
Contents
Programming HP VXI Instruments

Common Commands and the Status System
Edition 1
Chapter 1
Introduction .................................................................................................................... 5

Chapter 2
Programming the Status System .................................................................................. 7

About this Chapter ........................................................................................................ 7
General Status Register Model ..................................................................................... 7

Condition Register ................................................................................................. 8
Transition Filter ..................................................................................................... 8
Event Register ....................................................................................................... 8
Enable Register ..................................................................................................... 8
An Example Sequence .......................................................................................... 8

Required Status Groups .............................................................................................. 10
Status Byte ........................................................................................................... 11
Standard Event Group ......................................................................................... 12
Standard Operation Status Group ........................................................................ 13
Questionable Data Group .................................................................................... 14

Status System Programming Examples ...................................................................... 15
Handling SRQs .................................................................................................... 15
Using MAV to Determine When Data is Available ............................................ 15

Example Program ......................................................................................... 16
Using a Service Request to Detect Errors ........................................................... 18

Example Program ......................................................................................... 19

Chapter 3
Command Reference ................................................................................................... 23

About this Chapter ...................................................................................................... 23
STATus....................................................................................................................... 24

Subsystem Syntax ......................................................................................... 24
:OPERation :CONDition? ................................................................................... 24

Comments ..................................................................................................... 24
Example ........................................................................................................ 24

:OPERation:ENABle ........................................................................................... 24
Parameters ..................................................................................................... 24
Comments ..................................................................................................... 24
Example ........................................................................................................ 24

:OPERation:ENABle? ......................................................................................... 25
Comments ..................................................................................................... 25
Example ........................................................................................................ 25

:OPERation[:EVENt]? ........................................................................................ 25
Comments ..................................................................................................... 25
Example ........................................................................................................ 25

:PRESet ............................................................................................................... 25
Example ........................................................................................................ 25

:QUEStionable :CONDition? .............................................................................. 25
Comments ..................................................................................................... 26
Contents   1



Example ........................................................................................................ 26
:QUEStionable:ENABle ...................................................................................... 26

Parameters ..................................................................................................... 26
Comments ..................................................................................................... 26
Example ........................................................................................................ 26

:QUEStionable:ENABle? .................................................................................... 26
Comments ..................................................................................................... 26
Example ........................................................................................................ 26

:QUEStionable[:EVENt]? ................................................................................... 26
Comments ..................................................................................................... 26
Example ........................................................................................................ 27

Common Command Reference................................................................................... 28
*CLS .................................................................................................................... 28
*DMC <name_string>, <command_block> ....................................................... 29
*EMC <enable> .................................................................................................. 29
*EMC? ................................................................................................................ 29
*ESE <mask> ...................................................................................................... 29

Example ........................................................................................................ 29
*ESE? .................................................................................................................. 29

Example ........................................................................................................ 29
*ESR? .................................................................................................................. 29

Example ........................................................................................................ 30
*GMC? <name_string> ....................................................................................... 30

Example ........................................................................................................ 30
*IDN? .................................................................................................................. 30

Example ........................................................................................................ 30
*LMC? ................................................................................................................ 30
*LRN? ................................................................................................................. 30
*OPC ................................................................................................................... 31
*OPC? ................................................................................................................. 31
*PMC .................................................................................................................. 31
*RMC <name_string> ......................................................................................... 31

Example ........................................................................................................ 31
*RST .................................................................................................................... 31
*SRE <mask> ...................................................................................................... 32

Example ........................................................................................................ 32
*SRE? .................................................................................................................. 32

Example ........................................................................................................ 32
*STB? .................................................................................................................. 32

Comments ..................................................................................................... 32
Example ........................................................................................................ 32

*TST? .................................................................................................................. 32
Example ........................................................................................................ 32

*WAI ................................................................................................................... 33
2   Contents



3

This document contains proprietary information which is protected by copyright.  All rights are reserved.  
No part of this document may be photocopied, reproduced, or translated to another language without the 
prior written consent of Hewlett-Packard Company.

E2090-90021

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained in this document.  HP makes no 
warranties of any kind with regard to this document, whether express or implied.  HP specifically disclaims 
the implied warranties of merchantability and fitness for a particular purpose.  HP shall not be liable for any 
direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other 
legal theory, in connection with the furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts 
can be obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph 
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.  Additional copies of the 
software can be made for security and backup purposes only.  Resale of the software in its present form or 
with alterations is expressly prohibited.

Copyright © Hewlett-Packard Company 1994

Printing History

This is the first edition of  “Programming HP VXI Instruments”

 September 1994; First Edition



4

This Page Intentionally Left Blank



Chapter 1

Introduction

This document describes the common commands and the status system used 
by VXI instruments.  The status system is a group of registers that can be 
used to monitor events, such as when an error occurs or when a reading is 
available from a specified instrument in your VXI mainframe.  Use the SCPI 
status system commands and IEEE 488.2 common commands described in 
Chapter 3 of this document to program the status system.

The common commands are used to read and configure the status byte and 
standard event group registers, while the status commands are used to 
configure the standard operation status group and questionable data status 
group registers.  See the individual VXI instrument manuals to determine 
how a specific instrument uses the operation status group and the 
questionable data status group.  If status system commands are not 
documented, that instrument does not use the registers.

Other common commands are used for general functionality, macros, and 
synchronization.

Note This document should be placed with your other VXI instrumentation 
documentation.

 

Introduction  5Chapter 1



Notes:
6 Introduction  Chapter 1



Chapter 2

Programming the Status System

About this Chapter
This chapter discusses the structure of the status system used in SCPI 
instruments and explains how to program status registers.  An important 
feature of SCPI instruments is that they all implement status registers in the 
same way.  The status system is explained in the following sections:

• General Status Register Model

This section explains the way that status registers are structured in 
SCPI instruments.  It also contains an example of how bits in the 
various registers change with different input conditions.

• Required Status Groups

This section describes the minimum required status registers present in 
SCPI instruments.  These status registers cover the most frequently 
used functions.

General Status Register Model
The generalized status register model shown in Figure 2-1 is the building 
block of the SCPI status system.  This model consists of a condition register, 
transition filter, an event register, and an enable register.  A set of these 
registers is called a status group.

When a status group is implemented in an instrument, it always contains all 
of the component registers.  However, there is not always a corresponding 
command to read or write to every register.

Figure 2-1.  Generalized Status Register Model
Programming the Status System  7Chapter 2



Condition Register The condition register continuously monitors the hardware and firmware 
status of the instrument.  There is no latching or buffering for this register; 
it is updated in real time.  Condition registers are read-only.0

If there is no command to read a particular condition register, it is simply 
invisible to you.

Transition Filter The transition filter specifies which types of bit state changes in the 
condition register will set corresponding bits in the event register.  
Transition filter bits may be set for positive transitions (PTR), negative 
transitions (NTR), or both.  Positive means a condition bit changes from 
0 to 1.  Negative means a condition bit changes from 1 to 0.  Transition filters 
are read-write.  Transition filters are unaffected by *CLS (clear status) or 
queries.  They are set to instrument-dependent values at power 
on and after *RST (reset).

If there are no commands to access a particular transition filter, it has a 
fixed setting.  This setting is specified in the instrument’s programming 
guide or command dictionary.  Most of our VXI instruments assign the 
transition filter to detect positive transitions only.

Event Register The event register latches transition events from the condition register as 
specified by the transition filter.  Bits in the event register are latched, and, 
once set, they remain set until cleared by a query or *CLS (clear status).  
There is no buffering; so while an event bit is set, subsequent events 
corresponding to that bit are ignored.  Event registers are read-only.

Enable Register The enable register specifies which bits in the event register can generate a 
summary bit.  The instrument logically ANDs corresponding bits in the 
event and enable registers, and ORs all the resulting bits to obtain a summary 
bit.  Summary bits are, in turn, recorded in another register, often the Status 
Byte.  Enable registers are read-write.  Enable registers are not affected by 
*CLS (clear status).  Querying enable registers does not affect them.  There 
is always a command to read and write to the enable register of a particular 
status group.

An Example
Sequence

Figure 2-2 illustrates the response of a single bit position in a typical status 
group for various settings.  The changing state of the condition in question 
is shown at the bottom of the figure.  A small binary table shows the state of 
the chosen bit in each status register at the selected times T1-T5.
8 Programming the Status System  Chapter 2



Figure 2-2. Typical Status Bit Changes in a Status Register
Programming the Status System  9Chapter 2



Required Status Groups
All SCPI instruments must implement a minimum set of status groups.  
Some instruments contain additional status groups, consistent with the 
general status register model.  The minimum required status system is shown 
in Figure 2-3.

Figure 2-3. Minimum Required Status Register System
10 Programming the Status System  Chapter 2



The Standard Operation Status and Questionable Data groups are 16 bits 
wide, while Status Byte and Standard Event groups are only 8 bits wide.  In 
all 16 bit groups, the most significant bit (bit 15) is not used.  Bit 15 always 
returns a zero.  The commands that set and query bits in the status registers 
all use decimal integers.  For example, you send *ESE 4 to set bit 2 of the 
Standard Event enable register.  Similarly, a response of "8" to the query 
*ESE? indicates that bit 3 is set.  The remainder of this chapter explains each 
status group in detail.

Status Byte As Figure 2-4 indicates, the Status Byte is used to summarize information 
from all the other status groups.  The Status Byte differs from the other 
groups in the way you read it and how its summary bit is processed.

The Status Byte can be read using either the *STB? common command or 
by doing a SICL ireadstb function call.  The ireadstb function reads the 
status byte from the device specified.

The Status Byte summary bit actually appears in bit 6 (RQS) of the Status 
Byte.  When bit 6 is set, it generates an SRQ interrupt.  This interrupt is a 
low-level HP-IB message that signals the controller that at least one 
instrument on the bus requires attention.

There are some subtle differences between *STB? and ireadstb.  You can 
use either method to read the state of bits 0-5 and bit 7.  Bit 6 is treated 
differently depending on whether you use *STB? or ireadstb. With ireadstb, 
bit 6 returns RQS (request for service) which is cleared after the first 
ireadstb.  *STB? returns the MSS (master state summary).  This is the 
summary bit of the status byte register.  It’s like a condition bit and will 
return to zero only when all enabled bits in the status byte are zero.  In 
general, use ireadstb inside interrupt service routines, not *STB?.

Note In an SRQ interrupt service routine, you must clear the event register which 
caused the SRQ (for example, STATus:QUES:EVEN?, 
STATus:OPER:EVEN?, or *ESR?).  Failure to do so will prevent future 
SRQs from arriving.

Figure 2-4. Status Byte Register
Programming the Status System  11Chapter 2



The meaning of each bit in the Status Byte is explained in the following 
table.

Example commands using the Status Byte and Status Byte enable registers:

*SRE 16 Generate an SRQ interrupt when messages are available.

*SRE? Find out what events are enabled to generate SRQ 
interrupts.

*STB? Read and clear the Status Byte event register.

Standard Event
Group

The Standard Event status group is frequently used and is one of the 
simplest.  The unique aspect of Standard Event is that you program it using 
common commands, while you program all other status groups through the 
STATus subsystem.  Standard Event consists of only two registers: the 
Standard Event event register and the Standard Event enable register.  Figure 
2-5 illustrates the structure of Standard Event.

Table 2-1. Status Byte Bit Definitions

Bit Name Description

0 Instrument dependent

1 Instrument dependent

2 Instrument dependent

3 QUE Summary bit from Questionable Data

4 MAV Messages available in Output Queue

5 ESB Summary bit from Standard Event

6 RQS Service request

7 OPR Summary bit from Standard Operation 
Status

Figure 2-5. Standard Event Status Group
12 Programming the Status System  Chapter 2



Example commands using Standard Event registers:

*ESE 48 Generate a summary bit on execution or command errors.

*ESE? Query the state of the Standard Event enable register.

*ESR? Query the state of the Standard Event event register.

Standard Operation
Status Group

The Standard Operation Status group provides information about the 
state of the measurement systems in an instrument.  This status group is 
accessed through the STATus subsystem.  Standard Operation Status 
includes a condition register, event register, and an enable register.  As a 
beginner, you will rarely need to use this group.  Figure 2-6 illustrates the 
structure of Standard Operation Status.

Figure 2-6. Questionable Data Status Group
Programming the Status System  13Chapter 2



Questionable Data
Group

The Questionable Data status group provides information about the 
quality of instrument output and measurement data.  Questionable Data is 
accessed through the STATus subsystem.  As a beginner, you will rarely 
need to use this status group.  Figure 2-7 illustrates the structure of 
Questionable Data. 

Figure 2-7. Standard Operation Status Group
14 Programming the Status System  Chapter 2



Status System Programming Examples
This section contains two example programs that use the status system and 
common commands to monitor when data is available from an instrument 
and when an error has occurred.  Both programming examples are written in 
C and use the Standard Instrument Control Library (SICL) for I/O 
operations.  The example programs use SCPI (Standard Commands for 
Programmable Instruments) commands to communicate with the status 
system.  Thus, the instruments must either be message-based or have a SCPI 
interpreter, such as an HP E1405/06 Command Module or the SICL iscpi 
interface.

Handling SRQs The following is a general procedure for handling SRQs:

• Define the SRQ handler to do the following:

-- Read the Status Byte using ireadstb. ireadstb returns the RQS 
(request for service) bit in bit 6 of the status byte.  After issuing a 
ireadstb, RQS is cleared indicating that the Service Request is being 
acknowledged.  A new SRQ will not be issued unless RQS is 
cleared.  Using *STB? will return the Master State Summary in bit 6 
and does not affect RQS, therefore this should not be used in a SRQ 
handler.

-- Check the status byte to determine which status group(s) requires 
service. 

-- For each status group that requires service, read the event register of 
that status group to determine what caused the SRQ to be generated.  
It is necessary to clear the event register so that if a new event 
occurs a new SRQ will be generated.  

-- Take some action after determining which event caused the SRQ.  
The action taken is determined by evaluating the contents of the 
event register.

• Enable SRQ Handler in SICL with ionsrq.

• Make sure that all the Enable Masks in all the status enable registers 
are set to the proper values to propagate the summary  bit(s) to the 
status byte.  An SRQ is only generated if the  MSS (Master State 
Summary) bit in the status byte is set. 

Using MAV to
Determine When
Data is Available

The following example program sets up an SRQ handler to be called when 
there is data in the output queue.  The program then prompts for SCPI 
commands.  If the SCPI command results in data in the output queue (such 
as a query command), then the SRQ handler is called and the data is printed.

The following summarizes the procedure used:
Programming the Status System  15Chapter 2



• Define an SRQ handler to do the following: 

-- Read the Status Byte using ireadstb.  ireadstb returns the RQS 
(request for service) bit in bit 6 of the status byte.  After issuing a 
ireadstb, RQS is cleared indicating that the Service Request is being 
acknowledged.  A new SRQ will not be issued unless RQS is 
cleared.  Using *STB? will return the Master State Summary in bit 6 
and does not affect RQS.

-- Check if the MAV bit (bit 4) is set to indicate that a message is 
available. If the MAV bit is set, then a message is available and the 
SRQ handler can process the message.  In this example, the output 
queue is read using iscanf.

• Enable SRQ Handler in SICL with ionsrq.

• Enable MAV bit (Message Available Bit) in the Status Byte Enable 
Register (e.g. *SRE 16).  This will cause an SRQ to arrive when there 
is a message in the output queue  (i.e. data is available to be read)  

Example Program

/* status1.c * 
* The following program provides an interactive command line interface  
* to send SCPI commands to SCPI compatible instruments. 
* This utilizes the MAV bit of the Status Byte in order to determine if 
* the instrument is returning any output.   */
#include <sicl.h>
#include <stdio.h>

/* Theses are Masks for the Status Byte */
/* all bits start at bit 0 */
#define MAV_MASK 0x10      /* MAV - bit 4 */

/* This is the SRQ handler to check for Message Available (MAV) */
void srq_hdlr( INST id) {
    unsigned char stb;
    char buf[255];
    int esr;
    int errnum;
    char errmsg[100];
    /* read the status byte to determine what caused the SRQ. 
   * Note: use ireadstb instead of *STB? because you want to
   * clear RQS instead of reading the MSS bit in the status byte.*/

   ireadstb(id, &stb);

   /* check if MAV caused the SRQ */ 
 if( MAV_MASK == (stb & MAV_MASK)) 
 {

        /* message is available so read in the result. */ 
      iscanf( id, "%t", buf); 
      printf("%s", buf); 
 }

}

16 Programming the Status System  Chapter 2



void main(){ 
  INST id; 
  char addr[80]; 
  char cmd[255]; 
  int opc; 
  int idx; 

  printf("This program provides an interactive environment for SCPI \n"); 
  printf("compatible instruments.  \n\n"); 
  printf("Enter the SICL address of the instrument to open.\n"); 
  printf("for example:  iscpi,24)\n"); 

  gets(addr); 

  /* install error handler */ 
  ionerror( I_ERROR_EXIT); 

  /* open the instrument specified by the user */ 
  id = iopen(addr); 
  itimeout( id, 20000);       /* 20 second timeout */ 

  /* set up SRQ handler */ 
  ionsrq( id, srq_hdlr); 

  /* enable MAV (bit 4) in status byte to cause an SRQ */ 
  iprintf( id, "*SRE %d\n", MAV_MASK ); 

  /* make sure *SRE finished */ 
  ipromptf( id, "*OPC?\n", "%d", &opc);   /* opc value not used */ 

  printf("\nEnter SCPI Commands/Queries to Instrument at %s\n", addr); 
  printf("  (press return to exit)\n\n"); 

  while(1) 
  { 
     while(0 == gets(cmd)); 
      if( 0 == strlen(cmd)) 
              break;          /* quit sending SCPI Commands */ 

      /* send command */ 
      iprintf(id, "%s\n", cmd); 

      /* check cmd for a ’?’, if found assume it is a query */ 
      for(idx=0; idx<strlen(cmd); idx++) 
            if( ’?’ == cmd[idx]) 
            { 
                  /* wait up to 1 minute for srq handler */ 
                  if( 0 != iwaithdlr(60000)) 
                  { 
                        printf("ERROR: Failed to process Query\n"); 
                  } 
                  break; 
            } 
  }/* while - there are commands to send */ 
  /* remove the handler */ 
  ionsrq( id, 0); 

  /* close the session */ 
  printf("\nClosing Instrument at %s\n", addr); 
Programming the Status System  17Chapter 2



  iclose(id);
} 

Using a Service
Request to Detect

Errors

The following example program sets up an SRQ handler to be called when 
SCPI errors are detected using the Standard Event Status Register.  The 
program then prompts for SCPI commands.  If the SCPI command results in 
data in the output queue (such an query command) or an error, then the SRQ 
handler is called and the data is printed.  

The following summarizes the procedure used:

• Define a SRQ Handler which does the following: 

-- Read the Status Byte using ireadstb. ireadstb returns the RQS 
(request for service) bit in bit 6 of the status byte.  After issuing a 
ireadstb, RQS is cleared indicating that the Service Request is being 
acknowledged.  A new SRQ will not be issued unless RQS is 
cleared.  Using *STB? will return the Master State Summary in bit 6 
and does not affect RQS.

-- Check if the MAV bit (bit 4) is set to indicate that a  message is 
available.  If the MAV bit is set, then a message is available and the 
SRQ handler can process the message.  In this example, the output 
queue is read using iscanf.

-- Check if the Standard Event Status summary bit (bit 5) is set.  If the 
bit is set then read the Standard Event Status Group’s Event Register 
to determine which event(s) caused the SRQ.  Check for Command 
Error (bit 5), Execution Error (bit 4), Device Dependent Error (bit 
3), or Query Error (bit 2).  If found, read the error queue with 
SYST:ERR? to print out error messages.

• Enable SRQ Handler in SICL with ionsrq.

• Enable MAV bit (Message Available Bit) and Standard Event Status 
Register Summary Bit in the Status Byte Enable Register  (e.g. *SRE 
48).  This will cause an SRQ to arrive when there is a message in the 
output queue or when the summary bit is set in the standard event 
status register. 

• Enable the Command Error, Execution Error, Device Dependent 
Error, and Query Error enable bits in the Standard Event status enable 
register (e.g. *ESE 60).  This will cause the summary bit of the 
standard event status register to be set when an error occurs.
18 Programming the Status System  Chapter 2



Example Program

/* status2.c * 
* The following program provides an interactive command line interface  
* to send SCPI commands to SCPI compatible instruments. 
* This utilizes the MAV bit of the Status Byte in order to determine if 
* the instrument is returning any output.  It also automatically 
* displays any error conditions that may result by querying the Standard 
* event status register. */
#include <sicl.h>
#include <stdio.h>

/* Theses are Masks for the Status Byte */
/* all bits start at bit 0 */
#define MAV_MASK 0x10      /* MAV - bit 4 */
#define ESR_MASK 0x20      /* ESR summary - bit 5 */

/* These are Masks for the Standard Event Status Register */
/* all bits start at bit 0 */
#define QRY_ERR_MASK 0x04  /* query error - bit 2 */
#define DEV_ERR_MASK 0x08  /* device dependent error - bit 3 */
#define EXE_ERR_MASK 0x10  /* execution error - bit 4 */
#define CMD_ERR_MASK 0x20  /* command error - bit 5 */

/* This is the SRQ handler to check for Message Available (MAV)  
* or any error conditions */
void srq_hdlr( INST id)
{ 
  unsigned char stb; 
  char buf[255]; 
  int esr; 
  int errnum; 
  char errmsg[100]; 

  /* read the status byte to determine what caused the SRQ. 
   * Note: use ireadstb instead of *STB? because we want to 
   * clear RQS instead of reading the MSS bit in the status byte. */
 ireadstb(id, &stb); 

 /* check if MAV caused the SRQ */ 
 if( MAV_MASK == (stb & MAV_MASK)) 
 { 
      /* message is available so read in the result */ 
      iscanf( id, "%t", buf); 
      printf("%s", buf); 
 } 
 else /* check if Standard Event Status */ 
 if( ESR_MASK == (stb & ESR_MASK)) 
 { 
      /* read the standard event register to determine 
       * what caused the ESR summary bit to be set.  This 
       * is necessary in order to get future SRQ’s from 
       * the Standard Event status group. */ 
       ipromptf(id, "*ESR?\n", "%d\n", &esr); 

       /* check if an error caused the summary bit to get set */ 
       if( (CMD_ERR_MASK == (esr & CMD_ERR_MASK )) || 
         (EXE_ERR_MASK == (esr & EXE_ERR_MASK )) ||
         (DEV_ERR_MASK == (esr & DEV_ERR_MASK )) ||
Programming the Status System  19Chapter 2



         (QRY_ERR_MASK == (esr & QRY_ERR_MASK ))    ) 
      { 
             /* an error occurred, read the error queue to get the error */ 
             errnum = -1; 
             while( errnum != 0) 

              { 
                  ipromptf( id, "SYST:ERR?\n", "%d,%t", &errnum, errmsg);
                  if( errnum != 0) 
                     printf("%d,%s", errnum, errmsg); 
             } 
      } 
 }

}

void main()
{ 
  INST id; 
  char addr[80]; 
  char cmd[255]; 
  int opc; 
  int idx; 

  printf("This program provides an interactive environment for SCPI \n");
  printf("compatible instruments.  \n\n"); 
  printf("Enter the SICL address of the instrument to open.\n"); 
  printf("for example:  iscpi,24)\n"); 

  gets(addr); 

  /* install error handler */ 
  ionerror( I_ERROR_EXIT); 

  /* open the instrument specified by the user */ 
  id = iopen(addr); 
  itimeout( id, 20000);       /* 20 second timeout */ 

  /* set up SRQ handler */ 
  ionsrq( id, srq_hdlr); 

  /* enable MAV (bit 4) and Standard Event Status Summary (bit 5) 
   * in status byte to cause an SRQ */ 
  iprintf( id, "*SRE %d\n", MAV_MASK | ESR_MASK);

    /* enable ERROR Bits to generate a ESR summary message */ 
  iprintf( id, "*ESE %d\n", CMD_ERR_MASK | EXE_ERR_MASK |

              DEV_ERR_MASK | QRY_ERR_MASK); 

  /* make sure *SRE and *ESE finished */ 
  ipromptf( id, "*OPC?\n", "%d", &opc);       /* opc value not used */

   printf("\nEnter SCPI Commands/Queries to Instrument at %s\n", addr); 
  printf("  (press return to exit)\n\n"); 

  while(1) 
  { 
     while(0 == gets(cmd)); 
     if( 0 == strlen(cmd)) 
           break;          /* quit sending SCPI Commands */ 
20 Programming the Status System  Chapter 2



      /* send command */ 
      iprintf(id, "%s\n", cmd); 

      /* check cmd for a ’?’, if found assume it is a query */ 
      for(idx=0; idx<strlen(cmd); idx++) 
             if( ’?’ == cmd[idx]) 
            { 
                   /* wait up to 1 minute for srq handler */
                   if( 0 != iwaithdlr(60000)) 
                  { 
                           printf("ERROR: Failed to process Query\n");

                   } 
                  break; 
            } 
  }        /* while - there are commands to send */ 
  /* remove the handler */ 
  ionsrq( id, 0); 
  /* close the session */ 
  printf("\nClosing Instrument at %s\n", addr); 
  iclose(id);

}

Programming the Status System  21Chapter 2



Notes:
22 Programming the Status System  Chapter 2



Chapter 3

Command Reference

About this Chapter
This section describes the SCPI status system and common (*) commands that can 
be used to program instruments in your mainframe. 
Command Reference  23Chapter 3



STATus

The STATus subsystem commands access the condition, event, and enable registers 
in the Operation Status Group and the Questionable Data Group.

Subsystem Syntax STATus
:OPERation

:CONDition?
:ENABle <event>
:ENABle?
[:EVENt]?

:PRESet
:QUEStionable

:CONDition?
:ENABle <event>
:ENABle?
[:EVENt]?

:OPERation :CONDition?

STATus:OPERation:CONDition?  returns the state of the condition register in the 
Operation Status Group.  The state represents conditions which are part of an 
instrument’s operation.

Comments • Related Commands:  STAT:OPER:ENABle, STAT:OPER:EVENt?

Example Reading the contents of the condition register

STAT:OPER:COND? Query register.

:OPERation:ENABle

STATus:OPERation:ENABle <event>  sets an enable mask to allow events 
monitored by the condition register and recorded in the event register, to send a 
summary bit to the Status Byte register (bit 7).

Parameters

Comments •  When the summary bit is sent, it sets bit 7 in the Status Byte register.
• Related Commands:  STAT:OPER:ENABle?

Example Unmasking bit 8 in the Event Register

STAT:OPER:ENAB 256 Unmask bit 8.

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

event numeric 0-65535 none
24 Command Reference  Chapter 3



:OPERation:ENABle?

STATus:OPERation:ENABle?  returns which bits in the event register (Operation 
Status Group) are unmasked.

Comments • Reading the event register mask does not change the mask setting 
(STAT:OPER:ENAB <event>).

• Related Commands:  STAT:OPER:ENABle

Example Reading the Event Register Mask

STAT:OPER:ENAB? Query register mask.

:OPERation[:EVENt]?

STATus:OPERation[:EVENt]?  returns which bits in the event register (Operation 
Status Group) are set.  The event register indicates when there has been a transition 
in the condition register.

Comments • Reading the event register clears the contents of the register.  If the event 
register is to be used to generate a service request (SRQ), you should clear the 
register before enabling the SRQ (*SRE).  This prevents an SRQ from 
occurring due to a previous event.

• Related Commands:  STAT:OPER:ENABle, STAT:OPER:ENABle?

Example Reading the Event Register

STAT:OPER:EVEN? Query returns bit(s) set.

:PRESet

STATus:PRESet  Sets the Operation Status Enable and Questionable Data Enable 
registers to 0.  After executing this command, none of the events in the Operation 
Event or Questionable Event registers will be reported as a summary bit in either the 
Status Byte Group or Standard Event Group.  STATus:PRESet does not clear either 
of the Event registers.

Example Presetting the Enable Register

STAT:PRES Preset enable register.

:QUEStionable :CONDition?

STATus:QUEStionable:CONDition?  returns the state of the condition register in 
the Questionable Status Group.  The state represents conditions which are part of an 
instrument’s operation.
Command Reference  25Chapter 3



Comments • Related Commands:  STAT:QUES:ENABle, STAT:QUES:EVENt?

Example Reading the contents of the condition register

STAT:QUES:COND? Query register.

:QUEStionable:ENABle

STATus:QUEStionable:ENABle <event>  sets an enable mask to allow events 
monitored by the condition register and recorded in the event register, to send a 
summary bit to the Status Byte register (bit 3).

Parameters

Comments •  When the summary bit is sent, it sets bit 3 in the Status Byte register.
• Related Commands:  STAT:QUES:ENABle?

Example Unmasking bit 8 in the Event Register

STAT:QUES:ENAB 256 Unmask bit 8.

:QUEStionable:ENABle?

STATus:QUEStionable:ENABle?  returns which bits in the event register 
(Questionable Status Group) are unmasked.

Comments • Reading the event register mask does not change the mask setting 
(STAT:QUES:ENAB <event>).

• Related Commands:  STAT:QUES:ENABle

Example Reading the Event Register Mask

STAT:QUES:ENAB? Query register mask.

:QUEStionable[:EVENt]?

STATus:QUEStionable[:EVENt]?  returns which bits in the event register 
(Questionable Status Group) are set.  The event register indicates when there has 
been a transition in the condition register.

Comments • Reading the event register clears the contents of the register.  If the event 
register is to be used to generate a service request (SRQ), you should clear the 
register before enabling the SRQ (*SRE).  This prevents an SRQ from 
occurring due to a previous event.

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

event numeric 0-65535 none
26 Command Reference  Chapter 3



• Related Commands:  STAT:QUES:ENABle, STAT:QUES:ENABle?

Example Reading the Event Register

STAT:QUES:EVEN? Query returns bit(s) set.
Command Reference  27Chapter 3



Common Command Reference
This section describes the IEEE-488.2 Common Commands that can be used to 
program instruments in the mainframe.  Commands are listed alphabetically (the 
following table shows the Common Commands listed by functional group).  For 
additional information on any Common Commands, refer to the IEEE Standard 
488.2-1987.

*CLS

Clear Status Command.  The *CLS command clears all status registers (Standard 
Event Status Register, Standard Operation Event Status Register, Questionable Data 
Event Register) and the error queue for an instrument.  This clears the corresponding 
summary bits (bits 3, 5, & 7) and the instrument-specific bits (bits 0, 1, & 2) in the 
Status Byte Register.  *CLS does not affect the enabling of bits in any of the status 
registers (Status Byte Register, Standard Event Status Register, Standard Operation 
Enable Status Register, or Questionable Data Enable Status Register).  (The SCPI 
command STATus:PRESet does clear the Standard Operation Status Enable and 
Questionable Status Enable registers.)  *CLS disables the Operation Complete 
function (*OPC command) and the Operation Complete Query function (*OPC? 
command).

IEEE 488.2 Common Commands Functional Groupings

Category Command Title

General

Instrument 
Status

Macros

Synchronization

*IDN?
*RST
*TST?

*CLS
*ESE <mask>
*ESE?
*ESR?
*SRE <mask>
*SRE?
*STB?

*DMC <name>,<cmds>
*EMC <state>
*EMC?
*GMC? <name>
*LMC?
*PMC
*RMC <name>

*OPC
*OPC?
*WAI

Identification Query
Reset Command
Self-Test Query

Clear Status Command
Standard Event Status Enable Command
Standard Event Status Enable Query
Standard Event Status Register Query
Service Request Enable Command
Service Request Enable Query
Status Byte Query

Define Macro Command
Enable Macros Command
Enable Macro Query
Get Macro Query
Learn Macro Query
Purge all Macros Command
Remove individual Macro Command

Operation Complete Command
Operation Complete Query
Wait-to-Continue Command
28 Command Reference  Chapter 3



*DMC <name_string>, <command_block>

Define Macro Command.  Assigns one, or a sequence of commands to a macro 
name.

The command sequence may be composed of SCPI and/or Common commands.

The name given to the macro may be the same as a SCPI command, but may not be 
the same as a Common command.  When a SCPI named macro is executed, the 
macro rather than the SCPI command is executed.  To regain the function of the 
SCPI command, execute the *EMC 0 command.

*EMC <enable>

Enable Macros Command.  When enable is non-zero, macros are enabled.  When 
enable is zero, macros are disabled.

*EMC?

Enable Macros Query.  Returns either 1 (macros are enabled), or 0 (macros are 
disabled) for the selected instrument.

*ESE <mask>

Standard Event Status Enable Register Command.  Enables one or more events 
in the Standard Event Status Register to be reported in bit 5 (the Standard Event 
Status Summary Bit) of the Status Byte Register.  You enable an event by specifying 
its decimal weight for <mask>.  To enable more than one event, specify the sum of 
the decimal weights.

Example *ESE 60 Enables bits 2, 3, 4, & 5. Respective 
weights are 4 + 8 + 16 + 32 = 60.

*ESE?

Standard Event Status Enable Query.  Returns the weighted sum of all enabled 
(unmasked) bits in the Standard Event Status Register.

Example ESE? Sends status enable query.

*ESR?

Standard Event Status Register Query.  Returns the weighted sum of all set bits 
in the Standard Event Status Register.  After reading the register, *ESR? clears the 
register.  The events recorded in the Standard Event Status Register are independent 
of whether or not those events are enabled with the *ESE command.
Command Reference  29Chapter 3



Example *ESR? Sends Standard Event Status Register 
query.

*GMC? <name_string>

Get Macro Query.  Returns arbitrary block response data which contains the 
command or command sequence defined by name_string.  The command sequence 
will be prefixed with characters which indicate the number of characters that follow 
the prefix.

Example *GMC? ‘LIST’ Ask for definition of macro from *DMC 
example.

If the prefix returned consisted of "#214", the 2 says to expect two 
character-counting digits.  The 14 says that 14 characters of data follow.  Had the 
returned macro been shorter, such as #15*EMC?, we would read this as 1 counting 
digit indicating 5 data characters.

*IDN?

Identity.  Returns the device identity.  The response consists of the following four 
fields (fields are separated by commas):

• Manufacturer
• Model Number
• Serial Number (returns 0 if not available)
• Firmware Revision (returns 0 if not available)

The *IDN? command returns something similar to the following for the 
HP E1411B:

HEWLETT-PACKARD,E1411B,0,B,05.00

Example *IDN? Queries identity.

*LMC?

Learn Macros Query.  Returns a quoted string name for each currently defined 
macro.  If more than one macro is defined, the quoted strings are separated by 
commas (,).  If no macro is defined, then a quoted null string ("") is returned.

*LRN?

Learn query command.  *LRN? causes the instrument to respond with a string of 
SCPI commands which define the instrument’s current state.  Your application 
program can enter the *LRN? response data into a string variable, later to be sent 
back to the instrument to restore that configuration.

Example response from an HP E1326B voltmeter in the power-on state:
30 Command Reference  Chapter 3



*RST;:CAL:ZERO:AUTO 1; :CAL:LFR +60; VAL +0.00000000E+000; 
:DISP:MON:STAT 0; CHAN (@0); :FORM ASC,+7; :FUNC "VOLT"; 
:MEM:VME:ADDR +2097152; SIZE +0; STAT 0; :RES:APER +1.666667E-002; 
OCOM 0; RANG +1.638400E+004; RANG:AUTO 1;:VOLT:APER 
+1.666667E-002; RANG +8.000000E+000; RANG:AUTO 1; :TRIG:COUN +1; 
DEL +0.00000000E+000; DEL:AUTO 1; :TRIG:SOUR IMM; :SAMP:COUN  +1; 
SOUR IMM;TIM +5.000000E-002 S

*OPC

Operation Complete.  Causes an instrument to set bit 0 (Operation Complete 
Message) in the Standard Event Status Register when all pending operations have 
been completed.  By enabling this bit to be reflected in the Status Byte Register 
(*ESE 1 command), you can ensure synchronization between the instrument and an 
external computer or between multiple instruments.

*OPC?

Operation Complete Query.  Causes an instrument to place an ASCII 1 into the 
instrument’s output queue when all pending instrument operations are finished.  By 
requiring the computer to read this response before continuing program execution, 
you can ensure synchronization between one or more instruments and the computer.

*PMC

Purge Macros Command.  Purges all currently defined macros in the selected 
instrument.

*RMC <name_string>

Remove Individual Macro Command.  Purges an individual macro identified by 
the name_string parameter.

Example *RMC ‘LIST’ Remove macro command from *DMC 
example.

*RST

Reset.  Resets an instrument as follows:

• Sets the instrument to a known state (usually the power-on state).
• Aborts all pending operations.
• Disables the *OPC and *OPC? modes.

*RST does not affect:

• The state of the VXI interface
• The VXI address
Command Reference  31Chapter 3



• The output queue
• The Service Request Enable Register
• The Standard Event Status Enable Register
• The power-on flag
• Calibration data
• Protected user data

*SRE <mask>

Service Request Enable.  When a service request event occurs, it sets a 
corresponding bit in the Status Byte Register (this happens whether or not the event 
has been enabled (unmasked) by *SRE).  The *SRE command allows you to identify 
which of these events will assert a service request (SRQ).  When an event is enabled 
by *SRE and that event occurs, it sets a bit in the Status Byte Register and issues an 
SRQ to the computer.  You enable an event by specifying its decimal weight for 
<mask>.  To enable more than one event, specify the sum of the decimal weights.

Example *SRE 160 Enables bits 5 & 7. Respective weights 
are 32 + 128 = 160.

*SRE?

Status Register Enable Query.  Returns the weighted sum of all enabled 
(unmasked) events (those enabled to assert SRQ) in the Status Byte Register.

Example *SRE? Sends Status Register Enable query.

*STB?

Status Byte Register Query.  Returns the weighted sum of all set bits in the Status 
Byte Register.

Comments You can read the Status Byte Register using either the *STB? command or by doing 
a SICL ireadstb function call.  There are some subtle differences between *STB? and 
ireadstb.  You can use either method to read the state of bits 0-5 and bit 7.  Bit 6 is 
treated differently depending on whether you use *STB? or ireadstb.  In general, use 
ireadstb inside interrupt service routines, not *STB?.

Example *STB? Sends Status Byte Register query.

*TST?

Self-Test.  Causes an instrument to execute an internal self-test and returns a 
response showing the results of the self-test.  A zero response indicates that self-test 
passed.  A value other than zero indicates a self-test failure or error.

Example *TST? Execute self-test, return response.
32 Command Reference  Chapter 3



*WAI

Wait-to-continue.  Prevents an instrument from executing another command until 
the operation caused by the previous command is finished (sequential operation).  
Since all instruments normally perform sequential operations, executing the *WAI 
command causes no change to the instrument’s operation.
Command Reference  33Chapter 3



Notes:
34 Command Reference  Chapter 3


	Chapter 1 Introduction
	Chapter 2 Programming the Status System
	About this Chapter
	General Status Register Model
	Condition Register
	Transition Filter
	Event Register
	Enable Register
	An Example Sequence

	Required Status Groups
	Status Byte
	Standard Event Group
	Standard Operation Status Group
	Questionable Data Group

	Status System Programming Examples
	Handling SRQs
	Using MAV to Determine When Data is Available
	Example Program

	Using a Service Request to Detect Errors
	Example Program



	Chapter 3 Command Reference
	About this Chapter
	STATus
	Subsystem Syntax
	:OPERation :CONDition?
	Comments
	Example

	:OPERation:ENABle
	Parameters
	Comments
	Example

	:OPERation:ENABle?
	Comments
	Example

	:OPERation[:EVENt]?
	Comments
	Example

	:PRESet
	Example

	:QUEStionable :CONDition?
	Comments
	Example

	:QUEStionable:ENABle
	Parameters
	Comments
	Example

	:QUEStionable:ENABle?
	Comments
	Example

	:QUEStionable[:EVENt]?
	Comments
	Example


	Common Command Reference
	*CLS
	*DMC <name_string>, <command_block>
	*EMC <enable>
	*EMC?
	*ESE <mask>
	Example

	*ESE?
	Example

	*ESR?
	Example

	*GMC? <name_string>
	Example

	*IDN?
	Example

	*LMC?
	*LRN?
	*OPC
	*OPC?
	*PMC
	*RMC <name_string>
	Example

	*RST
	*SRE <mask>
	Example

	*SRE?
	Example

	*STB?
	Comments
	Example

	*TST?
	Example

	*WAI



