# Performance Tests and Adjustments Manual

HP 8568B Spectrum Analyzer



HP Part No. 08568-90118 Printed in USA September 1993

@Copyright Hewlett-Packard Company 1993 All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws. 1212 Valley House Drive, Rohnert Park, CA 94928-4999, USA

| Certification | Hewlett-Packard Company certifies that this product met its<br>published specifications at the time of shipment from the factory.<br>Hewlett-Packard further certifies that its calibration measurements<br>are traceable to the United States National Institute of Standards and<br>Technology, to the extent allowed by the Institute's calibration facility,<br>and to the calibration facilities of other International Standards<br>Organization members. |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warranty      | This Hewlett-Packard instrument product is warranted against defects<br>in material and workmanship for a period of one year from date of<br>shipment. During the warranty period, Hewlett-Packard Company<br>will, at its option, either repair or replace products which prove to be<br>defective.                                                                                                                                                            |
|               | For warranty service or repair, this product must be returned to a<br>service facility designated by Hewlett-Packard. Buyer shall prepay<br>shipping charges to Hewlett-Packard and Hewlett-Packard shall pay<br>shipping charges to return the product to Buyer. However, Buyer shall<br>pay all shipping charges, duties, and taxes for products returned to<br>Hewlett-Packard from another country.                                                         |
|               | Hewlett-Packard warrants <b>that</b> its software and firmware designated<br>by Hewlett-Packard for use with an instrument will execute<br>its programming instructions when properly installed on that<br>instrument. Hewlett-Packard does not warrant that the operation<br>of the instrument, or software, or firmware will be uninterrupted or<br>error-free.                                                                                               |
|               | LIMITATION OF WARRANTY                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | The foregoing warranty shall not apply to defects resulting from<br>improper or inadequate maintenance by Buyer, Buyer-supplied<br>software or interfacing, unauthorized modification or misuse,<br>operation outside of the environmental specifications for <b>the</b><br>product, or improper site preparation or maintenance.                                                                                                                               |
|               | NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.<br>HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE IMPLIED<br>WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A<br>PARTICULAR PURPOSE.                                                                                                                                                                                                                                                                                      |
|               | Exclusive Remedies                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND<br>EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE<br>LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR<br>CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT,<br>TORT, OR ANY OTHER LEGAL THEORY.                                                                                                                                                                                                      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## Assistance

Product maintenance agreements and other customer assistance agreements are available for *Hewlett-Packard* products.

For any assistance, contact your nearest *Hewlett-Packard Sales* and Service Office.

| Safety Symbols | The following safety symbols are used throughout this manual.<br>Familiarize yourself with each of the symbols and its meaning before<br>operating this instrument.                                                                                                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caution        | The <i>caution</i> sign denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in damage to or destruction of the instrument. Do not proceed beyond a <i>caution</i> sign until the indicated conditions are fully understood and met. |
| Warning        | <i>The warning</i> sign denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a <i>warning</i> sign until the indicated conditions are fully understood and met.                     |

| General Safety<br>Considerations |                                                                                                                                                                                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warning                          | <i>Before this instrument is switched on</i> , make sure it has been properly grounded through the protective conductor of the ac power cable to a socket outlet provided with protective earth contact. |
|                                  | Any interruption of the protective (grounding) conductor, inside<br>or outside the instrument, or disconnection of the protective<br>earth terminal can result in personal injury.                       |
| Warning                          | There are many points in the instrument which can, if contacted, cause personal injury. Be extremely careful.                                                                                            |
|                                  | Any adjustments or service procedures that require operation<br>of the instrument with protective covers removed should be<br>performed only by trained service personnel.                               |
|                                  |                                                                                                                                                                                                          |
| Caution                          | Before this instrument is switched on, make sure its primary power circuitry has been adapted to the voltage of the ac power source.                                                                     |
|                                  | Failure to set the ac power input to the correct voltage could cause<br>damage to the instrument when the ac power cable is plugged in.                                                                  |
|                                  |                                                                                                                                                                                                          |

| HP 8568B<br>Spectrum Analyzer<br>Documentation<br>Outline               | Included with the HP Model 8568B Spectrum Analyzer are three manuals: the Installation and Verification Manual, the Operating and Programming Manual, and the Performance Tests and Adjustments Manual. |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HP 8568B Installation<br>and Verification<br>Manual                     | General information, installation, specifications, characteristics, and operation verification.                                                                                                         |
| HP 8568B Operating<br>and Programming<br>Manual                         | Manual and remote operation, including complete syntax and<br>command description. Accompanying this manual is the separate,<br>pocket-sized Quick Reference Guide.                                     |
| HP 8568B<br>Performance Tests and<br>Adjustments Manual                 | Electrical performance tests and adjustment procedures.                                                                                                                                                 |
| HP 85680B RF Section<br>Troubleshooting and<br>Repair Manual            | RF Section service information.                                                                                                                                                                         |
| HP 85662A IF-Display<br>Section<br>Troubleshooting and<br>Repair Manual | IF-Display Section service information.                                                                                                                                                                 |

## Contents

| 1. General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-1  |
| Instruments Covered by this Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-1  |
| Operation Verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-2  |
| Option 462 Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1_2  |
| Option 257 Instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-2  |
| Option 857 instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-2  |
| 2. Performance Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-1  |
| Verification of Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-1  |
| Calibration Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-1  |
| Equipment Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-2  |
| Test Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-2  |
| 1. Center Frequency Readout Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-3  |
| 2. Frequency Span Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-6  |
| 3 Sweep Time Accuracy Test (>20 ms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-9  |
| 4 Resolution Bandwidth Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-13 |
| 5 Resolution Bandwidth Selectivity Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-15 |
| 6 Resolution Bandwidth Switching Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-18 |
| 7 Input Attenuator Switching Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.10 |
| 7. Input Attenuator Switching Oricertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-20 |
| 0. Requercy Response Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-22 |
| 9. KF Gain Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-31 |
| 10. IF Gali Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-33 |
| 11. Log Scale Switching Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-39 |
| 12. Amplitude Fidelity Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-41 |
| 13. Average Noise Level Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-45 |
| 14. Residual Responses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-47 |
| 15. Spurious Responses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-49 |
| 16. Residual FM Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-56 |
| 17. Line-Related Sidebands Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-60 |
| 18. Calibrator Amplitude Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-62 |
| 19. Fast Sweep Time Accuracy Test ( $<20$ ms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-63 |
| 20. 1st LO Output Amplitude Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-66 |
| 21. Frequency Reference Error Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-67 |
| Table 2-19.    Performance    Test    Record    Image: Control of the second seco | 2-69 |
| Test 1. Center Frequency Readout Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-70 |
| Test 2. Frequency Span Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-71 |
| Test 3. Sweep Time Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-72 |
| Test 4 Resolution Bandwidth Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-73 |
| Test 5 Resolution Bandwidth Selectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-74 |
| Test 6 Resolution Bandwidth Switching Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 271  |
| Test 0. Resolution Dandwidth Switching Obertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2_75 |
| Tost 7 Input Attonuotor Switching Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-15 |
| Test 9 Frequency Despense Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-70 |
| Test 0. Frequency Response Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-11 |
| Test 10 IF Coin Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-18 |
| Test IU. IF Gain Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-79 |

| Test II. Log Scale Switching Uncertainty Test      | 2-82       |
|----------------------------------------------------|------------|
| Test 12. Amplitude Fidelity Test                   | 2-83       |
| Test 13. Average Noise Level Test                  | 2-84       |
| Test 14. Residual Responses Test                   | 2-85       |
| Test 15. Spurious Responses Test                   | 2-86       |
| Test 16. Residual FM Test                          | 2-87       |
| Test 17. Line-Related Sidebands Test               | 2-88       |
| Test 18. Calibrator Amplitude Accuracy Test        | 2-89       |
| Test 19. Fast Sweep Time Accuracy Test (<20 ms)    | 2-90       |
| Test 20. 1st LO Output Amplitude Test              | 2-91       |
| Test 21. Frequency Reference Error Test            | 2-92       |
| Adjustments                                        |            |
| Introduction                                       | २-1        |
| Safety Considerations                              | 3_2        |
| Equipment Required                                 | 3-2        |
| Adjustment Tools                                   | 3-2        |
| Adjustificitit 10018                               | 3-2        |
| Palated Adjustments                                | 3-3<br>2-4 |
| Leastion of Test Doints and Adjustments            | 3-4        |
| Location of fest Points and Adjustments            | 3-4        |
| 1. Low-voltage Power Supply Adjustments            | 3-25       |
| 2. High-Voltage Adjustment (SN 3001A and Below)    | 3-29       |
| 2. High-Voltage Adjustment (SN 3004A and Above)    | 3-39       |
| 3. Preliminary Display Adjustments (SN 3001A and   | ~          |
| Below)                                             | 3-45       |
| 3. Preliminary Display Adjustments (SN 3004A and   |            |
| Above)                                             | 3-52       |
| 4. Final Display Adjustments (SN 3001A and Below)  | 3-59       |
| 4. Final Display Adjustments (SN 3004A and Above)  | 3-61       |
| 5. Log Amplifier Adjustments                       | 3-65       |
| 6. Video Processor Adjustments                     | 3-69       |
| 7. 3 MHz Bandwidth Filter Adjustments              | 3-72       |
| 8. 21.4 MHz Bandwidth Filter Adjustments           | 3-77       |
| 9. 3 dB Bandwidth Adjustments                      | 3-84       |
| 10. Step Gain and 18.4 MHz Local Oscillator        |            |
| Adjustments                                        | 3-87       |
| 11. Down/Up Converter Adjustments                  | 3-92       |
| 12. Time Base Adjustment (SN 2840A and Below, also |            |
| 32 17A05568 and Above)                             | 3-95       |
| 12. Time Base Adjustment (SN 2848A to 3217A05567)  | 3-99       |
| 13. 20 MHz Reference Adjustments                   | 3-103      |
| 14. 249 MHz Phase Lock Oscillator Adjustments      | 3-107      |
| 15. 275 MHz Phase Lock Oscillator Adjustment       | 3-110      |
| 16. Second IF Amplifier and Third Converter        |            |
| Adjustment                                         | 3-112      |
| 17. Pilot Second IF Amplifier Adjustments          | 3-116      |
| 18. Frequency Control Adjustments                  | 3-119      |
| 19. Second Converter Adjustments                   | 3-123      |
| 20. 50 MHz Voltage-Tuned Oscillator Adjustments    | 3-130      |
| 2 1. Slope Compensation Adjustments                | 3-133      |
| 22. Comb Generator Adjustments                     | 3-136      |
| 23. Analog-To-Digital Converter Adjustments        | 3-139      |
| 24. Track and Hold Adjustments                     | 3-142      |
| 25. Digital Storage Display Adjustments            | 3-145      |
| Low-Noise DC Supply                                | 3-150      |

3.

Crystal Filter Bypass Network Configuration . . . . 3-151

| 4. Option 462                                          |            |
|--------------------------------------------------------|------------|
| Introduction                                           | 4-1        |
| 4. 6 dB Resolution Bandwidth Accuracy Test             | 4-2        |
| 4. Impulse and Resolution Bandwidth Accuracy Test      | 4-4        |
| 5. 6 dB Resolution Bandwidth Selectivity Test          | 4-10       |
| 5. Impulse and Resolution Bandwidth Selectivity Test . | 4-13       |
| 6. Impulse and Resolution Bandwidth Switching          |            |
| Uncertainty Test                                       | 4-16       |
| Test 4. 6 dB Resolution Bandwidth Accuracy Test (p/o   |            |
| Table 2-19, Performance Test Record)                   | 4-18       |
| Test 4. Impulse and Resolution Bandwidth Accuracy      |            |
| Test (p/o Table 2-19, Performance Test Record)         | 4-19       |
| Test 5. 6 dB Resolution Bandwidth Selectivity (p/o     |            |
| Table 2-19, Performance Test Record)                   | 4-21       |
| Test 5. Impulse and Resolution Bandwidth Selectivity   |            |
| (p/o Table 2-19, Performance Test Record)              | 4-22       |
| Test 6. Impulse and Resolution Bandwidth Switching     |            |
| Uncertainty (p/o Table 2-19, Performace Test           |            |
| Record)                                                | 4-23       |
| 9. 6 dB Resolution Bandwidth Adjustments               | 4-24       |
| 9. Impulse Bandwidth Adjustments                       | 4-27       |
|                                                        |            |
| 5. Option 857                                          | <b>F</b> 1 |
|                                                        | 5-1        |
| 12. Option 857 Amplitude Fidelity Test                 | 5-2        |
| Performance Test Record                                | 5-/        |
| Test 12. Option 857 Amplitude Fidelity Test            | 9-8        |
| C. Maine Assembly and Community I continue             |            |
| o. Major Assembly and Component Locations              | 61         |
| IF-Display Section Figure Index                        | 6.2        |
| $\mathbf{N}$ because figure matching $\mathbf{N}$      | 0-2        |

## Figures

| 1-1.          | Service Accessories, HP Part Number 08568-60001      | 1-8               |
|---------------|------------------------------------------------------|-------------------|
| 2-1.          | Center Frequency Accuracy Test Setup                 | 2-3               |
| 2-2.          | Center Frequency Readout Error Measurement           | 2-4               |
| 2-3.          | Frequency Span Accuracy Test Setup                   | 2-6               |
| 2-4.          | Sweep Time Accuracy Test Setup                       | 2-9               |
| 2-5.          | Penlift Output Signal                                | 2-11              |
| 2-6           | Resolution Bandwidth Measurement                     | 2-14              |
| 2-7           | 60 dB Bandwidth Measurement                          | 2-16              |
| 2-8           | Bandwidth Switching Uncertainty Measurement          | 2-19              |
| 2-9           | Attenuator Switching Uncertainty Test Setun          | 2-20              |
| 2-10          | Attenuator Switching Uncertainty Measurement         | 2-21              |
| 2-11          | Frequency Response Test Setup (20 MHz to 1.5 GHz)    | 2-22              |
| $2_{-12}$     | Frequency Response Measurement (20 MHz to 1.5 GHz)   | 2-24              |
| 2-12.<br>2-13 | Frequency Response Test Setup (100 kHz to 20 MHz)    | 2-25              |
| 2-13.<br>2-14 | Frequency Response Measurement (100 kHz to 20 MHz)   | 2-26              |
| 2-1+.<br>2-15 | Frequency Response Test Setup (100 Hz to 100 kHz)    | 2_20              |
| 2-15.         | RE Gain Uncertainty Measurement                      | 2-27<br>2-32      |
| 2-10.<br>2-17 | IF Gain Uncertainty Test Setup                       | 2 32              |
| 2-17.<br>2-18 | IF Gain Uncertainty Measurement                      | 2-35              |
| 2-10.<br>2-10 | IF Gain Uncertainty Measurement (2 dB)               | 2-35              |
| 2-19.         | Log Scale Switching Uncertainty Measurement          | 2-30<br>2-40      |
| 2-20.         | Amplitude Fidelity Test Setup                        | 2-40<br>2-41      |
| 2-21.         | Amplitude Fidelity Measurement                       | $2^{-41}$<br>2_43 |
| 2-22.         | Augrage Noise Level Measurement                      | 2-45<br>2-46      |
| 2-25.         | Average Noise Level Measurement                      | 2-40              |
| 2-24.         | Hormonia Distortion Test Setur                       | 2-40              |
| 2-23.         | Intermedulation Distortion Test Setup                | 2-50              |
| 2-20.         | Intermodulation Distortion Products                  | 2-52              |
| 2 - 27.       | Dendwidth Eilter Slope Measurement                   | 2-33              |
| 2-20.         | Slope Detected Desidual EM                           | 2-57              |
| 2-29.         | Dook to Dook Amplitude Macaurement                   | 2-58              |
| 2-30.         | Line Delated Sidebands Measurement                   | 2-50              |
| 2-31.         | Calibrator Amplitude Accuracy Test Setup             | 2-01<br>2-62      |
| 2-32.         | East Super Time Accuracy Test Setup                  | 2-02              |
| 2-35.         | Fast Sweep Time Accuracy ( $<20$ ms Test Setup)      | 2-03<br>2-64      |
| 2-34.         | Fast Sweep Time Measurement (<20 ms)                 | 2-04              |
| 2-33.         | Tst LO Output Amplitude Test Setup                   | 2-00              |
| 2-30.         | Frequency Reference Test Setup                       | 2-08              |
| 3-1.          | Low-voltage Power Supply Adjustments Setup           | 5-25              |
| 3-2.          | IF-Display Section Low-voltage Adjustments (SN 5001A | 2 76              |
| 2.2           | In Below)                                            | 5-20              |
| 3-3.          | IF-Display Section Low-voltage Adjustments (SN 5004A | 2 76              |
| 2 4           | and ADOVE)                                           | 3-20              |
| 3-4.          | Location of KF Section Low-Voltage Adjustments       | 2 20              |
| 5-5.          | High voltage Adjustment Setup                        | 2 21              |
| 5-6.          | Location of High voltage Adjustments                 | 3-31              |
| 3-7.          | Location of Label and lest Point                     | 5-52              |

| 3-8.          | Location of A1A2 Components                                                   | 3 - 3 4       |
|---------------|-------------------------------------------------------------------------------|---------------|
| 3-9.          | CRT Cut-Off Voltace                                                           | 3 - 3 5       |
| 3-10.         | Waveform at A1A3TP5                                                           | 3 - 3 6       |
| 3-11.         | Discharging the CRT Post-Accelerator Cable                                    | 3 - 3 8       |
| 3-12.         | High Voltage Adjustment Setup                                                 | 3 - 4 0       |
| 3-13.         | Location of High Voltage Adjustments                                          | 3 - 4 1       |
| 3-14.         | Location of A1A3 Label and Test Point                                         | 3 - 4 2       |
| 3-15.         | Discharging the CRT Post-Accelerator Cable                                    | 3-44          |
| 3-16.         | Preliminary Display Adjustments Setup                                         | 3-46          |
| 3-17          | Location of A1A2, A1A4, A1A5, and A3A2                                        | 3-47          |
| 3-18          | A1A2 A1A4 and A1A5 Adjustment Locations                                       | 3-47          |
| 3-19          | $X_{+}$ and $X_{-}$ Waveforms                                                 | 3-18          |
| 3_20          | Composite X Deflection Waveform                                               | 3-40          |
| 3_21          | Rise and Fall Times and Overshoot Adjustment                                  | J- + /        |
| 5 21.         | Waveform                                                                      | 3-49          |
| 3-22          | 50V Signal                                                                    | 3.51          |
| 3_22.         | Preliminary Display Adjustments Setup                                         | 3-51          |
| $3^{-23}$ .   | Location of A1A2 and A3A2                                                     | 3-53          |
| 3-24.         | A1A2 Adjustment Logations                                                     | 2 5 4         |
| 3-23.         | X and X Wousforms                                                             | 3-54<br>3 E E |
| 3-20.<br>2 27 | A+ and A- wavelorns                                                           | 3-33          |
| 3-27.         | Disc and Fall Times and Overshoot Adjustment                                  | 3 - 3 0       |
| 5-20.         | Wayoform                                                                      | 2 5 6         |
| 2 20          | $\begin{array}{c} \text{waveform} \\ \text{50V} \\ \text{Signal} \end{array}$ | 2 50          |
| 3-29.         | $50v_{p-p}$ Signal                                                            | 3-30          |
| 3-30.         | Location of Final Display Aujustitients of ATA2, ATA4,                        | 2 4 0         |
| 2 21          | Einel Diseles Adjustments Setur                                               | 3-00          |
| 3-31.         | Final Display Adjustments Setup                                               | 3-01          |
| 3-32.         | Location of Final Display Adjustments on A1A2                                 | 3-02          |
| 3-33.         | Log Amplifier Adjustments Setup                                               | 3-65          |
| 3-34.         | Location of Log Amplifier Adjustments                                         | 3-66          |
| 3-35.         | Video Processor Adjustments Setup                                             | 3-69          |
| 3-36.         | Location of Video Processor Adjustments                                       | 3-70          |
| 3-37.         | 3 MHz Bandwidth Filter Adjustments Setup                                      | 3-72          |
| 3-38.         | Location of Center, Symmetry, and 10 Hz Amplitude                             | 2 7 2         |
| <b>a a</b> a  | Adjustments                                                                   | 3-13          |
| 3-39.         | Location of 3 MHz Peak Adjustments                                            | 3-75          |
| 3-40.         | 21.4 MHz Bandwidth Filter Adjustments Setup                                   | 3-77          |
| 3-41.         | Location of A4A4 21.4 MHz LC Filter Adjustments                               | 3 - 7 8       |
| 3-42.         | Location of A4A4 21.4 MHz Crystal Filter Adjustments                          | 3 - 7 9       |
| 3-43.         | Location of A4A8 21.4 MHz LC Filter and Attenuation                           |               |
|               | Adjustments                                                                   | 3 - 8 0       |
| 3-44.         | Location of A4A8 21.4 MHz Crystal Filter Adjustments                          | 3 - 8 1       |
| 3-45.         | Location of 3 dB Bandwidth Adjustments                                        | 3 - 8 5       |
| 3-46.         | Step Gain and 18.4 MHz Local Oscillator Adjustments                           |               |
|               | Setup                                                                         | 3 - 8 7       |
| 3-47.         | Location of IF Gain Adjustment                                                | 3 - 8 8       |
| 3-48.         | Location of 10 dB Gain Step Adjustments                                       | 3 - 8 9       |
| 3-49.         | Location of .1 dB Gain Step, 18.4 MHz LO, and + 10V                           |               |
|               | Adjustments                                                                   | 3-91          |
| 3-50.         | Down/Up Converter Adjustments Setup                                           | 3-92          |
| 3-51.         | Location of Down/Up Converter Adjustments                                     | 3-93          |
| 3-52.         | Time Base Adjustment Setup                                                    | 3-95          |
| 3-53.         | Location of A27A1 Adjustment                                                  | 3-98          |
| 3-54.         | Time Base Adjustment Setup                                                    | 3-99          |
| 3-55.         | Location of A27A2 Adjustment                                                  | 3-102         |

| 3-56.                      | 20 MHz Reference Adjustments Setup                                                                        | 3-103          |
|----------------------------|-----------------------------------------------------------------------------------------------------------|----------------|
| 3-57.                      | Location of 20 MHz Reference Adjustments                                                                  | 3-104          |
| 3-58.                      | Typical Signal at A16TP3                                                                                  | 3-106          |
| 3-59.                      | 249 MHz Phase Lock Oscillator Adjustments Setup                                                           | 3-107          |
| 3-60.                      | Location of 249 MHz Phase Lock Oscillator Adjustments                                                     | 3-108          |
| 3-61.                      | 275 MHz Phase Lock Oscillator Adjustment Setup                                                            | 3-110          |
| 3-62.                      | Location of 275 MHz PLO Adjustment                                                                        | 3-111          |
| 3-63.                      | Second IF Amplifier Adjustments Setup                                                                     | 3-112          |
| 3-64.                      | Location of 301.4 MHz BPF and 280 MHz AMPTD                                                               |                |
|                            | Adjustments                                                                                               | 3-114          |
| 3-65.                      | 301.4 MHz Bandpass Filter Adjustment Waveform                                                             | 3-114          |
| 3-66.                      | Minimum Image Response at 258.4 MHz                                                                       | 3-115          |
| 3-67.                      | Pilot Second IF Amplifier Adjustments Setup                                                               | 3-116          |
| 3-68.                      | Location of 269 MHz Bandpass Filter Adjustments                                                           | 3-118          |
| 3-69.                      | 269 MHz Bandpass Filter Adjustments Waveforms                                                             | 3-118          |
| 3-70.                      | Frequency Control Adjustments Setup                                                                       | 3-119          |
| 3-71.                      | Location of Frequency Control Adjustments                                                                 | 3-120          |
| 3-72.                      | Second Converter Adjustments Setup                                                                        | 3-123          |
| 3-73                       | Location of Second Converter Adjustments                                                                  | 3-124          |
| 3-74                       | Typical PILOT 2ND IF Bandpass (SHIFT 1)                                                                   | 3-127          |
| 3-75                       | Typical PILOT 2ND IF Bandpass (SHIFT 1)                                                                   | 3-127          |
| 3_76                       | Typical Bandnass (SHIFT $\uparrow$ )                                                                      | 3-127          |
| 3-77                       | Typical Bandpass (SHIFT 1)                                                                                | 3-128          |
| 3_78                       | 50 MHz Voltage-Tuned Oscillator Adjustments Setun                                                         | 3-120          |
| 3-70                       | Location of 50 MHz VTO Adjustments                                                                        | 3-130          |
| 3 80                       | Slope Compensation Adjustment Setup                                                                       | 3_131          |
| 3 81                       | Location of A22B66 THT Adjustment                                                                         | 3-135          |
| 3-87                       | Slope Compensation Adjustment Waveforms                                                                   | 3-135          |
| 3 83                       | Location of Comb Canarator Adjustments                                                                    | 3-136          |
| 3.84                       | Comb Teeth Display                                                                                        | 3 1 3 7        |
| 3 85                       | Analog To Digital Converter Adjustments Setup                                                             | 3 1 3 0        |
| 3.86                       | Leastion of Analog To Digital Converter Adjustments                                                       | 3 140          |
| 3-00.                      | Treak and Hold Adjustments Setup                                                                          | $3^{-140}$     |
| 3 88                       | Location of Track and Hold Adjustments                                                                    | $3^{-1+2}$     |
| 3 80                       | Digital Storage Display Adjustments Setup                                                                 | $3^{-1+3}$     |
| 2 00                       | Location of Digital Storage Display Adjustments                                                           | 3 1/6          |
| 3 01                       | Sample and Hold Balance Adjustment Waveforms                                                              | 3-140<br>3-147 |
| 3 02                       | Waveform Before Adjustment                                                                                | 3-147<br>3-147 |
| 3 03                       | Low Noise DC Supply                                                                                       | 3-1+7<br>3-150 |
| 3 0/                       | Crystal Filter Bypass Network Configurations                                                              | 3-150          |
| <i>J-94.</i><br><i>A</i> 1 | Pasalution Bandwidth Massurament                                                                          | 1 3            |
| 4-1.                       | Impulse Dendwidth Test Satur                                                                              | 4-3            |
| 4-2.<br>1 2                | d D Desolution Dandwidth Massurement                                                                      | 4-4            |
| 4-5.                       | 0 dB Resolution Bandwidth Measurement                                                                     | 4-0            |
| 4-4.                       | $\begin{array}{c} 0  \text{ub ballowidth Measurement} \\ 0  \text{db ballowidth Measurement} \end{array}$ | 4-11           |
| 4-5.                       | 00 UD Balluwidili Measurement                                                                             | 4-14           |
| 4-0.                       | Landwidth Switching Uncertainty Measurement                                                               | 4-17           |
| 4-7.                       | Location of Bandwidth Adjustments                                                                         | 4-23           |
| 4-8.                       | Location of Bandwidth Adjustments                                                                         | 4-28           |
| 5.1.                       | Option 85/ Amplitude Fidelity Test Setup                                                                  | 5-2            |
| 0-1.                       | KF Section, Iop View                                                                                      | 0-4            |
| 6-2.                       | Kr Section, Front View                                                                                    | 0-5            |
| 0- <i>3</i> .              | Kr Section, Bottom View                                                                                   | 0-0            |
| 6-4.                       | IF Section, Iop View (SN 3001A and Below)                                                                 | 6-/            |
| 6-5.                       | IF Section, Iop View (SN 3004A and Above)                                                                 | 6-8            |
| 0-6.                       | IF Section, Front View                                                                                    | 0-9            |

## **Tables**

| 0.1   |                                                          |              |
|-------|----------------------------------------------------------|--------------|
| 2-1.  | Performance Test Cross-Reference                         | Z-Z          |
| 2-2.  | Center Frequency Readout Error Test Record               | Z- 5         |
| 2-3.  | Wide Span Error $\ldots$                                 | 2-7          |
| 2-4.  | Span Error                                               | 2-8          |
| 2-5.  | Sweep Time Accuracy, Sweep Times $\geq 20 \text{ ms}$    | 2-11         |
| 2-6.  | Sweep Time Accuracy, Sweep Times $\geq 20$ s             | 2-12         |
| 2-7.  | Sweep Time Accuracy, Sweep Times $\geq 20$ ms (Alternate |              |
|       | Procedure)                                               | 2-12         |
| 2-8.  | Bandwidth Accuracy                                       | 2-14         |
| 2-9.  | Resolution Bandwidth Selectivity                         | 2-17         |
| 2-10. | Bandwidth Switching Uncertainty                          | 2-19         |
| 2-11. | Input Attenuator Switching Uncertainty                   | 2-21         |
| 2-12. | IF Gain Uncertainty, 10 dB Steps                         | 2-35         |
| 2-13. | IF Gain Uncertainty, 2 dB Steps                          | <b>2- 36</b> |
| 2-14. | IF Gain Uncertainty, 0.1 dB Steps                        | <b>2- 38</b> |
| 2-15. | Log Scale Switching Uncertainty                          | <b>2-40</b>  |
| 2-16. | Log Amplitude Fidelity                                   | 2-42         |
| 2-17  | . Linear Amplitude Fidelity                              | 2-44         |
| 2-18. | Fast Sweep Time Accuracy (<20 ms)                        | 2-65         |
| 3-1.  | Adjustment Cross Reference                               | 3-3          |
| 3-2.  | Adjustable Components                                    | 3-5          |
| 3-3.  | Factory-Selected Components                              | 3-13         |
| 3-4.  | Standard Value Replacement Capacitors                    | 3- 20        |
| 3-5.  | Standard Value Replacement 0.125 Resistors               | 3-21         |
| 3-6.  | Standard Value Replacement 0.5 Resistors                 | 3-23         |
| 3.5.  | Initial Adjustment Positions                             | 3- 59        |
| 3-6.  | Initial Adjustment Positions                             | 3-62         |
| 3-7.  | Parts for Low-Noise DC Supply                            | 3-150        |
| 3-8.  | Crystal Filter Bypass Network Configuration for A4A4     |              |
|       | and A4A8 (21.4 MHz)                                      | 3-151        |
| 3-9.  | Crystal Filter Bypass Network Configuration for A4A7     |              |
|       | (3 MHz)                                                  | 3-151        |
| 4-1.  | 6 dB Resolution Bandwidth Accuracy                       | 4-3          |
| 4-2.  | Impulse Bandwidth Accuracy                               | 4-8          |
| 4-3.  | 6 dB Resolution Bandwidth Accuracy                       | 4-9          |
| 4-4.  | 6 dB Resolution Bandwidth Selectivity                    | 4-12         |
| 4-5.  | Impulse and Resolution Bandwidth Selectivity             | 4-15         |
| 4-6   | Bandwidth Switching Uncertainty                          | 4-17         |
| 5-1   | Log Amplitude Fidelity (10 Hz RBW: Option 857)           | 5-4          |
| 5-2   | Log Amplitude Fidelity (10 kHz RBW Option 857)           | 5-5          |
| 5-3   | Linear Amplitude Fidelity                                | 5-6          |
|       |                                                          |              |

## **General Information**

| Introduction                          | This HP 8568B Tests and Adjustments Manual contains two sections:<br>Performance Tests and Adjustments Procedures. The Performance<br>Tests provided should be performed for the following reasons:                                                                                                                                                                                                                                                                                 |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | ■ If the test equipment for the Operation Verification Program is not available.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | • If the instrument does not pass all of the Operation Verification tests.                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | ■ For complete verification of specifications not covered by the Operation Verification program.                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | The adjustment procedures should be performed for the following reasons:                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | • If the results of a performance test are not within the specifications.                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | ■ After the replacement of a part or component that affects electrical performance.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Warning                               | The adjustment procedures require access to the interior of the instrument and therefore should only be performed by qualified service personnel. There are voltages at many points in the instrument which can, if contacted, cause personal injury. Be extremely careful. Adjustments should be performed only by trained service personnel.                                                                                                                                      |
|                                       | Power is still applied to this instrument with the LINE switch in STANDBY. There is no OFF position on the LINE switch. Before removing or installing any assembly or printed circuit board, remove the power cord from the rear of both instruments and wait for the MAINS indicators (red <b>LEDs)</b> to go completely out.                                                                                                                                                      |
|                                       | Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of power.                                                                                                                                                                                                                                                                                                                                                        |
|                                       | Use a non-metallic tuning tool whenever possible.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Instruments Covered<br>by this Manual | This manual contains procedures for testing and adjusting HP 8568B<br>Spectrum Analyzers, including those with Option 001 (75 Ohm RF<br>INPUT), Option 400 (400 Hz operation), Option 462, and Option 857<br>installed. The procedures in this manual can also be used to adjust HP<br>8568A Spectrum Analyzers that have been converted into HP 8568B<br>Spectrum Analyzers through the installation of an HP 8568AB Retrofit<br><i>Vit</i> (formerly HP 8568A + 01K Batra 54 Kit) |

| Operation Verification    | A high confidence level in the instrument's operation can be achieved<br>by running only the Operation Verification Program, since it tests<br>most of the instrument's specifications. It is recommended that the<br>Operation Verification Program be used for incoming inspection and<br>after repairs, since it requires much less time and test equipment.<br>A description of the program can be found in the Installation and<br>Verification manual. |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option 462<br>Instruments | Option 462 instruments require that the performance tests and<br>adjustment procedures listed below be performed instead of their<br>standard versions included in chapters two and three. Information on<br>Option 462 versions are located in Chapter 4, Option 462.                                                                                                                                                                                       |
|                           | 6 dB Bandwidths:                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | Test 4, 6 dB Resolution Bandwidth Accuracy Test<br>Test 5, 6 dB Resolution Selectivity Test<br>Adjustment 9, 6 dB Bandwidth Adjustments                                                                                                                                                                                                                                                                                                                      |
|                           | Impulse Bandwidths:                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           | Test 4, Impulse and Resolution Bandwidth Accuracy Test<br>Test 5, Impulse and Resolution Selectivity Test<br>Test 6, Impulse and Resolution Bandwidth Switching Uncertainty<br>Test<br>Adjustment 9, Impulse Bandwidth Adjustments                                                                                                                                                                                                                           |
| Option 857<br>Instruments | Option 857 instruments require that the performance test procedure listed below be performed instead of the standard version included in Chapter 2. Information on Option 857 is located in Chapter 5, Option 857.                                                                                                                                                                                                                                           |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Test 12, Option 857 Amplitude Fidelity Test

| Instrument  | Critical Specifications for                                                           | Recommended | Perf. | Adj. |
|-------------|---------------------------------------------------------------------------------------|-------------|-------|------|
| CICNAL      | Equipment Substitution                                                                | Model       | lest_ |      |
| SIGNAL      |                                                                                       |             |       |      |
| Sunthesized | Frequency: 10 MHz to 1500 MHz                                                         | HP 8340A    | x     |      |
| Sweeper     | Output Power: $+ 10 \text{ dBm}$ maximum (leveled)                                    | 111 00407   | Λ     |      |
| Sweeper     | Aging Rate: $< 1 \times 10^{-9}$ /day                                                 |             |       |      |
|             | Spurious Signals: <35 dBc (<7 GHz)                                                    |             |       |      |
|             | <25 dBc (<20 GHz)                                                                     |             |       |      |
|             | Amplitude Modulation: dc to 100 kHz                                                   |             |       |      |
|             | Leveling: Internal, External Power Meter                                              |             |       |      |
|             |                                                                                       |             |       |      |
| Signal      | Frequency: 20 MHz to 450 MHz                                                          | HP 8640B    |       | Х    |
| Generator   | SSB Phase Noise: >130 dB below carrier at                                             |             |       |      |
|             | 20 kHz away                                                                           |             |       |      |
|             | Stability: <10 ppm/10 min.                                                            |             |       |      |
|             | (HP 8340A may be substituted)                                                         |             |       |      |
| _           |                                                                                       |             | 37    | 3.7  |
| Frequency   | Frequency: 200 Hz to 80 MHz $10^{-8}$ (1)                                             | HP 3335A    | Х     | Х    |
| Synthesizer | Stability: $\pm 1 \times 10^{\circ}$ /day                                             |             |       |      |
|             | Amplitude Range: + 13 to -86 dBm with 0.01 dB                                         |             |       |      |
|             | resolution Attenuator Accurrence $\leq \pm 0.07  dR  (\pm 12  to - 47  dBm)$          |             |       |      |
|             | Altenuator Accuracy: $\langle \pm 0.07 \text{ db} (+ 15 \text{ to } -47 \text{ dbm})$ |             |       |      |
| Pulse       | Pulse Width: 10 nsec to 250 nsec                                                      | HP 8116A    |       | Х    |
| Generator   | Rise and Fall Times: <6 nsec                                                          |             |       | 21   |
| Generator   | Output Level: + 2.5V                                                                  |             |       |      |
| Function    | Output: Sine Wave and Triangle Wave, 2Vp-p                                            | HP 3312A    | Х     | Х    |
| Generator   | Range: 100 Hz to 500 kHz (Sweep Function Available)                                   |             |       |      |
|             |                                                                                       |             |       |      |
| Frequency   | Output: 1, 2, 5, or 10 MHz                                                            | HP 5061B    | Х     | Х    |
| Standard    | Accuracy: $<\pm 1 \times 10^{-10}$                                                    |             |       |      |
|             | Aging Rate: $<1 \times 10^{-10}/day$                                                  |             |       |      |

 Table
 l-l.
 Recommended
 Test
 Equipment
 (1 of 5)
 <th(1 of 5)</th>
 <th(1 of 5)</th>
 <th(1 of

| Instrument    | Critical Specifications for<br>Equipment Substitution | Recommended<br>Model | <b>Perf.</b><br>Test | Adj. |
|---------------|-------------------------------------------------------|----------------------|----------------------|------|
| ANALYZERS     |                                                       |                      |                      |      |
| Spectrum      | Frequency: 100 Hz to 2.5 GHz                          | HP 8566A/B           |                      | Х    |
| Analyzer      | 2 to 22 GHz                                           |                      |                      |      |
|               | Preselected                                           |                      |                      |      |
|               |                                                       |                      |                      |      |
| Spectrum      | RF Spectrum Analyzer                                  | 8590B                |                      | Х    |
| Analyzer      | Frequency: 9 kHz to 1.8 GHz                           |                      |                      |      |
|               |                                                       |                      |                      |      |
| AC Probe      | High Frequency Probe                                  | HP 85024A            |                      | Х    |
|               |                                                       |                      |                      |      |
| Scalar        | 10 MHz-110 GHz                                        | HP 8757E             |                      | Х    |
| Network       |                                                       |                      |                      |      |
| Analyzer      |                                                       |                      |                      | 37   |
| Detector      | Compatible with HP 8757E                              | HP 11664A            |                      | Х    |
| (2 required)  |                                                       |                      |                      |      |
| COUNTERS      |                                                       |                      |                      |      |
| Fraguancy     | Frequency: 10 MHz to 18 GHz                           | HP 5340A             |                      | x    |
| Counter       | Sensitivity: -30 dBm                                  | 111 004011           |                      | Δ    |
| Counter       | HP-IB Compatible                                      |                      |                      |      |
|               | (HP 5343A may be substituted)                         |                      |                      |      |
|               |                                                       |                      |                      |      |
| Electronic    | Range: >10 MHz                                        | HP 5345A             | Х                    |      |
| Counter       | Resolution: 2 x $10^{-9}$ gate time                   |                      |                      |      |
|               | Ext. Time Base: 1, 2, 5, or 10 MHz                    |                      |                      |      |
| j = Universal | Frequency: dc to 100 MHz                              | HP 5316B             | Х                    |      |
| Counter       | Time Interval $A \rightarrow B$ : 100 nsec to 200 sec |                      |                      |      |
|               | Sensitivity: 50 mV rms                                |                      |                      |      |
|               | Range: 30 mV to 5V p-p                                |                      |                      |      |
|               |                                                       |                      |                      |      |
| OSCILLOSCOPE  |                                                       |                      |                      | v    |
| Oscilloscope  | Digitizing USCOPE, 4 Channel                          | HP 34301A            |                      | Λ    |
|               | Frequency: 100 MHZ                                    |                      |                      |      |
|               | Sensitivity: .005 V/DIVISION                          |                      |                      |      |
| Probe         | 10: 1 Divider, compatible with oscilloscope           | HP 10432A            |                      | X    |

Table 1-1. Recommended Test Equipment (2 of 5)

| Instrument   | Critical Specifications for<br>Equipment Substitution      | Recommended<br>Model | Perf.<br>Test | Adj. |
|--------------|------------------------------------------------------------|----------------------|---------------|------|
| METERS       |                                                            |                      |               |      |
| Digital      | Resolution: $\pm 0.1 \text{ mV}$                           | HP 3456A             | Х             | X    |
| Voltmeter    | Range: 0 Vdc to 100 Vdc                                    | or                   |               |      |
|              | Input Impedance 100 V Range: 10 M $\Omega$                 | HP 3455A             |               |      |
|              | HP-IB Compatible                                           |                      |               |      |
| High Voltage | 1000:1 Divider                                             | HP 34111A            |               | X    |
| Probe        | Impedance: 10MΩ                                            |                      | 1<br>2<br>2   |      |
| Power Meter  | Range: $-20 \text{ dBm to } + 10 \text{ dBm}$              | HP436A               | Х             | X    |
|              | Accuracy: $\pm 0.02$ dB                                    |                      |               |      |
| Power Sensor | Frequency: .01 to 18 GHz                                   | HP 8481A             |               | X    |
|              | Compatible with HP 436A Power Meter                        |                      |               |      |
| Power Sensor | Frequency: 100 kHz to 4.2 GHz                              | HP8482A              | x             | X    |
|              | Compatible with HP 436A Power Meter                        |                      |               |      |
| AMPLIFIERS   |                                                            |                      |               |      |
| Amplifier    | Frequency: 269 MHz                                         | HP 8447F             |               | X    |
|              | Gain: ≥26 dB                                               |                      |               |      |
| ATTENUATORS  |                                                            |                      |               |      |
| 10 dB Step   | Steps: 10 dB from 0 to 120 dB                              | HP 355D-H89          |               | X    |
| Attenuator   | Frequency: 20 MHz to 1500 MHz                              |                      |               |      |
|              | Calibrated to uncertainty error of $\pm (0.02 \text{ dB})$ |                      |               |      |
|              | +0.01  dB/10 dB step at 20 MHz from                        |                      |               |      |
|              |                                                            |                      |               |      |
| 1 dB Step    | Steps: 1 dB from 0 to 12 dB                                | HP 355C-H25          |               | x    |
| Attenuator   | Frequency: 20 MHz to 1500 MHz                              |                      |               |      |
|              | Calibrated to uncertainty error of $\pm (0.02 \text{ dB})$ |                      |               |      |
|              | +0.01 dB/10 dB step) at 20 MHz from                        |                      |               |      |
|              | 0 dB to 12 dB                                              |                      |               |      |
| 10 dB        | Frequency: 200 Hz to 18 GHz                                | HP 8491B,            | x             |      |
| Attenuator   | Type N Connectors                                          | Option 010           |               |      |

### Table 1-1. Recommended Test Equipment (3 of 5)

| Instrument                                       | Critical Specifications for<br>Equipment Substitution                                         | Recommended<br>Model    | Perf.<br>Test | ٩dj. |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|---------------|------|
| ATTENUATORS<br>(Cont'd)                          |                                                                                               |                         |               |      |
| 20 dB<br>Attenuator                              | Frequency: 200 Hz to 18 GHz<br>Fype N Connectors                                              | HP 8491B,<br>Option 020 |               | х    |
| TERMINATIONS<br>Termination                      | Impedance: 500; BNC                                                                           | HP 11593A               | Х             |      |
| <b>FILTERS</b><br>Low-Pass<br>Filter             | Flatness: ±0.25 dB<br>Cut-off Frequency≥400 MHz and <500 MHz<br>Rejection: >40 dB at 1750 MHz | Telonic<br>TLS450-7EE   |               | х    |
| Low-Pass<br>Filter                               | Cut-off Frequency: 300 MHz                                                                    | HP 0955-0455            | Х             |      |
| Low-Pass<br>Filter                               | Cut-off Frequency: 50 MHz                                                                     | HP 0955-0306            | Х             |      |
| MISCELLANEOUS<br>DEVICES<br>Power<br>Splitter    | Frequency: 1 MHz to 1500 MHz<br>backing: <0.2 dB                                              | HP 11667A               | Х             | Х    |
| Directional<br>Bridge                            |                                                                                               | HP 8721A                | Х             |      |
| SPECIAL<br>DEVICES                               |                                                                                               |                         |               |      |
| Display<br>Adjustment<br>PC Board                | Required for preliminary display adjustments                                                  | HP 85662-60088          |               | Х    |
| Low-Noise<br>DC Supply                           | Refer to Figure 70<br>(Optional)                                                              |                         |               | Х    |
| Crystal Filter<br>Bypass Network<br>(4 required) | Refer to Figure 71                                                                            |                         |               | Х    |

| Table 1-1. | Recommended | Test Equipment | (4 | of | 5) |
|------------|-------------|----------------|----|----|----|
|------------|-------------|----------------|----|----|----|

| Instrument             | Critical Specifications for<br>Equipment Substitution | Recommended<br>Model | Perf.<br><b>Test</b> | Adj .      |
|------------------------|-------------------------------------------------------|----------------------|----------------------|------------|
| CABLES                 |                                                       |                      |                      |            |
| Cable Assembly         | Frequency Range: 200 Hz to 22 GHz                     | HP 8120-4921         | Х                    | Х          |
|                        | APC 3.5 Male Connectors                               |                      |                      |            |
|                        | Length: 91 cm (36 inches)                             |                      |                      |            |
|                        | SWR: <1.4 at 22 GHz                                   |                      |                      |            |
|                        |                                                       |                      |                      |            |
| Cable                  | BNC, 122 cm (48 in.) (3 required)                     | 10503A               | х                    | х          |
|                        |                                                       |                      |                      |            |
| Test Cable *           | BNC (m) to SMB Snap-On (f)                            | HP 85680-60093       |                      | Х          |
| Test Cable             | SMA (m) to SMA (m)                                    | HP 85680-20094       |                      | Х          |
| Test Cable             | SMA (m) to SMA (m)                                    | HP5061-5458          | X X                  |            |
| ADAPTERS               |                                                       |                      |                      |            |
| Adapter                | Type N (f) to BNC (m)                                 | HP1250-0077          | Х                    |            |
| Adapter                | Type N (m) to BNC (m)                                 | HP1250-0082          | Х                    |            |
| Adapter                | Tee, SMB Male Connectors                              | HP 1250-0670         |                      | Х          |
| Adapter                | Type N (m) to N (m)                                   | HP1250-0778          | Х                    |            |
| Adapter                | Type N (m) to BNC (f)(2 required)                     | HP1250-0780          | Х                    |            |
| Adapter                | BNC Tee (m) (f) (f)                                   | HP1250-0781          | Х                    |            |
| Adapter                | Type N (m) to SMA (f)                                 | HP1250-1250          | Х                    |            |
| Adapter                | Type N (f) to BNC (f)(2 required)                     | HP1250-1474          | Х                    |            |
| Adapter                | APC $-3.5$ (f) to APC $-3.5$ (f)                      | HP1250-1749          | Х                    |            |
| Adapter                | APC $-3.5$ (f) TO N (f)(2 required)                   | HP 1250-1745         |                      |            |
|                        |                                                       |                      |                      |            |
| BOARD                  |                                                       |                      |                      |            |
| EXTENDERS              |                                                       |                      |                      |            |
|                        |                                                       |                      |                      |            |
| Extender *             | PC Board: 36 contacts;                                | HP 08505-60042       |                      | Х          |
| <sup>2</sup> required) | 2 rows of 18                                          |                      |                      |            |
| T to show *            | DC Deards 20 contactor                                | UD 09505 (0041       |                      | v          |
| Extender *             | PC Board: 30 contacts;                                | HP 08505-60041       |                      | Λ          |
| (3 required)           | 2 Tows of 15                                          |                      |                      |            |
| Extender *             | PC Board: 20 contacts:                                | HP 85680-60028       |                      | x          |
| Extender               | 2  rows of  10                                        | 111 85080-00028      |                      | Λ          |
|                        | 2 10ws 01 10                                          |                      |                      |            |
| Extender *             | PC Board: 12 contacts:                                | HP08505-60109        |                      | X          |
| 2 required)            | 2 rows of 6                                           | 11 00000 00100       |                      |            |
|                        |                                                       |                      |                      |            |
| PC Board               | PC Board extracting tool                              | HP 03950-4001        |                      | • <b>X</b> |
| Extractor              |                                                       |                      |                      |            |
| * Part of Service      | e Accessories                                         |                      |                      |            |

**Table** l-l. Recommended **Test** Equipment (5 of 5)



| Item | Qty | Description                               | HP Part Number |
|------|-----|-------------------------------------------|----------------|
| 1    | 1   | Extender Board: 20 contacts; 2 rows of 10 | 85680-60028    |
| 2    | 2   | Cable: 4-foot long; BNC to SMB snap-on    | 85680-60093    |
| 3    | 1   | PC Board: Display Adjustment Test         | 85662-60088    |
| 4    | 3   | Extender Board: 30 contacts; 2 rows of 15 | 08505-60041    |
| 5    | 2   | Extender Board: 12 contacts; 2 rows of 6  | 08505-60109    |
| 6    | 2   | Extender Board: 50 contacts; 2 rows of 25 | 85680-60034    |
| 7    | 2   | Extender Board: 36 contacts; 2 rows of 18 | 08505-60042    |

Figure 1-1. Service Accessories, HP Part Number 08568-60001

## **Performance Tests**

### Introduction

The procedures in this section test the instrument's electrical performance using the Specifications in the Installation and Verification Manual as the performance standards. None of the tests require access to the interior of the instrument. The manual Performance Tests provided in this section should be performed only if semi-automatic test equipment (for Operation Verification) is not available or the Performance Test is not in the Operation Verification Program. (Refer to the Installation and Verification Manual for information on Operation Verification.)

#### Verification of Specifications

When a complete verification of specifications is required, proceed as follows:

- 1. Run the Operation Verification Program.
- 2. The Operation Verification Program verifies compliance with specifications of all tests it performs. The tests not performed by the Operation Verification Program must be done manually and are as follows:
  - Center Frequency Readout Accuracy
  - Spurious Responses
  - Fast Sweep Time Accuracy
  - 1st LO Output Amplitude Responses
  - Frequency Reference Error

If the results of a performance test are marginally within specification, go to the Adjustments section of this manual and perform the related adjustment procedures. When an adjustment is directly related to a performance test, the adjustment procedure is referenced under RELATED ADJUSTMENT in the performance test.

**Calibration Cycle** This instrument requires periodic verification of performance. The instrument should have a complete verification of specifications at least every six months.

- **Equipment Required** Equipment required for the manual performance tests and adjustments is listed in Table 2-1, Recommended Test Equipment, at the beginning of this manual. Any equipment that satisfies the critical specifications given in the list may be substituted for the recommended model.
  - **Test Record** The Operation Verification Program provides a detailed test record when a printer is used with the controller. If manual performance tests are done, results of the performance tests may be tabulated in the HP 8568B Performance Test Record at the end of this section. The HP 8568B Performance Test Record lists all of the tested specifications and the acceptable ranges for the measurement values obtained during the tests.

**Note** Allow 1/2-hour warm-up time for the HP 8568B before beginning the Performance Tests.

| Function or Characteristic Tested | Test<br>No. | Performance Test                                |
|-----------------------------------|-------------|-------------------------------------------------|
| Center Frequency Readout          | 1           | Center Frequency Readout Accuracy Test          |
| Frequency Spans                   | 2           | Frequency Span Accuracy Test                    |
| Sweep Time Accuracy (≥20 ms)      | 3           | Sweep Time Accuracy Test                        |
| 3-dB Bandwidths                   | 4           | Resolution Bandwidth Accuracy Test              |
| Bandwidth Shape                   | 5           | Resolution Bandwidth Selectivity Test           |
| Bandwidth Amplitudes              | 6           | Resolution Bandwidth Switching Uncertainty Test |
| Input Attenuator Accuracay        | 7           | Input Attenuator Switching Uncertainty          |
| Frequency Response                | 8           | Frequency Response Test                         |
| RF Gains                          | 9           | RF Gain Uncertainty Test                        |
| IF Gains                          | 10          | IF Gain Uncertainty Test                        |
| Log Scales Accuracy               | 11          | Log Scale Switching Uncertainty Test            |
| Log and Linear Amplifier Fidelity | 12          | Amplitude Fidelity Test                         |
| Noise Floor                       | 13          | Average Noise Level Test                        |
| Residual Responses                | 14          | Residual Responses Test                         |
| Spurious Responses                | 15          | Spurious Responses Test                         |
| Residual FM                       | 16          | Residual FM Test                                |
| Line-Related Sidebands            | 17          | Line-Related Sidebands Test                     |
| CAL OUTPUT Level                  | 18          | Calibrator Amplitude Accuracy Test              |
| Fast Sweep Times                  | 19          | Fast Sweep Time Accuracy Test                   |
| 1ST LO OUTPUT Amplitude           | 20          | 1ST LO OUTPUT Amplitude Test                    |
| Frequency Reference               | 21          | Frequency Reference Error Test                  |

 Table 2-1.
 Performance Test Cross-Reference

### 1. Center Frequency Readout Accuracy Test

| <b>Related Adjustments</b> | Frequency Control Adjustments                                                                                                                                                                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Time Base Adjustment                                                                                                                                                                                                                                                                   |
|                            | Step Gain and 18.4 MHz Local Oscillator Adjustments                                                                                                                                                                                                                                    |
|                            | 50 MHz Voltage-Tuned Oscillator Adjustments                                                                                                                                                                                                                                            |
| Specification              | (uncorrected)                                                                                                                                                                                                                                                                          |
|                            | $\pm 2\%$ of frequency span + frequency reference error x tune frequency + 30% of resolution bandwidth setting + 10 Hz) in AUTO resolution bandwidth after adjusting FREQ ZERO at stabilized temperature.                                                                              |
| Description                | A synthesized signal source that is phase-locked to a known frequency<br>standard is used to input a signal to the analyzer. The frequency<br>readout of the analyzer is compared to the actual input frequency<br>for several different frequency settings over the analyzer's range. |

specification.

FREQUENCY Standard SPECTRUM ANALYZER SYNTHESIZED SWEEPER FREQ STANDARD EXT б . 0 : ПП .0 0 RF OUTPUT SIGNAL INPUT 2 ADAPTER ADAPTER [] CABLE ASSEMBLY

The signal source is phase-locked to a standard known to be as accurate as the analyzer's internal frequency reference to minimize the "frequency reference error x center frequency" term of the

Figure 2-1. Center Frequency Accuracy Test Setup

1. Center Frequency Readout Accuracy Test

EquipmentSynthesizedSweeper.....HP8340AFrequencyStandard.10MHzstandard, accywithin + 1partin 1010,e.g.HP5061AAdapter,TypeN(m)toSMA(f)..HP1250-125061cm(24in.)CableAssembly,SMAMaleConnectorsHP5061-1086

**Procedure 1.** Connect CAL OUTPUT to SIGNAL INPUT 2.

- 2. Press (INSTR\_PRESET), RECALL 9 on the analyzer.
- 3. Adjust FREQ ZERO for a maximum amplitude trace.
- 4. Press (INSTR\_PRESET).
- 5. Set the synthesized sweeper for a 100.000 MHz signal at a level of approximately 0 dBm.
- 6. Connect equipment as shown in Figure 2-1.
- 7. Set analyzer <u>(CENTER FREQUENCY</u>) and <u>IFREQUENCY</u> and synthesized sweeper frequency according to Table 2-2. At each setting, press <u>IPEAK SEARCH</u>. (MKR  $\rightarrow$  CF) to center the signal. Adjust <u>(REFERENCE LEVEL)</u> as necessary to place signal peak at a convenient level.
- 8. Record the CENTER readout frequency in the table for each setting. The limits for this frequency are given in the table. See Figure 2-2.



Figure 2-2. Center Frequency Readout Error Measurement

**Note** Spectrum analyzer center frequency readout can fall outside of specified limits if 10 MHz frequency reference has not been calibrated within the past year. To eliminate "frequency reference error x tune frequency" term, substitute spectrum analyzer 10 MHz FREQ REFERENCE rear panel output for frequency standard and repeat test.

| Spectrum Analyzer |                    |          |                |           |  |
|-------------------|--------------------|----------|----------------|-----------|--|
| FREQUENCY SPAN    | (CENTER FREQUENCY) | -        | Center Readout |           |  |
|                   | (MHz)              |          | (MHz)          |           |  |
|                   |                    | Min      | Measured       | Max       |  |
| 100 MHz           | 100                | 98       |                | 102       |  |
| 100 MHz           | 500                | 498      |                | 502       |  |
| 100 MHz           | 1000               | 998      |                | 1002      |  |
| 10 MHz            | 100                | 99.8     |                | 100.2     |  |
| 10 MHz            | 500                | 499.8    |                | 500.2     |  |
| 10 MHz            | 1000               | 999.8    |                | 1000.2    |  |
| 10 MHz            | 1500               | 1499.8   |                | 1500.2    |  |
| 1 MHz             | 1000               | 999.98   |                | 1000.02   |  |
| 100 kHz           | 1000               | 999.998  |                | 1000.002  |  |
| 10 kHz            | 1000               | 999.9998 |                | 1000.0002 |  |

 Table 2-2. Center Frequency Readout Error Test Record

### 2. Frequency Span Accuracy Test

| <b>Related Adjustments</b> | Frequency Control Adjustments               |
|----------------------------|---------------------------------------------|
|                            | 50 MHz Voltage-Tuned Oscillator Adjustments |

### Specification

| Span                 | Uncertainty                                                                                  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| >1 MHz               | $\pm$ (2% of the actual frequency<br>separation between two points +0.5%<br>of span setting) |  |  |  |  |
| $\leq 1 \text{ MHz}$ | $\pm$ (5% of the actual frequency<br>separation between two points +0.5%<br>of span setting) |  |  |  |  |

**Description** Frequency Span accuracy is determined by measuring a frequency at 5% of sweep and then at 95% of sweep. These frequencies correspond to half a division from each edge of the CRT.

The spans chosen are based on the architecture of the HP 8568B RF hardware:

| Span            | Assembly Being Swept         |  |  |
|-----------------|------------------------------|--|--|
| 200 Hz          | VTO Oscillator (low divide)  |  |  |
| 100 <b>k</b> Hz | VTO Oscillator (low divide)  |  |  |
| 100.1 kHz       | VTO Oscillator (high divide) |  |  |
| 1 MHz           | VTO Oscillator (high divide) |  |  |
| 1.01 MHz        | FM Coil of Yig Oscillator    |  |  |
| 20 MHz          | FM Coil of Yig Oscillator    |  |  |
| 20.1 MHz        | Main Coil of Yig Oscillator  |  |  |
| 1.5 GHz         | Main Coil of Yig Oscillator  |  |  |



Figure 2-3. Frequency Span Accuracy Test Setup

| Synthesized Sweeper       | 83640A                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------|
| AdapterTypeN(m) to SMA(f) | 1250-1250                                                                                        |
| Cable;SMAconnectors       | 5061-5458                                                                                        |
| Cable; BNC122cm(48in)     | HP10503A                                                                                         |
|                           | Synthesized Sweeper<br>AdapterTypeN(m) to SMA(f)<br>Cable;SMAconnectors<br>Cable; BNC122cm(48in) |

#### **Procedure** 1. Connect equipment as shown in Figure 2-3.

- 2. Press (INSTR PRESET) on analyzer.
- 3. Press [CENTER FREQUENCY] 100 MHz, [FREQUENCY SPAN] 200 Hz.
- 4. Connect synthesized sweeper tot spectrum analyzer RF input 2.
- 5. On synthesized sweeper, select external REFERENCE and key in Power level 0 dBm.
- 6. Press (CW) and key in 99.999 910 MHz.
- 7. Press MARKER [PEAK SEARCH] on spectrum analyzer and record marker reading under FREQ C of Table 2-3.
- 8. Set synthesized sweeper frequency to 100.000 090 MHz.
- 9. Press MARKER [PEAK SEARCH] and record marker reading under FREQ D of Table 2-3.
- 10. Repeat the span measurement procedure of steps 6 through 9 for each frequency span listed in Table 2-3.
- 11. Determine the frequency difference between the two measured points. Enter this value under the A DUT column in Table 2-3.
- 12. The frequency span error is the difference between A DUT and A SYNTH. (See table 2-3 for values). Calculate the span error and record it in Table 2-4.
- 13. Compare the table 2-4 spec to the span error value calculated in step 12.

Spectrun Analyzer Synthesized Sweeper **DUT Measured** Δ DUT Frequency Center Freq. A Freq. B A Synth Freq. C Freq. D Span Frequency Cf-.45 span cf + .45 span (B-A)(D-C) 200 Hz 100 MHz 99.999 910 MHz 100.000090 MHz 180 Hz 100 kHz 100 MHz 99.955 000 MHz 100.045 000 MHz 90.000 Hz 100.1 kHz 100 MHz 99.954955 MHz 100.045 045 MHz 90.090 kHz 1 MHz 100 MHz 99.550 000 MHz 100.450000 MHz 900.000 kHz 1.01 MHz 100 MHz 99.550 550 MHz 100.450500 MHz 909.000 kHz 20 MHz 100 MHz 91.000 000 MHz 109.000000 MHz 18.000 MHz 20.1 MHz 100 MHz 90.955 000 MHz 109.045.000 MHz 18.090 MHz 1.5GHz 900 MHz 225 MHz 1575 MHz 1350 MHz

Table 2-3. Wide Span Error

### 2. Frequency Span Accuracy **Test**

| Freq Span | <b>Span</b> Error                  | Spec.          |                |
|-----------|------------------------------------|----------------|----------------|
|           | ADUT-ASyn<br>from <b>Table</b> 2-3 | Min            | Max            |
| 200 Hz    |                                    | -10 Hz         | 10 Hz          |
| 100 kHz   |                                    | -5000 Hz       | 5000 Hz        |
| 100.1 kHz |                                    | -5,005 Hz      | 5,005 Hz       |
| 1 MHz     |                                    | -50,000 Hz     | 50,000 Hz      |
| 1.01 MHz  |                                    | -23,230 Hz     | 23,230 Hz      |
| 20 MHz    |                                    | -460,000 Hz    | 460,000 Hz     |
| 20.1 MHz  |                                    | -462,300 Hz    | 462,300 Hz     |
| 1 . 5 GH  | Z                                  | -34,500.000 Hz | 34,5000.000 Hz |

Table 2-4. Span Error

Note

| specification in Table 2-4 was derived using the following formula:                                  | The |
|------------------------------------------------------------------------------------------------------|-----|
| spans > 1 MHz, the spec is: > $\pm$ [(.02)( $\Delta$ synth freq) + (.005)(span)]                     | For |
| spans $\leq 1$ MHz, the spec is: $\geq \pm [(.05)(\Delta \text{ synth freq}) + (.005)(\text{span})]$ | For |

## 3. Sweep Time Accuracy Test (≥20 ms)

| <b>Related Adjustment</b> | Frequency Control Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification             | $\pm 10\%$ for sweep times $\leq 100$ seconds<br>$\pm 20\%$ for sweep times $> 100$ seconds                                                                                                                                                                                                                                                                                                                                                                                               |
| Description               | Preferred Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | This test is for sweep times $\geq 20$ ms. For faster sweep times, refer to Fast Sweep Time Accuracy Test (Test 19).                                                                                                                                                                                                                                                                                                                                                                      |
|                           | A universal counter is connected to the PENLIFT RECORDER<br>OUTPUT (on the rear panel) of the spectrum analyzer. The counter is<br>used in time interval mode to determine the "pen down" (sweep time)<br>interval of the PENLIFT RECORDER OUTPUT. The penlift output<br>voltage level corresponds directly to the sweeping of the analyzer<br>(pen down = OV) and not-sweeping of the analyzer (pen up = $l5V$ ). A<br>DVM is used to set the appropriate trigger level for the counter. |
|                           | Alternate Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | Perform this procedure if the equipment for the preferred procedure is unavailable.                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | Sweep time accuracy for sweep times $\geq 20$ ms can also be measured<br>using the HP 8568B's internal frequency counter for a time interval                                                                                                                                                                                                                                                                                                                                              |

Sweep time accuracy for sweep times  $\geq 20$  ms can also be measured using the HP 8568B's internal frequency counter for a time interval measurement.



Figure 2-4. Sweep Time Accuracy Test Setup

| Equipment          | Universal Counter HP 5316A<br>Digital Voltmeter HP 3456A                                                     |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Procedure          |                                                                                                              |  |  |
| Sweep Times ≥20 ms | 1. Connect equipment as shown in Figure 2-4.                                                                 |  |  |
|                    | 2. Press (INSTR PRESET) on the spectrum analyzer.                                                            |  |  |
|                    | 3. Key in the following settings:                                                                            |  |  |
|                    | ( <u>center frequency</u> )                                                                                  |  |  |
|                    | 4. Set up the universal counter as follows:                                                                  |  |  |
|                    | a. Set all front panel keys in "out" position.                                                               |  |  |
|                    | b. Set POWER switch to ON.                                                                                   |  |  |
|                    | c. Set GATE TIME vernier control to 9 o'clock.                                                               |  |  |
|                    | d. Set SEP/COM A switch to COM A position.                                                                   |  |  |
|                    | e. Depress T.I. $A \rightarrow B$ switch (making sure the blue shift key is out).                            |  |  |
|                    | f. Set Channel A trigger level to trigger on negative slope.                                                 |  |  |
|                    | g. Set Channel B trigger level to trigger on positive slope.                                                 |  |  |
|                    | h. Set both Channel A and Channel B ac/dc switches to dc.                                                    |  |  |
|                    | i. Connect the digital voltmeter to Channel A TRIGGER LEVEL OUT. (Be sure to ground the DVM properly.)       |  |  |
|                    | j. Adjust Channel A trigger level to set a DVM voltage reading of 0.3 v.                                     |  |  |
|                    | k. Repeat steps i and j for Channel B.                                                                       |  |  |
|                    | 5. Set analyzer (SWEEP TIME) to 20 ms. Allow the universal counter enough time to settle at this sweep time. |  |  |



Figure 2-5. Penlift Output Signal

- 6. Note the measured sweep time on the universal counter and record this value in Table 2-5. The measured sweep time should be a value between the minimum and maximum values given in Table 2-5.
- 7. Repeat steps 5 and 6 for each sweep time setting in Table 2-5.

(SWEEP TIME) Marker A Time Min Measured Max 22 ms 20 ms 18 ms 50 ms 55 ms 45 ms 100 ms 90 ms 110 ms 550 ms 500 ms 450 ms 1 s 900 ms 1.10 s

Table 2-5. Sweep Time Accuracy, Sweep Times ≥20 ms

- 8. Press MARKER NORMAL.
- 9. Use  $\bigoplus$  to place the marker at the second vertical graticule.
- 10. Press (SHIFT), SINGLE<sup>u</sup>.
- 11. Set analyzer **<u>ISWEEP TIME</u>** to 20 s. Allow the universal counter enough time to settle at this sweep time.
- 12. Note the measured sweep time on the universal counter and record this value in Table 2-6. The measured sweep time should be a value between the minimum and maximum values given in Table 2-6.
- 13. Repeat steps 11 and 12 for 200 s sweep time.

|              |               | 5 1      | _     |  |
|--------------|---------------|----------|-------|--|
| [SWEEP TIME) | Marker A Time |          |       |  |
|              | Min           | Measured | Max   |  |
| 20 s         | 3.6 s         |          | 4.4 s |  |
| 200 s        | 32 s          |          | 48 s  |  |

**Table** 2-6. Sweep Time Accuracy, Sweep Times  $\geq 20$  s

#### Sweep Times >20 ms (Alternate Procedure)

14. Sweep times  $\geq 20$  ms are tested without external test equipment by the following procedure.

15. Press (INSTR PRESET).

#### Start-Up Time Measurement

- 16. Set [SWEEP TIME] according to Table 2-7. Press MARKER [NORMAL]. Rotate the DATA knob to place the marker on the left edge of the CRT display. Key in (SHIFT) (SINGLE)<sup>u</sup>.
  - 17. Press (SHIFT) (RES BW)<sup>F</sup> three times. The Active Function Block reads SWEEP GEN followed by a measured sweep time. This is the start-up time. Record it in Table 2-7. The start-up time must be subtracted from the SWEEP GEN time measured in step 19. (Adding the start-up time to the [SWEEP TIME] setting effectively subtracts it from the SWEEP GEN time.)
  - 18. Press MARKER (OFF).
- 19. Press (SHIFT) (RES BW)<sup>F</sup> three times and note the SWEEP GEN **Sweep Time** reading. The limits for the SWEEP GEN reading are listed in **Measurement** Table 2-7. (For example, assume the start-up time measured in step 17 was 700  $\mu$ s for a [SWEEP TIME] of 20 ms. The limits for the SWEEP GEN readings would be 19.3 to 22.7 ms.)
  - 20. Repeat steps 16 to 19 for each sweep time shown in Table 2-7.

| Sweep Time Accuracy, Sweep Times ≥ <b>20</b> ms<br>(Alternate Procedure) |                   |          |         |  |  |
|--------------------------------------------------------------------------|-------------------|----------|---------|--|--|
| SWEEP TIME                                                               | Sweep Gen Readout |          |         |  |  |
|                                                                          | Min               | Measured | Max     |  |  |
| 20 ms                                                                    | 18.0 ms           |          | 22.0 ms |  |  |
| 50 ms                                                                    | 45.0 ms           |          | 55.0 ms |  |  |
| 100 ms                                                                   | 90.0 ms           |          | 110 ms  |  |  |
| 500 ms                                                                   | 450 ms            |          | 550 ms  |  |  |
| 1 s                                                                      | 900 <b>ms</b>     |          | 1.10 ms |  |  |
| 10 s                                                                     | 9.00 ms           |          | 11.0 ms |  |  |
| 50 s                                                                     | 45.0 <b>ms</b>    |          | 55.0 ms |  |  |
| 100 s                                                                    | 90.0 ms           |          | 10.0 ms |  |  |
| 150 s                                                                    | 20.0 s            |          | 80.0 ms |  |  |

**Table** 2-7.

#### 2-12 Performance Tests

## 4. Resolution Bandwidth Accuracy Test

(For instruments with Option 462, refer to Chapter 4.)

| <b>Related Adjustment</b> | 3-dB Bandwidth Adjustments                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification             | ±20%, 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | $\pm 10\%$ , 3 kHz to 1 MHz                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | ±20% 10 Hz to 1 kHz                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | 30 kHz and 100 kHz bandwidth accuracy figures apply only with $\leq 90\%$ Relative Humidity, $\leq 40^{\circ}$ C.                                                                                                                                                                                                                                                                                                       |
| Description               | The 3 dB bandwidth for each resolution bandwidth setting is measured with the MARKER function to determine bandwidth accuracy. The CAL OUTPUT is used for a stable signal source.                                                                                                                                                                                                                                       |
| Equipment                 | None Required                                                                                                                                                                                                                                                                                                                                                                                                           |
| Procedure                 | 1. Press (INSTR PRESET).                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 2. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 3. Key in spectrum analyzer setting as follows:                                                                                                                                                                                                                                                                                                                                                                         |
|                           | (CENTER FREQUENCY)                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | 4. Press SCALE LIN pushbutton. Press (SHIFT), (AUTO) <sup>A</sup> (resolution bandwidth).                                                                                                                                                                                                                                                                                                                               |
|                           | 5. Adjust [REFERENCE LEVEL] to position peak of signal trace at reference level (top) graticule line. Press SWEEP (SINGLE).                                                                                                                                                                                                                                                                                             |
|                           | 6. Press MARKER <u>NORMAL</u> and place marker at peak of signal trace<br>with DATA knob. Press MARKER In] and position movable marker<br>3 dB down from the stationary marker on the positive-going edge<br>of the signal trace (the MARKER A amplitude readout should be<br>-3.00 dB $\pm 0.05$ dB). It may be necessary to press SWEEP <u>CONT</u><br>and adjust <u>ICENTER FREQUENCY</u> to center trace on screen. |
|                           | 7. Press MARKER $\bigtriangleup$ and position movable marker 3 dB down<br>from the signal peak on the negative going edge of the trace (the<br>MARKER A amplitude readout should be .OO dB ±0.05 dB). The 3<br>dB bandwidth is given by the MARKER A frequency readout (see                                                                                                                                             |

Figure 2-6). Record this value in Table 2-8.

#### 4. Resolution Bandwidth Accuracy Test



Figure 2-6. Resolution Bandwidth Measurement

8. Vary spectrum analyzer settings according to Table 2-8. Measure the 3 dB bandwidth for each resolution bandwidth setting by the procedure of steps 6 and 7 and record the value in Table 2-8. The measured bandwidth should fall between the limits shown in the table.

| (REW BW)     | (FREQUENCY SPAN]        | MARKER A         | Readout of 3 d | <b>B</b> Bandwidth |
|--------------|-------------------------|------------------|----------------|--------------------|
|              |                         | Min              | Measured       | Max                |
| 3 MHz        | 5 MHz                   | 2.400 MHz        |                | 3.600 MHz          |
| 1 MHz        | 2 MHz                   | 900 kHz          |                | 1.100 MHz          |
| 300 kHz      | 500 <b>k</b> H <b>z</b> | 270.0 <b>kHz</b> |                | 330.0 <b>kHz</b>   |
| 100 kHz      | 200 kHz                 | 90.0 kHz         |                | 110.0 kHz          |
| 30 kHz       | 50 kHz                  | 27.00 <b>kHz</b> |                | 33.00 <b>kHz</b>   |
| 10 kHz       | 20 kHz                  | 9.00 kHz         |                | 11.00 <b>kHz</b>   |
| 3 kHz        | 5 kHz                   | 2.700 <b>kHz</b> |                | 3.300 <b>kHz</b>   |
| 1 <b>kHz</b> | 2 kHz                   | 800 Hz           |                | 1.200 kHz          |
| 300 Hz       | 500 Hz                  | 240 Hz           |                | 360 Hz             |
| 100 Hz       | 200 Hz                  | 80 Hz            |                | 120 Hz             |
| 30 Hz        | 100 Hz                  | 24 Hz            |                | 36 Hz              |
| 10 Hz        | 100 Hz                  | 8 Hz             |                | 12 Hz              |

 Table 2-8. Bandwidth Accuracy
| 5. Resolution<br>Bandwidth<br>Selectivity Test | (For instruments with Option 462, refer to Chapter 4.)                                                                                                                                                                                                                                                                 |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Related Adjustments</b>                     | 3 MHz Bandwidth Filter Adjustments 21.4 MHz Bandwidth Filter<br>Adjustments                                                                                                                                                                                                                                            |
|                                                | Step Gain and 18.4 MHz Local Oscillator Adjustments                                                                                                                                                                                                                                                                    |
| Specification                                  | 60 dB/3 dB bandwidth ratio:                                                                                                                                                                                                                                                                                            |
| _                                              | <15:1, 3 MHz to 100 kHz                                                                                                                                                                                                                                                                                                |
|                                                | <13:1, 30 kHz to 3 kHz                                                                                                                                                                                                                                                                                                 |
|                                                | <11:1, 1 kHz to 30 Hz                                                                                                                                                                                                                                                                                                  |
|                                                | 60 dB points on 10 Hz bandwidth are separated by $<100$ Hz                                                                                                                                                                                                                                                             |
| Description                                    | Bandwidth selectivity is found by measuring the 60 dB bandwidth<br>and dividing this value by the 3 dB bandwidth for each resolution<br>bandwidth setting from 30 Hz to 3 MHz. The 60 dB points for the 10<br>Hz bandwidth setting are also measured. The CAL OUTPUT provides<br>a stable signal for the measurements. |
| Note                                           | Resolution Bandwidth Accuracy Test must be performed before this test.                                                                                                                                                                                                                                                 |
| Equipment                                      | None Required                                                                                                                                                                                                                                                                                                          |
| Procedure                                      | 1. Press (INSTR PRESET).                                                                                                                                                                                                                                                                                               |
|                                                | 2. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                                                                                                                                                                               |
|                                                | 3. Key in analyzer control settings as follows:                                                                                                                                                                                                                                                                        |
|                                                | CENTER FREQUENCY20 MHzFREQUENCY SPAN20 MHzRES BW3 MHzVIDEO BW100 HzSWEEPSINGLE                                                                                                                                                                                                                                         |
|                                                | 4. Press MARKER NORMAL and position marker at peak of signal trace. Press MARKER (A) and position movable marker 60 dB                                                                                                                                                                                                 |

- trace. Press MARKER  $\triangle$  and position movable marker 60 dB down from the stationary marker on the positive-going edge of the signal trace (the MARKER  $\triangle$  amplitude readout should be 60.00 dB ±1.00 dB). It may be necessary to press SWEEP <u>CONT</u> and to adjust <u>CENTER FREQUENCY</u> so that both 60 dB points are displayed (see Figure 2-7).
- 5. Press MARKER  $\triangle$  and positive movable marker 60 dB down from the signal peak on the negative going edge of the signal trace (the MARKER  $\triangle$  amplitude readout should be .00 dB ±0.50 dB).

- 5. Resolution Bandwidth Selectivity Test
  - 6. Read the 60 dB bandwidth for the 3 MHz resolution bandwidth setting from the MARKER A frequency readout (see Figure 2-7) and record the value in Table 2-9.
  - 7. Vary spectrum analyzer settings according to Table 2-9. Measure the 60 dB bandwidth for each resolution bandwidth setting by the procedure of steps 4 through 6 and record the value in Table 2-9.
  - 8. Record the 3 dB bandwidths from Table 2-8 in Table 2-9.
  - 9. Calculate the bandwidth selectivity for each setting by dividing the 60 dB bandwidth by the 3 dB bandwidth. The bandwidth ratios should be less than the maximum values shown in Table 2-9.
  - 10. The 60 dB bandwidth for the 10 Hz resolution bandwidth setting should be less than 100 Hz.



Figure 2-7. 60 dB Bandwidth Measurement

5. Resolution Bandwidth Selectivity Test

| Spectrum Analyzer       |                  | Measured   | Measured  | Bandwidth   | Maximum                               |                   |
|-------------------------|------------------|------------|-----------|-------------|---------------------------------------|-------------------|
| RES BW                  | (FREQUENCY SPAN) | (VIDEO BW) | Bandwidth | Bandwidth   | 60 <b>dB</b> BW ÷<br><b>3 dB BW</b> ) | belectivity Ratio |
| 3 MHz                   | 20 MHz           | 100 Hz     |           |             |                                       | 15:1              |
| 1 MHz                   | 15 MHz           | 300 Hz     |           |             |                                       | 15:1              |
| 300 kHz                 | 5 MHz            | AUTO       |           |             |                                       | 15:1              |
| 100 <b>k</b> H <b>z</b> | 2 MHz            | AUTO       |           |             |                                       | 15:1              |
| 30 kHz                  | 500 kHz          | AUTO       |           |             |                                       | 13:1              |
| 10 kHz                  | 200 kHz          | AUTO       |           |             |                                       | 13:1              |
| 3 kHz                   | 50 kHz           | AUTO       |           |             |                                       | 13:1              |
| 1 kHz                   | 10 <b>kHz</b>    | AUTO       |           |             |                                       | 11:1              |
| 300 Hz                  | 5 kHz            | AUTO       |           |             |                                       | 11:1              |
| 100 Hz                  | 2 kHz            | AUTO       |           |             |                                       | 11:1              |
| 30 Hz                   | 500 Hz           | AUTO       |           |             |                                       | 11:1              |
| 10 Hz                   | 100 HZ           | AUTO       |           | 60 dB point | s separated by ·                      | <100 Hz           |

Table 2-9. Resolution Bandwidth Selectivity

| 6. Resolution<br>Bandwidth<br>Switching<br>Uncertainty Test | (For instruments with Option 462, refer to Chapter 4.)                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Related Adjustments</b>                                  | 3 MHz Bandwidth Filter Adjustments                                                                                                                                                                                                                                                                                        |
|                                                             | 21.4 MHz Bandwidth Filter Adjustments Down/Up Converter Adjustments                                                                                                                                                                                                                                                       |
| Specification                                               | (uncorrected; referenced to 1 MHz bandwidth; 20 - 30°C after 1 hour warm-up) $\pm 2.0$ dB, 10 Hz bandwidth                                                                                                                                                                                                                |
|                                                             | $\pm 0.8$ dB, 30 Hz bandwidth $\pm 0.5$ dB, 100 Hz to 1 MHz bandwidth                                                                                                                                                                                                                                                     |
|                                                             | fl.O dB, 3 MHz bandwidth 30 kHz and 100 kHz bandwidth switching uncertainty figures only applicable $\leq 90\%$ Relative Humidity                                                                                                                                                                                         |
| Description                                                 | The CAL OUTPUT signal is applied to the input of the spectrum<br>analyzer. The deviation in peak amplitude of the signal trace is then<br>measured as each resolution bandwidth filter is switched in.                                                                                                                    |
| Equipment                                                   | None Required                                                                                                                                                                                                                                                                                                             |
| Procedure                                                   | 1. Press (INSTR PRESET).                                                                                                                                                                                                                                                                                                  |
|                                                             | 2. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                                                                                                                                                                                  |
|                                                             | 3. Key in the following control settings:                                                                                                                                                                                                                                                                                 |
|                                                             | (CENTER FREQUENCY)         20 MHz           [FREQUENCY SPAN]         5 MHz           (REFERENNCE LEVEL]         8 dBm           (RES BW)         1 MHz                                                                                                                                                                    |
|                                                             | 4. Press LOG (ENTER $\overline{dB/DIV}$ ) and key in 1 dB. Press MARKER<br>(PEAK SEARCH) ( $\Delta$ ).                                                                                                                                                                                                                    |
|                                                             | 5. Press (SHIFT), (I).                                                                                                                                                                                                                                                                                                    |
|                                                             | <ul> <li>6. Key in settings according to Table 2-10. Press MARKER</li> <li>[PEAK SEARCH] at each setting, then read the amplitude deviation from the MARKER A readout at the upper right of the display (see Figure 2-8). The allowable deviation for each resolution bandwidth setting is shown in the table.</li> </ul> |



Figure 2-8. Bandwidth Switching Uncertainty Measurement

| (RES BW)               | (FREQUENCY SPAN] | Deviation<br>(MKR A<br>Readout, <b>dB)</b> | Allowable<br>Deviation<br>( <b>dB</b> ) |
|------------------------|------------------|--------------------------------------------|-----------------------------------------|
| 1 MHz                  | 5 MHz            | 0 (ref)                                    | 0 (ref)                                 |
| 3 MHz                  | 5 MHz            |                                            | $\pm 1.00$                              |
| 300 kHz                | 5 MHz            |                                            | $\pm 0.50$                              |
| 100 kHz                | 500 kHz          |                                            | $\pm 0.50$                              |
| 30 <b>kHz</b>          | 500 kHz          |                                            | $\pm 0.50$                              |
| 10 <b>k</b> H <b>z</b> | 50 kHz           |                                            | $\pm 0.50$                              |
| 3 kHz                  | 50 kHz           |                                            | $\pm 0.50$                              |
| 1 <b>k</b> Hz          | 10 <b>kHz</b>    |                                            | $\pm 0.50$                              |
| 300 Hz                 | 1 <b>k</b> Hz    |                                            | $\pm 0.50$                              |
| 100 Hz                 | 1 <b>k</b> Hz    |                                            | $\pm 0.50$                              |
| 30 Hz                  | 200 Hz           |                                            | $\pm 0.80$                              |
| 10 Hz                  | 100 Hz           |                                            | $\pm 2.00$                              |

 Table 2-10.
 Bandwidth Switching Uncertainty

7. Input Attenuator Switching Uncertainty Test

| Specification | (uncorrected)                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | $\pm 1.0 \text{ dB}$ over 10 dB to 70 dB range                                                                                                                |
| Description   | The input attenuator is tested over its 10 dB to 70 dB range using an RF substitution method. A calibrated signal source at 20 MHz provides the substitution. |



Figure 2-9. Attenuator Switching Uncertainty Test Setup

| Equipment | Frequency Synthesizer          | HP 3335A       |
|-----------|--------------------------------|----------------|
|           | Adapter, Type N (m) to BNC (f) | . HP 1250-0780 |

- **Procedure** 1. Press (INSTR PRESET) on the spectrum analyzer.
  - 2. Key in analyzer settings as follows:

| (CENTER FREQUENCY) | 20 MHz                |
|--------------------|-----------------------|
| (FREQUENCY SPAN)   | . 100 kHz             |
| (REFERENCE LEVEL)  | $-50 \; \mathrm{dBm}$ |
| (RES BW)           | 30 kHz                |
| (VIDEO BW)         | 100 Hz                |

- 3. Set the frequency synthesizer for an output frequency of 20.0 MHz and an amplitude of -52 dBm.
- 4. Connect equipment as shown in Figure 2-9.
- 5. Press LOG (ENTER dB/DIV) and key in 1 dB per division.

- 6. Press MARKER PEAK SEARCH), Δ.
- 7. Set <u>ATTEN</u>, <u>REFERENCE LEVEL</u>, and frequency synthesizer amplitude according to Table 2-1 1. At each setting, press MARKER (<u>PEAK SEARCH</u>) and record the deviation from the 10 dB setting from the MARKER A amplitude readout (see Figure 2-10). The deviation should not exceed  $\pm 1.0$  dB at any setting.



Figure 2-10. Attenuator Switching Uncertainty Measure]nent

| ATTEN<br>(dB) | [REFERENCE LEVEL)<br>(dBm) | Frequency<br>Synthesizer<br>Amplitude<br><b>(dBm)</b> | Deviation<br>(MARKER A<br>Amplitude<br><b>(dB)</b> | Corrected<br>Deviation<br><b>(dB)</b> | Allowable<br>Deviation<br>( <b>dB</b> ) |
|---------------|----------------------------|-------------------------------------------------------|----------------------------------------------------|---------------------------------------|-----------------------------------------|
| 10            | -50                        | -52                                                   | 0 (ref)                                            | 0 (ref)                               |                                         |
| 20            | -40                        | -42                                                   |                                                    |                                       | $\pm 1 \text{ dB}$                      |
| 30            | -30                        | -32                                                   |                                                    |                                       | $\pm 1 \text{ dB}$                      |
| 40            | -20                        | -22                                                   |                                                    |                                       | $\pm 1 \text{ dB}$                      |
| 50            | -10                        | -12                                                   |                                                    |                                       | $\pm 1 \text{ dB}$                      |
| 60            | 0                          | -2                                                    |                                                    |                                       | ±1 dB                                   |
| 70            | +10                        | 8                                                     |                                                    |                                       | $\pm 1 \text{ dB}$                      |

**Table 2-1** 1. Input Attenuator Switching Uncertainty

## 8. Frequency Response Test

| Related Adjustment | Slope Compensation Adjustment           |
|--------------------|-----------------------------------------|
| Specification      | SIGNAL INPUT 1                          |
|                    | $\pm 1.5$ dB, 100 Hz to 1.5 GHz         |
|                    | $\pm 1 \mathrm{dB}$ , 100 Hz to 500 MHz |
|                    | SIGNAL INPUT 2                          |
|                    | ±1 dB, 100 kHz to 1.5 GHz               |
|                    |                                         |

**Description** Frequency response at both analyzer inputs is tested by slowly sweeping a flat signal source over the frequency range and observing the peak-to-peak variation in trace amplitude. The test is divided into three parts. First, the response is tested from 20 MHz to 1.5 GHz with a power-meter-leveled synthesized sweeper. Next, a frequency synthesizer is used to check the response from 100 kHz to 20 MHz. Finally, SIGNAL INPUT 1 is tested from 100 Hz to 100 kHz with a function generator.



OPTION 001. ADD 50 OHMS/75 OHM PAD AND ADAPTER

gb12b

Figure 2-11. Frequency Response Test Setup (20 MHz to 1.5 GHz)

**Note** Equipment listed is for three test setups, Figure 2-11, Figure 2-13, and Figure 2-15.

| Equipment | Synthesized Sweeper                   | HP 8340A     |
|-----------|---------------------------------------|--------------|
|           | Power Meter                           | HP 436A      |
|           | Power Sensor                          | HP 8482A     |
|           | Frequency Synthesizer                 | HP 3335A     |
|           | Function Generator                    | HP 3312A     |
|           | Power Splitter                        | HP 11667A    |
|           | Adapter, Type N (m) to BNC (f)        | HP 1250-0780 |
|           | Adapter, Type N (m) to BNC (m)        | HP 1250-0082 |
|           | Adapter, Type N (m) to Type N (m)     | HP 1250-0778 |
|           | Adapter, Type N (m) to SMA (f)        | HP 1250-1250 |
|           | Adapter, APC-3.5 (f) to APC-3.5 (f)   | HP 1250-1749 |
|           | Cable, SMA Connectors                 | HP 5061-5458 |
|           | Additional Equipment for Option 001:  |              |
|           | $50\Omega/70\Omega$ Minimum Loss Pad  | HP 11852A    |
|           | Adapter, Type N (f) to BNC (m) (7561) | HP 1250-1534 |

## Procedure

| 20 MHz to 1.5 GHz | 1. Press (INSTR PRESET) on spectrum analyzer and synthesized sweeper.                                                                                                                                                                                                                                                                                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 2. Set controls as follows:                                                                                                                                                                                                                                                                                                                                                  |
|                   | Power Meter                                                                                                                                                                                                                                                                                                                                                                  |
|                   | MODEdBmRANGE HOLDOFFCAL FACTOR %100                                                                                                                                                                                                                                                                                                                                          |
|                   | Synthesized Sweeper                                                                                                                                                                                                                                                                                                                                                          |
|                   | START FREQ20 MHzSTOP FREQ1.5 GHzSWEEPSINGLESWEEP TIME120 sPOWER LEVEL0.00 dBm                                                                                                                                                                                                                                                                                                |
|                   | 3. Connect equipment as shown in Figure 2-1 1. The RECORDER<br>OUTPUT on rear panel of power meter is connected to LEVELING<br>EXT INPUT of the synthesized sweeper. One output arm of the<br>power splitter is connected directly to SIGNAL INPUT 2 of the<br>spectrum analyzer via the N-to-N adapter. The power sensor<br>connects directly to the other splitter output. |
|                   | 4. Depress RANGE HOLD button on power meter.                                                                                                                                                                                                                                                                                                                                 |
|                   | 5. Select METER leveling on synthesized sweeper.                                                                                                                                                                                                                                                                                                                             |
|                   | 6. Key in the following spectrum analyzer settings:                                                                                                                                                                                                                                                                                                                          |
|                   | [CENTER FREQUENCY].20 MHz(FREQUENCY SPAN]10 MHz(RES BW).3 MHz                                                                                                                                                                                                                                                                                                                |

#### 8. Frequency Response Test

- 7. Adjust POWER LEVEL on synthesized sweeper (using data knob) to place peak of 20 MHz signal near reference level (top) graticule line.
- 8. Press [ENTER dB/DIV], 1 dB on spectrum analyzer. Adjust POWER LEVEL on synthesized sweeper to position peak of signal 2 divisions below the reference level line.
- 9. Key in the following spectrum analyzer settings:

| START FREQ | <br><i>20.</i> MHz |
|------------|--------------------|
| STOP FREQ. | <br>1.5 GHz        |

- 10. Press TRACE A MAX HOLD on the analyzer.
- 11. Press SWEEP SINGLE on the synthesized sweeper.



Figure 2-12. Frequency Response Measurement (20 MHz to 1.5 GHz)

12. Press DISPLAY LINE <u>ENTER</u> on the spectrum analyzer. Use the Display Line to measure the maximum and minimum points on the trace. Record measurements below.

SIGNAL INPUT 2 (20 MHz to 1.5 GHz) Maximum \_\_\_\_\_ dBm Minimum \_\_\_\_\_ dBm

13. To check SIGNAL INPUT 1, use the type N male to BNC male adapter to connect the power splitter directly to SIGNAL INPUT 1.

Option 001: Use HP 11852A Minimum Loss Pad and adapters between splitter and spectrum analyzer input.

14. Press (INSTR PRESET) on spectrum analyzer, then activate SIGNAL INPUT 1 with the pushbutton.

Option 001: Set [REFERENCE LEVEL] TO -6.0 dBm.

15. Repeat steps 6 through 11. Press DISPLAY LINE (ENTER) on the spectrum analyzer. Use the Display Line to measure the maximum and minimum points on the trace. Record measurements below.

SIGNAL INPUT 1

(20 MHz to 1.5 GHz)

Maximum \_\_\_\_\_ dBm

Minimum \_\_\_\_\_ dBm

16. Press MARKER <u>NORMAL</u> on spectrum analyzer. Set marker to 500 MHz. Press DISPLAY LINE <u>ENTER</u> on the spectrum analyzer. Use the Display Line to measure the maximum and minimum points between 20 MHz and 500 MHz. Record measurements below.

SIGNAL INPUT 1

(20 MHz to 500 GHz)

Maximum \_\_\_\_\_ dBm

Minimum \_\_\_\_\_ dBm

100 kHz to 20 MHz

17. Set the frequency synthesizer controls as follows:

| FREQUENCY                     | 20   | MHz |
|-------------------------------|------|-----|
| SWEEP WIDTH                   | 19.9 | MHz |
| AMPLITUDE                     | - 2  | dBm |
| ( <i>Option 001:</i> + 4 dBm) |      |     |

18. Connect equipment as shown in Figure 2-13. The output of the frequency synthesizer should be connected to SIGNAL INPUT 1.

Option 001: Use HP 11852 Minimum Loss Pad and adapters.





Figure 2-13. Frequency Response Test Setup (100 kHz to 20 MHz)

- 19. Press (INSTR PRESET) on the spectrum analyzer. Activate SIGNAL INPUT 1 with the pushbutton.
- 20. Key in the following spectrum analyzer settings:

#### 8. Frequency Response Test

| I | CENTER FREQUENCY | 20 N  | ИHz |
|---|------------------|-------|-----|
|   | FREQUENCY SPAN   | 1 N   | ИНz |
| 1 | (RES BW)         | 100 ! | kHz |

- 21. Set frequency synthesizer AMPTD INCR to 1.0 dBm. Using the step keys, set frequency synthesizer output to place peak of 20 MHz signal at spectrum analyzer reference level (top graticule).
- 22. Press LOG (ENTER dB/DIV) 1 dB on spectrum analyzer. Set frequency synthesizer AMPTD INCR to 0.1 dBm. Position the peak of the signal 2 divisions below the reference level line.
- 23. Key in the following spectrum analyzer settings:

| START FREQ | )                     | <br> | <br>$\dots 100 \ kHz$ |
|------------|-----------------------|------|-----------------------|
| STOP FREQ  | • • • • • • • • • • • | <br> | <br>20 MHz            |
| TRACE A M  | AX HOLD               |      |                       |

24. Set frequency synthesizer FREQUENCY to 10.05 MHz and press SWEEP START SINGLE 50 S.



Figure 2-14. Frequency Response Measurement (100 kHz to 20 MHz)

25. After completion of sweep, press DISPLAY LINE ENTER on the spectrum analyzer. Use the Display Line to measure the maximum and minimum points on the trace. Record the measurements below.

SIGNAL INPUT 1

(100 kHz to 20 MHz)

Maximum \_\_\_\_\_ dBm

Minimum \_\_\_\_\_ dBm

26. Measure and record signal level at start of trace (100 kHz).

SIGNAL INPUT 1

(100 kHz)

\_\_\_\_\_ dBm

27. Connect output of frequency synthesizer to SIGNAL INPUT 2. Activate this input with the pushbutton.

*Option 001.* Do not use HP 11852A Minimum Loss Pad. Set frequency synthesizer output amplitude to -2 dBm.

- 28. Press TRACE A (CLEAR-WRITE) and DISPLAY LINE (OFF) on spectrum analyzer.
- 29. Set frequency synthesizer FREQUENCY to 20 MHz. Set spectrum analyzer (CENTER FREQUENCY) to 20 MHz, and (FREQUENCY SPAN) to 1 MHz.
- 30. Repeat steps 22 through 24.
- 31. After completion of sweep, press DISPLAY LINE ENTER on the spectrum analyzer. Use the Display Line to measure the maximum and minimum points on the trace. Record the measurements below.

SIGNAL INPUT 2

(100 kHz to 20 MHz)

Maximum \_\_\_\_\_ dBm Minimum \_\_\_\_\_ dBm



Figure 2-15. Frequency Response **Test** Setup (100 Hz to 100 **kHz)** 

100 Hz to

| 100 kHz | 32. | Press (INSTR PRESET) on the spectrum analyzer. Activate SIGNAL INPUT 1.                                                                                                                                                                                     |
|---------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 33. | Key in the following spectrum analyzer settings:                                                                                                                                                                                                            |
|         |     | (START FREQ)                                                                                                                                                                                                                                                |
|         | 34. | Connect equipment as shown in Figure 2-15 with function generator to SIGNAL INPUT 1.                                                                                                                                                                        |
|         | 35. | Set the function generator controls as follows:                                                                                                                                                                                                             |
|         |     | LINEONRANGE Hz10 KFUNCTION~OFFSETCAL (button in)AMPLITUDE1 VAMPLITUDE VERNIERmidrangeSYMCALTRIGGER PHASEFREE RUNMODULATIONall outMODULATION RANGE HzIMODULATION RANGE Hz VERNIERfully CC WMODULATION SYMCALPercent Modulationfully CW                       |
|         | 36. | Adjust function generator FREQUENCY to place signal between<br>the last two graticule lines (right side) on the signal analyzer<br>display.                                                                                                                 |
|         | 37. | Adjust AMPLITUDE VERNIER on the function generator until<br>the peak of the signal is at the reference graticule line on the<br>spectrum analyzer display.                                                                                                  |
|         | 38. | Press LOG <u>ENTER dB/DIV</u> 1 dB on the spectrum analyzer. Press DISPLAY LINE <u>ENTER</u> and set the Display Line to the level recorded for 100 kHz in step 25.                                                                                         |
|         | 39. | Adjust function generator AMPLITUDE VERNIER to place peak of signal at the Display Line.                                                                                                                                                                    |
|         | 40. | Adjust FREQUENCY on the function generator to position the signal trace at the right edge of the spectrum analyzer display (last graticule line).                                                                                                           |
|         | 41. | Press MODULATION SWP on the function generator and allow the function generator to make at least two complete sweeps. Press TRACE A [MAX HOLD). Allow the function generator to make one complete sweep. After completion of the sweep, press TRACE A VIEW. |
|         |     |                                                                                                                                                                                                                                                             |

42. Press DISPLAY LINE ENTER on the spectrum analyzer. Use the Display Line to measure the maximum and minimum points on the trace. (Disregard LO Feedthrough at 1 kHz.) Record the measurements below.

SIGNAL INPUT 1

(1 kHz to 100 kHz)

Maximum \_\_\_\_\_ dBm

Minimum \_\_\_\_\_ dBm

- 43. Set Display Line to peak of trace at 1 kHz.
- 44. Key in the following spectrum analyzer settings:

| TRACE A (clear-write)              |
|------------------------------------|
| (CENTER FREQUENCY)                 |
| (FREQUENCY SPAN)                   |
| (RES BW) 100 Hz                    |
| at function concentrals on fallows |

45. Set function generator controls as follows:

| RANGE Hz   | 100 (button) |
|------------|--------------|
| FREQUENCY  | 10           |
| MODULATION | all out      |

- 46. Adjust function generator FREQUENCY as necessary to place signal near center graticule line and adjust AMPLITUDE VERNIER to place peak of signal at Display Line.
- 47. Key in the following spectrum analyzer settings:

 (FREQUENCY SPAN)
 100 Hz

 (RES BW)
 30 Hz

**48.** Set <u>(CF STEP SIZE)</u> to 100 Hz. Step spectrum analyzer (<u>CENTER FREQUENCY</u>) from 1 kHz to 100 Hz with **(J)**, while setting function generator FREQUENCY to match spectrum analyzer center frequency at each step. Record level-at each setting.

SIGNAL INPUT 1

| 1000 Hz | dBm |
|---------|-----|
| 900 Hz  | dBm |
| 800 Hz  | dBm |
| 700 Hz  | dBm |
| 600 Hz  | dBm |
| 500 Hz  | dBm |
| 400 Hz  | dBm |
| 300 Hz  | dBm |
| 200 Hz  | dBm |
| 100 Hz  | dBm |
|         |     |

| 49. | For each input, subtract the lowest minimum level (greatest    |
|-----|----------------------------------------------------------------|
|     | negative) from the highest maximum (least negative)            |
|     | measurement recorded in steps indicated. The result should not |
|     | exceed 2 dB.                                                   |

| SIGNAL INPUT 1                                                                                                                                                    |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 100 Hz to 500 MHz (from steps 16, 25, 42, or 48)<br>Spec: <2 dB                                                                                                   |                   |
| Overall Maximum dBm                                                                                                                                               |                   |
| -Overall Minimum dBm                                                                                                                                              |                   |
| Overall Deviation dBm                                                                                                                                             |                   |
| SIGNAL INPUT 2                                                                                                                                                    |                   |
| 100 kHz to 1.5 GHz (from steps 12 or 31)                                                                                                                          |                   |
| Spec: <2 dB                                                                                                                                                       |                   |
| Overall Maximum dBm                                                                                                                                               |                   |
| -Overall Minimum dBm                                                                                                                                              |                   |
| Overall Deviation dBm                                                                                                                                             |                   |
| 50. Subtract the lowest minimum level (greatest negative) fro highest maximum (least negative) measurement recorded indicated. The result should not exceed 3 dB. | m the<br>in steps |
| SIGNAL INPUT 1                                                                                                                                                    |                   |
| 100 Hz to 1.5 GHz (from steps 15, 16, 25, 42, or 48)                                                                                                              |                   |
| Spec: <3 dB                                                                                                                                                       |                   |
| Overall Maximum dBm                                                                                                                                               |                   |
| -Overall Minimum dBm                                                                                                                                              |                   |
|                                                                                                                                                                   |                   |

Overall Deviation \_\_\_\_\_ dBm

# 9. RF Gain Uncertainty Test

| <b>Related Adjustment</b> | Second Converter Adjustments                                                                                                                                   |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification             | RF gain uncertainty (due to 2nd LO shift): $\pm 1.0$ dB (uncorrected)                                                                                          |
| Description               | The analyzer's calibration signal is used as a stable input signal to observe the change in RF gain when the second LO is shifted in frequency.                |
| Equipment                 | None Required                                                                                                                                                  |
| Procedure                 | 1. Press (INSTR PRESET).                                                                                                                                       |
|                           | 2. Key in spectrum analyzer settings as follows:                                                                                                               |
|                           | CENTER FREQUENCY                                                                                                                                               |
|                           | 3. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                       |
|                           | 4. Adjust <u>REFERENCE LEVEL</u> to position peak of signal trace 3 dB (3 divisions) down from reference level (top) graticule line.                           |
|                           | 5. Press (Shift), (U), (PEAK SEARCH), MARKER $\triangle$ .                                                                                                     |
|                           | <ol> <li>Press SHIFT, (↑) and read MARKER △ amplitude from display (see<br/>Figure 2-16). This amplitude should be between -1.0 dB and +1.0<br/>dB.</li> </ol> |
|                           | dB                                                                                                                                                             |
|                           | 7. Press (SHIFT), (SIGNAL TRACK) <sup>S</sup> to return the second LO to automatic operation.                                                                  |

.

## 9. RF Gain Uncertainty Test



Figure 2-16. RF Gain Uncertainty Measurement

## **10. IF Gain Uncertainty Test**

| <b>Related Adjustments</b> | Step Gain and 18.                                                                                                                                                                                                                                | 4 MHz Local Oscillator Adjustments                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                            | 21.4 MHz Bandw                                                                                                                                                                                                                                   | idth Filter Adjustments                                         |
| Specification              | Assuming the internal calibration signal is used to calibrate the reference level at -10 dBm and the input attenuator is fixed at 10 dB, any changes in reference level from the -10 dB setting will contribute to IF gain uncertainty as shown: |                                                                 |
|                            | Range                                                                                                                                                                                                                                            | Uncertainty (uncorrected; 20 – <b>30°C)</b>                     |
| 0 dBm t                    | o -55.9 dBm                                                                                                                                                                                                                                      | Res BW $\geq$ 30 Hz, $\pm$ 0.6 dB; Res BW = 10 Hz, $\pm$ 1.6 dB |
| -56.0 dF                   | <b>Sm</b> to -129.9 dBm                                                                                                                                                                                                                          | Res BW $\geq$ 30 Hz, $\pm$ 1.0 dB; Res BW = 10 Hz, $\pm$ 2.0 dB |

**Description** The IF gain steps are tested over the entire range from 0 dBm to -129.9 dBm using an RF substitution method. The 10 dB, 2 dB, and 0.1 dB steps are compared against a calibrated signal source provided by an HP 3335A Frequency Synthesizer.



Figure 2-17. IF Gain Uncertainty Test Setup

## 10. IF Gain Uncertainty Test

| Equipment        | FrequencySynthesizerHP 3335AAdapter, Type N (m) to BNC (f)HP 1250-0780                                                                                                                                                                                                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure        | 1. Press ( <u>INSTR PRESET</u> ).                                                                                                                                                                                                                                                                                                                                                            |
|                  | 2. Connect CAL OUTPUT to SIGNAL INPUT.                                                                                                                                                                                                                                                                                                                                                       |
|                  | 3. Press (RECALL) 8. Adjust AMPTD CAL for a MARKER amplitude of $-10.00$ dBm $\pm 0.02$ dB.                                                                                                                                                                                                                                                                                                  |
|                  | 4. Press (INSTR preset).                                                                                                                                                                                                                                                                                                                                                                     |
| 10 dB Gain Steps | 5. Set the frequency synthesizer for an output frequency of 20.0010 MHz and an output power level of -2.0 dBm. Set the amplitude increment for 10 dB steps.                                                                                                                                                                                                                                  |
|                  | 6. Connect the equipment as shown in Figure 2-17.                                                                                                                                                                                                                                                                                                                                            |
|                  | 7. Key in analyzer settings as follows:                                                                                                                                                                                                                                                                                                                                                      |
|                  | CENTER FREQUENCY                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 8 Press MARKER (PEAK SEARCH). (MKR $\rightarrow$ CF) or adjust<br>(CENTER FREQUENCY) to center signal trace on display.                                                                                                                                                                                                                                                                      |
|                  | 9 Set analyzer as follows:                                                                                                                                                                                                                                                                                                                                                                   |
|                  | (VIDEO BW)         100 Hz           (RES BW)         1 kHz           LOG         (ENTER)         dB/Dlv]                                                                                                                                                                                                                                                                                     |
|                  | 10. Press MARKER (PEAK search),                                                                                                                                                                                                                                                                                                                                                              |
|                  | 11. Press $(SHIFT), (ATTEN)^I$ to permit extended reference level settings.                                                                                                                                                                                                                                                                                                                  |
|                  | 12. Set the analyzer (REFERENCE LEVEL), (VIDEO BW), and frequency<br>synthesizer amplitude according to Table 2-12 settings. (Use the<br>frequency synthesizer (I) for 10 dB steps.) At each setting, note<br>the MKR A amplitude displayed in the upper right corner of the<br>analyzer display (deviation from the 0 dB reference setting) and<br>record it in the table. See Figure 2-18. |
| Note             | After measurement at the $\overline{(REFERENCE LEVEL)} = -70 \text{ dBm}$ setting, press (SHIFT), (ENTER dB/DIV) <sup>q</sup> as indicated in Table 2-12.                                                                                                                                                                                                                                    |

| [REFERENCE LEVEL)<br>(dBm)           | Frequency<br>Synthesizer<br>Amplitude<br>( <b>dBm)</b> | (Hz) | Deviation<br>(Marker A<br>Amplitude<br>(dB) |
|--------------------------------------|--------------------------------------------------------|------|---------------------------------------------|
| 0                                    | - 2                                                    | 100  | 0 (ref.)                                    |
| -10                                  | -12                                                    | 100  |                                             |
| -20                                  | -22                                                    | 100  |                                             |
| - 30                                 | -32                                                    | 100  |                                             |
| -40                                  | -42                                                    | 100  |                                             |
| - 5 0                                | - 5 2                                                  | 100  |                                             |
| -60                                  | -62                                                    | 10   |                                             |
| -70                                  | -72                                                    | 10   |                                             |
| SHIFT<br>(ENTER dB/DIV) <sup>q</sup> |                                                        |      |                                             |
| - 80                                 | -32                                                    | 100  |                                             |
| -90                                  | -42                                                    | 100  |                                             |
| -100                                 | -52                                                    | 10   |                                             |
| -110                                 | -62                                                    | 10   |                                             |
| -120                                 | -72                                                    | 10   |                                             |

**Table** 2-12. IF Gain Uncertainty, 10 **dB** Steps



Figure 2-18. IF Gain Uncertainty Measurement

- 2 dB Gain Steps
- 13. Press (INSTR PRESET), (RECALL) 7.
- 14. Set **[REFERENCE LEVEL]** to -1.9 dBm.
- 15. Press MARKER (OFF). Set (VIDEO BW) to 100 Hz.
- 16. Set the frequency synthesizer for an output power level of -3.9 dBm. Set the amplitude increment for 2 dB steps.
- 17. Press MARKER [PEAK SEARCH), Δ.
- 18. Set the analyzer (<u>REFERENCE LEVEL</u>) and the frequency synthesizer amplitude according to Table 2-13. At each setting, note the MKR A amplitude and record it in the table.

| (REFERENCE LEVEL)<br>(dBm) | Frequency<br>Synthesizer<br>Amplitude<br><b>(dBm)</b> | Deviation<br>(MARKER A<br>'Amplitude<br><b>(dB)</b> |
|----------------------------|-------------------------------------------------------|-----------------------------------------------------|
| -1.9                       | -3.9                                                  | 0 (ref)                                             |
| -3.9                       | -5.9                                                  |                                                     |
| -5.9                       | -7.9                                                  |                                                     |
| -7.9                       | -9.9                                                  |                                                     |
| -9.9                       | -11.9                                                 |                                                     |

Table 2-13. IF Gain Uncertainty, 2 dB Steps



Figure 2-19. IF Gain Uncertainty Measurement (2 dB)

### 0.1 dB Gain Steps

- 19. Set [REFERENCE LEVEL] to 0 dB.
- 20. Set the frequency synthesizer for an output power level of -2.00 dBm. Set the amplitude increment for 0.1 dB steps.
- 21. Press MARKER [PEAK SEARCH, Δ].
- 22. Set the analyzer and the frequency synthesizer amplitude according to Table 2-14. At each setting, note the MKR A amplitude and record it in the table.
- 23. Find the largest positive deviation and the largest negative deviation for reference level settings from 0 dBm to -70 dBm in Table 2-12. Also, find the largest positive and negative deviations for the last five settings in the table.

|                             | А            | В               |
|-----------------------------|--------------|-----------------|
| Reference Level Range:      | 0 to -70 dBm | -80 to -120 dBm |
| Largest Positive Deviation: | dB           | dB              |
| Largest Negative Deviation: | dB           | dB              |

24. Find the largest positive and negative deviations in Table 2-13 and Table 2-14:

|                             | С                 | D                 |
|-----------------------------|-------------------|-------------------|
|                             | <b>Table</b> 2-13 | <b>Table</b> 2-14 |
| Largest Positive Deviation: | dB _              | dB                |
| Largest Negative Deviation: | dB _              | dB                |

### 10. IF Gain Uncertainty Test

Table 2-14. IF Gain Uncertainty, 0.1 dB Steps

| [REFERENCE LEVEL) | Frequency   | Deviation     |
|-------------------|-------------|---------------|
| (dBm)             | Synthesizer | (MKR A        |
|                   | (dBm)       | ( <b>dB</b> ) |
| 0.0               | -2.00       | 0 (ref)       |
| -0.1              | -2.10       |               |
| -0.2              | -2.20       |               |
| -0.3              | -2.30       |               |
| -0.4              | -2.40       |               |
| -0.5              | -2.50       |               |
| -0.6              | -2.60       |               |
| -0.7              | -2.70       |               |
| -0.8              | -2.80       |               |
| -0.9              | -2.90       |               |
| -1.0              | -3.00       |               |
| -1.1              | -3.10       |               |
| -1.2              | -3.20       |               |
| -1.3              | -3.30       |               |
| -1.4              | -3.40       |               |
| -1.5              | -3.50       |               |
| -1.6              | -3.60       |               |
| -1.7              | -3.70       |               |
| -1.8              | -3.80       |               |
| -1.9              | -3.90       |               |

- 25. The sum of the positive deviations recorded in A, C, and D should not exceed 0.6 dB.
- 26. The sum of the negative deviations recorded in A, C, and D should not be less than -0.6 dB.
- 27. The sum of the positive deviations recorded in A, B, C, and D should not exceed 1.0 dB.
- 28. The sum of the negative deviations recorded in A, B, C, and D should not exceed -1 .O dB.

## 11. Log Scale Switching Uncertainty Test

**Related Adjustment** Video Processor Adjustments

**Specification**  $\pm 0.5$  dB (uncorrected; 20 to 30°C)

**Description** The log scale is stepped from 1 dB/DIV to 10 dB/DIV and the variation in trace amplitude from the 1 dB/DIV setting at each step is measured.

**Equipment** None required

**Procedure** 1. Press (INSTR PRESET).

2. Key in analyzer settings as follows:

| (CENTER FREQUENCY) | 20 MHz                 |
|--------------------|------------------------|
| FREQUENCY SPAN     | $\dots 100 \ kHz$      |
| REFERENCE LEVEL    | $\dots -8 \text{ dBm}$ |
| (RES BW)           | 30 kHz                 |

- 3. Press LOG (ENTER dB/DIV) and key in a log scale of 1 dB per division.
- 4. Connect CAL OUTPUT to SIGNAL INPUT 2.
- 5. Press MARKER (PEAK SEARCH) and (MKR  $\rightarrow$ ). Record the marker amplitude (upper right of display) in Table 2-7.
- 6. Step up through the log scales with (f). At each step, press MARKER (PEAK SEARCH), then record the marker amplitude in Table 2-15. Refer to Figure 2-20.
- 7. Subtract the marker amplitude at the 1 dB/DIV setting from the marker amplitudes recorded for the 2, 5, and 10 dB/DIV settings to obtain the amplitude deviations. The deviation should be less than  $\pm 0.5$  dB for each log scale.

### 11. Log Scale Switching Uncertainty Test



Figure 2-20. Log Scale Switching Uncertainty Measurement

Table 2-15. Log Scale Switching Uncertainty

| SCALE<br>(dB/DIV) | MKR Amplitude<br>(dBm) | Deviation<br>(dB) | Allowable<br>Deviation<br>( <b>dB</b> ) |
|-------------------|------------------------|-------------------|-----------------------------------------|
| 1                 |                        | 0 (ref)           | 0 (ref)                                 |
| 2                 |                        | <u>.</u>          | $\pm 0.5$                               |
| 5                 |                        | 1                 | $\pm 0.5$                               |
| 10                |                        |                   | $\pm 0.5$                               |

# 12. Amplitude **Fidelity** Test

(For instruments with Option 857, refer to Chapter 5.)

| <b>Related Adjustment</b> | Log Amplifier Adjustments                                                                                                                                                                                                                       |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification             | Log:                                                                                                                                                                                                                                            |
|                           | Incremental                                                                                                                                                                                                                                     |
|                           | $\pm 0.1 \text{ dB/dB}$ over 0 to 80 dB display                                                                                                                                                                                                 |
|                           | Cumulative                                                                                                                                                                                                                                      |
|                           | 3 MHz to 30 Hz Resolution Bandwidth<br>$\leq \pm 1.0 \text{ dB}$ max over 0 to 80 dB display (20 - 30°C).<br>$\leq \pm 1.5 \text{ dB}$ max over 0 to 90 dB display                                                                              |
|                           | Linear:                                                                                                                                                                                                                                         |
|                           | $\pm 3\%$ of Reference Level for top 9-1/2 divisions of display                                                                                                                                                                                 |
| Description               | Amplitude fidelity in log and linear modes is tested by decreasing the signal level to the spectrum analyzer in 10 dB steps with a calibrated signal source and measuring the displayed amplitude change with the analyzer's MARKER A function. |



Figure 2-21. Amplitude Fidelity Test Setup

| Equipment | Frequency SynthesizerHP 3335AAdapter, Type N (m) to BNC (f)HP 1250-0780                                                                                                                                                                                                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure | Log Fidelity                                                                                                                                                                                                                                                                                                                                           |
|           | 1. Set the frequency synthesizer for an output frequency of 20.000 MHz and an output power level of + 10 dBm. Set the amplitude increment for 10 dB steps.                                                                                                                                                                                             |
|           | 2. Connect equipment as shown in Figure 2-21.                                                                                                                                                                                                                                                                                                          |
|           | 3. Press (INSTR PRESET) on the analyzer. Key in analyzer settings as follows:                                                                                                                                                                                                                                                                          |
|           | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                |
|           | 4. Press MARKER (PEAK SEARCH), (MKR $\rightarrow$ CF), (MKR $\rightarrow$ REF LVL) to center the signal on the display.                                                                                                                                                                                                                                |
|           | 5. Key in the following analyzer settings:                                                                                                                                                                                                                                                                                                             |
|           | (FREQUENCY SPAN)                                                                                                                                                                                                                                                                                                                                       |
|           | 6. Press MARKER A. Step the frequency synthesizer output<br>amplitude from + 10 dBm to -80 dBm in 10 dB steps, noting<br>the MARKER A amplitude (a negative value) at each step and<br>recording it in column 2 of Table 2-16. Allow several sweeps after<br>each step for the video filtered trace to reach its final amplitude<br>(see Figure 2-22). |
|           | 7. Subtract the value in column 1 from the value in column 2 for each setting to find the fidelity error.                                                                                                                                                                                                                                              |
|           | Table 2-16. Log Amplitude Fidelity                                                                                                                                                                                                                                                                                                                     |

| Frequency<br>Synthesizer<br>Amplitude<br>( <b>dBm)</b> | l<br>Calibrated<br>Amplitude<br>Step | MARKER A Amplitude<br>( <b>dB</b> ) | Fidelity Error<br>(Column 2 <b>-</b> Column 1)<br><b>(dB)</b> | Cumulative<br>Error<br>0 to 80 <b>dB</b><br>( <b>dB</b> ) | Cumulative<br>Error<br>0 to 90 <b>dB</b><br>( <b>dB</b> ) |
|--------------------------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| +10                                                    | 0 (ref)                              | 0 (ref)                             | 0 (ref)                                                       |                                                           |                                                           |
| 0                                                      | -10                                  |                                     |                                                               |                                                           |                                                           |
| -10                                                    | -20                                  |                                     |                                                               |                                                           |                                                           |
| -20                                                    | -30                                  |                                     |                                                               |                                                           |                                                           |
| -30                                                    | -40                                  |                                     |                                                               |                                                           |                                                           |
| -40                                                    | -50                                  |                                     |                                                               |                                                           |                                                           |
| -50                                                    | -60                                  |                                     |                                                               |                                                           |                                                           |
| -60                                                    | -70                                  |                                     |                                                               |                                                           |                                                           |
| -70                                                    | -80                                  |                                     |                                                               |                                                           |                                                           |
| -80                                                    | -90                                  |                                     |                                                               | $\leq \pm 1.0 \text{ dB}$                                 | $\leq \pm 1.5 \text{ dB}$                                 |

- 8. The fidelity error for amplitude steps from -10 dB to -80 dB should be  $\leq \pm 1.0$  dB.
- 9. The fidelity error at the -90 dB setting should be  $\leq \pm 1.5$  dB.



Figure 2-22. Amplitude Fidelity Measurement

#### Linear Fidelity

#### 10. Key in analyzer settings as follows:

| (VIDEO BW)       | 300          | Hz  |
|------------------|--------------|-----|
| (FREQUENCY SPAN) | . <b>1</b> M | Hz  |
| (RES BW)         | 1 N          | 1Hz |

- 11. Set the frequency synthesizer for an output power level of + 10 dBm.
- 12. Press SCALE LIN pushbutton. Press MARKER (PEAK SEARCH),  $(MKR \rightarrow CF)$  to center the signal on the display.
- 13. Set <u>FREQUENCY SPAN</u> to 0 Hz and <u>VIDEO BW</u> to 1 Hz. Press <u>SHIFT</u>,  $(AUTO)^A$  (resolution bandwidth), MARKER  $\triangle$ .
- 14. Decrease frequency synthesizer output amplitude by 10 dB steps, noting the MARKER A amplitude and recording it in column 2 of Table 2-17.

## 12. Amplitude Fidelity Test

| Frequency MARKER A<br>Synthesizer Amplitude (<br>Amplitude ( <b>dB</b> ) |  | Allowable Range<br>(±3 % of Reference Level)<br>(dB) |        |
|--------------------------------------------------------------------------|--|------------------------------------------------------|--------|
| (dBm)                                                                    |  | Min                                                  | Max    |
|                                                                          |  |                                                      |        |
| 0                                                                        |  | -10.87                                               | -9.21  |
| -10                                                                      |  | -23.10                                               | -17.72 |

 Table 2-17. Linear Amplitude Fidelity

# 13. Average Noise Level Test

| Specification | $<-135$ dBm for frequencies >1 MHz, $<-112$ dBm for frequencies $\leq 1$ MHz but >500 Hz with 10 Hz resolution bandwidth, 0 dB input attenuation, 1 Hz video filter.                                   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Option 001: $<-129$ dBm for frequencies >1 MHz, $<-106$ dBm for frequencies $\leq 1$ MHz but >500 Hz with 10 Hz resolution bandwidth, 0 dB input attenuation, 1 Hz video filter (SIGNAL INPUT 1 only). |
| Description   | The average noise level is checked by observing the displayed noise level at several frequencies with no input signal applied.                                                                         |
| Equipment     | 50 Ohm Termination                                                                                                                                                                                     |
| Procedure     | 1. Press (INSTR PRESET).                                                                                                                                                                               |
|               | 2. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                                                               |
|               | 3. Press (RECALL (a). Adjust AMPTD CAL for a MARKER amplitude of -10.00 dBm $\pm 0.02$ dB.                                                                                                             |
|               | 4. Press (INSTR PRESET).                                                                                                                                                                               |
|               | 5. Disconnect CAL OUTPUT from analyzer. Terminate SIGNAL INPUT 2 with a 509 coaxial termination.                                                                                                       |
|               | 6. Key in spectrum analyzer settings as follows:                                                                                                                                                       |
|               | ATTEN0 dB(CENTER FREQUENCY].501 HzFREQUENCYSPANSPAN0 HzRES BW10 HzREFERENCELEVEL)VIDEO BW1 HzSWEEP TIME].20 seconds                                                                                    |
|               | 7. Press SWEEP (SINGLE) and wait for completion of the sweep.                                                                                                                                          |
|               | 8. Press DISPLAY LINE (ENTER). Using DATA knob, place display line at the apparent average amplitude of the noise trace (see                                                                           |

Figure 2-23).



Figure 2-23. Average Noise Level Measurement

9. Read the average noise level from the DISPLAY LINE readout. The value should be <-112 dBm.

#### \_\_\_\_\_ dBm

10. Change **[CENTER FREQUENCY]** to 1.001 MHz. Follow the procedure to steps 7 through 9 to determine the average noise level. The value should be <-135 dBm.

\_\_\_\_ dBm

11. Change (CENTER FREQUENCY) to 1501 Mhz. Follow the procedure of steps 7 through 9 to determine the average noise level. The value should be < -135 dBm.

\_\_\_\_\_ dBm

# 14. Residual Responses Test

| Specification | <-105 dBm for frequencies $>500$ Hz with 0 dB input attenuation (no signal present at input) Option 100:                                                                                                                                                  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <-99 dBm for frequencies $>500$ Hz with 0 dB input attenuation (SIGNAL INPUT 1 only).                                                                                                                                                                     |
|               | Option 400:                                                                                                                                                                                                                                               |
|               | <-95 dBm for frequencies >500 Hz with 0 dB input attenuation.<br><-105 dBm for frequencies >2.5 kHz with 0 dB input attenuation.                                                                                                                          |
| Description   | The spectrum analyzer is checked for residual responses across its frequency range with $\infty$ signal applied to the input and 0 dB input attenuation.                                                                                                  |
| Equipment     | 50 Ohm Termination HP 11593A                                                                                                                                                                                                                              |
| Procedure     | 1. Press (INSTR PRESET].                                                                                                                                                                                                                                  |
|               | 2. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                                                                                                                  |
|               | 3. Press (RECALL) (8). Adjust AMPTD CAL for a MARKER amplitude of -10.00 dbm $\pm 0.02$ dB.                                                                                                                                                               |
|               | 4. Press (INSTR PRESET).                                                                                                                                                                                                                                  |
|               | 5. Disconnect CAL OUTPUT from analyzer. Terminate SIGNAL INPUT 2 with a 50 ohm coaxial termination.                                                                                                                                                       |
|               | 6. Key in control settings as follows:                                                                                                                                                                                                                    |
|               | (FREQUENCY)      50 MHz         (REFERENCE LEVEL]      60dBm         (CENTER FREQUENCY)                                                                                                                                                                   |
|               | 7. Press DISPLAY LINE (ENTER) and key in -105 dBm.                                                                                                                                                                                                        |
|               | <ol> <li>Reduce (RES BW) or (VIDEO BW), if necessary, for a margin of at<br/>least 4 dB between the noise trace and the display line (refer to<br/>Figure 2-24). Do not reduce either bandwidth to less than 300 Hz.</li> </ol>                           |
| Note          | This test will require approximately 30 minutes to complete using<br>the settings given in step 6. If the resolution bandwidth or video<br>bandwidth are further reduced, a full band check of residual<br>responses will take up to 15 hours to complete |



Figure 2-24. Residual Responses Measurement

9. Press SWEEP (SINGLE) and wait for completion of sweep. Look for any residual responses at or above the display line. If a residual is suspected, press SWEEP (SINGLE) again and see if the response persists. A residual will persist on repeated sweeps, but a noise peak will not. Any residual responses must be <-105 dBm.

#### Option 400:

Any residual 500 Hz to 2.5 kHz must be <-95 dBm; any residuals >2.5 kHz must be <-105 dBm

- 10. If a response appears marginal, do the following to determine whether or not it exceeds the specification.
  - a. Press SAVE 1.
  - b. Press MARKER (NORMAL) and place the marker on the peak of the response in question.
  - c. Press MARKER  $(MKR \rightarrow CF)$ , then activate SWEEP (CONT).
  - d. Reduce [FREQUENCY SPAN] to 1 MHz or less. The amplitude of the response should be <-105 dBm (below the display line).</li>
     e. Press (RECALL] (1) to resume the search for residuals.
- 11. Step <u>[CENTER FREQUENCY]</u> to 1510 MHz with (f) checking for residual responses at each step by the procedure of steps 9 and 10. There should be no residual responses at or above the display line below 1500 MHz.

Maximum Residual Response

\_\_ dBm

MHz

## **15. Spurious Responses Test**

| Related Adjustment | Second | Converter | Adjustments |
|--------------------|--------|-----------|-------------|
|--------------------|--------|-----------|-------------|

**Specification** For total signal power of <-40 dBm at the input mixer of the analyzer, all image and out-of-band mixing responses, harmonic and intermodulation distortion products are >75 dB below the total signal power for input signals 10 Mhz to 1500 MHz; >70 dB below the total signal power for input signals 100 Hz to 10 MHz.

Second Harmonic Distortion

For a signal -30 dBm at the mixer and  $\geq 10$  MHz, second harmonic distortion is >70 dB down; 60 dB down for signals <10 MHz.

Third Order Intermodulation Distortion

For two signals each -30 dB at the mixer, third-order intermodulation products are:

| Signal<br>Separation | Center<br>Products | Distortion<br>Products | T.O.I   |
|----------------------|--------------------|------------------------|---------|
| <100 kHz             | >100 kHz           | >70 dBc                | +5 dBm  |
| >100 kHz             | >10 MHz            | >80 dBc                | +10 dBm |

**Description** Harmonic distortion (second and third) is tested using a signal source and a low-pass filter. The LPF insures that the harmonics measured are generated by the spectrum analyzer and not by the signal source.

Spurious responses due to image frequencies, out-of-band mixing, and intermodulation distortion are measured by applying signals from two separate sources to the spectrum analyzer input.



Figure 2-25. Harmonic Distortion Test Setup

| Note      | Equipment listed is for two test setups, Figure 2-25 and Figure 2-26.                                                                                                         |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipment | Synthesized Sweeper                                                                                                                                                           |  |  |
| Procedure | Harmonic Distortion                                                                                                                                                           |  |  |
|           | <ol> <li>Connect equipment as shown in Figure 2-25.</li> <li>On the spectrum analyzer, press (INSTR PRESET). Set the controls of the spectrum analyzer as follows:</li> </ol> |  |  |
|           | CENTER FREQUENCY                                                                                                                                                              |  |  |
|           | 3. On the synthesized sweeper, key in <u>[INSTR PRESET]</u> , <u>CW</u> 280 MHz,<br>(POWER LEVEL) -10 dBm.                                                                    |  |  |
|           | 4. On the spectrum analyzer, key in DISPLAY LINE ENTER -90 dBm, MARKER PEAK SEARCH to position a marker on the peak of the displayed 280 MHz signal.                          |  |  |
|           | 5. On the synthesized sweeper, press <b>POWER_LEVEL</b> and use the ENTRY knob to adjust the amplitude of the displayed 280 MHz                                               |  |  |
signal for a marker indication of -20.00 dBm (-30.0 dBm at the input mixer with 10 dBm of input attenuation).

6 On the spectrum analyzer, key in MARKER (D, <u>(CENTER FREQUENCY)</u> 560 MHz, MARKER (PEAK SEARCH) to position a second marker on the peak of the second harmonic distortion product of the 280 MHz input signal. The response should be below the display line (>70 dB below the input signal level).

Second Harmonic \_\_\_\_\_ dBm

- 7. On the synthesized sweeper, key in **POWER LEVEL** (Dto decrease the amplitude of the 280 MHz signal by 10 dB.
- 8. On the spectrum analyzer, key in MARKER OFF, (CENTER FREQUENCY) 280 MHz, <u>IREFERENCE LEVEL</u> -30 dBm, DISPLAY LINE [ENTER] -105 dBm, MARKER (PEAK SEARCH) to position a marker on the peak of the displayed 280 MHz signal.
- 9. On the synthesized sweeper, press **[POWER LEVEL]** and use the ENTRY knob to adjust the amplitude of the displayed 280 MHz signal for a marker indication of -30.00 dBm (-40.0 dBm at the input mixer with 10 dBm of input attenuation).
- 10. On the spectrum analyzer, key in MARKER (D, [CENTER FREQUENCY] 840 MHz, MARKER (PEAK SEARCH) to position a second marker on the peak of the third harmonic distortion product of the 280 MHz input signal. The response should be below the display line (>75 dB below the input signal level).

Third Harmonic \_\_\_\_\_ dBm

#### Intermodulation Distortion



Figure 2-26. Intermodulation Distortion Test Setup

- 11. Connect equipment as shown in Figure 2-26.
- 12. Set the controls of the spectrum analyzer as follows:

| CENTER FREQUENCY | 29.5 MHz |
|------------------|----------|
| FREQUENCY SPAN   | 5 MHz    |
| REFERENCE LEVEL  | 20 dBm   |
| DISPLAY LINE     | OFF      |

- 13. On the synthesized sweeper, key in CW 30 MHz, <u>[POWER LEVEL]</u>, -4 dBm and use the ENTRY knob to position the peak of the displayed 30 MHz signal at the top CRT graticule line.
- 14. On the frequency synthesizer, key in **[FREQUENCY]** 29 MHz, (AMPLITUDE) -4 dBm. Readjust the signal amplitude as necessary to position the peak of the displayed 29 MHz signal at the top CRT graticule line.
- 15. Set the controls of the spectrum analyzer as follows:
  - CENTER FREQUENCY29 MHzFREQUENCY SPAN500 Hz
- On the spectrum analyzer, key in DISPLAY LINE (E<u>NTER</u>) -100 dBm, MARKER [PEAK SEARCH] to position a marker on the peak of the displayed 29 MHz signal.
- 17. On the frequency synthesizer, adjust the signal amplitude for a marker indication of -20.00 dBm.
- 18. On the spectrum analyzer, key in <u>ICENTER FREQUENCY</u> 30 MHz, MARKER <u>[PEAK SEARCH]</u> to position a marker on the peak of the displayed 30 MHz signal.
- 19. On the synthesized sweeper, adjust the signal power level for a marker indication of -20.00 dBm.

| Note | If unable to locate intermodulation distortion products, temporarily increase output power level of frequency synthesizer and synthesized sweeper by $+$ 10 dB. Return the output power level of both signal sources to the previous settings before making distortion measurements. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 20. On the spectrum analyzer, key in MARKER <b>(D)</b> ,<br>[CENTER FREQUENCY] 31 MHz, MARKER [PEAK SEARCH] to position                                                                                                                                                              |

**[CENTER FREQUENCY]** 31 MHz, MARKER (PEAK SEARCH) to position a marker at the peak of the 31 MHz third-order intermodulation product. The response should be below the display line (>80 dB below the input signals).

TOI Distortion (1 MHz separation @ 30 MHz) \_\_\_\_\_\_dBm

21. On the spectrum analyzer, key in <u>[CENTER FREQUENCY]</u> 28 MHz, MARKER <u>[PEAK SEARCH]</u> to position a marker at the peak of the 28 MHz third-order intermodulation product. The response should be below the display line (>80 dB below the input signals).

TOI Distortion (1 MHz separation @ 30 MHz)



Figure 2-27. Intermodulation Distortion Products

- 22. On the frequency synthesizer, key in **IFREQUENCY** 29.99 MHz.
- 23. On the spectrum analyzer, key in MARKER OFF, <u>CENTER FREQUENCY</u> 29.99 MHz, DISPLAY LINE (ENTER) -90 dBm, MARKER (PEAK SEARCH).

- 24. On the frequency synthesizer, readjust the signal amplitude as necessary to position the peak of the displayed 29.99 MHz signal at the top CRT graticule line.
- 25. On the spectrum analyzer, key in MARKER Δ, (CENTER FREQUENCY) 30.01 MHz, MARKER (PEAK SEARCH) to position a second marker at the peak of the 30.01 MHz third-order intermodulation product. The response should be below the display line (>70 dB below the input signals).

TOI Distortion (10 kHz separation @ 30 MHz) \_\_\_\_\_\_dBm

26. On the spectrum analyzer, key in <u>[CENTER FREQUENCY]</u> 29.98 MHz, MARKER <u>[PEAK SEARCH]</u> to position a second marker at the peak of the 29.98 MHz third-order intermodulation product. The response should be below the display line (>70 dB below the input signals).

> TOI Distortion (10 kHz separation @ 30 MHz) \_\_\_\_\_dBm

- 27. On the synthesized sweeper, press (POWER LEVEL) and decrease the amplitude of the 30 MHz signal by 13.0 dB from the current setting.
- 28. On the frequency synthesizer, key in <u>[FREQUENCY]</u> 29 MHz, (<u>AMPLITUDE]</u> and then decrease the amplitude of the 29 MHz signal by 13.0 dB from the current setting.
- 29. Set the controls of the spectrum analyzer as follows:

| CENTER FREQUENCY | 29 | MHz |
|------------------|----|-----|
| FREQUENCY SPAN   | Hz |     |
| REFERENCE LEVEL  | 33 | dBm |
| MARKER           |    | OFF |

- 30. On the spectrum analyzer, key in DISPLAY LINE ENTER -105 dBm, MARKER PEAK SEARCH to position a marker on the peak of the displayed 29 MHz signal.
- 31. On the frequency synthesizer, adjust the signal amplitude for a marker indication of -33.0 dBm.
- 32. On the spectrum analyzer, key in <u>(CENTER FREQUENCY)</u> 30 MHz, MARKER <u>[PEAK SEARCH]</u> to position a marker on the peak of the displayed 30 MHz signal.
- 33. On the synthesized sweeper, adjust the signal power level for a marker indication of -33.0 dBm (total signal power of -40 dBm at the input mixer with 10 dB of input attenuation).
- 34. On the spectrum analyzer, key in MARKER △, <u>[CENTER FREQUENCY]</u> 1 мHz, MARKER <u>[PEAK SEARCH]</u> to position a second marker at the peak of the 1 MHz second-order intermodulation distortion product. The response should be below the display line (>75 dB below the total input power).

SOI Distortion (1 MHz separation @ 30 MHz)

35. On the spectrum analyzer, key in <u>[CENTER FREQUENCY]</u> 59 MHz, MARKER <u>[PEAK SEARCH]</u> to position a second marker at the peak of the 59 MHz second-order intermodulation distortion product. The response should be below the display line (>75 dB below the total input power).

SOI Distortion (1 MHz separation @ 30 MHz)

#### 16. Residual FM Test

| Specification | $<3$ Hz peak-to-peak in $\le10$ s; frequency span $<100$ kHz, resolution bandwidth $\le30$ Hz, video bandwidth $\le30$ Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description   | The spectrum analyzer CAL OUTPUT is used to supply a stable 20 MHz signal to the analyzer. The analyzer is tuned in zero span to a point on the 30 Hz bandwidth response for which the slope of the response is known from direct measurement. The residual FM is then slope detected over a 10 second interval, yielding a trace whose peak-to-peak excursion is proportional to the residual FM.                                                                                                                                                                                                                                                                                                                                   |
| Equipment     | None Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Procedure     | <ol> <li>Press INSTR PRESET.</li> <li>Connect CAL OUTPUT to SIGNAL INPUT 2.</li> <li>Press (RECALL) 8 and adjust AMPTD CAL for a MARKER amplitude of -10.00 dBm ±0.02 dB.</li> <li>Press RECALL 9 and adjust FREQ ZERO for a maximum amplitude trace.</li> <li>Set REFERENCE LEVEL to -10 dBm. Adjust FREQ ZERO counterclockwise until trace is at the center graticule line.</li> <li>Set FREQUENCY SPAN to 100 Hz. Press SWEEP SINGLE and wait for completion of the sweep.</li> <li>Press MARKER NORMAL, and place marker 1 division above the center graticule line on the negative-going side of the trace. Press MARKER In] and set the movable marker 1 division below the center graticule line. See Figure 2-28.</li> </ol> |



Figure 2-28. Bandwidth Filter Slope Measurement

- 8. Compute the detection slope of the 30 Hz filter between the markers by dividing the MARKER A amplitude by the MARKER A frequency:
  - filter slope = MARKER A amplitude/MARKER A frequency = \_\_\_\_\_ dB/Hz
- 9. Press SWEEP CONT, MARKER OFF.
- 10. Change [FREQUENCY SPAN] to 0 Hz. Readjust FREQ ZERO, if necessary, to position the trace at the center graticule line. The amplitude variations of the trace (see Figure 2-29) represent the analyzer residual FM.



Figure 2-29. Slope Detected Residual FM

- 11. Press SWEEP SINGLE and wait for completion of the sweep.
- 12. Press MARKER [PEAK SEARCH\_]. Press DISPLAY LINE (ENTER) and position the display line at the lowest point on the trace.



Figure 2-30. Peak-to-Peak Amplitude Measurement

13. Press MARKER (a) and position movable marker at the lowest point on the trace (see Figure 2-30). Read the MARKER A amplitude from the display and record its absolute value.

MARKER A amplitude = p-p amplitude = \_\_\_\_\_ dB

14. Divide the peak-to-peak amplitude by the slope computed in step 8 to obtain the residual FM:

p-p amplitude/filter slope = residual FM

The residual FM should be less than 3 Hz.

- 15. Press (INSTR PRESET).
- 16. Press (RECALL) 9 and adjust FREQ ZERO for a maximum amplitude trace.

# 17. Line-Related Sidebands Tests

| Specification | >85 dB below the peak of a CW signal. Option 400: $>75$ dB below the peak of a CW signal.                                                                                                                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description   | The spectrally pure calibrator signal of the spectrum analyzer is<br>applied to the analyzer input and the line related sidebands near the<br>signal are measured.                                                                                                                                                  |
| Equipment     | None required                                                                                                                                                                                                                                                                                                       |
| Procedure     | 1. Press (INSTR PRESET) on the analyzer. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                                                                                                                                      |
|               | 2. Press (RECALL) 8 and adjust AMPTD CAL for a MARKER amplitude of -10.00 dBm $\pm 0.02$ dB.                                                                                                                                                                                                                        |
|               | 3. Press (INSTR PRESET).                                                                                                                                                                                                                                                                                            |
|               | 4. Key in the following analyzer settings:                                                                                                                                                                                                                                                                          |
|               | [ <u>center frequency)</u> .20 mHz<br>[ <u>reference level]</u>                                                                                                                                                                                                                                                     |
|               | 5. Wait for completion of sweep, then press MARKER [PEAK SEARCH], (MKR $\rightarrow$ CF).                                                                                                                                                                                                                           |
|               | 6. Press (SHIFT) (VIDEO BW) <sup>G</sup> , SWEEP (SINGLE), 10 (Hz $\mu \vee \mu s$ ) to initiate video averaging of 10 sweeps. Wait for completion of sweeps.                                                                                                                                                       |
|               | 7. Press MARKER (PEAK SEARCH), $\triangle$ and position movable marker at the peak of each line related sideband (120 Hz, 180 Hz, and 240 Hz for 60 Hz line frequency; 100 Hz, 150 Hz, and 200 Hz for 50 Hz line frequency, etc.). The MARKER A amplitude for each sideband should be $< -85$ dB (see Figure 2-31). |
|               | 120 Hz (100 Hz) dB                                                                                                                                                                                                                                                                                                  |
|               | 180 Hz (150 Hz) dB                                                                                                                                                                                                                                                                                                  |
|               |                                                                                                                                                                                                                                                                                                                     |



Figure 2-31. Line Related Sidebands Measurement

Option 400 1. Press [INSTR PRESET]. Connect CAL OUTPUT to SIGNAL INPUT 2.

- 2. Press (RECALL) 8 and adjust AMPTD CAL for a MARKER amplitude of -10. 00 dBm 0.02 dB.
- 3. Press [INSTR\_PRESET].
- 4. Key in the following analyzer settings:

| CENTER FREQUENCY  | 20    | MHz   |
|-------------------|-------|-------|
| [REFERENCE LEVEL] | - 1 0 | dBm   |
| (FREQUENCY SPAN]  | 3     | 8 kHz |

- 5. Wait for completion of the sweep, then press MARKER [PEAK SEARCH],  $(MKR \rightarrow CF)$ .
- 6. Press (SHIFT) (VIDEO BW)<sup>G</sup>, SWEEP (SINGLE), 10 (Hz  $\mu \vee \mu s$ ) to initiate video averaging of 10 sweeps. Wait for completion of sweeps.
- 7. Press MARKER (PEAK SEARCH), ( $\Delta$ ) and position movable marker at the peak of each line related sideband (400 Hz, 800 Hz, and 1200 Hz). The MARKER **A** amplitude for each sideband should be <-75 dB.





#### **18. Calibrator Amplitude Accuracy** Test

| Related Adjustment | 20 MHz Reference Adjustments                                              |  |
|--------------------|---------------------------------------------------------------------------|--|
| Specification      | -10 dBm $\pm 0.3$ dB                                                      |  |
| Description        | The output level of the calibrator signal is measured with a power meter. |  |



Figure 2-32. Calibrator Amplitude Accuracy Test Setup

| Equipment | Power Meter                       | HP 436A   |
|-----------|-----------------------------------|-----------|
|           | Power Sensor                      | HP 8482A  |
|           | Adapter, Type N (f) to BNC (m) HP | 1250-0077 |

- **Procedure** 1. Connect equipment as shown in Figure 2-32.
  - 2. Measure output level of the CAL OUTPUT signal. The value should be -10.0 dBm  $\pm 0.3$  dB.

\_\_\_\_\_ dBm

#### 19. Fast Sweep Time Accuracy Test (<20 ms)

| Related | Adjustment | None |
|---------|------------|------|
|---------|------------|------|

**Specification**  $\pm 10\%$  for sweep times  $\le 100$  seconds

**Description** The triangular wave output of a function generator is used to modulate a 500 MHz signal which is applied to the spectrum analyzer SIGNAL INPUT. The signal is demodulated in the zero span mode to display the triangular waveform. Sweep time accuracy for sweep times <20 ms is tested by checking the spacing of the signal peaks on the displayed waveform.



Figure 2-33. **Fast** Sweep Time Accuracy (<20 ms **Test** Setup)

| Equipment | Function Generator | HP 3312A |
|-----------|--------------------|----------|
| -1r       | Universal Counter  | HP 5316A |
|           | Signal Generator   | HP 8340A |
|           |                    |          |

#### **Procedure** 1. Connect equipment as shown in Figure 2-33.

- 2. Press **INSTR\_PRESET** on spectrum analyzer.
- 3. Key in analyzer settings as follows:

| (CENTER FREQUENCY) | 500 | MHZ |
|--------------------|-----|-----|
| (FREQUENCY SPAN)   | 100 | kHz |

4. Set synthesized sweeper for an output frequency of 500 MHz and an output power level of -10 dBm.

- 5. Press MARKER (PEAK SEARCH), (MKR  $\rightarrow$  CF), (OFF).
- 6. Set [FREQUENCY SPAN) to 0 Hz, (RES BW) to 3 MHz, (VIDEO BW) to 3 MHz, and press TRIGGER (VIDEO).
- 7. Set synthesized sweeper for an amplitude-modulated output.
- 8. Set function generator controls as follows:

| FUNCTION      |           | triangular wave      |
|---------------|-----------|----------------------|
| AMPLITUDE     |           | approximately 1 Vp-p |
| OFFSET        |           | . CAL position (in)  |
| SYM           |           |                      |
| TRIGGER PHASE |           | FREE RUN             |
| MODULATION .  | ••• • • • | all out              |

- 9. Key in <u>(SWEEP TIME]</u> 5 ms and set function generator for a counter reading of  $2.00 \pm 0.02$  kHz.
- 10. Adjust spectrum analyzer TRIGGER LEVEL to place a peak of the triangular waveform on the first graticule from the left edge of the CRT display as a reference. (Adjust function generator amplitude, if necessary, to provide a signal large enough to produce a stable display). The fifth peak from the reference should be within  $\pm 0.5$  division of the sixth graticule from the left edge of the display (see Figure 2-34).
- 11. Using sweep times and function generator frequencies in Table 2-18, check sweep time accuracy for sweep times <20 ms by procedure of step 10.



Figure 2-34. Fast Sweep Time Measurement (<20 ms)

#### 19. Fast Sweep Time Accuracy Test (<20 ms)

| [sweep time] Fi | nction Generator Frequency<br><b>(kHz)</b> | Sweep Time Error<br>(divisions) |
|-----------------|--------------------------------------------|---------------------------------|
| 5 ms            | $2.00 \pm 0.02$                            |                                 |
| 2 ms            | $5.00 \pm 0.05$                            |                                 |
| 1 ms            | $10.0 \pm 0.1$                             |                                 |
| 200 µs          | $50.0 \pm 0.5$                             |                                 |
| 100 µs          | $100 \pm 1$                                |                                 |

 Table 2-18. Fast Sweep Time Accuracy (<20 ms)</th>

# **20.** 1st LO Output Amplitude Test

| Specification | >+4 dBm from 2.0 GHz to 3.7 GHz                                                                                          |
|---------------|--------------------------------------------------------------------------------------------------------------------------|
| Description   | The power level at the 1ST LO OUTPUT connected is measured as the first L.O. is swept over its 2.0 GHz to 3.1 GHz range. |



Figure 2-35. 1st LO Output Amplitude Test Setup

| Equipment | PowerMeterHP 436APowerSensorHP 8482A                                                                                                      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure | 1. Press (INSTR preset].                                                                                                                  |
|           | 2. Set [ <u>sweep time)</u> to 100 seconds.                                                                                               |
|           | 3. Calibrate power meter and sensor. Connect equipment as shown in Figure 2-35.                                                           |
|           | 4. Observe the meter indication as the analyzer makes a complete sweep. The indication should be $> + 4$ dBm across the full sweep range. |
|           | dBm                                                                                                                                       |

5. Replace 50 ohm terminator on 1ST LO OUTPUT.

## 21. Frequency Reference Error Test

| <b>Related Adjustment</b> | Time Base Adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification             | Aging Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | $<1 \text{ x } 10^{-9}$ /day and $<2.5 \text{ x } 10^{-7}$ year; attained after 30 days warmup from cold start at 25°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           | Temperature Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | $<7 \times 10^{-9}$ 0" to 55°C. Frequency is within 1 x 10 <sup>-8</sup> of final stabilized frequency within 30 minutes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Description               | The frequency of the spectrum analyzer time base oscillator is measured directly using a frequency counter locked to a frequency reference which has an aging rate less than one-tenth that of the time base specification. After a 30 day warmup period, a frequency measurement is made. The analyzer is left undisturbed for a 24-hour period and a second reading is taken. The frequency change over this 24-hour period must be less than one part in $10^9$ .                                                                                                                                                                                                                              |
| Note                      | This test requires that the spectrum analyzer be turned on (not in STANDBY) for a period of 30 days to ensure that the frequency reference attains its aging rate. However, after aging rate is attained, the frequency reference typically attains aging rate again in 72 hours of operation after being off for a period not exceeding 24 hours.                                                                                                                                                                                                                                                                                                                                                |
|                           | Care must be taken not to disturb the spectrum analyzer during the 24-hour test interval, since the frequency reference is sensitive to shock and vibration. The frequency reference should remain within its attained aging rate if the instrument is left on, the instrument orientation with respect to the earth's magnetic field is maintained, and the instrument does not sustain any mechanical shock. Frequency changes due to orientation with respect to the earth's magnetic field and altitude changes will usually be nullified when the instrument is returned to its original position. Frequency changes due to mechanical shock will usually appear as a fixed frequency error. |
|                           | The frequency reference is also sensitive to temperature changes; for this reason the ambient temperature near the instrument at the first measurement time and the ambient temperature at the second measurement time should not differ by more than 1°C.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | Placing the spectrum analyzer in STANDBY mode turns the instrument off while continuing to provide power for the frequency reference oven, helping to minimize warmup time. However, the frequency reference must be on to attain its aging rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### 21. Frequency Reference Error Test



Figure 2-36. Frequency Reference Test Setup

| Equipment | Electronic CounterHP 5345A1,2,5, or 10 MHz Frequency Reference with aging rate <1 x $10^{-10}$ /dayHP 5061ABNC TeeHP 1250-0781          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Procedure | 1. Allow analyzer to warm up at 25°C ambient temperature for a period of 30 days.                                                       |
|           | 2. Set controls of electronic counter as follows:                                                                                       |
|           | FUNCTIONFREQ ADISPLAY POSITIONAUTOGATE TIME100 SCHANNEL A Input Impedance50CHANNEL A ATTENx1CHANNEL A CouplingACCHANNEL A LEVELmidrange |
|           | 3. Connect equipment as shown in Figure 2-36.                                                                                           |
|           | 4. Record the frequency of the analyzer time base as measured by the counter:                                                           |
|           | Frequency: 10 MHz<br>Date:<br>Time:<br>Ambient Temperature:                                                                             |
|           | 5. Allow the analyzer to remain undisturbed for 24 hours, then note the time base frequency again:                                      |
|           | Frequency: 10 MHz Date: Time: Ambient Temperature:                                                                                      |
| Note      | If the ambient temperatures recorded in steps 4 and 5 differ by more than 1°C, the frequency measurements may be invalid.               |
|           | a multiment of the second states are an experimented should                                                                             |

6. The difference in frequency between the two measurements should be <1 part in  $10^9$  (<0.01 Hz at 10 MHz).

\_\_\_\_\_ Hz

# Table 2-19.Performance TestRecord

| Hewlett-Packard Company | Tested by |
|-------------------------|-----------|
| Model HP 8568B          | Report No |
|                         |           |
| Serial No.              | Date      |
| IF-Display Section      |           |
| RF Section              |           |

# Test 1. Center Frequency Readout Accuracy Test

| Comh                 |                   | Spactrum                   | Analyzar                |          | -         |
|----------------------|-------------------|----------------------------|-------------------------|----------|-----------|
| Generator            | Spectrum Anaryzer |                            |                         |          |           |
| Comb<br>Frequency    | (FREQUENCY SPAN)  | [CENTER FREQUENCY<br>(MHz) | Center Readout<br>(MHz) |          |           |
| (MHz)                |                   |                            | Min                     | Measured | Max       |
| 100 MC               | 100 MHz           | 100                        | 98                      |          | 102       |
|                      | 100 MHz           | 500                        | 498                     |          | 502       |
|                      | 100 MHz           | 1000                       | <b>998</b>              |          | 1002      |
| EXT TRIG             | 10 MHz            | 100                        | <b>99.8</b>             |          | 100.2     |
| (1, 2, 5, or 10 MHz) | 10 MHz            | 500                        | <b>499.8</b>            |          | 500.2     |
| trigger signal       | 10 MHz            | 1000                       | <b>999.8</b>            |          | 1000.2    |
|                      | 10 MHz            | 1500                       | 1499.8                  |          | 1500.2    |
|                      | 1 MHz             | 1000                       | 999.98                  |          | 1000.02   |
|                      | 100 kHz           | 1000                       | 999.998                 |          | 1000.002  |
|                      | 10 kHz            | 1000                       | 999.9998                |          | 1000.0002 |

Step 8. Center Frequency Readout Error Test Record

#### Test 2. Frequency Span Accuracy Test

#### Steps 7, 9, and 11. Wide Span Error

| <b>Spectrum</b>   | Analyzer            | Synthesized Sweeper  |                          |                  | I       | DUT Measured | 1              |
|-------------------|---------------------|----------------------|--------------------------|------------------|---------|--------------|----------------|
| Frequency<br>Span | Center<br>Frequency | Freq. A<br>Cf45 span | Freq. B<br>cf + .45 span | A Synth<br>(B-A) | Freq. C | Freq. D      | A DUT<br>(D-C) |
| 200 Hz            | 100 MHz             | 99.999 910 MHz       | 100.000 090 MHz          | 180 Hz           |         |              |                |
| 100 kHz           | 100 MHz             | 99.955 000 MHz       | 100.045 000 MHz          | 90.000 Hz        |         |              |                |
| 100.1 kHz         | 100 MHz             | 99.954955 MHz        | 100.045045 MHz           | 90.090 kHz       |         |              |                |
| 1 MHz             | 100 MHz             | 99.550000 MHz        | 100.450 000 MHz          | 900.000 kHz      |         |              |                |
| 1.01 MHz          | 100 MHz             | 99.550 550 MHz       | 100.450 500 MHz          | 909.000 kHz      |         |              |                |
| 20 MHz            | 100 MHz             | 91.000000 MHz        | 109.000000 MHz           | 18.000 MHz       |         |              |                |
| 20.1 MHz          | 100 MHz             | 90.955 000 MHz       | 109.045.000 MHz          | 18.090 MHz       |         |              |                |
| 1.5GHz            | 900 MHz             | 225 MHz              | 1575 MHz                 | 1350 MHz         |         |              |                |

Step 12. Span Error

| Freq Span | Span Error                   | Spec.         |                   |  |
|-----------|------------------------------|---------------|-------------------|--|
|           | ADUT- ∆Syn<br>from Table 2-3 | Min           | Max               |  |
| 200 Hz    |                              | - 10 H        | z 10 Hz           |  |
| 100 kHz   |                              | -5000 H       | z 5000 Hz         |  |
| 100.1 kHz |                              | -5,005 H      | z 5,005 Hz        |  |
| 1 MHz     |                              | -50,000 H     | z 50,000 Hz       |  |
| 1.01 MHz  |                              | -23,230 H     | z 23,230 Hz       |  |
| 20 MHz    |                              | -460,000 H    | z 460,000 Hz      |  |
| 20.1 MHz  |                              | -462,300 H    | z 462,300 Hz      |  |
| 1.5 GHz   |                              | -34,500.000 H | Hz 34,5000.000 Hz |  |

Note

The specification in Table 2-4 was derived using the following formula: For spans > 1 MHz, the spec is: > $\pm$ [(.02)( $\Delta$  synth freq) + (.005)(span)] For spans  $\leq$  1 MHz, the spec is: > $\pm$ [(.05)( $\Delta$  synth freq) + (.005)(span)]

# Test 3. Sweep Time Accuracy

Step 6. Sweep Time Accuracy, Sweep Times  $\geq 20$  ms

| [SWEEP TIME) |        | Marker A Time |        |
|--------------|--------|---------------|--------|
|              | Min    | Measured      | Max    |
| 20 ms        | 18 ms  |               | 22 ms  |
| 50 ms        | 45 ms  | -             | 55 ms  |
| 100 ms       | 90 ms  | -             | 110 ms |
| 500 ms       | 450 ms |               | 550 ms |
| 1 s          | 900 ms |               | 1.10 s |

Step 12. Sweep Time Accuracy, Sweep Times  $\geq 20$  s

| (SWEEP TIME) | Marker ∆ Time |          |       |
|--------------|---------------|----------|-------|
|              | Min           | Measured | Max   |
| 20 s         | 3.6 s         |          | 4.4 s |
| 200 s        | 32 s          |          | 48 s  |

Step 19. Sweep Time Accuracy, Sweep Times  $\geq$ 20 ms (Alternate Procedure)

| [SWEEP TIME) | Sweep Gen Readout |          |         |  |
|--------------|-------------------|----------|---------|--|
|              | Min               | Measured | Max     |  |
| 20 ms        | 18.0 ms           |          | 22.0 ms |  |
| 50 ms        | 45.0 ms           |          | 55.0 ms |  |
| 100 ms       | 90.0 ms           |          | 110 ms  |  |
| 500 ms       | 450 ms            |          | 550 ms  |  |
| 1 s          | 900 ms            |          | 1.10 ms |  |
| 10 <b>s</b>  | 9.00 s            | -        | 11.0 s  |  |
| 50 s         | 45.0 s            |          | 55.0 s  |  |
| 100 <b>s</b> | 90.0 s            |          | 10.0 s  |  |
| 150 s        | 20.0 s            | -        | 80.0 s  |  |

#### Test 4. Resolution Bandwidth Accuracy

| (REW BW) | [FREQUENCY SPAN) | MARKER    | A Readout of 3 d | 13 Bandwidth |
|----------|------------------|-----------|------------------|--------------|
|          |                  | Min       | Measured         | Max          |
| 3 MHz    | 5 MHz            | 2.400 MHz | -                | 3.600 MHz    |
| 1 MHz    | 2 MHz            | 900 kHz   |                  | 1.100 MHz    |
| 300 kHz  | 500 kHz          | 270.0 kHz |                  | 330.0 kHz    |
| 100 kHz  | 200 kHz          | 90.0 kHz  | -                | 110.0 kHz    |
| 30 kHz   | 50 kHz           | 27.00 kHz | -                | 33.00 kHz    |
| 10 kHz   | 20 kHz           | 9.00 kHz  |                  | 11.00 kHz    |
| 3 kHz    | 5 kHz            | 2.700 kHz |                  | 3.300 kHz    |
| 1 kHz    | 2 kHz            | 800 Hz    |                  | 1.200 kHz    |
| 300 Hz   | 500 Hz           | 240 Hz    |                  | 360 Hz       |
| 100 Hz   | 200  Hz          | 80 Hz     |                  | 120 Hz       |
| 30 Hz    | 100 H <b>z</b>   | 24 Hz     |                  | 36 Hz        |
| 10 Hz    | 100 H <b>z</b>   | 8 Hz      |                  | 12 Hz        |

Step 8. Bandwidth Accuracy

#### Test 5. Resolution Bandwidth Selectivity

| Spectrum Analyzer |                  |         | Measured                         | Measured          | Bandwidth                             | Maximum           |
|-------------------|------------------|---------|----------------------------------|-------------------|---------------------------------------|-------------------|
| (RES BW)          | (FREQUENCY SPAN) | (VIDEOB | W] <sup>60</sup> dB<br>Bandwidth | 3 dB<br>Bandwidth | Selectivity<br>(60dB BW ÷<br>3 dB BW) | Selectivity Ratio |
| 3 MHz             | 20 MHz           | 100 Hz  |                                  | -                 |                                       | 15:1              |
| 1 MHz             | 15 MHz           | 300 Hz  |                                  |                   |                                       | 15:1              |
| ;300 kHz          | 5 MHz            | AUTO    |                                  |                   |                                       | 15: 1             |
| 100 kHz           | 2 MHz            | AUTO    |                                  |                   |                                       | 15:1              |
| 30 kHz            | 500 kHz          | AUTO    |                                  |                   |                                       | 13: 1             |
| 10 <b>kHz</b>     | 200 kHz          | AUTO    |                                  |                   |                                       | 13:1              |
| 3 kHz             | 50 kHz           | AUTO    |                                  |                   |                                       | 13:1              |
| 1 kHz             | 10 kHz           | AUTO    |                                  |                   |                                       | 11:1              |
| 300 Hz            | 5 kHz            | AUTO    |                                  |                   |                                       | 11:1              |
| 100 Hz            | 2 kHz            | AUTO    |                                  |                   |                                       | 11:1              |
| 30 Hz             | 500 Hz           | AUTO    |                                  |                   |                                       | 11:1              |
| 10 Hz             | 100 Hz           | AUTO    |                                  | 60 dB points      | s separated by ·                      | <100 Hz           |

Steps 7, 8 and 9. Resolution Bandwidth Selectivity

## Test 6. Resolution Bandwidth Switching Uncertainty Test

| RES BW)        | (FREQUENCY SPAN) | Deviation<br>(MKR A<br>Readout, dB) | Allowable<br>Deviation<br>(dB) |
|----------------|------------------|-------------------------------------|--------------------------------|
| 1 MHz          | 5 MHz            | 0 (ref)                             | 0 (ref)                        |
| 3 MHz          | 5 MHz            |                                     | $\pm 1.00$                     |
| 300 kHz        | 5 MHz            |                                     | $\pm 0.50$                     |
| 100 kHz        | 500 <b>kHz</b>   |                                     | $\pm 0.50$                     |
| 30 kHz         | 500 <b>kHz</b>   |                                     | $\pm 0.50$                     |
| 10 <b>k</b> Hz | 50 <b>k</b> Hz   |                                     | $\pm 0.50$                     |
| 3 <b>k</b> Hz  | 50 <b>k</b> Hz   |                                     | $\pm 0.50$                     |
| 1 kHz          | 10 <b>k</b> Hz   |                                     | $\pm 0.50$                     |
| 300 Hz         | 1 <b>kHz</b>     |                                     | $\pm 0.50$                     |
| 100 Hz         | 1 <b>kHz</b>     |                                     | $\pm 0.50$                     |
| 30 Hz          | 200 Hz           |                                     | $\pm 0.80$                     |
| 10 Hz          | 100 Hz           |                                     | $\pm 2.00$                     |

#### Step 6. Bandwidth Switching Uncertainty

## Test 7. Input Attenuator Switching Uncertainty Test

| ATTEN<br>(dB) | (reference level]<br>(dBm) | Frequency<br>Synthesizer<br>Amplitude<br>(dBm) | Deviation<br>(MARKER A<br>Amplitude<br>(dB) | Corrected<br>Deviation<br>(dB) | Allowable<br>Deviation<br>(dB) |
|---------------|----------------------------|------------------------------------------------|---------------------------------------------|--------------------------------|--------------------------------|
| 10            | - 5 0                      | -52                                            | 0 (ref)                                     | 0 (ref)                        |                                |
| 20            | -40                        | -42                                            |                                             |                                | $\pm 1 \text{ dB}$             |
| 30            | - 3 0                      | -32                                            |                                             |                                | $\pm 1 \text{ dB}$             |
| 40            | -20                        | -22                                            |                                             |                                | $\pm 1 \text{ dB}$             |
| 50            | - 1 0                      | -12                                            |                                             |                                | ±1 dB                          |
| 60            | 0                          | - 2                                            |                                             |                                | ±1 dB                          |
| 70            | + 10                       | 8                                              |                                             |                                | ±1 dB                          |

Step 7. Input Attenuator Switching Uncertainty

# Test **8. Frequency** Response <u>Test</u>

| tep | Signal Input                                                                     | Min | Measured | Max           |
|-----|----------------------------------------------------------------------------------|-----|----------|---------------|
| 12  | SIGNAL INPUT 2                                                                   |     |          |               |
|     | (20 MHz to 1.5 GHz)                                                              |     |          |               |
|     |                                                                                  |     |          |               |
| 15  | SIGNAL INPUT 1                                                                   |     |          |               |
|     | (20 MHz to 1.5 GHz)                                                              |     |          |               |
| 16  | SIGNAL INDUT 1                                                                   |     |          |               |
| 10  | $\begin{array}{c} \text{SIGNAL INPUT} \\ \text{(20 MHz to 500 MHz)} \end{array}$ |     |          |               |
|     | (20 MHZ 10 500 MHZ)                                                              |     |          |               |
| 25  | SIGNAL INPUT 1                                                                   |     |          |               |
| -   | (100 kHz to 20 MHz)                                                              |     |          |               |
|     |                                                                                  |     |          |               |
| 26  | SIGNAL INPUT 1                                                                   |     |          |               |
|     | (100 kHz)                                                                        |     |          |               |
|     |                                                                                  |     |          |               |
| 31  | SIGNAL INPUT 2<br>(100 LH= (+ 20 MH))                                            |     |          |               |
|     | (100  kHz to  20  MHz)                                                           |     |          |               |
| 42  | SIGNAL INPLIT 1                                                                  |     |          |               |
| 72  | (1  kHz to  100  kHz)                                                            |     |          |               |
|     | (1 1112 00 100 1112)                                                             |     |          |               |
| 48  | SIGNAL INPUT 1                                                                   |     |          |               |
|     | 1000 Hz                                                                          |     |          |               |
|     | 900 Hz                                                                           |     |          |               |
|     | 800 Hz                                                                           |     |          |               |
|     | 700 Hz                                                                           |     |          |               |
|     | 600 Hz                                                                           |     |          |               |
|     | 500 HZ<br>400 Hz                                                                 |     |          |               |
|     | 300 Hz                                                                           |     |          |               |
|     | 200 Hz                                                                           |     |          |               |
|     | 100 Hz                                                                           |     |          |               |
|     |                                                                                  |     |          |               |
| 49  | SIGNAL INPUT 1 (deviation in dB)                                                 |     |          |               |
|     | 100 Hz to 500 MHz (steps 16, 25, 42, or 48)                                      |     |          | 0.10          |
|     | (overall max – overall min)                                                      |     |          | <2 dB         |
|     | SIGNAL INPUT 2 (deviation in dB)                                                 |     |          |               |
|     | 100 kHz to 1.5 GHz (steps 12 or 31)                                              |     |          | < 9 dB        |
|     | (overall max – overall min)                                                      |     |          | <u></u> <2 uD |
| 50  | SIGNAL INPUT 1 (deviation in $d\mathbf{R}$ )                                     |     |          |               |
| 50  | 100  Hz to  1.5  GHz  (steps 15, 16, 25, 42, or 48)                              |     |          |               |
|     | (overall max $-$ overall min)                                                    |     |          | <3 dB         |

# Test 9. RF Gain Uncertainty Test

#### Step 6. 2nd LO Shift

| Min     | Measured | Max       |
|---------|----------|-----------|
| -1.0 dB |          | + 1.0  dB |

#### Test 10. IF Gain Uncertainty Test

| (REFERENCE LEVEL)<br>(dBm) | Frequency<br>Synthesizer<br>Amplitude<br>(dBm) | (VIDEO BW)<br>(Hz) | Deviation<br>(Marker A<br>Amplitude<br>(dB) |
|----------------------------|------------------------------------------------|--------------------|---------------------------------------------|
| 0                          | - 2                                            | 100                | 0 (ref.)                                    |
| -10                        | -12                                            | 100                |                                             |
| -20                        | -22                                            | 100                |                                             |
| -30                        | -32                                            | 100                |                                             |
| -40                        | -42                                            | 100                |                                             |
| - 5 0                      | -52                                            | 100                |                                             |
| -60                        | -62                                            | 10                 |                                             |
| -70                        | -72                                            | 10                 |                                             |
| SHIFT<br>ENTER dB/DIV      |                                                |                    |                                             |
| - 80                       | -32                                            | 100                |                                             |
| -90                        | -42                                            | 100                |                                             |
| -100                       | -52                                            | 10                 |                                             |
| -110                       | -62                                            | 10                 |                                             |
| -120                       | -72                                            | 10                 |                                             |

#### Step 12. Step IF Gain Uncertainty, 10 dB Steps

Step 18. IF Gain Uncertainty, 2 dB Steps

| (REFERENCE LEVEL)<br>(dBm) | Frequency<br>Synthesizer<br>Amplitude<br>(dBm) | Deviation<br>(MARKER A<br>Amplitude<br>(dB) |
|----------------------------|------------------------------------------------|---------------------------------------------|
| -1.9                       | -3.9                                           | 0 (ref)                                     |
| -3.9                       | -5.9                                           |                                             |
| -5.9                       | -7.9                                           |                                             |
| -7.9                       | -9.9                                           |                                             |
| -9.9                       | -11.9                                          |                                             |

#### Test 10. IF Gain Uncertainty Test

Step 22. IF Gain Uncertainty, 0.1 dB Steps

| [reference LEVEL]<br>(dBm) | Frequency<br>Synthesizer<br>Amplitude<br>(dBm) | Deviation<br>(MKR A<br>Amplitude<br>(dB) |
|----------------------------|------------------------------------------------|------------------------------------------|
| 0.0                        | -2.00                                          | 0 (ref)                                  |
| -0.1                       | -2.10                                          |                                          |
| -0.2                       | -2.20                                          |                                          |
| -0.3                       | -2.30                                          |                                          |
| -0.4                       | -2.40                                          |                                          |
| -0.5                       | -2.50                                          |                                          |
| -0.6                       | -2.60                                          |                                          |
| -0.7                       | -2.70                                          |                                          |
| -0.8                       | -2.80                                          |                                          |
| -0.9                       | -2.90                                          |                                          |
| -1.0                       | -3.00                                          |                                          |
| -1.1                       | -3.10                                          |                                          |
| -1.2                       | -3.20                                          |                                          |
| -1.3                       | -3.30                                          |                                          |
| -1.4                       | -3.40                                          |                                          |
| -1.5                       | -3.50                                          |                                          |
| -1.6                       | -3.60                                          |                                          |
| -1.7                       | -3.70                                          |                                          |
| -1.8                       | -3.80                                          |                                          |
| -1.9                       | -3.90                                          |                                          |

|                             | Α            | В               |
|-----------------------------|--------------|-----------------|
| Reference Level Range:      | 0 to -70 dBm | -80 to -120 dBm |
| Largest Positive Deviation: | dB           | dB              |
| Largest Negative Deviation: | dB           | dB              |

#### **Step 23.** Recorded deviations from Step 12.

#### Step 24. Recorded deviations from Steps 18 and 22.

|                             | С       | D       |
|-----------------------------|---------|---------|
|                             | Step 18 | Step 22 |
| Largest Positive Deviation: | dB _    | dB      |
| Largest Negative Deviation: | dB _    | dB      |

#### Steps 25 to 28. IF Gain Uncertainty

| Stepl |                                            | Min     | Measured | Max    |
|-------|--------------------------------------------|---------|----------|--------|
| 25.   | Sum of positive deviations of A, C, & D    |         |          | 0.6 dB |
| 26.   | Sum of negative deviations of A, C, & D    | -0.6 df | 3        | +      |
| 27.   | Sum of positive deviations of A, B, C, & D |         |          | 1.0 dB |
| 28.   | Sum of negative deviations of A, B, C, & D | -1.0 dE | 3        |        |

# Test 11. Log Scale Switching Uncertainty Test

#### Step 6. Log Scale Switching Uncertainty

| SCALE<br>(dB/DIV) | MKR Amplitude<br>(dBm) | Deviation<br>(dB) | Allowable<br>Deviation<br>(dB) |
|-------------------|------------------------|-------------------|--------------------------------|
| 1                 |                        | 0 (ref)           | 0 (ref)                        |
| 2                 |                        |                   | $\pm 0.5$                      |
| 5                 |                        |                   | $\pm 0.5$                      |
| 10                |                        |                   | $\pm 0.5$                      |

# Test 12. Amplitude Fidelity Test

| Frequency<br>'Synthesizer<br>Amplitude<br>(dBm) | 1<br>Calibrated<br>Amplitude<br>Step | 2<br>MARKER A Amplitude<br>(dB) | Fidelity Error<br>(Column 2 - Column 1)<br>(dB) |
|-------------------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------------|
| +10                                             | 0 (ref)                              | 0 (ref)                         | 0 (ref)                                         |
| 0                                               | -10                                  |                                 |                                                 |
| -10                                             | -20                                  |                                 |                                                 |
| -20                                             | -30                                  |                                 |                                                 |
| -30                                             | -40                                  |                                 |                                                 |
| -40                                             | - 5 0                                |                                 |                                                 |
| - 5 0                                           | -60                                  |                                 |                                                 |
| -60                                             | -70                                  |                                 |                                                 |
| -70                                             | - 80                                 |                                 |                                                 |
| - 80                                            | -90                                  |                                 |                                                 |

Step 6. Log Amplitude Fidelity

Step 14. Linear Amplitude Fidelity

| Frequency I<br>Synthesizer<br>Amplitude | ARKER A<br>Amplitude (±<br>(dB) | Allowable Range<br>3 % of Reference Level)<br>(dB) |                    |  |
|-----------------------------------------|---------------------------------|----------------------------------------------------|--------------------|--|
| (dBm)                                   |                                 | Min                                                | Max                |  |
|                                         |                                 |                                                    |                    |  |
| 0                                       |                                 | - 10.87                                            | -9.21              |  |
| -10                                     |                                 | -23.10                                             | <del>-</del> 17.72 |  |

# Test 13. Average Noise Level Test

| Step | Center Freq   Min   Measured |  | Max |           |
|------|------------------------------|--|-----|-----------|
| 9.   | 501 Hz                       |  |     | -112 dBm  |
| 10.  | 1.001 MHz                    |  | ·   | -135 dBm  |
| 11.  | 1501 MHz                     |  |     | -135  dBm |

.

# Test 14. Residual Responses Test

| Step | 11. | Maximum | Residual | Response |
|------|-----|---------|----------|----------|
|------|-----|---------|----------|----------|

| Frequency<br>Range  | Measured<br>Max Amplitude |  | Measured<br>Frequency | Max  |     |
|---------------------|---------------------------|--|-----------------------|------|-----|
| 500 Hz to 1500 MHz  |                           |  |                       | -105 | dBm |
| <b>Option 400:</b>  |                           |  |                       |      |     |
| 500 Hz to 2.5 kHz   |                           |  |                       | -95  | dBm |
| 2.5 kHz to 1500 MHz |                           |  |                       | -105 | dBm |

# Test 15. Spurious Responses Test

| <u>usu</u> |                                         | _   |          |                 |
|------------|-----------------------------------------|-----|----------|-----------------|
| Step       | Description                             | Min | Measured | Max             |
| 6          | Second Harmonic                         |     |          | -90 dBm         |
| 10         | Third Harmonic                          |     |          | -105 dBm        |
| 20         | Third Order Intermodulation Distortion  |     |          | -100 <b>dBm</b> |
|            | 30 MHz input signals, 1 MHz separation  |     |          |                 |
| 21         | Third Order Intermodulation Distortion  |     |          | -100 dBm        |
|            | 30 MHz input signals, 1 MHz separation  |     |          |                 |
| 2 5        | Third Order Intermodulation Distortion  |     |          | -90 dBm         |
|            | 30 MHz input signals, 10 kHz separation |     |          |                 |
| 26         | Third Order Intermodulation Distortion  |     |          | -90 dBm         |
|            | 30 MHz input signals, 10 kHz separation |     |          |                 |
| 34         | Second Order Intermodulation Distortion |     |          | -105 dBm        |
|            | 30 MHz input signals, $(f_2-f_1)$       |     |          |                 |
| 3 5        | Second Order Intermodulation Distortion |     |          | -105 dBm        |
|            | 30 MHz input signals, $(f_1 + f_2)$     |     |          |                 |
|            |                                         |     |          |                 |
# Test 16. Residual FM Test

| Step | 14. | Residual | FM |
|------|-----|----------|----|
|------|-----|----------|----|

| Min | Measured | Max   |  |
|-----|----------|-------|--|
|     |          | 3  Hz |  |

# Test 17. Line-Related Sidebands Test

| Step          |                             | Min | Measured | Max                        |
|---------------|-----------------------------|-----|----------|----------------------------|
| 7             | 120 Hz (100 Hz)             |     |          | -85 dB                     |
|               | 180 Hz (150 Hz)             |     |          | -85 dB                     |
|               | 240 Hz (200 Hz)             |     |          | -85 dB                     |
| 7. Option 400 | 400 Hz<br>800 Hz<br>1200 Hz |     |          | -75 dB<br>-75 dB<br>-75 dB |

# Test 18. Calibrator Amplitude Accuracy Test

# Step 2. CAL OUTPUT Amplitude

| Min       | Measure | d Max     |  |
|-----------|---------|-----------|--|
| -10.3 dBm |         | -9.70 dBm |  |

## Test 19. Fast Sweep Time Accuracy Test (<20 ms)

## Step 11. Fast Sweep Time Accuracy (<20 ms)

| [sweep TIME] | Function Generator Frequency<br>(kHz) | Sweep Time Error<br>(divisions) |
|--------------|---------------------------------------|---------------------------------|
| 5 ms         | 2.00 ±0.02                            |                                 |
| 2 ms         | $5.00 \pm 0.05$                       |                                 |
| 1 ms         | $10.0 \pm 0.1$                        |                                 |
| 200 µs       | $50.0 \pm 0.5$                        |                                 |
| 100 µs       | $100 \pm 1$                           |                                 |

## **Test 20.** 1st LO **Output Amplitude** Test

## Step 4. 1st LO Output Level

| Min   | Measured | Max |
|-------|----------|-----|
| +4 dB | m [      |     |

## **Test 21. Frequency Reference Error Test**

| Step | Description                |  | 1   | Measured | Max  | 1  |
|------|----------------------------|--|-----|----------|------|----|
| 4.   | Frequency (initial)        |  | 10. | MHz      |      |    |
| 5.   | Frequency (after 24 hours) |  | 10. | MHz      |      |    |
| 6.   | Difference between 4 and 5 |  |     | Hz       | 0.01 | Hz |

# Adjustments

| Introduction | The procedures in this section are for the adjustment of the instrument's electrical performance characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Warning      | The procedures require access to the interior of the instrument<br>and therefore should only be performed by qualified service<br>personnel. Refer to <i>Safety Considerations</i> in this introduction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| warning      | 1. Low Voltage Power Supply Adjustments       3-10         2. High Voltage Adjustment (SN 3001A and Below)       3-10         2. High Voltage Adjustment (SN 3004A and Above)       3-10         3. Preliminary Display Adjustment (SN 3001A and Below)       3-10         3. Preliminary Display Adjustment (SN 3001A and Below)       3-10         4. Final Display Adjustments(SN 3001A and Below)       3-10         4. Final Display Adjustments(SN 3004A and Above)       3-10         5. Log Amplifier Adjustments       3-10         6. Video Processor Adjustments       3-10         7. 3 MHz Bandwidth Filter Adjustments       3-10         8. 21.4 MHz Bandwidth Filter Adjustments       3-10         9. 3 dB Bandwidth Adjustments       3-10         10. Step Gain and 18.4 MHz Local Oscillator Adjustments       3-10         11. Down/Up Converter Adjustments       3-10         12. Time Base Adjustment (SN 2840A and Below)       3-10         13. 20 MHz Reference Adjustments       3-10         14. 249 MHz Phase Lock Oscillator Adjustments       3-10         15. 275 MHz Phase Lock Oscillator Adjustments       3-10         16. Second IF Amplifier and Third Converter Adjustments       3-10         17. Pilot Second IF Amplifier Adjustments       3-10         18. Frequency Control Adjustments       3-10 |  |  |  |  |
|              | 24. Track and Hold Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|              | specifications. Before attempting any adjustment, allow the<br>instrument to warm up for one hour. Table 3-1 is a cross reference of<br>Function Adjusted to the related Adjustment procedure. Table 3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

Function Adjusted to the related Adjustment procedure. Table 3-2 lists all adjustable components by name, reference designator, and function.

| Safety<br>Considerations | Although this instrument has been designed in accordance with<br>international safety standards, this manual contains information,<br>cautions, and warnings which must be followed to ensure safe<br>operations and to retain the instrument in safe condition. Service and<br>adjustments should be performed only by qualified service personnel.<br>Adjustments in this section are performed with power supplied<br>to the instrument while protective covers are removed. There<br>are voltages at many points in the instrument which can,<br>if contacted, cause personal injury. Be extremely careful.<br>Adjustment should be performed only by trained service<br>personnel.<br>Power is still applied to this instrument with the LINE switch in<br>STANDBY. There is no OFF position on the LINE switch. Before<br>removing or installing any assembly or printed circuit board,<br>remove the power cord from the rear of both instruments and<br>wait for the MAINS indicators (red LEDs) to go completely out.<br>Capacitors inside the instrument may still be charged even if the<br>instrument has been disconnected from its source of power. |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Warning                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                          | Use a non-metallic tuning tool whenever possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Equipment<br>Required    | The equipment required for the adjustment procedures is listed<br>in Table 1-1, Recommended Test Equipment, at the beginning of<br>this manual. If the test equipment recommended is not available,<br>substitutions may be used if they meet the "Critical Specifications"<br>listed in the table. The test setup used for an adjustment procedure is<br>referenced in each procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Adjustment Tools         | For adjustments requiring a non-metallic tuning tool, use fiber<br>tuning tool HP Part Number 8710-0033. In situations not requiring<br>non-metallic tuning tools, an ordinary small screwdriver or other<br>suitable tool is sufficient. However, it is recommended that you use a<br>non-metallic adjustment tool whenever possible. Never try to force<br>any adjustment control in the analyzer. This is especially critical when<br>tuning variable slug-tuned inductors and variable capacitors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

| Function Adjusted                 | Adjustment Procedure                                    |
|-----------------------------------|---------------------------------------------------------|
| Low Voltage                       | 1. Low Voltage Power Supply Adjustments                 |
| High Voltage                      | 2. High Voltage Adjustment                              |
| CRT Display (Standard)            | 3. Preliminary Display Adjustment                       |
|                                   | 4. Final Display Adjustments                            |
| CRT Display (Digital Storage)     | 25. Digital Storage Display Adjustments                 |
| IF Gains                          | 5. Log Amplifier Adjustments                            |
|                                   | 10. Step Gain and 18.4 MHz Local Oscillator Adjustments |
| Log Scales                        | 6. Video Processor Adjustments                          |
| Bandwidth Amplitudes              | 7. 3 MHz Bandwidth Filter Adjustments                   |
|                                   | 8. 21.4 MHz Bandwidth Filter Adjustments                |
|                                   | 11. Down/Up Converter Adjustments                       |
| 3 dB Bandwidth                    | 9. 3 dB Bandwidth Adjustments                           |
| 10 MHz Internal Time Base         | 12. Time Base Adjustments                               |
| CAL OUTPUT Level                  | 13. 20 MHz Reference Adjustments                        |
| Phase Lock Loops                  | 14. 249 MHz Phase Lock Oscillator Adjustments           |
|                                   | 15. 275 MHz Phase Lock Oscillator Adjustments           |
|                                   | 22. Comb Generator Adjustments                          |
| RF Signal Conversion and RF Gains | 16. Second IF Amplifier Adjustments                     |
|                                   | 17. Pilot Second IF Amplifier Adjustments               |
|                                   | 19. Second Converter Adjustments                        |
| Sweep Times                       | 18. Frequency Control Adjustments                       |
| Frequency Tuning                  | 18. Frequency Control Adjustments                       |
|                                   | 20. 50 MHz Voltage-Tuned Oscillator Adjustments         |
| Frequency Span                    | 18. Frequency Control Adjustments                       |
| START and STOP Frequency          | 18. Frequency Control Adjustments                       |
| FM Span                           | 18. Frequency Control Adjustments                       |
| Frequency Response                | 21. Slope Compensation Adjustment                       |
| Digital Storage Video Processing  | 23. Analog-to-Digital Converter Adjustments             |
|                                   | 24. Track and Hold Adjustments                          |

#### Table 3-1. Adjustment Cross Reference

#### **Factory-Selected Components** Factory-selected components are identified with an asterisk (\*) on the schematic diagram. For most components, the range of their values and functions are listed in Table 3-3, Factory- Selected Components. Part numbers for selected values are located in Table 3-4, HP Part Numbers of Standard Value Replacement Components.

| Related<br>Adjustments                        | Any adjustments which interact with, or are related to, other<br>adjustments are indicated in the adjustments procedures. It is<br>important that adjustments so noted are performed in the order<br>indicated to ensure that the instrument meets specifications.                                                 |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location of Test<br>Points and<br>Adjustments | Illustrations showing the locations of assemblies containing<br>adjustments, and the location of those adjustments within the<br>assemblies, are contained within the adjustment procedures to which<br>they apply. Major assembly and component location illustrations are<br>located at the rear of this manual. |

| Reference  | Adjustment        | Adjustment   | Adjustment Function                                          |  |
|------------|-------------------|--------------|--------------------------------------------------------------|--|
|            |                   | 2            | Adjusts rise and fall times of <b>7</b> aris amplifier pulse |  |
| A1A2D308   | ZUE CAIN          | 3            | Adjusts rise and fall times of Z axis amplifier pulse        |  |
| A1A2R308   | INT GAIN          | 3            | Adjusts lise and fail times of Z axis amplifier pulse.       |  |
| AIAZKJIJ   |                   | 5            | control                                                      |  |
| A1A2R409   | FOCUS COMP        | 3            | Corrects focus for beam intensity.                           |  |
| A1A2R426   | T/B FOC           | C C          | Magnitude of top/bottom focus correction.                    |  |
| A1A2R427   | T/B CTR           |              | Centering of top/bottom focus correction.                    |  |
| A1A2R437   | R/L FOC           |              | Magnitude of right/left focus correction.                    |  |
| A1A2R440   | R/L CTR           |              | Centering of right/left focus correction.                    |  |
| A1A2R512   | ORTHO             | 3            | Sets orthogonality of CRT.                                   |  |
| A1A2R513   | 3 D               | 3            | Adjusts spot size.                                           |  |
| A1A2R515   | INTENSITY         | 3            | Sets adjustment range of front-panel INTENSITY               |  |
|            | LIMIT             |              | control.                                                     |  |
| A1A2R517   | ASTIG             | 3            | Adjusts astigmatism of CRT.                                  |  |
|            |                   |              |                                                              |  |
| A1A3R14    | FOCUS LIMIT       | 3            | Coarse adjusts CRT focus.                                    |  |
|            |                   |              |                                                              |  |
| A1A4C204   | C204              | 3            | Adjusts rise and fall times of X deflection amplifier        |  |
| 4.1.4.0000 | 0000              | 2            | pulse.                                                       |  |
| A1A4C209   | C209              | 3            | Adjusts rise and fail times of X deflection amplifier        |  |
| A1A/R997   | X POSN            | 3            | Adjusts horizontal position of trace                         |  |
| A1A4R219   | X GAIN            | 34           | Adjusts horizontal gain of trace                             |  |
| A1A4R217   | XHE GAIN          | 3            | Adjusts rise and fall times or X deflection amplifier        |  |
| AIAHAII    |                   | 5            | pulse.                                                       |  |
|            |                   |              | r                                                            |  |
| A1A5C104   | C104              | 3            | Adjusts rise and fall times of Y deflection amplifier        |  |
|            |                   |              | pulse.                                                       |  |
| A1A5C109   | C109              | 3            | Adjusts rise and fall times of Y deflection amplifier        |  |
|            |                   |              | pulse.                                                       |  |
| A1A5R127   | Y POSN            | 3,4          | Adjusts vertical position of trace.                          |  |
| A1A5R120   | Y GAIN            | 3,4          | Adjusts vertical gain of trace.                              |  |
| A1A5R117   | YHF GAIN          | 3,4          | Adjusts rise and fall times of Y deflection amplifier        |  |
|            |                   |              | pulse.                                                       |  |
| A 1 A CDO  | 15 ADI            | 1            | A limite + 15 V do morelle coltant                           |  |
| AIA6R9     | + 15 ADJ          | 1            | Adjusts + 15 v dc supply voltage.                            |  |
| AIA6RI03   | HV ADJUSI         | 2            | Adjusts CRT nign voltage.                                    |  |
|            |                   |              |                                                              |  |
|            | For Serial Prefix | x 3001A and  | <b>below</b> , see back of table for                         |  |
|            | exceptions to A1  | A2 through A | 1A6.                                                         |  |
|            |                   |              |                                                              |  |

Table 3-2. Adjustable Components

| Reference<br>Designator | Adjustment<br>Name | Adjustment<br>Number | Adjustment Function                                   |
|-------------------------|--------------------|----------------------|-------------------------------------------------------|
| A3A1R34                 | SWEEP OFFSET       | 25                   | Adjusts digital sweep to begin at left edge of        |
|                         |                    |                      | graticule.                                            |
| A3A2R12                 | LL THRESH          | 25                   | Adjusts point at which graticule lines switch from    |
|                         |                    |                      | short                                                 |
|                         |                    |                      | to long lines.                                        |
| A3A2R50                 | X S&H              | 25                   | Adjusts horizontal sample and hold pulse.             |
| A3A2R51                 | Y S&H              | 5                    | Adjusts vertical sample and hold pulse.               |
|                         |                    |                      |                                                       |
| A3A3R1                  | X EXP              | 25                   | Adjusts horizontal position of annotation.            |
| A3A3R2                  | Y EXP              | 25                   | Adjusts vertical position of annotation.              |
| A3A3R4                  | X GAIN             | 25                   | Adjusts horizontal gain of graticule lines.           |
| A3A3R5                  | Y GAIN             | 25                   | Adjusts vertical gain of graticule lines.             |
| A3A3R6                  | XLL                | 25                   | Adjusts horizontal long lines on graticule            |
| 101000                  |                    | 25                   | information.                                          |
| A3A3R7                  | XSL                | 25                   | Adjusts horizontal short lines on graticule           |
| 494900                  | VCI                | 25                   | Information.                                          |
| ASASRO                  |                    | 25                   | Adjusts vertical long lines on graticule information. |
| ASASR9                  | I LL<br>VOS        | 25                   | Adjusts bettern line of graticule to align with fast  |
| A3A3K43                 | 105                | 25                   | Aujusts bottom line of graticule to aligh with last   |
|                         |                    |                      | sweep signal.                                         |
| A3A8R5                  | GAIN               | 23                   | Adjusts high end of digitized sweep.                  |
| A3A8R6                  | OFES               | 23                   | Adjusts low end of digitized sweep.                   |
|                         | 0115               |                      |                                                       |
| A3A9R36                 | OFS NEG            | 24                   | Adjusts offset of negative peak detect mode.          |
| A3A9R39                 | GPOS               | 24                   | Adjusts gain for positive peak detect mode.           |
| A3A9R44                 | OFS POS            | 24                   | Adjusts offset of positive peak detect mode.          |
| A3A9R52                 | GNEG               | 24                   | Adjusts gain for negative peak detect mode.           |
| A3A9R57                 | T/H GAIN           | 24                   | Adjusts overall gain of track and hold.               |
| A3A9R59                 | (T/H) OFS          | 24                   | Adjusts overall offset of track and hold.             |
|                         |                    |                      |                                                       |
| A4A1R2                  | LG OS              | 6                    | Adjusts linear gain offsets.                          |
| A4A1R14                 | OS                 | 6                    | Adjusts video processor offset.                       |
| A4A1R32                 | ZERO               | 6                    | Adjusts low end of video processor sweep.             |
| A4A1R36                 | FS                 | 6                    | Adjusts high end of video processor sweep.            |
|                         |                    |                      |                                                       |
| A4A2R14                 | LG20               | 5                    | Adjusts 20 dB linear gain step.                       |
| A4A2R79                 | ZERO               | 5                    | Adjusts log amplifier offset.                         |
| A4A2R61                 | -12 VTV            | 5                    | Adjusts log amplifier tuning voltage.                 |
|                         |                    |                      |                                                       |
| A4A3C55                 | CTR                | 5                    | Adjusts log amplifier center to IF.                   |
| A4A3R67                 | AMPTD              | 5                    | Adjusts amplitude of log amplifier bandpass filter.   |
| A4A3R83                 | LG10               | 5                    | Adjusts 10 dB linear gain step.                       |

| Table 3-2. Adju | stable Components | (continued) |
|-----------------|-------------------|-------------|
|-----------------|-------------------|-------------|

| Reference<br>Designator | Adjustment<br>Name  | Adjustment<br>Number | Adjustment Function                                                                                      |
|-------------------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------|
| A4A4C9                  | SYM                 | 8                    | Centers A4A4 bandwidth filter crystal pole #1                                                            |
| A4A4C10                 |                     | 0                    | Symmetry.                                                                                                |
| A4A4019                 |                     | 8                    | Centers A4A4 bandwidth filter arrested role #1.                                                          |
| A4A4020                 | CIR<br>SVM          | 8                    | Centers A4A4 bandwidth filter crystal pole #1.                                                           |
| A4A4059                 | 51111               | 0                    | symmetry.                                                                                                |
| A4A4C41                 | LC DIP              | 8                    | Dips A4A4 bandwidth filter LC pole #1.                                                                   |
| A4A4C43                 | LC DIP              | 8                    | Dips A4A4 bandwidth filter LC pole #2.                                                                   |
| A4A4C65                 | SYM                 | 8                    | Adjusts A4A4 bandwidth filter crystal pole #3 symmetry.                                                  |
| A4A4C67                 | LC CTR              | 8                    | Centers A4A4 bandwidth filter LC pole #2.                                                                |
| A4A4C73                 | CTR                 | 8                    | Centers A4A4 bandwidth filter crystal pole #3.                                                           |
| A4A4C74                 | CTR                 | 8                    | Centers A4A4 bandwidth filter crystal pole #2.                                                           |
| A4A4R43                 | LC                  | 8                    | Adjusts LC filter amplitudes.                                                                            |
| A4A4R49                 | XTAL                | 8                    | Adjusts crystal filter amplitudes.                                                                       |
| A4A5C10                 | FREQ ZERO<br>COARSE | 10                   | Coarse-adjusts 18.4 MHz Local Oscillator to set<br>adjustment range of front-panel FREQ ZERO<br>control. |
| A4A5R2                  | +10V ADJ            | 10                   | Adjusts + 10V temperature compensation supply.                                                           |
| A4A5R32                 | SG10                | 10                   | Adjusts 10 dB step gain.                                                                                 |
| A4A5R33                 | CAL                 | 10                   | Adjusts IF gain.                                                                                         |
| A4A5R44                 | SG20-1              | 10                   | Adjusts first 20 dB step gain.                                                                           |
| A4A5R51                 | VR                  | 10                   | Adjusts variable step gain.                                                                              |
| A4A5R54                 | SG20-2              | 10                   | Adjusts second 20 dB step gain.                                                                          |
| A4A6A1C31               | 18.4 MHz NULL       | 10                   | Nulls 18.4 MHz local oscillator signal.                                                                  |
| A4A6A1R29               | WIDE GAIN           | 11                   | Adjusts gain of down/up converter.                                                                       |
|                         |                     |                      | 5 C I                                                                                                    |
| A4A7C6                  | SYM                 | 7                    | Adjusts 3 MHz bandwidth filter pole #1 symmetry.                                                         |
| A4A7C7                  | CTR                 | 7                    | Centers 3 MHz bandwidth filter pole #1.                                                                  |
| A4A7C13                 | РК                  | 7                    | Peaks 3 MHz bandwidth filter pole #2.                                                                    |
| A4A7C14                 | SYM                 | 7                    | Adjusts 3 MHz bandwidth filter pole #2 symmetry.                                                         |
| A4A7C15                 | CTR                 | 7                    | Centers 3 MHz bandwidth filter pole #2.                                                                  |
| A4A7C22                 | РК                  | 7                    | Peaks 3 MHz bandwidth filter pole #3.                                                                    |
| A4A7C23                 | SYM                 | 7                    | Adjusts 3 MHz bandwidth filter pole #3 symmetry.                                                         |
| A4A7C24                 | CTR                 | 7                    | Centers 3 MHz bandwidth filter pole #3.                                                                  |
| A4A7C31                 | РК                  | 7                    | Peaks 3 MHz bandwidth filter pole #4.                                                                    |
| A4A7C32                 | SYM                 | 7                    | Adjusts 3 MHz bandwidth filter pole #4 symmetry.                                                         |
| A4A7C33                 | CTR                 | 7                    | Centers 3 MHz bandwidth filter pole #4.                                                                  |
| A4A7C40                 | РК                  | 7                    | Peaks 3 MHz bandwidth filter pole #5.                                                                    |
| A4A7C41                 | SYM                 | 7                    | Adjusts 3 MHz bandwidth filter pole #5 symmetry.                                                         |

Table 3-2. Adjustable Components (continued)

| Reference<br>Designator | Adjustment<br>Name    | Adjustment<br>Number | Adjustment Function                                          |  |
|-------------------------|-----------------------|----------------------|--------------------------------------------------------------|--|
| A4A7C42                 | CTR                   | 7                    | Centers 3 MHz bandwidth filter pole #5.                      |  |
| A4A7R30                 | 10 Hz AMPTD           | 7                    | Adjusts 3 MHz bandwidth filter 10 Hz bandwidth amplitude.    |  |
| A4A7R41                 | 10 Hz AMPTD           | 7                    | Adjusts 3 MHz bandwidth filter 10 Hz bandwidth amplitude.    |  |
| A4A8C13                 | SYM                   | 8                    | Adjusts A4A8 bandwidth filter crystal pole #1 symmetry.      |  |
| A4A8C29                 | CTR                   | 8                    | Centers A4A8 bandwidth filter crystal pole #1.               |  |
| A4A8C32                 | LC CTR                | 8                    | Centers A4A8 bandwidth filter LC pole #1.                    |  |
| A4A8C42                 | SYM                   | 8                    | Adjusts A4A8 bandwidth filter crystal pole #2 symmetry.      |  |
| A4A8C44                 | CTR                   | 8                    | Centers A4A8 bandwidth filter crystal pole #2.               |  |
| A4A8C46                 | LC CTR                | 8                    | Centers A4A8 bandwidth filter LC pole #2.                    |  |
| A4A8C66                 | LC DIP                | 8                    | Dips A4A8 bandwidth filter LC pole #1.                       |  |
| A4A8C67                 | LC DIP                | 8                    | Dips A4A8 bandwidth filter LC pole #2.                       |  |
| A4A8R6                  | A20 dB                | 8                    | Adjusts attenuation of 21.4 MHz bandwidth filter 20 dB step. |  |
| A4A8R7                  | A10 dB                | 8                    | Adjusts attenuation of 21.4 MHz bandwidth filter 10 dB step. |  |
| A4A8R35                 | LC                    | 8                    | Adjusts LC filter amplitudes.                                |  |
| A4A8R40                 | XTAL                  | 8                    | Adjusts crystal filter amplitudes.                           |  |
| A4A9R60                 | 3 MHz                 | 9                    | Adjusts 3 MHz bandwidth.                                     |  |
| A4A9R61                 | 1 MHz                 | 9                    | Adjusts 1 MHz bandwidth.                                     |  |
| A4A9R62                 | 300 kHz               | 9                    | Adjusts 300 kHz bandwidth.                                   |  |
| A4A9R65                 | 10 kHz                | 9                    | Adjusts 10 kHz bandwidth.                                    |  |
| A4A9R66                 | 3 <b>k</b> H <b>z</b> | 9                    | Adjusts 3 kHz bandwidth.                                     |  |
| A4A9R73                 | 1 kHz                 | 9                    | Adjusts 1 kHz bandwidth (Option 067).                        |  |
| A6A3A1C8                | C8                    | 20                   | Adjusts 321.4 MHz bandpass filter.                           |  |
| A6A3A1C9                | C9                    | 20                   | Adjusts 321.4 MHz bandpass filter.                           |  |
| A6A3A1C10               | C10                   | 20                   | Adjusts 321.4 MHz bandpass filter.                           |  |
| A6A3A1C11               | C11                   | 20                   | Adjusts 321.4 MHz bandpass filter.                           |  |
| A6A3A1C12               | C12                   | 20                   | Adjusts 321.4 MHz bandpass filter.                           |  |
| A6A3A1C23               | 10.7 MHz<br>NOTCH     | 20                   | Adjusts 10.7 MHz notch filter.                               |  |
| A6A9A1C29               | TRIPLER<br>MATCH      | 18                   | Adjusts for maximum 300 MHz output.                          |  |
| A6A9A1R11               | CAL OUTPUT            | 19                   | Adjusts output level of CAL OUTPUT.                          |  |
| A6A9A1R38               | BALANCE               | 21                   | Adjusts phase lock tune voltage level.                       |  |

Table 3-2. Adjustable Components (continued)

| Reference  | Adjustment | Adjustment | t Adjustment Function                          |  |
|------------|------------|------------|------------------------------------------------|--|
| Designator | Name       | Number     |                                                |  |
| A6A10R1    | IO         | 21         | Adjusts 3.3 GHz oscillator drive current.      |  |
| A6A10R9    | VE         | 21         | Adjusts mixer bias 18.6 to 22 GHz.             |  |
| A6A10R12   | VD         | 21         | Adjusts mixer bias 12.5 to 18.6 GHz.           |  |
| A6A10R15   | v c        | 21         | Adjusts mixer bias 5.8 to 12.5 GHz.            |  |
| A6A10R18   | VB         | 21         | Adjusts mixer bias 2 to 5.8 GHz.               |  |
| A6A10R21   | GA         | 21         | Adjusts IF gain 0.01 to 2.5 GHz.               |  |
| A6A10R23   | GB         | 21         | Adjusts IF gain 2 to 5.8 GHz.                  |  |
| A6A10R25   | GC         | 21         | Adjusts IF gain 5.8 to 12.5 GHz.               |  |
| A6A10R27   | GD         | 21         | Adjusts IF gain 12.5 to 18.6 GHz.              |  |
| A6A10R29   | GE         | 21         | Adjusts IF gain 18.6 to 22 GHz.                |  |
| A6A10R31   | LR1        | 21         | Adjusts linearity 5.8 to 12.5 GHz (high end).  |  |
| A6A10R34   | LR2        | 21         | Adjusts linearity 12.5 to 18.6 GHz (low end).  |  |
| A6A10R37   | LR3        | 21         | Adjusts linearity 12.5 to 18.6 GHz (high end). |  |
| A6A10R40   | LB1        | 21         | Adjusts linearity 5.8 to 12.5 GHz.             |  |
| A6A10R41   | LB2        | 21         | Adjusts linearity 12.5 to 18.6 GHz (low end).  |  |
| A6A10R42   | LB3        | 21         | Adjusts linearity 12.5 to 18.6 GHz (high end). |  |
| A6A10R70   | LB4        | 21         | Adjusts linearity 18.6 to 22 GHz.              |  |
| A6A10R76   | LR4        | 21         | Adjusts linearity 18.6 to 22 GHz (high end).   |  |
| A6A10R81   | GF         | 21         | Adjusts IF gain in external mixer band.        |  |
|            |            |            |                                                |  |
| A6A11R48   | Al         | 21         | Adjusts flatness 0.01 to 2.5 GHz (low end).    |  |
| A6A11R51   | B1         | 21         | Adjusts flatness 2 to 5.8 GHz (low end).       |  |
| A6A11R54   | Cl         | 21         | Adjusts flatness 5.8 to 12.5 GHz (low end).    |  |
| A6A11R57   | D1         | 21         | Adjusts flatness 12.5 to 18.6 GHz (low end).   |  |
| A6A11R60   | E1         | 21         | Adjusts flatness 18.6 to 22 GHz (low end).     |  |
| A6A11R66   | A2         | 21         | Adjusts flatness 0.01 to 2.5 GHz (high end).   |  |
| A6A11R69   | B2         | 21         | Adjusts flatness 2 to 5.8 GHz (high end).      |  |
| A6A11R72   | C2         | 21         | Adjusts flatness 5.8 to 12.5 GHz (high end).   |  |
| A6A11R75   | D2         | 21         | Adjusts flatness 12.5 to 18.6 GHz (high end).  |  |
| A6A11R78   | E2         | 21         | Adjusts flatness 18.6 to 22 GHz (high end).    |  |
| A6A11R84   | GAIN       | 21         | Adjusts overall slope gain.                    |  |
|            |            |            |                                                |  |
| A6A12R24   | D3         | 21         | Adjusts auto-sweep tracking.                   |  |
| A6A12R25   | D2         | 21         | Adjusts auto-sweep tracking.                   |  |
| A6A12R26   | Dl         | 21         | Adjusts auto-sweep tracking.                   |  |
| A6A12R63   | 5.8 GHz    | 21         | Adjusts tracking at 5.8 GHz (2 to 5.8).        |  |
| A6A12R66   | 2 GHz      | 21         | Adjusts tracking at 2 GHz (2 to 5.8).          |  |

Table 3-2. Adjustable Components (continued)

| Reference<br>Designator | Adjustment<br>Name  | Adjustment<br>Number | Adjustment Function                            |
|-------------------------|---------------------|----------------------|------------------------------------------------|
| A6A12R82                | Е                   | 21                   | Adjusts tracking at 18.6 GHz (18.6 to 22).     |
| A6A12R83                | D                   | 21                   | Adjusts tracking at 12.5 GHz (12.5 to 18.6).   |
| A6A12R84                | С                   | 21                   | Adjusts tracking at 5.8 GHz (5.8 to 12.5).     |
| A6A12R85                | В                   | 21                   | Adjusts tracking at 4 GHz (2 to 5.8).          |
| A6A12R98                | ZERO                | 21                   | Sets SWEEP + TUNE OUT zero indication.         |
| A6A12R113               | -9V                 | 21                   | Sets -9 V and +9 V dc reference supplies.      |
|                         |                     |                      |                                                |
| A7A2C1                  | 400 MHz OUT         | 14                   | Peaks 400 MHz output signal.                   |
| A7A2C2                  | 400 MHz OUT         | 14                   | Peaks 400 MHz output signal.                   |
| A7A2C3                  | 400 MHz OUT         | 14                   | Peaks 400 MHz output signal.                   |
| A7A2C4                  | 100 MHz             | 14                   | Adjusts VCXO frequency.                        |
|                         |                     |                      |                                                |
| A7A4A1A1C1              | FREQ ADJUST         | 15                   | Adjusts VCO frequency.                         |
| A7A4A1A1C5              | PWR ADJUST          | 15                   | Adjusts VCO output level.                      |
| 1909                    | 1 99V ADILIST       | 1                    | Sets + 22 V de supply voltage                  |
| AON2                    | $\pm 22$ V ADJUST   | 1                    | Sets + 22 V ut supply voltage.                 |
| A10A1L7                 | 50 kHz NULL         | 17                   | Nulls 50 kHz output.                           |
| A10A1L8                 | 50 kHz NULL         | 17                   | Nulls 50 kHz output.                           |
|                         |                     |                      | I I I I I I I I I I I I I I I I I I I          |
| A10A3L11                | 165 MHz NULL        | 17                   | Nulls signal at 165 MHz.                       |
| A10A3L12                | 160 MHz NULL        | 17                   | Nulls signal at 160 MHz.                       |
| A10A3L13                | 170 MHz NULL        | 17                   | Nulls signal at 170 MHz.                       |
|                         |                     |                      |                                                |
| A10A4C50                | 160 MHz PEAK        | 17                   | Peaks 160 MHz output signal.                   |
| A10A4L11                | VCO ADJ             | 17                   | Adjusts PLL3 VCO frequency.                    |
| A10A4L16                | 160 MHz PEAK        | 17                   | Peaks 160 MHz output signal.                   |
| A10A4L17                | 160 MHz PEAK        | 17                   | Peaks 160 MHz output signal.                   |
|                         |                     |                      |                                                |
| A10A5R2                 | 150 MHz ADJ         | 17                   | Adjusts VCO TUNE voltage at 150 MHz.           |
| A10A5R4                 | 100 MHz ADJ         | 17                   | Adjusts VCO TUNE voltage at 100 MHz.           |
| A10A8R4                 | .2 MHz              | 17                   | Sets discriminator pretune at 0.2 MHz.         |
| A10A8R9                 | .3 MHz              | 17                   | Sets discriminator pretune at 0.3 MHz.         |
| A10A8R25                | .5 MHz SCAN         | 17                   | Adjusts frequency span accuracy (20/30 sweep). |
| A10A8R27                | 5 MHz SCAN          | 17                   | Adjusts frequency span accuracy (20/30 sweep)  |
|                         |                     | - '                  |                                                |
| Al1A2R2                 | <b>ATE BIAS ADJ</b> | 16                   | Adjusts CIA amplifier gate biasing.            |

Table 3-2. Adjustable Components (continued)

| Reference<br>Designator | Adjustment<br>Name                     | Adjustment<br>Number | Adjustment Function                                       |
|-------------------------|----------------------------------------|----------------------|-----------------------------------------------------------|
| A11A5C1                 | IMPEDANCE<br>MATCH                     | 16                   | Optimizes sampler output.                                 |
| Al 1A5C2                | IMPEDANCE<br>MATCH                     | 16                   | Optimizes sampler output.                                 |
| Al 1A5R1                | IF GAIN                                | 13                   | Adjusts level of 30 MHz output.                           |
| A16R62                  | OFFSET                                 | 13                   | Adjusts scan ramp offset.                                 |
| A16R67                  | SWEEPTIME                              | 13                   | Adjusts time of sweep ramp.                               |
| A16R68                  | AUX                                    | 13                   | Adjusts AUX OUT sweep ramp.                               |
| A16R71                  | GAIN 2                                 | 13                   | Adjusts frequency span accuracy (YTO sweep).              |
| A16R72                  | GAIN 1                                 | 13                   | Adjusts frequency span accuracy (YTO sweep).              |
| A17R50                  | +20V ADJ                               | 1                    | Adjusts +20 V dc supply voltage.                          |
| A19R9                   | -12.6 VR                               | 13                   | Adjusts -12.6 V reference for YTO dAC high end (6.2 GHz). |
| A19R19                  | OFFSET                                 | 13                   | Adjusts summing amplifier offset.                         |
| A19R32                  | 2.5 GHz SPAN                           | 13                   | Adjusts 5.8 GHz switchpoint overlap.                      |
| A19R41                  | 25 GHz SPAN<br>OFFSET                  | 13                   | Adjusts 25 GHz span offset.                               |
| A19R43                  | 25 GHz SPAN                            | 13                   | Adjusts 5.8 and 12.5 GHz switchpoint overlaps.            |
| A19R50                  | +10 VR                                 | 13                   | Adjusts HOV reference for YTO DAC low end (2 GHz).        |
| A19R56                  | 2.5 GHz SPAN<br>OFFSET                 | 13                   | Adjusts 2.5 GHz span offset.                              |
| A20R25                  | 6.15 GHz                               | 13                   | Sets high-end frequency of YTO.                           |
| A20R34                  | 2.3 GHz                                | 13                   | Sets low-end frequency YTO.                               |
| A22A2                   | FREQ ADJ                               | 12                   | Adjusts reference oscillator frequency.                   |
|                         | For <b>Serial Prefi</b><br>exceptions. | x 2737A and          | below, see back of table for A22                          |
|                         |                                        |                      |                                                           |
| IF Serial P             | refix 3001A and                        | Below                |                                                           |

 Table 3-2. Adjustable Components (continued)

| A1A2C10 | C10        | 3 | Adjusts rise and fall times of Z axis amplifier pulse. |
|---------|------------|---|--------------------------------------------------------|
| A1A2R5  | INTENSITY  | 3 | Sets adjustment range of front-panel INTENSITY         |
|         |            |   | control.                                               |
|         | GAIN       |   |                                                        |
| A1A2R22 | HF GAIN    | 3 | Adjusts rise and fall times of Z axis amplifier pulse. |
| A1A2R30 | FOCUS GAIN | 3 | Coarse adjusts CRT focus; sets range of front-panel    |
|         |            |   | FOCUS control.                                         |

| <b>Reference</b><br>Designator | Adjustment<br>Name | Adjustment<br>Number | Adjustment Function                                          |
|--------------------------------|--------------------|----------------------|--------------------------------------------------------------|
| A1A2R31                        | ORTHO              | 3                    | Sets orthogonality of CRT.                                   |
| A1A2R32                        | PATTERN            | 3                    | Adjusts for optimum rectangular shape of CRT display.        |
| A1A2R35                        | INTENSITY          | 3                    | Sets adjustment range of front-panel INTENSITY control.      |
|                                | LIMIT              |                      |                                                              |
| A1A2R36                        | ASTIG              | 3                    | Adjusts astigmatism of CRT.                                  |
| A1A2R30                        | FOCUS GAIN         | 4                    | Adjusts for optimum focus of CRT display.                    |
| A1A3R14                        | FOCUS LIMIT        | 3                    | Coarse adjusts CRT focus.                                    |
| A1A4C10                        | C10                | 3                    | Adjusts rise and fall times of X deflection amplifier pulse. |
| A1A4C11                        | C11                | 3                    | Adjusts rise and fall times of X deflection amplifier pulse. |
| A1A4R7                         | X POSN             | 3                    | Adjusts horizontal position of trace.                        |
| A1A4R27                        | X GAIN             | 3,4                  | Adjusts horizontal gain of trace.                            |
| A1A4R28                        | HFGAIN             | 3                    | Adjusts rise and fall times or X deflection amplifier pulse. |
| A1A5C10                        | C10                | 3                    | Adjusts rise and fall times of Y deflection amplifier pulse. |
| A1A5C11                        | C11                | 3                    | Adjusts rise and fall times of Y deflection amplifier pulse. |
| A1A5R7                         | Y POSN             | 3,4                  | Adjusts vertical position of trace.                          |
| A1A5R27                        | Y GAIN             | 3,4                  | Adjusts vertical gain of trace.                              |
| A1A5R28                        | HF GAIN            | 3,4                  | Adjusts rise and fall times of Y deflection amplifier pulse. |
| A1A6R9                         | + 15 SV ADJ        | 1                    | Adjusts + 15 V dc supply voltage.                            |
| A1A6R32                        | HV ADJUST          | 2                    | Adjusts CRT high voltage.                                    |
| A3A8R9                         | FS                 | 23                   | Adjusts high end of digitized sweep.                         |
| A3A8R14                        | ZERO               | 23                   | Adjusts low end of digitized sweep.                          |
| IF Serial Pi                   | refix 2637A and    | Below                |                                                              |
| A22                            | COARSE             | 12                   | Coarse-adjusts reference oscillator frequency.               |
| A22                            | FINE               | 12                   | Fine-adjusts reference oscillator frequency.                 |

 Table 3-2. Adjustable Components (continued)

| Table 3 | - <b>3. F</b> | actory-S | elected | l Com | ponents |
|---------|---------------|----------|---------|-------|---------|
|---------|---------------|----------|---------|-------|---------|

| <b>Reference</b><br><b>Designator</b> | Adjustment<br>Procedure | Range of Values<br>(Ω or pF) | Function of Component                                                    |
|---------------------------------------|-------------------------|------------------------------|--------------------------------------------------------------------------|
| A1A2R9                                | 3                       | 2.87 K to 6.19 K             | Sets intensity level.                                                    |
| A3A1R72                               |                         | 19.6 K to 42.2 K             | Sets intensity level.                                                    |
| A3A2R17                               |                         | 121 K to 162 K               | Sets intensity level.                                                    |
| A3A2R21                               |                         | 10.0 K to 26.1 K             | Sets intensity level.                                                    |
| A3A3C27                               |                         | Open or 1.0-10.0             | Compensates for feedthrough of INTG signal to U1.                        |
| A3A3C32                               |                         | 1.0 to 10.0                  | Compensates for feedthrough of INTG signal to U11.                       |
| A3A3R47                               |                         | 5.0 K to 12.5 K              | Compensates for DAC ladder resistance.                                   |
| A3A3R48                               |                         | 5.0 K to 12.5 K              | Compensates for DAC ladder resistance.                                   |
|                                       |                         |                              |                                                                          |
| A4A1R10                               |                         | 562 to 1.33 K                | Sets adjustment range of A4A1R36 FS                                      |
| A4A1R67                               |                         | 56.2 K to 825 K              | Compensates for ON resistance of A4A1Q6                                  |
|                                       |                         |                              |                                                                          |
| A4A2R18                               | 5                       | 68.1 to 178                  | Sets adjustment range of LG20.                                           |
| A4A2R22                               |                         | 1.96 K to 5.11 K             | Adjusts log fidelity.                                                    |
| A4A2R24                               |                         | 1 K to 31.6 K                | Log fidelity.                                                            |
| A4A2R36                               |                         | 90.9 to 237                  | Adjusts overall linear gain.                                             |
| A4A2R62                               | 5                       | 16.2 to 46.4                 | Sets adjustment range of ATTEN.                                          |
| A4A2R86                               |                         | 100 to OPEN                  | Temperature compensation                                                 |
| A4A2R88                               |                         | 1 K to OPEN                  | Temperature compensation                                                 |
| A4A2R89                               |                         | 1 K to OPEN                  | Temperature compensation                                                 |
| A4A2R96                               |                         | 1 K to OPEN                  | Temperature compensation                                                 |
| A4A2R97                               |                         | 1 K to OPEN                  | Temperature compensation                                                 |
| A4A2R99                               |                         | 1 K to OPEN                  | Temperature compensation                                                 |
| A4A3C51                               |                         | 390 to 680                   | Adjusts bandpass filter shape in wide bandwidths (> $100 \text{ kHz}$ ). |
| A4A3C52                               | 5                       | OPEN or 5.6-15.0             | Sets adjustment range of CTR.                                            |
| A4A3C53                               | 5                       | 91 to 130                    | Sets adjustment range of CTR.                                            |
| A4A3R15                               |                         | 10.0 to 82.5                 | Log fidelity                                                             |
| A4A3R25                               |                         | 19.6 to 82.5                 | Log fidelity                                                             |
| A4A3R29                               |                         | 51.1 to 1 K                  | Log fidelity                                                             |
| A4A3R35                               |                         | 10.0 to 61.9                 | Log fidelity                                                             |
| A4A3R38                               |                         | 61.9 to 1.96 K               | Log fidelity                                                             |
| A4A3R47                               |                         | 2.15 K to 13.3 K             | Log fidelity                                                             |
| A4A3R54                               | 5                       | 51.1 to 133                  | Sets adjustment range of LG10.                                           |
| A4A3R66                               | 5                       | 46.4 K to 215 K              | Sets adjustment range of AMPTD.                                          |

| Reference<br>Designator | Adjustmenl<br>Procedure | Range of Values<br>(Ω or pF) | Function of Component                        |
|-------------------------|-------------------------|------------------------------|----------------------------------------------|
| A4A3R74                 |                         | 1.78 K to 13.3 K             | Log fidelity                                 |
| A4A3R79                 |                         | 8.25 K to 82.5 K             | Bandpass filter temperature compensation     |
| A4A3R80                 |                         | 1.0 K to 6.81 K              | Bandpass filter temperature compensation     |
| A4A3R81                 |                         | 1 K-OPEN                     | Bandpass filter temperature compensation     |
| A4A4C10                 | 8                       | 1.0 to 8.2                   | Sets adjustment range of SYM.                |
| A4A4C17                 | 8                       | 180 to 270                   | Sets adjustment range of LC CTR.             |
| A4A4C38                 | 8                       | 1.0 to 8.2                   | Sets adjustment range of SYM.                |
| A4A4C66                 | 8                       | 1.0 to 8.2                   | Sets adjustment range of SYM.                |
| A4A4C70                 | 8                       | 180 to 270                   | Sets adjustment range of LC CTR.             |
| A4A4C92                 | 8                       | 180 to 270                   | Sets adjustment range of LC CTR.             |
| A4A4C97                 | 8                       | 180 to 270                   | 5 6                                          |
| A4A4C99                 |                         | 4 to 13                      | Sets adjustment range of center cap.         |
| A4A4C100                |                         | <b>4</b> to 13               | Sets adjustment range of center cap.         |
| A4A4C101                |                         | '4 to 13                     | Sets adjustment range of center cap.         |
| A4A4R3                  |                         | 0 to 9.09                    | Matches amplitude of LC to XTAL bandwidths.  |
| A4A4R16                 |                         | 3.16 K to 8.25 K             | Adjusts LC filter bandwidth.                 |
| A4A4R20                 |                         | 6.19 K to 12.1 K             | Adjusts crystal filter bandwidth.            |
| A4A4R35                 |                         | 383 to 825                   | Matches amplitude of LC to XTAL bandwidths.  |
| A4A4R40                 |                         | 6.19 K to 12.1 K             | Adjusts crystal filter bandwidth.            |
| A4A4R42                 |                         | 1 K to OPEN                  | Sets level of + 10 V TC supply.              |
| A4A4R44                 |                         | 1 K to OPEN                  | Sets level of + 10 V TC supply.              |
| A4A4R45                 |                         | 0 to 100                     | Adjusts bandwidth shape in 10 kHz bandwidth. |
| A4A4R60                 |                         | 3.1 6 K to 8.25 K            | Adjusts LC filter bandwidth.                 |
| A4A4R64                 |                         | 6.19 K to 12.1 K             | Adjusts crystal filter bandwidth.            |
| A4A4R65                 |                         | 909 to 2.73 K                | Adjusts positive feedback.                   |
| A4A4R94                 |                         | 100 K to <b>1M</b>           | Sets adjustment range of LC amplitudes.      |
| A4A5C9                  | 10                      | 0-16                         | Sets adjustment range of FREQ ZERO COARSE.   |
| A4A5R10                 | 11                      | 1.62 K to 2.61 K             | Sets 18.4 MHz Local Oscillator power.        |
| A4A5R62                 | 10                      | 1.33 K to 3.48 K             | Adjusts A8dB step.                           |
| A4A5R70                 | 10                      | 472 to 1.62 K                | Adjust A4dB step.                            |
| A4A5R86                 | 10                      | 215 to OPEN                  | Adjusts A2dB step.                           |
| A4A6A2R33               |                         | 42.2 to 75.0                 | Adjusts level of 3 MHz output.               |
| A4A7C5                  |                         | 56 to 82                     | Centers first pole.                          |
| A4A7C12                 | 7                       | 56 to 82                     | Sets adjustment range of second pole P K.    |
| A4A7C21                 | 7                       | 56 to 82                     | Sets adjustment range of third pole P K.     |
| A4A7C30                 | 7                       | 56 to 82                     | Sets adjustment range of fourth pole P K.    |
| A4A7C39                 | 7                       | 56 to 82                     | Sets adjustment range of fifth pole P K.     |
| A4A7C93                 | 7                       | 1.5 to 12.0                  | Centers first pole.                          |
| A4A7R12                 |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.            |

Table 3-3. Factory-Selected Components (continued)

Table 3-3. Factory-Selected Components (continued)

| <b>Reference</b><br>Designator | Adjustment<br>Procedure | Range of Values<br>(Ω or pF) | Function of Component                |
|--------------------------------|-------------------------|------------------------------|--------------------------------------|
| A4A7R13                        |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.    |
| A4A7R23                        |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.    |
| A4A7R24                        |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.    |
| A4A7R34                        |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.    |
| A4A7R35                        |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.    |
| A4A7R45                        |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.    |
| A4A7R46                        |                         | 10.0 K to 17.8 K             | Adjusts crystal filter bandwidth.    |
| A4A7R56                        |                         | 7.50 K to 13.3 K             | Adjusts crystal filter bandwidth.    |
| A4A7R57                        |                         | 7.50 K to 13.3 K             | Adjusts crystal filter bandwidth.    |
| A4A7R60                        | 10                      | 38.3 to 68.1                 | Compensates for gain of A4A6A1.      |
| A4A7R66                        |                         | 38.3 to 68.1                 | Adjusts crystal filter bandwidth.    |
| A4A7R68                        |                         | 100 to 178                   | Adjusts crystal filter bandwidth.    |
| A4A7R70                        |                         | 383 to 681                   | Adjusts crystal filter bandwidth.    |
| A4A7R72                        |                         | 1.47 K to 2.61 K             | Adjusts crystal filter bandwidth.    |
| A4A7R74                        |                         | 38.3 to 68.1                 | Adjusts crystal filter bandwidth.    |
| A4A7R76                        |                         | 100 to 178                   | Adjusts crystal filter bandwidth.    |
| A4A7R78                        |                         | 383 to 681                   | Adjusts crystal filter bandwidth.    |
| A4A7R80                        |                         | 1.47 K to 2.61 K             | Adjusts crystal filter bandwidth.    |
| A4A7R82                        |                         | 38.3 to 68.1                 | Adjusts crystal filter bandwidth.    |
| A4A7R84                        |                         | 100 to 178                   | Adjusts crystal filter bandwidth.    |
| A4A7R86                        |                         | 383 to 681                   | Adjusts crystal filter bandwidth.    |
| A4A7R88                        |                         | 1.47 K to 2.61 K             | Adjusts crystal filter bandwidth.    |
| A4A7R90                        |                         | 3.83 to 68.1                 | Adjusts crystal filter bandwidth.    |
| A4A7R92                        |                         | 100 to 178                   | Adjusts crystal filter bandwidth.    |
| A4A7R94                        |                         | 383 to 681                   | Adjusts crystal filter bandwidth.    |
| A4A7R96                        |                         | 1.47 K to 2.61 K             | Adjusts crystal filter bandwidth.    |
| A4A7R98                        |                         | 3.83 to 68.1                 | Adjusts crystal filter bandwidth.    |
| A4A7R100                       |                         | 100 to 178                   | Adjusts crystal filter bandwidth.    |
| A4A7R102                       |                         | 383 to 681                   | Adjusts crystal filter bandwidth.    |
| A4A7R104                       |                         | 1.47 K to 2.61 K             | Adjusts crystal filter bandwidth.    |
|                                | For <b>Option</b> 4     | 62, see back of this         | table for exceptions to A4A7.        |
| A4A8C14                        | 8                       | 1.0 to 8.2                   | Sets adjustment range of SYM.        |
| A4A8C35                        | 8                       | 180 to 270                   | Sets adjustment range of LC CTR.     |
| A4A8C43                        | 8                       | 1.0 to 8.2                   | Sets adjustment range of SYM.        |
| A4A8C49                        | 8                       | 180 to 270                   | Sets adjustment range of LC CTR.     |
| A4A8C78                        |                         | 180 to 270                   | Sets adjustment range of LC CTR.     |
| A4A8C81                        |                         | 180 to 270                   | Sets adjustment range of LC CTR.     |
| A4A8C82                        |                         | 4 to 13                      | Sets adjustment range of center cap. |
| A4A8C83                        |                         | 4 to 13                      | Sets adjustment range of center cap. |

| Reference<br>Designator | Adjustment<br>Procedure | Range of Values<br>(Ω or pF) | Function of Component                        |
|-------------------------|-------------------------|------------------------------|----------------------------------------------|
| A4A8R19                 |                         | 100 K1 to 1M                 | Sets adjustment range of LC amplitude.       |
| A4A8R24                 |                         | 0 to 100                     | Adjusts bandwidth shape in 10 kHz bandwidth. |
| A4A8R26                 |                         | 3.83 K to 9.09 K             | Adjusts crystal filter bandwidth.            |
| A4A8R29                 |                         | 909 to 2.37 K                | Adjusts LC mode feedback.                    |
| A4A8R30                 |                         | 3.16 K to 8.25 K             | Adjusts LC filter bandwidth.                 |
| A4A8R34                 |                         | 100 K to OPEN                |                                              |
| A4A8R36                 |                         | 100 K to OPEN                | (85662-60131 only)                           |
| A4A8R36                 |                         | 10 K to OPEN                 | (85662-60190 only)                           |
| A4A8R52                 |                         | 3.83 K to 9.09 K             | Adjusts crystal filter bandwidth.            |
| A4A8R55                 |                         | 3.16 K to 8.25 K             | Adjusts LC filter bandwidth.                 |
|                         |                         |                              |                                              |
| A4A9R3                  |                         | 6.81 K to 10.0 K             | Sets TC of 3 kHz RBW                         |
| A4A9R6                  |                         | 38.3 K to 56.2 K             | Sets TC of 10 kHz RBW                        |
| A4A9R7                  |                         | 28.7 K to 42.2 K             | Sets TC of 300 kHz RBW                       |
| A4A9R10                 |                         | 6.19 K to 9.09 K             | Sets TC of 1 MHz RBW                         |
| A4A9R11                 |                         | 1.96 K to 2.87 K             | Sets TC of 3 MHz RBW                         |
| A4A9R46                 |                         | 82.5 K to 147 K              | Sets 1.0 dB step size                        |
| A4A9R48                 |                         | 261 K to 464 K               | Sets 0.2 dB step size                        |
| A4A9R50                 |                         | 56.2 K to 100 K              | Sets 1.2 dB step size                        |
| A4A9R52                 |                         | 562 K to 1M                  | Sets 0.4 dB step size                        |
| A4A9R55                 |                         | 46.4 K to 82.5 K             | Sets 1.8 dB step size                        |
| A4A9R57                 |                         | 316 K to 562 K               | Sets 0.6 dB step size                        |
| A4A9R59                 |                         | 422 K to 750 K               | Sets 0.8 dB step size                        |
| A4A9R70                 |                         | 619 K to 1.1M                | Sets 0.1 dB step size.                       |
| A4A9R72                 |                         | 90.0 K to 162 K              | Sets 1.6 dB step size.                       |
| A4A9R74                 |                         | 61.9 K to 110 K              | Sets 1.4 dB step size.                       |
| A4A9R83                 |                         | 2.15 K to 8.25 K             | Centers 3 kHz BW adjustment range.           |
| A4A9R84                 |                         | 42.2 K to 100 K              | Centers 10 kHz BW adjustment range.          |
| A4A9R85                 |                         | 75 K to 178 K                | Centers 300 kHz BW adjustment range.         |
| A4A9R86                 |                         | 10.0 K to 17.5 K             | Centers 1 MHz BW adjustment range.           |
| A4A9R87                 |                         | 100 to 5.11 K                | Centers 3 MHz BW adjustment range.           |
|                         | For Serial D            |                              |                                              |
|                         | and below.              | see the back of this         | table for exceptions to A4A9.                |
|                         |                         | the cash of this             |                                              |

Table 3-3. Factory-Selected Components (continued)

| Reference<br>Designator | Adjustment<br>Procedure | Range of Values<br>(Ω or pF) | Function of Component                                                |
|-------------------------|-------------------------|------------------------------|----------------------------------------------------------------------|
| A6A9A1R5                | 18                      | 23.7 to 180                  | Sets sampler drive level                                             |
| A6A9A1R1C               | 19                      | 909 to 1.21 K                | Sets adjustment range of A6A9A1R11 CAL<br>OUTPUT                     |
| A6A9A1R27               | 18                      | 56.2 K                       | Sets HET UNLOCK delay time constant for HP 85660B (10 K = HP 85660A) |
| A6A10R86                | 21                      | 10 to 40 K                   | Sets adjustment range of A6A10R21 GA                                 |
| A6A10R87                | 21                      | 10 to 40 K                   | Sets adjustment range of A6A10R23 GB                                 |
| A6A10R88                | 21                      | 10 to 40 K                   | Sets adjustment range of A6A10R25 GC                                 |
| A6A10R89                | 21                      | 10 to 40 K                   | Sets adjustment range of A6A10R27 GD                                 |
| A6A10R90                | 21                      | 10 to 40 K                   | Sets adjustment range of A6A10R29 GE                                 |
| A6A10R91                | 21                      | 10 to 40 K                   | Sets adjustment range of A6A10R81 GF                                 |
| A6A11R2                 | 21                      | 100 K to 196 K               | Adjusts band A breakpoint for best flatness.                         |
| A6A12C1                 | 21                      | 0.1 to 0.68 $\mu$ F          | Sets YTX delay compensation.                                         |
| A6A12C2                 |                         | 0.1 to 0.68 $\mu$ F          | Sets YTX delay compensation.                                         |
| A6A12C3                 | 21                      | OPEN                         | Not loaded for HP 85660B                                             |
| A6A12C11                | 21                      | 0.1 to 0.68 $\mu$ F          | Sets YTX delay compensation.                                         |
| A6A12C23                | 21                      | 0.1 to 0.68 $\mu$ F          | Sets YTX delay compensation.                                         |
| A6A12R64                | 21                      | 13.356 K/15 K                | Sets adjustment range of A6A12R63 5.8 GHz                            |
| A7A2C8                  | 14                      | Open to 15 pF                | Sets tuning range of A7A2C4.                                         |
| A7A2L4                  | 14                      | 0.22 to 0.68 $\mu$ H         | Centers the adjustment range of A7A2 around 100 MHz.                 |
| A7A2R3                  |                         | 196 to 511                   | Sets biasing of A7A2Q5                                               |
| A7A2R67                 | 14                      | Open to 825                  | Sets -10 dBm output level of the 400 MHz signal.                     |
| A7A2R68                 | 14                      | 6.8 to 61.9                  | Sets -10 dBm output level of the 400 MHz signal.                     |
| A7A2R69                 | 14                      | 110 to 825                   | Sets -10 dBm output level of the 400 MHz signal.                     |
| A8R6                    | 1                       | 213 to 261                   | Sets adjustment range of A8R2 + 22 V ADJ                             |
| A10A3C26                |                         | 0 to 15                      | Selected to minimize mixer distortion.                               |
| A10A4C49                | 17                      | 10 to 15 pF                  | Sets adjustment range of A10A4C50 160 MHz<br>PEAK                    |
| A10A4C49                | 17                      | 10 to 15 pF                  | Sets adjustment range of A10A4C50 160 MHz<br>PEAK                    |
| A10A4R29                | 17                      | 68.1 to 90.9                 | Sets output power to -20 dBm at A10A4J2                              |
| A10A4R33                | 17                      | 68.1 to 90.9                 | Sets output power to -20 dBm at A10A4J2                              |

Table 3-3. Factory-Selected Components (continued)

| <b>Reference</b><br>Designator | Adjustment<br>Procedure | Range of Values<br>(Ω or pF)          | Function of Component                                    |  |  |
|--------------------------------|-------------------------|---------------------------------------|----------------------------------------------------------|--|--|
| Al 1A4R24                      |                         | 348 to 562                            | Sets YTO loop gain crossover to $20 \pm 2 \text{ kHz}$ . |  |  |
|                                |                         |                                       |                                                          |  |  |
| AI 1A5C22                      | 16                      | 130 to 220 pF                         | Sets YTO loop response <20 MHz.                          |  |  |
| A11A5L10                       | 16                      | 2.2 to 3.3 $\mu$ F                    | Sets YTO loop response.                                  |  |  |
| Al 1A5R22                      | 16                      | 15 to 51.1 <b>Ω</b>                   | Sets YTO longspondule to 30 MHz.                         |  |  |
| A13C22                         |                         | 620 to 1300                           | Sets period of microprocessor clock.                     |  |  |
| A15C10                         |                         | 62 to 91                              | Sets oscillator frequency to 10 MHz $\pm 0.75$ MHz.      |  |  |
| A16R46                         | 13                      | 73.874 <b>K</b> /74.25 K              | Sets adjustment range of A16R72 GAIN 1                   |  |  |
| Serial Prefi                   | x 2813A to 2            | 816A                                  |                                                          |  |  |
|                                |                         | 0.05 ( . 10.1 K                       | Centers 2 HIB DW edited and son op                       |  |  |
| A4A9R3                         |                         | 8.25 to 12.1 K                        | Centers 5 KHZ BW adjustment range                        |  |  |
| A4A9R0                         |                         | 82.3 to 121 K                         | Centers 10 kHz DW adjustment range                       |  |  |
| A4A9R7                         |                         | $110\ 10\ 102\ K$                     | Centers 500 KHZ BW adjustment range                      |  |  |
| A4A9R1U                        |                         | 14.7 to 21.3 K $162$ to 227 K         | Centers 2 MHz DW adjustment range                        |  |  |
| A4A9R11                        |                         | $102 \ 10 \ 257 \ K$                  | Sets 1.0 dB stop size                                    |  |  |
| A4A9R40                        |                         | 261  to  464  K                       | Sets 0.2 dB step size                                    |  |  |
| A4A9R40                        |                         | 201 to 404 K<br>56 2 to 100 K         | Sets 0.2 dB step size                                    |  |  |
| A4A9R50                        |                         | 562 K to 1 MO                         | Sets $0.4 dB$ step size                                  |  |  |
| A4A9R52                        |                         | $\frac{164}{16}$ to $\frac{825}{5}$ K | Sets 1.8 dB step size                                    |  |  |
| A4A9R55                        |                         | $40.4 \ 10 \ 02.3 \ K$                | Sets 0.6 dB step size                                    |  |  |
| A4A9R57                        |                         | 122 to 750 K                          | Sets 0.8 dB step size                                    |  |  |
| A4A9R70                        |                         | 619 K to 1 1 MO                       | Sets 0.1 dB step size                                    |  |  |
| A4A9R70                        |                         | 90 to 162 K                           | Sets 1.6 dB step size                                    |  |  |
| A4A9R74                        |                         | 61 9 to 110 K                         | Sets 1.4 dB step size                                    |  |  |
| Serial Prefi                   | x 2810A and             | Below                                 |                                                          |  |  |
| A4A9R69                        |                         | 196 K to 348 K                        | Sets 1.4 dB step size.                                   |  |  |
| A4A9R70                        |                         | 215 K to 383 K                        | Sets 1 dB step size.                                     |  |  |
| A4A9R71                        |                         | 147 K to 261 K                        | Sets 1.8 dB step size.                                   |  |  |

| Table | 3-3. | <b>Factory-Selected</b> | Components | (continued) |
|-------|------|-------------------------|------------|-------------|
|-------|------|-------------------------|------------|-------------|

| Reference<br>Designator | Adjustment<br>Procedure | Range of Values<br>(Ω or pF) | Function of Component                           |
|-------------------------|-------------------------|------------------------------|-------------------------------------------------|
| Option 462              |                         | · · · · · ·                  |                                                 |
| A4A7R12                 |                         | 5.62 K to 7.5 K              |                                                 |
| A4A7R13                 |                         | 5.62 K to 7.5 K              |                                                 |
| A4A7R23                 |                         | 5.62 K to 7.5 K              |                                                 |
| A4A7R24                 |                         | 5.62 K to 7.5 K              |                                                 |
| A4A7R34                 |                         | 5.62 K to 7.5 K              |                                                 |
| A4A7R35                 |                         | 5.62 K to 7.5 K              |                                                 |
| A4A7R45                 |                         | 5.11 K to 6.81 K             |                                                 |
| A4A7R46                 |                         | 5.11 K to 6.81 K             |                                                 |
| A4A7R56                 |                         | 5.11 K to 6.81 K             |                                                 |
| A4A7R57                 |                         | 5.11 K to 6.81 K             |                                                 |
| A4A7R68                 |                         | 99 to 133                    |                                                 |
| A4A7R70                 |                         | 383 to 681                   |                                                 |
| A4A7R76                 |                         | 99 to 133                    |                                                 |
| A4A7R84                 |                         | 99 to 133                    |                                                 |
| A4A7R86                 |                         | 316 to 619                   |                                                 |
| A4A7R92                 |                         | 99 to 133                    |                                                 |
| A4A7R94                 |                         | 316 to 619                   |                                                 |
| A4A7R100                |                         | 99 to 133                    |                                                 |
| A4A7R102                |                         | 316 to 619                   |                                                 |
| A4A8R30                 |                         | 6.19 K to 16 K               |                                                 |
| A4A8R55                 |                         | 6.8 K to 17.6 K              |                                                 |
| A4A8C43                 |                         | 1.0 to 8.2                   |                                                 |
| A4A9R3                  |                         | 4.22 K to 6.19 K             |                                                 |
| A4A9R6                  |                         | 21.5 K to 34.8 K             |                                                 |
| A4A9R7                  |                         | 51.1 K to 75.0 K             |                                                 |
| A4A9R10                 |                         | 11.0 K to 16.2 K             |                                                 |
| A4A9R11                 |                         | 2.87 K to 4.22 K             |                                                 |
| A4A9R83                 |                         | 7.50 K to 14.7 K             |                                                 |
| A4A9R85                 |                         | 162 K to 348 K               |                                                 |
| A4A9R86                 |                         | 28.7 K to 61.9 K             |                                                 |
| A4A9R87                 |                         | 4.22 K to 8.25               |                                                 |
| Option 067              |                         |                              |                                                 |
| A4A9R2                  |                         | 215 K to 316 K               | Sets TC of 1 kHz RBW (Opt 067)                  |
| A4A9R88                 |                         | 100 K to 511 K               | Centers 1 kHz BW adjustment range. (Option 067) |
| A4A9R2                  |                         | 388 to 550 K                 | Centers 1 kHz BW adjustment range (Opt 067)     |

Table 3-3. Factory-Selected Components (continued)

| Capacitors |                         |      |  |                     |                       |   |  |  |
|------------|-------------------------|------|--|---------------------|-----------------------|---|--|--|
| Т          | Type: Tubular           |      |  |                     | Type: Dipped Mica     |   |  |  |
| Rai        | nge: 1 to 24 pF         |      |  | Range: 27 to 680 pF |                       |   |  |  |
| Tolerance: | 1 to 9.1 pF = $\pm 0.2$ | 5 pF |  | Тс                  | blerance: $\pm 5\%$   |   |  |  |
|            | 10 to 24 pF = $\pm$     | 5%   |  |                     |                       |   |  |  |
| Value (pF) | HP Fart Number          | CD   |  | Value (pF)          | <b>HP Fart Number</b> | D |  |  |
|            |                         |      |  |                     |                       |   |  |  |
| 1.0        | 0160-2236               | 8    |  | 27                  | 0160-2306             | 3 |  |  |
| 1.2        | 0160-2237               | 9    |  | 30                  | 0160-2199             | 2 |  |  |
| 1.5        | 0150-0091               | 8    |  | 33                  | 0160-2150             | 5 |  |  |
| 1.8        | 0160-2239               | 1    |  | 36                  | 0160-2308             | 5 |  |  |
| 2.0        | 0160-2240               | 4    |  | 39                  | 0140-0190             | 7 |  |  |
| 2.2        | 0160-2241               | 5    |  | 43                  | 0160-2200             | 6 |  |  |
| 2.4        | 0160-2242               | 6    |  | 47                  | 0160-2307             | 4 |  |  |
| 2.7        | 0160-2243               | 7    |  | 51                  | 0160-2201             | 7 |  |  |
| 3.0        | 0160-2244               | 8    |  | 56                  | 0140-0191             | 8 |  |  |
| 3.3        | 0150-0059               | 8    |  | 62                  | 0140-0205             | 5 |  |  |
| 3.6        | 0160-2246               | 0    |  | 68                  | 0140-0192             | 9 |  |  |
| 3.9        | 0160-2247               | 1    |  | 75                  | 0160-2202             | 8 |  |  |
| 4.3        | 0160-2248               | 2    |  | 82                  | 0140-0193             | 0 |  |  |
| 4.7        | 0160-2249               | 3    |  | 91                  | 0160-2203             | 9 |  |  |
| 5.1        | 0160-2250               | 6    |  | 100                 | 0160-2204             | 0 |  |  |
| 5.6        | 0160-2251               | 7    |  | 110                 | 0140-0194             | 1 |  |  |
| 6.2        | 0160-2252               | 8    |  | 120                 | 0160-2205             | 1 |  |  |
| 6.8        | 0160-2253               | 9    |  | 130                 | 0140-0195             | 2 |  |  |
| 7.5        | 0160-2254               | 0    |  | 150                 | 0140-0196             | 3 |  |  |
| 8.2        | 0160-2255               | 1    |  | 160                 | 0160-2206             | 2 |  |  |
| 9.1        | 0160-2256               | 2    |  | 180                 | 0140-0197             | 4 |  |  |
| 10.0       | 0160-2257               | 3    |  | 200                 | 0140-0198             | 5 |  |  |
| 11.0       | 0160-2258               | 4    |  | 220                 | 0160-0134             | 1 |  |  |
| 12.0       | 0160-2259               | 5    |  | 240                 | 0140-0199             | 6 |  |  |
| 13.0       | 0160-2260               | 8    |  | 270                 | 0140-0210             | 2 |  |  |
| 15.0       | 0160-2261               | 9    |  | 300                 | 0160-2207             | 3 |  |  |
| 16.0       | 0160-2262               | 0    |  | 330                 | 0160-2208             | 4 |  |  |
| 18.0       | 0160-2263               | 1    |  | 360                 | 0160-2209             | 5 |  |  |
| 20.0       | 0160-2264               | 2    |  | 390                 | 0140-0200             | 0 |  |  |
| 22.0       | 0160-2265               | 3    |  | 430                 | 0160-0939             | 4 |  |  |
| 24.0       | 0160-2266               | 4    |  | 470                 | 0160-3533             | 0 |  |  |
|            |                         |      |  | 510                 | 0160-3534             | 1 |  |  |
|            |                         |      |  | 560                 | 0160-3535             | 2 |  |  |
|            |                         |      |  | 620                 | 0160-3536             | 3 |  |  |
|            |                         |      |  | 680                 | 0160-3537             | 4 |  |  |
|            |                         |      |  |                     |                       |   |  |  |

Table 3-4. Standard Value Replacement Capacitors

|                        | Resistors             |                              |    |                     |                       |              |  |
|------------------------|-----------------------|------------------------------|----|---------------------|-----------------------|--------------|--|
|                        | Type: Fixed-Film      |                              |    |                     |                       |              |  |
| Range: 10 to 464K Ohms |                       |                              |    |                     |                       |              |  |
|                        | Wattag                | e: 0.                        | 12 | 25 at 125° <b>(</b> | 0                     |              |  |
|                        | Tol                   | eranc                        | e  | <u>: ±1.0%</u>      |                       |              |  |
| Value ( $\Omega$ )     | <b>HP Fart Number</b> | $\underline{C}\underline{D}$ |    | Value (Ω)           | <b>HP Fart Number</b> | $\mathbf{D}$ |  |
| 10.0                   | 0757-0346             | 2                            |    | 422                 | 0698-3447             | 4            |  |
| 11.0                   | 0757-0378             | 0                            |    | 464                 | 0698-0082             | 7            |  |
| 12.1                   | 0757-0379             | 1                            |    | 511                 | 0757-0416             | 7            |  |
| 13.3                   | 0698-3427             | 0                            |    | 562                 | 0757-0417             | 8            |  |
| 14.7                   | 0698-3428             | 1                            |    | 619                 | 0757-0418             | 9            |  |
| 16.2                   | 0757-0382             | 6                            |    | 681                 | 0757-0419             | 0            |  |
| 17.8                   | 0757-0294             | 9                            |    | 750                 | 0757-0420             | 3            |  |
| 19.6                   | 0698-3429             | 2                            |    | 825                 | 0757-0421             | 4            |  |
| 21.5                   | 0698-3430             | 5                            |    | 909                 | 0757-0422             | 5            |  |
| 23.7                   | 0698-3431             | 6                            |    | 1.0K                | 0757-0280             | 3            |  |
| 26.1                   | 0698-3432             | 7                            |    | 1.1K                | 0757-0424             | 7            |  |
| 28.7                   | 0698-3433             | 8                            |    | 1.21K               | 0757-0274             | 5            |  |
| 31.6                   | 0757-0180             | 2                            |    | 1.33K               | 0757-0317             | 7            |  |
| 34.8                   | 0698-3434             | 9                            |    | 1.47K               | 0757-1094             | 9            |  |
| 38.3                   | 0698-3435             | 0                            |    | 1.62K               | 0757-0428             | 1            |  |
| 42.2                   | 0757-0316             | 6                            |    | 1.78K               | 0757-0278             | 9            |  |
| 46.4                   | 0698-4037             | 0                            |    | 1.96K               | 0698-0083             | 8            |  |
| 51.1                   | 0757-0394             | 0                            |    | 2.15K               | 0698-0084             | 9            |  |
| 56.2                   | 0757-0395             | 1                            |    | 2.37K               | 0698-3150             | 6            |  |
| 61.9                   | 0757-0276             | 7                            |    | 2.61K               | 0698-0085             | 0            |  |
| 68.1                   | 0757-0397             | 3                            |    | 2.87K               | 0698-3151             | 7            |  |
| 75.0                   | 0757-0398             | 4                            |    | 3.16K               | 0757-0279             | 0            |  |
| 82.5                   | 0757-0399             | 5                            |    | 3.48K               | 0698-3152             | 8            |  |
| 90.9                   | 0757-0400             | 9                            |    | 3.83K               | 0698-3153             | 9            |  |
| 100                    | 0757-0401             | 0                            |    | 4.22K               | 0698-3154             | 0            |  |
| 110                    | 0757-0402             | 1                            |    | 4.64K               | 0698-3155             | 1            |  |
| 121                    | 0757-0403             | 2                            |    | 5.11K               | 0757-0438             | 3            |  |
| 133                    | 0698-3437             | 2                            |    | 5.62K               | 0757-0200             | 7            |  |
| 147                    | 0698-3438             | 3                            |    | 6.19K               | 0757-0290             | 5            |  |
| 162                    | 0757-0405             | 4                            |    | 6.81K               | 0757-0439             | 4            |  |
| 178                    | 0698-3439             | 4                            |    | 7.50K               | 0757-0440             | 7            |  |
| 196                    | 0698-3440             | 7                            |    | 8.25K               | 0757-0441             | 8            |  |
| 215                    | 0698-3441             | 8                            |    | 9.09K               | 0757-0288             | 1            |  |
| 237                    | 0698-3442             | 9                            |    | 10.0K               | 0757-0442             | 9            |  |
| 261                    | 0698-3132             | 4                            |    | ll.OK               | 0757-0443             | 0            |  |
| 287                    | 0698-3443             | 0                            |    | 12.1K               | 0757-0444             | 1            |  |
| 316                    | 0698-3444             | 1                            |    | 13.3K               | 0757-0289             | 2            |  |
| 348                    | 0698-3445             | 2                            |    | 14.7K               | 0698-3156             | 2            |  |
| 383                    | 0698-3446             | 3                            |    | 16.2K               | 0757-0447             | 4            |  |

Table 3-5.Standard Value Replacement 0.125 Resistors

| Resistors          |                        |               |    |                     |                |    |  |
|--------------------|------------------------|---------------|----|---------------------|----------------|----|--|
|                    | Type: Fixed-Film       |               |    |                     |                |    |  |
|                    | Range: 10 to 464K Ohms |               |    |                     |                |    |  |
|                    | Wattag                 | e: 0.         | 12 | 25 at 125° <b>(</b> | 5              |    |  |
|                    | Tole                   | r <u>an</u> c | e  | : ±1.0%             |                |    |  |
| Value ( $\Omega$ ) | <b>HP Part Number</b>  | CD            |    | Value $(\Omega)$    | HP Fart Number | CD |  |
|                    |                        |               |    |                     |                |    |  |
| 17.8K              | 0698-3136              | 8             |    | 100K                | 0757-0465      | 6  |  |
| 19.6K              | 0698-3157              | 3             |    | 110K                | 0757-0466      | 7  |  |
| 21.5K              | 0757-0199              | 3             |    | 121K                | 0757-0467      | 8  |  |
| 23.7K              | 0698-3158              | 4             |    | 133K                | 0698-345 1     | 0  |  |
| 26.1K              | 0698-3159              | 5             |    | 147K                | 0698-3452      | 1  |  |
| 28.7K              | 0698-3449              | 6             |    | 162K                | 0757-0470      | 3  |  |
| 31.6K              | 0698-3160              | 8             |    | 178K                | 0698-3243      | 8  |  |
| 34.8K              | 0757-0123              | 3             |    | 196K                | 0698-3453      | 2  |  |
| 38.3K              | 0698-3161              | 9             |    | 215K                | 0698-3454      | 3  |  |
| 42.2K              | 0698-3450              | 9             |    | 237K                | 0698-3266      | 5  |  |
| 46.4K              | 0698-3162              | 0             |    | 261K                | 0698-3455      | 4  |  |
| 51.1K              | 0757-0458              | 7             |    | 287K                | 0698-3456      | 5  |  |
| 56.2K              | 0757-0459              | 8             |    | 316K                | 0698-3457      | 6  |  |
| 61.9K              | 0757-0460              | 1             |    | 348K                | 0698-3458      | 7  |  |
| 68.1K              | 0757-046 1             | 2             |    | 383K                | 0698-3459      | 8  |  |
| 75.0K              | 0757-0462              | 3             |    | 422K                | 0698-3460      | 1  |  |
| 82.5K              | 0757-0463              | 4             |    | 464K                | 0698-3260      | 9  |  |
| 90.9K              | 0757-0464              | 5             |    |                     |                |    |  |
|                    |                        |               |    |                     |                |    |  |

Table 3-5.Standard Value Replacement 0.125 Resistors<br/>(continued)

| Resistors |                         |               |     |             |                |              |  |  |
|-----------|-------------------------|---------------|-----|-------------|----------------|--------------|--|--|
|           | Typ                     | e: F          | ix  | ked-Film    |                |              |  |  |
|           | Range: 10 to 1.47M Ohms |               |     |             |                |              |  |  |
|           | Watta                   | ge: 0         | ).5 | 5 at 125°C  |                |              |  |  |
|           | Tole                    | er <u>anc</u> | e   | $\pm 1.0\%$ |                |              |  |  |
| Value (۩) | HP Part Number          | CD            |     | Value (Ω)   | HP Fart Number | $\mathbf{D}$ |  |  |
|           |                         |               |     |             |                |              |  |  |
| 10.0      | 0757-0984               | 4             |     | 383         | 0698-3404      | 3            |  |  |
| 11.0      | 0575-0985               | 5             |     | 422         | 0698-3405      | 4            |  |  |
| 12.1      | 0757-0986               | 6             |     | 464         | 0698-0090      | 7            |  |  |
| 13.3      | 0757-0001               | 6             |     | 511         | 0757-0814      | 9            |  |  |
| 14.7      | 0698-3388               | 2             |     | 562         | 0757-0815      | 0            |  |  |
| 16.2      | 0757-0989               | 9             |     | 619         | 0757-0158      | 4            |  |  |
| 17.8      | 0698-3389               | 3             |     | 681         | 0757-0816      | 1            |  |  |
| 19.6      | 0698-3390               | 6             |     | 750         | 0757-0817      | 2            |  |  |
| 21.5      | 0698-3391               | 7             |     | 825         | 0757-0818      | 3            |  |  |
| 23.7      | 0698-3392               | 8             |     | 909         | 0757-0819      | 4            |  |  |
| 26.1      | 0757-0003               | 8             |     | 1.00K       | 0757-0159      | 5            |  |  |
| 28.7      | 0698-3393               | 9             |     | l.lOK       | 0757-0820      | 7            |  |  |
| 31.6      | 0698-3394               | 0             |     | 1.21K       | 0757-082 1     | 8            |  |  |
| 34.8      | 0698-3395               | 1             |     | 1.33K       | 0698-3406      | 5            |  |  |
| 38.3      | 0698-3396               | 2             |     | 1.47K       | 0757-1078      | 9            |  |  |
| 42.2      | 0698-3397               | 3             |     | 1.62K       | 0757-0873      | 0            |  |  |
| 46.4      | 0698-3398               | 4             |     | 1.78K       | 0698-0089      | 4            |  |  |
| 51.1      | 0757-1000               | 7             |     | 1.96K       | 0698-3407      | 6            |  |  |
| 56.2      | 0757-1001               | 8             |     | 2.15K       | 0698-3408      | 7            |  |  |
| 61.9      | 0757-1002               | 9             |     | 2.37K       | 0698-3409      | 8            |  |  |
| 68.1      | 0757-0794               | 4             |     | 2.61K       | 0698-0024      | 7            |  |  |
| 75.0      | 0757-0795               | 5             |     | 2.87K       | 0698-3101      | 7            |  |  |
| 82.5      | 0757-0796               | 6             |     | 3.16K       | 0698-3410      | 1            |  |  |
| 90.0      | 0757-0797               | 7             |     | 3.48K       | 0698-3411      | 2            |  |  |
| 100       | 0757-0198               | 2             |     | 3.83K       | 0698-3412      | 3            |  |  |
| 110       | 0757-0798               | 8             |     | 4.22K       | 0698-3346      | 2            |  |  |
| 121       | 0757-0799               | 9             |     | 4.64K       | 0698-3348      | 4            |  |  |
| 133       | 0698-3399               | 5             |     | 5.11K       | 0757-0833      | 2            |  |  |
| 147       | 0698-3400               | 9             |     | 5.62K       | 0757-0834      | 3            |  |  |
| 162       | 0757-0802               | 5             |     | 6 19K       | 0757-0196      | 0            |  |  |
| 178       | 0698-3334               | 8             |     | 6 81K       | 0757-0835      | 4            |  |  |
| 196       | 0757-1060               | 9             |     | 7.50K       | 0757-0836      | 5            |  |  |
| 215       | 0698-340 1              | Ó             |     | 8 25K       | 0757-0837      | 6            |  |  |
| 213       | 0698-3102               | 8             |     | 9 09K       | 0757-0838      | 7            |  |  |
| 257       | 0757-1000               | 5             |     | 10 OK       | 0757-0839      | 8            |  |  |
| 201       | 0757-1090               | 7             |     | 12.1K       | 0757-0841      | 2            |  |  |
| 20/       | 0608 2402               | 1             |     | 13.11       | 0698-3/13      | Δ            |  |  |
| 240       | 0609 2402               | 1<br>2        |     | 10.0K       | 0608 2/11      | -<br>-       |  |  |
| 548       | 0090-3403               | 2             |     | 17./11      | 0070-3414      | 5            |  |  |
|           |                         |               |     |             |                |              |  |  |

## Table 3-6. Standard Value Replacement 0.5 Resistors

|                         | Resistors             |               |     |                  |                |       |  |
|-------------------------|-----------------------|---------------|-----|------------------|----------------|-------|--|
| Type: Fixed-Film        |                       |               |     |                  |                |       |  |
| Range: 10 to 1.47M Ohms |                       |               |     |                  |                |       |  |
|                         | Watta                 | ge: (         | ).: | 5 at 125°C       |                |       |  |
|                         |                       | r <u>an</u> C | e   | $\pm 1.0\%$      | _              | · — · |  |
| Value ( $\Omega$ )      | <b>HP Fart Number</b> | CD            |     | Value $(\Omega)$ | HP Fart Number | CD    |  |
|                         |                       |               |     |                  |                |       |  |
| 16.2K                   | 0757-0844             | 5             |     | 162K             | 0757-0130      | 2     |  |
| 17.8K                   | 0698-0025             | 8             |     | 178K             | 0757-0129      | 9     |  |
| 19.6K                   | 0698-3415             | 6             |     | 196K             | 0757-0063      | 0     |  |
| 21.5K                   | 0698-3416             | 7             |     | 215K             | 0757-0127      | 7     |  |
| 23.7K                   | 0698-3417             | 8             |     | 237K             | 0698-3424      | 7     |  |
| 26.1K                   | 0698-3418             | 9             |     | 261K             | 0757-0064      | 1     |  |
| 28.7K                   | 0698-3103             | 9             |     | 287K             | 0757-0154      | 0     |  |
| 31.6K                   | 0698-3419             | 0             |     | 316K             | 0698-3425      | 8     |  |
| 34.8K                   | 0698-3420             | 3             |     | 348K             | 0757-0195      | 9     |  |
| 38.313                  | 0698-342 1            | 4             |     | 383K             | 0757-0133      | 5     |  |
| 42.2K                   | 0698-3422             | 5             |     | 422K             | 0757-0134      | 6     |  |
| 46.413                  | 0698-3423             | 6             |     | 464K             | 0698-3426      | 9     |  |
| 51.1K                   | 0757-0853             | 6             |     | 511K             | 0757-0135      | 7     |  |
| 56.2K                   | 0757-0854             | 7             |     | 562K             | 0757-0868      | 3     |  |
| 61.9K                   | 0757-0309             | 7             |     | 619K             | 0757-0136      | 8     |  |
| 68.1K                   | 0757-0855             | 8             |     | 681K             | 0757-0869      | 4     |  |
| 75.0K                   | 0757-0856             | 9             |     | 750K             | 0757-0137      | 9     |  |
| 82.5K                   | 0757-0857             | 0             |     | 825K             | 0757-0870      | 7     |  |
| 90.9K                   | 0757-0858             | 1             |     | 909K             | 0757-0138      | 0     |  |
| 100K                    | 0757-0367             | 7             |     | 1 <b>M</b>       | 0757-0059      | 4     |  |
| 110K                    | 0757-0859             | 2             |     | 1.1M             | 0757-0139      | 1     |  |
| 121K                    | 0757-0860             | 5             |     | 1.21M            | 0757-087 1     | 8     |  |
| 133K                    | 0757-0310             | 0             |     | 1.33M            | 0757-0194      | 8     |  |
| 147K                    | 0698-3175             | 5             |     | 1.47M            | 0698-3464      | 5     |  |
|                         |                       |               |     |                  |                |       |  |

Table 3-6.Standard Value Replacement 0.5 Resistors<br/>(continued)

## 1. Low-Voltage Power Supply Adjustments

ReferenceIF-Display Section:<br/>A1A6 ±15 V Regulator<br/>A1A7 + 120 V, +5.2 V Regulator (Serial Number Prefix 3004A and<br/>above)<br/>A1A7 + 100 V, +5.2 V Regulator (Serial Number Prefix 3001A and<br/>below)<br/>RF Section:<br/>A24 Voltage Regulator

**Description** The + 15 V supply is adjusted for the IF-display Section, and the + 20 V supply is adjusted for the RF Section. All other low-voltage supplies are measured to ensure that they are within tolerance.



Figure 3-1. Low-Voltage Power Supply Adjustments Setup

| Equipment          | Digital Voltmeter (DVM) HP 3456A                                                                                                                                                                               |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure          |                                                                                                                                                                                                                |
| IF-Display Section | 1. Position the instrument on its right side with the IF-Display<br>Section facing right, as shown in Figure 3-1. Remove the top<br>cover of the IF-Display Section and the bottom cover of the RF<br>Section. |
|                    | <ol> <li>Set the LINE switch to ON and press (P). Mains indicator<br/>A1A8DS1 (red LED) in the IF-Display Section should be lit. See<br/>Figure 3-2 and Figure 3-3 for the location of A1A8DS1.</li> </ol>     |
| Note               | Use Figure 3-2 for IF-Display Sections with serial numbers 3001A and below. Use Figure 3-3 for IF-Display Sections with serial numbers 3004A and above.                                                        |
|                    | 3. Verify that the + 15 V indicator A1A6DS1 (yellow LED) is lit.                                                                                                                                               |

#### 1. Low-Voltage Power Supply Adjustments

4. Connect the DVM to A1A6TP3 on the IF-Display Section. DVM indication should be +  $15.000 \pm 0.010$  V dc. If the voltage is out of tolerance, adjust A1A6R9 + 15 V ADJ for the specified voltage.



Figure 3-2. IF-Display Section Low-Voltage Adjustments (SN 3001A and Below)



Figure 3-3. IF-Display Section Low-Voltage Adjustments (SN 3004A and Above)

- 5. Verify that the -15 V indicator A1A6DS2 (yellow LED) is lit.
- 6. Connect the DVM to A1A6TP4. DVM indication should be -15.000 ±0.050 V dc. The -15 V supply is referenced to the + 15 V supply; therefore, if the -15 V supply is out of tolerance, a circuit malfunction is indicated.

#### 1. Low-Voltage Power Supply Adjustments

|                   | 7. Verify that the + 120 V indicator A1A7DS2 (yellow LED) is lit.                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note              | On IF-Display Sections serial prefixed 3001A and below, indicator A1A7DS2 is a + 100 V indicator.                                                                                                                                     |
|                   | 8. Connect the DVM to A1A7TP3. DVM indication should be + 120.0 $\pm 3.0$ V dc. The + 120 V supply is referenced to the + 15 V supply; therefore, if the + 120 V supply is out of tolerance, a circuit malfunction is indicated.      |
| Note              | On IF-Display Sections serial prefixed 3001A and below, the DVM indication should be + 100.0 $\pm 2.0$ V dc.                                                                                                                          |
|                   | 9. Verify that the +5.2 V indicator A1A7DS1 (yellow LED) is lit.                                                                                                                                                                      |
|                   | 10. Connect the DVM to A1A7TP2. DVM indication should be $+5.200 \pm 0.050$ V dc. The $+5.2$ V supply is referenced to the $+15$ V supply; therefore, if the $+5.2$ V supply is out of tolerance, a circuit malfunction is indicated. |
| <b>RF Section</b> | 11. The +20V indicator A24DS2 (yellow LED) should be lit. See Figure 3-4.                                                                                                                                                             |



Figure 3-4. Location of RF Section Low-Voltage Adjustments

- 12. Connect the DVM to A24TP3 with the ground lead to A24TP1. Adjust A24R60 + 20V ADJ for a DVM indication of + 20.000  $\pm 0.010$  V dc.
- 13. The + 15V indicator A24DS4 (yellow LED) should be lit.
- 14. Connect the DVM to A24TP2. The DVM indication should be  $+ 15.000 \pm 0.050$  V dc. The + 15V supply is referenced to the + 20V supply, therefore, if the + 15V supply is out of tolerance, a circuit malfunction is indicated.
- 15. The +5V indicator A24DS5 (yellow LED) should be lit.
- 16. Connect the DVM to A24TP5. The DVM indication should be  $+5.230 \pm 0.050$  V dc. The +5V supply is referenced to the +20V

#### 1. Low-Voltage Power Supply Adjustments

supply, therefore, if the +5V supply is out of tolerance, a circuit malfunction is indicated.

- 17. The -5V indicator A24DS6 (yellow LED) should be lit.
- 18. Connect the DVM to A24TP7. The DVM indication should be  $-5.200 \pm 0.050$  V dc. The -5V supply is referenced to the +20V supply, therefore, if the -5V supply is out of tolerance, a circuit malfunction is indicated.
- 19. The -15V indicator A24DS3 (yellow LED) should be lit.
- 20. Connect the DVM to A24TP4. The DVM indication should be  $-15.000 \pm 0.050$  V dc. The -15V supply is referenced to the +20V supply, therefore, if the -15V supply is out of tolerance, a circuit malfunction is indicated.

| 2. High-Voltage<br>Adjustment (SN<br>3001A and Below) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note                                                  | This procedure is for IF-Display Sections with serial number prefixes 3001A and below. The procedure for serial prefixes 3004A and above is located immediately after this procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Note                                                  | This procedure should be performed whenever the A1A11 High Voltage Multiplier, A1V1 CRT, or A1A3 High Voltage Regulator Assembly is repaired or replaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reference                                             | IF-Display Section:<br>A1A2 Z-Axis Amplifier<br>A1A3 High-Voltage Regulator<br>A1A6 ±15 V Regulator<br>A1A7 + 100 V, +5.2 V Regulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Description                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Warning                                               | This procedure is intended for adjustment purposes only.<br>Voltages are present which, if contacted, could cause serious<br>personal injury. Approximately -4000 V dc can be present on<br>the A1A3 High Voltage assembly even when the ac line cord is<br>disconnected. Do not attempt to remove the A1A3 High-Voltage<br>Assembly from the instrument. Do not disconnect the CRT's<br>post-accelerator cable; the CRT can hold a + 18 kV dc charge for<br>several days.                                                                                                                                                                                                                                                                       |
|                                                       | If for any reason the A1A3 High Voltage Assembly or the<br>post accelerator cable must be removed, refer to "Discharge<br>Procedure for High Voltage and CRT" at the end of this<br>adjustment procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                       | A 1000:1 divider probe is used to measure the CRT cathode voltage.<br>First, the high-voltage probe is calibrated by comparing measurements<br>of the + 100 V dc supply voltage with and without the probe. Any<br>measurement error due to the use of the high-voltage probe is<br>calculated into the adjustment specification of the CRT cathode<br>voltage, which is adjusted with the A1A6 HV ADJUST control. When<br>the CRT cathode voltage is properly adjusted, the CRT filament<br>voltage will be $+4.45 \pm 0.04$ V rms measured with CRT beam at<br>cut-off, which is required for maximum CRT life. The filament voltage<br>is referenced to the high-voltage cathode and can only be measured<br>directly with special equipment. |

### 2. High-Voltage Adjustment (SN 3001A and Below)



Figure 3-5. High Voltage Adjustment Setup

| Equipment | Digital Voltmeter (DVM) HP 3456A                            |
|-----------|-------------------------------------------------------------|
| 1 1       | DC High-Voltage Probe (1000: 1 divider) HP 34111A           |
|           | Display Adjustment PC Board (service accessory) 85662-60088 |
|           | Digitizing Oscilloscope HP 54501A                           |
|           | 10:1 Divider Probe HP 10432A                                |
|           | Function Generator (2 required) HP 3312A                    |

## High-Voltage Adjustment Procedure

| Warning | In the following procedure, it is necessary to probe voltages<br>which, if contacted, could cause serious personal injury. Use<br>a nonmetallic alignment tool when making adjustments. Be<br>extremely careful.               |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warning | Do not attempt to measure the CRT filament voltage directly. The<br>filament voltage is referenced to the high-voltage cathode and<br>can only be measured safely with a special high-voltage true-rms<br>voltmeter and probe. |
|         | 1. Set the spectrum analyzer's LINE switch to STANDBY.                                                                                                                                                                         |
|         | 2. Remove the top cover from the IF-Display Section, and connect the equipment as shown in Figure 3-5 and described in the following steps.                                                                                    |
|         | 3. Set the DVM to the 100 V range, and connect the DVM to A1A7TP3 (+ 100 V). Do not use the high-voltage probe. See Figure 3-6 for the location of A1A7TP3.                                                                    |
# Note

The accuracy of the high-voltage probe is specified for a probe connected to a dc voltmeter with 10 M $\Omega$  input resistance. HP 3456A and HP 3455A digital voltmeters have a 10 M $\Omega$  input resistance on the 100 V and 1000 V ranges. All measurements in this procedure should be performed with the DVM manually set to the 100 V range (fOO.OOO on the HP 3456A display).



Figure 3-6. Location of High Voltage Adjustments

- 4. Set the LINE switch to ON. Set the front-panel INTENSITY control fully counterclockwise (CRT beam at cut-off) to prevent possible damage to the CRT.
- 5. Note the DVM indication at A1A7TP3.

DVM Indication:

- 6. Connect the high-voltage probe to the DVM. Connect the probe to A1A7TP3.
- 7. Note the DVM indication.

DVM Indication:

8. Divide the DVM indication in step 7 by the DVM indication in step 5. This gives the calibration factor needed to compensate for high-voltage probe error.

Calibration Factor:

9. Disconnect the high-voltage probe from A1A7TP3. Set the LINE switch to STANDBY. Remove the ac line cord from both instrument sections.

Warning The MAINS power-on indicator A1A8DS1 (red LED) should be completely off before proceeding with this procedure. See Figure 3-6. The indicator will remain lit for several seconds after the ac line cord has been removed, and will go out slowly (the light becomes dimmer until it is completely out).

| Warning | With the protective cover removed in the following step, do not<br>place hands near the A1A3 High-Voltage assembly. High voltage<br>(approximately -4000 V dc) can be present even when the ac line<br>cord is disconnected. |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|         | 10. Wait at least one minute for capacitors to discharge to a safe level.                                                                                                                                                    |  |  |  |  |
|         | 11. Remove the protective cover from the A1A3 High-Voltage<br>Regulator. A label should be visible on the A1A3T1 High-Voltage<br>Transformer. Record the voltage listed on the label for use in step<br>15.                  |  |  |  |  |
| Note    | If the label is missing, use the nominal value of -3790 V dc.                                                                                                                                                                |  |  |  |  |
|         | 12. Connect the high-voltage probe to A1A3TP3. See Figure 3-7 for the location of the test point.                                                                                                                            |  |  |  |  |
| Warning | With power supplied to the instrument, A1A3TP3 is at a voltage level of approximately -4000 V dc. Be extremely careful.                                                                                                      |  |  |  |  |



Figure 3-7. Location of Label and Test Point

- 13. Reconnect ac line cords to both instrument sections. Set the LINE switch to ON.
- 14. Wait approximately 30 seconds for the dc regulator circuits to stabilize.
- 15. Adjust A1A6R32 HV ADJ for a DVM indication equal to the calibration factor (calculated in step 8) times the voltage labeled on the top of A1A3 High-Voltage Regulator (noted in step 11). *See* Figure 3-6 for the location of the adjustment.

\_\_\_\_\_ V dc

EXAMPLE:

If the calibration factor calculated in step 8 is 0.00099, and A1A3T1 is labeled for -3875 V, then adjust A1A6R32 HV ADJ for a DVM indication of:

0.00099 x (-3875 V) = -3.836 V dc

- 16. With the front-panel INTENSITY control fully counterclockwise, wait approximately 30 minutes to allow the high-voltage supply to stabilize and the CRT to normalize. This *soft* turn-on will extend CRT life expectancy, particularly if a new CRT has just been installed.
- 17. Readjust A1A6R32 HV ADJ for a DVM indication equal to the voltage determined in step 15.
- 18. If a new CRT has just been installed do the following:
  - a. Set the front-panel INTENSITY control so the CRT trace is barely visible.
  - b. Wait an additional 30 minutes for the CRT to normalize.
  - c. Readjust A1A6R32 HV ADJ for a DVM indication equal to the voltage determined in step 15.
- 19. Set the LINE switch to STANDBY. Remove the ac line cord from each instrument section.
- 20. Wait at least one minute for the MAINS power-on indicator A1A8DS1 (red LED) to go out completely before proceeding.
- 21. Disconnect the high-voltage probe from A1A3TP3.
- 22. Remove the A3A2 Intensity Control Assembly from the IF-Display Section and install in its place the Display Adjustment Board, HP part number 85662-60088. Set the switch on the Display Adjustment Board in the "down" position. (This applies approximately +2.7 V dc to the front-panel INTENSITY control.)
- 23. Connect a calibrated 10:1 divider probe to the oscilloscope Channel 1 input.
- 24. On the oscilloscope, press (RECALL) (CLEAR) to perform a soft reset.
- 25. On the oscilloscope, press <u>CHAN</u>, more preset probe, select channel 1, and use the front-panel knob to select a 10:1 probe.
- 26. Set the oscilloscope controls as follows:

| Press CHAN:        |            |
|--------------------|------------|
| Channel 1          | on         |
| amplitude scale    | .10.0V/div |
| offset             | 60.0000V   |
| coupling           | dc         |
| Press (TIME BASE): |            |
| time scale         | 50µs/div   |
| Press (TRIG):      |            |
| EDGE TRIGGER       | auto, edge |
| source             | 1          |
| level              | ge         |
| Press DISPLAY:     |            |
| connect dots       | on         |

# Focus and Intensity Adjustments

- 27. On the oscilloscope press SHOW.
- 28. Connect the oscilloscope channel 1 probe to A1A3TP5 using a long probe extension. See Figure 3-7 for the location of A1A3TP5.
- 29. Reconnect the ac line cords to each instrument section. Adjust the front-panel INTENSITY control fully counter-clockwise, and then set the LINE switch to ON (the INSTR CHECK I LED will light.)
- 30. Wait approximately 30 seconds for the dc regulator circuits to stabilize again.
- 31. With the front-panel INTENSITY control fully counter clockwise, adjust A1A2R35 INT LIMIT (clockwise) until a spot is just visible in the lower left corner of the CRT. See Figure 3-8 for the location of the adjustment.
- **Note** The A1A2R35 INT LIMIT adjustment compensates for the variation in beam cut-off voltage of different CRTs and indirectly sets the maximum beam intensity. A1A2R35 INT LIMIT should have enough range to turn the CRT spot on and off. If the spot is always on, decrease the value of A1A2R9. If the spot is always off, increase the value of A1A2R9. Refer to Table 3-3 for the acceptable range of values, and to Table 3-4 for HP part numbers. Refer to Figure 3-8 for the location of A1A2R9.



Figure 3-8. Location of A1A2 Components

- 32. Using a non-metallic alignment tool, center the front panel FOCUS control and adjust A1A2R36 ASTIG and A1A3R14 FOCUS LIMIT for a sharp, focused dot on the CRT display.
- 33. Adjust A1A2R35 INT LIMIT until the dot just disappears.

34. On the oscilloscope, adjust the channel 1 offset voltage as necessary to measure the peak-to-peak CRT cut-off voltage, V,,, at A1A3TP5. See Figure 3-9. This peak-to-peak voltage should be between 45-75  $V_{p-p}$ . Note this voltage for use in step 39.



#### Figure 3-9. CRT Cut-Off Voltage

35. Connect a separate function generator to each of the X and Y inputs of the Display Adjustment Board, as shown in Figure 3-5. Set the function generators as follows:

| X input JI: |                               |
|-------------|-------------------------------|
| frequency   |                               |
| wave        | sine                          |
| amplitude   | $.2V_{p-p} (0-2 Vdc)$         |
| Y input J2: |                               |
| frequency   | 1 kHz                         |
| wave        | sine                          |
| amplitude   | . 2V <sub>p-p</sub> (0–2 Vdc) |

- 36. Adjust A1A2R35 INT LIMIT clockwise until the display is just visible.
- 37. Adjust A1A4R7 POS, A1A5R7 POS, and if necessary the function generator dc offsets for a full-screen illumination.
- 38. Set the front-panel INTENSITY control fully counter-clockwise, and, if it is not sealed, adjust A1A2R5 INT GAIN fully clockwise. Adjust A1A2R35 INT LIMIT just below the threshold at which the display illumination becomes visible.

39. Slowly adjust the front-panel INTENSITY control through its entire range while monitoring the peak-to-peak voltage at A1A3TP5. As the INTENSITY control is turned clockwise, the peak-to-peak voltage at A1A3TP5 will drop. To prevent long-term CRT damage, this voltage should not drop below  $(V_{n} - 50)V_{p-p}$  or 12  $V_{p-p}$ , whichever is greater. See Figure 3-10. (The value of  $V_{co}$  was recorded in step 34.)

If the front-panel INTENSITY control cannot be set fully clockwise without dropping below this minimum peak-to-peak voltage, then perform the following:

- a. Set the INTENSITY control fully counter clockwise.
- b. Set the LINE switch to STANDBY.
- c. Increase the value of A1A2R9.
- d. Return to step 34.

**Note** Maximum CRT life expectancy is obtained when the peak-to-peak voltage at A1A3TP5 is as large as possible with the INTENSITY control set fully clockwise. The display illumination must fully disappear with the INTENSITY control set fully counter clockwise.





- 40. Replace the cover on the A1A3 High-Voltage Regulator Assembly.
- 41. The High-Voltage Adjustment is completed. If an A1A2, A1A4, or A1A5 assembly has been repaired or replaced, perform adjustment procedure 3, "Preliminary Display Adjustment (SN 3001A and Below)", and then adjustment procedure 4, "Final Display Adjustments (SN 3001A and Below)". If the A1A2,

A1A4, and A1A5 assemblies function properly and do not require compensation, proceed directly to adjustment procedure 4, "Final Display Adjustments (SN 3001A and Below)".

| Discharge Procedure<br>for High Voltage and<br>CRT | The adjustment procedures in this manual do not require the removal<br>or discharge of the A1A3 High-Voltage Regulator or CRT assemblies.<br>However, if for any reason the A1A3 High Voltage Regulator Assembly<br>or the post-accelerator cable must be removed, the following<br>procedure ensures the proper safety.                                                                     |  |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Warning                                            | This procedure should be performed by qualified personnel only. Voltages are present which, if contacted, could cause serious personal injury. Approximately -4000 V dc is present on the A1A3 High-Voltage Regulator assembly even when the ac line cord is disconnected. The CRT can hold a $+$ 18 kV dc charge for several days if the post-accelerator cable is improperly disconnected. |  |  |  |  |
| Warning                                            | Do not handle the A1A3 High-Voltage Regulator Assembly or<br>A1A11 High-Voltage Multiplier until the following high-voltage<br>discharge procedure has been performed.                                                                                                                                                                                                                       |  |  |  |  |
|                                                    | 1. Set the spectrum analyzer's LINE switch to STANDBY, remove the ac line cords, and remove the A1A3 High Voltage Regulator safety cover.                                                                                                                                                                                                                                                    |  |  |  |  |
| Warning                                            | With the ac power cord disconnected, voltages are still present which, if contacted, could cause serious personal injury.                                                                                                                                                                                                                                                                    |  |  |  |  |
| Warning                                            | In the following step, a large arc of high voltage should be drawn.<br>Be careful.                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                    | 2. Locate the snap connector on the CRT post-accelerator cable.<br>It is shown in Figure 3-11 as item 1. Using a long flat-bladed<br>screwdriver with an insulated handle, carefully pry the connector<br>loose but do not disconnect the cable.                                                                                                                                             |  |  |  |  |
|                                                    | a. Using one hand, remove the end of the cable labeled item 2<br>in Figure 3-11. As the end of the cable becomes free, touch<br>the end of the cable to the CRT's metal cover. A large arc of<br>high voltage should ground to the CRT cover. The CRT is not<br>discharged yet!                                                                                                              |  |  |  |  |
|                                                    | b. Reconnect the CRT post-accelerator cable, and repeat the above step until high-voltage arcs no longer appear.                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                    | 3. Leave the CRT post-accelerator cable disconnected, and remove the cover on the A1A3 High Voltage Regulator.                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                    | 4. Connect a jumper wire (insulated wire and two alligator clips) between the shaft of a small screwdriver and the chassis ground lug on the inside of the high-voltage shield.                                                                                                                                                                                                              |  |  |  |  |

- 5. While holding the insulated handle of the screwdriver, touch the grounded blade to the following connections:
  - a. Both brown wires going to the rear of the CRT from A1A3 via cable harness W21.
  - b. The yellow, blue, and orange wires in the same cable as "a." above.
  - c. The top lead of each of the 11 large vertical capacitors on the A1A3 High-Voltage Regulator Assembly.
- 6. Connect the jumper wire from chassis ground to the black wire coming from the A1A11 High-Voltage Multiplier at the wire's connection to A1A3T1.



Figure 3-11. Discharging the CRT Post-Accelerator Cable

- Remove all jumper wires. The A1A3 High-Voltage Regulator, A1A11 High-Voltage Multiplier, and A1V1 CRT assemblies should now be discharged.
- 8. A small bracket and screw secure the A1A3 High-Voltage Regulator Assembly to the A1A10 Display Motherboard Assembly. The bottom cover of the IF-Display Section must be removed to gain access to this screw prior to removal of the A1A3 High-Voltage Regulator Assembly.

| Note        | This procedure is for IF-Display Sections with serial number prefixes 3004A and above. The procedure for serial prefixes 3001A and below is located immediately before this procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Note        | This procedure should be performed whenever the A1V1 CRT or A1A3 High Voltage Regulator Assembly is repaired or replaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Reference   | <ul> <li>IF-Display Section:<br/>A 1A2 Z-Axis Amplifier<br/>A1A3 High-Voltage Regulator<br/>A1A6 ±15 V Regulator<br/>A1A7 + 120 V, +5.2 V Regulator</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Warning     | This procedure is intended for adjustment purposes only.<br>Voltages are present which, if contacted, could cause serious<br>personal injury. Approximately -2400 V dc can be present on<br>the A1A3 High Voltage Regulator Assembly even when the ac<br>line cord is disconnected. Do not attempt to remove the A1A3<br>High-Voltage Regulator Assembly from the instrument. Do not<br>disconnect the CRT's post-accelerator cable; the CRT can hold a<br>+ 9500 V dc charge for several days.                                                                                                                                        |  |  |  |  |  |  |  |
|             | If for any reason the A1A3 High Voltage Assembly or the<br>post accelerator cable must be removed, refer to "Discharge<br>Procedure for High Voltage and CRT" at the end of this<br>adjustment procedure.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|             | A 1000:1 divider probe is used to measure the CRT cathode voltage.<br>First, the high-voltage probe is calibrated by comparing measurements<br>of the + 120 V dc supply voltage with and without the probe. Any<br>measurement error due to the use of the high-voltage probe is<br>calculated into the adjustment specification of the CRT cathode<br>voltage, which is adjusted with the A1A6 HV ADJUST control. When<br>the CRT cathode voltage is properly adjusted, the CRT filament<br>voltage will be +6.00 $\pm 0.05$ V rms measured with CRT beam at<br>cut-off, which is required for maximum CRT life. The filament voltage |  |  |  |  |  |  |  |

directly with special equipment.

| Equipment | Digital Voltmeter (DVM)                 | HP 3456A  |
|-----------|-----------------------------------------|-----------|
|           | DC High-Voltage Probe (1000: 1 divider) | HP 34111A |

# High-Voltage Adjustment Procedure

Warning In the following procedure, it is necessary to probe voltages which, if contacted, could cause serious personal injury. Use a nonmetallic alignment tool when making adjustments. Be extremely careful.

Warning Do not attempt to measure the CRT filament voltage directly. The filament voltage is referenced to the high-voltage cathode and can only be measured safely with a special high-voltage true-rms voltmeter and probe.

- 1. Set the spectrum analyzer's LINE switch to STANDBY.
- 2. Remove the top cover from the IF-Display Section and connect the equipment as shown in Figure 3-12.



Figure 3-12. High Voltage Adjustment Setup

3. Set the DVM to the 100V range, and connect the DVM to A1A7TP3 (+ 120V) without the high-voltage probe. See Figure 3-13.

**Note** The accuracy of the high-voltage probe is specified for a probe connected to a dc voltmeter with 10 MO input resistance. HP 3456A and HP 3455A digital voltmeters have a 10 M $\Omega$  input resistance on the 100 V and 1000 V ranges. All measurements in this procedure should be performed with the DVM manually set to the 100 V range (±00.000 on the HP 3456A display).



Figure 3-13. Location of High Voltage Adjustments

|         | <ol> <li>Set the LINE switch to ON. Set the front-panel INTENSITY<br/>control fully counterclockwise (CRT beam at cut-off) to prevent<br/>possible damage to the CRT.</li> </ol>                                                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 5. Note the DVM indication at A1A7TP3.                                                                                                                                                                                                                                                                              |
|         | DVM Indication:                                                                                                                                                                                                                                                                                                     |
|         | 6. Connect the high-voltage probe to the DVM, and connect the probe to A1A7TP3.                                                                                                                                                                                                                                     |
|         | 7. Note the DVM indication.                                                                                                                                                                                                                                                                                         |
|         | DVM Indication:                                                                                                                                                                                                                                                                                                     |
|         | 8. Divide the DVM indication in step 7 by the DVM indication in step 5. This gives the calibration factor needed to compensate for high-voltage probe error.                                                                                                                                                        |
|         | Calibration Factor:                                                                                                                                                                                                                                                                                                 |
|         | 9. Disconnect the high-voltage probe from A1A7TP3. Set the LINE switch to STANDBY. Remove the ac line cord from both instrument sections.                                                                                                                                                                           |
| Warning | The MAINS power-on indicator A1A8DS1 (red LED) should<br>be completely off before proceeding with this procedure. See<br>Figure 3-13 The indicator will remain lit for several seconds after<br>the ac line cord has been removed, and will go out slowly (the<br>light becomes dimmer until it is completely out). |
| Warning | With the protective cover removed in the following step, do not<br>place hands near the A1A3 High-Voltage assembly. High voltage<br>(approximately -2400 V dc) can present even when the ac line<br>cord is disconnected.                                                                                           |
|         | 10. Wait at least one minute for capacitors to discharge to a safe                                                                                                                                                                                                                                                  |

level.

11. Remove the protective cover from the A1A3 High-Voltage Regulator Assembly. A label should be visible on the A1A3A1 High Voltage Assembly. (A1A3A1 is mounted on the non-component side of the High-Voltage Regulator Assembly as shown in Figure 3-14.) Record the voltage listed on the label for use in step 15. In cases where more than one voltage is listed on this label, record the value which is closest to -2400 Vdc.

\_V dc

# Warning

With power supplied to the instrument, A1A3TP2A is at a voltage level of approximately -2400 V dc. Be extremely careful.

12. Connect the high-voltage probe to A1A3TP2A. See Figure 3-14 for the location of the test point.



Figure 3-14. Location of A1A3 Label and Test Point

- 13. Reconnect ac line cords to both instrument sections. Set the LINE switch to ON.
- 14. Wait approximately 30 seconds for the dc regulator circuits to stabilize.
- 15. Adjust A1A6R103 HV ADJ for a DVM indication equal to the calibration factor (calculated in step 8) times the voltage labeled on the top of the A1A3A1 High-Voltage Assembly (noted in step 11). See Figure 3-13 for the location of the adjustment.

\_\_\_\_\_ V dc

#### EXAMPLE:

If the calibration factor calculated in step 8 is 0.00099, and A1A3A1 is labeled for -2400 V, then adjust A1A6R103 HV ADJ for a DVM indication of:

0.00099 x (-2400 V) = -2.376 V dc

- 16. With the front-panel INTENSITY control fully counter clockwise, wait approximately 10 minutes to allow the high-voltage supply to stabilize and the CRT to normalize. This *soft* turn-on will extend CRT life expectancy, particularly if a new CRT has just been installed.
- 17. Readjust A1A6R103 HV ADJ for a DVM indication equal to the voltage determined in step 15.
- 18. If a new CRT has just been installed do the following:
  - a. Set the front-panel INTENSITY control so the CRT trace is barely visible.
  - b. Wait an additional 30 minutes for the CRT to normalize.
  - c. Readjust A1A6R103 HV ADJ for a DVM indication equal to the voltage determined in step 15.
- 19. Set the LINE switch to STANDBY. Remove the ac line cord from each instrument section.
- 20. Wait at least one minute for the MAINS power-on indicator A1A8DS1 (red LED) to go out completely before proceeding.
- 21. Disconnect the high-voltage probe from A1A3TP2A.
- 22. Replace the cover on the A1A3 High-Voltage Regulator Assembly.
- 23. The High-Voltage adjustments are now completed. If the A1A2 assembly has been repaired or replaced, perform adjustment procedure 3, "Preliminary Display Adjustment (SN 3004A and Above)", and then adjustment procedure 4, "Final Display Adjustments (SN 3004A and Above)". If the A1A2 assembly functions properly and does not require compensation, proceed directly to adjustment procedure 4, "Final Display Adjustments (SN 3004A and Above)".

| Discharge Procedure<br>for High Voltage and<br>CRT | The High-Voltage Adjustment procedure does not require the removal<br>or discharge of the Al A3 High-Voltage Regulator or A1V1 CRT<br>assemblies. However, if for any reason the A1A3 High Voltage<br>Regulator Assembly, the CRT, or the CRT post-accelerator cable must<br>be removed, perform the following procedure to ensure proper safety.<br>This procedure should be performed by qualified personnel only.<br>Voltages are present which, if contacted, could cause serious<br>personal injury. Approximately -2400 V dc can be present on the<br>A1A3 High-Voltage Regulator assembly even when the ac line<br>cord is disconnected. The CRT can hold a + 9500 V dc charge<br>for several days if the post-accelerator cable is improperly<br>disconnected. |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Warning                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                    | 1. Remove the ac line cord from both instrument sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Warning                                            | With the ac power cords disconnected, voltages can still be present which, if contacted, could cause serious personal injury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                    | 2 Obtain an electrician's screwdriver which has a thin blade at least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

2. Obtain an electrician's screwdriver which has a thin blade at least eight inches long. The handle of the screwdriver must be made of an insulating material.

- 3. Connect one end of a jumper wire (made of insulated wire and two alligator clips) to the blade of the screwdriver. Connect the other end of the jumper wire to the metal chassis of the IF Display Section. This grounds the screwdriver.
- 4. Slide the screwdriver's blade between the CRT and the sheet metal as shown in Figure 3-15. Gently work the tip of the screwdriver under the post-accelerator cable's rubber shroud. Make sure that the screwdriver's tip touches the connection between the post accelerator cable and the CRT. You should hear a cracking sound when the cable discharges.
- 5. Remove the cover from the A1A3 High-Voltage Regulator assembly.
- 6. Touch the screwdriver's tip to the top lead of each of the 11 large vertical capacitors on the A1A3 High-Voltage Regulator assembly.
- 7. The A1A3 High-Voltage Regulator and A1V1 CRT assemblies should now be discharged.



Figure 3-15. Discharging the CRT Post-Accelerator Cable

Note

A small bracket and screw secure the A1A3 High-Voltage Regulator Assembly to the A1A10 Display Motherboard Assembly. The bottom cover of the IF-Display Section must be removed to gain access to this screw prior to removal of the A1A3 High-Voltage Regulator Assembly.

| Reference   | A1A1 Keyboard<br>A1A2 Z-Axis Amplifier<br>A1 A4 X-Deflection Amplifier<br>A1A5 Y-Deflection Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note        | Adjustment 2, "High-Voltage Adjustment," should be performed before performing the following adjustment procedure.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Note        | Perform this adjustment only if components have been replaced on<br>the A1A2 Z-Axis Amplifier, A1A4 X-Deflection Amplifier, or A1A5 Y<br>Deflection Amplifier Assemblies. Components A1A2R22 HF GAIN,<br>A1A2C10, A1A4R28 HF GAIN, A1A4C10, A1A4C11, A1A5R28 HF<br>GAIN, A1A5C10, and A1A5C11 are factory adjusted and normally do<br>not require readjustment.                                                                                                                                                                    |
| Description | The Al Display Section is adjusted to compensate the CRT drive circuits for proper horizontal and vertical characteristics. These preliminary adjustments are necessary only when a major repair has been performed in the display section (for example, replacement or repair of the A1A2 Z Axis Amplifier, A1A4 X-Deflection Amplifier, or A1A5 Y-Deflection Amplifier assemblies). For routine maintenance, CRT replacement, or minor repairs, only adjustment procedure 4, "Final Display Adjustments," needs to be performed. |
| Caution     | Be sure not to allow a high intensity spot to remain on the spectrum<br>analyzer CRT. A fixed spot of high intensity may permanently damage<br>the CRT's phosphor coating. Monitor the CRT closely during the<br>following adjustment procedures. If a spot occurs, move it off-screen<br>by adjusting either the front-panel INTENSITY control, or the<br>horizontal or vertical deflection position controls.                                                                                                                    |
| Equipment   | Digitizing OscilloscopeHP 54501APulse/Function GeneratorHP 8116A10:1 Divider Probe, 10 M $\Omega$ /7.5 pF (2 required)HP 10432ADisplay Adjustment PC Board (service accessory)85662-60088Termination, BNC 500HP 11593A                                                                                                                                                                                                                                                                                                             |
|             | Adapters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# **Procedure**

# X and Y Deflection Amplifier Pulse Response Adjustments

- 1. Connect a 10:1 (10 M $\Omega$ ) divider probe to the oscilloscope's channel 1 input and a 10: 1 divider probe to the channel 4 input.
- 2. On the oscilloscope, press (RECALL) CLEAR to perform a soft reset.
- 3. On the oscilloscope, press (CHAN) more preset probe, select channel 1, and use the front-panel knob to select a 10:1 probe.
- 4. Select channel 4, and use the front-panel knob to select a 10:1 probe.
- 5. Press (SHOW).
- 6. Connect the channel 1 probe to the oscilloscope's rear panel PROBE COMPENSATION AC CALIBRATOR OUTPUT connector. Press **AUTO- SCALE**. Adjust the channel 1 probe for an optimum square wave display on the oscilloscope.
- 7. Connect the channel 4 probe to the oscilloscope's rear panel PROBE COMPENSATION AC CALIBRATOR OUTPUT connector. Press (AUTO- scale). Adjust the channel 4 probe for an optimum square wave display on the oscilloscope.
- **Note** Each probe is now compensated for the oscilloscope input to which it is connected. Do not interchange probes without recompensating.
  - 8. Connect the channel 1 10:1 divider probe to A1A4E1, and the channel 4 probe to A1A4E2, as shown in Figure 3-16. Connect the probe ground leads to chassis ground. See Figure 3-17 and Figure 3-18 for the location of the assemblies and test points.



Figure 3-16. Preliminary Display Adjustments Setup

9. Remove the cover over A3 Digital Storage Section and remove A3A2 Intensity Control Assembly. Insert the Display Adjustment PC board (HP part number 85662-60088) into the A3A2 slot. See Figure 3-17 for the location of the A3A2 assembly.



Figure 3-17. Location of A1A2, A1A4, A1A5, and A3A2



Figure 3-18. A1A2, A1A4, and A1A5 Adjustment Locations

10. Set the Pulse/Function Generator controls as follows:

| MODE       |          |       |        | <br>  |   | . NOI | RM     |
|------------|----------|-------|--------|-------|---|-------|--------|
| Wavefo     | rm       |       |        | <br>  |   | pu    | llse   |
| Frequen    | cy (FRQ) |       |        | <br>  |   | 200   | kHz    |
| Width(V    | VID)     |       |        | <br>  |   | ,<br> | 250 ns |
| Amplitu    | de (AMP) | )     |        | <br>  |   | .2.00 | V      |
| Offset (   | OFS)     |       |        | <br>  | ( | 000   | mV     |
| Commont di |          | . ( 1 | D 1. / | <br>C |   | 1 (37 |        |

II. Connect the output of the Pulse/Function Generator to J1 (X input) on the Display Adjustment PC board in the A3A2 slot as shown in Figure 3-16.

| Note | The Pulse/Function Generator's output must be terminated with 50    |
|------|---------------------------------------------------------------------|
|      | ohms. Use a BNC tee, a 500 termination, and a BNC female to SMB     |
|      | female adapter. Install the 500 termination as close to the Display |
|      | Adjustment PC Board as possible.                                    |

12. Set the oscilloscope controls as follows:

| Press (CHAN):      |           |
|--------------------|-----------|
| Channel 1          | on        |
| amplitude scale    |           |
| offset             |           |
| Channel 4          | on        |
| amplitude scale    |           |
| offset             | 60.0000 V |
| Press (Trig):      |           |
| source             |           |
| level              |           |
| Press (TIME BASE): |           |
| time scale         |           |
| delay              |           |
| Press (DISPLAY):   |           |
| connect dots       | on        |
| Press (SHOW).      |           |

- 13. Set the spectrum analyzer's front-panel INTENSITY control fully counterclockwise, and then set the LINE switch to ON.
- 14. The X+ deflection and X- deflection waveforms should be superimposed on the oscilloscope display, as shown in Figure 3-19. If necessary, adjust A1A4R7 X POSN and A1A4R27 X GAIN for a centered display of at least four vertical divisions. See Figure 3-18 for the location of the adjustments.



**1** \_**∱** 25.00 ¥

Figure 3-19. X + and X- Waveforms

15. Set the oscilloscope controls as follows:

| on                    |
|-----------------------|
|                       |
| channel 1 – channel 4 |
|                       |
|                       |

16. Three waveforms should be displayed on the oscilloscope, as shown in Figure 3-20. The lower composite waveform represents the combined X deflection voltage applied to the CRT. Use the oscilloscope's front-panel knob to adjust waveform fl sensitivity for approximately 8 vertical divisions.



Figure 3-20. Composite X Deflection Waveform

17. Adjust A1A4R28 HF GAIN, A1A4C10, and A1A4C11 for minimum overshoot and minimum rise and fall times of the composite X deflection waveform.

**Note** Always adjust A1A4C10 and A1A4C11 in approximately equal amounts. Do not adjust one to its minimum value and the other to its maximum value.

18. Use the oscilloscope  $\Delta t \Delta V$  markers to measure the risetime, falltime, and percent overshoot of the composite X defection waveform. Rise and fall times should both be less than approximately 65 ns between the 10% and 90% points on the waveform. Overshoot should be less than 3% (approximately 0.25 divisions). See Figure 3-2 1.



Figure 3-21. Rise and Fall Times and Overshoot Adjustment Waveform

- 19. Connect the oscilloscope's channel 1 probe to A1A5E1 and the channel 4 probe to A1A5E2. See Figure 3-18 for the location of the test points. Connect the output of the pulse/function generator to J2 (Y input) on the Display Adjustment PC board in the A3A2 slot.
- 20. The Y Deflection Amplifier is identical to the X Deflection Amplifier. Repeat steps 12 through 18 for the Y Deflection Amplifier using R7, R27, R28, C10, and C11 respectively.
- 21. Disconnect the oscilloscope channel 4 probe from the spectrum analyzer. Connect the oscilloscope channel 1 probe to A1A2TP2, and connect the probe's ground lead to chassis ground.
- 22. On the oscilloscope, press [RECALL) (CLEAR) to perform a soft reset.
- 23. Press (CHAN), CHANNEL 1 on, more preset probe, and use the front-panel knob to set the probe to 10.00: 1. Press more.
- 24. Set the oscilloscope controls as follows:

| Press (CHAN):        |         |
|----------------------|---------|
| amplitude scale 10.0 | V/div   |
| offset               | 0000 V  |
| Press (TIME BASE):   |         |
| time scale 50.0      | ns/div  |
| delay                | .000 ns |
| Press (TRIG):        |         |
| level                | 0000 V  |
| Press DISPLAY:       | ·       |
| connect dots         | on      |
| Press SHOW.          |         |
|                      |         |

25. Connect the output of the Pulse/Function Generator to J3 (Z input) on the Display Adjustment PC Board in the A3A2 slot. Set the board's switch to the down position.

**Note** The pulse/function generator's output must be terminated with 50 ohms. Use a BNC tee, a  $50\Omega$  termination, and a BNC female to SMB female adapter. Install the  $50\Omega$  termination as close to the Display Adjustment PC Board as possible.

26. Set the pulse/function generator's controls as follows:

| MODE            | NORM     |
|-----------------|----------|
| Waveform        | pulse    |
| Frequency (FRQ) | 200 kHz  |
| Width(WID)      | . 250 ns |
| Amplitude (AMP) | 4.00V    |
| Offset (OFS)    | 2.00V    |

27. Set the spectrum analyzer's front-panel INTENSITY control fully clockwise. Note the display on the oscilloscope. The pulse should be  $\geq$ 55V peak-to-peak.

# Pulse Response of Control Gate Z Amplifier to BLANK Input

28. Set the oscilloscope controls as follows:

| Press (CHAN):   |       |
|-----------------|-------|
| Channel 1       | on    |
| amplitude scale | V/div |
| Press SHOW).    |       |

- 29. Adjust A1A4R7 X POS and A1A5R7 Y POS to either extreme to position the CRT beam off-screen (to prevent possible damage to the CRT phosphor). If it is not sealed, adjust A1A2R5 INT GAIN fully clockwise.
- 30. Adjust the spectrum analyzer's front-panel INTENSITY control for 50V peak-to-peak (8 divisions) as indicated on the oscilloscope. See Figure 3-22.



- 31. Adjust A1A2R22 HF GAIN and A1A2C10 for minimum overshoot on rise and minimum rise and fall times of the pulse waveform.
- 32. Use the oscilloscope  $\Delta t \Delta V$  markers to measure the risetime, falltime, and percent overshoot of the pulse waveform. Rise and falltimes should be less than 50 ns and 90 ns respectively. Overshoot on the rise should be less than 5% (approximately 0.4 divisions).
- 33. Set the spectrum analyzer's LINE switch to STANDBY, and center potentiometers A1A4R7 X POSN and A1A5R7 Y POSN.
- 34. Disconnect the oscilloscope channel 1 probe from the spectrum analyzer. Remove the Display Adjustment PC board from the A3A2 slot, and reinstall the A3A2 Intensity Control Assembly. Replace the A3 Section cover and cables.
- 35. Perform Adjustment Procedure 4, Final Display Adjustment (SN 3001A and Below).

| Reference   | A1A1 Keyboard<br>Al A2 X, Y, Z Axis Amplifier                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note        | Adjustment Procedure 2, "High-Voltage Adjustment," should be<br>performed before performing the following adjustment procedure.                                                                                                                                                                                                                                                                                        |
| Note        | Perform this adjustment only if components have been replaced on<br>the A1A2 X, Y, Z Axis Amplifier Assembly. Components R117, R217,<br>R308, C104, C109, C204, C209, and C307 are factory adjusted and<br>normally do not require readjustment. Components affecting these<br>adjustments are located in function blocks F, H, M, N, 0, P, R, and S<br>of the A1A2 X, Y, Z Axis Amplifier Assembly schematic diagram. |
| Description | The X, Y, Z Axis Amplifier Assembly is adjusted to compensate the CRT drive circuits for proper horizontal and vertical characteristics. These preliminary adjustments are necessary only after replacement or repair of the A1A2 X, Y, Z Axis Amplifier Assembly). For routine maintenance, CRT replacement, or minor repairs, only Adjustment Procedure 4, "Final Display Adjustments," needs to be performed.       |
| Caution     | Be sure not to allow a fixed spot of high intensity to remain on the spectrum analyzer CRT. A high intensity spot may permanently damage the CRT's phosphor coating. Monitor the CRT closely during the following adjustment procedures. If a spot occurs, move it off-screen by adjusting either the front-panel INTENSITY control, or the horizontal or vertical deflection position controls.                       |
| Equipment   | Digitizing OscilloscopeHP 54501APulse/Function GeneratorHP 8116A10:1 Divider Probe, 10 M $\Omega$ /7.5 pF, (2 required)HP 10432ADisplay Adjustment PC Board (service accessory)85662-60088Termination, BNC 50 $\Omega$ HP 11593A                                                                                                                                                                                       |
|             | Adapters:         SMB(f)         1250-1236           Adapter, BNC(f)         to         SMB(f)         1250-0781           Adapter, BNC tee         1250-0781         1250-0781                                                                                                                                                                                                                                        |

# Procedure

# X and Y Deflection 1. Connect a 10:1 (10 M $\Omega$ ) divider probe to the oscilloscope's channel 1 input and a 10:1 divider probe to the channel 4 input. **Amplifier Pulse Response** Adjustments 2. On the oscilloscope, press (RECALL) [CLEAR] to perform a soft reset. 3. On the oscilloscope, press (CHAN) more preset probe, select channel 1, and use the front-panel knob to select a 10: 1 probe. 4. Select channel 4, and use the front-panel knob to select a 10:1 probe. 5. Press (SHOW). 6. Connect the channel 1 probe to the oscilloscope's rear panel PROBE COMPENSATION AC CALIBRATOR OUTPUT connector. Press (AUTO- scale). Adjust the channel 1 probe for an optimum square wave display on the oscilloscope. 7. Connect the channel 4 probe to the oscilloscope's rear panel PROBE COMPENSATION AC CALIBRATOR OUTPUT connector. Press [AUTO- SCALE]. Adjust the channel 4 probe for an optimum

**Note** Each probe is now compensated for the oscilloscope input to which it is connected. Do not interchange probes without recompensating.

square wave display on the oscilloscope.

8. Connect the channel 1 10:1 divider probe to A1A2TP204, and the channel 4 probe to A1A2TP205, as shown in Figure 3-23. Connect the probe ground leads to A1A2TP106. See Figure 3-24 and Figure 3-25 for the location of the assemblies and test points.



Figure 3-23. Preliminary Display Adjustments Setup

9. Remove the cover over A3 Digital Storage Section and remove A3A2 Intensity Control Assembly. Insert the Display Adjustment PC board (HP part number 85662-60088) into the A3A2 slot. See Figure 3-24 for the location of the A3A2 assembly.



Figure 3-24. Location of A1A2 and A3A2



Figure 3-25. A1A2 Adjustment Locations

10. Set the Pulse/Function Generator controls as follows:

| MODE            | NORM    |
|-----------------|---------|
| Waveform        | pulse   |
| Frequency (FRQ) | ) kHz   |
| Width(WID)      | 250 ns  |
| Amplitude (AMP) | 2.00 V  |
| Offset (OFS)    | .000 mV |

11. Connect the output of the Pulse/Function Generator to J1 (X input) on the Display Adjustment PC board in the A3A2 slot as shown in Figure 3-23.

Note

The pulse/function generator's output must be terminated with 50 ohms. Use a BNC tee, a  $50\Omega$  termination, and a BNC female to SMB female adapter. Install the  $50\Omega$  termination as close to the Display Adjustment PC Board as possible.

12. Set the oscilloscope controls as follows:

| Press (CHAN):      |            |
|--------------------|------------|
| Channel 1          | on         |
| amplitude scale    |            |
| offset             |            |
| Channel 4          | on         |
| amplitude scale    |            |
| offset             |            |
| Press (TRIG):      |            |
| source             |            |
| level              | 25.0000 V  |
| Press (TIME BASE): |            |
| time scale         |            |
| delay              | 125.000 ns |
| Press (DISPLAY):   |            |
| connect dots       |            |
| Press (SHOW).      |            |

- 13. Set the spectrum analyzer's front-panel INTENSITY control fully counterclockwise, and then set the LINE switch to ON.
- 14. The X+ deflection and X- deflection waveforms should be superimposed on the oscilloscope display, as shown in Figure 3-26. If necessary, adjust A1A2R227 X POSN and A1A2R220 X GAIN for a centered display of at least four vertical divisions. See Figure 3-25 for the location of the adjustments.



Figure 3-26. X + and X- Waveforms

15. Set the oscilloscope controls as follows:

| Press WFORM MATH: |                       |
|-------------------|-----------------------|
| f1                |                       |
| display           | on                    |
| math              | channel 1 – channel 4 |
| sensitivity       |                       |

16. Three waveforms should be displayed on the oscilloscope, as shown in Figure 3-27. The lower composite waveform represents

the combined X deflection voltage applied to the CRT. Use the oscilloscope's front-panel knob to adjust waveform fl sensitivity for approximately 8 vertical divisions.



1 \_\_\_\_\_ 25.00 V

Figure 3-27. Composite X Deflection Waveform

17. Adjust A1A2R217 HF GAIN, A1A2C204, and A1A2C209 for minimum overshoot and minimum rise and fall times of the composite X deflection waveform.

**Note** Always adjust A1A2C204 and A1A2C209 in approximately equal amounts. Do not adjust one to its minimum value and the other to its maximum value.

18. Use the oscilloscope  $\Delta t \Delta V$  markers to measure the risetime, falltime, and percent overshoot of the composite X defection waveform. Rise and fall times should both be less than approximately 65 ns between the 10% and 90% points on the waveform. Overshoot should be less than 3% (approximately 0.25 divisions). See Figure 3-28.



Figure 3-28. Rise and Fall Times and Overshoot Adjustment Waveform

- 19. Connect the oscilloscope's channel 1 probe to A1A2TP104 and the channel 4 probe to A1A2TP105. See Figure 3-25 for the location of the test points. Connect the output of the pulse/function generator to J2 (Y input) on the Display Adjustment PC board in the A3A2 slot.
- 20. The Y Deflection Amplifier is identical to the X Deflection Amplifier. Repeat steps 12 through 18 for the Y Deflection Amplifier using R127, R120, R117, C104, and C109, respectively.

# **Pulse Response of 21.** Disconnect the oscilloscope channel 4 probe from the spectrum **Control Gate Z** Amplifier to **BLANK**

- analyzer. Connect the oscilloscope channel 1 probe to A1A2TP301, and connect the probe's ground lead to A1A2TP501.
- **Input 22.** On the oscilloscope, press (RECALL) (CLEAR) to perform a soft reset.
  - 23. Press (CHAN), CHANNEL 1 on, more preset probe, and use the front-panel knob to set the probe to 10.00:1. Press more .
  - 24. Set the oscilloscope controls as follows:

| Press (CHAN):      |           |
|--------------------|-----------|
| amplitude scale    | V/div     |
| offset             | 45.0000 V |
| Press (TIME BASE): |           |
| time scale         | .0 ns/div |
| delay              | 25.000 ns |
| Press (TRIG):      |           |
| level              | .00000 v  |
| Press (DISPLAY):   |           |
| connect dots       | on        |
| Press (SHOW).      |           |

25. Connect the output of the Pulse/Function Generator to J3 (Z input) on the Display Adjustment PC Board in the A3A2 slot. Set the board's switch to the *down* position.

The pulse/function generator's output must be terminated with 50 Note ohms. Use a BNC tee, a 500 termination, and a BNC female to SMB female adapter. Install the 500 termination as close to the Display Adjustment PC Board as possible.

26. Set the Pulse/Function Generator's controls as follows:

| MODE            | NORM    |
|-----------------|---------|
| Waveform        | pulse   |
| Frequency (FRQ) | 200 kHz |
| Width (WID)     | 250 ns  |
| Amplitude (AMP) | 4.00V   |
| Offset (OFS)    | 2.00V   |

- 27. Disconnect the black connector with three wires (8, 98, and 96) from A1A2J5, and set A1A2R319 INT GAIN fully clockwise.
- 28. Set the spectrum analyzer's front-panel INTENSITY control fully clockwise. Adjust the oscilloscope trigger level for a stable display. Note the display on the oscilloscope. The pulse should be  $\geq 55V$ peak-to-peak.

29. Set the oscilloscope controls as follows:

| Press CHAN:     |  |   |  |  |       |       |
|-----------------|--|---|--|--|-------|-------|
| Channel 1 .     |  | • |  |  |       | on    |
| amplitude scale |  |   |  |  | .8.00 | V/div |
| Press SHOW.     |  |   |  |  |       |       |

30. Adjust the spectrum analyzer's front-panel INTENSITY control for 50V peak-to-peak (8 divisions) as indicated on the oscilloscope. See Figure 3-29.



- 31. Adjust A1A2R308 HF GAIN and A1A2C307 for minimum overshoot on rise and minimum rise and fall times of the pulse waveform.
- 32. Use the oscilloscope  $\Delta t \Delta V$  markers to measure the risetime, falltime, and percent overshoot of the pulse waveform. Rise and falltimes should be less than 50 ns and 90 ns respectively. Overshoot on the rise should be less than 5% (approximately 0.4 divisions).
- 33. Set the spectrum analyzer's LINE switch to STANDBY and reconnect the cable to A1A2J5.
- 34. Disconnect the oscilloscope channel 1 probe from the spectrum analyzer. Remove the Display Adjustment PC board from the A3A2 slot, and reinstall the A3A2 Intensity Control Assembly. Replace the A3 Section cover and cables.
- 35. Reconnect the black connector with three wires (8, 98, and 96) to A1A2J5, and set A1A2R319 INT GAIN approximately two-thirds clockwise.
- 36. Perform Adjustment Procedure 4 Final Display Adjustment (SN 3004A and Above).

# 4. Final Display Adjustments (SN 3001A and Below)

| Reference   | A1A1 Keyboard<br>A1A2 Z Axis Amplifier<br>A1A4 X Deflection Amplifier<br>A1A5 Y Deflection Amplifier                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | This procedure is used to optimize the appearance of the CRT display<br>during routine maintenance or after CRT replacement or minor<br>repairs. First, the display is adjusted for best focus over the full CRT,<br>then the graticule pattern is adjusted for optimum rectangular display.                                                                                                                                                                                                             |
| Note        | Adjustment Procedure 2, High Voltage Adjustment (SN 3001A and Below) should be performed prior to performing the following adjustment procedure.                                                                                                                                                                                                                                                                                                                                                         |
| Procedure   | 1. With the spectrum analyzer LINE switch set to STANDBY, set the potentiometers listed in Table 3-5 as indicated. See Figure 3-30 for the location of the adjustments.                                                                                                                                                                                                                                                                                                                                  |
| Note        | In this procedure, do not adjust the following potentiometers and precision variable capacitors on the A1A2 Z-Axis Amplifier, A1A4 X-Axis Amplifier, or A1A5 Y-Axis Amplifier Assemblies: A1A2R36 INT LIMIT, A1A2R22 HF GAIN, A1A2C10, A1A4R28 HF GAIN, A1A4C10, A1A4C11, A1A5R28 HF GAIN, A1A5C10, or A1A5C11. These components are adjusted in Adjustment Procedure 2, High Voltage Adjustments (SN 3001A and Below) and Adjustment Procedure 3, Preliminary Display Adjustments (SN 3001A and Below). |

Table 3-5. Initial Adjustment Positions

| Adjus       | stment    | Position        |
|-------------|-----------|-----------------|
| Front-panel | INTENSITY | fully clockwise |
| Front-panel | FOCUS     | centered        |
| Front-panel | ALIGN     | centered        |
| A1A2R5 IN   | T GAIN    | fully clockwise |

- 2. Set the LINE switch to ON and wait at least 5 minutes to allow the CRT and high-voltage circuits to warm up. The spectrum analyzer power-up annotation should be visible on the CRT display.
- 3. For an initial coarse focus adjustment, adjust A1A3R15 FOCUS LIMIT, A1A2R36 ASTIG, and A1A2R30 FOCUS GAIN in sequence for best displayed results.
- 4. Adjust A1A4R7 X POSN, A1A4R27 X GAIN, A1A5R7 Y POSN, and A1A5R27 Y GAIN for optimum centering of the display annotation and graticule pattern.

- 5. For best overall focusing of the display, adjust the following potentiometers in the sequence listed below:
  - a. A1A3R14 FOCUS LIMIT for best focus of graticule lines (long vectors)
  - b. A1A2R36 ASTIG
  - c. A1A2R30 FOCUS GAIN for best focus of annotation (short vectors)
- 6. Adjust A1A2R31 ORTHO, the front-panel ALIGN control, and A1A2R32 PATT to optimize the orientation and appearance of the rectangular graticule pattern on the CRT display.
- 7. Repeat steps 4 through 6 as needed to optimize overall display focus and appearance.



Figure 3-30. Location of Final Display Adjustments on A1A2, A1A4, and A1A5

# 4. Final Display Adjustments (SN 3004A and Above)

| Reference   | A1A1 Keyboard<br>A1A2 X, Y, Z Axis Amplifiers                                                                                                                                                                                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | This procedure is used to optimize the appearance of the CRT display<br>during routine maintenance or after CRT replacement or minor<br>repairs. First, the display is adjusted for best focus over the full CRT,<br>then the graticule pattern is adjusted for optimum rectangular display. |
| Equipment   | Digital Photometer                                                                                                                                                                                                                                                                           |
| Procedure   |                                                                                                                                                                                                                                                                                              |
| Note        | Adjustment Procedure 2, High Voltage Adjustment (SN 3004A and Above) should be performed prior to performing the following adjustment procedure.                                                                                                                                             |

1. Connect the equipment as shown in Figure 3-31.



## Figure 3-31. Final Display Adjustments Setup

2. Set the photometer probe to NORMAL. Press **POWER** on the photometer to turn it on and allow 30 minutes warm-up. Zero the photometer according to the manufacturer's instructions.

3. With the spectrum analyzer's LINE switch set to STANDBY, set the potentiometers listed in the Table 3-6 as indicated. See Figure 3-32 for the location of the adjustments.

**Note** In this procedure, do not adjust the following potentiometers and variable capacitors on the A1A2 X, Y, Z Amplifier Assembly: C104, C109, C204, C209, C307, R117, R217, or R308. These components are adjusted in the factory and in Adjustment Procedure 3, Preliminary Display Adjustments (SN 3004A and Above).



Figure 3-32. Location of Final Display Adjustments on A1A2

| Adjustment            | Position               |
|-----------------------|------------------------|
| A1A2 R120 Y GAIN      | centered               |
| A1A2 R127 Y POSN      | centered               |
| A1A2 R220 X GAIN      | centered               |
| A1A2 R227 X POSN      | centered               |
| A1A2 R319 INT GAIN    | two-thirds clockwise   |
| A1A2R409FOCUS COMP    | centered               |
| A1A2 R426 T/B FOC     | centered               |
| Al A2 R427 T/B CTR    | centered               |
| Al A2 R437 R/L FOC    | centered               |
| A 1A2 R440 R/L CTR    | centered               |
| A1A2R512ORTHO         | centered               |
| A1A2 R513 3D          | centered               |
| A1A2 R516 INT LIM     | fully counterclockwise |
| A1A2 R517 ASTIG       | centered               |
| Front-panel INTENSITY | fully counterclockwise |
| Front-panel FOCUS     | centered               |
| Front-panel ALIGN     | centered               |

| Table | 3-6. | Initial | Adjustment | Positions |
|-------|------|---------|------------|-----------|
|       |      |         |            |           |

- 4. Set the spectrum analyzer's LINE switch to ON, and wait at least 5 minutes to allow the CRT and high-voltage circuits to warm up.
- 5. Set the front panel INTENSITY control fully counterclockwise and adjust A1A2R516 INT LIM until the display is just visable. See Figure 3-32.
- 6. Set the front-panel INTENSITY control fully clockwise.
- 7. Adjust A1A2R220 X GAIN, A1A2R227 X POSN, A1A2R120 Y GAIN, and A1A2R127 Y POSN for optimum centering of the display annotation and graticule pattern.

| 8. | For | an  | initial | coarse  | focus, | adjust | the | following | potentiometers | in |
|----|-----|-----|---------|---------|--------|--------|-----|-----------|----------------|----|
|    | the | seq | uence   | listed: |        |        |     |           |                |    |

A1A3R14 FOCUS LIMIT A1A2R517 ASTIG A1A2R513 3D A1A2R409 FOCUS COMP

- 9. Press (INSTR PRESET), then adjust the reference level to bring the displayed noise to the top division of the graticule. Press CENTER dB/DIV and key in 1 dB/DIV. The noise should now completely fill the CRT graticule pattern, illuminating a large rectangular area. If necessary, adjust the reference level until the graticule pattern is completely filled.
- 10. Press (SHIFT OFF)<sup>m</sup> and then (SHIFT OFF)<sup>o</sup> to turn off the CRT annotation and graticule pattern.

Connect a 56503 photometer probe to the Tektronix J-16 digital photometer. Set the photometer to the XI range.

11. Place the photometer light probe hood against the IF-Display Section glass RFI filter, and adjust A1A2R319 INT GAIN for a photometer reading of 80 NITS ( $cd/m^2$ ).

**Note** This reading must be made with the glass RFI filter in place in front of the CRT. It might be necessary to slightly trim the top and bottom of the photometer probe's hood so that it will fit flush against the glass RFI filter.

**Note** If a standard J-16 photometer is used (instead of metric option 02), adjust A1A2R319 for a photometer reading of 23.5 fl (footlamberts).

- 12. Set the LINE switch to STANDBY and then back to ON. The spectrum analyzer power-up annotation should be visible on the CRT display. (This includes the firmware datecode.)
- 13. For the best focus near the center of the CRT display, adjust the following potentiometers in the sequence listed below. Repeat as needed to optimize center-screen focus.

A1A3R14 FOCUS LIMIT A1A2R517 ASTIG A1A2R513 3D for best focus of annotation (short vectors) A1A2R409 FOCUS COMP for best focus of graticule lines (long vectors)

- 14. Adjust A1A2R426 T/B FOC for best focus at the top and bottom of the display.
- 15. Adjust A1A2R437 R/L FOC for best focus at the right and left sides of the display.
- 16. If the top and bottom (or right and left sides) of the display achieve best focus at different potentiometer settings, adjust A1A2R427 T/B CTR or A1A2R440 R/L CTR, and then readjust A1A2R426 T/B FOC or A1A2R437 R/L FOC to optimize overall focus.

- 17. Adjust A1A2R512 ORTHO and the front-panel ALIGN control to optimize the orientation and appearance of the rectangular graticule pattern on the CRT display.
- 18. Repeat steps 13 through 17 as needed to optimize overall display focus and appearance.

# 5. Log Amplifier Adjustments

| Reference                    | IF-Display Section<br>A4A3 Log Amplifier-Filter<br>A4A2 Log Amplifier-Detector                                                                                                                                                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Tests | Scale Fidelity Test                                                                                                                                                                                                                               |
| Note                         | The A4A3 Log Amplifier-Filter and A4A2 Log Amplifier Detector<br>are temperature compensated as a matched set at the factory. In<br>the event of a circuit failure, a new matched set must be ordered.<br>Contact your nearest HP Service Center. |

**Description** First, the A4A2 Log Amplifier-Detector ZERO adjustment is checked and adjusted if necessary, then the A4A3 Log Amplifier-Filter is set for center frequency by injecting a signal and adjusting the bandpass filter center adjustment for maximum DVM indication. The bandpass filter amplitude is adjusted by monitoring the output of the filter control line shorted and not shorted to the + 15V supply. Next, log fidelity (gain and offset of the log curve) is adjusted by adjusting the -12 VTV and the PIN diode attenuator. Last, the linear gain step adjustments are performed to set the proper amount of step gain in the linear mode of operation.



Figure 3-33. Log Amplifier Adjustments Setup

| Equipment | Digital Voltmeter (DVM) HP 3456A<br>Frequency Synthesizer HP 3335A                                                                       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure | 1. Position instrument upright as shown in Figure 3-33, with top cover removed.                                                          |
|           | 2. Set LINE switch to ON and press (INSTR PRESET].                                                                                       |
|           | 3. Key in <u>[FREQUENCY SPAN]</u> 0 Hz, <u>(CENTER FREQUENCY]</u> 7.6 MHz,<br>(REFERENCE LEVEL) + 10 dBm, (RES BW) 10 kHz, and press LIN |

pushbutton.

## 5. Log Amplifier Adjustments

 4. Connect DVM to A4A1TP1 and DVM ground to the IF casting. Connect the frequency synthesizer to the RF INPUT. Key in FREQUENCY 80 MHz and [AMPLITUDE] -86.98 dBm. The frequency synthesizer will now provide a 50Ω load.

# **Offset Adjustment Check**

5. Adjust A4A2R79 ZERO for 0.0000  $\pm$ 0.0005 V dc. See Figure 3-34 for location of adjustment.



## Figure 3-34. Location of Log Amplifier Adjustments

#### **Bandpass Filter Center Adjustment**

- 6. Press LOG (ENTER dB/DIV)
- 7. Set the frequency synthesizer for 7.6000 MHz at +5.0 dBm output level.
- 8. Adjust A4A3C55 CTR for maximum DVM indication. See Figure 3-34 for location of adjustment. If A4A3C55 is at an extreme of its adjustment range (fully meshed, maximum capacitance, or unmeshed, minimum capacitance), increase or decrease value of A4A3C52 and A4A3C53. Refer to Table 3-3 for range of values.

**Note** A4A3C52 is a fine adjustment, and A4A3C53 is a coarse adjustment. If A4A3C55 is fully meshed, increase the value of A4A3C52 or A4A3C53.
### Bandpass Filter Amplitude Adjustment

9. Connect one end of a jumper wire to A4A3TP8. Connect the other end of the jumper to A4A3TP7 (+ 15V). Connecting the jumper to A4A3TP8 first reduces the chance of shorting the + 15V to ground. Note DVM indication.

\_V dc

- 10. Remove the short from between A4A3TP7 and A4A3TP8.
- 11. Adjust A4A3R67 AMPTD for DVM indication the same as that noted in step  $9 \pm 0.0005$  V dc. See Figure 3-34 for location of adjustment. If unable to adjust A4A3R67 AMPTD for proper indication, increase or decrease value of A4A3R66. (If A4A3R67 is fully counter-clockwise, increase the value of A4A3R66.)

Refer to Table 3-3 for range of values.

12. Repeat steps 9 through 11 until DVM indication is the same  $\pm 0.0005$  V dc with A4A3TP7 jumpered to A4A3TP8, and with A4A3TP7 and A4A3TP8 not jumpered. Remove the jumper.

### -12 VTV and ATTEN Adjustments

- 13. Press LIN pushbutton.
- 14. Adjust frequency synthesizer output level for DVM indication of  $+ 1.000 \pm 0.0002$  V dc.

Synthesizer level: \_\_\_\_\_ dBm

- 15. Press LOG [ENTER dB/DIV]
- 16. Wait three minutes for the log assemblies to stabilize.
- 17. Decrease the frequency synthesizer output level by 50 dB.
- 18. Adjust A4A2R91 12 VTV for DVM indication of  $\pm 500 \pm 1$  mV dc. See Figure 3-34 for location of adjustment.
- 19. Increase the frequency synthesizer output level by 50 dB (to the level of step 14).
- 20. Adjust A4A2R61 ATTEN for DVM indication of  $+ 1.000 \pm 0.0001$  V dc. See Figure 3-34 for location of adjustment. If unable to adjust A4A2R61 ATTEN for proper indication, increase or decrease value of A4A2R62. (If A4A2R61 is fully clockwise, increase the value of A4A2R62.) Refer to Table 3-3 for range of values.
- 21. Repeat steps 17 through 20, until specifications of steps 18 and **20** are achieved without further adjustment. Because adjustments A4A2R61 and A4A2R91 are interactive, several iterations are needed.

### Linear Gain Adjustments

22. Press LIN pushbutton. DVM indication at A4A1TP1 should be  $+ 1.000 \pm 0.020$  V dc (+ 0.980 to + 1.020 V dc). If indication is not within this range, repeat steps 14 through 21. If indication is within this range, press SHIFT CENTER dB/div q. This disables the IF step gains.

### 5. Log Amplifier Adjustments

- 23. Decrease the frequency synthesizer's output level 10 dB. Press  $\underbrace{\mathsf{REFERENCE \ LEVEL}}_{\text{output level for a DVM indication of } + 1.00 \pm .001 \text{ Vdc.}}$
- 24. Verify that attenuator is set at 10 dB. Decrease the frequency synthesizer output level by 10 dB. Press [REFERENCE LEVEL] -60 dB.
- 25. Adjust A4A3R83 LG10 for DVM indication of  $+ 1.000 \pm 0.010$  V dc. See Figure 3-34 location of adjustment. If unable to adjust LG10 for proper indication, increase or decrease value of A4A3R54. Refer to Table 3-3 for range of values.
- 26. Decrease the frequency synthesizer output level by 10 dB.
- 27. Key in [REFERENCE LEVEL] -70 dB.
- 28. Adjust A4A2R14 LG20 for DVM indication of  $+ 1.000 \pm 0.010$ V dc. See Figure 3-34 for location of adjustment. If unable to adjust LG20 for proper indication, increase or decrease value of A4A2R18. Refer to Table 3-3 for range of values.
- 29. Press [INSTR PRESET] to reenable IF Step Gains.

## 6. Video Processor Adjustments

| Reference                   | IF-Display Section<br>A4A 1 Video Processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Test | Log Scale Switching Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description                 | The CAL OUTPUT signal is connected to the RF INPUT through a step attenuator. The instrument is placed in zero frequency span to produce a dc level output from the log amplifier. The A4A2 ZERO adjustment, which sets the dc offset of the output buffer amplifier of the log board, is checked and adjusted if necessary. The dc level into the video processor is adjusted by varying the input signal level and reference level. The offsets and gains on the A4A1 Video Processor are adjusted for proper levels using a DVM. |





10dB STEP ATTENUATOR

## Figure 3-35. Video Processor Adjustments Setup

| Equipment | Digital Voltmeter (DVM) HP 3456A<br>10 dB Step Attenuator HP 355D                                                                                                        |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Note      | The voltage at A4A1TP3 may drift noticeably with temperature during this adjustment. Allow A4A1 (Video Processor) to warm up at least one-half hour prior to adjustment. |  |
| Procedure | 1. Position instrument upright as shown in Figure 3-35. Remove the top cover.                                                                                            |  |
|           | 2. Set LINE switch to ON and press (INSTR PRESET).                                                                                                                       |  |
|           | 3. Connect DVM to A4A1TP1 and DVM ground to the IF casting.                                                                                                              |  |
|           | 4. Connect CAL OUTPUT to RF INPUT through 10 dB step attenuator.                                                                                                         |  |
|           | 5. Key in <u>[CENTER FREQUENCY]</u> 20 MHz and <u>[FREQUENCY SPAN]</u> 0 Hz.<br>Press LIN pushbutton.                                                                    |  |

- 6. Set step attenuator to 120 dB. DVM indication should be 0.000  $\pm 0.0005$  V dc. (If DVM indication is out of tolerance, adjust A4A2R79 ZERO on the log amplifier-detector board..)
- 7. Set step attenuator to 0 dB.
- 8. Key in Reference Level and adjust DATA knob for DVM indication as close to  $+ 1.000 \pm 0.001$  V dc as possible. (It may be necessary to slightly adjust the front panel AMPTD CAL control to achieve required tolerance.)
- 9. Connect DVM to A4A1TP2.
- 10. Adjust A4A1R14 OS for a DVM indication of  $0.000 \pm 0.003$  Vdc. See Figure 3-36 for the location of the adjustment.



Figure 3-36. Location of Video Processor Adjustments

- 11. Connect the DVM to A4A1TP3.
- 12. Set the step attenuator to 120 dB.
- 13. Adjust A4A1R32 ZERO for a DVM indication of  $0.000 \pm 0.001$  Vdc.
- 14. Set the step attenuator to 0 dB.
- 15. Adjust A4A1R36 FS for DVM indication of  $+2.000 \pm 0.001$  V dc.
- 16. Repeat steps 12 through 15 until specifications of steps 13 and 15 are met.

### LOG Offset Adjust

- 17. Set step attenuator to 40 dB.
- 18. Key in <u>SHIFT</u>, <u>ATTEN</u><sup>I</sup>, LOG <u>(ENTER dB/DIV</u>), (SHIFT) <u>ENTER dB/DIV</u> 9, [REFERENCE LEVEL] -50 dBm.
- 19. Connect DVM to A4A1TP1. Record DVM indication. Indication should be approximately +0.500 V dc.

V de

- 20. Decrease reference level to -60 dBm using the step key.
- 21. Adjust A4A1R2 LG OS for DVM indication of  $+0.100 \pm 0.001$  V dc greater than the DVM indication recorded in step 19. See Figure 3-36 for location of adjustment.

### 6. Video Processor Adjustments

- 22. Decrease reference level to -70 dBm using the step key.
- 23. DVM indication should be  $+0.200 \bullet 0.002$  V dc greater than the indication recorded in step 19. If not, readjust A4A1R2 LG OS.
- 24. Decrease reference level to -90 dBm using the step key.
- 25. DVM indication should be  $+0.400 \pm 0.004$  V dc greater than the indication recorded in step 19. If not, readjust A4A1R2 LG OS.
- 26. Repeat steps 17 through 25 until the specifications are met.

## 7. 3 MHz **Bandwidth Filter Adjustments**

| Reference                   | IF-Display Section<br>A4A7 3 MHz Bandwidth Filter                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Test | Resolution Bandwidth Switching Uncertainty Test<br>Resolution Bandwidth Selectivity Test                                                                                                                                                                                                                                                                                                                                                                                                    |
| Description                 | With the CAL OUTPUT signal connected to the RF INPUT, the 18.4 MHz oscillator can be adjusted with the FREQ ZERO control (on the front panel) to peak the IF signal for maximum amplitude for the center of the 3 MHz bandpass. Each of the five stages of the 3 MHz Bandwidth Filter is adjusted for bandpass centering and symmetry. Four crystal filter bypass networks are required for alignment of the filter stages. See Figure 3-91 for information concerning the bypass networks. |

A stable 21.4 MHz signal is then applied to the IF section of the instrument from a frequency synthesizer. Each of the first four stages of the 3 MHz Bandwidth Filter is peaked in a 10 Hz bandwidth using an oscilloscope display. The final stage is peaked using the spectrum analyzer CRT display.

of the

After all five filter stages are adjusted for centering, symmetry, and peaking, the CAL OUTPUT signal is used to match the 10 Hz and 1 kHz bandwidth amplitudes.





| HP3335A       |
|---------------|
| HP 54501A     |
| e Figure 3-91 |
| 85680-60093   |
| (             |

- **Procedure** 1. Position instrument upright as shown in Figure 3-37 and remove top cover.
  - 2. Set LINE switch to ON and press (INSTR PRESET).

#### **Frequency Zero Check**

- 3. Connect CAL OUTPUT signal to RF INPUT
- 4. Key in RECALL 9.

Note

5. Adjust front panel FREQ ZERO control for maximum signal amplitude on the CRT display.

### Filter Center and Symmetry Adjustments

- 6. Key in <u>CENTER FREQUENCY</u> 20 MHz, <u>FREQUENCY</u> SPAN 10 kHz, <u>RES BW</u> 1 kHz, and press LIN pushbutton. Press <u>REFERENCE LEVEL</u> and adjust reference level, using step keys and front-panel knob to place signal peak near top CRT graticule line.
- 7. On the A4A7 assembly, connect crystal filter bypass networks between the pins above C41 SYM, C32 SYM, C23 SYM, and C14 SYM.
- 8. Adjust A4A7C7 CTR for minimum amplitude signal peak. Adjust A4A7C6 SYM for best symmetry of signal. Repeat adjustments to ensure that the signal is nulled and adjusted for best symmetry. See Figure 3-38 for location of adjustments.

You may find it helpful to widen and narrow the frequency span of the instrument to adjust the bandpass symmetry and centering for each filter stage.



Figure 3-38. Location of Center, Symmetry, and 10 Hz Amplitude Adjustments

9. Remove crystal filter bypass network near C14 SYM.

### 7. 3 MHz Bandwidth Filter Adjustments

- 10. Adjust A4A7C15 CTR for minimum amplitude of signal peak. Adjust A4A7C14 SYM for best symmetry. Repeat adjustments to ensure that the signal is nulled and adjusted for best symmetry. See Figure 3-38 for location of adjustments.
- 11. Remove crystal filter bypass network near C23 SYM.
- 12. Adjust A4A7C24 CTR for minimum amplitude of signal peak. Adjust A4A7C23 SYM for best symmetry of signal. Repeat adjustments to ensure that signal is nulled and adjusted for best symmetry. See Figure 3-38 for location of adjustments.
- 13. Remove crystal filter bypass network near C32 SYM.
- 14. Adjust A4A7C33 CTR for minimum amplitude of signal peak. Adjust A4A7C32 SYM for best symmetry of signal. Repeat adjustments to ensure that signal is nulled and adjusted for best symmetry. See Figure 3-38 for location of adjustments.
- 15. Remove crystal filter bypass network near C41 SYM.
- 16. Adjust A4A7C42 CTR for minimum amplitude of signal peak. Adjust A4A7C41 SYM for best symmetry of signal. Repeat adjustments to ensure that the signal is nulled and adjusted for best symmetry. See Figure 3-38 for location of adjustments.
- 17. Signal should be centered on center graticule line on CRT display. If signal is not centered, go back to step 3 and repeat adjustments of each filter stage.

### **Filter Peak Adjust**

- 18. Press [INSTR PRESET].
- 19. Key in <u>SWEEP TIME</u> 20 ms, <u>FREQUENCY SPAN</u> 0 Hz, <u>(RES BW)</u> 10 Hz, <u>(REFERENCE LEVEL)</u> -20 dBm.
- 20. Set the frequency synthesizer for 21.400 MHz at an amplitude level of -25.0 dBm.
- 21. Disconnect cable 97 (white/violet) from A4A8J1 and connect output of the frequency synthesizer to A4A8J1 using BNC to SMB snap-on cable.
- 22. Set the oscilloscope following settings:

| Channel 1<br>amplitude | 05 V/div<br>0.2 μs/div<br>5 (vertical) |
|------------------------|----------------------------------------|
| probe                  | 10:1                                   |
| amplitude0.            | 005V/div                               |
| coupling<br>probe      | ac                                     |

- 23. Connect oscilloscope Channel 1 probe to A4A7TP7 (left side of C14 SYM) and Channel B probe to A4A7TP5 (left side of C23 SYM).
- 24. Adjust frequency synthesizer output frequency to peak Channel 1 display.

### 7. 3 MHz Bandwidth Filter Adjustments

25. Adjust A4A7C13 PK for maximum peak-to-peak signal on Channel 2 display. See Figure 3-39 for location of adjustment. If unable to achieve a "peak" in signal amplitude, increase or decrease value of A4A7C12. Refer to Table 3-3 for range of values.



Figure 3-39. Location of 3 MHz Peak Adjustments

- 26. Move Channel 2 probe to A4A7TP3 (left side of C32 SYM).
- 27. Adjust frequency synthesizer output frequency to peak Channel 1 display.
- 28. Adjust A4A7C22 PK for maximum peak-to-peak signal on Channel 2 display. See Figure 3-39 for location of adjustment. If unable to achieve a "peak" in signal amplitude, increase or decrease value of A4A7C21. Refer to Table 3-3 for range of values.
- 29. Move Channel 2 probe to A4A7TP1 (left side of C41 SYM).
- 30. Adjust frequency synthesizer output frequency to peak Channel 1 display.
- 31. Adjust A4A7C31 PK for maximum peak-to-peak signal on Channel 2 display. See Figure 3-39 for location of adjustment. If unable to achieve a "peak" in signal amplitude, increase or decrease value of A4A7C30. Refer to Table 3-3 for range of values.
- 32. Disconnect Channel 2 probe from A4A7TP1.
- 33. Adjust frequency synthesizer output frequency to peak Channel 1 display.
- 34. Adjust <u>REFERENCE LEVEL</u> using step keys to place signal near top CRT graticule line.
- 35. Adjust A4A7C40 PK for maximum signal amplitude on the CRT display. See Figure 3-39 for the location of adjustment. If unable to achieve a "peak" in signal amplitude, increase or decrease value of A4A7C39. Refer to Table 3-3 for range of values.
- 36. Disconnect Channel 1 probe from A4A7TP7. Disconnect 'frequency synthesizer output from A4A8J1 and reconnect cable 97 (white/violet).

### 7. 3 MHz Bandwidth Filter Adjustments

### 10 Hz Amplitude Adjustments

- 37. Connect CAL OUTPUT to RF INPUT. Key in (INSTR PRESET), (RECALL) 9, (RES BW) 10 Hz.
- 38. Adjust the instrument front panel FREQ ZERO control for maximum signal amplitude on the CRT display.
- 39. Key in **(RES BW)** sl kHz and DISPLAY IgINE ENTER. h e DATA knob, place the display line at the signal trace.
- 40. Key in **RES BW** 10 Hz.
- 41. Adjust the instrument front panel FREQ ZERO control for maximum signal amplitude on the CRT display.
- 42. Adjust A4A7R30 10 Hz AMPTD and A4A7R41 10 Hz AMPTD equal amounts to set the signal level the same as the reference level set in step 39. See Figure 3-38 for location of 10 Hz AMPTD adjusts.
- 43. Repeat steps 37 through 42 until no further adjustment is required.

## 8. 21.4 MHz Bandwidth Filter Adjustments

| Reference                    | IF-Display Section<br>A4A4 Bandwidth Filter<br>A4A8 Attenuator-Bandwidth Filter                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Tests | IF Gain Uncertainty Test<br>Resolution Bandwidth Switching Uncertainty test<br>Resolution Bandwidth Selectivity Test                                                                                                                                                                                                                                                                                                                                                                |
| Description                  | First the LC Filters (100 kHz to 3 MHz bandwidths) on the A4A4<br>Bandwidth Filter are adjusted. The crystal filter poles (3 kHz to 30 kHz bandwidths) are then adjusted for center and symmetry by<br>bypassing all but one pole at a time and adjusting the active pole.                                                                                                                                                                                                          |
|                              | Next, the LC filters and the crystal filter poles on the A4A8<br>Attenuator-Bandwidth Filter are adjusted in the same manner as on<br>the A4A4 Bandwidth Filter.                                                                                                                                                                                                                                                                                                                    |
|                              | Last, the 10 dB and 20 dB attenuators on the A4A8 Attenuator-<br>Bandwidth Filter are adjusted for the proper amount of attenuation.<br>This is done by connecting the CAL OUTPUT signal to the RF INPUT<br>through two step attenuators, keying in the necessary reference level<br>to activate the 10 dB and the 20 dB control lines, adjusting the step<br>attenuators to compensate for the attenuation, and adjusting the<br>attenuators for the proper amount of attenuation. |



Figure 3-40. 21.4 MHz Bandwidth Filter Adjustments Setup

### 8. 21.4 MHz Bandwidth Filter Adjustments

| Equipment | Digital Voltmeter (DVM)             | HP 3456A                      |
|-----------|-------------------------------------|-------------------------------|
| 1 1       | 10 dB Step Attenuator               | HP 355D, Option H89           |
|           | 1 dB Step Attenuator                | HP 355C, Option H25           |
|           | Crystal Filter Bypass Network (2 re | equired) Refer to Figure 3-91 |

# **Procedure** 1. Position instrument upright as shown in Figure 3-40 and remove top cover.

2. Set LINE switch to ON and press [INSTR PRESET].

### + 10 V Temperature Compensation Supply Check

- 3. Connect DVM to A4A5TP1 (+ 10 VF).
- 4. DVM indication should be between +9.0 V dc and + 10.0 V dc. If voltage is within tolerance, proceed to next step. If voltage is not within tolerance, refer to Adjustment 10, Step Gain and 18.4 MHz Local Oscillator Adjustments, for adjustment procedure.

### A4A4 LC Adjustments

- 5. Set step attenuators to 0 dB.
- 6. Disconnect cable 97 (white/violet) from A4A8J1 and connect to A4A6J1.
- **7.** Key in <u>CENTER FREQ</u> **20** MHz, <u>(RES BW)</u> 100 kHz, <u>IFREQUENCY SPAN</u> 200 kHz, and press LIN pushbutton.
- 8. Press (<u>REFERENCE LEVEL</u>) and adjust front-panel knob to set signal peak on screen two divisions from the top graticule.
- 9. Adjust A4A4C67 LC CTR and A4A4C19 LC CTR for maximum MARKER level as indicated by CRT annotation. See Figure 3-41 for location of adjustments. If unable to adjust LC CTR adjustments for satisfactory signal amplitude, increase or decrease value of A4A4C17 and A4A4C70. Refer to Table 3-3 for range of values.



Figure 3-41. Location of A4A4 21.4 MHz LC Filter Adjustments

- 10. Key in (RES BW) 1 MHz, and (SPAN) 1 MHz.
- 11. Press MARKER (PEAK SEARCH], MARKER ().
- 12. Key in **(RES BW)** 100 kHz, **(FREQ SPAN)** 200 kHz, and MARKER **(PEAK SEARCH)**.
- 13. Adjust A4A4R43 LC to align markers on display. MARKER A level should indicate 1.00 X. See Figure 3-41 for location of adjustment.
- 14. Repeat steps 10 through 13 until no further adjustment is necessary.

### A4A4 XTAL Adjustments

- 15. Press MARKER OFF. Key in **RES BW** 30 kHz and **[FREQUENCY SPAN]** 100 kHz.
- 16. Press [REFERENCE LEVEL] and adjust DATA knob to set signal peak on screen two divisions from the top graticule line.
- 17. Connect crystal filter bypass networks between A4A4TP1 and A4A4TP2 and between A4A4TP4 and A4A4TP5.
- 18. Adjust A4A4C20 CTR to center signal on center graticule line. Adjust A4A4C9 SYM for best symmetry of signal. See Figure 3-42 for location of adjustments. If unable to adjust SYM for satisfactory signal symmetry, increase or decrease value of A4A4C10. Refer to Table 3-3 for range of values.



Figure 3-42. Location of A4A4 21.4 MHz Crystal Filter Adjustments

- 19. Remove crystal filter bypass network from between A4A4TP4 and A4A4TP5.
- 20. Adjust A4A4C74 CTR to center signal on center graticule line. Adjust A4A4C39 SYM for best symmetry of signal. See Figure 3-42 for location of adjustments. If unable to adjust A4A4C39 SYM for satisfactory signal symmetry, increase or decrease value of A4A4C38. Refer to Table 3-3 for range of values.
- 21. Remove crystal filter bypass network from between A4A4TP1 and A4A4TP2.

### 8. 21.4 MHz Bandwidth Filter Adjustments

- 22. Adjust A4A4C73 CTR to center signal on center graticule line. Adjust A4A4C65 SYM for best symmetry of signal. See Figure 3-42 for location of adjustments. If unable to adjust A4A4C65 SYM for satisfactory signal symmetry, increase or decrease value of A4A4C66. Refer to Table 3-3 for range of values.
- 23. All crystal filter bypass networks are removed. Signal should be centered and symmetrical. If not, go back to step 16 and repeat adjustments.
- 24. Press MARKER [PEAK SEARCH] and MARKER In].
- 25. Key in <u>FREQUENCY SPAN</u> 20 kHz, <u>RES BW</u> 3 kHz, and MARKER <u>PEAK SEARCH</u>.
- 26. Adjust A4A4R49 XTAL to align markers on display. MARKER A level should indicate 1.00 X. See Figure 3-42 for location of adjustment.

### A4A8 LC Adjustments

- 27. Disconnect cable 97 (white/violet) from A4A6J1 and reconnect to A4A8J1. Reconnect cable 89 (gray/white) to A4A6J1.
- 28. Key in (RES BW) 100 kHz and [FREQUENCY SPAN] 200 kHz.
- 29. Press [REFERENCE LEVEL] and adjust DATA knob to place signal peak two division from the top graticule line.
- 30. Adjust A4A8C32 LC CTR and A4A8C46 LC CTR for maximum MARKER level as indicated by CRT annotation. See Figure 3-43 for location of adjustments. If unable to adjust A4A8C32 and A4A8C46 LC CTR adjustments for satisfactory signal amplitude, increase or decrease value of A4A8C35 and A4A8C49. Refer to Table 3-3 for range of values.



Figure 3-43. Location of A4A8 21.4 MHz LC Filter and Attenuation Adjustments

31. Key in (RES BW) 1 MHz and (FREQ SPAN) 1 MHz.
32. Press MARKER (PEAK SEARCH) and MARKER (Δ).

- 33. Key in (RES BW) 100 kHz, (FREQ SPAN) 200 kHz, and MARKER [PEAK SEARCH].
- 34. Adjust A4A8R35 LC to align makers on display. MARKER A level should indicate 1.00 X. See Figure 3-43 for location of adjustment.
- 35. Repeat steps 31 through 34 until no further adjustment is necessary.

### A4A8 XTAL Adjustments

- 36. Key in **RES BW** 30 kHz, [FREQUENCY SPAN] 100 kHz. Press MARKER OFF.
- 37. Connect crystal filter bypass network between A4A8TP1 and A4A8TP2.
- 38. Press (REFERENCE LEVEL) and adjust DATA knob to place signal peak two division from the top graticule line.
- 39. Adjust A4A8C44 CTR to center signal on center graticule line. Adjust A4A8C42 SYM for best symmetry of signal. See Figure 3-44 for location of adjustments. If unable to adjust A4A8C42 SYM for satisfactory signal symmetry, increase or decrease value of A4A8C43. Refer to Table 3-3 for range of values.



Figure 3-44. Location of A4A8 21.4 MHz Crystal Filter Adjustments

- 40. Remove crystal filter bypass network from between A4A8TP1 and A4A8TP2.
- 41. Adjust A4A8C29 CTR to center signal on center graticule line. Adjust A4A8C13 SYM for best symmetry of signal. See Figure 3-44 for location of adjustments. If unable to adjust A4A8C13 SYM for satisfactory signal symmetry, increase or decrease value of A4A8C14. Refer to Table 3-3 for range of values.
- 42. Press MARKER (PEAK SEARCH) and MARKER (
- 43. Key in [FREQUENCY SPAN] 10 kHz.
- 44. Key in (RES BW) 3 kHz and MARKER (PEAK SEARCH).

### 8. 21.4 MHz Bandwidth Filter Adjustments

45. Adjust A4A8R40 XTAL to align markers on display. MARKER A level should indicate 1.00 X. See Figure 3-44 for location of adjustment.

### LC Dip Adjustments

- 46. Refer to the Resolution Bandwidth Switching Uncertainty Performance Test, and check all bandwidth amplitudes. If amplitude of 300 kHz bandwidth is low but amplitude of 100 kHz and 1 MHz bandwidths are within tolerance, LC DIP adjustments must be performed. If all bandwidth amplitudes are within tolerance, do not perform the following adjustments.
- 4 7 . Set LINE switch to STANDBY.
  - 48. Disconnect cable 97 (white/violet) from A4A8J1 and connect to A4A6J1.
  - 49. Remove A4A4 Bandwidth Filter and install on extenders.
  - 50. Set LINE switch to ON. Press (INSTR PRESET).
  - 51. Key in [center frequency] 20 MHz, (RES BW) 100 kHz, [FREQUENCY SPAN] 1 MHz, (ATTEN) 0 dB, and LOG (ENTER dB/DIV) 2 dB.
  - 52. Short A4A4TP3 to ground.
  - 53. Adjust. A4A4C41 LC DIP for minimum amplitude of signal peak. See Figure 3-41 for location of adjustment. Key in <u>PEAK SEARCH</u> MARKER , and adjust LC DIP again to offset the signal peak approximately -17 kHz (to the left). This is done to compensate for the effect of placing the board on extenders. If unable to achieve a "dip" in signal amplitude, increase or decrease value of A4A4R16. Refer to Table 3-3 for range of values.
  - 54. Remove short, from A4A4TP3 and short A4A4TP8 to ground.
  - 55. Adjust A4A4C43 LC DIP for minimum amplitude of signal peak. See Figure 3-41 for location of adjustment. Key in <u>[PEAK SEARCH</u>] MARKER In], and adjust C43 LC DIP again to offset the signal peak approximately -17 kHz (to the left). If unable to achieve a "dip" in signal amplitude, increase or decrease value of A4A4R60. Refer to Table 3-3 for range of values.
  - 56. Set LINE switch to STANDBY.
  - 57. Reinstall A4A4 Bandwidth Filter without extenders. Short A4A4TP3 and A4A4TP8 to ground. Remove A4A8 Attenuator-Bandwidth Filter and install on extenders. Reconnect cable 97 to A4A8J1 and reconnect cable 89 to A4A6J1.
  - 58. Set, LINE switch to ON. Press (INSTR PRESET).
  - 59. Key in <u>[center frequency]</u> 20 MHz, <u>(RES BW)</u> 100 kHz, (frequency span) 1 MHz, <u>(ATTEN)</u> 0 dB, and LOG (enter dB/DIV) 2 dB.
  - 60. Short A4A8TP6 to ground.
  - 61. Adjust A4A8C66 LC DIP for minimum amplitude of signal peak. See Figure 3-43 for location of adjustment. Key in <u>(PEAK SEARCH)</u> MARKER ((A), and adjust LC DIP again to offset the signal peak

approximately -17 kHz (to the left). If unable to achieve a "dip" in signal amplitude, increase or decrease value of A4A8R30. Refer to Table 3-3 for range of values.

- 62. Remove short from A4A8TP6 and short A4A8TP3 to ground.
- 63. Adjust A4A8C67 LC DIP for minimum amplitude of signal peak. See Figure 3-43 for location of adjustment. Key in <u>[PEAK SEARCH]</u> MARKER Δ, and adjust LC DIP again to offset the signal peak approximately -17 kHz (to the left). If unable to achieve a "dip" in signal amplitude, increase or decrease value of A4A8R55. Refer to Table 3-3 for range of values.
- 64. Set LINE switch to STANDBY.
- 65. Reinstall A4A8 Attenuator-Bandwidth Filter without extenders. Remove short. from A4A8TP3.
- 66. Set LINE switch to ON. Press [INSTR PRESET].
- 67. Go back and repeat LC adjustments for both the A4A4 Bandwidth filter and the A4A8 Attenuator-Bandwidth Filter.

### AlOdB and A20dB Adjustments

- 68. Set, step attenuators to 25 dB.
- 69. Key in <u>(CENTER FREQUENCY</u> 20 MHz, <u>(FREQUENCY SPAN</u> 3 kHz, ATTEN 0 dB, <u>(RES BW)</u> 1 kHz, and <u>[REFERENCE LEVEL</u> -30 dBm.
- 70. Key in LOG <u>[ENTER dB/DIV</u> 1 dB then press MARKER (PEAK SEARCH) MARKER  $\triangle$
- 71. Key in [REFERENCE LEVEL] -20 dBm. Set step attenuators to 15 dB.
- 72. Adjust A4A8R7 AlOdB to align markers on display. MARKER A level should indicate 0.00 dB. See Figure 3-43 for location of adjustment.
- 73. Key in (REFERENCE LEVEL) -10 dBm. Set step attenuators to 5 dB.
- 74. Adjust A4A8R6 A20dB to align markers on display. MARKER A level should indicate 0.00 dB. See Figure 3-43 for location of adjustment.

## 9. 3 dB Bandwidth Adjustments

| Referen                | nce IF-Display Section<br>A4A9 IF Control                                                                                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performan<br>T | nce Resolution Bandwidth Accuracy Test                                                                                                                                                                                      |
| Descript               | <b>ion</b> The CAL OUTPUT signal is connected to the RF INPUT. Each of the adjustable resolution bandwidths is selected and adjusted for the proper bandwidth at the 3 dB point.                                            |
| Note                   | Do not perform this adjustment <b>on</b> Option 462 instruments. Option 462 instruments require a different procedure. Adjustment 9 for Option 462 (6 dB or Impulse Bandwidth) is located in Chapter 4, Option 462.         |
| Equipmo                | ent No test equipment is required for this adjustment.                                                                                                                                                                      |
| Procedu                | <b>ure</b> 1. Position instrument upright and remove top cover.                                                                                                                                                             |
|                        | 2. Set LINE switch to ON and press (INSTR PRESET].                                                                                                                                                                          |
|                        | 3. Connect CAL OUTPUT to RF INPUT.                                                                                                                                                                                          |
|                        | 4. Key in <u>[center frequency]</u> 20 MHz, <u>(frequency span)</u> 5 MHz, LIN, and <u>(RES BW)</u> 3 MHz.                                                                                                                  |
|                        | 5. Press [REFERENCE LEVEL] and adjust DATA knob to place signal peak near top CRT graticule line. Signal should be centered about the center line on the graticule. If not, press (PEAK SEARCH) and (MRK $\rightarrow$ CF). |
|                        | 6. Press MARKER ( $\Delta$ ).                                                                                                                                                                                               |
|                        | 7. Using DATA knob, adjust marker down one side of the displayed signal to the 3 dB point; CRT MKR A annotation indicates .707 X.                                                                                           |
|                        | 8. Adjust A4A9R60 3 MHz for MKR A indication of 1.5 MHz while maintaining marker at 3 dB point (.707 X) using DATA knob. See Figure 3-45 for location of adjustment.                                                        |



Figure 3-45. Location of 3 dB Bandwidth Adjustments

- 9. Press MARKER (a). Adjust marker to 3 dB point on opposite side of signal (CRT MKR A annotation indicates 1.00 X). There are now two markers; one on each side of the signal at the 3 dB points.
- 10. CRT MKR A annotation now indicates the 3 dB bandwidth of the 3 MHz bandwidth. 3 dB bandwidth should be  $3.00 \pm 0.60$  MHz.
- 11. Key in (RES BW) 1 MHz and [FREQUENCY SPAN] 2 MHz. If necessary, readjust [REFERENCELEVEI(CENTER FREQUENCY), using DATA knob to place signal peak near top of graticule and centered on center graticule line.
- 12. Press MARKER [OFF), then MARKER ().
- 13. Using DATA knob, adjust marker down one side of displayed signal to the 3 dB point; CRT MKR A annotation indicates .707 X.
- 14. Adjust A4A9R61 1 MHz for MKR A indication of 500 kHz while maintaining marker at 3 dB point (.707 X) using DATA knob. See Figure 3-45 for location of adjustment.
- 15. Press MARKER △. Adjust marker to 3 dB point on opposite side of signal (CRT MKR A annotation indicates 1.00 X). There are now two markers; one on each side of the signal at the 3 dB point.
- 16. CRT MKR A annotation now indicates the 3 dB bandwidth of the 1 MHz bandwidth. 3 dB bandwidth should be  $1.00 \pm 0.10$  MHz.
- 17. Key in (RES BW) 300 kHz and (FREQUENCY SPAN) 500 kHz. If necessary, readjust (REFERENCE LEVEL) and [CENTER FREQUENCY], using DATA knob to place signal peak near top of graticule and centered on center graticule line.
- 18. Press MARKER (OFF), then MARKER  $\triangle$ .
- 19. Using DATA knob, adjust marker down one side of the displayed signal to the 3 dB point; CRT MKR A annotation indicates .707 X.
- 20. Adjust A4A9R62 300 kHz for MKR A indication of 150 kHz while maintaining marker at 3 dB point (.707 X) using DATA knob. See Figure 3-45 for location of adjustment.
- 2 1. Press MARKER (a). Adjust marker to 3 dB point on opposite side of signal (CRT MKR A annotation indicates 1.00 X).

### 9. 3 dB Bandwidth Adjustments

- 22. CRT MKR A annotation now indicates the 3 dB bandwidth of the 300 kHz bandwidth. 3 dB bandwidth should be 300.0 ±30.0 kHz.
- 23. Key in (RES BW) 10 kHz and [FREQUENCY SPAN] 20 kHz. If necessary, readjust (REFERENCE\_LEVEL) and [CENTER FREQUENCY], using DATA knob to place signal peak near top of graticule and centered on center graticule line.
- 24. Press MARKER OFF, then MARKER [].
- 25. Using DATA knob, adjust marker down one side of the displayed signal to the 3 dB point; CRT MKR A annotation indicates .707 X.
- 26. Adjust A4A9R65 10 kHz for MKR A indication of 5.00 kHz while maintaining marker at 3 dB point (. 707 X) using DATA knob. See Figure 3-45 for location of adjustment.
- 27. Press MARKER A. Adjust marker to 3 dB point on opposite side of signal (CRT MKR A annotation indicates 1.00 X).
- 28. CRT MKR A annotation now indicates the 3 dB bandwidth of the 10 kHz bandwidth. 3 dB bandwidth should be 10.0 fl.O kHz.
- 29. Key in (RES BW) 3 kHz and (FREQUENCY SPAN) 5 kHz. If necessary, readjust [REFERENCELEVEL] and [CENTER FREQUENCY], using DATA knob to place signal peak near top of graticule and centered on center graticule line.
- 30. Press MARKER (OFF), then MARKER  $\triangle$ .
- 31. Using DATA knob, adjust marker down one side of the displayed signal to the 3 dB point; CRT MKR A annotation indicates .707 X.
- 32. Adjust A4A9R66 3 kHz for MKR A indication of 1.5 kHz while maintaining marker at 3 dB point (.707 X) using DATA knob. See Figure 3-45 for location of adjustments.
- 33. Press MARKER (a). Adjust marker to 3 dB point on opposite side of signal (CRT MKR A annotation indicates 1.00 X).
- 34. CRT MKR A annotation now indicates the 3 dB bandwidth of the 3 kHz bandwidth. 3 dB bandwidth should be  $3.00 \pm 0.30$  kHz.

## 10. Step Gain and 18.4 MHz Local Oscillator Adjustments

| Reference                    | IF-Display Section<br>A4A7 3 MHz Bandwidth Filter<br>A4A5 Step Gain                                                                                                                                                                                                                                                                                                                  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Tests | Resolution Bandwidth Selectivity Test<br>IF Gain Uncertainty Test<br>Center Frequency Readout Accuracy Test                                                                                                                                                                                                                                                                          |
| Description                  | First, the IF signal from the RF Section is measured with a power meter and adjusted for proper level. Next, the 10 dB gain steps are adjusted by connecting the CAL OUTPUT signal through two step attenuators to the RF INPUT and keying in the REFERENCE LEVEL necessary to activate each of the gain steps, while compensating for the increased gain with the step attenuators. |
|                              | The 1 dB gain steps are checked in the <b>same</b> fashion as the 10 dB gain steps, and then the variable gain is adjusted. The 18.4 MHz oscillator frequency is adjusted to provide adequate adjustment range                                                                                                                                                                       |

oscillator frequency is adjusted to provide adequate adjustment range of front-panel FREQ ZERO control; and last, the + 10V temperature compensation supply used by the A4A4 Bandwidth Filter and A4A8 Attenuator-Bandwidth Filter is checked and adjusted if necessary.



Figure 3-46. Step Gain and 18.4 MHz Local Oscillator Adjustments Setup

### 10. Step Gain and 18.4 MHz Local Oscillator Adjustments

| Equipment | Digital Voltmeter (DVM)HP 3456APower MeterHP 436APower SensorHP 8481A10 dB Step AttenuatorHP 355D, Option H891 dB Step AttenuatorHP 355C, Option H25                                                                                                                                                                  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure | 1. Position instrument upright as shown in Figure 3-46 and remove top cover.                                                                                                                                                                                                                                          |
|           | 2. The validity of the results of this adjustment procedure is based<br>in part on the performance of the Log Amplifiers, the Video<br>Processor, and the Track and Hold. These adjustments must be<br>done before proceeding with <b>the</b> adjustment procedure of the<br>Step Gain and 18.4 MHz Local Oscillator. |
|           | 3. Set instrument LINE switch to ON and press (INSTR PRESET).<br>Connect CAL OUTPUT to RF INPUT.                                                                                                                                                                                                                      |
|           | <ul> <li>Key in [center frequency] 20 MHz, [reference level] - 10 dBm,</li> <li>(ATTEN) 0 dB, [frequency span) 0 Hz, (RES BW) 1 kHz, (VIDEO BW)</li> <li>100 Hz, and [sweep time] 20 ms.</li> </ul>                                                                                                                   |
|           | IF Gain Adjustment                                                                                                                                                                                                                                                                                                    |
|           | 5. Disconnect cable 97 (white/violet) from A4A8J1 and connect cable to power meter/power sensor. Refer to Figure 3-47 for location of cable 97 and A4A8J1.                                                                                                                                                            |
|           | 6. Adjust front-panel AMPTD CAL adjustment for a power meter indication of -5 dBm.                                                                                                                                                                                                                                    |
|           | 7. Disconnect power meter and reconnect cable 97 to A4A8J1.                                                                                                                                                                                                                                                           |
|           | 8. Press LIN pushbutton and MARKER (NORMAL).                                                                                                                                                                                                                                                                          |
|           | <ol> <li>Note MARKER amplitude in mV and adjust A45A5R33 CAL to<br/>70.7 mV (top CRT graticule line). See Figure 3-47 for location of<br/>adjustment.</li> </ol>                                                                                                                                                      |
|           | A4A7<br>3 MHz BANDWI D T H STEP GAIN<br>FILTER STEP GAIN                                                                                                                                                                                                                                                              |

A4A5

Figure 3-47. Location of IF Gain Adjustment

### 10. Step Gain and 18.4 MHz Local Oscillator Adjustments

10. If A4A5R33 CAL adjustment does not have sufficient range to adjust trace to the top CRT graticule line, increase or decrease the value of A4A7R60 as necessary to achieve the proper adjustment range of A4A5 CAL adjustment. See Figure 3-39 for the location of A4A7R60. Refer to Table 3-3 for range of values for A4A7R60.

### 10 dB Gain Step Adjustment

- 11. Connect CAL OUTPUT to RF INPUT through 10 dB step attenuator and 1 dB step attenuator.
- 12. Key in LOG (ENTER dB/DIV) 1 dB and [REFERENCE LEVEL] -30 dBm.
- 13. Set step attenuators to 25 dB.
- 14. Key in MARKER A. Signal trace should be at the center CRT graticule line, and MKR A level, as indicated by CRT annotation, should be .OO dB.
- 15. Key in [REFERENCE LEVEL] -40 dBm. Set step attenuators to 35 dB.
- Adjust A4A5R32 SG10 for MKR A level of .OO dB (CRT MKR A annotation is now in upper right corner of CRT display). See Figure 3-48 for location of adjustment.



Figure 3-48. Location of 10 dB Gain Step Adjustments

- 17. If A4A5R32 SG10 adjustment does not have sufficient range to perform adjustment in step 16, increase or decrease the value of A4A7R60 as necessary to achieve the proper adjustment range of A4A5 SG10. See Figure 3-39 for the location of A4A7R60. Refer to Table 3-3 for range of values for A4A7R60. Repeat steps 3 through 16 if the value of A4A7R60 is changed.
- 18. Key in [REFERENCE LEVEL] -50 dBm. Set step attenuators to 45 dB.
- 19. Adjust A4A5R44 SG20-1 for MKR A level of .OO dB. See Figure 3-48 for location of adjustment.
- 20. Key in (REFERENCE LEVEL) -70 dBm. Set step attenuators to 65 dB.
- 21. Adjust A4A5R54 SG20-2 for MKR A level of .OO dB. See Figure 3-48 for location of adjustment.

### 10. Step Gain and 18.4 MHz Local Oscillator Adjustments

### 1 dB Gain Step Checks

- 22. Key in <u>[REFERENCE LEVEL]</u> -19.9 dBm. Set step attenuators to 15 dB. Press MARKER ( $\Delta$ ) twice to establish a new reference.
- 23. Key in <u>(REFERENCE LEVEL)</u> -17.9 dBm. Set step attenuators to 13 dB.
- 24. MKR A level, as indicated by CRT annotation, should be .OO  $\pm 0.5$  dB. If not, increase or decrease the value of A4A5R86. Refer to Table 3-3 for range of values.
- 25. Key in <u>(REFERENCE LEVEL)</u> -15.9 dBm. Set step attenuators to 11 dB.
- 26. MKR A level should be .OO  $\pm 0.5$  dB. If not, increase or decrease the value of A4A5R70. Refer to Table 3-3 for range of values.
- 27. Key in [REFERENCE LEVEL] -11.9 dBm. Set step attenuators to 7 dB.
- 28. MKR A level should be .OO  $\pm 0.5$  dB. If not, increase or decrease the value of A4A5R62. Refer to Table 3-3 for range of values.

### .1 dB Gain Step Adjustment

- 29. Key in LIN, (<u>SHIFT</u>) <sup>A</sup> (AUTO] (resolution bandwidth), and (<u>REFERENCE LEVEL</u>) -19.9 dBm. Set step attenuators to 13 dB. Press MARKER (△) twice to establish a new reference.
- 30. Key in <u>[REFERENCE LEVEL]</u> -18.0 dBm. Set step attenuators to 11 dB.
- 31. Adjust A4A5R51 VR for MKR A level of + 0.10 dB. See Figure 3-49 for location of adjustment.
- 32. Remove all test equipment from the spectrum analyzer. Connect CAL OUTPUT to RF INPUT.

### 18.4 MHz Local Oscillator Adjustment

- 33. Press [INSTR PRESET] and [RECALL] 9.
- 34. Set front-panel FREQ ZERO control to midrange.
- 35. Adjust A4A5C10 FREQ ZERO to peak signal trace on CRT. See Figure 3-49 for location of adjustment.



Figure 3-49. Location of .1 dB Gain Step, 18.4 MHz LO, and + 10V Adjustments

- 36. Key in [FREQUENCY SPAN] 1kHz, (RES BW) 100 Hz, and [PEAK SEARCH] ( $\Delta$ ).
- 37. Adjust front-panel FREQ ZERO control fully clockwise. Press PEAK SEARCH. Signal should move at least 60 Hz away from center CRT graticule line.
- 38. Adjust front-panel FREQ ZERO control fully counterclockwise. Press [PEAK SEARCH]. Signal should move at least 60 Hz away from center CRT graticule line.
- 39. If proper indications are not achieved, increase or decrease value of A4A5C9 and repeat adjustment from step 33. Refer to Table 3-3 for range of values.
- 40. Press (INSTR PRESET) and (RECALL 9.
- 41. Adjust front panel FREQ ZERO to peak the signal trace on the CRT.
- + 10V Temperature Compensation Supply Adjustment
- 42. Connect DVM to A4A5TP1 (+ 10VF).
- 43. If DVM indication is between +9 V dc and 10.0 V dc, no adjustment is required.
- 44. If DVM indication is not within tolerance of step 43, adjust A4A5R2 + 10V ADJ for DVM indication of +9.5 ±0.1 V dc at normal room temperature of approximately 25°C. Voltage change is approximately 30 mV/°C. Therefore, if room temperature is higher or lower than 25°C, adjustment should be made higher or lower, accordingly.

## 11. Down/Up Converter Adjustments

|         | Reference           | IF-Display Section<br>A4A6 Down/Up Converter                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related | Performance<br>Test | Resolution Bandwidth Switching Uncertainty Test                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | Description         | The CAL OUTPUT signal is connected to the RF INPUT connector of<br>the instrument and controls are set to display the signal in a narrow<br>bandwidth. A marker is placed at the peak of the signal to measure<br>the peak amplitude. The bandwidth is changed to a wide bandwidth<br>and the Down/Up Converter is adjusted to place the peak amplitude<br>of the signal the same as the level of the narrow bandwidth signal.<br>Optionally, the input signal is removed and the IF signal is monitored |

of the signal the same as the level of the narrow bandwidth signal. Optionally, the input signal is removed and the IF signal is monitored at the output of the Bandwidth Filters using a spectrum analyzer with an active probe. The 18.4 MHz Local Oscillator and all harmonics are then adjusted for minimum amplitude.



Figure 3-50. Down/Up Converter Adjustments Setup

| Equipment | Spectrum Analyzer | . HP 8566B |
|-----------|-------------------|------------|
|           | Active Probe      | HP 85024A  |

- **Procedure** 1. Position Instrument upright as shown in Figure 3-50 and remove top cover.
  - 2. Set LINE switch to ON and press [INSTR PRESET].
  - 3. Connect CAL OUTPUT to RF INPUT.
  - 4. Key in <u>[CENTER FREQUENCY]</u> 20 MHz, <u>(FREQUENCY SPAN)</u> 10 kHz, <u>(RTTEN)</u> 0 dB, <u>(RES BW)</u> 1 kHz. ress LIN pushbutton, <u>[PEAK SEARCH</u>), and then MARKER Δ.
  - 5. Key in **RES BW** 1 MHz.

- 6. Adjust A4A6A1R29 WIDE GAIN to align markers on CRT display. MKR A level should indicate 1.00 X. See Figure 3-51 for location of adjustment.
- 7. Disconnect CAL OUTPUT from RF INPUT.

### **Optional**

**Note** Perform the following procedure if the A4A6A1 assembly is replaced or the A4A6A1 21.4 MHz Bandpass Amplifier Filter is worked on.

- 1. Disconnect CAL OUTPUT from RF INPUT.
- 2. Key in [REFERENCE LEVEL] -70 dBm, (RES BW) 1 kHz, and MARKER (OFF).
- 3. Set the second spectrum analyzer's to the following settings:

| RESOLUTION | N BANDWIDTH |    | 100 <b>kHz</b> |
|------------|-------------|----|----------------|
| FREQUENCY  | SPAN        |    | 10 MHz         |
| CENTER FR  | REQUENCY    |    | 18.4 MHz       |
| RF ATTENU  | ATION       |    | 10 <b>dB</b>   |
| REFERENCE  | E LEVEL     |    | 0 dBm          |
| SCALE      |             | LO | G 10 dB/div    |

- 4. Connect the second spectrum analyzer to A4A4TP7 using and active probe. See Figure 3-50 for test setup.
- 5. Adjust A4A6A1C31 18.4 MHz NULL to null the 18.4 MHz Local Oscillator signal and all displayed harmonics. See Figure 3-51 for location of adjustment.



Figure 3-51. Location of Down/Up Converter Adjustments

6. 18.4 MHz signal and displayed harmonics should be below -10 dBm (-30 dBm on display due to 10:1 divider). If unable to adjust A4A6A1C31 18.4 MHz NULL for proper indication, increase value of A4A5R10. See Figure 3-49 for the location of A4A5R10. Refer to Table 3-3 for range of values.

## Down Converter Gain Adjustment

| U              |                                                                                                                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note           | If a gain problem is suspected in the 10 Hz to 1 kHz resolution bandwidths, perform the following procedure to test and adjust the gain through A4A6A2.                                                                                |
|                | 1. Place A4A6 on extender boards.                                                                                                                                                                                                      |
|                | 2. On the spectrum analyzer being tested, press (INST PRESET), and set the spectrum analyzer to the following settings:                                                                                                                |
| 3.<br>4.<br>5. | CENTER FREQUENCY                                                                                                                                                                                                                       |
|                | 3. Connect an active probe to a second spectrum analyzer, and set the spectrum analyzer to the following settings:                                                                                                                     |
|                | CENTER FREQUENCY21.4 MHzRESOLUTION BANDWIDTH100 kHzFREQUENCY SPAN200 HzREFERENCE LEVEL-30 dBmINPUT ATTENUATION10 dBSCALELOG 1 dB/div                                                                                                   |
|                | 4. Measure the signal at A4A6A2TP4 using the active probe and record below. The signal level should be approximately -33 dBm.                                                                                                          |
|                | Signal level at TP4 dBM                                                                                                                                                                                                                |
|                | 5. Change the center frequency of the spectrum analyzer used for measuring the signals to 3 MHz. Measure the signal at A4A6A2P1-9. The signal level should be 10 dB $\pm 0.6$ dB lower than the signal measured in the previous step.  |
|                | Signal level at P1-9 dBM                                                                                                                                                                                                               |
|                | <ol> <li>If the signal at A4A6A2P1-9 needs adjusting, change A4A6A2R33.<br/>(Decreasing R33 ten percent increases the signal level by 0.6<br/>dB.) Refer to Table 3-3 for the acceptable range of values for<br/>A4A6A2R33.</li> </ol> |
|                |                                                                                                                                                                                                                                        |

## 12. Time Base Adjustment (SN 2840A and Below, also 3217A05568 and Above)

| Reference                   | RF Section:<br>A27A1 10 MHz Quartz Crystal Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Test | Center Frequency Readout Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description                 | The frequency of the internal 10 MHz Frequency Standard is<br>compared to a known frequency standard and adjusted for minimum<br>frequency error. This procedure does not adjust the short-term<br>stability or long-term stability of the 10 MHz Quartz Crystal Oscillator,<br>which are determined by characteristics of the particular oscillator<br>and the environmental and warmup conditions to which it has been<br>recently exposed. The spectrum analyzer must be ON continuously<br>(not in STANDBY) for at least 72 hours immediately prior to oscillator<br>adjustment to allow both the temperature and frequency of the<br>oscillator to stabilize. |



Figure 3-52. Time Base Adjustment Setup

| Equipment | Frequency StandardHP 5061BFrequency CounterHP 5334A/B              |
|-----------|--------------------------------------------------------------------|
|           | <b>Cables:</b><br>BNC cable, 122 cm (48 in) (2 required) HP 10503A |

### 12. Time Base Adjustment (SN 2840A and Below, also 3217A05568 and Above)

### **Procedure**

Note

The spectrum analyzer must be ON continuously (not in STANDBY) for at least 72 hours immediately prior to oscillator adjustment to allow both the temperature and frequency of the 10 MHz Quartz Crystal Oscillator to stabilize. Adjustment should not be attempted before the oscillator is allowed to reach its specified aging rate. Failure to allow sufficient stabilization time could result in oscillator misadjustment.

The A27A1 10 MHz Quartz Crystal Oscillator (HP P/N 0960-0477) will typically reach its specified aging rate again within 72 hours after being switched off for a period of up to 24 hours. If extreme environmental conditions were encountered during storage or shipment (i.e. mechanical shock, temperature extremes) the oscillator could require up to 30 days to achieve its specified aging rate.

1. Set the rear-panel FREQ REFERENCE switch on the spectrum analyzer RF Section to INT.

**Note** The +22 Vdc STANDBY supply provides power to the heater circuit in the A27 10 MHz Frequency Standard assembly whenever line power is applied to the RF Section. This allows the A27 10 MHz Frequency Standard oven to remain at thermal equilibrium, minimizing frequency drift due to temperature variations. The OVEN COLD message should typically appear on the spectrum analyzer display for 10 minutes or less after line power is first applied to the RF Section.

**Note** The rear-panel FREQ REFERENCE switch enables or disables the RF Section +20 Vdc switched supply, which powers the oscillator circuits in the A27 10 MHz Frequency Standard. This switch must be set to INT and the spectrum analyzer must be switched ON continuously (not in STANDBY) for at least 72 hours before adjusting the frequency of the A27 10 MHz Frequency Standard.

- 2. Set the LINE switch to ON. Leave the spectrum analyzer ON (not in STANDBY) and undisturbed for at least 48 hours to allow the temperature and frequency of the A27 10 MHz Frequency Standard to stabilize.
- 3. Press (SHIFT) TRACE B [CLEAR-WRITE] <sup>g</sup> to turn off the display. This prolongs CRT life while the spectrum analyzer is unattended. To turn the CRT back on press (SHIFT) TRACE B (MAX HOLD)<sup>h</sup>.
- 4. Connect the (Cesium Beam) Frequency Standard to the Frequency Counter's rear-panel TIMEBASE IN/OUT connector as shown in Figure 3-52.
- 5. Disconnect the short jumper cable on the RF Section rear panel from the FREQ REFERENCE INT connector. Connect this output (FREQ REFERENCE INT) to INPUT A on the Frequency Counter. A REF UNLOCK message should appear on the CRT display.

### 12. Time Base Adjustment (SN 2840A and Below, also 3217A05568 and Above)

6. Set the Frequency Counter controls as follows:

| INPUTA                          |
|---------------------------------|
| ATTENUATIONx10                  |
| DC Coupled OFF                  |
| 1 $M\Omega$ input impedance OFF |
| AUTO TRIG ON                    |
| 100 kHz FILTER OFF              |
| INT/EXT switch (rear panel) EXT |

- 7. On the Frequency Counter, select a 10 second gate time by pressing, GATE TIME 10 (GATE TIME).
- 8. Offset the displayed frequency by -10.0 MHz by pressing, MATH <u>SELECT/ENTER</u> <u>CHS/EEX</u> 10 <u>CHS/EEX</u> 6 <u>SELECT/ENTER</u> <u>SELECT/ENTER</u>. The Frequency Counter should now display the difference between the frequency of the INPUT A signal (A27 10 MHz Frequency Standard) and 10.0 MHz with a displayed resolution of 1 mHz (0.001 Hz).
- 9. Wait at least two gate periods for the Frequency Counter to settle, and record the frequency of the A27 10 MHz Frequency Standard as reading #1.

Reading 1: \_\_\_\_\_mHz

- 10. Allow **the** spectrum analyzer to remain powered (not in STANDBY) and undisturbed for an additional 24 hours.
- 11. Repeat steps 3 through 7 and record the frequency of the A27 10 MHz Frequency Standard as reading #2.

Reading 2: \_\_\_\_\_mHz

12. If the difference between reading #2 and reading #1 is greater than 1 mHz, the A27 10 MHz Frequency Standard has not achieved its specified aging rate; the spectrum analyzer should remain powered (not in STANDBY) and undisturbed for an additional 24-hour interval. Then, repeat steps 3 through 7, recording the frequency of the 10 MHz Frequency Standard at the end of each 24-hour interval, until the specified aging rate of 1 mHz/day (1x10E9/day) is achieved.

| Reading 3:  | mHz |
|-------------|-----|
| Reading 4:  | mHz |
| Reading 5:  | mHz |
| Reading 6:  | mHz |
| Reading 7:  | mHz |
| Reading 8:  | mHz |
| Reading 9:  | mHz |
| Reading 10: | mHz |
|             |     |

13. Position the spectrum analyzer on its right side as shown in Figure 3-52 and remove the bottom cover. Typically, the frequency of the A27 10 MHz Frequency Standard will shift slightly when the spectrum analyzer is reoriented. Record this shifted frequency of the A27 10 MHz Frequency Standard.

### 12. Time Base Adjustment (SN 2840A and Below, also 3217A05568 and Above)

Reading 11: \_\_\_\_\_ mHz

14. Subtract the shifted frequency reading in step 11 from the last recorded frequency in step 10. This gives the frequency correction factor needed to adjust the A27 10 MHz Frequency Standard.

Frequency Correction Factor: \_\_\_\_\_ mHz

- 15. On the Frequency Counter, select a 1 second gate time by pressing, <u>GATE TIME</u> 1 (<u>GATE TIME</u>). The Frequency Counter should now display the difference between the frequency of the INPUT A signaland 10.0 MHz with a resolution of 0.01 Hz (10 mHz).
- Remove the two adjustment cover screws from the A27 10 MHz Quartz Crystal Oscillator. See Figure 3-53 for the location of the A27 10 MHz Frequency Standard.

**Note** Do not use a metal adjustment tool to tune an oven-controlled crystal oscillator (OCXO). The metal will conduct heat away from the oscillator circuit, shifting the operating conditions.

17. Use a nonconductive adjustment tool to adjust the 18-turn FREQ ADJ capacitor on the A27A1 10 MHz Quartz Crystal Oscillator for a Frequency Counter indication of 0.00 Hz. See Figure 3-53 for the location of the A27A1 10 MHz Quartz Crystal Oscillator.



Figure 3-53. Location of A27A1 Adjustment

- 18. On the Frequency Counter, select a 10 second gate time by pressing, GATE TIME 10 GATE TIME. The Frequency Counter should **now** display the difference between the frequency of the INPUT A signal and 10.0 MHz with a resolution of 0.001 Hz (1 mHz).
- 19. Wait at least 2 gate periods for the Frequency Counter to settle, and then adjust the 16-turn FINE adjustment on the A27 10 MHz Frequency Standard for a stable Frequency Counter indication of  $(0.000 + \text{Frequency Correction Factor}) \pm 0.010$  Hz.
- **20.** Replace the RF Section bottom cover and reconnect **the** short jumper cable between the FREQ REFERENCE INT and EXT connectors,

### 12. Time Base Adjustment (SN 2848A to 3217A05567)

| Reference                   | RF Section:<br>A27A1 Frequency Standard Regulator<br>A27A2 10 MHz Quartz Crystal Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Test | Center Frequency Readout Accuracy Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Description                 | The frequency of the internal 10 MHz Frequency Standard is<br>compared to a known frequency standard and adjusted for minimum<br>frequency error. This procedure does not adjust the short-term<br>stability or long-term stability of the 10 MHz Quartz Crystal Oscillator<br>which are determined by characteristics of the particular oscillator<br>and the environmental and warmup conditions to which it has been<br>recently exposed. The spectrum analyzer must be ON continuously<br>(not in STANDBY) for at least 72 hours immediately prior to oscillator<br>adjustment to allow both the temperature and frequency of the<br>oscillator to stabilize. |



Figure 3-54. Time Base Adjustment Setup

| Equipment | Frequency | Standard | <br>HP 5061A/B |
|-----------|-----------|----------|----------------|
|           | Frequency | Counter  | <br>HP 5334A/B |

### **Cables:**

BNC cable, 122 cm (48 in) (2 required) . . . . . . . HP 10503A

### **Procedure**

**Note** The spectrum analyzer must be ON continuously (not in STANDBY) for at least 72 hours immediately prior to oscillator adjustment. This allows both the temperature and frequency of the oscillator to stabilize. Adjustment should not be attempted before the oscillator is allowed to reach its specified aging rate. Failure to allow sufficient stabilization time could result in oscillator misadjustment.

### 12. Time Base Adjustment (SN 2848A to 3217A05567)

The A27A2 10 MHz Quartz Crystal Oscillator (HP P/N 1081 1-601 11) typically reaches its specified aging rate again within 72 hours after being switched off for a period of up to 30 days, and within 24 hours after being switched off for a period less than 24 hours. If extreme environmental conditions were encountered during storage or shipment (i.e. mechanical shock, temperature extremes) **the** oscillator could require up to 30 days to achieve its specified aging rate.

Replacement oscillators are factory-adjusted after a complete warmup and after the specified aging rate has been achieved. Readjustment should typically not be necessary after oscillator replacement, and is generally not recommended.

1. Set the rear-panel FREQ REFERENCE switch on the spectrum analyzer RF Section to INT.

**Note** The + 22 Vdc STANDBY supply provides power to the heater circuit in the A27 10 MHz Frequency Standard assembly whenever line power is applied to the RF Section. This allows the A27 10 MHz Frequency Standard **oven** to remain at thermal equilibrium, minimizing frequency drift due to temperature variations. The OVEN COLD **message** should typically appear on **the** spectrum analyzer display for 10 minutes or less after line power is first applied to the RF Section.

**Note** The rear-panel FREQ REFERENCE switch enables or disables the RF Section +20 Vdc switched supply, which powers the oscillator circuits in the A27 10 MHz Frequency Standard. This switch must be set to INT and the spectrum analyzer must be switched ON continuously (not in STANDBY) for at least 72 hours before adjusting the frequency of the A27 10 MHz Frequency Standard.

- 2. Set the LINE switch to ON. Leave the spectrum analyzer ON (not in STANDBY) and undisturbed for at least 48 hours to allow the temperature and frequency of the A27 10 MHz Frequency Standard to stabilize.
- 3. Press (SHIFT) TRACE B (CLEAR-WRITE) g to turn off the display. This prolongs CRT life while the spectrum analyzer is unattended. To turn the CRT back on press (SHIFT) TRACE B (MAX HCLD)
- 4. Connect the (Cesium Beam) Frequency Standard to the Frequency Counter's rear-panel TIMEBASE IN/OUT connector as shown in Figure 3-54.
- 5. Disconnect the short jumper cable on the RF Section rear panel from the FREQ REFERENCE INT connector. Connect this output (FREQ REFERENCE INT) to INPUT A on the Frequency Counter. A REF UNLOCK message should appear on the CRT display.
- 6. Set the Frequency Counter controls as follows:

| INPUT                       | A           |
|-----------------------------|-------------|
| ATTENUATION                 | <b>k</b> 10 |
| DC Coupled                  | OFF         |
| 1 $M\Omega$ input impedance | OFF         |
| AUTO TRIG                   | ON          |
| 100 kHz FILTER              | OFF         |

### 12. Time Base Adjustment (SN 2848A to 3217A05567)

INT/EXT switch (rear panel) ..... EXT

- 7. On the Frequency Counter, select a 10 second gate time by pressing, GATE TIME 10 (GATE TIME).
- Offset the displayed frequency by -10.0 MHz by pressing, MATH <u>(SELECT/ENTER]</u> (CHS/EEX) 10 (CHS/EEX) 6 (SELECT/ENTER) (SELECT/ENTER). The Frequency Counter should now display the difference between the frequency of the INPUT A signal (A27 10 MHz Frequency Standard) and 10.0 MHz with a displayed resolution of 1 mHz (0.001 Hz).
- 9. Wait at least two gate periods for the Frequency Counter to settle, and record the frequency of the A27 10 MHz Frequency Standard as reading #1.

Reading 1: \_\_\_\_\_ mHz

The A27A2 Quartz Crystal Oscillator has a typical adjustment range of 10 MHz  $\pm 10$  Hz. The oscillator frequency should be within this range after 48 hours of continuous operation.

- 10. Allow the spectrum analyzer to remain powered (not in STANDBY) and undisturbed for an additional 24 hours.
- 11. Repeat steps 3 through 7 and record the frequency of the A27 10 MHz Frequency Standard as reading #2.

Reading 2: \_\_\_\_\_ mHz

- 12. If the difference between reading #2 and reading #1 is greater than 1 mHz, the A27 10 MHz Frequency Standard has not achieved its specified aging rate; the spectrum analyzer should remain powered (not in STANDBY) and undisturbed for an additional 24-hour interval. Then, repeat steps 3 through 7, recording the frequency of the 10 MHz Frequency Standard at the end of each 24-hour interval, until the specified aging rate of 1 mHz/day (1x10E9/day) is achieved.
  - Reading 3: \_\_\_\_\_ mHz
  - Reading 4: \_\_\_\_\_ mHz
  - Reading 5: \_\_\_\_\_ mHz
  - Reading 6: \_\_\_\_\_ mHz
  - Reading 7: \_\_\_\_\_ mHz
- 13. Position the spectrum analyzer on its right side as shown in Figure 3-54 and remove the bottom cover. Typically, the frequency of the A27 10 MHz Frequency Standard will shift slightly when the spectrum analyzer is reoriented. Record this shifted frequency of the A27 10 MHz Frequency Standard.

Reading 8: \_\_\_\_\_mHz

14. Subtract the shifted frequency reading in step 8 from the last recorded frequency in step 7. This gives the frequency correction factor needed to adjust the A27 10 MHz Frequency Standard.

Frequency Correction Factor: \_\_\_\_\_ mHz

Adjustments 3-101

Note

### 12. Time Base Adjustment (SN 2848A to 3217A05567)

15. On the Frequency Counter, select a 1 second gate time by pressing, <u>GATE TIME</u> 1 <u>GATE TIME</u>. The Frequency Counter should now display the difference between the frequency of the INPUT A signal and 10.0 MHz with a resolution of 0.01 Hz (10 mHz).

**Note** Do not use a metal adjustment tool to tune an oven-controlled crystal oscillator (OCXO). The metal will conduct heat away from the oscillator circuit, shifting the operating conditions.

16. Use a nonconductive adjustment tool to adjust the 18-turn FREQ ADJ capacitor on the A27A2 10 MHz Quartz Crystal Oscillator for a Frequency Counter indication of 0.00 Hz. See Figure 3-55 for the location of the A27A2 10 MHz Quartz Crystal Oscillator.



Figure 3-55. Location of A27A2 Adjustment

- 17. On the Frequency Counter, select a 10 second gate time by pressing, <u>GATE TIME</u> 10 <u>GATE TIME</u>. The Frequency Counter should now display the difference between the frequency of the INPUT A signal and 10.0 MHz with a resolution of 0.001 Hz (1 mHz).
- 18. Wait at least 2 gate periods for the Frequency Counter to settle, and then adjust the FREQ ADJ capacitor on the A27A2 10 MHz Quartz Crystal Oscillator for a stable Frequency Counter indication of (0.000 + Frequency Correction Factor) ±0.010 Hz.
- 19. Replace **the** RF Section bottom cover and reconnect the short jumper cable between the FREQ REFERENCE INT and EXT connectors.
### 13. 20 MHz Reference Adjustments

Reference

RF Section: A16 20 MHz Reference

Calibrator Amplitude Accuracy Test

Related Performance Test

> **Description** The 20 MHz output is peaked and amplitude checked for proper level. The INTERNAL REFERENCE output level is then checked for proper output level as compared to input from A27 Time Base. Finally, the COMB DRIVE and CAL OUTPUT are adjusted for proper power levels.



#### Figure 3-56. 20 MHz Reference Adjustments Setup

| Eauipment | Spectrum Analyzer       | HP 8566A/B |
|-----------|-------------------------|------------|
| -1P       | Digital Voltmeter (DVM) | . HP 3456A |
|           | Frequency Synthesizer   | . HP 3335A |
|           | Power Meter             | HP 436A    |
|           | Power Sensor            | HP 8482    |
|           | Digitizing Oscilloscope | HP 54501A  |
|           | 10:1 Divider Probe      | HP 10432A  |
|           |                         |            |

#### **Adapters:**

| Type N (m) to BNC (f) 1250- | 0700 |
|-----------------------------|------|
| 1050                        | 0/00 |
| Type N (f) to BNC (f) 1250- | 1474 |

#### **Cables:**

BNC to SMB cable Snap-On (2 required) . . . . . 85680-60093

Procedure 1. Position instrument on right side as shown in Figure 3-56 and remove bottom cover. Remove A16 20 MHz Reference and install on extenders. See Figure 3-57 for the location of A16 components.

- 2. Set LINE switch to ON and press (INSTR PRESET).
- 3. Set rear-panel FREQ REFERENCE INT/EXT switch to INT. Disconnect cable 2 (red) from A16J1. Connect power meter to output of Time Base (A27J1) using cable 2 (red). Note power meter indication for reference later.

\_\_\_\_ dBm

- 4. Reconnect A27 Time Base output to A16J1.
- 5. Jumper A16TP4 to Ground. Set the HP 8566A/B Spectrum Analyzer to <u>CENTER FREQUENCY</u> 20 MHz, <u>FREQUENCY SPAN</u> 1 MHz, <u>REFERENCE LEVEL</u> + 20 dBm, and <u>RES BW</u> 100 kHz. Connect A16J3 to RF INPUT of HP 8566A/B Spectrum Analyzer and set <u>[REFERENCE LEVEL]</u> to place of signal at reference line (top graticule line).
- 6. Set HP 8566A/B Spectrum Analyzer to 1 dB/division SCALE and reset reference level to place peak of signal at reference line.
- 7. Connect DVM to A16TP1 and ground to A22 TP12. Adjust A16 COMB DRIVE A16R31 for DVM indication of > + 0.1 V dc. Disconnect DVM. (If DVM remains connected, it may load circuit.) See Figure 3-57 for location of adjustment.



Figure 3-57. Location of 20 MHz Reference Adjustments

- 8. Adjust A16 DOUBLER A16T1 to lower signal peak approximately 3 dB. Adjust A16 CENTER FREQ A16C11 to peak signal on HP 8566A/B Spectrum Analyzer display. Next, adjust A16 DOUBLER A16T1 for signal peak.
- Disconnect cable 2 (red) from A16J1 and connect 50Ω OUTPUT of frequency synthesizer to A16J1. Set FREQUENCY of frequency synthesizer to 10.17 MHz and set AMPLITUDE to + 3 dBm. Set HP

8566A/B Spectrum Analyzer (CENTER FREQUENCY) to 20.34 MHz and SCALE to 10 dB/division.

- 10. Adjust A16 20.34 MHz NULL A16C12 for minimum 20.34 MHz signal at A16J3 as indicated by HP 8566A/B Spectrum Analyzer display. With signal nulled, the plates of the NULL adjustment capacitor should be meshed approximately halfway. If fully meshed or fully unmeshed, a circuit malfunction is indicated.
- 11. Disconnect frequency synthesizer from A16J1 and reconnect cable 2 (red) to A16J1. Connect power meter to rear-panel INT REF OUT connector.
- 12. Power meter indication should be no more than 5 dB less than that noted in step 3 (A27 Time Base output).
- 13. Disconnect A16TP4 from ground. Connect power meter to A16J3.
- 14. Adjust A16 COMB DRIVE A16R31 for power meter indication of + 10.0 dBm  $\pm$ 1.0 dB.
- 15. Connect power meter to A16J4 through cable 3 (orange). Power meter indication should be at least -15 dBm. Reconnect cable 3 (orange) to A6J2.
- 16. Connect power meter to A16J5 through cable 4 (yellow). Power meter indication should be at least -10 dBm. Reconnect cable 4 (yellow) to A8J1.
- 17. On the oscilloscope, key in **RECALL CLEAR** to perform a soft reset.
- 18. Connect the channel 1 probe to the oscilloscope's rear panel PROBE COMPENSATION AC CALIBRATOR OUTPUT connector. Press [AUTO SCALE]. Adjust the channel 1 probe for an optimum square wave display on the oscilloscope.
- 19. Connect oscilloscope with the HP 10432A probe to A16TP3 and the ground to the analyzer's chassis ground.
- 20. Set the oscilloscope controls as follows:

| Press (CHAN):            |
|--------------------------|
| Channel 1                |
| amplitude scale 1V / div |
| offsetOV                 |
| couplingdc               |
| probe                    |
| Channel 2 off            |
| Channel 4 off            |
| Press (TRIG):            |
| EDGE TRIGGER trig'd auto |
| source                   |
| level                    |
| Press (TIME BASE):       |
| time scale               |
| delay                    |
| referenceCNTR            |
| Press DISPLAY:           |
| connect dots             |
| DISPLAY AVG              |

#### 13. 20 MHz Reference Adjustments

| Press (SHOW)                           |                        |              |
|----------------------------------------|------------------------|--------------|
| Press $\overline{\Delta T \Delta V}$ : |                        |              |
| $\Delta V$ markers                     | <br>                   | <b>o</b> n   |
| Vmarker 1 .                            | <br>                   | .800 mv      |
| Vmarker 2 .                            | <br>                   | $\dots 2.7V$ |
| start marker                           | <br>place at 2.7V      | crossing     |
| stop marker                            | <br>place at next 2.7V | crossing     |

2 1. Oscilloscope display should be a 10 MHz signal of TTL level; less than +0.8V to greater than +2.7V. See Figure 3-58 for a typical signal.



#### Figure 3-58. Typical Signal at A16TP3

- 22. Install A16 20 MHz Reference without extenders and reconnect cable 7 (violet) to A16J3.
- 23. Connect power meter to front-panel CAL OUTPUT.
- 24. Adjust A26 CAL LEVEL A16R51 for power meter indication of -10.0 dBm  $\pm 0.2$  dB.
- 25. the A23A6 Comb Generator must be readjusted after adjusting the 20 MHz Reference. Refer to Adjustments 22, Comb Generator Adjustments, for adjustment procedure.

### 14. 249 MHz Phase Lock Oscillator Adjustments

**Reference** RF Section: A7 249 MHz Phase Lock Oscillator

**Description** Two center frequencies are chosen: one which will tune the 249 MHz Oscillator to its low-end frequency and one which will tune the 249 MHz Oscillator to the high-end frequency. The voltage is monitored with a DVM at the output of the oscillator, and the oscillator frequency is adjusted to produce the proper dc voltage output for each frequency (low-end and high-end). Next, the 500 kHz Trap is adjusted to null the 500 kHz sidebands using the sixth harmonic of the 249 MHz signal.



#### Figure 3-59. 249 MHz Phase Lock Oscillator Adjustments Setup

| Equipment | Spectrum Analyzer HP 8566A/B                      |
|-----------|---------------------------------------------------|
|           | Ampiliter                                         |
|           | Tee, SMB Male                                     |
|           | Adapters:                                         |
|           | Type N (m) to BNC (f) 1250-1250                   |
|           | Cables:                                           |
|           | BNC cable, 122 cm (48 in) (2 required) 10503A     |
|           | BNC to SMB Snap-On cable (2 required) 85680-60093 |

#### 14. 249 MHz Phase Lock Oscillator Adjustments

- **Procedure** 1. Place instrument on right side with IF-Display Section facing right as shown in Figure 3-59.
  - 2. Set LINE switch to ON and press [INSTR PRESET].
  - 3. Connect DVM to A7TP1 and ground to A22TP12.
  - 4. Key in <u>[center frequency]</u> 17.6 MHz and <u>[frequency span]</u> 0 Hz on HP 8568B.
  - 5. Adjust A7 PLO A7C3 for DVM indication between +5.2 V dc and +6.0 V dc. See Figure 3-60 for location of adjustment.



Figure 3-60. Location of 249 MHz Phase Lock Oscillator Adjustments

- 6. Key in CENTER FREQUENCY] 37.1 MHz.
- DVM indication should be between + 12.9 V dc and + 16.9 V dc. If DVM indication is within the given range, disconnect DVM from A7TP1 and proceed to step 18. Otherwise, key in SAVE 2, SET LINE switch to STANDBY, and place A7 249 MHz PLO on extender (with DVM still connected to A7TP1).
- 8. Set LINE switch to ON and key in <u>RECALL</u> 2 on HP 8568B Spectrum Analyzer.
- **9.** Adjust A7 PLO A7C3 for DVM indication of  $+ 13.0 \pm 0.1$  V dc.
- 10. Key in [center frequency] 17.6 MHz, [FREQUENCY SPAN] 0 Hz, and [SAVE] 1.
- 11. Adjust A7 PLO A7L2 for DVM indication of  $+5.2 \pm 0.05$  V dc. (A7L2 slug should be near center of coil form when A7L2 is properly adjusted.)
- 12. Key in (RECALL) 2 and adjust A7C3 for + 13.0 fO.1 V dc at A7P1.
- 13. Press 1 (RECALL 1) and adjust A7L2 for  $+5.2 \pm 0.05$  V dc.
- 14. Repeat steps 12 and 13 until A7C3 and A7L2 need **no** further adjustment.

#### 14. 249 MHz Phase Lock Oscillator Adjustments

- 15. Set LINE switch to STANDBY. Adjust A7L2 one-half turn counterclockwise before placing A7 249 MHz PLO in HP 8568B Spectrum Analyzer without extender. (Leave DVM connected to A7TP1).
- 16. Set LINE switch to ON and key in (RECALL) 1. DVM indication should be between +5.2 V dc and +6.0 V dc.
- 17. Press 2 (RECALL 2). DVM indication should be between + 12.9 V dc and + 16.9 V dc. Disconnect DVM from A7TP1.
- 18. Set LINE switch to STANDBY and place A7 249 MHz PLO on extender.
- 19. Set LINE switch to ON, press (INSTR PRESET), and set the analyzer as follows:

| [CENTER FREQUENCY] | 16.5 MHz |
|--------------------|----------|
| (FREQUENCY SPAN)   | 0 Hz     |
| (SWEEP)            | SINGLE   |

20. Disconnect cable from A7J1 and connect cable 89 (gray/white) to one branch of a tee. Using a short coaxial cable (see Note below), connect the other branch of the tee back to A7J1. Connect the stem of the tee to the HP 8566A/B Spectrum Analyzer RF INPUT.

**Note** The short cable 9 (white) in the IF-Display Section (A3A9J2 to A3A2J1) can be disconnected and used for this adjustment. Be sure to reconnect the cable 9 (white) when finished.

- 21. Press (2 22 GHz) on the HP 8566A/B Spectrum Analyzer and key in (FREQUENCY SPAN) 5 MHz, [CENTER FREQUENCY] 1547 MHz, (PEAK SEARCH) and (MKR  $\rightarrow$  CF).
- 22. On the HP 8566A/B Spectrum Analyzer, key in <u>[SIGNAL TRACK</u>], <u>[FREQUENCY SPAN]</u> 10 kHz, <u>(RES BW</u>] 300 Hz, <u>[REFERENCE LEVEL</u>) -50 dBm, and <u>(ATTEN</u>) 0 dB.
- 23. On the HP 8566A/B Spectrum Analyzer, turn off <u>[Signal TRACK.]</u> and set <u>(CF step size)</u> to 500 kHz on the HP 8566A/B Spectrum Analyzer. Press <u>[CENTER FREQUENCY]</u>, then () key.
- 24. Disconnect cable from the HP 8566A/B Spectrum Analyzer RF INPUT and connect cable (from tee) to PRE AMP input of HP 8447F Amplifier. Connect cable from PRE AMP output to the HP 8566A/B Spectrum Analyzer RF INPUT.
- 25. Adjust A7 500 kHz TRAP adjustments A7L15 and A7L17 to null the 500 kHz sideband displayed on the spectrum analyzer. The 500 kHz sideband should be less than -90 dBm. See Figure 3-60 for location of adjustments.
- 26. Press (SAVE) 1 on HP 8568B Spectrum Analyzer. Set LINE switch to STANDBY and place A7 249 MHz PLO in HP 8568B Spectrum Analyzer without extender (leave tee connected).
- 27. Set LINE switch to ON and press **RECALL** 1. Verify that 500 kHz remains less than -90 dBm in amplitude.
- 28. Disconnect tee and reconnect cable 89 (gray/white) to A7J 1.

### 15. 275 MHz Phase Lock Oscillator Adjustment

| F Section:                        |
|-----------------------------------|
| A18 275 MHz Phase Lock Oscillator |
| A21 275 MHz Phase Lock            |
|                                   |

**Description** The 275 MHz Phase Lock Oscillator frequency is adjusted using a DVM.



Figure 3-61. 275 MHz Phase Lock Oscillator Adjustment Setup

- EquipmentDigital Voltmeter (DVM)HP 3456A
- **Procedure** 1. Place instrument on right side with IF-Display Section facing right as shown in Figure 3-61 with bottom cover removed.
  - 2. Set LINE switch to ON and press (INSTR PRESET).
  - 3. Set controls as follows:

| CENTER FREQUENCY | 19.850000 MHz |
|------------------|---------------|
| FREQUENCY SPAN   | 1 MHz         |
| MARKER           |               |

- Using DATA control knob on HP 8568B, adjust marker to a position one-half of a major division from the right edge of the graticule. Press (SHIFT) <sup>u</sup> (SINGLE).
- 5. Connect DVM to A18TP1 (on lid) and ground to A22TP12.
- 6. Adjust A18 PLO ADJUST A18C8 for DVM indication of +6.5 V dc  $\pm 0.5$  V dc. See Figure 3-62 for location of adjustment.

#### 15. 275 MHz Phase Lock Oscillator Adjustment



Figure 3-62. Location of 275 MHz PLO Adjustment

7. Disconnect test equipment from instrument.

### 16. Second IF Amplifier and Third Converter Adjustment

Reference

RF Section: A19 Second IF Amplifier A20 Third Converter

**Description** A synthesized sweeper is used to inject a signal of 301.4 MHz at -20 dBm in to the A19 Second IF Amplifier. The output of the amplifier is displayed on a scalar network analyzer. The amplifier is adjusted for a bandpass of greater than 7 MHz and less than 14 MHz centered at 301.4 MHz. Its gain should be greater than 14 dB and less than 17 dB. A spectrum analyzer is used to view the output of the 280 MHz Oscillator on the A20 Third Converter and the oscillator is centered in its adjustment range.





| Equipment | Spectrum Analyzer       | HP 8566A/B        |
|-----------|-------------------------|-------------------|
|           | Synthesized Sweeper     | HP 8340A/B        |
|           | Scalar Network analyzer | HP 8757A          |
|           | Power Splitter HP       | 11667A Opt. 001   |
|           | Power Meter             | HP 436A           |
|           | Power Sensor            | HP 8482A          |
|           | Detector (2 required)   | HP 11664A         |
|           | 20 dB Attenuator HF     | P 8491A, Opt. 020 |

#### 16. Second IF Amplifier and Third Converter Adjustment

#### Adapters:

| Type N (f) to APC-3.5 (f)          | 1250-1745 |
|------------------------------------|-----------|
| Type N (m) to BNC (f) (2 required) | 1250-0780 |
| Type N (f) to BNC (f) (2 required) | 1250-1474 |
| APC 3.5 (f) to APC 3.5 (f)         | 1250-1749 |

#### Cables:

BNC to SMB Snap-On (Service Accessory) (2 required) . 85680-60093

BNC 122 cm (48 in) (3 required) .....10503A SMA (m) to (m) ......5061-5458

# **Procedure** 1. Position instrument on right side as shown in Figure 3-63, with bottom cover removed.

2. Set LINE switch to ON and press (INST PRESET] on HP 8568B, HP 8566A/B, HP 8757A, and HP 8340A/B.

#### Second IF Amplifier Adjustments

- 3. Connect 20 dB Attenuator and power splitter to RF OUTPUT of synthesized sweeper. Connect one arm of power splitter to R input of scalar network analyzer through Detector. See Figure 3-63.
- 4. Set synthesized sweeper FREQUENCY MARKERS (M1) to 291.4 MHz and (M2) to 311.4 MHz.
- 5. Press CW 301.4 MHz on synthesized sweeper.
- 6. Connect Power meter to other power splitter port and set synthesized sweeper [POWER LEVEL] for Power Meter indication of  $-20.0 \pm 0.1$  dBm.
- 7. Disconnect Power Meter and connect power splitter output to A19J1, using adapter and a BNC to SMB test cable. Refer to Figure 3-64.
- 8. Connect A19J2 to A input of scalar network analyzer, using adapter and another BNC to SMB test cable.
- Connect synthesized sweeper SWEEP OUTPUT (rear panel), Z-AXIS BLANK/MKRS (rear panel), and PULSE MODULATION INPUT to proper rear-panel connectors on scalar network Analyzer, as shown in Figure 3-63.
- 10. On the scalar network analyzer, turn Channel 2 off and press (MEAS) (A/R).
- 11. Set scalar network analyzer <u>SCALE</u> to 1 dB and set <u>REF</u> (RF LEVEL) to + 14 dB. Set REF POSN (press REF POSN) to the fourth division from bottom using the data knob.
- 12. On synthesized sweeper, press (ON) (MKR SWEEP), and  $(\Delta F)$ . Set (SWEEP TIME) to 500 ms.
- 13. Adjust A19 301.4 MHz Bandpass Filter, A19C9 through C12, for the best bandpass filter response with a gain of > + 14 dBm but < + 17 dBm. See Figure 3-64 for the location of the bandpass adjustments.

#### 16. Second IF Amplifier and Third Converter Adjustment

See Figure 3-65 for the typical response when the bandpass filter is properly adjusted.

- 14. On the scalar network analyzer, press (CURSOR) MAX. Press cursor A, ON and set the cursor to the -3 dB point on the low side of the filter response ( $\pm 0.1 \text{ dB}$ ).
- 15. Press cursor A and set the cursor to the -3 dB point on the high side on the filter response. The cursor A should read 0 fO.1 dB.



Figure 3-64. Location of 301.4 MHz BPF and 280 MHz AMPTD Adjustments



Figure 3-65. 301.4 MHz Bandpass Filter Adjustment Waveform

- 16. On the synthesized sweeper, press M3 and set the Marker to the -3 dB point on the low side of the filter response.
- 17. On the synthesized sweeper, press M4 and set the Marker to the -3 dB point on the high side of the filter response.

#### 16. Second IF Amplifier and Third Converter Adjustment

Note Place the Markers as accurately as possible within the cursor markers for maximum frequency accuracy.

- 18. On the synthesized sweeper, press (MKR  $\Delta$ ). M3 M4 should read between 7 and 14 MHz.
- 19. On the synthesized sweeper, press (MKR  $\Delta$ ) OFF and (SHIFT) OFF.
- 20. Set the synthesized sweeper FREQUENCY MARKERS (M1) to 251.4 MHz and M2 to 351.4 MHz.
- 21. Set the Scalar Network Analyzer (SCALE) to 10 dB and set (REF) (REF LEVEL) to + 14 dB. Set the REF POSN to one division down from the top.
- 22. Adjust A19C12 for minimum amplitude response at 258.4 MHz. Refer to Figure 3-64 for the location of the bandpass adjustments. Refer to Figure 3-66 for the typical response when the bandpass filter is properly adjusted.



#### Figure 3-66. Minimum Image Response at 258.4 MHz

23. Repeat the adjustments in steps 13 and 22 to assure that the bandpass is between 7 MHz and 14 MHz and the image response at 258.4 MHz is minimized.

Note Remember to use the appropriate set up for steps 13 and 20. 24. Disconnect the cables from A19J1 and A19J2 and reconnect the instrument cables. **Third Converter** 25. Disconnect cable 83 (gray/orange) from A20J3 and connect A20J3 to the input of HP 8566A/B Spectrum Analyzer, using a BNC to Adjustment SMB test cable. 26. Press (INSTR PRESET) on the HP 8566A/B Spectrum Analyzer, then key in [center frequency] 280 MHz, [frequency span] 2 MHz. Set MARKER (NORMAL), REFERENCE LEVEL) + 2 dBm, and <u>LENTER dB/DIV</u> 1 dB. 27. Adjust A20 AMPTD A20L1 for maximum signal level as indicated on spectrum analyzer display.

> **28.** Disconnect spectrum analyzer and reconnect cable 83 (gray/orange) to A20J3.

### **17. Pilot Second IF** Amplifier Adjustments

**Reference** RF Section: A9 Pilot Second IF Amplifier A10 Pilot Third Converter

**Description** A synthesized sweeper is used to inject a signal of 269 MHz at -20 dBm into the A9 Pilot Second IF Amplifier. The output of the amplifier is displayed on a scaler network analyzer. The amplifier is adjusted for a bandpass of greater than 21 MHz centered at 269 MHz and a gain of greater than + 10 dB.



Figure 3-67. Pilot Second IF Amplifier Adjustments Setup

| Equipment | Synthesized Sweeper     | HP 8340A/B         |
|-----------|-------------------------|--------------------|
|           | Scalar Network analyzer | HP 8757A           |
|           | Power Splitter          | HP 11667A Opt. 001 |
|           | Power Meter             | HP 436A            |
|           | Power Sensor            |                    |
|           | Detector (2 required)   | HP 11664A          |
|           | 20 dB Attenuator        | HP 8491A, Opt. 020 |

#### **Adapters:**

| Type N (f) to APC-3.5 (f)          | 1250-1745 |
|------------------------------------|-----------|
| Type N (m) to BNC (f) (2 required) | 1250-0780 |
| Type N (f) to BNC (f) (2 required) | 1250-1474 |
| APC 3.5 (f) to APC 3.5 (f)         | 1250-1749 |

#### **Cables:**

BNC to SMB Snap-On (Service Accessory) (2 required) . 85680-60093

| BNC 122 cm (48 in) (3 required) | 10503A    |
|---------------------------------|-----------|
| SMA (m) to (m)                  | 5061-5458 |

- **Procedure** 1. Position instrument on right side as shown in Figure 3-67, with bottom cover removed.
  - 2. Set LINE switch to ON and press (INST\_PRESET) on HP 8568B (DUT), HP 8757A, and HP 8340A/B.
  - 3. Connect 20 dB Attenuator and power splitter to RF OUTPUT of synthesized sweeper. Connect one arm of power splitter to R input of scalar network analyzer through detector as shown in Figure 3-67.
  - 4. Set synthesized sweeper FREQUENCY MARKERS (M1) to 254 MHz and (M2) to 284 MHz.
  - 5. Press CW 269 MHz on synthesized sweeper.
  - 6. Connect Power Meter to the other power splitter port and set synthesized sweeper (POWER LEVEL) for a Power Meter indication of  $-20.0 \pm 0.2$  dBm.
  - 7. Disconnect Power Meter and connect power splitter output to A9J1, using adapter and BNC to SMB test cable.
  - 8. Connect A9J2 to A input of scalar network analyzer through detector, using adapter and another BNC to SMB test cable.
  - Connect synthesized sweeper SWEEP OUTPUT (rear panel), Z-AXIS BLANK/MKRS (rear panel), and PULSE MODULATION INPUT (front panel) to proper rear-panel connectors on scalar network analyzer, shown in Figure 3-67.
  - 10. On scalar network analyzer, turn channel 2 off and press (A/R).
  - 11. Set the scalar network analyzer (SCALE) to 1 dB, and set (REF) (REF LEVEL) to + 10.00 dB. Set REF POSN (press REF POSN) to the fourth division from the bottom using the data knob.
  - 12. On synthesized sweeper, press PULSE (ON), MKR sweep, and ΔF. Set SWEEP TIME to 500 ms.
  - 13. Adjust REF LEVEL for a mid-screen response of signal on HP 8757A.
  - 14. Adjust A9 269 MHz Bandpass Filter, A9C9, A9C10, A9C11, and A9C12, for best bandpass filter response with gain of greater than + 10 dB (above REF 1 line). See Figure 3-68 for location of adjustments. Figure 3-69 shows typical response when the bandpass filter is properly adjusted.

#### 17. Pilot Second IF Amplifier Adjustments



Figure 3-68. Location of 269 MHz Bandpass Filter Adjustments



Figure 3-69. 269 MHz Bandpass Filter Adjustments Waveforms

- 15. On the scalar network analyzer, press CURSOR MAX. Press cursor A, ON and set the cursor to the -3 dB point on the low side of the filter response ( $\pm 0.1$  dB).
- 16. Press cursor A and set the cursor to the -3 dB point on the high side on the filter response. The cursor A should read  $0 \pm 0.1$  dB.
- 17. Press M3 on synthesized sweeper and set to three divisions down (3 dB) from top of bandpass filter response. Press M4 and set to three divisions down on opposite side of bandpass filter response.
- 18. Press MKR A on synthesized sweeper. M3-M4 should be greater than 21 MHz.
- 19. Disconnect cable 80 (grey/black) from A9J1 and cable 81 (grey/brown) from A9J2 and reconnect instrument cables.

## 18. Frequency Control Adjustments

|         | Reference            | RF Section:<br>A22 Frequency Control                                                                                                                                                                                                                                                                                                                      |
|---------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related | Performance<br>Tests | Sweep Time Accuracy Test<br>Frequency Span Accuracy Test<br>Center Frequency Readout Accuracy Test                                                                                                                                                                                                                                                        |
|         | Description          | The sweep reference voltage is adjusted and then the sweep times are adjusted for proper tolerances. The sweep tune voltage is adjusted. Then the YTO DAC, VTO DAC, and LSD VTO DAC are adjusted, each to within its tolerance. Next, <b>the</b> Start and Stop frequencies are adjusted. FM Span is adjusted next for the proper amount of FM deviation. |



Figure 3-70. Frequency Control Adjustments Setup

| Equipment | Digital Voltmeter (DVM) HP 3456A<br>Frequency Counter HP 5340A                                                         |
|-----------|------------------------------------------------------------------------------------------------------------------------|
| Procedure | 1. Place instrument <b>on</b> right side with IF-Display facing right as shown in Figure 3-70 and remove bottom cover. |
|           | 2. Set LINE switch to ON and press (INSTR PRESET).                                                                     |
|           | 3. Connect DVM to A22TP15 and ground to A22TP12.                                                                       |
|           | 4. Adjust A22 REF A22R94 for DVM indication of + 10.00 $\pm 0.01$ V dc.                                                |

See Figure 3-71 for location of adjustment.

#### 18. Frequency Control Adjustments



Figure 3-71. Location of Frequency Control Adjustments

- 5. Connect DVM to A22TP13 and ground to A22TP12.
- 6. Adjust A22 TUNE REF A22R17 for DVM indication of -10.285  $\pm 0.001$  V dc. See Figure 3-71 for location of adjustment.
- 7. Key in <u>[CENTER FREQUENCY]</u> 10 MHz, <u>FREQUENCY</u> SPAN] 0 Hz, Trace A <u>[CLEAR-WRITE]</u>, Sweep <u>(SINGLE</u>), Scale LIN.
- Start-Up Time Measurement:
   8. Key in (SWEEP TIME) 1s, Marker (NORMAL). Adjust marker to the left edge of the CRT. Key in (SHIFT) (SINGLE)<sup>u</sup>, then key in (SHIFT) (RES BW) <sup>F</sup> three times. CRT annotation should indicate SWEEP GEN measured sweep time.

1 second start-up time: \_

**Note** The start-up time measured in step 8 uses the (SHIFT) (RES BW)<sup>F</sup> function that displays a sweep time value which is 1% to 5% longer than the actual spectrum analyzer sweeptime. This error is compensated when using the shift F function to adjust the sweep times in the following procedure.

9. Key in Marker OFF then SINGLE.

- Slow Sweep
   Adjustment
   10. Key in [SHIFT] (RES BW) F three times and note the CRT annotation. The annotation should indicate SWEEP GEN measured sweep time of (1 .OO s + start-up time from step 8) ±0.01 s. To adjust sweep time, adjust A22R88 SLOW slightly, then key in (SHIFT) (RES BW) F and note new SWEEP GEN measured sweep time as indicated by CRT annotation. Repeat this process until the 1 s sweep time is within spec.
  - **Note** Adjusting A22R88 CW decreases the sweeptime.

#### 18. Frequency Control Adjustments

| Full Sweep<br>Adjustment       | 11. Repeat Start-Up Time Measurement procedure in step 8 and step 9 for <u>(sweep тіме)</u> of 20 ms. Note value of measurement.                                                                                                                                                                                                                                                    |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                | 20 ms start-up time:                                                                                                                                                                                                                                                                                                                                                                |  |
|                                | 12. Key in [Shift_) <u>(RES BW)</u> <sup>F</sup> three times and note the CRT annotation.<br>The annotation should indicate SWEEP GEN measured sweeptime<br>of (20 ms + start-up time noted in step 11) $\pm$ 0.1 ms. If it is not in<br>spec, determine the difference between this measured sweep time<br>and the target sweep time of 20 ms + start-up time noted in step<br>11. |  |
|                                | (measured sweep time) – $(20.00 \text{ ms} + \text{start-up time}) =$                                                                                                                                                                                                                                                                                                               |  |
|                                | 13. Adjust A22R91 FAST for three times the difference; and in the opposite direction, as noted in step 12. See note below. Adjust A22R91 slightly then key in [SHIFT) RES BW) <sup>F</sup> and note new SWEEP GEN measured sweep time as indicated by CRT annotation. Repeat this process until the 20 ms sweep time is set to the value calculated in this step.                   |  |
| Note                           | Adjusting A22R91 CW increases the sweeptime. If the difference<br>between the measured 20 ms sweep time and the target sweep time<br>is less than approximately 0.3 ms, adjust A22R91 for the target<br>sweeptime. Adjusting A22R91 to 3 times the difference noted in step<br>12 is only needed if the difference noted in step 12 is greater than 0.3<br>ms.                      |  |
|                                | 14. Repeat the adjustments in step 8 through step 13 until the measured sweep time at 20 ms is 20 ms plus the Start-Up Time measured in step 11 ( $\pm 0.1$ ms) and the measured sweep time at 1 s is 1.00 s plus the start-up time measured in step 8 (50.01 s).                                                                                                                   |  |
| YTO and VTO DAC<br>Adjustments | 15. Key in <u>SHIFT</u> <u>(CF STEP SIZE)</u> <sup>J</sup> 0 MHz. The CRT annotation should indicate DACS 0.                                                                                                                                                                                                                                                                        |  |
| U                              | 16. Connect DVM to A22TP6 and ground to A22TP12. If using an HP 3456A DVM, press STORE (7) <sup>Z</sup> , ENTER EXP (8) <sup>Y</sup> , (0), STORE (8) <sup>Y</sup> , then MATH, (7) (X-Z)/Y. If not using an HP 3456A DVM, note voltage indication for reference later.                                                                                                             |  |
|                                | 17. Key in <u>SHIFT</u> <u>(CF STEP SIZE</u> ) <sup>J</sup> 1023 MHz. (CRT annotation may still indicate DACS 1023.)                                                                                                                                                                                                                                                                |  |
|                                | 18. Adjust A22 YTO A22R25 for DVM indication of $+$ 10.230 $\pm$ 0.001 V dc. If not using an HP 3456A DVM, adjust for specified voltage plus the DVM indication noted in step 16. See Figure 3-71 for location of adjustment.                                                                                                                                                       |  |

- 19. On the HP 3456A, Press (MATH O OFF.
- 20. Connect DVM to A22TP9.
- 21. Key in <u>SHIFT</u> <u>(CF STEP SIZE)</u> <sup>J</sup> 0 Hz. If using an HP 3456A DVM, press <u>STORE</u> (7 <sup>Z</sup>, <u>ENTER EXP</u> <sup>B</sup> <sup>Y</sup>, <sup>O</sup>, <u>STORE</u> <sup>B</sup> <sup>Y</sup>, then <u>MATH</u>, (7) (X-Z)/Y. If not using an HP 3456A DVM, note voltage indication for reference later.

- 22. Key in SHIFT (CF STEP SIZE) <sup>J</sup> 1023 Hz.
- 23. Adjust A22 LSD VTO A22R7 for DVM indication of  $+0.0218 \pm 0.0001$  V dc. If not using an HP 3455A DVM, adjust for specified voltage plus the DVM indication in step 20. See Figure 3-71 for location of adjustment.
- 24. On the HP 3456A, press MATH O OFF.

#### **START and STOP Adjustments** 25. Connect frequency counter to rear-panel 1ST LO OUTPUT connector.

- 26. Press (INSTR PRESET), then key in (SHIFT) (CF STEP SIZE) <sup>J</sup>. CRT annotation should indicate DACS 0.
- 27. Adjust A22 START A22R39 for frequency counter indication of 2.050 GHz  $\pm$  0.002 GHz. See Figure 3-71 for location of adjustment.
- 28. Key in <u>SHIFT</u> <u>CF STEP SIZE</u> <sup>J</sup> 1023 MHz. CRT annotation should indicate DACS 1023.
- 29. Adjust A22 STOP A22 STOP A22R35 for frequency counter indication of  $3.7891 \pm 0.002$  GHz. See Figure 3-71 for location of adjustment.

#### FM SPAN Adjustment

- 30. Press (INSTR preset), then key in (center frequency) 10 MHz, [frequency span] 20 MHz.
- 31. Connect CAL OUTPUT to SIGNAL INPUT 2.
- 32. Adjust A22 FM SPAN A22R64 so that the LO Feedthrough signal is centered on the left edge graticule and the 20 MHz CAL OUTPUT signal is centered on the right edge graticule. See Figure 3-71 for location of adjustment.

### **19. Second** Converter Adjustments

|         | Reference           | RF Section:<br>A23 RF Converter                                                                                                                                                                                                                                                                                                                                     |
|---------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related | Performance<br>Test | RF Gain Uncertainty Test<br>Spurious Responses Test                                                                                                                                                                                                                                                                                                                 |
|         | Description         | First, the second LO frequency is adjusted for proper frequency and<br>then the LO shift is adjusted <b>by</b> using the front-panel keys to shift the<br>LO up and down. Next, the Pilot IF Bandpass Filter is adjusted for<br>proper bandpass and amplitude, then the signal IF Bandpass Filter<br>is adjusted. The second LO frequency and shift are checked and |

readjusted, if necessary.



#### Figure 3-72. Second Converter Adjustments Setup

| Equipment | Frequency Counter       | НР 5340А           |
|-----------|-------------------------|--------------------|
| 1 1       | Scalar Network Analyzer | HP 8757A           |
|           | Synthesized Sweeper     | HP 8340A/B         |
|           | Amplifier               | HP 8447F           |
|           | Power Splitter          | HP 11667A Opt. 001 |
|           | Power Meter             | HP 436A            |
|           | Power Sensor            | HP 8482A           |
|           | Detector (2 required)   | нр 11664А          |
|           | -                       |                    |

#### 19. Second Converter Adjustments

| Procedure                                    | 1. Remove A23 RF Converter assembly from HP 8568B Spectrum<br>Analyzer. Removal and installation procedures are contained as<br>a repair procedure in the RF Section of the Troubleshooting and<br>Repair Manual, Volume 1.                                                                                                                                                |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                              | 2. Position instrument on right side as shown in Figure 3-72 with the RF Converter removed but with cables still connected.                                                                                                                                                                                                                                                |  |
| Second LO Frequency<br>and Shift Adjustments | 3. Set HP 8568B Spectrum Analyzer LINE to ON and press (INSTR PRESET].                                                                                                                                                                                                                                                                                                     |  |
| Note                                         | The second LO and pilot second LO output power is typically -35 dBm or less. An HP 8447F amplifier is used in steps 1 through 26 to amplify the LO power to a useable level for the counter and power meter.                                                                                                                                                               |  |
| Note                                         | The following adjustment tools are required to adjust the second converter: allen driver (08555-20121) and hex nut driver (08555-20122). Place the allen driver through the center hole of the hex nut driver. Loosen the adjustment nut using the hex nut driver while adjusting the bandpass with the allen driver. Do not over tighten the nut on the second converter. |  |

- 4. Connect the amplifier's input to A23A3J3 and the power meter to the amplifier's output.
- 5. Adjust A23A3 2ND MIXER A23A3Z4 for maximum power meter indication. See Figure 3-73 for location of adjustment.



Figure 3-73. Location of Second Converter Adjustments

- 6. Disconnect power meter and connect frequency counter to amplifier's output.
- 7. Adjust A23A3 2ND LO FREQ A23A3Z9 for frequency counter indication of 1748.6 MHz fl.O MHz. See Figure 3-73 for location of adjustment.
- 8. Disconnect frequency counter and reconnect power meter to amplifier's output.

- 9. Readjust A23A3 2ND MIXER A23A3Z4 for maximum power indication.
- 10. Disconnect the amplifier's input from A23A3J3 and connect to A23A3J4.
- 11. Adjust A23A3 PILOT 2ND MIXER A23A3Z8 for maximum power meter indication. See Figure 3-73 for location of adjustment.
- 12. Disconnect power meter and connect frequency counter to amplifier's output.
- 13. Key in [SHIFT) ()<sup>U</sup> to shift Second LO up and (SHIFT) ()<sup>T</sup> to shift Second LO down.
- 14. Continue to shift Second LO up and down while adjusting A23A3 2ND LO SHIFT A23A3Z10 for a frequency difference of 5.0 MHz fO.1 MHz. Ignore the absolute value of either frequency. Clockwise rotation of A23A3Z10 decreases the frequency difference.
- 15. Key in (SHIFT) ( <sup>T</sup> (Second LO shifted down).
- 16. Adjust A23A3 2ND LO FREQ A23A3Z9 for frequency counter indication of 1748.6 MHz fO.1 MHz.
- 17. Repeat steps 13 through 16 until specifications of steps 14 and 16 are achieved.
- 18. Disconnect frequency counter and connect power meter to the amplifier's output.
- 19. Shift Second LO up and down, using SHIFT (1) <sup>U</sup> and (SHIFT) (1) <sup>T</sup> while adjusting A23A3 PILOT 2ND MIXER A23A3Z8 for equal power out in both states of Second LO.
- 20. Power difference between Second LO shifted up and shifted down should be less than 0.5 dB.
- 21. Disconnect amplifier's input from A23A3J4 and connect to A23A3J3.
- 22. Shift Second LO up and down, using  $(SHIFT) \bigoplus U$  and  $(SHIFT) \bigoplus T$  while adjusting A23A3 2ND MIXER A23A3Z4 for equal power out in both states of the Second LO.
- 23. Power differences between Second LO shifted up and shifted down should be less than 0.5 dB.
- 24. Disconnect power meter and connect frequency counter to amplifier's output.
- 25. Key in SHIFT ( T. Note frequency counter indication. If necessary, readjust A23A3 2ND LO FREQ A23A3Z9 for frequency counter indication of 1748.6 fO.1 MHz.
- 26. Shift Second LO up and down, using SHIFT I U and SHIFT I and note frequency difference between low and high state of Second LO. If necessary, readjust A23A3 2ND LO SHIFT A23A3Z10 for a frequency difference of 5.0 MHz fO.1. Repeat steps 27 and 28 until specifications contained in each step are achieved.

#### Second Converter Bandpass Filter Adjustments

- 27. Key in SHIFT  $\bigcirc$  T, [FREQUENCY SPAN] 0 Hz.
- 28. On the synthesized sweeper, key in CF 240 MHz,  $\triangle$  F 50 MHz, and Power Level 10 dBm.
- 29. Connect the synthesized sweeper's SWEEP OUTPUT (rear panel), Z-AXIS BLANK/MKRS (rear panel), and PULSE MODULATION INPUT (front panel) to the proper rear-panel connectors on the scalar network analyzer as shown in Figure 3-73.
- 30. On the scalar network analyzer, press PRESET, turn channel 2 off, and press (MEAS) (A/R).
- 31. Connect the synthesized sweeper's output to the power splitter as shown in Figure 3-72.
- 32. Connect one arm of power splitter to scalar network analyzer R input. Connect other arm of power splitter to A input, using a BNC to SMB snap-on test cable and necessary adapters.
- 33. Set the scalar network analyzer <u>SCALE</u> to 1 dB, and set <u>REF</u> (REF LEVEL) to -16.00 dB. Set REF POSN (press REF POSN) to the fourth division from the bottom using the data knob.
- 34. On the synthesized sweeper, press (PULSE) (ON), (MKR sweep), and  $(\Delta F)$ . Set (SWEEP TIME) to 500 ms.
- 35. Adjust REF LEVEL for a mid-screen response of the bandpass signal on the scalar network analyzer.
- 36. Connect the test cable from the power splitter output arm to A23A3J2 Pilot First IF IN.
- 37. Connect cable 80 (gray/black) from A23A3J6 (PILOT 2ND IF) to the scalar network analyzer's A input. Set SCALE to 10 dB/DIV.
- 38. On the spectrum analyzer, key in [SHIFT] (FREERUN)<sup>v</sup>.
- Note

Hold (<u>SHIFT</u>] in until the LED lights, then press (FREERUN)<sup>v</sup> until the sweep is free running.

- 39. On the synthesized sweeper, set CF for a frequency of 2017.6 MHz and  $\Delta F$  to 50 MHz.
- 40. Adjust CF on the synthesized sweeper to center the bandpass signal.
- 41. Adjust A23A3 Z5, Z6, Z7, and L4 for best bandpass shape and flatness at maximum amplitude of signal displayed on Scalar network analyzer. A typical properly-adjusted bandpass filter response is shown in Figure 3-74. See Figure 3-73 for location of adjustments. The bandpass filter response at the 3 dB points should be ≥22 MHz. See Figure 3-74 and Figure 3-75 for a typical PILOT 2ND IF bandpass response for a SHIFT LO ↑ and a SHIFT LO ↓.



Figure 3-74. Typical PILOT 2ND IF Bandpass (SHIFT †)



Figure 3-75. Typical PILOT 2ND IF Bandpass (SHIFT 1)

- **42.** Key in  $(SHIFT) \bigoplus ^{U}$  and note amplitude of signal. Key in  $(SHIFT) \bigoplus ^{T}$  and note amplitude of the bandpass signal peak.
- 43. Continue to key in SHIFT  $\textcircled{}^{U}$  then  $\textcircled{}^{T}$  while adjusting A23A3Z8 for maximum amplitude and the same amplitude in both states of the Second LO  $\bullet$  <0.25 dB.
- 44. Check the bandpass at the 3 dB points for both the 2ND LO ↑ and ↓. On the scalar network analyzer, press CURSOR Max. Press cursor A (ON) and set the cursor at the -3 dB point fO.1 dB. Press cursor A, cursor A, and set the cursor to the corresponding -3 dB point on the opposit side of the signal. The cursor should now read 0 fO.1 dB.
- 45. On the synthesized sweeper, press M3 and place the marker on either cursor A. Press M4, and place the marker on the cursor A on the opposite side of the trace.
- 46. On the synthesized sweeper, press  $MKR \Delta$ , and read the bandpass (M3 M4) shown on the ENTRY DISPLAY. Press  $MKR \Delta$  OFF. See Figure 3-74 and Figure 3-75.
- 47. Disconnect the detector from cable 80 (gray/black) and connect cable 92 (white/red) from A23A3J5 (2ND IF) to the scalar network analyzer's A input.

#### 19. Second Converter Adjustments

- 48. Disconnect cable connected to A23A3J2 and connect to A23A3J1 (1ST IF IN). Reconnect semi-rigid cable to A23A3J2 that was disconnected in step 36.
- 49. Set the synthesized sweeper's CF for 2052.5 MHz  $\pm 0.1$  MHz. Adjust (CF) to center the bandpass signal.
- 50. Adjust A23A3 Z1, Z2, Z3, and L2 for best bandpass shape and flatness at maximum amplitude of signal displayed on Scalar network analyzer. A typical properly-adjusted bandpass filter response is shown in Figure 3-76 and Figure 3-77. See Figure 3-73 for location of adjustments. The bandpass response should be ≥22 MHz.





Figure 3-76. Typical Bandpass (SHIFT 1)



Figure 3-77. Typical Bandpass (SHIFT 1)

- 51. Key in SHIFT  $\textcircled{}^{U}$  and note amplitude of the bandpass signal peak. Key in (SHIFT)  $\textcircled{}^{T}$  and note amplitude of the bandpass signal peak.
- 52. Continue to key in SHIFT  $\textcircled{}^{U}$  then SHIFT  $\textcircled{}^{T}$  while adjusting A23A3Z4 for maximum amplitude and the same amplitude in both states of the Second LO  $\pm < 0.1$  dB.

### Second Converter Final Adjustments

- 53. Repeat steps 14 through 19 to ensure that Second LO frequency and shift are still properly adjusted.
- 54. Check the bandpass at the 3 dB points for both the 2ND LO  $\uparrow$ and  $\downarrow$ . On the scalar network analyzer, press CURSOR Max. Press cursor A ON and set the cursor at the -3 dB point  $\pm 0.1$  dB. Press cursor A, cursor A, and set the cursor to the corresponding -3 dB point on the opposite side of the signal. The cursor should now read 0  $\pm 0.1$  dB.
- 55. On the synthesized sweeper, press M3 and place the marker on either cursor A. Press M4, and place the marker on the cursor A on the opposite side of the trace.
- 56. On the synthesized sweeper, press  $MKR \Delta$ , and read the bandpass (M3 M4) shown on the ENTRY DISPLAY. Press  $MKR \Delta$  OFF. See Figure 3-74 and Figure 3-75.
- 57. Disconnect all test equipment from HP 8568B Spectrum Analyzer and reconnect all cables within the instrument: cable 80 (gray/black) between A23A3J6 and A9J1, and cable 92 (white/red) between A23A3J5 and A19J1.
- 58. Connect HP 8568B Spectrum Analyzer CAL OUTPUT to SIGNAL INPUT 2. Key in <u>(center frequency)</u> 20 MHz, <u>(frequency span)</u> 1 MHz, <u>(REFERENCE LEVEL)</u> -7 dBm, SCALE LOG <u>[ENTER dB/DIV]</u> 1 dB, <u>(RES BW)</u> 300 kHz.
- 59. Key in SHIFT () <sup>U</sup>, <u>(PEAK SEARCH]</u> Key in SHIFT () <sup>T</sup> and note signal amplitude as indicated by marker level CRT annotation.
- 60. Continue to key in SHIFT  $\bigcirc$  <sup>U</sup> then (SHIFT)  $\bigcirc$  <sup>T</sup> while adjusting A23A3Z4 for maximum amplitude and the same amplitude in both states of the Second LO  $\pm < 0.1$  dB.
- 61. Reinstall RF Converter in instrument. See installation procedure in RF Section of Troubleshooting and Repair Manual, Volume 1.

### 20. 50 MHz Voltage-Tuned Oscillator Adjustments

|         | Reference           | RF Section:<br>All 50 MHz Voltage-Tuned Oscillator (VTO)                                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related | Performance<br>Test | Frequency Span Accuracy Test<br>Center Frequency Readout Accuracy Test                                                                                                                                                                                                                                                                                                                                                            |
|         | Description         | First, the voltage reference for the Shaping network is set by measuring the voltage required to tune the 50 MHz Oscillator to its high limit (57.5 MHz) and then setting the reference voltage (+ 15 VR) to that voltage.                                                                                                                                                                                                        |
|         |                     | Next, the VTO tuning accuracy is adjusted at both the low and high<br>end by setting the tune voltage to the proper levels to tune the VTO<br>to its low and high end limits (42.5 MHz and 57.5 MHz). This is done<br>using the output of the tuning DACS from the A22 Frequency Control;<br>therefore, it is necessary that the DAC adjustments on the Frequency<br>Control have been performed before adjusting the 50 MHz VTO. |



Figure 3-78. 50 MHz Voltage-Tuned Oscillator Adjustments Setup

| Equipment | Digital Voltmeter (DVM) HP 3456A                                                                                                                                                  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure | <ol> <li>Position Instrument on right side as shown in Figure 3-78 and<br/>remove bottom cover. Remove All 50 MHz Voltage-Tuned<br/>Oscillator and place on extenders.</li> </ol> |
|           | 2. Set LINE switch to ON and press [INSTR PRESET].                                                                                                                                |

#### 20. 50 MHz Voltage-Tuned Oscillator Adjustments

### **DACS Accuracy Check**

- 3. Connect DVM to A22TP9 and ground lead to A22TP12.
- 4. Key in [SHIFT) CF STEP SIZE J 0 Hz. If using an HP3456A DVM, press STORE (7<sup>Z</sup>, ENTER EXP) (8<sup>Y</sup>, 0), STORE (8<sup>Y</sup>, then MATH) (7<sub>(X-Z)/Y</sub>). If not using an HP 3456A DVM, note voltage indication for reference later.
- 5. Key in SHIFT (CF STEP SIZE) J 1023 kHz.
- 6. If using an HP 3456A DVM, voltage indication should typically be be + 10.230  $\pm 0.010$  V dc. If not using an HP 3456A DVM, voltage indication should be + 10.230  $\pm 0.010$  V dc plus the indication noted in step 4. If voltage is within tolerance, proceed to **next** step. If voltage indication is incorrect, go to Adjustments 18, Frequency Control Adjustments, and perform YTO and VTO DAC adjustments.
- 7. On the HP 3456A, press MATH off.

### Positive Supply Adjustment

- 8. Key in <u>&ENTER FREQUENCY</u> 1 MHz, <u>[FREQUENCY SPAN)</u> 1 MHz. Connect DVM to A11TP5 and ground lead to A1 1 cover.
- 9. Key in <u>SHIFT</u> <u>CF STEP SIZE</u> J 12 kHz. (CRT annotation should indicate DACS 12.)
- 10. Key in (<u>SHIFT) (MKR  $\rightarrow$  CF)<sup>N</sup>. (CRT annotation should indicate</u> VTO frequency of approximately 28.75 MHz. This corresponds to a VTO frequency of 57.5 MHz, since **the** counter indication is divided by two.)
- 11. Adjust All OFFSET A11R10 and/or All GAIN A11R9 for VTO frequency of 28.750 MHz  $\pm 0.005$  MHz as indicated by CRT annotation. See Figure 3-79 for location of adjustment.



Figure 3-79. Location of 50 MHz VTO Adjustments

- 12. Note DVM indication for reference later.
- 13. Connect DVM to A11TP1 (located on All cover).

#### 20. 50 MHz Voltage-Tuned Oscillator Adjustments

14. Adjust All POS SUPPLY A11R6 for a DVM indication the same as that noted in step 12. See Figure 3-79 for location of adjustment.

#### VTO High-Frequency End Adjustment

- 15. Key in SHIFT (CF STEP SIZE] J 112 kHz and (SHIFT) (MKR  $\rightarrow$  CF) <sup>N</sup>.
- 16. Adjust All OFFSET A11R10 for VTP frequency indication 28.000 MHz  $\pm 0.005$  MHz.
- 17. Key in (SHIFT) (CF STEP SIZE)  $^{J}$  12 kHz and (SHIFT) (MKR  $\rightarrow$  CF)  $^{N}$ .
- 18. Adjust All GAIN A11R9 for VTO frequency indication of 28.750 MHz  $\pm 0.005$  MHz.
- 19. Repeat steps 15 through 18 until specifications of steps 16 and 18 are achieved.

#### VTO Low-Frequency End Adjustment

- **20.** Key in (SHIFT) (CF STEP SIZE]  $^{J}$  912 kHz (SHIFT) (MKR  $\rightarrow$  CF)  $^{N}$ .
- Adjust All SHAPING ATTN A11R42 for VTO indication of 22.000 MHz ±0.005 MHz. See Figure 3-78 for location of adjustment.
- **22.** Key in (SHIFT) (CF STEP SIZE) <sup>J</sup> 1012 kHz and (SHIFT) (MKR  $\rightarrow$  CF) <sup>N</sup>.
- 23. Adjust All SHAPING OFFSET A11R17 for VTO frequency indication of 21.250 MHz  $\pm 0.005$  MHz. See Figure 3-78 for location of adjustment.
- 24. Repeat steps 21 through 23 until specifications of steps 20 and 23 are achieved.
- 25. Go back to step 15 and repeat both High-Frequency End and Lo-Frequency End adjustments until specifications of both (contained in steps 16, 18, 21, and 23 are achieved.
- **26.** Key in (SHIFT) (CF STEP SIZE) J 512 kHz and (SHIFT) (MKR  $\rightarrow$  CF) N.

### Center-Frequency Checks

**VTO** 

- 27. VTO frequency indication should be 25.00 MHz  $\pm 0.02$  MHz. If it is not, and specifications of steps 16, 18, 21, and 23 are met, a malfunction is indicated. The most likely suspects would be varactor diodes CR15 and CR16.
- **28.** Key in (SHIFT) (CF STEP SIZE] <sup>J</sup> 612 kHz and (SHIFT) (MKR  $\rightarrow$  CF) <sup>N</sup>.
- 29. VTO frequency indication should be 24.25 MHz  $\pm 0.02$  MHz. If it is not, and specifications of steps 16, 18, 21, and 23 are met, a malfunction is indicated. The most likely suspects would be varactor diodes CR15 and CR16.
- 30. Set LINE switch to STANDBY.
- 31. Replace Al1 50 MHz Voltage-Tuned Oscillator in instrument without extenders and replace screws in cover.

### 21. Slope Compensation Adjustments

| Reference                   | RF Section:<br>A22 Frequency Control                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Test | Frequency Response Test                                                                                                                                                                                                                                                                                                                              |
| Description                 | The HP 8568B Spectrum Analyzer is swept between 10 MHz and 1500 MHz, using a synthesized sweeper which has been power-meter leveled. The resulting response curve is displayed on the HP 8568B Spectrum Analyzer CRT and the slope compensation (TILT) adjustment is performed to compensate for the frequency response roll-off of the first mixer. |



#### Figure 3-80. Slope Compensation Adjustment Setup

| Equipment | SynthesizedSweeperPowerMeterPowerSensorPowerSplitterHP 116                                                       | HP 8340A/B<br>HP 436A<br>HP 8482A<br>667A Opt. 001 |
|-----------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|           | Adapters:           Type N (m) to N (m)           Type N (m) to APC 3.5 (f)           APC 3.5 (f) to APC 3.5 (f) | 1250-0778<br>1250-1744<br>1250-1749                |

#### **Cables:**

 $SMA\ (m)\ (m)\ \dots\ 5061\text{-}5458$ 

### 2 1. Slope Compensation Adjustments

| Procedure | 1. Place instrument on right side as show in Figure 3-80, and remove bottom cover.                                                                                                                                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 2. Connect equipment as shown in Figure 3-80 with power splitter connected to the output of the synthesized sweeper with a cable. Connect one arm of the splitter directly to the SIGNAL INPUT of the HP 8568B Spectrum Analyzer, using a Male-to-Male adapter, and the other arm to the power sensor.           |
|           | 3. Connect the power meter's recorder output to the HP 8340A/B's LEVELING EXT INPUT.                                                                                                                                                                                                                             |
|           | <b>4.</b> Press [INSTR PRESET] on the synthesized sweeper, and set its controls to the following settings:                                                                                                                                                                                                       |
|           | CW                                                                                                                                                                                                                                                                                                               |
|           | 5. On the synthesized sweeper, press <u>(POWER LEVEL</u> ] and adjust the ENTRY knob as necessary for a power meter indication of -15.00 dBm $\pm 2.00$ dB at 100 MHz.                                                                                                                                           |
|           | 6. On the power meter, press <b>[RANGE HOLD]</b> (turning it on).                                                                                                                                                                                                                                                |
|           | 7. On the synthesized sweeper, press <b>[POWER LEVEL]</b> and adjust the ENTRY knob for a power meter indication of -10.00 dBm $\pm 0.03$ dB at 100 MHz.                                                                                                                                                         |
|           | 8. On the synthesized sweeper, press (METER) LEVELING and adjust the ENTRY knob (REF in dBV with ATN: 0 dB) for a power meter indication of -10.00 dBm ±0.03 dB at 100 MHz.                                                                                                                                      |
| Note      | Do not vary the synthesized sweeper POWER LEVEL setting (internal leveling) or METER REF and METER ATN settings (external power meter leveling) for the remaining steps in this section of the adjustment procedure. The frequency response adjustments are referenced to the -10.00 dBm power level at 100 MHz. |
|           | 9. Set the synthesized sweeper to the following settings:                                                                                                                                                                                                                                                        |
|           | START10 MHzSTOP1500 MHzSWEEP TIME40sSWEEPSINGLE                                                                                                                                                                                                                                                                  |
|           | 10. Set HP 8568B LINE switch to ON and press [INSTR PRESET].                                                                                                                                                                                                                                                     |
|           | 11. Key in ( <u>start freq)</u> 10 MHz, ( <u>stop freq)</u> 1500 MHz,<br>( <u>reference level)</u> -10 dBm, LOG center dB/DIV) 1 dB.                                                                                                                                                                             |
|           | 12. On the spectrum analyzer, press TRACE A, (CLEAR WRITE), and (MAX HOLD).                                                                                                                                                                                                                                      |
|           | 13. Trigger two full sweeps on the synthesized sweeper.                                                                                                                                                                                                                                                          |

| At this sweep time, some trace discontinuities are common.                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14. Adjust A22R66 TILT for best flatness (clockwise rotation increases<br>the power slope), and trigger two sweeps on the synthesized<br>sweeper. See Figure 3-81 for the location of A22R66. Compare<br>the resultant trace with the specification. Continue adjusting<br>A22R66 until best flatness is achieved. |
| Best flatness is achieved when the maximum number of frequency points are on or near the -14 dBm reference.                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                    |



Figure 3-81. Location of A22R66 TILT Adjustment

- 15. Press TRACE A, (VIEW), [PEAK SEARCH], and [MARKER DELTA]. Using the data knob, place the marker on the lowest power peak. The marker's absolute value should be less than 2 dB.
- 16. See Figure 3-82 for examples of typical displays of frequency response correctly and incorrectly adjusted.



Figure 3-82. Slope Compensation Adjustment Waveforms

### 22. Comb Generator Adjustments

Reference

RF Section: A23 RF Converter A16 20 MHz Reference

**Description** The output of the Pilot First Converter is connected to the signal input of the Second Converter. This allows the comb teeth from the A23A6 Comb Generator to be displayed on the CRT display. The phase lock flags are disabled, using a shift key function to prevent the instrument from "locking up" due to the phase lock loops being open. A display line is placed on the CRT at the level to which the comb teeth are to be adjusted. the comb teeth are adjusted for best overall flatness and to the proper amplitude.



Figure 3-83. Location of Comb Generator Adjustments

**Equipment** Cable, SMA (m) to SMA (m) ..... HP 85680-20094

Procedure 1. Set instrument LINE switch to ON and press (INSTR PRESET).

- 2. Connect CAL OUTPUT to SIGNAL INPUT 2.
- 3. Key in <u>(CENTER FREQUENCY)</u> 20 MHz, <u>[FREQUENCY SPAN]</u> 100 kHz, ATTEN 0 dB, LOG <u>[ENTER dB/DIV</u>) 2 dB.
- 4. Adjust front-panel AMPTD CAL for signal peak at top graticule line (-10 dBm).
- 5. Press (INSTR\_PRESET).
- 6. Key in (SHIFT) (FREE RUN) <sup>V</sup>. This disables phase lock flags.
- 7. Position instrument on right side and remove bottom cover.
- 8. Disconnect cables from A23A5J2 (PILOT IF OUT) and A23A3J1 (1ST IF IN) and connect a short, low-loss coaxial cable with SMA male connectors ( do not use adapters) between A23A5J2 and A23A3J1. Use coaxial cable, HP Part Number 85680-20094. If not available, remove A23FL2 FILTER and use between A23A5J2 and A23A3J1 to adjust comb generator.
- **9.** Key in <u>(START FREQ)</u> 40 MHz. Wait for CRT annotation at lower left of CRT display to indicate START 40 MHz.
- 10. Key in <u>STOP FREQ</u> 1560 MHz. Wait for CRT annotation at lower right of CRT display to indicate STOP 1560 MHz.
- 11. Key in <u>[reference level]</u> -20 dBm, <u>Atten</u> 0 dB, LOG (<u>Enter dB/DIV</u> 2 dB, DISPLAY LINE (Enter) -30 dBm.
- 12. Adjust A16 COMB DRIVE A16R31 for peak amplitude of CRT trace until comb teeth begin to "wiggle." Then adjust COMB DRIVE A16R31 slightly counterclockwise until the lowest comb tooth (near START frequency) just begins to fall. See Figure 3-84 for a typical comb tooth display. See Figure 3-83 for location of adjustments.



Figure 3-84. Comb Teeth Display

 Adjust COMB BIAS A23A4A2R6 for peak amplitude of CRT trace until comb teeth begin to "wiggle." Then adjust COMB BIAS A23A4A2R6 slightly counterclockwise until the lowest comb tooth (near START) frequency) just begins to fall. See Figure 3-84 for

#### 22. Comb Generator Adjustments

a typical comb tooth display. See Figure 3-83 for location of adjustments.

- 14. The majority of the comb teeth should be above the -30 dBm Display Line. No comb teeth should exceed -22 dBm, and no comb teeth should be less than -36 dBm.
- 15. If unable to adjust comb teeth as described in previous steps, proceed with the next step. If comb teeth are adjusted properly, do not perform the adjustments in the following steps. Skip to step 21.
- 16. Adjust A23A6 COMB PEAK A23A6L2 for maximum amplitude of comb teeth. See Figure 3-83 for location of adjustment.
- 17. If the highest-frequency comb tooth is too low (<-36 dBm), remove screws from cover of A23A6 Comb Generator and lift cover from housing, being careful not to break wire connections to internal circuit. It will be necessary to hold cover away from housing while performing the following adjustment.
- 18. Adjust A23A6 HF PEAK A23A6C7 for maximum amplitude of the highest-frequency comb tooth displayed ( comb tooth to far right of CRT). See Figure 3-84 for location of adjustment.
- 19. Replace cover on A23A6 and install screws.
- 20. Go back to step 12 and proceed with adjustments.
- 21. Remove cable from between A23A65J2 and A23A3J 1 and reconnect instrument cables to connectors from which they were removed.
## 23. Analog-To-Digital Converter Adjustments

| Reference   | A3A8 Analog-to-Digital Converter                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | The Analog-to-Digital Ramp Converter is adjusted at zero and full-scale by injecting a 0 V dc input and $+$ 10 V dc input and adjusting the OFFS and GAIN controls until the ramp output at A3A8TP11 toggles high to low. This sets the horizontal end points for the CRT trace display; when the sweep ramp input is at 0 V dc (the left graticule edge), trace position 1 is set, and when the sweep ramp input is at $+$ 10 V dc (the right graticule edge), trace position 1000 is set. |
|             | This procedure requires $a + 10$ V dc source which is stable and noise-free. A simple supply circuit which can be built with common                                                                                                                                                                                                                                                                                                                                                         |

This procedure requires a + 10 V dc source which is stable and noise-free. A simple supply circuit which can be built with common components is illustrated in Figure 3-93. If these components are unavailable, the alternate procedure provided below (using only the digital voltmeter) can then be used.



Figure 3-85. Analog-To-Digital Converter Adjustments Setup

| Equipment | Oscilloscope                       | HP 54501    |
|-----------|------------------------------------|-------------|
|           | Digital Voltmeter                  | HP 3456A    |
|           | Low-Noise DC Supply (Optional) See | Figure 3-93 |

#### 23. Analog-To-Digital Converter Adjustments

- **Procedure** 1. Position instrument upright as shown in Figure 3-85 and remove top cover.
  - 2. Set LINE switch to ON and press (INSTR PRESET).

# **Standard Procedure** 3. Procedure using Low-Noise DC Supply is illustrated in Figure 3-93.

- a. Key in **BLANK** TRACE A and SWEEP SINGLE.
- b. Disconnect cable 0 (black) from sweep ramp input A3A8J1.
- c. Short A3A8TP4 to A3A8TP5 or connect SMB snap-on short to A3A8J1.
- d. Connect the oscilloscope's 10:1 probe to A3A8TP11 and ground the probe's ground to the A3 section's card cage.
- e. Set the oscilloscope settings as follows:

| amplitude scale | 0.1 V/div |
|-----------------|-----------|
| time scale      | 5.0µs     |
| coupling        | dc        |

f. Adjust A3A8R6 OFFS for a square wave displayed on the oscilloscope. The square wave should be approximately 4  $V_{PP}$ . See Figure 3-86 for location of adjustment.



Figure 3-86. Location of Analog-To-Digital Converter Adjustments

- g. Remove short from A3A8TP4 and A3A8TP5 or disconnect the SMB snap-on short from A3A8J1.
- h. Press (INSTR PRESET).
- i. Press MARKER (NORMAL), 1498 (MHz), and (SHIFT) (SINGLE)<sup>u</sup>.
- j. Connect DVM to A3A8TP5 and ground to A3A8TP4. Set DVM for V dc.
- k. Connect output of the Low-Noise DC Supply to A3A8J1. Adjust the Low-Noise DC Supply for DVM indication of + 10.000  $\pm$ .001V dc.

#### 23. Analog-To-Digital Converter Adjustments

1. Adjust A3A8R5 GAIN for a square wave displayed on the oscilloscope. The square wave should be approximately 4  $V_{p-p}$ . See Figure 3-86 for location of adjustment.

#### Alternate Procedure 4. Procedure without using Low-Noise DC Supply:

- a. Press (INSTR PRESET).
- b. Key in TRACE A BLANK and SWEEP (SINGLE).
- c. Disconnect cable 0 (black) from sweep ramp input A3A8J1.
- d. Short A3A8TP4 to A3A8TP5 or connect SMB snap-on short to A3A8J1.
- e. Connect DVM to A3A8TP11 and ground to A3A8TP4. Set DVM for V ac.
- f. Adjust A3A8R6 OFFS until **the** level at A3A8TP11 is at a maximum ac voltage as indicated by the DVM (approximately 2.0 V ac). See Figure 3-86 for location of adjustment.
- g. Remove short from A3A8TP4 and A3A8TP5. Reconnect cable 0 (black) to A3A8J 1.
- h. Press [INSTR PRESET].
- i. Connect DVM to A3A8TP5 and ground to A3A8TP4. Set DVM for V dc.
- j. Press SWEEP (SINGLE). Note DVM reading at end of the sweep. The voltage will begin to drift immediately after the sweep ends. Therefore, the first indication after the sweep ends is the valid indication. It may be helpful to press (SINGLE) several times to ensure a valid indication at the end of the sweep.
- k. If DVM indication is + 10.020  $\pm 0.005$  V dc at the end of the sweep, no further adjustment is necessary. Otherwise, adjust A3A8R5 GAIN and repeat step j until the voltage at the end of the sweep is + 10.020  $\pm 0.005$  V dc.

# 24. Track and Hold Adjustments

#### Reference

A3A9 Track and Hold

**Description** The CAL OUTPUT signal is connected to the RF INPUT. The instrument is placed in zero frequency span to produce a dc level output from the IF-Video section and this dc level is regulated by adjusting the reference level. The Offsets and Gains on the Track and Hold assembly are adjusted for proper levels using a DVM.



Figure 3-87. Track and Hold Adjustments Setup

Equipment Digital Voltmeter (DVM) ..... HP 3456A

- **Procedure** 1. Place instrument upright as shown in Figure 3-87 with top and A3 Digital Storage covers removed.
  - 2. Set LINE switch to ON and press (INSTR PRESET].
  - 3. Connect CAL OUTPUT to RF INPUT.
  - 4. Connect DVM to A3A9TP3 and ground to A3A9TP1.
  - 5. Key in (CENTER FREQUENCY) 20 MHz, (FREQUENCY SPAN) 0 Hz.
  - 6. Disconnect cable 7 (violet) from A4A1J1.
  - 7. Short A3A9TP1 to A3A9TP3, or use an SMB snap-on short to A3A9J1. DVM indication should be  $0.000 \pm 0.001$  V dc.
  - 8. Key in <u>SINGLE</u>, TRACE A <u>(CLEAR-WRITE]</u>, MARKER <u>(NORMAL</u>), MARKER (<u>A</u>), SWEEP <u>(CONT)</u>, <u>SHIFT</u> TRACE A <u>BLANK</u><sup>e</sup>.
  - 9. Adjust A3A9R59 (T/H) OFS until MARKER  $\Delta$  level indication as indicated by CRT annotation flickers back and forth between .OO and .10 dB. See Figure 3-88 for location of adjustment.



Figure 3-88. Location of Track and Hold Adjustments

- 10. Key in SHIFT TRACE A MAX HOLD.<sup>b</sup>
- 11. Adjust A3A9R44 OFFS POS until MARKER A level indication as indicated by CRT annotation flickers back and forth between .OO and .10 dB.
- 12. Key in (SHIFT) TRACE A VIEW<sup>d</sup>.
- 13. Adjust A3A9R36 OFS NEG until MARKER A level indication as indicated by CRT annotation flickers back and forth between .OO and . 10 dB.
- 14. Key in SHIFT TRACE A BLANK<sup>e</sup>.
- 15. Remove short from between A3A9TP1 and A3A9TP3 or remove the SMB short from A3A9J1. Reconnect cable 7 (violet) to A4A1J1.
- 16. Connect the DVM to A4A1TP3. Connect DVM's ground to the IF section's casting.
- 17. Press [REFERENCE LEVEL] and adjust DATA knob and front-panel AMPTD CAL adjust for a DVM indication of  $+2.000 \pm 0.001$  V dc at A4A1TP3.
- 18. Disconnect DVM from instrument.
- 19. Key in SINGLE, TRACE A (CLEAR-WRITE], MARKER (NORMAL), MARKER In], SWEEP (CONT).
- 20. Adjust A3A9R57 T/H GAIN for GAIN for MARKER A level indication as indicated by CRT annotation of  $100 \pm 0.1$  dB.
- 21. Key in SHIFT TRACE A MAX HOLD <sup>b</sup>.
- 22. Adjust A3A9R39 GPOS for MARKER A level indication as indicated by CRT annotation of 100 fO.1 dB.
- 23. Key in [SHIFT] TRACE A (VIEW)<sup>d</sup>.

### 24. Track and Hold Adjustments

- 24. Adjust A3A9R52 GNEG for MARKER A level indication as indicated by CRT annotation of  $100 \pm 0.1$  dB.
- 25. Repeat steps 4 through 24 until no further adjustments are required.

### 25. Digital Storage Display Adjustments

| Reference | A3A 1 Trigger          |
|-----------|------------------------|
|           | A3A2 Intensity Control |
|           | A3A3 Line Generator    |

**Description** First, preliminary CRT graticule adjustments are performed to position the graticule on the CRT. These preliminary adjustments assume that repair has been performed on the associated circuitry. If no repair has been performed on the assemblies listed under REFERENCE, the preliminary adjustments are not necessary.

Next, the Sample and Hold Balance adjustments are performed. The horizontal and vertical Offset and Gain adjustments are performed, then the final CRT graticule adjustments are performed.

Last, the CRT annotation adjustments are performed to place the CRT annotation in proper location with respect to the CRT graticule.



Figure 3-89. Digital Storage Display Adjustments Setup

| Equipment | Digital Voltmeter (DVM) | HP 3456A    |
|-----------|-------------------------|-------------|
|           | Digitizing Oscilloscope | . HP 54501A |

**Procedure** 1. Place instrument upright as shown in Figure 3-89 with top and A3 Digital Storage cover removed.

2. Set LINE switch to ON and press [INSTR PRESET]

### Preliminary Graticule Adjustments

- 3. Press TRACE A BLANK.
- 4. Adjust A3A3R4 X GAIN and A3A3R5 Y GAIN to place graticule information completely on CRT. See Figure 3-90 for location of adjustment.

#### 25. Digital Storage Display Adjustments



Figure 3-90. Location of Digital Storage Display Adjustments

- 5. Adjust A3A2R12 LL THRESH fully clockwise. See Figure 3-90 for location of adjustment.
- 6. Adjust A3A3R6 XLL **so that** horizontal graticule lines just meet the vertical graticule lines at the left and right sides of the graticule. See Figure 3-90 for location of adjustment.
- 7. Adjust A3A3R9 YLL so that vertical graticule lines just meet the horizontal graticule lines at the top and bottom of the graticule. See Figure 3-90 for location of adjustment.
- 8. Repeat steps 6 and 7 until horizontal and vertical lines are adjusted so that they meet the edges of the graticule but do not overshoot.
- 9. Adjust A3A2R12 LL THRESH fully counterclockwise.
- 10. Adjust A3A3R7 XSL so that horizontal graticule lines just meet the vertical graticule lines at the left and right sides of the graticule.
- 11. Adjust A3A3R8 YSL so that the vertical graticule lines just meet the horizontal graticule lines at the top and bottom of the graticule.
- 12. Repeat steps 10 and 11 until horizontal and vertical graticule lines are adjusted so that they meet at the edges of the graticule but do not overshoot.

### Sample and Hold Balance Adjustments

- 13. Set LINE switch to STANDBY.
- 14. Place A3A3 Line Generator on extender boards.
- 15. Set LINE switch to ON. Press [INSTR PRESET].
- 16. Key in <u>SHIFT</u>  $\bigcirc$  <sup>2</sup> (RECORDER LOWER LEFT) 0 [Hz). Press <u>SHIFT</u>  $\bigcirc$  (RECORDER UPPER RIGHT) 1028 Hz.
- 17. Connect oscilloscope to A3A3TP4.
- 18. Connect A3A3TP11 to oscilloscope External Trigger Input and adjust oscilloscope controls for display as shown in Figure 3-91.
- 19. Adjust A3A2R50 X S&H BAL for minimum dc offset between the level of the signal inside the two pulses to the signal level outside the two pulses. Figure 3-91 shows a properly adjusted waveform. Figure 3-92 shows the waveform before adjustment. Refer to Figure 3-90 for location of adjustment.



**4** <u></u>**\_\_300.5 m**V





**4** <u></u>**\_\_300.5** ⊯V

Figure 3-92. Waveform Before Adjustment

- **20.** Connect oscilloscope to A3A3TP7.
- 21. Adjust A3A2R51 Y S&H BAL for minimum dc offset between the level of the signal inside the two pulses to the signal level outside the two pulses.
- 22. Set LINE switch to STANDBY.
- 23. Reinstall A3A3 Line Generator in instrument without extender boards.
- 24. Set LINE switch to ON.

# X and Y Offset and 25. Press (INSTR PRESET).

- Gain Adjustments 26. Key in [FREQUENCY SPAN] 0 Hz, [SWEEP TIME] 100 µS.
  - 27. Disconnect cable 9 (white) from A3A9J2 and connect to A3A2J2 LG/FS test connector on A3A2 Intensity Control; the other end of the cable remains connect connected to A3A2J1.
  - 28. Select TRIGGER <u>(VIDEO</u> and adjust front-panel LEVEL control for a stable display on instrument CRT.
  - **29.** Adjust A3A1R34 SWP OFFSET so that **the** signal trace begins at the left edge graticule line. Refer to Figure 3-90 for location of adjustment.
  - 30. Adjust A3A3R4 X GAIN for twenty cycles displayed on the CRT graticule. This may be made easier by adjusting A3A1R34 SWP OFFSET so that the first peak is centered on the left edge graticule line, then adjusting A3A3R4 X GAIN for two cycles per division with the twentieth cycle being centered on the right edge graticule line. A3A1R34 SWP OFFSET must then be readjusted so that the trace begins at the left edge graticule line. See Figure 3-90. for location of adjustment.
  - 31. Remove the cable 9 (white) from A3A2J2 LG/FS test connector and reconnect to A3A9J2.
  - 32. Remove cable 7 (violet) from A4A1J1. Short A3A9TP1 to A3A9TP3 or connect an SMB snap-on short to A3A9J1.
  - 33. Connect DVM to A3A9TP3 and DVM ground to A3A9TP1.
  - 34. Press LIN pushbutton.
  - 35. DVM indication should be  $0.000 \pm 0.002$  V dc.
  - 36. Adjust A3A3R43 YOS to align the bottom graticule line with the fast sweep signal trace.
  - 37. Remove the short between A3A9TP1 and A3A9TP3 (or the SMB snap-on short) and reconnect cable 7 (violet) to A4A1J1.
  - 38. Key in <u>[CENTER FREQUENCY]</u> 20 MHz. Connect CAL OUTPUT to RF INPUT. Press LOG <u>(ENTER dB/DIV</u>) 10 dB.
  - **39.** Connect the DVM to A4A1TP3 and the DVM ground to the IF casting.
  - 40. Press [REFERENCE LEVEL] and adjust DATA knob and the frontpanel AMPTD CAL adjust for DVM indication of +2.00050.002 V dc.

41. Adjust A3A3R5 Y GAIN to align the top graticule line with the fast sweep signal trace.

# Final Graticule42. Press (INSTR PRESET), TRACE A (BLANK).Adjustments43. Set A3A2R12 LL THRESH fully clockwise.

- 44. Adjust A3A3R6 XLL and A3A3R9 YLL to align horizontal and vertical lines so that each line meets the edge line (right, left, top, or bottom) but does not overshoot.
- 45. Adjust A3A2R12 LL THRESH fully counterclockwise.
- 46. Adjust A3A3R7 XSL and A3A348 YSL to align horizontal and vertical graticule lines so that each line meets the edge line (right, left, top, or bottom) but does not overshoot.
- 47. Adjust A3A2R12 LL THRESH clockwise until all graticule lines switch over to long lines. This is indicated by a noticeable increase in graticule line intensity. (All graticule lines should increase in intensity.)

### X and Y Expand Adjustments

- 48. Press (INSTR PRESET).
- 49. Key in MARKER (NORMAL).
- 50. Adjust A3A3R1 X EXP to center the letter "F" in "REF" (CRT annotation in upper left corner of display) over **the** left edge graticule line.
- 51. Adjust A3A3R2 Y EXP to align the remainder of **the** CRT annotation so that the upper annotation (MARKER data) is above **the** top graticule line and the lower annotation (START and STOP data) is below the bottom graticule line. Adjust for equal spacing above and below the graticule pattern.

# Low-Noise DC Supply

The Low-Noise DC Supply shown in Figure 3-93 can be constructed using the parts listed in Table 3-7.



Figure 3-93. Low-Noise DC Supply

| Table | 3-7. | Parts | for | Low-Noise | DC | Supply |
|-------|------|-------|-----|-----------|----|--------|
|-------|------|-------|-----|-----------|----|--------|

| Reference/Designation HP Fart Number |           | CD | Description                  |
|--------------------------------------|-----------|----|------------------------------|
| Cl                                   | 0160-2055 | 9  | CAPACITOR FXD .01 $\mu$ f    |
| J1                                   | 1250-0083 | 1  | CONNECTOR BNC                |
| R1                                   | 0698-0083 | 8  | RESISTOR FXD 1.96K 1% .125W  |
| R2                                   | 0757-0442 | 9  | RESISTOR FXD 10K 1% .125W    |
| R3                                   | 0757-0442 | 9  | RESISTOR FXD 10K 1% .125W    |
| R4                                   | 0757-0465 | 6  | RESISTOR FXD 100K 1% .125W   |
| R5                                   | 0757-0290 | 5  | RESISTOR FXD 6.19 K 1% .125W |
| R6                                   | 2100-2733 | 6  | RESISTOR VARIABLE 50K 20%    |
| R7                                   | 0757-0280 | 3  | RESISTOR FXD 1K 1% .125W     |
| R8                                   | 0757-0280 | 3  | RESISTOR FXD 1K 1% .125W     |
| S1                                   | 3101-1792 | 8  | SWITCH TOGGLE, S-POSITION    |
| U1                                   | 1826-0092 | 3  | IC DUAL OP-AMP               |
| VR1                                  | 1902-0049 | 2  | DIODE BREAKDOWN 6.19V        |
| VR2                                  | 1902-0049 | 2  | RESISTOR FXD 1.96K 1% .125W  |

#### **Crystal Filter Bypass Network Configuration**

# Crystal Filter Bypass Network Configuration

The Crystal Filter Bypass Network Configuration shown in Figure 3-94 can be constructed using the parts listed in Table 3-8 and Table 3-9. Table 3-8 list the parts required for the construction of 21.4 MHz IF crystal-filter bypass networks used with the A4A4 and A4A8 assemblies. Two 21.4 MHz bypass networks are required. Table 3-9 list the parts required for the construction of 3 MHz IF crystal-filter bypass networks used with the A4A7 assembly. Four 3 MHz bypass networks are required.



Figure 3-94. Crystal Filter Bypass Network Configurations

Table 3-8.Crystal Filter Bypass Network Configuration forA4A4 and A4A8 (21.4 MHz)

| Part       | Value  | Qty. | CD | HP Part Number |
|------------|--------|------|----|----------------|
| Resistor   | 31.662 | 2    | 2  | 0698-7200      |
| Capacitor  | 100 pł | 2    | 9  | 0160-4801      |
| Capacitor  | 910 pH | 2    | 9  | 0160-6146      |
| Receptacle | -      | 4    | 1  | 1251-3720      |

Table 3-9.Crystal Filter Bypass Network Configuration forA4A7 (3 MHz)

| Part   Value   Qty.   CD   HP Part Number I |                 |   |   |           |  |  |
|---------------------------------------------|-----------------|---|---|-----------|--|--|
| Resistor                                    | 2.70            | 4 | 4 | 0683-0275 |  |  |
| Capacitor                                   | $0.047 \ \mu F$ | 4 | 9 | 0170-0040 |  |  |
| Receptacle                                  | _               | 8 | 1 | 1251-3720 |  |  |

# **Option 462**

# Introduction

This chapter contains modified performance tests and adjustment procedures for Option 462 instruments. When working on Option 462 instruments, substitute the procedures in this chapter for the standard versions contained in chapters two and three. For earlier Option 462 instruments (HP 85662A serial prefixes below 3341A) in which impulse bandwidths are specified, use the tests and adjustment under "Impulse Bandwidths". The procedures included in this chapter are listed below:

#### 6 dB Bandwidths:

Performance Tests

Test 4, 6 dB Resolution Bandwidth Accuracy Test . . . 4-2 Test 5, 6 dB Resolution Bandwidth Selectivity Test .4-10 Adjustment Procedure

Adjustment 9, 6 dB Bandwidth Adjustments .4-23

#### **Impulse Bandwidths:**

| Performance Tests                                      |        |
|--------------------------------------------------------|--------|
| Test 4, Impulse and Resolution Bandwidth Accuracy Test | 4-4    |
| Test 5, Impulse and Resolution Selectivity Test        | 4-13   |
| Test 6, Impulse and Resolution Bandwidth Switching     |        |
| Uncertainty Test                                       | . 4-16 |
| Adjustment Procedure                                   |        |
| Adjustment 9, Impulse Bandwidth Adjustments            | 4-26   |

# 4. 6 dB Resolution Bandwidth Accuracy Test

| Related Adjustment | 6 dB Bandwidth Adjustments                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification      | $\pm 20\%$ , 3 MHz bandwidth<br>$\pm 10\%$ , 30 Hz to 1 MHz bandwidths<br>+ 50%, -0%, 10 Hz bandwidth                                                                                                                                                                                                                                                                                                                           |
|                    | 30 kHz and 100 kHz bandwidth accuracy figures only applicable $\leq$ 90% Relative Humidity, $\leq$ 40° C.                                                                                                                                                                                                                                                                                                                       |
| Description        | The 6 dB bandwidth for each resolution bandwidth setting is<br>measured with the MARKER function to determine bandwidth<br>accuracy. The CAL OUTPUT is used for a stable signal source.                                                                                                                                                                                                                                         |
| Equipment          | None required                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Procedure          | 1. Press (INSTR PRESET).                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 2. Connect CAL OUTPUT to SIGNAL INPUT 2.                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 3. Key in spectrum analyzer settings as follows:                                                                                                                                                                                                                                                                                                                                                                                |
|                    | [CENTER FREQUENCY)                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | 4. Press SCALE LIN pushbutton. Press (SHIFT), (AUTO) <sup>A</sup> (resolution bandwidth) for units in dBm.                                                                                                                                                                                                                                                                                                                      |
|                    | 5. Adjust <b>[REFERENCE LEVEL]</b> to position peak of signal trace at (or just below) reference level (top) graticule line. Press SWEEP (SIN <u>GLE</u> ).                                                                                                                                                                                                                                                                     |
|                    | 6. Press MARKER [ <u>NORMAL</u> ) and place marker at peak of signal trace<br>with DATA knob. Press MARKER $\triangle$ and position movable marker<br>6 dB down from the stationary marker on the positive-going edge<br>of the signal trace (the MARKER A amplitude readout should be<br>-6.00 dB ±0.05 dB). It may be necessary to press SWEEP <u>CONT</u><br>and adjust <u>[CENTER FREQUENCY]</u> to center trace on screen. |
|                    | 7. Press MARKER $\bigtriangleup$ and position movable marker 6 dB down<br>from the signal peak <b>on</b> the negative-going edge of the trace (the<br>MARKER Aamplitude readout should be .OO dB ±0.05 dB). The 6<br>dB bandwidth is given by the MARKER A frequency readout. (See<br>Figure 4- 1.) Record this value in Table 4- 1.                                                                                            |

#### 4. 6 dB Resolution Bandwidth Accuracy Test



#### Figure 4-1. Resolution Bandwidth Measurement

8. Vary spectrum analyzer settings according to Table 4-1. Press SWEEP (SINGLE) and measure the 6 dB bandwidth for each resolution bandwidth setting by the procedure of steps 6 and 7 and record the value in Table 4-1. The measured bandwidth should fall between the limits shown in the table.

| Table 4-1. | 6 dB | Resolution | Bandwidth | Accuracy |
|------------|------|------------|-----------|----------|
|------------|------|------------|-----------|----------|

| (RES BW) | (FREQUENCY SPAN) | MARKER A Readout of 6 dB Bandwid |        |           |
|----------|------------------|----------------------------------|--------|-----------|
| -<br>-   |                  | Min                              | Actual | Max       |
| 3 MHz    | 5 MHz            | 2.400 MHz                        |        | 3.600 MHz |
| 1 MHz    | 2 MHz            | 900 kHz                          |        | 1.100 MHz |
| 300 kHz  | 500 kHz          | 270.0 kHz                        |        | 330.0 kHz |
| 100 kHz  | 200 kHz          | 90.0 kHz                         |        | 110.0 kHz |
| 30 kHz   | 50 kHz           | 27.00 kHz                        |        | 33.00 kHz |
| 10 kHz   | 20 kHz           | 9.00 kHz                         |        | 11.00 kHz |
| 3 kHz    | 5 kHz            | 2.700 kHz                        |        | 3.300 kHz |
| 1 kHz    | 2 kHz            | 900 Hz                           |        | 1.100 kHz |
| 300 Hz   | 500 Hz           | 270 Hz                           |        | 330 Hz    |
| 100 Hz   | 200 Hz           | 90 Hz                            |        | 110 Hz    |
| 30 Hz    | 100 Hz           | 27.0 Hz                          |        | 33.0 Hz   |
| 10 Hz    | 100 Hz           | 10.0 Hz                          |        | 15.0 Hz   |

| <b>Related Adjustment</b> | Impulse Bandwidth Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification             | $\pm 20\%$ , 3 MHz bandwidth<br>$\pm 10\%$ , 1 MHz to 1 kHz bandwidths<br>-0, +50\%, 300 Hz to 10 Hz (6 dB bandwidths)                                                                                                                                                                                                                                                                                                                                        |
| Description               | A frequency synthesizer and pulse/function generator are used<br>to input pulses to the spectrum analyzer. The amplitude of the<br>pulses is measured, and the impulse bandwidths are calculated for<br>each impulse bandwidth from 3 MHz to 1 kHz. The 6 dB resolution<br>bandwidths are then measured using the spectrum analyzer MARKER<br>function. The CAL OUTPUT signal is used as a stable signal source to<br>measure the 6 dB resolution bandwidths. |



**Procedure** 1. Set the frequency synthesizer for a 15 MHz, + 13 dBm output. Connect the output of the frequency synthesizer to the EXT INPUT of the pulse/function generator.

2. Set the pulse/function generator controls as follows:

| MODE            | TRIG           |
|-----------------|----------------|
| EXT INPUT       | positive-going |
| EXT INPUT LEVEL | midrange       |
| OUTPUT          | pulse          |
| LOL             |                |
| HIL             | 0.4V           |
| WIDTH (WID)     |                |
| DISABLE         | off            |

| Note | The spectrum analyzer ( <u>REFERENCE LEVEL</u> ) setting should remain at 0 dBm throughout steps 4 through 38 to prevent possible IF gain compression of the pulse signal.                                                                                                  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 3. On the spectrum analyzer, press (INSTR PRESET) and select SIGNAL INPUT 1. Set the controls as follows:                                                                                                                                                                   |
|      | CENTER FREQUENCY15 MHz(FREQUENCY SPAN)12 MHz(ATTEN)20 dB(RES BW)3 MHz (i)(VIDEO BW)3 MHz(REFERENCE LEVEL)0 dBm                                                                                                                                                              |
|      | 4. On the spectrum analyzer, press (SHIFT), (ATTEN (AUTO) <sup>D</sup> , SWEEP<br>SINGLE) MARKER (PEAK SEARCH). Note the MARKER amplitude for<br>the 3 MHz filter in the HIGH FREQUENCY REPITITION RATE<br>column in Table 4-2.                                             |
|      | 5. Set the frequency synthesizer (FREQUENCY) to 300 kHz.                                                                                                                                                                                                                    |
|      | 6. On the spectrum analyzer, press (FREQUENCY SPAN) 0 Hz,<br>(SWEEP TIME) 0.5 seconds, SWEEP (SINGLE).                                                                                                                                                                      |
|      | 7. Press MARKER (PEAK SEARCH). Note the MARKER amplitude for<br>the 3 MHz filter in the LOW FREQUENCY REPITITION RATE<br>column in Table 4-2.                                                                                                                               |
|      | 8. Calculate the Impulse Bandwidth of the 3 MHz filter using the formula shown below and record the results for the 3 MHz filter in Table 4-2.                                                                                                                              |
|      | BW(i) = High frequency rep rate (15 MHz) x (Low frequency reading (step 7)/Hi frequency reading(step 4))                                                                                                                                                                    |
|      | 9. Set the frequency synthesizer (FREQUENCY) to 10 MHz.                                                                                                                                                                                                                     |
|      | <ol> <li>On the spectrum analyzer, key in <u>CENTER FREQUENCY</u> 10 MHz,<br/><u>(RES BW)</u> 1 MHz (i), <u>FREQUENCY SPAN</u> 4 MHz, SWEEP TIME <u>(AUTO)</u>,<br/>SWEEP <u>(SINGLE)</u>, MARKER <u>(PEAK SEARCH)</u>. Record MARKER<br/>amplitude in Table 4-2</li> </ol> |
|      | 11. Set the frequency synthesizer (FREQUENCY) to 100 kHz.                                                                                                                                                                                                                   |
|      | 12. On the spectrum analyzer, key in FREQUENCY SPAN 0 Hz, (SWEEP TIME) 0.5 seconds, SWEEP (SINGLE).                                                                                                                                                                         |
|      | 13. Press MARKER (PEAK SEARCH). Record the MARKER amplitude in Table 4-2.                                                                                                                                                                                                   |
|      | 14. Calculate the impulse bandwidth of the 1 MHz filter using the formula in step 8. Record the result in Table 4-2.                                                                                                                                                        |
|      | 15. Set the frequency synthesizer (FREQUENCY) to 3 MHz. Set the pulse/function generator WID to 33.3 ns.                                                                                                                                                                    |
|      | 16. On the spectrum analyzer, key in: <u>RES BW</u> 300 kHz (i),<br><u>(CENTER FREQUENCY</u> 3 MHz, <u>(FREQUENCY SPAN)</u> 1.2 MHz, SWEEP<br>TIME <u>AUTO</u> , SWEEP <u>(SINGLE)</u> , MARKER <u>(PEAK SEARCH)</u> . Record<br>MARKER amplitude in Table 4-2.             |

- 17. Set the frequency synthesizer <u>FREQUENCY</u> to 30 kHz. On the spectrum analyzer key in <u>FREQUENCY SPAN</u> 0 Hz, **EWEEP TIME** 0.5 seconds, SWEEP <u>SINGLE</u>, MARKER <u>(PEAK SEARCH)</u>. Record MARKER amplitude in Table 4-2.
- 18. Calculate the Impulse BW of the 300 kHz filter using the formula in step 8. Record in Table 4-2.
- 19. Set the frequency synthesizer (FREQUENCY] to 1 MHz. Set the pulse/function generator WID to 100 ns.
- 20. On the spectrum analyzer key in: <u>RES BW</u> 100 kHz (i), <u>VIDEO BW</u> 1 MHz, <u>ICENTER FREQUENCY</u> 1 MHz, <u>FREQUENCY SPAN</u> 400 kHz, SWEEP TIME (AUTO), SWEEP <u>SINGLE</u>, MARKER <u>IPEAK SEARCH</u>. Record MARKER amplitude in Table 4-2.
- 21. Set the frequency synthesizer <u>[FREQUENCY]</u> to 10 kHz. On the spectrum analyzer, key in: <u>[FREQUENCY SPAN</u>) 0 Hz, <u>(SWEEP TIME</u>] 0.5 seconds, SWEEP <u>(SINGLE</u>, MARKER <u>[PEAK SEARCH</u>). Record MARKER amplitude in Table 4-2.
- 22. Calculate the Impulse BW of the 100 kHz filter using the formula in step 8. Record in Table 4-2.
- 23. Set the frequency synthesizer (FREQUENCY] to 300 kHz. Set the pulse/function generator WID to 333 ns.
- 24. On the spectrum analyzer, key in: <u>RES BW</u> 30 kHz (i), <u>(VIDEO BW</u> 300 kHz, <u>(CENTER FREQUENCY</u>) 300 kHz, <u>IFREQUENCY</u> <u>SPAN</u> 120 kHz, SWEEP TIME (AUTO), SWEEP <u>(SINGLE)</u>, MARKER, <u>(PEAK SEARCH)</u>. Record MARKER amplitude in Table 4-2.
- 25. Set the frequency synthesizer <u>(FREQUENCY)</u> to 3 kHz. On the spectrum analyzer, key in: <u>(FREQUENCY SPAN]</u> 0 Hz, <u>(SWEEP TIME)</u> 0.5 seconds, SWEEP <u>(SINGLE)</u>, MARKER (PEAK SEARCH]. Record MARKER amplitude in Table 4-2.
- 26. Calculate the Impulse BW of the 30 kHz filter using the formula in step 8. Record in Table 4-2.
- 27. Set the frequency synthesizer (FREQUENCY) to 100 kHz. Set the pulse/function generator WID to 1  $\mu$ s.
- 28. On the spectrum analyzer key in <u>RES BW</u> 10 kHz (i), <u>VIDEO BW</u> 100 kHz, <u>CENTER FREQUENCY</u> 100 kHz, <u>FREQUENCY SPAN</u> 40 kHz, SWEEP TIME <u>AUTO</u>, SW:EEP (<u>SINGLE</u>), MARKER <u>IPEAK SEARCH</u>. Record MARKER amplitude in Table 4-2.
- 29. Set the frequency synthesizer (FREQUENCY) to 1 kHz. On the spectrum analyzer key in: (FREQUENCY SPAN) 0 Hz, [SWEEP TIME] 0.5 seconds, SWEEP (SINGLE), MARKER (PEAK SEARCH). Record MARKER amplitude in Table 4-2.
- 30. Calculate the Impulse BW of the 10 kHz filter using the formula in step 8. Record in Table 4-2.
- 31. Set the frequency synthesizer **[FREQUENCY]** to 30 kHz. Set the pulse/function generator WID to 3.33  $\mu$ s.
- 32. On the spectrum analyzer key in: <u>RES BW</u> 3 kHz (i), <u>VIDEO BW</u> 30 kHz, <u>(CENTER FREQUENCY)</u> 30 kHz, <u>[FREQUENCY SPAN]</u> 12 kHz,

SWEEP TIME (AUTO), SWEEP (SINGLE), MARKER (PEAK SEARCH). Record MARKER amplitude in Table 4-2.

- 33. Set the frequency synthesizer (FREQUENCY to 300 Hz. On the spectrum analyzer key in: (FREQUENCY SPAN) 0 Hz, (SWEEP TIME) 0.5 seconds, SWEEP (SINGLE) MARKER (PEAK SEARCH). Record MARKER amplitude in Table 4-2.
- 34. Calculate the Impulse BW of the 3 kHz filter using the formula in step 8. Record in Table 4-2.
- 35. Set the frequency synthesizer (FREQUENCY) to 10 kHz. Set the pulse/function generator WID to 10  $\mu$ us.
- 36. On the spectrum analyzer key in RES BW 1 kHz (i), VIDEO BW 10 kHz, CENTER FREQUENCY 10 kHz, FREQUENCY SPAN 4 kHz SWEEP TIME AUTO, SWEEP SINGLE, MARKER PEAK SEARCH. Record MARKER amplitude in Table 4-2.
- 37. Set the frequency synthesizer <u>FREQUENCY</u> to 200 Hz. On the spectrum analyzer key in: <u>FREQUENCY SPAN</u> 0 Hz. <u>SWEEP TIME</u> 0.5 seconds, SWEEP <u>SINGLE</u>, MARKER <u>PEAK SEARCH</u>. Record MARKER amplitude in Table Table 4-2.
- 38. Calculate the Impulse BW of the 1 kHz filter using the formula in step 8. Record in Table 4-2.
- 39. On the spectrum analyzer, press (INSTR PRESET) and select SIGNAL INPUT 1.
- 40. Connect the spectrum analyzer CAL OUTPUT to SIGNAL INPUT 1.
- 41. On the spectrum analyzer, key in the following settings:

| (CENTER FREQUENCY) | 20 MHz    |
|--------------------|-----------|
| (FREQUENCY SPAN)   | 5 MHz     |
| (RES BW)           | 3 MHz (i) |
| (REFERENCE LEVEL)  | -10 dBm   |

- 42. On the spectrum analyzer, press SCALE LIN. Press SHIFT RES BW (AUTO) <sup>A</sup>, for units in dBm.
- 43. On the spectrum analyzer, press the **REFERENCE LEVEL** and use the DATA knob to position the signal peak near the reference level (top graticule line). Press SWEEP (SINGLE).
- 44. On the spectrum analyzer, press MARKER (NORMAL), and place the marker at the signal peak with the DATA knob. Press MARKER ( $\Delta$ ) and position the movable marker 6 dB down from the stationary marker on the positive going edge of the signal trace (the MARKER ( $\Delta$ ) amplitude readout should be -6.00 dB ±0.05 dB). To center the trace on screen, it may be necessary to press SWEEP (CONT) and adjust (CENTER FREQUENCY).
- 45. Press MARKER (△) and position movable marker 6 dB down from the signal peak on the negative going edge of the trace (the MARKER (△) amplitude readout should be 0.00 dB ±0.05dB). The 6 dB bandwidth is given by the MARKER (△) frequency readout. (See Figure 4-3.) Record in Table 4-2.

Note

6 dB resolution bandwidth measurements are used in Performance Test 5, Impulse and Resolution Bandwidth Selectivity Test.



Figure 4-3. 6 dB Resolution Bandwidth Measurement

46. Select the spectrum analyzer (RES BW) and (FREQUENCY SPAN) settings according to Table 4-3. Press SWEEP (SINGLE) and measure the 6 dB bandwidth for each resolution bandwidth setting using the procedure of steps 43 through 45 and record the value in Table 4-3. The measured bandwidths for 300 Hz, 100 Hz, 30 Hz, and 10 Hz should fall between the limits shown in the table.

| (Res BW)         | VIDEO BW                | Marker Re                                | Calculated                       | Impulse  | Bandwidth |                |
|------------------|-------------------------|------------------------------------------|----------------------------------|----------|-----------|----------------|
|                  |                         | <b>High</b> Frequency<br>Repetition Rate | Low Frequency<br>Repetition Rate | Minimum  | Actual    | Maximum        |
| 3 MHz (i)        | 3 MHz                   |                                          |                                  | 2.40 MHz |           | 3.60 MHz       |
| 1 MHz (i)        | 3 MHz                   |                                          |                                  | 900 kHz  |           | 1.1 MHz        |
| 300 kHz (i)      | 3 MHz                   |                                          |                                  | 270 kHz  |           | 330 kHz        |
| 100 kHz (i)      | 1 MHz                   |                                          |                                  | 90 kHz   |           | 110 kHz        |
| 30 kHz (i)       | 300 kHz                 |                                          |                                  | 27 kHz   |           | 33 kHz         |
| 10 kHz (i)       | 100 <b>k</b> H <b>z</b> |                                          |                                  | 9 kHz    |           | 11 <b>kHz</b>  |
| 3 kHz (i)        | 30 kHz                  |                                          |                                  | 2.7 kHz  |           | 3.3 kHz        |
| 1 <b>kHz</b> (i) | 10 kHz                  |                                          |                                  | 900 Hz   |           | 1.1 <b>kHz</b> |

Table 4-2. Impulse Bandwidth Accuracy

| Res<br>BW                 | Frequency<br>Span | MARKER A Readout of 6 <b>dB</b><br>Bandwidth |        |         |
|---------------------------|-------------------|----------------------------------------------|--------|---------|
|                           |                   | Minimum                                      | Actual | Maximum |
| 3 MHz (i)                 | 5 MHz             |                                              |        |         |
| 1 MHz (i)                 | 2 MHz             |                                              |        |         |
| 300 kHz (i)               | 500 kHz           |                                              |        |         |
| 00 kHz (i)                | 200 kHz           |                                              |        |         |
| <b>30 kHz</b> (i)         | 50 kHz            |                                              |        |         |
| 10 <b>k</b> Hz (i)        | 20 kHz            |                                              |        |         |
| 3 kHz (i)                 | 5 kHz             |                                              |        |         |
| 1 <b>k</b> H <b>z</b> (i) | 2 kHz             |                                              |        |         |
|                           |                   |                                              |        |         |
| 300 Hz (i)                | 500 Hz            | <b>300</b> Hz                                |        | 450 Hz  |
| 100 Hz (i)                | 200 Hz            | 100 Hz                                       |        | 150 Hz  |
| 30 Hz (i)                 | 100 Hz            | 30 Hz                                        |        | 45 Hz   |
| 10 Hz (i)                 | 100 Hz            | 10 Hz                                        |        | 15 Hz   |

 Table 4-3. 6 dB Resolution Bandwidth Accuracy

# 5. 6 **dB** Resolution Bandwidth Selectivity Test

| Related Adjustments | 3 MHz Bandwidth Filter Adjustments<br>21.4 MHz Bandwidth Filter Adjustments<br>Step Gain and 18.4 MHz Local Oscillator Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification       | 60 dB/6 dB bandwidth ratio:<br><11:1, 3 MHz to 100 kHz bandwidths<br><8:1, 30 kHz to 30 Hz bandwidths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description         | 60 dB points on 10 Hz bandwidth are separated by <100 Hz<br>Bandwidth selectivity is found by measuring the 60 dB bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ĩ                   | and dividing this value by the 6 dB bandwidth for each resolution<br>bandwidth setting from 30 Hz to 3 MHz. The 60 dB points for the 10<br>Hz bandwidth setting are also measured. The CAL OUTPUT provides<br>a stable signal for the measurements.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Equipment           | None required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Note                | Performance Test 4, 6 dB Resolution Bandwidth Accuracy Test, must be performed before starting this test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Procedure           | <ol> <li>Press INSTR PRESET.</li> <li>Connect CAL OUTPUT to SIGNAL INPUT 2.</li> <li>Key in analyzer control settings as follows:         <ol> <li>CENTER FREQUENCY</li> <li>20 MHz</li> <li>FREQUENCY SPANJ</li> <li>20 MHz</li> <li>RES BW</li> <li>3 MHz</li> <li>VIDEO BW</li> <li>100 Hz</li> <li>SWEEP SINGLE</li> </ol> </li> <li>Press MARKER NORMAL and position marker at peak of signal trace. Press MARKER (A) and position movable marker 60 dB down from the stationary marker on the positive-going edge of the signal trace (the MARKER A amplitude readout should be -60.00 dB ±1.00 dB). It may be necessary to press SWEEP (CONT)</li> </ol> |
|                     | <ul> <li>and adjust <u>CENTER FREQUENCY</u> so that both 60 dB points are displayed. (See Figure 4-4.)</li> <li>5. Press MARKER  and position movable marker 60 dB down from the signal peak on the negative-going edge of the signal trace (the MARKER A amplitude readout should be .OO dB ±0.50 dB).</li> <li>6. Read the 60 dB bandwidth for the 3 MHz resolution bandwidth setting from the MARKER A frequency readout (Figure 4-4) and record the value in Table 4-4.</li> </ul>                                                                                                                                                                          |

#### 5. 6 dB Resolution Bandwidth Selectivity Test

- Vary spectrum analyzer settings according to Table 4-4. Press SWEEP SINGLE and measure the 60 dB bandwidth for each resolution bandwidth setting by the procedure of steps 4 through 6. Record the value in Table 4-4.
- 8. Record the 6 dB bandwidths from Table 4-1 in Table 4-4.
- 9. Calculate the bandwidth selectivity for each setting by dividing the 60 dB bandwidth by the 6 dB bandwidth. The bandwidth ratios should be less than the maximum values shown in Table 4-4.
- 10. The 60 dB bandwidth for the 10 Hz resolution bandwidth setting should be less than 100 Hz.



Figure 4-4. 60 dB Bandwidth Measurement

### 5. 6 dB Resolution Bandwidth Selectivity Test

| Spectrum Analyzer |                  |            | Measured           | Measured                 | Bandwidth                         | Maximum           |
|-------------------|------------------|------------|--------------------|--------------------------|-----------------------------------|-------------------|
| RES BW            | [FREQUENCY SPAN] | (VIDEO BW) | 60 dB<br>Bandwidth | 6 <b>dB</b><br>Bandwidth | <b>60 dB</b> BW ÷ 6 <b>dB</b> BW) | Selectivity Ratio |
| 3 MHz             | 20 MHz           | 100 Hz     |                    |                          |                                   | 11:1              |
| 1 MHz             | 15 MHz           | 300 Hz     |                    |                          |                                   | 11:1              |
| 300 kHz           | 5 MHz            | AUTO       |                    |                          |                                   | 11:1              |
| 100 kHz           | 2 MHz            | AUTO       |                    |                          |                                   | 11:1              |
| 30 kHz            | 500 kHz          | AUTO       |                    |                          |                                   | 8:1               |
| 10 <b>kHz</b>     | 200 kHz          | AUTO       |                    |                          |                                   | 8:1               |
| 3 kHz             | 50 kHz           | AUTO       |                    |                          |                                   | 8:1               |
| 1 kHz             | 10 <b>k</b> Hz   | AUTO       |                    |                          |                                   | 8:1               |
| 300 Hz            | 5 kHz            | AUTO       |                    |                          |                                   | 8:1               |
| 100 Hz            | 2 kHz            | AUTO       |                    |                          |                                   | 8:1               |
| 30 Hz             | 500 Hz           | AUTO       |                    |                          |                                   | 8:1               |
| 10 Hz             | 100 HZ           | AUTO       |                    | 60 dB points             | s separated by -                  | <100 Hz           |

 Table 4-4. 6 dB Resolution Bandwidth Selectivity

## 5. Impulse and Resolution Bandwidth Selectivity Test

.

| U                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Adjustment | 3 MHz Bandwidth Filter Adjustments<br>21.4 Bandwidth Filter Adjustments<br>Step Gain and 18.4 MHz Local Oscillator Adjustments                                                                                                                                                                                                                                                                                                                                                                             |
| Specification      | 60 dB/6 dB bandwidth ratio:<br><11:1, 3 MHz to 100 kHz<br><8:1, 30 kHz to 30 Hz<br>60 dB points on 10 Hz bandwidth are separated by <100 Hz                                                                                                                                                                                                                                                                                                                                                                |
| Description        | Bandwidth selectivity is found by measuring the 60 dB bandwidth<br>and dividing this value by the 6 dB bandwidth for each resolution<br>bandwidth setting from 30 Hz to 3 MHz. The 60 dB points for the 10<br>Hz bandwidth setting are also measured. The CAL OUTPUT provides<br>a stable signal for the measurements.                                                                                                                                                                                     |
| Note               | Resolution Bandwidth Accuracy Test must be performed before this test.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Equipment          | None required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Procedure          | <ol> <li>On the spectrum analyzer press [INSTR PRESET] and connect the CAL OUTPUT to SIGNAL INPUT 2.</li> <li>Key in spectrum analyzer control settings as following:         <ul> <li>CENTER FREQUENCY</li> <li>20 MHz</li> <li>FREQUENCY SPAN</li> <li>20 MHz</li> <li>W</li> <li>3 MHz</li> <li>VIDEO BW</li> <li>SWEEP</li> <li>SINGLE</li> </ul> </li> </ol>                                                                                                                                          |
|                    | 3. On the spectrum analyzer, press MARKER NORMAL and position<br>the marker at the peak of the signal trace using the DATA knob.<br>Press MARKER $\triangle$ and position the movable marker 60 dB down<br>from the stationary marker on the positive going edge of the signal<br>trace (the MARKER $\triangle$ amplitude readout should be -60.00 dB<br>±1.00 dB). It may be necessary to press SWEEP CONT and to<br>adjust CENTER FREQUENCY so that both 60 dB points are displayed<br>(see Figure 4-5). |



Figure 4-5. 60 dB Bandwidth Measurement

- 4. Press MARKER In] and position the positive movable marker 60 dB down from the signal peak on the negative-going edge of the signal trace (the MARKER  $\bigtriangleup$  amplitude readout should be 0.00 dB ±0.50 dB).
- 5. Read the 60 dB bandwidth for the 3 MHz resolution bandwidth setting from the MARKER  $\triangle$  frequency readout (see Figure 4-5) and record the value in Table 4-5.
- 6. Select the spectrum analyzer (RES BW), (FREQUENCY SPAN), and (VIDEO BW) according to Table 4-5. Measure the 60 dB bandwidth for each resolution bandwidth setting by the procedure of steps 3 through 5 and record the value in Table 4-5.
- 7. Record the 6 dB bandwidths for each resolution bandwidth setting from Table 4-3 in Table 4-5.
- 8. Calculate the bandwidth selectivity for each setting by dividing the 60 dB bandwidth by the 6 dB bandwidth. The bandwidth ratios should be less than the maximum values shown in Table 4-5.
- 9. The 60 dB bandwidth for the 10 Hz resolution bandwidth setting should be less than 100 Hz.

# 5. Impulse and Resolution Bandwidth Selectivity Test

| Spectrum Analyzer |                          |             | Measured                  | Measured                 | Bandwidth                                                 | Maximum |
|-------------------|--------------------------|-------------|---------------------------|--------------------------|-----------------------------------------------------------|---------|
| Res<br>BW         | <b>Frequency</b><br>Span | Video<br>BW | 60 <b>dB</b><br>Bandwidth | 6 <b>dB</b><br>Bandwidth | Selectivity<br>(60 <b>dB</b> BW<br>$\div$ 6 <b>dB</b> BW) | Ratio   |
| 3 MHz (i)         | 20 MHz                   | 100 Hz      |                           |                          |                                                           | 11:1    |
| 1 MHz (i)         | 15 MHz                   | 300 Hz      |                           |                          |                                                           | 11:1    |
| 300 kHz (i)       | 5 MHz                    | AUTO        |                           |                          |                                                           | 11:1    |
| 100 kHz (i)       | 2 MHz                    | AUTO        |                           |                          | -                                                         | 11:1    |
| 30 kHz (i)        | 500 kHz                  | AUTO        |                           |                          |                                                           | 8:1     |
| 10 <b>kHz</b> (i) | 200 kHz                  | AUTO        |                           |                          |                                                           | 8:1     |
| 3 kHz (i)         | 50 kHz                   | AUTO        |                           |                          |                                                           | 8:1     |
| 1 <b>kHz</b> (i)  | 10 kHz                   | AUTO        |                           |                          |                                                           | 8:1     |
| 300 Hz (i)        | 5 kHz                    | AUTO        |                           |                          |                                                           | 8:1     |
| 100 Hz (i)        | 2 kHz                    | AUTO        |                           |                          |                                                           | 8:1     |
| 30 Hz (i)         | 500 Hz                   | AUTO        |                           |                          |                                                           | 8:1     |
| 10 Hz (i)         | 100 Hz                   | AUTO        |                           | 60 dB points             | s separated by                                            | <100 Hz |

 Table 4-5. Impulse and Resolution Bandwidth Selectivity

# 6. Impulse and Resolution Bandwidth Switching Uncertainty **Test**

| Related Adjustment | 3 MHz Bandwidth Filter Adjustments<br>21.4 Bandwidth Filter Adjustments<br>Down/Up Converter Adjustments                                                                                                                                                                                                  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specification      | $\pm 2.0$ dB, 10 Hz bandwidth<br>$\pm 0.8$ dB, 30 Hz bandwidth<br>$\pm 0.5$ dB, 100 Hz to 1 MHz bandwidth<br>$\pm 1$ .O dB, 3 MHz bandwidth<br>30 kHz and 100 kHz bandwidth switching uncertainty figures only<br>applicable $\leq 90\%$ Relative Humidity.                                               |
| Description        | The CAL OUTPUT signal is applied to the input of the spectrum<br>analyzer. The deviation in peak amplitude of the signal trace is then<br>measured as each resolution bandwidth filter is switched in.                                                                                                    |
| Equipment          | None required                                                                                                                                                                                                                                                                                             |
| Procedure          | <ol> <li>Press (INSTR PRESET).</li> <li>Connect CAL OUTPUT to SIGNAL INPUT 2.</li> <li>Key in the following control settings:</li> </ol>                                                                                                                                                                  |
|                    | (CENTER FREQUENCY].20 MHzFREQUENCY SPAN)5 MHzREFERENCE LEVELRES BWI MHz                                                                                                                                                                                                                                   |
|                    | 4. Press LOG <b><u>[ENTER dB/DIV</u></b> and key in 1 dB. Press MARKER<br>(PEAK SEARCH) $\triangle$ .                                                                                                                                                                                                     |
|                    | 5. Key in settings according to Table 4-6. Press MARKER<br>[PEAK SEARCH] at each setting, then read the amplitude deviation<br>from the MARKER (A) readout at the upper right of the display<br>(see Figure 4-6). The allowable deviation for each resolution<br>bandwidth setting is shown in the table. |



Figure 4-6. Bandwidth Switching Uncertainty Measurement

**Table** 4-6. Bandwidth Switching Uncertainty

| Res<br>BW                   | Frequency<br>Span     | Deviation<br>(MKR A<br>Readout, <b>dB)</b> | Allowable<br>Deviation<br>( <b>dB</b> ) |
|-----------------------------|-----------------------|--------------------------------------------|-----------------------------------------|
| 1 MHz (i)                   | 5 MHz                 | 0 (ref.)                                   | 0 (ref.)                                |
| 3 MHz (i)                   | 5 MHz                 |                                            | ± 1.0                                   |
| 300 kHz (i)                 | 5 MHz                 |                                            | $\pm 0.5$                               |
| 100 <b>k</b> H <b>z</b> (i) | 500 kHz               |                                            | ± 0.5                                   |
| 30 kHz (i)                  | 500 kHz               |                                            | ± 0.5                                   |
| 10 <b>k</b> H <b>z</b> (i)  | 50 kHz                |                                            | $\pm 0.5$                               |
| 3 kHz (i)                   | 50 kHz                |                                            | ± 0.5                                   |
| 1 <b>k</b> H <b>z</b> (i)   | 10 <b>kHz</b>         |                                            | ± 0.5                                   |
| 300 Hz (i)                  | 1 <b>k</b> H <b>z</b> |                                            | ± 0.5                                   |
| 100 Hz (i)                  | 1 <b>kHz</b>          |                                            | ± 0.5                                   |
| 30 Hz (i)                   | 200 Hz                |                                            | $\pm 0.8$                               |
| 10 Hz (i)                   | 100 Hz                |                                            | $\pm 2.0$                               |

# Test 4. 6 **dB** Resolution Bandwidth Accuracy **Test** (p/o **Table** 2-19, Performance Test Record)

Step 8. 6 dB Resolution Bandwidth Accuracy

| RES BW  | (FREQUENCY SPAN) | MARKER △ Readout of 3 dB Bandwidth |        |           |  |  |
|---------|------------------|------------------------------------|--------|-----------|--|--|
|         |                  | Min                                | Actual | Max       |  |  |
| 3 MHz   | 5 MHz            | 2.400 MHz                          |        | 3.600 MHz |  |  |
| 1 MHz   | 2 MHz            | 900 kHz                            |        | 1.100 MHz |  |  |
| 300 kHz | 500 kHz          | 270.0 kHz                          |        | 330.0 kHz |  |  |
| 100 kHz | 200 kHz          | 90.0 kHz                           |        | 110.0 kHz |  |  |
| 30 kHz  | 50  kHz          | 27.00 kHz                          |        | 33.00 kHz |  |  |
| 10 kHz  | 20 kHz           | 9.00 kHz                           |        | 11.00 kHz |  |  |
| 3 kHz   | 5 kHz            | 2.700 kHz                          |        | 3.300 kHz |  |  |
| 1 kHz   | 2 kHz            | 900 Hz                             |        | 1.100 kHz |  |  |
| 300  Hz | 500 Hz           | 270 Hz                             |        | 330 Hz    |  |  |
| 100 Hz  | 200 Hz           | 90 Hz                              |        | 110 Hz    |  |  |
| 30 Hz   | 100 Hz           | 27.0 Hz                            |        | 33.0 Hz   |  |  |
| 10 Hz   | 100 Hz           | 10.0 Hz                            |        | 15.0 Hz   |  |  |

Test 4. Impulse and Resolution Bandwidth Accuracy Test (p/o Table 2-19, Performance Test Record)

Test 4. Impulse and Resolution Bandwidth Accuracy Test (p/o **Table** 2-19, Performance Test Record)

| Steps | 1 | through | 38. | Impulse | Bandwidth | Accuracy  |
|-------|---|---------|-----|---------|-----------|-----------|
| Ducps | • | unougn  | 00. | impuis  | Dunuwiuun | riccuracy |

| (Res BW)           | VIDEO BW      | Marker Readouts for:              |                                  | Calculated | Impulse | Bandwidth      |
|--------------------|---------------|-----------------------------------|----------------------------------|------------|---------|----------------|
|                    |               | High Frequency<br>Repetition Rate | Low Frequency<br>Repetition Rate | Minimum    | Actual  | Maximum        |
| 3 MHz (i)          | 3 MHz         |                                   |                                  | 2.40 MHz   |         | 3.60 MHz       |
| 1 MHz (i)          | 3 MHz         |                                   |                                  | 900 kHz    |         | 1.1 MHz        |
| 300 kHz (i)        | 3 MHz         |                                   | ·                                | 270 kHz    |         | 330 kHz        |
| 100 <b>kHz</b> (i) | 1 MHz         |                                   |                                  | 90 kHz     |         | 110 <b>kHz</b> |
| 30 kHz (i)         | 300 kHz       |                                   |                                  | 27 kHz     |         | 33 kHz         |
| 10 <b>kHz</b> (i)  | 100 kHz       |                                   |                                  | 9 kHz      |         | 11 <b>kHz</b>  |
| 3 <b>kHz</b> (i)   | 30 kHz        |                                   |                                  | 2.7 kHz    |         | 3.3 kHz        |
| 1 <b>kHz</b> (i)   | 10 <b>kHz</b> |                                   |                                  | 900 Hz     |         | 1.1 <b>kHz</b> |

Test 4. Impulse and Resolution Bandwidth Accuracy Test (p/o Table 2-19, Performance Test Record)

| Res<br>BW          | Frequency<br>Span | MARKER ∆ Readout of 6 dB<br>Bandwidth |        |         |  |
|--------------------|-------------------|---------------------------------------|--------|---------|--|
|                    |                   | Minimum                               | Actual | Maximum |  |
| 3 MHz (i)          | 5 MHz             |                                       |        |         |  |
| 1 MHz (i)          | 2 MHz             |                                       |        |         |  |
| 300 <b>kHz</b> (i) | 500 kHz           |                                       |        |         |  |
| 100 kHz (i)        | 200 kHz           |                                       |        |         |  |
| 30 kHz (i)         | 50 kHz            |                                       |        |         |  |
| 10 <b>kHz</b> (i)  | 20 kHz            |                                       |        |         |  |
| 3 kHz (i)          | 5 kHz             |                                       |        |         |  |
| 1 <b>kHz</b> (i)   | 2 kHz             |                                       |        |         |  |
|                    |                   |                                       |        |         |  |
| 300 Hz (i)         | 500 Hz            | 300 Hz                                |        | 450 Hz  |  |
| 100 Hz (i)         | 200 Hz            | 100 Hz                                |        | 150 Hz  |  |
| 30 Hz (i)          | 100 Hz            | 30 Hz                                 |        | 45 Hz   |  |
| 10 Hz (i)          | 100 Hz            | 10 Hz                                 |        | 15 Hz   |  |

### Steps 39 through 46. 6 **dB** Resolution Bandwidth Accuracy

Test 5. 6 **dB** Resolution Bandwidth Selectivity (p/o **Table** 2-19, Performance **Test** Record)

| Step 9. 6 dB Resolution | Bandwidth | Selectivity |
|-------------------------|-----------|-------------|
|-------------------------|-----------|-------------|

| Spectrum Analyzer |                 |           | Measured                  | Measured                 | Bandwidth                                            | Maximum           |
|-------------------|-----------------|-----------|---------------------------|--------------------------|------------------------------------------------------|-------------------|
| RES BW            | (FREQUENCY SPAN | ] [VIDEO] | 60 <b>dB</b><br>Bandwidth | 6 <b>dB</b><br>Bandwidth | Selectivity<br>(60 <b>dB</b> BW ÷<br>6 <b>dB</b> BW) | Selectivity Ratio |
| 3 MHz             | 20 MHz          | 100 Hz    |                           |                          |                                                      | 11:1              |
| 1 MHz             | 15 MHz          | 300 Hz    |                           |                          |                                                      | 11:1              |
| 300 kHz           | 5 MHz           | AUTO      |                           |                          |                                                      | 11:1              |
| 100 <b>kHz</b>    | 2 MHz           | AUTO      | -                         |                          |                                                      | 11:1              |
| 30 kHz            | 500 kHz         | AUTO      |                           |                          |                                                      | 8:1               |
| 10 <b>kHz</b>     | 200 kHz         | AUTO      |                           |                          | · · · · · · · · · · · · · · · · · · ·                | 8:1               |
| 3 kHz             | 50 kHz          | AUTO      |                           |                          |                                                      | 8:1               |
| 1 kHz             | 10 <b>k</b> Hz  | AUTO      |                           |                          |                                                      | 8:1               |
| 300 Hz            | 5 kHz           | AUTO      |                           |                          |                                                      | 8:1               |
| 100 Hz            | 2 kHz           | AUTO      |                           |                          |                                                      | 8:1               |
| 30 Hz             | 500 Hz          | AUTO      |                           |                          | ·                                                    | 8:1               |
| 10 Hz             | 100 HZ          | AUTO      |                           | 60 dB points             | s separated by                                       | <100 Hz           |

Test 5. Impulse and Resolution Bandwidth Selectivity (p/o **Table** 2-19, Performance **Test** Record)

| Spectrum Analyzer |                   |             | Measured                  | Measured                 | Bandwidth                                                  | Maximum |
|-------------------|-------------------|-------------|---------------------------|--------------------------|------------------------------------------------------------|---------|
| Res<br>BW         | Frequency<br>Span | Video<br>BW | 60 <b>dB</b><br>Bandwidth | <b>6 dB</b><br>Bandwidth | Selectivity<br>(60 <b>dB</b> BW<br>$\div$ 6 <b>dB BW</b> ) | Ratio   |
| 3 MHz (i)         | 20 MHz            | 100 Hz      |                           |                          |                                                            | 11:1    |
| 1 MHz (i)         | 15 MHz            | 300 Hz      |                           |                          |                                                            | 11:1    |
| (300 kHz (i)      | 5 MHz             | AUTO        |                           |                          |                                                            | 11:1    |
| 100 kHz (i)       | 2 MHz             | AUTO        |                           |                          |                                                            | 11:1    |
| <b>30 kHz</b> (i) | 500 kHz           | AUTO        |                           |                          |                                                            | 8:1     |
| 10 <b>kHz</b> (i) | 200 kHz           | AUTO        |                           |                          |                                                            | 8:1     |
| <b>3 kHz</b> (i)  | 50 kHz            | AUTO        |                           |                          |                                                            | 8:1     |
| 1 <b>kHz</b> (i)  | 10 <b>kHz</b>     | AUTO        |                           |                          |                                                            | 8:1     |
| 300 Hz (i)        | 5 kHz             | AUTO        |                           |                          |                                                            | 8:1     |
| 100 Hz (i)        | 2 kHz             | AUTO        |                           |                          |                                                            | 8:1     |
| 30 Hz (i)         | 500 Hz            | AUTO        |                           |                          |                                                            | 8:1     |
| 10 Hz (i)         | 100 Hz            | AUTO        |                           | 60 dB point              | s separated by                                             | <100 Hz |

Steps 5 through 9. Impulse and Resolution Bandwidth Selectivity

Test 6. Impulse and Resolution Bandwidth Switching Uncertainty (p/o Table 2-19, Performace Test Record)

**Test** 6. Impulse and Resolution Bandwidth Switching Uncertainty (p/o **Table** 2-19, Performace **Test** Record)

|                           | _                     | -                                          |                                       |
|---------------------------|-----------------------|--------------------------------------------|---------------------------------------|
| Res<br>BW                 | Frequency<br>Span     | Deviation<br>(MKR A<br>Readout, <b>dB)</b> | Allowable<br>Deviation<br><b>(dB)</b> |
| 1 MHz (i)                 | 5 MHz                 | 0 (ref.)                                   | 0 (ref.)                              |
| 3 MHz (i)                 | 5 MHz                 |                                            | ± 1.0                                 |
| 300 <b>kHz</b> (i)        | 5 MHz                 |                                            | $\pm 0.5$                             |
| 100 <b>kHz</b> (i)        | 500 kHz               |                                            | ± 0.5                                 |
| 30 kHz (i)                | 500 kHz               |                                            | ± 0.5                                 |
| 10 kHz (i)                | 50 kHz                |                                            | $\pm 0.5$                             |
| 3 <b>k</b> H <b>z</b> (i) | 50 kHz                |                                            | $\pm 0.5$                             |
| 1 <b>kHz</b> (i)          | 10 kHz                |                                            | $\pm 0.5$                             |
| 300 Hz (i)                | 1 <b>k</b> H <b>z</b> |                                            | $\pm 0.5$                             |
| 100 Hz (i)                | 1 kHz                 |                                            | $\pm 0.5$                             |
| 30 Hz (i)                 | 200 Hz                |                                            | $\pm 0.8$                             |
| 10 Hz (i)                 | 100 Hz                |                                            | ± 2.0                                 |

### Step 5. Impulse and Resolution Bandwidth Switching Uncertainty
## 9. 6 **dB** Resolution Bandwidth Adjustments

| 0       |                     |                                                                                                                                                                                                                                                           |
|---------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Reference           | IF-Display Section<br>A4A9 IF Control                                                                                                                                                                                                                     |
| Related | Performance<br>Test | 6 dB Resolution Bandwidth Accuracy Test                                                                                                                                                                                                                   |
|         | Description         | The CAL OUTPUT signal is connected to the RF INPUT. Each of the adjustable resolution bandwidths is selected and adjusted for the proper bandwidth.                                                                                                       |
|         | Equipment           | No test equipment is required for this adjustment.                                                                                                                                                                                                        |
|         | Procedure           | 1. Position the instrument upright and remove the top cover.                                                                                                                                                                                              |
|         |                     | 2. Set the LINE switch to On, press (INSTR PRESET) and select SIGNAL INPUT 1.                                                                                                                                                                             |
|         |                     | 3. Connect CAL OUTPUT to SIGNAL INPUT 1.                                                                                                                                                                                                                  |
|         |                     | 4. Key in <u>(center frequency)</u> 100 MHz, <u>[frequency span]</u> 5 MHz<br>RES BW 3 MHz, and LIN.                                                                                                                                                      |
|         |                     | 5. Press [REFERENCE LEVEL] and adjust the DATA knob to place the signal peak near the top CRT graticule. The signal should be centered about the center line on the graticule.                                                                            |
|         |                     | 6. Press PEAK SEARCH, MKR $\rightarrow$ (CF), and MARKER (al.                                                                                                                                                                                             |
|         |                     | <ol> <li>Using the DATA knob, adjust the marker down one side of the<br/>display signal to the 6 dB point; CRT MKR A annotation indicates<br/>.500 x</li> </ol>                                                                                           |
|         |                     | 8. Adjust A4A9R60 3 MHz for MKR In] indication of 1.5 MHz while maintaining the marker at .500 X using the DATA knob. Refer to Figure 4-7 for the adjustment location.                                                                                    |
|         |                     | 9. Press MARKER ( ). Adjust the marker to the 6 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X. There are now two markers; one on each side of the signal at the 6 dB point.                                          |
|         |                     | 10. CRT MKR A annotation now indicates the 6 dB bandwidth of the 3 MHz bandwidth filter. The bandwidth should be 3.00 MHz $\pm 0.60$ MHz                                                                                                                  |
|         |                     | 11. Key in <b>(RES BW)</b> 1 MHz, <b>(FREQUENCY SPAN)</b> 2 MHz. (PEAK SEARCH),<br>and (MKR $\rightarrow$ CF). If necessary, readjust by pressing<br>(REFERENCE LEVEL) and using the DATA knob to place the signal<br>peak near the top of the graticule. |
|         |                     | 12. Press MARKER OFF) then MARKER ( $\Delta$ ).                                                                                                                                                                                                           |

#### 9. 6 dB Resolution Bandwidth Adjustments

13. Using the DATA knob, adjust the marker down one side of the display signal to the 6 dB point; CRT MKR A annotation indicates .500 x.



Figure 4-7. Location of Bandwidth Adjustments

- 14. Adjust A4A9R61 1 MHz for MKR A indication of 500 kHz while maintaining the marker at 0.500 X using the DATA knob. Refer to Figure 4-7 for the adjustment location.
- 15. Press MARKER (a). Adjust marker to the opposite side of the signal (CRT MKR A annotation indicate 1.00 X). There are now two markers; one on each of the signal at the 6 dB point.
- 16. The CRT MKR A annotation now indicates the 6 dB bandwidth of the 1 MHz bandwidth filter. The 6 dB bandwidth should be 1.00 MHz  $\pm 0.10$  MHz.
- 17. Key in (RES BW) 300 kHz, (FREQUENCY SPAN) 500 kHz, [PEAK SEARCH), and (MKR  $\rightarrow$  CF). If necessary, readjust by pressing [REFERENCE LEVEL]] and using the DATA knob to place the signal peak at the top of the graticule.
- 18. Press MARKER  $\bigcirc$ F then MARKER  $\triangle$ .
- 19. Using the DATA knob, adjust the marker down one the displayed signal to the 6 dB point; CRT MKR A annotation indicates .500 X.
- 20. Adjust A4A9R62 300 kHz for MKR A indication of 150 kHz while maintaining marker at .500 X using the data knob. Refer to Figure 4-7 for location of adjustment.
- 21. Press MARKER In]. Adjust the marker to the 6 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X).
- 22. The CRT MKR A annotation now indicates the bandwidth of the 300 kHz bandwidth filter. The bandwidth should be  $300.00 \pm 30.00$  kHz.
- 23. Key in (RES BW) 10 kHz, (FREQUENCY SPAN) 20 kHz, [PEAK SEARCH), and (MKR  $\rightarrow$  CF). If necessary, readjust by pressing (REFERENCE LEVEL) and using the DATA knob to place the signal peak near the top of the graticule.

#### 9. 6 dB Resolution Bandwidth Adjustments

- 24. Press MARKER OFF, then MARKER In].
- 25. Using the DATA knob, adjust the marker down one side of the displayed signal to the 6 dB point; CRT MKR annotation indicates .500 x.
- 26. Adjust A4A9R65 10 kHz for MKR A indication of 5.00 kHz while maintaining the marker at .500 X using the DATA knob. Refer to Figure 4-7 for the adjustment location.
- 27. Press MARKER (a). Adjust the marker to the 6 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X).
- 28. The CRT MKR A annotation now indicates the 6 dB bandwidth of the 10 kHz bandwidth filter. The bandwidth should be 10.0 fl.O kHz
- 29. Key in <u>[RES BW]</u> 3 kHz, <u>(FREQUENCY SPAN]</u> 5 kHz, <u>(PEAK SEARCH]</u>, and <u>[MKR  $\rightarrow$  CF</u>]. If necessary, readjust by pressing <u>[REFERENCE LEVEL]</u> and using the DATA knob to place the signal peak near the top of the graticule.
- 30. Press MARKER (OFF) and MARKER  $(\Delta)$ .
- 31. Using the DATA knob, adjust the marker down one side of the displayed signal to the 6 dB point; CRT MKR A annotation indicates .500 X.
- 32. Adjust A4A9R66 3 kHz for MKR A indication of 1.5 kHz while maintaining the marker at .500 X using the DATA knob. Refer to Figure 4-7 for the adjustment location.
- 33. Press MARKER In]. Adjust the marker to the 6 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X).
- 34. The CRT MKR  $\triangle$  annotation now indicates the 6 dB bandwidth of the 3 kHz bandwidth filter. The bandwidth should be 3.00  $\pm 0.30$  kHz

## 9. Impulse Bandwidth Adjustments

| Reference                   | IF-Display Section<br>A4A9 IF Control                                                                                                                                                                                                                                                         |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related Performance<br>Test | Impulse Bandwidth Accuracy Test                                                                                                                                                                                                                                                               |
| Description                 | The CAL OUTPUT signal is connected to the SIGNAL INPUT 1. Each of the adjustable resolution bandwidths is selected and adjusted for the proper impulse bandwidth.                                                                                                                             |
| Equipment                   | No test equipment is required for this adjustment.                                                                                                                                                                                                                                            |
| Procedure                   | 1. Position the instrument upright and remove the top cover.                                                                                                                                                                                                                                  |
|                             | 2. Set the LINE switch to On, press (INSTR PRESET), and select SIGNAL INPUT 1.                                                                                                                                                                                                                |
|                             | 3. Connect CAL OUTPUT to SIGNAL INPUT 1.                                                                                                                                                                                                                                                      |
|                             | 4. Key in ( <u>center frequency</u> 100 MHz, [ <u>frequency SPAN</u> 5 MHz<br>(RES BW) 3 MHz, and LIN.                                                                                                                                                                                        |
|                             | 5. Press [REFERENCE LEVEL] and adjust the DATA knob to place the signal peak near the top CRT graticule. The signal should be centered about the center line on the graticule.                                                                                                                |
|                             | 6. Press (PEAK SEARCH), MKR $\rightarrow$ (CF), and MARKER ( $\Delta$ ).                                                                                                                                                                                                                      |
|                             | <ol> <li>Using the DATA knob, adjust the marker down one side of<br/>the display signal to the 7.3 dB point; CRT MKR A annotation<br/>indicates 0.430 X</li> </ol>                                                                                                                            |
|                             | <ol> <li>Adjust A4A9R60 3 MHz for MKR In] indication of 1.5 MHz while<br/>maintaining the marker at 0.430 X using the DATA knob. Refer to<br/>Figure 4-8 for the adjustment location.</li> </ol>                                                                                              |
|                             | 9. Press MARKER In]. Adjust the marker to the 7.3 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X. There are now two markers; one on each side of the signal at the 7.3 dB point.                                                                          |
|                             | 10. CRT MKR A annotation now indicates the impulse bandwidth of the 3 MHz bandwidth. Impulse bandwidth should be 3.00 MHz $\pm 0.60$ MHz                                                                                                                                                      |
|                             | 11. Key in <u>(RES BW)</u> 1 MHz, <u>[FREQUENCY SPAN</u> ) 2 MHz, <u>[PEAK SEARCH</u> ),<br>and <u>(MKR <math>\rightarrow</math> CF</u> ). If necessary, readjust by pressing<br><u>[REFERENCE LEVEL</u> ) and using the DATA knob to place the signal<br>peak near the top of the graticule. |
|                             | 12. Press MARKER OFF then MARKER [al.                                                                                                                                                                                                                                                         |

#### 9. Impulse Bandwidth Adjustments

13. Using the DATA knob, adjust the marker down one side of the display signal to the 7.3 dB point; CRT MKR A annotation indicates 0.430 X.



Figure 4-8. Location of Bandwidth Adjustments

- 14. Adjust A4A9R61 1 MHz for MKR A indication of 500 kHz while maintaining the marker at 0.430 X using the DATA knob. Refer to Figure 4-8 for the adjustment location.
- 15. Press MARKER (a). Adjust marker to the opposite side of the signal (CRT MKR A annotation indicate 1.00 X). There are now two markers; one on each of the signal at the 7.3 dB point.
- 16. The CRT MKR A annotation now indicates the impulse bandwidth of the 1 MHz bandwidth. The impulse bandwidth should be 1.00 MHz  $\pm 0.10$  MHz.
- 17. Key in <u>(RES BW)</u> 300 kHz, <u>(FREQUENCY SPAN)</u> 500 kHz, <u>(PEAK SEARCH)</u>, and <u>(MKR  $\rightarrow$  CF)</u>. If necessary, readjust by pressing [REFERENCE LEVEL]] and using the DATA knob to place the signal peak at the top of the graticule.
- 18. Press MARKER  $\bigcirc$ F then MARKER  $\bigcirc$ .
- 19. Using the DATA knob, adjust the marker down one the displayed signal to the 7.3 dB point; CRT MKR A annotation indicates 0.430 X.
- 20. Adjust A4A9R62 300 kHz for MKR A indication of 150 kHz while maintaining marker at 0.430 X using the data knob. Refer to Figure 4-8 for location of adjustment.
- 21. Press MARKER (a). Adjust the marker to the 7.3 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X).
- 22. The CRT MKR A annotation now indicates the impulse bandwidth of the 300 kHz bandwidth. The impulse bandwidth should be  $300.00 \pm 30.00$  kHz.
- 23. Key in (RES BW) 10 kHz, [FREQUENCY SPAN] 20 kHz, [PEAK SEARCH), and (MKR  $\rightarrow$  CF). If necessary, readjust by pressing

[REFERENCE LEVEL] and using the DATA knob to place the signal peak near the top of the graticule.

- 24. Press MARKER OFF, then MARKER (al.
- 25. Using the DATA knob, adjust the marker down one side of the displayed signal to the 7.3 dB point; CRT MKR annotation indicates 0.430 X.
- 26. Adjust A4A9R65 10 kHz for MKR A indication of 5.00 kHz while maintaining the marker at 0.430 X using the DATA knob. Refer to Figure 4-8 for the adjustment location.
- 27. Press MARKER (a). Adjust the marker to the 7.3 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X).
- 28. The CRT MKR A annotation now indicates the impulse bandwidth of the 10 kHz bandwidth. The impulse bandwidth should be 10.0 fl.O kHz
- 29. Key in <u>(RES BW)</u> 3 kHz, <u>[FREQUENCY SPAN]</u> 5 kHz, <u>[PEAK SEARCH]</u>, and <u>(MKR  $\rightarrow$  CF</u>). If necessary, readjust by pressing <u>[REFERENCE LEVEL</u>) and using the DATA knob to place the signal peak near the top of the graticule.
- 30. Press MARKER  $\bigcirc$ FF and MARKER  $\triangle$ .
- 31. Using the DATA knob, adjust the marker down one side of the displayed signal to the 7.3 dB point; CRT MKR A annotation indicates 0.430 X.
- 32. Adjust A4A9R66 3 kHz for MKR A indication of 1.5 kHz while maintaining the marker at 0.430 X using the DATA knob. Refer to Figure 4-8 for the adjustment location.
- 33. Press MARKER In]. Adjust the marker to the 7.3 dB point on the opposite side of the signal (CRT MKR A annotation indicates 1.00 X).
- 34. The CRT MKR  $\triangle$  annotation now indicates the impulse bandwidth of the 3 kHz bandwidth. The impulse bandwidth should be 3.00  $\pm$ 0.30 kHz

# **Option 857**

## Introduction

This chapter contains a modified performance test for Option 857 instruments. When working on Option 857 instruments, substitute the procedure in this chapter for the standard version contained in Chapter 2. The procedure included in this chapter is listed below:

Performance Tests Test 12, Amplitude Fidelity Test......2-43

### 12. Option 857 Amplitude Fidelity Test

### Related Adjustment Log Amplifier Adjustments

**Specification** Log:

Incremental

fO.1 dB/dB over 0 to 80 dB display

Cumulative

3 MHz to 30 Hz Resolution Bandwidth:  $\leq \pm 0.6 \text{ dB max}$  over 0 to 70 dB display (20 - 30°C).  $\leq \pm 1.5 \text{ dB max}$  over 0 to 90 dB display 10 Hz Resolution Bandwidth:  $\leq \pm 0.8 \text{ dB max}$  over 0 to 70 dB display (20 - 30°C).  $\leq \pm 2.1 \text{ dB max}$  over 0 to 90 dB display

Linear:

 $\pm 3\%$  of Reference Level for top 9-1/2 divisions of display

**Description** Amplitude fidelity in log and linear modes is tested by decreasing the signal level to the spectrum analyzer in 10 dB steps with a calibrated signal source and measuring the displayed amplitude change with the analyzer's MARKER A function.



Figure 5-1. Option 857 Amplitude Fidelity Test Setup

| Equipment | Frequency Synthesizer          | . HP 3335A   |
|-----------|--------------------------------|--------------|
| ••        | Adapter, Type N (m) to BNC (f) | HP 1250-0780 |
|           | (2) BNC to BNC cable           | . HP 10503A  |

#### **Procedure** Log Fidelity

- 1. On the spectrum analyzer, connect the CAL OUTPUT to INPUT 2. Press (RECALL) (9) and adjust the FREQ ZERO pot for maximum amplitude.
- 2. Press [INSTR PRESET] on the analyzer. Key in analyzer settings as follows:

| (CENTER FREQUENCY] | .20 MHZ         |
|--------------------|-----------------|
| [FREQUENCY SPAN]   | . 50 kHz        |
| (REFERENCE LEVEL)  | + 10 <b>dBm</b> |

- 3. Set the frequency synthesizer for an output frequency of 20.000 MHz and an output power level of + 10 dBm. Set the amplitude increment for 10 dB steps.
- 4. Connect equipment as shown in Figure 5-1.
- 5. Press MARKER [PEAK SEARCH], (MKR  $\rightarrow$  CF), (MKR  $\rightarrow$  REF LVL) to center the signal on the display.
- 6. Press SWEEP SINGLE on the spectrum analyzer and wait for the sweep to be completed.
- 7. Press MARKER [PEAK SEARCH), MARKER In].
- 8. Step the frequency synthesizer output amplitude down 10 dB.
- 9. On the spectrum analyzer, press SWEEP (SINGLE) and wait until the sweep is completed. Press MARKER [PEAK SEARCH), and record the marker A amplitude (a negative value) in column 2 of Table 5-1.
- 10. Repeat steps 8 and 9, decreasing the output power from the frequency synthesizer in 10 dB steps from -10 dBm to -80 dBm.
- 11. Subtract the value in column 1 from the value in column 2 for each setting to find the fidelity error.

#### 12. Option 857 Amplitude Fidelity Test

| Frequency<br>Synthesizer<br>Amplitude<br>(dBm) | 1<br>Calibrated<br>Amplitude<br>Step | 2<br>MARKER A Amplitude<br>( <b>dB)</b> | Fidelity Error<br>(Column 2 - Column 1)<br>( <b>dB)</b> | Cumulative<br>Error<br>0 to 80 dB<br>(dB) | Cumulative<br>Error<br>0 to 90 <b>dB</b><br>( <b>dB</b> ) |
|------------------------------------------------|--------------------------------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| + 10 0                                         | (ref)                                | 0 (ref)                                 | 0 (ref)                                                 |                                           |                                                           |
| 0                                              | -10                                  |                                         |                                                         |                                           | _                                                         |
| -10                                            | -20                                  |                                         |                                                         |                                           |                                                           |
| -20                                            | -30                                  |                                         |                                                         |                                           |                                                           |
| -30                                            | -40                                  |                                         |                                                         |                                           |                                                           |
| -40                                            | -50                                  |                                         |                                                         |                                           |                                                           |
| -50                                            | -60                                  |                                         |                                                         |                                           |                                                           |
| -60                                            | -70                                  |                                         |                                                         |                                           |                                                           |
| -70                                            | -80                                  |                                         |                                                         |                                           |                                                           |
| -80                                            | -90                                  |                                         |                                                         | $\leq \pm 1.0 \text{ dB}$                 | <u>≤</u> ±1.5 dB                                          |

 Table 5-1. Log Amplitude Fidelity (10 Hz RBW; Option 857)

12. Subtract the greatest negative fidelity error from the greatest positive fidelity error for calibrated amplitude steps from -10 dB to -70 dB. The results should be  $\leq \pm 0.8$  dB.

#### \_ dB

13. Subtract the greatest negative fidelity error from the greatest positive fidelity error for calibrated amplitude steps from -10 dB to -90 dB. The results should be  $\leq \pm 2.1$  dB.

#### \_\_\_\_ dB

- 14. Set the frequency synthesizer for output amplitude to + 10 dBm.
- 15. Key in the following analyzer settings:

| (FREQUENCY SPAN)100 | kHz |
|---------------------|-----|
| RES BW              | kHz |
| SWEEP CONT          |     |

- 16. Press MARKER [PEAK SEARCH], (MKR $\rightarrow$ CF), (MKR $\rightarrow$ REF LVL) to center the signal on the display.
- 17. Key in the following analyzer settings:

| FREQUENCY | <br>Hz |
|-----------|--------|
| VIDEO BW  | <br>Hz |

- 18. Press MARKER A. Step the frequency synthesizer output amplitude from + 10 dBm -80 dBm in 10 dB steps, noting the MARKER A amplitude (a negative value) at each step and recording it in column 2 of Table 5-2. Allow several sweeps after each step for the video filtered trace to reach its final amplitude.
- 19. Subtract the value in column 1 from the value in column 2 for each setting to find the fidelity error.

20. Subtract the greatest negative fidelity error from the greatest positive fidelity error for calibrated amplitude steps from -10 dB to -70 dB. The results should be  $\leq 0.6$  dB.

\_\_\_\_ dB

21. Subtract the greatest negative fidelity error from the greatest positive fidelity error for calibrated amplitude steps from -10 dB to -90 dB. The results should be  $\leq 1.5$  dB.

\_\_\_\_\_ dB

| Table 5-2. Log Amplitude | Fidelity (1 | 10 kHz RBW; Oj | ption 857) |
|--------------------------|-------------|----------------|------------|
|--------------------------|-------------|----------------|------------|

| Frequency<br>Synthesizer<br>Amplitude<br>(dBm) | 1<br>Calibrated<br>Amplitude<br>Step | 2<br>MARKER A Amplitude<br>( <b>dB</b> ) | Fidelity Error<br>(Column 2 - Column 1)<br>( <b>dB</b> ) | Cumulative<br>Error<br>0 to 80 <b>dB</b><br>( <b>dB</b> ) | Cumulative<br>Error<br>0 to 90 dB<br>(dB) |
|------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| +10                                            | 0 (ref)                              | 0 (ref)                                  | 0 (ref)                                                  |                                                           |                                           |
| 0                                              | -10                                  |                                          |                                                          |                                                           |                                           |
| -10                                            | -20                                  |                                          |                                                          |                                                           |                                           |
| -20                                            | -30                                  |                                          |                                                          |                                                           |                                           |
| -30                                            | -40                                  |                                          |                                                          |                                                           |                                           |
| -40                                            | -50                                  |                                          |                                                          |                                                           |                                           |
| -50                                            | -60                                  |                                          |                                                          |                                                           |                                           |
| -60                                            | -70                                  |                                          |                                                          |                                                           |                                           |
| -70                                            | -80                                  |                                          |                                                          |                                                           |                                           |
| -80                                            | -90                                  |                                          |                                                          | $\leq \pm 1.0 \text{ dB}$                                 | $\leq \pm 1.5 \text{ dB}$                 |

Linear Fidelity

22. Key in analyzer settings as follows:

| (VIDEO BW)       | 300 Hz        |
|------------------|---------------|
| (FREQUENCY SPAN) | 20 kHz        |
| RES BW           | 10 <b>kHz</b> |

- 23. Set the frequency synthesizer for an output power level of + 10 dBm.
- 24. Press SCALE LIN pushbutton. Press MARKER [PEAK SEARCH], (MKR  $\rightarrow$  CF] to center the signal on the display.
- 25. Set (FREQUENCY SPAN) to 0 Hz and (VIDEO BW) to 1 Hz. Press (SHIFT), (AUTO)<sup>A</sup> (resolution bandwidth), MARKER ( $\Delta$ ).
- 26. Decrease frequency synthesizer output amplitude by 10 dB steps, . noting the MARKER A amplitude and recording it in column 2 of Table 5-3.

### 12. Option 857 Amplitude Fidelity Test

| Frequency<br>Synthesizer<br>Amp <u>l</u> itude | MARKER A<br>Amplitude (<br>( <b>dB)</b> |  | Allowable Range<br>(± <b>3</b> % of Reference Level)<br>( <b>dB</b> ) |        |  |
|------------------------------------------------|-----------------------------------------|--|-----------------------------------------------------------------------|--------|--|
| (dBm)                                          | 1                                       |  | Min                                                                   | Max    |  |
|                                                |                                         |  |                                                                       |        |  |
| 0                                              | _                                       |  | -10.87                                                                | -9.21  |  |
| -10                                            | _                                       |  | -23.10                                                                | -17.72 |  |

Table 5-3. Linear Amplitude Fidelity

| Performa<br>Record | nce Test                |            |  |
|--------------------|-------------------------|------------|--|
|                    | Hewlett-Packard Company | Tested by  |  |
|                    | Model HP 8568B          | Report No. |  |
|                    | Serial No               | Date       |  |
|                    | IF-Display Section      |            |  |
|                    | RF Section              |            |  |

### Test 12. Option 857 Amplitude Fidelity Test

Step 9. Log Amplitude Fidelity (10 Hz RBW; Option 857)

| Frequency<br>Synthesizer<br>Amplitude<br>(dBm) | 1<br>Calibrated<br>Amplitude<br>Step | 2<br>MARKER A Amplitude<br>( <b>dB</b> ) | Fidelity Error<br>(Column 2 - Column 1)<br>( <b>dB</b> ) | Cumulative<br>Error<br>0 to 80 dB<br>(dB) | Cumulative<br>Error<br>0 to 90 <b>dB</b><br>( <b>dB</b> ) |
|------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| +10                                            | ) (ref)                              | 0 (ref)                                  | 0 (ref)                                                  |                                           |                                                           |
| 0                                              | -10                                  |                                          |                                                          |                                           |                                                           |
| -10                                            | -20                                  |                                          |                                                          |                                           |                                                           |
| -20                                            | -30                                  |                                          |                                                          |                                           |                                                           |
| -30                                            | -40                                  |                                          |                                                          |                                           |                                                           |
| -40                                            | -50                                  |                                          |                                                          |                                           |                                                           |
| -50                                            | -60                                  |                                          |                                                          |                                           |                                                           |
| -60                                            | -70                                  |                                          |                                                          |                                           |                                                           |
| -70                                            | -80                                  |                                          |                                                          |                                           |                                                           |
| - 80                                           | -90                                  |                                          |                                                          | $\leq \pm 1.0 \text{ dB}$                 | $\leq \pm 1.5 \text{ dB}$                                 |

### Step 18. Log Amplitude Fidelity (10 kHz RBW; Option 857)

| Frequency<br>Synthesizer<br>Amplitude<br>( <b>dBm</b> ) | 1<br>Calibrated<br>Amplitude<br>Step | 2<br>MARKER A Amplitude<br>( <b>dB</b> ) | Fidelity Error<br>(Column 2 - Column 1)<br><b>(dB)</b> | Cumulative<br>Error<br>0 to 80 dB<br>(dB) | Cumulative<br>Error<br>0 to 90 <b>dB</b><br>( <b>dB</b> ) |
|---------------------------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| +10                                                     | <b>0</b> (ref)                       | 0 (ref)                                  | 0 (ref)                                                |                                           |                                                           |
| 0                                                       | -10                                  |                                          |                                                        |                                           |                                                           |
| -10                                                     | -20                                  |                                          |                                                        |                                           |                                                           |
| -20                                                     | -30                                  |                                          |                                                        |                                           |                                                           |
| -30                                                     | -40                                  |                                          |                                                        |                                           |                                                           |
| -40                                                     | - 5 0                                |                                          |                                                        |                                           |                                                           |
| - 5 0                                                   | -60                                  |                                          |                                                        |                                           |                                                           |
| -60                                                     | -70                                  |                                          |                                                        |                                           |                                                           |
| -70                                                     | -80                                  |                                          |                                                        |                                           |                                                           |
| -80                                                     | -90                                  |                                          |                                                        | <u>≤</u> ±1.0 dB                          | $\leq \pm 1.5 \text{ dB}$                                 |

### Test 12. Option 857 Amplitude Fidelity Test

| Frequency<br>Synthesizer<br>Amplitude | MARKER A<br>Amplitude<br><b>(dB)</b> | Allowable Range<br>(±3% of Reference Level)<br>(dB) |        |  |  |  |  |  |  |  |  |
|---------------------------------------|--------------------------------------|-----------------------------------------------------|--------|--|--|--|--|--|--|--|--|
| (dBm)                                 |                                      | Min                                                 | Max    |  |  |  |  |  |  |  |  |
|                                       |                                      |                                                     |        |  |  |  |  |  |  |  |  |
| 0                                     |                                      | <b>-</b> 10.87                                      | -9.21  |  |  |  |  |  |  |  |  |
| -10                                   |                                      | -23.10                                              | -17.72 |  |  |  |  |  |  |  |  |

Step 26. Linear Amplitude Fidelity

# **Major Assembly and Component Locations**

| 1 | Assembly   | See | Fig   | ure |
|---|------------|-----|-------|-----|
|   | A1A1       |     | ••    | 6-6 |
|   | A1A2       |     | 6-4,  | 6-5 |
|   | A1A3       |     | 6-4,  | 6-5 |
|   | A1A4       |     |       | 6-4 |
|   | A1A5       |     |       | 6-4 |
|   | A1A6       |     | 6-4,  | 6-5 |
|   | A1A7       |     | 6-4,  | 6-5 |
|   | A1A8       |     | 6-4,  | 6-5 |
|   | A1A9       |     | 6-4,  | 6-5 |
|   | A1A10      |     |       | 6-7 |
|   | A1A10C1    | • • | 6-4,  | 6-5 |
|   | A1A10C2    |     | 6-4,  | 6-5 |
|   | A1A10C3    | • • | 6-4,  | 6-5 |
|   | A1A10C4    | • • | 6-4,  | 6-5 |
|   | A1A11      |     |       | 6-4 |
|   | A1T1       | 6-4 | , 6-5 | 6-7 |
|   | A1V1 6-4,  | 6-5 | 6-6,  | 6-7 |
|   | A3A1       |     | 6-4,  | 6-5 |
|   | A3A2       |     | 6-4,  | 6-5 |
|   | A3A4       |     | 6-4,  | 6-5 |
|   | A3A5       |     | 6-4,  | 6-5 |
|   | A3A6       |     | 6-4,  | 6-5 |
|   | A3A7       |     | 6-4,  | 6-5 |
|   | A3A8       |     | 6-4,  | 6-5 |
|   | A3A9       |     | 6-4,  | 6-5 |
|   | A3A10      |     |       | 6-7 |
|   | A4A1       |     | 6-4,  | 6-5 |
|   | A4A2       |     | 6-4,  | 6-5 |
|   | A4A3       |     | 6-4,  | 6-5 |
|   | A4A4       |     | 6-4,  | 6-5 |
|   | A4A5       |     | 6-4,  | 6-5 |
|   | A4A6       |     | 6-4,  | 6-5 |
|   | A4A7       |     | 6-4,  | 6-5 |
|   | A4A8       |     | 6-4,  | 6-5 |
|   | A4A9       |     | 6-4,  | 6-5 |
|   | A4A10      |     |       | 6-7 |
|   | W1         |     |       | 6-6 |
|   | W2         |     |       | 6-6 |
|   | W3         |     |       | 6-6 |
|   | W6         |     |       | 6-4 |
|   | W7         |     |       | 6-4 |
|   | W8         |     | 6-6.  | 6-7 |
|   | <b>W</b> 9 |     |       | 6-6 |
|   | W21        |     | 6-4,  | 6-5 |

W23 .....

## IF-Display Section Figure Index

6-7

| W24 | <br>6-7 |
|-----|---------|
| W25 | <br>6-7 |
| W26 | <br>6-7 |
| W27 | <br>6-7 |
| W28 | <br>6-7 |
| W29 | <br>6-7 |
| W32 | <br>6-7 |

| <b>RF Section Figure</b> | Assembly | See Figure |
|--------------------------|----------|------------|
| Index                    | A5A1J1   |            |
| muex                     | A5A1     |            |
|                          | A5A2     | 6-2        |
|                          | A5A3     | 6-2        |
|                          | A5A4     | 6-2        |
|                          | A5A5     | 6-2        |
|                          | A5AT1    | 6-2        |
|                          | A5J1     | 6-3        |
|                          | A5J3     | 6-3        |
|                          | A5J4     | 6-3        |
|                          | A5K1     | 6-2        |
|                          | A5R1     | 6-2        |
|                          | A5S1     | 6-2. 6-3   |
|                          | A6       | 6-3        |
|                          | A7       | 6-3        |
|                          | A8       | 6-3        |
|                          | A9       | 6-3        |
|                          | A10      | 6-3        |
|                          | All      | 0-3        |
|                          | A12      | 0-3        |
|                          | A10      | 0-3        |
|                          | A10      | 0-3        |
|                          | A17      | 0-3        |
|                          | A10      | 0-J<br>6-3 |
|                          | A20      | 0-3<br>6-3 |
|                          | A21      |            |
|                          | A22      | 6-3        |
|                          | A23A1    | 6-2        |
|                          | A23A2    | 6-2        |
|                          | A23A3    | 6-2        |
|                          | A23      | 6-3        |
|                          | A23A1    | 6-3        |
|                          | A23A2    | 6-3        |
|                          | A23A3    | 6-3        |
|                          | A23A4    | 6-3        |
|                          | A23A5    | 6-3        |
|                          | A23A6    | 6-3        |
|                          | A23AT1   | 6-3        |
|                          | A23AT2   | 6-3        |
|                          | A26      | 6-1        |
|                          | A26F1    | 6-3        |

| A26F        | 2          |   |    |   |       |   |     | • | • |   |   | •   |       |   |       |   |     |     |   |     |     |   | •   |     |   |   |     |   |   |   | <br>    |      | 6-3 |
|-------------|------------|---|----|---|-------|---|-----|---|---|---|---|-----|-------|---|-------|---|-----|-----|---|-----|-----|---|-----|-----|---|---|-----|---|---|---|---------|------|-----|
| A26F        | 3          |   |    |   |       |   |     | • | • |   |   | •   |       |   |       |   |     |     |   | •   |     |   | •   |     |   |   | • • |   |   |   | <br>    |      | 6-3 |
| A26F        | 4          |   |    |   |       |   |     | • | • |   |   | •   |       |   |       |   |     |     |   | •   |     |   | •   |     |   |   | • • |   |   |   | <br>    |      | 6-3 |
| A26F        | 5          |   |    |   |       |   |     | • | • |   |   | •   |       |   |       |   |     |     |   | •   |     |   | •   |     |   |   | • • |   |   |   | <br>    | •    | 6-3 |
| A26Q        | )1         |   |    |   |       |   |     | • | • |   |   | •   |       |   |       |   |     |     |   | •   |     |   | •   |     |   |   | • • |   |   |   | <br>    |      | 6-3 |
| A26G        | )2         | • |    |   |       | • |     | • | • |   | • | •   |       | • |       | • |     |     |   | •   |     |   | •   |     | • | • | • • |   | • |   | <br>    | •    | 6-3 |
| A26Q        | 3          | • |    |   |       | • |     | • | • |   | • | •   | <br>• | • | <br>• | • | • • |     | • | •   |     | • | •   |     | • | • | • • |   | • | • | <br>• • | •    | 6-3 |
| A26G        | <u>)</u> 4 | • |    |   |       | • |     | • | • |   | • | •   |       | • |       | • |     |     |   | •   |     |   | •   |     | • |   | • • |   |   |   | <br>    | •    | 6-3 |
| A26Q        | )5         | • |    | • | <br>• | • |     | • | • |   | • | •   | <br>• | • | <br>• | • |     |     |   | •   |     |   | •   |     | • | • | • • |   | • |   | <br>• • | •    | 6-3 |
| A26U        | J1         |   |    | • | <br>• |   | • • | • |   |   |   |     | <br>• |   | <br>• |   | • • |     | • | •   |     |   | •   |     |   |   | •   |   |   | • | <br>    | •    | 6-3 |
| A27         |            | • |    | • |       | • |     |   |   | • | • | • • | <br>• | • | <br>• | • |     | •   | • |     | •   | • |     | • • | • | • |     | • |   | • | (       | 5-2, | 6-3 |
| C1 .        |            | • |    | • | <br>• |   |     | • |   | • |   |     | <br>• | • | <br>• | • |     | •   |   |     | •   | • |     | •   | • | • |     | • | • | • | (       | 5-1, | 6-3 |
| C2 .        |            | • |    | • | <br>• |   |     | • |   | • |   |     | <br>• | • | <br>• | • |     | •   |   |     | •   | • |     | •   | • | • |     | • | • | • | (       | 5-1, | 6-3 |
| C3 .        |            | • |    | • | <br>• |   |     | • |   | • |   |     | <br>• | • | <br>• | • |     | •   |   |     | •   | • |     | •   | • | • |     | • | • | • | (       | 5-1, | 6-3 |
| C4.         |            | • |    | • | <br>• |   |     | • |   | • |   |     | <br>• | • | <br>• | • |     | •   |   |     | •   | • |     | •   | • | • |     | • | • | • | (       | 5-1, | 6-3 |
| C5 .        |            | • |    | • | <br>• | • |     | • |   | • |   |     |       | • |       | • |     | •   |   |     | •   |   |     | •   | • | • |     | • |   |   | (       | 5-1, | 6-3 |
| FL1         |            |   |    |   |       |   |     |   |   | • |   |     |       | • |       | • |     | •   |   |     |     |   |     | •   | • | • |     | • |   | • | (       | 5-4, | 6-5 |
| T1 .        |            |   |    |   |       |   |     |   |   | • |   |     |       | • |       | • |     | •   |   |     |     |   |     | •   | • | • |     | • |   | • |         |      | 6-3 |
| W1          |            | • |    |   |       | • |     |   | • |   |   | •   |       |   |       |   |     |     |   | • • |     |   | •   |     |   | • |     |   |   |   | <br>•   |      | 6-2 |
| <b>W</b> 2  |            | • |    |   |       | • |     |   | • |   |   | •   |       |   |       |   |     |     |   | • • |     |   | •   |     |   | • |     |   |   |   | <br>•   |      | 6-2 |
| W3          |            | • |    |   |       | • |     |   | • |   |   | •   |       |   |       |   |     |     |   | • • |     |   | •   |     |   | • |     |   |   |   | <br>•   |      | 6-2 |
| W14         |            | • |    |   |       | • |     |   | • |   |   | •   |       |   |       |   |     |     |   | • • |     |   | •   |     |   | • |     |   |   |   | <br>•   |      | 6-2 |
| <b>W</b> 42 |            | • |    |   |       | • |     |   | • |   |   | •   |       |   |       |   |     | ••• |   | • • |     |   | •   |     |   | • |     |   |   |   | <br>•   |      | 6-2 |
| W43         | • •        | • | •• | • | <br>• | • |     | • | • |   | • | •   | <br>• | • | <br>• | • |     | ••  | • | • • | • • | • | • • | ••  | • | • |     |   | • | • | (       | 6-1, | 6-2 |



Figure 6-1. RF Section, Top View



Figure 6-2. RF Section, Front View



Figure 6-3. RF Section, Bottom View



Figure 6-4. IF Section, Top View (SN 3001A and Below)



Figure 6-5. IF Section, Top View (SN 3004A and Above)



Figure 6-6. IF Section, Front View



Figure 6-7. IF Section, Bottom View