Agilent 75000 SERIES C

Agilent E1446A Summing Amplifier/DAC Module

Service Manual

Copyright© Agilent Technologies, Inc., 1993 - 2006

E1446-90010 E0706

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Agilent Technologies product is warranted against defects in materials and workmanship for a period of one (1) year from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other Agilent products. During the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent and Agilent shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent from another country.

Agilent warrants that its software and firmware designated by Agilent for use with a product will execute its programming instructions when properly installed on that product. Agilent does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

Limitation Of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. Agilent does not warrant the Buyer's circuitry or malfunctions of Agilent products that result from the Buyer's circuitry. In addition, Agilent does not warrant any damage that occurs as a result of the Buyer's circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. Agilent SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. Agilent SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Notice

The information contained in this document is subject to change without notice. Agilent Technologies MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Agilent Technologies, Inc. Agilent assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Agilent.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software" as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.

Agilent E1446A Summing Amplifier/DAC Module Service Manual Edition 1 Rev 2

Copyright © 1993-2006 Agilent Technologies, Inc. All Rights Reserved.

Printing History

The Printing History shown below lists all Editions and Updates of this manual and the printing date(s). The first printing of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new Edition is created, it contains all the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this printing history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.

Edition 1 (Part Number E1446-90010)	January 1993
Edition 1 Rev 2 (Part Number E1446-90010)	July 2006

Safety Symbols

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer's Name:Agilent Technologies, IncorporatedManufacturer's Address:815 – 14th St. SWLoveland, Colorado 80537USA

Declares, that the product

Agilent Technologies

Product Name:	Summing Amplifier/DAC
Model Number:	E1446A
Product Options:	This declaration covers all options of the above product(s).

Conforms with the following European Directives:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (including 93/68/EEC) and carries the CE Marking accordingly.

Conforms with the following product standards:

UL 3111-1

EMC	Standard
	CISPR 11:1000 / EN 55011:1001

CISPR 11:1990 / EN 55011:1991 IEC 801-2 :1991 / EN50082-1 : 1992 IEC 801-3 :1984 / EN50082-1 : 1992 IEC 801-4 :1988 / EN50082-1 : 1992 Limit

Group 1 Class A 4kV CD, 8kV AD 3 V/m 0.5kV signal lines, 1kV power lines

The produt was tested in a typical configuration with Agilent Technologies or Hewlett-Packard Company test systems IEC 1010-1:1990+A2:1996 / EN 61010-1:1993 Canada: CSA C22.2 No. 1010.1:1992

Safety

3 May 2001

Date

Ray Corson Product Regulations Program Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor. Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Strabe 130, D 71034 Böblingen, Germany

Suggested Sequence to Use Manuals

Manual Descriptions

Title	Description
Series C Installation and Getting Started Guide	Step-by-step instructions for all aspects of plug-in module, mainframe, and command module installation. Also contains introductory programming information and examples.
Mainframe User's Manual	Information to prepare the mainframe and to install plug-in modules.
Command Module User's Manual	Programming information for the command module and general programming information for instruments installed in the mainframe.
Command Module Service Manual	Command module service information. Includes information and procedures for functional verification, operation verification, performance verification, troubleshooting, and repair.
Plug-In Module User's Manuals	Plug-in module programming and configuration information. Contains programming examples and SCPI command reference for the module.
Plug-In Module Service Manuals	Plug-in module service information. Depending on the module, includes information and procedures for functional verification, operation verification, performance verification, adjustment, troubleshooting, and repair.

Manual Overview

This manual shows how to service the Agilent E1446A Summing Amplifier/DAC. See the *Agilent E1446A User's Manual* for additional information on installing, configuring, and operating the instrument. Consult the appropriate mainframe manual for information on configuring and operating the mainframe.

Manual Content

Chap	Title	Content
1	General Information	Lists basic instrument descriptions, tools and test equipment required for service, and procedures to inspect and ship the instrument.
2	Verification Tests	Describes functional verification, operation verification, and performance verification tests for the instrument.
3	Replaceable Parts	Lists part numbers of replaceable parts for the instrument. Also includes information to order spare parts and to exchange/replace instruments.
4	Service	Procedures to aid in fault isolation and repair of the instrument.

vi

Contents

Chapter 1 - General Information

Introduction
Safety Considerations
Warnings and Cautions
Inspection/Shipping
Initial Inspection
Shipping Guidelines
Environment
Amplifier Description
Amplifier Specifications
Amplifier Serial Numbers
Recommended Test Equipment 1-7

Chapter 2 - Verification Tests

	2-1
Test Conditions/Procedures	2-1
Performance Test Record	2-1
Verification Test Examples	2-2
Using an Agilent E1445A as the Commander	2-2
Functional Verification	2-3
Operation Verification	<u>2-4</u>
Performance Verification	2-4
Test 2-1: Input Attenuator Test	2-5
Test 2-2: Output Attenuator Test	2-9
Test 2-3: Low-level Outputs Test	2-13
Test 2-4: Main Output Test	2-16
Test 2-5: Offset DAC Test	2-19
Test 2-6: Bandwidth Test	2-22
Performance Test Record	2-26
Amplifier Test Limits	2-26
Measurement Uncertainty	2-26
Test Accuracy Ratio (TAR)	2-26

Chapter 3 - Replaceable Parts

Introduction																				3-1
Exchange Assemblies																				3-1
Ordering Information																				3-1
Replaceable Parts List		•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	3-1

Chapter 4 - Service

Introduction
Equipment Required
Service Aids
Repair Strategy
Troubleshooting Techniques 4-2
Identifying the Problem
Testing the Assembly
Disassembly
Repair/Maintenance Guidelines
ESD Precautions 4-4
Soldering Printed Circuit Boards
Post-Repair Safety Checks

Introduction

This manual contains information required to test, troubleshoot, and repair the Agilent E1446A C-Size VXI Summing Amplifier/DAC (amplifier). See the *Agilent E1446A User's Manual* for additional information. Figure 1-1 shows the Agilent E1446A. This chapter includes the following sections:

- Introduction
- Safety Considerations
- Inspection/Shipping
- Environment
- Amplifier Description
- Recommended Test Equipment

Safety Considerations	This product is a Safety Class I instrument that is provided with a protective earth terminal when installed in the mainframe. The mainframe, amplifier, and all related documentation should be reviewed for familiarization with safety markings and instructions before operation or service.
	Refer to the WARNINGS page (page iii) in this manual for a summary of safety information. Safety information for preventive maintenance, testing, and service follows and is also found throughout this manual.
Warnings and Cautions	This section contains WARNINGS which must be followed for your protection and CAUTIONS which must be followed to avoid damage to the equipment when performing instrument maintenance or repair.
WARNING	SERVICE-TRAINED PERSONNEL ONLY. The information in this manual is for service-trained personnel who are familiar with electronic circuitry and are aware of the hazards involved. To avoid personal injury or damage to the instrument, do not perform procedures in this manual or do any servicing unless you are qualified to do so.
	CHECK MAINFRAME POWER SETTINGS. Before applying power, verify that the mainframe setting matches the line voltage and that the correct fuse is installed. An uninterruptible safety earth ground must be provided from the main power source to the supplied power cord set.
	GROUNDING REQUIREMENTS. Interruption of the protective (grounding) conductor (inside or outside the mainframe) or disconnecting the protective earth terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two-conductor outlet is not sufficient protection.)
	IMPAIRED PROTECTION. Whenever it is likely that instrument protection has been impaired, the mainframe must be made inoperative and be secured against any unintended operation.

WARNING	REMOVE POWER IF POSSIBLE. Some procedures in this manual may be performed with power supplied to the mainframe while protective covers are removed. Energy available at many points may, if contacted, result in personal injury. (If maintenance can be performed without power applied, the power should be removed.)
	USING AUTOTRANSFORMERS. If the mainframe is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to neutral (that is, the grounded side of the main's supply).
	CAPACITOR VOLTAGES. Capacitors inside the mainframe may remain charged even when the mainframe has been disconnected from its source of supply.
	USE PROPER FUSES. For continued protection against fire hazard, replace the line fuses only with fuses of the same current rating and type (such as normal blow, time delay, etc.). Do not use repaired fuses or short-circuited fuseholders.
CAUTION	Static electricity is a major cause of component failure. To prevent damage to the electrical components in the amplifier, observe anti-static techniques whenever working on the amplifier.

Inspection/ Shipping

This section describes initial (incoming) inspection and shipping guidelines for the amplifier.

Initial Inspection

Use the steps in Figure 1-2 as guidelines to perform initial inspection of the amplifier.

WARNING

To avoid possible hazardous electrical shock, do not perform electrical tests if there are signs of shipping damage to the shipping container or to the instrument.

Figure 1-2. Initial (Incoming) Inspection Guidelines

ShippingFollow the steps in Figure 1-3 to return the amplifier to a AgilentGuidelinesTechnologies Sales and Support Office or Service Center.

Figure 1-3. Packaging/Shipping Guidelines

Environment

The recommended operating environment for the Agilent E1446A amplifier is:

Environment	Temperature	Humidity
Operating	0°C to +55°C	<65% relative (0°C to +40°C)
Storage and Shipment	-40°C to +75°C	<65% relative (0°C to +40°C)

Amplifier Description	The Agilent E1446A amplifier is a VXIbus C-size, register-based instrument. The amplifier can operate in a C-size VXIbus mainframe using an Agilent E1405/E1406 Command Module and Standard Commands for Programmable Instruments (SCPI). If the amplifier address is within the Servant Area of an Agilent E1445A Arbitrary Function Generator, then the amplifier can operate without a Command Module.	
Amplifier Specifications	Amplifier specifications are listed in Appendix A of the <i>Agilent E1446A User's Manual</i> . These specifications are the performance standards or limits against which the instrument may be tested.	
Amplifier Serial Numbers	Figure 1-4 shows Agilent Technologies serial number structure. Amplifiers covered by this manual are identified by a serial number prefix listed on the title page.	

Figure 1-4. Agilent Technologies Serial Numbers

Recommended Test Equipment

Table 1-1 lists the test equipment recommended for testing and servicing the amplifier. Essential requirements for each piece of test equipment are described in the Requirements column.

Table 1-1. Recommended Test Equipment

Instrument	Requirements	Recommended Model		
Controller, GPIB	GPIB compatibility as defined by IEEE Standard 488-1988 and the identical ANSI Standard MC1.1: SH1, AH1, T2, TE0, L2, LE0, SR0, RL0, PP0, DC0, DT0, and C1, 2, 3, 4, 5.	HP 9000 Series 300	F,O, P,T	
Mainframe	Compatible with amplifier	Agilent E1400B/T or Agilent E1401A	F,O, P,T	
Command Module	TTL compatible Trig Out	Agilent E1405B or Agilent E1406A	F,O, P,T	
Digital Multimeter	DCV	Agilent 3458A	O,P	
Function Generator	DCV	Agilent 3325A/B	O,P	
Spectrum Analyzer Frequency Range: 100 Hz - 40 MHz Tracking Generator: -10 dBm (nominal)		Agilent 3585A/B	Р	
 * F = Functional Verification, O = Operation Verification Tests, P = Performance Verification Tests, T = Troubleshooting 				

Introduction	The three levels of test procedures described in this chapter are used to verify that the Agilent E1446A:		
	 is fully functional (Functional Verification) meets selected testable specifications (Operation Verification) meets all testable specifications (Performance Verification) 		
WARNING	Do not perform any of the following verification tests unless you are a qualified, service-trained technician and have read the WARNINGS and CAUTIONS in Chapter 1.		
Test Conditions/ Procedures	See Table 1-1 for test equipment requirements. You should complete the Performance Verification tests at least once a year. For heavy use or severe operating environments, perform the tests more often. Before performing these tests, allow the amplifier to warm up for at least one hour. The temperature should be between 18° C and 28° C.		
	The verification tests assume that the person performing the tests understands how to operate the mainframe, the amplifier, and specified test equipment. The test procedures do not specify equipment settings for test equipment, except in general terms. It is assumed that a qualified, service-trained technician will select and connect the cables, adapters, and probes required for the test.		
Performance Test Record	The results of each Performance Verification test may be recorded in Table 2-4, <i>Agilent E1446A Performance Test Record</i> . This form can be copied, if desired.		

Verification Test Examples

Each verification test procedure includes an example program that performs the test. All example programs assume the following configuration:

- Controller is an HP 9000 Series 200/300 computer
- Programming language is BASIC
- Amplifier address is 70911 (logical address is 88)
- Amplifier Commander is an Agilent E1405/E1406
- DMM is an Agilent 3458A at address 722

Using an Agilent E1445A as the Commander

The procedures and examples in this chapter assume that the amplifier is configured as a stand-alone instrument. (i.e., it is not a servant of an Agilent E1445A Arbitrary Function Generator). To use an Agilent E1445A as the commander, make sure that the amplifier is placed in the servant area of the E1445A, then send all commands to the E1445A address (see the *Agilent E1446A User's Manual* for more information).

The procedures and examples in this chapter can be modified to work with an E1445A as the Commander by changing the following keywords as shown and sending all commands to the E1445A.

Agilent E1405/E1406 Commander	Agilent E1445A Commander
INPut[1]	INPut[1]
:ATTenuation	:ATTenuation
:IMPedance	:IMPedance
INPut2	INPut2
:ATTenuation	:ATTenuation
:IMPedance	:IMPedance
OUTPut1	OUTPut2
:ATTenuation	:ATTenuation
:IMPedance	:IMPedance
:OVERload?	:OVERload?
[:STATe]	[:STATe]
:ACTual?	:ACTual?
OUTPut2	OUTPut3
:IMPedance	:IMPedance
OUTPut3	OUTPut4
:IMPedance	:IMPedance
SOURce:VOLTage	SOURce2:VOLTage
[:LEVel][:IMMediate]:OFFSet	[:LEVel][:IMMediate]:OFFSet

Agilent E1446A Commands

Functional Verification

The purpose of this test is to verify communication with the mainframe or command module. No attempt is made to verify that the amplifier is meeting specifications. Functional Verification for the amplifier is accomplished by performing the Self-Test described below.

Self-Test Procedure

- 1. Remove any connections to the amplifier front panel.
- 2. Reset the amplifier:

*RST;*CLS

3. Execute the amplifier self-test:

* TST?

Self-test command

status registers

Reset amplifier and clear

4. Read the result. A "0" indicates that the test passed. If a failure occurs, the amplifier returns a "1" and generates an error message that identifies the cause of the failure.

Example Program

10! RE-STORE "SELF_TEST"

- 20 DIM Result\$[255]
- 30 ASSIGN @Amp TO 70911
- 40 !
- 50 OUTPUT @Amp;"*RST;*CLS"!Reset amplifier
- 60 OUTPUT @Amp;"* TST?"!Perform Self-test
- 70 ENTER @Amp;Result\$
- 80 PRINT Result\$
- 90 END

Operation Verification	Operation V that follow. following tes • Test 2-3: 1 • Test 2-4: 1 • Test 2-5: 0	tion Verification is a subset of the Performance Verification tests ollow. For the amplifier, Operation Verification consists of the ing tests: 2-3: Low-level Outputs Test 2-4: Main Output Test 2-5: Offset DAC Test		
Performance Verification	The procedures in this section are used to test the amplifier's electrical performance using the specifications in Appendix A of the <i>Agilent E1446A User's Manual</i> as the performance standards. These tests are suitable for incoming inspection, troubleshooting, and preventive maintenance. The results of the Performance Verification tests should be recorded in the Performance Test Record (Table 2-4). Performance Verification includes the following tests:			
	Test # Test Name			
	2-1 2-2 2-3 2-4	Input Attenuation Test Output Attenuation Test Low-Level Outputs Test Main Output Test		

2-5Offset DAC Test2-6Bandwidth Test

Test 2-1: Input Attenuator Test

Description The purpose of this test is to verify that the amplifier meets its specifications for input attenuator accuracy.

Equipment Setup

- Set Source to: DCV
- Set DMM to: DCV, autorange
- Connect the DMM to the amplifier as shown in Figure 2-1

Figure 2-1. Input Attenuation Test Setup

Test Procedure

1. Reset the amplifier:

*RST;*CLS

Reset amplifier and clear status registers

2. Set the amplifier Input1 attenuation:

INP1:ATT 0

- 3. Connect the Source to Input1 as shown in Figure 2-1.
- 4. Set the Source to + 0.5 VDC and measure the amplifier output with the DMM. Repeat with the Source set to -0.5 VDC. Average the two readings to get a reference level:

Reference Level (V) = $\frac{\text{Positive Reading (V)} - \text{Negative Reading (V)}}{2}$

5. Set the amplifier Input1 attenuation to 1 dB:

INP1:ATT 1

6. Measure a + 0.5 VDC signal and a -0.5 VDC signal as in step 4. Average the two readings:

Averaged Reading (V) = $\frac{\text{Positive Reading (V)} - \text{Negative Reading (V)}}{2}$

7. Calculate the attenuation using the results from steps 4 and 6. Record the result in Table 2-4.

Attenuation (dB) =
$$20 \cdot \log \left(\frac{\text{Averaged Reading (V)}}{\text{Reference Level (V)}} \right)$$

8. Repeat steps 5 - 7 for the attenuations shown below, changing step 5 as specified:

Attenuation	Step 5
Setting (dB)	Command
2	INP1:ATT 2
4	INP1:ATT 4
8	INP1:ATT 8
16	INP1:ATT 16

9. Set the amplifier Input2 attenuation:

INP2:ATT 0

- 10. Connect the Source to Input2 as shown in Figure 2-1.
- 11. Repeat steps 4 8 for Input2, changing step 5 as shown below.

Attenuation	Step 5
Setting (dB)	Command
1	INP2:ATT 1
2	INP2:ATT 2
4	INP2:ATT 4
8	INP2:ATT 8
16	INP2:ATT 16

Example Program

10 !	RE-STORE "INPUT_ATTN"
20	!
30	! Set up I/O path
40	ASSIGN @Amp TO 70911
50	ASSIGN @Dmm TO 722
60	!
70	! Initialize variables
80	Vin= .5
90	!
100	! Set up DMM
110	DISP "Connect DMM to Diff + Output, then press 'Continue'"
120	PAUSE
130	CLEAR SCREEN
140	OUTPUT @Dmm;"PRESET NORM;DCV;RANGE AUTO"
150	WAIT 1
160	!
170	! Set up amplifier
180	OUTPUT @Amp;"* RST;* CLS" !Reset amplifier
190	WAIT .5
200	!
210	! Perform test
220	FOR Ch= 1 TO 2
230	OUTPUT @Amp;"INP"&VAL\$(Ch)&":ATT 0"
240	!
250	DISP "Connect Source to Input"&VAL\$(Ch)&", then press 'Continue'"
260	PAUSE
270	DISP
280	!
290	GOSUB Measure
300	Ref_level= (Pos_rdg-Neg_rdg)/2
310	!
320	PRINT TAB(12);"Input "&VAL\$(Ch)
330	PRINT
340	PRINT USING "10A,10X,12A";"Atten (dB)","Reading (dB)"
350	PRINT
360	FOR I= 0 TO 4 !Loop through attenuations
370	Attn= 2^{1} I
380	OUTPUT @Amp;"INP"&VAL\$(Ch)&":ATT "&VAL\$(Attn)
400	WAIT .5
410	!
420	GOSUB Measure
430	Ave_rdg= (Pos_rdg-Neg_rdg)/2

Continued on next page

440 Result_db= 20* LGT(Ave_rdg/Ref_level) 450 Result_db= PROUND(Result_db,-4) PRINT USING "4X,DD,16X,MDD.4D";Attn,Result_db 460 470 NEXT I INext attenuation 480 PRINT PRINT 490 500 NEXT Ch !Next input 510 ! 520 Quit: ! 530 ASSIGN @Amp TO * 540 ASSIGN @Dmm TO * 550 STOP 560 ! 570 Measure: ! 580 !Measure positive signal 590 DISP "Set Source to "&VAL\$(Vin)&" VDC, then press 'Continue'" 600 PAUSE 610 DISP 620 OUTPUT @Dmm;"TRIG SGL" 630 ENTER @Dmm;Pos_rdg 640 ! 650 !Measure negative signal 660 DISP "Set Source to "&VAL\$(-Vin)&" VDC, then press 'Continue'" 670 PAUSE 680 DISP 690 OUTPUT @Dmm;"TRIG SGL" 700 ENTER @Dmm;Neg_rdg 710 RETURN 720 ! 730 END

Test 2-2: Output Attenuator Test

Description	The purpose of this test is to verify that the amplifier meets its
	specifications for output attenuator accuracy.

Equipment Setup

- Set Source to: DCV
- Set DMM to: DCV, autorange
- Connect the DMM to the amplifier as shown in Figure 2-2

Figure 2-2. Output Attenuation Test Setup

Test Procedure

1. Reset the amplifier:

*RST;*CLS

Reset amplifier and clear status registers

- 2. Connect the Source to Input1 as shown in Figure 2-2.
- 3. Set the amplifier output attenuation to 0 dB:

OUTP1:ATT 0

4. Set the Source to + 0.5 VDC and measure the amplifier output with the DMM. Repeat with the Source set to -0.5 VDC. Average the two readings to get a reference level:

Reference Level (V) = $\frac{\text{Positive Reading (V)} - \text{Negative Reading (V)}}{2}$

5. Set the amplifier Output attenuation to 20 dB:

OUTP1:ATT 20

6. Measure a + 0.5 VDC signal and a -0.5 VDC signal as in step 4. Average the two readings:

Averaged Reading (V) = $\frac{\text{Positive Reading (V)} - \text{Negative Reading (V)}}{2}$

7. Calculate the attenuation using the results from steps 4 and 6. Record the results in Table 2-4:

Attenuation (dB) =
$$20 \cdot \log \left(\frac{\text{Averaged Reading (V)}}{\text{Reference Level (V)}}\right)$$

- 8. Connect the Source to Input2 as shown in Figure 2-2.
- 9. Repeat steps 4 7 for Input2.

Example Program

10 !	RE-STORE "OUTPUT_ATTN"
20	: Set up 1/0 peth
30	ASSION @Amp TO 70011
40	
50	ASSIGN @Dmm TO 722
60 70	
70	
80	VIN= .5
90	
100	
110	DISP "Connect DMM to Main Output, then press 'Continue'"
120	PAUSE
130	CLEAR SCREEN
140	OUTPUT @Dmm;"PRESET NORM;DCV;RANGE AUTO"
150	WAIT 1
160	
170	! Set up amplifier
180	OUTPUT @Amp;"* RST;* CLS" !Reset amplifier
190	WAIT .5
200	!
210	! Perform test
220	FOR Ch= 1 TO 2
230	DISP "Connect Source to Input"&VAL\$(Ch)&", then press 'Continue'"
240	PAUSE
250	DISP
260	!
270	120 dB attenuator OFF
280	OUTPUT @Amp;"OUTP1:ATT 0"
290	WAIT .5
300	GOSUB Measure
310	Ref_level= (Pos_rdg-Neg_rdg)/2
320	!
330	PRINT TAB(12);"Input "&VAL\$(Ch)
340	PRINT
350	!
360	20 dB attenuator ON
370	OUTPUT @Amp;"OUTP1:ATT 20"
380	WAIT .5
390	GOSUB Measure
400	Ave_rdg= (Pos_rdg-Neg_rdg)/2
410	!

Continued on next page

420 Result_db= 20* LGT(Ref_level/Ave_rdg) 430 Result_db= PROUND(Result_db,-4) PRINT "Reading (dB) = ";Result_db 440 450 PRINT 460 PRINT 470 NEXT Ch !Next input 480 ! 490 Quit: ! 500 ASSIGN @Amp TO * 510 ASSIGN @Dmm TO * 520 STOP 530 ! 540 Measure: ! 550 !Measure positive signal 560 DISP "Set Source to "&VAL\$(Vin)&" VDC, then press 'Continue'" 570 PAUSE 580 DISP 590 OUTPUT @Dmm;"TRIG SGL" 600 ENTER @Dmm;Pos_rdg 610 ! 620 !Measure negative signal 630 DISP "Set Source to "&VAL\$(-Vin)&" VDC, then press 'Continue'" 640 PAUSE 650 DISP 660 OUTPUT @Dmm;"TRIG SGL" 670 ENTER @Dmm;Neg_rdg 680 RETURN 690 ! 700 END

Test 2-3: Low-level Outputs Test

Description	The purpose of this test is to verify that the amplifier meets its accuracy
	specifications for low-level (differential) outputs.

Equipment Setup

- Set Source to: DCV
- Set DMM to: DCV, 10 V range

Test Procedure

1. Reset the amplifier:

*RST;*CLS

Reset amplifier and clear status registers

Repeat steps 2-5 for each entry listed in Table 2-1:

- 2. Connect the DMM to the amplifier output specified in Table 2-1 (see Figure 2-3).
- 3. Connect the Source to the amplifier input specified in Table 2-1 (see Figure 2-3).
- 4. Set the Source to the input voltage specified in Table 2-1.
- 5. Measure the amplifier output with the DMM. Record the results in Table 2-4.

Connect DMM to:	Connect Source to:	Input Voltage (VDC)	Expected Output (VDC)
Diff+	Input1	0.5	1.0
Diff+	Input1	0.75	1.5
Diff+	Input1	-0.75	-1.5
Diff+	Input2	0.5	1.0
Diff-	Input1	0.5	1.0
Diff-	Input1	0.75	1.5
Diff-	Input1	-0.75	-1.5
Diff-	Input2	0.5	1.0

Table 2-1. Low-level Outputs Test

Example Program

_		
-	10 !	RE-STORE "LL_OUT"
	20	DIM Nominal(1:4),Input\$(1:4)[10]
	30	!
	40	! Set up I/O path
	50	ASSIGN @Amp TO 70911
	60	ASSIGN @Dmm TO 722
	70	!
	80	! Initialize variables
	90	Gain= 2.0
	100	RESTORE Data_nominal
	110	READ Nominal(*)
	120	!
	130	RESTORE Data_input
	140	READ Input\$(*)
	150	!
	160	! Set up DMM and source
	170	OUTPUT @Dmm;"PRESET NORM;DCV;RANGE 10"
	190	!
	200	! Set up amplifier
	210	OUTPUT @Amp;"*RST;*CLS" !Reset amplifier
	220	WAIT .5
	230	!
	240	! Perform test
	250	FOR J= 1 TO 2
	260	IF J= 1 THEN
	270	Output\$= "DIFF+ "
	280	ELSE
	290	Output\$= "DIFF-"

Continued on next page

END IF 300 310 ! 320 DISP "Connect DMM to "&Output\$&", then press 'Continue'" 330 PAUSE 340 DISP 350 PRINT TAB(23);Output\$ 360 PRINT PRINT USING "5A,6X,9A,4X,11A,4X,11A";"Input","Input (V)","Nominal (V)", "Reading (V)" 370 PRINT 380 390 FOR I= 1 TO 4 400 Input_v= Nominal(I)/(Gain*((-1)^ (Output\$= "DIFF-"))) 410 !Test connections 420 IF I= 1 OR I= 4 THEN DISP "Connect Source to "&Input\$(I)&", then press 'Continue'" 430 440 PAUSE 450 END IF 460 DISP 470 **GOSUB** Measure 480 PRINT USING "6A,6X,MD.3D,8X,MD.3D,9X,MD.5D";Input\$(I),Input_v,Nominal(I),Rdg 490 NEXT I 500 PRINT 510 PRINT 520 NEXT J 530 Quit: ! 540 ASSIGN @Amp TO * 550 ASSIGN @Dmm TO * 560 STOP 570 Measure: ! 580 !SET SOURCE 590 DISP "Set Source to "&VAL\$(Input_v)&" VDC, then press 'Continue'" 600 PAUSE 610 DISP 620 !Measure output 630 OUTPUT @Dmm;"TRIG SGL" 640 ENTER @Dmm;Rdg 650 Rdg= PROUND(Rdg,-5) 660 RETURN 670 Data nominal: ! 680 DATA 1.0,1.5,-1.5,1.0 690 Data_input: ! 700 DATA INPUT1, INPUT1, INPUT1, INPUT2 710 END

Test 2-4: Main Output Test

Description The purpose of this test is to verify that the amplifier meets its accuracy specifications for the main output.

Equipment Setup

- Set Source to: DCV
- Set DMM to: DCV, autorange
- Connect the DMM to the amplifier as shown in Figure 2-4

Figure 2-4. Main Output Test Setup

Test Procedure 1. Reset the amplifier:

*RST;*CLS

Reset amplifier and clear status registers

- 2. Connect the Source to the amplifier Input1 as shown in Figure 2-4.
- 3. Set the Source to + 1 VDC and measure the amplifier output. Record the result in Table 2-4.
- 4. Set the Source to -1 VDC and measure the amplifier output. Record the result in Table 2-4.
- 5. Repeat steps 3 and 4 with Source connected to Input2. Record the results in Table 2-4.

Example Program

10 !	RE-STORE "MAIN_OUT"
20	DIM Nominal(1:2)
30	!
40	! Set up I/O path
50	ASSIGN @Amp TO 70911
60	ASSIGN @Dmm TO 722
70	!
80	! Initialize variables
90	Gain= 20.0
100	RESTORE Data_nominal
110	READ Nominal(*)
120	!
130	! Set up DMM and Source
140	OUTPUT @Dmm;"PRESET NORM;DCV;RANGE AUTO"
150	WAIT .5
160	DISP "Connect DMM to Main Output of amplifier, then press 'Continue'"
170	PAUSE
180	CLEAR SCREEN
190	!
200	! Set up amplifier
210	OUTPUT @Amp;"* RST;* CLS" !Reset amplifier
220	WAIT .5
230	!
240	! Perform test
250	FOR Ch= 1 TO 2
260	DISP "Connect Source to Input"&VAL\$(Ch)&", then press 'Continue'"
270	PAUSE
280	DISP
290	!
300	PRINT TAB(17);"INPUT"&VAL\$(Ch)
310	PRINT
320	PRINT USING "9A,5X,11A,4X,11A";"Input (V)","Nominal (V)","Reading (V)"
330	PRINT
340	!
350	FOR I= 1 TO 2
360	Input_v= Nominal(I)/Gain
370	!

Continued on next page

380 **GOSUB** Measure PRINT USING "1X,SD.3D,9X,SDD.3D,7X,SDD.5D";Input_v,Nominal(I),Rdg 390 400 NEXT I 410 PRINT 420 PRINT 430 NEXT Ch 440 ! 450 Quit: ! 460 ASSIGN @Amp TO * 470 ASSIGN @Dmm TO * 480 STOP 490 ! 500 Measure: ! 510 !Set Source 520 DISP "Set Source to "&VAL\$(Input_v)&" VDC, then press 'Continue'" 530 PAUSE 540 DISP 550 ! 560 !Measure output 570 OUTPUT @Dmm;"TRIG SGL" 580 ENTER @Dmm;Rdg 590 Rdg= PROUND(Rdg,-5) 600 RETURN 610 ! 620 Data_nominal: ! 630 DATA 20.0,-20.0 640 END

Test 2-5: Offset DAC Test

Description	The purpose of this test is to verify that the amplifier meets its offset
	DAC accuracy specifications.

Equipment Setup

- Set DMM to: DCV, autorange
- Connect the DMM to the amplifier as shown in Figure 2-5

Figure 2-5. Offset DAC Test Setup

Test Procedure

1. Reset the amplifier:

*RST;*CLS

Reset amplifier and clear status registers

Repeat steps 2 and 3 for each entry in Table 2-2:

2. Set the amplifier offset voltage:

VOLT:OFFS < offset voltage>

where < offset voltage> is the value specified in Table 2-2.

3. Measure the amplifier output with the DMM and record the result in Table 2-4.

Because the DMM is a high-impedance load, the reading should be equal to twice the amplifier's offset voltage setting.

Offset Voltage	Expected reading
(VDC)	(VDC)
-10.0	-20.0
-5.0	-10.0
0.0	0.0
5.0	10.0
9.9996	19.9992

Table 2-2. Offset DAC Test Points

Example Program

Continued on next page

NOTE

```
210 !----- Perform test ------
220 PRINT USING "11A,8X,11A"; "Nominal (V)", "Reading (V)"
230 PRINT
240 !
250 FOR I= 1 TO 5
260
      Dac_v= (Nominal(I)/2.0)
      GOSUB Measure
270
      Result= PROUND(Rdg,-6)
280
      PRINT USING "1X,SDD.4D,11X,SDD.5D";Nominal(I),Result
290
300 NEXTI
310 !
320 Quit: !
330 ASSIGN @Amp TO *
340 ASSIGN @Dmm TO *
350 STOP
360 !
370 Measure: !
380 !Measure output
390 OUTPUT @Amp;"VOLT:OFFS "&VAL$(Dac_v)
400 OUTPUT @Dmm;"TRIG SGL"
410 ENTER @Dmm;Rdg
420 RETURN
430 !
440 Data_nominal: !
450 DATA -20.0,-10.0,0.0,10.0,19.9992
460 END
```

Test 2-6: Bandwidth Test

Description	The purpose of this test is to verify that the amplifier meets its
	bandwidth specifications.

- **Equipment Setup**
- Set Spectrum Analyzer's tracking generator to -10 dBm (nominal)

Test Procedure

1. Reset the amplifier:

*RST;*CLS

Reset amplifier and clear status registers

Repeat steps 2 - 8 for each entry in Table 2-3:

- 2. Connect the Spectrum Analyzer tracking generator output to the amplifier input specified in Table 2-3 (see Figure 2-6).
- 3. Set the Spectrum Analyzer range to the value specified in Table 2-3.
- 4. Connect the Spectrum Analyzer 50 Ω input to the amplifier output specified in Table 2-3 (see Figure 2-6).

- 5. Set the Spectrum Analyzer as follows:
 - Resolution bandwidth: 30 Hz
 - Video bandwidth: 100 Hz
 - Sweep mode: Manual
 - Manual frequency: 100 Hz
- 6. Note the amplitude reading at 100 Hz. This value will be used as the reference level in step 8.
- 7. Set the Spectrum Analyzer as follows:
 - Resolution bandwidth: 10 kHz
 - Video bandwidth: 10 kHz
 - Sweep mode: Continuous
- 8. Starting from 100 Hz, move the marker to the right until the amplitude reading is 3 dB below the reference level found in step 6. The amplifier bandwidth is equal to the marker frequency at this point. Record the result in Table 2-4.

If the maximum frequency of the Spectrum Analyzer is reached before the 3 dB frequency, record the result as '> F_{max} ', where F_{max} is the maximum frequency of the Spectrum Analyzer. If the Spectrum Analyzer is an Agilent 3585A, for example, the result should be written as '> 40E6'.

Connect tracking generator to:	Connect Spectrum Analyzer input to:	Spectrum Analyzer Range:		
Input1 Input1 Input2 Input2 Input2	Main Diff+ Diff- Main Diff+ Diff-	15 dB -5 dB -5 dB 15 dB -5 dB -5 dB		

Table 2-3. Bandwidth Test Points

NOTE

Example Program

10 !	RE-STORE "BANDWIDTH"
20	DIM Output\$(1:3)[10]
30	
40	! Set up I/O paths
50	ASSIGN @Amp TO 70911
60	
70	! Initialize variables
80	Max_freq= 4.0E+ 7
90	!
100	RESTORE Data_output
110	READ Output\$(*)
120	!
130	! Set up amplifier
140	OUTPUT @Amp;"*RST;*CLS" !Reset amplifier
150	WAIT .5
160	!
170	! Perform test
180	DISP "Set Analyzer Tracking Generator to -10 dBm (nominal), then press 'Continue'"
190	PAUSE
200	!
210	FOR Ch= 1 TO 2
220	DISP "Connect Analyzer Tracking Generator to INPUT"&VAL\$(Ch)&", then press 'Continue'"
230	PAUSE
240	DISP
250	!
260	FOR I= 1 TO 3
270	DISP "Connect "&Output\$(I)&" to Analyzer 50ohm input, then press 'Continue'"
280	PAUSE
290	DISP
300	!
310	IF Output\$(I)= "MAIN" THEN
320	Range\$= "15dBm"
330	ELSE
340	Range\$= "-5dBm"
350	END IF
360	!
370	PRINT "Set up Analyzer:"
380	PRINT
390	PRINT "Range: "&Range\$
400	PRINT " Resolution BW: 30 Hz"
410	PRINT " Video BW: 100 Hz"

Continued on next page

PRINT " 420 Sweep Mode: Manual" 430 PRINT " Manual Frequency: 100 Hz" INPUT "Enter amplitude at 100 Hz (in dBm):",Ref_level 440 450 **CLEAR SCREEN** 460 ! GOSUB Meas_bw 470 480 PRINT "Bandwidth (Hz) = "&VAL\$(Bandwidth) DISP "Press 'Continue' when ready" 490 PAUSE 500 510 **CLEAR SCREEN** 520 NEXT I 530 NEXT Ch 540 ! 550 Quit: ! 560 ASSIGN @Amp TO * 570 STOP 580 ! 590 Meas_bw: ! 600 PRINT "Set up Analyzer:" 610 PRINT 620 PRINT " Resolution BW: 10 kHz" 630 PRINT " Video BW: 10 kHz" 640 PRINT " Sweep Mode: Continuous" 650 DISP "Press 'Continue' when ready" 660 PAUSE 670 CLEAR SCREEN 680 ! 690 PRINT "INPUT"&VAL\$(Ch)&"/"&Output\$(I)&" OUTPUT" 700 PRINT 710 PRINT "Reference Level (dBm) = ";Ref_level 720 PRINT 730 DISP "Move marker until amplitude is 3dB below the reference, then press 'Continue'" 740 PAUSE 750 INPUT "Enter marker frequency (in Hz)", Bandwidth 760 RETURN 770 ! 780 Data_output: ! 790 DATA MAIN, DIFF+, DIFF-800 END

Performance Test Record	Table 2-4, <i>Performance Test Record for the Agilent E1446A Amplifier</i> , is a form you can copy and use to record performance verification test results for the amplifier. Table 2-4 shows amplifier accuracy, measurement uncertainty, and test accuracy ratio (TAR) values.
Amplifier Test Limits	Test limits are defined using the specifications in Appendix A of the <i>Agilent E1446A User's Manual</i> . The specifications for Bandwidth are single-sided (i.e., there is a lower limit but no upper limit). In the Performance Test Record, the Maximum column will be blank for the Bandwidth Test.

Measurement Uncertainty For the performance verification tests in this manual, the measurement uncertainties are based on the accuracy specifications for the following test equipment:

Performance Test	Test Equipment	
1. Input Attenuation	Agilent 3458A	
2. Output Attenuation	Agilent 3458A	
3. Low-Level Outputs	Agilent 3325B Agilent 3458A	
4. Main Output	Agilent 3325B Agilent 3458A	
5. Offset DAC	Agilent 3458A	
6. Bandwidth	Agilent 3585A	

Test Accuracy Ratio (TAR)

Test Accuracy Ratio (TAR) for the Agilent E1446A is defined as: Amplifier Accuracy divided by Measurement Uncertainty, i.e.,

> TAR = <u>Maximum – Expected Reading</u> Measurement Uncertainty

For single-sided measurements, Test Accuracy Ratio is not defined, so 'NA' (Not Applicable) will appear in the TAR column. For TARs that exceed 10:1, the entry is '> 10:1'.

Test Facility:	
Name	Report No
Address	Date
City/State	Customer
Phone	Tested by
Model	Ambient temperature°C
Serial No	Relative humidity%
Options	Line frequency Hz (nominal)
Firmware Rev	
Special Notes:	

Table 2-4. Performance Test Record for the Agilent E1446A (Page 1 of 4)

Model No.	Trace No.	Cal Due Date
	Model No.	Model No. Trace No.

Table 2-4. Performance Test Record for the Agilent E1446A (Page 2 of 4)

_ Date __

Model _____ Report No. _____

Model	Report No			_ Date			
Test		Magazirad		Masa			
Description	Minimum	Reading	Maximum	Uncert	TAR		
Test 2-1. Input Attenuator Test (Values	Test 2-1. Input Attenuator Test (Values in dB)						
Input1:							
1 dB attenuator	-1.1		-0.9	5.4E-5	> 10:1		
2 dB attenuator	-2.1		-1.9	5.5E-5	> 10:1		
4 dB attenuator	-4.1		-3.9	5.8E-5	> 10:1		
8 dB attenuator	-8.1		-7.9	6.6E-5	> 10:1		
16 dB attenuator	-16.1	<u> </u>	-15.9	9.9E-5	> 10:1		
Input2:							
1 dB attenuator	-1.1		-0.9	5.4E-5	> 10:1		
2 dB attenuator	-2.1		-1.9	5.5E-5	> 10:1		
4 dB attenuator	-4.1		-3.9	5.8E-5	> 10:1		
8 dB attenuator	-8.1		-7.9	6.6E-5	> 10:1		
16 dB attenuator	-16.1		-15.9	9.9E-5	> 10:1		
Test 2-2. Output Attenuator Test (Valu	es in dB)						
Input1:							
20 dB attenuator	-20.1	<u> </u>	-19.9	5.3E-5	> 10:1		
Input?							
20 dB attenuator	-20 1		-19 9	5 3E-5	> 10.1		
	-20.1		-13.5	0.0∟-0	> 10.1		
Test 2-3. Low-level Outputs Test (Values in Vdc)							
Diff+ Output:							
0.5 V input (Input1)	0.990		1.010	6.1E-6	> 10:1		
0.75 V input (Input1)	1.485		1.515	8.9E-6	> 10:1		
-0.75 V input (Input1)	-1.515		-1.485	8.9E-6	> 10:1		
0.5 V input (Input2)	0.990		1.010	6.1E-6	> 10:1		
Diff- Output:							
-0.5 V input (Input1)	0.990		1.010	6.1E-6	> 10:1		
-0.75 V input (Input1)	1.485		1.515	8.9E-6	> 10:1		
0.75 V input (Input1)	-1.515		-1.485	8.9E-6	> 10:1		
-0.5 V input (Input2)	0.990		1.010	6.1E-6	> 10:1		

Table 2-4. Performance Test Record for the Agilent E1446A (Page 3 of 4)

Model	Report No	Report No		Date		
Test Description	Minimum	Measured Reading	Maximum	Meas Uncert	TAR	
Test 2-4. Main Output Test (Values in	n Vdc)					
Input1: 1 V input -1 V input	19.8 -20.2		20.2 -19.8	1.6E-4 1.6E-4	> 10:1 > 10:1	
Input2: 1 V input -1 V input	19.8 -20.2		20.2 -19.8	1.6E-4 1.6E-4	> 10:1 > 10:1	
Test 2-5. Offset DAC Test (Values in Offset Voltage: -10 V -5 V 0 V 5 V 9.9996 V	Vdc)* -20.24 -10.17 -0.10 9.83 19.76		-19.76 -9.83 0.10 10.17 20.24	4.8E-5 2.5E-5 1.0E-6 2.5E-5 4.8E-5	> 10:1 > 10:1 > 10:1 > 10:1 > 10:1 > 10:1	
Test 2-6. Bandwidth Test (Values in	Hz)**					
Input1: Main Output Diff+ Output Diff- Output	10E6 30E6 30E6			4.0E4 4.0E4 4.0E4	NA NA NA	
Input2: Main Output Diff+ Output Diff- Output	10E6 30E6 30E6			4.0E4 4.0E4 4.0E4	NA NA NA	

Table 2-4. Performance Test Record for the Agilent E1446A (Page 4 of 4)

* Due to the high impedance load, the expected reading is equal to twice the selected offset voltage. ** Single-sided test -- Maximum is not applicable

Introduction	This chapter contains information for ordering replaceable parts for the Agilent E1446A amplifier.
Exchange Assemblies	Table 3-1 lists assemblies that may be replaced on an exchange basis (NEW/EXCHANGE ASSEMBLIES). Exchange assemblies are available only on a trade-in basis. Defective assemblies must be returned for credit. Assemblies required for spare parts stock must be ordered by the new assembly part number.
Ordering Information	To order a part listed in Table 3-1, specify the Agilent Technologies part number and the quantity required. Send the order to your nearest Agilent Technologies Sales and Support Office. A list of Sales and Support Offices can be found at the end of this manual.

Replaceable Parts List

Table 3-1 lists the replaceable parts for the Agilent E1446A amplifier. See Figure 3-1 for locations of replaceable parts. Table 3-2 lists the reference designators for the amplifier. Table 3-3 is the code list of manufacturers.

Reference Designator	Agilent Part Number	Qty	Part Description		Mfr. Part Number
			NEW/EXCHANGE ASSEMBLIES		
	E1446-66201 E1446-69201	1 1	E1446A (NEW) E1446A (EXCHANGE)	28480 28480	E1446-66201 E1446-69201
A1 A1CR301	E1446-66501 1990-0966	1 2	PRINTED CIRCUIT ASSEMBLY LED-LAMP LUM-INT=3MCD IF=20MA-MAX BVR=5V GRN LENS	28480 28480	E1446-66501 HLMP-5050
A1CR601	1990-0966		LED-LAMP LUM-INT=3MCD IF=20MA-MAX BVR=5V	28480	HLMP-5050
A1F201-F206	2110-0665	6	FUSE-SUBMINIATURE 1A 125V NTD AX UL CSA	75915	R251001T1
A1J701-J702 A1J901-J902 A1J1001	1250-1842 1250-1842 1250-1842	5	CONNECTOR-RF BNC RCPT PC-W-STDFS 50-OHM CONNECTOR-RF BNC RCPT PC-W-STDFS 50-OHM CONNECTOR-RF BNC RCPT PC-W-STDFS 50-OHM	00779 00779 00779	227677-1 227677-1 227677-1
A1P1-P2	1252-1596	2	CONNECTOR-POST TYPE 2.54-PIN-SPCG	06776	DIN-96CPC-SRI-TR
A1SP301	3101-3066	1	96-CONTACT SWITCH-DIP ROCKER 8-1A 0.15A 30VDC	81073	76YY22968S
			HARDWARE AND MISCELLANEOUS PARTS		
	3050-0604	5	WASHER-FL 7/16 IN .5-IN-ID .75-IN-OD	86928	5710-94-16
HDL1 HDL2	E1400-84105 E1400-84106	1 1	EXT HANDLE KIT-BOTTOM EXT HANDLE KIT-TOP	28480 28480	E1400-84105 E1400-84106
HDW1-HDW5	2950-0054	5	NUT-HEX-DBL-CHAM 1/2-28-THD .125-IN-THK	28480	2950-0054
MP1	8160-0686	1	RFI STRIP-FINGERS BE-CU TIN-PLATED	30817	00786-185
PNL1	E1446-00201	1	FRONT COVER	28480	E1446-00201
SCR1-SCR2 SCR3-SCR4 SCR5-SCR6 SCR7-SCR13	0515-1968 0515-0368 0515-1375 0515-1135	2 2 2 7	SCREW-PH M2.5 X 11TX SCREW-MACHINE M2.5 X 0.45 12MM-LG PAN-HD SCREW-MACHINE M2.5 X 0.45 6MM-LG FLAT-HD SCREW-MACHINE M3 X 0.5 25MM-LG FLAT-HD	28480 28480 83486 28480	0515-1968 0515-0368 343-300-02506 0515-1135
SHD1 SHD2	E1446-00601 E1446-00602	1 1	TOP SHIELD BOTTOM SHIELD	28480 28480	E1446-00601 E1446-00602
	E1446-60000 E1400-90021 E1446-10031 E1446-10032 E1446-90001	1 1 1 1	E1446A MANUAL KIT INSTALLATION NOTE-DRIVER DOWNLOAD INSTR. DRIVER, LIF 3.5" INSTR. DRIVER, DOS 3.5" AMPLIFIER/DAC SUMMING USER'S MANUAL	28480 28480 28480 28480 28480 28480	E1446-60000 E1400-90021 E1446-10031 E1446-10032 E1446-90001

Table 3-1. Agilent E1446A Replaceable Parts

Table 3-2. Agilent E1446A Reference Designators

Agilent E1446A Reference Designators			
Aassembly CRdiode HDLhandle HDWhardware Jelectrical connector (jack) JMjumper Ffuse	MP mechanical part P electrical connector (plug) PNL panel SCR screw SHD shield SP switch		

Table 3-3. Agilent E1446A Code List of Manufacturers

Mfr.	Manufacturer's	Manufacturer's	Zip
Code	Name	Address	Code
00779	AMP INC	HARRISBURG, PA US	17111
06776	ROBINSON NUGENT INC	NEW ALBANY, IN US	47150
28480	AGILENT TECHNOLOGIES - CORPORATE	PALO ALTO, CA US	94304
30817	INSTRUMENT SPECIALTIES INC	DEL WATER GAP, PA US	18327
46384	PENN ENGINEERING & MFG CORP	DOYLESTOWN, PA US	18901
55210	GETTIG ENGINEERING & MFG CO INC	SPRING MILLS, PA US	16875
75915	LITTELFUSE INC	DES PLAINES, IL US	60016
81073	GRAYHILL INC	LA GRANGE, IL US	60525
83486	ELCO INDUSTRIES INC	ROCKFORD, IL US	61125
86928	SEASTROM MFG CO	GLENDALE, CA US	91201

Figure 3-1. Agilent E1446A Replaceable Parts

Introduction	This chapter contains service information for the Agilent E1446A amplifier, including troubleshooting guidelines and repair/maintenance guidelines.
WARNING	Do not perform any of the service procedures shown unless you are a qualified, service-trained technician, and have read the WARNINGS and CAUTIONS in Chapter 1.
Equipment Required	Equipment required for amplifier troubleshooting and repair is listed in Table 1-1, <i>Recommended Test Equipment</i> . Any equipment that satisfies the requirements given in the table may be substituted. To avoid damage to the screw head slots, use T8 and T10 Torx drivers as described in the disassembly instructions later in this chapter.
Service Aids	See Chapter 3 for descriptions and locations of Agilent E1446A replaceable parts. Service notes and service literature for the amplifier may be available through Agilent Technologies. For information, contact your nearest Agilent Technologies Sales and Support Office. A list of Sales and Support Offices can be found at the end of this manual.
Repair Strategy	If an amplifier problem cannot be isolated to one or more of the parts listed in Table 3-1, order an exchange assembly (part number E1446-90010). The defective assembly must be returned for credit.

Troubleshooting Techniques

To trouble shoot an Agilent E1446A problem, you should first identify the problem, and then isolate the cause to a replaceable part.

Identifying the Problem

Amplifier problems can be divided into three general categories:

- Operator errors
- Catastrophic failures
- Performance out of specification

Operator Errors

Apparent failures may result from operator errors. See Appendix B in the *Agilent E1446A User's Manual* for information on operator errors.

Catastrophic Failure

If a catastrophic failure occurs, see "Testing the Assembly" to troubleshoot the amplifier.

Performance Out of Specification

If the amplifier fails any of its Performance Tests, check test equipment and connections, then repeat the test. If the amplifier continues to fail one or more of the Performance Tests, the module may need to be sent in for exchange.

Testing the Assembly You can use the tests and checks in Table 4-1 to isolate the problem. See Figure 3-1 in Chapter 3 for locations of replaceable parts.

Test/Check	Reference Designator	Check:
Heat Damage		Discolored PC boards Damaged insulation Evidence of arcing
Amplifier Configuration	A1SP301	LADDR setting (factory set to 88)
Amplifier PCA	A1F201 - A1F206 A1J701 - A1J702 A1J901 - A1J902 A1J1001 A1P1 - A1P2	Fuse continuity Damaged connectors

Table	4-1.	Agilent	E1446A	Tests/Checks
Table		Agricint	L1440A	reals/oncerta

Checking for Heat Damage

Inspect the amplifier for signs of abnormal internally generated heat such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. If there is damage, do not operate the amplifier until you have corrected the problem.

Checking Switches/Jumpers

Verify that the logical address setting is set correctly (factory set at 88). See the *Agilent E1446A User's Manual* for information.

Checking the Amplifier PCAs

Check fuse continuity and inspect all connectors for bent pins or damaged contacts.

Disassembly Use the following procedure to disassemble the amplifier (see Figure 4-1):

- 1. Remove the seven T10 Torx screws on the right side panel.
- 2. Remove the nuts and washers from the front panel BNC's.
- 3. Remove the front panel handles.

Figure 4-1. Agilent E1446A Disassembly

Repair/ Maintenance Guidelines	 This section provides guidelines for repairing and maintaining the Agilent E1446A amplifier, including: ESD precautions Soldering printed circuit boards Post-repair safety checks
ESD Precautions	Electrostatic discharge (ESD) may damage static sensitive devices in the Agilent E1446A amplifier. This damage can range from slight parameter degradation to catastrophic failure. When handling amplifier assemblies, follow these guidelines to avoid damaging amplifier components:
	• Always use a static-free work station with a pad of conductive rubber or similar material when handling amplifier components.
	• If a device requires soldering, be sure the assembly is placed on a pad of conductive material. Also, be sure that you, the pad, and the soldering iron tip are grounded to the assembly.
Soldering Printed Circuit Boards	When soldering to any circuit board, keep in mind the following guidelines:
	• Avoid unnecessary component unsoldering and soldering. Excessive replacement can result in damage to the circuit board and/or adjacent components.
	• Do not use a high power soldering iron on etched circuit boards, as excessive heat may lift a conductor or damage the board.
	• Use a suction device or wooden toothpick to remove solder from component mounting holes. When using a suction device, be sure that the equipment is properly grounded.
Post-Repair Safety Checks	After making repairs to the Agilent E1446A amplifier, inspect the amplifier for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and correct the cause of the condition. Then perform the Self-Test described in Chapter 2 to verify that the amplifier is functional.