HP-IB Programmer’s Guide

< D
— —
< )<=
<= >
<:><:><:><:i><?:><:><l:><:><}:>

—
<:><:i><‘—‘><:><:l><}:><§:><l:i><:>
= <
&< D<=
= -

A :aciarn

HP Part Number 5960-5708
Printed in U.S.A.

Print Date: Sept. 1992
© Hewlett-Packard Company, 1992. All rights reserved.
8600 Soper Hill Road Everett, Washington 98205-1298 U.S.A.



In This Book

This book is the HP-IB Programmer’s Guide. 1t is intended for people not familiar with
HP-IB programming or the programming language, Standard Commands for
Programmable Instruments (SCPI).

The HP-IB Programmer’s Guide introduces the basic concepts of HP-IB programming.
Each chapter discusses some aspect of programming the analyzer via the HP-IR:

e Chapter 1 introduces you to remote control of your analyzer via the HP-IB. It also
introduces you to SCPIL.

e Chapter 2 describes the command hierarchy.

o Chapter 3 tells you how the analyzer interacts with the controller and other devices
on the HP-IB. '

¢ Chapter 4 tells you how commands and data are transferred between the analyzer
and a controller.

» Chapter 5 describes the analyzer’s status groups and tells you how the analyzer uses
the status registers to generate service requests.

This book does not contain a detailed description of your analyzer's HP-IB commands
or other instrument-specific information. For this information, see your analyzer’s
HP-IB Command Reference.



Table of Contents

1 Remote Control of Your Analyzer

Whatis HP-IB? 1.3

The Hardware 1-3
Sending Commands Qver the HP-IB  1-4

What is SCPI? 1.6

History 1-6
SCPI — A Swtandard Set of Commands  1-7

SCPI and the HP-IB Command Set  1-8

SCPI Compliance Information 1-9

2 Programming with HP-IB Commands
The Command Tree 2-3
Paths Through the Command Tree 2-5
Sending Multiple Commands  2-7
Command Abbreviation 2-8

Forms of HP-IB Commands  2-9

Command and Query  2-9
Command Only  2-10
Query Only  2-10

Implied Mnemonics  2-11




3 How the Analyzer Operates in an HP-IB System
Controller Capabilities  3-3
Command and Data Modes  3-4

Device Commands  3-4
Bus-Management Commands ~ 3-4

Exchanging Messages  3-9
HP-IB (Queues  3-10

Command Parser  3-11
{Ouery Response Generation  3-11

Synchronization 3-12

Sequential and Overlapped Commands  3-12
Synchronization Methods  3-13
When To Synchronize  3-18

Passing Control  3-27

How to Pass Control  3-27
Fassing Control and Synchronization  3-28

4 HP-IB Message Syntax

Program Message Syntax  4-4

Subsystern Command Syntax 46
Common Command Syntax  4-7

Response Message Syntax  4-8

Data Formats 4-10

Parameter Formars  4-11
Response Data Formats  4-19

Example Programs 4-25

Reading Trace Data — ASCI  4-26
Example Comments  4-27

Reading Trace Data — Binary 4-18
Example Comments  4-29

Programming the Arbitrary Source  4-30
Example Comments  4-31

i



5 Programming the
Status System

General Status Register Model  5-3
Condition Register 5-4
Transition Registers  5-4
Event Register 5-4
Enable Register  5-5
An Example Sequence  5-5

How 1o Use Registers  5-6

The Polling Method ~ 5-6
The SRQ Method  5-7

Required Status Groups  5-9

Status Byte  5-10

Standard Event Status Group  5-12
Operation Status Group  5-14
Questionable Status Group  5-16
Setting and Querying Registers  5-18

Example Programs 5-19

Responding 1o an Event Using SR()  5-20
Example Program Comments  5-21
Trapping Errors Using SR(Q 5-22
Example Program Comments  5-23

Glossary

Index







Remote Control of Your
Analyzer

1-1



Remote Control
of Your
Analyzer

Remote control of your analyzer is accomplished via the HP-IB—Hewlett Packard’s
implementation of the IEEE 488 interface bus.

In a general sense, programming an instrument via HP-IB simply replaces the operation
of the instrument from the front panel with commands sent by a computer. For
example, instead of using a front-panel key to reset the analyzer, you send the *RST
command. The immediate advantage is automation; your computer now controls the
analyzer.

The HP-IB interface is a set of signal lines that carry messages between two devices.
Functions that are available from the front panel are also available via the HP-IB. In
addition, there may be functions available only via the HP-IB. They may allow you to
transfer data in and out of the analyzer, write custom signal processing routines,
control the display, and communicate with various parts of the instrument.




What is HP-1B?

HP-IB—the Hewlett-Packard Interface Bus—is a high-performance bus that allows
you to build integrated systems from individual instruments and computers. The bus
and its associated interface operations are defined by the IEEE 488.1 standard. This
standard is described later in this chapter.

The Hardware

HP-IB cables provide the physical link between devices on the bus. There are eight
data lines in each cable that are used to send data from one device to another. Such
transfers occur in a byte-serial (one byte at a time), bit-parallel (8 bits at a time)
fashion. Devices that can be addressed to send data over these lines are called talkers,
and those that can be addressed to receive data are called listeners. There are also eight
control lines in each cable that are used to manage traffic on the data lines and to
control other interface operations. Devices that can use these control lines to specify
the talker and listener in a data exchange are called controllers.

When an HP-IB system contains more than one device with controller capabilities,
only one of the devices is allowed to control data exchanges at any given time. The
device currently controlling data exchanges is called the active controller. Also, only
one of the controller-capable devices can be designated as the system controller. The
system controller is the one device that can take control of the bus even if it is not the
active controller. The analyzer may act as a talker, listener, active controller, or system
controller at different times.

HP-IB addresses provide a way to identify devices on the bus. For example, the active
controller uses HP-IB addresses to specify which device talks and which device listens
during a data exchange. This means that each device’s address must be unique.

The device’s primary address is set at the factory. It can range from 0 to 30. You can
change the default address on the device itself, using a rear-panel switch or a
front-panel key sequence.




Remote Control of Your Analyzer
What is HP-IB?

Sending Commands Over the HP-IB

Commands are sent over the HP-1B via your controller’s language system, such as
BASIC, C, or Pascal. As a result, you need to determine which statements or library
functions your controller’s language system uses to send HP-IB commands. When
iooking for statements, keep in mind that there are two different kinds of HP-IB
commands:

¢ Bus-management commands, that control the HP-IB interface.

® Device commands, that control analyzer functions.

Language systems usually deal differently with these two kinds of HP-IB commands.
For example, HP BASIC uses a unique keyword to send each bus-management
command, but always uses the keyword OUTPUT to send device commands. For
more information on the differences between bus-management commands and device
commands, see chapter 3, “How the Analyzer Operates in an HP-IB System.”

How to Use The Examples In This Book

Programming Examples
The semantic requirements of your controller’s language determine how the HP-IB
commands and responses are handled in your application.

All the programming examples in this book use HP BASIC as the controller language.
Since very few specialized HP BASIC commands are used, you can easily modify these
examples to work with your computer or other controllers. If you program in another
version of BASIC or another language, just substitute your l/O statements for HP
BASIC's OUTPUT and ENTER statements.

Command Examples :
An example of an HP-IB command looks like this:

SOURCE : FREQUENCY : FIXED 1000
This example tells you to put the string “SOURCE:FREQUENCY:FIXED 1000" in the

output statement appropriate to your application programming language. If you
encounter problems, you should investigate the details of how the output statement
handles message terminators such as new line (<NL>). If you are using simple
OUTPUT statements in HP BASIC, this is taken care of for you. In HP BASIC, you
simply type:

OUTPUT 711; "SOURCE:FREQUENCY : FIXED 1000"

This sends the command to the HP-IB device at address 11 on interface 7.

Most of the command examples in this book do not show message terminators because
they are used at the end of every program message and terminators are usually handled
by you application programming language. Chapter 4, “Message Syntax” discusses
message terminators in more detail.




Remote Control of Your Analyzer
What is HP-IB?

Response Examples
Response examples look like this:

1080

‘These are the characters that you would read from an instrument after sending a query
command. To actually pull them from the analyzer into the controller you must use
the input statement appropriate to your application programming language. If you have
problems, you should investigate the details of how the input statement operates. In
particular, investigate how the input statement handles punctuation characrers such
as comma and semicolon, and how it handles message terminators.

To enter the response from 2 query in HP BASIC, you simply type:
OUTPUT 719; "FREQUENCY : SPAK?"
ENTER 719%;Span_variable

This queries and receives the response from the HP-IB device at address 19 on
interface 7.

Response examples do not show response message terminarors because they are always
<NL><"END>. These terminators are typically handled by the input statement
automatically. Chapter 4, “Message Syntax™ discusses message terminators in more
detail.

Address Examples

The programming examples in this book use "@ Analyzer" to represent the device's
HP-IB address. For example, the previous query and response example is shown as:

OUTPUT @Analyzer; "FREQUENCY:SPAN?"

ENTER €RAnalyzer;S pan_variable

m
HP.IB Addressing in HP BASIC

in HP BASIC, the analyzer's address  The interface select code along with

consists of two parts, the device's the primary address are included in
primary address and an interface the HP BASIC OUTPUT and ENTER
select code. staternents.

The interface select code, typically 7,  For example, to select a device on
indicates which HP-IB port in the the HP-IB with a select code of 7 and
systerm controller is used to a primary address of 22, you would
communicate with the device. specity 722.

I-5



~ Remote Control of Your Analyzer
What is SCPI?

What is SCPI?

SCPl—the Standard Commands for Programmable Instraments—is a programming
language designed specifically for controlling instruments. It defines how to
communicate with these instruments from an external controller (computer).

History

Computer-controlled test instruments introduced in the 1960s used a wide variety of
non-standard interfaces and communication protocols. During this time,
Hewlett-Packard developed the HP-IB as an internal standard. For connectors and
cables, HP-IB defined an electrical and mechanical interface. For transmitting data
between instruments and computers, it defined handshaking, addressing, and general
protocol.

IEEE 488.1

In 1975, the Institute of Electrical and Electronic Engineers (IEEE) approved IEEE
488-1975, which was based on Hewlett-Packard’s internal HP-IB standard. They
updated this standard to JEEE 488.1-1987. Hewlett-Packard uses HP-IB to indicate
that an instrument or controller conforms to the IEEE 488.1 standard.

Although it defined how to send bytes of data between instruments and computers,
IEEE 488.1 did not specify the data bytes’ meanings. Instrument manufacturers freely
invented new commands as they developed new instruments. The format of data
returned from instrutnents varied as well. By the early 1980s, work began on
additional standards that specified how to interpret data sent via the IEEE 488 bus.

IEEE 488.2
In 1987, the JEEE approved JEEE 488.2-1987. This standard defined the interface

capabilities of instruments and controllers in a measurement systern connected by the
488 bus (HP-IB). In particular, IEEE 488.2 described how to send commands to
instruments and how to send responses te controllers. Although it explicitly defined
some frequently used commands, it still left the naming of most commands to
instrument manufacturers. This made it possible for similar instruments to conform to
[EEE 488.2, yet have entirely different command sets.




Remote Control of Your Analyzer
What is SCPI1?

SCPI — A Standard Set of Commmands

SCPI goes beyond IEEE 488.2 by defining a standard set of programming commands.
For a given measurement function (such as frequency), SCPI defines the specific
commands used to access that function via the IEEE 488 bus. If two analyzers conform
to the SCPI standard, you would use the same command to set each analyzer’s center
frequency.

Standard commands provide two advantages:

e If you know how to contro! functions on one SCPI instrument, you kniow how to
control the same functions on any SCPI instrument.

» Programs written for a particular SCP! instrument are easily adapted to work w1th a
similar SCP! instrument.

The following illustration shows you how SCPI builds on the IEEE 488 standards.

Ly

O

*sz;r]”“‘g%_:aa‘.z‘ 'Fgg_z;m gé"at:a;.T‘ggaf&s;T =y
Stardicrd Stangard Stangere Standard
Conceptually it may help to think of these standards as layered, defining different
aspects of communication between devices:

® Layer A (IEEE 488.1) defines the physical and electrical connection between
devices. It also defines how data is transmitted and how devices are instructed to talk
and listen.

o Layer B (IEEE 488.2) defines the syntax and data formats used to send data between
devices. It also defines the structure of status registers.

e Layer C (JEEE 488.2) defines the commands used for common tasks (suth as
resetting the device and reading the Status Byte).

® Layer D (SCPI) defines the commands used to control device-specific functions
(such as setting frequency and amplitude). It also defines the parameters accepted by
these functions and the values they return.

1-7



Remote Control of Your Analyzer
SCPI and the HP-IB Command Set

SCPI and the HP-IB Command Set

Today’s HP-JB command set is derived from SCPI. The SCPI command set which is
described in the next chapter, differs from the traditional HP-IB command set in the
following ways:

o A traditional HP-IB command typically consists of a single mnemonic. A SCPI
command typically consists of a series of keywords separated by colons. The keywords
are selected from a command hierarchy, which organizes commands into related
groups. These multi-keyword commands are less cryptic than single-keyword
commands. They can help you make your programs self-documenting. Chapter 2 telis
you how to use the command hierarchy.

e A traditional HP-IB command set contains mnemonics that correspond directly to
an instrument’s front-panel keys. The analyzer’s command set gives you HP-IB access
to all front-panel functions. However, with SCPI there may not be a one-to-one
correspondence between the commands and the front-panel keys. This results from
the fact that SCP] command hierarchy is organized differently than the front-panel key
hierarchy. Some analyzers have a special feature which allows the analyzer to display
equivalent HP-IB command keywords when you press front-panel keys.

1-8



Remote Control of Your Analyzer
SCPI Compliance Information

SCPI Compliance Information

Many of the HP-IB commands comply with SCPI. The attribute summary in the
Command Reference identifies these commands as follows:

o Confirmed commands comply with the current version of SCPL

s Approved commands will be added to SCPI in the next revision cycle.

o Instrument-specific commands do not comply with SCPI.

Use the SYSTEM:VERSION? query to determine the SCPI version with which your
analyzer complies.

To enter the query in HP BASIC, you simply type

OUTPUT fAnalyzer; SYSTEM:VERSION?"

ENTER €Analyzer;version

The analyzer returns a value that looks like this:

1992.0

where 1992 is the year-version and O is the revision number for that year.

The HP-1B Command Reference lists the confirmed and approved commands for your
analyzer.

1-9






Programming with HP-1B
Commands

-1



Programming with
HP-IB Commands

This chaprer describes how to create efficient programs with HP-IB commands. It
explains the general structure of the HP-IB command tree. It also explains how to:

e send multiple commands
® shorten commands by abbreviating keywords

¢ shorten commands by omitting implied mnemonics

2.2



Programming with HP-IB Commands
The Command Tree

The Command Tree

The HP-IB commands for the analyzer are based on the Standard Commands for
Programmmable Instruments, known as SCPl. The SCPI standard organizes related
instrument functions by grouping them together on a common branch of a command
tree. Each branch is assigned a keyword to indicate the nature of the related functions.
For example, the analyzer functions that control the presentation of data to the
front-panel display are grouped under the DISPLAY branch of the command tree.

The DISPLAY branch is only one of the major SCPI branches—called
subsystems—used by the analyzer.

When many functions are grouped together in 2 particular subsystem, additional
branching is used to organize these functions into sub-blocks that are even more
closely related. The SENSE branch serves as a good example.

The following illustration shows some of the major sub-blocks of the SENSE
subsystem. The FREQUENCY functions are grouped under the SENSE branch. The
SPAN sub-block groups the commands used to set the frequency span.

SENSE

AVERAGE WOL TAGE WINDOW

RANGE TYPE

LOUNT  TCONTROL :TYPE STATE

FREQUENCY AUTO UPPER
CENTER  MANUAL RESOLUTION SPAN  :START  STOP
AUTO
FULL 4N




Programming with HP-IB Commands
The Command Tree

The branching process continues until each analyzer function is assigned to its own

branch. For example, the function thar specifies a flattop window is assigned to the

TYPE branch of the WINDOW branch of the SENSE branch. The command looks
like this:

SENSE:WINDOW:TYPE FLATTOP

Mote Colons indicate branching points on the command tree. A parameter is separated
from the rest of the command by a space.

24



Programming with HP-IB Commands
Paths Through the Command Tree

Paths Through the Command Tree

To access commands in different paths in the command tree, vou need to understand
how an instrument interprets commands. A special part of the instrument software, a
parser, decodes each message sent to the instrument. The parser breaks up the
message into component commands using a set of rules to determine which command
tree path you are using. The parser keeps track of the current path, the level in the
command tree where it expects to find the next command you send. This is important
because the same keyword may appear in different paths. The particular path you use
determines how the keyword is interpreted.

The following rules are used by the parser:

¢ Power On and Reset — After power is cycled or after *RST, the current path is set
to the root level command. A root level command is the command closest to the top of
the command tree.

o Message Terminators — A message terminator, such as a <NL> character, sets the
current path to the root command level. Many programming languages’ output
statements send message terminators automatically. Message terminators are
described in “Program Message Syntax” and “Response Message Syntax” in chapter 4.

¢ Colon (:) — When a colon is between two command keywords, it moves the

current path down one level in the command tree. For example, the colon in
SENSE:FREQUENCY specifies that FREQUENCY is one level below SENSE.

When the colon is the first character of a command, it specifies that the next
command keyword is a root level command. For example, the colon in :CALCULATE
specifies that :CALCULATE is a root level command.

e Semicolon (;) — A semicolon separates two commands in the same message
without changing the current path. The following examples specify the type of
averaging and turns averaging on. The first requires two program messages; the
second requires only one.

SENSE:AVERAGE:TYPE RMS
SENSE ;AVERAGE :STATE ON

SENSE:AVERAGE : TYPE RMS;STATE ON

2-5



Programming with HP-IB Commands
Paths Through the Command Tree

e <WSP> — Whitespace characters, such as <tab> and <space>, are generally
ignored. There are two important exceptions:

Whitespace inside a keyword, such as :CALC ULATE, is not allowed.

You must use white space to separate parameters from commands. For example, the
<WSP> between STATE and ON in the command
SENSE:AVERAGE:STATE ON is mandatory. Whitespace does not affect the

current path.

e Comma (,) — If a command requires more than one parameter, you must separate
adjacent parameters using a comma. For example, the SYSTEM:TIME command
requires three values to set the analyzer’s clock: one for hours, one for minutes, and
one for seconds. A message to set the clock to 8:45 AM would be

SYSTEM:TIME 8,45,0

Commas do not affect the current path.

¢ Common Commands — Common commands, such as *RST, are not part of any
subsystem. An instrument interprets them in the same way, regardless of the current
path setting.

2-6



Programming with HP-IB Commands
Sending Muttiple Commands

Sending Multiple Commands

You can send multiple commands within a single program message by separating the
commands with semicolons. For example, the following program message—sent
within an HP BASIC OUTPUT statetnent—turns on measurement averaging and sets
the number of averages to 20:

OUTPUT BAnalyzer; SENSE:AVERAGE:STATE ON; :SENSE:AVERAGE:COUNT 20*

In the program message, the semicolon that separates the two commands is followed by
a colon. Whenever this occurs, the command parser is reset to the root of the
command tree. As a result, the next command is only valid if it includes the entire
keyword path from the root of the tree.

One of the main functions of the analyzer’s command parser is to keep track of a
program message’s position in the command tree. This allows you to simplify the
previous program message. If you take advantage of this parser function, you create
the equivalent, but simpler, program message:

OUTPUT EAnalyzer;"SENSE:AVERAGE:STATE ON;COUNT 20"

In this version of the program message, the semicolon that separates the two
commands is not followed by a colon. Whenever this occurs, the command parser
assumes that the keywords of the second command come from the same branch of the
tree as the final keyword of the preceding command.

SENSE

AVERAGE FREQUENCY

| ]
'STATE  LOUNT  :TYPE

STATE, the final keyword of the preceding command, comes from the AVERAGE
branch. So COUNT, the first keyword of the second command, is also assumed to
come from the AVERAGE branch.




Note

Programming with HP-IB Commands
Command Abbreviation

Command Abbreviation

Each command has a long form and a short form. Only the exact short form or the
exact long form are accepted by the analyzer’s command parser.

‘The short forms of the keywords allow you to send abbreviated commands. The

keywords’ short forms are created according to the following rules:

e If the long form of the command has four or fewer characters, the short form is the
same as the long form. For example, ARM remains ARM and COPY remains COPY.

s If the long form of command has more than four characters and the fourth character
is a consonant, the short form consists of the first four characters of the long form. For
example, CALCULATE becomes CALC.

® If the long form of command has more than four characters and the fourth character
is a vowel, the short form consists of the first three characters of the long form. For
example, INPUT becomes INP.

The syntax descriptions in the HP-IB Command Reference chapters use uppercase
characters to identify the short form of a particular keyword. However, the analyzer
accepts both lowercase and uppercase characters as equivalent.

If the rules listed in this section are applied to the following program message, the
statement

OUTPUT €Analyzer;"SENSE:AVERAGE :COUNT 20: TCONTROL EXPONENTIAL;
TYPE RMS;STATE ON*

becomes

OUTPUT @Analyzer;"SENS:AVER:COUN 20;TCON EXP;TYPE RMS; STAT ON"

2-8



Programming with HP-IB Commands
Forms of HP-IB Commands

Forms of HP-IB Commands

There are three forms of HP-IB commands.

o command and query

s command only

s query only

The HP-1B Command Reference for your analyzer specifies the form for each command.

Command and Query

These commands can set and query the state of the analyzer. The syntax for the query
form appends a question mark (?) to the set form. In most cases, you can query any
value that you can set. Therefore, the query form of each command may not be shown
explicitly.

For example, the presence of the DISPLAY:ENABLE command implies that a
DISPLAY:ENABLE? query also exists.

If you can change the units associated with a set value, you can determine the unit
parameter. The unit subsystem has five branches:

s :ANGLE

o :CURRENT

o POWER

s :TEMPERATURE

s :VOLTAGE

For example, send

SENSE : VOLTAGE : LEVEL : UNIT: VOLTAGE?

to determine the units associated with the value of the source’s voltage level.

29



Programming with HP-IB Commands
Forms of HP-1B Commands

Command Only

Some commands are events rather than states, so they cannot be queried. An event
has no corresponding setting—it causes something to happen inside the analyzer ata
particular instant in time. For example, :INITIATE:IMMEDIATE causes a certain
trigger event to occur. Because it is an event, there is no query form for the

INITIATEIMMEDIATE command.

Query Only

There are particular states that the analyzer does not allow you to set. If the command
syntax always ends with a question mark (7} in the HP-IB Command Reference, it is a
query only command.

2-10



Kote

Programming with HP-{B Commands
Implied Mnemonics

Implied Mnemonics

You can omit some keywords from HP-IB commands without changing the effect of
the command. These special keywords are called implied mnemonics, and they are used
in many subsystems.

QUTPUT

FLTER [STATE]

I__L—"I

[[LPASS] HPASS

The OUTPUT subsystem contains the implied mnemonic STATE at its first branching
point. As a result, you can send either of the following commands to the analyzer
{using HP BASIC) to turmn on the source:

OUTPUT €Analyzer;"OUTPUT:STATE ON"
OUTPUT €Analyzer;"CUTPUT ONV

The first keyword in the SENSE subsystem is also an implied mnemonic. You can omit
it from any SENSE command, even if you are sending a multiple command or if the
command parser is down a different path of the tree. These two commands are
equivalent

oUTPUYT €Analyzer; "SENSE:FREQUENCY : SPAN:FULL"
OUTPUT €2nalyzer;"FREQUENCY :SPAN:FULL"

and so are these

OUTPUT €Analyzer;"SENSE:SWEEP:MODE AUTO"
OUTPOT €Analyzer; "SWEEP:MODE AUTO"

Implied mnemonics are identified by brackets { ] in syntax diagrams.

2-11






How the Analyzer
Operates in an HP-1B
System

341



How the Analyzer
Operates in an
HP-1IB System

This chapter explains how the analyzer operates in an HP-IB system. First, it describes
the capabilities of the analyzer as the controller of an HP-IB system or as an
addressable device on the bus. Next, it explains how the analyzer functions in an
HP-IB system and how the analyzer communicates with other devices. Refer to the
HP-IB Command Reference for a listing of the analyzer’s interface capabilities as defined
by the IEEE 488.1 standard. -

A committee meeting is a good analogy to illustrate how the devices on an HP-IB
system interact.

A chairperson directs the activities of a meeting. The chair may recognize a committee
member to speak to the other members. The chair may even turn the meeting over to
the chair of a subcommittee, to lead the discussion of a specific agenda item.

In an HP-IB system, the system controller is the chairperson of the system. It controls
all activities on the HP-IB. The system controller uses addressing to “recognize” devices
of the system. It can address a specific device on the HP-IB to send data to the other
devices. In this case, the device sending data is called a talker and the devices receiving
data are called listeners. (In a rypical HP-IB system, there is one listener and one
talker.) The system controller can give up control of the HP-IB to another device
which is then called the active controller. The active controller directs the activities of
the system until it passes control back to the system controller. The system controller
can gain control of the HP-IB at any time, even if it is not the active controller,

3.2



How the Analyzer Operates in an HP-1B System
Controller Capabilities

Controller Capabilities

There can be only one system controller on the bus. Some analyzers can be configured
as an HP-IB system controller. The only time you can configure the analyzer as the
system controller is when it is the only controller on the bus. Such a setup would be
likely if you only wanted to control printers or plotters with the analyzer. It would also
be the case if you were using HP Instrument BASIC to control other test equipment.

When you use the analyzer with another controller on the bus, you normally configure
it as an addressable-only HP-IB device. In this configuration, the analyzer may be
given control so it can be the active controller. It can also function as a talker or
listener.

See the HP-IB Command Reference to determine how to configure your analyzer.

3-3



How the Analyzer Operates in an HP-IB System
Command and Data Modes

Command and Data Modes

There are two types of HP-IB commands, those that control the device (device
commands) and those that manage the bus (bus-management commands). The
HP-IB contains an attention (ATN) line that determines which of these commands
can be sent. When the interface is in command mode (ATN TRUE), a controiler can
send bus-management commands over the bus. When the interface is in data mode
(ATN FALSE), a controller can send device commands and data over the bus.

Device Commands

In data mode, device commands are sent by the controller, but data can be sent either by
the controller or a talker. The analyzer responds to two different kinds of device
commands:

e Common commands, which access device functions required by the
IEEE 488.2 standard. All common commands begin with an asterisk (*). They do
not change the location of the parser in the command tree.

¢ Subsystem commands, which access the rest of the analyzer’s functions. Most
commands are subsystem commands.

The section, “Exchanging Messages,” which appears later in this chapter, describes
how the analyzer communicates with the controller and other devices on the HP-IB.
The analyzer's response to specific device commands are described in the HP-1B
Command Reference for your analyzer.

Bus-Management Commands

Bus-management commands specify which devices on the interface can talk (send
data) and which can listen (receive data). These commands also instruct devices on
the bus—either individually or collectively—to perform a particular interface
operation. The commands themselves are defined by the IEEE 488.1 standard. Refer
to the documentation for your controller’s language system to determine how to send
these commands. Examples are in HP BASIC.




Example

Examples

Examples

How the Analyzer Operates in an HP-IB System
Command and Data Modes

Device Clear (DCL)
When the analyzer receives this command, it

o clears its input and output queues

® resets its command parser (so it is ready to receive a new program message)
o cancels any pending command or query

The command does not affect the following:

» Front-panel operation.

» Any analyzer operations in progress (other than front-panel operations).

* Any analyzer settings or registers (although clearing the output queue may
indirectly affect the Status Byte’s Message Available (MAV) bit).

CLEAR 7

Go To Local (GTL)

This command returns the analyzer to local (front-panel) control. All keys on the
analyzer’s front-panel are enabled. Normally the front panel is disabled when
commands are sent via HP-IB. See the Local Lockout and Remote Enable commands.

LOCAL 711
LOCAL 722

Group Execute Trigger (GET) _
This command triggers the analyzer (causes it to start collecting measurement data) if
the following conditions are true:

® The analyzer is ready to trigger. (Bit 5 of the Operation Status condition register is
set to 1)

® The trigger source is the HP-IB (TRIG:SOUR BUS). Not ali analyzers support this
configuration.

TRIGGER 712
TRIGGER 719




Example

Example

Example

How the Analyzer Operates in an HP-IB Systemn
Command and Data Modes

Interface Clear (IFC)

This command causes the analyzer to halt all bus activity. It discontinues any input or
output, althcugh the input and output queues are not cleared. If the analyzer is the
active controiler when this command is received, it relinguishes control of the bus to

the system controller. If the analyzer is enabled to respond to a Serial Poll it becomes
Serial Poli disabled.

ABORT 7

Local Lockout (LLO)

This command causes the analyzer to enter the local lockout mode, regardless of
whether it is in the local or remote mode. The analyzer only leaves the local lockout
mode when the HP-IB's Remote Enable (REN) line is set FALSE.

Local lockout ensures that the analyzer’s { Logal | hardkey is disabled when the
analyzer is in the remote mode. When the key is enabled, it allows a front-panel
operator to return the analyzer to local mode, thus enabling 2ll other front-panel keys.
However, when the key is disabled, it does not allow the front-panel operator to return

the analyzer to local mode. The only way to enable the front panel is to send the Go
To Local (GTL) command.

LOCAL LOCFOUT 7

Parallel Poll

Parallel poll, the capability to simultaneously check the status of all instruments on the
HP-IB, is optional. If paralle] polling is supported, the analyzer recognizes the following
bus-management commands:

® Parallel Poll Configure (PPC)
® Paralle]l Poll Unconfigure (PPU)
® Parallel Poll Enable (PPE)

e Parallel Poll Disable (FPD)

Check the HP-IB Command Reference to verify your analyzer has paralle] poll
capability. If it does not support parallel polling, the analyzer ignores all of the parallel
poll commands. '

PPOLL 7

3.6



Example

Examples

Examples

How the Analyzer Operates in an HP-1B System
Command and Data Modes

Remote Enable (REN)

REN is a single line on the HP-IB. When it is set TRUE, the analyzer enters the
remote mode when addressed to listen. it remains in remote mode until it receives the
Go to Local (GTL) command or until the REN line is set FALSE.

When the analyzer is in remote mode and local lockout mode, all front-panel keys are
disabled. When the analyzer is in remote mode but not in local lockout mode, all
front-panel keys are disabled except for the key which returns the analyzer to local
mode. See Local Lockout for more information.

REMOTE 7

Selected Device Clear (SDC)

The analyzer responds to this command in the same way that it responds to the Device
Clear command.

CLEAR 711
CLEAR 719

Serial Poll

The analyzer responds to both of the serial poll commands. The Serial Poll Enable
(SPE) command causes the analyzer to enter the serial poll mode. While the analyzer

is in this mode, it sends the contents of its Status Byte register to the controller when
addressed to talk.

When the Status Byte is returned in response to a serial poll, bit 6 of the Status Byte
acts as the Request Service (RQS) bit. If the bit is set to 1, it will be cleared after the
Status Byte is retumned. -

The Serial Poll Disable (SPD) command causes the analyzer to feave the serial poll
mode.

SPOLL 714
SPOLL 723




How the Analyzer Operates in an HP-IB System
Command and Data Modes

Take Contro} Talker (TCT)

When the analyzer is addressed to talk, this command causes it to take control of the
HP-IB. It becomes the active controller on the bus. The analyzer automatically passes
control back when it completes the operation that required it to take control. Control
is passed back to the address specified by the *PCB command (which should be sent
prior to passing control).

If the analyzer does not require control when this command is received, it immediately
passes control back. See the example on page 3-28.




How the Analyzer Operates in an HP-I1B System
Exchanging Messages

Exchanging Messages

The analyzer communicates with the controller and other devices on the HP-IB via
program messages and response messages. Program messages are used to send
commands, queries, and data to the analyzer. Response messages are used to return
data from the analyzer. The syntax for both kinds of messages is presented in
chapter 4. Message exchange must conform to the following conventions:

¢ The analyzer only talks after it receives a terminated query. (Query termination is
discussed in “Query Response Generation,” later in this chapter.)

® Once it receives a terminated query, the analyzer expects to talk before it is told to
do something else.

Program Messages
AVER:COUN?

[
D=

d
pa—
-
=l wh
I NN, Bttt
— dddd
oy - .,u_u
e R
St ===l o o 5]
et JJ,.JJ.JJJJJJ.I.L.:‘).BJJ

Response Messages
+10

3-9



How the Analyzer Operates in an HP-IB System
Exchanging Messages

HP-1B Queues

Queues enhance the exchange of messages between the analyzer and other devices on
the bus. The analyzer contains

¢ an input queue
® an error gqueue

® an output queue
Refer to the HP-1B Command Reference for instrument-specific queue sizes.

Input Queune

The input queue temporarily stores device commands and queries until they are read
by the analyzer’s command parser.

The input queue makes it possible for a controller to send multiple program messages
to the analyzer without regard to the amount of time required to parse and execute
those messages. The queue is cleared when

® you turn on the analyzer
® you send the Device Clear (DCL) or the Selected Device Clear (SDC) command

Error Queue

The error queue temporarily stores error messages. Each time the analyzer detects an
erTor, it places a message in the queue. When you send the SYSTEM:ERROR! query,
one message is moved from the error queue to the output queue so it can be read by
the controller. Error messages are delivered to the output queue in the order they were
received.

The error queue is cleared when
® you tumn on the analyzer

® vyou send the *CLS command
If the error queue overflows, the last error is replaced with error:

“Queune Overflow”

The oldest errors remain in the queue and the most recent error is discarded.

3.10



How the Analyzer Operates in an HP-IB System
Exchanging Messages

Output Queue
The output queue temporarily stores a response message until it is read by a controller.
It is cleared when

® you turn on the analyzer
¢ you send the Device Clear (DCL) or the Selected Device Clear (SDC) command

s the analyzer generates a query-interrupted or an unterminated query error

Command Parser

‘The command parser reads program messages from the input queue in the order they
were received from the bus. It analyzes the elements of the messages to determine
what actions the analyzer should take.

One of the most important functions of the parser is to determine the position of a
program message in the analyzer’s command tree. (For more information on the
command tree, see chapter 3.) When the command parser is reset, the next element it
receives is expected to arise from the base of the analyzer's command tree.

The parser is reset when
® you turn on the analyzer

» you send the Device Clear (DCL) or the Selected Device Clear (SDC) command

® a colon follows a semicolon in a program message ' (For more information, see
“Sending Multiple Commands” in chapter 2.)

® 2 program message terminator is received

Query Response Generation

After the analyzer parses a query, the response to that query is placed in the analyzer’s
output queue. You should read a query response immediately after sending the query.
This ensures that the response is not cleared before it is read. The response is cleared if
any of the following message exchange conditions occur:

e Unterminated condition — This results when you neglect to properly terminate the

query with an ASCII line feed character or the HP-IB END message (EOI set true)
before you read the response.

¢ Interrupted condition — This results when you send a second program message
before reading the response to the first.

o Buffer deadlock —— This results when you send a program message that exceeds the
length of the input queue or generates more response data than fits in the output
queue. The occurrence of a buffer deadlock is very rare.

3-11



How the Analyzer Operates in an HP-IB System
Synchronization

Synchronization

It is important that the analyzer is in a known state when a controller sends a device

command. It is also important to have a method to determine when a command has

finished. . Providing for this timing in your program is called command synchronization.
This section describes when and how to synchronize the analyzer and a controller.

Sequential and Overlapped Commands

The analyzer is capable of processing multiple commands simultaneously. Device
commands are executed and processed by the analyzer as fast as they are received.
They are always executed in the order received.

Device commands can be divided into two broad classes:
® sequential commands

¢ overlapped commands

Some device commands that you send to the analyzer are processed sequentially. A
sequential command holds off the processing of subsequent commands until it has been
completely processed.

Some commands, called overlapped commands, do not hold off the processing of
subsequent commands. They allow the execution of subsequent commands while
operations initiated by the overlapped command are still in progress.

Typically, overlapped commands take longer to process than sequential commands.
For example, the HCOPY:IMMEDIATE command starts the plotting process. The
command is not considered to have been completely processed until the plot is
complete. ‘

Many commands are overlapped as defined by IEEE 488.2. However, the analyzer's
ability to handle multiple operations simultaneously make many of these overlapped
commands appear to be sequential commands that do not require synchronization.
Example situations where you may need to force synchronization are described in
“When to Synchronize” later in the chapter. The Attribute Summary, which appears
for each command in the HP-IB Command Reference, specifies if synchronization is
required.

3-12



How the Analyzer Operates in an HP-IB System
Synchronization

Synchronization Methods

The analyzer keeps track of overlapped commands. Three commands are available for
synchronizing the analyzer with your controller.

e *WAI — Holds off the processing of subsequent commands until the analyzer has
completed processing all overlapped commands. However, it does not stop the
controller’s operation. For example, the controller could send a command to another
device on the bus. This is the easiest method of synchronization, but it has no impact
on the controller.

o *OPC? — Places a 1 in the analyzer’s output queue when the analyzer completes
processing an overlapped command. The controller must wait for the analyzer to
complete processing the overlapped command. The HP BASIC command ENTER,
reads the output queue. If the result of the query is not read, you get a query interrupt
error. Use this query to synchronize your controller to the completion of an
overlapped command.

® *OPC — Sets bit 0 of the Standard Event Status event register to 1 when the
analyzer completes processing the overlapped command. This generates an interrupt
for your controller and requires polling of status bytes or use of the service request
(SRQ) capabilities of your controller. (See chapter 5, “Programming the Status
System,” for more information about the Standard Event Status register set, generating
SR(Js, and handling interrupts.) Although this command requires more overhead, use
it when you need to synchronize your controller to the completion of an overlapped
command, but also want to leave the controller free to perform other tasks while the
command is processing.

Each command requires a different amount of overhead in your program. *WAl
requires the least overhead, *OPC requires the most.

In the HP-IB Command Reference, the Attribute Summary for each command states if
a command requires synchronization (by using the ¥*WAI, *OPC? and *OPC
commands).

3-13



Example

How the Analyzer Operates in an HP-IB System
Synchronization

*WAI
This command holds off the processing of subsequent device commands unti] all

overlapped commands are completed. The following example demonstrates the effect
of the *WAI command.

Suppose you execute the following series of command to determine which frequency
component of a signal contains the greatest amount of energy.

CUTPUT €hnalyzer;“"ABORT: : INITIATE ;: IMMEDIATE" iRestart the measurement.
OUTPUT €Analyzer;"CALCULATE :MARKER :MAXIMUM® tSearch for max energy.
OUTPUT €Analyzer;"CALCULATE :MARKER:X?" !Which freguency?

ENTER 6Analyzer; X
PRINT “"MARKER at “;X;" Hz"

The following timeline shows how the processing times of the three commands relate
to each other,

|
ABORT; : INITIATE: IMMEDIATE

E |
f |
CALCULATE : MARKER : MAXTMUM

L }
I 1
CALCULATE :MARKER:X?

INITIATE:IMMEDIATE is an overlapped command because it does not hold off the
processing of the sequential command, CALCULATE:MARKER:MAXIMUM.
Remember, INITIATE:IMMEDIATE is not considered complete until the
measurement is complete. In this example, the marker searches for maximum energy
before the measurement completes. The CALCULATE:MARKER:X? query could

return an incorrect value.

To solve the problem, insert a *WA] command.

CUTPUT €Analyzer;*ABORT; : INITIATE : IMMEDIATE™" IRestart the measurement.
OUTPUT 8Analyzer;"*WAI" IWait until complete,
OUTPUT €Analyzer; "CALCULATE : MARKER : MAXIMUM™ tSearch for max energy.
OUTPUT €Analyzer;"CALCULATE :MARKER:X?" !Which fregquency




Note

Example

How the Analyzer Operates in an HP-IB System

Synchronization
The timeline now looks like this:
= |
] 1
ABORT; : INITIATE : IMMEDIATE
| |
*WAL
| |
CALCULATE : MARKER : MAXTIMUM
; |
CALCULATE : MARKER: X7

The *W Al command keeps the search from taking place until the measurement is
completed. The CALCULATE:MARKER:X? query returns the correct value.

Although *WAI stops the analyzer from processing subsequent commands, it does not
stop the controller. The controller could send a command to another device on the
bus.

*OPC? and *OPC

The *OPC? query pauses the controller until all pending overlapped commands are
completed. Design your program so that it must read the analyzer's output queue
before the program continues executing.

To determine which frequency component of a signal contains the greatest amount of
energy, you would execute the following series of commands:

OUTPUT EAnalyzer; “ABORT; :INITIATE :IMMEDIATE" ! Restart the

i measurement

OUTPUT EAnalyzer; "*OPC?™ f Wait until complete
ENTER E8Analyzer; Meas done ! Read output gueue,
H throw away result
OUTPUT €Analyzer; "CALCULATE :MARKER :MAXIMUM:GLOBAL" ! Search for max

' energy

OUTPUT EAnalyzer;"CALCULATE :MARKER:X?" { Which frequencyz

ENTER fAnalyzer;Marker x
PRINT "MARKER at “;Marker“x;" Hz

315



Example

How the Analyzer Operates in an HP-IB System
Synchronization

The *OPC command sets bit 0 of the Standard Event register to 1 when all pending
overlapped commands are completed. You may poll this bit or you may use the
analyzet’s register structure to generate a service request (SRQ) interrupt). However,
your program also must have enabled bit O of the Standard Event register and bit 5 of
the Status Byte register. (See chapter 5 for more information.) When you synchronize
the analyzer and controller in this manner, the controller is free to perform some other
task until the service request is generated.

To determine which frequency compenent of a signal contains the greatest amount of
energy, you would execute the following series of commands. The following example
uses the polled-bit method.

QUTPUT EAnalyzer; "ABORT; :INITIATE:IMMEDIATE*® ! Restart the

i measurement
OUTPUT BAnalyzer; "*OPC" ! Opc bit set when
! complete

StartmtimeﬁTIbﬁEDATE
REFEAT ! Report elapsed time
! while waiting
DISP USING "14A,2D.D";"Elapsed Time: ",
TIMEDATE-Start_ time
OUTPUT EAnalyzer; “*ESR?" Read the event
1 status register
ENTER €Analyzer; Esr
Meas done=BIT(Esr,0) . ! Read the operation
! complete bit
UNTIL (Meas_done)
OUTPUT EAnalyzer; "CALCULATE ;:MARKER:MAXIMUM:GLOBAL" !Search for max
f enerqgy
OUTPUT €analyzer; "CALCULATE :MARKER:X?" t Which frequency?
ENTER @Analyzar;Markermx
FRINT "MARKER at ";Marker x;" Hz"

3-16



Example

How the Analyzer Operates in an HP-IB System

The following example uses the SR() interrupt method.

OUTPUT €Analyzer;"*CLS"
1
1

OUTPUT EAnalyzer;"*ESE 1~
OUTPUT fAnalyzer;"*SRE 32¢

ERABLE INTR 7;2
'

£

H

ON INTR 7,15 RECOVER Meas done

i

1

H

OUTPUT €Analyzer: "ABORT; :INITIATE:IMMEDIATE"

i

OUTPUT EAnalyzer; =*0opc*

!

Start time=TIMEDATE

LOOP

H
DISP USING "14A,2D.D“;"Elapsed Time: ",
TIMEDATE-Start time

END LOOCP

L
!
¥
-
H

Meas_ done:
A .

-

-

—

OUTPUT 2Analyzer;"CALCULATE :MARKER :MAXTMUM:GLOBAL" 1

CUTPUT @Analyzer;"CALCULATE:MARKER:X?“
ENTER @Analyzer;uarker&x
PRINT "MARKER at "iMarker x;" Hz"

Synchronization

Clear the event

registers and status

bvte

Standard Event

register enable

{bit O=operation complete)
Service Request

enable

{bit 5=standard event)
Enable interrupts

7 is the interface select
code, 2 indicates enabling
service request interupt
Interrupt handler

7 is the interface select
code, 15 indicates highest
interupt priority

Restart the

measurement

Opc bit set when

complete

Report elapsed time
while waiting

On SRQ interrupt,
program execution
will jump to this
location

Search for max
energy
Which frequency?

*OPC only informs you when the pending overlapped commands are completed. It
does not hold off the processing of subsequent commands. As a result, while your program
may perform other tasks, you should not send any commands to the analyzer between the
time you send *OPC and the time you receive the interrupt. If you send a command
during this time it may change the results and would affect how the instrument
responds to the previously sent *OPC. If you send commands after an *OPC
command, be especially careful to send only commands which do not affect the results

of the overlapped command.

3-17



Example

How the Analyzer Operates in an HP-1B System
Synchronization '

When To Synchronize

Although a command may be defined as an overlapped command, synchronization may
not be required. The multi-tasking operating system of the analyzer allows many
overlapped commands to appear sequential. The need to synchronize depends upon
the situation in which the overlapped command is executed. The following section
describes situations when synchronization is required to ensure a successful operation.
The example program segment determines which frequency component of a signal
contains the greatest amount of energy.

Completion of a Measurement

To synchronize upon the completion of 2 measurement, use the
ABORT;INITIATE:IMMEDIATE command sequence to initiate the measurement.

'This command sequence forces data collection to start (or restart) under the current
measurement configuration. A restart sequence, such as
ABORTINITIATE:IMMEDIATE, works just like an overlapped command. It is not
considered complete until all operations initiated by that restart command
sequence—including the measurement—are finished. The use of the
ABORT;INITIATE:IMMEDIATE command sequence together with the *WAI,
*OPC! and *OPC commands enable you to determine when a measurement has
completed. This ensures that valid measurement data is available for further
processing.

The following program segment which uses the *OPC method, ensures a successful
operation:

! Measurement Setup
(measurement setup
commands would go

- e e

here)
! Start Measurement
OUTPUT fAnalyzer; "ABORT; :INITIATE:IMMEDIATE" ! Restart the
! measurement
! synchronize
OUTPUT E€aAnalyzer; "*0pC?* ! Wait until complete

ENTER fAnalyzer; Meas_ done

-

Read output gqueue,
throw away result

Perform Desired Operation on Measurement Data

R

OUTPUT BAnalyzer; "CALCULATE :MARKER:MAXTMUM:GLOBAL" ! Search for max

! enerqy

OUTPUT E8Analyzer; "CALCULATE :MARKER:X?" Which frequency?
ENTER €Analyzer;Marker x

PRINT "MARKER at ":Markerﬁx;" Hz*"

-

3-18



Example

How the Analyzer Operates in an HP-IB System
Synchronization

Measurements with Manual Arm/HP-IB Trigger

If you are using a manual arm or HP-IB trigger and synchronizing upon the completion
of a measurement, an additional programming step is required—supplying the arm or
trigger. If you neglect to supply the arm or trigger and artempt to use ¥*WA] or *OPC?
to synchronize upon completion of the measurement, your program will never finish.
Your program will “hang” or get “stuck.” The measurement will not complete until the
arm or trigger is received. The analyzer will not accept any more commands over the
bus until the measurement is complete.

The following program segment which uses the ¥*W Al method, ensures a successful
operation using a manual arm:

! Measurement Setup
H (measursment setup
f commands would go
t here)
OUTPUT EAnalyzer; "ARM:SOURCE MANUAL®
Start Measurement
Restart the

OUTPUT €Analyzer; "ABORT; :INITIATE:IMMEDIATE"

! measurement
! Arm
QUTPUT €Analyzer; “ARM:IMMEDIATE" ! Manual arm
! Synchronize
OUTPUT €Analyzer; "*WAI™ ! Wait until complete

1 {Note: OUTPUT €Analyzer;"ABOR; :INIT; :ARM; *WAI" also works.)

!

! Perform Desired Operation on Measurement Data

!

OUTPUT €analyzer; "CALCULATE :MARKER:MAXIMUM:GLOBAL" 1 Search for max

! energy

OUTPUT €Analyzer; "CALCULATE :MARKER:X?" ! Which frequency?
ENTER €analyzer;Marker x

PRINT "MARKER at ";Marker x;"“ Hz"

3.19



Example

How the Analyzer Operates in an HP-IB System

Synchronization

The following program segment which uses the *OPC polled bit method, ensures a
successful operation using an HP-IB trigger:

1
H

OUTPUT EAnalyzer; "TRIGGER:SOURCE BUS™

OUTPUT fAnalyzer; "ABORT;

tINITIATE: IMMEDIATE"

OUTPUT €analyzer; "TRIGGER:IMMEDIATE"

.

1

OUTPUT €Analyzer; **OpC®

! {Note: CQUTPUT €Analyzer;"ABOR; :INIT; :TRIG;

I*QPC" and OUTPUT €Analyzer;"ABOR; :INIT;: *TRG;

I*QPC" also work.)
Start_time=TIMEDATE
REPEAT

'

DISF USING "14A,2D.D";"Elapsed Time: ",

TIMEDATE-Start time

OUTPUT BAnalyzer: "*ESR?"

!
ENTER €Analyzer; Esr
Meas done=BIT(Esr,0)
!
UNTIL (Meas done)
H

! Perform Desired Operation on Measurement Data

!

OUTPUT €Analyzer;”CALCULATE :MARKER :MAXIMUM:GLOBAL"

]

+

OUTPUT €Analyzer; "CALCULATE :MARKER:X?"

ENTER @Analyzer;uarkepmx

PRINT “"MARKER at ";Marker“x;" Hz"

[,

i
.

o

-

Measurement Setup
(measurement setup
commands go here)

Start Measurement
Restart the

measurement

Trigger

HP-IB *trigger

{Or use:
QUTPUT €Analyzer; “*TRG")
Synchronize

Opc bit set

when complete

Report elapsed time
while waiting

Read the event
status reg

Read the
operation complete bit

Search for
max enerqgy
wWhich frequency?

3.20



Exampie

How the Analyzer Operates in an HP-IB System
Synchronization

Measurements with External Trigger

If you are using an external trigger, you may use synchronization before the trigger is
supplied to the measurement. The program will not “hang” because the trigger signal
is applied to a hardware connector on the analyzer and not over the HP-IB.

The following program segment which uses the *OPC SRQ interrupt method, ensures
a successful operation using an HP-IB trigger:

4.

Measurement Setup
! . {measurement setup
H commands go here)
OUTPUT €Analyzer; "TRIGGER:SOURCE EXTERNAL"
! Set Up For
s SRQ Interrupt
OUTPUT €Analyzer;”*CLsS" Clear the event
! registers and
L status byte
OUTPUT €Analyzer;"*ESE 1 Standard Event
H register enable
! (bit O=operation complete)
OUTPUT €Analyzer;"*SRE 32v Service Reguest enable
! {bit 5=standard event)

b

—

ENABLE INTR 7:2 ! Enable interrupts
t 7 = interface select code
! 2 = enabling SRQ interupt

ON INTR 7,15 RECOVER Meas_done Interrupt handler

H 15 = highest priority
OUTPUT EAnalyzer; "ABORT; :INITIATE:IMMEDIATE®Y Restart the measurement
synchronize

Opc bit set when done
When ext. trigger

i received and meas done
1 the opc bit is set and
! interrupt is generated.

OUTPUT éAnalyzer; "*Qopc®

LT R S

Start_time=TIMEDATE
LOoP’ ! Report elapsed time
! while waiting

DISP USING "14A,2D.D";"Elapsed Time: ",TIMEDATEfStart_time
END LOOP

! On SRQ interrupt,

! program execution will
! jump to this lecation
i

Meas done:
| ;

! Perform Desired Operation on Measurement Data
) .

OUTPUT @Analyzer; "CALCULATE :MARKER :MAXTMUM:GLOBAL" ! Search for max

i enexrgy

OUTPUT €Analyzer; "CALCULATE :MARKER:X?" Which frequency?
ENTER €Analyzer;Marker x

PRINT "MARFER at “;Markerwx;" H2"

321



Example

How the Analyzer Operates in an HP-IB System
Synchronization

Averaged Measurements

Averaged measurements work exactly the same way as measurements without
averaging with the exception that an averaged measurement is not complete until the
average count has been reached. The average count is reached when the specified
number of individual measurements has been combined into one averaged
measurement result. Synchronization can be used to determine when the average
cournt has been reached.

If the analyzer continues to measure and average the results after the average count is
reached, synchronization can be used to determine when each subsequent
measurement completes,

Synchronization cannot be used to determine when each individual measurement
completes. To determine if an individual measurement is complete, use the Measuring
bit (bit 4) in the Operation Status Group. (Refer to Chapter 5, “Programming the
Status System” for more information about the Operation Status Group.)

The following program segment which uses *OPC?, ensures a successful operation in
an averaged measurement:

v

Measurement Setup
i (measurement setup
! commands would
! go here)
OUTPUT E€Analyzer; "SENSE:AVERAGE:STATE ON*
OUTPUT €Analyzer; "SENSE:AVERAGE:COUNT 10"

! Start Measurement
OUTPUT EAnalyzer; "ABORT; :INITIATE:IMMEDIATE" ! Restart the
H measurement
Synchronize
OUTPUT E€Rnalyzer; "*opCcz- Wait until complete
ENTER @analyzer; Avg_done Read output queue,
1 throw away result

! For the next
! 100 averages, store
! the max energy
! in an array.

P

FOR Index=1 'TO 100

! Perform Desired Operation on Averaged Measurement Data
!

OUTPUT E€Analyzer;"CALCULATE :MARKER :MAXIMUM:GLOBAL*! Search for max
1 energy
OUTPUT EAnalyzer; "CALCULATE:MARRKER:X?" ! Which frequency?
ENTER @Analyzer;Markermx(Index)
CUTPUT €Analyzer; "*0PC?"
ENTER 8Analyzer; Next_meas done
NEXT Index

322



Example

How the Analyzer Operates in an HP-1B System
Synchronization

Arm and trigger conditions must be satisfied for each individual measurement. For
measurements without averaging, this requirement can be met simply by following the
restart sequence (ABORT;INITIATE:IMMEDIATE) with an ARM or TRIGGER
command. In the case of an averaged measurement, the analyzer must be separately
armed or triggered for each individual measurement.

Use “Waiting for ARM" (bit 6) and “Waiting for TRIG” bit (bit 5) in the Operation
Status Group to determine when the analyzer is ready to be armed or triggered. Arm
and trigger signals are ignored if you send them before the analyzer is ready for them.

The following program segment which uses *OPC, ensures a successful operation in
an averaged measurement with manual arming:

-

Measurement Setup
! {measurement setup
! commands would go
! here)
OUTPUT, 8&nalyzer; "ARM:SOURCE MANUAL"
OUTPUT €Analyzer; "SENSE:AVERAGE:STATE ON"
OUTPUT €Analyzer; "SENSE:AVERAGE:COUNT 10*

{ start Measurement

OUTPUT €Analyzer; “ABORT; :INITIATE:IMMEDIATE" ! Restart the
! measurement
!t Arm for each
1 average in the

H ] average count
FOR Count=] TO 10

REPEAT

OUTPUT €analyzer;"STATUS:OPERATION:CONDITION?®

ENTER €Analyzer;Register

Waiting for arm=BIT(Register,6)

UNTIL (Waiting for_arm}

CUTPUT EAnalyzer; “ARM:IMMEDIATE"
REXT Count
synchronize
wait until complete

- d

OUTPUT €Analyzer; ®“»opcezn
ENTER EAnalyzer; Avg done

[
! Perform Desired Operation on Averaged Measurement Data

OUTPUY €Analyzer; "CALCULATE :MARKER :MAXTMUM:GLOBAL" | Search for max

! enerqy

OUTPUT €Analyzer; "CALCULATE :MARRER:X?" ! Which freguency?
ENTER #Analyzer;Marker x

PRINT "MARKER at ";Marker_x;" gz*"

3.23



Example

- How the Analyzer Operates in an HP-IB System

Synchronization

The following program segment which uses *W AL, ensures a successful operation in an
averaged measurement with HP-IB triggering:

! Measurement Setup
1 {measurement setup
H commands would go
! here)
OUTPUT E€Analyzer; “TRIGGER:SOURCE BUS®
OUTPUT EAnalyzer; "SENSE:AVERAGE:STATE ON*®
OUTPUT €Analyzer; "SENSE:AVERAGE:COUNT 10"
Start Measurement
QUTPUT €analyzer; "ABORT; :INITIATE:IMMEDIATE" Restart the
i measurement
! Trigger for each

! average in the
i average count
FOR Count=1 TO 10

REPEAT

OUTPUT €Analyzer; YSTATUS :OPERATION:CONDITION? "

ENTER €Analyzer;Register

Wait for trig=BIT(Register,5)

UNTIL (Wait_for trig)

CUTPUT EAnalyzer; "TRIGGER:IMMEDIATE"
NEZX'T Count

- =

! synchronize
OUTPUT @Analyzer; "+*WAI" ! Wait until
' complete

1
t Perform Desired Operation on Averaged Measurement Data
3

OUTPUT @aAnalyzer; "CALCULATE :MARKER :MAXTIMUM:GLOBAL" ! Search for max

1 enerqgy

OUTPUT €Analyzer;"CALCULATE:MARKFR:X?" ! Which frequency?
ENTER fanalyzer;Marker x

PRINT "MARKER at ";Marker_x:“ Hz"

3-24



Example

The following program seg

How the Analyzer Operates in an HP-IB System

averaged measurement with external triggering:

1
1
1
OUTPUT €Analyzer;
OUTPUT €analyzer;
OUTPUT E€Analyzer;

OUTPUT fAnalyzer;

13

‘
H

QUTPUT £Analyzer;

H
!
!
f
!
!
!
i
!
!
]
i

"TRIGGER :SOURCE EXTERNAL"
"SENSE :AVERAGE : STATE ON"
"SENSE:AVERAGE :COUNT 10°¢

"ABORT; :INITIATE:IMMEDIATE"

vRWATY

Perform Desired Operation on Measurement Data

OUTPUT EAnalyzer;"CALCULATE :MARKER : MAXTMUM:GLOBAL"

CUTPUT @Analyzer;“CALCULATE:MARKER:X?"
ENTER §Ana1yzer;Marke§mx
PRINT "MARKER at ";&arker“x;" Hz*"

[y

P,

- ke e

1

Synchronization

ment which uses ¥*WAI, ensures a successful operation in an

Meagurement Setup
(measurement setup
commands would

go here)

Start Measurement
Restart the
measurement

Synchronize

Wait until complete
When the analyzer
has received ten
valid external
triggers i.e. while
the measurement is
in a "Waiting for
Trigger" state),
the analyzer

will go on to
process the
following commands.

Search for max
energy
Which frequency?

3.25



-Example

Example

How the Analyzer Operates in an HP-IB System
Synchronization

Restart Sequences

"The SCPI defined command sequence for restarting a measurement is
ABORTINITIATEIMMEDIATE. Your analyzer may have other command

sequences that act in the same way—they restart a measurement. If your analyzer has
other restart sequences they will work with the synchronization methods just like the
ABORT;INITIATE:IMMEDIATE command sequence. You can use *WAI *OPCor
*OPC! to determine when the measurement is complete. The command’s description
in the HP-IB Command Reference specifies if it restarts a measurement.

The following program segment which uses *W Al illustrates a successful restart
operation:

OUTPUT €Analyzer; "RESTART" ! Restart the measurement
OUTPUT ERnalyzer; “+*WAI" ! Wait until complete
OUTPUT €Analyzer;"CALCULATE :MARKER:MAXIMUM:GLOBAL® ! Search for max

! energy
OUTPUT fAnalyzer;"CALCULATE :MARRKER:X?" Which frequency?
ENTER @analyzer;Marker x

PRINT "MARKER at ";Marker x;" Hz"

P

Hardware Setups

If you need to know when a particular analyzer hardware setup command has been
completed, you will need to synchronize. For example, if your device-under-test
(DUT) is isolated from the analyzer, you may need to know when a change in the
source level has been completed before connecting the DUT and proceeding with the
measurement sequence. Any of the synchronization methods (*WAI, *OPC, *OPC?)
may be used.

The following program segment which uses *OPC?, illustrates a successful hardware
setup:

OUTPUT EAnalyzer; "SOURCE:CQUTPUT:STATE ON™ { Turn on the source
OUTPUT €Analyzer; "SOURCE:POWER -10 DBM" ¢t Set the level
QUTPUT fAnalyzer; "*0OPC?™ ! Wait until complete
ENTER @Analyzer; Source ready

CUTPUT €switch;raz2@ iCommand string

! to connect DUT

to analyzer

!
i

3.26



How the Analyzer Operates in an HP-IB System
Passing Control

Passing Control

The analyzer requires temporary control of the HP-IB to complete some commands
such as print or plot commands. After sending such a command, the active controller
must pass control tc the analyzer. When the analyzer completes the command, it
automatically passes control of the HP-IB back to the controller. if a command
requires control to be passed to the analyzer, a special note appears in the command's
description in the HP-IB Command Reference. The HP-1B Command Reference also

contains an example program that passes control to the analyzer.

How to Pass Control
Use the following procedure when passing control to the analyzer:

1

Use the *PCB command to inform the analyzer of the controller’s HP-IB
address. The analyzer must know the controller’s address so it can pass
control back. The analyzer automatically passes control of the HP-IB back
to the controller when it completes the requested operation.

Use the *WAI, *OPC? or *OPC to ensure all pending operations are
complete,

Enable the analyzer's status registers to generate a service r@quest when the
Operation Complete bit is set to 1. (Send *ESE with a value of | and
*SRE with a value of 32.)

Enable the controller to respond to the service request.

Send the command that requires control to be passed to the analyzer (for
example, the HCOPY command) followed by the *OPC command.

Pass control and synchronize the analyzer’s operations.

3-27



Example

How the Analyzer Operates in an HP-IB System

Passing Control

Passing Control and Synchronization

The following HP BASIC program segment which runs on an external controller, uses
the *OPC SR() interrupt method and illustrates a successful pass control and

synchronized plot operation:

OUTPUT €Analyzer;"*CL&"

¥

+

QUTPUT €Analyzer;”*ESE 1"
!

OUTPUT €Analyzer;**SRE 32"
1

ON INTR 7,15 RECOVER Ready
!

!

]

ENABLE INTR 7;2

[,

L]

!

OUTPUT @Analyzer; “»opcr

DISP "WAITIKG FOR OPERATION COMPLETE"
LOOP

END LOOP

Ready:

I=SPOLL(€Analyzer)

1

L

QUTPUT @Analyzer;"*CLS"

H

ON INTR 7,15 RECOVER Hardcopy done
ENABLE INTR 7;2

OUTPUT EAnalyzer;**pCB 21"
!

OUTPUT €Analyzer; "HCOPY"

¥

OUTPUT fAnalyzer;"*0PC"

PASS CONTROL €Analyzer

DISP "WAITING FOR PLOT TO COMPLETE®
LOOP

END LOOP

Hardcopy_done:
I=SPOLL{#Analyzer)
OUTPUT EARALYEZER;"*CLS"
E

H

DISP "HARD COPY DONE"
END

>3

-

[P,

Set up SRQ interrupts

Clear the event registers
and Status Byte

Standard Event reqg enable
(bit O=operation complete)

Service Request enable

bit 5=standard event)
Interrupt handler

7 is the interface select

code, 15 indicates highest
interupt priority

Enable interrupts

7 is the interface select

cotde, 2 indicates enabling

service request interrupt

Use *WAI, *OPC?,0r *OPC to

ensure all pending

operations are complete

Wait for operation Complete
interrupt

Read and clear the

Request Service bit in

the Status Byte

Set up new interrupt handler
Clear the event registers
and Status Byte

Interrupt handler

Tell the analyzer the pass
control back address

Tell the analyzer

to plot/print

Synchronize

Pass control to the analyzer
Wait until control returns
and the plot/print completer

Read and clear the
Regquest Service bit,
the event registers,and
the Status Byte

3-28



HP-IB Message Syntax

4.1



HP-IB Message
Syntax

As mentioned in chapter 3, the analyzer uses program messages and response messages
to communicate with other devices on the HP-IB.

This chapter describes the syntax of HP-IB commands and responses. It provides
many examples of the data types used in command paramerers and response data. It
uses syntax diagrams called railroad charts to describe the general syntax rules for both
kinds of messages. .

® Program Message Syntax explains how to properly construct the messages you send
from your computer to your analyzer.

*» Response Message Syntax explains the format of messages sent from the analyzer to
your computer.

® Data Formats describes the types of data that are contained in program and
response messages.




HP-IB Message Syntax

How to Read Raiiroad
Charts The flow of railroad charts is generally
from left to right. However, elements
that repeat require a return path that
goes from right to left. Any message
is valid that can be generated by
following a railroad chart from its
entry point to its exit point, in the
direction indicated by the arrows.

A railroad chart is a type of syntax
diagram that shows the structure of a
programming language. You can use
a railroad chart to help you construct
a valid message.

¥

In the example, the message is For example, a valid message is:
composed of an <element> element,element

which can repeat if it is separated

by a comma.




Figure 4-1,
Simplified Program
Message Syntax

HP-IB Message Syntax
Program Message Syntax

Program Message Syntax

Program messages are the messages that you send from your computer to the analyzer.
These program messages contain commands combined with appropriate punctuation

and program message terminators. Figure 4-1 illustrates the simplified syntax of a
program message.

subsystem
commang

H COMmon
command |

¥

--
NOTES:

<NL>  « ASCH chorocter Hex OA {decimal 1)
«<~END> = E£0I asserted concurrent with last byte

As figure 4-1 shows, you can send common commands and subsystem commands in
the same message. If you send more than one command in the same message, you

must separate them with a semicolon. (See “Sending Multiple Commands” in
chapter 2.)

4-4



Example of
Program Messages

HP-B Message Syntax
Program Message Syntax

You must always end a program message with one of the three program message
terminators shown in the illustration. Use <NL>, < “END>, or <NL>

<7 <END> as the program message terminator. The word <NL> is an ASCII line
feed character. It means new line. The word <™ END> means that End or Identify
(EO) is asserred on the HP-IB interface at the same time the preceding data byte is
sent. Most programming languages send these terminators automatically. For
example, if you use the HP BASIC OUTPUT statement, <NL> is automatically sent
after your last data byte. If you are using a2 PC, you can usually configure your system
to send whatever terminator you specify.

ABORT; INITIATE : IMMEDIATE<RL>

*RST; : FREQUENCY :CENTER 50KHZ;SPAN 100KHZ<NL>
TRACE : DATA? D1<"END>

SYSTEM:TIME 15,5,0 <NL><“END>




Figure 4-2.
Simplified
Subsystem Command
Syntax

Example of
subsystem
commands

Hote

HP-1B Message Syntax
Program Message Syntax

Subsystem Command Syntax
Figure 4-2 describes the basic syntax of subsystems commands.

' D
N

keyword

S

NOTE:
WSP = whitespoce, ASCH choracter (Decimat 0-9 or 11-372)

As figure 4-2 shows, there must be a whitespace (< WSP>} between the last command
keyword and the first parameter in a subsystem command. This is one of the few
places where <WSP> is required. If you send more than one parameter with a single
command, you must separate adjacent parameters using a comma. Parameter types
are explained later in this chapter.

SENSE:AVERAGE :STATE OR
tFREQUENCY : START?
SYSTEM:TIME 15,5,0

The HP-IB Command Reference includes example program statements for
each command. ‘

The following program message examples do not show message terminators. They are
used at the end of every program message and terminators are usually handled by your
application programming language.

4.6



Figure 4-3.
Simplified Command
Syntax

Example of
common commands

HP-IB Message Syntax
Program Message Syntax

Common Command Syntax
Figure 4-3 describes the syntax of common commands.

<WSF>

parpneter

S e N g i T

NOTE:
=WSP» = whitespoce, ASCH charaeter (Decimol 0-9 or 11-32)

As with subsystem commands, you must use a <WSP> to separate a command
mnemonic from any subsequent parameters. Adjacent parameters must be separated
by a comma. Parameter types are explained later in this chapter.

Common commands do not change the location of the parser in the command tree.

*PCB 11
*SRE 128
*OPT?




Figure 4-4,
Simplified Response
Message Syntax

HP-1B Message Syntax
Response Message Syntax

Response Message Syntax

Response messages are the messages sent from the analyzer to the controller
{computer). These messages contain data combined with appropriate puncruation
and the message terminators, <NL>< "~ END>. Figure 4-4 shows a simplified view
of the response message syntax.

response daio

NOTES:
<NL> = newline ASCH charocter Hex DA (Decimal 10)
<~END> = EQOl nsserted concurrent with (osi byte

Response messages may use comma and semicolons as separators. When a single
query command returns multiple values, a comma is used to separate each data item.
When multiple queries are sent within the same message, the groups of data items
corresponding to each query are separated by a semicolon.

For example, the fictitious query :QUERY17;QUERY2? might return a response

message of:
<datal>,<datal>;<data?>,<datal>
Response data formats are explained later in this chapter, <NL> < ~END> is always

sent gas a response message terminator.

4.8



Exampie of
response messages

Note

HF-1B Message Syntax
Response Message Syntax

+2.9400000E+04<RL><*END>
+2.9400000E+04;+5.1200000E+04; +3 . 840000E+03<NL><"END>
+2.9400000E+04 ; +10; +1<NL><*END>

15,5, 0<XNL><"END>

The response message examples that follow do not show message terminators because
they are used at the end of every response message and terminators are usually handled
by your application programming language.




Data Formats

HP-IB Message Syntax
Data Formats

Data Formats

Different data formats are used in program messages and response messages. Parameter
dara is data sent in commands from the controller {or computer). Response data is data
sent from the analyzer to the controller. This accommodates the principle of forgiving
listening and precise talking. Forgiving listening means an instrument is flexible enough
to accept commands and parameters in various formats. Precise talking means an
instrument always responds to a particular query in a predefined, rigid format.
Parameter-data formats are designed to be flexible, in the spirit of forgiving listening.
Conversely, response-data formats are defined to meet the requirements of

precise talking.

Parameter Formats !
{controller to analyzer)

Response-Data Formats 2
{analyzer to controller)

Numeric Integer
Floating Point
Extended Numeric Integer
Foating Point
Non-decimal Numeric Hexadecimal
Octal
Binary
Discrets Discrete
Boolean Numeric Boolean
String String
Expression String3
Block Definite Length Block
indefinite Length Biock

! These are flexible formats allowed by forgiving listening.
These are rigid formats required by precise talking.
Expression data can be used as a parameter; however, the data is always returned as a string.

4-10



Note

Examples of
numeric parameters

HP-IB Message Syntax
Data Formats

Each parameter format has one or more comresponding response-data formats. For
example, a setting that you program using a numeric parameter would return either
floating point or integer response data when queried. Whether floating point or
integer response data is rerurned depends on the particular instrument you are using.
However, precise talking requires that the response-data format be clearly defined for
the analyzer and query. The HP-IB Command Reference specifies the data format for
individual commands.

If you need more detailed information about a data format refer to the IEEE 488.2
definitions in the IEEE Standard 488.2-1987, IEEE Standard Codes, Formats Protocols
and Common Commands for use with ANSI/IEEE Std 488.1-1987. Although this
document is intended for instrument firmware engineers instead of instrument users
and programmers, you may find it useful if you need to know the precise definition of
certain message formats, data formats, or common commands.

Parameter Formats

Numeric Parameters

Nurmeric parameters are used in subsystem commands and common commands.
Numeric parameters accept all commonly used decimal representations of numbers
including optional signs, decimal points, and scientific notation.

If an instrument setting programmed with a numeric parameter can only assume a
finite number of values, then the instrument automatically adjusts the parameter to a
legal value. For example, an instrument might have a programmable output
impedance of 50 or 75 ohms. If you specified 76.1 for output impedance, it would be
rounded to 75. If the instrument setting can only assume integer values, then it
automatically rounds the value to an integer. For example, sending *ESE 0.123 has
the same result as sending *ESE 0.

100. digits right of decimal are optional

-1.23 leading signs are  allowed

46e3 <WSP > allowed after e in exponentials
-7.BOE-01 use either £ or e in exponentials

+256 leading -+ is allowed

5 digits left of decimal point are optional
100 no decimal point is required

411



HP-IB Message Syntax
Data Formats

Extended Numeric Parameters

Most measurement-related subsystems use extended numeric parameters to specify
physical quantities. Extended numeric parameters accept all numeric parameter
values and other special values as well. All extended numeric parameters accept
MAXimum and MINimum as values. Other special values, such as UP, DOWN, and
DEFault may be available as documented in the HP-IB Command Reference for your
analyzer. ‘

MINimum and MAXimum can be used to set or query values. The query forms are
useful for determining the range of values allowed for a given parameter.

Extended numeric parameters accept unit suffixes as part of the parameter value.
Acceptable unit suffixes are documented in the HP-IB Command Reference for your
analyzer.

Note Extended numeric parameters are not used for common commands or STATUS
subsystem commands.

Unit Sutfix Elements
Class Preferred Suffix Allowed Suffix Referenced Unit
{(primary unlt)  (secondary unit)
Amplitude v Volt
VPK Volts peak
VRMS Volts-root-mean-square
Angle RAD Radian
DEG - Degree
Frequency HZ Herlz
_ ' MHZ Megahertz
Power DBM Decibe! millwatt
Power W Watt
Ratio DB Decibel
DBv Decibel volt
PCT Percent
Resistance OHM Ohm
MOHM Megohm
Time S Second

! The suffix units, MHZ and MOBM are special cases which should not be confused with
<suffix multiplier>HZ and <suffix multplier>OHM.

4-12



Suffix Multipliers

Examples of
extended numeric
parameters

Unit suffixes can be modified by suffix multipliers.

HP-IB Message Syntax
Data Formats

Vaiue Name Mnemonic
1E18 EXA EX
1E15 PETA PE
1E12 TERA T
1E9 GIGA G
EB MEGA MA'
1E3 KILO K
1E-3 MILLI m!
1E-6 MICRO ]
1E-9 NANO N
1E-12 PICO p
1E-15 FEMTO F
1E-18 ATTO A

1 The suffix units, MHZ and MOHM arze special cases which should not be confused with
<suffix multiplier>F7 and <suffix muldplier>OHM.

100. any simple numeric values

-1.23

456e3

-7.89E-01

+256

5

MAX largest valid setting

MIN valid setting nearest negative infinity
-100 my negative 100 millivolts

4-13



Examples of
non-decimal
numeric parameters

Discrete Parameter
Syntax

Examples of
discrete parameters

HP-IB Message Syntax
Data Formats

Non-decimal Numeric Parameters

In many applications, it is not convenient to transfer data using decimal numbers.
Non-decimal numeric parameters allow you to specify settings in hexadecimal, octal, or
binary formats.

#B0101  binary representation of decimal 5
#Q71 octal representation of decimal 57
#HFA hexadecimal representation of decimal 250

You may use either upper or lower case letters B, Q, or H to designate the
corresponding number base. You may also use upper or lower case letters for the
hexadecimal digits A-F.

Discrete Parameters

You use discrete parameters to program settings that have a finite number of values.
Discrete parameters use keywords to represent each valid setting. They have a long
and a short form, just like command keywords.

-
° ]

_..@_,

Note:
_ = underscore ASCH charoctes S {Decimal 95)

INTERNAL 1 for example, an internal trigger source (channel 1)

EXT for example, an external trigger source
TIME2 for example, channel 2 time data
NEG for example, negative edge triggering

4-14



Examples of
Boolean parameters

Expression
Parameter Syntax

Examples of
expression
parameters

HP-IB Message Syntax
Data Formats

Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false.
There are only four possible values for a Boolean parameter:

o ON Boolean TRUE
s OFF Boolean FALSE
» ] Boolean TRUE
e 0 Boolean FALSE
SENSE:AVERAGE ON
CALCULATEZ:LIMIT:BEEP O
DISPLAY:ANNOTATION:ALL 1
VOLT:RANG:AUTO OFF

Expression Parameters

You can use expressions to set values. The expression must be within parentheses.

i <EXPression
© Ong

Combine the elements according to the rules of algebraic notation and use parentheses
to control the order of operations. The HP-IB Command Reference specifies the
operations and operands available for your analyzer.

(PSPEC1*K1) multiply a power spectrum by a constant
(TIMET1 - TIME2) subtract time data 2 from time data 1
{FRES*K3) multiply a frequency response by a constant

4-15



HP-IB Message Syntax
Data Formats

String Parameters

String parameters can contain virtually any set of ASCII characters, including
non-printable characters. A string must begin with a single quote { ASCII, decimal
39) or a double quote (" ASCII, decimal 34) and end with the same character. The
character you chose to mark the beginning and end of the string is called the delimiter,
You can include the delimiter as part of the string by typing it twice without any
characters in between.

String Parameter
Syntax

Examples of
string parameters

‘this is a STRING'

*this is also a string

*one double quote inside brackets [*]*
‘one single quote inside brackets ["]'

In HP BASIC, it is usually easier to use single quotes. The next command line
includes a statement that selects the most recent time record as the measurement data.

10 OUTPUT fAnalyzer;"CALC:FEED ‘XTIM:VOLT'"

4-16



Indefinite Length
Block

Example

Definite Length Block

HP-IB Message Syntax
Data Formats

Block Parameters

Block parameters are typically used to transfer large quantities of related data. Blocks
can be sent as indefinite length blocks or definite length blocks; an analyzer accepts either
form.

b= data oytel——é—b{ <NL=> }-———[ﬂEND:-l

Note:
<NL> = newiine ASCH character Mex OA Decimal 100

The first two bytes of the data transfer, # and O, are the header for the block data.
The data itself does not begin until the third byte. A mandatory <NL>< ~END>
sequence immediately follows the last byte of block data in an indefinite length block.
This forces the termination of the program message.

120 OUTPUT BAnalyzer;"#0ABCEXYZ" END

You must use END to properly terminaté the message. In HP BASIC, it asserts an EQL

——-—»@——0—! o =mugm_digils> }—-{ <hyle, count> }———L-iaarc byte <Ni> I—u[ <Ends i»o—-—p

In the definite length block, two numbers must be specified. The single decimal digit
<num_digits> specifies how many digits are contained in <byte_count>. The
decimal number <byte count> specifies how many bytes of data follow in the block.

4-17



HP-1B Message Syntax
Data Formats

The elements #, <num_digits>, and <byte_count> make up a header for the block

data.
] Block Header 1 Block Data |
byte1 byte2  byte3 byed byte 5 byte 6 byte 19
# 2 1 5 <data_byte 1> <data_byte 2> <data_byte 15>

In the example above, the element <num_digits> is 2. This indicates that the
following two bytes are taken together as a single decimal number. in the example, the
number is 15. The following 15 bytes are the 5% through 19™ bytes of the data
transfer. However, they are the 13 through 15% bytes of the dara block.

Example An example HP BASIC statement to send ABCS&XYZ as definite length block
parameters:

120 OQUTPUT €Analyzer;"#17ABCEXYZ"™

120 OUTPUT #Analyzer, a?ZAB(ﬁ&XYZ'

i
<num_digits> = 1 means one digit follows
<byte_gount> = 7 means seven bytes folicws

4-18



HP-IB Message Syntax
Data Formats

Response Data Formats

Response messages are the messages sent from the analyzer to the controller
(computer). These messages contain data combined with appropriate punctuation
and the message terminators, <NL>< "~ END>,

A large portion of measurement data is formatted as floating-point response data.
Floating-point response data are decimal numbers in either fixed decimal notation or
scientific notation. In general, you do not need to worry abour the rules for formatting
floating points and other fixed decimal or scientific notation. Most high-level
programming languages that support instrument I/O handle either rype transparently.

Examples of floating
point response data

1.23E+0
+1.0E+2
0.5E40
1.23
-100.0
+100.0

Integer Response Data

Integer response data are decimal representations of integer values including optional
signs. Most status registers related queries retumn integer response data.

Examples of integer

response data
0 signs are optional
+100 leading + sign is allowed
-100 leading sign is allowed
256 never any decimal point

4-19



Examples of
hexadecimal
response data

Examples of octal
response data

HP-IB Message Syntax
Data Formats

Hexadecimal Response Data

Hexadecimal response data are formatted as base-16 numbers. The H in the
hexadecimal response data header, as well as the hexadecimal digits A-F, are always
upper case,

@ e

NOTE:
<hex_gigit> = ASCH character 0-9 ond A<F (Decimg! 0-15)

#HOFOF
#HO1A1A
#H2B28

Octal Response Data

Octal response data are formatted as base-8 numbers. The Q in the octal response
data header is always upper case.

@t et

NGTE:
=tel_gigit> » ASCH thorocter 0-7 Becimat 0-7)

#Q0707
#07654
#Q0101

4-20



HP-IB Message Syntax
Data Formats

Binary Response Data

Binary response data are formatted as base-2 numbers. The B in the binary response
data header is always upper case.

Examples of binary

B +<hin_digit>

NOTE:
<bin_dgigit> « ASCH character G-1 Decimel O-1

response data
#B00001111
#B000000C0
Discrete Response Data
Discrete response data is similar to discrete parameters. The main difference is that
discrete response data return only the short form of a particular mnemonic, in all upper
case letters.
<gipha> <alpho> rp
Note:
. = underscore ASCH character SF {Decimal 95)
Exampies of
discrete response
data
INTH for example, a trigger source set to internal (channel 1)
EXT for example, 2 trigger source set to external
TIME2 for example, data is channel 2 time data
NEG for example, a trigger set for negative edges

4-21



HP-1B Message Syntax
Data Formats

String Response Data

String response data are similar to string parameters. The main difference is that string
response data use only double quotes as delimiters, never single quotes. Embedded
double quotes may be present in string response data. Embedded quotes appear as two
adjacent double quote marks with no characters in between.

Examples of string
response data

"THIS 1S VALID"
*SO IS THIS ™ »

"l said, **Hellgi™=

Expression Response Data

The analyzer returns expression data surrounded by double-quotes:
Example of
expression response
data

" (PSPEC1*K1)™"

" (TIME1~TIMEZ2)"

" (FRES*K3) "

4-22



HP-IB Message Syntax
' Data Formats

Definite-Length-Block Response Data

Definite-length-block response data generally contain a large number of related data
items, such as measurement trace data. The exact format of data within a block is
described for each command in the HP-IB Command Reference.

Hote Definite-length-block response data have the same format as definite-length-block
parameters.

—P@—-——b{ <num_gigis> ;L«wmyimy!e-coun»}-——y—l‘nuro ﬁyg]——{-—hl <hL> l-—-[ <fng= ] L

The single decimal digit <num_digits> specifies how many digits are contained in
<byte_count>. The decimal number <byte_count> specifies how many bytes of
data will follow in <data bytes>.

Examples of

definite-length-block

response data
#16SAMPLE 6 bytes of data
#2111.1,2233 11 bytes of data
#19777+ ++ 1 9 bytes of data

423



Examples of
indefinite length
block data

HP-IB Message Syntax
Data Formats

Indefinite Length Block Response Data

Indefinite length block response data use the same format as indefinite length block
parameters.

] -
: e 3 @ gata by?eH <NL= M«AENB>’
Nete:

<MNL> = newline ASCE character Hex QA Decimnl 10

A mandatory <NL> < ™ END> sequence immediately follows the last byte of block
data in an indefinite length block. This forces the termination of the program message.

¥0thisisasampleblock<NL><"END>
#001.23,4.56,7.89,9.01<NL>N"END>
#0227++1 ! I<NL><"END>
#0111111110000000011111111<NL><"END>

4-24



HP-iB Message Syntax
Example Programs

Example Programs

This section contains three example programs that show you how to transfer trace
data between an analyzer and a controller. The example programs are written in HP
Instrument BASIC. Explanatory comments follow each program.

Reading Trace Data - ASCII, the first example, shows you how to read trace data
values into an array using ASCI] representation.

Reading Trace Data — Binary, the second example, shows you how to read floating
point data values into an array using binary representation.

Programming the Arbitrary Source, the third example hows you how to load one of the
analyzer's data register with data generated on a computer.

425



HP-1B Message Syntax
Example Programs

Reading Trace Data — ASCII

Example The following HP Instrument BASIC program reads back the trace data values (401
data points for FFT analysis power spectrums with resolution set to 400) and displays
the first tenn ASCII values on the HP Instrument BASIC screen.

10 DIM A(1:401)

20 ASSIGN fAnalyzer TO 800

30 QUTPUT €Analyzer; "FORMAT:DA™A ASCII®
40 OUTPUT EAnalyzer: "CALCI:DATA?"

50 FOR I=1 T0 401

60 ENTER €Analyzer USING "#,K"; A(I)

70 IF I < 10 TEEN PRINT AlT)

80 NEXT I

90 END

4-26



HP-1B Message Syntax
Example Programs

Example Comments

The analyzer generates a 401 data point power spectrum. It was setup to display the
power spectrum data on trace A.

10 Dimensions the array for 401 values.

20 Assigns the [/O path @Analyzer to the select code used by HP Instrument BASIC to
communicate with the analyzer.

30 The data block format (FORMAT:DATA) specifies extended numeric data with 12
significant digits encoded in ASCIL

40 Query the 401 dara points from trace A. This generates the response:

NI,

—8.481?26403815"001;...w1.207...gi§;

which consists of 401 comma separared numbers terminated with the new line character
sent with END. For brevity, only the first and last number are shown.

60 The # in the ENTER statement is an image specifier. It specifies that the statement is
automatically terminated as soon as the number is read. The K image specifier reads the
number in the default format.

427



HP-IB Message Syntax
Example Programs

Reading Trace Data — Binary

Example

The following HP Instrument BASIC program reads back the trace data values (401
data points for FFT analysis power spectrums with resolution set to 400 lines) and
displays the first ten floating point values on the HP Instrument BASIC screen.

5 DIM A (5000}

10 ASSIGN BA TO 800

20 ASSIGN EB TO 800;FORMAT OFF

30 OUTPUT B2;"FORMAT:DATA REAL, 64"
40 OQUTPUT BA; "CALCI:DATA?"

50 ENTER BA USING "#,A,D";AS$,Count
60 ENTER BA USING "#,“&Vth{Count)&”D“;NumLpf_hytes
70 Fum_Points=Num of bytes DIV 8
80 REDIM (Num_Points - 1)

90 ENTER €B;Aa(*)
i00 ENTER 8A;A$
110 POR I=0 TO %
120 PRINT A(I)
130 NEXT I
140 END

.28



HP-IB Message Syntax
Example Programs

Example Comments
The analyzer generates a 401 data point power spectrum. It was setup to display power
spectrum data on trace A.

5 Dimension an array to accomodate a large block of darta.
20 Turmns the default format off for reading binary dara.

30 The dara block format (FORMAT:DATA) is 64-bit binary. Binary transfers are much
faster than ASCII transfers because the number of data bytes is fewer and the analyzer does
not have to construct the extended numeric representation of the numbers from their
internal binary representation. The computer does have to translate the extended numeric
representation to the computer’s binary representation.

40 Query the 401 data points from trace A. This generates rhe response

NE
BlA13121018] ... 3208 bytes (401 64-bit floating point numbers) wilh

EQ
L . : v }
data byles

<byte_couni>

number of digits in <byte. count> {<num_digits>)

block dato

where “#” identifies the response as block data, the “4” after the “#” indicates that the
next four characrers contain the number of data bytes in the data <byte_count>, and the
“3208” after the “#4” indicates that there are 3208 data byres (or 401 64-bit numbers) of
data in the block. The last byte of the response is a new line character sent with END.

50 Read the # and <num_digits> — the number of digits contained in the <byte_count>.
60 Read the <byte_count> and assign the value to the variabie “Num_of_bytes.”

70 Calculate the number of data points for the array. There are 8 data bytes per data point.
80 Change thesize of the array s to match the amount of data.

90 Read the 401 numbers in binary.

100 Read the trailing line feed character.

110 - 130 Print the first 10 values.

4-29



HP-IB Message Syntax
Example Programs

Programming the Arbitrary Source

Example The following HP Instrument BASIC program generates and loads a data register with
two tone data for use with the arbitrary source in an HP 35665A.

5 DIM D (5000)

10 ASSIGN €A TO BOO

20 ASSIGN 8B TO B00D;FORMAT OFF
30 INTEGER Res,Max i,T

40 DIM Tones(0:1)

50 RAD
60 Span=102400
70 Res=400

80 Tones(0}=76B0
30 Tones({1)=32000
100 SELECT (Res)
116 CASE 100
120 Max i=255
130 CASE 200
140 Max_i=511
150 CASE 400
160 Max i=1023
170 CASE 800
180 Max i=2047
1%¢ CASE ELSE
200 PRINT “illegal measurement resclutionp®
210 PAUSE
220 END SELECT
230 1@
240 REDIM D(Max_i)
250 ¢
260 Dt=Res/Span/(Max_i+1)
270 POR T=0 TO 1
280 FOR I=0 TO Max i
290 D{I)=D(I}+SIN(2*PI*Tones(T)*I+Dt)
300 NEXT I '
310 NEXT T
320 ¢
330 ¢
340 OUTPUT £A;"FORMAT:DATA REAL , 64"
350 OUTPUT 6A; "INIT;*WAI;:INIT:CONT OFF"
360 OUTPUT BA; "CALCI1:FEED 'XTIM:VOLT 17 ;*WATI"Y
370 OUTPUT BA;"TRAC:DATA D1,TRACY ; *WAI"
380 !
390 OUTPUT BA; "TRAC:DATA Di, #0+;
400 QUTPUT 8B;D(*)
410 CUTPUT 8A;CHRS(10) END
420 END

4-30



HP-IB Message Syntax
Example Programs

Example Comments
The analyzer was setup to display time data on trace A,

5 Dimension an array to accomodate a large block of data.
20 Turn default format off for binary output/enter when using 1/O path ¥B.”
30 Define integer variables Res, Max_i, T.
40 Dimension the array for the tone values.
50 Select radians as unit of angular measure.
60 The variable, Span, should be set to the analyzer’s current span.
70 The variable, Res, should be set to the analyzer’s current resolution. This specific analyzer
supports variable resolution of 100, 200, 400 or 800 lines of resolution.
80 - 90 Specify the example tones.
100 - 220 Verifies legal resolution value is selected. An error message appears if an illegal
value is selecred.
240 Change the size of the array to match the size of the tone dara that will be loaded into a
data register.

260 Computes the delta t (D) between time points in the tone data.

270-310 Compute the tone data for two tones. SIN(2*PI*Tones(T)*I*Dr) generares a time
waveform for a tone. The first time through the loop generates time data for the
first rone. The second rime through the loop, adds in time waveform data for the
second tone.

340 - 410 Loads the array into the data register.

340 The data block format (FORMAT:DATA) is 64-bit binary.

350 Pauses the analyzer after one measurement. This helps speed-up the rransfer.
360 Display Channel 1 time in trace A.

370 Stores Channel 1 rime data in data register 1. Since we saved baseband time data (start
frequency is equal to 0) in the data register, the register contains real data.

Before a dara register can be loaded with new data from HP-IB, the repister must be
initialized so it can accept the proper amount and representation of data. To perform this
initialization, use the CALCL:FEED command to set the trace data to the type of data you
will be putting in the data register then save the trace into the data register using the
TRAC:DATA command.

390 TRAC:DATA D1,#0 uses the indefinite length block 1o load the data into data register 1.
The # identifies the data as block data, the "0" after the #" indicates the indefinite length
block. The last byte of the output is a new line character sent with END.

400 OQurput the data in binary.
410 Output the new line.

4.31






Programming the
Status System

5-1



Programming the
Status System

The status system contains information about various analyzer conditions. An
important feature of SCP instruments is that they all implement status groups in the
same way. | his chapter describes the structure of the status system and tells you how
to program the status groups.

o The General Status Register Model explains how the starus groups are structured in
SCPlinstruments. It also contains an example of how bits in the various registers
change with different input conditions.

® How to Use Registers describes two methods to monitor the registers. It also
describes how to respond to service requests.

e The Required Status Groups describes the minimum required status groups present
in SCPl instruments. The HP-IB Command Reference describes the instrument-specific
status groups for your analyzer.

32



Programming the Status System
General Status Register Model

General Status Register Model

The general status register model, shown below is the building block of the analyzer’s
status system. The model consists of a condition register, an event register, and an
enable register. A set of these registers is called a status group.

Stotus Group I

Concition Tronsition Event Enobie Logical
Register Registers Regisier Register OR
FPos, Neg.
gt o [0 - ™
Bt 1 i ] | Z ‘L_’ Summary
Bit 2 |4 m - Bit
i - - - L] L]
- - - - -
L] L3 - . L]

Fe ]
Bit Name - ; .

Bit Number

When a status group is implemented in a SCPI instrument, it always contains all of the
component registers. However, there is not always a corresponding command to read
or write to every register.

The flow within a status group starts at the condition register and ends at the register
summary bit. {See the illustration below.) You control the flow by altering bits in the
transition and enable registers.

Positive
Trornsition
Register
Enable
Register

__J— AND
|

L To
OR AND Summary
Bit

Condition Evert
Register ; Register

L

Note:
The Eveni Register remoing set until it is read
Negative or the #(LS command is senh
Transition
Register




Note

Programming the Status System
General Status Register Model

Condition Register

The condition register continuously monitors hardware and firmware status. It
represents the current state of the instrument. It is updated in real time. When the
condition monitored by a particular bit becomes true, the bit is set to 1. When the
condition: becomes false, the bit is reset to 0. Condition registers are read-only.

If there is no command to read a particular condition register, it is simply invisible
to you.

Transition Registers

The transition registers control the reporting of condition changes to the event
registers. They specify which types of bit-state changes in the condition register set
corresponding bits in the event register. Transition registers are read-write.

Transition register bits may be set for positive transitions, negative transitions, or both.
Positive changes in the state of a condition bit (0 to 1) are only reported to the event
register if the corresponding positive transition bit is set to 1. Negative changes in the
state of a condition bit (1 to 0) are only reported to the event register if the
corresponding negative transition bit is set to 1. If you set both transition bits to 1,
positive and negative changes are reported to the corresponding event bit.

Transirion registers are not affected by *CLS (clear status) or queries. They are set to
instrument-dependent values at power-on and after *RST. Some transition registers
have a fixed setting if there are no commands to access a particular transition register.
This fixed setting along with dependent values are specified in the HP-IB Command
Reference for your analyzer.

Event Register

The event register records condition changes. When a transition bit allows a condition
change to be reported, the corresponding event bit is set to 1. Once set, an event bit is
no longer affected by condition changes and subsequent events corresponding to that
bit are ignored. The event bit remains set until the event register is cleared— either
when the register is read or when the *CLS (clear status) command is sent. Event
registers are read-only.

Reading the Event Register, clears the Event Register.

5-4



Programming the Status System
General Status Register Model

Enable Register

The enable register specifies which bits in the event register set a summary bit to 1.
The analyzer logically ANDs corresponding bits in the event and enable registers, and
ORs all the resuiting bits to determine the state of a summary bit. Summary bits are in
turn recorded in another register, often the Status Byte. {The summary bit is only set
to 1 if one or more enabled event bits are set to 1.) Enable registers are read-write.

Enable registers are cleared by *CLS (clear status). Querying enable registers does not
affect them. There is always a command to read and write to the enable register of a
particular status group.

An Example Sequence

The following illustrates the response of a single bit position in a typical status group
for various settings. The changing state of the condition in question is shown at the
bottom of the figure. A small binary table shows the state of the chosen bit in each
status register at selected times (T1 - T5). Each table represents a different situation in
relationship to the first table (labeled “Case A”, “Case B”, “Case C" and “Case D).
Each row contains a variation of the sequence as defined by the settings of the
transition and enable registers. The event register is read during each time period.
(Remember, reading the event register clears it.)

5 8
= B
3o
e 2
8 £
gé ) . ) i )
ﬁl: o &= £ 4] e
@ c - > [ 'S < - I -
1$. E_F £.85 E_F 2.§% 2.:%
T &5 ¥ § E T E e 28 E 5 € ?m%
o @ C o o> 32 (= 2 > o > a >
a T ow [N TE R V5 oW LIER VL 1] Wi W o wowown
Case A 1QIG|D c|oyo 11010 T{e|o gioico R
Case 8 {01111 cl{oo 11018 1]01{6 011t gjee
{ose C 11010 00} 0 11111 1{010 21010 0lGio
Case D [ 11110 1ot o T11:0 1io|¢ 0i1i0 0joic
1 | ]
Condition \
kil
! o |
T4 12z T3 Ti 5

In cases A and D, the enable bit is zero. The summary bit cannot be set, regardless of
the transition register setting. A service request is not made.

In case B, the enable bit and the negative transition register are set to 1. The summary
bit is set to 1 when the negative transition occurs during T4. The event register is
cleared when it is read during T5.

In case C, the enable bit and the positive transition register are set to 1. The summary
bit is set to 1 when the positive transition occurs during TZ. The event register is
cleared when it is read during T3.




Programming the Status System
How to Use Registers

How to Use Registers

There are two methods you can use to access the information in status groups:
® The polling method

o The service request (SRQ) method

Use the polling method when:

® Your language/development environment does not support SRQQ interrupts.

® You want to write a simple, single-purpose program and clo not want to add the
complexity of setting up an SRQ) handler.

Use the SRQ method when:

® You need time-critical notification of changes.

® You are monitoring more than one device which supports SRQ.

# You need to have the controller do something else while it is waiting.

¢ You cannot afford the performance penalty inherent to polling.

The Polling Method

In the polling method, the analyzer has a passive role. It only tells the controller that
conditions have changed when the controller asks the right question. In the SRQ
method, the analyzer notifies the controller of a condition change without the
controller asking. Either method allows you to monitor one or more conditions.

When you monitor a condition with the polling method, you must
1 Determine which register contains the bit that monitors the condition.
2 Send the unique HP-IB query that reads that register.

3 Examine the bit to see if the condition has changed.

The polling method works well if you do not need to know about changes the moment
they occur. The SRQ) method is more effective if you must know immediately when a
condition changes. To detect a change in a condition using the polling method, your
program would need to continuously read the registers at very short intervals. This
makes the program less efficient. In this case it is better to use the SRQ method.

5-6



Programming the Status System
How to Use Registers

The SRQ Method

When you monitor a condition with the SRQ method, you must
1 Determine which bit monitors the condition.

2 Determine how that bit reports to the request service (RQS) bit of the
Status Byte.

3 Send HP-IB commands to enable the bit that monitors the condition and to
enable the summary bits that report the condition to the RQS bit,

4 Enable the controller to respond to service requests.

When the condition changes, the analyzer sets its RQS bit and the HP-IB’s SRQ line.
The controller is informed of the change as soon as it occurs. The time the controller
would otherwise have used to monitor the condition can now be used to perform other
tasks. Your program determines how the controller responds to the SRQ.

Generating a Service Request

To use the SRQ merhod, you must understand how service requests are generated. As
shown below, other status groups in the analyzer report to the Status Byte. Many of
them report directly, but some may report indirectly.

Status Service
from Qther Byte Request
$10tus groups register enabie
register
(0] - 7
1
7] - g
ER - U's
L] 2
: - g
5 i
! o 4

g

Service P

Service

Regues? Regquest
{SRQ) e D OO OGS
sent to

controlier

Bit 6 of the Status Byte serves two functions; the request service function (RQS) and
the master summary status function (MSS). The RQS bit changes whenever
something changes that it is configured to report. The RQS bit is cleared when it is
read with a serial poll. The MSS bit is set in the same way as the RQS bit. However,
the MSS bit is cleared only when the condition that set it is cleared. The MSS bit is
read with *STBI.

5-7



Kote

Programming the Status System
How to Use Registers -

When a status group causes its summary bir in the Starus Byte to change from O to |,
the analyzer can initiate the service request (SRQ) process. However, the process is
only initiated if both of the following conditions are true:

¢ The corresponding bit of the Service Request enable register is also set to 1.

o The analyzer does not have a service request pending. (A service request

is considered to be pending between the time the analyzer's SRQ process is initiated
and the time the controller reads the Status Byte register with a

serial poll.)

The SR{) process sets the HP-IB’s SRQ line true. It also sets the Status Byte’s request
service (R(QS) bit to 1. Both actions are necessary to inform the controller the analyzer
requires service. Setring the SRQ line only informs the controller that some device on
the bus requires service. Setting the RQS bit allows the controlier to determine which
device requires service. That is, it tells the controller that this particular device
Tequires service.

If your program enables the controller to detect and respond to service requests, it
should instruct the controller to perform a serial poll when the HP-IB's SRQ line is set
true. (Refer to “Bus-Management Commands” in chapter 2 for more information
about serial polling.) Each device on the bus retumns the contents of its Status Byte
register in response to this poll. The device whose RQS bit is set to 1 is the device that
requested service.

When you read the analyzer's Status Byte with a serial poll, the R(JS bit is reset to 0.
Other bits in the register are not affected.

5-8



Hote

Programming the Status System
Required Status Groups

Required Status Groups

All SCP! instruments must implement a minimum set of status groups. Additional
status groups consistent with the general status register model may also be
implemented in your analyzer. They are described in the HP-IB Command Reference
for your analyzer. ' :

The minimum required status systemn is shown below.

Ouestinnoble Status

Condition Event  Engble

Sutput Queus

Stotus Byle

.\
Logcol DR

T

AN

Cperation Slatus

\'.Qﬂ-ﬂl-"ﬁﬂﬂ E:;’\f
The Operation Status and Questionable Status groups are 16 bits wide, while the

Status Byte and Standard Event groups are 8 bits wide. In all 16-bit groups, the most
significant bit (bit 15) is not used. Bit 15 is always set to 0.

Register bits not explicitly presented in the following sections may be used by the
analyzer. Refer to the HP-IB Command Reference for your analyzer.

5.9



Programming the Status System
Required Status Groups

Status Byte

The Status Byte summarizes the states of the other status groups and monitors the
analyzer’s output queue. lt is also responsible for generating service requests (see
“Generating Service Requests” earlier in this chapter).

serigl poll thit 6 = Reques! Service)

«STB? it 6 ~ Master Summary Status)
Bil weights
{ 70 ]

*SRE

Cuestionable Siotus Summory (QUED ER
Messuge Avaiable (MAVY | 4
Stondord Event Summary (ES8) 5

Reques! ServicelRQSH/Moster Summary Status MSS)H [rosimss
Operation Status Summary {0PR} 7 .

IIXHIHH-l

Pategial bRy
—

The Status Byte is unique because it does not exactly conform to the general status
model presented earlier. The Status Byte differs from the other groups in the way you
read it and how its summary bit is processed.

The Status Byte can be read using either *STB? or a serial poll. Serial poll is a low
level HP-IB command that can be executed by SPOLL in HP BASIC. The following
HP BASIC code segments are roughly equivalent:

Using the *STR? query

10¢ OQUTPUT fAnalyzer;“"*STB?"
11¢ ENTER £Analyzer;Byte

Using a serial poll

100 Byte=SPOLL{8Analyzer)

The Status Byte summary bit is in bit 6 of the Status Byte. Bit 6 of the Status Byte
serves two functions; the request service function (R{QJS) and the master surmmary
status function (MSS). When bit 6 is set, it generates an SRQ interrupt. This
interrupt is a low level HP-IB message that signals the controller that at least one
device on the bus requires attention.

5-10



Programming the Status System
Required Status Groups

There are some subtle differences between *STB! and serial polling. You can use
either method to read the state of bits 0-5 and bit 7. However, bit 6 is treated
differently depending on whether you use *STB? or serial poll. The RS bit is read
and cleared with a serial poll.  The MSS bit is read with *STB?. However, the MSS
bit is cleared only when the condition that set it is cleared—not when it is read by *STBI.

In general, use serial polling inside interrupt service routines. Whereas *STB? retums
the state of the Status Byte, it does not tell you if the analyzer has generated the
current service request. To ensure the controller can determine which device on the
bus caused the interrupt, use serial polling.

Bits in the Status Byte register are set to 1 under the following conditions:
» Questionable Status Summary (bit 3) is set to 1 when one or more enabled bits in
the Questionable Status event register are set to 1.

o Message Available (bit 4) is set to 1 when the output queue contains a response
message.

o Standard Event Summary (bit 5) is set to 1 when one or more enabled bits in the
Standard Event event register are set to 1.

e Master Summary Status (bit 6, when read by *STB?) is set to | when one or more
enabled bits in the Status Byte register are set to 1.

o Request Service (bit €, when read by serial poll} is set to 1 by the service request
process (see “Generating a Service Request” earlier in this chapter).

» Operation Status Summary (bit 7) is set to | when one or more enabled bits in the
Operation Status event register are set to 1.

Refer to your analyzer’s HP-IB Command Reference to determine which bits are used.

The illustration also shows the commands you use to read and write the Status Byte
registers. The following statements are example commands using the Status Byte and
Status Byte enable register.

*SRE 16 Generate an SRQ interrupt when messages are available in the output queue.
*SRE!  Find out what events are enabled to generated SRQ) interrupts.

*STB?  Read the Status Byte event register.

See “Setting and Querying Registers” later in this chapter for more information about
these commands.

5-11



Programming the Status System
Required Status Groups

Standard Event Status Group

The Standard Event status group monitors HP-IB errors and synchronization
conditions as shown below. It is one of the simplest and most frequently used. The
unique aspect of this group is that you program it using common commands, while you
program all other status groups through the STATUS subsystem.

=ESRY
! *ESE

Bit waights |
— -
R Operation Complete (OPCY [0 . 7
11z Request Confrol RGCH [1] T }
2|4 Query Error {QYE) | 2 | || -’%/
| 2|8 Device Dependent Error (DDE) [3 | L > Bit 5
4 |16 Execution Error EXE] [ 4 ] - o 77 Status Byte
' 5 |32 Command Error (CME} |5 | ] "0
6| 6L 6 | T >
7 1128 Power On (PON) | 7 | o L

Evant Enable

The Standard Event Status group does not conform to the general status register
model described at the beginning of this chapter. It contains only two registers: the -
Standard Event event register and the Standard Event enable register. The Standard
Event event register is similar to other event registers, but behaves like a register that
has a positive transition register with all bits set to 1. The Standard Event Status
enable register is the same as other enable registers.

5-12



Programming the Status System
Required Status Groups

Bits in the Standard Event Status event register are set to 1 under the following
conditions:

o Operation Complete (bit 0) is set to one when the following two events occur (in
the order listed):
- You send the *OPC command to the analyzer.

- The analyzer completes all pending overlapped commands (see “Synchronization” in
chapter 2).

® Request Control (bit 1} is set to 1 when both of the following conditions are true:

- The anaiyzer is configured as an addressable-only HP-IB device (see “Controller
Capabilities” in chapter 2).

- The analyzer is instructed to do something {such as plotting or printing) that
requires it to take control of the bus.

» Query Error (bit 2) is set to 1 when the analyzer detects a query error.

e Device Dependent Error (bit 3) is set to 1 when the command parser or execution
routines detect a device-dependent error.

e Execution Error (bit 4) is set to | when the command parser or execution routines
detect an execution error.

# Command Ermror (bit 5) is set to 1 when the command parser detects a command or
Syntax error.

e Power On (bit 7) is set to 1 when you turn on the analyzer.
Refer to your analyzer’'s HP-IB Command Reference to determine which bits are used.

The illustration also shows the commands you use to read and write the Standard
Event status groups. Example commands using Standard Event registers:

*ESE 20 Generate a summary bit whenever there is an execution or command error
*ESE!  Query the state of the standard Event enable register!

*ESR?  Query the state of the Standard Event event register.

See “Setting and Querying Registers” later in this chapter for more information about
using these commands. :

5-13



Programming the Status System

Required Status Groups

Operation Status Group

The Operation Status group monitors conditions in the analyzer’'s measurement

process. It also monitors the state of HP Instrument BASIC programs.

This status group includes a condition register, an event register, and an enable
register. It is accessed through the STATUS subsystem. See “Serting and Querying
Registers” later in this chapter for more information about using these commands.

Bit weighls
[0 11 Colibrating
(1 12 Settiing
7 | 4 Ranging
ERE Sweeping
116 Metisurng
KRy Waiting for TRIG
6 | 64 waiting for ARM
(7 | 128 LCorretcting
Bl gD
ERE:"
| 1011024
| 112048
121 4096
51 g1oz  Dstrument Summory
] 16382 Progrom Running
e Nat Used

STATus:OPERoHonLONDION?

:

STATus:CPERatonPTRansition
ST ATusOPERaon:NTRonsition

STATus:0PERatipn:E VENt?
- STATus:OPERGHOMENABK

7“-\

5

5

5 8it 7
(2l - Stotus €
]

EEFEELETEFTETEH——

ARRRERENNANERREE S

IRRRERENNRARARD

3-14



Programming the Status System
Required Status Groups

Bits in the Operation Status condition register are set to 1 under the following
conditions:

® Calibrating (bit 0) is set to 1 while the self-calibration routine is running.

» Settling (bit 1) is set to ! while the measurement hardware is settling.

e Ranging (bit 2) is set to | while the input range is changing.

e Sweeping (bit 3) is set to 1 while a sweep is in progress.

* Measuring (bit 4) is set to 1 while the analyzer is collecting data for a measurement.

® Waiting for TRIG (bit 5} is set to | when the analyzer is ready to accept a trigger
signal from one of the trigger sources. (If a trigger signal is sent before this bit is set, the
signal is ignored.)

o Waiting for ARM (bit 6) is set to 1 when the analyzer is ready to be armed. If you
send the ARM:IMM command before this bit is set, the command is ignored.

o Correcting (bit 7) is set to 1 when the instrument is currently performing a
correction.

e Instrument Summary {bit 13) is set to I when one of n multiple logical instruments
is reporting operational status.

» Program Running (bit 14) is set to 1 while the current HP Instrument BASIC
program is running.

Refer to your analyzer's HP-IB Command Reference to determine which bits are used.




Programming the Status System
Required Status Groups

Questionable Status Group

The Questionable Status register set monitors conditions that affect the quality of
measurement data. It also shows the commands you use to read and write the
{Questionable status group. If you are a beginner, you will rarely need to use this status
group.

STATus:QUEStionobie:CONDition?

5TATus:QUESHonablePTRansition
STATus:QUEStionable:NTRansition
STATus:QUEStHonabie:EVEN!?
STATus:QUESHoncble:ENABle

iy

8197 Ingtrument Summory
1384 Cammand warning
Nol Used

L

Bit weights J _L [
511 Voltage |§ - — 7 h
ERW Curremy 113 ] _—
R Time |2_| — — %
ERE) Power!3 | — —— /
P Temperature {4
Rk Freguency E : : r%
K 6i F’hqse EN - |l s Bir 3
771 128 Modutation [7 ] - — ‘&4 - Status Byte
81256 Calioration |8 | ] -
EREE EN L ]
10] 1024 10| - -
1 2048 u _— —
12} 4096 Ard - -
13 = — -
14 L34 — =
X = — -

ARee

5-16



Programming the Status System
Required Status Groups

Bits in the Questionable Status condition register are set to | under the following
conditions:

® Voltage (bit O) is set to 1 when the analyzer detects a potential problem with a
voitage level.

o Current (bit 1) is set to 1 when the analyzer detects 2 potential problem with a
cusrent level.

» Time (bit 2) is set to 1 when there is questionable time data.

¢ Power (bit 3) is set to 1 when there is questionable power data.

® Temperature (bit 4) is set to 1 when there is questionable temperature data.
s Frequency (bit 3) is set to | when there is questionable frequency data.

® Phase (bit 6) is set to 1 when there is questionable phase data.

e Modulation (bit 7) is set to 1 when there is questionable modulation data.

o Calibration (bit 8) is set to 1 when the last self-calibration attempted by the analyzer
failed.

» Instrument Summary (bit 13) is set to 1 when one or more enabled bits in the
Questionable Instrument event register are set to 1.

e Command Warning (bit 14) is set to 1 whenever a command such as MEASURE
ignores a parameter during execution.

In some analyzers, these bits have another register reporting to them. They are
summary bits. For example, if Voltage (bit 0) is a summary bit, it is set to 1 when one
or more enabled bits in the Questionable Voltage event register are set to 1.

Refer to your analyzer’s HP-IB Command Reference to determine which bits are used.

5-17



Programming the Status System
Required Status Groups

Setting and Querying Registers
The previous status group illustrations include the commands you use to read from
and to write to the registers. Most commands have a set form and a query form.

Use the set form of the command to write to a register. The set form is shown in the
illustrations. The set form of a command takes an extended numeric parameter (see
“Extended Numeric Parameters” in chapter 4).

Use the query form of the command to read a register. Add a “?” to the set form to
create the query form of the command. Commands ending with a “2” in the
iltustrations are query-only commands. These commands cannot set the bits in the
register, they can only query or read the register.

The status group illustrations also include the bit weights you use ro specify each bit in
the register. For example, to get the Waiting for Trigger condition register (bit 5 in
Operation Status group) to generate a service request, send the following commands:

STATUS:PRESET Sets all Enable register bits (excepr the Standard Event and Status Byte
registers) to 0. Sets all positive transition bits to 1. -

STATUS:OPERATION:ENABLE 32 Sets the Waiting for Trigger Enable register
{bit 5) to 1.

*SRE 128  Sets bit 7 of the Service Request Enable register to 1.
See the HP-IB Command Reference for more information about these commands,

5-18



Programming the Status System
Example Programs

Example Programs

This section contains two example programs written in HP BASIC.

Responding to an Event Using SRQ), the first example, illustrates how to use the

status groups to generate a service request . This also allows a computer to quickly
respond to events. The actual measurement reads the Y-marker after each new display
is updated.

Trapping Errors Using SR(Q, the second example, shows how to use the Standard
Event status group and a service request to get a controller to quickly respond to
error conditions. :

5-19



Example

Programming the Status System
Example Programs

Responding to an Event Using SRQ

This HP BASIC program is an example of the use of using the status groups and the
SRQ to allow a controller to quickly respond to events. The measurement reads the
Y -marker after each new display is updated.

10
20
30
49
50
60
70
80
50

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

Bus=7
ASSIGN fAnalyzer TO 711
DIM ¥(1:100)
Readings=0
Max readings=100
PRINTER XIS CRT
OUTPUT €Analyzer; "DISP:ENAB OFF"
OUTPUT €Analyzer;"STAT:PRESET"
OUTPUT EAnalyzer;"STAT:DEV:ENABLE 32¢
OUTPUT €Analyzer;"STAT:DEV:PTR 32"
OUTPUT EAnalyzer;"+#SRE 4 *

QUTPUT EBAnalyzer:"ABORT; :INIT; *WAI"
Readings=0

ON INTR Bus GOSUB Record result

EXABLE INTR Bus;2

EO0P
IF Readings MOD 10=0 THEN DISP Readings
.EXIT IF Readings>=Max_ readings

END LOOP

PRINT Y(*}

STOP

Record result:

Serpoll=SPOLL(EAnalyzer)

IF BIT{Serpoll,2) THEN
OUTPUT BAnalyzer; "CALC1:MARK:Y?"
ENTER €analyzer;Y¥mark
Readings=Readings+1
Y (Readings )=Ymark
OUTPUT fAnalyzer; "STAT:DEV?"
ENTER €Analyzer;Stat

END I¥

I¥ Readings<Max_readings THEN
ERABLE INTR Bus;2

END I¥

RETURN

END

5-20



Programming the Status System
Example Programs

Example Program Comments
10 - 20 Sets the analyzer’s address on the bus.

30 Dimensions the results array.

70 Disables the analyzer's display. This decreases the amount of time it takes to read the
marker amplitude value.

80 Clears all registers. (SRQ only happens on O to | eransition.)

90 Enable the Display Ready bit on the Device State starus group. {The Device State starus
group is illustrated below.)

100  Enable on positive transition (0 1o 1),

110 Enable SR{J on Device State Register.

120 Srart the measurement.

160 Tﬁe 2 indicates enaBEing service request interrupt.

240 Read the Status Byte to determine which register caused the SRQ).
250 Continue if Device Status caused the SRQ.

260 Read Marker Amplitude value.

290 Store the Marker Amplitude value into the results array.

300 Clear Device State event register to prepare it for the next transition.
310 “Dummy-read” clears the byte.

340 Re-enable the interrupt. The 2 indicates enabling a service request interrupt.

STATus:BEVice:(ONDition?

STATusDE YicePTRansition

— STATusDEViceNTRansition
STATusDEViceEYENE?

STaTusBevice:ENABle

Bit Weights

ERE Autocal 01 [9] ] - % B

I o - 1 7

1214 Hordwore Foiteg {2 ] ] - //4/

ERL EN — ]

| & 116 Key Prassed 14 L] |

|5 132 Display Ready |5 ] ] 1 4

|6 ¢4 RS-232-C (horocler Avaiioble (& | L = Gt 2

17128 RS-232-C Input Held OF [7 o s op

(61256  RS5.232-C Cutput Heid OF |6 ] - T > Stotus Byte

15 1512 F5-232-C Error {9 ] o ] o,

104 1024 ic

" 2048 i | ] T %

12} 4096 12 - Lt

(3] 8192 13" . -

i 638 iz ] [ ]

X &3 - - zP

5-21



Programming the Status System
Exampie Programs

Trapping Errors Using SRQ

Example This program is an example of using the Standard Event status group to force an SRQQ
on an error condition. It allows a controlier to quickly respond to error conditions.

10 Bus=7

20 ASSIGN €analyzer TO 711

30 DIM E$[100]

40 PRINTER IS CRT

50 !

60 CUTPUT Banalyzer;"*ESR?"

70 ENTER EAnalyzer;Esr_read

80 CUTPUT €Analyzer;“"*ESE 63"
90 OUTPUT EAnalyzer;"*SRE 32 *
100 OUTPUT E€analyzer; "ABORT; :INIT; *WAI"
110 ON INTR Bus GOSUB Handle srq
120 ENABLE INTR Bus;2

130 E=0

140 LOOP

150 K=K+1

160 DIsSP K

170 IF K MOD 100=0 THEN

18C OUTPUT €Analyzer;"INIT: xyzerrorcommangd”
190 END IF

200 END LOOP

210 Handle_srq:
220 Serpoll=SPOLL({fAnalyzer)
230 IF BIT(Serpoll,5) THEN
24090 LOOP
250 OUTPUT EAnalyzer; "SYST:ERR?"
260 ENTER 8Analyzeyr;ES$S

270 EXIT IF VAL(ES$)=0

280 PRINT £$

290 ENDG LOOP
300 PRINT ""

310 oUTPUT BAnalyzer; "+ESR?"
320 ENTER fAnalyzer;Esr read
330 END IF

340 ENABLE INTR BUS;Z2
350 RETURN
360 END

5-22



Programming the Status System
Example Programs

Example Program Comments
60 Clear the Standard Event Register. (SRQQ only happens on 0 to 1 transition.)

70 Perform a read to clear byte.

80 Erable bits -5 for miscellaneous errors.

90 Enable SR(Q on Standard Event Register.

100 Start the measurement.

120 The 2 indicates enabling a service request interrupt.

180 Every 100th loop forces an error to occur.

220 Read the Sratus Byte to determine which register caused the SR().
230 Continue if the Standard Event tegister caused the SR{.

250 - 270 Query the error. In genezal, multiple reads are used to get the entire stack.
310 Clear the Standard Event register to prepare it for the next transition.
320 Perform a read to clear the byte.

340 Re-enable the interrupt. The 2 indicates enabling a service request interrupt.

5-23






Glossary

Active Controller The device currently
controlling data exchanges. See also
System Controller.

Address A 7-bit code applied to the
HP-IB which enables instruments to
listen and/or talk on the Bus.

Approved Commands HP-IB
commands which will be added to SCP]

in the next revision cycle.

ASCIl Acronym for American Standard
Code for Information Interchange.

ATN A mnemonic for the control line
(Attention) which sets the operation of
the HP-IB in “Command Mode™ (ATN
"True) or “Data Mode” (ATN False).

Bit A Binary Digit. The smallest part
of a binary character which contains
intelligible information.

Bit-Parallel Refers to a set of concurrent
data bits present on a like number of
signal lines used to carry information.
Bit-parallel data bits may be acted upon
concurrently as a group (byte) or
independently as individual data bits.

Bus A set of signal lines used by an
interface system to which a number of
devices are connected and over which
messages are carried.

Bus-Management Commands HP-IB
commands which manage the bus
specifying which devices on the interface
can send data or receive data and
instruct devices on the bus to perform an
interface operation. The interface must
be in "Command Mode.”

Byte The binary character sent over the
data bus. Although a byte usually refers
to 8 bits, frequently the eighth bit is set to
0 in an HP-IB system due to ASCII
encoding.

Byte-Serial A sequence of bit-parallel
data bytes used to carry information over
a common bus.

Command Mode In this mode (ATN
True), devices on the HP-IB can be
addressed or unaddressed as talkers or
listeners. Bus commands are also issued
in this mode.

Confirmed Commands HP-IB
commands which comply to the current
version of SCPL.

Controller Any device that can use the
bus’ control lines to specify the talker and

~ listener in a data exchange. Any device

on the HP-IB which is capable of setting
the ATN line and addressing instruments
on the Bus as talkers and listeners. (See
also System Controller.)

Data Mode In this mode (ATN False),
data or instructions are transferred
between instruments on the HP-IB.




Definite Length Block Data A data
block which takes the following form:
#<num_digits> <byte_count>> <data_
byte> ...

where the single decimal digit
<num_digits> specifies how many digits
are contained in <byte count>. The
decimal number <num_bytes> specifies
how many bytes of data follow in the
block.

Delimiter A character that separates
items of data and can be used to mark
the beginning and end of a string.

Device Clear (DCL) ASCII character
“DC4" (Decimal 20) which, when sent
on the HP-IB in Command Mode returns
all devices to their cleared (initialized)
state.

Device Commands HP-IB commands
which control the device. The interface
must be in “data mode.”

DIO Mnemonic referring to the HP-IB
data lines; DIO1 to DIOS.

EOI Mnemonic referring to the control
line “End or Identify” on the HP-IB. This
line is used to indicate the end of a
multiple byte message on the Bus. It is
also used for Parallel Poll.

Forgiving Listening The instrument
will accept commands and parameters in
various formats.

Go To Local (GTL) ASCI] character
“SOH” (Decimal 01) which, when sent
on the HP-IB in Command Mode,
returns devices addressed to listen and
capable of responding to local control.

Group Execute Trigger (GET) ASCII
character “BS” (Decimal 08) which,
when sent on the HP-IB in Command
Mode, initiates simultaneous actions by
devices addressed to listen and capable of
responding to this command.

HP.IB An abbreviation that refers to
the “Hewlett-Packard Interface Bus.”

IEEE Acronym for Institute For
Electrical and Electronic Engineers.

Implied Mnemonic A keyword that you
can omit from HP-IB commands without
changing the effect of the command.

Indefinite Length Block Data A data
block which takes the following form:
#0<data_byte> ... <NL><"~END>
where the first two bytes of the data
transfer, # and 0, are the header for the
block data. The data itself does not begin
until the third byte of the data transfer,
A mandatory <NL>< ~END>
sequence which immediately follows the
last byte of block data forces the
termination of the program message.

Instrument Specific Commands HP-IR
commands which do not comply to SCPI.

Interface A common boundary between
a considered system and another system,
or between parts of a system, through
which information is conveyed.

Interface System The
device-independent mechanical,
electrical, and functional elements of an
interface necessary to effect
communication among a set of devices.
Cables, connector, driver and receiver
circuits, signal line descriptions, timing
and control conventions, and functional
logic circuits are typical interface system
elements.

G-2



Listener A device that can be addressed
to receive data over the HP-1B's data
lines.

Local Control A method whereby a
device is programmable by means of its
local (front or rear panel) controls to
enable the device to perform different

tasks. Also referred to as manual control.

Local Lockout (LLO) An HP-IB
muldline universal command (ASCII
“DCI” Decimal 17) which disables the
return-to-local control on a device
(prevents user from leaving remote
control other than cycling power).
Clearing the REN line of the HP-IB
restores local control and re-enables the

return-to-local pushbutton on every
HP-IB device.

NL Mnemonic for new line or linefeed

{ASCII character Hex “0A”", Decimal 10).

Non-Decimal Numeric Parameter A
parameter which may be specified in
hexidecimal, octal or binary formats.

Overlapped Command An HP-IB
command which does not hold off the
processing of subsequent commands.
Commands are executed while
operations initiated by the overlapped
commands are still in progress.

Parallel Poll A method of
simultaneously checking the status of
instruments on the HP-IB. Each
instrument is assigned a DIO line with
which to indicate whether it requested
service or not. More than one
instrument can be connected to one

data line.

Parameter Data Data that is sentin an
HP.IB command from the controller
{computer) to the analyzer.

Parser The part of the analyzer which
manages the analyzet’s parsing process.

Parsing A process whereby phrases in a
string of characters in a computer
language are associated with the
component names of the grammar that
generated that string.

Precise Talking The instrument always
responds to a particular queryin a
predefined, rigid format.

Primary Address That part of the
HP.IB address which specifies the device.

Program Messages Send commands,
queries and data to the analyzer.

Query Form A form of HP-IB command
that reads status registers or the state of
the analyzer.

Railroad Chart A syntax diagram which
specifies the alternative paths that may
be taken in the construction of the
allowable structures of a language.

Remote Control A method whereby a
device is programmable via its electrical
interface connection in order to enable
the device to perform different tasks.

REN Mnemonic referring to the control
line “Remote Enable” on the HP-IB. This
line is used to enable Bus compatible
instruments to respond to commands
from the controller or another talker, It
can be issued only by the system
controller.

Response Data Data in program
messages that is sent from the analyzer to
the controller {computer).

Root Level Command A command
closest to the top of the command tree.

G-3



SCP1 Acronym for the Standard
Commands for Programmable
Instruments. A standard set of
programming commands based on

IEEE 488.2.

Select Code That part of the device’s
address which specifies the interface.
Typically, HP-1B select codes are 7 or 8
and are set by the controller’s hardware. -

Set Form A form of HP-IB command
that writes to status registers or sets the
analyzer to a specific state.

Sequential Command An HP-IB
command which holds-off the processing
of subsequent commands until it has
been completely processed.

Serial Poll The method of sequentially
determining which device connected to
the HP-IB has requested service. Only
one instrument is checked at a time.

Serial Polt Disable (SPD) ASCII
character “EM” (Decimal 25) which,
when sent on the HP-IB in Command
Mode, causes the bus to leave serial poll

mode.

SRQ Mnemonic referring to the control
line “Service Request.” This control line
is used to enable Bus compatible
instruments to tell the controller that
they require service.

Status Group A set of status registers
consisting of an event register, a
condition register, transition registers,
and an enable register. '

Synchronization Procedures placed in a
program that allow for the timing of
command execution and processing.

System Controller The one device that
can take control the bus even if it is not
the active controller,

Talker A device that can be addressed
to send data over the HP-IB's data lines.

Word A group of bytes treated as z unit
and given a single location in memory
(organization defines the length of a
computer “word”) HP computers
typically use a word oriented memory
with 16-bit (2 byte) words.

WSP Mnemonic referring to white
space, ASCII characters Hex “00" to Hex
“09” or Hex “0OB” to Hex “20” (Decimal
0-9 or 11-32).

G4



Index

A

active controller  1-3, 3-6, 3-8, G-1
address
See also addressing

defined G-1
general 1.3
primary 1.3

used in examples 1.5
addressable-only 3-3
addressing
how to in HP BASIC 1.5
interface select code 1.5
the analyzer 1.3
analyzer
interface capabilities
response to bus-management commands
3.2,34
response to device commands  3-4
SCPI compliance 1.9
status groups  5-9 - 5-18
See also the HP-IB Command Reference
analyzer-specific information
See the HP-IB Coramand Reference
approved commands 1.9, G-1
arm
Waiting for ARM bir  5-15
when to synchronize  3-19
ASCII 4-16, 4-26, G-1
ATN 3-4,G-1

binary format  4-14

binary response data  4-21

bit 1.3, G-1

bit-parallel 1-3, G-1

block data 4-17

block response data  4-23 - 4.24

Boolean parameters  4-15

buffer

deadlock 3-11

defined 3-10

bus 1-3,G-1

bus-management commands  1-4, 3-4, G-1
byte 1-3,G-1

byte-serial  1-3, G-1

C

Calibrating bit  5-15
Calibration bit  5-17
colon {:),use of 2.5
comma, useof 2-6
command
abbreviation - 2-8
examples 1-4
forms 2-9-2-10
‘tree 2-3-2-4
command form 2.9, G-4
command mode 3-4, G-1
command parser
defined G-3
general  3-11
multiple commands  2-7
resetting 3-11
rules 2.5
command tree
described 2-3-24
root level command  2-5, G-3
common command 26, 3-4, 4.7
condition register
described  5-4
Operation Status  5-15
Questionable Starus  5-17
Status Byte 5-11

G- : Glossary



Index (continued)

configuring the HP-IB system

general 3-3

See also the HP-1B Command Reference
confirmed commands  1-9, G-1
conformance

See SCPI compliance

See also the HP-1B Command Reference
controller

See also active controller

capabilities 3.3

defined 1-3,G-1

See also system controller

See also the HP-IB Command Reference

dara
parameter 4.10-4-11
response  4-10, 4-19, G-3

data format
binary format  4-14
binary response data  4-21
block data parameters 4-17
block response data  4-23 - 4.24
Boolean parameters  4-15
described 410 - 4.24
discrete parameters  4-14
discrete response  4-21
expression parameters  4-15
expression response  4-22
extended numeric  4-12
floating point parameters  4-11
floating point response  4-19
hexadecimal formar  4-14
hexadecimal response data  4-20
integer pararneters  4-11
integer response  4-19
non-decimal numeric parameters 4-14
numeric parameters 4-11
octal format  4-14
octal response data  4.20
response 419
string parameters  4-16
string response  4-22

datamode 3-4, G-1

data types 4-10-4-24

definite length block data  4-17, 4-23, G-2

delimiter 4-16, G-2
Device Clear (DCL) 3-5,G-2

device commands  1-4, 3-4, G.2
DIO

defined (G-2

general 1-3

See also HP-1B, hardware
discrete parameters  4-14
discrete response data  4.21

enable register
described  5-5
Sratus Byte  5-11
~END 4.5
End or Identify (EOI) 4.5
EOQI 4-3,G-2
error queve  3-10
error, query interrupt 3.13
event register
described 54
Standard Evenr  5-13
example programs
generating service request  5-20, 5.22
how to use status groups  5-20, 5-22
loading data  4-30
reading floating point data  4-28
reading trace data  4-26
examples
address 1.5
bus-management commands  3-4
command 1-4
howtouse 14
programming 1.4
response  1-5
synchronization 3-14 - 3.26, 3.28
expression parameters 4-15
expression response data  4-22
extended numeric parameters  4-12

F

floating point response data  4-19
forgiving listening  4-10, G-2

2 G- : Glossary



Index (continued)

G

Go To Local (GTL) 3-5,G-2
Group Execute Trigger (GET) 3-5,G-2

hexadecimal format 4-14

hexadecimal response data  4-20
HP BASIC addressing  1-5

HP-IB
command mode 3-4 - 3.8
defined G-2

device commands  1-4

device mode 3-4-3-8

END message 4-8

hardware 1.3

interface capabilities 3-2

message exchange 3-9-3-11
overview 1.3-1.5

queues  3-10

sending commands 1-4

See also the HP-IB Command Reference

IEEE G-2

IEEE 488.1 standard  1-6
IEEE 488.2 standard  1-6
implied mnemonic G-2
implied mnemonics  2-11

indefinite length block data  4-17, 4-24,

G-2
input queue  3-10
instrument specific commands G-2
instrument-specific information

See the HP-IB Command Reference
integer response data  4-19
interface

capabilities 3-2

defined G-2

selectcode 1.5, G-4

system  1-3-1-5,G.2

See also the HP-1B Command Reference
Interface Clear (IFC) 3-6

K

keywords
identifying implied mnemonics 2411
implied mnemonics  2-11
short form  2-8

L

line feed character (LF)

Sez new line character
listener 1-3,G-3
local control 3.5 -3.6,G-3
Local Lockout {LLO} 3.6, G-3
long form (command) 2-8

master summary bit {(MSS} 3.7, 5-11

" MAVbit 5-11

measurement data
Measuring bit  5-15
restarting measurements  3.26
sequence of operations  3-18
message
exchange 3-9-3-11
syntax 4-2
termination 4.5
terminators  2-3
Message Available bit  3-11
multiple commands  2-7

new line character (NL} 4.5, G-3
non-decimal numeric parameters
4-14,G-3

numeric parameters 4-11

0

octal formar  4-14

octal response data 4-20

*OPC 3-16

*OPCl 3-15

Operation Status Group  5-14
Measuring bit  3-22
Waiting for ARM bit  3-23
Waiting for TRIG bir  3-23

G- : Glossary



Index (continued)

cutput queue  3-11
overlapped command

defined 3-12,G-3

when to synchronize  3-18

P

parallel poll  3-6, G-3
parameters 4-10-4-24

asdata G-3

block data  4-17

Boolean 4-15

described 4-11

discrete  4-14

expression 4-15

extended numeric  4-12

non-decimal numeric  4-14

numeric  4-1}

string  4-16

suffix clements  4-12

suffix muldpliers  4-13
parser 2-3, 3-5,3-10 - 3-11, G-3
parsing G-3
passing control  3-27 - 3-28
polling method 5-6
precise talking  4-10, G-3
primary address -3
program message 3-9, 4-4 - 4.7, G-3
program message terminators  4-5
programrming examples 1-4

0

query

command form 2.9 - 2-10

defined G-3

determining units  2-9

interrupt error  3-13

of status groups  5-18

response generation  3-11
Questionable Status group  5-16
queves 3-10

See also the HP-IB Command Reference

railroad charts

defined G-3
railroad charts,how to read  4-3
Ranging bit  5-15
register set

See status group
remote control  3-6 - 3.7, G-3
Remote Enable (REN) 3.6 - 3.7, (3-3
request service bit (RS}  5-7, 5.11
response data

binary 4-21

block 4-23-4.24

defined (5.3

discrete  4-21

expression  4-22

floating point 4419

hexadecimal 4-20

integer 4-19

octal 4-20

string  4-22
response examples 1.5
response message  3-9, 4-8 - 4.9
root level command  2-5, G-3

S

sample programs

See example programs
SCPI

background 1-6

commands 1.9

compliance 1-9

defined G4

subsystems 2-3

See also the HP-IB Command Reference

version 1.9
select code G-4
Selected Device Clear (SDC) 3.7
semicolon, use of 2.5
sending multiple commands 27
sequence of operations  3-19 - 3.26, 3.28
sequential command 3-12, G-4
Serial Poll 3.7, 5.7 - 5.8, 5-11, G4
Serial Poll Disable (SPD) 3-6 - 3-7, G-4
service request  5-7 - 3-8

described 5-6

generating  3-16

4 G- : Glossary



Index {continued)

Service Request enable register
initiating SRQ  5-8

set form 2-9, G4

Sertlingbit  5-15

short form {(command} 2-8

space character 2-4, 2-6

special syntactic elements  2-5

SRQ)
defined G-4
described 5-7

initiating 5-8
interrupt  3-16, 3-21
Standard Event status group  5-12
*OPC 3-16
*OPC! 315
*WAI 3-14
Status Byte 5.8, 3-10
status group
defined G4
See also example programs
general model 5.3 - 5-5
howtouse 5-6-5-8

master summary (MSS) 5.7, 5-10

Operation Status  5-14
polling method  5-6
Questionable Status  5-16

request service {RQJS) 5.7, 5-1C

SRO method 5-7
Standard Event  5-12
Status Byte  5-10

See also the HP-IB Command Reference

status register
See status group
string parameters  4-16
string response data  4-22
subsystem command 34, 4-6
suffix elements 412
suffix multipliers 4-13
synchronization 3-12 - 3-26, G-4
See also passing control
syntax
data formats 4-10 - 4-24
diagrams,how toread 4.3
message terminators  4-5
program message 4-4 - 4.7
response message  4-8 - 4.9
system controller 1.3, 3.3, G4

T

Take Control Talker (TCT) 3-8

ralker 1-3,GH4

transition register  5-4

trigger
Group Execute Trigger  3-5
Waiting for TRIG bit  5-15
when to synchronize 3-19, 3.21

U

units
determining  2-9
suffix elements  4-12

W

*"WAI 3-14
word 2-5,G4
WSP 2.6, G-4

G- : Glossary






