
5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 1/9

ragges / hp_display Public

A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

View license

4
stars

0
forks

View code

hp_display
A decoder and external display interface for certain HP/Agilent (now
Keysight) instruments
that have VFD:s (vacuum fluorescent display),
which have a tendency to wear out and get
unreadable over time.

Demo video

Star Notifications

Code Issues Pull requests Actions Projects Wiki Security Insig

master
 Go to file

ragges
initial checkin … on Feb 12, 2019
1

https://github.com/ragges
https://github.com/ragges/hp_display
https://github.com/ragges/hp_display/blob/master/LICENSE-code
https://github.com/ragges/hp_display/stargazers
https://github.com/ragges/hp_display/network/members
https://github.com/login?return_to=%2Fragges%2Fhp_display
https://github.com/login?return_to=%2Fragges%2Fhp_display
https://github.com/ragges/hp_display
https://github.com/ragges/hp_display/issues
https://github.com/ragges/hp_display/pulls
https://github.com/ragges/hp_display/actions
https://github.com/ragges/hp_display/projects?type=beta
https://github.com/ragges/hp_display/wiki
https://github.com/ragges/hp_display/security
https://github.com/ragges/hp_display/pulse
https://github.com/ragges/hp_display/find/master
https://github.com/ragges/hp_display/commits?author=ragges
https://github.com/ragges/hp_display/commit/6286f14d9957033fef15374a558c6bab8ad1c9b3
https://github.com/ragges/hp_display/commit/6286f14d9957033fef15374a558c6bab8ad1c9b3
https://github.com/ragges/hp_display/commits/master
https://github.com/ragges

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 2/9

This is an example with an 1.54 inch 128*64 pixel OLED and a 20x4
character LCD (of the
cheapest and slowest kind), driven by the same
microcontroller.

This is built for the 53131A 225 MHz Universal Frequency
Counter/Timer.

It can likely be made to work also on the 53132A and 53181A counters,
as well as the
58503B GPS Time and Frequency Reference Receiver with
the display option (and perhaps
also on those without the display
option?). With some modification, it may also work on a
34401A Digital
Multimeter which has a similar display but with different labels,
possibly on
the N3300A/N3301A (34/40 bit, or 5 bytes, SPI words?), and
several others.

This implementation is built on an AVR based Arduino to keep it simple
and cheap, but of
course could be ported to other hardware as well.

Other display types can easily be added.

The microcontroller serial interface also shows the display readings,
and works as a console
for basic debugging.

Implementation description

README.md

https://vimeo.com/313702622

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 3/9

The original instrument display is a 12 character position 14 segment
display, with extra
segments for separators (.,:;), units, and text
labels such as "Freq", "Ch1" and "Gate".

This decoder maps segment combinations to the corresponding ASCII
characters codes. It
also decodes the separators, the labels and the
highlighting.

The interface from the instrument to the display is similar to SPI,
with the main difference
that the /SS line equivalent, VFDSEN, is
inverted. The 53131A display uses a SN75518 VFD
driver, which
essentially is a 32 bit shift register with output latches and output
drivers that
work with the ~40 volts a VFD needs.

The SPI data is sent in 32 bit words describing which character
segments, separators and
labels on which character position should be
lit, one word per character position. There are
also 4 extra words
used for highlighting of up to 4 characters, by driving those
character
positions and segments given on those words twice per
cycle. A cycle of 12+4 words is
here called a frame.

The microcontroller SPI interface needs a /SS input signal to work in
slave mode. Another
GPIO microcontroller pin is used to generate a
fake /SS signal.

Unknown segment combinations are mapped to the
character "x" - if you see any of those
you can add mapping for the
unknown character, see below.

Since the VFD has ./,/:/; separators between all the 12 digits, a
corresponding text string
has between 12 and 23 characters. In
reality, it seems that there are never more than 4
separators used at
the same time, except during display test, which means that the
maximum length during normal use is 16 characters.

The decoder can generate full ASCII strings for all the information,
but a display
implementation may want to do something more fancy than
just showing strings.

For more details of the protocol, see
doc/protocol_descr.txt.

Hardware - MCU

https://camo.githubusercontent.com/9c41585e5f1809dae49d6f6d64139869e226d5d63f0e2ddb65ade997ff7404ec/68747470733a2f2f70656f706c652e6b74682e73652f7e72616767652f68705f646973706c61792f68705f646973706c61795f7666642e6a7067
https://github.com/ragges/hp_display/blob/master/doc/protocol_descr.txt

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 4/9

This implementation was tested on an Arduino Pro Micro with a
ATmega32U4 and an
Arduino Nano third party copy with an
ATMega328. Both of those boards, and several
other Arduinos, use one
or the other of the SPI signals for a LED, and all signals may not be
easily accessible on a pin. These problems can generally be solved by
some minor
modifications, but there also are boards that should work
without any changes.

For more details, see doc/mcu-selection.md.

The code comes configured for the pinout of an Arduino Pro Micro.

For an Arduino Nano, in hp_display_config.h, uncomment/enable the line:
 #define
ARDUINO_NANO

For other controllers, you may have to adjust the pinout in the
different files.

Hardware - Display

The prototype was tested with three different displays, though other
kinds may be more
suitable for permanent installation in the
instrument.

An ordinary 4 rows * 20 character display with a HD44780 compatible
controller, used
in parallell mode (4 bits). There are many displays
with good readability that are
compatible with this kind, or are
similar, TN/STN/VATN LCD:s, OLED:s, and even VFD:s.

A 0.96 inch 128*64 pixel OLED with SSD1306 controller and I2C
communication.

A 1.54 inch 128*64 pixel OLED with SSD1309 controller and SPI
communication.

Other display types can be added with a little programming.

For more details, see doc/display-selection.md.

Hardware, preparations

The SPI /SS input needs to be driven by a negative active signal which
the instrument does
not provide, so this is done with another pin
configured for output, SS_OUT.

If any of the SPI pins /SS, SCK or MOSI have a LED connected on the
microcontroller board,
this load must be removed, either by removing
the LED itself or its current limiting resistor.

Use a ~1-3 kOhm resistor between the SPI /SS input pin and the SS_OUT
pin. Resistor
value is not really important, but it is safer to not
just wire the pins together, and it should
not be too large since
together with the capacitance it will form a low pass filter and make
the /SS input slow.

https://github.com/ragges/hp_display/blob/master/doc/mcu-selection.md
https://github.com/ragges/hp_display/blob/master/doc/display-selection.md

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 5/9

Hardware, wiring, pinouts and connections

For wiring see:

SPI interface to the instrument, see:
Below
hp_display_spi.cpp

Interface for the parallel character display, see:
lcd_20x4_hd44780.cpp

Interface for the SPI or I2C graphical OLEDs, see:
oled_128x64.cpp

Building the firmware

The software can be built and downloaded to the microcontroller using
the Arduino IDE.

Some general options, like choosing between a Arduino Pro Micro or Nano
for the pinout,
or enabling support for the displays, can be
configured in the hp_display_config.h file.

The display drivers need interface libraries, which can be downloaded
and installed from
within the IDE. The LCD character display needs the
"hd44780" library (version 1.0.1), and
the OLED graphical displays
needs the U8g2 library (version 2.24.3).

Interface to instrument

WARNING - Protect your instrument!

It is strongly recommended to protect the signals from the
instrument, in case of an
accidental short or similar.

On the +5 volt feed, use BAT41, BAT42 or other low voltage drop
diode, or at least a
small fuse in the 100-200 mA range.
On the signal wires, VFDSCLK, VFDSIN, VFDSOUT and VFDSEN, use a
resistor in the
range 1 kOhm to 3.3 kOhm or so.

For 53131A:

The signals can be found on the back of the display board, where the
ribbon cable
connects to the board. It may be a good idea to solder
some pin headers to be able to
detach the cables. It then may also be
good to use headers with 3 pins or more, soldered
on all pins, to add
some mechanical stability.

https://github.com/ragges/hp_display/blob/master/hp_display_spi.cpp
https://github.com/ragges/hp_display/blob/master/lcd_20x4_hd44780.cpp
https://github.com/ragges/hp_display/blob/master/oled_128x64.cpp

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 6/9

53131A J1 pins:

9 - GND
10 - +5V
12 - VFDSCLK - to Arduino SPI SCK
14 - VFDSIN - not used
16 - VFDSOUT - to Arduino SPI MOSI
18 - VFDSEN - to Arduino,
20 - +5V

3 pin header strips soldered to the back of the instrument's display board.

For other instruments:

------------+ +-------------------

 +---+ Top of 53131A

 27 9 1 front panel

 o o o o o o o o o o o o o o board, back side

 J1 o o o o o o o o o o o o o o

 28 20 18 16 14 12 10 2

https://camo.githubusercontent.com/f3b5ef636c1462319b701c38f07d32ccca39630e93b80c0d4300c4d2df31544f/68747470733a2f2f70656f706c652e6b74682e73652f7e72616767652f68705f646973706c61792f68705f646973706c61795f636f6e6e2e6a7067

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 7/9

You may want to check the schematics and/or find the signals using
some other means.
VFDSCLK has a 2 x 16 cycle ~1 MHz burst once every
~millisecond, VFDSOUT has data
synchronised with VFDSCLK, VFDSEN is
high during these bursts. Note that e.g. the front
panel LED control
signal may look very similar.

WARNING - There are 40 volts or so on some pinm and some 10 volts
or so on some
other pins for driving the VFD, be careful not to short
pins.

Debugging:

Connect a terminal to the controller serial port and see if you get
any readings. If not, type
"debug" and get some more information that
may be helpful. Some spi_frame_sync_i and
spi_msgs_incom are normal,
often one or a few a second, especially when using the USB
port as USB
has a higher priority interrupt.

Possible compatibility issues

There may be compatibility issues with other models and/or software
revisions - it is only
tested on a 53131A with software REV: 3944.

Of it will not sync on an instrument with the same VFD driver and
display, one probable
cause would be that the frame sequence, the
order in which the words for the different
character positions are
sent, is different. The frame sequence is used to keep track of the
when the extra highlighting fields in a frame are to arrive, and needs
to match
spi_frame_seq for the decoding to work.

With some modification, the decoder may be usable on 34401A Digital
Multimeter - the
display is similar but has different text labels, and
it seems that the display elements that
are units and Gate indicators
on the timing instruments are more like mode labels on the
multimeter. The VFD controller may be connected differently to the
VFD, in which case the
SPI message and character decoding will need
some work.

It may be possible to use this interface as a display on an instrument
without the display
option, as the 58503B. It is possible that the
instrument uses VFDSIN to check that it has
connectivity to the
display. It may help to connect the SPI MISO signal from the
microcontroller to VFDSIN. The VFD driver in the 53131A, SN75518, has
a 32 bit shift
register between MOSI and MISO, the AVRs only an 8 bit
register, which the instrument
may or may not like.

Character decoding, and the "x" character

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 8/9

Segment combinations (characters) that have not yet been mapped to
ASCII characters are
displayed as "x". The firmware remembers unknown
segment combinations, they can be
listed with the "unk" command in the
serial console. To map them, copy the hex code(s)
into codes-in.list,
run "python charmap.py" to try to visually decode the character and
reply
with either the correct character or "x" to skip. The mapping
will be added to codes-
mapped.list. Use "python gencode.py" to
generate a C file, segmapgen.c, with the
mappings, and copy that file
into the Arduino project directory.

Some 14 segment display combinations are ambiguous, as the digit zero,
"0", and the
letter "O" as in Oscar. Some checking of the characters
surrounding it will get a guess of
the correct interpretation. Also,
"<" and "(", and ">" and ")", look the same on the 14
segment
display. They are currently mapped to "(" and ")".

Implementation details and notes

Using a pure interrupt driven SPI client results in many buffer
overruns on the ATMega
32U4, probably because of other interrupt
service routines blocking the SPI servicing for
the ~8 us window it
has to read a SPI byte in 1 Mb/s. Using the SPI interrupt for the
first
byte and polling the remaining three bytes improves things, but
also often results in buffer
overrun.

Instead, the implementation uses the VFDSEN on a pin with interrupt
capability, to get a
high priority interrupt as early as possible in
the cycle. It then polls for the four SPI bytes,
locking out all other
interrupts for the ~36 microseconds it takes to receive the
bytes.
Using this method, there are typically no buffer overruns at
all.

License

This project is licensed under the GPL v3 license, except for a
modified font that is licensed
separately - see the
LICENSE-font for details.

Releases

No releases published

Packages

No packages published

https://github.com/ragges/hp_display/blob/master/LICENSE-font
https://github.com/ragges/hp_display/releases
https://github.com/users/ragges/packages?repo_name=hp_display

5/9/22, 7:22 AM GitHub - ragges/hp_display: A decoder and external display interface for certain HP/Agilent (now Keysight) instruments

https://github.com/ragges/hp_display 9/9

Languages

C++ 59.0%
 C 31.6%
 Python 9.2%
 Shell 0.2%

https://github.com/ragges/hp_display/search?l=c%2B%2B
https://github.com/ragges/hp_display/search?l=c
https://github.com/ragges/hp_display/search?l=python
https://github.com/ragges/hp_display/search?l=shell

