

OPERATING AND SERVICE MANUAL

8671A SYNTHESIZER

(Including Options 002, 003 and 005)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1704A.

With the changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 1701A, 1702A, and 1703A.

For additional important information about serial numbers, see INSTRUMENT COVERED BY MANUAL in Section I.

© HEWLETT-PACKARD COMPANY 1977, 1978
1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U. S. A.

MANUAL PART NO. 08671-90006

Operating Information Supplement Part No. 08671-90007

Microfiche Part No. 08671-90008

Printed: MAY 1978

COPYRIGHT AND DISCLAIMER NOTICE

Copyright – Agilent Technologies, Inc. Reproduced with the permission of Agilent Technologies Inc. Agilent Technologies, Inc. makes no warranty of any kind with regard to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies, Inc. is not liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material or data.

MANUAL CHANGES

MANUAL IDENTIFICATION -

Model Number: 8671A Date Printed:

May 1978

Part Number:

08671-90006

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections

Make all appropriate serial number related changes indicated in the tables below.

SYNTHESIZER

Serial Prefix or Number	Make Manual Changes
1705A	1 .
1706A	1, 2
1751A	1, 2, 3
1819A	1 through 4
1834A	1 through 5
1841.A	1 through 6

Serial Prefix or Number	Make Manual Changes
1845A	1 through 7
1904A	1 through 8
1905A	1 through 9
▶1913A	1 through 10
<u> </u>	

NEW ITEM

ERRATA

Page 1-4, Paragraph 1-42:

Add: If the instrument rack mounting slides are to be mounted in a standard E.I.A. rack, then an adapter (HP part number 1494-0023) is needed. The slides without the adapter can be directly mounted in the Hewlett-Packard system enclosures.

▶ Page 4-14, PROCEDURE, Step 4:

Change in the last sentence 0.17 Vrms to 0.017 Vrms.

► Page 4-23, Paragraph 4-23, DESCRIPTION:

Change in the first sentence, 100 MHz OUT to 10 MHz OUT.

Page 5-9, PROCEDURE, Step 7 (Table of A3A1A2L4 Inductor Values):

Change the HP part number of the .68 μH inductor to 9140-0141.

► Page 8-43, Figure 8-35, (Service Sheet 3-A2):

Page 8-51, Figure 8-47 (Service Sheet 7-A2):

Delete, on A2A10U25, the connections between pins 1 and 2, 3 and 4, 5 and 6, 7 and 12. Show pins 2, 4, 5, and 12 as no connection (NC).

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

27 March 1979 8 Pages

ERRATA (Cont'd)

Page 8-59, Figure 8-59 (Service Sheet 11-A2):

Change label on P/O A2A8U17 pin 11 to DAC 3200 MHz and label pin 12 NDAC 4800 MHz Change mnemonics on connections between P/O A2A12 and P/O A3A10:

NO to N1 (XA2A8B pin 28 and P/O J4 pin 7)

N1 to N2 (XA2A8B pin 27 and P/O J4 pin 37)

N2 to N3 (XA2A8C pin 4 and P/O J4 pin 8)

N3 to N4 (XA2A8C pin 6 and P/O J4 pin 38)

N4 to N5 (XA2A8B pin 26 and P/O J4 pin 9)

N5 to N6 (XA2A8B pin 14 and P/O J4 pin 39)

DAC 1600 MHz to DAC 3200 MHz (XA2A8B pin 29 and P/O J4 pin 22)

DAC 3200 MHz to DAC 4800 MHz (XA2A8B pin 13 and P/O J4 pin 52).

Page 8-74, Figure 8-81:

Change the adjustment A3A5R18 to 3.2 GHz.

Page 8-75, Figure 8-83 (Service Sheet 6-A3):

Change labels on P/O A3A10 XA3A5 pin 7 to DAC 4800 MHz and pin 8 to DAC 3200 MHz.

Page 8-81, Figure 8-92 (Service Sheet 9-A3):

Change the output pin numbers of A3A9A4U5, pin 12 should be pin 3 and pin 3 should be pin 12.

CHANGE 1

Page 6-21, Table 6-3:

Add A3A1A1C4 0160-3879 CD 7 CAPACITOR-FXD 0.01 UF ±20% 100 WVDC CER.

Page 8-65, Figure 8-68 (Service Sheet 1-A3):

Add A3A1A1C4 0.01 UF, connected in parallel with A3A1A1C1.

CHANGE 2

Page 6 -29, Table 6-3:

Change A3A1A5Q5, Q6, Q8 and Q9 to 1854-0546 CD 1 TRANSISTOR NPN SI TO-72 PD=200 MW FT = 1 GHz.

Page 8-73, Figure 8-80 (Service Sheet 5-A3):

Change the part number of A3A1A5Q5, Q6, Q8 and Q9 to 1854-0546.

CHANGE 3

Page 6-5, Table 6-3:

Add the following components to the A1A1 Assembly:

C4 0180-1746 CD 5 CAPACITOR-FXD 15 UF ±10% 20 VDC TA.

C5, C6 0160-4084 CD 8 CAPACITOR-FXD 0.1 UF ±20% 50 VDC CER.

C7 0180-0197 CD8 CAPACITOR-FXD 2.2 UF $\pm 10\%$ 20 VDC TA.

C8, C9 0160-0174 CD 9 CAPACITOR-FXD 0.47 UF +80% -20% 25 VDC CER.

CR4 1901-0535 CD 9 DIODE SCHOTTKY.

Q13 1854-0019 CD 3 TRANSISTOR NPN SI TO-18 PD = 360 MW.

R27 0698-3399 CD 5 RESISTOR 133 1% .5W F TC = 0 ± 100 .

R28 0757-0418 CD 9 RESISTOR 619 1% .125W F TC = 0 ± 100 .

R29 0698-3402 CD 1 RESISTOR 316 1% .5W F TC = 0 ±100.

R30 0757-0416 CD 7 RESISTOR 511 1% .125W F TC = 0 ± 100 .

R31 0757-0401 CD 0 RESISTOR 100 1% .125W F TC = 0 ± 100 .

R32 0757-0442 CD 9 RESISTOR 10K 1% .125W F TC = 0 ± 100 .

R33 0757-0280 CD 3 RESISTOR 1K 1% .125W F TC = 0 ± 100 .

R34 0698-3150 CD 6 RESISTOR 2.37K 1% .125W F TC = 0 ± 100 . R35 2100-1986 CD 9 RESISTOR-TRMR 1K 10% C TOP-ADJ 1-TRN

R36 0757-0420 CD 3 RESISTOR 750 1% .125W F TC = 0 ± 100 .

R37 0757-0424 CD 7 RESISTOR 1.1K 1% .125W F TC = 0 ± 100 .

R38 0698-3442 CD 9 RESISTOR 237 1% .125W F TC = 0 ± 100 .

R39 0698-3455 CD 4 RESISTOR 261K 1% .125W F TC = 0 ±100.

U4 1820-0919 CD 1 IC COMPTR ECL A/D DUAL

U5 1826-0013 CD 8 IC 741 OP AMP TO-99

VR1 1902-3082 CD 9 DIODE-ZNR 4.64V 5% DO-7 PD = .4W TC = -0.028%.

Page 8-37, Figure 8-25;

Change the component location diagram as shown in this supplement (Part of Change 3).

Page 8-37, Figure 8-26, (Service Sheet 1-A1):

Change to the schematic diagram shown in this supplement (Part of Change 3).

CHANGE 3 (Cont'd)

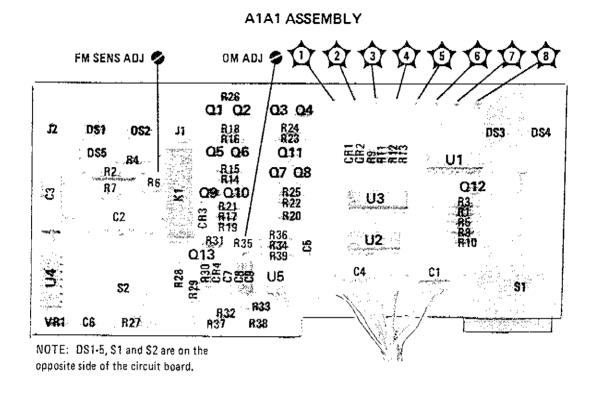


Figure 8-25. A1A1 Front Panel Assembly Component, Adjustment and Test Point Location (Part of Change 3)

CHANGE 4

Page 6-17, Table 6-3:

Change A2A11C18 to 0160-0570 CD 9 CAPACITOR-FXD 220 PF ±20% 100 VDC.

Page 6-21, Table 6-3:

Change A3A1A1C39 to 0160-3454 CD 4 CAPACITOR-FXD 220 PF ±10% 1 KVDC.

Page 6-29, Table 6-3:

Change A3A1A5Q7 to 1854-0546 CD 1 TRANSISTOR NPN SI TO-72 PD = 200 MW.

Page 6-37, Table 6-3:

Change A3A7C23 to 0180-1719 CD 2 CAPACITOR-FXD 22 UF $\pm 10\%$ 25V TA.

Page 6-39, Table 6-3:

Add A3A7R47 0757-0420 CD 3 RESISTOR 750 1% .125W F TC = 0 ±100. Change A3A7R52 to 0757-0420 CD 3 RESISTOR 750 1% .125W F TC = 0 ±100. Change A3A7R73 to 0757-0802 CD 5 RESISTOR 162 1% .5W F TC = 0 ±100. Change A3A7R77 to 0757-0420 CD 3 REISISTOR 750 1% .125W F TC = 0 ±100. Change A3A7R78 to 0757-0802 CD 5 RESISTOR 162 1% .5W F TC = 0 ±100.

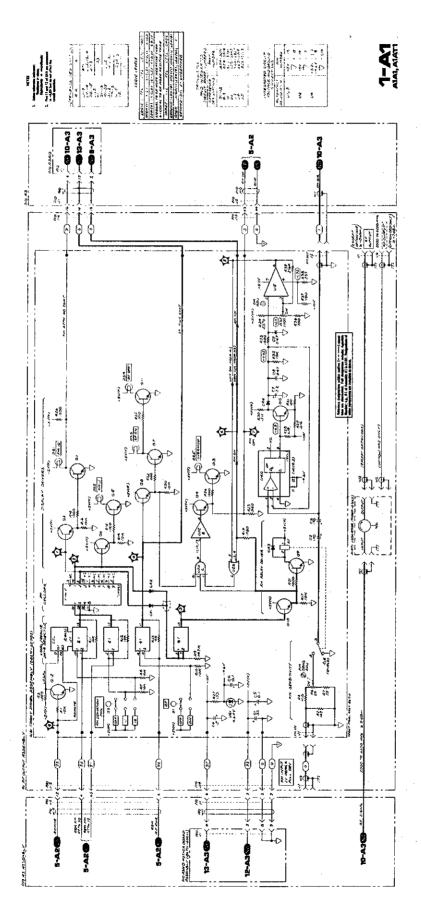


Figure 8-26. A1A1 Front Panel Assembly Schematic Diagram (Part of Change 3)

CHANGE 4 (Cont'd)

Page 8-55, Figure 8-53 (Service Sheet 9-A2): Change C18 to 220 pF.

Page 8-73, Figure 8-80 (Service Sheet 5-A3): Change Q5 to 1854-0546.

Page 8-83, Figure 8-95 (Service Sheet 10-A3):

Add R47, 750. Show the three resistors R47, R52, and R77 as being connected in series. Change R52 and R77 to 750.

Change R73 and R78 to 162 and show as being connected in parallel.

CHANGE 5

Page 6-17, Table 6-3: Change A2A10U24 to 1820-0946 CD4 IC GATE CMOS NOR QUAD 2-INP

Page 8-51, Figure 8-47 (Service Sheet 7-A2):
In the table of Transistor and Integrated Circuit Part Numbers:
Delete U24
Add U24 1820-0946.

CHANGE 6

Page 6-23, Table 6-3:

Change A3A1A2C8 to 0160-2257 CD3 CAPACITOR-FXD 10 PF ±5% 500 VDC CER 0±60.

Page 6-24, Table 6-3: Change A3A1A2L4 to 9100-2254 CD3 COIL-MLD 390 NH 10% Q=35 .095D \times .25LG - NOM.

Page 6-35, Table 6-3:

Change A3A5R13 to 2100-1657 CD1 RESISTOR-TRMR 1K 5% WW SIDE-ADJ 22-TRN. Change A3A5R16 to 0699-0271 CD8 RESISTOR 715 1% .125W F TC=0±100. Change A3A5R52 to 0698-6360 CD6 RESISTOR 10K .1% .125W F TC=0±25. Change A3A5VR1 to 1902-0692 CD1 DIODE-ZNR 6.3V 1% D0-7 PD=.4W TC=+.001%.

Page 6-40, Table 6-3:

Change A3A9J1 through J6 to 1250-0691 CD7 CONNECTOR-RF SMB M SGL-HOLE-FR 50-OHM.

Page 8-67, Figure 8-71 (Service Sheet 2-A3): Change A3A1A2C8 to 10.0 pF. Change A3A1A2L4 to 0.39 μH.

Page 8-75, Figure 8-83 (Service Sheet 6-A3):

Change A3A5VR1 to 6.3V. Change A3A5R13 to 1 k Ω . Change A3A5R16 to 715 Ω . Change A3A5R52 to 10 k Ω .

CHANGE 7

Page 1-2, Table 1-1:

Change, under SPECTRAL PURITY CHARACTERISTICS Single-Sideband Noise (1 Hz BW, CW mode), as shown.

SSB Phase Noise Ratio (in 1 Hz BW, CW mode) at Specified Offset Frequence						
10 Hz	100 Hz	1 kHz	10 kHz	100 kHz		
−58 dB	-70 dB	-78 dB	−86 dB	—110 dB		

Page 4-10, Paragraph 4-18:

Change the SPECIFICATION table as shown in the above table.

Page 4-11, PROCEDURE, step 7:

Change 57.6 to 55.6 dB down.

Page 4-12, PROCEDURE, steps 9, 15, and 17:

Change 60.8 to 62.8 dB down.

Change 61.8 to 58.8 dB down.

Change 71.8 to 72.8 dB down.

Page 4-26, Table 4-3 (Para. No. 4-18):

Change per the following:

Test	t	Results Min.		
10 Hz	58 d B	55.6 dB down		
100 Hz	−70 dB	62.8 dB down		
1 kHz	−78 dB	60.8 dB down		
$10~\mathrm{kHz}$	-86 dB	58.8 dB down		
100 kHz	-110 dB	72.8 dB down		
		I I		

CHANGE 8

Page 6-38, Table 6-3:

Change A3A7Q3 to 1854-0401 CD7 TRANSISTOR NPN SI TO-72 PD-175 mW.

Page 8-83, Figure 8-95:

Change, in the table of TRANSISTOR AND INTEGRATED CIRCUIT PART NUMBERS, Q3 to 1854-0401.

CHANGE 9

Page 6-10, Table 6-3:

Change A2A4R23 to 0757-0819 CD4 RESISTOR 909 1% 0.5W F TC=0 \pm 100.

Page 8-41, Figure 8-32 (Service Sheet 2-A2):

Change R23 to 909Ω .

➤ CHANGE 10

Page 6-40, Table 6-3:

Change A3A9W1 to 86701-20064 CD2.

Change A3A9W2 to 86701-20066 CD4.

Change A3A9W3 to 86701-20065 CD3.

Change under A3A9 MISCELLANEOUS; 86701-00009 to 86701-00058 CD2 DECK YTO PHASE LOCK.

Change A3A9A1 to 0955-0098 CD1 same description.

Page 8-83, Figure 8-95 (Service Sheet 10-A3):

Change A3A9A1 Directional Coupler to 0955-0098.

CONTENTS

Secti	on	Page	Section	n	Page
I	GENERAL INFORMATION	. 1-1	3-38.	Receiving the Trigger Message	3-11
1-1.	Introduction		3-40.	Receiving the Clear Message	
1-7.	Specifications		3-42,	Receiving the Remote Message	
1-9.			3-44.	Receiving the Local Message	3-11
	Instruments Covered by Manual		3-46.	Receiving the Local Lockout Message	
	Manual Change Supplements		3-48.	Receiving the Clear Lockout/Set Local	
	Description			Message	3-12
1-22.	-		3-50.	Receiving the Pass Control Message	
1.25.			3-52,	Sending the Require Service Message	
1-27,			3-54.	Sending the Status Byte Message	
1-30.			3-58.	Sending the Status Bit Message	
1.33	-		3-60.	Receiving the Abort Message	
	Options		3-62.	Programming Quick Reference Guide	
1-36.			3-64.	Programming Examples	
1-40.			J-07.	Trogramming Disamples	0-10
	HP-IB Compatibility		ĮV I	PERFORMANCE TESTS	4-1
	Selecting the HP-IB Address		4-1. J	Introduction , , , , ,	4-1
	Accessories Supplied		4-3, 1	Equipment Required	4.1
	Equipment Required But Not Supplied		4-5, 7	Test Record	4-1
	Equipment Available		4-7.	Calibration Cycle	4-1
1-62.	Recommended Test Equipment	. 1-6		Abbreviated Performance Testing	
II	INSTALLATION	. 2-1		Operational Verification Checks	
2-1.	Introduction			RF Output Level and Flatness	
2-3.	Initial Inspection			Harmonics	
2.5.	Preparation For Use			SWR	
2-6	Power Requirements			FM Accuracy	
2-8.	Line Voltage and Fuse Selection			Non-Harmonically Related Spurious	
2-10.				Power Line Related Spurious	
2-12.		,		Single-Sideband Phase Noise Ratio	
	Selection	9.9		FM Frequency Response	
2-16.				FM Harmonic and Non-Harmonic Distortion	
2-19.	••			Residual FM in FM and CW Modes	
2.21.	· •			Frequency Switching Time	
2-23.				Internal Time Base Aging Rate	
	Storage and Shipment		4-20.	internal Time Dase Aging Nate	7-20
2-26.					
2-28.			V .	ADJUSTMENTS	5-1
2-20,	rackaging	. 4-0	5-1.	Introduction	5-1
III	OPERATION ,	. 3-1	5-5.	Safety Considerations	5-1
3-1.	Introduction	. 3-1	5-7.	Equipment Required	5-1
3-4.	Panel Features	. 3-1	5-11.	Factory Selected Components	5-1
3-6.	Operator's Maintenance , , , , , , , , , , , , , , , , , , ,	, 3-1	5-13.	Related Adjustments	5-1
3-8,	Local Operation			Adjustment Locations	
3-10.				A3 RF Source Assembly Adjustment	
3-12.			5-21 .	Power Supply Adjustments	
	Remote (HP-IB) Operation			10 MHz Reference Oscillator Adjustment	
3-18.			5-23.	Digital-to-Analog Converter Adjustment	
3-21.	• •		5-24	YTO Driver Adjustment	
	Changes	3-8	5-24. 5-25.	Voltage Controlled Crystal Oscillator	'
3-26.			0-20.	(VCXO) Adjustment	5-8
3-28.	_		5-26.	M/N Loop Adjustments	
3-36.	• • • • • • • • • • • • • • • • • • • •		5-27.	YTO Loop Sampler Adjustments	
5 500		~ ^ ^	., 41,	- X-2 march considers stadepositions at the till at the	~

CONTENTS (Cont'd)

Section		Page	Section	Page
	O Loop Offset and FM Overmodulation	5-15	7-7. Instrument Improvements	, 7-3
5-29, YT	O Loop Phase Detector Adjustment		Instructions	. 7-3
5-31. A2 Co	ontroller Assembly Adjustments	5-20	VIII SERVICE	
V	CO Pretune Adjustments	5-20	8-5. Safety Considerations	. 8-1
	'30 MHz (LFS) Loop Divider Bias djustments	5-21	8-11, Principles of Operation	
5-34. A2	A4 Assembly Notch Filter Adjustment Output Assembly FM Sensitivity		8-14. Arrangement in Manual	
	stment	5-24	8-20. Recommended Test Equipment	. 8-5
6-1. Introd6-3. Excha6-5. Abbre6-7. Replac6-11. Order	ACEABLE PARTS luction	. 6-1 . 6-1 . 6-1 . 6-1	8-27. Repair 8-29. Factory Selected Components 8-31. Non-Field Repairable Assemblies 8-33. Module Exchange Program 8-35. After Service Product Safety Checks 8-41. Disassembly and Reassembly Procedures 8-52. Logic Symbols 8-54. Qualifiers 8-56. Indicator Symbols	. 8-5 . 8-5 . 8-6 . 8-6 8-10 8-11
7-1. Introd	UAL CHANGES	. 7-1	8-58. Contiguous Blocks	8-11
7-6. Manua	al Change Instructions	. 7-1	8-64. Complex Devices	8-14

SERVICE SHEETS

	Servic	e Sheet	Page		
	1	Overall Troubleshooting Block Diagram	8-29	12-A2 P/O Front Panel Assembly	8-60
	2	A3 RF Source Assembly	8-30	13-A2 P/O Front Panel Assembly	8-62
	3	A2 Controller Assembly	8-34	1-A3 Reference Phase Lock Assembly	8.64
	1-A1	Al Al Front Panel Assembly	8-36	2-A3 100 MHz VCXO Assembly	8-66
	1-A2	20/30 MHz Divider Assembly	8-38	3-A3 M/N Phase Detector Assembly	8-68
	2-A2	20/30 MHz Phase Detector Assembly	8-40	4-A3 M/N VCO Assembly	8-70
		VCO 160-240 MHz Assembly		5-A3 M/N Output Assembly	8-72
	4-A2	HP-IB Address Assembly	8-44	6-A3 Digital-to-Analog Converter	8-74
		P/O HP-IB Interface Assembly		7-A3 YTO Main Coil Driver	8-76
	6-A2	P/O Interface Assembly	8-48	8-A3 YTO Sampler Assembly	8-78
		Register 1 Assembly		9-A3 YTO Phase Detector Assembly	8-80
		P/O Timing and Control Assembly		10-A3 FM Driver Assembly	8.82
		P/O Timing and Control Assembly		11-A3 Rectifier Assembly	8-84
_		P/O Output Register Assembly		12-A3 Positive Regulator Assembly	
		P/O Output Regsiter Assembly		13-A3 Negative Regulator Assembly	

ILLUSTRATIONS

Figure	1	Page	Figure		Page
1-1. 1-2.	Model 8671A and Accessories Supplied Special Interconnect Cable		5-11,	20/30 MHz Loop Divider Bias Adjustment Test Setup	5-22
	•		5-12.	A2A4 Assembly Notch Filter Adjustment	
2-1. 2-2.	Line Voltage and Fuse Selection		5-13.	Test Setup	5-23 5-24
2-3.	Location of HP-IB Address and		6-1.	A1 Assembly, Front Panel Mechanical Parts	. 6-6
	Parallel Poll Switches ,		6-2.	A2 Assembly, Front Panel Mechanical Parts	
2-4.	Hewlett-Packard Interface Bus Connection	2-5	6-3.	Synthesizer Chassis Parts	6-47
			8-1,	Schematic Diagram Notes	. 8-2
3-1.	Front Panel Connectors, Controls, Switches		8-2.	Rear Panel of the Synthesizer	, 8-7
	and Displays	3-2	8-3.	A2 Assembly Front Panel Fully Extended	. 8-8
3-2.	Rear Panel Controls, Connectors, and	0.0	8-4.	Bottom of the Synthesizer	
	Indicators	3-3	8-5.	A3A9 Assembly in Service Position	8-10
3-3.	Operator's Frequency and Modulation	0.5	8-6.	Qualifiers	
0.4	Checks Test Setup		8-7.	Contiguous Blocks	
3-4.	Frequency Programming	3-10	8-8.	Indicator Symbols	
3-5.	Typical Frequency Switching Time for the		8-9.	AND Dependency Notation	8-13
	8671A Synthesizer Showing Worst Case	1 10	8-10.	OR and Free Dependency Notation	8-13
3-6.	Lock and Settling Times		8-11,	AND Dependency Notation, Coder Example Using Letters	8-13
			8-12.	Common Control Block	8-14
4-1.	Typical Output Power from 8671A		8-13.	Quad D-Type Latch (Individual)	
$4 \cdot 2$.	SWR Test Setup	4-5	8-14.	Quad D-Type Latch (Combined)	8-14
4-3.	FM Accuracy Test Setup	4-7	8-15.	Quad D-Type Latch Example	8-14
4-4.	Power Line Related Spurious Test Setup		8-16.	Multiplexer (AND-OR Selected) Example	8-15
4-5.	Signal-to-Phase Noise Ratio Test Setup 4	1-11	8-17.	Shift Register Example	8-15
4-6.	FM Frequency Response Test Setup 4	1-13	8-18.	Up-Down Counter Example	8-15
4-7.	FM Distortion Test Setup	1-15	8-19.	Synthesizer's Simplified Block Diagram	8-24
4-8.	Residual FM in FM and CW Modes		8-20.	Major Assembly Locations	
	Test Setup		8-21.	Overall Troubleshooting Block Diagram	8-29
4·9. 4·10.	Frequency Switching Time Test Setup 4 Internal Time Base Aging Rate	1-21	8-22.	A3 RF Source Assembly Troubleshooting Block Diagram	8-33
	Test Setup 4	1-24	8-23.	A2 Controller Assembly Troubleshooting	
				Block Diagram	8-35
5-1.	10 MHz Reference Oscillator Adjustment		8-24.	, , ,	8-37
	Test Setup		8-25,	A1A1 Front Panel Assembly Component,	
5-2,	VCXO Adjustment Test Setup			Adjustment, and Test Point Locations	8-37
5-3.	M/N Loop Adjustment Test Setup 5	5-11	8-26.	A1A1 Front Panel Assembly	
5-4.	YTO Loop Sampler Adjustment		_	Schematic Diagram	8-37
	Test Setup 5	5-13	8-27.	A2A5 20/30 MHz Divider Assembly	
5-5.	Typical Swept Frequency Response at			Component, Adjustment and Test Point	
	A3A9A5TP1 (Frequency span per			Location	
	division 20 MHz))-14	8-28	20/30 MHz Divider Block Diagrams	8-39
5 - 6.	YTO Loop Offset and FM Overmodulation		8-29.	20/30 MHz Divider Assembly	
	Adjustment Test Setup			Schematic Diagram	8-39
5-7. 5-8.	YTO Loop Offset Adjustment Waveforms 5 YTO Loop Phase Detector Adjustment	5-16	8-30.	A2A4 20/30 MHz Phase Detector Assembly Component, Adjustment, and Test Point	
	Test Setup	5-17		Locations	
5-9.	Spectrum Analyzer Display of Phase-Locked		8-31.	$20/30\ MHz$ Phase Detector Block Diagrams	8-41
	Loop Gain		8-32.	20/30 MHz Phase Detector Assembly	
5-10.	FM Driver Adjustment Test Setup	5-19		Schematic Diagram	8-41

ILLUSTRATIONS (Cont'd)

Locations	Figure		Page	Figure		Page
Locations	8-33,	A2A3 160-240 MHz Assembly Component		8-66.	A3A1A1 Reference Phase Lock Board	
8-43. VCO 160—240 MHz Block Diagrams 8-43 Locations 8-64 8-35. VCO 160—240 MHz Assembly Schematic Diagram 8-43 8-67. Reference Phase Lock Block Diagrams 8-65 8-36. A2A9 HP-1B Address Assembly Component Locations 8-44 8-69. A3A1A2 100 MHz VCXO Assembly Schematic Diagram 8-65 8-38. HP-1B Address Assembly Schematic Diagram 8-45 Point Locations 8-66 8-39. P/O A2A7 Interface Assembly Component and Test Point Locations 8-46 8-70. 100 MHz VCXO Assembly Schematic Diagram 8-67 8-40. P/O Interface Block Diagrams 8-47 Point Locations 8-68 8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-71 100 MHz VCXO Assembly Schematic Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 8-71 100 MHz VCXO Assembly Schematic Diagrams 8-69 8-44. P/O Interface Block Diagrams 8-49 8-72 A3A1A3 M/N Phase Detector Assembly Schematic Diagrams 8-69 8-44. P/O Interface Block Diagrams 8-49 8-75 A3A1AA2 M/N VCO Board Assembly Co			8-42		Assembly Component and Test Point	
8-35. VCO 160—240 MHz Assembly Schematic Diagram 8-67. Reference Phase Lock Block Diagrams 8-68. 8-36. A2A9 IIP-IB Address Assembly Component Locations 8-44. 8-69. A3A1A2 100 MHz VCXO Assembly 8-65. 8-38. HP-IB Address Block Diagrams 8-45. 8-69. A3A1A2 100 MHz VCXO Assembly 8-66. 8-39. P/O A2A7 Interface Assembly Component and Test Point Locations 8-46. 8-71. 100 MHz VCXO Assembly Schematic Diagram 8-67. 8-41. P/O Interface Block Diagrams 8-47. 8-67. 100 MHz VCXO Assembly Schematic Diagram 8-67. 8-42. P/O Interface Block Diagrams 8-46. 8-71. 100 MHz VCXO Assembly Schematic Diagram 8-67. 8-42. P/O Interface Block Diagrams 8-47. 8-47. A3A1A3 M/N Phase Detector Assembly Component and Test Point Locations 8-68. 8-43. P/O Interface Block Diagrams 8-49. 8-75. A3A1A40A2 M/N Phase Detector Assembly Schematic Diagram 8-69. 8-44. P/O Interface Block Diagrams 8-49. 8-75. A3A1A40A2 M/N VCO Board Assembly Component Adjustment, and Test Point Locations 8-75.	8-43.					8-64
Biggram		——————————————————————————————————————	0.10	8-67		
8-36. A2A9 HP-IB Address Assembly Component Locations 8-44 Locations 8-69 A3A1A2 100 MHz VCXO Assembly 8-65 A3A1A2 100 MHz VCXO Assembly 8-37. HP-IB Address Assembly Schematic Diagram 8-45 Point Locations 8-66 A39 Point Locations 8-67 Point Locations 8-66 A67 Point Locations 8-67 Point Locations 8-67 Point Locations 8-67 Point Locations 8-67 Point Locations 8-68 Point Locations 8-67 Point Locations 8-67 Point Locations 8-67 Point Locations 8-67 Point Locations 8-68 Point Locations 8-67 Point Locations 8-68 Point Locations 8-67 Point Locations 8-68 Point Locations 8-68 Point Locations 8-67 Point Locations 8-68 Point Locations 8-69 Point Locations<	0-00.	•	0.40		· · · · · · · · · · · · · · · · · · ·	0-00
Locations	0.90	•	0-40	0.00.		o et
8-37. HP.IB Address Block Diagrams 8-45 Component, Adjustment, and Test 8-38. HP.IB Address Assembly Schematic Diagram 8-45 Point Locations 8-66 8-39. P/O A2A7 Interface Assembly Component and Test Point Locations 8-46 8-71 100 MHz VCXO Assembly Schematic 8-67 8-40. P/O Interface Block Diagrams 8-47 Diagram 8-67 8-68 8-41. P/O HP.IB Interface Assembly Schematic B-48 8-71 100 MHz VCXO Assembly Schematic 8-67 8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-72 A3A1A3 M/N Phase Detector Assembly Schematic Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 N/N Phase Detector Assembly Schematic Diagram 8-69 8-43. P/O Interface Assembly Schematic Diagrams 8-49 B-70 A3A1A4A2 M/N VCO Board Assembly Schematic Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagrams 8-50 B-70 A3A1A4A2 M/N VCO Board Assembly Component Adaptate Point Locations 8-71 A3A1A4A2 M/N VCO Board Assembly Component Adaptate Point Locations 8-72 A3A1A5A M/N VCO Board Assembly Component Adaptate Point Locations 8-71 B-70 A7N N VCO Assembly Schematic Diagrams 8-71	a-a0.	- "	0.44	0.00		0-00
8-38. HP-IB Address Assembly Schematic Diagram 8-45 Point Locations 8-66 8-39. P/O A2A7 Interface Assembly Component and Test Point Locations 8-46 8-70 100 MHz VCXO Block Diagrams 8-67 8-40. P/O Interface Block Diagrams 8-47 8-47 Diagram 8-67 8-41. P/O HP-IB Interface Assembly Schematic Diagram 8-47 8-72 A3A1A3 M/N Phase Detector Assembly Component and Test Point Locations 8-68 8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-73 M/N Phase Detector Block Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 8-75 A3A1A4 M/N Phase Detector Assembly Schematic Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75 A3A1A4 M/N Phase Detector Assembly Schematic Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75 A3A1A4 M/N Phase Detector Assembly Schematic Diagram 8-69 8-45. A2A10 Register 1 Assembly Schematic Diagram 8-49 8-75 A3A1A4 M/N VCO Board Assembly Schematic Diagram 8-70 8-46. Register 1 Block Diagrams 8-51 8-76 M/N VCO Assembly Schematic Diagram 8-71				o-69.		
8-39. P/O A2A7 Interface Assembly Component and Test Point Locations 8-46 8-70. 100 MHz VCXO Block Diagrams 8-67 8-40. P/O Interface Block Diagrams 8-47 Diagram 8-67 8-41. P/O HP.IB Interface Assembly Schematic Diagram 8-47 A3A1A3 M/N Phase Detector Assembly Component and Test Point Locations 8-68 8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-73. M/N Phase Detector Block Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 8-74. M/N Phase Detector Assembly Schematic Diagram 8-69 8-44. P/O Interface Block Diagrams 8-49 8-75. A3A1A3 A/A2 M/N VCO Board Assembly Component Locations 8-69 8-45. A2A10 Register 1 Assembly Schematic Diagram 8-51 8-75. A3A1A3 A/A2 M/N VCO Board Assembly Component Locations 8-70 8-70 8-46. Register 1 Assembly Schematic Diagram 8-51 8-76 M/N VCO Block Diagrams 8-71 8-47. Register 1 Assembly Schematic Diagram 8-51 8-77 M/N Output Assembly Schematic Diagram 8-71 8-49. P/O Timing and Co		-				
And Test Point Locations		·	8-45			
8-40. P/O Interface Block Diagrams 8-47 Diagram 8-67 8-41. P/O IHP-IB Interface Assembly Schematic Diagram 8-72. A3A1A3 M/N Phase Detector Assembly Component and Test Point Locations 8-68 8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-74. M/N Phase Detector Block Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 8-75. A3A1A4A2 M/N VCO Board Assembly Schematic Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75. A3A1A4A2 M/N VCO Board Assembly Component Locations 8-69 8-45. A2A10 Register 1 Assembly Component Locations 8-50 8-75. A3A1A4A2 M/N VCO Board Assembly Component Adjustment, and Test Point Locations 8-70 8-46. Register 1 Block Diagrams 8-51 8-76. M/N VCO Block Diagrams 8-70 8-47. Register 1 Assembly Schematic Diagram 8-51 8-77. M/N VCO Assembly Schematic Diagram 8-71 8-48. P/O Timing and Control Assembly 8-52 8-79. M/N Output Assembly Component 8-72 8-51. P/O A2A11 Timing and Control Assembly <td>8-39.</td> <td>· ·</td> <td></td> <td>8-70.</td> <td>——————————————————————————————————————</td> <td>8-67</td>	8-39.	· ·		8-70.	——————————————————————————————————————	8-67
8-41. P/O HP-IB Interface Assembly Schematic Diagram 8-47 A3A1A3 M/N Phase Detector Assembly Component and Test Point Locations 8-68 8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-73 M/N Phase Detector Block Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 8-75 M/N Phase Detector Assembly Schematic Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75 A3A1A4A2 M/N VCO Board Assembly Component Locations 8-69 8-45. A2A10 Register 1 Assembly Component Locations 8-50 B-75 A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations 8-69 8-46. Register 1 Block Diagrams 8-51 8-76 M/N VCO Block Diagrams 8-70 8-47. Register 1 Assembly Schematic Diagram 8-51 8-77 M/N VCO Assembly Schematic Diagram 8-71 8-48. P/O Timing and Control Assembly 8-52 8-79 M/N Output Assembly Component Locations 8-72 8-49. P/O Timing and Control Assembly 8-83 8-79 M/N Output Block Diagrams 8-73 8-51. <td< td=""><td></td><td></td><td></td><td>8-71.</td><td></td><td></td></td<>				8-71.		
Diagram	8-40.	P/O Interface Block Diagrams	8-47		Diagram	8-67
8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-73 M/N Phase Detector Block Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 8-74 M/N Phase Detector Assembly Schematic Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75 A3A1A4A2 M/N VCO Board Assembly Component A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations 8-70 A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations 8-70 8-70 A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations 8-70 M/N VCO Block Diagrams 8-70 8-70 M/N VCO Assembly Schematic Diagram 8-71 M/N VCO Assembly Schematic Diagram 8-72 M/N Output Assembly Schematic Diagram 8-73 8-74 M/N Output Block Diagrams 8-73 8-74 M/N Output Assembly Schematic Diagram 8-73 8-80	8-41.	P/O HP-IB Interface Assembly Schematic		8.72,	A3A1A3 M/N Phase Detector Assembly	
8-42. P/O A2A7 Interface Assembly Component Locations 8-48 8-73 M/N Phase Detector Block Diagrams 8-69 8-43. P/O Interface Block Diagrams 8-49 8-74 M/N Phase Detector Assembly Schematic Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75 A3A1A4A2 M/N VCO Board Assembly Component A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations 8-70 A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations 8-70 8-70 A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations 8-70 M/N VCO Block Diagrams 8-70 8-70 M/N VCO Assembly Schematic Diagram 8-71 M/N VCO Assembly Schematic Diagram 8-72 M/N Output Assembly Schematic Diagram 8-73 8-74 M/N Output Block Diagrams 8-73 8-74 M/N Output Assembly Schematic Diagram 8-73 8-80		Diagram , , , ,	8-47		Component and Test Point Locations	8-68
Locations	8.42.	P/O A2A7 Interface Assembly Component		8-73.		
8-43. P/O Interface Block Diagrams 8-49 Diagram 8-69 8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75. A3A1A4Λ2 M/N VCO Board Assembly 8-45. A2A10 Register 1 Assembly Component			8-48			
8-44. P/O Interface Assembly Schematic Diagram 8-49 8-75. A3A1A4A2 M/N VCO Board Assembly 8-45. A2A10 Register 1 Assembly Component	8-43.					8-69
8-45. A2A10 Register 1 Assembly Component Component, Adjustment, and Test Point 8-70 8-46. Register 1 Block Diagrams 8-51 8-76 M/N VCO Block Diagrams 8-71 8-47. Register 1 Assembly Schematic Diagram 8-51 8-77 M/N VCO Assembly Schematic Diagram 8-71 8-48. P/O A2A11 Timing and Control Assembly 8-52 Locations 8-72 8-49. P/O Timing and Control Block Diagrams 8-53 8-79 M/N Output Block Diagrams 8-73 8-50. P/O Timing and Control Assembly Schematic Diagram 8-80 M/N Output Block Diagrams 8-73 8-51. P/O A2A11 Timing and Control Assembly Schematic Diagram 8-80 M/N Output Assembly Schematic Diagram 8-73 8-51. P/O A2A11 Timing and Control Assembly Component, Adjustment, and Test Point Locations 8-74 8-80 M/N Output Assembly Component, Adjustment, and Test Point Locations 8-74 8-52. P/O Timing and Control Assembly Schematic Diagram 8-54 8-82 Diagram 8-75 8-53. P/O Timing and Control Assembly Schematic Diagram 8-55 8-83 Diagram 8-75 </td <td></td> <td>-</td> <td></td> <td>8-75</td> <td></td> <td></td>		-		8-75		
Locations			0.10	0 10.		
8-46. Register 1 Block Diagrams 8-51 8-76. M/N VCO Block Diagrams 8-71 8-47. Register 1 Assembly Schematic Diagram 8-51 8-77. M/N VCO Assembly Schematic Diagram 8-71 8-48. P/O A2A11 Timing and Control Assembly	0-40.		8.50			8.70
8-47. Register 1 Assembly Schematic Diagram 8-51 8-77. M/N VCO Assembly Schematic Diagram 8-71 8-48. P/O A2A11 Timing and Control Assembly	OAR			976		
8-48. P/O A2A11 Timing and Control Assembly Component and Test Point Locations		• –			_ ·	
Component and Test Point Locations		•	8-51		•	0-71
8-49. P/O Timing and Control Block Diagrams	8-48.	·		8-78,		0.50
8-50. P/O Timing and Control Assembly Schematic Diagram						
Diagram	8-49.		8-53	8-79.		
8-51. P/O A2A11 Timing and Control Assembly Component and Test Point Locations 8-54 8-52. P/O Timing and Control Block Diagrams	8-50.	P/O Timing and Control Assembly Schematic		8-80.	M/N Output Assembly Schematic Diagram	8-73
Component and Test Point Locations 8-54 8-82. Digital-to-Analog Converter Block 8-52. P/O Timing and Control Block Diagrams 8-55 B-53. P/O Timing and Control Assembly Schematic Diagram 8-55 8-54. P/O A2A8 Output Register Assembly 8-55 Diagram 8-75 8-55. P/O Output Register Block Diagrams 8-56 Component, Adjustment, and Test Point Locations 8-57 8-56. P/O Output Register Assembly Schematic 8-85. YTO Main Coil Driver Block Diagrams 8-77		Diagram,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8-53	8-81.	A3A5 DAC Assembly Component,	
8-52. P/O Timing and Control Block Diagrams	8-51.	P/O A2A11 Timing and Control Assembly			Adjustment, and Test Point Locations	8-74
8-52. P/O Timing and Control Block Diagrams		Component and Test Point Locations	8-54	8-82,	Digital-to-Analog Converter Block	
8-53. P/O Timing and Control Assembly Schematic Diagram	8-52,				Diagrams	8-75
Diagram	8-53.			8-83.	_	
8-54. P/O A2A8 Output Register Assembly Component and Test Point Locations 8-56 8-55. P/O Output Register Block Diagrams 8-57 8-56. P/O Output Register Assembly Schematic 8-84. A3A6 YTO Main Coil Driver Assembly Component, Adjustment, and Test Point Locations 8-76 8-76 8-8-77			8.55			8-75
Component and Test Point Locations 8-56 Component, Adjustment, and Test Point 8-55. P/O Output Register Block Diagrams 8-57 8-56. P/O Output Register Assembly Schematic 8-85, YTO Main Coil Driver Block Diagrams 8-77	8-54			8.84		
8-55. P/O Output Register Block Diagrams 8-57 Locations 8-76 8-56. P/O Output Register Assembly Schematic 8-85. YTO Main Coil Driver Block Diagrams 8-77			8.56	001,		
8-56. P/O Output Register Assembly Schematic 8-85. YTO Main Coil Driver Block Diagrams 8-77	0.55					8 7G
			0-01	ook	VTO Main Call Daison Block Diagrams	977
1000000000000000000000000000000000000	o-00.		0.57			
·	0 F=		8-57			8-17
8-57. P/O A2A8 Output Register Assembly 8-87. A3A9A5 YTO Sampler Assembly Component	8-57,			8-87.		
Component and Test Point Locations 8-58 Adjustment, and Test Point Locations 8-78					- · · · · · · · · · · · · · · · · · · ·	
8-58. P/O Output Register Block Diagrams 8-59 8-88. YTO Sampler Block Diagrams 8-79			8-59	8-88,	•	8-79
8-59. P/O Output Register Assembly Schematic 8-89. YTO Sampler Assembly Schematic	8-59.	P/O Output Register Assembly Schematic		8-89.	, v	
Diagram			8-59			8-79
8-60. P/O A2A1 Front Panel Assembly Component 8-90. A3A9A4 YTO Phase Detector Assembly	8-60.	P/O A2A1 Front Panel Assembly Component		8-90.	A3A9A4 YTO Phase Detector Assembly	
Locations,		Locations , , ,	8-60		Component, Adjustment, and Test Point	
8-61. P/O Front Panel Block Diagrams 8-61 Locations 8-80	8-61.	P/O Front Panel Block Diagrams	8-61			
8-62. P/O Front Panel Assembly Schematic 8-91. YTO Phase Detector Block Diagrams 8-81	8-62,	P/O Front Panel Assembly Schematic		8-91.	YTO Phase Detector Block Diagrams	8-81
Diagram 8-61 8-92. YTO Phase Detector Assembly Schematic			8-61	8-92.	YTO Phase Detector Assembly Schematic	
8-63. P/O A2A1 Front Panel Assembly Diagram	8-63.				Diagram	8-81
Component Locations		· ·	8-62	8-93.		
8-64. P/O Front Panel Block Diagrams 8-63 Adjustment, and Test Point Locations 8-82	8.64.					
8-65. P/O Front Panel Assembly Schematic 8-94. FM Driver Block Diagrams 8-83				8-94.		
Diagram 8-63 8-95. FM Driver Assembly Schematic Diagram 8-83			8-63	-		

ILLUSTRATIONS (Cont'd)

Figure	1	Page	Figure		Page
8-96.	A3A2 Rectifier Assembly Component		8-109	A2A12 Motherboard Assembly Component	
	Adjustment, and Test Point Locations	8-84		Locations	8-91
8-97.	Rectifier Block Diagrams	8-85	8-110	A3A10 RF Source Motherboard Component	
8-98.	Rectifier Assembly Schematic Diagram	8-85		Locations	8-93
8-99.	A3A3 Positive Regulator Assembly		8-111	. A3A1A6 Reference and M/N Motherboard	
	Component, Adjustment, and			Assembly Component and Connector	
	Test Point Locations	8-86		Locations	8-93
8-100	Positive Regulator Block Diagrams		8-112	. A3 Plug-in Circuit Board Adjustment and	
	Positive Regulator Assembly Schematic			Test Point Locations	8-93
	Diagram	8-87	8-113	. A3A9 Assembly Locations	8-95
8.102	. A3A4 Negative Regulator Assembly			. A3A9 Cable Connections	
0.102	Component and Test Point Locations	8-88		. Major Assembly Locations	
Q 103	Negative Regulator Block Diagrams			. Bottom View Assembly Locations	
	Negative Regulator Assembly Schematic			Major Assembly Locations	
0-104	Diagram	8-89		Top View Assembly Locations	
0 105	Remote Operator's Checks Test Setup			. Top View Chassis Mounted Parts and	
			0-110	Assembly Locations	8-97
	. A1 to A2 Interconnections		9 190	Top View A2 and A3 Assemblies Adjust-	
	. A1 to A3 Interconnections		Q-120	ments and Test Point Locations	8-97
0-100	, Major Assembly Locations	0 01			
		TAR	SLES		
					_
Table		Page	Table		Page
1-1.	Specifications	. 1-2		Factory Selected Components	. 5-2
	Recommended Test Equipment		5-2.	Performance Test Failure and Required	
				Action	
2-1.	USA Standard Code for Information		5-3.	Related Adjustments	. 5-3
	Interchange (ASCII)	. 2-3			
				Part Numbers for Exchange Assemblies	
2.1	Front Panel Features	3-5		Reference Designations and Abbreviations	
	Rear Panel Features			Replaceable Parts	
0-2,	Local Operator's Checks	24	6-4.	Code List of Manufacturers	6-48
3-4.	Local Operating Instructions		7-1.	Manual Changes	. 7-1
	Message Reference Table		7-2.	Summary of Changes by Component	. 7-4
3.6.	Frequency Program Codes and Arguments			•	
3-7.	FM Program Codes and Arguments		8-1.	HP-IB Diagnostic Program	8-16
	RF Output Program Code		8-2.	Front Panel Status Annunciators	
3-9.	Programming Quick Reference Guide	3-16	8-3.	Overall Troubleshooting	
			8-4.	M and N Numbers and Resulting Frequencies	
4-1.	Record of Operational Verification Checks	4.3	8-5	Remote Operator's Check	
	Harmonic Level versus Percentage	, I-U	8-6.	Controller Assembly (A2) Interconnections	
±*4.	Distortion	4.17		Motherboard Assembly (A3A10)	
4.9	Performance Test Record		U-1.	Interconnections	8.93
4-5.	remormance test necord	4-20		Interconnection,	J-00

SAFETY CONSIDERATIONS

GENERAL

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation. This product has been designed and tested in accordance with international standards.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage (refer to Table of Contents).

Indicates hazardous voltages.

Indicates earth (ground) terminal.

SERVICING

WARNINGS

Any servicing, adjustment, maintenance, or repair of this product must be performed only by qualified personnel.

Adjustments described in this manual may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

Capacitors inside this product may still be charged even when disconnected from its power source.

To avoid a fire hazard, only fuses with the required current rating and of the specified type (normal blow, time delay, etc.) are to be used for replacement.

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAU-TION sign until the indicated conditions are fully understood and met.

SAFETY EARTH GROUND

This is a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impared, the product must be made inoperative and be secured against any unintended operation.

BEFORE APPLYING POWER

Verify that the product is configured to match the available main power source per the input power configuration instructions provided in this manual.

If this product is to be energized via an auto-transformer make sure the common terminal is connected to the neutral (grounded side of mains supply).

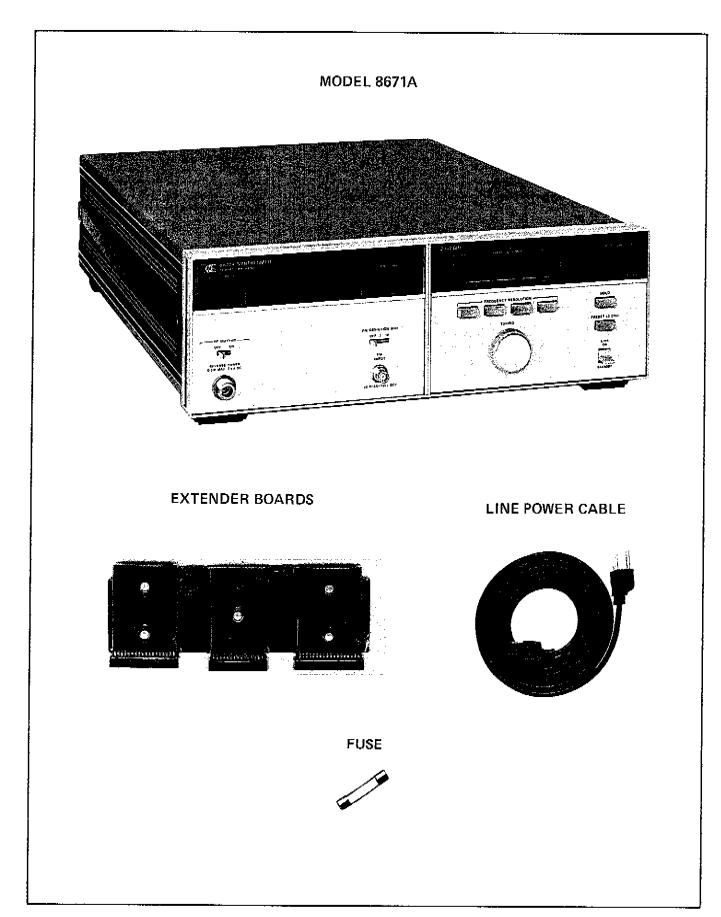


Figure 1-1. Model 8671A and Accessories Supplied

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

- 1-2. This manual contains information pertinent to installing, operating, testing, adjusting, and servicing the Hewlett-Packard Model 8671A Synthesizer. The Model 8671A will generally be referred to as the Synthesizer throughout this manual.
- 1-3. Information pertaining to the Hewlett-Packard Interface Bus (HP-IB) as it relates to the Synthesizer is found in various sections of this manual. Section VIII contains a diagnostic program for checkout of HP-IB functions. A remote Operator's Check is also found in Section VIII.
- 1-4. Figure 1-1 shows the Synthesizer with all supplied accessories.
- 1-5. Packaged with this manual is an Operating Information Supplement. This is simply a copy of the first three sections of this manual. This supplement should stay with the instrument for use by the operator. Additional copies of the Operating Information Supplement may be ordered separately through your nearest Hewlett-Packard office. The part number is listed on the title page of this manual.
- 1-6. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 100 x 150 mm (4- x 6-inch) microfilm transparencies of the manual. Each microfiche contains up to 96 photoduplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-7. SPECIFICATIONS

1-8. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument may be tested.

1-9. SAFETY CONSIDERATIONS

1-10. This product is a Safety Class I instrument (provided with a protective earth terminal). The instrument and manual should be reviewed for safety markings and instructions before operation.

- 1-11. The Synthesizer and all related documentation must be reviewed for familiarization with safety markings and instructions before operation. Refer to the Safety Considerations page found at the beginning of this manual for a summary of the safety information.
- 1-12. Safety information pertinent to the task at hand (installation, operation, performance testing, adjustments, or service) is found throughout this manual.

1-13. INSTRUMENTS COVERED BY MANUAL

- 1-14. Options. Electrical options 002, 003, 005, and various mechanical options are documented in this manual. The differences are noted under the appropriate paragraph such as Options in Section I, the Replaceable Parts List and the schematic diagrams.
- 1-15. Serial Numbers. Attached to this instrument is a serial number plate. The serial number is in the form 1234A00123. The first four digits and the letter comprise the serial prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix(es) as listed under SERIAL NUMBERS on the title page.
- 1-16. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-17. MANUAL CHANGE SUPPLEMENTS

- 1-18. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" that documents the differences.
- 1-19. In addition to change information, the supplement may contain information for correcting

Table 1-1. Specifications (1 of 2)

FREQUENCY CHARACTERISTICS

Range: 2.0 to 6.2 (6.199 999) GH2.

Frequency Accuracy: same as time base.2

Resolution: 1 kHz.

Switching Time (CW Mode):

THE STATE OF THE S

SWITCHING TIME (CW Mode): <15 ms to be within 1 kHz.

Time Base:

Internal: 10 MHz; Aging Rate is \leq 5 x 10^{-10} /day after

30 day warmup. 1,2

External: 5 or 10 MHz; 0.1 to 1 Vrms nominal into

50 ohms.3

Reference Outputs: 10 MHz and 100 MHz, 0.2 Vrms

nominal into 50 ohms.

SPECTRAL PURITY CHARACTERISTICS

Harmonics(up to 18 GHz): <-15 dB.

Spurious (CW mode):

Non-harmonically related: <-70 dB.

Power Line Related and Spurious (Due to fan rotation within 5 Hz below line frequency, and multiples):

Except Option 003 instruments (400 Hz operation)

Power Line Related and Spurious Levels at Frequency Offset (\mathbf{f}_{c}) from Carrier (\mathbf{F}_{c})						
f _o <300 Hz	300 Hz ≤f _o ≤1 kHz	f _o >1 kHz				
-50 dB	-60 dB	−65 dB				

Single-Sideband Noise (1 Hz BW, CW mode):

SSB Phase Noise Ratio (in 1 Hz BW, CW mode) at Specified Offset Frequency								
10 Hz	100 Hz	1 kHz	10kHz	100 kHz				
<i>–</i> €6⁄ dB	<u>_68 d</u> B	-78 dB	–89 dB	-,109 dB				
_£3	-7/)		84	-110				

Option 003 instruments only (400 Hz operation):

Power Line Related and Spurious Levels at Frequency Offset (f _o) from Carrier (F _c)								
f _o <2 kHz	2 kHz ≤f _o ≤8 kHz	f _o >8 kHz						
-40 dB	-50 dB	-65 dB						

RF OUTPUT CHARACTERISTICS

Output Power (unleveled)⁴: >+8 dBm,+15°C to +35°C.

Impedance: 50 ohms.

Flatness: <6 dB total output power level variation with

Source SWR: <1.7.

frequency across band.

¹Reference is kept at operating temperature in STAND-BY mode with the instrument connected to Mains power. For instruments disconnected from Mains power less than 24 hours, the aging rate is $\leq 5 \times 10^{-10}$ /day after a 24 hour warmup.

²Overall accuracy of the internal reference oscillator is a function of the time base calibration \pm aging rate \pm temperature effects \pm line voltage effects. Typical temperature and line voltage effects are $\le 1 \times 10^{-10}$ /°C and $\le 5 \times 10^{-10}$ +5, -10% line voltage change.

³Stability and spectral purity will be partially determined by characteristics of external reference oscillator.

⁴Fox Option 005 instruments, ≥+7 dBm.

Table 1-1. Specifications (2 of 2).

FREQUENCY MODULATION CHARACTERISTICS

Peak Deviation (maximum): 10 MHz or f_{mod} x 5, whichever is smaller.

Rates (3 dB bandwidth typical): 100 kHz range, 50 Hz to 10 MHz; 10 MHz range, 1 kHz to 10 MHz.

Frequency Response (relative to 100 kHz rate): 100 kHz range, ±2.0 dB, 100 Hz to 3 MHz. 10 MHz range, ±2.0 dB, 3 kHz to 3 MHz.

Sensitivity⁵ (peak deviation per Vpk): 50 kHz/V, 100 kHz range. 5 MHz/V, 10 MHz range (maximum input 2 Vpk into 50 ohms nominal).

Harmonic and Non-Harmonic Distortion: 6 <12% for rates <3 kHz, decreasing linearly with frequency to 5% at 20 kHz rate. <5% for 20 to 100 kHz rates.

Residual FM in FM and CW Modes (noise and power line related):

Mode/Range	Residual FM in Post Detection Bandwidth					
	20 Hz—1 kHz	20 Hz-3 kHz				
CW and 100 kHz range	6 Hz—rms	12 Hz-rms				
10 MHz range	10 Hz-rms	20 Hz—rms				

Accuracy Relative to External Input Level (at 100 kHz rate):

 $\pm 7\%$ of range, +15 to +35°C. $\pm 10\%$ of range, 0 to ± 55 °C.

Incidental AM (rates ≤100 kHz): typically 1%.

REMOTE PROGRAMMING CHARACTERISTICS

Frequency: Programmable over full range, 1 kHz

resolution.

Other: RF ON/OFF.

Programming Format: HP-IB (Hewlett-Packard Interface

Frequency Modulation: OFF, 100 kHz; 10 MHz ranges.

GENERAL CHARACTERISTICS

Operating Temperature Range: 0 to 55°C.

Leakage: Meets radiated and conducted limits of MIL-I-6181D.

Power: 100, 120, 220, or 240V, +5%, -10%, 48-66 Hz

300 VA maximum.

Net Weight: 24.0 kg (53 lb).

Dimensions: 613 mmD x 425 mmW x 146 mmH

 $(24-1/8" \times 16-3/4" \times 5-3/4").$

⁵2 Vpk gives maximum deviation on each range. Peak deviation is linearly controlled by varying input level between 0 and 2 Vpk.

⁶ For certain FM modulating frequencies, spurious signals (non-harmonic distortion) may occur. After demodulation in an external FM discriminator, the contribution to distortion of these spurious FM signals is typically less than 0.6%.

 $^{^{7}\}mathrm{For}$ FM rates other than 100 kHz, add FM frequency response specification.

MANUAL CHANGE SUPPLEMENTS (Cont'd)

errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-20. DESCRIPTION

1-21. The HP Model 8671A Synthesizer has a frequency range of 2000 to 6200 MHz. The output level is specified to be greater than +8 dBm. The frequency modulation mode is switch selectable at the front panel. The frequency, modulation and RF on/off can be remotely controlled using the HP-IB programming format.

1-22. Frequency

- 1-23. Frequencies from 2000 to 6199.999 MHz can be tuned from the front panel. Four frequency resolution switches (100 and 1 MHz, and 10 and 1 kHz) make it convenient to quickly tune any frequency. The HOLD pushbutton disables the TUNE control so the frequency cannot be changed accidently.
- 1-24. Frequency stability is dependent on the time base, that is, either an internal or external oscillator. The internal crystal oscillator operates at 10 MHz while an external oscillator must operate at 5 or 10 MHz. The heart of the Synthesizer, a YIG tuned oscillator (YTO), is phase locked to the time base oscillator.

1-25. Output Level

1-26. The unleveled output of the Synthesizer is at least +8 dBm. The level variation is less than 6 dB across the entire frequency range.

1-27. Frequency Modulation

- 1-28. Frequency modulation is obtained with an external modulation drive signal. The peak deviation is linearly controlled by the amplitude of the external signal. The switch selectable ranges are 0.1 and 10 MHz (sensitivity 0.05 and 5 MHz/Vpk). The maximum allowable input is 2 Vpk.
- 1-29. The peak deviation is limited to 10 MHz or a modulation index of 5, whichever is lower. Usable modulation rates fall between 50 Hz and 10 MHz.

1-30. Miscellaneous Outputs and Indicators

- 1-31. Phase-locked reference outputs of 10 and 100 MHz are available on the rear panel.
- 1-32. Six front panel status indicators make the Synthesizer operation easier and aid in reducing possible operator error.

1-33. Remote Operation

1-34. The Synthesizer is fully programmable via the Hewlett-Packard Interface Bus. In the remote mode, front panel controls are disabled except the LINE switch.

1-35. OPTIONS

- 1-36. Electrical Options
- **1-37.** Option 002. The internal 10 MHz crystal reference is omitted.
- **1-38.** Option **003**. A special fan allows operation on 400 Hz Mains.
- 1-39. Option 005. The Synthesizer's RF output connector is located on the rear panel. The minimum output power is +7.0 dBm.

1-40. Mechanical Options

- 1-41. The following options may have been ordered and received with the Synthesizer. If they were not obtained with the original purchase, and are now required, they must be ordered from your nearest Hewlett-Packard office using the part number included in each of the following paragraphs.
- 1-42. Chassis Slide Mount Kit Option 006. This kit is extremely useful when the Synthesizer is rack mounted. Access to internal circuits and components, or the rear panel, is possible without removing the Synthesizer from the rack. Order HP part number 1494-0017. When this kit comes with the Synthesizer it is identified as Option 006.
- 1-43. Front Handle Kit Option 907. Ease of handling is increased with the front panel handles. Order HP part number 5061-0089.
- 1-44. Rack Flange Kit Option 908. The Synthesizer can be solidly mounted to the instrument rack using the kit. Order HP part number 5061-0077.

Mechanical Options (Cont'd)
1-45. Rack Flange and Front Handle Combination
Kit Option 909. This kit is not a front handle kit
and rack flange kit packaged together. The combination is made up of a unique part which accomplishes both functions. Order HP 5062-0083.

1-46. HP-IB COMPATIBILITY

1-47. The Synthesizer is compatible with HP-IB as indicated by the following code: AH1, CØ, DC1, DTØ, L4, LEØ, PP2, RL2, SH1, SR1, T6 and TEØ. An explanation of the compatibility code may be found in the IEEE Standard 488-1975, "IEEE Standard Digital Interface for Programmable Instrumentation."

1-48. For more detailed information relating to programmable control of the Synthesizer, refer to Section III in this manual.

1-49. SELECTING THE HP-IB ADDRESS

1-50. The HP-IB address switches are located within the Synthesizer. The switches represent a two-digital octal number. This number corresponds to talk and listen address characters which an HP-IB controller is capable of generating. A table in Section II shows all HP-IB talk and listen addresses. Also refer to the paragraph entitled HP-IB Address and Parallel Poll Response Selection in Section II.

1-51. ACCESSORIES SUPPLIED

- 1-52. The accessories supplied with the synthesizer are shown in Figure 1-1.
- a. The line power cable may be supplied in several combinations of plugs. Refer to Power Cables in Section II.
- b. Fuses with a 3.0A rating for 100/120 Vac (HP 2100-0003) and a 1.5A rating for 220/240 Vac (HP 2100-0003) are supplied. One fuse is factory installed according to the voltage available in the country of destination. Refer to Line Voltage Selection in Section II.
- c. There are four extender boards supplied which aid in performance testing, adjusting, and troubleshooting the instrument.
 - 1. One 30 (15 x 2) pin extender board, HP part number 08672-60117.
 - 2. Two 36 (18 x 2) pin extender boards, HP part number 08672-60020.

3. One 3-section [30 (15 x 2) pins per section] extender board, HP part number 08672-60016 (for use in the A2 Assembly).

1-53. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-54. For Option 002 instruments, which lack an internal frequency standard, an external reference must be used. The performance of the external reference should at least match the specifications and in particular, the frequency accuracy and spectral purity of the HP Model 10544C Crystal Oscillator. When using an external oscillator, microphonics or line related spurious signals may increase.

1-55. An external signal source is required if frequency modulation is desired. The source should have a variable output of 0 to 2 Vpk into 50 ohms, modulation rates up to 10 MHz, and distortion of <1%. The HP 651B and 654A function generators are adequate for modulating the Synthesizer and meet the stated requirements.

1-56. A remotely programmable audio source would be convenient for full remote control of modulation levels and rates.

1-57. EQUIPMENT AVAILABLE

1-58. The Synthesizer has an HP-IB interface and can be used with any HP-IB compatible computing controller or computer for automatic systems applications.

1-59. The 11712A Support Kit is available to aid the user in maintaining and servicing the Synthesizer. It consists of cables, adapters, terminations, pre-recorded programs, extender boards and a test extender board.

1-60. The prerecorded programs are on tape cassettes and are for use with the HP 9830A Computing Controller. The Output Register Test Board is intended to aid in troubleshooting the frequency control circuits.

1-61. Refer to the 11712A Support Kit operating manual for additional information. It may be ordered through your nearest Hewlett-Packard office.

¹Frequency accuracy: needed 1 ppm; minimum requirement 10 ppta.

1-62. RECOMMENDED TEST EQUIPMENT

1-63. Table 1-2 lists the test equipment and accessories recommended for use in testing, adjusting,

and servicing the Synthesizer. If any of the recommended equipment is unavailable, instruments with equivalent minimum specifications may be used.

Table 1-2. Recommended Test Equipment (1 of 3)

Instrument	Critical Specifications	Recommended Model	Use*	
Adapter (2 required)	APC-7 to Type-N Male Frequency Range: 2—6.2 GHz	HP 11525A	P	
Amplifier,40 dB	Frequency Range: 5 Hz to 10 kHz Gain: 40 dB (x100) into open circuit	HP 465A	P	
Analyzer, Logic State	8 Bit Display Triggerable	HP 1601A	T	
Analyzer, Spectrum	Frequency Response: 20 to 40 kHz Bandwidth: 1 Hz minimum Frequency Span Per Division: 5 Hz minimum Amplitude Range: 0 to -70 dBm	HP 3580A	P	
Analyzer, Spectrum	Frequency Range: 10 kHz—100 MHz Frequency Span: 0.1—100 MHz Resolution Bandwidth: 30 Hz—300 kHz Amplitude Range: +10 to —90 dBm Vertical Sensitivity: 2 dB per division minimum	HP 8553B/8552B/141T	A,T	
	Frequency Range: 1 kHz—200 kHz Frequency Span: 0—50 kHz	HP 8556A	P,A,7	
Analyzer, Spectrum	Frequency Range: 2-18 GHz Frequency Span: 50 kHz to 200 MHz per division Resolution Bandwidth: 30 Hz-300 kHz Amplitude Range: +10 to -90 dBm Vertical Sensitivity: 2 dB per division minimum	HP 8565A	P,A,7	
Attenuator	10 dB Steps Range: 10 to 60 dB 2-6.2 GHz 50≲2	HP 8495B, Opt. 010	Р	
	8 dB, fixed, Type-N, 50Ω 10 dB, fixed, Type-N, 50Ω	HP 8491B, Opt. 003 HP 8491B, Opt. 010	A A	
Cable, semi- rigid	50Ω, 3.6 mm (0.141 inch) diameter with compatible SMA connectors	Locally Fabricated	P	
Cable, HP-IB Interconnect	HP-IB compatible	HP 10631A	Р,Т	
Cable, Special Interconnect	(Special, see Figure 1-2)	Locally Fabricated	A	

Table 1-2. Recommended Test Equipment (2 of 3)

Instrument	Critical Specifications	Recommended Model	Use*	
Controller, HP-IB	HP-IB Compatible	HP 9830A	Р, Т	
Counter, Frequency	Range: 100 kHz to 6.2 GHz Resolution: 10 Hz	HP 5340A	P, A,T	
Coupler, Directional	24 dB directivity minimum, 2 to 6.2 GHz Type N Connectors	HP 11691D	P, T	
Current Probe, AC	Frequency Range: 2-35 MHz	HP 1110A	A	
Discriminator, FM	Frequency Range: 10 kHz to 10 MHz Audio Frequency Response: to 3 MHz Sensitivity: 0.01V	HP 5210A	P	
Low Pass Filters Shorting Board	1 MHz Butterworth 10 kHz Butterworth	Included with HP 5210A Included with HP 5210A Included with HP 5210A	P P P	
Filter, Low Pass	1 kHz Butterworth, 50 ohms Connectors: BNC jack, BNC plug	CIR-Q-TEL FLT/21B-1K-5/50-3A/3B	P	
	3 kHz Butterworth, 50 ohms Connectors: BNC jack, BNC plug	CIR-Q-TEL FLT/21B-3K-5/50-3A/3B	P	
Mixer, Double Balanced	2-6.2 GHz response	RHG DM1-18	P	
Oscillator, Sweep	Center Frequency: 150—200 MHz Center Frequency Resolution: 0.1 MHz Sweep Range: 10 and 200 MHz	HP 86220A/8620C	A	
Oscillator, Test	Level: 2 Vpk minimum into 50Ω Range: 2 kHz to 1 MHz	HP 651B	P,A,T	
Oscilloscope	Vertical Amplifier Response: Dc to 50 MHz Vertical Amplifier Sensitivity: 0.05 to 0.5 V/div Dual Channel External Triggering Horizontal Input	HP 180C/1801A/1821A	P,A,T	
Divide by 10 Probe	Compatible with 1801A	HP 10001A	A	
Pads, Foam 2 required	43×58 cm (17 x 23 inches) 5 cm (2 inches) thick		P	

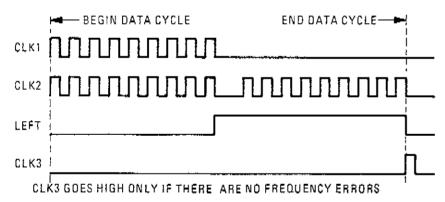
SERVICE SHEET 8-A2 (Cont'd)

this data is the basis for all future frequency changes, it is also stored in the Protected Register (Register 1) and displayed by the front panel.

The frequency (2-6.2 GHz) is displayed and stored as 8 BCD digits (10 GHz* to 1 kHz) and the YTO Loop tunes from 2-6.2 GHz. Frequency changes occur during a data cycle which is initiated by turning the TUNING control, pressing the PRESET button, or remotely programming a new frequency. During each data cycle the Controller operates on the frequency stored in Register 1 as follows:

In Local when the TUNING control is turned:

- Add ±1 to the digit selected by the resolution button.
- Update the display.
- · Shift the new frequency data into Register 3.
- Stop!


In Local when PRESET is pushed:

- Clear Register 1.
- Add 3 to the 1 GHz digit.
- Update the display.
- Shift the new frequency data (3 GHz) into Register 3.
- Stop!

In remote when a new frequency is programmed:

- Shift the new frequency into Register 1.
- Update the display.
- Shift the new frequency into Register 3.

A data cycle begins when the GO line goes true. The clock generator produces timing signals as shown below:

Clock Generator Outputs

Starting with the 1 kHz digit, CLK1 shifts the frequency data serially out of Register 1 and into the ±1 adder. The adder adds or subtracts 1 from the digit selected by the RESOLUTION buttons. The new frequency goes to three places: the front panel display, back into Register 1, and into Register 2. Then LEFT goes high, changing Register 2 to the left shift modes, and the second half of CLK2 serial shifts the data (starting with the 10 GHz digit), through the divider. The divided frequency is shifted back into Register 2. If a remainder exists, another data cycle will commence and the 1 kHz digit of the frequency in Register 1 will be changed and the division will again occur. This process continues until an evenly divisible frequency is obtained. When the remainder is zero, CLK3 parallel shifts the data into Register 3 where it is decoded and applied to the phase-lock loops.

^{*}Always zero.

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section provides the information needed to install the Synthesizer. Included is information pertinent to initial inspection, power requirements, line voltage selection, power cables, interconnection, environment, instrument mounting, storage and shipment.

2-3. INITIAL INSPECTION

WARNING

To avoid hazardous electrical shock, do not perform electrical tests when there are signs of shipping damage to any portion of the outer enclosure (covers, panels, meters).

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. Procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection.

2-5. PREPARATION FOR USE

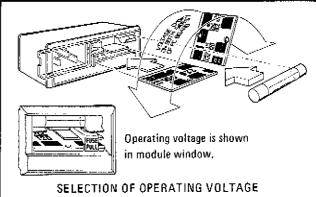
2-6. Power Requirements

2-7. The Synthesizer requires a power source of 100, 120, 220, or 240 Vac, +5% to -10%, 48 to 66 Hz single phase (for Option 003 instruments, 400 Hz single phase and 120 Vac, +5%, -10% only). Power consumption is approximately 300 volt-amperes.

WARNINGS

This is a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must

be provided from the main power source to the produce input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and be secured against any unintended operation.


If this instrument is to be energized via an autotransformer for voltage reduction, make sure the common terminal is connected to the earthed pole of the power source.

2-8. Line Voltage and Fuse Selection

CAUTION

BEFORE PLUGGING THIS INSTRUMENT into the Mains (line) voltage, be sure the correct voltage and fuse have been selected.

2-9. Verify that the line voltage selection card and fuse are matched to the power source. Refer to the instructions in Figure 2-1, Line Voltage and Fuse Selection.

- 1. Open cover door, pull the FUSE PULL lever and rotate to left. Remove the fuse.
- 2. Remove the Line Voltage Selection Card. Position the card so the line voltage appears at top-left corner. Push the card firmly into the slot.
- 3. Rotate the Fuse Pull lever to its normal position. Insert a fuse of the correct value in the holder. Close the cover door.

Figure 2-1. Line Voltage and Fuse Selection

2-10. Power Cable

WARNING

BEFORE CONNECTING THIS IN-STRUMENT, the protective earth terminals of this instrument must be connected to the protective conductor of the (Mains) power cord. The Mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding).

2-11. This instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to Figure 2-2 for the part numbers of the power cable available:

2-12. HP-IB Address and Parallel Poll Response Selection

2-13. In the Synthesizer, the HP-IB talk and listen addresses and the parallel poll sense and response lines are switch selectable. The following procedure explains how the switches are to be set. Refer to Table 2-1 for a listing of the talk and listen addresses.

- 2-14. To change the HP-IB address or to select a different parallel poll response, the top cover of the Synthesizer and the A2 Assembly's protective cover must be removed.
 - a. Disconnect the line (Mains) power cable.
- b. Remove any HP-IB cables or connectors from the HP-IB connector.
- c. Remove the Synthesizer's top cover and the A2 Assembly's protective cover. Refer to the Disassembly and Reassembly Procedures in Section VIII.
- d. If the parallel poll sense or response switches are to be changed, remove the A2A9 Board Assembly.
- e. Select the new address as shown in Table 2-1. The locations of the switches are shown on Figure 2-3. The HP-IB ADDRESS SELECT switch settings (for S2 and S3) are in the octal code. For example, the factory selected addresses are set to 23 (binary 10 011; equivalent to bits b5 thru b1 on the table). Therefore, the listen address is '3' and the talk address is 'S'.
- f. The PARALLEL POLL SENSE switch (S4) is set to either the OFF, 0 (zero), or 1 (one) position. In the zero position, the less positive level indicates an affirmative response to the poll.

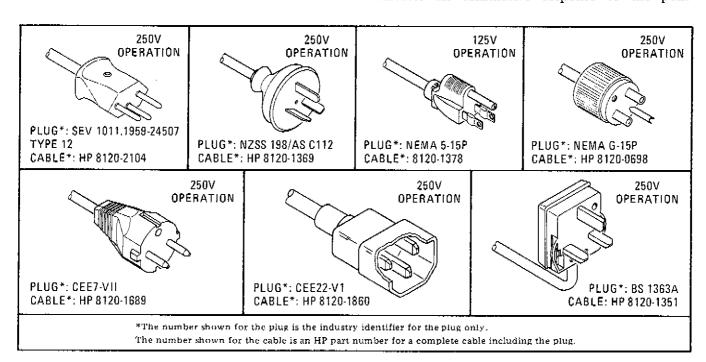


Figure 2-2. Power Cable and Mains Plug Part Numbers

Table 2-1. USA Standard Code for Information Interchange (ASCII)

							•							
b ₇ -	· —			100 A 100		000	001	010	011	100	¹ 0 ₁	110	1,1	NOTE 3
l 'T `	b ₄	b ₃	b ₂	b ₁	Column→ Row ↓	0	1	2	3	4	5	6	7	
`	0	0	0	0	0	NUL	DLE	SP	0	@	Р	,	р	
	0	0	0	1	1	SOH	DC1	!	1	A	α	a	q	
	0	Q	1	0	2	\$TX	DC2	71	2	В	R	ь	ŕ	
	0	0	1	7	3	EΤΧ	DC3	#	3	С	s	C	s	
	0	1	0	0 .	4	EOT	DÇ4	\$	4	۵	Т	d	t	
	0	1	0	1	5	ENQ	NAK	%	5	£	Ų	e	u	
	0	1	1	0	6	ACK	\$YN	&	6	F	٧	f	v	
	0	1	1	1	7	BEL	ETB		7	G	W	g	w	
	1	Q	0	0	8	вѕ	CAN	(8	Н	Х	h	х	
	1	0	0	1	9	нт	EM)	9	ı	Υ	i	¥	
	1	0	1	0	10	LF	SUB	*	;	J	Z	j	Ž	
	1	0	1	1	11	VT	ESC	+	;	К	[k	{	
	1	1	Q	0	12	FF	FS	,	<	L	\	I	- 1	
	1	1	0	1	13	CR	GS	_	=	М	}	ш	}	
	1	1	1	0	14	SO	RS		>	N	ſ	п	}	
	1	1	1	1	15	ŞI	US	1	?	0		Ú	DEL	
١	NOTE 3				·			гои	E 1	NO	ΓE 2			

NOTE 1: HP-IB valid LISTEN addresses NOTE 2: HP-IB valid TALK addresses NOTE 3: Logic 1 - V0, Logic 0 = +5V

HP-IB Address and Parallel Poll Response Selection (Cont'd)

- g. The PPR (Parallel Poll Response) switch (S1) is used to select one of eight lines (one of 1 thru 8). The selected line passes the Synthesizer's response to the parallel poll to the HP-IB controller.
 - h. Re-install the A2A9 Assembly.
- i. Replace the A2 Assembly's protective cover and the Synthesizer's top cover.
- j. Connect the line (mains) power cable to the Line Power Module; connect the HP-IB cable to the HP-IB connector.
- **2-15.** Interconnections. Interconnection data for the Hewlett-Packard Interface Bus is provided in Figure 2-4.

2-16. Mating Connectors

- **2-17.** Interface Connector. The HP-IB mating connector is shown in Figure 2-4.
- 2-18. Coaxial Connectors. Coaxial mating connectors used with the Synthesizer should be 50-ohm Type-N and BNC male connectors that are compatible with those specified in US MIL-C-39012.

2-19. Operating Environment

2-20. The operation environment should be within the following limitations:

Temperature: 0 to +55°C Humidity: <95% relative

Altitude: <4570 metres (15 000 feet)

NOTE

Some output level and modulation characteristics are guaranteed only between 15 and 35°C. Refer to Table 1-1, Specifications.

2-21. Bench Operation

2-22. The instrument cabinet has plastic feet and fold-away tilt stands for convenience in bench operation. (The plastic feet are shaped to ensure self-aligning of the instruments when stacked.) The tilt stands raise the front of the instrument for easier viewing of the control panel.

2-23. Rack Mounting

WARNING

The Synthesizer is heavy for its size 24.0 kg, 53 lb). Care must be exercised when lifting to avoid personal injury. Use the equipment slides when rack mounting.

2-24. Rack mounting information is provided with the rack mounting kits. If the kits were not ordered with the instrument as options, they may be ordered through the nearest Hewlett-Packard office. Refer to the paragraph entitled Options in Section I,

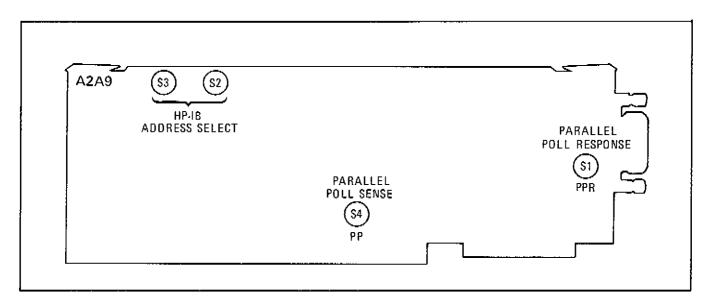
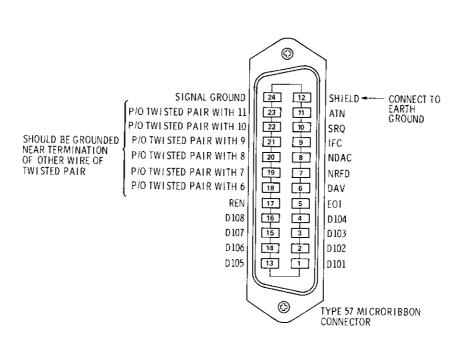



Figure 2-3. Location of HP-IB Address and Parallel Poll Switches

Logic Levels

The Hewlett-Packard Interface Bus logic levels are TTL compatible, i.e., the true (1) state is 0.0 Vdc to +0.4 Vdc and the false (0) state is +2.5 Vdc to +5.0 Vdc.

Programming and Output Data Format

Refer to Section III, Operation.

Mating Connector

HP 1251-0293; Amphenol 57-30240.

Mating Cables Available

HP 10631A, 0.9 metres (3 ft.), HP 10631B, 1.8 metres (6 ft.) HP 10631C, 3.7 metres (12 ft.)

Cabling Restrictions

- 1. A Hewlett-Packard Interface Bus System may contain no more than 1.8 metres (6 ft.) of connecting cable per instrument.
- 2. The maximum accumulative length of connecting cable for any Hewlett-Packard Interface Bus System is 20.0 metres (65 ft).

Figure 2-4. Hewlett-Packard Interface Bus Connection

2-25. STORAGE AND SHIPMENT

2-26. Environment

2-27. The instrument should be stored in a clean dry environment. The following environmental limitations apply to both storage and shipment:

Temperature: -55 to $+75^{\circ}$ C

Humidity: <95% relative

Altitude: <15 300 metres (50 000 feet).

2-28. Packaging

2-29. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence refer to the instrument by model number and full serial number.

- **2-30.** Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:
- a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the service required, return address, model number, and full serial number.)
- b. Use a strong shipping container. A double wall carton made of 2.4 MPa (350 psi) test material is adequate.
- c. Use enough shock-absorbing material (75 to 100 mm layer; 3 to 4 inches) around all sides of instrument to provide firm cushion and prevent movement in the container. Protect the control panel with cardboard.
 - d. Seal the shipping container securely.
- e. Mark the shipping container FRAGILE to assure careful handling.

SECTION III OPERATION

3.1. INTRODUCTION

3-2. This section explains how to operate the Synthesizer. Included are descriptions of front and rear panel controls, connectors and indicators, operator's checks, operating instructions, and operator's maintenance.

3-3. Local operating instructions begin with paragraph 3-8. Remote operation with the Hewlett-Packard Interface Bus (HP-IB) is explained beginning with paragraph 3-14.

3-4. PANEL FEATURES

3-5. The front and rear panel features of the Synthesizer are shown in Figures 3-1 and 3-2 and are described in Tables 3-1 and 3-2.

3-6. OPERATOR'S MAINTENANCE

3-7. The only maintenance the operator should normally perform is the replacement of the primary power fuse (F1) located in the Line Power Module Assembly (A3A11) shown in Figure 3-2. For instructions on how to change the fuse, refer to Section II, Line Voltage Selection.

3-8. LOCAL OPERATION

3-9. A procedure for verifying the major functions of the Synthesizer is provided in Tables 3-3 and 3-4. The procedure is divided into two parts: Local Operator's Checks and Local Operating Instructions. The Local Operator's Checks should be performed first to verify proper operation of the Synthesizer. The Local Operating Instructions explain how to set and use the various controls on the Synthesizer.

WARNINGS

Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers and devices connected to it should be connected to a protective earth grounded socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in personal injury.

Only fuses with the required rated current and specified type should be used. Do not use repaired fuses or short circuited fuseholders. To do so could cause a shock or fire hazard.

CAUTION

Before the instrument is switched on, it must be set to the voltage of the power source, or damage to the instrument may result.

3-10. Local Operator's Check

3-11. Table 3-3 provides general instructions for checking the operation of the Synthesizer via the front and rear panel controls.

3-12. Local Operating Instructions

3-13. Table 3-4 provides general instructions for operating the Synthesizer via the front and rear panel controls.

3-14. REMOTE (HP-IB) OPERATION

3-15. The Synthesizer can be operated through the Hewlett-Packard Interface Bus (HP-IB). For further information about the HP-IB, refer to IEEE Standard 488-1975, the Hewlett-Packard catalog and the booklet "Improving Measurements in Engineering and Manufacturing" (HP part no. 5952-0058). Synthesizer compatibility, programming, and data format is described in the paragraphs which follow.

3-16. Synthesizer Talk and Listen address, and Parallel and Serial Poll response selection is described in Section II.

3-17. For Synthesizer remote checkout and troubleshooting, refer to the Remote Operator's Check and the HP-IB Diagnostic Program in Section VIII. The Remote Operator's Check verifies that the Synthesizer's functions can be programmed while the HP-IB Diagnostic Program tests the Bus functions of the Synthesizer.

3-18. Compatibility

3-19. The Synthesizer is fully programmable with

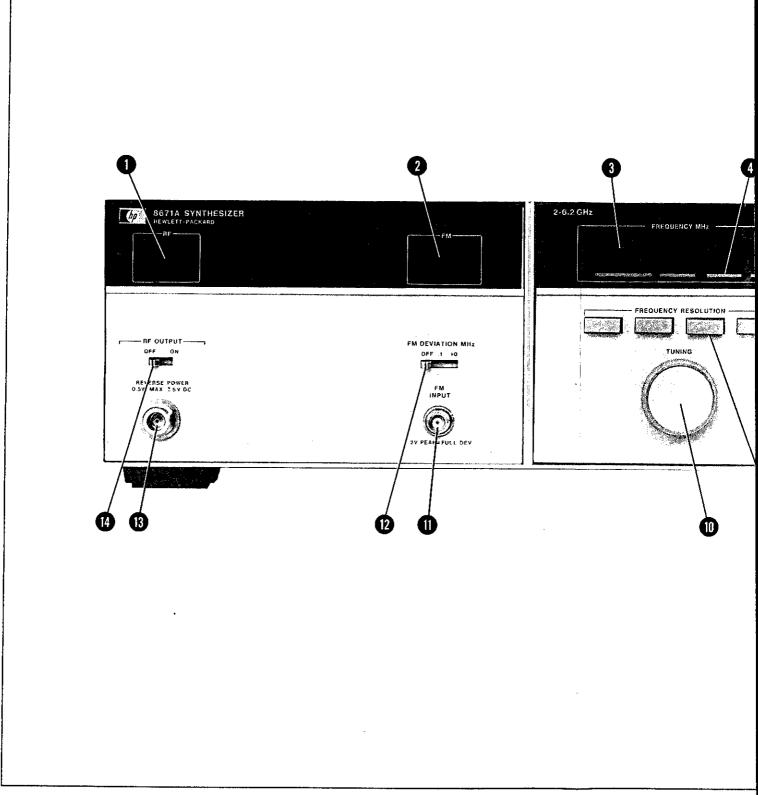


Figure 3-1. Front Panel Connectors, Controls, Switches, and Displays

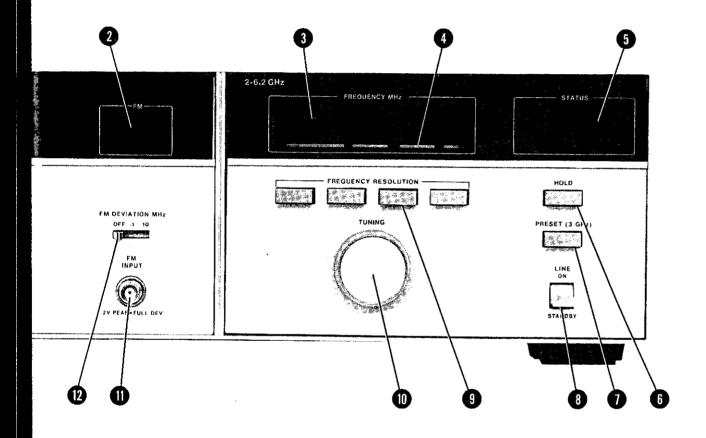


Figure 3-1. Front Panel Connectors, Controls, Switches, and Displays

FRONT PANEL FEATURES

- 1) RF annunciator: ON-OFF indicates whether the RF OUTPUT 13 is on or off. This can be controlled by the RF switch 14 or remotely programmed.
- 2 FM annunciator: indicates either a 0.1 or 10 MHz deviation range for 2 Vpk as determined by the position of the FM DEVIATION MHz switch or remotely programmed. OVER MOD indicates an input signal greater than 2 Vpk at the FM IN-PUT connector 11 or the modulation index is greater than 5.
- 3 FREQUENCY MHz: LED display indicates the selected frequency.
- Frequency Resolution Light Bars: indicate the frequency tuning resolution selected by the FREQUENCY RESOLUTION keys 9. The first light bar indicates 100 MHz resolution, the second indicates 1 MHz, the third indicates 10 kHz, and the fourth indicates 1 kHz resolution. All the light bars to the left of the one selected will light when the selected FREQUENCY RESOLUTION key 9 is pressed.
- 5 STATUS Block: annunciators display the internal conditions of the Synthesizer.

OVEN: indicates that the crystal oven has not reached operating temperature when lit.

OUT OF RANGE: indicates an out of range (illegal) frequency has been remotely programmed when lit.

REMOTE: indicates the Synthesizer has been set to remote operation by an HP-IB controller when lit.

STANDBY: indicates that power has been applied but the LINE switch 8 is in the STANDBY position when lit.

NOT PHASE LOCKED: indicates that one or more of the phase lock loops are unlocked or the RF switch 4 is in the OFF position.

INTERNAL REF OFF: indicates when the rear panel INT-EXT switch 6 (see Figure 3-2) is in the EXT position when lit.

- 6 HOLD key: disables the TUNING control 10 on the front panel to hold the selected frequency and extinguishes the Frequency Resolution Light Bars
- PRESET (3 GHz) key: sets frequency to 3 GHz and extinguishes the Frequency Resolution Light Bars without changing any other front panel controls.
- 8 LINE switch: applies power to the Synthesizer when set to the ON position; power is supplied to the crystal oven and the battery charger circuit in the STANDBY position.
- 9 FREQUENCY RESOLUTION keys: selects tuning resolution in 100 MHz, 1 MHz, 10 kHz, or 1 kHz steps. The HOLD key 6 clears any frequency resolution selected.
- TUNING control: changes the Synthesizer's output frequency in the resolution selected by the FRE-QUENCY RESOLUTION keys 9.
- FM input connector: accepts a maximum 2 Vpk external modulation signal with a 50 ohm impedance. Deviation varies linearly with the input signal. Deviation ranges are controlled by the FM DEVIATION switch 72.
- 12 FM DEVIATION switch: selects the peak deviation that is obtained with a signal applied to the FM INPUT connector 11. The peak deviation range is displayed on the FM annunciator 2. FM deviation range is a programmable function.
- 13 RF OUTPUT connector: 50 ohm type-N female connector supplies the RF output over the entire frequency range of 2 to 18 GHz.

RF switch: completely turns off the RF output when in the OFF position. This condition is displayed in the RF annunciator and causes the NOT PHASE LOCKED annunciator in the STATUS Block 5 to illuminate. When the ON position is selected, the Synthesizer returns to normal operation. The functions of the RF switch are programmable.

Table 3-2. Rear Panel Features

REAR PANEL FEATURES

- 1 HP-IB connector: connects the Synthesizer to Hewlett-Packard Interface Bus for remote operation. When in remote operation, the STATUS Block 5 (see Figure 3-1) REMOTE annunciator illuminates.
- 2 100 MHz OUT (A3J7): 0 dBm (nominal) into 50 ohms. Can be used as an external time base and for troubleshooting.
- 3 RF OUT (A3J6): only for Option 004 and 005, 50 ohm type N output connector (see Table 1-1 for Option information).
- 4 10 MHz OUT (A3J8): 0 dBm (nominal) into 50 ohms. Can be used as an external time base and for troubleshooting.
- 5 FREO STANDARD Output (A3J9): 10 000 MHz into 50 ohms at +7 dBm (nominal) from the internal frequency standard except when INT/EXT switch 6 is in the EXT position.

- 6 FREQ STANDARD INT/EXT switch: normally left in INT position. Removes power from internal frequency standard in EXT position.
- Jumper (A3W3): normally connects Frequency Standard Output (A3J9) to Frequency Standard Input (A3J10).
- 8 FREQ STANDARD Input (A3J10): normally connected through A3W3 to A3J9. Also used to connect an external frequency standard of 5 or 10 MHz at 0 dBm to the Synthesizer.
- g Line Power Module: permits operation from 100, 120, 220, or 240 Vac. The number visible in the window displays the nominal line (Mains) voltage for which the Synthesizer is set (see Figure 2-1). The protective grounding conductor connects to the Synthesizer through this module. The line power fuse (A3F1) is part of this module and is the only part to be changed by the operator.

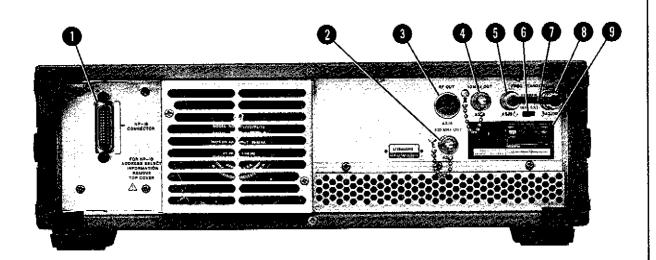


Figure 3-2. Rear Panel Controls, Connectors, and Indicators

Table 3-3. Local Operator's Checks (1 of 2)

INIT	FIAL CONDITIONS
1.	Check that the LINE switch (Figure 3-1) is in STANDBY and remove the power cable from the Line Power Module (see Figure 3-2).
2.	Check that Line Power Module (see Figure 3-2) is set to the nominal line voltage to be used and that the fuse is the correct value and type.
3.	Set the front panel controls and switches as follows:
	12 FM DEVIATION MHz selector OFF
	14 RF switch OFF
4.	Set the rear panel controls and cables as follows:
	8 FREQ STANDARD INT/EXT switch INT
	1 Jumper (A3W3) Connects A3J9 to A3J10
OPE	RATION
1,	Set the LINE switch 8 to ON and check for the following conditions:
	RF annunciator OFF
	2 FM annunciator OFF
	3 FREQUENCY MHz display some frequency between 2-6.2 GHz (if frequency display is not stable, press PRE-SET (3 GHz) 7).
	4 Frequency Resolution Light Bars extinguished 5 STATUS annunciators
	OVEN may be lit and will extinguish when the reference oscillator oven operating temperature is reached.
	NOT PHASE LOCKED illuminated
2.	Press PRESET (3 GHz) key 7 and FREQUENCY display 3 should now indicate 3000.000 MHz.
3.	Press one at a time, the four FREQUENCY RESOLUTION keys 3 and the Frequency Resolution Light Bars 4 should light one at a time and remain lit. Rotate the TUNING contol clockwise and then counterclockwise and note that the digits displayed in the FREQUENCY display 3 increase and then decrease in order as the TUNING control 10 is turned. Perform this step as each of the four FREQUENCY RESOLUTION keys 9 are pressed. The first key on the left produces resolution in 100 MHz steps, the second key 1 MHz steps, the third key 10 kHz steps, and the fourth key 1 kHz steps. Pressing the fourth key first will cause all four of the Frequency Light Bars 4 to light and will produce 1 kHz tuning resolution. Pressing the HOLD 6 key causes the Light Bars 4 to extinguish and prevents the TUNING control 10 from changing the frequency displayed.
4.	Connect the microwave frequency counter to the Synthesizer as shown in Figure 3-3.

Table 3-3. Local Operator's Checks (2 of 2)

- 5. Set the RF switch 14 to ON. If the STATUS Block 5 annunciator OVEN is extinguished, the NOT PHASE LOCKED annunciator should also extinguish. The frequency counter should indicate the same frequency (±1 count) as shown on the Synthesizer's display 3.
- 6. Note the frequency on the FREQUENCY MHz display 3. Disconnect Mains power. Leave the Synthesizer in the unplugged condition for at least 30 seconds.
- 7. Reconnect Mains power. The FREQUENCY MHz display 3 should display the same frequency as was displayed in step 6. The STATUS Block 5 annunciator OVEN should light for a few seconds.

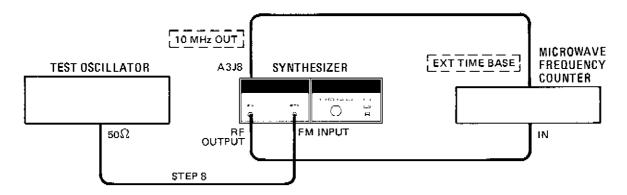


Figure 3-3. Operator's Frequency and Modulation Checks Test Setup

- 8. Connect the test setup as shown in Figure 3-3. Set the test oscillator's frequency to 2 MHz.
- 9. Set the FM DEVIATION switch 12 to 10 MHz. The FM annunciator 2 10 will light.
- 10. Increase the test oscillator's output from 0 Vrms to approximately 2 Vrms. The FM annunciator 2 OVERMOD will light when there is over modulation or an input signal greater than 2 Vpk.
- 11. Disconnect the test setup.

Table 3-4. Local Operating Instructions (1 of 2)

SETTING FREQUENCY

- Be sure Synthesizer is set to local. Make sure the internal reference is selected or an external reference is connected to A3J10.
- 2. Set front panel controls and switches to the following positions:

8 LINE switch ON

9 FREQUENCY RESOLUTION

keys to resolution desired and displayed on Frequency

Resolution Light Bars 4

TUNING control to frequency desired as displayed on Frequency

readout

6 HOLD key press pushbutton, the frequency desired is now held

RF switch ON

12 FM DEVIATION as desired

SETTING FREQUENCY MODULATION

- 1. Connect a modulation source with a 50 ohm output impedance to the FM INPUT connector ...

 Set the oscillator's output to less than 2 Vpk and at the modulation frequency desired.
- 2. Set the FM DEVIATION switch 12 to correspond to the desired deviation range.
- An input of 2.0 Vpk or 1.414 Vrms represents full scale modulation voltage. Adjust the input voltage to obtain the desired deviation.
- 4. The FM annunciator 2 OVERMOD and possibly the STATUS Block 5 annunciator NOT PHASE LOCKED will light to indicate that an over-modulation condition exists. This can occur if an input signal of greater than 2 Vpk is applied, or if the maximum allowable modulation index is exceeded.

Table 3-4. Local Operating Instructions (2 of 2)

OPERATION WITH AN EXTERNAL STANDARD

- 1. Remove Jumper 7 (A3W3) from the FREQ STANDARD EXT connector 8 (A3J10), and set the FREQ STANDARD INT/EXT switch 6 to EXT.
- 2. Connect an external frequency standard of 5 or 10 MHz, 0 dBm (nominal) into 50 ohms impedance to the FREQ STANDARD EXT connector (8) (A3J10).
- 3. On the front panel (see Figure 3-1) set all switches and controls as follows:
 - 8 LINE switch ON
 - 12 FM DEVIATION switch. . . . , . as desired
 - 14 RF switch ON
- 4. The front panel displays should indicate as follows:
 - RF annunciator ON
 - 2 FM annunciator as desired
 - 3 FREQUENCY MHz display frequency desired, set by the TUNING
 - 4 Frequency Resolution Light Bars . . . bars lighted for resolution desired selected by

control

- Frequency Resolution selectors
- 5 STATUS annunciator INTERNAL REF OFF

The NOT PHASE LOCKED annunciator will light if the external reference is not of sufficient accuracy in frequency or has an insufficient power level. The external reference must be within ± 100 Hz of 10 MHz for reliable locking to occur.

5. The Synthesizer may now be used for any of its normal operations.

Compatibility (Cont'd)

the HP-IB. Front panel functions except the LINE switch [2] can be programmed.

3-20. The programming capability of the Synthesizer will be described in terms of the twelve bus messages found in Table 3-5.

3-21. Local/Remote and Remote/Local Mode Changes

3-22. The Synthesizer can communicate over the bus when in remote or local. In remote, the Synthesizer's controls are disabled and the Synthesizer can be addressed to talk or listen. When addressed to listen the Synthesizer will respond to the Data, Clear (SDC), Local, Clear Lockout/Set Local, and Abort Messages. When addressed to talk, the Synthesizer automatically stops listening and sends a status byte over the eight data lines and will respond to the Abort message. Also, the Synthesizer can send a service request (SRQ) and respond to serial and parallel polls. In local, the Synthesizer is fully controlled by the front panel but will respond to serial or parallel polls, its talk address, and will send a service request (SRQ).

3-23. Addressing. The Synthesizer interprets the byte on the bus' eight data lines as an ASCII address or command if the remote enable line (REN) is true, the bus is in the command mode — attention line (ATN) is true, and interface clear line (IFC) is false. The Synthesizer's talk and listen addresses are switch selectable as described in Section II. Referring to Table 2-1, characters in columns 2 or 3 are valid listen addresses, characters in columns 4 and 5 are talk addresses, and characters in column 1 are commands: device clear (DC), serial poll enable (SPE), and serial poll disable (SPD).

3-24. Programming the Local to Remote Mode Change. The Synthesizer will switch to Remote only when addressed to listen. When first switched to remote the REMOTE lamp lights but nothing else will change from the front panel control settings until the Synthesizer receives a data message string. Once in remote, the Synthesizer can be unaddressed with the unlisten clear or abort messages, addressed to talk, re-addressed to listen, or programmed to return to local.

3-25. Programming the Remote to Local Mode Change. The Synthesizer will return to local when the local or clear lockout/set local messages are sent by the controller. The clear lockout/set local message sets the remote enable line (REN) false.

3-26. DATA Messages

3-27. The Synthesizer communicates on the bus primarily with data messages. It responds to data messages that program frequency, RF output, and FM. (It sends a byte that describes status.) Data messages consist of one or more bytes sent over the bus' 8 data lines when the bus is in the data mode. The Synthesizer receives data messages when addressed to listen and sends a status byte when addressed to talk.

3-28, Receiving DATA Messages

3-29. The Synthesizer will receive data messages when addressed to listen. The data message string or program string consists of one or more ASCII characters arranged as a program code followed by arguments or as program code alone or argument alone depending on the desired results.

3-30. Data Input Format. The program string syntax is as shown below.

WHERE: C = PROGRAM CODE

X = ARGUMENT OR FREQUENCY DIGIT

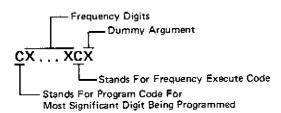
(The brackets are not included in an actual string. They are shown to clarify the example.)

For example, to program the three functions for 5.596365 GHz, FM OFF, and RF ON, write the string as shown in the example below.

The Synthesizer ignores carriage returns, line feeds, spaces, commas, and decimal points. Paragraph 3-34 has more information on program codes. All functions may be programmed together as shown or separately as will be described in detail in the following paragraphs.

3-31. Programming Frequency. The Synthesizer accepts any frequency within its range to 8 signifi-

Table 3-5. Message Reference Table

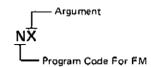

Message and Identification	Applicable	Command and Title	Response
Data	Yes	T6 Talker, L4 Listener, AH1 Acceptor Handshake SII1 Source Handshake	Synthesizer changes frequency, RF output and modulation.
Trigger (DTØ)	No	Device Trigger	Synthesizer does not respond to a Device Trigger.
Clear (DC1)	Yes Yes	DCL Device Clear SDC Selected Device Clear	The Synthesizer responds to a DCL or SDC command by setting frequency to 3 GHz, modulation to off, and RF off.
Remote (RL2)	Yes	REN Remote Enable	Synthesizer goes to remote when the REN line is true and the Synthesizer is first addressed to listen.
Local (RL2)	Yes	GTL Go to Local	Synthesizer goes to local when a GTL command is received. The frequency does not change but the front panel controls determine the other functions.
Local Lockout (RL2)	No	LLO Local Lockout	Synthesizer does not respond to the LLO command.
Clear Lockout/ Set Local (RL2)	Yes	REN Not Remote Enable	Synthesizer goes to local when REN goes false.
Pass Control/Take Control (CQ)	No	Controller	The Synthesizer cannot act as a controller.
Require Service (SR1)	Yes	SRQ Service Request	The Synthesizer sets the SRQ line true when unlocked, FM overmodulated, or out of range (frequency).
Status Byte	Yes	SPE Serial Poll Enable	The Synthesizer responds to a serial poll by
	Yes	SPD Serial Poll Disable	sending a status byte.
Status Bit (PP2)	Yes	PP Parallel Poll	The Synthesizer responds to a parallel poll by sending a status bit on a switch-selected data line.
Abort	Yes	IFC Interface Clear	The Synthesizer stops listening or talking.

NOTE

Complete HP-IB capability as defined in IEEE Std. 488 is DC1, RL2, SR1, PP2, T6, L4, AH1, SH1, PT 0, C0.

Receiving Data Messages (Cont'd)

cant digits. Use the information in Figure 3-4 and Table 3-6 to write the program string with the following syntax:



Within the Synthesizer, frequency information is stored in two separate blocks. One block is for the 1 GHz through 10 MHz digits; the other block is for the 1 MHz through 1 kHz digits. Programming within one block does not change the other block. Figure 3-4 illustrates this; use it as a guide to make frequency programming more efficient.

Table 3-6. Frequency Program Codes and Arguments

,	Program Coo	les	Arguments
Frequency	1 GHz 1 MHz 100 kHz 10 kHz 1 kHz EXECUTE	Q T U V W Z	Ø through 9

3-32. Programming FM. The Synthesizer responds to a program code for FM and arguments for two ranges of modulation or FM off (Table 3-7). The program string is arranged as follows:

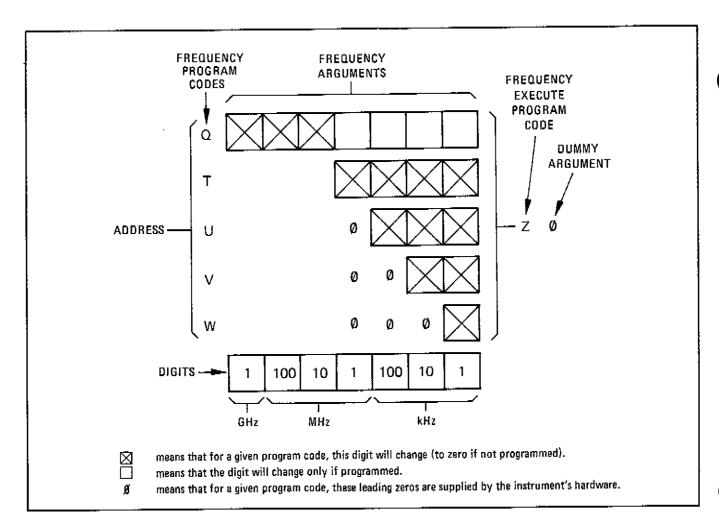


Figure 3-4. Frequency Programming

Table 3-7. FM Program Codes and Arguments

	Program Code	Arguments
FM	N	OFF Ø 100 kHz 1 10 MHz 2

3-33. Programming RF Output. The Synthesizer's RF ON-OFF switch function can be programmed using the program code and arguments in Table 3-8. The program string is shown below:

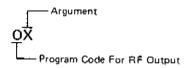



Table 3-8. RF Output Program Code

	Program Code	Arguments
#	O or	RFOFF Ø

3-34. Abbreviated Program String. The Synthesizer accepts and processes the characters of a program string in a left to right sequence. It also automatically counts program codes in the sequence shown in Table 2-1, colums 4 and 5 (see note below). This sequence is equivalent to the program string order shown in paragraph 3-30. If done in that sequence, program strings for FM and RF output can be written like those for frequency. The program string will consist of the program code for the first function being programmed followed by arguments for all functions as shown below:

3-35. Programming Execution Time. Programming execution time is determined by two parameters: the rate at which data can be input into the synthesizer over the interface and the time it takes the synthesizer to reach the desired output state. The 8671A can typically accept data at rates up to 80 kilobytes/second. This is generally a much shorter time than it then takes the Synthesizer to reach the

desired output state. If the controller and all other instruments on the bus are fast enough, data transfer is then only a small fraction of the total program execution time. Typical execution times for the various functions of the 8671A are as follows:

- a. Frequency Switching. The time it takes to switch from one frequency to the next depends on the largest frequency digit being changed. Generally, the smaller the digit being changed the shorter the switching time. Typical worst case frequency lock and setting times are shown in Figure 3-5. If FM is on during frequency change, switching time will increase.
- b. Modulation Programming. An FM range change or center frequency change when FM is on typically takes less than 50 ms.

3-36. Sending the Data Message

3-37. The Synthesizer sends a status byte when addressed to talk. This byte is also the Synthesizer's response to a serial poll which will be explained in paragraph 3-55. The Synthesizer can talk when in local as well as remote.

3-38. Receiving the Trigger Message

3-39. The Synthesizer doesn't respond to the TRIGGER message.

3-40. Receiving the Clear Message

3-41. The Synthesizer responds to the Clear message by setting the frequency to 3 GHz, RF power OFF, and FM off. This message can take two forms: Device Clear, which the Synthesizer responds to when not addressed, and Selected Device Clear which the Synthesizer responds to when addressed to listen. The Device Clear messages do not affect addressing.

3-42. Receiving the Remote Message

3-43. The Synthesizer is enabled to go into remote when the controller sends the Remote message, but does not actually switch to remote until first addressed to listen. The Remote message is the means by which the controller sets the remote enable line (REN) true. Some controllers send this message automatically when first turned on or reset.

3-44. Receiving the Local Message

3-45. The Synthesizer returns to local front panel control when it receives the Local message. The frequency will not change from the last programmed value but the other functions will correspond to the front panel control settings.

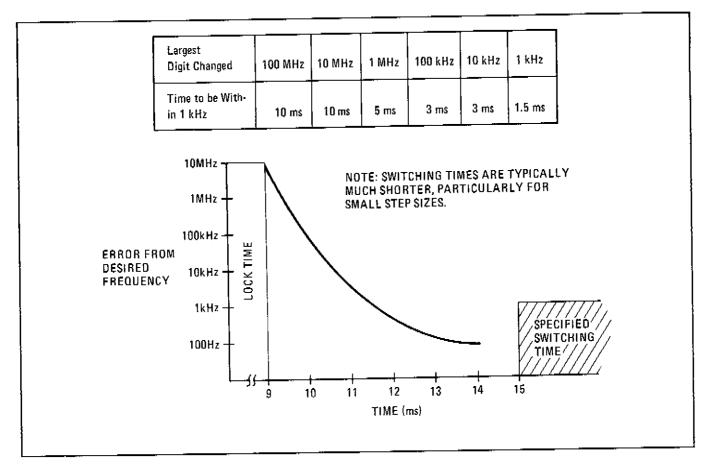


Figure 3-5. Typical Frequency Switching Time for the 8671 A Synthesizer Showing Worst Case Lock and Settling Times

3-46. Receiving the Local Lockout Message

3-47. The Synthesizer does not respond to the Local Lockout message.

3-48. Receiving the Clear Lockout/Set Local

3-49. The Synthesizer responds to the Clear Lockout/Set Local message in the same way as to the Local message. The Synthesizer need not be addressed to listen. This message sets the REN line false.

3-50. Receiving the Pass Control Message

3-51. The Synthesizer does not respond to the Pass Control message as it cannot act as a controller.

3-52. Sending the Require Service Message

3-53. The Synthesizer sends the Require Service message to the controller when one of the following conditions exists for more than 50 ms:

1) Not phase locked with RF power on.

- 2) Frequency programmed out of range.
- 3) FM overmodulated with RF power on.

The Synthesizer sends this message by setting the service request line (SRQ) true. It will request service in local or remote whether or not it is addressed.

3-54. Sending the Status Byte Message

3-55. The Synthesizer sends the status byte when addressed to talk. This byte is the Synthesizer's response to a serial poll. The Synthesizer responds to a serial poll when the controller sends a serial poll enable command (SPE), then addresses the Synthesizer to talk. The SPE command enables the Synthesizer to clear the service request (SRQ) when addressed to talk. Also, when the Synthesizer receives its talk address, bit 7 of the status byte is latched. The Controller can then determine the status of the Synthesizer by converting the status byte to a decimal value. Status byte coding is as shown below.

Model 8671A Operation

3-56. The RSV (Request Service) bit is true whenever any of the three conditions that cause a request for service exists (even during the first 50 ms after a programming change). Once the Synthesizer is addressed to talk, the RSV line is latched even though the Synthesizer's need for service may have changed.

3-57. The status byte is useful for determining when a given programming change has been executed. For example, if the synthesizer is addressed to talk immediately after a frequency change, the status byte can be used to determine when the synthesizer has re-acquired lock. A frequency change might be followed by status bytes of 72, 72, and then 64, indicating the synthesizer is now locked.

3-58. Sending the Status Bit Message

3-59. The Synthesizer outputs a status bit on one of the Bus data lines in response to a parallel poll (see controller manual). The line is switch select-

able (see Section II) as is the level of the bits logic. The status bit is true when any of the conditions for a service request exist. Addressing or local/remote conditions for a service request exist. Addressing or local/remote state does not affect sending the status bit.

3-60. Receiving the Abort Message

3-61. The Synthesizer stops talking or listening when it receives the Abort message.

3-62. Programming Quick Reference Guide

3-63. Table 3-9 shows program string syntax, program codes and arguments, and the status byte. All possible program codes are shown, but the recommended codes are in bold face type.

3-64. Programming Examples

3-65. Figure 3-6 is a flowchart showing how to program all of the Synthesizer functions and the twelve bus messages in HPL (9825 computing controller), and BASIC (9830 computing controller).

STATUS BYTE

Bit Number	8	7	6	5	4	3	2	1
Decimal Value	128	64	32	16	8	4	2	1
Function	CRYSTAL OVEN COLD	RSV REQUEST SERVICE	OUT OF RANGE (frequency)	RF OFF	NOT PHASE LOCKED	NQT USED	FM OVER- MOD	NQT USED

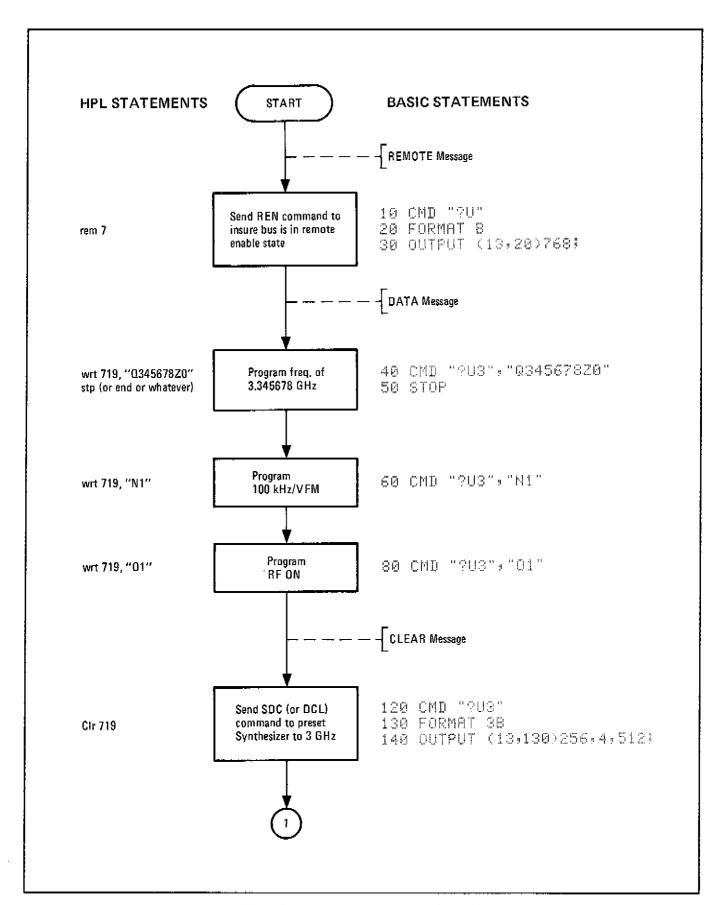


Figure 3-6. Programming Examples (1 of 2)

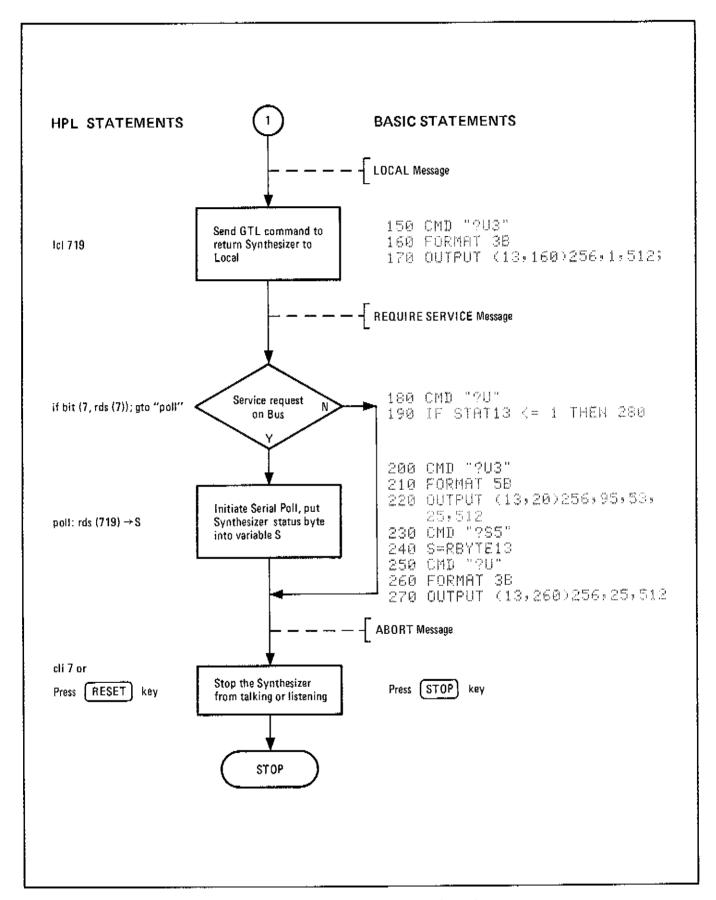
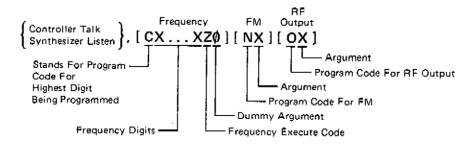


Figure 3-6. Programming Examples (2 of 2)

Table 3-9. Programming Quick Reference Guide

	PROGRAM CODES	ARGUMENTS
FREQUENCY	1 GHz A or 0 100 MHz B or R 10 MHz C or S 1 MHz D or T 100 kHz E or U 10 kHz F or V 1 kHz G or W EXECUTE J or Z	Ø THROUGH 9
된	N or ~	OFF Ø 100 kHz 1 10 MHz 2
RF	0 or	RF OFF Ø RF ON 1


NOTE

The Synthesizer interprets any ASCII character in columns 4 and 5 of table 2-1 as a program code. The two columns are equivalent; for example, it will respond the same way to "Z" as it does to "J". The Synthesizer ignores all other characters. To avoid confusion, only the codes printed in bold type in the table are used in the examples in this book.

STATUS BYTE

Bit Number Decimal Value	8 128	7 64	6 32	5 16	8	3	2	1
Function	CRYSTAL OVEN COLD	RSV REQUEST SERVICE	OUT OF RANGE (frequency)	RF OFF	NOT PHASE LOCKED	NÖT USED	FM OVER- MOD	NOT USED

PROGRAM STRING SYNTAX

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. The procedures in this section test the instrument's electrical performance using the specifications of Table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument. A simpler operational test is included in Section III under Operator's Checks.

NOTES

For ease of testing, the Frequency Switching Time tests may be performed with top covers removed.

If the performance tests are to be considered valid the following conditions must be met:

- a. The Synthesizer must have a 1-hour warmup.
- b. The line voltage must be within +5% and -10% of nominal.
- c. The ambient temperature must be +15°C to +35°C for the RF Output Level and Flatness and the FM Accuracy tests.

Before aging rate tests are performed, the Synthesizer must 1) have a 30 day warmup if it has been disconnected from the Mains power for more than 24 hours or 2) the Synthesizer must have a 24 hr. warmup if it has been disconnected from the Mains power for less than 24 hours.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in the Recommended Test Equipment table in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-5. TEST RECORD

4-6. Results of the performance tests may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. The results recorded at incoming inspection can be used for comparison in periodic maintenance and trouble-shooting and after repairs or adjustments.

4-7. CALIBRATION CYCLE

4-8. This instrument requires periodic verification of performance. Depending on the use and environmental conditions, the instrument should be checked using the following performance tests at least every six months after the first year.

4-9. ABBREVIATED PERFORMANCE TESTING

4-10. Performing the Operational Verification checks is suggested as an alternative to a complete verification of the specifications listed in Table 1-1. These checks give reasonable assurance that the Synthesizer is performing properly.

PERFORMANCE TESTS

4-11. OPERATIONAL VERIFICATION CHECKS

DESCRIPTION: This procedure checks the Synthesizer to give reasonable assurance that it is working

properly by performing selected tests of all major functions. If remote verification is

required, the Remote Operator's Check in Section VIII is recommended.

EQUIPMENT: Spectrum Analyzer HP 8565A

4-11. OPERATIONAL VERIFICATION CHECKS (Cont'd)

PROCEDURE:

- 1. Connect the Synthesizer to the Mains power and allow sufficient warm-up time for the OVEN annunciator to go out.
- 2. Connect the power meter to the Synthesizer's RF OUTPUT and tune to 2000MHz.
- 3. Tune from 2 to 6100 MHz in 100 MHz steps. The power should remain above +8 dBm over the entire frequency range. Figure 4-1 shows a typical output level curve.

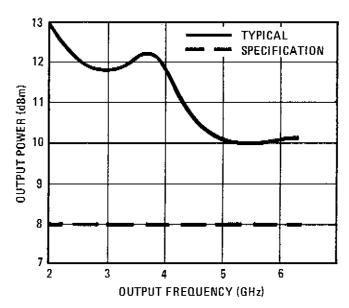


Figure 4-1. Typical Output Power from 8671A

- 4. Tune in 100 MHz steps from 2 to 6100 MHz. The total power variation should be less than 6 dB over the frequency range.
- Connect a 41.58 kHz signal from a test oscillator's 50 ohm output to the FM IN-PUT connector. Set the DEVIATION switch to the 0.1 MHz range. Adjust the test oscillator's output level to obtain the first Bessel null of the carrier. This will usually occur between 1.241 Vrms and 1.603 Vrms. It should always occur between 1.045 Vrms and 1.905 Vrms.

NOTE

At the 100 kHz rate, the allowable voltage error is determined only by the FM Accuracy Relative to the External Input Level. ($\pm 7\%$ of range from ± 15 °C to 35°C). At rates other than 100 kHz the error due to FM Frequency Response must also be considered (± 2.0 dB). Typically, however, this value is ± 0.5 dB. The first test limits given in the previous step takes only the $\pm 7\%$ and ± 0.5 dB error into account. The second set of limits expresses the "worst case" possible ($\pm 7\%$ and ± 2.0 dB).

6. Set the FM DEVIATION switch to OFF and disconnect the input signal.

4-11. OPERATIONAL VERIFICATION CHECKS (Cont'd)

7. If any of the steps in this procedure seem to have failed, perform the related performance tests or refer to the service information in Section VIII as necessary.

Table 4-1. Record of Operational Verification Checks

Step	Description	Results
1	OVEN annunciator is not lighted.	
3	Power Level is +8 dBm minimum The NOT PHASE-LOCKED annunciator is not lighted.	
4	Power variation is 6 dB maximum	
5	Frequency Modulation drive voltage is within tolerance.	

4-12.) RF OUTPUT LEVEL AND FLATNESS

SPECIFICATION:

Output Power (unleveled) >+8 dBm, +15°C to +35°C.

Flatness: < 6 dB total output power level variation with frequency across band.

NOTE

For Option 005 instruments, the unleveled Output Power is +7~dBm minimum.

DESCRIPTION:

A power meter is used to measure the output power of the Synthesizer as the Frequency is tuned from 2 to 6.2 GHz. The minimum and maximum power points are checked for specification compliance.

EQUIPMENT:

Power Meter/Sensor HP 436A/8481A

PROCEDURE:

- 1. Calibrate and zero the power meter.
- 2. Connect the power sensor to Synthesizer's RF OUTPUT connector.
- 3. Set the Synthesizer's RF switch to ON; set the FM DEVIATION switch OFF.
- 4. Tune the Synthesizer in 1 MHz steps from 2000 MHz to 6199 MHz. Note the minimum and maximum power output levels. The minimum should be at least +8 dBm and the maximum should be less than 6 dB greater than the measured minimum.

 maximum

 minimum + 8 dBm

 difference

5. If the RF Output Level and Flatness is not within the required tolerance, check the YTO Loop output, A1AT1 Isolator and the output cable.

4-13,

HARMONICS

SPECIFICATION:

All harmonics up to 18 GHz shall be less than -15 dB.

DESCRIPTION:

A spectrum analyzer monitors the RF output of the Synthesizer. Various frequencies are tuned while the harmonics are observed to verify proper performance of the instrument.

EQUIPMENT:

Spectrum Analyzer HP 8565A

PROCEDURE:

- 1. Tune the Synthesizer to 2000 MHz.
- 2. Connect the RF OUTPUT to the spectrum analyzer's RF input.
- 3. Set the spectrum analyzer controls to observe the fundamental signal on the display. Set the input attenuation to 40 dB. Set the peak of the fundamental signal to the reference level graticule using the reference level control.
- 4. Tune the spectrum analyzer to the second harmonic of the carrier.
- 5. Tune the Synthesizer in 100 MHz steps to 6200 MHz while observing the fundamental and second harmonic levels on the spectrum analyzer.
- 6. Verify that the harmonic level remains at least 15 dB below the carrier level. Record the minimum amplitude separation.

15 dB _____

7. If the harmonic signals are not within tolerance, perform the following adjustments in Section V: Digital-to-Analog Converter, YTO Driver, YTO Loop Preamp Driver and Sampler, YTO Loop Offset and FM Overmodulation, YTO Phase Detector and FM Driver.

4-14. SWR

SPECIFICATIONS:

Impedance: 50 ohms

SWR: <1.7

DESCRIPTION:

The insertion loss of the directional coupler is measured. From the insertion loss and the SWR specification, the maximum allowable power variation is calculated (assuming that the Synthesizer is operating into a short circuit). The Synthesizer is then operated into a short and the power variation is measured and compared with the calculated limits.

4-14. SWR (Cont'd)

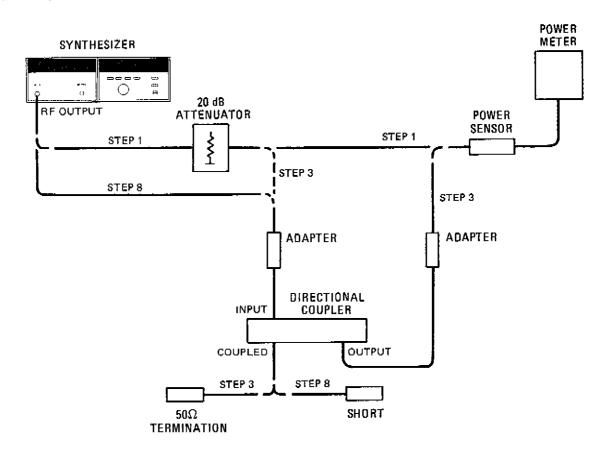


Figure 4-2. SWR Test Setup

EQUIPMENT:	20 dB Attenuator	
PROCEDURE:	 Set Synthesizer's controls for an output of 2.1 GHz, connect ator to Synthesizer's RF OUTPUT connector and measure the with the power meter. (Refer to Figure 4-2, Step 1.) 2.1 GHz 	
		dBm dBm
	3. Connect the equipment as shown in Figure 4-2 (Step 3).	

4 4 4	CIMID	104-1
4-14.	SVVR	(Cont'd)

4	Measure	the no	NIMAY 91	tha	cama	framuan	niae ac	999	Stone	٦	and 9	
	111 - 40 - 41 -	DITC DI	O AA CT TI		JULIU	TIC 4 44-11			L LV. LV.	- E.	GILLIA A	٠.

2.1 GHz.	 dBm
4.1 GHz	dBm
6.1 GHz	dBm

5. Compute the insertion loss (I) of the directional coupler and adapters for each frequency (Step 1 or 2 minus Step 4).

6. Calculate the gain of the coupler and the ratio of maximum to minimum power for SWR of 1.7 at each listed frequency. Use the following formulas:

$$G = 10^{(-1/20)}$$

$$R = \frac{1 + G^2/3.86}{1 - G^2/3.86}$$

Where:

G = gain of coupler

I = insertion loss (recorded in Step 5)

R = ratio of maximum to minimum power

7. Convert the ratio R to the maximum variation allowable (in dB) by using the formula:

$$S = 20 \log_{10} R$$

Where

S = maximum variation (dB)

and

R = ratio of maximum to minimum power

- 8. Connect equipment as shown in Figure 4-2 (Step 8).
- 9. To verify the Synthesizer's SWR, slowly tune around 2.1 GHz to find the minimum and maximum power indications. Record the power indications and figure the variation.

Maximum		Minimum		Variation
2.1 GHz	dBm —	dBm		dB
4.1 GHz 6.1 GHz	dBm —	dBm	=	dB

4-14. SWR (Cont'd)

Repeat the search for maxima and minima at the other frequencies. The variation at each frequency should be less than the value of S computed in Step 7.

10. If the SWR specification is not within tolerance, refer to the troubleshooting information in Section VIII, Service Sheet 4.

4-15. FM ACCURACY

SPECIFICATION: FM accuracy relative to external input level (at 100 kHz rate): ±7%, +15°C to +35°C ±10%, 0° to +55°C.

NOTE

For FM rates other than $100\ kHz$, add the FM frequency response specification.

DESCRIPTION:

With the FM rate fixed, the FM peak deviation is varied to produce a carrier null. The relationship of FM rate and peak deviation at the null is expressed by the Bessel Function. The modulation drive level should be within the specified tolerance.

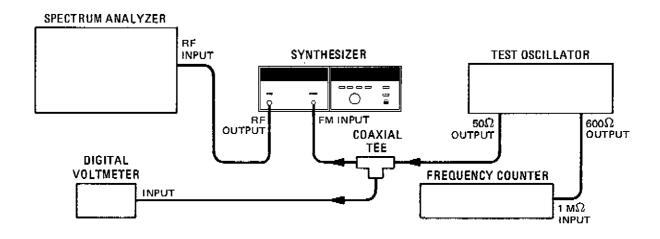


Figure 4-3. FM Accuracy Test Setup

EQUIPMENT:	Frequency Counter			_	٠	HP 5340A
	Test Oscillator					HP 651B
	Digital Voltmeter					HP 3455A

Spectrum Analyzer HP 8565A

4-15. FM ACCURACY (Cont'd)

PROCEDURE:

- 1. Connect the equipment as shown in Figure 4-3.
- 2. Set the test oscillator's output to 100 kHz as accurately as possible.
- 3. Tune the Synthesizer to 3000 MHz. Adjust the spectrum analyzer controls for a clear display of the carrier using 100 kHz per division.
- 4. Set the Synthesizer's FM DEVIATION switch to the 10 MHz range.
- 5. Adjust the test oscillator's output level to obtain a carrier null. (This should occur near 34 m Vrms, 240 kHz.)
- 6. The DVM should read between 31.6 and 36.4 m Vrms. Record the level.
- 7. If the FM Accuracy is not within tolerance, perform the FM Driver and A1 RF Output Assembly FM Sensitivity Adjustment in Section V.

4-16. NON-HARMONICALLY RELATED SPURIOUS

SPECIFICATION:

(CW and AM Modes): <-70 dB.

DESCRIPTION:

The spectrum analyzer is calibrated by setting the carrier at the graticule line. The gain of the spectrum analyzer is increased. It is tuned to any frequency between 2 and 6.2 GHz in search of spurious signals.

EQUIPMENT:

PROCEDURE:

- 1. Connect the Synthesizer's RF OUTPUT to the spectrum analyzer's input through the 10 dB step attenuator.
- 2. Set the attenuator to 60 dB, tune to 3000 MHz.
- 3. Tune the spectrum analyzer's center frequency to view the carrier. Set the frequency to 10 kHz per division, resolution bandwidth to 1 kHz and sweep time as needed to maintain spectrum analyzer calibration. Set the video filter to 100 Hz (0.1 times the resolution bandwidth).
- 4. Adjust the reference level control to place the carrier at top graticule line.
- 5. Connect the Synthesizer's output directly to the analyzer's RF input.
- 6. Tune the spectrum analyzer to any desired frequency in search of non-harmonically related spurious signals. Verify that any signals found are non-harmonically related and not generated by the spectrum analyzer. Verify that the spurious signals are below specified limits.
- 7. If the non-harmonically related spurious are not within tolerance, refer to the troubleshooting information on Section VIII, Service Sheet 1.

4-17. POWER LINE RELATED SPURIOUS

SPECIFICATION:

(CW Mode): Due to fan rotation with 5 Hz below line frequency and multiplies.

Except Option 003 instruments (400 Hz operation).

$$f_o < 300 \text{ Hz}, -50 \text{ dB}$$

$$300 \text{ Hz} \leq f_0 \leq 1 \text{ kHz}, -60 \text{ dB}$$

$$f_a > 1 \text{ kHz}, -65 \text{ dB}$$

where

fo is frequency offset from carrier.

NOTE

For option 003 instruments (400 Hz operation) refer to Table 1-1.

DESCRIPTION:

The Unit Under Test is isolated from vibration on a two-inch thick foam pad. The primary power source is separate from the power source for the reference unit and spectrum analyzer. The outputs of the Unit Under Test and reference unit are mixed together. The IF output is connected to the input of the low frequency spectrum analyzer. The line related sidebands are observed on the analyzer display.

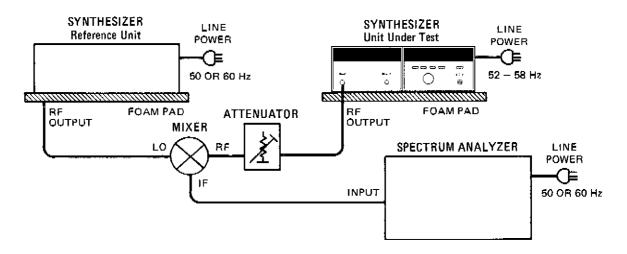


Figure 4-4. Power Line Related Spurious Test Setup

NOTE

The Unit Under Test must be operated at a line (Mains) power frequency different than that of the reference unit and spectrum analyzer. This avoids the summing of the power line spurious signals.

EQUIPMENT:

Attenuator (10 dB step) HP 8495B Option 010

Foam Pads

4-17. POWER LINE RELATED SPURIOUS (Cont'd)

PROCEDURE:

- 1. Tune the Unit Under Test to 3000 MHz.
- 2. Tune the reference unit to 3000.020 MHz.
- 3. Set the attenuator to 30 dB.
- 4. Set the spectrum analyzer controls for a start frequency of 20 kHz, frequency span per division 50 Hz, and resolution bandwidth 3 Hz.
- 5. Connect the equipment as shown in Figure 4-4.
- 6. Adjust the spectrum analyzer to set the 20 kHz signal to the top graticule line on the display. Verify that the line related spurious of the Unit Under Test are below the values shown in the table. Record the highest spurious level in each offset band.

$$f_o < 300 \text{ Hz}$$
 50 dB down _____
300 Hz $\leq f_o \leq 1 \text{ kHz}$ 60 dB down _____

7. Change the spectrum analyzer's frequency span per division to 500 Hz. Measure and record the spurious signal levels.

$$f_o > 1 \text{ kHz}$$
 65 dB down _____

8. If the power supply related spurious are not within tolerance, refer to Section VIII, Service Sheet 12-A3, for troubleshooting information.

4-18. SINGLE-SIDEBAND PHASE NOISE RATIO

SPECIFICATION:

SSB Phase Noise Ratio (in 1 Hz BW and CW Mode) at Specified Offset Frequency								
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz								
-60 dB	-68 dB	78 dB	-89 dB	-109 dB				
-58	~76		-86	-110				

DESCRIPTION:

The RF outputs of two synthesizers are mixed together to obtain a 40 kHz or 200 kHz IF signal. The noise sidebands are observed on a spectrum analyzer. Correction factors are applied to compensate for the use of bandwidths wider than 1 Hz and for using a spectrum analyzer.

4-18. SINGLE-SIDEBAND PHASE NOISE RATIO (Cont'd)

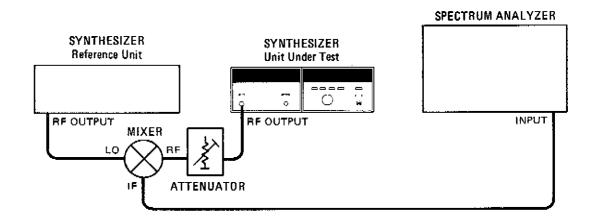


Figure 4-5. Signal-to-Phase Noise Ratio Test Setup

-	TITLE ATTACK	
H.I. II	HPMENT:	

Synthesizer									HP 8671A
Spectrum Analyzer	(5	Hz -	- 5	0 1	ιHz	(2			HP 3580A

Spectrum Analyzer (20 Hz - 300 kHz) . . . HP 8556A/8552B/141T

NOTE

The signal-to-phase noise ratio as measured with the spectrum analyzer is reduced by the 2.4 dB noise correction factor. This correction is necessary due to the spectrum analyzer characteristics.

PROCEDURE:

- 1. Set the 5 Hz-50 kHz spectrum analyzer's start frequency to 40 kHz, bandwidth 1 Hz, frequency span per division to 5 Hz.
- 2. Set the attenuator to 30 dB.
- 3. Set the Unit Under Test to 6100 MHz.
- 4. Set the reference unit to 6100.040 MHz.
- 5. Connect the equipment as shown in Figure 4-5.
- 6. Set the spectrum analyzer controls so the peak of the 40 kHz signal is at the top graticule line.
- 7. Observe the noise level 10 Hz from the carrier. It should be greater than 60 dB below the carrier. Record the measured level.

-57.6 dB down	
55.6	

4-18. SINGLE-SIDEBAND PHASE NOISE RATIO (Cont'd)

- 8. Set the spectrum analyzer controls for a bandwidth of 3 Hz and a frequency span per division of 20 Hz. (The use of a 3 Hz bandwidth requires a 4.77 dB correction in the measured noise level, that is, the actual noise level in a 1 Hz bandwidth is 4.77 dB lower than the noise measured in a 3 Hz bandwidth.) Set the peak of the 40 kHz signal to the top graticule line.
- 9. Observe the noise 100 Hz from the carrier and add the 4.77 dB correction factor. Record the measured level.
- 10. For the remainder of the procedure, use the 20 Hz 300 kHz spectrum analyzer. Set the analyzer's bandwidth to 30 Hz, frequency span per division to 200 Hz, and sweep time as required. The 30 Hz bandwidth requires a 14.77 dB correction.
- 11. Change the reference oscillator frequency to 6100.200 MHz.
- 12. Tune the spectrum analyzer to place the 200 kHz IF signal at the left edge of the display. Set the spectrum analyzer controls to place the peak of the 200 kHz signal at the top graticule line. Increase the log reference level control to move the peak of the carrier 20 dB above the top graticule line.
- 13. Observe the noise level 1 kHz from the carrier. The corrected level should be greater than 75 dB down. Record the measured level.

60.8 dB down _____

.60.8 dB down _

- 14. Set the spectrum analyzer controls for a bandwidth of 300 Hz, frequency span per division of 2 kHz, and sweep time as required. The correction for the 300 Hz bandwidth is 24.77 dB.
- 15. Repeat step 12, observe the noise 10 kHz from the carrier, and add the 24.77 dB correction factor. Record the measured level.

-61-&-dB down _____ 5ୱ-ୱ

- 16. Set the spectrum analyzer controls for a bandwidth of 3 kHz, frequency span per division of 20 kHz, and sweep time as required. The correction factor is 34.77 dB.
- 17. Repeat step 12, observe the noise 100 kHz from the carrier and add the 34.77 dB correction factor. Record the measured level.

71.8 dB down ______

4-18. SINGLE-SIDEBAND PHASE NOISE RATIO (Cont'd)

18. If the Single-Sideband Phase Noise Ratio is out of tolerance, perform the following adjustments: YTO Driver, VCXO, M/N Loop, 20/30 Loop VCO, 20/30 Loop Bias, YTO Sampler, YTO Phase Detector, YTO Offset and FM Overmodulation and FM Driver.

4-19. FM FREQUENCY RESPONSE

SPECIFICATION:

(Relative to 100 kHz)

For 50 kHz/V range, ± 2.0 dB from 100 kHz to 3 MHz. For 5 MHz/V range, ± 2.0 dB from 3 kHz to 3 MHz.

DESCRIPTION:

The test oscillator is tuned to 100 kHz and the output level is adjusted to obtain the first carrier (Bessel) null (β = 2.404). The output level and the 100 kHz rate are the references for later calculations. At other modulation rates, the output level is set and measured for the first carrier null. The measured voltage and the rate are then compared to the established reference to determine frequency response.

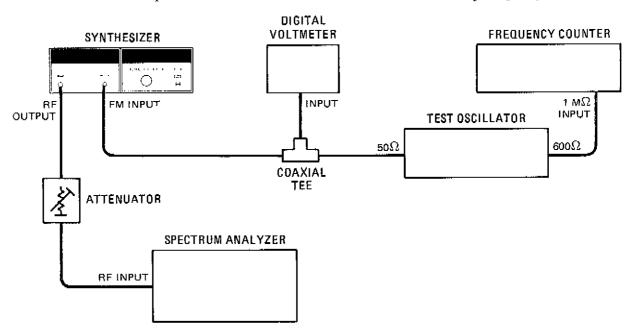


Figure 4-6. FM Frequency Response Test Setup

EQUIPMENT:	Digital Voltmeter HP 3455A	
	Frequency Counter	
	Spectrum Analyzer HP 8565A	
	Test Oscillator	
	Attenuator (10 dB steps)	0

4-19. FM FREQUENCY RESPONSE (Cont'd)

table.

PROCEDURE:

- 1. Connect the equipment as shown in Figure 4-6; set the Attenuator to 10 dB.
- 2. Tune the Synthesizer to 3 GHz. Adjust the spectrum analyzer's controls to display the RF signal. Set the scan width to 100 kHz per division initially. Set the other controls as needed for a calibrated display. (It will be necessary to change the scan width for later measurements.)
- 3. Set the FM deviation switch to the 10 MHz range and tune the test oscillator as accurately as possible to 100 kHz.
- 4. Adjust the test oscillator output voltage to obtain the first carrier (Bessel) null ($\beta = 2.404$). Record in the table below the voltage indicated on the digital voltmeter. (The voltage should be approximately-0.17 Vrms.)

Tune the test oscillator to 3 kHz (f_x) and adjust the output voltage (V_x) to obtain the first carrier null. Record the measured frequency and voltage in the

6. Repeat Step 5 for each of the remaining frequencies listed in the following

Frequency (in kHz)	Measured Frequency (f _x in kHz)	Measured Voltage V _x (mVrms)	Calibrated Response (in dB)
3			
30	<u></u>		
100	100.0	<u> </u>	0
300			
1000	A. 1884 . B		
3000			

7. Use the following equation to calculate the flatness of the FM circuits.

$$dB = 20 \log \frac{V_{x}}{V_{100 \text{ kHz}}} -20 \log \frac{f_{x}}{100 \text{ kHz}}$$

where dB = the calculated frequency response

 V_{v} = the voltage measured at f_{v}

 $V_{100 \text{ kHz}}$ = the reference voltage measured at 100 kHz

 f_{\perp} = the measured frequency.

8. If the FM frequency response is not within the required tolerance, perform the FM Driver Adjustment and the FM Adjustment in Section V.

4-20. FM HARMONIC AND NON-HARMONIC DISTORTION

SPECIFICATION:

Less than 12% for rates less than 3 kHz decreasing linearly with frequency to 5% at 20 kHz. Less than 5% for 20 kHz to 100 kHz rates.

NOTE

For certain FM modulating frequencies, spurious FM signals (non-harmonic distortion) may occur. After demodulation in an external FM discriminator, the contribution to distortion of these spurious signals is typically less than 0.6%.

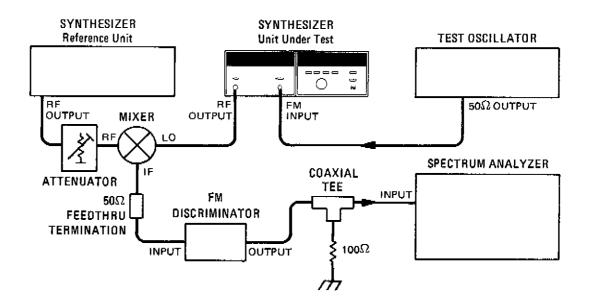


Figure 4-7. FM Distortion Test Setup

EQUIPMENT:	Synthesizer HP 8671A
	Test Oscillator HP 651B
	Mixer
	FM Discriminator HP 5210A
	1 MHz Low Pass Filter (for 5210A) Refer to HP 5210A Operating and
	Service Manual
	Spectrum Analyzer HP 8556A/8552B/141T
	Termination 50Ω Feedthru HP 11048C
	Resistor 100Ω HP 0698-7212
	Attenuator (10 dB Steps) HP 8495B Option 010

4-20. FM HARMONIC AND NON-HARMONIC DISTORTION (Cont'd)

PROCEDURE:

- 1. Tune the Unit Under Test to 3000 MHz.
- 2. Tune the reference unit to 3009 MHz.
- 3. Set the attenuator to 10 dB.
- 4. Set the test oscillator's controls to 100 kHz at 71 mVrms.
- 5. Connect the equipment as shown in Figure 4-7. Be sure that the Unit Under Test is connected to the mixer's LO port. Be sure that the 1 MHz Low Pass Filter is installed in the FM Discriminator.
- 6. Set the FM Deviation switch of the Unit Under Test to 10 MHz.
- 7. Set the FM discriminator's controls to the 10 MHz frequency range and 0.01 volt sensitivity range.
- 8. Adjust the spectrum analyzer's controls to view the recovered modulation and harmonics.
- 9. To determine the total distortion, first convert each significant harmonic or spurious level from dB below the fundamental to the power ratio using Table 4-2. Add the power ratios and convert the sum to percent distortion.

Example:

2nd harmonic:	30 dB down = .001
3rd harmonic:	45 dB down = .0000316
4th harmonic:	39 dB down = .0001259
5th harmonie:	60 dB down = .0000010
Significant Spurious	

Level: 57 dB down = .0000020

.0011605 or 3.4%

5%

The total distortion should be less than 5%. Record the level.

10. If the FM distortion is not within the required tolerance, perform the FM Driver Adjustments in Section V. Then, if necessary, repair the FM Driver or FM Input Circuits.

4-20. FM HARMONIC AND NON-HARMONIC DISTORTION (Cont'd)

Table 4-2. Harmonic Level versus Percentage Distortion

dB Down	Power Ratio	Percent Distortion	dB Down	Power Ratio	Percent Distortion
0dB	1.000000000	100.000%	-31dB	0.000794328	2.818%
−1dB	0.794328235	89.125%	-32dB	0.000630957	2.512%
- 2dB	0.630957344	79.433%	-33dB	0.000501187	2.239%
-3dB	0.501187234	70.795%	-34dB	0.000398107	1.995%
-4dB	0.398107171	63.096%	-35dB	0.000316228	1.778%
-5 d B	0.316227766	56.234%	-36dB	0.000251189	1.585%
−6dB	0.251188643	50.119%	-37dB	0.000199526	1.413%
7dB	0.199526231	44.668%	-38dB	0.000158489	1.259%
-8 d B	0.158489319	39.811%	-39dB	0.000125893	1.122%
-9dB	0.125892541	35.481%	-40dB	0.000100000	1.000%
-10dB	0.100000000	31.623%	-41dB	0.000079433	0.891%
-11dB	0.079432823	28.184%	-42dB	0.000063096	0.794%
-12dB	0.063095734	25.119%	-43dB	0.000050119	0.708%
-13dB	0.050118723	22.387%	-44dB	0.000039811	0.631%
-14dB	0.039810717	19.953%	-45dB	0.000031623	0.562%
-15dB	0.031622777	17.783%	-46dB	0.000025119	0.501%
-16dB	0.025118864	15.849%	-47dB	0.000019953	0.447%
17dB	0.019952623	14.125%	48dB	0.000015849	0.398%
-18dB	0.015848932	12.589%	-49dB	0.000012589	0.355%
-19dB	0.012589254	11.220%	-50dB	0.000010000	0.316%
-20dB	0.010000000	10.000%	-51dB	0.000007943	0.282%
-21dB	0.007943282	8.913%	-52dB	0.000006310	0.251%
-22dB	0.006309573	7.943%	-53dB	0.000005012	0.224%
-23dB	0.005011872	7.079%	-54dB	0.000003981	0.200%
$-24 \mathrm{dB}$	0.003981072	6.310%	-55dB	0.000003162	0.178%
-25dB	0.003162278	5.623%	-56dB	0.000002512	0.158%
-26dB	0.002511886	5.012%	-57dB	0.000001995	0.141%
-27dB	0.001995262	4.467%	-58dB	0.000001585	0.126%
-28dB	0.001584893	3.981%	-59dB	0.000001259	0.112%
−29dB	0.001258925	3.548%	-60dB	0.000001000	0.100%
30dB	0.001000000	3.162%			

4-21. RESIDUAL FM IN FM AND CW MODES

SPECIFICATION:

Noise and power line related

In CW and 100 kHz range

6 Hz-rms in 20 Hz-1 kHz post detection bandwidth 12 Hz-rms in 20 Hz-3 kHz post detection bandwidth

In 10 MHz range

10 Hz-rms in 20 Hz—1 kHz post detection bandwidth 20 Hz-rms in 20 Hz—3 kHz post detection bandwidth

DESCRIPTION:

The RF output of the Unit Under Test is mixed with the RF output of the reference unit. The IF signal is demodulated and filtered. The filtered output is measured in rms volts and is proportional to the residual FM.

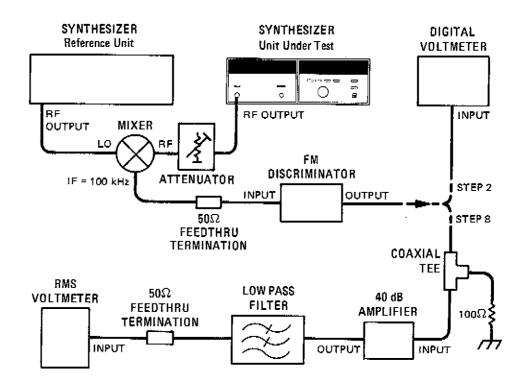


Figure 4-8. Residual FM in FM and CW Modes Test Setup

EQUIPMENT:	FM Discriminator			_		HP 5210A
	40 dB Amplifier				_	HP 465A
	Low Pass Filter (3 kHz) .		-			CIR-Q-TEL FLT/21B-3K-5/50-3A/3B
	Low Pass Filter (1 kHz) .				-	CIR-Q-TEL FLT/21B-1K-5/50-3A/3B
	Digital Voltmeter		-			HP 3455A
	Synthesizer			-		HP 8671A
	Mixer					
	50Ω Feedthru Termination	١.	_			HP 11048C
	RMS Voltmeter				_	HP 3400A
	Attenuator (10 dB Step).			_		HP 8495B Option 010

4-21. RESIDUAL FM IN FM AND CW MODES (Cont'd)

NOTE

The shorting board and the 10 kHz filter are supplied with the FM discriminator.

PROCEDURE:

- 1. Install a shorting board in the FM discriminator. Set the sensitivity switch to calibrate position; set the range switch to 100 kHz.
- 2. Connect the digital voltmeter to the discriminator output.
- 3. Adjust the rear panel gain control for a discriminator output of 1.00 Vdc.
- 4. Set the controls of the Unit Under Test as follows:

RF switch ON FM DEVIATION switch OFF

FREQUENCY 3000.000 MHz

- 5. Set the controls of the reference unit to 3000.1 MHz.
- 6. Install a 10 kHz Butterworth low pass filter in the FM discriminator. (Filter supplied with Discriminator.)
- 7. Set the attenuator to 10 dB.
- 8. Connect the equipment as shown in Figure 4-8.
- 9. Connect a 3 kHz low pass filter to the amplifier output.
- 10. Set the Synthesizer's FM DEVIATION switch to each range in turn. Allow time for the voltage reading to settle. Measure the voltage for each range and record it in the following table. Be sure each reading is within the required tolerance. The measurement sensitivity is 0.354 mVrms/Hz-rms.
- 11. Install a 1 kHz low pass filter and repeat step 10.

NOTES

This test may be performed at any desired frequency. The frequency of the reference unit must be 0.1 MHz greater than that of the Unit Under Test.

The test setup calibration can be checked by applying a 1 kHz signal to the FM input and adjusting the level to obtain 5 kHz peak deviation. The rms voltmeter should read 1.77 Vrms.

4-21. RESIDUAL FM IN FM AND CW MODES (Cont'd)

	Residual FM in Post Detection Bandwidth						
FM Range	20 Hz-1 kHz		20 Hz-3 kHz				
	Actual	Max	Actual	Max			
CW (OFF)		2.12 mVrms		4,24 mVrms			
0.1 MHz		2.12 mVrms		4.24 mVrms			
10 MHz		3.53 mVrms	· ·	7.06 mVrms			

12. If the residual FM is not within the required tolerance, check the FM Driver for hum, noise or ground loops; check the YTO Loop for phase lock.

4-22. FREQUENCY SWITCHING TIME

SPECIFICATION:

(CW mode): Less than 15 ms to be within 1 kHz.

DESCRIPTION:

The measurement system is connected so the oscilloscope is triggered at the execute frequency change command. The mixer output is viewed on the oscilloscope display. Switching is completed when the displayed frequency settles to the minimum resolution (1 kHz), the difference between the Synthesizer's outputs.

4-22. FREQUENCY SWITCHING TIME (Cont'd)

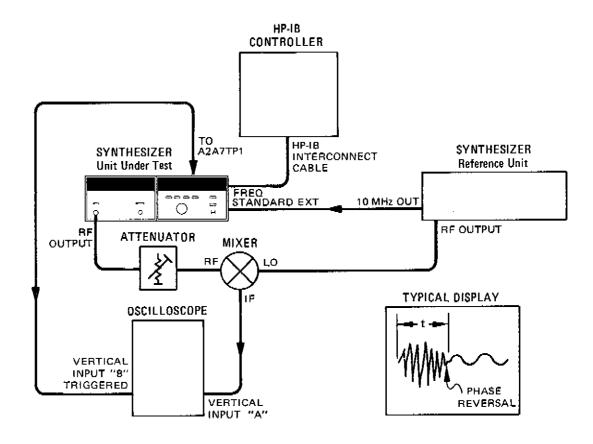


Figure 4-9. Frequency Switching Time Test Setup

EQUIPMENT:	HP-IB Controller HP 9830A
•	Synthesizer HP 8671A
	HP-IB Interconnect Cable HP 10631A
	Mixer RHG DM1-18
	Oscilloscope
	Attenuator (10 dB Step) HP 8495B

WARNING

This test may be performed with power supplied and protective covers removed. If the covers are removed, this test should be performed by service trained personnel who are aware of the hazards involved (for example, electrical shock).

NOTE

The necessity of removing the Synthesizer's covers to perform this test is eliminated if the oscilloscope's trigger input is connected to pin 6 of the HP-IB Interconnect Cable. In this case, proceed immediately to Step 8.

4-22. FREQUENCY SWITCHING TIME (Cont'd)

PROCEDURE:

- Disconnect the line (Mains) power cable from the Synthesizer's rear panel.
- Remove the two rear panel standoffs which are in contact with the top cover. 2.
- Loosen the screw at the center of the top cover's rear lip. Slide the cover toward the rear. Remove the cover.
- Remove the screw which holds the A2 Assembly's protective cover in place. The screw is located near the right rear corner of the instrument.
- Lift and remove the cover while sliding it toward the rear of the instrument.
- Reconnect the line (Mains) power cable to the rear panel power module. 6.
- Connect the oscilloscope's triggered vertical input to A2A7TP1. (This test point pulses high when the frequency execute command is accepted by the Synthesizer.
- Connect the Synthesizer and HP-IB controller together with an HP-IB Interconnect Cable.
- Set the oscilloscope controls to alternate B display, sweep time per division 2 ms, sweep mode normal/internal, and positive slope.

NOTE

The following programs are for the HP 9830A Computing Controller. For use with any other HP-IB controller, the program may need to be modified.

- 10. Load and run the following HP-IB controller program. This program is used to set the oscilloscope for reliable triggering on the pulse at A2A7TP1.
 - 10 OUTPUT (13,20)1280,768;
 - 20 FORMAT 28
 - 20 FORMAT 2B 30 CMD "9U3", "Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1Z1" Frequency Execute

 - 50 END

- 11. Set the attenuator to 10 dB.
- 12. Connect the remaining equipment as shown in Figure 4-9.
- 13. Set the frequency of the reference unit to 2100.001 MHz.

4-22. FREQUENCY SWITCHING TIME (Cont'd)

14. Load and run the following program. The Synthesizer's initial conditions are set. Then this program will continue switching between output frequencies of 6.199 GHz and 2.1 GHz until the stop key is pressed.

NOTE

Lines 50 and 70 are included to stabilize the oscilloscope's display.

15. Measure the switching time by observing the signal on the oscilloscope display. The Frequency Execute program code triggers the oscilloscope's horizontal sweep. Therefore, the timing bagins at the display's left graticule line. The timing ends at the last phase reversal as the IF signal settles into a steady frequency. Refer to Figure 4-9. This should occur in less than 15 ms. Record the switching time.

_____ 15 ms

- 16. Interchange lines 40 and 60 of the program.
- 17. Tune the reference unit to 6199.001 MHz.
- 18. Rerun the program. Record the switching time to the last phase reversal.

_____ 15 ms

19. If the frequency switching time is not within tolerance, check the M/N Loop, 20/30 Loop, YTO Loop (specifically the A2A7 and A3A7 assemblies); also check the remote programming circuits on A2A7 and A2A9.

4-23. INTERNAL TIME BASE AGING RATE

SPECIFICATION:

Less than 5 x 10⁻¹⁰ per day after 24-hour warmup.

DESCRIPTION:

A reference signal from the Synthesizer (100 MHz OUT) is connected to the oscilloscope's vertical input. A frequency standard (with long-term stability greater than 1×10^{-10}) is connected to the trigger input. The time required for a specific phase change is measured immediately and after a period of time. The aging rate is inversely proportional to the absolute value of the difference in the measured times.

PERFORMANCE TESTS

4-23. INTERNAL TIME BASE AGING RATE (Cont'd)

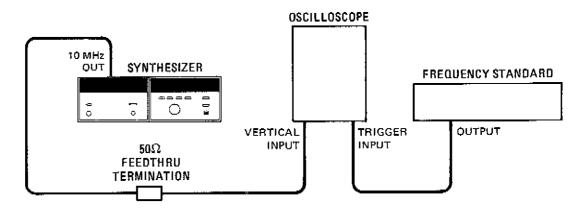


Figure 4-10. Internal Time Base Aging Rate Test Setup

EQUIPMENT:

 50Ω Feedthru Termination HP 11048C

NOTE

Be sure the Synthesizer has had 30 days to warm up before beginning this test. If the synthesizer was disconnected from the power line for less than 24 hours, only a 24 hour warmup is needed..

PROCEDURE:

- 1. Set the rear panel FREQ REFERENCE INT-EXT switch to the INT position.
- 2. Connect the equipment as shown in Figure 4-10.
- 3. Adjust the oscilloscope controls for a stable display of the 10 MHz output.
- 4. Measure the time required for a phase change of 360° . Record the time (T_1) in seconds.

$$T_1 = \underline{\hspace{1cm}} s$$

5. Wait for a period of time (from 3 to 24 hours) and re-measure the phase change time. Record the period of time between measurements (T_2) in hours and the new phase change time (T_3) in seconds.

$$T_2 = \underline{\hspace{1cm}} h$$

$$T_3 = \underline{\hspace{1cm}} s$$

6. Calculate the aging rate from the following equation:

Aging Rate =
$$\left| \left(\frac{1 \text{ cycle}}{f} \right) \left(\frac{1}{T_1} - \frac{1}{T_3} \right) \left(\frac{T}{T_2} \right) \right|$$

PERFORMANCE TESTS

4-23. INTERNAL TIME BASE AGING RATE (Cont'd)

where: 1 cycle = the phase change reference for the time measurement (in this case 360°)

f = Synthesizer's reference output frequency (10 MHz)

T = specified time for aging rate (24h)

 T_1 = initial time measurement (s) for a 360° (1 cycle) change

T₂ = time between measurements (h)

 T_3 = final time measurement (s) for a 360° (1 cycle) change

for example:

if
$$T_1 = 351s$$

$$T_2 = 3h$$

$$T_s = 349s$$

then

Aging Rate =
$$\left| \left(\frac{1 \text{ cycle}}{10 \text{ MHz}} \right) \left(\frac{1}{351 \text{s}} - \frac{1}{349 \text{s}} \right) \left(\frac{24 \text{h}}{3 \text{h}} \right) \right|$$

= 1.306 x 10⁻¹¹

7. Record the aging rate.

_____ 5 x 10⁻¹⁰ /day

NOTE

If the absolute frequencies of the frequency standard and the Synthesizer's reference oscillator are extremely close, the measurement time in steps 5 and 6 (T_1 and T_2) can be reduced by measuring the time required for a phase change of something less than 360°. Change 1 cycle in the formula (i.e., $180^{\circ} = 1/2$ cycle, $90^{\circ} = 1/4$ cycle).

8. If the aging rate is not within the required tolerance, replace A3A8 or repair the power supply as necessary. Be sure sufficient warmup time has been allowed (may require up to 30 days).

Table 4-3. Performance Test Record (1 of 2)

Mod Synt	lel 8671A thesized Signal Generator	Tested by							
Para.	Test		Results						
No.		Min	Actual	Max					
4-12	RF OUTPUT LEVEL AND FLATNESS Output Level >+8 dBm	+8 dBm	_						
	Flatness < 6 dB	- 5 dbiii		6 dB					
4-13	HARMONICS Ratio of Harmonic Amplitudes to Carrier Amplitude Fundamental Minimum Ratio 2.0-6.2 GHz Harmonics to 18 GHz < 15 dB	15 dB							
4-14	SWR 2.1 GHz < 1.7 4.1 GHz < 1.7 6.1 GHz < 1.7		(<) (<)						
4-15	FM ACCURACY At 100 kHz rate Accuracy relative to input level ±5%	32.2		35.6 mVrms					
4-16	NON-HARMONIC RELATED SPURIOUS SIGNALS <-70 dB	70 dB down							
4-17	POWER LINE RELATED SPURIOUS $f_o < 300 \text{ Hz} \qquad -50 \text{ dB}$ $300 \text{ Hz} \le f_o \le 1 \text{ kHz} \qquad -60 \text{ dB}$ $f_o > 1 \text{ kHz} \qquad -65 \text{ dB}$	50 dB down 60 dB down 65 dB down							
4-18	SINGLE-SIDEBAND PHASE NOISE RATIO SSB level in 1 Hz BW and CW mode at specified offset frequencies 10 Hz	57.6 dB down 60.8 dB down 60.8 dB down 61.8 dB down 71.8 dB down	55.6 63.8 58.8 73.8						

Table 4-3. Performance Test Record (2 of 2)

Para.	Test			Results							
No.			Min	Actual	Max						
4-19	FM FREQUENCY RE	SPONSE	1001								
	Relative to 100 kH ±2	z rate 3 kHz 2.0 dB 30 kHz 100 kHz		-2.0 dB -2.0 dB -2.0 dB		+2.0 dB +2.0 dB +2.0 dB					
		300 kHz 1000 kHz 3000 kHz	-2.0 dB -2.0 dB -2.0 dB		+2.0 dB +2.0 dB +2.0 dB						
4-20	FM HARMONIC & NO 20 kHz to 100 kHz		STORTION			5%					
4-21	RESIDUAL FM IN FR	AND CW MODES									
	20 Hz-1 kHz	Post Detection CW (OFF) 0.1 MHz range 10 MHz range Post Detection	6 Hz-rms 6 Hz-rms 10 Hz-rms			2.12 mVrms 2.12 mVrms 3.53 mVrms					
	20 1111 0 11112	CW (OFF) 0.1 MHz range 10 MHz range	12 Hz-rms 12 Hz-rms 20 Hz-rms			4.24 mVrms 4.24 mVrms 7.06 mVrms					
4-22	FREQUENCY SWITC	HING TIME		11111							
	Switching down Switching up	< 15 ms < 15 ms				15 ms 15 ms					
4-23	INTERNAL TIME BA	SE AGING RATE				5 x 10 ⁻¹⁰ /da					

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section contains adjustments and checks that assure peak performance of the Synthesizer. This instrument should be readjusted after repair or failure to pass a performance test. Allow a 30-minute warmup prior to performing the adjustments.

5-3. The order in which the adjustments are made is critical. Prior to making any adjustments, refer to the paragraph entitled Related Adjustments.

5-4. Determining the adjustments to be performed after a component failure and subsequent repair or a performance test failure is important. This will help keep the adjustment time to a minimum. After the repair and/or adjustment, performance tests are usually required to verify proper performance. Refer to the paragraph entitled Related Adjustments.

5-5. SAFETY CONSIDERATIONS

5-6. This section contains information, cautions and warnings which must be followed for your protection and to avoid damage to the equipment.

WARNINGS

Maintenance described in this section is performed with power supplied to the instrument and protective covers removed.

Maintenance should be performed only by service trained personnel who are aware of the hazard involved (for example, electrical shock). Where maintenance can be performed without power applied, the power should be removed.

5-7. EQUIPMENT REQUIRED

5-8. Each adjustment procedure contains a list of required test equipment and accessories. The test equipment is identified by callouts in the test setup diagrams included with each procedure.

5-9. If substitutions must be made for the specified test equipment, refer to Table 1-2 for the minimum specifications. It is important that the test equipment meet the ciritical specifications listed in the

table if the Synthesizer is to meet the performance requirements.

5-10. The HP 11712A Support Kit is an accessory item available from Hewlett-Packard for use in maintaining the Synthesizer.

5-11. FACTORY SELECTED COMPONENTS

5-12. Factory selected components are identified on the schematics and parts list by an asterisk which follows the reference designator. The normal value or range of the components are shown. The manual change sheets will provide updated information pertaining to the selected components. Table 5-1 lists the reference designator, the criterion used for selecting a particular value, the normal value range, and the service sheet where the component part is shown.

5-13, RELATED ADJUSTMENTS

5-14. If all the adjustments are to be performed, they should be done in order with the exception of the A2 Assembly Adjustments. These adjustments should be performed after the M/N Loop Adjustments and before the YTO Sampler Adjustments.

5-15. In the event of a performance test or component failure, it must be determined if an adjustment procedure should be performed or if the instrument should be repaired. Tables 5-2 and 5-3 indicate the required action in either case.

5-16. After the instrument is repaired and/or adjusted, performance testing, a frequency check or verification of phase lock and possibly all of these things must be done to verify proper performance of the Synthesizer. Tables 5-2 and 5-3 contain the necessary information that provides assurance of proper performance.

5-17. Prior to performing the adjustment procedures, refer to the disassembly procedures in Section VIII. These procedures cover the removal of the top and bottom covers, the internal A2 assembly covers, and the A3A9 YTO Loop Assembly.

5-18. ADJUSTMENT LOCATIONS

5-19. The last foldouts in this manual contain figures that show the location of assemblies, adjustments, test points and chassis parts.

Table 5-1. Factory Selected Components

Reference Designation	Service Sheet	Range of Values	Basis of Selection				
A3A1A2L4	2-A3	0.22 to 0.68 μH	Centers the adjustment range of A3A1A2C4 around 100 MHz. Refer to the VCXO Adjustment procedure.				
A3A1A2R67, R68 and R69	2-A3	Refer to Table 5-4	Required change in attenuation necessary for a -10 df output level of the 400 MHz signal. Refer to the VC3 Adjustment procedure.				
A3A7C19	10-A3	160 or 220 pF	Matched to the A3A9A3 2-6.2 GHz VTO Assembly. 160 pF with HP 5086-7131; 220 pF with HP 5086-7242.				
A3A7C48	7-A3	3.9 to 5.6 pF	For the 0.1 MHz FM deviation range. Using FM Frequency Response Test Setup (test oscillator and spectrum analyzer only), set test oscillator's controls so the spectrum analyzer's display of the first FM sidebands are 30 dB down from carrier at 1 MHz. At 3.16 MHz, sidebands should be 40 dB down; at 10 MHz, 50 dB down. If response is peaking, insert a smaller value capacitor. If response is rolling off, insert a larger value capacitor.				
A3A7R67	10-A3	75 or 178Ω	Matched to the A3A9A3 2-6.2 GHz YTO Assembly. 178 Ω with HP 5086-7131; 75 Ω with HP 5086-7242.				
A3A9A4R20	9-A3	348 to 562Ω	YTO Loop gain crossover of 20 ±2 kHz. Refer to the YTO Loop Phase Detector Adjustment,				

Table 5-2. Performance Test Failure and Required Action

Performance Test Failed	Adjustment or Repair	Repeat Performance Test			
RF Output Level and Flatness	Check YTO loop output, A1AT1 Isolator and the Output Cable.	RF Output Level and Flatness Harmonics.			
SWR	Check the A1AT1 Isolator and the Output Cable.	SWR.			
Harmonics	Digital-to-Analog Coverter, YTO Driver, YTO Loop Preamp Driver and Sampler, YTO Loop Offset and FM Overmodu- lation, YTO Loop Phase Detector and FM Driver Adjustments.	RF Output Level and Flatness Harmonics.			
Non-Harmonically Related Spurious	This problem may occur anywhere in the instrument. Isolate the defective component and make adjustments as required (see Table 5-3).	Non-Harmonically Related Spurious. Other tests as required after repair.			
Power Line Related Spurious	Refer to Section VIII, Service Sheet 12-A3 for troubleshooting information.	Power Line Related Spurious,			
Single-Sideband Phase Noise Ratio	YTO Driver, VCXO, M/N Loop, 20/30 Loop VCO, 20/30 Loop Bias, YTO Sampler, YTO Phase Detector, YTO Offset and FM Overmodulation, and FM Driver Adjustments.	Check for phase lock. Signal-to-Phase Noise Ratio. All FM tests.			
FM Accuracy or FM Frequency Response	FM Driver Adjustment, Al RF Output Assembly FM Sensitivity Adjustment.	All FM tests.			
FM Distortion	First perform FM Driver Adjustments; then, if necessary, repair FM Driver or FM Input Circuits (see Table 5-3).	All FM tests.			
Residual FM in FM and CW modes	Check the FM Driver for hum, noise or ground loops. Check the YTO loop for phase lock.	Single-Sideband Phase Noise Ratio			

Table 5-2. Performance Test Failure and Required Action (Cont'd)

Performance Test Failed ¹	Adjustment or Repair	Repeat Performance Test			
Frequency Switching Time	Check the M/N Loop; 20/30 Loop; YTO Loop (specifically the A2A7 and A3A7 Assemblies). Check the remote programming circuits on A2A7 and A2A9.	Frequency Switching Time.			
Internal Time Base Aging Rate	Replace A3A8 or repair power supply if necessary (see Table 5-3). Be sure sufficient warm-up time has been allowed (may require up to 30 days).	Internal Time Base Aging Rate.			

¹ If the output frequency is incorrect, or any of the phase lock loops are unlocked, make the appropriate adjustments and (if necessary) refer to Section VIII for repair information. After adjustment or repair, check for the correct frequency and verify that the phase look loops are locked. Perform the single-sideband phase noise ratio test.

Table 5-3. Related Adjustments

Assembly Repaired	Adjustments	Performance Tests
A1A1 FM Input Circuit	FM Sensitivity Adjustment	All FM Tests
A2A3 VCO 160-240 MHz Assembly	20/30 Loop VCO Adjustment	Single-Sideband Phase Noise Ratio ¹ . Power Line Related Spurious.
Λ2Λ4 20/30 Phase Detector Assembly	A2A4 Assembly Notch Filter Adjustments	Non-Harmonically Related Spurious
A2A5 20/30 Divider Assembly 20/30 Loop Divider Bias Adjustment		Single-Sideband Phase Noise Ratio ¹
Reference Loop Circuits A3A1A1, A2	VCXO Adjustments	Single-Sideband Phase Noise Ratio ¹ . Power Line Related Spurious.
M/N Loop Circuits, A3A1A3, A4, A5	M/N Loop Adjustments	Single-Sideband Phase Noise Ratio ¹ . Power Line Related Spurious.
Power Supplies A3A2, A3, A4	Power Supply Adjustments	None unless required by preceding problems
A3A5 DAC Assembly	Digital-to-Analog Converter Adjustments	Single-Sideband Phase Noise Ratio ¹
A3A6 YTO Driver Assembly	YTO Driver Adjustment	Single-Sideband Phase Noise Ratio ¹
A3A7 FM Driver Assembly	FM Driver Adjustments	Single-Sideband Phase Noise Ratio ¹ . All FM Tests.
A3A8 10 MHz Reference Oscillator Assembly	10 MHz Reference Oscillator	Single-Sideband Phase Noise Ratio ¹ . Power Line Related Spurious. Internal Time Base Aging Rate.
A3A9A3 2-6.2 GHz YTO Assembly	Power Supply, DAC, YTO Driver, YTO Loop, FM Driver, FM Mod Meter, Loop Offset and Overmodulation	Single-Sideband Phase Noise Ratio ¹ . Power Line Related Spurious. Frequency Switching Time.
A3A9A4 YTO Phase Detector Assembly	YTO Loop Phase Detector Adjustments, YTO Loop Offset and FM Overmodulation Adjustments	Single-Sideband Phase Noise Ratio ¹
A3Λ9A5 YTO Sampler Assembly	YTO Loop Preamp, Driver and Sampler Adjustments	Single-Sideband Phase Noise Ratio ¹

5-20. A3 RF SOURCE ASSEMBLY ADJUSTMENTS

5-21. Power Supply Adjustments

REFERENCE:

Service Sheets 11-A3, 12-A3 and 13-A13.

DESCRIPTION:

Adjust the ± 22 volt and ± 20 volt power supplies to their required tolerance. Check the remaining supply voltages for which the ± 20 volt supply is the reference (± 11 V, ± 5.2 V, ± 5.2 V, ± 10 V and ± 40 V).

EQUIPMENT:

Digital Voltmeter HP 3455A

PROCEDURE:

- 1. Remove the Synthesizer's top cover.
- 2. Set the LINE switch to ON; set the rear panel FREQ STANDARD INT/EXT switch to INT.
- 3. Connect the DVM input to A3A2TP1.
- 4. Adjust +22 ADJ A3A2R2 for a DVM reading of +22.00 \pm 0.02 Vdc.
- 5. Connect the DVM input to A3A3TP5.
- 6. Set +20 ADJ A3A3R50 for a DVM reading of +20.000 \pm 0.001 Vdc.
- 7. Check the following power supplies as shown in the table. If any voltages are incorrect, try resetting A3A3R50 for the correct +20V, +5.2V, -5.2V, -10V, and -40 Vdc levels. All voltages should be within tolerance. If necessary refer to the troubleshooting information in Section VIII, repair the supply in question and recheck the voltages.

Power Supply	Test Point	Power Supp	ly Voltage (Vdc)	
	, roser since		Min.	Max.
+11 Vdc	АЗАЗТР6	+9.9	+12.1	
+5.2 Vdc	A3A3TP2	+5.1	+5.3	
-5.2 Vdc	A3A4TP5	- 5.1	-5.3	
-10 Vdc	A3A4TP4	-9.8	-10.2	
-40 Vdc	A3A4TP1	-39.0	-40.6	

8. Repeat all performance test(s) as required by the performance test failure or repair which led to performing this adjustment procedure.

5-22. 10 MHz REFERENCE OSCILLATOR ADJUSTMENT

REFERENCE:

Service Sheet 1-A3

DESCRIPTION:

A reference signal from the Synthesizer (10 MHz OUT) is connected to the oscilloscope's vertical input. A frequency standard (with long term stability greater than 1×10^{-10}) is connected to the trigger input. The Reference Oscillator's frequency is adjusted to match the standard frequency.

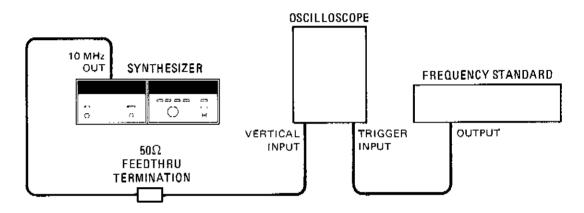


Figure 5-1, 10 MHz Reference Oscillator Adjustment Test Setup

EQUIPMENT:

Frequency Standard HP 5065A

 50Ω Feedthru Termination HP 11048C

NOTE

Be sure the Synthesizer has had 30 minutes to warm up before performing the adjustment. Verify that the oven and phase lock status indicators are out. If necessary, refer to the troubleshooting information in Section VIII.

PROCEDURE:

- 1. Set the rear panel FREQ REFERENCE INT EXT switch to the INT position.
- 2. Set the FREQ adjustment (on the A3A8 Assembly) so the signal, as observed on the oscilloscope display, is not drifting.
- 3. Verify that in 10 seconds the display drifts less than 1 division. If necessary repeat Steps 2 and 3.

5-23. Digital-to-Analog Converter Adjustment

REFERENCE:

Service Sheet 6-A3.

DESCRIPTION:

The adjustments set the analog output voltages with respect to the digital frequency inputs. Adjustments are made at certain selected frequencies of which some are below the low frequency limit of the Synthesizer (2000 MHz). These frequencies are selected by shorting together the test point pair A2A8TP1 and tuning to the specified frequencies.

EQUIPMENT:

Digital Voltmeter HP 3490A

PROCEDURE:

1. Set the Synthesizer as follows:

FM OFF RF switch ON

FREQUENCY 4800,000 MHz

- 2. Press the HOLD pushbutton.
- 3. Connect the DVM ground lead to the reference ground, A3A6TP5. (The ground lead remains connected here for the remainder of this procedure.) Be sure the A3A6 assembly is properly installed in the instrument.
- 4. Attach the DVM test lead to A3A5TP4. Set Ref Adj (Reference Buffer Output) A3A5R13 for a DVM reading of -6.50 ± 0.07 Vdc.
- 5. Check the output voltages of the Reference Buffers at A3A5TP1 (+10.75 \pm 0.25 Vdc) and A3A5TP2 (+10.00 \pm 0.15 Vdc). Make repairs if necessary.
- 6. Connect the DVM to the YTO Pretune Output, A3A5TP3.
- 7. Short the test point pair, A2A8TP, with an alligator clip. Adjust 1.6 GHz A3A5R4 (not 1.61) to obtain -4.800 ± 0.001 Vdc. Obtain an accuracy of ± 0.0001 Vdc if possible in this and succeeding steps.
- 8. Remove the clip from A2A8TP1. Adjust 4.8 GHz A3A5R3 to obtain a reading of -14.400 ± 0.001 Vdc.
- 9. Tune to 4900.000 MHz and short the test point pair A2A8TP1 with the clip. Adjust 1.7 GHz A3A5R29 to obtain -5.100 ± 0.001 Vdc.
- 10. Repeat steps 7, 8, and 9 until all voltages are within 0.001 Vdc of the specified value.
- 11. Tune the frequency to 4810.000 MHz. Verify that the clip is connected to A2A8TP1. Adjust 1.61 GHz A3A5R42 (not 1.6) to obtain a DVM reading of -4.830 ± 0.001 Vdc.
- 12. Tune to 5000.000 MHz. Adjust 1.8 GHz A3A5R24 to obtain -5.400 ± 0.001 Vdc.
- 13. Remove the alligator clip. Tune to 2000.000 MHz. Adjust 2.0 GHz A3A5R22 to obtain -6.000 ± 0.001 Vdc.

5-23. Digital-to-Analog Converter Adjustment (Cont'd)

- 14. Tune to $2400.000\,\mathrm{MHz}$. Adjust $2.4\,\mathrm{GHz}$ A3A5R20 to obtain $-7.200\pm0.001\,\mathrm{Vdc}$.
- 15. Tune to 3200,000 MHz. Adjust 3.2 GHz A3A5R18 to obtain -9.600 ±0.001 Vdc.
- 16. At each frequency listed in the table, check the YTO Pretune voltage at A3A5TP3 with the clip attached to the test point pair A2A8TP1.

Synthesizer Frequency	YTO Pretune Voltage at A3A5TP3 (Vdc)							
4.801 GHz 4.802 GHz 4.804 GHz 4.808 GHz 4.810 GHz 4.820 GHz 4.840 GHz 4.880 GHz	$\begin{array}{c} -4.803 & \pm 0.001 \\ -4.806 & \pm 0.001 \\ -4.812 & \pm 0.001 \\ -4.824 & \pm 0.001 \\ -4.830 & \pm 0.001 \\ -4.860 & \pm 0.001 \\ -4.920 & \pm 0.001 \\ -5.040 & \pm 0.001 \end{array}$							

- 17. Tune to 4910.000 MHz. At A3A5TP3 the YTO Pretune voltage should be -5.130 ±0.002 Vdc with the clip in place and -14.730 ±0.002 Vdc with the clip removed. If necessary repeat the procedure. Then if the voltage tolerance cannot be met, refer to Section VIII for troubleshooting information.
- 18. Remove the DVM and clip lead.

5-24. YTO Driver Adjustment

REFERENCE:

Service Sheet 7-A3.

DESCRIPTION:

When the fundamental output of the Synthesizer is set to the maximum and minimum frequencies, the YTO Driver's gain and offset current are set to give specified YTO

output frequencies.

EQUIPMENT:

Frequency Counter HP 5340A

PROCEDURE:

1. Set the Synthesizer's RF switch to ON.

NOTE

 $\Lambda ll\ boards\ must\ be\ installed\ in\ the\ instrument\ before\ these\ adjustments\ are\ made.$

5-24. YTO Driver Adjustment (Cont'd)

- 2. Connect the frequency counter to the RF OUTPUT connector A1J1.
- 3. Connect the reference ground A3A6TP5 to A3A7TP2 (YTO Tune 1) with a jumper wire.
- 4. Tune the Synthesizer to 2000,000 MHz. Set 2 GHz Adj A3A6R34 to obtain 2000,0 ±0.1 MHz on the frequency counter.
- 5. Tune the Synthesizer to 6199.000 MHz. Set 6.199 GHz Adj A3A6R25 to obtain 6199.0 ± 0.1 MHz on the frequency counter. (Note the frequency is 6199.000 MHz, not 6199.999 MHz.)
- 6. Repeat steps 4 and 5 as required to obtain the required tolerance at both frequencies.
- 7. Disconnect A3A6TP5 from A3A7TP2.
- 8. Verify that the frequency output is accurate and phase-locked before performing the Single-Sideband Phase Noise Ratio performance test in Section IV.

5-25. Voltage Controlled Crystal Oscillator (VCXO) Adjustment

REFERENCE:

Service Sheet 2-A3.

DESCRIPTION:

The open loop frequency and maximum power output of the 100 MHz VCXO is centered around 100 MHz. The output is set as close as practical to 100 MHz. The 400 MHz signal is adjusted for maximum 400 MHz output and minimum spurious output. The attenuator is selected to provide a 400 MHz output of -10 dBm.

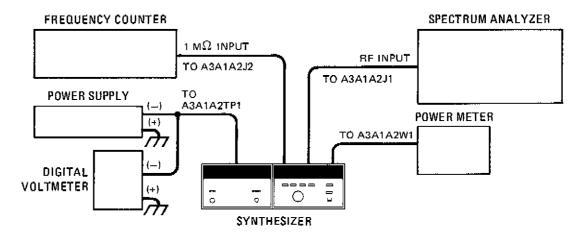


Figure 5-2. VCXO Adjustment Test Setup

5-25. Voltage Controlled Crystal Oscillator (VCXO) Adjustment (Cont'd)

EQUIPMENT:

Frequency Counter HP 5340A

Power Supply HP 6202B

PROCEDURE:

1. Connect the frequency counter to A3A1A2J2 in place of the termination; connect the spectrum analyzer to A3A1A2J1 in place of the gray-orange-white cable.

- 2. Set the output of a low voltage power supply to -8.00 ± 0.01 Vdc. Connect the positive lead to ground and the negative lead to A3A1A2TP1 TUNE.
- 3. Tune the 100 MHz Adj A3A1A2C4 for the maximum 100 MHz signal level as viewed on the spectrum analyzer display.
- 4. Tune the 100 MHz Adj to increase the frequency (and decrease the amplitude) until the oscillation stops on the high frequency side; then tune the 100 MHz Adj to decrease the frequency until the oscillation stops. If the VCXO does not stop oscillating at the high end, decrease the value of A3A1A3C8 by 1 pF from its present value. If it does not stop at the low end, increase the value of A3A1A2C8 by 1 pF. If a change is necessary, repeat this step.
- 5. Adjust the 100 MHz Adj to obtain the maximum signal level as viewed on the spectrum analyzer display. Slowly tune to a higher frequency until the power drops by 1 dB. Record Δf_1 , that is, how far the 1 dB point is above 100 MHz. Use the frequency counter to make the measurements to 10 Hz resolution.
- 6. Tune to a lower frequency until the power is decreased 1 dB on the other side of the peak. Record Δf_2 , that is, how far the 1 dB point is below 100 MHz.
- 7. The VCXO centering about 100 MHz is correct if $0.5 \leqslant \frac{\Delta f_1}{\Delta f_2} \leqslant 2$.

If the ratio is less than 0.5, decrease A3A1A2L4 one value to increase the center frequency. If the ratio is greater than 2, increase A3A1A2L4 one value to decrease center frequency. Refer to the following table for the inductor values.

A3A1A2	A3A1A2L4 Inductor Values								
Value HP Part Number									
,68 μH	9100-0141								
.56 μH	9100-2256								
$.47~\mu\mathrm{H}$	9100-2255								
$,39~\mu\mathrm{H}$	9100-2254								
$.33~\mu\mathrm{H}$	9100-0368								
$.27~\mu H$	9100-2252								
.22 $\mu \mathrm{H}$	9100-2251								
,22 μ H	9100-2251								

8. If the inductor value is changed, repeat steps 3 through 7.

5-25. Voltage Controlled Crystal Oscillator (VCXO) Adjustment (Cont'd)

- 9. Adjust the 100 MHz Adj to obtain a VCXO output of 100 MHz ±100 Hz.
- 10. Connect the spectrum analyzer to the 400 MHz output. Set the spectrum analyzer's controls for a center frequency of 500 MHz, frequency span per division 100 MHz and vertical sensitivity per division 10 dB log. Adjust the 400 MHz A3A1A2C3, C2 and C1 adjustments in that order to obtain the maximum 400 MHz signal with the lowest harmonic levels possible.
- 11. Check the various harmonics of 100 MHz relative to the 400 MHz level. 200 and 800 MHz should be greater than 25 dB down; 100, 300, 500, 600, 700 and 900 MHz should be greater than 40 dB down. If necessary, repeat steps 10 and 11.
- 12. Connect the power meter to the 400 MHz output (the gray-red-white cable) after disconnecting it from A3A1A5J1. The power should be -10 to -11 dBm. If the power is incorrect, select the values of A3A1A2R67, R68 and R69 from the Table of Attenuator Resistor Values to obtain the proper power level. The attenuation should always be at least 3 dB or greater.

Attenuator Resistor Values

Attenuation	Resistors (ohms)								
(dB)	R67	R69							
3	261	17.8	261						
4	215	23.7	215						
5	178	31.6	178						
6	147	38.3	147						
7	133	46.4	133						
8	121	51,1	121						
9	110	61.9	110						

- 13. If the amount of attenuation is changed, recheck the harmonic levels.
- 14. Verify that the frequency output is accurate and phase-locked before performing the Single-Sideband Phase Noise Ratio test.

5-26. M/N Loop Adjustments

REFERENCE:

Service Sheet 4-A3.

DESCRIPTION:

The M/N loop frequency is set to track tuning voltage across the frequency range. The output level is set and checked to ensure and adequate RF output level across the band.

5-26. M/N Loop Adjustments (Cont'd)

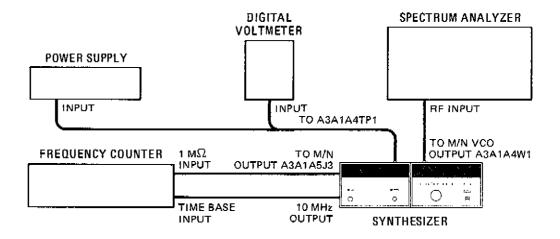


Figure 5-3. M/N Loop Adjustment Test Setup

EQUIPMENT:	Digital Voltmeter							HP 3455A
	Frequency Counter .							HP 5340A

PROCEDURE:

1. Set the Synthesizer controls as follows:

RF Switch ON

FREQUENCY 6090.000 MHz

FREQ REFERENCE INT-EXT switch. . . INT

- 2. Connect the equipment as shown in Figure 5-3.
- 3. Verify that the M/N output frequency is exactly 197.419 MHz ±1 count.

WARNING

Because this circuit board is being placed on an extender board, the possibility of coming in contact with 60 Vdc is greatly increased. Be careful while working on the circuit boards with power supplied. Work with one hand. Do not touch the extender board.

- 4. Remove the A3A1A4/A5 Assembly and place it on a 30 pin extender board.
- 5. Connect the spectrum analyzer input to the M/N VCO output A3A1A4W1 (white coax).

CAUTION

Do not apply a positive voltage to A3A1A4TP1. A positive voltage will forward bias the VCO tuning diodes and may destroy them.

5-26. M/N Loop Adjustments (Cont'd)

6. Connect the negative output of a power supply to A3A1A4TP1; connect the positive output to chassis ground. Set the power supply for -35.0 ± 0.5 Vdc.

NOTE

The adjustment screws for A3A1A4C1 and C5 are held in place by lock nuts. After making the adjustment, tighten the lock nuts and recheck the frequency and level.

- 7. Release the lock nut for the PWR adjustment A3A1A4C5. Adjust A3A1A4C5 for an output level of 0 ± 2 dBm. Tighten the lock nut.
- 8. Slowly reduce the dc voltage at A3A1A4TP1 while monitoring the VCO output power on the spectrum analyzer. The output power should be greater than -2 dBm between 395 MHz (-35 Vdc) and 355 MHz (-2.3 Vdc).
- 9. Set 395 MHz TUNE A3A1A4C1 for a voltage level of -35.0 ±0.5 Vdc.
- 10. Tune the Synthesizer frequency to 2100,000 MHz. Verify that the M/N output frequency is 177.500 MHz and the tuning voltage is -2.3 ± 0.5 Vdc.
- 11. Remove the power supply connection to A3A1A4TP1. Set the LINE switch to STANDBY; then install the A3A1A4/A5 Assembly.

NOTE

If required, proceed to the 20/30 MHz Loop VCO Pretune Adjustments.

12. Verify that the frequency output is accurate to 1 kHz and that the phase lock circuits are locked before performing the Single-Sideband Phase Noise Ratio performance test in Section IV.

5-27. YTO Loop Sampler Adjustments

REFERENCE:

Service Sheet 8-A3.

DESCRIPTION:

The sampler is driven by a sweep oscillator and the dc output is monitored with an oscilloscope. The sampler driver circuit is adjusted for maximum amplitude and flatness over the range of the M/N Loop. The Sampler's IF preamplifier is adjusted for correct output level and the frequency response is checked.

5-27. YTO Loop Sampler Adjustments (Cont'd)

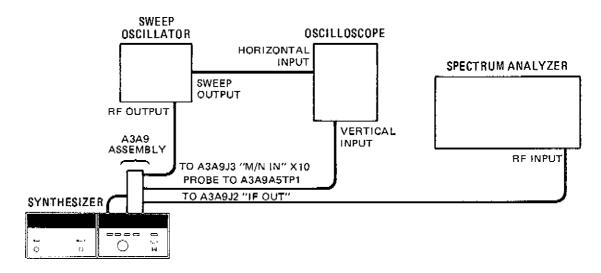


Figure 5-4. YTO Loop Sampler Adjustment Test Setup

EQUIPMENT: Oscilloscope (with divide-by-10 probe) . . HP 180C/1801A/1821A Frequency Counter HP 5340A

PROCEDURE:

- 1. Set the Synthesizer's RF switch to OFF and disconnect the power cord.
- Remove the Synthesizer's top and bottom covers and place the A3A9 Assembly 2. into the test position. See the disassembly procedures in Section VIII.
- 3. Remove the right side cover of A3A9.
- Connect a 50 ohm termination to the A3A9A1 Directional Coupler. 4.
- 5. Set the sweep oscillator's controls for a leveled output of 0 dBm, center frequency range of 187.5 ±1.0 MHz (measured by frequency counter) and a sweep range of 200 MHz (±100 MHz).
- Connect the equipment as shown in Figure 5-4. The sweep oscillator's RF output is connected to the M/N LOOP SIGNAL connector, A3A9J3, in place of the whiteorange cable.

5-27. YTO Loop Sampler Adjustments (Cont'd)

7. Adjust A3A9A5C1 and C2 (with an insulated adjustment tool) to get an oscilloscope display similar to Figure 5-5. Tune for maximum negative voltage and flatness over the center two divisions. The minimum change from the reference level to the maximum negative voltage should be 0.4 volts.

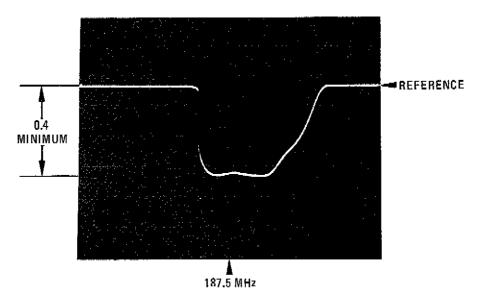


Figure 5-5. Typical Swept Frequency Response at A3A9A5TP1 (Frequency span per division 20 MHz)

- 8. Short A3A7TP2 to ground. Set the Synthesizer's RF switch to ON and tune to 2100 MHz. Disconnect the grey cable from the phase detector output A3A9J6. Remove the oscilloscope's probe from A3A9A5TP1.
- 9. Connect the spectrum analyzer's input directly to the IF OUT A3A9J2.
- 10. Set the sweep oscillator's controls for a center frequency of 177.5 \pm 1.0 MHz; set the sweep width to 10 MHz.
- 11. Connect the sweep oscillator's output to the M/N LOOP SIGNAL input A3A9J3.
- 12. Set the spectrum analyzer's controls for a 0 to 100 MHz frequency span. Set the other controls to display the swept IF signal. The fundamental, second and third harmonics should be visible at 30, 60 and 90 MHz. Tune the sweep oscillator slightly to align the signals on the display.
- 13. Adjust the IF GAIN A3A9A5R1 so that the displayed IF signal at 30 MHz is $\pm 2 \pm 1$ dBm.

5-27. YTO Loop Sampler Adjustments (Cont'd)

- 14. Slowly tune the sweep oscillator's center frequency from 174 to 181 MHz and observe the fundamental's output level. Verify that the allowable level variation is not exceeded or that the power does not drop below the stated level over the frequency range.
 - a. From 20 to 30 MHz, +2 to +6 dBm
 - b. From 6 to 20 MHz, -3 dBm.
 - c. From 30 to 70 MHz, -10 dBm.
- 15. Return the Synthesizer to normal operation.
- 16. Verify that the frequency output is accurate and phase locked before performing the Single-Sideband Phase Noise Ratio Performance test in Section IV.

5-28. YTO Loop Offset and FM Overmodulation Adjustments

REFERENCE:

Service Sheet 9-A3.

DESCRIPTION:

In order to operate the YTO loop phase detector in the linear region, the loop offset must be set 1 radian from the detector's zero crossover point. A drive signal of 1 radian-peak is connected at the FM INPUT connector while the phase detector output is monitored with an oscilloscope. The loop offset adjustment is set so that foldover at the peak of the phase detector output signal just begins. To set the FM overmodulation threshold, the FM input level is set for a modulation index of 6.5. The adjustment is set to a position that just lights the front panel OVERMOD annunciator.

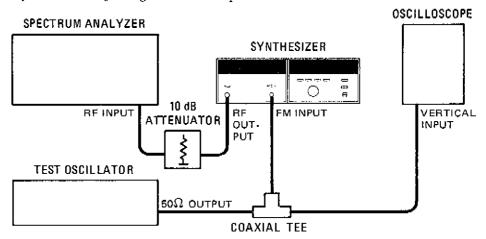


Figure 5-6. YTO Loop Offset and FM Overmodulation Adjustment Test Setup

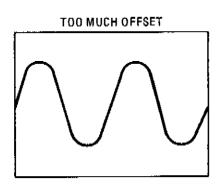
EQUIPMENT:

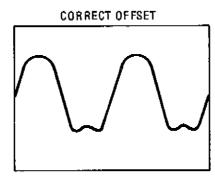
Test Oscillator HP 651B

Attenuator (10 dB) HP 8491B Option 010

5-28. YTO Loop Offset and FM Overmodulation Adjustments (Cont'd)

PROCEDURE:


- 1. Set the Synthesizer's FM Deviation switch to 10 MHz and press the PRESET (3 GHz) pushbutton.
- 2. Tune the test oscillator to 100 kHz.
- 3. Connect the equipment as shown in Figure 5-6.
- 4. Adjust the spectrum analyzer's controls to display the carrier and the 100 kHz modulator sidebands.
- 5. Adjust the test oscillator's output level for the first carrier null as observed on the spectrum analyzer's display. Record the test oscillator's output level as measured with the oscilloscope.


Vrms

- 6. Divide the measured value by 2.4. Readjust the test oscillator's output level to the computed level.
- 7. Connect the oscilloscope to A3A9A4TP1 through a divide-by-ten probe. Adjust the oscilloscope's controls to view the 100 kHz signal.
- 8. Set the YTO Loop Offset adjustment OFST A3A9A4R53 so the sinusoidal waveform just begins to fold over. Refer to Figure 5-7.

NOTE

There may be two settings of A3A9A4R53 which give the proper offset. Use the position closer to the center of the adjustment range.

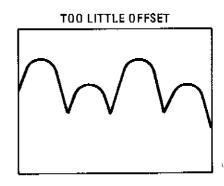


Figure 5-7, YTO Loop Offset Adjustment Waveforms

- 9. Disconnect the oscilloscope's probe.
- 10. Adjust the test oscillator's output level for the second carrier null as observed on the spectrum analyzer's display. Record the test oscillator's output level.

_____ Vrms

5-28. YTO Loop Offset and FM Overmodulation Adjustments (Cont'd)

- 11. Multiply the measured value by 1.18. Readjust the test oscillator's output level to the computed level.
- 12. Set the FM overmodulation adjustment OMOD A3A9A4R30 to the full clockwise position. Slowly rotate the adjustment counterclockwise until the front panel OVERMOD annunciator is illuminated.

5-29. YTO Loop Phase Detector Adjustment

REFERENCE:

Service Sheet 9-A3.

DESCRIPTION:

The gain-crossover frequency of the YTO Phase-Locked loop is measured and adjusted using a low frequency spectrum analyzer and tracking generator. This procedure does not generally need to be done unless repairs were made in the YTO loop.

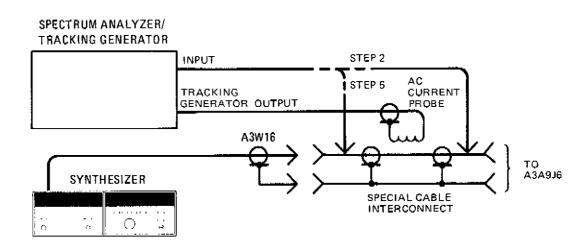


Figure 5-8. YTO Loop Phase Detector Adjustment Test Setup

EQUIPMENT:

Spectrum Analyzer (with tracking generator) . . HP 8556A/8552B/141T

Special Interconnect Cable (See Figure 1-3.)

PROCEDURE:

- 1. Set the synthesizer RF switch to ON
- 2. Connect the equipment as shown in Figure 5-8. The special interconnect cable is inserted between A3W16 (grey cable) and A3A9J6 (YTO Tune 1).

NOTE

When clipping the current probe around the special cable's center conductor, do not allow the metal surface to come in contact with the center conductor connection of the SMA connectors.

5-29. YTO Loop Phase Detector Adjustments (Cont'd)

- 3. Set the spectrum analyzer to scan from 0 to 50 kHz, vertical sensitivity per division to 2 db, scan mode to single, and set the display's variable persistence to maximum.
- 4. Press the single sweep pushbutton.
- 5. Move the spectrum analyzer's input to the cable side (A3W16) of the special cable.
- 6. Press the single sweep pushbutton. Check that the gain-crossover frequency is 20 ± 2 kHz. If the gain-crossover frequency is not correct, A3A9A4R20 must be changed to set the correct frequency. Refer to Figure 5-9.
- 7. The required value of A3A9A4R20 must be changed to set the correct frequency.

$$R_2 = R_1 - \frac{F_1}{F_2}$$

where R_2 = required value for R20

R, = present value of R20

F, = measured frequency

 F_2 = required frequency (20 kHz)

for example

if
$$R_1 = 619\Omega$$

and
$$F_{\tau} = 25 \text{ kHz}$$

then

$$R_2 = 619 \left(\frac{25 \text{ kHz}}{20 \text{ kHz}} \right)$$

R., = 773Ω or 750Ω (closest value)

9. Install R20 and recheck the gain-crossover frequency.

18 22 kHz

NOTE

The other loop parameters, phase margin and open loop gain, may be checked if the loop does not operate correctly. Open loop gain is checked at 1 kHz and should be approximately 40 dB. Phase margin is checked by disconnecting the input to the ac probe, shorting the input, and pressing the single sweep pushbutton. Phase margin should be approximately 45° and is calculated by the following expression:

$$\theta = \cos^{-1} \left[\sqrt{1 - \frac{10^{\left(\frac{A}{10}\right)}}{2}} \right]$$

where $\theta = phase margin$

and A = ratio (in dB) of gain-crossover to the induced voltage. (Gain-crossover is the reference so the ratio is negative.)

5-29. YTO Loop Phase Detector Adjustments (Cont'd)

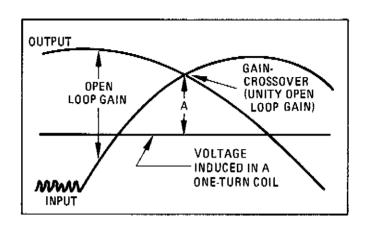


Figure 5-9. Spectrum Analyzer Display of Phase-Locked Loop Gain

- 10. Reinstall the A3A9 Assembly after replacing the covers. Refer to the appropriate procedures in Section VIII.
- 11. Verify that the output frequency is accurate to ±1 kHz and that the phase lock circuits are locked before performing the Single-Sideband Phase Noise Ratio performance test in Section IV.

5-30. FM Driver Adjustment

REFERENCE: Service

Service Sheet 10-A3.

DESCRIPTION:

The dc offset of the FM integrator amplifier is set as close to zero volts as possible. Any FM signal present on the error signal line of the YTO phase-locked loop is nulled at both high and low FM driver sensitivity.

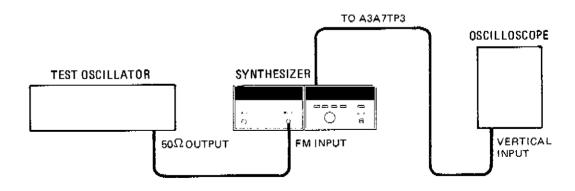


Figure 5-10. FM Driver Adjustment Test Setup

EQUIPMENT:

Test Oscillator HP 651B

5-30, FM Driver Adjustment (Cont'd)

PROCEDURE:

- 1. Set the FM DEVIATION switch to 0.1 MHz.
- 2. Connect the oscilloscope to A3A7TP3.
- 3. Set OFST (offset adjust) A3A7R28 for 0.0 ± 0.1 Vdc.
- 4. Set the FM DEVIATION switch to 10 MHz.
- 5. Verify a voltage level of 0 ±2 Vdc at A3A7TP3.
- 6. Set the RF switch to ON.
- 7. Set the test oscillator controls for an output of 3.0 mVrms at 5 kHz.
- 8. Connect the oscilloscope to A3A7TP2; connect the test oscillator output to the FM INPUT. The signal displayed by the oscilloscope will generally be less than $20~\mathrm{mV_{D-D}}$.
- 9. Set GAIN A3A7R40 to null any FM signal present at A3A7TP2.
- 10. Set the FM DEVIATION MHz switch to 0.1 MHz and set the test oscillator output level to 0.30 Vrms.
- 11. Set -40 GN (-40 Gain) A3A7R46 to null any FM signal present at A3A7TP2.

5-31. A2 CONTROLLER ASSEMBLY ADJUSTMENTS

5-32. 160-240 MHz (20/30 MHz or LFS Loop) VCO Pretune Adjustments

REFERENCE:

Service Sheet 3-A2.

DESCRIPTION:

If any oscillator components have been replaced, the low and high frequency limits of the oscillator must be checked to insure proper operation. The oscillator coil is moved closer to or away from the circuit board in order to set the low and high frequency limits.

EQUIPMENT:

Frequency Counter HP 5340A

NOTE

This procedure need be performed only if major repair has been done to the oscillator.

PROCEDURE:

- 1. Set the LINE ON-STANDBY switch to ON.
- 2. Remove the screws which hold the A2A3 VCO assembly in place.

5-32. 160-240 MHz (20/30 MHz or LFS Loop) VCO Pretune Adjustments (Cont'd)

WARNING

Because this circuit board is being placed on an extender board, the possibility of coming in contact with 60 Vdc is greatly increased. Be careful while working on the circuit boards with power supplied. Work with one hand. Do not touch the extender board.

- 3. Remove the A2A3 Assembly, place it on an extender board, and reinstall the assembly.
- 4. Remove the green cable A3W14 which is connected to the 20/30 MHz OUTPUT A2A3J1. Connect the frequency counter output to Λ2A3J1.
- Set the LINE ON-STANDBY switch to ON.
- 6. Set A2A3S1 (FREQ TEST SWITCH) to the TEST HIGH FREQ position. The frequency should be greater than 30.5 MHz.
- 7. If the frequency is less than 30.4 MHz, the oscillator coil must be moved closer to the circuit board. The oscillator cover must be removed before adjusting the coil.

NOTE

The oscillator coil is normally mounted parallel to the circuit board with the bottom threads approximately 1.3 mm (0.050 inch) above the board.

- 8. Replace the oscillator cover and recheck the frequency.
- 9. Set A2A3S1 to the TEST LOW FREQ position. Verify a frequency reading of less than 19.5 MHz. If necessary, remove the cover, reset the coil, replace the cover and repeat steps 6 through 9.
- 10. Set A2A3S1 to the NORMAL position.
- 11. Reinstall A2A3 in its cavity and reconnect the green cable to A2A3J1.

5-33. 20/30 MHz (LFS) Loop Divider Bias Adjustments

REFERENCE:

Service Sheet 1-A2.

DESCRIPTION:

A clock signal derived from an external RF signal source is monitored with an oscilloscope. The RF signal level is slowly reduced and the CLK BIAS ADJ is set to obtain a stable clock signal. The RF input is reduced to the minimum level that provides a stable signal.

5-33, 20/30 MHz (LFS) Loop Divider Bias Adjustments

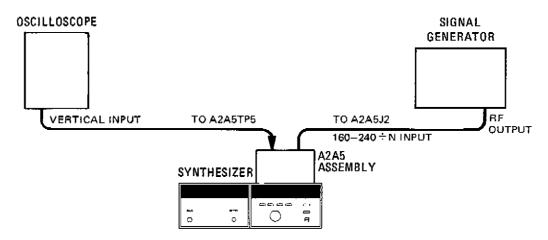


Figure 5-11. 20/30 MHz Loop Divider Bias Adjustment Test Setup

EQUIPMENT: Oscilloscope HP 180C/1801A/1821A

Signal Generator HP 8654A

PROCEDURE: 1. Set the LINE ON-STANDBY switch to STANDBY.

2. Remove the screws that hold the A2A5 20/30 MHz Divider Assembly in place.

WARNING

Because this circuit board is being placed on an extender board, the possibility of coming in contact with 60 Vdc is greatly increased. Be careful while working on the circuit boards with power supplied. Work with one hand, Do not touch the extender board.

- 3. Remove the A2A5 Assembly, place it on an extender board, and reinstall the assembly.
- 4. Connect the power cable to the power module. Set the LINE ON-STANDBY switch to ON.
- 5. Set the signal generator controls for cw output of -5 dBm at 240 MHz.
- 6. Remove the read cable A2W2 from the 160-240 MHz INPUT A2A5J1.
- 7. Connect the equipment as shown in Figure 5-11.
- 8. Center A2A5R4 (CLK BIAS ADJ).
- 9. Observe the clock signal on the oscilloscope display.
- 10. Adjust A2A5R4 to obtain a stable clock frequency.
- 11. Reduce the signal generator output level while readjusting A2A5R4 to obtain a stable clock signal at the lowest possible signal.

5-33. 20/30 MHz (LFS) Loop Divider Bias Adjustments (Cont'd)

- 12. Verify that a stable clock signal is obtained with an input signal of -10 dBm or less.
- 13. Disconnect the test equipment and reinstall A2A5 in its cavity. Reconnect the cable to A2A5J1.

5-34. A2A4 Assembly Notch Filter Adjustment

REFERENCE:

Service Sheet 2-A2.

DESCRIPTION:

 Λ 7985 Hz signal is passed through the 8 kHz notch filter. The adjustable components are set for minimum signal transfer.

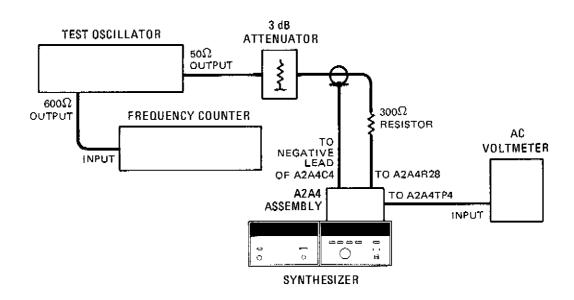


Figure 5-12. A2A4 Assembly Notch Filter Adjustment Test Setup

EQUIPMENT:

3 dB Attenuator HP 8491A Option 003

PROCEDURE:

Set the LINE ON-STANDBY switch to STANDBY.

WARNING

Because this circuit board is being placed on en extender board, the possibility of coming in contact with 60 Vdc is greatly increased. Be careful while working on the circuit boards with power supplied. Work with one hand. Do not touch the extender board,

5-34. A2A4 Assembly Notch Filter Adjustment (Cont'd)

- 2. Remove the A2A4 Assembly.
- 3. Unsolder the input end (top) of A2A4R28 (refer to the component location diagram).
- 4. Install the circuit board on an extender board.
- 5. Connect the equipment as shown in Figure 5-12. The leads from the 3 dB attenuator should be as short as possible. Clip the ground wire to the negative side of A2A4C4.
- 6. Set the test oscillator's controls for 1 kHz and an AC voltmeter indication of +10 dBm.
- 7. Set the test oscillator as close to 7985 Hz as possible.
- 8. Adjust A2A4L3 and L4 to minimize the meter reading. The indication must be less than -50 dBm.
- 9. Resolder A2A4R28, reinstall the A2A4 Assembly, and replace the top cover.

NOTE

If required, proceed to the YTO Loop, Preamp, Driver and Sampler Adjustments.

5-35. A1 RF OUTPUT ASSEMBLY FM SENSITIVITY ADJUSTMENT

REFERENCE:

Service Sheet 1-A1.

DESCRIPTION:

The FM drive signal is preset for a modulation index of 2.40 (first carrier null). The FM SENS ADJ is then set for the carrier null as observed on a spectrum analyzer's display.

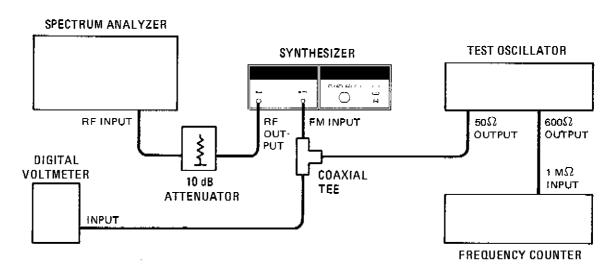


Figure 5-13. FM Sensitivity Adjustment Test Setup

5-35. A1 RF OUTPUT ASSEMBLY FM SENSITIVITY ADJUSTMENT (Cont'd)

EQUIPMENT: Spectrum Analyzer HP 8565A

Attenuator, 10 dB HP 8491B Option 010

PROCEDURE: 1. Set the Synthesizer's controls as follows:

RF switch ON
FM DEVIATION switch 10 MHz
FREQUENCY 3 GHz

2. Connect the equipment as shown in Figure 5-13.

3. Tune the spectrum analyzer to obtain a display of the carrier.

4. Set the test oscillator's frequency to 100 kHz; set the output level as close as possible to 34.000 mVrms.

5. Set FM SENS ADJ A1A1R3 for the carrier null as observed on the spectrum analyzer's display.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-2 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-4 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Table 6-1 lists assemblies within the instrument that may be replaced on an exchange basis, thus affording a considerable cost saving. Exchange, factory-repaired and tested assemblies are available only on a trade-in basis; therefore, the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number.

6-5. ABBREVIATIONS

6-6. Table 6-2 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-7. REPLACEABLE PARTS LIST

- 6-8. Table 6-3 is the list of replaceable parts and is organized as follows:
- a. Electrical assemblies and their components in alpha-numerical order by reference designation.
- b. Chassis-mounted parts in alpha-numerical order by reference designation,
 - c. Miscellaneous parts.
- 6-9. The information given for each part consists of the following:
 - a. The Hewlett-Packard part number.

- b. Part number check digit (CD).
- c. The total quantity (Qty) in the major assembly (A1, A2, or A3).
 - d. The description of the part.
- e. A typical manufacturer of the part in a five-digit code.
 - f. The manufacturer's number for the part.

6-10. The total quantity for each part is given only once — at the first appearance of the part number in the list for each major assembly.

NOTE

Total quantities for optional assemblies are totaled by assembly and not integrated into the standard list.

6-11. ORDERING INFORMATION

- 6-12. To order a part listed in the replaceable parts table, quote the Hewlett-Packard Part number (with the check digit), indicate the quantity required, and address the order to the nearest Hewlett-Packard office. The check digit will ensure accurate and timely processing of your order.
- 6-13. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-14. SPARE PARTS KIT

6-15. Stocking spare parts for an instrument is often done to ensure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consists of selected repalceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are base on failure reports and repair data, and provides parts support for one year. A complimentary "Recommended Spares" list for this instrument may be obtained on request and the "Spare Parts Kit" may be ordered through your nearest Hewlett-Packard office.

Table 6-1. Part Numbers for Exchange Assemblies

Reference		Part Num	ber*		
Designation	Description	Exchange Assy	New Assy		
A3A1A4	M/N VCO Assembly	86701-60071	86701-60065		
A3A8	10 MHz Reference Oscillator Assembly	86701-60072	86701-60067		
A3A9A3	2—6.2 GHz YTO Assembly	5086-6131 5086-713			

^{*}When ordering extra assemblies for spare parts stock, use new assembly part number only. Exchange orders require return of the defective part.

Table 6-2. Reference Designations and Abbreviations (1 of 2)

REFERENCE DESIGNATIONS

A assembly AT . attenuator; isolator; termination B fan; motor	E miscellaneous electrical part F fuse FL filter	P electrical connector (movable portion); plug Q transistor: SCR;	U integrated circuit; microcircuit V electron tube VR voltage regulator;
BT battery	H hardware	triode thyristor	breakdown diode
C capacitor	HY circulator	R resistor	W cable; transmission
CP coupler	J electrical connector	RT thermistor	path; wire
CR diode; diode	(stationary portion);	S switch	X socket
thyristor; varactor	jack	T transformer	Y crystal unit (piezo-
DC directional coupler		TB terminal board	electric or quartz)
DL delay line	K relay	TC thermocouple	Z tuned cavity; tuned
DS annunciator;	L coil; inductor	TP test point	circuit
signaling device	M meter		
(audible or visual); lamp; LED	MP miscellaneous mechanical part		

ABBREVIATIONS

A amnous	COEF coefficient	PDD destroyed date	INCO internal
A ampere ac alternating current	COM common	EDP electronic data processing	INT internal kg kilogram
ACCESS accessory	COMP composition	ELECT electrolytic	kHz kilohertz
ADJ adjustment	COMPL complete	ENCAP encapsulated	kΩ kilohm
A/D analog-to-digital	CONN connector	EXT external	kV kilovolt
AF audio frequency	CP cadmium plate	F farad	lb pound
AFC automatic	CRT cathode-ray tube	FET field-effect	LC inductance-
frequency control	CTL complementary	transistor	capacitance
AGC automatic gain	transistor logic	F/F flip-flop	LED light-emitting diode
control	CW continuous wave	FH flat head	LF low frequency
AL aluminum	cw clockwise	FIL H fillister head	LG long
ALC automatic level	cm centimeter	FM., frequency modulation	LH left hand
control	D/A digital-to-analog	FP front panel	LIM limit
AM amplitude modula-	dB decibel	FREQ frequency	LIN linear taper (used
tion	dBm decibel referred	FXD fixed	in parts list)
AMPL amplifier	to 1 mW	g gram	lin linear
APC automatic phase	dc direct current	GE germanium	LK WASH lock washer
control	deg degree (temperature	GHz gigahertz	LO low; local oscillator
ASSY assembly	interval or differ-	GL glass	LOG logarithmic taper
AUX auxiliary	o ence)	GRD ground(ed)	(used in parts list)
avg average	degree (plane	H henry	log logrithm(ic)
AWG American wire	o angle)	h hour	LPF low pass filter
gauge	C degree Celsius	HET heterodyne	LV low voltage
BAL balance	o (centigrade)	HEX hexagonal	m meter (distance)
BCD binary coded	F degree Fahrenheit	HD head	mA milliampere
decimal	K degree Kelvin	HDW hardware	MAX maximum
BD board	DEPC deposited carbon	HF high frequency	MΩ megohm
BE CU beryllium	DET detector	HG mercury	MEG \dots meg (10^6) (used
copper	diam diameter	HI high	in parts list)
BFO beat frequency	DIA diameter (used in	HP Hewlett-Packard	MET FLM metal film
oscillator	parts list)	HPF high pass filter	MET OX . metallic oxide
BH binder head	DIFF AMPL . differential	HR hour (used in	MF medium frequency;
BKDN breakdown	amplifier	parts list)	microfarad (used in
BP bandpass	div division	HV high voltage	parts list)
BPF bandpass filter	DPDT double-pole,	Hz Hertz	MFR manufacturer
BRS brass	double-throw	IC integrated circuit	mg milligram
BWO backward-wave	DR drive	ID inside diameter	MHz megahertz
oscillator	DSB double sideband	IF intermediate	mH , , millihenry
CAL calibrate	DTL diode transistor logic	frequency	mho mho
ccw counter-clockwise CER ceramic	DVM digital voltmeter	1MPG impregnated	MIN minimum
CHAN channel	ECL emitter coupled	in inch INCD incandescent	min minute (time)
cm centimeter	logic	INCL include(s)	' minute (plane angle)
CMO cabinet mount only	EMF electromotive force	INP input	MINAT miniature
COAX coaxial	Zini , . electromogive force	INS insulation	mm millimeter
COAM COAMAI		ing insulation	nui umameter

NOTE

All abbreviations in the parts list will be in upper-case.

Table 6-2. Reference Designations and Abbreviations (2 of 2)

MOD modulator	OD outside diameter	PWV peak working	TD time del
MOM momentary	OH oval head	voltage	TERM termin
MOS metal-oxide	OP AMPL operational	RC resistance-	TFT thin-film transist
semiconductor	amplifier	capacitance	TGL tog
ms millisecond	OPT option	RECT rectifier	THD thre
MTG mounting	OSC oscillator	REF reference	THRU throu
MTR meter (indicating	OX, oxide	REG regulated	TI titaniu
device)	oz ounce	REPL replaceable	TOL toleran
mV millivolt	Ω ohm	RF radio frequency	TRIM trimm
mVac millivolt, ac	P peak (used in parts	RFI radio frequency	TSTR transist
mVdc millivolt, dc	list)	interference	TTL transistor-transist
mVpk millivolt, peak	PAM pulse-amplitude	RH round head; right	logíc
mVp-p millivolt, peak-	modulation	hand	TV televisi
to-peak	PC printed circuit	RLC resistance-	TVI television interferer
mVrms millivolt, rms	PCM pulse-code modula-	inductance-	TWT traveling wave tu
mW milliwatt	tion; pulse-count	capacitance	U micro (10 6) (us
MUX multiplex	modulation	RMO rack mount only	in parts list)
MY mylar	PDM pulse-duration	rms root-mean-square	UF microfarad (used
UA microampere	modulation	RND round	parts list)
μF microfarad	pF picofarad	ROM read-only memory	UHF ultrahigh frequen
UH microhenry	PH BRZ phosphor bronze	R&P rack and panel	UNREG unregulat
Umho micromho	PHL Phillips	RWV reverse working	
Us microsecond	PIN positive-intrinsic-	voltage	VA voltampe
uV microvolt	negative	S scattering parameter	Vac volts,
Wac microvolt, ac	PIV peak inverse	s second (time)	VAR varia
UVdc microvolt, dc	voltage	" . second (plane angle)	VCO voltage-control
UVpk microvolt, peak	pk peak	S-B slow-blow (fuse)	oscillator
UVp-p microvolt, peak-	PL phase lock	(used in parts list)	Vdc volts,
to-peak	PLO phase lock	SCR silicon controlled	VDCW volts, dc, work
UVrms microvolt, rms	oscillator	rectifier; screw	(used in parts li
μW microwatt	PM phase modulation	SE selenium	V(F) volts, filter
nA, nanoampere	PNP positive-negative-	SECT sections	VFO , variable-frequen
NC no connection	positive	SEMICON semicon-	oscillator
N/C normally closed	P/O part of	ductor	VHF very-high f
NE neon	POLY polystyrene	SHF superhigh fre-	quency
NEG negative	PORC porcelain	quency	Vpk volts, pe
nF nanofarad	POS , positive; position(s)	SI silicon	Vp-p volts, peak-to-pe
NI PL nickel plate	(used in parts list)	SIL silver	Vrms volts, r
N/O normally open	POSN position	SL slide	VSWR voltage standi
NOM nominal	POT potentiometer	SNR signal-to-noise ratio	wave ratio
NORM normal	p-p peak-to-peak	SPDT single-pole,	VTO voltage-tun oscillator
NPN negative-positive-	PP peak-to-peak (used	double-throw	
negative	in parts list)	SPG spring	VTVM vacuum-tu voltmeter
NPO negative-positive	PPM pulse-position	SR split ring	
zero (zero tempera-	modulation	SPST single-pole,	V(X) volts, switch
ture coefficient)	PREAMPL preamplifier	single-throw	W
NRFR . , not recommended	PRF pulse-repetition	SSB single sideband	W/
for field replace-	frequency	SST stainless steel	WIV working inver
ment	PRR pulse repetition	STL, steel	voltage
NSR not separately	rate	SQ square	WW wirewou
replaceable	ps picosecond	SWR standing-wave ratio	W/O witho
ns nanosecond	PT point	SYNC synchronize	YIG yttrium-iron-garr
nW nanowatt	PTM pulse-time	T timed (slow-blow fuse)	Zo characteris
OBD , order by descrip-	modulation	TA tantalum	impedance
tion	PWM pulse-width modulation	TC temperature compensating	

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
T	tera	1012
G	giga	10 ⁹
M	mega	10^{6}
k	kilo	10^{3}
da	deka	10
đ	deci	10-1
c	centi	10^{-2}
m	milli	10-3
μ	micro	10 ⁻⁶
n	nano	10 ⁹
р	pico	10-12
f	femto	10-15
a	atto	10-18

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A1 A1A1	08671=60002	1	i 1	RF OUTPUT ASSEMBLY BOARD ASSEMBLY, FRONT PANEL (A1A1S: AND S2 MUST BE ORDERED SÉPARATELY)	28480	08671=60002
A1A1C1 A1A1C2 A1A1C3	0180+0229 0180+2215 0180+2215	7 5 5	1	CAPACITOR=FXO 33UF+=10X 10VDC TA CAPACITOR=FXD 170UF+75=10X 15VDC AL CAPACITOR=FXD 170UF+75=10X 15VDC AL	56289 56289 56289	150D336×9010B2 30D177G015DD2 30D177G015D02
A1A1CR1 A1A1CR2 A1A1CR3	1901=0050 1901=0050 1901=0050	3 3	3	DIDDE-SWITCHING BOY 200MA 2NS DO-35 DIDDE-SWITCHING BOY 200MA 2NS DO-35 DIODE-SWITCHING BOY 200MA 2NS DO-35	28480 28480 28480	1901-0050 1901-0050 1901-0050
A1A1D\$1 A1A1D\$2 A1A1D\$3 A1A1D\$4 A1A1D\$5	2140=0427 2140=0427 2140=0427 2140=0427 2140=0427 2140=0427	5555	5	LAMP-INCAND 5VDC 60MA T-1-BULB	28480 28480 28480 28480 28480	2140=0427 2140=0427 2140=0427 2140=0427 2140=0427
AIĀĮJI AIĀĮJZ	1250=1255 1250=1255	1	2	CONNECTOR-RF SMB M PC 50-OHM CONNECTOR-RF SMB M PC 50-OHM	28480 28480	1250-1255 1250-1255
Alaiki	0490-1013	6	1	RELAY-REED IC 250MA 28VDC 5VDC-COIL 3VA	28480	0490-1013
A1A1Q1 A1A1Q2 A1A1Q3 A1A1Q4 A1A1Q5	1854-0071 1854-0071 1854-0071 1854-0071 1854-0071	7 7 7 7	12	TRANSISTOR NPN SI PD#300MM FT#200MMZ	28480 28480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071 1854-0071
A1A1G+ A1A1G7 A1A1G8 A1A1G9 A1A1G10	1854=0071 1854=0071 1854=0071 1854=0071 1854=0071	77777		TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071 1854-0071
Alaigii Alaigiz	1854-0071 1854-0071	7 7		TRANSISTOR NPN SI PD=300MW FT=200MMZ Transistor npn si PD=300MW FT=200MMZ	28480 26480	1854-0071 1854-0071
Alairi Alaira Alaira Alairu Alairu	0757=0442 0698=3400 0757=0280 0757=0378 0757=0442	9 9 3 0 9	11 1 8 1	RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 147 1% .5W F TC=0+=100 RESISTOR 11 1% .125W F TC=0+=100 RESISTOR 11 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 28480 24546 19701 24546	C4=1/8=T0=1002=F 0098=3400 C4+1/8=T0=1001=F MF4C1/8=T0=1100=F C4=1/8=TU=1002=F
A1A1R6 A1A1R7 A1A1R8 A1A1R8 A1A1R10	2100-1985 0757-0795 0757-0442 0698-3452 0757-0442	8 5 9 1	1 1	RESISTOR-TRMR 20 20% C TOP-ADJ 1-TRN RESISTOR 75 1% ,5W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100 RESISTOR 14K 1% ,125W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100	32997 19701 24546 24546 24546	3329H-1=20R MF-1/2+T0-75R0+F C4-1/8+T0-1002-F C4-1/8-T0-1473-F C4-1/8-T0-1002-F
AlAirii AlAiriz AlAiris AlAiriu AlAiriu	0757-0442 0757-0442 0757-0442 0757-0442 0757-0280	9 9 9 3		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F
A1A1R16 A1A1R17 A1A1R18 A1A1R19 A1A1R20	0757+0442 0757-0442 0757-0280 0757-0278 0757-0442	9 9 3 9	1	RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 1,76K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1001=F C4-1/8-T0-1781=F C4-1/8-T0-1781=F
A1A1R21 A1A1R22 A1A1R23 A1A1R24 A1A1R25	0757±0260 0757=0280 0757=0279 0757=0280 0757=0280	3 0 3	1	RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 3,16K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=1001=F C4=1/8=T0=1001=F C4=1/8=T0=3161=F C4=1/8=T0=1001=F C4=1/8=T0=1001=F
A1A1R26	0757=0280	3		RESISTOR 1K 1% .125W F TG=0+=100	24546	C4=1/8=T0=1001=F
A1A181 A1A182	08672-60077 08672-60077	1	2	SWITCH RF ON-OPF SWITCH, FM DEVIATION	28480 28480	08672=60077 08672=60077
A1A1TP1 A1A1TP2 A1A1TP3 A1A1TP4 A1A1TP5	1251=0600 1251=0600 1251=0600 1251=0600 1251=0600	00000	7	CONTACT=CONN U/W=POST=TYPE MALE DPSLDR CONTACT=CONN U/W=POST=TYPE MALE DPSLDR CONTACT=CONN U/W=POST=TYPE MALE DPSLDR CONTACT=CONN U/W=POST=TYPE MALE DPSLDR CONTACT=CONN U/W=POST=TYPE MALE DPSLDR	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600
A1A1TP6 A1A1TP7	1251=0600 1251=0600	0		CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR	28480 28480	1251~0600 1251~0600
A1A1U1 A1A1U2 A1A1U3	1820=2085 1820=1961 1820=1962	6	i i 1	IC GATE CMOS AND-OR QUAD IC GATE CMOS NAND TPL 3-INP IC DCDR CMOS BCD-TO-DEC	07263 04713 04713	WC140538CP WC140538CP F4019PC
	08672=20061	•	4	A1A1 MISCELLANEOUS GUIDE, SLIDE SWITCH	28480	08672-20061

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
- 1, -						
				A1 CHASSIS PARTS		
ISATS	0960=0362	3	<u>, </u>	ISOLATOR, 2=6.2 GHZ	28480	0960=0362
	075040302	1	• 1		"	
171		1		CONNECTOR, RF OUTPUT (PART OF A1W3) CONNECTOR, BNC (PART OF A1W3)		
`***	1250-0872	6	1	CONNECTOR-RF SMB FEM UNMTD 50-OHM	28450	1250-0872
	1250-0952	3	1	CONTACT-RE CONN BNC/TNC FEM CTR	24931 24931	C232-2 C8 105+3
	1250-0958 1250-0960	;	1 1	BUSHING RF CONN BNC/TNC1 FOR INTL SLEEVE-RF CONN SER BNC/TNC	28480	1250=0960
	1250-0964	9 3 7	i	NUT-RE CONN BNC/TNC1 CLAMP NUT FOR	24931	N156-5
4113	1251-2245	3	1	CONNECTOR 50-PIN M D SERIES	28480	1251-2245
1114	1251-2204	4	î	CONNECTOR 24-PIN M D SERIES	28480	1251-2204
A1MP1	08731-210	اج	1	NUT, LOCK	28480	08731-210
LIMPE	0590-1011	9	1	NUT-KNRLD-R 15/32-32-THD .12-IN-THK	28480	0590=1011
IMP3	08671=20004		1	WINDOW, RF	28480 28480	08671-20004 5040-6927
1 EMP4	5040-6927	3	1	DIVIDER STRIP	- '	
1111	08671-20005	0	1	CABLE ASSEMBLY, RF INPUT	28460 28460	08671-20005 08671-20006
71MS	08671-20006	4	1	CABLE ASSEMBLY, RF DUTPUT (EXCEPT OPT 005)	[09911-50000
1142	08671-20008	3	1	CABLE ASSEMBLY, RF DUTPUT (OPT 005 ONLY)	28460	08671-20008
11W3	05671-60004	3	1	CABLE ASSEMBLY, FM INPUT (INCL ALJE)	28480	08671=60004
	1250-1091	3	1	CONNECTOR-RF BNC FEM SGL-HOLE-RR 50-OHM	28480	1250=1091
				A1 MISCELLANEOUS		
	1400-0510	8 7	4	CLAMP=CABLE _15=DIA .62=WD NYL	28480	1400-0510
	5020-3440		2	SPRINGIDETENT	28480 28480	5020-3440 00310-48801
	00310=45801 08671=00001	0	2	WASHER, SHOULDERED DECK, MAIN	28480	08671=00001
	05671-00002	5	1	GUSSET, LEFT	28480	08671-00002
	05671=00003	6	1	GUSSET, RIGHT	28480	08671=00003
	08671=00004	17	il	PANEL, REAR	28480	08671-00004
	08671-00005	8	1	BAR TIE	28480	08671-00005
	05671=00006	9	1	PANEL, FRONT (EXCEPT OPT 005)	28480	08671=00006
j	08671-00009	2	1	PANEL, FRONT (OPT 005 ONLY)	28480	08671-00009
	08671-00007		1	PANEL. SUB	28480	08671-00007
	05672-40006	4	i	LAMP, HOUSING, LONG	28480	08672=40006
	08672-40007	5	4	LAMP, HOUSING, SHORT	28480 28480	08672=40007 08672=40008
	08672-40008 08672-40009	;	1 4	BAR LIGHT, LONG BAR LIGHT, 8HORT	28480	08672=40009
	08672-40010		5	PLUG, LIGHT	26480	08672=40010
				CABLE TIE .062625-DIA .091-HD NYL	28480	1400-0249
	1400-0249	101	3	CHOLE ITE "ADS#"OSD#ATH "ALT#NA KIL	28480	1400-0735

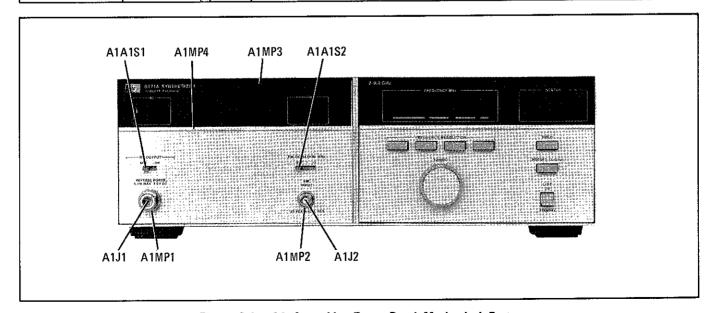


Figure 6-1. A1 Assembly, Front Panel Mechanical Parts

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2A1	08672-60100	ı	1	CONTROLLER ASSEMBLY ASSEMBLY, PRONT PANEL (THE FOLLOWING CHASSIS PARTS SUPPLIED SEPARATELY: 08672-20032.08672-20035,08672-20036,	28480	08672=60100
A2A1C1 A2A1C2 A2A1C3 A2A1C4 A2A1C5	0180=0229 0160=3878 0160=3878 0160=0572 0160=3877	7 6 6 1 5	6 9 4 23	08672-20037,08672-40001,08672-40002). CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD 2200PF +-20% 100VDC CER CAPACITOR-FXD 200PF +-20% 200VDC CER	56269 28480 28480 28480 28480	150D336x901082 0160-3878 0160-3878 0160-0572 0160-3877
A2A1C6 A2A1C7 A2A1C8 A2A1C9 A2A1C10	0160=3877 0160=3877 0180=0229 0160=3456 0160=3456	5 7 6 6	20	CAPACITOR=FXD 100PF +=20% 200VDC CER CAPACITOR=FXD 100PF +=20% 200VDC CER CAPACITOR=FXD 33UF+=10% 10VDC TA CAPACITOR=FXD 1000PF +=10% 1KVDC CER CAPACITOR=FXD 1000PF +=10% 1KVDC CER	28480 28480 56289 28480 28480	0160-3877 0160-3877 150D336X901082 0160-3456 0160-3456
AZA1C11 AZA1C12	0160=3456 0160=3456	6		CAPACITOR=FXD 1000PF +-10% 1KVDC CER CAPACITOR=FXD 1000PF +-10% 1KVDC CER	28480 28480	0160-3456 0160-3456
A2A1CR1 A2A1CR2 A2A1CR3	1901-0040 1901-0040 1901-0040	1 1 1	56	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480	1901-0040 1901-0040 1901-0040
A2A1D31 A2A1D33 A2A1D33 A2A1D84 A2A1D85	2140-0253 2140-0092 2140-0092 2140-0253 2140-0092	50050	8	LAMP-INCAND 6839 28VDC 28MA T-1-BULB LAMP-INCAND 685 5VDC 60MA T-1-BULB LAMP-INCAND 685 5VDC 60MA T-1-BULB LAMP-INCAND 683 928VDC 28MA T-1-BULB LAMP-INCAND 683 5VDC 60MA T-1-BULB	71744 0000J 0000J 71744 0000J	CM-6839 685 TIP END 685 TIP END CM-6839 685 TIP END
A2A1D56 A2A1D57 A2A1D58 A2A1D59 A2A1D510	2140=0092 2140=0092 2140=0092 2140=0092	00000		LAMP-INCAND 685 5VDC 60MA T-1-BULB LAMP-INCAND 685 5VDC 60MA T-1-BULB LAMP-INCAND 685 5VDC 60MA T-1-BULB LAMP-INCAND 685 5VDC 60MA T-1-BULB LAMP-INCAND 685 5VDC 60MA T-1-BULB	10000 10000 10000 10000	685 TIP END 685 TIP END 685 TIP END 685 TIP END 685 TIP END
A2A1J1 A2A1J2A A2A1J2B A2A1J2C	1251=3024	8	2	CONNECTOR 26=PIN M RECTANGULAR (INCLUDES AZA1MP1 (16 EACH) (INCLUDES AZA1MP1 (24 ĒACH) (INCLUDES AZA1MP1 (24 ĒACH)	28480	1251=3024
AZA1MP1	1200-0448	7	64	SOCKET-IC 1-CONT DIP-SLDR (PART OF ARA1JRA,8,6)	28480	1200-0448
101854 201854 201854 201854 201854	1854-0071 1854-0071 1854-0071 1854-0071 1854-0020	7 7 7 7	17	TRANSISTOR NPN SI PD#300MW FT#200MMZ TRANSISTOR NPN SI PD#300MW FT#150MMZ	26480 26480 26480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071 1853-0020
A2A1Q6 A2A1Q7 A2A1Q8	1854-0071 1854-0071 1854-0071	7 7 7		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480	1854-0071 1854-0071 1854-0071
AZAIRI AZAIRZ AZAIRI AZAIRI AZAIRI	0698-7253 0698-7253 0698-7253 0698-7253 0698-7253	8888	11	RESISTOR 5,11K 1% .05W P TC=0+-100 RESISTOR 5,11K 1% .05W F TC=0+=100 RESISTOR 5,11K 1% .05W F TC=0+=100 RESISTOR 5,11K 1% .05W F TC=0+-100 RESISTOR 5,11K 1% .05W F TC=0+-100	24546 24546 24546 24546	C3=1/8=70=5111=G C3=1/8=70=5111=G C3=1/8=70=5111=G C3=1/8=70=5111=G C3=1/8=70=5111=G
A2A1R6 A2A1R7 A2A1R8 A2A1R8 A2A1R10	0698-7277	ė	3	NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED RESISTOR 51,1k 1% ,05w F TC=0+-100	54246	.C3-1/8-T0-5112-G
A2A1R11 A2A1R12 A2A1R13 A2A1R14 A2A1R15	0698-7253 0698-7277 0698-7277 0698-7264 0698-7253	8 6 1 8	i	RESISTOR 5.11K 1% .05W F TC=0+=100 RESISTOR 51.1K 1% .05W F TC=0+=100 RESISTOR 51.1K 1% .05W F TC=0+=100 RESISTOR 14.7K 1% .05W F TC=0+=100 RESISTOR 5.11K 1% .05W F TC=0+=100	54249 54249 54249 54249 54249	C3-1/8-70-5111+G C3-1/8-70-5112-G C3-1/8-70-5112-G C3-1/8-70-3172-G C3-1/8-70-5111-G
A2A1R16 A2A1R17 A2A1R16 A2A1R19 A2A1R20	0698-7253 0698-7253 0698-7253 0698-7253 0698-7268	8888	2	REBISTOR 5.11K 1% .05W F TC=0+=100 REBISTOR 21.5K 1% .05W F TC=0+=100	24546 24546 24546 24546	C3-1/8-T0-5111-G C3-1/8-T0-5111-G C3-1/8-T0-5111-G C3-1/8-T0-5111-G C3-1/8-T0-2152-G
A2A1R21 A2A1R22 A2A1R23 A2A1R24 A2A1R25	0698-7268 0698-7236 0698-7236 0698-7244 0698-7261	5 7 7 8	5 2 1	RESISTOR 21.5K 1% .05W F TC#0+=100 RESISTOR 1K 1% .05W F TC#0+=100 RESISTOR 1K 1% .05W F TC#0+=100 RESISTOR 2.15K 1% .05W F TC#0+=100 RESISTOR 11K 1% .05W F TC#0+=100	24546 24546 24546 24546 24546	C3=1/8=T0=2152=G C3=1/8=T0=1001=G C3=1/8=T0=1001=G C3=1/8=T0=2151=G C3=1/8=T0=1102=G

Table 6-3. Replaceable Parts

				18the 0-3. Hehiaceanie Faits		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2A1R26 A2A1R27 A2A1R26 A2A1R29 A2A1R30	0696-7260 0698-7260 0696-7269 0698-7244 0698-7273	7 6 7 2	3 1 1	RESISTOR 10K 1% .05W F TC=0+=100 RESISTOR 10K 1% .05W F TC=0+=100 RESISTOR 23.7K 1% .05W F TC=0+=100 RESISTOR 2.15K 1% .05W F TC=0+=100 RESISTOR 34.8K 1% .05W F TC=0+=100	24546 24546 24546 24546 24546	C3=1/8=T0=1002=G C3=1/8=T0=1002=G C3=1/8=T0=2372=G C3=1/8=T0=2151=G C3=1/8=T0=3482=G
A2A1R31 A2A1R32 A2A1R33 A2A1R34 A2A1R34	0698-7260 0698-7236 0698-7236 0698-7236 0698-7212	7779	í	RESISTOR 10K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100	24546 24546 24546 24546	C3-1/8-T0-1002-G C3-1/8-T0-1001-G C3-1/8-T0-1001-G C3-1/8-T0-1001-G C3-1/8-T0-100R-G
A2A181 A2A182 A2A183 A2A184 A2A184	3101-0624 3101-0624 3101-0624 3101-0624 3101-0624	3 3 3	6	SWITCH-SENS SPDT-DB SUBMIN 4A 250VAC SWITCH-SENS SPDT-DB SUBMIN 4A 250VAC SWITCH-SENS SPDT-DB SUBMIN 4A 250VAC SWITCH-SENS SPDT-DB SUBMIN 4A 250VAC SWITCH-SENS SPDT-DB SUBMIN 4A 250VAC	28480 28480 28480 28480	3101-0624 3101-0624 3101-0624 3101-0624 3101-0624
454186	3101-0624	3		SWITCH-SENS SPDT-DB SUBMIN 4A 250VAC	28480	3101=0624
A2A1U3 A2A1U3 A2A1U4 A2A1U4 A2A1U5	1820=2085 1820=1197 1820=1433 1820=1433 1820=2080	6 6 6 1	1 8 2 27	IC GATE CMOS AND=DR GUAD IC GATE TTL LS NAND GUAD 2=INP IC SHF=RGTR TTL LS R=8 SERIAL=IN PRL=OUT IC SHF=RGTR TTL LS R=8 SERIAL=IN PRL=OUT IC SHF=RGTR CMOS SYNCHRO PRL=IN PRL=OUT	07263 01295 01295 01295 01295 04713	F4019PC SN74L800N SN74L8164N SN74L9164N MC14035BCP
A2A1U6 A2A1U7 A2A1U8 A2A1U9	1820=2079 1826=0026 1820=1199 1820=2031	3 12	1 5 1	IC GATE CMOS NOR DUAL 4-INP IC COMPARATOR TO-99 IC INV TTL LS HEX 1-INP IC SHF-RGTR CMOS ASYNCHRO PRL-IN	04713 27014 01295 04713	MC140026CP LM311M SN74L504N MC140216CP
A2A1XA2D81 A2A1XA2D82 A2A1XA2D83	5e290=00034 0361=0457 56290=00034 0361=0457 56290=00034 0361=0457	6 7 6 7 6 7	10	LAMP, CONTACT EVELET-RLD=FLG .065=00 .125=LG .008=THK LAMP, CONTACT EVELET-RLD=FLG .065=0D .125=LG .008=TMK LAMP, CONTACT EVELET=RLD=FLG .065=0D .125=LG .008=TMK	28480 07707 28480 07707 28480 07707	86290-00034 8-5994 86290-00034 8-5994 86290-00034 8-5994
A2A1XA2D84 A2A1XA2D85 A2A1XA2D86	56290=00034 0361=0457 56290=00034 0361=0457 56290=00034 0361=0457	6 7 6 7 6 7		LAMP, CONTACT EYELET=RLD=FLG .005=0D ,125=LG .008=THK LAMP, CONTACT LAMP, CONTACT EYELET=RLD=FLG .005=0D .125=LG .008=THK LAMP, CONTACT EYELET=RLD=FLG .065=0D .125=LG .008=THK	28480 07707 28480 07707 28480 07707	86290=00034 8=5994 86290=00034 8=5994 85290=00034 8=5994
A2A1XA2D87 A2A1XA2D88 A2A1XA2D89	86290-00034 0361-0457 86290-00034 0361-0457 86290-00034 0361-0457 86290-00034	67676767	10	LAMP, CONTACT EYELET=RLD=FLG .065=00 .125=LG .008=THK	28480 07707 28480 07707 28480 07707 28480 07707	86290-00034 3-5994 86290-00034 8-5994 8-5994 86290-00034 8-5994
				AZA1 MISCELLANEDUS		
	1251-0600	0	23	CONTACT-CONN U/W-POST-TYPE MALE DPSLOR	28480	1251-0600
AZĀZ	5060-0329	9	1	GENERATOR, ROTARY PULBE	28480	5060=0329
A2A3	08672=60006	6	1	ASSEMBLY, VCC, 160-240 MHZ	28480	08672=60006
A2A3C1 A2A3C3 A2A3C4 A2A3C5	0160=3456 0160=0166 0160=3879 0180=0116 0160=3879	6 9 7 1 7	5 8 2	CAPACITOR=FXD 1000PF +=10% 1KVDC CER CAPACITOR=FXD .008UF +=10% 200VDC POLYE CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 6.8UF4=10% 35VDC TA CAPACITOR=FXD .01UF +=20% 100VDC CER	28480 28480 28480 56289 28480	0160=3456 0160=0166 0160=3879 1500865x903582 0160=3879
A2A3C6 A2A3C7 A2A3C6 A2A3C9 A2A3C10	0160=2259 0160=0301 0160=0166 0160=3456 0160=3456	54966	i a	CAPACITOR=FXD 12PF +=5% 500VDC CER 0+=30 CAPACITOR=FXD .012UF +=10% 200VDC POLYE CAPACITOR=FXD .006UF +=10% 200VDC POLYE CAPACITOR=FXD 1000PF +=10% 1KVDC CER CAPACITOR=FXD 1000PF +=10% 1KVDC CER	28480 28480 28480 28480 28480	0160=2259 0160=0301 0160=0166 0160=3456 0160=3456
A2A3C11 A2A3C12† A2A3C13 A2A3C14 A2A3C15	0160=0301 0160=2200 0150=2211 0180=2214 0160=0166	46.449	1 1 1	CAPACITOR-FXD .012UF +-10% 200VDC POLYE CAPACITOR-FXD 43FF +-5% 300VDC MICA CAPACITOR-FXD 5UF+50-10% 150VDC AL CAPACITOR-FXD 90UF+75-10% 16VDC AL CAPACITOR-FXD .008UF +-10% 200VDC POLYE	28480 28480 56289 56289 28480	0160=0301 0160=2200 300505F150CC2 3009066016CC2 0160=0166
A2A3C16 A2A3C17 A2A3C18 A2A3C19 A2A3C20	0160=3456 0160=3456 0160=3456 0160=3456 0160=3456	66866	a	CAPACITOR-FXD 1000PF +=10% 1KVDC CER CAPACITOR-FXD 1000PF +=10% 1KVDC CER CAPACITOR-FXD 100PF +=10% 1KVDC CER CAPACITOR-FXD 1000PF +=10% 1KVDC CER CAPACITOR-FXD 1000PF +=10% 1KVDC CER	26480 26480 26480 26480	0160-3456 0160-3456 0160-3466 0160-3456 0160-3456
AZA3CZI AZA3CZZ AZA3CZ3 AZA3CZ4 AZA3CZ5	0160+3456 0160=3456 0160=3456 0160=3456 0160=3456	66666		CAPACITOR-FXD 1000PF +=10% 1KYOC CER CAPACITOR-FXD 1000PF +=10% 1KYOC CER CAPACITOR-FXD 1000PF +=10% 1KYOC CER CAPACITOR-FXD 1000PF +=10% 1KYOC CER CAPACITOR-FXD 1000PF +=10% 1KYOC CER	28480 28480 28480 28480	0160=3456 0160=3456 0160=3456 0160=3456 0160=3456

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2A3C26 A2A3C27 A2A3C26 A2A3C29 A2A3C30	0160=1456 0160=2240 0160=2262 0160=2262 0160=3456	64006	1 2	CAPACITOR-FXD 1000PF +=10% 1KVDC CER CAPACITOR-FXD 2PF += 25FF 500VDC CER CAPACITOR-FXD 16PF +=5% 500VDC CER 0+=30 CAPACITOR-FXD 16PF +=5% 500VDC CER 0+=30 CAPACITOR-FXD 1000PF +=10% 1KVDC CER	28480 28480 28480 28480 28480	0160=3456 0160=2240 0160=2262 0160=2262 0160=3456
A2A3C31 A2A3C32 A2A3C33	0160=3456 0140=0195 0140=0195	5 9	2	CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 130PF +-5% 300VDC MICA CAPACITOR-FXD 130PF +-5% 300VDC MICA	28480 72136 72136	0160-3456 DM15F131J0300WV1CR OM15F131J0300WV1CR
AZA3CR1 AZA3CR2 AZA3CR3 AZA3CR4	0122-0065 0122-0085 0122-0085 0122-0085	1 1 1	4	DIODE-VVC 2.2PF 7% C3/C25-MIN=4,5 DIODE-VVC 2.2PF 7% C3/C25-MIN=4,5 DIODE-VVC 2.2PF 7% C3/C25-MIN=4,5 DIODE-VVC 2.2PF 7% C3/C25-MIN=4,5	28480 28480 28480 28480	0122+0085 0122+0085 0122+0085 0122+0085
A2A3J1 A2A3J2	1250-0544 1250-0544	9	3	CONNECTORARF 8MASNP M 3GLAHOLEAFR 50-0HM Connectorarf 8masnp m āglaholeafr 50-0HM	28480 28480	1250-0544 1250-0544
A2A3L1 A2A3L2 A2A3L0 A2A3L0 A2A3L0	9140=0180 9100=2583 9100=2583 9100=2249 9100=0346	1 6 0	i 2 1 1	COIL-MLD 2.7UM 10% Q=33 .155D%.375LG-NOM COIL-MLD 6.8MM 10% Q=40 .156D%.375LG-NOM COIL-MLD 6.8MM 10% Q=40 .156D%.375LG-NOM COIL-MLD 150NM 10% Q=34 .095D%.25LG-NOM COIL-MLD 50NM 20% Q=40 .095D%.25LG-NOM	28480 28480 28480 28480 28480	9140-0180 9100-2583 9100-2583 9100-2249 9100-0346
A2A3L6 A2A3L7 A2A3L8	9100-2248 9100-2254 9100-2248	5 55 55	2	COIL-MLD 120NM 10% 0=34 .0950%.25LG-NOM COIL-MLD 390NH 10% 0=35 .0950%.25LG-NOM COIL-MLD 120NH 10% 0=34 .0950%.25LG-NOM	28480 28480 28480	9108-2248 9100-2254 9100-2248
854284 854284 854283 854283 854283	1855-0392 1854-0345 1854-0345 1854-0345 1853-0020	7 8 8 4	1 3	TRANSISTOR J-FET N-CMAN D-MODE TO-72 SI TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR PNP SI PD=300MW FT#150MHZ	28480 04713 04713 04713 28480	1855-0392 2N5179 2N5179 2N5179 1853-0020
454200-	1553-0451	5	1	TRANSISTOR PNP 2N3799 SI TO-18 PD#360MW	01295	203799
A2A3R1 A2A3R2 A2A3R3 A2A3R4 A2A3R4	0757-0199 0757-0442 0698-3156 0757-0834 0757-0279	9 2 3 0	57 14 2 1	RESISTOR 21.5K 1% 125W F TC=0+=100 RESISTOR 10K 1% 125W F TC=0+=100 RESISTOR 14.7K 1% 125W F TC=0+=100 RESISTOR 5.62K 1% .5W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100	24546 24546 24546 28480 24546	C4=1/8=T0=2152=F C4=1/8=T0=1002=F C4=1/8=T0=1472=F 0757=0834 C4=1/8=T0=3161=F
A2A3R4 A2A3R7 A2A3R8 A2A3R9 A2A3R10	0757-0280 0757-0279 0757-0278 0757-0346 0757-0280	30023	27 4 4	RESISTOR iK 1% 125W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 1.78K 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1001=F C4-1/8-T0-3161=F C4-1/8-T0-1761=F C4-1/8-T0-1080=F C4-1/8-T0-1081=F
A2A3q12 A2A3q12 A2A3q13 A2A3q14 A2A3q15	0698-3444 0698-3444 0757-0346 0757-0160 0698-3444	11221		RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	54240 54240 54240 54240	C4-1/8-T0-316R-F C4-1/8-T0-316R-F C4-1/8-T0-10R0-F 0757-0160 C4-1/8-T0-316R-F
AZA3R16 AZA3R17 AZA3R16 AZA3R19 AZA3R20	0757+0278 0757-0279 0698-3440 0757-0428 0698-3160	9 0 7 1 8	2	RESISTOR 1.78K 1% .125W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 1.62K 1% .125W F TC=0+=100 RESISTOR 31.6K 1% .125W F TC=0+=100	24246 24246 24246 24246	C4-1/8-T0-1781-F C4-1/8-T0-3161-F C4-1/8-T0-198PR-F C4-1/8-T0-1621-F C4-1/8-T0-3162-F
A 2 Å 3 R 2 1 A 2 Å 3 R 2 2 A 2 A 3 R 2 3 A 2 A 3 R 2 4 A 2 Å 3 R 2 5	0698=3452 0757=0123 0757=0416 0698=3440 0698=3444	1 3 7 7	1 3	RESISTOR 147K 1% .125W F TC=0+-100 RESISTOR 34.6K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/6-T0-1473-F 0757-0123 C4-1/6-T0-511R-F C4-1/6-T0-196R-F C4-1/8-T0-316R-F
AZA3R26 AZA3R27 AZA3R28 AZA3R29 AZA3R30	0747-0346 0757-0278 0757-0418 0757-0279 0757-0418	29909	4	RESISTOR 10 1% ,125W F TC=0+=100 RESISTOR 1,78K 1% ,125W F TC=0+=100 RESISTOR 619 1% ,125W F TC=0+=100 RESISTOR 3,16K 1% ,125W F TC=0+=100 RESISTOR 619 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-10R0-F C4-1/8-T0-1781-F C4-1/8-T0-519R-F C4-1/8-T0-519R-F C4-1/8-T0-519R-F
A2A3R31 A2A3R32 A2A3R33 A2A3R30†	0498-0083 0498-0083 0498-3444 0757-0401	8 1 0	,	RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 316 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-7U-1961-F C4-1/8-7C-1961-F C4-1/8-70-316R-F C4-1/8-70-101-F
A2A381	3101-1524	4	1	SWITCH-SL DP3T-NS SUBMIN .5A 125VAC/DC	28480	3101-1524
A2A3T1	08672=80003	Ι.	1	COIL, INDUCTOR	28480	05672=80003 MC103%1P
AZĀJUZ AZĀJUZ	1820=1225 1820=0794	0	1 1	IC FF ECL D=M/S DUAL IC FF ECL D=M/S	04713	MC10231P MC1670L
	86701=40001	9		A2A3 MISCELLANEOUS EXTRACTOR, P.C. BOARD	26480	86701-40001
	86701=40001 08672=20026			VCO COVER	28480	08672=20026

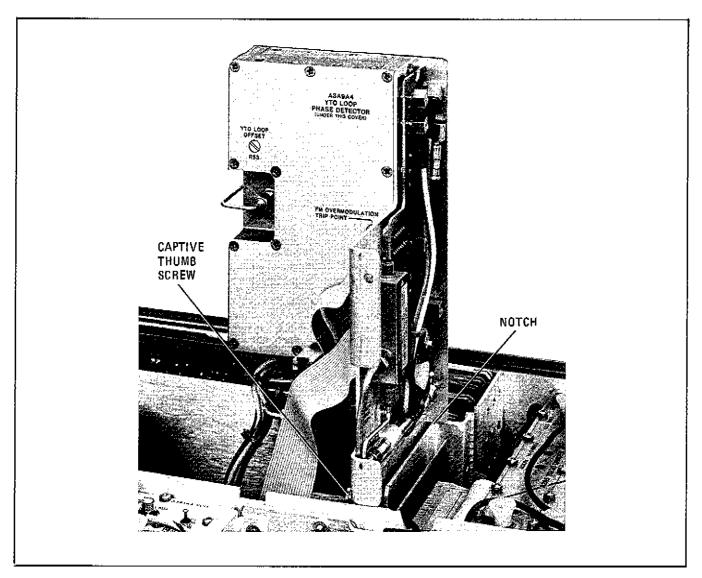


Figure 8-5. A3A9 Assembly in Service Position

Disassembly and Reassembly Procedures (Cont'd)

- f. Secure the assembly into place by tightening the captive thumb screw into the pressed-in nut.
- g. Connect a test cable from A3A9A1J1 to A1AT1J1 for troubleshooting and testing purposes.

CAUTION

When reinstalling the A3A9 Assembly, be careful of to crush or pinch the coaxial or flat ribbon cables.

- 8-51. Battery Replacement. To replace the batteries, follow the steps listed below:
- a. Remove the top cover as in paragraph 8-43,

- b. Grasp the top of the battery holder's clip and pull forward until it slips off.
- c. Grip the battery pack on both sides with your fingers and pull straight out.
- d. Position the new battery pack so the metal strips press against the flexible contacts of the battery holder.
- e. Slip the small end of the battery clip over the bottom end of the battery holder. Snap the top end of the clip into place.

8-52. LOGIC SYMBOLS

8-53. The logic symbols used in this manual are based on the American National Standard ANSI Y32.14-1973, "Graphic Symbols for Logic Dia-

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
AZA4U6 AZA4U7 AZA4U8	1820=1422 1820=1422 1820=1112	3 8	2	IC MV TTL LS MONOSTAL RETRIG IC MV TTL LS MONOSTAL RETRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 01295	8N74L8122N 8N74L8122N 8N74L874N
AZA4VR1	1902-3234	3	,	DIODE-ZNR 19.6V 5% DO-7 PD-4W TC#+.073%	28480	1902-3234
•				A2A4 MISCELLANEOUS		
	1205-0250 08672-20027 66701-40001	7 9	2	THERMAL LINK SGL TD-5/TD-39-PKG COVER, PHASE DETECTOR EXTRACTOR	28480 28480 28480	1205=0250 08672=20027 86701=40001
AZAS	08672-60008	8	1	ASSEMBLY, 20/30 DIVIDER	28480	08672-60008
A2A5C1 A2A5C2 A2A5C3 A2A5C4 A2A5C5	0160-2055 0180-0229 0180-0229 0180-2205 0160-3466	9 7 7 3 8	ı	CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD 33UF+=10% 10VDC TA CAPACITOR=FXD 33UF+=10% 10VDC TA CAPACITOR=FXD .33UF+=10% 35VDC TA CAPACITOR=FXD 100PF +=10% 1KVDC CER	28480 56289 56289 56289 28480	0160=2055 1500336×901082 1500336×901082 1500334×903542 0160=3466
A2A5C6 A2A5C7 A2A5C6 A2A5C9 A2A5C10	0160-2055 0180-0229 0180-0197 0160-2055 0160-2055	9 7 8 9		CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD 33UF+=10% 10VDC TA CAPACITOR=FXD 2,2UF+=10% 20VDC TA CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER	28480 56289 56289 28480 28480	0160=2055 150D336x901082 150D225x9020A2 0160=2055 0160=2055
A2ASC11 A2ASC12 A2ASC13 A2ASC14 A2ASC15	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	0000		CAPACITOR=FXD .01UF +80-20% 100VDC CER CAPACITOR=FXD .01UF +80-20% 100VDC CER CAPACITOR=FXD .01UF +80-20% 100VDC CER CAPACITOR=FXD .01UF +80-20% 100VDC CER CAPACITOR=FXD .01UF +80-20% 100VDC CER	28480 28480 28480 28480 28480	0160=2055 0160=2055 0160=2055 0160=2055 0160=2055
A2A5C16 A2A5C17 A2A5C16 A2A5C19 A2A5C20	0160=2055 0160=2055 0160=2055 0160=3537 0160=0229	00047	1	CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD 680PF +5X 100VDC MICA CAPACITOR=FXD 33UF+=10X 10VDC TA	28480 28480 28480 56289	0160=2055 0160=2055 0160=2055 0160=3537 1500336x901082
AZASCR1	1901-0040	1		DIODE-SWITCHING BOY SOMA 2NS DD-35	28480	1901-0040
AZĀSJI	1250-0544	9		CONNECTOR-RF 8M-3NP M SGL-HOLE-FR 50-0HM	28480	1250-0544
A2A5L1 A2A5L2 A2A5L3	08672=80001 9100=1618 08672=80001	1	7	INDUCTOR, TORGID COIL-MLD 5.6UM 10% G#45 .1550%.375LG=NOM INDUCTOR, TORGID	28480 28480 28480	08672=80001 9100=1615 08672=80001
A2A501	1854-0019	3	2	TRANSISTOR NPN SI TO-18 PD#360MW	28480	1854-0019
A2A5R1 A2A5R2 A2A5R3 A2A5R4 A2A5R5	0698-3628 0757-0397 0698-3444 2100-2413 0698-7216	3 1 9 3		RESISTOR 220 5% 2W MO TC=0+=200 RESISTOR 68,1 1% .125W F TC=0+=100 RESISTOR 316 1% .125W F TC=0+=100 RESISTOR=TRMR 200 10% C SIDE=4DJ 1=TRN RESISTOR 147 1% .05W F TC=0+=100	28460 24546 24546 30983 24546	0698-3628 C4-1/8-T0-68R1=F C4-1/8-T0-316R=F ET50X201 C3-1/8-T0-147R=G
AZASR6 AZASR7 AZASR8 AZASR8 AZASR9 AZASR10	0698-7216 0698-7216 0698-7216 0757-0280 0757-0280	3 3 3 3		RESISTOR 147 1% .05W F TC=0+=100 RESISTOR 147 1% .05W F TC=0+=100 RESISTOR 147 1% .05W F TC=0+=100 RESISTOR 14 1% .125W F TC=0+=100 RESISTOR 14 1% .125W F TC=0+=100	24546 24546 24546 24546	C3=1/8=T0=147R=G C3=1/8=T0=147R=G C3=1/8=T0=147R=G C4=1/8=T0=1001=F C4=1/8=T0=1001=F
A2A5R11 A2A5R12 A2A5R13 A2A5R14 A2A5R14	0757-0438 0698-3150 0757-0438 0757-0280 0698-3444	3 5 3	a	RESISTOR 5,11K 1% .125W F TC#0+=100 RESISTOR 2,37K 1% .125W F TC#0+=100 RESISTOR 5,11K 1% .125W F TC#0+=100 RESISTOR 1K 1% .125W F TC#0+=100 RESISTOR 316 1% .125W F TC#0+=100	24546 24546 24546	C4=1/8=70=5111=F C4=1/8=70=2371=F C4=1/8=70=5111=F C4=1/8=70=1001=F C4=1/8=70=1001=F
A2A5R16 A2A5R17 A2A5R18 A2A5R19 A2A5R20	0698-7216 0698-7216 0698-7216 0698-7216 0698-3157	3 3 3 3 3		RESISTOR 147 1% .05W F TC=0+-100 RESISTOR 19.6K 1% .125W F TC=0+-100	24546 24546 24546 24546	C3-1/8-T0-147R=G C3-1/8-T0-147R=G C3-1/8-T0-147R=G C3-1/8-T0-147R=G C4-1/8-T0-1962=F
A2A5R21 A2A5R22 A2A5R23 A2A5R24 A2A5R25	0757=0280 0757=0280 0757=0280 0698=7216 0698=7216	3 3 3 3		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 147 1% .05W F TC=0+=100 RESISTOR 147 1% .05W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C3-1/8-T0-147R-G C3-1/8-T0-147R-G
A2A5R26 A2A5R27 A2A5R25 A2A5R29 A2A5R30	0698-7216 0698-7216 0757-0280 0757-0422 0757-0418	3 3 9		RESISTOR 147 1X .05W F TC=0+=100 RESISTOR 147 1X .05W F TC=0+=100 RESISTOR 14 1X .125W F TC=0+=100 RESISTOR 909 1X .125W F TC=0+=100 RESISTOR 619 1X .125W F TC=0+=100	24546 24546 24546 24546	C3=1/8=T0=147R=G C3=1/8=T0=147R=G C4=1/8=T0=1001=F C4=1/8=T0=909R=F C4=1/8=T0=619R=F
A2A5R31 A2A5R32 A2A5R33 A2A5R34 A2A5R35	0757=0418 0757=0280 0757=0280 0698=7216 0698=7216	3 3 3		RESISTOR 619 1% ,125W F TC#0+-100 RESISTOR 1K 1% ,125W F TC#0+-100 RESISTOR 1K 1% ,125W F TC#0+-100 RESISTOR 147 1% ,05W F TC#0+-100 RESISTOR 147 1% ,05W F TC#0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-619R-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F C3-1/8-T0-147R-G C3-1/8-T0-147R-G

Table 6-3. Replaceable Parts

				lable 6-3. Heplaceable Parts		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
AZASR36 AZASR37	0698-7216 0698-7216	3		RESISTOR 147 1% .05W F TC=0+=100 RESISTOR 147 1% .05W F TC=0+=100	24546 24546	C3=1/8=T0=147R=G C3=1/8=T0=147R=G
A2A5TP1 A2A5TP2 A2A5TP3 A2A5TP4 A2A5TP5	1251=0600 1251=0600 1251=0600 1251=0600 1251=0600	00000		CONTACT-CONN U/W-POST-TYPE MALE DPSLOR CONTACT-CONN U/W-POST-TYPE MALE DPSLOR CONTACT-CONN U/W-POST-TYPE MALE DPSLOR CONTACT-CONN U/W-POST-TYPE MALE DPSLOR CONTACT-CONN U/W-POST-TYPE MALE DPSLOR	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600
AZASTP6	1251-0600	١٥		CONTACT-CONN U/W-POST-TYPE MALE DPSLDR	28480	1251-0600
192428 2428 2428 2428 2428 2428 2428 2428	1820=1251 1820=1251 1820=1251 1820=0261 1820=0686	66669	5 1 1	IC CNTR TIL LS DECD ASYNCHRO IC CNTR TIL LS DECD ASYNCHRO IC CNTR TIL LS DECD ASYNCHRO IC MY TIL MONOSTBL IC GATE TIL S AND TPL 3-INP	01295 01295 01295 01295 01295	8N74L3196N 8N74L5196N 9N74L3196N 8N74L31N 8N74811N
AZASUA .AZASU7 AZASU8 AZASU9 AZASU10	1820-0629 1820-0629 1820-1384 1820-0429 1820-1251	0000	1	IC FF TTL S J-K NEG-EDGE-TRIG IC FF TTL S J-K NEG-EDGE-TRIG IC PRESCR IC V RGLTR T0-39 IC CNTR TTL LS DECD ASYNCHRO	01295 01295 52648 18324 01295	8
AZASU11 AZASU12 AZASU13 AZASU14 AZASU15	1820=1251 1820=0909 1820=0751 1820=0751 1820=0685	6 9 9 9 8	1 2 1	IC CNTR TIL LS DECD ASYNCHRO IC MULTR TIL IC CNTR TIL OECD ASYNCHRD NEG-EDGE-TRIG IC CNTR TIL DECD ASYNCHRO NEG-EDGE-TRIG IC GATE TIL S NAND TPL 3-INP	01295 01295 01295 01295 01295	SN74LS196N SN74167N SN74196N SN74196N SN74S10N
AZASU16	1820-0690	5	1	IC BFR TTL S NANO DUAL 4-INP	01295	9N74840N
				AZAS MISCELLANEOUS		
	1205-0250 08672-20028 86701-40001	9 8 9	1	THERMÀL LINK &GL 10-5/10-39-PKG Cover, divider Extractor, P.C. Board	28480 28480 28480	1205=0250 06672=20028 86701=40001
AZA6	08672-60014	6	i	ASSEMBLY, INTERCONNECT	28480	08672=60014
ARAGJI ARAGJR	1251=3495 1251=3025	7 9	1 2	CONNECTOR 50-PIN M D BERIES Connector 34-Pin M rectangular	28480 28480	1251=3495 1251=3025
A2A7	08472+60009	9	ı	ASSEMBLY, INTERFACE	28480	08672-60009
A2A7C1 A2A7C2 A2A7C3 A2A7C4 A2A7C5	0180-0197 0180-0197 0160-3877 0160-3877 0180-0218	88554	1	CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 100PF +=20% 200VDC CER CAPACITOR-FXD 100PF +=20% 200VDC CER CAPACITOR-FXD 115UF+=10% 35VDC TA	56289 56289 28480 28480 56289	150D225X9020A2 150D225X9020A2 0160=3877 0160=3877 150D154X9035A2
A2A7C4 A2A7C7 A2A7C8 A2A7C9 A2A7C10	0180=0376 0160=3878 0160=0573 0180=1745 0180=0376	56245	2 1 1	CAPACITOR-FXD 47UF+=10% 35VDC TA CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 4700PF +=20% 100VDC CER CAPACITOR=FXD 1.5UF+=10% 20VDC TA CAPACITOR=FXD 4.7UF+=10% 35VDC TA	56289 28480 28480 56289 56289	1500474X9035A2 0160=3678 0160=0573 1500155X9020A2 1500474X9035A2
AZÁTOR1 AZÁTORZ AZÁTORZ AZÁTOR4 AZÁTOR4	1701-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1 1 1		DIODE-BWITCHING JOV SOMA 2NS OD-35 DIODE-BWITCHING JOV SOMA 2NS DO-35 DIODE-BWITCHING JOV SOMA 2NS DO-35 DIODE-BWITCHING JOV SOMA 2NS DO-35 DIODE-BWITCHING JOV SOMA 2NS DO-35	28480 28480 26480 28480 28480	1901=0040 1901=0040 1901=0040 1901=0040 1901=0040
AZĀTCR6 AZĀTCR7	1901-0040 1901-0040			DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480	1901-0040 1901-0040
A2A7D\$1 A2A7D\$2 A2A7D\$3 A2A7D\$4	1990-0404 1990-0404 1990-0404 1990-0404	8888	4	LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX LED-VISIBLE LUM-INT=300UCD IF=50MA-MAX	28480 28480 28480 28480	5082-4480 5082-4480 5082-4480 5082-4480
A2A7J1	1251-3025	9		CONNECTOR 34-PIN M RECTANGULAR	28480	1251-3025
AZA7L1	08672=80001	3		INDUCTOR, TOROID	28480	08672=80001
A2A7G1 A2A7G2 A2A7G3 A2A7G4 A2A7G5	1853-0020 1853-0020 1853-0020 1853-0020 1854-0071	4447		TRANSISTOR PNP SI PD#300MW FT#150MMZ TRANSISTOR NPN SI PD#300MW FT#200MMZ	28480 28480 28480 28480 28480	1853=0020 1853=0020 1853=0020 1853=0020 1854=0071
A2A706 A2A707	1854-0071 1853-0020	7 4		TRANSISTOR NPN SI PD#300MW FT#200MHZ TRANSISTOR PNP SI PD#300MW FT#150MHZ	28480 28480	1854-0071 1853-0020
A2A7R1 A2A7R2 A2A7R2 A2A7R4 A2A7R5	0757+0199 0757+0199 0757+0199 0757+0199 0757+0199	3 3 3 3 3	:	RESISTOR 21.5K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
AZATRO AZATRT AZATRO AZATRO AZATRO	0757-0199 0757-0199 0757-0199 0757-0199 0757-0199	3 3 3 3 3		RESISTOR 21.5k 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F
AZATRI1 AZATRI2 AZATRI3 AZATRI4 AZATRI5	0757-0199 0757-0199 0757-0199 0757-0199 0757-0199	3 3 3 3		RESISTOR 21.5% 1% .125W F TC=0+-100	24546 24246 24246 24546	C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F
AZATRI6 AZATRI7 AZATRI8 AZATRI8 AZATRI9 AZATRZO	0757=0199 0757=0199 0757=0199 0757=0199 0757=0199	3 3 3 3 3		REBISTOR 21.5K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F
A2A7R21 A2A7R22 A2A7R23 A2A7R24 A2A7R25	0757-0199 0757-0199 0757-0199 0757-0199 0757-0465	3 3 3 6	7	RESISTOR 21.5K 1% .125W F TC#0+=100 RESISTOR 21.5K 1% .125W F TC#0+=100	54249 54249 54249 54249	C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=1003=F
A2A7R26 A2A7R27 A2A7R28 A2A7R29 A2A7R30	0757-0465 0695-3450 0698-3161 0757-0199 0757-0438	6 9 9 3	1 1	RESISTOR 100K 1% .125W F TC=0+=100 RESISTOR 42.2K 1% .125W F TC=0+=100 RESISTOR 38.3K 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1003=F C4-1/8-T0-4222=F C4-1/8-T0-3832=F C4-1/8-T0-5152=F C4-1/8-T0-5111=F
A2A7R31 A2A7R32 A2A7R33 A2A7R34 A2A7R35	0757-0438 0698-0083 0757-0438 0698-3442 0698-3442	3 8 3 9	5	RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 237 1% .125W F TC=0+-100 RESISTOR 237 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-1961-F C4-1/8-T0-5111-F C4-1/8-T0-237R-F C4-1/8-T0-237R-F
A2A7R36 A2A7R37 A2A7R36 A2A7R39 A2A7R40	0698-3442 0698-3442 0757-0438 0757-0199 0757-0458	9 3 3 7	i	RESISTOR 237 1% 125W F TC=0+=100 RESISTOR 237 1% 125W F TC=0+=100 RESISTOR 5,11K 1% 125W F TC=0+=100 RESISTOR 21.5K 1% 125W F TC=0+=100 RESISTOR 31.5K 1% 125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=237R=F C4=1/8=T0=237R=F C4=1/8=T0=5111=F C4=1/8=T0=2152=F C4=1/8=T0=5112=F
AZATRU1 AZATRU2 AZATRU3 AZATRU4 AZATRU4	0757-0199 0696-3154 0757-0465 0757-0442 0757-0199	3 0 6 9 3	1	REBISTOR 21,5K 1x 125W F TC=0+=100 REBISTOR 4,22k 1x ,125W F TC=0+=100 REBISTOR 100K 1x ,125W F TC=0+=100 REBISTOR 10K 1x ,125W F TC=0+=100 REBISTOR 21,5K 1x ,125W F TC=0+=100	24249 24249 24249 24249	C4=1/8=T0=2152=F C4=1/8=T0=4221=F C4=1/8=T0=103=F C4=1/8=T0=103=F C4=1/8=T0=2152=F
AZATR46 AZATR47 AZATR48	0757=0458 0757=0458 0757=0442	7 7 9		RESISTOR 51.1k 1% .125W F TC=0+-100 RESISTOR 51.1k 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 CONTACT-CONN U/W-POST=TYPE MALE DPSLDR	24546 24546 24546 26460	C4=1/8=T0=5112=F C4=1/8=T0=5112=F C4=1/8=T0=1002=F 1251=0600
AZATTP1 AZATU1 AZATU3 AZATU4 AZATU4 AZATU4	1851-0600 1826-0502 1826-0502 1820-1962 1820-2083 1820-1962	0 00646	5 5 1	IC SWITCH 16-DIP-P IC SWITCH 16-DIP-P IC DCDR CMOS BCD-TO-DEC IC CNTR CMOS UP/DGWN PD8-EDGE-TRIG IC DCDR CMOS BCO-TO-DEC	04713 04713 04713 04713 04713	MC140668CP MC140668CP MC140288CP F4029PC MC140288CP
A2A7U6 A2A7U7 A2A7U8 A2A7U9 A2A7U10	1820=1746 1820=1961 1820=1747 1826=0502 1826=0502	45500	13	IC BFR CMOS INV HEX IC GATE CMOS NAND TPL 3-INP IC GATE CMOS NAND QUAD 2-INP IC SWITCH 10-DIP-P IC SWITCH 10-DIP-P	04713 04713 04713 04713 04713	MC14049BCP MC14023BCP MC14011BCP MC1406BCP MC1406BCP
A2A7U11 A2A7U12 A2A7U13 A2A7U14 A2A7U15	1826=0502 1820=1746 1820=1745 1820=1747 1820=1569	04359	8	IC SWITCH 16-DIP-P IC BFR CMOS INV HEX IC GATE CMOS NOR GUAD 2-INP IC GATE CMOS NAND GUAD 2-INP IC MV CMOS MONOSTBL RETRIG/RESET DUAL	04713 04713 04713 04713 04713	MC14066BCP MC14049BCP MC14001BCP MC14011BCP MC14538BCL
A2A7U16 A2A7U17 A2A7U18 A2A7U19 A2A7U20	1820-1569 1820-1963 1820-1746 1820-2080 1820-2080	97411	7	IC MY CMOS MONOSTBL RETRIG/RESET DUAL IC FF CMOS D-TYPE POS-EDGE-TRIG DUAL IC BFR CMOS INV HEX IC SHF-AGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT	04713 01928 04713 04713	MC145388CL CD40138AE MC14049CP MC140358CP MC140358CP
A2A7UZ1 A2A7UZ2 A2A7U23 A2A7U24 A2A7U25	1820-2080 1820-2080 1820-1745 1820-1976 1820-1747	1 1 3 2 5		IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC GATE CMOS NOR GUAD 2-INP IC SFR CMOS NON-INY HEX IC GATE CMOS NAND GUAD 2-INP	04713 04713 04713 01928 04713	MC140359CP MC140359CP MC140018CP C04050BE MC140118CP
A2A7U26	1820=1746	4		IC BFR CMOS INV HEX	04713	MC140498CP
	1460-0073 4040-0748 4040-0750	6 3 7			28460 28460 28460	1480-0073 4040-0748 4040-0750

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	СД	Qty	Description	Mfr Code	Mfr Part Number
8ASA	08672-60011	3	1	ASSEMBLY, DUTPUT REGISTER	28480	08672=60011
A2A6C1 A2A6C2 A2A6C3 A2A6C4	0180-0197 0180-0197 0180-0197 0180-3878	8 8 6		CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 1000PF +=20% 100VDC CER	56289 56289 56289 26480	150D225X9020A2 150D225X9020A2 150D225X9020A2 0160=3878
AZABÇS	0180-0197	8		CAPACITOR-FXD 2,2UF+=10X 20VDC TA	56289	1500225x9020A2
A2A8C6 A2A8D81	0180-0197	8	1	CAPACITOR*FXD 2.2UF+*10% 20VDC TA	56289	150D225x9020A2
	2140-0016	11	1	LAMP-INCAND 683 5VDC 60MA T-1-BULB	08806	683
A2A6L1 A2A6Q1	08672#80001	3		INDUCTOR, TORGID	25480	08672-80001
A2A8Q2 A2A8Q3 A2A8Q4	1854-0071 1854-0071 1854-0071 1854-0071	7 7 7 7		TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480	1854=0071 1854=0071 1854=0071 1854=0071
A2A8R1 A2A8R2 A2A8R3 A2A8R4 A2A8R5	0757-0442 0683-1055 0757-0461 0757-0199 0757-0199	9 5 2 3 3	1 2	RESISTOR 10K 1% .125W F TC=0++100 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 68.1K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100	24546 01121 24546 24546 24546	C4=1/8=T0=1002=F CB1055 C4=1/8=T0=6812=F C4=1/8=T0=2152=F C4=1/8=Y0=2152=F
A2A8R6 A2A6R7 A2A6R6 A2A6R9 A2A6R10	0757-0199 0757-0199 0757-0199 0757-0461 0757-0199	3 3 2 3		RESISTOR 21.5K 1% ,125W F TC#0+=100 RESISTOR 21.5K 1% .125W F TC#0+=100 RESISTOR 21.5K 1% .125W F TC#0+=100 RESISTOR 68.1K 1% .125W F TC#0+=100 RESISTOR 68.1K 1% .125W F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-2152-F C4-1/8-T0-6812-F C4-1/8-T0-8812-F
A2A6R11 A2A6R12 A2A6R13 A2A6R14 A2A6R15	0757=0439 0698=0083 0757=0199 0757=0199 0757=0199	4 6 3 3 3	1	RESISTOR 6,81K 1% ,125W F TC=0+=100 RESISTOR 1,96K 1% ,125W F TC=0+=100 RESISTOR 21,5K 1% ,125W F TC=0+=100 RESISTOR 21,5K 1% ,125W F TC=0+=100 RESISTOR 21,5K 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=6811=F C4=1/8=T0=1961=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F
A2A6R16 A2A6R17 A2A6R16 A2A6R10 A2A6R20	0757-0438 0757-0199 0757-0199 0757-0199 0757-0199	3 3 3 3		RESISTOR 5.11K 1X .125W F TC#0+=100 RESISTOR 21.5K 1X .125W F TC#0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=5111=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F
AZABRZ1 AZABRZZ AZABRZ3 AZABRZ4 AZABRZ4 AZABRZ4	0757-0199 0757-0438 0757-0438 0757-0442 0757-0416	3 3 9 7		RESISTOR 21.5K 1% ,125W F TC=0+=100 RESISTOR 5.11K 1% ,125W F TC=0+=100 RESISTOR 5.11K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-2152=F C4-1/8-T0-5111=F C4-1/8-T0-5111=F C4-1/8-T0-1002=F C4-1/8-T0-5118=F
AZABRZ6	0757-0416	7		RESISTOR 511 1% .125W F TC=0+-100	24546	C4=1/8=TG=511R=F
AZASTP1 AZASTP2 AZASTP3	1251=0600 1251=0600 1251=0600	0 0		CONTACT=CONN U/W=POST=TYPE MALE DPSLDR Contact=conn u/W=Post=Type Male dpsldr Contact=conn u/W=Post=Type Male dpsldr	28480 28480 28480	1251-0600 1251-0600 1251-0600
924802 424804 424803 424803 434804	1820=2080 1820=2080 1820=2080 1820=1746 1820=2080	1 1 1 4 1		IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF CMOS INV HEX IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT	04713 04713 04713 04713 04713	MC140358CP MC140358CP MC140358CP MC140496CP MC140358CP
A2A8U6 A2A8U7 A2A8U6 A2A8U 4 A2A8U10	1820=2080 1820=2080 1820=2080 1820=2080 1820=1955	11117	*	IC SHF-RGTR CMCS SYNCHRO PRL-IN PRL-DUT IC SHF-RGTR CMCS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMCS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMCS SYNCHRO PRL-IN PRL-OUT IC SHDR CMCS SYNCHRO PRL-IN PRL-OUT	04713 04713 04713 04713 04713	MC14035BCP MC14035BCP MC14035BCP MC14035BCP CD4008BE
AZAGU11 AZAGU12 AZAGU13 AZAGU14 AZAGU15	1820-2080 1820-0497 1820-0497 1820-0497 1820-2080	1 0 0 0 1	4	IC 8MF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC 8MF-RGTR TIL L R-S PRL-IN PRL-OUT IC 8MF-RGTR TIL L R-S PRL-IN PRL-OUT IC 8MF-RGTR TIL L R-S PRL-IN PRL-OUT IC 8MF-RGTR CMOS 8YNCHRO PRL-IN PRL-OUT	04713 01295 01295 01295 01295 04713	MC14035BCP 8N74L95N 8N74L95N 8N74L95N MC14035BCP
A2A8U20 A2A8U18 A2A8U18 A2A8U16 A2A8U16	1820=2080 1820=1955 1820=1955 1820=2080 1820=1955	1 7 7 1 7		IC SMF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC ADDR CMOS FULL ADDER 4-BIT IC ADDR CMOS PULL ADDER 4-BIT IC SMF-RGTR CMOS SYNCHAD PRL-IN PRL-OUT IC ADDR CMOS FULL ADDER 4-BIT	04713 01928 01928 04713 01928	MC140358CP CD40080E CD40080E MC140358CP CO40080E
1248U21 1248U22 1248U23 1248U24 1248U25	1820-1745 1820-0497 1820-0656 08672-80007 08672-80007	3 0 3 9 9	\$	IC GATE CMOS NOR QUAD 2-INP IC SMF-RGTR TTL L R-S PRL-IN PRL-OUT IC MUXR/DATA-SEL TTL L 2-TO-1-LINE QUAD IC, ROM IC, ROM	04713 01295 01295 26480 26480	MC140018CP 8N74L95N 8N74L98N 98672-80007 08672-80007
A2A8U26 A2A6U27 A2A6U28 A2A6U29	1820-1976 1820-1976 1820-1746 1820-1955	2 2 4 7		IC BFR CMOS NON-INV HEX IC BFR CMOS NON-INV HEX IC BFR CMOS INV HEX IC ADDR CMOS FULL ADDER 4-BIY	01928 01928 04713 01928	CD40508£ CD40508£ MC140498CP CD4008BE

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
		Ħ		AZAB MISCELLANEGUS		
	1480=0073 4040=0748 4040=0753	6 3 0	1	PIN-ROLL .062-IN-DIA .25-IN-LG BE-CU EXTRACTOR-PC BOARD BLK POLYC EXTRACTOR-PC BOARD GRN POLYC	28480 28480 28480	1480-0073 4040-0748 4040-0753
4249	08672-60017	9	1	ASSEMBLY, HP-IB ADDRESS	28480	08672=60017
APA9C1	0180-0291	3	ı	CAPACITOR=FXD 1UF+=10% 35VDC TA	56289	150D105x9035A2
AZA9CZ AZA9CZ	0160-0572 0160-0572	1		CAPACITOR-FXD 2200PF +=20% 100VDC CER CAPACITOR-FXD 2200PF +=20% 100VDC CER	28480 28480	0160=0572 0160=0572
A2A9C4 A2A9C5	0160=0574 0160=3877	3	3	CAPACITOR=FXD .022UF +=20% 100VDC CER CAPACITOR=FXD 100PF +=20% 200VDC CER	28480 28480	0160-0574 0160-3877
A2A9C6 A2A9C7	0160=0571 0160=0574	0	5	CAPACITOR=FXD 470PF +=20% 100VDC CER CAPACITOR=FXD .022UF +=20% 100VDC CER	28480 28480	0160-0571 0160-0574
8249C8 A249C9	0160=0574 0160=0174	3 9	1	CAPACITOR=FXD 1022UF +=20% 100VDC CER CAPACITOR=FXD 47UF +80=20% 25VDC CER	28480 28480	0160-0574 0160-0174
AZA9CR1 AZA9CR2	1901-0518 1901-0518	8 8	13	DIODE-SCHOTTKY DIODE-SCHOTTKY	28480 28480	1901=0518 1901=0518
APA9CR3 APA9CR4	1901=0518 1901=0518	5	İ	DÍODE-SCHOTTKÝ DÍODE-SCHOTTKÝ	28460 28460	1901=0518 1901=0518
AZA9CR5	1901-0518	В		DIODE-SCHOTTKY	28460	1901=0518
#LPASA	1251-3283	1	ı	CONNECTOR 24-PIN F MICRORIBSON	28480	1251=3263
AZĀĢL1	08672+80001	3		INDUCTOR, TOROID	25480	08672=80001
42A9G1	1554-0039	7	1	TRANSISTOR NPN 2N30538 SI TO=39 PD=1W	04713	2N3053
AZÁGRÍ AZÁGRZ	0698-0083 0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0+1961-F C4-1/8-T0-1961-F
A2A9R4	0757-0458 0757-0458	7		RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100	24546 24546	C4=1/8=10=5112=F C4=1/8=T0=5112=F
A2A9R5	0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+=100	24546	C4-1/8-T0-1961-F
AZÁ9R6 AZA9R7	0698-3444 0698-3444	1		RESISTOR 316 1% .125W F TC=0+=100 RESISTOR 316 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-316R-F C4-1/8-T0-316R-F
A2A9R8 A2A9R9	0698-3444	1 8		RESISTOR 316 1% .125W F TC=0+=100 RESISTOR 1.96K 1% 125W F TC=0+=100	24546	C4=1/6=T0=316R=F C4=1/6=T0=1961=F
A2A9R10	0757-0280	3		RESISTOR IK 1% 125W F TC#0+=100	24546	C4=1/8#70=1001#F
A2A9R11 A2A9R12	0757-0280 0757-0280	3		RESISTOR 1K 1% 125W F TC=0+=100 RESISTOR 1K 1% 125W F TC=0+=100	24546	C4=1/8=T0=1001=F C4=1/8=T0=1001=F
A2A9R13 A2A9R14	0757-0456 0698-3160	7		PESTSTOR S: (K 14 125W F TCH04=100	24546	C4-1/8-T0-5112-F C4-1/8-T0-3162-F
A2A9R15	0698-3444	ĭ		RESISTOR 31.6K 1% ,125W F TC#0+=100 RESISTOR 316 1% ,125W F TC#0+=100	24546	C4=1/8=T0=316R=F
ARA9R16 Ara9R17	0757-0458 0698-0083	7		RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-5112-F C4-1/8-T0-1961-F
AZAGRIS AZAGRIG	0757-0458 0757-0465	7		RESISTOR 51.1K 1% 125W F TC=0+=100 RESISTOR 100K 1% 125W F TC=0+=100	24546 24546	C4=1/8=T0=5112=F C4=1/8=T0=1003=F
AZAGRZO	0757-0458	7		RESISTOR 51.1K 1x .125W F TC#0+=100	24546	C4=1/8=T0=5112=F
A2A9R21 A2A9R22	0757=0458 0698=0083	7		RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100	24546	C4=1/8=T0=5112=# C4=1/8=T0=1961=#
A2A9R23 A2A9R24	0757+0465 0757+0465	6		RESISTOR 100K 1% .125W # TC=0+-100 RESISTOR 100K 1% .125W # TC=0+-100	24546 24546	C4=1/8=T0=1003=F C4=1/8=T0=1003=F
AZAGRZS	0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+-100	24546	C4=1/8=T0=1961=F
A2A9R26 A2A9R27	0698-0083 0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100	24546	C4=1/8=T0=1961=F C4=1/8=T0=1961=F
A2A9R28 A2A9R29	0698-0083	8		RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100	24546 24546	C4=1/8=T0=1961=F C4=1/8=T0=1961=F
AZA9R30	0698-0083	8		RESISTOR 1,96K 1% ,125W F TC=0+=100	24546	C4=1/8=T0=1961=F
A2A9R31	0698=0083	8		RESISTOR 1,96K 1% ,125W F TC=0+=100	24546	C4=1/8=T0=1961=F
18945Y	3100-3371 3100-3372	1 2		SWITCH-RTRY DP4T-NS .55-DIA IDX-ANGE36 SWITCH-RTRY SP8T-NS .55-DIA IDX-ANGE36	28480 28480	3100=3371 3100=3372
A24983 A24984	3100-3369 3100-3370	7		SWITCH-RTRY SPST-NS .55-DIA IDX-ANG#36 SWITCH-RTRY SP3T-NS .55-DIA IDX-ANG#36	26480 28480	3100=3369 3100=3370
A2A9U1	1820-1747	5	1	IC, GATE CMOS NAND QUAD 2-INPT	04713 04713	MC14011BCP MC140288CP
SUPASA EUPASA	1520=1962 1820=1962	6		IC DCDR CMOS BCD-TO-DEC IC DCDR CMOS BCD-TO-DEC	04713 04713	MC14028BCP MC14028BCP
A2A9U4 A2A9U5	1620-1962 1620-1112	8		IC DCDR CMOS BCD=T0=DEC IC FF TTL LS D=TYPE POS=EDGE=TRIG	01295	SN74L874N
APA9U6	1820-1197	9 4		IC GATE TIL LS NAND QUAD 2-INP IC 6FR CMOS INV HEX	01295 04713	SN74L800N MC14049BCP
A249U7 A249UB	1820+1746 1820+1199	1	l	IC INV TIL LS HEX 1-INP	01295	8N74L804N MC140115CP
A2A9U9 A2A9U10	1820-1747	1		IC GATE CMOS NAND GDAD 2-INP	01295	8N74L304N
A2A9U11	1820-1197	9 4		IC GATE TIL LS NAND GUAD 2-INP	01295 04713	\$N74L\$QQN MC3440P
A2A9U12 A2A9U13	1820-1522	9 4	-	IC MISC TTL* QUAD IC GATE TTL LS NANO QUAD 2=INP IC MISC TTL* QUAD	01295	5N74LS00N MC3440P
A2A9U14 A2A9U15	1820-1522 1820-1961	5		IC MISE THE BOAD IS 3-INP	04713	MC140238CP

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A2A9U16 A2A9U17 A2A9U18 A2A9U19 A2A9U20	1820=1747 1820=1964 1820=1746 1820=1746 1820=1964 1820=1423	56464	2	IC GATE CMOS NAND QUAD 2=INP IC FF CMOS J-K POS-EGGE=TRIG DUAL IC BFR CMOS JNV MEX IC FF CMOS J-K POS-EGGE=TRIG DUAL IC MV TTL LS MONDSTB; ŘETRIG DUAL	04713 01928 04713 01928 01295	MC140118CP C04027BE MC14049BCP C04027BL 9N74L8123N
A2A9U21 A2A9U23 A2A9U23 A2A9U24 A2A9U25	1820-1746 1820-1747 1820-1963 1820-1745 1820-2079	4 7 3 8		IC OFR CMOS INV MEX IC GATE CMOS NAND QUAD 2-INP IC FF LMOS D-TYPE POS-EDGE-TRIG DUAL IC GATE CMOS NOR QUAD 2-INP IC GATE CMOS NOR DUAL 4-INP	04713 04713 01928 04713 04713	MC140498CP MC140118CP CD40138AE MC140018CP MC140028CP
A2A9U26 A2A9U27 A2A9U28 A2A9U29 A2A9U30	1820=2080 1820=2080 1820=1976 1820=1558 1820=1558	1 2 6 6	2	IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC BFR CMOS NON-INV HEX IC MISC TIL* GUAD IC MISC TIL* GUAD	04713 04713 01928 04713 04713	MC140358CP MC140358CP C040508E MC3441P MC3441P
				A2A9 MISCELLANEOUS		
	0380=0643 1200=0173 1480=0073 1530=1098 4040=0748	35643	2	STANCOFF-METRIC LONG STUD MOUNT FOR CONN INSULATOR-XSTR DAP-GL PIN-ROLL ,062-IN-DIA ,25-IN-LG BE-CU CLEVIS 0,070-IN W SLTI 0,454-IN PIN CTR EXTRACTOR-PC BOARD BLK POLYC	28460 28480 00000 28480	0380=0643 1200=0173 1480=0073 Order by description 4040=0748
	4040-0755	2	2	EXTRACTOR-PC BOARD VID POLYC	28480	4040-0755
AZA10	08672-60010	5	1	ASSEMBLY, REGISTER I	28480	08672-60010
A2A10C1 A2A10C2 A2A10C3 A2A10C4 A2A10C5	0180=0197 0180=0197 0180=0197 0160=3878 0180=0197	8 8 6 8		CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 2.2UF+=10% 20VDC TA	56289 56289 56289 28480 56289	150D225x9020A2 150D225x9020A2 150D225x9020A2 0160-3878 150D225x9020A2
A2A10C6	0160=3878	6		CAPACITOR=FXD 1000PF +=20% 100VDC CER	28480	0160-3876
AZÁ10CR1 AZÁ10CRZ	1901=0518 1901=0518	8		DIODE-8CHOTTKY DIODE-8CHOTTKY	28480 28480	1901=0518 1901=0518
A2A10L1	08672-80001	3		INDUCTOR, TOROID	28480	08672-80001
A2A1001	1853-0020	a.		TRANSISTOR PNP SI PD=300MW FT=150MHZ	28480	1853-0020
ARA10R1 ARA10R2 ARA10R3 ARA10R4 ARA10R5	0757-0199 0757-0438 0757-0438 0757-0438 0757-0438	3 3 3 3		RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=2152=F C4=1/8=T0=5111=F C4=1/8=T0=5111=F C4=1/8=T0=5111=F C4=1/8=T0=5111=F
A2A10R6 A2A10R7 A2A10R8 A2A10R9 A2A10R10	0757=0438 0698=3442 0757=0199 0757=0290 0757=0442	39359	1	RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 237 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 6.19K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546 24546 19701 24546	C4=1/8=70=5111=F C4=1/8=70=237R=F C4=1/8=70=2152=F MF4C1/8=70=191=F C4=1/8=70=1002=F
AZA10R11 AZA10R12 AZA10R13 AZA10R14 AZA10R15	0757-0438 0757-0438 0757-0438 0757-0438 0757-0438	3 3 3 3 3		RESISTOR 5.11K 1% .125W F TC#0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F
A2A10R16 A2A10R17 A2A10R18 A2A10R18 A2A10R20	0757-0438 0757-0438 0757-0438 0757-0438 0757-0438	3 3 3 3		RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-70-5111-F C4-1/8-70-5111-F C4-1/8-70-5111-F C4-1/8-70-5111-F C4-1/8-70-5111-F
A2A10U1 A2A10U2 A2A10U3 A2A10U4 A2A10U5	1620-0701 1620-1965 08672-60005 1820-1746 1820-1745	9 7 4 3	1 1 1	IC LCH TTL L D-TYPE 4-BIT IC GATE CMOS NOR TPL 3-INP IC, ROM IC BFR CMOS INV HEX IC GATE CMOS NOR GUAD 2-INP	07263 04713 28480 04713 04713	93L14PC MC140258CP 08672-80005 MC140498CP MC140018CP
A2A10U6 A2A10U7 A2A10U8 A2A10U9 A2A10U10	1620-1976 1620-2080 1620-2080 1820-2080 1820-1745	1 1 3		IC BFR CMOS NON-INV HEX IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC GATE CMOS NOR QUAD 2-INP	0192B 04713 04713 04713 04713	CD4050BE MC14035BCP MC14035BCP MC14035BCP MC14035BCP MC14001BCP
AZA10U11 AZA10U1Z AZA10U13 AZA10U14 AZA10U15	1820-1976 1820-1747 1820-1747 08672-80006 1820-0910	2552	1 4	IC 9FR CMGS NON-INV HEX IC GATE CMOS NAND QUAD 2-INP IC GATE CMOS NAND QUAD 2-INP IC, ROM IC ADDR TTL LS BIN FULL ADDR 4-BIT	01928 04713 04713 28480 01295	CD4050BE MC140118CP MC14011BCP 08672-80006 SN74LS83N
A2A10U16 A2A10U17 A2A10U18 A2A10U19 A2A10U20	1820=0961 1820=1976 1820=1976 1820=2080 1820=2080	3221	1	IC SHF-RGTR CMOS D-TYPE PRL-IN IC BFR CMOS NON-INV HEX IC BFR CMOS NON-INV HEX IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT	01928 01928 01928 04713 04713	CD4021AF CD4050BE CD4050BE MC14035BCP MC14035BCP

Table 6-3. Replaceable Parts

			Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C D Oty	Description	Mfr Code	Mfr Part Number
A2A10U21 A2A10U22 A2A10U23 A2A10U24 A2A10U25	1820-2080 1820-2080 1820-2080 1820-1745 1820-0656	1 1 1 3 3	IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC SHF-RGTR CMOS SYNCHRO PRL-IN PRL-OUT IC GATE CMOS NOR GUAD 2-INP IC MUXR/DATA-SEL TTL L 2-TO-1-LINE GUAD	04713 04713 04713 04713 01295	MC140358CP MC140358CP MC140358CP MC140018CP 8N74L98N
	1480-0073 4040-0748 4040-0755	6 3 2	AZAIO MISCELLANEOUS PIN-ROLL .062-IN-DIA .25-IN-LG BE-CU EXTRACTOR-PC BOARD BLK POLYC EXTRACTOR-PC BOARD VIO POLYC	28480 28480 28480	1400-0073 4040-0746 4040-0755
AZĀ11	08672=60012	4	ASSEMBLY, TIMING AND CONTROL	28480	08672=60012
A2A11C1 A2A11C2 A2A11C3 A2A11C4 A2A11C5	0180-0197 0160-3879 0160-3879 0180-0197 0160-3879	6 7 7 8 7	CAPACITOR=FXD 2,2UF+=10% 20VOC TA CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 2,2UF+=10% 20VOC TA CAPACITOR=FXD .01UF +=20% 100VDC CER	56289 28480 28480 56289 28480	150D225x9020A2 0160=3879 0160=3879 150D225x9020A2 0160=3879
A2A11C6 A2A11C7 A2A11C8 A2A11C9 A2A11C10	0160=0572 0160=0571 0160=3879 0160=0127 0160=3878	1 0 7 2 6	CAPACITOR-FXD 2200FF +-20% 100VDC CER CAPACITOR-FXD 470FF +-20% 100VDC CER CAPACITOR-FXD 01UF +-20% 100VDC CER CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1000FF +-20% 100VDC CER	28480 28480 28480 28480 28480	01000572 0100-0571 0100-3579 0100-0127 010-3578
A2A11C11 A2A11C12 A2A11C13 A2A11C14 A2A11C15	0160=3878 0160=0571 0160=0571 0160=3877 0180=0197	6 0 5 8	CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD 470PF +-20% 100VDC CER CAPACITOR-FXD 100PF +-20% 200VDC CER CAPACITOR-FXD 2,2UF+-10% 20VDC TA	28480 28480 28480 28480 56289	0160-3878 0160-0571 0160-0571 0160-3877 1500225x9020A2
A2A11C16 A2A11C17 A2A11C18 A2A11C19 A2A11C20	0180-0197 0160-0571 0160-3878 0160-2208 0160-3877		CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 470PF +=20% 100VDC CER CAPACITOR-FXD 1000PF +=20% 100VDC CER CAPACITOR-FXD 330PF +=5% 300VDC MICA CAPACITOR-FXD 100PF+=20% 200VDC CER	56289 28480 28480 28480 28480	150D225X9020A2 0160-0571 0160-3878 0160-2208 0160-3877
A2A11CR1 A2A11CR2 A2A11CR3 A2A11CR4 A2A11CR5	1901-0040 1901-0040 1901-0040 1901-0376 1901-0040	1 1 1 6	DIDDE-SHITCHING 30V 50MA 2NB D0-35 DIQDE-SHITCHING 30V 50MA 2NB D0-35 DIDDE-SHITCHING 30V 50MA 2NB D0-35 DIDDE-GEN PRP 35V 50MA 0D-7 DIDDE-SHITCHING 30V 50MA 2NB D0-35	28480 28480 28480 28480	1901=0040 1901=0040 1901=0376 1901=0376 1901=0040
AZALICRA AZALICRY AZALICRA AZALICRA AZALICRA	1901-0040 1901-0376 1901-0040 1901-0518 1901-0040	1 6 1 8	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-GEN PRP 35V 50MA 00-7 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480 28480	1901=0040 1901=0376 1901=040 1901=0518 1901=0840
A2A11CR11 A2A11CR12 A2A11CR13 A2A11CR14 A2A11CR15	1901+0040 1901-0518 1901-0040 1901+0518 1901+0040	1 8 1 8	DIODE_SWITCHING 30V SOMA 2NS DO-35 DIODE-SCHOTTKY DIODE-SWITCHING 30V SOMA 2NS DO-35 DIODE-SCHOTTKY DIODE-SWITCHING 30V SOMA 2NS DO-35	28480 28480 28480 28480	1901=0040 1901=0518 1901=0040 1901=0518 1901=0040
AZA11CR16 AZA11CR17 AZA11CR18 AZA11CR19 AZA11CR20	1901-0040 1901-0040 1901-0518	1 1 0	NOT ASSIGNED DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 NOT ASSIGNED DIODE-SCHOTTKY	25460 28460 28460	1901-0040 1901-0040 1901-0518
AZA11CRZ1	1901-0518	8	DIODE-8CHOTTKY	28450	1901-0518
A2A11L1	08672=80001	3	TOROID FILTER	28480	08672=80001
1911454 1911454 1911454 1911454 1911454	1854-0071 1853-0015 1854-0071 1854-0071 1853-0020	7 7 7 7 4	TRANSISTOR NPN 81 PD=300MM FT=200MMZ TRANSISTOR NPN 81 PD=200MM FT=200MMZ TRANSISTOR NPN 81 PD=300MM FT=200MMZ TRANSISTOR NPN 81 PD=300MM FT=200MMZ TRANSISTOR NPN 81 PD=300MM FT=150MMZ	28480 28480 28480 28480	1854-0071 1853-0015 1854-0071 1854-0071 1853-0020
A2A11G6 A2A11G7	1853=0020 1854=0019	3	TRANSISTOR PNP SI PD#300MW FT#150MHZ Transistor npn si to=16 pD#360MW	28480 28480	1853-0020 1854-0019
A2A11R1 A2A11R2 A2A11R3 A2A11R4 A2A11R5	0698=3444 0757=0280 0757=0442 0757=0280 0757=0199	1 3 9 3 3	RESISTOR 316 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-316R-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F C4-1/8-T0-1001-F C4-1/8-T0-2152-F
AZA11R6 AZA11R7 AZA11R8 AZA11R8 AZA11R10	0757-0442 0757-0442 0757-0199 0757-0442 0757-0199	9 3 9 3	RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-2152-F C4-1/8-T0-1002-F C4-1/8-T0-2152-F
A2A11R11 A2A11R12 A2A11R13 A2A11R14 A2A11R15	0757-0465 0757-0438 0696-0083 0757-0199 0757-0199	6 3 8 3 3	RESISTOR 100K 1% ,125W F TC=0+=100 RESISTOR 5.11K 1% ,125W F TC=0+=100 RESISTOR 1.96K 1% ,125W F TC=0+=100 RESISTOR 21.5K 1% ,125W F TC=0+=100 RESISTOR 21.5K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=1003=F C4=1/8=T0=5111=F C4=1/8=T0=1961=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F

See introduction to this section for ordering information \$\frac{1}{3}\$ BACKDATING INFORMATION IN SECTION VII

Table 6-3. Replaceable Parts

Table 0-5. neplaceable raits									
Reference Designation	HP Part Number	C D		Description	Mfr Code	Mfr Part Number			
A2A11R16 A2A11R17 A2A11R16 A2A11R19 A2A11R20	0757-0463 0757-0458 0757-0442 0757-0442 0757-0199	4 7 9 3		RESISTOR 62.5K 1% .125W F TC#0+=100 RESISTOR 51.1K 1% .125W F TC#0+=100 RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 21.5K 1% .125W F TC#0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-8252-F C4-1/8-T0-5112-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-2152-F			
A2A11R21 A2A11R22 A2A11R23 A2A11R24 A2A11R25	0757-0199 0757-0458 0757-0199 0698-0083 0757-0442	3 7 3 8 9	l	RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 51.1K 1% .125W F TC=0+=100 RESISTOR 21.5K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-2152-F C4-1/8-T0-5112-F C4-1/8-T0-2152-F C4-1/8-T0-1961-F C4-1/8-T0-1002-F			
A2A11R26 A2A11R27 A2A11R26 A2A11R29 A2A11R30	0757-0279 0698-3156 0698-0083 0757-0279 0698-3132	0 8 0 4		RESISTOR 3,16K ik ,125W F TC#0+-100 RESISTOR 14,7K 1% ,125W F TC#0+-100 RESISTOR 1,96K 1% ,125W F TC#0+-100 RESISTOR 3,16K 1% ,125W F TC#0+-100 RESISTOR 361 1% ,125W F TC#0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-3161-F C4-1/8-T0-1472-F C4-1/8-T0-1961-F C4-1/8-T0-3161-F C4-1/8-T0-2610-F			
A2A11R31 A2A11R32 A2A11R33 A2A11R34 A2A11R35	0757-0401 0698-0083 0757-0199 0757-0199 0757-0199	3		RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 1.96K 1% ,125W F TC=0+=100 RESISTOR 21.5K 1% ,125W F TC=0+=100 RESISTOR 21.5K 1% ,125W F TC=0+=100 RESISTOR 21.5K 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=101=F C4=1/8=T0=1961=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F C4=1/8=T0=2152=F			
A2A11R36 A2A11R37 A2A11R38 A2A11R39 A2A11R40	0698-3160 0757-0463 0757-0458 0757-0199 0698-3452	8 4 7 3		RESISTOR 31.6K 1% ,125W F TC=0+-100 RESISTOR 82.5K 1% ,125W F TC=0+-100 RESISTOR 51.1K 1% ,125W F TC=0+-100 RESISTOR 21.5K 1% ,125W F TC=0+-100 RESISTOR 147K 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-70-3162-F C4-1/8-70-8252-F C4-1/8-70-5112-F C4-1/8-70-2152-F C4-1/8-T0-1473-F			
A2A11R41 A2A11R42 A2A11R43 A2A11R44 A2A11R44	0757=0442 0757=0280 0698=0083 0698=0083 0698=3150	9 38 5 6		RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 2.37K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1001-F C4-1/8-T0-1961-F C4-1/8-T0-1961-F C4-1/8-T0-2371-F			
A2A11R46 A2A11R47	0757=0280 0757=0280	3		RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F			
ARAS1#1	3101-1277	4	1	SWITCH-TGL SUBMIN SPOT NS .5A 120VAC PC	26480	3101-1277			
A2A11U1 A2A11U2 A2A11U3 A2A11U4 A2A11U5	1820-1746 1820-2015 1820-1963 1820-1963 1820-1144	4 2 7 7 6	1 2	IC BFR CMOS INV HEX IC GATE CMOS EXCL=DR GUAD IC FF CMOS D=TYPE POS=EDGE=TRIG OUAL IC FF CMOS D=TYPE POS=EDGE=TRIG OUAL IC GATE TYL LS NOR GUAD 2=INP	04713 04713 01928 01928 01928	MC140493CP MC140708CP C04013BAE C04013BAE SN74L902N			
AZA11U6 AZA11U7 AZA11U8 AZA11U9 AZA11U10	1820-1112 1820-1144 1820-1199 1820-1112 1820-1745	8 6 1 8 3		IC FF TIL LS D-TYPE POS-EDGE-TRIG IC GATE TIL LS NOR QUAD 2-INP IC INV TIL LS MEX 1-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG IC GATE CMOS NOR QUAD 2-INP	01295 01295 01295 01295 04713	8 N 7 4 L 8 7 4 N 9 N 7 4 L 8 0 2 N 9 N 7 4 L 8 0 4 N 9 N 7 4 L 8 7 4 N M C 1 4 0 0 1 B C P			
AZA1:U11 AZA1:U12 AZA1:U13 AZA1:U14 AZA1:U15	1620-1747 1820-1746 1820-1204 1820-1194 1820-1211	94968	1 1 1	IC GATE CMOS NAND GUAD 2-INP IC 8FR CMGS INV MEX IC GATE TTL LS NAND DUAL 4-INP IC CNTR TTL LS BIN UP/DOWN 8YNCHRO IC GATE TTL LS EXCL-OR GUAD 2-INP	04713 04713 01295 01295 01295	MC14011BCP MC14049BCP SN74LS20N SN74LS173N SN74LS56N			
A2A11U16 A2A11U17 A2A11U16 A2A11U19 A2A11U20	1820=1197 1820=1197 1820=1747 1850=1747 1820=1963	99557		IC GATE TTL L8 NAND QUAD 2-INP IC GATE TTL L8 NAND QUAD 2-INP IC GATE CMOS NAND QUAD 2-INP IC GATE CMOS NAND QUAD 2-INP IC FF CMOS D-TYPE PDS-EDGE-TRIG DUAL	01295 01295 04713 04713 01928	3N74L300N 3N74L300N MC14011BCP MC14011BCP CD4013BAE			
A2A11U21 A2A11U23 A2A11U24 A2A11U24 A2A11U25	1520=0778 1520=1197 1520=1199 05672=80004 1520=1747	0 9 1 6 5	i i	IC CNTR TTL L BIN SYNCHRO POS-EDGE-TRIG IC GATE TTL LS NAND QUÂD Z-INP IC INV TTL LS HEX 1-INP PROM PROGRAMMED IC GATE CMOS NAND GUAD Z-INP	07263 01295 01295 28480 04713	93L16PC 9N74L800N 9N74L804N 08672-80004 MC140118CP			
A2A11U26 A2A11U27 A2A11U26 A2A11U29 A2A11U30	1820=1960 1820=1963 1820=1963 1820=1961 1820=0910	47752	1	IC GATE CMOS NAND DUAL 4-INP IC FF CMOS D-TYPE POS-EDEC-TRIG DUAL IC FF CMOS D-TYPE POS-EDEC-TRIG DUAL IC GATE CMOS NAND TPL 3-INP IC ADOR TTL LS BIN FULC ADDR 4-BIT	04713 01928 01928 04713 01295	MC14012BCP CD4013BAE CD4013BAE MC14023BCP SN74L883N			
A2A11U31 A2A11U32 A2A11U33	1820=0910 1820=0661 1820=0910	2 O S	i	IC ADDR TTL LS BIN FULL ADDR 4-BIT IC GATE TTL DR QUAD 2-INP IC ADDR TTL LS BIN FULL ADDR 4-BIT A2A11 MISCELLANEOUS	01295 01295 01295	3N74L883N SN74J2N SN74L883N			
	0340=0060 0360=1730 4040=0747 4040=0748 1480=0073	40236	1 12 1	TERMINAL-STUD SPCL-FDTHRU PRESS-MTG CONNECTOR-SGL CONT PIN ,058-IN-89C-SI EXTRACTOR-PC 80ARD GRA POLYC EXTRACTOR-PC 80ARD 8LK POLYC PIN-ROLL ,062-IN-DIA ,25-IN-LG 8E-CU	28480 28480 28480 28480 28480	0340=0060 0360=1730 4040=0747 4040=0748 1480=0073			

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
¥5¥15	08672-60015	7	1	BOARD ASSEMBLY, MOTHER (A2A12W1 SUPPLIED SEPARATELY)	28460	08672*60015
A2A12C1 A2A12C3 A2A12C4 A2A12C4	0160-3877 0160-3877 0160-3877 0160-3877 0160-3877	55555		CAPACITOR-FXD 100PF +-20% 200VDC CER CAPACITOR-FXD 100PF +-20% 200VDC CER CAPACITOR-FXD 100PF +-20% 200VDC CER CAPACITOR-FXD 100PF +-20% 200VDC CER CAPACITOR-FXD 100PF +-20% 200VDC CER	28480 28480 28480 28480 28480	0160-3877 0160-3877 0160-3877 0160-3877 0160-3877
A2A12C6 A2A12C8 A2A12C8 A2A12C9 A2A12C10	0160-3877 0160-3877 0160-3877 0160-3877 0160-3877	5 5 5 5		CAPACITOR=FXD 100PF +=20% 200VDC CER CAPACITOR=FXD 100PF +=20% 200VDC CER CAPACITOR=FXD 100PF +=20% 200VDC CER CAPACITOR=FXD 100PF +=20% 200VDC CER CAPACITOR=FXD 100PF +=20% 200VDC CER	28480 28480 28480 28480 28480	0160=3877 0160=3877 0160=3877 0160=3877 0160=3877
A2A12C11 A2A12C12 A2A12C14 A2A12C14 A2A12C15	0160=3877 0160=3877 0160=3877 0160=3877 0160=3877	5 5 5		CAPACITOR=FXD 100PF +=20x 20GVDC CER CAPACITOR=FXD 100PF +=20x 20GVDC CER CAPACITOR=FXD 100PF +=20x 20GVDC CER CAPACITOR=FXD 100PF +=20x 20GVDC CER CAPACITOR=FXD 100PF +=20x 20GVDC CER	28480 28480 28480 28480 28480	0160-3877 0160-3877 0160-3877 0160-3877 0160-3877
A2A12C16 A2A12C17 A2A12C16	0160-3877 0160-3879 0160-3879	5 7 7		CAPACITOR=FXD 100PF +-20% 200VDC CER CAPACITOR=FXD .01UF +-20% 100VDC CER GAPACITOR=FXD .01UF +-20% 100VDC CER	28480 28480 28480	0160-3877 0160-3879 0160-3879
AZAIZCRI AZAIZCRZ AZAIZCRJ	1901-0040 1901-0518 1901-0040	1 8 1		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480	1901-0040 1901-0518 1901-0040
121145A 528145A	1251-3024 1250-1255	8	ı	CONNECTOR 26=PIN M RECTANGULAR CONNECTOR=RF 8M8 M PC 50=OHM	28480 28480	1251-3024 1250-1255
A2A12R1 A2A12R2	0757=0401 0696=0083	8		RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-101-F C4-1/8-T0-1961-F
AZA1ZVR1	1902-0049	2	1	DIODE=ZNR 6,19V 5% DO=7 PD=.4w TC=+.022%	28480	1902+0049
A2A12XA2A3	8120-2117 1251-2026	8	1	CAPLE ASSY-COAX 11.94-IN-LG BLK CONNECTOR-PC EDGE 18-CONT/ROW 2-ROW8	28480 28480	8120=2117 1251=2026
A2A12XA2A4 A2A12XA2A5 A2A12XA2A7A A2A12XA2A7B A2A12XA2A7C	1251-2026 1251-2026 1251-2035 1251-2035 1251-2035	8 9 9 9	12	CONNECTOR=PC EDGE 18-CONT/ROW 2-ROW8 CONNECTOR=PC EDGE 18-CONT/ROW 2-ROW8 CONNECTOR=PC EDGE 15-CONT/ROW 2-ROW8 CONNECTOR=PC EDGE 15-CONT/ROW 2-ROW8 CONNECTOR=PC EDGE 15-CONT/ROW 2-ROW8	26480 26480 26480 26480 26480	1251-2026 1251-2026 1251-2035 1251-2035 1251-2035
A2A12XA2ABA A2A12XA2ABC A2A12XA2ACC A2A12XA2A1OB A2A12XA2A1OC	1251-2035 1251-2035 1251-2035 1251-2035 1251-2035 1251-2035	00000		CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	58480 58480 58480 58480 58480	1251 = 2035 1251 = 2035 1251 = 2035 1251 = 2035 1251 = 2035 1251 = 2035
A2A12XA2A11A A2A12XA2A11G	1251+2035 1251-2035 12,1-2035	9 9 9		CONNECTOR=PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR=PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR=PC EDGE 15-CONT/ROW 2-ROWS	28450 28480 28480	1251-2035 1251-2035 1251-2035
	1251-0600			AZAIZ MISCELLANEOUS	28482	1271 2122
	1231-0000			CONTACT=CONN U/W=POST=TYPE MALE OPSLOR	28460	1251-0600
A2871	08479-4440°			A2 CHASSIS PARTS		20470 1425-
	08672=60092 08672=00011	7	1	BATTERY PACK Clamp, Battery	28460 28460	08672=60092 08672=00011
A2D81 A2D82 A2D84 A2D85	1990+0651 1990=0651 1990=0651 1990=0651 1990=0506	7 7 7 7	4	DISPLAY, SOLID STATE DISPLAY-NUM DOT MAT 1-CHAR .29-H	28480 28480 28480 28480 28480	1990-0651 1990-0651 1990-0651 1990-0651 5082-7300, CAT E
A2086 A2087 A2088	1990-0506 1990-0506 1990-0506	1 1 1		DISPLAY-NUM DOT MAT 1-CHAR .29-H DISPLAY-NUM DOY MAT 1-CHAR .29-H DISPLAY-NUM DOT MAT 1-CHAR .29-H	28480 28480 28480	5082-7300, CAT E 5082-7300, CAT E 5082-7300, CAT E
A2MP1 A2MP2 A2MP3 A2MP4	08672-40005 0370-2389 5040-6927 08671-20003 08672-20033	3 7 3 8 5	6 1 1 1	PUSHBUTTON KNOB-BASE 1-1/2 JGK .25" ID DIVIDER STRIP WINDOW, CONTROLLER (86714 DNLY) WINDOW, CONTROLLER (86724 DNLY)	28480 28480 28480 28480	08672=40005 0370=2389 5040=6927 08671=20003
A281	3101-0613	0	1	SWITCH-TGL SUBMIN SPOT NS 5A 120VAC PC	28480	3101-0613
TSM2 VSM5 VSM1	08672=60026 1251=3880 08672=60030 1250=0872 08672=60058 1251=3511	04668	1 1 2 1 2	CABLE, RIBBON, 26=CONDUCTOR (A2A1 TO A2A12) CONNECTOR 26=PIN F RECTANGULAR CABLE ASSEMBLY, VCD OUTPUT, PED CONNECTOR PER SMB FEM UNMTO 50=OMM CABLE ASSEMBLY, 34=CONDUCTOR (A2A6 TO A2A7 CONNECTOR 34=PIN F RECTANGULAR	28480 28480 28480 28480 28480 28480	08672=60026 1251=3880 08672=60030 1250=0872 08672=60058 1251=3511

Table 6-3. Replaceable Parts

				Table 6 6. Hopiaosable tales		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
AZXBTI	08672=60029 0362=0227 0363=0067 0400=0082 0624=0303 08672=20009 08672=20030	3 1 9 8 0 3 2	1 2 2 1 4 1 1	BATTERY HOLDER ASSEMBLY INCLUDES: CONNECTOR-SGL CONT SKT 1.14-MM-BSC-SZ CONTACT, BATTERY GROMMET-CHAN NCH .09-IN-GRV-WO SCREW-TPG 2-28 .312-IN-LG PAN-HD-PHL STL SUPPORT, BATTERY PAK HOLDER, BATTERY A2 MISCELLANEOUS	26480 26480 26480 26480 28480 28480	08672-60029 0362-0227 0363-0067 0400-0082 0824-0303 08672-00009 08672-20030
,	0510=1148 7100=0647 08672=00001 08672=00002 08672=20032 08672=20035 08672=20036 08672=40001	22564789	Newstand	RETAINER-PUSH ON K8-TO-SHFT EXT .156-DIA CAN/COVER .531"DP-OUT,.969"WD-OUT PANEL, SUB-FRONT PANEL, RIGHT-FRONT HEAT SINK, L.E.D. LIGHT PIPE, LONG LIGHT PIPE, MEDIUM MOUSING, LAMP	28480 28480 28480 28480 28480 28480 28480 28480	0510=1148 7100=0647 08672=00001 08672=00002 08672=20032 08672=20035 08672=20036 08672=20036
	05672=40002 08672=00003 05672=00004 08672=00005 08672=00006	7 8 9	5 1 1 1	BAR, LIGHT GUBSET, CENTER GUBSET, RIGHT GUBSET, ADAPTER BOARD BAR, TIE RIGHT	26480 26480 26480 26480 26480	08672-40002 08672-00003 08672-00004 08672-00005 08672-00006
	08672=00008 08672=00012 08672=00013 08672=00015 08672=00018	9	1 1 1	SUPPORT, FRONT PANEL, RIGHT COVER, DIGITAL BOARDS PANEL, REAR-SUB SUPPORT, BOTTOM PLATE, REAR GUIDE	28480 28480 28480 28480 28480	08672-00008 08672-00012 08672-00013 08672-00015 08672-00018
	08672-00020 08672-20031 08672-20037	B 3		PANEL, REAR, HP-IB HOUSING, AMPLIFIER SUPPORT, FRONT PANEL	28480 28480 28460	06672=00020 08672=20031 08672=20037
			į			

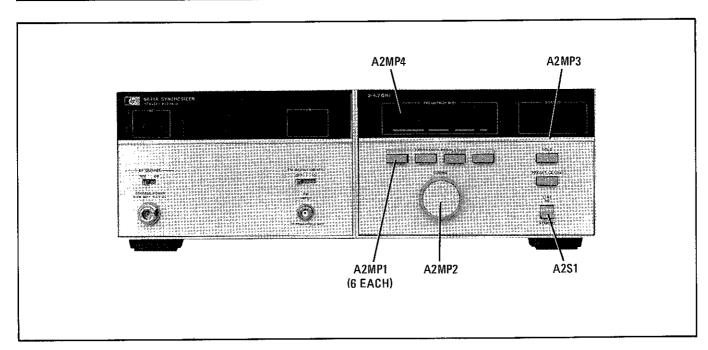


Figure 6-2. A2 Assembly, Front Panel Mechanical Parts

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Ωty	Description	Mfr Code	Mfr Part Number
A3 A3A1A1 A3A1A1C1 A3A1A1C2 A3A1A1C3 A3A1A1C3 A3A1A1C5 A3A1A1C5 A3A1A1C6 A3A1A1C6	86701-60021 0180-0197 0180-0197 0180-1746 0140-0190 0160-3879 0160-2055 0180-0197	5 8 8 5 7 7 8 7	1 19 8 2 30 52	RF SOURCE ASSEMBLY M/N REFERENCE ASSEMBLY REFERENCE PHASE DETECTOR ASSEMBLY CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 15UF+=10% 20VDC TA OTT ASSIGNED CAPACITOR=FXD 39PF +=5% 300VDC MICA CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=00% 20VDC TA	28480 56289 56289 56289 72136 28480 56289 28480	86701=60021 150D225X9020A2 150D225X9020A2 150D156X9020B2 DM158390J0300WV1CR 0160=3879 0160=2055 150D225X9020A2
A3A; A1C; 0 A3A; A1C; 1 A3A; A1C; 2 A3A; A1C; 3 A3A; A1C; 3 A3A; A1C; 6 A3A; A1C; 6 A3A; A1C; 7 A3A; A1C; 6	0160-3879 0160-2055 0180-0197 0160-2199 0180-0197 0160-2204 0180-0197 0160-2055 0160-2055	8 28 08 9 9 9	7	CAPACITOR-FXD .01UF +=20% 100VDC CER CAPACITOR-FXD .01UF +80=20% 100VDC CER CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 3.0PF +=5% 3.00VDC MICA CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD 100PF +=5% 3.00VDC MICA CAPACITOR-FXD 2.2UF+=10% 20VDC TA CAPACITOR-FXD .01UF +80=20% 100VDC CER	28480 56289 28480 56289 28480 56289 28480 28480 28480	0160-2055 150D225x9020A2 0160-2199 150D225x9020A2 0160-2204 150D225x9020A2 0160-2055 0160-2055
A3A1A1C19 A3A1A1C20 A3A1A1C22 A3A1A1C23 A3A1A1C23 A3A1A1C23 A3A1A1C25 A3A1A1C26 A3A1A1C26	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	** ****	t 5	CAPACITOR=FXO .01UF +80=20X 100VDC CER CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXO 100VF +=5X 300VDC MICA CAPACITOR=FXD 82PF +=5X 30VDC MICA CAPACITOR—FXD 8	26480 26480 26480 28480 28480 28480 28480 28480 72136	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2204 DM15E820J0J0OWV1CR T368-8-106-M-025-AS
A3A1A1C20 A3A1A1C30 A3A1A1C31 A3A1A1C32 A3A1A1C33 A3A1A1C34 A3A1A1C35 A3A1A1C35	0160-0491 0160-2055 0140-0193 0180-1746 0170-0066 0160-2055 0160-2055 0140-0193 0160-2055	90 50 90 0 90	1	CAPACITOR-FXD 01UF +80-20% 100VDC EER CAPACITOR-FXD 82PF +-5% 300VDC MICA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 027UF +-10% 200VDC POLYE CAPACITOR-FXD 01UF +80-20% 100VDC CER CAPACITOR-FXD 01UF +80-20% 100VDC CER CAPACITOR-FXD 82PF +-5% 300VDC MICA CAPACITOR-FXD 01UF +80-20% 100VDC CER	28480 72136 56289 28480 28480 72136 28480 28480 28480	0160-2055 DM15E820J0300WV1CR 1500156X9022082 0170-0006 0160-2055 0160-2055 DM15E820J0300WV1CR 0160-2055 0160-2055
A3A1A1C3B A3A1A1C3G A3A1A1CGG A3A1A1CG1 A3A1A1CG2 A3A1A1CG3 A3A1A1CGG A3A1A1CGG	0140-0193 0160-3446 0160-2746 0160-2055 0160-2055 0160-2055 0160-2055	ON GONGG GEO	ŧ	CAPACITOR-FXD 82PF +-5% 300VDC MICA CAPACITOR-FXD 220PF +-10% 1KVDC CER CAPACITOR-FXD 15UF+=10% 20VDC TA CAPACITOR-FXD 01UF +80=20% 100VDC CER CAPACITOR-FXD 01UF +80=20% 100VDC MICA CAPACITOR-FXD 01UF +80=20% 100VDC MICA CAPACITOR-FXD 01UF +80=20% 100VDC CER CAPACITOR-FXD 01UF +80=20% 100VDC MICA CAPACITOR-FXD 270PF +-5% 300VDC MICA CAPACITOR-FXD 01UF +80=20% 100VDC CER	72136 26480 56289 28480 28480 28480 28480 28480 72136	DM15E820J0300WV1CR 0160-3446 1500156X9020B2 0160-2055 0160-2055 0160-2255 0160-2055 0160-2055
A3A1A1C47 A3A1A1C49 A3A1A1C50 A3A1A1C50 A3A1A1C51 A3A1A1C52 A3A1A1C53 A3A1A1C53 A3A1A1C55	0140-2055 0140-0210 0160-2201 0160-2055 0140-0210 0160-2055 0160-2055 0160-1083 0160-1746	9279 29929 1	i	CAPACITOR=FXD 270FF +=5% 300VDC MICA CAPACITOR=FXD 51FF +=5% 300VDC MICA CAPACITOR=FXD 0.01UF +80=20% 100VDC CER CAPACITOR=FXD 270FF +=5% 300VDC MICA CAPACITOR=FXD 0.01UF +80=20% 100VDC CER CAPACITOR=FXD 10UF +80=20% 100VDC CER CAPACITOR=FXD 10UF+75=10% 50VDC AL CAPACITOR=FXD 15UF+=10% 20VDC TA	28480 72136 28480 28480 72136 28480 28480 26269 56269	0160-2055 DM15F271J0300WV1CR 0160-2201 0160-2055 DM15F271J0300WV1CR 0160-2055 0160-2055 30D106G050CB2 150D156X9020B2
ASA:A:C56 ASA:A:C57 ASA:A:C59 ASA:A:C59 ASA:A:C60 ASA:A:C61 ASA:A:C62 ASA:A:CR1 ASA:A:CR1 ASA:A:CR2	0180-0229 0160-2204 0160-3879 0160-3879 0160-3879 0160-3878 1901-0518 1901-0518	70767 46 888	35 24 6	CAPACITOR=FXD 33UF+10X 10VDC TA CAPACITOR=FXD 100PF +=5X 300VOC MICA CAPACITOR=FXD 100PF +=20X 100VDC CER CAPACITOR=FXD 1000PF +=20X 100VDC CER CAPACITOR=FXD .01UF +=20X 100VDC CER CAPACITOR=FXD 220PF +=10X 1KVDC CER CAPACITOR=FXD 1000PF +=20X 100VDC CER DIDDE=8CHOTTKY DIDDE=8CHOTTKY DIDDE=8CHOTTKY DIDDE=8CHOTTKY	56480 26480 26480 26480 26480 26480 26480 26480 26480	150D336X9010B2 0160=2204 0160=3879 0160=3878 0160=3878 0160=3454 0160=3878 1901=0518 1901=0518
ABAIAICRE ABAIAICRE	1901-0518 1901-0518	8		DIODE-SCHOTTKY DIODE-SCHOTTKY	26480 26480	1901-0518 1901-0518

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
ABA1A1CR6	1901-0516	8		DIGGE+8CHOTTKY	28480	1901=0518
A3A1A1J1 A3A1A1J2 A3A1A1J3 A3A1A1J4 A3A1A1J5	1250=0544 1250=0544 1250=0544 1250=0544 1250=0544	9 9 9 9	8	CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM CONNECTOR-RF SM-SNP M SGL-HOLE-FR 50-OHM	26480 28480 26480 26480 26480	1250~0544 1250~0544 1250~0544 1250~0544 1250~0544
A3A1A1L1 A3A1A1L2 A3A1A1L3 A3A1A1L4 A3A1A1L5	9140-0238 9140-0238 9140-0143 9140-0143 9100-2261	3 9 9 2	2 3 1	COIL-MLD 82UH 5% QB50 .1550%.375LG-NOM COIL-MLD 82UH 5% QB50 .1550%.375LG-NOM COIL-MLD 3.3UH 10% QB45 .0950%.25LG-NOM COIL-MLD 3.3UH 10% QB45 .0950%.25LG-NOM COIL-MLD 2.7UH 10% QB40 .0950%.25LG-NOM	28480 28480 28480 28480 28480	9140=0238 9140=0238 9140=0143 9140=0143 9100=2261
A3A1A1L6 A3A1A1L7 A3A1A1L8 A3A1A1L9 A3A1A1L10	9140-0114 9100-2255 9100-0368 9100-2257 9100-2255	4 4 4 6 4	1 4 3	COIL-MLD 10UH 10X G=55 .155Dx,375LG-NOM COIL-MLD 470NH 10X G=35 .095DX,25LG-NOM COIL-MLD 330NH 10X G=32 .095DX,25LG-NOM COIL-MLD 820NH 10X G=32 .095DX,25LG-NOM COIL-MLD 470NH 10X G=35 .095DX,25LG-NOM	28480 28480 28480 28480 28480	9140=0114 9100=2255 9100=0368 9100=2257 9100=2255
A3A1A1L11 A3A1A1L12 A3A1A1L13 A3A1A1L13 A3A1A1L15	9100-2255 9100-2255 9100-2257 9100-2255 9100-2256	6 4 6 4 5	1	COIL-MLD 820NH 10% Q=32 .095D%,25LG=NOM COIL-MLD 470NH 10% Q=35 .095D%,25LG=NOM COIL-MLD 470NH 10% Q=35 .095D%,25LG=NOM COIL-MLD 470NH 10% Q=35 .095D%,25LG=NOM COIL-MLD 560NH 10% Q=34 .095D%,25LG=NOM	26480 26480 26480 26480 26480	9100-2257 9100-2255 9100-2257 9100-2255 9100-2256
A3A1A1Q1 A3A1A1Q2 A3A1A1Q3 A3A1A1Q4 A3A1A1Q5†	1854-0019 1854-0019 1854-0019 1855-0049 1853-0451	3 3 1 5	1 17	TRANSISTOR NPN SI TO-16 PD=360MW TRANSISTOR NPN SI TO-16 PD=360MW TRANSISTOR NPN SI TO-16 PD=360MW TRANSISTOR-JFET DUAL N-CHAN D-MCDE SI TRANSISTOR-JFET DUAL N-CHAN D-MCDE SI TRANSISTOR PNP 2N3799 SI TO-16 PD=360MW	28480 28480 28480 28480 01295	1854-0019 1854-0019 1854-0019 1855-0049 2N3799
A3A5A196Ť A3A1A197	1853=0451 1853=0034	5	1	TRANSISTOR PNP 2N3799 SI TC=16 PC=360MW Transistor PNP SI TC=10 PD#360MW	01295 28480	2N3799 1853=0034
A3A1A1R1 A3A1A1R2 A3A1A1R3 A3A1A1R4 A3A1A1R5	0757=0399 0757=0417 0757=0416 0757=0401 0698=3156	5 8 7 0 2	1 18 25	RESISTOR 82,5 1% ,125W F TC=0+=100 RESISTOR 562 1% ,125W F TC=0+=100 RESISTOR 511 1% ,125W F TC=0+=100 RESISTOR 100 1% ,125W F TC=0+=100 RESISTOR 14,7K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=82R5=F C4=1/8=T0=562R=F C4=1/8=T0=511R=F C4=1/8=T0=101=F C4=1/8=T0=101=F
ABA1A1R6 ABA1A1R7 ABA1A1R8 ABA1A1R9 ABA1A1R10	0757-0401 0757-0420 0757-0438 0757-0399 0698-7222	0 3 5	20 2	RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 750 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 82.5 1% .125W F TC=0+=100 RESISTOR 82.5 1% .05W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=101=F C4=1/8=†0=751=F C4=1/8=†0=5111=F C4=1/8=†0=8275=F C3=1/8=T0=261R=G
ABA1A1R11 ABA1A1R12 ABA1A1R13 ABA1A1R14 ABA1A1R14	0698-7219 0757-0442 0695-3453 0757-0442 0698-3453	2 9 N 9 S	20 3	RESISTOR 196 1% .05W F TC=0+=100 RESISTOR 19K 1% .125W F TC=0+=100 RESISTOR 196K 1% .125W F TC=0+=100 RESISTOR 19K 1% .125W F TC=0+=100 RESISTOR 196K 1% .125W F TC=0+=100	24546 24546 24546 24546	C3=1/8=70=190R=G C4=1/8=70=1002=F C4=1/8=70=1963=F C4=1/8=70=1902=F C4=1/8=70=1903=F
A3A1A1R16 A3A1A1R17 A3A1A1R16 A3A1A1R19 A3A1A1R20	0757=0441 0698=3438 0757=0346 0757=0346 0757=0441	8 3 2 8	6 3 32	RESISTOR 8,25K 1% ,125W F TC#0+=100 RESISTOR 147 1% ,125W F TC#0+=100 RESISTOR 10 1% ,125W F TC#0+=100 RESISTOR 10 1% ,125W F TC#0+=100 RESISTOR 8,25K 1% ,125W F TC#0+=100	24546 24546 24546 24546	C4=1/8=T0=8251=F C4=1/8=T0=147R=F C4=1/8=T0=10R0=F C4=1/8=T0=10R0=F C4=1/8=T0=8251=F
ABA 1A 1R21 ABA 1A 1R22 ABA 1A 1R23 ABA 1A 1R24 ABA 1A 1R24	0698=3438 0698=3136 0757+0346 0698=3154 0757=0346	36 50 50	1	RESISTOR 147 1% .125W F TC=0+-100 RESISTOR 17.8K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	24249 24249 24249 54249	C4-1/8-T0-147R-F C4-1/8-T0-1782-F C4-1/8-T0-10R0-F C4-1/8-T0-4221-F C4-1/8-T0-10R0-F
A3A1A1R26 A3A1A1R27 A3A1A1R28 A3A1A1R28 A3A1A1R30	0757+0280 0698+3154 0698+3450 0698=3449 0757=0444	3 0 9 6	23 3 23	RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 4 22K 1% .125W F TC=0+=100 RESISTOR 42.2K 1% .125W F TC=0+=100 RESISTOR 28.7K 1% .125W F TC=0+=100 RESISTOR 12.1K 1% .125W F TC=0+=100	54249 54249 54249 54249 54249	C4-1/8-70-1001-F C4-1/8-70-4221-F C4-1/8-70-4222-F C4-1/8-70-2872-F C4-1/8-70-1212-F
A3A1A1R31 A3A1A1R32 A3A1A1R33 A3A1A1R34 A3A1A1R35	0698=3154 0757=0346 0698=3154 0757=0346 0757=0280	0 2 0 2 3		RESISTOR 4,22K 1% ,125W F TC=0+=100 RESISTOR 10 1% ,125W F TC=0+=100 RESISTOR 4,22K 1% ,125W F TC=0+=100 RESISTOR 10 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=4221=F C4=1/8=T0=10R0=F C4=1/8=T0=4221=F C4=1/8=T0=10R0=F C4=1/8=T0=10R1=F
A3A1A1R36 A3A1A1R37 A3A1A1R38 A3A1A1R39 A3A1A1R40	0757-0444 0757-0200 0757-0421 0757-0440 0757-0394	1 7 4 7 0	9 5 16	RESISTOR 12.1K 1% .125W F TC=0+=100 RESISTOR 5.62K 1% .125W F TC=0+=100 RESISTOR 825 1% .125W F TC=0+=100 RESISTOR 7.5K 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1212-F C4-1/8-T0-5021-F C4-1/8-T0-8258-F C4-1/8-T0-7501-F C4-1/8-T0-51R1-F
A3A1A1R41 A3A1A1R42 A3A1A1R43 A3A1A1R44 A3A1A1R45	0098=3446 0698=0085 0757=0442 0757=0442 0757=0280	3 0 9 9	2 7	RESISTOR 363 1% ,125W F TC#0+=100 RESISTOR 2,51K 1% ,125W F TC#0+=100 RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR 10K 1% ,125W F TC#0+=100 RESISTOR 1K 1% ,125W F TC#0+=100	54249 54249 54249 54249	C4-1/8-T0=383R-F C4-1/8-T0=2611-F C4-1/8-T0=1002-F C4-1/8-T0=1002-F C4-1/8-T0=1001-F

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C Oty	Description	Mfr Code	Mfr Part Number
A3A1A1R46 A3A1A1R47 A3A1A1R48 A3A1A1R49 A3A1A1R50	0698-3154 0698-3453 0757-0442 0698-7285 0698-3157	0 2 9 6 1 3 6	RESISTOR 4.22K i% .125W F TC=0+=100 RESISTOR 196K i% .125W F TC=0+=100 RESISTOR 10K i% .125W F TC=0+=100 RESISTOR 110K i% .05W F TC=0+=100 RESISTOR 19.6K i% .125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=4221=F C4=1/8=T0=1963=F C4=1/8=T0=1002=F C3=1/8=T0=1103=G C4=1/8=T0=1962=F
ASA1A1R51 ASA1A1R52 ASA1A1R53 ASA1A1R54 ASA1A1R54	06 ⁶ 8=3157 0757=0401 0698=3440 0698=7234 0698=7257	3 0 7 8 5 1 2 1	RESISTOR 19.6K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 825 1% .05W F TC=0+=100 RESISTOR 7.5K 1% .05W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=1962=F C4=1/8=T0=101=F C4=1/8=T0=96R=F C3=1/8=T0=825R=G C3=1/8=T0=7501=G
A3A1A1R56 A3A1A1R57 A3A1A1R56 A3A1A1R59 A3A1A1R60	0757-0394 0698-3446 0698-7246 0698-3440 0757-0276	0 3 9 1 7 7	RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 383 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .05W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 61.9 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-Y0-51R1-F C4-1/8-Y0-383R-F C3-1/8-Y0-2611-G C4-1/8-Y0-196R-F C4-1/8-Y0-6192-F
A3A1A1R61 A3A1A1R62 A3A1A1R63 A3A1A1R64 A3A1A1R65	0757-0280 0757-1094 0698-0085 0698-3132 0698-0085	3 9 0 4 0	RESISTOR 1% 1% .125W F TC=0+=100 RESISTOR 1.47K 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100 RESISTOR 261 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=1001=F C4=1/8=T0=1471=F C4=1/8=T0=2011=F C4=1/8=T0=2010=F C4=1/8=T0=2011=F
A3A1A1R66 A3A1A1R67 A3A1A1R66 A3A1A1R69 A3A1A1R70	0757=0421 0757=0280 0757=0416 0757=0416 0757=0416	4 3 7 7 7	RESISTOR 825 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 511 1X .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4=1/8=T0=825R=F C4=1/8=T0=1001=F C4=1/8=T0=511R=F C4=1/8=T0=511R=F C4=1/8=T0=511R=F
A3A1A1R71 A3A1A1R72 A3A1A1R73 A3A1A1R74 A3A1A1R75	0757-0274 0698-3132 0757-0317 0757-0289 0698-7236	5 1 7 3 2 1 7 4	RESISTOR 1,21K 1% ,125W F TC=0+-100 RESISTOR 201 1% ,125W F TC=0+-100 RESISTOR 1,31K 11 25W F TC=0+-100 RESISTOR 13,3K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,05W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-1213-F C4-1/8-T0-2610-F C4-1/8-T0-1331-F MF4C1/2-T0-1332-F C3-1/8-T0-1001-G
ATAIAITI ATAIAITE	08552-6044 08552-6044	1 2	TRANSFORMER, RF, S-PIN TRANSFORMER, RF, S-PIN	28480 28480	08552=6044 08552=6044
A3A1A17P1	1251-0000	0 48	CONTACT-CONN U/W-POST-TYPE MALE DPSLOR	26480	1251=0600
ASA1A1U1 ASA1A1U2 ASA1A1U3 ASA1A1U4 ASA1A1U5	1821-0001 1820-0328 1820-1383 1820-0802 1820-0223	4 1 6 1 5 1 1 6	TRANSISTOR ARRAY IC GATE ITL NOR QUAD 2=INP IC CNTR ECL BCD POS=EDGE=TRIG IC GATE ECL NOR QUAD 2=INP IC 301 OP AMP T0=99	01928 01295 04713 04713 18324	CA3046 \$N7402N MC10138L MC10102P LM301A
ASA1A1U6	1820-0429	8 1	IC V RGLTR T0=39	18324	LM309H
ASAIAIVRI ASAIAIVRZŤ	1902-3082	9 3	DIODE-ZNR 4.64V 5% DO-7 PD#.4W TC#+.023% DIODE-ZNR 23.7V 5% OO-7 PD#.4W TC#+.076%	26480 26480	1902=3082 1902=3256
ABA1A1W1	66701-60059	9 1	CABLE ASSEMBLY, GRAY/ORANGE/WHITE	28480	86701-60059
			A3A1A1 MISCELLANEOUS		
	1205-0250 2190-0124 2200-0101 2950-0078 6040-0239	9 1 6 0 7 9 9 6		28460 28480 00000 28480 05820	1205-0250 2190-0124 OROER BY DESCRIPTION 2950-0078 120
	86701+20040 86701+40001			28480 28480	86701-20040 86701-40001
A3A1A2	86701-60020		100 MHZ VCXO ASSEMBLY	26480	86701=60020
132145C1 132145C3 134145C3 134145C3	0121-0495 0121-0495 0121-0495 0121-0453 0180-0049	5 5 5 7 1	CAPACITOR=V TRMR=AIR 1.9=15.7FF 250V CAPACITOR=V TRMR=AIR 1.9=15.7FF 250V CAPACITOR=V TRMR=AIR 1.3=5.4FF 250V	28480 28480 28480 74970 56289	0121-0495 0121-0495 0121-0495 187-0103-195 3002066050CC2
ABA1A2C6 ABA1A2C7 ABA1A2C8 ABA1A2C9 ABA1A2C10	0160+3456 0160+3454 0160+2256 0160+4084 0140+0191	6 3 2 1 8 10 8 1	CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 9,1PF +=.25PF 500VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER	28480 26480 28480 28480 72136	0160-3456 0160-3454 0160-2256 0160-4084 0M156560J0300MV1CR
A3A1A2C11 A3A1A2C12 A3A1A2C13 A3A1A2C14 A3A1A2C15	0160-2204 0160-3454 0160-3454 0160-3454 0160-2261	0 4 4 9 8	CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 220PF +-10% 1KVDC CER CAPACITOR-FXD 220PF +-10% 1KVDC CER CAPACITOR-FXD 220PF +-10% 1KVDC CER CAPACITOR-FXD 15PF +-5% 500VDC CER 0+-30	28480 28480 28480 28480	0160=2204 0160=3454 0160=3454 0160=3454 0160=2261
A3A1A2C16 A3A1A2C17 A3A1A2C18 A3A1A2C19 A3A1A2C20	0160-2261 0160-345# 0160-345# 0160-2261 0160-2261	9 4 4 9 9	CAPACITOR-FXD 15PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 220PF +-10% 1KVDC CER CAPACITOR-FXD 15PF +-5% 500VDC CER CAPACITOR-FXD 15PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 15PF +-5% 500VDC CER 0+-30	28480 28480 28480	0160-2261 0160-3454 0160-3454 0160-2261 0160-2261

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C D		Description	Mfr Code	Mfr Part Number
A3A1A2C23 A3A1A2C23 A3A1A2C23 A3A1A2C23	0160-3454 0160-3454 0160-3454 0160-3454 0160-3454	****		CAPACITOR=FXD 220PF +=10% 1KVDC CER	28480 28480 28480 28480 28480	0160-3454 0160-3454 0160-3454 0160-3454
A3A1A2C26 A3A1A2C27 A3A1A2C28 A3A1A2C29 A3A1A2C30	0160-2261 0160-2261 0160-3454 0160-3454 0160-3454	9944		CAPACITOR=FXD 15PF +=5% 500VDC CER 0+=30 CAPACITOR=FXD 15PF +=5% 500VDC CER 0+=30 CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER	28480 28480 28480 28480	0160-2261 0160-2261 0160-3454 0160-3454
A3A1A2C31 A3A1A2C32 A3A1A2C33 A3A1A2C34	0160-3454 0160-2261 0160-2261 0160-3454 0160-3454	4 9 4 4		CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 15PF +=5% 500VDC CER 0+=30 CAPACITOR=FXD 15PF +=5% 500VDC CER 0+=30 CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER	28480 28480 28480 28480	0160=3454 0160=2261 0160=2261 0160=3454 0160=3454
ASA1A2C36 ASA1A2C36 ASA1A2C36 ASA1A2C39 ASA1A2C40	0160-3878 0160-3878 0160-3878 0160-3454 0160-2238	66640	i	CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 1000PF +=10% 10VDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 1.5PF +=.25PF 500VDC CER	28480 28480 28480 28480	0160-3878 0160-3876 0160-3878 0160-3454 0160-2238
A3A1A2C45 A3A1A2C43 A3A1A2C43	0160*3878 0160*3878 0180*0116 0160*2253 0160*3878	66196	i 2 1	CAPACITOR-FXD 1000PF +=20% 100VDC CER CAPACITOR-FXD 1000PF +=20% 100VDC CER CAPACITOR-FXD 6.8UF+=10% 35VDC TA CAPACITOR-FXD 6.8UF+=20% 100VDC CER CAPACITOR-FXD 1000PF +=20% 100VDC CER	28480 26480 56289 28480 28480	0160-3878 0160-3878 1500-85x903582 0160-2253 0160-3878
ABA1A2046 ABA1A2047 ABA1A2048 ABA1A2049 ABA1A2050	0160-3878 0160-3454 0160-3456 0160-3456 0180-0116	6 6 6 1		CAPACITOR-FXD 1000PF +=20% 100VDC CER CAPACITOR-FXD 220PF +=10% 1KVDC CER CAPACITOR-FXD 1000PF +=10% 1KVDC CER CAPACITOR-FXD 1000PF +=10% 1KVDC CER CAPACITOR-FXD 6,8UF+=10% 35VDC TA	28480 28480 28480 28480 56289	0160=3878 0160=3454 0160=3456 0160=3456 1500e85X903582
A3A1A2C51 A3A1A2C52 A3A1A2C53 A3A1A2C54 A3A1A2C55	0160-4299 0160-3454 0160-3454 0160-3454	7 4 4 4 4 4	11	CAPACITOR=FXD 2200PF +=20% 250VDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER CAPACITOR=FXD 220PF +=10% 1KVDC CER	5628 9 28480 28480 28480 28480	C067F251F222M822=CDH 0160=3454 0160=3454 0160=3454 0160=3454
ABA1A2C56	0160-2437	1	13	CAPACITOR-FOTHRU 5000PF +80 -20% 200V	28480	0160-2437
A3A1A2CR1 A3A1A2CR2 A3A1A2CR3 A3A1A2CR4	0122-0245 1901-0539 1901-0539	3	1	DIODE-YVC 1N5139 6.8PF 10% NOT ASSIGNED DIODE-SCHOTTKY DIODE-SCHOTTKY	04713 28480 28480	1 1 1 2 1 3 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1
A3A1A2J1 A3A1A2J3 A3A1A2J3 A3A1A2J4	1250-0544 1250-0544 1250-0544	9		CONNECTOR-RF 3M-8NP M SGL-HOLE-FR 50-OHM CONNECTOR-RF 3M-8NP M SGL-HOLE-FR 50-OHM CONNECTOR-RF 3M-8NP M SGL-HOLE-FR 50-OHM PART OF A3A1A2W1	28480 28480 28480	1250=0544 1250=0544 1250=0544
ASA1AZL1 ASA1AZL3 ASA1AZL3 ASA1AZL4 ASA1AZL5	9100-2249 9140+0158 9100-2252 9100+2538	6	3 2 1 1	NOT ASSIGNED COIL-MLD 150NH 10% Q#34 .095D%.25LG=NOM COIL-MLD 1UH 10% G#32 .095D%.25LG=NOM COIL-MLD 270NH 10% G#30 .095D%.25LG=NOM COIL-MLD 1UH 10% G#44 .156D%.375LG=NOM #FACTORY SELECTED PART	28480 28480 26480 28480	9100=2249 9140=0158 9100=2252 9100=2538
A3A1A2LA A3A1A2L7 A3A1A2LB A3A1A2LP A3A1A2L10	9100-2251 9100-2251 9100-2251 9100-2251	0000	5	COIL-MLD 220NH 10% Q=32 ,095D%,25LG=NOM COIL-MLD 220NH 10% Q#32 .095D%,25LG=NOM COIL-MLD 220NH 10% Q#32 .095D%,25LG=NOM COIL-MLD 220NH 10% Q#32 .095D%,25LG=NOM PART OF CIRCUIT BOARD	28480 28480 28480 28480	9100-2251 9100-2251 9100-2251 9100-2251
A3A1A2L11 A3A1A2L12 A3A1A2L14 A3A1A2L15	9100-2247 9100-2247	4	2	PART OF CIRCUIT BOARD PART OF CIRCUIT BOARD COIL-MLD 100NH 10% G=34 .0950%,25LG-NOM COIL-MLD 100NH 10% G=34 .0950%,25LG-NOM	28480 28480	9100=2247 9100=2247
19541454 19541454 19541454 19541454 29541454	1854-0345 1854-0345 1854-0345 1854-0345 1854-0247	8 8 8 9	21	TRANSISTOR NPN 2N5179 SI TO-72 PD#200MW TRANSISTOR NPN 2N5179 SI TO-72 PD#200MW TRANSISTOR NPN 2N5179 SI TO-72 PD#200MW TRANSISTOR NPN 2N5179 SI TO-72 PD#2200MW TRANSISTOR NPN SI TO-39 PD#1W F7#800MHZ	04713 04713 04713 04713 28480	2N5179 2N5179 2N5179 2N5179 1854-0247
A3A1A296 A3A1A297 A3A1A298 A3A1A299 A3A1A2910	1854-0345 1854-0345 1854-0345 1854-0404	8 8 8 0	17	TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR NPN 2N5179 ŠI TO-72 PD=200MH TRANSISTOR NPN 2N5179 ŠI TO-72 PD=200MW TRANSISTOR NPN 2N5179 ŠI TO-72 PD=200MW TRANSISTOR NPN SI TO-18 PD=360MW	04713 04713 04713 04713 28480	2N5179 2N5179 2N5179 2N5179 1854-0404
AJA1AZG11	1854=0345	8		TRANSISTOR NPN 2NS179 SI TO-72 PD=200MW	04713	2N5179
A3A1A2R1 A3A1A2R2 A3A1A2R3 A3A1A2R4 A3A1A2R9	0698=3440 0757=0422	0 7 5	5 2 9 11	RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 681 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 909 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-Y0-3161-F C4-1/8-Y0-081R-F C4-1/8-Y0-196R-F C4-1/8-Y0-909R-F C4-1/8-Y0-4641-F

Table 6-3. Replaceable Parts

Reference	HP Part Number	c Ot	Description	Mfr Code	Mfr Part Number
Designation ASALAZER ASALAZER ASALAZER ASALAZER	0698+7224 0757-0346 0757-0422 0757-0442	3 2 5 9	RESISTOR 316 1% .05W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 909 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546 24546 24546	C3-1/8-T0-316R-G C4-1/8-T0-10R0-F C4-1/8-T0-909R-F C4-1/8-T0-1002-F
A3A1A2R9 A3A1A2R10 A3A1A2R11 A3A1A2R12	0757+0401 0757-0394 0757-0416	0 7	RESISTOR 100 1% ,125W F YC#0+=100 RESISTOR 51.1 1% ,125W F YC#0+=100 RESISTOR 511 1% ,125W F YC#0+=100	24546 24546 24546 24546	C4-1/8-T0-101-F C4-1/8-T0-51R1-F C4-1/8-T0-511R-F
A3A1A2R13 A3A1A2R14 A3A1A2R15 A3A1A2R16	0757-0394 0757-0416 0757-0422 0757-0401	0 7 5	RESISTOR 51.1 1% .125W F TC#0+=100 RESISTOR 511 1% .125W F TC#0+=100 RESISTOR 909 1% .125W F TC#0+=100 RESISTOR 100 1% .125W F TC#0+=100	24546 24546	C4-1/8-T0-51R1-F C4-1/8-T0-511R-F C4-1/8-T0-909R-F C4-1/8-T0-101-F
A3A1A2R17 A3A1A2R18 A3A1A2R19 A3A1A2R20	0698-3150 0698-3150 0698-7198 0698-3443	6	RESISTOR 2.37K 1% .125W F TC=00-100 RESISTOR 2.37K 1% .125W F TC=00-100 RESISTOR 26.1 1% .05W F TC=0+-100 RESISTOR 287 1% .125W F TC=0+-100	24546 24546 24546 24546	C4=1/8=T0=2371=F C4=1/8=T0=2371=F C3=1/8=T00=26R1=G C4=1/8=T0=287R=F
A3A1A2R21 A3A1A2R22 A3A1A2R23 A3A1A2R24 A3A1A2R24	0698+3429 0698-3443 0698-3150 0757-0401 0698-3150	0 6	RESISTOR 19.6 1% .125W F TC=0+=100 RESISTOR 287 1% .125W F TC=0+=100 RESISTOR 2.37K 1% .125W F TC=0+=100 RESISTOR 10U 1% .125W F TC=0+=100 RESISTOR 2.37K 1% .125W F TC=0+=100	24546 24546 24546 24546	PME55=1/8=T0=19R6=F C4=1/8=T0=287R=F C4=1/8=T0=2871=F C4=1/8=T0=101=F C4=1/8=T0=2371=F
A3A1A2R26 A3A1A2R27 A3A1A2R28 A3A1A2R29 A3A1A2R30	0757-0416 0757-0346 0757-0422 0698-7198 0698-3443	7 2 5 0	RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 90 1% .125W F TC=0+=100 RESISTOR 26.1 1% .05W F TC=0+=100 RESISTOR 267 1% .125W F TC=0+=100	24246 24246 24246 24246 54246	C4-1/8-T0-511R-F C4-1/8-T0-10R0-F C4-1/8-T0-90R-F C3-1/8-T00-26R1-G C4-1/8-T0-287R-F
A3A 1 A2R3 1 A3A 1 A2R3 2 A3A 1 A2R3 3 A3A 1 A2R3 4 A3A 1 A2R3 5	0698-3443 0698-3443 0698-3443 0698-3443	0 0 2 0	RESISTOR 19.6 1% .125W F TC=0+=100 RESISTOR 287 1% .125W F TC=0+=100 RESISTOR 287 1% .125W F TC=0+=100 RESISTOR 19.6 1% .125W F TC=0+=100 RESISTOR 287 1% .125W F TC=0+=100	54246 03688 54246 03886	PME55=1/8=T0=19R6=F C4=1/8=T0=287R=F C4=1/8=T0=287R=F PME55=1/8=T0=19R6=F C4=1/8=T0=287R=F
A3A1A2R36 A3A1A2R37 A3A1A2R36 A3A1A2R39 A3A1A2R39	0698-3150 0757+0422 0757-0401 0698-3150 0757-0416	6 5 0 6 7	RESISTOR 2.37K 1X .125W F TCm0+=100 RESISTOR 909 1X .125W F TCm0+=100 RESISTOR 100 1X .125W F TCm0+=100 RESISTOR 2.37K 1X .125W F TCm0+=100 RESISTOR 511 1X .125W F TCm0+=100	54246 54249 54249 54246	C4=1/8=T0=2371=F C4=1/8=T0=909R=F C4=1/8=T0=101=F C4=1/8=T0=2371=F C4=1/8=T0=2371=F
A3A1A2R41 A3A1A2R42 A3A1A2R43 A3A1A2R44 A3A1A2R44	0757-0394 0698-0084 0698-3155 0698-0084 0698-0084	0 9 1 9	RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 2.15K 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100 RESISTOR 2.15K 1% .125W F TC=0+=100 RESISTOR 2.15K 1% .125W F TC=0+=100	54249 54249 54249 54249 54249	C4=1/8=T0=51R1=F C4=1/8=T0=2151=F C4=1/8=T0=2151=F C4=1/8=T0=2151=F C4=1/8=T0=2151=F
A3A1A2R#6 A3A1A2R#7 A3A1A2R#8 A3A1A2R#9 A3A1A2R#9	0757-0279 0757-0439 0757-0416 0757+0279 0757-0439	0 4 7 0 4	RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 6.81K 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100 RESISTOR 6.81K 1% .125W F TC=0+=100	54249 54249 54249 54249	C4=1/8=T0=3161=F C4=1/8=T0=6611=F C4=1/8=T0=511R=F C4=1/8=T0=3161=F C4=1/8=T0=6611=F
A3A1A2R51 A3A1A2R52 A3A1A2R53 A3A1A2R54 A3A1A2R55	0757-0416 0757-0260 0757-0394 0757-0394 0757-0422	7 3 0 0 5	RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 909 1% .125W F TC=0+=100	24246 24246 24246 24246 54246	C4=1/8=T0=511R=F C4=1/8=T0=1001=F C4=1/8=T0=51R1=F C4=1/8=T0=51R1=F C4=1/8=T0=909R=F
A3A1A2R56 A3A1A2R57 A3A1A2R58 A3A1A2R59 A3A1A2R60	0698-3150 0757-0401 0757-0401 0698-3150 0757-0260	6 0 6 3	RESISTOR 2,37K 1% ,125W F TC=0+=100 RESISTOR 100 1% ,125W F TC=0+=100 RESISTOR 100 1% ,125W F TC=0+=100 RESISTOR 2,37K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100	24246 24246 24246 54246	C4-1/8-T0-2371-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-2371-F C4-1/8-T0-1001-F
A3A;A2R61 A3A;A2R62 A3A;A2R63 A3A;A2R64 A3A;A2R65	0698=3441 0757=0401	8	RESISTOR 215 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED	24546	C4-1/8-T0-215R-F C4-1/8-T0-101-F
A3A1A2R66 A3A1A2R67#	0698-3441	8	NOT ASSIGNED RESISTOR 215 1% 125W F TC#0+=100 *FACTORY SELECTED PART	24546	C4-1/8-T0-215R=F
A3A1A2R68+ A3A1A2R69+	0698-3431	8	RESISTOR 23,7 1x ,125W F TC=0+=100 +FACTORY SELECTED PART RESISTOR 215 1X ,125W F TC=0+=100	03688 24546	PME55-1/8-T0-23R7-F C4-1/8-T0-215R-F
ITSALAEA	08553=6012	5	*FACTORY SELECTED PART TRANSFORMER, RF, BLUE	28480 28480	08553=6012 08553=6012
275818E8 275818E8 275818E8	08553-6012 08553-6012	5	TRANSFORMER, RF, BLUE TRANSFORMER, RF, BLUE PART OF A3A1A2C56	58480 54440	08553-6012
A3A1A2TP2 A3A1A2TP3 A3A1A2TP4	1251-0600 1251-0600 1251-0600	000	CONTACT=CONN U/W=POST=TYPE MALE DPSLDR CONTACT=CONN U/W=POST=TYPE MALE DPSLDR CONTACT=CONN U/W=PDST=TYPE MALE DPSLDR	28480 28480 28480	1251=0600 1251=0600 1251=0600

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
ABALAZNI	86701=60031	17	1	CABLE ASSEMBLY, GRAY/RED/WHITE	28480	86701=60031
ABALARY1T	0410=1086	5	1	CRYSTAL, 3.5714 MHZ +-0.001% A3A1A2 MISCELLANEOUS	26480	0410-1086
	2190-0009 2200-0101 2580-0002 6040-0239 86701-60073	4 0 4 9 7	14 22 1	WASMER-LK INTL T NO. 8 .168=IN-ID SCREW-MACH 4-40 .186=IN-LG PAN-HD-PDZI NUT-HEX-DBL-CHAM 8-32-THD .085=IN-THK LUBRICANT-GREASE SIL BHIELD ASSEMBLY	28480 00000 00000 05820 28480	2190=0009 Order by description Order by description 120 86701=60073
	86701-20039 86701-40001	1 9	1	COVER, P.C. VCXO EXTRACTOR, P.C.	28480 28480	86701=20039 86701=40001
A3A1A3	86701=60019	1	1	M/N PHASE DETECTOR ASSEMBLY	28480	86701=60019
A3A1A3C1 A3A1A3C2 A3A1A3C3 A3A1A3C4 A3A1A3C5	0160-4299 0160-4299 0160-4299 0180-1731 0160-0157	7 7 7 8 8	5 2	CAPACITOR-PXD 2200PF +=20% 250VDC CER CAPACITOR-FXD 2200PF +=20% 250VDC CER CAPACITOR-FXD 2200PF +=20% 250VDC CER CAPACITOR-FXD 4,7UF+=10% 50VDC TA CAPACITOR-FXD 4700PF +=10% 200VDC PDLYE	56289 56289 56289 56289 28480	C067F251F222M822=CDH C067F251F222M822=CDH C067F251F222M822=CDH 150D475X9050B2 0160=0157
A3A1A3C6 A3A1A3C7 A3A1A3C8 A3A1A3C9 A3A1A3C10	0160=0161 0160=0157 0160=3535 0160=3535 0160=0161	48224	2	CAPACITOR=FXD .01UF +=10% 200VDC POLYE CAPACITOR=FXD 4700PF +=10% 200VDC POLYE CAPACITOR=FXD 560PF +=3% 300VDC MICA CAPACITOR=FXD .01UF +=10% 200VDC POLYE	26480 28480 28480 28480 28480	0160=0161 0160=0157 0160=3535 0160=3535 0160=0161
A3A1A3C11 A3A1A3C12 A3A1A3C13 A3A1A3C14 A3A1A3C15	0160=4299 0160=4299 0160=4299 0160=2406 0160=3877	7 7 7 4 5	1 2	CAPACITOR=FXD 2200PF +=20% 250VDC CER CAPACITOR=FXD 2200PF +=20% 250VDC CER CAPACITOR=FXD 2200PF +=20% 250VDC CER CAPACITOR=FXD 27UF +=10% 80VDC POLYE CAPACITOR=FXD 100PF +=20% 200VDC CER	56289 56289 56289 28480 28480	C067F251F222M822=CDH C067F251F22M822=CDH C067F251F222M822=CDH 0160=2406 0160=3677
A3A1A3C16 712A1A6A 712A1A6A 7133C14 83A1A3C0	0140-0196 0160-2204 0160-4299 0160-4299 0160-3879	3 0 7 7	i	CAPACITOR-FXD 150PF +-5% 300VDC MICA CAPACITOR-FXD 100PF +-5% 300VDC MICA CAPACITOR-FXD 2200PF +-20% 250VDC CER CAPACITOR-FXD 2200PF +-20% 250VDC CER CAPACITOR-FXD _01UF +-20% 100VDC CER	72136 28480 56289 56289 28480	DM15F151J0300WV1CR 0160=2204 C067F251F222M822=CDH C067F251F222M822=CDH 0160=3879
A3A1A3C21 A3A1A3C22 E3A1A3CA B3A1A3CA B3A1A3CB5	0160=4299 0160=4299 0160=3879 0180=0291 0180=0197	7 7 7 3 8	1	CAPACITOR=FXD 2200PF +=20% 250VDC CER CAPACITOR=FXD 2200PF +=20% 250VDC CER CAPACITOR=FXD 0.01UF +=20% 100VDC CER CAPACITOR=FXD 1UF+=10% 35VDC TA CAPACITOR=FXD 2.2UF+=10% 20VDC TA	56289 56289 26480 56289 56289	C067F251F222M822=C0H C067F251F222M822=C0H 0160=3879 150D105X9035A2 150D225X9020A2
A3A1A3C26	0160-3878	6		CAPACITOR=FXD 1000PF +=20% 100VDC CER	28460	0160=3878
A3A1A3L1 A3A1A3L2 A3A1A3L3 A3A1A3L4 A3A1A3L5	9100=1641 9100=2259 9100=1641 9100=2562 9100=2562	08066	7 2 2	COIL-MLD 240UH 5% Q=65 .1550%.375LG-NOM COIL-MLD 1,5UH 10% Q=32 .0950%.25LG-NOM COIL-MLD 240UH 5% Q=65 .1550%.375LG-NOM COIL-MLD 100UH 10% Q=50 .1560%.375LG-NOM COIL-MLD 100UH 10% Q=50 .1560%.375LG-NOM	28480 28480 28480 28480 28480	9100-1641 9100-2259 9100-1641 9100-2562 9100-2562
T SOEALAEA	1853-0451 1853-0451	5		TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW Transistor PNP 2N3799 SI TO-18 PD=360MW	01295 01295	2N3799 2N3799
A3A1A3R1 A3A1A3R2	0698=3154 0698=3154	0		RESISTOR 4.22K 1% ,125W F TC#0+=100 RESISTOR 4.22K 1% ,125W F TC#0+=100	24546 24546	C4-1/8-T0-4221-F C4-1/8-T0-4221-F
A3A1A3R3 A3A1A3R4 A3A1A3R5	0698-7212 0698-7219	9	12	NOT ASSIGNED RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 196 1% .05W F TC=0+=100	24546 24546	C3=1/8=T0=100R=G C3=1/8=T0=196R=G
ABALABRO ABALABRO ABALABRO ABALABRO ABALABRIO	0698=7219 0698=7212 0698=7236 0698=7236	6 9 7 7		NOT ASSIGNED RESISTOR 196 1% .05W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100	24546 24546 24546 24546	C3=1/8=T0=196R=G C3=1/8=T0=100R=G C3=1/8=T0=1001=G C3=1/8=T0=1001=G
A3A1A3R11 A3A1A3R12 A3A1A3R13 A3A1A3R14 A3A1A3R15	0698+3154 0757+0438 0698-3260 0757-0416 0757-0416	0 3 9 7	i	RESISTOR 4,22K 1% .125W F TC=0+=100 RESISTOR 5,11K 1% .125W F TC=0+=100 RESISTOR 404K 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100	24546 24546 28480 24546 24546	C4-1/8-70-4221-F C4-1/8-70-5111-F 0698-3260 C4-1/8-70-511R-F C4-1/8-70-511R-F
A3A1A3R16 A3A1A3R17 A3A1A3R18 A3A1A3R19 A3A1A3R20	0757=0442 0757=0401 0757=0401 0757=0438 0698=3157	0 0 3 3		RESISTOR 10K 1% .125W F TC#0+-100 RESISTOR 100 1% .125W F TC#0+-100 RESISTOR 100 1% .125W F TC#0+-100 RESISTOR 5.11K 1% .125W F TC#0+-100 RESISTOR 19,6K 1% .125W F TC#0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-5111-F C4-1/8-T0-1962-F
A3A1A3R21 A3A1A3R22 A3A1A3R23 A3A1A3R24 A3A1A3R25	0757*0438 0696=3154 0698=3450 0698*3450 0698*0083	3000	13	RESISTOR 5.11K 1% .125W F TC#0+=100 RESISTOR 4.22K 1% .125W F TC#0+=100 RESISTOR 42.2K 1% .125W F TC#0+=100 RESISTOR 42.2K 1% .125W F TC#0+=100 RESISTOR 1.96K 1% .125W F TC#0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-5111=F C4-1/8-T0-4221=F C4-1/8-T0-4222=F C4-1/8-T0-4222=F C4-1/8-T0-4222=F C4-1/8-T0-1961=F
ABALABRRA ABALABRRA ABALABRRA	0757-0401 0757-0438 0757-0438	3		RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 5,11K 1% .125W F TC=0+-100 RESISTOR 5,11K 1% .125W F TC=0+-100	24546 24546 24546	C4-1/8-T0-101=F C4-1/8-T0-5111=F C4-1/8-T0-5111=F

Table 6-3. Replaceable Parts

				Table 0-3. Replaceable Falls		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3A1A3TP1 A3A1A3TP2 A3A1A3TP3 A3A1A3TP4 A3A1A3TP5	1251=0600 1251=0600 1251=0600 1251=0600 1251=0600	00000		CONTACT=CONN U/W=POST=TYPE MALE OPSLOR	28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600
A3A1A3TP6 A3A1A3TP7 A3A1A3TP8 A3A1A3TP9 A3A1A3TP10	1251=0600 1251=0600 1251=0600 1251=0600 1251=0600	00000		CONTACT=CONN U/W=POST=TYPE MALE DPSLDR	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600
ASALASTP11	1251-0600	0		CONTACT-CONN U/W-POST-TYPE MALE DPSLOR	28480	1251-0600
1464	1820=1344 1820=1225 1820=0802 1820=0820 1810=0251	8 4 1 3	5 5 5	IC PL LOOP 14-DIP-C IC FF ECL D-M/S DUAL IC GATE ECL NOR QUAD 2-INP IC FF ECL J-BAR K-BAR COM CLOCK DUAL NETWORK-RES 10-PIN-SIP ,1-PIN-SPCG	04713 04713 04713 04713 04713 28480	MC12040L MC10231P MC10102P MC10135L 1810=0251
A3A1A3U6 A3A1A3U7 A3A1A3U6 A3A1A3U9 A3A1A3U10	1810=0204 1820=0092 1820=0821 1810=0204 1810=0204	6 3 6 6	7 4 2	NETWORK-RES S-PIN-SIP ,1=PIN-SPCG IC OP AMP TO=99 IC CNTR ECL SIN UP/DOWN SYNCHRO NETWORK-RES S-PIN-SIP ,1=PIN-SPCG NETWORK-RES S-PIN-SIP ,1=PIN-SPCG	11236 26480 04713 11236 11236	750-81-R1K 1826-0092 MC10136L 750-81-R1K 750-81-R1K
A3A1A3U11 A3A1A3U12 A3A1A3U13 A3A1A3U14 A3A1A3U15	1820-0806 1820-0802 1820-1225 1810-0251 1856-0059	5 1 4 3 2	z i	IC GATE ECL DR-NOR DUAL 4-5-INP IC GATE ECL NOR GUAD 2-INP IC FF ECL D-M/8 DUAL NETWORK-RES 10-PIN-SIP ,1-PIN-SPCG IC 201A DP AMP T0-99	04713 04713 04713 28480 07263	MC10109P MC10122P MC10231P 1810-0251 LM201AM
A3A1A3U16 A3A1A3U17 A3A1A3U18 A3A1A3U19 A3A1A3U20	1810=0204 1820=0802 1820=0820 1820=0821 1810=0204	6 1 3 4 6		NETWORK-RES 8-PIN-8IP .1-PIN-8PCG IC GATE ECL NOR QUAD 2-INP IC FF ECL J-BAR K-BAR COM CLOCK DUAL IC CNTR ECL BIN UP/DOWN SYNCHRO NETWORK-RES 8-PIN-8IP .1-PIN-8PCG	11236 04713 04713 04713 11236	750-81-Rik MC10102P MC10135L MC10136L 750-81-Rik
A3A1A3U21 A3A1A3U22 A3A1A3U23 A3A1A3U24	1810-0204 1810-0251 1820-0806 1820-0802	6 3 5		NETWORK-RES S-PIN-SIP .1-PIN-SPCG NETWORK-RES 10-PIN-SIP .1-PIN-SPCG IC GATE ECL OR-NOR DUAL 4-5-INP IC GATE ECL NOR GUAD 2-INP	11236 28480 04713 04713	750=81=R1K 1810=0251 MC10109P MC10102P
a3a1a3vRi	1902-3082	9		DIODE-ZNR 4,649 5% DO-7 PD#.4W TC=+.023%	28480	1902-3082
ASA1ASW1 ASA1ASW2	86701=60051 86701=60060	2	1 1	CABLE ABBEMBLY, WHITE/RED CABLE ASSEMBLY, GRAY/WHITE	28480 28480	86701-60051 86701-60060
	1			ABAIAB MISCELLANEOUS		
	0520-0126 0520-0129 0590-0533 1205-0285 2190-0014	7 8 5 0 1	15 3 13	SCREM-MACH 2-56 .25=IN-LG PAN-HD-POZI SCREW-MACH 2-56 .312=IN-LG PAN-HD-POZI THEADED INSERT-NUT 2-56 .06-LG 38T HEAT SINK SGL DIP-PKG WASHER-LK INTL T NO. 2 .089-IN-ID	58480 58480 60000 00000	ORDER BY DESCRIPTION ORDER BY DESCRIPTION 0590-0533 1205-0285 2190-0014
	2190-0124 2200-0101 2200-0103 2950-0078 6040-0239	40200	67	WASHER-LK INTL T NO. 10 .195-IN-ID SCREW-MACH 4-40 .188-IN-LG PAN-HO-POZI SCREW-MACH 4-40 .25-IN-LG PAN-HO-POZI NOT-MEX-DBL-CHAM 10-32-TMD .067-IN-THK LUBRICANT-GREASE SIL	28480 00000 00000 28480 05820	2190-0124 ORDER BY DESCRIPTION ORDER BY DESCRIPTION 2950-0078 120
	86701-00032 86701-00033 86701-20038 86701-40001	0	1	BRACKET, MEAT SINK BRACKET, MS COVER, P.C. M/N DETECTOR EXTRACTOR, P.C.	28480 28480 28480 28480	86701-00032 86701-00033 86701-20038 86701-40001
PAIAEA	86701=60065	7	1	M/N VCO ASSEMBLY	28480	86701=60065
A3A1A4A2 A3A1A4A2 A3A1A4A2C1 A3A1A4A2C2 A3A1A4A2C4	86701-60029 86701-60027 0160-3878 0160-3878 0160-3879 0160-3878	1		VCO RESONATOR ASSEMBLY BOARD ASSEMBLY, M/N VCO CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 010F +=20% 100VDC CER CAPACITOR=FXD 1000PF +=20% 100VDC CER	28480 28480 28480 28480 28480	86701-60029 86701-60027 0160-3878 0160-3878 0160-3879 0160-3878
A3A1A4A2C5 A3A1A4A2C6 A3A1A4A2C7 A3A1A4A2C8 A3A1A4A2C8	0180+0116 0160=3878 0160+3878 0160+3873 0160+3873	16616	1	CAPACITOR-FXD 6.8UF+=10% 35VDC TA CAPACITOR-FXD 1000FF +=20% 100VDC CER CAPACITOR-FXD 1000FF +=20% 100VDC CER CAPACITOR-FXD 4.7FF +=.5PF 200VDC CER CAPACITOR-FXD 1000FF +=20% 100VDC CER	56289 28480 28480 28480 28480	150De85X903582 0160=3878 0160=3878 0160=3873 0160=3878
A3A1A4A2C10 A3A1A4A2C11 A3A1A4A2C1 A3A1A4A2C2 A3A1A4A2C3	0160=3879 0180=2161 9100=0346 9100=0346 86701=20051	7 0 0 0 7		CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .75UF+=10% 50VDC TA COIL=MLD 50NH 20% G040 .0050%,25LG=NOM COIL=MLD 50NH 20% G040 .0050%,25LG=NDM INDUCTOR	28480 56289 28480 28480 28480	0160=3879 150075449050A2 9100=0346 9100=0346 86701=20051

Table 6-3. Replaceable Parts

D-4	LID David	\		Table 6-3. Replaceable Parts	1 500	
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3A1A4A2L4 A3A1A4A2Q1 A3A1A4A2Q2 A3A1A4A2R1 A3A1A4A2R2	9140-0158 1854-0610 1854-0686 0757-0280 0698-7219	60036	1 1	COIL-MLD 10H 10% QB32 .095DX.25LG-NOM TRANSISTOR NPN 3I TO-46 FT=.8HZ TRANSISTOR NPN 8I TO-72 FD=200MW FT=4GHZ RESISTOR 1K % .125W F TC=0++100 RESISTOR 196 1X .05W F TC=0++100	28480 28480 28480 24546 24546	9140-0158 1854-0610 1854-0686 C4-1/8-T0-1001-F C3-1/8-T0-196R-G
ABA1A4AZRB	0698-7193	5	1	RESISTOR 16.2 1% .05W F TC=0+=100	24546	C3=1/8=T00=16R2=G
A3A1A4A2R4 A3A1A4A2R5 A3A1A4A2R6	0698=3154 0757=0428 0698=7262	0 1 9	6	RESISTOR 4,22K 1% ,125W F TC=0+-100 RESISTOR 1,62K 1% ,125W F TC=0+-100 RESISTOR 12,1K 1% ,05W F TC=0+-100	24546 24546 24546	C4=1/8=T0=4221=F C4=1/8=T0=1621=F C3=1/8=T0=1212=G
ABA1A4A2R7 ABA1A4A2R6 ABA1A4A2R9 ABA1A4A2R10 ABA1A4A2R11	0757=0428 0698=7254 0698=7205 0698=7265 0668=7250	0 2 5	1 4 1 1	RESISTOR 1,62K 1% .125W F TC=0+=100 RESISTOR 5.62K 1% .05W F TC=0+=100 RESISTOR 51.1 1% .05W F TC=0+=100 RESISTOR 16.2K 1% .05W F TC=0+=100 RESISTOR 3.83K 1% .05W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1621-F C3-1/8-T0-5621-G C3-1/8-T00-51R1-G C3-1/8-T02-22-G C3-1/8-T0-3831-G
A3A1A4A2R12 A3A1A4A2R13 A3A1A4A2R191 A3A1A4A2W1 A3A1A4A2W2	0757-0401 0757-0400 1251-0600 86701-60058 86701-20050	0 9 0 8 6	i 1 1	RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 90.9 1% .125W F TC=0+=100 CONTACT=CONN U/M=POST=TYPE MALE DPSLOR CABLE ABSEMBLY, VCO OUTPUT CABLE, S/R JUMPER	24546 24546 28480 28480 28480	C4-1/8-T0-101-F C4-1/8-T0-90R9-F 1251-0600 86701-60058 86701-20050
	0590-0526 0380-0020 86701-20052 0520-0128	6 0 8 7	14 1 2	A3A1A4A2 MISCELLANEOUS THREADED INSERT=NUT 4-40 .065-LG SST SPACER=RND .25=IN-LG .128-IN-ID SPACER, INSULATOR SCREW-MACH 2-56 .25-IN-LG PAN-HD=POZI	28480 00000 28480 00000	0590=0526 Order by description 86701=20052 Order by description
į	0520+0133 0610+0002 2190+0045 3050+0672 86701+20046	4 7 8 2 0	1 4 1 1	SCREW-MACH 2-56 ,5-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 0-80-THD .049-IN-THK WASHER-LK HLCL NO. 2 .086-IN-ID WASHER-SHLDR NM NO. 4 .118-IN-ID PROSE	28480 28480 28480	DRDER BY DESCRIPTION 0610-0002 2190-0045 3050-0672 86701-20046
454.45	86701=20047	1	1	SUPPORT, RESONATOR	28480	86701-20047
A3A1A5 A3A1A5C1	86701=60018		1	M/N GUTPUT ASSEMBLY	28480	86701-60018
A3A1A5C2 A3A1A5C3 A3A1A5C4 A3A1A5C5	0160+3678 0160=3878 0160=2255 0160=3678 0160=3678	6 6 6	1	CAPACITOR-FX0 1000PF +=20X 100VDC CER CAPACITOR-FX0 1000PF +=20X 100VDC CER CAPACITOR-FX0 8,2PF +=25FF 500VDC CER CAPACITOR-FX0 1000PF +=20X 100VDC CER CAPACITOR-FXD 1000PF +=20X 100VDC CER	28480 26480 28480 28480 28480	0160=3678 0160=3878 0160=2255 0160=3878 0160=3878
A3A1A9C6 A3A1A9C7 A3A1A9C8 A3A1A9C9 A3A1A9C10	0160=3878 0140=0192 0160=2204 0160=2055	6000	2	NOT ABBIGNED CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 689F +=5% 300VDC MICA CAPACITOR=FXD 100PF +=5% 300VDC MICA CAPACITOR=FXD .01UF +80~20% 100VDC CER	28480 72136 28480 28480	0160-3878 DM15E680J0300WV1CR 0160-2204 0160-2055
A3A1A5C11 A3A1A5C12 A3A1A5C13 A3A1A5C14 A3A1A5C14	0160=3879 0160=3879 0160=3879 0160=3878 0160=2055	7 7 7 6 9		CAPACITOR=FXD .DIUF +=20x 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 1000FF +=20x 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER	26480 26480 26480 26460 26460	0160=3579 0160=3879 0160=3879 0160=3878 0160=2055
A3A1A5C16 A3A1A5C17 A3A1A5C18 A3A1A5C19 A3A1A5C20	0160*3678 0160*3878 0160*2857 0160*2199 0160*3678	66326	1	CAPACITOR-FXD 1000FF +=20% 100VDC CER CAPACITOR-FXD 1000FF +=20% 100VDC CER CAPACITOR-FXD 100FF +=5% 500VDC CER 0+=60 CAPACITOR-FXD 300FF +=5% 300VDC MICA CAPACITOR-FXD 1000PF +=20% 100VDC CER	28480 28480 28480 28480 28480	0160=3878 0160=3878 0160=2257 0160=2199 0160=3878
ABALASC21 ABALASC22	0160-3878 0160-2266	4		CAPACITOR-FXD 1000FF +=20% 100VDC CER CAPACITOR-FXD 24PF +=5% 500VDC CER g+=30	28480 28480	0160=3878 0160=2266
A3A1A5C24 A3A1A5C24 A3A1A5C25	0160-0161 0160-0153	4 4		NOT ABSIGNED CAPACITOR=FXD .01UF +=10% 200VDC POLYE CAPACITOR=FXD 1000PF +=10% 200VDC POLYE	28480 28480	0160=0161 0160=0153
A3A1A5C26 A3A1A5C27 A3A1A5C28 A3A1A5C29 A3A1A5C30	0160-0161 0160-3534 0160-0298 0180-0197 0160-2055	4 1 8 8	1 1	CAPACITOR=FXD _01UF +=10X 200VDC PDLYE CAPACITOR=FXD 510PF +=5X 100VDC MICA CAPACITOR=FXD 1500PF +=10X 200VDC PDLYE CAPACITOR=FXD 2.2UF+=10X 20VDC TA CAPACITOR=FXD .01UF +80=20X 100VDC CER	28480 28480 28480 56289 28480	0160-0161 0160-3534 0160-0298 1500225x9020A2 0160-2055
A3A1A9C31 A3A1A9C32 A3A1A9C33 A3A1A9C34 A3A1A9C35	0180-0197 0160-3878 0160-3878 0160-3878 0160-3878	8 5 6 6 6		CAPACITOR=FXD 2.2UF+=10X 20VDC TA CAPACITOR=FXD 1000PF +=20X 100VDC CER CAPACITOR=FXD 1000PF +=20X 100VDC CER CAPACITOR=FXD 1000PF +=20X 100VDC CER CAPACITOR=FXD 1000PF +=20X 100VDC CER	56289 28480 28480 28480 28480	1500225x9020A2 0160-3878 0160-3878 0160-3878 0160-3878
A3A1A5C36 A3A1A5C37	0140=0192 0160~4351	2	ı	CAPACITOR-FXD 68PF +=5% 300VDC MICA CAPACITOR-FDTHRU 1000PF 20% 200V CER	72136 28480	DM15E680J0300WY1CR 0160-4351
ABA1ABJI ABA1ABJZ ABA1ABJB ABA1ABJJ4	1250-0657	5551	3	CONNECTOR=RF SMB M SGL=HOLE=FR S0=OHM CONNECTOR=RF SMB M SGL=HOLE=FR S0=OHM CONNECTOR=RF SMB M SGL=HOLE=FR 50=OHM CONNECTOR=RF SMB M PC S0=OHM	28480 28480 28480 28480	1250-0657 1250-0657 1250-0657 1250-1255
					:	

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
ASAIASLI ASAIASLZ	9100-0346 9100-0346	00		COIL-MLD 50NH 20% 0=40 .095D%,25LG-NOM COIL-MLD 50NH 20% 0=40 .0950%,25LG-NOM	28480 28480	9100=0346 9100=0346
A3A1A5L3 A3A1A5L3 A3A1A5L4	9100+0346 9100-2248	0	2	NOT ASSIGNED CDIL=MLD 50NH 20% G=40 .095D%,25LG=NDM CDIL=MLD 120NH 10% G=34 .095D%,25LG=NDM	28480 28480	9100=0346 9100=2248
A341A5L5 A3A1A5L6 A3A1A5L7 A3A1A5L8 A3A1A5L8	9100-2250 9100-1635 9100-1634 9100-1620 9140-0210	9 2 1 5 1	2 1 4 1	COIL-MLD 180NH 10% Q=34 .095D%.25LG=NDM COIL-MLO 91UH 5% Q=50 .1550%.375LG=NOM COIL-MLD 75UH 5% Q=55 .1550%.375LG=NDM COIL-MLD 15UH 10% Q=65 .1550%.375LG=NOM COIL-MLD 10UH 5% Q=50 .1550%.375LG=NOM	28480 28480 26480 26480 28480	9100=2250 9100=1635 9100=1634 9100=1620 9140=0210
A3A1A5L10 A3A1A5L11	9100-0346 9100-2248	0 5		COIL-WFD 150NH 10% 0=34 "062D%"52F0-W0W	28480 28480	9100+0346 9100+2248
A 3 A 1 A 5 Q 1 A 3 A 1 A 5 Q 3 A 3 A 1 A 5 Q 4 A 3 A 1 A 5 Q 5 A 3 A 1 A 5 Q 5	1854-0345 1853-0015 1854-0345 1854-0345 1854-0345	8 7 8 8	2	TRANSISTOR NPN 2N5179 8I TO=72 PD=200MW TRANSISTOR PNP 8I PD=200MW FT=500MHZ TRANSISTOR NPN 2N5179 8I TO=72 PD=200MW TRANSISTOR NPN 2N5179 8I TO=72 PD=200MW TRANSISTOR NPN 2N5179 8I TO=72 PD=200MW	04713 28480 04713 04713 04713	2NS179 1853=0015 2NS179 2NS179 2NS179
A3A1A5G6 A3A1A5G7 A3A1A5G8 A3A1A5G9	1854-0345 1854-0345 1854-0345 1854-0345	8 8 8		TRANSISTOR NPN 2M5179 SI TO-72 PD=200MW	04713 04713 04713 04713	2N5179 2N5179 2N5179 2N5179
A3A1A5R1 A3A1A5R2 A3A1A5R3 A3A1A5R4 A3A1A5R5	0698-7212 0698-7248 0698-7243 0698-7205 0698-7223	9 1 6 0 2	5 5 3	RESISTOR 100 1% .05W F TC=0+>100 RESISTOR 3.16K 1% .05W F TC=0+>100 RESISTOR 1.96K 1% .05W F TC=0+>100 RESISTOR 51.1 1% .05W F TC=0+>100 RESISTOR 287 1% .05W F TC=0+>100	24546 24546 24546 24546	C3-1/8-T0-100R-G C3-1/8-T0-3161-G C3-1/8-T0-1961-G C3-1/8-T00-51R1-G C3-1/8-T0-287R-G
A3A1A5R6 A3A1A5R7 A3A1A5R8 A3A1A5R8 A3A1A5R10	0698-7248 0698-7243 0698-7203 0698-7218 0698-7188	1 6 8 5 8	1 1 5	RESISTOR 3.16K 1% .05W F TC=0+=100 RESISTOR 1.96K 1% .05W F TC=0+=100 RESISTOR 42.2 1% .05W F TC=0+=100 RESISTOR 176 1% .05W F TC=0+=100 RESISTOR 10 1% .05W F TC=0+=100	54249 54249 54249 54249	C3-1/8-T0-3161-G C3-1/8-T0-1961-G C3-1/8-T0-142R2-G C3-1/8-T0-178R-G C3-1/8-T00-10R-G
A3A1A5R11 A3A1A5R12 A3A1A5R13 A3A1A5R14 A3A1A5R15	0698-7205 0698-7248 0698-7243 0698-7188 0698-7219	0 1 6 8 6		RESISTOR 51,1 1% ,05W F TC=0+=100 RESISTOR 3,16K 1% ,05W F TC=0+=100 RESISTOR 10,96K 1% ,05W F TC=0+=100 RESISTOR 10 1% ,05W F TC=0+=100 RESISTOR 196 1% ,05W F TC=0+=100	54246 54246 54246 54246	C3=1/8=T00=51R1=G C3=1/8=T0=3161=G C3=1/8=T0=1961=G C3=1/8=T0=10R=G C3=1/8=T0=196R=G
A3A1A5R16 A3A1A5R17 A3A1A5R18 A3A1A5R19 A3A1A5R20	0698-7188 0698-7212 0698-7208 0698-7212 0698-7222	8 9 3 9 1	1	RESISTOR 10 1% .05W F TC=0+=100 RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 60.1 1% .05W F TC=0+=100 RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 261 1% .05W F TC=0+=100	54249 54249 54249 54249	C3-1/8-T00-10R-G C3-1/8-T0-100R-G C3-1/8-T0-008R1-G C3-1/8-T0-100R-G C3-1/8-T0-261R-G
A3A1A5R21 A3A1A5R22 A3A1A5R23 A3A1A5R24 A3A1A5R25	0695-7223 0695-7188 0695-7229 0695-7212 0695-7247	28600	3	RESISTOR 287 1% .05W F TC=0+-100 RESISTOR 10 1% .05W F TC=0+-100 RESISTOR 511 1% .05W F TC=0+-100 RESISTOR 100 1% .05W F TC=0+-100 RESISTOR 2.87K 1% .05W F TC=0+-100	24546 24546 24546 24546	C3-1/8-T0-287R-G C3-1/8-T00-10R-G C3-1/8-T0-511R-G C3-1/8-T0-100R-G C3-1/8-T0-2871-G
A3A1A5R26 A3A1A5R27 A3A1A5R28 A3A1A5R29 A3A1A5R30	0696-7243 0698-7248 0698-7229 0698-7243 0698-7200	6 1 6 5	í	RESISTOR 1.96K 1% .05W F TC=0+=100 RESISTOR 3.16K 1% .05W F TC=0+=100 RESISTOR 511 1% .05W F TC=0+=100 RESISTOR 1.96K 1% .05W F TC=0+=100 RESISTOR 31.6 1% .05W F TC=0+=100	24546 24546 24546 24546	C3-1/8-70-1961-G C3-1/8-70-3161-G C3-1/8-70-3118-G C3-1/8-70-1961-G C3-1/8-700-3186-G
A3A1A5R31 A3A1A5R32 A3A1A5R33 A3A1A5R34 A3A1A5R35	0698-7224 0698-7188 0757-0280 0757-0279	3 8 3 0		RESISTOR 316 1X .05W F TC=0+-100 RESISTOR 10 1X .05W F TC=0+-100 RESISTOR 1K 1X .125W F TC=0+-100 RESISTOR 3.16K 1X .125W F TC=0+-100 NOT ASSIGNED	24546 24546 24546 24546	C3-1/8-70-315R-G C3-1/8-700-10R-G C4-1/8-70-1001-F C4-1/8-70-3161-F
A3A1A5R36 A3A1A5R37 A3A1A5R38	0698-7210 0698-7223	7	1	RESISTOR 82.5 1% .05W F TC#0+=100 RESISTOR 287 1% .05W F TC#0+=100 NOT ASSIGNED	24546 24546	C3=1/8=T00=82R5=G C3=1/8=T0=287R=G
A3A1A5R39 A3A1A5R40	0698=7248 0698=7205	10		RESISTOR 3,16K 1% ,05W F TC#0++100 RESISTOR 51,1 1% ,05W F TC#0+-100	24546 24546	C3=1/8=TC=3161=G C3=1/8=TC00=51R1=G
A3A1A5R41 A3A1A5U1	0698+7212 0955-0063	9		RESISTOR 100 1% .05W F TC=0+#100 MIXER. DOUBLE BALANCED	24546	C3=1/8=Y0=100R=G
AJASASUZ	1820-0736	0	1	IC CHÍR ECL BIN DUAL	28480 28480	0955-0063 1820-0736
ASA1ASVR1 ASA1ASVR2	1902-3070 1902-3070	5	2	DIDDE-ZNR 4,22V 5% DO-7 PD=,4K TC=-,038% DIDDE-ZNR 4,22V 5% DO-7 PD=,4W TC=-,038%	28480 28480	1902=3070 1902=3070
ASAIASWI	86701=20055	1	1	JUMPER, COAX AJA1AS MISCELLANEDUS PARTS	28480	86701=20055
	0360-0452 2190-0009 2190-0124 2200-0101 2200-0103	Notes	1	TERMINAL-SLDR LUG PL-MTG FOR-#10-SCR WASHER-LK INTL T NO. 8 .166-IN-ID WASHER-LK INTL T NO. 10 .195-IN-ID SCREN-MACH 4-40 .188-IN-LG PAN-HO-POZI SCREN-MACH 4-40 .25-IN-LG PAN-HO-POZI	28480 28480 28480 00000 00000	0360=0452 2190=0009 2190=0124 Order by description Order by description

Table 6-3. Replaceable Parts

Designation 2200-01 2550-00 2750-00 2	078 040001 078 040001 078 077 078 078 078 078 078 078 078 078	849993 923 6 111111 111111 11 8883191 744416 4	2 123	SCREW-MACH 4-40 ,375-IN-LG 82 DEG NUT-HEX-DBL-CHAM 8-32-THD .085-IN-THK NUT-HEX-DBL-CHAM 8-32-THD .085-IN-THK EXTRACTOR, P.C. COVER, TOP COVER, TOP COVER, P.C. M/N OUT COVER, BOTTOM SHIELD, HOUSING M/N REFERENCE MOTHER A88EMBLY CAPACITOR-FDTHRU 5000PF +80 =20% 200V CAPACITOR-FDTHRU 5000PF +80 =20% 200V CAPACITOR-FDTHRU 5000PF +80 =20% 200V CAPACITOR-FOTHRU 5000PF +80 =20% 200V CAPACITOR-FDTHRU 5000PF +80		ORDER BY DESCRIPTION ORDER BY DESCRIPTION 2950-0078 86701-40001 86701-20037 86701-20056 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20057 86701-20058 86701-00031
### ### ### ### ### ### ### ### ### ##	20056 20057 20057 6 437 4447 44	23 6 111111 111111 111 883191 74416 4	2 123	COVER, BOTTOM SHIELD, HOUSING M/N REFERENCE MOTHER ASSEMBLY CAPACITOR=FOTHRU 5000PF +80 =20% 200V CONNECTOR=FOTHRU 5000PF +80 =20% 200V CAPACITOR=FOTHRU 5000PF +80 =20% 200V CAPACITO	28	86701=20056 86701=20057 86701=20057 86701=60022 0160=2437
A3A1A6C1 A3A1A6C2 A3A1A6C3 A3A1A6C3 A3A1A6C3 A3A1A6C4 A3A1A6C5 A3A1A6C6 A3A1A6C6 A3A1A6C6 A3A1A6C7 A3A1A6C7 A3A1A6C7 A3A1A6C7 A3A1A6C7 A3A1A6C7 A3A1A6C1 A3A	4437 4437 4437 4437 4437 4437 4437 4437	111111 111111 111 883191 74416 4	2 1 2 3	CAPACITOR=FOTHRU 5000PF +80 =20% 200V CAPACITOR=FOTHRU 5000PF +80 =20%	20000000000000000000000000000000000000	0160=2437 0160=2437
A3A1A6C2 A3A1A6C3 A3A1A6C3 A3A1A6C4 A3A1A6C4 A3A1A6C5 A3A1A6C5 A3A1A6C6 A3A1A6C6 A3A1A6C6 A3A1A6C7 A3A1A6C6 A3A1A6C7 A3A1A6C1 A3A1A6C1 A3A1A6C1 A3A1A6C1 A3A1A6C1 A3A1A6C1 A3A1A6C1 A3A1A6AA3A1 A3A1A6AAA3A1 A3A1A6AAAAAAA A3A1A6AAAAAAAAAA	4377 44477 4477 44477 44477 44477 44477 44477 44477 44477 44477 44477 44477 44	11111 111111 111 8883191 744118 4	5	CAPACITOR-FOTHRU 5000PF +80 -20% 200V CAPACITOR-FOTHRU 5000PF +80 -20%	284480 28	0160-2437 0160-2437
ABA1A6C7 ABA1A6C7 ABA1A6C9 ABA1A6C9 ABA1A6C10 ABA1A6C12 ABA1A6C12 ABA1A6C12 ABA1A6C12 ABA1A6C12 ABA1A6C12 ABA1A6C13 ABA1A6C3A1A ABA1A6C3A1A ABA1A6C3A1A ABA1A6C3A1A ABA1A6C3A1A ABA1A6C3A1A ABA1A6C3A1A ABA1A6C3AB1A ABA1A6C3AB1A ABA1A6C3AB1A ABA1A6C3AB1A ABA1A6C3AB1A ABA1A6C3AB1A4 ABA1A6C3AB1A4 ABA1A6C3AB1A4 ABA1A6C3AB1A4 ABA1A6C3AB1A4 ABA1A6C3AB1A4 ABA1A6C3AB1A6C3 ABA1A6C3AB1A6C3 ABA1A6C3AB1A6C3AB1A6C3 ABA1A6C3AB1A6C3AB1A6C3AB1A6C3AB1A6C3B1A6	437 4437 4437 437 437 437 437 437 437 43	11111 11 883191 74416 4	5	CAPACITOR=FOTHRU 5000PF +80 =20% 200V CAPACITOR=FOTHRU 5000PF +80 =20% 200V CAPACITOR=TOTHRU 5000PF +80 =20% 200V CAPACITOR=FOTHRU 5000PF +80 =20%	284480 284480 284480 284480 284480 284480 284480 284480 284480 284480 284480 284480 284480 284480 284480 284480	0160=2437 0160=2437 0160=2437 0160=2437 0160=2437 0160=2437 5060=0112 1251=4423 1251=2035 1251=4174 0360=1514 2190=0009 DRDER BY DESCRIPTION 86701=00031
A3A1A6XA3A1A A3A1A6XA3A1A A3A1A6XA3A1A A3A1A6XA3A1A2 A3A1A6XA3A1A3 A3A1A6XA3A1A4 A3A1A6XA3A1A4 A3A1A6XA3A1A4 A3A1A6XA3A1A4	112 112 423 174 174 514 6009 0002 00031 00046 60012	883191 74418	5	CAPACITOR-FOTHRU 5000PF +80 -20% 200V CONNECTOR:15 CONTACTS CONNECTOR-15 CONTACTS CONNECTOR-PC 15-CONTACT, TOP CONNECTOR-PC 15-CONTACT, TOP & BOTTOM TERM CONNECTOR-PC EDGE 15-CUNT/ROW 2-ROWS CONNECTOR-PC 15-CONTACT, TOP & BOTTOM TERM A3A1A6 MISCELLANEOUS TERMINAL-STUD 3GL-PIN PRESS-MTG WASHER-LK INTL T NC. 8 168-IN-ID NUT-MEX-DBL-CHAM 8-32-THO .085-IN-THK INBULATOR	28480 28480 28480 28480 28480 28460 28460 28460 28460	0160-2437 5060-0112 5060-0112 1251-4423 1251-4174 1251-2035 1251-4174 0360-1514 2190-0009 DRDER BY DESCRIPTION 86701-00031
A3A1A6XA3A1A A3A1A6XA3A1B A3A1A6XA3A1A A3A1A6XA3A1A2 A3A1A6XA3A1A3 A3A1A6XA3A1A4 A3A1A6XA3A1A4 A3A1A6XA3A1A4 A3A1A6XA3A1A4	112 112 423 174 174 514 6009 0002 00031 00046 60012	883191 74418	5	CONNECTOR-15 CONTACTS CONNECTOR-PC 15-CONTACT, TOP CONNECTOR-PC 15-CONTACT, TOP & BOTTOM TERM CONNECTOR-PC EDGE 15-CUNT/ROW 2-ROWS CONNECTOR-PC 15-CONTACT, TOP & BOTTOM TERM A3A1A6 MISCELLANEOUS TERMINAL-STUD SGL-PIN PRESS-MTG WASHER-LK INTL T NC. 8 168-IN-ID NUT_MEX-DBL-CHAM 8-32-THO .085-IN-THK INSULATOR	284480 284480 284480 284480 284480 284460 284460 2844600	\$060-0112 1251-4423 1251-4174 1251-2035 1251-4174 0360-1514 2190-0009 DRDER BY DESCRIPTION 86701-00031
A3A2C 0160-4 A3A2C 0160-4 A3A2C2 0160-2 A3A2C3 0160-2 A3A2C3 0160-4 A3A2C5 0160-4 A3A2C5 0160-4 A3A2C7 0160-4 A3A2C7 0160-4 A3A2CR1 1901-0 A3A2CR2 1901-0 A3A2CR3 1901-0 A3A2CR3 1901-0	002 00031 00046 60012	4	ş	TERMINAL-STUD SGL-PIN PRESS-MTG WASHER-LK INTL T NO. 8 168-IN-ID NUT-MEX-DBL-CHAM 8-32-THO 085-IN-THK INBULATOR	28460 00000 28460	2190-0009 DRDER BY DESCRIPTION 86701-00031
A3A2C	002 00031 00046 60012	4	ş	WASHER-LK INTL T NO. 8 .168+IN-IO NUT-HEX-DBL-CHAM 8-32-THO .085-IN-THK INSULATOR	28460 00000 28460	2190-0009 DRDER BY DESCRIPTION 86701-00031
A3A2C1 0160-2 A3A2C2 0160-2 A3A2C3 0160-2 A3A2C4 0160-4 A3A2C5 0180-0 A3A2C6 0160-4 A3A2C7 0180-0 A3A2CR1 1901-0 A3A2CR2 1901-0 A3A2CR3 1901-0 A3A2CR3 1901-0	055		1		20400	86701=00046
ASA2C2 0160-2 ASA2C3 0160-2 ASA2C4 0160-4 ASA2C5 0180-0 ASA2C6 0180-0 ASA2C7 0180-0 ASA2C7 0180-0 ASA2CR2 1901-0 ASA2CR2 1901-0 ASA2CR3 1901-0 ASA2CR3 1901-0 ASA2CR3 1901-0			1	RECTIFIER ABSEMBLY	28480	86701-60012
A3A2CR1 1901-0 A3A2CR2 1901-0 A3A2CR3 1901-0 A3A2CR3 1901-0 A3A2CR4 1901-0 A3A2CR5 1901-0	055 084	9 9 8 0	1	CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD 1UF+=20% 50VDC TA	28480 28480 28480 28480 56289	0160=2055 0160=2055 0160=2055 0160=4084 150D105X0050A2
A3A2CR1 1901=0 A3A2CR2 1901=0 A3A2CR3 1901=0 A3A2CR4 1901=0 A3A2CR5 1901=0	084	8		CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD 2.2UF+=10% 20VDC TA	28480 56289	0160=4084 150D225x9020A2
	662 662 662	3 3 3 3	16	DIDDE=PWR RECT 100V 6A DIODE=PWR RECT 100V 6A DIODE=PWR RECT 100V 6A DIODE=PWR RECT 100V 6A DIODE=PWR RECT 100V 6A	04713 04713 04713 04713 04713	MR751 MR751 MR751 MR751 MR751
A3A2CR6 1901=0 A3A2CR7 1901=0 A3A2CR8 1901=0 A3A2CR9 1901=0 A3A2CR10 1901=0		3 3 3 3		DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A	04713 04713 04713 04713 04713	MR751 MR751 MR751 MR751 MR751
A3A2CR11 1901=0 A3A2CR12 1901=0 A3A2CR13 1901=0 A3A2CR14 1901=0 A3A2CR15 1990=0	496 496	3 1 1 1 8	2	DIDDE=PWR RECT 100V 6A DIDDE=PWR RECT 100V 6A DIDDE=PWR RECT 100V 12A DO=4 DIDDE=PWR RECT 100V 12A DO=4 LED=VIBIBLE LUM=INT=300UCD IF=50MA=MAX	04713 04713 04713 04713 28480	MR751 MR751 MR1121 MR1121 5082-4480
ABARCR16 1884-0 ABARCR17 1901-0 ABARCR18 1884-0	662	5 3 5	•	THYRISTOR-SCR 2N4186 VRRM=200 Didde=phr rect 100V 64 Thyristor-8CR 2N4186 VRRM=200	04713 04713 04713	2N4186 MR751 2N4186
A3A2F1 2110-0	001	8	1	FUSE IA 250V FAST-BLO 1,25%,25 UL IEC	75915	312001
A3A2R1 0698-0 A3A2R2 2100-3 A3A2R3 0757-0 A3A2R4 0698-3 A3A2R5 0698-3	123 346 444	8 0 2 1	1 9 5	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR=TRWR 500 10% C SIDE=ADJ 17=TRN RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100	24546 02111 24546 24546 24546	C4=1/8=T0=1961=F 43p50: C4=1/8=T0=10R0=F C4=1/8=T0=316R=F C4=1/8=T0=422R=F
A3A2R6 A3A2R7 0757-0 A3A2R8 0698-3		2		NOT ASSIGNED RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 316 1% ,125W F TC=0+=100	24546 24546	C4-1/8-70-10R0-F C4-1/8-70-316R-F
A3A2TP1 1251-0	600	0		CONTACT-CONN U/W-POST-TYPE MALE OPSLOR	28480	1251=0600

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3A2U1	1826-0126	4	1	IC 7818 V RGLTR T0-3	04713	MC781BCK
ABAZVRI ABAZVRZ	1902-3263 1902-3404	8	1	DIDDE-ZNR 24.99 2% DD-7 PD#.4% TC#+.081% DIODE-ZNR 82.59 5% DD-7 PD#.4% TC#+.082%	28450 28450	1902-3263 1902-3404
A3A2xF1	2110=0269	٥	12	FUSEHOLDER-CLIP TYPE .25D-FUSE	28480	2110=0269
		ļļ		AZAZ MISCELLANEOUS		
	0380-0617 0590-0526 1200-0081 1251-2313 2740-0003	16465	2 10 4	SPACER-PRESS-IN .187 IN MAX OD; .458 IN THREADED INSERT-NUT 4-40 .005-LG SST INSULATOR-FLG-BSHG NYLON CONNECTOR-SGL CONT SKT .04-IN-BSC-SZ RND NUT-HEX-W/LKWR 10-32-THD .125-IN-THK	28480 28480 28480 28480 00000	0380-0617 0590-0526 1209-0081 1251-2313 DRDER BY DESCRIPTION
	6040-0239 5000-9043 5040-6850 86701-00018 86701-00025	9 6 1 4 3	6 6 1	LUBRICANT-GREASE SIL Pin:p.c. Board Extractor Board Extractor Heat Sink Insulator	05620 28480 28480 28480 28480	120 5000=9043 5040=6850 86701=00018 86701=00025
A3A3	86701-60013	5	1	POSITIVE REGULATOR ASSEMBLY	28480	86701+60013
A3A3C1 A3A3C2 A3A3C4 A3A3C5	0180=2205 0180=0116 0180=1746 0160=2199 0180=0228	3 1 5 2 6		CAPACITOR=Fx0 .33UF+=10% 35VDC TA CAPACITOR=Fx0 6.8UF+=10% 35VDC TA CAPACITOR=Fx0 15UF+=10% 20VDC TA CAPACITOR=Fx0 30FF +=5% 300VDC MICA CAPACITOR=Fx0 22UF+=10% 15VDC TA	56289 56289 56289 28460 56289	1500334X903582 1500665X903582 1500156X902082 0160-2199 1500226X901582
A3A3C6 A3A3C7 A3A3C8 A3A3C9 A3A3C10	0180-0116 0180-0228 0160-3460 0160-3460 0160-2199	1 62 2	5	CAPACITOR-FXD 6.8UF++10X 35VDC TA CAPACITOR-FXD 22UF+-10X 15VDC TA CAPACITOR-FXD .05UF +80-20X 100VDC CER CAPACITOR-FXD .05UF +80-20X 100VDC CER CAPACITOR-FXD 30PF +-5X 300VDC MICA	56289 56289 26480 28480 28480	150D685x903582 150D226x901582 0160=3460 0160=3460 0160=2199
A3A3C11 A3A3C13 A3A3C13 A3A3C14 A3A3C15†	0180-0197 0180-0228 0160-0127 0180-0197 0160-4298	8 6 2 8 6	6	CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 22UF+=10% 15VDC TA CAPACITOR=FXD 1UF +=20% 25VDC CER CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 4700PF +=20% 250VDC CER	56289 56289 28480 56289 56289	150D225x9020A2 150D226x901582 0160-0127 150D225x9020A2 C067F251H472M322=C0H
ASASCRE ASASCRE ASASCRS ASASCR4 ASASCRE	1884-0018 1884-0046 1990-0487 1901-0033 1901-0033	59722		THYRISTOR-SCR 2M4186 VRRM=200 THYRISTOR-SCR VRRM=50 LED-Y1818LE LUM-INT=1MCD IF=20MA-MAX DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7	04713 03508 28480 28480 28480	2N4186 C230F 5082-4584 1901-0033 1901-0033
A3A3CR6 A3A3CR7 A3A3CR8 A3A3CR9 A3A3CR10	1901=0033 1901=0033 1901=0033 1900=0404 1990=0404	5 8 8		DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIDDE-GEN PRP 180V 200MA DO-7 LED-VISIBLE LUM-INTHSOGUCD IFHSOMA-MAX LED-VISIBLE LUM-INTHSOGUCD IFHSOMA-MAX	28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 5082-4480 5082-4480
ABABORII ABABORIZ	1901-0033 1901-0033	5		DIODE=GEN PRP 180V 200MA 00=7 DIODE=GEN PRP 180V 200MA DO+7	28480 28480	1901-0033 1901-0033
A3A3F1 A3A3F2	2110-0056 2110-0003	3		FUSE 6A 250V FAST-BLO 1.25x.25 UL IEC FUSE 3A 250V FAST-BLO 1.25x.25 UL IEC	75915 75915	312006 312003
A3A301 A3A302† A3A303 A3A304 A3A305	1854-0404 1853-0451 1853-0012 1854-0404 1854-0441	9405	3	TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW TRANSISTOR PNP 2N27904A SI TO-39 PD=600MM TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI PD=5,8W FT=800KMZ	26480 01295 01295 26460 26480	1854=0404 2N3799 2N2904A 1654=0404 1854+0441
A3A306 A3A307 A3A308 A3A309 A3A3010	1854-0404 1854-0404 1854-0404 1854-0005 1854-0039	00077	ı	TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN 2N708 SI TO-18 PD=360MW TRANSISTOR NPN 2N30538 SI TO-39 PD=1M	28480 28480 28480 28480 04713	1854-0404 1854-0404 1854-0405 2N3053
A3A3R1 A3A3R2 A3A3R3 A3A3R4 A3A3R5	0757-0443 0757-0401 0811-1659 0757-0418 0757-0443	000	1 3	RESISTOR 11K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR .27 5% 2W PM TC=0+=800 RESISTOR 619 1% .125W F TC=0+=100 RESISTOR 11K 1% .125W F TC=0+=100	24546 24546 75042 24546 24546	C4-1/8-T0-1102-F C4-1/8-T0-101-F BWHZ-27/100-J C4-1/8-T0-619R-F C4-1/8-T0-1102-F
A3A3R6 A3A3R7 A3A3R8 A3A3R9 A3A3R10	0757-0394 0698-3150 0698-3442 0698-8465 0698-6835	9	2	RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 2.37K 1% .125W F TC=0+=100 RESISTOR 257 1% .125W F TC=0+=100 RESISTOR 7.15K .5% .125W F TC=0+=50 RESISTOR 3.16K .5% .125W F TC=0+=50	24546 24546 24546 28480 24546	C4=1/8=T0=51R1=F C4=1/8=T0=2371=F C4=1/8=T0=237R=F 0698=8465 NC55=1/8=T2=3161=D
A3A3R11 A3A3R12 A3A3R13 A3A3R14 A3A3R15	0757-0280 0757-0278 0463-0275 0698-3444 0757-0346	1	5	RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 1.78K 1% .125W F TC=0+=100 RESISTOR 2.7 5% .25W FC TC==400/+500 RESISTOR 316 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100	24546 24546 01121 24546 24546	C4=1/8=T0=1001=F C4=1/8=T0=1781=F C827G5 C4=1/8=T0=316R=F C4=1/8=T0=10R0=F

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A3A3R16 A3A3R17 A3A3R18 A3A3R19 A3A3R20	0757=0278 0698=3162 0757=0442 0757=0438 0698=0083	9 0 9 3 8	1	#ESISTOR 1,78K 1% ,125W F TC=0+=100 RESISTOR 46,4K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 5,11K 1% ,125W F TC=0+=100 RESISTOR 1,96K 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1781=F C4-1/8-T0-4642=F C4-1/8-T0-1002=F C4-1/8-T0-5111=F C4-1/8-T0-1961=F
A3A3R21 A3A3R22 A3A3R23 A3A3R24 A3A3R25	0757-0317 0698-0084 0757-0278 0698-3629 0698-0084	7 9 9 4 9	1	RESISTOR 1.33K 1% .125W F TC=0+=100 RESISTOR 2.15K 1% .125W F TC=0+=100 RESISTOR 1.76K 1% .125W F TC=0+=100 RESISTOR 270 5% 2W MO TC=0+=200 RESISTOR 2.15K 1% .125W F TC=0+=100	24546 24546 24546 28480 24546	C4=1/8=T0=1331=F C4=1/8=T0=2:51=F C4=1/8=T0=1781=F 0098=3629 C4=1/8=T0=2:51=F
A3A3R26 A3A3R27 A3A3R26 A3A3R29 A3A3R30	0757-0401 0811-1661 0811-1661 0811-1661 0757-0419	0 8 8 0	3	RESISTOR 100 1% .125W F TC=0+=100 RESISTOR .39 5% 2W PW TC=0+=800 RESISTOR .39 5% 2W PW TC=0+=800 RESISTOR .39 5% 2W PW TC=0+=800 RESISTOR 681 1% .125W F TC=0+=100	24546 75042 75042 75042 24546	C4-1/8-T0-101-F 8mm2-39/100-J 8mm2-39/100-J 8mm2-39/100-J C4-1/8-T0-681R-F
A3A3R31 A3A3R32 A3A3R33 A3A3R34 A3A3R35	0757-0420 0698-3154 0757-0280 0698-6466 0698-6835	3 7 0	1	RESISTOR 750 1% ,125W F TC=0+=100 RESISTOR 4,22K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 942 ,5% ,125W F TC=0+=50 RESISTOR 3,16K ,5% ,125W F TC=0+=50	24546 24546 24546 28480 24546	C4=1/8=T0=751=F C4=1/8=T0=4221=F C4=1/8=T0=1001=F 0498=8466 NC55=1/8=T2=3161=D
A3A3R36 A3A3R37 A3A3R38 A3A3R39 A3A3R40	0698-6835 0683-0275 0698-3444 0757-0401 0757-0346	0 2		REBISTOR 3.16K .5% .125W F TC=0+=50 REBISTOR 2.7 5% .25W FC TC==400/+500 REBISTOR 316 1% .125W F TC=0+=100 REBISTOR 100 1% .125W F TC=0+=100 REBISTOR 10 1% .125W F TC=0+=100	24546 01121 24546 24546 24546	NC55=1/8-72-3161-D C827G5 C4-1/8-70-316R-F C4-1/8-70-101-F C4-1/8-70-10R0-F
A3A3R42 A3A3R43 A3A3R43 A3A3R40 A3A3R46	0698#3150 0757#0418 0698#3156 0757#0459 0698#3150	69286	i	RESISTOR 2,37K 1% ,125W F TC#0+=100 RESISTOR 619 1% ,125W F TC#0+=100 RESISTOR 14,7K 1% ,125W F TC#0+=100 RESISTOR 56,2K 1% ,125W F TC#0+=100 RESISTOR 2,37K 1% ,125W F TC#0+=100	24546 24546 24546 24546	C4-1/8-T0-2371-F C4-1/8-T0-619R-F C4-1/8-T0-1472-F C4-1/8-T0-5622-F C4-1/8-T0-2371-F
A3A3R46 A3A3R47 A3A3R48 A3A3R49 A3A3R80	0698-3150 0757-0290 0698-3150 0698-8464 2100-3095	6 5 6 5 5	4 2 1	RESISTOR 2.37K 1% .125W F TC#0++100 RESISTOR 6.19K 1% .125W F TC#0++100 RESISTOR 2.37K 1% .125W F TC#0++100 RESISTOR 12.6K ,5% .125W F TC#0++50 RESISTOR-TRMR 200 10% C SIDE-ADJ 17-TRN	24546 19701 24546 28480 02111	C4=1/8=T0=2371=F MF4C1/8=T0=6191=F C4=1/8=T0=2371=F 0698=8464 43P201
AJAJR51 AJAJR52 AJAJR53 AJAJR54 AJAJR55	0757-0440 0698-0084 0698-4405 0757+0280 0757-0401	7 6 3 0	i	RESISTOR 7,5X 1X ,125W F TC=0+=100 RESISTOR 2,15K 1X ,125W F TC=0+=100 RESISTOR 107 1X ,125W F TC=0+=100 RESISTOR 1K 1X ,125W F TC=0+=100 RESISTOR 100 1X ,125W F TC=0+=100	24546 24546 24546	C4=1/8=70=7501=F C4=1/8=70=2151=F C4=1/8=70=107R=F C4=1/8=70=1001=F C4=1/8=70=101=F
A3A3R56 A3A3R57 A3A3R58 A3A3R59	0698=3150 0757=0438 0698=3634 0757=0447	5 1 4	1 4	RESISTOR 2,37K 1% .125W F TG#0+-100 RESISTOR 5,11K 1% .125W F TC#0+-100 RESISTOR 470 5% 2W MO TC#0+-200 RESISTOR 16.2K 1% .125W F TC#0+-100	24546 24546 28480 24546	C4=1/8=T0=2371=F C4=1/8=T0=5111=F 0698=3634 C4=1/8=T0=1622=F
A3A3RT1 A3A3TP1 A3A3TP2 A3A3TP3 A3A3TP3 A3A3TP5	0837-0126 1251-0600 1251-0600 1251-0600 1251-0600	6 00000	1	THERMISTOR DISC 1K-DHM TCR-4.4%/C-DEG CONTACT-CONN U/W-POST-TYPE MALE DPSLOR	28480 28480 28480 28480 28480	0837=0126 1251=0600 1251=0600 1251=0600 1251=0600
A3A3TP6	1251-0600	0		CONTACT-CONN U/W=POST-TYPE MALE DPSLDR	28480	1251=0600
A3A3U1 A3A3U2 A3A3U3	1626-0161 1620-0223 1620-0223	7 0 0	1	IC 324 OP AMP 14-0IP-P IC 301 OP AMP T0-99 IC 301 OP AMP T0-99	16324 18324 18324	LM324=A LM301A LM301A
A3A3VR1 A3A3VR2 A3A3VR3 A3A3VR4 A3A3VR5	1902-3171 1902-0686 1902-3252 1902-0049 1902-0686	7 3 5 2 3	5 5 5	DIODE-ZNR 11V 5x DO-7 PDm.4w TC=+.062x DIODE-ZNR 1N825 6.2V 2x DO-7 PDm.4w DIODE-ZNR 22.6V 2x DO-7 PDm.4w TC=+.073x DIODE-ZNR 6.19V 5x DO-7 PDm.4w TC=+.022x DIODE-ZNR 1N825 6.2V 2x DO-7 PDm.4w	28480 04713 28480 28480 04713	1902-3171 19825 1902-3252 1902-0049 19825
A3A3VR6	1902-3082	9		DIGDE=ZNR 4,64V 5% 80=7 PD=.4W TC==.023%	26480	1902-3082
A3A3XF1 A3A3XF2	2110=0269 2110=0269	0		FUSEHOLDER-CLIP TYPE .25D-FUSE FUSEHOLDER-CLIP TYPE .25D-FUSE A3A3 MISCELLANEOUS	28480 28480	2110=0269 2110=0269
	0520-0128 2190-0014 2190-0027 2950-0051 5000-9043	7 1 6 8 6	i 3	SCREM-MACH 2-56 .25=IN-LG PAN-HD-POZI HASHER-LK INTL T NO. 2 .089-IN-ID HASHER-LK INTL T 1/4 IN .256-IN-ID NUT-MEX-DBL-CHAM 1/4-28-THD .094-IN-THK PIN:P.C. BOARD EXTRACTOR	00000 28480 28480 00000 28480	ORDER BY DESCRIPTION 2190=0014 2190=0027 ORDER BY DESCRIPTION 5000=9043
	5040=6850 86701=20036	8	1	BOARD EXTRACTOR MOUNTING BLOCK, DIODE	26480 26480	5040=6850 86701=20036

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3A4	86701=60014	6	1	NEGATIVE REGULATOR ASSEMBLY	28480	86701=60014
A3A4C1 A3A4C3 A3A4C4 A3A4C3	0160=2199 0180=0228 0180=1746 0160=2199 0180=0228	565		CAPACITOR=FXD 30PF +=5% 300VDC MICA CAPACITOR=FXD 22UF+=10% 15VDC TA CAPACITOR=FXD 15UF+=10% 20VDC TA CAPACITOR=FXD 30PF +=5% 300VDC MICA CAPACITOR=FXD 22UF+=10% 15VDC TA	28480 56269 56269 28460 56269	0160-2199 1500226x901582 1500156x902082 0160-2199
A3A4C6 A3A4C7 A3A4C8 A3A4C9 A3A4C10	0160-2199 0180-0228 0180-1731 0160-3460 0180-1746	2 6 8 2 5		CAPACITOR=FXD 30FF +=5% 390VDC MICA CAPACITOR=FXD 22UF+=10% 15VDC TA CAPACITOR=FXD 4,7UF+=10% 50VDC TA CAPACITOR=FXD ,05UF +80=20% 100VDC CER CAPACITOR=FXD 15UF+=10% 20VDC TA	28480 56289 56289 28480 56289	0160=2199 1500226x901582 1500475x905082 0160=3460 1500156x902082
A3A4C11 A3A4C121 A3A4C13 A3A4C14 A3A4C15	0160=0127 0160=0575 0160=0127 0160=0127 0160=3460	2422	2	CAPACITOR=FXD 1UF +=20% 25VDC CER CAPACITOR=FXD ,047UF +=20% 55VDC CER CAPACITOR=FXD 1UF +=20% 25VDC CER CAPACITOR=FXD 1UF +=20% 25VDC CER CAPACITOR=FXD ,05UF +80=20% 100VDC CER	28480 28480 28460 28460 28480	0160-0127 0160-0575 0160-0127 0160-0127 0160-3460
A3A4CR1 A3A4CR2 A3A4CR4 A3A4CR4	1901=0033 1901=0033 1901=0033 1901=0033	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		DIODE-GEN PRP 180V 200MA D0-7 DIODE-GEN PRP 180V 200MA D0-7 DIODE-GEN PRP 180V 200MA D0-7 DIODE-GEN PRP 180V 200MA D0-7 DIODE-GEN PRP 180V 200MA D0-7	28480 28480 28480 28480 28480	1901-0035 1901-0033 1901-0033 1901-0033 1901-0033
A3A4CR6 A3A4CR7 A3A4CR8 A3A4CR9 A3A4CR10	1901-0033 1901-0033 1901-0662 1901-0662 190-0404	223		DIODE-GEN PRP 180V 200MA DG-7 DIODE-GEN PRP 180V 200MA DD-7 DIODE-PWR RECT 100V 6A DIODE-PWR RECT 100V 6A LED-VISIBLE LUM-INT#300UCD IF#S0MA-MAX	28480 28480 04713 04713 28480	1901-0033 1901-0033 MR751 MR751 5082-4480
A3A4CR11 A3A4CR12 A3A4CR13 A3A4CR14 A3A4CR15	1990=0404 1901=0662 1990=0404 1901=0033 1901=0159	85825	2	LED-VISIBLE LUM-INT=300UCD IF=50MA=MAX DIODE-PHR RECT 1000 6A LED-VISIBLE LUM-INT=350UCD IF=50MA=MAX DIODE-GEN PRP 180V 200MA DO-7 DIODE-PHR RECT 400V 750MA DO-41	28480 04713 28480 28480 28480	5082-4460 MR751 5082-4460 1901-0033 1901-0159
A3A4CM16= A3A4CM24 A3A4CM25 A3A4CM26 A3A4CM27	1584-0018 1884-0018 1884-0018	555		NOT ASSIGNED THYRISTOR-SCR 2N4186 VRRM=200 THYRISTOR-SCR 2N4186 VRRM=200 THYRISTOR-SCR 2N4186 VRRM=200	04713 04713 04713	2N4186 2N4186 2N4186
A3A4F1 A3A4F2 A3A4F3	2110=0083 2110=0043 2110=0010	6 8 9	1 2 1	FUSE 2.5A 250V FAST=8LO 1.25x.25 UL IEC FUSE 1.5A 250V FAST=8LO 1.25x.25 UL IEC FUSE 5A 250V FAST=8LO 1.25x.25 UL IEC	28480 28480 75915	2110-0083 2110-0043 312005
ABAUK1	0490-0916	6	1	RELAY-REED 14 500MA 50VDC 5VDC-COIL 10VA	28480	0490=0916
ABA401 ABA402 ABA403 ABA405	1854+0404 1854-0441 1853-0001 1853-0007 1854-0271	1 7 9	1 6 1	TRANSISTOR NPN SI TC=16 PD=360MW TRANSISTOR NPN SI PD=5.8W FT=800KHZ TRANSISTOR PNP 8I TC=39 PD=600MW TRANSISTOR PNP 2N3251 8I TC=16 PD=360MW TRANSISTOR NPN 8I TC=39 PC=1W FT=150MHZ	28480 28480 28480 04713 28480	1854-0404 1854-0441 1853-0001 2N3251 1854-0271
A3A4Q6 A3A4Q7	1854-0404	0		TRANSISTOR NPN SI TO=18 PD#360MW Transistor npn si TD=18 PD#360MW	28480 28480	1854-0404 1854-0404
A3A4R2 A3A4R2 A3A4R3 A3A4R4 A3A4R5	0811=1552 0757=0421 0757=0438 0757=0280 0698=6835	0 4 3 3 0		RESISTOR .56 5% 2W PW TC=0+=000 RESISTOR 825 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 3.16K .5% .125W F TC=0+=50	75042 24546 24546 24546 24546	8#H2-9/16-2 C4-1/8-T0-825R-F C4-1/8-T0-5111-F C4-1/8-T0-1001-F NC55-1/8-T2-3161-D
A3A4R* A3A4R* A3A4R* A3A4R* A3A4R*	0698-6835 0698-6835 0683-0275 0698-3444 0757-0346	0 0 9 1 2		RESISTOR 3,16K .5% .125W F TC#0+-50 RESISTOR 3,16K .5% .125W F TC#0+-50 RESISTOR 2.7 5% .25W FC TC#-400/+500 RESISTOR 3.6 1% .125W F TC#0+-100 RESISTOR 10 1% .125W F TC#0+-100	24546 24546 01121 24546 24546	NC55=1/8=72-3161-D NC55=1/8=72-3161-D CB2705 C4-1/8=70=316R=F C4-1/8=70-10R0=F
A3A4R12 A3A4R12 A3A4R13 A3A4R14 A3A4R15	0757-0280 0757-0428 0698-3447 0698-3444 0757-0346	3 1 4 1 2		RESISTOR 1K 1% 125W F TC=0+-100 RESISTOR 1.62K 1% 125W F TC=0+-100 RESISTOR 422 1% 125W F TC=0+-100 RESISTOR 316 1% 125W F TC=0+-100 RESISTOR 10 1% 125W F TC=0+-100	24546 24546 24546 24546	C4m1/8mT0=1001=F C4m1/8mT0=1621=F C4m1/8mT0=1621=F C4m1/8mT0m316R=F C4m1/8mT0m316R=F C4m1/8mT0m310R0=F
A3A4R16 A3A4R17 A3A4R16 A3A4R19 A3A4R20	0698-3444 0811-1665 0757-0280 0698-3449 0757-0280	1 6 3 6 3	1	RESISTOR 316 1% ,125W F TC=0+=100 RESISTOR ,82 5% 2W PW TC=0+=800 RESISTOR 1K 1% ,125W F TC=0+=100 RESISTOR 28,7K 1% ,125W F TC=0+=100 RESISTOR 1K 1% ,125W F TC=0+=100	24546 75042 24546 24546 24546	C4=1/8=T0=316R=F 8WH2=82/100=J C4=1/8=T0=1001=F C4=1/8=T0=2872=F C4=1/8=T0=1001=F
ASA4R21 ASA4R22 ASA4R23 ASA4R24 ASA4R25	0757-0442 0757-0442 0811-1552 0698-8464 0698-6835	9 0 5 0		RESISTOR 10K 1X .125W F TC=0+-100 RESISTOR 10K 1X .125W F TC=0+-500 RESISTOR .56 5% X AW PW TC=0+-500 RESISTOR 12.6K .5% .125W F TC=0+-50 RESISTOR 3.16K .5% .125W F TC=0+-50	24546 24546 75042 28480 24546	C4=1/8=T0=1002=F C4=1/8=T0=1002=F BMH2=9/10=J 0698=8464 NC55=1/8=T2=3161=D
	1	1				

See introduction to this section for ordering information $\ensuremath{\mbox{T}}$ - backdating information in section VII

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A3A4R26 A3A4R27 A3A4R26 A3A4R29 A3A4R30	0698-6835 0683-0275 0698-3444 0757-0346 0698-3150	9 2 4 6 0		RESISTOR 3,16K ,5x ,125W F TC=0+=50 RESISTOR 2,7 5x ,25W FC TC==400/+500 RESISTOR 316 1x ,125W F TC=0+=100 RESISTOR 10 1x ,125W F TC=0+=100 RESISTOR 2,37K 1x ,125W F TC=0+=100	24546 01121 24546 24546 24546	NC55=1/8=72=3161=D C827G5 C4=1/8=70=316R=F C4=1/8=70=1080=F C4=1/8=70=2371=F
A3A4R31 A3A4R32 A3A4R33 A3A4R34 A3A4R35	0698-3150 0812-0066 0812-0066 0812-0066 0757-0280	1 1 3	3	RESISTOR 2.37K 1% .125W F TC#0+=100 RESISTOR .33 5% 2W PW TC#0+=800 RESISTOR .33 5% 2W PW TC#0+=800 RESISTOR .33 5% 2W PW TC#0+=800 RESISTOR 1K 1% .125W F TC#0+=100	24546 75042 75042 75042 24546	C4-1/8-70-2371-F BMH2-33/100-J BMH2-33/100-J BMH2-33/100-J C4-1/8-70-1001-F
A3A4R36 A3A4R37 A3A4R38 A3A4R39 A3A4R40	0757-0441 0698-6635 0698-7050 0698-6853 0683-0275	80329	1 1	RESISTOR 6.25K 1% .125W F TC=0+=100 RESISTOR 3.16K .5% .125W F TC=0+=50 RESISTOR 4.46K .5% .125W F TC=0+=50 RESISTOR 7.66K .5% .125W F TC=0+=50 RESISTOR 2.7 5% .25W FC TC==400/+500	24546 24546 28480 24546 01121	C4-1/8-10-8251-F NC55-1/8-12-3161-D 0698-705 NC55-1/8-12-7681-D C627G5
A3A4R41 A3A4R42 A3A4R43 A3A4R44 A3A4R45	0757-0441 0696-3150 0757-0401 0757-0401 0757-0401	8 0 0 0	1	RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 31.6K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-8251-F C4-1/8-T0-3162-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-101-F
A1A4R46 A3A4R47	0757-0280 0757-0442	3		RESISTOR 1K 1x .125W F TC=0+=100 RESISTOR 10K 1x .125W F TC=0+=100	24546 24546	C4-1/8-TQ-1001-F C4-1/8-T0-1002-F
A3A4TP1 A3A4TP2 A3A4TP4 A3A4TP4	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	00000		CONTACT-CONN U/M-PUST-TYPE MALE DPSLDR CONTACT-CONN U/M-POST-TYPE MALE DPSLDR CONTACT-CONN U/M-POST-TYPE MALE DPSLDR CONTACT-CONN U/M-POST-TYPE MALE DPSLDR CONTACT-CONN U/M-POST-TYPE MALE DPSLDR	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600
A3A4U1 A3A4U2 A3A4U3	1820-0223 1820-0223 1820-0223	0		IC 301 OP AMP T0=99 IC 301 OP AMP T0=99 IC 301 OP AMP T0=99	18324 18324 18324	LM301A LM301A LM301A
A3A4VR1 A3A4VR2 A3A4VR3 A3A4VR4	1902-0025 1902-3171 1902-3330 1902-0049	4702	2	DIODE-ZNR 10V 5% DQ-7 PD=,4W TC=+,06% DIODE-ZNR 11V 5% DD-7 PD=,4W TC=+,062% DIODE-ZNR 44,2V 2% DD-7 PD=,4W TC=+,061% DIODE-ZNR 6,19V 5% DU-7 PD=,4W TC=+,022%	28480 28480 28480 28480	1902-0025 1902-3171 1902-3330 1902-0049
ASA4XF1 ASA4XF2 ASA4XF3	2110-0269 2110-0269 2110-0269	000		fUSEMOLDER-CLIP TYPE .25D-FUSE FUSEMOLDER-CLIP TYPE .25D-FUSE FUSEMOLDER-CLIP TYPE .25D-FUSE	28480 28480 28480	2110-0269 2110-0269 2110-0269
				ABA4 MISCELLANEGUS		
	5000+4043 5040=6850	6		PIN:P.C. BOARD EXTRACTOR BOARD EXTRACTOR	28480 28480	5000-9043 5040-6850
A3A5	86701-60015	,	i	DAC ASSEMBLY(DIGITAL>TO-ANALOG CONVERTER	28480	86701=60015
A3A9C1 A3A9C2 A3A9C3 A3A9C9 A3A9C9	0160=2058 0160=0228 0160=2055 0180=0229 0160=2055	9 6 9 7 9		CAPACITOR-FXD .01UF +80=20% 100VDC CER CAPACITOR-FXD 22UF+=10% 15VDC TA CAPACITOR-FXD .01UF +80=20% 100VDC CER CAPACITOR-FXD 33UF+=10% 10VDC TA CAPACITOR-FXD .01UF +80=20% 100VDC CER	26480 56289 26480 56289 28480	0160=2055 150D226X901582 0160=2055 150D336X901082 0160=2055
A3A3C6 A3A3C7 A3A3C8 A3A3C 9 A3A3C10	0180-0116 0180-1731 0160-2055 0180-1731 0160-2055	18989		CAPACITOR-FXD 6.8UF+-10% 354DC TA CAPACITOR-FXD 4.7UF+-10% 504DC TA CAPACITOR-FXD 4.01UF +80-20% 1004DC CER CAPACITOR-FXD 4.7UF+-10% 504DC TA CAPACITOR-FXD 8.7UF+80-20% 1004DC CER	56289 56289 28480 56289 28460	150D685x903582 150D475x905082 0160=2055 150D475x905082 0160=2055
A3A5C11 A3A5C12	0150+2141 0160+0160	6 3	1 1	CAPACITOR=FXD 3.3UF+=10% SOVDC TA CAPACITOR=FXD 8200PF +=10% 200VDC POLYE	56289 28480	150D335x905082 0160=0160
A3A8L1 A3A3L2 A3A5L3	9100-1641 9100-1641 9100-1641	000		COIL-MLD 240UH 5% D=65 .155D%,375LG-NOM CDIL-MLD 240UH 5% D=65 .155D%,375LG-NOM COIL-MLD 240UH 5% Q=65 .155D%,375LG-NOM	28480 28480 28480	9100+1641 9100+1641 9100+1641
A3A5Q1 A3A5Q2† A3A5Q3 A3A5Q4 A3A5Q4	1853-0007 1853-0451 1853-0451 1854-0404 1854-0475	7 5 5 0 5	3	TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW TRANSISTOR PNP 2N3799 BI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR-DUAL NPN PD=750MW	04713 01295 01295 28480 28480	2N3251 2N3799 2N3799 1854-0404 1854-0475
A3A5Q4 A3A5Q4 A3A5Q6 A3A5Q6 A3A5Q0† A3A5Q10†	1853=0451 1854=0474 1853=0007 1853=0451 1853=0451	54755	1	TRANSISTOR PNP 2N3799 SI TO-18 PDB360MW TRANSISTOR NPN SI PDB360MW FTB100MMZ TRANSISTOR PNP 2N3281 SI TO-18 PDB360MW TRANSISTOR PNP 2N3799 SI TO-18 PDB360MW TRANSISTOR PNP 2N3799 SI TO-18 PDB360MW TRANSISTOR PNP 2N3799 SI TO-18 PDB360MW	01295 28480 04713 01295 01295	2N3799 1854-0474 2N3251 2N3799 2N3799
A3A5011 A3A5012†	1853=0007 1853=0451	7 5	:	TRANSISTOR PNP 2N3251 SI TD=18 PD#360MW TRANSISTOR PNP 2N3799 SI TD=18 PD#360MW	04713 01295	2N3251 2N3799
ASASRI ASASRS ASASRS ASASRS ASASRS	0811=3404 0811=3358 2100=1654 2100=1448 0698=3447	56884	1 2 1	RESISTOR 3.55K .1% .025W PWN TC=0+=5 RESISTOR 7.2K .1% .025W PWN TC=0+=5 RESISTOR=TRMR 100 5% WN SIDE=ADJ 22=TRN RESISTOR=TRMR 200 5% WN SIDE=ADJ 22=TRN RESISTOR 422 1% .125W F TC=0+=100	28480 28480 32997 32997 24546	0811-3404 0811-3358 3057P-1-101 3057Y-1-201 C4-1/8-T0-422R-F
		Ш				

Table 6-3. Replaceable Parts

		_		Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3A5R6 A3A5R7 A3A5R6 A3A5R9 A3A5R10	0698-0083 0698-3156 0757-0290 0757-0401 0757-0438	8 2 5 0		RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 14.7K 1% .125W F TC=0+=100 RESISTOR 6.19K 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100	24546 24546 19701 24546 24546	C4=1/8=T0=1961=F C4=1/8=T0=1472=F MF4C1/8=T0=6191=F C4=1/8=T0=101=F C4=1/8=T0=5111=F
A3A5R11 A3A5R12 A3A5R13 A3A5R14 A3A5R15	0611=3357 0757=0438 2100=1662 0811=3359 0811=3357	7 3 8 9 7	2 1 5	RESISTOR 6,25K ,1% ,025W PWW TC=0+=5 RESISTOR 5,11K 1% ,125W F TC=0+=100 RESISTOR TRMR 50K 5% WW SIDE=ADJ 22=TRN RESISTOR 12,5K ,1% ,025W PWW TC=0+=5 RESISTOR 6,25K ,1% ,025W PWW TC=0+=5	28480 24546 32997 28480 28460	0811-3357 C4-1/8-70-5111-F 3057P-1-503 0811-3359 0813-3359
A3A5R16 A3A5R17 A3A5R18 A3A5R19 A3A5R20	0698-7879 0811-3359 2100-1654 0811-3359 2100-1656	49890	1	RESISTOR 14.3K 1% .125W F TC=0+=25 RESISTOR 12.5K .1% .025W PHW TC=0+=5 RESISTOR=TRMR 100 5% WW SIDE=ADJ 22-TRN RESISTOR 12.5K .1% .025W PHW TC=0+=5 RESISTOR=TRMR 500 5% WW SIDE=ADJ 22-TRN	19701 28460 32997 28480 32997	MF4C1/8=T9=1435=F 0811=3359 3057P=1=101 0811=3359 3057P=1=501
A3A5R21 A3A5R22 A3A5R23 A3A5R24 A3A5R25	0811-3360 2100-1656 0811-3361 2100-1658 0811-2919	20325	1 1 1	RESISTOR 25K .1% ,025W PWW TC=0+=5 RESISTOR=TRMR 500 5% WW SIDE=ADJ 22=TRN RESISTOR 50K .1% ,025W PWW TC=0+=5 RESISTOR=TRMR 9W XZ X X WW ADDE=ADJ 22=TRN RESISTOR 100K .1% .125W PWW TC=0+=5	28480 32997 28480 32997 54294	0811-3360 3057P-1-501 0811-3361 3057P-1-202 8P70-1/16-C-1003-B
A3A5R26 A3A5R27 A3A5R28 A3A5R28 A3A5R39	0811=2037 0811=3235 0698=6358 2100=1656 0811=1185	8 0 2 0 5	1 2 1	RESISTOR 2,4k 1% ,25w pnw tC=0+=10 RESISTOR 7,5K 1% ,05w pnw tC=0+=10 RESISTOR 100K ,1% ,125w f tC=0+=25 RESISTOR=TRMR 500 5% ww SIDE=ADJ 22=TRN RESISTOR 10K ,01% ,0125w pnw tC=0+=10	20940 20940 28480 32997 20940	143-D-2401-F 140-1/20-7501-F 0696-0358 30579-1-501 140-1/20-1902-7
A3A5R31 A3A5R32 A3A5R33 A3A5R34 A3A5R35	0811=3359 0811=3138 0811=0647 0698=8319 0811=3362	9 2 2 9 4	1 1 1 1	RESISTOR 12.5K .1% .025W PWW TC=0+=5 RESISTOR 25K .1% .062W PWW TC=0+=10 RESISTOR 50K .1% .062W PWW TC=0+=10 RESISTOR 10K 1% .1W F TC=0+=10 RESISTOR 825 .1% .025W PWW TC=0+=10	28460 20940 28480 19701 26480	0811-3359 114-1/16-2502-8 0811-0647 502321/8-T13-1002-F 0811-3362
A3A9R36 A3A8R37 A3A9R38 A3A9R39 A3A9R40	0698-3193 0811-3359 0698-3235 0698-3220 0698-3190	7 9 8 1 4	1 1 1 1	RESISTOR 10K _25% _125W F TC=0+=50 RESISTOR 12,5K _1% _025W PWW TC=0+=5 RESISTOR 25K _25% _125W F TC=0+=50 RESISTOR 50K _25% _125W F TC=0+=50 RESISTOR 100K _25% _125W F TC=0+=50	26480 28480 03886 26480 26480	0698-3193 0811-3359 PME55-1/8-72-2502-C 0698-3220 0698-3190
A3A5R41 A3A5R42 A3A5R43 A3A5R44 A3A5R44	0698-3237 2100-1656 0811-2895 0698-3153 0698-0083	00000	1 1 3	RESISTOR SK .25% .125% F TC#0+=50 RESISTOR=TRMR 500 5% NW SIDE=ADJ 22=TRN RESISTOR 422 .1% .062% PNW TC#0+=100 RESISTOR 3.63% 12 .125% F TC#0+=100 RESISTOR 1.96% 1% .125% F TC#0+=100	28480 32997 14140 24546 24546	0698=3237 3057P-1-501 1350=1/16-L3-422R-8 C4-1/8-T0-3831=F C4-1/8-T0-1961-F
A3A5R46 A3A5R47 A3A5R46 A3A5R49 A3A5R50	0757-0458 0757-0438 0757-0438 0757-0438 0757-0458	7 3 3 7	9	RESISTOR 51.1K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 51.1K 1% .125W F TC=0+=100	24246 24246 24246 24246	C4-1/8-T0-5112-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-5112-F
A3A5R51 A3A5R52 A3A5R53 A3A5R54 A3A5R55	0811=3356 0698=6358 0757=0428 0757=0346 0611=3325	98-89	1	RESISTOR 5.9K .1x .062W PWW TC#0+=5 RESISTOR 100K .1x .125W F TC#0+=25 RESISTOR 1.62K 1x .125W F TC#0+=100 RESISTOR 10 1x .125W F TC#0+=1100 RESISTOR 312 .1x .062W PWW TC#0+=10	28480 28480 24546 24546 28480	0811=3356 0698=6358 C4=1/8=T0=1621=F C4=1/8=T0=10R0=F 0811=3325
A3A5R56 A3A5R57 A3A5R58 A3A5R59 A3A5R60	0757+0394 0757+0421 0757+0290 0698=3456 0698=3454	0 4 5 5 3	1 1	RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 825 1% .125W F TC=0+=100 RESISTOR 8.19K 1% .125W F TC=0+-100 RESISTOR 287K 1% .125W F TC=0+=100 RESISTOR 215K 1% .125W F TC=0+=100	24546 24546 19701 24546 24546	C4-1/8-T0-51R1-F C4-1/8-T0-825R-F MF4C1/8-T0-6191-F C4-1/8-T0-2873-F C4-1/8-T0-2153-F
A3A5R61	0757=1094	•		RESISTOR 1.47K 1% .125W F TC#0++100	24546	C4=1/8=70=1471=F
A3A5TP3 A3A5TP3 A3A5TP4 A3A5TP4	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	00000		CONTACT=CONN U/W=POST=TYPE MALE DPSLOR CONTACT=CONN U/W=POST=TYPE MALE DPSLOR CONTACT=CONN U/W=POST=TYPE MALE DPSLOR CONTACT=CONN U/W=POST=TYPE MALE DPSLOR CONTACT=CONN U/W=POST=TYPE MALE DPSLOR	26480 26480 26480 26480	1251=0600 1251=0600 1251=0600 1251=0600 1251=0600
A3A5U; A3A5U2 A3A5U3 A3A5U4 A3A5U5	1526=0092 1626=0261 1826=0261 1826=0261 1901=1011	3 8 8 8 8	4	IC OP AMP T0=99 IC 741 OP AMP T0=99 IC 741 OP AMP T0=99 IC 741 OP AMP T0=99 DIODE=ARRAY VF DIFF#5MV	28480 28480 28480	1826=0092 1826=0261 1826=0261 1826=0261 1901=1011
A3A5U6 A3A5U7 A3A5U8 A3A5U8 A3A5U9 A3A5U10	1901=1011 1901=1011 1820=0668 1820=0668 1820=0668	8 7 7 7	3	DIODE-ARRAY VF DIFF=5MV DIODE-ARRAY VF DIFF=5MV IC BFR TTL NON=INV HEX 1-INP IC BFR TTL NON-INV HEX 1-INP IC BFR TTL NON-INV HEX 1-INP	28480 28480 01295 01295 01295	1901-1011 1901-1011 SN7407N SN7407N SN7407N
ASASVR1 Asasvr2	1902-0625 1902-0244	9	1	DIDDE=ZNR 1N829 6.27 5% DO=7 PD=.25W DIODE=ZNR 30.17 5% DD=15 PD=1W TC=+.075%	04713 28480	1 N829 1 902=0244

Table 6-3. Replaceable Parts

		Ţ _ Ţ	7	Table 6-3. Replaceable Parts	V04	
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
		П		A3A5 MISCELLANEOUS		
	5000=9043 5040=6850	1		PINIP,C, BOARD EXTRACTOR BOARD EXTRACTOR	28480 28480	5000-9043 5040-6850
A3A4	86701=60016	8	1	YTO DRIVER ASSEMBLY	28460	86701=60016
A3A6C1 A3A6C2 A3A6C3 A3A6C4 A3A6C5	0160-3451 0180-1731 0180-0116 0160-0574 0180-0116	1813	7 6	CAPACITOR=FXD _01UF +80=20% 100VDC CER CAPACITOR=FXD 4,7UF++10% 50VDC TA CAPACITOR=FXD 6,8UF++10% 35VDC TA CAPACITOR=FXD _022UF +=20% 100VDC CER CAPACITOR=FXD 6,8UF++10% 35VDC TA	26269 26269 26269 26269 26460	0160=3451 1500475x905082 1500685x903582 0160=0574 1500685x903582
ASAGCO ASAGCO ASAGCO ASAGCO ASAGCO	0160-3451 0180-2139 0160-3451 0160-3452 0180-0229	12127	1	CAPACITOR=FXO .01UF +80-20X 100VOC CER CAPACTTOR=FXO 10UF++20X 60VDC TA CAPACITOR=FXO .01UF +80-20X 100VOC CER CAPACITOR=FXO .02UF +-20X 100VDC CER CAPACITOR=FXO 33UF+=10X 10VDC TA	28460 06001 28480 28480 56289	0160-3451 69F177G7 0160-3451 0160-3452 150D336X9010B2
A3A6C11 A3A6C12 A3A6C13 A3A6C14 A3A6C14	0160-3451 0160-3451 0160-0197 0160-0228 0160-1746	865		CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD 2.2UF+=10X 20VDC TA CAPACITOR=FXD 22UF+=10X 15VDC TA CAPACITOR=FXD 15UF+=10X 20VDC TA	26480 26480 56289 56289 56289	0160=3451 0160=3451 1500225×902042 1500226×901562 1500156×902052
A3A6C16 A3A6C17 A3A6C16 A3A6C19	0160=3451 0160=3460 0160=3451 0160=3877	122		CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD .05UF +80=20X 100VDC CER CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD 100PF +=20X 200VDC CER	28480 28480 28480 28480	0160-3451 0160-3460 0160-3451 0160-3877
A3A6CR1 A3A6CR2 A3A6CR3 A3A6CR4	1901-0033 1901-0040 1901-0040	2	19	DIODE-GEN PRP 180V ZOOMA DO-7 DIODE-SHITCHING 30V 50MA ZNS DO-35 DIODE-SHITCHING 30V 50MA ZNS DO-35 NOT ASSIGNED DIODE-GEN PRP 180V ZOOMA DO-7	28480 28480 28480	1901=0033 1901=0040 1901=0040 1901=0033
ASAGCRS ASAGCRG ASAGCRG ASAGCRG ASAGCRG ASAGCR10	1901=0033 1901=0033 1901=0033 1901=0033 1901=0033	SELEN E		DIODE-GEN PRP 180V 200MA DO=7 DIODE-GEN PRP 180V 200MA DO=7 DIODE-8WITCHING 30V 50MA 2NS DO=35 DIODE-GEN PRP 180V 200MA DO=7 DIODE-GEN PRP 180V 200MA DO=7	28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0040 1901-0033 1901-0033
A3A6CR11	1901-0040	1		DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A3A6Q1 A3A6Q3 A3A6Q3 A3A6Q4 A3A6Q5	1854-0237 1854-0404 1854-0022 1854-0232 1853-0038	70824	1 2 1 1	TRANSISTOR NPN SI TO-66 PD=20W FT=10MHZ TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-39 PD=700MW TRANSISTOR NPN SI TO-39 PD=1w FT=15MHZ TRANSISTOR NPN SI TO-39 PD=1w FT=100MHZ	28480 28480 07263 28480 28480	1854-0237 1854-0404 817643 1854-0232 1853-0038
A3A6G6 A3A6G7 A3A6G8 A3A6G9 A3A6G10	1854-0404 1853-0007 1854-0022 1854-0475 1853-0007	0 7 8 5 7		TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW TRANSISTOR NPN SI TO-39 PD=700MW TRANSISTOR NPN SI TO-39 PD=700MW TRANSISTOR NPN 2N3251 SI TO-18 PD=360MW TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW	28480 04713 07263 28480 04713	1854-0404 2N3251 817843 1854-0475 2N3251
A3A6G11† A3A6G12 A3A6G13†	1853-0451 1853-0012 1853-0451	5 4 5		TRANSISTOR PNP 2N3799 81 TD=16 PD=360MW TRANSISTOR PNP 2N29048 81 TO=39 PD=600MW TRANSISTOR PNP 2N3799 81 TO=18 PD=360MW	01295 01295 01295	2N3799 2N2904A 2N3799
ASAGRI ASAGRZ ASAGRS ASAGRU ASAGRU	0757-0456 0698-4492 0757-0440	5 1 7	1 1	NOT ASSIGNED NOT ASSIGNED RESISTOR 43,2K 1% .125W F TC=0+=100 RESISTOR 32,4K 1% .125W F TC=0+=100 RESISTOR 7.5K 1% .125W F TC=0+=100	24546 24546	C4-1/8-T0-4322-F C4-1/8-T0-3242-F C4-1/8-T0-7501-F
ASAARA ASAART ASAARB ASAARP ASAARTO	0757=0440 0695=0083 0695=3440 0757=0346 0757=0465	7 5 7 2 6		RESISTOR 7.5K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 100K 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-7501=F C4-1/8-T0-1961=F C4-1/8-T0-196R=F C4-1/8-T0-1080=F C4-1/8-T0-1003=F
ASAGR11 ASAGR12 ASAGR13 ASAGR14 ASAGR15	0696=3157 0757=0442 0698=3440 0757=0401 0757=0421	3 9 7 0 4		RESISTOR 19.6K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 825 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1962=F C4-1/8-T0-1002=F C4-1/8-T0-196R=F C4-1/8-T0-101=F C4-1/8-T0-825R=F
A3A6R16 A3A6R17 A3A6R18 A3A6R19 A3A6R20	0811-3440 0757-0465 0757-0442 0757-0442 0698-3155	96991		RESISTOR 125 1% 25% PW TC=0+=2 RESISTOR 100K 1% .125% F TC=0+=100 RESISTOR 10K 1% .125% F TC=0+=100 RESISTOR 10K 1% .125% F TC=0+=100 RESISTOR 4.64K 1% .125% F TC=0+=100	28480 24546 24546 24546 24546	0811=3440 C4-1/8+T0-1003=F C4-1/8-T0-1002=F C4-1/8=T0-1002=F C4-1/8=T0-4041=F
ABAORZI ABAORZZ ABAORZB ABAORZG ABAORZG	0698=3155 0757=0290 0757=0346 0811=2936 2100=0635	1 5 2 6 3	1	RESISTOR 4.64K 1% .125W F TC=0+=100 RESISTOR 6.19K 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 15 .1% .5W PWN TC=0+=5 RESISTOR=TRMR 2K 10% C SIDE=ADJ 20=TRN	24546 19701 24546 14140 28480	C4=1/8=T0=4641=F MF4C1/8=T0=6191=F C4=1/8=T0=10R0=F 1251=1/4=C=15R=B 2100=0635

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A3A6R26 A3A6R27 A3A6R28 A3A6R29 A3A6R30	0757-0438 0757-0438 0757-0467 0757-0346 0698-8025	3 5 6 2 4	2 i	RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 121K 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 1.91K .25% .125W F TC=0+=50	24546 24546 24546 24546 19701	C4=1/8=T0=5111=F C4=1/8=T0=5111=F C4=1/8=T0=1213=F C4=1/8=T0=10R0=F MF4C1/8=T2=1911=C
A3A6R31 A3A6R32 A3A6R33 A3A6R34 A3A6R35	0757-0402 0757-0458 0757-0428 2100-0635 0698-3153	1 7 1 3 9	1	RESISTOR 110 1% ,125W F TC=0+=100 RESISTOR 51,1K 1% ,125W F TC=0+=100 RESISTOR 1,62K 1% ,125W F TC=0+=100 RESISTOR=TRMR 2K 10% C SIDE=4DJ 20=TRN RESISTOR 3,83K 1% ,125W F TC=0+=100	24546 24546 24546 26480 24546	C#=1/8-T0=111=F C#=1/8-T0=5112=F C#=1/8-T0=1621=F 2100=0635 C#=1/8-T0=3631=F
ABA6R36 ABA6R36 ABA6R36 ABA6R39 ABA6R40	0698-3447 0757-0458 0698-5673 0698-3155 0698-3155	4 7 2 1 3	i 1	RESISTOR 422 1% ,125W F TC=0+=100 RESISTOR 51,1K 1% ,125W F TC=0+=100 RESISTOR 3,9K 1% ,125W F TC=0+=25 RESISTOR 4,64K 1% ,125W F TC=0+=100 RESISTOR 4,22K 1% ,125W F TC=0+=25	24546 24546 28480 24546 19701	C4-1/8-T0-422R=F C4-1/8-T0-5112=F 0698-5673 C4-1/6-T0-4641=F MF4C1/8=T9-4221=F
A3A6841 A3A6842	0757-0401 0757-0346	S		RESISTOR 100 1% .125W F TC#0+=100 RESISTOR 10 1% .125W F TC#0+=100	24546 24546	C4-1/8-T0-101-F C4-1/8-T0-10R0-F
A3A6TP1 A3A6TP2 A3A6TP3 A3A6TP4 A3A6TP5	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	0000		CONTACT=CONN U/W=POST=TYPE MALE OPSLOR CONTACT=CONN U/W=POST=TYPE MALE OPSLOR CONTACT=CONN U/W=POST=TYPE MALE OPSLOR CONTACT=CONN U/W=POST=TYPE MALE OPSLOR CONTACT=CONN U/W=POST=TYPE MALE OPSLOR	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600
A3A6U1	1826-0092	3		IC OP AMP TO-99	28460	1826=0092
A3A6VR1 A3A6VR2 A3A6VR3 A3A6VR4	1902-0680 1902-3404 1902-3323 1902-0025	7 9 1 4	1	DIODE-ZNR 10827 6.2V 5% DO-7 PDE.25W DIODE-ZNR 82,5V 5% DO-7 PDE.4W TCB+.082% DIODE-ZNR 42,2V 5% DC-7 PDE.4W TCE+.08% DIODE-ZNR 10V 5% DO-7 PDE,4W TCE+.06%	26480 26480 26480	1
				AJA6 MISCELLANEOUS		
	1205-0085 5000-9043 5040-6850 2200-0107 2200-0143	8 4 4 6 0	1	HEAT SINK TO-66-PKG PINIP_C. BOARD EXTRACTOR BOARD EXTRACTOR BCREW-MACH 4-40 _375-IN+LG PAN+MD-PDZI BCREW-MACH 4-40 _375-IN+LG PAN+MD-PDZI BCREW-MACH 4-40 _375-IN+LG PAN+MD-PDZI	26480 28480 26480 00000	1205-0085 5000-9043 5040-8650 Order by description Order by description
	2190-0003 2260-0001	8	4	WASHER-LK HLCL NO. 4 .115-IN-ID NUT-HEX-DBL-CHAM 4-40-THD .094-IN-THK	28480 28480	2190-0003 2260-0001
ASA7	86701-60017	9	i	PM DRIVER ASSEMBLY	28480	86701-60017
A3A7C1 A3A7C2 A3A7C3 A3A7C4 A3A7C5	0160-0578 0160-3879 0160-0578 0160-0573 0160-0127	7 7 2 2	4	CAPACITOR=FXD .047UF +=1% 50VDC CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .047UF +=1% 50VDC CAPACITOR=FXD 4700PF +=20% 100VDC CER CAPACITOR=FXD 1UF +=20% 25VDC CER	28480 28480 28480 28480 28480	0160-0578 0160-3679 0160-0578 0160-0573 0160-0127
A3A7C6 A3A7C7 A3A7C8 A3A7C9 A3A7C10	0160-3874 0160-0127 0160-4298 0160-2055 0160-3879	22697	4	CAPACITOR=FXD 10PF += 5PF 200VDC CER CAPACITOR=FXD 10F += 20X 25VDC CER CAPACITOR=FXD 4700PF += 20X 250VDC CER CAPACITOR=FXD 01UF += 20X 100VDC CER CAPACITOR=FXD 01UF += 20X 100VDC CER	28480 28480 56289 28480 28480	0160=3674 0160=0127 0160=51251H472M922=CDH 0160=2055 0160=3679
A3A7C11 A3A7C12 A3A7C13 A3A7C14 A3A7C15	0160=4084 0160=0174 0160=3879 0180=0491 0180=0197	8 9 7 5 8	1	CAPACITOR-FXD .1UF +=20% 50VOC CER CAPACITOR-FXD .47UF +80-20% 25VDC CER CAPACITOR-FXD .01UF +=20% 100VDC CER CAPACITOR-FXD 10UF+=20% 25VDC TA CAPACITOR-FXD 2.2UF+=10% 20VOC TA	28480 28480 28480 00908 56289	0160=4084 0160=0174 0160=3879 7368=8=106=M=025=AS 150D225x9020A2
A3A7C16 A3A7C17 A3A7C18 A3A7C19#	0180=0197 0160=3879 0160=4084 0160=2206	8 7 8 2	2	CAPACITOR=FXD 2.2UF+=10x 20VDC TA CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD 160FF -=5% 300VDC MICA *FACTORY SELECTED PART	56289 28480 28480 28480	150D225X9020A2 0160=3679 0160=4084 0160=2206
A3A7C20 A3A7C21 A3A7C22 A3A7C23 A3A7C24	0140-0210 0160-3678 0160-0158 0180-1719 0160-3879	2 6 9 2 7	1	CAPACITOR-FXD 270FF +-5% 300VDC MICA CAPACITOR-FXD 1000FF +-20% 100VDC CER CAPACITOR-FXD 5600FF +-10% 200VDC POLYE CAPACITOR-FXD 22UFF+-10% 25VDC TA CAPACITOR-FXD 20UF +-20% 100VDC CER	72136 28480 28480 56289 28480	DM15F271J0300WY1CR 0160=3678 0160=0158 150D22ex902582 0160=3679
ASATCRS ASATCR6 ASATCR7 ASATCR6 ASATCR8	0160-3679 0160-0116 0160-3679 0180-0228 0160-2055	7 1 7 6 9		CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 6.8UF+=10% 35VDC TA CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 22UF+=10% 15VDC TA CAPACITOR=FXD .01UF +80=20% 100VDC CER	28460 56289 28480 56289 28480	0160=3679 150D685x903582 0160=3679 150D226x901582 0160=2055
A3A7C30 A3A7C31 A3A7C32 A3A7C33 A3A7C34	0180=011b 0160=3879 0160=3879 0160=4084 0160=4084	1 7 7 8		CAPACITOR-FXD 6.8UF+=10X 35VDC TA CAPACITOR-FXD .91UF +=20X 100VDC CER CAPACITOR-FXD .01UF +=20X 100VDC CER CAPACITOR-FXD .1UF +=20X 50VDC CER CAPACITOR-FXD .1UF +=20X 50VDC CER	56289 26480 28480 26480 26480	150D685X903582 0160=3679 0160=3679 0160=4084 0160=4084

Table 6-3. Replaceable Parts

Reference	HP Part	С	Qty	Description	Mfr	Mfr Part Number
Designation	Number	D	Qty		Code	
A3A7C35 A3A7C36 A3A7C37 A3A7C38 A3A7C39	0180-0234 0180-0228 0160-3879 0160-3879 0180-0491	4 6 7 7 5	i	CAPACITOR=FXD 33UF+=20X 75VDC TA CAPACITOR=FXD 22UF+=10X 15VDC TA CAPACITOR=FXD .01UF +=20X 100VDC CER CAPACITOR=FXD .01UF +=20X 100VDC CER CAPACITOR=FXD 10UF+=20X 25VDC TA	05001 56289 26480 28480 00908	69F286G7 1500226x901582 0160-3879 0160-3879 1368-8-106=M=025=A8
ASA7040 ASA7041 ASA7042 ASA7043 ASA7044	0160-3879 0160-3879 0160-2202 0140-0194 0160-3872	7 7 8 1	i 2 1	CAPACITOR=FXD .01UF +=20% 100VOC CER CAPACITOR=FXD .01UF +=20% 100VOC CER CAPACITOR=FXD 75PF +=5% 300VDC MICA CAPACITOR=FXD 110PF +=5% 300VDC MICA CAPACITOR=FXD 2.2PF +=,25PF 200VDC CER	28480 26480 28480 72136 28480	0160=3879 0160=3879 0160=2202 DM15F111J0300WV1CR 0160=3872
A3A7C45 A3A7C46 A3A7C47 A3A7C48*	0160=0578 0160=0578 0160=3878 0160=2248	7 7 6 2	ı	CAPACITOR=FXD .047UF +=1% 50VDC CAPACITOR=FXD .047UF +=1% 50VDC CAPACITOR=FXD 10000FF +=20% 100VDC CER CAPACITOR=FXD 4.3PF +=.25PF 500VDC CER *FACTORY SELECTED PART	28480 28480 28480 28480	0160=0578 0160=0578 0160=3878 0160=2246
A3A7C49 A3A7C50	0160-3491 0160-3874	5 6	1	CAPACITOR=FXD .47UF +=20K 50VDC CER CAPACITOR=FXD 10PF +=.5PF 200VDC CER	28480 28480	0160-3491 0160-3874
ASATORS ASATORS ASATORS ASATORS ASATORS	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	1 1 1 1		DIDDE-BWITCHING 30V 50MA 2NS 00-35 DIODE-BWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS 00-35 DIODE-8WITCHING 30V 50MA 2NS 00-35 DIODE-8WITCHING 30V 50MA 2NS 00-35	28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
ASATOR6 ASATORT	1901-0040 1901-0040	1		DIODE-SWITCHING 30V 50MA 2NS DO-35 Diode-Switching 30V 50MA 2NS DO-35	28480 28480	1901-0040 1901-0040
A3A7K2 A3A7K2	0490=0564 0490=0564	0	5	RELAY=REED 1C 250MA 115VAC 5VDC=COIL 6VA RELAY=REED 1C 250MA 115VAC 5VDC=COIL 6VA	28480 28480	0490=0564 0490=0564
A3A7L1	9100-2259	8		COIL-MLD 1.5UH 10% G#32 .0950%.25LG-NOM	28480	9100+2259
A3A701 A3A702 A3A703 A3A704 A3A705	1854-0013 1853-0012 1854-0238 1854-0404 1854-0404	7 4 8 0	1	TRANSISTOR NPN 2N2218A SI TO-5 PD=800MW TRANSISTOR PNP 2N3904A SI TO-39 PD=600MW TRANSISTOR NPN 2N3933 SI TO-72 PD=200MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW	04713 01295 26480 26480 28480	1924-0404 1924-0338 1934-0538 SN\$5194 SN\$5194
A3A706 A3A707 A3A708 A3A709 T A3A7010 T	1854-0345 1854-0023 1854-0247 1853-0451 1853-0451	8 9 5 5	i	TRANSISTOR NPN 2N5179 BI TO=72 PD=200MW TRANSISTOR NPN SI TO=18 PD=360MW TRANSISTOR NPN SI TO=39 PD=14 FT=800MHZ TRANSISTOR PNP 2N3799 SI TO=18 PD=360MW TRANSISTOR PNP 2N3799 SI TO=18 PD=360MW	04713 28480 28480 01295 01295	2N5179 1854-0023 1854-0247 2N3799 2N3799
A3A7Q11 A3A7Q12 A3A7Q13 A3A7Q14† A3A7Q15	1854-0404 1855-0020 1853-0281 1853-0451 1855-0417	0 9 5 7	i 1	TRANSISTOR NPN SI TO-18 PD=350MW TRANSISTOR J=FET N=CHAN D=MDDE TO-18 SI TRANSISTOR PNP 2N2907A SI TO-18 PD=400MW TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW TRANSISTOR J=FET N=CHAN D=MODE TO-18 SI	28480 28480 04713 01295 28480	1854-0404 1855-0020 2N2907A 2N3799 1855-0417
A3A7R1 A3A7R2 A3A7R3 A3A7R4 A3A7R5	0757-0447 0698-3150 0757-0443 0757-0465 0698-7277	40000	1	RESISTOR 16.2K 1% .125W F TC=0+=100 RESISTOR 2,37K 1% .125W F TC=0+=100 RESISTOR 11K 1% .125W F TC=0+=100 RESISTOR 100K 1% .125W F TC=0+=100 RESISTOR 51.1K 1% .05W F TC=0+=100	24546 54246 54246 54246 54246	C4-1/8-T0-1022-F C4-1/8-T0-2371-F C4-1/8-T0-1102-F C4-1/8-T0-103-F C3-1/8-T0-5112-G
A3A7R6 A3A7R7 A3A7R8 A3A7R9 A3A7R30	0698-7258 0698-0083 0757-0465 0698-3441 0698-0085	3 6 8 0	\$	RESISTOR 6,25K 1% .05W F TC#0+=100 RESISTOR 1.96K 1% .125W F TC#0+=100 RESISTOR 100K 1% .125W F TC#0+=100 RESISTOR 215 1% .125W F TC#0+=100 RESISTOR 2.61K 1% .125W F TC#0+=100	54249 54249 54249 54249	C3-1/8-T0-8251-G C4-1/8-T0-1961-F C4-1/8-T0-1003-F C4-1/8-T0-215R-F C4-1/8-T0-2611-F
A3A7R11 A3A7R12 A3A7R13 A3A7R14	0698-3432 0698-3154	7 0 2	1	RESISTOR 26.1 1% .125W F TC#0+=100 NOT ASSIGNED RESISTOR 4.22K 1% .125W F TC#0+=100 NOT ASSIGNED RESISTOR 10 1% .125W F TC#0+=100	24546 24546	PME55=1/8=T0=26R1=F C4=1/8=T0=4221=F C4=1/8=T0=10R0=F
A3A7R15 A3A7R16 A3A7R17 A3A7R16 A3A7R19 A3A7R20	0757=0346 0757=0346 0757=0346 0757=0346 0757=0346 0757=0346	NN WWW N		RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0++100 RESISTOR 10 1% .125W F TC=0++100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	54249 54249 54249 54249	C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F
AJA7R21 AJA7R22 AJA7R23 AJA7R24 AJA7R25	0757=0401 0698=3155 0698=3444 0698=7224	3		RESISTOR 100 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100 RESISTOR 316 1% .125W F TC=0+=100 RESISTOR 316 1% .05W F TC=0+=100 NOT ASSIGNED	54249 54249 54249 54249	C4=1/8=T0=101=F C4=1/8=T0=4641=F C4=1/8=T0=316R=F C3=1/8=T0=316R=G
A3A7R24 A3A7R27 A3A7R28 A3A7R29 A3A7R30	0698=7276 0698=7276 2100=3353 0698=0083 0683=1555	55880	1 2	RESISTOR 46,4K 1% .05W F TC=0+-100 RESISTOR 46,4K 1% .05W F TC=0+-100 RESISTOR-TAMR 20K 10% C SIDE-ADJ 1-TRN RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1.5M 5% .25W FC TC=-900/+1100	24546 24546 32997 24546 01121	C3=1/8=T0=4642=G C3=1/8=T0=4642=G 3366%=Y46=203 C4=1/8=T0=1961=F C81555
,						

Table 6-3. Replaceable Parts

				lable 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3A7R31 A3A7R32 A3A7R33 A3A7R34 A3A7R35	0698-4414 0698-3157 0698-7271 0698-7283 0757-0458	7 3 0 4 7	1 1	RESISTOR 158 1% 125W F TC=0+=100 RESISTOR 19.6K 1% 125W F TC=0+=100 RESISTOR 28.7K 1% 0.5W F TC=0+=100 RESISTOR 70.9K 1% 0.5W F TC=0+=100 RESISTOR 51.1K 1% 125W F TC=0+=100	24546 24546 24546 24546	C4=1/6=T0=156R=F C4=1/8=T0=1962=F C3=1/8=T0=2872=G C3=1/8=T0=9092=G C4=1/8=T0=5112=F
A3A7R36 A3A7R37 A3A7R36 A3A7R39 A3A7R40	0698=7272 0757=0416 0757=0316 0698=3155 2100=3354	1 7 6 1 9	1 2	RESISTOR 31.6K 1% .05W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 42.2 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100 RESISTOR=TRMR 50K 10% C SIDE=ADJ 1=TRN	58480 54246 54246 54246	C3-1/8-T0-3162-G C4-1/8-T0-5119-F C4-1/8-T0-42R2-F C4-1/8-T0-42R1-F 2100-3354
ASA7R41 ASA7R42 ASA7R43 ASA7R44 ASA7R45	0757-0458 0698-3153 0698-3152 0698-7229 0757-0416	7 9 8 8 7	2	RESISTOR 51.1K 1X .125W F TC=0+=100 RESISTOR 3.83K 1X .125W F TC=0+=100 RESISTOR 3.46K 1X .125W F TC=0+=100 RESISTOR 511 1X .05W F TC=0+=100 RESISTOR 511 1X .125W F TC=0+=100	24546 24546 24546 24546	C4=1/8=T0=5112=F C4=1/8=T0=3631=F C4=1/8=T0=3481=F C3=1/8=T0=511R=G C4=1/8=T0=511R=F
A3A7R46 A3A7R47 A3A7R46 A3A7R49 A3A7R50	2100=3350 0757-0440 0757-0346 0698-3429 0757-0346	2 2 2 2 2 A	1	RESISTOR-TRMR 200 10% C SIDE-ADJ 1-TRN RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 19.6 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	28480 24546 24546 03888 24546	2100=3350 C4-1/8-T0-751-F C4-1/8-T0-10R0-F PME55=1/8-T0-19R6-F C4-1/8-T0-10R0-F
A3A7R51 A3A7R52 A3A7R53 A3A7R54 A3A7R55	0757-0346 0757-0440 0698-0083 0698-3155 0698-3443	2 3 8 1 0	ļ	RESISTOR 10 1% ,125W F TC=0+=100 RESISTOR 750 1% .125W F TC=0+=100 RESISTOR 1,96K 1% ,125W F TC=0+=100 RESISTOR 4,64K 1% ,125W F TC=0+=100 RESISTOR 287 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-10R0=F C4-1/8-T0-751-F C4-1/8-T0-1961=F C4-1/8-T0-4641-F C4-1/8-T0-287R=F
A3A7R56 A3A7R57 A3A7R56 A3A7R56 A3A7R60	0698-3150 0757-0442 0757-0441 0757-0441 0757-0447	69884		RESISTOR 2.37K 1% .125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 8.25K 1% .125W F TC=0+=100 RESISTOR 8.25K 1% .125W F TC=0+=100 RESISTOR 16.2K 1% .125W F TC=0+=100	54249 54249 54249 54249	C4=1/8=T0=2371=F C4=1/8=T0=1002=F C4=1/8=50=8251=F C4=1/8=T0=8251=F C4=1/8=T0=1622=F
A3A7R62 A3A7R62 A3A7R63 A3A7R64	0698-6113 0698-3447 0698-3438	7 4 3	1	RESISTOR 1.82K .25% .125W F TC=0+=100 *FACTORY SELECTED PART RESISTOR 422 1% .125W F TC=0+=100 RESISTOR 147 1% .125W F TC=0+=100 NOT ASSIGNED	28480 24546 24546	0698*6113 C4-1/8-T0-422R=F C4-1/8-T0-147R=F
A3A7R654 A3A7R66 A3A7R67#	0757-0200 0696-3442 0698-3439	7 9 4	3	RESISTOR 5.62K 1% .125W F TC=0++100 *FACTORY SELECTED PART RESISTOR 237 1% .125W F TC=0++100 RESISTOR 178 1% .125W F TC=0++100 *FACTORY SELECTED PART	54246 54246	C4-1/8-T0-5621=F C4-1/8-T0-237R=F C4-1/8-T0-178R=F
A3A7R&8 A3A7R&9 A3A7R70 A3A7R71 A3A7R72	0757=0424 0757=0428 0757=0424 0656=1525 0757=0346	7 1 7 0 2	3 1	RESISTOR 1,1K 1% ,125W F TC=0++100 RESISTOR 1,6EK 1% ,125W F TC=0++100 RESISTOR 1,1K 1% ,125W F TC=0++100 RESISTOR 1,5K 5% ,5W CC TC=0+647 RESISTOR 10 1% ,125W F TC=0++100	24546 24546 24546 24546	C4=1/8=T0=1101=F C4=1/8=T0=1621=F C4=1/8=T0=1101=F EB:525 C4=1/8=T0=10R0=F
A3A7R73 A3A7R74 A3A7R75*	0757-0802 0757-0394 0698-4429	5 0 4	2 1	RESISTOR 162 1% .5W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 1.87K 1% .125W F TC=0+-100 **FACTORY SELECTED PART NOT ASSIGNED	28480 24546 24546	0757-0802 C4-1/8-T0-51R1=F C4-1/8-T0-1871=F
A3A7R77 A3A7R78 A3A7R79 A3A7R80 A3A7R81	0757-0420 0757-0802 0698-3452 0757-0458 0698-7224	35473		RESISTOR 750 1% 125W F TC=0++100 RESISTOR 162 1% .5W F TC=0+-100 RESISTOR 147K 1% 125W F TC=0+-100 RESISTOR 51,1K 1% 125W F TC=0+-100 RESISTOR 316 1% 405W F TC=0+-100	24546 28480 24546 24546 24546	C4=1/8=T0=751-F 0757-0802 C4=1/8=T0=1473=F C4=1/8=T0=5112=F C3=1/8=T0=316R=G
A3A7R82 A3A7R83 A3A7R84 A3A7R85 A3A7R86	0698=7224 0883=1555 0698=4414 0698=7212 0757=0279	30790		RESISTOR 316 1% .05W F TC=0+=100 RESISTOR 1.5M 5% .25W FC TC==900/+1100 RESISTOR 158 1% .125W F TC=0+=100 RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 3.16K 1% .125W F TC=0+=100	24546 01121 24546 24546 24546	C3=1/8=T0=316R=G C81555 C4=1/8=T0=158R=F C3=1/8=T0=100R=G C4=1/8=T0=3161=F
A3A7TP1 A3A7TP2 A3A7TP3 A3A7TP4 A3A7TP5	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600	00000		CONTACT-CONN U/W-POST-TYPE MALE DPSLOR	28480 28480 28480 28480 28480	1251-0600 1251-0600 1251-0600 1251-0600 1251-0600
A3A7U1 A3A7U2 A3A7U3	1826=0261 1826=0081 1826=0044	8 0 5	1 1	IC 741 OP AMP T0=99 IC 318 OP AMP T0=99 IC OP AMP 14=DIP=C A3A7 MISCELLANEOUS	28480 27014 07263	1826-0261 LM318H 739DC
	1205=0011 1205=0037 1200=0173 5000=9043 5040=6850	0 0 5 6	2 6	HEAT SINK TO-5/TO-39-PKG MEAT SINK TO-18-PKG INSULATOR-XSTR DAP-GL PINIP,C. BOARD EXTRACTOR BOARD EXTRACTOR	26480 26480 26480 26480 26480	1205-0011 1205-0037 1200-0173 5000-9083 5040-6850
			\			

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A3A6	86701-60074	8	i	10 MHZ REFERENCE OSCILLATOR ASSEMBLY (EXCEPT OPTION 002)	28460	86701-60074
ASABPE				NSR, P/O A3A8		
ABABWI				NSR, P/O A3A8		
A3A9	56701=60026	0	1	YTO LOOP ASSEMBLY A3A9 CHASSIS PARTS	26480	86701-60026
A3A9C1 A3A9C2	0160-3036 0160-3036	8	6	CAPACITOR-FOTHRU 5000PF +80 =20% 200V CAPACITOR-FOTHRU 5000PF +80 =20% 200V	28480 28480	0160=3036 0160=3036
A3A9C3 A3A9C4	0160=4082 0160=3036	8	3	CAPACITOR=FDTHRU 1000PF 20% 200V CER CAPACITOR=FDTHRU 5000PF +8D =20% 200V	28480 28480	0160=4082 0160=3036
ASA9CS	0160-3036	8		CAPACÍTOR-FOTHRU 5000PP +80 -201 2009	28460	0160+3036
A3A9C6 A3A9C7	0160=4082 0160=3036	8		CAPACITOR-FOTHRU 1000PF 20% 200V CER CAPACITOR-FOTHRU 5000PF +80 +20% 200V	28480 28480	0160=4082 0160=3036
A3A9C8 A3A9C9	0160=4082 0160=3036	8		CAPACITOR-FOTHRU 1000PF 20% 200V CER CAPACITOR-FOTHRU 5000PF +80 -20% 200V	28480 28480	0160-4082 0160-3036
ABA9JI SEPAEA	1250=0901 1250=0901	3	6	CONNECTOR-RF SMB M SGL-HOLE-FR 50-0HM CONNECTOR-RF SMB M SGL-HOLE-FR 50-0HM	26480 28480	1250-0901 1250-0901
ZCPAEA ZCPAEA PLPAEA	1250-0901 1250-0901	5 5 5		CONNECTOR-RF SMB M SGL-HOLE-FR 50-0HM CONNECTOR-RF SMB M SGL-HOLE-FR 50-0HM	28480 28480	1250-0701 1250-0901 1250-0901
ELPAEA	1250=0901	2		CONNECTOR-RF SMB M SGL-HOLE-FR 50-CHM	28480	1250=0901
A3A9J6	1250-0901	5		CONNECTOR-RF SMB M SGL-MOLE-FR 50-DHM	28480	1250-0901
A3A9U1	5086-7097	•	1	BAMPLER, 2=6.5 GHZ		
IMPAEA SWPAEA	86701-20032 86701-20031	4	1 1	CABLE ASSEMBLY, YTO GUTPUT CABLE ASSEMBLY, ATTENUATOR CUTPUT	28480 28480	86701=20032 86701=20031
EWPAZA	86701-20062	0	1	CABLE ASSEMBLY, FILTER INPUT	28480	86701=20062
A3A9W4	86701-60052	2	1	CABLE ASSEMBLY, COAX, GLACK	28480	86701=60052
				AJA9 MISCELLANEDUS		
	1250=1142	5	1	WASHER-RF, CONN, SERIES SMA. 0250 ID	16179	4151
	1250-1143 1400-0024	6	1	NUT=RF CONN, SERIES SMA, HEX, 1/4=36 THRD CLAMP-CABLE _25-DIA _5-WD NYL	16179 28480	1707 1400=0024
	***				40.00	27/4 027/
	2360-0331 2360-0332	*		SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI	28480 28480	2360=0331 2360=0332
	3050-0227	3		WASHER-FL MTLC NO. 6 .149-IN-ID	26480	3050-0227
	6960=0016 86701=00009	0	1	PLUG-HOLE TR-MD FOR ,125-D-HOLE NYL DECK	28480 28480	6960=0016 86701=00009
	86701=00010	١	1	COVER, SAMPLER	28480	86701=00010
	Be701=00011	7	1	COVER, PHASE LOCK	28480	86701-00011
į	\$48A4 0-44			HOHATAIC CASTING		84704 30009
	86701-00054	8	1	HOUSING, CASTING SPACER, SAMPLER	28480 28480	86701-20009 86701-00054
	86701-40001	"	1	EXTRACTOR, P.C. BGARD	28480	86701-40001
A3A9A1	5086-7237		, l	DIRECTIONAL COUPLER ASSEMBLY	28480	5086=7237
4344A2	86701=20025	5	:	ABSEMBLY, YTO INTERCONNECT	28480	86701-20025
ASAPAZJ1	1250-0543	١		CONNECTOR=RF SM=SNP M PC 50=DHM	28480	1250-0543
A3A9A2W1	86701=60010	2 9	1	CABLE ASSEMBLY, YTO LODP RIBBON	28480	86701-60010
SWSAPAEA EAPAEA	86701-60009 5086-7131	,	:	CABLE ASSEMBLY, YTO LODP RIBBON 2-6.2 GHZ YTO ASSEMBLY	28480	86701=60009 5086=7131
nerite#	5086=6131	7	,	2-6,2 GHZ YTO ASSEMBLY (RESTORED 5086-7131)	28480	5086=6131
A3A9A4	86701-60024	ð	1	ASSEMBLY, YTO PHASE DETECTOR	28480	86701-60024
					[
		1 I			1 1	

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A3A9A4C1 A3A9A4C2 A3A9A4C3 A3A9A4C4 A3A9A4C5	0160-2307 0160-2307 0160-0574 0160-0574 0160-3879	4 3 3 7	2	CAPACITOR=FXD 47PF +=5% 300VDC MICA CAPACITOR=FXD 47PF +=5% 300VDC MICA CAPACITOR=FXD .022UF +=20% 100VDC CER CAPACITOR=FXD .022UF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER	28480 28480 28480 28480	0160-2307 0160-2307 0160-0574 0160-0574 0160-3879
A3A9A4C6 A3A9A4C7 A3A9A4C8 A3A9A4C9	0160=0574 0160=3538	3 5	2	CAPACITOR=FXO _022UF +=20% 100VDC CER NOT ABBIGNED NOT ASSIGNED CAPACITOR=FXD 750PF +=5% 100VDC MICA	28480 28480	0160=0574 0160=3538 0160=3538
A3A9A4C11 A3A9A4C12 A3A9A4C13 A3A9A4C14 A3A9A4C15	0160=3538 0160=0165 0160=0575 0160=3874 0160=2453 0160=2055	5 8 4 2 1 9	1	CAPACITOR=FXD 750PF +=5% 100VDC MICA CAPACITOR=FXD ,056UF +=10% 200VDC POLYE CAPACITOR=FXD ,047UF +=20% 50VDC CER CAPACITOR=FXD 10FF +=.5FF 200VDC CER CAPACITOR=FXD ,22UF ==10% 80VDC POLYE CAPACITOR=FXD ,01UF +80=20% 100VDC CER	28480 28480 28480 28480 28480 28480	0160=0165 0160=0165 0160=0575 0160=3674 0160=2453 0160=2055
A3A9A4C16 A3A9A4C17 A3A9A4C18 A3A9A4C19 A3A9A4C20	0160=0168 0160=2055 0160=2055 0180=0116 0180=0197	9 1 8	1	CAPACITOR=FXD 1UF +=10% 200VDC POLYE CAPACITOR=FXD 101UF +80=20% 100VDC CER CAPACITOR=FXD 101UF +80=20% 100VDC CER CAPACITOR=FXD 0.8UF+=10% 35VDC TA CAPACITOR=FXD 2.2UF+=10% 20VDC TA	26480 28480 28480 56289 56289	0160-0168 0160-2055 0160-2055 1500665X903582 1500225X9020A2
A3A9A4C21 A3A9A4C22 A3A9A4C23 A3A9A4C23	0180-0197 0160-2055 0160-3674 0160-0574 0140-0190	89237		CAPACITOR=FXO 2,2UF+=10X 20YDC TA CAPACITOR=FXD .01UF +80=20X 100VDC CER CAPACITOR=FXD 10PF +=.5PF 200VDC CER CAPACITOR=FXD .022UF +=20X 100VDC CER CAPACITOR=FXD 39PF +=5X 300VDC MICA	56289 28480 28480 28480 72136	150D225X9020A2 0160=2055 0160=3874 0160=0574 DM15E390J0300WV1CR
A3A9A4C26 A3A9A4C27 A3A9A4C26 A3A9A4C29 A3A9A4C30	0160-3490 0160-0574 0160-4064 0160-4064 0160-2200	8 8 8		CAPACITOR=FXD 1UF +=20% 50VDC CER CAPACITOR=FXD .022UF +=20% 100VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .1UF +=20% 50VDC CER CAPACITOR=FXD .4UF +=5% 300VDC MICA	28480 28480 28480 28480	0160-3490 0160-0574 0160-4084 0160-4084 0160-2200
A3A9A4C31 A3A9A4C32 A3A9A4C33	0160-2264 0140-0194 0160-4084	1 8		CAPACITOR-FXD 20PF +-5% 500VDC CER 0+=30 CAPACITOR-FXD 110PF +-5% 300VDC MICA CAPACITOR-FXD ,1UF +-20% 50VDC CER	26480 72136 28480	0160-2264 OM15F111J0300WV1CR 0160-4084
A3A9A4CR1 A3A9A4CR2 A3A9A4CR3 A3A9A4CR4 A3A9A4CR5	1901=0040 1901=0040 1901=0539 1901=0040 1901=0050	1 1 3 1 3		DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SCHOTTKY DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 80V 200MA 2NS D0-35	28480 28480 28480 28480 28480	1901=0040 1901=0040 1901=0539 1901=0040 1901=0050
A3A9A4CR6 A3A9A4CR7 A3A9A4CR8 A3A9A4CR9 A3A9A4CR10	1901-0040 1901-0040	1		DIODE-SWITCHING 3GV 50MA 2NS DO-35 DIODE-SWITCHING 3GV 50MA 2NS DO-35 NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED	28480 28480	1901-0040 1901-0040
A3A9A4CR11 A3A9A4CR12 A3A9A4CR13 A3A9A4CR14	1901-0050 1901-0040 1901-0040 1901-0040	3 1 1 1 1		DIODE-SWITCHING BOV 200MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 28480 28480	1901-0050 1901-0040 1901-0040 1901-0040
A3A9A4L1 A3A9A4L2 A3A9A4L3 A3A9A4L4 A3A9A4L5	9100=2254 9100=1620 9100=1620 9100=1641 9100=1620	3 5 5 0 5		COIL-MLD 390NH 10% GB35 .095D%.25LG-NOM COIL-MLD 15UH 10% GB65 .155D%.375LG-NOM COIL-MLD 240UH 5% GB65 .155D%.375LG-NOM COIL-MLD 15UH 10% GB65 .155D%.375LG-NOM COIL-MLD 15UH 10% GB65 .155D%.375LG-NOM	59490 59490 58490 59490 59490	9100=2254 9100=1620 9100=1620 9100=1641 9100=1620
A3A9A4L6 A3A9A4L7 A3A9A4L8 A3A9A4L9 A3A9A4L10	9100±1641 9100=0368 9140=0179 9100=2254 9100=0368	0 6 1 3 6	2	COIL-MLD 240UH 5% QB65 ,155D%,375LG-NOM COIL-MLD 330NH 10% QB75 ,095D%,25LG-NOM COIL-MLD 320H 10% QB75 ,155D%,375LG-NOM COIL-MLD 330NH 10% QB35 ,095D%,25LG-NOM COIL-MLD 330NH 10% QB28 ,095D%,25LG-NOM	58480 \$8480 \$8480 \$8480	9100-1048 9100-01348 9140-0179 9100-2254 9100-0368
A3A9A4L11	9140=0179	1	1	COIL-MLD 22UM 10% Q#75 .155DX,375LG-NOM TRANSISTOR NPN SI TO-16 PD=350MM	28480	9140+0179
A3A9A4G1- A3A9A4G2- A3A9A4G3 A3A9A4G4 A3A9A4G5	1854-0404 1853-0451 1855-0395 1854-0475 1854-0404	9	1	TRANSISTOR NPN 2N3799 SI TO-16 PD=360MW TRANSISTOR J=FET N=CHAN O=MODE SI TRANSISTOR=DUAL NPN PD=750MW TRANSISTOR NPN 8I TO-18 PD=360MW	01295 17556 28480 28480	2N3799 FN2645 1854-0475 1854-0404
A3A9A4R1 A3A9A4R2 A3A9A4R3 A3A9A4R4 A3A9A4R5	0698=7268 0757+0464 0757=0442 0698+0083 0757=0416	9 9 9 8 7		RESISTOR 147K 1% .05W F TC=0+=100 RESISTOR 90.9K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100	24546 24546 24546 24546	C3=1/8=T0=1473=6 C4=1/8=T0=9092=F C4=1/8=T0=1002=F C4=1/8=T0=1961=F C4=1/8=T0=511R=F
A3A9A4R6 A3A9A4R7 A3A9A4R8 A3A9A4R8 A3A9A4R8	0698-7212 0698-7219 0698-7212 0698-7219 0698-3429	6		RESISTOR 100 1% ,05% F TC=0+=100 RESISTOR 196 1% ,05% F TC=0+=100 RESISTOR 100 1% ,05% F TC=0+=100 RESISTOR 196 1% ,05% F TC=0+=100 RESISTOR 19.6 1% ,125% F TC=0+=100	24546 24546 24546 24546 03888	C3=1/8=T0=100R=G C3=1/8=T0=196R=G C3=1/8=T0=100R=G C3=1/8=T0=196R=G PME55=1/8=T0=19R0=P

Table 6-3. Replaceable Parts

				Table 0-3. Neplaceable Falls		
Reference Designation	HP Part Number	C D		Description	Mfr Code	Mfr Part Number
A3A9A4R11 A3A9A4R12 A3A9A4R13 A3A9A4R14 A3A9A4R15	0698-3429 0698-3440 0698-3440 0757-0458 0698-3155	27771		RESISTOR 19.6 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 196 1% .125W F TC=0+=100 RESISTOR 51.1K 1% .125W F TC=0+=100 RESISTOR 4.64K 1% .125W F TC=0+=100	03888 24546 24546 24546 24546	PME55=1/8=T0=19R6=F C4=1/8=T0=196R=F C4=1/8=70=196R=F C4=1/8=70=5112=F C4=1/8=70=4641=F
A3A9A4R16 A3A9A4R17 A3A9A4R16 A3A9A4R19 A3A9A4R20	0757-0280 0757-0280 0757-0436 0757-0438 0757-0421	3 3 4		RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 1K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 5,11K 1% ,125W F TC=0+-100 RESISTOR 825 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-S111-F C4-1/8-T0-S111-F C4-1/8-T0-825R-F
A3A9A4R21 A3A9A4R22 A3A9A4R23	0757÷1094 0698=3152	8		RESISTOR 1.47K 1% .125W F TC=0++100 RESISTOR 3.48K 1% .125W F TC=0++100 NOT ASSIGNED	24546 24546	C4=1/8=Y0=1471=F C4=1/8=Y0=3481=F
A3A9A4R24 A3A9A4R25	0698-3157 0757-0416	3 7		RESISTOR 19.6K 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100	24546 24546	C4=1/8=T0=1962=F C4=1/8=T0=511R=F
A3A9A4R26 A3A9A4R27 A3A9A4R26 A3A9A4R29 A3A9A4R30	0698-4020 0698-0085 0757-0438 0757-0394 2100-3212	1 0 3 0 8	1	RESISTOR 9.53K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR-TRMR 200 10% C TOP-ADJ 1-TRN	24546 24546 24546 24546 28480	C4-1/8-70-9531-F C4-1/8-70-2611-F C4-1/8-70-5111-F C4-1/8-70-51R1-F 2100-3212
A3A9A4R33 A3A9A4R33 A3A9A4R33 A3A9A4R34 A3A9A4R38	0757-0416 0757-0440 0757-0442 0757-0442 0757-0421	7 7 9 4		RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 7.5K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 825 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-511R-F C4-1/8-T0-7501-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-825R-F
A3A9A4R36 A3A9A4R37 A3A9A4R38 A3A9A4R39 A3A9A4R40	0757=0438 0757=0422 0757=0422 0757=0467	3 5 8		RESISTOR 5.11K 1% .125W F TC#0+=100 RESISTOR 909 1% .125W F TC#0+=100 RESISTOR 909 1% .125W F TC#0+=100 RESISTOR 121K 1% .125W F TC#0+=100 NOT ASSIGNED	24546 24546 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-909R-F C4-1/8-T0-909R-F C4-1/8-T0-1213-F
A3A9A4R41 A3A9A4R42 A3A9A4R43 A3A9A4R44 A3A9A4R44	0757-0458 0757-0442 0698-3132	7 9 4		NOT ASSIGNED NOT ASSIGNED RESISTOR 51.1K 1% .125M F TC=0++100 RESISTOR 10K 1% .125M F TC=0+-100 RESISTOR 261 1% .125M F TC=0+-100	24546 24546 24546	C4=1/8=T0=5112=F C4=1/8=T0=1002=F C4=1/8=T0=2610=F
A3A9A4R46 A3A9A4R47 A3A9A4R48 A3A9A4R49 A3A9A4R49	0698=3132 0757=0416 0698=7236 0757=0439 0698=0085	47740		RESISTOR 261 1% .125W F TC=0+=100 RESISTOR 511 1% .125W F TC=0+=100 RESISTOR 1K 1% .05W F TC=0+=100 RESISTOR 6.81K 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100	24546 24546 24546	C4=1/8=T0=2610=F C4=1/8=T0=511R=F C3=1/8=T0=1001=G C4=1/8=T0=6811=F C4=1/8=T0=2611=F
A3A9A4R53 A3A9A4R53 A3A9A4R54 A3A9A4R55	0648=0083 0698=0083 2100=1986 0698=7245 0698=7242	6 6 6 5	1 1 1	RESISTOR 1.96K 1% .125W F TCR0+=100 RESISTOR 1.96K 1% .125W F TCR0+=100 RESISTOR=TRMR 1K 10% C TOP=ADJ 1=TRN RESISTOR 2.37K 1% .05W F TCR0+=100 RESISTOR 1.78K 1% .05W F TCR0+=100	24546 24546 73138 24546 24546	C4=1/8=T0=1961=F C4=1/8=T0=1961=F 82PR1K C3=1/6=T0=2371=G C3=1/6=T0=1781=G
A3A9A4R56 A3A9A4R57 A3A9A4R58	0698=7253 0757=0418 0698=3451	8 9 0	1	RESISTOR 5.11K 1% .05W F TC=0+=100 RESISTOR 619 1% .125W F TC=0+=100 RESISTOR 133K 1% .125W F TC=0+=100	24246 54246 54246	C3=1/8=70=5111=G C4=1/8=70=619R=F C4=1/8=70=1333=F
A3A9A4TP2 A3A9A4TP2 A3A9A4TP3 A3A9A4TP4 A3A9A4TP5	1251=0600 1251=0600 1251=0600 1251=0600 1251=0600	00000		CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR CONTACT-CONN U/W-PDST-TYPE MALE DPSLDR CONTACT-CONN U/W-PDST-TYPE MALE DPSLDR CONTACT-CONN U/W-PDST-TYPE MALE DPSLDR	28480 28480 28480 28480 28480	1251*0600 1251*0600 1251*0600 1251*0600 1251*0600
A3A9A4U1 A3A9A4U2 A3A9A4U3 A3A9A4U4 A3A9A4U5	1826+0092 1826+0026 1826+0044 1820+1423 1820+1344	3 5 4 8	. 1	IC OP AMP TO=99 IC COMPARTOR TO=99 IC OP AMP 14-DIP-C IC MV TTL LS MONOSTOL RETRIG DUAL IC PL LOOP 14-DIP-C	28480 27014 07263 01295 04713	1826-0092 LM311H 7390C 8N74L5123N MC12040L
ASA9A4U6 ASA9A4U7 ASA9A4U6 ASA9A4U9	1620=0802 1620=0817 1810=0204 1620=0817	1 8 6 8	a	IC GATE ECL NOR QUAD 2-INP IC FF ECL 0-M/3 DUAL NETWORK-RES 8-PIN-SIP .1-PIN-8PCG IC FF ECL D-M/8 DUAL	04713 04713 11236 04713	MC10102P MC10131P 750-81-Rik MC10131P
A3A9A4VR1 A3A9A4VR3 A3A9A4VR4	1902-1260 1902-1260 1902-0041 1902-3104	1 4 6	1 1	DIODE-ZNR 1N5525C 6.2V 2X DG-7 PDs.4W DIODE-ZNR 1N5525C 6.2V 2X DG-7 PDs.4W DIODE-ZNR 5.11V 5% DG-7 PDs.4W TCs009% DIODE-ZNR 5.62V 5% DG-7 PDs.4W TCs016%	04713 04713 28480 28480	1N5525C 1N5525C 1902-0041 1902-3104
ABAPAS	66701-60023	7	1	ASSEMBLY, SAMPLER	28480	86701=60023
AIA9ASC1 AIA9ASC3 AIA9ASC4 AIA9ASC5	0121-0046 0121-0046 0180-0197 0180-0116 0160-2055	2 8 1 9	2	CAPACITOR=V TRMR=CER 9-35PF 200V PC=MTG CAPACITOR=V TRMR=CER 9-35PF 200V PC=MTG CAPACITOR=FXD 2,2UF+=10X 26VDC TA CAPACITOR=FXD 6,8UF+=10X 35VDC TA CAPACITOR=FXD 001UF +80=20X 100VDC CER	52763 52763 56289 56289 28480	304322 9/35PF N650 304322 9/35PF N650 1500225%020a2 1500685%03582 0160-2055
A3A9A3C6 A3A9A3C7 A3A9A3C8 A3A9A3C9 A3A9A3C10	0180-0197	5 9 6 8 2	i	CAPACITOR=FXD 33FF +=5% 300V0C MICA CAPACITOR=FXD .01UF +80=20% 100VDC CER CAPACITOR=FXD 1000PF +=20% 100VDC CER CAPACITOR=FXD 2.2UF+=10% 20VDC TA CAPACITOR=FXD 20PF +=5% 500VDC CER 0+=30	28480 28480 28480 56289 28480	0160=2150 0160=2055 0160=3878 1500225X9020A2 0160=2264
		Щ				

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C Oty	Description	Mfr Code	Mfr Part Number
A3A9A5C11 A3A9A5C12 A3A9A5C13 A3A9A5C14 A3A9A5C15	0160=3878 0160=2055 0180=0228 0160=2055 0160=2055	6 9 6 9	CAPACITOR-FXD 1000PF +=20% 100VDC CER CAPACITOR-FXD 010F +80-20% 100VDC CER CAPACITOR-FXD 22UF+=10% 15VDC TA CAPACITOR-FXD 010F +80-20% 100VDC CER CAPACITOR-FXD 010F +80-20% 100VDC CER	28480 28480 56289 28480 28480	0160=3878 0160=2055 1500226×901582 0160=2055 0160=2055
A3A9A3C16 A3A9A3C17 A3A9A5C16 A3A9A5C19 A3A9A5C20	0160=3879 0160=2055 0160=3878 0160=3879 0160=0939	7 9 6 7 4	CAPACITOR=FXO .01UF +=20% 100VDC CER CAPACITOR=FXD .01UF +80-20% 100VDC CER CAPACITOR=FXD 100VDF +=20% 100VDC CER CAPACITOR=FXD .01UF +=20% 100VDC CER CAPACITOR=FXD 430PF +=5% 300VDC MICA	28480 28480 28480 28480 28480	0160=3679 0160=2055 0160=3678 0160=3879 0160=0939
A 14 94 5 C 2 1 A 34 94 5 C 2 2 A 34 94 5 C 2 2 A 34 94 5 C 2 4 A 34 94 5 C 2 5	0160=2055 0160=2055 0160=2055 0140=0193	9 1 9 0 0	CAPACITOR=FXO .01UF +80-20% 100VDC CER CAPACITOR=FXD 120FF +-5% 300VDC MICA CAPACITOR=FXD .01UF +80-20% 100VDC CER CAPACITOR=FXD 82FF +-5% 300VDC MICA	28480 28480 28480 72136 72136	0160=2055 0160=2205 0160=2055 Dm158820J0300wy1Cr Dm158820J0300wy1Cr
ASAPASCA TSOZRAPAEA BSOZRAPAEA PSOZRAPAEA OEOZRAPAEA	0160=2308 0160=2055 0160=2055 0160=3879 0160=3879	5 9 9 7 7	CAPACITOR-FXD 36PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 28480 28480 28480 28480	0160=2306 0160=2055 0160=2055 0160=3879 0160=3879
A3A9A5C31 A3A9A5C32	0160#2055 0160=3879	97	CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +=20% 100VDC CER	28480 28480	0160-2055 0160-3879
A3A9A3L1 A3A9A3L2 A3A9A3L3 A3A9A8L4 A3A9A3L5	9140=0144 9100=1621 9100=2251 9100=2258	0 8 0 7	COIL-MLD 27UH 5% Q#60 .155D%.375LG-NOM COIL-MLD 22ONH 10% Q#32 .095D%.25LG-NOM	28480 28480 28450 28450	9140-0144 9100-1623 9100-2251 9100-2258
A3A9A5L6 A3A9A5L7 A3A9A5L6	9100=2258 9100=0346	7	COIL-MLD 1,2UH 10% Q=32 ,0950%,25LG=NOM COIL-MLD 50NH 20% G=40 ,0950%,25LG=NOM NSR, PART OF CIRCUIT BOARD	28480 28480	9100=2258 9100=346
ASAPASLO ASAPASLIO	9140=0143	9	NSR, PART OF CIRCUIT BUARD COIL-MLD 3,3UH 10x 0=45 ,095Dx,25LG=NDM	28480	9140=0143
A3A9A5L11 A3A9A5L12 A3A9A5L13 A3A9A5L14	9100-0368 9100-2249 9100-2250 9100-2249	6 9 6	COIL-MLD 330NH 10% Q=28 .0950%.25LG=NOM COIL-MLD 150NH 10% Q=34 .0950%.25LG=NOM COIL-MLD 180NH 10% Q=34 .0950%.25LG=NOM COIL-MLD 150NH 10% Q=34 .0950%.25LG=NOM	28480 28480 28480	9100=0368 9100=2249 9100=2250 9100=2249
A3A9A5Q; A3A9A5Q2 A3A9A5Q3 A3A9A5Q4	1854-0247 1200-0173 1854-0345 1854-0247 1854-0254	9 5 8 9 8	TRANSISTOR NPN SI TO=39 PD=1W FT=800MMZ INSULATOR=XSTR DAP=GL TRANSISTOR NPN SN5179 SI TO=72 PD=200MW TRANSISTOR NPN SI TO=39 PD=1W FT=800MHZ TRANSISTOR NPN SI TO=5 PD=800MW	28480 28480 04713 28480 28480	1854-0247 1200-0173 285179 1854-0247 1854-0254
A3A9A5Q5 A3A9A5Q6 A3A9A5Q7 A3A9A5Q8	1853=0015 1844=0345 1854=0345 1854=0347 1200=0173	7 8 8 9 5	TRANSISTOR PNP SI PD=200MW FT=500MHZ TRANSISTOR NPN 2N5179 SI TD=72 PD=200MW TRANSISTOR NPN 2N5179 SI TO=72 PD=200MW TRANSISTOR NPN SI TO=39 PD=1W FT=800MHZ INSULATOR=XSTR DAP=GL	28480 04713 04713 26480 28480	1853=0015 2N5179 2N5179 1854=0247 1200=0173
A3A9A5R1 A3A9A5R2 A3A9A5R3 A3A9A5R4 A3A9A5R5	2100-3363 0757-0394 0698-3440 0698-0085 0757-0424	4 0 7 0 7	RESISTOR-TRMR 50 10% C TOP-ADJ 1-TRN RESISTOR 51,1 1% ,125% F TC=0+-100 RESISTOR 196 1% ,125% F TC=0+-100 RESISTOR 2,61% 1% ,125% F TC=0+-100 RESISTOR 1,1% 1% ,125% F TC=0+-100	24546 24546 24546 24546 28480	2100-3383 C4-1/8-T0-51R1-F C4-1/8-T0-196R-F C4-1/8-T0-2611-F C4-1/8-T0-1101-F
A3A9A5R6 A3A9A5R7 A3A9A5R8 A3A9A5R9 A3A9A5R10	0757-0280 0757-0278 0757-0796 0757-0399 0698-3457	5	RESISTOR 1K 1X .125W F TC=0+=100 RESISTOR 1.78K 1X .125W F TC=0+=100 RESISTOR 82.5 1X .5W F TC=0+=100 RESISTOR 82.5 1X .125W F TC=0+=100 RESISTOR 316K 1X .125W F TC=0+=100	58480 54549 54549 54549	C4-1/8-T0-1001-F C4-1/8-T0-1781-F 0757-0796 C4-1/8-T0-82R5-F 0698-3457
A3A9A5R12 A3A9A5R12 A3A9A5R13 A3A9A5R14 A3A9A5R15	0757-0470 0757-0442 0668-7216 0757-0447 0757-0317	9	RESISTOR 162K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 147 1% ,05W F TC=0+=100 RESISTOR 16,2K 1% ,125W F TC=0+=100 RESISTOR 16,3K 1% ,125W F TC=0+=100	24546 24546 24546 24546 24546	C4-1/8-T0-1023-F C4-1/8-T0-1002-F C3-1/8-T0-147R-G C4-1/8-T0-1022-F C4-1/8-T0-1331-F
A3A9A5R16 A3A9A5R18 A3A9A5R18 A3A9A5R19 A3A9A5R20	0757-0398 0757-0422 0757-0420 0757-0421 0698-7224	5 3 4 3	RESISTOR 75 1% .125W F TC=0+=100 RESISTOR 909 1% .125W F TC=0+=100 RESISTOR 750 1% .125W F TC=0+=100 RESISTOR 825 1% .125W F TC=0+=100 RESISTOR 316 1% .05W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-75R0-F C4-1/8-T0-909R-F C4-1/8-T0-751-F C4-1/8-T0-825R-F C3-1/8-T0-316R-G
A3A9A5R21 A3A9A5R22 A3A9A5R23 A3A9A5R24 A3A9A5R25	0698-7212 0698-7197 0698-0083 0698-0084 0698-0082	8 9	RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 23.7 1% .05W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 2.15K 1% .125W F TC=0+=100 RESISTOR 464 1% .125W F TC=0+=100	24546 24546 24546 24546 24546	C3=1/8=T0=100R=G C3=1/8=T00=23R?=G C4=1/8=70=1961=F C4=1/8=70=2151=F C4=1/8=70=4640=F
A3A9A5R26 A3A9A5R27 A3A9A5R28 A3A9A5R29 A3A9A5R30	0757=0260 0757=0394 0698=0082 0698=7212 0757=0346	3 0 7 9 2	RESISTOR 1K 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 464 1% .125W F TC=0+=100 RESISTOR 100 1% .05W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100	24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-51R1-F C4-1/8-T0-4640-F C3-1/8-T0-10R-G C4-1/8-T0-10R0-F

Table 6-3. Replaceable Parts

				Table 6-3. Replaceable Parts		
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3A9A5R31 A3A9A5R32 A3A9A5R33 A3A9A5R34 A3A9A5R35	0757-0420 0698-3439 0757-0346 0757-0280 0698-3439	34 234		RESISTOR 750 1% .125W F TC=0+=100 RESISTOR 178 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 178 1% .125W F TC=0++100	24546 24546 24546 24546 24546	C4-1/8-T0-751-F C4-1/8-T0-178R-F C4-1/8-T0-10R0-F C4-1/8-T0-1001-F C4-1/8-T0-178R-F
ASA+ASRS6 ASA+ASRS7 ASA+ASRS6 ASA+ASRS6 ASA+ASRS6 ASA+ASRS6 ASA+ASRS6 ASA+ASRS6	0757=0394 0757=0394 0757=0276 0757=0276 0757=0394 0698=7196	0 7 7 0 8	1	RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 61.9 1% .125W F TC=0+=100 RESISTOR 61.9 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W FTC=0+=100 RESISTOR 21.5 1% .05W F TC=0+=100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-51R1-F C4-1/8-T0-51R1=F C4-1/8-T0-6192=F C4-1/8-T0-6192=F C3-1/8-T0-51R1-F C4-1/8-T0-21R5-G
				ABA9A5 MIBCELLANEOUS		
	1205-0011 1205-0037 1251-3172	9	1	HEAT SINK TO-5/TO-39-PKG HEAT SINK TO-18-PKG CONNECTOR-SGL CONT SKT .03-IN-88C-3Z RNO	28480 28480 28480	1205=0011 1205=0037 1251=3172
ASA9A6	0955+0090	3	1	ATTENUATOR ASSEMBLY, 15 DB	28480	0955=0090
A3A9A7	9135-0040	4	1	6.2 GHZ LOW PASS FILTER ASSEMBLY	28480	9135-0040
ASAto	86701=60011	3	1	MOTHER BOARD ASSEMBLY	28480	86701-60011
A3A10CR1 A3A10CR2 A3A10CR3	1901-0159 1901-0050 1990-0517	3 4	1	DIODE-PWR RECT 400V 750MA D0-41 Diode-Bwitching 80V 200MA 2N8 D0-35 LED-Vi8ible Lum-int=3MCD IF=20MA-MAX	28480 28480 28480	1901=0159 1901=0050 5082=4655
1301031 ST018EA ST018EA ST018EA	1251-3905 86701-60069 1251-0555	4114	1 1 1	NSR, PART OF A3W11 CONNECTOR 20-PIN M RECTANGULAR CONNECTOR ASSEMBLY, 5-PIN CONNECTOR-PC EDGE 30-CONT/ROW 2-ROWS	28480 28480 28480	1251=3905 86701=60069 1251=0555
A3A10K\$	0490-0618	5	1	RELAY 2C 24VDC=COIL 5A 115VAC	28480	0490-0618
A3A10R1 A3A10R2 A3A10R3 A3A10R4 A3A10R4	0757=0421 0467=3321 9683=7515 9686=7525 9683=2225	4 0 4 2 3	1 1 1	REBISTOR 825 1% 125W F TC=0+=100 REBISTOR 3.3K 10% .5W CC TC=0+647 REBISTOR 7.50 5% .25W FC TC==400/+600 REBISTOR 7.5K 5% .5W CC TC=0+647 REBISTOR 2.2K 5% .25W FC TC==400/+700	24546 01121 01121 01121 01121	C4-1/8-T0-825R-F E83321 C87515 E87525 CB2225
SAEAXOLAEA EAEAXOLAEA PAEAXOLAEA EAEAXOLAEA GAEAXOLAEA	1251+2026 1251+2026 1251-2026 1251-2026 1251+2035	8 8 8 8 9	4	CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	28480 28480 28480 28480 28480	1251=2026 1251=2026 1251=2026 1251=2026 1251=2035
A3A10XA3A7	1251+2035	•		CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	28480	1251-2035
		Ш		AJA10 MISCELLANEOUS		
	0380+0076 0380+0659 0380+0677 0380+0884 0590+0526	6 1 3 4 6	4 2 5	STANDDFF_RVT=ON ,5=IN=LG ,152=IN=ID SPACER=RVT=ON ,375=IN=LG ,152=IN=ID SPACER=RVT=ON ,156=IN=LG ,168=IN=ID STANDDFF=RVT=ON ,156=IN=LG 4-40THD TMREADED INSERT=NUT 4-40 ,065=LG SST	00000 00000 00000 00000 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 0590-0526
	1251-2313	4		CONNECTOR-SGL CONT SKT .04-IN-8\$C+8Z RND	28480	1251-2313
11AEA	86701-60070	4	1	POWER LINE MODULE(PRIMARY POWER, FUSE Listed as asfi)	28480	86701=60070
A3A117B1	5020-6122	5	1	LINE VOLTAGE SELECTION CARD	28480	5020=8122

Table 6-3. Replaceable Parts

5 (LID Do	П	Т		Mfr	
Reference Designation	HP Part Number	C D	Qty	Description	Code	Mfr Part Number
iTÁEA iTÁEA	86701=60066 86701=60066	8	2	TERMINATION, 50 OHM TERMINATION, 50 OHM	28480 26480	86701=60066 86701=60066
A381	3160-0296 3160-0298	9	1	FAN (EXCEPT OPTION 003) FAN (OPTION 003 ONLY)	28480 28480	3150-0296 3160-0298
A3C1 A3C2 A3C3 A3C4 A3C5	0180-0452 0160-0454 0180-0453 0180-2798 0170-0073	8 0 9 9	1 1 1 1 1	CAPACITOR=FXO .013F+75=10X 25VDC AL CAPACITOR=FXD 4200UF+75=10X 75VDC AL CAPACITOR=FXD 8700UF+75=10X 40VDC AL CAPACITOR=FXD .03F+100=10X 20VDC AL CAPACITOR=FXD 1UF +=10X 600VDC POLYE (OPTION 003 ONLY)	28480 28480 28480 28480	0:80=0452 0180=0454 0180=0453 0180=2798 0170=0073
A3C6	0160-4065	5	1	CAPACITOR=FXD .1UF +=20% 250VAC(RMS)	28480	0160=4065
A3F1	2110=0003 2110=0043	8		FUSE 3A 250V FAST-BLO 1,25x,25 UL IEC (100/120 VAC) FUSE 1,54 250V FAST-BLO 1,25x,25 UL IEC (220/240 VAC)	75915 28480	312003 2110~0043
A3J1 A3J2 A3J3 A3J4 A3J5				NSR (P/O A3W11) NSR (P/O A3W10) NSR (P/O A3W10) NOT ASSIGNED NOT ASSIGNED		
A3J6 A3J7	1250-0670	4	4	NSR, RF DUTPUT CONNECTOR, P/O A1W7 (OPT 005 ONLY) DR A1W8 (OPT 004 ONLY) CONNECTOR-RF BNC FEM SGL-HOLE-RR 50-OHM	26480	1250-0870
BLEA	1250-0870	4		(10 MHZ GUT) CONNECTOR=RF BNC FEM SGL=HCLE=RR 50=GHM (100 MHZ GUT)	28460	1250=0870
A3J9	1250-0870	4		CONNECTOR-RE BNC FEM GGL-HOLE-RR 50-OHM	28480	1250-0870
A3J10	1250-0870	4		(FRED. STD. INT) CONNECTOR-RF BNC FEM SGL-HOLE-RR 50-OHM (FREG. STD. EXT)	28480	1250=0870
A301 A302 A303 A304	1854-0618 1854-0294 1854-0618 1854-0679	8 6 8	2 1 1	TRANSISTOR NPN SI DARL TO-3 PD=150M Transistor npn Si To-3 pD=115W FT=500KHZ Transistor npn Si Oarl To-3 pD=150W Transistor npn 2M5865 SI TO-3 PD=200W	04713 28480 04713 28480	MJ3000 1654=0294 MJ3000 1854=0679
A381	3101-0070	3	i	SWITCH-SL DPDT-NS MINTR .5A 125VAC/DC (FREG. STD. INT/EXT SWITCH)	28480	3101=0070
A3T1	86701=60032	8	ı	TRANSFORMER	28480	86701=60032
1 W E A S W S W	86701=60046 86701=60007 86701=60063 86701=60039 86701=60005	47555	1 1	CABLE ASSEMBLY, FM INPUT (BROWN) CABLE ASSEMBLY, FREG. STO. DUTPUT (GRA/VIO) CABLE ASSEMBLY, FREG. REF. (GRAY) CABLE ASSEMBLY, YTM TUNĞ (YELLOM) CABLE ASSEMBLY, 10 MMZ OUTPUT (GRA/BLU)	26480 26480 26480 26480 26480	86701=60046 86701=60007 86701=60063 86701=60039 86701=60005
A3W6 A3W7 A3W6	86701=60049 86701=60004 68701=60053	7 4 5	1 1 1	CABLE ASSEMBLY, 10 MHZ OUTPUT (BLUE) CABLE ASSEMBLY, 100 MHZ OUTPUT(GRA/GRN) CABLE ASSEMBLY,M/N OUTPUT(WHT/ORG) NOT ASSIGNED	28480 28480 28480	86701=60049 86701=60004 68701=60053
A3W9 A3W10	86701-60064	6	1	CABLE ASSEMBLY, A1 TO AZ INTERCONNECT (INCLUDES A3JZ AND A3J3)	28460	86701=60064
A3W11	86701-60050	0	i	CABLE ASSEMBLY, A1 INTERCONNECT (INCLUDES A3J1 AND A3A10J1) NOT ASSIGNED	26480	86701-60050
A3W12 A3W14 A3W14	86701=60006 86701=60056		1 1	CABLE ASSEMBLY, FREQ. STD. INPT(GRA/BLK) CABLE ASSEMBLY, 20/30MHZ OUTPUT (GREEN)	28480 28480	86701-60006 86701-60056
A3W15 A3W16 A3W17	86701+60033 86701-60055 86701-60054	5	i 1	CABLE ASSEMBLY, FM COIL DRIVE (VIOLET) CABLE ASSEMBLY, YTO TUNE (GRAY) CABLE ASSEMBLY, INTEGRATED FM OUT (WHITE)	28480 26480 26480	86701=60033 86701=60035 86701=60054
				A3 MISCELLANEOUS PARTS	<u> </u>	07/0 07/0
	0360=0268 0400=0001 0400=0082 0510=0198 0515=0095	8 0 6	Į ž	TERMINAL-BLDR LUG LK-MTG FOR-#6-8CR GROMMET-RND .562=1N-ID .75=1N-GRY-DD GROMMET-CHAN NCH .09-IN-GRY-WD NUT-MEX-DBL-CHAM C-80-THD .047=IN-THK THUMB SCREW	28480 28480 28480 00000	0360-0268 0400-0001 0400-0082 Order by description Order by description
	0520=0166 0590=0012 0590=0106 0890=0092 1200=0043	3 5 8 7 8	10	SCREW-MACH 2-56 ,375-IN-LG B2 DEG NUT-KNRLD-R 15/32-32-THO ,062-IN-THK NUT-HEX-PLSTC LKG 2-56-THD ,143-IN-THK TUBING-FLEX ,102-IO 7FE ,016-WALL INSULATOR-XSTR ALUMINUM	00000 00000 00000 00000 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 1200-0043
	1200=0147 1400=0618 1400=0619 1400=0510 1400=0673	37884	1 1	INSULATOR-FLG-BSMG NYLON CABLE CLAMP-MFCL .125-DIA .5-MD CABLE CLAMP-MFCL .312-DIA .5-MD CLAMP-CABLE .15-DIA .62-MO NYL CLAMP-CABLE 2-DIA .5-MD 38T	28480 28480 28480 28480 28480	1200=0147 1400=0618 1400=0619 1400=0510 1400=0673

See introduction to this section for ordering information

[†] BACKDATING INFORMATION IN SECTION VII

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts							
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number	
	1520-0065 1520-0094 2190-0004 2190-0007 2190-0011	2 7 9 2 8	4 5 6 2 8	SHOCK MOUNT .S-EFF-HGT 6-LB-LOAD-CAP ISOLATION MOUNT (EXCEPT OPTION 002) WASHER-LK INTL T NO. 6 .115-IN-ID WASHER-LK INTL T NO. 6 .141-IN-ID WASHER-LK INTL T NO. 10 .195-IN-IO	28480 28480 28480 28480	1520-0065 1520-0094 2190-0004 2190-0007 2190-0011	
	2190-0017 2190-0018 2190-0019 2190-0049 2190-0102	45628	8 2 4 2 5	WASHER-LK HLCL NO. 8 .168-IN-ID WASHER-LK HLCL NO. 6 .141-IN-ID WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 0 .065-IN-ID WASHER-LK HLCL NO. 0 .065-IN-ID WASHER-LK INTL T 15/32 IN .472-IN-ID	28480 28480 28480 28480 28480	2190=0017 2190=0018 2190=0019 2190=0049 2190=0102	
i	2200-0103 2200-0105 2200-0111 2200-0141 2200-0151	2 4 2 5 0	1 8 4 2	SCREW-MACH 4-40 .25-IN-LG PAN-MD-POZI SCREW-MACH 4-40 .312-IN-LG PAN-MD-POZI SCREW-MACH 4-40 .5-IN-LG PAN-MD-POZI SCREW-MACH 4-40 .312-IN-LG PAN-MD-POZI SCREW-MACH 4-40 .75-IN-LG PAN-MD-POZI	00000 00000 00000 00000	ORDER BY DESCRIPTION	
	2200-0153 2360-0115 2360-0117 2360-0119 2360-0197	24682	25 25 8 8	SCREW-MACH 4-40 .875=IN-LG PAN-HD-PGZI SCREW-MACH 6-32 .312=IN-LG PAN-HD-PGZI SCREW-MACH 6-32 .375=IN-LG PAN-HD-PGZI SCREW-MACH 6-32 .438=IN-LG PAN-HD-PGZI SCREW-MACH 6-32 .375-IN-LG PAN-HD-PGZI	00000 00000 00000 00000	ORDER BY DESCRIPTION	
	2360-0219 2360-0333 2510-0192 2510-0195 2560-0002	98694	14 8 8	SCREW-MACH 6-32 1.375-IN-LG PAN-HD-PO21 SCREW-MACH 6-32 .25-IN-LG 100 DEG SCREW-MACH 8-32 .25-IN-LG 100 DEG SCREW-MACH 8-32 .375-IN-LG 100 DEG NUT-MEX-DBL-CHAM 8-32-THD .085-IN-THK	00000 28480 28480 00000	ORDER BY DESCRIPTION 2360-0333 2510-0192 2510-0195 ORDER BY DESCRIPTION	
	2660=0129 2950=0035 2950=0051 3030=0422 3050=0105	8886	8 2 4	SCREW-MACH 10-32 .312-IN-LG PAN-HD-POZI NUT-MEX-DBL-CHAM 15/32-32-THD NUT-MEX-DBL-CHAM 1/4-28-THO .094-IN-THK SCREW-BXT HD CAP 0-80 .188-IN-LG SST-302 WASHER-FL MTLC NO. 4 .125-IN-ID	00000 00000 00000 00000 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 3050-0105	
	3050-0227 6960-0010 7120-4296 7120-4477 7120-4439	3 4 7 6 0	1 1 1	WASHER-FL MTLC NO. 6 .149-IN-ID PLUG-HOLE DOME-HD FOR .625-D-HGLE STL LABEL-WARNING .688-IN-WD 1.5-IN-LG AL LABEL-WARNING .45-IN-WD 7.5-IN-LG AL LABEL, POWER LINE MODULE	28480 28480 28480 28480	3050=0227 6960=0010 7120=4296 7120=4477 7120=4439	
	5040-0170 86701-00002 86701-00003 86701-00004 86701-00007	6 6 7 8 1	1 1 1 1	GUIDE:PLUG-IN PC BOARD CHASSIS CONTROL CHASSIS, RF MOD SUPPORT, P.C. GUIDE AIR FILTER	28480 28480 28480 28480 28480	5040-0170 86701-00002 86701-00003 86701-00004 86701-00007	
	86701-00016 86701-00017 86701-00019 86701-00020 86701-00022	3580	1 1 1 1 1 1	SUPPORT, CAPACITOR DISK, FAN SHIELD INSULATOR DIVIDER CENTER, 21° COVER, GUARD	28480 28480 28480 28480 28480	86701=00016 86701=00017 86701=00019 86701=00020 86701=00022	
	86701=00024 86701=00027 86701=00028 86701=00029 86701=00030	25 67 0	1 1 1 1	SCOOP, AIR PANEL, REAR BPRING, FLAT BAFFLE-AIR, TOP BAFFLE-AIR, BOTTOM	28480 28480 28480 28480 28480	86701=00024 88701=00027 86701=00028 86701=00029 86701=00030	
	86701-00042 86701-00043		1 1 1 1 4	STRUT ASSEMBLY, LEFT STRUT ASSEMBLY, RIGHT SUPPORT, MOUNT, BOTTOM SUPPORT, MOUNT, TOP SNUBBER	28480 28480 28480 28480 28480	86701-00038 86701-00039 86701-00042 86701-00043 86701-00044	
	86701-20002 86701-20003 86701-40004 86701-20005 86701-20006	2	2 4 1 1	COWLING FAN GUIDE PIN HEAT BINK GUIDE, REAR P.C. GUIDE, FRONT P.C.	28480 28480 28480 28480 28480	86701-20002 86701-20003 86701-40004 86701-20005 86701-20006	
	86701=20007 86701=20010	3	1 1	FRAME, REAR MOD Housing, reference block	28480 28480	86701=20007 86701=20010	
					:		
		.					

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
1 2 3	5001=0439 5040=7220 0570=1170 5060=9938	8 1 6 4	2 2 4 2	8671A CHASSIS PARTS SIDE TRIM, FRONT FRAME W/O FRONT HANDLE STRAP, HANDLE, CAPEREAR RETAINER, SCREW FOR STRAP HANDLE COVER, SIDE, PERFORATED	28480 28480 28480 28480	5001=0439 5040=7220 0570=1170 5060=9938
5 6 7 8	5020-8883 86701-20007 5040-7221 0570-1171	2327	4 1 4 2	STRUT, CORNER 21" FRAME, READ MOD STANDOFF, REAR PANEL CAPTIVE SCREW(USE WITH TOP & BOTTOM COVERS, SEE ALSO ITEM 9)	26480 26480 26480 26480	5020=8863 86701-20007 5040=7221 0570=1176
9 10 11 12	0510-0043 5060-9836 5040-7202 5001-0432	4 1 9	2 1 1 1	CLIP (USE WITH TOP & BOTTOM COVERS; SEE ALSO ITEM 8) COVER, TOP TRIM, TOP GUSSET, SIDE	28480 28480 28480 28480	0510=0043 5060=9836 5040=7202 5001=0432
13 14 15 10 17	5060-9805 5020-8803 86701-20001 5040-7201 5060-9848	46785	2 1 1 4	STRAP, HANDLE FRONT FRAME DIVIDER FRAME, FRONT FOOT(STANDARD) COVER, BOTTOM	28480 28480 28480 28480	5060-9805 5020-8803 86701-20001 5040-7201 5060-9848
18	1460=1345 5040=7219 1460=0553 7120=5911	5 6 5 5	2 2 4 1	TILT, STAND STRAP, HANDLE, CAP-FRONT 6671A MISCELLANEOUS PARTS STAMPING-BE-CU CLIP-WINDOW LABEL, WARNING 1" WD LG PPR	28480 28480 28480 28480	1460=1345 5040=7219 1460=0553 7120=5911
	7120-0049 08640-60036 08672-60016 0515-0095 6120-1374	0 4 8 6 7	1 1 1 1	LABEL, SERIAL BOARD ASSEMBLY, EXTENDER BOARD ASSEMBLY, EXTENDER THUMS SCREW CABLE RISBON, 8-SHIELDED & JKTED COND	28480 28480 00000 28480	7120=0049 08640=60036 08672=60016 ORUER BY DESCRIPTION 8120=1374

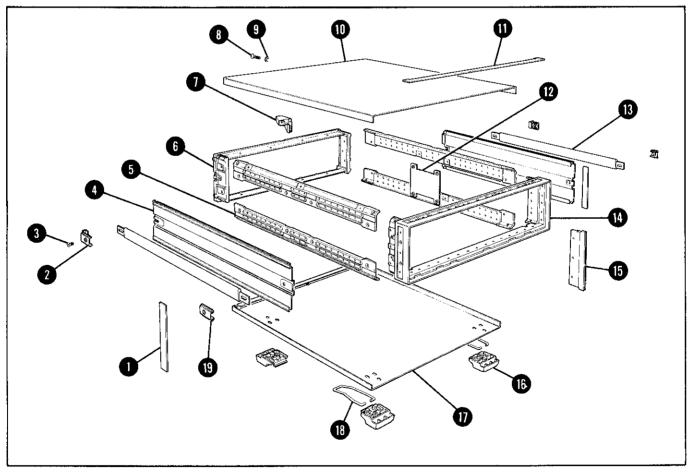


Figure 6-3. Synthesizer Chassis Parts

See introduction to this section for ordering information

Table 6-4. Code List of Manufacturers

Mfr Manufacturer Name	Address	Zip Code
GTE SYLVANIA MINIATURE LT PROD ANY SATISFACTORY SUPPLIER KEMET ALENN-BRADLEY CO 1205 1207 1210 1210 1211 1210 1211 1211 1211	MILWAUKEE WI DALLAS SOMERVILLE NJ CITY OF IND CA SYRACUSE NY MHTPPANY NJ PHOENIX AZ MAKEFIELD MA IRMO SOMUNTAIN VIEW CA SHELTON CT CLEVELAND CH BERNE IN MANCHESTER NH FARMINGTON MI SANTA CLARA CA MINERAL NELLS TX EL MONTE CA MINERAL NELLS TX EL MONTE CA MAKEFIELD MA BRADFORD PA INDIANAPOLIS IN SANTA CLARA CA PALO ALTO SANTA NA CA CAEROVIA NY SELMA NA CAC NORTH ADAMS CA CHICAGO IL NILLIMANTIC CT FULLERYON CA MASECA MILEYON CA MASECA PILADELPHIA PILADELPHIA DES PLAINES IL	03244 53204 75222 08876 91745 13201 07981 85062 01880 29063 94042 06484 44112 46711 03130 03054 95054 94086 76067 91731 01880 16701 46227 925051 94304 92121 92507 92705 13035 27576 01247 06226 92634 56093 19108 60016

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains information for adapting this manual to instruments for which the content does not apply directly. In addition, information about recommended modifications for improvements to the instruments is provided.

7-3. MANUAL CHANGES

7-4. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the sequence listed.

7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1

below, it may be documented in a yellow MAN-UAL CHANGES supplement. For additional important information about serial number coverage refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes

Serial Prefix or Number	Make Changes
1701A	D through A
1702A	D through B
1703A00103	D, C
1703A00104	D
	1

7-6. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Table 1-1:

Change the FREQUENCY MODULATION CHARACTERISTICS, Frequency Response (relative to 100 kHz rate) to "±1.5 dB, 100 Hz -3 MHz, 100 kHz range; ±1.5 dB, 3 kHz -3 MHz, 10 MHz range."

Section IV, FM Frequency Response performance test:

Change the FM Frequency Response specification to "for 100 kHz range, ±1.5 dB from 100 Hz to 3 MHz and for 10 MHz range, ±1.5 dB from 3 kHz to 3 MHz."

In the table following step 6, change the Calculated Response Minimum to -1.5 dB and maximum to +1.5 dB.

Table 4-3

Change the specification for frequency response to "±1.5 dB from 100 Hz to 3 MHz."

Table 6-3:

Change A3A9A5Q4 to 1855-0218 TRANSISTOR-MOSFET DUAL-GATE N-CHAN E-MODE.

Service Sheet 8-A3:

Change the part number of A3A9A5Q4 to 1855-0218.

CHANGE B

Section V, Voltage Controlled Crystal Oscillator (VCXO) adjustment procedure:

Change step 2 to "Connect -10 Vdc from A3A4TP4 to the TUNE test point A3A1A2TP1."

Change the second sentence of step 5 to "Disconnect -10 Vdc from the TUNE test point."

CHANGE B (Cont'd)

Table 6-3:

Change A3A1A1R51 to 0698-3136, RESISTOR 17.8K 1% 0.125W F TC=0±100. Change A3A1A1R75 to 0698-7247, RESISTOR 2.87K 1% 0.05W F TC=0±100. Change A3A1A1VR2 to 1902-0184, DIODE-ZNR 16.2V 5%, DO-7 PD=0.4W TC=0.066%. Change A3A1A2Y1 to 0410-0482, 100 MHz ±10 ppm SERIES MODE HC-18/U HOLDER. Change A3A1A4A2R4 to 0698-3150, RESISTOR 2.37K 1% 0.125W F TC=0±100. Delete A3A3C15.

Service Sheet 2 Schematic:

Change the A3A1A1 TUNE VOLTAGE to "-5 to -40 Vdc, -10 Vdc nominal."

Service Sheet 1-A3 Schematic:

Change the TUNE VOLTAGE to "-10 Vdc nominal." Change the value of A3A1A1R51 to 17.8K and A3A1A1R75 to 2870 ohms. Change the rated value of A3A1A1VR2 to 16.2V.

Service Sheet 2-A3 Schematic:

Change the TUNE VOLTAGE to "-5 to -40 Vdc, -10 Vdc nominal."

Service Sheet 4-A3 Schematic:

Change the value of A3A1A4A2R4 to 2370 ohms.

Service Sheet 12-A3 Schematic:

Delete A3A3C15.

CHANGE C

Table 6-3:

Change A2A1C1 to 0180-0197, CAPACITOR-FXD 2.2UF $\pm 10\%$ 20 VDC TA. Change A2A3C12 to 0160-2200, CAPACITOR-FXD 43PF $\pm 5\%$ 300WVDC MICA. Delete A2A3R34.

Service Sheet 3-A2 Schematic:

Delete A2A3R34. Change A2A3C12 to 43pF.

Service Sheet 12-A2 Schematic:

Change A2A1C1 to 2.2UF.

CHANGE D

Table 6-3:

Change A3A4C12 to 0160-3460, CAPACITOR-FXD 0.05 UF +80 -20% 100WVDC CER. Change A3C4 to 0180-0455, CAPACITOR-FXD 0.0425F +100 -10% 15VDC AL. Delete A3A6TP1-5.

Service Sheet 11-A3 Schematic: Change A3C4 to 42 500UF

Service Sheet 13-A3 Schematic: Change A3A4C12 to 0.05 UF.

7-7. INSTRUMENT IMPROVEMENTS

- 7-8. Hewlett-Packard recommends that the certain modifications be done to the Synthesizer or that certain parts be replaced with preferred parts in the event of a failure. These modifications and new parts are intended to increase reliability and improve the instruments performance.
- 7-9. The modifications are not the same as manual changes or preferred replacement parts and should not be confused with them. If the instruments are modified or the preferred replacement parts are installed, the manual should be updated to reflect the differences. Table 7-2 indicates which parts have been changed over the life of the instrument, the recommended modifications and the preferred replacements.
- 7-10. Perform the modifications as indicated in the following paragraphs if your instrument's serial number or prefix is among those listed.

7-11. INSTRUMENT IMPROVEMENT MODIFI-CATION INSTRUCTIONS

- 7-12. For instruments with Serial Prefixes 1702A or below:
- a. Change A3A1A1R51 to 0698-3157, RESISTOR 19.6K 1% 0.125W F TC=0±100.

- b. Change A3A1A1R75 to 0698-7236, RESISTOR 1K 2% 0.05W F TC=0±100.
- c. Change A3A1A1VR2 to 1902-3256, DIODE-ZNR 23.7V 5% D0-7 PD=0.4W TC=.075%.
- d. Use the Voltage Controlled Crystal Oscillator (VCXO) adjustment procedure in Section V as stated (without the changes indicated by Change B in Section VII).
- e. All references to the TUNE VOLTAGE (Service Sheets 2, 1-A3, and 2-A3) are shown in Section VIII. For example, the TUNE VOLTAGE "-5 to -20 Vdc, -8 Vdc nominal."
- f. Add A3A3C15 (0160-4298, CAPACITOR-FXD 4700 pF $\pm 20\%$ 250WVDC CER) between the base and collector of A3A3Q2.

7-13. For all instruments:

On Table 6-3 and Service Sheet 9-A2: Change A2A11C20 to 0160-3877, CAPACI-TOR-FXD 100 pF.

This will permit A2A11U9D (2 "D-type" Flip-Flops) to function properly. If U9 is replaced, C20 should be changed to assure proper instrument performance.

Table 7-2. Summary of Changes by Component

	Д3			:	C41	
	A3A9A5	Q41				
	A3A9A4					.zo
	A3A7					Q91 Q10 ¹ Q14 ¹
	A3A6					Q11 ¹ Q13 ¹
	A3A5				,	Q2' Q3' Q6' Q9' Q10'
	A3A4				$C12^{1}$	
ies	A3A3		C151			Q21
Assemblies	A3A1A4A2		R41			
	A3A1A3					421 ¹
	A3A1A2		Y11			
	A3A1A1		R51 ² R75 ² VR2 ²			Q51 Q61
	A2A11					C202
	A2A3			C12' R34'		1961
	A2A1			CI₁		
1	Change	¥	В	٥	D	NONE

 $^{
m L}$ New part (as shown in Table 6-3) is the preferred replacement.

²Modification to new part is recommended.

SECTION VIII SERVICE

8-1. INTRODUCTION

- 8-2. This section provides information on service related subjects. Safety considerations include warnings and cautions to be observed while servicing the instrument. The arrangement of the principles of operation and troubleshooting is explained. Repair information such as non-repairable items, module exchange and disassembly and reassembly procedure is included.
- 8-3. The service sheets are in the foldout section. Each service sheet includes a block or schematic diagram, with accompanying principles of operation and troubleshooting information. Usually a component location diagram is also included. Figure 8-1 Schematic Diagram Notes provides general information which relates to block and schematic diagram symbols.
- 8-4. Other pertinent service information is included throughout the section.

8-5. SAFETY CONSIDERATIONS

8-6. This section contains warnings and cautions which must be followed for your protection and to avoid damage to the equipment.

WARNING

Maintenance described herein is performed with power supplied to the instrument and with protective covers removed. Such maintenance should be performed only by service-trained personnel who are aware of the hazards involved. Where maintenance can be performed without power supplied, the power should be removed.

- 8-7. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.
- 8-8. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

- 8-9. Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.
- 8-10. Whenever it is likely that this protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

8-11. PRINCIPLES OF OPERATION

8-12. The operation of the Synthesizer is explained on each service sheet. Overall operation, in terms of interaction of the major assemblies, is found on Service Sheet 1. Each major assembly, is broken down into sections (groups of assemblies) on Service Sheets 2 and 3. Remaining service sheets review the section operating information and explain the assembly operation to the stage (group of components) level.

8-13. TROUBLESHOOTING

NOTE

If the Synthesizer malfunctions, begin troubleshooting on Service Sheet 1.

8-14. Arrangement in Manual

8-15. The troubleshooting information for the Synthesizer is found on each service sheet. If the Synthesizer malfunctions, begin troubleshooting with Service Sheet 1 to isolate the defect to a major assembly. On service sheets 2 and 3, troubleshoot to the section level (a logic group of assemblies). Next, isolate the defective assembly by following the information on the key Service Sheet for the section. With the remaining information on the key service sheet (which applies to the assembly) on the remaining service sheets, isolate the defective stage. Continue troubleshooting to defective component.

8-16. Supplemental Troubleshooting Aids

8-17. The HP-IB Diagnostic Program may verify that the HP-IB input to the Synthesizer is operat-

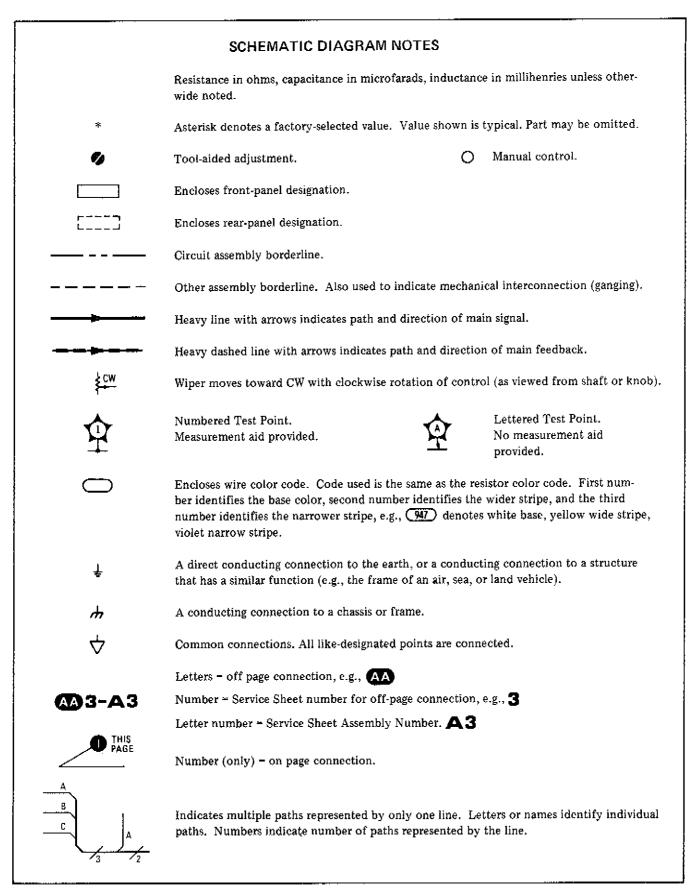


Figure 8-1. Schematic Diagram Notes (1 of 3)

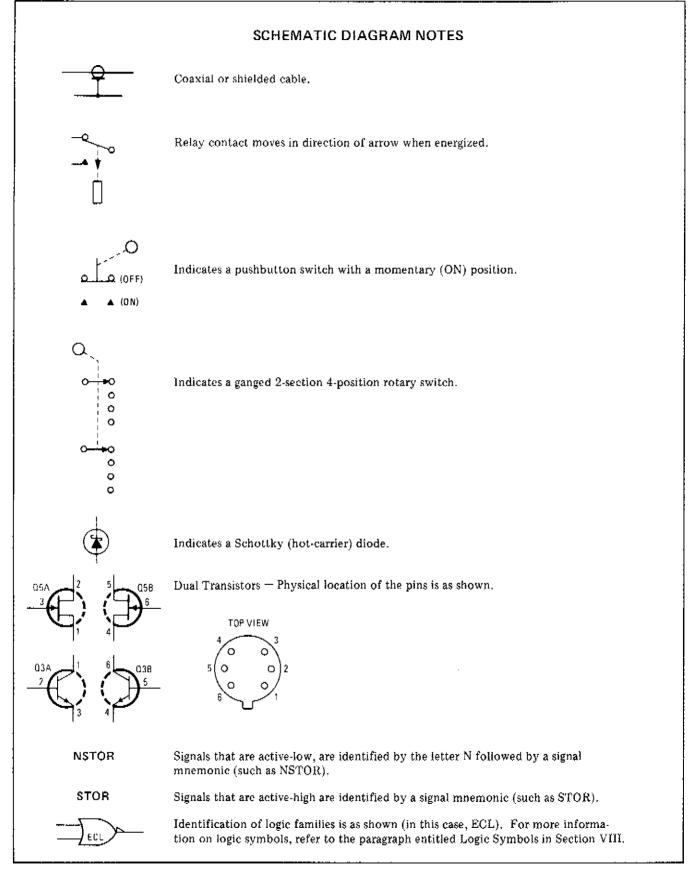


Figure 8-1. Schematic Diagram Notes (2 of 3)

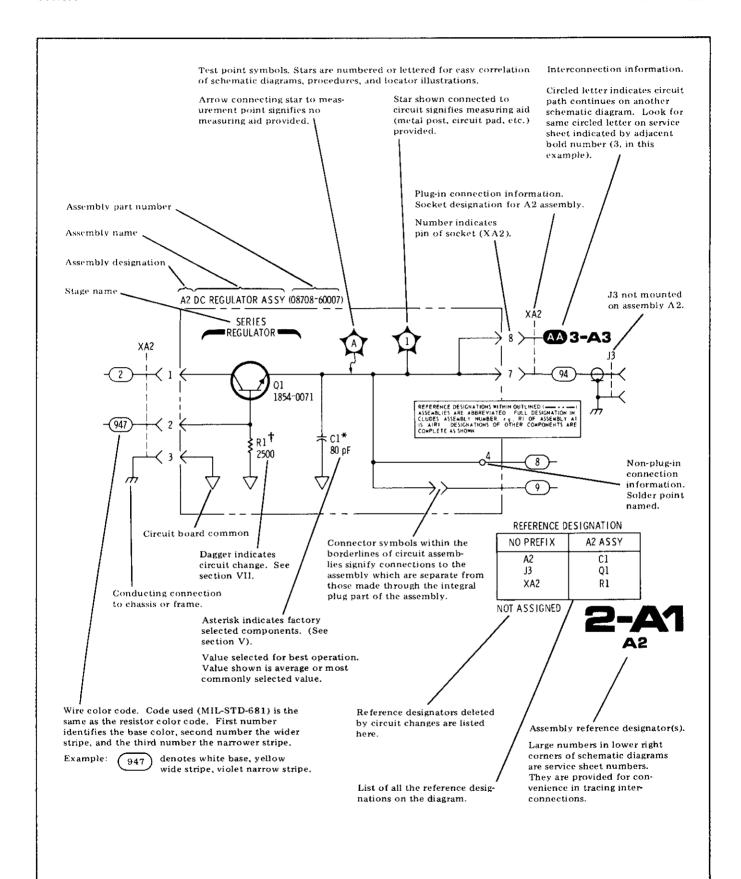


Figure 8-1. Schemaic Diagram Notes (3 of 3)

Arrangement in Manual (Cont'd)

ing properly. The program will not isolate a remote problem but it may give some indication of what the actual problem is. A remote operator's check, found near the last page of this manual, checks the various functions of the Synthesizer when the iIP-IB controller and bus are operating correctly.

8-18. An Operational Verification Check, located before the performance tests in Section IV, may be used to check the performance of the instrument without an excessive outlay of time.

8-19. Table 5-2 (in Section V) may aid in isolating a circuit defect in the event of a performance test failure.

8-20. RECOMMENDED TEST EQUIPMENT

8-21. Test equipment and test equipment accessories required to maintain the Synthesizer are listed in Table 1-2. Equipment other than that listed may be used if it meets the listed critical specifications.

8-22. SERVICE AIDS

8-23. Pozidriv Screwdrivers. Many screws in the instrument appear to be Phillips, but are not. To avoid damage to the screw slots, Pozidriv screwdrivers should be used.

8-24. Blade Tuning Tools. For adjustments requiring a non-metallic tuning tool, use the J.F.D. Model No. 5284 (IIP 8710-1010). In situations not requiring non-metallic tuning tools, an ordinary small screwdriver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjustment control in this instrument. This is especially critical when adjusting variable inductors or capacitors.

8-25. Part Location Aids. The locations of some chassis-mounted parts and the major assemblies are shown on/or near the last foldout of this manual. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the service sheet.

8-26. Servicing Aids on Printed Circuit Boards. The servicing aids include test points, transistor and integrated circuit designations, adjustment callouts, and assembly stock numbers.

8-27. REPAIR

8-28. After a circuit board is repaired, it is recommended that the area sorrounding the new component be sprayed with a protective coating.*

8-29. Factory Selected Components

8-30. Some component values are selected at the time of final checkout at the factory (see Table 5-1). Usually these values are not extremely critical; they are selected to provide optimum compatibility with associated components. These components are identified on individual schematics by an asterisk (*). The recommended procedure for replacing a factory-selected part is as follows:

a. Try the original value, then perform the calibration test specified for the circuit in the performance and adjustment sections of this manual.

b. If calibration cannot be accomplished, try the typical value shown in the parts list and repeat the test.

c. If the test results are still not satisfactory, substitute various values within the tolerance specified in Table 5-1 until the desired result is obtained.

8-31. Non-Field Repairable Assemblies

8-32. A few of the Synthesizer's assemblies must be replaced if they malfunction. If they are repairable, they may be returned to the factory under the Module Exchange Program (refer to the next paragraph). The following assemblies are not repairable:

A2A2 Rotary Pulse Generator
A3A9U1 Sampler 2—6.5 GHz
A3A9A1 Directional Coupler Assembly
A3A9A2 YTO Interconnect Assembly
A3A9A6 Attenuator Assembly, 15 dB
A3A9A7 6.3 GHz Low Pass Filter Assembly
A3A11 Power Line Module

8-33, Module Exchange Program

8-34. The restored assemblies listed below may be ordered as replacements under the Module Exchange Program.

A3A1A4 M/N VCO Assembly (if A3A1A4A1 is defective, replace the entire assembly.)

^{*}Such as "Krylon" No. 1301 by Borden Inc., Department CP Columbus, Ohio 43215.

Module Exchange Program (Cont'd)

A3A8 10 MHz Reference Oscillator Assembly A3A9A3 2—6.2 GHz YTO Assembly

Refer to Section VI for ordering information.

8-35. After Service Product Safety Checks

8-36. Visually inspect interior of instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy cause of any such condition.

8-37. Using a suitable ohmmeter, check resistance from instrument enclosure to ground pin on power cable plug. The reading must be less than one-half ohm. Flex the power cable while making this measurement to determine whether intermittent discontinuities exist.

8-38. Check any indicated front or rear panel ground terminals marked, using the above procedure.

8-39. Check resistance from instrument enclosure to the line and neutral (tied together) with the power switch on and the power source disconnected. The minimum acceptable resistance is two megohms. Replace any component which results in a failure.

8-40. Check line fuse (A3F1) to verify that a correctly rated fuse is installed. (Refer to Section II).

8-41. Disassembly and Reassembly Procedures

WARNINGS

Maintenance described herein is performed with power supplied to the instrument and with protective covers removed. Such maintenance should be performed only by service-trained personnel who are aware of the hazards involved. Where maintenance can be performed without power supplied, the power should be removed.

A pin-to-pin voltage difference of 60 Vdc may be found on many of the Synthesizer's circuit board connectors. This voltage could cause personal injury if contacted, Be careful while working on the circuit boards with power supplied to the instrument.

If a circuit board is placed on an extender board, the possibility of coming in contact with 60 Vdc is greatly increased. This voltage could cause personal injury if contacted. Be careful while working on the circuit boards with power supplied. Work with one hand. Do not touch the extender board.

8-42. Before performing any of the following disassembly or reassembly procedures, the following steps must pe performed.

- a. Set the LINE switch to STANDBY.
- b. Remove the Line Power Cable from the Line Module (A3A11).
- **8-43.** Top Cover Removal. To remove the top cover from the Synthesizer follow the steps as listed below:
- a. Remove the two plastic feet from the rear of the top cover by removing the Pozidriv screw from each foot (see Figure 8-2).
- b. Unscrew the Pozidriv screw at the middle of the rear edge of the top cover (see Figure 8-2). This is a captive screw and will cause the top cover to pull away from the front frame. Captive screw part number HP 0570-1171; clip part number HP 0510-0043.
 - c. Lift the top cover off the Synthesizer.
- 8-44. A2 Assembly Protective Cover Removal. To remove the protective cover follow the steps as listed below:
- a. Remove the Pozidriv screw at the rear of the protective cover.
- b. Lift up the rear portion of the protective cover and slide towards the rear of the Synthesizer to allow the front edge pins to disengage from the guide slots.
- **8-45.** Bottom Cover Removal. To remove the bottom cover from the Synthesizer follow the steps as listed below.
 - a. Place the Synthesizer upside down.
- b. Remove the two plastic feet from the rear of the bottom cover by removing the Pozidriv screw from each foot (see Figure 8-2).

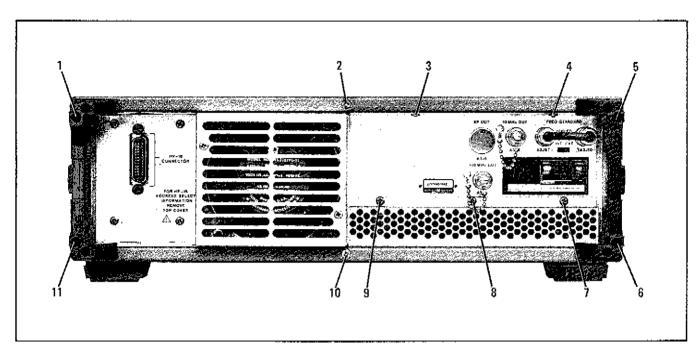


Figure 8-2. Rear Panel of the Synthesizer

- c. Unscrew the Pozidriv screw at the middle of the rear edge of the bottom cover (See Figure 8-2). This is a captive screw and will cause the front edge of the bottom cover to pull away from the front frame. Captive screw part number HP 0570-1171; clip part number HP 0510-0043.
 - d. Lift the bottom cover off the Synthesizer.
- 8-46. Front Panel Removal. To remove the $\Lambda2$ Assembly Front Panel follow the steps as listed below:
 - a. Place the Synthesizer upside down.
- b. Remove the plastic trim strip from the bottom of the front frame.
- c. Remove the plastic foot on the A2 assembly side of the instrument.
- d. Remove the two Pozidriv screws from the bottom edge of the front frame over the front panel
 - e. Place the Synthesizer with top side up.
- f. Remove the top plastic trim strip from the front frame.
- g. Remove the two Pozidriv screws from the top edge of the front frame over the front panel.
- h. Carefully, pull the front panel outward to clear the front frame (see Figure 8-3).

- i. Disconnect the cables and the wiring as necessary to free the front panel.
- j. Remove the two Pozidriv screws from the hinge and remove the front panel.
- 8-47. Fan Removal and Replacement. To remove the fan from the Synthesizer follow the steps as listed below:
- a. Remove the bottom cover from the Synthesizer as in paragraph 8-45.
- b. Remove two Pozidriv screws from the fan cowl and remove the cowl.

WARNING

The fan and fan relay always have 120 Vac across the terminals if the instrument is connected to the Mains (line) voltage, BE SURE the instrument is disconnected before removing the fan.

- c. Remove the clear plastic protective cover from the bottom of the Synthesizer by removing the five white circled screws (see Figure 8-4).
- d. Remove the plastic clamp holding the three wires going to the fan from the Mother Board.

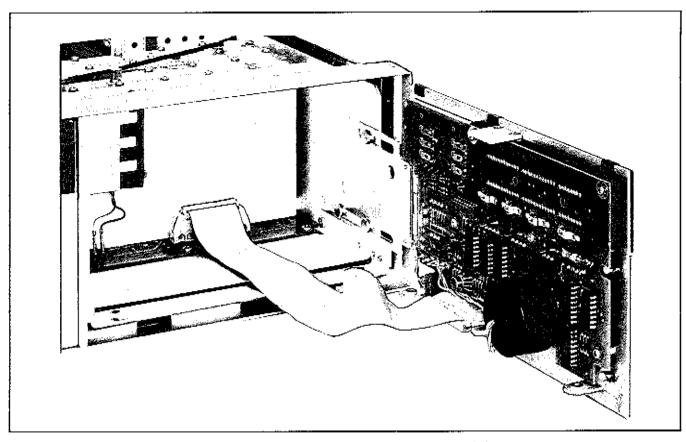


Figure 8-3. A2 Assembly Front Panel Fully Extended

- e. Unsolder the two black (06 and 09) wires from the Mother Board. Remove the screw from the ground wire.
- f. Pull the three wires out of the rear frame going to the fan.
- g. Remove the four nuts and lockwashers from the fan mounting brackets.
- h. Carefully remove the fan from the mounting bracket. Do not lose any of the hardware.
- i. Before replacing the fan, check to see that the magnetic shield is securely in place on the blade side of the fan motor.
- j. Reassemble the fan in the reverse order. When tightening the four nuts and lockwashers, be careful that the four rubber shock mounts do not twist with the nuts as they are tightened. Be sure the wires go around the outside of the fan strut (away from the fan blade).

WARNING

BE SURE to replace the A3 Assembly's protective plastic cover before replacing

the bottom cover. This cover is intended to provide protection from electrical shock when the bottom cover is removed.

- k. Replace the cable camp and MAKE SURE that the plastic protective cover is replaced before replacing the bottom cover.
- 8-48. Rear Panel Removal. To remove the rear panel for access to the Line Module (A3A11), fan relay (A3K1), transistors (A3Q1-Q4), and the rear panel coax connectors, follow the steps listed below:
 - a. Remove the top cover as in paragraph 8-43.
- b. Remove the two Pozidriv screws from the top of the rear frame and the three screws from over the heat sink (see Figure 8-2).
- c. Push the top of the panel outward. The transistors ($\Lambda 3Q1-Q4$) can be replaced by removing the two Pozidriv screws holding them in place.
- 8-49. A3A1 M/N Loop Assembly Removal. To remove the A3A1 Assembly from the Synthesizer follow the steps as listed below:
- a. Remove the top and bottom covers as in paragraphs 8-43 and 8-45.

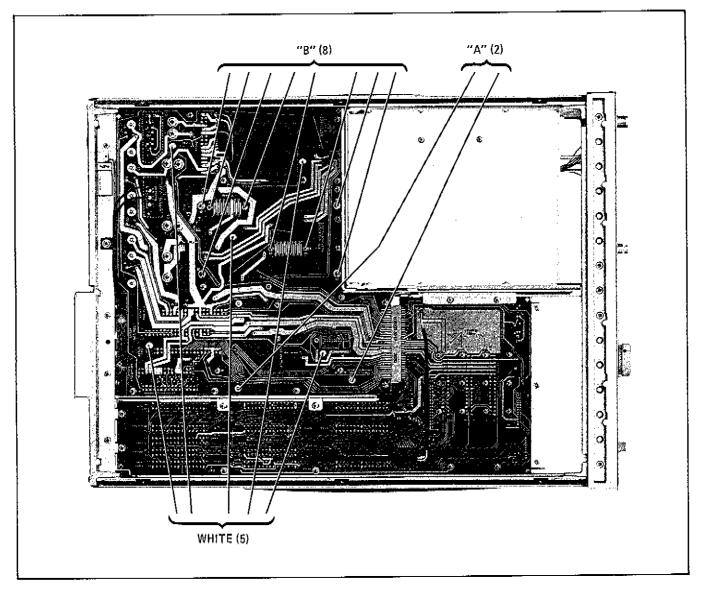


Figure 8-4. Bottom of the Synthesizer

- b. Set the Synthesizer on its right side.
- c. Remove the fire coaxial cables from the A3A1 Assembly to free it from the other assemblies.
- d. Remove the eight Pozidriv screws labeled B from the Mother Board, noting the sizes of each. These screws can be removed without removing the protective cover from the bottom of the Synthesizer.
- e. Hold the A3A1 Assembby while removing the last screw. Then lift the assembly away from the Mother Board.
- 8-50. A3A9 YTO Loop Assembly Removal. To remove the A3A9 YTO Loop Assembly from the Synthesizer, follow the steps as listed below:

- a. Remove the top and bottom covers as in paragraphs 8-43 and 8-45.
- b. Remove the Pozidriv screw labeled "A" from the top of the A3A9 Assembly.
- c. Disconnect the semi-rigid coax (A1W1) from A3A9A1J1. Loosen the cable at A1A13A1J1 and rotate it up and away from A3A9.
- d. Remove the two Pozidriv screws labeled A from the bottom of the A3A9 Assembly through the Mother Board (see Figure 8-4).
- e. Lift the assembly out until it clears the surrounding assemblies. Hook the front edge of the assembly over the front edge of the A3 Assembly as shown in Figure 8-5.

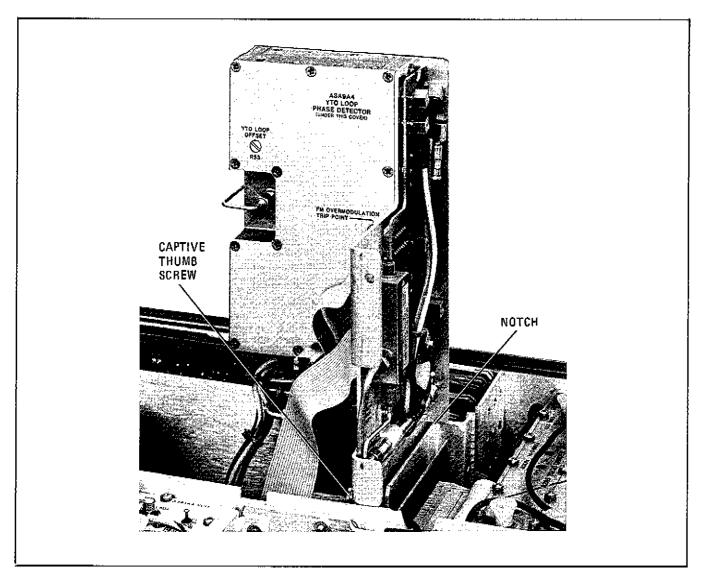


Figure 8-5. A3A9 Assembly in Service Position

- f. Secure the assembly into place by tightening the captive thumb screw into the pressed-in nut.
- g. Connect a test cable from A3A9A1J1 to A1AT1J1 for troubleshooting and testing purposes.

CAUTION

When reinstalling the A3A9 Assembly, be careful of to crush or pinch the coaxial or flat ribbon cables.

- 8-51. Battery Replacement. To replace the batteries, follow the steps listed below:
- a. Remove the top cover as in paragraph 8-43,

- b. Grasp the top of the battery holder's clip and pull forward until it slips off.
- c. Grip the battery pack on both sides with your fingers and pull straight out.
- d. Position the new battery pack so the metal strips press against the flexible contacts of the battery holder.
- e. Slip the small end of the battery clip over the bottom end of the battery holder. Snap the top end of the clip into place.

8-52. LOGIC SYMBOLS

8-53. The logic symbols used in this manual are based on the American National Standard ANSI Y32.14-1973, "Graphic Symbols for Logic Dia-

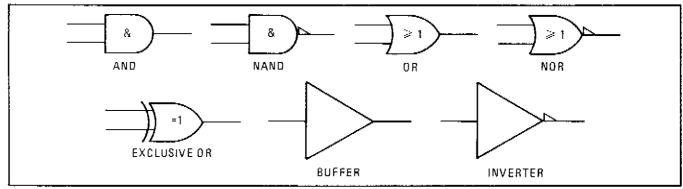


Figure 8-6, Qualifiers

LOGIC SYMBOLS (Cont'd)

grams (Two-State Devices)." The following summary should settle most questions of interpretation.

8-54. Qualifiers

8-55. Qualifiers are that portion of the symbol (either rectangular or distinctive shaped) that denotes the logic function. Refer to Figure 8-6.

8-56. Indicator Symbols

8-57. Indicator symbols identify the active state or level of a symbol's input or output. The more positive level is the high state; the less positive is the low state. Refer to Figure 8-8.

8-58. Contiguous Blocks

8-59. Two symbols may share a common boundary parallel or perpendicular to the direction of signal flow. Note that in the examples shown in Figure 8-7, there is generally no logic connection across a

horizontal line; however, there is always a logic connection across a vertical line. An exception to this is the Common Control Block (Figure 8-12) where there is a logic connection across a horizontal line.

8-60. Dependency Notation

8-61. Dependency Notation is a way to simplify symbols for complex IC elements by defining the existence of an AND relationship between inputs, or by the AND, OR, control, or free (switch) conditioning of an output by an input without actually showing all the elements and interconnections involved. The examples of Figure 8-9 and 8-10 use the letter "C" for control, "G" for gate (AND), "V" for OR and "F" for free. The dependent input or output is labeled with a number that is either prefixed (e.g., 1X) or subscripted (e.g., X₁). They both mean the same thing. Note that many times a controlled line may already be labeled with a number; as for example, a coder. In this case, the controlling or gating input will be labeled with a letter. See Figure 8-11.

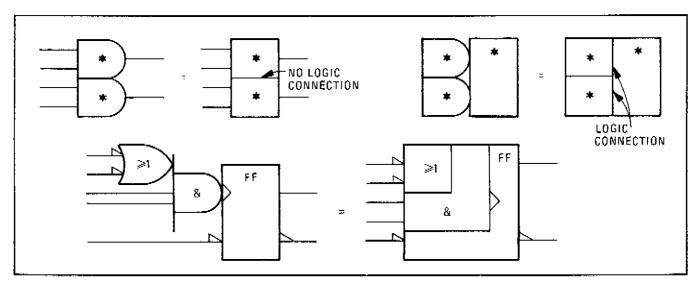


Figure 8-7. Contiguous Blocks

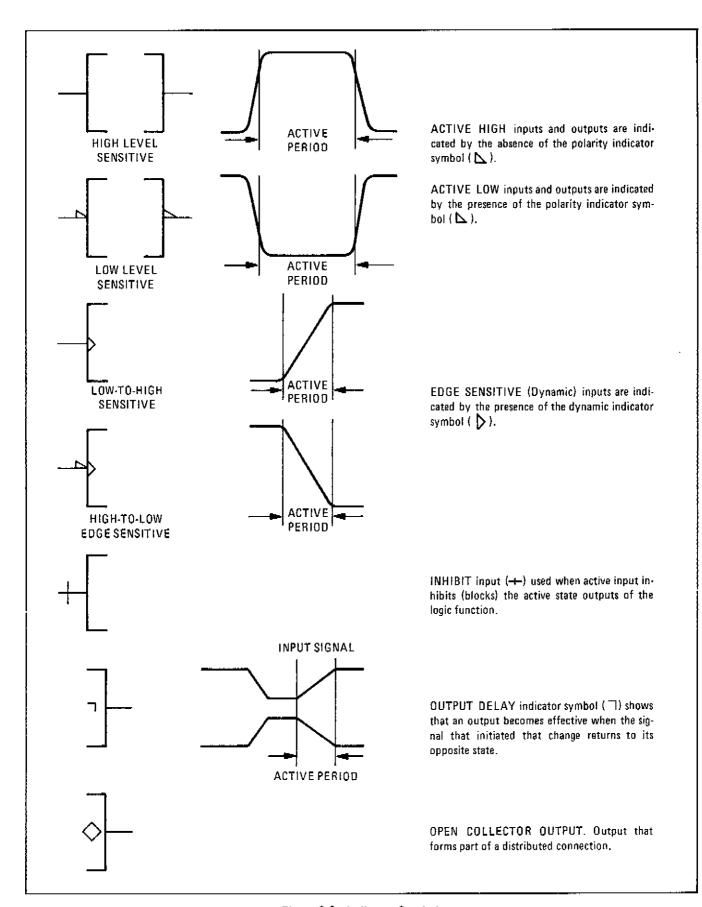


Figure 8-8. Indicator Symbols

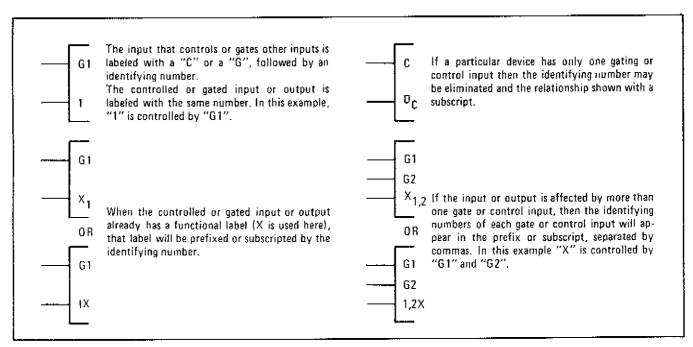


Figure 8-9. AND Dependency Notation

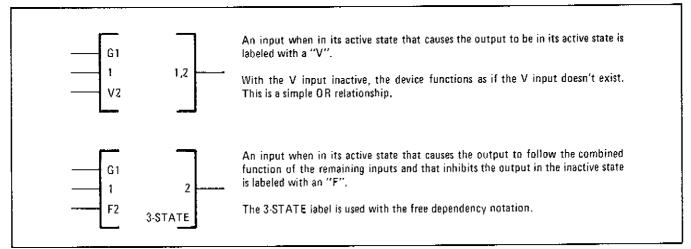


Figure 8-10. OR and Free Dependency Notation

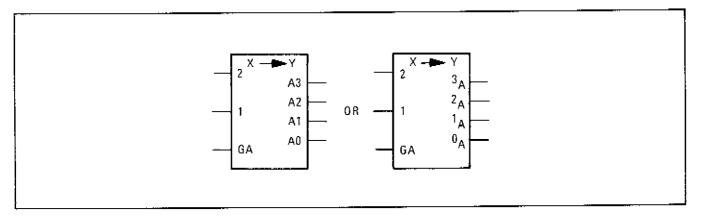


Figure 8-11. AND Dependency Notation, Coder Example Using Letters

8-62. Common Control Block

8-63. The Control Block is used in conjunction with an array of related symbols in order to group common logic lines. Figure 8-12 shows how the Control Block is usually represented. Figure 8-13 shows a quad D-Type flip-flop with reset. This can be redrawn by combining what is shown in Figures 8-12 and 8-13 about Contiguous Blocks and Common Control Blocks. The result is shown in Figure 8-14. Note that the more complex representation shown in Figure 8-13 might be used when the flip-flops are functionally scattered around the schematic (not used as a quad unit).

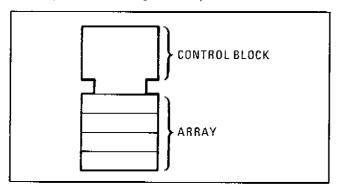


Figure 8-12. Common Control Block

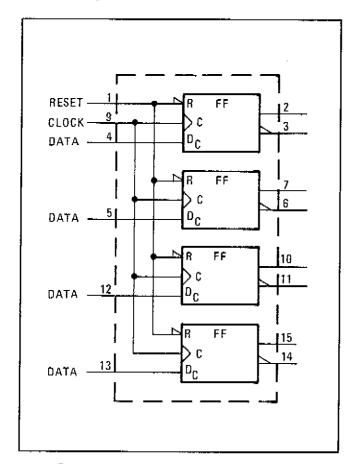


Figure 8-13. Quad D-Type Latch (Individual)

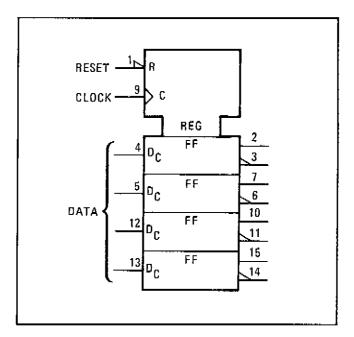


Figure 8-14. Quad D-Type Latch (Combined)

8-64. Complex Devices

8-65. Figures 8-15 through 8-17 show how the basic symbols can be combined in various ways to illustrate the behavior of fairly complex devices.

8-66. Quad D-Type Latch. Refer to Figure 8-15. The register control block is used to illustrate a quad D-type latch. There is a common active-low reset (R), and a common edge-triggered control input (C). Since there is only one dependency relationship, the controlling input is not numbered and the controlled function (D) are subscripted with a C.

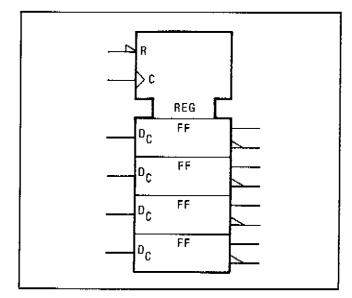


Figure 8-15. Quad D-Type Latch Example

Complex Devices (Cont'd)

8-67. Multiplexer. The multiplexer block is used to simplify the AND portion of a quad AND-OR select gate. When G1 is high, the data presented at the "1" inputs are gated through. When G2 is high, the data presented at the "2" inputs are gated through.

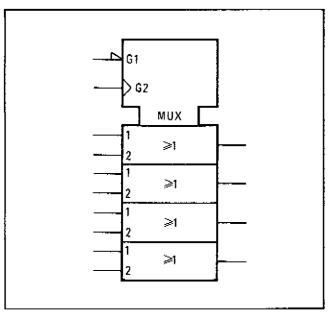


Figure 8-16. Multiplexer (AND-OR Selected) Example

8-68. Shift Register Control Block. The shift register control block is used to show common inputs to a bidirectional shift register. Notice that ">m" means shift the contents to the right or down by "m" units. And "+m" means shift the contents to the left or up by "m" units. Note: If m=1, "m" may be omitted. Inputs "a" and "b" are each single IC pins that have two functions. Input "a" enables one of the inputs to the top D-type flipflop (1D), and also shifts the register contents down one unit. Input "b" enables one of the inputs to the bottom flip-flop (2D), and also shifts the register contents up one unit. Input "c" loads all four flip-flops in parallel (3D). Input "d" is a common reset. The output delay indicator is used because the outputs change state when the control input returns to its inactive state.

8-69. Up-Down Counter Control Block. The counter control block (Figure 8-18) is used to show the common inputs to a Presettable Decade Up/Down Counter. Notice that "+m" means count up (increment the count) by "m"; "--m" means count down by "m". Note that if m=1, "m" may be omitted. Since the D-type flip-flops are master-slave, the output delay indicator is used. The "=9,

+1" and "=0, —1" notation defines when the carry and barrow outputs are generated. They also define it as a decade counter; a binary counter would have carry indicated with "=15, +1". Flip-flop weighting is indicated in parenthesis.

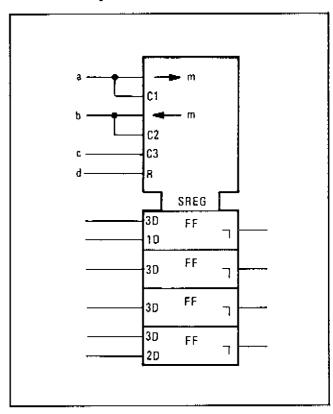


Figure 8-17. Shift Register Example

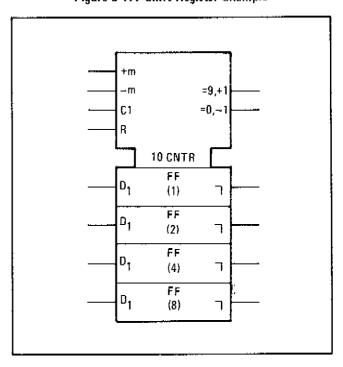


Figure 8-18. Up-Down Counter Example

Table 8-1. HP-IB Diagnostic Program (1 of 8)

```
10 REM 8671A HP-IB DIAGNOSTIC PROGRAM MEWLETT PACKARD 31 JAN 1977
20 REM NO EXTERNAL TEST EQUIPMENT REQUIRED.
30 FORMAT 68
40 FORMAT £1000.0
50 REM SEARCH FOR 8671 TALK ADDRESS
60 OUTPUT (13,30)1024;
70 Tm64
80 OUTPUT (13,30)256,T,53,512;
90 IF (STAT13=1) OR (STAT13≕3) THEN 160
100 T=T+1
110 IF T=85 THEN 100
120 IF T >= 95 THEN 140
130 GOTO 80
140 PRINT "TALK ADDRESS INOPERATIVE. PROGRAM SUSPENDED"
150 GOTO 4050
160 OUTPUT (15,30)"TALK ADDRESS=",T
170 REM CHECK UNTALK FOR OTA
180 FOR Ti=64 TO 95
190 IF T1=85 THEN 290
200 IF T1=T THEN 290
210 OUTPUT (13,30)256,T,53,512;
220 IF (STAT13=1) OR (STAT13=3) THEN 250
230 E=1
240 GOSUB 3790
250 OUTPUT (13,30)256,T1,512;
260 IF (STAT13=0) OR (STAT13=2) THEN 290
270 E=2
280 GOSUB 3790
290 NEXT T1
300 REM FIND LISTEN ADDRESS AND VERIFY UNTALK FOR LISTEN
310 L=T-32
320 OUTPUT (13,30)256,T,L,512;
330 IF (STAT13=0) OR (STAT13≃2) THEN 360
340 PRINT " FAILURE TO LISTEN"
350 GOTO 4050
360 OUTPUT (15,30)"LISTEN ADDRESS="L
370 OUTPUT (13,30)256,T,512;
380 IF (STAT13=1) OR (STAT13=3) THEN 410
390 Emi
400 GOSUB 3790
410 FOR L1=32 TO 62
420 IF L1=L THEM 440
430 OUTPUT (13,30)256,T,L1,512;
440 IF (STAT13=1) OR (STAT13=3) THEN 470
450 E=1
460 GOSUB 3790
470 NEXT L1
480 PRINT "8671A RESPONDS OK TO TALK AND LISTEN ADDRESSES"LIN1
490 REM CHECK INITIAL CONDITION OF SRQ
500 IF (STAT13=2) OR (STAT13=3) THEN 530
518 E=5
```

Table 8-1. HP-IB Diagnostic Program (2 of 8)

```
520 GOSUB 3790
530 GOSUB 3998
540 IF 8=0 THEN 570
550 GOSUB 3460
560 GOSUB 3760
570 OUTPUT (13,30)768;
580 GOSUB 3960
590 DISP "FREQUENCY DISPLAY SCAN"
600 WAIT 1300
610 GOSÚB 3960
620 CMD "","00p020"
630 DISP " 0000"
640 WAIT 700
650 CMD "","G1248"
660 DISP " 0001
                  9991"
670 MAIT 700
680 CMD "", "F12Z2"
690 DISP " 0012
                  0012"
700 WAIT 700
710 CMD "","E124J1"
Zae bisp "
                  0124"
730 WHIT 700
740 CMD "","D124824"
750 DISP " 1248"
760 WAIT 700
770 CMD "","C124826"
780 DISP " 12480"
790 WALT 700
800 CMD "","B1248Z1"
810 DISP " 124800"
820 WAIT 700
830 CMD "","A1248Z1"
840 DISP " 1248000"
850 WHIT 700
860 CMD "","@124800Z0"
870 DISP "12480000"
880 WAIT 700
890 CMD "", "@248Z1"
900 DISP "2480000"
910 WAIT 700
920 CMD ""."@48Z1"
930 DISP "48000000"
940 MAIT 700
950 CMD "","P828"
960 DISF "80000000"
970 WAIT 700
900 PRINT "FREQUENCY SCAN COMPLETE"
990 DISP "REPEAT? 1 OR 8";
1000 INPUT A
1010 IF A#0 THEN 590
1020 CMD "","A4Z1"
```

Table 8-1. HP-IB Diagnostic Program (3 of 8)

```
1030 REM RF UNIT SCAN
1040 GBSUB 3960
1050 CMD "", "A2000Z1"
1960 DISP "RF SECTION TESTS"
1070 WAIT 2000
1080 CMD "","00"
1090 DISP "RF OFF"
1100 WAIT 1500
1110 IF STAT13=2 THEN 1140
1120 E=5
1130 GOSUB 3790
1140 GOSUB 3990
1150 IF S=28 THEN 1180
1160 GOSUB 3460
1170 GOSUB 3760
1180 GOSUB 3960
1190 CMD "","Öİ"
1200 DISP "RF ON"
1210 WAIT 1500
1220 IF STAT13=2 THEN 1250
1230 E=5
1240 GOSUB 3790
1250 GOSUB 3990
1260 IF S=0 THEN 1290
1270 GOSUB 3460
1280 GOSUB 3760
1290 GOSUB 3960
1300 CMD "", "Ni"
1310 DISP "FM 100KHZ RANGE"
1320 WAIT 1200
1330 CMD "","N2"
1340 DISP "FM 10MHZ RANGE"
1350 WAIT 1500
1360 CMD "", "NO"
1370 DISP "FM OFF"
1380 PRINT "RF CONTROL TESTS COMPLETE"LIN1
1390 DISP "REPEAT RF SECTION TESTS? 1 OR 0";
1400 INPUT A
1410 IF A=0 THEN 1430
1420 GOTO 1030
1430 REM BUS COMMAND TESTS
1440 REM CHECK SRQ FALSE BEFORE PROCEEDING
1450 OUTPUT (13,30)256,63,95,512;
1460 IF STAT1S=2 THEN 1490
1470 E=5
1480 GOSUB 3790
1490 REM CHECK RESPONSE TO SAD FREQUENCY
'1500 GOSUB 3960
1510 CMD "","@8671Z1"
1520 GOSUB 3990
1530 IF BIAND(S,32)=32 THEN 1560
```

Table 8-1. HP-IB Diagnostic Program (4 of 8)

```
1540 E=6
1550 GOSUB 3790
1560 GOSUB 3960
1570 WAIT 100
1580 IF STAT1S=0 THEN 1660
1590 if STATIS=I THEN 1630
1600 E=4
1610 GOSUB 3790
1620 GOTO 1660
1630 E=2
1640 GOSUB 3790
1650 REM CHECK SPE
1660 OUTPUT (13,30)256,24,512;
1670 IF STAT13≕0 THEN 1750
1680 REM AND CHECK FOR NO RESPONSE
1690 IF STAT13=1 THEM 1730
1700 E=4
1710 GOSUB 3790
1720 GOTO 1750
1730 E=2
1740 GOSUB 3790
1750 GOSUB 3990
1760 G0$UB 3460
1770 IF S6=1 THEN 1800
1780 E=6
1790 GOSUB 3790
1800 IF S7=1 THEN 1840
1810 E=7
1820 GOSUB 3798
1830 REM SRQ SHOULD=0 AFTER SERIAL POLL
1840 IF STAT13=3 THEN 1920
1850 IF STAT13<2 THEN 1890
1860 E=2
1878 GOSUB 3798
1880 GOTO 1920
1890 E=5
1900 GOSUB 3790
1910 REM CHECK SPD
1920 OUTPUT (13,30)256,25,513;
1930 IF STAT13=3 THEN 2000
1940 IF STUTISKZ THEN 1980
1950 E=1
1960 GOSUB 3790
1970 GOTO 2000
1980 E=5
1990 GOSUB 3790
2000 S=RBYTE13
2010 DISP "8671 SHOULD STILL HAVE BAD FRED."
2020 IF S>95 THEN 2070
2030 F=7
2040 GOSUB 3790
```

Table 8-1. HP-IB Diagnostic Program (5 of 8)

```
2050 GOSUB 3460
2060 GOSUB 3760
2070 GOSUB 3960
2080 REM SEND GOOD THEN BAD FREQUENCY - SRQ SHOULD RETURN
2090 CMD "","A4Z1","","@8761Z1'
2100 WAIT 100
2110 IF STAT13=0 THEN 2150
2120 E=4
2130 GOSUB 3790
2140 REM CHECK SDC
2150 OUTPUT (13,30)256,4,512;
2160 PRINT "SELECTED DEVICE CLEAR (SDC) TESTED"
2170 IF STAT13=2 THEN 2200
2180 E=5
2190 GOSUB 3790
2200 GOSUB 3990
2210 IF S=28 THEN 2240
2220 GOSUB 3460
2230 GOSUB 3760
2240 GOSUB 3960
2250 CMD "","@8671Z1","?U","A4Z1"
2260 REM CHECK NO RESPONSE AFTER UNLISTEN
2270 WAIT 100
2280 IF STAT13=0 THEN 2310
2290 PRINT "RESPONSE WHEN NOT PODRESSED"
2300 GOSUB 3920
2310 OUTPUT (13,30)256,4,512;
2320 WAIT 100
2330 IF STAT13=0 THEN 2370
2340 PRINT "RESPONSE TO SDC WHEN NOT ADDRESSED"
2350 GOSUB 3920
2360 REM CHECK DOL
2370 OUTPUT (13,30)256,20,512;
2380 PRINT "DEVICE CLEAR (DCL) TESTED"
2390 IF STAT13=2 THEN 2430
2400 GOSUB 3990
2410 GOSUB 3460
2420 GOSUB 3760
2430 GOSUB 3960
2440 REM CHECK GTL
2450 OUTPUT (13,30)256,1,512;
2460 CMD "", "08671Z1"
2470 WAIT 100
2480 IF STAT13=2 THEN 2510
2490 PRINT "PROGRAMMED FREQUENCY IN LOCAL"
2500 GOSUB 3920
2510 GOSUB 3960
2520 CMD "","@867121"
2530 WAIT 100
2540 IF STAT13=0 THEN 2570
2550 E=6
```

Table 8-1. HP-IB Diagnostic Program (6 of 8)

```
2560 GOSUB 3790
2570 OUTPUT (13,30)256,4:512;
2580 REM CHECK REN
2590 OUTPUT (13,30)1024;
2600 GOSUB 3960
2610 CMD "","@8671Z1"
2620 WAIT 100
2630 IF STAT13#2 THEN 2660
2640 PRINT "PROGRAMMED FREQUENCY WITH REW FALSE"
2650 GOSUB 3920
2660 OUTPUT (13,30)768;
2670 GOSUB 3960
2680 CMD "","0867121"
2690 MAIT 100
2700 IF STAT13=0 THEN 2730
2710 E=6
2720 GOSUB 3790
2730 OUTFUT (13,30)256,20,512;
2740 GOSUB 3960
2750 REM CHECK FOR NO RESPONSE TO UNDEFINED CHARACTERS"
2760 CMD "","08671Z"
2770 FOR X=0 TO 47
2780 GOSUB 2870
2790 HEXT X
2800 GOSUB 3430
2810 FOR X=96 TO 127
2820 GOSUB 2870
2830 MEXT X
2840 GOSUB 3430
2850 GOTO 2990
2860 REM ROUTINE TO GUTPUT UNDEFINED CHARACTERS
2870 OUTPUT (13,30) M
2880 MAIT 100
2890 IF STAT13=2 THEN 2970
2900 PRINT "RESPONSE TO CHARACTER ",X
2910 GOSUB 3920
2920 GOSUB 3990
2980 GOSUB 3460
2940 GOSUB 3760
2950 GOSUB 3960
2960 CMD "", "086712"
2970 RETURN
2980 REM FINISH TEST FOR UNDEFINED CHARACTERS
2990 CMD "","0"
3000 WAIT 100
3010 IF STAT13=0 THER 3040
3020 PRINT "INVALID CHARACTER UPSET I/A REGISTER"LIM1
3030 GOSUB 3920
3040 OUTPUT (13,30)256,4,512;
3050 PRINT "INSTRUMENT DID NOT RESPOND TO INVALID INPUTS"
3060 REM CHECK FREQUENCY LIMITS
```

Table 8-1. HP-IB Diagnostic Program (7 of 8)

```
3070 PRINT "FREQUENCY LIMITS CHECKED HOW"LIN1
3080 A=1
3090 GOSUB 3960
3100 FOR F=0 TO 999 STEP 2
3110 GOSUB 3310
3120 IF (STAT13=2) OR (STAT13=3) THEN 3160
3130 GOSUB 3990
3140 GOSUB 3960
3150 IF S >≖ 96 THEN 3180
3160 $6=0
3170 GOTO 3190
3180 86=1
3190 IF A=S6 THEM 3270
3200 A=56′
3210 IF S6=1 THEN 3250
3220 F1≡F
3230 PRINT "LOWER LIMIT = "$F1/10;"GHZ"LIMI
3240 GOTO 3270
3250 F9#F
3260 PRINT "UPPER LIMIT = ";F9/10;"GHZ"LIM1
3270 MEXT F
3280 F=F1
3290 GOSUB 3310
3300 GOTO 3390
3310 OUTPUT (13,30)64
3320 IF F>99 THEN 3360
3330 OUTPUT (13,30)48
3340 IF F>9 THEM 3360
3350 OUTPUT (13,30)48
3360 OUTPUT (13,40)F,"Z1"
3370 WAIT 100
3380 RETURN
3390 CMD "","D0Z0"
3400 OUTPUT (13,30)256, L 1,63,512;
3410 PRINT "DOME"LING
3420 GOTO 4050
3430 REM SUBROUTINES******
3440 DISP "CHECKING IMVALID CHARACTERS"
3450 RETURN
3460 REM STATUS BYTE DECODING SUBROUTINE
3470 82=83=84=85=86=87=88=0
3480 81=8
3490 IF S1<128 THEM 3520
3500 88=1
3510 Si#81-128
3520 IF $1<64 THEN 3550
3530 97≕1
3540 81=81-64
3550 IF 81<32 THEN 3580
3560 86=1
3570 SimSi-32
```

Table 8-1. HP-IB Diagnostic Program (8 of 8)

```
3580 IF 81<16 THEM 3610
3590 85=1
3600 Si=Si-16
3610 IF Sik8 THEN 3640
3620 84=1
3630 81=81~8
3640 IF $1<4 THEN 3670
3650 83#1
3660 81=81-4
3670 IF 81K2 THEN 3700
3680 82=1
3690 81 81-2
3700 IF NOT (S6 OR ( NOT S5 AND (S1 OR S3 OR S4))) THEM 3750
3710 IF S7=1 THEN 3750
3720 GOSUB 3760
3730 E=7
3740 GOSUB 3798
3750 RETURN
3760 PRINT " S
                 OVN RSV ERRS RFOFF UNLK UNUSED FMOM UNUSED"
3770 PRINT Sissis7;56;55;54;53;52;51
3780 RETURN
3790 REM SUBROUTING TO PRINT ERROR MESSAGES
3800 GOTO E OF 3810,3830,3920,3850,3870,3890,3910
3810 PRINT "8671 FAILED TO TALK WHEN ADDRESSED"
3820 GOTO 3920
3830 PRINT "8671 TALKED WHEN NOT ADDRESSED"
3840 GOTO 3920
3850 PRINT "DID NOT GET EXPECTED SRQ"
3860 GOTO 3920
3870 PRINT "UNEXPECTED SRO"
3880 GOTO 3920
3890 PRINT "ERROR IN FREQUENCY PROGRAMMING OR FREG STATUS BIT"
3900 6010 3920
3910 PRINT "ERROR IN ENCODING RSV"
3920 DISP "PRESS -CONT EXECUTE- TO CONTINUE"
3930 STOP
3940 RETURN
3950 REM SUBROUTINE TO ADDRESS 8671 AS LISTENER
3960 OUTPUT (13,30)256,63,85,L,512;
3970 RETURN
3980 REM ROUTINE TO ADR. 8671 TO TALK AND CHECK BYTE RECEIVED
3990 OUTPUT (13,30)256,53,T,512;
4000 IF (STAT13=1) OR (STAT13=3) THEN 4030
4010 E=1
4020 GOSUB 3790
4030 S=RBYTE13
4040 RETURN
4050 END
```

SERVICE SHEET 1

PRINCIPLES OF OPERATION

The HP Model 8671A Synthesizer consists of the A3 RF Source Assembly, A2 Controller Assembly and the A1 RF Output Assembly. Figure 8-19 is a simplified block diagram. The overall Trouble-shooting Block Diagram shows the interconnections between the major assemblies. Figure 8-20 shows the physical location of these assemblies in the Synthesizer.

The Synthesizer's RF output signal is generated in the YTO Loop of the A3 RF Source Assembly. Through the interconnection of the phase lock loops, the output signal is phase locked to the time base. The power supplies are also part of the A3 Assembly.

Digital signals from the A2 Controller Assembly are input to the loop circuits to control the RF output frequency. The frequency may be tuned from the front panel or programmed through the HP-IB Interface. The RF signal from the YTO Loop is passed through an isolator in the A1 RF Output Assembly. The isolator's output is connected to the front panel RF Output jack. The fre-

quency modulation mode is selected by circuits within the A1 Assembly. The FM is added to the carrier in the A3 Assembly's YTO Loop.

In the local mode, the control signals are input from the front panel. Programmed inputs come through the HP-IB Interface to control frequency and RF level functions.

The front panel annunciators indicate the Synthesizer's operating mode and status. The following table lists the status and explains the function monitored.

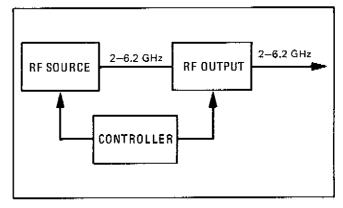


Figure 8-19. Synthesizer's Simplified Block Diagram

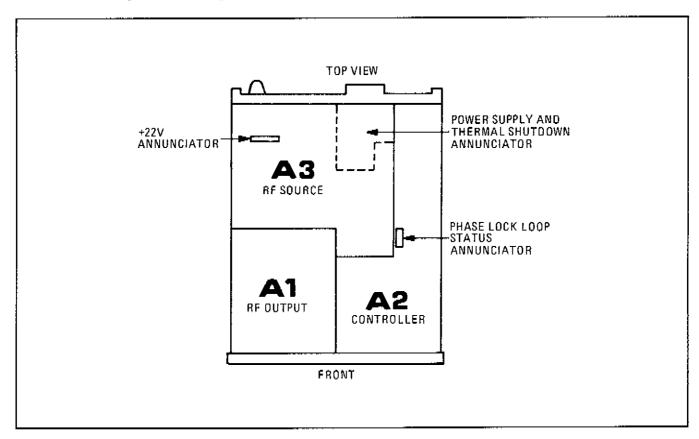


Figure 8-20. Major Assembly Locations

Table 8-2. Front Panel Status Annunciators

Annunciato	r	Duvenana		
Name Location		Purpose		
OVEN	A2	Monitors the time base oven (A3 Assembly) Indicates oven temperature is not stabilized.		
OUT OF RANGE	A2	Indicates that an incorrect frequency has been programmed.		
REMOTE	A2	Indicates that the Synthesizer is in the remote mode.		
STANDBY	A2	Indicates that the LINE switch is set to STANDBY.		
NOT PHASE-LOCKED	A2	Indicates that one or more of the loops are not phase-locked. Refer to the Phase Lock Loop Status Annunciators.		
INT REFERENCE OFF	A2	Indicates that the rear panel FREQ REF switch is set to EXT.		
FM OVER MOD	A1	Indicates that the maximum FM deviation (A3) or maximum input drive (A1) has been exceeded.		

TROUBLESHOOTING

Begin troubleshooting by following Table 8-3, Overall Troubleshooting. The table is designed to isolate a malfunction to one of the three major assemblies. Begin troubleshooting with step 1. This is important since the table assumes that all measurements and indications are normal. When a malfunction is isolated by using the table, turn to the service sheet indicated for further troubleshooting information.

The following information can also be used to isolate a malfunction to the major assembly level or it can be used as supplemental information to the table.

Refer to Overall Troubleshooting Block Diagram. Examine the front and rear panel switches and annunciator or program specific functions and examine their annunciators. A switch or programmed function normally will effect only one annunciator. Some will also change the status annunciators listed in the Front Panel Status Annunciators' table. Check to see that those related to the malfunction respond properly to the switch setting or programmed function. For detailed information on the annunciator response to switch settings, refer to the figures showing the front and

rear panel controls, connectors and indicators in Section III.

Problems indicated by the NOT PHASE-LOCKED annunciator can be further isolated by removing the instrument's top cover. (Refer to the Disassembly and Reassembly procedures in this section.) View the phase-locked loop annunciators which are located on the A2 assembly (refer to Figure 8-20). If the entire instrument seems to be off or if the STANDBY annunciator does not change with the LINE switch being set to ON, check the rear panel fuse and the power supply and thermal shutdown annunciators. Also check the +22V annunciator.

The next step is to measure main signal paths that lead to a malfunction in one of the major assemblies. Refer to the Overall Troubleshooting Block Diagram. When a problem is isolated to a major assembly, refer to the troubleshooting information on the appropriate service sheet.

The following table is designed to isolate a malfunction to one of three major assemblies. Begin troubleshooting with step 1. This is important, since the table is set up assuming that all previous steps are normal. When a malfunction is located in the table, turn to the service sheet indicated for further troubleshooting information.

Table 8-3. Overall Troubleshooting (1 of 2)

INITIAL CONDITIONS

- 1. Check that the LINE switch is in STANDBY and remove the Power Cable from the Line Module (A3A11).
- 2. Set the voltage selection card in the Line Module (A3A11) for the nominal line voltage to be used.
- 3. Check that the Line Fuse (A3F1) is the correct value and type.

NOTE

Remove the HP-IB Connector Plug, if connected.

- 4. Check that the LINE switch is in STANDBY and insert the Power Cable into the Line Module.
- 5. Set the rear panel controls and cables as follows:
 - a. FREQ STANDARD INT/EXT switch to INT.
 - b. Jumper (A3W3) connecting A3J9 to A3J10.
- 6. Set the front panel controls and switches as follows:
 - a. RF switch to ON.
 - b. FM DEVIATION switch to OFF.

	Test	Results	If Faulty, Go To
1,	Set LINE switch to STANDBY position Set LINE switch to ON position.	OVEN and STANDBY annunciators light, RF annunciator ON lights.	Continue to step 2. 1-A1
<u>.</u> ,	they brive switch to on position.	NOT PHASE-LOCKED annunciator may light momentarily and then extinguish	SS3
		Frequency within specified range. 1	SS3
3.	Press PRESET pushbutton.	Frequency goes to 3000.000 MHz	SS3
4.	Press FREQUENCY RESOLUTION pushbutton on the left to produce 100 MHz resolution.	Light Bar for 100 MHz resolution lights.	SS3
5,	Turn TUNING control first clockwise, then counterclockwise	Frequency increases and then decreases in 100 MHz steps.	SS3
6.	Press FREQUENCY RESOLUTION push- button next to the left to produce 1 MHz resolution and turn the TUNING control clockwise and then counterclockwise.	Light Bars for 100 and 1 MHz resolution light and frequency increases and decreases in 1 MHz steps.	SS3
7.	Press the next FREQUENCY RESOLU- TION pushbutton to produce 10 kHz resolution and turn the TUNING control clockwise and then counterclockwise.	Light Bars for 100 and 1 MHz and 10 kHz light and frequency increases and decreases in 10 kHz steps.	SS3

The Synthesizer will produce the last frequency entered. If the Synthesizer was remotely programmed to an out-of-range frequency, when power is applied and the Syntehsizer is in local, it will count up or down until a legal frequency is reached. This action can be terminated by pressing the PRESET pushbutton. A dead battery can produce similar results when first applying power.

Section VIII).

	Tes	t	Results		If Faulty, Go
8.	TION pushbuttor resolution and tur	EQUENCY RESOLU- to produce 1 kHz rn the TUNING control en counterclockwise.	Light Bars for 100 and 1 MHz, resolution light; the frequency decreases in 1 kHz steps.	SS3	
9.	Press the HOLD p	oushbutton	All Light Bars extinguish,		SS3
10.	Turn the TUNING and then countered	G control clockwise clockwise.	Frequency does not change.		SS3
11.	Press the PRESET	[pushbutton	Frequency goes to 3000.000 M	Hz.	S83
12.	Set RF switch to	ON position.	Signal displayed on Spectrum A approaches top graticule line.	Analyzer	Continue to step 13.
13.	Set RF switch to	OFF position	Power level drops to zero.		1-A1
14.	Set RF switch to	ON position,	Power returns.		1-A1
15.	dance to FM INP input level to null	g signal at 50 ohms impe- UT connector and adjust the carrier for the follow- es. Measure modulating		_	
FM I	Deviation Selector	Modulation Frequency	Signal Level		
	0.1 MHz 10 MHz	37,5 kHz 3 MH2	1.275 ± 0.089 Vrms 1.020 ± 0.071 Vrms		SS2
16.	Set FM DEVIATI	ON selector to OFF.	FM display disappears but carrie	er remains on.	1-A1
17,	On the rear panel. INT/EXT switch i	, set FREQ STANDARD to EXT position.	INTERNAL REF OFF and NO LOCKED annunciators light.	T PHASE-	SS2
18.	(A3W3) from A3.	disconnect Jumper 9 and A3J10. Connect t 0 dBm to (A3J10) D External Input	INTERNAL REF OFF annunci lighted and NOT PHASE-LOCK ator extinguishes. Synthesizer i locked.	ED annunci-	SS2
19.	load and run the J gram listed in Tab	eck remote operation TP-IB Diagnostic Pro- le 8-1. For a quicker check, load and run			

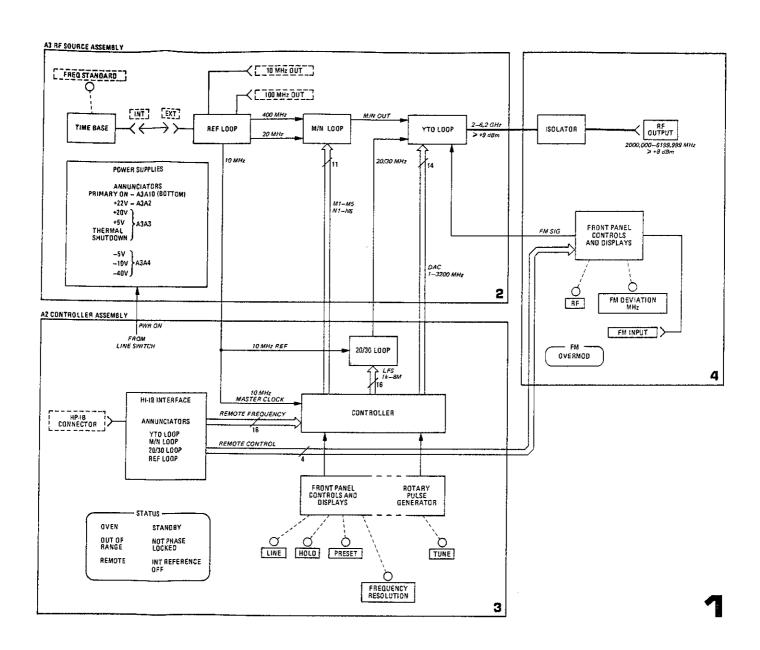


Figure 8-21. Overall Troubleshooting Block Diagram

SERVICE SHEET 2

A3 RF Source Assembly

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-29

• Motherboard wiring Last 3 foldout sheets

Parts list
 Performance tests
 Page 6-1
 Page 4-1

• Adjustment procedures Page 5-1

PRINCIPLES OF OPERATION

General

The Synthesizer's fundamental RF output signal is generated by the YTO (YIG Tuned Oscillator). This signal is phase-locked through the other loops to the Synthesizer's time base—an internal crystal oscillator. The YTO Loop pretunes and locks the YTO signal to the output of the M/N Loop and the 20/30 MHz (LFS) Loop (part of the A2 assembly). The M/N and 20/30 MHz Loops serve two basic functions. First, they are phase-locked to the reference crystal oscillator through the Reference Loop. They also provide the stepped tuning of the YTO output signal. The M/N Loop provides the larger steps (2000 to 6199 MHz in 10 MHz steps) while the 20/30 loop provides the smaller (1 MHz, 100, 10 and 1 kHz) steps.

Power is supplied to the Synthesizer by the power supply circuits, the Rectifier Assembly and the Positive and Negative Regulator Assemblies. Some functions are controlled by switching power supply outputs on and off.

Reference Loop

The Reference Loop is phase-locked to the A3A8 10 MHz Reference Oscillator Assembly. The Reference Loop's phase-locked outputs (10, 20 and 400 MHz) are used as references for the 20/30 MHz (LFS) Loop (part of A2 assembly) and the M/N Loop. The 10 MHz signal is also used as the master clock for digital circuits in the Synthesizer. The loop can also be locked to an external 5 or 10 MHz reference.

The 100 MHz VCXO (Voltage Controlled Crystal Oscillator) is the heart of this loop. The 100 MHz output signal is 1) multiplied by four to generate the 400 MHz reference for the M/N Loop and 2) divided by five to generate a 20 MHz reference signal that is also used in the M/N Loop. The 20 MHz signal is divided by two to produce a 10 MHz that is used as a reference and the master clock for the Synthesizer's digital circuits. The 10 MHz signal also is phase compared to the 10 MHz Reference Oscillator output. The resulting error signal is passed through the integrating amplifier and tunes the VCXO to phase lock the Reference Loop.

M/N Loop

The frequency output of the M/N loop 1) is dependent on the front panel frequency and 2) in part, controls the YTO output frequency. An encoded equivalent of the front panel frequency's most significant digits (10 MHz to 10 GHz) are input to the M/N Loop as M and N numbers. The ratio of the M and N numbers determine the M/N OUT frequency. The M/N OUT frequency's Nth harmonic (based on the N number and selected by the YTO pretuning) tunes the YTO frequency in 10 MHz steps. There is a 10 MHz step for each valid M/N OUT frequency (M/N ratio) and Nth harmonic (N number). This 10 MHz step complements the 20/30 MHz loop because its tuning range

is 10 MHz and step size is 1 kHz. Together, the M/N Loop, YTO pretuning and 20/30 MHz Loop are able to tune the YTO from 2000.000 to 6199.999 MHz in 1 kHz steps.

The M/N Loop VCO generates an output signal $(f_{M/N,VCO})$ that varies between 355 and 395 MHz. The VCO signal is 1) divided by two $(f_{M/N})$ and is output to the YTO Loop and 2) mixed with the 400 MHz reference to produce an IF signal (f_{IF}) that varies between 5 and 45 MHz. The IF signal is divided by the M number and is phase compared to the quotient of the 20 MHz reference signal divided by the N number. The error voltage from the detector is integrated and tunes the M/N VCO to achieve phase lock.

The frequency output from the M/N Loop is dependent on the ratio of the M and N numbers. These numbers are input in the form of digital tuning information to the M/N Loop Phase Detector. The following equation shows the relationship between the output frequency and the M and N numbers.

$$f_{M/N} = \left[200 - 10 \left(\frac{M}{N}\right)\right] MHz$$

where $f_{M/N} = M/N$ out frequency

M = M number

N = N number

For a listing of the M and N numbers, M/N output frequencies $(f_{\mathrm{M/N}})$ and the YTO frequencies (f_{o}) , refer to Table 8-4 of M and N Numbers and Resulting Frequencies.

The M and N numbers and $\,f_{M/N}\,$ may also be calculated by the following formulas:

$$M = 27 - \left(\frac{1}{10}\right) [f_{o(A)} - f_{o(B)}]$$

$$N = INT \left[\frac{(f_o + 300)}{200} \right]$$

and
$$f_{\rm M/N} = \frac{1}{N} \left[(f_{\rm o (A)} + 30) \right]$$

where $f_{M/N} = M/N$ Out frequency

f_o = YTO frequency

 $f_{o(A)}$ = YTO frequency rounded off to lower 10 MHz.

 $f_{o(B)}$ = YTO frequency rounded off to lower odd 100 MHz.

M = M number

N = N number

YTO Loop

Phase Lock System. When a frequency change occurs, the YTO is pretuned near the new desired frequency. This places the YTO frequency 20 to 30 MHz below the Nth harmonic of the M/N Loop output. (The Nth harmonic is the same as the M/N Loop's N number.) The YTO frequency and M/N Loop harmonic are mixed in the Sampler (Harmonic Mixer). The YTO IF (20—30 MHz) is phase compared with the 20/30 Loop output. (Note that the YTO IF and 20/30 Loop output are equal if the YTO Loop is locked.) The YTO Phase Detector's error voltage is integrated and ultimately is used to tune the YTO to achieve phase lock. The following formula expresses the relationship between the frequencies found in the YTO Loop:

 $f_{20/30} = f_{YTO IF} = N(f_{M/N} - f_o)$

where $f_{20/30} = 20/30$ Loop frequency

 $f_{YTO IF}$ = YTO IF frequency

 $f_{M/N}$ = M/N Loop frequency

f_o = YTO frequency

N = N number (same as in the M/N Loop)

The various frequencies in the YTO Loop can also be determined by using the front panel frequency reading as long as it is from 2000.000 to 6199.999 MHz. In this case

 $f_{20/30} = (30.000 - D_4, D_3 D_2 D_1) MHz$

and $f_0 = (D_2 D_6 D_5 D_4 D_3 D_2 D_1) MHz$

where D_1 to D_2 is the front panel frequency reading with D_1 being the least significant digit (1 kHz).

FM System. During the CW mode, the YTO Phase Detector output voltage may be expressed as follows:

 $V_e = \int f_{\alpha}$

where V_e = the error voltage

f = the YTO frequency

The error voltage is fully dependent on the YTO carrier frequency. During the FM mode, however, the error voltage is also dependent on the instantaneous frequency deviation. Because the frequency deviation is dependent on the modulation drive voltage, then:

$$V_e = \int f_o + \int V_{FM} (t) dt$$

where $V_{FM}(t)$ = the instantaneous drive voltage.

The effect of the phase detector reacting in this way to FM is a cancellation of FM within the loop bandwidth (<20 kHz). Outside the bandwidth (>20 kHz), the cancellation effect is reduced as the FM drive rate is increased.

To compensate for the FM cancellation, the FM drive input is integrated and summed with (subtracted from) the phase detector's error output. Note that the FM drive is input to the YTO's FM coil just after the Loop Integrator and the integrated FM drive signal is summed with the phase detector's error signal output just before the Loop Integrator. The result is that only the phase lock voltage is integrated and passed on to phase lock the YTO Loop; therefore the YTO Loop does not affect the frequency response of the FM system.

Power Supplies

The Synthesizer's power supply section is made up of three assemblies and their associated assemblies and components. These are the Positive and Negative Regulators, and the Rectifier Assembly.

The Mains (line) voltage is input to the Synthesizer through the Line Power Module. The primary ac voltage is always connected to the Fan Relay and, with the LINE SWITCH in the ON position, to the Fan. Also, the Transformer, Rectifier Assembly, and Positive and Negative Regulators all receive power inputs if the Mains voltage is connected. The +22V output is regulated and is independent of the LINE switch. Its primary purpose is to supply the heater voltage for the 10 MHz Reference Oscillator and to supply power to the A2 Assembly frequency retention circuit.

The Positive Regulator, in conjunction with the LINE switch, controls the power supply voltage to the Synthesizer (with the exception of +22V). The front panel LINE switch, through the Front Panel Shutdown (PWR ON), turns the +20V supply on or off. The +20V supply is the reference for all other supplies that come from the Positive and Negative Regulators. The +11V switch (that turns the 10 MHz Reference Oscillator ON or OFF) is controlled by the rear panel FREQ STND INT/EXT switch. The Thermal Shutdown circuit turns off the +20V supply (thus turning the Synthesizer off) if the internal temperature exceeds +85°C. The fan will continue to run (if the LINE switch is ON) and will cool the instrument. At +55°C the Synthesizer will return to normal operation.

The Negative Regulator is controlled by the +20V supply. The -5.2 and -10V supplies are both taken from the -10V regulated input. The -10V switch is controlled by the front panel RF switch.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate an A3 Assembly malfunction. The following troubleshooting information may be used to further isolate the problem to one of the four RF Source Assembly sections.

a. The Power Supply Section

8-30d

- b. The YTO Phase-Locked Loop section
- c. The M/N Phase-Locked Loop section
- d. The Reference Phase-Locked Loop section

Test Equipment

Frequency Counter	HP 5340A
Spectrum Analyzer	HP 8565A
Test Oscillator	. HP 651A
Digital Voltmeter	HP 3455A

Procedure

- Remove the Synthesizer's top cover. Connect the Synthesizer to the Mains (line) power. Set the RF switch to ON. Be sure the rear panel FREQ STANDARD switch is set to INT and the reference jumper is in place.
- 2. Observe the phase lock Status indicator's on A2A7. If the instrument has been disconnected from the Mains for more than a few minutes, the REF indicator may be off and the front panel OVEN light will be on. If that is the case, allow 10 minutes warm-up before continuing (or until the OVEN light goes off).
- 3. The phase lock Status indicators can help to quickly isolate a malfunction. In normal operation they all should be on. If the Reference Loop indicator is off go to Step 8. If the LFS Loop indicator is off, go to Service Sheet 3. If the M/N Loop indicator is off, go to Step 9. If the YTO Loop indicator is off, make sure the RF switch is ON. If the switch is ON, go to Step 11.
- 4. Connect the frequency counter to A3W9, the semirigid coaxial cable that connects A3 to A1. Tune to 2 GHz; then tune each frequency digit from zero to 9. The counter readout should be the same as the front panel frequency from 2 to 6.199 GHz, half the frequency from 6.2 to 12.399 GHz and one-third the frequency above 12.4 GHz. If the frequency is incorrect but the lock indicators are all on, one of the loops is probably locked at the wrong frequency due to incorrect data from the A2 Controller or a loop divider malfunction. Use the following table to determine which loop is probably the cause of a malfunction of a particular digit.

Loop Name	Digits Controlled	If Wrong
LFS loop M/N loop YTO loop	1 kHz to 1 MHz 10 MHz to 1 GHz Controls all digits and pretunes 1 MHz — 1 GHz	Go to Service Sheet 3 Go to Step 10 Go to Step 12

5. The FM function is checked next. Connect the spectrum analyzer to A3W9 in place of the frequency counter. Set the front panel FM Deviation switch to the 300 kHz range. Apply a modulation signal of 100 kHz at 0.5668 Vrms to the FM input connector. This should yield a modulation index of 2.404 (first carrier null). Adjust the voltage slightly to obtain the deepest carrier null; it should occur between 0.5271 Vrms and 0.6065 Vrms. If the voltage is incorrect, go to Step 7.

NOTE

If this test is done at any frequency other than 100 kHz, the FM flatness specification must be added to the input accuracy specification to obtain an overall accuracy number (±32.89% at +15 to +35°C).

- 6. Set the Meter Mode switch to FM. Set the FM Deviation switch to 100 kHz and input 100 kHz at 0.707 Vrms. The first sidebands should average 4.8 ±0.8 dB below the carrier and the meter should indicate full scale ±10%. If the results of both steps 5 and 6 are correct, the FM circuits are operating properly. If only step 6 results are incorrect, go to Service Sheet 10-A3 to troubleshoot the A3A7 FM Driver Assembly. Do not overlook the possibility that only an adjustment may be required.
- 7. In this step an FM malfunction is isolated to either the A1 or A3 Assemblies. Tune to 3000 MHz. Locate A3A7TP5 and attach the digital voltmeter. Apply 100 kHz at 0.707 Vrms to FM input connector. The voltage at TP5 should be 1 Vrms. If the voltage is correct, measure the voltage at A3A7TP1; it should be 3.4 Vrms. If the voltage at TP5 is incorrect go to Service Sheet 8-A1. Otherwise, go to Service Sheet 10-A3.
- 8. The following steps check the Reference Loop. Connect the frequency counter to the 100 MHz output on the rear panel. For this measurement, the time base of the counter must not be connected to the Synthesizer. The signal should be stable and within ±100 Hz of 100 MHz. If the frequency is correct and the lock indicator indicates the loop is unlocked, go to Service Sheet 1-A3 to troubleshoot the

- lock indicator. If the frequency is incorrect, go to Service Sheet 1-A3 and begin troubleshooting.
- 9. The following steps check the M/N Loop. Use a common time base between the frequency counter and Synthesizer. Connect the frequency counter to M/N output connector on A3A1A5. Tune the Synthesizer's frequency to 2100 MHz. The counter should indicate 177.500 000 MHz. If the frequency is correct go to Service Sheet 3-A3 to troubleshoot the phase lock comparator.
- 10. Connect the digital voltmeter to A3A1A4 TUNE test point. Disconnect the IF OUT (red/white) coax. The voltage should go to about -0.5 Vdc. Connect the IF cable previously disconnected to the 20 MHz reference in place of the gray/white coax. The phase detector should swing the tune voltage to the opposite limit, about -38 Vdc. If the voltages are correct, go to Service Sheet 4-A3 to troubleshoot the M/N VCO. If the voltages are incorrect, go to Service Sheet 3-A3 to troubleshoot the dividers or phase detector.
- 11. The following steps check the YTO loop. Make sure the front panel RF switch is on. Connect the frequency counter to the semirigid coaxial cable A3W9 (the YTO loop output). Ground A3A6TP1 to open the loop. The YTO should be pretuned within ±20 MHz of the selected frequency from 2 to 6.199 GHz. Tune the 1 MHz and 10 MHz digits from zero to 9 and tune the 1 GHz and 100 MHz digits from 20 to 61 while observing the pretune frequency to assure it stays within ±20 MHz of the selected frequency. If the frequency does not tune properly, continue with the next step. Otherwise go to Service Sheet 10-A3 to troubleshoot the YTO Loop.
- 12. Connect the digital voltmeter to A3A5TP3. The voltage should be -3.000 V/GHz at this point at any frequency from 2 to 6.199 GHz. The voltage should remain within ±0.005V of the correct voltage over the entire range. Slowly tune the frequency and observe the voltage. If the voltage is incorrect perform the DAC adjustment procedure. If necessary, go to Service Sheet 6-A3 to troubleshoot the DAC Assembly. If the voltage is correct go to Service Sheet 7-A3 to troubleshoot the main coil driver.

Table 8-4. M and N Numbers and Resulting Frequencies (1 of 4)

RF Output			ole 8-4. M and N Numbers a	RF Ostput	1		
(MHz)	М	N	M/N Out (MHz)	KF Output (MHz)	M	N	M/N Out (MHz)
2000	17	11	184.545455	2530	24	14	182.857143
2010	1.65	11	185.454545	254Ø	- 23	14	183.571429
2020	15	1. 1.	186.36363 6	2550	22	14	184.285714
2030	14	1 1	187.272727	2560	21	14	185.000000
2040	13	1 1	188.181818	2570	20	1 4	185.714286
2050	1.2	1 1	189.89090 9	2580	19	14	186.428571
2060	1.1	î. 1	190.800000	2590	1 3	1.4	187,142857
2070	10	i 1	190.909091	2600	17	14	187,857143
2080	9	11	191.818182	2510	16	14	188.571429
2090	(11) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4)	11	192.727273	2520	15	1.4	189.285714
2100 2110		11 12 12 12	177.500 000	2630	14	14	190.000000
2120	26 25	1 45 1 45	178.333333 130.16563	264Ø	13	14	190.714286
2130	20 24	1 42 1 10	179.166667 180.000000	26 50	12	14	191.428571
2140	23	1 2 1 2	180.833333	2660 2670	11	14	192.142857
2150	in the	12	181.666667	2670 2680	10	1 4	192.857143
2168	21	de 6m.	182,50000	2690 2690	9	1 4. 1 √	193.571429 194,285714
2178	20		183.333333	2700	8 27	14	182.000000
2180	19	îZ	184.166667	2710	26	4 444	182.66667
2190	18	12	185.000000	2720	(ii) (iii) (iii)	15 15	183,323333
2200	17	12	185.833333	2730	24	15	184.000000
2210	16	1.2	186.66667	2740	23	15	184,666667
2220	15	12	187.500000	2750	22	15	185.333333
2239	14	12	188.333333	2760	21	īŠ	186.000000
2240	13		189.166667	2770	26	15 15	186,666667
2250	12	12	198.890998	2780	19	15	187.333333
2250	11	12	190.833333	2790	18	15	188.000000
2270	10	12	191.666667	2800	17	15	188.666667
2280	9	1.2	192.500000	2810	16	1.5	189.333333
2290	8	12	193.333333	2820	15	15	190.000000
2300	27	13	179.230769	2830	14	15	190.666667
2310 2320	26 25	13	180.000000 ******************************	2840	13	15	191.333333
2338	24	13 13	180.76923 1 181.538462	2850 3646	12	15	192.000000
2346	23	13	182.307692	2860 2870	$\frac{1}{1}\frac{1}{4}$	15	192.666667
2350		13	183.076923	28 80	10 9	15 15	193.333333 194.000000
2360	21	13	183.846154	2890	É	1 111	194.656567
2370	20	13	184,615385	2900	27	16	183.125000
2388	19	13	185.384615	2910	27 26	16	183.750000
2390	18	13	186.153846	2920	25	16	184,375000
2400	17	13	186.923077	2930	24	15	185.000000
2410	16	13	187.692308	2940	23	16	185.625000
2420	15	13	188.461538	2950	23 22	16	186.250000
2430	14	13	189.23 0769	2960	21	15	186.875000
2440	13	13	190.000000	2970	20	16	187.500000
2450	12	13 13 13 13	190.769231	2980 2222	19	15 16 16 16 16 16 16 16	188.125000
2460	11	155 450	191.538462	2990 2000	18	15	188.750000
2470 2480	10 9	15 15	192.307692	3000	17	16	189,375000
2490 2490	8	13 13	193.076923 193.846154	3010	16	16 16	190.00000
2500	27	13 14	193.846134 180.714286	3020 3030	15	16	190.625000
] 2510	26	14	181.428571	აღად 3040	14 13	16 12	191.250000
2520	25	14	182.142857	3050 2040	12	16 16	191.875000 192.500000
hare 'est best 'est'	- Tar	<u> </u>	eta funt lune III. eta CTE fenn had had 1	2000	ம் ம <u>்</u>	τÞ	135100000

Table 8-4. M and N Numbers and Resulting Frequencies (2 of 4)

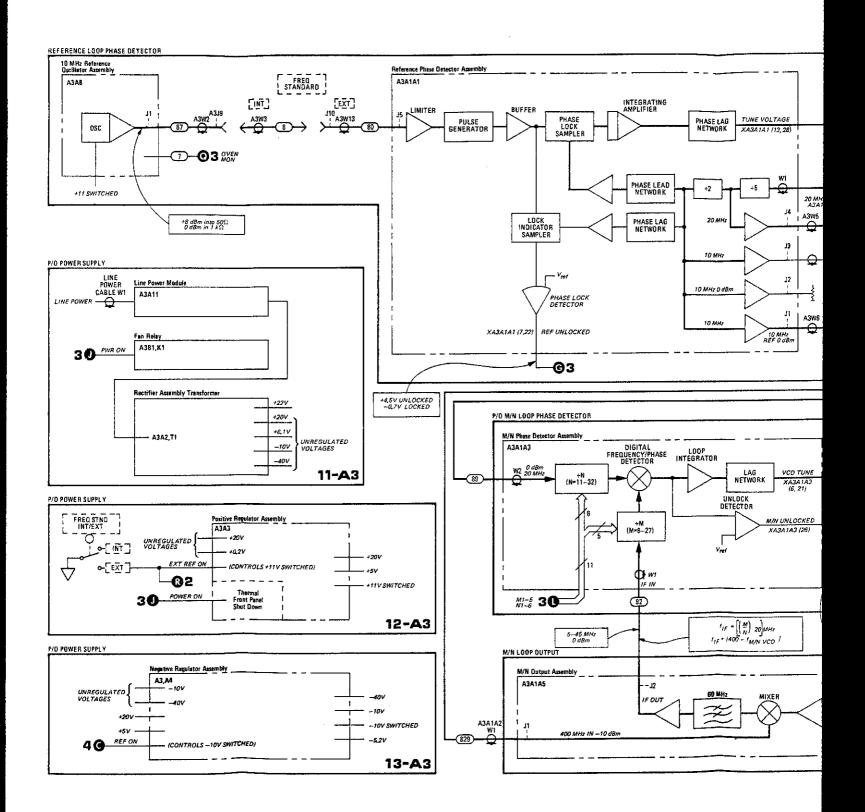
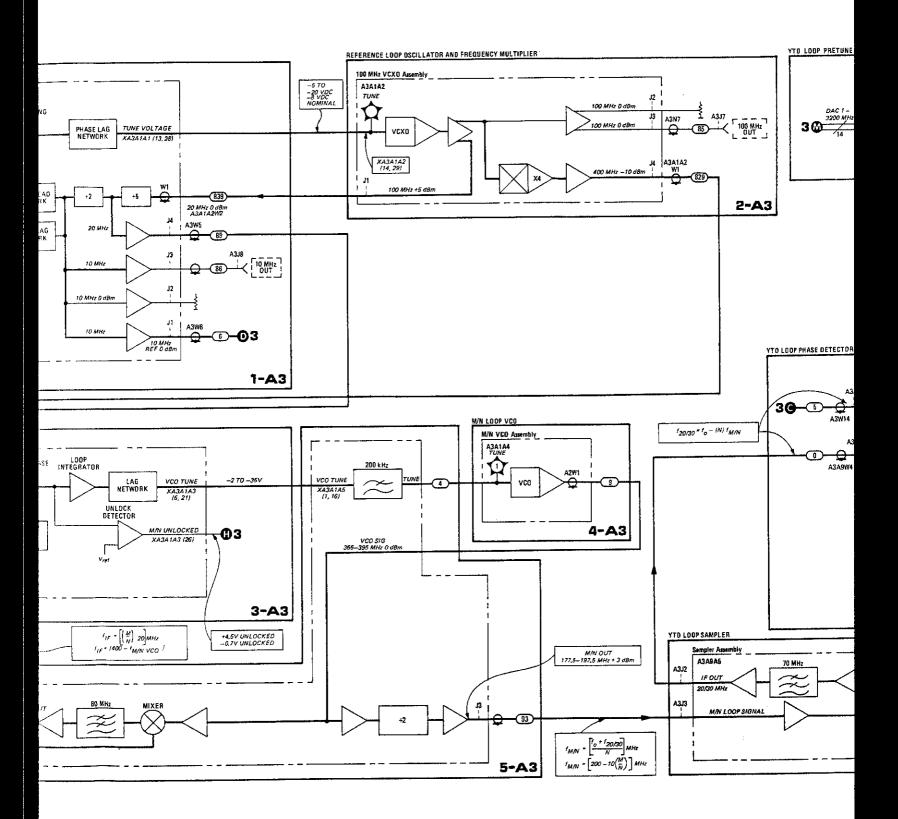
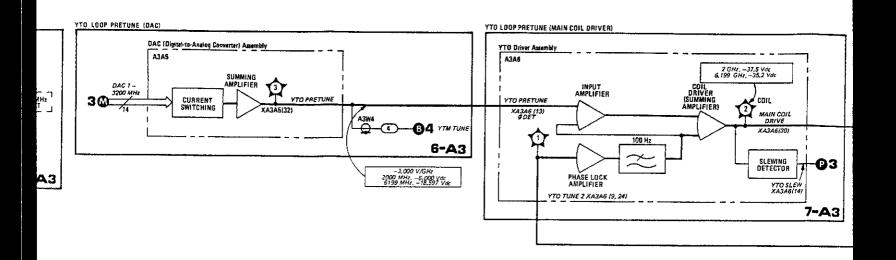
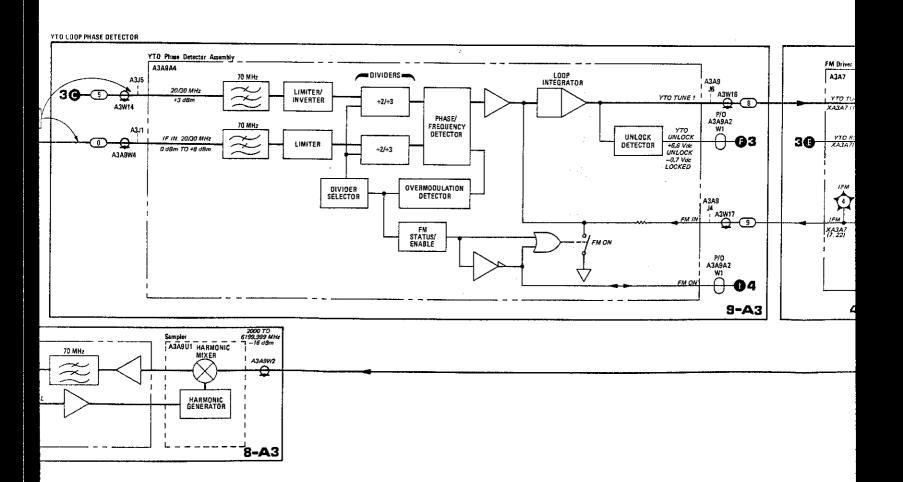
***************************************				ia sicoarenig rioq	ucholes.	(2 () 7)	
RF Output				RF Output			
(MHz)	M	N	M/N Out (MHz)	(MHz)	M	N	M/N Out (MHz)
3060	11	16	193.125000	3590	18	19	190.526316
3070	10	16	193.750000	3500	17	19	191.052632
3080	19	1. C) 1. C)	194.375000	3610	11	10	191.578947
3090	9 8	16 16		3620	16	19	
		1.5	195.000000		1.5	19	192.105263
3100	27	17	184.117647	36 3 0	14	19	192.631579
3110	26	17	184.705882	3640	13	19	193.157895
3120	25	17	185,294118	3650	12	1.24	193.684211
3130	24	17	185.882353	3 660	11	19 19 19 19	194.210526
3140	23	17	186.470588	3670	10	17	194,736842
3150	or to a	1 7	187.058824	36 80	9 8	1.2	195,263158
3160	21	17	187.647059	3690	<u> </u>	19	195.789474
3178	28	17	188.235294	3700	27	20	186,500000
3180	19	17	188.823529	3710	26	20	187,000000
3190	18	17	189.411765	3720	25	20	187.500000
3200	17	1.7	190.00000	3730	24	20	188.000000
3210	16	17	190.588235	3740	23	20	188,500000
3220	15	17	191.176471	3 750	22	20	189.000000
3230	14	1.7	191.764706	3760	21	20	189.500000
3240	13	17	192.352941	377 0	20	20	190,000000
3250	12	17	192.941176	3780	19	20	190.500000
3260	11	17	193.529412	3790	18	20	191.000000
3270	10	17	194.117647	3800	17	20	191.500000
3280		17	194.705882	3810	16	20	192.000000
3290		17	195.294118	3820	15	20	192.500000
3300	27	18	185.000000	3830	14	20	193.000000
3310	26	18 18	185.555556	38 40	13	20 20	193.500000
3320	25	18	186.111111	38 5 0	12	20	194.000000
3330	24	18	186.666667	3860	11	50	194.500000
3340	23	18	187.22222	3870	10	20	195.000000
3350	22	18	187.777778	3880	9	50	195.500000
3360	21	18	188.33333	3890	_8	20	196.000000
3370	20	18	188.888889	3900	27	21	187.142857
3380	19	18 18	189.444444	391 0	26	21	187.619048
3390	18	18	190.000000	3920	25	21	188.095238
3400	1.7	18	190.55556	3930	24	21	188.571429
3410	16	18	191.11111	3940	23	21	189.047619
3420	1.5	18	191.666667	3 950	22	21 21	189.523810
3430	14	18	192,22222	3 960	21	21	190.000000
3440	13	18	192.777778	3970	20	21	190.476190
3450	1.2	18	193.333333	3580	19	21	190.952381
3450	11	18	193.888889	3990	18	21	191.428571
3470	10	18	194.444444	4000	1.7	21	191.904762
3480	9	18	195.000000	4010	1.5	21	192.380952
3490	_8	18	195.55556	4020	15	21	192.857143
3500	27	19	185.789474	4030	14	21	193.333333
3510	26	19	186.315789	4040	13	21	193.809524
3520	25	19	186.842105	4050	12	21	194.285714
3530	24	19	187.368 <u>421</u>	4060	11	21	194.761905
3540	23	19	187.894737	4070	19	21	195.238095
3550	22	19	188.42 1 053	4080	9	21	195.714286
3560	21	19	188.947368	4090	. 8	21	196.190476
3570	20	19	189.473684	4100	27	22	187.727273
3580	19	19	190.0000 0 0	4110	26	22	188.181818
1							·

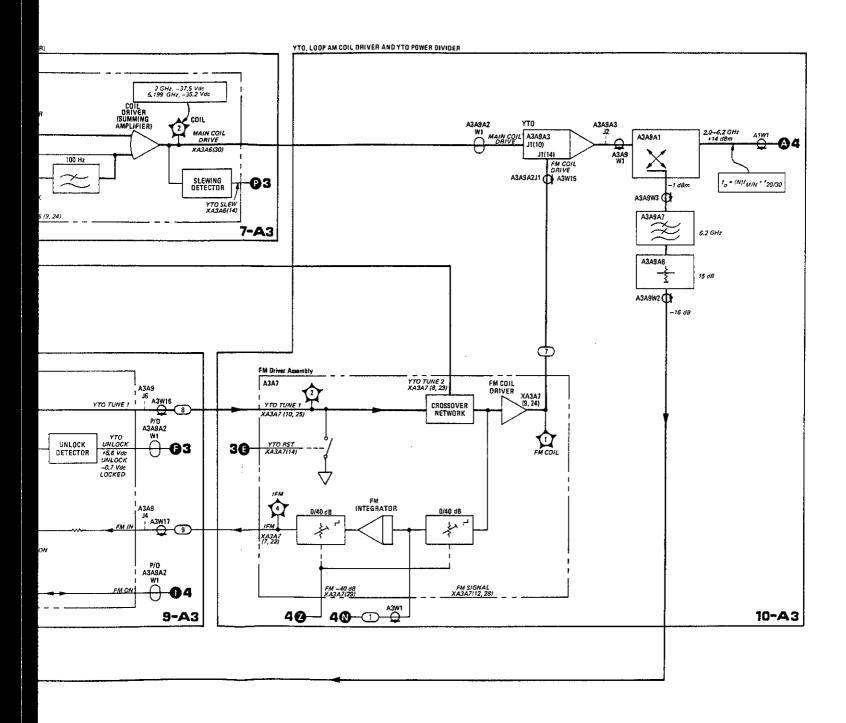
Table 8-4. M and N Numbers and Resulting Frequencies (3 of 4)

ſ ''		10	nis o-4" in ann is istimbell a	un neanttill tie	daencie2	(3 0) 4/	
RF Output (MHz)	M	N	M/N Out (MHz)	RF Output (MHz)	M	A.	NA/NI (1.1+ /NALI-)
				•		N	M/N Out (MHz)
4120	25	د به در در در در در در در در در در در در در	188.636364	4650	12	24	195.000000
4130	24	<u></u>	189.090909	4660	11	24	195.416667
4140	23	رس رس ایک کے اس رس	189.545455	4670	10	24	195.833333
4150	22	Constant	190.000000	4688	9	24	196.250000
4160	21	22	190.454545	4690	27	24	196.666667
4178	20	22	190.909091	4700	27	25	189.200000
4180 4190	19 18	22 33	191.363636	4710	26	25	189.600000
4200	10 17	22	191.818182	4720 4720	25	255	190.000000
4218	16	22 22	192.272727 192.727273	4730 4740	24 23	<u></u>	190.400000
4228	15	<u> 2</u> 2	193.181818	4740 4750	డిచి ఇద	25	190.800000
4230	14	22	193.636364	4750 4760	22	25 25	191.200000
4248	13	22	194.090909	477Ø	21 20	25 5	191.600000
4250	12	22	194.545455	478Ø	19	25 25	192.000000 192.400000
4260	11	22	195.000000	4790	18	25	192.80000
4270	ĩā	22	195.454545	4800	17	الد- بيشا (120 إلى: الدر يشي	193.200000
4280	9	22	195.909091	481 <i>8</i>	16	25	193.600000
4290	Ē	22	196.363636	4820	15	25	194.000000
4300	27	23	188.260870	4830	14		194.400000
4310	26	23	188.695652	4840	īЭ	25	194.800000
4320	25	23	189.130435	4850	ĨŽ	25	195.200000
4330	24	23	189,565217	4860	$\overline{1}$	25	195.600000
4340	23	23	190.000000	487Ö	10	25	196.000000
4350	22		190.434783	4880	9 8	25	196.400000
4360	21	23	190.869565	4890	8	25	196.800000
4370	20	<u> </u>	191.304348	4900	27	26	189.615385
4380	19	22	191.739130	4910	26 25	26	190.000000
4390	1.8	29	192.173913	4920	25	26	190.384615
4400	17	23	192.608696	4930	24	26	190.769231
4410	16	22	193.043478	4940	23	26	191.153846
4420	15		193.478261	4950	22	26	191.538462
4430 444 <u>8</u>	14	23	193.913043	4960	21	26	191.923077
4450	13 12	23	194.347826	4970 4000	20	25	192.307692
4450	11	23 23	194.782609	4980 4000	19	26 26	192.692308
4470	10	23	195.217391 195.652174	4990 5000	18 17	26	193.076923
4480	ë re	23	196.086957	ალლი 5010	16	26 26	193.461538 193.8461538
4490	Ó	in the second se	196.521739	5020	15	26 26	193.846154
4500	27 27	24	188,750000	5030	14	26	194.230769 194.615385
4510	26	24	189.166667	5040	14 13 12	26 26 26	195.000000
4520	25	24	189.583333	5050	12	26	195.384615
4530	25 24	24	190.000000	5060	iï	26	195.769231
4540	23	24	190.416667	5070	īâ	26	196.153846
4550	22	24	190.833333	5080	-9	26 26	196.538462
4560	21	24	191.250000	5090	8	26	196.923077
4570	20	24	191.666667	5100	11 10 9 8 27 26	27	190.000000
4580	19	24	192.083333	5110	26	27	190.370370
4590	18	24	192.500000	5120	25	27	190.740741
4600	17	24	192.916667	5130	24	27	191.111111
4610	16	24	193.333333	5140	23	27	191.481481
4620	15	24	193.750000	5150	22	27	191.851852
4630	14	24	194.166667	5160	21	27	192.22222
4640	13	24	194.583333	5170	20	27	192.592593

Table 8-4. M and N Numbers and Resulting Frequencies (4 of 4)

F100 10 07 100 040046 87745 04 04 104 0	lut (MH2)
\$190	14 37 03 7 03 7 03 7 03 7 03 7 03 7 03 7


FIG. 8-22 Sht 2 of 4

F16. 8-22 SW 40f4

2

Figure 8-22. A3 RF Source Assembly Troubleshooting Block Diagram

SERVICE SHEET 3

A2 Controller Assembly

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-29

Motherboard wiring
 Last 3 foldout sheets

Parts list
 Performance tests
 Adjustment procedures
 Page 6-1
 Page 4-1
 Page 5-1

PRINCIPLES OF OPERATION

General

The Synthesizer's fundamental RF output signal is generated by the YTO (YIG Tuned Oscillator). This signal is phase-locked through other loops to the Synthesizer's reference oscillator. The Controller Assembly consists of the LFS (Low Frequency Synthesizer) or 20/30 MHz loop, a Digital controller, which generates tuning information, and a Remote Control section.

LFS Loop (A2A3, A2A4 and A2A5). The low frequency phase lock loop translates tuning data for the four least significant digits into frequencies from 30 MHz to 20.001 MHz. This translation is straightforward. The loop output frequency is calculated by the following equation:

$$f = 30 - x.xxx MHz$$

where x.xxx signifies the four least significant digits of the YTO frequency.

The VCO in the low frequency section of this loop operates from 160 to 240 MHz. The output from this VCO is divided into two paths; one path is filtered and the other path is divided by eight and then filtered. In the output loop path, the signal is divided by eight and filtered to obtain a relatively clean sine wave between 20,001 MHz and 30.000 MHz. In the feedback path the signal is filtered and prescaled by a divider which can divide by either 10 or 11. The output of the prescaler is applied to the programmable divider which produces an 80 kHz output if the loop is locked. This signal is phase compared to an 80 kHz reference signal (10 MHz divided by 125) to generate a pulse whose width is determined by the phase difference between the two 80 kHz signals. The pulse is integrated to obtain a de tuning voltage which can be either negative or positive. When the loop is properly locked, the phase detector's output pulse is approximately 30 nanoseconds wide. If the loop becomes unlocked, a oneshot is triggered to generate a 140 µs wide out-of-lock signal. If the loop remains unlocked, the one-shot is retriggered and the NOT PHASE-LOCKED annunciator will light.

Digital Controller (A2A1, A2A2, A2A8, A2A10, and A2A11). The digital controller generates frequency data for use by the phase lock loops. The frequency stored in the digital controller can be changed

in various resolutions by the FREQUENCY RESOLUTION pushbuttons and the TUNING control on the front panel or by remote programming. A battery supply provides a protected supply to allow the digital controller to retain the stored frequency data in the event of a power failure.

The Register 1 Assembly (A2A10) is a CMOS register that can be powered by either the Synthesizer's power supply or a rechargeable NICAD battery (A2BT1) if the line power is interrupted. This register stores the center frequency data in a BCD format. When the front panel TUNING control is turned, pulses are generated on two lines RPG 1 and RPG 2 from the Rotary Pulse Generator (A2A2). When the control is turned clockwise, RPG1 occurs before RPG2 and when turned counterclockwise, RPG2 occurs before RPG1. The Sign Decode circuit (A2A11) determines which pulse occurred first. When RPG1 occurs first, the ±1 Adder circuit (A2A11) is set to add one to the appropriate frequency digit as the data from Register 1 is clocked through the ±1 Adder by CLK1 (a train of 9 pulses). The three clock lines in the digital controller are triggered when the TUNING control is turned. As the data leaves the ±1 Adder it is routed to the Front Panel Display (A2A1), to Register 2 (A2A8), and back into Register 1 (A2A10).

In the standard Synthesizer, the Offset Adder circuit (A2A11) passes data without change. The data is clocked into Register 2 by the first nine pulses of CLK2. The LEFT line then goes high and sets Register 2 into the left shift mode. The next nine pulses of CLK2 shifts the data through a divider circuit that can divide by 1, 2, or 3. At the end of the division, the remainder must be zero. If the remainder is not zero, a one will be added or subtracted from the least significant digit of the data in Register 1, and the result will be clocked into Register 2 where the division will again occur. This process will continue until the remainder is reduced to zero. When the remainder is zero, a single clock pulse, CLK3, causes the data in Register 2 to be dumped in parallel into Register 3. The outputs of Register 3 are decoded to generate tuning data for the phase lock loops.

Remote Control Section (A2A7 and A2A9). Remote programming of the Synthesizer is accomplished via the Hewlett-Packard Interface Bus (HP-IB). The Synthesizer accepts most bus commands as well as data to set frequency, power output, modulation, and leveling. When addressed to talk, the Synthesizer transmits an 8-bit byte which indicates the status of certain portions of the Synthesizer. (Section III of this manual contain programming information under Remote Programming.) The remote interface circuits are contained on two boards. The HP-IB Address Assembly (A2A9), handles the actual communications while the Interface Assembly (A2A7) distributes data to the appropriate locations within the Synthesizer. Data is received from the bus by the transceivers on A2A9. The transceivers convert the low true bus signals to high true signals for use within the Synthesizer. The same transceivers convert the high true signals from the Synthesizer into low true signals for the bus.

The HP-IB handshake sequence is handled by two circuits, one for talking (source handshake) and one for listening (acceptor hand-

shake). The handshake sequence monitors the DCU BZY (Busy) line and will not allow the handshake to continue until the digital controller has finished processing the previous data.

Circuits on A2A9 determine if the information on the eight bus data lines (DI01-8) is to be interpreted as data, addresses, or totally ignored. Service requests are generated on A2A9 by examining the status signals generated by the rest of the Synthesizer. For instance, if the Synthesizer is unlocked or if the FM is overmodulated and the RF is on, then a service request (SRQ) will be generated. If there is a frequency error, an SRQ will be generated whether or not the RF is on or off. A short delay is included at the clock input to the service request flip-flop to avoid generating a service request every time the frequency is changed. The delay is approximately 50 ms, long enough to allow the Synthesizer to settle at any new frequency except when FM is on.

After the Synthesizer is addressed to listen and with the bus in the data mode, data is routed to the A2A7 board where it is first interpreted as either an internal address (alpha) or as data (numeric) to be stored. Internal address data, also called program codes, causes the address counter flip-flops to be preset. This counter controls the distribution of data to the output registers. When data is received without internal address information, the address counter will be incremented one count for each character received. When the "Frequency Execute" command is received, A2A7 generates two clock signals to trigger the digital controller to process the remote frequency data.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate an A2 Assembly malfunction. The following troubleshooting information may be used to further isolate the problem to one of the three controller sections.

- a. The LFS Loop
- b. The Digital Controller
- c. The Remote Control Section

Test Equipment:

Digital Voltmete	er	 HP 3455A
or		
Logic Probe		 HP 545A
Oscilloscope		 HP 180C/1801A/1821A

NOTE

If there is an obvious front panel fault (i.e., dead annunciator) go directly to troubleshoot A2A1.

1. Set RF switch ON.

Observe LED lock indicators on A2A7. All indicators should be on.

REF — Fixed Reference Loop (A3A1A1, A3A1A2, A3A8)

M/N — M/N Loop (A3A1A3, A3A1A4, A3A1A5)

YTO — YIG Tuned Upper Loop (A3A5, A3A6, A3A7, A3A9)

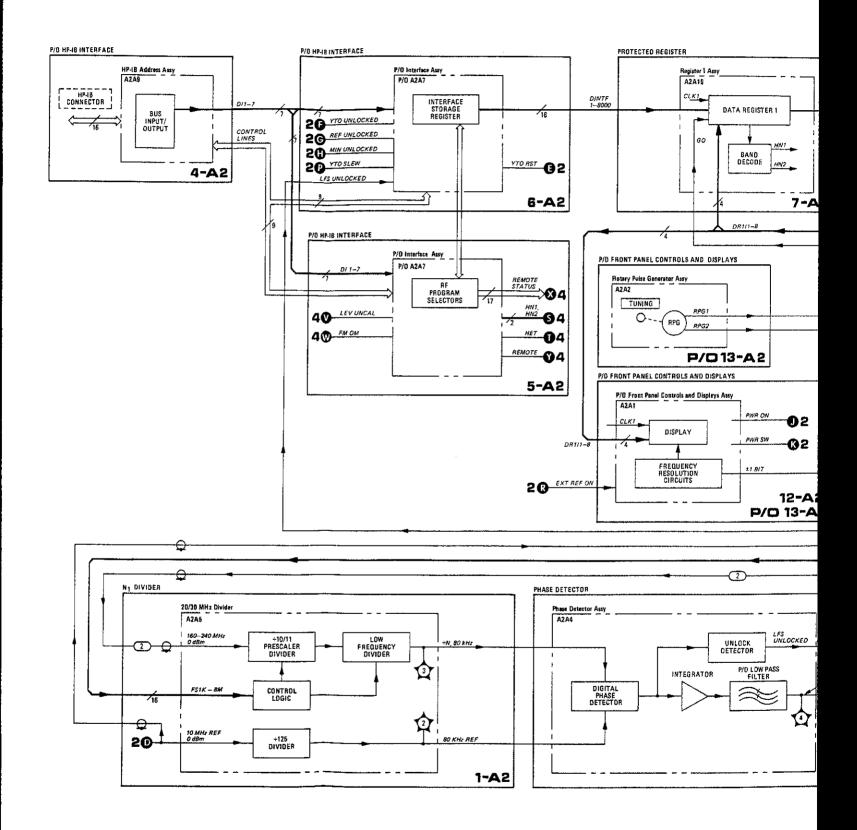
LFS — Low Frequency Loop (A2A3, A2A4, A2A5)

If the REF, M/N or YTO Loops are unlocked go to Service Sheet 2. If the LFS Loop is unlocked, go to Service Sheet 1-A2.

- 3. If the malfunction involves incorrect frequency output continue with this procedure. Otherwise go to step 9.
- 4. Install A2A8 (Register board) on extender.
- 5. Set center frequency to 6169.696 MHz. If you cannot tune to this frequency skip to step 9. Measure logic state at the edge connector pins indicated by arrows pointing to them. All such pins on the front of connector A should be "0", all on the rear of A should be "1". All such pins on the front of B should be "1" and on the rear of B should be "0".
- 6. Set frequency to 3,696.969 MHz.

Front of A should be "1". Back of A should be "0". Front of B should be "0". Back of B should be "1".

7. Set frequency to 5,990.000 MHz.


Front of C should be "1". Rear of C should be "0".

8. Set frequency to 3640 MHz.

Front of C should be "0". Rear of C should be "1".

If there is a frequency data malfunction in A2, it should show up as a pattern of incorrect logic states on the output pins. Check the logic states at all 4 frequency settings as this will help to isolate the defect. If steps 5 through 8 all measure OK, determine which phase lock loop is mistuning by measuring their output frequencies with a counter. The equation needed to determine the correct frequencies are shown on the Service Sheet 2 block diagram.

- 9. If the frequency cannot be changed (but is a legal frequency), continue with this step. Otherwise, go to step 11. Check RPG1 and RPG2 signals at pins 3B and 16B of A2A11 with a dual channel oscilloscope. The normal output is two pulses of about 2.5V in phase quadrature as the TUNING knob is turned. The leading pulse is determined by the direction the knob is turned. If the RPG signals are bad, troubleshoot RPG and interconnections.
- 10. If the RPG signals are normal, check the ±1 bit line at pin 22A. This signal is a string of pulses as the TUNING knob is turned. Check the ±1 bit line at all tuning resolution settings. If ±1 bit is OK, troubleshoot A2A11, otherwise troubleshoot A2A1.
- 11. If the instrument does not turn on properly, check the following items.
 - (a) Battery charge
 - (b) Clock signal from mainframe
 - (c) CLK1, CLK2 and CLK3 signals on A2A11
 - (d) PWRUP line to A2A11
- 12. If frequency limits are improper, check frequency decoder circuit on A2A10.

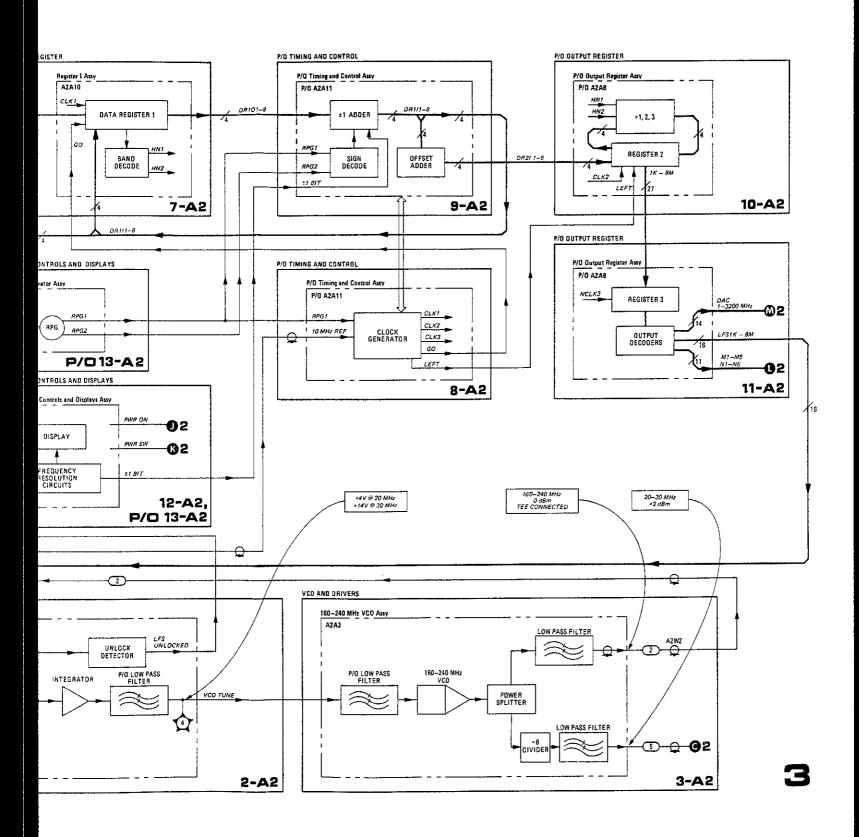


Figure 8-23. A2 Centroller Assembly Troubleshooting Block Diagram

SERVICE SHEET 1-A1

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

 Block diagram 	Page 8-29
• Parts list	Page 6-5
• Performance tests	Page 4-1
Adjustment procedures	Page 5-24

A1 RF OUTPUT ASSEMBLY

General

The Al Assembly performs two basic functions. The RF signal from the A3 Assembly's YTO Loop is isolated from the RF Output by the A1AT1 Isolator. Also, the A1A1 Front Panel Assembly makes it possible to control the frequency modulation and RF switching functions.

A1A1 Panel Assembly

The RF switching and FM mode functions may be front panel controlled or externally programmed via HP-IB. The RF output may be switched on or off and full scale FM ranges of 10 MHz or 0.1 MHz may be selected.

The front panel annunciators display the mode status. In the FM mode, the OVERMOD annunciator indicates when the modulation level (deviation) is too high for existing RF output frequency and modulation rate.

The Local/Remote Data Selector passes local or remote control information depending on the status of the REMOTE input. In the FM mode, selecting either range causes an active output from the FM Decoder that lights the appropriate FM range annunciator. An output on either range also activates the FM Relay Driver circuit. This closes the relay and allows the front panel FM INPUT signal to pass through to the A3 Assembly FM circuits (YTO Loop). The FM signal, that is output to the A3 Assembly's YTO Loop, is adjusted for the correct FM deviation to input level sensitivity by the FM SENS ADJ control.

The active high on the emitter of Q10 is connected through R19 to activate the FM circuits in the A3 Assembly (FM ON). If the FM overmodulation condition exists, the same control line is pulled low (NFM ON). The FM OVERMOD status indicator lights and FM OM output goes high.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate a reference loop malfunction.

Test Equipment

Power Meter
Digital Voltmeter HP 3455A
Frequency Counter HP 5340A
Spectrum Analyzer

- Connect the power meter to RF OUTPUT connector. The output should be > +8 dBm across the entire frequency range of Synthesizer; the total power variation across the band should be <6 dB. If the power level is adequate, proceed to Step 3.
- 2. If power level is low, measure the RF signal feeding the isolator. The insertion loss of the isolator should be <1 dB.
- 3. Set the FM Deviation switch to the 0.1 MHz position. The FM 0.1 lamp should light.
- 4. Set the FM Deviation switch to the 10 MHz position. The FM 10 lamp should light. If either FM light doesn't function, check the lamp and if it is good, troubleshoot the local/remote data selector, FM decoder and display drivers.
- 5. Set the RF switch OFF. The RF ON lamp should extinguish and the RF OFF lamp should light. When the RF is off, the NOT PHASE-LOCKED lamp should light. If the lock indicator functions properly but the RF ON or RF OFF lamps don't work properly, check the lamps and if necessary troubleshoot

- the display drivers. Set the RF switch ON before continuing.
- 6. Apply 1.8 Vrms to FM input at 10 MHz rate (FM switch should still be in 10 MHz position) the FM OVERMOD indicator should light. If the indicator does not light, check the lamp and if necessary troubleshoot the overmodulation circuit and display driver.
- Set the FM switch to the 0.1 MHz range. The OVERMOD lamp should remain on. If the lamp does not remain on, troubleshoot the overmodulation circuit. (A1A1TP6 should be low if the modulation voltage is excessive.)
- 8. Set modulating signal to 10 kHz at 1.0 Vrms. the OVERMOD lamp should light. If the lamp doesn't light under these conditions but worked properly in Steps 6 and 7, go to Service Sheet 10-A3 to troubleshoot the overmodulation circuitry in the YTO Loop.
- Connect 100 kHz at 1.414 Vrms to the FM input, Set FM Switch to 0.1 MHz deviation range. Connect spectrum analyzer to RF OUTPUT and tune to view signal and sidebands. The first sideband pair should be 4.8 dB below the carrier. Adjust the voltage slightly to obtain the correct sideband level. The voltage should be between 1.315V and 1.513V. If the voltage is within tolerance, the Al Assembly is working properly. If the voltage is incorrect, perform the FM adjustments procedures if the voltage is close to correct. If the voltage is way off, troubleshoot the FM sensitivity circuit and if it is working properly, go to Service Sheet 10-A3 to troubleshoot the FM driver.

NOTE

After repairing the A1A1 Assembly, if necessary, perform the FM Sensitivity Adjustment in Section V.

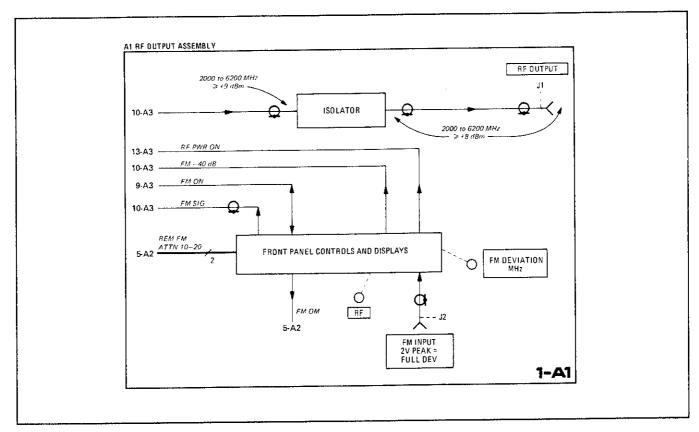


Figure 8-24. A1 RF Output Assembly Block Diagram

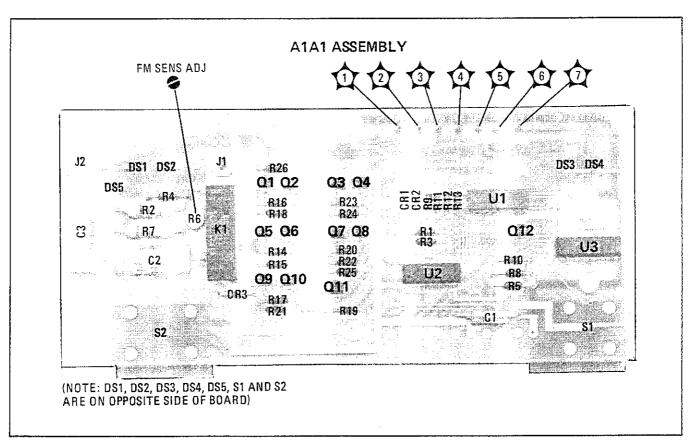


Figure 8-25. A1A1 Front Panel Assembly Component, Adjustment, and Test Point Locations

FIG. 8-26 SH 1 of 3

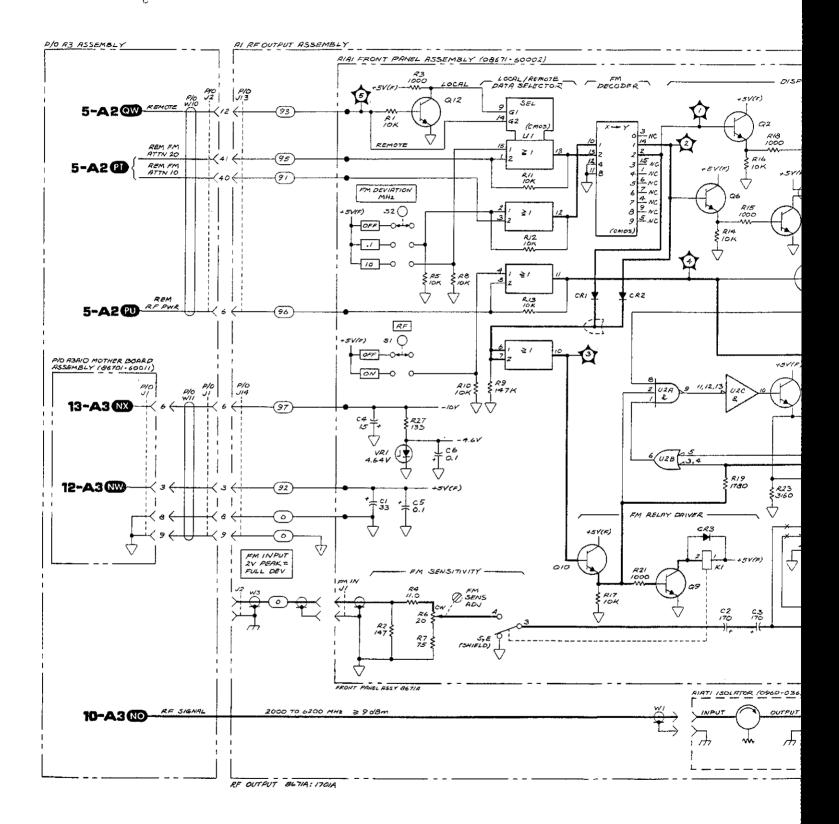


FIG. 8-26 SW 2 of 3

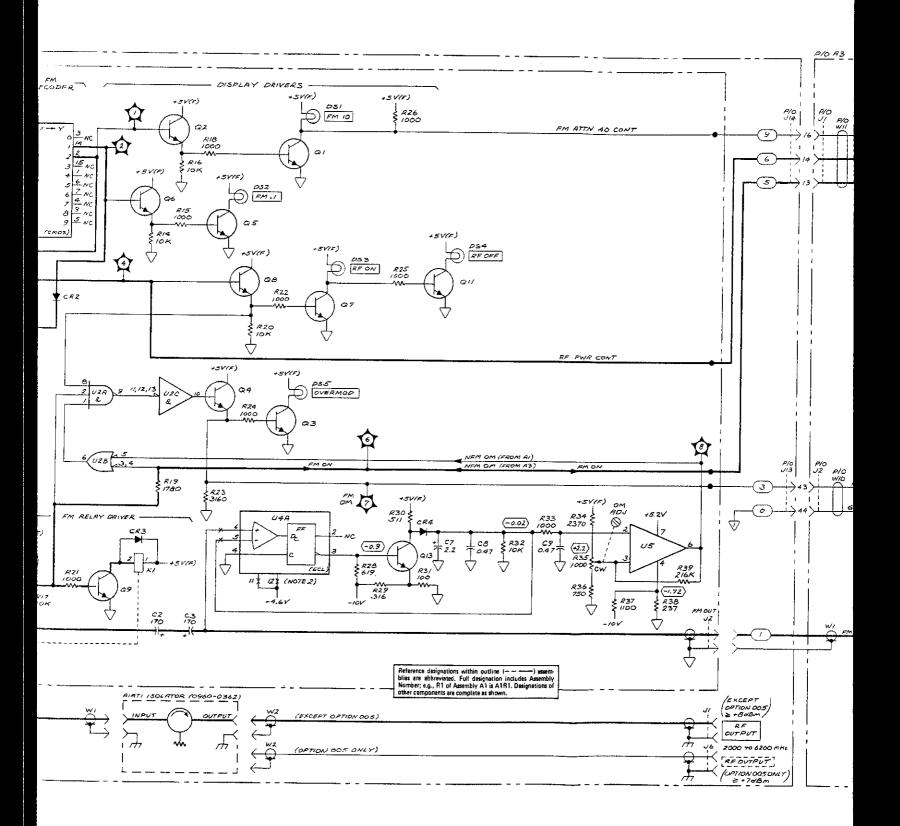


FIG. 8-26 Sht 3 \$3

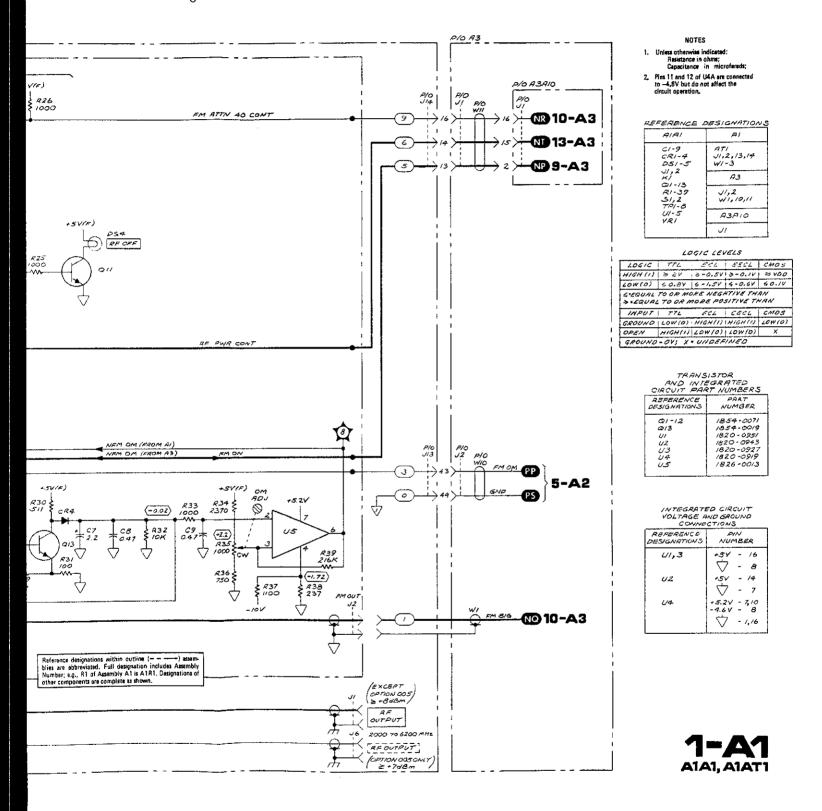


Figure 8-26. A1A1 Front Panel Assembly Schematic Diagram

SERVICE SHEET 1-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-35

Motherboard wiring Last 3 foldout sheets

• Parts list Page 6-11

Performance tests
 Page 4-10, 4-20

• Adjustment procedures Page 5-21

PRINCIPLES OF OPERATION

LFS Loop

The 20/30 MHz Loop (LFS Loop) converts tuning information of the four least significant digits (1 MHz through 1 kHz) into a frequency between 20 MHz and 30 MHz. This frequency is obtained by dividing the 160—240 MHz VCO output by 8. The 160—240 MHz is fed back to a programmable divider where it is divided by a number, N1, to produce 80 kHz. The 10 MHz reference is divided (by 125) to obtain 80 kHz and the two are compared in the phase detector. Phase difference is converted into a VCO TUNE voltage and applied to the VCO.

The 20/30 MHz divider (A2A5 board) consists of a programmable divider and a fixed divider. The programmable divider consists of a divide by 10 or 11 prescaler and a low frequency divider. It divides by N1 which varies between 2000.1 and 3000.0 depending on the last four digits of the YTO frequency. The relationship is as follows:

$$N1 = 8 (30 \text{ MHz} - D_4, D_3 D_2 D_1 \text{ MHz})/80 \text{ kHz}$$

where:

 $D_4 = 1 \text{ MHz digit}$

 $D_3 = 100 \text{ kHz digit}$

 $D_2 = 10 \text{ kHz digit}$

 $D_1 = 1 \text{ kHz digit}$

If D_1 and D_2 are zero the prescaler divides by 11 for ten of its output cycles and by 10 for the rest, and the low frequency divider counts the programmed number of prescaler output pulses. When D_2 is not zero, unit division takes place. This is done by the prescaler, which divides by 11 one less time for each increment of D_2 . For example if D_2 is 4, the prescaler will divide by 11 four less times. If D_1 is not zero, fractional division is done by changing the unit division number over ten 80 kHz cycles. For example, if N1 is 2100.5, the 20/30 divider will divide by 2100 five times and by 2101 five times. This results in an average N1 of 2100.5 and an average frequency (over ten output cycles) of 80 kHz.

20/30 Divider

The prescaler (U8) divides the 160—240 MHz VCO output by 10 if pin 2 is high and by 11 if it is low. The resulting pulses are counted by the low frequency divider. The count starts with the number preset by the 1 MHz and 100 kHz digits and ends at 299. This results in a pulse at the beginning of each 80 kHz cycle. It stays that way until the first time U16A goes low. This clocks a low through U7B which causes the prescaler to divide by 11. When U14 reaches a count of 9, the J input of U7A goes high and is clocked

through U7A by the next low going prescaler output. This causes a high to be clocked through U7B which tells the prescaler to divide by 10 until the end of the 80 kHz cycle.

Fractional division depends on the 1 kHz digit. Rate multiplier U12 outputs a number of negative transitions per ten 80 kHz cycles. This number is the value of the 1 kHz digit. Each of these negative transitions causes the prescaler to divide by 11 one less time than programmed by the D_2 information.

TROUBLESHOOTING

It is assumed that the troubleshooting information, Service Sheets 1, 2, and 3-A2 was used to isolate a 20/30 MHz divider problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

- 1. Install A2A5 on an extender board.
- 2. Observe the signal at A2A5TP2. You should see 2.5 ns wide pulses at an 80 kHz rate (12.5 μ s period), TTL levels. If so, continue with this procedure; otherwise, troubleshoot the ± 125 counter.
- 3. Remove A2A3 and set the test switch to the TEST HIGH FREQ position. Reinstall A2A3. The output frequency should be greater than 240 MHz. This signal will be used to test the divider assembly.
- 4. Set the Synthesizer frequency to 3000.000 MHz. Attach a counter or oscilloscope to A2A5TP5. The frequency should be about 25 MHz at TTL levels. This signal is rich in harmonics (i.e., the sine wave is distorted). If the signal is near 22.7 MHz the 10/11 prescaler is dividing incorrectly (or its input control at pin 2 is wrong).
- 5. Ground A2A5TP4 (LSB). The frequency should drop to about 22.7 MHz as the prescaler is switched to divide by 11. If this does not happen troubleshoot U8 and associated components.
- 6. Disconnect the ground on TP4 and observe the signal at TP4 on an oscilloscope. Set the frequency to 2999.900 MHz. There should be low true pulses about $0.65~\mu s$ wide with $8~\mu s$ spacing, TTL levels.
- 7. Increase the frequency in 1 kHz steps to 2999.999 MHz. The pulses should become narrower and finally disappear. This pattern is repeated every 100 kHz. The pulse spacing varies with frequency from 12 μ s for frequencies ending in 0.000 to 8 μ s for frequencies ending in 9.9xx. If the pulse does not behave properly, troubleshoot the ÷10/11 controller and associated circuits.
- 8. Connect the oscilloscope or frequency counter to TP3. At 3000.000 MHz the frequency should be about 83.3 kHz (250 MHz divided by 3000). Change frequency to 2999.999 MHz and TP3 should go to about 125 kHz. (250 MHz divided by 2000.1). If both of these fre-

quencies are correct the A2A5 divider assembly is probably OK. Otherwise troubleshoot the LOW FREQUENCY DIVIDER (U14, U13, U11, U3 and U6).

- 9. As a final check of the dividers, tune in 1 kHz and 10 kHz steps from 3000,000 MHz to 2009,999 MHz to assure that the divider output frequency increases as the frequency is turned higher. If this happens, the divider is OK. Be sure to reset the TEST switch to the NORM position.
- 10. After any repairs to this board refer to Table 5-3 and perform the 20/30 Loop Divider Bias Adjustment and Signal-to-Phase Noise Ratio.

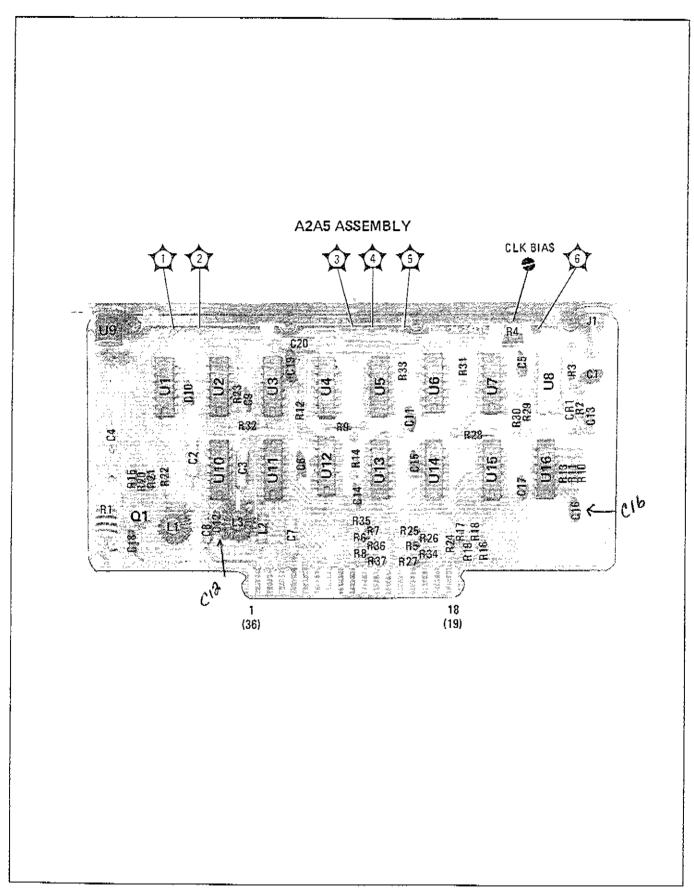
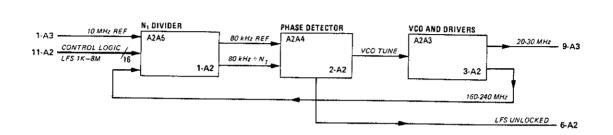



Figure 8-27. A2A5 20/30 MHz Divider Assembly Component, Adjustment and Test Point Location

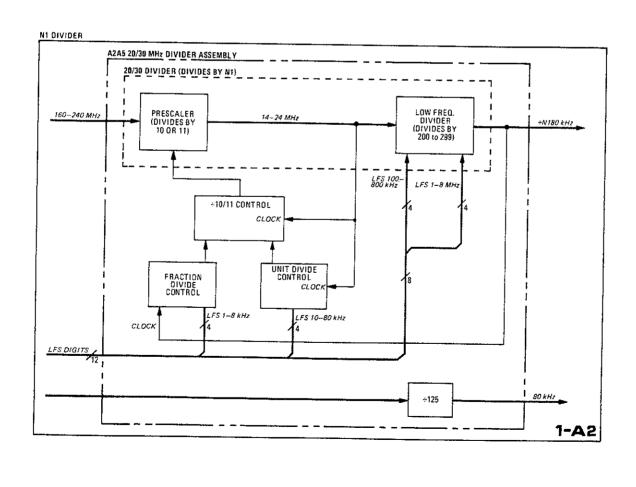
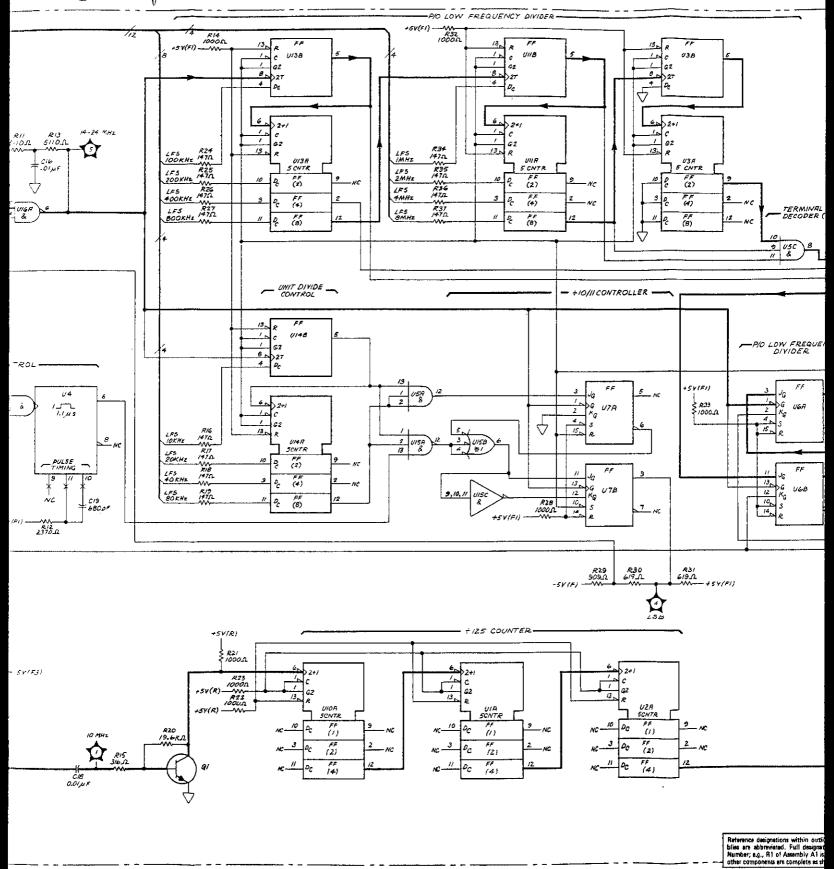



Figure 8-28. 20/30 MHz Divider Block Diagrams

F16.8-29 Sht 20f3

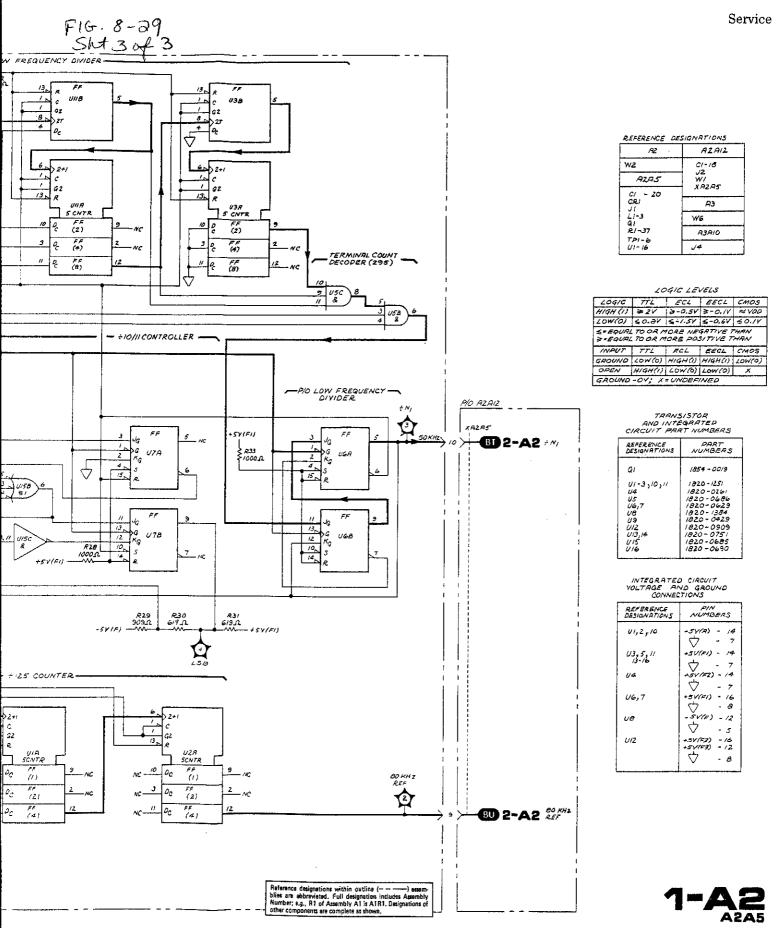


Figure 8-29. 20/30 MHz Divider Assembly Schematic Diagram

SERVICE SHEET 2-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
 Page 8-35

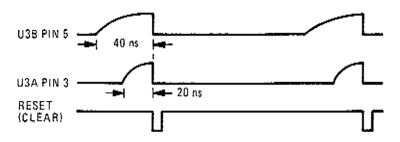
Motherboard wiring Last 3 foldout pages

• Parts list Page 6-10

• Performance tests Page 4-10, 4-20

Adjustment procedures Page 5-23

PRINCIPLES OF OPERATION


LFS Loop

The 20/30 MHz Loop (LFS Loop) converts tuning information of the four least significant digits (1 MHz through 1 kHz) into a frequency between 20 MHz and 30 MHz. This frequency is obtained by dividing the 160—240 MHz VCO output by 8. The 160—240 MHz is fed back to a programmable divider where it is divided by a number, N1, to produce 80 kHz. The 10 MHz reference is divided (by 125) to obtain 80 kHz and the two are compared in the phase detector. Phase difference is converted into a VCO TUNE voltage and applied to the VCO.

The Digital Phase Detector compares the REF 80 kHz and \div N1 80 kHz and uses the phase difference to produce a dc voltage, VCO tune, which corrects the VCO frequency. Large frequency errors, especially those associated with a frequency change, result in an error voltage that may move the VCO out of the loop's locking bandwidth. When the loop is unlocked, the Gain Control Logic and Pulse Width Detector (pulse width varies directly with frequency or phase error) circuitry increases the integrating amplifier's gain (and thus increases bandwidth) during unlocked conditions, speeding up the re-lock process. When the loop is unlocked, the Unlock Detector will pulse the LFS UNLOCKED line high. If the loop remains unlocked, the signal on the LFS UNLOCKED line will be a string of 140 μ s pulses.

20/30 Phase Detector

Flip-Flops U3A,B and nand gate U2C phase compare the two 80 kHz inputs by generating a pulse that represents, by its width, the phase error. Starting in the reset state, the flip-flops non-inverting output will go high on the trailing edge of the first input pulse. When both U3A and U3B are high, the nand gate, U2C, goes low and resets the flip-flops, restarting the process. If the two 80 kHz inputs are in phase, the pulses at TP1 and TP2 will occur at the same time which, to the integrating amplifier's differential input, means no change in the TUNE voltage. The timing relationship looks like the following drawing. But, if a phase difference exists, one of the flip-flops will output a longer pulse which the Integrating Amplifier will translate to a positive or negative DC voltage. Normally, the REF pulse will begin to rise about 20 ns before the ÷N1 pulse.

Phase Detector Timing

Q1 and U5 form an operational amplifier which amplifies and integrates differences between the inputs to produce the VCO TUNE voltage. R8, R12, R16 and C9 and R11, R13, R20 and C12 determine the gain and integrating time constant, while CR1 and CR2 speed up the integration during fast input changes. VR1 and the voltage divider, R27 and R29 act as a clamp to keep VCO TUNE under 14 volts. A linearizing network, CR3, CR4 and associated resistors, modifies the VCO TUNE voltage so that loop bandwidth will be nearly constant for all frequencies, thus yielding a constant phase noise characteristic.

When the loop is out of lock, switches U4C and U4D close which shunts R8, R12 and R11, R13 with R10 and R14. This increases the Integrating Amplifier's gain allowing the loop to relock faster.

The 8 kHz notch filter removes the 8 kHz and 16 kHz sidebands produced during fractional division. Higher sidebands are attenuated by the low pass filter in the next stage.

One shot U7, Flip-Flop U8 and Nand gate U2D activates the switches, U4C and D, if the phase detector pulse width exceeds 1.5 μ s. When the output of U2D goes high, the one shot will trigger, but normally the input will stay high for only about 20 ns, so by the time U7 pin 6 goes high the D input to U8 is low and a low is clocked through to the switches. If a large phase error exists for more than 150 μ s U8 pin 12 will still be high when the one shot's output pulse goes positive and a high will be clocked through U8.

One shot U6 and nand gate U2A signal the front panel indicator and the HP-IB status byte circuitry when the LFS loop is unlocked. During lock periods and brief unlock periods both inputs to U2A are high. When the loop is unlocked U2A outputs negative pulses which are very short when the loop is unlocked for short periods but increases to $140~\mu s$ for long unlock periods.

Short pulses are attenuated by R21 and C15 but longer ones will trigger U6, the output of which will cause the LFS UNLOCKED line to pulse high. As long as the loop remains unlocked, U6 will be triggered and output a string of 140 μ s pulses to the LFS UNLOCKED line via U2A.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 3, and 3-A2 was used to isolate a 20/30 MHz phase detector problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

- 1. Set the Synthesizer to standby and install A2A4 on a 2x18 extender board. Be sure all loop cables remain connected.
- 2. Turn the Synthesizer on and set 3000.000 MHz center frequency. Measure the TUNE OUT voltage at TP4. It should be about +14 Vdc.
- 3. Set the frequency to 2999,999 MHz. The TUNE OUT voltage should drop to about +4V. If both voltages are correct, A2A4 is probably OK. Continue to be sure. If a voltage is wrong, skip to step 7.
- 4. Measure the voltage at pin 11 of the edge connector. If the loop is locked this voltage should be a TTL low. (Less than 0.7 Vdc).
- 5. Disconnect the red coax. The voltage at pin 11 should be a TTL high, the LFS indicator on A2A7 should go out, and the NOT PHASE-LOCKED indicator on the front panel should light. Reconnect the coax and the loop should relock. If all measurements are correct A2A4 is OK.
- 6. If the lock indicator is not working properly per steps 4 and 5, measure the pulse widths at pin 6, U7 and U6, when the red coax is disconnected. Both one shots should be generating pulses when the loop is unlocked. U7 and U8 are intended to help the loop lock by causing loop gain to increase for 1.5 μs once an unlock condition has been detected. U6 generates a string of 140 μs pulses to control the LFS UNLOCKED line.
- 7. With an oscilloscope, observe the pulses at TP1 (20 ns) and TP2 (40 ns). These should be TTL levels with an 80 kHz repetition rate. The falling edge of the pulses should be coincident as shown in the principles of operation. If these pulses exist, the phase detector is probably OK. If the pulses are not present, check the input signals to the phase detector. A missing input will generally reveal itself by causing the corresponding output of the phase detector to remain low. If the input is missing, turn to service sheet 1-A2 to continue troubleshooting.

8. Measure the inputs to U5 at pins 2 and 3. Both should be virtually the same at +12.1 Vdc. If these voltages are correct, troubleshoot U5 and associated components. Otherwise troubleshoot Q1 and associated components.

After any repairs to this board, perform the A2A4 Assembly Notch Filter Adjustment.

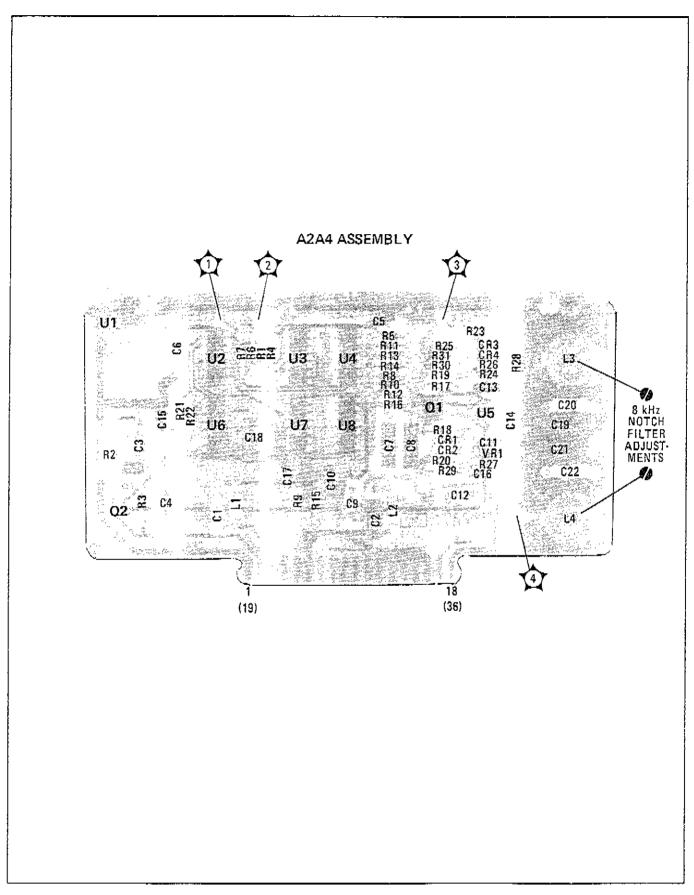
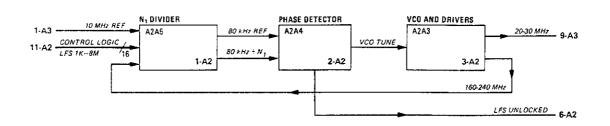



Figure 8-30. A2A4 20/30 MHz Phase Detector Assembly Component, Adjustment, and Test Point Locations 8-40

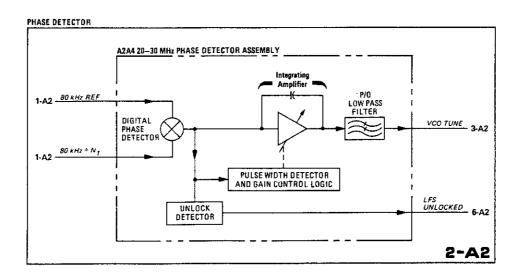


Figure 8-31. 20/30 MHz Phase Detector Block Diagrams

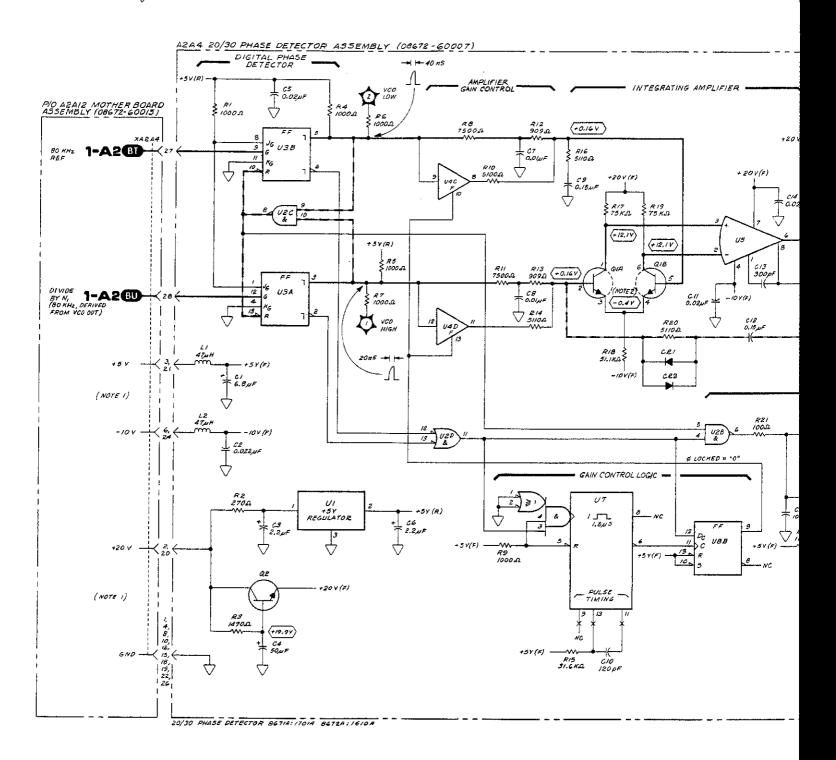


FIG. 8-32 5Ha43

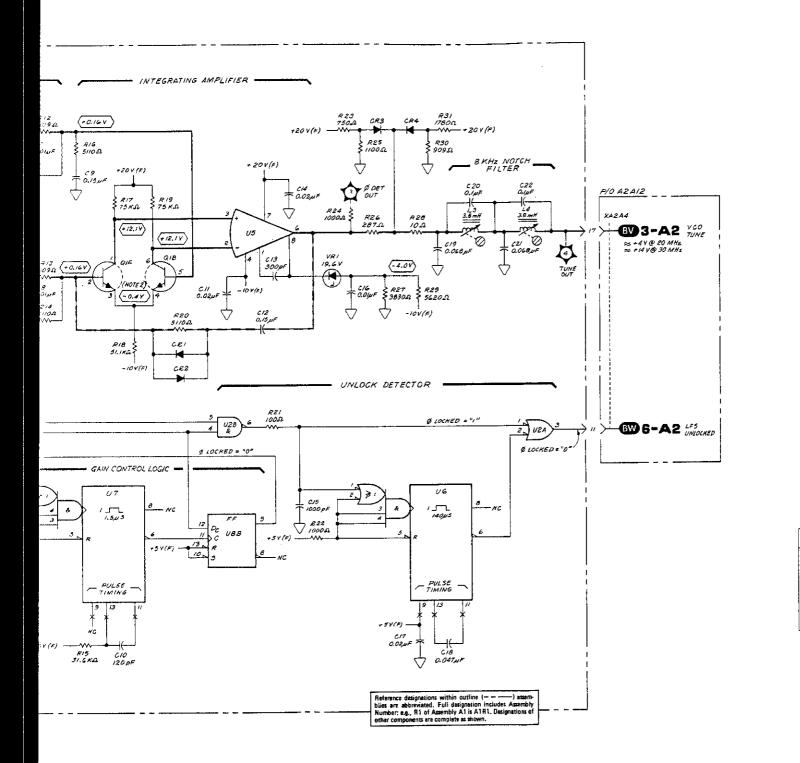
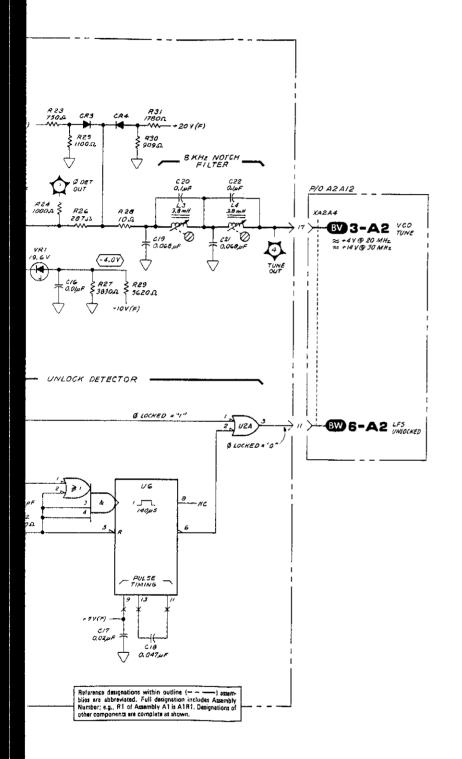



Figure 8-32. 20/30 MHz Pi

TRAN AND INT CIRCUIT PA REFERENCE DE SIGNATION

> Q1 Q2 U1 U2 U3 U4 U5 U6-7 U6

FIG. 8-32 5kt 3 of 3

NOTES

- POWER SUPPLY CONNECTIONS TO THE AZ ASSEMBLY ARE SHOWN ON SERVICE SHEET 1-AZ. REFER TO THE SCHEMATIC DIRGRAM NOTES FOR PHYSICAL PIN LOCATION.

REFERENCE DESIGNATIONS

AZAA	A2A/2
C1 - 22	44544
CRI-4	XAZA4
L1 - 4	1
Q1-2 R1-31	1
TP1-4	
U1-8 VRI	

LOGIC LEVELS

4091C	774	EC4	EEC4	CMO5	
HIGH (I)	≥ 2V	>-0.54	≥-0.1V	≈ VDD	
LOW(O)	€0.81	5-1-5Y	≤-0.6V	€0.1V	
E EQUAL TO OR MORE NEGATIVE THAN E EQUAL TO OR MORE POSITIVE THAN INPUT TTL ECL EECL CMOS					
INPIT	777	#/-/	EEC/		
INPUT GROUND				CMOS	

TRANSISTOR

CIRCUIT PART NUMBERS					
REFERENCE DE SIGNATIONS	PART NUMBERS				
Q1 Q2 U1 U2 U3 U4 U5 U6-7 U8	854 - 0475 854 - 007 820 - 0429 820 - 0797 820 - 0281 820 - 0392 820 - 0422 820 - 0422				

GEDDIYO C	UNNECTIONS
REFERENCE DESIGNATIONS	PIN NUMBERS
UZ,3	+5Y(R) - 14
U4,8	+5V(F) - 14
U6,7	\
. 06,7	+5v(A) -16

SERVICE SHEET 3-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
 Page 8-35

Motherboard wiring Last 3 foldout pages

• Parts list Page 6-8

• Performance tests Page 4-10, 4-20

• Adjustment procedures Page 5-20

PRINCIPLES OF OPERATION

LFS Loop

The 20/30 MHz Loop (LFS Loop) converts tuning information of the four least significant digits (1 MHz through 1 kHz) into a frequency between 20 MHz and 30 MHz. This frequency is obtained by dividing the 160—240 MHz VCO output by 8. The 160—240 MHz is fed back to a programmable divider where it is divided by a number, N1, to produce 80 kHz. The 10 MHz reference is divided (by 125) to obtain 80 kHz and the two are compared in the phase detector. Phase difference is converted into a VCO TUNE voltage and applied to the VCO.

The VCO (A2A3)Assembly uses a varactor tuned oscillator and dividers to produce a 20—30 MHz signal, which is used in the YTO loop, and a 160—240 MHz signal which is fed back to the N1 divider. The VCO TUNE voltage, after passing through a low pass filter, tunes the VCO over its 160—240 MHz range. A power splitter and drivers buffer the VCO output and drive a divider for the 20—30 MHz output and a low pass filter for the 160—240 MHz output.

160-240 MHz VCO

The oscillator consists of Q1 with the primary of T1 and CR1 through CR4 for the tuned circuit, and C6 providing feedback. Varactor bias, the VCO TUNE voltage, is applied through the low pass filter and switch S1. In the NORM position S1 connects the VCO TUNE voltage to the diodes, but in TEST HIGH FREQ or TEST LOW FREQ the loop is opened and dc voltage sets the VCO frequency to greater than 240 MHz or less than 160 MHz. Q1 is biased by the --40V supply through ripple filter Q6. RF energy is coupled to the Power Splitter by the one turn secondary of T1.

Amplifier Q4 buffers the VCO from the two common base drivers, Q2 and Q3. Q5 acts as a ripple filter for the Q2, Q3 and Q4 bias supply. Q2's output is filtered and applied to J2 as the 160—240 MHz OUTPUT. The signal at Q3's collector is divided by 8 by U2, U1A and U1B, filtered and applied to J1 as the 20/30 MHz output.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1 and 3 was used to isolate a 160-240 MHz VCO problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

Frequency Counter	HP 5340A
Spectrum Analyzer HP 85	553B/141T/8555A
High Impedance Probe	HP 1121A
Digital Voltmeter	

- 1. Set the Synthesizer to standby and install A2A3 on a 2 x 18 extender board.
- 2. Connect the frequency counter input to the A2A3 160-240 MHz OUTPUT. Common time base is not necessary for this measurement.
- 3. Set the test switch A2A3S1 to the TEST HIGH FREQ position. Turn on the synthesizer. The counter should indicate a frequency greater than 240 MHz.
- 4. Set the test switch to the TEST LOW FREQ position. The counter should indicate less than 160 MHz. If the results of either step 3 or 4 are incorrect, skip to step 8. Otherwise continue.
- 5. Connect the counter to the 20/30 MHz OUTPUT. The counter should indicate a frequency less than 20 MHz.
- 6. Set the test switch to the TEST HIGH FREQUENCY position. The counter should indicate a frequency greater than 30 MHz. If both steps 5 and 6 are correct, this board is functioning correctly. Return the test switch to the NORM position and reinstall the board.
- 7. Does loop appear to lock, but at the wrong frequency? If so, go to Service Sheet 1-A2 to troubleshoot the dividers.
- 8. If the loop fails to lock but the VCO checks out OK, go to Service Sheet 1-A2 to troubleshoot the phase detector or the inputs from the dividers.
- 9. Measure with a high impedance probe and spectrum analyzer the signal at A2A3U2 pin 7. The signal should be about -10 dBm at frequencies greater than 240 MHz. If this signal is OK, troubleshoot the ÷8 circuit, otherwise troubleshoot the power splitter and driver.
- 10. Measure the signal at the collector of Q4 with a high impedance probe and a spectrum analyzer. It should be about -10 dBm at less than 160 MHz. If this signal is correct, troubleshoot Q2 and associated components.
- 11. Measure these test voltages at R10:
 - +15.4V at TEST HIGH FREQ
 - +3.3V at TEST LOW FREQ

If these voltages are correct, continue.

12. Measure Q1 dc bias voltages. They should be as shown on the schematic. If correct, continue; otherwise troubleshoot Q1, Q6 and associated components.

13. Set the Test switch to the HIGH FREQ position. Measure the signal at the base of Q4 with a high impedance probe and spectrum analyzer. It should be 0 dBm at greater than 240 MHz. If this signal is correct, troubleshoot Q4. Otherwise troubleshoot Q1 (pay special attention to T1 and CR1-4.)

After any repairs to this board, perform the 20/30 Loop VCO Adjustment.

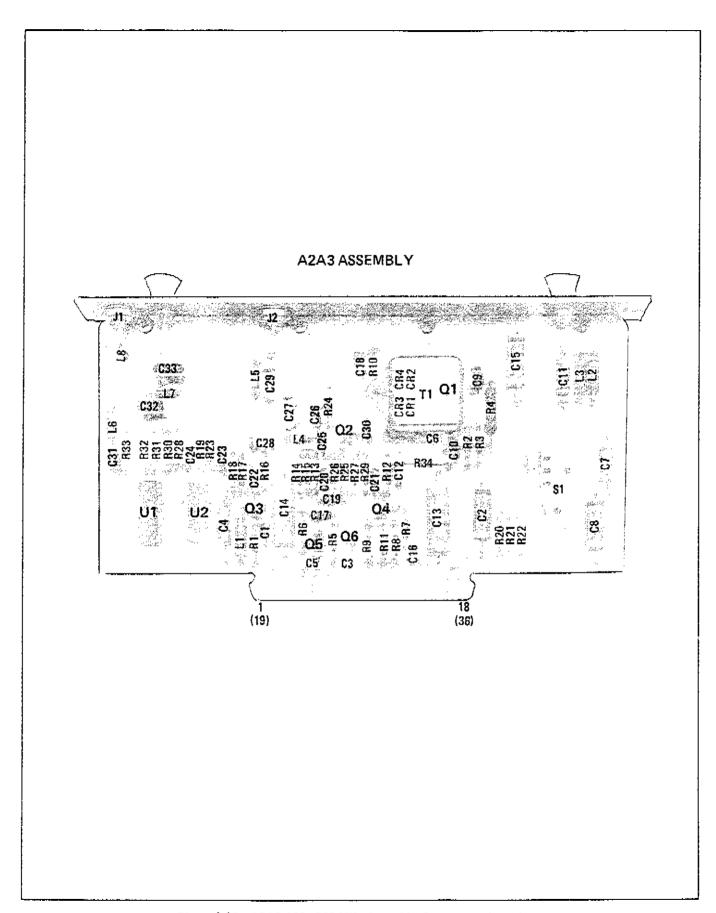
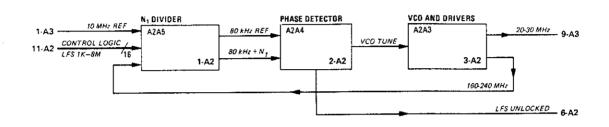



Figure 8-33. A2A3 160-240 MHz Assembly Component Locations

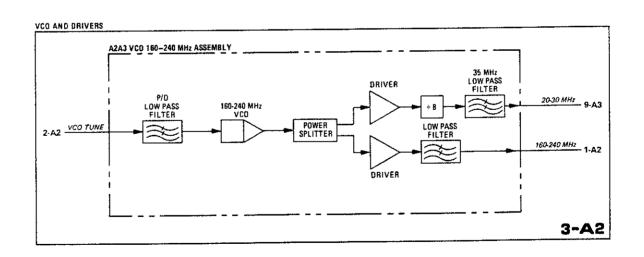
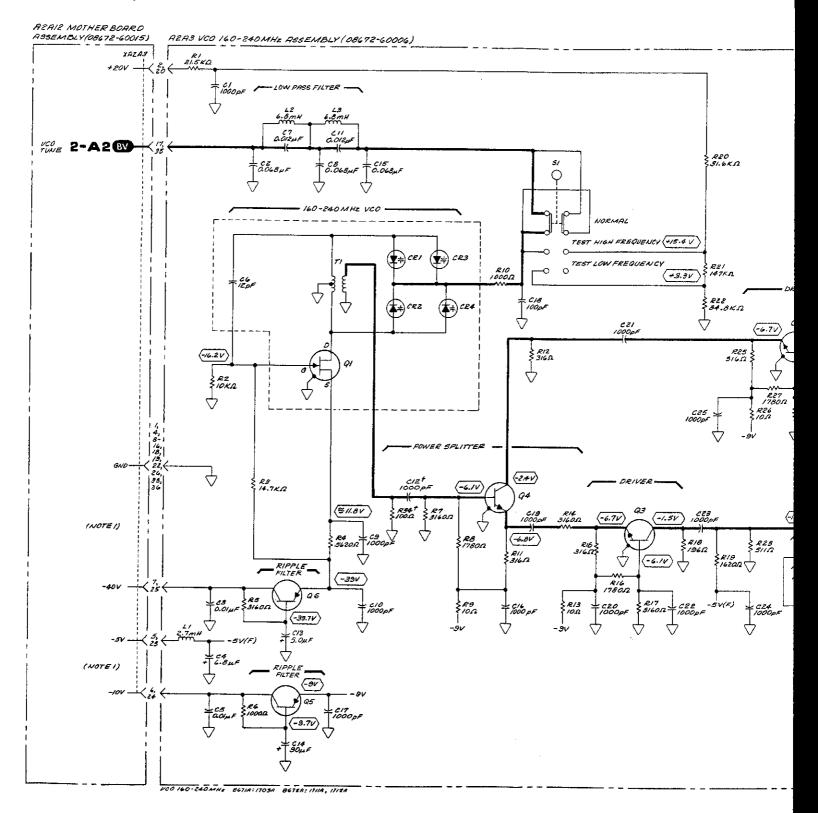



Figure 8-34. VCO 160-240 MHz Block Diagrams

FIG. 8-35 Sht 1 of 3

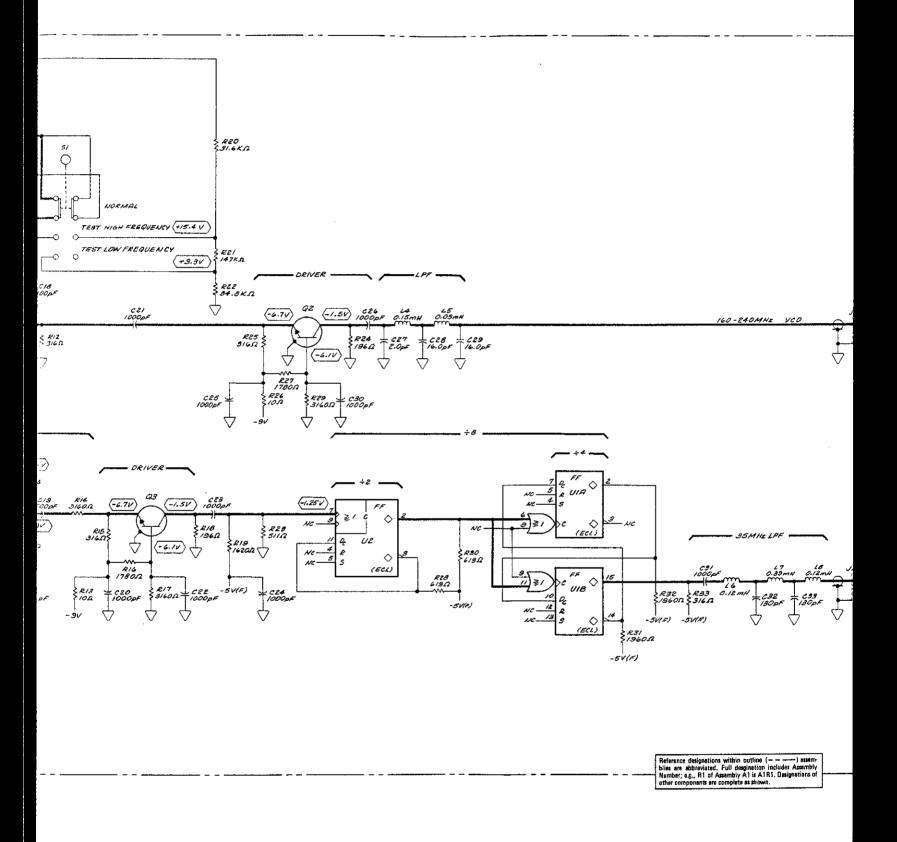


FIG. 8-35 5143 of 3

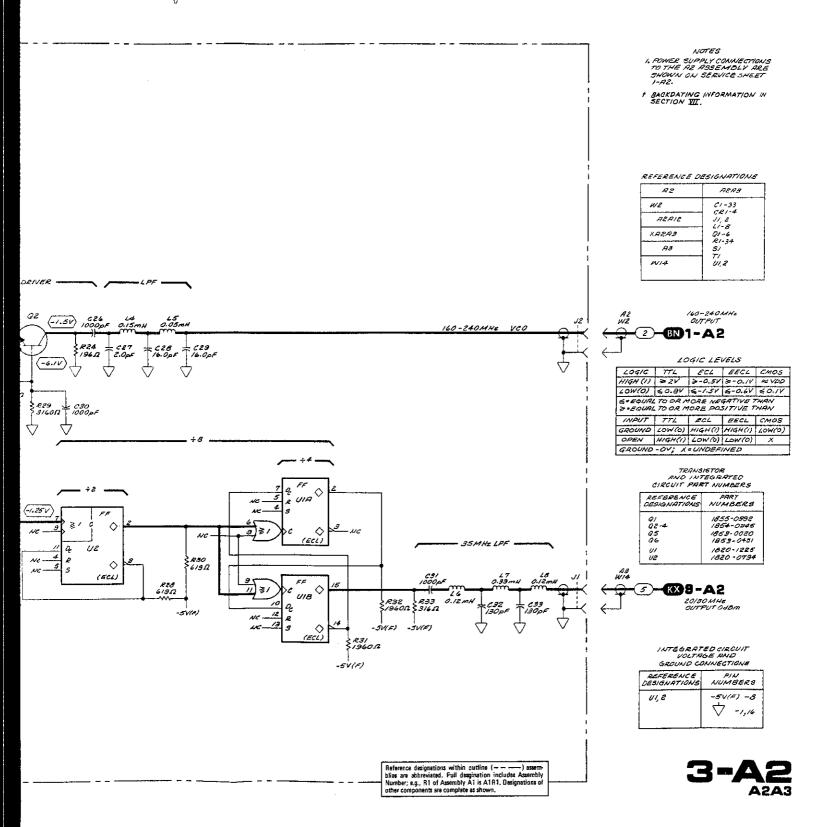


Figure 8-35. VCO 160-240 MHz Assembly Schematic Diagram

SERVICE SHEET 4-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

 Block diagram Page 8-35

 Motherboard wiring Last 3 foldout pages

 Parts list Page 6-15

 Performance verification Last 3 foldout pages

and page 8-16

• Programming Page 3-1

 HP-IB connector Page 2-5

PRINCIPLES OF OPERATION

General

The HP-IB Interface converts ASCII characters on the bus' data lines into RF section program information and frequency digits. Also, it converts status information from other parts of the Synthesizer into a status byte which it sends on the 8 data lines. This section of the Synthesizer consists of two boards: HP-IB Address Assembly (A2A9), and the HP-IB Interface Assembly (A2A7).

The HP-IB Address Assembly (A2A9) receives a character from the data lines under the control of the 3 handshake lines. Then it decodes the 5 control lines to determine if the character is an address, a command, or a data character. If the character is an address, and it matches the Synthesizer's talk or listen address switch setting (see address selection in Section II), the Synthesizer will talk or listen. If the character is a command, the Synthesizer will respond to it if it has the capability (see Table 3-5). If the character is data and the Synthesizer has already been addressed to listen, the Address Assembly tells the Interface Assembly to decode it.

The HP-IB Interface Assembly (A2A7) determines whether character is a program code or an argument. If the character is a program code, it selects the correct route for the next character which will usually be an argument.

HP-IB Address Assembly

The Remote Bus Transceivers do three things. They allow the Synthesizer to send or receive over the same bus line. They invert logic levels; the bus uses low true logic and the Synthesizer uses high true logic. Also, they buffer the Synthesizer from the bus. Received characters (DI 1-7) go to the address selectors, command decoders, RF program selectors, and Interface storage register. If the Attention (ATN) line is true, the address selectors decode the DI 1-7 lines as an address or command. Switches S2 and S3 select the Synthesizer's Talk and Listen address. If the selected address appears at the same time as a STOR pulse from U20B, the TALK, LISTEN or REMOTE flip-flops will set. The schematic illustrates the logic for setting and resetting the three flip-flops. When the Synthesizer is in remote, addressed to listen, and the attention line (ATN) is false, an NRSTOR pulse tells the Interface Assembly to treat the DI 1-7 lines as an internal address (instruction) or as an argument to be stored at the previously determined address. All characters are transferred asynchronously over the bus DIO 1-8 lines in a bit parallel byte serial format. The handshake circuitry controls the transfer. Beginning with receive, the Acceptor Handshake circuit lets the not ready for data line (NRFD) go high when the Synthesizer is ready to receive a character. Then, when the controller pulls the data valid (DAV) line low, nand gate U13B waits about $2.5~\mu s$ and triggers one shot U20B. The resulting STOR and NSTOR pulses do

several things. The leading edge of STOR clocks the serial poll flip-flop, enables the NRSTOR gate (U9B), and clocks the TALK,LISTEN and REMOTE flip-flops. The trailing edge of NSTOR clocks U5B, which after another 2.5 μs delay allows the not data accepted line (NDAC) to go high. This signals the talker that the character transfer is complete.

For sending characters, the source handshake circuit monitors the not ready for data line (NRFD). When this line goes high, and the other conditions shown on the schematic are met, U20A is triggered. The resulting System Delay State pulse (SDYS and NSDYS) clocks the character onto the bus and after a $2\,\mu s$ settling delay sets the data valid line (DAV) low (true). When the not data accepted line (NDAC) goes high, U5A resets and the circuit is ready to send another character.

The parallel poll circuitry outputs a status bit on a switch selected data line (DIO 1—8) when the controller sets the end or identify line (EOI) true. Logic polarity of the status bit is switch selected and the bit will be true when any of the conditions monitored by the status encoder are true.

The service request flip-flop (U23B) stores the states of the RSV bit (bit 7) of the status byte and the bus service request line (SRQ).

The state of the status encoder is clocked through U23A when the Synthesizer is addressed to talk. U23B will set the service request line (SRQ) true if the output of the status encoder is true for more then 50 μ s. This time delay is set by R23 and C9. The SRQ line is cleared when the output of the status encoder goes false or when the Synthesizer is addressed to talk with the SPMS line (serial poll mode state) true.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1 and 3 was used to isolate an HP-IB Address problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

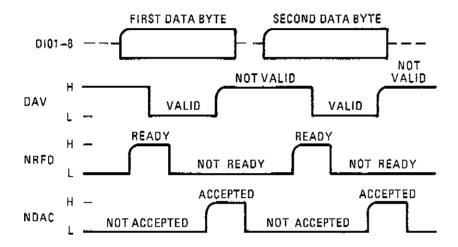
Test Equipment

NOTE

This procedure requires the use of a remote programming device such as the 9830 or 9825 controllers or the 59401A Bus System Analyzer.

- 1. Determine the address to which the synthesizer is set.
- Program the Synthesizer to 15345.678 MHz with both FM and RF on. The data string to do this is "Q5345678ZQN101". Make sure the remote enable line is set true. If the Synthesizer accepts this data, most of the remote circuits are working

properly. If this data is not accepted, go to step 12 to trouble-shoot. Make sure front panel controls are disabled.


- 3. Program the Synthesizer to an out-of-range frequency "P8Z1" (80 GHz) and check for a service request on the bus (SRQ true). If the Synthesizer is not requesting service, go to step 16.
- 4. Set the Synthesizer to talk and then check the status byte. It should be a decimal 96. (Binary 01100000).
- 5. Program an in-range frequency "Q4Z1" and check to see if the service request (SRQ) has cleared. If SRQ has not cleared, troubleshoot the service request flip-flop, U23.
- 6. Program a device clear command. The synthesizer should go to 3000.000 MHz with RF and FM off. If the response is incorrect skip to step 18.
- 7. Program an ABORT command if your controller has the capability. After the abort has been set, transmit data "Q5Z0" without addressing the Synthesizer to listen. If the abort was properly executed, the Synthesizer should not accept the data. If the data is accepted, troubleshoot U19B, the listen flip-flop, with particular attention to the REF line. However, be sure the controller did not automatically readdress the Synthesizer before sending the data.
- 8. Program a LOCAL command. The REMOTE lamp should go out and the front panel controls should be operational.
- 9. Program a remote enable command and program the Synthesizer to an out-of-range frequency "P8Z1".
- 10. Program a parallel poll (if your controller has the capability) to see if the Synthesizer is sending a require service message on its assigned line. The line assignment and logic sense are set by rotary switches on A2A9. With a 9825 controller use the line shown below to avoid setting REN false during the parallel poll. If the results are incorrect, troubleshoot the status encoder circuit and the parallel poll response circuit. Parallel poll line for 9825:

moct; wti 0,7; wti 7,226; rdi 7→A; rdi 6→B; wti 7,202

- 11. If everything has worked properly so far, the A2A9 board is working properly. Return the Synthesizer to local.
- 12. This step should be done if a problem was noted in step 2 of this procedure. Install A2A9 on an extender board. Program a remote enable command followed by the Synthesizer's listen address. Measure edge connector pin 24, the REMOTE line, with a logic probe or voltmeter. It should be a CMOS high. If the line is not high troubleshoot the remote flip-flop (U17B) and the address select circuit.
- 13. Attach a voltmeter or logic probe to edge connector pin 25 (ATN line). In the command mode this line should be TTL high and in the data mode it should be TTL low. If this line is not

performing correctly, troubleshoot the remote flip-flop U17B or the circuit (U20B and associated gates). If the line is operating properly, continue with this procedure.

14. Monitor the handshake operation with an oscilloscope or Bus System Analyzer. The handshake should proceed approximately as shown below. The pulse widths probably will not be as shown but the rise-fall relationships should be approximately correct. If the handshake is working correctly, proceed with this procedure. Otherwise troubleshoot the handshake circuits.

HP-IB Handshake

- 15. Check data lines DII to DI7. If the data accurately reflects the data being transmitted, but the Synthesizer does not respond properly, troubleshoot A2A7. Otherwise troubleshoot the Remote Bus Transceivers or the bus itself.
- 16. This step should be done if a problem was noted in step 3 of this procedure. Observe the front panel frequency display; it should indicate 80005.678 MHz and the OUT OF RANGE lamp should be on. If the frequency is correct, measure the ERRS line at edge connector pin 11. The line should be high. If the line is correct, troubleshoot the status encoder circuit and service request flip-flop. If the line is incorrect, troubleshoot A2A11.
- 17. If the frequency is incorrect, resend it to be sure there has been no error in the remote command. Be sure the letters transmitted by the controller are upper case. The Synthesizer does not respond to lower case letters. If the frequency is still wrong, check the data on line DI1 to DI7. If correct, troubleshoot A2A7; otherwise troubleshoot the Remote bus Transceivers.
- 18. Install A2A9 on extender board and measure the DC (device clear) line, edge connector pin 23, while sending a device clear command. The line should go high during the command. If the line responds correctly, troubleshoot A2A7 (Service Sheet 5-A2) otherwise troubleshoot U1B, U1C, U15A and the bus command decoder circuit.

MNEMONICS

Mnemonic	Definition	Explanation				
HP-IB Lines						
Data:						
DIO 1-8	Data Input Output	Addresses, commands, data, or Synthesizer status.				
Control:	44	**** * * * * * * * * * * * * * * * * * *				
ATN	Attention	Identifies bus mode (command or data).				
EOI	End Or Identify	Used for initiating a poll.				
IFC	Interface Clear	Causes Synthesizer to stop talking or listening.				
REN	Remote Enable	Enables Synthesizer to be in remote.				
SRQ	Service Request	Synthesizer sets true when it needs the controllers attention.				
Handshake:		Mar. 102 - 1 - 1				
NRFD	Not Ready For Data	Listener is ready to accept a character when false.				
NDAC	Not Data Accepted	Listener accepted the data (when high).				
DAV	Data Valid	Talker has valid data on the bus.				
	Co	ommands				
GTL DC SPE SPD	Go to Local Device Clear Serial Poll Enable Serial Poll Disable	See remote programming information in Section III.				
MTA	My Talk Address	Synthesizer's talk address				
MLA	My Listen Address	Synthesizer's listen address				
NSPMS	Not Serial Poll Mode State	Low means an SPE command was received.				
NSPAS	Not Serial Poli Address State	Low means the above (SPE) is true and the Synthesizer is addressed to listen.				
SDYS	System Delay State	Puts output data on bus when Synthesizer is addressed to talk.				
STOR	Store	Clocks talk, LISTEN, and REMOTE flip-flops.				
NRSTOR	Not Remote Store	Makes clock for instruction decoder.				

Figure 8-36. A2A9 HP-IB Address Assembly Component Locations

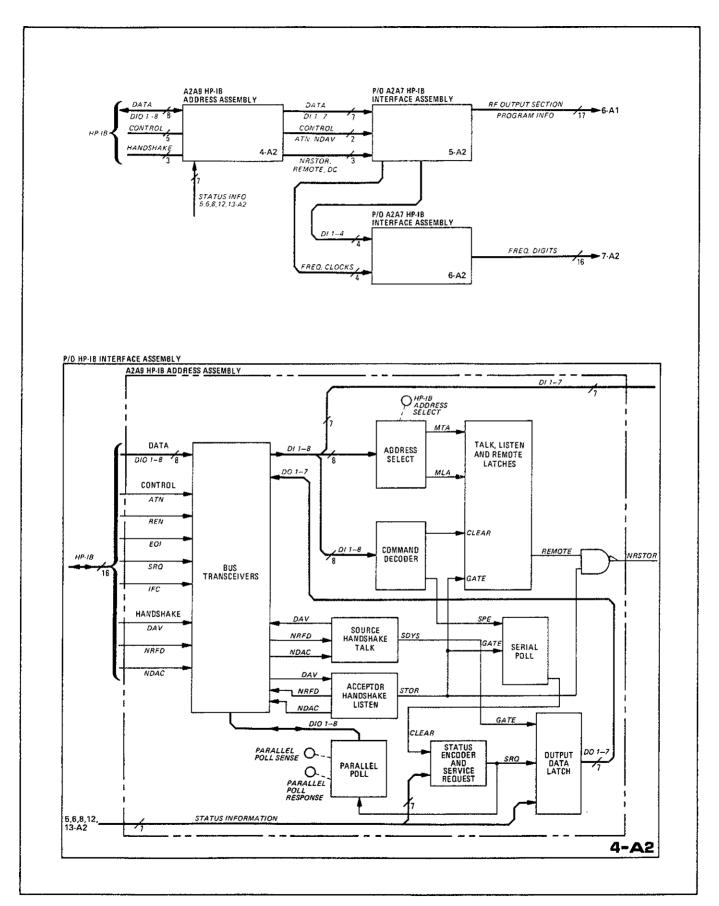


Figure 8-37. HP-IB Address Block Diagrams

F16.8-38 SH144

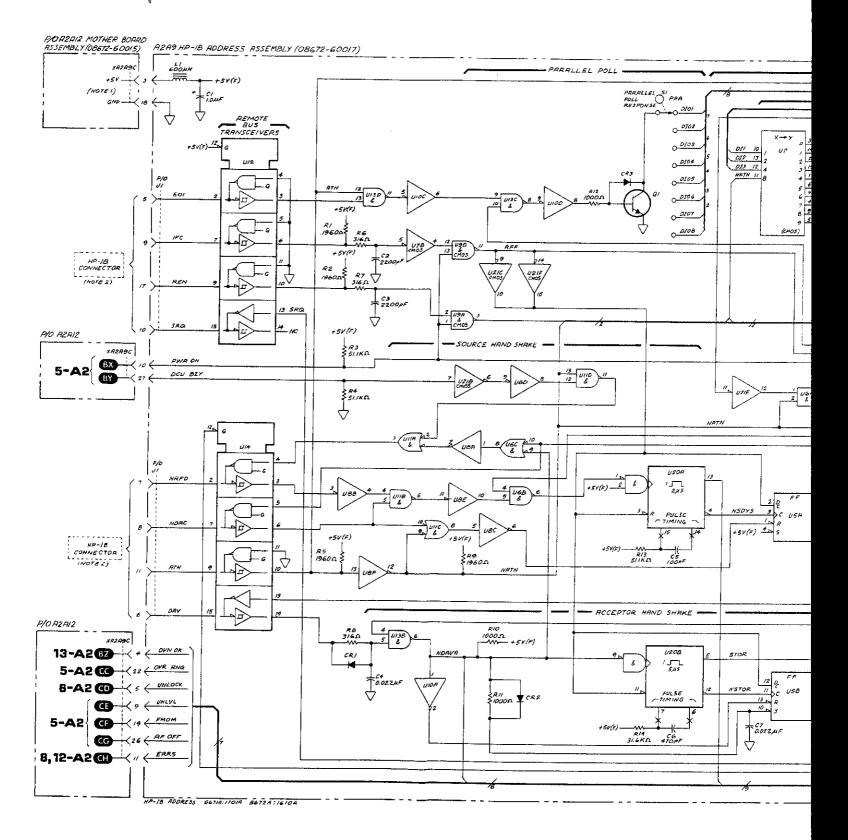
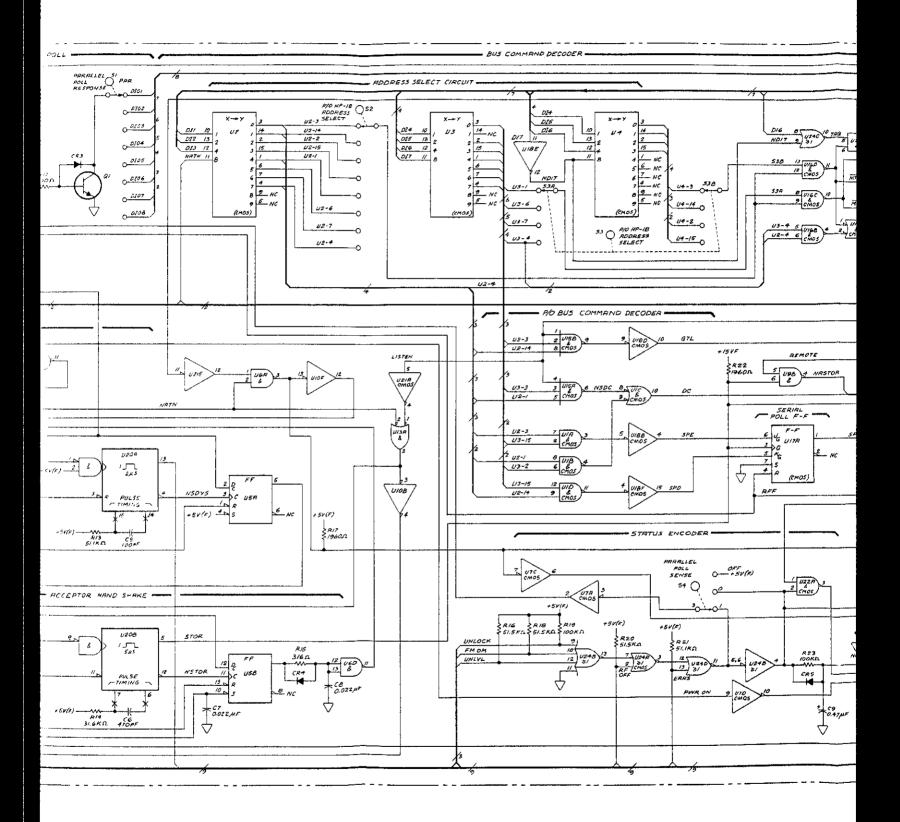
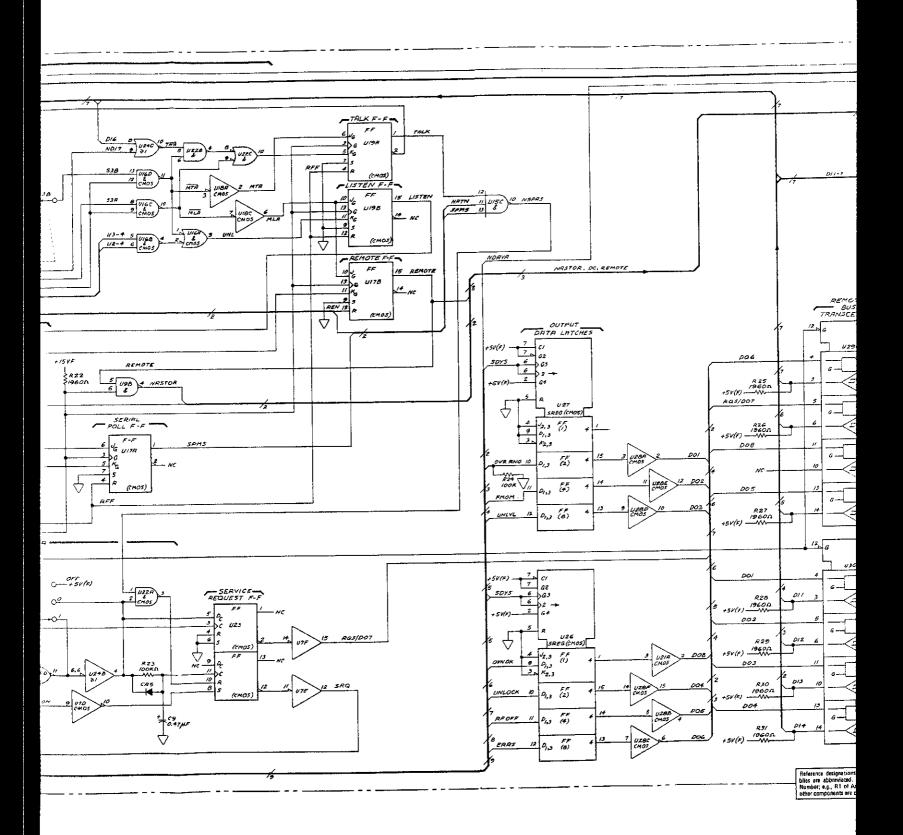




FIG. 8-38 5ht 2 of 4

F16.8-38 Sut 3 of 4

F16.8-38 SW4044

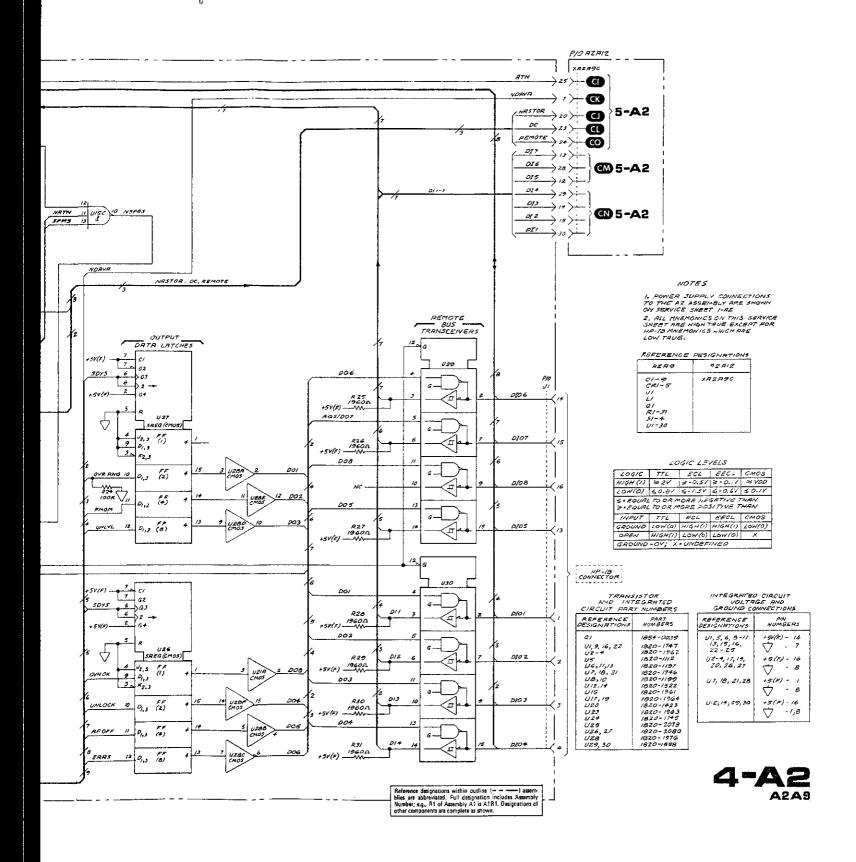


Figure 8-38. HP-IB Address Assembly Schematic Diagram

SERVICE SHEET 5-A2

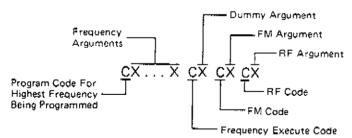
TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
 Motherboard wiring
 Page 8-35
 Last 3 foldout pages

Parts list Page 6-12

• Performance verification Last 3 foldout pages and page 8-16

Programming Page 3-1


PRINCIPLES OF OPERATION

General

The HP-IB Interface converts ASCII characters on the bus' 8 data lines into RF section program information and frequency digits. Also, it converts status information from other parts of the Synthesizer into a status byte which it sends on the 8 data lines. This section of the Synthesizer consists of two boards: HP-IB Address Assembly (A2A9), and the HP-IB Interface Assembly (A2A7).

P/O HP-IB Interface Assembly

This board decodes program codes and routes the argument to the appropriate assembly. Any character on the bus will appear on the seven data lines (DI1-7) but the HP-IB Interface assembly will only respond when the ATN line is false and an NRSTOR (low going) pulse is received. When these conditions are met, a program string is being sequenced into the Synthesizer. During this sequence, ATN will always be low and a NRSTOR pulse will occur for each character. The characters will be coded as shown in the table on this sheet and the string format is as follows (see Section III for complete programming information):

WHERE: C REPRESENTS A PROGRAM CODE X REPRESENTS AN ARGUMENT

The transfer order is left to right. When the first character appears on the data lines, the program code/argument decoder will look at bits DI5 to DI7 to determine if it is a program code. Then, it will make pin 1 of the internal address counter (U4) high which will parallel load the DI1—4 bits. During this time the NRSTOR pulse is disabling the instruction decoders, but when NRSTOR goes high U5 and U3 decode the program code. The next character could be another program code in which case the address counter would be reloaded, but normally it will be an argument as shown above. This character

appears on the bus about $2 \mu s$ before the next NRSTOR pulse so it has time to be routed to the frequency register or RF program selector and latched. Then when NRSTOR goes low, the address counter is clocked to serial shift (count up), and the instruction decoders are disabled. This sets the address counter to the next program code in the sequence shown in the table. The new program code will be decoded when NRSTOR goes high. If the next character in the string is an argument rather than a program code, the data will be routed to the next internal address due to the serial shift that occured in the address counter.

Switching delays are timed by U15 and U16 to allow the Synthesizer to finish processing a character before receiving another one, and to signal the controller via a service request that ALC and output level have not settled.

TROUBLESHOOTING

It is assumed that the troubleshooting information Service Sheets 1, 3, and 4-A2 was used to isolate an HP-IB Interface problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipme Oscilloscope	ent 	 	180C/1801A/1821A
or			
Logic Probe		 	HP 545A

- 1. Load and run the operator's check program. If the program runs properly, A2A7 is OK. If a specific portion did not function properly, retest that section for proper operation in local.
- 2. If local operation is correct but remote operation is incorrect, continue with this procedure; otherwise go to the service sheet involved with the malfunctioning circuit.
 - If the problem involves frequency, start with step 3.
 - If the problem involves modulation or RF output, start with step 6.
- 3. Attach a logic probe or oscilloscope to A2A7TP1. Program the Synthesizer's center frequency "Q5345678ZØ". When the frequency execute command "ZØ" is received by the Synthesizer, TP1 should pulse high for a few microseconds. A program loop is useful to generate a string of pulses for this and most of the remaining tests.
- 4. Observe pulses at pins 14 (INTF CLK1) and 15 (INTF CLK2) of U5. There should be one INTF CLK1 pulse for each of the left four frequency digit positions (10 GHz to 10 MHz) which are sent. There can be from zero to four pulses. There should also be one INTF CLK2 pulse for each of the right four frequency digits (1 MHz to 1 kHz) which are sent. For example if the data string "Q2345Z0" is sent, there will be three INTF CLK1 pulses (due to the 2, 3 and 4) and one INTF CLK2 pulse (due to the 5). Troubleshoot U5 and U4 after checking the input data DI 1—8 if the pulses are not correct.

Service Sht 5-A2 Sht 10f2

SERVICE SHEET 5-A2 (Cont'd)

- 5. Program frequency "Q5345678Z0". Check the outputs of U3 REM 1000 CLK to REM 1CLK. The rem 1000 CLK line should pulse once for the 10 GHz digit and once for the 1 MHz digit. The other three lines should perform similarly for their digits. If these pulses are correct, go to Service Sheet 6-A2 to trouble-shoot the Interface Storage Register. If the pulses are incorrect, troubleshoot U3, U4 and associated gates.
- 6. The following troubleshooting step should be performed if the remote problem involves FM or RF output. Program "N00". outputs of U2, U1, and U9 should all be low; AM and RF should be 10 MHz. If the outputs of U2, U1, and U9 are correct but the front panel indications are incorrect, go to Service Sheet 6-A1 to continue troubleshooting.
- 7. Measure the pulses at U3 pin 2 (REM FM CNTL) and pin 15 (REM ALC CNTL). A single pulse should occur at the appropriate pin when remote data for the function is received. If the pulse occurs properly but the output data is incorrect, trouble-shoot the appropriate RF Program Selector IC, U2, U1, or U9. If the pulse does not occur troubleshoot the message decoder, address counter (U4) and the instruction decoder (U3).

SERVICE SHEET 5-A2 (Cont'd)

MNEMONICS

Mnemonics	Definition	
011-7	Data In	Data lines from
ATN	Attention	Low means D argument. Hig and instruction character.
NRSTOR	Not Remote Stor	Enables Progra
DC	Device Clear	Line used to e controller. See
INTFCLK	Interface CLock	Tells Data Reg next four digit
INTF REG RST	Interface Register Reset	Resets the ren
NDAV	Not Data Valid	Low means th
DCU BZY	Digital Control Unit Busy	High while the

ASCII CHARACTER CODING

				Prog	CII gram des	Program Code Meaning	Instruction Decoder Outputs	
			DI-7 DI-6 DI-5	1 0 0	1 0 1		Instruction Decoder 2 Output	Instruction Decoder 1 Output
DI-4	DI-3	D1-2	D1-1					
0	Ó	0	0	@	₽	Not Used		INTF CLK1
0	0	0	1	Α	Ω	1 GHz	REM 100 CLK	INTF CLK1
0	Ò	1	0	В	R	100 MHz	REM 10 CLK	INTF CLK1
Û	0	1	1	C	\$	10 MHz	REM 1 CLK	INTF REG RST
0	1	0	0	D	Т	1 MHz	REM 1000 CLK	INTF CLK2
0	1	0	1	٤	IJ	100 kHz	REM 100 CLK	INTF CLK2
Û	1	1	0	F	V	10 kHz	REM 10 CLK	INTF CLK2
0	1	1	1	G	W	1 kHz	REM 1 CLK	INTF CLK2
1	0	0	0	Н	Х	Not Used		
1	0	0	1	Ţ	Υ	Not Used		
1	0	1	0	J	Z	Freq. execute		INTF CLK GO
1	0	1	1	К	-	Not Used		REM ATTN CNTL
1	1	0	0	Ĺ	١	Not Used		
1	1	0	1	M]	Not Used		
1	1	1	O	N.	^	ĖΜ	REM FM CNTL	
1	1	1	1	Q		RF		

Service Sht 5-A2 Sht 2 of 2

cont'd)

Q5345678Z0". Check the outputs of U3 LEM 1CLK. The rem 1000 CLK line should 0 GHz digit and once for the 1 MHz digit. should perform similarly for their digits. prrect, go to Service Sheet 6-A2 to trouble-torage Register. If the pulses are incorrect, and associated gates.

eshooting step—should be performed if the olves FM or RF output. Program "N00". and U9 should all be low; AM and RF the outputs of U2, U1, and U9 are correct dications are incorrect, go to Service Sheet ableshooting.

at U3 pin 2 (REM FM CNTL) and pin 15 A single pulse should occur at the approprie data for the function is received. If the but the output data is incorrect, troubles RF Program Selector IC, U2, U1, or U9, toccur troubleshoot the message decoder, and the instruction decoder (U3).

SERVICE SHEET 5-A2 (Cont'd)

MNEMONICS

Mnemonics	Definition	Explanation
D1'1-7	Data In	Data lines from the bus.
ATN	Attention	Low means DI 1—7 carry a program code or argument. High means the Address counter and instruction decoder should ignore the character.
NRSTOR	Not Remote Stor	Enables Program code/argument decoder.
DC	Device Clear	Line used to execute a clear message from the controller, See Table 3-5.
INTF CLK	Interface CLock	Tells Data Register 1 which half to load the next four digits into.
INTF REG RST	Interface Register Reset	Resets the remote frequency registers.
NDAV	Not Data Valid	Low means the bus NDAV line is true.
DCU BZY	Digital Control Unit Busy	High while the controller is busy processing a received character.

ASCH CHARACTER CODING

						*** *** * ******	****
			Pro	CII gram des	Program Code Meaning	Instruction Decoder Outputs	
		DI-7 DI-6 DI-5	1 0 0	1 0 1		Instruction Decoder 2 Output	Instruction Decoder 1 Output
D1-3	D1-2	DI-1					
0	0	0	@	Ρ	Not Used		INTF CLK1
0	0	1	Α	Q.	1 GHz	REM 100 CLK	INTF CLK1
0	1	0	В	Ŕ	100 MHz	REM 10 CLK	INTF CLK1
0	1	1	С	S	10 MHz	REM 1 CLK	INTF REG RST
1	0	۵	D	Т	1 MHz	REM 1000 CLK	INTF CLK2
1	0	1	E	Ų	100 kHz	REM 100 CLK	INTF CLK2
1	1	0	F	V	10 kHz	REM 10 CLK	INTF CLK2
ī	1	1	G	W	1 kHz	REM 1 CLK	INTF CLK2
0	0	0	Н	Х	Not Used		
0	0	1	1	Υ	Not Used		
0	1	0	J	Z	Freq. execute		INTF CLK GO
0	1	1	К]	Not Used		REM ATTN CNTL
1	0	0	L	١	Not Used		
1	0	1	M	Ì	Not Used		
7	1	Ó	N	^	FM	REM FM CNTL	
1	1	1	0	_	ŔĔ		

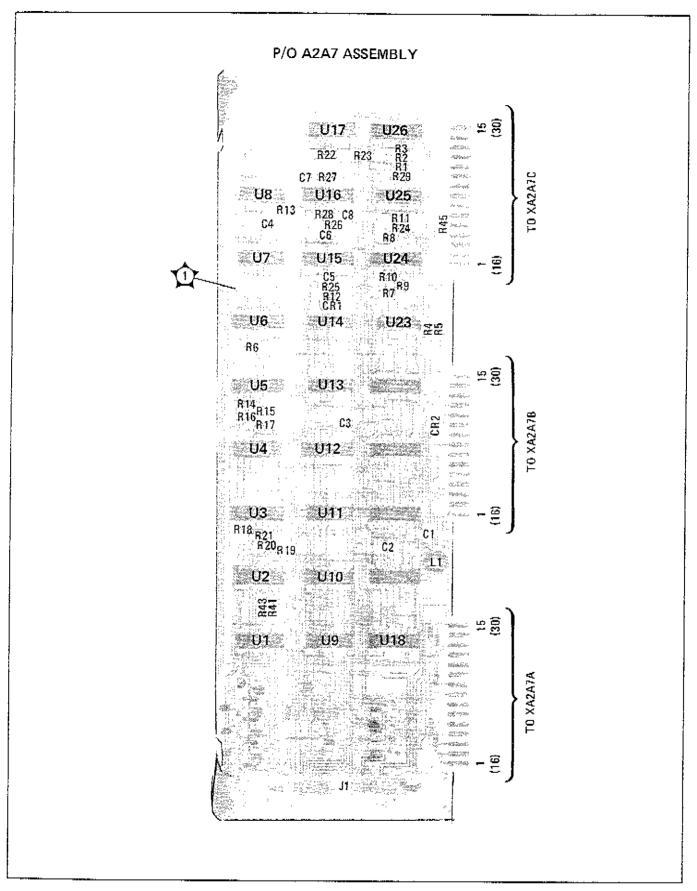
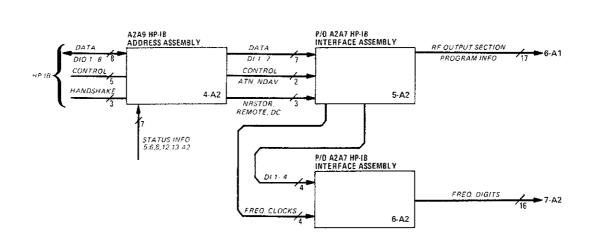



Figure 8-39. P/O A2A7 Interface Assembly Component and Test Point Locations

8-46d

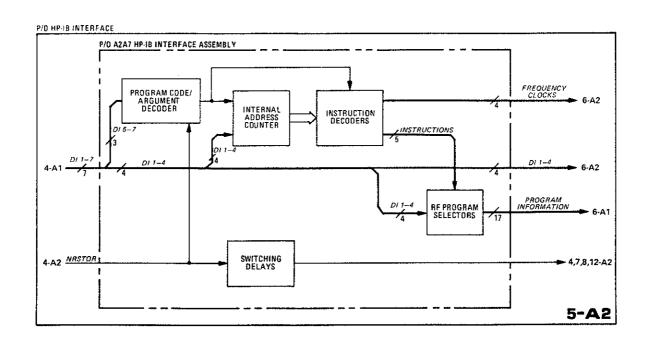
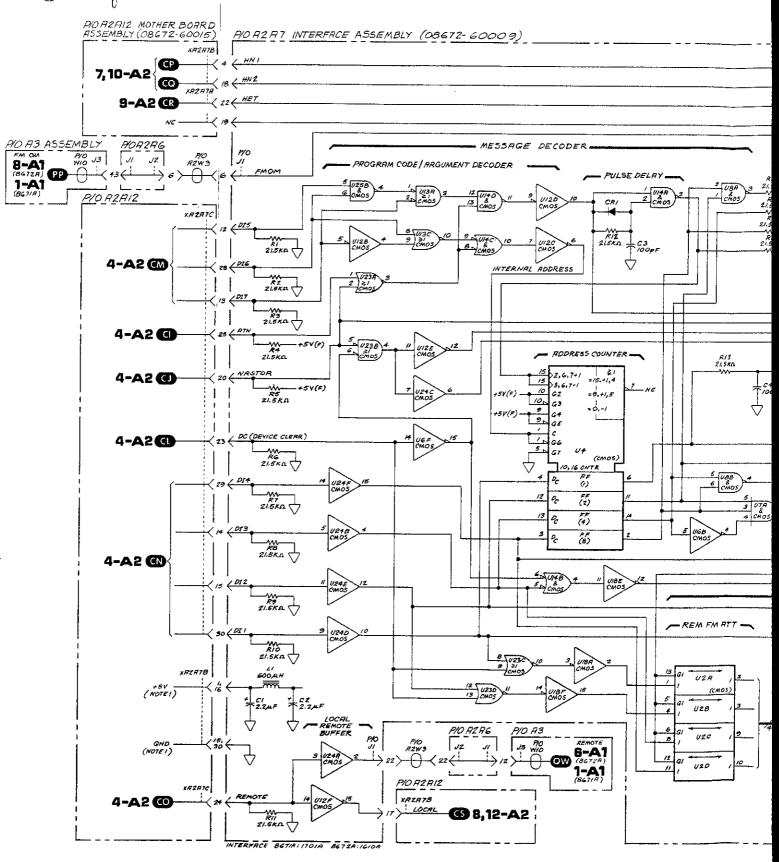



Figure 8-40. P/O Interface Block Diagrams

F16.8-41 SN2 0f4

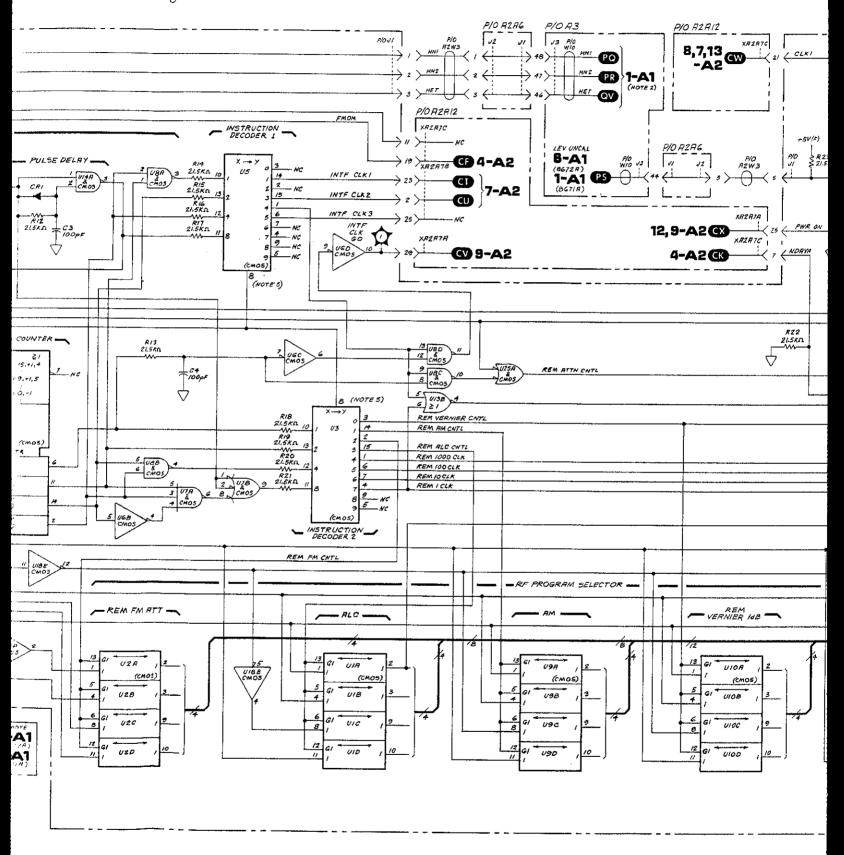


FIG. 8-41 SM 3 of 4

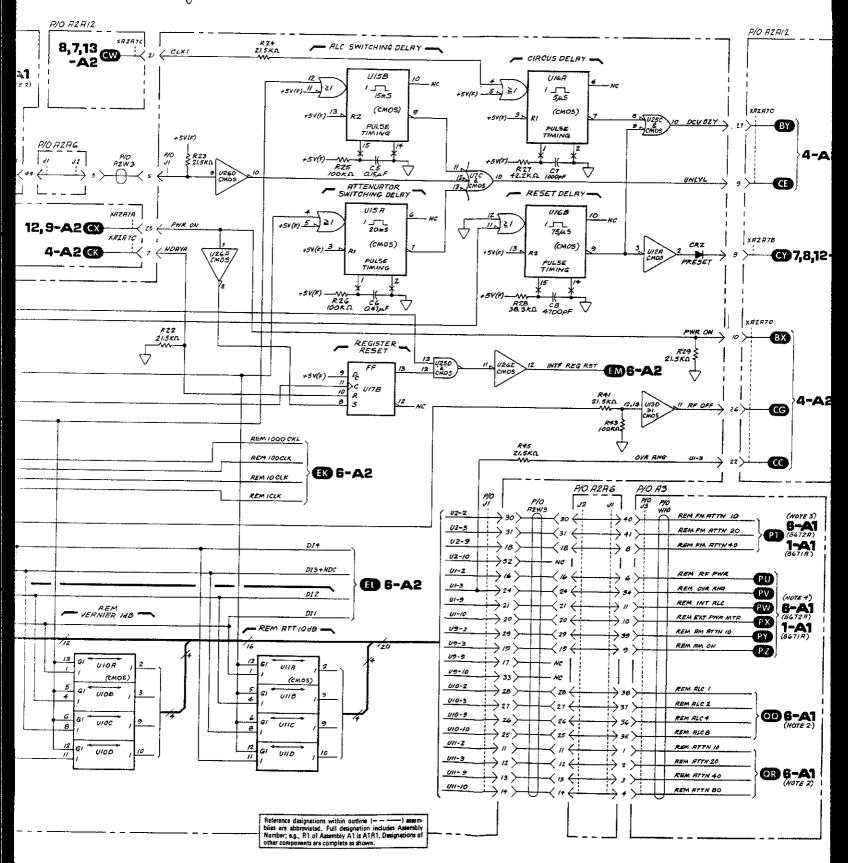


Figure 8-41. P/O HP-IB I

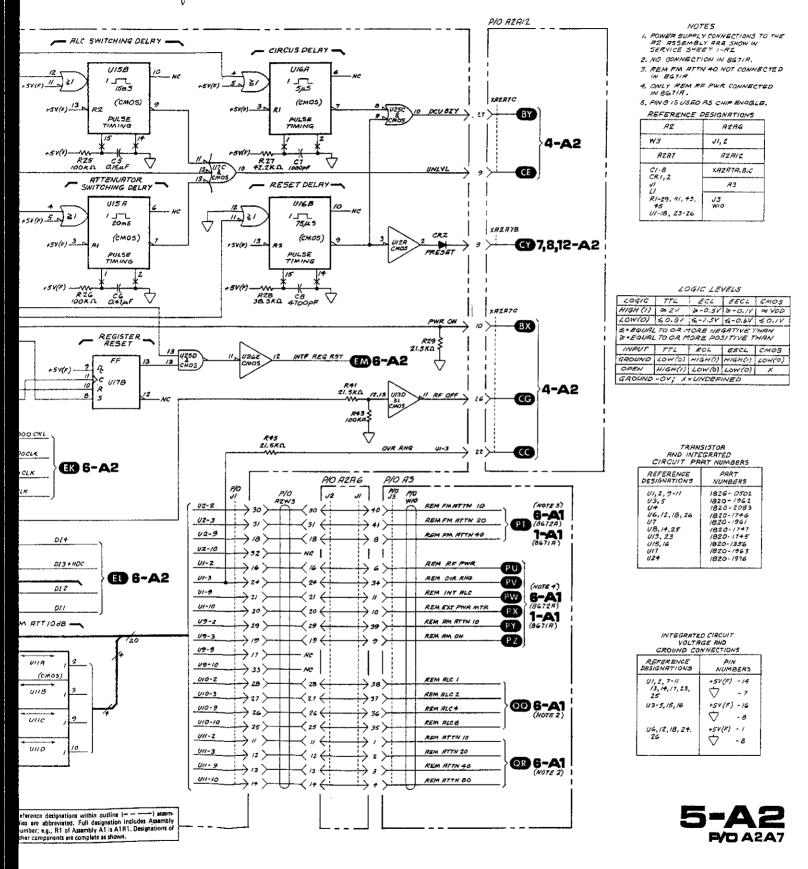


Figure 8-41. P/O HP-IB Interface Assembly Schematic Diagram

SERVICE SHEET 6-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-35

Motherboard wiring Last 3 foldout pages

• Parts list Page 6-12

Performance verification Last 3 foldout pages

• Programming Page 3-1

PRINCIPLES OF OPERATION

General

The HP-IB Interface converts ASCII characters on the 8 bus data lines into RF output section program information and frequency digits. Also, it converts status information from other parts of the Synthesizer into a status byte, which it sends on the 8 data lines. This part of the HP-IB Interface Assembly stores programmed frequency information, and consolidates loop unlock information.

P/O HP-IB Interface Assembly

Frequency digits on the DI 1—4 lines are clocked into the interface frequency register by the remote clocks (REM 1—1000 clk). This register is loaded in blocks of four digits. Digits in the 10 GHz* to 10 MHz block are clocked in first, then when enough time has elapsed for data register 1 to load the information, the interface register reset line (INTF REG RST) goes high and clears the register. Then the 1 MHz through 1 kHz digits are loaded.

The schematic illustrates how the unlock signals from the Synthesizer's phase lock loops drive unlock indicators and are OR'd to make the UNLOCK bit of the status byte.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 3 and 4-A2 was used to isolate an HP-IB Interface problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

Digital Voltmeter	HP 3455A
Logic Probe	. HP 545A

1. Set the Synthesizer to 3 GHz with RF switch ON and rear panel reference switch set to INT with jumper cable in place. Observe the lock indicator LED's on A2A7. All four indicators should

*Normally zero.

SERVICE SHEET 6-A2 (Cont'd)

be on and the front panel NOT PHASE-LOCKED indicator should be off. If any of the LED indicators are not on, measure the unlocked signal from the appropriate phase lock loop. The UNLOCKED lines should all be low as they enter A2A7 for a locked loop. If the line is low, troubleshoot the lock indicator, otherwise troubleshoot the malfunctioning phase-locked loop.

- 2. This step checks the switching of the phase lock indicators.
 - a. Set rear panel REF switch to EXT. The REF Loop indicator should go out. Return the switch to INT and the indicator should relight.
 - b. Set front panel RF switch OFF. The YTO Loop indicator should go out. Return the switch to ON.
 - c. Unplug the blue coax from A3A1A1. The LFS Loop indicator should go out. (This also disables the A2 controller). Reconnect the cable. The YTO indicator may also extinguish at this step.
 - d. Unplug the white/red coax at A3A1A5. The M/N Loop indicator should go out. The YTO indicator may also extinguish at this step. Reinstall the cable. All the lock indicators should be on.
- 3. Quickly tune the frequency in 100 MHz steps. Measure the voltage at A2A7 edge connector A pin 9. This voltage should go low when the YTO is unlocked.
- 4. The following steps should only be followed if troubleshooting a frequency related programming problem. Program the following code: "Q0000". Do not program a frequency execute command at this time. The outputs of U19—U22 should all be low. If all are OK, continue with this procedure. If the outputs of only one register is wrong, troubleshoot it. If the outputs of all registers are the same but incorrect, troubleshoot input lines DI 1—4.
- 5. Program "T1" through "T9" to assure that the outputs of U21 remain correct for all inputs.
- 6. Program "U1" through "U9" to assure that the outputs of U20 remain correct for all inputs.
- 7. Program "V1" through "V9" to assure that the outputs of U22 remain correct for all inputs.
- 8. Program "W1" through "W9" to assure that the outputs of U19 remain correct for all inputs.
- 9. Program "Q534567SZ1". The front panel frequency display should indicate 52345.678 MHz. The outputs of U19 through U22 should be reset to zero. If all is OK through this step, the circuits on this service sheet are working properly.

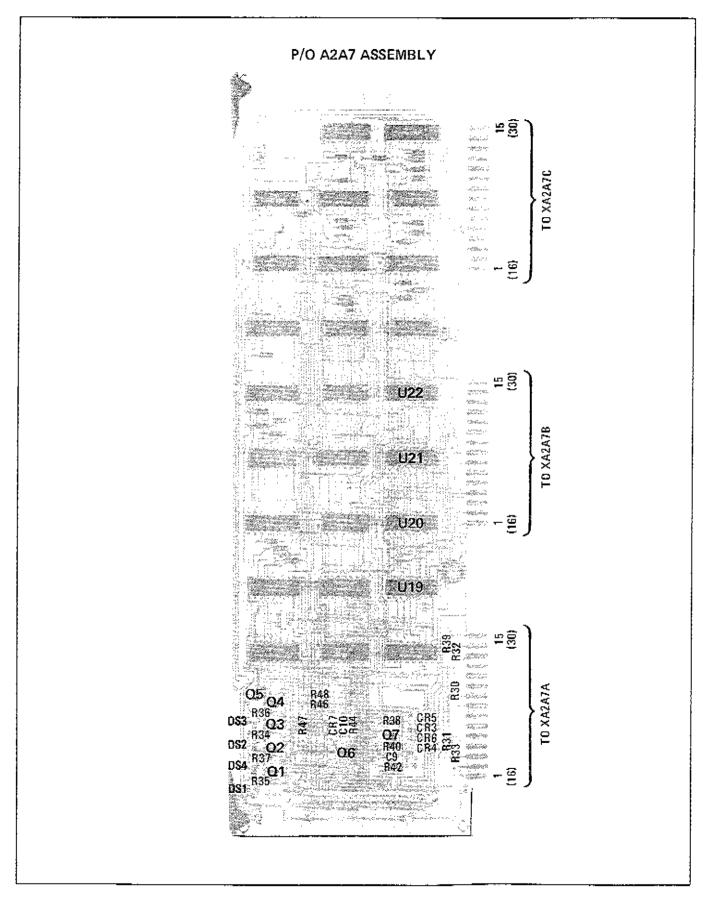


Figure 8-42. P/O A2A7 Interface Assembly Component Locations

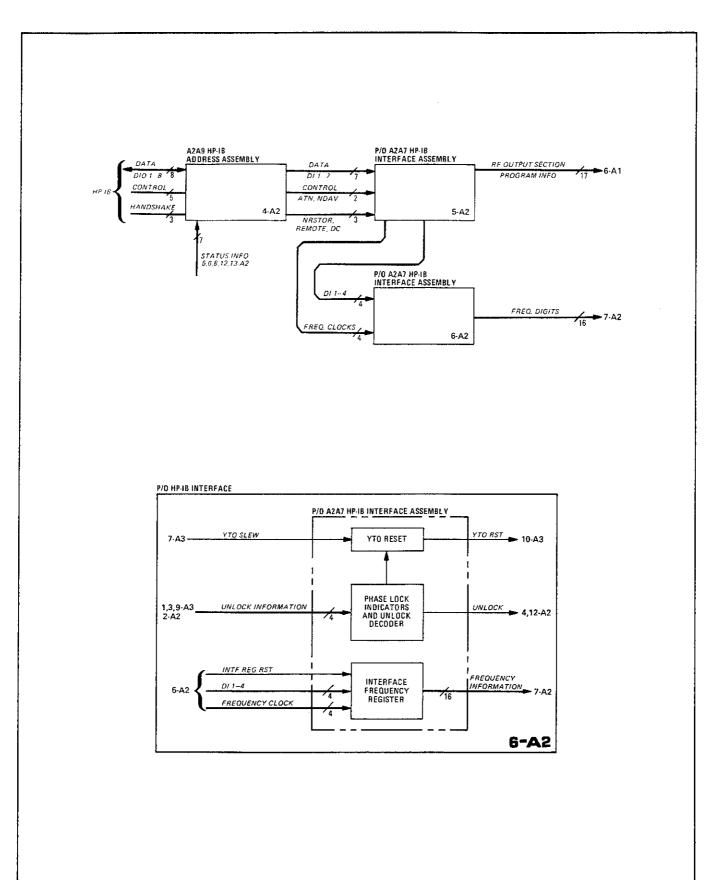
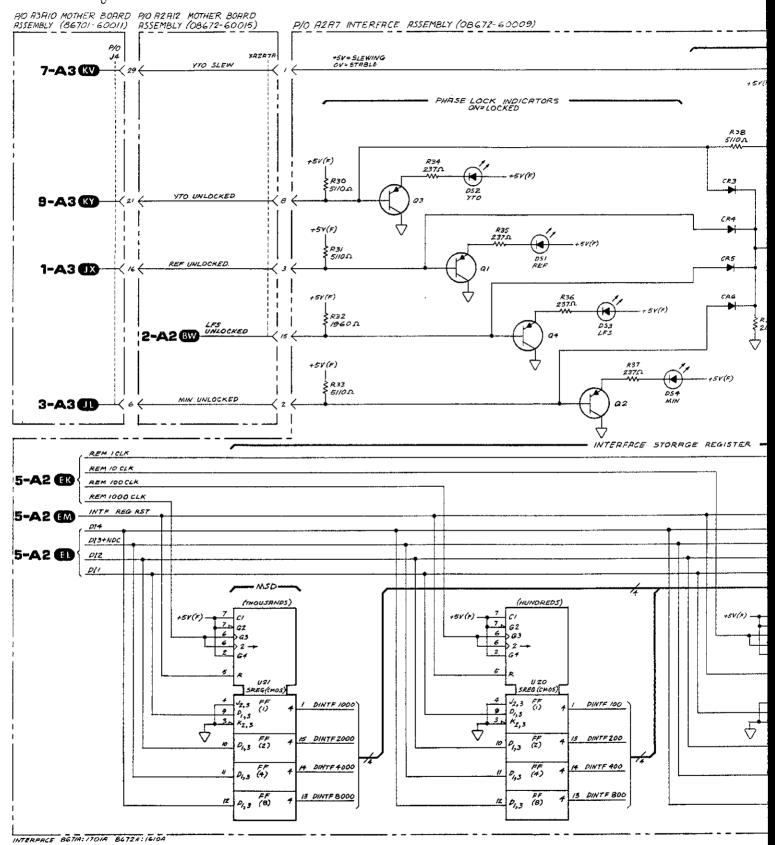



Figure 8-43. P/O Interface Block Diagrams

FIG. 8-44 SW 10f3

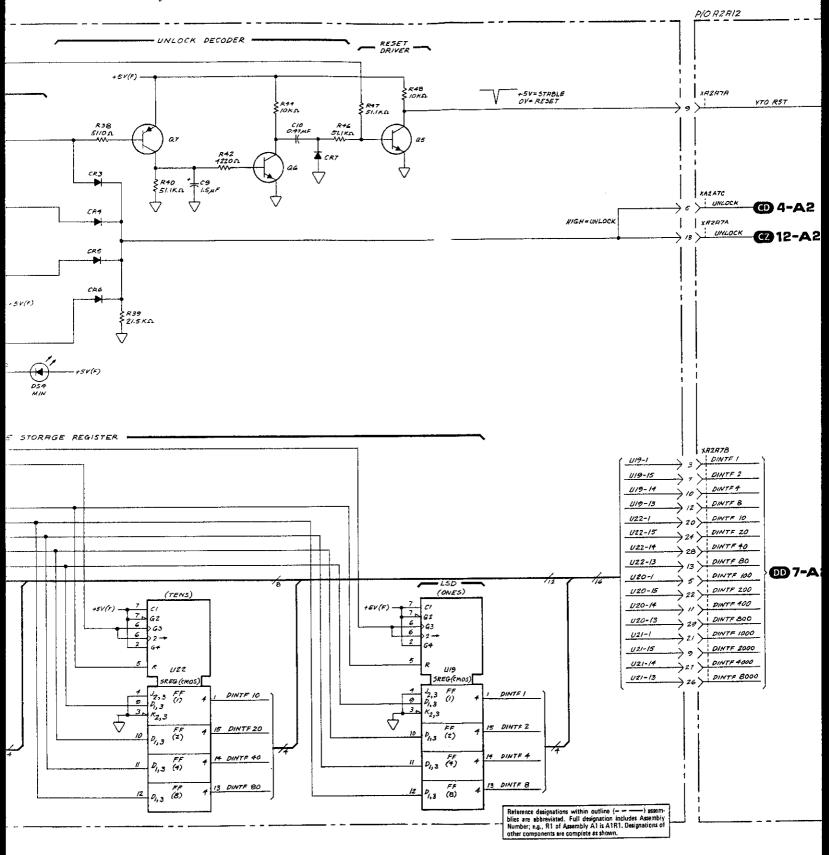


Figure 8-44. P/O In

FIG. 8-44 3ht 3 of 3

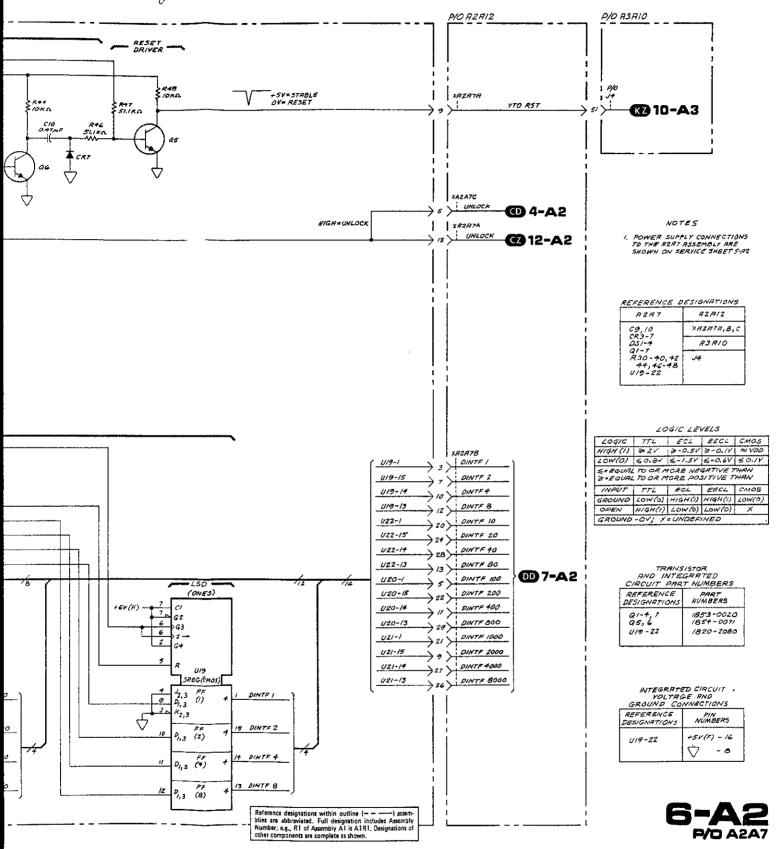


Figure 8-44. P/O Interface Assembly Schematic Diagram

SERVICE SHEET 7-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram

Page 8-35

Motherboard wiring

Last 3 foldout pages

• Parts list

Page 6-16

PRINCIPLES OF OPERATION

General

The Register 1 Assembly (A2A10) consists of a protected CMOS shift register (DATA REGISTER 1) and circuits for band and error decoding. Data Register 1 stores the Synthesizer's frequency. A battery keeps the register active when Mains power is off. The band and error decoding circuit examines the Synthesizer frequency for errors and tells the divider on the Output Register Assembly (A2A8) whether to divide by 1, 2, or 3. Since the maximum frequency is 6.2 GHz the divider always divides by one (during normal operation).

Register 1 Assembly

Shift registers U7—U9 and U19—U23 store the Synthesizer's frequency in a BCD format. The 10 GHz* digit is on top and the 1 kHz digit is on the bottom. An extra digit which duplicates the 1 kHz digit is stored in the serial output latch. Nine clock 1 (CLK1) pulses serial shift the frequency out of the register, through the Timing and Control Assembly, into the front panel display and back to Data register 1. This happens when NGO (Not Go) is true (low). Remote programmed frequencies are parallel shifted into Data Register 1 four digits at a time by INTF CLK1 and 2.

The adder, U15, converts the Registers parallel BCD output into a binary address for the first ROM, U14. This ROM and U3 store tables of Harmonic numbers (HN2, HN1) and incorrect frequencies (NERR). Signals from the RF section effect the frequency limits of the instrument. Circuit operation is summarized as follows:

f = frequency	HN1	HN2	NERR	BAND
				Out of
<2000.000 MHz	-	_	Low	range
$2000.000~\mathrm{MHz} - 6199.999~\mathrm{MHz}$	0	0	High	1
6200.000 - 12399.998	1	0	Low**	2**
12400.002-18599.997	0	1	Low**	3**
>18600.000 MHz	-	<u></u>	Low	Out of range

^{*}Always zero

^{**}Out of range frequency

SERVICE SHEET 7-A2 (Cont'd)

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 3, and 10-A2 was used to isolate a Register 1 problem to the circuits shown on this schematic. The following information will aid in isolating the defective component:

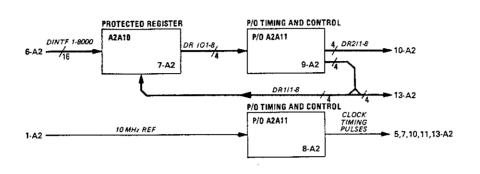
Test Equipment

Logic Analyzer	HP 1601A
Digital Voltmeter	HP 3455A

- 1. Tune the Synthesizer frequency to 5345.678 MHz. If the frequency tunes properly, Register 1 is properly storing and clocking data. If the frequency does not tune properly, skip to step 3.
- 2. Unplug the Synthesizer for at least one minute. Reapply Mains power. The frequency should be the same as shown before power was removed. If not correct, troubleshoot battery A2BT1 and the charging circuit plus the clock protect circuitry on A2A11 (see Service Sheet 9-A2). If everything is OK so far, skip to step 5.
- 3. Press the PRESET (3 GHz) pushbutton. Attach a logic analyzer to DR101—8. Use CLK1 to clock the logic analyzer. Set the analyzer to END DISPLAY and trigger on a BCD 3. Rotate the TUNING knob. BCD data for 3 GHz with the three at the bottom of the display should be displayed on the logic analyzer.
- 4. If the data does not appear to clock out properly, check CLK1 with an oscilloscope. It should be a string of 9 TTL pulses when the TUNING knob is turned or when test point pair A2A11TP1 is shorted together with an alligator clip. If CLK1 is not correct, go to Service Sheet 8-A2.
- 5. Observe the HN1 and HN2 lines with a voltmeter. Below 6.2 GHz both lines should be a TTL low.
- 6. Tune to the highest possible frequency. It should be 6199.999 MHz. Then tune to the lowest possible frequency. It should be 2000.000 MHz. If either one is incorrect, troubleshoot the frequency limit detection circuitry, U14, U3 and other associated gates. If everything has worked properly to this step, A2A10 is working correctly.

SERVICE SHEET 7-A2 (Cont'd)

MNEMONICS


Mnemonics	Definition	Explanation	
GO (NGO)	Do a data cycle	Puts the shift registers in the serial shift mode,	
CLKT	Clock 1	Nine pulses occurring during the first half of a data cycle.	
DINTE	Data Interface	Frequency information from the HP-IB interface.	
INTF CLK1	Interface Clock 1	Shifts the 10 GHz to 10 MHz digits into the top half of Data Register 1.	
INTF CLK2	Interface Clock 2	Shifts the 1 MHz to 1 kHz digits into the bottom half of Data Register 1.	
DR111-8	Data Register 1 In	Serial input to the register.	
DR10 1-8	Data Register 1 Out	Serial output of the register.	
NERR	Not Error	Low means that an out of range frequency is stored.	
LEFT	Data Register 2 shift left	High during the second half of a data cycle.	
HN1,2	Harmonic Number	Tells the divider the band of the frequency stored in Data Register 1.	

DEFINITION

Data Cycle — The process of changing the Synthesizer's frequency by adding or subtracting 1 from one of the digits.

Figure 8-45. A2A10 Register 1 Assembly Component Locations

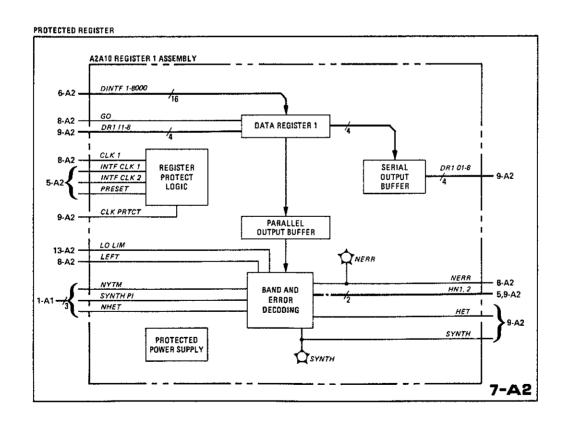
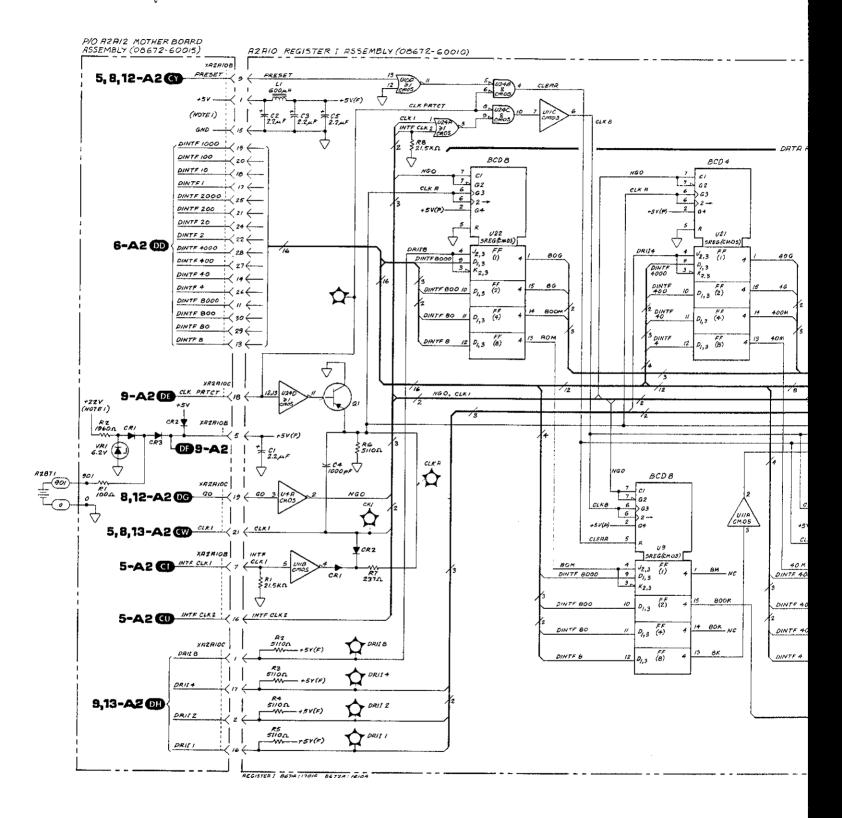



Figure 8-46. Register 1 Block Diagrams

FIG. 8-47 Sht 1 of 4

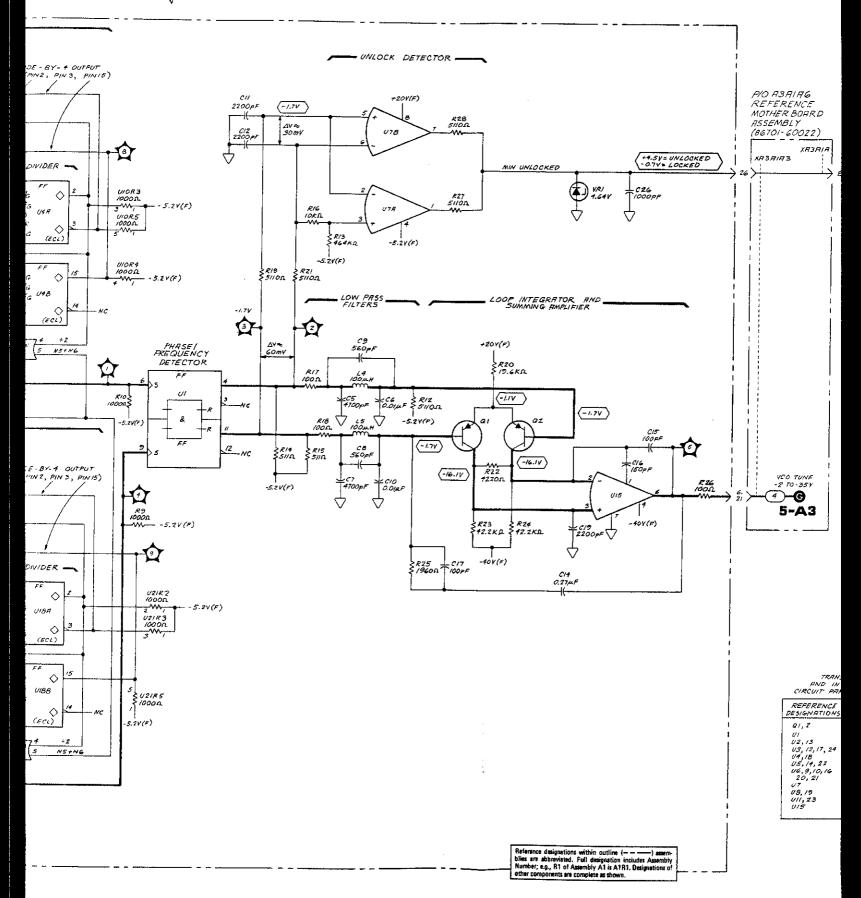
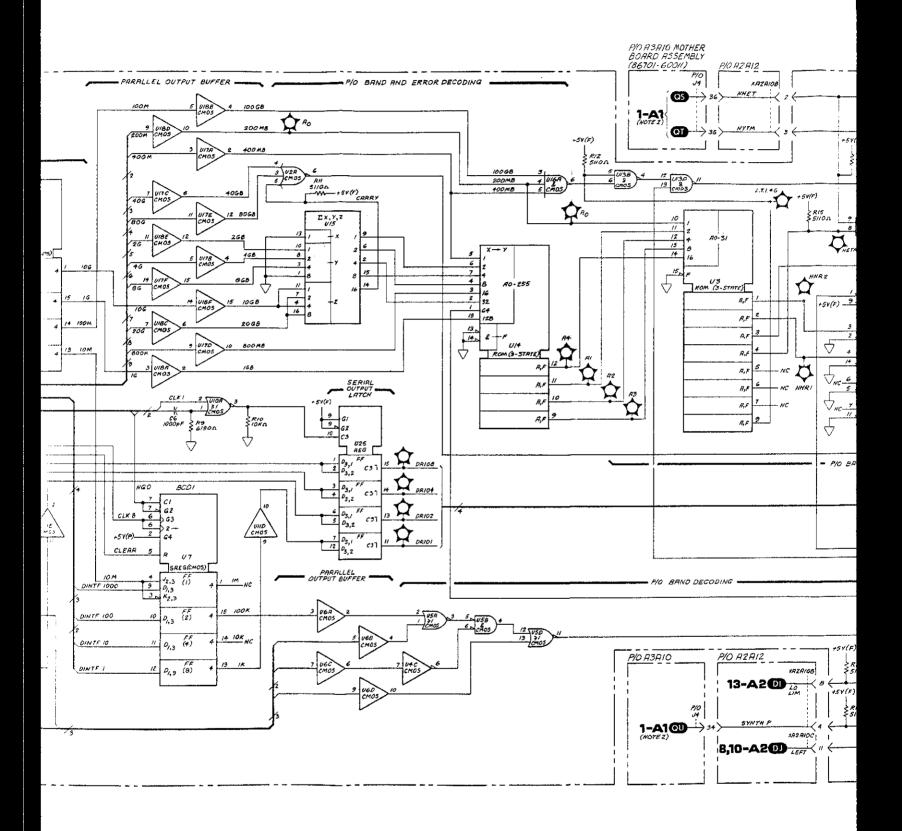



Figure 8-74. M/N Phase

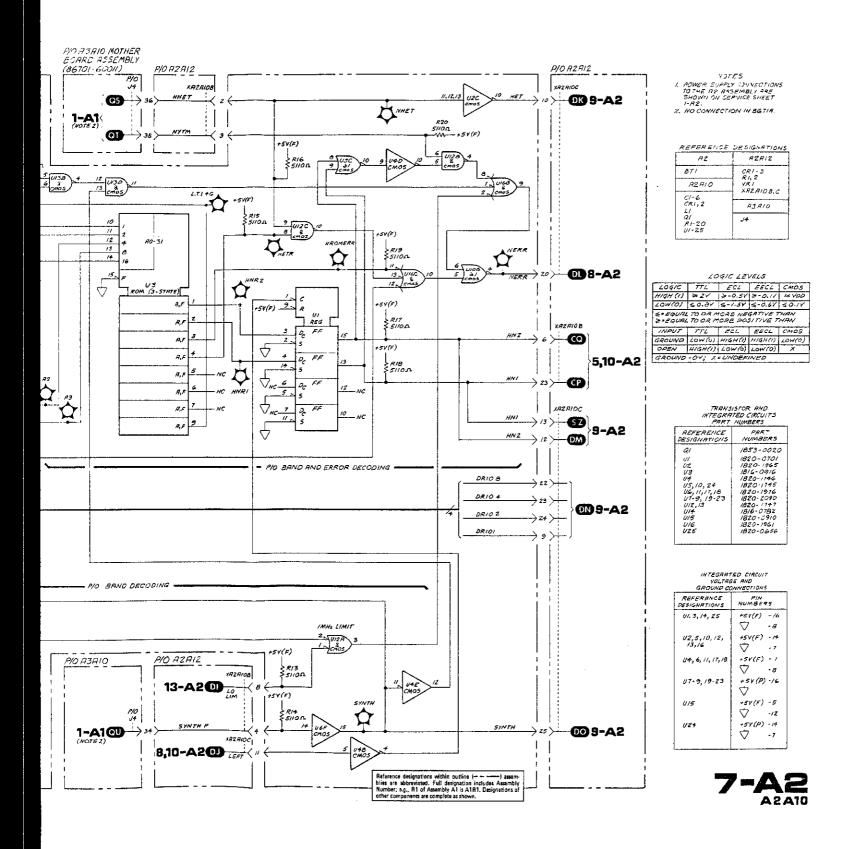


Figure 8-47. Register 1 Assembly Schematic Diagram

SERVICE SHEET 8-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

· Block diagram

Page 8-35

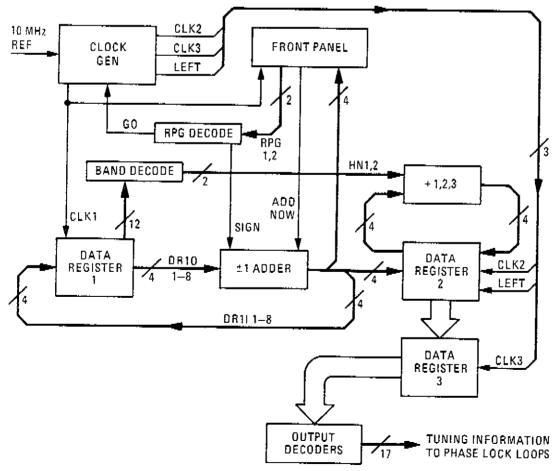
Motherboard wiring

Last 3 foldout pages

• Parts list

Page 6-17

PRINCIPLES OF OPERATION


General

The timing and control assembly generates signals that initiate and control DATA CYCLES. A data cycle is the process of changing the Synthesizer's frequency by adding or subtracting one from one of the digits stored in data register 1. The timing and control signals include clocks, tuning direction indicators, and error flags. If at the end of a data cycle an error flag is set, the timing and control assembly will do more data cycles until the error is corrected.

Schematics are on Service Sheets 8-A2 and 9-A2 while a complete block diagram appears to the left of each schematic. The shaded area indicates the circuitry on the adjacent schematic. Notice that the main signal flow (the frequency data) is on Service Sheet 9 and most of the timing and control circuitry is covered by Service Sheet 8.

Relation to the Rest of the Instrument

The Digital Controller (see block diagram below) is static between frequency changes. The information is latched in Register 3 and applied, through output decoders, to the phase lock loops. Since

Digital Controller Block Diagram

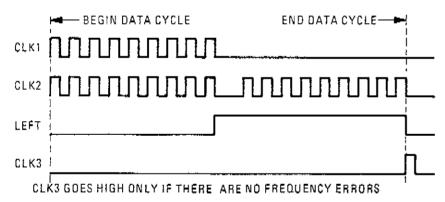
SERVICE SHEET 8-A2 (Cont'd)

this data is the basis for all future frequency changes, it is also stored in the Protected Register (Register 1) and displayed by the front panel.

The frequency (2-6.2 GHz) is displayed and stored as 8 BCD digits (10 GHz* to 1 kHz) and the YTO Loop tunes from 2-6.2 GHz. Frequency changes occur during a data cycle which is initiated by turning the TUNING control, pressing the PRESET button, or remotely programming a new frequency. During each data cycle the Controller operates on the frequency stored in Register 1 as follows:

In Local when the TUNING control is turned:

- Add ±1 to the digit selected by the resolution button.
- Update the display.
- · Shift the new frequency data into Register 3.
- Stop!


In Local when PRESET is pushed:

- Clear Register 1.
- Add 3 to the 1 GHz digit.
- Update the display.
- Shift the new frequency data (3 GHz) into Register 3.
- Stop!

In remote when a new frequency is programmed:

- Shift the new frequency into Register 1.
- Update the display.
- Shift the new frequency into Register 3.

A data cycle begins when the GO line goes true. The clock generator produces timing signals as shown below:

Clock Generator Outputs

Starting with the 1 kHz digit, CLK1 shifts the frequency data serially out of Register 1 and into the ±1 adder. The adder adds or subtracts 1 from the digit selected by the RESOLUTION buttons. The new frequency goes to three places: the front panel display, back into Register 1, and into Register 2. Then LEFT goes high, changing Register 2 to the left shift modes, and the second half of CLK2 serial shifts the data (starting with the 10 GHz digit), through the divider. The divided frequency is shifted back into Register 2. If a remainder exists, another data cycle will commence and the 1 kHz digit of the frequency in Register 1 will be changed and the division will again occur. This process continues until an evenly divisible frequency is obtained. When the remainder is zero, CLK3 parallel shifts the data into Register 3 where it is decoded and applied to the phase-lock loops.

^{*}Always zero.

SERVICE SHEET 8-A2 (Cont'd)

P/O Timing and Control Assembly

Clock divider, U14, divides the 10 MHz reference by 16 which results in a stream of 625 kHz pulses. The clock counter counts nine of these pulses during which time they are gated through U5C (clock 1) and U5D (first half of clock 2). At the end of the count U5C is disabled and the clock divider is reset. It stays reset until the end of the time delay measured by C6, R12 and R9 is finished. This accounts for the interval between the two halves of clock 2. U14 starts dividing again and 9 more pulses go through U5D. Clock 3 (CLK3) signals the end of an error free data cycle by going high for a short period when triggered by the negative going edge of LEFT.

The RPG (Rotary Pulse Generator) converts the smooth rotation of the TUNING control into digital information. The controller interprets this information to determine if the frequency should be increased or decreased. RPG1 and RPG2 are pulses, the frequency of which depend on rotation speed, and the phase relationship depends on rotation direction. If the TUNING control is turned clockwise RPG1 will lead RPG2 and the Synthesizer's frequency will increase. The presence of the squarewaves tells the Controller to do data cycles. RPG1's negative edge triggers a one shot composed of C3, and Q6 and associated resistors. This results in a short duration low pulse at U29B pin 6, the trailing edge of which sets GO. The gate, U29B, must be enabled by the Pulse Swallower. This circuit controls the rate of frequency change by varying the number of pulses gated through U29B. If the RPG is turning slowly only every third pulse gets through to set GO, but if turned fast enough every pulse clocks U20B, C8 and C9 store the positive voltage which enables U29B. Q5 opens a discharge path every time GO becomes true. C8 requires three pulses to charge to the on threshold of U29B and is completely discharged every time Q5 conducts. This accounts for the every third pulse setting GO when the RPG is turned slowly. C9, however, charges relatively fast and discharges slowly so it works out that when the RPG is turning fast, a positive voltage will always be applied through CR7 to U29B thus allowing every pulse to gate U20B.

The Errs flip-flop gets set when the band and error decoding circuit on the Register 1 assembly detects an incorrect frequency. This will cause the controller to repeat data cycles, modifying the RESOLUTION selected digit (1 kHz by default), until the frequency is in range. This occurs when an attempt has been made to tune below 2.0 GHz or above 6.2 GHz. If, for example, the frequency is 2.0 GHz, the RESOLUTION is 1 MHz, and the RPG is turned counterclockwise; the ±1 adder will subtract 1 MHz resulting in 1.999 GHz. The error circuitry will then cause the adder to add 1 MHz and thereby return to 2.0 GHz. Register 3 cannot be clocked when there is an error, so the frequency of the loops is unaffected. The process is so rapid that the operator will not be able to see 1.999 GHz on the front panel.

The First Cycle flip-flop tells the Controller whether or not the current data cycle is the first one or succeeding ones used to produce an evenly divisible frequency or correct an error. The XSCC (Excess Cycle Counter) and UPDATE SIGN flip-flop work together to determine whether a frequency to be modified should be increased or decreased.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 3, and 10-A2 was used to isolate a Timing and Control problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

SERVICE SHEET 8-A2 (Cont'd)

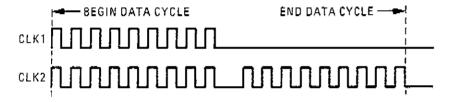
Test Equipment

Oscilloscope	 HP 180C/1801A/1821A
Digital Voltmeter	 HP 3455A

This assembly contains several test point pairs which are designed to set certain lines to known conditions. By shorting the pair together with an alligator clip, the line will be connected high or low as appropriate.

A2A11TP1 - causes controller to continually cycle data

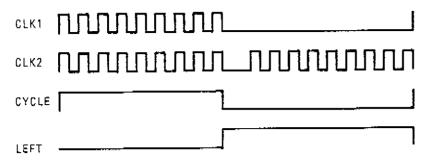
A2A11TP2 - suppresses frequency error limits


A2A11TP3 - suppresses operation of the ±1 adder

A2A11TP4 - suppresses round off

A2A11TP5 - aborts controller operation

This assembly also contains a manual clock switch. Use this switch by unplugging the blue coax on A3A1A1 to disconnect the controller clock. (Disconnecting this cable also causes the LFS loop to unlock but that is not important when troubleshooting the controller.)


 Connect alligator clip to test point pair A2A11TP1. Observe CLK1 and CLK2 test points on oscilloscope. The strings of pulses should be as shown in the figure below (5 μs/div., 2V/div.). CLK1 consists of a string of 9 pulses. CLK2 consists of two strings of 9 pulses. If the front panel display is working properly, CLK1 must be OK.

Clock Pulse Waveforms

If these clock signals are OK, the clock divider, clock counter and clock drivers are OK. Also the RECYCLE flip-flop (U27B) is OK.

- Attach one oscilloscope probe to A2A11 edge connector pin A30 (CLK3).
 Leave the other probe attached to CLK1. The timing relationship of CLK3 should be as shown in the text.
- 3. Observe LEFT and CYCLE lines in relationship to CLK1 and CLK2. They should be as shown in the following table.
- Locate RPG SIGN test point. This point should go high when the TUNING control is tuned clockwise and low when turned counterclockwise.
- 5. Connect oscilloscope or voltmeter to A2A11 edge connector pin B1. This line should be a CMOS low for all in-range frequencies. If everything is correct so far, turn to Service Sheet 9-A2.

Clock, Cycle, and Left Timing Relationship

MNEMONICS

Mnemonic	Definition	Explanation	
NRMOR	Not Remainder	Low means a remainder exists—after dividing by 2 or 3.*	
NLSOR	Not Least Significant Digit Resolution	Low means the 1 kHz digit RESOLUTION button has been pushed.	
UPDATE	Correct band change error	Initiates more data cycles to correct the 1 kHz digit after a band change.	
NERR	Not Error	Low means an out-of-range frequency is stored in Data Register 1.	
CYCLE SET	Set first cycle flip-flop	High when either INTF CLK GO is true or there is a frequency error and the 1 kHz RESOLUTION button has been pushed.	
UPDATE SIGN	Change state of SUBTRACT line	Indicates whether previous round off was an addition or subtraction.	
LEFT	Shift left	High during the second half of a data cycle. Causes Data Register 2 to shift left.	
CLK 1	Clock 1	Nine pulses during the first half of a data cy Each pulse corresponds to a frequency digi	
ÇLK 2	Clock 2	18 pulses: 9 during the first half of a date cycle and 9 during the second half.	
CLK 3	Clock 3	1 pulse at the end of an error free data cycle.	
G0	Do a data cycle	Leading (positive going) edge triggers a data cycle. Stays high until the data cycle is finished.	
XSCC NXSCC	Excess Cycle Generator	XSCC and NXSCC are two bits used to tally the extra data cycles done to obtain an evenly divisible frequency.	
RPG SIGN	Rotery Pulse Generator Sign	Indicates tuning direction. High is clockwise low is counterclockwise.	
SUBTRACT	Subtract 1 from the RESOLUTION selected digit	Tells the ± 1 ADDER whether to add or subtract. High = subtract, low = add.	

DEFINITION

Data Cycle — The process of changing the Synthesizer's frequency by adding or subtracting 1 from one of the digits.

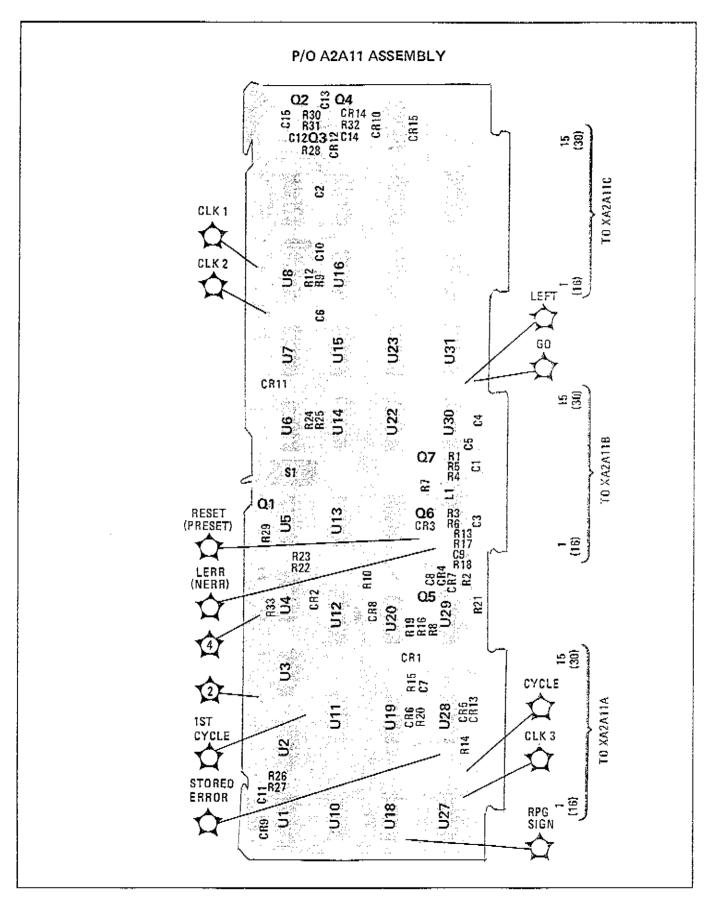
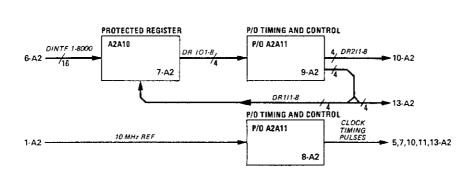



Figure 8-48. P/O A2A11 Timing and Control Assembly Component and Test Point Locations

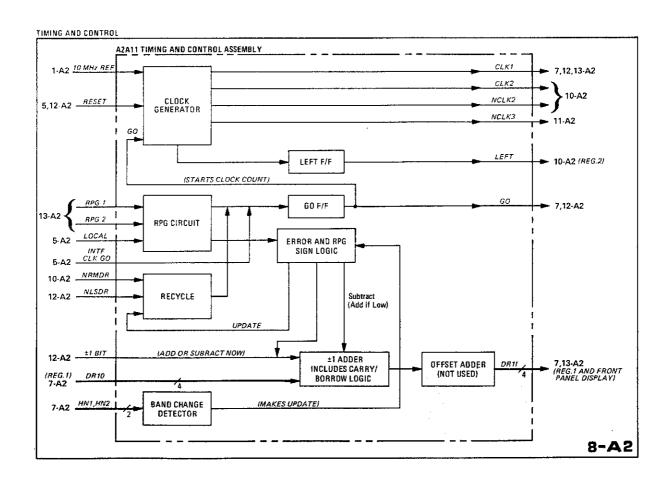


Figure 8-49. P/O Timing and Control Block Diagrams

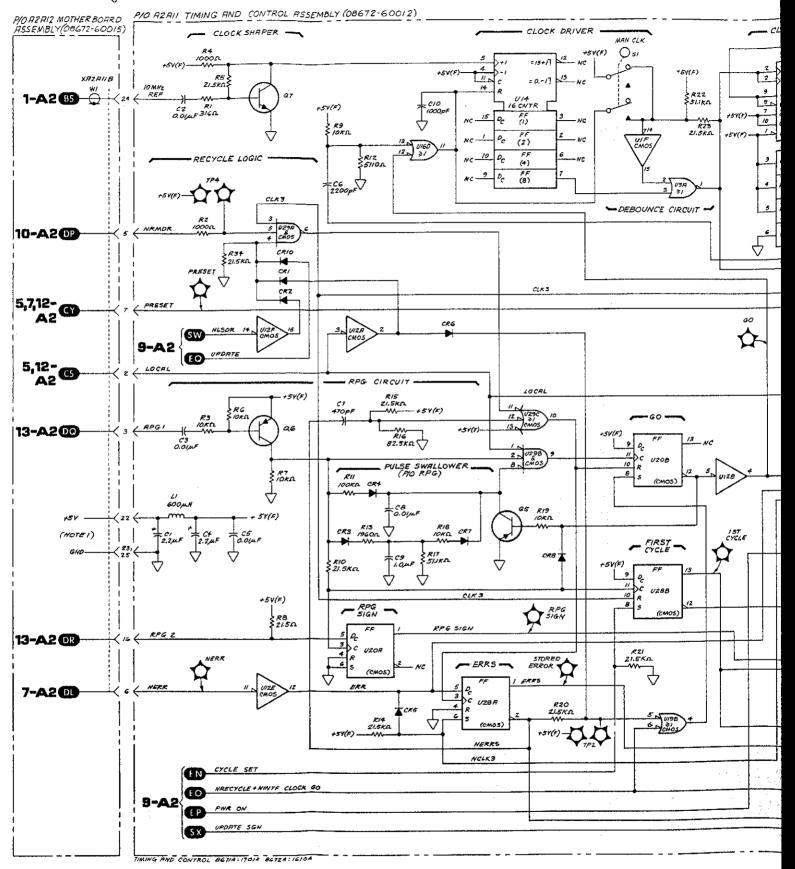


FIG. 8-50 Sht 2 of 3

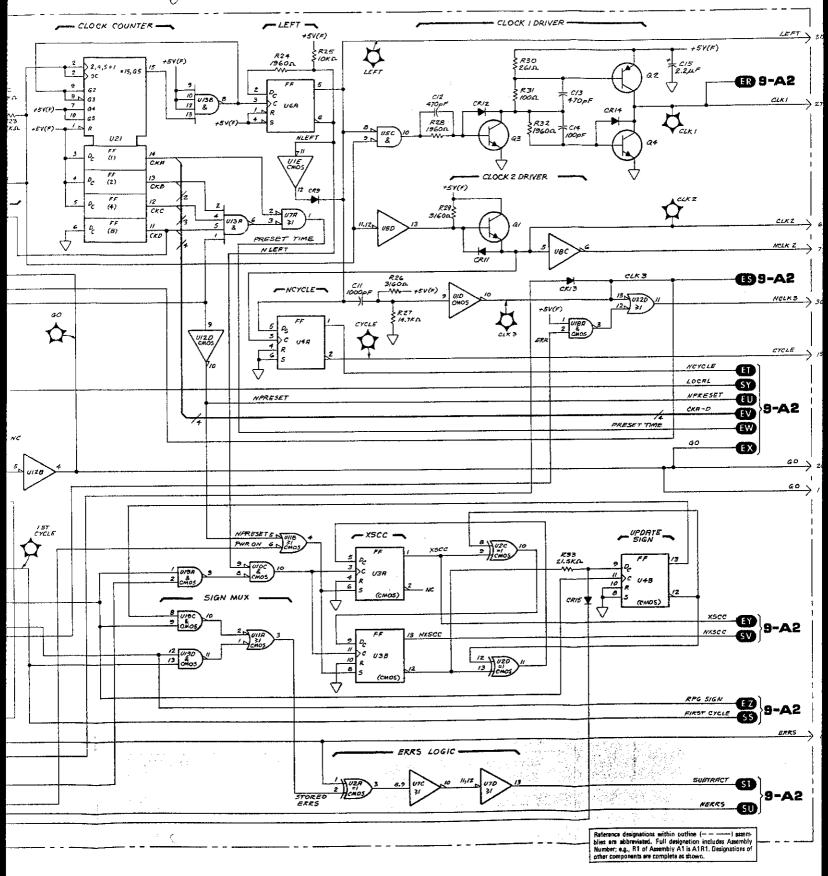


Figure 8-5

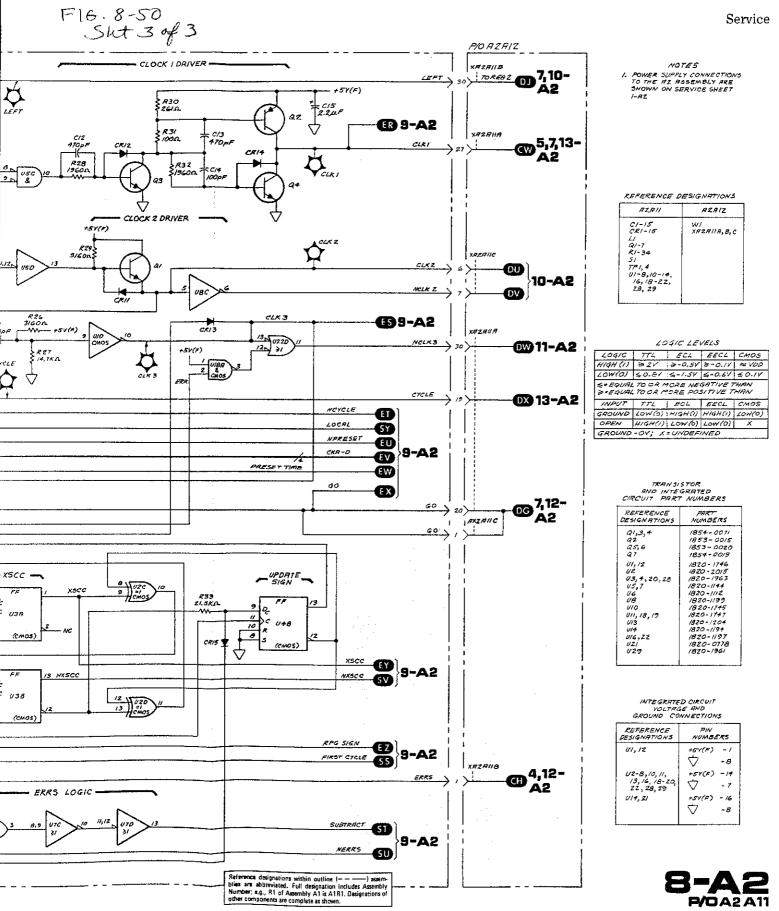


Figure 8-50. P/O Timing and Control Assembly Schematic Diagram

SERVICE SHEET 9-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram Page 8-35

• Motherboard wiring Last 3 foldout pages

• Parts list Page 6-17

PRINCIPLES OF OPERATION

General

The Timing and Control Assembly generates signals that initiate and control data cycles. A data cycle is the process of changing the Synthesizer's frequency by adding or subtracting one from one of the digits stored in Data Register 1. The timing and control signals include clocks, tuning direction indicators, and error flags. If at the end of a data cycle an error flag is set, the Timing and Control Assembly will do more data cycles until the error is corrected.

As shown by the shaded blocks of Figure 8-74, this part of the Timing and Control Assembly consists of the Band Change Detector, ±1 Adder and the Offset Adder. The Band Change Detector translates harmonic number and excess cycle information into control signals for the Error and RPG Sign Logic. The ±1 Adder modifies the appropriate frequency digit to set a new frequency or correct an error. The Offset Adder is not used in the standard Synthesizer but the frequency data passes through it. It may be used to add an IF offset in special instruments.

P/O Timing and Control Assembly

The ±1 Adder, U33, performs the operation indicated by the SUB-TRACT line when the ±1 Bit line goes high. For example:

If SUBTRACT line is low:

Add 1	DR10 8	4	2	1	
Y input	0	1	0	1	= 5
Z input	0	0	0	1	= 1
Y + Z	0	1	1	0	= 5 + 1 = 6

If SUBTRACT is high:

Subtract 1					
Y input	0	1	0	1	= 5
Z input	1	1	1	1	= 15
Y + Z	0	1	0	0	= 5 - 1 = 4

SERVICE SHEET 9-A2 (Cont'd)

If the sum is 10 an illegal BCD 1010 will result so it must be converted to binary 0000 with a carry of one. U17D pin 11 goes Low when this is necessary. This Low does two things. First, it is clocked through U9B by a delayed CLK1 from the Double Clock circuit—it keeps the Adder Enable flip-flop set. Second, it changes the number at the Adder's B input to 7. A new sum, 16 or binary 0000 with a carry, results. Note that this happens within the period of one CLK1 pulse. The carry is added to the next digit. A similar process performs subtraction with borrow.

The OR gates at the ± 1 Adder's output add 3 to the 1 GHz digit when the PRESET button is pushed. Pin 13 of U32D and pin 1 of 32A go high when the 1 GHz digit leaves the \pm Adder.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 3, and 10-A2 was used to isolate a Timing and Control problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

1. Observe the front panel frequency display and press the PRESET (3 GHz) pushbutton. If the frequency is displayed correctly (3000.000 MHz) the DRII 1—8 lines from the ±1 Adder (U33) are probably OK. If the frequency is not displayed properly, check the CLK1 line on Service Sheet 8-A2 or check the data entering the display.

NOTE

An open pin on the front panel display LED's will cause that pin to float high.

- 2. Attach a logic analyzer to DR11 1—8 and DR2I 1—8 lines. Use CLK1 to clock the analyzer. Rotate the RPG to cause the data to circulate. The DR1 and DR2 data should be identical for standard instruments. If they are different, troubleshoot the Offset Adder. Otherwise continue.
- 3. Press the least significant digit (1 kHz) RESOLUTION pushbutton. Rotate the TUNING knob clockwise. Observe DR11 1-8 on the logic analyzer. The data is displayed least significant digit first and should increase as the frequency is increased. Tune each digit from 0 to 9 to assure that none of the DR1 lines are stuck high or low. If the frequency does not change, trouble-shoot the ±1 Adder circuitry.
- 4. Note the center frequency and unplug Synthesizer from Mains. Wait at least one minute and reconnect Mains. The center frequency should not have changed. If the frequency has changed, troubleshoot the clock protect circuitry (U27A) and the battery or charger circuit on 7-A2.

8-54b

SERVICE SHEET 9-A2 (Cont'd)

MNEMONICS

Mnemonics	Definition	Explanation			
±1 BIT	Add or subtract 1 from the digit now at the Adders input.	High means operate on the digit a the Adders input.			
FIRST CYCLE	First data cycle.	Distinguishes between a normal data cycle and extra data cycles done to eliminate round-off error.			
NLSDR	Not Least Significant Digit Resolution	Low means the 1 kHz RESOLU- TION button has been pushed.			
NCYCLE	Not Cycle.	High during the first half of a data cycle.			
NERRS	Not Error Stored	Low means that an out-of-range frequency is stored in Data Register 1.			
NCLK 3	Not Clock 3	Low going pulse at the end of an error free data cycle.			
RPG SIGN	Rotary Pulse Genera- tor Sign	Indicates TUNING direction.			
XSCC	Excess Cycle Counter	Two bits used to tally the extra data cycles done to obtain an evenly divisible frequency.*			
HN1 HN2	Harmonic Number	Indicates band number of the frequency in Data Register 1: Band HN1 HN2 2-6.199 999 GHz 1 0 0 Out of range 2 1 0 Out of range 3 0 1			
DR10 1-8	Data Register 1 Out	Binary Coded Decimal digits from Data Register 1.			
DR1I 1-8	Data Register 1 In	Binary Coded Decimal digits to th front panel, Data Register 2, and back to Data Register 1.			
DR2I 1-8	Data Register 2 In	Binary Coded Decimal digits to Data Register 2.			
UPDATE SIGN	Change state of SUBTRACT line	Indicates whether previous round- off was an addition or subtraction.**			
UPDATE	Correct band change	Initiates more data cycles to cor- rect the 1 kHz digit after a band change.**			

^{**}Does not apply to this instrument configuration.

DEFINITION

Data Cycle — The process of changing the Synthesizer's frequency by adding or subtracting 1 from one of the digits.

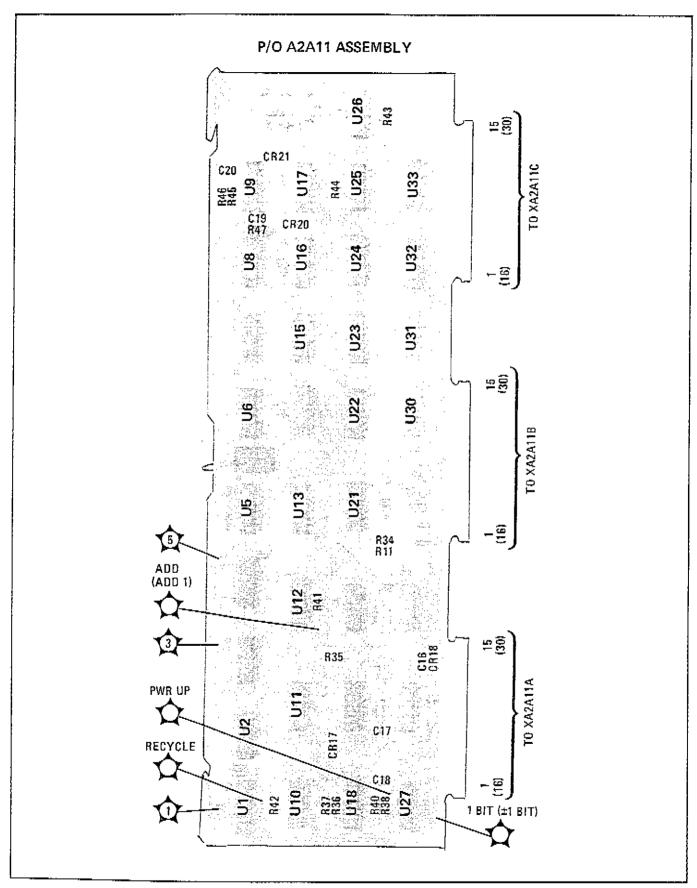


Figure 8-51. P/O A2A11 Timing and Control Assembly Component and Test Point Locations

8.54 d

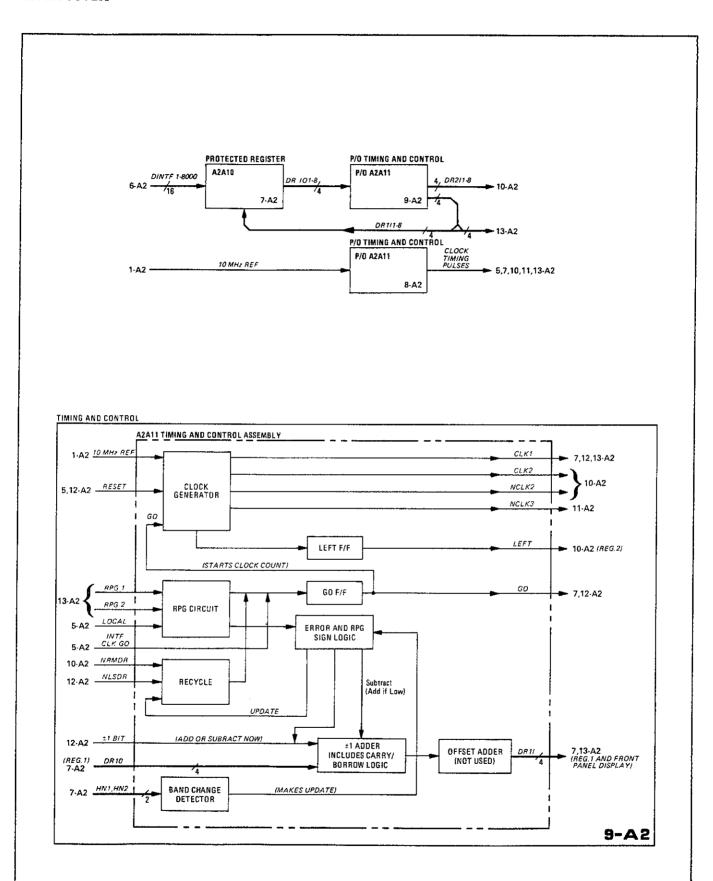
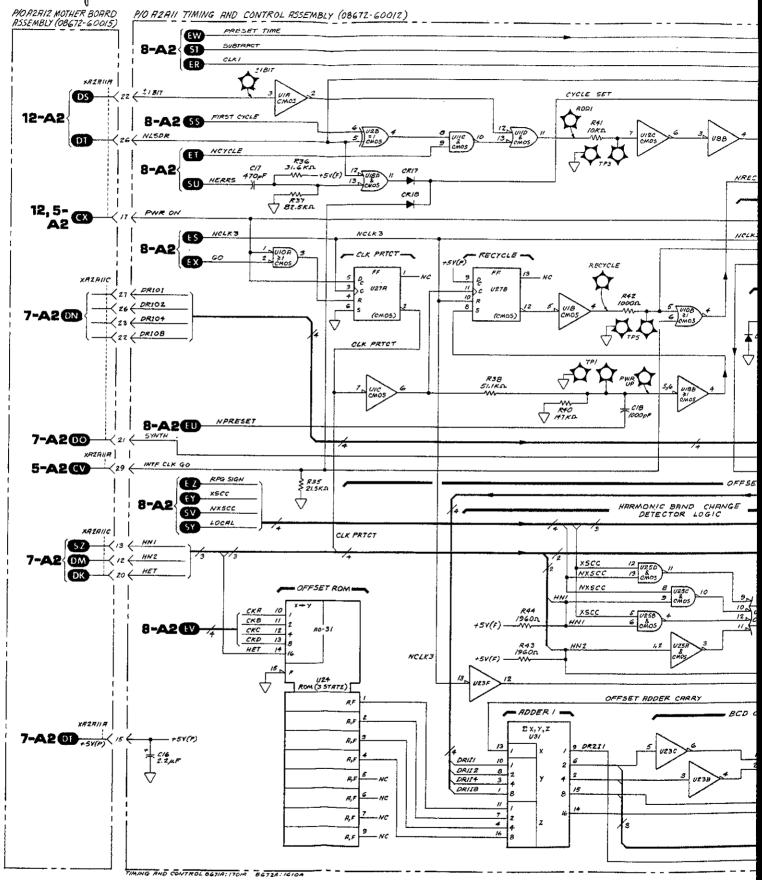



Figure 8-52. P/O Timing and Control Block Diagrams

FIG. 8-53 SH 10f3

7 2

4 16 8

Reference designations with blies are abbreviated, Full o Number; e.g., R1 of Assembl other components are comple

DRZI/

U31-15 U31-14

023

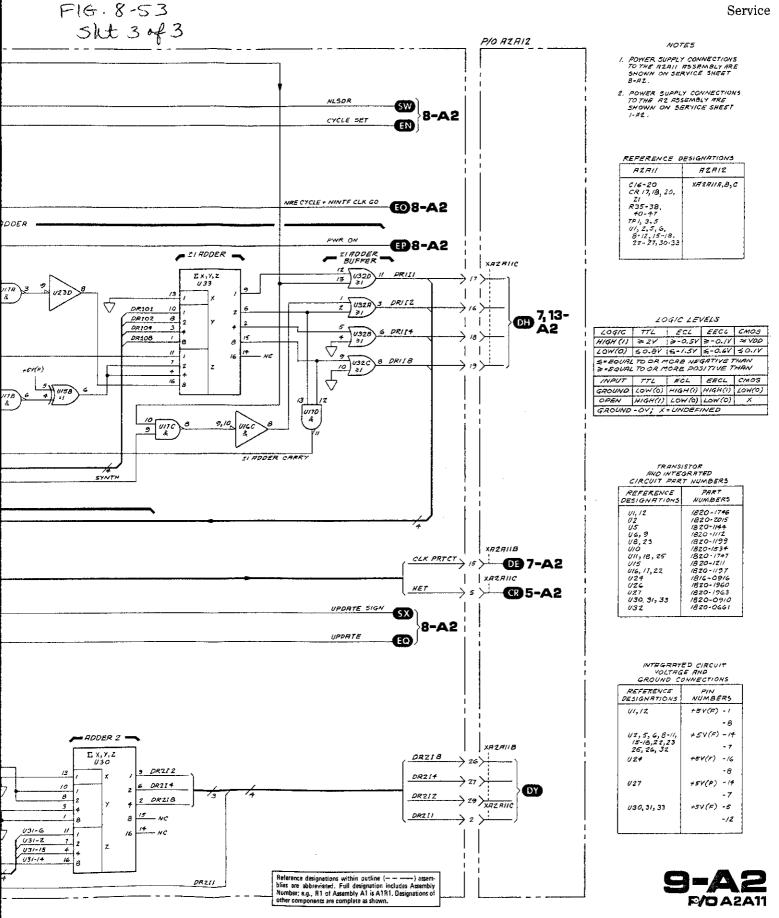


Figure 8-53. P/O Timing and Control Assembly Schematic Diagram

SERVICE SHEET 10-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

· Block diagram

Page 8-35

Motherboard wiring

Last 3 foldout pages

• Parts list

Page 6-14

PRINCIPLES OF OPERATION

General

The Output Register Assembly consists of Data Register 2, Data Register 3, a Digital Divider, and the DAC and M/N Decoder. Service Sheet 10-A2 covers the Digital Divider and Data Register 2 and Service Sheet 11-A2 covers the rest. Additionally, Service Sheet 10-A2 shows Logic Test circuit which is used as a logic probe.

Data Register 2 accepts frequency data from the ±1 Adder in a right shift mode during the first half of CLK2. Then LEFT goes true and the second half of CLK2 left shifts the data through the digital divider and back into Register 2.

The digital divider, controlled by HN1 and HN2, divides the frequency by 1*, 2, or 3 so that the DAC, and M and N information will always tune the YTO loop from 2 to 6.2 GHz.

P/O Output Register Assembly

Register 2 consists of shift registers U1, 2, 3, 6, 7, 11, 15, 16 and 23. U23 serves a dual purpose: it stores the GHz digit and steers the data. During right shift the LEFT Line is low to enable data to flow from the ± 1 Adder. When LEFT goes high during the second half of CLK2, data flows from the 100 MHz flip-flops, through the 2 inputs of U23 and to the digital divider.

The ROM's, U24 and U25, contain division tables*. Each digit, starting with the most significant, enters both ROM's as a dividend (address). U24 feeds the quotient back to Register 2. U25 puts the remainder into U8 where it is clocked back to the ROM's as part of the next dividend. If a remainder exists after the last digit, the NRMDR line will be low (true) and cause the timing and control circuitry to start another data cycle.

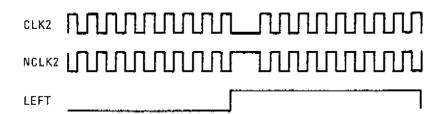
^{*}Divides by 1 during normal instrument operation.

SERVICE SHEET 10-A2 (Cont'd)

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1 and 3 was used to isolate an Output Register problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment


Digital Voltmeter	 HP 3455A
Logic Analyzer	 HP 1601A

- Install A2A8 on an extender board or on the Output Register Test Board, (HP Part Number 11712-60001.)
- 2. Set frequencies as shown in the following table. The edge connector pins with arrows should be measured with a logic probe or voltmeter or the data should be observed on the output register test board. By checking all four frequencies, each output line will be cycled high and low.

_	А		В		С	
Frequency	Front	Rear	Front	Rear	Front	Rear
6169.969	L	Н	Н	L	X	Х
3696.969	H	L	L	H	X	X
5990.000	Х	X	X	X	H .	L
3640.000	x	×	X	x	L	Н

3. Check the input data by connecting a logic analyzer to DR2I 1-8 lines and to CLK1. Set the analyzer to END DISPLAY. Set the SYNTHESIZER FREQUENCY to 52345.678 MHz and set the logic analyzer to trigger on the "1". Connect an alligator clip to test point pair A2A11TP1. If the input data is correct, continue with this procedure. Otherwise go to Service Sheet 9-A2 to continue troubleshooting. The data is clocked in least significant digit first; the last nine characters on the logic analyzer display should be:

 Check input lines CLK2, NCLK2 and LEFT with an oscilloscope. These lines should be as shown below. Trigger the oscilloscope on CLK1 for these measurements.

SERVICE SHEET 10-A2 (Cont'd)

5. Check input lines HN1 and HN2. These lines set the divide number for the harmonic bands. If either line is malfunctioning, go to Service Sheet 7-A2 to continue troubleshooting.

Frequency (MHz)	HN1	HN2
2000-6199.999	L	L
6200-12399	H	L out of range
12400-18599	L	H out of range

- 6. If all the input lines are correct, trace back from the incorrect output(s) discovered in step 2 to isolate the malfunction to a particular part. Note that the output of Register 2 should not be over 6199.999 MHz after CLK2 has finished clocking the data through the divider.
- 7. To check the divider, connect a logic analyzer to the outputs of U24. Depending on the harmonic band selected (see step 5) the output of U24 should be the selected frequency divided by 1*, 2, or 3.

MNEMONICS

Mnemonic	Definition	Tells the digital divider whether to divide by 1, 2, or 3.		
HN1 HN2	Harmonic Number			
	i	÷ HN1 HN2 1 0 0 2 1 0 3 0 1		
CLK2	Clock 2	Two sets of nine pulses. Each pulse within a set corresponds to a frequency digit.		
LEFT	Shift Left	When low, Register 2 shifts right. When high, Register 2 shifts left.		
DR21 1-8	Data Register 2 In	Binary coded decimal digits to Data Register 2.		
NRMDR	Not Remainder	Low means that a remainder exists after division.		

DEFINITION

Data Cycle — The process of changing the Synthesizer's frequency by adding or subtracting 1 from one of the digits.

^{*}Should always be band 1.

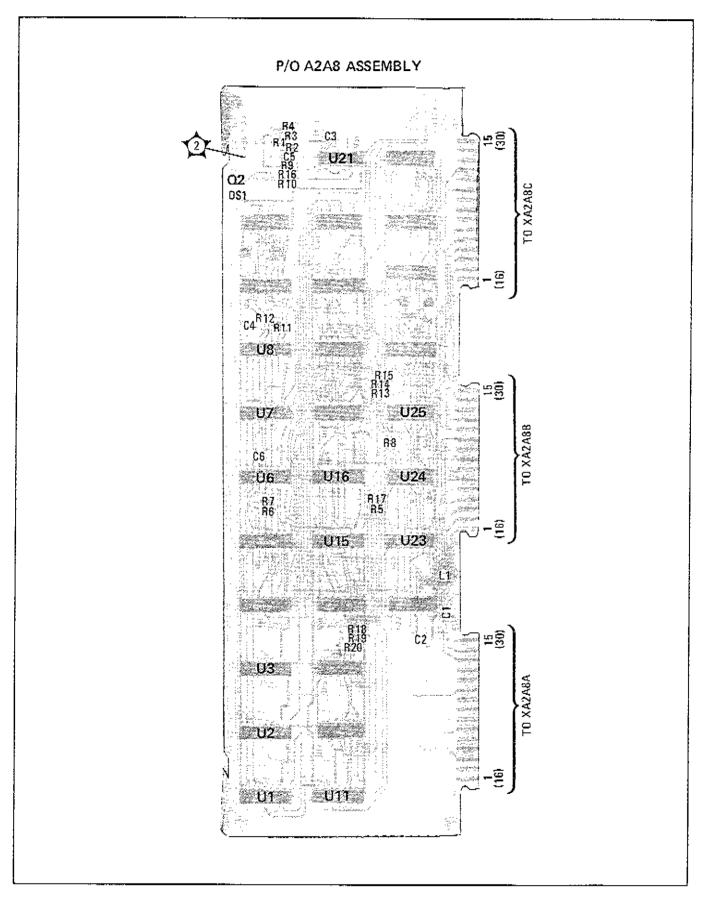
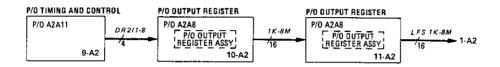



Figure 8-54. P/O A2A8 Output Register Assembly Component and Test Point Locations

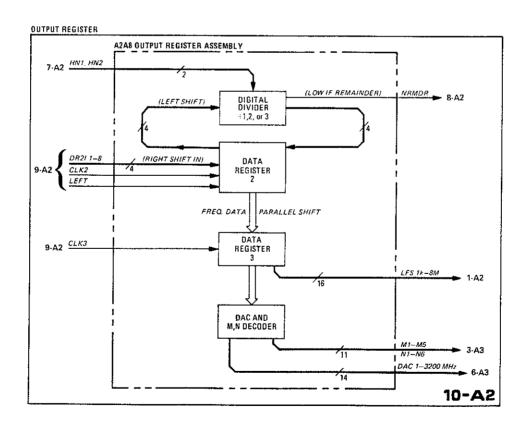
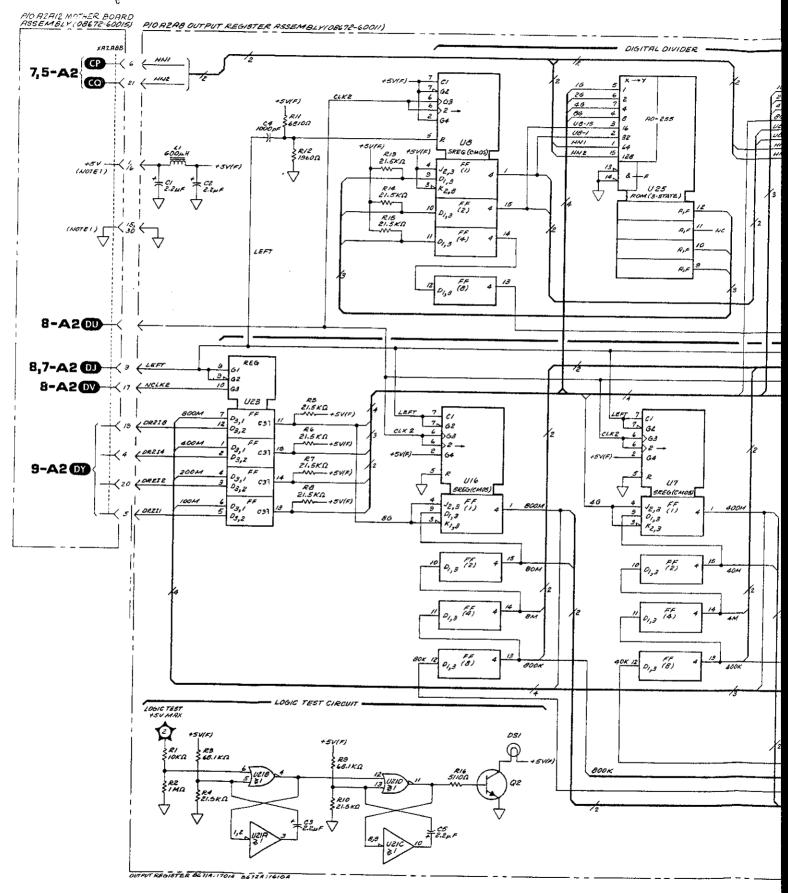
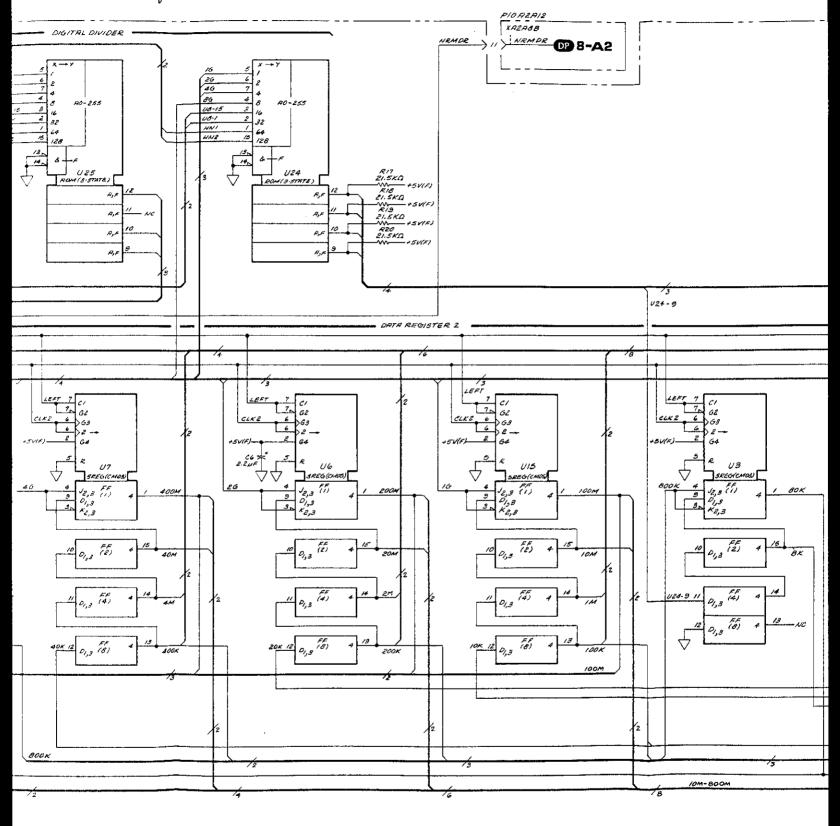
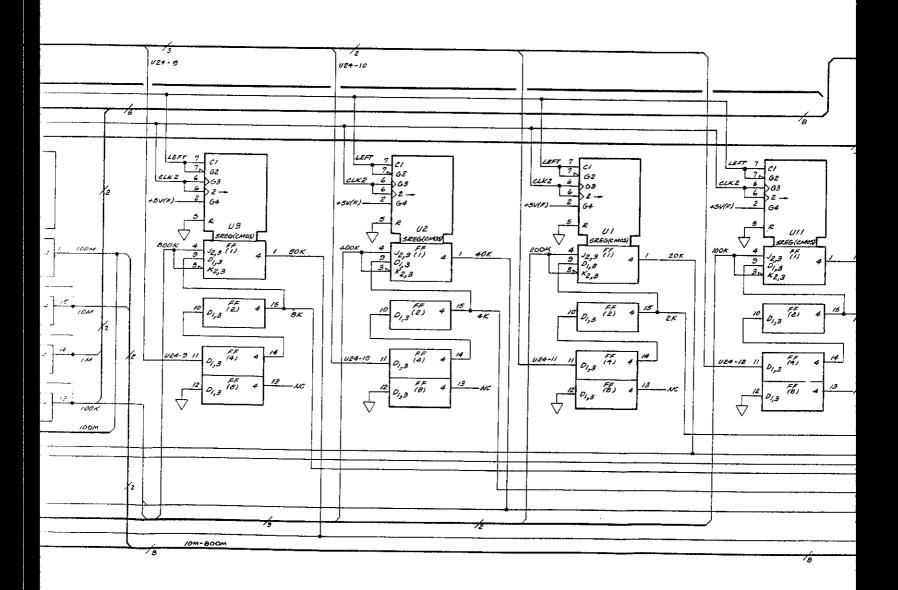





Figure 8-55. P/O Output Register Block Diagrams

Reference designations bliss are abbreviated. Number; e.g., R1 of As other components are of

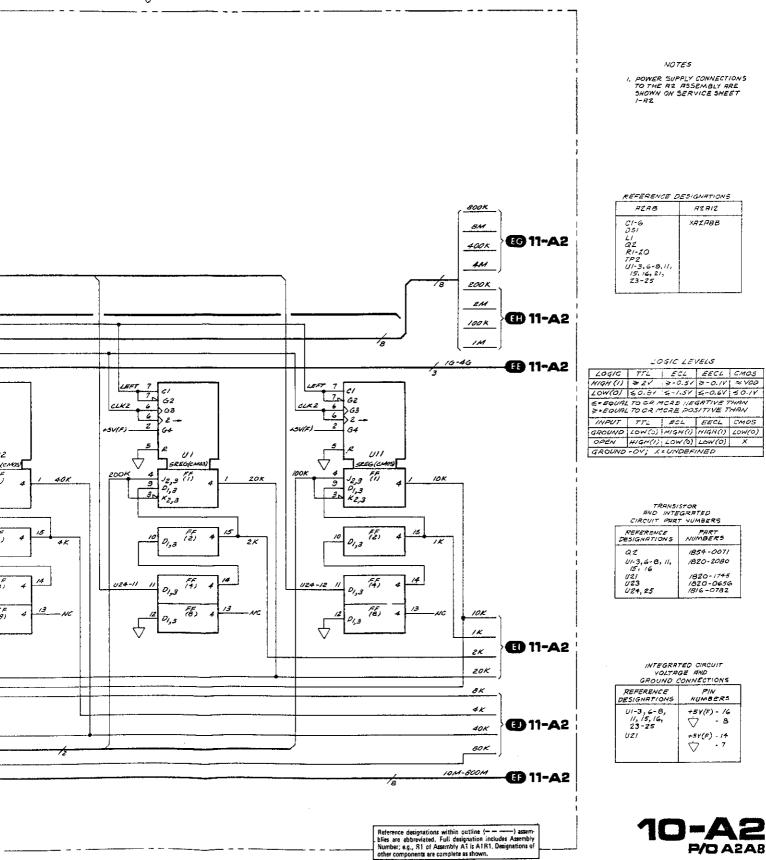


Figure 8-56. P/O Output Register Assembly Schematic Diagram

SERVICE SHEET 11-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-35

Motherboard wiring
 Last 3 foldout pages

• Parts list Page 6-14

PRINCIPLES OF OPERATION

P/O Output Register

This part of the output register assembly consists of Data Register 3 and the DAC and M/N Decoder circuits. CLK3, a single pulse at the end of the data cycle, parallel loads Register 3 with the frequency data. From here the 1 kHz through 8 MHz digit information goes directly to the LFS loop. The DAC and M/N Decoder translates the remaining digits into tuning information for the YTO loop. The outputs relate to the Yig Tuned Oscillator (YTO) frequency as follows:

DAC 1-3200 MHz; round down to nearest 10 MHz

M and N look up the frequency in Table 8-4 and convert M and N to binary.

TROUBLESHOOTING

Troubleshooting is covered on Service Sheet 10-A2.

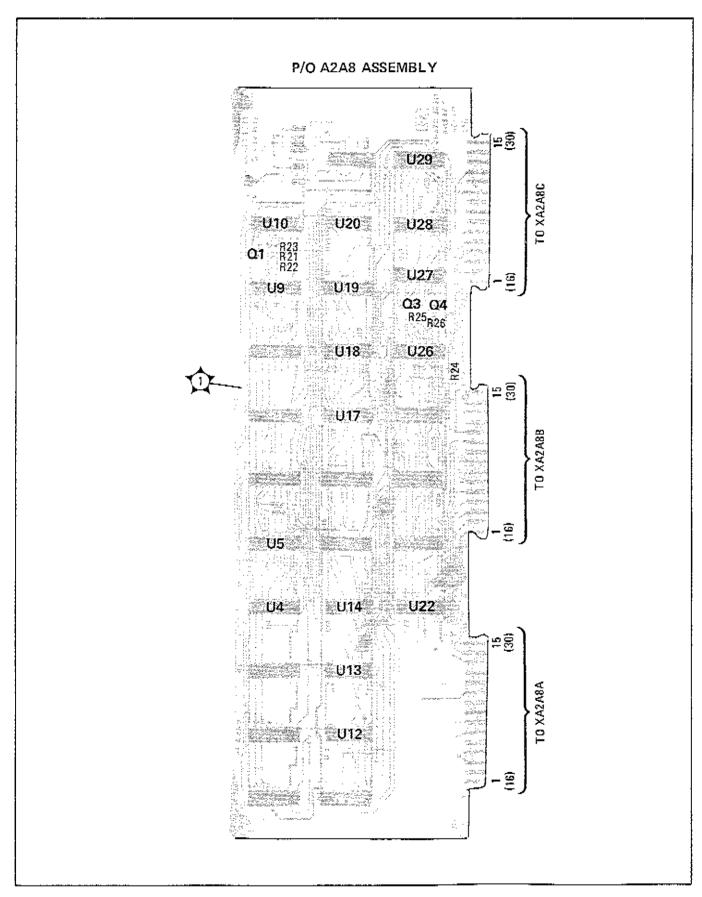
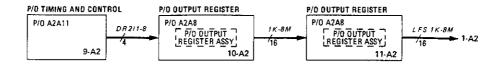



Figure 8-57. P/O A2A8 Output Register Assembly Component and Test Point Locations

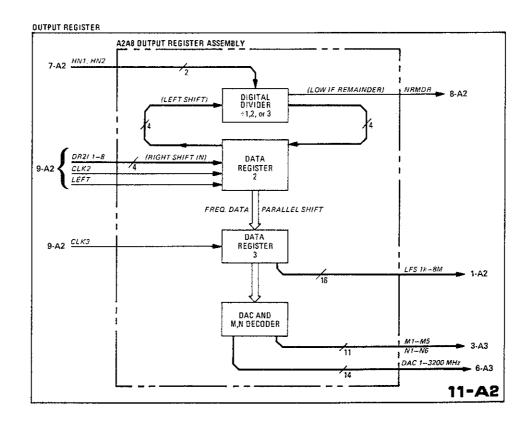
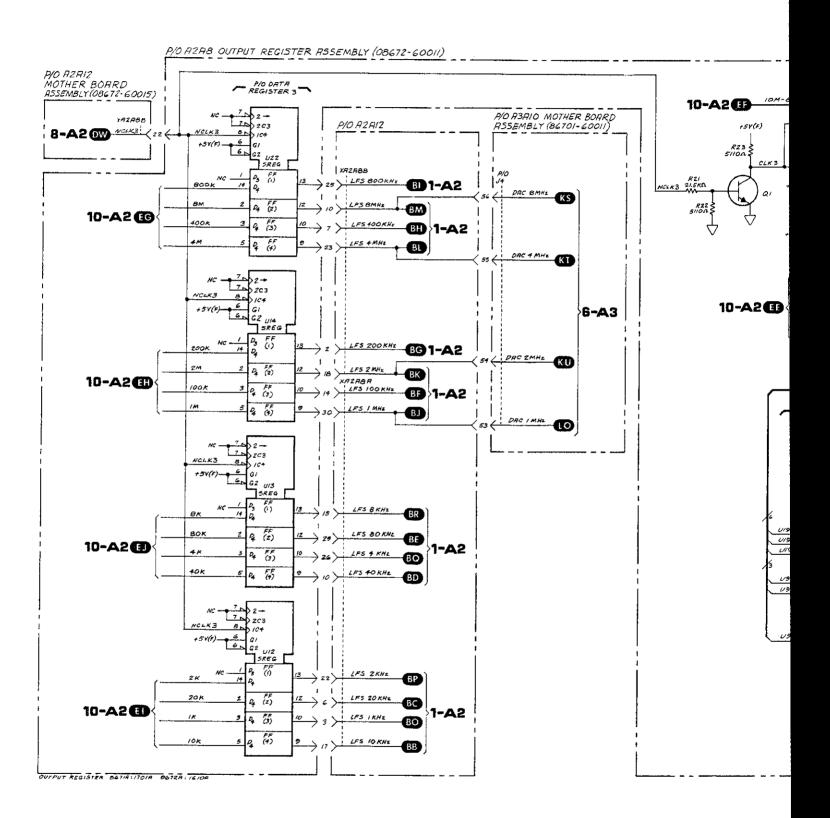



Figure 8-58. P/O Output Register Block Diagrams

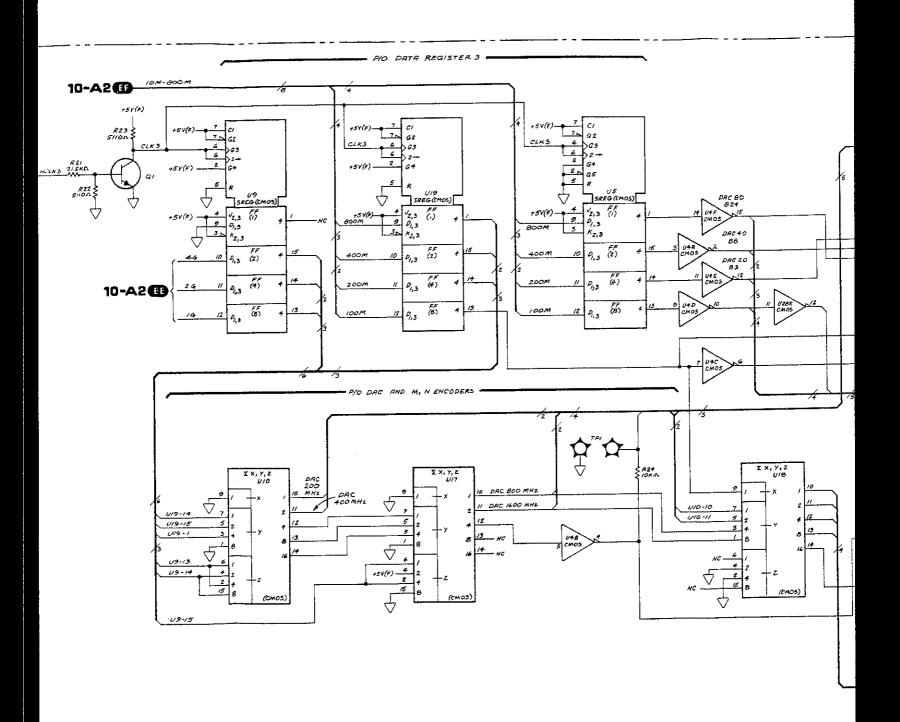
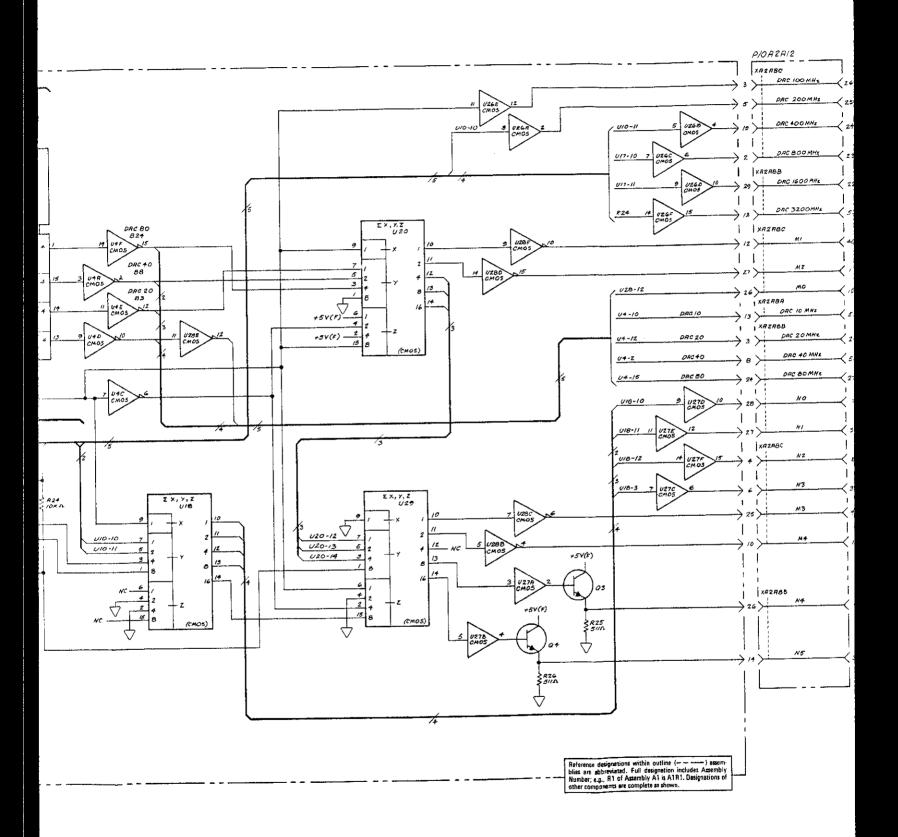



FIG. 8-59 SH344

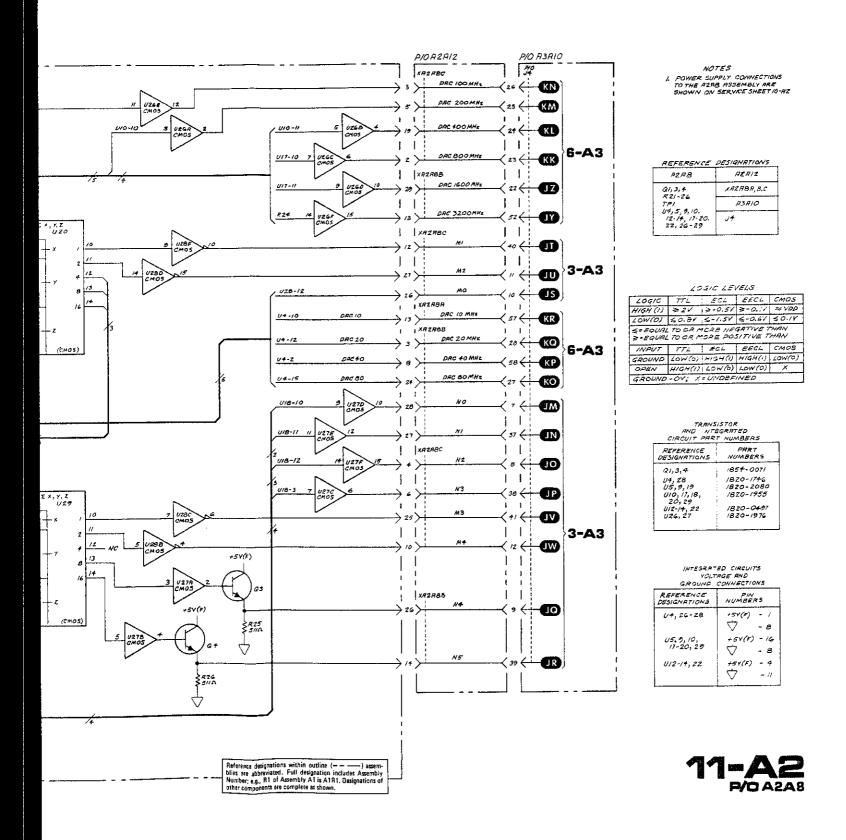


Figure 8-59. P/O Output Register Assembly Schematic Diagram

SERVICE SHEET 12-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-35

Motherboard wiring
 Last 3 foldout pages

• Parts list Page 6-7

PRINCIPLES OF OPERATION

General

The front panel (A2A1) consists of the power switch, frequency controls and indicators, and status indicators.

This portion of the A2A1 Assembly contains status indicators, tuning resolution indicators and the ±1 bit control circuitry. The lamp drivers and status indicators show, by front panel lights, the following conditions; INT REF OFF, REMOTE, NOT PHASE-LOCKED and frequency OUT OF RANGE. When the instrument is first turned on or the HOLD button is pressed, the tuning resolution circuits will disable Synthesizer tuning. If one of the RESOLUTION buttons is pressed, the frequency resolution indicators and lamp drivers will indicate which button was pressed and load that information into the resolution register. The ±1 Bit output of this register tells the ±1 Adder (located on A2A11) on which digit to operate.

P/O Front Panel Board Assembly

Pin 2 of the resolution register U9 goes high when the appropriate digit is clocked through the ±1 Adder by CLK1. The desired resolution, selected by switches S3 through S6 and latched by U5, is clocked into U9 by the inverted GO line. When GO changes level, U9 goes low, U9 becomes a serial register and the selected resolution is shifted through by CLK1. Three supporting circuits are significant. Diode CR1 clocks U5 when the LOCAL line goes low (when the instrument switches to remote). This causes the lows at U5's D inputs to appear at U9 thus disabling the ±1 Adder. U6A and associated capacitor and resistors debounce the RESOLUTION switches. OR gate Buffer, U1, drives the frequency resolution indicator circuitry, insuring that the selected resolution light and any higher significant digit lights are on.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 3, and 10-A2 was used to isolate a front panel problem to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

Oscilloscope HP 180C/1801A/1821A

SERVICE SHEET 12-A2 (Cont'd)

- Set Synthesizer to ON. Press the PRESET (3 GHz) pushbutton. Push the right hand (least significant digit) tuning resolution pushbutton. All four tuning resolution indicators should light. Rotate the TUNING knob clockwise and counterclockwise. The frequency should change in 1 kHz steps. If not OK, skip to step 9.
- 2. Press the next tuning resolution pushbutton. The least significant indicator should unlight. The frequency should tune in 10 kHz steps.
- 3. Press the next tuning resolution pushbutton. The 10 kHz resolution indicator should unlight. The frequency should tune in 1 MHz steps.
- 4. Press the most significant tuning resolution pushbutton. Only the most significant resolution indicator should remain lit. The frequency should tune in 100 MHz steps.
- 5. Press the HOLD pushbutton. The remaining tuning resolution indicator should unlight and the frequency should not change when the TUNING knob is turned. If everything is OK so far, the tuning circuits on the Service Sheet are OK. Otherwise, skip to step 9.
- 6. Set the rear panel REF switch to EXT. The INT REFERENCE OFF and NOT PHASE LOCKED lamps should light. Return the switch to INT.
- 7. Remote program the synthesizer to 40 GHz (out of range). The REMOTE and OUT OF RANGE lamps should light.
 9830 9825

CMD "?U3", "P4Z1" or wrt 719, "p4Z1"

If everything is OK thru this step, the circuits on 12-A2 are OK.

8. Return the Synthesizer to local operation and press PRESET (3 GHz).

NOTE

When the Synthesizer is returned to local with an out of range frequency displayed, it will begin to search in 1 kHz steps until a legal frequency is reached. If one of the tuning resolution pushbuttons is pressed, the instrument will search in the resolution selected.

- 9. If the frequency tunes but one or more of the resolution lamps do not light, troublehsoot U1, the lamps and their drivers.
- 10. If the frequency display does not tune, the problem may be in any of several places including
 - A2A11 Timing and Control Board (8-A3)
 - Reference phase lock loop (1-A3)
 - Rotary Pulse Generator (13-A2)
 - Register 1 (7-A2)
 - Resolution Register (this service sheet).

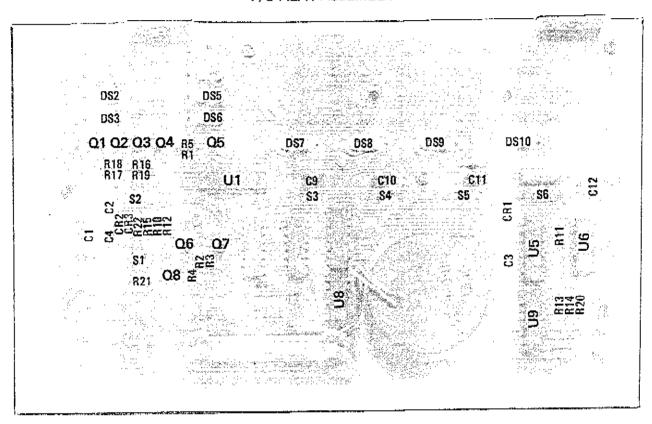
8-60b

SERVICE SHEET 12-A2 (Cont'd)

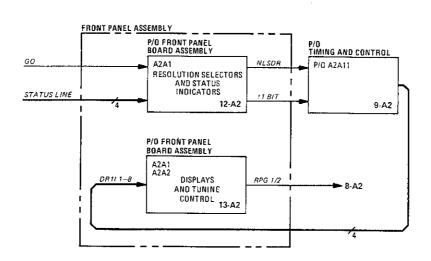
To check the resolution register, connect test point pair A2A11TP1 together with an alligator clip to continuously generate clock signals. Compare the signal at A2A1U9 pin 2 with CLK1 (clock 1) as each resolution button is pushed. U9 Pin 2 should go high along with the clock 1 cycle corresponding to the digit selected by a resolution button.

If these pulses are OK, the circuits on 12-A2 are OK.

If the pulses are not correct or not present, check A2A1U9 pin 10 for the presence of CLK1 before troubleshooting U5 and U9 and U6.


MNEMONICS

Mnemonic	Definition	Explanation
GO	Start data cycle	True when the RPG is turned, PRESET is pushed, or a new frequency is remote programmed.
ERRS	Error Store	An out of range frequency is stored in Data Register 1.
NLSDR	Not Least Significant Digit Range	True (low) indicates the 1 kHz RESOLUTION button was pressed.
±1 BIT	Add now	Tells the ±1 adder that the digit now at its input is the one selected by a RESOLUTION button.
CLK1	Clock 1	Nine pulse occuring during the first half of a data cycle. Each pulse corresponds to a frequency digit.


DEFINITION

Data Cycle — The process of changing the Synthesizer's frequency by adding or subtracting 1 from one of the digits.

P/O A2A1 ASSEMBLY

NOTE: S1-6 ARE ON THE OPPOSITE SIDE OF THE BOARD. DS2,3,5-10 ARE ON THE OPPOSITE SIDE OF THE BOARD.

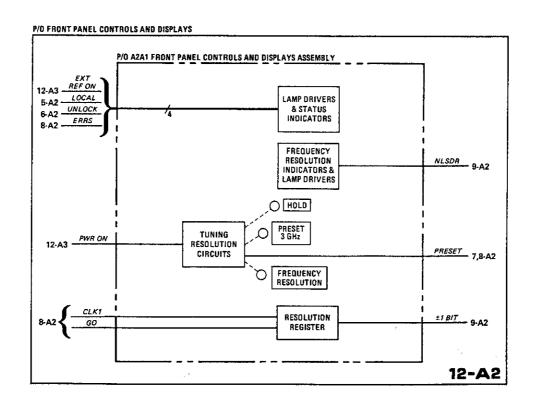
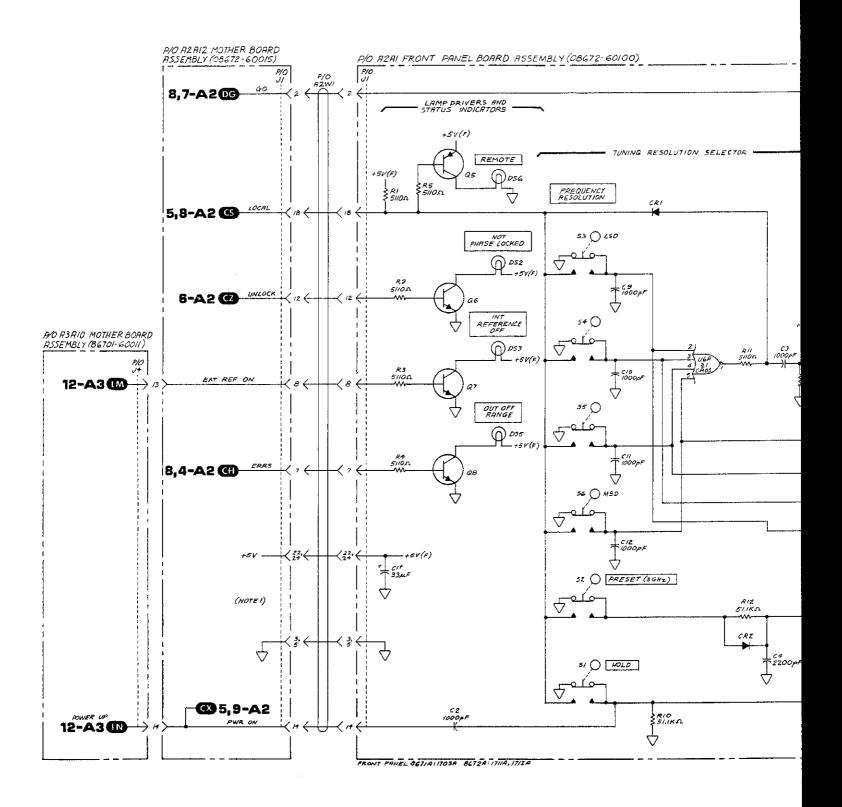
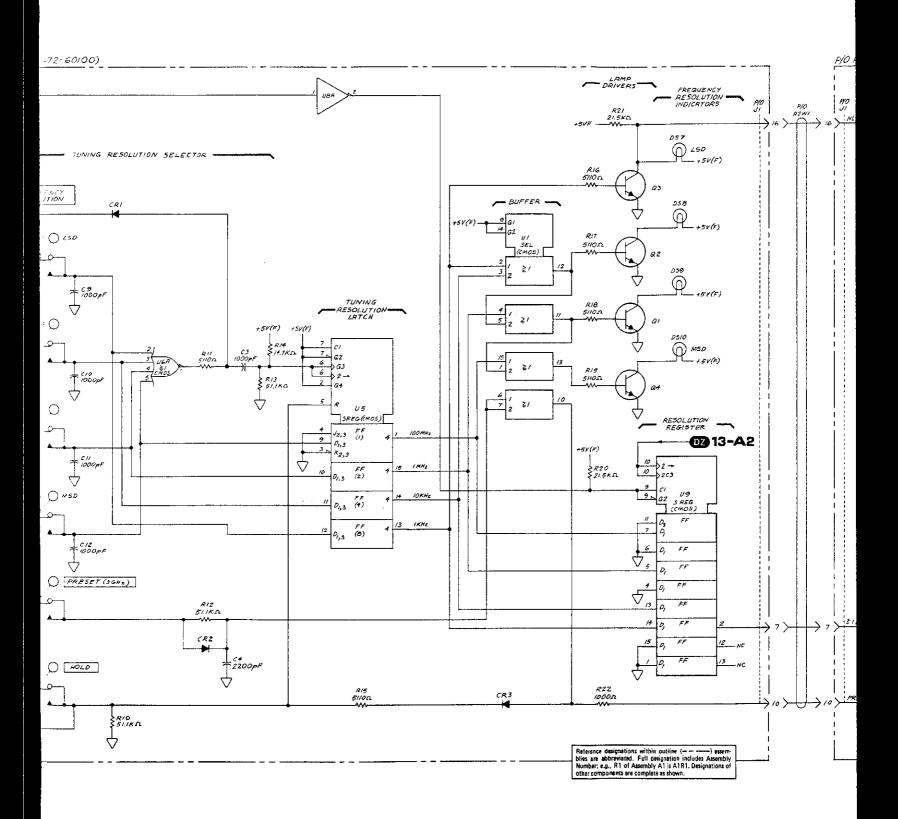




Figure 8-61. P/O Front Panel Block Diagrams

F16.8-62 SH2043

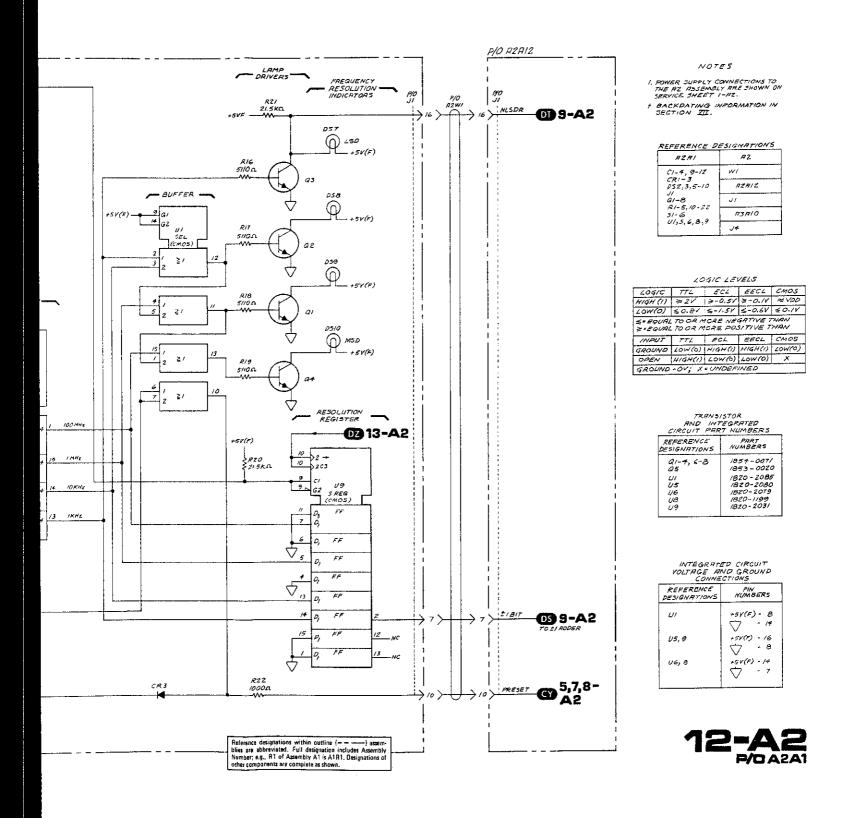


Figure 8-62. P/O Front Panel Assembly Schematic Diagram

SERVICE SHEET 13-A2

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
 Page 8-35

Motherboard wiring Last 3 foldout pages

• Parts list Page 6-7

PRINCIPLES OF OPERATION

General

The front panel (A2A1) consists of the power switch, frequency controls and indicators, and status indicators.

This part of the A2A1 assembly contains the Frequency display circuits, the oven temperature comparator, the LINE (on-standby) switch, and the TUNING Rotary Pulse Generator (RPG).

P/O Front Panel Board Assembly

Decoder/display chips DS1 through DS8 display the Synthesizer's output frequency. The display is updated during the first half of each data cycle. As each digit, starting with 1 kHz, appears on the DR1I 1—8 lines the strobe latch, U4, sequentially latches the display chips. U4 is clocked by CLK1 which is delayed by R23, C5, U8C and U8E. The delay allows for the data lines to settle.

The four-digits on the left (DS1—DS4) have leading zeros blanked by U3 and associated components. Blanking is done sequentially starting with DS1 but a display blanks only when the blanking input stays high thus insuring that only leading zeros are blanked. NOR gate U6B indicates zeros by outputting a high. This high is clocked through U3 by CLK1 (undelayed) and applied to DS1. When a non-zero digit appears at U6B, the low at the output is clocked through U3. At the next CLK1 pulse, U3 is reset by U2C.

The OVEN light comes on when the 10 MHz crystal oven is below normal temperature. An analog voltage inversely proportional to the temperature is applied to the inverting input of U7 by the OVEN MON line. When the voltage goes above 17V, the output swings negative turning on DS4 and putting a low on the OVN OK line.

The RPG outputs pulses on lines RPG1 and RPG2 when the TUNING knob is turned. Tuning direction is indicated by the phase relationship of the pulses. When the TUNING knob is turned clockwise RPG1 leads RPG2.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 3, and 10-A2 was used to isolate a Front Panel problem to the circuits shown on this schematic. The following information will aid in isolating the defective component:

Test Equipment

SERVICE SHEET 13-A2 (Cont'd)

1. Press the PRESET (3 GHz) pushbutton. The display should indicate exactly 3000.000 MHz. If the display is correct, CLK1 is correct and all the display LED's are properly receiving data.

NOTE

A floating data input on an LED display will be interpreted and displayed as a logic high.

- 2. Set the frequency to 2345.678 MHz. Disconnect the 10 MHz clock signal (blue coax) from A3A1A1. Set tuning the resolution to 1 kHz. If the frequency cannot be changed, go to step 5.
- 3. Turn the TUNING knob clockwise.
- 4. With the manual clock switch on A2A11 generate clock pulses. The display should progress in this manner:

Clock Pulse	Display
1	99999.999
2	77777,779
3	66666.679
4	55555.679
5	44445.679
6	33345.679
7	22345.679
8	02345.679
9	2345.679

Generate nine (9) more clock pulses to complete the controller cycle. The display should not change during the latter nine pulses. If the data does not clock in properly, check the input data (DRII 1—8) with a logic analyzer or probe to assure it is correct. If the data is OK, trouble-shoot U4, U3, and A2DS 1—8. If the data is incorrect, go to Service Sheet 9-A2 to continue troubleshooting.

- 5. Set the instrument to STANDBY. The STANDBY lamp should light.
- 6. Unplug the instrument for 1-2 minutes. Reconnect Mains. The OVEN and STANDBY lamps should both come on. If neither of them come on, suspect a burned out lamp (with the OVEN light A2A1U7 or the A3A8 Reference Oscillator could be defective). If everything is OK to this step, the A2A1 and A2A3 assemblies are OK.
- 7. Swing open the controller front panel (requires removal of four screws) to gain access to the outputs of the A2A2 Rotary Pulse Generator (RPG). Observe the outputs (RPG2 and RPG1) on an oscilloscope. When tuning clockwise the TTL pulses of RPG1 should occur before RPG2 pulses and when tuning counterclockwise RPG2 should occur before RPG1. If the pulses occur properly, the RPG is OK and trouble-shooting should proceed to Service Sheet 8-A2.

SERVICE SHEET 13-A2 (Cont'd)

MENMONICS

Mnemonic	Definition	Explanation
CLK1	Clock 1	Nine pulses during the first half of the data cycle. Each pulse coincides with a frequency digit.
CYCLE	One data cycle	Low during the first half of a data cycle, high during the second half.
DR1I 1-8	Data Register 1 In	Four lines that carry frequency information sequentially by digit in BCD format.

DEFINITION

Data Cycle — The process of changing the Synthesizer's frequency by adding or subtracting 1 from one of the digits.

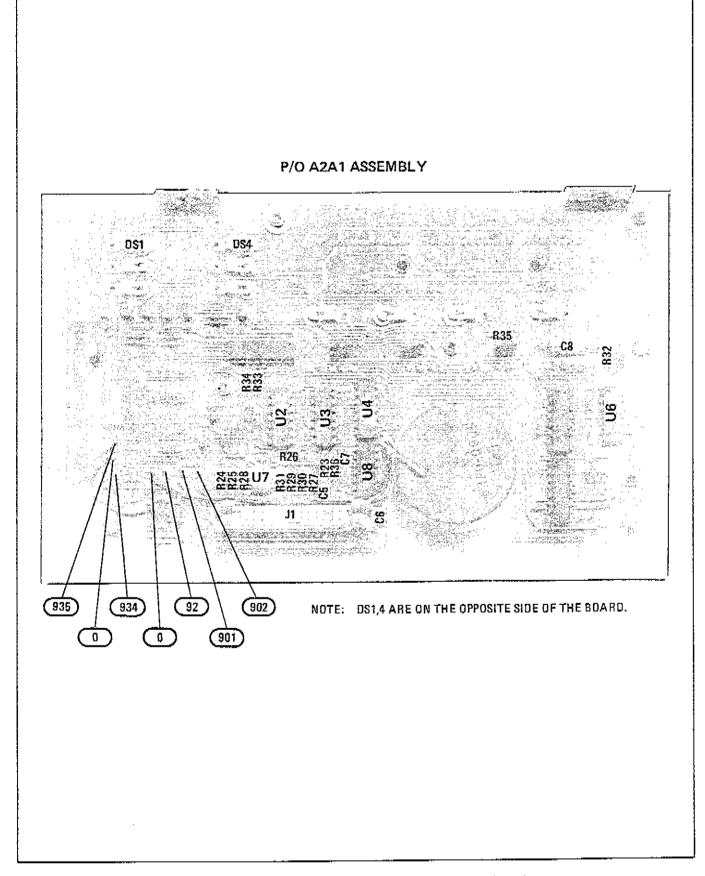
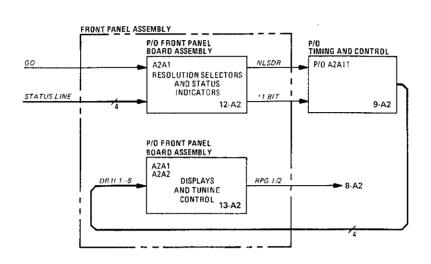



Figure 8-63. P/O A2A1 Front Panel Assembly Component Locations

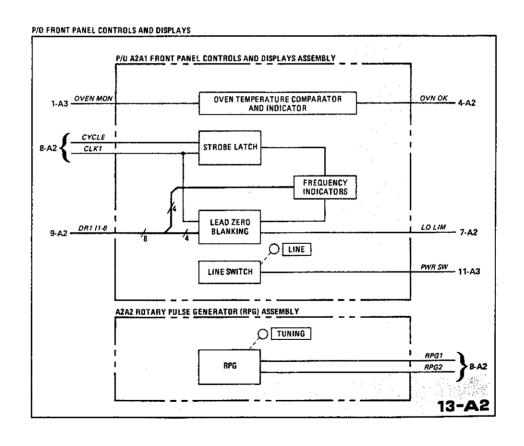
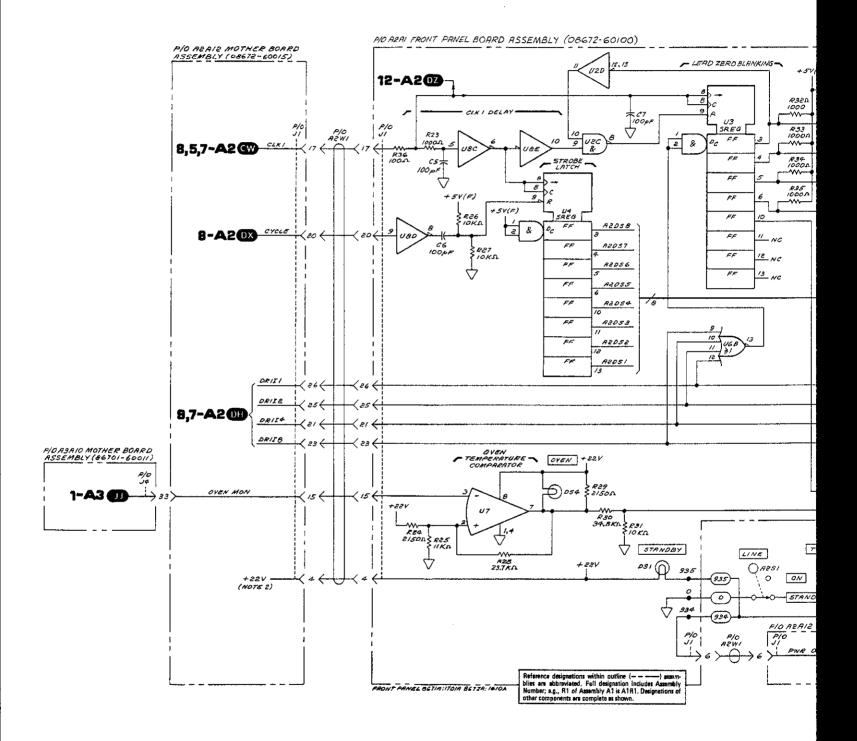



Figure 8-64. P/O Front Panel Block Diagrams

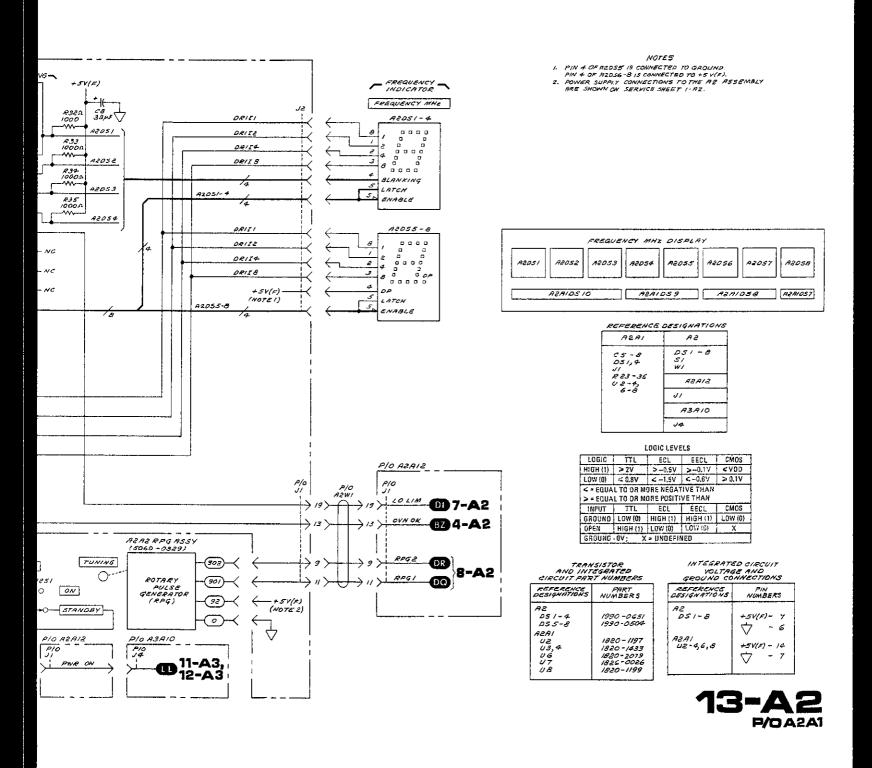


Figure 8-65. P/O Front Panel Assembly Schematic Diagram

SERVICE SHEET 1-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram

• Motherboard wiring

• Parts list

Performance tests

Adjustment procedures

Page 8-33

Last 3 foldout pages

Page 6-21, 6-40

Refer to Table 5-3 on Page 5-3

Page 5-2

PRINCIPLES OF OPERATION

General

The Reference Loop locks the M/N Loop and 20/30 MHz (LFS) Loop to the Synthesizer's time base. Two reference signals, 20 and 400 MHz, are provided for the M/N Loop. The 10 MHz signal is the reference for the 20/30 MHz Loop. It also is the master clock for the controller's digital circuits.

The output of the 100 MHz VCXO is used to generate the reference signals and to phase lock the Reference Loop. The signal is multiplied by 4, to 400 MHz. It is also buffered and output to the rear panel's 100 MHz OUT connector. A portion of the 100 MHz is divided by 5 to 20 MHz. The 20 MHz signal is divided by two to 10 MHz. A portion of this signal is phase compared to the 10 MHz time base signal. The resulting error voltage tunes the VCXO to achieve phase lock.

A3A8 10 MHz Reference Oscillator

The oscillator's oven temperature is held constant by an internal heater control unit. This unit is powered by the +22V supply and therefore receives power any time the Synthesizer is connected to the line power. The OVEN MONITOR signal controls a front panel OVEN annunciator which indicates that the oscillator has not reached operating temperature. The oscillator's RF operation is controlled by the rear panel FREQUENCY STANDARD INT/EXT switch through the +11V switched supply voltage.

A3A1A1 Reference Phase Detector Assembly

Phase Lock Sampler. This circuit outputs a dc level which is proportional to the phase difference between its two input frequencies. The sampling signal comes from the 10 MHz Reference Oscillator Assembly. The sampled signal is derived from passing the 100 MHz VCO output through a divide-by-ten circuit.

The Sampling signal passes through the Limiting Amplifier. Here the output level is converted to TTL logic levels before being input to the Pulse Generator. U2D squares up the output of the Limiting Amplifier. The signal to U2A pin 2 and 3 is inverted and delayed by R11 and C5. The delay causes a narrow pulse at TP1. The Buffer Amplifier supplies sufficient current to drive Phase Lock Sampler diodes CR3 and CR4.

The feedback (sampled) signal from the 100 MHz VCXO is divided-by-ten, amplified, phase shifted +45° and coupled to the Phase Lock Sampler. The Phase Lock Sampler output (the input to the integrating amplifier) is proportional to the phase difference between the reference and feedback signal. (This has been purposely set to 0 Vdc when the loop is locked). The small error voltage that is present when the loop is locked is integrated, amplified and output to the 100 MHz VCXO as a TUNE VOLTAGE.

SERVICE SHEET 1-A3 (Cont'd)

Lock Indicator Sampler. The operation of the Lock Indicator Sampler is similar to the Phase Lock Sampler. The only difference is that the feedback signal's phase at the Lock Indicator Sampler lags by 45°. The total difference in phase between the sampler inputs is 90°. This causes a maximum negative output from the Lock Indicator Sampler when the reference loop is locked. The Phase Lock Detector indicates the locked condition with a low output (equal to or more negative than -0.7 Vdc).

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1 and 2 was used to isolate a reference loop malfunction. The following information will allow further isolation to circuits shown by one of the two reference loop schematics 1-A3 or 2-A3. If the malfunction is on 1-A3, this information will also aid in isolating the defective component.

Test Equipment

Oscilloscope	HP 180C/1801A/1821A
Digital Voltmeter	HP 3455A
Power Supply	HP 6202B
Spectrum Analyzer	HP 8555A/8552B/141T
Power Meter	HP 436A/8481A
Frequency Counter	HP 5340A

NOTE

The power meter and frequency counter are to be used in place of the spectrum analyzer where precise power and frequency measurements are required.

- 1. Connect the A3A1A2 TUNE test point to a -8 Vdc power supply. The counter should measure 100 MHz ±100 Hz. If the signal is incorrect, go to Service Sheet 2-A3 to troubleshoot the VCXO. (The VCXO may only need to be adjusted.) Otherwise, continue with step 2.
- 2. Connect the Synthesizer to the line voltage. Set the LINE switch to ON and allow 15 minutes for warm up. When the Synthesizer is first plugged in, the OVEN and NOT PHASE LOCKED lights should be on. The NOT PHASE-LOCKED light will generally go out after 15 minutes when the crystal reference is 10 MHz ±50 Hz. Make sure the rear panel reference jumper is installed, the FREQUENCY STANDARD INT/EXT switch is set to INT and the front panel RF switch is ON.
- 3. To test phase lock of the reference loop, connect an oscilloscope's vertical amplifier to the rear panel 10 MHz OUTPUT (A3J8). Insert a BNC tee between the FREQUENCY STANDARD output (A3J9) and the cable. Connect the open port to the oscilloscope's horizontal input. Obtain a lissajous pattern on the oscilloscope. If the loop is locked, a steady 1:1 pattern should be seen. Use a 50 ohm load on each line to reduce harmonic content. If the loop is locked proceed to Step 7. Otherwise continue with Step 4.
- 4. Measure the FREQUENCY STANDARD output at A3J9 with power meter and frequency counter. The signal should be 10 MHz ±10 Hz at

SERVICE SHEET 1-A3 (Cont'd)

0 dBm. Harmonic content is not particularly important for this signal. If this signal is not correct, check the A3A8 10 MHz Reference Oscillator for proper operation and calibration. Check the heater voltage (+22 Vdc). Also, check the +11V switched input which supplies power to the oscillator. (See Service Sheet 12-A3.)

- 5. Connect the 100 MHz TUNE test point A3A1A2TP1 to -8 Vdc from a low voltage power supply. This opens the loop and tunes the 100 MHz VCXO to approximately the correct frequency.
- 6. Measure the frequency of the 100 MHz OUT signal from A3A1A2. It should be 100 MHz about ±100 Hz. If this signal is correct, continue with step 7. Otherwise go to Service Sheet 2-A3 and troubleshoot the A3A1A2 Assembly. Disconnect the clip lead from the 100 MHz TUNE and —8 Vdc.
- 7. Measure the voltage at the 100 MHz TUNE test point, A3A1A2TP1. It should be nominally —8 Vdc with a range between —5 Vdc and —20 Vdc. If the voltage is near nominal, continue with this procedure. Otherwise skip to step 11.
- 8. Measure the 10 MHz outputs of A3A1A1. The three outputs should deliver 0 dBm into a 50 ohm load at exactly 10 MHz.
- 9. Measure the 20 MHz output. It should deliver +3 dBm into a 50 ohm load at exactly 20 MHz.
- 10. Install A3A1A1 on an extender board and measure the voltage at edge connector pins 7 or 22. When the loop is locked the voltage should be -0.7 Vdc. Switch rear panel reference switch to external. The loop should unlock and the voltage should be +4.6 Vdc. If the voltages are correct then A3A1A1 is operating normally. Otherwise, troubleshoot the lock indicator circuitry.
- 11. Measure the signal at A3A1A1TP1 with an oscilloscope. It should be 3 volt pulses at a 10 MHz rate. If correct continue. Otherwise, trouble-shoot the limiting amplifier pulse generator and reference oscillator.
- 12. Measure the signal at the junction of C27 and L3. It should be a 10 MHz sine wave at 3 Vp-p. If the loop is not phase locked, the frequency of this signal will be incorrect. If the signal is not present, troubleshoot the VCXO divider and the 45° Phase Lead and Buffer Amplifier. If the signal is present, continue.
- 13. Measure the signal at the base of Q4A. If the signals in steps 10 and 11 are at different frequencies, the difference between them (beat frequency) should be measureable here. If not present, troubleshoot the Phase Lock Sampler. If present, troubleshoot the Integrating Amplifier. If no problem is found continue troubleshooting on Service Sheet 2-A3.

NOTE

After repairing the A3A1A1 assembly, perform the Voltage Controlled Crystal Oscillator Adjustment in Section V. After replacing the A3A8 assembly, perform the 10 MHz Reference Oscillator Adjustment in Section V.

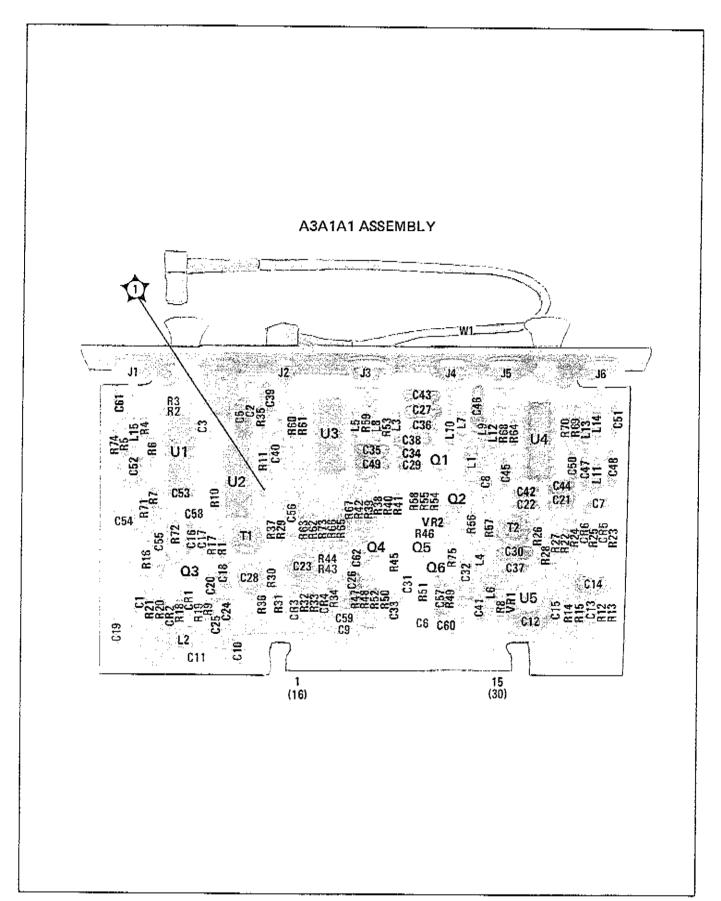
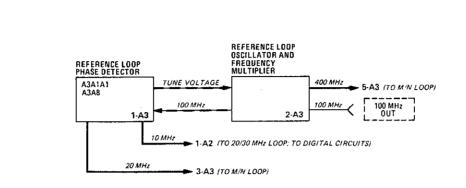



Figure 8-66. A3A1A1 Reference Phase Lock Board Assembly Component and Test Point Locations

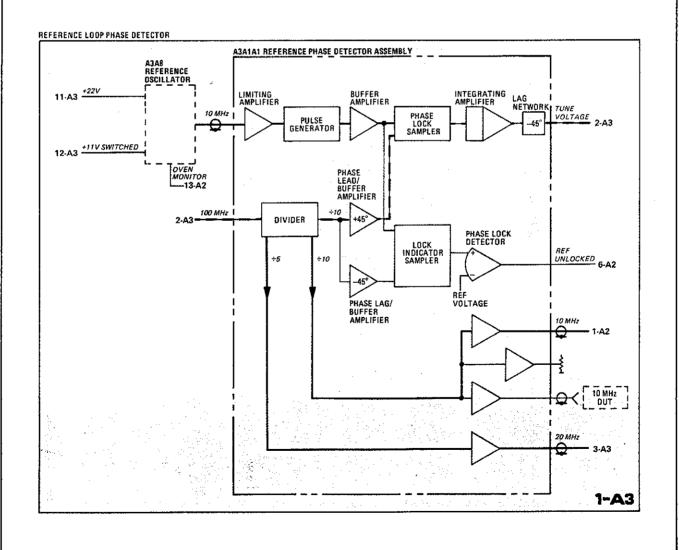
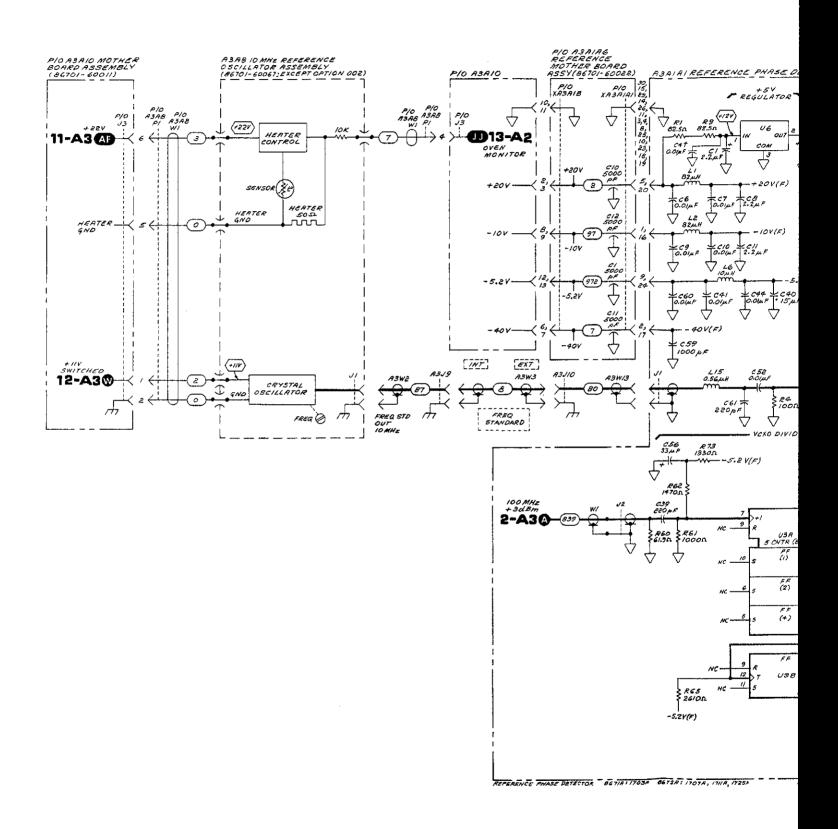
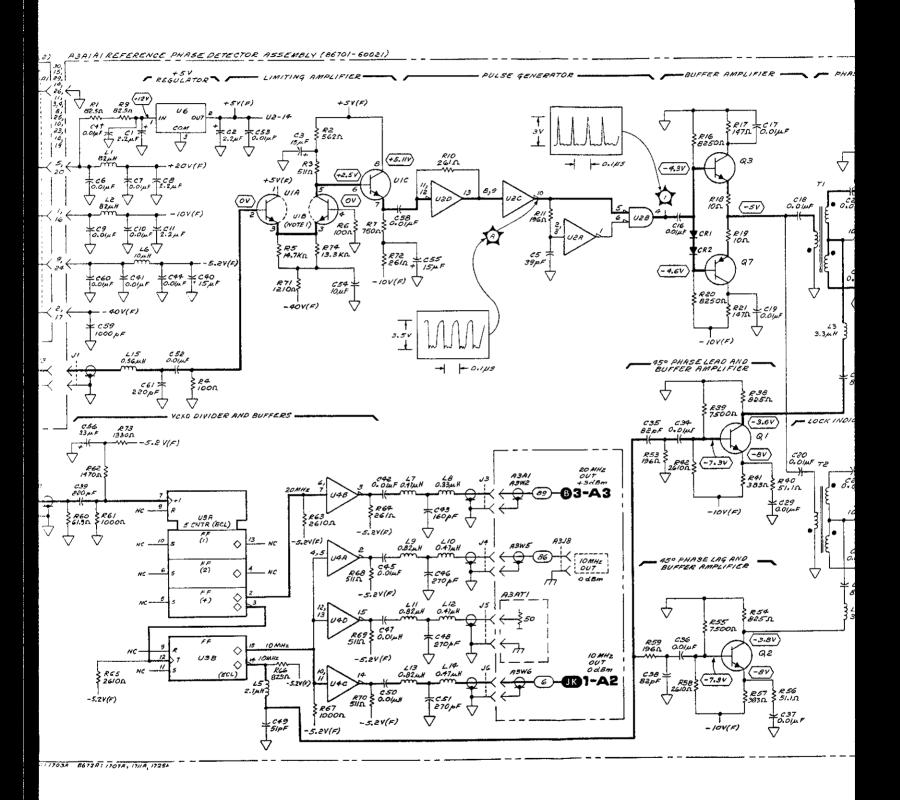




Figure 8-67. Reference Phase Lock Block Diagrams

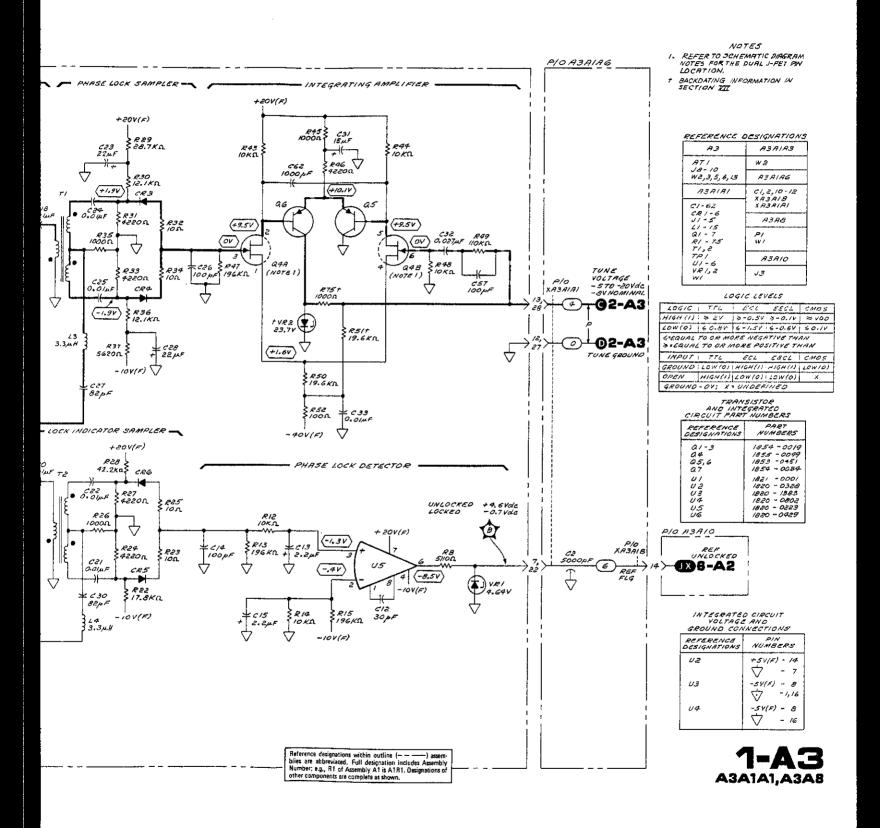


Figure 8-68. Reference Phase Lock Assembly Schematic Diagram

SERVICE SHEET 2-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
Motherboard wiring
Page 8-33
Last 3 foldout pages
Page 6-23

Parts list
 Page 6-23
 Performance tests
 Refer to Table 5-3 on Page 5-3

Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

General

The Reference Loop locks the M/N Loop and 20/30 MHz (LFS) Loop to the Synthesizer's time base. Two reference signals, 20 and 400 MHz, are provided for the M/N Loop. The 10 MHz signal is the reference for the 20/30 MHz Loop. It also is the master clock for the controller's digital circuits.

The output of the 100 MHz VCXO is used to generate the reference signals and to phase lock the Reference Loop. The signal is multiplied by 4, to 400 MHz. It is also buffered and output to the rear panel's 100 MHz OUT connector. A portion of the 100 MHz is divided by 5 to 20 MHz. The 20 MHz signal is divided by two to 10 MHz. A portion of this signal is phase compared to the 10 MHz time base signal. The resulting error voltage tunes the VCXO to achieve phase lock.

A3A1A2 100 MHz VCXO Assembly

Oscillator. The heart of the Reference Phase Locked Loop is the 100 MHz voltage controlled crystal oscillator. The crystal which sets the frequency and the varactor diode which allows a small deviation are both found in the oscillator's feedback path. Diodes CR3 and CR4 are placed at the oscillator output and limit the output to ±4 Vpk. The output is amplified and split by the tuned 100 MHz buffer. One output is connected back to the A3A1A1 Assembly where it is sampled by the phase detector circuits. The other output is coupled through a power splitter to the Quadrupler and another tuned 100 MHz amplifier.

Quadrupler. The Quadrupler is a Class C push-push amplifier. The output approximates a pulse and is rich in even harmonics. The amplifiers which follow are tuned to and therefore amplify the 400 MHz signal. The output level to the M/N loop is critical and is set by selecting the values of R67, R68 and R69 (50 Ω attenuator discrete resistors).

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 2 and 1-A3 was used to isolate a reference loop malfunction to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

Digital Voltmeter HP 3455A
Power Supply
Spectrum Analyzer
Power Meter HP 436A/8481A
Frequency Counter HP 5340A

NOTE

The power meter and frequency counter may be used in place of the spectrum analyzer and vice versa.

- 1. Connect the TUNE test point A3A1A2TP1 to -8 Vdc from a low voltage power supply.
- 2. Measure the 400 MHz output with a spectrum analyzer or power meter and frequency counter. It should be -10 to -11 dBm at 400 ±.004 MHz (with the loop locked it should be exactly 400 MHz). If the frequency or level is incorrect, perform the Voltage Controlled Crystal Oscillator (VCXO) Adjustment in Section V.
- 3. Measure the rear panel 100 MHz output. It should be 0 dBm at precisely one fourth the frequency measured in step 2. If correct continue with step 4. Otherwise troubleshoot Q6 and its associated components.
- 4. Measure the remaining two 100 MHz outputs from A3A1A2. They should both deliver 0 dBm.
- 5. Ground the TUNE test point. Verify that the VCXO is oscillating at less than 100 MHz.
- 6. Connect the TUNE test point to -25 Vdc from a low voltage power supply. Verify that the VCXO frequency is greater than 100 MHz. If the results of steps 5 and 6 are not correct, a change in the value of A3A1A2L4 may be needed. See the VCXO adjustment procedure in Section V.
- 7. If the results of steps 2 through 6 are correct, A3A1A2 is working properly. If there are no outputs, check power supply inputs and troubleshoot the 100 MHz oscillator or buffer (Q5, Q8 and Q9 and associated components). If some outputs are correct, refer to the schematic and continue troubleshooting.

NOTE

After repairing the A3A1A2 assembly, perform the Voltage Controlled Crystal Oscillator Adjustment in Section V.

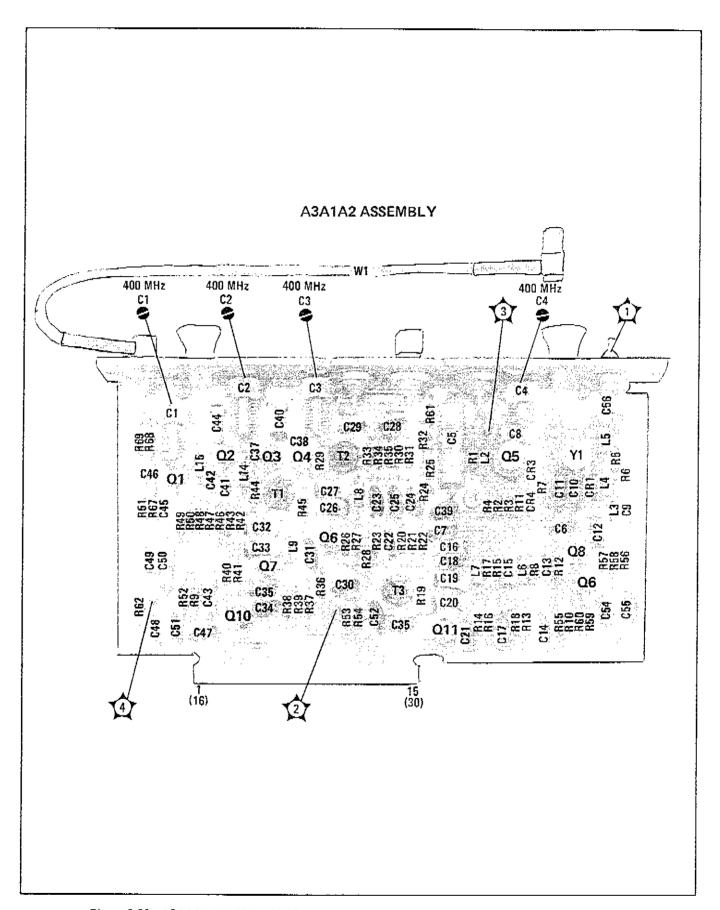
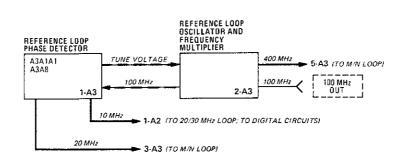



Figure 8-69. A3A1A2 100 MHz VCXO Assembly Component, Adjustment, and Test Point Locations

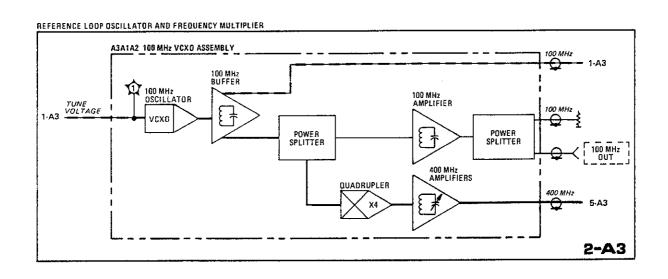


Figure 8-70. 100 MHz VCXO Block Diagrams

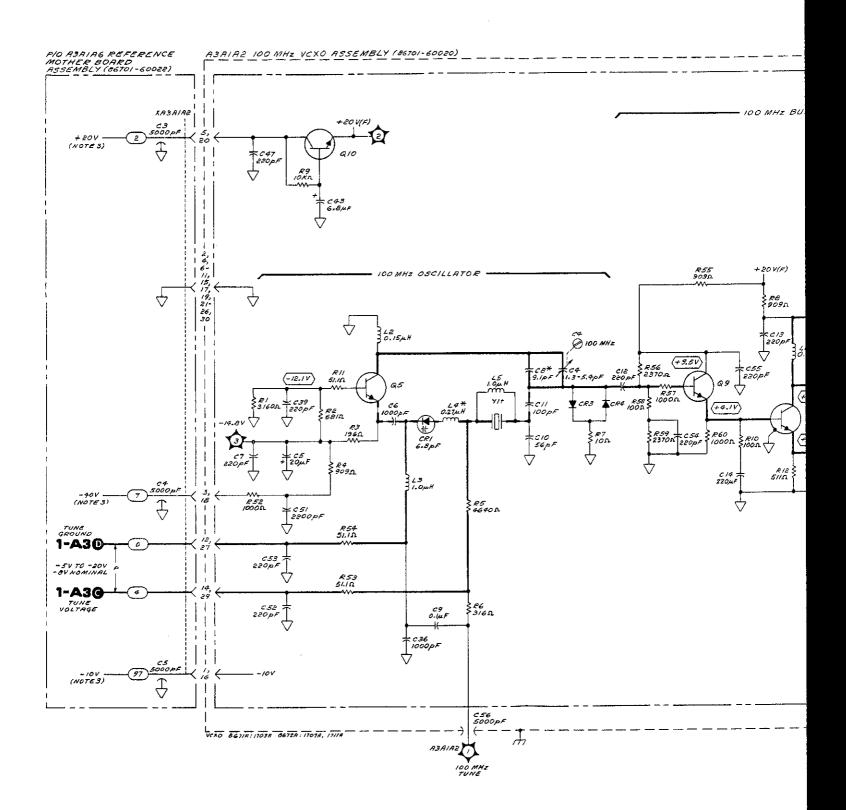
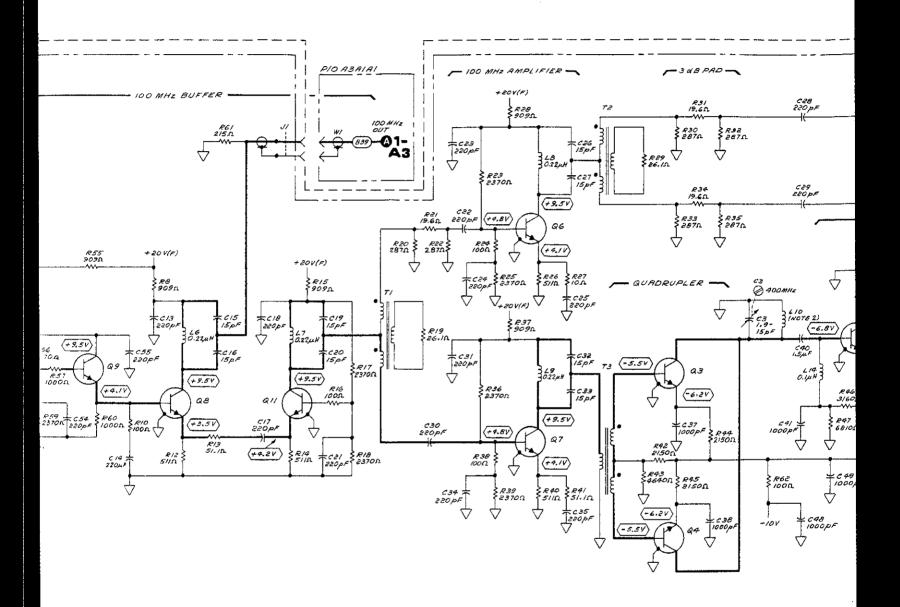



FIG. 8-71 Sht 2 of 3

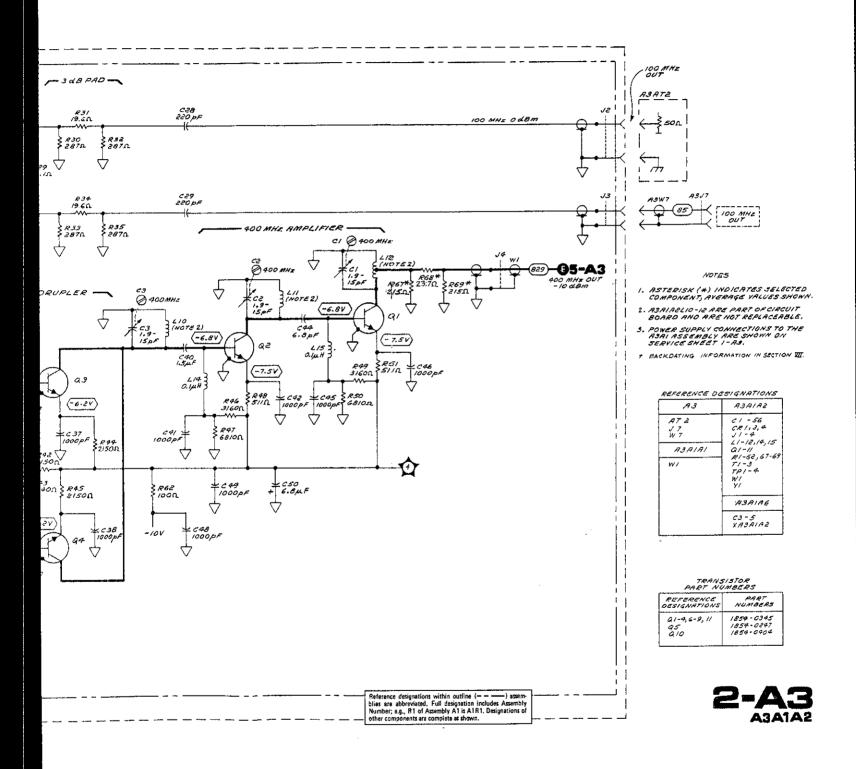


Figure 8-71. 100 MHz VCXO Assembly Schematic Diagram

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Page 8-33 Block diagram Last 3 foldout pages Motherboard wiring Page 6-26 · Parts list Refer to Table 5-3 on Page 5-3 Performance tests Page 5-2

Adjustment procedures

PRINCIPLES OF OPERATION

M/N Phase Lock Loop

The frequency output of the M/N loop 1) is dependent on the front panel frequency and 2) in part, controls the YTO output frequency. A digital equivalent (dependent on the front panel frequency's most significant digits 10 MHz to 10 GHz) is input to the M/N loop as M and N numbers. The ratio of the M and N numbers actually determine the M/N OUT frequency. The M/N OUT frequency's Nth harmonic (based on the N number and selected by the YTO pretuning) tunes the YTO frequency in 10 MHz steps. There is a 10 MHz step (or band) for each valid M/N OUT frequency (M/N ratio) and Nth harmonic (N number). This 10 MHz band complements the 20/30 MHz loop because its tuning range is 10 MHz and step size is 1 kHz. Together, the M/N Loop, YTO pretuning and 20/30 MHz Loop are able to tune the YTO from 2000,000 to 6199,999 MHz in 1 kHz steps.

The M/N loop provides a tunable phase locked reference signal for the YIG Tuned Oscillator (the Synthesizer's microwave signal source). The M/N Out frequency (177.5 to 197.5 MHz) is obtained by dividing the M/N VCO signal (355-395 MHz) by two. The M/N IF signal (5-45 MHz) is the lower mixing sideband of the VCO signal and the 400 MHz reference. The M/N loop is phase locked by comparing a subharmonic (fraction) of 20 MHz (20 MHz divided by the N number) to a subharmonic of the IF signal (5 to 45 MHz divided by the M number) in the phase detector. The phase detector generates an error voltage that is integrated and coupled to the VCO as a tuning signal. The M and N numbers are determined by the A2 controller and vary with the 10 MHz steps of the YTO frequency. The M/N Out frequency is dependent on the ratio of the M and N numbers as expressed in the following formula:

$$f_{M/N} = [200 - 10 (M/N)] MHz$$

where $f_{M/N} - M/N$ Out frequency
 $M = M$ number
 $N - N$ number

For example, if the ratio is 1-to-1 (M=N) then $f_{M/N} = 190.0000$ MHz. If the ratio is 1-to-2 (M=2N) then f_{M/N} = 195,000 MHz. Refer to Table 8-4, M and N Numbers and Resulting Frequencies for a complete list..

A3A1A3 M/N Phase Detector Assembly

M and N Dividers. The Phase Detector Assembly's M and N Dividers are essentially identical in operation. In each case the input frequency is divided by the divide number (a binary coded number input from the A2 Controller Assembly). The resulting output pulses are frequency and phase compared to produce an error voltage which ultimately tunes the M/N VCO. The following formulas show the frequency relationship of the inputs and outputs of the dividers:

$$f_{N} = (\frac{4}{N}) 20 \text{ MHz}$$

$$f_{M} = (\frac{4}{M}) f_{1F}$$

where f_N - N Divider Output pulse repetition frequency (PRF) (MHz).

f_M - M Divider Output PRF (MHz).

N = N Divide Number

M = M Divide Number

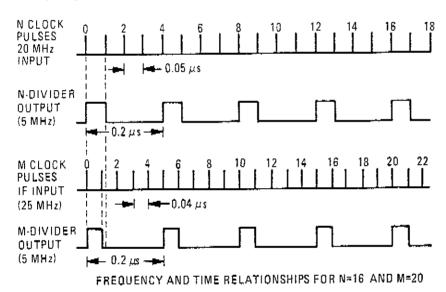
f_{IF} - M Divider Clock frequency (MHz)

20 MHz - N Divider Clock frequency

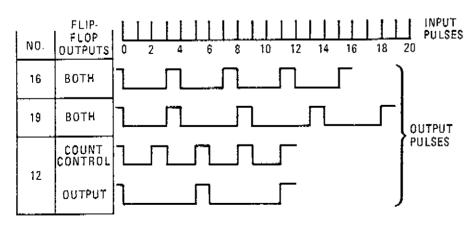
 $f_N = f_{M^{\frac{1}{2}}}$ when the loop is phase locked

therefore $(\frac{4}{N})$ 20 MHz - $(\frac{4}{M})$ f_{IF}

and $f_{1F} = \left[\left(\frac{M}{N} \right) 20 \right]$ MHz for the phase locked condition.


Because of the similarities of the M and N Dividers, only the N Divider will be described in detail.

N Divider Operation. The divider circuit is clocked by a pulse train derived from the input frequency (in this case the 20 MHz reference signal). The divider outputs 4 pulses for each sequence of clock pulses which add up to the N number. In other words, a pulse is output for each N/4 or N/4 + 1 clock pulses. If dividing the N number by 4 leaves no remainder, the number of clock pulses between output pulses is determined solely by N/4. If there is a remainder, the number of clock pulses between outputs is determined by N/4 and N/4 + 1 where N/4 + 1 replaces N/4 once for each unit in the remainder. For example, if N = 16, then N/4 = 16/4 = 4 with a remainder R=O. An output pulse occurs for each 4 clock pulses. If N = 19, then N/4 = 19/4 = 4 with R=3. An output pulse occurs once with a spacing of 4 clock pulses and three times with a spacing of 5 clock pulses.


- a. Counting Operation and Control. Refer to the schematic block diagram and the following figure and table entitled Divider Operation, and consider the example of N=16. At the beginning of a divide sequence (clock 1), the 4 most significant bits (MSB) of the N number (0100) are loaded into the programmable counter. Clock 2 subtracts 4 (0001) from the previous total leaving (0011) Clock 3 subtracts 4 more and the 0010 output enables the End of Count Decoder. At Clock 4, the Count Control and Output Flip-Flops are set. The Count Control outputs 1) inhibit the End of Count Decoder 2) cause the Programmable Counter to enter its load mode and 3) clocks the Divider Flip-Flops. The Output Flip-Flop outputs a high to the Phase/Frequency Detector. Clock 5 resets the flip-flops and loads the counter. This series of events repeats itself 3 more times for the N=16 sequence.
- b. Increment Decoder Operation. The Increment Decoder and Divider (divide-by-four) circuits come into play if the N number cannot be divided by 4 evenly. The 2 least significant bits (LSB) of the N number (N2 and N1) control the output of the Increment Decoder. The divide-by-four circuit provides a sequence of four sequential states, that are input to the Increment Decoder. Each state coincides with one of the four count down sequences whose length is characterized by N/4 or N/4 + 1. Refer to the table entitled Increment Decoder Operation. Note that for the N=16 sequence, N2-N1-0. As explained in Counting Operation and Control, the Increment Decoder Output Sequence (TP6) never leaves the low state and the count down sequences are N/4. For N-19 (N2-N1=1) the first output is low with the remaining three high. This means that the first pulse occurs after N/4 clock pulses and the other three occur after N/4+1 pulses. During the final three count down sequences, the high at the Increment Decoder Output inhibits U11B allowing the counter to count down to 0001 (rather than 0010) before the End of Count Decoder is enabled through

Ul1A. This allows the extra count to occur. The rest of the sequence occurs as indicated in the previous section. See also the table and figure entitled Divider Operation for N=19.

Divide-by-1 or 2 Operation. With the N input equal to or greater than 16, the N5 or N6 inputs are high and the Divide-by-1 or 2 Decoder is enabled. Thus the Output Flip-Flop follows the Count Control Flip-Flop and each End of Count pulse is passed directly to the output. If N<16, then the Divide-by-1 or 2 Decoder is enabled and therefore passes only every other End of Count pulse to set the Output Flip-Flop. (Refer to the table entitled Divider Operation and the figure entitled Divider Clock Pulses versus Output Pulses). This circuit reduces the apparent gain of the Phase/Frequency Detector. This keeps the $\Delta F_{\rm VCO}/\Delta V$ sensitivity of the VCO in a specific portion of its tuning curve thereby keeping the M/N loop bandwidth constant. Note that the N5 and N6 inputs are also connected to the M-Divider in the same manner as in the N Divider. Note also that the frequency of the M and N Divider Outputs is halved for N<16.

Divider Clock Pulses Versus Output Pulses Frequency and Time Relationships

Divider Operation

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 2, and 5-A3 was used to isolate a M/N Loop malfunction to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

Frequency Counter	HP 5340A
Digital Voltmeter	HP 3455A

- 1. Press the PRESET (3 GHz) pushbutton.
- 2. Observe the M/N loop lock indicator on A2A7. The lamp should be on. If the lamp is not on continue with this procedure. If the lamp is on, perform the next two steps to confirm correct loop operation.
- Connect the frequency counter to the M/N loop output on A3A1A5. Use a common time base for this measurement. The frequency should be 189.375 000 MHz.
- 4. Check the following frequencies (the extremes of the M/N loop)

RF Output Frequency	M/N Loop Output
2100 MHz	177.500 000 MHz
6090 MHz	197.419 355 MHz

If the frequencies are correct, the loop has adequate tuning range and is probably operating correctly.

- Measure the signal at A3A1A3TP1 with the Synthesizer set to 6100 MHz.
 The signal should be 20 MHz divided by 4/N (N=32 at 6100 MHz) or exactly 2.50 MHz at ECL levels. (Refer to Schematic Notes.)
- 6. Tune the Synthesizer to 2900 MHz. The signal at TP1 should be 5.0 MHz (N=16).
- 7. Tune to 2700 MHz. The signal at TPI should be 2.666 666 MHz (2/N x 20 MHz; N=15). If steps 6, 7 and 8 were correct, The N-divider is working properly and the N-decoder in the controller is operating properly. Otherwise, check the input data and, if necessary, troubleshoot the divider.
- Connect the IF IN white-red coax to the 20 MHz reference signal in place
 of the gray-white coax. This connects a known (20 MHz) signal to the
 M-divider. Tune to 3010 MHz and measure the frequency at TP4. It should
 be 5.0 MHz.
- 9. Tune to 2820 MHz (M=15). The frequency at TP4 should be 2.666 666 MHz. If steps 9 and 10 are correct the M-divider is working properly and the M-decoder in the controller is operating properly.
- 10. Reconnect the IF and 20 MHz inputs. Tune to 2800 MHz. Connect the voltmeter to A3A1A5 TUNE test point. The voltage should be about -4 Vdc. Tune to 3010 MHz. The voltage should change to about -26.2 Vdc. If these voltages are approximately correct, the Phase Detector Assembly is operating correctly.

NOTE

After repairing the A3A1A3 assembly, perform the M/N Loop Adjustments in Section V.

Divider Operation

Ñ	Input		N number		Flip-	Flop
	Clock Pulses	ock Operation	in Counter (4 MSB)	End of Count Decoder	Count Control	Output
16	0,4,8,12	Load Counter	0100	Inactive	Reset	Reset
	1,5,9,13	Minus 4	0011	Inactive	Reset	Reset
	2,6,10,14	Minus 4	0010	Active	Reset	Reset
	3,7,11,15	Minus 4	0001	Inactive	Set	Set
19	0,4,9,14	Load Counter	0100	Inactive	Reset	Reset
	1,5,10,15	Minus 4	0011	Inactive	Reset	Reset
	2,6,11,16	Minus 4	0010	Inactive ¹	Reset	Reset
	3,7,12,17	Minus 4	0001	Active ²	Reset ³	Reset ³
	8,13,18	Minus 4	0000	Inactive	Set	Set
12	0,3,6,9	Load Counter	0011	Inactive	Reset	Reset
	1,4,7,10	Minus 4	0010	Active	Reset	Reset
	2,5,8,11	Minus 4	0001	Inactive	Set	Set ⁴

¹ Active for step 3 only 2 Inactive for step 4 only

Increment Decoder Operation

	Increment Decoder Control Inputs		Incremen Output S		
N2	N1	1	2	3	4
L(0)	L(0)	L	L	L	Ļ
L(0)	H(1)	L	L	H	Ļ
H(1)	L(0)	L	Ħ	L	Н
H(1)	H(1)	L	H	Н	Н

^{*}The Sequence of four states is controlled by a modified ring counter made up of the two flip-flops contained in U4. The count sequence of U4 may be checked by verifying that the active high outputs of the flip-flops follow the sequence LL, HH, LH, and HL (U4A-pin 2 and U4B-pin 15 respectively).

³ Set for step 4 only

 $^{^4}$ The Output Flip-Flop is set only every other time the counter control Flip-Flop is set for N $\leq\!16$.

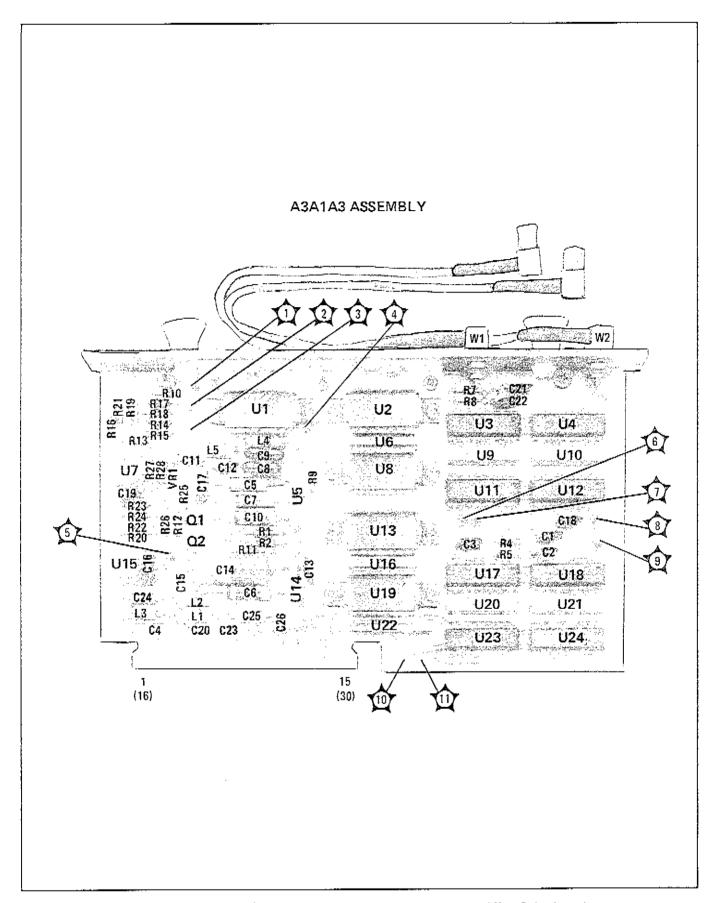


Figure 8-72. A3A1A3 M/N Phase Detector Assembly Component and Test Point Locations

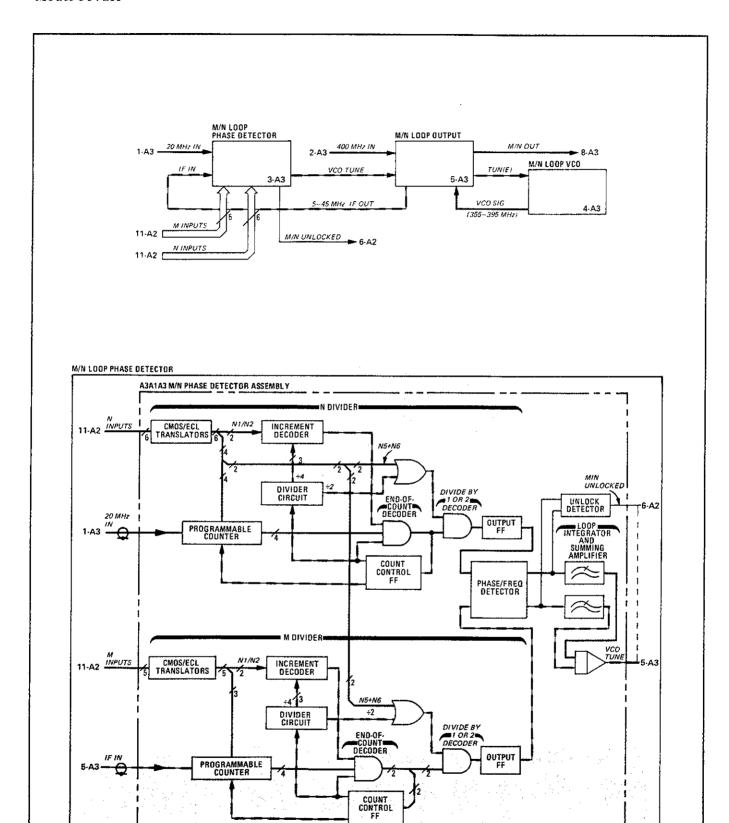
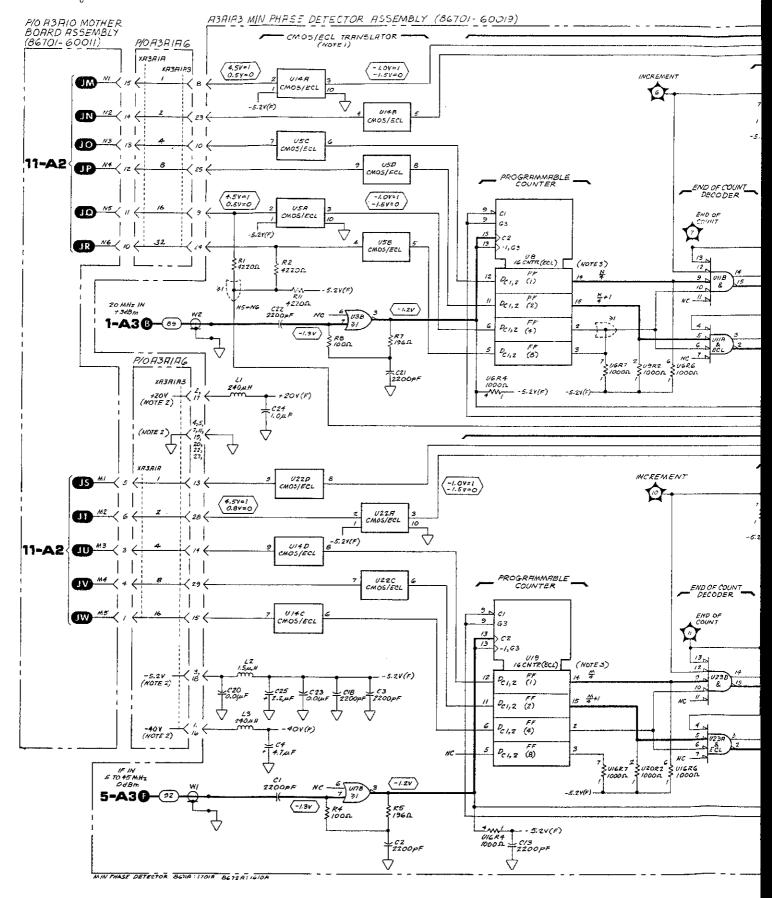
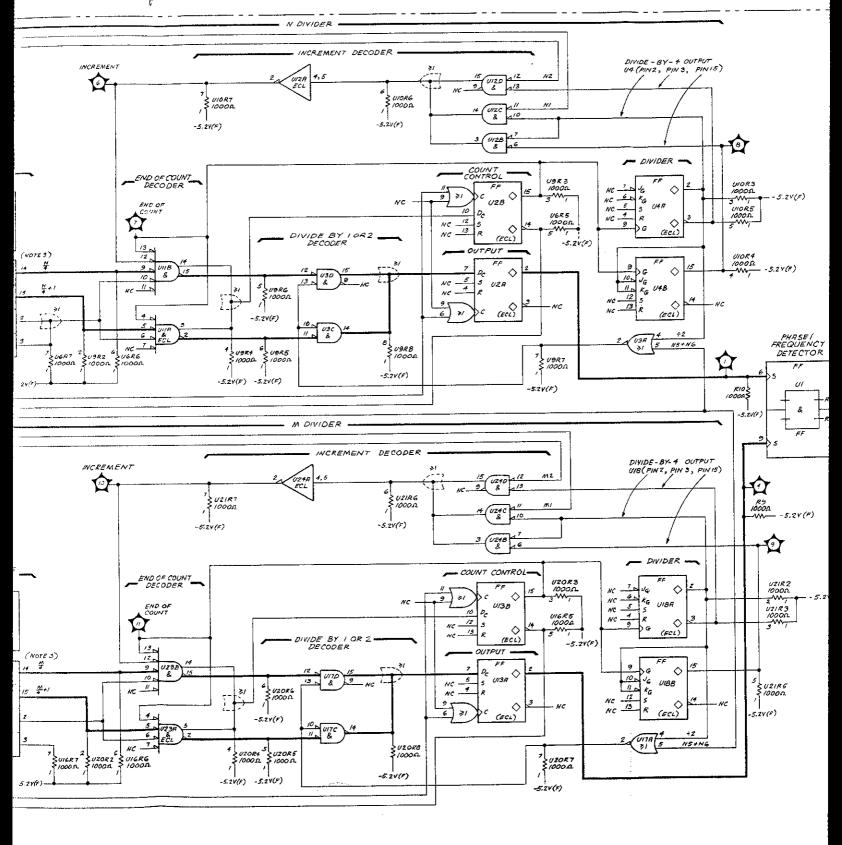




Figure 8-73. M/N Phase Detector Block Diagrams

3-A3

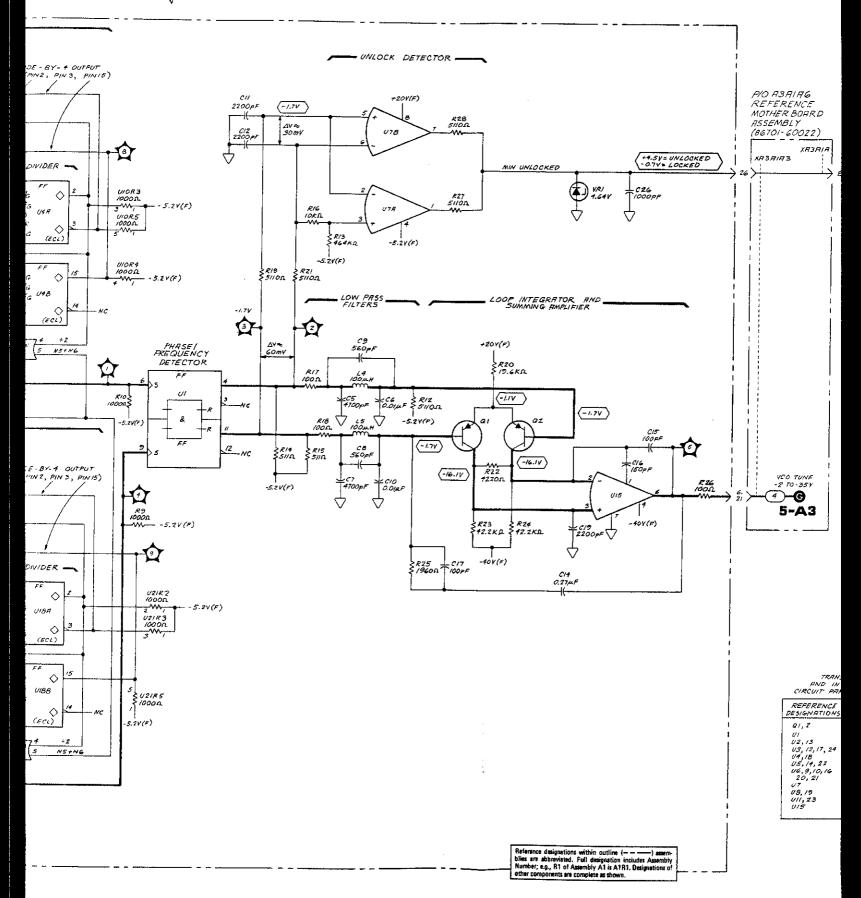


Figure 8-74. M/N Phase

F16.8-74 SNT 4044

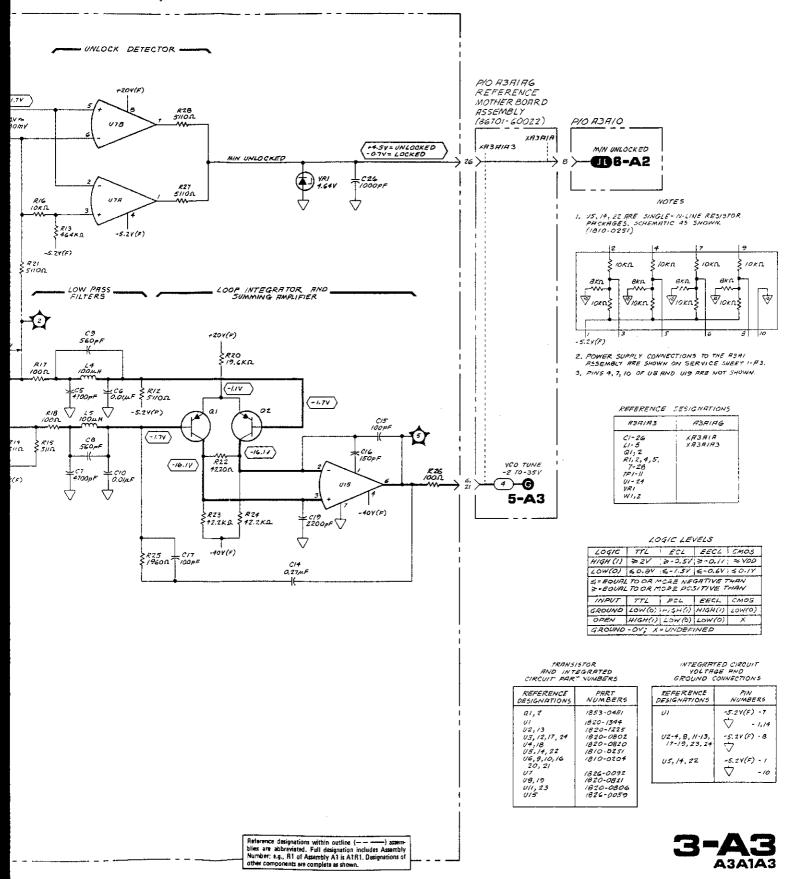


Figure 8-74. M/N Phase Detector Assembly Schematic Diagram

SERVICE SHEET 4-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
 Motherboard wiring
 Last 3 folder

Motherboard wiring Last 3 foldout pages
Parts list Page 6-27

Performance tests
 Refer to Table 5-3 on Page 5-3

Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

M/N Phase Lock Loop

The frequency output of the M/N loop 1) is dependent on the front panel frequency and 2) in part, controls the YTO output frequency. A digital equivalent (dependent on the front panel frequency's most significant digits 10 MHz to 10 GHz) is input to the M/N loop as M and N numbers. The ratio of the M and N numbers actually determine the M/N OUT frequency. The M/N OUT frequency's Nth harmonic (based on the N number and selected by the YTO pretuning) tunes the YTO frequency in 10 MHz steps. There is a 10 MHz step (or band) for each valid M/N OUT frequency (M/N ratio) and Nth harmonic (N number). This 10 MHz band complements the 20/30 MHz loop because its tuning range is 10 MHz and step size is 1 kHz. Together, the M/N Loop, YTO pretuning and 20/30 MHz loop are able to tune the YTO from 2000.000 to 6199.999 MHz in 1 kHz steps.

The M/N loop provides a tunable phase locked reference signal for the YIG Tuned Oscillator (the Synthesizer's microwave signal source). The M/N Out frequency (177.5 to 197.5 MHz) is obtained by dividing the M/N VCO signal (355—395 MHz) by two. The M/N IF signal (5—45 MHz) is the lower mixing sideband of the VCO signal and the 400 MHz reference. The M/N loop is phase locked by comparing a subharmonic (fraction) of 20 MHz (20 MHz divided by the N number) to a subharmonic (fraction) of the IF signal (5 to 45 MHz divided by the M number) in the phase detector. The phase detector generates an error voltage that is integrated and coupled to the VCO as a tuning signal. The M and N numbers are determined by the A2 controller and vary with the 10 MHz steps of the YTO frequency. The M/N VCO frequency is dependent on the ratio of the M and N numbers as expressed in the following formula:

 $f_{M/N \text{ VCO}} = [400 - 20 (M/N)] \text{ MHz}$

where

 $f_{M/N} = M/N OUT frequency$

M = M number

N = N number

For example, if the ratio is 1-to-1 (M=N) then $f_{M/N \text{ VCO}} = 380.000$ MHz. If the ratio is 1-to-2 (M=2N) then $f_{M/N \text{ VCO}} = 390.000$ MHz.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 2 and 5-A3 was used to isolate a M/N loop malfunction to the circuits shown on this schematic. The following information will aid in isolating the defective component.

$Test\ Equipment$

Power Supply	HP 6202B
Spectrum Analyzer HP 8555A/8	552B/141T
High Impedance Spectrum Analyzer Probe	HP 1121A
Digital Voltmeter	HP 3455A

1. Install A3A1A4/A5 on an extender board.

CAUTION

Do not apply a positive voltage to A3A1A4TP1. A positive voltage will forward bias the VCO tuning diodes and may destroy them.

- 2. Connect the positive output of a low voltage power supply to chassis ground. Connect the negative output to A3A1A4TP1 TUNE test point. Connect the white M/N VCO OUT cable to the spectrum analyzer.
- 3. Set power supply to -35.0 ± 0.5 Vdc. The M/N VCO output should be about 395 MHz at 0 ± 1 dBm.
- 4. Slowly reduce the voltage to -2 Vdc while monitoring the VCO power output and frequency. The power should remain greater than -1 dBm over the entire frequency span. At -2 Vdc the frequency should be about 355 MHz. See troubleshooting data in the table for some typical voltages and frequencies. If the frequency varies properly at the correct power level A3A1A4 is working properly.
- 5. If the output level and frequency are not correct, perform the M/N loop adjustment procedure in Section V, before trouble-shooting. If adjustment doesn't solve the problem continue with this procedure.
- 6. Measure the -40V power supply line as it enters A3A1A4. It should measure between -39 and -40.6 Vdc. If incorrect, turn to Service Sheet 13-A3 and continue troubleshooting.
- 7. Measure the bias voltages on Q2 as shown on the schematic. If correct, continue with this procedure. Otherwise troubleshoot Q2 and its associated components (Negative Resistance Oscillator). When measured with a high impedance probe, the power level at the emitter of Q2 should be approximately 0 dBm.
- 8. Measure the voltage at the pin labeled TUN. This should be the same voltage applied to A3A1A4TP1 TUNE test point.

- 9. Measure the RF voltage at Q1 base. Use the HP Model 1121A high impedance spectrum analyzer probe or high frequency oscilloscope to avoid disturbing signal level.
- 10. If the results of steps 7 and 8 are correct and the output from the oscillator is missing or too low, the A3A1A4A1 VCO Resonator assembly is probably defective and should be replaced with a new A3A1A4 assembly. Recheck the adjustment of A3A1A4A1C5 before ordering a new assembly.
- 11. If the RF voltage at the base of Q1 is correct, check the dc bias voltages on Q1 to determine why the output isn't correct.

VCO Tune Voltage and Frequency

Frequency
395,0 MHz
375.0 MHz
365.0 MHz
355.0 MHz

NOTE

After repairing the A3A1A4 Assembly, perform the M/N Loop Adjustments in Section V.

8.70 d

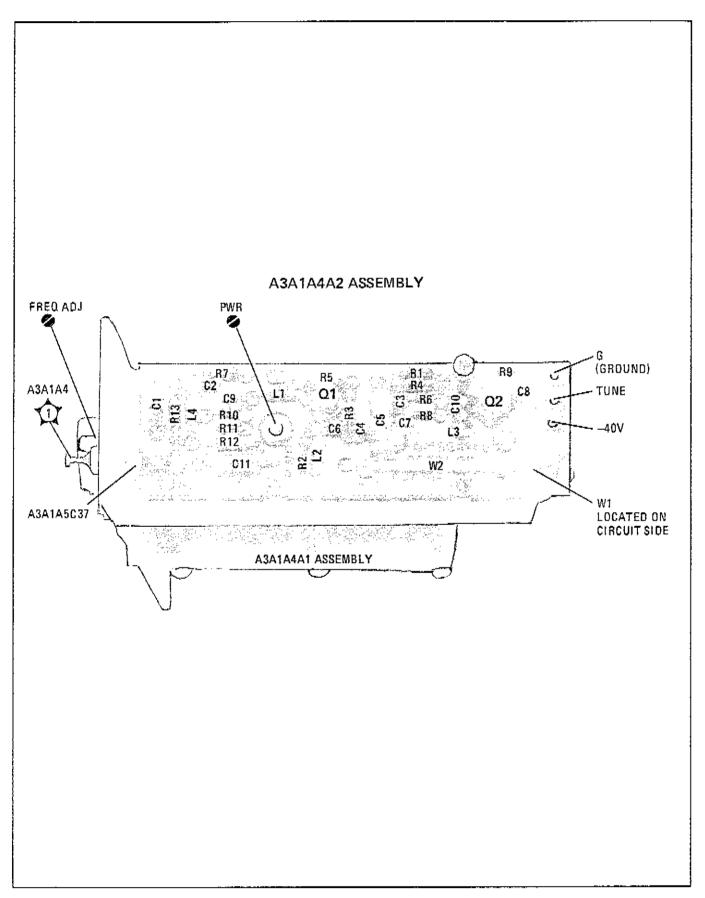


Figure 8-75. A3A1A4A2 M/N VCO Board Assembly Component, Adjustment, and Test Point Locations

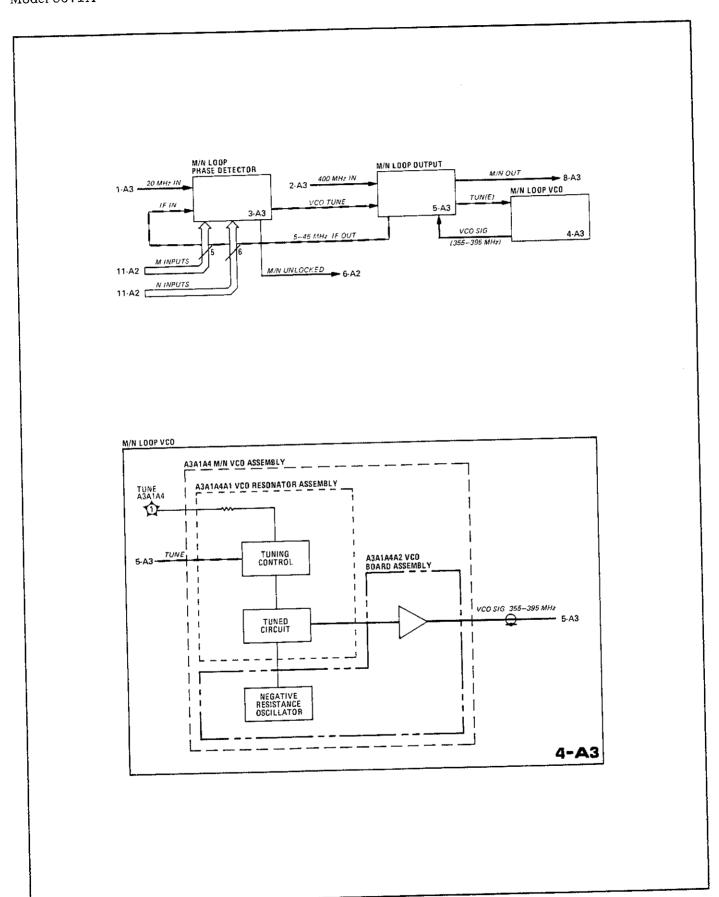
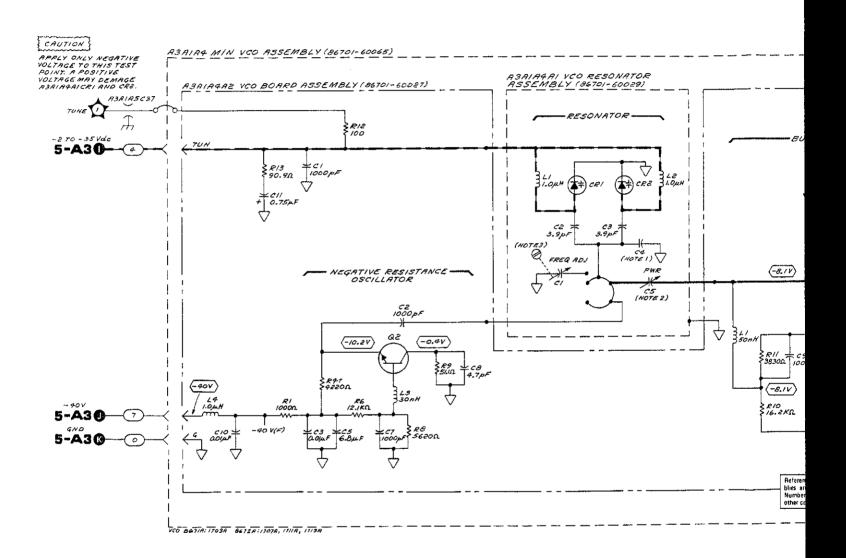
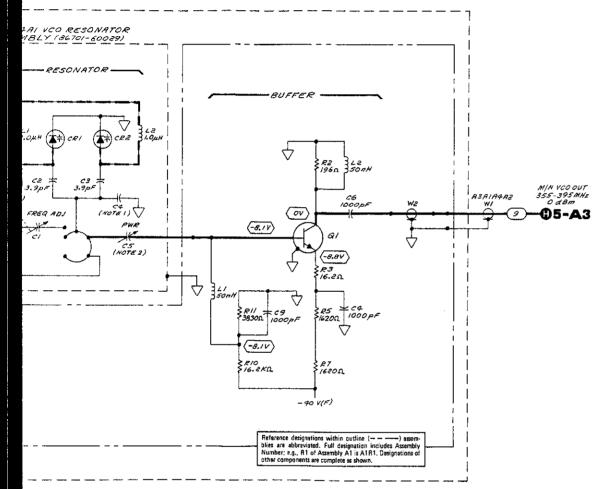




Figure 8-76. M/N VCO Block Diagrams

F16.8-77 SH2 of 2

NOTES

- 1. ABRIAGRICA IS AN AIR DIELECTRIC CAPACITOR FORMED BY RESONATOR HOUSING AND RESONATOR CENTER CONDUCTOR.
- 2. PWR ADJUSTMENT IS AN ADJUSTABLE PROBE MOUNTED ON ASAIASAS AND EXTENDING INTO THE YCO RESONATOR ASSEMBLY.
- 3. ADJUSTMENT SCREW LOCATED ON COVER OF M/N OUTPUT ASSEMBLY ASAIAS.
- # BACKDATING INFORMATION IN SECTION TIT

REFERENCE DESIGNATIONS

A3AIA4AI	A3AIA4A2
C/-5 CR1,2 L1,2	C1 = 1/ L1 - 4 Q1,2 R1 - 13
A3AIA5	TPI
C37	W/,2

TRANSISTOR PART NUMBERS

REFERENCE	PART
DESIGNATIONS	NUMBERS
Q/	1854-0610
Q2	1854-0686

SERVICE SHEET 5-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
 Motherboard wiring
 Page 8-33
 Last 3 foldout pages

• Parts list Page 6-28

Performance tests
 Refer to Table 5-3 on Page 5-3

Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

M/N Phase Lock Loop

The frequency output of the M/N loop 1) is dependent on the front panel frequency and 2) in part, controls the YTO output frequency. A digital equivalent (dependent on the front panel frequency's most significant digits; 10 MHz to 10 GHz) is input to the M/N loop as M and N numbers. The ratio of the M and N numbers actually determine the M/N OUT frequency. The M/N OUT frequency's Nth harmonic (based on the N number and selected by the YTO pretuning) tunes the YTO frequency in 10 MHz steps. There is a 10 MHz step (or band) for each valid M/N OUT frequency (M/N ratio) and Nth harmonic (N number). This 10 MHz band complements the 20/30 MHz loop because its tuning range is 10 MHz and step size is 1 kHz. Together, the M/N Loop, YTO pretuning and 20/30 MHz Loop are able to tune the YTO from 2000.000 to 6199.999 MHz in 1 kHz steps.

The M/N loop provides a tunable phase locked reference signal for the YIG Tuned Oscillator (the Synthesizer's microwave signal source). The M/N Out frequency (177.5—197.5 MHz) is obtained by dividing the M/N VCO signal (355—395 MHz) by two. The M/N IF signal (5—45 MHz) is the lower mixing sideband of the VCO signal and the 400 MHz reference. The M/N loop is phase locked by comparing a subharmonic (fraction) of 20 MHz (20 MHz divided by the N number) to a subharmonic (fraction) of the IF signal (5 to 45 MHz divided by the M number) in the phase detector. The phase detector generates an error voltage that is integrated and input to the VCO as the VCO TUNE signal. The M and N numbers are determined by the A2 controller and vary with the 10 MHz steps of the YTO frequency. The M/N Out frequency is dependent on the ratio of the M and N numbers as expressed in the following formula:

 $f_{M/N} = [200 - 10 (M/N)] MHz$

where $f_{M/N} = M/N \text{ OUT frequency}$

M = M number

N = N number

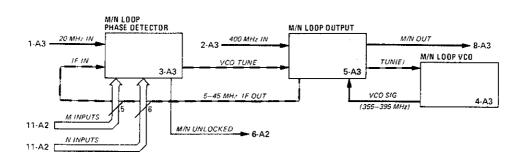
For example, if the ratio is 1-to-1 (M=N) then $f_{M/N} = 190.000$ MHz. If the ratio is 1-to-2 (M=2N) then $f_{M/N} = 195.000$ MHz. Refer to Table 8-4, M and N Numbers and Resulting Frequencies for a complete listing.

TROUBLESHOOTING

It is assumed that the troubleshooting information found on Service Sheets 1 and 2 was used to isolate a M/N loop malfunction. The following information will allow further isolation to circuits shown by one of the three M/N loop schematics 3-A3, 4-A3 or 5-A3. If the malfunction is on 5-A3, this information will also aid in isolating the defective component.

Test Equipment

Spectrum Analyzer	HP 8555A/8552B/141T
Digital Voltmeter	HP 3455A
Oscilloscope	HP 180A/1801A/1821A


- 1. Turn the LINE switch OFF and install A3A1A5 on an extender board. Connect A3A4TP5 —5.2V to the A3A1A4TP1 TUNE test point. Measure the output of the M/N VCO to assure it is about 365 MHz at 0 dBm. If it is not correct turn to Service Sheet 4-A3 and continue trouble-shooting. Otherwise continue with this procedure. (Be sure to reconnect the white coax).
- 2. Measure the IF OUT frequency and power. It should be 400 MHz minus the frequency measured in step 1 (about 35 MHz) at 0 dBm.
- 3. Measure M/N OUT frequency and power. It should be about 182.5 MHz at +3 dBm. If the results of both steps 2 and 3 are correct, proceed to step 8.
- 4. If step 2 results were correct but step 3 results were incorrect, trouble-shoot the Divider Preamplifier, Divider and the Output Amplifier using the voltages on the schematic.
- 5. If the results of both steps 2 and 3 are incorrect, check the power supply voltages and input components on the M/N VCO IN line.
- 6. If the results of step 2 are incorrect and the step 3 results are correct, check the 400 MHz IN line. If correct, proceed with step 7. Otherwise turn to Service Sheet 2-A3 and continue troubleshooting.
- 7. Remove the RFI shield top cover and measure the RF voltage at the output of mixer U1 (the junction of C8 and L4) with an oscilloscope. There should be 0.07 Vp-p. If this signal is correct, troubleshoot the IF Amplifier. Otherwise troubleshoot the Mixer Amplifier and the mixer. Note that the LO input should be 1 Vp-p and the RF input 200 mVp-p.
- 8. Measure the VCO Tune voltage at the edge connector pin 1 and at the yellow wire leading to A3A1A4. If the measured voltages are different, remove the circuit board. Measure the resistance from A3A1A4TP1 TUNE to the edge connector pin 1. It should be 4.16K ohms. If the resistance is correct the tune filter is probably not defective. Resistance to ground should be almost infinite after A3A1A4A2C11 is charged.

NOTE

After the A3A1A5 Assembly is repaired, perform the M/N Loop Adjustments in Section V.

Figure 8-78. A3A1A5 M/N Output Assembly Component Locations

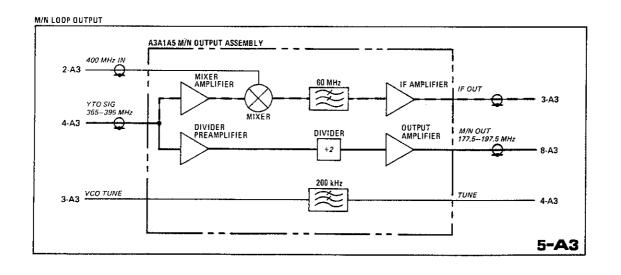
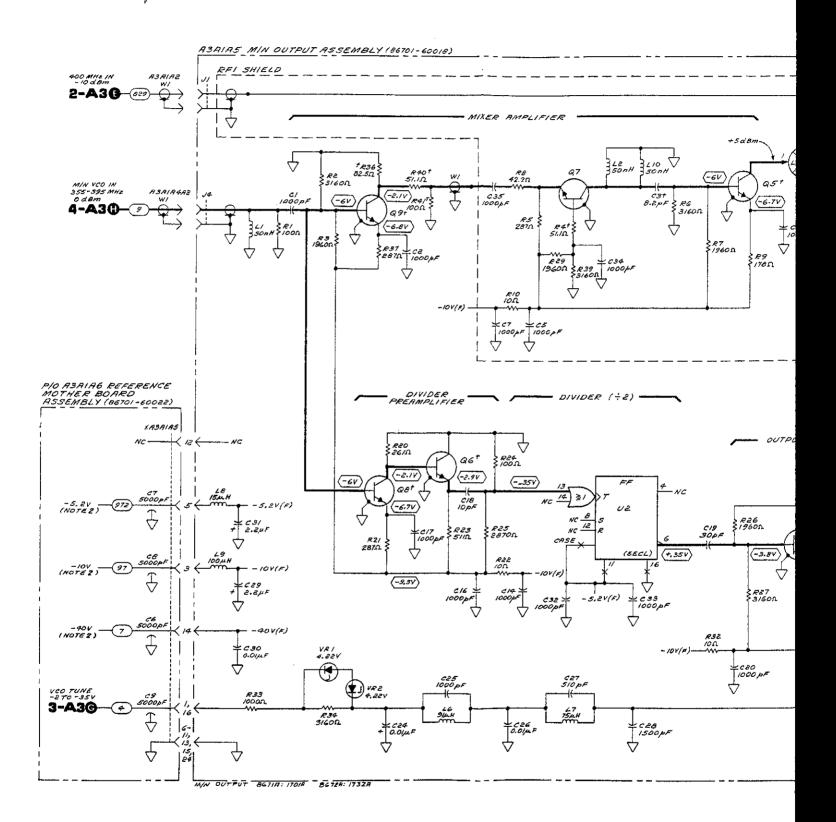



Figure 8-79. M/N Output Block Diagrams

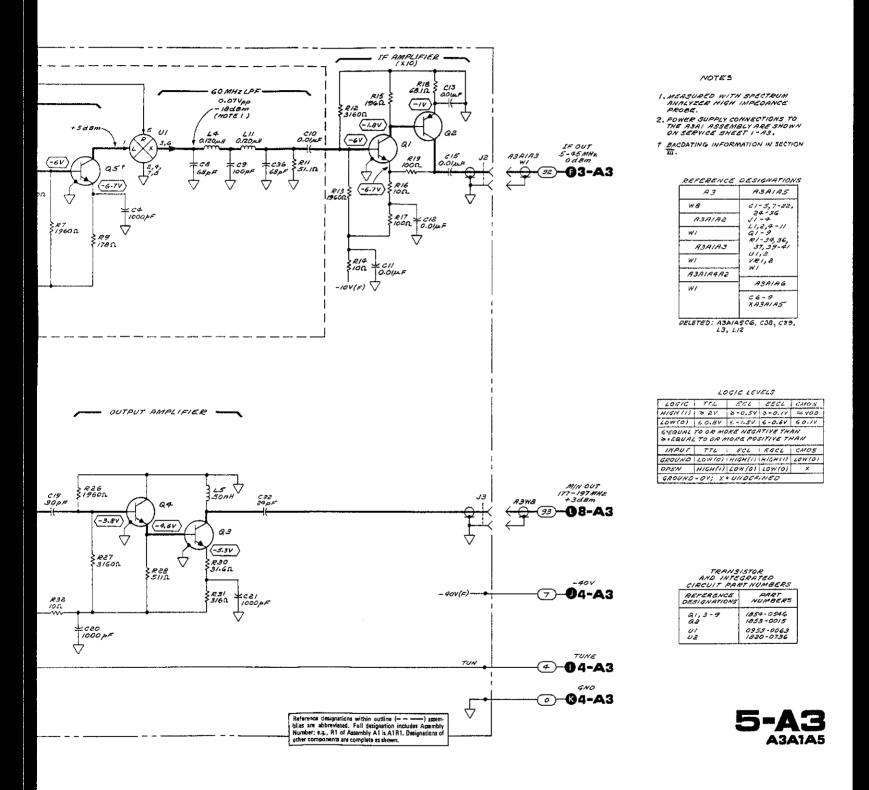


Figure 8-80. M/N Output Assembly Schematic Diagram 8-73b

SERVICE SHEET 6-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram Page 8-33
 Motherboard wiring Last 3 foldout pages

• Parts list Page 6-34

Performance tests
 Refer to Table 5-3 on Page 5-3

Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

YTO Phase Lock Loop

The Yig Tuned Oscillator's frequency output is phase locked 1) to the difference of the YTO frequency and a selected harmonic of the M/N loop and 2) to the 20/30 MHz loop. The YTO is tuned near the correct harmonic of the M/N Output frequency by the YTO pretune circuits which consist of the DAC (Digital-toAnalog Converter) and the Main Coil Driver. Once the pretuning is completed, the IF signal (20/30 MHz) from the YTO Loop Sampler is phase compared to the 20/30 MHz Loop signal and the resulting error signal tunes the YTO to achieve phase lock. The YTO frequency is related to the M/N Out frequency and the 20/30 loop frequency in the following manner:

 $f_o = (N) (f_{M/N} - f_{20/30})$

where $f_o = YTO$ output frequency (MHz)

N = N number input to M/N loop (also the M/N loop harmonic near to which the YTO loop is pretuned)

 $f_{M/N} = M/N$ loop output frequency (MH2)

 $f_{20/30} = 20/30$ loop output frequency (MHz)

 $f_{\rm\,YTO}$, N and $f_{\rm\,M/N}$ OUT may be looked up on Table 8-4, M and N numbers and Resulting Frequencies.

Also, $f_{20/30} = (30.000 - D_4, D_3 D_2 D_1) MHz$

where D₄ = Front panel 1 MHz character

D₃ = front panel 100 kHz character

D₂ = front panel 10 kHz character

D₁ = front panel 1 kHz character for YTO frequencies less than 6200

for YTO frequencies less than 6200 MHz. Refer to the Service Sheet 2 for a complete listing of pertinent formulas.

YTO Loop Pretune

The digital control inputs to the DAC from the A2 Controller Assembly select the pretuned frequency. These inputs are first

converted from a digital signal to an analog dc voltage (the YTO Pretune signal). This signal is amplified (in the Main Coil Driver) and output as a tuning current to the YTO. Notice that the input tuning resolution to the DAC is 1 MHz. If the YTO frequency is within ±10 MHz of the desired frequency (for frequencies <6.2 GHz) then the pretune circuits are operating properly. Pretuning, however, does normally bring to YTO frequency to within 1 or 2 MHz of the desired YTO frequency.

NOTE

In order to check the pretuning, the YTO loop must be opened. Refer to the YTO pretune troubleshooting information on Service Sheet 2.

A3A5 DAC (Digital-to-Analog Converter) Assembly

The digital inputs to the DAC are in a BCD and binary format. These inputs. (operating through the open-collector buffers) switch the diodes on-or-off. When on, current flows through the resistor, the diode and into the current summing node. The resistor value is selected so the current flow is proportional to binary or BCD weighting of the control input. The total current flow to the major summing node (at the input to the Summing and Buffer Amplifier) is proportional to the frequency as dictated by the digital inputs (0.5 mA/GHz). The amplifier with a gain of -6.000 V/ma converts this summed current to a voltage (-3.000 V/GHz). Note that the Summing and Output Buffer Amplifier also has components (R59 and C12) which speed up the action of the amplifier during a frequency change.

Current Summing. The least significant bits of the DAC inputs are summed in a node with 75 mA/GHz sensitivity. Upon dividing this current by 10, it is summed with those mid-range bits at 7.5 mA/GHz. This current is also divided (by 15) and summed with the most significant bits at 0.5 mA/GHz. Note that a 0.8 mA offset current equivalent to 1.6 GHz and used in adjusting the DAC is also summed at the major summing node.

Reference Amplifiers. The Reference Current Source generates a temperature stabilized constant current for VR1 via R6. The Reference Buffer U1B isolates VR1 and provides a stable but adjustable voltage reference for the rest of the circuits. This voltage is further buffered by Reference Buffers U3 and U4.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 2, and 7-A3 was used to isolate a power supply malfunction to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment Digital Voltmeter HP 3455A

NOTE

An accurate digital voltmeter is essential for trouble-shooting the Digital-to-Analog Converter (DAC). The voltmeter must be capable of measuring -18~Vdc with a minimum resolution of 1~mV (0.1 mV resolution is preferred.

- Connect the DVM to A3A5TP4. The voltage should be -6.50 ±0.06 Vdc. If it is not within tolerance, perform the complete DAC adjustment procedure in Section V before continuing. If the voltage can be adjusted within tolerance, proceed to step 4.
- 2. Measure the power supply inputs to the circuit board at pins 1, 2, 3, and 4. If correct, continue with step 3. Otherwise trouble-shoot the power supply boards (A3A2, A3A3, and A3A4).
- 3. Measure the voltage at emitter Q1. It should be -20.9 Vdc. If correct, troubleshoot the Bias Buffer Amplifier. Otherwise, troubleshoot the Bias amplifier.
- 4. Measure the voltages at A3A5TP1 (+11 Vdc) and A3A5TP2 (+10 Vdc). If both are correct continue. Otherwise, trouble-shoot the appropriate Reference Buffer amplifier (U3 or U4).
- 5. Tune the Synthesizer to 2000 MHz. Connect the DVM to A3A5TP3. The voltage should be -6.000 ±0.001 Vdc. If voltage is not correct, perform the DAC adjustment procedure. If the voltage can be adjusted within the tolerance, skip to step 8. Otherwise, continue with step 6.
- 6. Measure the voltages at U7 pins 9 and 4. Both should be 0.6V (high). Pins 1, 8 and 12 should be 0 Vdc. If correct, proceed to step 7. Otherwise, troubleshoot U10, U7 and their associated components.
- 7. Measure the voltage at the base of Q5A. It should be very nearly 0 Vdc (a virtual ground). If correct, the Summing and Output Buffer Amplifier is properly balanced and is probably working correctly (proceed to step 8). Otherwise, tune to 3000 MHz and troubleshoot the amplifier by using the voltages on the schematic.
- 8. Tune to the frequencies as shown in the following table. As before, compare the DVM reading to the voltages in the table.

Frequency	Voltage at A3A5TP3
2200 MHz	-6.600±0.001 Vdc
2800 MHz	8,400±0.001 Vdc
3200 MHz	-9.600±0.001 Vdc
3600 MHz	10.800±0.001 Vdc
4800 MHz	-14.400±0.001 Vdc

SERVICE SHEET 6-A3 (Cont'd)

If all the voltages are correct, continue with this procedure. Otherwise, troubleshoot U10, U7, U4, Q4, and their associated components.

9. Tune the frequencies as shown in the following table. Compare the DVM reading to the voltages in the table.

Frequency	Voltage at A3A5TP3
2020 MHz	-6 .060 ±0.001 Vde
2040 MHz	-6.120 ±0.001 Vdc
2080 MH2	−6.240 ±0.001 Vdc
2100 MHz	-6.300 ±0.001 Vdc

If all voltages are correct continue with this procedure. Otherwise, perform the DAC adjustments. If the voltages cannot be adjusted within tolerance, troubleshoot U9, U6, Q3, and their associated components.

10. Tune the Synthesizer to the frequencies as shown in the following table and measure the voltages at A3A5TP3.

Frequency	Voltage at A3A5TP3
2001 MHz	-6.003 ±0.001 Vdc
2002 MHz	-6.006 ±0.001 Vdc
2004 MHz	-6.012 ±0.001 Vdc
2008 MHz	-6.024 =0.001 Vdc
2010 MHz	-6,030 ±0.001 Vdc

If the voltages are correct, the DAC is working properly. If necessary, perform the DAC adjustment procedure. Otherwise, troubleshoot U5, U8, Q2, and their associated components.

NOTE

After the A3A5 assembly has been repaired, perform the Digital-to-Analog Converter Adjustments in Section V.

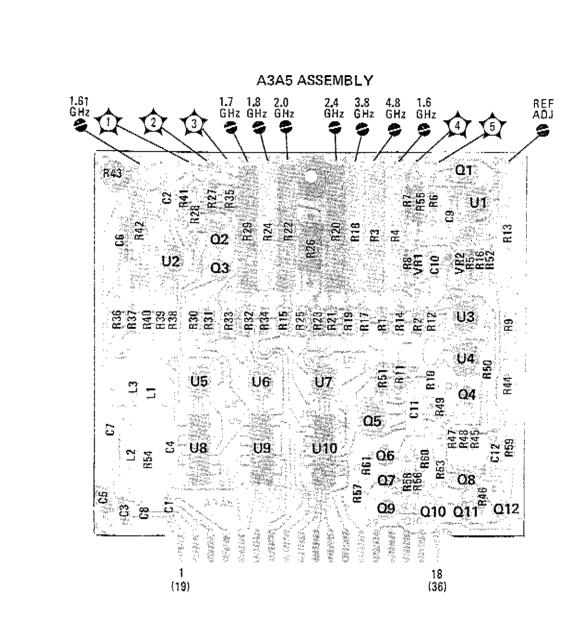


Figure 8-81. A3A5 DAC Assembly Component, Adjustment, and Test Point Locations

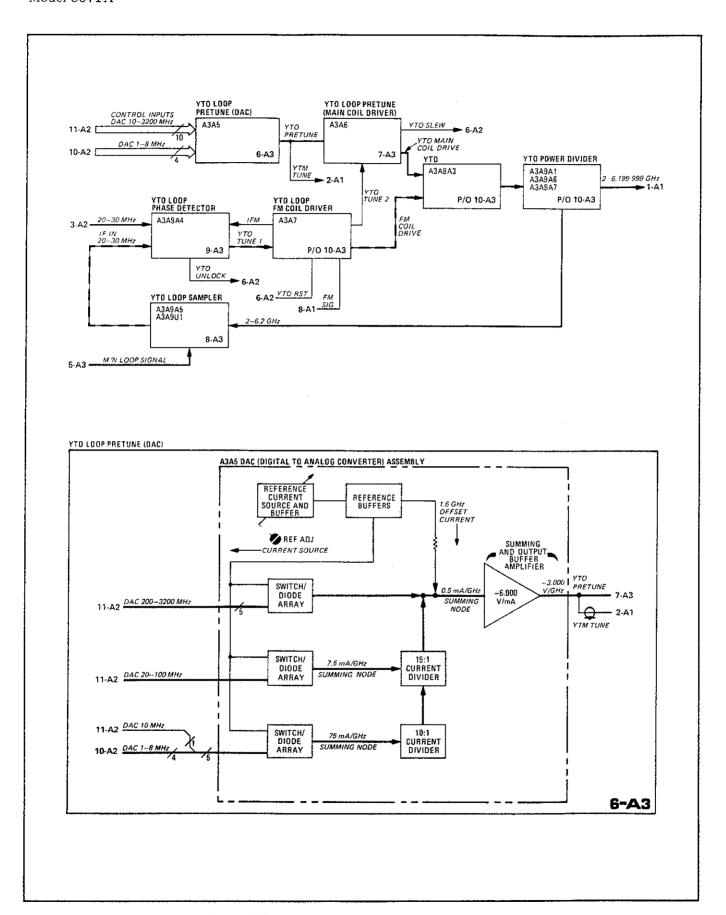
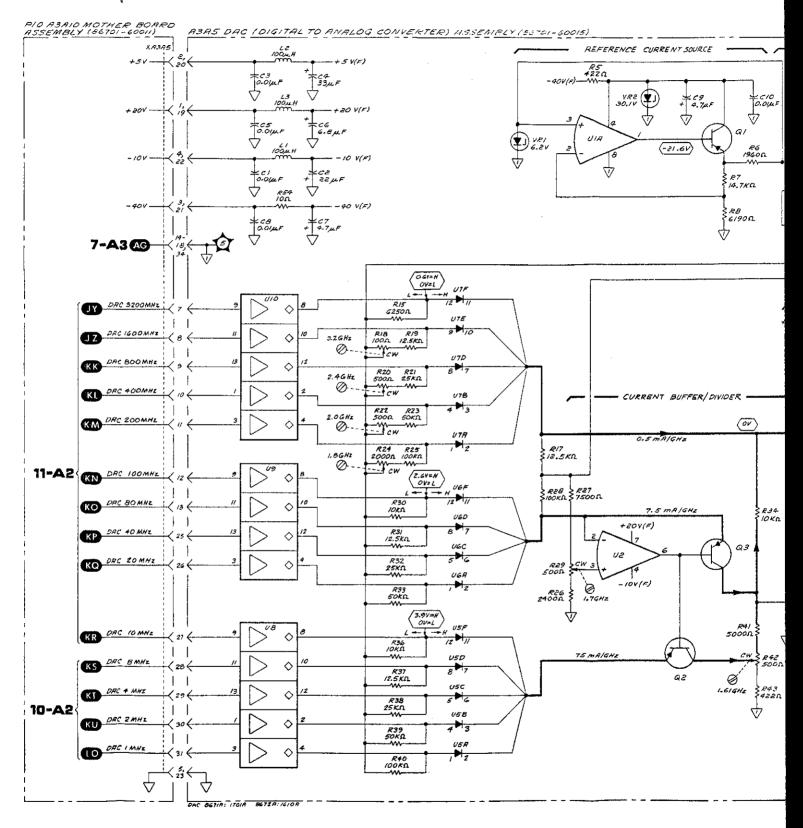
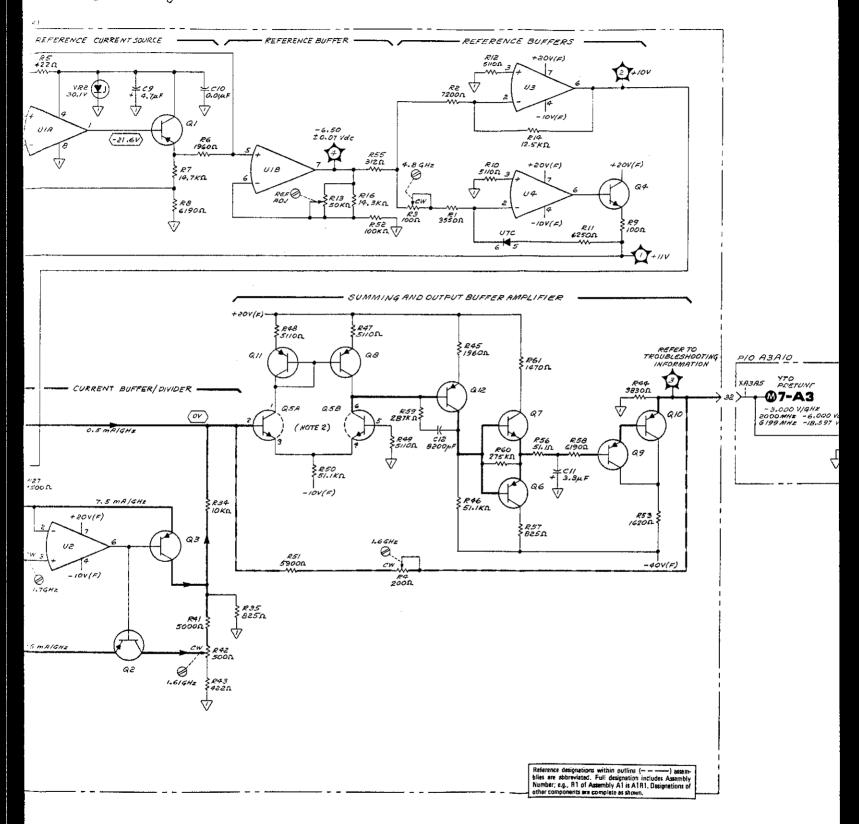




Figure 8-82. Digital-to-Analog Converter Block Diagrams

F16.8-83 5ht 1 of 3

F16.8-83 SH20f3

FIG. 8-83 Sht 3 of 3

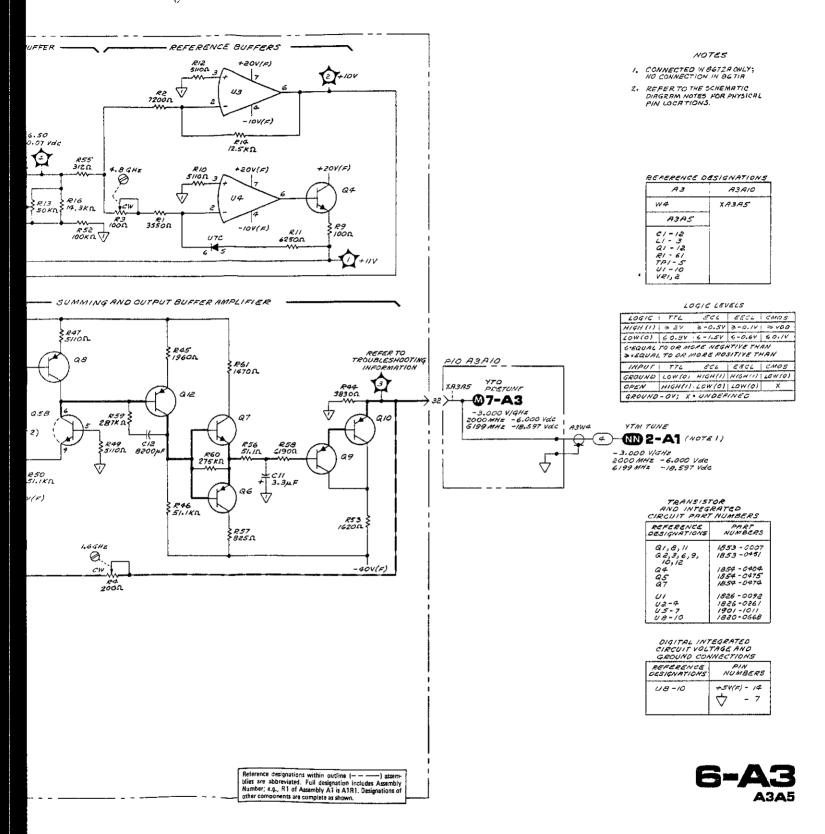


Figure 8-83. Digital-to-Analog Converter Schematic Diagram

SERVICE SHEET 7-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

•	Block diagram	Page 8-33
•	Motherboard wiring	Last 3 foldout pages
•	Parts list	Page 6-36
•	Performance tests	Refer to Table 5-3 on page 5-3
_	A divistment myocodismos	Down E O

• Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

YTO Phase Lock Loop

The Yig Tuned Oscillator's frequency output is phase locked 1) to the difference of the YTO frequency and a selected harmonic of the M/N loop and 2) to the 20/30 MHz loop.

The YTO is tuned near the correct harmonic of the M/N Output frequency by the YTO pretune circuits which consist of the DAC (Digital-to-Analog Converter) and the Main Coil Driver. Once the pretuning is completed, the IF signal (20/30 MHz) from the YTO Loop Sampler is phase compared to the 20/30 MHz Loop signal and the resulting error signal tunes the YTO to achieve phase lock. The YTO frequency is related to the M/N Out frequency and the 20/30 loop frequency in the following manner:

$$f_0 = (N) (f_{M/N} - f_{20/30})$$

where $f_{\alpha} = YTO$ output frequency (MHz)

N = N number input to M/N loop (also the M/N loop harmonic near to which the YTO loop is pretuned)

 $f_{M,N} = M/N$ loop output frequency (MHz)

 $f_{20/30} = 20/30$ loop output frequency (MHz)

 $f_{\rm \,YTO}$, N and $f_{M/N}$ $\,$ OUT may be looked up on Table 8-4, M and N Numbers and Resulting Frequencies.

Also,
$$f_{20/30} = (30.000 - D_4. D_3 D_2 D_1) MHz$$

where D_4 = front panel 1 MHz character

D₃ = front panel 100 kHz character

 D_2 = front panel 10 kHz character

D₁ = front panel 1 kHz character for YTO frequencies less than 6200 MHz. Refer to the Service Sheet 2 text for a complete listing of pertinent formulas.

SERVICE SHEET 7-A3 (Cont'd)

YTO Loop Pretune

The digital control inputs to the DAC from the A2 Controller Assembly select the pretuned frequency. These inputs are first converted from a digital signal to an analog dc voltage (the YTO pretune signal). This signal is amplified (in the Main Coil Driver) and output as a tuning current to the YTO. Notice that the input tuning resolution to the DAC is 1 MHz. If the YTO frequency is within ±10 MHz of the desired frequency (for frequencies <6.2 GHz) then the pretune circuits are operating properly. Pretuning, however, does normally bring the YTO frequency to within 1 or 2 MHz of the desired YTO frequency.

NOTE

In order to check the pretuning, the YTO loop must be opened. Refer to the YTO pretune troubleshooting information on Service Sheet 2.

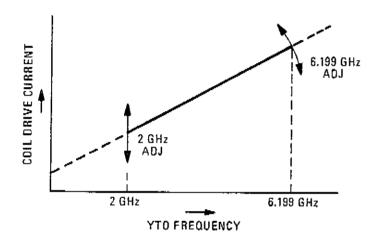
A3A6 YTO Driver Assembly

The YTO Driver Assembly produces a current in the YTO main coil that is proportional to the sum of the YTO Pretune (DAC output), the YTO Tune 2 (the low frequency component of the YTO tune 1), and an offset voltage.

Coil Driver. The Coil Driver acts in two primary capacities. It provides a summing point for the input currents and it outputs a current to the YTO main coil. It is important to realize that the Coil Driver current flow is supplied through the Sense Resistor (This current is dependent upon the YTO Pretune voltage input) and from the Phase Lock Amplifier. The currents are summed at the Coil Driver's non-inverting output. The total current flows into the non-inverting input and out the inverting output as the YTO Main Coil Drive.

Input Amplifier. The YTO Pretune Voltage is amplified by the Input Amplifier (a discrete component operational amplifier). The output voltage appears at the Coil Driver's non-inverting output and therefore across the Sense Resistor. A portion of this voltage is returned to the Input Amplifier's inverting input. This return voltage is adjustable and allows for variation in the frequency-to-voltage sensitivity of Yig Tuned Oscillators. Refer to the following figure.

The Shaping Network (connected across the Sense Resistor) compensates for the non-linearity of the YTO frequency-to-voltage curve.


NOTE

The YTO Main Coil Drive current contributed by the Input Amplifier is equal to the YTO Pretune voltage divided by the sum of R16 (125Ω) and that portion of R24 (15Ω) that supplies the feedback voltage to the Input Amplifier through R25. The remaining summed current flows through R30.

SERVICE SHEET 7-A3 (Cont'd)

The dominent pole of this amplifier (at 0.8 Hz) is set by R11 and C7. They also provide noise filtering. Q8 and Q12 increase the slew rate of the amplifier by quickly charging or discharging C7 when large change occurs. The current limiter, Q13 protects its associated components by removing the drive voltage from Q12 if the current is excessive.

Phase Lock Amplifier. The YTO Tune 2 and Offset voltages are summed in the Phase Lock Amplifier. The YTO Tune 2 is the low frequency component of the YTO tuning voltage (YTO Tune 1). The 100 Hz low pass filter removes the high frequency components of the tuning voltage. The offset voltage is adjusted at 2 GHz (2 GHz Adj) so the YTO Frequency extrapolated to 0 GHz is 0 volts. (Refer to the following figure.)

YTO Frequency versus Coil Drive Current

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1 and 2 was used to isolate a YTO pretune malfunction. The following information will allow further isolation to circuits shown by one of the two YTO pretune schematics 6-A3 or 7-A3. If the malfunction is on 7-A3, this information will also aid in isolating the defective component.

Test Equipment

Digital Voltmeter	HP 3455A
Frequency Counter	HP 53404

1. Tune the Synthesizer to 2000 MHz. Measure the voltage at the edge connector XA3A6 pin 13. It should be -6.000 ± 0.001 Vdc. If correct, proceed to step 2. Otherwise, turn to Service Sheet 6-A3 and continue troubleshooting.

8-76C

SERVICE SHEET 7-A3 (Cont'd)

- 2. Ground A3A7TP2 to open the YTO loop.
- Measure the voltage at A3A6TP2. It should be about -37.5 Vdc. Increase the frequency to 6199 MHz. The voltage at TP2 should drop to -32.5 Vdc. If the voltages are correct, proceed to step 6.
- 4. Set the frequency to 3000 MHz. Measure the voltage at the emitter of Q5. It should be -9.3 Vdc. If voltage is correct, use the voltages on schematic to troubleshoot the Coil Driver, Slewing Detector and the Coil Damping Network. Otherwise continue with step 5.
- 5. Measure the voltages at the inputs to the Input Amplifier. Compare them to the output voltage (measured at the emitter of Q8 and Q12). Since the Input Amplifier is a discrete operational amplifier, we can determine if the voltage change at the output follows the inputs. If the change does not follow the input, measure the voltages inside the amplifier to determine where the change occurs. If the output polarity follows the input polarity, measure voltages in the feedback path to find the defective component.
- 6. Remove the ground from A3A7TP2. Measure the voltage at A3A6TP1 and compare it to the voltage at A3A6TP4. V_{TP4} = 2.9 + 0.64 (V_{TP1}). If the voltage is correct, the phase lock amplifier is operating properly. Proceed to step 7. Otherwise, troubleshoot the Offset Reference and Phase Lock Amplifier.
- 7. Connect A3A7TP2 to ground. Connect the frequency counter to the RF OUTPUT connector. Tune to 2000 MHz. The counter should indicate 2000.0 + 1.0 MHz. Tune to 6199 MHz. The counter should indicate 6199.0 ±1.0 MHz. If the frequencies are correct, A3A6 is operating normally. Otherwise, perform the YTO Driver Adjustment in Section V.

NOTE

After the A3A6 assembly is repaired, perform the YTO Driver Adjustment in Section V.

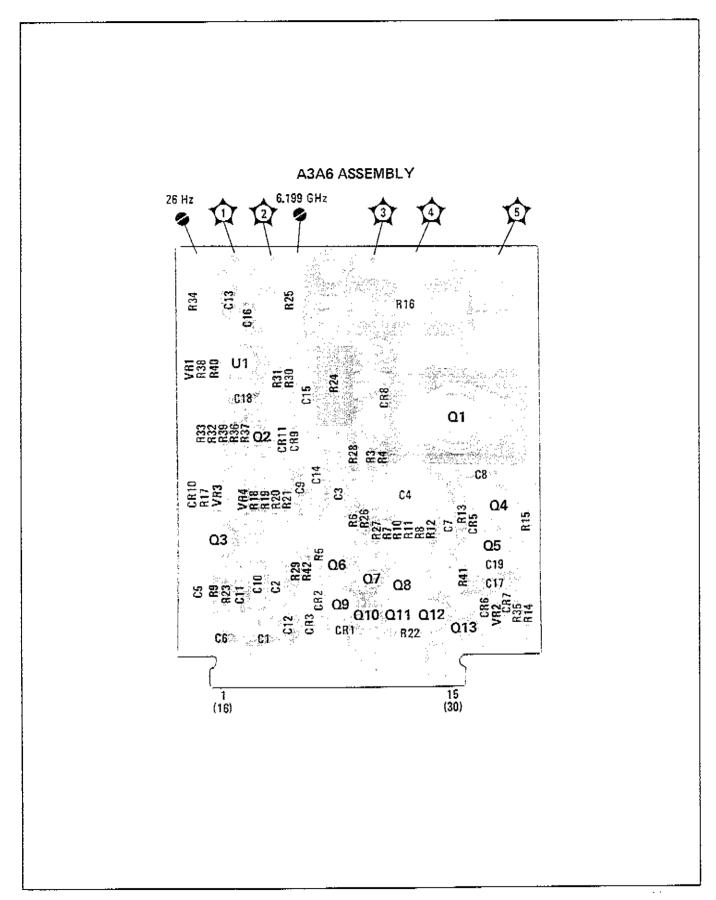


Figure 8-84. A3A6 YTO Main Coil Driver Assembly Component, Adjustment, and Test Point Locations

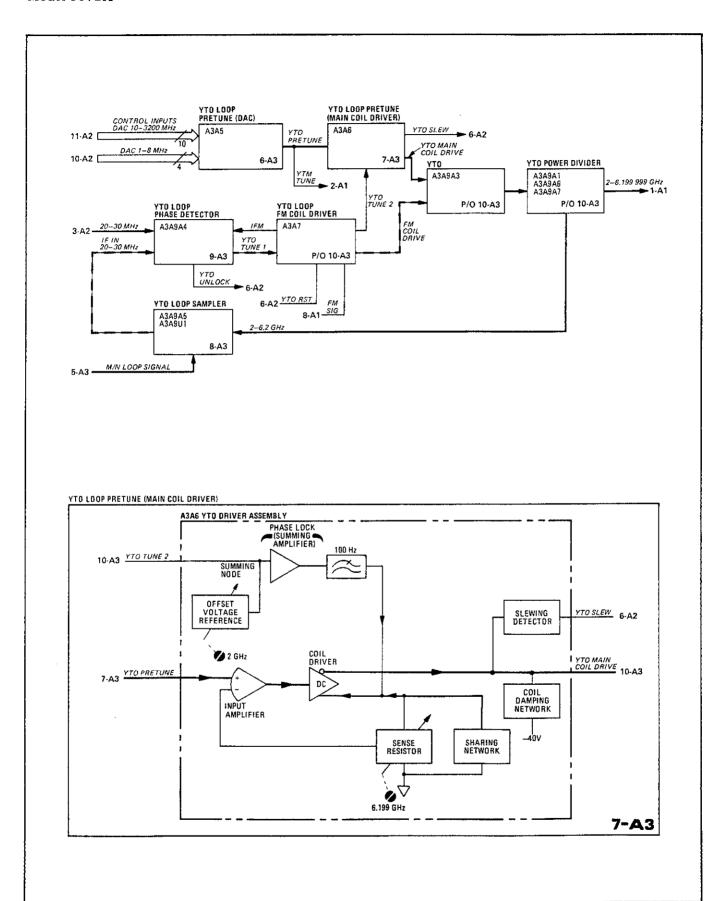
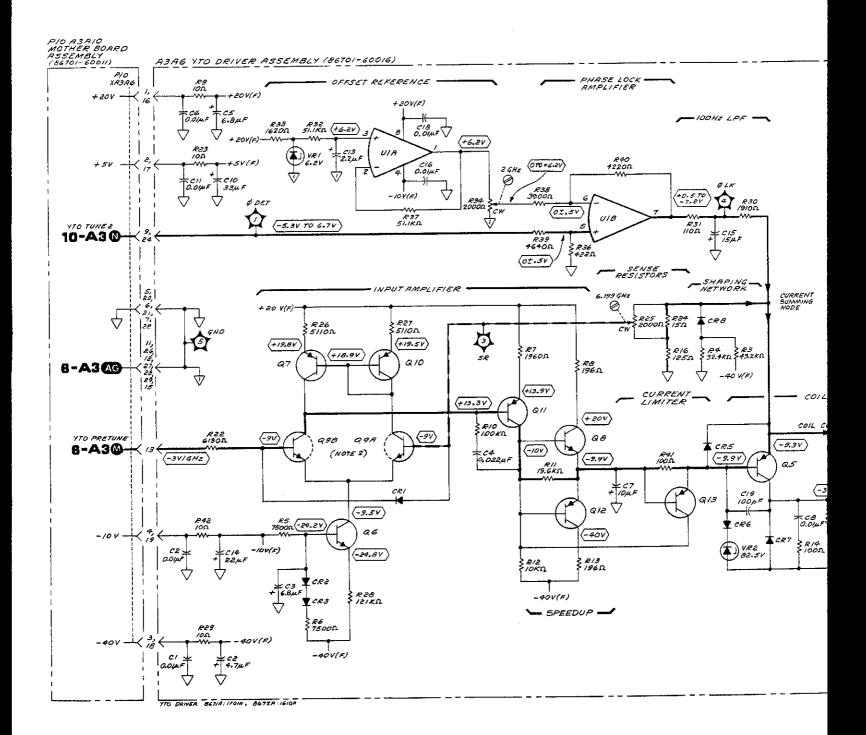



Figure 8-85. YTO Main Coil Driver Block Diagrams

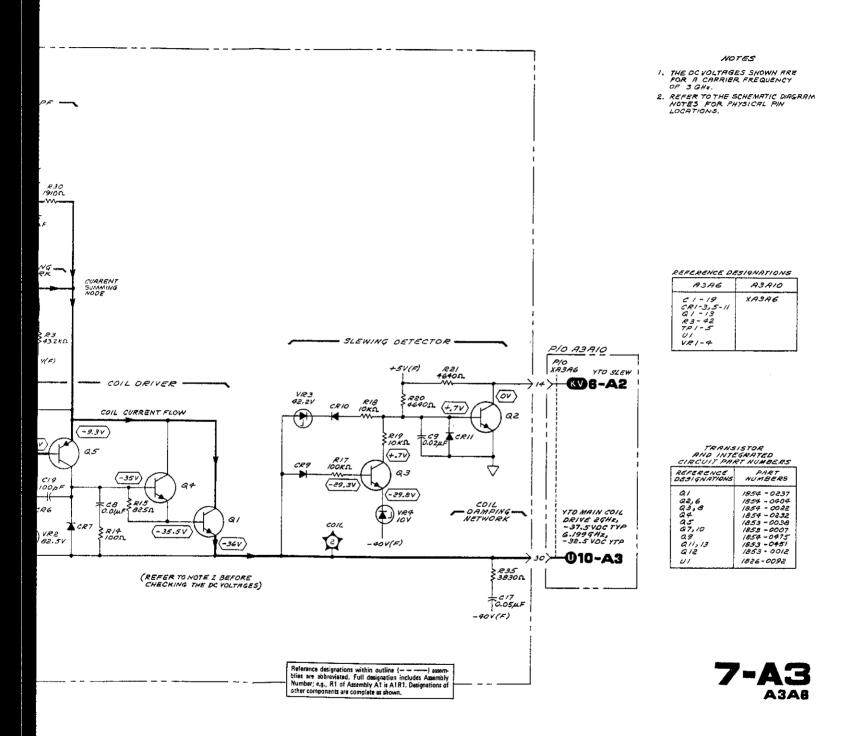


Figure 8-86. YTO Main Coil Driver Schematic Diagram

SERVICE SHEET 8-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

 Block diagram 	Page 8-33
 Motherboard wiring 	Last 3 foldout pages
• Parts list	Page 6-42
 Performance tests 	Refer to Table 5-3 on page 5-3

• Adjustment proceddres Page 5-2

PRINCIPLES OF OPERATION

YTO Phase Lock Loop

The Yig Tuned Oscillator's frequency output is phase locked 1) to the difference of the YTO frequency and a selected harmonic of the M/N loop and 2) to the 20/30 MHz loop. The YTO is tuned near the correct harmonic of the M/N Output frequency by the YTO pretune circuits. Once the pretuning is completed, the IF signal (20/30 MHz) from the YTO Loop Sampler is phase compared to the 20/30 MHz Loop signal and the resulting error signal tunes the YTO to achieve phase lock. The YTO frequency is related to the M/N Out frequency and the 20/30 loop frequency in the following manner:

$$f_o = (N) (f_{M/N} - f_{20/30})$$

where f_o = YTO output frequency (MHz)

N = N number input to M/N loop (also the M/N loop harmonic near to which the YTO loop is pretuned).

 $f_{M/N} = M/N$ loop output frequency (MHz)

 $f_{20/30} = 20/30$ loop output frequency (MHz)

 $f_{\rm YTO}$, N and $f_{\rm MN}$ OUT may be looked up on Table 8-4, M and N Numbers and Resulting Frequencies.

Also,
$$f_{20/30} = (30.000 - D_4. D_3 D_2 D_1) MHz$$

where D_4 = front panel 1 MHz character

 D_3 = front panel 100 kHz character

 D_2 = front panel 10 kHz character

 D_1 = front panel 1 kHz character

for YTO frequencies less than 6200 MHz. Refer to the Service Sheet 2 text for a complete listing of pertinent formulas.

NOTE

The RF INPUT is the same frequency as the YTO output $f_{\rm O}$ and the YTO IF signal is the same as $f_{20/30}$ if the YTO loop is locked. The M/N loop signal is the $f_{\rm M/N}$ signal.

SERVICE SHEET 8-A3 (Cont'd)

A3A9A5 Sampler Assembly

The YTO Output signal is mixed with the Nth harmonic of the M/N OUT signal. The difference signal (20/30 MHz) is output to the YTO Loop Phase Detector where it is phase compared to the 20/30 MHz (LFS) Loop output.

The M/N Loop Signal is matched to the input of the sampler drive amplifier by R40, L1 and C10. This signal is amplified and matched to the Sampler's Harmonic Generator input. The numerous harmonics are mixed with the RF Input signal in the Sampler's Harmonic Mixer. The outputs are summed and matched to the IF Preamplifier by L10 and R13. The impedance matching throws the IF amplifier's frequency response off. The de-emphasis network at the output provides compensation that brings the frequency response back to normal. After buffering, the signal passes through a 70 MHz low pass filter to remove the multitude of unimportant harmonics of the mixing process. The signal is then amplified and output to the YTO Phase Detector. The important signal is the 20 to 30 MHz signal which is to be phase compared with the 20/30 Loop signal in order to lock the YTO Loop.

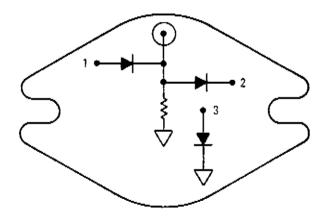
TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 2 and 10-A3 was used to isolate a YTO loop malfunction to the circuits shown on this schematic. The following information will aid in isolating a defective component.

Test Equipment

Frequency Counter	HP 5340
Oscilloscope	HP 180C/1801A/1821A
Power Meter	HP 436A/8481A
Spectrum Analyzer	HP 8555A/8552B/141T
High Impedance Probe (Spectrum Analyzer)	HP 1121A
Digital Voltmeter	HP 3455A

- 1. Connect the IF OUT to a frequency counter using a coaxial tee to keep the YTO loop closed. Tune the Synthesizer's frequency to 3000.000 MHz. The IF OUT should be exactly 30 MHz. Change the frequency to 2999.999 MHz. The IF should be 20.001 MHz.
- 2. Disconnect the frequency counter and connect an oscilloscope to the coaxial tee. The output should be between 1.2 and 3 Volts peak-to-peak. If the results of steps 1 and 2 are correct, the A3A9A5 Assembly is operating properly. Otherwise, continue with this procedure.
- 3. Measure the M/N Loop Signal frequency and power using a power meter and the frequency counter. At 3 GHz the frequency should be 189.375 MHz. See the table on Service Sheet 2 for the other M/N Loop frequencies. If they are correct, continue. Otherwise troubleshoot the M/N loop.
- 4. Measure the coupled output of the A3A9A1 Directional Coupler. It should be about -15 dBm. If correct, continue. Otherwise troubleshoot the YTO and the A3A6 YTO Driver Assembly.


SERVICE SHEET 8-A3 (Cont'd)

- 5. Install the A3A9 assembly in the service position. (Refer to the Assembly and Disassembly procedure which precede the Service Sheets.) Remove the A3A9A5 cover. Use a high impedance probe with a spectrum analyzer to measure the signal at gate 1 of Q4. The signal should be about 300 μ Vrms between 20 and 30 MHz. If the signal is correct, proceed to step 8. Otherwise, continue with step 6.
- 6. Check the Sampler Drive Amplifier at the junction of R9 and L9. It should deliver about +7 dBm into a 50 ohm load.
- 7. Measure the dc bias voltages to the Sampler at TP1. It should be +0.4 Vdc. If the drive signals are OK but the bias or output level is incorrect, the sampler A3A9U1 may be defective.

NOTE

The mixer (sampler) may be checked by measuring current flow and breakdown voltage of the diodes and internal resistance.

- a. Remove the mixer from the board.
- b. Make measurements across pin-1 (positive) and coaxial center pin (negative). $V_{BR} > 3V$ at 10 μA .
- c. Measure across center pin (positive) and pin-2 negative. $V_{BR} > 3V$ at 10 μA .
- d. Measure resistance from center pin to ground (about 50 ohms).
- e. Measure pin-3 (positive) to ground (negative). $V_{BR} > 30 V$ at 10 μA .

8. Measure the signal at base of Q6. The signal should be about the same level as measured in step 5. If correct, troubleshoot Q1, Q5, Q6 and their associated components. Otherwise, troubleshoot Q4, Q2, Q7 and their associated components.

NOTE

After the A3A9A5 Assembly has been repaired or when A3A9U1 is replaced, perform the YTO Loop Sampler Adjustments in Section V.

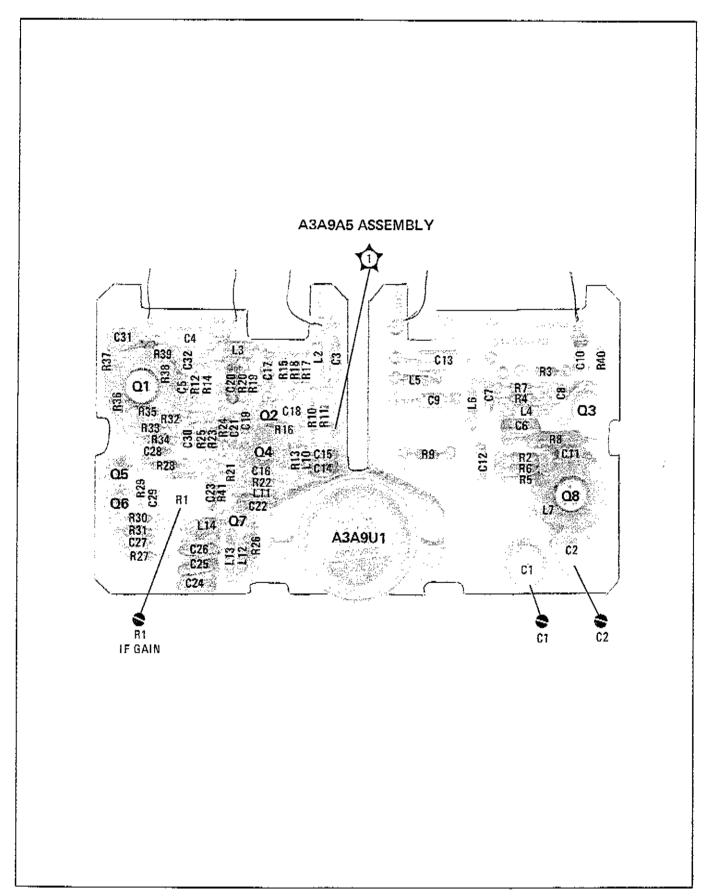
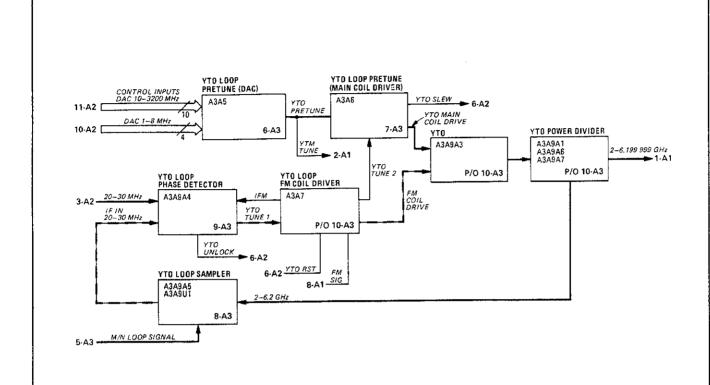



Figure 8-87. A3A9A5 YTO Sampler Assembly Component, Adjustment, and Test Point Locations

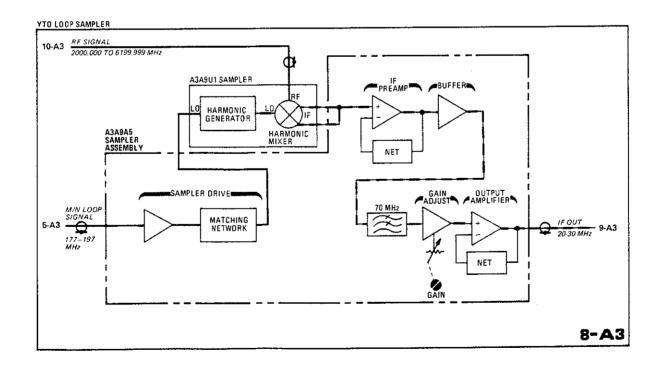
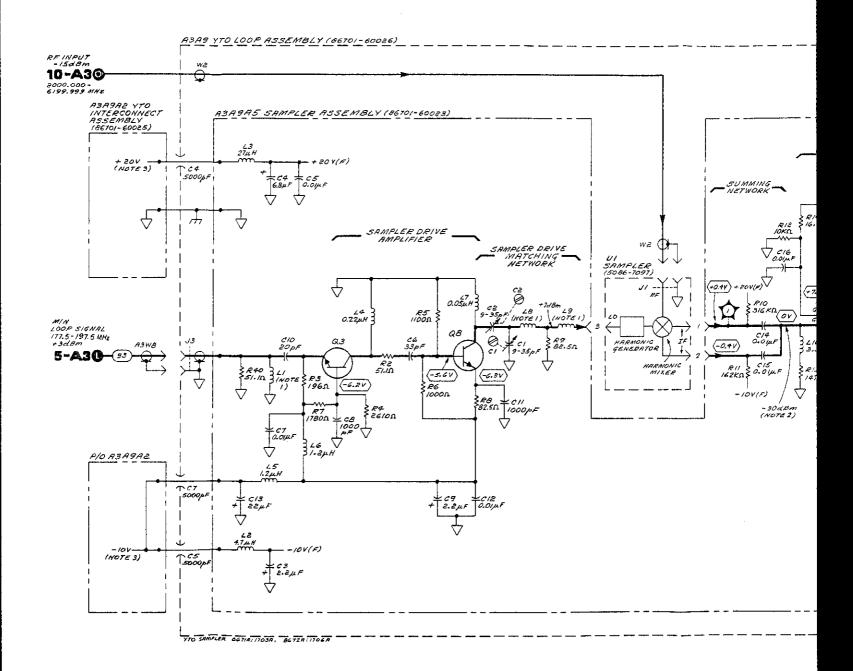
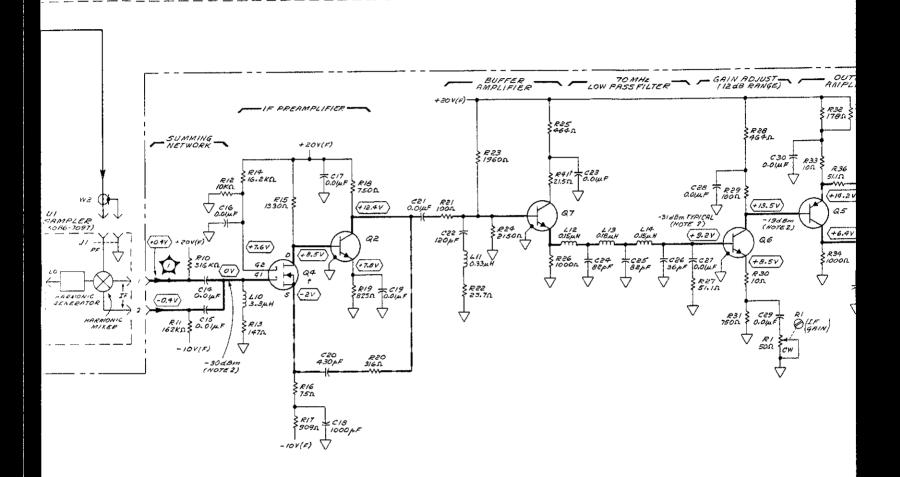




Figure 8-88. YTO Sampler Block Diagrams

Reference designations within outline (——) assemblies are abbreviated. Full designation includes Assembly Number; e.g., R1 of Assembly A1 is A1R1, Designations on other components are complate as shown.

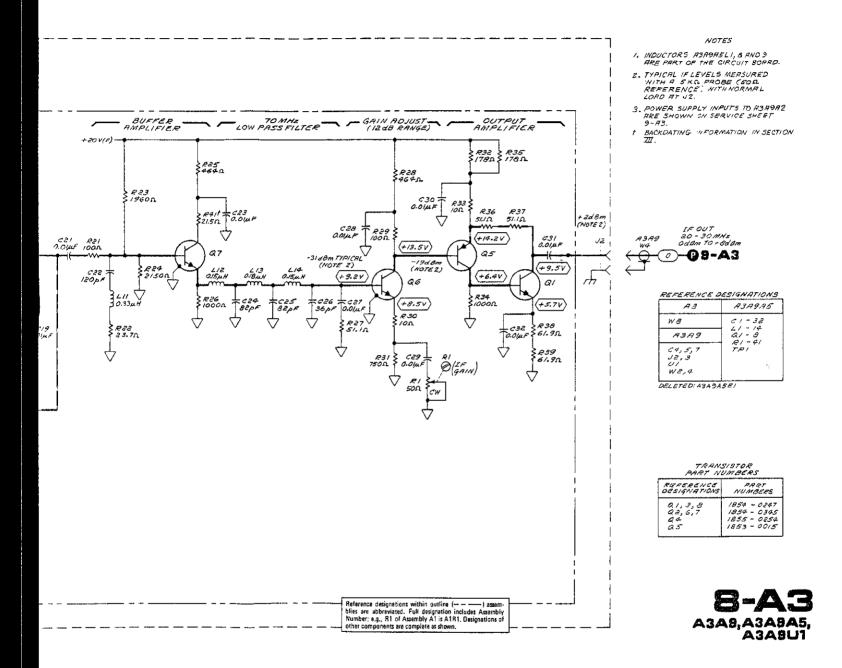


Figure 8-89. YTO Sampler Assembly Schematic Diagram

SERVICE SHEET 9-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-33

Motherboard wiring
 Last 3 foldout pages

• Parts list Page 6-40

• Performance tests Refer to Table 5-3 on page 5-3

Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

YTO Phase Lock Loop

The Yig Tuned Oscillator's frequency output is phase locked 1) to the difference of the YTO frequency and a selected harmonic of the M/N loop and 2) to the 2/30 MHz loop. The YTO is tuned near the correct harmonic of the M/N Output frequency by the YTO pretune circuits. Once the pretuning is completed, the IF signal (20/30 MHz) from the YTO Loop Sampler is phase compared to the 20/30 MHz Loop signal and the resulting error signal tunes the YTO to achieve phase lock. The YTO frequency is related to the M/N Out frequency and the 20/30 loop frequency in the following manner:

 $f_0 = (N) (f_{M/N} - f_{20/30})$

where $f_{o} = YTO$ output frequency (MHz)

N = N number input to M/N loop (also the M/N loop harmonic near to which the YTO loop is pretuned)

 $f_{M/N} = M/N$ Loop output frequency (MHz)

 $f_{20/30} = 20/30$ loop output frequency (MHz)

 $\rm f_{\rm YTO}\,,~N$ and $\rm f_{\rm M\,/N}$ OUT may be looked up on Table 8-4, M and N Numbers and Resulting Frequencies.

Also, $f_{20/30} = (30.000 - D_4, D_3 D_2 D_1) \text{ MHz}$

where D₄ = front panel 1 MHz character

D₃ = front panel 100 kHz character

D₂ = front panel 10 kHz character

D₁ = front panel 1 kHz character for YTO frequencies less than 6200 MHz. Refer to the Service Sheet 2 text for a complete listing of pertinent formulas.

YTO Loop FM Circuits

In the Synthesizer's CW mode of operation, the Phase Detector's error voltage is found to be proportional to the integral of the YTO frequency. In the FM mode, the error voltage is due to the sum of integrals of the YTO frequency and the frequency deviation. Since the deviation is directly proportional to the modulation drive voltage, the error voltage may be expressed as follows:

$$V_e = \int f_o(t) dt + \int V_{FM}(t) dt$$

where V_e = phase detector's error voltage

 $f_{a}(t) = YTO$ frequency

V_{FM} (t) = FM drive voltage.

SERVICE SHEET 9-A3 (Cont'd)

The result is a cancellation of modulation for FM rates inside the YTO loop bandwidth (20 kHz) and a partial cancellation at rates greater than 20 kHz and decreasing as the rate increases. In order to make the YTO loop response to FM essentially flat, a portion of the FM drive signal is integrated and subtracted from the error voltage output by the Phase Detector. This voltage is adjusted to just cancel the error voltage caused by the FM signal. Now the YTO loop effectively passes all specified rates to the YTO with little or no effect. Note that the FM drive signal is input after the Loop Integrator and the integrated FM is subtracted from the error voltage just before the Loop Integrator.

A3A9A4 YTO Phase Detector Assembly

The Phase/Frequency Detector compares the frequency and phase of the Sampler IF signal to the output of the 20/30 MHz loop. The resultant error signal is integrated and amplified in the Loop Integrators. The output signal YTO tune 1 is applied to the YTO coils to achieve phase lock.

During frequency modulation, the integrated FM signal from the A3A7 FM Driver Assembly is subtracted from the error signal. The net result is that the loop does not respond to the modulating signal and the YTO can be modulated at rates within the loop bandwidth.

Phase/Frequency Detector. The IF IN (from the Sampler) and the 20/30 MHz Loop signal are divided by two and to the Phase/Frequency Detector. If the phase of the IF signal leads that of the 20/30 MHz signal, a negative going pulse appears at U1 pin 12 (TP4). Pin 3 (TP3) remains at a steady dc level (about -0.6V). If the 20/30 Loop signal leads, a negative pulse appears at pin 3 (TP3). In each case the pulse width is proportional to the phase difference between the signals. The outputs are filtered and coupled to the differential amplifier. The signal is then applied to the Loop Integrator. The output (YTO Tune 1) tunes the YTO frequency. When FM is applied to the YTO loop, the detector discriminates the FM signal. The following expression shows the relationship between modulation index (β), frequency deviation ($f_{\rm dev}$) and rate of modulation ($f_{\rm mod}$).

$$\beta = \frac{f_{\text{dev}}}{f_{\text{mod}}}$$

The detector's practical operating range is approximately 0.5 radians ($\beta = 3.0$). Because of the divider circuits which preced the detector, β is effectively doubled to 6.0. Note that the specified modulation index is 5 minimum.

- a. Overmodulation Detector. The active high outputs of the Phase/Frequency Detector are connected in a wired-or configuration to the Overmodulation Detector. When the present 0-MOD limit (2.5 minimum at phase detector output) is exceeded, the Divide Selector and the FM Status/Enable retriggerable monostable multivibrators are set.
- b. FM Status/Enable. In the FM mode the FM ON input (high) turns the FM Switch on (Q3 off) which ungrounds the IFM IN (integrated FM input). When overmodulation occurs, and the FM Status/Enable monostable multivibrator is set, then the FM ON input is grounded (through Q1). The FM Switch however, remains ON due to the high from the FM Status/Enable multivibrator (through CR14 on to the base of Q2 which keeps Q3 off).
- c. Divide Selector. During overmodulation, the Divide Selector monostable multivibrator is also set. The active low output causes the Dividers to divide-by-three. In the divide-by-two mode, the signal that triggered the overmodulation is normally about $\beta = 6$ (or at the Phase/Frequency Detector output,

SERVICE SHEET 9-A3 (Cont'd)

 β = 3). In the divide-by-three mode, the output beta is about 2. Therefore, the loop locks. Back in the normal divide-by-two mode, the Divide Selector will be set again if the loop has false locked on a transient or on an FM sideband, or it will simply remain as is if it has locked on the carrier.

NOTE

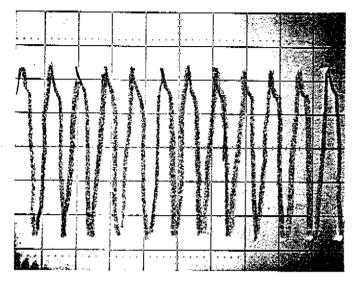
The YTO Loop can lock in either the divide-by-two or divide-by-three modes. In the divide-by-three mode, the loop bandwidth is reduced making it impossible to correctly adjust the YTO Phase Detector (refer to Section V).

Unlock Detector. The Unlock Detector compares the YTO Tune 1 signal to a preset reference. If the voltage swing exceeds ± 5 Vdc, a YTO unlock signal is generated. Small ac transient provide unlock signal due to action of C12.

TROUBLESHOOTING

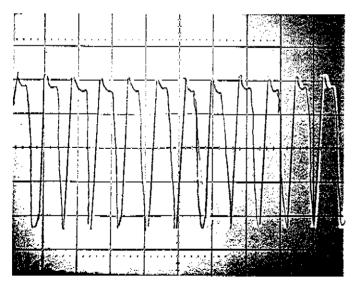
It is assumed that the troubleshooting information on Service Sheets 1 and 2 was used to isolate a YTO loop malfunction. The following information will aid in isolating the defective component.

NOTE

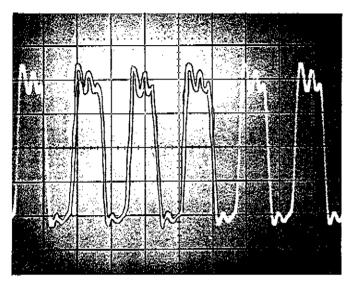

If the malfunction is FM related, ship directly to step 8. Otherwise go to step 1.

- Connect an oscilloscope via a coaxial tee to the YTO Tune 1 connector (gray cable). The loop should remain closed (feedback path should not be broken) for this measurement. When the loop is locked, YTO Tune 1 should be 0 ±2 Vdc. When the loop is unlocked the voltage will be greater than ±6 Vdc depending on the direction of the phase error. Tune from 2000 to 6190 MHz in 100 MHz steps to check lock over the entire YTO range.
- 2. Make sure the YTO Unlock output tracks the YTO Tune 1 output (>±2.6V should indicate unlocked). If both steps 1 and 2 are correct, the YTO phase detector is working properly.

CAUTION


Disconnect the line (mains) power before installing the A3A9 Assembly in service position.

- 3. Install A3A9 in service position and remove A3A9A4 cover. Refer to the Disassembly and Reassembly Procedures which precede the service sheets.
- 4. Reconnect the Mains power and tune to 3000,000 MHz. Connect a dual channel oscilloscope to A3A9A4TP2 and TP5. The ECL pulses at these test points should be square waves of -1.0 to -1.5V amplitude between 10 and 15 MHz (66 to 100 ns period). Refer to following figure. If those signals are correct, proceed to step 7.
- 5. If the signals at TP2 or TP5 are not correct, measure the IF IN (black cable) and the 20/30 loop signal (green cable). These signals should both be about 0 dBm. When measuring the IF signal, ground A3A7TP2 to open the loop. If the 20/30 MHz loop signal (30.000 MHz) is incorrect, go to Service Sheet 1-A2. If the IF signal is incorrect (30.000 MHz plus or minus the pretune error) go to Service Sheet 8-A3. Otherwise proceed to step 6.


Oscilloscope Display of Signal at A3A9A4TP2 and TP5 (CW/AM Modes) 0.95 Vp-p at 12.5 MHz

- 6. Observe the 20/30 MHz pulses at pins 2 and 14 of U6; they should be as shown in figures below. If these signals are correct, throubleshoot U6 and its associated components.
- 7. Check the phase detector operation by observing the signal at U3 pin 6. The width of the pulse is determined by the phase difference between the IF and 20/30 MHz loop signals. (If the loop is phase locked, the signal is an extremely narrow pulse). If this signal is not correct, troubleshoot U5, Q4 and their associated components. Otherwise troubleshoot U3, U1 and their associated components.

Oscilloscope Display of Signal at A3A9A4U6 Pin 2 (CW/AM) Modes) 1.0 Vp-p at 30.6 MHz

8-80d

Oscilloscope Display of Signal at A3A9A4U6 Pin 4 (CW/AM Modes) 0.9 Vp-p at 30.6 MHz

- 8. Set the Synthesizer's FM DEVIATION switch to OFF and the METER MODE switch to FM.
- Tune the test oscillator to 2 MHz and connect the 50 ohms output to the Synthesizer's FM INPUT connector.
- 10. Measure the FM ON input. It should be about +0.1 Vdc. While observing the voltage, switch the FM Deviation switch through its range. In all FM positions the FM ON line should be high (about +4.4 Vdc). Leave the switch in the 10 MHz DEVIATION range. If the FM ON line does not respond correctly, turn to Service Sheet 8-A1 and continue troubleshooting. If the line is held low, consider the possibility of a short on A3A9A4.
- 11. Set the test oscillator's frequency to 100 kHz and output voltage to achieve a full scale reading on the Synthesizer's front panel meter (10 MHz deviation). The FM OVERMOD display should not be one.
- 12. Connect an oscilloscope to U2 pin 7. The level should be high. Increase the test oscillator's output voltage. The signal should pulse low (period about 5 ms) and the FM OVERMOD display should be on. If the output does not pulse low, check U2, U4B, U7B and U9B, U5 and their associated components.
- 13. Tune the test oscillator to 10 kHz. Measure the IFM signal at the drain of Q3. If the signal is not present or if the FM OVERMOD display is not lit, check U4A, Q1 and their associated components.

NOTE

After repairing the A3A9A4 assembly, perform the YTO Loop Phase Detector Adjustments, the YTO Loop Offset and the FM Overmodulation Adjustments.

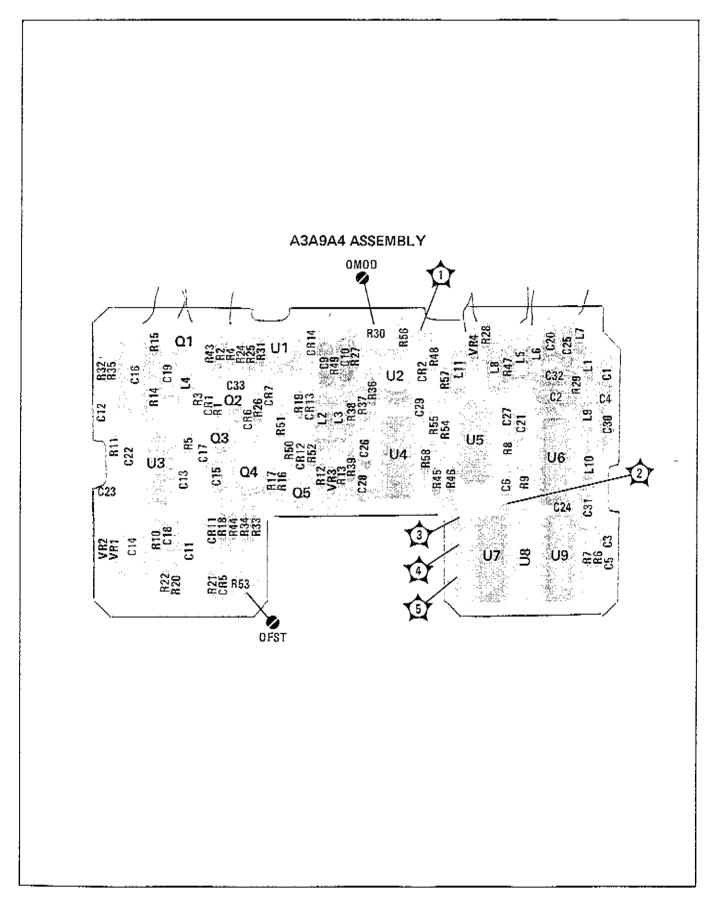


Figure 8-90. A3A9A4 YTO Phase Detector Assembly Component, Adjustment, and Test Point Locations 8-80 t^2

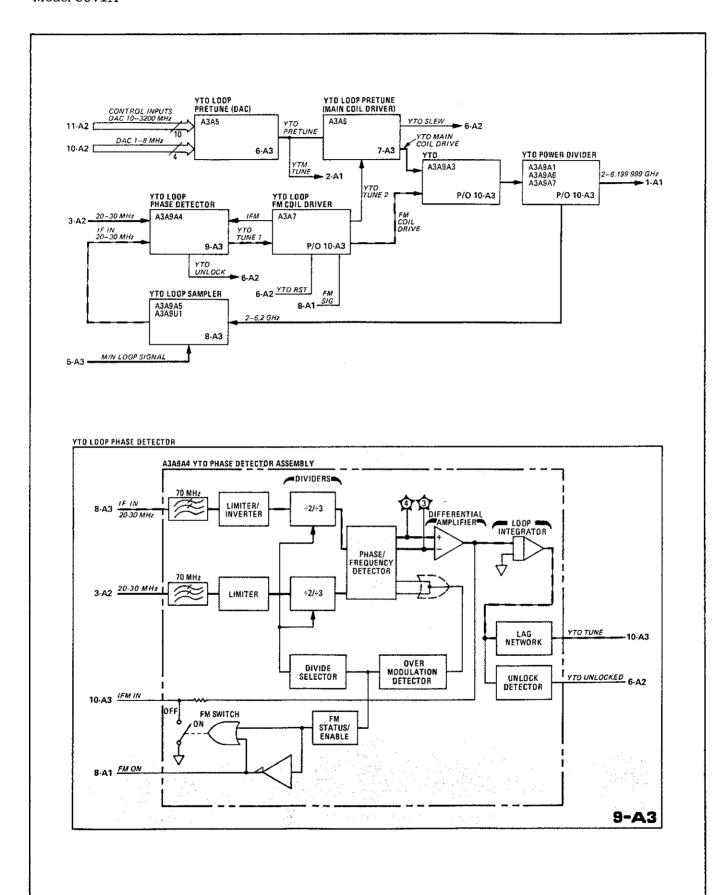
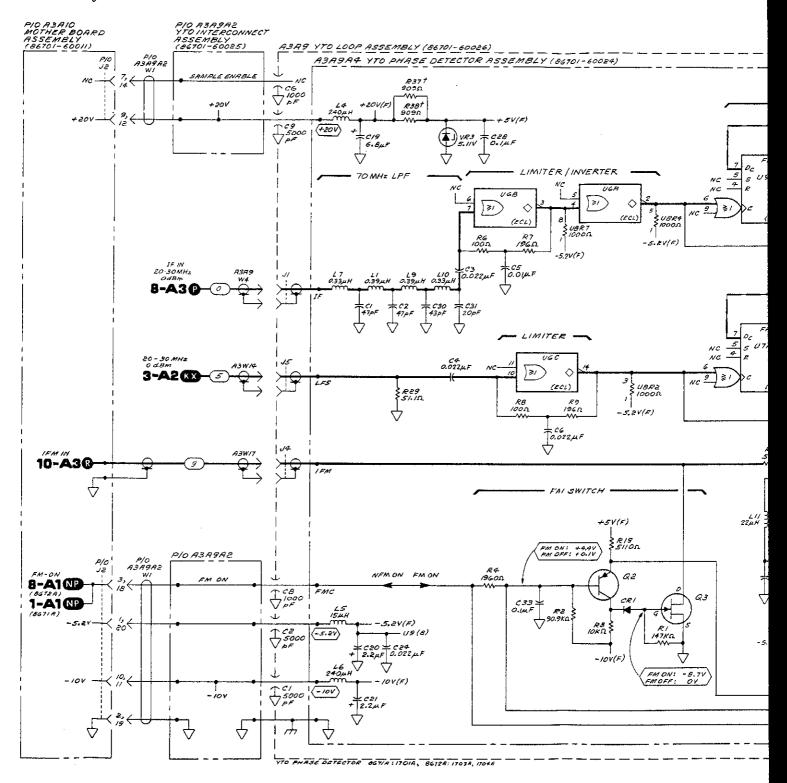
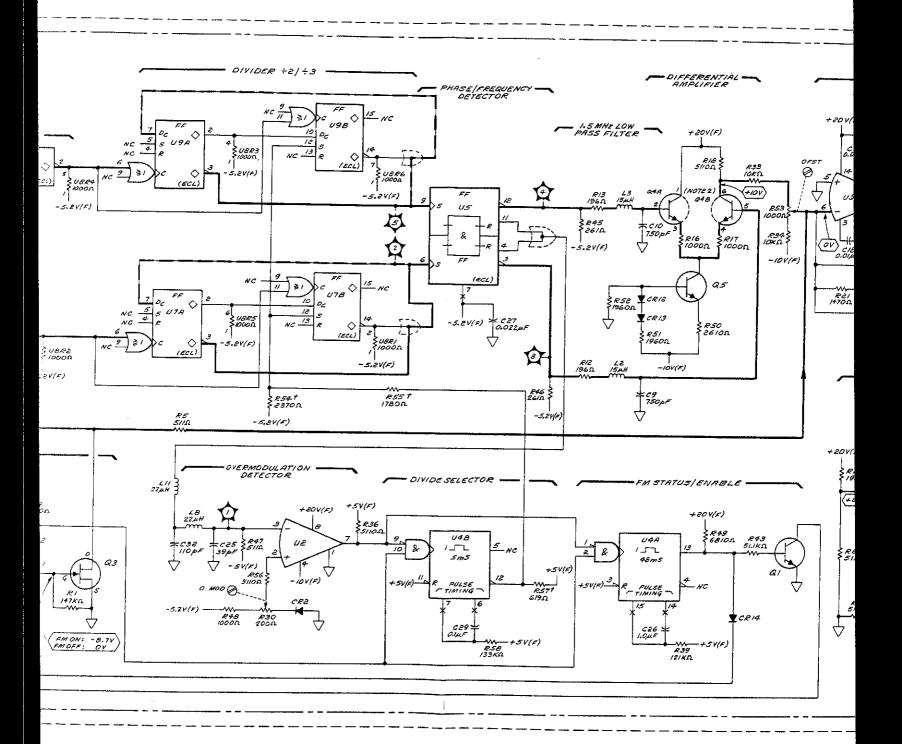




Figure 8-91. YTO Phase Detector Block Diagrams

F16.8-92 SH 3 of 3

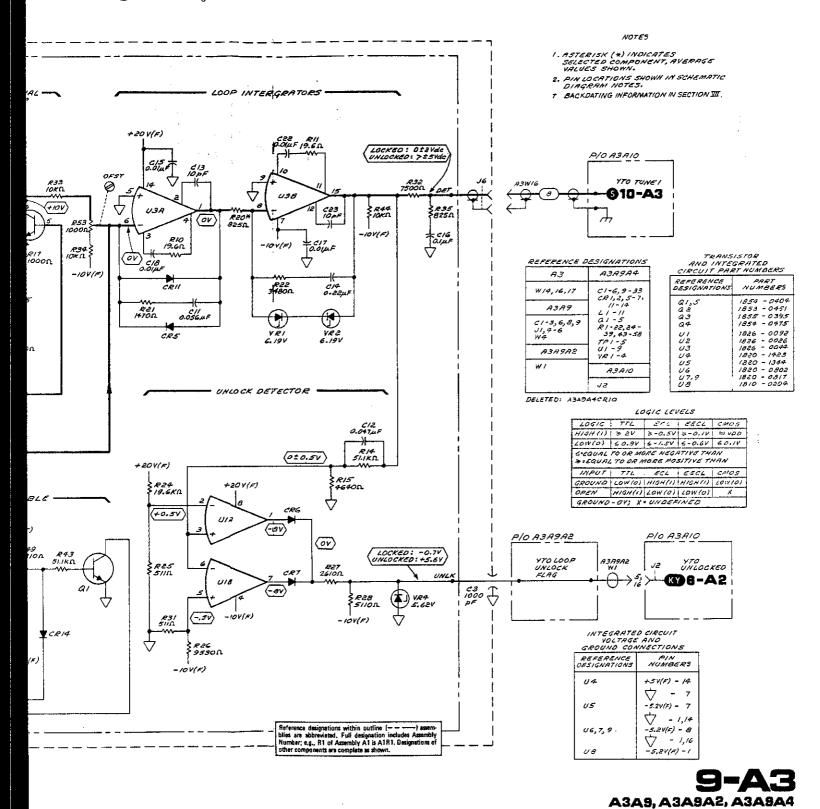


Figure 8-92. YTO Phase Detector Assembly Schematic Diagram

SERVICE SHEET 10-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-33

Motherboard wiring
 Last 3 foldout pages

• Parts list Page 6-37

• Performance tests Refer to Table 5-3 on Page 5-3

• Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

YTO Phase Lock Loop

The Yig Tuned Oscillator's frequency output is phase locked 1) to the difference of the YTO frequency and a selected harmonic of the M/N loop and 2) to the 20/30 MHz loop. The YTO is tuned near the correct harmonic of the M/N Output frequency by the YTO pretune circuits. Once the pretuning is completed, the IF signal (20/30 MHz) from the YTO Loop Sampler is phase compared to the 20/30 MHz Loop signal and the resulting error signal tunes the YTO to achieve phase lock. The YTO frequency is related to the M/N Out frequency and the 20/30 loop frequency in the following manner:

 $f_o = (N) (f_{M/N} - f_{20/30})$

where f = YTO output frequency (MHz)

N = N number input to M/N loop (also the M/N loop harmonic near to which the YTO loop is pretuned)

 $f_{M/N} = M/N$ loop output frequency (MHz)

 $f_{20/30} = 20/30$ Loop output frequency (MHz)

 $f_{\rm \ YTO},\ N$ and $f_{M/N}$ OUT may be looked up on Table 8-4, M and N Numbers and Resulting Frequencies.

Also, $f_{20/30} = (30.000 - D_4, D_3 D_2 D_1) MHz$

where D₄ = front panel 1 MHz character

D₃ = front panel 100 kHz character

D₂ = front panel 10 kHz character

D₁ = front panel 1 kHz character for YTO frequencies less than 6200 MHz. Refer to the Service Sheet 2 text for a complete listing of pertinent formulas.

YTO Loop FM Circuits

In the Synthesizer's CW mode of operation, the Phase Detector's error voltage is found to be proportional to the integral of the YTO frequency. In the FM mode, the error voltage is due to the sum of integrals of the YTO frequency and the frequency deviation. Since the deviation is directly proportional to the modulation drive voltage, the error voltage may be expressed as follows:

$$V_e = \int f_O(t) dt + \int V_{FM}(t) dt$$

where V = phase detector's error voltage

 $f_{o}(t) = YTO frequency$

 $V_{FM}(t) = FM \text{ drive voltage}$

SERVICE SHEET 10-A3 (Cont'd)

The result is a cancellation of modulation for FM rates inside the YTO loop bandwidth (20 kHz) and a partial cancellation at rates greater than 20 kHz and decreasing as the rate increases. In order to make the YTO loop response to FM essentially flat, a portion of the FM drive signal is integrated and subtracted from the error voltage output by the Phase Detector. This voltage is adjusted to just cancel the error voltage caused by the FM signal. Now the YTO loop effectively passes all specified rates to the YTO with little or no effect. Note that the FM drive signal is input after the Loop Integrator and the integrated FM is subtracted from the error voltage just before the Loop Integrator.

A3A7 FM Driver Assembly

The FM Driver Assembly performs three major functions. First, it combines and sums the FM drive signal with the high frequency component and the YTO Tune 1 signal. Then this combined signal is amplified, compensated (for frequency response) and converted to an FM coil drive current. The FM drive signal is integrated and coupled to the YTO Phase Detector Assembly, where it is summed with (subtracted from) the Phase Detector's error voltage output.

Two minor but extremely important functions are 1) shifting the YTO frequency to ensure it will pass through the loop capture range and achieve phase lock in the event the loop has become unlocked and 2) to divide YTO tuning voltage (YTO Tune 1) into its high and low frequency components.

Phase Lock and FM Drive Signals. The YTO 1's high frequency component and the FM drive signal are summed at the input to the FM Coil Driver. The combined signal is amplified and the drive current is applied to the FM coil through an impedance matching network. The Frequency Shaping Network, that is located in the coil driver's feedback loop and the main FM signal path, compensates for the gradual loss in sensitivity of the FM coil to higher frequencies. The 40 dB attenuator in the FM signal path allows switching between the most sensitive and least sensitive FM ranges. The other two attenuators (that allow switching between the six FM ranges) are located in the A1 Assembly.

Integrated FM Signal. The FM signal integrated by the FM integrator, U3A. R23 and C1 form the integrating network which operates at frequencies greater than 20 kHz while C3 operates below 20 kHz. Note the equivalent networks in the non-inverting input. These preserve the common mode rejection characteristics of the amplifier. U2A, the second FM integrator amplifier, includes an adjustable gain control. This allows adjustment of the IFM signal gain to exactly balance the FM signal discriminated by the YTO phase detector.

In the most sensitive FM ranges (1, 3 and 10 MHz/V), the gain of the first FM Integrator Amplifier (U3B) is 20 dB and the attenuation at the output of the second amplifier (U2A) is 0 dB. In the least sensitive ranges (0.03, 0.7 and 0.3 MHz/V), the gain of the first amplifier is reduced to Unity (0 dB) and the output of the second amplifier is attenuated by 20 dB. This, 40 dB change in level, in effect, keeps the gain consistant with FM drive signal applied to the YTO's FM coil.

Attenuating the integrated FM signal at the output of the amplifiers improves the signal-to-noise ratio of the FM system in the least sensitive ranges.

YTO Loop Reset. The YTO Loop Reset ensures that the YTO loop acquires phase lock after a frequency transition. When a frequency change occurs in less than 15 ms the YTO achieves lock and the YTO RST does not effect the YTO Tune 1 input. If the loop does not achieve lock in less than 15 ms, the YTO UNLOCK causes YTO RST to momentarily go low. The YTO Tune 1 signal is

SERVICE SHEET 10-A3 (Cont'd)

pulsed to OV. The result is that the YTO frequency is shifted to another frequency and then tries to return to the pre-pulse frequency. During this transition, the YTO 20/30 MHz, IF signal passes through the capture range of the loop phase detector and the loop is locked. If a large frequency change occurs (on the order of 100 MHz), YTO SLEW causes the YTO RST to immediately go low. The YTO output is effectively frequency modulated and the IF signal passes through the loop capture range. If phase lock has not yet been achieved (after 15 ms), the YTO Tune 1 is pulsed to OV sending the 20/30 MHz IF signal through the loops capture range to ensure locking.

Phase Lock Amplifiers. The YTO Tune 1 signal is amplified by Q10. The YTO Tune 2 signal is connected to the A3A6 Main Coil Driver Assembly where all frequencies above 100 Hz are filtered out. The high pass filter (C12, R7 and R53) pass only those components of the signal greater than 100 Hz to the Coil Driver.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1 and 2 was used to isolate a YTO loop malfunction. The following information will allow further isolation to circuits shown by one of the three YTO loop schematics 8-A3, 9-A3 or 10-A3. If the malfunction is on 10-A3, this information will also aid in isolating the defective component.

Test Equipment

Digital Voltmeter	P 3455A
Test Oscillator	HP 651B
Frequency Counter	IP 5340A
Power Meter/Sensor	A/8481A
Power Meter/Sensor	

- Connect voltmeter to A3A7TP2. Set frequency to 3 GHz. Disconnect black IF jumper on A3A9. The phase detector should drive the test point to about -5.6 Vdc. Disconnect the green 20/30 MHz coax from its normal location and connect it to the IF IN connector. The voltage should go to about +5.9 Vdc. If either voltage is incorrect, go to Service Sheet 9-A3 to troubleshoot the dividers and phase detector.
- Connect the voltmeter to A3A6TP1. The voltage should be +6.5 Vdc with
 the green coax connected to the IF IN connector or -5 Vdc with the green
 coax installed in its normal location and the IF jumper removed. If either
 voltage is incorrect, go to Step 5 to troubleshoot the FM Coil Driver on
 A3A7.
- 3. Reconnect the ground to A3A6TP1 and set the frequency to 3 GHz. Measure the IF OUT frequency and power. It should be 30 MHz ± pretuning error at 0 dBm. (Ideally the frequency should be the same as the output of the LFS loop). If the frequency is correct troubleshoot the main coil driver (Service Sheet 7-A3), especially the buffer amplifier fed by YTO TUNE 2.
- 4. If the frequency is incorrect or unmeasurable, isolate the malfunction by measuring the M/N loop output and the YTO signal at the input to the A3A9U1 Sampler to isolate the malfunction.
- 5. Make sure the RF switch on front panel is ON. Measure the voltage at A3A7TP2 (YTO TUNE 1). This voltage should be less than +2.6 Vdc if the loop is locked. If the loop appears to be locked, continue with step 2. Otherwise, proceed to step 6.

SERVICE SHEET 10-A3 (Cont'd)

- 6. Measure the voltage at A3A7TP1. It should be about 0 Vdc. If the voltage is not zero, troubleshoot the Phase Lock Amplifier, the Bias Stabilizer and the FM Coil Driver. Otherwise, continue.
- 7. Connect the test oscillator's 50 ohm output to the FM INPUT connector. Tune the oscillator to 5 MHz with an output signal of about 0.7 Vrms (full scale on the Synthesizer's front panel meter). Connect a dual channel oscilloscope to A3A7TP1 and TP4. Set the FM DEVIATION switch to 10 MHz. The signal at TP1 should be about 9.6 Vp-p. If this signal is correct, the FM Amplifier (Q4 and Q6) and the FM Coil Drivers are OK. If the signal is not correct, check the FM INPUT at TP5 before troubleshooting the FM Amplifier and Coil Driver. The signal at TP4 should be an integrated sinewave.
- 8. Set FM DEVIATION switch to 0.1 MHz. The signals at TP1 and TP4 should decrease by 40 dB (1% of the original voltage). If the signals at TP1 and TP4 are correct, the FM portions of A3A7 are OK. If the malfunction is an FM problem, proceed to Service Sheet 9-A3.
- 9. Disconnect the test oscillator and set the FM DEVIATION switch to OFF. Tune the Synthesizer while measuring the dc voltage at A3A7TP2. The voltage at edge connector pins 8 and 23 should be 0.7V more positive than the voltage at TP2. If this voltage is correct, A3A7 is working properly. Otherwise, troubleshoot Q10. If the voltage is zero even when the frequency is tuned, troubleshoot the YTO LOOP RESET circuit. The YTO RST line should be a TTL high. It should pulse low when the loop is locked due to 1) excessive FM deviation, 2) a missing M/N loop signal, 3) RF OFF, and 4) the 20/30 MHz Loop Signal is missing.
- 10. Ground A3A7TP2 to open the loop and measure the pretune frequency at the A3A9A1 Directional coupler's main output with the Synthesizer tuned to 2 GHz. The frequency should be within ±5 MHz at +14 dBm nominal. If the frequency is correct, continue. Otherwise, go to Service Sheet 7-A3 to troubleshoot or adjust the YTO Driver or DAC. If the frequency cannot be measured, troubleshoot the A3A9A3 YTO Assembly and the A3A9A1 Directional Coupler.
- 11. Tune to 6199 MHz. The measured frequency should be within ±5 MHz. If the results of step 6 and 7 are correct, the DAC, YTO Driver and YTO main coil are OK. Otherwise troubleshoot the DAC, YTO Driver and YTO.

NOTE

After the A3A7 assembly is repaired, perform the FM Driver Adjustments in Section V. If A3A9A3 is replaced, perform the Power Supply, DAC, YTO Driver, YTO Loop, FM Driver, FM Modulation Meter and the YTO Loop Offset and Overmodulation Adjustments.

Voltages for 100 kHz FM at full scale deviation (1 Vpk input):

TP1 3,39 Vrms

TP5 0.95 Vrms

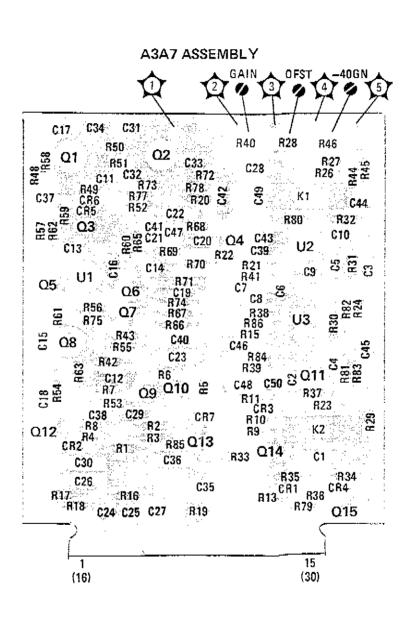


Figure 8-93. A3A7 FM Driver Assembly Component, Adjustment, and Test Point Locations

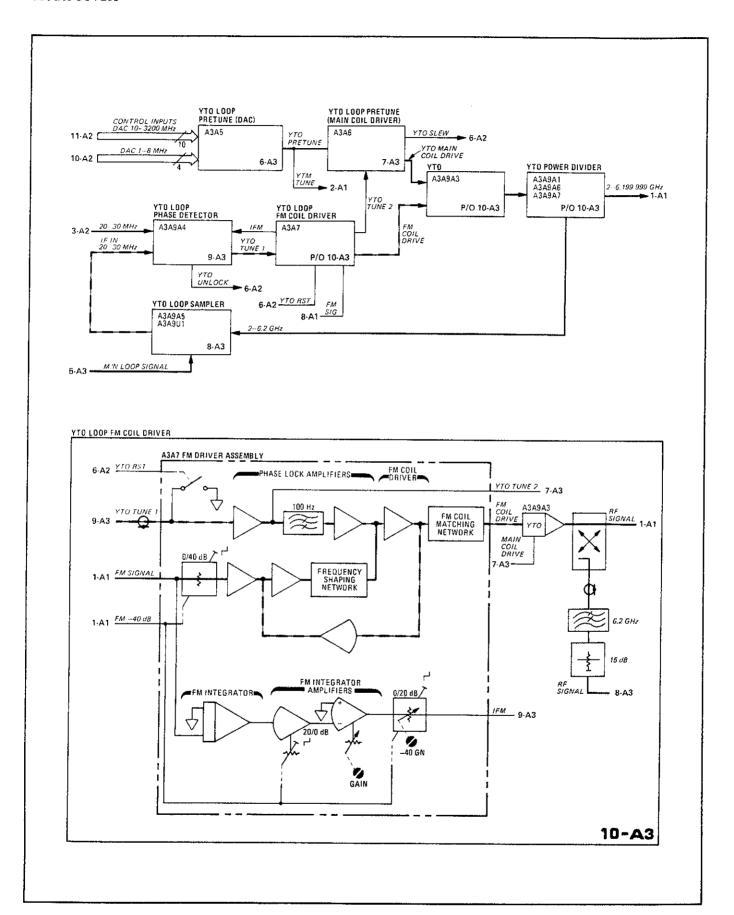
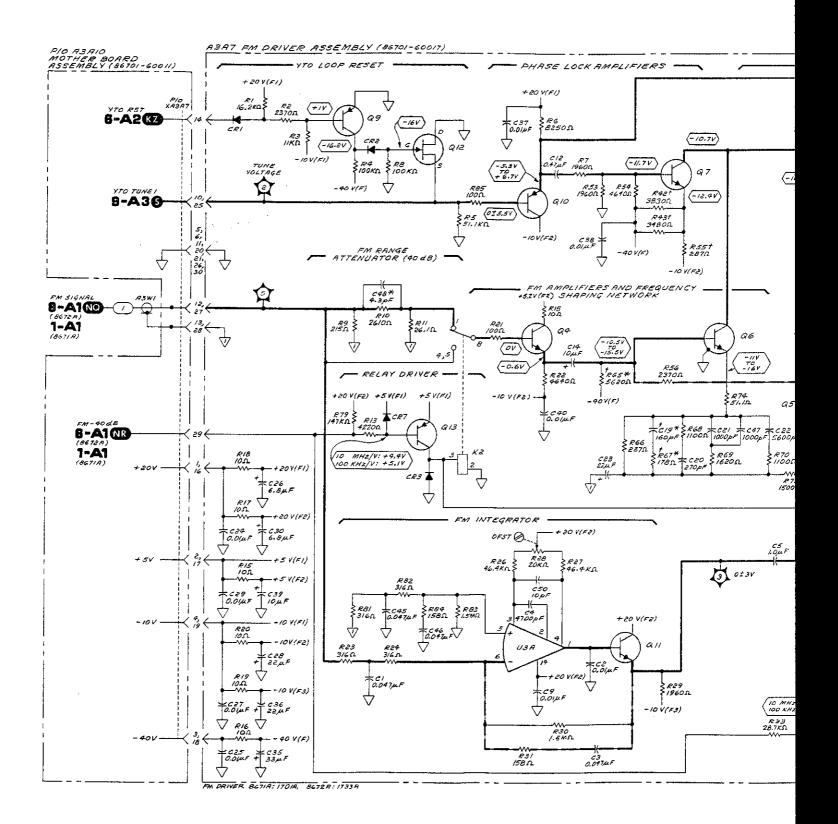



Figure 8-94. FM Driver Block Diagrams

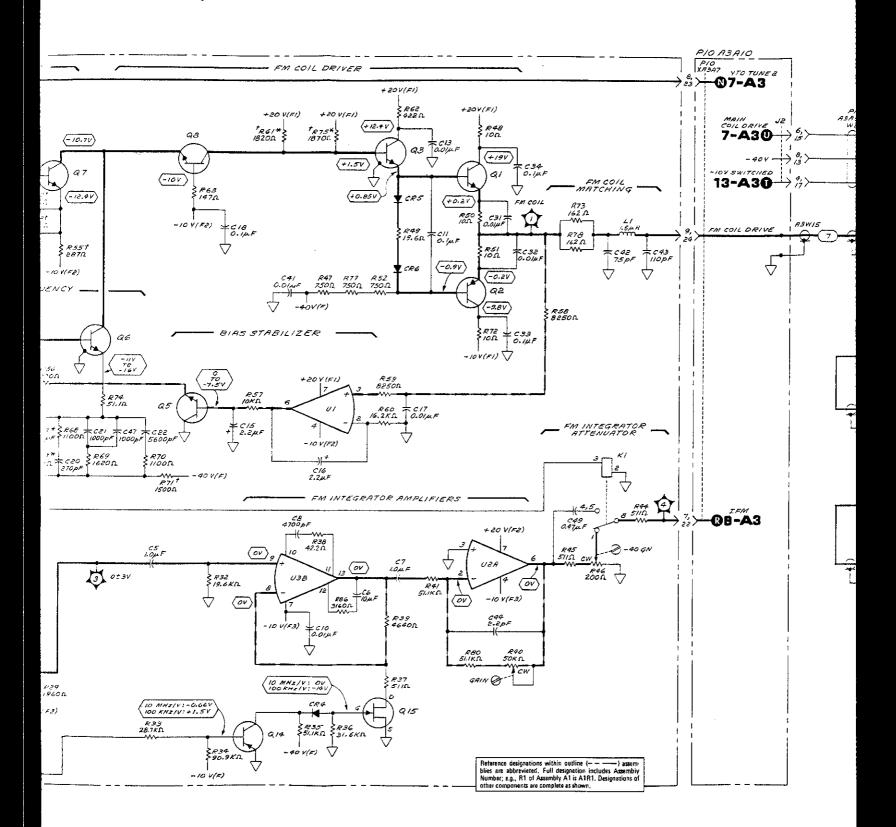


FIG. 8-95 Sht 3 f3

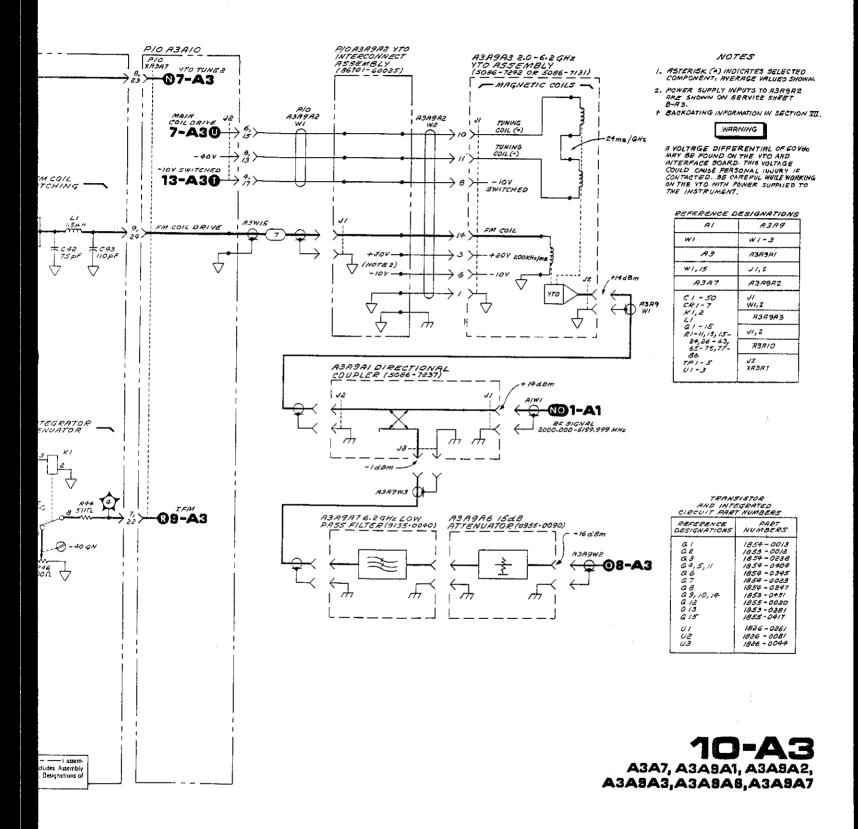


Figure 8-95. FM Driver Assembly Schematic Diagram

SERVICE SHEET 11-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram Page 8-33

Motherboard wiring
 Last 3 foldout pages

• Parts list Page 6-30

Performance tests
 Refer to Table 5-3 on Page 5-3

• Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

General

If power cable W1 is connected between the line (Mains) power outlet and the A3A11 Line Module, primary ac power is connected to transformerA3T1 and fan relay A3A10K1. Line Voltage Selector A3A11TB1 matches the line voltage to the transformer primary. When the front panel LINE switch is set to ON, 120 Vac is connected to the cooling fan A3B1.

A3A2 Rectifier Assembly

The secondary ac voltages from the transformer are always present on the rectifier circuit board if the line voltage is connected to the Synthesizer. The four inputs are rectified and filtered before being output to the regulator circuits.

+22 Volt Regulator. The primary purpose of the +22V Regulator is to supply power to the internal reference oscillator's heater circuit any time the instrument is connected to the line voltage. The oscillator is maintained at operating temperature. Therefore, the instrument is ready to operate immediately after the LINE switch is set to ON.

The unregulated +20V is also used to supply power to the +22V Regulator. A3A2U1 is a monolithic 18 volt regulator that has the common terminal raised +4 Vdc above ground. If the regulated output exceeds +25 Vdc, the overvoltage protection circuit shorts the output to ground which causes the regulator to current limit. This action effectively turns the Synthesizer off. If the primary power fuse A3F1 does not burn out, the instrument must be disconnected from line voltage to reset the overvoltage protection circuit.

Input Overvoltage Protection. If the input voltage on the unregulater—40V line exceeds 82.5 Vdc (measured from —40V Unreg to —40° Return), the overvoltage protection circuit will short circuit the —40° input causing primary power fuse A3F1 to burn out. The intent c this circuit is to protect the instrument if 220 or 240 Vac is input with Line Voltage Selector A3A11TB1 set for 100 or 120 Vac. I this occurs, change the fuse to the correct value and orient the Lir Voltage Selector so the line voltage is correctly matched to the transformer.

SERVICE SHEET 11-A3 (Cont'd)

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheets 1, 2 and 12-A3 was used to isolate a power supply malfunction to the circuits shown on this schematic. The following information will aid in isolating the defective component.

Test Equipment

- 1. Connect the Synthesizer to the line (Mains) power.
- 2. LED A3A2CR15 should be on.
- 3. Verify that the voltage at A3A2TP1 is +22.0 ± 0.1 Vdc.
- 4. Disconnect the power cable from the line power.
- 5. Install the assembly on an extender board and reconnect the Synthesizer to the line power.

CAUTION

To prevent damage to the power supplies, measure the following voltages with a voltmeter that has a floating common.

6. Measure voltages between edge connector pins as shown below.

Positive Pin	Negative Pin	Voltage
6	5	27-35 Vde
17	15	15-21 Vdc
3	1	48 -6 0 Vdc
10	7	10 1 4 Vdc

- 7. If any of the voltages are incorrect, check the ac input voltages from the power transformer. The voltages should be as shown on the schematic.
- 8. The transformer output may be checked with no load by removing the A3A2 assembly.

NOTE

With A3A2 removed the fan will run continuously in both STANDBY and ON. After repairing the A3A2 assembly, perform the Power Supply Adjustments in Section V. Also, perform the performance tests (if any) that led to the power supply repair.

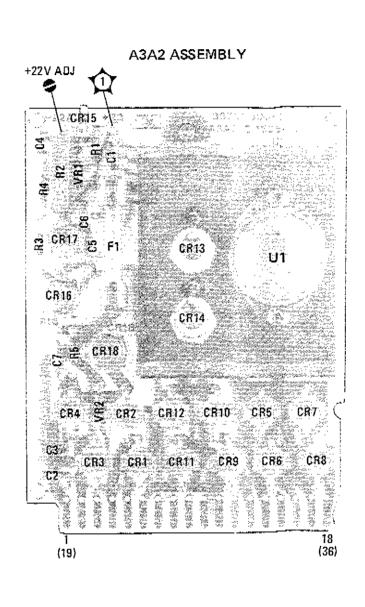
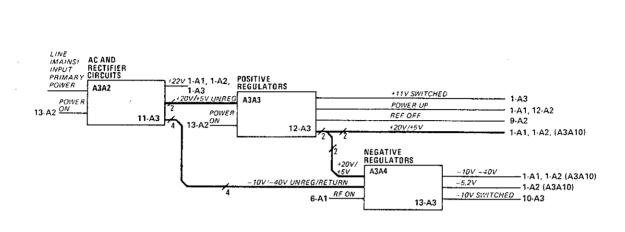



Figure 8-96. A3A2 Rectifier Assembly Component, Adjustment, and Test Point Locations

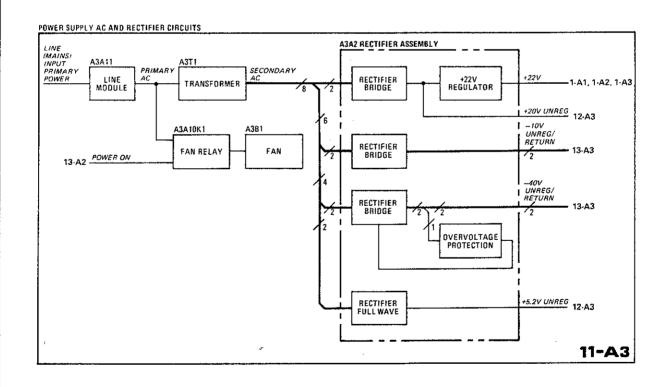
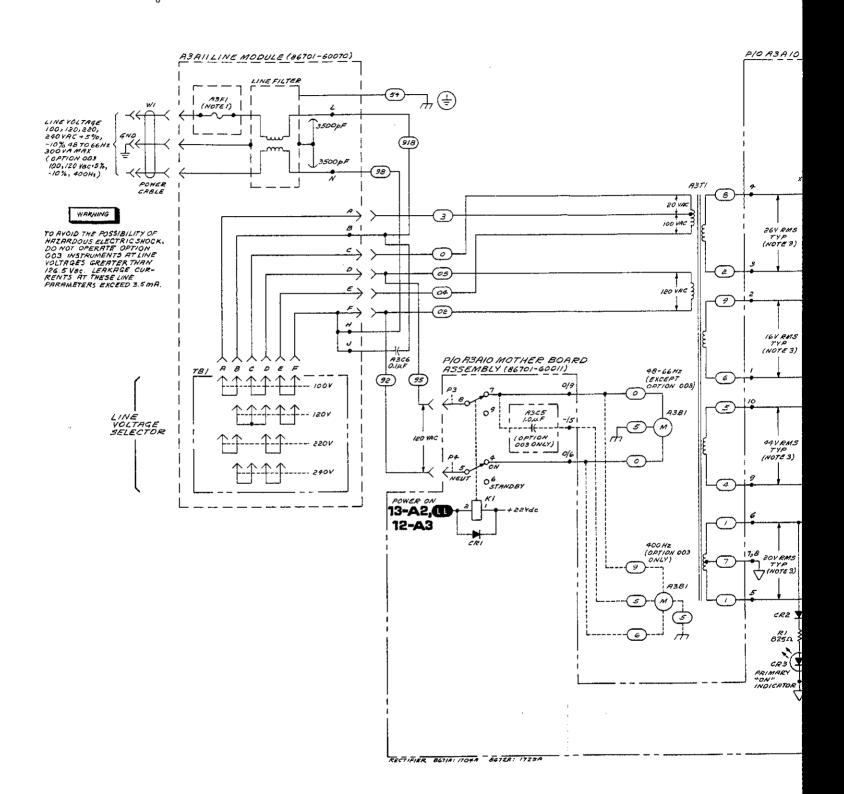



Figure 8-97. Rectifier Block Diagrams

F16-8-98 SH29f3

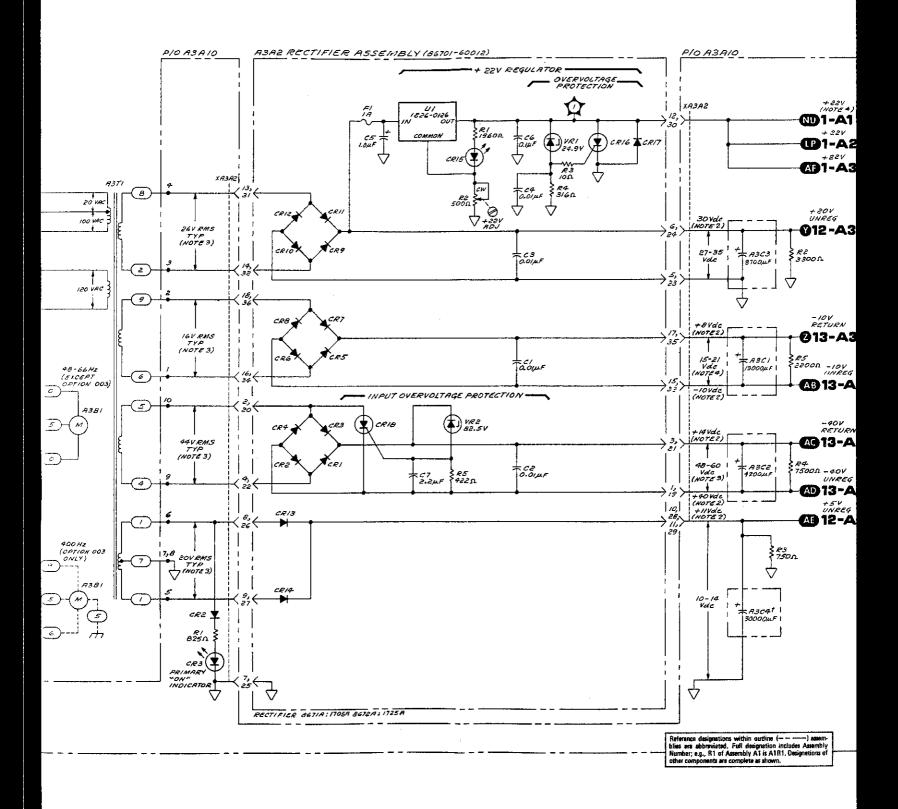


Figure 8-98. Rectific

FIG. 8-98 Sut 3 43

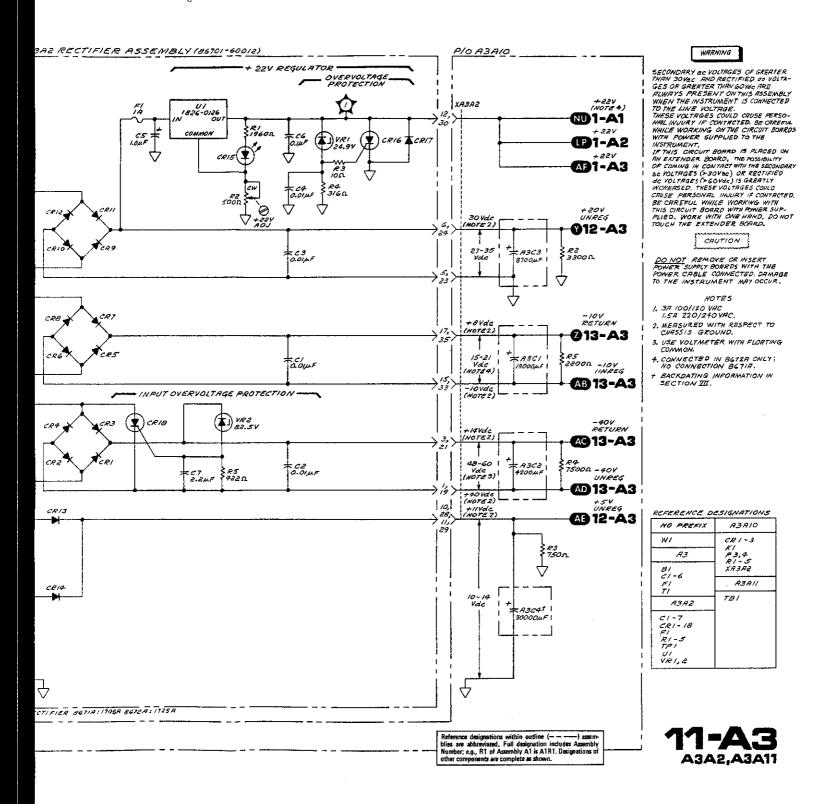


Figure 8-98. Rectifier Assembly Schematic Diagram

SERVICE SHEET 12-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

• Block diagram Page 8-33

Motherboard wiring
 Last 3 foldout pages

• Parts list Page 6-31

• Performance tests Refer to Table 5-3 on Page 5-3

• Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

Power Supplies

The +20V Regulator provides a reference voltage for all regulated supplies other than the +22V supply. If, or any reason, the +20V supply is turned off, all the power supplies on the A3A3 and A3A4 Assemblies will also be off. This effectively turns off the instrument. Under normal circumstances the +20V Regulator is turned on or off with the front panel LINE switch.

A3A3 Positive Regulator Assembly

+20V Regulator. A3A3Q2 and Q3 form a current source for A3Q3. When the Synthesizer is turned on, the +20V output increases and supplies current to the non-inverting input of A3A3U3 through the voltage reference A3A3VR2. The output voltage is also divided by A3A3R9, R50 and R10 and coupled to the inverting input of A3A3U3. This divided voltage is adjustable and sets the output voltage level.

At some level of current flow through the +20V Regulator, the voltage drop across A3A3R3 will equal that across A3A3R4 and A3A3Q4 begins to conduct. The output of A3A3U3 goes more positive which turns the current limiter on harder. The +20V Regulator is completely turned off. The regulator will remain off until the cause of the excess current drain is removed.

If the output voltage of the +20V Regulator reaches +23 Vdc, the overvoltage protection circuit shorts the output to ground. This causes the current limiter to turn the regulator off.

Front Panel Shutdown. The front panel LINE switch in the STANDBY position causes the Power On input to A3A3U1A to be 0V. This causes A3A3Q3 to saturate which turns the +20V regulator off. In the LINE switch ON position, the input voltage is approximately +22 Vdc which turns A3A3Q8 off.

Thermal Shutdown. This circuit operates much like the Front Panel Shutdown. At normal operating temperatures (less than 55°C) the value of thermistor A3A3RT1 is much greater than the 107 ohms of A3A3R53. Therefore, the voltage at the inverting input of A3A3U1B is more positive than the non-inverting input. This causes A3A3Q1 to be turned off. At temperatures exceeding 85°C, the resistance of RT1 drops below 107 ohms which causes A3A3Q1 to turn on. Even though the instrument is effectively turned off, the fan will continue to run to cool the instrument. The instrument will not return to normal operation until the internal temperature drops to 55°C or less.

+5V Regulator. The operation of this circuit is much like that of the +20V regulator. The reference voltage is provided by the +20V supply and a separate fuse is provided for further protection.

SERVICE SHEET 12-A3 (Cont'd)

Power Up/Down Detector. This circuit outputs a Power Up/Down voltage (+5 or 0 Vdc) when the instrument is turned on or off. This lets the last frequency displayed before turnoff to be restored at turn on.

Reference Oscillator Power Supply. A rear panel switch controls power supplied to the A3A8 Reference Oscillator Assembly. When the FREQUENCY STANDARD INT/EXT switch A3S1 is set to INT, the Reference Oscillator Power Supply circuit is turned on. It reduces the +20 Vdc input to approximately +11 Vdc.

Troubleshooting

It is assumed that the troubleshooting information on Service Sheets 1 and 2 were used to isolate a power supply malfunction. The following procedure will allow further isolation to circuits shown by one of the three power supply schematics 11-A3, 12-A3 or 13-A3. If the malfunction is on 12-A3, this information will also aid in isolating the defective components.

Test Equipment

Digital Voltmeter HP 3455A

- 1. Connect the line (Mains) power to the Synthesizer and set the LINE switch to ON. Set rear panel FREQUENCY STANDARD INT/EXT switch to INT.
- 2. Observe the LED's on the A3A3 Assembly. The two red LED's (+20V and +5.2V indicators) should be on and the yellow LED (Thermal Shutdown indicator) should be off.
- 3. Set line switch to STANDBY. The +20V and +5.2V indicators should turn off.
- 4. Set the LINE switch to ON and measure the following regulator output voltages.

Regulator	Test Point	LINE Switch Position							
. Ingelotei	+20V* A3A3TP5 +11V A3A3TP6	ON	STANDBY						
		+20.000 ±0.001 Vde +11.0 ±1.1 Vde +5.2 ±0.1 Vde	0V 0V 0V						

- *The +20V supply is the reference for all other except the +22V supply. If the +20V supply is incorrect, all other supplies except the +22V supply will also be incorrect.
- 5. While measuring the +11V supply, switch the FREQUENCY STANDARD INT/EXT switch to EXT. The supply should go to

SERVICE SHEET 12-A3 (Cont'd)

OV. Set the FREQUENCY STANDARD INT/EXT switch to INT.

CAUTION

To avoid damage to the Synthesizer's power supplies, measure the following voltages with a voltmeter that has a floating common.

If the output voltages are incorrect, measure the input voltages.

Input Voltage Test Point +20V UNREG A3A3TP4	LINE Switch Position								
Input Voltage	l est Point	ON	STANDBY						
+20V UNREG +5.2 UNREG	A3A3TP4 A3A3T P 1	~32 Vdc ~12.2 Vdc	~35.5 Vdc ~14.5 Vdc						

If the input voltages are incorrect, go to Service Sheet 11-A3.

CAUTION

DO NOT remove or install power supply boards with the power cable connected. Instrument damage may occur.

- 7. If the output voltages are incorrect and input voltages are correct, check the fuses before continuing. Use the voltages noted on the schematic to continue troubleshooting.
- 8. To test the Thermal Shutdown circuit, ground A3A3U1B-pin 13. The yellow LED (Thermal Shutdown indicator) should light and the 5 red LED's on A3A3 and A3A4 assemblies should turn off. The front panel should turn off and the fan should continue to run. When the ground is removed the instrument should return to normal operation.
- 9. If the power supply problem is associated with the negative regulator circuits, refer to Service Sheet 13-A3.

Troubleshooting Line Related Spurious

NOTE

This procedure is not part of the normal troubleshooting information. This procedure normally follows failure of the Power Line Related Spurious Performance test.

High line related spurious can be caused by many different things; some ingenuity may be required to isolate the more subtle causes such as ground loops and externally inducted vibrations. The follow-

SERVICE SHEET 12-A3 (Cont'd)

ing procedure suggests items to check when trying to isolate a line spurious problem.

- 1. With a sensitive oscilloscope, observe the power supply ripple on each of the positive and negative supplies. The +20V, +11V, -10V, and -40V supplies should have ripple less than 300 μ V while the +20V, +5.2V, and -5.2V should have ripple less than 1 millivolt. Power supply induced ripple will generally be twice the line frequency plus harmonics (e.g., 120, 240, 360 Hz, etc., for a 60 Hz line). If one or more supplies has excessive ripple, check the filter capacitors.
- 2. If any circuit boards were removed and reinstalled, line related spurious can increase if the board position in the socket was changed or if ground contact resistance increased. Remove the board, clean the edge connector contacts and reinsert the board. When reinserting the board, push it as far as possible toward one end of the edge connector socket and thoroughly tighten any screws holding the board in place.
- 3. Fan induced spurious will generally be 3 to 5 Hz below line frequency. A loose circuit board (covers not properly tightened) can vibrate more than normal and may increase fan related spurious. The 100 MHz reference oscillator is also sensitive to vibration. Check the reference to make sure the rubber shock mounts are in good condition and the reference oscillator is properly mounted in them. An out of balance fan or one with defective bearings can generate much vibration. To isolate the origin, stop the fan with a pencil or other insulated tool to see if the spurious signals go away.
- 4. Apparent line related spurious can be caused by external instruments connected to the FM input when the FM deviation range is set to 10 MHz. A high level hum signal can cause significant FM sidebands even though the FM input is high pass filtered on the wide deviation ranges.
- 5. Bad ground connections and ground loops can occasionally cause spurious problems. Make sure the A1 and A2 assemblies are fully seated on their connectors and that all coax cables and circuit boards are properly seated on their connectors.

NOTE

After repairing the A3A3 assembly, perform the Power Supply Adjustments in Section V. Also, perform the performance tests (if an) that led to the power supply repair.

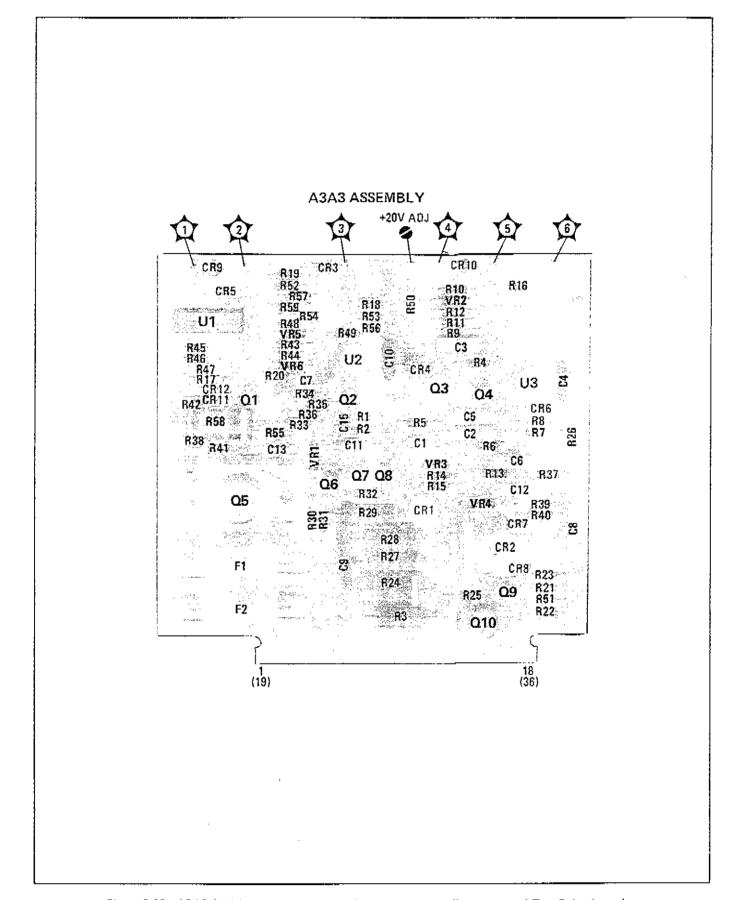


Figure 8-99. A3A3 Positive Regulator Assembly, Component, Adjustment, and Test Point Locations

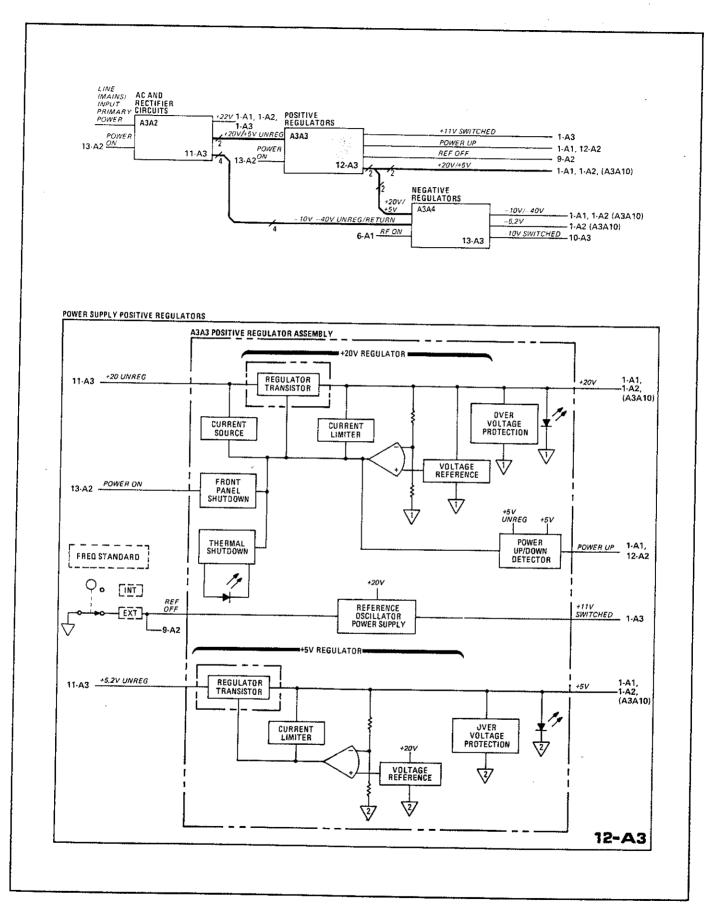
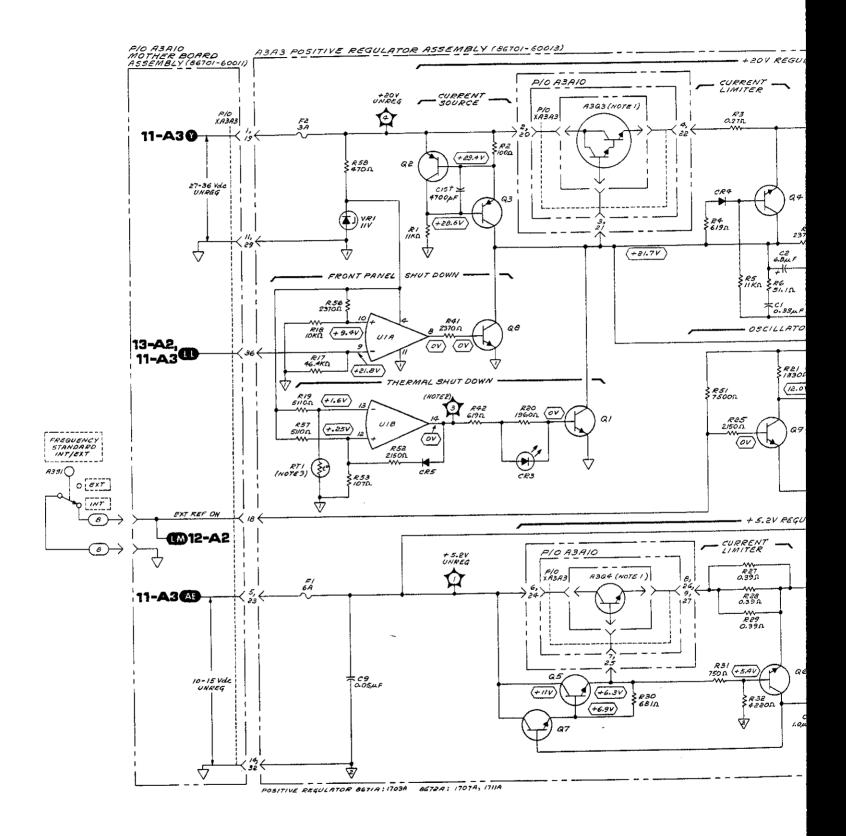
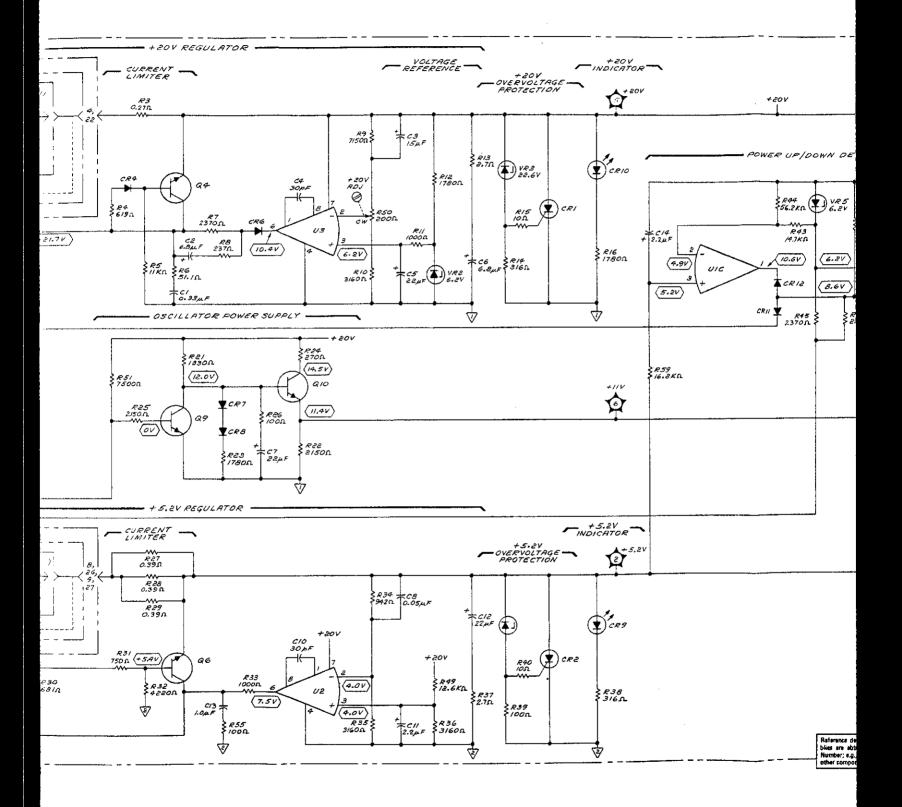




Figure 8-100. Positive Regulator Block Diagrams

F16.8-101 SM3 of 3

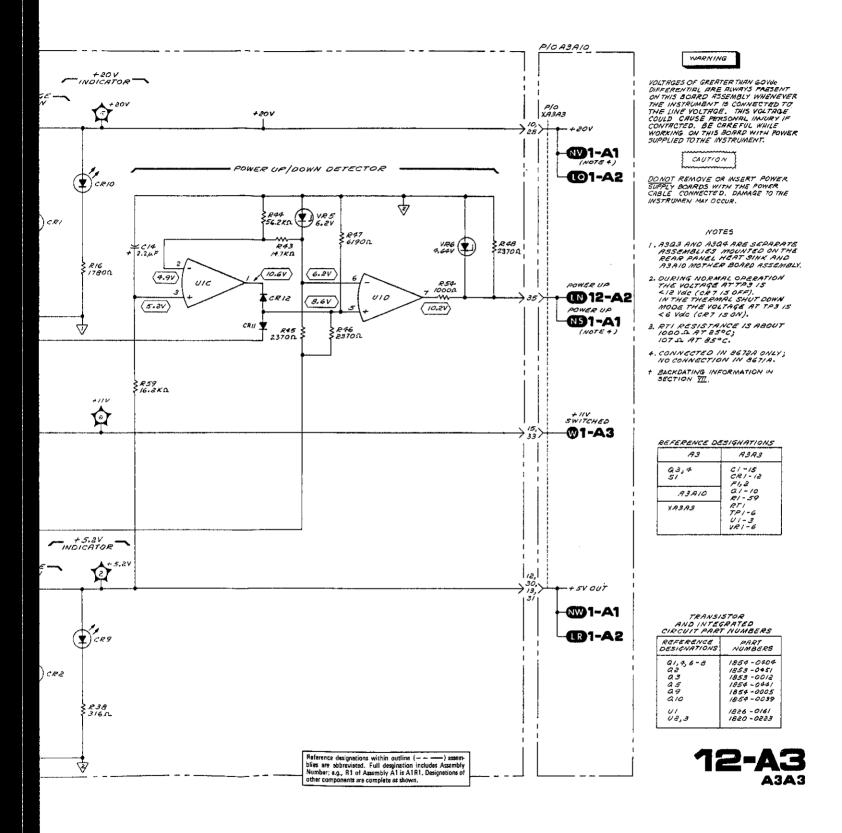


Figure 8-101. Positive Regulator Assembly Schematic Diagram

SERVICE SHEET 13-A3

TROUBLESHOOTING HELP: In addition to this service sheet refer to:

Block diagram
 Motherboard wiring
 Page 8-33
 Last 3 foldout pages

• Parts list Page 6-33

• Performance tests Refer to Table 5-3 on Page 5-3

Adjustment procedures Page 5-2

PRINCIPLES OF OPERATION

Negative Power Supplies

The negative regulators are all controlled by the +20V Regulator output. The -10V Regulator and the -40V Regulator operate exactly like the positive regulators. The only difference in the -5.2V Regulator is that the regulation occurs in the negative leg of the supply. Each supply has current limiting and overvoltage protection, and each is fused. The fuse in the -10V Unreg line A3A4F3 is for the -10V and -5.2V Regulators. Note that there is a separate fuse for the -5.2V Regulator.

A3A4 Negative Regulator Assembly

-10V Regulator. When the Synthesizer is turned on, $\pm 20V$ is applied across the voltage divider. The -10V output goes more negative until the divided voltage (at the non-inverting input of U2) is 0 Vdc.

At some level of current flow through the -10V Regulator, the voltage drop across R1 and R23 equals that across R2 and CR1 and Q1 begins to conduct. The output of U2 goes more positive, which then turns the current limiter on harder. The -10V Regulator is completely turned off and will remain in this condition until the cause of excess current drain is removed.

-5.2V Regulator. The operation of this circuit is much like that of the -10V Regulator. The main difference is that the regulation is in the negative leg of the supply. Because it takes a feed-back voltage of the opposite sense to control regulation, the +20V to -5.2V voltage divider output is applied to the inverting input of U1.

-40V Regulator. The regulating action of this circuit is like that of the -10V Regulator. The differences in component values are due to the difference in voltage and current requirements.

RF Switch. The RF ON switch (on the front panel of the A1 RF Output Assembly) controls the -10V switch. This voltage is the supply voltage for the A3A9A3 YIG Tuned Oscillator Assembly.

Troubleshooting

It is assumed that the troubleshooting information on Service Sheets 2 and 12-A3 was used to isolate a power supply malfunction of the

SERVICE SHEET 13-A3 (Cont'd)

circuits shown on this schematic. The following information will aid in isolating the defective component.

 $Test\ Equipment$

CAUTION

DO NOT remove or install power supply boards with the power cable connected. Damage to the instrument's internal circuitry may occur.

- 1. Connect the line (Mains) power to the Synthesizer and set the LINE switch to ON.
- 2. Observe the three red LED's on the A3A4 Assembly. All should be on unless the Synthesizer is in thermal shutdown.

CAUTION

To avoid damage to the power supply circuits, disconnect the power cable from the line voltage before removing or replacing any power supply circuit board.

3. Measure the following regulator output voltages. If any of the voltages are incorrect, remove the A3A4 Assembly and place it on an extender board. If all the voltages are incorrect, measure the +20V input at pin 9 of the edge connector.

Regulator	Test Point	Output Voltage
40V	A3A4TP1	-40.0 +0.6 - 1.0 Vdc
10V	A3A4TP4	-10.0 ± 0.2 Vdc
5.2V	A3A4TP5	-5.2 ± 0.1 Vdc

CAUTION

To avoid damage to the power supply circuits, measure the voltages of step 4 with a voltmeter that has a floating common.

SERVICE SHEET 13-A3 (Cont'd)

4. Check the appropriate fuse and measure the input voltages.

Input	Positive	Negative	LINE Switch Position						
Voltage	Pin	Pin	ON	OFF					
-10V UNREG -40V UNREG	7 (A3A4TP3) 2 (A3A4TP2)	6 3	~ 18.8 Vdc ~ 57 Vdc	~21.9 Vdc ~ 63 Vdc					

- 5. Measure the output voltage at edge connector pin 14. With the front panel RF switch ON the voltage should measure —10 Vdc; with the switch OFF it should be approximately +0.5 Vdc.
- 6. If the input voltages are correct but the output voltages are incorrect, use the voltages on the schematic to isolate the bad component.

NOTE

After the A3A4 assembly is repaired, perform the Power Supply Adjustments in Section V. Also, perform the performance tests (if any) that led to the power supply repair.

Model 8671A

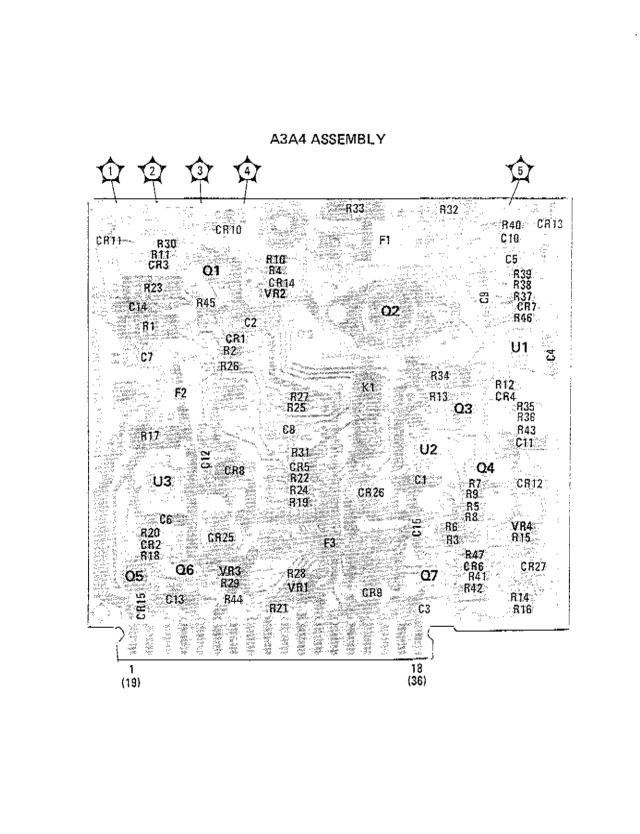


Figure 8-102. A3A4 Negative Regulator Assembly Component and Test Point Locations

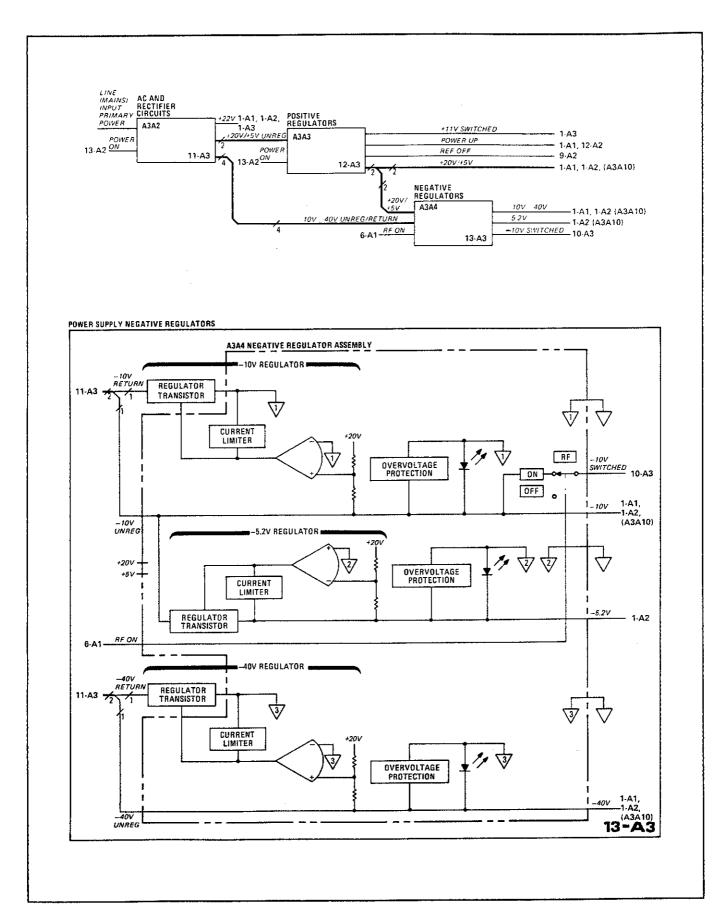
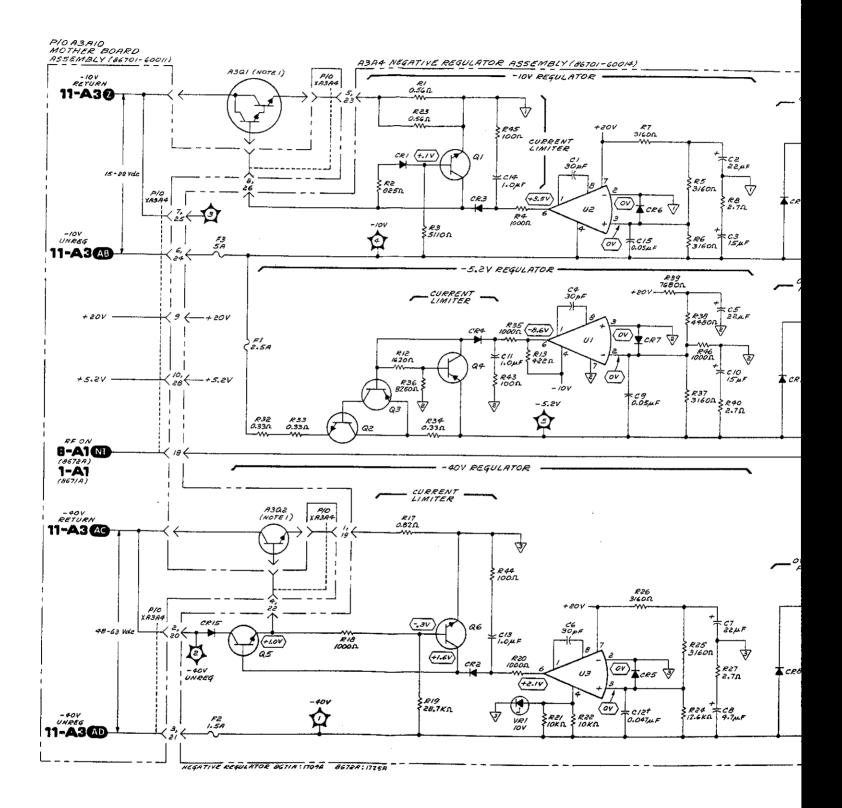
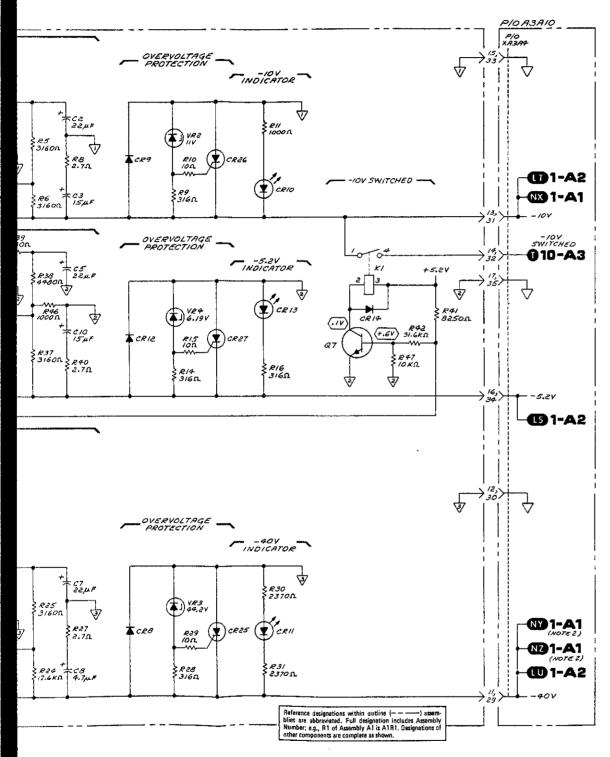




Figure 8-103. Negative Regulator Block Diagrams

WARNING

DC YOLTAGES OF >GOVGO DIFFERENTIAL
RIWRYS PRESENT ON THIS BOARD ASSEMBLY
WHENEYER THE INSTRUMENT IS CONVECTED
TO THE LINE YOLTAGE, THIS YOLTAGE COLLO
CAUSE PERSONAL INVURY IF CONTROTED,
BE CARRETLL WHILE WORKING ON THIS
CIRCUIT WITH THE LINE YOLTAGE CONNECTED,
IF THIS CIRCUIT BOARD IS PLACED ON AN
EXTENDER BOARD, THE POSSIBILITY OF
COMING IN CONTROT WITH THE GOVED DIFFERENTIAL IS GREATLY INCREASED. THIS
COULD CRUSE PERSONAL INVIRY IF
CONTROTED. BE CARRETLY WHILE WORKING
WITH THIS CIRCUIT BOARD WITH POWER
SUPPLIED, WORK WITH ONE HAND, DONOT
TOUCH THE EXTENDER BOARD,

CAUTION

DO NOT REMOVE OR INSERT FOWE SUPPLY BORRDS WITH THE POWER CABLE CONNEC-TED. DRANGE TO THE INSTRUMENT MAY OCCUR.

NOTES

- I. A3QI AND A3QZ ARE MOUNTED ON THE REAR PANEL HEAT SINK AND A3A10 MOTHER BOARD ASSEMBLY,
- 2. CONNECTED IN 86724 ONLY; NO CONNECTION IN 86714.
- * BACKDATING INFORMATION IN SECTION III.

REFERENCE DESIGNATIONS

<i>A3</i>	A3A4
a1,2	C1-15 CR1-15
ABAIO	25-27
X A 3 A 4	F1-3 K1 Q1-7 R1-47 TP1-5 U1-3 VR1-4

TRANSISTOR AND INTEGRATED CIRCUIT PART NUMBER

CIRCUII PAR	NUMBER
REFERENCE	PART
DESIGNATIONS	NUMBERS
A3 Q1 Q2 A3A4	1854-0618 1854-0294
01,6,7	1854 - 0404
03	1854 - 0441
03	1853 - 0001
04	1853 - 0007
05	1854 - 027/
01-3	1820 - 0223

EA-EP

Figure 8-104. Negative Regulator Assembly Schematic Diagram

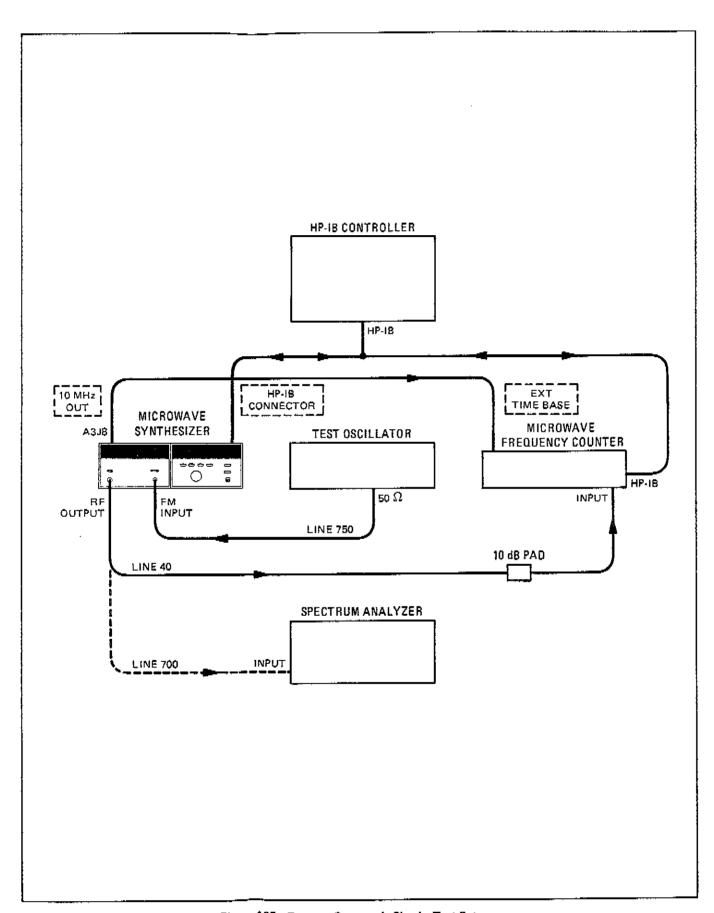


Figure 105. Remote Operator's Checks Test Setup

```
10 PRINT "REMOTE OPERATOR'S CHECK"
20 PRINT "SET 5340A ADDRESSABLE AND SWITCHES TO 10010"
30 PRINT "SET 8671 ADDRESS SWITCHES TO 23"
40 PRINT "CONNECT COUNTER THRU 10DB PAD";
50 PRINT " TO 8671A RF OUTPUT AND 10MHZ OUTPUT"LIN2
60 DISP "PRESS CONT EXECUTE WHEN SET"
70 STOP
80 DIM V0161
90 REM ENABLE REMOTE
100 CMD "?U"
110 FORMAT 2B
120 D=9
130 OUTPUT (13,110)1280,768;
140 NæMæ0
150 F=2000000
160 REM INITIALIZE 8671 WITH FM OFF AND RF ON
170 CMD "?U3", "N01"
180 REM FREQUENCY PROGRAMMING TEST
190 FOR Y=1 TO 7
200 IF Y#7 THEN 220
210 D=3
220 FOR Z=0 TO D..
230 IF Z>0 THEN 250
240 IF M=1 THEN 400
250 CMD "?U3","@"
260 R=F
278 G=R/10000000
280 OUTPUT (13,290)G;
290 FORMAT F1000.7,"Z1"
300 REM INITIALIZE 5340A
310 CMD "?U2","3KM@TOHII","?R5"
320 REM THE FIRST TWO 5340A CHARACTERS ARE IGMORED. FREQ IS A
330 ENTER (13,340)A
340 FORMAT 2%,E14.0
350 AmB/1000
360 REM RESULTS ARE CHECKED FOR + OR - ONE COUNT ACCURACY
370 IF A=R OR A=R+1 OR A=R-1 THEN 410
380 PRINT "PROG. FREQ. ";R/1000;"MHZ. ACTUAL FREQ. ";A/1000;"MHZ"
390 N=N+1
400 REM FREQUENCY IS INCREMENTED
410 F=F+(101(Y-1))
420 NEXT Z
430 M=1
440 IF N THEN 480
450 OUTPUT (15,460)104(Y-1)/1000
460 FORMAT F9.3,X,"MHZ DIGIT ALL OK"
470 GOTO 490
480 PRINT N;" ERRORS [N"; 10*(Y-1)/1000;" MHZ DIGIT"
490 N=0
500 NEXT Y
510 8=0
```

```
520 PRINT "FREQUENCY TUNING TEST COMPLETE"
 530 CMD "983'
 540 OUTPUT (13,550)256,1,512;
 550 FORMAT 3B
 560 DISP "PRESS PRESET BUTTON ON 8671"
 570 WAIT 7000
 580 CMD "?Ū2","3KL@TOHII","?R5"
 590 ENTER (13,340)B
 600 B=B/1000
 610 Y≕30000000
 620 IF B=Y OR B=Y+1 OR B=Y-1 THEN 670
 630 PRINT "ERROR IN PRESET FREQUENCY"B
 640 PRINT "CHECK PRESET BUTTON OPERATION"
 650 WAIT 3000
 660 GOTO 560
670 PRINT "PRESET BUTTON OPERATION OK"LIN2
680 CMD "?U"
690 REM CYCLE FM AND RF
700 PRINT "CONNECT SPECTRUM ANALYZER TO 8671 RF OUTPUT."
710 PRINT "TUNE ANALYZER TO SGHZ"
720 PRINT "SET TO 10KHZ BANDWIDTH AND .2MHZ SCAN WIDTH."
730 PRINT "SET 10 DBM LOG REF. LEVEL"
740 PRINT "SET 100KHZ AT ABOUT 0.2V(RMS) ON TEST OSCILLATOR."
750 PRINT "CONNECT TEST OSC. 50 OHM QUIPUT TO 8671 FM INPUT"
760 PRINT "PRESS CONT EXECUTE WHEN SET."LIN2
780 CMB "?U3"
790 DISP "WATCH SPECTRUM FOR FM"
800 WAIT 1500
810 CMD "", "N1"
820 DISP "FM 100KHZ DEVIATION RANGE"
830 WAIT 2000
840 CMD "", "N2"
850 DISP "FM 10MHZ DEVIATION RANGE"
860 WAIT 2000
870 CMD "","NO"
880 DISP "FM OFF"
890 WAIT 1500
900 PRINT "FM TEST COMPLETE"
910 REM RF ON OFF TEST
920 DISP "OBSERVE RF OUTPUT"
930 WAIT 1000
940 CMD "วู้มู้จิ"•"กด"
950 DISP "RF OFF."
960 WAIT 2000
970 CMD "","01"
980 DISP "RF ON."
990 WAIT 2000
1000 PRINT "8671 TEST COMPLETE"LIN2
1010 END
```

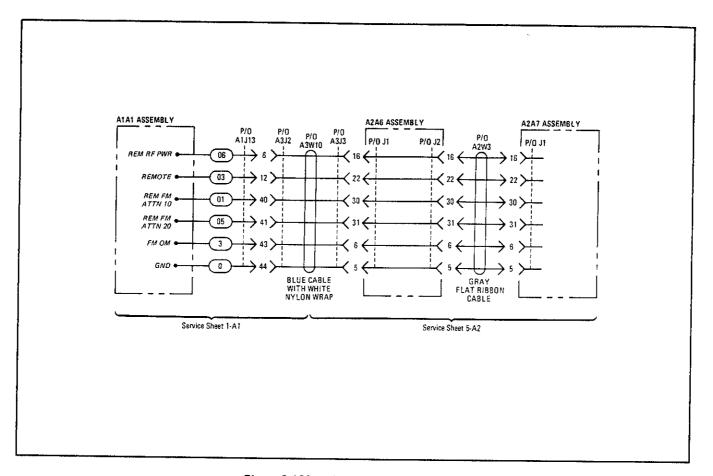


Figure 8-106. A1 to A2 Interconnections

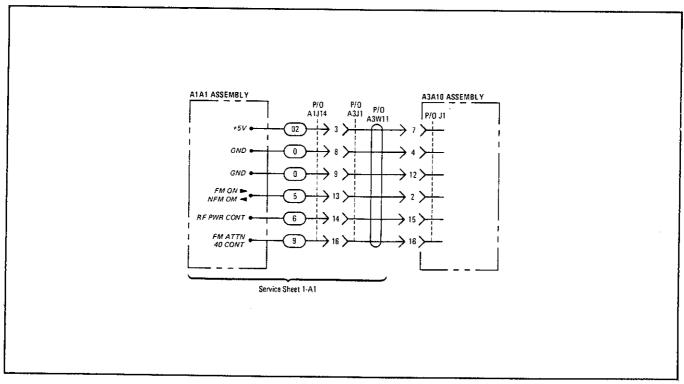


Figure 8-107. A1 to A3 Interconnections

Table 8-6. Controller Assembly (A2) Interconnections (1 of 3)

Cinnal Line					-		Board	Edge	Соппе	ctors .	XA2							
Signal Line Menmonic	А3	Α4	A5	A7 A	A7 B	A7 C	A8 A	A8 B	A8 C	A9	A10 B	A10 C	A11 A	A11 B	A11 C	J4	W3	J1
ATN						25				25				_				-
CLK 1				İ		21					ļ	21	27					17
CLK 2								12	İ	1] -	-'		6			''
CLK PRTCT								'-				18	.	17	"			1
CYCLE			1									'	19	\ ' <i>'</i>	}			20
DAC 10 MHz							13						١.,			57		20
DAC 20 MHz								3		1			ļ		1	28		
DAC 40 MHz					[8		}		İ				58		
DAC 80 MHz						}		24	ł					1		27	ļ	
DAC 100 MHz								-	3							26		
DAC 200 MHz			1		}				5							25		
DAC 400 MHz					1		1		19		1					24		
DAC 800 MHz						}			2							23		
DAC 1600 MHz		i		ł		ĺ		29	, -	}								
UAC 3200 MHz	Ì				1			13								22		
DAC 1 MHz			14		İ		30	13								52		
DAC 2 MHz			13				30	18]					53		}
DAC 4 MHz	,		12	-				23					Ì			54		İ
DAC 8 MHz			11	-				10					!	j		55		
DC			1.1	1		23		10		22						56		
DCU BZY	1	,				23				23								
ום ו				}		30				27			i]
DI 2						1				30]	
DI 3					İ	15				15								
D! 4						14				14			1					
DI 5				l		29				29								
016]	12				12								
Dt 7						28				28								
DINTE 1						13	i			13								}
DINTF 2		- 1		Ì	3						17		Ì	•				
DINTF 4					7						22							
					10			-			26							
DINTE 8					12			ĺ			13			ļ				
DINTE 10					20						18							
DINTF 20					24	į					24	İ						
DINTE 40	ļ				28	l					14							
DINTF 80		- !			13						29				- }		ĺ	
DINTE 100					5						20				}			
DINTF 200					22	1					21		\mid					
DINTF 400					11	ľ					27]	1	1				
DINTE 1999				29	29			1			30	1			1	,		
DINTE 1000		- 1		21	21	1	f		İ		19			į	ļ		[
DINTF 2000				9	9	l					25				i			
DINTF 4000				27	27	ŀ					28							
DINTF 8000	}			26	26	ĺ		1			11]	1				:	
DR211							ļ	5				İ	ļ	ļ	2		į	
DR212		- 1				ļ	ľ	20		[Į		29			İ	
DR214		- 1				j		4	i					27		ļ		
DR218 DR111							l	19						26	ļ			
	I	- 1			1			í		1	- 1	16		- 1	17			26

Table 8-6. Controller Assembly (A2) Interconnections (2 of 3)

Signal Line						£	Board	Edge	Conne	ctors >	(A2				***			
Mnemonic	А3	A4	A5	A7 A	A7 B	A7 C	A8 A		A8 C	A9	A10 B	A10 C	A11 A	A11 B	A11 C	J4	W3	J
DR112 DR114 DR118 DR101 DR102 DR104 DR108 ERRS										11		2 17 1 9 24 23 22			16 18 19 27 26 23 22			2:
EXT REF ON FMOM GO HET HN1 HN2 INTF CLK GO				22	4 18	19		6 21		19	23 6	19 10 13 12	20	1	1 5,20 13 12	13	6 3 1 2	8 2
INTF CLK 1 INTF CLK 2 LFS 1 kHz LFS 2 kHz LFS 4 kHz LFS 10 kHz LFS 20 kHz LFS 40 kHz LFS 40 kHz LFS 100 kHz LFS 200 kHz LFS 200 kHz LFS 400 kHz LFS 800 kHz			32 30 31 29 36 34 35 33 18 16		23 2		3 23 26 15 17 6 10 29 14 2				10		23					
LEFT LEV UNCAL LFS 1 MHz LFS 2 MHz LFS 4 MHz LFS 8 MHz LFS 8 MHz		11	14 12 13	15			30 18 23 10	9				11		30		53 54 55 56	5	
LOCAL LO LTM M0 M1 M2 M3 M4 M/N UNLOCKED M0					2			28 27	26 12 27 25 10		8			2		10 40 11 41 12 6 7		18 19
2 3 4								26	6							37 8 38 9		

Table 8-6. Controller Assembly (A2) Interconnections (3 of 3)

Signal Line						E	Board	Edge (Conne	ctors	XA2								
Mnemonic	А3	А4	A5	A7 A	A7 B	A7 C	A8 A	A8 B	A8 C	A9	A10 B	A10 C	A11 A	A11 B	A11 C	J4	W3	J1	
N5							14									39			
NCLK2					ļ		'*	17				ļ			7	00			
NCLK3							ĺ	22					30		'				
NDAV					1	7		~~		7									
NERR				}	ļ	′				,		20		6					1
NHET		ļ		İ							2	-		·		36			
NLŞDR					ĺ						-		26			"		16	
NRMDR				1				11				1	- 0	5					
NRSTOR	:				ľ	20		''		20	ŀ			•					
NYTM	:			1	ļ	20					3					35			
ON/STBY																5		6	
OVEN MÓN																33		15	
OVN OK										4						55		13	
OVR RNG					-	22	1			22								Ψ.	
PRESET					8	44				22	9			7				10	
				25	0	10				10]]		17	,				14	
PWR ON				3		10	1			10			'	!		16		14	
REF UNLOCKED	}		}	٦	ļ	24				24]					'6			
REMOTE	}					24 26				26				İ					
RF OFF						26				26				3				11	
RPG1			ļ		}		1							ა 16				9	
RPG2			1		ł							25		10	24	ļ	ĺ	9	
SYNTH			{								١.	25			21				
SYNTHP			{			_				_	4	1				34		••	
UNLOCK			1	13		5				5		1			1			12	
UNLVL		ļ				9				9				,					
	17,35	17	}]			:		.			
YTO RST			ĺ	9									ŀ			51			
YTO SLEW				1												29			
YTO UNLOCKED		1	1	8												21		_	
+22V							1									43		4	
+20V	1,20									_						44			
+5V		3,21	3,21		1,16			1,16		3	1			22		15,		22,24	
		}														45			
-5V	5,23		5,23													20,			
]	1											50			
-10V	6,24	6,24														17,			
																47			
	7,25			Ì			}									46			
±1 BIT							}						22					1	
+5V (P)			-								4		15						
10 MHz REF			19				į							24					Ļ
80 kHz REF		27	9													}]
÷N1 80 kHz		28	10															•	
;																			

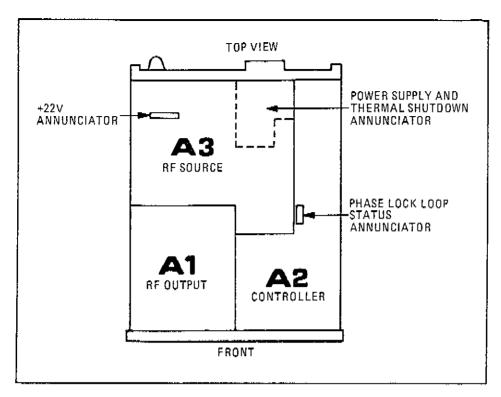


Figure 8-108. Major Assembly Locations

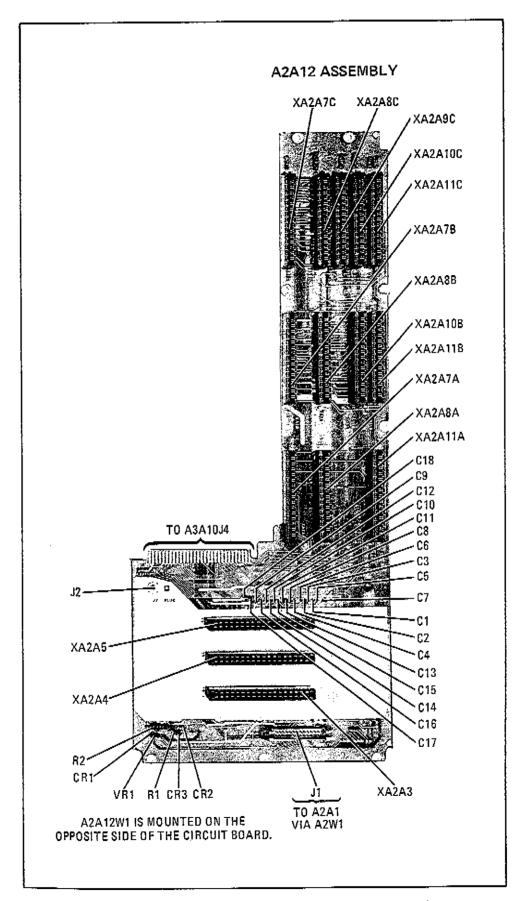


Figure 8-109. A2A12 Motherboard Assembly Component Locations

Table 8-7. Motherboard Assembly (A3A10) Interconnections (1 of 2)

Signal Line Mnemonic		able 8-7. Motherboard Assembly (A3A10) Interconnections (1 of 2) Board Edge Connectors XA3A10												
	A1 A	A1 B	A2	А3	A4	A5	A6	A7	A8	J1	J2	J3	J4	
DAC 1 MHz DAC 2 MHz DAC 4 MHz DAC 8 MHz DAC 10 MHz DAC 20 MHz DAC 40 MHz DAC 100 MHz DAC 200 MHz DAC 200 MHz DAC 100 MHz DAC 300 MHz DAC 400 MHz DAC 400 MHz DAC 1600 MHz	A	В		18		31 30 29 28 27 26 25 13 12 11 10 9 8 7		9,24 12, 27 15		2	3,18		53 54 55 56 57 28 58 27 26 25 24 23 22 52 13	P1 W27 W1
FM -40 dB INTEGRATED FM M/N UNLOCKED M0 M1 M2 M3 M4 M5 N0 N1 N2 N3	8 6 3 4 1 2 15 14 13 12	777.00						29 7, 22		16	3,10		6 10 40 11 41 12 42 7 37 8 38 9	W29
N5 NHET NYTM ON STBY OVEN MON Q1 E B C Q2 E B C 13 E B C	10		17, 35	36 4,22 3,21 2,20	3,23 8,26 7. 25 1,19 4,22 2,20					14 3		4	39 36 35 5 33	К1

Table 8-7. Motherboard Assembly (A3A10) Interconnections (2 of 2)

Signal Line Mnemonic				В	oard E	Edge (Conne	ctors X	A3A	10			
	A1 A	A1 B	A2	А3	Α4	A5	A6	A7	A8	J1	J2	J3	J4
				8,26									
,14 E			1	9,27]						1		
В		- 1	i	7,25			1	- 1	1			j	
B C				6,24	-	ļ				1	ļ		
=			İ	0,24		1		1			1	ļ	
REF UN-				l	1			i			-	1	16
LOCKED		14							1	13			54
SYNTH P	ļ		1					.,		'3			51
YTO RST				ļ				14	ŀ		ł		29
YTO SLEW					į		14		j		-		23
YTO TUNE 1		ŀ			- 1			10,		1			
			i					25				ļ	
YTO TUNE 2]					9,24	8,23				1	
		j		ļ i			10,25		İ				
YTO UN-					1	!						}	
LOCKED				İ	1						5,16		21
-20V UNREG			6,24	1,19							1		
+5V UNREG.			10,28	5,23					ĺ				
			11,29						i			1	
-10V UNREG			15,33	!	6,24			. 1		.	- 1		
-40V UNREG			1,14		3,21								
20V WINDING											İ		
(RED)	'		14,32								!		
20V WINDING											1		
(GREY)			13,31	.				}			j		
5.2V WINDING]		·										
(BROWN)			9,27]			1		
5.2V WINDING			•	:									
(BROWN)			8,26										
-10V WINDING	,			1							ļ		,
(BLUE)			16,34					i i]		Ì
-10V WINDING	1		,	1						. [ļ
(WHITE)			18,36				1			i i			{
-40V WINDING			, ,,,,,,,										
(YELLOW)			4,22	İ							i i		
-40V WINDING			-,				i						
(GREEN)			2,20		1						ļ		
10V SWITCHED			-,		14,32						4,17		•
+22V			1		17,02						-7	6	43
+20V		2,3	1	10,28	9 27	1,19	1,16	1,16			9,12	_	44
+20V +11V		2,0	1	15,33		',''],	'''				1	15,4
+11V +5V		4,5			10,28	2,20	2,17	2,17				i '] ''
ra v		4,2		13,31	14,20	2,20	2,17	[", "]			1,20		20,5
-5V		12,13		13,31	16,34						1,20	l	20,5
-5V ∸10V		8,9	1		10,34	4 22		4,19			10,11]	17.4
-10V -20V		0,3		1	13,31	4,22		7,13			''''		'''
-20V -40V			6,7		11,29	2 21		3,18	3,18	46	8,13		
+U V			۷,,		11,29	3,21		7,10	3,10	~~	0,13		
													1

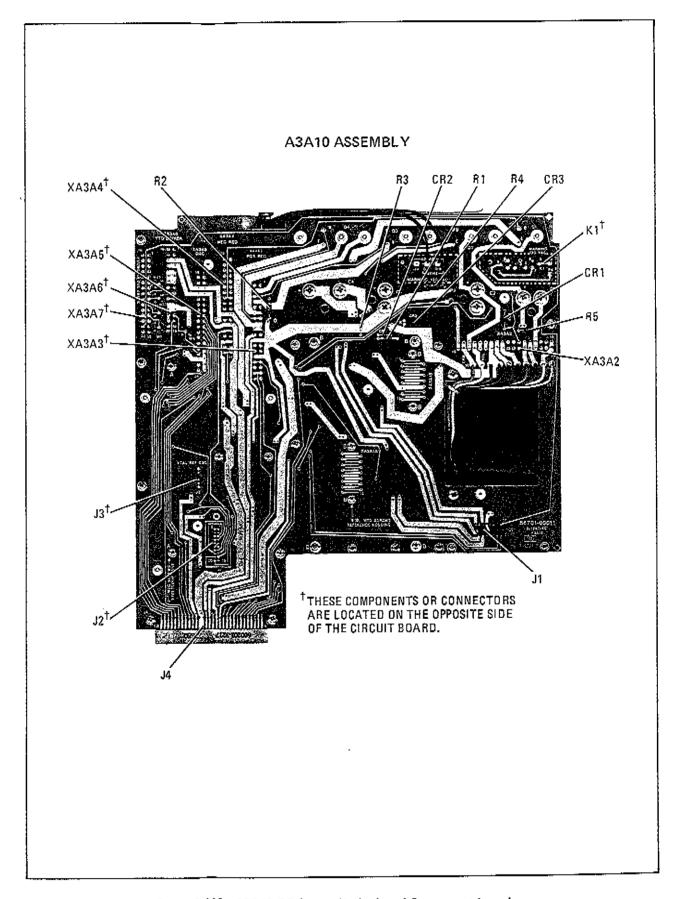


Figure 8-110. A3A10 RF Source Motherboard Component Locations

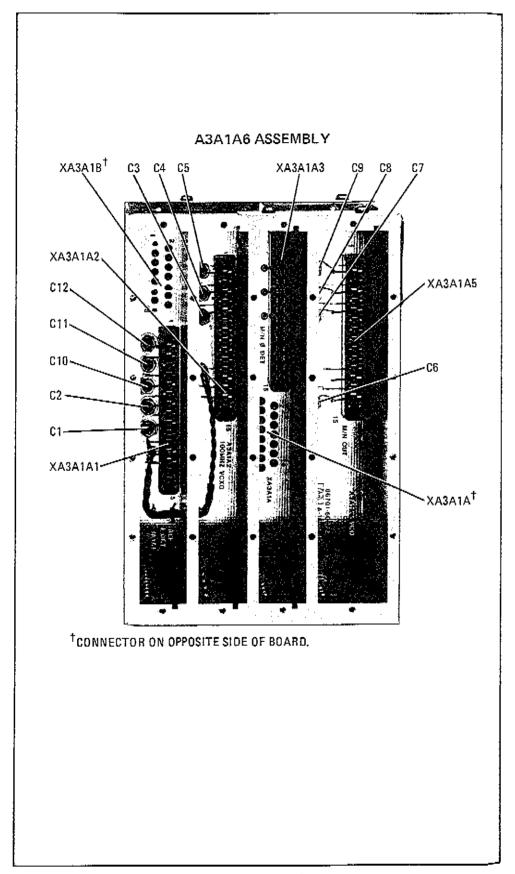


Figure 8-111. A3A1A6 Reference and M/N Motherboard Assembly Component and Connector Locations

8-93/8-940

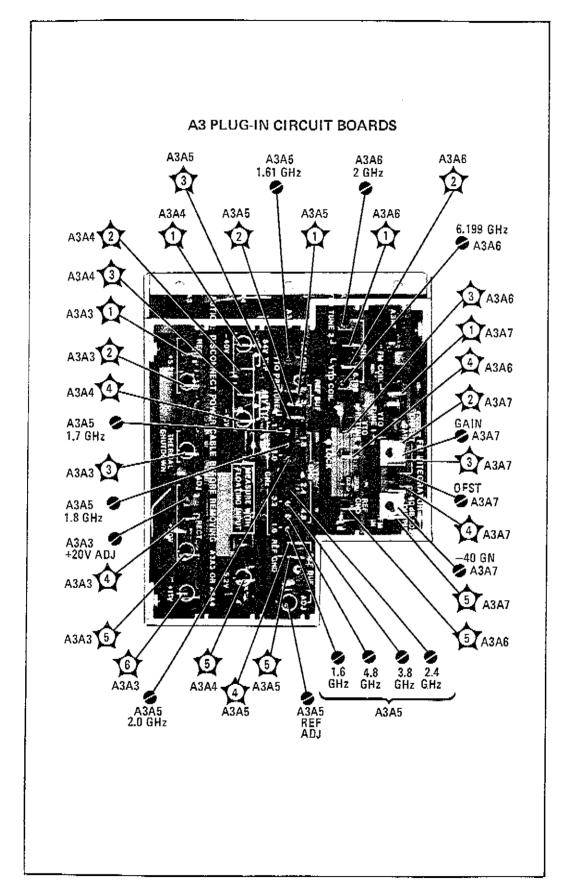


Figure 8-112. A3 Plug-in Circuit Board Adjustment and Test Point Locations

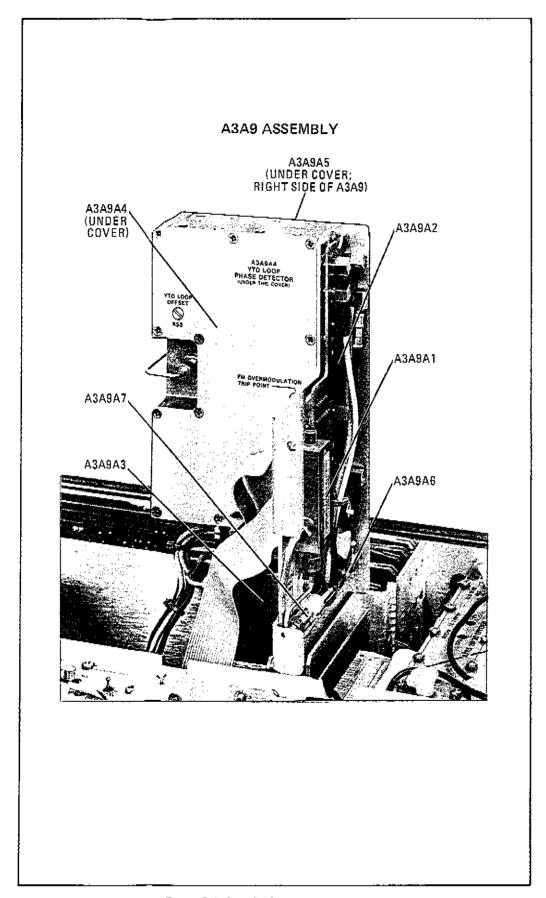


Figure 8-113. A3A9 Assembly Locations

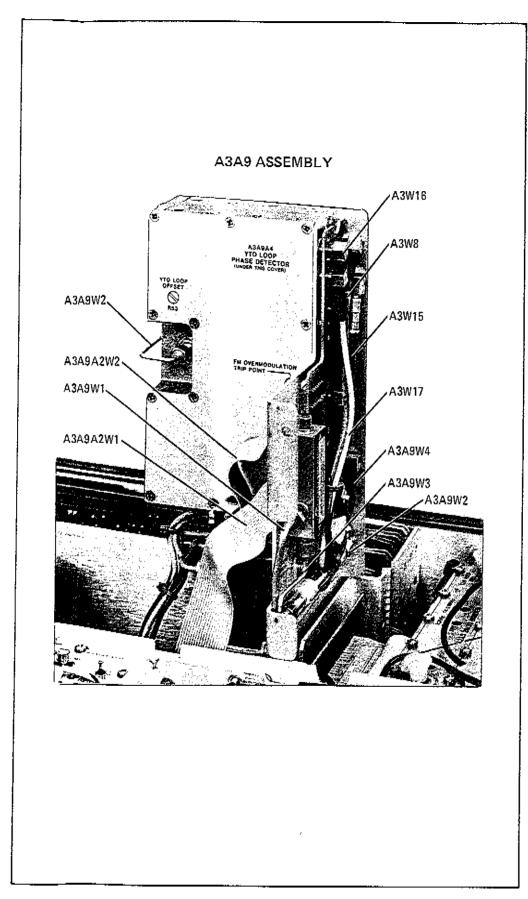


Figure 8-114. A3A9 Cable Connections

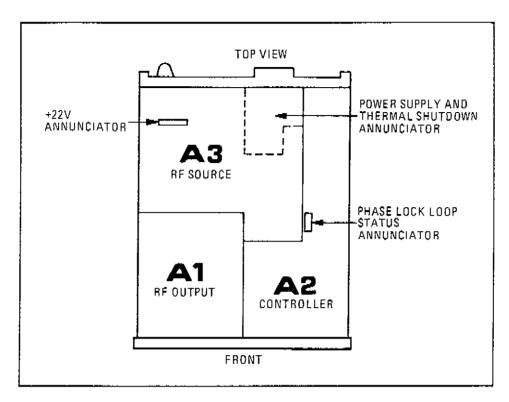


Figure 8-115. Major Assembly Locations

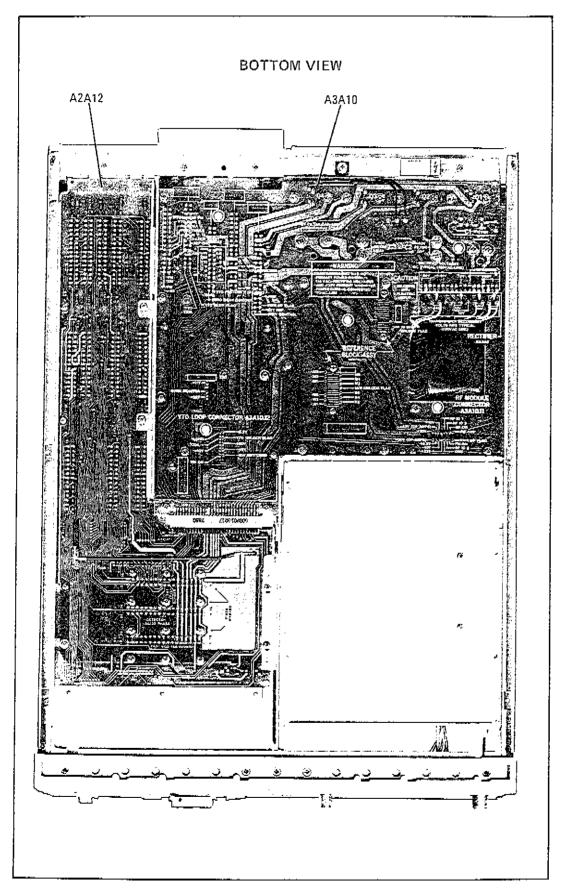


Figure 8-116. Bottom View Assembly Locations

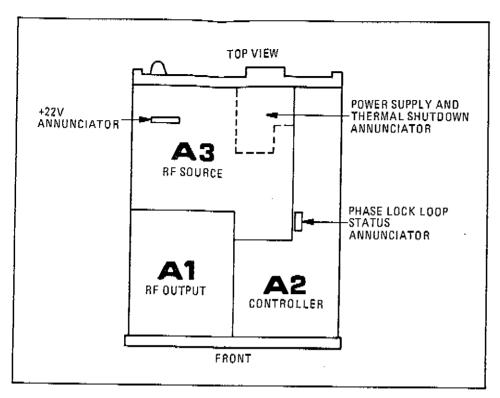


Figure 8-117. Major Assembly Locations

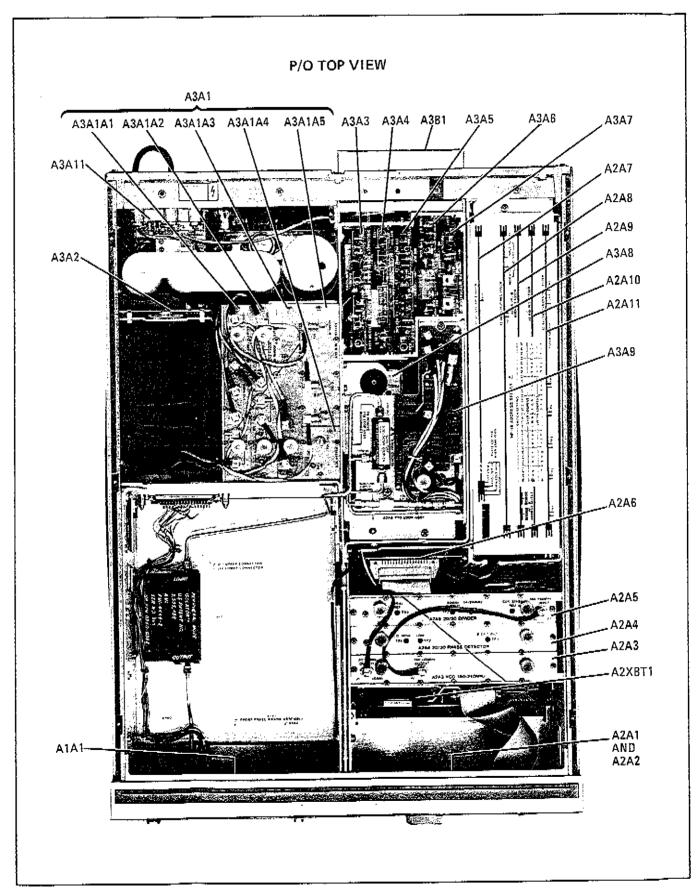


Figure 8-118. Top View Assembly Locations

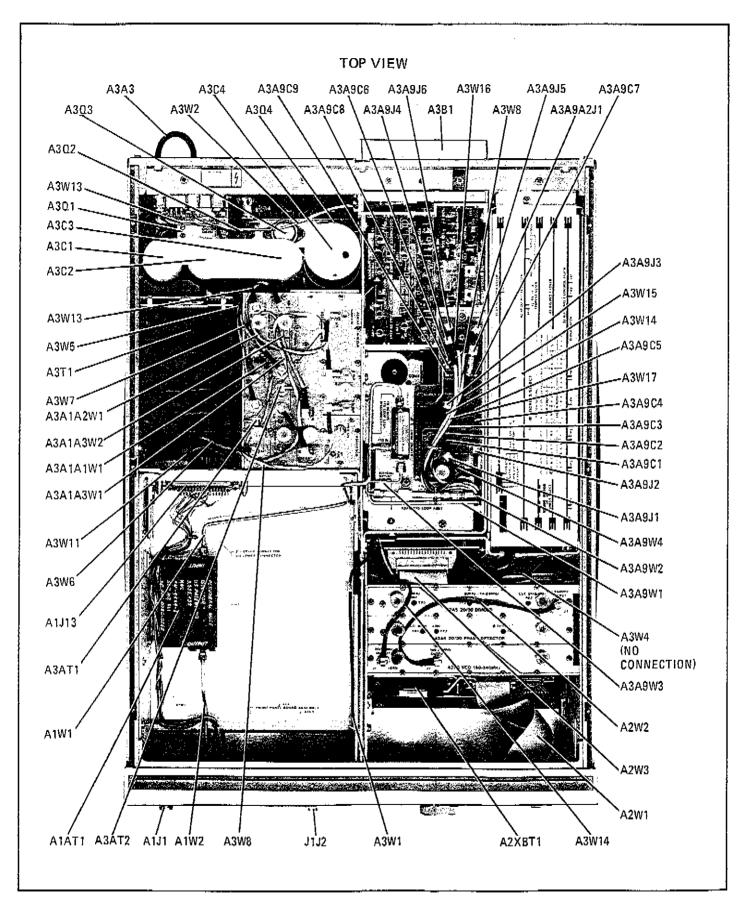


Figure 8-119. Top View Chassis Mounted Parts and Assembly Locations

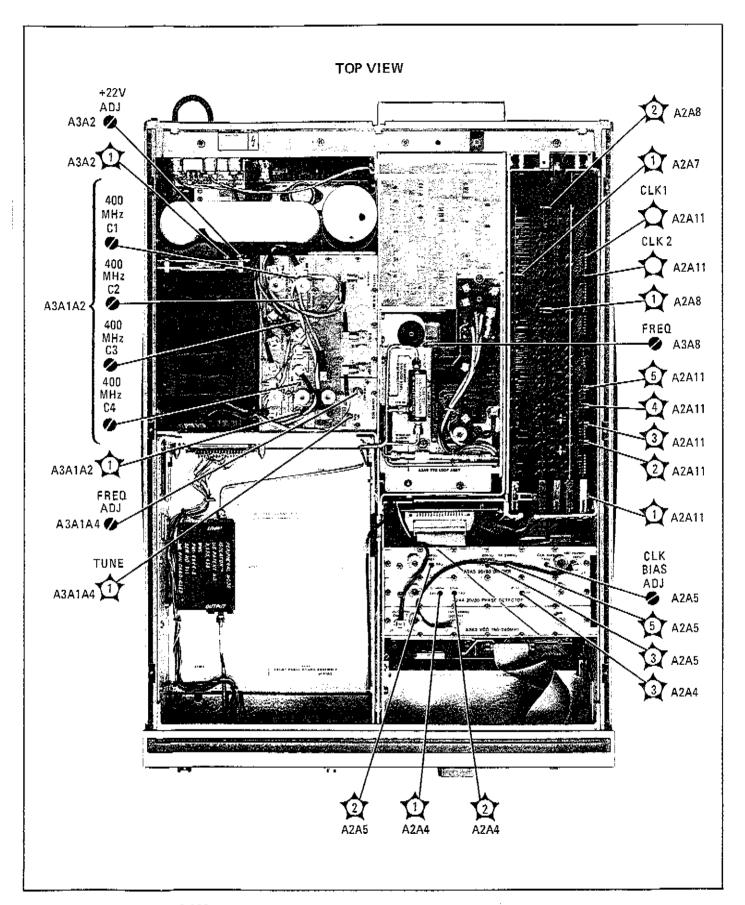


Figure 8-120. Top View A2 and A3 Assemblies Adjustments and Test Point Locations