

Programming

Guide

Keysight
M9393A PXIe
Performance Vector
Signal Analyzer
(9 kHz to 27 GHz)

Warranty

The material contained in this document is

provided “as is,” and is subject to being

changed, without notice, in future editions.

Further, to the maximum extent permitted

by applicable law, Keysight disclaims all

warranties, either express or implied, with

regard to this manual and any information

contained herein, including but not limited

to the implied warranties of merchantability

and fitness for a particular purpose. Keysight

shall not be liable for errors or for incidental

or consequential damages in connection

with the furnishing, use, or performance of

this document or of any information

contained herein. Should Keysight and the

user have a separate written agreement

with warranty terms covering the material in

this document that conflict with these

terms, the warranty terms in the separate

agreement shall control.

Safety Notices

The following safety precautions should be

observed before using this product and any

associated instrumentation.

This product is intended for use by qualified

personnel who recognize shock hazards and

are familiar with the safety precautions

required to avoid possible injury. Read and

follow all installation, operation, and main-

tenance information carefully before using

the product.

Notices

© Keysight Technologies, Inc. 2014

No part of this manual may be reproduced in

any form or by any means (including elec-

tronic storage and retrieval or translation

into a foreign language) without prior agree-

ment and written consent from Keysight

Technologies, Inc. as governed by United

States and international copyright laws.

Manual Part Number

M9393-90007 If this product is not used as specified,

the protection provided by the equipment

could be impaired. This product must be

used in a normal condition (in which all

means for protection are intact) only.

The types of product users are:

Edition

September 2014. Build

07.08.1606

Responsible body is the individual or

group responsible for the use and

maintenance of equipment, for ensur-

ing that the equipment is operated

within its specifications and oper-

ating limits, and for ensuring oper-

ators are adequately trained.

Operators use the product for its

intended function. They must be

trained in electrical safety pro-

cedures and proper use of the instru-

ment. They must be protected from

electric shock and contact with haz-

ardous live circuits.

Maintenance personnel perform

routine procedures on the product to

keep it operating properly (for

example, setting the line voltage or

replacing consumable materials).

Maintenance procedures are

described in the user documentation.

The procedures explicitly state if the

operator may perform them. Other-

wise, they should be performed only

by service personnel.

Service personnel are trained to

work on live circuits, perform safe

installations, and repair products.

Only properly trained service per-

sonnel may perform installation and

service procedures.

n
Sales and Technical Support

For product specific information and support,

and to obtain the latest software and doc-

umentation, refer to:

www.keysight.com/find/m9393a

Technology Licenses

The hardware and/or software described in

this document are furnished under a license

and may be used or copied only in accord-

ance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a

U.S. Government prime contract or sub-

contract, Software is delivered and licensed

as “Commercial computer software” as

defined in DFAR 252.227-7014 (June 1995),

or as a “commercial item” as defined in FAR

2.101(a) or as “Restricted computer soft-

ware” as defined in FAR 52.227-19 (June

1987) or any equivalent agency regulation or

contract clause. Use, duplication or dis-

closure of Software is subject to Keysight

Technologies’ standard commercial license

terms, and non-DOD Departments and

Agencies of the U.S. Government will receive

no greater than Restricted Rights as defined

in FAR 52.227-19(c)(1-2) (June 1987). U.S.

Government users will receive no greater

than Limited Rights as defined in FAR 52.227-

14 (June 1987) or DFAR 252.227-7015 (b)(2)

(November 1995), as applicable in any tech-

nical data.

n
Worldwide contact information for repair and

service can be found at

www.keysight.com/find/assist.

Information on preventing damage to your

Keysight equipment can be found at

www.keysight.com/find/tips.
n

Regulatory Compliance

This product has been designed and tested

in accordance with accepted industry

standards, and has been supplied in a safe

condition. To review the Declaration of

Conformity, go to

http:/regulations.corporate.keysight.com

/DoC/search.htm.

n

http://www.keysight.com/find/m9393a
http://www.keysight.com/find/assist
http://www.keysight.com/find/tips
http://regulations.corporate.agilent.com/DoC/search.htm
http://regulations.corporate.agilent.com/DoC/search.htm

Keysight products are designed for use with

electrical signals that are rated Meas-

urement Category I and Measurement Cat-

egory II, as described in the International

Electrotechnical Commission (IEC) Standard

IEC 60664. Most measurement, control, and

data I/O signals are Measurement Category

I and must not be directly connected to

mains voltage or to voltage sources with

high transient over-voltages. Measurement

Category II connections require protection

for high transient over-voltages often asso-

ciated with local AC mains connections.

Assume all measurement, control, and data

I/O connections are for connection to Cat-

egory I sources unless otherwise marked or

described in the user documentation.

Exercise extreme caution when a shock haz-

ard is present. Lethal voltage may be present

on cable connector jacks or test fixtures. The

American National Standards Institute

(ANSI) states that a shock hazard exists

when voltage levels greater than 30V RMS,

42.4V peak, or 60VDC are present. A good

safety practice is to expect that hazardous

voltage is present in any unknown circuit

before measuring.

Operators of this product must be protected

from electric shock at all times. The respons-

ible body must ensure that operators are pre-

vented access and/or insulated from every

connection point. In some cases, connections

must be exposed to potential human contact.

Product operators in these circumstances

must be trained to protect themselves from

the risk of electric shock. If the circuit is cap-

able of operating at or above 1000V, no con-

ductive part of the circuit may be exposed.

Do not connect switching cards directly to

unlimited power circuits. They are intended

to be used with impedance-limited sources.

NEVER connect switching cards directly to

AC mains. When connecting sources to

switching cards, install protective devices to

limit fault current and voltage to the card.

Before operating an instrument, ensure that

the line cord is connected to a properly-

grounded power receptacle. Inspect the con-

necting cables, test leads, and jumpers for

possible wear, cracks, or breaks before each

use.

When installing equipment where access to

the main power cord is restricted, such as

rack mounting, a separate main input power

disconnect device must be provided in close

proximity to the equipment and within easy

reach of the operator.

For maximum safety, do not touch the

product, test cables, or any other instru-

ments while power is applied to the circuit

under test. ALWAYS remove power from the

entire test system and discharge any capa-

citors before: connecting or disconnecting

cables or jumpers, installing or removing

switching cards, or making internal changes,

such as installing or removing jumpers.

Do not touch any object that could provide a

current path to the common side of the cir-

cuit under test or power line (earth) ground.

Always make measurements with dry hands

while standing on a dry, insulated surface

capable of withstanding the voltage being

measured.

The instrument and accessories must be

used in accordance with its specifications

and operating instructions, or the safety of

the equipment may be impaired.

Do not exceed the maximum signal levels of

the instruments and accessories, as defined

in the specifications and operating inform-

ation, and as shown on the instrument or

test fixture panels, or switching card.

When fuses are used in a product, replace

with the same type and rating for continued

protection against fire hazard.

Chassis connections must only be used as

shield connections for measuring circuits,

NOT as safety earth ground connections.

If you are using a test fixture, keep the lid

closed while power is applied to the device

under test. Safe operation requires the use

of a lid interlock.

A CAUTION notice denotes a hazard. It

calls attention to an operating procedure,

practice, or the like that, if not correctly

performed or adhered to, could result in

damage to the product or loss of important

data. Do not proceed beyond a CAUTION

notice until the indicated conditions are

fully understood and met.

A WARNING notice denotes a hazard. It

calls attention to an operating pro-

cedure, practice, or the like that, if not

correctly performed or adhered to, could

result in personal injury or death. Do not

proceed beyond a WARNING notice until

the indicated conditions are fully under-

stood and met.

Instrumentation and accessories shall not be

connected to humans.

Before performing any maintenance, dis-

connect the line cord and all test cables.

To maintain protection from electric shock

and fire, replacement components in mains

circuits – including the power transformer,

test leads, and input jacks – must be pur-

chased from Keysight. Standard fuses with

applicable national safety approvals may be

used if the rating and type are the same.

Other components that are not safety-

related may be purchased from other sup-

pliers as long as they are equivalent to the

original component (note that selected parts

should be purchased only through Keysight to

maintain accuracy and functionality of the

product). If you are unsure about the applic-

ability of a replacement component, call an

Keysight office for information.

No operator serviceable parts inside.

Refer servicing to qualified personnel. To

prevent electrical shock do not remove

covers. For continued protection against

fire hazard, replace fuse with same type

and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark of the

European Community.
This symbol indicates the instrument is sens-

itive to electrostatic discharge (ESD). ESD

can damage the highly sensitive components

in your instrument. ESD damage is most

likely to occur as the module is being

installed or when cables are connected or dis-

connected. Protect the circuits from ESD dam-

age by wearing a grounding strap that

provides a high resistance path to ground.

Alternatively, ground yourself to discharge

any built-up static charge by touching the

outer shell of any grounded instrument

chassis before touching the port connectors.

This symbol on an instrument means caution,

risk of danger. You should refer to the oper-

ating instructions located in the user doc-

umentation in all cases where the symbol is

marked on the instrument. The C-Tick mark is a registered trademark of

the Australian Spectrum Management

Agency.

This symbol indicates the time period during

which no hazardous or toxic substance ele-

ments are expected to leak or deteriorate

during normal use. Forty years is the expec-

ted useful life of the product.

This symbol indicates product compliance

with the Canadian Interference-Causing

Equipment Standard (ICES-001). It also iden-

tifies the product is an Industrial Scientific

and Medical Group 1 Class A product (CISPR

11, Clause 4). CLEANING PRECAUTIONS:

To prevent electrical shock, disconnect

the Keysight Technologies instrument

from mains before cleaning. Use a dry

cloth or one slightly dampened with

water to clean the external case parts.

Do not attempt to clean internally. To

clean the connectors, use alcohol in a

well-ventilated area. Allow all residual

alcohol moisture to evaporate, and the

fumes to dissipate prior to energizing the

instrument.

South Korean Class A EMC Declaration. This

equipment is Class A suitable for pro-

fessional use and is for use in elec-

tromagnetic environments outside of the

home. A 급 기 기 (업 무 용 방 송 통 신 기 자 재)

이 기 기 는 업 무 용 (A 급) 전 자 파 적 합 기 기

로 서 판 매 자 또 는 사 용 자 는 이 점 을 주 의 하

시 기 바 라 며 , 가 정 외 의 지 역 에 서 사 용 하 는

것 을 목 적 으 로 합 니 다 .

This symbol indicates separate collection for

electrical and electronic equipment, man-

dated under EU law as of August 13, 2005.

All electric and electronic equipment are

required to be separated from normal waste

for disposal (Reference WEEE Directive,

2002/96/EC).

Table of Contents

1 What You Will Learn in this Programming Guide . 7

1.1 Related Websites . 9

1.2 Related Documentation . 9

1.3 Overall Process Flow . 11

2 Installing Hardware, Software, and Licenses . 12

3 APIs for the M9393A PXIe VSA . 15

3.1 IVI Compliant or IVI Class Compliant . 16

3.2 IVI Driver Types . 17

3.3 IVI Driver Hierarchy . 18

3.4 Instrument-Specific Hierarchies for the M9393A . 19

3.5

3.5.1

3.5.2

Naming Conventions Used to Program IVI Drivers .

General IVI Naming Conventions .

IVI-COM Naming Conventions .

21

21

22

4 Creating a Project with IVI-COM Using C-Sharp . 22

4.1 Step 1 - Create a Console Application . 23

4.2 Step 2 - Add References . 24

4.3

4.3.1

Step 3 - Add Using Statements .

To Access the IVI Drivers Without Specifying or Typing The Full Path

25

25

4.4

4.4.1

Step 4 - Create Instances of the IVI-COM Drivers .

To Create Driver Instances .

25

25

4.5

4.5.1

4.5.2

4.5.3

Step 5 - Initialize the Driver Instances .

Initialize() Options .

Initialize() Parameters .

M9300A Reference Sharing .

26

26

27

29

4.5.4 Resource Names . 31

4.6

4.6.1

Step 6 - Write the Program Steps .

Using the Soft Front Panel to Write Program Commands .

32

33

4.7 Step 7 - Close the Driver . 34

4.8

4.8.1

4.8.2

Step 8 - Building and Running a Complete Program Using Visual C-Sharp

Example Program 1- Code Structure .

34

35

Example Program 1- How to Print Driver Properties, Check for Errors, and Close Driver

Sessions . 36

4.9 Disclaimer. 39

5 Working with PA_FEM Measurements . 39

5.1 Test Challenges Faced by Power Amplifier Testing . 40

5.2

5.2.1

5.2.2

5.2.3

5.2.4

Performing a Channel Power Measurement, Using Immediate Trigger

Example Program 2- Code Structure .

Example Program 2 - Pseudo-code .

Example Program 2 - Channel Power Measurement Using Immediate Trigger

Disclaimer .

42

42

43

45

48

5.3

5.3.1

5.3.2

5.3.3

Performing a WCDMA Power Servo and ACPR Measurement

Example Program 3 - Code Structure .

Example Program 3 - Pseudo-code .

Example Program 3 - WCDMA Power Servo and ACPR Measurement

48

48

50

51

5.4

5.4.1

5.4.2

5.4.3

Making Harmonic Measurements with the M9393A VSA .

Spectrum Acquisition mode .

Considerations when making a harmonics measurement .

Programming considerations .

56

56

56

57

5.5 Using the M9393A with the Resource Manager (M9000) and Modular X-Apps

(M90XA) . 58

58

58

5.5.1

5.5.2

Resource Manager .

Modular X-Series Apps .

6 Receiver List Mode . 58

6.1 Introduction . 59

6.2 List Mode set up . 59

6.3 Test scenario . 62

6.4 Reference: IVI commands for the List . 65

7 Differences between the M9391 and M9393 . 66

8 Appendix - Determining Resource Name Address Strings 67

9 Appendix - Verify Instruments Connect, Pass Self-Test, & are Updated 71

9.1 Verify that VSG 1 is Connected, Passes Self-Test, and Contains up to Date

Firmware . 73

9.2 Verify that VSA 1 is Connected, Passes Self-Test, and Contains up to Date

Firmware . 74

10 Appendix - Using Visual Studio 2010 . 74

11 Glossary . 75

12 References . 77

M9393A Programming Guide

Programming Guide for Creating IVI-COM Console Applications

September 4, 2014

Part Number: M9393-90007

© Keysight Technologies, Inc. 2014

7

Keysight M9393A PXIe Performance Vector

Signal Analyzer Programming Guide

M9393A Programming Guide

1 What You Will Learn in this Programming Guide

This programming guide is intended for individuals who write and run programs to control

test-and-measurement instruments. Specifically, you will learn how to use Visual Studio 2008 with the

.NET Framework to write IVI-COM Console Applications in Visual C#. Knowledge of Visual Studio 2008

with the .NET Framework and knowledge of the programming syntax for Visual C# is required. The

tutorials and examples in this programming guide can also be used with Visual Studio 2010.

Our basic user programming model uses the IVI-COM driver directly and allows customer code to:

access the IVI-COM driver

access the following Acquisition Modes: IQ, Spectrum, Stepped, Power and FFT

control the Keysight M9393A PXIe Vector Signal Analyzer (VSA) and Keysight M9381A PXIe

Vector Signal Generator (VSG) while performing PA/FEM Power Measurement Production Tests

generate waveforms created by Signal Studio software (licenses are required)

IVI-COM Console Applications that are covered in this programming guide are used to perform PA/FEM

acquisition measurements with the M9393A PXIe VSA from signals that are created with the M9381A

PXIe VSG.

Example Program 1: How to Print Driver Properties, Check for Errors, and Close Driver Sessions

Example Program 2: How to Perform a Channel Power Measurement, Using Immediate Trigger

Example Program 3: How to Perform a WCDMA Power Servo and ACPR Measurement

Example Program 4: How to Perform Transmitter Tests with 89600 VSA Software,(Playing

Waveforms on M9381A PXIe VSGs, Using External Trigger)

8

M9393A Programming Guide

1.1 Related Websites

Keysight Technologies PXI and AXIe Modular Products

M9393A PXIe Vector Signal Analyzer

M9381A PXIe Vector Signal Generator

Keysight Technologies

IVI Drivers & Components Downloads

Keysight I/O Libraries Suite

GPIB, USB, & Instrument Control Products

Keysight VEE Pro

Technical Support, Manuals, & Downloads

Contact Keysight Test & Measurement

IVI Foundation - Usage Guides, Specifications, Shared Components Downloads

MSDN Online

1.2 Related Documentation

To access documentation related to the IVI Driver, use one of the following:

9

Document

Link

Startup Guide*

Includes procedures to help you to unpack,

inspect, install (software and hardware), perform

instrument connections, verify operability, and

troubleshoot your product. Also includes an

annotated block diagram.

M9393A

(file:///C:\\Program%20Files%20(x86)\\Keysight\\

M9393\\Help\\M9393_StartupGuide.pdf)

M9381A

(file:///C:\\Program%20Files%20(x86)\\ Keysight \\

M938x\\Help\\M9381_StartupGuide.pdf)

http://www.keysight.com/find/Modular
http://www.keysight.com/find/M9393A
http://www.keysight.com/find/M9381A
http://www.agilent.com/find/ivi
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/io
http://www.keysight.com/find/support
http://www.keysight.com/find/contactus
http://www.ivifoundation.org/
http://msdn.microsoft.com/

M9393A Programming Guide

10

Document

Link

Data Sheet*

In addition to a detailed product introduction, the

data sheet supplies full product specifications.

M9393A

(file:///C:\\Program%20Files%20(x86)\\ Keysight \\

M9393\\Help\\M9393_DataSheet.pdf)

M9381A

(file:///C:\\Program%20Files%20(x86)\\Keysight

\\M938x\\Help\\M9381_DataSheet_5991-0279EN.

pdf)

M9381A SCPI API Reference (PDF)

Describes the SCPI commands supported by the

M9381A PXIe Vector Signal Generator. To access

this manual, click Start > All Programs > Keysight

> M938x.

n/a

LabVIEW Driver Reference (Online Help System)

Provides detailed documentation of the LabVIEW

G Driver API functions.

M9393A TBD

(file:///C:\\Program%20Files%20(x86)\\ Keysight

\\ M9393\\Help\\M9393_DataSheet_5991-

4035EN. pdf)

M9381A

(file:///C:\\Program%20Files%20(x86)\\Keysight

\\M938x\\Help\\M9381_DataSheet_5991-0279EN.

pdf)

M9393A Programming Guide

If these links do not work, you can find these items at:

Start > All Programs > Keysight > M938x

Start > All Programs > Keysight> M9393A

1.3 Overall Process Flow

1. Write source code using Microsoft Visual Studio 2008 or later with .NET Visual C# running on

Windows 7.

2. Compile Source Code using the .NET Framework Library.

11

M9393A Programming Guide

3. Produce an Assembly.exe file – this file can run directly from Microsoft Windows without the

need for any other programs.

When using the Visual Studio Integrated Development Environment (IDE), the Console

Applications you write are stored in conceptual containers called Solutions and Projects.

You can view and access Solutions and Projects using the Solution Explorer window (View

> Solution Explorer).

12

M9393A Programming Guide

2 Installing Hardware, Software, and Licenses

1. Unpack and inspect all hardware.

Verify the shipment contents. 2.

13

M9393A Programming Guide

3. Install the software. Note the following order when installing software!

a. Install Microsoft Visual Studio 2008 or Visual Studio 2010 with .NET Visual C# running on

Windows 7.

You can also use a free version of Visual Studio Express 2010 tools from:

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express

The following steps, defined in the Keysight M9393A PXIe VSA Startup Guide, but repeated

here, must be completed before programmatically controlling the M9393A PXIe VSA

hardware with IVI drivers.

Install Keysight IO Libraries Suite (IOLS), Version 16.3.17218.1 or newer; this

installation includes Keysight Connections Expert.

(Required for MIMO) Install Keysight 89600 Vector Signal Analyzer Software, Version 16.2

or newer.

Install the M9393A PXIe Performance VSA driver software, Version 1.0.0.0 or newer.

Install the M938xA PXIe VSG driver software, Version 1.3.105.0 or newer.

Install the M9018A PXIe Chassis driver software, Version 1.3.443.1 or newer.

b.

c.

d.

e.

f.

Driver software includes all IVI-COM, IVI-C, and LabVIEW G Drivers along with Soft Front

Panel (SFP) programs and documentation. All of these items may be downloaded from the

Keysight product websites:

http://www.keysight.com/find/iosuite > Select Technical Support > Select

the Drivers, Firmware & Software tab > Download the Keysight IO Libraries

Suite Recommended

http://www.keysight.com/find/89600 (Required for MIMO) > Select Technical

Support > Select the Drivers, Firmware & Software tab > Download the Instrument

Driver that corresponds to "89600 VSA software".

http://www.keysight.com/find/m9393a > Select Technical Support > Select the

Drivers, Firmware & Software tab > Download the Instrument Driver.

http://www.keysight.com/find/m9381a > Select Technical Support > Select the

Drivers, Firmware & Software tab > Download the Instrument Driver.

http://www.keysight.com/find/m9018a > Select Technical Support > Select the

Drivers, Firmware & Software tab > Download the Instrument Driver.

http://www.keysight.com/find/ivi - download other installers for Keysight IVI-

COM drivers

Install the hardware modules and make cable connections. 4.

14

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/89600
http://www.keysight.com/find/m9393a
http://www.keysight.com/find/m9381a
http://www.keysight.com/find/m9018a
http://www.keysight.com/find/ivi

M9393A Programming Guide

5. Verify operation of the modules (or the system that the modules create).

NOTE Before programming or making measurements, conduct a Self-Test on each M9393A PXIe

VSA and each M9381A PXIe VSG to make sure there are no problems with the modules, cabling,

or backplane trigger mapping.

Once the software and hardware are installed and Self-Test has been performed, they are ready

to be programmatically controlled.

15

M9393A Programming Guide

3 APIs for the M9393A PXIe VSA

The following IVI driver terminology may be used when describing the Application Programming

Interfaces (APIs) for the M9393A PXIe VSA.

IVI [Interchangeable Virtual Instruments] — a standard instrument driver model defined by the IVI

Foundation that enables engineers to exchange instruments made by different manufacturers without

rewriting their code. www.ivifoundation.org

IVI Instrument Classes (Defined by the IVI Foundation)

3.1 IVI Compliant or IVI Class Compliant

The M9393A PXIe VSA is IVI Compliant, but not IVI Class Compliant; it does not belong to one of the 13

IVI Instrument Classes defined by the IVI Foundation.

IVI Compliant– means that the IVI driver follows architectural specifications for these categories:

Installation

Inherent Capabilities

Cross Class Capabilities

Style

Custom Instrument API

16

DC Power Supply

AC Power Supply

DMM

Function Generator

Oscilloscope

Power Meter

RF Signal Generator

Spectrum Analyzer

Switch

Upconverter

Downconverter

Digitizer

Counter/Timer

Currently, there are 13 IVI

Instrument Classes defined by

the IVI Foundation.

The M9393A PXIe VSA does not

belong to any of these

13 IVI Instrument Classes and

are therefore described as

"NoClass" modules.

http://www.ivifoundation.org/

M9393A Programming Guide

IVI Class Compliant– means that the IVI driver implements one of the 13 IVI Instrument Classes

If an instrument is IVI Class Compliant, it is also IVI Compliant

Provides one of the 13 IVI Instrument Class APIs in addition to a Custom API

Custom API may be omitted (unusual)

Simplifies exchanging instruments

3.2 IVI Driver Types

IVI Driver

Implements the Inherent Capabilities Specification

Complies with all of the architecture specifications

May or may not comply with one of the 13 IVI Instrument Classes

Is either an IVI Specific Driver or an IVI Class Driver

IVI Class Driver

Is an IVI Driver needed only for interchangeability in IVI-C environments

The IVI Class may be IVI-defined or customer-defined

17

M9393A Programming Guide

IVI Specific Driver

Is an IVI Driver that is written for a particular instrument such asthe M9393A PXIe VSA

IVI Class-Compliant Specific Driver

IVI Specific Driver that complies with one (or more) of the IVI defined class

specifications

Used when hardware independence is desired

IVI Custom Specific Driver

Is an IVI Specific Driver that is not compliant with any one of the 13 IVI defined

class specifications

Not interchangeable

3.3 IVI Driver Hierarchy

When writing programs, you will be using the interfaces (APIs) available to the IVI-COM driver.

The core of every IVI-COM driver is a single object with many interfaces.

18

M9393A Programming Guide

These interfaces are organized into two hierarchies: Class-Compliant Hierarchy and

Instrument-Specific Hierarchy – and both include the IIviDriver interfaces.

Class-Compliant Hierarchy - Since the M9393A PXIe VSA does not belong to one of the 13

IVI Classes, there is no Class-Compliant Hierarchy in its IVI Driver.

Instrument-Specific Hierarchy

The M9393A PXIe VSA's instrument-specific hierarchy has IAgM9393 at the root

(where AgM9393 is the driver name).

IAgM9393 is the root interface and contains references to child interfaces,

which in turn contain references to other child interfaces. Collectively,

these interfaces define the Instrument-Specific Hierarchy

The IIviDriver interfaces are incorporated into both hierarchies: Class-Compliant

Hierarchy and Instrument-Specific Hierarchy.

The IIviDriver is the root interface for IVI Inherent Capabilities which are what the IVI

Foundation has established as a set of functions and attributes that all IVI drivers must

include – irrespective of which IVI instrument class the driver supports. These common

functions and attributes are called IVI inherent capabilities and they are documented in

IVI-3.2 – Inherent Capabilities Specification. Drivers that do not support any IVI

instrument class such as the M9393A PXIe VSA must still include these IVI inherent

capabilities.

| |

3.4 Instrument-Specific Hierarchies for the M9393A

19

M9393A Programming Guide

The following table lists the instrument-specific hierarchy interfaces for the:

M9393A PXIe VSA.

20

M9393A Programming Guide

NOTE When Using Visual Studio

To view interfaces available in the M9393A PXIe VSA, right-click the AgM9393Lib library file, in

the References folder, from the Solution Explorer window and select View in Object Browser.

3.5 Naming Conventions Used to Program IVI Drivers

3.5.1 General IVI Naming Conventions

All instrument class names start with "Ivi"

Example: IviScope, IviDmm

Function names

One or more words use PascalCasing

First word should be a verb 21

Keysight M9393A PXIe VSA Instrument-Specific Hierarchy

AgM9393 is the driver name

IAgM9393Ex is the root interface

M9393A Programming Guide

3.5.2 IVI-COM Naming Conventions

Interface naming

Class compliant: Starts with "IIvi"

I<ClassName>

Example: IIviScope, IIviDmm

Sub-interfaces add words to the base name that match the C hierarchy as close as possible

Examples: IIviFgenArbitrary, IIviFgenArbitraryWaveform

Defined values

Enumerations and enum values are used to represent discrete values in IVI-COM

<ClassName><descriptive words>Enum

Example: IviScopeTriggerCouplingEnum

Enum values don't end in "Enum" but use the last word to differentiate

Examples: IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC

22

M9393A Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

This tutorial will walk through the various steps required to create a console application using Visual

Studio and C#. It demonstrates how to instantiate two driver instances, set the resource names and

various initialization values, initialize the two driver instances, print various driver properties to a

console for each driver instance, check drivers for errors and report the errors if any occur, and close

both drivers.

Step 1. - Create a "Console Application"

Step 2. - Add References

Step 3. - Add using Statements

Step 4. - Create an Instance

Step 5. - Initialize the Instance

Step 6. - Write the Program Steps (Create a Signal or Perform a Measurement)

Step 7. - Close the Instance

At the end of this tutorial is a complete example program that shows what the console application looks

like if you follow all of these steps.

4.1 Step 1 - Create a Console Application

NOTE Projects that use a Console Application do not show a Graphical User Interface (GUI) display.

1. Launch Visual Studio and create a new Console Application in Visual C# by selecting: File > New >

Project and select a Visual C# Console Application.

2. Enter "VsaVsgProperties" as the Name of the project and click OK.

NOTE When you select New, Visual Studio will create an empty Program.cs file that

includes some necessary code, including using statements. This code is required, so do not

delete it.

3. Select Project and click Add Reference. The Add Reference dialog appears.

For this step, Solution Explorer must be visible (View > Solution Explorer) and the "Program.cs"

editor window must be visible – select the Program.cs tab to bring it to the front view.

23

M9393A Programming Guide

4.2 Step 2 - Add References

In order to access the M9393A PXIe VSA and M9381A PXIe VSG driver interfaces, references to their

drivers (DLL) must be created.

1. In Solution Explorer, right-click on References and select Add Reference.

From the Add Reference dialog, select the COM tab.

Click on any of the type libraries under the "Component Name" heading and enter the letter

"I".(All IVI drivers begin with IVI so this will move down the list of type libraries that begin with

"I".)

2.

3.

NOTE If you have not installed the IVI driver for the M9393A PXIe VSA and M9381A PXIe VSG

products (as listed in the previous section titled "Before Programming, Install Hardware,

Software, and Software Licenses"), their IVI drivers will not appear in this list. Also, the TypeLib

Version that appears will depend on the version of the IVI driver that is installed. The version

numbers change over time and typically increase as new drivers are released. If the TypeLib

Version that is displayed on your system is higher than the ones shown in this example, your

system simply has newer versions – newer versions may have additional commands available. To

get the IVI drivers to appear in this list, you must close this Add Reference dialog, install the IVI

drivers, and come back to this section and repeat "Step 2 – Add References".

Scroll to the IVI section and, using Shift-Ctrl, select the following type libraries then select OK. 4.

IVI AgM938x 1.2 Type Library

IVI AgM9393 1.0 Type Library

NOTE When any of the references for the AgM9393A or AgM938x are added, the IVIDriver 1.0

Type Library is also automatically added. This is visible as IviDriverLib under the project

Reference; this reference houses the interface definitions for IVI inherent capabilities which are

located in the file IviDriverTypeLib.dll (dynamically linked library).

These selected type libraries appear under the References node, in Solution Explorer, as: 5.

NOTE Your program looks the same as it did before you added the References, but the difference

is that the IVI drivers that you added References to are now available for use.

To allow your program to access the IVI drivers without specifying full path names of each

interface or enum, you need to add using statements to your program.

24

M9393A Programming Guide

4.3 Step 3 - Add Using Statements

All data types (interfaces and enums) are contained within namespaces. (A namespace is a hierarchical

naming scheme for grouping types into logical categories of related functionality. Design tools, such as

Visual Studio, can use namespaces which makes it easier to browse and reference types in your code.)

The C# using statement allows the type name to be used directly. Without the using statement, the

complete namespace-qualified name must be used. To allow your program to access the IVI driver

without having to type the full path of each interface or enum, type the following using statements

immediately below the other using statements; the following example illustrates how to add using

statements.

4.3.1 To Access the IVI Drivers Without Specifying or Typing The Full Path

Add the following using statements to your program so you don't have to specify the entire path when

using the drivers:

using Ivi.Driver.Interop;

using Keysight.AgM938x.Interop;

using Keysight.AgM9393.Interop;

4.4 Step 4 - Create Instances of the IVI-COM Drivers

There are two ways to instantiate (create an instance of) the IVI-COM drivers:

Direct Instantiation

COM Session Factory

Since the M9393A PXIe VSA and M9381A PXIe VSG are both considered NoClass modules(because they

do not belong to one of the 13 IVI Classes), the COM Session Factory is not used to create instances of

their IVI-COM drivers. So, the M9393A PXIe VSA and M938xA PXIe VSG IVI-COM drivers use direct

instantiation. Because direct instantiation is used, their IVI-COM drivers may not be interchangeable

with other VSA and VSG modules.

4.4.1 To Create Driver Instances

The new operator is used in C# to create an instance of the driver.

IAgM9393 VsaDriver = new AgM9393();

IAgM9381 VsgDriver = new AgM9381();

25

M9393A Programming Guide

4.5 Step 5 - Initialize the Driver Instances

Initialize() is required when using any IVI driver; it establishes a communication link (an "I/O session")

with an instrument and it must be called before the program can do anything with an instrument or

work in simulation mode.

The Initialize() method has a number of options that can be defined (see Initialize Options below). In this

example, we prepare the Initialize() method by defining only a few of the parameters, then we call the

Initialize() method with those parameters:

4.5.1 Initialize() Options

The following table describes options that are most commonly used with the Initialize() method.

26

Property Type and Example Value

Description of Property

string ResourceName =

PXI[bus]::device[::function][::INSTR]

string ResourceName =

"PXI13::0::0::INSTR;PXI14::0::0::INSTR;PXI15::0::0:

:INSTR;PXI16::0::0::INSTR";

VsgResourceName or VsaResourceName – The

driver is typically initialized using a physical

resource name descriptor, often a VISA resource

descriptor.

See the above procedure:"To determine the

VsgResourceName and VsaResourceName"

bool IdQuery = true;

IdQuery - Setting the ID query to false prevents

the driver from verifying that the connected

instrument is the one the driver was written for

because if IdQuery is set to true, this will query

the instrument model and fail initialization if the

model is not supported by the driver.

bool Reset = true;

Reset - Setting Reset to true tells the driver to

initially reset the instrument.

string OptionString = "QueryInstrStatus=true,

Simulate=true,

OptionString - Setup the following initialization

options:

QueryInstrStatus=true (Specifies whether the

IVI specific driver queries the instrument

status at the end of each user operation.)

M9393A Programming Guide

If these drivers were installed, additional information can be found under "Initializing the IVI-COM

Driver" from the following:

AgM938x IVI Driver Reference

Start > All Programs > Keysight IVI Drivers > AgM938x Source >
Documentation

AgM9393 IVI Driver Reference

Start > All Programs > Keysight IVI Drivers > AgM9393A VSA >
Documentation

27

Simulate=true (Setting Simulate to true tells

the driver that it should not attempt to

connect to a physical instrument, but use a

simulation of the instrument instead.)

Cache=false (Specifies whether or not to

cache the value of properties.)

InterchangeCheck=false (Specifies whether

the IVI specific driver performs

interchangeability checking.)

RangeCheck=false (Specifies whether the IVI

specific driver validates attribute values and

function parameters.)

RecordCoercions=false (Specifies whether the

IVI specific driver keeps a list of the value

coercions it makes for ViInt32 and ViReal64

attributes.)

DriverSetup= Trace=false";

DriverSetup= (This is used to specify settings

that are supported by the driver, but not

defined by IVI. If the Options String parameter

(OptionString in this example) contains an

assignment for the Driver Setup attribute, the

Initialize function assumes that everything

following 'DriverSetup=' is part of the

assignment.)

Model=VSG or Model=VSA (Instrument model

to use during simulation.)

Trace=false (If false, an output trace log of all

driver calls is not saved in an XML file.)

M9393A Programming Guide

4.5.2 Initialize() Parameters

NOTE Although the Initialize() method has a number of options that can be defined (see Initialize

Options below), we are showing this example with a minimum set of options to help minimize

complexity.

// The M9300A PXIe Reference should be included as one of the modules

in

// either the M9381A PXIe VSG configuration of modules or the M9393A

PXIe VSA configuration of modules.

//

//

//

//

If the M9300A PXIe Reference is only included in one configuration,

that configuration should be initialized first.

See "Understanding M9300A Frequency Reference Sharing".

string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0::I

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

bool IdQuery = true;

bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true, Simulate=false,

DriverSetup= Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true,

Simulate=false, DriverSetup= Model=VSA, Trace=false";

// Initialize the drivers

VsgDriver.Initialize(VsgResourceName, IdQuery,

Reset, VsgOptionString);

Console.WriteLine("VSG Driver Initialized");

VsaDriver.Initialize(VsaResourceName, IdQuery, Reset,

VsaOptionString);

Console.WriteLine("VSA Driver Initialized");

28

M9393A Programming Guide

The above example shows how IntelliSense is invoked by simply rolling the cursor over the word

"Initialize".

NOTE One of the key advantages of using C# in the Microsoft Visual Studio Integrated Development

Environment (IDE) is IntelliSense. IntelliSense is a form of auto-completion for variable names and

functions and a convenient way to access parameter lists and ensure correct syntax. This feature also

enhances software development by reducing the amount of keyboard input required.

4.5.3 M9300A Reference Sharing

The M9300A PXIe Reference can be shared by up to five configurations of modules that can be made up

of the M9393A PXIe VSA or the M9381A PXIe VSG or both. The M9300A PXIe Reference must be

included as one of the modules in at least one of these configurations. The configuration of modules

that is initialized first must include the M9300A PXIe Reference so that the other configurations that

depend on the reference signal get the signal they are expecting. If the configuration of modules that is

initialized first does not include the M9300A PXIe Reference, unlock errors will occur.

Example: M9300A PXIe Reference with M9381A PXIe VSG

The M9381A PXIe VSG should be initialized first before initializing the VSA if:

M9381A PXIe VSG configuration of modules includes:

M9311A PXIe Modulator

M9310A PXIe Source Output

M9301A PXIe Synthesizer

M9300A PXIe Reference // Note that the M9300A PXIe Reference is part of the M9381A

PXIe VSG configuration of modules.

string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI1

29

M9393A Programming Guide

M9393A PXIe VSA configuration of modules includes:

M9301A PXIe Synthesizer

M9350A PXIe Downconverter

M9214A PXIe IF Digitizer

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

Example: M9300A PXIe Reference with M9393A PXIe VSA

The M9393A PXIe VSA should be initialized first before initializing the M9381A PXIe VSG if:

M9381A PXIe VSG configuration of modules includes:

M9311A PXIe Modulator

M9310A PXIe Source Output

M9301A PXIe Synthesizer

string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR";

M9393A PXIe VSA configuration of modules includes:

M9300A PXIe Reference* // Note that the M9300A PXIe Reference is part of the M9393A

PXIe VSA configuration of modules.

M9301A PXIe Synthesizer

M9350A PXIe Downconverter

M9214A PXIe IF Digitizer

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI1

Example: M9300A PXIe Reference Shared With Both Modules

The M9393A PXIe VSA or the M9381A PXIe VSG can be initialized first since the M9300A PXIe Reference

is included in both configurations of modules:

M9381A PXIe VSG configuration of modules includes:

M9311A PXIe Modulator

M9310A PXIe Source Output

M9301A PXIe Synthesizer

30

M9393A Programming Guide

M9300A PXIe Reference* // Note that the M9300A PXIe Reference is part of the M9381A

PXIe VSG configuration of modules.

string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR";PXI

M9393A PXIe VSA configuration of modules includes:

M9300A PXIe Reference* // Note that the M9300A PXIe Reference is part of the M9393A

PXIe VSA configuration of modules.

M9301A PXIe Synthesizer

M9350A PXIe Downconverter

M9214A PXIe IF Digitizer

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI1

4.5.4 Resource Names

If you are using Simulate Mode, you can set the Resource Name address string to:

string VsaResourceName = "%";

string VsgResourceName = "%";

If you are actually establishing a communication link (an "I/O session") with an instrument, you

need to determine the Resource Name address string (VISA address string) that is needed.You

can use an IO application such as Keysight Connection Expert, Keysight Command Expert,

National Instruments Measurement and Automation Explorer (MAX), or you can use the Keysight

product's Soft Front Panel (SFP) to get the physical Resource Name string.

Using the M938xA Soft Front Panel, you might get the following Resource Name address string.

31

M9393A Programming Guide

| ModuleName| M9311A PXIe Modulator | M9310A PXIe Source Output | M9301A PXIe

Synthesizer | M9300A PXIe Reference |

string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0:

Using the M9393A Soft Front Panel, you might get the following Resource Name address string.

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;

4.6 Step 6 - Write the Program Steps

At this point, you can add program steps that use the driver instances to perform tasks.

32

ModuleName

M9301A PXIe

Synthesizer

M9350A PXIe

Downconverter

M9214A PXIe IF

Digitizer

Slot Number

7

8

9

VISA Address

PXI14::0::0::INST

R;

PXI10::0::0::INST

R;

PXI9::0::0::INSTR;

Slot Number

2

4

5

6

VISA Address

PXI8::0::0::INSTR;

PXI11::0::0::INST

R;

PXI12::0::0::INST

R;

PXI13::0::0::INST

R;

M9393A Programming Guide

4.6.1 Using the Soft Front Panel to Write Program Commands

You may find it useful when developing a program to use the instrument's Soft Front Panel (SFP) "Driver

Call Log"; this driver call log is used to view a list of driver calls that have been performed when changes

are made to the controls on the soft front panel.

In this example, open the Soft Front Panel for the M938xA PXIe VSG and perform the following steps:

1. Set the output frequency to 1 GHz.

Set the output level to 0 dBm.

Enable the ALC.

Enable the RF Output.

2.

3.

4.

IAgM938x VsgDriver = new AgM938x(); |

33

(

// Set the output frequency to

1 GHz

VsgDriver.RF.Frequency =

1000000000;

// Set the output level to 0

dBm

VsgDriver.RF.Level = 0;

// Enables the ALC

VsgDriver.ALC.Enabled = true;

// Enables the RF Output

VsgDriver.RF.OutputEnabled =

true;

// Waits until the list is

finished or the specified time

passes

bool retval =

VsgDriver.List.WaitUntilComplet

e you could use the following:

// Waits 100 ms until output

is settled before producing

signal

AgM938x is the driver name used by the SFP.

VsgDriver is the instance of the driver that is used

in this example. This instance would have been

created in, "Step 4 – Create Instances of the IVI

COM Drivers".

M9393A Programming Guide

4.7 Step 7 - Close the Driver

Calling Close() at the end of the program is required by the IVI specification when using any IVI driver.

Important! Close() may be the most commonly missed step when using an IVI driver. Failing to do this

could mean that system resources are not freed up and your program may behave unexpectedly on

subsequent executions.

4.8 Step 8 - Building and Running a Complete Program Using Visual C-Sharp

Build your console application and run it to verify it works properly.

1. Open the solution file SolutionNameThatYouUsed.sln in Visual Studio 2008.

2. Set the appropriate platform target for your project.

In many cases, the default platform target (Any CPU) is appropriate.

34

{

if(VsaDriver!= null && VsaDriver.Initialized)

{

// Close the VSA driver{color}

VsaDriver.Close();

Console.WriteLine("VSA Driver Closed\n");

}

if(VsgDriver != null && VsgDriver.Initialized)

{

// Close the VSG driver

VsgDriver.Close();

Console.WriteLine("VSG Driver Closed");

}

}

0

bool retval =

VsgDriver.RF.WaitUntilSettled(10

M9393A Programming Guide

However, if you are using a 64-bit PC (such as Windows 7) to build a .NET application that

uses a 32-bit IVI-COM driver, you may need to specify your project's platform target as

x86.

3. Choose Project > ProjectNameThatYouUsed Properties and select "Build | Rebuild Solution".

Tip: You can also do the same thing from the Debug menu by clicking Start Debugging or

pressing the F5 key.

Example programs may be found by selecting: C:\Program Files (x86)\Keysight\M9393\Help\Examples

4.8.1 Example Program 1- Code Structure

The following example code builds on the previously presented "Tutorial: Creating a Project with

IVI-COM Using C#" and demonstrates how to instantiate two driver instances, set the resource names

and various initialization values, initialize the two driver instances, print various driver properties for

each driver instance, check drivers for errors and report the errors if any occur, and close the drivers.

Example programs may be found by selecting: C:\Program Files (x86)\ Keysight t\M9393\Help\Examples

35

M9393A Programming Guide

4.8.2 Example Program 1- How to Print Driver Properties, Check for Errors, and
Close Driver Sessions

36

// Copy the following example code and compile it as a C# Console

Application

// Example VsaVsgProperties.cs

#region Specify using Directives

using System;

using

System.Collections.Generic;

using System.Linq;

using System.Text;

M9393A Programming Guide

using

using

using

Ivi.Driver.Interop;

Agilent.AgM938x.Interop

;

Agilent.AgM9393.Interop

;

#endregion

namespace VsaVsgProperties

{

class Program

{

static void Main(string[] args)

{

// Create driver instances

IAgM938x VsgDriver = new AgM938x();

IAgM9393 VsaDriver = new AgM9393();

try

{

#region Initialize Driver

Instances string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0:

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

bool IdQuery = true;

bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true,

Simulate=false, DriverSetup= Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true,

Simulate=false, DriverSetup= Model=VSA, Trace=false";

VsgDriver.Initialize(VsgResourceName, IdQuery, Reset,

VsgOptionString);

Console.WriteLine("VSG Driver Initialized");

VsaDriver.Initialize(VsaResourceName, IdQuery, Reset,

VsaOptionString);

Console.WriteLine("VSA Driver Initialized\n\n");

#endregion

#region Print Driver Properties

// Print IviDriverIdentity properties for the PXIe VSG

Console.WriteLine("Identifier:

VsgDriver.Identity.Identifier);

Console.WriteLine("Revision:

VsgDriver.Identity.Revision);

Console.WriteLine("Vendor:

VsgDriver.Identity.Vendor);

Console.WriteLine("Description:

VsgDriver.Identity.Description);

Console.WriteLine("Model

:

{0}",

{0}",

{0}",

{0}",

{0}",

37

M9393A Programming Guide

VsgDriver.Identity.InstrumentModel);

Console.WriteLine("FirmwareRev: {0}",

VsgDriver.Identity.InstrumentFirmwareRevision)

; Console.WriteLine("Simulate:

VsgDriver.DriverOperation.Simulate);

{0}\n",

// Print IviDriverIdentity properties for the PXIe VSA

Console.WriteLine("Identifier:

VsaDriver.Identity.Identifier);

Console.WriteLine("Revision:

VsaDriver.Identity.Revision);

Console.WriteLine("Vendor:

VsaDriver.Identity.Vendor);

Console.WriteLine("Description

:

VsaDriver.Identity.Description);

Console.WriteLine("Model:

VsaDriver.Identity.InstrumentModel);

Console.WriteLine("FirmwareRev

:

{0}",

{0}",

{0}",

{0}",

{0}",

{0}",

VsaDriver.Identity.InstrumentFirmwareRevision);

Console.WriteLine("Simulate:

VsaDriver.DriverOperation.Simulate);

#endregion

{0}\n",

#region Perform Tasks

// TO DO: Exercise driver methods and properties.

// Put your code here to perform tasks with PXIe VSG and

PXIe VSA.

#endregion

#region Check for Errors

// Check VSG instrument for errors

int VsgErrorNum = -1;

string VsgErrorMsg = null;

while (VsgErrorNum != 0)

{

VsgDriver.Utility.ErrorQuery(ref VsgErrorNum, ref

VsgErrorMsg);

Console.WriteLine("VSG ErrorQuery: {0},

{1}\n", VsgErrorNum, VsgErrorMsg);

}

// Check VSA instrument for errors

int VsaErrorNum = -1;

string VsaErrorMsg = null;

while (VsaErrorNum != 0)

{

VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref

VsaErrorMsg);

Console.WriteLine("VSA ErrorQuery: {0}, {1}\n",

VsaErrorNum, VsaErrorMsg);

}

38

M9393A Programming Guide

4.9 Disclaimer.

© 2014 Keysight Technologies Inc. All rights
reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or

any modified version) in any way you find useful, provided that you agree that Keysight Technologies

has no warranty, obligations or liability for any Sample Application Files.

Keysight Technologies provides programming examples for illustration only. This sample program

assumes that you are familiar with the programming language being demonstrated and the tools used to

create and debug procedures. Keysight Technologies support engineers can help explain the functionality

of Keysight Technologies software components and associated commands, but they will not modify these

samples to provide added functionality or construct procedures to meet your specific needs.

39

}

}

}

#endregion

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

finally

{

if (VsgDriver != null && VsgDriver.Initialized)

{

// Close the driver

VsgDriver.Close();

Console.WriteLine("VSG Driver Closed");

}

if (VsaDriver != null && VsaDriver.Initialized)

{

// Close the driver

VsaDriver.Close();

Console.WriteLine("VSA Driver Closed\n");

}

}

Console.WriteLine("Done - Press Enter to Exit");

Console.ReadLine();

M9393A Programming Guide

5 Working with PA_FEM Measurements

The RF front end of a product includes all of the components between an antenna and the baseband

device. The purpose of an RF front end is to upconvert a baseband signal to RF that can be used for

transmission by an antenna. An RF front end can also be used to downconvert an RF signal that can be

processed with ADC circuitry. As an example, the RF signal that is received by a cellular phone is the

input into the front end circuitry and the output is a down-converted analog signal in the intermediate

frequency (IF) range. This down-converted signal is the input to a baseband device, an ADC. For the

transmit side, a DAC generates the signal to be up-converted, amplified, and sent to the antenna for

transmission. Depending on whether the system is a Wi-Fi, GPS, or cellular radio will require different

characteristics of the front end devices.

RF front end devices fall into a few major categories: RF Power Amplifiers, RF Filters and Switches, and

FEMs [Front End Modules].

RF Power Amplifiers and RF Filters and Switches typically require the following:

PA[Power Amplifier] – Production Tests which include:

Channel Power - Power Acquisition Mode is used to return one value back through

the API.

ACPR [Adjacent Channel Power Ratio] – When making fast ACPR measurements,

"Baseband Tuning" is used to digitally tune the center frequency in order to make

channel power measurements, at multiple offsets, using the Power Acquisition

interface.

Servo Loop- When measuring a power amplifier, one of the key measurements is

performing a Servo Loop because when you measure a power amplifier:

it is typically specified at a specific output power

there is a need to adjust the source input level until you measure the exact

power level - to do this, you will continually adjust the source until you

achieve the specified output power then you make all of the ACPR and

harmonic parametric measurements at that level.

FEMs [Front End Modules] – which could be a combination of multiple front end functions in a

single module or even a "Switch Matrix" that switches various radios (such as Wi-Fi, GSM, PCS,

Bluetooth, etc.) to the antenna.

5.1 Test Challenges Faced by Power Amplifier Testing

The need to quickly adjust power level inputs to the device under test (DUT).

40

M9393A Programming Guide

The need to assess modulation performance (i.e., ACPR and EVM) at high output power levels.

The figure below shows a simplified block diagram for the M9381A PXIe VSG and M9393A PXIe VSA in a

typical PA / FEM test system.

Typical power amplifier modules require an input power level of 0 to + 5 dBm, digitally modulated

according to communication standards such as WCDMA or LTE. The specified performance of the power

amplifier or front end module is normally set at a specific output level of the DUT. If the devices have

small variations in gain, it may be necessary to adjust the power level from the M9381A PXIe VSG to get

the correct output level of the DUT. Only after the DUT output level is set at the correct value can the

specified parameters be tested. The time spent adjusting the M9381A PXIe VSG to get the correct DUT

output power can be a major contributor to the test time and the overall cost of test.

The M9381A PXIe VSG is connected to the DUT using a cable and switches. The switching may be used to

support testing of multi-band modules or multi-site testing. The complexity of the switching depends on

the number of bands in the devices and the number of test sites supported by the system. The DUTs are

typically inserted into the test fixture using an automated part handler. In some cases, several feet of

cable is required between the M9381A PXIe VSG and the input of the DUT.

The combination of the RF cables and the switching network can add several dB of loss between the

output of the M9381A PXIe VSG and the input of the DUT, which requires higher output levels from the

M9381A PXIe VSG. Since the tests are performed with a modulated signal, the M9381A PXIe VSG must

also have adequate modulation performance at the higher power levels.

41

M9393A Programming Guide

5.2 Performing a Channel Power Measurement, Using
Immediate Trigger

5.2.1 Example Program 2- Code Structure

The following example code demonstrates how to instantiate a driver instance, set the resource name

and various initialization values, initialize the two driver instances:

1. Send RF and Power Acquisition commands to the M9393A PXIe VSA driver and Apply changes to

hardware,

Check the instrument queue for errors.

Perform a Channel Power Measurement,

Report errors if any occur, and close the drivers.

2.

3.

4.

Example programs may be found by selecting: C:\Program Files (x86)\Keysight\M9393\Help\Examples

42

Standard

Sample Rate

Channel Filter

Type

Channel Filter

Parameter

Channel Filter

Bandwidth

Channe

l

Offsets

WCDMA

5 MHz

RRC

0.22

3.84 MHz

5, 10 MHz

LTE 10 MHz

FDD

11.25 MHz

Rectangular

N/A

9 MHz

10, 20 MHz

LTE 10 MHz

TDD

11.25 MHz

Rectangular

N/A

9 MHz

10, 20 MHz

1xEV-DO

2 MHz

RRC

0.22

1.23 MHz

1.25, 2.5 MHz

TD-SCDMA

2 MHz

RRC

0.22

1.28 MHz

1.6, 3.2 MHz

GSM/EDGE

Channel

1.25 MHz

Gaussian

0.3

271 kHz

GSM/EDGEORF

S

1.25 MHz

TBD

TBD

30 kHz

400, 600kHz

M9393A Programming Guide

5.2.2 Example Program 2 - Pseudo-code

Initialize Driver for VSA, Check for Errors

Send RF Settings to VSA Driver:

Frequency

Level

Peak to Average Ratio

Conversion Mode

43

M9393A Programming Guide

IF Bandwidth

Set Acquisition Mode to "Power"

Send Power Acquisition Setting to VSA Driver:

Sample Rate

Duration

Channel Filter

Apply Method to Send Changes to Hardware

Wait for Hardware to Settle

Send Arm Method to VSA

Send Read Power Method to VSA

Close Driver for VSA

Using FFT Acquisition Mode in Channel Power Measurements

Advantages of using FFT Acquisition Mode in Channel Power Measurements

The FFT Acquisition mode uses a feature in the digitizer DSP to do a high speed averaged FFT on the fly.

The resultant FFT data is processed in fast capture memory in hardware. Although this FFT process is

limited in length, it is very good for producing very fast channel power measurements. This process

differs with the Spectrum Acquisition mode, which does an FFT in the host controller.

Baseband tuning within the digitizer is another feature of using FFT Acquisition mode for making

channel power measurements. Baseband tuning can be made digitally inside the digitizer to shift off the

center frequency. In addition, while doing this, the local oscillator in the downconverter doesn't have to

move, while you are doing baseband tuning. Tuning digitally inside the digitizer has the advantage that it

does not require any settling time. This offset frequency matches the offset frequency on all the other

acquisition modes.

Pseudo code

The following pseudo code is a modification of the Example Program 2 - Pseudo-code. Use this and

Example Program 2 - Channel Power Measurement Using Immediate Trigger as a reference for coding.

Initialize Driver for VSA, Check for Errors

Send RF Settings to VSA Driver

Frequency: (range 9 kHz to 27 GHz)

Level: (range -170 dBm to 24 dBm)

Peak to Average Ratio: (range 0 dBm to 20 dBm)

44

http://edocs.soco.agilent.com/display/mundaka/Example%2BProgram%2B2%2B-%2BPseudo-code
http://edocs.soco.agilent.com/display/mundaka/Example%2BProgram%2B2%2B-%2BChannel%2BPower%2BMeasurement%2BUsing%2BImmediate%2BTrigger

M9393A Programming Guide

Conversion Mode: (choose between Single High Side, Single Low Side, Image Protect, or

Auto)

IF Bandwidth: (choose between 40 MHz and 160 MHz)

Set Acquisition Mode to "FFT"

Send FFT Acquisition Setting to VSA Driver

FFT Length: select 64, 128, 256, or 512. Typically use 256

Sample Rate:

Usable bandwidth of FFT is 80% of sample rate

Bandwidth should be large enough to include all channels to be measured

Window Shape: typically use Hann for best results

Offset Frequency: (range -160 MHz to 160 MHz)

FFT Averaging Count: (range 1 to 65536)

Apply Method to Send Changes to Hardware

Wait for Hardware to Settle

Send Arm Method to VSA

Send Read Power Method to VSA

Close Driver for VSA

5.2.3 Example Program 2 - Channel Power Measurement Using Immediate Trigger

45

// Copy the following example code and compile it as a C# Console

Application

// Example ChannelPowerImmediateTrigger.cs

#region Specify using Directives

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Ivi.Driver.Interop;

using

Agilent.AgM9393.Interop;

#endregion

namespace ChannelPowerImmTrigger

{

class Program

{

static void Main(string[] args)

{

// Create driver instances

M9393A Programming Guide

VsaDriver = new AgM9393();

try

{

#region Initialize Driver

Instances string

VSAResourceName = "PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI13::0::0:

bool IdQuery = true;

bool Reset = true;

string VSAOptionString = "QueryInstrStatus=true,

Simulate=false, DriverSetup= Model=M9393A, Trace=false";

VsaDriver.Initialize(VSAResourceName, IdQuery, Reset,

VSAOptionString);

Console.WriteLine("VSA Driver Initialized\n");

#endregion

#region Check Instrument Queue for Errors

// Check VSA instrument for errors

int VsaErrorNum = -1;

string VsaErrorMsg = null;

while (VsaErrorNum != 0)

{

VsaDriver.Utility.ErrorQuery(ref VsaErrorNum, ref

VsaErrorMsg);

Console.WriteLine("VSA ErrorQuery: {0}, {1}\n",

VsaErrorNum, VsaErrorMsg);

}

#endregion

#region Receiver Settings

// Receiver Settings

doubl

e

doubl

e

doubl

e

doubl

e

doubl

e

Frequency = 2000000000.0;

Level = 5;

RmsValue = 5;

ChannelTime = 0.0001;

MeasureBW = 5000000.0;

AgM9393ChannelFilterShapeEnum FilterType =

AgM9393ChannelFilterShapeEnum.AgM9393ChannelFilterShapeRootRaisedCosi

double FilterAlpha

doubl

e

doubl

e

= 0.22;

FilterBw = 3840000.0;

MeasuredPower = 0;

bool Overload = true;

#endregion

#region Run Commands

// Setup the RF Path in the Receiver

VsaDriver.RF.Frequency = Frequency;

VsaDriver.RF.Power = Level;

VsaDriver.RF.Conversion =

AgM9393ConversionEnum.AgM9393ConversionAuto;

46

M9393A Programming Guide

VsaDriver.RF.PeakToAverage = RmsValue;

VsaDriver.RF.IFBandwidth = 40000000.0; // Use

IF filter wide enough for all adjacent channels

// Configure the Acquisition

VsaDriver.AcquisitionMode =

AgM9393AcquisitionModeEnum.AgM9393AcquisitionModePower;

VsaDriver.PowerAcquisition.Bandwidth = MeasureBW;

5 MHz

VsaDriver.PowerAcquisition.Duration = ChannelTime;

100 us

//

//

VsaDriver.PowerAcquisition.ChannelFilter.Configure(FilterType,

FilterAlpha, FilterBw);

// Send Changes to hardware

VsaDriver.Apply();

VsaDriver.WaitUntilSettled(100);

string response = "y";

while (string.Compare(response, "y") == 0) {

Console.WriteLine("Press Enter to Run

Test"); Console.ReadLine();

VsaDriver.Arm();

VsaDriver.PowerAcquisition.ReadPower(0,

AgM9393PowerUnitsEnum.AgM9393PowerUnitsdBm, ref

MeasuredPower, Overload);

Console.WriteLine("Measured Power: " +

MeasuredPower + " dBm");

ref

Console.WriteLine(String.Format("Overload = {0}",

Overload ? "true" : "false"));

Console.WriteLine("Repeat? y/n");

response = Console.ReadLine();

}

#endregion

}

catch (Exception ex)

{

Console.WriteLine("Exceptions for the

drivers:\n"); Console.WriteLine(ex.Message);

}

finally

#region Close Driver Instances

{

if (VsaDriver != null && VsaDriver.Initialized)

{

// Close the driver

VsaDriver.Close();

Console.WriteLine("VSA Driver Closed\n");

}

}

47

M9393A Programming Guide

5.2.4 Disclaimer

© 2014 Keysight Technologies Inc. All rights
reserved.

You have a royalty-free right to use, modify, reproduce and distribute this Sample Application (and/or

any modified version) in any way you find useful, provided that you agree that Keysight Technologies

has no warranty, obligations or liability for any Sample Application Files.

Keysight Technologies provides programming examples for illustration only. This sample program

assumes that you are familiar with the programming language being demonstrated and the tools used to

create and debug procedures. Keysight Technologies support engineers can help explain the functionality

of Keysight Technologies software components and associated commands, but they will not modify these

samples to provide added functionality or construct procedures to meet your specific needs.

5.3 Performing a WCDMA Power Servo and ACPR
Measurement

When making a WCDMA Power Servo and ACPR measurement, Servo is performed using "Baseband

Tuning" to adjust the source amplitude and then "Baseband Tuning" is used to digitally tune the center

frequency in order to make channel power measurements, at multiple offsets, using the Power

Acquisition interface of the M9393A PXIe VSA.

NOTE The M9393A PXIe VSA and the M9381A PXIe VSG offers two modes for adjusting frequency and

amplitude:

RF Tuning – allows the M9381A PXIe VSG to be set across the complete operating frequency and

amplitude range.

Baseband Tuning – allows the frequency and amplitude to be adjusted within the IF bandwidth

(160 MHz) and over a range of the output level.

5.3.1 Example Program 3 - Code Structure

The following example code demonstrates how to instantiate two driver instances, set the resource

names and various initialization values, initialize the two driver instances:

48

}

}

}

#endregion

Console.WriteLine("Done - Press Enter to Exit");

Console.ReadLine();

M9393A Programming Guide

Send RF and Modulation commands to the M9381A PXIe VSG driver and Apply changes to

hardware,

Send RF and Power Acquisition commands to the M9393A PXIe VSA driver and Apply changes to

hardware,

Run a Servo Loop until it is at the required output power from DUT,

Perform an ACPR Measurement for each Adjacent Channel to be measured,

Check drivers for errors and report the errors if any occur, and close the drivers.

1.

2.

3.

4.

5.

Example programs may be found by selecting: C:\Program Files (x86)\Keysight\M9393\Help\Examples

49

M9393A Programming Guide

5.3.2 Example Program 3 - Pseudo-code

Initialize Drivers for VSG and VSA, Check for Errors

Send RF Settings to VSG Driver:

Frequency

RF Level to Maximum Needed

RF Enable On

ALC Enable Off (for baseband power changes)

Send Modulation Commands to VSG Driver:

Load WCDMA Signal Studio File

Enable Modulation

Play ARB File

Set ARB Scale to 0.5

Set Baseband Power Offset to -10 dB

Apply Method to Send Changes to Hardware

Wait for Hardware to Settle

Send RF Settings to VSA Driver:

Frequency

Level

Peak to Average Ratio

Conversion Mode

IF Bandwidth

Set Acquisition Mode to "Power"

Send Power Acquisition Setting to VSA Driver:

Sample Rate

Duration

Channel Filter

Apply Method to Send Changes to Hardware

Wait for Hardware to Settle

Servo Loop:

Set Baseband Power Offset on VSG to expected value

Send Apply Method to VSG

50

M9393A Programming Guide

Send Arm Method to VSA

Send ReadPower Method to VSA

Repeat Until at Required Output Power from DUT

Last Reading is Channel Power Measurement

ACPR Measurement:

Set Acquisition Duration Property on VSA to Value for Adjacent Channel Measurements

Set Frequency Offset Property on VSA to Channel Offset Frequency

Send Apply Method to VSA

Send Arm Method to VSA

Send ReadPower Method to VSA

Repeat for each Adjacent Channel to be Measured

5.3.3 Example Program 3 - WCDMA Power Servo and ACPR Measurement

51

// Copy the following example code and compile it as a C# Console

Application

// Example PaServoAcpr.cs

// WCDMA Power Servo and ACPR Measurement

#region Specify using Directives

using System;

using System.Collections.Generic;

using

System.Linq;

using System.Text;

using Ivi.Driver.Interop;

using

Agilent.AgM938x.Interop; using

Agilent.AgM9393.Interop;

#endregion

namespace PaServoAcpr

{

class Program

{

static void Main(string[] args)

{

// Create driver instances

IAgM938x VsgDriver = new AgM938x();

IAgM9393 VsaDriver = new AgM9393();

try

{

#region Initialize Driver Instances

string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI13::0::0

:

M9393A Programming Guide

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR";

bool IdQuery = true;

bool Reset = true;

string VsgOptionString = "QueryInstrStatus=true,

Simulate=false, DriverSetup= Model=VSG, Trace=false";

string VsaOptionString = "QueryInstrStatus=true,

Simulate=false, DriverSetup= Model=VSA, Trace=false";

VsaDriver.Initialize(VsaResourceName, IdQuery, Reset,

VsaOptionString);

Console.WriteLine("VSA Driver Initialized\n");

VsgDriver.Initialize(VsgResourceName, IdQuery, Reset,

VsgOptionString);

Console.WriteLine("VSG Driver Initialized");

#endregion

#region Check Instrument Queue for Errors

// Check VSG instrument for errors

int VsgErrorNum = -1;

string VsgErrorMsg = null;

while (VsgErrorNum != 0)

{

VsgDriver.Utility.ErrorQuery(ref VsgErrorNum,

VsgErrorMsg);

Console.WriteLine("VSG ErrorQuery: {0}, {1}",

VsgErrorNum, VsgErrorMsg);

}

ref

// Check VSA instrument for errors

int VsaErrorNum = -1;

string VsaErrorMsg = null;

while (VsaErrorNum != 0)

{

VsaDriver.Utility.ErrorQuery(ref VsaErrorNum,

VsaErrorMsg);

ref

Console.WriteLine("VSA ErrorQuery: {0}, {1}\n",

VsaErrorNum, VsaErrorMsg);

}

#endregion

#region Create Default Settings for WCDMA Uplink Signal

// Source Settings

double Frequency = 1000000000.0;

double Level = 3;

52

M9393A Programming Guide

// If a Signal Studio waveform file is used, it may

require a software license.

string ExamplesFolder = "C:Program

Files (x86)AgilentM938xExample Waveforms";

string

string

string

WaveformFile = "WCDMA_UL_DPCHH_2DPDCH_1C.wfm";

FileName = ExamplesFolder + WaveformFile;

ArbRef = "Mod Waveform";

// Receiver Settings

doubl

e

doubl

e

doubl

e

doubl

e

doubl

e

ChannelTime = 0.0001;

AdjacentTime = 0.0005;

IfBandwidth

PowerOffset

MeasureBW =

= 40000000.0;

= 0;

5000000.0;

AgM9393ChannelFilterShapeEnum FilterType =

AgM9393ChannelFilterShapeEnum.AgM9393ChannelFilterShapeRootRaisedCosi

double FilterAlpha = 0.22;

double FilterBw = 3840000.0;

double[] FreqOffset = new double[] {-

5000000.0, 5000000.0, -10000000.0, 10000000.0};

double MeasuredPower = 0;

bool Overload = true;

double MeasuredChannelPower;

bool ChannelPowerOverload;

double[] MeasuredACPR = new double[4];

double

doubl

e

doubl

e

#endregion

SampleRate = 0;

RmsValue = 0;

ScaleFactor = 0;

#region Run Commands

// These commands are sent to the VSG Driver, "Apply"

or "PlayArb" methods send to hardware

VsgDriver.RF.Frequency = Frequency;

VsgDriver.RF.Level = Level;

VsgDriver.RF.OutputEnabled = true;

VsgDriver.ALC.Enabled = false;

VsgDriver.Modulation.IQ.UploadArbAgilentFile(ArbRef

,

FileName);

VsgDriver.Modulation.Enabled = true;

VsgDriver.Modulation.BasebandPower = -

10;

// Play the ARB, sending all changes to hardware

VsgDriver.Modulation.PlayArb(ArbRef,

AgM938xStartEventEnum.AgM938xStartEventImmediate);

VsgDriver.Modulation.Scale =

0.5; VsgDriver.Apply(); // Get the Sample Rate and RMS Value (Peak to Average

Ratio) of the Current Waveform

AgM938xMarkerEnum RfBlankMarker =

53

M9393A Programming Guide

AgM938xMarkerEnum.AgM938xMarkerNone;

AgM938xMarkerEnum AlcHoldMarker

= AgM938xMarkerEnum.AgM938xMarkerNone;

VsgDriver.Modulation.IQ.ArbInformation(ArbRef, ref

SampleRate, ref RmsValue, ref ScaleFactor, ref RfBlankMarker, ref

AlcHoldMarker);

// Setup the RF Path in the Receiver

VsaDriver.RF.Frequency = Frequency;

VsaDriver.RF.Power = Level + PowerOffset;

VsaDriver.RF.Conversion =

AgM9393ConversionEnum.AgM9393ConversionAuto;

VsaDriver.RF.PeakToAverage = RmsValue;

VsaDriver.RF.IFBandwidth =

IfBandwidth;

// Configure the Acquisition

VsaDriver.AcquisitionMode =

AgM9393AcquisitionModeEnum.AgM9393AcquisitionModePower;

VsaDriver.PowerAcquisition.Bandwidth = MeasureBW;

VsaDriver.PowerAcquisition.Duration =

ChannelTime; VsaDriver.PowerAcquisition.ChannelFilter.Configure(FilterType,

FilterAlpha, FilterBw);

// Send Changes to hardware

VsaDriver.Apply();

VsaDriver.WaitUntilSettled(100)

;

string response = "y";

while (string.Compare(response, "y") == 0) {

Console.WriteLine("Press Enter to Run Test");

Console.ReadLine();

// Run a group of baseband power commands to

change the source level and make a power measurement at each step.

// Simulates Servo loop timing, but

the measured power to adjust the next source level

VsaDriver.PowerAcquisition.Duration

VsaDriver.Apply();

double[] LevelOffset = new double[]

-0.5, -0.75};

does not use

= ChannelTime;

{-3, -2, -1,

for (int Index = 0;Index < LevelOffset.Length -

1;Index++) {

VsgDriver.Modulation.BasebandPower =

LevelOffset[Index];

VsgDriver.Apply();

VsaDriver.Arm();

VsaDriver.PowerAcquisition.ReadPower(0

,

AgM9393PowerUnitsEnum.AgM9393PowerUnitsdBm, ref MeasuredPower, ref

Overload);

}

// Loop Through the channel offset frequencies for

54

M9393A Programming Guide

an ACPR measurement

// Use the last value of the servo loop for the

channel power

MeasuredChannelPower = MeasuredPower;

ChannelPowerOverload = Overload;

VsaDriver.PowerAcquisition.Duration = AdjacentTime;

for (int Index = 0;Index <

FreqOffset.Length;Index++) {

VsaDriver.PowerAcquisition.OffsetFrequency

= FreqOffset[Index];

VsaDriver.Apply();

VsaDriver.Arm();

VsaDriver.PowerAcquisition.ReadPower(0,

AgM9393PowerUnitsEnum.AgM9393PowerUnitsdBm, ref MeasuredPower,

ref Overload);

MeasuredACPR[Index] = MeasuredPower -

MeasuredChannelPower;

}

// Make sure the VSA frequency offset is back to 0

(on repeat)

VsaDriver.PowerAcquisition.OffsetFrequency = 0;

VsaDriver.Apply();

if (ChannelPowerOverload == true) {

Console.WriteLine("Channel Power

Measurement Overload");

}

Console.WriteLine("Channel Power:

MeasuredChannelPower);

{0} dBm",

Console.WriteLine("ACPR1

MeasuredACPR[0]);

Console.WriteLine("ACPR1

MeasuredACPR[1]);

Console.WriteLine("ACPR2

MeasuredACPR[2]);

Console.WriteLine("ACPR2

MeasuredACPR[3]);

L: {0} dBc",

U: {0} dBc",

L: {0} dBc",

U: {0} dBc",

Console.WriteLine("Repeat? y/n");

response = Console.ReadLine();

}

#endregion

}

catch (Exception ex)

{

Console.WriteLine("Exceptions for the drivers:\n");

Console.WriteLine(ex.Message);

}

finally

#region Close Driver Instances

55

M9393A Programming Guide

5.4 Making Harmonic Measurements with the M9393A
VSA

Making harmonics and spurious measurements is a key application of the M9393A Vector Signal

Analyzer (VSA).

5.4.1 Spectrum Acquisition mode

Harmonic measurements are made in the Spectrum Acquisition mode, which allows:

Setting specific Span and Resolution Bandwidth (RBW)

Averaging to "Time Peak" for peak detection

Noise Correction

Digital image rejection

5.4.2 Considerations when making a harmonics measurement

Span and RBW: use specified values. Modulated signals measurements will vary a large amount

based on the value of the RBW.

Widow Type: typically use HDR Flat Top.

56

}

}

}

{

if (VsgDriver != null && VsgDriver.Initialized)

{

// Close the driver

VsgDriver.Close();

Console.WriteLine("VSG Driver Closed");

}

if (VsaDriver != null && VsaDriver.Initialized)

{

// Close the driver

VsaDriver.Close();

Console.WriteLine("VSA Driver Closed\n");

}

}

#endregion

Console.WriteLine("Done - Press Enter to Exit");

Console.ReadLine();

M9393A Programming Guide

Averages: Set time required to achieve desired repeatability. Time for each average is FFT Size /

Sample Rate.

Overlap: Typically use 0.5.

Results: Array of power data in units of dBm. Start Frequency and Frequency Delta between

points in the array.

5.4.3 Programming considerations

The following M9393A software drivers are used in constructing a program to make a harmonics

measurement:

IAgM9393

Apply

Arm

Initializ

e RF

Configure

Conversion

Frequency

IFBandwidth

Power

AcquisitionTrigger

Delay

Mode

Timeout

TimeoutMode

ExternalTrigger

Slope

Source

AcquisitionMode

SpectrumAcquisition

Averaging

Configure

Count

Duration

Mode

Overlap
57

M9393A Programming Guide

GetComplexSpectrum

ResolutionBandwidth

Span

5.5 Using the M9393A with the Resource Manager
(M9000) and Modular X-Apps (M90XA)

5.5.1 Resource Manager

The Resource Manager is a program that enables common hardware to be accessed by witching

between multiple programs. The image below shows common hardware (in green) being accessed

directly by drivers or two programs. The Resource Manager (in yellow) in this example allows rapid

switching between the 89600 VSA program, and the X-Series Apps program. By being able to switch

between different programs and by direct IVI driver access, test developers can gain insights and then

optimize their test algorithms.

5.5.2 Modular X-Series Apps

Features of the X-Series Apps are:

Consistent interface

Common algorithms, programming commands and shared library of measurement applications

across X-Series signal analyzers and M9393A PXI VSA ensure consistent, repeatable results.

Same look & feel as bench-top analyzer applications

Same measurement algorithms

Same SCPI interface

One license supports up to four PXI VSAs

There are presently X-Series Apps for cellular communications, wireless connectivity, and general

purpose apps.

The cellular communications X-Apps include the EVM measurement, which is useful for testing power

amplifiers.

58

M9393A Programming Guide

6 Receiver List Mode

6.1 Introduction

List Mode is generally used in automated manufacturing situations where making high speed signal

acquisitions with accurate timing is important in reducing test times for a device under test (DUT).

Reducing test times, increases production throughput.

Using the "List" Mode a user can record a set of commands and actions that can be quickly executed on

the VSA hardware. IVI commands are recorded as a binary stream (control stream) and played back

through the Digitizer FPGA. Execution speeds for a control stream are much faster than if executed

sequentially by the host controller. This is because the List is played out of FPGA and memory on the

Digitizer, and commands that control other hardware, like tuning the Synthesizer, are accomplished by

sending these commands over the PXI Chassis backplane.

When using List mode, it is important to note that calibration and filter information can end up being

stored in the control stream after it is built. This makes the List volatile, in that temperature fluctuations

can invalidate the contents of the List because calibration coefficients that are a function of temperature

would be incorrect. The List can't be shared across sessions, nor between hardware sets

The following sections will provide more understanding of List mode operation.

List Mode set up

Test scenario

Reference: IVI commands for the List

6.2 List Mode set up

List Mode consists of a set of interface methods and properties that allow the end-user to create and

play one or more named List that can be catalogued in the Receiver driver. A List executes a predefined

set of Acquisitions, each of which starts with the specified AcquisitionMode and with the specific

configurations (sample rate, offset frequency, etc.). There are several different AcquisitionTriggers.

Besides all the triggers available in the non-list mode, there is another trigger mode called Scheduler.

The Scheduler makes it possible to make a series of acquisitions with accurate timing using the internal

timer. The List can also generate out-going triggers. Using proper acquisition triggers and out-going

triggers, the Receiver List can interact with DUT and other external equipment as well as control the

timing of acquisitions autonomously with the internal timer. This enables the user to perform test

sequences as complicated as mentioned above.

59

M9393A Programming Guide

Creating the List

The user first defines a named List with List.Create and List.End (see the Reference section for the

complete list of IVI commands). In between, one or more Entry (a.k.a. Step) can be defined with

List.Entry.Create and List.Entry.End. While a List is being defined, all the changes are "recorded" in the

"control stream" without affecting the state of actual HW.

In each Entry, AcquisitionMode specifies what kind of acquisition is to be made, just as it does outside

the List. Three modes are allowed in the List: IQAcquisition, SpectrumAcquisition, and PowerAcquisition.

Each Entry has to define one and only one Acquisition. So, in each Entry, the user needs to call

List.Acquisition.Add once.

Other methods/properties can also be put in an Entry. See Reference section for the complete list of IVI

methods/properties allowed in the List. As in the Source List, properties undefined in the Entry will hold

the same values from the preceding Entry, or from the start of the list definition if they are not defined

in any of the preceding Entries.

For the Source List, the user can define StartEvent and EndEvent for each Entry. They specify how the

List should advance from one Entry to the next. StartEvent and EndEvent will not be available for the

Receiver List. In the Receiver List, the only thing that controls the List's advancement is

AcquisitionTrigger. Once an acquisition is finished (in a certain Entry), the List makes any changes

needed for the next acquisition (in the next Entry) and get to the armed state as soon as possible. From

the user's point of view, anything that keeps the receiver from doing acquisition is an unwanted

overhead. The user can still put Apply and Arm in the List definition, but they will be simply ignored. See

the timing diagram below:

Typically, a List contains more than one acquisition. Each acquisition is identified by a unique key or

Capture ID. The user needs to remember the Capture ID returned by List.Acquisition.Add, or use the

60

M9393A Programming Guide

utility method List.Acquisition.GetCaptureID(string ListName, string EntryName). When it comes to

reading the data, the user needs to pass in the correct Capture ID to Read methods.

To perform multiple acquisitions using the List, the memory block has to be allocated for each one of

them first and then, its address needs to be recorded in the control stream. The user can call

List.AllocateMemory to do it (after List.End); or, it automatically happens when List.Play is called for the

first time.

Once List playback gets underway, acquisitions will be completed one by one from the beginning of the

List. The user can retrieve the data from the completed acquisitions. List.WaitForData takes Capture ID

and returns if the corresponding acquisition has been completed or not.

The following code shows how to define a list, then to play it, and then finally to retrieve acquisition

data:

List.Create("My List");

// Do IQ acuisition in Step 1

List.Entry.Add("Step 1");

IQAcquisition.SampleRate = 5e7;

IQAcquisition.SampleSize = 32bit;

IQAcquisition.Samples = SAMPLE_COUNT;

AcquisitionMode = AcquisitionModeIQ;

List.Acquisition.Add();

List.Entry.End();

// Do power acuisition in Step 2

List.Entry.Add("Step 2");

PowerAcquisition.Duration = 1e-4;

AcquisitionMode = AcquisitionModePower;

List.Acquisition.Add();

List.Entry.End();

List.End();

List.Play("My List", 10000);

// Retrieve the IQ data

int idForIQ = List.Acquisition.GetCaptureID("My List", "Step 1");

// Wait until the data becomes ready.

while (List.WaitForData(idForIQ, 100) == Waiting) {}

double[] iq = new double[IQ_SAMPLE_COUNT]

bool overload;

IQAcquisition.GetIQData32(idForIQ, 0, SAMPLE_COUNT, ref iq, out overload);

// Retrieve the power

int idForPower = List.Acquisition.GetCaptureID("My List", "Step 2");

61

M9393A Programming Guide

// Wait until the data becomes ready.

while (List.WaitForData(idForPower, 100) == Waiting) {}

double power;

PowerAcquisition.GetPower(idForPower, UnitsdBm, ref power, out overload);

6.3 Test scenario

The following is for a realistic test scenario:

const String LIST_NAME = "MY LIST";

const int STEP_COUNT = 8;

// Array to hold capture IDs.

int[] keys = new [STEP_COUNT];

// Array to hold the retrieved IQ data

const int SAMPLE_COUNT = 1024;

double[][] iq = new [6][SAMPLE_COUNT];

// Array to hold the retrieved power data

double[] powers = new [2];

// First, let's set the properties that do not change in the list

RF.Power = -10;

IQAcquisition.SampleRate = 50e6;

IQAcquisition.Samples = SAMPLE_COUNT;

62

M9393A Programming Guide

PowerAcquisition.Bandwidth = 5e6;

PowerAcquisition.OffsetFrequency = 0;

Triggers.ExternalTrigger.Enabled = true;

int i = 0;

// List Definition

List.Create(LIST_NAME);

List.Entry.Add("Step 1");

RF.Frequency = 1e9;

IQAcquisition.OffsetFrequency = -40e6;

Triggers.AcquisitionTrigger.Mode = External;

Triggers.AcquisitionTrigger.Scheduler.Synchronize();

Triggers.AcquisitionTrigger.Mode = ModeIQ;

keys[i++] = List.Acquisition.Add();

List.Entry.End();

List.Entry.Add("Step 2");

IQAcquisition.OffsetFrequency = 0;

Triggers.AcquisitionTrigger.Mode = Scheduler;

Triggers.AcquisitionTrigger.Scheduler.Schedule(20e-3, Reletive);

keys[i++] = List.Acquisition.Add();

List.Entry.End();

List.Entry.Add("Step 3");

IQAcquisition.OffsetFrequency = 40e6;

Triggers.AcquisitionTrigger.Scheduler.Schedule(20e-3, Reletive);

keys[i++] = List.Acquisition.Add();

List.Entry.End();

List.Entry.Add("Step 4");

Triggers.AcquisitionTrigger.Mode = External;

Triggers.AcquisitionTrigger.Scheduler.Synchronize();

AcquisitionMode = ModePower;

keys[i++] = List.Acquisition.Add();

List.Entry.End();

List.Entry.Add("Step 5");

RF.Frequency = 2e9;

IQAcquisition.OffsetFrequency = -40e6;

Triggers.AcquisitionTrigger.Mode = Scheduler;

Triggers.AcquisitionTrigger.Scheduler.Schedule(20e-3, Reletive);

AcquisitionMode = ModeIQ;

keys[i++] = List.Acquisition.Add();

List.Entry.End();

63

M9393A Programming Guide

List.Entry.Add("Step 6");

IQAcquisition.OffsetFrequency = 0;

Triggers.AcquisitionTrigger.Scheduler.Schedule(20e-3, Reletive);

keys[i++] = List.Acquisition.Add();

List.Entry.End();

List.Entry.Add("Step 7");

IQAcquisition.OffsetFrequency = 40e6;

keys[i++] = List.Acquisition.Add();

List.Entry.End();

List.Entry.Add("Step 8");

Triggers.AcquisitionTrigger.Mode = External;

AcquisitionMode = ModePower;

keys[i++] = List.Acquisition.Add();

List.Entry.End();

List.End();

// Start Playing the list

List.Play(LIST_NAME, 100000 /* timeout in ms */, Immediate);

// Retrieve the acquired data

for (int i = 0; i < keys.Length; ++i) {

// Wait until the data becomes ready

Result r;

while ((r = List.WaitForData(keys[i], 0.1)) == Waiting) {

}

// Get the data if available. Otherwise, report an error and exit.

if (r == Ready) {

if ((i == 3) || (i == 7)) {

PowerAcquisition.GetPower(keys[i],..ref powers[],..)

else {

IQAcquisition.GetIQData(keys[i],..,ref iq[][],..)

}

}

else if (r == Aborted) {

report error...

break;

}

}

64

M9393A Programming Guide

6.4 Reference: IVI commands for the List

A. Defining List

List.Create(String name)

Creates a new list with the specified name. This method declares the beginning of the list definition.

List.End()

Concludes the current list definition..

List.Entry.Add(String name)

Adds a new entry (a.k.a. step) to the current list definition. The name given here will be returned by

List.CurrentEntryPlaying. Also, List.Acquisition.GetCaptureID takes the Entry name.

List.Entry.End()

Ends the current entry.

List.Remove(String name)

Removes the specified list from the Catalog. Nothing happens if the specified list does not exist.

B. Acquisition-related Methods

List.Acquisition.AllocateMemory(string Name)

Allocate memory blocks for all the acquisitions in the specified list and (re)build the control stream. If

the memory has already been allocated, nothing happens.

List.Acquisition.ReleaseMemory(string Name)

This method releases the memory blocks allocated for all the acquisitions in the specified list. Until this

method gets called, they are "locked" for data retrieval. New acquisitions will grab memory from

unlocked area. If sufficient memory is not found, an error will be thrown. The user should know that

once ReleaseMemory is called, the control stream is invalidated. Next time the user plays the list, the

control stream has to be rebuilt using the memory areas available at that time.

List.Acquisition.CheckAvailableMemory(String Name, ref long currentSize, ref long sizeAfterAlloc)

This method returns the current free memory size as well as the expected free memory size after

allocation is done for the specified List. If the second parameter is -1, it means there is not enough

memory. The user needs to release some memory first.

List.Acquisition.Add(): int

List.Acquisition.GetCaptureID(string ListName, string EntryName): int

The first method indicates the acquisition should take place in a certain Entry. It also returns the unique

capture ID (int), which is to be passed in to XyzAcqusition.GetAbcData. The second method returns the

Capture ID for the specified list and entry.

C. List Playback

List.Play(String name, Int32 TimeOutMilliseconds, StartEventEnum startEvent)

enum StartEventEnum { Immediate, ExternalTrigger, SoftwareTrigger }

Start playing the specified list upon the specified event.

List.Stop()

Stop the list currently playing (if any).

List.WaitUntilComplete(Int32 TimeOutMilliseconds): enum { NeverPlayed, Running, Complete,

65

M9393A Programming Guide

TimeoutAbort, UserAbort, ErrorAbort, TriggerTimeoutAbort }

Waits until the list is finished or the specified time passes, and returns the status.

List.CurrentEntryPlaying: String

Returns the name of the entry the list is currently playing, or String.Empty if the list is not playing.

List.WaitForData(Int32 CaptureID, double Timeout): enum { Waiting, Ready, Aborted }

Returns the status of the acquisition specified by the given capture ID. If the status is Waiting, the

method does not return and wait until the status changes to either Ready or Aborted, up to the period

specified by Timeout.

D. Scheduler

Triggers.AcquisitionTrigger.Mode

Add a new enum AgM9393AcquisitionTriggerModeScheduler.

Triggers.AcquisitionTrigger.Scheduler.Schedule(double time, enum {Absolute, Relative}): void

The user can put this method in any Entry with an acquisition. The acquisition starts at the specified

timing. If the second parameter is Absolute, the given time refers to the duration from the last point of

scheduler reset. If it is Relative, the time refers to the duration from the last Scheduler-based acquisition

. Note that the Scheduler is reset each time a non-scheduler trigger is used.

66

M9393A Programming Guide

7 Differences between the M9391 and M9393

The major differences between the M9391 and M9393 are as follows:

M9393 supports noise correction, M9391 does not.

M9393 supports digital image rejection, M9391 does not.

M9391 has a dual-downconversion path across most of the band, M9393 only has this in the

narrowband.

M9393 has a Stepped Spectrum IVI interface, M9391 does not.

M9393 has a MultiAcquisition mode in addition to the List mode, M9391 does not.

M9393 has two IF filter bandwidths, where M9391 has only one.

M9393 has three different offset adjustments: IF, digitizer, and mixer, whereas M9391 only has

two.

The interface for alignments is slightly different: there are more options with M9393.

Additionally, the alignments are stored in EEPROM, alignments therefore don't need to be re-run

in between IVI sessions.

M9393 has a Live SFP, M9391 does not.

M9393 requires that the RF input have no incident signal when performing alignments, M9391

does not.

M9393 has a broadband trigger in addition to the other triggers present for the M9391.

67

M9393A Programming Guide

8 Appendix - Determining Resource Name Address Strings

The following is for 2x2 MIMO in One M9018A PXIe Chassis

Using the M9381A PXIe VSG #1 Soft Front Panel to get a Resource Name address string:

string VsgResourceName =

"PXI8::0::0::INSTR;PXI11::0::0::INSTR;PXI12::0::0::INSTR;PXI20::0::0::I

Using the M9393A PXIe VSA #1 Soft Front Panel to get a Resource Name address string:

string VsaResourceName =

"PXI14::0::0::INSTR;PXI10::0::0::INSTR;PXI9::0::0::INSTR;PXI20::0::0::INSTR";

68

Slot

Model/Module Name

VISA Address

2

M9311A PXIe

Modulator

PXI8::0::0::INSTR;

4

M9310A PXIe Source

Output

PXI11::0::0::INSTR;

5

M9301A PXIe

Synthesizer

PXI12::0::0::INSTR;

10

M9300A PXIe

Reference

PXI20::0::0::INSTR;

M9393A Programming Guide

Using the M9300A PXIe Reference Soft Front Panel to get a Resource Name address string:

string ReferenceResourceName = "PXI20::0::0::INSTR";

Using the M9393A PXIe VSA #2 Soft Front Panel to get a Resource Name address string:

string VsaResourceName =

"PXI24::0::0::INSTR;PXI25::0::0::INSTR;PXI28::0::0::INSTR";

69

Slot

Model/Module Name

VISA Address

10

M9300A PXIe

Reference

PXI20::0::0::INSTR;

Slot

Model/Module Name

VISA Address

7

M9301A PXIe

Synthesizer

PXI14::0::0::INSTR;

8

M9350A PXIe

Downconverter

PXI10::0::0::INSTR;

9

M9214A PXIe IF

Digitizer

PXI9::0::0::INSTR;

10

M9300A PXIe

Reference

PXI20::0::0::INSTR;

M9393A Programming Guide

Using the M9381A PXIe VSG #2 Soft Front Panel to get a Resource Name address string:

string VsgResourceName =

"PXI23::0::0::INSTR;PXI21::0::0::INSTR;PXI22::0::0::INSTR";

70

Slot

Model/Module Name

VISA Address

15

M9311A PXIe

Modulator

PXI23::0::0::INSTR;

17

M9310A PXIe Source

Output

PXI21::0::0::INSTR;

18
M9301A PXIe

Synthesizer

PXI22::0::0::INSTR;

Slot

Model/Module Name

VISA Address

11

M9301A PXIe

Synthesizer

PXI24::0::0::INSTR;

12

M9350A PXIe

Downconverter

PXI25::0::0::INSTR;

13

M9214A PXIe IF

Digitizer

PXI28:0::0::INSTR;

M9393A Programming Guide

71

M9393A Programming Guide

9 Appendix - Verify Instruments Connect, Pass Self-Test, &

are Updated

Before you attempt to programmatically control any hardware and make measurements, connect to

each of the instrument soft front panels, one at a time, perform self-test, and verify their FPGA firmware

is fully updated. If any firmware updates are made, perform the self-test again.

In the following procedures, each instrument connection must be verified, each instrument must pass

self-test, and each instrument's firmware version should be checked and updated if needed.

72

M9393A Programming Guide

9.1 Verify that VSG 1 is Connected, Passes Self-Test, and

Contains up to Date Firmware

73

1. Select Start > All Programs > Keysight > M938x

> M9381 SFP and run the soft front panel of the

M9381A PXIe VSG - connect to VSG #1 and the

M9300A PXIe Reference.

2. Run self-test.

3. Check firmware and update if necessary.

4. Close the Firmware Update dialog box if no

firmware updates are necessary. If firmware

updates are required, install the updates, shut

down the computer, cycle power on the M9018A

PXIe Chassis, and repeat this procedure to verify

connection, self-test, and no further firmware

updates are necessary.

M9393A Programming Guide

9.2 Verify that VSA 1 is Connected, Passes Self-Test, and

Contains up to Date Firmware

74

1. Select Start > All Programs > Keysight > M9393

> M9393 SFP and run the soft front panel of

the M9393A PXIe VSA - connect to VSA #1 and

the M9300A.

2. Run self-test.

3. Check firmware and update if necessary.

4. Close the Firmware Update dialog box if no

firmware updates are necessary. If required,

install the updates, shut down the computer,

cycle power on the M9018A PXIe Chassis, and

repeat this procedure to verify connection,

self-test, and no further firmware updates are

necessary.

M9393A Programming Guide

10 Appendix - Using Visual Studio 2010

Microsoft Visual Studio 2010 has slight differences compared to Visual Studio 2008 in creating projects.

COM Interop Libraries that are added as References to projects in Visual Studio 2010 default to "Embed

Interop Types : True" which leads to compilation errors. This usually leads to two errors on the following

line of code, C# is used as an example.

AgM9393 driver = new AgM9393Class();

The compilation errors would be

The type 'Agilent.AgM9393.Interop.AgM9393Class' has no constructors defined.

Interop type 'Agilent.AgM9393.Interop.AgM9393Class' cannot be embedded. Use t

To fix this compilation error, right-click on the AgM9393Lib in the project References, and edit the

Properties. Change the "Embed Interop Types" field to "False"

75

M9393A Programming Guide

11 Glossary

ADE (application development environment) — An integrated suite of software development programs.

ADEs may include a text editor, compiler, and debugger, as well as other tools used in creating,

maintaining, and debugging application programs. Example: Microsoft Visual Studio.

API (application programming interface) — An API is a well-defined set of set of software routines

through which application program can access the functions and services provided by an underlying

operating system or library. Example: IVI Drivers

C# (pronounced "C sharp") — C-like, component-oriented language that eliminates much of the

difficulty associated with C/C++.

Direct I/O — commands sent directly to an instrument, without the benefit of, or interference from a

driver. SCPI Example: SENSe:VOLTage:RANGe:AUTO Driver (or device driver) — a collection of functions

resident on a computer and used to control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an application program and

loaded only when needed, thereby reducing memory requirements. The functions or data in a DLL can

be simultaneously shared by several applications.

Input/Output (I/O) layer — The software that collects data from and issues commands to peripheral

devices. The VISA function library is an example of an I/O layer that allows application programs and

drivers to access peripheral instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver model defined by the IVI

Foundation that enables engineers to exchange instruments made by different manufacturers without

rewriting their code. www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) — IVI COM presents the IVI driver as a COM

object in Visual Basic. You get all the intelligence and all the benefits of the development environment

because IVI COM does things in a smart way and presents an easier, more consistent way to send

commands to an instrument. It is similar across multiple instruments.

Microsoft COM (Component Object Model) — The concept of software components is analogous to that

of hardware components: as long as components present the same interface and perform the same

functions, they are interchangeable. Software components are the natural extension of DLLs. Microsoft

developed the COM standard to allow software manufacturers to create new software components that

can be used with an existing application program, without requiring that the application be rebuilt. It is

this capability that allows T&M instruments and their COM-based IVI-Component drivers to be

interchanged.

.NET Framework — The .NET Framework is an object-oriented API that simplifies application

development in a Windows environment. The .NET Framework has two main components: the common

language runtime and the .NET Framework class library.

VISA (Virtual Instrument Software Architecture) — The VISA standard was created by the VXIplug&play

Foundation. Drivers that conform to the VXIplug&play standards always perform I/O through the VISA

library. Therefore if you are using Plug and Play drivers, you will need the VISA I/O library. The VISA

standard was intended to provide a common set of function calls that are similar across physical

76

http://www.ivifoundation.org/

M9393A Programming Guide

interfaces. In practice, VISA libraries tend to be specific to the vendor's interface.

VISA-COM — The VISA-COM library is a COM interface for I/O that was developed as a companion to the

VISA specification. VISA-COM I/O provides the services of VISA in a COM-based API. VISA-COM includes

some higher-level services that are not available in VISA, but in terms of low-level I/O communication

capabilities, VISA-COM is a subset of VISA. Keysight VISA-COM is used by its IVI-Component drivers and

requires that Keysight VISA also be installed.

77

M9393A Programming Guide

12 References

1. Understanding Drivers and Direct I/O, Application Note 1465-3 (Keysight Part Number:

5989-0110EN)

Digital Baseband Tuning Technique Speeds Up Testing, by Bill Anklam, Victor Grothen and Doug

Olney, Keysight Technologies, Santa Clara, CA, April 15, 2013, Microwave Journal

Accelerate Development of Next Generation 802.11ac Wireless LAN Transmitters-Overview,

Application Note (Keysight Part Number: 5990-9872EN)

www.ivifoundation.org

2.

3.

4.

78

http://www.ivifoundation.org/

The Modular Tangram

The four-sided geometric symbol that appears in Keysight modular

product literature is called a tangram. The goal of this seven-piece

puzzle is to create shapes—from simple to complex. As with a

tangram, the possibilities may seem infinite as you begin to create

a new test system. With a set of clearly defined elements—

hardware, software—Keysight can help you create the system you

need, from simple to complex.

www.keysight.com

www.keysight.com/find/modular

www.keysight.com/find/M9393A

For more information on Keysight Technologies' products,

applications or services, please contact your local Keysight office.

(For additional listings, go to www.keysight.com/find/assist)

Americas

Canada

Brazil

Mexico

United States

Asia Pacific

(877) 894 4414

(11) 4197 3500

01800 5064 800

(800) 829 4444 DISCOVER the Alternatives …

 … Keysight MODULAR Products

Australia

China

Hong Kong

India

Japan

Korea

Malaysia

Singapore

Taiwan

Thailand

Europe & Middle East

1 800 629 485

800 810 0189

800 938 693

1 800 112 929

0120 (421) 345

080 769 0800

1 800 888 848

1 800 375 8100

0800 047 866

1 800 226 008

Keysight Advantage Services is committed to

your success throughout your equipment's

lifetime.

www.keysight.com/find/advantageservices

Keysight Email Updates keep you informed on the

latest product, support and application information.

www.agilent.com/find/emailupdates
Keysight Channel Partners provide sales and

solutions support. For details, see

www.keysight.com/find/channelpartners

ISO 9001:2008 certified. For details, see

www.keysight.com/quality
Austria

Belgium

Denmark

Finland

France

Germany

Ireland

Israel

Italy

Netherlands

Spain

Sweden

Switzerland

United Kingdom

43 (0) 1 360 277 1571

32 (0) 2 404 93 40

45 70 13 15 15

358 (0) 10 855 2100

0825 010 700 (0.125 €/minute)

49 (0) 7031 464 6333

1890 924 204

972 3 9288 504 / 544

39 02 92 60 8484

31 (0) 20 547 2111

34 (91) 631 3300

0200 88 22 55

0800 80 53 53

44 (0) 118 9276201

www.pxisa.org

PICMG and the PICMG logo, CompactPCI and the CompactPCI logo,

AdvancedTCA and the AdvancedTCA logo are US registered trademarks of the

PCI Industrial Computers Manufacturers Group. “PCIe” and “PCI EXPRESS” are

registered trademarks and/or service marks of PC-SIG. Microsoft, Windows,

Visual Studio, Visual C++, Visual C#, and Visual Basic are either registered

trademark or trademarks of Microsoft Corporation.

Product descriptions in this document are subject to change without notice.

http://www.keysight.com/
http://www.keysight.com/find/modular
http://www.keysight.com/find/assist%20)
http://www.keysight.com/find/advantageservices
http://www.agilent.com/find/emailupdates
http://www.keysight.com/find/channelpartners
http://www.keysight.com/quality
http://www.pxisa.org/

