HP E5100A/B Network Analyzer

HP Instrument BASIC Users
Handbook Supplement

SERIAL NUMBERS

This manual applies directly to instruments with serial number prefix JP1KC.
For additional important information abou{ serial numbers,
read “Serial Number” in Appendix A of this Manual.

[ﬁ/' HEWLETT®

PACKARD

HP Part No. E5100-90015
Printed in JAPAN March, 1996

2nd Edition

Notice
The information contained in this document is subject to change without notice,

This document contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or transiated to another
language without the prior written consent of the Hewiett-Packard Company.

Hewlett-Packard Japan, ETD,

Kobe Instrument Division

1-3-2, Murotani, Nishi-ku, Kobe-shi,
Hyogo, 651-22 Japan

© Copyright 1893,1996 Hewlett-Packard Japan, LTD,

20d Edition

Manual Printing History

The manual printing date and part number indicate its current edition. The printing date
changes when a new edition is printed. (Minor corrections and updates that are incorporated
at reprint do not cause the date to change.) The manual part number changes when extensive
technical changes are incorporated,

Noveraber, 1995 First Edition
March, 1006 e Second Edition

tit

2nd Edition

Typeface Conventions

Bold

fialics

Computer

HARBKEYS

S0

Boldface type is used when a term is defined. For example: icons are
symbols.

Italic type is used for emphasis and for titles of manuals and other
publications.

ITtalic type is alse used for keyboard entries when a name or a variable
must be typed in place of the words in italics, For example: copy
Jilename means to type the word copy, to type a space, and then to
type the name of a file such as filed.

Computer font is used for on-screen prompts and messages.

Labeled keys on the instrument front panel are enclosed in ().

Softkeys located to the right of the CRT are enclosed in . .

Safety Symbols

General definitions of safety symbols used on equipment or in manuals.

Warning

Caution #
Note g

Warning denotes a hazard. It calls attention to a procedure, practice,
condition or the like, which, if not correctly performed or adhered to, could
result in injury or death to personnel.

Caution sign denotes a hazard. It calls attention to a procedure, practice,
condition or the like, which, if not correctly performed or adhered to, could
result damage to or destruction of part or ali of the product.

Nete denotes important information, It calls attention fto a procedure,
practice, condition or the like, which is essential to highlight.

Contents

S Lo
1. Introduction
Brief Description of HP Instrument BASIC I-1
UsingThis Manual s 1-2
2. Quick Start .

Using HP Instrument BASIC, 2-1
Connecting the Keyboardo 2-1
Allocating Screen Area for HP Instrument BASIC 2-1
Editmga Program L. L 2-2
Running the Program, 2-2
Listing the Program 2-3
Saving Programs L. e e 2-3
Listing File Names« oo 2-3
Getting Programs e e e e e e e e e e e 2-4

For More Informationo e e e 2-4

3. Analyzer Specific HP Instrument BASIC Features

Power On Auto-start Program 3-1

Display Allocation L 3-1
Run Light Indications00 Lo 3-2

Mass Storage e e e e e e e e e 3-3
Storage Unit L e e 3-3
Storage Formatl 0 o e e e e e e e, 3-3

Initialize L oL e 3-3

Graphics L L e e e e e e 3-4
HP Instrument BASIC Graphics Commands 34
Initial settingso, 3B

External RUN/CONT Connector v v v v .. 3-b

/0 Interfaces and Select Codes 35

4. Analyzer Specific HP Instrument BASIC Commands

BASIC Comamands Not Implemented 4-1

BASIC Commands Specificto HP EBI00A/B 4-1

DATE oo e e 4-2

DATESo e e e e e 4-4

READIO e e e e e e, 4-5

SETTIME e e e e e e 4-6

SETTIMEDATE o e e e e e e e e e 4-7

TIME e e e e e 4-8

TIMES e e 49

WRITEIO e e e e 4-10

Contents-1

A. Manual Changes

Introduction e e e e e e e e e e e e
Manual ChaEnges e e e e e e e e
Instruments Covered by This Manual e e e

B. Keyboard

Character Entry Keys e e e
Cursor-Control and Display-Contrel Keys
Numeric Keypad o e e e e
Editing Keys e e e e e e

Softkeys

Index

Cantents-2

Al
A-l
A2

B-1
B-2
B2
B-2
B-2

Figures

.
1-1. HP Instrument BASIC System, 1-1
2-1. Connecting a Keyboard oo 2-1
3-1. Display Allocation o e 3-2
3-2. Screen Structure e 3-4
3-3. RUN/CONT Trigger Signal 3-5
A-. Serial Number Plateo L0 o A2
B-1. Softkey Menus for HP Instrument BASIC, B-3
Tables
L
A-1. Manual Changes by Serial Number, A-1
A-2, Manual Changes by Firmware Version A-1

Contents-3

Introduction

This supplement provides a brief description of HP Instrument BASIC and an iniroduction to its
use.

Brief Description of HP Instrument BASIC

HP Instrument BASIC is a complete system controller residing inside your analyzer. It
communicates with your analyzer via HP-IB commands through the “internal” interface. It can
also communicate with other instruments, computers, and peripherals over the HP-IB interface
on the rear panel.

HP-IB
Coniroller TN
- i
ANALYZER I Instrument i
| BASIC |
, N y
Printes/Plotter | taraal intertacs 1
H?wlsl Connector H;_""Hli-
o I
e Keyboard N
Other instruments { :

CREC00T

Figure 1-1. HP Instrament BASIC System

The HP Instrument BASIC’s programming interface includes an editor and a set of programming
utilities. The utitities allow you to perform disk /O, renumber, secure, or delete all or part of
your program.

The HP Instrument BASIC command set is similar to the command set of HP 9000 Series
200/300 BASIC. Therefore, HP Instrument BASIC programs can be run on any HP BASIC
workstation with few if any changes. Porting information can be found in the HP Istrument
EBASIC Programming Techniques of the HP Instrument BASIC Users Handbook,

Intraduction 1.9

2nd Edition

Using This Manual

This supplement is not intended fo teach you the HP Instrument BASIC programming language
nor te learn how to operate the HP E5100A/B. You should became familiar with the operation
of the analyzer and the BASIC programming language before attempting to control the analyzer
using HP Instrument BASIC. I you are not familiar with HP Instrument BASIC, see chapters 1
and 2 and appendix B before trying to use it.

The organization of this supplement is described below.
m Chapter 1. Introduction

This chapter provides a brief description of HP Instrument BASIC and how o use this
manual.

Chapter 2. Quick Start

This chapter provides information on how to edit, run, save, and load the program on HP
Instrament BASIC. This chapter is useful if you are new user of HP Instrument BASIC.

Chapter 3. Analyzer Specific HP Instrument BASIC Features

This chapter summarizes the unique features specified for the analyzer.

Chapter 4. Analyzer Specific HP Instrument BASIC Commands

This chapter provides definitions for BASIC commands specific to the analyzer’s HP
Instrument BASIC.

Appendix A. Manual Changes

This appendix contains the information required to adapt this manual to earlier versions or
configurations of the analyzer than the current printing date of this manual.

Appendix B. External Keyboard

This appendix provides a reference guide to the analyzer’s HP Instrument BASIC’s key
definitions for the keyboard.

1-2 Introduction

Quick Start

This chapter provides a quick start guide for using HP Instrument BASIC. A new user can
become familiar with HP Instrument BASIC by performing these procedures.

Using HP Instrument BASIC

The following pages show how to use HP Instrument BASIC by writing, executing, listing,
saving, and getting programs,

Connecting the Keyboard

Connect the furnished keyboard to the keyboard connector on the rear panel as shown in
Figure 2-1.

=000
=0

Cr192001

Figure 2-1. Connecting a Keyboard

Allocating Screen Area for HP Instrument BASIC

Because all of the analyzer’s screen is allocated for analyzer operation after power ON, you
must allocate screen area for HP Instrument BASIC when you want to use it,

1. Press DIS

2. Verify the #

T is underlined.

3. Select your required softkey in the following keys.

Two half-sereens with one graticule display above the HP
Instrument BASIC display.

Quick Start 2-1

2nd Edition

The full screen is allocated for the HP Instrument BASIC
Display.

BASTC STATUS A full screen graticule with three status lines for HP
o Instrument BASIC under the graticule.

Editing a Program

When you edif a program, you must be in the EDIT mode.

1. Enter the EDIT mode.

w From keyboard
Type EDIT

® From front panel
Press 1

2. Verify that the cursor appears at line number 10.

3. Type the program. For example:

10 ASSIGN @Hpe5100 TO 800

20 CLEAR @Hpeb5100

30 OUTPUT @Hpe5100;"INST CH2"
40 OUTPUT@Hpe5100;"INST:STAT ON"
50 END

This program makes the channel 2 activate.
4. Exit the EDIT mode,
» From keyboard

Press or

® From front panel

Press

Running the Program
After writing the program, run the program as follows:
m From keyboard

Type RUN (Enter] or

& From front panel

Press

2.2 Quick Start

2nd Edition

Listing the Program
You can list the program on the screen or to a printer,

m Listing on the screen

2. Type LIST (Enter).
3. The program is listed on the screen.

® Listing to the printer
1. Type PRINTER IS 12 to set the output device to be a printer.
2. Type LIST (Enter).
3. The program is listed to the printer.
4, Type PRINTER IS screen to get the output device back to screen.

Saving Programs
You can save the program to the storage device.
m Save to the Buili-in flexible disk drive
1. Insert an initialized 2DD or 2HD micro flexible disk into the disk drive.
2. Type MSI ":INTERNAL,4" (Enter).
3. Type SAVE " filename "' (Enter).
m Save to RAM disk memory
1. Type MSI " :MEMORY,0" (Enter).

2. Type SAVE " filename " (Enter).
Refer to “Initialize” in Chapter 3 for initializing the RAM disk memory or the disk.

Listing File Names
You can list the file names that are stored on the storage device.
m Listing to the screen
1. Change the display allocation to either '
2. Type CAT (Enter).
3. The file names stored on the storage device are listed on the screen.
m Listing to the printer
1. Type PRINTER IS 12 10 set the output device to be a printer.
2. Type CAT

3. The file names stored on the storage device are listed on the printer.
4, Type PRINTER IS screen to get the output device back to screen.

F BASIC or ALL BASTC.

Quick Start

23

2nd Edition

Getting Programs
You can load a program from the storage device.
= Load from the Built-in disk drive
1. Insert an initialized 2DD or 2HD micro flexible disks into the disk drive.
2. Type MSI ":INTERNAL,4" (Enter).
3. Type GET " filename "(Enter).
m Load from RAM disk memory
1. Type MSI ":MEMORY,0" (Eter).
2. Type GET " filename " (Enter).

For More Information

This chapter provided an introduction to using HP Instrument BASIC. For more information,
see the following chapters and documents:

For more information on See
Keyboard and softkeys Appendix B

HP Instrument BASIC commands | HP Instrument BASIC Language Reference of the HP
Instrument BASIC Users Handbook

HP-IB commands HP-IB Command Reference

24 Quick Start

3

Analyzer Specific HP Instrument BASIC Features

This chapter summarizes the following HP Instrument BASIC features that are specific to the
analyzer:

Power On Auto-start Program
Display Allocation

Mass Storage

Graphics

External RUN/CONT Connector
I/0 Interface and Select Codes

Power On Auto-start Program

HP Instrument BASIC allows you to automatically load and execute a program file named
AUTOST during power-up.

The disk on which you stored AUTOGST must be inserted in the disk drive before the analyzer is
turned ON.

Display Allocation
Display allocation softkeys allocate the screen area for HP Instrument BASIC (see Figure 3-1).

Selects a full screen single screen or two half-screen graticules.

. Selects two half-screens, one graticule display above the HP
Instrument BASIC display.

Selects a full screen single HP Instrument BASIC display.

Selects a full screen graticule and three status lines for HP
Instrument BASIC under the graticule.

Analyzer Specific HP Instrument BASIC Features 3-1

2nd Edition

P

Print Out Arpa

68 colums ———]

RUN LIGHT

ALL INSTRUMENTY

[T

e e

26 lnms

Dispiay Une

Keyboad inpat Line

ALL BASIC

“_Evikn Deny lite WL
RN

RN LGHT

T T,

instrumeni Amss

s

m+—— 5§ colums ———*

Print Out Ares

10 lines

Dispiay Line

Keyboad Inpik tine

RUN LIGHT

HALF INSTR HALF BASIC

AT

Instrumeni Area

—

R !

i

Kaybosd Input Line -

_iv:hm Dhaplay Lins

RUN LIGHT

BASIC STATUS

T

Figure 3-1, Display Allocation

The following table lists the number of lines and columns in the BASIC print area for each
display allocation. It also shows the keyboard input line status for each allocation, When the
keyboard input line is available, you can execute BASIC commands from the keyboard,

Display Allocation BASIC Print Area | Keyboard Input Line
Columns | Lines
All instrument 0 0 not availabie
Half Instrument Half BASIC 68 10 available
ALL BASIC 68 25 availabie
BASIC Status 0] available

Run Light Indications
i (blank)

?

This indication has two possible meanings:
® Program running; CANNOT execute commands. CONTINUE not allowed.
m System executing a command entered from the keyboard; cannot enter

commands.

3-2 Rnalyzer Specific HP Instrument BASIC Features

Program stopped; can execute commands; CONTINUE not allowed.
Program paused; can execute commands; CONTINUE is allowed.
BASIC program waiting for input from keyboard; cannot execute commands.

2nd Edition

Mass Storage

Storage Unit

The analyzer has two type of storage units: the built-in flexible disk drive and the RAM disk
memory. The RAM disk memory uses a part of the RAM in the analyzer as a virtual disk drive.
The RAM disk memory can be operafed in the same way as the built-in flexible disk drive.

m Built-in flexible disk drive

The 720 Kbyte (2DD) and 1.44 Mbyte (2HD) 3.5 inch micro-flexible disk are supported.
& RAM disk memory

The RAM disk memory capacity is a maximum of 512 Kbytes.

To switch the Instrument BASIC’s storage devices, type the following statement on the
keyboard input line {Not in EDIT mode):

MSI ":INTERNAL", ":INTERNAL,4", or ":,4" the built-in flexible disk drive
MST ":MEMORY", “:MEMORY,0" or ':,0" the RAM disk memory

Storage Format

Both the built-in flexible disk drive and the RAM disk memory support the LIF and DOS
formats. The instrument automatically detects the disk format.

DOS formats supported are:

® 720 Kbyte, 80 tracks, double-sided, 9 sectors/track, 512 kbyte/sector
m 1.44 Mbyte, 80 tracks, double-sided, 18 sectors/track, 512 kbyte/sector
Initialize

You can initialize the mass storage as described below:

a Built-in flexible disk drive
. Insert your micro-flexible disk info the built-in flexible disk drive slot.

1§

2. Press !SavefReca! | METLEE L
3. Toggle the .

4

- Press

5. Press ENIT
® HAM disk memory

Analyzer Specific HP instrument BASIC Featyres 3.3

2nd Edition

Graphics

HP Instrument BASIC adds graphics capability to the analyzer. You can draw pictures on the
CRT display independent of the grids and traces.

The analyzer has two screens, the instrument screen and the graphics screen. These two
screens are always displayed together on the CRT and are not separately selectable. The
instrument screen consists of a trace display area and a softkey label area. The HP Instrument
BASIC editor is alsodisplayed on the trace display area. The graphics screen covers the trace
display area as shown in Figure 3-2. The graphics screen is like an independent transparent
overlay in fronf of the instrument screen. You cannot draw figures in the softkey label area.

{547.479) ..
._—«—-""""_A”M
o419} _ — e instrument Screen
- ¥ ARER agA
_ cE piSPLN LAREL. AR
Graphics Screen
-
/l .
(0,0 . '

Tes0uaGH

Figure 3-2. Screen Structure

Each point on the graphics screen is addressable using a coordinate address as shown in
Figure 3-2. The bottom left corner is the origin (0,0) and the top right corner is the maximum
horizontal and vertical end points (547,479). The MOVE and DRAW statement parameters are
specified using these coordinate values, Because the aspect ratio of a graphics screen is 1, you
need not adjust the aspect ratic when drawing figures.

HP Instrument BASIC Graphics Commands

The analyzer's HP Instrument BASIC has four graphics commands; MOVE, DRAW, PEN, and
GCLEAR.

MOVE Maoves the pen from its current position to the specified coordinates.
DRAW Draws a kne from the current pen position to the specified coordinates.
PEN Selects the pen used for plotting

GCLEAR Clears the graphics screen, moves the pen from its current position to the

origin (0,0}, and selects pen 1.

Notie The total times of executing the MOVE and DPRAW commmands is up to 1933, even
i if the pen position is not changed,

v

34 Analyrer Specific HP Instrument BASIC Features

2nd Edition

Initial settings
When power is turned ON, the defauli settings are as follows:

= MOVE (0,0
w PEN 1

External RUN/CONT Connector

You can use the RUN or CONT commands in a program by inputting a TFl.-compatible signal to
the External RUN/CONT connector on the rear panel. The negative-going edge of a pulse more
than 20 us wide (Tp) in the LOW state will trigger RUN or CONT.

Vih-

Positive Edge Trigger
Tp

CRTEIGT

Figure 3-3. RUN/CONT Trigger Signal

1/0 Interfaces and Select Codes

Available interfaces and their select codes are listed in the following table:

Select Codes | Devices
1 CRT
2 Keyboard
l External HP-IB interface
8 Internal HP-IB interface

Analyzer Specific HP Instrument BASIC Features 3.5

Analyzer Specific HP Instrument BASIC
Commands

BASIC Commands Not Implemented

The following commands are listed in the HP Instrument BASIC Language Reference of the HP
Instrument Users Handbook , but not implemented in the analyzer’s HP Instrument BASIC.

m OFF CYCLE

m ON CYCLE

Note GCLEAR and ON TIMEOUT commands are available, but the following
i supplementary items are added,

% = GCLEAR

Move the pen to (0,0) and select pen 1.
® OFF TIMEOUT and ON TIMEOUT

The interface select code is 7 ondy.

BASIC Commands Specific to HP E5100A/B

The following commands are nof listed in the HP Instrument BASIC Language Reference of
the HP Instrument BASIC Users Haondbook | but are available in the analyzer’'s HP Instrument
BASIC.

DATE

DATES$

READIO

SET TIME

SET TIMEDATE
TIME

TIMES
WRITEIC

Analyzer Speciic HP instrument BASIE Commands 4.1

Znd Edition

DATE

Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This command converts data formatted as (DD MMM YYYY) into the numeric value used to sef the
clack.

*“GAD—’G | formatted date —-»t/} I

e R A f

literal form of formaited date

/‘“\\ g o .
f\/ | day delimiter month delimiter |-~ year ("
L2004
Hem Description Range
formatted date string expression (see drawing and text)
day integer constant 1 to. end-of-month
month Literal (letter case ignored) JAN, FEB, MAR, APR, MAR,
APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC
year integer constant 1900 to 2079

m Example Commands

DISP DATE(¥21 MAY 1991i"™) hsplay the Julian time
Jor midnight on 21 MAY
1991.

SET TIMEDATE DATE("i1 JAN 1989i") Set the real time clock for

midright on I Jan 1991
DISP (DATE("1 JAN 1991")-DATE("11 NOV 1990")) DIV 86400 Display the number of days

between 11 Nov 1890 and
I JAN 1991,

a Semantics

The real time clock values represent Julian time, expressed in seconds. Julian time is seconds
from midnight on 24 November, B.C. 4713,

Using a value from the DATE command as the argument for SET TIMEDATE will set the clock
to midnight on the date specified. The results from the DATE and TIME commands must be
combined te set the date and time of day.

4-2 Analyzer Specific HP Instrument BASIC Commands

2nd Edition

if the DATE command is used as an argument for SET TIMEDATE to set the clock, the date
must be in the range: 1 Mar 1900 to 4 Aug 2079.

Specifying invalid date, such as the thirty-first of February, will cause an error.

Leading blanks or non-numeric characters are ignored. ASCII spaces are recommended as
delimiters between the day, month and year. However, any non-alphanumeric character,
except the negative sign {-), may be used as the delimiter.

Analyzer Specific HP Instrument BASIC Commands 4-3

2nd Edition

DATES$

Keyboard Executable Yes
Programmabile Yes
Inan IF ... THEN ... Yes

This command formats the number of seconds into a date (DD MMM YYY},

- £ i (Lo 2%
DATES —*(\(™" seconds —~——>{\);—"*|

C2IN0O3

Hem t Description 1 Range

~4.623683256E+ 12 to
4.6534263350389E + 13

seconds numeric expression

m Example Commands

DISP DATE$(TIMEDATE) Display the date of the real time clock
DISP DATE$(2.111510608E+11) Display the date for 2.111510608E + 11 seconds in Ju-
Han time

® Semantics

The real time clock values represent Julian time, expressed in seconds. Julian time is seconds
from midnight on 24 November, B.C. 4713,

The date returned is in the form: DD MMM YYYY, where DD is the day of the month, MMM is the
month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASCII spaces delimit the day, month,
and year.

The first letter of the month is capitalized and the rest are lowercase charters.

Years less than the year 0 are expressed as negafive years.

4-4 Analyzer Specific HP Instrument BASIC Commands

2nd Edition

READIO

Keyboard Executable Yes
Programmable Yes
InanlF ... THEN ... Yes

This command reads the contents of the register used for an I/0 port.

N) - - reaisiar 1
- P s interface 3 register | ‘
READIO L { select code N number | ’(Q‘/) -

CAT00T

Tiem ‘ Description l Range
select code numeric expression 15
register number |numeric expression G

® Example Commands
Toport=READIO(15,0)

Analyzer Specific HP Instrument BASIC Commands 4.5

2nd Edition

SET TIME
Keyboard Executable Yes
Programmabie Yes

InanlF ... THEN ... Yes

This command sets the time of the real time clock.

A

(SET TlME}«-» seconds —

CIHICE

Item ' Description ! Range
0 to 86399.99

numeric expression, rounded ¢ the nearest
hundredth

seconds

m Example Commands

SET TIME ("22:00:30") Set the recl time clock to 22:00:30 in the same day.
SET TIME Hours*3800+Minutesx80 Set the real time clock to Hours :Minutes hours.

m Semantics

The real time clock values represent Julian time, expressed in seconds. Julian time is seconds
from midnight on 24 November, B.C. 4713.

This command changes only the timme within the current day, not the date. The new clock
setting is equivalent to (TIMEDATE DIV 86400)x 86400 plus the specified sefting,

4.8 Analyzer Specific HP Instrument BASIC Commands

2nd Edition

SET TIMEDATE

Keyboard Executable Yes
Programmable Yes
InaniF ... THEN ... Yes

This command resets the absolute seconds (time and day) given by the real iime clock,

—e ———
@ET TIMEDATE — seconds
[k
Item l Description ' Range
seconds numeric expression, rounded to the nearest |2.08662912E+12 to

hundredth 2.143252224F+ 11

W Example Commands

SET TIMEDATE DATE("1 JAN 1993")+TIME('"10:00:00") Set the real time clock for
10:00:00 om 1 Jan 1993

SET TIMEDATE TIMEDATE+86400 Put the real time clock for-
ward one day.

The real time clock values represent Julian time, expressed in seconds. Julian time is seconds
from midnight on 24 November, B.C. 4713.

Analyzer Specific HP Instrument BASIC Commands 4-7

2nd Edition

TIME

Keyboard Executable Yes
Programmabie Yes
InanlF ... THEN ... Yes

This command converts data formatted as time of day (HH:MM:38), into the number of seconds

past midnight.

ol T TIME ool ol Bime of dav e
@ Q/ ime of day .1_}/} __g

literal form of time of day

H

;

—bc}mw nours delimiter — minutes { j C_/)——%
***é delimiter sacondsﬂi—--—
C2MI007 —
Item Description Range
time of day string expression representing the time in 24 | (set drawing)
hour format
hours literal 0 to 23
minutes literal 0 to 59
seconds iiteral; default = O 0 to 59.99
delimiter literal; single character (see text)

» Example Commands

DISP TIME("8:40:00")
SET TIME TIME("8:40:00"}

m Semantics

Display the seconds from midnight to 8:40:00.
Set the real time clock jor 8:40:00.

This command returns a positive integer, in the range 0 to 86399, equivalent to the number
of seconds past midnight.

While any number of non-numeric characters may be used as a delimiter, a single colon is
recommended. Leading blanks and non-numeric characters are ignored,

4-8 Analyzer Specific HP Instrument BASIC Commands

2nd Edition

TIMES$

Keyboard Executable Yes
Programmable Yes
InanIF ... THEN ... Yes

This command converts the number of seconds past midnight into a string representing the

time of day (HH:MM:SS),

— N -
—{ TIM m—*&(")——- seconds ——{E;—w{
CETU0E
tem I Description l Range
seconds numeric expression, truncated to the 0 to 86398

8 Example Commands

nearest second; seconds past midnight

DISP “The time ig: ";TIME$(TIMEDATE) Disvlay the time of the renl time clock.
Display the time for 45296 seconds past

DISP TIME$(45296)

a Semantics

TIME$ takes the time in seconds and returns the time of day in the form HH:M¥:SS, where
EH represents hours, MM represenis minutes, and SS represents seconds, A module 86400 is

midnight

performed on the parameter before it is formatted as a time of day.

Analyzer Specific HP Instrument BASIC Commands

4.9

2nd Edition

WRITEIO

Keyboard Executable

Programmable

InanIF ... THEN ...

Yes
Yes
Yes

This command writes register data in decimal notation to a specified /0 port.

1 interface L/ | register s register
(WRITEIO | opertace . - »{\\J} | number | \,/} data 1
C2TE002
tem Deseription Range
select code numeric expression 15
register number | numeric expression 0
register data numeric expression —2147483648 to + 2147483647

s Example Commands

WRITEIO 15,0;12

410 Analyzer Specific HP Instrument BASIC Commands

Manual Changes

Introduction

This appendix contains the information required to adapt this manual to earlier versions or
configurations of the analyzer than the current printing date of this manual. The information
in this manual applies directly to the HP £5100A/8 Network Analyzer serial number prefix
listed on the title page of this manual,

Manual Changes

To adapt this manual to your HP E5100A/B, see Table A-1 and Table A-2, and make all the
manual changes listed opposite your instrument’s serial number and firmware version,

Instruments manufactured after the printing of this manual may be different from those
documented in this manual. Later instrument versions will be documented in a manual
changes supplement that will accompany the manual shipped with that instrument. If your
instrument’s serial number is not listed on the title page of this manual or in Table A-1, it may
be documented in a yeliow MANUAL CHANGES supplement.

In additions to change information, the supplement may contain information for correcting
errors {Errata) in the manual. To keep this manual as current and accurate as possible,
Hewlett-Packard recommends that you periodically request the latest MANUAIL CHANGES
supplement.

For information concerning serial number prefixes not listed on the title page or in the
MANUAL CHANGES supplement, contact the nearest Hewlett-Packard office,

Turn on the line switch or execute the *IDN? command by HP-1B to confirm the firmware
version, See the HP-IB Command Reference manual for information on the #IDN7? command.

Table A-1. Manual Changes by Serial Number

Serial Prefix or Number Make Manual Changes

Table A-2. Manual Changes by Firmware Version

Version Make Manuai Changes

Manual Changes A-1

2nd Edition

Instruments Covered by This Manual

Hewlett-Packard uses a two-part, ten-character serial number that is stamped on the serial
number plate (see Figure A-1) attached to the rear panel. The first five digits and the letter are
the serial prefix and the last five digits are the suffix,

(@B YOKOGAWAHEWLETT-PACKARD

~

|

|
|
NG

SERNO. JP1KA 00101

AR

5 MADE INJAPAN 33

LN ;\,_/“\:"‘_,/':
PREFIX SUFFIX

i

CRAQADOL

A-2 Manual Changes

Figure A-1. Serial Number Plate

Keyboard

The keyboard keys are arranged into the following functional groups:

Character Entry Keys

The character eniry keys are arranged in the familiar QWERTY typewriter layout, but with
additional features.

Shift

Enter

Back space

-
=

Tab

Sets the unshifted keyboard to either upper-case {which is the default after
power ON) or lower-case (normal typewriter operation).

You can enter standard upper-case and lower-case letters, using the key
to access the alternate case.

Has three functions:

® When a running program prompts you for data, respond by typing in the
requested data and then press (Enter). This signals the program that you have
provided the data and that it can resume execution.

m When typing in program source code, the key is used to store each line
of program code.

m After typing in a command, the key causes the command to be
executed.

performs no function.

In the EDIT mode, allows you to control the editor in the same as using
the cursor-control, display-control, and editing keys.

Erases the character to the left of the cursor and moves the cursor to the
erased character’s position on the line,

Performs no function.

Keykoard B-1

2nd Edition

Cursor-Control and Display-Control Keys

@™ Allow you to scroil lines up and down in the print display area. Shifted, these
keys cause the display to scroll toward the top or bottom of the display.

D10 Allow vou to move horizontally along a line. Shifted, these keys allow you to
“jump” to the left and right limits of the current line.

Cause the display to scroll up or down in one-half page increments.

Numeric Keypad

The numerical keypad provides a convenient way o enter numbers and perform arithmetic
operations. Just type in the arithmetic expression you want to evaluate, then press (Enter). The
result is displayed in the lower-left corner of the screen,

Performs the same function as the key. The numerical keypad serves the
same function as the numerical keypad on the front panel of the analyzer.

Tab Performs no function.

Editing Keys

Performs no function. The HP Instrument BASIC is always in the insert mode.
The characters you type are always inserted to the left of the cursor,

Deletes the character at the eursor's position.

Insert a new line above the cursor’s current position (edit mode only).
Deletes the line containing the cursor (edit mode only).

Softkeys

There are eight softkeys (labeled through (§8). The softkey labels are indicated on the right
of the analyzer’s screen.

(Edit) Enters into the EDIT mode.
(Run) Starts a program running from the beginning.

Resumes program execution from the point where it paused.
(Continue)
F12 changes Display Allocation.

Figure B-1 shows the softkey menus accessed from key on the front panel. Pressing a
softkey performs the command labeled or produces a sequence of characters on the keyboard
input line (or on the “current line” in the EDIT mode}.

Pressing the softkeys on the front panel of the analyzer performs the same functions as
pressing the through function keys.

B-2 Keyboard

2nd Edition

IBASIC
SYSTEM BASIC EDIT SYSTEM ON KEY FILE UTILITY
MERU MENU MERU LABEL MENU MENU
1BASIC STEP ASSIGN -
eE5100 o CAT|
PRINT CONT INUE 5100 RE-SAVE
PRINTER BN ENTER This menu s
SETUP #EEL00 defined by users GET
in a program,
PAUSE EXECUTE)
The softkey
labels are MST
HP-IB sTOP END displayed during (INTERNAL)
running the
SAVE EDIT GOTO program.
iS¥s DATA LINg I COMMAND
MORE FILE i ENTRY
UTILITY RECALL g
LCD oN KEY | [
CONTRAST LABELS ! END EDYT L RETURN
L ————— |

LROGTHE

Figure B-1. Softkey Menus for HP Instrument BASIC

Allows you to execute one program line at a time, This is particularly useful
for debugging.

D
Continue Resumes program execution from the point where it paused.
Immediately executes a program,

Pauses program execution after the current program line is executed.

Stops program execution after the current line. To restart the program, press

Enters into the EDIT mode.

vy Leads to the File Utility softkey menu to access the disk,

: Leads to a softkey menu defined during program execution, if the softkey
* menu has heen defined.

Produces the command “4SSIGN @Hpe5100” at the cursor’s current
position.

Produces the command “0UTPUT @Hpe5100” at the cursor’s current
position.

Produces the command “ENTER @Hpe5100” at the cursor’s current
position.

Produces the command “EXECUTE” at the cursor’s current position.

Produces the command “END” at the cursor’s current position.

Allows you to move the cursor to any line number or to a label. After

pressing - type a line number or a label and then press (Enter).
The cursor moves to the specified line or label. Move the program line
specified,

Recalls the last delefed line,
¥xit the EDIT mode.

Keyboard B-3

B4 Keyhkoard

2nd Edition
Produces the command “CAT”. CAT lists the contents of a mass storage
directory.

Produces the command “RE-SAVE""", RE-SAVE creates a specified ASCII file
i # does not exist; otherwise, it rewrites a specified ASCI!I file by copying
program lines as strings into that file.

Produces the command “GET""”, GET reads the specified ASCII file and
attempts to store the strings into memory as program lines.

Change the mass storage devise.

Index

A
arrow key
(¥), B2
O, B2
»), B2
(&), B2
AUTOST , 3-1
auto start program , 3-1

B

(Eaciapacs), B-1
built-in disk drive , 3-3

C
Camted), B1

character entry key, B-1
D), B1

D

DATE, 4-2

DATES, 4-4

(Beiss), B-2
disk drive , 3-3
display allocation , 3-1

E

{Enter), B-1, B-2

external RUN/CONT connector, 3-5
trigger signal , 3-5

G

graphics, 3-4

H
HP Instrument BASIC, 1-1

1
IBASIC, 1-1
initialize

storage , 3-3
: B-2
1/0 interfaces, 3-b

K

keyboard, B-1
Keyboard
connection |, 2-1

M

manual changes, A-1
mass storage , 3-3

0

OFF CYCLE, 4-1
ON CYCLE, 4-1

P

(Page Down), B2
(Fags Up), B2
(Bt Sresn), B-1
program
editing , 2-2
listing |, 2-3
loading , 2-4
saving , 2-3

R

ram disk memory , 3-3

READIO, 4-5

RUN/CONT connector, 3-5
trigger signal , 3-5

run light indication , 3-2

S

select code, 3-5
serial number, A-2
SET TIME, 4-6
SET TIMEDATE, 4-7
(Shift}, B-1
storage
format , 3-3
initialize , 3-3
unit |, 3-3

T
(Tab), B-1, B-2

TINE, 4-8
TIME$, 4-9

w
WRITEID, 4-10

index-1

REGIONAL SALES AND SUPPORT OFFICES

If you need technical assistance with o Hewlett-Packard test and measurement produci or
application, please coniact the Hewleti-Packard office or distributor in your country.

Asia Pacific:
Hewlett-Packard Asia Pacific Ltd

17-21/F Shell Tower, Times Square,

1 Matheson Street, Causeway Bay,
Hong Kong
(852) 2599 7070

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130
Australia

131 347 ext. 2902

Canada:

Hewlett-Packard Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario

L4W 51

{905) 206 4725

In Europe, Africa and Middle
East please call your local HP
sales office or representative:

Austria/East Central Europe:
(1) 25000-0

Belgium and Luxembourg:
(02) 778 34 17

Czech Republic:
(2)471 7327

Denmark:
45 99 10 00

Finland:
(90) 88 721

France:
(1) 69.82.65.00

Germany:

(0180) 532 62-33

Greece:
(1) 7264045

Hungary:
(1) 252 4705

Ireland:
(01) 284 4633

Israel:
{03) b380 333

Lialy:
02 - 92 122 999

Netheriands:
(020) 547 6669

Norway:
{22) 73 56 00

Poland:
(22) 37 50 65

Portugal:
{113 301 73 30

Russia:
(095) 056 2126

South Africa;
(011) 806 1000

Spain:
900 123 123

Sweden:
(08) 444 20 00

Switzerland:
(01) 785 7111

Turkey:
(212) 224 59 25

United Kingdom:
(01344) 366 666

For European countries
not listed,
contact:

Hewlett-Packard
International Sales Europe
Geneva, Switzeriand

Tel: +41-22-780-4111

Fax: +41-22-780-4770

Japan:

Hewlett-Packard Japan Ltd.
Measurement Assistance Center
9-1, Takakura-cho, Hachioji-shi,
Tekyo 192, Japan

Tel: (81) 426 48 0722

Fax: (81) 426 48 1073

Latin America:

Hewlett-Packard

Latin American Region Headquarters
5200 Blue Lagoon Drive

Oth Floor

Miami, Florida 33126

USA.

(305) 267 4245/4220

United States:

Hewlett-Packard Company

Test and Measurement Organization
5301 Stevens Creek Blvd.

Bldg. 51L-8C

Santa Clara, CA 95052-8059

1800 452 4844

Mar. 1996 P/N 16000-99004

** For HP Internal Reference Only *+*

Manufacturing Part Numbexr

Customer QOrder Number E5100-90015

LR

Printed in Japan

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained in this document,
HP MAKES NO WARRANTIES OF ANY KIND WITH REGARD TO THIS DOCUMENT,
WHETHER EXPRESS OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. HP shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject o restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software elause of
DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted. Additional
copies of the software can be made for security and backup purposes only. Resale of the
software in its present form or with alterations is expressly prohibited.

MS-DOS is a U.S. registered trademark of Microsoft Corporation.

© Copyright 1992 Hewlett-Packard Company. All rights reserved.

Printing History

This is the latest edition of the HP Instrument BASIC Users Handbook as of August 1992,
Changes in this manual include an expanded Language Reference section.

August 1992 - First Edition

Handbook Organization

Welcome

This manual will introduce you to the HP Instrument BASIC programming language, provide
some helpful hints on getting the most use from it, and provide a general programming
reference, It is divided into three books, HP Instrument BASIC Programming Technigues, HP
Instrument BASIC Inlerfacing Techniques, and HP Instrument BASIC Language Reference.
The first two books provide some introductory material on programming and interfacing.
However, if you have no programming knowledge, vou might find it helpful to study a
beginning-level programming book.

This manual assumes that you are familiar with the operation of HP Instrument BASIC’s
front-panel interface or keyboard and have read or reviewed the manual that describes the
operation of HP? Instrument BASIC with your specific instrument.

HP Instrument BASIC is implemented as an “embedded controller”—that is, a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to HP Instrument BASIC installed in an instrument.

What’s In This Handbook?

HP Instrument BASIC Programming Techniques contains explanations and programming
hints organized by concepts and topics. It is not a complete keyword reference. Instead it
covers programming concepts, showing how to use the P Instrument BASIC language.

For explanations and hints regarding interfacing, see the HP Instrument BASIC Interfacing
Techniques hook.

HP Instrument BASIC Language Reference contains a detailed keyword reference.

Handbook Organization 1

For HP BASIC Programmers

Many programmers already familiar with HP Series 200/300 BASIC will want to use the HP
Instrument BASIC manual set to look up keywords and find specifics about the way HP
Instrument BASIC is implemented. I this is your situation, you may want to refer to the
following instrument-specific manuals and sections as needed:

® The graphics section of your instrument-specific manual for information on using the display
for graphics and text program output.

® Your instrument-specific manual to learn how HP Instrument BASIC interfaces with the
host device, (if using an embedded controller) and its external HP-IB port.

®w Your instrument-specific manual for a description of how to transfer data between external
and internal programs, how to upload and download programs and how to control HP
Instrument BASIC programs from an external controller.

“Keyword Guide to Porting” at the end of HP Instrument BASIC Programming Techniques
for a quick determination of what commands are implemented and how they relate to recent
versions of the corresponding HP Series 200/300 BASIC command.

Most importantly, you will find a complete command reference and a list of error messages in
the HP Instrument BASIC Language Reference. If you need to refresh your memory on any
other topics, consult the manuals on programming and interfacing techniques as needed.

2 Handbook Organization

.

Contents

1.

Manual Organization

Welcome Coe e

What’s In This Manwal
Overview of Chapters
What’s Not in this Manual

Program Structure and Flow
Sequence
Halting Program Execution
The END Statement
The STOP Statement
The PAUSE Statement
Simsle Branching
Using GOTO
Using GOSUB
Selection L L.
Conditional Execution of One Segment
Prohibited Statements
Conditional Branching
Multiple-Line Conditional Segments
Choosing One of Two Segments . . .
Choosing One of Many Segments . .
Repetition e
Fixed Number of Iterations
Conditional Number of Iterations . .
Arbitrary Exit Points
Event-Initiated Branching
Types of Events
Deactivating Events .,
Disabling Events
Chaining Programs
Using GET Coe e
Example of Chaining with GET .
Program-to-Program Communications

......

........

........

. e

e s

e

.....

LR

2-4

2-10
2-10
2-11
2.11
2-12
2-12

Contents.t

3. Numeric Computation

Numerie Data Types 0 0 0 . 0 0 0 e e e e e 31
INTEGER DataType o o o o o o v v v v e e 3-1
REAL Data Type« . o o . 0 000 3-1

Declaring Variables L Lo oo 31

Assigning Variables 0 000 L0 Lo s s 3-2
Implicit Type Conversions < ... 3-2

Evaluating Scalar Expressions 0.0 3-3
The Hierarchy« .« . . o 0 oo s e e e 3-3
Operators . . . e e e e e e e 3-5

Expressions as Pass Pardmgters e e e e e e e e 3-5
Strings in Numeric Expressmns e e e e e e e e e e e 3-6.
Step Functions . . . e e e e e e e e 3-6
Comparing REAL Numbexs e e e e e e 3-6

Resident Numerical Functions« 3-7
Arithmetic Functions o000 0000 3-7
Exponential Functionso 000 3.7
Trigonometric Functions . . . e e e e e e e e 3-8

Trigonometric Modes: Degrees and Rad;aﬁﬂs e e e e e e e 3-8
Binary Functions L .o oo e 3-8
Limit Functions L oo e e 3-9
Rounding Functionso o000 o0 3-9
Random Number Fanctiono 0000, 3-9
Time and Date Punctionso 000 3-9
Base Conversion Functions 3-10
General Functionso 3-10

4. Numeric Arrays

Dimensioning an ATray 0w e e e e e e 4-1
Some Examples of Arrays L. L Lo Lo 4-2
Problems with Implicit Dimensioning 4-4

Finding Out the Dimensions of an Array« 4-4

Using Individual Array Elements00 4-5
Assigning an Individual Array Element o . o 0000 4-5
Extracting Single Values From Arrays 4-5

Filling Arrays . . . e e e e 4-5
Assigning Every Eiement in an Al‘l ay t?qe Sa,me Vaiue C e e e e e 4-5
Using the READ Statement to Fill an Entire Array o .. 4-6
Copying Entire Arrays into Other Arrays 4-6

Printing Arrays L o0 oo o o 4-7
Printing an Entire Alray . e e e e e e 4-7
Examples of Formatting Arrays for Dlspiay e e e e e e 4-7

Passing Entire Arrayso L 000 o e 4-9

Copying Subarrays L . L L. e e e e 4-9
Subarray Specifier e e e e e e e e s 4-9

Copying an Array into a Subarray e e e e e e e e e e 4-11
Copying a Subarray into an Array L. 4-11
Copying a Subarray into Another Subdrmy e e e e e 4-12
Copying a Portion of ap Array into Itself o .. . 4-13
Rules for Copying Subarrays o ..o 0oL L 4-14
Redimensioning Arrays L . . oo 0o 4-14

Contents-2

5.

String Manipulation
String Storage
String Arrays
Evaluating Expressions Contammg Str;ngs .
Evaluation Hierarchy e e
String Concatenation
Relational Operations e
Substrings . . . e e e
Single-Subscript Substnngs Ce.
Double-Subscript Substrings
Special Considerations
String-Related Functions

Current String Length
Substring Position L. oL L
String-to-Numeric Conversmn
Numeric-to-String Conversion

String Functions L Lo
String Reverse L.
String Repeat Lo oL

Trimming a String oL oL oL oL
Case Conversion
Number-Base Conversion

Subprograms and User-Defined Functiens

Benefits of Subprograms

A Closer Look at Subprograms . .
Caliing and Executing a Subprogram
Differences Between Subprograms and Submutmes
Subprogram Location ..
Subprogram and User-Defined Fzmct;on Ndmes ..

Difference Between a User-Defined Function and a bubpmgmm -

REAL Precision Functions and String Functions
Program/Subprogram Communication .

Parameter Lists e e e e e e
Formal Parameter La%ts e e e e e e
Pass Parameter Lists

Passing By Value vs. Passing By Reference . . . R
Example Pass and Corresponding Formal 1‘arameter Llsts .

COM Blocks
COM vs. Pass Parameters .
Hints for Using COM Blocks

Context Switching

Variable Initialization .

Subprograms and Softkeys . . .

Subprograms and the RECOVER Statement

Editing Subprograms e e e
Inserting Subprograms .

Loading Subprograms
Loading Subprograms One ai a Tlme
Loading Several Subprograms at Once
Loading Subprograms Prior to Execution

...... 5-2

6-1
6-1
6-1
6-2
6-2
6-2
6-2
6-3
6-4
6-4
e e 6-4
...... 6-5
...... 6-5
e e 6-6
e e 6-7
6-7
6-8
6-9
6-10
6-10
6-10
6-10
6-10
6-11
e 6-11
e 6-11
e e 6-12

Contents-3

Deleting Subprograms

Merging Sebprograms
SUBEND and FNEND
Recursion

7. Data Storage and Retrieval

Storing Data in Programs
Storing Data in Variables
Data Input by the User

Using DATA and READ Statements
Examples
Storage and Retrieval of Arrays . .
Moving the Data Pointer
File Input and Output (I/O)

.................

.................

.................

.................

.................

Brief Comparison of Available Iile Types

Creating Data Files
Overview of File I/O
A Closer Look at General File Access
Opening an I/O Path
Assigning Attributes
Closing I/O Paths
A Closer Look at Using ASCII Files . .
Example of ASCII File I/O
Data Representations in ASCII Files
Formatted OUTPUT with ASCII Files
Using VALY
Formatted ENTER with ASCII Files

.................

.................

.................

.................

................

.................

.................

A Closer Look at BDAT and HP-UX or DOS Files

Data Representations Available . . .
Random vs. Serial Access

.................

Data Representations Used in BDAT Files
BDAT Internal Representations (FORMAT OFF) N

ASCII and Custom Data Representations
Data Representations with HP-UX and DOS Files

BDAT File System Sector
Defined Records

.................

Specifying Record Size (BDAT Files Only)
Choosing a Record Length (BDAT Files Only)
Writing Data to BDAT, HP-UX and DOS Files

Sequential (Serial) OUTPUT
Random OUTPUT

.................

Reading Data from BDAT, HP-UX and DOS Files

Reading String Data from a File .
Serial ENTER
Random ENTER

.................

.................

Accessing Files with Single-Byte Records

Accessing Directories,
Sending Catalogs to External Printers

Contenis-4

.................

.................

§-12
6-12
6-13
6-13

7-1
V-2
7-2
7-3
7-3
7-4

7-5
7-6

7-8
7-8

7-10
7-11
7-11
7-12
7-13
7-15
7-15
7-16
7-16
7-16
7-16
7-17
7-18
7-18
7-19
7-19
7-19
7-20
7-21
7-22
7-22
7-23
7-23
7-23
7-24
7-25
7-26
7-26

10.

Using a Printer

Selecting the System Printer 0oL 8-1
Device Selectors L L . L L L Lo 81
Using Device Selectors to Select Printers 8-2

Using Control Characters ard Escape Sequences 8-2
Control Characters Lo o oo e e e e 8.2
Escape-Code Sequences 8-3

Formatted Printing Lo oo 8-3
Using Images oo 8-4

Numeric Image Specifiers 0oL 0L 8-5
String Image Specifiers L L0 0000000 8-6
Additional Image Specifierso 000000 8-7

Special Considerations L o000 8-8

Handling Errors

Anticipating Operator Errors oL 9-1
Boundary Conditions L Lo o 000 9-1

Trapping Errors L 00000 oo e 9-2
ON/OFFERROR o oo e e 9-2

Choosing a Branch Type 9-2
ON ERROR Execution at Run-Time 9-2
ON ERROR Priority o . o o v i e e 9.2
Disabling Error Trapping (OFF ERROR) 9-3
ERRN, ERRLN, ERRL, ERRDS, ERRMS$ 9-3
ON ERROR GOSUB o . o oo oo 9-4
ON ERROR GOTO o oo 9-4
ON ERROR CALL o . . oo 9.5
Using ERRLN and ERRL in Subprograms 9-5
ON ERROR RECOVER o . o .. 9-6

Keyword Guide to Porting

Index

Contents-5

Manual Organization

Welcome

This purpose of this manual is to introduce you to the HP Instrument BASIC programming
language and to provide some helpful hints on getting the most use from it. This manual
assumes that you are familiar with the operation of HP Instrument BASIC's front-panel
interface or keyboard and have read or reviewed the manunal that came with your instrument
that describes operation of HP Instrument BASIC with your specific instrument. Most topics
concerning running, recording, loading, saving and debugging programs are covered there.

This manual serves as a general language reference and programming tutorial for those with
a rudimentary knowledge of programming in BASIC or another language. If you have no
programming knowledge, you may find it helpful to study a beginning level programming
book. However, some beginners may find that they are able to start in this manual by
concentrating on the fundamentals presented in the first few chapters.

If you are a programming expert or are already familiar with the BASIC language of other IIP
computers, you may start faster by going directly to the IIF Instrument BASIC Language
Reference and checking the keywords you normally use.

HP Instrument BASIC is implemented as an “embedded controller”—that is, a computer
residing inside an instrument. Hence, all references in this manual to the “computer” also
refer to HP Instrument BASIC installed in an instrument.

What's In This Manual

This manual contains explanations and programming hints organized by concepts and topics.
It is not an exhaustive keyword reference. Instead it covers programming concepts, showing
how to use the HP Instrument BASIC language. HP Instrument BASIC Language Reference
contains a detailed keyword reference. For explanations and hints regarding interfacing, see
the HP Instrument BASIC Inierfacing Techniques book.

The following section gives an overview of the chapters in this manual.

Overview of Chapters

Chapter Topics

Chapter 2: Program This chapter describes program flow and how to control if.
Structure and Flow

Chapter 3: Numeric This chapter covers mathematical operations and tle use of
Computation numeric variables.

Chapter 4: Numeric Arrays This chapter covers numeric array operations.

Manual Organization {19

Chapter 5: String
Manipulation

Chapter 6: Subprograms and
User-Defined Functions

Chapter 7: Data Storage and
Retrieval

Chapter 8: Using a Printer
Chapter 9: Handling Errors

Chapter 10: Keyword Guide
to Porting

What's Not in this Manual

This chapter explains the techniques used for the processing of
characters, words, and text in your program.

This chapter describes using alternate contexts (or
environments), available as user-defined functions or
subprograms.

This chapter shows many of the alternatives available for
storing the data that is intended as program input or created
as program output.

This chapter tells how to use an external printer, and how to
use formatted printing for both printer and CRT output.

‘This chapter discusses techniques for intercepting errors that
might occur while a program is running.

This chapter summarizes the P Instrument BASIC keywords
by categories, with differences between HP Instrument BASIC
and HP Series 200/300 BASIC.

This is a manual of programming techniques, helpful hints, and explanations of capabilities.
It is not a rigorous tutorial of the HP Instrument BASIC language. Any statements
appropriate to the topic being discussed are included in each chapter, whether they have
been previously introduced or not. Since most users will not read this manual from cover to
cover, the approach chosen should not present any significant problems. In cases where you
have difficulty getting the meaning of certain items from context, consuit the Index to find

additional information.

1-2 Manual Organization

Program Structure and Flow

There are four general categories of program flow. These are:
m Sequence

m Selection {conditional execution)

@ Repetition

e ovent-Initiated Branching

This chapter tells you how to use these types of program flow.

Sequence

The simplest form of sequence is linear flow. Linear flow allows many program lines
to be grouped together to perform a specific task in a predictable manner. Keep these
characteristics of linear flow in mind:

® Linear flow involves no decision making. Unless there is an error condition, the program
lines will always be executed in exacily the same order.

m Linear flow is the default mode of program execution. Unless you include a statement that
stops or alters program flow, the compuier will always execute the next higher-numbered
line after finishing the lire it is on.

Halting Program Execution
There are three statements that can halt program flow: END, STOP, and PAUSE.

The END Statement

The primary purpose of the ENI) statement is to mark the end of the main program. When
an END statement is executed, program flow stops and the program moves into the stopped
(non-continuable) state.

The STOP Statement

The STOP statement acts like an END statement in that it stops program flow. You can use
a STOP statement to halt program flow at some point other than the end of the program.
When a STOP statement is executed, program flow stops and the program moves into the
stopped (non-continuable) state.

Program Structure and Flow 2-1

The PAUSE Statement

Use the PAUSE statement to temporarily halt program execution, leaving the program
variables intact. Fxecution halts until instructed to continue by the operator.

Following is an example of the use of PAUSI:

100 Radius=b

110 Circum=PI*2+Radius
120 PRINT INT(Circum)
130 PAUSE

140 Area=PI#Radius™2
150 PRINT INT(Area)
160 END

When the program runs, the computer prints 31 on the CRT. Then when you continue, the
computer prints 78 on the CRT. One common use for the PAUSE statement is in program
troubleshooting and debugging. Another use for PAUSE is to allow time for the computer

user to read messages or follow instractions.

Simple Branching

An alternative to linear flow is branching. Branching is simply a redirection of sequential flow.
The simplest form of branching uses the statements GOTO and GOSUB. Both statements
cause an unconditional branch to a specified location in a program.

Using GOTO

The GOTO statement causes the program to branch to either a line number or the line label.
Following are examples of the GOTO statement:

30 REM GOTO branches here
100 GOTO 30
150 GOTO Label xyz

300 Label _xyz:...

Using GOSUB

The GOSUB statement transfers program execution to a subroutine. A subroutine is simply a
segment of a program that is entered with a GOSUD and exited with a RETURN. There are
no parameters passed and no local variables are allowed in the subroutine.

The GOSUB is very useful in structuring and controlling programs. It is similar to a
procedure call in that program flow antomatically returns to the line following the GOSUB
statement. The GOSUB statement can specify either the line label or the line number of the
desired subroutine entry point. The following are examples of GOSUB statements:

2-2 Program Structure and Flow

100 GOSUB 1000
200 GOSUB Label_abc

1000 REM subroutine begins here
1010 Label_abc:

1500 RETURKE

Remember that each time a subroutine is called by a GOSUB, control returns to the line
immediately following the GOSUB when the RETURN is encountered in the subroutine. Note
that if you omit the RETURN statement in a subroutine the program will continue executing
beyond the point at which yvou expected it to return, until it encounters another RETURN or
one of the halting statements (PAUSE, STOP, or END).

Selection

The heart of a computer’s decision-making power is the category of program flow called
selection, or conditional execution. As the name implies, a certain segment of the program
either is or is not executed according to the results of a test or condition. This section
presents the conditional-execution statements according to various applications. The following
is a summary of these groupings.

8 Conditional execution of one segment.
m Conditionally choosing one of two segments,

Conditionally choosing one of many segments.

Conditicnal Execution of One Segment

The basic decision to execute or not execute a program segment is made by the IF ... THEN

statement. This statement includes a numeric expression that is evaluated as being either true
or false. If true (non-zero), the conditional segment is executed. If false (zero), the conditional
segment is bypassed. Note that any valid numeric expression is allowed for the test expression.

The conditional segment can be either a single IIP Instrument BASIC statement or a program
segment containing any number of statements. The first example shows conditional execution
of a single statement.

100 IF Ph>7.7 THEN PRINT "Ph Value has been exceeded!"

Notice the test (Ph>7.7} and the conditional statement (Print “Ph Value ...) that appear
on either side of the keyword THEN. When the computer executes this program line, it
evaluates the expression Ph>7.7. I the value contained in the variable Ph is 7.7 or less, the
expression evaluates to 0 (false), and the line is exited. If the value contained in the variable
Ph is greater than 7.7, the expression evalnates as 1 (true), and the PRINT statement is
executed.

Program Structure and Flow 2-3

Prohibited Statements

Certain statements are not allowed as the conditional statement in a single-line IF ... THEN.
The following statements are not allowed in a single-line IF ... THEN.

Keywords used in the declaration of variables:

COM DIM INTEGER REAL

Keywords that define context boundaries:

DEF FN FNEND SUB SUBEND END

Keywords that define program structures:

CASE END LOOP FOR REPEAT
CASE ELSE END SELECT IF SELECT
ELSE END WHILE LOOP UNTIL
END IF EXIT IF NEXT WHILE

Keywords used to identify lines that are literals:

DATA REM

Conditional Branching

Powerful control structures can be developed by using branching statements in an
I¥ ... THEN. For example:

110 IF Free _space<i00 THEN GOSUB Expand_file
120 ! The line after is always executed

This statement checks the value of a varjable called Free_space, and executes a file-expansion
subroutine if the value tested is not large enough. One important feature of this structure

is that the program flow is essentially linear, except for the conditional “side trip” to a
subroutine and back.

The conditional GOTO is such a commonly used technique that the computer allows a special
case of syntax to specify it. Assuming that line number 200 is labeled “Start”, the following
statements will all cause a branch to line 200 if X is equal to 3.

IF =3 THEEH GOTO 200
IF %=3 THEEN GOTO Start
IF X=3 THEN 200

IF X=3 THEN Start

When a line number or line label is specified immediately after THEN, the computer assumes
a GOTO statement for that line. This improves the readability of programs.

Multiple-Line Conditional Segments

If the conditional program segment requires more than one statement, a slightly different
structure is used. For example:

2-4 Program Struclure and Flow

100 IF Ph>7.7 THEK

1190 PRINT "The value of Ph has been exceeded!"
120 PRINT "Final Ph =";Ph

130 GOSUB Next_tube

140 END IF

180 ¢ Program centinues here

If Ph is less than or equal to 7.7 the program skips all of the statements between the
[F..THEN and the END IF statements and continues with the line following the END IF
statement. If Ph is greater than 7.7, the computer executes the three statements between the
IF ... THEN and END IF statements. Program flow then continues at line 150, Any number
of program lines can be placed between a THEN and an END IF statement including other
TE.END IF statements. Including other IF..END IF statements is called nesting or nested
constructs. For example:

1000 IF Flag THENW
1010 IF End_of_page THER

1020 FOR I=1 T@ Skip_length
1030 PRINT

1040 Lines=Lines+1

10560 WEXT I

1060 END IF

1070 END IF

Choosing One of Two Segments

Often you want a program flow that passes through only one of two paths depending upon a
condition. This type of decision is showr in the following diagram:

Flag = 1 Flag = 0
|
| 40¢ IF Flag THEN N
|
!

410 Re=R+2 i

4206 Area=PI+R"2 i

-—= 43¢ ELSE Lo
I 440 Width=Width+1 [
| 450 Length=Length+1 |
| 460 Area=Width=Length |
| 470 ERD IF]
~=> 480 Print '"Area =";Area |
| 490 ! Program conmtinues |
v v

HP Instrument BASIC has an IF ... THEN ... ELSE structure that makes the one-of-two
choice easy and readable.

Choosing One of Many Segments

The SELECT ... END SELECT is similar to the IF ... THEN ... ELSE ... END IF
construct, but allows the definition of several conditional program segments. Only one
segment executes each time the construct is entered. Each segment starts after a CASE or
CASE ELSE statement, and ends when the next program line is a CASE, CASE ELSE, or
END SELECT statement.

Consider for example, the processing of readings from a voltmeter. Readings have been
entered that contain a function code. These function codes identify the type of reading and
are shown in the following table:

Program Struciure and Flow 2-5

Function Code Type of Reading
DV DC Volts
AY AC Voits
Di DC Current
Al AC Current
OM Ohms

This example shows the use of the SELECT construct. The function code is contained in the
variable Funct$. The rules about illegal statements and proper nesting are the same as those
for the IF ... THEN statement.

2000 SELECT Funct$
2010 CASE "DV"

2020 1

2030 ! Processing for DC Volts
2040 !

2050 CASE "aAv"

2060 !

2070 ! Processing for AC Volts
2080 !

2080 CASE "DI"

2100 !

2110 ! Processing for DC Amps
2120 !

2130 CASE "AI"

2140 !

2150 ! Processing for AC Amps
2180 '

2170 CASE "OM"

2180 ¢

2190 ! Processing for (Ohms
2200 '

2210 CASE ELSE

2220 BEEP

2230 PRINT “INVALID READING"
2240 EKD SELECT
2250 ! Program execution continues here

Notice that the SELECT construct starts with a SELECT statement specifying the variable
to be tested and ends with an END SELECT statement. The anticipated values are placed
in CASE statements. Although this example shows a string tested against simple literals,
the SELECT statement works for numeric or string variables or expressions. The CASE
statements can contain constants, variables, expressions, comparison operators, or a range
specification. The anticipated values, or match items, must be of the same type (numeric or
string) as the tested variable.

The CASE ELSE statement is optional. It defines a program segment that is executed if the
tested variable does not match any of the cases. If CASE ELSE is not included and no match
is found, program execution simply continues with the line following END SELECT.

2-8 Program Structure and Flow

A CASE statement can also specify multiple matches by separating them with commas, as
{ollows:

CASE -1,1,3TG67,>18

If an error occurs when the computer tries to evaluate an expression in a CASE statement,
the error is reported for the line containing the SELECT statement. An error message
pointing to a SELECT statement actually means that there was an error in that line or in one
of the CASE statements following it.

Repetition

There are four structures available for creating repetition. The FOR ... NEXT structure
repeals a program segment a predetermined number of times. Two other structures,
REPEAT ... UNTIL and WHILE ... END WHILE, repeat a program segment indefinitely,
waiting for a specified condition to occur. The LOOP ... EXIT IF structure is used to create
an iterative structure that allows multiple exit points at arbitrary locations.

Fixed Number of iterations

The general concept of repetitive program flow can be shown with the 'Ol ... NEXT
structure. The FOR statement marks the beginning of the repeated segment and establishes
the number of repetitions. The NEXT statement marks the end of the repeated segment.
This structure uses a numeric variable as a loop counter. This variable is available for use
within the loop, if desired. The following example shows the basic elements of 2 FOR . ..
NEXT loop.

10 FOR X=16 TG ¢ STEP -1

20 BEEP

34 PRIKT X
40 WAIT 1
50 NEXT X
60 END

In this example, X is the loop counter, 10 is the starting value, 0 is the final value, -1 is the
step size and the repeated segment is composed of lines 20 through 50. Note that if the step
counter is not specified, a default value of 1 is assumed.

When all variables involved are integers, the number of iterations can be predicted using the
following formula:

INT({Step_Size + Final_Value — Stariing Value)/{(Step_Size})

Thus, the number of iterations in the example above is 11,

Program Structure and Flow 2-7

Conditional Number of iterations

Some applications need a loop that is execated until a certain condition is true regardless of
the number of loop iterations required. The REPEAT ... UNTIL and the WHILE ... END
WHILE structures provide this flexibility.

The REPEAT loop and the WHILE loop differ only in their location of the loop exit test.
The REPEAT loop has its test at the end of the loop. Therefore, the loop will always be
executed once because the condition is not tested until the end of the loop. The WHILE
loop has its test at the beginning of the loop, so the test is made before the loop is entered.
Therefore, it is possible for a WHILE loop to be skipped entirely.

For example, suppose you wat to print successive powers of two, but want to stop once the
value is greater than 1000. Consider the foliowing examples programs:

REPEAT loop

10 X=2

20 PRINT X;

30 REPEAT

40 X=Xx2

50 PRINT X;
60 UNTIL X>1000
70 ERD

WHILE loop

10 X=2

20 PRINT X;

30 WHILE X<1000
40 X=X=*2

60 PRINT X;
60 ERD WHILE

70 END

If you ran either of these programs, the results would be:
2 4 8 16 32 64 256 512 1024

However, if you replace line 10 in each program with
10 X=1024

then the repeat loop would produce
1024 2048

whereas the WHILE loop would produce
1024

Arbitrary Exit Points

The Jooping structures discussed so far allow only one exit point. There are times when this is
not the desired program fow. The LOOP..EXIT IF construct allows you to have any number
of conditional exits points. Also, the EXIT IF statement can be at the top or bottom of the
foop. This means that the LOOP structure can serve the same purposes as REPEAT ...
UNTIL and WHILE ... END WHILE.

The EXIT IF statement must appear at the same nesting level as the LOOP statement for a
giver loop. This is best shown with an example. In the “WRONG” example, the EXIT IF

2.8 Program Structure and Flow

statement has been nested one level deeper than the LOOP statement because it was placed
in an [¥ ... THEN structure.

WRONG:

600 LOOP
610 Test=RND-.5
620 IF Test<(THEN

630 GOSUB Wegative
640 ELSE

650 EXIT IF Test>.4
660 GOSUB Positive

670 END IF
680 EKD LOOP

RIGHT:

Here is the proper structure to use.

600 LOOP

610 Test=RND-.b
620 EXIT IF Test>.4
630 IF Test<(THEN

640 GOSUB Negative
650 ELSE
660 GOSUB Positive

670 END TF
680 END LOOP

Event-Initiated Branching

HP Tustrument BASIC provides a tool called event-initiated branching that uses interrupts

to redirect program flow. Each time the program finishes a line, the computer executes an
“event-checking” routine. If an enabled event has occurred, then this “event-checking” routine
causes the program to branch to a specified statement.

Types of Events

Event-initiated branching is established by the ON..event statements. Here is a list of the
statements:

ON ERROR an interrupt generated by a run-time error
ON INTR an interrupt generated by an an interface
ON KEY an interrupt generated by pressing a softkey

ON TIMEOUT an interrupt generated when an interface or device has taken longer than a
specified time to respond to a data-transfer handshake

Program Structure and Flow 2-9

The following example demonstrates an event-initiated branch using the ON KEY statement.

100 ON KEY 1 LABEL "Inc" GUGSUB Plus
110 ON EEY 5 LABEL "Dec" GGSUB Minus
120 O EKEY 8 LABEL "Abort" GOTO Bye

130 !

140 Spin: DISP X
150 GOTE Spin
160 H

170 Plus: X=X+1
180 RETURN

190 §
200 HMipus: X=X-1i
210 RETURN

220 Bye: END

The ON KEY statements are executed only once at the start of the program. Once defined,
these event-initiated branches remain in effect for the rest of the program.

The program segment labeled “Spin” is an infinite loop. If it weren’t for interrupts,

this program couldn’t do anything except display a zero. However, there is an implied

“IF ... THEN” at the end of each program line due to the ON KEY action. As a result of
softkey presses, either the “Plus” or the *Minus” subroutines are selected or the program
branches fo the END statement and terminates. If no softkey is pressed, the computer
continunes to display the value of X.

The following section of “pseudo-code™ shows what the program flow of the “Spin” segment
actually looks like to the computer.
Spin: display X
if Keyl then gosub Plus
if Key5 then gosub Minus

if Key9 then goto Bye
goto Spin

The labels are arranged to correspond to the layout of the softkeys. The labels are displayed
when the softkeys are active and are not displayed when the softkeys are not active. Any

label that your program has not defined is blank. The label areas are defined in the ON KEY
statement by using the keyword LABEL followed by a string,.

Deactivating Events

All the “ON-event” statements have a corresponding “OFF-event” statement. This is one
way to deactivate an interrupt source. For example OFF KEY deactivates interrupts from the
softkeys. Pressing a softkey while deactivated does nothing.

Disabling Events

It is also possible to temporarily disable an event-initiated branch. This is done when an
active event is desired in a process, but there is a special section of the program that you
don’t want to be interrupted. Since it is impossible to predict when an external event wiil
occur, the special section of code can be “protected” with a DISABLE statement.

2-1¢ Program Structure and Flow

100 ON KEY 9 LABEL " ABGRT" GOTOD Leave
110 !

120 Print_line: !

130 DISABLE

140 FOR I=1 TO 10

150 PRIWT I1;

160 WAIT .3

170 HEXT I

180 PRINT

190 ENABLE

200 GOTO Print_line
210 !

220 Leave: END

This example shows a DISABLE and ENABLE statement used to “frame” the Print_line
segment of the program. The “ABORT” key is active during the entire program, but the
branch to exit the routine will not be taken until an entire line is printed. The operator can
press the “ABORT” key at any time. The key press will be logged, or remembered, by the
computer, Then when the ENABLE statement is executed, the event-initiated branch is
taken.

Chaining Programs

With P Instrument BASIC, it is also possible to “chain” programs together; that is, one
program may be executed, which, in turn, loads and runs another. This method is often used
when you have several large program segments that will not all fit into memory at the same
time. This section describes program chaining methods,

Using GET

The GET command brings in programs or program segments from an ASCII file, with the
options of appending them to an existing program and/or beginning program execution at a
specified line.

The following statement:
GET "George', 100

first deletes all program lines from 100 to the end of the program, then appends the lines in
the file named “George” to the lines that remaired at the beginning of the program. The
program lines in file “George” would be renumbered to start with line 100.

GET can also specify where program execution begins. This is done by specifyving two line
identifiers. For example:

100 GET "RATES® ,Append_line,Run_line
specifies that:

1. Existing program lines from the line label “Append_line” to the end of the program are to
be deleted.

2. Program lines in the file named “RATES” are to be appended to the current program,
beginning at the line labeled “Append _line”; lines of “RATES” are renumbered if
necessary.

Program Structure and Flow 2-11

3. Program execution is to resume at the line labeled “Run_line”.

Although any combination of line identifiers is allowed, the line specified as the start of
execution must be in the main program segment (not in a SUB or user-defined function).
Execution will not begin if there was an error during the GET operation.

Example of Chaining with GET

A large program can be divided into smaller segments that are run separately by using GET.
The following example shows a technique for implementing this method.

First Program Segment:

10 COM Ohms,Amps,Volts
20 Ohms=120

30 Volte=240

40 Amps=Volts/Chms

B0 GET "Wattage"

60 END

Program Segment in File Named “Wattage”:

10 COM Ohms, Amps,Volts

20 Watts=Amps*Volts

30 PRINT "Resistance (in ohms)
40 PRIKET "Power usage {in watts)
50 END

" Ohms
":Watts

¥

Lines 10 through 40 of the first program are executed in normal, serial fashion. Upon reaching
line 50, the system deletes all program lines of the program, then GETs the lines of the
“Wattage” program. Note that since they have similar COM declarations, the COM variables
are preserved and used by the second program. This feature is very handy to have while
chaining programs.

Program-to-Program Communications

As shown in the preceding example, if chained programs are to communicate with one
another, you can place values to be communicated in COM variables. The only restriction
is that these COM declarations must mateh exactly, or the existing COM will be cleared
when the chained program is loaded. For a description of using COM declarations, see the
“Subprograms” chapter of this manual.

One important point to note is the use of the COM statement. The COM statement places
variables in a section of memory that is preserved during the GET operation. Since the
program saved in the file named “Wattage” also has a COM statement that contains three
scalar REAL variables, the COM is preserved (it matches the COM declaration of the
“Wattage” program being appended with GET).

If the program segments did not contain matching COM declarations, all variables in the
mismatched COM statements would be destroyed by the “pre-run” that the system performs
after appending the new lines but before running the first program line.

2-12 Program Structure and Flow

3

Numeric Computation

Numeric computations deal exclusively with numeric values. Adding two numbers and finding
a sine or a logarithm are all numeric operations, but converting bases and converting a
number to a string or a string to a number are not,

Numeric Data Types

There are two numeric data types available in HP Instrument BASIC: INTEGER, and REAL.
Any numeric variable not declared INTEGER is a REAL variable. This section covers these
two numeric data types,

INTEGER Data Type
An INTEGER variable can have any whole-number value from —32 768 through +32 767.

REAL Data Type

A REAL variable can be any value from :-1.797 693 134 862 315 x 103°® through
1.797 693 134 862 315 x 10%°, The smallest non-zero REAL value allowed is approximately
+ 2.225 073 858 507 202 x 107308,

A REAL can also have the value of zero.

REAL and INTEGER. variables may be declared as arrays.

Declaring Variables
You can declare variables to be of a particular type by using the INTEGER and REAL
statements. For example, the statements:

INTEGER I, J, Days{(b), Weeks(5:17}
REAL X, Y, Voltage{4), Hours(5,8:13)

each declare two scalar and two array variables. A scalar variable represents a single value.
An array is a subscripted variable that contains multiple values accessed by subscripts. You
can specify both the lower and upper bounds of an array or specify the upper bound only, and
use the default lower bound of 0. You can also declare an array using the DIM statement.

DIM R(4,5)

Numeric Computation 3-1

Assigning Variables

The most fundamental numeric operation is the assignment operation, achieved with the LET
statement. The LET statement may be used with or without the keyword LET. Thus, the
following statements are equivalent:

LET &

=a+1
A=h+t

Implicit Type Conversions

The computer will automatically convert between REAL and INTEGER values in assignment
statements and when parameters are passed by value in function and subprogram calls. When
a value is assigned to a variable, the value is converted to the data type of that variable.

For example, the following program shows a REAL value being converted to an INTEGER:

100 REAL Real var

110 INTEGER Integer _var

120 Real_var = 2.34

130 Integer var = Real var ! Type conversion occurs here.
140 DISP Real _var, Integer_var

150 ENWD

Executing this program returns the following result:
2.34 2

When parameters are passed by value, the type conversion is from the data type of the calling
statement’s parameter to the data type of the subprogram’s parameter. When parameters are
passed by reference, the type conversion is not made and a TYPE MISMATCH error will be
reported if the calling parameter and the subprogram parameters are different tyvpes.

When a REAL number is converted to an INTEGER, the fractional part is lost and the
REAL number is rounded to the closest INTEGER value. Converting the number back to a
REAL will not restore the fractional part. Also, because of the differences in ranges between
these two data types, not all REAL values can be rounded into an equivalent INTEGER
value. This problem can generate INTEGER OVERFLOW errors.

The rounding problem does not generate an execation error. The range problem can generate
an execution error, and you should protect yourself from this possibility.

The following program segment shows a method to protect against INTEGER. overflow errors
(note that the variable X is REAL and Y is INTEGER):

200 TF (-32768<=X) AKD (X<=32767) THEN
210 Y = X

220 ELSE

230 GOSUB Out of range

240 ERD IF

It is possible to achieve the same effect using MAX and MIN functions:
200 Y=MAX(MIN(x,32767),-32768)

Both these methods avoid the overflow errors, but only the first includes the fact that
the values were originally out of range. If out-of-range is a meaningful condition, an error
handling trap is more appropriate.

3-2 Numeric Computation

Evaluating Scalar Expressions
This section covers the following topics as they relate to evaluating scalar expressions.
Hierarchy of expression evaluation

® HP Instrument BASIC operators: monadic, dyadic, and relational

The Hierarchy

If you look at the expression 244 /246, it can be interpreted several ways:
B 2+4+{4/2)+6 = 10

B (244)/246 = 9

B 2+4/(2+6) = 2.5

m (244)/(246) = .75

To eliminate this ambiguity HP Instrument BASIC uses a hierarchy for evaluating expressions.
In order to understand how HP Instrument BASIC evaluates these expressions, let’s examine
the valid elements in an expression and the evaluation hierarchy (the order of evaluation of the
elements).

Six items can appear in a numeric expression:

m Operators (+, —, etc.)—modify other elements of the expression.

Constants (7.5, 10, etc.}—represent literal, non-changing numeric values.
m Variables (Amount, X _coord, etc.)—represent changeable numeric values.

® Intrinsic fanctions (SQRT, DIV, etc.}—return a value that replaces them in the evaluation
of the expression.

B User-defined functions (FNMy_fune, FNReturn._val, etc.}—also return a value that replaces
them in the evaluation of the expression.

m Parentheses—are used to modify the evaluation hierarchy.

Numeric Computation 3-3

The following table defines the hierarchy used by the computer in evaluating numeric
expressions.

Math Hierarchy

Precedence Operator

Highest Parentheses; they may be used to force any order of operation
Functions, both user-defined and intrinsic

Exponentiation: ~

Multiplication and division: * / MOD DIV MODULO
Addition, subtraction, monadic plus and minus: -+ ~-
Relational Operators: = <> < > <= >=

NOT

AND

Lowest OR, EXOR

When an expression is being evaluated it is read from left to right and operations are
performed as encountered, unless a higher precedence operation is found immediately to
the right of the operation encountered, or unless the hierarchy is modified by parentheses.
If HP Instrument BASIC cannot deal immediately with the operation, it is stacked, and the
evaluator continues to read until it encounters an operation it can perform. It is easier to
understand if you see an example of how an expression is actually evaluated.

The following expression is complex enough to demonstrate most of what goes on in
expression evaluation.

A = 5+3%(4+2} /SIN(X)} +X% (1>X) +FNNeg1* (X<5 AND X>0)

To evaluate this expression, it is necessary to have some historical data. We will assume that
DEG has been executed earlier, that ¥= 90, and that FNNegl returns ~1. Evaluation proceeds
as fotlows:

3-4 Numeric Computation

E+3% (4+2) /STH (X +X* (1>X)+FNNeg1#(X<6 AND X>0)
5+3#6/SIN(X) +X* (1>X) +FlNeg 1# (X<5 AND X>0)
E+18/SIN(X)+X#(I>X)+FiNegi+ (X<t ARD X>0)
5+18/1+X*(1>X)+FlNeg 1% (X<5 AND X>0)
E+18+X* (1>X)+FNNegi# (X<5 AND X>03

23+X* (1>X)+FiNegis (X<5 AND X>0)
23+X%0+Fiilegi*(X<5 AND X>0)
23+0+FANeg 1% (X<5 AND X>0)

23+FHleglx (X<E AND X>0)

23+-1%(X<5 AND X>0)

23+~1%(0 AED X>0)

23+-1%(0 AED 1)

23+-1%0

2340

23

Operators
There are three types of operators in HP Instrument BASIC: monadic, dyadic, and relational.

s A monadic operator performs its operation on the expression immediately to its right. + -
NOT

8 A dyadic operator performs its operation on the two values it is between. The operators are
as follows: =, *, /, MOD, DIV, +, -, =, <>, <, >, <=, >=_AND, OR, and EXOR.

® A relational operator returns a 1 (true) or a 0 (false) based on the result of a relational test
of the operands it separates. The relational operators are a subset of the dyadic operators
that are considered to produce Boolean results. These operators are as follows: <, >, <=,
>=, =, and <>.

While the use of most operators is obvious from the descriptions in the language reference,
some of the operators have uses and side effects that are not always apparent.
Expressions as Pass Parameters

All numeric expressions are passed by value to subprograms. Thus, 54X is obviously passed
by value. Not quite so obviously, +X is also passed by value. The monadic operator makes it
an expression.

For more information on pass parameters, read the chapter entitled “Subprograms and
User-Defined Functions.”

Numeric Compuiation 3-5

Strings in Numeric Expressions

String expressions can be directly included in numeric expressions if they are separated by
relational operators. The relational operators always vield Boolean results, and Boolean
results are numeric values in HP Instrument BASIC. For example:

110 Day_number=1%(Day$="Sun")+2% (Day$="Mon")

Executing the program line above would result in Day_number being equal to 1 if Day$ equals
“Sun” and 2 if Day$ equals "Mon" (or 0 otherwise).

Step Functions

The comparison operators are useful for conditional branching (IF ... THEN statements), but
are also valuable for creating numeric expressions representing step functions. For example,
suppose you want to output certain values depending on the value, or range of values of a
single variable. This is shown as follows:

If variable < 0 then output =0
s If 0 < variable < 1 then output equals the square root of {A? + B?).
s If variable > 1 then output = 15

It is possible to generate the required response through a series of IF ... THEN statements,
but it can also be done with the foliowing expression (where X is the variable and Y is the
output}):

Y=(X<0) =0+ (X>=0 AND X<1)% SQR(A™24B~2)+(X>=1) %15

The Boolean expressions each return a 1 or 0, which is then multiplied by the accompanying
expression. Expressions not matching the selection return 0, and are not included in the
result. The value assigned to the variable (X)) before the expression is evaluated determines
the computation placed in the result,

Comparing REAL Numbers

When you compare INTEGER numbers, no special precautions are necessary since these
values are represented exactly. However, when you compare REAIL numbers, especially those
that are the results of calculations and functions, it is possible to run into problems due to
rounding. For example, consider the use of comparison operators in IF ... THEN statements
to check for equality in any situation resembling the following:

100 DEG

110 A=25.3765477
120 IF SIN{A4)"2+C0S{4)"2=1.0 THEN

130 PRIKT "Equal"

140 ELSE

150 PRINT "Not Equal"
160 END IF

You will find that the equality test fails due to rounding errors. Irrational numbers and most
repeating decimals cannot be represented exactly in any finite machine, and most rational
decimal numbers with fractional parts cannot be represented exactly with binary numbers,
which HP Instrument BASIC uses internally.

3-8 Numeric Computation

Resident Numerical Functions

The resident functions are the functions that are part of the HP Instrument BASIC language.
Numereous functions are included to make mathematical operations easier. This section covers
these functions by placing them in the categories given below,

g Arithmetic Functions

Exponential Functions

® Trigonometric Functions

m Binary Functions

@ Limit Functions

@ Rounding Functions

@ Random Number Function

Base Conversion Functions

e General IPunctions

Arithmetic Functions

BP Instrument BASIC provides you with the following functions:

ABS

FRACT

INT

MAXREAL

MINREAL

SGRT or SQR

SGN

Returns the absolute value of an expression. Takes a REAL, or INTEGER
number as its argument.

Returns the “fractional” part of the argument.

Returns the greatest integer that is less than or equal to an expression.
The result is of the same type (INTEGER or REAL) as the original
number.

Returns the largest positive REAL number available in HP Instrument
BASIC. Its value is approximately 1.797 693 134 862 32E+308.

Returns the smallest positive REAL number available in HP Instrument
BASIC. Its value is approximately 2.225 073 858 507 24E~308.

Return the squaze root of an expression. Takes a REAL or INTEGER
number ag their argunment.

Returas the sign of an expression: 1 if positive, 0 if 0, —1 if negative.

Exponential Functions

These functions determine the natural and common logarithm of an expression, as well as the
Napierian e raised to the power of an expression. Note that all exponential functions take
REAL, or INTEGER numbers as their argument.

EXP
LGT
L0G

Raise the Napierian e to an power. e = 2.718 281 828 459 05.
Returns the base 10 logarithm of an expression.

Returns the natural logarithm {Napierian base e} of an expression.

Kumeric Computation 3-7

Trigonometric Functions

Six trigonometric functions and the constant = are provided for dealing with angles and
angular measure. Note that all trigonometric functions take REAL or INTEGER numbers as
their argument.

ACS Returns the arccosine of an expression.

ASN Returns the arcsine of an expression.

ATN Returns the aretangent of an expression.

cos Returns the cosine of the angle represented by the expression.

SIN Returns the sine of the angle represented by an expression.

TAN Returns the tangent of the angle represented by an expression.

PI Returns the constant 3.141 592 653 589 79, an approximate value for pi.

Trigonometric Modes: Degrees and Radians

The default mode for all angular measure is radians. Degrees can be selected with the DEG
statement. Radians may be reselected by the RAD statement. It is a good idea to explicitly
set a mode for any angular calculations, even if you are using the default (radian) mode. This
is especially important in writing subprograms, as the subprogram inherits the angular mode
from the context that calls it. The angle mode is part of the calling context.

Binary Functions

All operations that HP Instrument BASIC performs use a binary number representation. You
usually don’t see this, because HP Instrument BASIC changes decimal numbers you input
into its own binary representation, performs operations using these binary numbers, and then
changes them back to their decimal representation before displaying or printing them.

The following HP Instrument BASIC functions deal with binary numbers:

BINAND Returns the bit-by-bit “logical and” of two arguments.
BINCHP Returns the bit-by-bit “complement” of its argument.
BINEOR Returns the bit-by-bit “exclusive or” of two arguments.
BINIOR Returns the bit-by-bit “inclusive or” of two arguments.
BIT Returns the state of a specified bit of the argument.

ROTATE Returns a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, with wraparound.

SHIFT Returns a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, without wraparound.

When any of these functions are used, the arguments are first converted to INTEGER (if they
are not already in the correct form), then the specified operation is performed. It is best to
restrict bit-oriented binary operations to be declared INTEGERs. If it is necessary to operate
on a REAL, make sure the precautions described under “Conversions,” at the beginning of
this chapter, are employed to avoid INTEGER overflow.

3-8 Numeric Computation

Limit Functions

It is sometimes necessary to find the range of values in a list of variables. HP Instrument
BASIC provides two functions for this purpose:

MAX Returns a value equal to the greatest value in the list of arguments.

MIN Returns a value equal to the least value in the list of arguments.

Rounding Functions

Sometimes it is necessary to round a number in a calculation to eliminate unwanted
resolution. There are two basic types of rounding, rounding to a total number of decimal
digits and rounding to a number of decimal places (limiting fractional information). Both
types of rounding have their own application in programming.

The functions that perform the types of rounding mentioned above are as follows:

DROUND Rounds a numeric expression to the specified number of digits. If the
specified number of digits is greater than 15, no rounding takes place. If
the nember of digits specified is less than 1, zero is returned.

PROUKD Returns the value of the argument rounded to a specified power of ten.

Bandom Number Function

The RND function returns a pseudo-random number between 0 and 1. Since many
applications require random nembers with arbitrary ranges, it is necessary to scale the
numbers.

200 R= INT(RND*Range)+0ffset
The above statement will return an integer between Offset and Offset + Range.

The random number generator is seeded with the value 37 480 660 at power-on, SCRATCH,
SCRATCH A, and pre-run. The pattern period is 2*! — 2. You can change the seed with the
RANDOMIZE statement, which will give a new pattern of numbers.

Time and Date Functions
The following functions return the time and date in seconds:
TIMEDATE Returns the current clock value (in Julian seconds).
For example, the statement
TIMEDATE
returns a value in seconds similar to the following:

2.11404868285E+11

Numeric Computation 3-8

Base Conversion Functions

The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number.

IVAL returns the INTEGER decimal value of a binary, octal, decimal, or hexadecimal
16-bit integer. The first argument is a string and the second argument is the radix
or base to convert from. For example,

IVAL("12740",8)
returns the following numeric value
5600

DVAL returns the decimal whole number value of a binary, octal, decimal, or hexadecimal
32-bit integer. The first argument is a string and the second argument is the radix
or bage {o convert from. For example,

DVAL("111i4111144341111184141338111100",2)
returns the following numeric vaiue:
-4

For more information and examples of these functions, read the section “Number-Base
Conversion” found in the “String Manipulation” chapter.

General Functions

When you are specifying select code and device selector numbers, it is more descriptive to use
a function to represent that device as opposed to a numeric value. I'or example, the following
command allows you to enter a numeric value from the keyboard.

ENTER 2 ;Numeric_value

‘The above statement used in a program is not as easy td read as this one fs:
ENTER KRD; Numeric_value

where yon know the function KBD must stand for keyhoard.

Functions that return a select code or device selector are listed below:

CRT Returns the INTEGER. 1. This is the select code of the internal CRT.
KBD Returns the INTEGER 2. This is the select code of the keyboard.
PRT Returns the INTEGER 701.

3-1¢ MNumeric Computation

4

Numeric Arrays

An array is a multi-dimensioaed structure of variables that are given a common name, The
array can have one to six dimensions. Bach location in an array contains one value, and each
value has the characteristics of a single variable, either REAL or INTEGER (string arrays are
discussed in the chapter, “String Manipulation™).

A one-dimensional array consists of n elements, each identified by a single subscript. A
two-dimensional array consists of m times n elements where m and n are the maximum
number of elements in the two respective dimensions. Arrays require a subscript in each
dimension, in order to locate a given elerment of the array. Arrays are limited to six
dimensions, and the subscript range for each dimension must lie between -32767 and 32767.
REAL arrays require eight bytes of memory for each element, plus overhead. It is easy to see
that large arrays can demand massive memory resources.

An undeclared array is given as many dimensions as it has subscripts in its lowest-numbered
occurrence. Each dimension of an undeclared array has an upper bound of ten. Space for
these elements is reserved whether you use them or not.

Dimensioning an Array

Before you use an array, you should tell the systemn how much memory to reserve for it. This
is called “dimensioning”™ an array. You can dimension arrays with the DIM, COM, ALLOCATE,
INTEGER or REAL statements. For example:

REAL Array_complex(2,4)

An array is a type of variable and as such follows all rules for variable names. Unless you
explicitly specify INTEGER type in the dimensioning statement, arrays default to REAL type.
The same array can only be dimensioned once in a context (there is one exception to this
rule: If you ALLOCATE an array, and then DEALLOCATE it, you can dimension the array again).
However, as we explain later in this section, arrays can be REDIMensioned.

When you dimension an array, the system reserves space in internal memory for it, The
system also sets up a table which it uses to locate each element in the array. The location
of each element is designated by a unigue combination of subscripts, one subscript for each
dimension. For a two-dimensional array, for instance, each element is identified by two
subscript values. An example of dimensioning a two-dimensional array is as follows:

OPTION BASE 0 defaull numbering of subscripis begins with 0
DIM Array(3,5) declares elements (0,0) Lo (3,5}

OPTION BASE L default numbering of subscripis begins with |
Array(2,3) defines elements (1,1) to (2,3)

OPTION BASE O defaull numbering of subscripls begins with 0
DIM A(1:4,1:4,1:4) expheitly defines elemenis (1,1,1) to (4,4,4)

MNumeric Arrays 4-1

Each context defaults to an option base of 0 (but arrays appearing in COM statements with
an (*) keep their original base. However, you can set the option base to 1 using the QPTION
BASE statement. You can have only one OPTION BASE statement in a context, and it must
precede all explicit variable declarations.

Some Examples of Arrays

When we discuss two-dimensional arrays, the first dimension will always represent rows, and
the second dimension will always represent columns. Note also in the above example that the
first two dimensions use the default setting of 1 for the lower bound, while the third dimension
explicitly defines 0 as the lower bound. The numbers in parentheses are the subscript values
for the particular elements. These are the numbers you use to identify each array element.
The following examples illustrate some of the flexibility you have in dimensioning arrays.

10 OPTION BASE 1
20 DiIM A(3,4,0:2)

) \ (3.1,0) \

1 (2,1,1) \\\\\\\\\ (3,1,1)
2 \ iz 220 \Q m\m\
(2,21} (3,2,1)

i

\
Q\ (2.22) {3.3.0) \
{(2.4,0)
\

2nd DIMENSION

(2,3.1) (3,31)

\ (2,3,2) Q\

(2,4.1) (3,41}

Uy]
~

Tst DIMENSION
Planes of a Three-Dimensional REAL Array

o i o w
ES p IS =
o IS [2
‘ 1 e e — e

Dimension Size Lower Bound Upper Bound
1sf 3 1 3
2nd 4 1 4
drd 3 0 2

10 OPTION BASE 1
20 COM B(1:5,2:6)

4.2 Numeric Arrays

Two-Dimensional REAL ARRAY

(1,2) (1,3) (1,4) (1,5) (1,6)
(2,2) (2,3) (2,4) (2,5) (2,6)
(3,2) (3,3) (3:4) (3,5) (3,6)
(4,2) (4,3) (4,4) (4,5) (4,6)
(5,2) (5,3) (5,4) (5,5) (5,6)
Dimension I Size i Lower Bound Upper Bound
1st 5 1 5
2nd 5 2]

10 OPTIGH BASE 1
20 ALLOCATE INTEGER €(2:4,-2:2)

A Dynamically Allocated, Two-Dimensional INTEGER Array

(2,-2) (2,-1) (2,6) (2,1) {2,2)
(33"2) (3='1) (3)0) (331) {332)
(4,-2) (4,-1) (4,9) (4,1) (4,2)
Dimension | Size I Lower Bound Upper Bound
st 3 2 4
2nd 5 w2 2

Numeric Arrays 4-3

Note Througheut this chapter we will be using DIM statements without specifying
i what the current option base setting is. Unless explicitly specified otherwise,
% all examples in this chapter use option base 1.

As an example of o four-dimensional array, consider a five-story library. On each floor there
are 20 stacks, each stack contains 10 shelves, and each shelf holds 106 books. To specify the
location of a particular book you would give the number of the floor, the stack, the shelf,
and the particular book on that shelf. We could dimension an array for the library with the
statement:

DIM Library(5,20,10,100}

This means that there are 100,000 book locations. To identify a particular book you would
specify its subscripts. For instance, Library(2,12,3,35) would identify the 35th book on the
3rd shelf of the 12th stack on the 2nd floor.

Problems with Implicit Dimensioning

In any context, an array must have a dimensioned size. It may be explicitly dimensioned
through COM, INTEGER, REAL, or ALLOCATE. It can also be implicitly dimensioned through a
subseripted reference to it in a program statement other than a MAT or a REDIM statement.
MAT and REDIM statements cannot be used to implicitly dimension an array.

Finding Cut the Dimensions of an Array

There are a number of statements that allow you to determine the size of an array. To find
out how many dimensions are in an array, use the RANK function. For example, this program

10 OPTION BASE ©
20 DIM F{1,4,-1:2)
3¢ PRINT RANK (F)
40 EXD

would print 3.

The SIZE function returns the size (number of elements} of a particular dimension. For
instance,

SIZE (F,2)
would retarn 5, the number of elements in F's second dimension.

To find out what the lower hound of a dimension is, use the BASE function. Referring again to
array F,

BASE (F,1)

would return a 0, while,

BASE (F,3)
would return a -1, indicating this dimension has not been defined as part of F.

By using the SIZE and BASE functions together, you can determine the upper bounds of any
dimension (e.g., SIZE+BASE-1=Upper Bound).

4-4 Numeric Arrays

These functions are powerful tools for writing programs that perform functions on an array
regardless of the array’s size or shape.

Using Individual Array Elements

This section deals with assigning and extracting individual elements from arrays.

Assigning an Individual Array Element

Initially, every element in an array equals zero. There are a number of different ways to
change these values. The most obvious is to assign a particular value to each element. This is
done by specifying the element’s subscripts. '

A(3,4)=13 the element in row 3, column {, has the value 13

Extracting Single Values From Arrays

As with entering values into arrays, there are a number of ways to extract values as well. To
extract the value of a particular element, simply specify the element’s subscripts.
X=4(3,4,2)

BASIC automatically converts variable types. For example, if you assign an element from a
REAL array to an INTEGER variable, the system will round the REAL to an integer.

Filling Arrays

This section discusses three methods for filling an entire array:
w Assigning every element the same value

8 U sing READ to fill an entire array

Copying arrays into other arrays

Assigning Every Element in an Array the Same Value

For some applications, you may want to initialize every element in an array to some particular
value. You can do this by assigning a value to the array name. However, you must precede
the assignment with the MAT keyword.

MAT &= (10}

Note that the numeric expression on the right-hand side of the assignment must be enclosed in
parentheses and that this expression may be INTEGER or REAL.

Numeric Arrays 4-5

Using the READ Statement to Fill an Entire Array

You can assign values to an array using READ and DATA. DATA allows you to create a stream of
data items, and READ enables you to enter the data stream into an array.

116 DIM A(3,3)

120 DATA ~4,36,2.3,5,89,17,-6,-12,42

13¢ READ A{#)

140 PRIRT USING "3(3bD.DD,3DD.DD,3DD.DD, /)" ;A ()
150 END

The asterisk in line 140 is used to designate the entire array rather than a single element.
Note also that the right-most subscript varies fastest. In this case, it means that the system
fills an entire row before going to the next one. The READ/DATA statements are discussed
further in the chapter “Data Storage and Retrieval”.

Executing the previous program produces the following results:

~4.00 36.00 2.30
5.00 83.00 17.00
=6.00 -12.00 42.00

Copying Entire Arrays into Other Arrays

Another way to fill an array is to copy all elements from one array into another {copying
sub-sets of arrays is discussed in the subsequent section of “Numeric Arrays” called “Copying
Subarrays”). Suppose, for example, that you have the two arrays A and B shown below.

6 4 0 3 5
A=10 0 0f{B=]8 2
0 0 0 1 7

Note that & is a 3x3 array which is filled entirely with 0’s, while B is a 3x2 array filled with
non-zero values. To copy B to A, we would execute:

KAT A= B

Again, you must precede the assignment with MAT. The system will automatically redimension
the “result array” (the one on the left-hand side of the assignment) so that it is the same size
as the “operand array” (the one on the right side of the equation.) There are two restrictions
on redimensioning an array.

® The two arrays must have the same rank (e.g., the same number of dimensions.)

w The dimensioned size of the result array must be at least as large as the current size of the
operand array.

H BASIC cannot redimension the resuit array to the proper size, it returns an error,

Automatic redimensioning of an array will not affect the lower bounds, only the upper
bounds. So the BASE values of each dimension of the result array will remain the same. Also
keep in mind that the size restriction applies to the dimensioned size of the result array

and the current size of the operand array. Suppose we dimension arrays 4, B and € to the
following sizes:

10 OPTION BASE i
20 DIM A(3,3),B(2,2),0(2,8)

4-6 Numeric Arrays

We can execute,
MAT A= B

since A is dimensioned to 9 elements and B is only 4 elements. The copy automatically
redimensions A to a 2x2 array. Nevertheless, we can still execute:

MAT A= C

This works because the nine elements originally reserved for A remain available until the
program is scratched. A now becomes a 2x4 matrix. After MAT A= C, we could not execute:

MAT B= A
or
MAT B= C

since in each of these cases, we are trying to copy a larger array into a smaller one. But we
could execute
MAT C= A

after the original MAT A= B assignment, since C’s dimensioned size (8} is larger than 4’s current
size (4).

Printing Arrays

Printing an Entire Array
Certain operations (e.g., PRINT, OUTPUT, ENTER and READ) allow you to access all elements of
an array merely hy using an asterisk in place of the subscript list. The statement,

PRINT A{%);
would display every element of A on the current PRINTER IS device. The elements are
displayed in order, with the rightmost subscripts varying fastest. The semi-colon at the end
of the statement is equivalent to putting a semi-colon between each element. When they are
displayed, therefore, they will be separated by a space. (The default is to place elements in
successive columns.)

Examples of Formatting Arrays for Display

This section provides two subprograms which have both been given the name Printmat.
The first subprogram is used to display a two-dimensional INTEGER, array and the second
subprogram is used to display a three-dimensional INTEGER array.

To display a two dimensional array, you can use the following subprogram:

Numeric Arrays 4.7

240 SUB Printmat (INTEGER Array(*))
260 CGPTION BASE 1
260 FOR Row=BASE(Array,1) T8 SIZE{Array,1)+BASE(Array,1i)-i

270 FOR Column=BASE{Array,2) TO SIZE(Array,2)+BASE(Array,2)-1
280 PRINT USING "DDDD, XX, #";Array(How,Column)
290 REXT Column

300 FRINT
316 NEXT Row
320 SUBERD

Assuming that you intended to display a 5x5 array, your results should look similar to this:

11 12 13 4 15
21 22 23 24 25
31 32 33 34 36
41 42 43 44 45
51 52 B3 54 55

If you were to expand the above subprogram to print three-dimensional INTEGER arrays,
your subprogram would be similar to the following:

250 SUB Printmat (INTEGER Array{s))
260 OPTION BASE 1

270 FOR Zplane=BASE(Array,3) T0 SIZE(Array,3)+BASE(Array,3)~1
280 PRINT TAB{6),"Plane ";Zplane

230 PRINT

300 FOR Yplane=BASE(Array,2) TO SIZE(Array,2)+BASE{(Array,2)}-1
310 FOR Xplane=BASE(Array,1) TO SIZE(Array,1)+BASE(Array,i)~1
320 PRINT USING "DDDD,XX,#";Array(Zplane,¥plane,Xplane)
330 HEXT Xplane

340 . PRINT

350 NEXT Yplane

360 PRINT

370 KEXT Zplane

380 SUBEND

I you had a three dimensional array with the following dimensions:
DIM Arrayi{3,3,3)

filled with all 3s, the results from executing the above subprogram would be as follows:

Plane 1
3 3 3
3 3 3
3 3 3
Plane 2
3 3 3
3 3 3
3 3 3
Plane 3
3 3 3

[£4
[5)
(4%

4-8 Numeric Arrays

Passing Entire Arrays

The asterisk is also nsed to pass an array as a parameter to a function or subprogram. For
instance, to pass an array A to the Printmat subprogram listed earlier, we would write:

Printmat (A(*})

Copving Subarrays
An earlier section discussed copying the contents of an entire array into another entire array.
MAT ArrayBb= Array33

Each element of Array33 is copied into the corresponding element of Array56 which is
redimensioned if necessary.

Now suppose you would like to copy a portion of one array and place it in a special location
within another array. This process is called copying subarrays.

Array4x4 Array3x4

otz 13 14
21+ -9 16 | 24
31 %1 -5 34
41 42 43 44

45 67 -8 1
of— § -4 | -9 162
99 91 -5 19

Copying a Subarray into Another Subarray

Topics discussed in this section are:

® Subarray specifier

w Copying a subarray into an array

® Copying an array into a subarray

m Copying a subarray into a subarray

e Copying a portion of an array into itself
w Rules for copying subarrays

Dimensions for the arrays covered in the above topics will assume an option base of 1 (OPTION
BASE 1) unless stated differently.

Subarray Specifier

A subarray is a subset of an array {(an array within an array). A subarray is indicated after
the array name as follows:

Array_name (subarray_specifier)

String_array$ (subarray_specifier)

The above subarray could take on many “sizes” and “shapes” depending on what you used as
dimensions for the array and the values used in the subarray_specifier. Note that “size” refers

Numeric Arrays 4-9

to the number of elements in the subarray and “shape” refers to the number of dimensions
and elements in each dimension, respectively [e.g. both of these subscript specifiers have
the same shape: (-2:1,-1:10) and (1:4,9:20)]. Before looking at ways you can express a
subarray, let’s learn a few terms related to the subarray specifier.

subscript range

is used to specify a set of elements starting with a beginning
element position and ending with a final element position. For
example, 5:8 represents a range of four elements starting with
element 5 and ending at element 8,

subscript expression is an expression which reduces the RANK of the subarray. For

default range

example if you wanted to select a one-element subarray from a
two-dimensional array which is located in the 2nd row and 3rd
column, you would use the following subarray specifier: (2,3:3).
The subscript expression in this subarray specifier is 2 which
restricts the subarray to row 2 of the array.

is denoted by an asterisk (i.e. (1,%)) and represents all of the
elements in a dimension from the dimension’s lower bound to
its upper bound. For example, suppose you wanted to copy the
entire first column of a two dimensional array, you would use
the following subarray specifier: (*,1), where * represents all
the rows in the array and 1 represents only the first column.

Some examples of subarray specifiers are as follows:

(1,%)

(1:2)

(%,-1:2)

(3,1:2)

(1,%,%)

(1,1:2,%)

(1,2,%)

(1:2,3:4)

a subscript expression and a default range which designate the first row of a
two-dimensional array.

a given subscript range which represents the first two elements of a
one-dimensional array.

a default range and subscript range which represents all of the elements in
the first four colamns of a two-dimensional array {base of 2nd dimension
assumed to be -1).

a subscript expression and subscript range which represent the first two
elements in the third row of a two-dimensional array.

a subscript expression and two default ranges which represent a plane
consisting of all the rows and columns of the first plane in the first-dimension.

a subscript expression, subscript range and default range which represent the
first two rows in the first plane of the first-dimension.

two subscript expressions and a default range which represent the entire
second row in the first plane of the first-dimension,

two subscript ranges which represent elements located in the third and fourth
columns of the first and second rows of a two-dimensional array.

For more information on string arrays, see the “String Manipulation™ chapter found in this

manual.

4-10 Numeric Arrays

Copying an Array into a Subarray

In order to copy a source array into a subarray of a destination array, the destination array’s
subarray must have the same size and shape as the source array.

A destination and source array are dimensioned as follows:

100 OPTION BASE i

110 DIM Des_array(-3:1,5),Sor_array(2,3)

Suppose these arrays contain the following INTEGER values:

Des_array
11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54

15

%
£

35
45
55

Sor..array

T 12 13
21 22 23

you would copy the source array Sor_array into a subarray of the destination array

Des_array by using program line 190 given below:

190 MAT Des_array(-1:9,2:4)= Sor_array

Des_array would have the following values in it as the result of executing the above

statement:

Copying a Subarray into an Array

Des_array
12 13 14
22 23 24
11 1z 13
21 22 23
52 B3 54

15
25
35
45
55

A subarray can be copied into an array as long as the array can be re-dimensioned to be the

size and shape of the subarray specifier.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1

110 DIM Des_array(8),Sor_array(~5:4)

Suppose both of these one-dimensional arrays contain the following values:

Des_array

(-1 14 8 4 98 43

90 -3J(~11

1

.......................................

Sor_array

23 4 78 1100 8 18)

Mumeric Arrays 4-11

you would copy a subarray of the source array (Sor_array) into a destination array
{Des_array) by using program line 190 given below:

190 MAT Des_array= Sor_arvay(-4:1}

Des_array will be re-dimensioned to have six elements with the folowing values in it as a
result of executing the above statement.

Des_array

(s« + = 5

£
-
53]

L

Copying a Subarray into Another Subarray

Subarray specifiers must have the same size and shape when you are copying one subarray
into another.

A destination and source array are dimensioned as foliows:

160 OPTION BASE t

110 DIM Des_array(3,2,2),Sor_array(2,3,2)
120

130

Suppose these three-dimensional arrays contain the following values:

Des_array
e I B I B

131 2172

11

Sor.array {211j212

in order to properly copy a source subarray (Sor_array(*,2,%)) into a destination subarray
using asterisks to represent the ranges of dimensions, you would use line 190 given below:

190 MAT Des_array(3,#*,%)= Sor_array{#,2,%)

A three dimensional array with the fdllowing values in it would be the result of executing the
above statement.

4-12 Numeric Arrays

Des_array

|38
i)

Copying a Portion of an Array inio ltself

If you are going to copy a subarray of an array into another portion of the same array, the
two subarray locations should not overlap (e.g., MAT Array(2:4,1:3)= Array(1:3,2:4) is
an improper assignment}. No error message will result from this misuse, but the result is
undefined.

A destination and source array are dimensioned as follows:

106 OPTIGN BASE 1
110 DI¥ Array(4,4)

Suppose this two dimensional array contains the following values:

“Array

1112 13 14
21 22 123 24
3132 33 34
41 42 43 44

to copy a slice of this array into another portion of the same array, you would use program
line 190 given below:

190 MAT Array(3:4,1:2)= Array(1:2,3:4)

Array will have the following values in it as a result of executing the above statement.

11 12 13 14
21 22 23 24
13 14 33 34

23 24 43 44

Note that you cannot copy a subarray into the array it is part of with an implied
re-dimensioning of the array. A statement of the form:

MAT Array= Array({subarray_specifier)

will always generate a run-time error.

Numeric Arrays 4-13

Rules for Copying Subarrays

This section should help limit the number of syntax and runtime errors you could make when
copying subarrays. A previous section titled *Subarray Specifier” provided you with examples
of the correct way of writing subarray specifiers for copying subarrays. In this section, you will
be given rules to things vou should not do when copying subarrays. The rules are as follows:

® Subarray specifiers must not contain all subscript expressions {(i.e. (1,2,3) is not allowed, it
will produce a syntax error). This rule applies to all subscript specifiers,

B Subarray specifiers must not contain all asterisks (*) or default ranges (i.e. (*,%,%) is not
allowed, it will produce a syntax error), This rule applies to all subscript specifiers.

s If two subarrays are given in a MAT statement, there must be the same number of ranges in
cach subarray specifier. For example:

MAT Des_arrayl1(1:10,2:3)= Sor_array(5:14,%,3)
is the correct way of copying a subarray into another subarray provided the default range
given in the source array (Sor_array} has only two elements in it. Note that the source
array is a three-dimensional array. However, it still meets the criteria of having the same

number of ranges as the destination array because two of its entries are ranges and one is an
expression.

g If two subarrays are given in a MAT statement, the subscript ranges in the source array
must be the same shape as the subscript ranges in the destination array. For example, the
following example is legal:

MAT Des_array(1:5,0:1)= Sor_array(3,1:5,6:7)
however, the following example is not legal:
MAT Des_array(0:1,1:5)= Sor_array(1:5,0:1)

because both of its subarray specifiers do not have the same shape (i.e. the rows and
columns in the destination array do not match the rows and columns in the source array).

Hedimensioning Arrays

In our discussion of copying arrays we saw that the system automatically redimensions an
array if necessary. BASIC also allows you to explicitly redimension an array with the REDIM
statement. As with automatic redimensioning, the following two rules apply to all REDIM
statements:

A REDIMed array must maintain the same number of dimensions.

B You cannot REDIM an array so that it contains more elements than it was originally
dimensioned to hold.

Suppose A is the 3x3 array shown below.

1 2 3
A= 14 5 6
7T 8 9

To redimension it to a 2x4 array, you would execute:

REDIM A4(2,4)

4-14 Numeric Arrays

The new array now looks like the figure below:
(1 2 3 4
A= [5 6 7 8]

Note that it retains the values of the elements, though not necessarily in the same locations.
For instance, A(2,1) in the original array was 4, whereas in the redimensioned array it equals
5. For example, if we REDIMed A again, this time to a 2X2 array, we wouid get:

REDIM A(0:1,0:1)

1 2
a=(5 1)
We could then initialize all elements 1o 0
MAT A= (0)
_ {0 0
2= (5 o

It is also important to realize that elements that are out of range in the REDIMed array still
retain their values, The fifth through ninth elements in A still equal 5 through 9 even though
they are now inaccessible, If we REDIM A back to a 3x3 array, these values will reappear. For
example:

REDIM A4(3,3)

results in:

7T 8 9

One of the major strengths of the REDIM statement is that it allows you to use variables for
the subscript ranges: this is not allowed when you originally dimension an array. In effect,
this enables you to dynamically dimension arrays. This should not be confused with the
ALLOCATE statement which allows you to dynamically reserve memory for arrays. In the
example below, for instance, we enter the dimensions from the keyboard.

0 6 0
A=10 5 6

10 OPTION BASE 1

20 INTEGER A(100,100)

30 IKPUT "Enter lower and upper bounds of dimensions",
Lowi,Upt,Low2,Up2

40 IF (Upl~Lowl+1)*(Up2~Low2+1)>10000 THEN Too_big

50 REDIM A{Lowl:Upi,Low2:Up2)

Line 40 tests to see whether the new dimensions are too big. If so, program control is passed
to a line labelled “Too_big”. If line 40 were not present, the REDI¥ statement would return an
error if the dimensions were too large.

Numeric Arrays 4-15

5

String Manipulation

It is often desirable to store non-numerical information in the computer. A word, a name or a
message can be stored in the computer as a string. Any sequence of characters may be used in
a string. Quotation marks delimit the beginning and ending of the string. The following are
valid string assignments:

LET A$="COMPUTER"

Fail%="The test has failed."

File_name$="TINVENTORY"
Test$=Fail$[5,8]

The left-hand side of the assignment (the variable name) is equated fo the right-hand side of
the assignment (the literal). String variable names are identical to numeric variable names
with the exception of a dollar sign ($) appended to the end of the name.

The length of a string is the number of characters in the string. In the previous example, the
length of A% is 8 since there are eight characters in the literal “COMPUTER”. A string with
length O (i.e., that contains no characters) is known as a null string.

HP Instrement BASIC allows the dimensioned length of a string to range from 1 to 32 767
characters. The current length (number of characters in the string) ranges from zero to the
dimensioned length,

The default dimensioned length of a string is 18 characters. The DIM and COM statements
define string lengths up to the maximum length of 32 767 characters. An error resulfs
whenever a string variable is assigned more characters than its dimensioned length.

A string may contain any character. The only special case is when a quotation mark needs to
be in a string. Two quotes, in succession, will embed a quote within a string.

16 Quote$="The time is "“NOW"*.©
20 PRIANT Quote$
30 END

produces

The time is "NOW".

String Manipulation 5-1

String Storage

Strings with a length that exceed the default length of 18 characters must have space reserved
before assignment. The following statements may be used:

DIM Long${400] Reserve space for a 400 character string.
COM Line${80] Reserve an 80 character common variable.

ALLOCATE Search$[Length] Dynamic length allocation.

The DIM statement reserves storage for strings. '
DIM Part_number$[10] ,Description$[64],Cost$[5]

The COM statement defines common variables that can be used by subprograms.
COM Name$ {401 ,Phone$[14]

Strings that have been dimensioned but not assigned return the null string.

String Arrays
Large amounts of text are easily handled in arrays. For example,
DIM File$(1:1000) [80]

reserves storage for 1000 lines of 80 characters per line. Do not confuse the brackets, which
define the length of the string, with the parentheses, which define the number of strings in the
array. Pach string in the array can be accessed by an index. For example,

PRINT File$(27)

prints the 27th element in the array. Since each character in a string uses one byte of memory
and each string in the array requires as many bytes as the length of the string, string arrays
can quickly use a lot of memory.

A program saved on a disc as an ASCII type file can be entered into a string array,
manipulated, and written back out to disc.

5-2 String Manipulation

Evaluating Expressions Containing Strings
This section covers the following topics:

w Fvaluation Hierarchy

e String Concatenation

® Relational Operations

Evaluation Hierarchy

Evaluation of string expressions is simpler than evaluation of numerical expressions. The
three allowed operations are extracting a substring, concatenation, and parenthesization. The
evaluation hierarchy is presented in the following table.

Order Operation

High Parentheses
— Substrings and Functions

Low Concatenation

String Concatenation

Two separate strings are joined together by using the concatenation operator “&”. The
following program combines two strings into one:

10 One$="WRIST"

20 Two$="WATCH"

30 Concat$=One$&Twod

40 PRINT One$,Two$,Concat$
50 END

prints
WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the first
string. The result is assigned to a third string. An error results if the concatenation operation
produces a string that is longer than the dimensioned length of the string being assigned.

Relationai Operations

Most of the relational operators used for numeric expression evaluation can also be used for
the evaluation of strings.

The following examples show some of the possible tests:

"ABCH = "ABG" True
"ABC" = " ABC" Fualse
"ABC" < "AbCM True
Mgt > nyn False
M2 < i False
"long" <= "lenger" True
"RE~SAVE" >= “RESAVE" Fualse

String Manipulation 5.3

Any of these reiational operators may be used: <, >, <=, >=, =, <>,

Testing begins with the first character in the string and proceeds, character by character, until

the relationship has been determined.

The outcome of a relational test is based on the characters in the strings not on the length of
the strings. For example,

"BRONTOSAURUS" < "CAT"

is a true relationship since the letter “C” is higher in ASCII value than the letter “B”.

Substrings

You can append a subscript to a string variable name to define a substring. A substring may
comprise all or just part of the original string. Brackets enclose the subscript which can be a
constant, variable, or numeric expression. For example,

String$ [4]

specifies a substring starting with the fourth character of the original string. The subscript
must be in the range 1 to the current length of the string plus 1. Note that the brackets
now indicate the substring’s starting position instead of the total length of the string as
when reserving storage for a string. Subscripted strings may appear on either side of the
assignment,

Single-Subscript Substrings

When a substring is specified with only one numerical expression, enclosed with brackets, the
expression is evaluated and rounded to an integer indicating the position of the first character
of the substring within the string.

The following examples use the variable A$, which has been assigned the literal
“DICTIONARY™:

Statement Gutput
PRINT &$ DICTICNARY
PRINT A$[0] (error)
PRIRT 4$[1] DICTIONARY
PRINT 4$[5] TONARY
PRINT 4$[10] Y

PRINT A$[11] (null string)
PRINT a%[12] (error)

When you use a single subscript it specifies the starting character position, within the string,
of the substring. An error results when the subscript evaluates to zero or greater than the
current length of the string plus 1. A subscript that evaluates to 1 plus the length of the
string returns the nulf string (¥} but does not produce an error,

5-4 String Manipulation

Double-Subscript Substrings

A substring may have two subscripts, within brackets, to specify a range of characters. When
a comma 1s used to separate the items within brackets, the first subscript marks the beginning
position of the substring, while the second subscript is the ending position of the substring.
The form is: A$[{Start.End]. For example, if A$ = “JABBERWOCKY?", then

A$[4,6] specifies the substring BER

When a semicolon is used in place of a comma, the first subscript again marks the beginning
position of the substring, while the second subscript is now the length of the substring. The
form is: A$[Start;Length].

4$14:8] specifies the substring BERWOC
In the following examples, the variable B§ has been assigned the literal

“ENLIGHTENMENT”:

Staterment Output

PRINT B$ ENLIGHTENMENT
PRINT B$[1,13] |ENLIGHTENMENT
PRINT B$E1;13] |ENLIGETENMENT
PRINT B$[1,9] ENLIGHTEN
PRINT B$li;9l ENLIGHTEN
PRINT B$[3,73 LIGHT

PRINT B$[3;7] LIGHTEN
PRINT B$[13,:3] |W
PRINT B$[13;1] N
PRINT B$[13,28] |(error)
PRINT B$[13;13] |({error)
PRINT B$[14;1] |{null string)

An error results if the second subscript in a comma separated pair is greater than the current
string length plus T or if the sum of the subscripts in a semicolon separated pair is greater
than the current string length plus 1.

Specifying the position just past the end of a string returns the null string.

String Manipulation 5-5

Special Considerations

All substring operations allow a subscript to specify the first position past the end of a string.
‘This allows strings to be concatenated without the concatenation operator. For example,
10 A$="CONCAT"

20 AS[7]="ENATION"
30 PRIKT A$

40 ERD
produces
CONCATENATION

The substring assignment is only valid if the substring already has characters up to the
specified position. Access beyond the first position past the end of a string results in the error

ERROR 18 String ovil. or substring err

It’s good practice to dimension all strings inclading those shorter than the default length of
eighteen characters.

String-Related Functions

Several intrinsic functions are available in HP Instrament BASIC for the manipulation of
strings. These functions include conversions between string and numeric values.

Current String Length

The “length” of a string is the number of characters in the string. The LEN function returns
an integer with a value equal to the string length. The range is from 0 (null string) through
32 767. For example,

PRINT LEN("HELP ME")
prints

7

Subsiring Position

The “position” of a substring within a string is determined by the POS function. The
function returns the value of the starting position of the substring or zero if the entire
substring was not found., For example,

PRINT POS(*"DISAPPEARANCE", "APPEAR")
prints
4

Note that POS returns the first occurrence of a substring within a string. By adding a
subscript and indexing through the string, the POS function can be used to find all occurrences
of a substring.

5-6 String Manipulation

String-to-Numeric Conversion

The VAL function converts a string expression into a numeric value. The number will be
converted to and from scientific notation when necessary. For example,

PRINT VAL("123.4E3")
prints
123400

The string must evaluate to a valid number or error 32 will result.

ERROR 32 String is not a valid number

The NUM function converts a single character into its equivalent numerie value. The number
returned is in the range: 0 to 255. For example,

PRINT NUM("A")
prints 65

Numeric-t0-8tring Conversion

The VALS$ function converts the value of a numeric expression into a character string. The
string contains the same characters (digits) that appear when the numeric variable is printed.
For example,

PRINT 1000000,VAL${1000000)
prints
1.E+6 1.E+6

The CHRS function converts a number into an ASCII character. The number can be of type
INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For example,

PRINT CHR$(97) ;CHR$ (98) ; CHR$(99)
prints

abc

String Functions

This section covers string functions, which perform the following tasks:
e reversing the characters in a string

® repeating a string a given number of times

B trimming the leading and trailing blanks in a string

@ converting string characters to the desired case

String Manipulation 5-7

String Reverse

The REVS function returns a string created by reversing the sequence of characters in the
given string. For example,

PRINT REV$("Snack cans")
prints

snac kcanS

String Repeat

The RPTS function returns a string created by repeating the specified string, a given number
of times. For example,

PRINT RPT§ ("% %" ,10)
prints

* ok kk ok ok ok ok kR ko sk ok

Trimming a String

The TRIMS$ function returns a string with all leading and trailing blanks (ASCII spaces)
removed. For example,

PRINT "*”;TRIM(” 1‘23 H);kl*li
prints

*1.23%

Case Conversion

The case conversion functions, UPC$ and LWCS, return strings with all characters converted
to the proper case. UPC$ converts all lowercase characters to their corresponding uppercase
characters and LWCS$ converts any uppercase characters to their corresponding lowercase
characters.

10 DIM Word${i60]

20 INPUT "Enter a few characters™,Word$
30 PRINT

40 PRINT "You typed: ";Word$

50 PRINT "Uppercase: ";UPC$(Word$)

60 PRINT "Lowercase: ";LWC$(Word$)

70 END

5-8 Sking Manipulation

Number-Base Conversion

Utility functions are available to simplify the calculations between different number bases.
The two functions IVAL and DVAL convert a binary, octal, decimal, or hexadecimal string
value into a decimal number. The IVALS and DVALS functions convert a decimal number
into a binary, octal, decimal, or hexadecimal string value. The IVAL and IVAL§ functions
are restricted to the range of INTEGER variables (-32 768 through 32 767}, The DVAL
and DVALS functions allow “double length” integers and thus allow larger numbers to be
converted (-2 147 483 648 through 2 147 483 647).

Each function has two parameters: the number or string to be converted and the radix.
The radix is limited to the values 2, 8, 10 and 16, and represents the numeric base of the
conversion.

For example,

PRINT DVAL("FF5900",16)
PRIRT IVAL{"aA",16)
PRINT DVAL$(100,8)
PRINT IVAL$(-1,16)

prints

1.6734464E+7
170
00000000144
FFFF

String Manipulation 5-9

Subprograms and
User-Defined Functions

One of the most powerful constructs available in any langunage is the subprogram. A
subprogram can do everything a main program can do except that it must be invoked or
“called” before it is executed, whereas a main program is executed by an operator. This
chapter describes the benefits of using subprograms and shows many of the details of using
them.

A user-defined function is simply a special form of subprogram.

Benefits of Subprograms

A subprogram has its own “context” or state that is distinct from a main program and all
other subprograms. This means that every subprogram has its own set of variables, its own
softkey definitions, its own DATA blocks, and its own line labels. There are several benefits to
be realized by taking advantage of subprograms:

& The subprogram allows the programmer to take advantage of the top-down design method
of programming.

m The program is much easier to read using the subprogram calls,

® By using subprograms and festing each one independently of the others, it is easier to locate
and fix problems.

You may want to perform the same task from several different areas of your program.

@ Libraries of commonly used subprograms can be constructed for widespread use.

A Closer Look at Subprograms

This section shows a few of the details of using subprograms.

Calling and Executing a Subprogram

A SUB subprogram is invoked explicitly using the CALL statement. A nuance of SUB
subprograms is that the CALL keyword is optional when invoking a SUB subprogram.

The omission of the CALL keyword when invoking a SUB subprogram is left solely to the
discretion of the programmer; some will find it more aesthetic to omit CALL, others will
prefer its inclusion. There are, however, two instances that require the use of CALL when
invoking a subprogram.

Subprograms and §-1
User-Defined Functions

CALL is regnired
L. if the subprogram is called after the THEN keyword in an IF statement

2. in an ON._event, . CALL statement

Differences Between Subprograms and Subroutines
A subroutine and a subprogram are very different in HP Instruoment BASIC.

B The GOSUB statement transfers program execution te a subroutine. A subroutine is a
segment of program lines within the current context. No parameters need to be passed, since
it has access to all variables in the context (which is also the context in which the “calling”
segment exists).

8 The CALL statement transfers program execution to a subprogram, which is in a separate
context. Subprograms can have pass parameters, and they can have their own set of local
variables that are separate from all variables in all other contexts.

Subprogram Location

A subprogram is located after the body of the main program, following the main program’s
END statement. (The END statement must be the last statement in the main program
except for comments.) Subprograms may not be nested within other subprograms, but are
physically delimited from each other with their heading statements (SUB or DEF) and ending
statements (SUBEND or FNEND).

Subprogram and User-Defined Function Names

A subprogram has a name that may be up to 15 characters long, just as with line labels and
variable names. Here are some legal subprogram names:

Initialize

Read_dvm

Sort_2_d_array

Plot_data

Because up to 15 characters are allowed for naming subprograms, it is easy and convenient
to name subprograms in such a way as to reflect the purpose for which the subprogram was
written.

Difference Between a User-Defined Function and a Subprogram

A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using the
CALL statement. A function subprogram is called implicitly by using the function name in an
expression. It can be used in a numeric or string expression the same way a constant would be
used, or it can be invoked from the keyboard. A function’s purpose is to return a single value
{either a REAL number or a string).

‘There are several functions that are built into the P Instrument BASIC language that can
be used to return values, such as SIN, SQR, EXP, etc.

Y=SIN(X)+Phase
Rooti=(-B+SQR(B*B~4%4*C))/ (2%4)

User defined functions can extend HP Instrument BASIC if you need a feature that is not
provided.

6-2 Subprograms and
User-Defined Functions

X=F¥Factorial(N)
Angle=FRAtn2(Y,X)

Here is a general guideline for taking a set of data and analyzing it (o generate a single value,
then implementing the subprogram as a function. On the other hand, if you actually want te
change the data itself, generate more than one value as a result of the subprogram, or perform

any I/0 activity, it is better to use a SUB subprogram.

REAL Precision Functions and String Functions

A function is allowed to return either a REAT or a string value, Let’s examine one that
returns a string. There are two primary differences: the first is that a § must be added to

the name of a function that is to return a string. This is used both in the definition of the
function (the DEF statement) and when the function is invoked. The second difference is that
the RETURN statement in the function returns a string instead of a number.

200 PRINT FNAscii_to_hex$(i$)
1550 DEF FNAscii_to_hex${4$)
1560 1 Each ASCIT byte consists of two hex
1570 ! digits; pretty formatting dictates that
1580 a space be inserted between every pair
1590 ! of hex digits. Thus, the cutput siring
1600 ¢ will be three times as long as the input
1610 ! string.
1620 !
1630 ! upper four bits lower four bits
1640 1 UUUU LLLL UUUU LELE
1650 ! shift 4 bits 0000 1111 mask (15)
1660 ! 0000 UUUY 0000 LLLL final
1670 ¢
1680 INTEGER I,Length,Hexupper,Hexlower
1690 Length=LEN(A$)
16956 Length=3%Length
1700 DIM Temp${Length]
1710 FOR I=1 TG Length
1720 Hexupper=SHIFT (NUM(A$[11),4)
1730 Hexlower=BINAND (WUM(AS{I],15)
1740 Temp§ [3*I~2; 1] =FRHex$ (Hexupper)
1750 Temp$[3+1~1;1]=FNHex${Hexlower)
1760 Temp$[3+I;1]=" "
1770 NEXT I
1780 RETURN Temp$
1790 FHERD
1800 DEF FiHex$(INTEGER X)
1810 ! Assume 0<=X<=]15)
1820 ! Return ASCII representation of the
1830 ' hex digit represented by the four
1840 ' bits of X.
1850 t If X is between 0 and 9, return
1860 ¢ "o, L L g
1870 ! If X > 9, return "A"..."F"
(Continued)

Subprggrams and §-3
User-Defined Functions

1880 IF X<=9 THEN

1880 RETURN CHR$(48+X) ! ASCII 48 through 57
1900 ! represent 0" - "g©
1910 ELSE

1920 RETURN CHR$(55+X) * ASCIL 6% through 70
1930 ! represent "A" - U"F"
1940 END IF

1950 FHNEND

Lines 200, 1740, and 1750 show examples of how to call a string function. Lines 1550 and 1800
show where the two string function subprograms begin. Notice that the program could be
optimized slightly by deleting lines 1720 and 1730 and modifying lines 1740 and 1750:

1740 Temp$ £3*I-2; 1]=FNHex$ (SHIFT (NUM(A$EIT) ,4))
1750 Temp$ [3#I-1;1]=FNHex$ (BINAND (NUMCAS[I],15))

Thus, it is perfectly legal to use expressions in the pass parameter list of a subprogram.

Program/Subprogram Communication

As mentioned earlier, there are two ways for a subprogram to communicate with the main
program or with other subprograms:

®m By passing parameters

® By sharing blocks of common (COM) variables.

Parameter Lists
There are two places where parameter lists occar:
m The pass parameter list is in the CALL statement or FN call:
30 CALL Build_array (Numbers (x),20) ! Subprogram call.
50 PRINT FNSum_array{Numbers(s#),20) ! User-defined function call.

It is known as the pass parameter list because it specifies what information is to be passed
to the subprogram.

The formal parameter list is in the SUB or DEF FN statement that begins the
subprogram’s definition:

70 SUB Build_array(X{(#),¥) ! Subprogram "Build_array".
410 DEF FNSum_array(A(x},N) ! User-defined function "Sum_array".
This is known as the formal parameter list because it specifies the form of the information
that can be passed to the subprogram.
Formal Parameter Lists

The formal parameter list is part of the subprogram’s definition, just like the subprogram’s
name. The formal parameter list defines

w the number of values that may be passed to a subprogram

6-4 Subprograms and
User-Defined Funclions

& the fypes of those values (string, INTEGER, or REAL, and whether they are simple or
array variables; or [/O path names)

m the variable names the subprogram will use 1o refer to those values. {This allows the name
in the subprogram to be different from the name used in the calling context.}

The subprogram has the power to demand that the calling context match the types declared
in the formal parameter list-—otherwise, an error results.

Pass Parameter Lists

‘The calling context provides a pass parameter list that corresponds with the formal parameter
list provided by the subprogram. The pass parameter list provides

& the acluel values for those inputs required by the subprogram.

® storage for any values to be returned by the subprogram (pass by reference parameters
only .

It is perfectly legal for both the formal and pass parameter lists to be null (non-existent).

Passing By Value vs. Passing By Reference
There are two ways for the calling context to pass values to a subprogram:
® pass by value—the calling context supplies a value and nothing more,

® pass by reference—the calling context actually gives the subprogram access to the calling
context’s value area (which is essentially access to the calling context’s variable).

The distinction between these two methods is that a subprogram caunnot alter the value of
data in the calling context if the data is passed by value, while the subprogram can alter the
value of data in the calling context if the data is passed by reference.

The subprogram has no control over whether its parameters are passed by value or passed by
reference. That is determined by the calling context’s pass parameter list. For instance, in the
example below, the array Numbers(*) is passed by reference, while the quantity 20 is passed
by value.

30 CALL Build_array(Wumbers(+),20) ! Subprogram call,.
The general rules for passing parameters are as follows:

® In order for a parameter to be passed by reference, the pass parameter list (in the calling
context) must use a variable for that parameter.

In order for a parameter to be passed by value, the pass parameter list must use an
expression for that parameter.

Note that enclosing a variable in parentheses is sufficient to create an expression and that
literals are expressions. Using pass by value, it is possible to pass an INTEGER expression
to a REAL formal parameter (the INTEGER is converted to its REAL representation)
without causing a type mismatch error. Likewise, it is possible to pass a REAL expression
to an INTEGER formal parameter (the value of the expression is rounded to the nearest
INTEGER) without causing a type mismatch error (an integer overflow error is generated if
the expression is out of range for an INTEGER).

Subprograms and 6-5
User-Defined Functions

Exampie Pass and Corresponding Formal Parameter Lists

Here is a sample formal parameter list showing whick types each parameter demands:

SUB Read.dvm(@Dvm, A (%) ,INTEGER Lower ,Upper,Status$,Errflag)

@Dvm

AC*)

Lower, Upper

Status$

Errflag

This is an 1/0 path name that may refer to either an 1/Q device or a mass
storage file. Its name here implies that it is a voltmeter, but it is perfectly
legal to redirect 1/0 to a file just by using a different ASSIGN with @Dvn.

This is a REAL array. s size is declared by the calling context. The
parameters Lower and Upper contain its limits.

These are declared here to be INTEGERs. Thus, when the calling program
invokes this subprogram, it must supply either INTEGER. variables or
INTEGER expressions, or an error will occur.

This is a simple string that presumably could be used to return the status of
the voltmeter to the main program. The length of the string is defined by the
calling context.

This is & REAL number. The declaration of the string Status$ has limited
the scope of the INTEGER keyword which caused Lower and Upper to require
INTEGER pass parameters,

Let’s look at our previous example from the calling side (which shows the pass parameter list):

CALL Read_dvm(@Voltmeter,Readinga(*),1,400,5tatus$ JErrflag)

@Voltmeter

Readings (%)

1, 4G0

Status$

Errflag

This is the pass parameter that matches the formal parameter @Dvm in the
subprogram. [/O path names are always passed by reference, which means
the subprogram can close the [/ path or assign it to a different file or
device.

This matches the array A(*) in the subprogram’s formal parameter list.
Arrays, too, are always passed by reference.

‘These are the values passed to the formal parameters Lower and Upper. Since
constants are classified as expressions rather than variables, these parameters
have been passed by value. Thus, if the subprogram used either Lower or
Upper on the left-hand side of an assignment operator, no change would take
place in the calling context’s value area.

‘T'his is passed by reference here. If it was enclosed in parentheses, it would
be passed by value. Notice that if it was passed by value, it would be totally
useless as a method for returning the status of the voltmeter to the calling
context.

This is passed by reference.

€-6 Subprograms and
User-Defined Functions

COM Blocks

Since we've discussed parameter lists in detail, let’s turn now {o the other method a
subprogram has of communicating with the main program or with other subprograms, the
COM block.

There are two types of COM (or common) blocks: blank and labeled. Blank COM is simply
a special case of labeled COM (it is the COM name that is nothing) with the exception that
blank COM must be declared in the main program, while Iabeled COM blocks don’t have to
be declared in the main program. Both types of COM blocks simply declare blocks of data
that are accessible to any context with matching COM declarations.

A blank COM block might look like this:

20 CU¥ Conditiona{15) ,INTEGER,Cmin,Cmax,@Buclear_pile,Pile_status§[207, Tolerance
A labeled COM might look like this:
30 CO¥ /Valve/ Main(10) ,Subvalves(10,15) ,8Valve_ctrl

A COM bhlock’s name, if it has one, will immediately follow the COM keyword, and will be set
off with siashes, as shown above. ‘The same rules used for naming variables and subprograms
are used for naming COM blocks.

Any context need only declare those COM blocks that it needs to have access to. If there are
150 variables declared in 10 COM blocks, it isn’t necessary for every context to declare the
entire set—only those blocks that are necessary to each context need to be declared. COM
blocks with matching names must have matching definitions. As in parameter lists, matching
COM blocks i1s done by position and type, not by name.

COM vs. Pass Parameters

There are several characteristics of COM blocks that distinguish them from parameter lists as
a means of communications between contexts:

g COM survives pre-run. In general, any numeric variable is set to 0, strings are set to the
null string, and I/O path names are set to undefined after instructing the program to run,
or upon entering a subprogram. This is true of COM the first time the program runs, but
after COM block variables are defined, they retain their values until one of the following
takes place:

ot SCRATCH A or SCRATCH C is executed
o a statement declaring a COM block is modified by the user

O a new program is brought into memory using the GIT command that deesn’t match the
declaration of a given COM block, or that doesn’t declare a given COM block at all

® COM blocks can be arbitrarily large. One limitation on parameter lists (both pass and
formal parameter lists) is that they must fit into a single program line along with the line’s
number, possibly a label, the invocation or subprogram header, and possibly (in the case of
a function) a string or numeric expression. Depending upon the situation, this can impose a
restriction on the size of your parameter lists.

® COM blocks can take as many statements as necessary. COM statements can be interwoven
with other statements (though this is considered a poor practice). All COM statements
within a context that has the same name will be part of the definition of that COM block.

Subprograms and 6-7
User-Defined Funclions

COM blocks can be used for communicating between contexts that do not invoke each
other.

m COM blocks can be used to communicate between subprograrms that are not in memory
simultaneously.

&8 COM blocks can be used to retain the value of “local” variables between subprogram calls.

COM blocks allow subprograms to share data without the intervention of the main program.

Hints for Using COM Biocks

Any COM blocks needed by your program must be resident in memory at prerun time,
executing a RUN command, executing GET from the program, or executing a GET from the
keyboard and specifying a run line. Thus, if you want to create libraries of subprograms that
share their own labeled COM blocks, it is wise to collect all the COM declarations together in
one subprogram. This makes it easy to append them to the rest of the prograim for inclusion
at prerun time. (The subprogram need not contain anything but the COM declarations.)

COM can be used to communicate between programs that overlay each other usin g GET
statements, if you remember a few rules:

1. COM blocks that match each other exactly between the two programs will be preserved
intact. “Matching” requires that the COM blocks are named identically (except blank
COM), and that corresponding blocks have exactly the same number of variables declared,
and that the types and sizes of these variables match.

2. Any COM blocks existing in the old program that are not declared in the new program
(the one being brought in with the GET) are destroyed.

3. Any COM blocks that are named identically, but that do not match variables and types
identically, are defined to match the definition of the new program. All values stored in
that COM block under the old program are destroyed.

4. Any new COM blocks declared by the new program (including those mentioned above jn
#3) are initialized implicitly. Numeric variables and arrays are set to zero, strings are set
to the null string, and I/O path names are set to undefined.

The first occurrence in memory of a COM block is used to define or set up the block.
Subsequent occarrences of the COM block must mateh the defining block, both in the number
of items and the types of the items. In the case of strings and arrays, the actual sizes need

be specified only in the defining COM blocks. Subsequent occurrences of the COM blocks
may either explicitly match the size specifications by re-declaring the same size, or they may
implicitly match the size specifications. In the case of strings, this is done by not declaring
any size, but by declaring the string rame. In the case of arrays, this is done by using the (%)
specifier for the dimensions of the array instead of explicitly re-declaring the dimensions.

Consider the following COM block definition:

10 COM /Dva_state/ INTEGER Range ,Format ,N,REAL
Delay,Lastdata(1:40),Status$[20]

The following occurrence of the same COM block within a subprogram matches the COM
block explicitly and is legal:

2000 COM /Dvm_state/ INTEGER Range,Format,},REAL
Delay,Lastdata(1:40),Status$[20]

6-8 Subprograms and
User-Defined Functions

The following block within a different subprogram uses implicit matching and is also legal:

4010 COM /Dvm_state/ INTEGER Range ,Format,¥,REAL Delay,Lastdata(#),Status$

In general, the implicit size matching on arrays and strings is preferable to the explicit
matching because it makes programs easier to modify. If it becomes necessary to change the
size of an array or string in a COM block, it only needs to be changed in one statement,

the one that defines the COM block. If all other occurrences of the COM block use the (%)
specifier for arrays and omit the length field in strings, none of those statements will have to
be changed as a result of changing an array or string size.

Context Switching

A subprogram has its own centext or state that is distinct from a main program and all

other subprograms. In between the time a CALL statement is executed (or an FN name

is used) and the time the first statement in the subprogram is executed, the computer
performs a “prerun” on the subprogram. This “entry” phase is what defines the context of the
subprogram. The actions performed at subprogram entry are similar, but not identical, to the
actual prerun performed at the beginning of a program. Here is a summary:

® The calling context has a DATA pointer that points to the next item in the current DATA
block that will be used the next time a READ is executed (assuming of course that a
DATA block even exists in the calling program). This pointer is saved away whenever a
subprogram is called, and then the DATA pointer is reset to the first DATA statement in
the new subprogram context.

The RETURN stack for any GOSUBs in the current context is saved and set to the empty
stack in the new context.

& The system priority of the current context is saved, and the called subprogram inherits this
value. Any change to the system priority that takes place within the subprogram (or any of
the subprograms that it calls in turn) is purely local, since the system priority is restored to
its original value upon subprogram exit.

® Any event-initiated GOTO/GOSUB statements are disabled for the duration of the
subprogram. If any of the specified events occur, this will be logged, but no action will
be taken. (The fact that an event did occur will be logged, but only once—multiple
occurrences of the same event will not be serviced.) Upon exiting the subprogram, these
event-initiated conditions will be restored to active status, and if any of these events
occurred while the subprogram was being executed, the proper branches will be taken.

B Any event-initiated CALL/RECOVER statements are saved away upon entering a
subprogram, but the subprogram still inherits these ON conditions since CALL/RECOVER
are global in scope. However, it is legal for the subprogram to redefine these conditions, in
which case the original definitions are restored upon subprogram exit.

 The current DEG or RAD mode for trigonometric operations and graphics rotations is
stored away. The subprogram will inherit the current DEG or RAD setting, but if it gets
changed within the subprogram, the original setting will be restored when the subprogram
is exited.

Subprograms and 6-9
User-Defined Functions

Variable Initialization

Space for all arrays and variables declared is set aside, whether they are declared explicitly
with DIM, REAL, or INTEGER, or implicitly just by using the variable. The entire value
area is initialized as part of the subprogram’s prerun. All numeric values are set to zero, all
strings are set to the null string, and all I/O path names are set to urdefined.

Subprograms and Softkeys

ON KEYs are a special case of the event-initiated conditions that are part of context
switching. They are special because they are the only event conditions that give visible
evidence of their existence to the user through the softkey labels at the bottom of the CRT,
These key labels are saved away just as the event conditions are. and the labels get restored to
their original state when the subprogram is exited, regardless of any changes the subprogram
made in the softkey definitions. This means the programmer doesn’t have to make any special
allowances for reenabling his keys and their associated labels after calling a subprogram that
changes them-—the langnage system handles this antomatically.

Subprograms and the RECOVER Statement

The event-initiated RECOVER statement allows the programiner to cause the program to
resume execution at any given place in the context defining the ON ... RECOVER as a result
of a specified event oceurring, regardless of subprogram nesting.

Thus, if a main program executes the ON part of an ON ... RECOVER statement {for
example a softkey or an external interrupt from the SRQ line on an HP-IB), and then calls a
subprogram, which calls a subprogram, which calls a subprogram, etc., program execution can
be caused to immediately resume within the main program as a result of the specified event
happening.

Editing Subprograms

inserting Subprograms

There are some rules to remember when inserting SUB and DEF FN statement in the middle
of the program. All DEF I'N and SUB statements must be appended to the end of the
program. If you want to insert a subprogram in the middle of your program because your
prefer to see it listed in a given order, you must perform the following sequence:

1. SAVE the program.
2. Delete all lines above the point where you want to insert your subprogram.

3. SAVE the remaining segment of the program in a new file.

-

GET the original program stored in step 1.
Delete all lines below the point where you want to insert your subprogram.

Type in the new subprogram.

- o

Do a GET from the new file created in step 3.

g-10 Subprograms and
User-Defined Functions

Loading Subprograms

If you already have subprograms stored in PROG file(s), there are several options to choose
from in loading them into memory:

® If you want to load a specific subprogram from a PROG file, you would use something like
this:

LOGADSUB Sub_name FRGM “File!

g If you want to load all the subprograms from a specific PROG file, you would use the
LOADSUB ALL FROM statement.

LOADSUB ALL FROM “File”

 And, if you wanted to see which subprograms are stiil missing or load all those still needed,
you would use something like this:

LOADSUB FROM "File™
(Note that this statement is not programmable; that is, it cannot appear in a program line.)

You can also use INMEM to determine if a subprogram is already loaded. For example:

IF NOT INMEM (''Mysub")
THEK LDADSUB ALL FROM "MYSUBS"

Loading Subprograms One at a Time

Suppose your program has several opiions to select from, and each one needs many
subprograms and much data. All the opiions, however, are mutually exclusive; that is,
whichever option you choose, it does not need anything that the other options use. This
means that vou can clean up everything vou've used when you are finished with that option.

If all of your subprograms can be put into one file, you can selectively retrieve them as needed
with this sort of statement:

LOADSYUB Subprog._1 FROM “SUBFILE"

LOADSUB Subprog. .2 FROM "“SUBFILE"

LOADSUB FHHumeric_fn FROM "SUBFILE"
LOADSUR FNString functien$ FROM "SUBFILE"

Note that only one subprogram per line can be loaded with this form of LOADSUB, If, for
any program option, you need so many subprograms that this method would be cumbersome,
you could use the following form of the command.

i.oading Several Subprograms at Once

For this method, vou store all the subprograms needed for each option in its own file. Then,
when the program’s user selects Program Option 1, you could have this line of code execute:

LOADSUB ALL FROM "“OFT1SUBFL"

and if the user selects Option 2,

LOADSUB ALL FROM ""OP2SUBFL"™
and so forth,

There is one other form of LOADSUB, but it cannot be used programmatically. This is
covered next.

Subprograms and 6-11
User-Defined Funclions

L.oading Subprograms Prior to Execution

In the LOADSUB ROM form, neither ALL nor a subprogram name is specified in the
command, This is used prior to program execution. It looks through the program in memory,
notes which subprograms are needed {referenced) but not loaded, goes to the specified file
and attempts to load all such subprograms, If the subprograms are found in the file, they

are loaded into memory; if they are not, an error message is displayed and a list of the
subprograms still needed but not found in the file is printed.

This can be handy in two ways. The first and obvious way is that subprograms can be loaded
quickly. The other way is this: Type a LOADSUB FROM command where the file name

is a file in which you know there are none of the subprograms you need (perhaps a null
PROG file). Of course, no subprograms will be loaded, but a list of those yet undefined will be
printed.

Any COM blocks declared in subprograms brought into memory with a LOADSUB by a
running program must already have been declared. LOADSUB does not allow new COM
blocks to be added to the ones already in memory. Furthermore, any COM blocks in the
subprograms brought in must match a COM block in memory in both the number and type of
the variables. Otherwise, an error occurs.

Note If a main program is in a file referenced by a LOADSUB, it will not be loaded;
g only subprograms can be loaded with LOADSUB. Main programs are loaded
ﬁ with the LOAD command.

With all this talk of loading subprograms from files, one guestion arises: How do you get the
subprograms in the file? Lasily: type in the subprograms you want to be in one file, and then
STORE them with the desired file name. You must use STORE and not SAVE, because the
LOADSUB looks for a PROG-type file. If you can’t type in your subprograms error-free the
first time (and who can?), you can type in your program with all the subprograms it needs
and debug them. Afler storing everything in a file for safekeeping, delete what you do not
want in the file, and STORE everything else in the subprogram file from which you will later
do a LOADSUB. In this way, you know the subprograms will work when you load them.

Deleting Subprograms

It is not possible to delete either DEF FN or SUB statements unless you first delete all the
other lines in the subprogram. This includes any comments after the SUBEND or FNEND.
Another way to delete DEF FN and SUB statements is to delete the entire subprogram, up to,
but rot including, the next SUB or DEF FN line (if any).

Merging Subprograms

I you want to merge two subprograms together, first examine the two subprograms carefully
to insure that you don’t introduce conflicts with variable usage and logic flow. If you've
convinced yourself that merging the two subprograms is really necessary, here’s how you go
about it:

L. SAVE everything in your program after the SUB or DEF FN statement you want to delete.
2. Delete everything in your program from the unwanted SUB statement to the end.

3. GET the program segment you saved in step 1 back into memory, taking care to number
the segment in such a way as not to overlay the part of the program already in memory.

8-12 Subprograms and
User-Defined Functions

SUBEND and FNEND

The SUBEND and FNEND statements must be the last statements in a SUB or function
subprogram, respectively. These statements don’t ever have to be executed; SUBEXIT and
RETURN are sufficient for exiting the subprogram. (If SUBEND is executed, it will behave
like a SUBEXIT. If FNEND is executed, it will cause an error.} Rather, SUBEND and
FNEND are delimiter statements that indicate to the language system the boundaries between
subprograms. The only exceptions to this rule are the comment statements “REM” and “I”.
They are allowed after SUBEND and FNEND.

Recursion

Both function subprograms and SUB subprograms are allowed to call themselves. This is
known as recursion. Recursion is a useful technique in several applications.

The simplest example of recursion is the computation of the factorial function. The factorial
of a number N is denoted by N! and is defined to be N x {N—1)! where 0!=1 by definition.
Thus, N!is simply the product of all the whole numbers from 1 through N inclusive. A
recursive function that computes N factorial is

100 DEF FNFactorial (INTEGER N)
110 IF N=0 THEN RETURNW !

120 BETURN N#FNFactorial(N-1)
130 FNWERD

Subprograms and 6-13
User-Defined Functions

Data Storage and Retrieval

This chapter describes some useful techniques for storing and retrieving data.

8 First we describe how to store and retrieve data thal is part of the HFP Instrument BASIC
program. With this method, DATA statements specify data to be stored in the memory
area used by HP Iustrument BASIC programs; thus, the data is always kept with the
program, even when the program is stored in a mass storage file. The data items can be
retrieved by using READ statements to assign the values to variables. This is a particularly
effective technique for small amounts of data that you want to maintain in a program file.

® ['or larger amounts of data and for data that will be generated or modified by a program,
mass storage files are more appropriate. Files provide means of storing data on mass storage
devices. The two types of data files available with HP Instrument BASIC are described in
this chapter.

a1 ASCIl—used for general text and numeric data storage. (These are the interchange
method with many other HP systems.)

o BDAT-—provide the most compact and flexible data storage mechanism.

More details about these files, including how fo choose a file type and how to access each, are
described in this chapter.

Storing Data in Programs

This section describes a number of ways o store values in memory. In general, these
techniques involve using program variables to store data. The data are kept with the program
when it is stored on a mass storage device {with SAVE). These techniques allow extremely
fast access of the data. They provide good use of the computer’s memory for storing relatively
small amounts of data.

Storing Data in Variables

Probably the simplest method of storing data is to use a simple assignment, such as the
following LET statements:

100 LET Cm_per_inch=2.54
110 Inch_per_cm=1/Cm_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable’s
name. This technique works well when there are relatively few items to be stored or when
several data values are to be computed from the value of a few items. The program wiil
execute faster when variables are used than when expressions containing constants are used;
for instance, using the variable Inch_per_cm in the preceding example would be faster than

Data Storage and Retrieval 7-1

using the constant expression 1/2.54. In addition, it is easier to modify the value of an item
when it appears in only one place (i.e., in the LET statement).

Data Input by the User

You also can assign values to variables at run-time with the INPUT statement as shown in the
following examples.

100 IRPUT "Type in the value of X, please.",ld
200 DISP "Enter the walue of X, YV, and Z.";
210 INPUT ", X,Y,Z

Note that with this type of storage, the values assigned to the corresponding variables are not
kept with the program when it is stored; they must be entered each time the program is run.
This type of data storage can be used when the data are to be checked or modified by the user
each time the program is run. As with the preceding example, the data stored in each variable
can then be retrieved simply by specifying the variable’s name.

Using DATA and READ Statements

The DATA and READ statements provide another technique for storing and retrieving data
from the computer’s read/write (R/W) memory. The DATA statement allows you to store a
stream of data items in memory, and the READ statement allows you retrieve data items from
the stream.

You can have any number of READ and DATA statements in a program in any order you
want. When you RUN a program, the system concatenates all DATA statements in the same
context into a single “data stream.” Each subprogram has its own data stream. The following
DATA statements distributed in a program would produce the following data stream.

100 PATA 1,4,50
200 DATA4 "BB",20,45

300 DATA X,Y,77

oaTa sTREaM: | 1 | 4 [soles[z0]4s] x| v [77]

As you can see from the example above, a data stream can contain both numeric and string
data items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes.
Strings that contain a comma, exclamation mark, or quote mark must be enclosed in quotes.
In addition, you must enter two quote marks for every one you want in the string. For
example, to enter the string QUOTE“QUO”TE into a data stream, you would write

100 DATA "QUOTE""QUQ""TE"

7-2 Data Storage and Retrieval

To retrieve a data item, assign it to a variable with the READ statement. Syntactically,
READ is analogous to DATA; but instead of a data list, you use a variable list. For instance,
the statement

100 READ X,Y,Z$

would read three data items from the data stream into the three variables. Note that the first
two items are numeric and the third is a string variable.

Numeric data items can be READ into either numeric or string variables. If the numeric data
item is of a different type than the numeric variable, the item is converted (i.e., REALs are
converted to INTEGERs, and INTEGERs to REALs). If the conversion cannot be made, an
error is returned. Strings that contain non-numeric characters must be READ into string
variables. If the string variable has not been dimensioned to a size large enough to hold the
entire data item, the data item is truncated.

The system keeps track of which data item to READ next by using a “data pointer.” Every
data stream has its own data pointer that points to the next data item to be assigned to the
next variable in a READ statement. When you run a program segment, the data pointer js
placed initially at the first item of the data stream. Every time you READ an item from the
stream, the pointer is moved to the next data item. If a subprogram is cailed by a context,
the position of the data pointer is recorded and then restored when you return to the calling
context,

Starting from the position of the data pointer, data items are assigned to variables one by one
until all variables in a READ statement have been given values. If there are more variables
than data items, the system returns an error, and the data pointer is moved back to the
position it occupied before the READ statement was executed.

Examples

The following example shows how data is stored in a data stream and then retrieved. Note

that DATA statements can come after READ statements even though they contain the data
being READ. This is because DATA statements are linked during program prerun, whereas

READ statements aren’t executed until the program actually runs.

10 DATA November,26

20 READ Month$,Day,Year$

30 DATA 19381,"The date ig"®

40 READ Str$

50 Print Str$;Month$,Day,Year$
60 END

prints

The date is November 26 1981

Storage and Retrieval of Arrays

In addition to using READ to assign values to string and numeric variables, you can also
READ data into arrays. The system will match data items with variables one at a time
until it has filled a row. The next data item then becomes the first element in the next row.
You must have enough data items to fill the array or you will get an error. In the following
example, we show how DATA values can be assigned to elements of a 3-by-3 numeric array.

Data Storage and Retrieval 7-3

16 DIM Examplel(2,2)
20 DATA 1,2,3,4.5,6,7,8,9,10,11
30 READ Examplef ()
40 PRINT USING "3(X,X),/";Examplei(s)
50 END
prints
iz23
456
789

The data

painter is left at item 10; thus, ftems 10 and 11 are saved for the next READ

statement.

Moving the Data Pointer

In some programs, you will want to assign the same data items to different variables. To do

this. vou

have to move the data pointer so that it is pointing at the desired data item. You

can accomplish this with the RESTORE statement. If you don’t specify a line number or

label, RE
include &

STORE returns the data pointer to the first data item in the data stream. If you do
line identifier in the RESTORE statement, the data pointer is moved to the first

data item in the first DATA statement at or after the identified line. The example below
illustrates how to use the RESTORE statement.

100
110
120
130
140
150
160
170
180
15¢
200
21¢
220
23¢
240G
25¢
260

DIM Arrayl(1:3)
DIM ArrayZ(0:4) ! Dimensions a E-element array.

! Dimensions a 3-element array.
1
DATA 1,2,3,4 ! Places 4 items iam stream.
1

DATA £,6,7 ! Places 3 items in stream.
READ 4,8,C ! Reads first 3 items in stream.
READ Array2({x) ! Reads next 5 items in streanm.
DATA 8,9 ! Places 2 items in stream.

1
RESTORE ! Re-positions pointer to 1st item.
READ Arrayi(x) ! Reads first 3 items in stream.
RESTORE 140 ! Moves data pointer te item "8",
READ D ! Reads "8".

PRINT "Arrayl contains:*;Arrayi(s);" "
PRINT "Array2 contains:";Array2(s);" "
PRIRT "4,8,C,D equal:";4;8;C;D

ERD

Arrayl contains:

A,B,C,

123
Array2 contains: 4 56 7 8
238

P equal: 1

7-4 Data Storage and Retrieval

File Input and Cutput (1/0)

The rest of this chapter describes the second general class of data storage and retrieval—that
of using mass storage files. It presents HP Instrument BASIC programming techniques used
for accessing files.

® The first section gives a brief introduction to the general steps you might take to
o3 choose a file type
o store data in any file

& Subsequent sections describe details of these steps with ASCIH, BDAT, and HP-UX or DOS
files.

Brief Comparison of Available File Types

With HP Instrument BASIC, there are three different types of files in which you can store and
retrieve data, ASCIH, BDAT, and HPUX or DOS. Understanding the characteristics of each
file type will help vou choose the one best suited for your specific application.

Note Note that not every systern will implement all of these file types.

%

B ASCII—used for general text and numeric data storage.

Here are the advantages of this type of file;

o There i¢ less chance of reading the contents into the wrong data type (which is possible
with BDAT and HIP-UX files). Thus, it is the easiest file to read when you don’t know
how it was written,

o The file format provides fairly compact storage for string data.

o ASCII files are compatible with other HP computers that support this file type. (The
full name of ASCII files is “LIF ASCIL” LIF stands for Logical Interchange Format, a
directory and data storage format that is used by many HP computers.)

o1 ASCH files containing HP Instrument BASIC program lines can be read with GET and
written with SAVE.

The main disadvantages of ASCII files are that:
o They can be accessed serially but not randomly.

0 They can be written in only default ASCIH format (no formatting is possible, and the
data cannot be stored in internal representation). It is possible, however, to format data
by first sending it fo a string variable (with OUTPUT ... USING), and then QUTPUT
this string’s contents to the file. {See the subsequent section called “Formatted OUTPUT
with ASCII Files™ for examples.)

g BDAT—provide the most compact and flexible data storage mechanism.
‘These files have several advantages:
o They can be randomly or serially accessed.

o More flexibility in data formats and acecess methods.

Data Storage and Retrieval 7.5

o Faster transfer rates,
o Generally more space-efficient than ASCI files (except for string data items).

o1 They allow data to be stored in ASCI format, internal format, or in a “custom” format
(which you can define with IMAGE specifiers).

The disadvantages are that:

O You must know how the data items were written (as INTEGERs, REALs, strings, etc.) in
order to correctly read the data back.

o These data files cannot be inferchanged with as many other systems as can ASCII files.

e HP-UX--similar to BDAT files in struecture, but also have some of the advantages of ASCII
files:

b Like BDAT files, they can also be accessed randomly or serially, and they can uwse ASCII,
internal, or custom data representations.

o Like ASCH files, they are useful for data-file interchange; however, the set of computers
with which they can be interchanged is slightly different than LIF ASCII files. HP-UX
files can be interchanged with any other system that uses the Hierarchical File System
(HFS) format for mass storage volumes {such as HP-UX systems, and HP Series 200/300
Pascal systems beginning with version 3.2).

o HP-UX files containing HP Instrument BASIC program lines can be read with GET and
written with RE-SAVE.

DOS—identical to HP-UX files, they provide file compatibility with MS3-DOS,

Hir doubt about the type of file to use, choose a BDAT file because of its speed and compact
data storage.

Creating Data Files

You can use three BASIC statements to create data files. Use CREATE ASCII to create an
ASCII file, CREATE BDAT to create a BDAT file, or simply CREATE to create an HP-UX or DOS
file. Note that the CREATE statement creates a DOS file or a DOS file system. Qtherwise, it
creates an HP-UX file,

For example, the statements

CREATE ASCII "Text",100
CREATE BDAT "Text", 100
CREATE "Data_file", 100

all create a data file with a length of 100 records in the current mass storage volume and
directory. The file type is ASCII for the first statement, BDAT for the second, and HP-UX or
DOS for the third.

Note that vou can use CREATE, CREATE ASCII, and CREATE BDAT to create files
within LIF volumes, HF'S volumes and DOS volumes. Each of these statements contains a
file specifier that can include a volume and directory specification. If no volume or directory
is specified, it creates the file in the current volume and directory as determined by the last

MASS STORAGE IS statement.

7-6 Data Storage and Retfrieval

Overview of File 1/O

Storing data in files requires a few simple steps. The following program segment shows a
simple example of placing several items in a data file.

100 REAL Real_array1{1:50,1:25),Real_array2{1:50,1:25)
110 IKTEGER Integer var
120 DIH String$[100]

390 ! Specify default mass storage.

400 MASS STORAGE IS "':,700,1"

410 1

420 ! Create BDAT data file with ten (256-byte) records
430 1 on the specified mass storage device {:,700,1).
440 CREATE BDAT "File_1",10

460 1

460 1 Assign (open) an I/0 path name to the file.

470 ASSIGN @Path_1 TO "File_1"

480 !

490 ! Write various data items into the file.

500 CUTPUT @Path_1;"Literal” ! String literal.
510 OUTPUT @Path_1;Real_arrayl(x) ! REAL array.

520 OUTPUT @Path_1;255 ! Single INTEGER.
530 |

54¢ ! Close the 1I/0 path.
550 ASSIGN @Path_1 TO =*

790 ! Open another I/0 path to the file (assume same default drive).
800 ASSIGN @F_1 TO MFile_1%

810 !

820 ! Read data into another array {same size and iype).

830 ENTER @F_1;String var$! Must be same data types

2840 EHNTER @F_1;Real_ array2{%) ! used to write the file.

860 EHNTER @F_1;Integer var ¢ "Read it like you wrote it."
860 !

870 ! Close I/0 path.
880 ASSIGN @F_1 TO #

Line 400 specifies the defaull mass storage device, that is to be used whenever a mass storage
device is not explicitly specified during subsequent mass storage operations. The term mass
storage volume specifier {msvs) describes the string expression used to uniquely identify which
device is to be the mass storage. In this case, “:,700,17 is the msvs.

To store data in mass storage, a data file must be created (or already exist) on the mass
storage media. In this case, line 440 creates a BDAT file; the file created contains 10 defined
records of 256 bytes each. {Defined records and record size are discussed later in this chapter.)

The term file specifier describes the string expression used to uniquely identify the file. In
this example, the file specifier is stmply File_1, which is the file's name. If the file is 10 he
created (or already exists) on a mass storage device other than the default mass storage, the
appropriate mass storage unit specifier {msus) must be appended to the file name. If that
device has a hierarchical directory format (such as HFS or MS-DOS discs), then you may
also have to specify a directory path (such as /USERS/MARK/PROJECT_1 for LIF or
\USERS\MARK\PROJECT .1 for MS-DOS).

Data Storage and Rebrieval 7-7

Then, in order to store data in {or retrieve data from) the file, you must assign an 1/O path
name to the file. Line 470 shows an example of assigning an 1/O path name to the file (also
called opening an [/Q path to the file). Lines 500 through 520 show data items of various
types being written into the file through the I/O path name.

The I/ O path name is closed after all data have been sent to the file. In this instance, closing
the 1/O path may have been optional, because a different 1/0 path name is assigned to the
file later in the program. (All 1/0 path names are antomatically closed by the system at the
end of the program.} Closing an 1/O path to a file updates the file pointers.

Since these data items are to be retrieved from the file, another ASSIGN statement is
executed to open the file (line 800). Notice that a different 1/O path name was arbitrarily
chosen. Opening this 1/0 path name to the file sets the file pointer to the beginning of the
file. (Re-opening the 1/0 path name @File_1 would have also reset the file pointer.)

Notice also that the msvs is nof included with the file name. This shows that the current
default mass storage device, here “:,700,17, is assumed when a mass storage device is not
specified.

The subsequent ENTER statements read the data iterns into variables; with BDAT and
HP-UX files, the data type of each variable must match the dala type type of each data item.
With ASCII files, for instance, you can read INTEGER. items into REAL variables and not
have problems.

This is a fairly simple example, however, it shows the general steps you must fake to access
files.

A Closer Lock a4t General File Access

Before you can access a data file, you must assign an 1/0 path name to the file. Assigning

an I/O path name to the file sets up a table in computer memory that contains various
information describing the file, such as its type, which mass storage device it is stored on, and
its location on the media. The I/O path name is then used in I/0 statements (OUTPUT, and
ENTER) that move the data to and from the file.

Opening an /0 Path

I/0 path rames are similar to other variable names, except that 1/O path names are preceded
by the “@” character. When an I/O path name is used in a statement. the system looks up
the contents of the I/O path name and uses them as required by the situation.

To open an /O path to a file (to set the validity flag to Open), assign the I/O path name to a
file specifier by using an ASSIGN statement. For example, the statement

ASSIGHK @Pathil TO “Example"

assigns an I/O path name called “@Path1” to the file “Fxample”. The file that you

open must already exist and must be a data file, If the file does not satisfy one of these
requirements, the system will return an error. If you do not use an msus in the file specifier,
the system will look for the file on the current MASS STORAGE IS device. If you want to
access a different device. use the msus svntax described earlier. For instance, the statement

ASSIGN @Path2 T "Example :HP9122,7G0O"

opens an I/Q path to the file “Example” on the specified mass storage device. You must
include the protect code or password, if the LIF file has one.

7-8 Data Storage and Retrieval

Once an 1/O path has been opened to a file, you always use the path name to access the file.
An 1/G path name is only valid in the context in which it is opened, unless you pass it as a
parameter or put it in the COM area. To place a path name in the COM area, simply specify
the path name in a COM statement before you ASSIGN it. For instance, the folowing two
statements would declare an 1/0O path name in an unnamed COM area and then open it:

100 COM @Path3
110 ASSIGH &Path3 TO "Filei"

Assigning Attributes

When you open an [/O path, certain attributes are assigned to it that define the way data is
to be read and written. There are two attributes that control how data items are represented:
FORMAT ON and FORMAT OFF.

g With FORMAT ON, ASCII data representations are used.
g With FORMAT OFF, HP Instrument BASIC’s internal data representations are used.

Additional attributes are available that provide control of such functions as changing
end-of-line (EQL} sequences. {See “ASSIGN” in HP Instrument BASIC Language Reference
for further details.}

As mentioned in the tutorial section, BDAT files can use either data representation; however,

ASCII files permit only ASCII-data format. Therefore, if you specify FORMAT OFF for an
I/O path to an ASCII file, the system ignores it. The following ASSIGN statement specifies a
FORMAT attribute:

ASSIGN @Pathl TO "Filel";FUGRMAT OFF

If Filel is a BDAT or HP-UX file, the FORMAT OFF atiribute specifies that the internal
data formats are to be used when sending and receiving data through the I/0 path. If the
file is of type ASCII, the attribute will be ignored. Note thai FORMAT OFF is the default
FORMAT attribute for BDAT and HP-UX files.

Executing the following statement directs the system to use the ASCII data representation
when sending and receiving data through the I/0 path:

ASSIGN Q@Path2 TO "File2" ;FORMAT ON

I File2 is a BDAT or HP-UX file, data will be written using ASCII format, and data read
from it will be interpreted as being in ASCII format. For an ASCII file, this attribute is
redundant since ASCIl-data format is the only data representation allowed anyway.

If you want to change the attribute of an I/0 path, you can do so by specifying the I/O path
name and attribute in an ASSIGN statement while excluding the file specifier. For instance, if
you wanted to change the attribute of @Path2 to FORMAT OFF, you could execute

ASSIGN @Path2;FORMAT COFF
Alternatively, you could reenter the entire statement
ASSIGN @Path2 TG "File2",FURMAT OFF

These two statements, however, are not identical. The first one only changes the FORMAT
attribute. The second statement resets the entire I/O path table (e.g., resets the file pointer
to the beginning of the file).

Data Storage and Retrieval 7-9

Closing /0 Paths

1/0 path names not in the COM area are closed whenever the system moves into a stopped
state (e.g., STOP, END, SCRATCH, EDIT, etc.). 1/0 path names local to a context are
closed when control is returned to the calling context. Re-ASSIGNing an /0 path name will
also cancel its previous association.

You can also explicitly cancel an /O path by ASSIGNing the path name to an * (asterisk).
For instance, the statement

ASSIGHN @Path2 TO *

closes @Path2. @Path2 cannot be used again until it is reassigned. You can reassign a path
name to the same file or to a different file.

7-10 Data Storage and Retrieval

A Closer Look at Using ASCII Files

You have already been introduced to general file I/O techniques in the example of writing and
reading a BDAT file in the preceding section. This section gives you a closer look at ASCII
file I/O techniques.

Example of ASCH File I/O

Storing data in ASCII files requires a few simple steps. The following program segment shows
a simplistic example of placing several items in an ASCII data file. Note that it is nearly
tdentical to the first example in the preceding “Overview of File I/0O” section, except for
changes to the CREATE statement (line 440) and file name.

100
110
120

3%0
400
410
420
430
440
450
460
470
480
430
500
510
520
530
540
560

790
800
810
820
830
840
850
860

870
880

REAL Real array1(1:50,1:25),Real array2(1:50,1:25)
INTEGER Integer_var
DI¥ String$[100]

! Specify "“default" mass storage device.

MASS STORAGE IS ':,700,1"

t

! Create ASCII data file with 10 sectors

! on the "default" mass storage device.
CREATE ASCIT "File_2",10

¢

t Assign (open) an I/0 path name to the file.
ASSIGN @Path_1 TO "File_2"

'

t Yrite various data items into the file.

QUTPUT QPath_1;"Literal" } String literal.
DUTPUT @Path_i;Real_arrayl(x} ! REAL array.
OUTPUT @Path_f;255 ! Single INTEGER.

i

! Close the I/0 path.
ASSIGN @Path_1 TO =

! Open another I/0 path to the file {(assume same default drive).
ASSTGK @F_1 TO "File 2"

t

! Read data into another array (same size and type).

ENTER @F 1;String var ! Must be same data types.

ENTER @F _1;Real_array2(x)

ENTER Q@F_i;Integer_var
!

! Clese I/0 path.
ASBIGHE 9F_1 TO =

Data Storage and Rebrieval 7-11

Data Representations in ASCH Files

In an ASCII file, every data item, whether string or numeric, is represented by ASCII
characters; one byte represents ane ASCIH character. Each data item is preceded by a
two-byte length keader that indicates how many ASCIT charaeters are in the item. However,
there is no “type” field for each item; data items contain no indication (in the file) as to
whether the item was stored as string or numeric data. For instance, the number 456 would
be stored as follows in an ASCIT file:

EENDEENES

th
FENGTH ASCH
HESDER = copes
BINARY 4

Note that there is a space at the beginning of the data item. This space signifies that the
number is positive. If a number is negative, a minus sign precedes the number. For instance,
the number —456, would be stored as follows:

Lolef-fslsle] | ey
RO ST ——

LENGTH ASCN

HEADER = CODES

BINARY 4

If the length of the data item is an odd number, the system “pads” the item with a space to
make it come out even. The string “ABC”, for example, would be stored as follows:

iOi:ﬂiAiBiQ(paa) 800§
R ——————
LENGTH ASC
HEADER = CORES
BINARY 3

There is often a relatively large amount of overhead for numeric data items. For instance, to
store the integer 12 in an ASCII file requires the following six bytes:

LT L T
(L —

LENGTH ALCH
HEADER = CcODES
BINARY 3

Similarly, reading numeric data from an ASCII file can be a complex and relatively slow
operation. The numeric characters in an item must be entered and evaluated individually by
the system’s “number builder” routine, which derives the number’s internal representation.

7-12 Data Storage and Refrieval

(Keep in mind that this routine is called automatically when data are entered into a numeric
variable.} For example, suppose that the following item is stored in an ASCII file:

R) 3 O S
S, g g

LEMNGTH ASCN

HERDER = CODES

BitlaRyY 14

Although it may seem obvious that this is not a vumeric data item, the system has no way
of knowing this since there s no type-field stored with the item. Therefore, if you attempt to
enter this item into a numeric variable, the system uses the number-builder routine to strip
away all non-numeric characters and spaces and assign the value 123 to the numeric variable.
When vou add to this the intricactes of real nembers and exponential notation, the situation
becomes more complex. For more inforination about how the number builder works, see the
chapter called “Entering Data”™ in fTF Instrument BASIC Interfacing Techniques.

e

Because ASCII files require so much overhead (for storage of “smail” items), and hecause
retrieving numeric data from ASCII files is sometimes a complex process, they are not the
preferred file type for numeric data when compactness is inportant. However, ASCII files are
interchangeable with many other HP products.

In this chapter, we refer to the data representation described above as ASCI-data format.

As mentioned eaclier, you can also store data in BDAT files in ASCII format (by using the
FORMAT ON attribute). Die careful not to confuse the ASCI-file type with the ASCIEdata
format. The ASCII format used in BDAT files when FORMAT ON is specified differs from
the format used in ASCII files in several respects. Each item output to an ASCII file has its
own length header; there are no length headers in a FORMAT ON BDAT file. At the end of
each QUTPUT statement an end-of line sequence is written to a FORMAT ON BDAT file
unless suppressed by an IMAGE or EOL OFF. No end-of-line sequence is written to an ASCII
file at the end of an OUTPUT statement.

In general, you should only use ASCII files when you want to transport data between HP
Instrument BASIC and other machines. There may be other instances where you will want to
use ASCII files, but you should be aware that they cause a noticeable transfer rate degradation
compared to BDAT and HP-UX files (especially for numeric data items).

Formatied QUTPUT with ASCH Files

As mentioned in the “Brief Comparison of File Types,” you cannot format items sent to
ASCII fles; that is, you cannot use the following statement with an ASCII file:

QUTPUT @Ascii_file USING "#,DD.D,4X%,54"; Number,String$

You can, however, direct the cutput to a string variable first, and then QUTPUT this
formatted string to an ASCTI file:

ITPUT String_var$ USIHG ”#,DD.D,éK,5A";Number,string$
OUTPUT QAscii_file;String_var$

When a string variable is specified as the destination of data in an OUTPUT statement,
source items are evaluated individually and placed into the variable according to the free-field
rules or the specified image, depending on which type of OUTPUT statement is used. Thus,

Data Storage and ReWieval 7-13

item terminators may or may not be placed into the variable. The ASCII data representation
is always used during outputs to string variables; in fact, data oulput to string variables is
exactly like that sent to devices through 1/0 paths with the FORMAT ON attribute.

When using OUTPUT to a string, characters are always placed into the variable beginning
at the first position; no other position can be specified as the beginning position at which
data will be placed. Thus, random access of the information in siring variables is not allowed
from OUTPUT and ENTER statements; all data must be accessed seritally. For instance,

if the characters “1234” are output to a string variable by one QUTPUT statement, and

a subsequent OUTPUT statement outputs the characters “5678” to the same variable,

the second output does not begin where the first one left off (i.e., at string position five).
The second OUTPUT statement begins placing characters in position one, just as the first
OUTPUT statement did, overwriting the data initially output to the variable by the first
OUTPUT statement.

The string variable’s length header (2 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output (where n is the dimensioned length of the string).

‘The following example program shows how outputs to string variables can be used to reduce
the overhead required in ASCII data files. To do this, the program compares two possible
methods for storing data in an ASCII data file. The first method stores 64 two-byte items

in a file one at a time. Each two-byte item is preceded by a two-byte length header. The
second method stores 64 two-byte items in a string array that is output to a string variable.
The string variable is then output to an ASCII data file with only one two-byte length header
being used. Since the second method used only one two-byte length header to store 64
two-byte items, it can easily be seen that the second method required less overhead. Note that
the second method is also the only way to format data sent to ASCII data files.

160 PRINTER IS CRT

110 !

120 ! Create a file I record long (=256 bytes).
130 ON ERROR GOTO File exists

140 CREATE ASCY¥I "TABLE",1

160 File_exists: OFF ERROR

160 !
170 !
180 ! First method outputs 64 items individually..

19¢ ASSIGN @iscii TO "TABLE"
200 FOR Item=1 TO 64 ! Store 64 2-byte items.

210 QUIPUT @Ascii;CHRE(Item+31)ECHRS (64+RND*32)
220 STATUS eAscii,5;Rec,Byte
230 DISP USING Image,l;Item,Rec,Byte

240 NEXT Ttem

250 Jmage_1: IMAGE "Item ",DD," Record ",D," Byte ",3B
260 DISP

270 Bytes_used=256+(Rec—-1)+Byte-1

280 PRINT Bytes_used;" bytes used with ist methoed."

290 PRINT
3006 PRINT
31e !
320 !

330 { Second method consolidates items.,
340 DIM Array$(t:64)[2],String$l128]
350 ASSIGHN @Ascii TG "TABLE”

360 !

7-14 Data Storage and Retrieval

370 FOR Ttem=1 TD 64

380 Array$3(Item)=CHR$ (Item+3 1) RCHRE (64+RND*32)

380 NEXT Item

400 !

410 OUTPUT String$;Array$(#); ! Consolidate in string variable.
420 OUTPUT @Ascii;String$ t OUTPUT to file as 1 item.

430 ¢

440 STATUS @hAscii,b;Rec,Byte

450 Bytes_used=256%(Rec-1)+Byte~1

46¢ PRIET Bytes_used;" bytes used with 2nd method.®
47¢ !

486 END

The program shows many of the features of using ASCII files and string variables. The first
method of outputting the data items shows how the file pointer varies as data are sent to the
file. Note that the file pointer points to the next file position at which a subsequent byte will
be placed. In this case, it is incremented by four by every OUTPUT statement (since each
item is a two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file, that would have resulted in using slightly less
disc-media space; however, using BDAT files usually saves much more disc space than would
be saved in this example. The program does not show that ASCII files cannot be accessed
randomly; this is one of the major differences between using ASCH and BDAT (and HP-UX)
files.

Using VALS

The VALS function (or a user-defined function subprogram} and outputs made to string
variables can be used to generate the string representation of a number. The advantage of
the latter method is you can explicitly specify the number’s image. The following program
compares a string generated by the VALS function to that generated by outputting a number
to a string variable:

100 X=12345678

110 !

120 PRINT VAL$(X)

130 !

140 OUTPUT Val$ USING "#,3D.E";X
150 PRINT Val$

160 t

170 ERD

prints

1.2345678E+7
123.E+0b

Formatted ENTER with ASCII Files

Data is entered from string variables in much the same manner as output to the variable. For
example,

ENTER @File;String$
ENTER String$;Varl, Var2$

All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at the
first string position; if a subsequent ENTER statement reads characters from the variable,

Data Storage and Retrievat 7-15

the read also beging at the first position. If more data is to be entered from the string than
is contained in the string, an error is reported; however, all data entered into the destination
variable(s) before the end of the string was encountered remain in the variable(s) after the
eITOT OCCUTS,

When entering data from a string variable, the computer keeps track of the number

of characters taken from the variable and compares it to the string length. Thus,
statement-termination conditions are nof required; the ENTER statement automatically
terminates when the last character is read from the variable. However, item terminators are
still required &f the items are to be separated and the tengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

A Closer Look at BDAT and HP-UX or DOS Files

As mentioned earlier, BDAT and HP-UX files are designed for flexibility {random and serial
access, choice of data representations). storage-space efficiency, and speed. This chapter
provides several examples of using these types of files.

Data Representations Available

The data representations available are

g P Instrument BASIC internal formats {allow the fastest data rates and are generally the
most space-efficient)

® ASCI format (the most interchangeable)

E custom formats (design your own data representations using IMAGE specifiers)

The remainder of this section gives more details for each type of data representation.

Random vs. Serial Access

Random access means that you can directly read from and write to any record within the file,
while serial access only permits you to access the file in order, from the beginning. That is,
you must read records 1, 2, ... , n—1 before you can read record n. Serial access can waste a
tot of time if you're trying to access data at the end of a file. On the other hand, if you want
ta access the entire file sequentially. you are better off using serial access than random access,
because it generally requires less programming effort and often uses less file space. BDAT and
IP-UX files can be accessed both randomly and serially, while ASCII files can be accessed
only serially.

Data Representations Used in BDAT Files

BDAT files allow you to store and retrieve data using internal format, ASCII format, or
user-defined formats.

w With internal format {FORMAT OFF), items are represented with the same format the
system uses to store data in infernal computer memory. (‘This is the default FORMAT for
BDAT and HP-UX files.)

B With ASCII format (FORMAT ON), items are represented by ASCII characters.

7.6 Data Storage and Relrieval

g User-defined formats are implemented with programs that employ OUTPUT and ENTER
statements that reference IMAGE specifiers (items are represented by ASCI characters),

Complete descriptions of ASCII and user-defined formats are given in HP Instrument
BASIC Interfacing Techniques. This section shows the details of internal (FORMAT OFF)
representations of numeric and string data.

BDAT Internal Representations (FORMAT OFF}

In most applications, you will use internal format for BDAT files. Unless we specily otherwise,
you can assume that when we talk about retrieving and storing data in BDAT files, we are
also talking about internal format. This format is synonymous with the FORMAT OFF
attribute described later in this chapter.

Because FORMAT OFY assigned to BDAT files uses almost the same format as internal
memory, very little interpretation is needed to transfer data between the computer and a
FORMAT OFF file. FORMAT OFF files, therefore, not only save space but also save time.

Data stored in internal format in BDAT files require the following number of bytes per item:

Data Type Internal
Representation

INTEGER 2 hytes

REAL 8 bytes

String 4-hyte tength header; 1 byte
per character (plus 1 pad
byte if string length is an odd
number)

INTEGER. values are represented in BDAT files that have the FORMAT OFF attribute by
using a 16-bit, two’s-complement notation that provides a range 32 768 through 32 767. If
bit 15 (the MSB) is 0, the number is positive. If bit 15 equals 1, the number is negative; the
value of the negative number is obtained by changing all ones to zeros, and all zeros to ones,
and then adding one to the resulting value.

Binary Decimal
Representation Equivalent
08600090 60010111 23
11111111 11191000 —24
10000090 00000000 —32768
01111111 11111111 32767
11111111 1131111t -1
090010000 00000001 H
00160011 01000111 5031
11011100 10111001 —9031

Data Storage and Retrieval

7-17

REAL values are stored in BDAT files by using their internal format (when FORMAT OFF
is in effect): the IEEE-standard, 64-bit, floating-point notation. Each REAL number is
comprised of two parts: an exponent (11 bits), and a mantissa (53 bits). The mantissa uses
a sign-and-magnitude notation. The sign bit for the mantissa is not contiguous with the rest
of the mantissa bits; it is the most significant bit (MSB) of the entire eight bytes. The 11-bit
exponent is offset by 1 023 and occupies the 2nd through the 12th MSB’s. Every REAL
number is internally represented by the following equation. (Note that the mantissa is in
binary notation):

_1mantissa sign ~ 2exponent — 1023 % 1.mantissa

String data are stored in FORMAT OFF BDAT files in their internal format.

Every character in a string is represented by one byte that contains the character’s ASCII
code. A 4-byte length header contains a value that specifies the length of the string. If the
length of the string is odd, a pad character is appended to the string to get an even number of
characters; however, the length header does not include this pad character.

The string “A” would be stored:

00000000 00000000 00000000 00000001 01080001 00100000
Length = 0001 (binary) ASCIT 65 ASCIT 32

In this case, the space character (ASCII code 32) is used as the pad character; however, not
atl operations use the space as the pad character.

ASCH and Custom Data Representations

When using the ASCII data format for BDAT files, all data items are represented with ASCII
characters. With user-defined formats, the image specifiers referenced by the QUTPUT or
ENTER statement are used to determine the data representation {which is ASCII characters).

OUTPUT €File USING "SDD.DD,XX,B,#";Fumber ,Binary_value
ENTER €File USING "B,B,404,%";Bin_vall,Bin_val2,String$

Using both of these formats with BDAT files produce results identical to using them
with devices. The entire subject is described fully in HP Instrument BASIC Interfacing
Techniques.

Data Representations with HP-UX and DOS Files
HP-UX and DOS files are very similar to BDAT files. The only differences between them are:
w The internal representation (FORMAT OFF) of strings is slightly different:

o HP-UX and DOS FORMAT OFF strings have no length header; instead, they are
terminated by a null character, CHRS$(0).

o BDAT FORMAT OFF strings have a 4-byte length header;

w HP-UX and DOS files have a fized record length of 1. (BDAT files allow user-definable
record lengths.)

B HP-UX and DOS files have no system sector like BDAT files do (see the next section for
details).

7-18 Data Storage and Retrieval

The FORMAT ON representations for HP-UX files are the same as for devices. The entire
subject is described fully in HFP Instrument BASIC Interfacing Technigues.

Note Throughout this section on Files, you should be able to assume that, unless
i otherwise stated, the technigues shown will apply to HP-UX and DOS as well
ﬁ as BDAT files.

BDAT File System Sector

On the disc, every BDAT file is preceded by a system sector that contains an end-of-file
(EOF) pointer and the number of defined records in the file. All data is placed in succeeding
sectors. You cannot directly access the system sector. However, as you shall see later, it is
possible to indirectly change the value of an EOI pointer.

< .
SECTOR: 5 1) 3
¢ NUMBER
EOF aF Y
POINTER : DEFINED e
3
¢ RECORDS
L AW
' hd
SYSTEM SECTOR DATA

EOF Pointer: e number of sectors from beginning of file
(32—-bit binary number)

s number of byles from beginning of sector
(32—pit binary number)

Mumber of defined records: See description below
(32~bit binary number)

Befined Becords

To access a BDAT file randomly, you specify a particular defined record. Records are the
smallest units in a file directly addressable by a random OUTPUT or ENTER.

® With BDAT files, defined records can be anywhere from 1 through 65 534 bytes long.
s With HP-UX and DOS files, defined records are always 1 byte long.

Specifying Record Size {(BDAT Fiies Only)

Both the length of the file and the length of the defined records in it are specified when you
create a BDAT file. This section shows how to specify the record length of a BDAT file. (The
next section talks about how to choose the record length.)

For example, the following statement would create a file called Example with 7 defined
records, each record being 128 bytes long:

CREATE BDAT "Example",7,128

If you don’t specify a record length in the CREATE BDAT statement, the system will set
each record to the default length of 256 bytes.

Data Storage and Retrieval 7-19

Both the record length and the number of records are rounded to the nearest integer.

For example, the statement

CREATE BDAT "0dd",3.5,28.7

would ereate a file with 4 records, each 30 bytes long. On the other hand, the statement
CREATE "(dder",3.49,28.3

would create a file with 3 records, each 28 bytes long.

Once a file is created. you cannot change its length, or the length of its records. You must
therefore calculate the record size and file size required before you create a file,

Choosing a Record Length (BDAT Files Only)

Record length is important only for random OUTPUTs and ENTERs. It is not important for
serial access. The most important consideration in selecting of a proper record length is the
type of data being stored and the way you want to retrieve it. Suppose, for instance, that you
want to store 100 real numbers in a file, and be able to0 access each number individually. Since
each REAL number uses 8 bytes, the data itself wili take up 800 bytes of storage.

SYSTEM SECTOR e o8

Ry

800 BYTEL OF DATA

The question is how to divide this data into records. If you define the record length to be
8 bytes, then each REAL number will fill & record. To access the 15th number, you would
specily the 15th record. If the data is organized so that you are always accessing two data
items at a time, you would want to set the record length to 16 bytes,

The worst thing you can do with data of this type is to define a record length that is not
evenly divisible by eight. If, for example, you set the record length to four, you would only be
able to randomly access half of each real number at a time. In fact, the system will return an
End-Of-Record condition if you try to randomly read data into REAL variables from records
that are less than 8 bytes long.

So far, we have been talking about a file that contains only REAL numbers. For files that
contain only INTEGERs, you would want to define the record length to be a multiple of two.
To access cach INTEGER individually, you would use a record length of two; to access two
INTEGERs at a time, vou would use a record length of four, and so on.

Files that contain string data present a slightly more difficult situation since strings can
be of variable length. If you have three strings in a row that ave 5, 12, and 18 bytes long,
respectively, there is no record length fess than 22 that will permit you to randomly access
each string. If you select a record length of 10, for instance, you will be able to randomly
access the first string but not the second and third.

If you want to access strings randomly, therefore, you should make your records long enough
to hold the largest string. Once you've done this, there are two ways to write string data to a

7-20 Data Storage and Retrieval

BDAT file. The first, and easiest, is to output each string in random mode. In other words,
select a record length that will hold the longest string, then write cach string into its own
record. Suppose, for example, that you wanted to OUTPUT the following 5 names into a
BDAT file and be able to access each one individeally by specifving a record nember.

Johm Smith
Steve Anderson
Hary Martin
Bob Jones

Beth Robinson

The longest name, “Steve Anderson™, is 14 characters. To store it in a BDAT file would
require 18 bytes (four bytes for the length header). So you could create a file with record
length of 18 and then OUTPUT each item into a different record:

100 CREATE BDAT "Names",5,18 t Create a file.

110 ASSIGH @File TO "Hames" ! Open the file (FORMAT OFF).
120 OUTPUT @File.!;"John Smith! ! Yrite names to

130 OUTPUT @File,2;"Steve Anderson” ! successive records

140 QUTPUT @File,.3;"Mary Martin" !
150 OQUTPUT @File,4;"Bob Jones"

160 QUTPUT @Fije.5:"Beth Robinson!

in file.

On the disc, the file Names would look like the figure below. The four-byte length headers
show the decimal value of the bytes in the header. The data are shown in ASCII characters.

foTalolidu o Inin] f‘.’;-lm]i]t{hl Jx b delolopdstlelviel Tafn]dale]

[r"Isic:lnlO}:’_lIi}]ii]ME-:}ir vl Tulalr]t Pilnlelx] Jolololaleleln] [J!oi

hEEEC L EPEEFIEE R RN EERER G LB T T

{ = length header
» = whatever data previously resided in that space
@ = pad <haracter

The unused portions of each record contain whatever data previously occupied that physical
space on the disc.

Writing Data to BDAT, HP-UX and DOS Files

Data is always written to a file with an OUTPUT statement via an I/O path. You can
OUTPUT numeric and string variables, numeric and string expressions, and numeric and
string arrays. When you OUTPUT data with the FORMAT OFF, data items are written to
the file in internal format (described earlier).

There is no limit to the number of data items you can write in a single OUTPUT statement,
except that program statements are limited to two CRT lines. Also, if you try to QUTPUT
more data than the file can hold, or the record can hold (if you are using random access), the
system will return an 1XOF or EOR condition. If an EOF or EOR condition occurs, the file
retains any data output before the end condition occurred.

There is also no restriction on mixing different types of data in a single QUTPUT statement.
The system decides which data type each item is before it writes the item to the disc. Any
item enclosed in quotes is a string. Numeric variables and expressions are OUTPUT according

Data Storage and Retrieval 7-21

to their type {& bytes for REATL values, and 2 bytes for INTEGER values). Arrays are written
to the file in row-major order {right-most subseript varies quickest).

Fach data item in an OUTPUT statement should be separated by either a comma or
semi-colon (there is no operational difference between the two separators with FORMAT
OFF). Punctuation at the end of an OUTPUT statement is ignored with FORMAT OFF.

Sequential (Serial) QUTPUT

Data is written serially to BDAT and HP-UX files whenever you do not specify a record
number in an QOUTPUT statement. When writing data serially, each data item is stored
immediately after the previous item (with FORMAT OFF in effect, there are no separators
between items}. Sector and record boundaries are ignored. Data items are written to the file
one by one, starting at the current position of the file pointer. As each item is written, the file
pointer is moved to the byte following the last byte of the preceding item. After all of the
data items have been OUTPUT, the file pointer points to the byte following the last byte just
written.

There are a number of circumstances where it is faster and easier to use serial access

instead of random access. The most obvious case is when you want 1o access the entire file
sequentially. If, for example, you have a list of data items that you want to store in a file and
you know that you will never want to read any of the items individually, you should write
the data serially. The fastest way to write data serially is to place the data in an array, then
QUTPUT the entire array at once.

Another situation where you might want to use serial access is if the file is so small that it can
fit entirely into internal memory at once. In this case, even if you want to change individual
items, it might be easier to treat the entire file as one or more arrays, manipulate as desired,
then write the entire array{s) back to the file.

Random QUTPUT

Random QUTPUT allows you to write 1o one record at a time. As with serial CUTPUT,
there are EOF and file pointers that are updated after every QUTPUT. The EQF pointers
follow the same rules as in serial access. The file pointer positioning is also the same, except
that it is moved to the beginning of the specified record before the data is QUTPUT. If you
wish to write randomly to a newly created file, start at the beginning of the file and write
some “dummy” data into every record.

If you attempt to write more data to a record than the record will hold, the system will report
an End-Of-Record (EOR) condition. An EOF condition will result if you try to write data
more than one record past the EOF position. EOR conditions are treated by the system just
like BOF conditions, except that they return Error 60 instead of 59. Data already written to
the file before an FOR. condition arises will remain intact.

7-22 Data Storage and Retrieval

Reading Data from BDAT, HP-UX and DOS Fiies

Data is read from files with the ENTER statement. As with OUTPU'T, data is passed along
an [/O path. You can use the same [/O path you used to OUTPUT the data or you can use a
different I/0 path.

You can have several variables in a single ENTER statement. Each variable must be
separated from the other variables by either a comma or semi-colon. It is extremely important
to make sure that your variable types agree with the data types in the file. If you wrote a
REAL number to a file, you should ENTER. it into a REAL variable; INTEGERs should be
entered into INTEGER variables; and strings into string variables. The rule to remember is

Read it the way you wrote it.
That is the only technique that is always guaranteed to work.

In addition to making sure that data types agree, make sure that access modes agree. If you
wrote data serially, vou should read it serially; if you wrote it randomly, you should read it
randomly. There are a few exceptions to this rule that we discuss later. However, you should
be aware that mixing access modes can Iead to erroneous results unless you are aware of the
precise mechanics of the file system.

Reading String Data from a File

When reading string data from a file, you must enter it into a string variable. How the system
does this depends on file type and FORMAT attribute assigned to the file:

s With FORMAT OFT assigned to a BDAT file, the system reads and interprets the first
four bytes after the file pointer as a length header. It will then try to ENTER. as many
characters as the length header indicates. If the string has been padded by the system to
make its length even, the pad character is not read into the variable.

@ With FORMAT OFF assigned to an HP-UX file, strings have no length header. Instead,
they are assumed to be null-terminated; that is, entry into the string terminates when a null
character, CHR$(0), is encountered.

m With FORMAT ON assigned to either type of file, the system reads and interprets the hytes
as ASCII characters. The rules for item and ENTER-statement termination match those for
devices. (See “Entering Data” in HP Instrument BASIC Interfacing Technigues for details.)

After an ENTER statement has been executed, the file pointer is positioned to the next
unread byte. I the last data item was a padded string (written to a BDAT file when using
FORMAT OF¥), the file pointer is positioned after the pad. If you use the same I/0 path
name to read and write data to a file, the file pointer will be updated after every ENTER and
OUTPUT statement. If you use different 1/O path names, each will have its own file pointer
which is independent of the other. However, be aware that each also has its own EOF pointer
and that these pointers may not match, which can cause problems.

Entering data does not affect the EOF pointers. If you attempt to read past an EOF pointer,
the system will report an EOF condition.
Serial ENTER

When you read data serially, the system enters data into variables starting at the current
position of the file pointer and proceeds, byte by byte, until all of the variables in the ENTER
statement have been filled. If there is not enough data in the file to fill all of the variables,

Data Storage and Retrieval 7-23

the system returns an EOF condition. All variables that have already taken values before the
condition occurs retain their values.

The following program creates a BDAT file, assigns an 1/O path name to the file (with defanlt
FORMAT OFF attribute), writes five data items serially, and then retrieves the data items.

19 CREATE BDAT "STORAGE",1 ! Could also be an HF-UX file.

20 ASSIGN @Path TO "STORAGE"

30 INTEGER Wum.Firvst,Fourth

a0 Hun=h

690 QUTPUT @Path;Num,"squared",” equals' Num+Hum, ™. "

70 RASSIGN @Path TO "STORAGE™

89 ENTFER @Path;First,Second$,Third$,Fourth,Fifth$

990 PRINT First;Second$;Third$,Fourth,Fifth$

100 ERD

prints
b squared egquals 25,

Note that we re-ASSIGNed the I/O path in line 70. This was done to reposition the file
pointer to the beginning of the file. If we had omitted this statement, the ENTER would have
produced an BEOF condition.

Random ENTER

When you ENTER data in random mode, the system starts reading data at the beginning
of the specified record and continues reading until either all of the variables are filled or the
system reaches the LOR or EOT. If the system comes to the end of the record before it has
filled all of the variables, an EOR condition is returned.

In the following example, we randomly QUTPUT data to 5 successive records, and then
ENTER the data into an array in reverse order.

10 CREATE BDAT "S{Q_ROOTS",5,228
20 ASSIGE @Path TO "SQ_ROUTS" 1 Default is FORMAT OFF.
30 FOR Inc=1 to 5
40 OUTPUT @Path,Inc;Inc,SOR{Inc) ! Outputs two 8-byte REALs each time.
50 NEXT Inc
60 FOR Inc=5 T8 1t STEP ~i
70 EKTER @Path,inc;Num(Inc),Sqroot(Inc)
80 NEXT Inc
90 PRINT "Number",'Square Root"
10¢ FOR Inc=1 TG 5
110 PRINT Hum(inc),Sqroot (Inc)
120 NEXT Inc
130 END
prints
Number Square Root
1 1
2 1.41421356237
3 1.73206080757
4 2
5 2.2360679775

In this example, there was no need to re-ASSIGN the I/0 path because the random ENTER
automatically repositions the file pointer.

7-24 Data Storage and Retrieval

Line 40 of the above program outputs two 8-byte REALs to the BDAT file called SQ_R00OTS.
Note that this line would have to be changed for outputs made to HP-UX files because

HP-UX files always have a record length of one. For example, the QUTPUT statement would
look like this:

QUTPUT @Path, ((Inc-1}*2%8)+1;Inc,30R{Inc)
And the ENTER statement would look like this:
ENTER @Path, ({(Inc-1)*2%8)+1;Num(Inc),Sqroot(Inc)

Executing a random ENTER without a variable list has the effect of moving the file pointer to
the beginning of the specified record. This is useful if you want to serially access some data in
the middle of a file. Suppose, for instance, that you have a BDAT file containing 100 8-byte
records, and each record has a REAL number in it. If you want to read the last 50 data items,
you can position the file pointer to the 51st record and then serially read the remainder of the
file into an array.

100 REAL Array(50)

110 ENTER éRealpath,81; 1 5128 is HP~UX record number.
120 ENTER @Realpath;Array(s)

Accessing Files with Single-Byte Records

With BDAT files, you can define records to be just one byte long (defined records in HP-UX
files are always 1 byte long). In this case, it doesn’t make sense to read or write one record at
a time since even the shortest data type requires two bytes to store a number.

Random accesgs to one-byte records, therefore, has its own set of rules, When you access a
one-byte record, the file pointer is positioned to the specified byte. From there, the access
proceeds in serial mode. Random OUTPUTs write as many bytes as the data item requires,
and random ENTLERs read enough bytes to fill the variable.

The example below illustrates how you can read and write randomly to one-byte records.

1¢ INTEGER Int

20 CREATE BDAT “BYTE",100,1

30 ASSIGE ¢Bytepath TG "BYTE®
40 OUTPUT @Bytepath,1;3.67

60 OUTPUT @Bytepath,9;:3

&4 OUTPUT €Bytepath,il;"string"
70 ERTER €Bytepath,$;Int

80 EETER @Bytepath,1;Real

30 EFTER @Bytepath,11;Str$

160 PRINT Real
110 PRINT Int
120 PRINT Str$
130 EED

prints

3.67
3
string

Nete that we had to declare the variable Int as an INTEGER. If we hadn’t, the system would
have given it the default type of REAL and would therefore have required 8 bytes.

Data Storage and Retrieval 7-25

Accessing Directories

A directory 1s merely an index to the files on a mass storage media. The HP Instrument
BASIC language has several features that allow you to obtain information from the directories
of mass storage media. This section presents several techniques that will help you access this
information.

To get a catalog listing of a directory, you will use the CAT statement. Ixecuting CAT with
no media specifier directs the system to get a catalog of the current system mass storage
directory.

CAT

Including a media specifier directs the system to get a catalog of the specified mass storage.
Here are some examples:

CAT ":HP9122,700"

CAT ":,700,0"
CAT "\BLP\PROJECTS" DOS Volumes Only
CAT ' /WORK/PROJECTS" HFS Volumes Only

Both of the preceding statements sent the catalog listing to the current system printer (either
specified by the last PRINTER 1S statement, or defaulting to CRT).

Sending Catalogs to External Printers

The CAT statement normally directs its output to the current PRINTER IS device. The CAT
statement can also direct the catalog to a specified device, as shown in the following examples:

CAT TD #726
CAT TO #External prir
CAT TD #Device_selector

The paramenter following the # is known as a device selector.

7-268 Data Storage and Retrieval

Using a Printer

Sooner or later a program needs to print something. A wide range of printers are
supported by HP Instrument BASIC. This chapter covers the statements commonly used to
communicate with external printers.

Selecting the System Printer

The PRINT statement normally directs text to the screen of the CRT where one is present
on the instrument. Text mayv be redirected to an external printer by using the PRINTER IS
statement,

After the printer is switched on and the computer and printer have been connected via an
interface cable, there is only one piece of information needed before printing can begin. The
computer needs to know the correct device selector for the printer. This is analogous to
knowing the correct telephone number before making a call.

Device Selectors

A device selector is a number that uniquely identifies a particular device connected to the
computer. When only one device is allowed on a given interface, it is uniquely identified by
the interface select code. In this case, the device selector is the same as the interface select
code.

For example, the internal CRT is the only device at the interface whose select code is 1. To
direct the output of PRINT statements to the CRT, use one of the following statements:

FRINTER IS5 1
PRINTER IS CRT

These statements define the screen of the CRT to be the system printer. Until changed,

the output of PRINT statements will appear on the screen of the CRT. {See your
instrument-specific HP Instroment BASIC manual for information regarding the CRT display
usage.)

Note To view data on the CRT of some host instruments running HP lnstrument
BASIC, you may need to allocate a display partition. Refer to your

ﬁ instrument-specific IP Instrument BASIC manual for information on display
partitions.

When more than one device can be connected to an interface, such as the internal HP-IB
interface (interface select code 7), the interface select code no longer uniquely identifies the
printer. Iixtra information is required. This extra information is the primary address,

Using a Printer 8-1

Using Device Selectors to Select Printers

A device selector is used by several different statements. In each of the following, the numeric
expressions are device selectors.

PRINTER IS 701 Spoecifies a printer with interface select code 7 and primary address

PRINTER IS PRT 01 (PRT is a numeric function whose value is always 701).

PRINTER IS 1407 Specifies a printer with interface select code 14 and primary
address 07.

CAT TO #701 Prints a disc catalog on the printer at device selector 701.

LIST #701 Lists the program in memory to a printer at 701.

Most statements allow a device selector to be assigned to a variable. Either INTEGER or
REAL variables may be used.

PRINTER IS Hal
CAT TO #Dog

The following three-letter mnemonic functions have been assigned useful values.

Mremonic Value
PRT 701
KBD 2
CRT 1

The mnemonic may be used anywhere the numeric device selector can be used.

Another method may be used to identily the printer within a program. An 1/0 path name
may be assigned to the printer; the printer is subsequently referenced by the I/0 path name.

Using Control Characters and Escape Sequences

Most ASCII characters are printed on an external printer just as they appear on the screen of
the CRT. For some printers, there may be exceptions. Several printers will also support an
alternate character set: either a foreign character set, a graphics character set, or an enhanced
character set. If your printer supports an alternate character set, it usually is accessed by
sending a special command to the printer.

Control Characters

In addition to a “printable” character set, printers usually respond to control characters.
These non-printing characters produce a response from the printer. The following table shows
some of the control characters and their effect.

8-2 Using a Printer

Typical Printer Controt Characlers

Printer’s Response Control Character ASCIT Value
Ring printer’s bell (CTRLHG) fi
Rackspace one character 8
Horizontal tab (CTRLM(J 9
Line-feed (CTRUMI) 10
Form-feed (CTRLML] 12
Carriage-return 13

One way to send control characters to the printer is the CHRS function. Execute the
following:

PRINT CHR$(12)

Refer to the appropriate printer manual for a complete listing of contro] characters and their
effect on your printer,

Escape-Code Sequences

Similar in use to control characters, escape-code sequences allow additional control over most
printers. These sequences consist of the escape character, CHR$(27), followed by one or more
characters.

Since each printer may respond differently to control characters and escape code sequences,
check the manual that came with your printer.

Formatted Printing

For many applications the PRINT statement provides adequate formatting. The simplest
method of print {ormatting is by specifying a comma or semicolon between printed items.

When the comma is used to separate items, the printer will print the items on field
boundaries. Fields start in column one and occur every fen columns {columns 1, 11, 21,
31, ...). Using the following values in a PRINT statement: A=1.1, B=-22.2, C=3E+35,
D=5.1E+8.

10 PRINT RPT$("1234567890",4)

20 PRINT 4,B,C,D

prints
1234567890123456789012345678901234567890
1.1 ~22.2 30000 5.1F+8

Note the form of numbers in a normal PRINT statement. A positive number has a leading
and a trailing space printed with the number. A negative number uses the leading space
position for the “~” sign. This is why the positive numbers in the previous example appear to
print one column to the right of the field boundaries. The next example shows how this form
prevents numeric values from running together.

Using a Printer 8-3

10 PRINT RPTS("1234567890" 4)
20 PRIAT A:E:C:D

prints

1234567890123456789012345678901234567890
1.1 -22.2 300000 5,1E+8

Using the semicolon as the separator caused the numbers to be printed as closely together as
the “compact” form allows. The compact form always uses one leading space (except when
the number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using
the ability of the PRINT statement to print the entire contents of of a array, the comma or
semicolon can be used to format the output.

If each array element contained the value of its subscript, the statement

PRINT Array(x);

prints

0123456789 10 11 12 13 14...

Another method of aligning items is to use the tabbing ability of the PRINT statement.
PRINT TAB(25);-1.4i4

prints

123456789012345678901234567890123
-1.414

While PRINT TAB works with an external printer, PRINT TABXY may not. PRINT
TABXY may be used to specify both the horizontal and vertical position when printing to an
internal CRT.

A more powerful formatting technique employs the ability of the PRINT statement to allow
an image to specify the format.

Using Images

Just as a mold is used for a casting, an image can be used to format printing. An image
specifies how the printed item should appear. The computer then attempts to print to item
according to the image.

One way to specify an image is to include it in the PRINT statement. The image specifier is
enclosed within quotes and consists of one or more field specifiers. A semicolon then separates
the image from the items to be printed.

PRINT USING "D.DDb";PI

This statement prints the value of pi (3.141592659 ... } rounded to three digits to the right of
the decimal point.

3.142

8-4 Using a Printer

For each character *D” within the image, one digit is to be printed. Whenever the number
contains more non-zero digits to the right of the decimal than provided by the field specifier,
the last digit is rounded. If more precision is desired, more characters can be used within the
image.

PRINT USING "B.ioD";PI

3.1415926536

Instead of typing ten “D” specifiers, one for each digit, a shorter notation is to specify a
repeat factor before each field specifier character. The image “DDDDDD” is the same as the
image “6D7.

The image specifier can be included in the PRINT statement or on it’s own line. When the
specifier is on a different line, the PRINT statement accesses the image by either the line
number or the line label.

100 Format: IMAGE €Z.DD
110 PRINT USING Format;A,B,C
120 PRINT USING 100;D,E,F

Both PRINT statements use the image in line 100.

Numeric Image Specifiers

Several characters may be used within an image to specify the appearance of the printed
value.

Numeric Image Specifiers

Image Purpose
Specifier
D Replace this specifier with one digit of the number to be printed. If the digit is a

leading zero, prind a space. if the value is negative, the position may be used by the
negative sign.

Z Same as “D” except thal leading zeros are printed.

E Prints two digits of the exponent after printing the sequence “E-+-". This specifier is
equal to “ESZZ”. See the HP Instrument BASIC Language Reference for more details.

K Print the entire number without leading or trailing spaces.

(S

Print the sign of the number: either a “4.” or

M Print the sign if the number is negative; if positive, print a space,

Print the decimal point.

i Similar to K, except the number is printed using the European number format
{comma radix).

R Print the comma {European radix).

Like 7, except that asterisks are printed instead of leading zeros.

To better understand the operation of the image specifiers examine the following examples
and results.

Using a Printer 8-5

Examples of Numeric Image Specifiers

Statement Outpai
PRINT USING "K";33.666 33.666
PRINT USING “DD.DDD";33.666 33.666
PRINT USIRG "BDD.DD";33.666 33.67
PRINT USIEG “ZZZ.DD";33.666 033.67
PRINT USIKG "ZZZ";.444 0co
PRINT USING “ZZZ",.555 001
PRINT USINWNG *SD.3DE";6.023E+23 +6,023E+23
PRINT USIKG "S3D,3DE";86.023E+23 +602.300E+21
PRINT USIHNG "SED.3DE";6.023E+423 +60230.000E+19
PRINT USING "H"™;3121.55 3121,55
PRINT USING "DDRDD™;19.95 19,85
PRINT USING "s##%"; 555 #k]

To specify multiple fields within the image, the field specifiers are separated by commas.

RMuitiple-Field Numeric Image Specifiers

Statement Output
PRINT USING "K,5D,EDB"; 100,200,300 100 200 300
PRIKT USING "DD,ZZ,DD";1,2.,3 102 3

If the items to be printed can nse the same image, the image need be listed only once. The
image will then be reused for the subsequent items.

PRINT USING "5D.DD";3.98,5.95,27.50,139.985

prints

123456789012345678901234567890123
3.98 5.36 27.50 139.95

‘The image it reused for each value. An error will result if the number cannot be accurately
printed by the field specifier.

Swring Image Specifiers

Similar to the numeric field image characters, several characters are provided for the
formatting of strings.

8-6 Using a Printer

String Image Specifiers

Dmage Purpose
Specifier
A Print one character of the string. If all characters of the string have been printed, print
a trajling blank.
K Print the entire string without leading or trailing blanks.
X Print a space.
“literal” Print the characters between the quotes.

The following examples show various ways to use string specifiers.

PRINT USING

"5X,104,2X, 104" ;" Tom", "Smith"

12345678301234567890123456789

Tom

PRINT USTIHNG

Smith

"X, " John"",2X, 104" #Smith

12345678901234567890123456789
John Smith

PRIKT USING

“e"PART NUMBER"",2x,10d";90001234

12345678901234567830123456789

PART WUMBER

90001234

Additional Image Specifiers

The following image specifiers serve a special purpose.

Additional Image Specifiers

Image Purpose
Specifier

B Print the corresponding ASCII character. This is similar to the CHRS function,

Suppress automatic end-of-line {EOL) sequence.

L Send the current end-of-line (EOL) sequence; with 10, see the PRINTER IS statement
in the HP Instrument BASIC Language Reference for details on redefining the EQL
sequence.

/ Send a carriage return and a line feed,

@ Send a form feed.

+ Send a carriage return as the EOL sequence. (Requires IO)

- Send a line feed as the EOL sequence. (Reguires I0)

For example:

PRINT USING "@,#" outpuis a form feed.

PRINT USING "D,X,34,""0OR NOT"",X,B,%,B,R";2,"BE",B0,66,69

Using a Printer 8.7

Special Considerations

If nothing prints, see if the printer is ON LINE. When the printer if OFF LINE, the computer
and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for the
printer to respond. ON TIMEQUT may be used within a program to test for the printer,

Since the printer’s device selector may change, keep track of the locations in the program
where a device selector is used.

If the program must use the PRINTER IS statement frequently, assign the device selector to a
variable; then if the device selector changes, only one program line will need to be changed.

8-8 Using a Printer

9

Handling Errors

Most programs are subject to errors at run time. This chapter describes how HP Instrument
BASIC programs can respond to these errors, and shows how to write programs that attempt
to either correct the problem or direct the program user to take some sort of corrective action.

There are three courses of action that vou may choose to take with respect to errors:
1. Try to prevent the error from happening in the first place.

9. Once an error occurs, try to recover from it and continue execution.

3. Do nothing—Tlet the system stop the program when an error happens.

The remainder of this chapter describes how to implement the first two alternatives.

The last alternative, which may seem frivolous at first glance, is certainly the easiest to
implement, and the nature of HP Instrument BASIC is such that this is often a feasible
choice. Upon encountering a run-time error, the computer will pause program execution and
display a message giving the error number and the line in which the error happened, and the
programmer can then examine the program in light of this information and fix things up. The
key word here is “programmer.” If the person running the program is also the person who
wrote the program, this approach works fine. If the person running the program did not write
it, or worse yet, does not know how to program, some attempt should be made to prevent
errors from happening in the first place, or to recover from errors and continue running.

Anticipating Operator Errors

When you write a program, you know exactly what the program is expected to do, and what
kinds of inputs make sense for the problem. Sometimes you overlook the possibility that other
people using the program might no! understand the boundary conditions. You have no choice
but to assume that every time a user has the opportunity to feed an input to a program, a
mistake can be made and an error can be caused. You should make an effort to make the
program resistant to errors.

Boundary Conditions

A classic example of anticipating an operator error is the “division by zero” situation.

An INPUT statement is used to get the value for a variable, and the variable is used as a
divisor later in the program. If the operator should happen to enter a zero, accidentally
or intentionally, the program pauses with an error 31. It is far better to plan for such an
occurrence. One such plan is shown in the following example.

Handling Errors 9-1

100 INPUT "Miles traveled and total hours",Miles,Hours
110 IF Hours=0 THENW

120 BEEP

130 PRINT "Improper value entered for hours.™

140 PRIAT “Try again!"

180 GOTO 100

i60 EWD IF

170 FBph=Miles/Hours

Trapping Errors

Despite the programmer’s best efforts at screening the user’s inputs in order to avoid errors,
errors will still happen. It is still possible to recover from run-time errors, provided the
programmer predicts the places where errors are most likely to happen.

ON/OFF ERROR

The ON ERROR statement sets up a branching condition that will be taken any time a
recoverable error is encountered at run time. The branch action taken may be GOSUR,
GOTO, CALL or RECOVER. GOTO and GOSUB are purely local in scope—that is, they are
acfive only within the context in which the ON ERROR is declared. CALL and RECOVER
are global in scope —after the ON ERROR is setup, the CALL or RECOVER will be executed
any time an error occurs, regardless of subprogram environment.

Choosing a Branch Type

The type of branch that you choose (GOTO vs. GOSUB, etc.) depends on how you want to
handle the error.

@ Using GOSUB indicates that you want to return to the statement that caused the error
(RETURN).

8 GOTO, on the other hand. may indicate that you do not want to reattempt the operation
after attempting to correct the source of the error.
ON ERROR Execution at Run-Time

When an ON ERROR. statement is executed, HP Instrument BASIC will make sure that the
specified line or subprogram exists in memory before the program will proceed. If GOTO,
GOSURB, or RECOVER is specified, then the line identifier must exist in the current context
(at pre-run). If CALL is used, then the specified subprogram must currently be in memory (at
run-time). In either case, if the system can’t find the given line, error 49 is reported.

ON ERROR Priority

ON ERROR has a priority of 16, which means that it will always take priority over any other
ON-event branch, since the highest user-specifiable priority is 15.

8-2 Handling Errors

Disabling Error Trapping (OFF ERROR)

The OFF ERROR statement will cancel the effecis of the ON ERRBOR statement, and no
branching will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR branching.

ERRN, ERRLN, ERRL, ERRDS, ERRM$

ERRN is a function that returns the error number that caused the branch to be taken. ERRN
is a global function, meaning it can be used from the main program or from any subprogram,
and it will always return the number of the most recent error.

100 IF ERRN=80 THEN ! Media not present in drive.

110 PRINT "Please insert the ’Examples’ disc,”
120 PRIKT "and press the *Continue’ key (£2)."
130 PAUSE

140 END IF

ERRLN is a function that returns the line number of the program line where the most recent
error has occurred.

100 IF ERRLN<1280 THEN GOSUB During_init
110 IF (ERRLN>=1280 AED ERRLN<=2440) THEN GOSUB During main
120 IF EBRRLE>2440 THEN GOSUE During Last

You can use this function, for instance in determining what sort of situation-dependent action
3 ’ p

to take. As in the above example, you may want to take a certain action if the error occurred

while “initializing” your program, another if during the “main” segment of your program, and

yet another if during the “last” part of the program.

Note that program statements using ERRLN may not behave correctly following a renumber
operation. To avoid this problem, use the ERRL function whenever possible (see helow).
ERRL is another function that is used to find the line in which the error was encountered;
however, the difference between this and the ERRLN function is that ERRL is a Boolean
function. The program gives it a line identifier, and either a 1 or a 0 is returned, depending
upor whether or not the specified identifier indicates the line that caused the error.

100 IF ERRL(1250) OR ERRL(1270) THEN GOSUB Fix_12xx
110 IF ERRL(1470} THEN GOSUB Fix_ 1470
120 IF ERRL(2450) OR ERRL(2530) THEN GOSUB Fix_ 24xx

ERRL is a local function, which means it can only be used in the same environment as

the line that caused the error. This impiies that ERRL cannof be used in conjunction

with ON ERROR CALL, but it can be used with ON ERROR GOTO and ON ERROR
GOSUB. ERRL can be used with ON ERROR RECOVER only if the error did not occurin a
subprogram that was called by the environment that set up the ON ERROR RECOVER.

Line number parameters to ERRL are renumbered properly by a renumber operation.
The ERRL function will accept either a line number or a line label. For example:
1140 DISP ERRL(710)
210 IF ERRL(Compute) THEN Fix_compute

ERRMS is a string function that returns the text of the error that caused the branch to be
taken.

Handiing Errors 8-3

100 DISP ERRM$! Display default message.

ERROR 31 in 10 Division (oxr MOD} by zero

ON ERROR GOSUB

The ON ERROR GOSUD statement is used when you want to return to the program line
where the error occurred.

Note that if you do not correct the problem and subsequently use RETURN, HP Instrument
BASIC will repeatedly reexecute the problem-causing line (which will result in an infinite loop
between the ON ERROR GOSUB branch and the RETURN).

When an error triggers a branch as a result of an ON ERROR GOSUB statement being
active, system priority is set at the highest possible level (16} until the RETURN statement
is executed, at which point the system priority is restored to the value it was when the error
happened.

100 Radical=B#B-4%Ax(
110 Imaginary=0

120 ON ERROR GO3SUB Esr
130 Partial=3(RT(Radical)
140 OFF ERROR

350 Esr: TF ERRN=30 THER

360 Imaginary=1

370 Radical=ABS{Radical}

380 ELSE

390 BEEP

400 DISP "Unexpected Error (";ERRN;")"
410 PAUSE

420 EXD IF

430 RETURN

MNote You cannot trap errors with ON ERROR while in an ON ERROR GOSUB

service routine,

ON ERROR GOTO

The ON ERROR GOTO statement is often more useful than ON ERROR GOSUB, especially
if you are trying to service more than one error condition, However, ON ERROR GOTO does
not change system priority.

As with ON ERROR GOSUB, one error service routine can be used to service all the error
conditions in a given context. By testing both the ERRN (what went wrong) and the ERRLN
(where it went wrong) functions, you can take proper recovery actions.

One advantage of ON ERROR GOTO is that you can use another ON ERROR statement
in the service routine {which you cannot use with ON ERROR GOSUB). This technique,
however, requires that you reestablish the original error service routine after correcting any

9-4 Handling Errors

errors (by reexecuting the original ON ERROR GOTO statement). The disadvantage is that
more programming may be necessary in order to resume execution at the appropriate point
after each error service.

ON ERROR CALL

ON ERROR CALL is global, meaning once it is activated, the specified subprogram will be
called immediately whenever an error is encountered, regardless of the current context. System
priority is set to level 17 inside the subprogram and remains that way until the SUBEXIT is
executed, at which time the system priority will be restored to the value it was when the error
happened.

As with ON ERROR GOSUB, you will generally use the ON ERROR CALL statement when
yot want to return to the program where the error occurred.

Remember that if you do not correct the problem, the SUBEXIT statement will repeatedly
reexecute the problem-causing line {which will result in an infinite loop between the ON
ERROR CALL branch and the SUBEXIT).

Note You cannot trap errors with ON ERROR while in an ON ERROR CALL
i service routine.

v

tsing ERRLN and ERRL in Subprograms

You can use the ERRLN function in any context, and it returns the line number of the most
recent error. However, the ERRL function will not work in a different environment than

the one in which the ON ERROR statement is declared. For instance, the following two
statements will only work in the context in which the specified lines are defined:

100 IF ERRL(40) THEN GOTO Fix40
100 IF ERRL(Line_label) THEN Fix_line_label

The line identifier argument in ERRL will be modified properly when the program is
renumbered (such as explicitly by REN or implicitly by GET); kowever, that is not true of
expressions used in comparisons with the value returned by the ERRLN function.

So when using an ON ERROR CALL, you should set things up in such a manner that the line
number either doesn’t matter, or can be guaranteed to always be the same one when the error
occurs. This setup can be accomplished by declaring the ON ERROR immediately before the
line in question, and immediately using OFF ERROR after it.

Handling Errors 9-5

5010
5020
5030

7020
7030
7040
7080
7060
7080
7080
7100
7120
7130
7140
7160
7170
7180
7190
7200
7210
7220

ON ERROR CALL Fix_disc
ASSIGHN @File TO "Data_file"”
OFF ERROR

SUB Fix_disc

SELECT ERRH
CASE 80
DISP "No disc in drive —- insert disc and continue"
PAUSE
CASE 83
DISP "Write protected -- fix and continue"
PAUSE
CASE 85
DISP "Disc not initialized ~- fix and continue”
PAUSE
CASE b6
DISP '"Creating Data_file"
CREATE BDAT “Data_file",20
CASE ELSE
DISP "Unexpected error ";ERRN
PAUSE
SUBEND

ON ERROR RECOVER

The ON ERROR RECOVER statement sets up an immediate branch to the specified line
whenever an error occurs. The line specified must be in the context of the ON ... RECOVER
statement. ON ERROR RECOVER is global in scope—it is active not only in the
environment in whick it is defined, but also in any subprograms called by the segment in

which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the system
will restore the context of the program segment that actually set up the branch, including its

system priority, and will resume execution at the given line.

3250
3260
3270
3280

6% ERROR RECOVER Give up

CALL Model _universe
DISP "Successfully completed"
STOP

3290 Give_up: DISP "Failure ";ERRN

3300

END

9-§ Handling Errors

10

Keyword Guide to Porting

The following sections summarize the HP Instrument BASIC keywords by categories. Al
keywords are used by both HP Instrument BASIC and HP Series 200/300 BASIC langunages,
although some features of certain keywords are not supported by HP Instrument BASIC.
Where differences exist between HP Instrument BASIC and recent versions of HP Series
200/300 BASIC the most significant discrepancies are listed. This chapter is intended only
as a quick reference to the keywords and their compatibility. For detailed information, refer
to HP Instrument BASIC Keyword Reference and your HP Series 200/300 BASIC Language
Reference Manual.

Keyword Guide to Porting 10-1

Program HP BASIC Function HP Instroment BASIC
Entry/Editing
COPYLINES Copies contiguons program lines from Full support.
one location to another.
DELSUB Deletes one or more subprograms or Full support.
user-defined functions from memory.
INDENT Indents program lines in the edit Full support.
window to reflect the programs
structure and nesting.
LIST Lists program lines to system printer. No support for softkey listing.
MOVELINES Moves contiguous program hines from Full support.
one location to another.
REM and ! Allows comments on program lines. Full support.
SECURE Protects program lines so they cannot Full support.
be listed.
Debugging

CAUSE ERROR

ERRL

ERRLN

ERRMS

ERRN

Simulates the occurrence of an error of
the specified number.

Indicates whether an error occurred
during execution of a specified line.

Returns the program-line number of the
most recent error.

Returns text of the last error message.

Return the most recent program
execution error.

Full support.

No support for TRANSFER
or Data Communications

No support for TRANSFER,
Data Communications,
CLEAR ERROR, or LOAD.

No support for TRANSFER,
CLEAR ERROR, or LOAD.

No support for TRANSFER,
CLEAR ERROR, or softkeys.

Memory Allocation

ALLOCATE

CoM

DEALLOCATE

DIM

INTEGER

OPTION BASE

Dynamically allocates memory for
arrays and string variables during
program execution.

Dimensions and reserves memory for
variables in a comion area for access
by more than one context.

Dealiocates memory space reserved by
the ALLOCATE statement.

Dimensions and reserves mermory for
REAL numeric arrays and strings.

Dimensions and reserves memory for
INTEGER variables and arrays.

Specifies default lower bound of arrays.

No support for COMPLEX.

No support for BUFFER,
COMPLEX, LOAD, or

subarrays.

No support for COMPLEX.

No support for BUFFER,
COMPLEX, or subarrays.

No support for BUFFER or
subarrays.

Full support.

10-2 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Memory Alloeation
(continmed)

REAL

REDIM

SCRATCH

Dimensions and reserves memory for
full-precision (REAL) variables and
arrays.

Changes the subscript range of
previously dirmensioned arrays.

Erases all or portions of memory.

No support for BUFFER or
subarrays.

No support for BUFFER.

ALL and COM are
supported.

Relational Operators

<>

Equality

Inequality

Less than

Less than or equal to
(Greater than

Greater than or equal to

Full Support.
Full Support.
Full Support.
Full Support.
Full Support.
Full Support.

General Math
+

ABS

Div

DROUND

EXP

FRACT

INT

LET
LGT

L.OG

Addition operator

Subtraction operator

Multiplication operator

Division operator

Exponentiation operator

Returns an argument’s absolute value.

Divides one argument by another and
returns the integer portion of the
quotient,

Returns the value of an expression,

rounded to a specified number of digits.

Raises the base e to a specified number
of digits.

Returns the fractional portion of an
expression,

Returns the integer portion of an
expression.

Assigns values to variables,

Returns the logarithm (base 10) of an
argument

Returns the natural logarithm {base ¢)
of an argurnent

Full Support.
Full Support.
Full Support.
Full Support.
Full Support.
No suppert for COMPLEX.
Full support.

Full support.

No support for COMPLEX.

Full support.

Full support.

Full support.
No support for COMPLEX.

No support for COMPLEX.

Keyword Guide to Porting $0-3

Program

HP BASIC Function

H? Instrument BASIC

General Math {continued)
MAX

MAXREAL
MIN

MINREAL
MGD
MODULO
Pi
PROUND

RANDOMIZE

RND
SGN
SQRT (or SQR)

Returns the largest value in a hist of

arguments

Returns the largest number available.

Returns the smallest value in a list of

arguments

Returns the smallest number available.
Returps remainder of integer division.
Returns the modulo of division.
Returns an approximation of pi.

Returns the value of an expression,
rounded to the specified power of ten.

Modifies the seed used by the RND

funetion.

Returns a pseudo-random number.
Returns the sign of an argument.

Returns the sgnare root of an argument

Full support.

Full support.
Full support.

Full support.
Full support.
Full support.
Full support.
Full support.

Full support.

Full support.
Full support.
No support for COMPLEX.

Binary Functions

BINAND
BINCMP
BINEOR
BINIOR
BIT

ROTATE

SHIFT

Returns the bit-by-bit logical-and of
two arguments.

Returns the bit-by-bit complement of

an argument.

Returns the bit-by-bit exclusive-or of
two arguments.

Returns the bit-by-bit inclusive-or of
two arguments.

Returns the state of a specified bit of

an argument.

Returns a value obtained by shifting an
argument’s binary representation a
number of bit positions, with

wrap-around.

Returns a value obtained by shifting an
argument’s binary representation a
number of bit positions, without

wrap-around.

Full support.

Irull support.

Full support.

Full support.

Full support.

Full support.

Fuli support.

10-4 Keyword Guide to Porting

Program HI' BASIC Function HP Instrument BASIC

Trigonometric

ACS | Returns the arceosine of an argument. No support for COMPLEX.
ASN Returns the aresine of an argument. No support. for COMPLEX,
ATN Returns the arctangent of an argument. No support for COMPLEX.
COS Returns the cosine of an argument. No support for COMPLEX.
DEG Sets the degrees mode. Full suppors.

RAD Sets the radians mede. Full support.

SIN Returns the sine of an argument. No suppart for COMPLEX.
TAN Returns the tangent of an argument. No support for COMPLEX.

Logical Operators

AND Returns 1 or 0 hased on the logical Full support.
AND of two arguments.

EXOR Returns 1 or O based on the logical Full support.
exclusive-or of two arguments.

NOT Returns 1 or § based on the logical Full support.
complement of an argument,

OR Returns 1 or 0 based on the logical Full support.
inclusive-or of two arguments.

Keyword Guide to Porting 10-5

Program

HP BASIC Function

HP Instrument BASIC

String Operations
&
CHRS

DVAL

DVALS

IVAL

IVAL$

LEN

LWCS8

MAT

NUM

POS

REV$

RPTS

TRIM$

UPCS

VAL

VALS

Concatenates two string expresstons.

Converts a numeric value into an ASCII
character.

Converts an alternate-base
representation into a numeric value,

Converts a nurneric value into
alternate-base representation.

Converts an alternate-base
representation into an INTEGER
number.

Converts an INTEGER into
alternate-base representation.

Returns the number of characters in a
string expression.

Returns the lowercase value of a string
EXPression.

Performs a variety of operations on
matrices and other numeric and string
arrays.

Returns the decimal value of the first
character in a string.

Returns the position of a string within
a string expression.

Reverses the order of the characters in
a string expression.

Repeats the characters in a string
expression a specified number of times.

Removes the leading and trailing blanks
from a string expression.

Returns the uppercase value of a string
expression.

Converts a string of numerals into a
numeric value.

Returns a string expression representing
a specified numeric value.

Full support.
Full support.

Full support,
Fall support.

Full support.

Full support.
Full support.

STANDARD lexical order is
ASCII.

No support for COMPLEX
MAT, SEARCH, MAP, or
SORT

Full support.

Full support.

Full support.

Full support.

Full support.

STANDARD lexical order is
ASCIIL.

Full support.

Full support.

10-6 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrimment BASIC

Mass Storage
ASSIGN

CAT

COPY
CREATE
CREATE ASCII
CREATE BDAT
CREATE DIR
DELSUB

GET
INITIALIZE
LOAD
LOADSUB
MASS STORAGE IS/ MSI

PURGE
RENAME
SAVE/RE-SAVE

Assigns an I/O path name and
attributes to a file.

Lists the contents of the mass storage
media’s directory.

Provides a method of copying mass
storage files and volumes.

Creates an HP-UX or MS-DOS-type file
on the mass storage media.

Creates an ASCIl-type file on the mass
storage media.

Creates an BDAT-type file on the mass
storage media.

Jreates an HFS or MS-DOS-type
directory on the mass storage media.

Deletes one or more subprograms or
user-defined functions from memory.

Reads an ASCHI file info memory as a
program.

Formats a mass storage media and
places a LIT or DOS directory on the
media.

Loads 8TOREd programs into memory.

Joads HP Instrument BASIC
subprograms from a STOREd program
into memory.

Specifies the default mass storage
device.

Deletes a file entry from the directory,
Changes a file’s name.

Creates an ASCII file and coples
program lines from memory into the
file.

No support for BUFTER,
BYTE, WORD, CONVERT,
RETURN, PARITY, or
DELAY. The device selector
must be a single /O device
or mass storage file.

No support for NAMES,
EXTEND, PROTECT,
SELECT, SKIP, COUNT,
NO BEADER, or PROG
files.

Full support.
Full support.
Fuil support,
Full support.
Full support.
Full support.
Fall support.
No support for EPROM.

No support for BIN, or KEY,
¥Full support.

No support for DCOMM,
BUBBLE, or EPROM.

Full support.
Full sepport.
Full support.

Keyword Guide to Porting 10-7

Program

HP BASIC Funciion

HP Instrument BASIC

Mass Storage {continmed)

RE-STORE

STORE

Writes the corrent HP Instrument
BASIC program to the specified file in
a special compace, fast-loading format.

Writes the program currently in
memory to a PROCG file in a special
binary form.

No support for KEY,

Fall support.

Program Control

CALL
DEF FN/ FNEND
END

FN

FOR ... NEXT
GOSUB

GOTO

IF ... THEN ELSE
LOOP/ EXIT IF/ END
LOOP

ON

PAUSE

REPEAT ... UNTIL

RETURN

SELECT ... CASE

STOP

Transfers program execution to a
specified subprogram and passes
parameters.

Defines the bounds of a user-defined
function subprogram.

Terminates program execution and
marks the end of the main program
segment.

Invokes a user-defined function.

Defines a loop that is repeated a
specified number of times.

Transfers program execution to a
specified subroutine,

Transfers program execution to a
specified line.

Frovides a conditional execution of a
program segment,

Provides looping with conditional exit.

Transfers program control to one of
several destinations.

Suspends program execution,

Allows execution of a program segment
until the specified condition is true.

Transfers program execution from a
subroutine to the line following the
invoking GOSUB.

Allows execution of one program
segment of several.

Terminates execution of the program.

Full support.

No support for COMPLEX,
BUFFER, NPAR, or
OPTIONAL.

Full support.

No support for COMPLEX.
Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

No support for ON END or
ON KNOB.

Tull support.

Full support.

Full suppert.

Full support.

10-8 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Program Control {continued)
SUB/ SUBEND

SUBEXIT
WAIT

WHILE

Defines the bounds of a subprogram.

Transfers control from within a
subprogram to the calling context,

Causes program execution to wait a

specified number of seconds.

No support for COMPLEX,

OPTIONAL or BUFFER.

Full support.

Full support.

Allows execution of a program segment Full support.

while the specified condition is true.

Event-Initiated Branching

ENABLE/ DISABLE

ENABLE INTR/ DISABLE

ON CYCLE/ OFF CYCLE

ON ERROR/ OFF ERROR

ON INTR/ OFF INTR

ON KEY ... LABEL/ OFF
KEY

ON TIMEOUT/ OFF
TIMEOUT

SYSTEM PRIORITY

Enahbles or disables event-initiated

Full support.

branching {except for ON ERROR, and

ON TIMEQUT).

Enables or dizables interrupts defined

by the ON IN'TR statement.

Enables or disables an event-inttiated
branch to be taken each time the

Bit mask value is ignored.

Full support.

specified nurnber of seconds has elapsed.

Sets up an event-initiated branch when No support for C5UB.

a trappable program crror oceurs.

Sets up an event-iniliated branch when No support for CSUB.
a specified interface card generates an

interrupt.

Sets up an event-initiated branch when

a specified softkey is pressed.

Sets up an event-initiated branch when
an 1/0 timeout occurs on a specified

interface.

for event-initiated branches.

No support for CSUB,

LINPUT. or ENTER KBD.

Key selector range 1s 0-9.

No support for CSUB,

PRINTALL IS, PLOTTER
IS, READIO, or WRITEIO.

Sets a minimum level of system priority Full support.

Graphics Control
ALPHA ON/OFF

AREA

CLIP

GCLEAR

ON shows the alpha window; OFF

clears the alpha window

Sets the color used to shade graphical

Full support.

Full support.

regions subseguently created by various

graphics plotting commands.

Defines, enables, or disables the soft-clip Full support.
limits for subsequent graphics output.

Clears the graphics area.

No support for external
piotter or Multi-Plane
displays.

Keyword Guide to Porting

10-9

Program HY BASIC Function HY Instrument BASIC

Graphics Control {continued)

GESCAPE Used for communicating ‘ull support.
device-dependent graphics information.
Type, size, and shape of the arrays
must be appropriate for the requested

aperation.

GINIT Istablishes a set of default values for Full support.
systemn variables affecting graphics
operation.

GLOAD Loads the contents of an INTEGER Full support.
array into the graphics window.

GRAPHICS Shows or hides the graphics window. Full support.

GSTORE Stores the current contents of the No support for source
graphics window in an integer array. devices.

MERGE ALPHA Performs a no-op which makes it Dedicated to RMB-UX.
compatible with HP-UX RMB.

PLOTTER IS Determines whether graphics colors No hard-copy device, clip
operate in the color-mapped or limits, or file support.
non-color-mapped mode.

RATIO Returns the ratio of the width (in Full support.

pixels) to the height (in pixels) of the
graph window.

SEPARATE ALPIIA Compatible with HP-UX RMB. Dedicated to RMB-UX.

SET PEN Assigns a color to graphics pen(s). Full support,

SHOW Defines an isotropic current Full support.
unit-of-measure for graphics operations.

VIEWPORT Defines an area {in GDUs) onto which Full support.
WINDOW and SHOW statements are
mapped.

WHERE Returns the current logical position of Full support.

the graphics pen.

WINDOW Define an anisotropic current Full support,
unit-of-measure for graphics operations.

Graphies Plotting

AREA Sets the color used to shade graphical Full support.
regions subsequently created by various
graphics plotting commands.

DRAW Draws a line to a specified point. No support for PIVOT.
GLOAD Loads the contents of an INTEGER Full support.
array into the graphics window.
GSTORE Stores the current contents of the No support for source
graphics window in an integer array. devices.

10-10 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Graphies Plotting
(continued)

IDRAW

IMOVE

IPLOT

LINE TYPE

MOVE
PDIR

PEN
PENUP

PIVOT

PLOT

POLYGON
POLYLINE
RECTANGLE
RPLOT
RPEN

WHERE

Draws a line from the current position
to a position calculated by adding the
X and Y displacernents to the current
pen position.

Moves the graphics pen an incremental
distance from the current position
without drawing a line.

Moves the graphics pen anr incremental
distance from the current position.
Plotting action is determined by the
current line type and the optional pen
control parameter.

Selects the line type {solid or dashed)
for all subsequent lines

Updates the logical pen position.
Specifies the rotation angle at which
the output from IPLOT, RPLOT,

POLYGON, POLYLINE, and
RECTANGLE is drawn.

Selects the pen number on plotting
device.

Lifts the pen on the current plotting
device.

Specifies a rotation of coordinates
which is applied to all drawn lines, but
not to labels or axes.

Moves the graphics pen from the
current position to the specified X and
Y coordinates.

Draws all or part of a closed, regular
polygon.

Draws all or part of an open, regular
polygon.

Draws a rectangle.

Moves the pen from the current pen

position to the specified relative X and
Y position.

Assigns a color to one or more graphics
pens.

Returns the current logical position of
the graphics pen.

Full support.

Full support.

Full support.

Full support,

No support for PIVOT.
Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full support.

Full suppaort.

Full support.

Keyword Guide to Porting 10-11

Program

HP BASIC Function

HP Instrument BASIC

Graphiecs Axes and Labeling

AXES

CKIZE

FRAME

GRID
LORG

LABEL

LDIR

Diraws a pair of axes with oplional,
equally spaced tick marks.

Sets the height and aspect ratio

(width:height) of the character cell used

by LABEL.

Draws a frame around the current
graphics clipping area using the current
pen number and line Lype,

Draws a full grid pattern.

Specifies the relative origin of labels
with respect to the current pen
position.

Draws text labels with the graphics pen

at the pen’s current position.

Defines the angles at which labels are
drawn.

Full support.

Full support.

Full support.

Full support.
Full support.

Full support.

Full support.

EP-IB Control
ABORT

CLEAR

LOCAL

LOCAL LOCKOUT

PASS CONTROL

REMOTE

SPOLL

TRIGGER,

Terminates bus activity and asserts
IEC.

Places specified devices in a
device-dependent state.

Returng specified deviees to their focal
state,

Sends the I.LO message, disabling all
device’s front-panel controls.

Passes Active Controller capability to
another device.

Sets specified devices to their remote
state.

Returns a serial poll byte from a
specified device,

Sends the trigger message to specified
devices.

Full support.

No support for Data

Communications Interface.

Full support.
Full support.
Full support.
¥ull support.
Full support.

Full support.

10-12 Keyword Guide to Porting

Program

HP BASIC Function

HF Instrument BASIC

Clock and Calendar
DATE

DATES

TIME

TIME$

SET TIME

SET TIMEDATE

TIMEDATE

Converts a formatied date string into a

numeric value in seconds.

Formats a number of seconds into a
string representing the formatted date

(DD MMM YYYY).

Converts a formatted time-of-day string
into number of seconds past midaight.

Converts the number of seconds past
midnight into a string representing the
formaited time of day (HH:MM:55).

Resets the time-of-day given by the

real-time clock.

Resets the absolute seconds {time and
day) given by the real-time clock.

Returns the value of the real-time clock.

Full support.

Full support.

Pull support.

full support.

Full support.

Full support.

Full support.

General Device
Inpué/Output

ASSIGN

BEEP

CRT
DATA

DISP
DUMP

ENTER

Associates an I/0 path name and
attributes with a mass storage file,

device or group of devices.

Produces an audible tone of & defined

frequency and duration.

Returns the device selector of the CRT.
Specifies data accessible via READ

staterments.

Cutputs items to the CRT display line.

DUMP ALPHA copies the contents of
the alphanumeric display to the default
printer specified in the Windows

Control Panel.

DUMP GRAPHICS copies the contents
of the graphics display to the default
printer specified in the Windows

Control Panel.

Inputs data from a device, file or string

to a list of variables.

No support for BUFFER,
BYTE, WORD, CONVERT,
PARITY, TRANSFER,
LOAD, or RETURN. I/O
path name is limited to a

single device or mass storage
file.

No support for HIL.

Full support.
Full support.

No support for COMPLEX.

No support for source or
destination devices.

No support for COMPLEX,
BUFFER, TRANSFER, or
CRT as source,

Keyword Guide to Porting 10-13

Program

HP BASIC Function

HP Instrument BASIC

General Device
Input/Output (continued)

IMAGE
INPUT

KBD
OuUTPUT
PRINT
PRINTER IS
PRT

READ
RESTORE

TAB

TABXY

Provides formats for use with ENTER,,
QUTPUT, DISP, and PRINT
operations.

Inputs data from the front-panel
{keyboard) to a st of variables.

Returns the device selector of the
keyboard.

Outputs items to a specified device, file,
string, or buffer.

Outputs items to the current
PRINTER IS device.

Specifies a device for PRINT, CAT, and
LIST statements.

Returns 761, usually the device selector
of external printer.

Inputs data from DATA lists to
variables,

Causes a READ statement to access the
specified DATA statement.

Moves the print position ahead to a
specified point; used within PRINT and
DISP statements.

Specifies the print position on the
internal CRT; used with PRIN'T
statements.

Full support.

No support for COMPLEX
or specific keys,

Full support.

No support for COMPLEX,
BUFFER, or TRANSFER .
No support for COMPLEX.
No support for DELAY.
Full support.

No support for COMPLEX.

Full support.

Full support.

Full support.

Display and Keyboard
Control
ALPHA ON/OFF

CLEAR SCREEN/ CLS
CRT

KBD

SET ALPHA MASK

ON shows the alpha window; OFF
clears the alpha window

Clears the alpha display screen.

Returns 1, which is the select code of
the CRT display.

Returns 2, which is the select code of
the keyboard.

Specifies which plane(s) can be
maodified by alpha display operations.

Full support.

Full support.
Full support.

Full support.

Full support

16-14 Keyword Guide to Porting

Program

HP BASIC Function

HP Instrument BASIC

Array Operations
BASE

DEY
bOT

MAT

MAT REORDER
RANK

REDIM

SIZE

SUM

Returns the lower bound of a dimension
of an array,

Returns the lower bound of a dimension
of an array.

Returns the lower bound of a dimension
of an array.

Performs a variety of operations on
matrices and other numeric and string
arrays.

Reorders elements in an array according
to the subscript list in a vector,

Returns the number of dimensions in an
array.

Changes the subscript range of
previously dirmensioned arrays.

Returns the number of elements in a
dirmension of an array.

Returns the sum of all the elements in a
Rueric array.

Full support.

Full support, except
COMPLEX.

Full support, except
COMPLEX.

Full support, except
COMPLEX, MAT SORT,
and MAT SEARCH.

Full support.

Full support.

No support for BUFFER

Full support.

¥ull support, except
COMPLEX.

Keyword Guide to Porting 10-15

CREATE statement, 7-11
CRT function, 3-10

D

DATA and READ Statements, Using, 7-2

Data From a File, Reading String, 7-24

Data From BDAT and HP-UX Files, Reading,
7-23

Data in Programs, Storing, 7-1

Data Input by the User, 7-2

Data in Variables, Storing, 7-1

Data Pointer, Moving the, 7-4

Data Representations, ASCIT and Custom, 7-19

Data Representations Available, 7-16

Data Representations in ASCII Files, 7-12

Data Representations with DOS Files, 7-19

Data Representations with HP-UX Files, 7-19

DATA statement, 2-4, 4-6, 6-9, 7-1

Data Storage and Retrieval, 7-1

Data Type, INTEGER, 3-1

Data Type, REAL, 3-1

Data, Writing, 7-22

Date Functions, Time and, 3-9

Deactivating events, 211

Declaration of variables, keywords used in the,
2-4

Declaring Variables, 3-1

Default dimensioned length of a string, 5-1

Default mass storage device, 7-7

DEF FN statement, 2-4, 6-4, 6-10

Defined Records, 7-20

Degradation, rate, 7-13

BPegrees, 3-8

DEG statement, 3-8, 6-9

Deleting Subprograms, 6-11

DEL LN statement, 6-11

Determining Error Number and Location, 9-3

Device selector, 8-1

Device selectors, using, 8-2

Dimensioning, Problems with Implicit, 4-4

DIM statement, 2-4, 3-1, 4-1, 5-2

DISABLE statement, 2-11, 9-3

Disabling Error Trapping (OFF ERROR), 9-3

Disabling Events, 2-11

DOS files, 7-6

DOS Files, Data Representations with, 7-19

Double-Subscript Substrings, 5-5

DROUND function, 3-9

DVAL function, 3-10, 5-9

DVALS string function, 5-0

Dyadic operator, 3-5

Index-2

E

Editing Subprograms, 6-10

ENABLE statement, 2-11

END IF statement, 2-4

END LOOP statement, 2-4

mnd-of-line (EOL) sequences, 7-9
End-Of-Record, 7-21

End-Of-Record (EOR), 7-23

END SELECT statement, 2-4, 2-7

END statement, 2-1, 2-4, -2

END WHILE statement, 2-4

ENTER, Random, 7-25

ENTER, Serial, 7-24

ENTER statement, 7-8, 7-14, 7-16, 7-23
ERRL function, 8-3

ERRL in Subprograms, Using ERRLN and, 9-5
ERRLN and ERRL in Subprograms, Using, 9-5
ERRLN function, §-3

ERRME string function, 9-3

ERRN function, 9-3

Error Number and Location, Determining, 9-3
rror Responses, Overview of, §-1

Errors, Anticipating Operator, 9-1

Errors, Handling, 9-1

Errors, Trapping, 9-2

Error Trapping and Recovery, Scope of, 9-2
Error Trapping (OFF ERROR), Disabling, 9-3
Escape-Code Sequences, 8-3

Evaluating Expressions Containing Strings, 5-2
Evaluating Scalar Expressions, 3-3

Evaluation Hierarchy, 5-3

Event-checking, 2-10

Event-initiated branching, 2-1, 2-10
Event-initiated RECOVER, statement, 6-10
Events, Disabling, 2-11

Events, Types of, 2-10

EXIT IF statement, 2-4, 2-8

EXP function, 3-7

Exponential Funciicns, 3-7

Expressions as Pass Parameters, 3-5
Expressions, hierarchy for, 3-3

External Printer, Using the, 8-2

F

File Access, A Closer Look at General, 7-8
Fite Input and Qutput, 7-5

File pointer, 7-15

File specifiers, 7-7

File Types, Brief Comparison of Available, 7-5
FNEND statement, 2-4, 6-11

FOR ... NEXT structure, 2-7

Formal parameter lists, 6-4, 6-6

FORMAT attribute, 7-9

FORMAT attributes, 7-9

FORMAT OFF statement, 7-9, 7-17

FORMAT ON attribute, 7-14

FORMAT ON statement, 7-9, 7-16

Formatted ENTER with ASCII Files, 7-16

Formatted QUTPUT with ASCIT Files, 7-14

Formatted Printing, 8-3

FOR statement, 2-4

Four-dimensional array, 4-4

FRACT function, 3-7

Function, ABS, 3-7

Function, ACS, 3-8

Function and a Subprogram, Difference, 6-2

Function, ASN, 3-8

Function, ATN, 3-8

Function, BINAND, 3-8

Function, BINCMP, 3-8

Function, BINEOR, 3-8

Function, BINIOR, 3-8

Function, BIT, 3-8

Function, COS, 3-8

Function, CRT, 3-10

Function, DROUND, 3-9

Function, DVAL, 3-10, 5.9

Function, ERRI,, 4-2

Function, ERRLN, 9-3

Function, ERRN, -3

Function, EXP, 3-7

Function, FRACT, 3-7

Function, INT, 3-7

Function, IVAL, 3-10, 5-9

Function, KBD, 3-10

Function, LG'F, 3-7

Function, LOG, 3-7

Function, MAX, 3-9

Function, MAXREAL, 3-7

Function, MIN, 3-9

Function, MINREAL, 3-7

Function, NUM, 5-7

Function, PI, 3-8

Function, PROUND, 3-9

Fanction, PRT, 3-10

Function, RND, 3-9

Fanction, ROTATE, 3-8

Functions and String Functions, REAL Precision,
6-3

Functions, Arithmetic, 3-7

Funections, Base Conversion, 3-10

Functions, Binary, 3-8

Functions, Exponential, 3-7

Functions, General, 3-10

Function, SGN, 3-7

Function, SHIFT, 3-8

Funetion, SIN, 3-8

Functions, Limit, 3-9

Functions, Numerical, 3-7

Function, SQR, 3-7

Function, SQRT, 3-7
Functions, String, 5-7
Functions, String-Related, 5-6
Functions, Subprograms and User-Defined, 6-1
Functions, Time and Date, 3-9
Functions, Trigonometric, 3-8
Function, TAN, 3-8

Function, TIMEDATE, 3-9
Function, VAL, 5-7

Function, VALS, 7-15

G

General File Access, A Closer Look at, 7-8
General Functions, 3-10

GET statement, 2-11-13, 6-8

GET, Using, 2-11

GOSUB statement, 2-2, 6-9

GOTO statement, 2-2, 2-4, 6-9

H

Halting Program Execution, 2-1

Handling Errors, 9-1

Hierarchy, Evaluation, 5-3

Hierarchy for expressions, 3-3

Hierarchy, Math, 3-3

BP-UX file, 7-8, 7-20

HP-UX files, 7-6

HP-UX Tiles, Data Representations with, 7-19

§

IF ... THEN ... ELSE statement, 2-5
I¥ ... THEN statement, 2-4

IF ... THEN structure, 2-8

IF statement, 2-4

Image Specifiers, Additional, 8-7
Image Specifiers, Numeric, 8-5

Image Specifiers, String, 8-6

Images, Using, 8-4

Implicit Dimensioning, Problems with, 4-4
Implicit Type Conversions, 3-2
Individual Array Elements, Using, 4-5
Infinite loop, 2-10

Initialization, Variable, 6-10

INPUT statement, 7-2

Inserting Subprograms, 6-10
INTEGER. data type, 3-1, 4-1
INTEGER statement, 2-4, 4.1, 4-4
Intesface select code, 8-1

INT function, 3-7

1/0 path names, 7-8

1/0O Path, Opening an, 7-8

I/0 Paths, Closing, 7-10

1/0 techniques, ASCII file, 7-11

index-3

IVAL function, 3-10, 5-9
TVALS string function, b-4

K

KBD function, 3-10

Keywords that define boundaries, 2-4
Keywords that define program structures, 2-4
Keywords used in the declaration of variables,

2-4

Keywords used to identily lines that are literals,

2-4

L

Length header, string variable’s, 7-14

LET statement, 3-2, 7-1

LGT function, 3-7

LiF file, 7-8

Limit Functions, 3-G

Linear flow, 2-1

Literals, keywords used to identify lines that
are, 2-4

LOAD siatement, 6-8

LOG function, 3-7

Loop counter, 2.7

LOOP ... END LOOP structure, 2-8

Loop iterations, conditional, 2-8

Loop iterations, fixed, 2-8

Loop iterations formula, 2-7

LOOP statement, 2-4, 2-8

IWCH string function, 5-8

M

Manual Organization, 1-1

Mass storage files, 7-1

MASS STORAGE IS statement, 7-8
Math Hierarchy, 3-3

MAX function, 3-9

MAXREAL function, 3-7

Merging Subprograms, 6-11

MIN function, 3-9

MINREAL function, 3-7

Monadic operator, 3-b

MOVELINES statement, 6-11

Moving the Data Pointer, 7-4
Multiple-Field Numeric Image Specifiers, 8-6
Multiple-Line Coenditional Segments, 2-5
N

Nested constructs, 2-5

NEXT statement, 2-4

Null string, 5-1

Number-Base Conversion, 5-9

Number builder routine, 7-13
Numerical Functions, 3-7

index-4

Numeric Arrays, 4-1

Numeric Computation, 3-1

Numeric data 1terns, 7-12

Numeric Data Types, -1

Numeric Expressions, Strings in, 3-6
Numeric Image Specifiers, 8-5

Numeric Tmage Specifiers, Examples of, 8-5
Numeric Image Specifiers, Mulliple-Field, 86
Numeric-to-5tring Conversion, 5-7

NUM function, 5-7

o

QFF-event, 2-11

OFF KEY statement, 2-11

One-dirmensional array, 4-1

ON ... event statement, 2-10

ON ERROR branching, 9-3

ON ERROR CALL, A Closer Loock At, 8-5

ON ERROR Execution at Run-Time, 9-2

ON ERROR GOSUB, 8-4

ON ERROR GOTO, A Closer Look At, 9-4

ON ERROR Priority, 9-2

ON ERROR RECOVER, A Closer Look At,
9-6

ON ERROR statement, 2-10

ON-event, 2-11

ON-cvent statement, 2-10

ON INTR statement, 2-10

ON KEY statement, 2-10, 6-10

ON TIMEOUT statement, 2-10, 8-8

Operator, dyadic, 3-5

Operator Errors, Anticipating, 9-1

Operator, monadic, 3-5

Operator, relational, 3-5

Operators, 3-5

OUTPUT, Random, 7-23

QUTPUT, Serial, 7-23

OUTPUT statement, 2-3, 7-14-15, 7-22

Overhead in ASCII data files, reducing the, 7-14

P

Parameter Lists, Formal, -4

Parameters, Expressions as Pass, 3-5

Parameters Lists, 6-4

Parameters passed by reference, 3-2

Parameters passed by value, 3-2

Passing by Value vs. Passing By Reference, 6-5

Passing Entire Arrays, 4-7

Pass parameter lists, 6-5

Pass Parameters, COM vs., 6-7

Pass Parameters, Expressions as, 3-5

PAUSE statement, 2-2

PI function, 3-8

Planes of a Three-Dimensional REAL Array,
4-2

Pointer, Moving the Data, 7-4

Precision Fuanctions and String Functions, REAL,
6-3

Printer Control Characters, 83

PRINTER IS device, 4-7

PRINTER IS statement, 8-1

Printer, syster, 8-1

Printer, Using a, 8-1

Printer, Using the External, 82

Printing Arrays, 4-6

PRINT TAB staterment, 8-4

PRINT TABXY statement, 8-4

Priority, ON ERROR, 9-2

Program counter, 2-2

Program flow, 2-1

Programs, chaining, 2-11

Program structures, keywords that define, 2-4

Program/Subprogram Communication, 6-4

Program-to-Program Communication, 2-12

Prohibited Statements, 2-4

PROUND function, 3-9

PRT function, 3-10

R

Radians, 3-8

RAD statement, 3-8, 6-9

Random access, 7-14, 7-16

Random ENTER, 7-25

RANDOMIZE statement, 3-9

Random Number Function, 3-8

Random QUTPUT, 7-23

Random va. Serial Access, 7-17

RANK function, 4-5

Rate degradation, 7-13

Reading Data From BDAT and HP-UX Files,
7-23

Reading String Data From a File, 7-24

READ statement, 4-6, 7-1

READ Statement to Fill an Entire Array, Using
the, 4-6

REAL data type, 3-1, 4-1

REAL Data Type, 3-1

REAL Precision Functions and String Functions,
6-3

REAL statement, 2-4, 4-1, 4-4

Record Length (BDAT Files Only), Choosing
A, 721

Records, Defined, 7-20

Record Size (BDAT Files Only}, Specifying,
7-20

RECOVER statement, 6-8

RECOVER. Statement, Subprograms and the,
6-10

Recovery, Scope of Error Trapping and, 9-2

Recursion, 6-11

Reducing the overhead in ASCI data files, 7-14
Heference, Pass by, 6-5

Relational Operations, 5-3

Relational operator, 3-5

REM statement, 2-4

REPEAT ... UNTIL structure, 2-7
REPEAT statement, 2-4, 2-8

Repeat, String, 5-8

RESTORE statement, 7-4

RETHRN stack, 6-9

RETURN statement, 2-2

Reverse, String, 5-8

REV# string function, 5-8

ROTATE function, 3-8

Rounding problem, 3-2

RPT$ string function, 5-8

RUN command, 6-1

Run-Time, ON ERROR Execution at, 9-2

8

SAVE statement, 7-1

Scalar Expressions, Evaluating, 3-3
Scope of Error Trapping and Recovery, 9-2
SELECT constructs, 2-8

Selection, 2-3

SELECT statement, 2-4, 2-6

Serial access, 7-16

Serial ENTER, 7-24

Serial QU TPU'T, 7-23

Service Routines, Setting Up Error, 9-2
Setting Up Error Service Routines, 9-2
SGN function, 3-7

SHIFT function, 3-8

Simple Branching, 2-2

SIN funchion, 3-8

single-Byte Aecess, 7-26
Single-Subscript Substrings, 5-4

SIZE function, 4-5

Softkeys. Subprograms and, 6-10
Specifiers, Additional Image, 8-7
Specifiers, Numeric Image, 8-b
Specifying Record Size (BDAT Files Only), 7-20
SQRT function, 3-7

STOP statement, 2-1

Storage and Retrieval of Arrays, 7-3
Storage-space efliciency, 7-16

Storing Data in Programs, 7-1

Storing Data in Variables, 7-1

String, 5-1

String Arrays, 5-2

String Concatenation, 5-3

String Data From a File, Reading, 7-24
String, default dimensioned length of a, 5-1
String Function, CHRS$, 5-7

String Funection, DVALS, 5-9

Index-8

String Function, ERRM$, 9-3

String Function, IVALS, 5-9

String Function, EWCS, 5-8

String Function, REV$, 5-8

String Function, RPTS, 5-8

String Functions, 5-7

String Funections, REAL Precision Functions
and, 6-3

String Function, TRIMS, 5-8

String Function, UPC$, 5-8

String Punction, VALS, 5-7

String Image Specifiers, 8-6

String Length, Current, 5-6

String Manipulation, 5-1

String-Related Functions, 5-6

String Repeat, 5-8

String Reverse, 5-8

Strings, Evaluating Expressions Containing, 5-2

Strings in Numeric Expressions, 3-6

String Storage, 5-2

String-to-Numeric Conversion, 5-7

String, Trimming a, 5-8

String variable, 5-1

String variable’s length header, 7-14

SUBEND statement, 2-4, 6-11

SUBEXIT statement, 6-11

Subprogram and User-Defined Function Names,
6-2

Subprogram, Difference Between a User-Defined
Function and a, §-2

Subprogram Location, 6-2

Subprograms, A Closer Look at, 6-1

Subprograms and Softkeys, 6-10

Subprograms and Subroutines, Differences
Between, 6-2

Subprograms and the RECOVER, Statement,
6-10

Subprograms and User-Defined Functions, 6-1

Subprograms, Benefits of, 6-1

Subprograms, Deleting, 6-11

Subprograms, Inserting, 6-10

Subprograms, Merging, 6-11

Subroutine, 2-2

SUB statement, 2-4, 6-1, 6-4, 6-10

Index-§

Substring Position, 5-6
Substrings, 5-4

Substrings, Double-Subscript, 5-5
Substrings, Single-Subscript, 5-4
System printer, 8-1

System Sector, BDAT File, 7-19

T

TAN function, 3-8

Three-Dimensional INTEGER Array, 4-4
Time and Date Functions, 3-9

TIMEDATE function, 3-9

Trapping and Recovery, Scope of Error, 9-2
Trapping Errors, 9-2

Trapping {OFF ERROR), Disabling Error, §-3
Trigonometric Functions, 3-8

Trimming a String, 5-8

TRIMS string function, 5-8
Two-dimensional, 4-1

Two-Dimensional INTEGER Array, 4-3
Type Conversions, Implicit, 3-2

u

UNTIL statement, 2-4
UPC$ string function, 5-8
User-defined formats, 7-17

v

VAL$ function, 7-15

VAL function, 5-7

VALS string function, 5-7

Value, Pass by, 6-5

Variable Initialization, 6-10

Variables, Assigning, 3-2

Variabhles, Declaring, 3-1

Variables, keywords used in the declaration of,
2-4

W

WHILE ... END structure, 2-7
WHILE ... END WHILE structure, 2-8
WHILE statement, 2-4, 2-8

Writing Data, 7-22

Contents

Manual Overview

Introduction
Manual Organization
Chapter Previews

Chapter 2: Interfacing Concepts

Chapter 3: Directing Pata Flow

......

...........

.......

..........

...........

Chapter 4: Outputting Data o o o v o v

Chapter 5. Entering Data

Chapter 6: I/O Path Attributes
Specific Interfaces

Interfacing Concepts

Terminology e e e e e e e e e e e
Why Do You Need an lnterface? G e
Flectrical and Mechanical Compatibility
Data Compatibility -
Timing Compatibility
Additional Interface Functions

Interface Overview
The HP-IB Interface
The RS-232C Serial Interface

Data Representations e e e e e
Bitsand Bytes
Representing Numbers
Representing Characters

The I/O Process« ..

I/O Statements and Para,meters
Specifying a Resource

Data Handshake

Directing Data Flow
Specifying a Resource

......

.

String-Variable Names e
Formatted String I/O
Device Selectors

Select Codes of Built-In Interfaces . . .

HP-IB Device Selectors ..
[JOPaths

1/O Path Names . . . N '

ReAssigning I/O Path Ndmes .
Closing I/O Path Names
I/0 Path Names in Subprograms

......

.........

...........

...........

...........

...........

.......

...........

.......

...........

.......

...........

..........

.........

..........

1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-2

2-1
2-2
2-2
2-2
2-3
2-3
2-4
2.4
2-5
2-6
2-6
2-7
2-7
2-8
2-8
2-8
2-8

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4

Contents-1

Chapter Previews

This manual is intended to provide background and tutorial information for programmers
who have not written HP Instrument BASIC 1/0 programs before. It presents topics and
programming techniques applicable to all interfaces.

Chapter 2: Interfacing Concepts

This chapter presents a brief explanation of relevant interfacing concepts and terminology.
This discussion is especially useful for beginners as it covers much of the “why” and “how”
of interfacing. Experienced programmers may also want to review this material to better
understand the terminology used in this manual.

Chapter 3: Directing Data Fiow

This chapter describes how to specify which instrument resource is to send data to or receive
data. The use of device selectors, string variable names, and “I/0 path names” in I/O
statements are described.

Chapter 4: Quiputting Data

This chapter presents methods of outputting data to devices. All details of this process are
discussed, and several examples of free-field output and output using images are given. Since
this chapter completely describes outputting data to devices, you may only need to read the
sections relevant to your application.

Chapter 5: Entering Data

This chapter presents methods of entering data from devices. All details of this process are
discussed, and several examples of free-field enter and enter using images are given. As with
Chapter 4, you may only need to read sections of this chapter relevant to your application.

Chapter 6: 1/O Path Attributes

This chapter presents several powerful capabilities of the I/O path names provided by the
BASIC language system. Interfacing to devices is compared to interfacing to mass storage
files, and the benefits of using the same statements to access both types of resources are
explained. This chapter is also highly recommended to all readers.

Specific Interfaces

Since each host instrument for HP Instrument BASIC implements the display, keyboard and
other interfaces in slightly different manners, this manual does not cover the operation of
interfaces. For specific details on the operation of interfaces with HP Instrument BASIC,
consult the instrument-specific manual for your host instrument.

1-2 Manual Overview

interfacing Concepts

This chapter describes the functions and requirements of interfaces between the host
instrument and its resources. Concepts in this chapter are presented in an informal manner.
All levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. The purpose of
this section is to make sure that our terms have the same meanings.

computer

hardware

software

firmware

computer
resource

1/0

output

input

bus

is herein defined Lo be the processor, its support hardware, and the HP
Instrument BASIC-language system of the host instrument; together these
system elements manage all computer resources.

describes both the electrical connections and electronic devices that make up
the circuits within the computer; any piece of hardware is an actual physical
device.

describes the user-written, BASIC-language programs.

refers to the preprogrammed, machine-language programs that are invoked by
BASIC-language statements and commands. As the term implies, firmware is
not vsually modified by BASIC users. The machine-language routines of the
operating system are firmware programs.

is herein used te describe all of the “data-handling” elements of the system.
Computer resources include: internal memory, display, keyboard, and disc
drive, and any external devices that are under computer control.

is an acronym that comes from “Input and Output”; it refers to the process of
copying data to or {rom computer memory.

involves moving data from computer memory to another resource. During
output, the source of data is computer memory and the destination is any
resource, including memory.

is moving data from a resource to computer memory: the source is any
resource and the destination is a variable in computer memory. Inputting data
is also referred to as “entering data” in this manual for the sake of avoiding
confusion with the INPUT statement.

refers to & common group of hardware lines that are used to transmit
information between computer resources. The computer communicates
directly with the internal resources through the data and control buses,

interfacing Concepts 2-1

computer is an extension of these internal data and control buses. The computer
backplane communicates indirectly with the external devices through interfaces
connected to the backplane hardware.

Why Do You Need an Interface?

The primary function of an interface is to provide a communication path for data and
commands between the computer and its resources. Interfaces act as intermedjaries befween
resources by handling part of the “bookkeeping” work, ensuring that this communication
process flows smoothly, The following paragraphs explain the need for interfaces.

First, even though the computer bus is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The internal hardware has been designed with specific electrical logic levels and drive
capability in mind.

Second, you cannot be assured that the connectors of the computer and peripheral are
compatible. In fact, there is a good probability that the connectors may not even mate
properly, let alone that there is a one-to-one correspondence between each signal wire’s
function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that
the data sent will be interpreted properly by the receiving device. Some peripherals expect
single-bit serial data while others expect data to be in 8-bit paraliel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as
to when the data transfer will occur; and when the transfer does begin, the transfer rates will
probably not match.

As you can see, interfaces have a great responsibility to oversee the communication between
computer and its resources,

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electricai levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly.
The interfaces connect with the computer buses. The peripheral end of the interfaces have
connectors that match those on peripherals.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult requirements to fulfill before exchanging data is that the format and meaning of
the data being sent is identical to that anticipated by the receiving device. Even though some
interfaces format data, most do not; most interfaces merely move data to or from computer
memory. The computer must make the necessary changes, if any, so that the receiving device
gets meaningful information.

2-2 interfacing Concepls

Timing Compatibility

Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must be
made. If the sender and receiver can agree on both the transfer rate and beginning point (in
time), the process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this process
is known as a “handshake.” Both types of transfers are utilized with different interfaces and
both will be fully described as necessary.

Additional Interface Functions

Another powerful feature of some interfaces is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface vary widely and are
described in the next section of this chapter.

interfacing Concepts 2.3

interface QOverview

Now that you see the need for interfaces, you should see what kinds of interfaces are available
for the computer. Each of these interfaces is specifically designed for specific methods of data
transfer; each interface’s hardware configuration reflects its function.

The HP-IB interface

This interface is Hewlett-Packard’s implementation of the IREE-488 1678 Standard
Digital Interface for Programmable Instrumentation. The acronym “HP-IB” comes from
Hewlett- Packard Interface Bus, often called the “bus™.

[Cata

HE - 18 < 2

interface

NS

Handshake

Data and A - & | Shielded Cable
Control | Hardware [N\ = &Ca to Device(s)
Backplane and c LA /
100 . S 4
Connectors Firmmware <
Control -
£
/7g < - :> ‘
19
N
Logic and

Shield Grounds
—

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface
cable to the desired HP-IB device and begin programming. All resources connected to the
computer through the HP-IB interface must adhere to this IEEE standard.

The “bus” is somewhat of an independent entity; it is & communication arbitrator that
provides an organized protocol for communications between several devices. The bus can be
configured in several ways, The devices on the bus can be configured to act as senders or
receivers of data and control messages, depending on their capabilities.

2-4 Interfacing Concepts

The R$-232C Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the

data through a two-wire (usually shielded} cable; data is received in this serial format and is
converted back to paraliel data. This use of two wires makes it more economical to transmit
data over long distances than to use 8 individual lines.

Parallsl
Diata

Data and
Cantrol

-
Serial
Backplane

4 100 A Interface
Connectars [N/
. Hardware

2

Bit—Serwal
[rata
)
PRNALLY
IPamHeilf’ P
L [REIT 3
Serjal e
Converterf Hondshake
AR
| (uarT) -
Special Purpose

“
N

Grounds

—

¢

—

Connacior

25 Pin

Biock Diagram of the Serial Interface

Shielded Cable
to o Device

- Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all. The main use of this interface is in communicating with simple devices.

interfacing Concepts 2-5

Data Representations

As long as data is only being used internally, it really makes little difference how it is
represented; the computer always understands its own representations. However, when data
is to be moved to or from an external resource, the data representation is of paramount
importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each
of which can take on one of two logic levels (high or low). Depending on how the computer
interprets these bits, they may mean on or not on (off}, true or not true (false), one or zero,
busy or not busy, or any other bi-state condition. These logic levels are actually voltage levels
of hardware locations within the computer. The following diagram shows the voltage of a
point versus time and relates the voltage levels to logic levels.

Voitage of
a Point
+5v
———— Lagic High
Logic Ground #= Logic Low
(Ov) t t t_ Time
1 2 30

Voltage and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a vaziable in computer
memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR, BINEOR,
BINAND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all
data in computer memory are somehow represented with binary numbers,

The computer’s hardware accesses groups of sixteen bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65 536 (65 536=221%)
different bit patterns can be produced. The computer can also use groups of eight bits at a
time; this size group is known as a byte. With this smaller size of bit group, 256 (256=2%)
different patterns can be produced. How the computer and its resources interpret these
combinations of ones and zeros is very important and gives the computer all of its utility.

2-6 Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers 0 through 255 can be represented with this particular

scheme.

Most-Significant Bit

Least-Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bat 0
1 0 0 1 0 1 1 4
Value=128 | Value=64 | Value=32 | Vahw=16 | Value=8 Valne=4 | Value=2 Value=1

Notice that the value of 2 1 in each bit position is equal to the power of two of that position.
For example, a 1 in the 0th bit position has a value of 1 (1=2°), a 1 in the 1st position has a
value of 2 (2=21), and so forth. The number that the byte represents is then the total of all
the individual bit’s values.

Ox2°=0p

1x2l =2

1x22=4 Number represented =
0x25=0

1x22=16 244416+ 128 = 150
0x2°=0

0x26=0

1 x 27 = 128

The preceding representation is used by the “NUM” function when it interprets a byte of
data. The next section explains why the character “A™ can be represented by a single byte.

100 Number=NUM("A"™)
110 PRINT " Rumber = ";HNumbex
120 FEND

prints

Number = 65

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commenly used for general communication, a single data byte can be used to represent a
character. The most widely used character set is defined by the ASCII standard, ASCII
stands for “American Standard Code for Information Interchange”. This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard
only defines 128 patterns (bit 7 = 0), 128 additional characters are defined hy the computer
{bit 7 = 1). The entire set of the 256 characters on the computer is hereafter called the
“extended ASCII” character set.

When the CHRS function is used to interpret a byte of data, its argument must be specified
by its binary-weighted value. The single (extended ASCII) character returned corresponds to
the bit pattern of the function’s argument,

Interfacing Concepts 2-7

Device Selectors

Devices include an internal CRT, keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Each interface
has a unique number by which it is identified, known as its interface select code.

In order to send data to or receive data from a device, merely specify the select code of its
interface in an OUTPUT or ENTER statement. Examples of using select codes to access
devices are shown below.

QUTPUT 1;*Data to CRT"
ENTER CRT;Crt_line$

HPib_device=722
OUTPUT 722;"FiRy"
ENTER Hpib_device;Reading

The following pages explain select codes and device selectors.

Select Codes of Buili-in interfaces

The internal devices are accessed with the following, permanently-assigned interface select
codes.

Mote Some host instruments may not contain all of the following interfaces.

L4

Select Codes of Built-in Devices

Built-In Interface/Device Permanent

Select Code
Alpha Display 1
Keyboard 2
Built-in HP-IB interface 7
Built-in serial interface 9

The host instrument may have other built-in interfaces. See your instrument-specific HP
Instrument BASIC manual for information regarding these interfaces and their select codes.

HP-IB Device Selectors

Fach device on the HP-IB interface has a primary address by which it is uniquely identified;
each address must be unique so that only one device is accessed when one address is specified.
The device selector is then a combination of the interface select code and the device’s address.
Some examples are shown below.

3-2 Directing Data Flow

HP-1B Device Selector Examples

Bevice Location Device Example I/O Statement
Selector
interface select code 7, 722 QUTPUT 722;"Data" ENTER
primary address 22 722 ; Humber
interface select code 10, 1001 QUTPUT 1001;"Data" ENTER
primary address 01 1001 ; Fumber !

i/O Paths

All data entered and output via an interface to files or devices is moved through an “I/O
Path.” The I/O paths to devices and mass storage files can be assigned special names called
I/0 path names. I/0 paths to strings cannot use I/O path names. The next section describes
how to use I/0 path names along with the benefits of using them.

I/O Path Names

An I/O path name is a data type that describes an [/O resource. With HP Instrument
BASIC, you can assign I/O path names to either a device or a data file on a mass storage
device. The following examples show how this is done.

Devices ASSIGN €Device TO 722
Files ASSIGN @File TO "MyFile"

Once assigned, the I/0 path names can be used in place of the device selectors to specify the
resource with which communication is to take place. For example:

ASSIGN @Display TO 1 Assigns the I/O path name @Display to the CRT.

CUTPUT @Display;"Data" Sends characters to the display.

ASSIGN @Printer TO 701 Assigns @Printer to HP-IB device 701,

OUTPUT @Printer;'Data" Sends characters to the printer.

ASSIGN eGpio TO 12 Assigns @Gpio to the interface at select code 12.

ENTER @Gpio;A_number Enters one numeric value from the interface.

Note HP Instrument BASIC does not support assigning an I/0 path name to
i multiple devices.

v

Since an I/O path name is a data type, a fixed amount of memory is allocated for the
variable, similar to the manner in which memory is allocated to other program variables
(integer, real and string). This I/0 path information is only accessible to the context in which
it was allocated, unless it is passed as a parameter or appears in the proper COM statements.

ReAssigning 1/O Path Names

If an I/O path name already assigned to a resource is to be reassigned to another resource, the
preceding form of the ASSIGN statement is also used. The resultant action is that the the

Directing Data Flow 3-3

In this example, @Log.device remains assigned to interface select code 1; thus, “Subprogram”
and “Second Main” are both directed to the CRT.

Declaring 1/O Path Names in Common

An 1/0 path name can also be accessed by a subprogram if it has been declared in a COM
statement (labeled or unlabeled) common to calling and called contexts, as shown in the
following example.

1 COM @Log_device i Insert COM statement

3 ASSIGN @Log_device to 701
4 GUTPUT @log_device;"First Main"

10 CALL Subprogram_x ! Parameters not necessary
11 (UTPUT #log_device;"Second Hain"

20 ERD

30 !

40 SUB Subprogram_x ! Parameters not necessary
41 COM @ Log_device ! Insert COM statement

5C¢ ASSIGN @log _device T3 1 ¢ CRT.
60 OUTPUT @Log. device;"Subprogram"
70 SUBENWD

If an I/0 path name is common is modified in any way, the assignment is changed for all
subsequent contexts; the original assignment is not “restored” upon exiting the subprogram.
In this example, “First Main” is sent to the HP-IB device 701, but “Subprogram” and
“Second Main” are both directed to the CRT. This is identical to the preceding action when
the I/O path name was passed by reference.

Benefits of Using 1/0 Path Names

Assigning names to I/O paths provide improvements in performance and additional
capabilities over using device selectors. These advantages fall in the following areas:

& execution speed
8 redirecting data to or from other destinations
& access to mass storage files

& atiribute control

Execution Speed

When a device selector is used in an I/O statement to specify the 1/0 path to a device, first
the numeric expression must be evaluated, then the corresponding attributes of the I/0 path
must be determined before the I/O path can be used. If an I/O path name is specified in

an OUTPUT or ENTER statement, all of this information has already been determined at
the time the I/O path name was assigned. Thus, an I/0 statement containing an I/Q path

name executes slightly faster than using the corresponding I/0 statement containing a device -

selector (for the same set of source-list expressions).

3-8 Directing Data Flow

Redirecting Data

Using numeric-variable device selectors, as with I/O path names, allows a single statement
to be used to move data between the computer and several devices. Simple examples of
redirecting data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors

100 Device=i
110 GOSUB Data_out

200 Device=T01
210 GOSUB Data_out

410 Data_out: ODUTPUT Device;Data$
420 RETURE

Example of Re-Directing with I/0 Path Names

100 ASSIGN @Device TO 1
110 GOSUB Bata_out

200 ASSTGHN ®Device TQ 9
210 GOSUB Data_out

410 Data_out: QUTPUT @Device;Data$
420 RETURN

The preceding two methods of redirecting data execute in approximately the same amount of
time.

Access to Mass Storage Files

The third advantage of using /O path names is that device selectors cannot be used to direct
data to or from mass storage files. Therefore, 1/0 path names are the only access to files. If
the data is ever to be directed to a file, you must use I/O path names,

Attribute Control

I/O paths have certain “atiributes” that control how the system handles data sent through
the I/O path. For example, the FORMAT attribute possessed by an I/O path defermines
which data representation will be used by the path during communications. If the path
possesses the attribute of FORMAT ON, the ASCII data representation will be used. This

is the default attribute automatically assigned by the computer when 1/O path names are
assigned to device selectors. If the I/O path possesses the attribute of FORMAT OFF, the
internal data representation is used; this is the default format for BDAT files. Fuarther details
of these and additional attributes are discussed in the “I/O Path Attributes” chapter.

The final factor that favors using I/O path names is that you can control which attribute(s)
are to be assigned to the I/Q path. Attributes can be attached to an I/O path name when
it is assigned to a device (via the ASSIGN statement) and can specify data representation
(ASCII or internal) as well as the end-of-line sequence for all data using the path. Details of
these attributes are discussed in the “I/O Path Attributes” chapter.

Directing Data Flow 3-7

All numbers between 1E—5 and 1E+6 are rounded to 12 significant digits and output in
floating-point notation with no leading zeros. If the number is positive, a leading space is
output for the sign; if negative, a leading “—" is output.

For example:

32767
~32768
123456.,789012
~.000123456789012

If the number is less than 1E—5 or greater than 1E+6, it is rounded to 12 significant digits
and output in scientific notation. No leading zeros are output, and the sign character is a
space for positive and “—" for negative numbers.

For example:
~-1.23456789012E+6
1.23456789012E-5

Standard String Format

No leading or trailing spaces are output with the string’s characters.

String characters.
No leading or trailing spaces.

item Separators and Terminators

Data items are output one byte at a time, beginning with the left-most item in the source
list and continuing until all of the source items have been output. Items in the list must be
separated by either a comma or a semicolon. However, items in the data output may or may
not be separated by item terminators, depending on the use of item separators in the source
lists.

The general sequence of items in the data output is as follows. The end-of-line (EOL)
sequence is discussed in the next section.

st item 2nd item e last EOL
item terminator item terminator item sequence

Using a comma separator after an item specifies that the item terminator (corresponding
to the type of item) will be output after the last character of this item. A carriage-return,
CHR$(13), and a line-feed, CHR$(10), terminate string items.

QUTPUT Device;"Iten",-1234

I tleim |CRILFI— | 1123} 4 EOL The defaeult EOL sequence iz a CR/LF
sequence

4-2 Outputting Data

A comma separator specifies that a comma, CHR$(44), terminates numeric items.

OUTPUT Device;-1234,"Iten"

=t lz2]s]al 01| ¢t]elm ECL
sequence

If a separator follows the last item in the list, the proper item terminator will be output
instead of the EOQL sequence.

QUTPUT Device;"Iten", OUTPUT Device;~1234,

Using a semicolon separator suppresses output of the (otherwise automatic) item’s terminator.

OUTPUT 1;"Iteml";"Item2" OQUTPUT 1;-12;-34

tltielm|1]1ftlelm]|2 EQL R -0 P B E0L
SEQUerce Sequence

If a semicolon separator follows the last item in the list, the EOL sequence and item
terminators are suppressed.

OUTPUT {;"Ttemli";"Item2";

Meither of the #tem teminators nor
the ECL seguence are output.

If the item is an array, the separator following the array name determines what is output after
each array element. (Individual elements are output in row-major order.)

110 DIM Array{1:2,1:3)
120 FOR Row=1 TO 2

130 FOR Column=1 TO 3

140 Array (Row, Column)=Row%10+Column

150 NEXT Column

160 KEXT Row

170 !

18¢ OUTPUT CRT;Array(*) ! Ne trailing separator.
190 H

200 CUTPUT CRT;Array(#), ! Trailing comma.

210 i

220 QUTPUT CRT;Array{(*); ! Trailing semi-colon.
230 !

240 QUTPUT CRT;"Done”

250 END

Oufputting Data 4-3

QUTPUT @Device;"AB" ;END

Al B
N’

EOF sent with the last character of the item.

OUTPUT @Device;END
OUTPUT @Device;" " END

Neither EOL sequence nor EOI is sent, since no data is sent.

Outputs that Use Images

The free-field form of the OUTPUT statement is very convenient to use. However, there may
be times when the data output by the free-field convention is not compatible with the data
required by the receiving device.

Several instances for which you might need to format outputs are: special control characters
are to be output; the EOL sequence (carriage-return and line-feed) needs to be suppressed; or
the exponent of a number must have only one digit. This section shows you how to use image
specifiers to create your own, unique data representations for output operations.

The QUTPUT USING Statement

When this form of the OUTPUT statement is used, the data is output according to the
format image referenced by the “USING” secondary keyword. This image consists of one or
more individual image specifiers that describe the type and number of data bytes (or words)
to be output. The image can be either a string literal, a string variable, or the line label or
number of an IMAGE statement. Examples of these four possibilities are listed below.

100 OUTPUT 1 USING "64,5DDD.DDD,3X";" K= ",123.45

100 Image_str$="64,SDDD.DDD, 3X"
110 OUTPUT CRT USING Image. str$;" K= ";123.45

100 OUTPUT CRT USING Image_stmi;" K= ";123.45
110 TImage_stmt: IMAGE 64,SDDD.DBD,3X

100 OUTPYT 1 USING 110;" K= ";123.45
116 IMAGE 6A,3DOD.DDD,3X

4-6 Quiputting Data

Images

Images are used to specify the format of data during I/O operations. Each image consists
of groups of individual image (or “field”) specifiers, such as 6 A, SDDD.DDD, and 3X in the
preceding examples. Fach of these field specifiers describe one of the following things:

e [t describes the desired format of one item in the source list. For example, 8A specifies that
a string item is to be output in a “6-character Alpha” field. SDDD.DDD specifies that
a numeric item is to be output with Sign, 3 Decimal digits preceding the decimal point,
followed by 3 Decimal digits following the decimal point.

w It specifies that special character(s) are to be output. For example, 3X specifies that 3
spaces are to be output. There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a procedure.
It is convenient to talk about the image list as a procedure for the purpose of explaining how
this type of OUTPUT statement is executed.

Again, each image list consists of images that each describe the format of data item to be
output. The order of images in the list corresponds to the order of data items in the source
list. In addition, image specifiers can be added to output {or to suppress the output of)
certain characters.

Exampie of Using an Image

We will use the first of the four, equivalent output statements shown above. Don’t worry if
you don’t understand each of the image specifiers used in the image list; cach will be fully
described in subsequent sections of this chapter. The main emphasis of this example is that
you will see how an image list is used to govern the type and number of characters output.

OUTPUT CRT USING "6A,SDDD.DDD,3X";" K= *,123.45

The data stream output by the computer is as follows.

Ki= +1 112138 141510 CRILF
b ' 4 0 % s SV
8A s b oD oD D DD 33X defeult ECL
sequence
step 1. The computer evaluates the first image in the list. Generally, each group of

specifiers separated by commas is an “image”; the commas tell the computer
that the image is complete and that it can be “processed”. In general, each
group of specifiers is processed before going on to the next group. In this case,
6 alphanumeric characters taken from the first item in the source list are to be
output.

Step 2. The computer then evaluates the first item in the source list and begins outputting
it, one byte (or word} at a time. After the 4th character, the first expression has
been “exhausted”. In order to satisfy the corresponding specifier, two spaces
(alphanumeric “fill” characters) are output.

Step 3. The computer evaluates the next image (note that this image consists of several
different image specifiers). The “S” specifier requires that a sign character be

Outputting Data 4-7

Step 4.

Step 5.

Step 6.

output for the number, the “D7 specifiers require digits of a number, and the

“” specifies where the decimal point will be placed. Thus, the number of digits
following the decimal point have been specified. All of these specifiers describe the
format of the next item in the source list.

The next data item in the source list is evaluated. The resultant number is output
one digit at a time, according to its image specifiers. A trailing zero has been
added to the number to saiisfly the “DDD” specifiers following the decimal point.

The next image in the Hst (“3X” }is evaluated. This specifier does not “require”
data, so the source list needs no corresponding expression. Three spaces are output
by this image.

Since the entire image list and source list have been “exhausted”, the computer
then outputs the carrent (or default, if none has been specified) “end-of-line”
sequence of characters (here we assume that a carriage-return and line-feed are the
current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in the
source list must match those specified in the output image in itype and in number of items.

Image Definitions During Outputs

This section describes the definitions of each of the image specifiers when referenced by
QUTPUT statements. The specifiers have been categorized by data type. It is suggested that
you scan through the description of each specifier and then look over the examples. You are
also highly encouraged to experiment with the use of these concepts.

4-8 Qutputting Data

Numeric Images

These image specifiers are used to describe the format of numbers.

Sign, Digit, Radix and Exponent Specifiers

Image Specifier

Meaning

w“

Specifies a “+7 for positive and a “~7 for negative nuinbers is to be cutput.

"

Specifies a leading space for positive and a “~7 for negative numbers is to be

output.

Specifies one ASCI] digit (“07 through “97) is to to be output. Leading spaces
and tratling zeros are used as fill characters. The sign character, if any, “floats”
to the immediate left of the most-significant digit. If the number is negative and
no 5 or M is used, one digit specifier will be used for the sign.

Same as “I) except that leading zeros are output, This specifier cannot appear
to the right of a radix specifier {decimal point or R).

Like D, except that asterisks are output as leading fll characters {instead of
spaces). This specifier cannot appear to the right of a radix specifier {decimal
point or R).

Specifies the position of a deamal point radix-indicator {American radix) within
a number. 'There can be only one radix indicator per numeric image item.

ESZ
ESZZZ

Specifies the position of a comma radix indicator (European radix) within a
number. There can be only one radix indicator per numeric image item,

Specifies that the number is to be output using scientific notation. The “E” must
be preceded by at least one digit specifier (DY, 7, or *}. The default exponent is a
four-character sequence consisting of an “E”, the exponent sign, and two
exponent digits, equivalent to an “ESZZ” image. Since the number is lefi-justified
in the specified digit field, the image for a negative number must contain a sign
specifier (see the next section).

Same as “E” but only 1 exponent digit is output.

Same as “E” but three exponent digits are output.

K, ~K

Specifies that the number is to be output in a “compact” format, similar to the
standard numeric format; however, neither leading spaces (that would otherwise
replace a “+” sign) nor item terminators {commas) are cutput, as would be with
the standard numeric format.

Like K, except that the number is to be cutput using a comma radix (European
radix).

Qutputting Data 4-9

Numeric Examples

OQUTPUT @Device USING "DDDD";-123.769

383

4 EOL
SEQUESNCE

OUTPUT @Device USING 4D ;~1.2

EOL.

segquence

OUTPUT @Device USING "ZZ.DD";1.675

ol 8 EoL
sequence
QUTPUT @Device USING "Z.DY,; .35
s B,
Sequence
OUTPUT @Device USING "'DD.E"; 12345
112 ol 3 EOL
Seguence
QUTPUT @Device USING "2D.DDE";2E-4
2o ot o ~lals EoL
Sequence
DUTPUT @Device USING "K";12.400
112 4 EoL
Sequence
QUTPUT CRT USING "MDD.2D";-12.449
-111lz 415 EOL
sequence

4-10 Quiputling Data

QUTPUT CRT USIHEG "MDD.DD";2.09

5 EOL

sequence

QUTPUT 1 USING "SD.Db";2.449

EOL
seqUence

OUTPUT 1 USING "SZ.DD"; .49

ECL
sequence

OUTPUT CRT USING "SDD.DDE";-2.35

[9;:

EOL
S@que [0}

QUTPUT @Device USING "#%.D";2.6

ECOL

sequence

QUTPUT €Device USING "DRDD";3.1416

EOL
sequence

OUTPUT @Device USING "H";3.1416

& £OL

seguence

Ouiputting Data 411

String Images

These types of image specifiers are used to specify the format of string data items.

Character Specifiers

Image Specifier Meaning

A Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters specified.

“literal” All characters placed in quotes form a string literal, which is output exactly as is.
Literals can be placed 1n output images, which are part of QOUTPUT statements
by enclosing them in double quotes.

K, -K, H, ~H Specifies that the string is to be output in “compact” format, similar to the
standard string format; however, no item terminators are output as with the
standard string format.

String Examples
QUTPUT @Device USING "8A";"Characters"

C h] a rlaic t] e ECL
sequence

QUTPUT €Device USING "K,""Literal®"";"AB"

ATBI L i 4 & r o] | ECL

sequence
OUTPRUT @Device USING "K";" Hello "
H| e | Iio EQL
sequence
OUTPUT @Device USING "84";" Hello "
H e EOL
sequence

4-12 Qutputting Data

Binary images

These image specifiers are used to output bytes (8-bit data) and words (16-bit data) to the
destination. Typical uses are to output non-ASCII characters or integers in their internal

representation.

Binary Specifiers

Image Specifier

Meaning

B

Specifies that one byte (8 bits) of data is te be cutput. The source expression is
evaluated, rounded to an integer, and interpreted MOD 256. If it is less than
—32 768, CHRS(0) is output. If is greater than 32 767, CHRS(255) is output,

Specifies that one word of data (16 bits) are to be sent as a 16-bit,
two’s-complement integer. The corresponding source expression ig evaluated and
rounded to an integer. If i{ is less than —32 768, then —32 768 is sent; if it is
greater than 32 767, then 32 767 1s sent.

If the destination is a BDAT or HPUX file, or string variable, the WORD
attribute is ignored and all data are sent as bytes; however, pad byte(s),
CHRS$(0}, will also be cutput whenever necessary to achieve alignment on a word
boundary.

Since HP Instrument BASIC only supports 8-bit interfaces, two bytes are always
output, with the most stgnificant byte first. This irmage specifier has been
included primarily to maintain compatibility with HP Series 200/306 BASIC
programs that include this specifier.

Like W, except that no pad bytes are output to achieve alignment on a word
boundary. '

Binary Examples

QUTPUT @Device USING "B,B,B";65,66,67

Alsic EQOL
sequence

CUTPUT @Device USING "B";13

CUTPUT @Device USING "W";266465+66

sequence

Cutputting Data 4-13

Special-Character Images

These specifiers require no corresponding data in the source list. They can be used to output
spaces, end-of-line sequences, and form-feed characters,

Special-Character Specifiers

Image Specifier

Meaning

X Specifies that a space character, CHR$(32), is to be output.

/ Specifies that a carriage-return character, CHR$(13), and a line-feed character,
CHRS(10), are to be output.

@ Specifies that a form-feed character, CHR$(12), is to be cutput.

Special-Character Examples
OQUTPUT @Device USING "A4,4X,A";"H" "A"

b A | EOL
sequence

OUTPUT @Device USING "50X"

swf— (50 spaces) —¥e= EOL
sequence

OUTPUT @Device USING "@,/"

FE|CRiLF| EOL
sequance

QUTPUT @Device USING /"

CRYLF| EOL
saquence

4-14 Ouiputting Data

Termination images

These specifiers are used to output or suppress the end-of-line sequence output after the last

data item.

Termination Specifiers

Image Specifier

Meaning

L

%

Specifies that the current end-of-line sequence is to be output. The default EOL
characters are CR and LF; see “Changing the EOL Sequence” for details on how

to redefine these characters.

Specifies that the EOL sequence that normally follows the last item is to be

suppressed.

Is ignored in output images but is allowed to be compatible with ENTER images.

Specifies that the EOL sequence that normally follows the last item is to be
replaced by a single carriage-return character {CR).

Specifies that the EOL sequence that normally follows the last item is to be

replaced by a single line-feed character (LF).

Termination Examples

OUTPUT @Device USING “44,L";"Data"

OUTPUT @Device USING "#,K";"Data"

QUTPUT @Device USING “#,B";12

QUTPUT @Device USIKG "+ ,K";"Data"

olalitla EQL £0L
sequence | sequence
Dla}ltioc

Outputting Data 4-15

QUTPUT @Device USING "~,L,K";"Data®

EGL ODjajt]ailF
sequence

Additional Image Features

Several additional features of outputs that use images are available with the computer.
Several of these features, which have already been shown, will be explained here in detail.

Repeat Factors

Many of the specifiers can be repeated without having to explicitly list the specifier as many
times as it is to be repeated. For instance, to a character field of 15 characters, you do not
need to use “AAAAAAAAAAAAAAAT; instead, you merely specify the number of times that
the specifier is to be repeated in front of the image (“15A7). The following specifiers can be
repeated by specifying an integer repeat factor; the specifiers not listed cannot be repeated in
this manner.

Repeatable Specifiers Nounrepeatable Specifiers

ZfD)A)XJ/J@!L S!MS '}R’!ESKlH5B1W1‘Y7#J%}+I_

Examples
QUTPUT @Device USING Y4Z.3D";328.03

ol3lzisl Jolzlo EOL
sSeduence

Dliaft]|a p | EOL
sequence

OUTPUT @Device USING "5X,24";"Data"

ol oa ECL
Sequence

4-16 OQulputting Data

OUTPUT @Device USING "2L,44A";"Data”

EOL Eot Iplaltela EOL
Sequences | sequencsa Seguence

QUTPUT @Devica USIKG "84,2¢";"The End"

Tinle Eln|4 FFiFF| EOL
Seguence

QUTPUT @Device USING "2/"

cr|LFicr|uF EOL
SeqUEnce

Image Re-Use

If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to reuse the image(s) beginning with the first image.

110 ASSIGHN @Device TO CRT

120 Fum_1i=1

130 Hum_2=2

140 !

1580 QUTPUT @Device USING "K";Num_i,"Data_1",Num_2,"Data 2"
160 OQUTPUT @Device USING "K,/";Num_1,"Data_1",Num_2,"Data_2"
170 EWD

Resultant Display

iData_12Data_2
1

Data_1

2

Data_2

Since the “K" specifier can be used with both numeric and string data, the above QUTPUT
statements can reuse the image list for all items in the source list. If any item cannot be
output using the corresponding image item, an error results. In the following example, “Error
100 in 150" occurs due to data mismatch.

116 ASSIGH €Pevice TO CRT

120 Num_1=1
136 Num_2=2

140
15¢ DUTPUT €Device USING “DD.DD*;Num_1,Num_2,"Data_1i"
160 END

Outputting Data 4-17

Nested Images

Another convenient capability of images is that they can be nested within parentheses. The
entire image list within the parentheses will be used the number of times specified by the
repeat factor preceding the first parenthesis. The following program is an example of this
feature.

100 ASSIGH @Device TO 701

110 !
120 OUTPUT éDevice USING “3(B),X,DP,X,DD";65,66,67,68,69
130 ERD

Resuitant Qutput

alBiC 88 619 EOL
Segquence

This nesting with parentheses is made with the same hierarchy as with parenthetical nesting
within mathematical expressions. Only eight levels of nesting are allowed.

END with OUTPUTs that Use Images

Using the optional secondary keyword END in an OUTPUT statement that uses an image
produces results that differ from those of using END in a freefield OUTPUT statement.
Instead of always suppressing the EOL sequence, the END keyword only suppresses the EOL
sequence when no data are outpul from the last source-list expression. Thus, the “#” image
specifier generally controls the suppression of the otherwise automatic TOL sequence, while
the END keyword suppresses it only in less common usages.

Examples

Device=i2

OUTPUT Device USING "K' :"ABC",END
OUTPUT Device USIRG *K";"ABC";END
DUTPUT Device USIKG "K";"ABC" ERD

AlBILC EOL The EOL sequence is not suppressed.
sequence

OUTPUT Device USING "L,/,""Literal"",X,Q"

EOL crRiLFIL] i lelelrlall FF EOL
sequence seguence

4-18 Qutputting Data

In this case, specifiers that require no source-item expressions are used to generate characters
for the output; there are no source expressions. The EOL sequence is output after all
specifiers have been used to output their respective characters. Compare this action to that
shown in the next example.

OUTPUT Device USING L,/ ,""Literal"",X,@";END

EQL cr|erf Ll ittt rlali FF
SQC.{U(E‘.I’]C\“L'

The EOL sequence is suppressed because no source items were included in the statement; all
characters ontput were the result of specifiers that require no corresponding expression in the
source list.

Additional END Definition

The END secondary keyword has been defined to produce additional action when included in
an OUTPUT statement directed to HP-IB interfaces.

END with HP-IB Interfaces

With HP-TB interfaces, END has the additional function of sending the End-or-Identify signal
(EOT) with the last character of either the last source item or the EQL sequence (if sent). As
with freefield QUTPUT, no EOI is sent if no date is sent from the last source item and the
FOL sequence is suppressed.
Examples.

ASSIGH @Device TO 701

QUTPUT @Device USING "K";"Data" ,END
QUTPUT @Device USIHG "K";"Data","",END

pDlaltla] EOL
seguence

N

EOl sent with last chaoracter
of the EOL sequence.

0UTPUT @Device USING "#,K";"Data" END

Dyjaflt}a

bt

EOl sent with this character.

EOI is sent with the last character of the last source item when the EOI sequence is
suppressed, because the last source item contained data that was used in the output.

QUTPUT @Device USIHG "#,K";"Data","" ,END
QUTPUT @Device USING """Data""'";END

Qutputting Data 4-18

oDl alt a

The FOT was not sent in either case, since no data were sent {rom the last source item and the
EOQL sequence was suppressed.

4-20 Qutpulting Data

Entering Data

This chapter discusses the topic of entering data from devices. You may already be familiar
with the QUTPUT statement described in the previous chapter; many of those concepts are
applicable to the process of entering data. Earlier in this manuval, vou were told that the

dala output from the sender had to malch that expecied by the receiver. Decause of the many
ways that data is represented in external devices, entering data can sometimes require more
programming skill than outputting data. In this chapter, you will see what is involved in
being the receiving device. Both free-field enters and enters that vse images are described, and
several examples are given with each topic

Free-Field Enters

Execu