HP Instrument BASIC User’s Handbook

HP 8711A RF Network Analyzer

(D Jraoett

HP Part No. 08711-80112
Printed in USA July 1993

Notice.
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including

but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

© Copyright Hewlett-Packard Company 1992, 1993

All Rights Reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

1400 Fountaingrove Parkway, Santa Rosa CA, 95403-1799, USA

Contents

1. Manual Overview
Introduction

Manual Organization '

Chapter Previews . . . Coe e .
Chapter 2: Interfacing Concepts Ce e
Chapter 3: Directing Data Flow
Chapter 4: Qutputting Data
Chapter 5: Entering Data
Chapter 6: 1/0 Path Attributes

Specific Interfaces

2. Interfacing Concepts
Terminology
Why Do You Need an In‘terfa,ce’?

+

PR

.....

P

. .

Electrical and Mechanical Compatibility . .

Data Compatibility
Timing Compatibility
Additional Interface Functions

Inter fau: Overview . Ve e e e e

The HP-IB Iaterface e e e e e

The RS-232C Serial Interface
Data Representations
Bitsand Bytes
Representing Numbers
Hepresenting Characters
The I/O Process
I/0 Statements and Parameters
Specifying a Resource

vvvvv

Data Handshake

3. Directing Data Flow

Specifying a Resource
String-Variable Names
Formatted String I/O

Device Selectors . .

Select Codes of Bu;lt~1n Interfaces .

HP-IB Device Selectors .

I/JOPaths

1/O Path Names

ReAssigning 1/O Path Names ...
Closing I/0O Path Names
I/0 Path Names in Subprograms

......

......

.....

.....

........

........

. 2-6

1-1
1-1
. 1-2
. 1-2
1-2
1-2

. 1-2

1-2
1-2

2-1
2-2
2-2

. 2-2

2-3
2-3
2-4
2-4
2-5

. 2-6
. 2-7
2-7
2-8
2-8
2-8
2-8

. 3-1
. 3-1
3-1
3-2
3-2
3-2

. 3-3

. 3-3
3-3
3-4
3-4

Contents-1

Assigning I/O Path Names Locally Within Subprograms 3-4

Passing I/0 Names as Parameters 3-5
Declaring I/O Path Names in Common 3-6
Benefits of Using I/O Path Names e e e 3-6
Execution Speed L o oL Lo e e e e 36
Redirecting Data C e e e e e 3-7
Access to Mass Storage Fﬂes e e e e e e 3-7
Attribute Control o000 L. C e 3-7

4. OQutputting Data

Introduction e e e e e e e e e e 4-1
Free-Field Outputs e e e e e e 4-1
Examples e e e e e e e 4-1
The Free-Field Convention 4-1
Standard Numeric Format e e e e e e 4-1
Standard String Format C e e e 4-2
Item Separators and Terminators C e e e e e e 4.2
Changing the EQL Sequence G e e e e 4-4
Using END in Freefield OUTPUT C e e e e 4-5
Additional Definition L. e e e e e e 4-5
END with HP-IB Interfmces e e e e e e 4-5
Examples . . . e e e e e e e e e e 4-5
Outputs that Use Images e e e e e e e e e e e e 4-6
The QUTPUT USING Statement 4-6
Images . . . C e e e e e e e 4-7
Example of Usmg an Image e e e e e e e e e e e e e 4.7
Image Definitions During Outputs e e e e e e 4-8
Numeric Images e e e e e, 4.9
Numeric Examples e e e e e 4-10
String Images L. e e e e e 4-12
String Examples e e e e e 4-12
Binary Images C e e e e e 4-13
Binary Examples L. C e e e e e 4-13
Special-Character Images C e e e e e, 4-14
Special-Character Examples e e e e e e . 4-14
Termination Images e e e e e e 4-15
Termination Examples e e e e e e 4.15
Additional Image Features e e e e . 4-16
Repeat Factors e e e e e . 4-16
Examples00 L e e e e e . 4-16
Image Re-Use e e e e e 4-17
Nested Images e e e e . 4-18
END with OUTPUTs tha,t Use Images e e e e . 4-18
Examples e e e e e . 4-18
Additional END Deﬁnitlon C e e e e e e e e e e e . 4-19
END with HP-IB Interfaces e e e e e e . 4-19
Examples C e e e e e e e 4-19

Contents-2

5.

Entering Data

Free-Field Enters 0000 .. 5-1
Item Separators L L0 o0 o e e e e 5-1
Item Terminators e . 5-2
Entering Numeric Data with the Number Bmlder 5-2
Entering String Data e e e e e Ce e 5.5

Terminating Free-Field ENTER Statements, C e e 5-7
EOI Termination« . 0 Ce 5-7

Enters that Use Images e e e e e e 5-8
The ENTER. USING Statement e e C e e e e 5-9

Images o 0L o e 5-9
Example of an Enter Using an Image Co e 5-9

Image Definitions During Entero 5-10
Numeric Irnages e e e e e e e e 5-11

Examples of Numeric Images e e e e 5-11
String Images L. C e e e e e e e 5-12
Examples of String Images oo o000 - 5-12
Ignoring Characters Do 5-13
Examples of Ignoring Characters - 5-13
Binary Images oo Lo . 5-13
Examples of Binary Images 0000, . 5-14

Terminating Enters that Use Images 5-14
Default Termination Conditions 5-14
EOI Redefinition 0oL . 5-14
Statement-Termination Modifiers - 5-15

Examples of Modifying Termination Conditions . ., Ce . 5-16

Additional Image Features e e e e e e e 5-16
Repeat Factors e e Coe e 5-16
Image Reuse e e e Coe e 5-16

Examples e e e e e 5-16
Nested Images e e e e e 5-17
Example e e e e e e e e 5-17

I/0 Path Attributes

The FORMAT Attributes . . . e e e e e e e e e e 6-1
Assigning Default FORMAT Attr:butes e e e e e 6-2
Specifying I/O Path Attributes e e e e e e 6-3
Changing the EGL Sequence Attribute 6-3
Restoring the Default Attributes 6-4

Concepts of Unified I/O 0oL .. 6-4
Data-Representation Design Criteriao 6-4
IJOPaths to Files o oL c 6-5
BDAT, HPUX and DOS Files o . o o o 0. 6-5

ASCH Files o . . o o oL L e L. 6-6
Data Representation Summary e e e e Coe 6-7

Applications of Unified I/O Ce 6-7

I/0O Operations with String Variables e e e e e e e O Y 4
Qutputting Data to String Variables G e 6-7
Example00 6-8
Example L e e e e e 6-9
Entering Data From String Variables 6-9

Contents-3

Example o0 .. 6-10
Exampleo .. 6-10

Index

Contents-4

Manual Overview

Introduction

This manual presents the concepts of computer interfacing that are relevant to programming
in HP Instrument BASIC. Note that not all features described in this manual may be
implemented on your instrument. Please consult your instrument-specific manual for

a description of implemented features. The topics presented herein will increase your
understanding of interfacing the host instrument and external devices and computers with HP
Instrument BASIC programs. '

Manual Organization

This manual is organized by topics and is designed as a learning tool, not a reference. The
text is arranged to focus your attention on interfacing concepts rather than to present only a
serial list of the HP Instrument BASIC language I/O statements. Once you have read this
manual and are familiar with the general and specific coneepts involved, you can use either
this manual or the HP Instrument BASIC Language Reference when searching for a particular
detail of how a statement works.

This manual is designed for easy access by both experienced programmers and beginners.

Beginners may want to begin with Chapter 2, “Interfacing Concepts”, before reading
about general or interface-specific techniques.

Experienced may decide to go directly to the chapter in your instrument-specific manual

programmers that describes the particular interface to be used. It is also usually helpful to
become familiar with display and keyboard I/O operations, since these are
helpful in secing results while testing I/O programs.

If you need more background as you read about a particular topic, consult
chapters 3 through 6 for a detailed explanation.

The brief descriptions in the next section will help you determine which chapters you will need
to read for your particular application.

Manual Overview 141

Chapter Previews

This manual is intended to provide background and tutorial information for programmers
who have not written HP Instrument BASIC I/0O programs before. It presents topics and
programming techniques applicable to all interfaces.

Chapter 2: Interfacing Concepis

This chapter presents a brief explanation of relevant interfacing concepts and terminology.
This discussion is especially useful for beginners as it covers much of the “why” and “how”
of interfacing. Experienced programmers may also want to review this material to better
understand the terminology used in this manual.

Chapter 3: Directing Data Flow

This chapter describes how to specify which instrument resource is to send data to or receive
data. The use of device selectors, string variable names, and “I/O path names” in 1/0
statements are described.

Chapter 4: Ouipuiting Data

This chapter presents methods of outputting data to devices. All details of this process are
discussed, and several examples of free-field output and output using images are given. Since
this chapter completely describes outputting data to devices, you may only need to read the
seciions relevant to your application.

Chapter 5: Entering Data

This chapter presents methods of entering data from devices. All details of this process are
discussed, and several examples of {ree-field enter and enter using images are given. As with
Chapter 4, you may only need to read sections of this chapter relevant to your application.

Chapter 6: /O Path Attributes

This chapter presents several powerful capabilities of the I/O path names provided by the
BASIC language system. Interfacing to devices is compared to interfacing to mass storage
files, and the benefits of using the same statements to access both types of resources are
explained. This chapter is also highly recommended to all readers.

Specific Interfaces

Since each host instrument for HP Instrument BASIC implements the display, keyboard and
other interfaces in slightly different manners, this manual does not cover the operation of
interfaces. For specific details on the operation of interfaces with HP Instrument BASIC,
consult the instrument-specific manual for your host instrument.

1-2 Manual Overview

interfacing Concepts

This chapter describes the functions and requirements of interfaces between the host
instrument and its resources. Concepts in this chapter are presented in an informal manner.
All levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing,.

Terminology

These terms are important to your understanding of the text of this manual. The purpose of
this seetion 1s to make sure that our terms have the same meanings,

computer

hardware

software

firmware

computer
resource

I/0

output

input

bus

is herein defined 1o be the processor, its support hardware, and the HP
Instrument BASIC-language system of the host instrument; together these
system elements manage all computer resources.

describes both the electrical connections and electronic devices that make up
the circuits within the computer; any piece of hardware is an actual physical
device.

describes the user-written, BASIC-language programs.

refers to the preprogrammed, machine-language programs that are invoked by
BASIC-language statements and commands. As the term implies, firmware is
not usually modified by BASIC users. The machine-language routines of the
operating system are firmware programs.

is herein used to describe all of the “data-handling” elements of the system.
Computer resources include: internal memory, display, keyboard, and disc
drive, and any external devices that are under computer control.

is an acronym that comes from “Input and OQutput”; it refers to the process of
copying data to or from computer memory.

involves moving data from computer memory to another resource. During
output, the source of data is computer memory and the destination is any
resource, including memory.

is moving data from a resource to computer memory; the source is any
resource and the destination is a variable in computer memory. Inpuiting data
is also referred to as “entering data” in this manual for the sake of avoiding
confusion with the INPUT statement.

refers to a common group of hardware lines that are used to transmit
information between computer resources. The computer communicates
directly with the internal resources through the data and control buses.

interfacing Concepts 2-1

computer is an extension of these internal data and control buses. The computer
backplane communicates indirectly with the external devices through interfaces
connected to the backplane hardware.

Why Do You Need an Interface?

The primary function of an interface is to provide a communication path for data and
commands between the computer and its resources. Interfaces act as intermediaries between
resources by handling part of the “bookkeeping” work, ensuring that this communication
process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer bus is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The internal hardware has been designed with specific electrical logic levels and drive
capability in mind.

Second, you cannot be assured that the connectors of the computer and peripheral are
compatible. In fact, there is a good probability that the connectors may not even mate
properly, let alone that there is a one-to-one correspondence between each signal wire’s
function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that
the data sent will be interpreted properly by the receiving device. Some peripherals expect
single-bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as
to when the data transfer will occur; and when the transfer does begin, the transfer rates will
probably not match.

As you can see, interfaces have a great responsibility to oversee the communication between
computer and its resources.

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly.
The interfaces connect with the computer buses. The peripheral end of the interfaces have
connectors that match those on peripherals.

Data Compatibility

Just as two people must speak a common langunage, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult requirements to fulfill before exchanging data is that the format and meaning of
the data being sent is identical to that anticipated by the receiving device. Even though some
interfaces format data, most do not; most interfaces merely move data to or from computer
memory. The computer must make the necessary changes, if any, so that the receiving device
gets meaningful information.

2-2 Interfacing Concepts

Timing Compatibility

Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must be
made. If the sender and recejver can agree on both the transfer rate and beginning point {in
time), the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this process
is known as a “handshake.” Both types of transfers are utilized with different interfaces and
both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interfaces is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface vary widely and are
described in the next section of this chapter.

interfacing Concepts 2.3

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available
for the computer. Fach of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the IEEE-488 1978 Standard
Digital Interface for Programmable Instrumentation. The acronym “HP-IB” comes from
Hewlett-Packard Interface Bus, often called the “bus”.

Logic and
Shield Grounds

Data
HP -IB < g >
interface
Handshake
- Dota and 5 NJ & | Shielded Cable
Control | Hardware /] @ | to Device(s)
Backplane m and <
Connectors Firmware o
Control -
> — L
iﬂ
o8

—

Block Diagram of the HP-IB interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface
cable to the desired HP-IB device and begin programming. All resources connected to the
computer through the HP-IB interface must adhere to this IEEE standard.

The “bus” is somewhat of an independent entity: it is a communication arbitrator that
provides an organized protocol for communications between several devices. The bus can be
configured in several ways. The devices on the bus can be configured to act as senders or
receivers of data and control messages, depending on their capabilities.

2-4 Interfacing Concepis

The RS.232C Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the

data through a two-wire (usually shielded) cable; data is received in this serial format and is
converted back to parallel data. This use of two wires makes it more economical to transmit
data over long distances than to use 8 individual lines.

Backplane
Connectors

7

Data and
Control

100

Block Diagram of the Serial interface

Bit—Serial
Gata
(in
Parallel
Paraltell/
@Dom Serial {Qut) g
[! Converter] Handshake
| (uarT) 5
Serial
interface
Hardwarel = Special Purpose

6

l\
%

Grounds

VL

7

Y

N

25-Pin Connector

Shielded Cable
te a Device

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all. The main use of this interface is in communicating with simple devices.

Interfacing Concepts 2-5

Data Representations

As long as data is only being used internally, it really makes little difference how it is
represented; the computer always understands its own representations. However, when data
is to be moved to or from an external resource, the data representation is of paramount
importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (dinary digits), each
of which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on {off), true or not true (false), one or zero,
busy or not busy, or any other bi-state condition. These logic levels are actually voltage levels
of hardware locations within the computer. The following diagram shows the voltage of a
point versus time and relates the voltage levels to logic levels.

Voltage of
a Point

\J\ Logic High

e Logic Low

t1 t2 t3 Time

Voltage and Positive-True Logic

logic Ground

{0v)

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR, BINEOR,
BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all
data in computer memory are somehow represented with binary numbers.

The computer’s hardware accesses groups of sixteen bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65 536 (65 536==21¢)
different bit patterns can be produced. The computer can also use groups of eight bits at a
time; this size group is known as a byte. With this smaller size of bit group, 256 (256=2%)
different patterns can be produced. How the computer and its resources interpret these
combinations of ones and zeros is very important and gives the computer all of its utility.

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular

scheme,

Most-Significant Bit

Least-Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit ¢
1 0 0 i 0 1 1 0
Value=128 | Value=64 Value=32 | Value=16 | Value=8 Value=4 Value=—2 Value=1

Notice that the value of a 1 in each bit position is equal to the power of two of that position.
For example, a 1 in the Oth bit position has a value of 1 (1=2%), a 1 in the Ist position has a
value of 2 (2=2'), and so forth. The number that the byte represents is then the total of all
the individual bit’s values.

0x2°=0

1x2t=29

1x 2% =4 Number represented =
Ox 23 =0

1x28=16 24+ 4+ 16 + 128 = 150
0x2°=0

0x 26 =0

1% 27 =128

The preceding representation is used by the “NUM” function when it interprets a byte of
data. The next section explains why the character “A” can be represented by a single byte.
100 HNumber=NUM("A")

110 PRIKT " Number = *;Number
120 ENKD

prints

Humbexr = 65

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard. ASCII
stands for “American Standard Code for Information Interchange”. This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard
only defines 128 patterns (bit 7 = 0}, 128 additional characters are defined by the computer
(bit 7 = 1). The entire set of the 256 characters on the computer is hereafter called the
“extended ASCII” character set.

When the CHRS function is used to interpret a byte of data, its argument must be specified
by its binary-weighted value. The single (extended ASCII) character returned corresponds to
the bit pattern of the function’s argument.

interfacing Concepts 2-7

100 NHumber=65 ! Bit pattern is "01000001"
110 PRINT " Character is "

120 PRINT CHR$ (Number)

130 ENRD

prints

Character is A

The I/0 Process

When using statements that move data between memory and internal computer resources,
you do not usually need to be concerned with the details of the operations. However, you
may have wondered how the computer moves the data. This section describes I/O operations
regarding how the computer outputs and enters data.

I/O Statements and Parameters

The 1/O process begins when an IO statement is encountered in a program. The computer
first determines the type of I/Q statement to be executed (such as, OUTPUT, ENTER,
USING, ete.) Once the type of statement is determined, the computer evaluates the
statement’s parameters.

Specifying a Resource

Fach resource must have a unique specifier that allows it to be accessed to the exclusion of
all other resources connected to the computer. The methods of uniquely specifying resources
{(output destinations and enter sources) are device selectors, string variable names, and 1/0
path names. These specifiers are further described in the next chapter.

For instance, before executing an QUTPUT statement, the computer first evaluates the
parameter that specifies the destination resource. The source parameter of an ENTER
statement is evaluated similarly.

DUTPUT Dest_parameter;Source_item

ENTER Sourc_parameter;Dest_item

Data Handshake

Fach byte {or word) of data is transferred with a procedure known as a data-transfer
handshake {or simply “handshake”™). It is the means of moving one byte of data at a time
when the two devices are not in agreement as to the rate of data transfer or as to what point
in time the transfer will begin. The steps of the handshake are as follows:

1. The sender signals to get the receiver’s attention.
2. The receiver acknowledges that it is ready.

3. A data byte (or word) is placed on the data bus.
4

. The receiver acknowledges that it has gotten the data item and is now busy. No further
data may be sent until the receiver is ready.

5. Repeat these steps if more data items are to be moved.

Z2-8 Interfacing Concepts

3

Directing Data Flow

Data can be moved between computer memory and several resources. These resources jinclude:
® Computer memory

® Internal and external devices

w Mass storage files

This chapter describes in general terms how devices and string variables are specified in
I/0 statements. Each of these topics is covered in more detail in subsequent chapters. This
chapter also describes the use of I/O pathnames in specifying devices for later use in [/O
statements.

Specifying a Resource

Each resource must have a specifier that allows it to be accessed to the exclusion of all other
computer resources. String variables are specified by variable name, while devices can be
specified by either their device selector or a data type known as an I/O path name. This
section describes how to specify these resources in QOUTPUT and ENTER statements.

String-Variable Names

Data is moved to and from string variables by specifying the string variable’s name in an
OUTPUT or ENTER statement. Examples of each are shown below:

200 OUTPUT To_string$;Data_out$; ! ";" suppresses. CR/LF.
240 ENTER From_string$;To_string$

Data is always copied to the destination string (or from the source string) beginning at the
first position of the variable; subscripts cannot be used to specify any other beginning position
within the variable.

Formatied String /O

The use of outputting to and entering from string variables is a very powerful method of
buffering data to be output to other resources. With OUTPUT and ENTER statements that
use images, the data sent to the string variables can be explicitly formatted before being sent
to (or while being received from) the variable.

Directing Data Flow 3-1

Device Selectors

Devices include an internal CRT, keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Each interface
has a unique number by which it is identified, known as its interface select code.

In order to send data to or receive data from a device, merely specify the select code of its
interface in an OUTPUT or ENTER statement. Examples of using select codes to access
devices are shown below. '

OUTPUT 1;"Data to CRT"
ENTER CRT;Crt_line$

HPib_device=722
OUTPUT 722;"FiRt™
ENTER Hpib_device;Reading

The following pages explain select codes and device selectors.

Select Codes of Built-In Interfaces

The internal devices are accessed with the following, permanently-assigned interface select
codes.

Note Some host instruments may not contain all of the following interfaces.

L

Select Codes of Built-in Devices

Built-In Interface /Device Permanent

Select Code
Alpha Display H
Keyboard 2
Built-in HP-IB interface 7
Built-in serial interface 9

The host instrument may have other built-in interfaces. See your instrument-specific HP
Instrument BASIC manual for information regarding these interfaces and their select codes.

KP-IB Device Selectors

Fach device on the HP-IB interface has a primary address by which it is uniquely identified;
each address must be unique so that only one device is accessed when one address is specified.
The device selector is then a combination of the interface select code and the device’s address.
Some examples are shown below.

3-2 Directing Data Flow

HP-IB Device Selector Examples

Device Location Device Exarnple I/O Statement
Selector
interface select code 7, 722 OUTPUT 722;"Data" ENTER
primary address 22 722;Humbexr
interface select cbde 18, 1001 QUTPUT 1001;*Data’ ENTER
primary address 01 1001 ; fumber

I/O Paths

All data entered and output via an interface to files or devices is moved through an “I/0
Path.” The I/O paths to devices and mass storage files can be assigned special names called
I/0 path names. [/O paths to strings cannot use 1/0 path names. The next section describes
how to use 1/O path names along with the benefits of using them.

/O Path Names

An I/O path name is a data type that describes an I/O resource. With HP Instrument
BASIC, you can assign /O path names to either a device or a data file on a mass storage
device. The following examples show how this is dene.

Devices ASSIGN €Device TO 722
Files ASSIGN @File TO "MyFile"

Once assigned, the I/O path names can be used in place of the device selectors to specify the
resource with which communication is to take place. For example:

ASSIGN @Display TO 1 Assigns the I/O path name @Display to the CRT.

OUTPUT @Display;''Data” Sends characters to the display.

ASSIGN @Printer TO 701 Assigns @Printer to HP-IB device 701.

QUTPUT @Printer;"Data” Sends characters to the printer.

ASSIGN @Gpio TO 12 Assigns @Gpio to the interface at select code 12.

ENTER Q@Gpio;A_number Enters one numeric value from the interface.

Note HP Instrument BASIC does not support assigning an I/O path name to
i multiple devices.

Since an I/O path name is a data type, a fixed amount of memory is allocated for the
variable, similar to the manner in which memory is allocated to other program variables
(integer, real and string). This [/O path information is only accessible to the context in which
it was allocated, unless it is passed as a parameter or appears in the proper COM statements.

ReAssigning I/0 Path Names

If an I/O path name already assigned to a resource is to be reassigned to another resource, the
preceding form of the ASSIGN statement is also used. The resultant action is that the the

Directing Data Flow 3-3

[/O path name to the device is implicitly closed. A new assignment is then made just as if the
first assignment never existed.

100 ASSIGN @Printer TO 1 ! Initial assignment.
116 OUTPUT @Printer;'Datai"
120 !

130 ASSIGHN @Printer TO 701 ! 2nd ASSIGH closes ist

140 QUTPUT €Printer;"Data2" ! and makes a new assignment.
160 PAUSE

160 END

The result of running the program is that “Datal” is sent to the CRT, and “Data2” is sent to
HP-IB device T01.
Closing 1/0 Path Names

A second use of the ASSIGN statement is to ezplicitly close the name assigned to an I/O
path. For example, to close the path name @Printer you would use the following statement:

ASSIGN @Printer TO #

After executing this statement for a particular I/O path name, the name cannot be used in
subsequent I/O statements until it is reassigned.

i/0 Path Names in Subprograms

When a subprogram (either a SUB subprogram or a user-defined function) is called, the
“context” is changed to that of the called subprogram. The statements in the subprogram
only have access to the data of the new context. Thus, in order to use an I/O path name in
any statement within a subprogram, one of the following conditions must be true:

® The I/0 path name must already be assigned within the context (i.e., the same instance of
the subprogram)

m The 1/0 path name must be assigned in another context and passed to this context by
reference (i.e., specified in both the formal-parameter and pass-parameter lists)

w The I/O path name must be declared in a variable common (with COM statements) and
already be assigned within a context that has access to that common block

The following paragraphs and examples further describe using I/O path names in
subprograms.

Assigning 1/0 Path Names Locally Within Subprograms

Any 1/0 path name can be used in a subprogram if it has first been assigned to an 1/0 path
within the subprogram. A typical example is shown below.

1¢ CALL Subprogram_ x

20 EWD

0 !

4G SUB Subprogram_x

50 ASSIGN €Log_device TO 1 ! CRT.
60 OUTPUT €Log_device;"Subprogram"
10 SUBEND

3-4 Directing Data Flow

When the subprogram is exited, all I/0O path names assigned locally within the subprogram
are automatically closed. If the program {or subprogram) that called the exited subprogram
attempts to use the I/O path name, an error results. An example of this closing local I/O
path names upon return from a subprogram is shown below.

10 CALL Subprogram.x

11 OQUTPUT QLog_device;'"Main" ! inserted line
20 ERD

30 !

40 SUB Subprogram x

50 ASSIGH @Log device TO 1 ! CRT.

60 OUTPUT Qlog.device;"Subprogram"

70 SUBEND

When the above program is run, error 177, Undefined 1/0 path name, occurs in line 11.

Fach context has its own set of local variables. These variables are not automatically
accessible to any other context. Consequently, if the same I/0 path name is assigned to I/O
paths in separate contexts, the assignment local to the context is used while in that context.
Upon return to the calling context, any I/ path names accessible to this context remain
assigned as before the context was changed.

1 ASSIGH €Log_device to 701 ! Inserted line
2 QUTPUT @Log_device;'First Main" ! Inserted line
10 CALL Subprogram.x

11 OUTPUT @Log_device;"Second Main" ! Changed line
20 END

30 !

4C SUB Subprogram x

50 ASSIGN @log.device TO 1 ! CRT.

60 OUTPUT @Log.device;"Subprogram"

70 SUBERD

The results of the above program are that the outputs “First Main” and “Second Main”

are directed to device 701, while the output “Subprogram” is directed to the CRT. Notice
that the original assignment of @Log_device made to interface select code 1 was local to the
subprogram.

Passing 1/0 Names as Parameters

I/O path names can be used in subprograms if they are assigned and have been passed to the
called subprogram by reference; they cannot be passed by value. The I/O path names(s) to be
used must appear in both the pass-parameter and formal-parameter lists.

1 ASSIGH @Log_device to 701
2 OUTPUT @Log._device;"First Main"

10 CALL Subprogram_x{(@Log_device} ! Add pass parameter
11 OUTPUT @Log_device;''Second Main"

20 END

30 1

40 SUB Subprogram.x(@Log) t Add formal parameter

50 ASSIGHN @Log TO 1 ! CRT.
60 OUTPUT @Log;"Subprogram'
70 SUBEND

Upon returning to the calling routine, any changes made to the assignment of the I/O path
name passed by reference are maintained; the assignment local to the calling context is not
restored as in the preceding example, since the I/O path name is accessible fo both contexts.

Directing Data Flow 3-5

In this example, @Log.device remains assigned to interface select code 1; thus, “Subprogram”
and “Second Main” are both directed to the CRT.

Declaring 1/0 Path Names in Common

An I/O path name can also be accessed by a subprogram if it has been declared in a COM
statement (labeled or unlabeled) common to calling and called contexts, as shown in the
following example.

i COM @Log_device ! Insert COM statement
3 ASSIGH €Log_device to 701
4 OUTPUT €Log_device;"First Main®

10 CALL Subprogram x ! Parameters not necessary
11 QUTPUT ¢Log _device;"Second Main"

20 END

30 !

40 SUB Subprogram_x { Parameters not necessary
41 COM € Log._device ! Insert COM statement

50 ASSIGN @Log_device TO 1 ! CRT.
60 OUTPUT @Llog_device;"Subprogram"
70 SUBERD

If an 1/0 path name is common is modified in any way, the assignment is changed for all
subsequent contexts; the original assignment is not “restored” upon exiting the subprogram.
In this example, “First Main” is sent to the HP-IB device 701, but “Subprogram” and
“Second Main” are both directed to the CRT. This is identical to the preceding action when
the I/O path name was passed by reference.

Benefits of Using /0 Path Names

Assigning names to I/O paths provide improvements in performance and additional
capabilities over using device selectors. These advantages fall in the following areas:

% execution speed
B redirecting data to or from other destinations
® access to mass storage files

B attribute control

Execution Speed

When a device selector is used in an I/O statement to specify the I/O path to a device, first
the numeric expression must be evaluated, then the corresponding attributes of the I/O path
must be determined before the I/O path can be used. If an I/O path name is specified in

an OUTPUT or ENTER statement, all of this information has already been determined at
the time the I/Q path name was assigned. Thus, an I/0 statement containing an I/O path
name executes slightly faster than using the corresponding I/0 statement containing a device
selector (for the same set of source-list expressions).

3-6 Directing Data Flow

Redirecting Data

Using numeric-variable device selectors, as with I/O path names, allows a single statement
to be used to move data between the computer and several devices. Simple examples of
redirecting data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=1
110 GOSUB Data_out

200 Device=701
210 GUSUB Data_out

410 Data_out: DUTPUT Device;Data$
420 RETURN

Example of Re-Directing with I/O Path Names

100 ASSIGH €Device TO 1
116 GOSUB Data_out

200 ASSIGN €Device TO 9
210 GOSUB Data_out

410 Data_out: OUTPUT @Device;Data$
420 RETURN

The preceding two methods of redirecting data execute in approximately the same amount of
time,

Access to Mass Storage Files

The third advantage of using I/0O path names is that device selectors cannot be used to direct
data to or from mass storage files. Therefore, I/O path names are the only access to files. If
the data is ever to he directed to a file, you must use I/O path names.

Attribute Control

I/O paths have certain “attributes” that control how the system handles data sent through
the I/O path. For example, the FORMAT attribute possessed by an I/0O path determines
which data representation will be used by the path during communications. If the path
possesses the attribute of FORMAT ON, the ASCII data representation will be used. This

is the default attribute automatically assigned by the computer when I/O path names are
assigned to device selectors. If the I/O path possesses the attribute of FORMAT OFF, the
internal data representation is used; this is the default format for BDAT files. Further details
of these and additional attributes are discussed in the “I/O Path Attributes” chapter.

The final factor that favors using I/O path names is that you can control which attribute(s)
are to be assigned to the I/O path. Attributes can be attached to an I/O path name when
it is assigned to a device (via the ASSIGN statement) and can specify data representation
(ASCII or internal) as well as the end-of-line sequence for all data using the path. Details of
these attributes are discussed in the “I/O Path Attributes” chapter.

Directing Data Flow 3-7

Outputting Data

Introduction

‘This chapter describes the topic of outputting data to devices; outputting data to string
variables, and mass storage files is described in the “I/O Path Attributes” chapter of this
manual, in “Data Storage and Retrieval”, chapter 7 of HP Instrument BASIC Programming
Techniques.

There are two general types of output operations. The first type, known as “free-field
outputs”, use the HP Instrument BASIC’s default data representations. The second type
provides precise control over each character sent to a device by allowing you to specify the
exact *image” of the ASCII data to be output.

Free-Field Outputs

Free-field outputs are invoked when the following types of OUTPUT statements are executed.

Examples

QUTPUT @Device; 3. 14%Radius™2
OUTPUT Printer;"String data";Num_1
QUTPUT 9;Test,Score,Student$

OUTPUT Escape_code$;CHR$(27)&"&A18";

The Free-Field Convention

The term “free-field” refers to the number of characters used to represent a data item.

During free-field outputs, HP Instrument BASIC does not send a constant number of ASCII
characters for each type of data item, as is done during “fixed-field outputs” which use images
(described later). Instead, a special set of rules is used that govern the number and type of
characters sent for each source item. The rules used for determining the characters output for
numeric and string data are described in the following paragraphs.

Standard Numeric Format

The default data representation for devices is to use ASCII characters to represent numbers.
The ASCII representation of each expression in the source list is generated during free-field
output operations. Even though all REAL numbers have 15 (and INTEGERSs can have up
to 5) significant decimal digits of accuracy, not all of these digits are output with free-field
OUTPUT statements. Instead, the following rules of the free-field convention are used when
generating a number’s ASCII representation.

Outputting Data 4-1

All numbers between 1E—5 and 1E+46 are rounded to 12 significant digits and output in
floating-point notation with no leading zeros. If the number is positive, a leading space is
output for the sign; if negative, a leading “~” is output.

For example:

32767
-32768
123456.789012
-.000123456789012

If the number is less than 1E~5 or greater than 1E+6, it is rounded to 12 significant digits
and output in scientific notation. No leading zeros are output, and the sign character is a
space for positive and “~" for negative numbers.

For example:

~1.,23456789012E+6
1.23456789012E-5

Standard Siring Format

No leading or trailing spaces are output with the string’s characters.

String characters.
HBo leading or trailing spaces.

item Separators and Terminators

Data items are output one byte at a time, beginning with the left-most item in the source
list and continuing until all of the source items have been output. Items in the list must be
separated by either a comma or a semicolon. However, items in the data output may or may
not be separated by item terminators, depending on the use of item separators in the source
lists. '

The general sequence of items in the data output is as follows. The end-of-line (EQL)
sequence is discussed in the next section.

1st item 2nd item . last EOL
item terminator item terminator item sequence

Using a comma separator after an item specifies that the item terminator (corresponding
to the type of item) will be output after the last character of this item. A carriage-return,
CHR$(13), and a line-feed, CHR$(10), terminate string items.

QUTPUT Device;"Item",~1234

t{t|lelmicritFl-T1 2134 EOL The default EOL sequence i5 a CR/LF
Sequence

4-2 Qutputting Data

A comma separator specifies that a comma, CHR$(44)}, terminates numeric items.

QUTPUT Device;-1234,"Item"

S IR T -2 T R R R N P ECL
sequence

If a separator follows the last item in the list, the proper item terminator will be output
instead of the EOL sequence.

OUTPUT Device;"Iten", QUTPUT Device;-1234,

Using a semicolon separator suppresses output of the (otherwise automatic) item’s terminator.

OUTPUT £;"Iteml";"Item2" QuTPUT 1;-12;~34

tlelelmlt] ilt]lelm]|2 EOL -f1]z2i-13i4 EOL.
Sequence sequence

If a semicolon separator follows the last item in the list, the EQL sequence and item
terminators are suppressed.

QUTPUT 1;"ITtemi";"Item2";

Neither of the item tfeminators nor
the ECL sequence are output

If the item is an array, the separator folowing the array name determines what is output after
each array element. (Individual elements are output in row-major order.)

110 DIM Array(1:2,1:3)
120 FOR Rowsi TO 2

130 FOR Column=1i TO 3

140 Array (Row,Column)=Row*10+Column

150 HEXT Columm

160 KEXT Row

170 !

180 OUTPUT CRT;Array(*) ! No trailing separator.
19¢ !

200 OUTPUT CRT;Array(*), ! Trailing comma.

210 ¢

220 OUTPUT CRT;Axray(%); ! Trailing semi-colon.
230 ¢

240 DUTPUT CRT;"Done"

250 ERD

Cutputling Data 4-3

Resultant Qutput

1111, tl21], 1131, 2117 . 2121 . 213 ECL.

Feguence
L I B 1127 . 1131, 2111 ., 2821 . 2313
111 112 113 21 212 283

D|Oo|IN}E ESL
Sequence

Item separators cause similar action for string arrays.

110 DIM Array$(1:2,1:3)[2]
120 FOR Row=1 TO 2

130 FOR Celumn=t TGO 3
140 Array$(Row,Coluan) =VAL$ (Row*10+Column)
150 HEXT Column
160 NEXT Row
170 !
180 OUUTPUT CRT;Array$(*) 1! No trailing separator,
190 !
2060 QUTPUT CRT; Array$(x), ! Trailing comma.
210 H
220 QUTPUT CRT;Array$(*); ! Trailing semi-colon.
230 !
240 QUTPUT CRT; "Done"
250 END

Resultant Qutput

Tl CerILF 1 |2 Her|Fl 1 L 3tcr|LFl 2| v leriFf2 2 [erRiLFE 21 3 EoL
sRquUence
tl1rdericrir 2 erieF| 1 [3icr|wFl 2 s [eriLFf 2| 2 [eRILFi 2| 2 EOL.
segquence
tiy1r 12yt 3211123921213

DIOINLE EOL
gequence

Changing the EOL Sequence

An end-of-line (EOL) sequence is normally sent following the last item sent with OUTPUT.
The default EOL sequence consists of a carriage-return and line-feed (CR/LF), sent with
no device-dependent END indication. It is also possible to define your own special EOL
sequences that include sending special characters, and sending an END indication.

In order to define non-default EOL sequences to be sent by the QUTPUT statement, an I/0O
path must be used. The EOL sequence is specified in one of the ASSIGN statemnents that
describe the I/0O path. An example is as follows.

ASSIGN @hevice TO 7;EOL CHR$(10)&CHR$ (10) &CHR$(13)

The characters following EOL are the new EQL-sequence chiaracters. Any character in the
range CHRS$(0) through CHR$(255) may be included in the string expression that defines the
EOL characters; however, the length of the sequence is limited to eight characters or less.

4.4 Qutputting Data

If END is included in the EOL attribute, an interface-dependent “END” indication is sent
with (or after) the last character of the NOL sequence. However, if no EOL sequence is sent,
the END indication is also suppressed. The following statement shows an example of defining
the EQOL sequence to include an END indication.

ASSIGN @Device TO 7;EOL CHR$(13)&CHR$(10) END

With the HP-1B Interface, the END indication is an End-or-Identify message (EOI)} sent with
the last EOL character.

The default EQL sequence is a CR and LF sent with no END indication; this default can be
restored by assigning EOL OFF to the /O path.

EOL sequences can also be sent by using the “L” image specifier. See “Outputs that Use
Images” for further details.

Using END in Freefield OUTPUT

The secondary keyword END may be optionally specified foliowing the last source-item
expression in a freefield OUTPUT statement. The result is to suppress the End-of-Line

- (EOQL) sequence that would otherwise be output after the last byte of the last source item. If

a comma is used to separate the last item from the END keyword, the corresponding item
terminator will be output as before {carriage-return and line-feed for string items and comma
for numeric items).

The END keyword has additional significance when the destination is a mass storage file. See
the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming Techniques
for further details.

Additional Definition

HP Instrument BASIC defines additional action when END is specified in a freefield
QUTPUT statement directed to the HP-IB interface.

END with HP-IB Interfaces

With HP-1B interfaces, END has the additional function of sending the End-or-Identify signal

(EOI) with the last data byte of the last source item; however, if no data is sent from the last
source itemn, EOI is not sent.

Examples

ASSIGHN @Device TO 701

OUTPUT @Device;-10,END

-1 110

N !
EGI sent with the last charocter
{numeric item terminator).

Outputting Data 4.5

QUTPUT @Daevice;"AB" ;END

Al B
N

EQl sent with the last character of the item.

OUTPFUT @Device;END
OUTPUT @Device;""END

Neither EOL sequence nor EQI is sent, since no data is sent.

Qutputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there may
be times when the data output by the free-field convention is not compatible with the data
required by the receiving device.

Several instances for which you might need to format outputs are: special control characters
are to be output; the EOL sequence (carriage-return and line-feed) needs to be suppressed; or
the exponent of a number must have only one digit. This section shows you how to use image
specifiers to create your own, unique data representations for output operations.

The QUTPUT USING Statement

When this form of the OUTPUT statement is used, the data is output according to the
format image referenced by the “USING” secondary keyword. This image consists of one or
more individual image specifiers that describe the type and number of data bytes (or words)
to be output. The image can be either a string literal, a string variable, or the line label or
number of an IMAGE statement. Examples of these four possibilities are listed below.

100 OUTPUT 1 USING "64,SDDD.DDD,3X";" K= ", ,123.45

100 Image_sir$='""6A,SDDD.DDD, 3X"
110 OUTPUT CRT USING Image_str$;" K= ";123.45

100 QUTPUT CRT USING Image_stmt;" K= ";123.45
110 Image_stmt: THMAGE 64,SDDD.DDD,3X

100 OUTPUT 1 USING 110;" XK= ";123.45
110 IKAGE 64,SDDD.DDD,3X

4-6 Qutputting Data

images

Images are used to specify the format of data during I/O operations. Each image consists
of groups of individual image (or “field™) specifiers, such as 6A, SDDD.DDD, and 3X in the
preceding examples. Fach of these field specifiers describe one of the following things:

® It describes the desired format of one item in the source list. For example, 6A specifies that
a string item is to be output in a “6-character Alpha” field. SDDD.DDD specifies that
a numeric item is to be output with Sign, 3 Decimal digits preceding the decimal point,
followed by 3 Decimal digits following the decimal point.

& It specifies that special character(s) are to be output. For example, 3X specifies that 3
spaces are to be output. There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a procedure.
It is convenient to talk about the image list as a procedure for the purpose of explaining how
this type of OUTPUT statement is executed.

Again, each image list consists of images that each describe the format of data item to be
output. The order of images in the list corresponds to the order of data items in the source
list. In addition, image specifiers can be added to output (or to suppress the output of)
certain characters.

Example of Using an Image

We will use the first of the four, equivalent output statements shown above. Don’t worry if
you don’t understand each of the image specifiers used in the image list; each will be fully

described in subsequent sections of this chapter. The main emphasis of this example is that
you will see how an image list is used to govern the type and number of characters output.

OUTPUT CRT USING "64,SDDD.DDD,3X";" K=",123.45

The data stream output by the computer is as follows.

K= + 1112131 141510 CRILF

b . ~ g & "y J‘“‘W‘“’"
BA s DD D . D D D 33X defauit EOL

sequence

Step 1. The computer evaluates the first image in the list. Generally, each group of
specifiers separated by commas is an “image”; the commas tell the computer
that the image is complete and that it can be “processed”. In general, each
group of specifiers is processed before going on to the next group. In this case,
6§ alphanumeric characters taken from the first item in the source list are to be
output.

Step 2. The computer then evaluates the first item in the source list and begins outputting
it, one byte (or word) at a time. After the 4th character, the first expression has
been “exhausted”. In order to satisfy the corresponding specifier, two spaces
(alphanumeric “fill” characters) are output.

Step 3. The computer evaluates the next image (note that this image consists of several
different image specifiers). The “S” specifier requires that a sign character be

Outputting Data 4-7

Step 4.

Step 5.

Step 6.

output for the number, the “D?” specifiers require digits of a number, and the

“” specifies where the decimal point will be placed. Thus, the number of digits
following the decimal point have been specified. All of these specifiers describe the
format of the next item in the source list.

The next data item in the source list is evaluated. The resultant number is output
one digit at a time, according to its image specifiers. A trailing zero has been
added to the number to satisfy the “DDD” specifiers following the decimal point.

The next image in the list (“3X")is evaluated. This specifier does not “require”
data, so the source list needs no corresponding expression. Three spaces are output
by this image.

Since the entire image list and source list have been “exhausted”, the computer
then outputs the current (or default, if none has been specified) “end-of-line”
sequence of characters (here we assume that a carriage-return and line-feed are the
current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in the
source list must match those specified in the output image in type and in number of items.

Image Definitions During Qutputs

This section describes the definitions of each of the image specifiers when referenced by
OUTPUT statements. The specifiers have been categorized by data type. It is suggested that
vou scan through the description of each specifier and then look over the examples. You are
also highly encouraged to experiment with the use of these concepts.

4-8 Outpulting Data

Numeric Images

These image specifiers are used to describe the format of numbers.

Sign, Digit, Radix and Exponent Specifiers

Iinage Specifier

Meaning

[

Specifies a “+” for positive and a “~” for negative numbers is to be output.

139

Specifies a leading space for positive and a “~” for negative numbers is to be

output.

Specifies one ASCII digit {“0” through “§”} is to to be output. Leading spaces
and trailing zeros are used as fill characters. The sign character, if any, “floats”
to the immediate left of the most-significant digit. If the number is negative and
no S or M is used, one digit specifier will be used for the sign.

Same as “I)” except that leading zeros are output, This specifier cannot appear
to the right of a radix specifier {decimal point or R).

Like D, except that asterisks are output as leading fill characters {instead of
spaces). This specifier cannot appear to the right of a radix specifier {decimal
point or R).

Specifies the position of a decimal point radix-indicator {American radix) within
a number. There can be only one radix indicator per numeric image item.

ESZ
ESZZZ

Specifies the position of a comma radix indicator {(European radix)} within a
number, There can be only one radix indicator per numeric image item,

Specifies that the number is to be output using scientific notation. The “E” must
be preceded by at least one digit specifier (D, Z, or *). The default exponent is a
four-character sequence consisting of an “E”, the exponent sign, and two
exponent digits, equivalent to an “ESZZ” image. Since the number is left-justified
in the specified digit field, the image for a negative number must contain a sign
specifier (see the next section).

Same as “E” but only 1 exponent digit is output.

Same as “E” but three exponent digits are output.

K, —K

Specifies that the number is to be output in a “compact” format, similar to the
standard numeric format; however, neither leading spaces (that would otherwise
replace a “4+” sign} nor item terminators (commas} are output, as would be with
the standard numeric format.

Like K, except that the number is to be output using a comma radix {(European
radix).

Outputting Data 4-9

Numeric Examples

QUTPUT @Device USING

OUTPUT @Device USING

OUTPUT @Device USING

OUTPUT @Device USING

QUTPUT @Device USING "DD.E"; 12345

OUTPUT @Device USING "2D.DDE";2E-4

OUTPUT @Device USING "K";12.400

OUTPUT CRT USING "MDD.2D";-12.449

4-10 Outpuiting Data

“DDDD";-123.769

"4p';-1.2

"ZZ.DD";1.875

2

EOQL
sequence

Sequence

sequence

EOL

HZ‘D!I; .35

EOL
sequUence

EOL
sequence

5 EOL

EGL
sequence

EOL
SEQUEnce

sSequence

OUTPUT CRT USIRG "MDD.DD";2.09

5 g ECL.
sequence
QUTPUT 1 USING "SD.D";2.449
+ 12 EOL
Sequence
DUTPUT i USING “"SZ.DD"; .49
1o EOL
Seguence
QUTPUT CRT USING "“SDD.DDE";-2.35
-l213 5 -{ol ECL
segilence
OUTPUT @Device USING "% .D":2.68
12 £0L
sequence
QUTPUT €Device USING "DRDD";3.1416
3 EOL
SequUence
QUTPUT @Device USING "H";3.1416
3 1 & £0L
sequence

Outputting Data 4-11

String Images

These types of image specifiers are used to specify the format of string data items.

Character Specifiers

Image Specifier

Meaning

A

“literal”

K, ~K, H, —H

Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters specified.

All characters placed in guotes form a string literal, which is cutput exactly as is.
Literals can be placed in output images, which are part of OUTPUT statements
by enclosing them in double quotes.

Specifies that the string is to be ocutput in “compact” format, similar to the
standard string format; however, no item terminators are output as with the
standard string format.

String Examples

QUTPUT @Device USING "8A";Characters™

Cihia rlalc t| e EOL.
sequance

alefe]ileletr]eal | EOL
sequence

OQUTPUT @Device USING "K";" Helle "

Hlel|l 1] 1]e EOL
: sequence

QUTPUT @Device USING "HA"M;" Hello *

H| e EOL
: SequUEnce

4.12 Quiputting Data

Binary images

These image specifiers are used to output bytes (8-bit data) and words (16-bit data) to the
destination. Typical uses are to output non-ASCII characters or integers in their internal
representation.

Binary Specifiers

Emage Specifier Meaning

B Specifies that one byte (8 bits) of data is to be output. The source expression is
evaluated, rounded to an integer, and interpreted MOD 256. If it ig less than
—32 768, CHRS$(0) is output. If is greater than 32 767, CHR$(255) is output.

W Specifies that one word of data (16 bits) are to be sent as a 16-bit,
two’s-complement integer. The corresponding source expression is evaluated and
rounded to an integer. If it is less than —32 768, then —32 768 is sent; if it is
greater than 32 767, then 32 767 is sent.

If the destination i1s a BDAT or HPUX file, or string variable, the WORD
attribute is ignored and all data are sent as bytes; however, pad byte(s),
CHRS$(0), will also be oulput whenever necessary to achieve alignment on a word
boundary.

Since HP Instrument BASIC only supports 8-bit interfaces, two bytes are always
output, with the most significant byte first. This image specifier has been
included primarily to maintain compatibility with HP Series 200/300 BASIC
programs that include this specifier.

Y Like W, except that no pad bytes are output to achieve alignment on a word
boundary.

Binary Examples
0UTPUT @Device USING "B,B,B";865,66,67

AlBlc EOL

sequence

OUTPUT @Device USING "BY;13

OUTPUT €Device USING "W";256%65+66

seguence

Outputting Data 4-13

Special-Character Images

These specifiers require no corresponding data in the source list. They can be used to output
spaces, end-of-line sequences, and form-feed characters.

Special-Character Specifiers

Image Specifier

Meaning

X Specifies that a space character, CHR$(32), is to be output.

/ Specifies that a carriage-return character, CHR$(13), and a line-feed character,
CHR${10), are to be cutput.

@ .Speciﬁes that a form-feed character, CHR3(12), is to be output.

Special-Character Examples

OUTPUT @Device USING “4,4X,A";"M","A"

M A EOL,
sequence

OUTPUT @Device USING "50XK*

“#— (50 spaces) == ECL
sequence

QUTPUT @Device USING '@,/

FFlcr|LF] EOL
sequence

QUTPUT @Device USING */"

criuF| EOL
seduence

4.14 Qutputting Data

Termination Images

These specifiers are used to output or suppress the end-of-line sequence output after the last

data item,

Termination Specifiers

Emage Specifier

Meaning

L

%

Specifies that the current end-of-line sequence is to be output. The default EQOL
characters are CR and LF; see “Changing the EOL Sequence” for details on how

to redefine these characters.

Specifies that the EQL sequence that normally follows the last item is to he

suppressed.

Is ignored in output images but is allowed to be compatible with ENTER images.

Specifies that the EOQL sequence that normally follows the last item is to be
replaced by a single carriage-treturn character (CR).

Specifies that the EOL sequence that normally follows the last item is to be

replaced by & single line-feed character (LF}.

Termination Examples

OUTPUT @Device USING “"44A,L";"Data"

QUTPUT @Device USIKG "#,K";"Data"

OUTPUT @Device USING "#,B";12

QUTPUT @Device USING "+ ,K";"Data"

plalitla EOL. EGL
sequence | sequence
D]lajt]a

Outpuiting Data 4-15

QUTPUT @Device USING "~ ,L,K";"Data"

EOL Biafjt]allF
sequence

Additional iImage Features

Several additional features of outputs that use images are available with the computer.
Several of these features, which have already been shown, will be explained here in detail.

Repeat Factors

Many of the specifiers can be repeated without having to explicitly list the specifier as many
times as it is to be repeated. Tor instance, to a character field of 15 characters, you do not
need to use “AAAAAAAAAAAAAAAY; instead, you merely specify the number of times that
the specifier is to be repeated in front of the image (“15A”). The following specifiers can be
repeated by specifying an integer repeat factor; the specifiers not listed cannot be repeated in
this manner.

Repeatable Specifiers Nonrepeatable Specifiers

Z$D5A!X!/’@7L . S?Mf"lRJEJKFHJB!W’Y?#?%!w&)-

Examples

QUTPUT @Device USING "4Z.3D";328.03

ot3lzysl . |loj3la]| EOL
sequence

olalt]a o EoL
sequence

OUTPUT @Device USING "BX,2A4";"Data"

niaq EOL
sequence

4-16 OQuiputing Data

QUTPUT €@Device USING "2L,4A";"Data”

£0L oL | plal el o] ECL

SEQUETICE | Sequencs g LRt g

QUTPUT @Pevice USING "84,2¢";"The End"

Tlnje Efnld FF|FF| ECL
SEqUErnce

OUTPUT @Device USING "2/"

CRILF|CRILF] EOL
sequence

image Re-Use

If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to rense the image(s) beginning with the first image.

i10
120
130
140
150
160
170

ASSIGE @Device TG CRT

Nuam_1=3%

Hum_2=2

i

OUTPUT €Device USING "K";Num_1,"Data_ 1" ,Num_2,"Pata.2”
DUTPUT €Device USING "K,/";Kum_1,"Data_1'",Num_2,"Data_2"
EKD

Resultant Display

iData_12Data_2

1

Data_i

2

Data_ 2

Since the “K” specifier can be used with both numeric and string data, the above OUTPUT
statements can reuse the image list for all items in the source list. If any item cannot be
output using the corresponding image item, an error results. In the following example, “Error
100 in 150” occurs due to data mismatch.

110
120
130
140
160
160

ASSIGK @Device TG CRT

Num_1=1

Hum_2=2

i

QUTPUT @Device USING "DD.DD";Mum_i,Hum_2,"Data_1*
END

Oulputting Data 4-17

Nested Images

Another convenient capability of images is that they can be nested within parentheses. The
entire image list within the parentheses will be used the number of times specified by the
repeat factor preceding the first parenthesis. The following program is an example of this
feature.

1006 ASSIGE @Device TG 701

110 !
120 QUTPUT &Device USING "3(B),X,DD,X,DD";65,66,67,68,69
130 END

Resultant Output

alelc 818 619 EOL
Sequence

This nesting with parentheses is made with the same hierarchy as with parenthetical nesting
within mathematical expressions. Only eight levels of nesting are allowed.

END with OUTPUTSs that Use Iimages

Using the optional secondary keyword END in an OUTPUT statement that uses an image
produces results that differ from those of using END in a freefield OUTPUT statement.
Instead of always suppressing the EOL sequence, the END keyword enly suppresses the EQL
sequence when no dala are output from the last source-list expression. Thus, the “#” image
specifier generally controls the suppression of the otherwise automatic EOL sequence, while
the END keyword suppresses it only in less common usages.

Examples

Device=12

OUTPUT Device USING "K*;"ABC",END
OUTPUT Device USING "X';"ABC";ERD
OUTPUT Device USING "K*;"ABC" END

AR C EOL The EQL sequence is not suppressed,
sequence

DUTPUT Device USING "L,/,""Literal™® X,@"

EOL eritFlLliftlelr]|al: FF E0L
sSeguence segquence

4-18 OQutputting Data

In this case, specifiers that require no source-item expressions are used to generate characters
for the output; there are no source expressions. The EOL sequence is output after all
specifiers have been used to output their respective characters. Compare this action to that

shown in the next example.

OUTPUT Device USING "L,/,""Literal”",X,@";END

EOL crlLFi L
sequence

FF

The EQL sequence is suppressed hecause no source items were included in the statement; all
characters output were the result of specifiers that require no corresponding expression in the

source list.

Additional END Definition

The END secondary keyword has been defined to produce additional action when included in
an QUTPUT statement directed to HP-IB interfaces.

END with HP-IB Interfaces

With HP-IB interfaces, END has the additional function of sending the End-or-Identify signal
(EOI) with the last character of either the last source item or the EOL sequence (if sent). As
with freefield OUTPUT, no EQI is sent if no data is sent from the last source item and the

FEOL sequence is suppressed.
Examples.

ASSIGN @Device TO 701

QUTPUT @Device USING "K';'"Data",END
QUTPUT @bhevice USING "K";"Data","" ,END

EOL
sequence

—

EGl sent with last character

of

OUTPUT @Device USING "#,K";"Data" END

the EOL sequence

G

=

EQl sent with this character

EOQI is sent with the last character of the last source item when the EOL sequence is
suppressed, because the last source item contained data that was used in the output.

OUTPUT @Device USIKG "#,K";"Data","" ,END
QUTPUT @Device USING "*"Data""";END

Outputting Data 4-19

The EOI was not sent in either case, since no data were sent from the last source item and the
EOL sequence was suppressed.

4.20 Outpulting Data

5

Entering Data

e i

This chapter discusses the topic of entering data from devices. You may already be familiar
with the OUTPUT statement described in the previous chapter; many of those concepts are
applicable to the process of entering data. Earlier in this manual, you were told that the

data output from the sender had to maich that ezpected by the receiver. Because of the many
ways that data is represented in external devices, entering data can sometimes require more
programming skill than outputting data. In this chapter, you will see what is involved in
being the receiving device. Both free-field enters and enters that use images are described, and
several examples are given with each topic.

Free-Field Enters

Executing the free-field form of the ENTER invokes conventions that are the “converse” of
those used with the free-field QUTPUT statement. In other words, data output using the
free-field form of the QUTPUT statement can be readily entered using the free-field ENTER
statement; no explicit image specifiers are required. The following statements exemplify this
form of the ENTER statement.

For example:

ENTER @Voltmeter;Reading

ENTER 724 ;Readings (%)

ENTER From_string$;Average,Student_name$
ENTER @From_file;Data_code,Str_element${X,Y)

item Separators

Destination items in ENTER statements can be separated by either a comma or a semicolon.
Unlike the OUTPUT statement, it makes no difference which is used; data will be entered
into each destination item in a manner independent of the punctuation separating the
variables in the list. However, no frailing punciuation is allowed. The first two of the
following statements are equivalent, but an error is reported when the third statement is
executed.

For example:

ENTER €From_a_device;N1,N2,83
ENTER @From_a_device;N1;N2;K3

Entering Data 5.1

Hem Terminators

Unless the receiver knows exactly how many characters are to be sent, each data item output
by the sender must be terminated by special character(s). When entering ASCII data

with the free-field form of the ENTER siatement, the computer does not know how many
characters will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into the
proper desiination variable. The terminator of the last item may also terminate the ENTER
statement (in some cases). The actual character(s) that terminate entry into each type of
variable are described in the next sections.

In addition to the termination characters, each item can be terminated {only with selected
interfaces) by a device-dependent END indication. For instance, some interfaces use a signal
known as BEOI (End-or-Identify). The EOI signal is only available with the HP-IB, and
keyboard interfaces. EOCI termination is further described in the next sections.

Entering Numeric Data with the Number Builder

When the free-field form of the ENTER statement is used, numbers are entered by a routine
known as the “number builder”. This firmware routine evaluates the incoming ASCII numeric
characters and then “builds” the appropriate internal-representation number. This number
builder routine recognizes whether data being entered is to be placed into an INTEGER or
REAL variable and then generates the appropriate internal representation.

‘The number builder is designed to be able to enter several formats of numeric data. However,
the general format of numeric data must be as follows to be interpreted properly by HP
Instrument BASIC.

Mantissa | Mantissa | £ | Exponent | Exponent Terminator
sign diqit{s} sign digit{s) {character or
END indication)
\ VM o e v % s
Optional At least Optional Required
one digit
is required

Numeric characters include decimal digits “0” through “9” and the characters “.”, 47,

“=7 “E”, and “e”. These last five characters must oceur in meaningful positions in the data
stream to be considered numeric characters; if any of them occurs in a position in which it
cannot be considered part of the number, it will be treated as a non-numeric character.

5-2 Entering Data

The following rules are used by the number builder to construct numbers from incoming
streams of ASCII numeric characters.

1. All leading non-numerics are ignored; all leading and embedded spaces are ignored.

100 ASSIGN @Device TD Device_selector
110 ENTER @Device;Number ! Default is data type REAL.

120 ERD
Consumed
=
Nluflm|blelel= 1|2 3 |uF)
b P W’V"
v
lgneored Numnber Terminator

{for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that Number
receives a value of 123. The line-feed (statement terminator) is required since Number is
the last item in the destination list. '

2. Trailing non-numerics terminate entry into a numeric variable, and the terminating
characters {of both string and numeric items) are “consumed”. In this manual, “consumed”
characters refers to characters used {o terminate an item but not entered into the variable;
“ignored” characters are entered but are not used.

ENTER @Device;Real_number,String$

Consumed Cansumed
wlulmiele]|e[=] [1]2]a] [4]a]e ¢ |ofirer crirl
k. Y) o, . i
g hd e o W W
lgnored Real_number MNumeric String$ Terminator
item {for both item
terminator and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number receives the value 123.4 and String$ receives the characters “BCD”. The “A”
was lost when it terminated the numeric item; the string-item terminator(s) are also lost.
The string-item terminator(s) also terminate the ENTER statement, since String$ is the
last item in the destination list.

3. If more than 16 digits are received, only the first 16 are used as significant digits. However,
all additional digits are treated as trailing zeros so that the exponent is built correctly.

Entering Data 5-3

ENTER @Device;Real_number_1

Consumed
-
frlo]sje|sfelzlalo]oji]2]s shstelurl
, h ‘\»-’
Reol.number..1 Terminator

{for both item
and statement)

The result of entering the preceding data with the given ENTER statement is that
Real _number_1 receives the value 1.234567890123456 E+15,

ENTER @Device;Real_number 2

Used only
to build
the exponent. Consumed

e s

1121341567818 (081 21345161 718(LF

i p i ;
Reai. number.?2 Terminator

{for both item
and staterment)

The result of entering the preceding data with the given ENTER statement is that
Real _number_2 receives the value 1.234567890123456 E+17.

4. Any exponent sent by the source must be preceded by at least one mantissa digit and an
E(or e) character. If no exponent digits follow the E (or e), no exponent is recognized, but
the number is built accordingly.

ENTER @Device ;Real _number

Consumed
e
e] Jef lels] Jef-Jrjzjefofufi]i]
o \d Ao g Ao
lgnored Feal_number Nurneric !gnore:d Terminator
ter;ttﬁ?r:gtor

The result of entering the preceding data with the given ENTER statement is that
Real.number receives a value of 8.85 E—12. The character “C” terminates entry into
Real _number, and the characters “oul” are entered (but ignored) in search of the required
line-feed statement terminator. If the character “C” is to be entered but net ignored, youn
must use an image. Using images with the ENTER statement is described later in this
chapter.

5-4 Entering Data

5. If a number evaluates to a value outside the range corresponding to the type of the numeric
variable, an error is reported. If no type has been declared explicitly for the numeric
variable, it is assumed to be REAL.

ENTER @Device;Real number

Consumed
=
[i]e]=] [efe]+]z]0]7]e] evavates w0 1.234E+300.
[" Jv
The resultant wvalue Terminator
cannot be stored (for both #tems
in Real.number. and statement)

The data is entered but evaluates to a number cutside the range of REAL numbers.
Consequently, error 19 is reported, and the variable Real_number retains its former
value.

6. If the item is the last one in the list, both the item and the statement need to be properly
terminated. If the numeric item is terminated by a non-numeric character, the statement
will not be terminated until it either receives a line-feed character or an END indication
(such as EOI signal with a character). The topic of terminating free-field ENTER
statements is described later.

Entering Siring Data

Strings are groups of ASCII characters of varying lengths. Unlike numbers, almost any
character can appear in any position within a string; there is not really any defined structure
of string data. The routine used to enter string data is therefore much simpler than the
number builder. It only needs to keep track of the dimensioned length of the string variable
and look for string-item terminators (such as CR/LF, LI, or EOI sent with a character).

String-item terminator characters are either a line-feed {LF) or a carriage-return followed by
a line-feed (CR/LF). As with numeric-item terminators characters, these characters are not
entered into the string variable {during free-field enters); they are “lost” when they terminate
the entry. The EOI signal also terminates entry into a string variable, but the variable must
be the last item in the destination list {during free-field enters).

All characters received from the source are entered directly iemph appropriate string variable
until any of the following conditions occurs:

® An item terminator character is received.
The number of characters entered equals the dimensioned length of the string variable.
® The EOI signal is received.

The following statements and resultant variable contents illustrate the first two conditions; the
next section describes termination by EQIL. Assume that the string variables Five_char§ and
Ten..char$ are dimensioned to lengths of 5 and 10 characters, respectively.

Entering Data 5-5

ENTER @Device:Five_char$

Consumed
-
AlBICIDIEJFGEHICR|ILF
s v i
Five_char$ ignored Terminator

{for both item
and statement)

The variable Five_char$ only receives the characters “ABCDE”, but the characters “FGH” are
entered (and ignored) in search of the terminating carriage-return/line-feed (or line-feed).

ENTER @Device;Ten_char$

Consumed Consumed
A f“"‘"ﬁ
alelce|olelrlafrr] o [alslc|ole]|r]c]|er|ir]
LN v A ; 1S g r ’
Ten_charf Terminator Ten_charf Terminatar
{for hoth item {for both item
and stotement) and statement)

The result of entering the preceding data with the given ENTER statement is that Ten_char$
receives the characters “ABCDEFG” and the terminating LF (or CR/LF) is lost.

5-8 Entering Data

Terminating Free-Field ENTER Statements
Terminating conditions for free-field ENTER statements are as follows,

1. If the last item is terminated by a line-feed or by a character accompanied by EOI, the
entire slatement is properly terminated.

2. i an END indication is received while entering data into the last ifem, the statement is
properly terminated. Examples of END indications are encountering the last character of a
string variable while entering data from the variable and receiving EOI with a character.

3. If one of the preceding statemeni-termination conditions has not occurred but entry into
the last item has been terminated,up to 256 additional characters are entered in search of a
termination condition. If one is not found, an error occurs.

One case in which this termination condition may not be obvious can occur while entering
string data. If the last variable in the destination list is a string and the dimensioned length
string has been reached before a terminator is received, additional characters are entered (but
ignored) until the terminator is found. The reason for this action is that the next characters
received are still part of this data item, as far as the data sender is concerned. These
characters are accepted from the sender so that the next enter operation will not receive these
“leftover” characters.

Another case involving numeric data can also occur. (See the example given with “rule 47
describing the number builder.) If a trailing non-numeric character terminates the last item
(which is a numeric variable), additional characters will be entered in search of either a
line-feed or a character accompanied by EOI. Unless this terminating condition is found before
256 characters have been entered, an error is reported.

EQOI Termination

A termination condition for the HP-IB Interface is the EOI (End-or-Identify) signal. When
this message is sent, it immediately terminates the entire ENTER statement, regardless

of whether or not all variables have been satisfied. However, if all variable items in the
destination list have not been satisfied, an error is reported.

For example:

ENTER €Device;String$

IA]B]C]D[E]F|or|A[B[c|D]E]F]LFIor]A‘BIC]aIEIF[CR[LF]

Sent with Sent with Sent with
e} ECI EQ

The result of entering the preceding data with the given ENTER statement is that String$
receives the characters “ABCDEF”. The EOI signal being received with either the last
character or with the terminator character properly terminates the ENTER statement. I the
character accompanied by EOI is a string character (not a terminator), it is entered into the
variable as usual.

Entering Data 5-7

For example:

ENTER @Device;Number

Used to
build Nurnber Consumed Consumed

e, o,

1121314315 or 1121314351 A1 or 1121314 51LF
W—:—M b e J‘w b o J‘V‘"

Mumber Sent with Number Sent with Number Sent with
EC ECI EQ

The result of entering any of the above data streams with the given ENTER statement is that
Number receives the value 12345, If the EOQI signal accompanies a numeric character, it is
entered and used to build the number; if the EQOI is received with a numeric terminator, the
terminator is lost as usual.

ENTER @Device;Number,String$

An error is reported
{(Error 153 Insufficient data for ENTER).

i]2 3]4'5

\mwvl
Number Sent with
ECH

The result of entering the preceding data with the given statement is that an error is reported
when the character “5” accompanied by EOI is received. However, Number receives the value
12345, but String$ retains its previous value. An error is reported because all variables in

the destination list have not been satisfied when the EOQI is received. Thus, the EOI signal is
an immediate staternent terminator during free-field enters. The EOI signal has a different.
definition during enters that use images, as described later in this chapter.

Enters that Use Images

The free-field form of the ENTER statement is very convenient to use; the computer
automatically takes care of placing each character into the proper destination item. However,
there are times when you need to design your own images that match the format of the

data output by sources. Several instances for which you may need to use this type of enter
operations are: the incoming data does not contain any terminators; the data stream is not
followed by an end-of-line sequence; or two consecutive bytes of data are to be entered and
interpreted as a two’s-complement integer.

5-8 Entering Data

The ENTER USING Statement

The means by which you can specifly how the computer will interpret the incoming data is to
reference an image in the ENTER statement. The four general ways to reference the image in
ENTER. statements are as follows.

100 ENTER @bevice_x USIKG "64,DDD.DD";String_var$,Num_var

100 Image_str$="6A,DDD.DD"
110 ENTER @Device_x USING Image. str$;String var$,Hum_var

100 FENTER @Device USING Image_stmt;String.var$,Hum var
110 Image.stmt: IMAGE 64,DDD.DD

100 ENTER @Device USING 110;String _var$,fum_var
110 TIMAGE 64,DDD.DD

Images

Images are used to specify how data entered from the source is to be interpreted and placed
into variables; each image consists of one or more groups of individual image specifiers that
determine how the computer will interpret the incoming data bytes (or words). Thus, image
lists can be thought of as a description of either

& the format of the expected data, or

® the procedure that the ENTER statement will use to enter and interpret the incoming data
bytes.

The examples given here treat the image list as a procedure.

All of the image specifiers used in image lists are valid for both enters and outputs. However,

most of the specifiers have a slightly different meaning for each operation. If you plan to use

the same image for output and enter, you must fully understand how both statements will use
the image.

Example of an Enter Using an Image

This example is used to show you exactly how the computer uses the image to enter incoming
data into variables. Look through the example to get a general feel for how these enter
operations work. Afterwards, you should read the descriptions of the pertinent specifier(s).

Assume that the following stream of data bytes are to be entered into the computer.

Lrlelmfel [=1 [[+lofef Jaf lrlofnfefefafnfefi]t
L v M v JVL v y
Ignored Degrees tnits$ lgnored 4

Assure EOQ! is
sent with
this character

Entering Data 5-9

Given the preceding conditions, let’s look at how the computer executes the following ENTER
staternent that uses the specified IMAGE statement.

300 ENTER @Device USING Image_ 1;Degrees,Units$
310 Image_1: IMAGE 8X.5DDD.D,A

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The computer evaluates the first image of ithe IMAGE statement. It is a special
image in that it does not correspond to a variable in the destination list. It
specifies that eight characters of the incoming data stream are to be ignored. Eight
characters, “Temp.= ", are entered and are ignored (i.e., are not entered into any
variable).

The computer evaluates the next image. It specifies that the next six characters
are to be used to build a number. Even though the order of the sign, digit, and
radix are explicitly stated in the image, the actual order of these characters in
the incoming data stream does not have to match this specifier exactly. Only the
number of numeric specifiers in the image (here, six) is all that is used to specify
the data format. When all six characters have been entered, the number builder

- attempts to form a number.

After the number is built, it is placed into the variable “Degrees”; the

representation of the resultant number depends on the numeric variable’s type
(INTEGER, or REAL).

The next image in the IMAGE statement is evaluated. It requires that one
character be entered for the purpose of filling the variable “Units$”. One byte is
then entered into Units$.

All images have been satisfied; however, the computer has not yet detected a
staternent-terminating condition. A line-feed or a character accompanied by EOI
must be received to terminate the ENTER statement. Characters are then entered,
but ignored, in search of one of these conditions. The statement is terminated
when the EOI is sent with the “t”. For further explanation, see “Terminating
FEnters that Use Images™.

The above example should help you to understand how images are used to determine the
interpretation of incoming data. The next section will help you to use each specifier to create
vour desired images.

Image Definitions During Enter

This section describes the individual image specifiers in detail. The specifiers have been
categorized into data and function type.

5-18 Entering Data

Numeric Images

Sign, digit, radix, and exponent specifiers are all used identically in ENTER, images. The
number builder can also be used to enter numeric data.

Numeric Specifiers

Image Specifier Meaning

D Specifies that one byte is to be entered and interpreted as a numeric character. If
the characters is non-numeric (including leading spaces and item terminators}, it
will still “consume” one digit of the 1mage tem.

Z,* Same action as I). Keep in mind that A and * can only appear to the left of the
radix indicator (decimal point or R} in a numeric image item.

S, M Same action as D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must follow either of these specifiers in an
image item.

Same action as 1D in that one byte is to be entered and interpreted as a numeric
character. At least one digit specifier must accompany this specifier in an image
item.

"R Same action as D in that one byte is to be entered and interpreted as a numeric
character; however, when R is used in a numeric image, it directs the number
builder to use the comma as a radix indicator and the period as a terminator to
the numeric item. At least one digit specifier must accompany this specifier in
the image item.

E Equivalent to 4D, if preceded by at least one digit specifier (Z, *, or D) in the
image item. :

The following specifiers must also be preceded by at least one digit specifier.

ESZ Equivalent to 3D.
ESZZ Equivalent to 4D.
ESZZZ Equivalent to 5D.
K, —-K Specifies that a variable number of characters are to be entered and interpreted

according to the rules of the number builder (same rules as used in “free-field”
ENTER operations).

H, —~-H Like K, except that a comma is used as the radix indicator, and a period is used
as the terminator for the numeric item.

Examples of Numeric Images

These 5 are equivalent:

EXTER @Device USING "SDD.D";Number
FHTER €Device USING "3D.D";HNuwmber
ENTER @Device USING "BED";Number

ENTER @Device USING "DESZZ";Number
ENTER @Device USING "#=.D)";Number

Use the rules of the number builder:
EMTER Device USING "K":Nueber

Entering Data 5-11

Enter five characters, using comma as radix:

ENTER @Device USING "DDRDD";Humber

Use the rules of the number builder, but use the comma as radix:

ENTER #Device USING "H":Humber

String Images

The following specifiers are used to determine the number of and the interpretation of data
bytes entered into string variables.

String Specifiers

Image Specifier

Meaning

A

Specifies that one byte is to be entered and interpreied as a string character. Any
terminators are entered into the string when this specifier is used.

Specifies that “free-field” ENTER conventions are to be used to enter data into a
string variable; characters are entered directly into the variable until a
terminating condition is sensed (such as CR/LF, LF, or an END indication).

L, @

Like K, except that line-feeds {L.F’s} do not terminate entry into the string;
instead, they are treated as string characters and placed in the variable.
Receiving an END indication terminates the image item (for instance, receiving
EOI with a character on an HP-IB interface, encountering an end-of-data, or
reaching the variable’s dimensioned length).

These specifiers are ignored for ENTER operations; however, they are allowed for
compatibility with QUTPYUT statements (that is, so that one image may be used
for both ENTER and OUTPUT statements). Note that it may be necessary to
skip characters (with specifiers such as X or /) when ENTERing data that has
been sent by including these specifiers in an QU TPUT statement.

Examples of Siring Images

Enter 10 characters:

ENTER @Deévice USING "10A";Ten_chars$

Enter using the free-field rules:

ENTER @Device USIHG "K";Any_string$

Enter two strings:

ENTER €Device USING "5A,K";String$,Number$

Enter a string and a number:

ENTER @Device USING "5A,K";String$,Number

Enter characters until string is full or END is received:

ENTER @Device USING "-K";A1l_chars$

5-12 Entering Data

Ignoring Characters

These specifiers are used when one or more characters are to be ignored (i.e., entered but not
placed into a string variable).

Specifiers Used to Ignore Characters

Image Specifier Meaning
X Specifies that a character is to be entered but ighored (not placed into a variable),
“literal” Specifies that the number of characters in the literal are to be entered but
ignored (not placed into a variable).
/ Specifies that all characters are to be entered but ignored (not placed into a
variable) until a line-feed is received. EQI is also ignored until the line-feed is
received.

Examples of Ignoring Characters

Ignore first five and use second five characters:

ENTER @Device USING "5X,5A";Five_chars$

Ignore 6th through 9th characters:
ENTER @Device USING "5A,4X,104";S_18$,5_2¢%

Ignore Ist item of unknown length:

ENTER @Device USIHG "/,K";Stringl$

Ignore two characters:

ENTER @Device USING """zz''",AA" ;8 28

Binary images

These specifiers are used to enter one byte (or word) that will be interpreted as a number.

Binary Specifiers

Image Specifier Meaning
B Specifies that one byte is to be entered and interpreted as an integer in the range
0 through 255.
W Specifies that one 16-bit word is to be entered and interpreted as a 16-bit, two's

complement INTEGER. Since all HP Instrument BASIC interfaces are 8-bit, two
bytes are always entered; the first byte entered is most significant. If the source is
a file, or string variable, all data are entered as bytes; however, one byte may still
be entered and ignored when necessary to achieve alignment on a word boundary.

Y Like W, except that pad bytes are never entered to achieve word alignment.

Entering Data 5-13

Exampies of Binary Images
Enter three bytes, then lock for LF or END indication:
ENTER Qbevice USING "B,B,B";N1,N2,K3
Enter the first two bytes as an INTEGER, then the rest as string data:

ENTER @Device USTNG "W,K";¥,N$

Terminating Enters that Use Images

This section describes the default statement-termination conditions for enters that use images
(for devices). The effects of numeric-item and string-item terminators and the end-or-identify
(EOI) signal during these operations are discussed in this section. After reading this section,
you will be able to better understand how enters that use images work and how the default
statement-termination conditions are modified by the &, %, +, and ~ image specifiers.

Default Termination Conditions

The default statement-termination conditions for enters that use images are very similar to
those required to terminate free-field enters. FEither of the following conditions will properly
terminate an ENTER statement that uses an image.

w An END indication (such as the EOT signal or end-of-data) is received with the byte that
satisfies the last image ilem within 256 byfes after the byte that satisfied the last image
item.

w A line-feed is received as the byte that satisfies the last image item (exceptions are the “B”
and “W?" specifiers) or within 256 bytes after the byte that satisfied the last image item.

EQI Redefinition

It is important to realize that when an enter uses an image (when the secondary keyword
“USING?” is specified), the definition of the EOI signal is automatically modified. If the

EQGI signal terminates the last image item, the entire statement is properly terminated, as
with free-field enters. In addition, multiple EOI signals are now allowed and act as item
terminators; however, the EOI must be received with the byte that satisfies each image item.
If the EOI is received before any image is satisfied, it is ignored. Thus, all images must be
satisfied, and EQI will not cause early termination of the ENTER-USING-image statement.

The following table summarizes the definitions of EOI during several types of ENTER
statement. The statement-terminator modifiers are more fully described in the next section.

5-14 Entering Data

Effects of EOI Dwring ERTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING
Statenents without # or % with # with %
Definition of EQI Immediate Item terminator Itern terminator | Immediate
statement or staterent or statement statement
terminator terminator terminator terminator
Statement Terminator | Yes Yes No No
Required?
Early Termination No No No Yes
Allowed?

Statement-Termination Modifiers

These specifiers modify the conditions that terminate enters that use images. The first one
of these specifiers encountered in the image list modifies the termination conditions for the
ENTER statement. If another of these specifiers is encountered in the image list, it again
modifies the terminating conditions for the statement.

Statement-Termination Modifiers

Image Specifier Meaning

Specifies that a statement-termination condition is not required; the ENTER,
statement 1s automatically terminated as soon as the last image ttem is satisfied.

% Also specifies that a statement-termination condition is not required. In addition,
EOI is redefined to be an immediate statement terminator, allowing early
termination of the ENTER before all image 1tems have been satisfied. However,
the statement can only be terminated on a “legal item boundary”. The legal
boundaries for different specifiers are as follows:

Specifier Legal Boundary

K,—K With any character, since this specifies a variable-width field of
characters.

S,M,D.EZ,,A, Only with the last character that satisfies the image (e.g., with

X, literal B'W the 5bth character of a 54 image). i EOI is received with any

other character, it 1s ignored,

/ Only with the last line-feed character that satisfies the image
{e.g., with the 3rd line-feed of a “3/” image}; otherwise, it is
ignored.
-+ Specifies that an END indication is required to terminate the ENTER statement.

Line-feeds are ignored as statement terminators; however, they will still terminate
itemns {unless a —K or —H image is used for strings).

- . Specifies that a line-feed is required to terminate the statement. EQOI is ignoreci,
and other END indications (such as EOF or end-of-data} cause an error if
encountered before the line-feed.

Entering Data 5-15

Exampies of Modifying Termination Conditions
Enter a single byte:
ENTER @Device USING "#,B";Byte
Enter a single word:
ENTER @Device USING "#,W";Integer
Enter an array, allowing early termination by EOI:
ENTER @Device USIEG ", K" ;Array(*)

Enter characters into String$ until line-feed received, then continue entering characters it
until END received:

ENTER @Device USING "+,K";String$

Enter characters until line-feed received; ignore EQL, if received:
ENTER @Device USING "-,K";String$

Additional Image Features

Several additional image features are available with this BASIC language. Some of these
features have already been shown in examples, and all of them resemble the additional
features of images used with OUTPUT statements.

Repeat Factors

All of the following specifiers can be preceded by an integer that specifies how many times the
specifier is to be used.

Repeatable Specifiers Non-Repeatable Specifiers

Z:D:A:X»/:@:L S,M,.,R,E,K,H,B,W,Y,#,%,+,*

image Heuse

If there are fewer images than items in the destination list, the list will be reused, beginning
with the first item in the image list. If there are more images than there are items, the
additional specifiers will be ignored.

Examples

The "BY is reused:

ENTER @Device USING "#,B";Bt,B2,B3

The "W" is not used:
ENTER @Device USING "24,2A4,W';A$,B$

5-16 Entering Data

Nested Images

Parentheses can be used to nest images within the image list. The hierarchy is the same
as with mathematical operations; evaluation is from inner to outer sets of parentheses. The
maximum number of levels of nesting is eight.

Example
ENTER @Source USING "2(B,5K,/),/";N1,H1$,N2,N28

Entering Data 5-17

6

/O Path Attributes

B o R AN TN

This chapter contains two major topics, both of which involve additional features provided by
I/O path names.

® The first topic is that I/0 path names can be given attributes which control the way
that the system handles the data sent and received through the I/0O path. Attributes
are available for such purposes as controlling data representations and defining special
end-of-line (EOQL) sequences.

8 The second topic is that one set of I/O statements can access most system resources instead
of using a separate set of statements to access each class of resources. This second topic,
herein called “unified 1/0”, may be considered an implicit attribute of I/O path names.

The FORMAT Attributes

All 1/O paths possess one of the two following attributes:
FORMAT ON—means that the data are sent in ASCII representation.
@ FORMAT OFJF-—means that the data are sent in BASIC internal representation.

Before getting into how to assign these attributes to I/O paths, let’s take a brief look at each
one.

With FORMAT ON, internally represented numeric data must be “formatted” into its ASCI
representation before being sent to the device. Conversely, numeric data being received from
the device must be “unformatted” back into its internal representation. These operations are
shown in the diagrams below:

internal—Form ASCH Data
Data

Computer "Formatter” Computer
Meamory Routine Resource

Numeric Data Transformations with FORMAT ON

With FORMAT OFT, however, no formatting is required. The data items are merely copied
from the source to the destination. This type of 1/O operation requires less time, since fewer
steps are involved.

/O Path Atributes 6-1

Internal—Form
Bata
Computer Computer
Memory Resource

Numeric Data Transfer with FORMAT OFF

The only reguirement is that the resource also nse the exact same data representations as the
internal HP Instrument BASIC representation.

Here are how each type of data item is represented and sent with FORMAT OFF:
w INTEGER: two-byte (16-bit), two’s complement.
® REAL: eight-byte (64-bit) IEEE floating-point standard.

' String: four-byte (32-bit) length header, followed by ASCII characters. An additional ASCII
space character, CHR$(32), may be sent and received with strings in order to have an even
number of bytes.

Here are the FORMAT OFF rules for QUTPUT and ENTER operations:
g No item terminator and no EOL sequence are sent by OQOUTPUT.
g No item terminator and no statement-termination conditions are required by ENTER.

g If either OUTPUT or ENTER uses an IMAGE (such as with OUTPUT 701 USING
“413.137), then the FORMAT ON attribute is automatically used.

Assigning Default FORMAT Atiributes

As discussed in the “Directing Data Flow” chapter, names are assigned to I/0 paths between
the computer and devices with the ASSIGN statement. Here is a typical example:

ASSTGN Any_name T0 Device_.selector

This assignment fills a “table” in memory with information that describes the I/O path.
This information includes the device selector, the path’s FORMAT attribute, and other
descriptive information. When the I/O path name is specified in a subsequent I/0 statement
(such as QUTPUT or ENTER), this information is used by the system in completing the 1/0
operation.

Different default FORMAT attributes are given to devices and files:

& Devices—since most devices use an ASCII data representation, the default attribute
assigned to devices is FORMAT ON. (This is also the default for ASCII files.)

BDAT and HP-UX or DOS files—the default for BDAT and HPUX or DOS files is
FORMAT OFF. (This is because the FORMAT OFFT representation requires no translation
time for numeric data; this is possible because humans never see the data patterns written
to the file, and therefore the items do not have to be in ASCII, or humanly- readable, form.)

One of the most powerful features of this BASIC system is that you can change the attributes
of I/0 paths programmatically.

6-2 /O Path Alributes

Specifying i/O Path Attributes
There are two ways of specifying attributes for an IO path:

Specify the desired attribute{s) when the 1/0O path name is initially assigned. For example:

100 ASSIGH €Device TO Dev_selector; FORMAT OH

or

100 ASSIGH @Device TO Dev, selector ! Default for devices is FORMAT 0¥,

Specify only the attribute(s} in a subsequent ASSIGN statement:
250 ASSIGN @Device; FORMAT OFF ! Change only the attribute.

The resuit of executing this last statement is to modify the entry in the I/O path name
table that describes which FORMAT attribute is currently assigned to this I/O path. The
implicit ASSIGN @Device TO *, which is automatically performed when the “TO ... ” portion
is included, is not performed. Also, the I/0 path name must currently be assigned (in this
context), ot an error is reported.

Changing the EOL Sequence Altribute

In addition to the FORMAT attributes, another attribute is available to direct HP Instrument
BASIC system to redefine the end-of-line sequence normally sent after the last data item in
output operations.

An end-of-line (EOL) sequence is normally sent following the last item sent with free-field
QUTPUT statements and when the “L” specifier is used in an QOUTPUT that uses an
image. The default EOL characters are carriage-return and line-feed (CR/LF), sent with
1o device-dependent END indication. You can also define your own special EOL sequences
that include sending special characters, sending an END indication, and delaying a specified
amount of time after sending the last EOL character.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an
I/0O path must be used. The EOL sequence is specified in one of the ASSIGN statements
that describe the 1/0 path. Here is an example that changes the EOL sequence to a single
line-feed character. '

ASSIGN @File TO "file one";E0L CHR${10)

The characters following the secondary keyword EOL are the EOL characters. Any character in
the range CHR$(0) through CHRS$(255) may be included in the string expression that defines
the EOL characters; however, the length of the sequence is limited to eight characters or less.

If END is included in the EOL attribute, an interface-dependent “END” indication is sent
with {or after) the last character of the EOL sequence. However, if no EOL sequence is sent,
the END indication is also suppressed. The following statement shows an example of defining
the EOL sequence to include an END indication,

ASSIGN &Device TO 20;E0L CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent with
the last EOL character.

The default EOL sequence is a CR and LF sent with no end indication. This default can be
restored by using the EGL OFF attribute.

/O Path Attributes 6-3

Restoring the Defauit Atiributes

If any attribute is specified, the corresponding entry in the I/0 path name table is changed
(as above); no other attributes are affected. However, if no attribute is assigned (as below),
then all atiributes are restored to their default state {(such as FORMAT ON for devices.}

340 ASSIGH #Device !' Restores ALL default atiributes.

Concepts of Unified 1/0

The HP Instrument BASIC language provides the ability to communicate with the several
system resources with the QUTPUT and ENTER statements.

The next section of this chapter describes how data can be moved to and from string variables
with OUTPUT and ENTER. statements. And, if vou have read about mass storage operations
in the “Data Storage and Retrieval” chapter of HP Instrument BASIC Programming
Techniques, you know that the ENTER and OUTPUT statements are also used to move data
between the computer and mass storage files.

This ability to move data between the computer and all of its resources with the same
statements is a very powerful capability of the HP Instrument BASIC language.

Before briefly discussing I/O paths to mass storage files, the following discussion will
present some background information that will help you understand the rationale behind
implementing the two data representations used by the computer. The remainder of this
chapter then presents several uses of this language structure,

Data-Representation Design Criteria

As you know, the computer supports two general data representations-—the ASCII and the
internal representations. This discussion presents the rationale of their design.

The data representations used by the computer were chosen according to the following
criteria:

& to maximize the rate at which computations can be made
® to maximize the rate at which the computer can move the data between its resources
@ to minimize the amount of storage space required to store a given amount of data

® to be compatible with the data representation used by the resources with which the
computer is to communicate :

The internal representations implemented in the computer are designed according to the first
three of the above erileria. However, the last criterion must always be met if communication is
to be achieved. If the resource uses the ASCII representation, this compatibility requirement
takes precedence over the other design criteria. The ASCII representation fulfills this last
criterion for most devices and for the computer operator. The first three criteria are further
discussed in the following description of data representations used for mass storage files.

8-4 /G Path Attributes

/O Paths to Files

There are three types of data files: ASCII, BDAT, and HP-UX or DOS. Only the ASCII data
representation is nsed with ASCII files, but either the ASCII (FORMAT ON}) or the internal
(FORMAT OFF) representation can be used with BDAT and HP-UX or DOS files.

BDAT, HPUX and DOS Files

BDAT, HP-UX ard DOS files have been designed to maximize the efficiency with which

HP Instrument BASIC moves, stores and manipulates data. Both numeric and string
computations are much {aster. These internal data representations allow much more data to
be stored on a disc because there is no storage overhead (for numeric items), that is, there are
no “record headers” for numeric items.

The transfer rates for each data type has also been increased. Numeric output operations
are always much faster because there is no time required for “formatting”. Numeric

enter operations are also faster because the system does not have to search for item- and
statement-termination conditions.

In addition, I/O paths to BDAT and HP-UX files can use either the ASCII (FORMAT ON)
or the internal (FORMAT OFF) representation.

The following program shows a .few of the features of BDAT files. The program first outputs
an internal-form string (with FORMAT ON), and then enters the length header and string
characters with FORMAT OFF. '

110 DIM Length${4],Data$[256],Int_form${266]
120 ¢

130 ! Create a BDAT file (1 recoxrd; 256 bytes/record.)
140 ON ERROR GOTO Already_created

150 CREATE BDAT "B_file",1

160 Already_created: OFF ERROR

170 !

180 ! Use FORMAT ON during output.

190 ASSIGN @Yo_path TGO "B_file";FORMAT ON
200 !

210 Length$=CHR$(0)RCHR$(0) ! Create length header.
220 Length$=Length$&CHR$ (0) #CHR$(252)

230 H

240 ! Genmerate 2B6-character string.

250 Data$="01234567"

260 FOR Doubling=1 T8 5

270 Data$=Data$&Data$

280 HEXT Doubling

290 ! Use only ist 252 characters.

300 Data$=Data$l1,252]

310 H

320 ! Generate internal-form and cutput.

330 Int_form$=Length$&Data$

340 OUTPUT @Io_path;Int_form$;

350 ASSIGN @Jo_path T@ =

360 !

370 ! Use FOURMAT OFF during enter (default).
380 ASSIGN €Io_path TO "B_file"

380 H

 (Continued)

/O Path Attributes 6-5

400 ! Enter and print data and # of characters.
410 ENTER Data$

420 PRINT LEN(Data$);"characters entered.”

430 PRINT

440 PRINT Datad

450 ASSIGN @lo_path TO %= ! Close I/0 path.

460 !

470 END

ASCTI Files

ASCII files are designed for interchangeability with other HP computer systems. This
interchangeability imposes the restriction that the data must be represented with ASCII
characters. Fach data item sent to these files is a special case of FORMAT ON representation;
each itemn is preceded by a two-byte length header (analogous to the internal form of string
data). In order to maintain this compatibility, there are two additional restrictions placed on
ASCII files:

® The FORMAT OFF attribute cannot be assigned to an ASCII file
8 You cannot use QUTPUT.USING or ENTER..USING with an ASCII file,

The following program shows the I/Q path name @lo_path being assigned to the ASCII
file named ASC_FILE. Notice that the file name is in all uppercase letters; this is also a
compatibility requirement when using this file with some other systems.

The program creates an ASCII file, and then outputs program lines to the file. The program
then gets and runs this newly created program. (If you type in and run this program, be sure
to save it on disc, because running the program will load the program it creates, destroying
itseif in the process.)

100 DIM Line$(1:3)[100] ! Array to store program.
110 !

120 ! Create if not already on disc.

130 ON ERROR GOTO Already_exists

140 CREATE ASCIT "ASC_FILE",f ! 1 record.

150 Already exists: OFF ERROR

160 !

170 ASSIGH @Io_path TO "ASC_FILE"

180 STATUS ¢Io_path,6;Pointer

180 PHRINT *Initially: file pointer=";Pointer
200 PRINT
210 !

220 Line$(1)="100 PRINT ""New program.'" *
230 Line$(2)="110 BEEP"

240 Line$(3)="120 END"

250 ¢

260 OUTPUT @Io_path;Line$(x)

270 STATUS @Io_path,6;Pointer

280 PRINT "After OUTPUT: file pointer=";Pointer

280 PRIKT

300 !

310 GET "ASC_FILE" ! Implicitly closes I/0 path.
320 !

330 END

6-6 /O Path Attributes

Data Representation Summary

The following table summarizes the control that programs have on the FORMAT attribute
assigned to 1/O paths.

Program Conirol of the FORMAT Attribute

Type of Default FORMAT Can Default FORMAT
Resource Attribute Used Attribute Be Changed?
Devices FORMAT GN Yes (if an [/O path is used}!
BDAT files FORMAT OFF Yes
HP-UX or DOS files FORMAT OFF Yes
ASCII files FORMAT ON? No
String variables FORMAT ON No

ITFORMAT ON is always used whenever an QUTPUT ... USING or ENTER ... USING
statemnent is used, regardless of the FORMAT attribute assigned to the /O path.

2The data representation used with ASCII files is a special case of the FORMAT ON
representation,

Applications of Unified i/0

This section describes two uses of the powerful unified-1/0 scheme of the computer. The first
application contains further details and uses of 1/O operations with string variables. The
second application involves using a disc file to simulate a device.

/0 Operations with String Variables

This section describes both the details of and several uses of outputting data to and entering
data from string variables,

Outpuiting Data to String Variables

When a string variable is specified as the destination of data in an OUTPUT statement,
source items are evaluated individually and placed into the variable according to the free-field
rules or the specified image, depending on which type of OUTPUT statement is used. Thus,
item terminators may or may not be placed into the variable. The ASCII data representation
is always used during outputs to string variables.

Characters are always placed into the variable beginning at the first position; no other
position can be specified as the beginning position at which data will be placed. Thus,
random access of the information in string variables is not allowed from OUTPUT and
ENTER statements; all data must be accessed serially. For instance, if the characters “1234”
are output to a string variable by one OUTPUT statement, and a subsequent QUTPUT
statement outputs the characters “5678” to the same variable, the second output does

not begin where the first one left off (i.e., at string position five)., The second OUTPUT

1/© Path Attributes 6.7

statemnent begins placing characters in position one, just as the first OUTPUT statement did,
overwriting the data initially output to the variable by the first OUTPUT statement.

The string variable’s length header (4 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output {where n is the dimensioned length of the string).

Exanple

The following program outputs string and numeric data items to a string variable and then
calls a subprogram that displays each character, its decimal code, and its position within the
variable.

100 ASSIGH @Crt TO 1 ! CRT is disp. device.

110 !

120 OUTPUT Str_var$;12,"AB",34

130 !

140 CALL Read_string(@Crt,Str_var$)

150 !

160 ERD

170 !

180 ¢

190 SUB Read_string{(@Disp,Str_var$)

200 !

210 ! Table heading.

220 BUTPUT @Disp; Mmoo st e "

230 QUTPUT éDisp;"Character Code Pos."

240 OUTPUT @Disp;"——————- m——— el

250 Dsp_img$="2X,44,5X,3D,2%,3D"

260 !

270 ! Now read the string’s contents.

280 FOR Str_pos=1 TO LEN(Str_var$)

290 Code=NUM(Str_var$[Str_pos;1])

300 IF Code<32 THEN ! Don’t disp. CTRL chars,
310 Char$="CTRL"

320 ELSE

330 Char$=Str_var${Str_pos;i] ! Disp. char.
3490 END IF

350 i

360 OUTPUT €Disp USING Dsp_img$;Char$,Code,Str_pos
370 WEXT Str_pos

380 3

390 ! Finish table.

400 OUTPUT @Disp;'~==wn=wmmmmmem s "
410 OUTPUT €Disp ! Blank line.

420 :

430 SUBEND

&-8 /O Path Altributes

32 1
1 49 2
2 1¢) 3
N 44 4
A 65 B
B 66 6
CTRL 13 7
CTRL 10 8

32 g
3 51 10
4 52 11
CTRL i3 12
CTRL 10 13

Outputting data to a string and then examining the string’s contents is usually a more
convenient method of examining output data streams than using a mass storage file. A string
may contain both printing and non-printing (control) characters. Printing string contents that
contain control characters could interfere with examining the data stream. The preceding
subprogram may facilitate viewing this data without viewing such strings.

Example

Outputs to string variables can also be used to generate the string representation of a number,
rather than using the VAL$ function (or a user-defined function subprogram). The main
advantage is that you can explicitly specify the number’s image while still using only a single
program line. The following program compares the string generated by the VALS function to
that generated by outputting the number to a string variable.

100 X=12345678

110 !

120 PRINT VAL$(X)

130 !

140 QUTPUT Val$ USING "“#,3D.E™;X
150 PRINT Val$

160 !

17¢ ERD

1.2345678E+7 Printed resulis
123 E+05

Eniering Data From String Variables

Data are entered from string variables in much the same manner as output to the variable.
All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position; if subsequent ENTER statements read characters from the variable, the
read also begins at the first position. If more data are to be entered from the string than are
contained in the string, an error is reported; however, all data entered into the destination
variable(s) before the end of the string was encountered remair in the variable(s) after the
error occurs.

/O Path Atributes 8-9

When entering data from a string variable, the computer keeps track of the number

of characters taken from the variable and compares it to the string length. Thus,
statement-termination conditions are not required; the ENTER statement automatically
terminates when the last character is read from the variable., However, ifem terminators are
still required #f the items are to be separated end the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

Example

The following program shows an example of the need for either item terminators or length of
each item. The first item was not properly terminated and caused the second item to not be
recognized.

100 OUTPUT String$;"ABC123"; ¢ OUTPUT w/o CR/LF.
116 ¢

120 { How enter the data.

130 08 ERROR GOTO Try._again

140

150G First_txry: !

160 ENTER String$;Strd, Nom

176 OUTFUT 1;"First try results:"

180 OUTPUT 4;"Strd= ";Str$, "Nam=";Num

190 BEEP ! Report getting this far.

200 sTOP

210 !

2206 Try_.again: QUTPUT {;"Exrror";ERRN;” on ist try"
230 GUTPUT 1;"STR$=";5tr$, "Hum=":Num
240 _ GUTPUT 1

250 OFF ERROR ! The next one will work.
260 1

270 ENTER String$ USING "34,3D";5tr$,Num
280 OUTPUT 1;"Second try results:"

290 OUTPUT 1;"Str$= ";5tr§,"Nun=";fum
300 !

310 END

This technique is convenient when attempting to enter an unknown amount of data or when
numeric and string items within incoming data are not terminated. The data can be entered
into a string variable and then searched by using images.

Exampie

ENTERs from string variables can also be used to generate a number from ASCIIl numeric
characters (a recognizable collection of decimal digits, decimal point, and exponent
information), rather than using the VAL function. As with cutputs to string variables, images
can be used to interpret the data being entered.

30 Number$="Value= 43.5879E-13"
40 !

50 ERTER Number$;Value

60 PRINT "VALUE='";Value

70 END

6-10 /O Path Atiributes

index

A

Additional Interface Functions, 2-3

Address, primary, 3-2

ASCH Files, 6-6

ASSIGN statement, 3-3-4, 6-2
Attribute control, 3-7
Attributes, EOL Sequence, 6-3
Attributes, FORMAT, 6-1
Attributes, 1/0 Path, 6-1

Attributes, Restoring the Default, 6-4

B

Backplane, computer, 2-2
BDAT Files, 6-5

Binary images, 4-13
Binary Images, 5-13
Binary specifier, 4-13
Bits and Bytes, 2-6

Bus, 2-1

C

Chapier Previews, 1-2
Characters, Ignoring, 5-13
Character specifier, 4-12
Characters, Representing, 2-7
Closing I/O Path Names, 3-4
Comima separator, 4-2
Computer backplane, 2-2

D

Data Compatibility, 2-2
Data, Entering, 5-1

Data Flow, Directing, 3-1
Drata Handshake, 2-8
Data, Outputting, 4-1
Data, Re-Threcting, 3-7

Data-Representation Design Criteria, 6-4

Data Representations, 2-8

Data Representation Summary, 6-7

Device Selectors, 3-2
Digit specifier, 4-9
Directing Data Flow, 3-1

E

Electrical and Mechanical Compatibility, 2.2
END in Freefield QUTPUT, 4-6

End-of-line (EOL), 4-2

End-of-line sequence, 4-5, 6-1, 6-3
End-or-identify, 5-7, b-14

END with HP-IB Interfaces, 4-6, 4-19

END with QUTPUTs that Use Images, 4-18
ENTER images, 4-15

Entering Data, 5-1

Entering String Data, 5-5

ENTER statement, 2-8, 3-1, 5-1, 5-8

Enters that Use Images, 5-8

ENTER USING statement, 5-9

EOTI Re-Definition, 5-14

Execution Speed, 3-6

Explicitly close, 3-4

Exponent specifier, 4-9

F

Files, ASCII, 6-6

Files, BDAT, 6-5

Files, T/(} Paths to, 6-b

FORMAT attributes, 6-1
FORMAT Attributes, Assigning Default, 6-2
FORMAT OFF statement, 3-7, 6-1
FORMAT ON statement, 3-7, 6-1
FORMAT statement, 6-1
Free-Field Enters, 5-1

Free-Field ENTER Statements, 5-7
Free-field output, 4-1 :
Freefield QUTPUT, END in, 4-6

H

Handshake, Data, 2-8
HP-IB Device Selectors, 3-2
HP-IB interface, 2-4

H

Image Definitions Puring Outputs, 4-9
Image output, 4-1

Image QUTPUT, 4-1

{mage Repeat Factors, 4-16

Image Re-Use, 4-17, 5-16

Images, 4-7, 5-9

Index-1

Images, binary, 4-13

images, ENTER, 4-15

Images, nested, 4-18

Images, numeric, 4-9

Images, Outputs that Use, 4-7
Images, Special-Character, 4-14
Images, string, 4-12

Images, Terminating Enters that Use, 5-14
Input, 2-1

Interface Functions, Additional, 2-3
Interface, primary function of an, 2-2
Interfaces, select codes, 3-2
Interfacing Concepts, 2-1

170, 2-1

I/0, Applications of Unified, 6-7
I/0, Concepts of Unified, 6-4

1/G Operations with Sering Variables, 6-7
1/O Path Attributes, 6-1

1/C Path Attributes, Specifying, 6-3
1/0 Path Benefits, 3-6

1/O path name, 3-3, 6-1

I/O Path Names, Closing, 3-4

I/O Path Names, Re-Assigning, 3-3
I/O paths, 3-3

I/O Paths to Files, 6-5

F/O Process, 2-8

1/0 Statements and Parameters, 2.8
Hem Separators, 4-2, 5-1

Item Terminators, 4-2, 5.2

Manual Organization, 1-1
Mechanical Compatibility, Electrical and, 2-2
Modifiers, Statement-Termination, 5-15

N

Names, string-variable, 3-1
Nested Images, 4-18, 5-17
Non-Repeatable Specifiers, 5-16
Number builder, 5-2

Numbers, Representing, 2-7
Numeric Format, Standard, 4-1
Numeric Images, 4-9, 5-11
Numeric specifier, 5-11

o

Output, 2-1

OUTPUT statement, 2-8, 3-1, 4-1, 5-1
Outputs that Use Images, 4-7
Outputting Data, 4-1

OQUTPUT USING statement, 4-7

Index-2

p

Previews, Chapter, 1-2
Primary address, 3-2
Primary function of an interface, 2-2

B

Radix specifier, 4-9

Re-Assigning I/O Path Names, 3-3
Re-Directing Data, 3-7

Repeatable specifier, 4-16, 5-16
Repeat Factors, 5-16

Repeat Factors, Image, 4-18
Resource, specifying a, 3-1
RS-232C Serial Interface, 2-5

§

Select codes (of built-in interfaces), 3-2
Selectors, Device, 3-2
Selectors, HP-IB Device, 3-2
Semicolon separator, 4-3
Separator, Comma, 4-2
Separator, semicolon, 4-3
Serial Interface, R8-232C, 2-5
Sign specifier, 4-9
Special-Character Images, 4-14
Specifiers
Binary, 4-13
Character, 4-12
Digit, 4-9
Exponent, 4-9
Numeric, 5-11
Radix, 4-9
Kepeatable, 4-16
Sign, 4-9
Special-Character, 4-14
Termination, 4-15
Specifying an I/O resource, 3-1
Speed, Execution, 3-6
Statermnernt-Termination Modifiers, 5-15
String Data, Entering, 5-5
String Format, Standard, 4-2
String images, 4-12, 5-12
String-variable names, 3-1
String Variables, Entering Data From, 6-9
String Variables, Qutputting Data to, 6-7

T

Terminating Enters that Use Images, 5-14
Termination Conditions, Default, 5-14
Termination specifier, 4-15

Terminology, 2-1

Timing Compatibility, 2-3

U
Unified 1/O, 6-7

