBW	. 1 MHz
INPUTATTEN	10 dB
REF LEVEL dBm	
Amplitude Scale	$1 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV	AUTO
SWEEPTRIGGER	FREE RUN
VIDEO FILTER	MIN

2. Connect equipment as shown in Figure $5-10$. Connect signal generator tuned to 321.4 MHz with approximately -30 dBm output to one side of a $1 \mathrm{~dB} /$ step attenuator. Connect step attenuator output to A10W1 through adapter. Tune signal generator frequency for peak amplitude on display.
3. Set step attenuator to 12 dB and REF LEVEL FINE to -12 . Set signal generator level for a signal one division down from top graticule line.
4. Adjust A12R39-12 D until signal stops rising on display, then adjust A12R39 counterclockwise until signal drops approximately one third to one half of a division.
5. Set signal generator level so signal is one division down from top graticule line on display.
6. Set step attenuator to $\mathbf{0} \mathrm{dB}$ and REF LEVEL FINE to $\mathbf{0}$.
7. Adjust A12R350 D adjustment for a signal level one division from top graticule line.
8. Set step attenuator to 12 dB and REF LEVEL FINE to -12 . DVM indication should be $700 \pm 30 \mathrm{mV}$ (offset). If offset is greater than $\pm 30 \mathrm{mV}$, repeat steps 3 through 8 until DVM indication is within limits.
9. Replace $1 \mathrm{~dB} /$ step attenuator with $10 \mathrm{~dB} /$ step attenuator set to 0 dB . Set REF LEVEL FINE control to 0 .
10. Tune signal generator frequency for peak amplitude on the display (near 321.4 MHz).
11. Set signal generator level for a signal one division down from top graticule line. Set step attenuator to 10 dB and REF LEVEL dBm to -10 .
12. Adjust A12R6 10 D adjustment for signal level one division from top graticule line.
13. Set step attenuator to 20 dB and REF LEVEL dBm to $\mathbf{- 2 0}$.
14. Adjust A12R21 20 D adjustment for signal level one division from top graticule line.
15. Set attenuator to 40 dB and REF LEVEL dBm to -40 .

ADJUSTMENTS

5-24. STEP GAIN ADJUSTMENTS(Cont'd)

NOTE

Some video filtering might help reduce noise. Set VIDEO FILTER control so noise is reduced, but the signal amplituderemains unchanged.
16. Adjust A12R2940 D adjustment for signal level one division from top graticule line.
17. Check REF LEVEL dBm control from 0 to -50 as shown in Table 5-11.

TABLE5-11. REFLEVELCONTROLCHECK		
Reference Level $(\mathbf{d B m})$ Attenuator (dB)Deviation From Reference $(700+20 \mathrm{mV}$)		
0	0	Reference mV
-10	10	Reference +40 mV
20	20	Reference 240 mV
-30	30	Reference +40 mV
-40	40	Reference +40 mV
-50	50	Reference $\pm 40 \mathrm{mV}$

18. Reconnect A10W1 to A5J2.

CAUTION

When reconnecting A10W1 to A5J2, exercise caution. The connector should not be torqued to more than 6 inch-pounds; otherwise, damage to A5J2 will result.

ADJUSTMENTS

5-25. FIRSTCONVERTER ADJUSTMENTS

REFERENCE:

A3, A4, AS, A6, and A7 Schematics

DESCRIPTION:

The First LO (A6 YTO) is adjusted by monitoring the YTO output at the RF input connector (LO emission) and the tuning voltage (TUNE) output of the A7 Frequency Control board, and adjusting the YTO low-end frequency for 3 GHz at OV tuning voltage and 6 GHz at -10 V tuning voltage.

FIGURE5-11. FIRST CONVERTER ADJUSTMENTSTEST SETUP

EQUIPMENT:

Frequency Counter HP 5342A
Digital Voltmeter HP 3456A
Comb Generator HP 8406A
Cable, BNC (m) to Banana Plug HP 10111A
Extender Cable Assembly HP 5060-0303
Adapter, BNC (f) to Alligator Clips HP 8120-1292
Cable Assembly, RG-214/U, Type N Connectors HP 11500A

PROCEDURE

1. Allow one-half hour warmup time of equipment with spectrum analyzer connected to mainframe with extender cable.

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(Cont'd)

First LO Adjustments

2. Connect DVM to A7TP6TUNE.
3. Set spectrum analyzer controls as follows:
INPUT ATTEN 0 dB
FREQ SPAN/DIV 0
ALTIF OFF
4. Connect frequency counter to spectrum analyzer RF Input.
5. Jumper A16TP1 DIODE BIAS to ground. A16TP1 is located on the motherboard through a hole in the analyzer left side gusset.
6. Adjust front-panel TUNING control for DVM indication of 0.000 Vdc (fully counterclockwise).
7. Adjust A7R8 ($3 \mathbf{~ G H z}$) for frequency counter indication of $\mathbf{3 . 0 0 0} \mathbf{G H z} \pm 1 \mathrm{MHz}$. (If this adjustment cannot be achieved, factory select resistor A7R3* can be added - if it is not installed - or decreased to provide the proper range. Select a value of 147 K ohms for A7R3*, initially, and decrease this value to no less than 56.2 K ohms.)
8. Adjust front-panelTUNING control for DVM indication of $\mathbf{- 1 0 . 0 0 0} \mathrm{Vdc}$.
9. Set A7R75 6 GHzF (fine) to approximately mid-range($\mathbf{R} 75$ is a 20 -turn potentiometer).
10. Adjust A 7 R 476 GHzC (coarse) for a frequency counter indication of $6.000 \mathrm{GHz} \pm 2 \mathrm{MHz}$.
11. Retune front-panel TUNING control for $\mathbf{0 . 0 0 0}$ Vdc DVM indication and readjust A7R8 $3 \mathbf{G H z}$ if necessary for frequency counter indication of $3.000 \mathrm{GHz} \pm 1 \mathrm{MHz}$.
12. Tune front-panelTUNING control for $-\mathbf{1 0 . 0 0 0} \mathrm{Vdc} \mathrm{DVM}$ indication.
13. Lightly tap the top edge of the A7 Frequency Control board with the handle of a small screwdriver to seat controls.
14. Adjust A7R756 GHzF (fine) for frequency counter indication of $6.000 \mathrm{GHz} \pm 1 \mathrm{MHz}$.

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(Cont'd)

Alternate IF First LO Shift Check

15. Press front-panel ALT IF pushbutton IN to activate alternate IF.
16. Verify YTO frequency shift according to Table 5-12.

TABLE5-12. FIRSTLO SHIFT CHECK

FREQUENCY BAND GHz	ALT IF	FREQUENCY COUNTER INDICATION
$1(.01-3)$	OFF	Reference $(\mathbf{6 . 0 0 0} \mathbf{~ G H z})$
$1(.01-3)$	ON	Reference $-15 \mathbf{~ M H z} \pm 800 \mathbf{~ k H z}$
$2(6-9)$	ON	Reference $+15 \mathbf{~ M H \mathbf { 5 8 0 0 } \mathbf { ~ k H z }}$
$3(3-9)$	ON	Reference $-7.5 \mathbf{M H} \mathbf{5 4 0 0} \mathbf{~ k H z}$
$4(9-15)$	ON	Reference $+7.5 \mathbf{M H} \pm 400 \mathbf{~ k H z}$
$5(6-15)$	ON	Reference $-5 \mathbf{M H z} \pm 300 \mathbf{~ k H z}$
$6(12.1-21)$	ON	Reference $+5 \mathbf{~ M H z ~ 5 3 0 0 ~ \mathbf { k H z }}$

17. Remove jumper from A19TP1 DIODE BIAS to ground.

FM Driver Sensitivity and Delay Compensation Adjustment
18. Disconnect frequency counter from spectrum analyzer RF Input and connect comb generator to RF Input.
19. Set comb generator for 1 MHz comb teeth.
20. Set spectrum analyzer controls as follows:

21. Tune front-panel TUNING control for approximately 1.5 GHz indication on front-panel FREQUENCY GHz display.
22. Adjust A7R83 DC (Delay Compensation) until the comb teeth on the left half of the mainframe CRT display have the same approximate spacing as those on the right half.

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(Cont'd)

23. Adjust front-panel TUNING FINE control to place a comb tooth on the first vertical graticule line of the CRT display.
24. Adjust A7R92 FM to place a comb tooth on the ninth vertical graticule line of the CRT display.
25. Switch to 10 kHz RES BW and adjust A7R83 DC for even spacing of the comb teeth on the first two graticule lines.
26. Readjust TUNING FINE control to place a comb tooth on the first vertical graticule line. Adjust A7R92 FM to place a comb tooth on each of the graticule lines while keeping the first comb tooth aligned using the TUNING FINE control.
27. Repeat steps 25 and 26 to achieve the best span linearity.

NOTE

Trim potentiometer A7R83 (DC) controls the amount of delay compensation; A7R96* controls the time constant of the compensation. If the adjustment of A7R83 does not result in even comb tooth spacing, R96* will have to be re-selected for even spacing.

28. Switch to 30 kHz RES BW. The comb tooth spacing should not change. If there is a shift of the comb teeth, repeat steps 22 through 27 for best compromise in span linearity.
29. Tune to approximately 100 MHz and verify that a comb tooth placed on the first vertical graticule line, using the TUNING FINE control, will align the ninth comb tooth with the ninth vertical graticule line ± 1 minor division.
30. Select the 10 kHz RES BW and verify that a comb tooth on the first vertical graticule line will align the ninth comb tooth with the ninth graticule line ± 1 minor division.
31. Select the 30 kHz RES $\mathbf{B W}$ and repeat step 29 for a frequency of approximately 2.5 GHz .
32. Repeat step 30 for a frequency of approximately 2.5 GHz .
33. If necessary, A7R83 (DC) and A7R92 (FM) may be compromise adjusted for best span linearity at the three frequenciesindicated.
34. Set comb generator for $100-\mathrm{MHz}$ comb teeth.
35. Adjust front-panel TUNING control for 0.10 GHz indication on FREQUENCY display.
36. Set FREQ SPAN/DIV to 2 MHz .
37. Adjust TUNING to place 100-MHz comb tooth on center graticule line.

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(Cont'd)

38. Set FREQ SPAN/DIV to 1 MHz . Note position of comb tooth.
39. Adjust A7R81 (MO) to place comb tooth midway between position noted in step 38 and center graticule line.
40. Set FREQ SPAN/DIV to 2 MHz .
41. Adjust TUNING to place comb tooth in center graticule line.
42. Set FREQ SPAN/DIV to 1 MHz . Note displacement of comb tooth from center graticule line.
43. Repeat steps 36 through 42 until displacement of comb tooth is less than 0.2 major division when FREQ SPAN/DIV is switched from 2 MHz to 1 MHz .

ADJUSTMENTS

5-26. SECOND CONVERTER ADJUSTMENTS

REFERENCE:

A3, A4, A5, A6, and A8 Schematics

DESCRIPTION:

First, the Second LO is adjusted for proper frequency using a frequency counter. Next, the signal identifier (SIG ID) and alternate IF (ALT IF) signals are adjusted so that the displayed signal appears in the same location in both regular and alternate IF and the signal identifier is always 1 MHz away from this signal in either regular or alternate IF. Last, the first IF bandpass filter is aligned for a bandpass wide enough to allow for the first LO shift and amplitude characteristicssuch that there will be a minimal shift in displayed signal amplitude when the analyzer is switched from regular to alternate IF.

FIGURE5-12. SECONDCONVERTERADJUSTMENTSTEST SETUP

EQUIPMENT:

Frequency Counter HP 5342A
FunctionGenerator HP 3310A
Test Cable, BNC (m) to SMB (f) HP 85680-60093
Adapter, BNC (f) to Alligator Clips HP 8120-1292
Adapter, SMB (m) to SMB (m) HP 1250-0669
Adapter, SMB (f) to SMB (f) HP 1250-0672
Adapter, Type N (m) to BNC (f) (2 required) HP 1250780
Special Tuning Tool, Allen driver inserted through drilled-out 5/16 inch nut driver HP 08555-60107
Oscilloscope HP 1740A
Extender Cable Assembly HP 5060-0303

ADJUSTMENTS

5-26. SECOND CONVERTER ADJUSTMENTS(Cont'd)

PROCEDURE:

Second LO Preliminary Adjustment

1. Allow one-half hour warm-up time of equipment with analyzer connected to mainframe with extender cable.
2. Connect frequency counter input to A5J3 2nd LO output using the test cable and two SMB adapters.
3. Select Band $1(.01-3)$ and Alternate IF on spectrum analyzer front-panel by depressing these pushbuttons.
4. Using the special Allen driver/nut driver tuning tool, adjust A5Z4 2nd LO FREQUENCY for a frequency counter indication of $2671.1 \mathrm{MHz} \pm 0.5 \mathrm{MHz}$.
5. Connect spectrum analyzer CAL OUTPUT to RF INPUT and adjust front-panel TUNING controls to center the calibrator signal on the CRT display.
6. Set spectrum analyzer controls as follows:
```
FREQ SPAN/DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 MHz
```



```
FREQUENCY BAND GHz ...........................................................................
SIG IDENT .................................................................................... OFF
```



```
853A ............................. . . TRACE A & B STORE BLANK (ANALOGDISPLAY)
```

7. Depress front-panel SIG IDENT and ALT IF pushbuttons.
8. Turn SIG IDENT off and on while monitoring the display. The signal traces which appear when SIG IDENT is switched on are the signal identifier signals. The others are the alternate IF signals.
9. Adjust TUNING to place one of the signal identifier signals on a graticule line. This will be the reference graticule line.
10. Turn ALT IF off. Adjust A8R34 REG to center the signal identifier signal on the reference graticule line.
11. Turn ALT IF on. Verify that the signal identifier signal appears on reference graticule line. If not, repeat step 10.
12. Adjust A8R40 SIG ID to place the alternate IF signal 1 MHz (1 division) higher than the signal identifier signal.
13. Turn ALT IF off. Adjust A8R39 OFF to center the signal on the same graticule line as the alternate IF signal (1 MHz higher than reference graticule line).

ADJUSTMENTS

5-26. SECOND CONVERTER ADJUSTMENTS(Cont'd)

14. Turn ALT IFon and verify that the two signals do not appear to move.
15. Change spectrum analyzer FREQ SPAN/DIV to 500 kHz .
16. Repeat steps 7 through 14 if necessary to align both signal identifier signals and both alternate IF signals and spaced 1 MHz (2 divisions) apart on the CRT display.
17. Depress front-panel ALT IF pushbutton. Turn SIG IDENT off.
18. Note Second LO frequency on frequency counter.
19. Adjust A5Z4 2nd LO FREQUENCY if necessary for a frequency counter indication of $2671.1 \mathrm{MHz} \pm 0.5$ MHz.
20. If second LO frequency is readjusted, recheck second LO shift adjustments, steps 5 through 16.
21. Set spectrum analyzer controls as follows:

22. Adjust front-panel REF LEVEL dBm and REF LEVEL FINE controls to place signal peak in upper half of CRT display for convenient viewing.
23. Adjust front-panelTUNING control to place signal peak 3.75 divisions to the left of center screen on the CRT.
24. Connect the HIGH output of the function generator to an oscilloscope and adjust function generator output for a OV to +20 V ramp and frequency to 500 Hz .
25. Disconnect the function generator from the oscilloscope and connect it to A5A2TP1 VARACTOR by using the 8120-1292 adapter.
26. The following adjustments refer to aligning the Second Converter after internal repair of the converter. If the entire converter has been replaced, it will probably not be necessary to perform all of the adjustments.
27. Adjustments A5Z1, A5Z2, A5Z3, and A5L2 are used to align the bandpass filter and output match of the Second Converter. Z1 and L2 are used to adjust amplitude and Z2 and Z3 are used to center the response about the center frequency.

ADJUSTMENTS

5-26. SECOND CONVERTER ADJUSTMENTS(Cont'd)

28. The requirements for the converter response are illustrated in Figure 5-13a and are as follows: Bandpass should be at least $17 \mathrm{MHz}, 1 \mathrm{~dB}$ down. Amplitude of response at 3.75 divisions to the left and 3.75 divisions to the right of center screen should be as near the same as possible. These are the positions of the IF signals for regular and alternate IE This is illustrated in composite photo Figure 5-13b. These positions should be the same distance from the roll-off point at each end of the response curve.
29. Distance from roll-off points can be checked by centering signal with function generator disconnected then reconnecting function generator and switching ALT IF on and off. This is illustrated in Figure 5-13c and 513d.
30. Adjust $\mathbf{A} 5 \mathrm{Z} 1, \mathrm{Z} 2, \mathrm{Z} 3$ and L 2 to satisfy the requirements of the converter response. If entire converter has been replaced, try adjusting A5Z1 and L2 first. Do not adjust A2 and A3 unless it is necessary to meet requirements. Do not sacrifice amplitude to achieve flatness.
31. When adjustment is complete, disconnect function generator from A5A2TP1, center signal on display, and turn ALT IF on and off while monitoring signal.
32. Amplitude difference between regular and alternate IF should be no more than 0.4 dB .

ADJUSTMENTS

5-26. SECOND CONVERTER ADJUSTMENTS(Cont'd)

THESE POINTS SHOULD BE AT SAME AMPLITUDE WITH BANDPASS
$>17 \mathrm{MHz}$ WIDE 1 dB DOWN AS SHOWN

a TYPICAL BANDPASS RESPONSE

THESE POINTS SHOULD BE AT SAME AMPLITUDE LEVEL $\pm 0.4 \mathrm{~dB}$

ALTERNATE

b. COMPOSITE PHOTO SHOWING LOCATION OF IF SIGNALS
$>17 \mathrm{MHz}$ BETWEEN THESE

TWO POINTS IF SIGNAL

LOCATION OF ALTERNATE IF SIGNAL
c. ROLL-OFF AT HIGH-END OF RESPONSE
d. ROLL-OFF AT LOW-END OF RESPONSE
$\Delta \mathbf{F}_{1}$ AND $\Delta \mathbf{F}_{2}$ MUST $\mathrm{BE} \geqslant 1 \mathrm{MHz}$ BUT $\leqslant 4 \mathrm{MHz}$
ΔF_{1} MUST EQUAL $\Delta F_{2} \pm 0.2 \mathrm{MHz}$

FIGURE5-13. FIRST IF BANDPASS FILTER RESPONSE

ADJUSTMENTS

5-27. THIRD CONVERTER ADJUSTMENTS

REFERENCE:

A10 Schematic

DESCRIPTION:

First, the Third LO is adjusted for proper frequency using a frequency counter. Next, the second IF bandpass filter is aligned by injecting a frequency modulated 321.4 MHz signal at the necessary level and monitoring the 21.4 MHz output signal with another spectrum analyzer. The filter is aligned for a bandpass wide enough to accommodate any frequency drift occurring in the RF section of the analyzer and the amplitude necessary to provide the overall gain characteristics required by the analyzer.

FIGURE5-14. THIRDCONVERTER ADJUSTMENTSTESTSETUP

EQUIPMENT

Frequency Counter .HP 5342ASweep Oscillator HP 8620C/86222A
Spectrum Analyzer HP 8569B
Function Generator HP 3310A
Test Cable, BNC (m) to SMB (f) (2 required) HP85680-60093
Adapter, SMC (m) to SMC (m) HP 1250-0827
Adapter, Type N (m) to BNC (f) (3 required) HP 1250-0780
20 dB Attenuator HP 8491B, Option 020
10 dB Attenuator HP 8491B, Option 010
Test Cable, BNC (m) to SMC (f) HP 11592-60001
Extender Cable Assembly HP 5060-0303

ADJUSTMENTS

5-27. THIRD CONVERTER ADJUSTMENTS(Cont'd)

PROCEDURE:

1. Allow one-half hour warmup time of equipment with analyzer connected to mainframe with extender cable.

Third LO Adjustment

2. Connect frequency counter to A10J1 300 MHz output using the BNC to SMB test cable.
3. Adjust A10L12 LO ADJ for frequency counter indication of $300.00 \mathrm{MHz} \pm 0.1 \mathrm{MHz}$.

Second IF Bandpass Filter Alignment

4. Disconnect blue cable A10W1 at second converter output connector A5J2.
5. Set sweep oscillator controls for an output of 321.4 MHz at 0 dBm (measured directly at output of sweep oscillator). Use the frequency counter and spectrum analyzer to set the output frequency and amplitude.
6. Connect output through 10 and 20 dB attenuators to cable disconnected in step 4 , using the BNC to SMB test cable and SMB male to SMB male adapter.
7. Place analyzer on right side and connect test cable to Third Converter 21.4 MHz output connector. If connector is not present (some early instruments were not so supplied), it is necessary to solder a coaxial cable to XA10P1 pin 18 and ground (center conductor of coaxial cable to XA10P1 and shield to ground).
8. Connect test cable or soldered cable to 8569 B spectrum analyzer input.
9. Set 8569 B spectrum analyzer controls as follows:

TUNING	21.4 MHz
RESBW	300 kHz
FREQ SPAN/DIV	$1 \mathrm{MHz} / \mathrm{DIV}$
INPUTATTEN	. 10 dB
REF LEVEL dBm.	$-10 \mathrm{dBm}$
Amplitude Scale	10 dB LOG
TIME/DIV	$1 \mathrm{mSEC} / \mathrm{DIV}$

10. Set H P 8559A RES BW to 1 kHz and TRIGGER to FREE RUN.
11. Center the 21.4 MHz signal on the 8569 B spectrum analyzer, adjust reference level to place signal within top division on CRT, then change scale to $1 \mathrm{~dB} /$ DIV. Adjust REF LEVEL FINE to place signal peak in upper half of display.
12. Set function generator controls for a 200 Hz triangle wave output and connect to sweep oscillator RF PlugIn rear-panel FM input. Set FM/NORM/PL switch to FM.

ADJUSTMENTS

5-27. THIRD CONVERTER ADJUSTMENTS(Cont'd)

13. Adjust function generator amplitude and frequency for at least 10 MHz deviation ($\pm 5 \mathrm{MHz}$) and an easy-to-view display on the 8569 B spectrum analyzer. Refer to Figure 5-15. Increasing the frequency of the function generator will increase the swept frequency range of the sweep oscillator.
14. Adjust second IF bandpass filter adjustments A 10 C 9 through A 10 C 12 for the flattest bandpass response possible at the greatest amplitude possible centered at 21.4 MHz and at least 6 MHz (6 divisions) wide at 1 dB down from the highest point on the response curve. Do not sacrifice large amounts of amplitude for flatness. Some early instruments may display ripple on the response. This ripple should be $\leq 1 \mathrm{~dB}$ peak-topeak. Peak of adjusted response should be at $-10 \mathrm{dBm} \pm 2 \mathrm{~dB}$.

NOTE

The output level of the third converter is actually 0 dBm . Due to the mismatch error ($\approx 9.5 \mathrm{~dB}$) encountered in this measurement, the level measured will be approximately $\mathbf{- 1 0 ~ d B m}$.
15. Refer to Figure 5-15 for example of properly adjusted bandpass response and requirements for response.

FIGURE 5.15. SECONDIF BANDPASS FILTERRESPONSE

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS

REFERENCE:

A3, A4, A5, A6, and A12 Schematics

NOTE

Perform CAL OUTPUT and REF LEVEL CAL adjustments (5-29) before proceeding with frequency response adjustments.

DESCRIPTION:

Frequency Response (flatness) is adjusted in six parts corresponding to the six harmonic bands of the analyzer. In each band, the analyzer is swept-tuned with a tracking signal source comprising a sweep oscillator and synchronizer. The sweep oscillator is tuned with an external sweep ramp generated by scaling the analyzer sweep output (AUX D) with a special tuning voltage circuit. This provides synchronization of the sweeps of the two instruments (sweep oscillator and analyzer), thus providing phase-lock of the two instruments. Each of the bands is adjusted for optimum flatness and all bands are adjusted for equal amplitudes.

FIGURE5-16. FREQUENCYRESPONSEADJUSTMENTSTESTSETUP

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

FIGURE5-17. TUNING VOLTAGECIRCUIT

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

EQUIPMENT:

Sweep Oscillator	HP 8620C
RF Plug-In (. $01-2.4 \mathrm{GHz}$)	HP 8622A/B
RF Plug-In (2-22 GHz)	HP 86290B-H08
Synchronizer	HP 8709A-H10
Power Meter	HP 435A/B
Power Sensor ($.01-18 \mathrm{GHz}$)	HP 8481A
Power Sensor (.05-26.5 GHz)	HP 8485A
Crystal Detector ($.01-26.5 \mathrm{GHz}$)	HP 33330C
20 dB Attenuator	HP 8491B, Option 020
Tuning Voltage Circuit	Refer to Figure 5-17
Cable, SMA (m) to SMA (m)	HP8120-1578
Cable, BNC (m) to SMC (f)	HP 11592-60001
Adapter, Type N (m) to SMA (f) (2 required)	HP 1250-1250
Adapter, Type N(f) to SMA (f) (2 required)	HP 1250-1745
Adapter, Type N (f) to Type N(f)	HP 1250-1472
Extender Cable Assembly	HP 5060-0303
Power Splitter	11667A-C16

PROCEDURE:

1. Allow one-half hour warmup time of equipment with analyzer connected to mainframe with extender cable.
2. Connect equipment as shown in Figure 5-16 with power meter/power sensor connected to 20 dB attenuator and HP 86222A/B (. $01-2.4 \mathrm{GHz}$ plug-in) installed in sweep oscillator mainframe.
3. Set sweep oscillator controls as follows:

Mainframe:

SWEEP MODE EXT
MARKERS OFF
All rear panel switches OFF
Plug-in
RF OFF/ON OFF
ALC EXT
POWER LEVEL Fully CCW
FM/NORM/PL (rear-panel) PL
4. Set synchronizer controls as follows:
POLARITY
$6 \mathrm{MHz} / \mathrm{VOLT}$

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

5. Set spectrum analyzer controls as follows:
REF LEVEL FINE 0 dBm
REF LEVEL dBm -20
INPUTATTEN 10 dB
Amplitude Scale $10 \mathrm{~dB} /$ DIV
FREQ SPAN/DIV F (full)
RESOLUTIONBW 3 MHz
FREQUENCY BAND GHz $01-3$
TIME/DIV 20 msec
TRIGGER FREE RUN
BLCLIP OFF
VIDEOFILTER MIN
ALTIF OFF
SIGIDENT OFF
TUNING 2.5 GHz

$.01-3$ GHz Adjustment

6. Place sweep oscillator plug-in RF OFF/ON switch to ON.
7. Adjust sweep oscillator controls for a CW output of 2 GHz at -7 dBm .
8. Disconnect power meter/power sensor and connect 20 dB attenuator directly to analyzer RF INPUT as shown in Figure 5-16.
9. Adjust sweep oscillator controls for full sweep.
10. Adjust Tuning Voltage Circuit GAIN control fully clockwise then adjust OFFSET control to center phaselocked signal on CRT. Refer to Figure 5-18a.

FIGURE 5-18. ILLUSTRATION OF PHASE-LOCKING PROCEDURE

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

11. Adjust Tuning Voltage Circuit GAIN control to expand the phase-locked display over $81 / 2$ divisions on CRT (.01-2.4 GHz). Refer to Figure 5-18b. It may be necessary to readjust OFFSET slightly to achieve phase-lock over entire range.
12. Optimum phase-lock is indicated by a smooth trace over full swept frequency range on CRT and minimum needle movement on synchronizer phase error meter.
13. Place CRT trace in top division of display using analyzer REF LEVEL FINE control.
14. Change spectrum analyzer Amplitude Scale to $1 \mathrm{~dB} /$ DIV and adjust REF LEVEL FINE control to place trace in upper half of display.
15. Remove CAUTION label (PC Board) from cover of A12 Step Gain by removing two pozi-drive screws.
16. Adjust A12R72 V1 (bias) for maximum amplitude of trace on CRT.
17. Adjust A12R47 1B (tilt) for best overall flatness of trace on CRT.

NOTE

Remember, you are viewing only a portion $(.01-2.4 \mathrm{GHz})$ of Band 1. The
remainder of Band 1 may have an effect on this adjustment.
18. Note highest and lowest points on CRT trace for reference. Also note level of trace at 2.1 GHz position on CRT (8th vertical graticule line).

Highest \qquad Lowest \qquad 2.1 GHz \qquad
19. Place sweep oscillator LINE switch OFF.
20. Disconnect cables from HP $86222 \mathrm{~A} / \mathrm{B}(.01-2.4 \mathrm{GHz}$ plug-in) and remove plug-in from sweep oscillator mainframe.
21. Install HP 86290B ($2-18.6 \mathrm{GHz}$ plug-in) or HP 86290B-H08 (2-22 GHz plug-in), if available, in sweep oscillator mainframe and reconnect cables as shown in Figure 5-16 with 20 dB attenuator connected to analyzer RF INPUT.
22. Set RF plug-in controls the same as for the plug-in removed (refer to step 3) and select Band 4 (2-18.6 or $2-22 \mathrm{GHz}$) on sweep oscillator mainframe.
23. Place RF plug-in RF OFF/ON switch ON. Change analyzer AmplitudeScale to $10 \mathrm{~dB} / \mathrm{DIV}$.
24. Adjust sweep oscillator for swept output from 2 to 3 GHz .
25. Adjust spectrum analyzer TUNING controls for FREQUENCY GHz indication of 2.500 and change FREQ SPAN/DIV to 100 MHz . Make sure RES BW remains at 3 MHz .

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

26. Adjust Tuning Voltage Circuit GAIN and OFFSET controls to phase-lock swept signal from 2 to 3 GHz .
27. Adjust RF plug-in POWER LEVEL control to place trace at approximately -27 dBm on CRT.
28. Change spectrum analyzer Amplitude Scale to $1 \mathrm{~dB} /$ DIV.
29. Adjust RF plug-in POWER LEVEL control to place 2.1 GHz position of CRT trace to same level as that noted in step 18.
30. Note flatness of trace from 2 to 3 GHz . Total deviation of trace from Ol to 3 GHz should not exceed 2.0 dB.
31. Center trace about the sixth horizontal graticule line on the CRT using analyzer REF LEVEL FINE control. Do not change this setting for remainder of procedure. This will be used as amplitude reference for remaining frequency bands.

NOTE

Be careful during the adjustment of the remaining frequency bands. It is possible to achieve a phase-locked display of a frequency range other than the one selected on the spectrum analyzer. For example, it is possible to achieve a phase-locked display for $6-9 \mathrm{GHz}$ when $3-9 \mathrm{GHz}$ has been selected. This can be avoided by paying close attention to synchronizer polarity and RF plug-in band switch points. Figure 5-19 illustrates the typical appearance of each of the bands. Use it for reference.

6 to 9 GHz Adjustment

32. Change synchronizer POLARITY to + .
33. Change spectrum analyzer FREQ SPAN/DIV to F (full), Amplitude Scale to $10 \mathrm{~dB} / \mathrm{DIV}$, and FREQUENCY BAND GHz to $6-9$. Set TUNING to above 9 GHz .
34. Adjust sweep oscillator for swept output from 6 to 9 GHz .
35. Adjust Tuning Voltage Circuit GAIN and OFFSET controls to phase-lock swept signal from 6 to 9 GHz . Refer to Figure 5-19b.
36. Change spectrum analyzer Amplitude Scale to $1 \mathrm{~dB} /$ DIV.
37. Adjust A12R58 2A (offset) and A12R48 2B (tilt) for best overall flatness of trace from 6 to 9 GHz with trace approximately centered about the sixth horizontal graticule line on the CRT.
38. Total deviation of CRT trace from 6 to 9 GHz should not exceed 2.0 dB .

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

FIGURE5-19. TYPICAL PHASE-LOCKEDRESPONSEOF EACH FREQUENCYBAND

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

3 to 9 GHz Adjustment

39. Change synchronizer POLARITY to - .
40. Change spectrum analyzer Amplitude Scale to $10 \mathrm{~dB} /$ DIV and FREQUENCY BAND GHz to $3-9$.
41. Adjust sweep oscillator for swept output from 3 to 9 GHz .
42. Adjust Tuning Voltage Circuit GAIN and OFFSET controls to phase-lock swept signal from 3 to 9 GHz . Refer to Figure 5-19c.
43. Change spectrum analyzer Amplitude Scale to $1 \mathrm{~dB} / \mathrm{DIV}$.
44. Adjust A12R83 V2 - (bias), A12R59 3A (offset), and A12R49 3B (tilt) for best overall flatness of trace from 3 to 9 GHz with trace approximately centered about the sixth horizontal graticule line on the CRT.
45. Total deviation of trace from 3 to 9 GHz should not exceed 3.0 dB .

9 to 15 GHz Adjustment

46. Change synchronizer POLARITY to + .
47. Change spectrum analyzer Amplitude Scale to 10 dB /DIV and FREQUENCY BAND GHz to $9-15$.
48. Adjust sweep oscillator for swept output from 9 to 15 GHz .
49. Adjust Tuning Voltage Circuit GAIN and OFFSET controls to phase-lock swept signal from 9 to 15 GHz . Refer to Figure 5-19d.
50. Change spectrum analyzer Amplitude Scale to $1 \mathrm{~dB} / \mathrm{DIV}$.
51. Adjust A12R87 V2 + (bias), A12R60 4A (offset), and A12R51 4B (tilt) for best overall flatness of trace from 9 to 15 GHz with trace approximately centered about the sixth horizontal graticule line on the CRT.
52. Total deviation of trace from 9 to 15 GHz should not exceed 3.6 dB .

6 to 16 GHz Adjustment

53. Change synchronizer POLARITY to - .
54. Change spectrum analyzer Amplitude Scale to $10 \mathrm{~dB} /$ DIV and FREQUENCY BAND GHz to 6-15.
55. Adjust sweep oscillator for swept output from 6 to 15 GHz .
56. Adjust Tuning Voltage Circuit GAIN and OFFSET controls to phase-lock swept signal from 6 to 15 GHz . Refer to Figure 5-19e.

ADJUSTMENTS

5-28. FREQUENCY RESPONSE ADJUSTMENTS(Cont'd)

57. Change spectrum analyzer Amplitude Scale to $1 \mathrm{~dB} /$ DIV.
58. Adjust A12R71 V3 - (bias), A12R61 5A (offset), A12R53 5B (tilt), and A12R54 5C (breakpoint) for best overall flatness of trace from 6 to 15 GHz with trace approximately centered about the sixth horizontal graticule line on the CRT.
59. Total deviation of trace from 6 to 15 GHz should not exceed 4.2 dB .

12.1 to 21 GHz Adjustment

NOTE

If an HP 86290B-H08 (2-22 GHz plug-in) is not available, a standard HP 86290B (2 - 18.6 GHz plug-in) may be used to adjust the spectrum analyzer flatness from 12.1 to 18.6 GHz using this procedure.

60. Change synchronizer POLARITY to + .
61. Change spectrum analyzer Amplitude Scale to $10 \mathrm{~dB} /$ DIV and FREQUENCY SPAN GHz to 12.1 - 21 .
62. Adjust sweep oscillator for swept output from 12 to 18.6 GHz or 12 to 21 GHz , depending on which RF plug-in is used.
63. Adjust Tuning Voltage Circuit GAIN and OFFSET controls to phase-lock swept signal from 12 to 18.6 GHz or 12 to 21 GHz . Refer to Figure 5-19f.
64. Change spectrum analyzer Amplitude Scale to $1 \mathrm{~dB} / \mathrm{DIV}$.
65. Adjust A12R70 V3+ (bias), A12R62 6A (offset), A12R55 6B (tilt), and A12R566C (breakpoint) for best overall flatness of trace from 12.1 to 18.6 GHz or 12.1 to 21 GHz with trace approximately centered about the sixth horizontal graticule line on the CRT.
66. Total deviation of trace from 12.1 to 18 GHz should not exceed 4.6 dB and from 18 to 21 GHz should not exceed 6.0 dB .
67. If unable to achieve flatness specifications, it may be necessary to plot a characterization curve of the sweep oscillator output from 12 to 21 GHz . This can be done by measuring the power output of the sweep oscillator (at the 20 dB attenuator) every 500 MHz from 12 to 21 GHz using a power meter. The values obtained can then be plotted on the CRT and flatness adjusted to this corrected curve. Total deviation then becomes the difference between the largest positive and largest negative deviation from the plotted curve.

This characterization will require the use of an $18-21 \mathrm{GHz}$ thermistor mount and K-Band waveguide adapter in addition to equipment previously used. Recommended equipment is listed under EQUIPMENT in this procedure along with previously used equipment.

ADJUSTMENTS

5-29. CAL OUTPUT AND REF LEVEL CAL ADJUSTMENTS

NOTE

These adjustments should be followed by frequency response adjustments, since adjustment of A12R57 1A (offset) will shift the freapuency response of Band 1 (. $01-3 \mathrm{GHz}$).

REFERENCE:

A10 and A12 Schematics

DESCRIPTION:

The 35 MHz CAL OUTPUT signal is adjusted for proper amplitude and frequency using a power meter and frequency counter. Adjustment range of the front-panel REF LEVEL CAL control is set using the CAL OUTPUT signal as a reference.

EQUIPMENT:

Frequency Counter	HP 5342A
Power Meter	HP 432A/435A/B
Power Sensor	H P 8481A
Adapter, Type N (m) to BNC (f)	H P 1250-0780
Extender Cable Assembly	H P 5060-0303

ADJUSTMENTS

5-29. CAL OUTPUT AND REF LEVEL CAL ADJUSTMENTS(Cont'd)

PROCEDURE:

CAL OUTPUT Adjustment

1. Allow one-half hour warmup time of equipment with spectrum analyzer connected to mainframe with extender cable.
2. Connect power meter/power sensor to front-panel CAL OUTPUT connector as shown in Figure 5-20.
3. Place spectrum analyzer on its right side. Adjust A10R13 CAL AMPL for power meter indication of $-10.0 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$. A10R13 is accessed through motherboard.
4. Disconnect power meter/power sensor and connect frequency counter to CAL OUTPUT connector.
5. Adjust A10C46 CAL FREQ for frequency counter indication of $35.00 \mathrm{MHz} \pm 0.01 \mathrm{MHz}$. A10C46 is accessed through motherboard.
6. Repeat steps 2 through 5 until CAL OUTPUT signal is properly adjusted for both amplitude and frequency.
7. Connect CAL OUTPUT to analyzer INPUT.
8. If not already removed, removeCAUTION label (PC Board) from A12 Step Gain.
9. Set spectrum analyzer controls as follows:

Amplitude Scale	$10 \mathrm{~dB} / \mathrm{DIV}$
REF LEVEL dBm	
INPUT ATTEN	10 dB
FREQ SPAN/DIV	1 MHz
RESOLUTIONBW	1 MHz
TIME/DIV	AUTO
TRIGGER	FREE RUN
FREQUENCY BAN	. 01 -

10. Center 35 MHz calibration signal on CRT using TUNING controls.
11. Adjust front-panel REF LEVELCAL fully counterclockwise.
12. Change Amplitude Scale to 1 dB /DIV and adjust REF LEVEL FINE if necessary to place signal peak on first horizontal graticule line above bottom reference line of CRT.
13. Adjust front-panel REF LEVEL CAL to raise signal peak three divisions ($\mathbf{3} \mathrm{dB}$) on CRT (to fourth graticule line above bottom referenceline on CRT).
14. Change Amplitude Scale to $10 \mathrm{~dB} /$ DIV, REF LEVEL dBm to -10 , and set REF LEVEL FINE to 0 dBm .

ADJUSTMENTS

5-29. CAL OUTPUT AND REF LEVEL CAL ADJUSTMENTS(Cont'd)

15. Signal peak should now be approximately at top graticule line (Reference Level) on CRT.
16. Switch between 10 dB /DIV and LIN while adjusting A12R57 1A (offset) to place signal peak at same level in both $10 \mathrm{~dB} /$ DIV and LIN.
17. Level at which signal peaks are coincident should be at top graticule line (Reference Level). If not, adjust front-panel VERTICAL GAIN to place signal peak at Reference Level line. Be sure VERTICAL POSN is properly adjusted for baseline on bottom graticule line.
18. Replace CAUTION label (PC Board) on A12 Step Gain.

ADJUSTMENTS

5-30. FREQUENCY DISPLAY ADJUSTMENTS

REFERENCE:

A1 and A8 Schematics

DESCRIPTION:

The Digital Panel Meter (DPM) OFFSET and GAIN controls are adjusted for proper FREQUENCY display indication at corresponding tuning voltage (DPMA) levels.

FIGURE 5-21. FREQUENCY DISPLAY ADJUSTMENTS TEST SETUP

EQUIPMENT:Digital VoltmeterHP 3456A
Cable, BNC (m) to Banana Plugs
Extender Cable Assembly
Adapter, BNC (f) to Alligator Clips HP 8120-1292

ADJUSTMENTS

5-30. FREQUENCY DISPLAY ADJUSTMENTS(Cont'd)

PROCEDURE:

1. Allow one-half hour warmup time of equipment with analyzer connected to mainframe with extender cable.
2. Jumper A8TP5 DPM to ground.
3. Set front-panelFREQUENCY BAND GHz to Band $1(.01-3)$.
4. Connect DVM to A1A2TP1 DPMA. A1A2TP1 is located below the board and is accessible through cutout in left side gusset.
5. Adjust A8R61 DPM ZERO for DVM indicationof 0.000 Vdc .
6. Adjust A1A2R29 OFFSET for front-panel FREQUENCY GHz indication of $\mathbf{0 . 0 0 0}$.
7. Remove jumper from A8TP5 to ground.
8. Select Band $6(12.1-21)$ on analyzer.
9. Adjust front-panel TUNING control for DVM indication of -4.000 Vdc .
10. Adjust A1A2R28 GAIN for front-panelFREQUENCY indication of 20.000.

SECTION VI REPLACEABLE PARTS

6.1. INTRODUCTION

6-2. The replaceable parts list breakdown for each major assembly is located in Section VIII, following the circuit description for the assembly. This section contains information for ordering the replacement parts not listed in Section VIII. Table 6-1 includes a list of reference designations and a list of abbreviations used in the parts list. Table 6-2 lists names and addresses that correspond to the manufacturer code numbers in the parts list. Table 6-3 lists the replaceable parts in alpha-numerical order by reference designation.

6.3. REPLACEABLEPARTS LIST

6-4. Table 6-3, the list of replaceable parts, is organized as follows:

1. Major assemblies and their part numbers.
2. Accessories supplied and their part numbers.
3. Miscellaneous chassis parts and their part numbers.
4. Mechanical chassis parts and their part numbers.

6-5. The following information is listed for each part:

1. The Hewlett-Packard part number.
2. The part number check digit (CD).
 ance of the part in the list.
3. The description of the part.
4. A five-digit code indicating a typical manufac-
turer of the part.
5. The manufacturer's part number.

6-6. ORDERING INFORMATION

6-7. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with check digit), indicate the quantity required, and address the order to the nearest Hewlett-Packard office. The check digit will ensure accurate and timely processing of your order.

6-8. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest HewlettPackard office.

TABLE6.1. REFERENCEDESIGNATIONSAND ABBREVIATIONS(10F3)

A	Assembly
AT	Attenuator, Isolator, Limiter, Termination
B	Fan, Motor
BT	Battery
C	Capacitor
CP	Coupler
CR	Diode, Diode Thyristor,
	Step Recovery Diode, Varactor
DC	Directional Coupler
DL	. Delay Line
DS	Annunciator, Lamp, Light
	Emitting Diode (LED),
	Signaling Device (Visible)
E	MiscellaneousElectrical Part

REFERENCE DESIGNATIONS

F Fuse	RT	Thermistor
FL . Filter	S	Switch
HY Circulator	T	Transformer
J ElectricalConnector	TB	Terminal Board
(Stationary Portion), Jack	TC	. Thermocouple
K . Relay	TP	Test Point
L Coil, Inductor	U	egrated Circuit, Microcircuit
M . Meter	V	Electron Tube
MP Miscellaneous MechanicalPart	VR	Breakdown Diode (Zener),
P ElectricalConnector		Voltage Regulator
(MovablePortion), Plug	W	. Cable, Wire, Jumper
Q Silicon Controlled Rectifier	X So. Socket
(SCR), Transistor,	Y	Crystal Unit (Piezoelectric,
Triode Thyristor		Quartz)
R . Resistor		Tuned Cavity, Tuned Circuit

ABBREVIATIONS

CPRSN Compression	FDTHRU Feed Through
CUP-PT Cup Point	FEM......................... . . Female
CW Clockwise,	FIL-HD Fillister Head
Continuous Wave	FL Flash, Flat, Fluid
	FLAT-PT Flat Point
D	FR . Front
	FREQ Frequency
D Deep, Depletion, Depth,	FT Current Gain Bandwidth
Diameter, Direct Current	Product (TransitionFrequency),
DA Darlington	Feet, Foot
DAP-GL Diallyl Phthalate Glass	FXD ${ }^{\text {. }}$. Fixed
DBL......................... Double	
DCDR Decoder	
DEG . Degree	G
D-HOLE D-Shaped Hole	
DIA Diameter	GEN General, Generator
DIP D Dual In-Line Package	GND Graund
DIP-SLDR Dip Solder	GP General Purpose, Group
D-MODE Depletion Mode	
DO Package Type Designation	H
DP Deep, Depth, Diametric	
Pitch, Dip	H Henry, High
DP3T Double Pole Three	HDW Hardware
Throw	HEX Hexadecimal, Hexagon,
DPDT Double Pole Double	Hexagonal
Throw	HLCL Helical
DWL Dowel	HP Hewlett-Packard Company,
	High Pass
E	
E-R . E E-Ring	I
EXT $\begin{array}{r}\text { Extended, Extension, } \\ \text { External, Extinguish }\end{array}$	IC $\begin{gathered}\text { Collector Current, } \\ \text { Integrated Circuit }\end{gathered}$
F	ID Identification, Inside
F F Fahrenheit, Farad, Female,	IF Forward Current,
Film (Resistor), Fixed,	Intermediate Frequency
Flange, Frequency	IN . Inch
FC Carbon Film/Composition,	INCL Including
Edge of Cutoff Frequency, Face	INT Integral, Intensity, Internal

TABLE6-1. REFERENCEDESIGNATIONS AND ABBREVIATIONS(2OF3)

TABLE6-1. REFERENCEDESIGNATIONSAND ABBREVIATIONS(3OF 3)

MULTIPLIERS					
Abbreviation	Prefix	Multiple	Abbreviation	Prefix	Multiple
T	tera	10^{12}	m	milli	10^{-3}
G	giga	10^{9}	μ	micro	10^{-6}
M	mega	10^{6}	n	nano	10^{-9}
k	kilo	10^{3}	P	pico	10^{-12}
da	deka	10	f	femto	10^{-15}
d	deci	10^{-1}	a	atto	10^{-18}
c	centi	10^{-2}			

TABLEG-2. MANUFACTURERSCODELIST

Mfr. No.	Manufacturer Name	Address	Zip Code
01121	ALLEN-BRADLEY CO	MILWAUKEE, WI	53204
01295	TEXAS INSTR INC SEMICOND CMPNT DIV	DALLAS, TX	75222
02111	SPECTROL ELECTRONICS CORP	CITY OF IND, CA	91745
02660	BUNKER RAMO CORP AMPHENOL CONN DIV	BROADVILLE, IL	60153
02768	ILLINOIS TOOL WORKS INC FASTEX DIV	DES PLAINES, IL	60016
03888	K D I PYROFILM CORP	WHIPPANY, NJ	07981
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX, AZ	85008
06383	PANDUIT CORP	TINLEYPARK, IL	60477
06665	PRECISION MONOLITHICS INC	SANTA CLARA, CA	95050
07088	KELVIN ELECTRIC CO	VAN NW S, CA	91401
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW, CA	94042
11236	CTS OF BERNE INC	BERNE, IN	46711
17856	SILICONIX INC	SANTA CLARA, CA	95054
19701	MEPCO/ELECTRA CORP	MINERAL WELLS, TX	76067
20940	MICRO-OHM CORP	EL MONTE, CA	91731
24046	TRANSITRON ELECTRONIC CORP	WAKEFIELD, MA	01880
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD, PA	16701
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA, CA	95051
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO, CA	94304
$3 L 585$	RCA CORP SOLID STATE DIV	SOMERVILLE,NJ	
30161	AAVID ENGINEERING INC	LACONIA, NH	03246
30983	MEPCO/ELECTRA CORP	SANDIEGO, CA	92121
32997	BOURNS INC TRIMPOT PROD DIV	RIVERSIDE, CA	92507
33095	SPECTRUM CONTROL INC	FAIRVIEW, PA	16415
37942	MALLORY P R AND CO INC	INDIANAPOLIS, IN	46206
52063	EXAR INTEGRATED SYSTEMS INC	SUNNYVALE, CA	94086
52763	STETTNER ELECTRONICS INC	CHATTANOOGA, TN	13035
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS, MA	01247
71041	BOSTON GEAR WKS DIV OF NA ROCKWELL	QUNCY, MA	02171
72136	ELECTRO MOTIVE CORP	FLORENCE, SC	06226
72982	ERIE TECHNOLOGICAL PRODUCTS INC	ERIE, PA	16512
73138	BECKMAN INSTRUMENTS INC HELIPOT DIV	FULLERTON, CA	92634
74970	JOHNSON E F CO	WASECA, MN	56093
78707	TEK BEARING CO INC	NEW YORK,NY	10013

TABLE6-3. REPLACEABLEPARTS

TABLE6.3. REPLACEABLEPARTS

TABLE 6.3. REPLACEABLE PARTS

Reference Designator	HP Part Number	C	Qty	Description	Mfr. Code	Mfr. Part Number
1	08559-00030	2	1	PANEL, FRONT	28480	08559-00030
2	08559-00038	0	1	GUSSET, LEFTSIDE	28480	08559-00038
3	08559-00037	9	1	GUSSET, RIGHt SIDE	28480	08559-00037
4	08559-00003	9	1	PANEL, REAR	28480	08559-00003
5	5061-5426	9	1	RAIL. GUIDE TOP	28480	5061-5426
6	08559-20017	7	1	EXTRUSION, CIRCUIT ENCLOSURE, TAPPED	28480	08559-20017
7	08559-20015	5	1	EXTRUSION. ENDPLATE ENCLOSURE:	28480	08559-20015
8	08559-20014	4	1	EXTRUSION, CIRCUIT ENCLOSURE, TAPPED	28480	08559-20014
9	08559-20016	6	2	EXtrusion, CIRCUIT ENCLOSURE	28480	08559-20016
10	08559-20001	9	1	WINDOW, FREQ. DISPLAY	28480	08559-20001
11	5021-3254	3	1	RAIL, GUIDE BOTTOM	28480	5021-3254
12	08557-60045	3	1	CABLEASSY (W5) VERTICAL OUTPUT	28480	08557-60045
13	2200-0165	6	2	SCREW. MACH 4-40.25 INLG 82 DEG	28480	2200-0165
14	2360.0194	9	4	SCREW, MACH 6-32.312 INLG		
				FL-HD-POZI	2848C	2360-0194
15	2360-0192	7	4	SCREW, MACH 6-32.25 INLG		
				FL-HD-POZI	2848G	2360-0192
16	2360-0201	9	2	SCREW. MACH 6-32.5INLG PAN-HD-POZI	2848G	2360-0201
17	0624-0099	1	80	SCREW. TPG 4-40.375 IN LG		
				PAN-HD-POZI	28480	0624-0099
18	$2200 \cdot 0103$	2	14	SCREW, MACH 4-40.25 INLG		
				PAN-HD-POZI	28480	2200-0103
19	2200-017a	3	1	SCREW. MACH 4-40.625 INLG 82 DEG	28480	2200-0170
20	0380-0005	1	1	SPACER, RND. 312 INLG.18-IN-ID	28480	0380-0005
21	2260-0003	7	1	NUT. HEX PLSTC LKG 4-40 THD. 141		
22	2200-0164	5	2	INTHK SCREW. MACH 4-40. 188 INLGUNCT	28480	2260-0003
22	2200-0164	5	2	SCREW. MACH 4-40. 188 IN LG UNCT 82 DEG	28480	2200-0164
23	2200-0769	6	3	SCREW, MACH 4-40.438 INLG PAN-HD-POZI	28480	2200.0769
24	08559-00006	2	1	COVER. THIRDCONVERTER	28480	$2200-0769$ $08559-00006$
25	08559-00007	3	1	COVER. BANDWIDTHFILTER NO. 1	28480	08559.00007
26	08559-00008	4	1	COVER, STEPGAIN	28480	08559-00008
27	08559-00009	5	1	COVER, BANDWIDTH FILTER NO. 2	28480	08559-00009
28	08559-00C27	7	1	COVER, LOG AMP	28480	08559-00027
29	3050-0105	6	4	WASHER. FL-MTLC NO. 4.125 IN ID	28480	3050.0105
30	2420-0001	5	2	NUT. HEX-W/LKWR 6-32 THD. 109		
				INTHK	28480	2420-0001
31	3050.0082	8	6	WASHER. FIBER	28480	3050.0082
32	2190-0104	0	1	WASHER. LKINTL 7/16 IN. 439 INID	28480	2190.0104
33	2950-0132	6	1	NUT. HEX DBL-CHAM 7/16-28 THD .125 IN THK	28480	2950-0132
34	0370-0606	7	11	BEZEL, PB, 330 IN SQ: JADE GRAY	28480	0370.0606
36	5040-8819	6	1	PUSHBUTTON, SQUARE: WILLOW		
				GREEN	28480	5040-8819
37	08565-40011	1	1	POINTER, INPUT ATTENUATOR	28480	08565-40011
38	1460-0532	0	1	SPRING. CONICAL	28480	1460-0532
39	08558-60167	1	1	kNob ASSy, referencelevel	28480	08558-60167
40	08565-00043	5	1	INDEX DISK, REFERENCELEVEL	28480	08565-00043
41	0510.0089	8	1	```RETAINER,RINGEXT.188IN DIA, BECU```	28480	0510-0089
42	08565-60047	5	1	KNOB ASSY, REFLEVELFINE	28480	08565-60047
43	08559-20052	0	1	KNOB ASSV, RESOLUTION BW	28480	08559-20052
44	08559-20053	1	1	KNOB ASSY. FREQ SPAN/DIV	28480	08559-20053
45	0370-3060	3	1	KNOB, LOCK	28480	0370-3060
46	08559-60002	4	1	RFINPUTASSY	28480	08559-60002
47	08559-20045	1	1	CAbLE. RFINPUT	28480	08559-20045

FIGURE6-1. MECHANICALCHASSIS PARTS(10F2)

Reference Designater	Hp Part Number	c	aty	Description	Mfr. Code	Mfr. Part Number
${ }^{48}$	${ }^{0370.3021}$			knos Assr, Manval sweep	${ }^{28480}$	0370.3021
${ }_{50}^{49}$	(0859.20051	?	1	KNoo AsYV, Smeep Timeliv		(oas59,20051
${ }_{51}^{51}$	03370.3006	?		KNoo ASSS, FINE TUNE	${ }^{28480}$	0337.3006
${ }_{53}^{52}$	O.037.3004	5	1		${ }_{\substack{20480 \\ 28480}}$	
${ }_{54}$		6			28480	2190.330
55	2950.0001	-	1			
	${ }_{2} 29000016$	3				
${ }_{57}$	${ }_{\text {O855.00006 }}$	1	1	INSULATOR, REAR HELU WTTH		
${ }^{58}$	88701.40001	,	2	ExTRACTOR PC B Boano	${ }_{288880}^{28890}$	(oss50.0006
¢90					${ }_{\substack{20480 \\ 28480}}^{290}$	
${ }_{62}^{61}$	${ }_{\text {3050.017 }}^{\text {3050.0162 }}$	4		WSHR.FL 260 in 10	28880 28480	${ }_{\substack{3055.0017 \\ \text { 3050.0162 }}}^{\text {a }}$
${ }_{63}$	0590.1251	6	1	NUT.SPCLY 15/32.32 THD .1 I 1 THK		
				- 5682 WO	${ }^{22480}$	
¢65	6350.0036	\bigcirc	1		${ }_{26480}^{26850}$	${ }^{\text {O380.0.034 }}$
				PaN:HDPOzI	29880	2200.0101
(67	${ }_{\substack{2200.061 \\ 2510.0278}}^{2}$	$\stackrel{1}{9}$	${ }_{2}^{20}$		$\substack{28880 \\ 28480}$	
69	${ }^{2360.0113}$	2	1	SCREW. Mach 6.32 .3121 NLL		
70	${ }^{3050.029}$	2	1		28880	00.013
				. 562 IN 000	28480	3050.0929
					28880	0360.0269
72	2200.0141	-	$=$		${ }^{28480}$	$2200 \cdot 0141$
${ }^{72}$	80.0009	3	$=$	NUT-HExW/KKwR 4.40 THD		
74	${ }^{0360.1669}$	3	1		28880	2260.0099
					${ }^{28480}$	
${ }_{76}$	$\underbrace{10.0}_{\substack{14000.0031 \\ 2200045}}$	${ }_{2}$	1	Comer		
7	2260.000	5	1		28880	2200.0
					年28880	
${ }_{79}^{79}$	3050.006	${ }_{5}$	1		coize 28880	$\underbrace{\text { 200, }}_{\substack{3050.066 \\ \text { 21900018 }}}$

SECTION VII MANUAL BACKDATING CHANGES

7.1. INTRODUCTION

7-2. This section contains information for adapting this manual to earlier 8559A Spectrum Analyzers. If the serial number prefix of your spectrum analyzer appears on the title page of this manual, the contents of the manual are directly applicable to your instrument. If, however, your spectrum analyzer has a lower serial number prefix than what is shown on the title page, you must adapt this manual to your instrument by changing it as indicated in this section.

7-3. If your instrument has a higher serial number prefix that what is shown on the title page of this manual, it will be documented in a yellow MANUAL UPDATING CHANGES supplement. For additional important information about serial number coverage, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

7.4. HOW TO USE THIS BACKDATING INFORMATION

7-5. Change and correction information in this supplement is itemized on separate pages corresponding to the original manual pages. The pages in this supplement are organized in numerical order by manual page number. These pages are intended to be inserted into the manual to either supplement or replace the original manual pages.
7-6. To adapt this manual to your instrument:

- Insert the change pages in this section into this manual adjacent to the original manual pages.
- Insert any complete replacement pages provided into this manual in the proper location. The original manual pages may be-discarded or the original manual may be left intact to document all instrument configurations.

Page 1-3:

Table 1-1. HP 8559A Specifications (1 of 4)
2236A \& Below

2320A \& Below
Change "Residual FM" specification to read as follows: less than $1 \mathrm{kHz} \mathrm{p}-\mathrm{p}$ for a time interval less than or equal to .O1 sec, $100 / 120$ line voltages; less than $2 \mathrm{kHz} \mathrm{p}-\mathrm{p}, \mathbf{2 2 0 / 2 4 0}$ line voltages.
Delete the following under 'Maximum Input (without damage)
Levels":
Peak Pulse Power
+50 dBm ($100 \mathrm{~W}, 10$ microsecond pulse width, 0.01% duty cycle) with input attenuation $>=30 \mathrm{~dB}$.
Change "Gain Compression" specification to read as follows: Gain compression is less than 0.5 dB for a 0 dBm input level with 0 dB input attenuation.
Under "Display Fidelity", change the Linear specification to read as follows:
<+-0.1 division over full 8 division deflection.
Change "Humidity Range (Operating)" to read as follows:
く95\% R.H. 0 -degrees C to +40-degrees C.
Change "EMI" to read as follows:
Conducted and radiated interference is within the requirements of methods CE03 and RE02 of MIL STD 461A, VDE 0871 and CISPR Publications 1, 2, and 4.

Change "Residual $\mathrm{FM}^{\prime \prime}$ specification to read as follows:
less than $1 \mathrm{kHz} \mathrm{p}-\mathrm{p}$ in 0.1 second.

Pages 4-10 and 4-11:

Paragraph 4-13. Residual FM

2320A \& Below
Change SPECIFICATION to read as follows:
Less than 1 kHz peak-to-peak for a time interval 0.1 second; 100/120 line voltages; less than 2 kHz peak-to-peak in a 180series display mainframe with $220 / 240$ line voltage.
Replace the note in step 6 with the following:
NOTE
A $1 \mathbf{k H z}$ shift in Frequency produces a 0.7 division shift in amplitude.
In step 6, change the last sentence to read:
Peak-to-peak variation of trace should not exceed 0.7 division vertical for each horizontal division.

Page 4-63:

Table 4-18. Performance Test Record (2 of 4)
2320A \& Below Under Para. No. 4-13. Residual FM, change the maximum Peak-toPeak Variation of Trace in test 6 to 0.7 div ($1 \mathrm{kHz} / 0.1 \mathrm{sec}$).

Pages 5-11 through 5-13:

Paragraph 5-17. Power Supply Checks and Adjustments
2236A \& Below Replace Paragraph 5-17 with new Paragraph 5-17 (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.

ADJUSTMENTS

5-17. POWER SUPPLY CHECKS AND ADJUSTMENTS(SERIAL PREFIX 2236A)

REFERENCE:

A7, A8, A9 Schematics

DESCRIPTION:

The +14.5 V and -10 V supplies on Frequency Control Assembly A7 are adjusted. The $-\mathbf{1 2 . 0 V}$ supply on A7 is checked for proper dc output with less than $\pm 50 \mathrm{mV}$ variation when tuning the HP 8559A from 0 to 3 GHz . The $\mathbf{+ 1 0 . 0 V}$ supply on Sweep Generator/Bandwidth Control Assembly A9 is adjusted and the VO (Varactor Offset) voltage on Marker Assembly A8 is adjusted. The +10.0 V supply and VO voltage must be adjusted during the first five minutes after the spectrum analyzer is turned on (cold instrument). However, the +14.5 V and $\mathbf{- 1 0 . 0 V}$ supplies must be adjusted first.

FIGURE5-1. POWER SUPPLYCHECKS AND ADJUSTMENTSTESTSETUP

EQUIPMENT:

Digital Voltmeter
HP 3490A

PROCEDURE:

1. Connect equipment as shown in Figure 5-1. Install Frequency Control Assembly A7 on extender board and connect digital voltmeter to $\mathbf{A 7 T P} 3+14.5 \mathrm{~V}$.
2. Adjust A7R52 $+\mathbf{1 4 . 5 V}$ adjustment for a voltmeter indication of $\mathbf{+ 1 4 . 5 0 0} \pm \mathbf{0 . 0 0 2}$ volts.
3. Connect digital voltmeter to A7TP2 and adjust A7R55 - 10V adjustment for a voltmeter indication of -10.000 ± 0.005 volts.
4. Check for $-12.0 \pm \mathbf{0 . 1 V}$ at collector (base) of A 7 Q 1 .
5. Select FREQUENCY BAND GHz . $01-3$ and tune from 0 to 3 while monitoring the -12 V at collector of A7Q1. The -12 V supply should not vary more than $\pm 50 \mathrm{mV}$.

ADJUSTMENTS

5-17. POWER SUPPLY CHECKS AND ADJUSTMENTS(SERIALPREFIX 2236A)(Cont'd)

6. Remove extender board and reinstall Frequency Control Assembly A7.

NOTE
The two following voltage adjustments, $\mathbf{+ 1 0 \mathrm { V }}$ and VO (Varactor Offset), must be adjusted while analyzer is still cold (during first five minutes after turn-on). If instrument has been operating longer than five minutes, turn off mainframe and remove assemblies A8 and A9. Let assemblies A8 and A9 cool on bench for 15 minutes. Replace the two assemblies and proceed with adjustment of A9R2 and A8R62 during the first five minutes after turn-on.
7. Connect digital voltmeter to A9TP6 +10 V and adjust A9R2 +10 V adjustment for a voltmeter indication of $+10.000 \pm 0.100 \mathrm{~V}$.
8. Connect digital voltmeter to A8TP2 VO. Set HP 8559A controls as follows:
FREQUENCY BAND GHz .
9. The voltage at A8TP2 will change (between two values) each time a sweep is triggered. Trigger the sweep a few times and select the sweep that yields the least negative VO voltage. Adjust A8R62 VO adjustment for a voltmeter indication of $-2.00 \pm 0.10 \mathrm{~V}$.

Pages 5-17 through 5-23:

Paragraph 5-19, Log Amplifier and Linear Adjustments

2208A \& Below
Replace Paragraph 5-19 with new Paragraph 5-19 (SERIAL PREFIX
2208A) included in this Manual Backdating supplement.

ADJUSTMENTS

5.19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENT (SERIAL PREFIX 2208A)

REFERENCE:

A14 and A15 Schematics

DESCRIPTION

$10 \mathrm{~dB} /$ DIV and LIN are adjusted for correct steps and full-screen display translations.

FIGURE53. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENTTESTSETUP

EQUIPMENT:

> Signal Generator
> HP 8640B
> Digital Voltmeter HP 3490A
> Step Attenuator ($10 \mathrm{~dB} /$ step)
> Adapter, Type N Male on one end, BNC female on other end HP 1250-0780
> Adapter, BNC Male on one end, SMA Male on other end HP 1250-0831

PROCEDURE:

1. Set spectrum analyzer controls as follows:

FREQUENCY BAND GHz	. $01-3$
FREQ SPAN/DIV	1 MHz
RESOLUTIONBW	300 kHz
INPUT ATTEN	10 dB
REF LEVEL dBm	-50
AmplitudeScale .	LIN
SWEEP TIME/DIV	AUTO
SWEEP TRIGGER	EE RUN

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENT (SERIAL PREFIX 2208A) (Cont'd)

2. Connect equipment as shown in Figure 5-3. Set signal generator frequency to $321.4 \mathbf{M H z}$ and output level to -40 dBm . Remove A10W1 from A5J2 2nd CONV OUT. Connect signal generator output through step attenuator and adapters to A10W1.
3. Set the TEST-NORM switch A12S1 to the TEST position. Tune signal generator frequency for maximum signal amplitude on oscilloscope display with step attenuator set at $\mathbf{0} \mathrm{dB}$.
4. Set output level of signal generator for a digital voltmeter reading of 700 mV , with step attenuator set at $\mathbf{0}$ dB and REF LEVEL dBm set to -50 .
5. Set HP 8559A REF LEVEL dBm to -80 and set step attenuator to 30 dB . Observe digital voltmeter reading.
6. Adjust A14R3 GAIN LIN for a digital voltmeter reading of 700 mV .
7. Repeat steps 4,5 , and 6 until the DVM reading in step 5 is $700 \pm 2 \mathrm{mV}$.
8. Set HP 8559A REF LEVEL dBm to - 50 and set step attenuator to 0 dB . Change REF LEVEL dBm and step attenuator settings as shown in Table 5-6. If Deviation from Reference is not within the given limits, readjust A14R3.

TABLE56. LINEAR GAIN ADJUSTMENTLIMITS

Reference Level (dBm)	Step Attenuator Setting (dB)	Deviation From Reference
-50	0	Reference $(700 \mathrm{mV})$
-60	10	$\pm 10 \mathrm{mV}$
-70	20	$\pm 20 \mathrm{mV}$
-80	30	$\pm 20 \mathrm{mV}$
-90	40	$\pm 30 \mathrm{mV}$

9. Set HP 8559A REF LEVEL dBm to 0 and disconnect signal generator from step attenuator. Record offset reading (DVM). The offset should be less than $\pm 30 \mathrm{mV}$.

Offset \qquad mV
10. Reconnect signal generator as shown in Figure 5-3. Set Amplitude Scale to 10 dB/DIV and set step attenuator to 40 dB .
11. Set output level of signal generator for a digital voltmeter reading of 400 mV plus offset recorded in step 9 (algebraic sum). (Example: if offset if -23 mV , set output level of signal generator for a DVM reading of 377 mV .)

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENT(SERIAL PREFIX 2208A)(Cont'd)

12. Set step attenuator to 0 dB . Digital voltmeter should indicate 800 mV , plus offset (algebraic sum) $\pm 1 \mathrm{mV}$. If DVM reading is not within limits, adjust A14R2 LOG LIN adjustment for a digital voltmeter reading of 800 mV , plus offset minus 50 percent of overshoot. (Example: if DVM indicates 767 mV and should be indicating 777 mV (-10 mV overshoot), adjust A14R2 for a DVM reading of 777 mV minus -5 mV , or 782 mV .)
13. Repeat steps 10,11 , and 12 until the digital voltmeter indicates 800 mV plus offset $\pm 1 \mathbf{m V}$ with no further adjustment of A14R2 in step 12.
14. Set the step attenuator to the positions shown in Table 5-7 and record DVM reading for each setting. Correct the DVM readings by algebraically adding the offset (recorded in step 9).

TABLE5-7. LOG FIDELTTY CHECK

Step Attenuator Setting (dB)	$\begin{aligned} & \text { DVM Reading } \\ & (\mathrm{mV}) \end{aligned}$	DVM Reading Corrected for Offset		
		Min. (mV)	Actual (mV)	Max. (mV)
0		799	-	801
10		697	-	703
20		596	-	604
30		496	-	504
40		395		405
50		294	-	306
60		193	-	207
70		92	-	108

15. Readjust A14R2 if necessary to meet the limits in Table 5-7.
16. Set step attenuator to 0 dB and set output level of signal generator for a digital voltmeter reading of 800 $\mathbf{m V}$ plus offset (recorded in step 9) $\pm 1 \mathrm{mV}$.
17. Set Amplitude Scale to LIN. The digital voltmeter should indicate the reading set in step $16 \pm \mathbf{2 5} \mathbf{m V}$. If it does, go to step 19. If it does not, or if log fidelity is not within limits, go to step 18 and select A14R16*.
18. Select A14R16* to obtain an output in step 17 within $\pm \mathbf{2 5} \mathbf{~ m V}$ of the reading set in step 16. Decreasing A14R16* 10 percent will increase the DVM reading approximately 30 mV in step 17.

NOTE

Log fidelity must be considered when selecting A14R16*. That is, if the DVM READING CORRECTED FOR OFFSET in Table 5.7 is greater than 100 mV for a STEP ATTENUATOR SETTING of 70 dB , A14R16* should be selected for a DVM reading greater than the reading set in step 16. If the READING CORRECTED FOR OFFSET is less than 100 mV, A14R16* should be selected for DVM reading less than the reading set in step 16.

ADJUSTMENTS

5-19. LOG AMPLIFIER LOG AND LINEAR ADJUSTMENT(SERIAL PREFIX 2208A)(Cont'd)

19. Set output level of signal generator for a digital voltmeter reading of 800 mV plus offset (algebraic sum) $\pm 1 \mathrm{mV}$.
20. Set Amplitude Scale to 10 dB /DIV and adjust A14R2 LOG LIN adjustment for a digital voltmeter reading of 800 mV plus offset.
21. Repeat step 14 to recheck the \log fidelity.
22. Set the REF LEVEL dBm control to - 50. Set Amplitude Scale to $1 \mathrm{~dB} / \mathrm{DIV}$.
23. Set the step attenuator to $\mathbf{0 d B}$ and set output level of signal generator for a digital voltmeter reading of $\mathbf{7 0 0}$ mV (do not include offset).
24. Set the REF LEVEL dBm control to -90 and the step attenuator to 40 dB . Adjust A14R1 LOG GAIN adjustment for a digital voltmeter reading of 700 mV .
25. Change REFERENCE LEVEL and step attenuator settings as shown in Table 5-8. Deviation from Reference should not exceed the given limits.

TABLE 5-8. LOG GAIN ADJUSTMENTLIMITS

Reference Level $(\mathbf{d B m})$	Step Attenuator Setting (dB)	Deviation From Reference
-50	0	Reference $(700 \mathrm{mV})$
-60	10	$\pm 30 \mathrm{mV}$
-70	20	+30 mV
-80	30	+30 mV
-90	40	$\pm 30 \mathrm{mV}$

26. Return the TEST-NORM switch on assembly A12 to the NORM position.

Pages 5-26 through 5-32:
Paragraph 5-21. Bandwidth Filter Adjustments
1909A \& Below Replace Paragraph 5-21 with new Paragraph 5-21 (SERIAL PREFIX 1909A) included in this Manual Backdating supplement.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(SERIAL PREFIX 1909A)

REFERENCE:

A9, A11, and A13 Schematics

DESCRIPTION:

The crystal and LC bandwidth filter circuits are adjusted for symmetry, center, and peak. Three-dB bandwidths are adjusted in Sweep Generator/Bandwidth Control Assembly A9 (paragraph 5-22).

EQUIPMENT:
Adapter, Type N Male to BNC Female . HP 1250-0780
BNC Cable, 6-Inch
HP 10502A
Crystal Short (3 required)
See Figure 5-6

NOTE

A crystal short consists of a.01 μ F capacitor (HP Part Number 0160-0161) and a 90.9 ohm resistor (HP Part Number 0757-0400) connected in series. Two square terminal connectors (HP Part Number 0362-0265) are used to connect the crystal short across the test points.

TERMINAL CONNECTORS
FIGURE $5-6$. CRYSTALSHORTCONFIGURATION

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(SERIAL PREFIX 1909A)(Cont'd)

PROCEDURE:
NOTE
Allow 30 minutes warmup time before performing adjustments.

1. Set spectrum analyzer controls as follows:

FREQUENCY BAND GHz	. $01-3$
TUNING.	35 MHz
FREQ SPAN/DIV	10 kHz
RESOLUTIONBW	1 kHz
INPUTATTEN	30dB
REF LEVEL dBm	0
Amplitude Scale	LIN
SWEEP TIME/DIV	AUTO
SWEEPTRIGGER	E RUN

Crystal Alignment
2. Connectequipment as shown in Figure 5-5.

NOTE
If Sweep Generator/Bandwidth Control Assembly A9 has been replaced or adjusted, perform steps 3 through 9 . If not, proceed to step 10.
3. Set FREQ SPAN/DIV to 500 kHz and RESOLUTIONBW to 1 MHz .
4. Center the signal with TUNING control. Using REF LEVEL FINE control, place signal at 7.1 divisions (0.9 division from top graticule line).
5. Adjust A9R85 LC until signal is two divisions wide at the fifth graticule line (1 MHz wide at $3-\mathrm{dB}$ points).
6. Set FREQ SPAN/DIV to 10 kHz and RESOLUTIONBW to 10 kHz .
7. Using REF LEVEL FINE control, place signal at 7.1 divisions.
8. Adjust A9R72 XTL until signal is one division wide at the fifth graticule line (10 kHz wide at 3 dB points).
9. Set FREQ SPAN/DIV to 10 kHz and RESOLUTION BW to 1 kHz .
10. Center signal with TUNING control. (It might be necessary to increase FREQ SPAN/DIV temporarily to find the signal.) Set REF LEVEL FINE control to place signal at sixth graticule line.

NOTE

Do not readjust REF LEVEL FINE control until all crystal and LC bandwidth filter adjustments have been performed.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(SERIAL PREFIX 1909A)(Cont'd)

11. Set FREQ SPAN/DIV to 20 kHz , RESOLUTIONBW to 30 kHz , and SWEEP TIME/DIV to 10 mSEC .

NOTE

A non-metallic tuning tool is required for adjustments on Bandwidth Filter Assemblies A11 and A13.
12. Connect crystal shorts (through cover access holes) across A13TP1/TP2, A11TP1/TP2, and A11TP4/ TP5.

NOTE

Keep crystal spike centered during adjustments. The SYM and CTR adjustments for each crystal are interacting.
13. Adjust front-panel TUNING control to center bandpass spike (Figure 5-7) on the CRT display.

FIGURE5-7. ADJUSTING CRYSTALSYMMETRY ANDCRYSTALCENTERING
14. Adjust A13C38 SYM and A13C54 CTR for a centered and symmetrical bandpass as shown in Figure 5-7. Adjust A13C54 CTR for minimum signal amplitude.
15. Remove crystal short from A13TP1/TP2.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(SERIAL PREFIX 1909A)(Cont'd)

16. Adjust A13C15 SYM and A13C25 CTR for a centered and symmetrical bandpass. Adjust A13C25 CTR for minimum signal amplitude,
17. Remove crystal short from A11TP4/TP5.
18. Adjust A11C38 SYM and A11C54 CTR for a centered and symmetrical bandpass. Adjust A11C54 for minimum signal amplitude.
19. Remove crystal short from A11TP1/TP2.
20. Adjust A11C15 SYM and A11C25 CTR for a centered and symmetrical bandpass. Adjust A11C25 for minimum signal amplitude.
21. Remove the crystal shorts.

LC Alignment

22. Perform preliminary LC filter adjustments as follows:

NOTE

When Bandwidth Filter Assemblies A11 and A13 are installed with covers in place, midget copper alligator clips (HP Part Number 1400-0483) can be used to short test points to the cover.
a. Install A13 on extender board.
b. Short to ground the following test points: A13TP6, A11TP3, and A11TP6. Jumper A9TP1 to A9TP2.
c. Adjust A13C73 ior minimum signal amplitude.
d. Disconnect short from A13TP6 and short to ground A13TP3.
e. Adjust A13C74 for minimum signal amplitude.
f. Reinstall A13 and install A11 on extender board.
g. Disconnect short from A13TP3 and short to ground A11TP6.
h. Adjust A11C73 for minimum signal amplitude.
i. Disconnect short from A11TP6 and short to ground A11TP3.
j. Adjust A11C74 for minimum signal amplitude.
k. Disconnect shorts from test points and reinstall A11. Replace covers on A11 and A13 assemblies. Remove jumper from A9TP1/A9TP2.

ADJUSTMENTS

5-21. BANDWIDTHFILTER ADJUSTMENTS(SERIAL PREFIX 1909A)(Cont'd)

23. Carefully center signal on CRT in 30 kHz RESOLUTION BW; then switch RESOLUTION BW to 100 $\mathbf{k H z}$. Note where signal intersects the center vertical graticule line.
24. Adjust A13C45 LC CTR for maximum signal amplitude where the signal intersects the center vertical graticule line.
25. Switch RESOLUTION BW to $30 \mathbf{k H z}$ and center signal; then switch to $100 \mathbf{k H z}$. Note where signal intersects the center vertical graticule line.
26. Adjust A13C23 LC CTR for maximum signal amplitude where the signal intersects the center vertical graticule line.
27. Switch RESOLUTION BW to $30 \mathbf{k H z}$ and center signal; then switch to $100 \mathbf{k H z}$. Note where signal intersects the center vertical graticule line.
28. Adjust A11C45 LC CTR for maximum signal where the signal intersects the center vertical graticule line.
29. Switch RESOLUTION BW to $30 \mathbf{~ k H z}$ and center signal; then switch to $100 \mathbf{~ k H z}$. Note where signal intersects the center vertical graticule line.
30. Adjust A11C23 LC CTR for maximum signal amplitude where the signal intersects the center vertical graticule line.
31. Switch RESOLUTION BW between $100 \mathbf{k H z}$ and $30 \mathbf{k H z}$ to be sure the signal is centered at both bandwidth settings.

Bandwidth Amplitude

32. Set Amplitude Scale to 1 dB/DIV and SWEEP TIME/DIV to AUTO.
33. Set RESOLUTIONBW to $3 \mathbf{M H z}$ and FREQ SPAN/DIV to 50 kHz .
34. Adjust fine TUNING and REF LEVEL FINE for a centered signal at 7 divisions.
35. Set RESOLUTION BW to 100 kHz and center signal with fine TUNING control. Adjust A13R26 LC and A11R26 LC equally to obtain a signal amplitude of 7 divisions.
36. Set RESOLUTION BW to $1 \mathbf{k H z}$ and FREQ SPAN/DIV to $10 \mathbf{k H z}$. Center signal with fine TUNING control. Adjust A11R31 XTL and A13R31 XTL equally for a signal amplitude of 7 divisions.

NOTE
Each potentiometer should be adjusted to accomplish half the necessary increase in signal amplitude.

ADJUSTMENTS

5-21. BANDWIDTH FILTER ADJUSTMENTS(SERIAL PREFIX 1909A)(Cont'd)

37. Set FREQ SPAN/DIV to $10 \mathbf{k H z}$ and RESOLUTION BW to $1 \mathbf{k H z}$ with arrows aligned (OPTIMUM). Push in to couple the two controls.
38. Adjust REF LEVEL FINE for a signal amplitude of 7 divisions.
39. With controls coupled, step RESOLUTION BW from $1 \mathbf{k H z}$ to $3 \mathbf{M H z}$. Variation in signal amplitude should be less than $\pm 0.4 \mathrm{~dB}$.
40. If variation in signal amplitude is not within limits, repeat steps 32 through 39.

Pages 5-33 through 5-37:

Paragraph 5-22. 3 dB Bandwidth Adjustment
1909A \& Below Replace Paragraph 5-22 with new Paragraph 5-22 (SERIAL PREFIX 1909A) included in this Manual Backdating supplement.

ADJUSTMENTS

5-22. 3 dB BANDWIDTH ADJUSTMENTS(SERIALPREFIX 1909A)

REFERENCE:

A9 Schematic

DESCRIPTION:

The 3-dB bandwidths for the $3 \mathrm{MHz}, 1 \mathrm{MHz}$ and 300 kHz RESOLUTION BW settings are adjusted using the CAL OUTPUT as the signal source. The $3-\mathrm{dB}$ bandwidths for the $10 \mathrm{kHz}, 3 \mathrm{kHz}$, and 1 kHz RESOLUTION BW settings are adjusted by injecting a stable 321.4 MHz signal into the third converter of the spectrum analyzer.

PROCEDURE

1. Set spectrum analyzer controls as follows:
FREQUENCY BAND GHz 01-3
TUNING 35 MHz
FREQ SPAN/DIV 200 kHz
RESOLUTIONBW 1 MHz
INPUT ATTEN 20dB
REF LEVEL dBm 0
Amplitude Scale LIN
SWEEP TIME/DIV 1 msec
SWEEPTRIGGER FREE RUN
VIDEOFILTER MIN
2. Connect equipment as shown in Figure 5-8 except for signal input to A10W1. Connect CAL OUTPUT to spectrum analyzer INPUT 50Ω.

ADJUSTMENTS

5-22. $3 \mathbf{d B}$ BANDWIDTHADJUSTMENTS(SERIAL PREFIX 1909A) (Cont'd)

3. Set signal level of 7.1 divisions on display with REF LEVEL FINE control. (Signal should be 0.9 division from top graticule line.)
4. Set RESOLUTION BW to $1 \mathbf{M H z}$ and FREQ SPAN/DIV to 200 kHz . Adjust A9R85 LC to set bandwidth of 5 divisions at the fifth graticule line.
5. Set RESOLUTION BW to $3 \mathbf{M H z}$ and FREQ SPAN/DIV to 500 kHz . The bandwidth at the fifth graticule line should be between 5.4 and 6.6 divisions.

NOTE

Abstract

A9R85 LC may be further adjusted to bring the 3 MHz and 300 kHz bandwidths within limits; however, the final measurement of the 1 MHz bandwidth must be between 4.5 and 5.5 divisions at the fifth graticule line. (If the 3 MHz bandwidth cannot be brought within limits by adjustment of A9R85 LC, change the value of factory-selected resistor A9R95*.)

6. Set RESOLUTION BW to $300 \mathbf{k H z}$ and FREQ SPAN/DIV to 50 kHz . The bandwidth should be between 5.4 and 6.6 divisions at the fifth graticule line. (If the bandwidth cannot be adjusted within the specified limits, change the value of factory-selectedresistor A9R89*.)
7. Set RESOLUTION BW to $100 \mathbf{k H z}$ and FREQ SPAN/DIV to 20 kHz . The bandwidth should be between 4.3 and 5.7 divisions at the fifth graticule line.

NOTE

> If the $\mathbf{1 0 0} \mathrm{kHz}$ bandwidth is not within the specified limits, change the values of factory-selected resistors A13R19*, A13R43*, and A11R43*. If the bandwidth is too wide, increase the value of the resistors; if the bandwidth is too narrow, decrease the value of the resistors. The three factory-selected resistors need not be of equal value, but each must be within one standard value of the others.
8. Set RESOLUTION BW to $30 \mathbf{k H z}$ and FREQ SPAN/DIV to $10 \mathbf{k H z}$. The bandwidth should be between 2.6 and 3.4 divisions at the fifth graticule line.

> NOTE
> If the 30 kHz bandwidth is not within the specified limits, change the values of factory-selected resistors A11R23*, A11R48*, A13R23*, and A13R48*. If the bandwidth is too wide, decrease the value of the factory-selected resistors; if the bandwidth is too narrow, increase the value of the resistors. The four factory-selected resistors need not be of equal value, but each must be within one standard value of the others.
9. Connect signal generator through the BNC Tee connector to the step attenuator and to the frequency counter as shown in Figure 5-8. Set the signal generator to approximately 0 dBm and the step attenuator to 30 dB .

ADJUSTMENTS

5-22. 3 dB BANDWIDTH ADJUSTMENTS(SERIAL PREFIX 1909A)(Cont'd)

10. Remove A10W1 from A5J2 2nd CONV OUT Connect step attenuator through adapter to A10W1.
11. Set HP 8559A RESOLUTION BW to 1 MHz . Adjust the output level of signal generator to place the signal near center graticule line. Tune signal generator frequency to peak signal on oscilloscope display (near 321.4 MHz).
12. Set RESOLUTION BW to 3 kHz . Tune signal generator to peak signal on oscilloscope display.
13. Adjust output level of signal generator to place signal at 7.1 divisions.
14. Note the counter frequency and tune the signal generator 1500 Hz below the center frequency noted. Record the new counter frequency.
\qquad MHz
15. Adjust A9R72 XTL to bring signal level to the fifth graticule line (three divisions from the top graticule line).
16. Increase signal generator frequency until signal on oscilloscope display peaks and then decreases to the fifth graticule line. Record counter frequency.
$\xrightarrow{-} \mathbf{M H z}$
17. Compare new frequency with frequency recorded in step 14. The difference between the two frequencies should be 2800 to 3200 Hz . If the bandwidth is not within limits, repeat steps 12 through 17, slightly readjusting A9R72 XTL, until the specified limits are achieved.
18. Set RESOLUTION BW to 10 kHz . Tune signal generator to peak signal on oscilloscope display.
19. Adjust REF LEVEL FINE to place signal at 7.1 divisions.
20. Decrease the signal generator frequency until the signal on the oscilloscope display drops to the fifth graticule line. Record counter frequency.
_ MHz
21. Increase the signal generator frequency until the signal on the oscilloscope display peaks and then decreases to the fifth graticule line. Record counter frequency.
\qquad MHz

ADJUSTMENTS

5-22. 3 dB BANDWIDTH ADJUSTMENTS(SERIAL PREFIX 1909A)(Cont'd)

22. Compare new frequency with frequency recorded in step 20. The difference between the two frequencies should be 9.000 kHz to 11.000 kHz .

Abstract

NOTE A9R72 XTL may be further adjusted to bring the 10 kHz and 1 kHz bandwidths within limits; however, the final measurement of the 3 kHz bandwidth must be between 2700 Hz and 3300 Hz (If the 10 kHz bandwidth cannot be brought within limits by adjustment of A9R72 XTL, change the value of fac-tory-selectedresistor A9R78*.)

23. Set RESOLUTION BW to $1 \mathbf{k H z}$. Tune signal generator to peak signal on oscilloscope display.
24. Adjust REF LEVEL FINE to place signal at 7.1 divisions. Record counter frequency.
\qquad
25. Increase signal generator frequency until signal on oscilloscope display drops to the fifth graticule line. Record new counter frequency.
\qquad
26. The difference between the two frequencies recorded in steps 24 and 25 should be $\mathbf{4 5 0 ~ H z}$ to 550 Hz .
27. Reconnect A10W1 to A5J2.

Pages 5-44 through 5-48:
Paragraph 5-25. First Converter Adjustments
2236A \& Below Replace Paragraph 5-25 with new Paragraph 5-25 (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.

2004A \& Below Delete steps 28 through 37.

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(SERIAL PREFIX 2236A)

REFERENCE:

A3, A4, A5, A6, and A7 Schematics

DESCRIPTION:

The First LO (A6 YTO) is adjusted by monitoring the YTO output at the RF input connector (LO feedthrough) and the tuning voltage (TUNE) output of the A7 Frequency Control board and adjusting the YTO low-end frequency for 3 GHz at OV tuning voltage and 6 GHz at -10 V tuning voltage.

The FM Driver is adjusted by inputting comb signals to the analyzer and adjusting for proper spacing (span linearity) of displayed signals on the CRT display.

FIGURE5-11. FIRSTCONVERTER ADJUSTMENTS TEST SETUP

EQUIPMENT:

```
Frequency Counter
Digital Voltmeter(DVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 3490A
Comb Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 8406A
```

PROCEDURE:

1. Allow one-half hour warmup time of equipment with analyzer connected to mainframe with extender cable.

First LO Adjustments

2. Connect DVM to A7TP4 TUNE.
3. Set analyzer controls as follows:
INPUT ATTEN 0 dB
FREQ SPAN/DIV 0 (zero)
ALTIF OFF (out)

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(SERIAL PREFIX 2236A)(Cont'd)

4. Connect frequency counter to analyzer RF Input.
5. Jumper A16TP1 DIODE BIAS to Ground. A16TP1 is located on the Motherboard through a hole in the analyzer side frame.
6. Adjust front-panel TUNING control for DVM indication of $\mathbf{0 . 0 0 0} \mathrm{Vdc}$ (fully counterclockwise).
7. Adjust A7R74 3 GHz for frequency counter indication of $3.000 \mathrm{GHz} \pm 1 \mathrm{MHz}$. If this adjustment cannot be achieved, selectable resistor A7R94* can be changed to provide the proper range necessary.
8. Adjust front-panel TUNING control for DVM indication of $\mathbf{- 1 0 . 0 0 0}$ Vdc.
9. Set A7R956 GHz F (fine) to approximately midrange (R 95 is a 20 -turn potentiometer).
10. Adjust A8R28 6 GHzC (coarse) for a frequency counter indication of $6.000 \mathrm{GHz} \pm 2 \mathrm{MHz}$.
11. Retune front-panel TUNING control for $\mathbf{0 . 0 0 0} \mathrm{Vdc}$ DVM indication and readjust A7R 743 GHz if necessary for frequency counter indication of $3.000 \mathrm{GHz} \pm 1 \mathrm{MHz}$.
12. Tune front-panel TUNING control for $\mathbf{- 1 0 . 0 0 0}$ Vdc DVM indication.
13. Lightly tap the top edge of the A7 Frequency Control board with the handle of a small screwdriver to seat controls.
14. Adjust A7R95 6 GHzF (fine) for frequency counter indication of $6.000 \mathrm{GHz} \pm 1 \mathrm{MHz}$.

Alternate IF First LO Shift Check

15. Press front-panel ALT IF pushbutton IN to activate alternate IE
16. Verify YTO frequency shift according to the following table.

TABLE $5-10$. FRST LOSHIFTCHECK
FREQUENCY BAND GHz ALT IF FREQUENCYCOUNTER INDICATION $1(.01-3)$ OFF Reference $(6.000 \mathrm{GHz})$ $1(.01-3)$ ON Reference $-15 \mathrm{MHz} \pm 800 \mathrm{kHz}$ $2(6-9)$ ON Reference $+15 \mathrm{MHz} \pm 800 \mathrm{kHz}$ $3(3-9)$ ON Reference $-7.5 \mathrm{MHz} \pm 400 \mathrm{kHz}$ $4(9-15)$ ON Reference $+7.5 \mathrm{MHz} \pm 400 \mathrm{kHz}$ $5(6-15)$ ON Reference $-5 \mathrm{MHz} \pm 300 \mathrm{kHz}$ $6(12.1-21)$ ON Reference $+5 \mathrm{MHz} \pm 300 \mathrm{kHz}$

17. Remove jumper from A16TP1 DIODE BIAS to Ground.

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(SERIAL PREFIX 2236A)(Cont'd)

FM Driver Adjustment

18. Disconnect frequency counter from analyzer RF Input and connect comb generator to RF Input,
19. Set comb generator for 1 MHz comb teeth.
20. Set analyzer controls as follows:
FREQ SPAN/DIV 1 MHz
RES BW 30 kHz
TIME/DIV AUTO
FREQUENCY BAND GHz Band 1 (.01-3)
REF LEVEL dBm -20
INPUT ATTEN 0 dB
ALTIF OFF (out)
SIG IDENT OFF (out)
AmplitudeScale $10 \mathrm{~dB} /$ DIV
21. Tune front-panelTUNING control for approximately 1500 MHz indication on front-panel FREQUENCY display.
22. Adjust front-panel TUNING FINE control to place a comb tooth on the first graticule line on the mainframe CRT display.
23. Adjust A7R38 FM to place a comb tooth on the ninth graticule line.
24. Readjust TUNING FINE control to place a comb tooth on the first graticule line and adjust A7R38 FM to place a comb tooth on each of the graticule lines while keeping the first comb tooth aligned using the TUNING FINE control.
25. Tune to approximately 100 MHz and verify that when a comb tooth is placed on the first graticule line using the TUNING FINE control that the ninth comb tooth is aligned with the ninth graticule line ± 1 minor division.
26. Repeat step 25 for frequency of approximately 2500 MHz .
27. If necessary, A7R38 FM may be compromise adjusted for best span linearity at the three frequencies indicated.
28. Set comb generator for $100-\mathrm{MHzcomb}$ teeth.
29. Adjust front-panel TUNING control for 100 MHz indication on FREQUENCY display
30. Set FREQ SPAN/DIV to 2 MHz .
31. Adjust TUNING to place $100-\mathrm{MHz}$ comb tooth on center graticule line.

ADJUSTMENTS

5-25. FIRST CONVERTER ADJUSTMENTS(SERIAL PREFIX 2236A)(Cont'd)

32. Set FREQ SPAN/DIV to 1 MHz . Note position of comb tooth.
33. Adjust A7R99 MO to place comb tooth midway between position noted in step $\mathbf{3 2}$ and center graticule line.
34. Set FREQ SPAN/DIV to 2 MHz .
35. Adjust TUNING to place comb tooth on center graticule line.
36. Set FREQ SPAN/DIV to $1 \mathbf{M H z}$. Note displacement of comb tooth from center graticule line.
37. Repeat steps $\mathbf{3 0}$ through $\mathbf{3 6}$ until displacement of comb tooth is less than $\mathbf{0 . 2}$ major division when FREQ SPAN/DIV is switched from 2 MHz to 1 MHz .

Page 6-7:
Table 6-3. Replaceable Parts
2236A \& Below Change WB to HP Part Number 1250-1159, Check Digit 4, CABLE ASSEMBLY, YIO TO FIRST MIXER.

1951A,1945A Change W4 to HP Part Number 08559-60001, Check Digit 3,
\& Below CABLE ASSEMBLY, CAL OUTPUT.

Page 6-8:

Figure 6-1. Mechanical Chassis Parts

2236A \& Below Change item (2), GUSSET, LEFT, to PP Part Number 08559-60032, Check. Digit 4
Change item (3), GUSSET, RIGHT, to HP Part Number 08559-60031, Check Digit 3.

2208A \& Below Change item (1), PANEL FRONT, to P Part Number 08559-00001, Check Digit 7.
Change item (2), GUSSET, LEFT, to HP Part Number 08559-00005, Check Digit 1.
Change item (3), GUSSET, RIGHT, to H Part Number 08559-00004, Check Digit 0 .
Change item (11), GUIDE RAIL, BOTTOM, to \mathbf{H} Part Number 08559_ 20013, Check Digit 3.

2019A00441
\& Below

Change HP Part Number 08559-00028 to HP Part Number 08558-00081, Check Digit 2, ATIENUATOR BRACKET.
Add H Part Number 08559-00023, Check Digit 3, BRACKET, ATIENUATOR DR SUPPORT.

Pages 8-17 through 8-23/8-24: DIGITAL PANEL METER ASSENBLY A1
Table 8-1. Digital Panel Meter Assembly A1, Replaceable Parts
2218A \& Below Replace Table 8-1 with new Table 8-1 (SERIAL PREFIX 2218A) included in this Manual Backdating supplement.

2208A \& Below Change A1A1 to HP Part Number 08559-60032, Check Digit 0. Add A1A1MP1, H Part Number 0380-1047, Check Digit 3, SPACER-RVTON .25-IN-LG . 15-IN-ID.

1945A00241,249, Change A1A2C4 and A1A2C5 to HP Part Number 0160-3914, Check 258,262,265,277 ; Digit 1, CAPACITOR-FXD .01UF +-10\% 100VDC CER.
1951A00283,286, Change A1A2L1 to HP Part Number 08559-80002, Check Digit 6, 288-290,292, COIL, 110 UH.
295-300; 2003A
\& Below
Figure 8-5. Digital Panel Meter Assembly Al, Component Locations
2218A \& Below Replace Figure 8-5 with new Figure 8-5 (SERIAL PREFIX 2218A) included in this Manual Backdating supplement.

Figure 8-6. Digital Panel Heter Assembly A1, Schematic Diagram

2218A \& Below

1945A00241,249,
258,262,265,277;
1951A00283,286,
288-290,292,
295-300; 2003A
\& Below

Replace Figure 8-6 with new Figure 8-6 (SERIAL PREFIX 2218A) included in this Manual Backdating supplement.

Make the following changes in function block (C): Change C4 and C5 to . O1UF. Change L1 to 110 UH .

TABLE8-1. DIGITALPANELMETER ASSEMBLYA1, REPLACEABLEPARTS(SERIALPREFIX2218A)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A1				FREQUENCY DISPLAY ASSEMBI Y		
A1A1	08559-60072	8	1	DPM DISPLAY	28480	08559-60072
A1A1DS1 A1A1DS	1990-0693 $1990-0693$	7	5	DISPLAY NUM SCG I-CHAR .3 H	26480 $? 8480$	$\begin{aligned} & \text { 1DS1-3533 } \\ & 1 \mathrm{DS} 1-3533 \end{aligned}$
A1 A1DS3	1990-0693	7		DISPLAY-NUH-SEG 1 -CHAR . 3 H	28480	$1 \mathrm{DE} 1-3533$
A1A1DS 4	1790-0693	7		DISPLAY-NUM SEG 1 CHAR 3 : 1	28480	1DS1-3533
A1 A1DS5	1990-0693	7		DISPLAY-NUM -SEG 1-CHAR 63 H	2¢,480	1DS1-3533
A1A1XDS1	1200-0834	5	5	SOCKET-TC 10-CONT DIP DIP SLDR	28480	1200-0834
A1A1xDS2	1200-0834	5		SOCKET-IC 10-CONT DIP DIP SIDR	28480	12000-0834
A1A1XDS3	1200-0834	5		SOCKET-IC 10 CONT DIP DIP SLDR SOCKFT-IC 10-CONT DIP	28480 28480	$1200-0834$ 1200.0834
A1A1XDS 4 A1A1	$1200-0834$ $1200-0834$	5 5		SOCKFT-IC 10-CONT DIP DIP SIP SOCKET IC 10	28480 38480	120000834 $1200-0834$
A1 A2	08559-60033	1	1	DPM DRIVER	211480	08557-60033
A1A2C1	0160-2220	0	,	CAPACITOR FXD $120 \mathrm{OPF}+5 \%$ 300UDC MICA	284880	0150-2220
A1 A2C2	0160-3402	2	1	CAPACITOR-FXD 10 O + $+5 \%$ 50UDC. HCT-POL Y	29480	$0160-3402$ DM15F391J030 OLU 1 CR
A1 A2C3 A1 A2C	$0140-0200$ $0160-3751$	0 4	1	CAPACITOR FXD $3709 \mathrm{~F}+5 \% 300 \mathrm{DDC}$ HICA	72136 28480	DM15F391J030 OWU 1 CR $0160-3751$
A1A2CS	0160-3751	4		CAPACITOR FXD 22009F + 5\% 50UDC CER	28480	01s0-3751
A1A2C6	0160-3661	5	1	CAPACITOR-FXD . $1 \mathrm{UF}+-5 \%$ SOUDC MET POL.YC	29480	$0160-3661$ $150 \mathrm{D} 25 \times 920{ }^{\text {a }}$ (
A1A2C7 A1 A2CB	$0180-0197$ $0180-1746$	8 5	1 2	CAPACITOR-FXD $2.2 \mathrm{SUF}+-10 \%$ TOVDC TA CAPAC ITOR-FXD $\mathbf{1 5 U F}+-10 \% ~ 20 U D C ~ T A ~$	56287 58.289	$150 \mathrm{D225} \mathrm{\times 9020A2}$ $150 \mathrm{D156} \mathrm{\times 902082}$
A1 A2C9	0180-2208	6	1	CAPACITOR FXD 220UF+ 10\% 10UDC TA	56289	1500227×901052
A1 A2C10	0180-1746	5		CAPACITOR-FXD 15UIT-10x 20UDC TA	58.289	150D156×902082
A1A2Cl1	0160-3877	7	$?$	CAPAC ITOR - FXD - $011 \mathrm{JF}+\cdots 20 \%$ 100UDC CER	28470	$0160 \quad 3879$
A1A2C12 A1A2C13	$0160-0127$ $0160-3879$	2 7	1	CAPACITOR-FXD 1UF +-20\% 2SUDC CER CAPACITOR -FXD .01UF + $-20 \% 1000 D C$ CEX	28480 28480	$\begin{aligned} & 016.0-0127 \\ & 01 \leqslant 0-3879 \end{aligned}$
A1AECR 1	1901-0050	3	1	DIODF SWITCHING gov 200MA TNR DO-35	28480	1901-0050
A1A2J1	1251-4797	4	1	CONNECTOR 10 PIN M POST TYPE	28480	1251-4797
A1 A2L 1	$08559-80010$ $7140 \cdots 129$	6	1	COIL, 540 UH INDISCTOR RF-CH MLD 220UH $5 \times, 166 D X, 3 B 5 I G$	28480 28480	08559.80010 $9140-0129$
A1 A2L 3	9100-1641	0	1	INDUCTOR RF-CH MLD $240 \mathrm{UH} 5 \%$, 166DX, 385LG	28480	$9100-1641$
A1A2Q1 A1 A2Q2	$1854-0404$ $1853-0281$	0	1	TRANSISTOR NPN ST TO-18 PD=360MW TRANSISTOR PNP ${ }^{\text {SNO.907A SI TO } 18 \mathrm{PD}=400 \mathrm{KL}} \mathrm{l}$	28480 04713	$1854-0404$ 3N2907A
A1A2Q2 A1A2Q3	$1853-0281$ $1855-0420$	9 2	1	TRANSISTOR PNP 2N2907A S TO 18 PD=40014	04713 01295	2N2907A 2N4:391
A1 A294	1854-0071	7	1	TRANSISTOR NPN SI PD=300MW FT $=200 \mathrm{MHz}$	28480	1854-0071
A1A2R1	0811-0696	1	1	RESISTOR 91K 1\% . 125 W PWW TC=0* 5	28480	0311-0696
A1 A2R2	0811-0640	5	3	RFSISTOR 100K . 01%. 125 W PUU TC $=0+10$	28480	0811-0640
A1A2R3	0757-0460	1	1	RESISTOR 61.7K 1\% . 125 L K TC $=0+\cdots 100$	74546	C4-1/8-T0-6192-F
A1 A2R 4	0698-3162	0	1	RESISTOR 46.4K 1%, 125w F TC=0t 100	24546	C4 1/8-T0-46,42-F
A1ARRS	0678-3155	1	1	RESISTOR 4.64K 1%. 125 W F TC $=0$ 0--100	74546	C4 1/8- $\mathrm{TO-4641}^{\text {F }}$
A1 A2R6	2100-1738	9	1	RESIGTOR-TRMR 10K 10% C TOP-ADJ I -TRN PECIETOR-TRMP 100K 10% C TOP-ADJ 1 TRN	73138 73138	Q2PR10k
A1A2R A1 A2RE	-2100-2655	9	1 2	RESISTOR -TRMR $100 \mathrm{~K} 10 \chi$ C TOP-ADJ 1 TRN RFSISTOR $10 \mathrm{~K} 1 \chi .125 \mathrm{~F}$ F TC=0+-100	73138 24546	82PR100K $\mathrm{C4}-1 / 8-\mathrm{TO-1002-F}$
A1A2R9	0757-0442	9		RCSISTOR $10 \mathrm{~K} 1 \boldsymbol{\chi}$. 125 W F Tr $=0+100$	24546	C4-1/8-70-1002-F
A1 AZR 10	0757-0274	5	1	RESISTOR 1.21\% 1%. 125 W F TC=0 $+\cdots 100$	24546	C4-1/8-T0-1211-F
A1ARR11	0757-0280	3	,	RESISTOR $1 \mathrm{~K} 1 \boldsymbol{1 x} .12 \mathrm{EW}$ F TC=01-100	24546	C4 1/8-T0-1001-F
A1 A2R12	0757-0438	3	2	RESISTOR 5.11K 1\% , 125W F TC=04 100	74546	C4- 1/8-T0-5111-F
A1A2R 13 A1 A2R 14	0698-3136	8	1	RESISTOR 17.8K 1%. 125W F TC=0 + 100	24546	C4-1/8-T0-1782-F
A1ARR 15	0698-3442	9	1		24546	
$\begin{aligned} & \text { A1 A2R } 16 \\ & \text { A1ARR17 } \end{aligned}$	$\begin{aligned} & 0757-0438 \\ & 0698-3438 \end{aligned}$	3 3		RESISTOR S.11K 1\% .125W F TC=0+-100 RES ISTOR $1471 \%, 125 W$ F TC $=0+\cdots 100$	$\begin{aligned} & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \mathrm{C4-1/8-TO-5111-F} \\ & \mathrm{C} 4 \sim 1 / \mathrm{B}-\mathrm{TO}-147 R-F \end{aligned}$
A1 A2R 18	0757-0279	3 0 0	1	RESISTOR 3.16K $1 \dot{\chi}$. 125 W F TC=0 $+\cdots 100$	24546 24546	C4-1/8-T0-147R-F CA -1/8-T0-3161-F
A1ARR19	0698-0085	0	1	RESKSTOR 2.61K 1%. 1254 F TC $=0 \mathrm{D}+100$	24546	C.4-1/8-T0-2611-F
A1 A2R20	0698-3438	3		RESISTOR $147 \mathbf{1 \%}$. 125 W F TC $=0+-100$	24546	C4-1/8-T0-147R-F
A1A2R21	0811-064i	5		RESKSTOR 100K . 01%. 12 EWW PWU TC=0+-10	28480	0811-0640
A1 AZR22	0811-0640	5		RESISTOR 100K .01X . 125W PUU TC=0t-10	28480	0811-0640
A1A2TP1	1251-0600	0	1	CONNECTOR-SCL CONT PIN 1.14-MM-BSE--52 SQ	28480	1251-0600
A1 A2U1 A1AZU2	$\begin{aligned} & 1826-1058 \\ & 1826-0588 \end{aligned}$	3 2	1	IC OP AMP CP 8-TO-99 PKG IC CONV $16-$ DIP-P PKG	28480 17856	$\begin{aligned} & 1826-1058 \\ & \text { LD120CJ } \end{aligned}$
A1 AzU3	1826-0587	1	1	IC CONV 18-DIP-P PKG	17856	L.D121CJ
$\mathrm{Al}^{\text {A }}$ A2U4	1820-1903	5	1	IC DRVR TTL DSPL DRVR	07263	9368 PC
A1 A2U5	1810-0347	8	2	NETUORK-RES O--SIP2. 2 KK OHM X 4	01121	2088222
AIAZU6	1810-0347	8		NETWORK-RES B-SIP2.2K OHM $\times 4$	01121	2088222
A1AZVR 1 AIAZUR2	$\begin{aligned} & 1912-0625 \\ & 1902-3149 \end{aligned}$	0	1	DIODE-ZNR 1N829 6.2U 5\% DO-7 PD=.25W DIODE-ZNR 9.07U 5X DO-35 PDE.4W	$\begin{array}{r} 04713 \\ 28480 \end{array}$	$\begin{aligned} & 1 \mathrm{~N} 829 \\ & 1902-3149 \end{aligned}$
A1 AZUR3	1902-3024	9	1	DIODE-ZNR 2.87 U 5\%DO-7 PDx. 4 W TCm. . 07%	28480	1902-3024
A1AEVR 4	1902-1286	1	1	DIODE-ZNR 1N5342B 6, BU 5X PD=54 TC= +200\%	04713	1 N5342B
A1 A2XA1	1251-3403	7	1	CONNECTOR-PC EDGE 10-CONT/RDW 2-ROWS	28480	1251-3403

See introduction to this section for ordering information
*Indicates factory selected value

A1A2
DPM DRIVER

A1A1
DPM DISPLAY

Pages 8-25 through 8-49/8-50: FRONT WITCH ASSENBLY A2

Figure 8-10. Front Switch Assembly A2, Exploded View
2208A \& Below Delete Figure 8-10.
2109 A00441 Add HP Part Number 08558-00021, Check Digit 0, PLATE LEVEL, \& Below POT (S1).

Table 8-2. Front Switch Board Assembly A2A1, Replaceable Parts
2208A \& Below Replace Table 8-2 with new Table 8-2 (SERIAL PREFIX 2208A) included in this Manual Backdating supplement.

TABLE 8-2. FRONT SWITCH BOARD ASSEMBLY A2, REPLACEABLE PARTS (1 OF 2) (SERIAL PREFIX 2208A)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A2	03559-60043	3	1	FRONT PANEL SWITCH ASSEMBLY	28480	08559-60043
A2CR1	1901-0033	2	1	DIODE-GEN PRP $180 \cup 200 \mathrm{MA}$ DO 77 D ${ }^{\text {d }}$	28.480 28480	$1901-0033$ $1901-0050$
AECR2	1901-0050	3	4	DIODE-SWITCHING $80 \cup$ 200MA 2NS DO-35 DIODE-SWITCHING BOU 200MA 2NS DO-35	28480 28480	1901-0050
A2CR3 A2CR	$1901-0050$ $1901-0050$	3 3		DIODE-SWITCHING DIODE-SWITCIING B0U 200 MA 200MA 2NS 2NS DO-35	28480 28480	1901-0050
A2CR4	1901-0050	3		DIODE-SWITCHING 80U 200MA 2NS DO-35	28480	1901-0050
A2J1				PART OF W1		
A2J2 A2J		0	1	PART OF W2 SOCKET-IC 14 -CONT DIP SLDR	28480	1200-0508
A2J3	1200-0508	0	1			
A2R1	$0757-0447$ $2100-3633$	4	1		24546 28480	$\begin{aligned} & \text { C4-1/8-T0-1622-F } \\ & 2100-3633 \end{aligned}$
A2R2 A2R3	$2100-3633$ $2100-3744$	7 1	1 2	RESISTOR-UAR CONTROL CP	01121	WP 4G024S103UZ
A224	$2100 \cdot 3332$	3	1	RESISTOR-TRMR 10 K 20\% CC TOP-ADJ 1 -TRN	28480 24546	2100-3332 C4-1/8-T0-1212-F
A2R5	0757-0444	1	1	RESISTOR 12.1 K 1 K . 125 W F TC=0+-100	24546	C4-1/8-T0-1212-F
A2R6	2100-3785	0	1	RESISTOR-UAR CONTROL CCP 50010 Z LIN	01121 01121	WP 460245501UZ WP4G024S103RZ
A2R7 A2R	$2100-3786$ $0757-0280$	$\frac{1}{3}$	1		01121 2.4546	WP4G024S103RZ C.4-1/8-T0-1001-F
ARR8 A2R9	0757-0280	3 7	1	NOT ASSIGNED RESISTOR $1.33 \mathrm{~K} 1 \mathrm{x}, 125 \mathrm{~K}$ F TC=0 $=100$		C4-1/8--T0-1331-F
A2R 10 A2R11	$0757-0317$ $2100-3744$	7 1	1	RESISTOR $1.33 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{FF}$ TC=0\%-100 RESISTOR-UAR CONTROL CCP 10 K 10 K LIN	24546 01121	WP 4G024S103U2
A2S1 A2S2 A2S3	3101-2213	0	1	REFERENCE LEVEL SWITCH (SEE AZ SWITCH PARTS) AMPLITUDE SCALE SWITCH SWEEP TIME SWITCH (SEE AZ SWITCH PARTS)	28480	3101-2213
A2S4 A2S5 A2S6				SWEEP TRIGGER SWITCH (SEE AZ SWITCH PARTS) RESOLUTION BW SWITCH (SEE AZ SWITCH PARTS) FREQ SPAN/DIU SWITCH (SEE AZ SWITCH PARTS)		
$\begin{aligned} & \text { A2S7 } \\ & \text { A2S8 } \\ & \text { A259 } \end{aligned}$	$3101-2376$ $3101-2124$ $3101-2124$	6 2 2	1 2	SWITCH-PB 6-STATION 10 MM C-C SPACING SWITCH-PB DPDT ALTNG ,2SA 115 SVAC SWITCH-PB DPDT ALTNG . 25A 115 VAC	28480 28480 28480	$\begin{aligned} & 3101-2376 \\ & 31011-2124 \\ & 3101-2124 \end{aligned}$
A2UR1	1902-3172	8	1		28480	1902-3172
A2W1 A2W2	$\begin{aligned} & 08559-60004 \\ & 08559-60003 \end{aligned}$	6 5	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	RIBBON CABLE, DPM/REAR SHITCH RIBRON CABLE, FRONT SWITCH	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{array}{r} 08559-60004 \\ 08559-60003 \end{array}$
$\begin{aligned} & \text { A2XD1 } \\ & \text { A2×D2 } \end{aligned}$	$1200-0010$ $1200-0010$	9	2	SOCKET-TUBE 2-CONT SOCKET-TUBE 2-CONT	28480 28480	$\begin{aligned} & 1200-0010 \\ & 1200-0010 \end{aligned}$
				A2 SWITCH PARTS		
	$\begin{aligned} & 1410-0006 \\ & 08565-20049 \\ & 08558-20089 \\ & 1490-0841 \\ & 08558-00022 \end{aligned}$	$\begin{aligned} & 8 \\ & 3 \\ & 2 \\ & 7 \\ & 1 \end{aligned}$	8 4 1 1 1	```BALL-BRG TYPE . 1875-DIA GRADE-50 SET BUSHING (51,53,54,55,56) BUSHING, SLOTTED (S6) COUPLER, (S1) CRANK, SLOTTED (S1)```	78707 28480 28480 28480 28480	$\begin{aligned} & \text { GRADE. } 50 \\ & \text { OB565-20049 } \\ & 08558-20089 \\ & 1470-0841 \\ & 08558-00022 \end{aligned}$
	$\begin{aligned} & 00559-00012 \\ & 08558-00020 \\ & 08565-00006 \\ & 08558-00005 \\ & 08558-00024 \end{aligned}$	$\begin{aligned} & 0 \\ & 9 \\ & 0 \\ & 4 \\ & 3 \end{aligned}$	1 1 1 1 1	DETENT, ATTENUATOR (S1) DETENT PLATE (S1) DETENT, SWEEP TIME (S3) DETENT, RESOLUTION BW (S5) DETENT, SWEEP TIME (83)	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 08559-00012 \\ & 08558-00020 \\ & 08565-00006 \\ & 085588-00025 \\ & 08558-00024 \end{aligned}$
	$\begin{aligned} & 09558-00026 \\ & 08558-20088 \\ & 1430-0036 \\ & 08558-20058 \\ & 08559-60060 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 6 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$	```DETENT, SWEEP TRIGGER (S4) GEAR, 20T (S1) GEAR, METER, 16T 32DP (S1) HUB, COUPLING (55, S6) HUB, DRIVE (S1, S3, S4)```	$\begin{aligned} & 28480 \\ & 28480 \\ & 71041 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 08558-00026 \\ & 08558-20088 \\ & 6462 Y(40 D) \\ & 08558-20058 \\ & 08559-60060 \end{aligned}$
	$\begin{aligned} & 08558-20057 \\ & 08558-200062 \\ & 08558-20061 \\ & 29500-00006 \\ & 08559-20007 \end{aligned}$	6 1 0 3 5	2 1 1 1 4	HUB, DRIVE (S5, S6) LOCKOUT, FIXED (S1) LOCKOUT, ROTATING (S1) NUT, HEX 1/4-32 (S1) NUT -HEX, SPACER ($31,33,54,56$)	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 08558-20059 \\ & 08558-20062 \\ & 08558-20061 \\ & 0850-0008 \\ & 08559-20007 \end{aligned}$
	$\begin{aligned} & 1480-0367 \\ & 1480-0059 \\ & 08558-00021 \\ & 08558-20043 \\ & 08558-40005 \end{aligned}$	1 1 8 0 8	$\begin{array}{r} 10 \\ 1 \\ 1 \\ 1 \\ 3 \end{array}$	PIN, DOWEL, .062DIA (S1, S4, S5, S6) PIN, ROLL O62DIA (Si) PLATE LEVEL, POT (S1) ROTOR ASSY, ATTENUATOR (S1) ROTOR, DOUBLE CONTACT (S1, S4, S6)	28480 28480 28480 28480 28480	$\begin{aligned} & 1480-0367 \\ & 1488-0059 \\ & 08558-00021 \\ & 08558-20043 \\ & 08558-40005 \end{aligned}$
	$\begin{aligned} & 08558-20066 \\ & 08558-20108 \\ & 0510-0015 \\ & 0510-0053 \\ & 1410-1860 \end{aligned}$	5 5 6 0 6 4	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 2 \\ & 5 \end{aligned}$	```ROTOR, FREQ SPAN (S6) ROTOR, SWEEP TIME RTNR-R . 125 OD (S3, S5) RTNR-R .18B OD (S1) SPR CPR , 180LG (S1, 53, S4, S5, S6)```	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 2880 \end{aligned}$	$\begin{aligned} & 08558-20066 \\ & 08558-20108 \\ & 0510-0015 \\ & 0510-0053 \\ & 1410-1860 \end{aligned}$

See introduction to this section for ordering information
*Indicates factory selected value

TABLE8-2. FRONTSWITCHBOARD ASSEMBLY A2, REPLACEABLEPARTS(2OF 2) (SERIALPREFIX 2218A)

Reference Designation	HP Part Number		Oty	Description	Mfr Code	Mfr Part Number
				SHART, DRIUE, ATTENUATOR (SU)SHAFT, FREG SPAN (SG) SHAFT, FIXED, aFF IEUEL (S1)SHAFT, MAN SWIF (S4)SIAAT, SHAFT, MAN SUECP (S4)SHAFT, RET LEVEL ($\mathrm{S1}$) SHAFT, REF LEUEL FINE (S1)SHAFT, RESDLUTION BW (SS)SHAFT, SWEEP TIME (S3) SHAFT, SWF:P TRIGGR (S4) SPACER 1.2501 ac misclllaneous parts SCRFU-SET 4-40. 125-IN-LC SMALL CUP-PT SCREU-SET 4-40, $094-$ IN-LC SMALL CUP PT SCREU SET $6-32,125$ IN-LG FLAT PT AI Y UASHER-FL MTLC NO. 8 , 18 ND UACHFR-FL MTLC NO UASHER-FL MTLC NO. 5 , 125 -IN-ID MYLAR CABLE SHIELD M		

[^5]*Indicates factory selected value

Pages 8-51 through 8-65/8-66: YIG-TUIED OSCILLATOR ASSENBLY A6	
Table 8-3. RF Section, Replaceable Parts	
2240A \& Below	Add A5MP3, H Part Number 08559-20041, Check Digit 7, COVER, $2 \mathbb{N D}$ L.O.
	Under Miscellaneous Parts: Change the quantity of \mathbf{H} Part Number 2200-0119 from 7 to 9 . Delete HP Part Number 2200-0156.
2236A \& Below	Change A5 to HP Part Number 08559-60005, Check Digit 7. Change A5MP2 to HP Part Number 08559-20002, Check Digit O, CAVITY BLOCK.
	Change A6 to HP Part Number 5086-7301, Check Digit 5. Add HP Part Number 08559-00033. YTO SHIELD.
1951A00285	NOTE
\& Below	The following components have preferred replacements; A5C4 and A5L2. If the instrument does not contain the preferred replacement values, as shown in this Replaceable Parts list and Schematic in the Manual, then both components should be changed at the same time.
$\begin{aligned} & \text { 1951A, 1945A } \\ & \& \text { Below } \end{aligned}$	Change A5CR2 and A5CR3 to \mathbf{P} Part Number 0122-0078, Check Digit 2, DIODE-VVC BVR=30V Q=225-MIN.
1909A \& Below	Change A5L3 to HP Part Number 08559-00020, Check Digit 0 , COUPLING LOOP INPUT.
Figure 8-21. 2nd Converter, Component Locations	
2236A \& Below	Delete Front YIG Mounting Bracket, H Part Number 08559-00035. Delete Rear YIG Mounting Bracket, HP Part Number 08559-00036.
	NOTE
	Prior to 2236A serial prefix, the YIG-Tuned Oscillator Assembly A6 was mounted to the side gusset.
Figure 8-22. YIC-Tuned Oscillator Assembly A6 and Shielded Components	
2236A \& Below	Delete Figure 8-22.
Figure 8-25. RF Section, Schematic Diagram	
2236A \& Below	Replace appropriate sections of Figure $8-25$ with new P/O Figure 8-25 (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.

P/O FIGURE\&-25. RFSECTION,SCHEMATICDIAGRAM(SERIALPREFIX2236A)

Pages 8-67 through 8-81/8-82: FREQUEMCY COMTROL ASSERBLY A7

Table 8-4. Frequency Control Assembly A7, Replaceable Parts

2236A \& Below	Replace Table 8-4 with new Table 8-4 (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.
2208A \& Below	Make the following changes to new Table 8-4 (SERIAL PREFIX 2236A) :
	Change A7 to HP Part Number 08559-60021, Check Digit 7.
	Add A7C1 and A7C2, HP Part Number 0180-2208, Check Digit 6, CAPACITOR-FXD 220UF +-10\% 10VDC TA.
	Add A7C11, H Part Number 0160-2055, Check Digit 9, CAPACITORFXD . 01UF +80-20\% 100VDC CER.
	Delete the following: A7C 13, A7C14, A7CR8, A7CR9, A7Q19, and A7Q20.
	Change A7R30 to HP Part Number 0698-3428, Check Digit 1, RESISTOR $14.7 \quad 1 \%$. 125W F TC=0+-100.
	Change A7R31 to HP Part Number 0757-0199, Check Digit 3, RESISTOR $21.5 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0+-100$.
	Add A7R98, \mathbf{P} Part Number 0757-0465, Check Digit 6, RESISTOR 100K 1%. 125W F TC=0+-100.
	Delete the following:
	A7R100, A7R101, A7R102, A7U12, and A7VR1.
	Add ATW1, H Part Number 8159-0005, Check Digit 0, WIRE 22AWG W PVC 1X22 80C.
2004A \& Below	Delete A7R99.

Figure 8-28. Frequency Control Assembly A7, Component Locations

2236A \& Below	Replace Figure 8-28 with new Figure 8-28 (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.
2208A \& Below	Replace Figure 8-28 with new Figure 8-28 (SERIAL PREFIX 2208A) included in this Manual Backdating supplement. Add the following to Figure 8-28 (SERIAL PREFIX 2208A):
	Add C12 between TP2 and the negative (-) side of C8. Add R99 to the 1 eft of TP7.
2004A \& Below	Delete A7R99.

Figure 8-29. Frequency Control Assembly A7. Schematic Diagram (1 of 2)
2236A \& Below Replace Figure 8-29 (1 of 2) with new Figure 8-29 (1 of 2) (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.

2208A \& Below Make the following changes to Figure 8-29 (1 of 2) (SERIAL PREFIX 2236A):

Change A7 to \mathbf{H} Part Number 08559-60021.
In function block (A), add R98, 100K, as follows: Open the FM/MAIN lice at the left side of R33. Connect one side of R98 to the left side of R33. Connect the other side of R98 to the FM/MAIN line.

Figure 8-29. Frequency Control Assembly A7, Schematic Diagram (1 of 2) (COG~'~)
2004A \& Below Make the following changes in function block (A): Delete R99. Connect pin 7 of U 10 B to pin 10 of U10C.

Figure 8-29. Frequency Control Assembly A7, Schematic Diagram (2 of 2)
2236A \& Below Replace Figure 8-29 (2 of 2) with new Figure 8-29 (2 of 2) (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.

2208A \& Below Make the following changes to Figure 8-29 (2 of 2) (SERIAL PREFIX 2236A):

Change A7 to HP Part Number 08559-60021.
Replace function block (E) with P/O Figure 8-29 (SERIAL PREFIX 2208A) included in this Manual Backdating supplement.
In function block (G), delete C14 and R102.

TABLE 8-4. FREQUENCY CONTROL ASSEMBLY A7, REPLACEABLE PARTS (10F3) (SERIAL PREFIX 2236A)

See introduction to this section for ordering information
*Indicates factory selected value

TABLE8-4. FREQUENCYCONTROLASSEMBLYA7, REPLACEABLEPARTS(2OF3)(SERIALPREFIX2236A)

See introduction to this section for ordering information
*Indicates factory selected value

TABLE8-4. FREQUENCYCONTROLASSEMBLY A7, REPLACEABLEPARTS(3OF3) (SERIALPREFIX 2236A)

A7
FREQUENCYCONTROL

FIGURE828. FREQUENCYCONTROLASSEMBLY A7, COMPONENTLOCATIONS(SERIAi PREFIX2236A)

FIGURE 828. FREQUENCYCONTROL ASSEMBLY A7, COMPONENTLOCATIONS(SERIALPREFIX2208A)

P/O FIGURE829. FREQUENCY CONTROLASSEMBLY A7,SCHEMATICDIAGRAM(SERIALPREFIX 2208A)

Table 8-5. Marker Assembly A8, Replaceable Parts

2309A \& Below	Change A8 to HP Part Number 08559-60022, Check Digit 8. Delete A8C2. Change A8R13 to HP Part Number 0757-0438, Check Digit 3, RESISTOR 5.11 K 1\% . 125 W F TC=0+-100. Change A8R36 to HP Part Number 0757-0466, Check Digit 7, RESISTOR $110 \mathrm{~K} 1 \%$. 125 W F $\mathrm{TC}=0+-100$. Add A8R82, H Part Number 0757-0438, Check Digit 3, RESISTOR $5.11 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0+-100$. Change A8R108 to H Part Number 0698-7277, Check Digit 6, RESISTOR 51.1K $1 \% .125 \mathrm{~W}$ F $\mathrm{TC}=0+-100$. Delete A8R 110. Delete ARR111. Change A8U4 to HP Part Number 1826-1058, Check Digit 8, IC CP AMP GP 8-T0-99 PKG.
2152A \& Below	Delete A8CR21. Change A8R33, A8R87 and A8R88 to HP Part Number 0757-0123, Check Digit 3, RESISTOR $34.8 \mathrm{~K} 1 \%$. 125 W F TC=0+-100. Delete A8R 108. Delete A8R109.
1945A00241,249,	Change A8R34 and A8R62 to HP Part Number 2100-0670, Check
258,262,265,277:	Digit 6, RESISTOR-TRMR 10K 10\%C SIDE-ADJ 17-TRN.
$\begin{aligned} & 1951 \mathrm{~A} 0028 \mathrm{~S}, 286, \\ & 288-290,292, \end{aligned}$	Change A8R 39 to HP Part Number 2100-3754, Check Digit 3, RESISTOR-TRMR 1M 10\% C SIDE-ADJ 17-TRN.
295-300; 2003A	Change A8R 40 to HP Part Number 2100-3752, Check Digit 1, RESISTOR-TRMR 500K 10% C SIDE-ADJ 17-TRN
	Change A8R61 to HP Part Number 2100-3750, Check Digit 9, RESISTOR-TRMR 20K 10\% C SIDE-ADJ 17-TRN. Change A8R94 to A8R94*. Change A8R94* to H Part Number 0757-0460, Check Digit 1, RESISTOR 61.9K 1%.125W F TC=0+-100.

Figure 8-32, Marker Assembly A8, Component Locations
2309A \& Below Replace Figure 8-32 with new Figure 8-32 (SERIAL PREFIX 2309A) included in this Manual Backdating supplement.

2152A \& Below Make the following changes to new Figure 8-32 (SERIAL PREFIX 2309A) : Delete A8CR21, A8R108, and A8R 109.

Figure 8-33. Narker Assembly A8, Schematic Diagram (1 of 2)

2309A \& Below | Change A8 to H Part Number 08559-60022. |
| :--- |
| Replace function block (I) of Figure 8-33 with new P/O Figure 8- |
| |
| |
| |
| |
| |
| Backdating supplement. |

Figure 8-33. Marker Assembly A8, Schematic Diagram (2 of 2)

2309A \& Below	Change A8 to HP Part Number 08559-60022. Replace right half of function block (E) of Figure 8-33 with new P/O Figure 8-33 (2 of 2) (SERIAL PREFIX 2309A) included in this Manual Backdating supplement.
2017 A \& Below	In function block (D), change -1 OV to $\mathbf{- 1 2 . 6 V}$ at the wiper of R 61 and at pin 4 of U15.
1945A00241,249,	Make the following changes in function block (E):
258,262,265,277;	Change R34 to 10K.
1951A00283.286.	Change R62 to 10K.
288-290,292,	Change R94* to 61.9K.

MARKER

FIGURE8-32. MARKER ASSEMBLYA8, COMPONENTLOCATIONS(SERIALPREFIX2309A)

P/OFIGURE8-33. MARKER ASSEMBLYA8,SCHEMATICDIAGRAM(1 OF 2)(SERIALPREFIX 2309A)

P/O FIGURE8-33. MARKER ASSEMBLYA8, SCHEMATIC DIAGRAM(20F2)(SERIALPREFIX 2309A)

Pages 8-97 through 8-115/8-116: SNEEP GENERATOR/BANDNIDTH CONTROL ASSENBLY A9
Table 8-6. Sweep Generator/Bandwidth Control Assembly A9, Replaceable Parts
2236A \& Below Change A9 to HP Part Number 08559-60074, Check Digit 0.
Change A9C24 to HP Part Number 0160-2055, Check Digit 9, CAPACITOR-FXD .01UF +80-20\% 100VDC CER.
Change A9C26 to \mathbf{P} Part Number 0160-0153, Check Digit 4, CAPACTIOR-FXD 1000PF +-10\% 200VDC POLYE.
Change A9R70, A9R73, and A9R81 to HP Part Number 0698-7794, Check Digit 2, RESISTOR 10K . 25%. 12 W .
Change A9R83 to HP Part Number 0698-8322, Check Digit 4, RESISTOR 111 OHM . 25\% . 12 W .
Change A9R 120* to H Part Number 0698-3153. Check Digit 9, RESISTOR 3.83K 1%. 12 W .
Under Miscellaneous Parts, delete H Part Number 1200-0173.
2203A \& Below Change A9 to HP Part Number 08559-60071, Check Digit 7.
Delete AgCR29, A9Q56, A9R 106, A9R123, and A9R 124.
Change A9Q29 to HP Part Number 1855-0062, Check Digit 8, TRANSISTOR J-FET N-CHAN D-MODE SI.
Change A9R88 and A9R89 to HP Part Number 0757-0465, Check Digit 6, RESISTOR 100K 1%. 125W F TC $=0+-100$.
Change A9R95 to HP Part Number 0757-0470, Check Digit 3, RESISTOR $162 \mathrm{~K} 1 \%$. 125 W F TC=0+-100.
Change A9R96 to HP Part Number 0757-0467, Check Digit 8, RESISTOR 121K 1%. 125W F TC=0+-100.

2107A01633
Replace Table 8-6 with new Table 8-6 (SERIAL PREFIX
\& Below 2107A01633) included in this Manual Backdating supplement.

Figure 8-39. Sweep Generator/Bandwidth Control Assembly A9, Component Locations
2203A \& Below Replace Figure 8-39 with new Figure 8-39 (SERIAL PREFIX 2203A) included in this Manual Backdating supplement.

2107A01633 Replace Figure 8-39 with new Figure 8-39 (SERIAL PREFIX
\& Below 2107A01633) included in this Manual Backdating supplement.

Figure 8-40. Sweep Generator/Bandwidth Control Assembly A9, Schematic Diagram (1 of 2)

2236A \& Below Change A9 to HP Part Number 08559-60074.
2203A \& Below Change A9 to HP Part Number 08559-60071.
In function block (0), change R88 and R89 to 100K.
Replace function blocks (L). (M), and (N) with P/O Figure 8-40 (2 of 2) (SERIAL PREFIX 2203A) included in this Manual Backdating supplement.

2107A01633
\& Below
Replace Figure 8-40 (1 of 2) with new Figure 8-40 (1 of 2) (SERIAL PREFIX 2107A01633) included in this Manual Backdating supplement.
In function block (F), add a numeral 1 next to the ground symbol at the collector of Q5.

Figure 8-40. Sweep Generator/Bandwidth Control Assembly A9, Schematic Diagran (2 of

 2)| 2236A \& Below | Change A9 to HP Part Number 08559-60074.
 Change the following in function block (A):
 C26 to .001UF. |
| :--- | :--- |
| R120* to 3830. | |
| Change the following in function block (O): | |
| R83 to 111. | |
| Add a "1" next to the ground symbol at the source of Q23, 425, | |
| Q29, and at the emitter of 448. | |

TABLE86. SWEEPGENERATOR/BANDWIDTHCONTROLASSEMBLY A9, REPLACEABLE PARTS(10F4) (SERIALPREFIX 2107A01633)

TABLE 86. SWEEP GENERATORJBANDWIDTH CONTROLASSEMBLY A9, REPLACEABLE PARTS (2 OF 4) (SERIALPREFIX 2107A01633)

Reference Designation	HP Part Number	${ }_{0}^{\text {c }}$	Oty	Description	$\begin{array}{\|l\|} \hline \text { Mfr } \\ \text { Code } \end{array}$	Mfr Part Number
		(

See introduction to this section for ordering information
Indicates factory selected value

TABLE 8.-6. SWEEP GENERATOR/BANDWIDTH CONTROLASSEMBLY A9, REPLACEABLE PARTS (3 OF 4) (SERIAL PREFIX 2107A01633)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A9R36	0698-4037	0		RESISTOR 46, 4 1x, 125W F TCa0 + 100	24546	C4-1/8-T0-46R4-F
A9R37	0683-6845	1	1	RESISTOR 680k $5 x$, 25W FC TC $=800 /+900$	01121	CB6845
A9R38	0698-3457	6		RESISTOR $316 \mathrm{~K} 1 \mathrm{x}, 125 \mathrm{~W}$ F TC $=0+-100$	28480	0698-3457
A9R39	0757-0439	4	3	RESISTOR $6.81 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/8-T0-6811-F
A9R40	0698-3451	0	2	RESISTOR $133 \mathrm{~K} 1 \mathrm{x}, 125 \mathrm{~F}$ F $\mathrm{TC}=0+-100$	24546	C4-1/8-T0-1333-F
A9R41	0757-0459	8		RESISTOR 56.2 K 1 X , 1254 F TC $=0+-100$	24546	C4-1/8-T0-5622-F
A9R42	0698-7421	2	3	RESISTOR 40K , 25\% , 1254 F TC $=0+-100$	19701	MFAC:1/8-T0-4002-C
A9R43	0698-3194	B	3	RESISTOR 20K , 25\% , 125W F TC $=0+-50$	33888	PME5S-1/8-T2-2002-C
A9R44	0698-7794	2		RESISTOR $10 \mathrm{~K}, .25 \mathrm{X}, 125 \mathrm{~W}$ F $\mathrm{TC}=0+-100$	19701	MFAC1/8-T0-1602-C
A9R4S	0757-0289	2	2	RESISTIOR 13.3K $1 \mathrm{~K}, 125 \mathrm{~W}$ F TC=0+-100	19731	MFAC1/B-T0-1332-F
A9R46 A9R47	0757-0199 $0757-0346$	3 2	19 2	RESISTOR 21.5K 1%. 125 M F TC=0+-100 RESISTOR $101 z, 1254 \quad F \quad T C=0+-100$	24546 24546	
A9R47 A9R48	0757-0346 $0757-0465$	2	2		24546 24546	$\begin{aligned} & \text { C4-1/8-T0-10R0-F } \\ & \text { C4-1/8-T0-1003-F } \end{aligned}$
A9R49	0757-0464	5	1	RESISTOR 90.9K $1 \times$, 125W F TC $=0+-100$	24546	C4-1/8-T0-9092-F
A9R50	0757-0442	9		RESISTOR 10 K 12.125 WF TC $=0+-100$	24546	C4-1/8-70-1002-F
A9R51	0757-0279	0		RESISTOR 3.16K 1x . 1254 F TC $=0+-100$	24546	C4-1/8-T0-3161-F
A9R52	0757-0439	4		RESISTOR 6.81K 1%, 1254 F TC=0+-100	24546	C4-1/8-T0-6811-F
APR53	0757-0460	1	?	RESISTIR $61,9 \mathrm{~K} 1 \mathrm{1z}$, 125M F TC $=0+100$	24546	C4-1/8-70-6192-F
A9R54	0757-0442	9		RESISTOR $10 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-1002-F
A9R55	0757-0442	9		RESTSTOR 10 K 1 X . 1254 F TC=0+-100	24546	C4-1/8-T0-1032-F
A9R56	0757-0465	6		RESISTOR 100K 1 X , 125 W F TC=0+-100	24546	C4-1/8-T0-1003-F
A9R57	0757-0439	4		RESISTOR 6. $61 \mathrm{~K} \quad 1 \mathrm{X}, 125 \mathrm{~W}$ F $\mathrm{TC}=0+-100$	24546	C4-1/8-T0-6811-F
A9R58	0757-0465	6		RESISTOR 100 K 1 z , 125 W F $\mathrm{TC}=0+-100$	24546	C4-1/8-T0-1603-F
ASR59	0757-0279	0		RESISTOR $3.16 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/8-T0-3161-F
A9R60	6698-3160	8		RESISTOR 31.6K 1\% , 1254 F TC=0+-100	24546	C4-1/8-T0-3162-F
A9R61	0757-0465	6		RESISTOR 100 K 1 x , 125W F TC=0+-100	24546	C4-1/8-T0-1003-F
A9R62	0757-0465	6		RESISTOR 100 K 12.125 W F TC $=0+-100$	24546	C4-1/8-T0-1003-F
A9R63	0757-0346	2		RESISTOR $101 \mathrm{~K}, 125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-10R3-F
A9R64	0757-0199	3			24546	C4-1/8-T0-2152-F
A9R65	0757-0199	3		RESISTOR 21.5K 12, 125W F TC=0+-100	24546	C4-1/8-T0-2152-F
A9R66	0757-0199	3		RESISTOR 21.5 K 1X , 125以 F TC $=0+100$	24546	C4-1/8-T0-2152-F
A9R67	0757-0199	3		RESISTOR 21.5K 1z , 125W F TC $=0+0+100$	24546	C4-1/8-T0-2152-F
A9R68	0698-7412	1		RESISTOR $13.3 \mathrm{~K}, 25 \mathrm{z}$, 125M F TC $=0+-100$	19701	MF4C1/8-T0-1332-C
A9R69	0757-1094		1	RESISTOR $1,47 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-1471-F
A9R70	0757-0199	3		RESISTOR 21.5K 1 x , 1254 F TC=0 0 - 100	24546	C4-1/B-T0-2152-F
				RESISTOR 21.5K 1Z . 125W F TC=0+-100	24546	$\mathrm{C} 4-1 / 8-\mathrm{TO} 0-2152-F$
A9R72	$2100-2850$	8	2	RESISTOR-TRMR 10 K 10X UW SIDE-ADJ 20-TRN	02660	$3010 p-103$
A9R73	0757-0199	3		RESISTOR 21.5 K 1X 12 , 254 F $\mathrm{TC}=0+-100$	24546	C4-1/8-T0-2152-F
A9R74 A9R75	$\begin{aligned} & 0698-3151 \\ & 0757-0199 \end{aligned}$	7 3	1		24546 24546	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{TO}-2871-F \\ & \mathrm{C} 4-1 / 8-\mathrm{TO} 0-2152-F \end{aligned}$
A9R76 A9R77	$\begin{aligned} & 0757-0442 \\ & 0757-0199 \end{aligned}$			RESISTOR 10K 1 X . 125 F F TC $=0+-100$ RESISTOR 21.5K 1X . 125K F TC=0+-100		$\begin{aligned} & \mathrm{C}_{4}-1 / 8-\mathrm{TO}-1002-F \\ & \mathrm{C}_{4}-1 / 8-\mathrm{T} 0-2152-F \end{aligned}$
A9R77 A9R78	$\begin{aligned} & 0757-0199 \\ & 0757-0458 \end{aligned}$	3 7			$\begin{aligned} & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{4}-1 / 8-\mathrm{T} 0-2152-F \\ & \mathrm{C}_{4}-1 / 8-\mathrm{T0}-5112-F \end{aligned}$
A9879	0757-0199	3		RESISTOR 21.5K 1x , 125W F TC $=0+-100$	24546	C4-1/8-T0-2152-F
A9R80	0757-0199	3		RESISTOR 21.5K 1\% , 125W F TC=0+-100	24546	C4-1/8-T0-2152-F
$\begin{aligned} & \text { A9RE1 } \\ & \text { A9RER2 } \end{aligned}$	$\begin{aligned} & 0757-0199 \\ & 0698-0085 \end{aligned}$	3 0	1		$\begin{aligned} & 24546 \\ & 24546 \end{aligned}$	C4-1/8-T0-2152-F $\mathrm{CA}-1 / 8-\mathrm{TO}$
A9RE3	$0698-0895$ $0698-3260$	9	1		24546 28480	C4-1/8-T0-2611-F $0698-3260$
A9R84	0757-0444	1		RESISTOR 12, 1 K 1\% 12.125 W F TC $=0+-100$	24546	C4-1/8-T0-1212-F
A9RES	2100-2850	8		RESISTOR-TRMR 10 K 10X WW SIDE-ADJ 20-TRN	02660	3810P-103
$\begin{aligned} & \text { A9R86 } \\ & \text { A9RE7 } \end{aligned}$	$\begin{aligned} & 0698-7794 \\ & 0757-0199 \end{aligned}$	2		RESISTOR 10 K . 25 X , 125W F TC=0 $0-100$ RESISTOR 21.5K $1 X$, 125 H F TC $=0+-100$	$\begin{aligned} & 19701 \\ & 24546 \end{aligned}$	$\begin{aligned} & \text { MF 4C1/8-T0-1002-C } \\ & \mathrm{C} 4-1 / 8-\mathrm{TO} 0-2152-\mathrm{F} \end{aligned}$
A9R88	0757-0199	3		RESISTOR 21.5 K 1z , 125w F TC $=0+-100$	24546	C4-1/8-T0-2152-F
A9R89	0757-0460	1		RESISTOR 61.9K 1x , 125M F TC=0+-100	24546	C4-1/8-T0-6192-F
A9R90	0698-7421	2		RESISTOR 40K , 25\% , 125W F TC $=0+-100$	19701	HF4C1/8-T0-4002-C
$\begin{aligned} & \text { A9R91 } \\ & \text { A9R92 } \end{aligned}$	$\begin{aligned} & 0757-0199 \\ & 0757-0289 \end{aligned}$	3		RESISTOR 21.5K 12 , 125W F TC=0+-100 RESISTOR 13.3K 12 . 125W F TC=0+-100	$\begin{aligned} & 24546 \\ & 19781 \end{aligned}$	$\begin{aligned} & \text { C4-1/8-T0-2152-F } \\ & \text { MF4C1/8-T0-1332-F } \end{aligned}$
A9R92 A9R93	0757-0269 $0698-3194$	2 8 8		RESISTOR RESTSTOR 13, RKK R	19761 03888	MFAC1/8-T0-1332-F PHES5-1/8-T2-2002-C
A9R94	0757-0199	3		RESISTOR 21,5K 1x , 125W F TC $=0+100$	24546	$\mathrm{C} 4-1 / 8-\mathrm{T} 0-2152-\mathrm{F}$
A9R95	0698-3153	9	1	RESISTOR 3.83K 1 X , 125M F TC $=0+-100$	24546	$\mathrm{C} 4-1 / 8-\mathrm{T0} 0-3831-\mathrm{F}$
A9R96 A9R97	$\begin{aligned} & 0698-7412 \\ & 0757-0199 \end{aligned}$	$\frac{1}{3}$		RESISTOR 13.3K ,25x , 125W F TC=0+-100 RESISTOR 21.5K $1 x$. 125 W F TC=0+-100	$\begin{aligned} & 19701 \\ & 24546 \end{aligned}$	$\begin{aligned} & \text { MF AC1/8-T0-1332-C } \\ & \text { C4-1/8-T0-2152-F } \end{aligned}$
A9R98	0757-0442	9		RESISTOR 10 K 1x, 125 W F TC=0 +-100	24546	C4-1/8-T0-1002-F
A9R99 A9R110	0757-0199	3		RESISTOR $21.5 \mathrm{~K} \quad 1 \mathrm{x}, 125 \mathrm{~F}$ F TC=0+-100 NOT ASSICNED	24546	C4-1/8-T0-2152-F
A9R101 A9R102 A9R103 A9R184 A9R105	0698-7794	2		RESISTOR 10 K , 25%, 125 W F TC=0+-100 NOT ABSIGNED NOT ABSIGNED NOT ASSICNED NOT ASSIGNED	19701	HFAC1/8-T0-1002-C
A9R 116 A9R107 A9R108 A9R109 A9R110	$\begin{aligned} & 0757-0442 \\ & 0757-0442 \\ & 0757-0442 \\ & 0698-3451 \end{aligned}$	9		not assicned RESISTOR 10 K 12 , 125W F TC=0+-100 RESISTOR 10K 12,1254 F TC=0+-100 RESISTOR $10 \mathrm{~K} \quad 1 \mathrm{x}, 125 \mathrm{~F}$ F $\mathrm{TC}=0+-100$ RESISTOR 133K 1 X . 125 W F TC=0+-10	$\begin{aligned} & 24546 \\ & 24546 \\ & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \text { C4-1/8-T0-1002-F } \\ & \text { C4-1/8-T0-1002-F } \\ & \text { C4-1/8-T0-1002-F } \\ & \text { C4-1/8-T0-1333-F } \end{aligned}$

See introduction to this section for ordering information *Indicates factory selected value

TABLE8-6. SWEEP GENERATOR/BANDWIDTH CONTROLASSEMBLYA9, REPLACEABLEPARTS (4OF4)(SERIALPREFIX 2107A01633)

See introduction to this section for ordering information
*Indicates factory selected value

SWEEP GENERATOR/BANDWIDTH CONTROL

PIO FIGURE8-40. A9 SWEEP GENERATOR/BANDWIDTH CONTROL,SCHEMATICDIAGRAM(2OF2)(SERIALPREFIX 2203A)

Pages 8-117 through 8-127/8-128: THIRD CONVERTER ASSEMBLY A10

Table 8-7. Third Converter Assembly A10, Replaceable Parts

2218A \& Below	Delete the following: A10C57, A10C58, A10C59, A10R52, A10R53, and A10U2. Chacge A10R6 to HP Part Number 0757-0280, Check Digit 3, RESISTOR $1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC=0+-100. Change A10R8 to HP Part Number 0757-0420, Check Digit 3, RESISTOR 7501%. 125W F TC $=0+100$. Change A10R11 to HP Part Number 0757-0405, Check Digit 4, RESISTOR 162 1\% . 125W F TC $=0+-100$.
$\begin{aligned} & 2019 \text { A00721 } \\ & \& \text { Below } \end{aligned}$	Change A10MP5 to HP Part Number 0363-0040, Check Digit 8, CONTACT-FINGER .58-WD .219-FREE-HGT. Add A10MP6 and A10MP7, H Part Number 0363-0040. Check Digit 8, CONTACT-FINGER .58-WD .219-FREE-HGT.
$\begin{aligned} & 1945 A 00261,263, \\ & 269,271,280 \\ & \& \text { Below } \end{aligned}$	Delete A10MP5,A10MP6, and A10MP7.
1942A \& Below	NOTE The following components have preferred replacements: A10C22, A10C50, A10C54, A10C55, A10CR1, A10CR4, and A10L15. If the instrument does not contain the preferred replacement values, as shown in the Replaceable Parts list and Schematic in the Manual, then these components should all be replaced at the same time.

Figure 8-13. Third Converter Assembly A10, Component Locations
2218A \& Below
Replace Figure 8-43 with new Figure 8-43 (SERIAL PREFIX 2218A) included in this Manual Backdating supplement.

Figure 8-44. Third Converter Assembly A10, Schematic Diagram

2218A \& Below	Replace funcbion block (J) of Figure 8-44 with new P/O Figure 844 (SERIAL PREFIX 2218A) included in this Manual Backdating supplement. Make the following changes in function block (D). Change R6 to 1000. Change R8 to 750. Change R11 to 162. Change -10.6 VF to -12.6 VF in two places.

FIGURE843. THIRDCONVERTERASSEMBLY A10, COMPONENTLOCATONS(SERIALPRERX 218A)

FIGURE8-44. THIRDCONVERTER ASSEMBLY A10, SCHEMATICDIAGRAM(SERIALPREFIX2218A)

Pages 8-129 through 8-141/8-142: BANDNIDTH FILTER MO. 1 ASSEMBLY A11

Table 8-8: Bandwidth Filter No. 1 Assembly All, Replaceable Parts
1909A \& Below Change A11 to H Part Number 08559-60057, Check Digit 9, BANDWIDTH FILTER NO. 1.
Add A11C3, HP Part Number 0160-2236, Check Digit 8, CAPACTIOR-FXD 1PF +-.25PF 500VDC CER
Change A11C16*, A11C20*, A11C43*, and A11C64* to HP Part Number 0160-0134, Check Digit 1, CAPACITOR-FXD 220PF +-5\% 300VDC MICA.
Change A11C14 and A11C37 to HP Part Number 0160-2250, Check Digit 6, CAPACITOR-FXD 5.1PF +-.25PF 500VDC CER.
Change A11C21 and A11C44 to HP Part Number 0160-3431, Check Digit 7, CAPACTIOR-FXD 6.8PF +-. 5PF 500VDC CER
Change A11R23* and A11R48* to HP Part Number 0757-0441, Check Digit 8, RESISTOR 8.25K 1%. 125W F TC=0+-100.
Delete A11R24 and A11R25.
Change A11R18 and A11R41 to HP Part Number 0757-0279, Check Digit 0 , RESISTOR 3.16K $1 \% .125 \mathrm{~W}$ F TC=0+-100.
Change A11R28 and A11R52 to HP Part Number 0757-0290, Check Digit 5, RESISTOR 6.19K 1%.125W F TC=0+-100.

Figure 8-55. Bandwidth Filter No. 1 Assembly All, Component Locations

1909A \& Below	Delete R25.
	Change R24 t o W1.
	Add C3 below R5.

Figure 836 . Bandwidth Filter No. 1 Assembly All, Schematic Diagram

1909A \& Below | Change All to HP Part Number 08559-60057. |
| :--- |
| In function block (B), add a capacitor, C3, 1.0 PF, in parallel |
| with R5. |
| Replace function block (C) with P/O Figure 8-56 (SERIAL PREFIX |
| 1909A) included in this Manual Backdating supplement. |
| Make the following changes in function block (D): |
| Change C14 to 5.1 PF. |
| Change R23* to 14.7 K . |
| Change R18 to 3160 . |
| Make the following changes in function block (F): |
| Change C43* to 220 PF. |
| Change C44 to 6.8 PF . |
| Change C64* to 220 PF. |
| Change R52 to 6190 . |
| Make the following changes in function block (G): |
| Change C37 to 5.1 PF. |
| Change R48 to 14.7 K . |
| Change R41 to 3160 . |

PIO FIGURE8-56. BANDWIDTHFLTER NO. 1 ASSEMBLY AII, SCHEMATICDIAGRAM(SERIAL PREFIX 1909A)

Pages 8-143 through 8-155/8-156: SIEP GAIM ASSEMBLY A12

Table 8-10. Step Gain Assembly A12, Replaceable Parts
2107A \& Below Delete A12C40, A12C41, and A12C42.
Figure 8-60. Step Gain Assembly A12, Schematic Diagram
2107A \& Below In function block (E), delete C40.
In function block (F), delete C41.
In function block (G), delete C42.

Table 8-11: Bandwidth Filter No. 2 Assembly A13. Replaceable Parts

Figure 8-62. Bandwidth Filter No. 2 Assembly A13. Component Locations

1909 A \& Below \quad	Delete R25.
	Change R24 t o W1.
	Add C3 below R5.

Figure 8-63: Bandwidth Filter No. 2 Assembly A13, Schematic Diagram

```
1909A & Below Change A13 to HP Part Number 08559-60057.
    In function block (B), add a capacitor, C3, 1.0 PF, in parallel
        with R5.
    Replace function block (C) with P/O Figure 8-63 (SERIAL PREFIX
        1909A) included in this Manual Backdating supplement.
Make the following changes in function block (D):
    Change C14 to 5.1 PF.
    Change R23* to 14.7K.
    Change R18 to 3160.
Make the following changes in function block (F):
    Change C43* to 220 PF
    Change C44 to 6.8 PF.
    Change C64* to 220 PF
    Change R52 to 6190.
Make the following changes in function block (G):
    Change C37 to 5.1 PF.
    Change R48* to 14.7K.
    Change R41 to 3160.
```


PIO FIGURE 863. BANDWIDTHFLTER NO. 2 ASSEMBLY A13, SCHEMATICDIAGRAM(SERIALPREFIX 1909A)

Pages 8-167 through 8-179/8-180: LOG AMPLIFIER ASSEMBLY A14
Table 8-12. Log Amplifier Assembly A14, Replaceable Parts
2208A \& Below Replace Table 8-12 with new Table 8-12 (SERIAL PREFIX 2208A) included in this Manual Backdating supplement.

Figure 8-68. Log Amplifier Assembly A14, Component Locations
2208A \& Below Replace Figure 8-68 with new Figure 8-68 (SERIAL PREFIX 2208A) included in this Manual Backdating supplement.

Figure 8-69. Log Amplifier Assembly A14, Schematic Diagram, (1 of 2)
2208A \& Below Replace Figure 8-69 (1 of 2) with new Figure 8-69 (1 of 2) (SERIAL PREFIX 2208A) included in this Manual Backdating supplement.

Figure 8-69. Log Amplifier Assembly A14, Schematic Diagram (2 of 2)
2208A \& Below
Replace Figure 8-69 (2 of 2) with new Figure 8-69 (2 of 2) (SERIAL PREFIX 2208A) included in this Manual Backdating supplement.
Make the following corrections to Figure 8-69 (2 of 2) (SERIAL PREFIX 2208A):

Connect one side of R131 to the collector of Q25.
Connect the other side of R131 to the negative side of C79. Connect the positive side of C79 to ground.

TABLE 812. LOG AMPLIFIER ASSEMBLY A14, REPLACEABLEPARTS(1 OF 4) (SERIAL PREFIX 2208A)

See introductionto this section for ordering information 'Indicates factory selected value

TABLE 8-12. LOG AMPLIFIER ASSEMBLY A14, REPLACEABLE PARTS (2OF 4) (SERIAL PREFIX 2208A)

See introduction to this section for ordering information
${ }^{\text {-I }}$ Indicates factory selected value

TABLE812. LOG AMPLIFIERASSEMBLY A14, REPLACEABLEPARTS(3OF4)(SERIALPREFIX 2208A)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A14921	1854-0404	0	1	TRANSISTOR NPN SI TO-18 PD=360MW	28480	1854-0404
A14922	1853-0020	4		TRANSISTOR PNP SI PD=300MW FT=150MHZ	28480	1853-0020
A14923	1854-0071	7		TRANSISTOR NPN SI PD 300 mH FT $=200 \mathrm{MHZ}$	28480	1854-0071
A14824	1854-0071	7		TRANSISTOR NPN SI PD $=300 \mathrm{MH}$ FT $=200 \mathrm{MHZ}$	28480	$\begin{aligned} & \text { 1854-0071 } \\ & 2 N 219 A \end{aligned}$
A14825	1854-0637	1	1	TRANSISTOR NPN 2N2219A SI TO-5 PD=80DMW	01295	2N2219A
A14R1	2100-3109	2	2	RESISTOR-TRHR 2K 10x C SIDF-ADJ 17-TRN	02111	$43 P 202$
A14R2	2100-3161	6	1	RESISTOR-TRHR 20K 10% C SIDE-ADJ 17-TRN	02111	$43 P 203$
A14R3	2100-31109	2		RESISTOR-TRHR $2 \mathrm{~K} 10 \times \mathrm{C}$ C SIDE-ADJ 17-TRN	02111	43P202
A14R4 A1 AR5	-0757-0442	9 0	6	RESISTOR $10 \mathrm{~K} 1 \%$, 125W F TC=0+-100 RESISTOR 3.16K $1 \boldsymbol{\chi}$. 125 W F $\mathrm{TC}=0+-10$	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-3161-F
A14R6*	0757-0346	2	19	RESISTOR $101 \pm, 125 \mathrm{w}$ F TC $=0+-100$	24546	C4-1/8-T0-10R 0-F
A1 4R7	0757-0442	9		RESISTOR 10K 1 X . 125 W F TC $=0+-100$	24546	C4-1/8-T0-1002-F
A1 4R8*	0757-0280	3	6	RESISTOR 1 K 1 x , 125 H F TC=0 +-100	24546	C4-1/8-T0-1901-F
A1 4R9	0757-0439	4	9	RESISTOR 6, 81 K 1\% $125 \mathrm{HF} \mathrm{TC}=0+-100$	24546	C4-1/8-T0-6811-F
A14R10	0757-0465	6	2	RESTSTOR $100 \mathrm{~K} 1 \% .125 W F T C=0+\cdots 100$	24546	C4-1/8-70-103-F
A1 4R11	0757-0440	7	2	RESISTOR 7.5K 1%, 125W F TC= $=0+-100$	24546	C4-1/8-T0-7501-F
A14R12	0698-3157	3	2		24546 24546	C4-1/8-T0-1962-F
A14R13 A14R14	$0698-3444$ $0757-0420$	$\frac{1}{3}$	8 1		24546 24546	C4-1/8-TG-316R-F $\mathrm{C} 4-1 / 8-\mathrm{TO}-751 \mathrm{~F}$
A14R15	0698-3136	B	1	RESISTOR 17.8* 1 \% , 125 F TC=0+-100	24546	C4-1/8-T0-1782-F
A14R16"	0698-3443	0	1		24546	C4 1/8-T0-287R-F
A1 4R17 A14R18	0698-3156	2	1	RESISTOR 14.7K 1\% . 125W F TC=0+-100 NOT ASSIGNED	24546	C4-1/8-T0-1472-F
A14R19	0698-0085	0	2	RESISTOR 2.61 K 1 X , 1254 F TC=0+-100	24546	C4-1/8-T0-2611-F
A14R20	0757-0279	0		RESISTOR 3.16K 1%. 125 W F TC=0+-100	24546	C4-1/8-T0-3161-F
A14R21 A14R22	$\begin{aligned} & 0757-0289 \\ & 0757-0346 \end{aligned}$	$\left\|\begin{array}{l} 2 \\ 2 \end{array}\right\|$	12	RESISTOR 13.3 K 1\% . 125W F TC=0 $\mathrm{i}-100$ RESISTOR 10 1\%, 1254 F TC=0t-100	$\begin{aligned} & 19701 \\ & 24546 \end{aligned}$	$\begin{aligned} & \text { MF 4C1/8-T0-1332-F } \\ & \text { C4-1/8-T0-10R0-F } \end{aligned}$
A14R23	0698-3444	1		RESISTOR 3161 X , . 2 2SW F TC=0+-100	24546	C4-1/8-T0-316R-F
A1 AR24	0757-0279	0		RESISTOR 3.16K 1%, 125 F F TC=0 +-100	24546	C4-1/8-T0-3161-F
A1 4R25	0698-3444	1		RESISTOR 3161 x . 125 W F TC=0*-100	24546	C4-1/8-T0-316R-F
A14R26	0757-0290	5		RESISTOR 6, 19K 1\% , 1254 F TC=0 $0+-100$	19701	MF AC1/8-T0-6191-F
A1 4R27	0757-0346	2		RESISTOR 10 1\% 125 F F TCm $0+-100$	24546	C4-1/8-T6-10R0-F
A1 4R28 A1 4R29	0698-3449	6 3	1	RESISTOR 29.7 K RESISTOR 21.5K R	24546 24546	C4-1/8-T0-2872-F $\mathrm{C} 4-1 / 8-\mathrm{TO}$ - $2152-F$
A14R30	0698-3152	a	2	RESISTOR 3.48K 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-3481-F
A14R31	0757-0279	0		RESISTOR 3.16K 1\% , 125 F ${ }^{\text {F }}$ TC=0+-100	24546	C4-1/8-T0-3161-F
A14R32	0757-0289	2		RESISTOR 13.3K 1\% . 125 F F TC=0 +-100	19701	WFAC1/8-T0-1332-F
A14R33	6757-0289	2		RESISTOR 13.3 K 1\% , 125H F TC=0+-100	19701	MF4C1/8-T0-1332-F
A1 4R34	0698-3444	1		RESISTOR $3161 \% .125 W$ F TC=0+-100	24546	C4 1/8-T0-316R-F
A14235m	0757-0346	2		RESISTOR 10 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-10R0-F
			2		24546	C4-1/B-T0-147R-F
A1 4837	0757-0439	4		RESISTOR 6.81K 1%, 125 F F TC=0 +-100	24546	C4-1/8-T0-6811-F
A1 4R38 A1 4R39	8757-0279 $0698-3154$	0	1	RESISTOR 3.16K RESISTOR 4.22 L R	24546 24546	C4-1/8-T0-3161-F $\mathrm{C4}-1 / 8-\mathrm{TO}-4221-\mathrm{F}$
A14R40	0757-0280	3		RESISTOR 1K 1\% . 125 H F TC=0 +-100	24546	C4-1/8-70-1601-F
A14R41	0737-0346	2		RESISTOR 1012.1254 F TC=0t-100	24546	CA-1/8-T0-10R0-F
A14R42	0757-0346 $0757-0289$	2			24546 19701	$\text { C } 4-1 / 8-70-10 R 0-F$
A1 4R43 A14R44	0757-0289	2		RESISTOR 13.3 K 1\% . 125 F F TC=0+-100 NOT ASSIGNED	19701	WFAC1/8-T0-1332-F
A1 4R45	0757-0439	4			24546	C4-1/8-T0-6811-F
A14R46"	0698-0083	8	2	RESISTOR 1.96K 1\%.1254 F TC=0+-100	24546	C4-1/8-T0-1961-F
A1 4R47	0757-0279	0		RESISTOR 3,16K 1\% , 1254 F TC=0+-100	24546	C4-1/8-T8-3161-F
A14R48	0757-0289	2		RESISTOR 13.3k 1%, 125W F TC=0+-100	19701	MFAC1/8-T0-1332-F
A1 4R49 A1 4R50	$0757-0416$ $0698-3444$	7	2		24546 24546	$\begin{aligned} & \mathrm{CA}-1 / 8-\mathrm{TO}-511 \mathrm{R}-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-316 \mathrm{R}-F \end{aligned}$
A1AR51*	0737-0346			RESISTOR 10 12.1254 F TC=0t-100		C4-1/8-T0-10R0-F
A14R52	0757-0465	6		RESISTOR 100 K , $\%$, 125M F TC=0 0 - 100	24546	C4-1/8-70-1003-F
A14R53	0698-0083	B		RESISTOR 1,96K 1%, 125M F TC=0+-100	24546	C4-1/8-70-1961-F
A1 4R54 A1 4R55	3757-0288 $0698-3151$	3			$\begin{aligned} & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{TO}-1001-F \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-2071-F \end{aligned}$
A14R56 A1 $4 \pi 57$ A14R58 A14 489 A14R60	$\begin{aligned} & 0757-0458 \\ & 0757-0346 \\ & 0757-0299 \\ & 0757-0442 \\ & 0698-3157 \end{aligned}$	7 2 2 3 3	1		$\begin{aligned} & 24546 \\ & 24546 \\ & 19701 \\ & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & C 4-1 / 8-T 0-5112-F \\ & \text { C4-1/8-TT-1 } 18 R-F \\ & \text { WF4C1/8-T0-1 } 232-F \\ & \text { C4-1/8-T0-1 } 812-F \\ & C 4-1 / 8-T 0-1962-F \end{aligned}$
A14R31 A14in62 A14R63 A14R64* A1 4265	$\begin{aligned} & 0757-0442 \\ & 0698-3152 \\ & 0690-3159 \\ & 0757-6279 \\ & 0757-0290 \end{aligned}$? 8 5 0 5	$1{ }^{1}$	RESIBTOR $10 \mathrm{~K} 12,1254 \mathrm{~F}$ TC=0+-100 RESISTOR 3.48K 1%, 1234 F TC=0 +-100 RESISTOR 26.1K 1\% .1254 F TC= + + -100 RESIETOR 3.16K 1%, 125H F TC=0+-100 RESISTOR b.19K 1\% . 125W F TC=0 +-100	$\begin{aligned} & 24546 \\ & 24546 \\ & 24546 \\ & 24546 \\ & 19701 \end{aligned}$	$\begin{aligned} & C 4-1 / 8-T 0-1002-F \\ & C 4-1 / 8-T 0-3411-F \\ & C 4-1 / 8-T 8-2612-F \\ & C 4-1 / 8-T 0-3161-F \\ & W F 4 C 1 / 8-T 0-6191-F \end{aligned}$
A14R66 A1 4867 A14R68 A1 4269 A14R70	$\begin{aligned} & 0757-1439 \\ & 0757-6379 \\ & 0757-8289 \\ & 0777-8449 \\ & 0757-6463 \end{aligned}$	4 1 2 7 4	1 1	RESIETOR 6.01K 1\% , 125H F TC=0 + - 101 RESISTOR $12.1 \quad 1 \%$. 125 F F TCm0t-1 10 RESISTOR 13.3K 1%, 1254 F TC=0+m101 RES18TOR 7.5K 1%. 1254 F TC=0+-10! REEIGTOR 02.5K 1\% . 125W F TC=0t-101	$\begin{aligned} & 24546 \\ & 19781 \\ & 19791 \\ & 24546 \\ & 24544 \end{aligned}$	$\begin{aligned} & C 4-1 / 8-T 0-6811-F \\ & \text { WF4C1/日-T0-1211-F} \\ & \text { W } 4 C 1 / 8-T 0-1332-F \\ & C 4-1 / 8-T 8-7311-F \\ & C 4-1 / 1 /-T 0-252-F \end{aligned}$

See introduction to this section for ordering information -Indicates factory selected value

TABLE812. LOG AMPLIFIERASSEMBLY A14, REPLACEABLEPARTS (4OF4)(SERIALPREFIX2208A)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A14R71	0678-3444	1		RESISTOR 316 1\% . 12SW F TC=04-100	24546	C4 1/8-70-3162-F
A1 4R72	0757-0290	5		RESISTOR 6.191 1%. 125 W F TC=0+-100	19701	MF 4C1/8-T0-6191-F
A14R73*	0698-3151	7	2	NOT ASSIGNED RESISTOR 2, 7 \% $1 \% .125 \mathrm{~W}$ F TC=00+-100		
A14R75	-0698-3151	9	2		24546 24546	$\begin{aligned} & \text { C4-1/8-T0-2871-F } \\ & C 4-1 / 8-T 0-1002-F \end{aligned}$
A1 4R76 A14R77	$\begin{aligned} & 0757-0289 \\ & 0757-0280 \end{aligned}$	2		RESISTOR 13.3K 1\% . 125W F TC=0 0 +100 	$\begin{aligned} & 19701 \\ & 24546 \end{aligned}$	MF4C1/8-T0-1332-F C4-1/8-T0-1001-F
A1 4R78	0757-0346	2		RESISTOR 10 1\% . 125 W F TC=0t-100	24546	C4-1/8-T0-1001-F
A14R79	0757-0346	2		RESISTOR 10 1\% . 125 W F TC=0 +100	24546	C4-1/8-T0-10R0-F
A14R80	0757-0439	4		RESISTOR 6. B1K 1\% . 125 W F TC=0t-100	24546	C4-1/8-T0-6811-F
A14R81	0757-0403	2	1	RESISTOR 121 1\% . 125 W F TC=0+- 100	24546	C4 1/8-T0-121R-F
A1 4R82"	0757-0290	5	8	RESISTOR 6.19K 1\% , 125W F TC=0+-100	19701	MF4C1/8-T0-6191-F
A14R83	0757-0418	9	1	RESISTOR 619 1\% , 125W F TC $=0+-100$	24546	C4-1/8-T0-619R-F
A14R84 A14RE5	$\begin{aligned} & 0757-0402 \\ & 0757-0279 \end{aligned}$	1	1		24546 24546	C4-1/8-T0-111-F $\mathrm{C} 4-1 / \mathrm{B}-\mathrm{T} 0-3161-\mathrm{F}$
A14R86				NOT ASSIGNED		
A1 4R87	0757-0289	2		RESISTOR 13.3K 1%, 125W F TC=0+-100	19701	MFAC1/8-T0-1332-F
A1 4R88	0757-0416	7			24546	C4-1/8-T0-511R-F
A14R89 A1 4R90	$0757-0346$ $0698-3444$	2			24546 24546	C4 $1 / 8-\mathrm{T} 0-10 \mathrm{C} 0-\mathrm{F}$ $\mathrm{CA}-1 / 8-\mathrm{T} 0-316 \mathrm{~F}-\mathrm{F}$
A14R91	0757-0439	4		RESISTOR 6.811 1\% . 125 w F TC=0+-100		
A14R92	0757-0346	2		RESISTOR $101 \mathrm{X}, 125 \mathrm{~W}$ F TC=0 +-100	24546	C4-1/8-T0-6811-F C4-1/8-T0-10RO-F
A14R93	0757-0438	3	1	RESISTOR 5.11k 1%, 125W F TC=0+-100	24546	C4-1/8-T0-10R0-F
A14R94	0757-0346			RESISTOR 101%, 125W F TC $=0+-100$	24546	C4-1/8-T0-10R0-F
A14R95	0757-0289	2		RESISTOR 13.3 K iz. 125 WF TC $=0+100$	19701	MF 4 C1/8-T0-1332-F
A14R96 A14R97	0757-0280 $0757-0346$	3		RESISTOR RESISTOR 10 10 RES	24546	C4-1/8-T0-1001-F
A14R98	0757-0346	2		RESISTOR 10 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-10RO-F
A14R99	0757-0346	2		RESISTOR 10 1\% , 125w F TC=0 +-100	24546	C4-1/8-70-10R C-F
A14R100	0757-0346	2		RESISTOR 10 1\% , 125世 F TC=04-100	24546	C4-1/8-TC-1 ORO-F
A14R101	0757-0439	4		RESISTOR 6. B1K 1\% . 125W F TC=0t-100	24546	C4-1/8-T0-6811-F
A14R102"	0757-0290	5		RESISTOR 6.19K 1\% , 125W F TC=0+-100 RESISTOR 1621% 1254 F TC $=0$ 0 10100	17701	MF4C1/8-T0-6191-F
A14R103 A14R104	-0757-0405	4	1		24546 24546	C4 1/8-T0-162R-F
A14R105	0757-0280	3		RESISTOR $1 \mathrm{~K} 1 \% .125 \mathrm{WF}$ TC= $=0+-100$	24546	C4-1/8-T0-1001-F
A14R106	0757-0289	2		RESISTOR 13.3X 17 , 1254 F TC=0+-100	19701	MF 4C1/8-T0-1332-F
A14R108	0699-3444	1	1		19701 24546	MF4C1/8-T0-9091-F C4-1/8-T0-316R-F
A14R109	0757-0439	4			24546	C4-1/8-T0-6811-F
A14R110	0757-0346	2		RESISTOR 10 1x . 1254 F TC=0+-100	24546	C4-1/8-T0-10R0-F
A14R111	0698-3158	4	1	RESISTOR 23.7K 1\% .125N F TC=0+-100	24546	C4-1/日-T0-2372-F
A14R112	0698-3160	8	3	RESISTOR 31.6K 1%. 1254 F TC $=0+-100$	24546	C4-1/8-T0-3162-F
A14R115	0757-0346	2		RESISTOR 10.1%. 12 SW F TC=0+-100	24546	C4-1/8-T0-3162-F $C 4-1 / 8-\mathrm{TO-10R0-F}$
A1 4R116	0757-0289	2		RESISTOR 13.3X 1\% . 125 F F TC=0 +-100	19701	MFAC1/8-T0-1332-F
A14R117	0698-0085	0		RESISTOR $2.61 \mathrm{~K} 1 \% \cdot 125 \mathrm{H}$ F TC $=0+-100$	24546	C4-1/8-T0-2611-F
A1 4R118	0757-0439	,		RESISTOR 6. $61 \times 1 \chi$, 1254 F TC=0+-100	24546	C4-1/8-T0-6811-F
A14R119*	0757-0290	5		RESISTOR 6.19K 1\% . 125 L F TC=0+-100	19701	MFAC1/8-T0-6191-F
A14R120	0757-0279	0		RESISTOR 3.16\% 1\% . 125 W F TC=04-100	24546	C4-1/8-T0-3161-F
A14R121 A14R122	$\begin{aligned} & 0698-3438 \\ & 0757-0447 \end{aligned}$	3	2		24546	C4-1/8-T0-147R-F
A14R123	0757-0447	4		RESISTOR 16.2K 1%, 125 F F TC=0+-100	24546	C4-1/8-T0-1622-F
A1 4R124	0757-0441	,	1	RESISTOR 8.25K 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-8251-F
A14R125	0698-3260	,	1		28480	0698-3260
A1 4R126 A14R127	$\begin{aligned} & 0757-0442 \\ & 0757-0421 \end{aligned}$	$\stackrel{9}{ }$	1		24546 24546	$\begin{aligned} & C 4-1 / 8-T 0-1002-F \\ & C 4-1 / 8-T 0-825 R-F \end{aligned}$
A14R128	0757-0290	5	1	RESIETOR 6.19K 1%. 125 H F TC=0+-100	19701	HFAC1/8-T8-6191-F
A14R129	0757-0290	5		RESISTOR 6.19K $1 \% .1254$ F TC=0 +-100	19701	MF4C1/8-70-6191-F
A14R130\%	0757-0467	8	1	RESISTOR 121K 1X , 125W F TC=0+-100	24546	C4-1/8-T0-1213-F
A14R131	0698-3429	2	1	RESISTOR 19.6 1\%.125W F TC=0t-100	03888	PHESS-1/8-T0-19R6-F
A14U1	1826-0092	3	1	IC OP AMP GP DUAL TO-99 PKC	28488	1826-8492
A14UR1 A14V12 A14VR3	$\begin{aligned} & 1902-0041 \\ & 1912-0048 \\ & 1902-0579 \end{aligned}$	1 1 3	1 1 1	DIODE-ZNR 5.11U 5\% DO-35 PD=, 4 DIODE-ZNR 6.81V 5\% DO-35 PD=,4W DIODE-ZNR 5.1U 5\% PD=14 1R=1 OUA	28480 28488 28480	$\begin{aligned} & 1902-0041 \\ & 1902-81448 \\ & 1902-0579 \end{aligned}$
				h 14 HISCELLANEOUS PARTs		
	08559-00310	0	1	COVER, LOC AMPLIFIER	28488	18559-00010
See introduction to this section for ordering information *Indicates factory selected value						

A14

LOG AMPLIFIER

FIGURE868. LOG AMPLIFIER ASSEMBLY A14,COMPONENTLOCATIONS(SERIAL PREFIX 2208A)

Pages 8-191 and 8-199/8-200: MOTHERBARD ASSEMBLY A16
Table 8-14. Motherboard Assembly A16, Replaceable Parts

2236 A \& Below	Change A16 to HP Part Number 08559-60066, Check Digit 0. Change A16C3 and A16C21 to HP Part Number 0160-2055, Check Digit 9. CAPACITOR-FXD . 01UF +80-20\% 100VDC CER. Change A16C22 to HP Part Number 0180-2154, Check Digit 1, CAPACITOR-FXD 1900UF +75-10\% 15VDC AL. Delete A16Q1. Change A16W1 to HP Part Number 08559-60067, Check Digit 1, HARNESS ASSEMBLY, MAIN RAME CONNBCTOR. Change A16W2 to HP Part Number 08559-60008, Check Digit 0, CABLE ASSEMBLY, YIG.
2208A \& Below	Change A16 to HP Part Number 08559-60020, Check Digit 6. Change A16W1 to HP Part Number 08559-60009, Check Digit 1, HARNESS ASSEMBLY, MAIN RRAME CONNECTOR Delete the following: A16CR1, A16CR2, A16R10, and A16VR3.
$\begin{aligned} & \text { 1951A, 1945A } \\ & \& \text { Below } \end{aligned}$	Delete A16C6, A16J3, and A16J4.

Figure 8-76. Motherboard Assembly A16, Component Locations

2236A \& Below	Replace Figure $8-76$ with new Figure $8-76$ (SERIAL PREFIX 2236A) included ic this Manual Backdating supplement.
2208A \& Below Make the following changes to Figure $8-76$ (SERIAL PREFIX 2236A): Delete CR1, CR2, R10, and VR3. 1951A, 1945A $\&$ Below Delete C6, 53, and 54.	

Figure 8-77. Motherboard Assembly A16, Interconnect Diagram
2236A \& Below Replace Figure 8-77 with new Figure 8-77 (SERIAL PREFIX 2236A) included in this Manual Backdating supplement.

2208A \& Below Chacge A16 to HP Part Number 08559-60020.
Make the following changes to Figure 8-77 (SERIAL PREFIX 2236A):
Delete CR2, VR3, and the 927 line.
Delete CR1 and the 8 line.
Delete R10 and the 928 line.
1951A,1945A At pin 18 of XA10P1, delete C6 and 53.
\& Below At XA10P2, delete 54 (CAL OUTPUT TO FRONT PANEL).

A16
 MOTHERBOARD

FIGURE 8-76. MOTHERBOARDASSEMBLYA16,COMPONENT LOCATIONS(SERIAL PREFIX2236A)

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section provides instructions for troubleshooting and repairing the HP Model 8559A Spectrum Analyzer. It includes circuit descriptions, general servicing hints and information, parts identification illustrations and lists, block diagrams, component locations diagrams, and schematics.

WARNING

To troubleshoot and repair this instrument, it must be removed from the display mainframe and reconnected through an extender cable. Operating the spectrum analyzer outside the mainframe in this manner exposes high voltage points in the instrument that will, if contacted, cause personal injury. Maintenance and repair of this instrument should, therefore, be performed only by a skilled person who knows the hazards involved. Where maintenance can be performed without power applied, the power should be removed. When any repair is completed, be sure that all safety features are intact and functioning and that all necessary parts are connected to their positive grounds.
8.3. SCHEMATIC SYMBOLS, TERMINOLOGY, AND VOLTAGELEVELS

8-4. Symbols and terminology used on the schematic diagrams are explained in Figure 8-1. Test conditions for the signal and dc voltage levels shown on the block and schematic diagrams are provided in Figure 8-2.

8-5. TEST EQUIPMENT

8-6. Test instruments and accessories used to maintain the spectrum analyzer are listed in Table 1-4. If
the listed instrument is not available, another instrument that meets the required minimum specifications may be substituted.

8-7. MAJOR ASSEMBLY LOCATIONS

8-8. The major assembly location illustrations for the spectrum analyzer are located near the end of this section.

8.9. TROUBLESHOOTING

8-10. General Information

$8-11$. Troubleshooting is most easily accomplished by using the block diagram at the end of this section to follow the signal path. Once the problem is isolated to a particular circuit, the circuit description and schematic diagram can be used to locate the faulty component.

NOTE

When a part is replaced, adjustment of the affected circuitry is usually required. For adjustment procedures, refer to Section V.

CAUTION

Improper cleaning of the printed circuit board edge connectors can cause damage to the contact's gold plating, resulting in corrosion and intermittent electrical contact. Use only the recommended procedure.

8-12. Printed Circuit Board Edge Connector Contact Cleaning

MATERIALS:

- Lint-free cloth or equivalent (HP Part Number 9310-0039, Check Digit 3).
- Solution of 80% electronics-grade isopropyl alcohol and 20% water.
- Static-free work station.

PROCEDURE:

1. Dampen the cloth with the alcohol and water solution and scrub the edge connector contacts vigorously, using a circular motion. Polish one side of the board at a time until the contacts shine, keeping the cloth damp to dissolve contaminants and reduce static electricity.
2. Using a clean cloth, dry the contacts by wiping from their inside to outside edge. This prevents particles from building up on the contact edges.

CAUTION

Do not use erasers to clean the edge connectors They cause microscopic damage to the contact surface, removing the thin gold plating and exposing the nickel under-plating, which eventually corrodes. Erasers also leave a film on the contact and generate static electricity.

Do not use paper of any kind to clean the edge connector contacts. Paper or lint particles left on the edge contact surface can cause intermittent electrical connections.

Do not touch contact or trace surfaces with bare hands. Always handle the board by its edges.

SYMBOLS USEDIN SCHEMATICS AND BLOCK DIAGRAMS

BASIC COMPONENT SYMBOLS

Sariable Resistor: Clockwise
rotation of shaft moves wiper
towards end of resistor mark-
El CW.

SYMBOLS USED IN SCHEMATICS AND BLOCK DIAGRAMS

BASIC COMPONENTSYMBOLS

\leftarrow
$-$

Oscillator

Operational amplifier

Tuneable cavity
Oscillator

Connection symbol indicating a Jack (except for PC board edge connectors)

Point: Terminal provided for test probe.

COMMONLY USED ASSEMBLY AND CIRCUIT SYMBOLS
$\perp \quad$ Earth ground

Jumper wire
Q, Front-panel control

Measurement Point: Used to indicate a convenient point for measurement. No terminal provided for test probe.
Connection symbol indicating a Plug (except for PC board edge connectors)

Instrument chassis ground. May be accompanied by a number or letter to specify a particular ground

Screwdriver adjustment

Front-panel control code. Color code same as resistor color code. First number indicates base color, second and third numbers indicate colored stripes.

Mixer

Inverter, buffer

Transmission Line

SYMBOLS USED IN SCHEMATIC AND BLOCK DIAGRAMS

BASIC LOGIC SYMBOLS

Distinctive-Shape Symbols

AMPLIFIER/BUFFER

SCHMITT TRIGGER

AND FUNCTION

OR FUNCTION

EXCLUSIVE-OR FUNCTION

WIRED AND

 FUNCTIONWIRED OR FUNCTION

Output is active when input is active.

Output changes abruptly as a fixed DC level is crossed by the input signal.

Output is active only when all inputs are active.

Output is active when one or more inputs are active.

Output is active when only one input is active.

Two or more elements are joined together to achieve the effect of an AND function.

Two or more elements are joined together to achieve the effect of an OR function.

SYMBOLS USED IN SCHEMATIC AND BLOCK DIAGRAMS

BASIC LOGIC SYMBOLS

Indicator Symbols (positive logic assumed)

EDGE-TRIGGERED (dynamic) inputs
 are indicated by the presence of the dynamic input symbol.

Input is active only on the positive-going transition.

ACTIVE PERIOD

ACTIVE-HIGH inputs and outputs are indicated by the absence of the negation symbol, O.

FIGURE8.1. SYMBOLSUSEDINSCHEMATICAND BLOCK DIAGRAMS(40F 4)

Nominal power levels, voltages, and waveforms shown on schematic diagrams were measured using the test setup shown below. Note that signal characteristics shown on schematic diagrams are provided as a troubleshooting aid only. They should not be used for making instrument adjustments.

EQUIPMENT:

PROCEDURE:

1. Set HP 8559A Spectrum Analyzer controls as follows:
TUNING .035 GHz
FREQ SPAN/DIV 1 MHz
RESOLUTION BW 300 kHz
INPUT ATTEN 0 dB
REFERENCE LEVEL $-10 \mathrm{dBm}$
REFERENCE LEVEL FINE 0
Amplitude Scale $10 \mathrm{~dB} /$ DIV
SWEEP TIME/DIV AUTO
SWEEP TRIGGER FREE RUN
VIDEOFILTER OFF
BL CLIP OFF
SIGIDENT OFF
ALT IF OFF
2. Connect equipment as shown. Set signal generator for a $35 \mathrm{MHz},-10 \mathrm{dBm}$ output signal. Center the Cal signal on the display and adjust for top graticule.
3. Using board extenders when necessary, check voltages and waveforms indicated on schematic diagrams. Trigger oscilloscope on negative transition of AUX B PENLIFT/BLANKING signal from rear of display mainframe.
4. To measure RF power levels, set RESOLUTION BW control to $\mathbf{3} \mathrm{MHz}$ and FREQ SPAN/DIV to 0 (zero span). The first LO is not swept in zero span, allowing signal levels to be checked with a second spectrum analyzer (use adapter cables as necessary). DO NOT use a power meter (harmonics and LO signals will contribute to give erroneous levels).

THE HP 8559A SPECTRUM ANALYZER THEORY OF OPERATION

General Information

The HP 8559A is a wideband spectrum analyzer plug-in module for use with either the HP 180 series or HP 853 A display mainframes. It tunes from 10 MHz to 21 GHz and displays frequency spans as wide as 9 GHz (in bands 5 and 6) and as narrow as 100 kHz (in band 1). A zero span feature enables the analyzer to operate as a tunable, fixed-frequency receiver. Resolution bandwidths of 3 MHz to 1 kHz are selectable in a 1-3-10 sequence. CRT display calibration can be maintained by coupling the frequency span, resolution bandwidth, and video filter to an automatic sweep time control. A five-LED numerical display allows direct readout of the display center frequency or the tunable marker frequency.

The adjustable reference-levelcontrol is calibrated to allow direct readout of amplitudes ranging from -111 to +30 dBm . Continuous wave (CW) signals at or below the Reference Level, the top display graticule, are automatically below the analyzer's gain compression specification. Dynamic range is greater than 70 dB .

The resolution bandwidth and frequency span controls can be locked together to function as a "zoom" control. Signal identification, in spans from 100 kHz to 10 MHz per division, and an alternate IF are also available. This latter feature eliminates problems caused by IF feedthrough (baseline lift) and allows measurement of all signals within the frequency range of the analyzer.

The typical spectrum analyzer comprises three main sections (see Figure 8-3): the RF section, the IF section, and the display section. Since it is a plug-in designed to work with a display mainframe, the HP 8559A houses only the RF and IF sections. The display and power supply are contained in the mainframe.

RF Section

The HP 8559A RF section resembles a triple-conversionsuperheterodyne receiver; input signal frequencies are converted three times before processing for display. Triple conversion makes possible wide frequency coverage and permits filtering and amplification at more easily controlled frequencies.

RF Attenuator. The stepped RF Input Attenuator Assembly A3, at the input to the RF section, attenuates the input in precise 10 dB steps from 0 to 70 dB . Precise and repeatable attenuation and gain in the signal path are necessary to preserve amplitude calibration and direct reading of signal amplitudes on the CRT. RF attenuator adjustment establishesthe optimum signal level applied to the First Mixer Assembly A4.

First Mixer. Within the First Mixer Assembly A6, the incoming signal mixes with the first local oscillator, generating the first IF. The first converter consists of a single microwave diode, a 4.8 GHz Low-Pass Filter Assembly FL1 contained in a short RF cable, and - housed in the Second Converter Assembly A5 - a 3 GHz bandpass filter with a 17 to 23 MHz bandwidth.

First LO. A YIG-Tuned Oscillator Assembly A6, or YTO, is used as the first LO. YIG, yttrium-iron-garnet, is a ferro-magnetic material which is polished into a small sphere and precisely oriented in a magnetic field. Changes in this magnetic field alter the frequency generated by the YTO. For the YTO in the HP 8559A, a frequency range of 3.01 GHz to 6.04 GHz is used. Voltage control of the magnetic field surrounding the YIG sphere allows the analyzer to be swept or tuned within these frequency limits. A control voltage, derived from the sweep generator, tunes the YTO in sync with the horizontal deflection of the CRT beam. A tuning voltage offsets the sweep to establish the center frequency. Voltage control of the analyzer's frequency is convenient, since low frequency circuits, like operational amplifiers and transistors, can generate and modify the control voltage.

Second Converter. The Second Converter Assembly A5 houses the 3 GHz bandpass filter, the second mixer, and the second LO. The 3 GHz filter uses the resonant characteristics of three precisely machined cavities, or
holes, in the aluminum block housing to filter the first IF. A fourth cavity is used as the resonant circuit for the second LO, which operates at one of two fixed frequencies. After mixing with the first IF, the second LO produces the second IF at 321.4 MHz .

The need for operating the second LO at two separate frequencies becomes apparent when measuring a signal at or near the first IF frequency, 3 GHz . The signal passes through the first mixer and first IF unaffected by first LO tuning and appears as an equally strong signal at all frequencies. This response is called IF feedthrough or baseline lift. Changing the frequency of the second LO shifts the feedthrough response away from the frequency being measured by effectively altering the first IF. Two LO frequencies may be selected with the ALT IF control, 2.6861 GHz (regular IF) and 2.6711 GHz (alternate IF). The LO shift (15 MHz) is reflected in the first IF and fits within the 17 MHz to 23 MHz 1 dB passband of the 3 GHz bandpass filter.

Third Converter. The Third Converter Assembly A10 contains the second IF amplifier, the second IF bandpass filters, the third mixer, the third LO, and the third IF filters and compensation amplifiers. The second IF amplifier consists of a single-transistor amplifier with a 321.4 MHz bandpass filter at its input. It provides about 15 dB of gain before passing the signal to a second 321.4 MHz bandpass filter at its output. The net 1 dB bandwidth is 6 MHz to 9 MHz , narrow enough to reject the second mixer's image frequency. The doublebalanced third mixer produces sum and difference frequencies, as do other mixers, but rejects input and LO frequencies, simplifying subsequent filtering. Two transistors form the third LO, fixed at 300 MHz , which, when mixed with the 321.4 MHz second IF, produces a difference frequency at the final IF, 21.4 MHz .

Three conversions or frequency translations are necessary before the input signal reaches the final IF, where the analyzer's major bandpass filtering and calibrated gains occur. The circuits used in the final IF are more easily controlled at 21.4 MHz than they would be at the higher input frequencies. The RF section's function is to down-convert the input signal accurately so the analyzer can control and display it.

Harmonic Mixing. To extend the frequency range of the HP 8559A, harmonic mixing is employed. Instead of limiting the first mixer input to the fundamental range of the first $\mathrm{LO}(3.01 \mathrm{GHz}$ to 6.04 GHz$)$, harmonics of the LO are allowed to mix with the incoming signal. Each of the six FREQUENCY BAND GHz buttons on the front panel selects a different mixing mode. A mixing mode is characterized by the number of the LO harmonic used and the relationship of the incoming signal frequency to the LO frequency. For example, in the first band (.01 to 3 GHz) the incoming signal is below the frequency of the LO. If the incoming signal is 2 GHz , the LO must tune to 5 GHz to produce a difference frequency at the required IF, 3 GHz . This band is characterized as the " 1 - " mixing mode. This relationship is expressed by the fundamental mixing equation:

$$
\mathrm{F}_{\mathrm{LO}}-\mathrm{F}_{\mathrm{IN}}=\mathrm{F}_{\mathrm{IF}}
$$

Band two (6 to 9 GHz) uses the " $1+$ " mixing mode. In this band, the incoming signal frequency is higher than the first LO frequency. Now an 8 GHz incoming signal mixes with the 5 GHz first LO , producing an IF response at 3 GHz . The mixing equation also reflects this change by becoming:

$$
\mathrm{F}_{\mathrm{IN}}-\mathrm{F}_{\mathrm{LO}}=\mathrm{F}_{\mathrm{IF}}
$$

Higher frequency bands are realized by using the second harmonic (6 to 12 GHz) or the third harmonic (9 to 18 GHz) of the first LO. Adjusting the dc bias of the first mixer diode enhances operation at these frequencies. As with the fundamental mixing mode, each harmonic mode has two possible frequency bands creating a total of six bands: $\mathbf{1 +}, \mathbf{1 -}, 2+, 2-, 3+$, and $\mathbf{3 -}$. Section 3, Figure 17 shows the tuning curves for the six mixing modes and the LO fundamental. The mixing equations for the harmonic mixing modes are:

$$
\mathrm{F}_{,,}, \mathrm{NF}_{\mathrm{Lo}}=\mathrm{F},, \quad \text { (for plus modes) }
$$

and

$$
\mathrm{NF},,-\mathrm{F}_{\mathrm{IN}}=\mathrm{F},, \quad \text { (for minus modes) }
$$

where N is the harmonic number of the mode.

Regardless of which harmonic is used for mixing, image frequencies can create problems. Image frequencies occur when a signal not in the band being viewed mixes with the LO to produce a response. It is possible to be in the 1 - band and have a signal at 5 GHz produce a response at 2 GHz ; the opposite can occur in the $1+$ band. As can be seen, it is necessary to be able to differentiate these signals. In the HP 8559A, this is the function of the signal identifier.

Signal Identifier. Several methods of eliminating image responses are used in spectrum analyzers: low-pass filters, preselectors, and signal identifiers. Low-pass filters eliminate all upper out-of-band frequencies from the mixer; this works well for single band analyzers. A preselector (a YIG-tuned bandpass filter) tracks the LO frequency; this allows multi-band operation, but can degrade input sensitivity. The signal identifier allows identification of in-band signals without losses in sensitivity. This is the scheme used in the HP 8559A.

Signal identification simultaneously shifts the display frequency down 1 MHz and decreases the display amplitude about 5 dB . If the signal is an image, it will do something other than shift down 1 MHz . The SIG IDENT button on the front panel activates this function by simultaneously shifting the frequency of the second LO and varying the level of the video signal during alternate sweeps.

IF Section

The IF section comprises the third IF filters and amplifiers, and the step gain and logarithmic amplifiers. It also includes the video detector, video filters, and video amplifiers. The IF section processes the 21.4 MHz output of the Third Converter Assembly A10 and applies it to the vertical deflection circuitry in the display mainframe.

The 21.4 MHz third converter output is processed by the Bandwidth Filter No. 1 Assembly A11, the Step Gain Assembly A12, the Bandwidth Filter No. 2 Assembly A13, and, finally, the Log Amplifier Assembly A14. Each assembly occupies a separate printed circuit board, which is shielded by extrusions mounted on the Motherboard Assembly A16.

Bandwidth Filters. Bandwidth Filter No. 1 Assembly A11 and Bandwidth Filter No. 2 Assembly A13 are identical; each contains two synchronously-tuned filter poles isolated by buffer amplifiers. Synchronouslytuned filter poles have identical center frequencies, unlike stagger-tuned poles. The bandwidth of these poles, varying from 3 MHz to 1 kHz , is changed simultaneously by the front panel RESOLUTION BW control. Because the variable bandwidths are so much narrower than any of the RF section bandpass filters, the RESOLUTION BW control setting determines the analyzer's overall bandwidth. Parallel LC filters provide bandwidths from 3 MHz to 100 kHz . Crystal filters provide the narrow, 30 kHz to 1 kHz , bandwidths.

Step Gain Amplifier. Located between the bandwidth filter assemblies, the Step Gain Assembly A12 provides precise and selectable gain in three stages, a 10 dB stage followed by two 20 dB stages. Each stage can be turned "on" for full gain or "off" for unity gain. By turning on the amplifiers in combination, gains of 0 to 50 dB may be selected. This action is performed by the REFERENCE LEVEL control. Concentric with the REFERENCE LEVEL knob is the REF LEVEL FINE potentiometer, which controls the 0 to 12 dB PIN diode attenuator. In addition to the gain circuits described, circuitry providing biasing to the first mixer diode and flatness compensation to the third converter is included on the Step Gain Assembly A12.

Logarithmic Amplifier. The second bandwidth filter is followed by the Log Amplifier Assembly A14. The gain of this amplifier is a logarithmic function of the input signal, which allows a greater range of signal amplitudes to be simultaneously displayed on the CRT. This logarithmic amplification of the signal before detection results in the vertical display axis being calibrated in decibels (relative to a milliwatt), rather than volts. Linear amplification from 0 dB to 40 dB may also be selected from the front panel.

The video detector, located on the Log Amplifier Assembly A14, is basically a half-wave rectifier and a filter. This circuit produces a voltage proportional to the signal level, called the video signal. This signal passes through a video filter and a vertical deflection amplifier before leaving the H P 8559A.

TROUBLESHOOTING HINTS

Begin troubleshooting by measuring the mainframe-supplied voltages as close to the HP 8559A as possible. The Vertical Driver/Blanking Assembly A15 offers three test points (A15TP6, A15TP7, A15TP8) to make the measurements. The +100 V supply is available at A15TP6, the +15 V supply at A 15 TP 7 , and the -12.6 V supply at A15TP8. If any of these voltages are low, refer to the mainframe Operation and Service manual and make the necessary adjustments before continuing. Common symptoms caused by low mainframe-supplied voltages include: increased residual FM (caused by a low +15 V supply) and poor frequency accuracy or intermittent lockup of the frequency display LED's (also caused by a low power supply).

Residual FM

Residual FM is a short-term jitter or an undesired frequency modulation of a local oscillator (LO). It appears as noise riding on the displayed trace and may be random or cyclical (usually as a function of the line frequency). The following procedure is a guide for isolating a source of residual FM. Further troubleshooting hints concerning residual FM are included following the circuit descriptions of the indicated assemblies.

Set HP 8559A controls as follows:
FREQUENCY BAND GHz $01-3$
TUNING 010 GHz
FREQ SPAN/DIV 0
RESOLUTION BW 300 kHz
INPUT ATTEN 0 dB
REFERENCE LEVEL $-10 \mathrm{~dB}$
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} /$ DIV
SWEEP TIME/DIV AUTO
SWEEPTRIGGER OFF
VIDEOFILTER OFF
BLCLIP OFF
SIGIDENT OFF
ALT IF OFF

- Verify that the mainframe supply voltages are correct at the Vertical Driver/Blanking Assembly A15 of the HP 8559A by checking the voltages at A15TP6, A15TP7, and A15TP8.
- Use a second spectrum analyzer to check each LO of the HP 8559A for FM.

First LO: check at the HP 86559A front-panel RF input jack with test analyzer tuned to about 3 GHz (LO power is $-8 \mathrm{dBm} \pm 3 \mathrm{dBm}$).
Second LO: check at A5J3 on Second Converter Assembly A5.
Third LO: check at A10J1, the 300 MHz output on Third Converter Assembly A10.

- If the source of FM is the first LO, check the Frequency Control Assembly A7 and the YIG-Tuned Oscillator Assembly A6.
- If the source of the FM is the second LO, short A5A2TP1 to ground while observing the second LO with the second spectrum analyzer. This isolates the possible source of FM to the Second Converter Assembly A5 by removing the varactor bias voltage. Note that removing this bias voltage will cause the second LO frequency to shift. If FM is still present, check the Second Converter Assembly A5 as the source. If the FM disappears, check the bias voltage source on the Marker Board Assembly A8.
- If the source of the FM is the third LO, check the Third Converter Assembly A10.

DPM Accuracy

The following is a guide to troubleshooting poor DPM accuracy. Further information is included following the circuit descriptions of the indicated assemblies.

- Check +14.5 V supply on the Frequency Control Assembly A7 (A7TP3).
- Perform and verify Frequency Display Adjustment (Paragraph 5-30).
- Verify Tuning Accuracy (Paragraph 4-12).
- Check Marker Board Assembly A8.
- Check frequency accuracy of first and second local oscillators.

First LO: DPM inaccuracies become worse as the higher bands are selected (i.e., increases in harmonic mixing mode).
Second LO: DPM inaccuracies are constant in all bands.

Bes.ek

DIGITAL PANEL METER ASSEMBLY AI, CIRCUIT DESCRIPTION

The Digital Panel Meter (DPM) Assembly A1A1/A1A2 is a dc voltmeter that measures a tuning voltage from Marker Assembly A8, and converts it to a front-panel frequency readout. The DPM electronics are contained on two assemblies: the DPM Display Assembly A1A1 and the DPM Driver Assembly A1A2.

DPM Display Assembly A1A1

The DPM Display Assembly comprises five seven-segment displays with Darlington-transistor switches, Q1 through Q5. The seven-segment displays (DS1 through DS5) are the common-cathode type. The cathode of a display is pulled negative (to about -10.5 V) when the Darlington-transistor switch associated with it is turned on. With the cathode at a negative potential, the output of A1A2U4 can light the display segments. The transistor switches are strobed so the displays light sequentially. The refresh rate is determined by the clock (block C) and is fast enough (about 300 Hz) that the displays appear to be lit simultaneously.

DPM Driver Assembly A1A2

Contained on the DPM Driver Assembly A1A2 are the analog-to-digital converter, power supplies, and display interface circuits. Analog processor IC (U2) and digital processor IC (U3) are each one-half of an analog-todigital converter (ADC). Analog comparator circuits in U2 control counter logic in U3. To accomplish the analog-to-digital conversion, U2 and U3 interact on three control lines: the M/Z (measure/zero logic) line, the COMP (comparator) line, and the U/D (up/down) line. The ADC, U3, produces two outputs. The first comprises five sequential four-line BCD outputs that are fed to BCD-to-seven-segment converter U4. The second consists of five sequential digit strobes that are fed to Darlington-transistor switches A1A1Q1 through A1A1Q5 on the DPM Display Assembly A1A1.

The input signal applied across connector pins J1-3 and J1-6 of the DPM Driver Assembly A1A2 is a dc level of OV to -4V, representing an instrument tuning-range of 0 to 20 GHz (a 1 V change of the input level represents a tune frequency change of 5 GHz). This OV to -4 V input signal is divided by precision resistors R33 and R27, providing a OV to -2.000 V signal across pins 2 and 15 of the analog processor IC, U2.

Transistors Q1, Q2, and Q9 interface the "sign/or/ur" (sign/over-range/under-range) output of U3 with segment " g " of numeric display A1A1DS5. Transistor Q2 and CR2 provides a "wired AND" function so that the minus sign is shown only in the most-significant-digit position (when both "D5" and "sign/or/ur" are high). Transistor Q1 serves to shift the signal level and Q9 supplies drive to the segment when a minus sign is displayed.

Field-effect transistor Q8 and its associated circuitry form a Colpitts oscillator that provides a clock of about 225 kHz . Inductor L 1 and the series combination of C 1 and C 2 determine the nominal clock frequency.

Power Supplies and Reference (G) (A)

The power supply circuitry provides the necessary voltage reduction, protection, and filtering for the dc supply voltages: $+12 \mathrm{~V},-12.6 \mathrm{~V}$, and +5 V . The supply voltages are filtered as they enter the board to reduce interference between the DPM and the rest of the instrument. The +15 V supply is used to derive the +12 V supply and the +5 V supply. Zener diode VR1 is used to reduce the +15 V supply to +12 V , while regulator U8 reduces the +15 V supply to +5 V . The -12.6 V supply is filtered to offer two supply lines: $-12.6 \mathrm{VF}_{1}$ and $-12.6 \mathrm{VF}_{2}$. Operational amplifier U7 and its associated circuitry provide a constant dc voltage reference of approximately +6.2 V to the analog IC, U2.

Display Interface (E)

During the period the DPM drive input is being converted, the BCD output circuitry in U3 is shut off. Once the conversion in U2 and U3 is complete, the four-line BCD is sent to U4 where it is converted to a seven-line (segment) drive. This seven-line output from U 4 is fed in parallel to the displays on the Display Assembly A1A1. Coincident with the BCD-to-seven-segment conversion, U3 supplies a digit strobe drive that, by turning on one of the DPM Display Assembly A1A1 transistors (A1A1Q1 - A1A1Q5), activates one of the seven-segment displays.

Multiplexed BCD data from the digital processor IC (U3) are level shifted by transistors Q3, Q4, Q5, and Q6 and decoded by the BCD-to-seven-segment decoder-driver IC, U4. The decoder-driver sinks the current that drives the paralleled LED display segments on the DPM Display Assembly A1A1. The digit strobe outputs from U3 are level shifted by Q7, A11, A12, Q13, and Q14 and subsequently drive the Darlington-transistor switches A1A1Q1 through A1A1Q5 on the DPM Display Assembly A1A1.

DIGITAL PANEL METER ASSEMBLY AI, TROUBLESHOOTING

Check supply and reference voltages first.
Display digits freeze intermittently: Be sure the clock oscillator signal goes at least -7 V negative and appears as in Figure 8-4. Low gain (Gm) of A1A2Q8 is the most probable cause for failure. Resistor A1A2R1 is factory selectable; increasing its value increases the amplitude of the clock output,

Least Significant Digit (LSD) dithers: A1A2U2 is the most probable cause; however, noise from A1A2R24, A1A2R25, or A1A2C5 also causes this symptom.

The same segment in each digit does not light: A1A2U4 failure.

TABLE 8－1．DIGITAL PANEL METER ASSEMBLY A1，REPLACEABLE PARTS（1 OF 2）

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A1				DIGITAL PANEL METER ASSEMPLY		
A1A1	08559－60079	5	1	DIGITAL PANEL，METER DISPLAY ASSEMELY	28480	08559－60079
A1A1DS1	1990－0693	7	5	DISPLAY－NUM－SEG 1 －CHAR 3 H	28488	1DS $1-3533$
A1A1DS2	1990－0693	7		DISPLAY－NLM－SEG 1－CHAR－3－H	28480	1DS $1-3533$
A1A1DS3	1990－0693	7		DISPLAY－NUM－SEG 1－CHAR ， $3-\mathrm{H}$	28486	1DS1－3533
A1A1DS4	1790－0693	7		DISPLAY－NUM SEEG 1－CHAR－3－H	28480	1 DS 1－3533
A1AIDSS	1990－0693	7		DISPLAY－NUM－SEG 1－CHAR ． 3 H	23480	1DS1－3533
AlA1Q1	18540472	2	5	TRANSISTOR NPN SI DARL PD $=50$ amW	04713	MPS－A14
A1A1Q2	1854－0472	2		TRANGISTOR NPN SI DARL PD 5000 MW	04713	MPS－A14
A1A103	1054．0472	2		TRANSISTUR NPN SI DARL PD $=503 \mathrm{MW}$	94713	MPS A14
A1A1Q4 A1A125	$1854-0472$ 1854	2		TRANSISTOR NPN SI DARL PD $=500 \mathrm{MW}$	04713	MPS－A14
AIA1RS	18540472	2		TRANSTSTOR NPN ST DARL PD $=503 \mathrm{KL}$	04713	MPS－A14
A1A1XDS A1A1XDS	1200－0834	5	5	SOCKET－IS 10 －CONT DIP DIP－SIDR	28480	1260－0834
A1A1XDS2	1200－9834	5 5		GOCKET－TC 10－CONT DIP DIP SLDR SOCKET－IC $10-\mathrm{CONT}$ DIP DIP－SLDR	28483	1200－0834
A1A1XDS3	1200－0834	5		SUCKET－IC SOCKRT－TC 10－CONT 10－CONT	28480 28480	$1206-0834$ $1200-0834$
A1A1XDS5	1200－0834	5		SOCKET－IC 10－CONT DIP DIP ST．DR	23480	12060834
A1AE	30557－60078	4	1	DPM DRIVER ASSEMEI．Y	28480	08559－60378
$\mathrm{Al}_{1} \mathrm{C}_{2} \mathrm{C}_{1}$	0160－3751	4	？	CAPACITOR－FXD $2200 P \mathrm{C}$＋ 5% SOUDC CER	28480	016.0 .3751
A1A2CL	3160－3751	4		CAPACITOR FXD 220 BPF $\because 5 \%$ SJUDC EER	28483	3160－3751
A1 A2C3	0160－3661	5	1		29480	0140－3661
AlA2C4	9140－0200	－	1	CAPAECITGR－FXD 390PF＋ $5 z$ 300UDC MICA	7213／3	DW15\％ 391 J 0300 UV 1 CR
A1A2C5	0160－2220	0	1	CAPACITOR－FXD 1200PF＋－5\％300UDC MICA	28480	0160－2220
A1A2C． 6	01600177	8	？		56289	$150 \mathrm{D} 255 \times 9020 \mathrm{~A}$
A 1 A2C］	0180－1746	5	$?$	CAPACITOR FXI 15： $15 \% 10 \%$ 2CUDC TA	58.2889	15015 $56 \times 9020 \mathrm{mF}$
A1AECB	3189－1746	5		CAPACITIR－FXD 15UF＋ 13% 20VDC TA	56.287	1500156×902052
A1 ARC9	0180－0291	3	2	CAPACITOR FXD 1UF＋ 10% 35VDC TA	56,089	150105×90354.5
A1AこC10	3180－0291	3		CAPACITIR－\times XD 1UF． 13% BENDC TA	56.289	1500105×9035.42
A1 ARC11	c180－0197	8		CAPACITOR－FXD $2.205+10 \%$ 2CUDC TA	5：2899	150n225x9020at
A1ACC12	3180－3116	1	1	CAPACI1GR F XD 6．f．UF， 10% 3EVEC TA	56289	1530685×90352a
A1 A2C13	0160－4014	8	1	CAPACTIOR EXD 1uF＋20\％SaUDC CER	23480	01604084
A1A CC14	3160－3432？	2	1	CAPACITIR－FXD 1UT， 1 S\％SOULE，MET－PE1 YC	28480	0163－3402
A1 ALC 15	0100－2144	9	1	CAPACITOR－FXO 20CUF $+75-10 \%$ 2SUDC AL	$5 \% 289$	36D2676025m4
A1AECR1	17310350	3	3	dreor EwITCHING nau zoama zew do 35	28480	19010050
A1 A2CR？	1201－0050	3		DIODF SWITCHING BOU 2G6MA 2NS DO－35	251480	1901－0050
AlaÉCR3	17910250	3			58483	1701－0050
A1A ${ }^{3} \mathrm{JI}_{1}$	1251－4797	4	1	CUNNECTOR 10 PIN M POST TYCE	2R480	1251－4797
A1ARL 1	an5s\％nanta	6	1	INDUCTIR，10ROID	28480	0855980310
A1ARL？	9140．0129	1	？		Pa480	71400129
A1AOL 3	$7140-3137$ $9140-0120$	1	1	INDUCTIGR 2 F CH－HID 1 MH ，$\%$ ， $2 \mathrm{DX}, 451 \mathrm{G} \quad \mathrm{G}=63$	28483	7140－0137
A）ARL 4	9140－6129	1			20480	91408129
A ACRO1	15553 －0920	4	11		58483	11553－0320
Al Azqe	1853－6020	4		TRANSTSTOR PNP ST PD 306 CLH FT $=150 \mathrm{E}: 2$	2ת480	19×300080
A1AC03	195380300	4		TRANEISTIRR PNP ：I PD＝3aJMW TI－153m17	214880	48533 －0320
A1 A2Q4	1953－0620	4			274888	13：5－0026
A1AEQS	16：53 0：323	4		IRANETGTHR PNP SI PO 303n4 ：T－153k：1\％	28480	14536－0320
Alazab	18530020	，			22180	10：3 00：0
A1ACG7	165530970	4			－10480	1553 －0ate
A1 A2Q8	135s－6420	2	1	TRAN：TETR J TTI $2 N 4891$ N－CHAN D MODF	81295	2N4391
A1ACOP A1 A 20010	1054 115 115 040804	${ }_{3}^{3}$	1		20483	185．4－9404
A1ARQ10	11554－6071	7	1	IWANSTSTOR NPN SI PDU300mW IT T $=20 \mathrm{MmHz}$	29480	10540071
MACR211 A1 ACD12		4			C84n3	105．3－0020
A1ARQ12	1453－0020	4		TRAN：IESTRP PNI SI PD－368KW FT－150MH／	2ヵヶ8\％	108．5－8020
A1ACD13	145380008	4			28480	11553－3930
AIARQ14	1053－00：0	4		TRAN：TETO：PNP St PD－3E0MW FT＝15，0m：\％	P＋：¢8\％	1035 0020
AIAER1x	375\％24：n	1	1		： 25.546	
A1 A2R2	1757－1．7\％	－	2		24：96	
AIAERA		a			29：46	C4 1／3－70－3161 F
A1 A2R 4	8\％．98－10604	9	5		24：46	C． $1 / 8$－Th 215：F
AIA：RL	16\％\％：3014	？			$5 \cdot 4516$	［4 1／8－19－2151 T
AIA 2 R6	8698－8084	9			24：46	［A 1／8 18 31：，
A：A：R7\％	1650 338，	9			24：46，	CA 1／0．T3 31515
A：A2R8	1，698－01．84	9			2¢， 46	
A1A $A^{2} 9$		$\stackrel{1}{4}$	\％		2 $2: 414$	$c=1 / 3 \cdot 13 \cdot 619: * 1$
A：ARR10	66．78－3447	4	7		24：76	
	36.888487	4			25：46．	
A1 ARR12	C69\％1－3447	4			24，46	
A1ACR13	378．7 3416	7	$?$		2\％96－	C4 $41 / 8.13$ 511：2
A ：A2R 14	c6．69－3447	4			24， 26	F4 1／8－12．42er r
AlAF＇R1：．	6558－3447	4			212， 46	14 1：9717 428R 1

TABLE81. DIGITALPANEL METER ASSEMBLYAI, REPLACEABLEPARTS(2 OF 2)

Reference Designation	HP Part Number	$\left.\begin{aligned} & c \\ & 0 \end{aligned} \right\rvert\,$	Qty	Description	Mfr Code	Mfr Part Number
A1ARR16	0693-3447	4			24546	C4-1/8-T0-4228-F
A1A $12 R 17$ $A 1 A=R 18$	0698-3447 $3757-0469$	${ }_{1}^{4}$			24546 24546	C4. 1/E-TE-422R-F C4 $1 / 8-\mathrm{T} 0-6192 \mathrm{~F}$
A1ARR19	0, $0757-0460$	1			24546	C4-1/8-T0-6192 F
Alacrea	0757-0460	1		RESISTGR 61.9K 1 K . 125 FW F TC=3+-139	${ }_{24546}$	C.4-1/8-T3-6192-F
Alazrzi	6757-6460	$\frac{1}{1}$			24546 24546	
A1ARR23	3757-3179	c			24546	C4-1/8-70-2152-r
	6757-0442 $0311-3640$	5	3		24546 28489	C4-1/8-70-1802-F $3811-0640$
A1 A2R25	0811-0696	1	1		20480	0811-0696
A1azrzen	9757-9274	-	1		24546	CA 1/8-T0-1211-F
A1A2R27	0811-0640	5		RESISTOR $100 \mathrm{~K}, 01 \mathrm{Z}, 125 \mathrm{~N}$ PWU TC=C+-16	28480	0811.064 C B2PR13K
A1AER28	2130-1738	\%	1		73138 73138 758	${ }_{8}^{\text {B2PRR13k }}$
	$2100-2655$ $0670-3155$	1 1	1		73138 24546	$82 P \mathrm{R} 100 \mathrm{~K}$ $\mathrm{C} 41 / \mathrm{B}-\mathrm{T} 0-4641-\mathrm{F}$
A1 A2R 31	0757-0460	1		RESTETOR $61.9 \mathrm{~K} \quad 1 \% .125 \mathrm{~N} \mathrm{~F}$ TC $=0+-100$	245.46	C.4-1/8-TC-6192-F
A1ARR32	0690-3162	-	1	2ESISTOR 46.4 K 1\% , 12SU F TC $=0+-133$	24546	C4-1/8-73-4642.F
A1 ARR33	0811-0640	5		RESISTOR $100 \mathrm{CK}, 01 \%$, 12 SW PUW TC=0+-10	${ }_{2}^{23480}$	C811.0646
A1ARR34	0757-0442	S			24546	C4. 1/8-70-1032-F
A1 ARR35	6698-3442	9	1	RESISTOR 2371%.125w F TC=6+-160	24546	C.4-1/8-T6-237R-F
A1A 22336.	3757-0416	\%		RESTSTCR $511{ }^{1 \%}$, 125L F TC=30-133	24546	C4-1/8-T0-511R-F
	c757-0438	${ }_{4}^{3}$	1		24546 78483	
A1Acr3e: A1 ARR39	0311-1385 $0698-3136$	${ }_{8}$	1	RESISTOR $17.8 \mathrm{BK} 1 \mathrm{1z}$.1254 F TC=04-106	24546	C4-1/8-T0-1782-F
A1ARTP1	0360-1788	$\overline{7}$	1	CONNECTLR SCA toint pin oas in hac sis So	28480	3360-1788
${ }_{\text {Al }}{ }^{\text {a }}$ A2U1	1810-0398	9	,	NETUNZK-RES 16-SIP22. OK OHM $\times 9$	11236 17556	750 101-R22k
A1A2UL A1A2U3	$1026-0588$ $1826-0587$	2 1 1	1	IC CONV 16 DlP-? PKG IC CONV 18-DIP-P PKG	17856 17856	LD123CJ L.E121CJ
A1A2IJ4	1020-2716	a		IC DRUR CMMS DSPL DRUR	34713	MC14513ECL
A1 A2US	1810-0347	a		NETWORK-RES 8-SJP2.2k OHM $\times 4$	01121	2086252
A1A2U6	1810-0347			NETWORK-RES B STP⿳. 2 K OHM $\times 4$	31121 28480	2088232
A1 A2U7 A1ACUB	$1826-1059$ $1826-0367$	$\stackrel{3}{5}$	1		28480 04713	18261059 r.C7BM05C6
Alazur 1	1902-3024		1	DIODE-ZNP 2.87U 5 C DO-7 PD=.4W $\mathrm{TC}=-67 \%$	23480	1902-3024
A1ARUR2	1732-3149		1	DTODE-ZNR 9.37U $5 \times$ D0-35 PD $=.44$	28480	1932-3149
A1 ARUR3 A1ARUR4	$1902-0625$ $1902-1286$	a	1		04713 04713	${ }_{1}^{1} 1 \mathrm{Naz3}{ }_{1}$
A1A2UR4	1902-1286	${ }^{1}$	1	DIDOE ZNR 1NEBACH 6 BU 52 PD		
A1AEXA1	1251-3403	7	1	CONNFCTOR PC EDCC 10 -CONT/ROW 2 ROM: al miscellanecus parts	28488	1251-3403
	$\begin{aligned} & 0570-0130 \\ & 1205-0095 \\ & 2420-0014 \\ & 08559-00042 \\ & 2360-0113 \\ & 3050-0010 \end{aligned}$	6 6 0 6 6 2	1 1 1	SCREW-MACH 637 , 375 IN LC EDC HD-GI I hFAT SINK NUT-HEX-DHI -CHAM 6-37 THD . 125 IN TH: INSUL.ATDR SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI WASHER-FL. MTLC NO. 6 . 147 -IN-TD	28480 30161 28480 28480 28480 28480	$0570-0130$ 32:5B 2420-0014 08559 - 00342 2360-0113 3050-0010

A1A2 DPM DRIVER ASSEMBLY

FIGURE8.5. DIGITALPANELMETER ASSEMBLY AI, COMPONENT LOCATIONS

Bes.ek

FRONT SWITCH ASSEMBLY A2, CIRCU!T DESCRIPTION

Functions of the switches and potentiometers on the Front Switch Assembly A2 are covered in the circuit descriptions for the electronic assemblies they control.

FRONT SWITCH ASSEMBLY A2 DISASSEMBLY AND REPAIR

REMOVAL OF FRONT SWITCH ASSEMBLY FROM HP 8559A CHASSIS

1. Turn HP 8559A upside down on a flat work surface.

NOTE

Numbers in parentheses match the numerical callouts on Figure 8-10 Front Switch Assembly (exploded view). All illustrations referenced in these procedures follow the last procedural step.
2. Use a $9 / 16$-inch nut driver (drilled out, if necessary, to fit over front panel BNC connectors, and covered with heatshrink tubing or tape to avoid scratching enameled front panel) to remove dress nut holding CAL OUTPUT connector to front panel.
3. Remove bottom guide rail. Use a $5 / 16$-inch open-end wrench to carefully disconnect semi-rigid Cable W2 from Input Attenuator Assembly A3 to First Mixer Assembly A4.
4. Disconnect two 40-conductor Ribbon Cables, A2A1W1 (46) and A2A1W2 (47) from Motherboard Assembly A16.
5. Turn HP 8559A right-side up, with front panel facing you.
6. Remove screw holding cable clamp to Second Converter Filter Assembly A5A2. Remove screw located below cable clamp that was removed.
7. Remove the four screws attaching Front Switch Diecast (1) to left and right side gussets. Remove Front Switch Assembly A2, with Front Panel and RF Input Attenuator Assembly A3, from H P 8559A chassis and set chassis to one side.

DISASSEMBLY OF FRONT SWITCH ASSEMBLY

8. Remove the following front panel knobs: FINE TUNE, COARSE TUNE, RESOLUTION BW, FREQ SPAN/DIV, REF LEVEL FINE, and REFERENCE LEVEL (including Index Disc, Retaining Cup, Nylon Spacer Washer(s), Conical Spring, and Input Attenuator pointer).
9. Remove SWEEP TRIGGER, MANUAL SWEEP, and SWEEP TIME/DIV knobs using a no. 4 hex wrench.
10. Use a no. 4 hex wrench to loosen the two set screws in Lock Knob. Remove Lock Knob.
11. Remove VIDEO FILTER and BASELINE CLIPPER knobs using a no. 2 spline (Bristol) wrench.
12. Remove retaining ring on coarse tune shaft. Remove the three flat washers and two wavy washers. Remove front panel hex nut and lockwasher on Coarse Tune Bushing (36) using a $1 / 2$-inch nut driver (covered with heatshrink tubing or tape to avoid scratching enameled front panel).
13. Loosen hex nut attaching RF Input Cable Assembly W1 to Front Switch Assembly A2 using a 5/8-inch open-end wrench. Carefully disconnect input cable assembly from RF Input Attenuator Assembly A3 using a 5/16-inch open-end wrench. Remove input cable assembly from Front Switch Assembly A2.
14. Disconnect 10-conductor ribbon cable connected to DPM Driver Assembly A1A2. Remove screw holding DPM Display Assembly A1A1 to diecast. DPM window will fall out.
15. Use a $5 / 16$-inch nut driver to remove the two nuts attaching front panel to Front Switch Diecast (1). Remove front panel from Front Switch Diecast.
16. Place Front Switch Assembly A2 on flat working surface with remaining knobs face-down and lock mechanism facing you. Prop sides of switch assembly to allow knobs and shafts to clear working surface (be careful not to scratch front panel enamel).
17. Remove screw and washer attaching Attenuator Bracket (49) to Front Switch Diecast (1). Remove RF Input Attenuator Assembly A3 from Front Switch Assembly A2.
18. Disassembly of REFERENCE LEVEL Switch:
a. Cut tiewrap holding REF LEVEL FINE wires to rear switch board.
b. Remove the three screws (48) attaching Ref Level Fine Pot Plate (68) to Standoffs (62).
c. Remove Index Disc Locator and Ref Level Fine assembly (30, 31, and 64 through 69) from Front Switch Assembly A2 (set to one side, without detaching wires).
d. Remove three standoffs (62) used to support Ref Level Fine Pot Plate (68). Use a no. 6 hex wrench to loosen the two set screws on Miter Gear (51) attached to Attenuator Shaft Assembly (18); then remove Miter Gear from shaft.
e. Use a no. 4 hex wrench to loosen Rotating Lockout (63) attached to Ref Level Shaft (6), and remove lockout from shaft. Remove Ref Level Detent (61) from Front Switch Assembly A2. Be careful to keep Ball Bearing (10) and Spring (11) with Ref Level Rotor (60).
f. Remove the three Studs (53) used to support Ref Level Detent (61).
g. Use a no. 4 hex wrench to loosen the two set screws on front Anticrush Drive Hub Assembly (7) (between Front Switch Board A2A1 and Front Switch Diecast (1) on Ref Level Shaft (6); accessible from side of Front Switch Assembly). Remove Ref Level Rotor (60) and Ref Level Shaft (6) with rear Anticrush Drive Hub Assembly (7) still attached.

NOTE

Rear Anticrush Drive Hub Assembly (7) on Ref Level Shaft (6) is preset at 9.525 mm (0.3 in .) from end of shaft (see Figure 8.7A). Do not remove drive hub unless necessary for repair.
19. Disassembly of RESOLUTION BW Switch.
a. Remove Retaining Clip (21) from RESOLUTION BW Shaft (55).
b. Use a $1 / 4$-inch Nut Driver to remove two Hex Nuts (20) attaching Bandwith Switch Board (59) to Front Switch Assembly, and set board to one side (without detaching wires).
c. Remove Bandwidth Rotor (56). Be careful to keep Ball Bearings (10) and Springs (23) with rotor.
d. Remove Bandwidth Shaft (55), with rear Drive Hub (15) still attached, from Front Switch Assembly.

NOTE

Rear Drive Hub (15) on Bandwidth Shaft (55) is preset flush with collar on shaft (see Figure 8-7B). Do not remove drive hub unless necessary for repair.
e. Use a no. 4 hex wrench to loosen the two screws on Coupling Hub (54) attached to Frequency Span Shaft (9), and remove hub from shaft.
f. Remove the two Studs (53) used to support Bandwidth Switch Board (59). Remove Bandwidth Detent (52) from Front Switch Assembly.
20. Remove the remaining Screws (48) attaching Front Switch Board Assembly A2A1 to Front Switch Diecast (1).
21. Twist the left side of Front Switch Board Assembly A2A1 down approximately $1 / 8$-inch to provide clearance from Front Switch Diecast support arm (upper left corner). Lift Front Switch Board Assembly A2A1 from Front Switch Diecast (1) and set aside.
22. Removal of Rotor Assemblies:
a. Remove Attenuator Drive Rotor (8), front Anticrush Drive Hub Assembly (7), and Attenuator Shaft Assembly (18) from Front Switch Diecast (1), and set these parts aside.
b. Remove Frequency Span Rotor (14) with associated parts (9-12, 15-17) from Front Switch Diecast (1), and set aside. Be careful to keep Ball Bearings (10) and Springs (11) with Frequency Span Rotor (14).

NOTE

Drive Hub (15) on Frequency Span Shaft (9) is preset at 12.954 mm (0.510 in .) from end of shaft (see Figure 8-7C). Do not remove drive hub from shaft unless necessary for repair.
c. Remove both remaining rotor assemblies from Front Switch Diecast (1), and set aside. Be careful to keep Ball Bearings (10) and Springs (11) with their respective rotors.
23. Disassembly of Lock:
a. Press Locking Link (5) into Front Switch Diecast (1) to release pressure on Dowel Pin (4). Remove Dowel Pin through cutout in Front Switch Diecast. (Individual parts are identified in Figure 8-9.)
b. Remove Locking Link (5), Locking Shaft (3), and Lock Spring (2) from Front Switch Diecast.

CLEANING AND INSPECTION OF FRONT SWITCH ASSEMBLY

1. All switch contacts must be totally clean and grease-free for proper operation. Use a $50-50$ mixture of isopropyl alcohol and distilled water to thoroughly clean switch rotor contacts and Front Switch Board Assembly A2A1. Avoid touching contacts with fingers.
2. Inspect for bent or damaged shafts, worn or broken contacts, weak or broken springs, rough feeling potentiometers, cracked castings, and damaged PC boards. Check for signs of corrosion or rust. Replace any suspect parts.
3. A special Instrument Grease (HP Part Number 6040-0584) is recommended exclusively for use during switch reassembly. Lubrication is essential for proper operation of switches and lock. A small brush is recommended for applying the Instrument Grease.

Abstract

CAUTION Misapplied grease might cause intermittent switch connections. Utmost care must be taken during reassembly to avoid excessive application of grease and contamination of switch contacts. Avoid getting grease on fingers.

ASSEMBLY OF FRONT SWITCH ASSEMBLY

1. Assembly of Lock:
a. Lightly grease Locking Shaft (3) and insert into Front Switch Diecast (1). Lightly grease bearing surfaces of Locking Link (5).
b. Insert Lock Spring (2) into Front Switch Diecast (1). Press Locking Link (5) fully into Front Switch Diecast and insert Dowel Pin (4) through access cutout (left side of lock boss) to hold lock mechanism in place. Check for correct lock operation.
2. Installation of Rotor Assemblies:
a. Lightly grease all switch rotor detent holes on back of Front Switch Diecast (1).
b. Place Front Switch Assembly on flat working surface with front panel face-down and lock mechanism facing you. Prop sides of switch assembly to provide clearance for knobs and shafts during assembly (be careful not to scratch front panel enamel).
c. Inspect SWEEP TRIGGER rotor assembly (10-12, 24-27). Stop Arm (26) and Horseshoe Spring (27) are held in position by Push-on Retainer (25) and should move smoothly without binding (see Figure 8-8A). Roll Pins (12) should be positioned in hole 7 and hole 18 on SWEEP TRIGGER Rotor (24). Check that Spring (11) and Ball Bearing (10) are in position.
d. Lightly grease long side of SWEEP TRIGGER Shaft (24) and insert SWEEP TRIGGER rotor assembly into left-most bushing in Front Switch Diecast (1). Position rotor so that Ball Bearing (10) aligns with stop boss on left side of Front Switch Diecast.
e. Inspect SWEEP TIME/DIV rotor assembly (10, 11, 21, 22, 24), Figure 8-8B. MANUAL SWEEP Shaft (22) should be lightly greased and should turn freely inside SWEEP TIME/DIV Shaft (24). Check that Spring (11) and Ball Bearing (10) are in position. Note that there are no roll pins inserted in the SWEEP TIME/DIV Rotor (24).
f. Lightly grease long side of SWEEP TIME/DIV Shaft (24) and insert SWEEP TIME/DIV rotor assembly into next bushing in Front Switch Diecast (1).
g. Inspect FREQ SPAN/DIV rotor assembly (9-12, 14-17). If Drive Hub (15) has been loosened or removed from Frequency Span Shaft (9), refer to Figure 8-8C for correct dimensions for adjustment. Roll Pins (12) should be positioned in hole 15 and hole 17 on Frequency Span Rotor (14), as shown in Figure 8-8C. Slotted Bushing (16), Hairpin Spring (17), and Frequency Span Shaft must be lightly greased where they contact each other for proper operation of push-pull mechanism. Check that Springs (11), Ball Bearings (10), Slotted Bushing, and Hairpin Spring are in correct position.
h. Lightly grease long side of Frequency Span Shaft (9) and insert FREQ SPAN/DIV rotor assembly (9-12, 14-17) into next bushing in Front Switch Diecast (1). Position FREQ SPAN/DIV rotor assembly so that stop boss on Front Switch Diecast does not fall within small span between Roll Pins (12).
i. Inspect Attenuator Drive Rotor (8). Roll Pins (12) should be positioned in hole 1 and hole 9, as shown in Figure 8-8D.
j. Inspect front Anticrush Drive Hub Assembly (7). Note that pin is offset to one side of drive hub; place drive hub over right-most bushing in Front Switch Diecast (1) with this side down (i.e., pin as close as possible to Front Switch Diecast) for proper switch operation.

NOTE

Correct side of front Anticrush Drive Hub (7) must be oriented towards Front Switch Diecast (1) for proper operation of Front Switch Assembly.

k. Set Attenuator Drive Rotor (8) over Anticrush Drive Hub (7) with Attenuator Drive Rotor gear facing up. Long pin on Attenuator Drive Rotor should protrude through curved slot in diecast.

1. Lightly grease gear end of Attenuator Shaft Assembly (18) and insert into Front Switch Diecast (1). Place metal Washer (19) on shaft.
m . Clean contact fingers on all rotors using lint-free cloth and isopropyl alcohol/distilled water mixture. All rotors should be in proper position.
2. Installation of Front Switch Board Assembly A2A1:
a. Inspect Front Switch Board Assembly. Check switch traces for dirt, grease, or wear. Check interconnect wires, solder joints, pushbutton switches, and ribbon cables $(46,47)$.
b. Clean switch traces using lint-free cloth and isopropyl alcohol/distilled water mixture. No residue should be visible on traces.
c. Use a $3 / 8$-inch open-end wrench to tighten Hex Nut (31) and Lockwasher (30) attaching VIDEO FILTER Potentiometer (33) and metal Washer (32) to Front Switch Board Assembly.
d. Use a $1 / 2$-inch open-end wrench to tighten inner Hex Nut (28) and Washer (29) attaching Dual Tune Pot assembly (21, 28, 29, 34 - 42, 44) to Front Switch Board Assembly. Note that Roll Pin (12) aligns with hole in switch board to locate Dual Pot Bracket (39); Washer (29) between bracket and switch board is critical to proper switch operation.
e. Check Dual Tune Pot assembly for smooth operation and proper gear meshing; disassemble and lightly grease shafts if necessary. Install second Hex Nut (28) mid-way onto Coarse Tune Shaft Bushing (36).
f. Set Front Switch Board Assembly into place on partially-assembledFront Switch Assembly and use a Stud (53) on right-most side of switch assembly to loosely fasten switch board to Front Switch Diecast (1).
g. With one Stud (53) in place but not tight, twist left side of Front Switch Board Assembly up approximately $1 / 8$-inch to fasten switch board under Front Switch Diecast support arm (upper left corner) and align switch shafts.
h. Loosely install the remaining Screws (48) used to fasten Front Switch Board Assembly to Front Switch Diecast (1).

CAUTION
Do not overtighten screws and studs into Front Switch Diecast(1).
i. Use a no. 4 hex wrench to temporarily install SWEEP TRIGGER, SWEEP TIME/DIV, MANUAL SWEEP, and FREQ SPAN/DIV knobs.
j. Tighten Stud (53) and left-most Screw (48) attaching Front Switch Board Assembly to Front Switch Diecast (1). Check all switch rotors for smooth, free switch action. Readjust position of Front Switch Board Assembly as necessary for proper switch action.
k. Tighten the two remaining Screws (48) attaching Front Switch Board Assembly to Front Switch Diecast (1).

1. Recheck all switch rotors for smooth, free switch action and readjust Front Switch Assembly as necessary.
2. Assembly of RESOLUTION BW switch:
a. Place Coupler Hub (54) on Frequency Span Shaft (9) with pin facing up (away from Front Switch Assembly). Do not tighten Coupler Hub at this time.
b. Center Bandwidth Detent (52) over Coupler Hub (54) with stop tab towards top of Front Switch Assembly, and fasten to Front Switch Assembly using two Studs (53).
c. If Drive Hub (15) has been removed or loosened from Bandwidth Shaft (55), refer to Figure 8-7B for proper adjustment. Lightly grease narrow end of Bandwidth Shaft (55) and detent holes on Bandwidth Detent (52). Insert Bandwidth Shaft (55) through Frequency Span Shaft (9).
d. Inspect RESOLUTION BW Rotor (56). Roll Pins (12) should be positioned in hole 16 and hole 17 as shown in Figure 8-8E. Check that Springs (23) and Ball Bearings (10) are in position.
e. Place RESOLUTION BW Rotor (56) onto Bandwidth Shaft (55). Position RESOLUTION BW Rotor assembly so that stop tab does not fall within small span between Roll Pins (12).
f. Clean contact fingers on RESOLUTION BW Rotor and switch traces on Bandwidth Switch Board (59) using lint-free cloth and isopropyl alcohol/distilled water mixture.
g. Use a $1 / 4$-inch nut driver to fasten Bandwidth Switch Board (59) to Front Switch Assembly with two Hex Nuts (20). End of Bandwidth Shaft (55) must not bind against hole in board. Align MANUAL SWEEP Shaft (22) with MANUAL SWEEP Potentiometer (58) by turning MANUAL SWEEP knob clockwise until shaft engages with MANUAL SWEEP Potentiometer.

NOTE

Depth of MANUAL SWEEP Shaft (22) can be adjusted if necessary by carefully tapping SWEEP TIMEJDIV Shaft (24) farther into the white plastic rotor.

h. Turn Front Switch Assembly over and remove FREQ SPAN/DIV knob using a no. 4 hex wrench.
i. Install Retainer Clip (21) on Bandwidth Shaft (55).
j. Use a no. 6 hex wrench and a no. 4 hex wrench to temporarily install FREQ SPAN/DIV and RESOLUTION BW knobs.
k. Pull and turn FREQ SPAN/DIV Knob until a set screw is visible on Coupling Hub (54). Push FREQ SPAN/DIV knob in and out to align pin on Coupling Hub with slots in Bandwidth Rotor (56). With FREQ SPAN/DIV knob pushed in and Coupling Hub flush again Bandwidth Rotor (pin aligned), tighten set screw using a no. 4 hex wrench. Turn FREQ SPAN/DIV knob until second set screw is visible, and tighten second set screw.

1. Push FREQ SPAN/DIV knob in and out while observing Bandwidth Rotor (56). Bandwidth Rotor will not move if Coupling Hub (54) is properly aligned. Readjust Coupling Hub as necessary for proper operation.
2. Assembly of REFERENCE LEVEL Switch:
a. Install remaining two Studs (53) on Front Switch Assembly. Check that all screws and studs have been tightened.
b. If rear Anticrush Drive Hub Assembly (7) has been loosened or removed from Ref Level Shaft (6), refer to Figure 8-7A for correct dimensions for adjustment.
c. Inspect Ref Level Rotor (60). Roll Pins (12) should be positioned in hole 1 and hole 9, as shown in Figure 8-8F. Check that Spring (11) and Ball Bearing (10) are in position. Insert Ref Level Shaft (6) through Ref Level Rotor so that rear Anticrush Drive Hub (7) seats properly into rotor.
d. Lightly grease long end of Ref Level Shaft (6) and insert through Front Switch Board Assembly A2A1, Attenuator Drive Rotor (8), front Anticrush Drive Hub (7), and bushing in Front Switch Diecast (1).
e. Lightly grease detent holes on flat side of Ref Level Detent (61). Mount detent on three Studs (53) and fasten tightly with three Standoffs (62).

CAUTION
 Hollow Ref Level Shaft (6) might be damaged if set screws in Rotating Lockout (63) are tightened excessively.

f. Place Rotating Lockout (63) on Ref Level Shaft (6) with teeth flat against Ref Level Detent (61). Lockout teeth should be aligned to miss pin on Ref Level Detent when Ref Level Shaft is pushed in (switch in any detent position). With Ref Level Shaft fully extended from front panel, use a no. 4 hex wrench to tighten Rotating Lockout.
g. Push Ref Level Shaft (6) in and out and check for smooth mechanical feel and proper Rotating Lockout (63) alignment. Rotating Lockout should not bind against Ref Level Detent (61) and should allow Ref Level Shaft to turn smoothly between detent positions. Adjust Rotating Lockout as necessary for proper operation.
h. Use a no. 4 hex wrench to lightly tighten one set screw in front Anticrush Drive Hub (7) visible between Attenuator Drive Rotor (8) and Front Switch Diecast (1).
i. Turn Attenuator Drive Rotor (8) so that long pin (for input Attenuator pointer) is at bottom of Front Switch Diecast (1). Hold Attenuator Drive Rotor in position and push in on Ref Level Shaft (6) to align front Anticrush Drive Hub (7).
j. Push Ref Level Shaft (6) in and out while observing Ref Level Rotor (60) and Attenuator Drive Rotor (8). Rotors will not move when front Anticrush Drive Hub (7) is properly adjusted.
k. Use a no. 4 hex wrench to firmly tighten both set screws in front Anticrush Drive Hub (7). Recheck Ref Level Shaft (6) as in step j, and readjust front Anticrush Drive Hub as necessary.

1. Slip Miter Gear (51) over Attenuator Shaft Assembly (18). Do not tighten at this time.
m. Inspect Ref Level Fine Assembly (30, 31, 65-69). Ref Level Fine Shaft (65) should turn smoothly. Check Ref Level Fine Potentiometer (69) and connecting wires for good electrical connections. Lightly grease Ref Level Fine Shaft and hollow Index Disc Locator (64) shaft.
n. Install Index Disc Locator (64) on Front Switch Assembly. Hole in locator bar rides over left-most Standoff (62) used to support Ref Level Fine Pot Plate (68). Install Ref Level Fine Assembly (30, 31, 65 - 69) on Front Switch Assembly with three Screws (48). Connecting wires should be routed. Ref Level Fine Shaft (65) should turn smoothly without binding over its full rotation. Adjust position of Ref Level Fine Pot Plate as necessary.
o. Use a new tiewrap to attach Ref Level Fine connecting wires to Standoff (62).
2. Installation of RF Input Attenuator A3:
a. Mount RF Input Attenuator to Attenuator Bracket (49) using two Screws (48). Check all eight attenuator positions by hand for proper detent action and smooth operation. Leave attenuator in full counter-clockwise position.
b. Slide Miter Gear (51) to end of Attenuator Shaft Assembly (18) against Ref Level Fine Pot Plate (68). Set Attenuator Assembly in place on Front Switch Assembly, with notch in Attenuator Bracket (49) lightly greased and aligned with Attenuator Shaft Assembly. Use Washer (50) and Screw (45) to fasten Attenuator Bracket to lower left corner of Front Switch Diecast (1). (Do not tighten Miter Gear at this time.)
3. Installation of Front Panel:
a. Remove the front panel knobs.
b. Use a $5 / 16$-inch nut driver and two hex nuts to carefully install front panel (with pushbutton bezels and DPM window installed) on Front Switch Diecast (1).
c. Insert RF Input Cable Assembly W1 through front panel and loosely attach with hex nut. Carefully connect cable assembly to RF Input Attenuator using a $5 / 16$-inch open-end wrench. Tighten cable assembly to front panel using a $5 / 8$-inch open-end wrench.
d. Use a no. 4 hex (Allen) wrench to install lock Knob on Locking Shaft (3). Base of Lock Knob should clear front panel when Locking Shaft is pushed in.
e. Install front panel nut and washer on Coarse Tune Bushing and tighten with special $1 / 2$-inch nut driver.

NOTE

Front-panel control knobs and their attaching parts are identified in Figure 6.1. Numbers in parentheses match numerical callouts on Figure 8-10.
8. Installation of Knobs:
a. Turn SWEEP TRIGGER Shaft (24) fully clockwise (as seen from front of Front Switch Assembly) to spring-loaded SINGLE position and release. Use a no. 4 hex wrench to install SWEEP TRIGGER knob with SINGLE line aligned with painted arrow on front panel. Check for proper switch operation and alignment.
b. Turn SWEEP TIME/DIV Shaft (24) to align Ball Bearing (10) on SWEEP TIME/DIV Rotor with left-most edge of stop boss on Front Switch Diecast (1). This positions SWEEP TIME/DIV Rotor with Ball Bearing slightly right of 12 o'clock position (as seen from front of Front Panel Assembly). Use a no. 4 hex wrench to lightly tighten SWEEP TIME/DIV knob onto SWEEP TIME/DIV Shaft with approximately center of green AUTO position aligned with painted arrow on front panel. Turn SWEEP TIME/DIV knob to any calibrated sweep time position and align knob markings exactly with painted arrow on front panel. Tighten SWEEP TIME/DIV knob and check for proper switch operation and alignment.
c. Uncouple RESOLUTION BW Shaft (55) from FREQ SPAN/DIV Shaft (9) by pulling both shafts out. Turn each shaft fully clockwise. Use a no. 6 hex wrench to install FREQ SPAN/DIV knob with 100 MHz indicated, checking that the plastic indicator guide on back of knob does not completely bottom into hole in Front Switch Diecast (1). Use a no. 4 hex wrench to install RESOLUTION BW Knob with 3 MHz indicated. Check for proper operation and alignment of both switches. Push-pull action should be smooth and positive.
d. Set nylon shim washer(s) and Index Disc (see Figure 6-1) in place on REFERENCE LEVEL knob to check for proper shim width. Nylon washers should shim Index Disc slightly away from labelled ring on REFERENCE LEVEL knob to prevent rubbing against painted numbers. Add or remove shim washers as necessary to provide slight clearance.
e. Turn Attenuator Drive Rotor (8) fully counter-clockwise so that Input Attenuator Pointer guide pin (P/O 8) is at bottom of front panel. Turn Ref Level Shaft (6) fully clockwise. Place plastic Input Attenuator Pointer over guide pin (pointer should indicate 70 dB). Place large end of conical spring against Input Attenuator Pointer and slide REFERENCE LEVEL knob, nylon washer(s), and Index Disc (from step d) onto Ref Level Shaft, securing with retainer clip.
f. Use a no. 6 hex wrench to adjust Miter Gears (51) for alignment of Input Attenuator Pointer with 70 dB front panel label and proper gear mesh (Input Attenuator A3 still in full counter-clockwise position).
g. Turn REFERENCE LEVEL knob to indicate level of -30 dBm signal and tighten knob securely with a no. 6 hex wrench. Check for proper operation and alignment of REFERENCE LEVEL and INPUT ATTEN controls, and readjust knob, gears, and Rotating Lockout (70) as necessary. Reference Level should range from -10 dBm to -100 dBm with 0 dB INPUT ATTEN selected.
h. Turn REF LEVEL FINE Shaft (65) fully counter-clockwise and use a no. 4 hex wrench to install REF LEVEL FINE knob with 0 dB indicated. Check for proper operation and alignment and readjust knob as necessary.
i. Turn BASELINE CLIPPER Shaft and VIDEO FILTER Shaft (33) fully counter-clockwiseand use a no. 2 spline wrench to install BASELINE CLIPPER and VIDEO FILTER knobs in OFF position. Check for proper operation and alignment and readjust as necessary.
j. Install flat and wavy washers on coarse tune shaft as indicated in Figure 6-1. Compress these washers with retaining ring. A torque of about 1 in -oz should be required to turn coarse tune shaft.
k. Use a no. 4 hex wrench to install COARSE TUNE and FINE TUNE knobs. Base of COARSE TUNE knob should clear front panel. Check for proper operation of TUNING control.

INSTALLATION OF FRONT SWITCH ASSEMBLY INTO HP 8559A CHASSIS

9. Set Front Switch Assembly into place in chassis, being careful not to bend semi-rigid cables or pinch wires or ribbon cables. Attach Front Switch Diecast (1) to left and right side gussets with four screws.
10. Connect four wires $(0,916,918,923)$ to correspondingly-labelled pins in Front Switch Board A2A1.
11. Attach DPM Driver Assembly A1A2 to diecast with one Screw.
12. Connect 10 -conductor Ribbon Cable (46) to DPM Driver Assembly A1A2.
13. Connect the two 40-conductor Ribbon Cables A2A1W1 (46) and A2A1W2 (47) to Motherboard Assembly A16.
14. Use a 5/16-inch open-end wrench to carefully connect Semi-rigid Cable W2 from the Input Attenuator to the First Mixer.
15. Use special 9/16-inch nut driver to install CAL OUTPUT connector to front panel with one dress nut.
16. Slide HP 8559A into display mainframe, turn instrument ON, and verify proper operation of all controls.

FACTORY PRESET

SHAFT ASSEMBLIES

B
BANDWIDTH SHAFT

C
FREQUENCY SPAN SHAFT

NOTE
Arrows point toward rear of HP 8559A

FIGURE8.7. SHAFT ASSEMBLIES

A
SWEEP TRIGGER ROTOR

C
FREQ SPAN/DIV ROTOR

B SWEEP TIME/DIV ROTOR

D
ATTENUATOR DRIVE ROTOR

FIGURE \&-8. ROTOR ASSEMBLIES

FIGURE 8-9. MACHINED PARTS

TABLE 8-2. FRONT SWITCHBOARD ASSEMBLY A2A1, REPLACEABLE PARTS

Bes]e

Reference Designator	HP Part Number	${ }_{0}^{\text {c }}$	aty	Description	Mfr Code	Mfr．Par Number
	O8595．60065			FRovT sulct assmal	${ }^{268480}$	Oesso
		${ }_{1}^{4}$			coicce	cosis
		8		边		
		?				
		,			coize	
		：	${ }_{6}$		${ }_{7807}$	graotso
	${ }_{\text {L }}^{12880.0059}$	：	1		coick	（1ati．023
		${ }_{5}^{5}$	$\frac{1}{2}$			
${ }_{17}^{16}$	O8S5．2089	${ }_{2}^{2}$	1	Eushlis	$\substack { 28480 \\ \begin{subarray}{c}{28480{ 2 8 4 8 0 \\ \begin{subarray} { c } { 2 8 4 8 0 } } \end{subarray}_{\substack{\text { a }}}$	coicisise
${ }^{18}$		6	1			5022.
	coicle	${ }^{3}$	${ }_{5}$	Neter	$\underbrace{2080}_{\substack{28880 \\ 28880}}$	coin
ce ${ }_{24}^{23}$		\％	$\frac{1}{2}$		coick	${ }_{\substack{502 \\ \text { So．} \\ \text { S0．}}}$
				$\substack{\text { contact } \\ \text { REAMNER }}$		（0565．20108
$\underbrace{26}_{28}$	Ois	${ }_{5}^{8}$	1		${ }_{28880}$	
$\underset{\substack{29 \\ 30 \\ 31}}{ }$		${ }_{4}^{4}$	${ }_{2}^{4}$		$\substack{2988 \\ 2880}_{2}$	
	3050．0028	2	1	WNSTHER L L MTCL		
				Resiltor，VAR Sok 20\％SW		
	08558－201	${ }_{3}^{4}$	1	SHAET FINE TUEE		
		$\frac{1}{9}$		，		cisisi．296
80		${ }_{6}$	1		$\substack{28880 \\ 2880}_{\text {220 }}$	coill
${ }^{1}$	${ }^{2100.359}$		1		28880	${ }^{2100.3452}$
		8		SK 100 （cioarse t ine）		（e．3593
${ }_{44}^{43}$		${ }_{2}^{1}$			coick	${ }^{3050} 0$
${ }_{46}^{45}$		${ }_{6}^{4}$			${ }^{28880}$	22000
${ }^{47}$	08559．6000				2a80	08559.60
${ }_{49}^{48}$	（220．010，	${ }_{6}^{2}$	8			
	cois					Sois
${ }_{53}^{52}$		${ }_{3}$			A80	
		${ }_{5}$	1	Hubiciopling		cosis
52184）				Rotors Sincte contact	${ }^{28480}$	08558．00
	${ }^{2100.333}$	3		Resision trmp 10k 20\％CCC 1－TRN		
	（0859．2009	$\stackrel{9}{4}$		（tand	退	（osisi．azi
						（sile
${ }_{6}^{64}$		${ }_{8}$		边		
¢69		？		Sole		
	${ }_{\substack{\text { OS5S5．0022 } \\ 2100.0542}}$	－		（eate	$\substack{\text { che }} \substack{208880}_{2080}$	cossiol
70	O8559．00022			M LITREFLEVELINE）	（28880	${ }^{21200.0}$

A2A1W1
FANOUT RIBBON CABLE ASSEMBLY

A2A1W2

RIBBON CABLE ASSEMBLY

PIN ARRANGEMENT
SHOWN FOR A16.J2 IS AS
SHOWN FOR A16.J2 IS AS
SEEN FROM TOP
(COMPONENTSIDE) OF
MOTHERBOARD.

ASSEMBLY NUMBERS REFER TO SCHEMATICS WHERE DIAGRAM OF INDICATED SWITCH OR CONTROL IS LOCATED. DIAGRAMS OF ALL SWITCHES AND CONTROLS ARE ALSO LOCATED ON THE A2 FRONT PANEL SWITCH ASSEMBLY SCHEMATIC.

FIGURE8-13. CROSS-REFERENCEOF FRONT PANELSWITCHES AND CONTROLS TORELATED ASSEMBLIES

ERVICE	MODEL	
MNEMONIC	DESCRIPTION	
ALTIF	ALTERNATE IF (LOW = ALT IF $=2.9925 \mathrm{GHz}$)	
BL CLIP	baseline clipper voltage	
BW1		
BW2		
BW3	BANDWIDTH CONTROL LINES	
BW4		
BW5		
CTUNE	COARSE FREQUENCY TUNING VOLTAGE	
EXPAND	SELECTS EXPANDED DISPLAY FOR $1 \mathrm{~dB} / \mathrm{DIV}$ LOG MODE	
FINE TUNE	FINE FREQUENCY TUNING VOLTAGE	
FREQ ZERO	FREQUENCY ZERO ADJUST VOLTAGE	
FS1		
FS2		
FS3		
FS4	FREQUENCY SPAN CONTROL LINES.	
FS5	FS6 SELECTS YTO FM OR MAIN COIL INPUT (+15V=FM COIL).	
FS6	FS9 SELECTS FULL SPAN OR PER DIVISION ($+15 \mathrm{~V}=\mathrm{FULL}$ SPAN).	
FS7		
FS8		
FS9		
GAIN	VERTICAL GAIN VOLTAGE	
H2	LOW=SECOND HARMONIC BAND	
H3	LOW=THIRD HARMONIC BAND	
IFG1		
IFG2	CONTROL IF STEP GAIN AMPLIFIERS	
IFG3		
IFG4		
IFG5	CONTROL LOG/LINEAR AMPLIFIERS	
IFG6		
LINE TRIG	LINE TRIGGER SIGNAL	
LOG/LIN	SELECTS LOG OR LINEAR DISPLAY ($+15 \mathrm{~V}=$ L0G; -10V=LIN)	
MAN SCAN	MANUAL SCAN VOLTAGE	
NOISE MEASURE	SELECTS MAXIMUM VIDEO FILTERING	
PENLIFT	PENLIFT SIGNAL	
PM	SELECTS PLUS OR MINUS HARMONIC CONVERSION	
REF LEVEL CAL	REFERENCE LEVEL CALIBRATION VOLTAGE	
REF LEVEL CW	REFERENCE LEVEL FINE UPPER LIMIT VOLTAGE	
REF LEVEL WP	REFERENCE LEVEL FINE CONTROL WIPER VOLTAGE	
SIG ID	SIGNAL IDENTIFIER CONTROL (G ROUND $=0 \mathrm{~N}$)	
SINGLE	SINGLE SWEEP TRIGGER VOLTAGE	
ST1		
ST2		
ST3		
ST4	SCAN TIME CONTROL LINES. ST6 ENABLES FAST SCAN TIMES.	
ST5		
ST6		
ST7		
SYNC	SWEEP SYNC CONTROL (LINE OR VIDEO)	
TRIG	SWEEP TRIGgER (SINGLE OR FREE RUN)	
TUNE REF	FREQUENCY TUNING REFERENCE VOLTAGE	
VERT	VERTICAL VIDEO SIGNAL VOLTAGE	
VERT POSN	VERTICAL POSITION VOLTAGE	
VIDEO	VIDEO SIGNAL	
VIDEO FILTER	VIDEO FILTER LEVEL VOLTAGE	
VIDEO TRIG	VIDEO SWEEP TRIGGER VOLTAGE	

RF SECTION CIRCUIT DESCRIPTIONS

List of parts included in RF Section.

INPUT ATTENUATOR ASSEMBLY A3, CIRCUIT DESCRIPTION

The HP 8559A Input Attenuator Assembly A3 is a 50 ohm, precision, coaxial step attenuator. Attenuation in $10-\mathrm{dB}$ steps from 0 dB to 70 dB is accomplished by switching the signal path through one or more of three resistive pads in a predetermined sequence by the INPUT ATTEN control. The Input Attenuator Assembly A3 is not field serviceable.

FIRST MIXER ASSEMBLY A4, CIRCUIT DESCRIPTION

The First Mixer Assembly A4 is a sealed microcircuit (shown in Figure 8-19), that is not field serviceable and must be replaced with either a new or factory rebuilt unit. In the mixer assembly, the .01 to 21 GHz input signals are combined with the first LO signal (3.01 to 6.04 GHz) generated by the YIG-Tuned Oscillator Assembly A6. Fundamental mixing is used for the two lowest mixing bands, while harmonic mixing is used for the remaining four bands. Fundamental mixing produces the sum and difference frequencies of the input and the LO frequency. The fundamental mixing equation is:

$$
\text { Where: } \begin{aligned}
\mathrm{F}_{\mathrm{s}} & =\mathrm{F}_{\mathrm{lo}} \pm \mathrm{F},, . \\
\mathrm{F}_{\mathrm{s}} & =\text { signal frequency } \\
\mathrm{F}_{10} & =\text { local oscillator frequency } \\
\mathrm{F}_{\mathrm{if}} & =\text { intermediate frequency }
\end{aligned}
$$

Harmonic mixing alters the mixing equation as shown:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s}}=\mathrm{NF},, \pm \mathrm{F},, \\
\text { Where: } & \mathrm{N}=\text { the harmonic number }
\end{aligned}
$$

An alternate first IF is used to eliminate the problem of IF feedthrough (baseline lift) that occurs when a signal of the same frequency as the IF frequency $(3.0075 \mathrm{GHz})$ is present at the input. The second LO frequency is lowered by 15 MHz (from 2.6861 GHz to 2.6711 GHz) to establish the alternate first IF at 2.9929 GHz . The first LO is also shifted to keep the signal on screen. The shift equation is:

$$
\text { Frequency Shift }= \pm \frac{15 \mathrm{MHz}}{\mathrm{~N}}
$$

Where: $\mathrm{N}=$ the harmonic number
A $17-23 \mathrm{MHz}$ bandpass filter, in the Second Converter Assembly A5 housing, follows the first IF and is centered at 3 GHz . The wide bandpass accommodates signals in either the regular or alternate IF modes.

A schematic of the First Mixer Assembly A4 is shown in Figure 8-25. The output of the YTO is coupled into the signal path ahead of the internal mixer. Mixing diode bias is supplied from the Step Gain Assembly A12. A different bias current is used for each harmonic to minimize conversion loss and flatness problems. In addition to mixer bias, the First Mixer Assembly A4 requires a +14.5 V and -10 V to power and bias the transistor buffer amplifier at its output. Conversion loss of the mixer is about -12 dB .

FIRST MIXER ASSEMBLY A4, TROUBLESHOOTING

Typically, a bad first mixer results in at least a 15 to 20 dB loss in sensitivity (i.e., the amplitude of displayed signals is 15 to 20 dB low). There are, however, other factors that can affect spectrum analyzer sensitivity that should be checked. The measurement of power levels along the signal path can give a good indication of where the loss is occurring. The output of the Second Converter Assembly A5 offers a convenient point to isolate the RF front-end from the IF section. If the loss appears to be in the front-end, measure the power levels of the first and second local oscillator with a second spectrum analyzer. Next, measure the supply and bias voltages at the first mixer. To access the push-on connectors of the first mixer's bias and supply lines, it is helpful to remove the instrument's bottom guide-rail.

CAUTION

Abstract

The First Mixer Assembly A4 can be damaged by electro-static discharge. Tools and hands should be grounded before handling this assembly. It is also possible to damage the mixer diode with an ohmmeter. Damage may occur with as little as 3 V open-circuit-voltage between the ohmmeter probes. Therefore, dc testing of the assembly is not recommended. If it becomes necessary to remove the rigid coaxial cable connecting the first mixer output and the second mixer input, be careful not to damage the Low Pass Filter Assembly FL1 internal to the cable. The filter assembly is very sensitive to bending.

Set HP 8559A controls as follows:
FREQUENCY BAND GHz $01-3$
TUNING 035 GHz
FREQ SPAN/DIV 1 MHz
RESOLUTIONBW 1 MHz
INPUT ATTEN 10 dB
REFERENCELEVEL $-10 \mathrm{~dB}$
REFLEVELFINE
$1 \mathrm{~dB} / \mathrm{DIV}$
Amplitude Scale
AUTO SWEEP TIME/DIV FREE RUN
VIDEOFILTER OFF
BLCLIP OFF
SIGIDENT OFF
ALTIF OFF

NOTE

Before making the following adjustments, measure and note the first mixer bias voltage (A16TP1). This permits the instrument to be returned to calibration if the first mixer is good.

Adjust the V1 potentiometer (A12R72 on the Step Gain Amplifier Assembly A12) through its range and observe the changes in the displayed signal peak and the bias voltage. With a good mixer, two changes are observed: the displayed signal peaks at some point in the adjustment (usually with about -5 V or -6 V of bias voltage) and the bias voltage (A16TP1) ranges from -9 V to $+2 \pm 0.5 \mathrm{~V}$. If all of these characteristics are not present, the mixer is probably damaged.

SECOND CONVERTER ASSEMBLY A5, CIRCUIT DESCRIPTION

The IF from the First Mixer Assembly A4 is coupled into the Second Converter Assembly A5 bandpass filter through coupling loop L3. Three circular, slug-tuned cavity resonators, operating as an inductive transmission line, make up the bandpass filter. The filter forms a high-Q circuit centered at 3 GHz with a 23 MHz bandwidth that is required to accommodate the regular and alternate IFs. Coupling loops L4 and L5 provide coupling between the cavities. Loop coupling is also used to couple the 3 GHz IF signal to the second LO output at the mixer diode CR1.

The second LO contains varactor diodes that are controlled by a voltage from the Marker Assembly A8. The diodes shift the frequency of the second LO either 15 MHz (ALT IF) or $\pm 1 \mathrm{MHz}$ (SIG ID). The varactor control voltage is always between 1 V and 28 V and corresponds to the oscillator frequency; increasing the voltage increases the frequency.

Both the second LO and the 3 GHz IF signal are coupled into mixing diode CR1, generating a difference frequency of 321.4 MHz that is coupled through the matching filter (C3, L2, C4) to the Third Converter Assembly A10. The matching filter is a passive network designed to match the impedance of the second mixer to the 50 ohm impedance of the Third Converter Assembly A10. The match is optimized in both IF modes by adjusting L2 (2nd MIXER MATCH).

SECOND CONVERTER ASSEMBLY A5, TROUBLESHOOTING

Verify that the Second Converter Assembly A5 supply voltages are correct.
If the displayed signal amplitude varies between ALT IF and REG IF, perform and verify the bandpass and second LO frequency adjustments.

Second LO Frequency: A failure in the Second Converter Filter Assembly A5A2 can cause the Second Converter Oscillator A5A1 to oscillate at about 3 GHz . This symptom can occur when the delay circuit in the filter assembly does not delay the application of the +13 V bias voltage. To test the delay, observe the +13 V bias as the instrument is turned on. There should be a noticeable delay before the +13 V is applied to the line. The -10 V supply, on the other hand, should rise gradually. If the +13 V and the -10 V respond properly, check the varactor voltage, varactor diodes, and the cavity adjustment as the possible source of the second LO frequency error.

Second LO Fails to Oscillate: The Second Converter Oscillator Assembly A5A1 can intermittently fail to oscillate after turn-on. If this symptom occurs, replace the entire assembly. Before removing the defective circuit board, note the orientation of components, leads, and hardware; orientation is critical to proper operation. To prevent damage to the replacement circuit board, do not over-tighten the hex-head antenna screw during installation.

Second Converter Bandpass Shape: Low signal power from the First Mixer Assembly A4 can distort the second converter bandpass filter shape. Excessive ripple in the bandpass can be the result of a mismatch in the signal path preceding the Second Converter Assembly A5. An input attenuator setting of 0 dB can cause such a mismatch. The second converter mixer diode or Mixer Match adjustment can also affect the bandpass ripple.

Residual FM: Residual FM can originate from the Marker Assembly A8 Second LO Driver, which supplies the varactor bias voltage, or from within the second LO itself.

YIG-TUNED OSCILLATOR ASSEMBLY A6, CIRCUIT DESCRIPTION

The YIG-Tuned Oscillator Assembly A6 consists of three parts: a sealed magnet assembly that encloses the YIG sphere and oscillator; a bias board that uses discrete components to establishthe oscillator and amplifier bias, as well as protect the bias supply from noise and voltage overloads; and a mu-metal magnetic-shield can. Field service of the YIG-Tuned Oscillator Assembly A6 is limited to replacement with a new or factory rebuilt unit.

The YIG-Tuned Oscillator A6 is a transistor thin-film microcircuit. It uses a Yttrium-Iron-Garnet(YIG) sphere as the frequency determining structure. The YIG sphere is placed in the gap of an electromagnet to provide a magnetic tuning structure whose field (and thereby the oscillator's frequency) is linearly proportional to the drive current from the Frequency Control Assembly A7.

The Main coil is used for wide range sweeping and tuning with the coil current varying from approximately 69 mA to 138 mA . The FM coil performs these functions for narrow spans ($1 \mathrm{MHz} / \mathrm{div}$ and less) with its coil current varying from approximately -18 mA to +18 mA .

YIG-TUNED OSCILLATOR ASSEMBLY A6, TROUBLESHOOTING

Power Holes: Power holes that occur at the same point of the sweep in all bands are most commonly caused by the YIG-Tuned Oscillator Assembly A6.

Power holes above 18 GHz are most commonly caused by the type-N RF input connector on the HP 8559A front panel.

Residual FM: The primary cause of residual FM involving the first LO is the Frequency Control Assembly A7.

TABLE8-3. RFSECTION, REPLACEABLEPARTS

Bes]e

Reference Designation	HP Part Number	Qty	Description	Mfr. Code	Mfr. Part Number
J2	$86290-60005$	1	Connector Assy (Type N)	28480	$86290-60005$
J2MP1	$1250-0914$	1	Body: RF Connector (Type N)	02660	$131-150$
J2MP2	$1250-0915$	1	Contact: RF Connector (Type N)	02660	$131-149$
J2MP3	$5040-0306$	1	Insulator	28480	$5040-0306$
J2MP4	$08555-20093$	1	Center Conductor	28480	$08555-20093$
J2MP5	$08555-20094$	1	Body: Bulkhead	28480	$08555-20094$
J2MP6	$2190-0104$	1	Washer: Lock 0.439" ID	0000	OBD
J2MP7	$2950-0132$	1	Nut: Hex 7/16-28	0000	OBD
J2MP8	$08761-2027$	1	Insulator	28480	$08761-2027$

FIGURE8-16. RF INPUTCONNECTORJ2

FIGURE8-17. INPUT ATTENUATOR ASSEMBLYA3

FIGURE8-18. 3dB ATTENUATOR ASSEMBLY

FIGURE 8-19. FIRST MIXER ASSEMBLY A4

FIGURE 8-20. 4.8GHzLOWPASS FILTER ASSEMBLY FL1

FIGURE 8-21. SECONDCONVERTER ASSEMBLY A5, COMPONENTLOCATIONS(10F2)

A5A2
SECOND CONVERTER FILTER ASSEMBLY

FIGURE8-21. SECONDCONVERTERASSEMBLYA5, COMPONENT LOCATIONS(2OF 2)

FIGURE8-22. YIG-TUNED OSCILLATORASSEMBLY A6 AND SHIELDCOMPONENTS

FIGURE8-23. RF SECTION, BLOCK DIAGRAM

FIGURE8-24. RF SECTION,COMPONENTLOCATIONS

FREQUENCY CONTROL ASSEMBLY A7, CIRCUIT DESCRIPTION

The Frequency Control Assembly A7 drives the YIG-Tuned Oscillator Assembly A6 and provides the regulated +14.5 V and -10 V supplies to the First Mixer Assembly A4, the Second Converter Assembly A5, and the Marker Assembly A8. Inputs to the Frequency Control Assembly A7 consist of the tuning voltage and the band information from the Front Switch Assembly A2, as well as the attenuated sweep from the Marker Assembly A8. The tuning voltage is routed to the Marker Assembly A8 while the sweep plus tune $(\mathrm{S}+\mathrm{T})$ voltage goes to the Step Gain Assembly A12 and Vertical Driver/Blanking Assembly A15. The YIG Tune Voltage (YTV) is applied to the biasing circuitry of the YIG-Tuned Oscillator Assembly A6.

Tune/Full Span Voltage (B)

Coarse and fine tune voltages from the front panel are summed and buffered by U12 and resistors R77, R78, and R79. This summed voltage is routed to the YTO Main Coil Tune Driver through Q13. It is also routed to the Marker Assembly A8 to be conditioned for the Digital Panel Meter Assembly A1. Resistors R64 and R65 divide the -10 V supply to develop -5 V at the noninverting input of U11, which buffers the voltage for use as the mid-band tune voltage required for full sweep operation.

With the selection of full sweep operation, P1-41 (FS9) goes to +15 V and Q11 turns off. Without current flowing in R90, Q10 is off. This allows Q9 to turn on because Q10 no longer supplies the positive gate-source voltage that holds Q9 off. At the same time, Q12 turns on, shutting Q13 off. This routes the -5 V supplied by U11 to the YTO Main Coil Tune Driver tuning the YTO to mid-band. When full band is not selected, P1-41 (FS9) is close to ground potential due to A8CR19, A8R91, and A8R92, on the Marker Assembly A8 (block B). This results in Q10 turning on, holding Q9 off. Transistor A12 is now turned off, removing the pinch-off voltage on Q13. The tune voltage from the front panel now adjusts the YTO center frequency.

YTO Main Coil Tune Driver (D)

Operational amplifier U10 and resistors R61, R62, R72, R76, R80, and R82 sum and offset the applied tuning and sweep voltages and convert them to the current required to tune the YTO. The current is set by the voltage across R 48 and the 6 GHz adjustment R47. Shaping of the voltage-to-current function is necessary to maintain the linearity of the YTO sweep. This shaping is accomplished by using CRS, in conjunction with R59* and R60*, to establish two break points in the sweep ramp. MOSFET Q8 adds current drive capacity to the output of U10. Offset and buffering of the sweep plus tune voltage takes place in U9. It supplies the sweep plus tune voltage to the limit comparator on the Vertical Driver/Blanking Assembly A15 and to the first converter band tilt circuit on the Step Gain Assembly A12. Operational amplifier U9b supplies the YIG Tune Voltage (YTV) at IV per GHz to the biasing circuitry of the YTO. This adjusts the YTO, controlling its harmonic output. Delay compensation for main coil sweeps is provided by C12* and R58.

FM/Main Coil Sweep Switch (A)

Quad switch U15 routes the attenuated sweep ramp to the YTO Main Coil Tune Driver or to the YTO FM Coil Driver while grounding the unused inputs. Transistor Q16 provides level shift for the switch drive and is controlled by the FREQ SPAN/DIV control.

YTO FM Coil Driver (G)

The YTO FM Coil Driver sweeps the YTO in spanwidths of 1 MHz per division and narrower. Operational amplifier U13 inverts the sweep voltage and drives the push-pull current driver comprising Q14 and Q15.

Resistor R92 is an adjustable current limiter that makes possible sweep width adjustment by changing the gain of the stage. Delay compensation for FM coil swept spans is provided by U14, C14, R96*, and potentiometer R83, the delay compensation adjustment.

YTO Main Coil Fixed Driver (F)

This driver supplies current to the YTO main coil to set the start frequency of the first LO (YIG-Tuned Oscillator Assembly A6) at approximately 3 GHz . Resistor R8 adjusts this frequency by changing the reference voltage at U3 and, therefore, the drive to Q5. MOSFET Q5 buffers the operational amplifier's output and supplies current drive to the YTO main coil.

Alternate IF Driver (YTO) (C)

A voltage divider, R18 and R19, form a nominal +5 V source that supplies U 7 and establishes pull-up voltages on the H2, H3, and PM lines. When alternate IF is selected, current to the YTO main coil changes, shifting the sweep-center frequencies by $\pm 15 \mathrm{MHz} / \mathrm{N}$, where N is the harmonic number associated with the selected band. Four-to-ten-line decoder U4 decodes front panel band information and activates the appropriate section of U1. This selects the resistor that is paralleled with R9 in the YTO Main Coil Fixed Driver. Altering the effective resistance of R9 changes the current drive to the YTO main coil by changing the gain of the YTO Main Coil Driver circuit.

YTO Main Coil Filter (E)

When FM coil spans ($<1 \mathrm{MHz} /$ div) are selected, A16Q1 connects A16C22 (both located on the motherboard) across the main coil of the YTO to filter noise and line related signals. During wide spans ($>1 \mathrm{MHz} / \mathrm{div}$), the charge on A 16 C 22 is maintained by U5, Q1, Q3, and associated circuitry. Diodes CR3 and VR1 protect the filter from excessive back EMF (electromotive force) generated by the YTO.

Voltage Regulators (H) (I) (K)

Precision, temperature compensated, zener diode VR2 provides the reference for the voltage regulators. The output of the +14.5 V supply is fed back through R39 to bias VR2, while VR3 ensures that VR2 initially turns on. Transistor Q4 is a series pass element driven by U6 and Q5, while R35, R40, and R41 sample the output voltage and provide adjustment.

The -12 V supply tracks the +14.5 V supply and consists of a pass element, Q 7 , driven by U 8 .
The -10 V regulator supplies the voltage to the TUNING control, and is heavily filtered by C3 and R33. Transistor Q6 is the series pass element driven by U7 and resistor R29 adjusts the output voltage level.

FREQUENCY CONTROL ASSEMBLY A7, TROUBLESHOOTING

The Frequency Control Assembly A7 is the principal cause of excessive residual FM of the YIG-Tuned Oscillator's output. The following are a series of tests to help isolate the source of FM to a function block on the Frequency Control Assembly. Components most likely to be the source of the FM in each block are also listed. Be sure to check the following power supply voltages, for correct level and excessive ripple, before proceeding: the +14.5 V Regulator (block H), the -10 V Regulator (block I), the -12 V Regulator (block K), and the +15 V and - 12.6V Power Supplies (block J).

RESIDUAL FM TROUBLESHOOTING FLOWCHART ANNOTATION

Abstract

CAUTION In the next steps, edge connector contacts on the circuit board are taped over to isolate portions of the circuit. After completing a step where taping is necessary, remove the tape and clean the circuit board edge contacts with an 80120 solution of isopropyl alcohol and water before continuing to the next step. Refer to PRINTED CIRCUIT BOARD EDGE CONNECTOR CONTACT CLEANING at the beginning of this section for a detailed description of the cleaning procedure. Care should also be taken whenever instructed to unsolder components during the test.

Set HP 8559A controls as follows:
FREQUENCY BAND GHz $01-3$
TUNING 010 GHz
FREQ SPAN/DIV 0
RESOLUTIONBW 300 kHz
INPUTATTEN 0 dB
REFERENCE LEVEL $-10 \mathrm{~dB}$
REFLEVELFINE 0
Amplitude Scale $10 \mathrm{~dB} / \mathrm{DIV}$
SWEEP TIME/DIV AUTO
SWEEP TRIGGER SINGLE
VIDEOFILTER OFF
BLCLIP OFF
SIGIDENT OFF
ALTIF OFF

NOTE

Use the Residual FM Troubleshooting Flowchart to guide you through the test. Refer to this annotation as indicated by the steps in the flowchart.
a. To observe the first LO, connect a second spectrum analyzer to the HP 8559A RF input (a significant fraction of the first LO power is coupled to the RF input by the First Mixer Assembly A4). When measured in this manner, the first LO power should be $-8 \mathrm{dBm} t 3 \mathrm{dBm}$ at about 3 GHz for the listed control settings. This setup is used to observe the first LO in all of the following tests.
b. Begin by isolating the YTO Main Coil Tune Driver from the remainder of the frequency control circuit. This is accomplished by taping over $\mathrm{P} 1-3$ on the circuit board edge-connector contacts.
c. If the residual FM is unchanged, assume that the YTO Main Coil Tune Driver and the circuits feeding it are not the source of FM. The next step is to isolate the YTO FM Coil Driver from the circuit by taping over PI-15 and P1-37.
d. If the residual FM is unchanged, assume that the YTO FM Coil Driver is not the source. Proceed by placing a short across C1. This isolates the YTO Main Coil Fixed Driver from the circuit. Since the YTO Main Coil Fixed Driver supplies the majority of the YTO operating current, the YTO will not operate when the YTO Main Coil Fixed Driver is isolated from the circuit. To compensate for this, it is necessary to increase the current supplied by the YTO Main Coil Tune Driver. Adjust the TUNING control of the HP 8559A under test for a frequency display of 3 GHz ; this supplies enough current from the YTO Main Coil Tune Driver to allow the YTO to oscillate at about 3 GHz .

e. If the residual FM is unchanged, assume that the YTO Main Coil Fixed Driver is not its source. Retune the HP 8559A to minimum, .010 GHz . Isolate the YTO Main Coil Filter from the circuit by mounting the Frequency Control Assembly A7 on an extender board and taping over P1-19, P1-20, P1-25, while shorting P1-2 to P1-19.
f. If the residual FM is unchanged, the probable source is the YIG-Tuned Oscillator Assembly A6.
g. If isolating the YTO Main Coil Tune Driver from the frequency control circuit eliminates the residual FM, proceed to further isolate the source by shorting the sweep from block A to ground. This is best accomplished by shorting the input side of R80 to the ground side of R63. Use a short jumper to prevent the induction of line frequency noise into the circuit.
h. If the residual FM is eliminated, the source is probably the FM/Main Coil Sweep Switch. The most common failure is U15.
i. If residual FM is present after shorting the input sweep, remove the jumper and substitute a battery for the tune voltage. Do this by carefully unsoldering the input side of R82 and inserting a battery (5 V to 10 V) between the free end of R82 (the " - " terminal) and the grounded end of R63 (the " + " terminal). Use the shortest possible leads to prevent line frequency noise pickup.
j. If residual FM is unchanged, the probable source is the YTO Main Coil Tune Driver. The most common failures are: U10, R72, R76, R61, R80, R63, and R62, in that order.
k. In this step, the -10 V regulator is replaced with a battery. Replace R82 and tape over P1-5. Attach the negative (-) battery lead to pin 3 of U12; attach the positive $(+)$ lead to the grounded end of R63. If the residual FM is eliminated, the probable source is the Tune/Full Span Voltage (block B). If the residual FM is unchanged, remove the battery and the tape. Tune the FINE TUNE control to minimum, remover the (945) wire from the COARSE TUNE control (A2R1), and attach the battery's negative (-) lead to the COARSE TUNE control in place of the (945) wire. Attach the positive (+) battery lead to the ground side of R63. This test is necessary to eliminate the TUNING control as a source of residual FM.

1. If using the battery in place of the -10 V regulator eliminates residual FM , the -10 V regulator is the probable source. All of the regulator parts can cause instability; however, the most common failures are: U7, R30, R33, R32, C3, R29, and VR2 (block H), in that order. Also, verify that all supplies are properly adjusted.
m. If the Tune/Full Span Voltage (block B) is the probable source of the FM, the most common failures are U12 and Q13.
n. If isolating the YTO FM Coil Driver eliminates the residual FM, short the incoming sweep to ground. Install a jumper between the input side of R97 and the ground side of R95. Use the shortest possible lead to minimize line frequency noise pickup.
o. If the residual FM is unchanged, the source is probably the YTO FM Coil Driver. The most common failures are U13 and U14.
p. If the residual FM is eliminated, the source is probably the FM/Main Coil Sweep Switch. The most common failure is U15. If the residual FM is unchanged, short TP8 to ground. If this eliminates the residual FM, the source is probably on the Marker Assembly A8.
q. If isolating the YTO Main Coil Fixed Driver eliminates the residual FM, it is probably the source of the FM. The most common failures are: U2, C1, R1, and R2, in that order.
r. If removing the YTO Main Coil Filter from the circuit eliminates residual FM, it is probably the source of the FM. The most common failure is Q5. If the FM is not eliminated, the most common failures are A16Q1 and A16C22.

Bes.ek

TABLE 8-4. FREQUENCY CONTROL ASSEMBLY A7, REPLACEABLE PARTS (1 OF 3)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A7	00559-60377	3	1	FRESENEY CONTRDL ASSEMEIT	ว-3 8 \%	-8559-69077
A7C1	0180-0180	3	1	CAPACITOR-FXR 4.7UF+-10\% 3FSUC TA	5seag	$150 n 475 \times 903562$
A7CL	3169-4384	${ }^{8}$?		28433	016.4084
A7C3 A7C4	¢180-2207 $3180-3197$	5	1 $?$		56.739 56259	
A7C5	C. 160-4810	8	1	CAPACITOR-FXO 330CT +-5\% 16GUDC CER	20400	01664810
A7C6	3183-1746	5	3	CAPARITIR-FXD 15UF-13\% RavEC TA	56257	159D156×9023:12
	c160-3457 31603661	7	1	CAPACITOS-FXD CAPGCITR-F S	-23480	$8160-3457$ $3160-3661$
A7CB ATC9	31603661 $0180-0197$	S	1		-8483 5R.289	$3169-3661$ $1505235 \times 9026 A 2$
A7C13	2183-1746	5		CAPACTTCR-5×D 151F-13\% 20VCC TA	5.8269	15.30156×902058
A7C11	0180-1746	5		CAPACITOR-FXD 15AF+-10x 2CUDC TA	55.089	1505156x9020ni
A7C12x	0180-3291	3	1	CAPAM:ITOR-F XO 1UF,-10\% 35VLC. TA	56289	1530135×9035.82
	$0160-4812$ $7160-4984$	-	1		? ${ }^{2+868}$	0160.4812 $3163-4384$
A7CR1	1901-6518	8	2	DIODE SM SIC Schotiky	2a4ac	1961.0518
a7cre	1731-0518	日		DIODE SM SLG Echintiky	[3480	1731-0518
A7CR3	1901-0058	3	7	DITDE- SWITCHING B6U 26ema 2 Na do-35	32480	1761-0050
A7CR4	1701-3358	3			28480	1931-0350
ATCRS	1961-0650	3		DIDDE-SWITCHING BGU 26GKA 2 NS do 35	Ра480	1701-0050
ATCR6 A7CR7	$1731-0350$ $1961-0050$	3			28483 20480	1931-0350
A7CR7	$1961-0650$ $1701-2959$	3 3 3			23480	19610050 $1791-0350$
ATCR9	1901-0640	1	2	dTODE SNITCHING 300 SOMA 2 NS do-35	ааяво	1201-004n
A/CR13	1701-0048	1		dicte swithling 3.30 53MA :NS to 35	дея80	1731-0040
A7CR11	1901-6050	3		dIodr sultchinc acu zegha ens da-35	23480	1981.0050
A731	1251-4700	,	1	CONN:CTGR S-PTN M POST TTPE	72489	1:51-4700
A781	1855-0420	2	1	TRANCISTOR J-FET 2 N4391 N -ChAN D-MODF	01293	204391
A782	1855-0251	7	2	translsior masfet n-chen e mode, to 37 St	28483	1855-3251
A7Q3	1855-0278	8	1	TRANGISTOR J-FET 2NS116 P CHAAN D-MAD	17858 34713	2NS116
A789 A705	1853-2213	?	1 2		34713 29480	2n4:36
A786	1054-3637	1	3	TRANSTSTUR NPN ENE219A SI TO 5 PD=0a3M	31295	2 N 2210 A
A787	1954-0637	1		TRANSISTOR NPN 2NP219A St T0-5 PD=36EMAd	01295	2N.2219A
A788	1855-9251	7		TRANSTSTGR MOSFET N CHAN E MODE. TO- 39 St	20483	15,55-0251
A 789 A7819	$1855-0421$ $1853-0281$	3	3	TRANSISTOR J-FET 2NSITA P-CIAN D-MDDE	${ }_{\substack{17854 \\ 0 \rightarrow 713}}$	
A7Q11	1853-0281	9		TRANSISTOR PNP 2N2907A SI TO-18 PD-AGCMW	¢4713	2N.9907A
A7912	11553-3281	${ }^{\circ}$		TRANSTSTGR PNP ZN2907A ST T0-18 PD=400R4	34713	2182937 A
A7013	1855-0421	3		TRANGISTOP J-FEI 2NS114 P CHAN D-made	17356	$2 \mathrm{NS114}$
A7814 A7Q15	1653 $1054-0314$?	1	TRANSISTGR PNP NNEYASA SI	34713 01295	$2122935 A$ 2N1219A
A7016	1554-3404	0		TRANSTSIOR NPN SI TO-18 PD=360ML	28483	11554-9404
ATR1	0699-0304	8	1		2а480	0699-0384
A7R2	$0679-3900$ $0698-6359$	0 2 2	$!$		28480 23480	3699-0390
A7RS	3757-0458	7	1		24546	C4 1/8-T0-511: F
A7R6	0757-0464	5	1		24.546	C4 1/8-70-9097-F
ATR ${ }^{\text {ATR }}$	9698-6362	${ }^{8}$	2	RESISTOR $1 \mathrm{~K}, 1 \%, 12 S \mathrm{~F}$ F $1 \mathrm{C}=01-25$	28480	36\%8-6,362
A7R8	2100-4020	8	1		2R480	$210 \mathrm{Cc}-4020$
A7R A7R10	${ }^{0811}$-3581	?	1		21480	3011-3501
A7R11	3757-0442	9	12		24546	C4 1/8-T3-1032-F
A7R12	0757-0465	6		RTSISTOR 100k 12 L . 125 L F TC=0+-100	24546	C4-1/8-T0-1003-F
A7R13	0757-0465	6		RESTSTOR 103 K 12.125 .4 T TC=3t-100	24546	C4-1/8-70-1033-F
ATR14 ATR15	0757-0465 $0757-0465$	6			24546 24546	C4-1/8-T0-16c3-F
A7R16	0757-0.465	6		RESISTOR 100 12 .1254 F TC $=0+160$	24546	C4-1/8-T0-1603-F
A7R17	0757-0465	6			24546	C4-1/8-T0-1033-F
A7R18 ${ }_{\text {A }}$	0698-3153	?	1		24546	C4-1/8-T0-3831-F
ATR20	0757-0465	6	1	RESISTOR 100 K 12 Z 12SU F TC=0t-100	24546	C4-1/8-TE 1603-F
A7R21	0698-6320	日	1		${ }^{3} 3888$	PMES5-1/8 - T9-5031-B
A7R22	0698-8861	${ }^{6}$	1	RESISTO9 $6.66 \mathrm{~K} \quad 1 \mathrm{X} \quad 125 \mathrm{~F}$ F TC $=0+25$	28480	0698-8861
A7R23	0698-6614	3	1	RESISTUR 7.5K ${ }^{112}$, 125U F $\mathrm{TC}=0+25$	28480	0698-6614
ATR26	0698-6630	3	1		284880 28480	0678-6619 0630
A7R27	0757-0465	6		RESTSTOR $100 \mathrm{~K} 1 z, 125 \mathrm{~L}$ F IC $=0+-100$	24546	C4 1/8-T0-1033-F
A7R28	0757-0465	6		RESISTOR 100k 12 y -125W F TC $=0+100$	24546	C4-1/8-70-1003-F
A7R29	2100-2851	?	$?$	RESISTOR-TRMR 2 K 10x WW SIDE-ADJ 20 TRN	32660	3813P-202
A7R30 A7R31	0699-0901 $0757-0382$	1	$\frac{1}{2}$		28480 19701	0699-0901
A7R31	0757-0382			RESTSTOR 16.2 iz 12SU F TC=0+-100	19701	MFAC1/8-T0-16R2-F

TABLE 8-4. FREQUENCY CONTROL ASSEMBLY AT, REPLACEABLE PARTS (2OF 3)

Reference Designation	HP Part Number	$\left\lvert\, \begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}\right.$	Oty	Description	Mfr Code	Mfr Part Number
A7R32	0699-9993	3	6		28480	3699-3903
A ARP33	6699-0903 3757.0418	3	1		23480 24546	
A7R35	0811-1175	8	1	RESTSTOR 4.22k 12.1254 PWW TC=0,10	${ }^{2} 7088$	kP6, 1-42? 1-1
A7R36	3678-0383	B	1		2.4546	C4 1/8 T0-1961-F
A7837	0757-0438	3	2		24546	C4. 1/8-70 S $5111-\mathrm{F}$
A7838	3757. 94:8	${ }_{7}^{1}$	1		21546	C4 1/8-73-1621 F
A7R A 784	0757-0424 3011	7	1		24596 23719	
A7R41	2100-3123	0	1	RESISTOP-TRMR 50 E 10\% C GIDF-ADS 17 -TRN	05111	43 F 501
A7R42	3678-636.2	-			20483	3698-6362
ATR43	06998-6360	${ }^{6}$		RESISTIR $10 \mathrm{k}, 1 \mathrm{z}, 125 \mathrm{~L} \mathrm{~F}^{\text {F }}$ TC $=0+25$	28486	8699 6360
	3757. 3444	$\stackrel{1}{9}$	1		24546	C4-1/8-10-121.-F
ATR4S	- $\begin{aligned} & 6757-0442 \\ & 3757-6382\end{aligned}$	9			24546 19731	
ATP47	2100-1753	${ }^{8}$	1	RESTSTOR-TFMR 20.52 Wh Stide Ad. 1-TEN	28480	2 men 1753
A7R48	3811-3472	1	1	PRSISTIER 133 1\% 126 PW TC=3+2	78483	3811-3492
A 7 RA9	0757-0230	3	2		24:46	C4-1/8-70-166, -F
ATR51	0698-3136	8	1		24546 24546	C4-1/8-T0 1782.F
A7REs	9757-0317	?	1		24546	C4 1/8- T9-1331-5
A7R53	6698-3160	8	2		24546 24546	C4. 1/8-76-316. C
${ }_{\text {ATR5S }}$	6.693-0685	?	2		24546 24546	
A7RS6	0757-0421	4	1	PEGISTGR BES 12 , 1254 F TE=3t-133	24596	
${ }_{\text {A }}^{\text {ATR5 }}$ A	6757-0442	9			24546 24546	[4-1/8-TC-166: F
ATRS日	3757-0279 $0757-0459$	\%	1		24546 24596	
A726a*	0678-3454	${ }_{3}^{8}$	1		24546	C4 1/8- Tn -2153-F
A7R61	6699-0903	3		RCSISTOR 16K 12 z , 1W F TC=6 +10	28480	0695-0903
A7R62	3698-3456	5	2		24546	C4 1/8-T0-2873-F
A AR63 Pr	$0679-3456$ $3757-0442$	$\stackrel{5}{9}$			24.46 24546	$\mathrm{CA}-1 / 8-\mathrm{TC}-2873-\mathrm{F}$ $\mathrm{CA} 1 / 8-\mathrm{Ta}-1002 \mathrm{~F}$
A7R6S	1757-0442	9		RESISTOR 10K 12.125 F F TE=0 + - 100	34546	C4 1/8-TC-16.62-F
A7R66	3757-0442	9		RESTSTOR $13 \mathrm{~K} \quad 1 \mathrm{~K}, 125 \mathrm{~W}$ F $\mathrm{TC}=0+-103$	245.46	CA - 1/8- Ta-1002 F $^{\text {c }}$
A7R67	0696-3156	2	1		24:56	C4-1/8-T0 1472-F
A7R68	3698-3450	?			24546	C4 1/8 T3-422e-F
A7R69 A	$0757-0442$ $0696-0035$	$\stackrel{\square}{9}$			24546 24546	
A7R71	0699-3442	9	2	RESISTOP 237 1\% .125W F TCmet-160	245.46	C4 1/8-т0 - 237P-F
A7R72	0699-3903	3			28430	0699-3903
A7R73	0757-0442	9		RESISTOR ${ }^{\text {EK }}$ L 1%, 125W F TE $=0+100$	24546	C4 1/8-T6-1662 F
A) ${ }^{\text {A } 74}$	3757-0442	9		RESISTIR $10 \mathrm{~K} 1 \%$, 125 W F TC- $=0+103$	24546	C4 1/8-50-1002-F
A7R75	2100-2851	9		RESISTOR-TRMR 2 K 10\% HL SIDE ADJ 20-TRN	02660	$3810 \mathrm{P}-202$
A7R76	0697-0903	3		RESTSTOR 10K .1\% , 14 F $1 \mathrm{C}=3+-13$	28483	3699-0903
ATRT7	0698-3260	,	4		2 P 480	06933260
A7R78 ATR79	$0.978-3160$ $0757-0280$	9 3			24546 24546	C4-1/8-T0-3162-F $\mathrm{C4-1/8-T8-1061-F}$
A7R日	0679-3703	3		RESISTIR 1aK 1 z , 14 F TC=0+-13	28480	${ }_{0699-3903}$
A7R81	2100-3053	5	1	RESIGTOR-TRMR 20202 C SIDF-ADJ 17 TRN	02111	43P200
A7RR2	0698-3442	7			24546	C.4-1/R-T0-23/R-F
ATR83 A 7 Re4	$2100-3054$ $0757-0465$	6	1		0.2111 24546	${ }_{\text {C4-1/8-T0-1093-F }}$
ATR85	0757-0465	6		RESISTOR 100k 1%, 125W F TC=0+100	24546	C4-1/8-70-1003-F
A7R86	0690-3260	9		RESISTOR 464K 1 K , 125W F TC=04-100	28480	0678-3260
A 7 AR87 ATREB	$0757-0465$ $0698-3260$	6 9			24.46 28480	$\begin{aligned} & \text { C. } 1 / 8-T 0-1003-F \end{aligned}$
A7R89	0757-0438	3		RESISTOR 5.11 K 1 X . 125 SW F TC=0,-100	24546	C4-1/8-T0-5111-F
A7R90	3757-0465	6			24546	C4-1/8-70-1003-F
A7R91	0698-3? 60	9		RESISTOR 464k 12.125 F F TC= $0+-180$	28480	0698-3260
A7R92	2100-1756	1	1	RESTGTUR-TRMR 2005 S WU SIDE-ADJ 1-TRN	28480	$2100-1756$
A7R93	0698-3622	7	1	RESISTOR 120 5\%, $24 . \mathrm{MO}$ TCOOT-200	28480	06983622
${ }^{\text {A }}$ AR94	0698-7212	9	1		24546 19701	C3-1/B-T0-103R-F
A7R96*	0757-0462	3	1	RESISTOR 7SK 1 K , 125W F TC $=0+-100$	24546	C4-1/8-T0-7502-F
ATR97 A7R93	$0757-0.990$ $0757-0401$	5	1		19701 24546	MF AC1/8-T0-6191-F C4-1/3-T0-101 F
A7R99	0757-0290	5		RESISTOR 6.19k 1 z . 12 SW F TC $=0+-100$	19701	MFAC1/8-T0-6191-F
A7R100	0757-0290	5		RESTSTOR 6.19 K , 12.125 L F $\mathrm{TC}=0+-100$	19701	MF4C1/8-T0-6191-F
A7R101	0757-0465	6		RESISTOR 100 K 12.125 W F TC $=0+\cdots 100$	24546	C.4-1/8-T0-1003-F
A7R102	0678-3428	1	2	RESISTOR 14.7 $12 \mathrm{X}, 1254 \mathrm{~F}$ TC $=0+100$	038888	PMES5-1/8-TO-14R7-F
ATR103 A7R104	$0698-3428$ $0757-0442$	$\stackrel{1}{6}$			03488 24546	PMESS-1/8-10 1427-F $C 4-1 / 8-T 0-1002-F$
A7R105	06.98-3157	3	1	RESISTOR 19.6k 1 X , 1254 F TC $=0+-100$	24546	C4-1/8-T0-1962-F
A7R106*	0698-3450	?	3	RESISTOR 42.2K 12 .125W F TC=0+-103	24546	C4-1/8-T0-4222-F

TABLE 8-4. FREQUENCYCONTROLASSEMBLY A7, REPLACEABLEPARTS (30F3)

Bes.ek

FIGURE 827. FREQUENCYCONTROLASSEMBLY A7, BLOCKDIAGRAM

FIGURE8-28. FREQUENCY CONTROLASSEMBLY A7, COMPONENT LOCATIONS

 2. Muste oritemu wion

$\substack{\text { attennur } \\ \text { ctune } \\ \text { fwe tune }}$

${ }^{\text {н }}$

MARKER ASSEMBLY A8, CIRCUIT DESCRIPTION

The Marker Assembly A8 comprises the Marker Generator, the DPM and Second LO Drivers, the ALT IF and SIG IDENT circuits, the Auto Scan Time Drivers, and the Scan Attenuators.

Marker Generator (F)

The Marker Generator is basically a zero voltage detector. The four summed resistor voltages at pin 5 of U14 equal OV only when the sweep voltage and the tune voltage correspond to the same frequency. The marker is then displayed at that frequency. If the input of $\mathrm{U} 14 \mathrm{~b}(\operatorname{pin} 5)$ is at 0 V , the outputs (pins 7 and 1) should be at 0 V . The anodes of CR7 and CR10 should therefore be at OV also. Resistor R45 pulls their cathodes down to about -0.5 V . This turns on U 6 c , which normally has its emitter held to about $+0.7 \mathrm{~V}(+1.2 \mathrm{~V}$ in fullband). As the emitter voltage of U6c increases, it turns on Q1. This pulls the video shift line down, shifting the signal and noise at the Log Amplifier Assembly A14 about one division toward the bottom of the screen. The output of the Log Amplifier Assembly A14 is permitted to be pulled low by the log shift resistor (A14R119) at its output.

DPM Driver (D)

The DPM Driver is an inverting operational amplifier circuit. The appropriate combination of input, offset, and feedback resistors is selected by U5 for the chosen frequency band (see Figure 8-30). Input control lines H2, H3, and PM carry the encoded band information. A truth table on the schematic, Figure 8-33, shows the levels of these lines during each band.

Band	R Input	R offset	R Feedback $^{\text {1 }} 10$ R64
2	R67	R68	R66
3	R70	R71	R72
4	R73	R74	R75
5	R76	R77	R78
6	R79	R80	R81

Second LO Driver (E)

The Second LO Driver varies the voltage applied to the varactors in the second LO cavity (A5CR2 and A5CR3). The upper limit of this voltage is dependent on the second LO sensitivity and varies during operation from about IV to between 7 V and 30 V . An increase in the drive voltage increases the second LO frequency. The SIG IDENT and ALT IF buttons both change the second LO frequency.

ALT IF. When ALT IF is not selected, TP2 is at -7.5 V , setting the collector of Q 2 to $+15 \mathrm{~V}(\pm 7 \mathrm{~V})$. When ALT IF is selected, TP2 goes to -2.5 V , setting the base of Q 2 to about +5 V . The voltage on the collector of Q2 varies within the range of 1 V to 28 V as needed to drive the varactors in the Second Converter Assembly A5. The shift in drive voltage serves to offset the second LO to the alternate IF.

SIG IDENT. When SIG IDENT is not selected, U10 pin 4 is low and pin 11 is high. This supplies a current through R37 and R38 to bias the second LO 1 MHz away from its minimum frequency. When SIG IDENT is selected, pins 4 and 11 both are either high or low together, depending on the sense of the PM line (PM is low for bands 1, 3, and 5). This either raises or lowers the frequency of the second LO 1 MHz . Resistor R39 provides additional shift, if necessary, when ALT IF is not activated (the second LO may be less sensitive at that frequency). Flip-flop U3 alternates both the frequency shift and level shift on every other retrace.

Auto Scan Time (AST) Drivers (C)

As scan and bands change, sweep times must be changed to maintain amplitude calibration. The AST (auto scan time) line, which goes to the Sweep Generator/Bandwidth Control Assembly A9, varies the sweep time by varying the amount of current it carries. More current speeds the sweep rate, less current slows it. The current is controlled through a current mirror on the Marker Assembly A8, comprising U6a and U6d. The current mirror is a common-emitter amplifier with a current gain of -1 . Collector current changes through U6a (caused by U11a, U11b, or U11c turning on) are mirrored in U6d.

Scan Attenuator (B)

Operational amplifiers U13 and U17 are buffer amplifiers that are not directly involved in the switchable scan attenuation, but, if one fails, the scan becomes uncalibrated. The switching is done by Q4, Q6, and U12. For fundamental mixing bands 1 and 2, U12b is on, all others are off. Resistors R22 and R23 form a voltage divider with R24, R25, and R26. The division ratio is changed depending on whether Q4 and Q6 are on or off. For higher mixing modes (bands 3 through 6), U12a or U12d is switched on, picking off the sweep from a lower amplitude point on the voltage divider. For full span operation, U12c is enabled so that no attenuation is added for higher mixing modes.

MARKER ASSEMBLY A8, TROUBLESHOOTING

DPM Accuracy: DPM inaccuracy is often traceable to the calibrated-gain circuit in the DPM Driver (block D). The most common cause is the gain determining resistors associated with U15. A generalized model of U15, with associated resistors, is shown as Figure 8-30. Variations in the input resistors or in the feedback resistors will cause DPM inaccuracies throughout its range. Offset resistor variations primarily affect the low end of the range. When troubleshooting DPM inaccuracies, always start with the components related to the worst band.

Marker Accuracy: The marker accuracy is dependent on the frequency accuracy of the first LO and the frequency accuracy of its sweep end-points (i.e., the frequencies that correspond to the $\pm 5 \mathrm{~V}$ extremes of the sweep).

Spanwidth Accuracy: Observe the positions of the FREQ SPAN/DIV switch and how they relate to the spanwidth errors. The problem could be originating from either the Marker Assembly A8 or the Sweep Generator/Bandwidth Control Assembly A9 or both.

Auto Scan Time (AST) Accuracy: Observe front panel switch positions to isolate the problem area. Auto scan time can also be affected by circuits on the Sweep Generator/Bandwidth Control Assembly A9 and the VIDEO FILTER control position. If the AST problem is band-related, the Marker Assembly A8 is the most probable cause. If the AST problem is either bandwidth- or scanwidth-related, the most probable cause is the Sweep Generator/Bandwidth Control Assembly A9. The greater the load on the AST line, the greater the current demand. The greater the current demand, the faster the sweep rate.

Residual FM: Residual FM can originate from the Second LO Driver (block E). The most common failures are: R88, R87, R33, R34, U1, U7, R37, and R38, in that order.

Bes]e

TABLE 8-5. MARKER ASSEMBLY A8, REPLACEABLE PARTS (10F 3)

TABLE 8-5. MARKER ASSEMBLY A8, REPLACEABLE PARTS (2OF3)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& $$
\begin{aligned}
& \mathbf{C} \\
& \mathrm{D}
\end{aligned}
$$ \& Qty \& Description \& Mfr Code \& Mfr Part Number

\hline AmR4 \& 37570442 \& $?$ \& \& \& 24546 \& C4- - /3-T3 1032-F

\hline \& $0698-7794$
0757
0.442 \& 2
7 \& 2 \& \& 19761

29546 \&

\hline AOPR 44 \& -6698-3160 \& 8 \& 3 \& \& 24546
24546 \&

\hline criras \& 3757-1465 \& 6 \& \& \& 24546 \& C4 1/8-13 1303-r

\hline ${ }^{\text {AtiR }} 46$ \& 8757-0465 \& ${ }_{7}$ \& \& \& . 24596 \& C4 1/8-Ta 16.5-f

\hline EERR 47
ABR 43 \& 06985416
$6688-3458$ \& 7 \& 1 \& \& 23489
23680 \& $7678-5.446$
6. 0.37 .3450

\hline Actisiv \& 2690-3163 \& B \& \& RESTSTOR 34.ck $1 \%, 1854$ F $\quad 1 \%=3+-109$ \& ${ }_{2}^{245460}$ \& CA 1/8-73-3162-F

\hline AB250 \& -698-0094 \& 9 \& 1 \& RLSISTOR 2.15\% 1%, 125 \% F TC=04-166 \& 24546 \& C.4 1/8-T6-2151-F

\hline Atirs ${ }^{\text {a }}$ \& ${ }^{9659} 0 \cdot 3157$ \& 3 \& \& \& 24546 \& Cs 1/8-13-196.2-F

\hline \& $6699-3157$
$3757-0465$ \& 3
6
6 \& \& \& 24546 \& C4 1/8-TE 126.a F

\hline ${ }_{\text {ATR }}$ \& 3, $3757-0465$ \& 6 \& \& ReStstur 130 ll \& 24546
24546 \&

\hline f.fREs \& 37570165 \& 6 \& \& \& 24546 \& ci 1/3-19-1093-F

\hline ARRS 6 \& 0683-3355 \& 2 \& 1 \& RESISTOR 3.3M 5\% .25w FC TC--960/1160 \& 01121 \& cer $3^{5} 5$

\hline ARRS
ASRSE \& ${ }^{3} 50332255$ \& ? \& 1
3 \& \& 31121 \&

\hline ABRSE
AGR5\% \& $06.99-0378$
$0.699-0378$ \& 6 \& 3 \& \& 26480
20480 \& 06990378
$0699-8378$

\hline Agr60 \& 6.757-0442 \& 9 \& \& \& 24594 \& C4 1/8-T0-16ch-F

\hline Ema 61 \& 2100-3161 \& 6 \& \& RESTSTGR-TRMR 23 K 13\% C SDDE-ADJ 17.12 N \& 32111 \& 43 ¢293

\hline \& $2160-3161$
3757
0438 \& ${ }_{6}^{6}$ \& \& \& ${ }_{2}^{2} 2111$ \& 43×263
$C 61 / 8-50-5111-F$

\hline \& \& 3
9 \& 1
3 \& \& 24596
284880 \& C4 4 1/8-70-5111-F
06978371

\hline A6R65 \& 3757-0431 \& 3 \& 2 \& \& 21546 \& C4 1/8-10-1,31 F

\hline ABR56 \& 0699-6376 \& 4 \& 2 \& \& 20480 \&

\hline ABR68 \& $3679-3371$
$0699-0374$ \& ${ }^{2}$ \& 1 \& \& 20480 \& $\begin{array}{ll}10699 & 6371 \\ 66 \% 9374\end{array}$

\hline Catir69 \& 36990376 \& 4 \& \& acstatur 11.76 K . 325%, 16 F IC=36 5 \& 28483 \& 3699-0376

\hline AOR70 \& 8699-0.379 \& 7 \& 3 \& RESISTOR 68.1k .02S\% , 1W F TC=0 - 5 \& 28480 \& 06.9980379

\hline AnR71
AORT2 \& 069990379 \& ${ }^{8}$ \& 1 \& REGISTIR 196.995k . 225%, 14 F F TC=3, 5 \& -e480 \& 0679-0370

\hline \& | $6699-0,375$ |
| :--- |
| 3699 |
| 0371 | \& 3

9 \& 1 \& \& ${ }^{23480}$ \&

\hline ASR 74 \& 0699-0372 \& 0 \& 1 \& RESICIOR 100.974 ${ }^{\text {a }}$.025\%, 1W F TC-01-5 \& 23400 \& 1665\% 0372

\hline CtiR7S \& 3599-0378 \& 6 \& \& RESTSTAR 23.52 K , 325\% , 14F TC $=6.5$ \& :8483 \& 3679-0378

\hline A8R76 \& 8.699-0.379 \& ? \& \& RESIST09 68. 1 K , 023z 16 FF TC=0.-5 \& 28400 \& 06970379

\hline Atripl
ASR78 \& $2699-0373$
$0694-0377$ \& $\stackrel{1}{5}$ \& $\frac{1}{2}$ \& \& 28889 \& 0699-0373

\hline \& 86894-0377
$8699-0379$ \& 5 \& 2 \& \& 2ac80 \& 060990377
$3659-0379$

\hline ATR80 \& 18699-0380 \& 0 \& 1 \& \& 28480 \& 06.97-8380

\hline Erinot \& 3699-9377 \& 5 \& \& \& 20480 \& 3659-9377

\hline A8R83 \& 0698-7794 \& 2 \& \& \& 1976.1 \& MFAC1/8 T0 1002 C

\hline \& 3680-3169 \& ${ }^{3}$ \& \& \& 24546 \& C4 1/8-70-3162 F

\hline A3R85 \& 0757-0442 \& 9 \& \& RESISTRR 10 K 1\% . 125 SW F $\mathrm{TC}=0+100$ \& 24546 \& C4-1/8-T0-1002-F

\hline AERB6 \& 37570442 \& 9 \& \& \& 3.4546 \& C4 1/8-70-1032-F

\hline A8pa7 \& 0699-0901 \& 1 \& \& \& 28480 \& 06,99-0901

\hline Astres \& 0699-3931 \& 1 \& \& \& 28483 \& 3699-0901

\hline ATR9? \& $06989-3162$
0757.0465 \& , \& 1 \& \& 24546 \&

\hline ATR93 \& 0757-0440 \& 7 \& 1 \& \& 24546 \& C4 1/8-T0-7509-F

\hline Arirg 4 \& 3757-0459 \& 8 \& 1 \& \& 29546 \& C4 1/8-T0-5622-F

\hline ABR9S \& 0757-0465 \& ${ }^{6}$ \& \& RTSISTOR $100 \mathrm{k} 1 \%$, 12Sid F TC=0+-100 \& 24546 \& CA^{4} 1/8-T0-10.3-F

\hline ASR96 \& 3757-0470 \& 3 \& 1 \& RESTSTGR 162k 1%, 1254 F TC-0, 139 \& 24546 \& C4.1/8-T9-1623-F

\hline A0297 \& 0757-0280 \& 3 \& \& RESISTOR 1k 12.125 F F TC=01-100 \& 24546 \& C4-1/8-T0-1001-F

\hline AGR98 \& 3757-0280 \& 3 \& \& \& 24546 \& C4-1/8-70-1001-F

\hline A8R99 \& 0757-0467 \& - \& 2 \& RESISTOR 121k 12.1254 F Tr $=0+100$ \& 24546 \& C4-1/8-T0-1213-F

\hline \& \& 6 \& 1 \& \& 28489
24.546 \& 0598-3457
C. $41 / 8-10-196.3-F$

\hline ARR 132 \& 9757-0467 \& 8 \& \& RESISTUR 121K iz .12SW F TC=0t-100 \& 24546 \& C4-1/8-T0-1213-F

\hline ARR103 \& 0757-0465 \& 6 \& \& RESISTOR 100K 1\% .125W F TC=0+-100 \& 24546 \& C4 1/8-T0-1003-F

\hline AER 104 \& 0757-0465 \& 6 \& \& RESISTCR 100 K 1\% .125W F TC=0+-100 \& 24546 \& C4-1/8-T0-1003-F

\hline ARR 105
ARR 106 \& 0757-0465 \& 6 \& \& RESISTOP 100K $12.125 W$ F TC=0+100 \& 24546 \& C4. 1/8-T0-1003-F

\hline ABR 106
AgR108 \& $0757-0401$
$0698-7270$ \& $\stackrel{0}{9}$ \& 1 \& \& 24546
24546 \&

\hline Atir 139 \& 0698-7285 \& 6 \& 1 \& RESISTUR 113 K 1 X , 35W F TC $=0+-100$ \& 24546 \& C3-1/8-T0-1193-F

\hline A日R110 \& $06699-0903$
$0699-0903$ \& 3
3 \& 2 \& \& 28480

28480 \& $$
\begin{aligned}
& 0669-0903 \\
& 0699-0903
\end{aligned}
$$

\hline A8TP 1 \& 1251-0600 \& 0 \& 5 \& CONNECTOR-SGL CONT PIN 1.14-MM-bSC-sZ SQ \& 28480 \& 1251-0600

\hline ${ }_{\text {ABTP2 }}$ \& 1251-0600 \& 0 \& \& CONNECTIR-SGL CONT PIN 1.14-MK -ESC-32 SQ \& 28480
28480 \& 125110600

\hline ${ }_{\text {ABTP4 }}$ \& $1251-0600$
$1251-0600$ \& 0 \& \& CONNECTOR-SGL CONT PIN 1.14 -MM-GSC-S7 SQ \& 28480
23480 \& $1251-0600$
$1: 51-0600$

\hline ABTP5 \& 1251-0600 \& 0 \& \& CONNECTOR-SGL CONT PIN 1.14-MM-hSC-s7 SR \& 23480 \& 1251-0600

\hline ABU1 \& 5180-2315 \& 1 \& 4 \& IC OSC M1OPAMP \& 28480 \& 5180-2315

\hline ABUZ \& 1820-1548 \& 4 \& 1 \& IC SWITCH ANLG QUAD 14-DIP-C PKG \& 34585
31585 \& CDA066AY

\hline ${ }_{\text {abus }}^{\text {abu4 }}$ \& $1820-1530$
$1826-0092$ \& 4 \& 1
2 \& IC \& 32585
28480 \& CD4027AF

\hline ABUS \& 1820-1547 \& 3 \& 1 \& IC MULTIPLXR 8 -GHAN-ANLG 16 - DIP-C PKG \& 28480
04713 \& MC140518CL

\hline
\end{tabular}

TABLE 8-5. MARKER ASSEMBLY AB, REPLACEABLEPARTS(30F3)

Reference Designation	HP Part Number	$\left\lvert\, \begin{gathered} \mathrm{c} \\ \mathrm{D} \end{gathered}\right.$	Oty	Description	Mfr Code	Mfr Part Number
		$\left\|\begin{array}{l} 5 \\ 1 \\ n \\ 8 \\ 8 \end{array}\right\|$	3			
	1858-1083: 13260416 $1880-2315$ 1026 $1036-1058$	$\left\|\begin{array}{l} 8 \\ 5 \\ 1 \\ 3 \\ 3 \end{array}\right\|$	1 1 $:$	tpansistor arpay 14 - Pin pisicte pil Ir. S,WILCH ANLS 1c an Amp gr a to 99 Pkg		
$\begin{gathered} \text { Anu16 } \\ \text { AROMT } \\ \text { ARH1 } \end{gathered}$	$1520 \cdot 1542$ 5180-2515 $1856 \cdot 1358$ $2030-3177$		1	IC HFR CMOS INU HEX 1-IN: IC ES: MIOPAM tC tip fimp r.p B th 99 PKG AR MISCEILANEDUS PARTS SIRFW MACII 4 4 43 .375-1N-1 C: PAN-:1D-POZI	31.555 $2848!$ -8480 -848 28480	CD4049AF $5180-2315$ $1526-1058$ 2200-0107

Bes]e

MARKER ASSEMBLY

FIGURE 8-32. MARKER ASSEMBLY A8, COMPONENT LOCATIONS

 OUTPNA 1 SNOT CONEETES.

发

 (9)

30,06
$\underset{\text { seafur refer 2xAA }}{ }$

SWEEP GENERATOR/BANDWIDTH CONTROL ASSEMBLY A9, CIRCUIT DESCRIPTION

The Sweep Generator/Bandwidth Control Assembly A9 consists of the sweep generator circuit, the sweep trigger circuits, the resolution bandwidth control circuits, the video filtering circuits, the sweep attenuator circuit, and the sweep offset circuit.

A linear sweep from -5 V to +5 V is provided by the sweep generator circuit. Normally, the sweep operates in a free run mode with sweep times automatically generated as a function of the FREQ SPAN/DIV, RESOLUTION BW, VIDEO FILTER, and BAND settings.

Fixed calibrated sweep times are available, ranging from 2 microseconds per division to 10 seconds per division. This equals a full sweep time (10 divisions) of 20 microseconds to 100 seconds. Fixed sweep times are set with the SWEEP TIME/DIV control and are used mainly in zero span to determine the modulation frequency of an input signal. Modulation frequency determination is possible because during zero span operation the analyzer displays the signal in the time domain rather than the frequency domain. The sweep can also be controlled manually from the front panel with the MAN sweep control.

Besides internal triggering, SINGLE, VIDEO, and LINE triggering modes are also available. SINGLE starts or stops a single sweep from the front panel. VIDEO triggering allows the sweep to be synchronized with the displayed video signal. LINE mode synchronizes the sweep with the line frequency. Single sweeps can be initiated via HP-IB if an HP 853A Spectrum Analyzer Display is being used.

The resolution bandwidth control circuit has three functions: First, it provides bandwidth-filter-control current to the PIN diodes on the Bandwidth Filter assemblies (A11 and A13). Second, it provides current to the sweep generator current source (via the AST line) to control the automatic sweep time circuit as a function of resolution bandwidth. Third, it switches in capacitance to the video filter to provide video filtering as a constant percentage of resolution bandwidth.

The sweep attenuator circuit attenuates the sweep ramp to the Frequency Control Assembly A7 in proportion to the FREQ SPAN/DIV selected. It also provides current to the sweep generator current source (via the AST line) to control the automatic sweep time circuit as a function of the FREQ SPAN/DIV control setting. Note, the sweep ramp passes through the Marker Assembly A8 before being attenuated by the sweep attenuator.

Sweep Generator

The sweep generator circuit comprises the current source, the buffer amplifier, the comparator, and the retraceout buffer amplifier. A simplified schematic is shown in Figure 8-34.

When AUTO sweep is selected, the voltage ramp is generated as follows: The ramp begins when the dead time capacitor (comprising C10 and C11 in block L) charges to about +1.2 V through R44. This turns Q33 on and drives pin 2 of the comparator (block H) below +2.78 V . The output of the comparator then rises to about +14 V , reverse biasing reset-diode CR2 (block I).

FIGURE 8-34. SIMPLIFIED SCHEMATIC OF SWEEP GENERATOR IN AUTOMODE

With CR2 off, the current source begins charging the timing capacitor (C3 and C4, block I). As the timing capacitor charges, the output of the buffer amplifier increases linearly. Transistor 433 is on and its collector voltage is about +0.5 V . The voltage at U 1 pin 2 is mainly established by sweep voltage divider R29, R39, and R47*. (Components VR1, CR4, and R40 feed back some of the comparator's output to pin 2 and act upon the divider. These components have been omitted to simplify the model; see block L on the main schematic.)

When the ramp voltage reaches +5 V , the U1 pin 2 is approximately +2.78 V . Consequently, the comparator's output swings to about -4 V . This negative change reverse biases CR6 and turns 433 off. Resistors R42*, R39, and R29 form a divider that, when combined with the feedback loop and the buffer amplifier, sets the ramp voltage at -5 V during the dead time. (Factory selected resistor R42* adjusts the dead time voltage.)

The timing capacitor is discharged by the comparator and quickly reaches -5 V . The ramp remains at -5 V until the dead time capacitor charges to +1.2 V and the sweep cycle is repeated.

Other components in the sweep generator have the following functions: Capacitor C6 speeds up the switching of U1. Capacitor C8 and resistor R33 desensitize U1 from power spikes. Frequency compensation for U1 is provided by C9, feedback compensation by C7. Zener diode VR1, switching diode CR4, and resistor R40 bring U1 out of saturation at the end of the ramp to improve switching time.

FIGURE8-35. SIMPLIFIED SCHEMATICOF FASTISLOW SWEEPTIMEOPERATION

Fast/Slow Sweep Time Operation

Timing capacitors C3 and C4 provide fast and slow sweep operation (refer to Figure 8-35). When a sweep time less than or equal to 1 millisecond per division is selected with the SWEEP TIME/DIV switch, sweep control line ST6 is grounded. This turns sweep dead time switch Q6 (block K) and fast sweep switch Q7 (block J) off. With Q7 off, C3 and C4 are in series; C4 effectively becomes the timing capacitor. With Q6 off, +15 V at R46 reverse biases CR9 and CR8, switching C10 out of the dead time circuit. Capacitor C11 now sets a short dead time of about 0.4 millisecond.

In sweep times greater than or equal to 1 millisecond per division or in automatic sweep, control line ST6 is open, turning both Q6 and Q7 on. Transistor Q7 grounds C3 and it becomes the timing capacitor. Transistor Q6 forward biases CR8 and CR9, paralleling C10 and C11. The dead time is effectively established by C10 at about 8.0 milliseconds.

Pulse Shaper (M)

The pulse shaper circuit (block M) consists of an FET switch, a Schmitt trigger, a differentiator, and an emitter follower (see Figure 8-36). Field-effect transistor Q56, and its associated components, disconnects the base of 435 during the sweep cycle to prevent the Schmitt trigger from firing during a sweep. Transistors 434 and 435 make up the Schmitt trigger. Transistor 435 is normally off; 434 is conducting. On the positive portion of the input signal (either video or line), 435 is driven into conduction, turning 434 off. The switching speed of 434 and 435 is increased by feedback (between the collector of 435 and the base of 434) through C13 and R58.

When 435 switches on, the negative change at the collector is differentiated by C14 and R60 and coupled through Q36 to the emitter of 433. The negative pulse causes 433 to turn on. Zener diode VR1 switching diode CR5, and resistor R41 keep 433 on while the ramp is generated. When the ramp is completed, the circuit returns to its dead time state until another negative trigger pulse begins a new sweep cycle.

FIGURE8-36. SIMPLIFIEDSCHEMATIC OF VIDEO, LINE, AND AUTO TRIGGER MODES

Free Run

During the FREE RUN (internally triggered) mode, the trigger switch grounds the sync line, which removes the pulse shaper (block M) from the circuit. At the same time, the switch applies +15 V through the trigger (TRIG) line to voltage divider R52 and R53 (block L). This divider sets the voltage at the cathode of CR1O at approximately +1.4 V . Since the voltage drops across CR1O and CR6 are equal but opposite, they cancel. For this reason, the base of 433 is also about +1.4 V . Transistor 433 turns on and drives the comparator to about +14 V , initiating free run operation as described in the sweep generator section.

Video Triggering

When the TRIGGER switch is in the VIDEO position, the trigger line is open and the video signal (from the Vertical Driver/Blanking Assembly A15) is applied to the pulse shaper (block M) through the sync line. With the trigger line open, Q33 is held off until a negative pulse turns 433 on and begins the sweep cycle outlined in the sweep generator description. At the end of the sweep, 433 is again held off until the next pulse.

Line Triggering

The sweep may be synchronized with the ac line voltage in the same manner as described for video triggering. With the TRIGGER switch in the line position, the ac line from the mainframe power transformer is connected
to the Pulse Shaper. Resistor A16R2 and capacitor A16C8 on the motherboard attenuate the ac line signal to approximately 1V peak-to-peak (at the base of 435) and filter line spikes.

Single Sweep Triggering and Abort

When the TRIGGER switch is in the single sweep position, the sync line is grounded and the single line open. Transistor 433 is held off by the voltage developed across CR10 and R53. The voltage at the collector of Q33 is at +10 V , putting the emitter of Q 38 at +9.4 V . This charges C 15 to +2.4 V through voltage divider R 48 and R49.

A sweep is initiated when the trigger switch is set to the spring-loaded SINGLE position and +15 V is applied to the single trigger switch (block N). When 437 turns on, a negative pulse is produced at the emitter of 433 due to voltage stored by C15. This pulse turns 433 on and starts the sweep cycle.

The sweep may be aborted (reset to -5 V) by pressing the single sweep switch while the sweep is in progress. During the sweep, the collector of 433 is at +0.5 V . This puts the emitter of Q 38 at OV and charges C 15 to -4 V through voltage divider R48 and R49. Now when +15 V is applied to the single trigger switch (block N), 437 turns on and a positive pulse appears at the emitter of 433. Consequently, 433 turns off and the sweep is aborted.

Manual Sweep

Manual sweep control is obtained when the SWEEP TIME/DIV switch is set to MAN. In the manual position, ST7 is open (see Figure 8-37). Transistor Q40 turns 433 on by supplying current to its base and 439 acts as a

FIGURE 837.MANUALSWEEPMODE, SIMPLIFIEDSCHEMATIC
switch that connects R34 to the comparator. Turning the manual sweep control (A2R4) adjusts the voltage at the control side of R34.

Operational amplifier U1, operating in a linear mode, fixes the voltage at pin 2 by feedback through CR2, the buffer amplifier, and R29. This fixed voltage is applied through Q39 to one side of R34. As the manual sweep potentiometer is adjusted, the voltage across R34 changes, varying the current supplied to pin 2 of the comparator. This current is forced through R29 and develops the voltage offset that varies the ramp voltage.

Current Source (F)

The current source provides a constant charging current to the timing capacitors (block I) at a rate selected by either the SWEEP TIME/DIV switch or the automatic sweep time (AST) line.

Temperature compensation of the current source is accomplished by the nominal +10 V supplied by the temper-ature-dependent power supply (block P). The 1 MS (one millisecond) adjustment fixes a voltage at pin 3 of U2a, while the 5 MS adjustment varies the feedback around U2a.

During calibrated sweep time settings, the Sweep Cal. Switch (Q11 in block G) is off. This allows the feedback ratio of U2a, the voltage source, to be varied by grounding different input resistor combinations (R21 through R24) with the SWEEP TIME/DIV switch. In the automatic sweep mode, Sweep Cal. Switch Q11 is turned on by current through Q9 and R25. The feedback ratio now varies with the resistors attached to the AST line and switched in by various settings of the FREQ SPAN/DIV and RESOLUTION BW switches. When the video filter is on, it also affects the feedback and, therefore, the sweep time, by varying the voltage at the emitter of Q8a.

The voltage applied to the emitter of Q8a from voltage source U2a is proportional to the logarithm of the sweep time. Transistor Q8a converts this voltage to a current directly proportional to the sweep time, which charges the timing capacitors in the buffer amplifier. A current limiter composed of Q5 and R15 limits the automatic sweep time to about 1.5 milliseconds per division.

Xtal Resolution Bandwidth Control (B)

When the RESOLUTION BW switch selects a crystal filtered bandwidth ($\leq 30 \mathrm{kHz}$), bandwidth control line BW5 is open and pulled to -0.5 V by Q12 and Q10 in the Xtal PIN Driver Buffer (block D). As a result, four simultaneous changes occur in the analyzer: the crystal poles on the Bandwidth Filter assemblies are activated, the LC poles are disabled, the crystal bandwidth-control current is established, and the automatic sweep time is scaled for the crystal bandwidths.

Control line BW5, from the RESOLUTION BW switch, is routed to the Bandwidth Filter assemblies (A11 and A13) where it activates the crystal filter poles. (Refer to Bandwidth Filter Assembly No. 1 All, Circuit Description and Schematic.) It reverse biases A11/A12CR2 (block D) and A11/A13CR13 (block G). At the same time, A11/A13Q3 and A11/A13CR8 (block D), and A11/A13Q6 and A11/A13CR15 (block G) are turned on.

The LC poles on the Bandwidth Filter assemblies are disabled by a positive voltage on the BW7 control line. Voltage for BW7 is generated in the LC PIN Driver Buffer (block C) on the Sweep Generator/Bandwidth Control Assembly A9. Control line BW5 turns A11/A13Q22 off, allowing BW7 to be pulled to a level greater than +10 V by A11/A13CR17 and A11/A13R105. This turns off the LC filter sections.

Crystal filter bandwidth is determined by the current on BW6. Transistor Q13 in the Xtal PIN Driver Buffer (block D) is turned off, allowing Q14 to establish the bandwidth control current. Depending on the setting of the RESOLUTION BW switch, one of the bandwidth control lines (BW1 through BW3) is at +15 V while the remaining two are open and pulled to a negative voltage. The positive voltage turns on one of the transistor switches in the Xtal Resolution Bandwidth Control (Q42, Q44, or Q46 in block B). The current on BW6 is now established by one of the factory selected resistors, R109, R110, or R111, and the setting of R72 (the crystal bandwidth adjustment, block D). When the 30 kHz bandwidth is selected, no current is drawn through Q14 and the bandwidth-control PIN diodes (A11/A13CR4 and A11/A13CR12 on the Bandwidth Filter assemblies) are off.

The automatic sweep time (AST) is determined by combinations of resistors switched into the current source circuit by front panel settings. (See the Current Source circuit description.) These resistors are located in blocks A, F, 0 , and the VIDEO FILTER switch A2S2. The contribution of the RESOLUTION BW occurs in the LC Resolution Bandwidth Control (block A). Resistors R117, R119, R121, and R122 are switched into the AST circuit by 4 31, Q26, Q27, and Q28, respectively, when the proper control line is activated. Control lines BW2 through BW4 and the noise measure position of the VIDEO FILTER switch apply +15 V to their respective control lines. The same lines are used to control sweep times in both crystal and LC modes. Since the same resistors are used to establish the automatic sweep time for both crystal and LC modes, scaling is necessary. To scale the sweep time, Q24 in block A switches R75 in or out of the AST circuit. During crystal filter operation, BW5 turns Q24 off and removes R75 from the circuit, allowing a longer sweep time.

LC Resolution Bandwidth Control (A)

When an LC filtered bandwidth ($\geq 100 \mathrm{kHz}$) is selected, control line BW5 is pulled to +15 V by the RESOLUTION BW switch. This results in four simultaneous changes in the analyzer: the LC poles on the Bandwidth Filter No. 1 and No. 2 Assemblies A11 and A13 are activated, the crystal poles are disabled, the LC bandwidthcontrol current is established, and the automatic sweep time is scaled for LC bandwidths.

With +15 V routed to the Bandwidth Filter assemblies by BW5, A11/A13Q3, A11/A13Q6, A11/A13CR8, and A11/A13CR15 are turned off and A11/A13CR2 and A11/A13CR13 are on. (Refer to Bandwidth'Filter Assembly No. 1 A11, Circuit Description and Schematic.) This blocks any signal from passing through the crystal filter sections. Transistor Q13 (on the Sweep Generator/Bandwidth Control Assembly A9, block D) turns on and control line BW6 is pulled to -4 V , which further inhibits the crystal filters.

The defeat of the crystal filter poles and the application of bandwidth-control current on the BW7 line activates the LC filter sections. The LC bandwidth is controlled by the current through BW7 to the Bandwidth Filter assemblies. Transistor 422, in the LC PIN Driver Buffer (block C), is turned on, allowing the current on BW7 to be controlled by 421 . The position of the RESOLUTION BW switch, via BW2 through BW4, turns one of the transistor switches (Q26, Q27, or Q31) in the LC Resolution Bandwidth Control (block A) on. The band-width-control current on BW7 is now determined by a factory selected resistor, either R116, R118, or R120, and R85 (LC bandwidth adjustment, block C). If the 100 kHz bandwidth is selected, 422 is turned on, but BW7 is pulled up to greater than +10 V through R106. The bandwidth-control PIN diodes (A11/A13CR3 and A11/ A13CR11 on the Bandwidth filter assemblies) are reverse biased by BW7.

Automatic sweep time scaling for LC occurs when BW5 turns Q24 (block A) on. This switches R75 into the AST circuit and decreases the sweep time. The effect on the automatic sweep time is determined by the parallel combination of R75 and the resistor (R117, R119, R121, or R122) selected by the active control line.

Video Filter

The video filter comprises control A2R6, RESOLUTION BW switch A2A1S5, and eight capacitors on the Sweep Generator/Bandwidth Control Assembly A9 (blocks A and B). VIDEO FILTER control A2R6 varies the resistance of the RC filtering network that it forms with the video filter capacitor. The RESOLUTION BW setting determines which video filter capacitor will be switched in by the transistor switches (Q41, Q43, Q45, and Q47 in crystal bandwidths, and Q54, Q32, Q30, and Q55 in LC bandwidths). Increased capacitance is switched in to provide increased filtering as the bandwidth narrows.

The output of the Xtal PIN Driver Buffer (BW6) is applied to the bases of Q42, Q44, Q46, and Q47 via CR18 through CR21. This holds the transistors off and prevents the crystal mode, video filter capacitors from being switched into the circuit during LC mode operation. It is not necessary to switch the LC mode video filter capacitors out of the circuit during crystal operation; their values are so much smaller that they are effectively out of the circuit.

Switch A2S2 applies maximum video filtering for noise measurements by turning on Q55, which switches in C28.

Sweep Attenuator (0)

The Sweep Attenuator circuit attenuates the full span sweep (-5 V to +5 V), before it is applied to the Frequency Control Assembly A7, as a function of the FREQ SPAN/DIV setting. The circuit also varies the automatic sweep time (AST) as a function of the frequency span. Attenuation takes place in the 1-2-5-10 sequence that results in the FREQ SPAN/DIV control sequence. The circuit has two voltage dividers separated by U3, the unity gain sweep buffer. The input divider provides divide-by-two and divide-by-five; the output divider provides divide-by-tenand divide-by-one-hundred.

To select any of the input dividers, $\mathbf{+ 1 5 V}$ is applied to activate the associated control line. For example, if FS3 is activated, Q51 and Q50turn on and ground R102 and R73. Resistor R102 becomes part of the AST circuit; R73 forms a divider with R70 that results in the ramp voltage being divided by two. The divided ramp is then applied to the sweep buffer.

The dividers at the output of the sweep buffer have reversed control-logic. That is, they are normally connected to +15 V by the FREQ SPAN/DIV switch and open (0V) when selected. Transistor Q19 is a gate to drive Q17. When FS4 and FS5 are connected to $+15 \mathrm{~V}, \mathrm{Q} 19$ is off. As a result, Q17 is on and opens a path for the sweep buffer's output to P1-12. No attenuation takes place. If either FS4 or FS5 opens, Q17 shuts off. When FS4 opens, Q16 turns on and a divide-by-ten (R81/R82 + R83) is provided. When FS5 opens, Q15 turns on and provides a divide-by-one-hundred (R81 + R82/R83).

Automatic sweep is varied as a function of frequency span by transistors Q53, Q51, Q49, Q29, Q25, and Q23. Transistor A29 is switched on in narrow spans ($<1 \mathrm{MHz} / \mathrm{div}$) when the YIG FM coil is swept. All of these transistors act as switches connecting resistors from the AST line to ground. This varies the sweep time. (See the Current Source circuit description.) As the FREQ SPAN/DIV is narrowed, the sweep time is decreased.

Sweep Offset

Transistor Q20 in the sweep attenuator (block \mathbf{O}) makes it possible to offset the sweep ramp in response to the position of a start-center (ST-CTR) switch. This capability is not required in the HP 8559A. So, the +15 V from the Motherboard Assembly A16 is applied to Q20, holding it off. The circuit is always in the center position.

SWEEP GENERATOR/BANDWIDTH CONTROL ASSEMBLY A9, TROUBLESHOOTING

CAUTION
 When making measurements at or near test points, be careful not to short adjacent points or circuit components together.

Auto Scan Time (AST) Accuracy: Observe front panel switch positions to help isolate the problem area. Auto scan time can also be affected by circuits on the Marker Assembly A8 and the VIDEO FILTER control position. If the AST ŋroblem is band related, the Marker Assembly A8 is the most probable cause. If the AST problem is bandwidth or scanwidth related, the most probable cause is the Sweep Generator/Bandwidth Control Assembly A9. The greater the load placed on the AST line, the greater the current demand. The greater the current demand, the faster the sweep rate.

Failure to Sweep: Check the +10 V (nominal) supply. If it is greater than +11.5 V , the sweep will be inhibited.

If the +10 V (nominal) supply is low, check the Bandwidth Filter No. 1 and No. 2 Assemblies A11 and A13 for a shorted crystal filter pole. Test from A11/A13TP2 to ground and A11/A13TP5 to ground with an ohmmeter to locate the possible short.

Begin troubleshooting the sweep generator by determining if the Current Source (block F) is operating and if the Comparator (block H) will toggle.

The inability to trigger retrace, during the beginning of a sweep, is commonly caused by the failure of U 1 or CR7.

Bes]e

TABLE8-6. SWEEP GENERATOR/BANDWIDTH CONTROL ASSEMBLY A9, REPLACEABLEPARTS (10F 4)

Reference Designation	HP Part Number	$\begin{aligned} & c \\ & c_{0} \end{aligned}$	Oty	Description	Mfr Code	Mfr Part Number
As	01559-600n3	1	1		гвяз	09559-60.983
${ }_{\text {a }}^{\text {apcl }}$			3			
				ction	cinco	(12.3020
a9c6					28498	${ }^{3160-3466}$
			,			
	(in	${ }^{3}$:			${ }^{\text {dit }}$
${ }_{\substack{\text { A9ccil } \\ \text { accie }}}$			=	capaction-xxo		
					${ }_{\substack{23900 \\ 72130}}^{290}$	
A9Cis	0160-3094				28880	011.60-3094
					$5: 8.89$	
		${ }^{8}$				
${ }^{\text {anc } 22}$	$0100-0.168$				${ }^{\text {2namo }}$	${ }^{01760.0169}$
${ }_{\substack{\text { a }}}^{\text {afcci }}$				comer		
						(2160-0.155
${ }_{\text {a }}^{\text {Apcrez }}$	(160-1134					
			:		$\underset{\substack{\text { 20409 } \\ \text { 20as }}}{ }$	${ }_{\text {19012 }}^{19050}$
	19910950 $\substack{1901050 \\ 1901-0.50}$	3_{3}^{3}				
${ }_{\text {afcrs }}$	1991-0050	3			23480	1971-0050
(encri	(191-0.059	3_{3}^{3}		Mrobe surchrng piv 260 mazas dn 35	cient	
	(1901-0.050	宷			(ention	
${ }_{\text {ata }}^{\text {Afre }}$	${ }^{1901-0050}$	3				
and	边 $11.01-0.0050$	3				
${ }_{\text {and }}^{\text {Apcria }}$	$1901-0000$ $1901-0050$ 100	3_{3}^{3}			${ }_{\substack{\text { 2a400 } \\ \text { 20803 }}}$	${ }^{12012} 1200050$
	- 1901 -00050	3				- 1901 1-0050
	(1901-0.0050					
				diode sutiching bju 20ora zns do-35		1931-2
		3			cisation	
	1991-0.050	3		Dioue silchlng gil	${ }_{\substack{\text { 20490 }}}^{\text {2680 }}$	- 129120.0050
	(1901-0050	3				- 1901 10050 10050
		$\stackrel{?}{2}$				(102198
		\ldots	\%			
${ }_{\text {apab }}^{\text {apa }}$		$?$				${ }_{\text {cose }}^{1054} 10071$
		\cdots	1			
A8910	1854-0071			TRANSISTOR NPN SI PD=300m4 FTT=200ntz		1854-0871
			${ }_{5}^{2}$	 		

TABLE8-6. SWEEP GENERATOR/BANDWIDTH CONTROLASSEMBLY A9, REPLACEABLEPARTS(2OF 4)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A5016	1655-0382	E		IRANSTSTITR J FST P-CHAN D-MODE SI	- 17480	1855-0382
A9Q17	1055-0.02	2		TRANSISTOR J-FET P-CHAN D-MODE SI	28480	1955-0082
APQ18 A9219	$11554-0404$ $1853-0020$	a 4		1RANSTSTGR ${ }^{\text {NPN }}$ SI $10-18 \mathrm{PD}=360 \mathrm{MW}$ TRANGISTOR PNP SI PD=300MW FT $=150 \mathrm{MH} 7$, 9489	$1554-0404$ $1858-0020$
APD219 Asq23	$1853-0620$ 1353	4			29480	$1858-0020$ $1553-0320$
A9Q23	1854-0404	0		TRANSISTOR NPN ST TO-18 PDV 368 EL	? 2488	18.5-0464
ASRES A 223	1954-0071	7			29380	1654-0371
A7223	1055-0082	2		TRANGISTOR J-FET P CHAN D MODE SI	20480	1955-0082
Aspeat	$1854-0371$ $1855-0082$	7		TRANSISTCR TRAN SI P PD	. 2480	$11554-8371$ $1855-0082$
A) 026	15:54-0371	7		TRANGTSTOR NPN SI PD=303MW [T= 2.J3MHZ	c 8480	1654-0971
A9Q27	1954-0071	7		TRANSISTOR NPN SI PD $=360 \mathrm{MW}$ FT=2G日M ${ }^{\text {S }}$	28.480	135.4-0071
A9828	1854-0071	7		TRANSISTSJR NPN SI PD=30nM.4 $\mathrm{FT}=200 \mathrm{mH}$ \%	. 8480	1654-0071
A7029	1855-0414	4	2	TPANSISTOR J-FLT $2 N 4393$ N-CHAN D-MODE	04713	2N4393
AFQ33	18540371	7		TRANSTSTGR NPN $51 \mathrm{PD}=303 \mathrm{MW} \mathrm{FT}=203 \mathrm{MLIZ}$	28480	1854-3071
A9031 A 933	$1854-0071$ $1054-0071$	7		TRANSISTOR NPN SI $\mathrm{PD}=30 \mathrm{CMW} \mathrm{FT}=20 \mathrm{CMHZ}$	28480	1854-0071
A9832	1354-0071	7		TRANSISTRR NPN SI PD=300KLW :T $=203 \mathrm{MH}$	\% 89480	10554-0.371
A)934	15154-0371	7		TRANSTSTGR NPN SI PD=33aKW ! T= 203MMZ	8480	15554-0.371
A9035	1854-0071	7		TRANSISTOR NPN S1 PD=3COMU FT $=200 \mathrm{MH}$ \%	30400	1054-0071
A8036 A9037	$1853-0320$ $1055-0417$	4			. 84800	1853-0320
A9037 A 938	$1855-0417$ $1854-0404$	7 0			28480 78480 88480	$1855-0417$ $1854-0404$
A9039	1654-0671	7		TRANSTSTOR NPN SI PD $=300 \mathrm{MW} \mathrm{FT}=2 \mathrm{COMHz}$	28480	185:4-0071
A3Q43	1853-3320	4			28480	1553-0020
A9Q41	1854-0071	7		TRANGISTOR NIN SI PD $=300 \mathrm{ML}$ FT $=200 \mathrm{M} / 17$	111400	105.4-0071
A9842	1354.0071	7		TRANSTETGR NPN SI PD=300NL $5 T=200 \mathrm{MH}$	28.483	1654-0071
A9G43 A9844	1854-0071	7		TRANSISTOR NI'N ST PD $300 \mathrm{MW} \mathrm{FT}=20 \mathrm{GMiNZ}$	28490	1854-0071
A7Q45	1854-0071	7		TRANSISTOR NIN ST PD $300 \mathrm{MW} \mathrm{FT}=200 \mathrm{M} 2 \mathrm{Z}$	20480	1854-0071
AS846 A9647	1854 $1854-0371$ 1854	7			68480 26480 88480	1854-0371
A9Q4]	1654-0971	7			78480	1654-0071
A9849	1854-0071	7		TRANGIGTOR NPN SI PD=300kL $\mathrm{FT}=20 \mathrm{MmHz}$	28480	1854-0071
ASLS 3	1654.0071	7		TRANGTSTUR NPN SI PD=303rM FT 203mbl	,04880	1:554-0371
A9RS 1	1854-0071	7		TRANSISTOR NPN ST PD 300 MW FT=200MHZ	28480	195.4-0071
A945.2	1854.0071	7		TRANSISTCiR NPN SI PD=300riW FT $=200 \mathrm{mH}$	28480	15554-0071
A9853	1854-0071	7		TRANSISTOR NPN SI PD $=300 \mathrm{MW}$ FT $=200 \mathrm{MH} 7$	26480	1854-0071
ASGS 4	1054-0071	7			26480	1654-0071
A9Q55	1854-0071	7		TRANSTSTER NPN ST PD $=300 \mathrm{MW}$ FT $=200 \mathrm{mlit}$	28480	185.4.0071
ASQ56	$1855-0414$	4		TRANSTSTOR J-FET 2N4393 N CAGA D-NADE:	04713	2N4393
A9R1	0698-3450	9	1	RESISTOR 42.2k 1%, 125w F TC $=0+100$	24546	C4-1/8-70-4222-F
A9R3	0757-0277	0	4	RESISTUR $3.16 \mathrm{~K} 1 \%$, 125w F TC $=0.103$	24546	C4 1/8-T0-3161 F
APR4	0757-0419	-	1	RESISTOR 6011%, 125 W F $\mathrm{TC=0+-100}$	24546	C4 1/8-TB-681R-F
A9RS	0757.0459	8	4	RESISTOR S6.EK 1 x , 125W F TC $00+100$	245,46	C4-1/8-T0-5622-F
A9R6	0698-3152	B	1	RESISTOR 3.48K 1%, 125 F F TC=0 + 100	24546	C4-1/8-T0-3481-F
A9R7	0757-0442	9			24546	C4-1/8-Ta-1092-F
A9R8	0755-0442	$\stackrel{7}{7}$		RESISTOR $10 \mathrm{~K} 1 \%$, 125 F F TC=0 - 100	24546	C4-1/8-T0-1062-F
A7R9	0757.0444	1	$?$	RESISTOA 121 K 1 x 12EW F TC $=0+100$	24546	CA-1/B-T0-1212-F
A9R10	2100-3109	2	1	RESISTOR TRMR 2 K 10x C SIDE ADJ 17 TRN	02111	43 P ? 02
AYR11	0698-3457	6		RCSISTOR 316k 1\% 125w F TC=0 100	23480	3698-3457
A9R 12	10698-3446	3	1	RESISTOR 383 1\% , 125w F TC: $=0+-100$	24548	C4-1/8-T0-383R-F
A9R13	2100-3052	4	1	RESTSTGR -TRMR 5010% C SIDE ADJ 17-TRN	02111	43 P 500
APR 14	06,98-3442	9	1	RESISTOR 2371%, 125w F TC=0+-100	24546	C4 1/8-T0-237R-F
APR15	0757-0424	7	1	RESISTOR $1.1 \mathrm{~K} 1 \%$, 125w F TC=0 + 100	24546	C4-1/8-T0-1101-F
A9R16	0757-0279	0		RES ISTOR 3.16k 1\% .125w C TC=0+-100	24546	C4-1/8-T0-3161-F
A9R17	0698-3444	,	1	RESISTIOR 3161%, 125W F TC $=0+-100$	24546	C4-1/8-T0-316R-F
A9R18	0757-0280	3	1	RESISTOR $1 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-1001-F
A9R19	0757-0346	2	2	RESISTOR 101% 125w F TC=0 +-100	24546	CA-1/8-T0-10R0-F
A9R20	0757-0465	6	11	RCSISTOR 100 K RESISTOR 13	24546	C4- 1/8-T0-1003-F
A9R21	0698-3451	0	2	RESISTOR 133K 1\% . 125 W F TC= $=0+100$	24546	C4-1/8-T0-1333-F
A9R24	0698-3194	3	3	RCSISTOR 20K . 25 \% . 125 W F TC $=0+50$	03888	PMES5-1/8-T2 2002-C
A9R25	0698-7794	2	3	RCSISTOR 10 K . 25 T . 125 W F TC $=0+-100$	19731	MF4C1/8-T0-1002-C
A9R26	0757-0289	2		RESISTOR 13.3k 1%. 125 W F T $\mathrm{C}=0+-100$	19701	MF4C.1/8-T0-1332-F
A9R27 A9R28	$\begin{aligned} & 0757-0199 \\ & 0757-0465 \end{aligned}$	3 6	6	RESISTOR 21.5K $1 x$. 125 W F TC $=0+-100$ RESISTOR 100 K ix . 125 W F TC=0+-100	24546 24546	$\begin{aligned} & \text { C4-1/B-T0-2152-F } \\ & \text { C4-1/B-T0-1003-F } \end{aligned}$
A9R29	0698-6360	6	5	RESISTOR $10 \mathrm{~K}, 1 \chi$. $12 \pm W F$ TC=0+-25	28480	0698-6360
A9R30	0698-3934	4	1		20480	0698-3934
A9R31	0698-7794	2		RESISTOR $10 \mathrm{~K} .25 \times$. 125 W F TC $=0+-100$	19701	MF4C1/8-T0-1032-C
A9R 32 A9R33	$0683-3355$ $0683-3355$	2	3	RCSISTOR 3.3M 5X .25W FC TC $=-900 /+1100$ RESISTOR 3.3M 5X .25W FC TC $=-900 /+1100$		CB3355
A9R33 A9R34	$0683-3355$ $0757-0289$	2			01121 19701	C83355 ${ }_{\text {MF4C1/8-T0-1332-F }}$
A9R35	0757-0442	9			24546	$\mathrm{C} 4-1 / 8-\mathrm{T} 0-1002-\mathrm{F}$
A9R36	0757-0465	6		RESISTOR 100 K 1 x . 125 W F TC. $\times 0+-100$	24546	C4-1/8-T0-1003-F

TABLE 8-6. SWEEP GENERATOR/BANDWIDTH CONTROL ASSEMBLY A9, REPLACEABLE PARTS (3 OF 4)

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
AsR33?	0757-0465	6		RCSISTOR $100 \mathrm{~K} 1 \%$, 1254 F $T C=0+-166$	24546 24546	$\mathrm{C} 4-1 / 8-\mathrm{TO} 1063 \mathrm{~F}$
A9R38 A9R39	0757-0458 $0698-8360$	7		RESTSTGR $51.1 \mathrm{~K} \quad 1 \mathrm{X}, 125 \mathrm{~W}$ F $\mathrm{TC}=0+-103$ RESISTOR $10 \mathrm{~K}, 1 \mathrm{X}, 125 \mathrm{~W}$ TC $0+-25$	24546 28480	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{T})-5112-\mathrm{F} \\ & 0693-6360 \end{aligned}$
A9R39 ASR43	0698-6330 $0757 \cdots 0442$	6 9		RESISTOR 10 K RESISTOR 13 K iz	26480 24546	$\mathrm{C} 4-1 / 8-\mathrm{T} 10-1032-F$
A9R41	06,98-3160	8	3	RESISTOR 31,6K 1\% , 125w F TC=0+-16G	245.46	C4 1/8-TC-318.2 F
A5R42x	0698-3935	5	1		28480 24546	$3698-3735$
A9R43	$0698-3160$ $3693-3260$	8			245.46 882800	$\begin{aligned} & \text { C4-1/8-T0-3162 F } \\ & 3698-3260 \end{aligned}$
AFR44 AFR 45	$3693-3260$ $6757-0465$	6	2	RESTSTOR RESISTOR 160 K R 1\% R	68480 24546	
ASR 46	3757-0439	4	3		24546	C4 1/8-T0-6.811-F
ATR47*	$0698-4037$ $3693-6845$	1	2		240.46 31121	$\mathrm{C} 4-1 / \mathrm{B}-\mathrm{TC}-4 / . \mathrm{R} 4-\mathrm{F}$ $\mathrm{CB} / 3 \mathrm{~B} 45$
AFR 48 A9R49	$3693-6845$ $0698-3457$	1	1		31121 23480	CEABA5 c69a 3457
ASRS0	3757-0439	4			24546	C4 $1 / 8-19-6811-\mathrm{F}$
A ${ }^{\text {PS }} 1$	6698-4C37	0		RESIGTOR 46, 4 1\% , 1254 F TC=0+-160	24546	C4 $1 / 8$ T6-4684-F
A9RS2	0598-3160	${ }^{8}$		RESISTOR 31.6 K 1\% 1% 125, \% TC $=3+139$	24546 34546	
A9RS3 AVRS4	0757-0279 $0757-0442$	0			24546 24546	
A7RSS	0757-0464	5	1	RESIGTOR 9C. 9 K 12.125 L F $\mathrm{TC}=0+-166$	24,546	C4-1/8-T0-7692-F
A\%R56	3757-3279	3		RESTSTOR 3.16K 1%, 12SW F TC $=3+103$	24546	C4 1/8-T3-3161-F
A9R57	6757-0439 $3757-0469$	4 1 1			245.46 24546	C.4-1/0-T0-6811-F C4 $1 / 8-70-6192 \cdots \mathrm{~F}$
APRSE A9RS9	$3757-0463$ $6757-0442$	1		RESTSTOR 61.9 K 12.125 W F TC $\mathrm{T}=0+-133$ RESISTOR 1 Eh 12.125 W TC $=0+100$	24546 24546	C4 C4 C4 1/8-T0-619-16-F CA
AsR69	3757-9442	$?$		RESISIOR $13 \mathrm{~K} 1 \%$, 125, F F TC $=04-109$	24546	C4 1/8-T3-1092-F
A9R61	0757-0465	6		RESISTOR 100 K 1\% , 125 F F TC=0t-100	2.45 .46	C4 1/8-T6 1003-F
ASR62	3757-0465	6			24546 24546	$\begin{aligned} & \mathrm{C} 4 \mathrm{1} / 8-\mathrm{TO}-1093-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{T} 0-1063-\mathrm{F} \end{aligned}$
A9R64 A R 65	0757-0465 $0757-0459$	6			24546 24546	C4- $1 / 8-\mathrm{T} 0-1063-\mathrm{F}$ $\mathrm{CA} 1 / 8-\mathrm{TO}-5622-\mathrm{F}$
A9R66	0757-0442	9		RESISTOR 10 K 12.125 W F TC $=0+100$	24546	C4-1/8-T0-1062-F
A9R67	3690-3154	3	1	RESIGTGR 4.22K 1%, 125\% F $10 \times 3+100$	24546	C4 1/8-73-4221-F
A9R68 ASR69	$0698-3457$ 0757 07440	6 7	3 1		28480 24546	$\begin{aligned} & 06.98-3457 \\ & C 4-1 / 8-10-7531 \quad F \end{aligned}$
ASR69 A9R70	07570440 $0698-6360$	7	1		24546 28480	$\begin{aligned} & C 4-1 / 8-T 0-7531 \mathrm{~F} \\ & 6692-6360 \end{aligned}$
A $/ 2 \mathrm{R} 71$	0757-0442	9		RESISTCR $13 \mathrm{~K} 1 \%$, 12 ESW F TC $=0+-109$	24546	C4 1/8-73-1032-F
AFR72	2160-2856	8	2	RESISTOR-TRMR 10 K 10\% WW SIDE-ADJ 26 - TRN	02660	3810r-103
A 2873 A PR74	$0698-6369$ $0757-0459$	6 8 8		RESTSTOR RESISTOR R	$28+80$ 245.46	$\begin{aligned} & 0678 \cdot 6360 \\ & C 4 \quad 1 / 8-T B-56.22-F \end{aligned}$
AYR74 A 2 R	$0757-0459$ $0698-7794$	8		RESISTOR SESISTOR RES R	24546 19731	$\begin{aligned} & \text { CA } 1 / 8-T B-56 \sin -F \\ & \text { MFAC1/B-T3-1002-C } \end{aligned}$
A9R76	0698-3238	1	1	RESISTOR 2.5K .25\% . 1254 F TC=0+-50	28480	0698-3238
ASR77	07570465	6		RESTSTER 133K 12.1254 F $1 \mathrm{C}=3+-13 \mathrm{a}$	24546	C4 1/8- ${ }^{\text {co-1033-F }}$
A9R78	6698-8827	4	3	RESISTOR $1 \mathrm{M} 1 \%, 125 \mathrm{~W}$ F TC=0,-106	29480	069a-8827
ASR79	0690-6827	4		RESSISTGR 1M 1% 12SU F TC-3+-130	28480	3698-ER27
A9R80	0757-0465	6		RESISTOR 100 K 1\% , 125W F TC=0+-100	24546	C4-1/8-T0-1063-F
A7R31 A?R82	3698-6363 $0698-6362$	6	1		6.8483 22480	$0698-6360$ 0692
A9R83	0698-7912	6	1	RESTSTGR $111.1 \quad 25 \%$, 125W F TC $=0+100$	19701	MFAC1/8-T0-111R1-C
A9R84	0698-7421	2		RESISTOR 40 K . 258 \% 1254 F $\mathrm{TC}=0+-100$	19701	Mr AC, $1 / 8-\mathrm{TO}$ - $4 \mathrm{CO2-C}$
A9R85	2130-2850	3		RESTSTICR-TRMR 12 K 13\% LU SIDE-ADJ 20 TRN	32663	3813P-133
A9R86 ASR87	0757-0447 $9757-0461$	4 2 2	1		24546 24546	
A9R88	0757-0442	9		RESISTOP 10K 12.125% F TC-0\%-160	24.546	C4 1/8-T0-1602 F
A9R87	0757-0442	9		RESISTAR $10 \mathrm{~K} 1 \%$. 125 LW F TC $=00 \% 109$	24546	C4 1/B-T0-1032 F
A9R90	0757-0289	2		RESISTOR $13.3 \mathrm{~K} \quad 12 \quad 1254 \%$ F $\mathrm{CC}=0+100$	19701	Mr 4C1/8-T0-1332-F
A9R91	0683-3355	2		RESISTGR 3.2M 5%, SSL FC TCa $903 / 11100$	31121	cri3355
A9R92	0757-0346	2		RESISTRR 101%, 12SW F TCu 01.160	24546	C4-1/8-T0-1CPC-F
AYR92	2100-3154	7	1	RESISTGR-TRMR 1 K 10 Z C SIDE-ADJ 17-TAN	32111	43 P 102
A9R93	0757-0465	6		RESISTOR $100 \mathrm{~K} 1 \%$, 125W F TC=0 0 - 100	24546	C. 4 1/8-T0-1003-F
A9R94	9757-0199	3		RESTSTLR 21.5 K 1\% , 125W F TC=01-103	24546	C4-1/8-T0-2152-F
A9R95	0698-3157	3	1	RESISTOR 19.6 K 1\% , 1254 F TC=0+166	24546	C4- 1/8-T0-196.2-F
A9R96	0698-3136	8	1	RESISTOR 17.8K 1%, 125 W F TC=3t-100	24546	C4-1/8-T3-1782-F
A9R97	0757-1094	9	1	RESISTOR $1.47 \mathrm{~K} 1 \%$. 125 W F $\mathrm{TC}=0+-100$	24546	C4-1/8-T0-1471-F
A9R98	0757-0289	2		RESISTAR 13.3K 1%, 12SW F TC=0+-100	19731	MFAC1/8-T0-1332-F
A9R99	0757-0199	3		RESIGTOR 21, 5 K 1%, 125 W F TC $=0+100$	24546	C4-1/8-TC-2152-F
ATR 101	0757-0179	3		RESISTUR $21.5 K 12$, 12SW F TC=0 1 - 100	24546	C4-1/8-T0-2152-F
A9R102	8698-3451	0		RESISTOR 133 K 1 x , $125 \pm$ F $T C=0+-100$	24546	C4-1/8-T0-1333-F
A9R103	0757-0199	3		RESISTOR 21.5 K 1 X , 125W F TC=3+100	24546	C4-1/8-T0-2152-F
A9R104	0757-0199	3		RESISTOR $21.5 \mathrm{~K} 1 \%$, 125W F TC $=0+100$	24546 24546	C4-1/8-T0-2152-F
ATR135	0698-0.005	0	1	RESISTOR $2.61 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~F}$ F TC $\mathrm{T}=0+100$ RESISTOR $464 \mathrm{~K} 1 \chi$, 125 F F $\mathrm{TC}=0+160$	24546 28480	$\begin{aligned} & C 4-1 / B-T 0-2611-F \\ & 0698-3260 \end{aligned}$
A9R106	0698-3260	9		RESISTOR RESISTOR 4 R	28480 74546	$\begin{aligned} & 0698-3260 \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-1212-F \end{aligned}$
A9R107	0757-0444	1		RESISTOR $12.1 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/8-T0-1212-F
A9R108	0698-3194	8		RESISTOR 20K , 25\% , 12SU F TC $=0+-50$	03888	PMES5-1/8-T2-2002-C
APR109* A9R110*	0698-3151	7	13	RESISTOR $2.87 \mathrm{~K} 1 \chi$. 125 W F $\mathrm{TC}=0+100$ RESISTOR RES	24546 24546	C4-1/8-T0-2871-F $\mathrm{C} 4-1 / 8-\mathrm{TO}$-1002-F
ASR111*	0757-0458	7	2	RESISTOR 51.1 K 1 x , 125U F TC $=0+-100$	24546	C4-1/8-T0-5112-F
A9R116*	0757-0460	1	2	RESISTOR 61,9K 1z , 125W F TC $=0+100$	24546	C4-1/8-T0-6192-F
A9R117	0698-7421	2		RESISTOR $40 \mathrm{~K}, 25 \%$, 125W F TC=0+-100	19701	MF4C1/8-T0-4002-C

TABLE86. SWEEPGENERATORIBANDWIDTHCONTROLASSEMBLYA9, REPLACEABLEPARTS(4OF4)

FIGURE838. SWEEP GENERATOR/BANDWIDTH CONTROLASSEMBLYA9, BLOCKDIAGRAM

FIGURE8-39. SWEEPGENERATOR/BANDWIDTH CONTROLASSEMBLY A9, COMPONENTLOCATIONS

THIRD CONVERTER ASSEMBLY A10, CIRCUIT DESCRIPTION

The Third Converter Assembly A10 contains a 321.4 MHz amplifier followed by a 321.4 MHz bandpass filter, a double balanced mixer, a 21.4 MHz IF preamplifier, a flatness compensation amplifier, and a band conversion loss compensating amplifier. Also included in the Third Converter Assembly A10 are the 35 MHz calibration oscillator and the 300 MHz third local oscillator. The 321.4 MHz signal from the Second Converter Assembly A5 is amplified in the 321.4 MHz amplifier and filtered in the 321.4 MHz bandpass filter before being mixed with the 300 MHz oscillator in the balanced mixer. The output of the mixer is the difference frequency, 21.4 MHz , which is applied to the IF preamplifier where gain is added for the reference level calibration. The signal now passes through two amplifiers to compensate for flatness across the bands and the varying conversion loss of the bands before leaving the Third Converter Assembly A10 at a power level of approximately 0 dBm .

321.4 MHz Amplifier (A)

The 321.4 MHz Amplifier provides a broad-band fixed gain of approximately 18 dB to the incoming 321.4 MHz IF signal. The amplifier is a single-stage common-emitter transistor amplifier whose gain is determined by the high frequency characteristics of Q10, the input matching bandpass filter, and the output matching elements L 3 and C8. The 3 dB bandwidth of the input bandpass filter is approximately 500 MHz (with 150 MHz and 650 MHz as the 3 dB points). The filter comprises series capacitor C 1 , two shunt capacitors, C 2 , and C 3 , and series inductors L1 and L2. This bandpass filter attenuates the first and second LO feedthrough to prevent overloading of the amplifier and to minimize spurious responses. Bias to RF amplifier transistor Q10 is provided by Q9 and R3 through L25. Note that Q9 and associated components are RF decoupled by C6 and C7.

321.4 MHz Bandpass Filter
 (C)

The 321.4 MHz Bandpass Filter rejects the image frequency from the Second Converter Assembly A5 and limits the signal power applied to the mixer in the Third Converter Assembly A10 to a 3 dB bandwidth of about 9 MHz . The filter consists of four LC resonators that are tap-coupled at the input and output of the filter and capacitively coupled between sections by traces on the printed circuit board. The center frequencies of the four poles are adjusted by $\mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 11$, and C 12 .

300 MHz Oscillator (D)

Transistor Q1 and associated circuitry form a grounded-base Colpitts oscillator. Direct collector current for Q1 is supplied through L8, whose internal parallel capacitance causes it to self-resonate at 300 MHz . Inductor L12 and capacitors C15, C16, and C17, form a tank circuit that feeds back the collector current of Q1 to its emitter. The frequency of the tank circuit is selected by tuning L12. Power is tapped out of the tank circuit through C18 and L11 and sent to Q2, a buffer amplifier that distributes the power and provides a constant load to the oscillator.

The 300 MHz buffer amplifier isolates the oscillator from the mixer and provides the high-level signal required to drive the mixer. The buffer amplifier is a common-emitter amplifier in which R10 and R11 set the emitter current. Base current is supplied, through self-resonant L9, from R5 and R6. Inductor L13 and capacitor C19 form a matching network that matches the impedance of the signal applied to the mixer's (U1) LO input. A test port is provided, through R4 and J1, to monitor frequency and amplitude of the 300 MHz Oscillator (Third LO). Voltage regulator U2 and its associated circuitry provide a regulated power supply for Q1 and Q2.

Double Balanced Mixer (E)

The Double Balanced Mixer (U1) mixes the 321.4 MHz second IF from the 321.4 MHz Amplifier with the 300 MHz Oscillator. This produces the sum and difference frequencies, 621.4 MHz and 21.4 MHz , that are sent to the IF Preamplifier. The 621.4 MHz mixing product is removed by the matching filter at the input of the IF Preamplifier. Inherent in the double balanced mixer is excellent port-to-port isolation.

IF Preamplifier (F)

The IF Preamplifier voltage gain is provided by Q8 in a common-emitter amplifier configuration. Circuit gain is controlled with collector-to-base feedback through PIN diode CR4. The current through CR4 is adjusted from the front panel by the REF LEVEL CAL control and can vary the gain of the IF Preamplifier over a 10 dB range. Transistor Q7 functions as an emitter follower buffer amplifier.

Flatness Compensation Amplifier (H)

Approximately 20 dB of compensation is available in the Flatness Compensating Amplifier to compensate for small changes in conversion efficiency that occur while sweeping through individual bands. Larger betweenband changes in conversion efficiency are compensated for in the Band Conversion Loss Amplifier. The gain of the Flatness Compensation Amplifier is controlled by the Non-Linear Current Source, which draws current through PIN diode CR1. The more current it draws, the lower the gain.

Non-Linear Current Source (G)
 (G)

The flatness voltage from the Step Gain Assembly A12 sets the base voltage of Q3. Resistors R41, R42, R43, and diode CR5 establish the emitter current and cause it to vary non-linearly in response to changes in the base voltage. This non-linear current drives CR1 and enables the gain of the Flatness Compensation Amplifier to be proportional to the base voltage (and flatness voltage) at about 0.4 V per dB of gain.

Band Conversion Loss Compensating Amplifier (I)

The Band Conversion Loss Compensating Amplifier changes gain in discrete steps to compensate for the changes in conversion Ioss associated with RF section harmonic band switching. In the fundamental mixing bands (Bands 1 and 2), the circuit has unity gain. During second harmonic mixing (Bands 3 and 4), CR2 is forward biased, allowing the gain to be set by R34 as shown in the following equation: Gain $=1+\mathrm{R} 32 / \mathrm{R} 34$. In the third harmonic mixing mode (Bands 5 and 6), CR3 is forward biased and R36 establishes the gain as follows: Gain $=1+\mathrm{R} 32 / \mathrm{R} 36$. See Figure $8-41$ for a simplified schematic of the Band Conversion Loss Compensating Amplifier gain switching. A gain-versus-band table is shown on the Third Converter Assembly A10 schematic below function block I.

35 MHz CalibrationOscillator (B)

The 35 MHz Calibration Oscillator consists of a differential amplifier formed by Q11 and Q12. A frequency determining tank circuit (L21, C45, and C46) is connected to the base of Q11. The base of Q12 and one side of the tank are at RF ground due to C48. Capacitor C45 temperature-compensatesthe oscillator; R13 controls the bias current and output amplitude. As the base voltage of Q11 increases, the voltage at the emitters of Q11 and Q12 increases. Since the base of Q12 is effectively at signal ground, the increase in voltage at its emitter reverse biases its emitter-base junction, shutting Q12 off. As Q12 shuts off, the voltage at its collector increases and is fed back in phase to the tank at the base of Q11 through C47. The output is taken from the collector of Q11, filtered to lower harmonic content, and sent to the CAL OUTPUT connector on the front panel.

Power Supplies (

Three supply voltages power the Third Converter Assembly A10: $+15 \mathrm{VF},-10 \mathrm{~V}$, and -10.6 VF . The +15 VF is derived from the +15 V supply line and is filtered as it enters the board. The -10 V and the -10.6 VF originate from the -12.6 V supply line. After filtering, the -12.6 V supply feeds a shunt regulator comprising R48, C53, VR1, and VR2 and develops the -10 V supply. The filtered -12.6 V supply also feeds three-terminal regulator U2, which develops the -10.6 VF supply. Regulator U2 improves isolation of the 300 MHz Oscillator from the supply lines and reduces spurs caused by oscillator harmonics.

THIRD CONVERTER ASSEMBLY A10, TROUBLESHOOTING

CAUTION

Spring contacts are used on the circuit board to ground portions of the circuitry to the aluminum extrusion walls. Care is required when removing the circuit board to prevent damaging these springs. The circuit board must be installed in the extrusion before attempting to adjust the 321.4 MHz Bandpass Filter (block C).

Low Gain: Most common failures are: CR1, CR4, the PIN diodes in the IF preamplifier, and the Flatness Compensation Amplifier.

300 MHz Oscillator off Frequency: Most common failures are C16, C17, and C18.
35 MHz Oscillator off Frequency: Most common failures are C45 and L21.

Bes]e

TABLE 8-7. THIRDCONVERTER ASSEMBLY A10, REPLACEABLE PARTS (1 OF3)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A10	05359-60040	8	1	THIPD CONUERTCR ASSEMELY	28483	38559-60380
A10C:	0160-3974	2	1	CAPACITOR FXD 10 CF +-. SPF 2gCUDC CER	28480	016.0 .3874
41, ${ }^{\text {a }}$ (31603673	1	3	CAPACTTGR-FXD 4.JPF $-\cdots .5 P T$ 2JJVLC CER	28480	3160-3873
A10C3	c160-3873			CAPACITOR-FXD $4.7 \mathrm{PF}+.59 \mathrm{~F}$ 20EUDC CER	28480	$0160-3873$
A1 114	3169-2055	$\stackrel{?}{5}$	32	CAPAECTTGR-FXD , 31UF 180-23\% 103VDC CER	28483	3160-2355
Al 0 CS	0160-3877	5	2	CAPACITOR-「XL 1605 C +-26\% 26OUDC CER	28480	c16.0 3877
A10CE,	0160-3878	5	$?$	CAPACIIOR-FXD 1333PF - $23 \pm$ 10JVUC CER	23480	0168-3878
A10C7	0160-3978	¢		CAPACITOR-FXD $10005 F+-202$ 10DUDC CEE	28480	6160-3878
A10CG A 10 CO	3160-3873	1		CAPACTTTR FXD A.7PF 1 -, SP F 2JJVDC CER	28480	3163-3873
A11C. 3	3121 0453	5	4	CAPACITOR-U TRMR-AIR $1.3-5.4 P T$ 17SU	74970 74770	107-0303-125 $187-3333-125$
ATGC11	0121-0453	5		CAPACITRR-U TFMR-ATR 1.3 S.4PF 1750	74970	107-0303-135
Ataric	0121.0453	5		CAPARITER-U TRMR A12 1.35 S. APF 1750	74975	187-3393-1:5
A) 0 C13	C160-3456	6	8	CAPACITOR-FXD 100 EPT + $10 \% 1$ KUDC CER	20480	$0160-3456$
A10¢14 A10C15	$3160-3456$ $0150-0059$	E	1		28489 28480	$3160-3456$ $0150-0059$
A10¢16	3160 22954	0	1	CAPACITIR FXD 7.5.9F, ESPF SOOULC CER	28485	2160-2254
A10C17	0150-0115	7	2	CAPACITOR-FXD 27PF + 16% S0CUDC CER	28480	$6150-0115$
A10C18	0160.345.6	6		CAPACIITIR-FXD $1030 \mathrm{PF}+-10 \%$ 1KULC CER	28483	3160-3456
A10C19 A1 ces	$0160-3456$ $0163-3456$	6 6			23488 78480	816.0-3456 $3160-3456$
A 10001	6160-345 6	t		CAPACITOR-FXD $10 \mathrm{GORF}+\cdots 10 \% ~ 1 K U D C ~ C E R ~$	23480	616.0-3456
A19C2?	$3160 \cdot 3533$	c	1	CAPARETTCR FXD 47OPF + 58 33JVDC MTCA	28480	9150-3533
Al $0 \mathrm{C}_{2} 3$	0160-2655	9			23480	$016.0-2055$
A10re 4	0160-2055	2		CAPACTIOR-FXD OIUF \%80-23\% 100NDE CER	28489	3160-2055
A10C25	0160-2055	9		CAPACITOR-FXL , C1UF + $30-20 \%$ 100UDC CER	20480	$016.0-2055$
Alarst	0160.2055	5		CAPACIITIR-FXD . 314 F +83-23\% 1330 VEC CER	28480	0160-2a55
Al $10 C 27$ A 1053	6160-2055	9		CAPACITOR - $5 \times D$. $014 \mathrm{UF}+8 \mathrm{C}-20 \%$ 100UDC CER	28480	016.6-2055
Aloces	3160 $0160-2655$	9			23480 28480	$3160-2055$ $0160-2055$
A1)039	0160.2355	5		CAPACITIR-FXD .01UF 130232 130UEC IER	: 0480	3160-2355
A. 0C31	c160-2055	9		CAPACITRR-FXD .01UF +80-26\% 10RUDC CER	28480	016.62055
Albe:	0160 2355	2		CAPAETTGR FXD 3113F $+83-23 \%$ 1JJVLC CER	5.3480	3160-2055
A10C33	0160-2055	9			20480	e160-2055
A1] 3.4	31533 2as5	5		CAPAC, 1 TGR FXD - 31UF - $83-23 \% 1000 \mathrm{CC}$ C:R	28483	3160-2355
Al0C3:	c160-265s	9		CAPACITOR - FXD , 01UF + RG-20\% 10CUDC CRE	28480	016.c-2055
013036	0160-2055	5			-848:	3160-2055
A10C37	0160-2655	9		CAPACTTOR-FXL , O1UF + 30-2R\% 100UDC CEF	29480	0160 205s
A13530	2160-3456	6		CAPACIITR-FXD 1399PF + 13\% 1KULC CER	28480	3160-3456
A10039	0160-2cs5	9		CAPACITOR - EXD CE1UF + $30-28 \% ~ 100 \cup D C ~ C F E ~$	23480	c160-2055
A10cma	0160-3456	A		CAPACITUR-FXD 1a3GPF + 13% IKULC CER	28480	3160-3456
$\mathrm{A}_{10 \mathrm{C}} \mathrm{A}_{1}$	0160-205s	9			28480	C16.0-2055
A10c42	3160-2055	7			28488	3160-2055
A10C43	0160-2253	9	1		28400	0160-2253
A10C 14	3160-2355	7			2:8489	3160-2055
a $10 \mathrm{C45}$	0150-0115	7		CAPACITOR -FXD 27PF + 10% 53SUDC CER	20480	c150-0115
A10C46	0121-9195	4	1	CAPACTTGR-V TRMR-CER 9-35PF 2030 PC-MTG	52763	304324 9/35PF 16650
A10C47	0160-3877	5		CAPACITOR - \times XD $106 P F+-20 \% ~ 200 U D C ~ C E R ~$	28480	$0160-3877$
${ }^{\text {A } 10 C 48 ~}$	0160-2055	9		CAPACTICR-FXD , J1UF +80-33\% 130ULC CFR	28480	0160-2355
A10C49	0160-2055	9			28480	0160-2055
A10C50	0160-4457	9	1	CAPACITUR-FXD S1PF +-5\% 330UDC MICA	29480	0160-4457
A10C51	0160-2529	2	2	CAPACITTOR-FXD 16OFF - 22 300UDC MICA	20488	0160-2529
A10C52	0160-2529	2		CAPACITOR-FXD 160PF + $2 \times 300 \mathrm{VDC} \mathrm{MTCA}$	28483	3160-2529
A 10 CLS 3	0180-0197	8	1	CAPACITOR FXD 2. 2 UF $+10 \%$ 2CUDC TA	56.289	$150 \mathrm{Da25} \mathrm{\times 9020A2}$
A10C54	0140-0199	6	1	CAPACITGR-FXD 243PF +-5\% 330VDC MICA	72136	DMISF241J9300WU1CR
A10C55	0160-2205	1	1	CAPACITOR-FXD 120PF +-5\% 300UDC MICA	28480	0160-2205
A1 0 OL56 A 10 O 57	$0160-4490$ $0160-4084$	${ }_{0}^{9}$	1	CAPACITCR -FXD 1. GPF 1-.25PR 200ULC CER	23480	3160-4490
A $10 \mathrm{CL5}$	0160-4084	8	1	CAPACITOR-FXD 1UF +-20\% 50UDC CFR	29480	01664084
A10C58	$0180-0291$ $0180-1746$	5	1	CAPACITOR-FXD 1UF $-10 \times 35 \mathrm{SVCC}$ TA	56239	15JD135 9035 AL
A10CS9	0180-1746	5	1	CAPACITOR-FXD 15UF-10\% 20UDC TA	58289	150D156×902082
A1 JCR 1	1901-1070	7	2	DIODE PJN 1100	28433	1901-1070
A10CR 2 A1 OCR A	1901-0050	3	3	DIODE SWITCHING QOU 200MA TNS DO 35	28480	1901-0050
A10CR 3 A $10 C R 4$	1901-0050	3.			28480	1731-0050
A10CRS	$1901-1070$ 19010050	9 3		DIODE FIN 110 C DIODE SWITCHING BOU 2DOMA ENG DO 35	28480 28480	$1901-1070$ $1901-0050$
A10E1	9170-0029	3	4	CORE-SHIELDING ERAD	28480	9170-0029
A1 0E2	9170-0029	3		CORE-SHIELDING EEAD	28480	9170-0029
A10E3	9170-0029	3		CORE-SHIELDING BTAD	28480	9176-0029
A1OE4	7170-0029	3		CORE-SHIELDING EEAD	28480	9170-0029
A10.1	1250-0691	7	1	CONNECTOR RF Snn m Scl-hot E-Fr 50\%OHM	28480	1250-0691

TABLE8.7. THIRDCONVERTER ASSEMBLY A10,REPLACEABLEPARTS (2OF3)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A1321	55683-60937	3		INDUCTOR 35 NH	23483	95t30-80019
A1012 A1313	85880-86069 $7130-7671$	4			28480 -8480	$83606-86009$ $9131-2571$
	85660-86062	${ }^{2}$	2	COIL TAPPED	28480	$05,665-8600 ?$
A1345	8355980812	E		COIL FILTER	- 8 \%80	38559-80312
A1006 A1917	68559-86012 $\square 5669-8032$	$\stackrel{8}{8}$		COIL PILTER COIL TAPPED	28480 28480	188359-86.612 $65660-80032$
${ }_{\text {Al }}^{\text {Al } 1917}$	$98100-2236$	5	6	INDUCTOP RF-CH-MED $560 \mathrm{NH} 10 \%$, 1650X, 26LG	23480	${ }_{9100-2256}$
A1319	9130-2256	5		INTLCTIR RF-CH-mid S63NH $13 \% .1350 \times .26 L 6$	2R483	2190-2256
AlOL10	9100-2256	5		INDUCTOR RF-CH-mLD $560 \mathrm{NH} 16 \%$.16SDX. 26 LG	28480	9160-2256
6130.11	2130-2250	7	1	INELCTGR RF-CH-MLD $183 \mathrm{NHH} 13 \%$, 135DX. 26 L G	88480	2120-2259
A10L12	68557-80001 $7130-2256$	3	1		28436 28480 180	$08357-86601$ $9133-2256$
A10L14	9100-2256	5			23488	7100-2256
A10115	9130-1613	3	1	INDICHITR RF-CH-m,	28483	7133-1610
A10101 16 A11 A	$9140-6111$ $7140-2112$	1 2	1		${ }_{238489}^{23489}$	$\begin{aligned} & 914 \mathrm{C}-0111 \\ & 9140-3112 \end{aligned}$
A10L18	9100-1618	1	1	INDICTOR RF-CH-MLD 5.60 H 1 cz	23480	$7100-1618$
A13L19	9130-2247	${ }^{4}$	2		20480	9130-2247
A 10 L 20	9100-2247	4		INDUETOR R - CH-MLD $160 \mathrm{NH} 16 \%$.105DX, 26LS	284日	$9106-2247$
A 10121	2130-2252	1	1	INDUCTGR RF-CH-大aD 273mat 13\%, 135DX, 265	28480	$9130-2252$
Al0l2z A10L23	$9140-0179$ $7109-2256$	$\frac{1}{5}$	1		28480 78480	$914 \mathrm{C}-0179$ $9130-2256$
A10L24	9100-2251	0	1		28480	9106-2251
A19125	7100-2255	4	t	INDLCTOR RF - CA-mLD 47364132 , 1350x, 26LG	28483	9130-2255
A10126 A10L 27	$9100-6368$ $9100-1613$	6	1		23480 28489	91000369 $9100-1613$
A1001	1854-0546	1	2	TPANGISTOR NPN SI TO-72 PD=2COMW	28480	185.4-0546
A1002	1054-3247	$\stackrel{7}{7}$	4		20480	1854-0247
A1003 A 11004	$1854-0023$ $1354-3546$	9	1	TRANGTGTOR NPN ST TO 10 PV 360MW		$1854-0023$ $1654-0546$
Al 1005	1853-0007	7	1		C 4713	2N3251
	$1854-9247$ $1854-0247$	9			28480 25480	1654-9247
A1:103	$1654-0247$	9		TRANSTSTTR NPN SI Ti-39 PD=1W FT=803MHZ	28489	1554-3247
$\begin{aligned} & A 10 Q 11 \\ & \text { A13Q12 } \end{aligned}$	$\begin{aligned} & 1854-0019 \\ & 1554-0319 \end{aligned}$	$\stackrel{3}{3}$	2	TRANSTDTOP NPN ST TO 18 FD 360 MW TRANGTSTOR NPN SI TO 18 PD=36BMW	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1854-0019 \\ & 1554-0319 \end{aligned}$
A OR1	0757-0260	7	1		24546	C4-1/8-T0-5621-F
A1 OR? A 1083	$3757-3288$ $0757-0416$	1	1	RESISIOR RESISTOR 5111 S	19731 24546	
A1JR4	0698-0082	7	2	RESISTER 464 ix , 125W F TC=34-100	24546	C4-1/8-70-4640-F
A1 OR5	0757-0280	3	2	RESISTOR 1 K 12.125 W F TC=0+-100	24546	C4-1/8-T0-1061-F
Aljrg	0757-0419	0	1	RESISTOR GB1 1\% , 125L C TC=0t-100	24546	C4-1/8-T0-681R-F
A 10 R 7 A 10 RB	$0757-0401$ $0698-0002$	$\stackrel{0}{7}$	4		24546 24546	$\mathrm{CA}-1 / 8-\mathrm{TO}-101-\mathrm{F}$ $\mathrm{C} 4-1 / 8-\mathrm{TO}-4640-\mathrm{F}$
A 10 R9	0757-0346	2	5	RESISTOR 101%. 1254 F TC $=0+-100$	24546	C4-1/8-T0-10R0-F
Alorio	0757-0346	2			24546	C4-1/8-T0-10R ${ }^{-5}$
Alor 11 A1 A 12	$0757-0401$ $0698-3155$	0		RCSISTOR RESISTOR a	24546 24546	C4-1/8-T0-101-F $\mathrm{C4-1/8-70-4641-F}$
Aloriz	269800545 $2100-054$	4	1	RESISTOR-TRMR 1 K (10% C SIDE ADJ 17 TRN	32997	3292x-1-102
A1 JR14	0757-0279	a	1	RESISTOR 3.16K 1% 125W F TC $=0+100$	24546	C4-1/8-70-3161-F
A10815	0757-0438	3	2	RESIGTOR 5 11k 1%. 125 L F TC=0+-100	24546	C4-1/8-T0-5111-F
Al0rib	0698-0035	a	1	RESISTGR 2.61 K 1\% 12.125 W F TC=0t-100	24546	C4-1/8-T0-2611-F
A10R17 A $10 R 18$	$0698-3449$ $0698-3440$	${ }^{6}$	$\stackrel{1}{2}$		24546 24546	C4-1/8-T0-2872-F $\mathrm{CA-1/8-T0-196R-F}$
A10R19 A1 10 R 19	$0698-3440$ $0698-8821$	$\stackrel{7}{8}$	2	RESISTOR 5.62% 1\% 12554 F TC $C=0+-160$	28480 28480	8698-8821
A10R20	0698-3440	7		RESISTOR 1961% 12SW F TC=0+-109	24546	C4-1/8-T0-196R-F
A1 OR21 A 10 R 22	$\begin{aligned} & 0757-0280 \\ & 0757-0346 \end{aligned}$			RESISTOR 1 K 1 X .125 W F TC=C $\mathrm{C}-100$ RESISTOR 101%. 125. W F TC $=0+\cdots 130$	24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-10R0-F $C 4$
${ }^{\text {A } 10 R 23}$	0757-0440	7	2		24546 24546	C4-1/8-T0-7501-F $\mathrm{C4-1/8-70-7531-F}$
A10R24 A10R25\%	0757-0449 $0757-0397$	$\stackrel{7}{3}$	1		24546 24546	C4-1/8-T0-6881-F
A10R26	0698-3443	a	4	RCSISTOR 2871%. 125 W F TC $=0+-100$	24546	C4-1/8-T0-287R-F
A1 OR27	0757-0346	2	,	RCSISTOR $101 \% .125 W \mathrm{~F} T \mathrm{~T}=0+100$	24546	C4-1/8-T0-10R0-F
A10R28 A 10 R 29	-0757-0442	$\frac{5}{3}$	2		24546 24546	C4-1/8-T0-5111-F
A10R30	0757-0346	$\underset{\text { a }}{ }$		RESISTOR 10 1\% . 12 Siw F TC $=0+-100$	24546	C4-1/8-T0-10R $0-F$
Al OR31	0698-3443	a		RESISTOR $2871 \% .125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/8-T0-287R-F
A10R32	0757-0418	5	1		24546 24546	C4-1/8-T0-619R-F
A10R33 A10R34	$0698-3444$ $0698-3446$	$\stackrel{1}{3}$	1		24546 24546 24546	$\mathrm{C4}-1 / 8-\mathrm{T} 0-316 \mathrm{P}-\mathrm{F}$ $\mathrm{C4-1/8-T0-383R-F}$
A10R35	0698-3443	a		RESISTOR 287 1\% .125W F TC=0+-100	24546	C4-1/8-T0-287R-F

TABLE 8-7. THIRD CONVERTER ASSEMBLY A10, REPLACEABLE PARTS(3OF3)

Bes]e

FIGURE 8-42. THIRDCONVERTER ASSEMBLYA10,BLOCK DIAGRAM

FIGURE8-43. THIRDCONVERTER ASSEMBLY A10,COMPONENT LOCATIONS

BANDWIDTH FILTERS No. 1 and No. 2 ASSEMBLIES A II and A13, CIRCUIT DESCRIPTION

Bandwidth Filters No. 1 and No. 2 Assemblies A11 and A13 are identical except for some off-board connections. Bandwidth Filter No. 1 Assembly A11 is described here. Bandwidth Filter No. 1 Assembly A11 operates at 21.4 MHz with a variable bandwidth of 3 MHz to 1 kHz . The RESOLUTION BW switch selects one of the following eight available bandwidths: $3 \mathrm{MHz}, 1 \mathrm{MHz}, 300 \mathrm{kHz}, 100 \mathrm{kHz}, 30 \mathrm{kHz}, 10 \mathrm{kHz}, 3 \mathrm{kHz}$, or 1 kHz .

Four stages of filtering are used for all eight bandwidths; each assembly contains two stages. The bandwidths from 30 kHz to 1 kHz are obtained from synchronously-tuned crystal filters. The remaining four bandwidths (100 kHz to 3 MHz) use synchronously-tuned LC tank circuits. The four crystal filter stages contain factory selected and matched crystals (A11Y1, A11Y2, A13Y1, and A13Y2) that must be replaced as a set. If replacement of a bandwidth filter assembly is necessary, the new assembly is shipped with two crystals installed and two packaged separately to replace the crystals on the other assembly. In addition to the filter stages, each board contains a 10 dB Buffer Amplifier, a Unity Gain Buffer Amplifier, and an Output Buffer Amplifier.

10 dB Input Buffer Amplifier
 (B)

The 10 dB Input Buffer Amplifier is shown as a noninverting operational amplifier in Figure 8-45. Gain for the amplifier is expressed in the equation: Gain $=1+\mathrm{R}_{\mathrm{t}} / \mathrm{R}_{\mathrm{in}}$. The total resistance of R5, R6, and R7 forms the feedback path $\left(\mathbf{R}_{\mathrm{f}}\right)$; R3 forms the input resistance $\left(\mathrm{R}_{\mathrm{i}}\right)$. This ac model of the amplifier's operation is true for all but the narrowest bandwidths, as illustrated later.

FIGURE 8-45. 10 dB INPUT BUFFER AMPLIFIER GAIN MODEL
Two current paths are used for dc bias in the input buffer amplifier, one for crystal filter poles, another for LC filter poles. When a crystal filtered bandwidth ($\leq 30 \mathrm{kHz}$) is selected, Q3 (block D) and Q1 are the sources for the current through Q2 (see Figure 8-46). The base voltage of Q2 is fixed by the divider R9 and R10, while the

emitter is fixed by R8. The collector, therefore, becomes a constant-currentsink for 20 mA of current supplied by Q1 and 43. A decrease in the current supplied by Q3 results in increased current through Q1, keeping the current through Q2 constant. If an LC filtered bandwidth is selected, BW5F (filtered bandwidth control line 5 in block C) supplies current via CR1 and R13 (see Figure 8-47); Q3 is effectively removed from the circuit.

FIGURE 8-47. DC BIAS PATH DURING LC POLEOPERATION
To understand how $\mathbf{Q} 3$ functions during crystal filtering modes, a new model is needed. (See Figure 8-48.) Resistor R7 has been omitted to simplify the model. The emitter load of $\mathbf{Q} 3\left(\mathrm{R}_{\mathrm{t}}\right)$ is the series combination of the internal resistance of $\mathrm{Y} 1\left(\mathrm{R}_{\mathrm{s}}\right)$ and a resistance determined by the bandwidth selected (see First Xtal Pole description). The crystal's series resistance at resonance $\left(R_{s}\right)$ is constant at about 10 ohms. In the 30 kHz bandwidth, R23* is in series with R_{8}. Since R23* is very large by comparison, it represents the total load on $43\left(\mathrm{R}_{1}\right)$. When R23* is substituted into the gain equation for R_{r}, a gain of $2.7(8.6 \mathrm{~dB})$ results. This is roughly equal to the gain without 43 in the circuit. In fact, the larger R_{r} becomes, the closer the gains become.

Then: OAIN $-\frac{1+\frac{185.7}{110}}{1-\frac{23.7}{82.50}}-2.89$ OAIN $2.70 \simeq 8.6 \mathrm{~dB}$

FOR 1K BW:
When: $R_{t}=70 \Omega$
Then: OAIN $-\frac{2.69}{.66} \simeq 4.0 \simeq 12 \mathrm{~dB}$

When the 1 kHz bandwidth is selected, CR4 is biased on and has a resistance of about 60 ohms . This resistance forms a voltage divider with R_{s} that results in signal amplitude loss across the crystal. Increased gain in the input buffer amplifier, caused by the load on 43, compensates for these losses. The gain increase occurs when the reduction in R_{t} turns 43 on even harder, resulting in some of the feedback from R6 being shunted to ground through the collector of 43. This reductionin negative feedback increases the gain of the input buffer amplifier. By substitutinginto the gain formula the 1 kHz bandwidth $\mathrm{R}_{\mathrm{t}}(10+60=70 \mathrm{ohms})$, a new gain of $4.0(12 \mathrm{~dB})$ is derived.

First Xtal Pole (D)

Crystal filtering is used for bandwidths of $1 \mathrm{kHz}, 3 \mathrm{kHz}, 10 \mathrm{kHz}$, and 30 kHz . Individual poles have a bandwidth about 2.3 times the selected bandwidth, and each filter board assembly (two poles combined) has a bandwidth of about 1.5 times the selected bandwidth. For example, when the 1 kHz bandwidth is selected, each pole has a 3 dB bandwidth of about 2.3 kHz , each assembly a bandwidth of 1.5 kHz . The signal from the input buffer amplifier is routed to 43 and to compensation amplifier 44. (The action of 43 is discussed in the 10 dB Input Buffer Amplifier description.) From 43 the signal is applied to the crystal (Y1), where it is filtered before going to the unity gain buffer amplifier.

The crystal functions as a series-resonant filter tuned to 21.4 MHz . An equivalent circuit is shown in Figure 8-49. Parallel capacitance C_{0} is the result of terminal and case capacitances in the crystal; R_{s} is the effective resistance at resonance (about 10 ohms). Both C_{0} and \mathbf{R}_{s} are detrimental to the pole's performance, so compensation is used to nullify their effects. Because they are cancelled, C_{o} and R_{s} are not shown in the simplified crystal pole schematic.

FIGUREJ3-49. CRYSTALMODEL

Pin diode CR4 (see Figure 8-50) controls the filter's bandwidth by functioning as a variable resistance at 21.4 MHz. The voltage applied to BW6F controls the current through CR4 and its resistance. An increase in current decreases the resistance and narrows the bandpass.

The crystal presents a low impedance (R_{s}) to the signal at resonance, hence signal voltage is developed across CR4. As the signal frequency varies from the center frequency (21.4 MHz), the impedance of the crystal increases, making it part of a voltage divider with CR4 and causing more signal voltage to be developed across the crystal. The frequencies at which crystal impedance and PIN diode resistance become equal are the 3 dB points of the bandpass. Varying the PIN diode resistance, therefore, varies the bandwidth.

FIGURE8-50. FIRST CRYSTALPOLE, SIMPLIFIEDSCHEMATIC

The case capacitance of the crystal (C ,) would cause a second resonant point, or dip, in the bandpass if compensation were not used to nullify its effects. Compensation is provided by Q4 as a current equal to and opposite in phase with the current flowing through C,, as shown in Figure 8-51. Capacitor C15 (SYM) adjusts the phase of the compensating current.

The input capacitance of the unity gain buffer, the trace capacitances, and the capacitance of the PIN diode add, causing the center frequency of the filter to be altered. Compensation is used to eliminate this effect. These capacitances are tuned out by including them in a parallel resonant circuit (at 21.4 MHz) formed with L 7 and fine tuned by C25 (CTR). Adjusting C25 tunes the circuit to present a high impedance at resonance.

When LC filtering is selected, BW5F forward biases CR2, effectively grounding the emitter of Q3. During crystal filtering, CR2 is reverse biased.

First LC Pole (C)

LC filtering is used for bandwidths of $100 \mathrm{kHz}, 300 \mathrm{kHz}, 1 \mathrm{MHz}$, and 3 MHz . The relationship of an individual pole's bandwidth to the selected bandwidth is the same as the crystal pole's (2.3 times per pole and 1.5 times per assembly). The LC filter pole comprises a metallized inductor (L6) in parallel with four capacitors: the series combination of C16* and C20*, C21 (temperature compensation), and C23 (center adjust). This resonant circuit is driven through CR3, which functions as a variable resistor. Bandwidth control line BW7F establishes the current through CR3 and thereby controls the pole's bandwidth. Feedback from the unity gain buffer replenishes losses in the resonant circuit.

A simplified model of the LC pole is shown in Figure 8-52. At resonance, a voltage divider is formed between CR3 and the resonant circuit. The 3 dB points of the bandpass occur when the PIN resistance and the impedance of the resonant circuit are equal. Varying the PIN resistance varies the filter's 3 dB points. The higher the PIN resistance, the narrower the bandwidth. When the 100 kHz bandwidth is selected, CR3 is reverse biased and R19* sets the bandwidth; if one of the other bandwidths is selected, the parallel combination of R19* and CR3 is utilized. The intrinsic capacitance of PIN diode CR3 affects the bandpass, if not compensated for. Adjustable capacitance C73 (LC DIP) and L5 are in parallel with the PIN capacitance and allow it to be tuned out of the circuit.

FIGURE8-52. LCPOLEMODEL

A simplified schematic of the first LC pole is shown in Figure 8-53. The fundamental frequency-determining components are L6 and the center-tapped capacitance $\mathbf{C 1 6 *}$ and $\mathbf{C} 20^{*}$. Positive feedback is applied to the centertap at 21.4 MHz to compensate for losses in the tank circuit. The application of feedback makes it important that C16* and C20* be about the same value for proper pole operation. The level of the feedback is controlled by CR5, acting as a variable resistance. LC feedback control R26 establishes the current through CR5 and its resistance.

FIGURE 8-53. FIRSTLC POLE, SIMPLIFIEDSCHEMATIC

When an LC filtered bandwidth is selected, BW5F is at +15 V ; BW7F is at a voltage greater than or equal to +6.8 V and supplies bandwidth-determining bias current to CR3. Supply line + VF BIAS is always at +6.8 V . Control line BWSF reverse biases CR8 (block B), disabling the crystal pole, and forward biases CR1 (block B), opening the dc bias path to Q2 (see Figure 8-47). During LC operation, CR6 is reverse biased, keeping C28 out of the circuit. When a crystal filtered bandwidth is selected, BWSF forward biases CR6 and allows C28 to ground the signal path.

Unity Gain Buffer Amplifier

Operation of the Unity Gain Buffer Amplifier is similar to the 10 dB Input Buffer Amplifier, except that it has an FET input (Q5) and unity gain. The input signal path is activated by the BWSF line, which switches on CR9 (during LC mode) or CR8 (during crystal mode).

When the crystal mode is selected, the current through the input FET (Q5) is determined by Q6 and constant current sink Q7 (which sinks about 4 mA). During LC mode, current is supplied through R37 and CR10 from BWSE The input FET current is a good indication of the stage's operation and can be monitored by measuring the gate-to-source voltage. This voltage should be between +0.2 V and +1.5 V (an increase in current decreases the voltage).

Capacitor C68 and L19 form a feedback circuit that tunes Q7 to 21.4 MHz. Trimmer Resistor R31 (XTL FEEDBACK) adjusts the feedback and controls the stage gain as did R5 and R6 in block B.

Second Xtal Pole (G)

The operation of the Second Xtal Pole is identical with the First Xtal Pole.

Second LC Pole (F)

Operation of the Second LC Pole is the same as the First LC Pole, except that R56* performs the same function as PIN diode CR5.

Output Buffer Amplifier (H)

The Output Buffer Amplifier is a complementary pair of transistors in which Q9 acts as a source follower with its output current boosted by Q10. The current through input FET Q9 is established by R53:

$$
\mathrm{L}_{m}=\mathrm{V}_{\mathrm{be}}(\mathrm{Q} 10) / \mathrm{R} 53
$$

Which becomes:

$$
\mathrm{I}_{m}=.7 / 196 \text { or about } 3 \mathrm{~mA} .
$$

The total current through Q9 and Q10 is set by R54. The input signal path is selected by either CR15 (during crystal mode) or CR16 (during LC mode).

BANDWIDTH FILTERS No. 1 and No. 2 ASSEMBLIES A11 and A13, TROUBLESHOOTING

Observe front panel switch positions in relation to the problem to isolate the area of the failure.
Check for leaky diodes and capacitors. Loading of the signal path can alter either a pole's gain or bandpass shape or both.

Isolate crystal poles from LC poles to prevent interaction of failure symptoms. Isolation of the crystal poles from the circuit is best achieved by removing CR8 and CR15 (blocks D and G). Isolation of the LC poles is best achieved by removing CR9 and CR16 (blocks C and F).

TABLE88. BANDWIDTHFILTERNO. 1 ASSEMBLY AII, REPLACEABLEPARTS(1OF3)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& C \& Qty \& Description \& Mfr Code \& Mfr Part Number

\hline A11 \& 00559 -60059 \& 0 \& 1 \& bandwtith Filter no. 1 astembly \& 28483 \& 9859.9-63353

\hline A11C1
A11c2 \& - $0160-2655$ \& ${ }^{2}$ \& 38 \& \& 28496
F248 \& c160-2055
$3160-3127$

\hline \& $0169-127$
$0160-2055$ \& 2 \& 1 \& \& -28898 \& $3160-9127$
0166055

\hline Alics \& 0169-2355 \& ? \& \& CAPACITHR-FXD DILF VB0-23\% 1030 CLC CER \& 20480 \& 3160-2355

\hline A1 1 Cb \& 0160-2055 \& , \& \& CAPACITOR-FXD .01UF + 36 -20\% 100UDC CRR \& 23486 \& 616.62855

\hline Al1c7 \& 9160-2055 \& ? \& \& CAPACITGR-FXD J14F 103 23\% 130 OLCL CER \& 28489 \& 3160-2355

\hline ${ }^{\text {A } 11128}$ \& $0160-2207$
$0160-2055$ \& 3 \& 2 \& \& 28,480
28489 \& ¢16.e-2207
$3160-2055$

\hline Al1c9
Al 1610 \& $3160-2055$
$0160-2055$ \& ? \& \& \& 28483
2¢480 \& $3162-2355$
$0160-2055$

\hline ${ }_{\text {A11 }}{ }^{\text {A1 }} 11$ \& 0160-2055 \& \% \& \& \& 20483 \& 3163-2355

\hline A11C12 \& 6160-2055 \& \% \& \& \& 28986 \& $0166-2655$
$3160-3456$

\hline A112C13
A1 1 Cl 14 \& $3160-3456$
$0160-2249$ \& ${ }_{6}^{6}$ \& , \& \& \%8483 \& - $1160-34566$

\hline A11C15 \& 0121-3359 \& 7 \& ? \& CAPACIIDR-U 1amR-CER 2 -fPF 3530 PC -mIG \& 52763 \& 334324 2/8PF NPO

\hline A11C16* \& c160-0134 \& 1 \& 4 \& CAPACTTOA-FXD 22EPF +-5\% 30GVDE MICA \& 23480 \& 016.61384

\hline A11c17 \& 0160-2055 \& ? \& \& \& 28493 \& 3160-2355

\hline A11C18 ${ }_{\text {Al1 }}^{\text {Al }}$ \& $6160-2655$
$3160-2055$ \& ? \& \& \& \& $6160-2055$
$3160-2355$

\hline A $11 \mathrm{Cl20*}$ \& 0180-0134 \& 1 \& \& CAPACITOR-FXD 22OPF +5\% 360VDC MTCA \& 2a896 \& 0160-0134

\hline A11c21 \& 0160-0437 \& 7 \& 2 \& CAPGCITCLR-FXD TEPF $+5 \%$ STOVLC CER \& 22483 \& 3160-0437

\hline A11622 \& c160-4084 \& ${ }^{\text {a }}$ \& 3 \& \& 2anco \& 0160-400.4

\hline ${ }^{\text {A1 } 11023}$ \& 0121-0036 \& ? \& ? \& CAPACTITR-U TRMR-EER 5.5-119PF 3530 \& 5:763 \& $3043245.5 / 108 \mathrm{~F}$ NPO

\hline A11C24
A11C25 \& $0160-2055$
$0121-2446$ \& ? \& ? \& \& 20480
2.480 \& $0160-2055$
$3121-0446$

\hline A11c26 \& 0160-2655 \& , \& \& CAPACITOR FXD -011F + 06 26\% 108UDC CER \& 23480 \& E160 2055

\hline Allcas \& 3160-2055 \& \% \& \& \& 28480 \& 3160-2355

\hline \& $0160-2055$
$3163-3456$ \& B \& \& \& 28480
28489 \& $6160-2055$
$3160-3456$

\hline A11c30 \& 0160-2055 \& ? \& \& CAPACITOR-FXD C1UF +3C-20\% 100VDC CEF \& 28486 \& 616.62055

\hline hlic31 \& 0160-4298 \& 6 \& 1 \& \& 54.269 \& C3675:51147:M522-CDH

\hline \& 0160-4084 \& ${ }^{8}$ \& \& \& 28438 \& ${ }^{61616.64084}$

\hline ${ }_{\text {Al }}{ }_{\text {Al } 11634}$ \& 160-2237
$0160-2055$
01605 \& ${ }_{3}$ \& \& CAPACITIR-FXD
CAPACITOR F \& 28483
204880 \& $3160-2237$
616.02055

\hline A11c35 \& 3160-20.55 \& ? \& \& \& 23483 \& 0160-2355

\hline A11c36 \& 0160-2655 \& , \& \& CAPACITOR-FXD . $110 \mathrm{~F}+36.26 \% ~ 100 v D C$ CER \& 28480 \& 016.0 .2055

\hline A11c37
A1 11038 \& $0160-2247$
$0121-0659$ \& 3 \& \& \& 28.480
5×2763 \& $3160-2249$
364324
3

\hline A11 11638
A11C40 \& - $0121-0.659$ \& ? \& \& CAPACITOR-U TRMA-CER $2-8 \mathrm{Cr} 3$ SOU PC-MTE \& 5.2763
88460 \& $31643242 / 8 \mathrm{CF}$

3160.2055

\hline \& $6160-3456$
$0160-2355$ \& ${ }^{6}$ \& \& CAPACITOQ-FXD 1060RF +-10\% 1KUDC CER \& 234n0 \& c160-3456

\hline A11C42 \& 0160-2355 \& , \& \& CAPACIILR-FXD .01UF +63-23\% 1JJULC CER \& 28480 \& 3160-2055

\hline A1 1143**
A1 1644 \& $0160-0134$
$0160-0437$ \& $\frac{1}{7}$ \& \& CAPACITOR - F
CAPACITOR \& 28488
28489 \& 01600134
$3160-0437$

\hline A11 1 C45 \& 0121-0036 \& , \& \& CAPACITOR - TRMR-CER 5.5 P 8 CF $3510 \cup$ \& 52763 \& $3043245.5 / 102 \mathrm{~T}$ NPO

\hline ${ }^{\text {Al1 }} 11 \mathrm{C46}$ \& 0160-4384 \& ${ }^{3}$ \& \& CAPACITRR-FXD. 1 UF $+23 \%$ SavBC CER \& 28483 \& 3160-4384

\hline A11 478 \& 0160-2055 \& - \& \& \& 28480 \& 6160-2055

\hline A11C48 \& 0160-2055 \& ? \& \& CAPACITOR-FXD A1UF +00-20\% 10NUDC TER \& 29883 \& 3163-2055

\hline A11C49 \& 0160-2055 \& ? \& \& \& 28480 \& 016.0 -2055

\hline Alics0 \& $0160-2055$
$0160-2055$ \& $?$ \& \& \& 28480 \& $3160-2355$
01602055

\hline A11c52 \& 0160-2055 \& 9 \& \& CAPACITJR-FXD . 01115 F 'B0-23\% 130 VDC CER \& 28480 \& 3160-2355

\hline A11 1153
A $11 \mathrm{CS4}$ \& $0160-2055$
$0121-0446$ \& ? \& \& \& 28480
28480 \& c 1 $160-2055$
$3121-0446$

\hline A1 1 Css \& 0160-2055 \& ? \& \& CAPAC ITOR FXD O1uF +80 $20 \% 100 \cup D C$ CER \& 28488 \& $0160-2055$

\hline A11C60 \& 0160-2055 \& ? \& \& \& 28480 \& 3160-2355

\hline A11c61 \& 0160-2655 \& - \& \& CAPAC ITOR FXD 01UF +80-20\% 100UDC CER \& 28480 \& 0160-2055

\hline ${ }_{\text {A }}^{\text {A } 11212663}$ \& -0160-2055 \& ? \& \& \& 28480
28480 \& - $\begin{aligned} & 31600-2055 \\ & 0160-2055\end{aligned}$

\hline A11164* \& 0160-0134 \& 1 \& \& CAPACITOR FXD STOPF $+5 \times 303 \mathrm{VDC} \mathrm{MICA}$ \& 28480 \& ${ }^{3160-0134}$

\hline ${ }^{\text {A1 } 11655}$ \& 0160-2055 \& ? \& \& CAPACTITR-FXD - BIUF +GO-20\% 100UDC CER \& ${ }^{28480}$ \& 0160-2055

\hline A11C66 \& 0160-2055 \& , \& \& CAPACITOR-FXD . O1UF +B0-20X 10SUDC CER \& 28480 \& 0160-2055

\hline \& $0160-2055$
$0160-2258$ \& $\stackrel{7}{4}$ \& 1 \& CAPATITOR-FXD
CAPACITOR FXD
O1PF
O \& 28480
28480 \& 0160-2055
$3160-2258$

\hline A11669 \& 0160-2055 \& ? \& 1 \& CAPACTTOR-FXD O1UF + 00 20x $200 \cup 10 \mathrm{DC}$ CER \& 28480 \& $0160-2055$

\hline A11c73 \& 0121-0452 \& 4 \& 2 \& CAPACITOR-U TRMR AIR 135 APF 175U \& 74\%70 \& 187-0103-028

\hline A11074 \& 0121-0452 \& 4 \& \& CAPACITOR-V TRMR-AIR 1.3 5.APF 1750 \& 74970 \& 187-0103-0.88

\hline \& $1901-0047$
$1901-0047$ \& ${ }_{8}^{8}$ \& 6 \& \& 29480
28480 \& 1931-0047

\hline A11CR3 \& 1901-1070 \& ? \& 5 \& DIODE PIN 110 J (${ }^{\text {d }}$ \& 28480 \& 1951.1370

\hline A11CR4 \& 1901-1070 \& $?$ \& \& DIDDE PIN 1100 \& 28480 \& 1901-1070

\hline Al1CR5 \& 1901-1070 \& , \& \& DIODC PIN 1100 \& 28480 \& 1901-1070

\hline
\end{tabular}

TABLE 8-8. BANDWIDTH FILTER NO. 1 ASSEMBLY A11, REPLACEABLE PARTS (2 OF 3)

Reference Designation	HP Part Number	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
A116RG	173125035	$?$	5	DTECE SM 515 SE:,01TKY	28480	1931-3535
A11CR8 Alicra	1761-0535	9		DIOLE SM SIG SChattky	28486	1961-0535
	19310047 $1901-0047$	A		OTGE5 SWITCHINS 230 TSiPa 10 NS	28480	1731-0347
Alicrit	1931-1370	8		DIGDI SWITCHING $200 ~ 75 M A ~ 1 C N: ~$ DTODE PTN 113 V	28486	$1701-0047$ $1931-1.370$
AtICR12	1961-1070	9		DIODE-PIN 118	20480	1261-1070
A1ICR13	17313047	${ }^{8}$		DICDE SWITCA1NG DJU 7ETA TJNS	28480	1931-0047
A11CR14	1901-0535	9		DIODE SM SIG SEHOTTKY	28480	1761-6535
A11CR15	1731-3535	$?$		DTODE SH SIG SE: 017 KY	23483	1931-3535
A11CR16	1901-6047	8		DLODR-SWITCHING 2CU 75*A 10 NS	24480	1701-0047
A11CR17	1731-3535	${ }^{7}$		DIODE SM STG EC:DOTKY	28480	1931-9535
AlIEI	9170-0029	3	0	CORE SHIELDING RTAD	28486	9176-0027
Al1E2 A 1123	71730329	3		CORE SAHELDTNG EEAD	\%8483	7170-0329
Alif 4	9175 0.22	3 3 3		CORE SHIEIDING BTAD	28489	9176.0029 $9170-3329$ $176-0029$
Al 125	9170-0029	3		CORE SHIELDING RTAD	28480	9176-0029
A1156	71703059	3		COIRE SHIELDING EFAD	28483	9173-0329
A11E7	9176-66.99	3		CIRE-SHIELDING BFAD	28436	9170.0029
A1158	9170 032?	3		CLIPE -SHTELDING ETAD	28483	9173-0329
A1111	9140-0112	2	1	INDUCTOR RF CH-MLD 4. 7 UH 10%	29486	914C-8112
A1112	2193-1641	3	1		28483	9130-164:
A11L3	9140-0114	4	3		28480	914 C 0114
A1114 A11LS	$7139-1624$ $9140-0179$	$?$	3 2		28483	7130-1624
		.			-2480	9140-8179
A1116	$9130-2813$ $9140-0390$	0	$?$	TNDERIGR $403 \mathrm{NHA} 13 \%, 312 \mathrm{P} \times 1.316 \mathrm{LG}$ Q $2=150$	28483	7130-2813
A1117	$7140-0379$ $7140-3170$	7	$?$		29480	714C-0399
A1118 A1 11.9	$7140-3178$ $9160-1619$	3 2	1		28483	9140-0178
A11LIO	7143-0114	4	.	lele	28480 23480	71601617 $7140-3114$
A11L11	9100-1624	9		INDUCTOR RT-CH MLD 3014 $5 \% .1660 \times$, 38\% G	20480	91061624
A116.12	9149-0179	1			$2 \mathrm{E4B3}$	7140-3179
A111.13	5140-0399	7 5		INDUCTOR RF-CH-MLD $2.20415 \% ~ 166 D X, 385 L 5$	29488	91460397
A11L14	$7100-16.20$ $9100-2813$	5	1	INLLECTOR RF (INDUCTOR A MLD	23483 28480	$9109-1620$ $9106-2813$
A111.16	914:-0144	3	2	INDUCTOR RF (H-MLD 4.7UH 13\% , 13SDX, 26LG	28480	7140-0144
A11L17	9100-1624	2		INDUCTOR RT-CH-MLD 3CU: 58 , 1660X. 3855.6	28480	910c-1624
A11L18	9100-16.19	2		INDUCTGR RF-CH-M.D 6. Et in $10 x$	28480	9150-1619
A11L19	9140-0144	0		INDUCTOR RF-CH Mt D 4.7UH 10X , 105DX, 26 L G	28480	9146 0144
A1191	10540345	-	1	TRANSISTIR NPN ENS 179 SI TO-72 PD=233ru	04713	215179
A1102	1854-0404	0	2	TRANGISTOR NPN ST TO-18 PD=360ML	29480	1054-0464
A1193	10530007	7	5	TRANSISTGR PNP ENK2S 1 SI TO-13 PD=363ML	04713	2N3251
A1194	1853-0007	5		TPANSISTOR PNP 2N3251 SI TO-18 PD=360MW	64713	2N3251
A1/GS	1055-0267	5	2	TRANSTSTGR J-FET N-CHAN D-MCDE TO-92 SI	28480	1855-3267
A1106	1853-0007	7		TRANSISTOR PNP 2 N3251 ST TO-18 PD $=366 \mathrm{MW}$	04713	2N3251
A1107	10540404	3		TRANSTSTCR ${ }^{\text {NPN }}$ SI TO-18 PD $=369 \mathrm{hW}$	28480	1054-0404
A1108	1853-0007	7		TRANSISTOR PNP 2N32S1 SI TO 18 PD=36CMW	04713	2N3251
A1189	10550267	5		TRANSISTOR J FET N-CHAN D-MODE TO-92 SI	28483	1855-3267
A11910	1953-0007	7		TRANGISTOP PMP 2N32S1 SI TO-18 PD=360KU	04713	2N3251
A11R1	0757-0444			RESISTOR $12.1 \mathrm{~K} 1 \%$, 125W F TC=0 0 - 100	24546	C4-1/8-T0-121?-F
A11R2	0698-3156	2		RESISTOR 14,7K 1 X , 1254 F TC $=0+-100$	24546	
A1IR3	0757-0402	1	?	RESISTOR 1101%, 1254 F TC 00 , -100	24546	C4-1/8-70-111-F
A1 1R4	0757-0442	9	8	RESISTOR 10k 12.1254 F TC $=0+-100$	24546	C4-1/8-T0-1002-F
A11R5	0757-0405	4	1	RESTSTOR 1621 X (125U F TC $=04-130$	24546	C4-1/8-T0-162R-F
A11R6	6698-3431	6	1	RESISTOR $23.71 z, 1254$ F TC $=0+-100$	03888	PMES5-1/8-T0-23R7-F
A1187**	0598-8821	-	1	RESTSTIJR $5.621 x, 12 S W$ F TCaOt-100	28488	$0698-8021$
A11R8	0757-0401	0	3	RESISTOR 1001%, 125w F TC $=0+100$	24.546	C4-1/8-T0-101-F
Al1R9	0757-0439	4	1	RESISTGR $6.81 \mathrm{~K} \quad 1 \mathrm{X}, 1254 \mathrm{~F}$ TC $=0+100$	24546	C4 1/8-T0-6811-F
A11R10	0757-1094	9	1	RESISTOR $1.47 \mathrm{~K} \quad 1 \mathrm{z}$, 125W F TC $=0+-100$	24546	C.4-1/8-T0-1471-F
A11R11	0757-0440	7	1	RESISTOR 7.5K 1χ, 125以 F TC $=0+200$	24546	C4-1/8-T0-7501-F
At 1812	0757-0447	4	1	RESISTOR 16, 2K $1 \mathrm{z}, 125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/8-T0-16.22-F
A11R13	0698-0082	7	1	RESTSTER $4641 \mathrm{X}, 1254$ F TC $=0+100$	24546	C4-1/8-T0-4640-F
A1 1814	0757-0346	2	4	RESISTOR 101χ, 1254 F F $T C=0+-100$	24546	C4-1/8-T0-1080-F
A11R15	0698-3440	7	2	RESTSTIR $1961 \mathrm{X}, 125 \mathrm{~L}$ F $1 \mathrm{C}=3+-100$	24546	C4-1/8-T0-196R-F
A 11816	0757-0419	0		RESISTOR 681 12.125 W F TC $=0+-100$	24.546	C4-1/8-T0-681R-F
A11R17	0698-3442	9	2	RESTSTIOR 2371 x , 1254 F TC $=0+100$	24546	C4-1/B-T0-237R-F
A1 1R18	0698-3154	0	2	RESISTOR 4.22k 12.1254 F TC $=0+-100$	24546	C4-1/8-T0-4221-F
A11R19*	0698-3155	1	2	RESTSTOR $4.64 \mathrm{~K} 1 \mathrm{z}, 125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-4641-F
A11R20	0757-0442	9		RESISTOR $10 \mathrm{~K} 1 \mathrm{X}, ~ 1254 \mathrm{~F}$ TC $=0+-10 \mathrm{C}$	24.546	C4 1/8-T0-1002-F
A11R21 A11822	$\begin{aligned} & 0757-0442 \\ & 0757-0442 \end{aligned}$	9		RESISTIR $10 \mathrm{KK} 1 \mathrm{x}, 125 \mathrm{~W}$ F TC $=0+200$ RESISTOR 10K 1 K . 125W F TC $=0+-100$	$\begin{aligned} & 24546 \\ & 24546 \end{aligned}$	
A11R23*	0757-0288	1	2	RESISTOR RESISTOR 9.09 K R	24546 $1 \% 731$	$\begin{aligned} & \text { C4-1/8-T0-1002-F } \\ & \text { MFAC1/B-T0-9091-F } \end{aligned}$
A11824	0757-0465	6	2	RESISTOR $100 \mathrm{~K} 1 \chi$, 125W F TC $=0+-100$	24546	C4-1/8-T0-1003-F
A11R25	0757-0465	6		RESISTGR 100K $12.125 W$ F TC $=0+-100$	24546	C4-1/8-T0-1003-F

TABLE 8-8. BANDWIDTHFILTERNO. 1 ASSEMBLYAII, REPLACEABLEPARTS (3OF 3)

Reference Designation	HP Part Number	$\left\|\begin{array}{l} c \\ D \end{array}\right\|$	Qty	Description	Mfr Code	Mfr Part Number
A11R26	2130-3163	${ }^{8}$	1	RESTSTTR-TRKR 1 M 2JX C SIDE ADJ 17 -T2N	32111	43 P 135
A11R27 A1 11 REB	$0757-0444$ $3757-9443$	1	2		24.46 24546 2.46	$\mathrm{C} 4-1 / 8-\mathrm{TC}-1212-\mathrm{F}$ $\mathrm{CA-1/8-T9-1132-F}$
A11R29 A1tR3	$0698-0 \cos$ $3757-0432$	8	2		24546 24546	C4 $1 / 8-\mathrm{TO-1961-F}$ $\mathrm{C} 4-1 / 8-\mathrm{T}-111-\mathrm{F}$
Al1R31	2100-3052	4	1	RESISTOP-TPM 5810% C SIDE-ADJ 17-TPN	02111	43 P 50
Al1R23\%	${ }^{0698-3454}$	3	1	RESISTER 215k $1 \%, 1254 \mathrm{~F}$ TC $=3+109$	24546	C4-1/8- ${ }^{\text {c }}$
A11R33	0757-0442	9		PESISTOR 10 K 1 L , 125 S F TC=0+100	24546	C4-1/8-T0-1062-F
A11R34	-3757-3199	1	1		24546 19701	$\mathrm{C} 4-1 / 8-\mathrm{T} 3-2152-\mathrm{F}$ $\mathrm{M}=4 \mathrm{Cl} / 8 \mathrm{TC}-9691-\mathrm{F}$
A11R36	9698-0083	${ }^{8}$			24546	C4-1/8-T0-1961 =
A11R37	0757-0416	7	2	RESISTOP $51112.1254 \mathrm{~F}^{\text {F }}$ TC $=0+100$	24546	C.4-1/8-T0-511R-F
A11238	0558-3441	8	1	RESTSTIR 215 1z 1250 F IC=3+103	24546	C4-1/8-T0-215R-F
A11239 A1 1 R 40	- $\begin{aligned} & 0757-0419 \\ & 0698-3442\end{aligned}$	${ }_{9}$			24546 24546	$C 4-1 / 8-T 0-681 R-F$ $C 4-1 / 8-T 3-23 / R-F$
A1 1R41	0698-3154	0		RESISTO $4.22 \mathrm{~K} 1 \mathrm{1} \mathrm{\%}, 125 \mathrm{WF}$ TC $=0+16 \mathrm{C}$	24.46	C4-1/8-T0-422, ${ }^{\text {c }}$
A11R42	3757-0442	?			24546	C4-1/8-T0-1032-F
A1 1R43*	6698-3155	1			24546	C4-1/8-T8-464t-F
Al1R44 A1 1845	- $\begin{aligned} & 0757-0442 \\ & 0757-0401\end{aligned}$	\%		RESISİR ${ }^{\text {R }}$	24546 245.46	C4-1/8-TJ-1032-F $\mathrm{C4-1/8-TE-161-F}$
A11R46	0757-0431	0		RESIGTOR $100{ }^{12}$ \% 125 SW F TC=0+-103	24546	C4-1/8-T0-131-F
A11R47 A11R48*	0757-0346 $3757-0444$?	4		24.546 24546	C4-1/8-T0-16Fa-F $\mathrm{C4-1/3-T0-1212-F}$
A 11 R 49	0757-0444	1	4	RESISTOR 12.1 K 12, 12S ${ }^{\text {R }}$ F TC $=0+100$	2.4546	C4-1/8-T0-1212-F
Al1R53	3757-9346	2		RESISTOR 131%, 12SW F TC=3+-100	24546	C4-1/8-T0-10R3-F
$\mathrm{Al}^{11 R 51}$	$0757-0346$ $0757-0443$	a			24546	CA-1/8-T0-10R0-F
A11R52 A1 1R53	9757-0443 $0698-3440$	0			24546 24546	$\mathrm{CA}-1 / 8-\mathrm{Ta-132-1}$ $\mathrm{C4-1/8-TC-1968-F}$
A11R54	3757-0416	7			24546	C4-1/8- $\mathrm{T}^{\text {a }}$-511R-F
A11R5S	6757-0442	9		RESISTOR 10K 1\% . 125 SW F TC 8 $8+160$	24546	C4-1/8-T0-1062-F
A11R56* A11 125	9757-0274	5	1		24546	C4-1/8-70-1211-F
A11R57 A11R5B	0757-0180 $3678-3152$		2		28480 24546	
A11R5B A1 1859	${ }_{0}^{36757-0180}$		1	RESISTOR $31.61 \mathrm{~K}, 1254 \mathrm{~F}$ TC $00+-100$	28480	0757-0180
Al1R69	0698-3153	9	1	RESISTGR 3.03 K 1 X . 125 SW F TC=34-133	24546	C4-1/8-T0-3831-F
A 11 1PP 1	0360-1788		4	CONNECTOR SGI CONT PIN.04E IN ESE S7 50	28480	c360-1788
A11TP2	$0360-1788$ $1251-060$	7	7		28480 28480	$9360-1788$ $1251-0600$
${ }_{\text {Al }} 11 \mathrm{TPP}^{4}$	${ }^{0360-1788}$	7	7	CONNECTOR SGL CONT PIN . 045 IN FSC SI2 SQ	28480	${ }^{12360-1788}$
A11TP5	0360-1788	7		CONNECTOR-SGL CONT PIN. O4E IN-ESC S\% SQ	20480	03/0-1783
A11TP6	1251-3600			CONNECTOR SGL CINT PIN 1.14-mm ESC Sz 90	28480	1251-0600
A11 TP8 A11TP9	$1251-0600$ $1251-0600$	0		CONECTOR-SEC CONT PIN 1.14 MM-ESC 97 SO	28480 28480	$1251-0600$ $1251-0600$
A11TP 10	1251-0600	,		CONNECTOR-SGI CONT PIN 1.14 MM -ESC-S2 SQ	28480	1251-0600
A11TP11	1251-0600	0		CONNECTOR-SGL CONT PIN 1.14-MM-EEC $\leqslant \mathrm{Z}$ S SQ	28480	1251-0600
A11 TP 12	1251-0600	0		CONNECTOR-SGL CONT PIN 1.14 MM-ESC 97 SQ	28480	1251-0600
Al1uri	1902-0048	1	1	DIODE ZNR 6.81V 58 vo-35 PD=.4U	28480	1902-0048
Allyi AliYz	$\begin{aligned} & 0410-0776 \\ & 0410-0776 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	2	CRYSTAL-QUARTZ 21.4 MHZ HC 25/U-HLDR CRYSTAL-QUARTZ 21.4 MHZ HC 25/U-HLDR Al। miscellaneous parts	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 6410-0776 \\ & 0410-0776 \end{aligned}$
	$\begin{aligned} & 0403-0026 \\ & 08559-000025 \\ & 08559-00007 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	PLug hile bdr-hD for . 107 D hole nyl BAFFLE INDUCTOR cover, EW Filter no. 1	$\begin{aligned} & 32768 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 237-120241-03-3101 \\ & 08559-00025 \\ & 08559-00007 \end{aligned}$

Bes]e

FIGURE8-54. BANDWIDTHFILTERNO. 1 ASSEMBLY A11,BLOCK DIAGRAM

A11

FIGURE8.55. BANDWIDTHFILTER NO. 1 ASSEMBLY AII, COMPONENT LOCATIONS

STEP GAIN ASSEMBLY A12, CIRCUIT DESCRIPTION

The Step Gain Assembly A12 provides from 0 to 50 dB amplification of the 21.4 MHz IF in 10 dB steps, as selected from the REFERENCE LEVEL control. A zero to - 12 dB REFERENCE LEVEL FINE attenuator control is also included on the front panel. Generated on the Step Gain Assembly A12 are the first mixer diode bias and a flatness control voltage proportional to the sweep plus tune $(\mathrm{S}+\mathrm{T})$ voltage.

Step Gain Amplifiers (E) (F) (G)

There are three step gain amplifiers, one 10 dB and two 20 dB , cascaded as shown in the schematic diagram. Full gain of any amplifier is selected by grounding the appropriate IFG line. The three step gain amplifiers can be considered as operational amplifiers. An equivalent circuit for the three stages is shown in Figure 8-57. The gain for each amplifier is: Gain $=1+\mathbf{R}_{\mathrm{r}} / \mathbf{R}_{\mathrm{i}}$. The feedback resistance, R ,, for the 10 dB amplifier is $\mathbf{R 8}, 562$ ohms; for the 20 dB amplifiersit is 233 and R 31 , each 750 ohms . The input resistance, R,, is a combination of a fixed series resistance (56.2 ohms) and the controlled resistance of the PIN diodes. The resistance of the PIN diodes is approximately 10 to 1000 ohms and increases as the forward bias current is decreased from 100 milliamperesto 1 microampere. The input resistance, R_{i}, for the 10 dB amplifier is approximately 260 ohms ; for the 20 dB amplifiers, it is about 83 ohms .

FIGURE8-57. STEP GAIN AMPLIFIERS, SIMPLIFIEDDIAGRAM

Selection of the correct combination of step gain amplifiers is accomplished with the REFERENCE LEVEL switch. Rotating the switch grounds the emitter circuit of the selected amplifier (or amplifiers), allowing current to flow through the PIN diode (or diodes). The possible switch combinations allow the gain to vary from unity (all switches open) to 50 dB maximum with all three emitter circuits grounded.

Test/Norm Switch. In the emitter paths of the 20 dB step gain amplifiers are the TEST/NORM switches used to disable both 20 dB amplifiers during log amplifier adjustment.

```
0-12dB Control (H)
```

The REFERENCE LEVEL FINE control provides approximately 0.3 to 12.3 dB of attenuation at the base of Q6 in the $0-12 \mathrm{~dB}$ control circuit. By regulating the current flow through PIN diode CR7, the amount of signal attenuation is controlled. For example, if PIN diode current flow is increased, more RF signal is shunted or bypassed to ground. Capacitor C23 provides the RF ground path.

A minimum current flow through the PIN diode, which provides the maximum allowable diode resistance, is established by -12 dB potentiometer R39 so that the diode is never completely cut off. Adjustment of R39 sets the 0.3 dB point and is adjusted with the REFERENCE LEVEL FINE control set fully clockwise (-12 position).

The maximum current flow through the PIN diode is set with the $\mathbf{0} \mathrm{dB}$ potentiometer R35. Resistor R35 is adjusted to the 12.3 dB attenuation point with the REFERENCE LEVEL FINE control set fully counterclockwise (0 position).

Transistors Q5 and Q7 are identical current sources. The maximum current is set with the 0 dB adjustment, R35, in the common base circuit. Diode CR5 provides temperature compensation for the transistors.

Transistor Q5 provides current for a bias voltage applied to the anode of the PIN diode. The voltage source consists of R39, R38, and CR6. Diode CR6 provides temperature compensation for the PIN diode. Inductor L8 isolates the diode current source from the RF signal.

Transistor Q7 provides current for a variable voltage source at the cathode of PIN diode CR7. Fixed resistor R40 is effectively in parallel with the negative side (-12.6 V) of the REFERENCE LEVEL FINE control potentiometer. Its purpose is to match the FINE control to changes in the PIN diode resistance. The FINE control varies the voltage at the PIN diode cathode, this varies the diode current flow. When the FINE control is fully clockwise, the PIN diode is at minimum conduction and maximum signal is applied to the base of Q6. Conversely, when the FINE control is fully counterclockwise, the PIN diode is forward biased into maximum conduction and minimum signal is applied to Q6. Buffer amplifier Q6 operates as an emitter follower, providing isolation between the $0-12 \mathrm{~dB}$ control circuit and the 21.4 MHz bandpass filter.

21.4 MHz Bandpass Filter (I)

The 21.4 MHz Bandpass Filter at the output of the $0-12 \mathrm{~dB}$ control circuit is a two-pole type used to reduce the out-of-band noise produced by the step gain amplifiers and $0-12 \mathrm{~dB}$ control.

NOTE

For minimum step gain error, the ground plane on the Step Gain Assembly A12 must be firmly connected to the chassis extrusion and the Motherboard Assembly A16 common ground. This means that before you can make any step gain measurements or adjustments, the Step Gain Assembly A12 must be fully seated in its connector socket and all of its cover screws must be in place and tightened. You can, however, leave the gold secondary cover off for these measurements.

BandSelect Decoder (A)

Band select decoder U3 is a 4-to-10 line decoder. It decodes the three band-select lines (H2, H3, and PM) to select one of six output lines. The selected line goes low while the remaining five lines stay high. The status of the decoder's outputs controls the tilt, offset, and bias circuits.

Band Tilt (C)

Band tilt is controlled with a variable, voltage-controlled voltage source comprising operational amplifier U4b, current boosting transistor Q2, and related adjustable resistor networks. The signal input to this circuit is the sweep plus tune $(\mathrm{S}+\mathrm{T}$) voltage. Normally, this signal is a ramp extending from +1.2 V to +4.8 V or some level in between, depending on the position of the FREQ SPAN/DIV and frequency TUNING controls.

When the $\mathrm{S}+\mathrm{T}$ ramp is at its low point $(+1.2 \mathrm{~V})$, the level at test point 3 should be $+10.6 \mathrm{~V} \pm 0.1 \mathrm{~V}$. When the $\mathrm{S}+\mathrm{T}$ ramp is at its peak $(+4.8 \mathrm{~V})$, the level at test point 3 can be adjusted from about +9.6 V to +10.9 V with the circuits's potentiometers and factory selected fixed resistors. Potentiometers R47, R48, R49, R51, R53, and R55 adjust the overall tilt for each band. Two factory selected resistors, R50 and R52, and potentiometers R54 and R56 provide additional tilt adjustment for harmonic mixing bands $2+, 2-, 3+$, and $3-$ after a breakpoint at approximately midband.

Band Offset (D)

Operational amplifiers U4a, U4d, U4c, and their associated circuits provide offset and gain for the tilt voltage. Potentiometers R57, R58, R59, R60, R61, and R62 are used to adjust the offset of each band. A fixed negative offset is provided for all bands by operational amplifier U4c. The resulting flatness output voltage is applied to a voltage-controlled amplifier on Third Converter Assembly A10.

Mixer Diode Bias (B)

Bias of the First Mixer Assembly A4 depends on the desired harmonic mixing number. Quad switch U1 and operational amplifiers U2a, U2b, and U2c with their associated components form the mixer diode bias sources. Varying power levels are coupled into the mixer diode due to irregularities in the YTO's swept power output, causing variations in the mixer diode bias conduction angle, or total bias power. The bias sources adjust to these instantaneous changes in the mixer bias conduction angle by increasing or decreasing bias in order to maintain a constant conduction angle. The circuit includes separate bias adjustments for bands $2-, 2+, 3-$, and $3+$. Bands 1 - and $1+$ use a common bias adjustment potentiometer.

The four switches in U1 are normally closed, but the individual switches open when selected by a logic-high control voltage. Since the outputs from the band select decoder U3 are all high except one, the normal status of the switches in U1 is open until a low control input allows one to close. The switch then connects one of the three potentiometers (R70, R71, R72) through a factory selected fixed resistor to the positive input (pin 10) of operational amplifier U2c, forming a voltage source at that point. The table below shows which potentiometers and factory selected resistors apply to which band.

TABLE 8-9. MIXERDIODEBIAS ADJUSTMENTS

Band	Control Name	Bias Adjust Resistor	Range Adjust Resistor (Factory-Select)
$.01-3$	V1	R72	R73
$6-9$	V1	R72	R73
$3-9$	$\mathrm{~V} 2-$	R83	R84
$9-15$	$\mathrm{~V} 2+$	R87	R88
$6-15$	$\mathrm{~V} 3-$	R71	R74
$12.1-21$	$\mathrm{~V} 3+$	R70	R75

Operational amplifier U2c forms a negative impedance converter that increases or decreases bias as needed to maintain a constant angle of conduction at the first mixer. This is necessary to maintain a constant insertion loss through the first mixer. Operational amplifier U2c is connected to the voltage source at the junction of R73, R74, R75, and Q1. This circuit multiplies its input source resistance by approximately $-1 / 110$, thus converting the input voltage source and series resistance into an equivalent voltage source and negative impedance (here, approximately $\mathbf{- 1 0 0 0} \mathrm{ohms}$).

Because of this conversion, as current increases in the circuit, the resultant output voltage decreases, just as it would if a negative resistance value (-R) were substituted for R in the familiar expression for Ohm's Law. The expression would then be rewritten as: $\mathrm{E}=\mathrm{I}(-\mathrm{R})$. Notice now that an increase in current (I) results in a decrease in voltage (E). This is the equivalent action of this circuit. If all of U1's switches are open (as in band 2 - or $2+$), transistor Q1 forces the junction positive, turning off CR15 and thereby removing the negative impedance converter from the bias output at P1-24. One of the other operational amplifiers in U2 is activated, providing voltage sources and positive resistances to the bias output (TP1 or P1-24). When one of the operational amplifiers is selected, the diodes at the outputs of the other two are reverse biased, and disconnect the outputs from P1-24.

+5.1V Reference (K)

Transistor Q 4 and its associated circuitry operate off the +15 V supply to furnish a regulated +5.1 V reference for the flatness and mixer diode bias circuit.

Power Supplies (J)

Extensive filtering of the $+15 \mathrm{~V},+12 \mathrm{~V}$, and -12.6 V inputs is needed to reduce coupling between each step gain amplifier and between the Step Gain Assembly A12 and the other assemblies.

STEP GAIN AMPLIFIER ASSEMBLY A12, TROUBLESHOOTING

CAUTION

Tubular ceramic capacitors will short to the aluminum extrusion if allowed to touch it during testing.

Always check the supply voltages. If the +15 V supply drops (even slightly), the +5.1 V Reference becomes unregulated.

Linear or Log Fidelity Errors: First readjust REFERENCE LEVEL FINE to the -12 dBm position and test again. If the problem is not present, gain compression may be occurring in one of the circuit's amplifiers. The 10 dB Amplifier (block E) is the most probable source, and improper biasing of CR1 is the most probable cause. Insufficient dc biasing of CR1 allows signal voltage to vary the bias, causing the stage gain to vary as the signal level varies. Diode CR1, not transistor saturation, is the most common cause of compression.

Reduction of the losses in the $0-12 \mathrm{~dB}$ Control (block H) allows the first amplifier stage to operate at a lower input level, thus reducing compression. To decrease the losses, hand-select CR7 and C23 for minimum circuit loss.

Poor Linearity of the $\mathbf{0} \mathbf{- 1 2} \mathbf{d B}$ Control: The most probable cause is CR7.

TABLE8-10. STEP GAIN ASSEMBLY A12, REPLACEABLEPARTS(10F3)

Reference Designation	HP Part Number	$\left\|\begin{array}{l} c \\ \mathbf{D} \end{array}\right\|$	Qty	Description	Mfr Code	Mfr Part Number
A12	0555s-60326	2	1	Step gain assemily	78483	06559-60.326
A12C1	${ }^{\text {c 1 1 }}$ 60-26.55	$\stackrel{7}{7}$	27	CAPACITOR-FXD , C1uF +80-20\% $160 \cup \mathrm{DC} \mathrm{CRR}$	2 cas	016.0. 2055
A12Cl A12C3	9169-3457 $\mathrm{c} 160-2655$	$\stackrel{7}{9}$	3		- 84888	3160-3.457
A12C3 A12C4	c160-265s $3180-3291$	4	2	CAPACITOR FXD Cille	${ }_{56889}^{26886}$	15JD13599335A2
Al2Cs	0160-265s	9		CAPACTTOR FXD . 1 IUF +00-26\% 10QUDC CLF	28498	$6160 \cdot 2055$
A12c6	3160-2355	,		CAPACITGR-FXD 013F 1 Bn 23% 103ULC CER	7 c 489	3160-2355
A12C7	6160-2055	9			23430	6160-2055
${ }_{\text {Al }}^{\text {Al2cs }}$	${ }^{0160-2955}$	${ }_{9}$			28480	(3160-2055
A12C10	0160-2055	7		CAPACITGR FXD Dilu vas a\% luavec irn	23483	3160-2355
$\mathrm{Al2Cl1}^{12}$	0160-2055	9		CAPACITOR-FXD .G1uF +36-20\% 100UDC CLE	28980	${ }^{016.62055}$
A12C12	3150-2355	7		CAPACITSR-FXD - O1UF $183-202$ 103VEC TER	. 11401	3160-2355
${ }^{\text {A } 12 C 13}$	0160-2055	9			$\frac{28490}{1140.1}$	${ }^{C 164}$
A12C1S	0160-2055	9		CAPACITOR-FXO. C1UF +86-20\% 100VDC CFF	21980	616.02055
A1EC16	3159-3.457	,			\%'1400	3160-3457
A12C17	0160-2055	9			239898	016.0.2055
A12cis	3163-2355	\%			33480	3163-2355
A12C19 A1EC23	c160-3457	7		CAPACITOR-FXD 2EGECF + 10% 25AUDE CEER	20480	61603457 $0160-2355$
	7160-2355					
A12C21	0160-2055	$\stackrel{9}{9}$		CAPACITITR-FXD . $01 u \mathrm{~F}$ +86-20\% 10CUDC CRR	2 aman	c14.0-2055
${ }^{\text {Alecen }}$	0163-2055	8			${ }^{-8489}$	- 316302355
A12C24	3160-2355	${ }_{8}$		CAPGCITOR-FXD O1UF 180-23\% 13JVLC CER	28439	3163-2955
A12c2s	6160-2199	2		CAPACITO2-FXO 3GEr + 52 3Ggudd mica	28498	016.6-2199
A1こC26*	0160-2199	3	?		23780	3163-2199
${ }^{\text {A12C2\% }}$	0160-2055	9		CAPACTIOR FXD - A1uF +atere	20489	016.E. 2055
Alscis A12c30	0160-2055	${ }_{9}$			23489	3160-2355
Alec31	-160-2655	9			28480	$3160-2355$
A12C32	0160-2655	${ }^{9}$			2:490	0160-2055
${ }^{\text {Al2C33 }}$	0160-2355	7		CAPACITUR-FXD . $3115183-23 \%$ 103ULC CER	, 8483	3160-2055
A12C34		9		CAPACITOR-FXD . 114 F +8G-20X 100VDC CER	38880	016.0-2055
${ }_{\text {A1 }}{ }^{\text {Al2C36 }}$	$0160-2355$ $0160-0127$	${ }^{2}$	1		23480	0160-0127
A12C40	0160-2253	ϵ	3	CAPACLIDR-FXD 5.1PF + .aspy sioutc cer	-6489	3160-2250
A12C41	0180-2250	,		CAPACITOR-FXD 5.1PF +-.259F SOOUDC CFR	29480	0160-2250
A12C4?	0160-2250	,		CAPACIIDR-FXD S.1PF +-.2SPF SOJUEC CER	- 0483	0160-2250
A1 2CR1	1901-1070	9	4	DIODE-PIN 110 L	28480	1901-1078
A12criz	17310059	3	17	DIODE- SWITLHING 300 203iat ENS DO-35	26489	1731-0350
A12CR3	1901-1070	9		DIODE-PIN 1100	28489 18480	$1761-1074$ 1201.1070 1902050
A12CRS	1791-0050	$\stackrel{3}{3}$			-8480	1901-0050
AIECRG	1931-0353	3		diode simitching bou zomma mes do 35	28480	1901-0050
A12CR7	1901-1670	9		DTODE PIN 1100	284110	1761-1070
Al2CRg A12CR9	1731-3050				28.880	1701-0950
AlECR10	1901-0050	3		drook switchiag gou zoma ang do 15	29480	1901-3050
A12CR 11 $A 12 C R 12$	1901-0050	3		DITODE SUITCHINE RIGU 2OIMA 2 NE DO 35	20480	1901-0050
Aler 12 Alecr 13	$1901-0.050$ $1901-0050$	3 3		DTODE SH1TCHINE GRU 200MA a NS GO 15	26483	1731-0050
A12CR14	19010050	3		DTODE SWITCHING GAU 2aOMA ENS EO 35	P11480	1931-0050
A12CR15	1901-0050	3		DIODE SWITCHING G0U 2GDMA 2NG da 35	20480	1901-0050
A12CR16	1701-0950	3		DIODE SWITCHING BJU 230MA ENS DO-35	29480	1931-0350
A12CR17 A12CR18	1901-0050	3		DIODE SWITCHING QGU 2GGMA ENS DO 35	29480	1591-0050
A12CR19	1901-0050	3		DTIDE SWITCHING EOU 2UOMA ZNS DO 35	28480	1901-0050
Alzcreo	1901-0535	9	2	DIODE-SM SIG SCliotiky	70480	1731-0535
A12CR21	1901-0535			DIODE: SM SIC SCHOTTKY	28480	1901-0535
	1901-0050	3		Drooe-swithing bou cinha ens do-3s	26480	1901-0050
A12F, A1 $^{12 \ell 2}$	9170-0029		3	CLIRE SHIELDJNG EFAD	28480	9170-0329
A12E3	$9170-0029$ $9170-0329$	3 3			28480 68480	917000029 $9170-0029$
${ }^{\text {A } 2211}$	$9140-0179$	1	8	INDUCTOR RF-CH-MLD $22 U 4102.1660 \times .385 L G$	23480	9140-0179
A12L2	7140-0179	1		INDUCTRR RF-CH-MLD 22UH 102.166 DX . 3885 LG	28480	914000179
${ }_{\text {A12L }}{ }^{\text {A12 }}$	$9140-0179$ $9140-0179$	1			28480 28480	$9140-0179$ $9140-0179$
A12L5	9140-0179	1		INDUCTOR RF-CH MLD 22IJH 10\%.166DX. 3 RSLG	P0480	9140-0179

TABLE 8－10．STEP GAIN ASSEMBLY A12，REPLACEABLE PARTS（2OF 3）

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A12l6	7140－0179	1		INDUCTOR ar－CH－NLD 22UH 13% ．156DX．385LG	28480	9140－3179
A12L7	9140－0179	1		INDUCTOR RF－CH－MLD 22.1 H $18 \% .1650 \times .383 L G$	28480	71460179
A12L8 A12L9	714：－9179	1		INCUCTIOR RF－CH－MLD 2CUH 19% ， 166 EDX ．365LG	28480	9140－0179
A12L9 A12Lis	$9100-2260$ $7140-3158$	1 6	1		28480 28483	$9160-2260$ $9143-0158$
A1201	1053－0291	9	1	TRANSISTOR PNO 2N2907A SI TO－18 PD＝4CEMW	C4713	
A1202	1954－0323	7	2	TRANSISTOR NP＇N SI TO－18 PD $=360 \mathrm{MW}$ ，	28480	1654－0323
A1203	1854－0．023	9		TRANSISTOR NPN SI TO－18 PD 360 ML	28480	185．4．0023
A1204	1354－9637	1	1	TRANSTSTGR NPN ŻN2217A ST TO－5 PD $=303 \mathrm{MW}$	31295	2N2219A
A1205	1953－0007	7	3	TRANSISTOR PNP 2N3251 SI TO－18 PD $=360 \mathrm{MW}$	04713	2M3251
A1296	1053－0007	7		TRANSTGTOR PNP 2N3P5 SI $^{\text {S }}$ TO－18 PD $=363 \mathrm{MW}$	04713	2n3：51
A1207	1953－0007	7		TRANGISTOR PNP 2N3251 SI TO－18 PD $=366 \mathrm{MW}$	64713	2N3251
A12c8	1053－0．715	7	3	TRANSISTOR PNP SI PD $=203 \mathrm{KW}$ FT $=500 \mathrm{MHZ}$	28489	1853－3015
A12 289 A12010	$1854-0546$ $1053-0015$	1	3	TRANSISTOR NPN SI $T 0-72$ PD＝20日MW	28480	1854－0546
A12Q10	1953－0015	7		TRANSTSIGR PNP SI PD＝233KL FT＝5036n7	28483	1553－0315
A12911	1954－0546	1		TRANSISTOR NPN SI TO－72 PD＝200ML	28480	1054－0546
A12012 A12Q13	1854－0546	1		TRANSTSTOR NPN SI TO－72 PD＝203mW	28483	1354－0546
A12Q13	1853－0015	7		TRANSISTOR PNP SI PD $=20 \mathrm{CHW} \mathrm{FT}=500 \mathrm{~m} 4 \mathrm{Z}$	28480	1853－0015
A12R1	9757－0279	0	4	RESTSTUR 3．16K 1% ，125W F TC $=3+109$	24546	C4－1／8－T3－3151－F
A1 2R2	0698－3444	1	4	RESICTOP 3161% ， 125 S F $\mathrm{TC}=0+10 \mathrm{E}$	245.46	C4－1／8－T0－3162－F
A12R3 A1 $12 R 4$	3757－9375	1	3		24546	C4－1／8－T0 S6R2－F
A12RS	2130－3752	1	1	RESTSTCR－1RMR 530 K 13\％C STDE－ADJ 17－TRN	24546 78480	$2130-3752$
A12Rg	2100－36，11	1	1	RESISTOR－TPMR S0K 10% C SIDE－ADJ 17－TRN	32977	3？92x－1－503
A1227 Al AR8	3757－3280	3 8	6	RESTSTOR $1 \mathrm{~K} 1 \%$ ，125W F TCuBt－133	24546	C4－1／B－T0－1031－F
A1 $2 R 8$ A12R9 Al	6757－0417	8 3 3	1		24546	CA－1／8－T0－56．2R－F
Al2R9 A1 $2 R 10$	$0757-0280$ $0698-3155$	3	1		24546 24546	C4－1／B－T3－1091－F C4－1／8－T0－46．41－F
AlcR11	3757－0465	6	2	RESTSTRR 10 JK $1 \%, 1254$ F TC＝3＋－100	24546	C 4 －1／8－T3－1033－F
A12R13	6757－0346	2		RESISTOR $101 \% .125 W$ F TC $=0+100$	24546	C4－1／8－TC－16PG－F
A1CR14	9757－0346	2		RESTSTOR 131% ，12SW F TC＝0t－103	24546	C4－1／8－T3－10R 3－F
A12R15	6757－0346	2		RESISTOR 10 1\％ 12.125 W F TC Cot－100	24546	C4－1／8－T0 1020－F
A12R16	1998－3433	日	2	RESTSTOR 28.71% ，12SW F TC $=3+\sim 130$	33568	PRE5S－1／8－T0－2ER7－F
A12R17	0757－0279	1		RESISTOR 3． 16 K 1\％，125W F TC $=0+160$	24546	C4－1／8－T0－3161－F
AlcR18	0698－3444	1		RESISTOR $31612 \times 125,4$ F TC＝3＋－133	24546	C4－1／8－T3－316R－F
A12R19	6698－3260	9	2	RESISTOR 464k $1 \% .1254$ F TC $=0+100$	20480	0693－32b0
A12R20	3757－9395	1		RESTSTAR 56.21% ，12SW T TC＝34－103	24546	C4－1／8－T3－56R2－F
A12R21	2100－3056	8	3	RESISTOR－TPMP 5K 10\％C SIPE－ADJ 17－TRN	02111	43 P 502
A12R22	3757－0280	3 3		RESISTAR 1 K 12.12 ESW F TC $=31-100$	24546	C．4－1／8－T0－10．31－F
A12R23 A12R24	－7557－0420	3 3 3	2	RESISTOP RESTSTOR 1501% R 1\％	24546 24546	C4－1／8－T0－751－F
A12R25	0757－0279	0			24546 24546	C4－1／8－T0－1001－F $\mathrm{C} 4-1 / 8-\mathrm{TO}-3161-\mathrm{F}$
A12R26	0698－3444	1		RESTSTOR 31618 ． 12 SW F $1 \mathrm{C}=3+-100$	24546	C4－1／8－T0－316R－F
A12R27	0698－3260	9		RESISTOR $464 \mathrm{~K} \quad 17.1254$ F TC $=0+-100$	28480	8690－3260
A12R28	3757－0395	1		RESISTAR 56.21% ， 12254 F TC＝$=34-139$	24546	C4 1／8－T3－56R？－F
A12R29	2100－3056	8		RESISTIR－TRMR 5K 10\％C SIPE ADJ 17－TEN	02111	43P582
A12830	0757－3280	3		RESTSTOR $1 \mathrm{~K} 1 \mathrm{~K}, 125 \mathrm{~L}$ F TC＝0t－100	24546	C4－1／3－T0－1031－F
A12R31	0757－0420	3		RESISTOR 7501χ ，125w F TC＝0＋－100	24546	C4－1／8－T0－751－F
A12R32	0757－0280	3		RESISTGR $1 \mathrm{~K} 1 \%, 12 \mathrm{SW}$ F TC＝3＋100	24546	C4－1／8－T0－1091－F
A12R33	0757－0288	，	4	RESISTOR 9.09 K 17.125 W F TC＝04－106	15701	MF4C1／8－T0－9091－F
A12R34	0757－0279	0		RESISTOR 3．16K 1\％，125W F TC＝0t－109	24546	C4－1／3－T0－3161－F
A12R35	2100－3103	6	3	RESISTOR－TRMR $10 \mathrm{~K} 10 \%$ C STDE－AD． $17-$ TRN	02111	43 F 103
A12R36	0757－0288	1		RESISTOR 9．09K 1 X ． 125 W F $\mathrm{TC}=0+-102$	19701	MFAC1／8－T3－9091－F
A12R37	0698－3444	5		RESISTOR 316 1\％，1254 F TC＝0 +100	24546	C4－1／8－TG－316R－F
A12R38	0757－0290	5	3	RESISTOR $6,19 \mathrm{~K} \quad 1 \mathrm{~K}$ ，12SU F TC＝02t－130	19731	MFAC1／日－T0－6191－F
A12R39	2100－3056	8		RESISTOR－TRMR 5 L 10\％C SIDF－－ADJ 17－TRN	02111	43 P 502
A12R40	0698－3457	6	1	RESISTOR 316K 1\％，125W F TC＝0＋ 100	28483	3698－3457
A12R41	0698－3433	8		RESISTOR $28.71 \% .1254$ F T $¢=0+-100$	сз8ав	PMF55－1／8－T0 2ERT－F
A12R42	0757－0290	5		RESISTOR 6， $19 \mathrm{~K} \quad 1 \mathrm{X}, 1254$ F TC $=0+-100$	19731	MF4C1／B－T2 6191－F
A12R43	0757－1094	9	1	RESISTOR 1．47K $1 \mathrm{1z}$ ，125W F TC $=0+-100$	24546	C4－1／8－T0－1471－F
A12R44	0698－3440	7	1	RESISTOR 1961χ ， 1254 F TC $=0+100$	24546	C4－1／8－T0－196R－F
A12R45	0757－0441	8	2	RESISTOR 8．25K 12 ． 125 W F $\mathrm{TC}=0+100$	24546	C．4－1／8－T0－0251－F
A12R46	0698－3136	8	1	RESISTOR 17， BK 12 ， 125 W F $\mathrm{TC}=0+-100$	24546	C4－1／8－T3－1782－F
A12R47	2100－0670	6	3	RESISTOR－TRMR $10 \mathrm{~K} 10 \chi$ C SIDE－ADJ 17－TRN	32997	3292x－1－103
A12R48	2100－3103	6		RESISTOR－TRMR 10 K 10 X C SIDE－ADJ 17－TRN	02111	43 P 103
A12R49	2100－3750	9	3	RESISTOR－TRMR 20 K 10 X C SIDE－ADJ 17－TRN	28480	2100－3750
A12R50＊	0757－0458	7	2	RESISTOR $51.1 \mathrm{~K} 1 \mathrm{~K}, 125 \mathrm{~W}$ F TC＝0＋-100	24546	C4－1／8－T3－5112－F
A12R51	2100－3750	9		RESISTOR－TRMR 20 K 10X C SIDE－ADJ 17－TRN	28480	2100－3750
A12R52	0757－0458	7		RESISTOR 51， 1 K 1 K ，12SW F TC $=0+100$	24546	C4－1／B－T0－5112－F
A12R53	2100－3161	6	3	RESISTOR－TRMR 20K 10 X C SIDE－ADJ 17－TRN	02111	435203
A12R54	2100－3094	4	5	RESISTOR－TRMR 100 K 10 X C SIDE－ADJ 17－TRN	02111	43P104
A12R5S	2100－3161	6		RESISTOR－TRMR 20K 10% C SIDE－ADJ 17－TRN	02111	43 Pr 203
A12R56	2100－3094	4		RESISTOR－TRAR 100 K 10 X C SIDE－ADJ 17－TRN	02111	43 P 104
A12R57	2100－0544	3	3	RESISTOR－TRMR 100 K 10 CK C SIDE－ADJ 17－TRN	32997	3292x－1－104
A12R58	2100－3094	4		RESISTOR－TRRR 100 K 10 X C SIDE－ADJ 17－TRN	02111	$43 P 104$
A12R59	2100－3094	4		RESISTOR－TRMR 100 K 10x C SIDE－ADJ 17－TRN	02111	43 P 104
A12R60	2100－0544	3		RESISTOR－TRAR 100K $10 \times \mathrm{X}$ C SIDE－ADJ 17－TRN	32997	3292x－1－104
A12R61	2100－0544	3		RESISTOR－TRMR 100K 10 X C SIDE－ADJ 17－TRN	32997	3292x－1－104

TABLE 8-10. STEP GAIN ASSEMBLY A12, REPLACEABLE PARTS (30F 3)

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ \mathrm{D} \end{array}\right\|$	Qty	Description	Mfr Code	Mfr Part Number
A12R62	2193-3094	4		PESTSTIR-TRMR 133 K 13\% C SIDE ADJ 17-TRN	32111	$43 P 134$
A1 $12 R 63$ Al 1264	$0698-3157$ $0698-3157$	3 3	2		24516 2.4546	
A12R65	0757-0199	3	1	RESTSTOP 21.5X $12.125 \mathrm{~S}^{\text {F }}$ F TC=01-106	24546	C.4 1/8-TC-2152.F
A12R66	3698-3266	5	1	aESISTGR 237k 1\% , 12SW F TC=3 1-130	24546	C4 1/8-T0-2373.F
A12R67	0757-0441	8		REGISTOR 8.25\% $17,125 \mathrm{FF}$ TC=0 -106	24596	C4 1/8-T0-2031-F
A1ERLB	3757-3462	3	1		28546	C4 1/3-Ta-75.92-5
A12R69	0698-0084	9	1	RESISTOR $2,15 \% 12,1254 \mathrm{~F}$ F TC=0+166	24546	C4.1/8-T0-3151-F
A1E270	2133-0670	6			12897	
Al $2 R 71$	2100-3103	6				
A12r72 A12R73*	$2100-0673$ $0757-0463$	4			33597 24546	
A12R73* A1ER74*	$0757-0463$ $0757-0464$	4 5	$\frac{1}{2}$		24546 7.4546	
A12R75*	0757-0464	5		RESISTOR $90.9 \mathrm{~K} 1 \mathrm{1z}, 123 \mathrm{~L}$ F TC $=0+100$	24546	C.4. 1/8-T0 -7092-F
A12R76	9757-0442	7	?	RESTSTOR 13K 1\% .1254 F TC=34-139	24546	C4 1/8-T9-1032-F
${ }^{\text {A1 }} 12 \mathrm{R} 77$	0757-8465	6			245.46 24546	
Al2R78 A12R79	-0757-0431	$\stackrel{3}{9}$	1		24546 24546	
A12R80*	3757-9346	2	4	2ESTSTOR 10 1\% .1254 F TC-3,-133	24546	C4-1/8-T3-10R3-5
A12R81	0757-c289	1			17761	
${ }^{\text {A1PRE2 }}$	0757-0443	0	$?$		24546	C4-1/8-T0-1102-F
${ }_{\text {A1 }}^{\text {A12R83 }}$	2100-3750	9	3	RESISTOR-TRMR 20K 10\% C STEE-ADJ 17-TRN	28480 24546	2106 3750 $\mathrm{CA} 1 / 8 \cdot \mathrm{ta}-1961 \mathrm{~F}$
A12R85	$0698-0283$ $0757-0288$	-	3		19761	MF4C1/8-T0 $9691-\mathrm{F}$
Alerbs	3757-0443	${ }^{3}$		RESTSTOR 11K 1 K , $1 \mathrm{ESG4} \mathrm{~F}$ TC $=3+-103$	24546	C4 $1 / 8$ - $73-1132$ F
A12R87	2100-3161	6		RESISTOR-TRMP 20 K 10 z C SIDE-ADJ $17-$ TRN	02111	$4 \mathrm{4P} 2 \mathrm{c} 3$
A12R8B*	0698-0.083	${ }_{8}^{8}$			24546	C4-1/B-T0-1961-F
A12R89 A12R90	$06988-0083$ $3757-0290$	-			24546 19731	TFFAC1/8-Tシ-6191-F
A12S1	3101-1618	7	1	SWITCH-SL DPDT GUBMIN . 5 A 12SUAC/DC PC	28480	316.1-1610
${ }_{\text {A12TP1 }}$	1251-0600	3	7	CONNECIGR-SEL CONT PIN 1.14-MM-ESC-s7 SR	${ }_{28483}$	$1251-0600$
Al2TP2 ${ }_{\text {A1 }}$	$1251-0600$ $1251-0600$	0		CONNECTOR-SGL CONT PIN 1.14 HM- iSC--\%\% SQ	28480 28480	$1251-0606$ $1: 51-0600$
A12TP4	1251-0600	0		CONNECTOR-SGL CONT PIN 1.14-MM-BSC-S7 SQ	28480	1251-0606
A12TP5	1251-0600	0		CENNFCTIR-SCL CONT PIN 1.14-MH-DSC-52 5R	28483	1251-26.30
A12TP6	1251-0600	0			28480 88480	$1251-0660$
A12TP7	$1251-0300$ $1251-0600$	0			28480	${ }_{1251-0600}^{1251-0600}$
A121P9	0360-0.077	5	1	TERMINAL-STUD SGL-TUR SWGFİM-MTG	28480	9360-0.977
A12TP 10	1251-0600	0		CONNECTOR-SGL CONT PIN 1.14-MM-ESC--57 SQ	28480	1251-0600
${ }^{\text {A1220 }}$	1926-0582		1	IC SUTTCH ANLG GUAD 16 DIP-C PKG	27314	1.F613201d
	$1826-0161$ $1820-1735$	7	2	IC OP ARP GP RUAD 14-DIP-P PKG IC DCDR CMOS ECD-TD-DEC A-TO-10-LINE	04713 27014	MtM3icap
A12U4	1826-0161	7		IC OP AMP GP quad 14-DIP-P PKG	04713	MLM324P
A12U5	1810-0208	0	1	NETWORK RES 8-SIPb8.JK GHM $\times 7$	01121	$208 A S 83$
A12US A12U7	$\begin{aligned} & 1810-0206 \\ & 1810-0206 \end{aligned}$	-	2		01121 01121	208,103 $208 A 103$
A12UR1 A12UR2	$1902-3070$ $1982-3070$ 19820	5	4		28480 28480	$1902-3070$ $1902-3070$
A12UR3	1902-3070	5		DIODE-2NR 4.22 V 5 K DO-35 PD $=4 \mathrm{4W}$	28480	1902-3070
A12UR4 A12UR5	$1902-3070$ $1902-3094$	5		DIODE-ZNR 4.22U DIODE-ZNR 5.114 SX	28480 28480	$1932-3070$ $1902-3094$
A12VRS	1902-3094	3	1	al2 hiccellaneous parts	28480	1902-3094
	2200-0101 08559-0000日 86701-40001 2510-0279	0 4 9 0 9	1 2 1 2	SCREW-MACH 4-40 , 188-IN-LG PAN-HD-POZI COVER, STEP GAIN EXTRACTOR, PC PLATE, CAÚTION SCREW-MACH 8-32 . 125-IN-LC PAN-HD-SLT	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	2200-0101 0R559-00038 86701-4C001 06559-20044 $2510-0278$

BESIEM

Bes]er

BESIEN

Bes]ek

FIGURE 8.58. STEPGAIN ASSEMBLY A12,BLOCKDIAGRAM

A12

FIGURE 8-59. STEP GAIN ASSEMBLY A12, COMPONENT LOCATIONS

BANDWIDTH FILTER No. 2 ASSEMBLY A13

Bandwidth Filter No. 2 Assembly A13 is very similar to Bandwidth Filter No. 1 Assembly A11, and corresponding components have the same reference designators. The differences between the two assemblies are in the TO/ FROM designations listed on the schematic diagrams. Refer to the Bandwidth Filter No. 1 Assembly A11 circuit description for complete information on circuit operation.

Bes.ek

TABLE 8-11. BANDWIDTH FILTER NO. 2 ASSEMBLY A13, REPLACEABLE PARTS (10F 3)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A13	085559 -6025n	0	1	SANDWIDI: FILTER NO. 2 ASSEMEAY	78430	38559-60058
${ }^{\text {A }} 313 \mathrm{CL}$	0160-2055	9	38 1		2а480	0160.2055 316000127
	- $116.60-2655$	2 9 9		CAPACSTOR-FXD ETUE +30-26\% 100UDC CIR	23480	$6160-2055$
A13c5	3160-2355	?			2e483 22480	$3160-2355$ $0160-2055$
A 13 Cb	6160-2055	9		CAPACITOR-FXO .eluF +00-20\% iecude cre	22480	0160-2055
Al:c7	31602055	$?$			28480	3160-2355
A13C8	0160-2267	3	$?$	CAPACTTOR-FXD 300RT + 5% 300UDC MICA	22480	0160 220\%
A13C.	3160-2055	$?$			28483	3160-2055
Al3C10 A1 15 C 11	$0160-2055$ $0160-2355$	9			28488 28483	$6160-2055$ $3160-2355$
A 13612	11160-2655	9			2а¢80	©160-2055
A13C13	111603456	6	3	CAPAC:ITOR-FXD 10009F +-13\% 1 KVEC CER	28483	3160-3456
${ }_{\text {A } 13 C 14}$	0160-2249	3	2	CAPACITOP-FXD 4.7PT $+-.25{ }^{\text {² }}$ S SCOUDC CRE	28488	c160-2249
${ }^{\text {n } 13 \mathrm{SCL}} 15$	21210059	?	2	CAPACITR U TRMR -EER 2 ERF $35 J$ PC MTG	5.2763	334324 2/BPF NPO
A13C16*	(0) 60-0134	1	4	CAPACITO2-FXD 220PF +-5\% 3CEUDC MICA	20480	0160-0134
Alze.17	2163-2355	7			28980	3160-2355
A13C18	0160-2655	?			20480	$0160-2055$
	$3160-2355$ $0160-0134$?			2R480 28480	$0160-2055$ $0160-0134$
${ }_{\text {A13C21 }}$	21600437	7	2	CAPACITIGR-FXD	28480	3169-10437
A13C22	0160-4884	8	3	CAPACITOR-TXD -14F +-20\% SOUDC CER	20480	016.0-4084
${ }^{\text {A13 }}$ A 23	01210336	$\stackrel{3}{9}$		CAPACITGR-U TRMR-CER S.5-13PF 3530	5.2763	$3043245.5 / 18 P F$ NPO
	$0160-21.55$ 01210446 0.046	6	?		2\%480	c16c-205S $3121-0446$
A13626	$0160-2655$	9		CAPACITOR-FXID .O1UF +80-20\% 100UDC CER	28480	0160-2055
Alzes	3163-2355	9			28483	3160-2955
${ }_{\text {A }} 13 \mathrm{3C28}$	0160-2055	9			28480	c160-2055
A13c29	- 0160.3456	${ }_{6}^{6}$			28480	${ }^{3160-3456}$
Al3r.31	0160-4250	6	1		S4z89	C0s\%F2514472msiz-CDH
A13C32	0160-4094	8		CAPACXTOR-FXD 14 F + 26% SOUDC CER	28486	8160-4084
${ }^{\text {A13 }} 13 \mathrm{C33}$	$0160-2237$	3		CAPACTIUR FXD $33625+5 \times 333$ DDC MICA	23483	0160-2237
A13C34 A13c35	0160-2055	9			28480	$0160-2055$
${ }_{\text {A } 13 C 36}$	$0160-2655$	9		CAPACITOP-FXD .O1UF +8C-20X 100UDC CER	28480	0160-2055
${ }_{\text {A13C37 }}$	01602249	7		CAPACITOR-FXD 4.7PF, 2SPF 50,	78480 50763	$3160-2249$
A13C38 A13C.40	0121-0659	9			5.2763 23480	$3043242 / 8 \mathrm{PPT}$ NPO $0160-2055$
A13C40	$0160-2355$ $0160-3456$?			29480	$016.0-3456$
A13C42 $^{\text {a }}$	0160-2055	?		CAPACITOR-FXD - D1UF - B3-20\% 10JVDC CER	28483	3160-2055
A13C43*	0160-0134	1		CAPACTTOR-FXD 22OPF + $5 \times$ 300UDC MICA	28480	016000134
A13C4S	-3160-0437	7			${ }_{52760}$	
A13C46	$0160-4034$	B		CAPGC,ITOR-FXD, 1UF +-20x SOULC CER	¢8480	${ }^{3160-4084}$
A13C47	0160-2655	9		CAPACITOR-FXD O1UF +80-20\% 100UDC. CCR	28480	c. $160-2055$
${ }^{\text {A } 13 C 48}$	0160-2955	?		CAPACITIR-FXD .01UF +80-20\% 100VDC CER	28480	0160-2055
A13C49	0160-2055	9		CAPACITOP-FXD . 014 F + 80020 O 100UDC CCR	28480	0160-2055
A13C5a	2160-2055	?			28480 28480	3160-2055
A13c52	0160-2055	$?$		CAPACITOR-FXD , 01UF + Ba-20x 100 VDC CER	28480	$3160-2055$
${ }_{\text {A13 }}{ }^{\text {a }} 3 \mathrm{CS5}$	0160-2055	9		CAPACITRP-FXD O1UF +00-20\% 100UDC CCR	28480	0160-2055
A13C54	0121-0446	6		CAPACITGR-U TRMR-CER 4.5-20PF 163 J	28483	0121-0446
A13css A13C60	$0160-2055$ $0160-2055$	9			28480 28480	$0160-2055$ $0160-2055$
A13C61	0160-2055	9		CAPACITOR-FXD O1UF + 00-20\% 100UDC CER	28480	0160-2655
${ }^{\text {A } 13 C 62}$	0160-2055			CAPACITOR-FXD .01UF + $00-202$ 100UDC CER	28480	3160-2355
${ }^{\text {A } 13 C 63}$	0160-2055	9		CAPACITOR-EXD O1UF + $00-20 x$ 100UDC CER	28480	0160-2055
A13c.64**	$0160-0134$ $0160-2055$	1		CAPACITOR-FXD CAPACITOR-FXD	${ }_{28480}^{28480}$	3160-9134
${ }_{\text {A1 }}$	$0160-2055$	9		CAPACITOR-FXD, 010 F + $80-202 \mathrm{Z}$ 100VCC CER	${ }^{28480}$	0160-2055
${ }_{\text {A1 }}{ }^{13 \mathrm{C}} \mathrm{C} 67$	0160-2055			CAPACITOR-FXD O1UF +80-20x 100UDC CER	28480	0160-2055
A13C68 A13C69	0160-2258	$\stackrel{4}{4}$	1		28480	3160-2258
A13C69	$0160-2055$ $0121-0452$	4	2		28480 74770	0160-2055 $187-0103-028$
A13C74	0121-0452	4		CAPACITOR-U TRMR-AIR 1.3-5.APF 1750	74970	187-0103-028
A13CR1	1901-0047		6	diode -switching zou 75ma ions	28480	1901-0047
A13CR2	1901-0047	8		DIOde-SUITCHING 20U 75MA 10NS	28480	1901-0047
${ }^{\text {A13CR3 }}$	1901-1070	?	5	DIODE-PIN 1100	28480	1901-1070
A13CR4 A13CR5	$1901-1070$ $1901-1070$	9		DIODE-PIN 1100 DIODE-PIN 1100	28480 28480	$1901-1070$ $1701-1070$

TABLE8-11. BANDWIDTHFITTERNO.2ASSEMBLY A13, REPLACEABLEPARTS (2OF3)

Reference Designation	HP Part Number	${ }_{0}^{\text {c }}$	Oty	Description	$\begin{aligned} & \text { Mfr } \\ & \text { Code } \end{aligned}$	Mfr Part Number
			5	drabe sh sit scuitity	ceich	
	(19010007				ceat	隹
	${ }^{\text {cosen }}$					${ }^{\text {a }}$
${ }^{\text {A1 35CR16 }}$	1901-0047			drope-suitching 20w 75 KA 10 Ns	29880	1901-0047
${ }^{\text {A1ECR17 }}$	1901--5535			dtobe sh ste sciotiky	$\square_{\text {гяв }}$	1931-9535
			:		¢	\%170.009
		3				
	9170-0629	3		cone-Shitliming head	28800	9170.0029
		3_{3}^{3}			coich	
${ }_{\text {a } 234}$	$9140-0112$				zaasa	${ }^{\text {914C }}$
${ }_{\text {a }}^{\text {atal }}$					¢naso	
${ }_{\text {Als }}^{\text {A13L4 }}$					${ }_{\substack{\text { zeabo } \\ \text { casoo }}}$	
			1 1 $\frac{1}{2}$ 2 2 2 		${ }_{\substack{\text { zasa } \\ \text { 2пaba }}}$	(9100-2613
		${ }_{4}^{2}$		INDUCTOR RI-CH-MCD $6,8 U H 10 \%$INDUC:TIR RF-CH-MID $10 U H 10 \%, 166 D X, 385 I, G$	$\underbrace{}_{\substack{\text { zabab } \\ \text { casac }}}$	
				INDUCTOR RF-CH-ME D $3 C U H 5 \%, 166 D X, 385 L G$ $\begin{array}{llll}\text { INDUSTOR RF-CH-MLD } & 22 U H & 10 \% & 166 D X, 385 L G \\ \text { INDUCTOR RF-CH-MLD } & 2.2 U H & 5 \% & .165 D X, 395 \mathrm{~L}\end{array}$ NDUCTOR		
			1			
${ }_{\text {a }}^{\text {Al13117 }}$				INEUCTOR RF-CH-MLD $6.6 U H$,	28493	, 9140-3194
		-				
			2		cistis	2w5179
					(2atio	cose
	(1835-0007					
				TRANGISTOR PNP $2 N 3251$ SI TO-18 PD $=360 \mathrm{ML}$ TRANSTSTGR NPN SI TO-18 PD=363ML TRANSISTOR PNP 2N32S1 SI TO-18 PD $=36,6 \mathrm{MS}$	${ }_{\substack{\text { on7 } \\ \text { cis } \\ \text { 280 }}}$	
	(1035-007	5				
	1853-000			 $\begin{array}{lllllll}\text { RESTGTOR } & 12,1 \mathrm{~K} & 1 Z & 125 \mathrm{~F} & \mathrm{~F} & \mathrm{TC}=0+-100 \\ \text { RESIGTOR } & 14,7 \mathrm{~K} & 1 \% & 125 \mathrm{H} & \mathrm{F} & \mathrm{TC}=0+-100\end{array}$ RESISTOR 14.7K 12,1254 F TC=0t-180		2 N 351
		2	?			
		?			边	
			1,	$\begin{array}{llllll}\text { RESISTOR } & 23.7 & 1 \% & .125 & F & T C=0+-100 \\ \text { RESISTOR } & 5.62 & 1 \% & 125 W & F & T C=0+-100\end{array}$		
					cose	
					${ }^{2}$	
${ }_{\text {al }}^{\text {Ali } 13812}$		4	+		${ }_{2}^{24546}$	
cole			1			
A 138 R 15	0659-3440				24546	C4-1/8-To-1968-F
		\cdots	${ }^{2}$		${ }_{\text {cole }}^{24546}$	
		i		(RESISTOR 4.22 Sa	${ }_{2}^{295964}$	
A13 320	0757-0442	-			${ }^{24596}$	C4.1/8-T---1602-F
		?				
			2		${ }^{24546}$ $\underset{\substack{12701 \\ 24546}}{ }$	

TABLE 8-11. BANDWIDTH FILTER NO. 2 ASSEMBLY A13, REPLACEABLE PARTS (30F 3)

Reference Designation	HP Part Number	$\left\|\begin{array}{l} c \\ d \end{array}\right\|$	Oty	Description	Mfr Code	Mfr Part Number
$\mathrm{A}_{1} 3 \mathrm{BL} \times 5$	9757-8465	\wedge			27545	Cat 1/8-19-1033F
A13R26 $A 12 R 2 \%$	$2100-3163$ $3757-10444$	$\stackrel{11}{7}$	1			
A13R28	0757-0443	\bigcirc	2		- 2458	C4 1/8-TB 1102F
Alı3z? ${ }^{\text {a }}$	3698-0363		2		2454	
A1 3R 3 E		3	1	RESISTOR 215k :\% , 125w F TC=0+-100	-4:\%	c.4 1/8-10 215.F
A13R 34	3757-3199	3	1		245\%	C4-1/0-T3-2152F
Al 3 385	0757-0288	1		PCSTSTOR 9, b9\% 1\% . 123\% F TC=0+-160	1976,	MFAC1/8-T6.9091-F
${ }^{\text {A } 13836}$	n698-19383	$\stackrel{8}{8}$		RESISTGR 1.96\% 1%, 125, FF TC=3+-139	24.45	C4-1/8-70-1961 F
A 13837	0757-0416	7	$?$		24544	C. $1 / 8-78-5118-\mathrm{F}$
	$16986-3441$ $0757-0419$	8 0 0	1		24545 24545	C.4-1/8-T0-6151R-F
A13R 49	16.98-3442	${ }_{9}$		RESTSTOR z37 1\% , 12ew F $16=0+\cdots 100$	2-454;	
A133841	06998.-3154	${ }^{11}$		RESISTOR 4. 22k 1\%, 125is F TC $=01-160$	\%45\%	C4 1/8-T0-4as 1-F
	$0757-0442$ $0678-3155$	Q			2454.46	C4. 1/8-73-1092-F
	-0698-3155	'			24.5046	C4-1/8-70-1092-F
A13R45	0757-1461	\bigcirc		RESISTOR 106 1\%.125id F TC=0+-160	24:\% 6	C4. 1/8- $010161-\mathrm{F}$
213846	97570401	0		RESTSTGR 100 1\% .12sw F TC=0.-130	2.5545	C4-1/0-T0-191-F
213 S 47	0757-0346	2	4	RESISTOR 10, 1% 125w F TC=0, 106	2455	C4 1/6-T6 16R6F
213 RSO	-0757-11346	2			24546	C4-1/3-T0-1083-F
A13851	0757-6346	2		RESISTOR 101%, 125W F TC=0, 100	24:34,	C.4.1/8-Tb-1apt-F
A13REs	3757-0443	$\stackrel{3}{7}$			245,43	C4 1/8-79 1102F
${ }_{\text {A }} 13 \mathrm{zrs3}$	1698-3440	7			${ }^{345545}$	
A13855	0757-0442	9		RESISTOR 10 K 1\% . 125 F F TC=04-106	24545	C4 1/8-T0-1002-F
${ }^{2} 13 \mathrm{REF}$	0757-9274	5	1		24.546	C4-1/0-T0-1211-F
213R57	8757-0190 $0658-3158$	3	2		$\underbrace{284504}_{2}$	$6757-0180$ $64.1 / 8-70 \cdot 3481$
213 R 57	0757-0180	2			20488	6757-0180
2 13 Rt 0	0678-3153	,	1	RESTSTOR 3 82\% 1%, 125W F TC=0+100	2.3543	C4-1/8--T0-3831-F
${ }^{\text {A }} 13 \mathrm{FP1}$	0360-1783	${ }^{\infty}$	4	CONNECTOR-GEG CONT PIN O4F-IN-ESC-SZ 50	${ }^{20480}$	$036.0-1789$ 3×6.1788
${ }^{\text {A } 137 P 2}$	0360-1788	J			cesmo	3361.1788
A13TP3 A13TP.4	1251-0600	${ }^{\circ}$	7	CONNECTOR GGE CONT PIN 1.14 -MM-ESC S7 SQ	- 288490	$1251-0608$ $0360-1788$
A13TP5	0360-1708	1			23480	036.0-1783
213176	1251-0600				28460	1251-0600
213TP8 813197	$1251-0600$ $1251-0600$	${ }^{0}$		CONNECTOR-SGL CONT PIN 1.14-M-ESCC SI SQ		1251-0600
${ }_{2}{ }^{2} 151910$	$1251-0600$ $1251-0600$	${ }_{0}$		CONNECTOR-SGL CONT PIN 1.14 MM -HSC SX SQ	2848日 $\mathbf{2 8 4 9 0}$	$1251-0600$ $1251-0600$
213TP1 1	1251-0600	${ }^{1}$		CINNECTGR-SGL CONT PIN 1.14- Mm-bece sz SQ	28487	1251-0600
213 P12	1251-0600	0		CONNECTOR SGt. CONT PIN 1.14 MM-ESC--5Z SQ	20480	1251-0600
213UR 1	1902-0048	1	1	DIODE-7NR 6. $11 \mathrm{~V} 5 \mathrm{~K} \mathrm{DD}-35 \mathrm{PD}=.4 \mathrm{~L}$	2340 cr	1902-0048
$\begin{aligned} & A 13 V_{1} \\ & A 1312 \end{aligned}$	$\begin{aligned} & 0410-0776 \\ & 0410-0776 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{a} \\ \mathrm{~B} \end{array}\right\|$	2	CRYGTAL-qUARTZ 21.4 MHZ HC-25/I-HLDR CRYSTAL-GUARTZ 21.4 MHZ HC 25/U-HiDR alz higcellanedus parts	$284 \pi 0$ 28430	$\begin{aligned} & 0410 \cdots 0776 \\ & 0410-0776 \end{aligned}$
	0403-0026 08559-0002כ 03559-00009	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{c} \\ \underset{\sim}{c} \end{array}\right\|$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	PLUG-HOLE BDR-HI FUR . 167 D-HILE NYL baffle inductar COVER, EW FTLTER ND. 2	122760 28480 28490	

Bes]e

A13

FIGURE8-62. BANDWIDTHFILTERNO.2ASSEMBLY A13,COMPONENT LOCATIONS

LOG AMPLIFIER ASSEMBLY A14, CIRCUIT DESCRIPTION

The Log Amplifier Assembly A14 includes seven amplifier stages, each capable of providing linear and logarithmic amplification. A detector circuit following the amplifier stages detects the amplified $21.4 \mathbf{M H z} \mathrm{IF}$ signal, producing the vertical display signal. The offset circuit that follows the detector operates in Log mode to offset the vertical display signal in 100 mV steps. This steps the display in four $10-\mathrm{dB}$ increments of apparent gain and adds the last 40 dB of displayed step gain to the gain $(50 \mathrm{~dB})$ already provided in the IF section.

Amplifier Stages (1st through 7th) (A) (C) (D) (E) (F) (G) (H)

The seven amplifier stages are similar in operation. Different stages are selected as linear or log amplifiers, depending on the setting of the Amplitude Scale switch.

Log Mode of Operation. In Log mode, the gain of the seven amplifier stages is sequentially limited as the signal level increases. Limiting starts with stage seven, since it sees the combined gains of the other stages, and continues sequentially as the signal level increases. Stage one is the last stage to begin limiting the signal. The total limiting process provides 70 dB of \log display range. Each stage consists of an emitter follower voltagedriver and a common-base amplifier in which the gain is signal-level dependent. Increases in signal level decrease the gain.
A simplified schematic of a typical log stage (the second stage) is shown in Figure 8-64. In Log mode, the LOG/ LIN control line is high (about +15 V); Q24 is on, forward biasing diodes CR1O and CR11 and the log diodes in all of the other stages. Diodes CR1O and CR1l are Schottky diodes with a forward bias voltage of approximately 0.4 V . Emitter follower Q13 is a voltage source that develops signal current flow through CR1O and CR1 1 . This signal-current drives Q20, a common-base amplifier tuned to approximately 21.4 MHz . The gain of this amplifier is set by the ratio of R52 to the total resistance, R,, between the emitters of Q13 and 420 (primarily the resistance of CR1O and CR11). The formula for computing the gain in dB is:

$$
\text { Gain }(\mathrm{dB})=20 \mathrm{LOG}\left(1+\mathrm{R} 52 / \mathrm{R}_{\mathrm{T}}\right)
$$

FIGURE 864. LOG MODEOPERATION,SIMPLIFIEDSCHEMATIC

Resistance R_{T} is at a minimum (approximately 150 ohms) for small signals. The small signal gain of the stage (about 10 dB) is established by the dc bias through the log diodes. As the signal level at the emitter of Q13 increases, signal current cancels bias current in the \log diodes, increasing R_{T}. The gain of the stage for large signals is reduced to unity (0 dB) as R_{T} becomes very large.

Linear Mode of Operation. Two simplified schematics illustrating unity and 10 dB gain of a typical linear stage are shown in Figures 8-65 and 8-66. In linear mode, the signal level dependent components are removed from the signal path and a linear display is provided. The -8 VT is applied to the base of Q 24 , turning it off. This removes dc bias from CR10 and CR11. Total resistance R_{T} (primarily the resistance of R56 and CR12) is high, since CR12 is reverse-biased. Control line IFG6 is high and the stage gain is near unity. The signal flow is through emitter follower Q13 and R52, to 420. In stages six and seven, an alternate signal path is used to fix the gain at about 5 dB per stage, allowing for scale differences between Log and Lin modes. Both stages are activated by the -8 VT from the Amplitude Scale switch through R34, R93, R101, CR25, and CR28. The combined stage gain is adjusted by R34 (LIN), which controls the dc PIN diode bias.

FIGURE 8-65. UNITY GAIN OPERATION IN LINEAR MODE, SIMPLIFIED SCHEMATIC

Stage $2,3,4$, and 5 each have an alternate signal path that switches in 10 dB of step gain for a total of 40 dB . The alternate path is selected by the REFERENCE LEVEL control. With the INPUT ATTEN at 0 dB and the REFERENCE LEVEL control at -60 dBm , the -8 VT is routed, via the IF gain control line (IFG4), to forward bias CR22 in stage 5. For each stepped increase in the REFERENCE LEVEL control, the - 8 VT activates the IFG lines associated with the stages of gain required, forward biasing the diodes in the signal path. Each IFG line has a potentiometer (block B) that controls the line's bias current and the stage gain. Note that IFG6 controls two stages (stages 2 and 3) that, when switched in, provide 20 dB of gain.

Gain Control Lines (B)

The +15 V (in Log mode) or the -8 VT (in Lin mode) is routed through the REFERENCE LEVEL switch to the combination of IFG4, IFG5, and IFG6 corresponding to the referencelevel selected. In Log mode, the Log Offset circuit is activated through R24, R25, and R26. The LOG/LIN line is at $+15 \mathrm{~V}, \mathrm{Q} 24$ is saturated, and the

FIGURE866. 10 dB GAIN OPERATIONIN LINEAR MODE, SIMPLIFIEDSCHEMATIC
collector of $\mathbf{Q} 24$ goes to -8 VT , turning the \log diodes on. In Lin mode, the LOG/LIN line is at $-8 \mathrm{VT}, \mathrm{Q} 24$ is turned off and current flows through R34 (LIN) to stages 6 and 7.

Log Mode Temperature-Controlled Variable-GainAmplifier (J)

In Lin mode, when approximately $700 \mathrm{mV} \mathrm{rms}(+10 \mathrm{dBm})$ is applied to the input of the Log amplifier, the voltage at the output of stage 7 (TP5) is about 1.5 rms . With the same input in Log mode, the output at TP5 is about 2.0 V rms. To maintain an equal relationship with maximum input signal (the trace at top display), the output in Log mode must be attenuated. This attenuation is achieved with variable gain amplifier 47, the gain of which is determined by the ratio of its collector load to its emitter load.

In Lin mode, the LOG/LIN line is a -8 VT, CR4 is forward biased, and the output of U2b (TP1) is approximately +15 V . Diode CR29 is reverse biased and the gain of the variable gain amplifier is R104/R105 (100/316) or approximately 0.3. In Log mode, the LOG/LIN line is at +15 V , CR4 is reverse biased, and the output of U2b (TP1) is about -0.45 V . Diode CR29 is forward biased and exhibits an ac resistance of about 100 ohms. This resistance is in parallel with the 100 ohms of R104 for a total of 50 ohms. Since the collector load of 47 is about 50 ohms, the gain becomes $0.15(50 / 316)$. This gain depends upon the resistance of CR29, which is established by SLOPE adjustment R23.

Detector (K)

The detector comprises a voltage-to-current converter, a half-wave rectifier, and a low-pass filter. The output of the variable gain amplifier is applied to 46, where voltage variations are converted to current variations. Transistor Q5 acts as a current driver for half-wave rectifier Q4, while CR1 biases 44 just below cutoff. When the signal is positive going, Q 4 conducts; during the negative half-cycle, Q 4 is cutoff. The detector's output goes to the low-pass filter, a series of pi-section filters that smooth the detector's output and remove RF signal components.

Buffer Amplifier (L)

The detector's output, the video signal, is amplified by the Buffer Amplifier. Differential pair 421 and driver 422 approximate a noninverting operational amplifier with a gain calculated by the formula:

$$
\text { Gain }=1+\mathrm{R} 110 / \mathrm{R} 116
$$

Which becomes:

$$
1+619 / 619=2
$$

Log Offset (M)

The offset circuit operates in Log mode to offset the video signal in four 100 mV steps. These appear on the display as 10 dB steps of apparent gain. This gain adds the last 40 dB of display step gain to the 50 dB of gain already provided by the Step Gain Assembly A12. The offset is provided by Q23 operating as a current source that steps the current through R119. When the Log mode is selected, +15 V via the REFERENCE LEVEL switch can be applied to IF gain control lines IFG4, IFG5, and IFG6. When an IFG line is activated, the associated log-shift diode (CR31, CR32, or CR33) is forward biased, causing current (determined by R123, R124, or R125) to flow in Q23. Each IFG line supplies a specific offset when activated; IFG4 and IFGS each provide 100 mV , while IFG6 provides 200 mV . The LOG GAIN adjustment (R121) establishes the operating point of Q23 as needed for 100 mV steps.

TemperatureCompensation Power Supply (I)

Temperature compensating of the Log Amplifier Assembly A14 is provided by the -8 VT (both VT and VTV mean Volts Temperature Variable) and -1 VTV regulators while CR2 operates as the temperature-sensing element. Temperature variations cause diode voltage changes that, when amplified by Ula, regulate the -8 VT supply. Since the -1 VTV supply is coupled to the -8 VT supply through R17 and R132, its output is also temperature variable. The -8 VT provides bias for the log diodes in Log mode, and bias current for CR12, CR19, CR22, and CR28 in Lin mode. The - 1 VTV supplies bias to CR29 in the variable gain amplifier.

+11V Regulated Power Supply (N)

A precise +5.4 V reference for the +11 V regulator is provided by VR1. This reference voltage is applied to the noninverting input of Ulb. Since the ratio of R5 to R6 establishes the gain of Ulb at 2.1, the output at TP2 is 2.1 times $+5.4(+11.3 \mathrm{~V})$. Emitter follower Q1 provides current drive for the +11 V supply.

LOG AMPLIFIER ASSEMBLY A14, TROUBLESHOOTING

Check supply voltages.
Dead Stage: Use an oscilloscope along the signal path to locate a dead stage.
Check the dc levels along the signal path. Beginning after stage two, the dc level alternates between -0.7 V and OV with each successive stage because of the direct coupling of the stages. This is noted in the waveforms indicated on the schematic.

Log Fidelity Accuracy: Begin testing by establishing a top graticule reference (eighth graticule). Reduce the input signal level in 10 dB steps and observe the variations between each step. Now, establish a reference at the next graticule 100 mV lower (seventh graticule). Step the signal level again and observe the variation between the steps. Continue lowering the reference point until each step below the reference point is within specification. This will indicate at which step the inaccuracies are being introduced. If the error occurs between the 800 mV reference and the 700 mV reference, the problem is probably in the first stage. If the problem is present at all referencelevels except the last one, the problem is probably in the last amplifier stage, sinceit compresses first.

The most probable causes of failure are PIN diodes, Schottky diodes, transistors, capacitors, and resistors, in that order.

Schottky diodes have a dc resistance of about 300 to 330 ohms. The value varies, depending on the current supplied by the ohmmeter. The values should, however, all be within 10% of each other.

TABLE 8-12. LOG AMPLIFIER ASSEMBLY A14, REPLACEABLE PARTS (1 OF 4)

Reference Designation	HP Part Number	c	Qty	Description	Mfr Code	Mfr Part Number
A14	5061-5411	2	1	LCG AMPLIFIER ASSEMEL.Y	28480	5361-5411
A $14 C 1$ A14C2	$0160-4554$ $3180-0197$	7	67		P8480 S6287	816.0.4554 $15 \mathrm{SD} 225 \times 9023 \mathrm{~A}$
${ }_{\text {A1 }}^{\text {Al } 14 C 2}$	$3180-0177$ $0160-4554$	$\stackrel{8}{7}$	1	CAPACITOR-FXD , D1UF +-26\% SOUDC CER	${ }_{23480}$	$0166-4554$
A14C4	3160-4084	8	2	CAPACIIOR-FXD . 14 F +-23\% SOUDC CER	2¢480	3160-4084
A14C5	0160-4084	-		CAPACITOR-FXD , 14F +-20\% SOUDC CER	28480	01604084
${ }^{\text {A } 14 C 6}$	- 0160 - 0554	7		CAPACITUR-FXD . D11F +-23Z SJUDC CER	28483	3160-4554
A14C7 Al ACB	$0160-3879$ $0160-4554$	7	1		${ }_{\substack{28486 \\ 28489}}^{\text {20, }}$	$01600-3879$ $3163-4554$
A14C9	0160-4554	7		CAPACITOR-FXD OIUF + -2\% SOUDC CRR	28480	0160.4554
A14C10	3160-4554	7		CAPGCITOR - \times XD . D1uF --2az SJVDC CER	28480	2169-455.4
${ }^{\text {A } 4 \mathrm{ACL}_{11}}$	0160-4554	7		CAPACITOR-FXD 01UF +-20\% SOUDC CER	28490	c160.4554 $3160-4554$
	$0160-4554$ $0160-4554$	7			${ }^{28489}$	$3160-4554$ 8166.4554
A14C15	1160-4554	7		CAPAC,ITGR-FXD , D1UF t-23\% SJUDC CER	\% 483	3160-4554
A14C16	0160-4554	7		CAPACITOR-FXD .OTUF +-202 SOUDC CER	28480	0166.4554
A14C17	0169-4554	7		CAPGEITTOR-FXD , DIUF +-2J\% SJUDC CER	c3489	3160-4554
A14C18	0160-4554	7		CAPACITOR-FXD 01UF +-2\% SOUDC CFR	23480	6160.4554
A14C19 A14C20	0160-4554	7			28480	3160-4554
Alacel	$6160-4554$ $3163-4554$	7		CAPACITGR-FXD .31UF + 232 SJVDC CER	29480	3160-4554
A14C22	0160-4554	7		CAPACITOR-FXD -01UF + 20% SOUDC CER	28480	0160-4554
	$3160-4554$ $0160-4554$	7			28483 28480	$3160-4554$ 016.6 .4554
A14C25	0160-4554	7		CAPACITGR-FXD DIUF +-23\% SJUDC CER	28480	3160-4554
A14C26	0160-4554	7		CAPACITOR-FXD .01UF +-203 SOUDC CER	28480	816. 4554
A14c27	0160-4554	7		CAPACIIUR-FXD .31uF +-230 S3VDC CER	28480	1160-4554
A1 4C28 A14C29	$0160-4554$ $3160-4554$	7			28480	$6160-4554$ $0160-4554$
A14C30	0160-4554	7		CAPACITDR-FXD . CIUF +-202 SOUDC CCR	23489	$8160-4554$
A14C31	0160-4554	7			28483	3160-4554
A14C32	c 160-4554	7		CAPACITPP-FXD CIUE + -2\% Sounc cer	28480	${ }_{6}^{6160-4554}$
${ }_{\text {A } 14.383}$	0160-4554	7			20483	3160-4554
${ }^{\text {A1 }} 14 \mathrm{Cl34}$	0160-4554	7		CAPACITRQ-FXD (01UF +-20\% 50UDC CER	28480	$0160-4554$ 0160.4554
${ }_{\text {A1 }}{ }^{\text {A } 14.373}$	0160,-45S4 $0160-4554$	7		CAPACITOR-「XD .CUUF +-26\% SOUDC CRR	28480	$0168-4554$
${ }_{\text {A } 14 C 3 日 ~}^{\text {a }}$	3160-4554	7		CAPACUTGR FXD . 314 F ,-23\% SJULC CER	28483	3160-4554
A14C39 A14C40	$0160-4554$ $0169-4554$	7			204800	016,64554 $3160-4554$
A14C41	0160-4554	7		CAPACITOP-FXD .C1UF -26% SOUDC CFR	23480	$016.0-4554$
A14C42	9160-4554	7		CAPACITUR-FXD , a1uF --23\% SJVEC CER	28480	0160-4554
A14C43	0160-4554	7		CAPACITOR-FXD . 61 UF + 26% SOUDC CLR	22480	014.0 .4554
A14C44 A1 4 CaS	$0160-4554$ $0160-4554$	7			28489 23480	3160-4554
A14C46	0160-4554	7		CAPAC,TIGR-FXD . D1uF +-23\% SJU0C CER	28489	$3160-4554$
A14C47	0160-4554	7		CAPACITOR-FXD .01UF +-2c\% SOUDC CER	28480	016.0-4554
A14C48	0160-4554	7		CAPGEITUR-FXD - DIUF +2J\% SJVde cer	28480	3160-4554
A14C49	0160-4554	7		CAPACITRR-FXD , O1UF +-26\% SOUDC CER	28480	0160-4554
A14C50	-160-4554	7		CAPACITOR -FXD .CUVF +-2C\% SOUDC CCR	29480	616.0 .4554
A14C52	0160-4554	7			28480	3160-4554
A1 Acs3	0160-4554	7		CAPACITOR-FXD .C1UF +-20x SOUDC CER	284ค0	016.0-4554
A14C54	0160-4554	7		CAPACITTR -FXD 01uF +-23X SJULC CER	23480	3160-4554
A14c5s	$0160-4554$ $0168-4554$?		CAPACITOR-FXD $01010 \mathrm{~F}+262$ SOUDC CER		$0160-4554$ $0160-4554$
${ }_{\text {A1 }}$ A 1457	$0160-4554$	7		CAPACITOR-FXD .01UF + 20\% SOUDC CER	28480	$0160-4554$
A1 $4 C 58$ A 14.59	0160-4554	7		CAPACITTUR-FXD .01UF - $23 \times$ SJUDC CER	са480	3160-4554
${ }_{\text {A } 14 C 60}$	$0160-4554$ $0160-4554$	7		CAPACITOR-FXD CAPACITUR-FXD S	23480 c8480	$6160-4554$ $3160-4554$
${ }_{\text {A } 14 C 61 ~}^{1}$	0160-4554	7		CAPACITOR-FXD , 01UF +-20\% SOUDC CER	28480	$0160-4554$
A14C62	0160-4554	7		CAPACITOR-FXD .OIUF +-23x SJUDC CER	28489	3160-4554
A1 AC63 A14C64	$0160-4554$ $0160-4554$	7			28480 28480	$0160-4554$ $0160-4554$
A1 4 C65	0160-4554	7		CAPACITTR-FXD.O1UF +202 SODC CER	28480	0160-4554
A14C66 A14C67	$0160-4554$ $0160-4554$	7			28480 28480	$3160-4554$ $0160-4554$
A14C68	0160-4554	7		CAPACITOR-FXD .OSUF +-20X SOUDC CER	28480	0160-4554
${ }^{\text {A1 4C69 }}$	0160-4554	7		CAPACITIR -FXD 01UF +-20X SQUDC CER	20480	0160-4554
A14C70 A14C71	$0160-4519$ $0140-0195$	4	1	CAPACITOR-FXD 9, 1PF +-.5PF 20JUDC CER	${ }_{78480}$	0160-4519
A14C72	-0160-4386	3	1	CAPACITOR-FXD 33PF +-5 2 200VDC CER $0+-30$	28480	${ }_{\substack{\text { b }}}^{\substack{\text { dico-4386 }}}$

TABLE 8-12. LOG AMPLIFIER ASSEMBLY A14, REPLACEABLE PARTS (2 OF 4)

Reference Designation	HP Part Number	$\left\lvert\, \begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}\right.$	Qty	Description	Mfr Code	Mfr Part Number
${ }^{\text {A } 14 C 73}$	316n-3872	3	1		28480	3160-3872
	$0160-4554$ $3163-4554$	7			2048 C 70889	0160 $3160-4554$
A14C76	6160-4554	7		CAPACTTOS-F×0 C1UF, 26\% SOUDC CLR	2848 C	0160-4554
A1AC\%7	-160-4554	7		CAPACTTCR-FAD 31UF +-23\% SJVDC CER	2¢489	0160-4554
A14CR1	1910-0016	${ }_{0}^{0}$	5	DTODE-CE GOU G6MA 143 DD 7 \%	28480	$1916-0016$
${ }_{\text {A1 }}^{\text {Al }}$ ACR 4	1731-6353	3	5	DTODE SHITLH3KG 33U 200 MA ins to-35	${ }^{28480}$	1931-0350
Alacas	1931-1955	6	17		2a480 c 8489	$1961-0050$ $1931-1385$
A14CR7	1701-1485	6		dIODE - SM SIG SChottky	28480	1961-1085
A14\%Ra	1791-1395	'		DTCEE SM SIG Sthotiky	29480	1731-1385
A1 ACR9 A1CRR1]	$1961-1685$ $1231-1365$	6		DIDEE-SM SIG SCHOITKY DTOTE SM SIG Sc:	28486	$1761-1085$ $1901-1285$
A1 ACR 11	1961-1085	6		DIODF-SM SIG schotiky	28480	1961-1085
A19CR 12	1921-1979	9	7	DIDDE-PIN 1130	28483	1731-1370
A14CR 13	1961-1095	6		DIODE-SM SIG Schiotiky	28480	1961-1085
A1 ACR 15	$1731-1365$ $1901-1070$	${ }_{6}^{6}$		DTODE SH SIG, SCliottky DIODE PIN 116 C	28483 28480	$1931-1385$ $1961-1070$
A14CR16	1731.1273	?		DITDE PIN IIJU	${ }_{88480}^{28880}$	1731-1970
A14CR 17	1901-1085	6		dIODE SM SIG SChottky	28480	1501-1085
Alacris	1701-1085	${ }_{6}^{6}$		DTCDE SH SIG SC:OTTKY	88483	1931-1985
A1 ACR 19 A14CR29	$1901-1078$ $1731-1385$	9		DIODE-PIN 116 C DIODE SM SIG SCHOTIKY	28480 88489	$1961-1876$ $1731-1785$
A14CR21	1901-1085	6		DIDDE SM SIG schirtik	28480	1961-1085
A14CR22	1931-0040	1	1	DTODE SWITCHINS 3JV SJMA ENS DO 35	- 2480	1931-0040
A1 4CR23 A14CR24	$1901-1085$ $1701-1385$	6		DIODE SM SIE, SCHOTTKY	28486	1961-1085
A14CR2S	1901-1078	$\stackrel{6}{9}$		DIDOR PIN 116U	28480 28480	1931-1085
A14CR26	1701-1085	6		DIDDE SH SIG Schatiky	ᄃ8480	1731-1985
A14CR27	1961-1085	6		dIDDE -SM SIG, SCHOtTKY	28480	1961-1085
A14CR2 A14CR29	$1731-1070$ $1901-1070$	9		DIODE -PIN 1130 DTODE-PIN 1100	20489 28489	$1931-1370$ 1961070
A14CR33	1991-1335	6		DTODE SM SIG $56 . H O T T \mathrm{KY}$	28889 8480	1901-1385
${ }^{\text {A } 14.4831}$	1901-0050	3		DIODE-SWITCHING BOU 200MA 2NS DO-35	28480	1901-0050
A14CR32	1931-0059	3		diade-switchincs asu romea eins do-35	ce4an	1931-0050
A14CR33	1901-0050	3		diode-switching bou zcoma 2ns do-35	28480	1901-0050
A14E1	91700929	3	1	CORE Shitlding erad	28480	9170-0.329
A14L1	9100-1618	1	1		28488	$9100-1610$ 914000144
Al 1412 Al 412	$7140-9144$ $9140-0165$	${ }_{3}^{2}$	1 2		28480 28480	$9140-0144$ $9146-0105$
A14L4	9100-1619	2	2	INLIETOR RF-CH-MLD 6.61 H 13\%	28480	$9100-1619$
A14L5	9100-1619	2		INDUCTOR RT-CH-MLD 6.8UH 103	23488	9100-1619
A14L6	9140-0114	4	3		28480	9140-0114
A1 4 LT	$9140-0114$ $9140-0114$	4		(1)	28480 28489	9140-0114
A14L9	9140-0112	2	1	INDUCTOR RF-CH-MLD $4.7 \mathrm{UH} 10 \%$	28480	$9146-0112$
A14LIS	9140-3105	3		INDUCTOR RF CH-MID D. 2 HH 13 x	С8480	9140-3105
A14L11	9100-1627	2	1	INDUCTOR RF-CH-MLD 39 UH $52.166 \mathrm{DX}, 385: 6$	28480	$9100-1627$
A14L. 12	9100-1629	4	1		28480	$9130-1629$
A1 41213 A14L 14	$9100-1622$ $9100-2257$	7	1	INDUCTOR INDUCT-CH-MLD IN	28480 c8480	$9106-1622$ $9100-2257$
A14Q1	1854-0637	1	1	TRANSISTOR NPN 2N2219A SI TO-5 PD=B0OMA	01295	2N2219A
A1402	1053-0281	?	3	TRANSISITR PNP ZN2907A SI TO-18 PD=400MM	04713	2142907 A
A1 1483 A1 494	$1853-0281$ $1053-0015$?	5		04713 28480	2N2907A $1053-0015$
A1 495	1853-0015	7			28480	1853-0015
A1496	1853-0007	7	12	TRANSTSTOR PNP 2 N3251 51 TO-18 PD=360M	04713	2N3251
A1488	1854-0019 $1853-0815$	7		TPANGISTOR NPN SI PO-18 PD=360MW	28480 88480	$1854-0019$ $1653-0315$
A1499	1854-0019	3		TRANSISTOR NPN SI TO-18 PD=360MW	28480	1854-0019
A14910	1853-0015	7		TRANSISTOR PNP SI PD=200KW FT $=500 \mathrm{MHZ}$	28480	1853-0015
${ }^{\text {A }} 148111$	1854-0019	3		TRANSISTOR NPN SI TO-10 PD=360ML	28480	1854-0019
A14 1412 A1 4813 A	$1853-0015$ $1854-0019$	7			28480 28480	$1853-0015$ $1854-0019$
A14814	1854-0019	3		TRANSISTOR NPN SI TO-18 PD $=360 \mathrm{MH}$	28480	1854-0319
A14815	1854-0019	3		TRANSISTOR NPN SI TO-18 PD $=360 \mathrm{MW}$	28480	1854-0019
A14916 A14017	$1854-0019$ $1854-0019$	3		TRANSTSTOR NPN SI TO-18 PD=360ML	28480	1054-0919
A14017 A14918	1854-0019 $1854-0019$	3 3 3		TRANSISTOR NPN SI TRANSISTOR NPN SI TO- TO-18	28480 28480	$1854-0019$ $1854-0019$
A14919	1854-0019	3		TRANSISTOR NPN SI TO-18 PD $=360 \mathrm{HL}$	28480	1854-0019
A14R20	1854-0019	3		TRANSISTOR NPN SI TO-18 PD=360ML	28480	1654-0019
A1 48221 A14022	$1854-0475$ $1854-0404$	5	$\frac{1}{2}$		28480 28480	$1854-0475$ $1854-0404$
A14823	1853-0291	9		TRANSISTOR PNP 2N2907A SI TO-18 PD $=400 \mathrm{KW}$	28488 04713	1854-0404 2N2907A
A14024 ${ }_{\text {A }}{ }_{\text {A1 }}$	1054-0404	0		TRANSISTOR NPN SI TO-18 PD=360MM	28480	1854-0404
	1854-0019	3		TRANSISTOR NPN SI TO-18 PD=360M4	28480	1854-0019

TABLE 8-12. LOG AMPLIFIER ASSEMBLY A14, REPLACEABLE PARTS (30F 4)

Reference Designation	HP Part Number	$\|c\|$	Qty	Description	Mfr Code	Mfr Part Number
A14R1	0757-6317	7	1		24546	C6. $1 / 8$ - T0-13,1-F
	$3757-3280$ $0698-0884$	3 9	3		24546 24546	CA 1/8-T3-1931-F
A1 AR3 A1 1 R 4	$0698-0684$ $0698-3430$	$\stackrel{9}{5}$	1	RESTSTOR 21.51%, 12SU F TC $23+\cdots 133$	33538	pritss-1/8 T9 -2185-
A1 ARS	0757-0443	0	1	RCSISTOR 11K 12 z , 125W F TCa0+-166	24.546	C4-1/8-te-116?
A14R6	3757-0442	7	4		22546	C4 1/8-T9-1032-F
A14R7	0757-1465	${ }_{6}^{6}$	4		24546 34546	
A14R日 A1 4R9	3757.0442 $8698-3450$	${ }_{9}$			24546 24546	C4 1/8-T0 4232. F
Al4R9		5	2		1, 3583	5153×132
A14R12	0757-0453	7	2	RESISTOR 51.1 K iz $125 \mathrm{~F} \mathrm{~F} \mathrm{TC}=0,-106$	34546	CA 1/8-TC-5112 ${ }^{\text {c }}$
Al4R13	$3757-9431$ $0757-0460$	3	1		24546	C4 1/8-T9-6192-F
A14R15	0757-0456	7		RESTST0R 51.1 K 1\% 12 12 SW F TC=01-133	24546	C4-1/8-79 5142-F
A14R16	0757-0130	2	1	RESISTOR 31.6 1\% . 125 SH F TC=04-166	23480	c75\%-0186
Al AR17	0757-0464	5	1	REEISTGR 73.8X 12.1254 F TC=31-133	24546 24546	
A14R18 A 1 PR19	$0.698-3136$ $3,757-0123$	${ }_{3}^{8}$	$\stackrel{2}{1}$		24546 8480	C4 4 1/8-re $3757-3123$
A1 AR20	0698-0083	8	2	RESISTOP 1.86 K 12, 125\% F TC=6,-166	34546	C4 1/8-70-1\%h. F
A14R21	2130-245?	?	?		3.9583	E153*592
A14R22	16698-3453	2	1	RESISTOR 196k 12. 1255 F F TC=0t-100	245,46	C4 1/8-70-196.5:
Al4R23	2103-2514		1		33583	11534.203
A14R24	0757-0274	5	3	RLSISTR 1.21 K	$24: 46$ 24546	
Al 4 R 26	- $0757-0274$	5			$245: 46$	C4-1/8-T0 1211-5
A14R27	21302467	?		RCSESTICR-TRMR SK 13\% C Side adj i-ton	33983	¢753x532
Al 4R28	0757-0346	2	14		24546	CA. $1 / \mathrm{A}-\mathrm{TO}$ 16F6-F
A14R2?	$3757-0346$	2			37546 36933	C4 1/3-13-10R3.F
Al4R30 ${ }_{\text {A1AR31 }}$	2100-2522 $3757-3346$	1 2 2	3		24546	
A14R32	0757-6346	2		RESISTOR 16.1%, 12SW F TC= C1-100	24546	CA 1/8-T0-10pC.F
A14R33	2100-2522	1		RESTSTGR-TRMR 19 K 13\% C SIDE-ADJ $1-T 2 \mathrm{~N}$	33783 30973	
A14R34 A1 1 P35	$2100-2521$ $3757-0346$	$\stackrel{1}{2}$	1		30933 3.456	C4-1/8-10-108. F
	0.757-0346	$\frac{2}{2}$		RESISTOP 10 12. 125 S F $\mathrm{TC}=6+-100$	24546	C4 1/8-TC 16FG-F
A14R37	3757-0442	9		RESTSTOR $13 \mathrm{~K} 1 \%$ 12SU F TC=3t-133	23546	C4 1/8-T0-1092. 5
A14R38	0696-3151	7	1		245.46 3.983 185	
A14239 A1 AR40	2100-2520	9	1	RESISTOR 10k $1 \% .125 \omega^{\text {r }}$ K TC $=0+-1 \mathrm{CG}$	245.46	C4.1/8-T0-1002F
A1 ARA1	1757-3290	5	1	REGTSTITR 6.15 K 1K , 12SW F TC $=0+100$	19731	
A14R42	0757-6200	7	1		24546 24546	$\begin{array}{cc}C 4 & 1 / 8-T 0-56.21-F \\ C 4 & 1 / 8-73-1622-5\end{array}$
A14R43 A1 14844	$3757-0447$ $0757-0420$	${ }_{3}^{4}$	3 2		24546 24546	C4 1/8-70-751-r
A1 AR 45	0698-3444	1	8	aestisior 316 ix 12SU F IC=at-109	24546	C4-1/8-T3-316R-F
A14R46	0698-3156	2	1	RESISTOR $14.7 \mathrm{k} 1 \mathrm{~L}, 125 \mathrm{FF}$ TC=0+106	245.46	C4 1/8-TE 1472-F
A14R47	9757-0346	2			24546	C4 1/8-T0-10R3-F
A14R48 A1AR49	$0.698-3150$ $3698-3132$	6	$\stackrel{4}{1}$		24546 24546	
A14R50	0757-0279	0	4	RESISTOP 3.16k $1 \mathrm{x}, 125 \mathrm{~F}$ Y $\mathrm{TC}=0.100$	24546	C4 1/8-T0-31/1-F
A14R51	9757-0346	2		RESISTRR 131%. 225 W F $1 \mathrm{C}=0+-100$	24596	C4-1/8-T0-10R3-F
A14RS2	0698-3444	1			24546 24546	
Al4R53 A1 AR54	- $\begin{aligned} & \text { 9757-0444 } \\ & 0757-0444\end{aligned}$	1	6		24546	C.4-1/8-TE-1212-F
A14R55	1757-3443	?	3		24546	C4-1/8-T0-7531-F
A1 4R5 6	c757-0401	0		RESISTOP 10.018 .125 W F TC=0+-100	24546	C4-1/8-TR-161-F
A14RS5	0757-0280	3			24546 24546	C4-1/8-T9-1391-F
A14R58 A14R59	$8757-0346$ $0698-3150$	2			24546 24546	C4-1/8-T3-2371-F
${ }_{\text {AI ARGO }}$	06990-3444				24546	C4 1/8-TC-31/R-F
A14R61	0757-8280	3		RESISTOR $1 \mathrm{~K} 1 \%$, 12SW F TC=0t-100	24546	C4-1/8-T0-1931-F
A14862	0757-0444	1			24546 24546	
Al4R63 A1 1 R 64	$0757-0444$ $0757-0440$	7			24546 24546	C4-18-T0-1212-F
A14R65	1757-0431	${ }^{3}$		RESTSTOR $1001 \mathrm{X}, 1254$ F TC=0 +103	24546	C4 1/8-T0-131-F
A14R66	0757-0280	3		RESISTRR ik iz , 125W F TC $=0+-100$	24546	C4-1/8-T0-1661-F
A14R67 A1 1 R 68	$0757-0346$ $0698-8958$	2			24546 28480	$\begin{aligned} & \text { C4-1/8-T0-10R3-F } \\ & 0693-8953 \end{aligned}$
A14R69	2100-2692	6	1	RESISTOR-TRMR in $20 X C$ SIDE-ADJ 1 -TRN	33983	ET50x105
A1 4R70	06,98-3444	1		RESISTOR 316 1 X , 125 W F TC=0+-100	24546 24546	C4-1/8-T0-316P-F
A14R71	0757-0279	,		RESISTOR 3.16k 1 X . 125 SW F $\mathrm{TC}=0+-100$	24546	C4-188-70-3161-F
A1 14872 A14R73 A1	$0757-0444$ $0755-0444$	1			24546 24546 24546	C4-1/8-T0-1212-F $\mathrm{C4-1/8-T9-1212-F}$ C
A14R74	0757-0440	?		RESISTOR 7.5X $12 \mathrm{X}, 1254$ F TC $=0+1100$	24546	C4-1/8-T0-7501-F
Al $14 R 75$ A1 AR76	0757-0401 $0757-0280$	${ }^{0}$			24546 24546	C. $4-1 / 8-\mathrm{TO-101-F}$ $\mathrm{C} 4-1 / 8-\mathrm{TO}-1001-\mathrm{F}$

TABLE 8-12. LOG AMPLIFIER ASSEMBLYA14, REPLACEABLEPARTS(4OF 4)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
${ }^{\text {A } 14877}$	${ }^{0} 78570346$	3			245:46	C4-1/8-TG- 16.pr-F
(1)1R79 ${ }_{\text {A1 ARED }}$	365818444 $0757-8209$	$\stackrel{1}{2}$	6		24546 19761	C4-1/8-TJ-316R-F M-4C1/8-TP-1320
Al 1801	3757.9:39	2	6		19731	MFAC1;a-T9-1332-F
A1 4RAC	1757-0446	7		RESISTOR 7.5\% 1%, 125w F TC=0+-160	24546	C.4-1/8- Tf -7501-F
$\mathrm{Alaras}^{\text {a }}$		3			24546	C4 1/8-T0-131 F
Al^{14884}	8757-02.80	3			24546 34.46	C4. 1/8-T0-160,
${ }_{\text {Al }}$ ARB6	2157-3279	3			24546	C4-1/8-13-3161-
${ }_{\text {at ARG7 }}$	36503414	1		RESTSTHR 316 1\% , 12:54 F ir $=3+-133$	24546	C4-1/8-T3-31/R- ${ }^{\text {F }}$
A 1 4RB6	2100-252e	1			36933	E158×103
	$0757-9449$ $0757-0463$	$?$			39546	C4 1/8-T0-7591-F
	0757-01633 $3757-3: 59$	3	$?$		24546 19731	
A 1 AR92	8:757-02:89	2			17701	¢F AC1/8-T0-1332-F
n1 1R23*	3650.31:3	$?$:		24546	C4-1/8-T0-3831-F
	$06.98-3156$ 3757 0.346	?			24546 23546	
A1 4R96	86.98-3444	1		PESISTR 316 12 , 125w F TC=0t-160	24546	C4-1/8-Te-3168-F
A14897	コサ5.7-3:69	2			17731	MF4C1/8-T0-1332-F
A $14 \mathrm{R99}$	6757-0289	$\stackrel{2}{7}$			19761 24546	MFACL/8 TE-1332-F
- ${ }_{\text {A1 } 148 \mathrm{R} 100}$	cols	2			24546 24.946	
A14R131*	0698-3153	\%		arcistur 3.gas 18.1254 \% $16=3$ - 103	24546	C4 1/8-70-3831.F
Al ARion	0\%57-0344	2		RTSISTOR 10 12 .1254 F TC=64-100	24546	C4 1/8-T0-10FE-F
	3757-9431	3			24546	C4-1/B-T0-191 F
A14R104 ATAR105	$0757-046.1$ 36.884844	0			24546 24546	
A14R106	0757-0417	8	,		24546	C4 1/8-T0-5 $6.2 \mathrm{Pr-F}$
A1AR107*	0757-179	3	1		24546	C4 1/8-T0-2152 F
A 14R108	c6,98-34.34	\%	1	RESIGTAP 34.0 12.1254 F TC=0+106	24546	$\mathrm{CA}_{4} 1 / 8 \mathrm{~B}$ - T0-34P8-F
	$0757-0439$ $0757-0418$?	$\frac{1}{2}$		24546 24546	C4 1/8-T3-93R - C. $41 / 8-\mathrm{TO}-6192-\mathrm{F}$
A14R111	$3690 \cdot 344.3$	7	1		24546	C4-1/3-T3-19CR-F
A14R112	8757-0286	3		RESSETOR 1K 1\% .125w F TC=0 - 100	24546	C4 1/8-T0-1001-F
Al 4 R 113	a757 - а280	3		RESTSTOR 1K 1%, 1254 F TC $=0,133$	24546	C4.1/8-T0-1001-F
	$6698-3136$ 0757 0.593	${ }_{9}^{8}$			24546 24546	C4-1/8-TE-1782-F CA 1/8-T0-131
A 14 R 116	c698-315s	1	1		24546	C4-1/8-T0-4641-F
AlAR116	175570418	9		RESTSTGR 619 18 . 125 SW F $1 \mathrm{C}=0$ ¢ - 120	24546	C4-1/3-T0-619R-F
A14R117 Al 14 R 11 B	8757-0440	7			24546 24546	C4-1/9-T0-7501-F
A14R119	${ }^{10698-3438}$	3	1	RESTGTOR $1471 \% \quad 1254 \mathrm{~F}$ TC=0+-106	245.46 24546	C4-1/8-T0-2611-F C4-1/8-T0 1 17P-F
Alariza	9757.0439	4	1		24546	$\mathrm{C} 4-1 / 8-\mathrm{T0} 0$-6811-F
A14R121	2100-2b33	5		RESISTOR-TPMR 1 K 10 XC C SIdF-ADJ 1-TRN	30983	ETS0×102
Al4R122	07570420	3		RESTSITRR 750 1X 125 W F $\mathrm{TC}=00-130$	24546	C4-1/8-T0-751 F
A14R123 A1 14124	$0757-0440$ $0757-0447$	7			24546 24546	C4-1/8-T0-7501-F C4-1/8-T0-1622-F
A14R125	0757-0447	4		RESISTO $16.2 \mathrm{~K} 1 \mathrm{iz}, 1254 \mathrm{~F}^{\text {F }}$ T $=0+-16 \mathrm{C}$	24546	C4 1/8-T0 If?? ${ }^{\text {c }}$
A1AR126	3757-0465	b		Restition $103 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}$ F $1 \mathrm{C}=0+-100$	24546	C4 1/8 TO-1033 F
A14R127	0757-0465	6		RESISTOR 100k 1 X . 125 SW F TC=0+100	24546	C4-1/8-T0-103-F
A14R128 A 14 R 129	$0757-0465$ $0699-0083$				24546	C4 1/8-T0-1003-F
A14R129 A1 1413130	$069 \mathrm{e}-0083$ $0757-0279$	${ }_{0}$			24546 24546	
A14R131	0757-0402	1	1	RESISTOR 11018.125 FF TC $=0+\cdots 100$	24546	C4-1/8-T0-111-F
A14R132	9757-0430	3	${ }_{2}^{1}$	REEISTGR S. 11 K 1\% 12 LSW F TC=0,-100	24546	C4 1/8-T0-5111-F
Al 148133 Al 14 R 134	$6698-7212$ $0698-7<12$	9			24546 24546	C3- $3 / 8-\mathrm{TO-100R-F}$ $\mathrm{C3-1/8}-\mathrm{TO-103R-F}$
A14R785	0690-3150	6		RFSIGTOR $2.37 \mathrm{~K} 1 \% .125 \mathrm{~F}$ F TC=0+-100	24546	C4-1/8-T0-2371-F
A14TP1 A14TP2	$0360-0535$ $0360-0535$	0	19	TERMINGL TEST POINT PCE	28880	0360.0535 0360535
A14TP2	$0360-0535$ $0360-0535$	0		TFRMINAL TEST POINT PCB	28480 28480	0360.0535 $0360-0535$
A14TP4	0360-0535	0		TERMINAL TEST POINT PCU	28480	0360.0535
A14TPS	0360-0535	0		terminal test point pch	28480	0360-0535
A14TP6	0360-0535	0		TERMINAL TESS POINT PCR	28480	0360.0535
A14TP7 A14TP	$0360-0535$ $0360-0535$	0		TERMSNAL TEST POINT PCB	28480 28880	0360.0535 0360.0535
A14TP9	0360-0535	0		TERMINAL TEST PO NT PCE	${ }_{28480}^{2880}$	0360.0535
A14TP 10	0360-0535	0		tFRminal test point pcb	28480	0360.0535
$\begin{aligned} & A 14 U 1 \\ & A_{1} 14 \mathrm{UL} \end{aligned}$	$\begin{aligned} & 1026-0092 \\ & 1826-0092 \end{aligned}$	3	2	IC CIP AMP GP DLAL TO 99 PKG IC OP AMP GF DUAL TO 99 PKG	$\begin{aligned} & 28480 \\ & 28486 \end{aligned}$	$\begin{aligned} & 1826-0092 \\ & 1826-0092 \end{aligned}$
A14UR1	1902-0901	5	1	DIODE ZNR 5.4V 1\% DO-35 PD=.4W TC=*.046\%	28480	1702-0901
	08559-00027	7	1	A 14 misceilanedus Parts COVER, LOG AMPLIFIER	28480	08559-00027

FIGURE8-67. LOG AMPLIFIER ASSEMBLY A14, BLOCK DIAGRAM

LOG AMPLIFIER ASSEMBLY

FIGURE8-68. LOG AMPLIFIER ASSEMBLYA14, COMPONENTLOCATIONS

VERTICAL DRIVING/BLANKING ASSEMBLY A15, CIRCUIT DESCRIPTION

The Vertical Driving/Blanking Assembly A15 contains a preamplifier to amplify the detected and filtered video received from the Log Amplifier Assembly A14. It also supplies the video signal needed to trigger the sweep generator in the video trigger mode. Following the preamplifier is the vertical driver, a differential amplifier that drives the vertical deflection plates in push-pull. Blanking, penlift, retrace, and sweep indicator signals are also supplied by the Vertical Driving/Blanking Assembly A15.

Preamplifier (A)

The detected and filtered video (0 to 800 mV) from the Log Amplifier Assembly A14 is applied to the gate of Q17a. Transistors Q17 (both sections), Q11, Q12, and Q18 form an FET input differential amplifier; the gate of Q17a is the noninverting input and the gate of Q17b is the inverting input. The amplifier's output, at the emitter of Q18, is fed back to the inverting input (Q17b) through a voltage divider (R11, R12, and R13). A simplified preamplifier circuit diagram is shown in Figure 8-70. The voltage gain can be expressed as a function of these resistor values: Gain $=1+\mathrm{R} 11 / \mathrm{R} 12+\mathrm{R} 13$. The circuit's gain is 10 . Since the limit to the input voltage is 800 mV , the maximum voltage at the output of Q18 (TP3) is 8 V . This voltage is coupled through R17 and becomes the trigger voltage for the video trigger mode (VIDEO position). Transistor array section U2d and transistor Q13 are temperature-compensated current sources. These bias the differential amplifier (U2a, U2b, and Q20) that provides isolation between the preamplifier and the vertical driver. The preamplifier output is sent via R40 to the rear panel (AUX VERT OUTPUT, P1 pin 14).

FIGURE 8-70. PREAMPLIFIER CIRCUIT, SIMPLIFIED SCHEMATIC

Since the vertical driver deflection sensitivity is 800 mV , for full-scale deflection, a divide-by-ten circuit and an offset circuit are used to obtain the correct signal amplitude. With the LOG/LIN switch (A2A1A2) in either the 10 dB per division or linear position, +15 V is applied to the EXPAND line. This reverse biases CR1 and turns Q19 on, dividing the preamplifier's output by 10 . Diode CR2 is forward biased and diode CR3 is reverse biased. Transistor Q19, R18, and R20 form the output divider network. When 1 dB per division is selected, the EXPAND line is open and Q19 is biased off by CR1 and R22, disabling the divide-by-ten circuit. The full preamplifier voltage is now available at the output of Q18 and must be offset $\mathbf{+ 7 . 2 \mathrm { V } \text { to display the } 8 0 0 \mathrm { mV }}$ signal peak. This in effect expands the display.

The offset of the signal is accomplished by a circuit comprised of U2c, CR3, CR4, and R18. Transistor array section U2c forms an adjustable current source that draws current through CR3 and R18. The 1 dB offset control is used to set the voltage drop across R18 at +7.2 V . This voltage shifts the signal negatively as it passes through R18. Diode CR4, becomes forward biased as the offset signal goes below -0.6 V and acts to clamp the minimum output at that level.

Beamfinder

With 1 dB per division selected, the baseline is off-screen. Without a visible signal present, there is no displayed trace. This condition could be misinterpreted as a display malfunction. On an HP 180 series mainframe, a visible trace can be produced by pressing the BEAMFINDER switch on the mainframe. This causes the -12.6 V on the beamfinder line to be removed, turns Q19 off, and disables the current source, U2c. The vertical display then reverts to the 10 dB per division mode while the horizontal display sweep is narrowed and the trace is intensified by the mainframe. The HP 853A mainframe does not require a BEAMFINDER, therefore the mainframe always supplies -12.6 V to the beamfinder line.

- 5.5V Temperature CompensatingSupply (B)

The - 5.5V Temperature Compensating Supply controls four current sources: U2c, U2d, Q13, and Q15. The temperature sensing element, U 2 e , is connected as a diode and tracks the base-emitter temperature changes of the current-source transistors. Approximately -0.6 V is provided by the voltage regulator (zener) diode, VR1, and transistor U2e.

Vertical Driver (E)

The Vertical Driver is a differential amplifier that consists of Q2, Q3, Q6, Q7, and Q14. Transistor Q15 is a temperature compensating current source (see Figure 8-71). The vertical signal from the preamplifier (0 to 800 mV) is converted to the push-pull signal needed to drive the vertical deflection plates. Dual transistor Q14 is used as the input stage of the driver circuit. Its base voltage is adjusted from the front panel with the vertical position (VERT POSN) control A2A1R6. This establishes the input reference voltage.

FIGURE 8-71. VERTICALDRIVER. SIMPLIFIED SCHEMATIC

The gain of the vertical driver is set by a voltage divider consisting of R39, R42, and vertical gain control (VERT GAIN) A2A1R7. This gain control adjusts the ratio of the voltage divider. Transistor pairs Q2/Q6 and Q3/Q7 are current-to-voltage amplifiers driven by the current from the collectors of Q14a and Q14b, respectively. Diodes CR5 through CR8 prevent the bases of Q2, Q3, Q6, and Q7 from being driven negative more than 0.6 V . Resistors R44 and R52 decouple the capacitive load presented by the CRT plates from the emitter of Q2 and Q3. Decoupling is necessary to prevent overshoot and ringing in the Vertical Driver.

Sweep Ramp High/Low Limit Comparator
 (C)

Operational amplifiers Ula and Ulb are connected to form a comparator circuit. A voltage divider, comprising resistors R6, R7, and R8, establishes a high voltage reference at Ula pin 2 and a low voltage reference at Ulb pin 5. The switching limits are approximately +5 V and +0.7 V , respectively. The signal applied to other inputs of the comparator is the YIG tuning voltage, the same signal that drives the YIG main coil. It consists of the analog tuning voltage and the sweep ramp $(\mathrm{S}+\mathrm{T})$. The tuning voltage is proportional to the instantaneous frequency to which the analyzer is tuned; the ramp sweeps from +1.2 V to 4.8 V .
As the YIG tuning voltage at Ula pin 3 rises above the reference at Ula pin $2(+4.95 \mathrm{~V})$, the output of Ula rises to about +14 V . This turns on Q4 in the blanking driver and blanks the display. If the YIG tuning voltage goes below the lower reference limit $(+0.7 \mathrm{~V})$, the output of Ulb goes to about +14 V and again blanks the display. The upper and lower blanking limits correspond to 50 MHz below and 100 MHz above the ends of each band being swept.

Vertical/Baseline Comparator (D)

The Vertical/Baseline Comparator consists of Q16 and Q8. The baseline clipping reference voltage is set by the BL CLIP control A2A1R2, which varies the base voltage of Q16. The Vertical Preamplifier output signal is applied to the base of Q8 and compared to the dc reference voltage at the base of Q16. If the signal becomes more negative than the reference, Q8 turns on. This turns Q4 on and blanks the display.

Blanking Driver (\mathbf{F}

The Blanking Driver comprises transistors Q4 and Q9 (see Figure 8-72). Normally, Q4 is off, placing a low level at the base of Q9 and causing Q9 to be turned on. For Q9 to be turned off and provide a positive going blanking

FIGURE8-72. BLANKING CIRCUIT, SIMPLIFIED SCHEMATIC
output to the mainframe, Q4 must receive a positive voltage. The Blanking Driver is driven by the Vertical/ Baseline Comparator and the Sweep Ramp High/Low Limit Comparator. Either of these circuits can produce the positive input needed by the Blanking Driver to produce a blanking output.

Penlift Driver (G)

The display is blanked during retrace and during the dead time of the sweep ramp. Retrace blanking from the Sweep Generator/Bandwidth Control Assembly A9 is applied to the emitter of the buffer amplifier Q1. When the sweep ramp is turned off (dead time), the retrace blanking signal rises to +10 V . This voltage appears at the base of Q4, blanking the display. Simultaneously, the +10 V signal is applied to base of Q5, causing the collector of Q10 to rise to +15 Y Transistor Q10 provides the signal used to lift the pen of the $\mathbf{X}-\mathbf{Y}$ recorder during the analyzer's sweep retrace and dead time. Zener diodes VR2 and VR3 limit the output to 35V to protect Q10 from high voltage and inductive transits generated by the $\mathrm{X}-\mathrm{Y}$ recorder.

Sweep Indicator Driver (H)

The front panel SWEEP indicator lights when the retrace blanking signal is low (OV). Transistor Q22 is turned on by the low retrace signal and switches on the SWEEP light-emitting diode.

VERTICAL DRIVER/BLANKING ASSEMBLY A15, TROUBLESHOOTING

Display Held in Blanked Mode: When this occurs, it may be necessary to increase the display intensity (on HP 180 series mainframes) to make the trace visible. A bright dot appears at the beginning of the trace and the BL CLIP control does not work. Most common failures are Q8 and Q16 (always change both).

The S + T line from the Frequency Control Assembly A7 can cause the comparators (block C) to latch-up.
The Sweep Generator/Bandwidth Assembly A9 retrace line input line can lock-up retrace.
Display Offset in Linear: Most common failure is Q17.

TABLE 8－13．VERTICALDRIVER／BLANKING ASSEMBLY A15，REPLACEABLE PARTS（10F2）

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
A15	36559 －630：9	5	1	W：RTICAL DRIUER／RLANKING ASSEMDIY	28983	385：39－60359
A1SC1	c180－0197	8	4	CAPACSTOR－FXD 2．24\％＋－16\％2CUDC TA	56：39	156T2asx70：6A：
A15CC	3183－3197	E		CAPAEITKR－XD 2．SUF－ 13 Z ZOULC TA	56857	15172\％ $5 \times 9029 \mathrm{Aa}$
A15c3	0186－0197	8		CAPACITOR－FXD 2 ． 2 UF $+10 \%$ 2CUDC TA	şang cavai	
A1SCA A1 SCS	$0160-2355$ $0160-0197$	－	？		58283	3163 2355 1501225×9 2．arat
A15C6	2160－2355	$\%$			こв4日	3163－2355
A1SCR 1 A1ECR2	1901－6050	3	11		23488 $=8483$	$\begin{aligned} & 120,1-6059 \\ & 1031-0350 \end{aligned}$
A1SCR2 A1SCR3	$1901-0350$ $1901-6050$	$\frac{3}{3}$			29483	$\begin{aligned} & 1031-0350 \\ & 1261-0050 \end{aligned}$
A15CR4	1731－0535	5	1	DTEDE SM SIG Sthotiky	281830	$1931-3535$
A15CRS	1701－8050	3		DIOLE－SWITCHINE 000260 MA 2N：DO－35	28400	17610050
A1ECRG	1731－3053	3		DTCDE ：WITCMING BJU 2a3ke ：WS Do 35	－848）	1291－3056
A1SCR7	1961－6050	3		DIODE SLITCHING BCU RECMA 2N：DA－35	28480	1901－0050
A1SCRA	19310050	3		DTCOE SWITH，H1NG asu zaara ins eo 35	（1380	1931－3950
A15CR9 A15CR1？	$1701-0650$ 1731.0050	3 3			28480 $\% 3480$	$\begin{aligned} & 1701-0858 \\ & 1931-0350 \end{aligned}$
A1 SCR 11	1961－0050	3		DTODF－SUTTCHTNG BLU 26 EMA 2 N：DO－35	2：480	1761－0050
A1SCR 12	1701． 3518	E	1	DIDDE SM SIG SR 1017 KY	－8483	1931－0518
A1SCR 13	1961－6058	3		DTODE－SUITCHING：8LU 2CRMA $2 N: ~ D O-35 ~$	？${ }^{\text {ancon }}$	1761－0050
A15CR14	1710－0316	a	1	DICDE－EE bJU G3ria lis co 7	2898	1913－0316
A $15 \mathrm{J1}$	1251－0660	0	12		2a480	$1251-6600$ $1: 51-2630$
A15J2 A15J3	$1251-0690$ $1251-0660$	0			－ 2483	$1: 51-56.30$ $12.51-0600$
A15J4	1251－0633	3		CONNFETIIR SEL RCONT PIN 1．14 M．M FSCC S\％SQ	2e483	1：51－06．90
A1sJs	1251－0650	0			28480	1251－0666
A15J6	1251－0603	0		CONNECTUR－SGL CONT PIN 1.14 －mmercesz SQ	\％ 8983	1：51－0630
A1537	1251－0660	0		CONNECTOR SGL CONT PIN 1.14 MM－ESC－ 37 SR	2．480	13．4－0660
A1SL1	9140－0179	1	$?$		284811	9140－3179
A15L2	9140－0179	1		INDUCTOP NF －CH－MLD 23UH 16% ，1665X，38\％LS	23400	7146． 0179
A1501	155，3－0037	\cdots	4		34713	$2 * 3: 51$
A15Q2 A15	$1854-0234$ $1854-3234$	4 4	4		3！ 595	PN3440 2n 3443
A15Q4	1854－0009	1	1		64713	Pa\％c9
A15Q5	1354．0404	3	1		？ 5463	1554－0404
A1586	1054－0．034	4		TRANSTSTOR NPN 2 M3440 SI TO－5 PD， 1 L	31505	2N3440
A1507	15554－0234	4		TRANEISTOR NPN ENS449 ST $10-5 \mathrm{PD}=1 \mathrm{~W}$	31585	2N3440
A1598	1853－0007	7			64713	2 N 3.51
A1509	1554． 0319	3	1	TRANGTGTRR URN SI Th－13 FD－3Gamid	2e483	1654－0319
A15810	1954－0039	7	1	TRANGTSTOR NIN $2 N 30535$ St 10．39 PD iw	31.595	2436535
A15R12	1353 －0451	5	$?$	TRANSISTGR PNP ：N3799 SI 10.18 PDVIG，3ML	$31: 75$	2N3799
A15Q12 A1SQ13	$1853-0451$ $1854-0882$	5	4		01295 28480	2N． 3799 $1854-9882$
A15Q14	1854－0475	5	1	TRANSISTOP－DUAL NPN PD $=750 \mathrm{MW}$	28480	1054－0475
A15Q15	1554－0682	8		TRANSISTGR NPN PD＝303MW FT＝200M．HZ	20480	1854－0ER2
A15Q16	1853－0007	7		TRANGTSTAR PNP 2N32S1 SI 10.18 PD＝36，0ML	04713	2Nx25：
A15Q17 A15Q18	$1855-0047$ $1854-0882$	1 8	1		28480 28480	$1655-0049$ 1054 10851
A15Q19	1055－0417	7	1	IRANSISTGR J FET N CHAN D．WODE TO－111 OI	－8483	11．55－0417
A15820	1854－0082	E		TRANSISTOP NPN PD $=300 \mathrm{ML}$ F $\mathrm{T}=200 \mathrm{MHZ}$	28480	105．4－0802
A15821	1555－0020	${ }^{8}$	1	TRANGSSTGR J－FET N－CLIAN D－MGDE TO－18 SI	28483	1055－0320
A 15922	1953－0007	7		TRANSISTOR PNP 2N32S：SI $10-18$ PD＝36GMU	04713	2N3251
A15R1	2100－3123	g	6	RESISTER－TRMR $53010 \% \mathrm{C}$ SIDF－ADJ 17 IRN	22111	$43 P 501$
A15R2	0757－0199	3	6	RESISIOR $21.5 \times 1 \%$ ，125以 T TC＝0， 180	24546	C4－1／8－T0 $2153-\mathrm{F}$ $\mathrm{CA}-1 / 8-\mathrm{TO}$ $51-\mathrm{F}$
A15R3 A1584	－3757－0420	3 3	${ }_{3}^{2}$	RESISTGR RESISTOS R R R R	24546 24546	C． 4 1／8－T0－751－ C4 1／8－T0－1001－F
A15R5	0757－0279	\square	3		24546	C4－1／3－T0－3161－F
A15R6	0690－3155	a	4	RESISTOR $14.7 \mathrm{~K} \quad 1 \%$ ． 125 S F $\mathrm{TC}=0+100$	24546	C4－1／8－T0－1472－F
A15R7	1757－0290	5	，	RESTSTCR $6.19 \mathrm{~K} 1 \%$ ，12SW F IC $=3,-133$	17731	MFAC1／B－T0－6191－F
A15R8	0757－0424	7	3	RESISTOR $1.1 \mathrm{~K} 1 \mathrm{z}, 1254 \mathrm{~F}$ TC＝0＋－106	24546	C4 $1 / 8$ TE－1181－F
A15R9	0690－3156	z		RESTSITIR 14， $7 \mathrm{~K} 1 \%, 125 \mathrm{~L}$ F TC $=0+100$	24546	C． $1 / 8$－ $1 / 8$－1472－F
A15R10	0757－0199	3		RESISTOR 21，5K 1x ，1254 F TC＝0＋ 100	24546	6．4－1／8－TE－2152－F
A15R11	0698－3155	1	3	RESTSTOR $4.64 \mathrm{~K} \quad 1 \mathrm{X}, 1254$ F TS $=0+-103$	24546	C4．1／8－70－4641－F
A15R12	0757－0416	7	3	RESISTOR 5111% ． 125 W F TC $=0+100$	24546	C4 1／8－TC－511R－F
A15R13	0683－0475	1	，	RESISTIR 4.752 ． 254 FC TC＝ $400 / 1500$	31121	CE4765
A15R14	0757－0424	7		RESISTOR $1.1 \mathrm{~K} 1 \%, 125 \mathrm{~W}$ F TC $=0+100$	24546	C4－1／8－TC 1101－F
A15R15	3757－0199	3		RESTSTOR 21． 5 K 1\％，125W F TC＝34－100	24546	C4－1／8－79－2152－F
A15R16 A15R 17	$\begin{aligned} & 0757-0199 \\ & 0757-0280 \end{aligned}$	3 3			24546 24546	$\begin{aligned} & \mathrm{C} 41 / 8-T 0-2152-F \\ & \mathrm{C} 4-1 / 8-\mathrm{T} 0-1091-\mathrm{F} \end{aligned}$
A15R1B	0698－3155	1		RESISTOR 4.64 K i $\%$ ． 125 W F TC $=0+\cdots 100$	24546	C．4－1／8－T0－4641－F
A15R19	0698－0084	9	1	RESISTOR 2．1EK $1 \% .125 W$ F TC $=0+\cdots 100$	24546	C．4－1／8－T0－2151－F
A15R20	0757－0416	7		RESISTOR $5111 \% .125 \mathrm{~W} F$ TC $=0+-100$	24546	C4－1／8－T0－5118－F

TABLE 8-13. VERTICALDRIVERUBLANKING ASSEMBLY A15, REPLACEABLE PARTS (2OF2)

FIGURE 8-73. VERTICALDRIVER/BLANKING ASSEMBLY A15, BLOCK DIAGRAM

FIGURE 8-74. VERTICAL DRIVERIBLANKING ASSEMBLY A15,COMPONENTLOCATIONS

TABLE8-14. MOTHERBOARDASSEMBLY A16, REPLACEABLEPARTS (1 OF 2)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A16	08559-63376	2	1	KOTHERSGARD ASEEMRLY	28490	06559-60376
A16C1	6180-0197	ε	1	CAPACITOR-FXD 2.2UF+-16\% 2CUDC TA	56289	$150 \mathrm{P} 225 \times 902 \mathrm{CAR}$
A16ce	9180-2235	3	1	CAPACTTOR - FXD , 33UF $+13 \%$ S5UCC TA	56287	$1500334 \times 9035 A 2$
A1 6C3	0160-4C84	a	2	CAPACITOR-FXD . $105+-2 C \%$ S0UDC CER	23480	6160-4084
${ }^{\text {A1CCA }}$	0160-2955	8	16	CAPAE,TTOR-FXD .011, $+30-20 \%$ 1JJULC CER	28480	3163-2055
A1 6C5	0160-2055	9		CAPACITOR-FXD .C1UF + 6 C-20\% 10CUDC CLR	28480	C160-2055
A1CC6	0160-3879	7	1	CAPACITOR-FXD 01UF +-23X 1030 LCC CER	28483	3160-3879
A1 6C7	0160-2055	9		CAPACITOR-FXD , C1UF +80-26\% 100UDC CER	28480	01662655
A16C8	0160-2355	5		CAPACEITGR-FXD . 01115 183-2JX 1030 LC IER	2 Can 3	3160-2355
A16C9 A16C10	$0160-2655$ $0160-2055$	9			23480 28480	$6160-2055$ $3160-2355$
A16C11	0160-2055	9		CAPACITOR-FXD . C1UF + B6-20\% 100UDC CER	28480	0160-2055
A1sc12	3160-2355	5		CAPACITGR-FXD .010F + 33-23\% 103VEC CER	20485	3163-2355
A16C13	0160-2055	9		CAPACITOR-FXO .01UF + $30-2 E X$ 10CUDC CER	28480	¢11.0 2055
A16C14	0160-2355	5		CAPACITGR-FXD .01UF 180 -23X 1J3VEC C CR	28480	3160-2355
A1 6C15	0160-2055	9		CAPACITRR-FXD .C1UF + 86-20\% 100UDC CER	28480	6160-2055
A1LC16	0169-2355	5		CAPACEITGR-FXD . 31JF 1B3-2.3Z 1 IJJULC CER	28483	3160-2055
A16C17	0160-2655	9			29480	01602055
A16C18	0160-2955	5		CAPAR,ITGR-FXD .01UF +83-2.3\% 100 UDC CER	29480	3160-2355
A16C19	0160-2055	9		CAPACITOR-FXD .01UF + $86-20 \%$ 100UDC CER	28480	016.0-2055
A16C23	0160-3456	6	1	CAPAC:ITGR-FXD 1033 PF 1-10\% 1KVDC CER	CB480	3163-3456
A16C21	0160-4084	E		CAPACITOR-FXD .1UF +-20\% SOUDC CER	28480	0160-4084
A16C22	0180-2500	1	1	CAPAC,ITOR-FXD $1530 \mathrm{UF}+50-13 \%$ 16UDC AL.	37942	1T1520016G1C3P
A16C23	6160-2655	9		CAPAC.ITOR-FXD C1UF +30-20\% 10CUDC CER	28480	${ }^{6160.2055}$
${ }_{\text {A1 }}^{\text {Alc24 }}$	$3160-3878$ $0160-3978$	${ }_{6}^{6}$	2	CAPACITAR FXD 1330PF +-23\% 103VDC CER	28480	3160-3878
A16C25	0160-3978	6		CAPACITRR-FXD $1000 \mathrm{PF}+-20 \% 100 \mathrm{UDC}$ CER	28480	8160-3878
A16E26	0160-3877	5	1	CAPACITUR-FXD $133 P$ +-23X zajuCC LER	58480	3160-3877
A1 GCR 1	1901-0376	6	1	DIODE-GEN PRP 354 SOMA DO-35	28486	1901-0376
A16CR2	1901-0250	3	1	DICDE-5WITCHING 3JV 20JMA ENS DO-35	23480	1731-0050
A16J1	1251-3782	5	2	CONNE CTOR 40 PIN M RECTANGIL AR	2 2480	1251-3782
A16.J2	1251-3782	5		CONNECTIGR 43 PIN M RECTANTULAR	28489	1251-3732
A16J3	1250-0257	1	1	CONNECTOR OF SME M PC 50 OHM	23480	1250.0257
A16J4	12500543	E	1	CONNI CTITR XF 'M SNP M PC 50 OY:M	c8483	1250-0543
A16J5	1251-8260	2	1	CON FOST TYPE 100 PIN SPCO $9-T O N I$	28480	1251-8200
A16L1	08411-6008	5	3	CHiCKE FERRIIE	¢3480	38411-6038
A16L2	08411-6008	5		CHOXE FERRITE	28480	08411-6008
A1613	03411-6098	5		CHOKE FERRIIE	28480	28411-6038
A16L4	9100-2251	0	1	INDUCTOR RF-CH-MLD 220NH $10 x .105 D X .26 L G$	28480	916c-2251
A1601	18550417	7	1	TRANSISTGR J-FET N CHAN D-MODE TE-18 SI	28480	1355-0417
A16R1	0757-0346	2	3	RESIGTOA 10 12, 125w F TC $=01-100$	24546	C4. 1/8-T0-10P0-F
A1/6R2	37570465	${ }_{4}^{4}$	1	RESISTGR $133 \mathrm{~K} 1 \mathrm{1z}, 125 \mathrm{~W}$ F TC=31-130	24546	C4-1/8-T9-1003 F
A1 GR3	0698-5368	2	1		28480	06925368
A16R4	2100-1757	2	1	RESTSTER-TRMR 500 5\% LiW Side-ADJ 1-TRN	28483	2133-1757
A16R5	6757-0444	1	1	RESISTOR 12.1 K 12.1254 F $\mathrm{TC}=0+-106$	24546	C4-1/8-TC-1212-F
A1GR6 A1 167	$3698-3442$ $0757-0395$	5	1		24546	C4-1/8-T3-237R-F
A16R7 A16R8	-7757-0395	$\frac{1}{2}$	1		24546 24546	C4-1/8-T0-56R2-F CA-1/8-TJ-10Ra-F
A1 GR9	0757-0346	2		RESISTOR 101%, 12SW F TC $=0,-100$	24546	C4 1/8-Tn-10PG-F
AlGR10	2690-3263	5	1		23480	0673-3260
A16TP 1	1251-0600	0	1	CONNECTOR-SGL CONT PJN 1.14 MM-BSC -SZ SQ	28480	1251-0600
A1CU1	1826-0122	a	1	IC 7805 U RGLIR TO-2?0	37263	78050 C
At GUR 1	1962-0631	8	1	DIODE ZNP 1N5351: $14 \mathrm{~V} 5 \%$ Pnz5W TC=- 75%	04713	1 NS 351 B
A16UR2	1932-0632	9	1		04713	1 N5354B
A1GUR3	1962-318?	0	1	DIODF-ZNR 12.1U $5 \times$ DO-35 PD=,4W	23480	1902-3182
A16 61 A1 6 W 2	$\begin{aligned} & 07559-60001 \\ & 08559-60061 \end{aligned}$	9	1	CONNFCTOR ASSEMEIY, MAINHRAME CAFLE ASSEMEIY, YIG	$\begin{aligned} & 28489 \\ & 28480 \end{aligned}$	$\begin{aligned} & 28559-60081 \\ & 08559-60061 \end{aligned}$
${ }_{\text {A1 }} 1643$	00559-60059	7	1	CAEIF ASSEMELY, MIXER	28480	-6559-60089
A16 ${ }^{1} \times 7$	1251-1365	6	7	CONNECTOR -FC [DGE 2 ? CONT/ROW 2 ROW.;	28480	1251-1365
A16XAB	1251-1365	6		CONNECTIR-PC FOGE 22-CONT/RDW 2 -ROWS	28480	1251-1365
A16XA9	1251-1365	6		CONNECTOR-PC EDGE 22 -CONT/ROW 2 -ROW:;	28480	1251-1365
A16 XA1 OP 1	1251-1626	2	1	CONACCTOR - PC FORE 12-CONT/RGW 2-RDWS	28480	1251-1626
A16 XA10P2	1251-2034	8	2	CONNFCTOR-PC EDGC 10-CONT/ROW 2 -ROW:	23480	1251-2034
A16 \times A11	1251-1365	6		CONNECTOR PC EDSE 22-CONT/ROW ? ROWS	28480	1251-1365
A16 6 A12	1251-1365	6		CONNFCTOR PC EDGE 22-CONT/RDW 2-ROWS	28480	1251-1365
A16 XA13	1251-1365	6		CONNECTOR-PC EDSE $22-$ CONT/RUW 2 ROWS	28480	1251-1365
A16 ${ }^{\text {Pa1 }} 14$	1251-1365	6		CONNECTOR -PC EDGE 22 CONT/ROW 2-ROWS	28400	1251-1365
A16 XA15	1251-2034	-		CONNECTOR-PC EDGE 10-CONT/ROW 2-ROWS	28480	1251-2034

TABLE814. MOTHERBOARDASSEMBLY A16, REPLACEABLEPARTS (2OF2)

FIGURE876. MOTHERBOARDASSEMBLY A16, COMPONENTLOCATIONS

Leftical opiver
BLAAKRING ASEEMELYA15

[^0]: '<2 kHz p-p in 0.1 second in a 180 -series display mainframe with 220/240 line voltage.

[^1]: '1nput level not to exceed maximum levels.

[^2]: *Check function generator output frequency using a frequency counter. Frequency readout should be within $\pm 0.5 \%$ of desired audio frequency.

[^3]: *Attenuations > dial settings are positive (+). Attenuations < dial settings are negative (-).

[^4]: ${ }^{*}$ DVM Reading minus offset recorded in step 4.
 **All values in the Difference Between Adjacent Readings column must be less than or equal to $\pm 10 \mathrm{mV}$.

[^5]: See introduction to this section for ordering information

