
5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 1/9

ragges / hp_display Public

A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

 View license

 4 stars 0 forks

View code

hp_display
A decoder and external display interface for certain HP/Agilent (now Keysight) instruments
that have VFD:s (vacuum fluorescent display), which have a tendency to wear out and get
unreadable over time.

Demo video

 Star Notifications

Code Issues Pull requests Actions Projects Wiki Security Insig

 master Go to file

ragges initial checkin … on Feb 12, 2019 1

https://github.com/ragges
https://github.com/ragges/hp_display
https://github.com/ragges/hp_display/blob/master/LICENSE-code
https://github.com/ragges/hp_display/stargazers
https://github.com/ragges/hp_display/network/members
https://github.com/login?return_to=%2Fragges%2Fhp_display
https://github.com/login?return_to=%2Fragges%2Fhp_display
https://github.com/ragges/hp_display
https://github.com/ragges/hp_display/issues
https://github.com/ragges/hp_display/pulls
https://github.com/ragges/hp_display/actions
https://github.com/ragges/hp_display/projects?type=beta
https://github.com/ragges/hp_display/wiki
https://github.com/ragges/hp_display/security
https://github.com/ragges/hp_display/pulse
https://github.com/ragges/hp_display/find/master
https://github.com/ragges/hp_display/commits?author=ragges
https://github.com/ragges/hp_display/commit/6286f14d9957033fef15374a558c6bab8ad1c9b3
https://github.com/ragges/hp_display/commit/6286f14d9957033fef15374a558c6bab8ad1c9b3
https://github.com/ragges/hp_display/commits/master
https://github.com/ragges

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 2/9

This is an example with an 1.54 inch 128*64 pixel OLED and a 20x4 character LCD (of the
cheapest and slowest kind), driven by the same microcontroller.

This is built for the 53131A 225 MHz Universal Frequency Counter/Timer.

It can likely be made to work also on the 53132A and 53181A counters, as well as the
58503B GPS Time and Frequency Reference Receiver with the display option (and perhaps
also on those without the display option?). With some modification, it may also work on a
34401A Digital Multimeter which has a similar display but with different labels, possibly on
the N3300A/N3301A (34/40 bit, or 5 bytes, SPI words?), and several others.

This implementation is built on an AVR based Arduino to keep it simple and cheap, but of
course could be ported to other hardware as well.

Other display types can easily be added.

The microcontroller serial interface also shows the display readings, and works as a console
for basic debugging.

Implementation description

README.md

https://vimeo.com/313702622

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 3/9

The original instrument display is a 12 character position 14 segment display, with extra
segments for separators (.,:;), units, and text labels such as "Freq", "Ch1" and "Gate".

This decoder maps segment combinations to the corresponding ASCII characters codes. It
also decodes the separators, the labels and the highlighting.

The interface from the instrument to the display is similar to SPI, with the main difference
that the /SS line equivalent, VFDSEN, is inverted. The 53131A display uses a SN75518 VFD
driver, which essentially is a 32 bit shift register with output latches and output drivers that
work with the ~40 volts a VFD needs.

The SPI data is sent in 32 bit words describing which character segments, separators and
labels on which character position should be lit, one word per character position. There are
also 4 extra words used for highlighting of up to 4 characters, by driving those character
positions and segments given on those words twice per cycle. A cycle of 12+4 words is
here called a frame.

The microcontroller SPI interface needs a /SS input signal to work in slave mode. Another
GPIO microcontroller pin is used to generate a fake /SS signal.

Unknown segment combinations are mapped to the character "x" - if you see any of those
you can add mapping for the unknown character, see below.

Since the VFD has ./,/:/; separators between all the 12 digits, a corresponding text string
has between 12 and 23 characters. In reality, it seems that there are never more than 4
separators used at the same time, except during display test, which means that the
maximum length during normal use is 16 characters.

The decoder can generate full ASCII strings for all the information, but a display
implementation may want to do something more fancy than just showing strings.

For more details of the protocol, see doc/protocol_descr.txt.

Hardware - MCU

https://camo.githubusercontent.com/9c41585e5f1809dae49d6f6d64139869e226d5d63f0e2ddb65ade997ff7404ec/68747470733a2f2f70656f706c652e6b74682e73652f7e72616767652f68705f646973706c61792f68705f646973706c61795f7666642e6a7067
https://github.com/ragges/hp_display/blob/master/doc/protocol_descr.txt

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 4/9

This implementation was tested on an Arduino Pro Micro with a ATmega32U4 and an
Arduino Nano third party copy with an ATMega328. Both of those boards, and several
other Arduinos, use one or the other of the SPI signals for a LED, and all signals may not be
easily accessible on a pin. These problems can generally be solved by some minor
modifications, but there also are boards that should work without any changes.

For more details, see doc/mcu-selection.md.

The code comes configured for the pinout of an Arduino Pro Micro.

For an Arduino Nano, in hp_display_config.h, uncomment/enable the line: #define
ARDUINO_NANO

For other controllers, you may have to adjust the pinout in the different files.

Hardware - Display

The prototype was tested with three different displays, though other kinds may be more
suitable for permanent installation in the instrument.

An ordinary 4 rows * 20 character display with a HD44780 compatible controller, used
in parallell mode (4 bits). There are many displays with good readability that are
compatible with this kind, or are similar, TN/STN/VATN LCD:s, OLED:s, and even VFD:s.

A 0.96 inch 128*64 pixel OLED with SSD1306 controller and I2C communication.

A 1.54 inch 128*64 pixel OLED with SSD1309 controller and SPI communication.

Other display types can be added with a little programming.

For more details, see doc/display-selection.md.

Hardware, preparations

The SPI /SS input needs to be driven by a negative active signal which the instrument does
not provide, so this is done with another pin configured for output, SS_OUT.

If any of the SPI pins /SS, SCK or MOSI have a LED connected on the microcontroller board,
this load must be removed, either by removing the LED itself or its current limiting resistor.

Use a ~1-3 kOhm resistor between the SPI /SS input pin and the SS_OUT pin. Resistor
value is not really important, but it is safer to not just wire the pins together, and it should
not be too large since together with the capacitance it will form a low pass filter and make
the /SS input slow.

https://github.com/ragges/hp_display/blob/master/doc/mcu-selection.md
https://github.com/ragges/hp_display/blob/master/doc/display-selection.md

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 5/9

Hardware, wiring, pinouts and connections

For wiring see:

SPI interface to the instrument, see:
Below
hp_display_spi.cpp

Interface for the parallel character display, see:
lcd_20x4_hd44780.cpp

Interface for the SPI or I2C graphical OLEDs, see:
oled_128x64.cpp

Building the firmware

The software can be built and downloaded to the microcontroller using the Arduino IDE.

Some general options, like choosing between a Arduino Pro Micro or Nano for the pinout,
or enabling support for the displays, can be configured in the hp_display_config.h file.

The display drivers need interface libraries, which can be downloaded and installed from
within the IDE. The LCD character display needs the "hd44780" library (version 1.0.1), and
the OLED graphical displays needs the U8g2 library (version 2.24.3).

Interface to instrument

WARNING - Protect your instrument!

It is strongly recommended to protect the signals from the instrument, in case of an
accidental short or similar.

On the +5 volt feed, use BAT41, BAT42 or other low voltage drop diode, or at least a
small fuse in the 100-200 mA range.
On the signal wires, VFDSCLK, VFDSIN, VFDSOUT and VFDSEN, use a resistor in the
range 1 kOhm to 3.3 kOhm or so.

For 53131A:

The signals can be found on the back of the display board, where the ribbon cable
connects to the board. It may be a good idea to solder some pin headers to be able to
detach the cables. It then may also be good to use headers with 3 pins or more, soldered
on all pins, to add some mechanical stability.

https://github.com/ragges/hp_display/blob/master/hp_display_spi.cpp
https://github.com/ragges/hp_display/blob/master/lcd_20x4_hd44780.cpp
https://github.com/ragges/hp_display/blob/master/oled_128x64.cpp

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 6/9

53131A J1 pins:

9 - GND
10 - +5V
12 - VFDSCLK - to Arduino SPI SCK
14 - VFDSIN - not used
16 - VFDSOUT - to Arduino SPI MOSI
18 - VFDSEN - to Arduino,
20 - +5V

3 pin header strips soldered to the back of the instrument's display board.

For other instruments:

------------+ +-------------------
 +---+ Top of 53131A
 27 9 1 front panel
 o o o o o o o o o o o o o o board, back side

 J1 o o o o o o o o o o o o o o
 28 20 18 16 14 12 10 2

https://camo.githubusercontent.com/f3b5ef636c1462319b701c38f07d32ccca39630e93b80c0d4300c4d2df31544f/68747470733a2f2f70656f706c652e6b74682e73652f7e72616767652f68705f646973706c61792f68705f646973706c61795f636f6e6e2e6a7067

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 7/9

You may want to check the schematics and/or find the signals using some other means.
VFDSCLK has a 2 x 16 cycle ~1 MHz burst once every ~millisecond, VFDSOUT has data
synchronised with VFDSCLK, VFDSEN is high during these bursts. Note that e.g. the front
panel LED control signal may look very similar.

WARNING - There are 40 volts or so on some pinm and some 10 volts or so on some
other pins for driving the VFD, be careful not to short pins.

Debugging:

Connect a terminal to the controller serial port and see if you get any readings. If not, type
"debug" and get some more information that may be helpful. Some spi_frame_sync_i and
spi_msgs_incom are normal, often one or a few a second, especially when using the USB
port as USB has a higher priority interrupt.

Possible compatibility issues

There may be compatibility issues with other models and/or software revisions - it is only
tested on a 53131A with software REV: 3944.

Of it will not sync on an instrument with the same VFD driver and display, one probable
cause would be that the frame sequence, the order in which the words for the different
character positions are sent, is different. The frame sequence is used to keep track of the
when the extra highlighting fields in a frame are to arrive, and needs to match
spi_frame_seq for the decoding to work.

With some modification, the decoder may be usable on 34401A Digital Multimeter - the
display is similar but has different text labels, and it seems that the display elements that
are units and Gate indicators on the timing instruments are more like mode labels on the
multimeter. The VFD controller may be connected differently to the VFD, in which case the
SPI message and character decoding will need some work.

It may be possible to use this interface as a display on an instrument without the display
option, as the 58503B. It is possible that the instrument uses VFDSIN to check that it has
connectivity to the display. It may help to connect the SPI MISO signal from the
microcontroller to VFDSIN. The VFD driver in the 53131A, SN75518, has a 32 bit shift
register between MOSI and MISO, the AVRs only an 8 bit register, which the instrument
may or may not like.

Character decoding, and the "x" character

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 8/9

Segment combinations (characters) that have not yet been mapped to ASCII characters are
displayed as "x". The firmware remembers unknown segment combinations, they can be
listed with the "unk" command in the serial console. To map them, copy the hex code(s)
into codes-in.list, run "python charmap.py" to try to visually decode the character and reply
with either the correct character or "x" to skip. The mapping will be added to codes-
mapped.list. Use "python gencode.py" to generate a C file, segmapgen.c, with the
mappings, and copy that file into the Arduino project directory.

Some 14 segment display combinations are ambiguous, as the digit zero, "0", and the
letter "O" as in Oscar. Some checking of the characters surrounding it will get a guess of
the correct interpretation. Also, "<" and "(", and ">" and ")", look the same on the 14
segment display. They are currently mapped to "(" and ")".

Implementation details and notes

Using a pure interrupt driven SPI client results in many buffer overruns on the ATMega
32U4, probably because of other interrupt service routines blocking the SPI servicing for
the ~8 us window it has to read a SPI byte in 1 Mb/s. Using the SPI interrupt for the first
byte and polling the remaining three bytes improves things, but also often results in buffer
overrun.

Instead, the implementation uses the VFDSEN on a pin with interrupt capability, to get a
high priority interrupt as early as possible in the cycle. It then polls for the four SPI bytes,
locking out all other interrupts for the ~36 microseconds it takes to receive the bytes.
Using this method, there are typically no buffer overruns at all.

License

This project is licensed under the GPL v3 license, except for a modified font that is licensed
separately - see the LICENSE-font for details.

Releases

No releases published

Packages

No packages published

https://github.com/ragges/hp_display/blob/master/LICENSE-font
https://github.com/ragges/hp_display/releases
https://github.com/users/ragges/packages?repo_name=hp_display

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 9/9

Languages

C++ 59.0% C 31.6% Python 9.2% Shell 0.2%

https://github.com/ragges/hp_display/search?l=c%2B%2B
https://github.com/ragges/hp_display/search?l=c
https://github.com/ragges/hp_display/search?l=python
https://github.com/ragges/hp_display/search?l=shell

