Contents

Programming HP VXI Instruments

Common Commands and the Status System
Edition 1

Chapter 1
(oo [Tox (oo TSP SUSPRTTN 5

Chapter 2
Programming the Status SYSEEMcocvciiiiceceee et 7
ADOUL thiS ChaDLEY ..ottt s nn s 7
General Status RegISter MOE!c.ocuveiiiieee e e 7
CoNitioN REGISLETveiveieeciete sttt st r e e resreens 8
TranSItioN FIITENooieee e 8
EVENE REJISEN ...veciiicie ettt ettt s ee et s e e b e e s ne e e e e snaesntennneas 8
ENADIE REJISIENvicieeiei et ettt e ee e nee s 8
AN EXAMPIE SEQUENCE ..ottt st 8
REQUITEA SEALUS GrOUPSveveiveceieeieste ettt sttt st ae e sbeere e stesnesneenaenas 10
SEBIUS BYLE ...ttt sttt sttt et e e b e e s e e nnb e e neesneeenneeen 11
Standard EVENt GIOUDcceeiieieeieiie e ce et teesie e et ses st sre e e e eesnee e snes 12
Standard Operation StAtUS GIOUDcceeererrieeiieereesie e sreeseeesreesreesreesnessneesssesnnas 13
QUESLIONADIE DAtA GIOUP ...eeiveeieeeieierieecieectee e ste e s ee s e te et e e e sreebe e sbe e sreesreesre s 14
Status System Programming EXamMPlES........ccooviieiieieeie e 15
[P2 110 1 Lo TS (O LSS 15
Using MAYV to Determine When Datais Availablecccccovveceeceiecececnen, 15
EXaMPIE Programoooe ittt et e 16
Using a Service Request t0 DELECt EITOISocceieeevieice e 18
EXaMPIE Programooov ittt et 19

Chapter 3
CoMMANT REFENBNCE ..ottt 23
F N 001U B g TS O 0= (= 23
S AN 0SSP 24
T oS YA = 1TV | = 24
OPER&LiON :CONDIION? ...oviiieiiiesieie et 24
COMIMENLS ...ttt et b e reen e neenneea 24
TGz 1 1] o) = RS 24
{OPERGLHON:ENABIE ...ttt 24
ParamMELErS ... 24
COMIMENLS ...ttt b e rr e et e st e te e be s b e e b e e neeebeeanaens 24
TG 1 1] o) = SRS 24
OPER&LION:ENABIE? ... e 25
COMIMENLS ...ttt e b e b e et e et e te e besbe e beeeeereennaens 25
e 0] o [S 25
:OPERGLON[IEVENL]? oottt 25
COMIMENTS ...ttt r et r e en e neenne e 25
TG 1 1] o) = RS 25
PRESEL ...ttt 25
0] o S 25
‘QUESLIONahI € :CONDILIONT ...ocuvieiecie ettt s e s snresree s 25
COMIMENLS ...ttt b e bt et e et e te e besbe et e e neeebeennaens 26

Contents 1

TGz 1 1] o) = RS 26

QUESHONADIEEENABIE ...ttt eree 26
s = 1< 1 £ 26

(O] 110111 15 26
e 0] o [S 26
QUESHONADIEEENABIE? ...ttt 26
COMMENTS .t b e s sae e e sbee e sreeesnbeennees 26
TGz 1 1] o) = SRS 26
QUESHONGDIE[:EVENL]? ..o 26
(O] 110111 1 15 26
e 0] o S 27
Common Command REFEIENCE.cceeeeiicieiece st 28
Sl O S TSRS 28
*DMC <name_string>, <command_bloCk>cccccccvvieiiiiiiiiie e 29
FEMC <ENEDIES ..o e 29
Sl =11 USSR 29
FESE SMESKS ..ot 29
TGz 1 1] o) = ST 29

Bl =S OSSPSR 29
TGz 1 1] o = R SST 29

Bl S USSR 29
0] o S 30
*GMC? <NAME_SHINGS ...veeivieieeciec et sre e re e e e sre e sreesreesneereas 30
TGz 1 1] o) = RS SS 30

Sl 15 OSSPSR 30
TGz 1 1] o) = RSSO 30

Sl USRS 30
Sl 0 NSRS 30
S] USSR 31
FOPEC? ettt bbbttt bbbttt nn 31
Sl 7 OSSR STSTRPSO 31
*RMC KNAME_SLHNGS ..ttt se ettt st s aesneennesrenrs 31
e 0] [31
a5 USSR 31
B 1 7= LS LR 32
TGz 1] o) = ST 32

O RE? ittt e b bttt ettt e 32
TGz 1 110 = RS 32

S 1 I = USRS 32
(O] 110111 5SS 32
e 0] o [32

Sl IS 1 1SS 32
TG 1 1] o) = RS 32
S0 PRSPPSO 33

2

Contents

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or trandated to another language without the
prior written consent of Hewlett-Packard Company.

E2090-90021

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard Company (HP) shall not beliablefor any errors contained in this document. HP makes no
warranties of any kind with regard to this document, whether express or implied. HP specifically disclaims
the implied warranties of merchantability and fitness for a particular purpose. HP shall not beliable for any
direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other
legal theory, in connectionwith thefurnishing of thisdocument or the use of theinformation in thisdocument.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts
can be obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rightsin Technical Data and Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted. Additional copies of the
software can be made for security and backup purposes only. Resale of the software in its present form or
with alterations is expressly prohibited.

Copyright © Hewlett-Packard Company 1994

Printing History
This is the first edition of “Programming HP VXI Instruments”

September 1994; First Edition

This Page Intentionally Left Blank

Chapter 1
Introduction

Thisdocument describes the common commands and the status system used
by VXI instruments. The status system is a group of registers that can be
used to monitor events, such aswhen an error occurs or when areading is
availablefrom aspecified instrument in your VX| mainframe. Usethe SCPI
status system commands and |EEE 488.2 common commands described in
Chapter 3 of this document to program the status system.

The common commands are used to read and configure the status byte and
standard event group registers, while the status commands are used to
configure the standard operation status group and questionable data status
group registers. Seetheindividua VXI instrument manuals to determine
how a specific instrument uses the operation status group and the
guestionable data status group. |If status system commands are not
documented, that instrument does not use the registers.

Other common commands are used for general functionality, macros, and
synchronization.

Note This document should be placed with your other VXI instrumentation
documentation.

Chapter 1 Introduction 5

Notes:

6 Introduction Chapter 1

Chapter 2

Programming the Status System

About this Chapter

This chapter discusses the structure of the status system used in SCPI
instruments and explains how to program status registers. An important
feature of SCPI instrumentsisthat they al implement status registersin the
sameway. The status system is explained in the following sections:

® General Status Register Model

This section explains the way that status registers are structured in
SCPI instruments. It also contains an example of how bitsin the
various registers change with different input conditions.

® Required Status Groups
This section describes the minimum required status registers present in

SCPI instruments. These status registers cover the most frequently
used functions.

General Status Register Model

The generalized status register model shown in Figure 2-1 is the building
block of the SCPI status system. Thismodel consists of acondition register,
transition filter, an event register, and an enable register. A set of these
registersis called a status group.

When a status group isimplemented in an instrument, it always contains all
of the component registers. However, there is not always a corresponding
command to read or write to every register.

Condition Transition Event Enable
Register Filter Register Register
BitO 1o 0 0 0 5
Bit1 |4 1 1 1 El gil:mmary
. ©
Bit2 1o 2 2 2 3

Bit 3 N
Bit Name/T T
Bit #

Figure 2-1. Generalized Status Register Model

o)
e
v

’

Chapter 2

Programming the Status System 7

Condition Reg ister Thecondition register continuously monitors the hardware and firmware
status of the instrument. Thereis no latching or buffering for this register;
itisupdated in rea time. Condition registers are read-only.0

If thereis no command to read a particular condition register, it issimply
invisible to you.

Transition Filter Thetransition filter specifies which types of bit state changesin the
condition register will set corresponding bits in the event register.
Transition filter bits may be set for positive transitions (PTR), negative
transitions (NTR), or both. Positive means a condition bit changes from
0to 1. Negative meansacondition bit changesfrom 1to 0. Transitionfilters
are read-write. Transition filters are unaffected by * CLS (clear status) or
gueries. They are set to instrument-dependent values at power
on and after *RST (reset).

If there are no commands to access a particular transition filter, it has a
fixed setting. This setting is specified in the instrument’s programming
guide or command dictionary. Most of our VXI instruments assign the
transition filter to detect positive transitions only.

Event Reglster The event register latches transition events from the condition register as
specified by the transition filter. Bitsin the event register are latched, and,
once set, they remain set until cleared by a query or *CLS (clear status).
There is no buffering; so while an event bit is set, subsequent events
corresponding to that bit are ignored. Event registers are read-only.

Enable Reg ISter Theenableregister specifieswhich bitsin the event register can generate a
summary bit. Theinstrument logically ANDs corresponding bitsin the
event and enableregisters, and ORsall the resulting bitsto obtain asummary
bit. Summary bitsare, in turn, recorded in another register, often the Status
Byte. Enableregisters are read-write. Enable registers are not affected by
*CLS (clear status). Querying enable registers does not affect them. There
is always a command to read and write to the enable register of aparticular
status group.

An Example Figure2-2illustrates the response of asingle bit position in atypical status
Se quence group for various settings. The changing state of the condition in question
isshown at the bottom of the figure. A small binary table showsthe state of

the chosen bit in each status register at the selected times T1-T5.

8 Programming the Status System Chapter 2

ng Alewwng
IUET

uonIpuo)

ng Alewwng
JuaAg

uonipuo)

ng Alewwng
Juang

uoRpuoy

ng Arewwng
Juang

uoRpuoy

1g Alewwng
Juang

uonipuoy

s|geuy
d1N
dld

9

Programming the Status System

T3

Figure 2-2. Typical Status Bit Changes in a Status Register

T2

0

Condition

0100

111
1101
1(1]0

Case A
CaseB | 0
Case C
Case D

Chapter 2

Required Status Groups

All SCPI instruments must implement a minimum set of status groups.
Some instruments contain additional status groups, consistent with the
general statusregister model. Theminimum required statussystemisshown
in Figure 2-3.

Questionable Data

Logical
Or
J

c EV EN Output Queue Status Byt
ExT atus Byte
123E-04
2\"Prompt"
#B01010 —
8.
830
-
Standard Event
— L Condition Enable
- - T
O o
— = 20
-
]
EV EN Note:
Standard Operation Status C=Condition
EV=Event
EN=Enable
———
- ©
9O o J
8)0
-
C EV EN

Figure 2-3. Minimum Required Status Register System

10 Programming the Status System Chapter 2

Status Byte

Note

The Standard Operation Status and Questionable Data groups are 16 bits
wide, while Status Byte and Standard Event groups are only 8 bitswide. In
al 16 bit groups, the most significant bit (bit 15) is not used. Bit 15 always
returns azero. The commands that set and query bitsin the status registers
al use decimal integers. For example, you send * ESE 4 to set bit 2 of the
Standard Event enable register. Similarly, aresponse of "8" to the query
*ESE?indicatesthat bit 3isset. Theremainder of thischapter explainseach
status group in detail.

As Figure 2-4 indicates, the Status Byte is used to summarize information
from all the other status groups. The Status Byte differs from the other
groups in the way you read it and how its summary bit is processed.

Status Byte

Logical
Or

~N O o0 AW N =~ O

*STB? *ESE
*ESE?

Figure 2-4. Status Byte Register

The Status Byte can be read using either the * STB? common command or
by doing a SICL ireadstb function call. Theireadstb function reads the
status byte from the device specified.

The Status Byte summary bit actually appearsin bit 6 (RQS) of the Status
Byte. When bit 6 is set, it generates an SRQ interrupt. Thisinterruptisa
low-level HP-1B message that signals the controller that at least one
instrument on the bus requires attention.

There are some subtle differences between *STB? and ireadstb. Y ou can
use either method to read the state of bits 0-5 and bit 7. Bit 6 is treated
differently depending on whether you use* STB? or ireadstb. With ireadstb,
bit 6 returns RQS (request for service) which is cleared after the first
ireadstb. * STB? returns the MSS (master state summary). Thisisthe
summary bit of the status byte register. It's like a condition bit and will
return to zero only when al enabled bitsin the status byte are zero. In
general, use ireadstb inside interrupt service routines, not *STB?.

In an SRQ interrupt service routine, you must clear the event register which
caused the SRQ (for example, STATus.QUES:EVEN?,
STATus.OPER:EVEN?, or *ESR?). Failureto do so will prevent future
SRQs from arriving.

Chapter 2

Programming the Status System 11

The meaning of each bit in the Status Byte is explained in the following

table.
Table 2-1. Status Byte Bit Definitions
Bit Name Description
0 Instrument dependent
1 Instrument dependent
2 Instrument dependent
3 QUE Summary bit from Questionable Data
4 MAV Messages available in Output Queue
5 ESB Summary bit from Standard Event
6 RQS Service request
7 OPR Summary bit from Standard Operation
Status

Example commands using the Status Byte and Status Byte enabl e registers:

*SRE 16 Generate an SRQ interrupt when messages are available.

*SRE? Find out what events are enabled to generate SRQ
interrupts.
*STB? Read and clear the Satus Byte event register.

Standard Event TheStandard Event status group isfrequently used and is one of the
Grou D simplest. The unique aspect of Standard Event is that you program it using
common commands, while you program all other status groups through the
STATus subsystem. Standard Event consists of only two registers. the
Standard Event event register and the Standard Event enableregister. Figure
2-5illustrates the structure of Standard Event.

*ESR? (Standard Event)

*ESE (Standard Event)
*ESE?

Operation Complete (OPC
Request Control (RC

Query Error (QYE

Device Dependent Error (DDE
Execution Error (EXE
Command Error (CME

User Request (URQ

Power On (PON

Bit 5
Status Byte

LOGICAL
OR

)
)
)
)
)
)
)
)

Figure 2-5. Standard Event Status Group

12

Programming the Status System Chapter 2

Example commands using Standard Event registers:

*ESE 48 Generate a summary bit on execution or command errors.
*ESE? Query the state of the Sandard Event enable register.

*ESR? Query the state of the Sandard Event event register.

Standard Operation The Standard Operation Status group providesinformation about the

Status Group

state of the measurement systemsin an instrument. This status group is
accessed through the STATus subsystem. Standard Operation Status
includes a condition register, event register, and an enable register. Asa

beginner, you will rarely need to use this group. Figure 2-6 illustrates the
structure of Standard Operation Status.

Calibrating
Setting

Ranging
Sweeping
Measuring
Waiting for TRIG
Waiting for ARM

Correcting

ID

Note: ID

ID=Instrument ID
Dependent

ID

ID

INSTrument Summary
PROGram Summary

Always Zero

:STATus:OPERation:CONdition?

:STATus:OPERation:EVENt?

:STATus:OPERation:ENABIe
:STATus:OPERation:ENABIle?

LOGICAL
OR

Bit 7
Status Byte

LOGICAL
OR

Figure 2-6. Questionable Data Status Group

Chapter 2

Programming the Status System

13

QU estionable Data The Questionable Data status group provides information about the
Grou D quality of instrument output and measurement data. Questionable Datais
accessed through the STATus subsystem. As a beginner, you will rarely
need to use this status group. Figure 2-7 illustrates the structure of
Questionable Data.

:STATus:QUEStionable:CONdition?
:STATus:QUEStionable:EVENt?
:STATus:QUEStionable:ENABIe?

Voltage

Current

Time

Power

LOGICAL
OR

Temperature

Frequency
Phase

Modulation Bit 3

Calibrating Status Byte

Note: ID

ID=Instrument D
Dependent

LOGICAL
OR

ID
INSTrument Summary

Command Warning

Always Zero

Figure 2-7. Standard Operation Status Group

14 Programming the Status System Chapter 2

Status System Programming Examples

Handling SRQs

Using MAV to
Determine When
Data is Available

This section contains two example programs that use the status system and
common commands to monitor when datais available from an instrument
and when an error hasoccurred. Both programming examplesarewrittenin
C and use the Standard Instrument Control Library (SICL) for I/O
operations. The example programs use SCPI (Standard Commands for
Programmabl e Instruments) commands to communicate with the status
system. Thus, theinstruments must either be message-based or have a SCPI
interpreter, such as an HP E1405/06 Command Module or the SICL iscpi
interface.

Thefollowing is a general procedure for handling SRQs.
® Define the SRQ handler to do the following:

-- Read the Status Byte using ireadstb. ireadstb returns the RQS
(request for service) bit in bit 6 of the status byte. After issuing a
ireadstb, RQSis cleared indicating that the Service Request isbeing
acknowledged. A new SRQ will not be issued unless RQS is
cleared. Using * STB? will return the Master State Summary in bit 6
and does not affect RQS, therefore this should not be used in a SRQ
handler.

-- Check the status byte to determine which status group(s) requires
service.

-- For each status group that requires service, read the event register of
that status group to determine what caused the SRQ to be generated.
It is necessary to clear the event register so that if anew event
occurs anew SRQ will be generated.

-- Take some action after determining which event caused the SRQ.
The action taken is determined by evaluating the contents of the
event register.

® Enable SRQ Handler in SICL withionsrq.

® Make sure that all the Enable Masksin all the status enable registers
are set to the proper values to propagate the summary bit(s) to the
status byte. An SRQ isonly generated if the MSS (Master State
Summary) bit in the status byte is set.

The following example program sets up an SRQ handler to be called when
thereis datain the output queue. The program then prompts for SCPI

commands. If the SCPI command results in datain the output queue (such
as aquery command), then the SRQ handler is called and the datais printed.

The following summarizes the procedure used:

Chapter 2

Programming the Status System 15

® Define an SRQ handler to do the following:

-- Read the Status Byte using ireadstb. ireadstb returnsthe RQS
(request for service) bit in bit 6 of the status byte. After issuing a
ireadstb, RQSis cleared indicating that the Service Request isbeing
acknowledged. A new SRQ will not be issued unless RQS is
cleared. Using * STB? will return the Master State Summary in bit 6
and does not affect RQS.

-- Check if the MAV hit (bit 4) is set to indicate that amessage is
available. If the MAV hit is set, then a message is available and the
SRQ handler can process the message. In this example, the output
queue is read using iscanf.

® Enable SRQ Handler in SICL withionsrq.

® Enable MAV bit (Message Available Bit) in the Status Byte Enable
Register (e.g. * SRE 16). Thiswill cause an SRQ to arrive when there
isamessage in the output queue (i.e. datais available to be read)

Example Program

/* statusl.c *

* The foll owi ng program provides an interactive command |ine interface
* to send SCPI commands to SCPlI conpatibl e instrunents.

* This utilizes the MAV bit of the Status Byte in order to determine if
* the instrument is returning any output. */

#i ncl ude <sicl.h>

#i ncl ude <stdio. h>

/* Theses are Masks for the Status Byte */
/[* all bits start at bit 0 */
#defi ne MAV_MASK 0x10 /* MAV - bit 4 */

/* This is the SRQ handler to check for Message Avail able (MAV) */
void srg_hdlr(INST id) {

unsi gned char stb;

char buf[255];

int esr;

int errnum

char errnsg[100];

/* read the status byte to determ ne what caused the SRQ

* Note: use ireadstb instead of *STB? because you want to

* clear RQS instead of reading the MSS bit in the status byte.*/

i readstb(id, &stb);

/* check if MAV caused the SRQ */
i f(MAV_MASK == (stb & MAV_MASK))

{
/* nmessage is available so read in the result. */
iscanf(id, "%", buf);
printf("%", buf);
}

16 Programming the Status System Chapter 2

void main(){
I NST i d;
char addr[80];
char cnd[255];
i nt opc;
int idx;

printf("This program provides an interactive environnment for SCPl \n");
printf("conpatible instrunents. \n\n");

printf("Enter the SICL address of the instrunent to open.\n");
printf("for exanple: iscpi,24)\n");

get s(addr);

/* install error handler */
ionerror(| _ERROR EXIT);

/* open the instrument specified by the user */
id = iopen(addr);
itimeout(id, 20000); /* 20 second tinmeout */

/* set up SRQ handler */
ionsrq(id, srqg_hdlr);

/* enable MAV (bit 4) in status byte to cause an SRQ */
iprintf(id, "*SRE %\ n", MAV_MASK);

/* make sure *SRE finished */
i promptf(id, "*OPC\n", "%", &opc); /* opc val ue not used */

printf("\nEnter SCPI Commands/ Queries to Instrunent at %s\n", addr);
printf(" (press return to exit)\n\n");

whi [e(1)
{
while(0 == gets(cnd));
if(0 ==strlen(cnd))
br eak; /* quit sending SCPI Conmmands */

/* send command */
iprintf(id, "%\n", cnd);

/* check cmd for a '?, if found assune it is a query */
for(idx=0; idx<strlen(cnd); idx++)
if('? == cmd[idx])
{
/[* wait up to 1 minute for srq handler */
if(0 !'= iwaithdlr(60000))
{
printf("ERROR Failed to process Query\n");
br eak;

}/* while - there are commands to send */
/* renove the handler */
ionsrq(id, 0);

/* close the session */
printf("\nd osing Instrunment at %\n", addr);

Chapter 2 Programming the Status System

iclose(id);

}

' ' The following example program sets up an SRQ handler to be ¢ when
Using a Service Thefoll | handler to be called wh
SCPI errors are detected using the Standard Event Status Register. The
RequeSt to Detect program then prompts for SCPI commands. If the SCPI command resultsin
atain the output queue (such an query command) or an error, then the SRQ
Errors datainth (such d) henth
handler is called and the datais printed.

The following summarizes the procedure used:

® Define a SRQ Handler which does the following:

-- Read the Status Byte using ireadstb. ireadstb returns the RQS
(request for service) bit in bit 6 of the status byte. After issuing a
ireadstb, RQSis cleared indicating that the Service Request isbeing
acknowledged. A new SRQ will not be issued unless RQS is
cleared. Using * STB? will return the Master State Summary in bit 6
and does not affect RQS.

-- Check if the MAV bit (bit 4) is set to indicate that a messageis
available. If the MAV bit is set, then amessage is available and the
SRQ handler can process the message. In this example, the output
queue is read using iscanf.

-- Check if the Standard Event Status summary bit (bit 5) is set. If the
bit is set then read the Standard Event Status Group's Event Register
to determine which event(s) caused the SRQ. Check for Command
Error (bit 5), Execution Error (bit 4), Device Dependent Error (bit
3), or Query Error (bit 2). If found, read the error queue with
SY ST:ERR?to print out error messages.

® Enable SRQ Handler in SICL withionsrq.

® Enable MAV bit (Message Available Bit) and Standard Event Status
Register Summary Bit in the Status Byte Enable Register (e.g. * SRE
48). Thiswill cause an SRQ to arrive when there is amessage in the
output gueue or when the summary bit is set in the standard event
status register.

® Enable the Command Error, Execution Error, Device Dependent
Error, and Query Error enable bits in the Standard Event status enable
register (e.g. *ESE 60). Thiswill cause the summary bit of the
standard event status register to be set when an error occurs.

18 Programming the Status System Chapter 2

Example Program

/* status2.c *

L I

*
#i
#i

/*

The follow ng program provides an interactive command line interface
to send SCPI commands to SCPlI conpatibl e instrunents.

This utilizes the MAV bit of the Status Byte in order to determine if
the instrunment is returning any output. It also automatically

di splays any error conditions that may result by querying the Standard
event status register. */

ncl ude <sicl. h>

ncl ude <stdio. h>

Theses are Masks for the Status Byte */

/* all bits start at bit 0 */

#defi ne MAV_MASK 0x10 /* MAV - bit 4 */

#def i ne ESR_MASK 0x20 /* ESR summary - bit 5 */

/* These are Masks for the Standard Event Status Register */

/*

all bits start at bit 0 */

#defi ne QRY_ERR MASK 0x04 /* query error - bit 2 */

#def i ne DEV_ERR MASK 0x08 /* device dependent error - bit 3 */
#defi ne EXE ERR MASK 0x10 /* execution error - bit 4 */

#defi ne CMD_ERR MASK 0x20 /* conmmand error - bit 5 */

/*

*

This is the SRQ handl er to check for Message Avail abl e (MAV)
or any error conditions */

void srqg_hdlr(INST id)

{

unsi gned char stb;
char buf[255];

int esr;

int errnum

char errmsg[100];

/* read the status byte to determ ne what caused the SRQ

* Note: use ireadstb instead of *STB? because we want to

* clear RQS instead of reading the MSS bit in the status byte. */
i readstb(id, &stbh);

/* check if MAV caused the SRQ */
if(MAV_MASK == (stb & MAV_MASK))

{
/* nmessage is available so read in the result */
iscanf(id, "%", buf);
printf("%", buf);

}

else /* check if Standard Event Status */

i f(ESR_MASK == (stb & ESR_MASK))

{

/* read the standard event register to determne

* what caused the ESR sunmary bit to be set. This
* is necessary in order to get future SR@s from
* the Standard Event status group. */

i pronptf(id, "*ESR?\n", "%l\n", &esr);

/* check if an error caused the summary bit to get set */
if((CMD_ERR MASK == (esr & CMD_ERR MASK)) ||

(EXE_ERR _MASK == (esr & EXE_ERR MASK)) ||

(DEV_ERR MASK == (esr & DEV_ERR MASK)) ||

Chapter 2 Programming the Status System

19

(QRY_ERR MASK == (esr & QRY_ERR MASK)))

{
/* an error occurred, read the error queue to get the error */
errnum= -1;
while(errnum!= 0)
{
i pronptf(id, "SYST:ERR?\n", "%, %", &errnum errnsg);
if(errnum!= 0)
printf("%l, %", errnum errnsg);
}
}

}
}

voi d mai n()

I NST i d;
char addr[80];
char cnd[255];
i nt opc;
int idx;

printf("This program provides an interactive environnment for SCPl \n");
printf("conpatible instruments. \n\n");

printf("Enter the SICL address of the instrunent to open.\n");
printf("for exanple: iscpi,24)\n");

get s(addr);

/[* install error handler */
ionerror(| _ERROR EXIT);

/* open the instrunent specified by the user */
id = iopen(addr);
itimeout(id, 20000); /* 20 second timeout */

/* set up SRQ handl er */
ionsrg(id, srqg_hdlr);

/* enable MAV (bit 4) and Standard Event Status Sumary (bit 5)
* in status byte to cause an SRQ */
iprintf(id, "*SRE %\n", MAV_MASK | ESR_MASK);

/* enable ERROR Bits to generate a ESR sunmary nessage */
iprintf(id, "*ESE %\n", CVD_ERR MASK | EXE_ERR_MASK |
DEV_ERR_MASK | QRY_ERR_MASK)

/* make sure *SRE and *ESE fi ni shed */
i promptf(id, "*OPC\n", "%", &opc); /* opc val ue not used */
printf("\nEnter SCPI Comuands/ Queries to Instrunent at %\n", addr);
printf(" (press return to exit)\n\n");

whi | e(1)
while(0 == gets(cnd));

if(0 ==strlen(cnd))
br eak; /* quit sending SCPI Conmmands */

20 Programming the Status System Chapter 2

/* send command */
iprintf(id, "%\n", cnd);

/* check cmd for a '?, if found assune it is a query */
for(idx=0; idx<strlen(cnd); idx++)
if('? == cmd[idx])
{
/[* wait up to 1 minute for srq handler */
if(0 !=iwaithdlr(60000))
{
printf("ERROR Failed to process Query\n");
}
br eak;
} [* while - there are comands to send */

/* rermove the handler */

ionsrq(id, 0);

/* close the session */

printf("\nd osing Instrunment at %\n", addr);
iclose(id);

Chapter 2 Programming the Status System 21

Notes:

22 Programming the Status System Chapter 2

Chapter 3
Command Reference

About this Chapter

This section describes the SCPI status system and common (*) commands that can
be used to program instruments in your mainframe.

Chapter 3 Command Reference 23

STATuUS

The STATus subsystem commands access the condition, event, and enableregisters
in the Operation Status Group and the Questionable Data Group.

Subsystem Syntax STATus

:OPERation
:CONDition?
:ENABIe <event>
ENABIle?
[‘EVENt]?

:PRESet

:QUEStionable
:CONDition?
:ENABIle <event>
ENABIle?
[‘EVENt]?

:OPERation :CONDition?

STATus.OPERation: CONDition? returnsthe state of the condition register inthe
Operation Status Group. The state represents conditions which are part of an
instrument’s operation.

Comments * Related Commands: STAT:OPER:ENABIe, STAT:OPER:EVENt?

Example Reading the contents of the condition register
STAT:OPER:COND? Query register.

:OPERation:ENABIe

STATus:OPERation:ENABIe <event> sets an enable mask to alow events
monitored by the condition register and recorded in the event register, to send a
summary bit to the Status Byte register (bit 7).

Parameters
Parameter Parameter Range of Default
Name Type Values Units
event numeric 0-65535 none
Comments ® When the summary bit is sent, it sets bit 7 in the Status Byte register.

* Related Commands. STAT:OPER:ENABIe?

Example Unmasking bit 8 in the Event Register
STAT:OPER:ENAB 256 Unmask hit 8.

24 Command Reference Chapter 3

:OPERation:ENABIle?

STATus. OPERation:ENABIe? returnswhich bitsin the event register (Operation
Status Group) are unmasked.

Comments ® Reading the event register mask does not change the mask setting
(STAT:OPER:ENAB <event>).

®* Related Commands: STAT:OPER:ENABIe

Example Reading the Event Register Mask
STAT:OPER:ENAB? Query register mask.

:OPERation[:EVENLt]?

STATus.OPERation[:EVENt]? returnswhich bitsin the event register (Operation
Status Group) are set. The event register indicates when there has been atransition
in the condition register.

Comments ® Reading the event register clears the contents of the register. If the event
register isto be used to generate a service request (SRQ), you should clear the
register before enabling the SRQ (* SRE). This prevents an SRQ from
occurring due to a previous event.

®* Related Commands, STAT:OPER:ENABIe, STAT:OPER:ENABIe?

Example Reading the Event Register
STAT:OPER:EVEN? Query returns bit(s) set.

:PRESet

STATus.PRESet Setsthe Operation Status Enable and Questionable Data Enable
registersto 0. After executing this command, none of the events in the Operation
Event or Questionable Event registerswill be reported asasummary bit in either the
Status Byte Group or Standard Event Group. STATus.PRESet does not clear either
of the Event registers.

Example Presetting the Enable Register
STAT:PRES Preset enableregister.

:QUEStionable :CONDition?

STATus.QUEStionable: CONDition? returnsthe state of the condition register in
the Questionable Status Group. The state represents conditions which are part of an
instrument’s operation.

Chapter 3 Command Reference 25

Comments ® Related Commands. STAT:QUES.ENABIe, STAT:QUES.EVENt?

Example Reading the contents of the condition register
STAT:QUES:COND? Query register.

:QUEStionable:ENABIe

STATus.QUEStionable:ENABIe <event> sets an enable mask to allow events
monitored by the condition register and recorded in the event register, to send a
summary bit to the Status Byte register (bit 3).

Parameters
Parameter Parameter Range of Default
Name Type Values Units
event numeric 0-65535 none
Comments ® When the summary bit is sent, it sets bit 3 in the Status Byte register.

®* Related Commands:. STAT:QUES.ENABIe?

Example Unmasking bit 8 in the Event Register
STAT:QUES:ENAB 256 Unmask bit 8.

:QUEStionable:ENABIle?

STATus.QUEStionable: ENABIe? returns which bitsin the event register
(Questionable Status Group) are unmasked.

Comments ® Reading the event register mask does not change the mask setting
(STAT:QUES:ENAB <event>).

* Related Commands. STAT:QUES.ENABIe

Example Reading the Event Register Mask
STAT:QUES:ENAB? Query register mask.

:QUEStionable[:EVENTt]?

STATus.QUEStionable[:EVENt]? returns which bits in the event register
(Questionable Status Group) are set. The event register indicates when there has
been atransition in the condition register.

Comments ® Reading the event register clears the contents of the register. If the event
register isto be used to generate a service request (SRQ), you should clear the
register before enabling the SRQ (* SRE). This prevents an SRQ from
occurring due to a previous event.

26 Command Reference Chapter 3

® Related Commands. STAT:QUES.ENABIe, STAT:QUES.ENABIe?

Example Reading the Event Register
STAT:QUES:EVEN? Query returns bit(s) set.

Chapter 3 Command Reference 27

Common Command Reference

This section describes the | EEE-488.2 Common Commands that can be used to
program instruments in the mainframe. Commands are listed alphabetically (the
following table shows the Common Commands listed by functional group). For
additional information on any Common Commands, refer to the IEEE Standard

488.2-1987.
IEEE 488.2 Common Commands Functional Groupings
Category Command Title

General *IDN? Identification Query
*RST Reset Command
*TST? Self-Test Query

Instrument *CLS Clear Status Command

Status *ESE <mask> Standard Event Status Enable Command
*ESE? Standard Event Status Enable Query
*ESR? Standard Event Status Register Query
*SRE <mask> Service Request Enable Command
*SRE? Service Request Enable Query
*STB? Status Byte Query
*DMC <name>,<cmds> Define Macro Command

Macros *EMC < state> Enable Macros Command
*EMC? Enable Macro Query
*GMC? <nhame> Get Macro Query
LMC? Learn Macro Query
*PMC Purge all Macros Command
*RMC <name> Remove individual Macro Command
*OPC Operation Complete Command

Synchronization *OPC? Operation Complete Query
*WAI Wait-to-Continue Command

*CLS

Clear Status Command. The*CLS command clears all status registers (Standard
Event Status Register, Standard Operation Event Status Register, Questionable Data
Event Register) and the error queuefor an instrument. Thisclearsthe corresponding
summary bits (bits 3, 5, & 7) and the instrument-specific bits (bits 0, 1, & 2) inthe
Status Byte Register. * CLS does not affect the enabling of bitsin any of the status
registers (Status Byte Register, Standard Event Status Register, Standard Operation
Enable Status Register, or Questionable Data Enable Status Register). (The SCPI
command STATus.PRESet does clear the Standard Operation Status Enable and
Questionable Status Enable registers.) * CLS disables the Operation Complete
function (* OPC command) and the Operation Complete Query function (* OPC?

command).

28 Command Reference

Chapter 3

*DMC <name_string>, <command_block>

*EMC <enable>

Define Macro Command. Assigns one, or a sequence of commands to a macro
name.

The command sequence may be composed of SCPI and/or Common commands.

The name given to the macro may be the same as a SCPI command, but may not be
the same as a Common command. When a SCPI named macro is executed, the
macro rather than the SCPI command is executed. To regain the function of the
SCPI command, execute the * EMC 0 command.

*EMC?

Enable M acros Command. When enableis non-zero, macros are enabled. When
enableis zero, macros are disabled.

*ESE <mask>

Enable Macros Query. Returns either 1 (macros are enabled), or 0 (macros are
disabled) for the selected instrument.

Standard Event Status Enable Register Command. Enables one or more events
in the Standard Event Status Register to be reported in bit 5 (the Standard Event
Status Summary Bit) of the Status Byte Register. Y ou enable an event by specifying
its decimal weight for <mask>. To enable more than one event, specify the sum of
the decimal weights.

Example *ESE 60 Enablesbits 2, 3, 4, & 5. Respective
weightsare4 + 8 + 16 + 32 = 60.
*ESE?
Standard Event Status Enable Query. Returnsthe weighted sum of al enabled
(unmasked) bitsin the Standard Event Status Register.
Example ESE? Sends status enable query.
*ESR?

Standard Event Status Register Query. Returns the weighted sum of al set bits
in the Standard Event Status Register. After reading the register, * ESR? clears the
register. The eventsrecorded in the Standard Event Status Register are independent
of whether or not those events are enabled with the * ESE command.

Chapter 3

Command Reference 29

Example

*ESR? Sends Standard Event Satus Register
query.

*GMC? <name_string>

*IDN?

Example

Get Macro Query. Returns arbitrary block response data which contains the
command or command sequence defined by name_string. The command sequence
will be prefixed with characters which indicate the number of charactersthat follow
the prefix.

*GMC? ‘LIST’ Ask for definition of macro from*DMC
example.

If the prefix returned consisted of "#214", the 2 says to expect two
character-counting digits. The 14 saysthat 14 characters of datafollow. Had the
returned macro been shorter, such as #15* EMC?, we would read this as 1 counting
digit indicating 5 data characters.

*LMC?

Example

Identity. Returnsthe deviceidentity. The response consists of the following four
fields (fields are separated by commas):

® Manufacturer

® Model Number

® Serial Number (returns O if not available)

® Firmware Revision (returns O if not available)

The *IDN? command returns something similar to the following for the
HP E1411B:

HEWLETT-PACKARD,E1411B,0,B,05.00

*IDN? Queriesidentity.

*LRN?

Learn Macros Query. Returns aquoted string name for each currently defined
macro. If more than one macro is defined, the quoted strings are separated by
commas (,). If no macro is defined, then a quoted null string (") is returned.

Learn query command. *LRN? causes the instrument to respond with a string of
SCPI commands which define the instrument’s current state. Y our application
program can enter the * LRN? response data into a string variable, later to be sent
back to the instrument to restore that configuration.

Example response from an HP E1326B voltmeter in the power-on state:

30 Command Reference

Chapter 3

*OPC

*RST;:CAL:ZERO:AUTO 1; :CAL:LFR +60; VAL +0.00000000E+000;
:DISP:MON:STAT 0; CHAN (@0); :FORM ASC,+7; :FUNC "VOLT";
:‘MEM:VME:ADDR +2097152; SIZE +0; STAT 0; :RES:APER +1.666667E-002;
OCOM 0; RANG +1.638400E+004; RANG:AUTO 1;:VOLT:APER
+1.666667E-002; RANG +8.000000E+000;: RANG:AUTO 1; :TRIG:COUN +1:
DEL +0.00000000E+000; DEL:AUTO 1; :TRIG:SOUR IMM; :SAMP:COUN +1;
SOUR IMM;TIM +5.000000E-002 S

*OPC?

Operation Complete. Causes an instrument to set bit 0 (Operation Complete
Message) in the Standard Event Status Register when all pending operations have
been completed. By enabling this bit to be reflected in the Status Byte Register

(* ESE 1 command), you can ensure synchronization between the instrument and an
external computer or between multiple instruments.

*PMC

Operation Complete Query. Causes an instrument to place an ASCII 1 into the
instrument’s output queue when all pending instrument operations are finished. By
requiring the computer to read this response before continuing program execution,
you can ensure synchronization between one or more instruments and the computer.

Purge Macros Command. Purgesall currently defined macros in the selected
instrument.

*RMC <name_string>

*RST

Example

Remove Individual Macro Command. Purges an individual macro identified by
the name_string parameter.

*RMC ‘LIST’ Remove macro command from*DMC
example.

Reset. Resets an instrument as follows:

® Setsthe instrument to a known state (usually the power-on state).
® Aborts all pending operations.
® Disables the * OPC and * OPC? modes.

*RST does not affect:

® The state of the V XI interface
® The VXI address

Chapter 3

Command Reference 31

*SRE <mask>

® The output queue

® The Service Request Enable Register

® The Standard Event Status Enable Register
® The power-on flag

® Cdlibration data

® Protected user data

Example

*SRE?

Service Request Enable. When a service request event occurs, it setsa
corresponding bit in the Status Byte Register (this happens whether or not the event
has been enabled (unmasked) by * SRE). The* SRE command allowsyou to identify
which of these eventswill assert a service request (SRQ). When an event is enabled
by * SRE and that event occurs, it sets abit in the Status Byte Register and issues an
SRQ to the computer. Y ou enable an event by specifying its decimal weight for
<mask>. To enable more than one event, specify the sum of the decimal weights.

*SRE 160 Enables bits5 & 7. Respective weights
are 32 + 128 = 160.

Example

*STB?

Status Register Enable Query. Returnsthe weighted sum of all enabled
(unmasked) events (those enabled to assert SRQ) in the Status Byte Register.

*SRE? Sends Status Register Enable query.

Comments

Example

*TST?

Status Byte Register Query. Returnsthe weighted sum of all set bitsin the Status
Byte Register.

Y ou can read the Status Byte Register using either the * STB? command or by doing
aSICL ireadstb function call. There are some subtledifferences between* STB? and
ireadstb. Y ou can use either method to read the state of bits 0-5 and bit 7. Bit6is
treated differently depending on whether you use* STB? or ireadstb. In general, use
ireadstb inside interrupt service routines, not * STB?.

*STB? Sends Status Byte Register query.

Example

Self-Test. Causes an instrument to execute an internal self-test and returns a
response showing the results of the self-test. A zero responseindicates that self-test
passed. A value other than zero indicates a self-test failure or error.

*TST? Execute self-test, return response.

32 Command Reference

Chapter 3

*WAI

Wait-to-continue. Prevents an instrument from executing another command until
the operation caused by the previous command is finished (sequential operation).
Since all instruments normally perform sequential operations, executing the *WAI
command causes no change to the instrument’s operation.

Chapter 3 Command Reference 33

Notes:

34 Command Reference Chapter 3

	Chapter 1 Introduction
	Chapter 2 Programming the Status System
	About this Chapter
	General Status Register Model
	Condition Register
	Transition Filter
	Event Register
	Enable Register
	An Example Sequence

	Required Status Groups
	Status Byte
	Standard Event Group
	Standard Operation Status Group
	Questionable Data Group

	Status System Programming Examples
	Handling SRQs
	Using MAV to Determine When Data is Available
	Example Program

	Using a Service Request to Detect Errors
	Example Program

	Chapter 3 Command Reference
	About this Chapter
	STATus
	Subsystem Syntax
	:OPERation :CONDition?
	Comments
	Example

	:OPERation:ENABle
	Parameters
	Comments
	Example

	:OPERation:ENABle?
	Comments
	Example

	:OPERation[:EVENt]?
	Comments
	Example

	:PRESet
	Example

	:QUEStionable :CONDition?
	Comments
	Example

	:QUEStionable:ENABle
	Parameters
	Comments
	Example

	:QUEStionable:ENABle?
	Comments
	Example

	:QUEStionable[:EVENt]?
	Comments
	Example

	Common Command Reference
	*CLS
	*DMC <name_string>, <command_block>
	*EMC <enable>
	*EMC?
	*ESE <mask>
	Example

	*ESE?
	Example

	*ESR?
	Example

	*GMC? <name_string>
	Example

	*IDN?
	Example

	*LMC?
	*LRN?
	*OPC
	*OPC?
	*PMC
	*RMC <name_string>
	Example

	*RST
	*SRE <mask>
	Example

	*SRE?
	Example

	*STB?
	Comments
	Example

	*TST?
	Example

	*WAI

