Keysight X-Series Signal Analyzers N9010A EXA Signal Analyzer

This manual provides documentation for the following Analyzers:

```
N9010A Option 503 (9 kHz - 3.6 GHz)
N9010A Option 507 (9 kHz - 7 GHz)
N9010A Option 513 (9 kHz - 13.6 GHz)
N9010A Option 526 (9 kHz - 26.5GHz)
```

Notice: This document contains references to Agilent. Please note that Agilent's Test and Measurement business has become Keysight Technologies. For more information, go to www.keysight.com.

Notices

© Keysight Technologies, Inc. 2008-2014

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws

Trademark Acknowledgements
Bluetooth®

Manual Part Number

N9010-90050

Print Date

December 2014
Supersedes: November 2014
Published in USA
Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as
defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as
"Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Keysight Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:
http://www.keysight.com/find/pxa
http://www.keysight.com/find/mxa
http://www.keysight.com/find/exa
http://www.keysight.com/find/cxa
http://www.keysight.com/find/mxe
To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:
http://www.keysight.com/find/MyKeysight
Information on preventing analyzer damage can be found at:
www.keysight.com/find/PreventingInstrumentRepair

Is your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:
http://www.keysight.com/find/techsupport

Table of Contents

1. Overview

What You Will Find in This Chapter 15
Keysight EXA Signal Analyzer Overview 16
Instrument Option Descriptions 17
Signal Analyzer Accessories 18
Manual Set on CD-ROM 18
50 Ohm Load 19
50 Ohm/75 Ohm Minimum Loss Pad 19
75 Ohm Matching Transformer 19
AC Probe 19
AC Probe (Low Frequency) 19
Broadband Preamplifiers and Power Amplifiers 19
RF and Transient Limiters 20
Power Splitters 20
Static Safe Accessories 20
Before You Start Troubleshooting 21
ESD Information 23
Protection from Electrostatic Discharge 23
Handling of Electronic Components and ESD 24
Test Equipment Usage and ESD 24
For Additional Information about ESD 24
Service Equipment You Will Need 25
Calibration Application Software 25
Front End Controller Troubleshooting Kit 26
USB Keyboard and Mouse 27
USB Storage Device 27
Required Test Equipment List 28
After an Instrument Repair 38
Contacting Keysight Technologies 39
Instrument Serial Numbers 42
How to Return Your Instrument for Service 43
Service Order Number 43
Original Packaging 43
Other Packaging 44
2. Boot Up and Initialization Troubleshooting
What You Will Find in This Chapter 45
Check the Basics 46
Instrument Boot Up Process 47
Typical instrument boot-up process flow 48
Potential Problems During Boot Process 51

Contents

Yellow Standby LED Does Not Illuminate 51
Green Power On LED Does Not Illuminate 53
Fan(s) Are Not Operating 55
No Agilent Splash Screen Displayed 57
Instrument Hangs at the Agilent Splash Screen 58
PCI Enumeration Error 58
Instrument Cannot Completely Load or Run the Operating System 59
Troubleshooting a Blank Display 59
Verify LCD Backlight Functionality 60
Verify Video Signal Path Integrity 63
Video Controller / LCD Troubleshooting 63
Initializations Did Not Complete 63
Fails an Initial Alignment 64
Signal Level Verification 68
Signal Level Problem with Input Frequencies < 3.6 GHz 68
Signal Level Problem with Input Frequencies > 3.6 GHz 69
3. Instrument Messages Introduction 71
Event and Condition Categories 72
Event Message Format 72
Event Queues 73
Advisory Messages 75
-800, Operation Complete Event 80
-700, Request Control Event 81
-600, User Request Event 82
-500, Power on Event 83
-400 to -499, Query Errors 84
-300 to -399, Device-Specific Errors 85
-221 Settings Conflict Errors 87
-200 to -299, Execution Errors 95
-100 to -199, Command Errors 102
0 Error 104
Condition Errors 1 to 99, Calibration 105
Condition Errors 6 to 34, Calibration Skipped 105
Condition Errors 36 to 64, Calibration Needed or Failed 106
Condition Errors 65 to 92, Calibration Needed (Extended) 106
Condition Errors 67 to 95, Calibration Failure (Extended) 107
Condition Errors 101 to 199, Measurement Integrity 109
Condition Errors 201 to 299, Signal Integrity 111
Condition Errors 301 to 399, Uncalibrated Integrity 115
Condition Errors 401 to 499, Power 118
Condition Errors 501 to 599, Frequency 119
Condition Errors 601 to 699, Error Summaries 120
Condition Errors 701 to 799, Operation 121
Condition Errors 801 to 899, Temperature 122
4. RF Section Troubleshooting
(RF/Microwave Analyzers)
What You Will Find in This Chapter 123
RF Section Description 124
Purpose 124
RF Section Theory of Operation 128
Troubleshooting 132
Quick Check to Verify the Low Band Signal Path 132
Troubleshooting a Low Band Problem 137
Quick Check to Verify High Band RF Path \#1 159
Troubleshooting a High Band Problem 163
High Band Preamp (P07) 188
High Band Mixing Equations 188
Microwave Preselector Bypass (Option MPB) 189
5. RF Section Troubleshooting (Millimeter-Wave Analyzers)
What You Will Find in This Chapter 191
RF Section Description 192
A9 Input Attenuator A 195
A10 Input Attenuator B 195
A11 Low Band Switch 196
A12 YTF Preselector 196
A13 RF Front End Assembly (Options 532, 544) 197
Troubleshooting 199
Quick Check to Verify the Low Band Signal Path 199
Troubleshooting a Low Band Problem 202
Quick Check to Verify High Band RF Path 209
Troubleshooting a High Band Problem 214
6. Front End Control Troubleshooting
What You Will Find in This Chapter 223
A15 Front End Control Description. 224
Purpose 224
A15 Front End Control Assembly Troubleshooting 229
Verifying Input Attenuator A, Input Attenuator B, Low Band Switch Logic and Power Supplies 230

Contents

Preselector Tune Output 239
Verifying Microwave Preselector Bypass Switch (Option MPB) 240
Oscilloscope Test 240
Verifying Aux IF Out, Rear Panel (Option CR3, CRP only) 245
Standard Analyzer 245
Verifying Option CR3 246
Verifying Option CRP 247
7. Analog/Digital IF Troubleshooting
What You Will Find in This Chapter 249
25 MHz BW IF Section 251
A2 Analog I.F. Assembly Description 251
A2 Analog I.F. Assembly Theory of Operation 252
A2 Analog I.F. Troubleshooting 255
A3 Digital I.F. Assembly Description 262
A3 Digital I.F. Assembly Theory of Operation 263
A3 Digital I.F. Troubleshooting 265
40 MHz BW IF Section 270
A2 Analog IF Assembly Description 270
A2 Analog IF Assembly Theory of Operation. 271
A2 Analog IF Troubleshooting 274
A3 Digital IF Assembly Description 281
A3 Digital IF Assembly Theory of Operation 282
A3 Digital IF Troubleshooting 284
8. L.O. Synthesizer/Reference Troubleshooting
What You Will Find in This Chapter 293
A14 L.O. Synthesizer Assembly Description 294
Purpose 294
A14 L.O. Synthesizer Theory of Operation 295
Brief Description of the Major Blocks: 295
A14 L.O. Synthesizer Troubleshooting 296
Verifying the 4800 MHz Input Power \& Frequency Stability: 297
Verifying the 1st L.O. Output Power: 300
A16 Reference Assembly Description 304
Purpose 304
A16 Reference Assembly Troubleshooting 306
9. CPU/Disk Drive Troubleshooting
What You Will Find in This Chapter 315
A4 CPU Description 316
CPU Identification 316
Disk Drive 318
Front Panel Interface 318
Graphics Controller 318
Power Supply Control. 318
Rear Panel Connectivity 319
System Memory 319
System Processor 319
A5 Disk Drive 320
Overview 321
Troubleshooting software related issues 322
Reloading the X-Series Software 323
Disk Drive Recovery Process 324
Agilent Recovery System 324
Using the Instrument Recovery System 325
Replacing the instrument disk drive 325
10. Power Supply/Midplane Troubleshooting What You Will Find in This Chapter 327
A6 Power Supply Description 328
Purpose. 328
Power Supply Theory of Operation 329
A6 Power Supply Basic Troubleshooting (Cover On) 334
A7 Midplane Description 336
Purpose 336
A7 Midplane Assembly Troubleshooting 339
11. Front Panel/Motherboard Troubleshooting341
A8 Motherboard Description 342
Purpose. 342
A8 Motherboard Troubleshooting 343
A1 Front Panel Assembly 344
A1A2 Front Panel Interface Board 344
A1A3 LCD 344
A1A4 LCD Inverter Board/DC-DC Converter 344
A1A5 Front Panel USB Interface Board 344
12. Block Diagrams
What You Will Find in This Chapter 345
Block Diagrams 346
RF Lowband Path Block Diagram 347
RF Highband Path \#1 Block Diagram 348
RF Highband Path \#2 Block Diagram 349
mmW RF Lowband Path Block Diagram 350

Contents

mmW RF Highband Path \#1 Block Diagram 351
mmW RF Highband Path \#2 Block Diagram 352
mmW RF Highband Path \#3 Block Diagram 353
25 MHz Bandwidth I.F. System Block Diagram 354
40 MHz Bandwidth I.F. System Block Diagram 355
Reference and Synthesizer Block Diagram 356
EXA Computer Block Diagram 357
13. Service and Diagnostics Menus
Overview 359
Controlling Access 359
Secure Service Access, Software Versions A.01.xx through A.03.xx 360
Summary of Requirements for Service Menu Access, Software Versions A.01.xx through A.03.xx: 360
Secure Service Access, Software Version \geq A.04.00. 360
Menus 361
Service Key Descriptions 365
Timebase 365
Corrections 366
Band Lock 368
LO Band Lock. 369
LO Control 369
Align 370
14. Replaceable Parts
What You Will Find in This Chapter 375
How to Order Parts 377
Replaceable Parts 378
Hardware 393
15. Assembly Replacement Procedures
What You Will Find in This Chapter 441
Before Starting 442
Safety 442
Tools you will need 443
Adjustments Tests after an instrument repair 443
Major Assembly Locations 444
Instrument Outer Case 445
Standard Instrument 445
Option PRC 447
Top Brace and Reference Bracket 450
Removal 450
Replacement 451
RF Area (Option 503, 507, 513, 526) 452
Low Band Switch -
Standard Instruments with Serial Number < MY/SG50510001 455
Low Band Switch -
Standard Instruments with Serial Number > MY/SG50510001 459
Low Band Switch and Coaxial Switches
Options DP2, MPB, B40 463
Attenuators 479
YTF Preselector 481
RF Area (Option 532, 544) 484
Low Band Switch 487
Low Band Switch and Coaxial Switch Options DP2, MPB, B40 491
Attenuators 494
YTF Preselector. 496
RF Front End Assembly - Options 503, 507, 513, 526 500
Removal 500
Replacement 501
RF Front End Assembly - Options 532, 544 502
Removal 502
Replacement 503
Front End Control Assembly 504
Removal 504
Replacement 506
L.O. Synthesizer Assembly 507
Removal 507
Replacement 507
Rear Panel 509
Removal 509
Replacement 509
Reference Assembly 510
Removal 510
Replacement 511
Power Supply Assembly 512
Removal 512
Replacement 513
CPU Assembly 515
Removal 515
Replacement 517
Disk Drive 518
Rear Panel Removable Disk Drive 518
Internally Mounted Disk Drive 523
Disk Drive Interconnect 529
Analog I.F. (AIF)/Digital I.F. (DIF) Assembly 531
Removal 531

Contents

Separate AIF/DIF Assembly 534
Replacement 535
Midplane Assembly 536
Removal 536
Replacement 537
Motherboard Assembly 539
Removal 539
Replacement 542
Fan Assembly 544
Removal 544
Replacement 545
Input Connector Assembly 547
Removal 547
Replacement 547
Front Frame Assembly 549
Removal 549
Replacement 550
Bail Handle Removal (Option PRC) 551
Front Frame Assembly Components - LCD 552
Front Frame Assembly Components - LED 559
16. Post-Repair Procedures
What You Will Find in This Chapter 567
Before Starting 567
Post-Repair Procedures 568
Additional Tasks 572
17. Functional TestsFunctional Test VersusPerformance Verification603
Before Performing a Functional Test 604
Test Equipment 605
Displayed Average Noise Level (DANL) 608
Procedure 608
Frequency Readout Accuracy 611
Procedure 612
Second Harmonic Distortion (SHD) 614
Test Limits 614
Procedure 615
Amplitude Accuracy at 50 MHz 617
Procedure 618
Testing Preamp Option (P03, P07, P32, P44) 620
Frequency Response (Flatness) 621
Procedure 622
Frequency Response (Flatness), Preamp On 625
Procedure 626
Scale Fidelity 629
Procedure 630
18. Instrument Software
What You Will Find in This Chapter 633
Instrument Software Overview 634
Software Licensing 635
Software Updates 636
Instrument Measurement Application Software 636
89601 VSA Software 636

Contents

Service Guide

1 Overview

What You Will Find in This Chapter

This chapter provides overview information on your spectrum analyzer.
The following sections are found in this chapter:
Keysight EXA Signal Analyzer Overview on page 16
Instrument Option Descriptions on page 17
Signal Analyzer Accessories on page 18
Before You Start Troubleshooting on page 21
ESD Information on page 23
Service Equipment You Will Need on page 25
After an Instrument Repair on page 38
Contacting Keysight Technologies on page 39
How to Return Your Instrument for Service on page 43

Keysight EXA Signal Analyzer Overview

The Keysight EXA signal analyzer measures and monitors complex RF and microwave signals. The analyzer integrates traditional spectrum measurements with advanced vector signal analysis to optimize speed, accuracy, and dynamic range. The EXA has Windows XP Pro® built in as the operating system, which expands the usability of the analyzer. You will be able to manipulate various file types on your analyzer just like your personal computer. Having a Windows based instrument provides many benefits such as easier file management, built-in Windows based programs such as Internet Explorer, and much more.

The Keysight EXA signal analyzer is readily adaptable to meet changing measurement needs. Optional features, whether hardware or measurement application software, will enable the analyzer to be configured as a comprehensive analytical tool to test communications systems and components.

If customer requirements should change or expand, post sale upgrades can be purchased at any time. Many upgrades require a license key, which is obtained using the Keysight licensing process. If the Keysight Delivery Option is ordered, the entitlement certificate will be emailed to the customer the same day and the license key can be generated and installed in the EXA Signal Analyzer within minutes. Once the license key is entered into the analyzer, the new option is enabled and fully functional.
The service strategy for the EXA is assembly level repair, not component level.

Instrument Option Descriptions

The EXA signal analyzer has a variety of options and measurement applications that can be installed depending on your application. These options and measurement applications can be purchased and installed at the time of sale or as a post-sale upgrade. In order to find out all the requirements about installing an upgrade into the analyzer, refer to http://www.keysight.com/find/exa_upgrades

Signal Analyzer Accessories

A number of accessories are available from Keysight Technologies to help you configure your analyzer for your specific applications. They can be ordered through your local Keysight Sales and Service Office and are listed below.

Manual Set on CD-ROM

The entire documentation set excluding the EXA Service Guide is shipped with the instrument on CD-ROM. The documentation that exists on the CD-ROM can also be accessed anytime via the web at http://www.keysight.com/find/exa_manuals.

Each manual is described below:

- Getting Started Guide: Describes analyzer features in detail. In addition, this manual covers unpacking and setting up the analyzer, analyzer features, and information on options and accessories, and what to do if you have a problem.
- Specifications Guide: Documents specifications, safety, and regulatory information.
- Instrument Messages: Includes instrument messages (and suggestions for troubleshooting them).
- Functional Tests: Includes manual functional tests.
- User's/Programmer's References: Multiple manuals which include programming information and SCPI command descriptions for basic spectrum analyzers and for applications such as IQ analyzer, WCDMA, and 802.16 OFDMA.
- Measurement Guides and Programming Examples: Multiple manuals which provide details on how to how to use catalogs and files, and how to measure various signals for basic spectrum analyzers and for applications such as IQ analyzer, WCDMA, and 802.16 OFDMA.

NOTE Refer to the front of the CD-ROM, for installation information.

NOTE Service documentation is not included in the standard documentation set. Refer to http://www.keysight.com/find/exa_upgrades

50 Ohm Load

The Keysight 909 series loads come in several models and options providing a variety of frequency ranges and VSWRs. Also, they are available in either 50 ohm or 75 Ohm . Some examples include the:

909A: DC to 18 GHz
909C: DC to 2 GHz
909D: DC to 26.5 GHz

50 Ohm/75 Ohm Minimum Loss Pad

The Keysight 11852B is a low VSWR minimum loss pad that allows you to make measurements on 75 Ohm devices using an analyzer with a 50 Ohm input. It is effective over a frequency range of dc to 2 GHz .

75 Ohm Matching Transformer

The Keysight 11694A allows you to make measurements in 75 Ohm systems using an analyzer with a 50 Ohm input. It is effective over a frequency range of 3 to 500 MHz .

AC Probe

The Keysight 85024A high frequency probe performs in-circuit measurements without adversely loading the circuit under test. The probe has an input capacitance of 0.7 pF shunted by $1 \mathrm{M} \Omega$ of resistance and operates over a frequency range of 300 kHz to 3 GHz . High probe sensitivity and low distortion levels allow measurements to be made while taking advantage of the full dynamic range of the spectrum analyzer.

AC Probe (Low Frequency)

The Keysight 41800A low frequency probe has a low input capacitance and a frequency range of 5 Hz to 500 MHz .

Broadband Preamplifiers and Power Amplifiers

Preamplifiers and power amplifiers can be used with your spectrum analyzer to enhance measurements of very low-level signals.

- The Keysight 8447D preamplifier provides a minimum of 25 dB gain from 100 kHz to 1.3 GHz .
- The Keysight 87405A preamplifier provides a minimum of 22 dB gain from 10 MHz to 3 GHz . (Power is supplied by the probe power output of the analyzer.)
- The Keysight 83006A preamplifier provides a minimum of 26 dB gain from 10 MHz to 26.5 GHz .
- The Keysight 85905A CATV 75 ohm preamplifier provides a minimum of 18 dB gain from 45 MHz to 1 GHz . (Power is supplied by the probe power output of the analyzer.)
- The 11909A low noise preamplifier provides a minimum of 32 dB gain from 9 kHz to 1 GHz and a typical noise figure of 1.8 dB .

RF and Transient Limiters

The Keysight 11867A and N9355C RF Limiters protect the analyzer input circuits from damage due to high power levels. The 11867A operates over a frequency range of dc to 1800 MHz and begins reflecting signal levels over 1 mW up to 10 W average power and 100 watts peak power. The N9355C microwave limiter (0.01 to 26.5 GHz) guards against input signals over 10 milliwatts up to 1 watt average power.

The Keysight 11947A Transient Limiter protects the analyzer input circuits from damage due to signal transients. It specifically is needed for use with a line impedance stabilization network (LISN). It operates over a frequency range of 9 kHz to 200 MHz , with 10 dB of insertion loss.

Power Splitters

The Keysight 11667A/B/C power splitters are two-resistor type splitters that provide excellent output SWR, at 50Ω impedance. The tracking between the two output arms, over a broad frequency range, allows wideband measurements to be made with a minimum of uncertainty.

11667A: DC to 18 GHz
11667B: DC to 26.5 GHz
11667C: DC to 50 GHz

Static Safe Accessories

9300-1367 Wrist-strap, color black, stainless steel. Four adjustable links and a 7 mm post-type connection.

9300-0980 Wrist-strap cord 1.5 m (5 ft.)

Before You Start Troubleshooting

Before troubleshooting, complete the following tasks:

- Familiarize yourself with the safety symbols marked on the instrument and read the general safety considerations in the front of this guide.
- Read the ESD information below.
- Familiarize yourself with the troubleshooting information in Chapter 2, "Boot Up and Initialization Troubleshooting.", and how it relates to information on troubleshooting the other assemblies.

WARNING These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.

WARNING The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the product from all voltage sources while it is being opened.

WARNING The detachable power cord is the instrument disconnecting device. It disconnects the mains circuits from the mains supply before other parts of the instrument. The front panel switch is only a standby switch and is not a LINE switch (disconnecting device).

CAUTION Always position the instrument for easy access to the disconnecting device (detachable power cord).

WARNING To prevent electrical shock, disconnect the analyzer from mains before cleaning. Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally.

WARNING This is a Safety Class 1 Product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protective earth contact.

Any interruption of the protective conductor inside or outside of the product is likely to make the product dangerous. Intentional interruption is prohibited.

CAUTION Always use the three-prong ac power cord supplied with this product. Failure to ensure adequate earth grounding by not using this cord may cause product damage.

CAUTION This instrument has an autoranging line voltage input; be sure the supply voltage is within the specified range.

ESD Information

Protection from Electrostatic Discharge

Electrostatic discharge (ESD) can damage or destroy electronic components. All work on electronic assemblies should be performed at a static-safe workstation. Figure 1-1 shows an example of a static-safe workstation using two types of ESD protection:

- Conductive table-mat and wrist-strap combination.
- Conductive floor-mat and heel-strap combination.

Both types, when used together, provide a significant level of ESD protection. Of the two, only the table-mat and wrist-strap combination provides adequate ESD protection when used alone. To ensure user safety, the static-safe accessories must provide at least 1 megohm of isolation from ground.

WARNING
These techniques for a static-safe workstation should not be used when working on circuitry with a voltage potential greater than 500 volts.

Figure 1-1
Example of a Static-Safe Workstation

Handling of Electronic Components and ESD

The possibility of unseen damage caused by ESD is present whenever components are transported, stored, or used. The risk of ESD damage can be greatly reduced by paying close attention to how all components are handled.

- Perform work on all components at a static-safe workstation.
- Keep static-generating materials at least one meter away from all components.
- Store or transport components in static-shielding containers.

CAUTION Always handle printed circuit board assemblies by the edges. This will reduce the possibility of ESD damage to components and prevent contamination of exposed plating.

Test Equipment Usage and ESD

- Before connecting any coaxial cable to an analyzer connector, momentarily short the center and outer conductors of the cable together.
- Personnel should be grounded with a 1 megohm resistor-isolated wrist-strap before touching the center pin of any connector and before removing any assembly from the analyzer.
- Be sure that all analyzers are properly earth-grounded to prevent build-up of static charge.

For Additional Information about ESD

For more information about preventing ESD damage, contact the Electrical Over Stress/Electrostatic Discharge (EOS/ESD) Association, Inc. The ESD standards developed by this agency are sanctioned by the American National Standards Institute (ANSI).

Service Equipment You Will Need

There are certain things that will be required to troubleshoot, adjust, and test the EXA Signal Analyzer. They include the following:

- Calibration Application Software
- Front End Controller Troubleshooting Kit
- USB Keyboard and Mouse
- USB Storage Device
- Test Equipment

Calibration Application Software

Information regarding the Keysight X-Series Signal Analyzer Calibration Application Software can be found at the following web site:
www.keysight.com/find/calibrationsoftware

Front End Controller Troubleshooting Kit

The Front End Troubleshooting kit contains a PC board, required cables, and installation instructions to verify the switch control logic from the A15 Front End Control board to the lower level front end components is correct. Oftentimes when troubleshooting an RF front end problem, the logic needs to be verified before one of the front end components is changed. This troubleshooting kit will help identify the defective area in a timely manner. In order to effectively isolate A15 Front End Control board problems from front end component problems, it is highly recommended that the N9020-60005 Front End Troubleshooting kit is purchased.

The Front End Troubleshooting kit lower level items can be purchased individually or as a complete kit with instructions. The complete listing of kit components, descriptions, and part numbers can be found below.

Keysight Part	Keysight Part Number	Notes
Front End Troubleshooting kit	N9020-60005	
Front End Troubleshooting board	E4410-60115	Part of N9020-60005 Troubleshooting kit
Cable, Low Band switch	E4410-60160	Part of N9020-60005 Troubleshooting kit
Cable, RF Downconverter	E4410-60156	Part of N9020-60005 Troubleshooting kit
Cable, YTF Preselector	E4410-60158	Part of N9020-60005 Troubleshooting kit
Cable, Input Attenuators	E4410-60157	Part of N9020-60005 Troubleshooting kit
Cable, Troubleshooting	$8121-1400$	
Connector, MMCX (f) to SMA (f)	n/a	www.hubersuhner.com item number: 31_MMCX-SMZ-50-1/111_OE

USB Keyboard and Mouse

A USB keyboard and mouse will be needed to accomplish many of the different troubleshooting tasks, as well as updating the instrument software. Any standard USB keyboard and mouse should work, but you can use the optional keyboard and mouse sold for the instrument. These can be purchased as:

Description	Option Number	Upgrade Option	Part Number $^{\mathbf{a}}$
USB Keyboard	N9010A-KYB	N9010AK-KYB	$0960-2933$
USB Mouse	N9010A-MSE	N9010AK-MSE	$0960-2670$

a. Part number is subject to change.

USB Storage Device

The main reason why a USB storage device will be needed is to backup calibration data when the hard drive in an instrument needs to be replaced. Most any size of storage device can be used, as the size of the file to be backed up is not much larger than a few megabytes. An optional 512 MB device can be ordered along with an instrument as N9010A-EFM, as an upgrade as N9010AK-EFM, or by using the part number 1819-0195.

NOTE
The memory capacity and part number of the USB storage device supplied with N9010A/AK-EFM is subject to change.

Required Test Equipment List

The following table identifies the equipment recommended for troubleshooting, adjusting, and verifying the performance of the instrument. Only the recommended and alternate equipment is compatible with the performance verification testing. Some tests can use various models of a particular equipment type. The "Recommended Keysight Model" is the preferred equipment. However, the "Alternative Keysight Model" is an acceptable substitute.

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
Signal Sources				
Microwave Signal Generator \#1	Frequency: 10 MHz to 50 GHz Frequency Resolution: 1 Hz Harmonic level: <-30 dBc Amplitude range: -40 dBm to +13 Amplitude resolution: 0.02 VSWR: < 20 GHz : 1.6:1 $\leq 31 \mathrm{GHz}$: 1.8:1	E8257D (Option 567, 1EA/1EU, 1E1) (Option 007, Analog Ramp Sweep, required for Frequency Response Adjustments)	For Adjustments: 83630A/B/L (Option 001, 008), 83640A/B/L (Option 001, 008), 83650A/B/L (Option 001, 008), PSG ${ }^{\text {c }}$ For Performance Tests: 83630A/B (Option 001, 008), 83640A/B (Option 001, 008), 83650B (Option 001, 008) PSG ${ }^{\text {c }}$	A, P, T
Microwave Signal Generator \#2 (only required for Third Order Intermodulation and Gain Compression)	Frequency: 10 MHz to 26.5 GHz Frequency Resolution: 1 Hz Harmonic level: <-30 dBc Amplitude range: -20 dBm to +13 Amplitude resolution: 0.02 VSWR: < 20 GHz: 1.6:1 $\leq 31 \mathrm{GHz}$: 1.8:1	$\begin{aligned} & \text { E8257D } \\ & \text { (Option 1EA/1EU) } \end{aligned}$	83630A/B (Option 008), 83640A/B (Option 008), 83650A/B (Option 008) PSG ${ }^{\text {C }}$	P
Low Noise Signal Generator (one PSG may be used for multiple sources. See footnote ${ }^{\text {c }}$)	Frequency: 50 MHz to 1.0 GHz Harmonics: <-30 dBc $\leq+13 \mathrm{dBm}$ Spectral Purity SSB Phase Noise @ 1 GHz: -112 dBc at 100 Hz offset -121 dBc at 1 kHz offset -131 dBc at 10 kHz offset VSWR: < 1.5:1	E8257D (Options UNR, UNX)	$\begin{aligned} & \text { 8663A } \\ & \\ & \text { PSG } \\ & \text { (Options UNR, } \\ & \text { UNX) } \end{aligned}$	A, P, T

Service Equipment You Will Need

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
RF Signal Generator (one PSG may be used for multiple sources. See footnote ${ }^{\text {C }}$)	```Frequency: 300 kHz to 3.6 GHz Frequency Resolution: 1 Hz Harmonic level: <-40 dBc Amplitude range: -20 dBm to +13 Amplitude resolution: 0.02 Harmonic level: \(<2 \mathrm{GHz}\), <-30 dBc \(\geq 2 \mathrm{GHz} \&<26.5 \mathrm{GHz},<-50 \mathrm{dBc}\) VSWR: < 20 GHz: 1.6:1 \(\leq 31 \mathrm{GHz}\) : 1.8:1 \\ For Option UNR or UNX: Harmonics: <-30 dBc \(\leq+13 \mathrm{dBm}\) Spectral Purity SSB Phase Noise @ 1 GHz: -112 dBc at 100 Hz offset -121 dBc at 1 kHz offset -131 dBc at 10 kHz offset VSWR: < 1.5:1```	E8257D (Options UNR, UNX)	8665B (for Freq Resp Phase Noise > 30 kHz test only) PSG ${ }^{\text {c }}$ (Options UNR, UNX)	A, P
Function Generator	Frequency: 10 Hz to 300 kHz Amplitude Resolution: 0.1 mv Harmonic Distortion: -35 dBc	33250A (required for Channel Match (Option BBA) test)	$\begin{array}{\|l} 33120 \mathrm{~A} \\ \text { (Option 001) } \end{array}$	A, P
Counters				
Universal Counter	Frequency: 10 MHz Gate time: 10 to 100 seconds Must be capable of measuring signal at $+7 \mathrm{dBm}(0.5 \mathrm{Vrms})$	53132A	53131A	A, P, T
Meters				
Digital Multimeter	Frequency: 3 Hz to 300 kHz AC Accuracy: $\pm 0.31 \%$ of reading	3458A		A, P, T
Power Meter	Dual Channel Instrumentation Accuracy: $\pm 0.5 \%$ Power Reference Accuracy: $\pm 0.6 \%$ Compatible with 8480 series power sensors dB relative mode	N1914A	$\begin{array}{\|l} \text { E4419A/B } \\ \text { N1912A } \end{array}$	A, P
RF Power Sensor (2 required)	```Frequency Range: }100\textrm{kHz}\mathrm{ to 3.6 GHz Amplitude Range: -30 to +20 dBm Zero Set: }\pm50\textrm{nW Zero Drift: < }\pm10\textrm{nW Measurement Noise: < 110 nW VSWR 100 kHz to 1 MHz: \leq 1.20:1 1 MHz to 2 GHz: \leq 1.10:1 2 GHz to 3 GHz: \leq 1.30:1 Cal Factor Uncertainty (std): < 1.6% Option H84 Cal Factor: Characterized by standards lab to: }\pm0.6%\mp@subsup{}{}{\textrm{d} Input Connector: Type-N (m)```	8482A (Option H84)	$\begin{aligned} & \text { N8482A }{ }^{\mathrm{e}} \\ & \text { N8482A CFT }{ }^{\mathrm{e}} \\ & \text { 8482A } \\ & \text { (Non-H84 sensors } \\ & \text { will increase } \\ & \text { measurement } \\ & \text { uncertainty) } \end{aligned}$	A, P

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
Microwave Power Sensor (2 required)	```Frequency Range: 50 MHz to 26.5 GHz Amplitude Range: -30 to +20 dB Zero Set: \(\pm 50 \mathrm{nW}\) Zero Drift: < \(\pm 10 \mathrm{nW}\) Measurement Noise: < 110 nW Cal Factor Uncertainty: < 3.0\% VSWR: 50 MHz to \(100 \mathrm{MHz}: 1.15: 1\) 100 MHz to 2 GHz 1.10:1 2 GHz to 12.4 GHz: 1.15:1 12.4 GHz to \(18 \mathrm{GHz}: 1.20: 1\) 18 GHz to \(26.5 \mathrm{GHz}: 1.25: 1\) Input Connector: 3.5 mm (m)```	N8485A ${ }^{\text {e }}$	$\begin{aligned} & \text { N8485A CFT } \\ & 8485 A^{e} \end{aligned}$	A, P
Millimeter Power Sensor (for Options > 532)	Frequency Range: 50 MHz to 50 GHz Amplitude Range: -30 to +20 dBm Zero Set: $\pm 50 \mathrm{nW}$ Zero Drift: < $\pm 10 \mathrm{nW}$ Measurement Noise: < 100 nW Cal Factor Uncertainty: < 4.5\% VSWR: 50 MHz to $100 \mathrm{MHz}: 1.15: 1$ 100 MHz to 2 GHz : 1.10:1 2 GHz to $12.4 \mathrm{GHz}: 1.15: 1$ 12.4 GHz to $18 \mathrm{GHz}: 1.20: 1$ 18 GHz to $26.5 \mathrm{GHz}: 1.25: 1$ 26.5 GHz to $40 \mathrm{GHz}: 1.30: 1$ 40 GHz to 50 GHz : 1.50:1 Input Connector: $2.4 \mathrm{~mm}(\mathrm{~m})$	N8487A	8487A	A, P
High Sensitivity Millimeter Power Sensor (for Options > 532)	Frequency Range: 50 MHz to 50 GHz Amplitude Range: -70 to -20 dBm Zero Set: $\pm 20 \mathrm{pW}$ Zero Drift: < ± 4 pW Measurement Noise: < 4 pW Cal Factor Uncertainty: < 4.5\% VSWR: 50 MHz to 100 MHz : 1.19:1 100 MHz to 4 GHz : 1.15:1 4 GHz to $12.4 \mathrm{GHz}: 1.20: 1$ 12.4 GHz to $18 \mathrm{GHz}: 1.29: 1$ 18 GHz to $34 \mathrm{GHz}: 1.37: 1$ 34 GHz to $40 \mathrm{GHz}: 1.61: 1$ 40 GHz to 50 GHz : 1.89:1 Input Connector: 2.4 mm (m)	8487D		A, P
Low Power Microwave Power Sensor (2 required) (for Option P07 only)	Frequency Range: 50 MHz to 26.5 GHz Amplitude Range: -70 to +20 dBm Zero Set: $\pm 50 \mathrm{pW}$ Zero Drift: < $\pm 4 \mathrm{pW}$ Measurement Noise: < 4 pW Cal Factor Uncertainty: < 3.0\% VSWR: 50 MHz to 100 MHz : 1.15:1 100 MHz to $2 \mathrm{GHz}: 1.10: 1$ 2 GHz to $12.4 \mathrm{GHz}: 1.15: 1$ 12.4 GHz to $18 \mathrm{GHz}: 1.20: 1$ 18 GHz to $26.5 \mathrm{GHz}: 1.25: 1$ Input Connector: 3.5 mm (m)	8485D ${ }^{\text {e }}$		A, P
Power Sensor Cable (2 required)		11730A		A, P, T

Overview

Service Equipment You Will Need

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
Standards				
Frequency Standard	Frequency: 10 MHz Accuracy: < ± 1 e10-10	Symmetricom 5071A	Keysight 5061B, 5071A	A, P
50 MHz , -25 dBm Calibrator	Frequency Drift: < 2.5 kHz Typical VSWR: 1.06:1 Output Power Variation: $\pm .004 \mathrm{~dB}$ Total Harmonic Content: - 45 dBc	$\begin{aligned} & \text { Z5602A } \\ & \text { Opt H51 } \end{aligned}$		A
Attenuators				
10 dB Step Attenuator	Range: 0 to 80 dB Accuracy: Characterized by standards lab ${ }^{\dagger}$ Calibrated at 50 MHz VSWR: at $50 \mathrm{MHz}: \leq 1.05: 1$	$\begin{aligned} & \text { 8496G } \\ & \text { (Option 001, H50) } \end{aligned}$	$\begin{aligned} & \text { 8496H } \\ & \text { (Option 001, H50) } \end{aligned}$	P
1 dB Step Attenuator	Range: 0 to 9 dB Accuracy: Characterized by standards lab ${ }^{\mathrm{f}}$ VSWR: at $50 \mathrm{MHz}: \leq 1.05: 1$	$\begin{aligned} & \text { 8494G } \\ & \text { (Option 001, H50) } \end{aligned}$	$\begin{aligned} & \text { 8494H } \\ & \text { (Option 001, H50) } \end{aligned}$	P
Attenuator Interconnect Kit	Type N connector kit to connect 8496G to 8494G	11716A		P
Attenuator Driver	Compatible with the 8496G and 8494G step attenuators	11713B	11713A	P
3 dB Fixed Attenuator	Frequency: 50 MHz Loss: 3 dB (nominal) VSWR: at $50 \mathrm{MHz}: \leq 1.2: 1$ Connector: Type-N (m, f)	8491A (Option 003)	8491B (Option 003)	P
6 dB Fixed Attenuator	Frequency: 50 MHz Loss: 6 dB (nominal) VSWR: at $50 \mathrm{MHz}: \leq 1.05: 1$ Connector: Type-N (m, f)	8491A (Option 006, H339)	8491B (Option 006, H33 ${ }^{\text {g }}$	P
6 dB Fixed Attenuator (2 required)	Frequency: 50 MHz to 3.6 GHz Loss: 6 dB (nominal) VSWR: at $50 \mathrm{MHz}: \leq 1.10: 1$ Connector: $3.5 \mathrm{~mm}(\mathrm{~m}, \mathrm{f})$	$\begin{aligned} & 8493 \mathrm{C} \\ & \text { (Option 006) } \end{aligned}$		A
10 dB Fixed Attenuator	Frequency: 50 MHz Loss: 10 dB (nominal) VSWR: at $50 \mathrm{MHz}: \leq 1.05: 1$ Connector: Type-N (m, f)	$\begin{aligned} & \text { 8491A } \\ & \text { (Option 010, } \\ & \text { H33 } \mathbf{g}_{\text {) }} \end{aligned}$	$\begin{aligned} & \text { 8491B } \\ & \text { (Option 010, H33 }{ }^{\text {g }} \end{aligned}$	P
10 dB Fixed Attenuator	Frequency: 50 MHz to 19.5 GHz Loss: 10 dB (nominal) VSWR: 321.4 MHz to $8 \mathrm{GHz}: \leq 1.1: 1$ 8 GHz to $12.4 \mathrm{GHz}: \leq 1.15: 1$ 12.4 GHz to $19.5 \mathrm{GHz}: \leq 1.25: 1$ Connector: $3.5 \mathrm{~mm}(\mathrm{~m}, \mathrm{f})$	$\begin{aligned} & \hline 8493 \mathrm{C} \\ & \text { (Option 010) } \end{aligned}$		A, P

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
$\begin{array}{\|l} 20 \mathrm{~dB} \\ \text { Fixed Attenuator } \end{array}$	Frequency: 10 MHz Loss: 20 dB (nominal) VSWR: 10 MHz : $\leq 1.20: 1$ Connector: Type-N (m, f)	8491A (Option 020)	8491B (Option 020)	A, P
30 dB Fixed Attenuator	Frequency: 50 MHz Loss: $30 \mathrm{~dB} \pm 0.05 \mathrm{~dB}$ VSWR: 1.05 @ 50 MHz (For use with Low Power Sensors)	11708A		A, P
Terminations				
Type-N (m) (for Option 503, 507, 513)	Frequency: 10 kHz to 18 GHz VSWR: $\leq 1.05: 1$	$\begin{aligned} & \text { 909A } \\ & \text { (Option 012) } \end{aligned}$		P, T
$\begin{aligned} & 2.4 \mathrm{~mm} \text { (f) } \\ & \text { (for Options > 532) } \end{aligned}$	50Ω Frequency: 10 kHz to 50 GHz	85138B		P, T
$\begin{array}{\|l} 3.5 \mathrm{~mm}(\mathrm{f}) \\ \text { (for Option 526) } \end{array}$	50Ω Frequency: 10 kHz to 50 GHz	909D (Option 526)		P, T
Miscellaneous Devices				
RF Power Splitter	Frequency: 9 kHz to 3.6 GHz VSWR: $\leq 1.10: 1$ Tracking Error: $< \pm 0.15$ 8B Connector: Type-N (f)	11667A		A, P
Microwave Power Splitter	Frequency: 50 MHz to 26.5 GHz VSWR: 10 MHz to $3 \mathrm{GHz}:<1.22: 1$ 3 GHz to 26.5 GHz : 1.22:1 Tracking Error: $< \pm 0.40$ 8B Connector: 3.5 mm (f)	11667B		A, P
Millimeter Power Splitter (for Options > 532)	Frequency: 50 MHz to 50 GHz VSWR: < 50 MHz to 18 GHz : $1.29: 1$ 18 GHz to $26.5 \mathrm{GHz}:<1.20: 1$ 26.5 MHz to $40 \mathrm{GHz}:<1.50: 1$ 40 GHz to 50 GHz : < 1.65:1 Tracking Error: $< \pm 0.40$ 8B Connector: 2.4 mm (f)	11667C		P
Directional Bridge	Frequency Range: 50 MHz to 3 GHz Directivity: 50 MHz to $2 \mathrm{GHz}: 40 \mathrm{~dB}$ 2 GHz to $3 \mathrm{GHz}: 30 \mathrm{~dB}$ VSWR: $\leq 2 \mathrm{GHz}: \leq 1.15: 1$ $\leq 3 \mathrm{GHz}: \leq 1.22: 1$ Insertion Loss: $\leq 1.5,+0.1 \mathrm{~dB} / \mathrm{GHz}$ (nominal) Coupling (nominal): 16 dB Connector: Type N (f)	86205A		P

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
Directional Coupler	Frequency 2 GHz to 20 GHz Directivity > 16 dB Transmission arm loss: < 1.5 dB (nominal) Coupled Arm Loss: ~10 dB (nominal) VSWR: $\leq 1.35: 1$ Connector: SMA (f)	87300B		P
Microwave Power Divider	Frequency: DC to 500 MHz VSWR: < 1.10:1 Tracking Error: $< \pm 0.25$ 8B Connector: 3.5 mm (f)	11636B		A, P
Hybrid Power Divider	Frequency: 500 MHz to 3.6 GHz Isolation: 19 dB Insertion Loss: 4.5 dB (nominal) VSWR: <1.45:1	87302C		A
Cables				
$\begin{aligned} & 3.5 \mathrm{~mm}(\mathrm{~m}) \text { to } 3.5 \mathrm{~mm}(\mathrm{~m}) \\ & \text { (2 required) } \end{aligned}$	Frequency: DC to 26.5 GHz Length: $\leq 92 \mathrm{~cm}$ (36 in) Insertion Loss: $\sim 2 \mathrm{~dB}$ VSWR: DC to 18 GHz: $\leq 1.25: 1$ 18 GHz to $26.5 \mathrm{GHz}: \leq 1.35: 1$	11500E	8120-4921	A, P
$2.4 \mathrm{~mm}(\mathrm{~m})$ to $2.4 \mathrm{~mm}(\mathrm{f})$ (for Options > 532)	Frequency: DC to 50 GHz Length: 1 m Insertion Loss: $\begin{aligned} & <26 \mathrm{GHz}, \sim 4 \mathrm{~dB} \\ & <40 \mathrm{GHz}, \sim 5 \mathrm{~dB} \\ & <50 \mathrm{GHz}, \sim 6 \mathrm{~dB} \end{aligned}$ VSWR: $\begin{aligned} & <26.5 \mathrm{GHz}, \leq 1.30: 1 \\ & <40 \mathrm{GHz}, \leq 1.40: 1 \\ & <50 \mathrm{GHz}, \leq 1.55: 1 \end{aligned}$	8120-6164		A, P
Type-N (2 required)	Frequency: 10 MHz to 8 GHz Precision Type-N (m), both ends 62 cm (24 in.) VSWR: ≤ 18 GHz: 1.4:1 Insertion Loss: 1.5 dB	11500C		A, P, T
$\begin{aligned} & \text { BNC } \\ & \text { (3 required) } \end{aligned}$	Frequency: DC to 10 MHz 50Ω Coax BNC (m), both ends 120 cm (48 in.)	10503A		A, P, T
Filters				
300 MHz Low Pass (2 Required)	Cutoff Frequency: 300 MHz Rejection at > 435 MHz : > 45 dB VSWR: $\leq 1.5: 1$ BNC (m, f)	Telonic Berkeley TLP 300-4AB4	0955-0455	P
$\begin{aligned} & \text { 1.8 GHz Low Pass } \\ & \text { (2 Required) } \end{aligned}$	Cutoff frequency: 1.8 GHz Rejection at 2.1 GHz to 6 GHz : > 45 dB Insertion Loss @ $1.8 \mathrm{GHz}:<1 \mathrm{~dB}$ VSWR: $\leq 1.50: 1 \mathrm{DC}$ to 1.8 GHz Connector: SMA (f) to SMA (f)	RLC L-1636	0955-0491	P

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
4.4 GHz Low Pass (2 Required)	Cutoff frequency: 4.4 GHz Rejection at >5.5 GHz: > 42 dB Insertion Loss @ $1.8 \mathrm{GHz}:<1 \mathrm{~dB}$ VSWR: $\leq 1.50: 1 \mathrm{DC}$ to 1.8 GHz Connector: SMA (f) to SMA (f)	$\begin{aligned} & \text { K+L } \\ & \text { ML253-4499/XU- } \\ & \text { N/NP } \end{aligned}$	$\begin{aligned} & 9135-0005 \\ & 360 \mathrm{D} \end{aligned}$	P
5.0 GHz Low Pass	3 dB frequency: 5.25 GHz 60 dB Rejection: > 6.7 GHz VSWR: 1.35:1	$\begin{array}{\|l} \hline \text { RLC } \\ \text { F-30-5000-RF } \end{array}$		P
8.0 GHz Low Pass	3 dB frequency: 8.4 GHz 60 dB Rejection: > 10.8 GHz VSWR: 1.35:1	$\begin{aligned} & \text { RLC } \\ & \text { F-30-8000-RF } \end{aligned}$		P
12.4 GHz Low Pass	3 dB frequency: 13.0 GHz 60 dB Rejection: > 16.74 GHz VSWR: 1.35:1	RLC F-30-12.4-RF		P
Adapters				
Type-N (f) to Type-N (f)	Frequency: DC to 18 GHz VSWR: $\leq 1.13: 1$	1250-1472		P
Type-N (m) to Type-N (m)	Frequency: DC to 18 GHz VSWR: $\leq 1.13: 1$	1250-1475		P
Type-N (f) to BNC (m)	Frequency: DC to 1.3 GHz VSWR: $\leq 1.13: 1$	1250-1477		P, T
Type-N (m) to BNC (m)	Frequency: DC to 1.3 GHz VSWR: $\leq 1.13: 1$	1250-1473		P, T
Type-N (m) to BNC (f)	Frequency: DC to 1.3 GHz VSWR: $\leq 1.13: 1$	1250-1476		P
Type-N (m) to $3.5 \mathrm{~mm}(\mathrm{~m})$	Frequency: DC to 18 GHz VSWR: $\leq 1.08: 1$	1250-1743		P
Type-N (m) to 3.5 mm (f) (2 Required)	Frequency: DC to 18 GHz VSWR: $\leq 1.08: 1$	1250-1744		P
3.5 mm (f) to Type-N (f) (for 3.5 mm source)	Frequency: DC to 18 GHz VSWR: $\leq 1.08: 1$	1250-1745		A, P
Type-N (f) to 3.5 mm (m)	Frequency: DC to 18 GHz VSWR: $\leq 1.14: 1$	1250-1750		A, P
3.5 mm (f) to 3.5 mm (f) (for 3.5 mm source)	Frequency: DC to 26.5 GHz VSWR: $\leq 1.05: 1$	83059B	1250-1749	P
$3.5 \mathrm{~mm}(\mathrm{~m})$ to 3.5 mm (m) (2 Required)	Frequency: DC to 26.5 GHz VSWR: $\leq 1.12: 1$	83059A	1250-1748	P
3.5 mm (f) to 2.4 mm (f) (for 2.4 mm source)	Frequency: DC to 26.5 GHz VSWR: $\leq 1.05: 1$	11901B		P
Type-N (f) to 2.4 mm (f) (for 2.4 mm source)	Frequency: DC to 18 GHz VSWR: $\leq 1.08: 1$	11903B		P
Type-N (f) to 2.4 mm (f) (for 2.4 mm source)	Frequency: DC to 18 GHz VSWR: $\leq 1.08: 1$	11903D		P

Table 1-1 Required Test Equipment

Instrument	Critical Specifications	Recommended Model ${ }^{\text {a }}$	Alternative Model	Use ${ }^{\text {b }}$
BNC (m) to SMA(f)	Frequency: DC to 1.3 GHz VSWR: $\leq 1.13: 1$	1250-1700		P
BNC Tee (BNC f,m,f)		1250-0781		A, P
SMB (f) to BNC (f)	Frequency: DC to 1.3 GHz	1250-1236		A, P
BNC (f) to SMA (m)	Frequency: DC to 1.3 GHz	1250-1200		A, P
BNC (f) to Dual Banana		1251-2277		A, P
3.5 mm (f) to Type-N (m)	Shipped with the 8485A for adapting to the Power Reference. Only to be used for power sensor cal.	08485-60005		A, P
2.4 mm (f) to Type-N (m)	Shipped with the 8487A for adapting to the Power Reference. Only to be used for power sensor cal.	08487-60001		A, P
Type-N Tee		1250-0559		P
Optional Equipment				
10 MHz Distribution Amplifier (only needed when using the 10 MHz Distribution Amplifier Setup)		Symmetricom 5087B	Keysight 5087A	A, P
1 GHz Notch Filter (for alternate Phase Noise setup)	Center Frequency: 1.0001 GHz	Trilithic CFN-2-1000.1		P

a. Keysight model numbers unless otherwise noted.
b. $\mathrm{A}=$ Adjustments, $\mathrm{P}=$ Performance Testing, $\mathrm{T}=$ Troubleshooting
c. Supported PSG models:

E8244A
E8247C
E8254A
E8257C
E8257D
E8267C
E8267D
Note: One PSG with Option 567, 1EA, 1E1, 007, and UNX or UNR can be used as the Microwave Signal Generator \#1, Low Noise Signal Generator, and the RF Signal Generator.
d. The 8482A power sensor uses cal factors to compensate the power sensor for frequency response errors. Cal factors are stated in percentages. The 8482A factory cal factor uncertainty ranges from 2.2% to 3.1%. The cal factor uncertainty can be reduced to < 1.0% by using metrology grade calibration techniques. The power sensor cal factor uncertainty becomes one component of the Verification Test uncertainty analysis. Lower cal factor uncertainties will translate to wider test margins.
e. When ordering a new STD or CFT Power Sensor from Keysight to be used with the N7800A series applications, order with Option 1A7. The 1A7 option provides an IS017025 calibration and includes calibration data. When re-calibrating your STD or CFT Power Sensor for use with the N7800A series applications, we recommend the Keysight ISO17025 calibration.
f. The step attenuators should be permanently joined via the 11716A Interconnect Kit as shown in the following diagram.

step_atten_setup
For more information on step attenuator characterization, see the "Step Attenuator Loss Characterization" section below.
g. 8491A Option H 33 is a fixed attenuator which has been characterized to have a VSWR $\leq 1.05: 1$ at 50 MHz. A VSWR of 1.05:1 is recommended to test Input Attenuator Switching Uncertainty, Display Scale Fidelity, and Absolute Amplitude Accuracy performance tests. Any 8491A/B attenuator can be mapped into this device if the VSWR at 50 MHz has been characterized to be $\leq 1.05: 1$. When mapping the attenuator, to indicate that is meets the required specification, the Option H33 checkbox will need to be checked in the configure test station Administration screen.

Step Attenuator Loss Characterization

The step attenuator combination should have each attenuator setting characterized by a metrology lab at 50 MHz . The following tables show which sections of the 10 dB and 1 dB step attenuators are utilized for each attenuator setting. The tables also list the Allowable Uncertainty for each attenuator setting. The interconnect cable should NEVER be disconnected once the loss characterization is performed.
Table 1-2 1 dB Step Attenuator

Nominal Attenuation (dB)	Attenuator Section				Allowable Uncertainty (dB)
	$\begin{aligned} & \# 1 \\ & (1 \mathrm{~dB}) \end{aligned}$	$\begin{array}{\|l} \# 2 \\ (2 \mathrm{~dB}) \end{array}$	$\begin{aligned} & \begin{array}{l} \# 3 \\ (4 \mathrm{~dB}) \end{array} \end{aligned}$	$\begin{aligned} & \# 4 \\ & (4 \mathrm{~dB}) \end{aligned}$	
0	Off	Off	Off	Off	0 (Reference)
1	On	Off	Off	Off	< 0.005
2	Off	On	Off	Off	< 0.005
3	On	On	Off	Off	< 0.005
4	Off	Off	On ${ }^{\text {a }}$	Off	< 0.005
5	On	Off	On	Off	< 0.005
6	Off	On	On	Off	< 0.005
7	On	On	On	Off	< 0.005
8	Off	Off	On	On	< 0.005
9	On	Off	On	On	< 0.005

a. TME requires that Section 3 be characterized.

Table 1-3 $\quad 10 \mathrm{~dB}$ Step Attenuator

Nominal Attenuation (dB)	Attenuator Section				Allowable Uncertainty (dB)
	$\begin{aligned} & \# 1 \\ & (10 \mathrm{~dB}) \end{aligned}$	$\begin{aligned} & \# 2 \\ & (20 \mathrm{~dB}) \end{aligned}$	$\begin{aligned} & \# 3 \\ & (40 \mathrm{~dB}) \end{aligned}$	$\begin{aligned} & \# 4 \\ & (40 \mathrm{~dB}) \end{aligned}$	
0	Off	Off	Off	Off	0 (Reference)
10	On	Off	Off	Off	< 0.010
20	Off	On	Off	Off	< 0.015
30	On	On	Off	Off	< 0.020
40	Off	Off	On ${ }^{\text {a }}$	Off	< 0.025
50	On	Off	On	Off	< 0.030
60	Off	On	On	Off	< 0.035
70	On	On	On	Off	< 0.040

a. TME requires that Section 3 be characterized.

After an Instrument Repair

If any instrument assemblies have been repaired or replaced, perform the related adjustments and performance verification tests. These tests are done using the N7814A Keysight X-Series Signal Analyzer Calibration Application Software. Refer to Chapter 16, "Post-Repair Procedures" for a list of post-repair adjustments and performance tests based on which hardware has been changed.

Information regarding the N7814A Keysight X-Series Signal Analyzer Calibration Application Software can be found at http://www.keysight.com/find/calibrationsoftware

Contacting Keysight Technologies

If you have a problem with your instrument, see Chapter 2, "Boot Up and Initialization Troubleshooting". This section contains a checklist that will help identify some of the most common problems.

There is also support on the world-wide web. The address is:
http://www.keysight.com/find/exa_support
FAQs, instrument software updates, documentation, and other support information can be accessed from this site.

To obtain servicing information or to order replacement parts, contact the nearest Keysight office listed in Table 1-4. In any correspondence or telephone conversations, refer to the instrument by its model number (N9010A) and full serial number (ex. US47140116). With this information, the Keysight representative can quickly determine whether your unit is still within its warranty period.

By internet, phone, or fax, get assistance with all your test and measurement needs.

Overview
Contacting Keysight Technologies

Table 1-4 Contacting Keysight

Online assistance: www.keysight.com/find/contactus

Americas	
Country	Phone Number
Canada	$(877) 8944414$
Brazil	551133517010
Mexico	0018002542440
United States	$1800829-4444$

Asia Pacific

Country	Phone Number
Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 63758100$

Europe and Middle

Country	Phone Number
Austria	0800001122
Belgium	080058580
Finland	0800523252
France	0805980333
Germany	08006270999
Ireland	1800832700
Israel	1809343051
Italy	800599100

Europe and Middle	
Country	Phone Number
Luxembourg	+3280058580
Netherlands	08000233200
Russia	88005009286
Spain	0800000154
Swedan	0200 882255 Switzerland Opt. 1 (DE) Opt. 2 (FR) Opt. 3 (IT)
United Kingdom	0800 0260637

For other unlisted countries:

www.keysight.com/find/contactus

Instrument Serial Numbers

Keysight makes frequent improvements to its products enhancing performance, usability, or reliability. Keysight service personnel have access to complete records of design changes to each type of instrument, based on the instrument's serial number and option designation.

Whenever you contact Keysight about your instrument, have the complete serial number available. This will ensure that you obtain accurate service information.

A serial number label is attached to the rear of the instrument. This label has two instrument identification entries: the first provides the identification number for each option built into the instrument and the second provides the instrument's serial number.

The serial number has two parts: the prefix (two letters and the first four numbers), and the suffix (the last four numbers). Refer to the following figure.

Figure 1-2 Example Serial Number

The first two letters of the prefix identify the country in which the unit was manufactured. The remaining four numbers of the prefix identify the date of the last major design change incorporated in your instrument. The four digit suffix is a sequential number and, coupled with the prefix, provides a unique identification for each unit produced. Whenever you list the serial number or refer to it in obtaining information about your instrument, be sure to use the complete number, including the full prefix and the suffix.

The serial number is located on the rear panel serial sticker or when the analyzer is power up, press System, Show, System. The system information can be very useful for updates and post-sale upgrades.

How to Return Your Instrument for Service

Service Order Number

If an instrument is being returned to Keysight for servicing, the phone numbers are mentioned in Table 1-4, "Contacting Keysight," on page 40. In order for Keysight to expedite the repair please be as specific as possible about the nature of the failure.

Helpful failure descriptions:

- Signal level measures 10 dB too low at 1 GHz
- L.O. Unlock error message appears on screen in spans < 10 MHz
- Analyzer will not complete boot up sequence to signal analyzer mode

Failure descriptions that will most likely increase repair time:

- Analyzer broken
- Analyzer will not make accurate measurements
- Signal drifts

If you have recorded any error messages that appeared on the analyzer display, or have completed a Functional Test or Performance Verification Test, or have any other specific data on the performance of the instrument, please send a copy of this information with the instrument.

Original Packaging

Before shipping, pack the unit in the original factory packaging materials if they are available. If the original materials were not retained, see "Other Packaging" on page 44.

Other Packaging

CAUTION
Instrument damage can result from using packaging materials other than those specified. Never use styrene pellets in any shape as packaging materials. They do not adequately cushion the equipment or prevent it from shifting in the carton. They cause equipment damage by generating static electricity and by lodging in the instrument louvers, blocking airflow.

You can repackage the instrument with commercially available materials, as follows:

1. Protect the control panel with cardboard.
2. Wrap the instrument in antistatic plastic to reduce the possibility of damage caused by electrostatic discharge.
3. Use a strong shipping container. A double-walled, corrugated cardboard carton with $159 \mathrm{~kg}(350 \mathrm{lb})$ bursting strength is adequate. The carton must be both large enough and strong enough to accommodate the instrument. Allow at least 3 to 4 inches on all sides of the instrument for packing material.
4. Surround the equipment with three to four inches of packing material and prevent the equipment from moving in the carton. If packing foam is not available, the best alternative is S.D.- 240
Air $\mathrm{Cap}^{\text {TM }}$ from Sealed Air Corporation, Hayward, California, 94545.
Air Cap looks like a plastic sheet filled with 1-1/4 inch air bubbles. Use the pink-colored Air Cap to reduce static electricity. Wrapping the equipment several times in this material should both protect the equipment and prevent it from moving in the carton.
5. Seal the shipping container securely with strong nylon adhesive tape.
6. Mark the shipping container "FRAGILE, HANDLE WITH CARE" to assure careful handling.
7. Retain copies of all shipping papers.

2 Boot Up and Initialization Troubleshooting

What You Will Find in This Chapter

This chapter provides information that is useful when starting to troubleshoot a spectrum analyzer. It includes procedures for troubleshooting common failures and provides information on isolating problems in the analyzer.

The following sections are found in this chapter:
Check the Basics on page 46
Instrument Boot Up Process on page 47
Typical instrument boot-up process flow on page 48
Potential Problems During Boot Process on page 51
Yellow Standby LED Does Not Illuminate on page 51
Green Power On LED Does Not Illuminate on page 53
Fan(s) Are Not Operating on page 55
No Agilent Splash Screen Displayed on page 57
Instrument Hangs at the Agilent Splash Screen on page 58
PCI Enumeration Error on page 58
Instrument Cannot Completely Load or Run the Operating System on page 59

Troubleshooting a Blank Display on page 59
Initializations Did Not Complete on page 63
Fails an Initial Alignment on page 64
Signal Level Verification on page 68
Signal Level Problem with Input Frequencies < 3.6 GHz on page 68
Signal Level Problem with Input Frequencies > 3.6 GHz on page 69

Check the Basics

Before calling Keysight Technologies or returning the instrument for service, please make the following checks:

1. Is there power at the power outlet? At the power receptacle on the instrument?
2. Is the instrument turned on? Check to see if the front panel LED is green, which indicates the power supply is on.
3. If other equipment, cables, and connectors are being used with the instrument, make sure they are connected properly.
4. Review the procedure for the measurement being performed when the problem appeared. Are all the settings correct?
5. If the instrument is not functioning as expected, return the unit to a known state by pressing the Mode Preset key.
6. Is the measurement being performed, and the results that are expected, within the specifications and capabilities of the instrument? Refer to the specifications book for specifications.
7. In order to meet specifications, the instrument must be aligned. Press System, Alignments, Align Now, All. The diagnostic tests should all pass. If the instrument displays a failure during these tests, refer to "Fails an Initial Alignment" on page 64.
8. Check to see if the instrument has the latest firmware before starting the troubleshooting procedure. Press System, Show System. The firmware revision is listed under Firmware Revision. For more information, refer to "Instrument Software" on page 633.
9. Is the instrument displaying an error message? If so, refer to Chapter 3, "Instrument Messages", on page 71 for more information.
10.If the necessary test equipment is available, perform the functional checks in Chapter 17, "Functional Tests", on page 603.

Instrument Boot Up Process

This section describes the signal analyzer boot up process from initial AC power to a normal analyzer sweep. The boot process time from start to finish will take 3 to 4 minutes. This boot time will vary slightly depending on the analyzer hardware configuration, installed options and the number of measurement applications.

By default, the measurement applications will preload before the spectrum analyzer application is fully booted. The analyzer boot time can be shortened if needed by turning off the preload process for applications that are not going to be used. If this is done, the preload process will be bypassed during the application boot up. If a certain measurement mode is selected that did not preload during the original boot, that measurement application will preload at that time. When this occurs the mode switching time will take longer. Once the application is loaded all subsequent mode switches will be much faster.

If the user does not want the measurement applications to preload during the application boot process, select the Configure Applications icon on the desktop. This will bring up a window as shown in Figure 2-1 that shows the various applications and what is selected to preload. By default all applications are checked and therefore, will preload when the EXA application is launched. Uncheck any applications to bypass the preloading process, select Apply, and then OK to close the Configure Applications window when finished.

Figure 2-1 Configure Application

Typical instrument boot-up process flow

1. Plug in the AC power cord from a known good AC power source into the rear panel of the analyzer.
2. The yellow standby LED illuminates on the analyzer front panel to the left-hand side of the On/Off button. If the yellow Standby LED is not illuminating refer to the "Yellow Stand by LED Does Not Illuminate" section in this chapter.
3. To turn the analyzer on, press the On/Off button. The yellow Stand by LED should turn off and the green Power On LED should illuminate. A green Power On LED indicates that the power supply has received an "On" command from the A4 CPU assembly. If the green Power On LED is not illuminating refer to the "Green Power On LED Does Not Illuminate" section in this chapter.

NOTE
If the analyzer AC power source was removed by the operator by pulling the power cord or by turning off the analyzer via a power main switch on a test rack, the analyzer will automatically power on without having to press the On/Off button on the front panel.
4. The instrument fans should start running. The fans are mounted on the left-hand side of the analyzer and draw air into the instrument to cool the internal circuitry. If a fan is not running refer to the "Fan(s) Are Not Operating" section in this chapter.
5. The Agilent Technologies splash screen is displayed in white font on a dark background for $\sim 5-10$ seconds after the analyzer is turned on. If the Agilent Technologies logo is not displayed refer to the "No Agilent Splash Screen Displayed" section in this chapter. If the instrument hangs at the Agilent Technologies splash screen refer to the "Instrument Hangs at the Agilent Splash Screen" section in this chapter.
6. Verify text is displayed on screen where the user has the option of booting Windows XP or running the Agilent Recovery System. The default selection is to boot Windows XP. If a recovery is required, press the Down Arrow key on the front panel of the analyzer within 5 seconds to highlight "Agilent Recovery System" and press the Enter key on the analyzer, otherwise Windows XP will begin to boot. If the Windows XP boot screen is not displayed within a few seconds refer to the "Instrument Cannot Completely Load or Run the Operating System" section in this chapter.
7. If the recovery system is not selected the Windows XP Professional operating system will begin to boot up. This will take $\sim 20-30$ seconds.

NOTE

If a recovery was selected follow the on-screen instructions and perform a system recovery. Additional information about performing a system recovery can be found in Chapter 9, "CPU/Disk Drive Troubleshooting", on page 315 in this manual.
8. The Agilent Technologies logo is displayed in white font on a blue background while Windows finishes loading user preferences. This can take up to 4 minutes. If this does not occur refer to the "Instrument Cannot Completely Load or Run the Operating System" section in this chapter.
9. By default, the initialization process of the EXA Spectrum Analyzer application begins loading. The N9010A EXA Signal Analyzer screen appears. The screen remains for slightly over 1 minute. If any of the initializing processes do not complete, refer to the "Initializations Did Not Complete" section in this chapter.
10.While the application software is loading the instrument will perform a number of internal alignments before the analyzer begins to sweep. A screen with a black background appears and the alignment progress is shown in a yellow box. The number of alignments is dependent on which hard ware options are present. If an alignment fails, refer to the "Fails an Initial Alignment" section in this chapter.
11.If any of the initial alignments fail, check the alignment history for troubleshooting hints.
The instrument alignment history can be found at:

E:\AlignDataStorage\AlignmentHistory.txt

Look for any failed status for the various internal hard ware items listed in this file.

Once the EXA application is fully initialized and aligned, the sweep should resemble Figure 2-2 when delivered from the factory. This completes the boot process from initial AC power to the spectrum analyzer application.

IMPORTANT If the power up state has been changed from the factory power on state by the user, the analyzer will boot to that state.

Figure 2-2 Typical Instrument Sweep at Power-up
(Display theme changed for printing clarity)

Potential Problems During Boot Process

This section describes potential problems that may occur if there is an internal hardware issue that prohibits the EXA from completing a full boot up to the spectrum analyzer application.

Yellow Standby LED Does Not Illuminate

Control of the yellow front panel Standby LED comes from the A4 CPU board assembly. This signal is routed through the A7 Midplane board and is then buffered on the A8 Motherboard before being sent to the A1A2 Front Panel Interface board through W1. Of course, the power for this all originates with the A6 Power Supply Assembly. When the Standby LED does not come on it could be due to any one of these assemblies. This procedure will help to determine which one is the cause.

If the instrument turns on and operates properly but the yellow Standby LED does not work then all that will need to be done is to trace where the control signal for the LED is being lost using the routing information in the preceding paragraph.

1. The Stand by LED will only turn on when the instrument is connected to an AC source that has a voltage level and frequency of that specified for the instrument. Before proceeding verify that these requirements are being met. Refer to the instrument rear panel for these requirements.
2. Remove the $A C$ power cord and then remove the instrument cover. Refer to the Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
3. Refer to Figure $2-3$, verify the +5.1 V standby LED on the A7 Midplane board is on.

Figure 2-3 A7 Midplane Board +5.1V LED

NOTE

NOTE

All DC power supplies come from the A6 Power Supply assembly. However, the most convenient measurement location for all the DC supplies is the A7 Midplane. All power supply LED's are accessible once the instrument cover has been removed.

Is the +5.1 SB LED on the A7 Midplane board on?
If yes:
After verifying that the connections from the front panel Standby LED back to the A4 CPU board are not at fault, replace the A4 CPU board.
If no:
Replace the A6 Power Supply assembly.

解 interconnects are mechanically secure.

Green Power On LED Does Not Illuminate

Control of the green front panel Power On LED comes from the A4 CPU board assembly. This signal is routed through the A7 Midplane board and is then buffered on the A8 Motherboard before being sent to the A1A2 Front Panel Interface board through W1. Of course, the power for this all originates with the A6 Power Supply Assembly. When the Power On LED does not come on it could be due to any one of these assemblies. This procedure will help to determine which one is the cause.

This procedure assumes that the yellow Standby LED does turn on when the AC power is connected to the rear panel of the instrument. If it doesn't, refer to the "Yellow Stand by LED Does Not Illuminate" section before proceeding.

If the instrument turns on and operates properly but the green Power On LED does not work then all that will need to be done is to trace where the control signal for the LED is being lost using the routing information in the preceding paragraph.

1. The Power On LED will only turn on when the instrument is connected to an AC source that has a voltage level and frequency of that specified for the instrument and the front panel On/Off button has been pressed. Before proceeding verify that these requirements are being met. Refer to the instrument rear panel for these requirements.
2. Remove the AC power cord and then remove the instrument cover. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
3. Remove the MP7 Top Brace. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
4. With AC power connected to the rear of the instrument but without turning it on, leaving it in standby mode, measure the voltage at the top side of R867 of the A7 Midplane board assembly. See Figure 2-4 for R867 location.

Does the voltage at R867 measure 5 VDC?
If yes:
Proceed to step 5.
If no:
Replace the A6 Power Supply assembly.

NOTE Before replacing the power supply, verify the midplane and motherboard interconnects are mechanically secure.

Figure 2-4 A7 Midplane Board - R867

5. While monitoring the voltage at R867, turn the instrument power on by pressing the front panel On/Off button.

Does the voltage at R867 measure 0 VDC?
If yes:
Proceed to step 6.
If no:
After verifying that the connections from the front panel On/Off button back to the A4 CPU board are not at fault, replace the A4 CPU board.
6. Do all of the green power supply LEDs along the top of the A7 Midplane board come on?

If yes:
After verifying that the connections from the front panel On/Off button back to the A4 CPU board are not at fault, replace the A4 CPU board.

If no:
Replace the A6 Power Supply assembly.

NOTE
Before replacing the power supply, verify the midplane and motherboard interconnects are mechanically secure.

Fan(s) Are Not Operating

Control of the instrument fans comes from the A6 Power Supply assembly. This signal is routed from the A6 Power Supply through the A7 Midplane board, where there is a test point and LED to monitor the level, and is then routed to the A8 Motherboard where it is filtered before being sent to the Fans. When the Fans do not come on it could be due to any one of these assemblies. This procedure will help to determine which one is the cause.

This procedure assumes that the green Power On LED on the front panel does turn on when the instrument is turned on. If it doesn't, refer to the "Green Power On LED Does Not Illuminate" section before proceeding.

1. The instrument fans will only turn on when the instrument is connected to an AC source that has a voltage level and frequency of that specified for the instrument and the front panel On/Off button has been pressed. Before proceeding verify that these requirements are being met. Refer to the instrument rear panel for these requirements.
2. Remove the AC power cord and then remove the instrument cover. Refer to the Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
3. Are both fans not spinning?

If yes:
Proceed to step 4.
If no:
Proceed to step 6.
4. Remove the MP7 Top Brace. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
5. Refer to Figure 2-5, verify that the Fan LED on the A7 Midplane board is on. Is the Fan LED on?

If yes:
Measure the voltage level at TP1 on the A7 Midplane board. Is the TP1 voltage between +7 and +15 VDC

If yes:
Proceed to step 6.
If no:
Replace the A6 Power Supply assembly.
If no:
Replace the A6 Power Supply assembly.

NOTE Before replacing the power supply, verify the midplane and motherboard interconnects are mechanically secure.

Figure 2-5 A7 Midplane Board - Fan LED

6. With the instrument turned off, and the AC power cord removed, remove the Fan Assembly including unplugging both fans from the A8 Motherboard. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
7. Turn the instrument power back on and measure the fan voltage at both of the fan connectors ($\mathrm{J} 6 \& \mathrm{~J} 7$) on the A8 Motherboard.

Both connectors have three pins. The outer conductors on both connectors are the FAN_P supply and the center conductors are FAN_N. The voltage between FAN_P and chassis ground should be between +7 and +15 VDC on both connectors.

Does the A8 Motherboard fan connector for the fan(s) that do not work have the required voltage level?

If yes:
Replace the fan(s) that is not working
If no:
After verifying that the connections between the A7 Midplane board and the A8 Motherboard are mechanically and electrically secure replace the A8 Motherboard.

No Agilent Splash Screen Displayed

(Black background with white "Agilent Technologies" text)
A problem of not displaying the Agilent splash screen could be caused by many different things. It could be due to a down power supply, a processor hardware problem, an instrument boot-up process error, a display section failure, etc.

This procedure assumes that the green Power On LED on the front panel does turn on when the instrument is turned on. If it doesn't, refer to the "Green Power On LED Does Not Illuminate" section before proceeding.

1. Remove the $A C$ power cord and then remove the instrument cover. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
2. Remove the MP7 Top Brace. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
3. With the AC power applied and the On/Off button turned on, verify that all of the power supply voltages are at their proper level. This can easily be done by viewing the power supply LEDs on the back side of the A7 Midplane board. See "A7 Midplane Assembly Troubleshooting" on page 339 of this manual.
Are all of the power supply voltages at the proper level?
If yes:
Proceed to step 4.
If no:
After verifying that the connections between the A6 Power Supply, the A7 Midplane board, and the A8 Motherboard are all mechanically and electrically secure, replace the A6 Power Supply assembly.
4. Connect an external VGA monitor to the rear panel display output and cycle power on the analyzer. If power is not cycled, the CPU might not recognize that an external monitor is connected.
Does the external monitor display the correct information?
If yes:
Proceed to the "Troubleshooting a Blank Display" section in this chapter.
If no:
Replace the A4 CPU Board assembly.

Instrument Hangs at the Agilent Splash Screen

A problem of the instrument hanging at the Agilent splash screen could be caused by many different things. It could be due to a down power supply, a processor hardware problem, an instrument boot-up process error, etc.

1. Remove the $A C$ power cord and then remove the instrument cover. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
2. Remove the MP7 Top Brace. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
3. With the AC power applied and the On/Off button turned on, verify that all of the power supply voltages are at their proper level. This can easily be done by viewing the power supply LEDs on the back side of the A7 Midplane board. See "A7 Midplane Assembly Troubleshooting" on page 339 of this manual.

Are all of the power supply voltages at the proper level?
If yes:
After verifying that the connections from the A7 Midplane board to the A4 CPU board are not at fault, replace the A4 CPU board.

If no:
After verifying that the connections between the A6 Power Supply, the A7 Midplane board, and the A8 Motherboard are all mechanically and electrically secure, replace the A6 Power Supply assembly.

PCI Enumeration Error

When the instrument is first booting up it runs some BIOS level self tests, one of which is that of the devices on the PCI bus. If there is a problem with a device on the PCl bus a " PCl enumeration" error may be seen on the boot screen. Since the only assembly connected to the PCI bus, other than the A4 CPU board, is the A3 Digital IF assembly, try removing this assembly and rebooting the instrument to see if the error goes away. Of course, you will have other error messages due to this assembly being missing, but this will allow you to isolate this particular error.

Instrument Cannot Completely Load or Run the Operating System

A problem of the instrument not loading the operating system can be caused by a few different things. It could be due to a down power supply, a processor hardware problem, an instrument boot-up process error, corrupt hard drive, etc.

This procedure assumes that the instrument can get past the Agilent splash screen at power on. If it doesn't, refer to the "Instrument Hangs at the Agilent Splash Screen" section before proceeding.

1. Verify that there are no external USB storage devices connected to the instrument.
2. Does the instrument get far enough along in the boot process to run the "Agilent Recovery System"?

If yes:

Run the "Agilent Recovery System" by referring to the "Disk Drive Recovery Process" on page 324. If this does not correct the problem replace the A5 Hard Disk Drive.

If no:

Replace the A5 Hard Disk Drive.

Troubleshooting a Blank Display

This section is intended to troubleshoot a display system problem that would cause the internal LCD to be blank. It is assumed that the rest of the instrument is booting up and functioning properly. To determine if the problem is an internal display issue only, connect an external VGA monitor to the rear panel display output. If the rear panel display output is also not working go to the "No Agilent Splash Screen Displayed" section in this chapter.

Once it has been determined that the rest of the instrument appears to be functioning properly there are a few possible problems that could be causing the display to be blank. They are:

- An LCD Backlight inverter or DC-DC converter problem
- A video signal path integrity problem
- A video controller / LCD problem

Verify LCD Backlight Functionality

There are two backlights within the LCD assembly, one across the top and one across the bottom. If only one of the backlights has burnt out, the other will still function. Considering this fact, as well as the fact that the expected life span of the backlights is much longer than the LCD itself, it is not very likely that the backlights themselves would cause a completely blank display.

To determine if a blank display problem is backlight related:

1. Remove the $A C$ power cord and then remove the instrument cover. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
2. Remove the MP7 Top Brace. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this manual.
3. Turn the instrument on and allow enough time for it to completely boot-up.
4. Shine a bright light at the display and look closely for the expected information (a large flashlight should work). Since most of the display section of the screen has a black background you will need to look at either the area next to the softkeys or the area across the top of the screen, since these sections will have the largest areas of lighter information in them.
5. Can the expected display information now be seen?

If yes:
The problem is backlight related. Proceed to step 6.
If no:
The problem is not backlight related. Skip to "Verify Video Signal Path Integrity".
6. Refer to Figure 2-6, verify that the +12D VDC power supply is on.

Figure 2-6 A7 Midplane Board +12D LED

Is the +12 D backlight supply voltage LED on?
If yes:
Proceed to step 7.
If no:
Replace the A6 Power Supply assembly.
7. With the instrument turned off remove the 8 screws that attach the front panel assembly to the instrument chassis.
8. Without disconnecting any of the cables carefully lay the front panel assembly face down on the work surface.
9. Refer to Figure 2-7, verify the 3 voltage levels listed in Table 2-1 are correct.

NOTE
The instrument does have a screen saver which can disable the display backlight after a predefined period of time. If there is any question as to whether or not this has been set by the user prior to the current failure, and the "Inverter Enable" voltage measures too low, press a front panel key and see if the voltage level increases to the expected level.

Figure 2-7 A1A2 Front Panel Interface Board LCD Backlight Inverter Control Voltages

Table 2-1 Expected Backlight Inverter Control Voltage Levels

Signal	Expected Voltage
Brightness Control	0 to 3 VDC
Inverter Enable	>6 VDC
Inverter Supply	+12 VDC

a. On newer analyzers, the backlight is a string of LEDs, rather than a fluorescent tube. The brightness control voltage for the LEDs ranges from 0 to 2.5 VDC , rather than 0 to 3 VDC . If the A1A2 Front Panel Interface board installed is either W1312-60042 or N9020-60033, expect this voltage to range from 0 to $3 V D C$.

10.Are all of the 3 voltage levels within their expected ranges?

If yes:
Replace the A1A4 LCD Inverter or DC-DC Converter board.
If no:

Replace the A1A2 Front Panel Interface board.

Verify Video Signal Path Integrity

The video controller is located on the A4 Processor assembly and is routed to the front panel LCD through a few interconnections. These interconnections are:

- A4 Processor assembly to A7 Midplane Board
- A7 Midplane Board to A8 Motherboard assembly
- A8 Motherboard assembly to A1A2 Front Panel Interface assembly via W1 ribbon cable
- A1A2 Front Panel Interface to A1A3 LCD via A1W1 flex-circuit

If all of these connections are properly made and none of the cables are damaged proceed to "Video Controller / LCD Troubleshooting".

Video Controller / LCD Troubleshooting

The video controller is located on the A4 Processor assembly. The video signals that the controller outputs are LVDS. As described above, these signals are routed to the LCD via the A7 Midplane Board, A8 Motherboard, and A1A2 Front Panel Interface board.

On the A1A2 Front Panel Interface board the LVDS signals are buffered and then sent to the LCD via the A1W1 Flex circuit.

The most likely cause for a video problem is the A4 Processor assembly; however it could be the result of a defective LCD.

Initializations Did Not Complete

During the initialization of the EXA Signal Analyzer Application the following messages will be displayed on the application splash screen:

- Checking for required services (1 of 7)
- Initializing License Services (2 of 7)
- Initializing Hardware (3 of 7)
- Initializing Data Services (4 of 7)
- Initializing SCPI Services (5 of 7)
- Initializing Message Services (6 of 7)
- Initializing Front Panel EEPROM Services (7 of 7)

If there is a problem with any of these initializations not completing or causing an error message to be displayed refer to the instrument Event Log. This can be accessed by using an external USB keyboard and mouse and selecting Start, Run, enter Eventvwr.exe, and select OK.

Once the Event Viewer comes up, look under SA for the latest error entries. Double-click on the entries to view further details, which should give you some idea of what the problem is.

Fails an Initial Alignment

While the application software is loading the instrument will perform a total of 24 internal alignments before the analyzer begins to sweep. The alignment numbers, descriptions and related hardware are described in the Table 2-2.

Table 2-2 Initial Alignments

Alignment Description	Most Probable Hard ware Failure	Related Hard ware
Pre-tune 1st L.O. DAC	A14 L.O. Synthesizer	A16 Reference board is not providing correct 4.8 GHz signal
Final Tune DAC Setting	A14 L.O. Synthesizer	A16 Reference board is not providing correct 4.8 GHz signal
VCXO Tuning Curve (Power up alignment only) Measures the tuning voltage for the 100 MHz VCO at a number of different frequencies. Uses 10 MHz internal reference	A16 Reference	
VCXO Loop Band wid th Adjusts gain of the PLL loop amplifier. Uses the 10 MHz internal reference	A16 Reference	
2nd LO Tuning Curve (Power up alignment only) Measures the tune voltage for the 4800 MHz VCO at a number of different frequencies. Uses the 10 MHz internal reference	A16 Reference	
2nd LO Loop Band width Adjusts gain of the PLL loop amplifier. Uses the 10 MHz internal reference.	A16 Reference	
Dither Level Algorithm (4 measurements)	A3 Digital IF	
AIF LC Wide Prefilter Passband Tuning Algorithm Adjusts the LC prefilter centering with the prefilter BW set to about 1.12 MHz . Uses 322.5 MHz Comb Calibrator on the A-IF.	A2 Analog IF	
AIF LC Wide Prefilter Passband Fine Tuning Algorithm	A2 Analog IF	

Table 2-2 Initial Alignments

Alignment Description	Most Probable Hard ware Failure	Related Hard ware
AIF LC Narrow Prefilter Passband Tuning Algorithm Adjusts the LC prefilter centering with the prefilter BW set to about 413 kHz . Uses 322.5 MHz Comb Calibrator on the A-IF.	A2 Analog IF	
AIF LC Narrow Prefilter Passband Fine Tuning Algorithm	A2 Analog IF	
AIF Xtal Wide Prefilter Passband Tuning Algorithm Adjusts Centering, symmetry and dip of the crystal prefilter BW set to about 80 kHz Uses 322.5 MHz Comb Calibrator on the A-IF	A2 Analog IF	A3 Digital IF or A16 Reference
AIF Xtal Narrow Prefilter Passband Tuning Algorithm Adjusts Centering, symmetry and dip of the crystal prefilter BW set to about 13 kHz Uses 322.5 MHz Comb Calibrator on the A-IF	A2 Analog IF	
AIF Variable Gain Algorithm The Gain of the Analog IF System is measured and compared with the ideal gain value. Several conditions are tested, Dither on/ dither off, A-IF prefilter in and bypassed, alias filter set wide and narrow. Uses 322.5 MHz Comb Calibrator on the A-IF	A2 Analog IF	
AIF Step Gain Algorithm Measures the relative gain of the IF for high gain (10 dB) versus the low gain (0 dB) paths. In normal instrument operation these two states can be controlled by the user interface key called "Swept IF Gain". Uses the Comb calibrator on the A-IF	A2 Analog IF	
LO Power Alignment Algorithm Measure max LO power then backs off for each band	A13 Front End Assembly or A15 Front End Controller	
AIF Variable Attenuator Algorithm Measures the gain in all settings of the A-IF 1 dB step attenuator. A reference power is measured with atten 4 dB The Comb calibrator on A-IF is used to provide a CW signal.	A2 Analog IF	
Mechanical Attenuator Algorithm Measures the attenuation of all DC coupled, and one AC coupled (10 dB) settings of the RF input attenuators. Reference atten setting is 10 dB	A9 and A10 RF Input Attenuators	50 MHz calibrator on A16 Reference
Electrical Attenuator Algorithm Each setting from 0 to 24 dB in steps of 1 dB is measured. The reference condition is electrical attenuator set to 0 dB and RF input attenuators set to 10 dB . (Option EA3)	A13 Front End	50 MHz calibrator on A16 Reference.

Table 2-2 Initial Alignments

Alignment Description	Most Probable Hard ware Failure	Related Hard ware
Electrical Attenuator Tail Algorithm Attenuation set to 0 dB (Option EA3)	A13 Front End	
DIF 40 Variable Attenuator Algorithm Ref power at atten 21 dB (Option B40)	A3 Digital IF	
Narrow Band Step Cal Adjustment Alignment Algorithm Recalled adjustment from calibration file. (Option B40)	Alignment signal originates on A3 D-IF, then goes through A16 Reference, through A13 Front End, through A2 Analog IF, and back to A3 Digital IF.	
DIF 40 Step Cal Adjustment Alignment Algorithm Recalled adjustment from calibration file. (Option B40)	Since this is wide band alignment done for 40 MHz BW signal path, A2 Analog IF is not included in the signal path.	
Narrow Band Step Cal Alignment Algorithm		
DIF 40 Step Cal Alignment Algorithm (Option B40)		
E Cal Path System Gain Algorithm Measures the amplitude error of the low band signal path by injecting the 50 MHz E-Cal signal into the A13 Front End assembly. The E-Cal signal originates on the A16 Reference assembly.	Signal path from A13 Front End to A3 Digital IF	A16 Reference may not be providing 50 MHz E-Cal
Low Band Nominal Path System Gain Algorithm Aligns low band (9 kHz to 3.6 GHz path) with preamp and electronic attenuator OFF. Dependent on successful E-Cal alignment. Input attenuators set to 10 dB and DC coupled.	A13 Front End	50 MHz calibrator on A16 Reference. A9 and A10 Input attenuators
Low Band Preamp Path System Gain Algorithm Aligns low band (9 kHz to 3.6 GHz path) with preamp ON. Input attenuator set to 20 dB . (Options P03, P07, P32, P44)	A13 Front End	50 MHz calibrator on A16 Reference. A9 and A10 Input attenuators
Low Band Elec Atten Path System Gain Algorithm Aligns low band with electronic attenuator in the signal path and set to 0 dB . (Option EA3)	A13 Front End	50 MHz calibrator on A16 Reference. A9 and A10 Input attenuators
Preselector Two Point Tuning Algorithm Aligns the YTF preselector centering near the maximum and minimum frequency points of the YTF. Uses the high band preamp noise as stimulus signal.	A12 YTF Preselector or A15 Front End Controller or All Low Band	A13 Front End

Table 2-2 Initial Alignments

Alignment Description	Most Probable Hard ware Failure	Related Hard ware
High Band Nominal Path System Gain Algorithm	Anything in Band 1 signal path	4800 MHz calibrator on A16 Reference
High Band Preamp Path System Gain Algorithm Measures change in signal level with high band preamp turned ON and OFF. Input attenuator set to 30 dB. (Options P07, P32, P44) High Band Preselector Bypass Path System Gain Algorithm Switch	4800 MHz calibrator on A16 Reference	
A12 YTF Preselector is bypassed and amplitude of 4800 MHz calibrator measured. System gain is then computed. (Option SW2, coax MPB)	Switches and cabling (Options 503, 507, 513, $526)$ or SW4 transfer switch and cabling (Options 532, 544)	A15 Front End Controller Reference calibrator on A16
A9 and A10 Input attenuators A10 Input attenuators		
High Band Preselector Bypass Preamp Path System Gain Algorithm (Option MPB)	A11 Low Band Switch SW1, SW2, or SW4 Preselector Bypass Switches	A15 Front End Controller

Using an external USB keyboard and mouse you can also access the alignment history, which can be found in a text file at:

C:\ProgramFiles\Agilent\SignalAnalysis\Physics\AlignmentHistory.txt

You will find the most current alignment information at the bottom of this file. Look for the failed alignments and troubleshoot the Related Hardware based on the information provided in Table 2-2 on page 64.

Signal Level Verification

Signal Level Problem with
 Input Frequencies < 3.6 GHz

Measure the 50 MHz RF calibrator signal level by pressing Input/Output, RF Calibrator, 50 MHz. Now press Freq, 50 MHz, SPAN, 1 MHz, Peak Search. If the analyzer is functioning correctly in low band, the 50 MHz calibrator level should be $-25 \mathrm{dBm} \pm 2 \mathrm{~dB}$. See the figure below.

Is the signal level correct?
If yes:
The analyzer low band path is functioning properly at least at 50 MHz .
If no:
Refer to Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this manual.

NOTE
It is possible that other input frequencies < 3.6 GHz could have an amplitude problem even though the 50 MHz calibrator is within tolerance. Using the internal RF calibrator provides a quick check of the low band path.

Signal Level Problem with
 Input Frequencies > 3.6 GHz

Measure the 4.8 GHz RF calibrator signal level by pressing Input/Output, \{RF Calibrator\}, 4.8 GHz. Now press Freq, 4.8 GHz, SPAN, 1 MHz, Peak Search. If the analyzer is functioning correctly in high band, the 4.8 GHz calibrator level should be $-28 \mathrm{dBm} \pm 2 \mathrm{~dB}$. See the figure below.

Is the signal level correct?
If yes:
The analyzer high band path is functioning properly at least at 4.8 GHz .
If no:
Refer to Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this manual.

It is possible that other input frequencies $>3.6 \mathrm{GHz}$ could have an amplitude problem even though the 4.8 GHz calibrator is within tolerance. Using the internal RF calibrator provides a quick check of the high band path.

Boot Up and Initialization Troubleshooting
Signal Level Verification

3 Instrument Messages

Introduction

The Error and Status messaging system of the Keysight Signal Analyzer reports events and conditions in a consistent fashion, as well as logging and reporting event history.

Event vs. Condition Messages

An Event is simply a message indicating that something has happened. Events are sub-divided according to their severity, into Error, Warning or Advisory categories. The sub-divisions are described in more detail in the section "Event and Condition Categories".
Event messages appear in the Message Line at the bottom left of the analyzer's display window.

A Condition is a state of the Analyzer, which is characterized by a Detection event and a Clearing event. Conditions may be Errors or Warnings.
Condition messages appear in the Status Panel at the bottom right of the analyzer's display screen.

Event and Condition Categories

The three categories of severity are described below, for both Events and Conditions.

Error messages appear when a requested operation has failed. (For example, "Detector not available", "File not saved".) Error messages are often generated during remote operation when an invalid programming command has been entered. (For example, "Undefined header".)
Some errors are conditions rather than single events. They exist for a period of time, so they have associated "Detected" and "Cleared" events. (For example, "LO Unlocked" or "External reference out of range")

Error messages appear in the Status Panel at the bottom of the display. A message remains until you press a key, or another message is displayed in its place.

Error messages are logged in the error queues. If the error is a condition, both the Detected and Cleared events are logged.

Warnings	Warning messages appear when a requested operation has completed successfully, but there are modifications and/or side effects. (For example, if you requested too high a stop frequency, then "Data out of range" is displayed and the analyzer sets itself to the highest available stop frequency.)
	Some warnings are conditions rather than single events. They exist for a period of time, so they have a "Detected" event and a "Cleared" event. (For example, if you set the sweep time too fast for a measurement to meet the instrument specifications then the "Meas Uncal" message is displayed until you slow down the sweep time.)
	Warning messages appear in the Status Panel at the bottom of the display. The message remains until you press a key, or another message is displayed in its place.

Warnings are logged in the error queues. If the warning is a condition, both the Detected and Cleared event messages are logged.

Advisories Advisory messages tell the front panel user some useful information. (For example, "File saved successfully" or "Measuring the fundamental".)

Advisory messages appear in the Status Panel at the bottom of the display. The message remains until you press a key, or another message is displayed in its place.

Advisory messages are not logged in the error queues.
Grayout messages are a special type of Advisory, which appear when you attempt to access a function that is not available. This could be a grayed out front panel key, or an inappropriate SCPI command. There are two types of grayout messages: Benign and Forced.

1. Benign: the requested function is not available because it does not make sense with the current instrument settings. Changing it does not affect the current measurement. (For example, setting the number of FFTs/Span when you are not in the FFT mode.)
A benign grayout gives an Advisory type of message only when the front panel key is pressed.
The requested function cannot be changed from the front panel, but it can be changed remotely.
2. Forced: the requested function is not available either because changing it would cause an invalid measurement, or because of hard ware limitations, or because the selection conflicts with other settings. (For example, selecting the electrical attenuator when the frequency span includes frequencies above 3.6 GHz .)

A forced grayout function cannot be changed either from the front panel or remotely. It generates a special type of Advisory message. It also only appears on the front panel when the key is pressed. Remotely, the message will appear in the event queue as a warning "-221, Settings conflict; <conflict description>".

Event Message Format

The event messages are listed in numerical order according to their message number. Advisory messages do not have numbers, and are listed in alphabetical order.

An explanation is included with each error to further clarify its meaning. Some errors are specified in industry standards and there are references to the IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols and Common Commands for Use with ANSI/IEEE Std 488.1-1987. New York, NY, 1992.

Figure 3-1 Error Message Example
Error Description

This parameter is grayed out (unavailable) in the current context. Check the individual parameter help/documentation for more information.

Explanation provided in this chapter (This is NOT displayed on the instrument)
pk716b

Event Queues

There are several different event queues that are viewed/queried and managed separately. Note that Conditions are logged in the queues as pairs of events: a "Detected" event and a corresponding "Cleared" event.

Front Panel Status

Remote interfaces (GPIB/LAN)
Front Panel History

Error messages can be viewed by pressing, System, Show Errors, Status. The Status screen shows error conditions that currently exist. When an error event is caused by a command sent over a remote interface, the resulting messages are logged in the queue for that interface. For convenience, they are also logged in the front panel queue.

Error messages can be viewed by pressing, System, Show Errors, History. The History screen shows all the error events that have occurred since the instrument was turned on, with a maximum of 100 messages. When an error situation is caused by a command sent over a remote interface, the resulting messages are logged in the queue for that interface. For convenience, they are also logged in the front panel queue.

When an error event is caused by a command sent over a remote interface, the resulting messages are output to the queue for that interface. To return an error, you must query the queue for that interface. An error event that is caused by a front panel action is not reported to any remote interface queue. However, a status condition is usually caused by an internal event that is not related to a particular interface, so the Detected/Cleared events for status conditions are reported to all the error queues.

Table 3-1 Characteristics of the Event Queues

Characteristic	Front-Panel Status	Front-Panel History	Remote Interfaces (GPIB/LAN)
Capacity (maximum number of messages)	100	100	100
Overflow Handling	Circular (rotating). Drops oldest error as new error comes in.	Circular (rotating). Drops oldest error as new error comes in.	Linear, first-in/first-out. Replaces newest error with: Queue overflow

Table 3-1 Characteristics of the Event Queues

Characteristic	Front-Panel Status	Front-Panel History	Remote Interfaces (GPIB/LAN)
Viewing Entries	Press: System, Show Errors, Status	Press: System, Show Errors, History	Send SCPI query to the desired interface. SYSTem:ERRor?
Clearing the Queue	Press: System, Show Errors, Clear Error Queue Clears the errors in all the queues.	Press: System, Show Errors, Clear Error Queue Clears the errors in all the queues.	Send *CLS command to the desired interface. Clears errors in the queue for this particular interface only.

Table 3-2 Summary of Event Reporting Modes

Event Type	SCPI Error Queues	Front Panel History Queue	Status Panel Display
Error Event	Logged	Logged	Displayed in Message Line
Warning Event	Logged	Logged	Displayed in Message Line
Advisory Event	Logged	Logged	Displayed in Message Line
Error Condition Detected	Logged	Logged	Displayed in Status Line
Error Condition Cleared	Logged	Logged	Displayed in Status Line
Warning Condition Detected	Logged		
Warning Condition Cleared	Not logged	Logged	Displayed in Message Line
Grayout Advisory (Benign)	See note	Logged	Displayed in Message Line
Grayout Advisory (Forced)			

a. Not logged, unless the cause of the Advisory was remotely generated, in which case a Warning message, type -221, is logged.

Advisory Messages

An advisory is simply a message that lets you know something useful - for example "File saved successfully" or "Measuring fundamental." Operation completion and running status indications are common types of advisories. Advisories have no number and are not logged in the error queue.

Advisories include gray-out "settings conflict" errors. These gray-outs are benign (i.e. changing them has no impact on the current measurement).

Advisories are event-type errors only. They are never conditions.

Message	Description/Correction Information
All Auto/Man functions have been set to Auto	
Dynamic range is not optimum. Set AUTO RF input.	
Exp. Averaging not available when AUTO PhNoise is active.	
Gate required for valid results	
Preparing Calculation...	
Sync is RF Ampl (not Training Sequence). Bits are not accurate.	
Recalled File <filename>	A file recall (open/load) was successfully completed.
Probe connected, no probe cal; using cable cal data; <port>; <probe>	A probe has been connected and no probe calibration data is available. The latest cable calibration data will be used
Probe connected, cal data is being reapplied; <port>; <probe>	A probe has been connected, calibration data is being reapplied
Probe disconnected, reverting to cable calibration data; <port>	A probe has been disconnected, calibration data reverting to the last cable calibration data
Connecting to source...	External Signal Generator is being sent SCPI commands interrogating it to see if it is suitable for the MXA to control. Please wait until complete before pressing any buttons.
Auto sweep time rules do not apply in FFT sweeps	FFT sweeps do not use the auto sweep time rules, so the rules setting cannot be changed from the front panel. The setting can be changed remotely and it will have no effect on the current operation unless the analyzer is switched out of FFT sweeps.
Filter BW function is only available for Gaussian filter type	Flattop and CISPR/MIL filters have defined shapes that cannot be altered. So only the Gaussian filter type allows filter bandwidth definition changes.
Carrier power is too low for optimum dynamic range.	For better dynamic range, transmit band spur measurements require $>10 \mathrm{dBm}$ signal power at the RF input port.
Band Adjust has no effect on a Fixed marker	If a Marker is a Fixed type marker, the marker's value does not change from when it first became fixed. So you cannot change the band of a fixed marker.
Band Adjust has no effect with Mkr Function Off	If Marker Function is off changing the band has no effect

Freq Scale Type=Log is not available in Zero Span	Logarithmic scaling cannot be used for time domain sweeps (0 Hz span).
All Auto/Man functions have been set to Auto.	Message generated by pressing the Auto Couple front-panel key.
Scale/Div only applies in Log Y Scale	Setting the Scale/Division only makes sense when you are using a logarithmic Y scale.
Signal Track is turned off when Zero Span is selected	Signal Track is not available when you have selected Zero Span. So if Zero Span is entered while in Signal Track is On, Signal Track is turned off.
Reading SNS data...	The Keysight Smart Noise Source has been connected and the application is reading the device EEPROM data. Please wait until complete before continuing.
Demod Time is not available in Zero Span	The Demod Time function is not available in zero span because in zero span we are ALWAYS demodulating.
Frequency Hopping enabled, waiting for valid burst	The demodulated burst type has not been found in the originally demodulated slot location within the frame.
Refer to online help for assistance with DSB measurements	The Double Side Band measurement requires careful setup to obtain valid results. Please refer to the manuals for help with this setup.
File <filename> saved	The file save operation executed successfully.
Frequency menu has changed to reflect frequency context switch	The frequency context parameter has been changed either by the user or the system. The frequency menu will now contain the frequencies for the new context. No action required.
Already in Single, press Restart to initiate a new sweep or sequence	The instrument is already in the single state. If you want to start a new sweep or sequence, press the Restart key instead.
Input is internal	The instrument's input is set to internal (the internal amplitude reference signal). So any signals connected to the front/rear panel inputs cannot be measured.
User Cal valid. Apply Cal from Meas Setup menu	The measurement setup has changed such that the current cal data can be applied to the results. To apply the cal, press Meas Setup/Cal Setup/Apply Calibration. A new cal can be performed if required.
Preselector is centered	The preselector has been successfully centered
Requested timeslot number is not present.	The selected timeslot is not on. (Timeslot is referenced to the trigger point.)
Fixed LO freq should be greater than RF Stop freq	The setup frequencies break the rules for a downconverter measurement. The measurement will still run, but check setup frequencies are correct before continuing. The LO fixed freq should be greater than the RF freq's for an LSB or DSB (for DSB measurements the setup uses LSB values) downconverter setup. Use the graph icon on the DUT setup form to clarify the setup required.
LO Fixed freq should be greater than RF Stop freq	The setup frequencies break the rules for a downconverter measurement. The measurement will still run, but check setup frequencies are correct before continuing. The LO fixed freq should be greater than the RF Stop freq's for an LSB or DSB (for DSB measurements the setup uses LSB values) downconverter fixed LO setup. Use the graph icon on the DUT setup form to clarify the setup required.

$\left.\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { LO Start freq should be greater than RF Start } \\ \text { freq }\end{array} & \begin{array}{l}\text { The setup frequencies break the rules for a downconverter } \\ \text { measurement. The measurement will still run, but check setup } \\ \text { frequencies are correct before continuing. The LO start freq should be } \\ \text { greater than the RF Start freq's for an LSB downconverter swept LO } \\ \text { setup. Use the graph icon on the DUT setup form to clarify the setup } \\ \text { required. }\end{array} \\ \hline \text { LO Stop freq should be greater than RF Stop freq } & \begin{array}{l}\text { The setup frequencies break the rules for a downconverter } \\ \text { measurement. The measurement will still run, but check setup } \\ \text { frequencies are correct before continuing. The LO Stop freq should be } \\ \text { greater than the RF Stop freq's for a DSB (for DSB measurements the } \\ \text { setup uses LSB values) downconverter swept LO setup. Use the graph } \\ \text { icon on the DUT setup form to clarify the setup required. }\end{array} \\ \hline \text { RF Start freq should be greater than IF Fixed } & \begin{array}{l}\text { The setup frequencies break the rules for a downconverter } \\ \text { measurement. The measurement will still run, but check setup } \\ \text { frequencies are correct before continuing. The RF Start freq should be }\end{array} \\ \text { freq freq should be greater than RF Stop freq } \\ \text { freater than the IF Fixed freq for a DSB (for DSB measurements the }\end{array}\right\} \begin{array}{l}\text { The setup frequencies break the rules for an upconverter measurement. } \\ \text { The measurement will still run, but check setup frequencies are correct } \\ \text { before continuing. The IF fixed freq should be greater than the RF Stop } \\ \text { freq for an upconverter swept LO setup. Use the graph icon on the DUT } \\ \text { setup form to clarify the setup required. }\end{array}\right\}$

IF Start freq should be greater than LO Fixed freq	The setup frequencies break the rules for an upconverter measurement. The measurement will still run, but check setup frequencies are correct before continuing. The IF start freq should be greater than the LO fixed freq for an USB upconverter fixed LO setup. Use the graph icon on the DUT setup form to clarify the setup required.
IF Start freq should be greater than RF Start freq	The setup frequencies break the rules for an upconverter measurement. The measurement will still run, but check setup frequencies are correct before continuing. The IF start freq should be greater than the RF Start freq for an upconverter fixed LO setup. Use the graph icon on the DUT setup form to clarify the setup required.
LO Fixed freq should be greater than IF Stop freq	The setup frequencies break the rules for an upconverter measurement. The measurement will still run, but check setup frequencies are correct before continuing. The LO fixed freq should be greater than the IF Stop freq for an LSB upconverter fixed LO setup. Use the graph icon on the DUT setup form to clarify the setup required.
LO Start freq should be greater than IF Fixed freq	The setup frequencies break the rules for an upconverter measurement. The measurement will still run, but check setup frequencies are correct before continuing. The LO Start freq should be greater than the IF fixed freq for an LSB upconverter swept LO setup. Use the graph icon on the DUT setup form to clarify the setup required.
Sweep Points/Span is < minimum. Results may be inaccurate.	The sweep point to span ratio is below the minimum required to ensure the bucket ratio is large enough to test DVB-T masks
Trace file saved.	The trace saving operation was successful.
High-pass and Low-pass filters set to OFF	Turning on any band pass filter will turn off high-pass and low-pass filters.
High-pass filter set to OFF	Turning on any band pass filter will turn off high-pass filters.
Low-pass filter set to OFF	Turning on any band pass filter will turn off low-pass filters.
Band-pass filter set to OFF	Turning on any high-pass or low-pass filter will turn off band pass filters.
Cal Cancelled; Calibration data cleared	User has cancelled the cal either directly or indirectly by changing the setup parameters. The current cal data has been erased. Perform a new user cal to obtain calibrated results again.
Use Gate View Sweep Time in the Gate menu.	When in Gate View you use Gate View Sweep Time, rather than Sweep Time, to control the Gate View window
Allowable Center Frequency exceeded for the current span	When rotating the knob or step up/down keys to change the Center frequency, the value of the Span is kept constant. Therefore, the center frequency is limited by the frequency range of the instrument.
Allowable Span exceeded for the current center frequency	When rotating the knob or step up/down keys to change the Span, the value of the Center frequency is kept constant. Therefore, the span is limited by the frequency range of the instrument.
Allowable Start Frequency exceeded for the current span	When rotating the knob or step up/down keys to change the Start frequency, the value of the Span is kept constant. Therefore, the start frequency is limited by the frequency range of the instrument.
Allowable Stop frequency exceeded for the current span	When rotating the knob or step up/down keys to change the Stop frequency, the value of the Span is kept constant. Therefore, the stop frequency is limited by the frequency range of the instrument.
Preselector not used in this frequency range.	You cannot center or adjust the preselector because it is not used at all at the current marker frequency or between the current start and stop frequencies

No spurs have been found	You has started a measurement in examine meas type in single or continual sweep mode, or full meas type in single sweep mode, but no spurs were found.
Detector <X> changed due to physical constraints	You have selected more detectors than the instrument hardware can implement. An existing detector selection has been changed to allow the current detector choice to be selected. <X> indicates the trace number for which the detector was changed.
FFT Width is not settable unless Sweep Type is set to FFT	You must select the FFT sweep type before you can set the FFT Width
Sweep Setup is not available in Zero Span	Zero span is a display at a single frequency, so there is no "sweeping" to set up.
Cal Invalid: meas freq pt(s) > 3.6GHz are >50MHz from existing Cal pts	When freq points being measured are above 3.6 GHz and a calibration has been successfully performed, and the number of points are changed, the new points are required to be within 50 MHz of the current cal points or the preselector optimize frequencies become inaccurate and the whole cal needs to be invalidated. Interpolation of the cal can only be performed if the new freq points are within 50 MHz of the cal points. To overcome this problem, change the number of freq points back to match cal points or perform another user cal.

-800, Operation Complete Event

Err\#	Message	Verbose/Correction Information
-800	Operation complete	The instrument has completed all selected pending operations in accordance with the IEEE 488.2, 12.5.2 synchronization protocol.

-700, Request Control Event

Err\#	Message	Verbose/Correction Information
-700	Request control	The instrument requested to become the active IEEE 4881 controller-in-charge.

Err\#	Message	Verbose/Correction Information
-600	User request	The instrument has detected the activation of a user request local control.

-500, Power on Event

Err\#	Message	Verbose/Correction Information
-500	Power on	The instrument has detected an off to on transition in its power supply.

-400 to -499, Query Errors

Err\#	Message	Verbose/Correction Information
-400	Query Error	There was a problem with a query command. The exact problem cannot be specifically identified.
-410	Query INTERRUPTED	Some condition caused an INTERRUPTED query to occur. For example, a query was followed by DAB or GET before a response was completely sent.
-420	Query UNTERMINATED	Some condition caused an UNTERMINATED query to occur. For example, the device was addressed to talk and an incomplete program message was received.
-430	Query DEADLOCKED	Some condition caused a DEADLOCKED query to occur. For example, both the input buffer and the output buffer are full and the analyzer cannot continue. The analyzer automatically discards output to correct the deadlock.
-440	Query UNTERMINATED after indefinite response	A query was received in the same program message after a query requesting an indefinite response was executed.

-300 to -399, Device-Specific Errors

Err\#	Message	Verbose/Correction Information
-300	Device-specific error	An instrument error occurred and the exact problem cannot be specifically identified. Report this error to the nearest Keysight Technologies sales or service office.
-310	System error;	An internal system-type error has occurred. The exact problem cannot be specifically identified. Report this error to the nearest Keysight Technologies sales or service office.
-310	System error; A license will soon expire;<feature code> will expire in <time>	The indicated feature/software will expire in the specified time. Contact Keysight Technologies to purchase continued use of this functionality.
-310	System error; Error transmitting a LAN event to the network.	Communication with the network driver failed.
-310	System Error; Ext Source not responding	Signal source at given IP address is not responding / IP does not belong to a source. Check IP address and network connection.
-310	System error; Failed to initialize the PTP clock to current time.	Failure communicating with the DMC libraries' PTP controller.
-310	System error; Failed to instantiate the PTP ordinary clock.	Failure in the starting up the DMC libraries' PTP controller.
-310	System error; feature <feature code> not licensed	The specified feature, for example "N9073A-TR2" is not licensed. The license may have expired. You cannot use it until you get a license.
-310	System error; Feature expired; <feature code>	The specified feature has expired. The license is no longer valid.
-310	System error; License installation failed;<feature code>	The license installation of the specified feature, for example "N9073A-TR2", has failed. You should refer to the event log in the control panel for more details.
-310	System error; License removal failed; <feature code>	The license removal of the specified feature, for example "N9073A-TR2" has failed. You should refer to the event log in the control panel for more details.
-310	System error; No license; <feature code> will terminate in <time>	The specified feature will stop working in the specified time due to the license expiration You will be prompted to save results and exit.
-310	System error; The configured PTP hardware driver could not be instantiated.	The PTP driver failed on initialization.
-310	System error; The PTP hardware driver reported a configuration error.	Failure in the execution of the PTP driver. The most likely cause of this error is a mismatch between versions of the PTP driver and the LXI middleware.
-310	System error; The PTP ordinary clock reported a configuration error.	Failure in execution of the DMC libraries' PTP controller.
-310	System error; The Trigger alarm delayed LAN event was not scheduled due to an existing pending event.	Delayed LAN events cannot occur too close together (within 20 ms).

-310	System error; The Trigger alarm delayed LAN event was not scheduled due to a conflict with an existing scheduled alarm.	Delayed LAN events cannot occur too close to a scheduled Alarm (within 20 ms).		
-310	System error; The Trigger alarm was not scheduled due to a conflict with an existing scheduled alarm.	Alarms cannot be scheduled to happen too close together (within 20 ms).		
-311	Memory error	PUD memory lost		There is a physical problem with the instrument memory, such as a parity
:---				
error.				

-221 Settings Conflict Errors

This is one of the errors in the standard SCPI error range of -200 to -299. See the table in section "-200 to -299, Execution Errors" on page 95 for the rest of those errors.

The <subtext> part of a Settings Conflict error should be worded so that the text is: "function1" is not whatever/with/while/when "function2". This makes them easier to find - alphabetically, to avoid duplicates.
The entire message displays in the error history as "-221, Settings conflict; <subtext>"

For example, -221.0076 displays as:
-221, Settings conflict; Invalid trace number

Err\#	Message	Verbose/Correction Information		
-221	Channel BW is not available in Zero Span	The Channel BW function is not available in zero span.		
-221	De-emphasis only available in FM	The de-emphasis function is only available if FM demod is selected.		
-221	Setting conflict; <trigger source> trigger is not available while input is <input port>	The trigger source (Video, RF Burst, I/Q Mag, etc.) is not available with the current input port (RF, IQ, etc.)		
-221	Setting conflict; Differential setting determined by probe type	A probe is connected that has a built in Differential setting. The setting cannot be changed manually.		
-221	Setting conflict; Input Z unavailable when probe sensed	A probe is connected and the Input Z is set based on the probe type. It cannot be changed manually.		
-221	Settings conflict;	A legal command was received but it could not be executed due to the current device state.		
-221	Settings conflict; *. CSV file format is not available in this measurement.	You cannot load or save base instrument traces, as this is not supported by the Log Plot measurement.		
-221	Settings conflict; <Q Param> cannot be changed when Q same as I	When the "Q Same as l" parameter is set to Yes, the I parameter value is copied to <Q Param> and the <Q Param> value cannot be changed. Set Q Same as I to No to enable explicit control of the <Q Param> value.		
-221	Settings conflict; A Valid User Cal is required. Optimize aborted	Optimize Preselector can only be performed if a valid user cal exists and is applied to current results. Perform a user cal first or apply existing cal.		
-221	Settings conflict; Antenna Unit is only available when antenna Correction is on	These special units only apply when you are doing antenna measurements with corrections enabled.		
-221	Settings conflict; Band is not available when Mixer Type is Preselected	The K, E, W, F, D, G, Y, J band functionality is not available if the selected Mixer Type is Preselected.		
Settings conflict; BTS gain is not				
available in this Mode			\quad	Base Transceiver Station gain correction is not available in some
:---				
Modes, or in some measurements (for example, the SA measurement).				

-221	Settings conflict; Calibration cannot be performed without valid ENR data	The cal ENR table has no values in it, and hence the cal cannot be performed. Correct by either populating the cal ENR table, set ENR mode to Spot, or set the 'Use Meas Table Data for Cal' to 'On'.
-221	Settings conflict; Cancellation is not available while measuring DANL floor.	Phase Noise cancellation does not make sense when measuring the DANL Floor, so for this reason it has been disabled
-221	Settings conflict; Cancellation Ref trace has no data.	When performing phase noise cancellation, you need to supply a reference trace that will be used to cancel out the background noise of the analyzer. The reference trace must be in Reference (View) mode, and selected by the Ref Trace parameter under the Cancellation menu
-221	Settings Conflict; Cancellation trace has different X-Scale	Reference trace for the cancellation has a different range of X-axis against the target trace
-221	Settings conflict; Cannot optimize while user cal in progress	Optimize Preselector cannot be performed while a user cal is in progress. The user cal performs an optimize preselector prior to taking the noise source on/off level results for the cal data.
-221	Settings conflict; Carrier freq not allowed with BMT. (Bottom/Middle/Top only)	The transmit band spur measurement only allows bottom (B), middle (M), and top (T) channel frequencies for each supported frequency band. The carrier frequency must be set to the bottom, middle or top frequency of the current frequency band.
-221	Settings Conflict; Code channel duplication	This error is reported when the given code channel overlaps other code channel
-221	Settings conflict; Command is incompatible with band pair marker	Using remote commands, you have tried to adjust the start or stop frequency of a span pair marker. You can only adjust the center and span.
-221	Settings conflict; Continuous Peak is not available with Fixed marker	The continuous peak feature cannot be used with a marker that is fixed. By definition that marker value cannot change.
-221	Settings conflict; Continuous Peak is not available with Signal Track on	The continuous peak feature cannot be used while you are also using the signal tracking function.
-221	Settings conflict; Corrections with different antenna units not allowed	When a correction with antenna units is turned on, that is the only unit allowed. You can have two sets of antenna corrections turned on, but only if they have the same units.
-221	Settings conflict; Desired preamp setting is not available	Does this really exist? If so, what does it really mean?
-221	Settings conflict; Destination trace for Trace Math cannot be a trace operand	The resulting trace data (from doing a trace math function) cannot be put into the any of the traces that are being used by the math operation.
-221	Settings conflict; Downconv only available when DUT is Amplifier	SCPI only message. The System Downconverter can only be set to 'On' when the DUT type is amplifier. Change DUT type to Amplifier if the System Downconverter is required.
-221	Settings conflict; EDGE EVM only supports EDGE TCH burst type.	
-221	Settings conflict; Electronic attenuator is disabled	You are using the mechanical attenuator, and have not enabled the electronic attenuator. You cannot set the value of the electronic attenuator because it automatically sets/changes when enabled.
-221	Settings conflict; Electronic attenuator is not available above $3.6 \mathrm{GHz}$	The maximum frequency of the electronic attenuator is 3.6 GHz . This is because of switching capacitance.

-221	Settings conflict; Electronic attenuator unavailable in current state	
-221	Settings conflict; Electronic attenuator unavailable with Preamp on	The internal preamp is on. Electronic attenuator cannot be used while you are using the internal preamp.
-221	Settings Conflict; FAST method can only be used while Radio Std is W-CDMA	
-221	Settings conflict; Feature not supported for this measurement.	Some functionality is available in one measurement, but not in another. (See the measurements under the Meas key.) This error occurs if you send a SCPI command or push a gray-out key that is not available in the current selected measurement.
-221	Settings conflict; FFT IF Gain High not available when Swept IF Gain = Manual Low	When Swept IF Gain is manually set to Low, you cannot set the FFT IF Gain to High because that would make the Reference Level couplings wrong in FFT mode.
-221	Settings conflict; FFT method is unavailable for level gating	If you are using level gating, you cannot select the FFT Gate Method.
-221	Settings conflict; FFT sweep type is not available while in Gated LO	The gated LO function turns the LO on and off as it sweeps. So the FFT sweep type is not available if you have selected gated LO.
-221	Settings conflict; FFT sweep type is not available while in Gated Video	The FFT sweep type is not available if you have selected the gated video function.
-221	Settings conflict; Fixed marker adjust not available while Marker Function is on	If a Marker Function is on for a Fixed marker, the marker's reported value is derived from the function. Therefore, you cannot directly set the X or Y value of a Fixed marker that has a marker function turned on.
-221	Settings conflict; Fixed Marker Y value is not adjustable with Normalize On	If Normalize is on the Amplitude scale is in dB units, so adjusting the Y value of a Fixed marker is not possible.
-221	Settings conflict; Freq > 3.6 GHz unavailable while electronic attenuator enabled	The electronic attenuator does not function above 3.6 GHz . So if you have that attenuator enabled, you cannot change the center frequency so that frequencies above 3.6 GHz are displayed/measured.
-221	Settings conflict; Frequency Offset is not available with Segmented Sweep	The frequency offset feature cannot be used when you are using the segmented sweep capability.
-221	Settings conflict; Frequency Offset not available when Frequency Scale is Log	The frequency offset feature cannot be used when you have selected a log scale for the frequency axis.
-221	Settings conflict; Function unavailable with MW Presel off	You cannot center or adjust the preselector because the Microwave Preselector is currently off
-221	Settings conflict; Gate control is Edge for Gated FFT	You cannot use level triggering to control the gate if you are using the FFT gating method.
-221	Settings conflict; Gate control must be Edge for this Gate Source	You cannot use level triggering to control the gate when you are using the currently selected gate source.
-221	Settings conflict; Gate is not available when Marker Count on	The gate function cannot be used while you have marker count turned on.
-221	Settings conflict; Gate Length is not settable in FFT sweeps	The sweep time for FFT sweeps is set by the calculations. So sweep time settings cannot be adjusted.

-221	Settings conflict; Gate Length is not settable in FFT sweeps	The sweep time for FFT sweeps is set by the calculations. So sweep time settings cannot be adjusted.
-221	Settings conflict; Gate Method is not compatible with current Sweep Type setting	If the Gate is On and you have the FFT Sweep Type manually selected, then the Gate Method cannot be selected.
-221	Settings conflict; Gated FFT is not available while Sweep Type is set to Swept	The gated FFT function is not available if you have selected the swept type of sweep. You must be in the FFT sweep type.
-221	Settings conflict; Gated LO is not available while Sweep Type is set to FFT	The FFT sweep type moves the LO frequency in steps. So the gated LO function is not available if you have selected FFT sweep.
-221	Settings conflict; Gated Video is not available while Sweep Type is set to FFT	The gated video function is not available if you have selected the FFT sweep type.
-221	Settings conflict; Incorrect RBW for demod. Change RBW	
-221	Settings conflict; Ind I/Q is not available for this measurement	The Independent I and Q setting is not available for the current measurement. Only some measurements (initially, only VXA) support this setting.
-221	Settings conflict; Invalid trace number	The subopcode used to specify the trace number is invalid for this measurement or query
-221	Settings conflict; Knob is not available to modify this function	You should select a specific value for this function. So scrolling through values with the knob is not allowed.
-221	Settings conflict; Log Scale Type is not available when Detector Mode is Normal	
-221	Settings conflict; Log Scale Type is not available with Demod View	The logarithmic x-axis scales are not available when you have the demod view turned on.
-221	Settings conflict; Log Scale Type is only available in swept measurement	Logarithmic scaling can be used when making a swept SA measurement. It is not available in the SA measurement when you are using FFT sweeps.
-221	Settings conflict; Log Scale Type not available when Segmented Sweep is on	The logarithmic scales are not available while you are using the segmented sweep capability.
-221	Settings conflict; Log Scale Type only available when Frequency Offset $=0 \mathrm{~Hz}$	If you have any amount of frequency offset, then you cannot use logarithmic scaling for the X axis.
-221	Settings conflict; Marker 1 Trace Update=off turns off Signal Track	Signal Track not available unless the trace containing Marker 1 is updating
-221	Settings conflict; Marker cannot be relative to itself	A marker must be set relative to another marker, not to itself.
-221	Settings conflict; Marker Count is not available when Gate on	The marker count function cannot be used while you have gating turned on.
-221	Settings conflict; Marker Function is not available for a Fixed marker	If a Marker is a Fixed type marker, the marker's value does not change from when it first became fixed. You cannot turn on or change a Marker Function because there is no ongoing measurement data to use for the marker function calculation.

-221	Settings conflict; Marker type must be delta	Mkr $\Delta->$ Span and Mkr $\Delta->C F$ require that the selected marker be a delta marker.
-221	Settings conflict; Marker-> command is not available with segmented sweep	Most of the "Marker To" commands are not available with segmented sweep turned on. So you cannot select these functions.
-221	Settings conflict; Marker-> function is not available in zero span	Most of the "Marker To" functions are not available if you are in zero span (span $=0 \mathrm{~Hz}$, or time domain). So you cannot send the commands for these functions.
-221	Settings conflict; Meas Type was changed to Examine for Exp Avg Mode.	Average Mode has been changed to Exponential. Full Meas Type is not available for Exponential Average Mode therefore Meas Type has been changed to Examine.
-221	Settings conflict; Meas Type was changed to Full for Repeat Avg Mode	Average Mode has been changed to Repeat. Examine Meas Type is not available for Repeat Average Mode therefore Meas Type has been changed to Full.
-221	Settings Conflict; MinPts/RBW limit not met	
-221	Settings conflict; Mixer Type is not available when in this band	The Mixer Type selection is not available in the K, E, W, F, D, G, Y, J band because those bands do not allow Preselected Mixing.
-221	Settings conflict; Mkr -> CF is not available when the x -axis is time domain	The marker to center frequency functionality does not work when the x-axis is in the time domain.
-221	Settings conflict; MS gain is not available in this Mode	Mobile Station gain correction is not available in some Modes, or in some measurements (for example, the SA measurement).
-221	Settings conflict; No meas frequencies are above 3.6 GHz	Optimize Preselector can only be performed on frequencies in high band i.e. freqs above 3.6 GHz . The current setup does not have input freqs (IF) in this range so an Optimize Preselector cannot be performed.
-221	Settings conflict; Normal detector is not allowed with X scale is Log	The normal detector cannot be used when the x -axis scale is logarithmic. Why not? Are the results weird? Frequency slewed?
-221	Settings conflict; Normalize is not available when Scale Type = Lin	Normalize does not support Linear amplitude scale, since the results are always presented as a dB ratio.
-221	Settings conflict; Normalize is not available while Demod View is on	The normalization (correction) function cannot be used if you are using the Demod View.
-221	Settings conflict; Normalize is not available while Trace Math is on	The Normalize function works by doing trace manipulation. So if trace math is on you cannot turn on normalization.
-221	Settings conflict; Option not available	You have attempted to perform an action for which a required option is not installed
-221	Settings conflict; Param only available when DUT is a freq converter	SCPI only message. The sideband and freq context parameters are only available when a freq conversion setup is in use. Change setup to contain a freq conversion to use these parameters.
-221	Settings conflict; Param only available when External Lo Mode is Swept	SCPI only message. This parameter is only available when the LO mode is set to Swept. Change the LO Mode to Swept.
-221	Settings conflict; Param only available when External LO Mode is Fixed	SCPI only message. This parameter is only available when the LO mode is set to Fixed. Change the Freq Mode to Fixed.

-221	Settings conflict; Param only available when Frequency Mode is Fixed	SCPI only message. This parameter is only available when the Freq mode is set to Fixed. Change the Freq Mode to Fixed.
-221	Settings conflict; Param only available when Frequency Mode is Swept	SCPI only message. This parameter is only available when the Freq mode is set to Swept. Change the Freq Mode to Swept
-221	Settings conflict; Param only available when valid cal data exists	SCPI only message. The 'Apply Calibration' parameter is only available when the stored cal data matches the current setup. Perform a fresh 'Calibrate Now' or change setup such that current cal data is valid.
-221	Settings conflict; Parameter currently is disabled	This parameter is grayed out (unavailable) in the current context. Check the individual parameter help/documentation for more information.
-221	Settings conflict; Preamp gain is not available in this Mode	Preamp gain correction is not available in some Modes or Measurements
-221	Settings conflict; Preamp unavailable with electronic attenuator on	The electronic attenuator is on. Internal preamp cannot be used while you are using the electronic attenuator.
-221	Settings conflict; Reference marker must be in same window	A delta marker and its reference must be in the same window. This error occurs when you try to turn on a delta marker who's reference is in a different window.
-221	Settings conflict; Res BW cannot be auto-coupled while in Zero Span	The resolution bandwidth cannot be set to auto while you are in zero span (time domain).
-221	Settings conflict; Scale Type = Lin is not available when Normalize is on	Only the Log amplitude scale is available in Normalize, since the results are always presented as a dB ratio.
-221	Settings conflict; Settings conflict; Mask unavailable for current Span. Increase to display mask.	The current span setting is either narrower than the mask width or so wide that there are too few display points to allow the mask to be drawn. Increase or decrease the span to display the mask.
-221	Settings conflict; Settings conflict; Pre-trigger is insufficient for demod. Decrease Trig Delay.	
-221	Settings conflict; Signal Track is not available when Freq Scale=Log	The signal tracking feature cannot be used when you have selected a log scale for the frequency axis.
-221	Settings conflict; Signal Track is not available with Continuous Peak	The signal tracking feature cannot be used while you are also using the continuous peak function.
-221	Settings conflict; Signal Track is not available with Segmented Sweep	The signal tracking feature cannot be used when you are using the segmented sweep capability.
-221	Settings conflict; Signal Track is only available in Swept SA measurement	The signal track functionality can be used when making a swept SA measurement. It is not available in the SA measurement when you are using FFT sweeps.
-221	Settings conflict; Signal Track is turned off when Zero Span is selected	Signal Track is not available when you have selected Zero Span. So if Zero Span is entered while in Signal Track is On, Signal Track is turned off.
-221	Settings conflict; Span is not available when Segmented Sweep is on	Segmented Sweep uses multiple sweeps, each with its own span setting. You cannot set the span when segmented sweep is selected because the function does not know which span to change.
-221	Settings Conflict; Span limited to XXX	

-221	Settings conflict; Span Zoom is not available in Zero Span	Span Zoom does not work with a time domain x-axis. You must select a span greater then 0 Hz .
-221	Settings conflict; Span Zoom not available when Frequency Scale Type $=\log$	The Span Zoom feature cannot be used when the X -axis scale is logarithmic frequency.
-221	Settings conflict; Span Zoom not available when Segmented Sweep is on	Segmented Sweep uses multiple sweeps so it does not know what sweep to zoom in on. Also, it cannot zoom a span over a sweep boundary.
-221	Settings conflict; Step keys are not available to modify this function	You should select a specific value for this function. So using the Up/Down step keys to scroll through values is not allowed.
-221	Settings conflict; Sweep Setup only available in swept measurements	The current measurement uses FFT mode and so does not use the Sweep Setup menu
-221	Settings conflict; Sweep Time cannot be auto-coupled in FFT sweeps	The sweep time for FFT sweeps is set by the calculations. So sweep time settings cannot be adjusted.
-221	Settings conflict; Sweep Time cannot be auto-coupled while in Zero Span	You cannot send the remote command to set the sweep time to auto while you are in zero span.
-221	Settings conflict; Sweep Time cannot be set while in FFT sweeps	The sweep time for FFT sweeps is set by the calculations. It cannot be manually controlled.
-221	Settings conflict; Swept IF Gain High not available when FFT IF Gain = Manual Low	When FFT IF Gain is manually set to Low, you cannot set the Swept IF Gain to High because that would make the Reference Level couplings wrong in swept mode.
-221	Settings conflict; Swept LO not available when freq mode is Fixed	SCPI only message. The LO Mode cannot be set to Swept when the freq mode is set to fixed. Change the freq mode away from fixed, or perform the measurement at several fixed frequencies.
-221	Settings conflict; Swept Type=Swept is not available while in Gated FFT	If you have selected gated FFT then you are using the FFT sweep type and you cannot select the swept type of sweeping.
-221	Settings conflict; System Display Settings, Annotation is Off	This is an override that turns off many of the annotations. This is available as a security feature.
-221	Settings conflict; T hot must be greater than T cold	The Tcold value set under Meas Setup/ENR/Tcold, needs to be lower than the Thot value currently being set. Tcold is often taken as the ambient temperature of the noise source. If using an SNS the Tcold value may be read automatically before every sweep.
-221	Settings conflict; TG start freq is less than $1 / 2$ Res BW	Tracking generator uncalibrated at start frequencies below 1/2 the current resolution bandwidth.
-221	Settings Conflict; The parameter cannot be changed in FAST mode	
-221	Settings conflict; Trace Math is not available while Normalize is on	The Normalize function works by doing trace manipulation, so trace math is not available while normalization is running.
-221	Settings conflict; Trace smoothing with VBW not available with Avg Detector	
-221	Settings conflict; Trigger is not available with span > 0 Hz .	

-221	Settings conflict; Tx Band Spur meas does not support this frequency band.	The transmit band spur measurement does not support all of the commercially available frequency bands. You need to change your selection under Mode Setup, Radio, Band to one of the supported bands.
-221	Settings conflict; Tx Band Spur measurement is not defined for mobiles.	Only base station testing is available.
-221	Settings conflict; Zero Span not available when Frequency Scale Type = Log	Logarithmic scales cannot be used for time domain sweeps (0 Hz span). -221Settings conflict; Zero Span not available when Segmented Sweep is on
Settings conflict; Zone is not available when Segmented Sweep is on	Segmented Sweep uses multiple sweeps. It cannot combine sweeps	
-221		Thene functionality cannot be used while using segmented sweep.

-200 to -299, Execution Errors

For -221 error messages, see the previous sections.
Note that Execution Errors are divided into subclasses:

$$
\begin{aligned}
& -21 x \text { - Trigger errors } \\
& -22 x \text { - Parameter error } \\
& -23 x \text { - Data corrupt or stale (invalid data) } \\
& -24 x \text { - Hardware error } \\
& -25 x \text { - Mass storage error } \\
& -26 x-\text { Expression data error } \\
& -27 x \text { - Macro error } \\
& -28 x \text { - Program error (a downloaded program-related execution error) } \\
& -29 x \text { - Memory use error }
\end{aligned}
$$

Err\#	Message	Verbose/Correction Information
-200	Execution Error	A program execution error has occurred. The exact problem cannot be specifically identified.
-200	Execution error; Carrier frequency outside device's transmit band	The entered channel/carrier frequency is not within the range of your current mode setup selection of standard and device.
-200	Execution error; Invalid GSM burst timing	A GSM-like burst was acquired, but its timing is not valid. Ensure the correct Burst Type has been selected.
-200	Execution error; Invalid IP address	The IP address supplied is either not valid or does not belong to a compatible Signal Generator. Please check the IP address and instrument connection and try again.
-200	Execution error; Invalid Marker Trace.	Cannot place markers on the reference trace, because the reference trace is currently turned off or has no data.
-200	Execution Error; No peak found.	No signal peak was found within the defined parameters of the search.
-200	Execution error; No ranges are defined. Activate a range.	There are no active ranges in the range table. You will need to activate at least one range.
-200	Execution Error; Preselector centering failed	Algorithm failed to center the preselector. This maybe caused by the signal peak being too low in amplitude. Or it culd be from excessive CW input signal, alignment error, or hardware failure.
-200	Execution Error; Signal not stable enough to track	The signal that you have selected to track is changing too much for the function to track it properly.
-200	Execution Error; Store ref trace before turning on Normalize	The Reference trace data must be stored in the Ref trace before you turn on the Normalization function.

-200	Execution error; Sync word was not found.	NADC \& PDC: In an EVM measurement, the sync word is not found and the synchronization cannot be established when Sync Word is selected in the Burst Sync menu. Flexible Digital Demodulation: The sync word cannot be detected because of inappropriate parameter settings or incorrect signal.
-200	Execution error; Trace file contains no compatible traces.	The trace file may have been created by another version of the Phase Noise personality, which uses a different trace format that is incompatible with the version you are running. Please check you are running the most up to date version of the personality.
-200	Execution error; Trace file created by incompatible version of Phase Noise App	The trace file may have been created by another version of the Phase Noise personality, which uses a different trace format that is incompatible with the version you are running. Please check you are running the most up to date version of the personality.
-201	Invalid while in local	The command cannot be executed while the instrument in Local control.
-202	Settings lost due to rtl	A "return to local" control was forced and some settings were lost as a result of this.
-203	Command protected	The command could not be executed because it is disabled. It was disabled by licensing or password protection
-203	Command protected; feature not licensed	The specified feature, for example "N9073A-TR2" is not licensed. The license may have expired. You cannot use it until you get a license.
-210	Trigger error	A trigger error has occurred, but the exact problem cannot be specifically identified.
-211	Trigger ignored	A GET, *TRG or other triggering signal was received, but it was ignored because of timing considerations. For example, maybe the instrument was not ready to respond when the command was received.
-212	Arm ignored	An arming signal was received, but it was ignored.
-213	Init ignored	An initiate trigger/sweep request was received and ignored, because another measurement was already in progress.
-214	Trigger deadlock	The trigger source for the initiation of a measurement is set to GET, and the following measurement query was received. The measurement cannot be started until a GET is received, but the GET would cause an INTERRUPTED error.
-215	Arm deadlock	The arm source for the initiation of a measurement is set to GET and the following measurement query is received. The measurement cannot be started until a GET is received and the GET would cause an INTERRUPTED error.
-220	Parameter error	A problem was found with a program data element. The exact problem cannot be specifically identified.
-221	Settings conflict;	There are many types of settings conflict errors. See section 3.5 for information about these errors.
-222	Data out of range;	A data element was found but the instrument could not be set to that value because it was outside the range defined for the command. A descriptive message may be appended, such as "clipped to upper limit"
-222	Data out of range; Invalid list data	You tried to use a trace that has a number of sweep points that is different from the current setting of sweep points.

-222	Data out of range; Two entries already exist at this x-axis value.	When entering values for limit lines, you cannot have more than two y-axis (amplitude) values entered for a specific x-axis (frequency) value.
-223	Too much data	A data element (of block, expression, array type, or string type) had more data then allowed by the command, or by the available memory.
-223	Too much data; 200 spurs found. Additional spurs ignored.	There are too many spurs for the table (the limit is 200), and any additional spurs that are found will be ignored.
-224	Illegal parameter value	An exact data value (from a list of the allowed values) was required - but not found. See the feature description for information about the expected parameter values.
-224	Illegal parameter value; <Value> invalid. Fractional values are not allowed.	The seconds parameter of an LXI time may not contain a fractional portion. For example 123456789.0 is valid while 123456789.1 is not.
-224	Illegal parameter value; <value> out of range.	The value does not fall in the valid range
-224	Illegal parameter value; Exceeding the max list length	The list parameters have a maximum allowed length. You are trying to set a length longer than the maximum.
-224	Illegal parameter value; Gated FFT is not available while Sweep Type is set to Swept	The gated FFT function is not available if you have selected the swept type of sweep. You must be in the FFT sweep type.
-224	Illegal parameter value; Gated LO is not available while Sweep Type is set to FFT	The FFT sweep type moves the LO frequency in steps. So the gated LO function is not available if you have selected FFT sweep.
-224	Illegal parameter value; Gated Video is not available while Sweep Type is set to FFT	The gated video function is not available if you have selected the FFT sweep type.
-224	Illegal parameter value; Illegal identifier <identifier>. This value may already be in use.	The value for the LXI LAN identifier parameter must be unique (i.e. LANO and LAN7 must have different identifier strings).
-224	Illegal parameter value; Index out of range	When querying the LXI Event Log or the Servo Log, an index may be used to look at a specific entry. This error occurs if the index provided does not point to a valid entry.
-224	Illegal parameter value; Invalid list length	You are trying to set some list measurement settings, but the multiple lists that you sent were not all the same length. The number of settings must be consistent from list to list.
-224	Illegal parameter value; LXI Event <event> already exists.	This error occurs when you try to add an LXI Event that has already been added.
-224	Illegal parameter value; LXI Event <event> contains illegal characters.	When a new LXI Event is created, it may not use the comma, semicolon, or newline characters. All other printable ASCII characters are valid.
-224	Illegal parameter value; LXI Event <event> does not exist.	The requested event has not been added yet.
-224	Illegal parameter value; Measurement not available	You tried to turn on a measurement that is not available in the current mode.
-224	Illegal parameter value; trace points not available for tier	You tried to import a trace file that contains trace points that don't match the number of trace points available for your software license tier.
-225	Out of memory	There is not enough memory to perform the requested operation.

-225	Out of memory; Memory limit caused Data Acquisition to be truncated	
-226	List not same length	You are using the LIST structure, but have individual lists that are not the same lengths.
-230	Data corrupt or stale;	A legal data element was found, but it could not be used because the data format or the data structure was not correct. Maybe a new measurement had been started but had not completed.
-230	Data corrupt or stale; Measurement data is not available	Measurement data not available. The measurement that you are trying to get data from must be the current active measurement. Maybe you have not initiated the measurement, or it has not completed all the sweeps/averages needed.
-230	Data corrupt or stale; Trace contains no data.	Trace cannot be displayed because currently there is no data assigned to it. Use the functions under the Trace menu, or load a previously saved trace, to assign data to the trace.
-230	Data corrupt or stale; Unable to load state from file	There is something wrong with the state data in the desired file. Maybe the file is corrupt, or it is from an instrument/version that is not recognized by the current instrument.
-231	Data questionable	Indicates that the measurement accuracy is suspect
-232	Invalid format	A data element was found but it could not be used because the data format or the data structure was not correct.
-232	Invalid format; Map information not loaded	Instrument failed to load the burst mapping information from the selected file.
-233	Invalid version	A legal data element was found but could not be used because the version of the data is incorrect. For example, state data changes as new instrument features are added, so old state files may not work in an instrument with a newer version of software.
-240	Hardware error	A legal program command or query could not be executed because of a hardware error. The exact problem cannot be specifically identified.
-240	Hardware error; See details in Windows Event Log under SA	The internal data acquisition system detected a problem at startup and logged the details in the Windows Event Log.
-241	Hardware missing	The operation could not be performed because of missing hardware; perhaps the optional hardware is not installed.
-241	Hardware missing; Internal preamp not available at all frequency points	The Internal Preamp is currently turned on, but the measurement is being performed completely or partially outside the range of the preamp. It is recommended that the user turns preamp off to ensure consistent results across the entire measurement.
-241	Hardware missing; not available for this model number	The hardware required is not part of this model
-241	Hardware missing; Option not installed	The optional hardware is not installed.
-250	Mass storage error;	A problem was found with the mass storage device (memory, disk drive, etc.). The exact problem cannot be specifically identified.
-250	Mass storage error; Access denied	Access is denied.
-250	Mass storage error; Bad path name	The specified path is invalid.
-250	Mass storage error; Can only import single trace .csv files	Trace files containing multiple traces can not be imported. However, if you need to recall multiple traces you can use the Save and Recall functions rather than the Import and Export functions.

-250	Mass storage error; Cannot make	The directory or file cannot be created.
-250	Mass storage error; Different Antenna Unit already in use	Attempt to import Corrections file with Antenna Unit that differs from an in-use correction.
-250	Mass storage error; Directory not found	The system cannot find the path specified.
-250	Mass storage error; Failed to Load trace. Bad file format.	The load trace operation could not be completed, as the input file was not in the expected format. You can only load traces that were previously saved using the 'Save Trace' feature.
-250	Mass storage error; File <filename> wrong type	Attempt to import a data file that is not the proper type for this operation.
-250	Mass storage error; File <filename> and instrument version mismatch	While opening a file, there was a mismatch between file version or model number with instrument version or model number. The import still tried to load as much as possible, but you should check it closely.
-250	Mass storage error; File contains incorrect data for this operation	There is a mismatch between the file data type of the file specified and the destination indicated. For example, a correction set cannot be loaded/imported into a limit line.
-250	Mass storage error; File empty	Cannot save trace because it contains no data. Check that the trace is turned on and contains some valid data.
-250	Mass storage error; Invalid register number for *SAV or *RCL	You have used the *SAV command to save a state to a non existent state register. Or You have used the *RCL command to recall a state register that wasn't previously saved with the *SAV command.
-250	Mass storage error; Lock violation	The process cannot access the file because another process has locked a portion of the file.
-250	Mass storage error; No file names available	Attempt to use the auto file name generation when all 10,000 file names are taken.
-250	Mass storage error; Open failed	The system cannot open the device or file specified. This could be because the storage media is full, or possibly due to a filename error. If using an external storage devise, check that the devise is properly formatted.
-250	Mass storage error; Read fault	The system cannot read from the specified device.
-250	Mass storage error; Register <number> empty	Attempt to recall a register with nothing in it
-250	Mass storage error; Sharing violation	The process cannot access the file because it is being used by another process.
-250	Mass storage error; Too many open files	The system cannot open the file.
-250	Mass storage error; Write fault	The system cannot write to the specified device.
-252	Missing media	A legal command or query could not be executed because missing media.
-253	Corrupt media	A removable media was found to be bad or incorrectly formatted. Any existing data on the media may have been lost.
-254	Media full	A legal command/query could not be executed because the media was full
-255	Directory full	A legal command or query could not be executed because media directory was full.

Instrument Messages
-200 to -299, Execution Errors

-256	File name not found;	A legal command or query could not be executed because the file name was not found in the specified location.
-257	File name error;	A legal command or query could not be executed because there was an error with the file name on the device media. For example, maybe you tried to copy to a duplicate file name.
-257	File name error; Allowable extension is .Csv	You are using the wrong type of file extension for the current data/file type.
-257	File name error; Allowable extension is .png	You are using the wrong type of file extension for the current data/file type.
-257	File name error; Allowable extension is .state	You are using the wrong type of file extension for the current data/file type.
-257	File name error; Invalid file name	The filename, directory name, or volume label syntax is incorrect.
-257	File name error; name too long	
-258	Media protected	A legal command or query could not be executed because the media was protected. For example, the write-protect was set
-260	Expression error	An error was found with an expression type of data element. The exact problem cannot be specifically identified.
-261	Math error in expression	An expression that has legal syntax could not be executed because of a math error. For example, maybe you are dividing by zero.
-270	Macro error	Indicates that a macro-related execution error occurred.
-271	Macro syntax error	Indicates a syntax error within the macro definition
-272	Macro execution error	Indicates that a syntactically legal macro program data sequence could not be executed due to some error in the macro definition
-273	Illegal macro label	Indicates that the macro label defined in the *DMC command was a legal string syntax, but could not be accepted
-274	Macro parameter error	Indicates that the macro definition improperly used a macro parameter placeholder
-275	Macro definition too long	Indicates that a syntactically legal macro program data sequence could not be executed because the string or block contents were too long for the device to handle
-276	Macro recursion error	Indicates that a syntactically legal macro program data sequence could not be executed because the device found it to be recursive
-277	Macro redefinition\ not allowed	Indicates that a syntactically legal macro label in the *DMC command could not be executed because the macro label was already defined
-278	Macro header not found	Indicates that a syntactically legal macro label in the *GMC? query could not be executed because the header was not previously defined.
-280	Program error	There was an execution error in a down-loaded program. The exact problem cannot be specifically identified.
-281	Cannot create program	Indicates that an attempt to create a program was unsuccessful. A reason for the failure might include not enough memory.
-282	Illegal program name	The name used to reference a program was invalid; for example, redefining an existing program, deleting a nonexistent program, or in general, referencing a nonexistent program.
-283	Illegal variable name	An attempt was made to reference a nonexistent variable in a program.

-284	Program currently running	Certain operations dealing with programs may be illegal while the program is running; for example, deleting a running program might not be possible.
-285	Program syntax error	Indicates that a syntax error appears in a downloaded program. The syntax used when parsing the downloaded program is device-specific.
-286	Program runtime error	
-290	Memory use errors	
-291	Out of memory	
-292	Referenced name does not exist	
-293	Referenced name already exists	
-294	Incompatible type	Indicates that the type or structure of a memory item is inadequate

-100 to -199, Command Errors

Err\#	Message	Verbose/Correction Information
-100	Command error	There is a problem with the command. The exact problem cannot be specifically identified.
-101	Invalid character	An invalid character was found in part of the command.
-102	Syntax error	An unrecognized command or data type was found, for example a string was received for a command that doesn't accept strings.
-103	Invalid separator	The command was supposed to contain a separator but we found an illegal character. For example, the semicolon was omitted after a command string.
-104	Data type error	We found a data type different then what was expected. For example, numeric or string data was expected, but block data was found.
-105	GET not allowed	A Group Execute Trigger was received within a program message.
-108	Parameter not allowed	More parameters were received than were expected for the command. For example, the *ESE common command only accepts one parameter, so sending *ESE 0,1 is not allowed.
-109	Missing parameter	Fewer parameters were received than required for this command.
-110	Command header error	This is a general error that is generated when a problem is found in a command header, but we can't tell more specifically what the problem is
-111	Header separator error	We found an illegal character in a command where we expected to find a separator.
-112	Program mnemonic too long	The command contains a keyword that is more than twelve characters.
-113	Undefined header	The command meets the SCPI syntax requirements, but is not valid in the current measurement environment.
-114	Header suffix out of range	The value of a numeric suffix that is attached to a program mnemonic makes the header invalid. (A suffix is usually units, like Hz or DB.)
-115	Unexpected number of parameters	The number of parameters received does not correspond to the number of parameters expected.
-120	Numeric data error	An error was found in a data element that appears to be numeric. The exact problem cannot be specifically identified.
-121	Invalid character in number	A character was found that is not valid for the data type. For example, an alpha in a decimal numeric or a " 9 " in octal data.
-123	Exponent too large	The magnitude of an exponent was greater than 32000 .
-124	Too many digits	The mantissa of a decimal-numeric contained more than 255 digits, excluding leading zeros.
-128	Numeric data not allowed	A legal numeric data element was found, but that is not a valid element at this position in the command.
-130	Suffix error	A problem was found in a suffix (units). The exact problem cannot be specifically identified.
-131	Invalid suffix	There is a syntax problem with the suffix. You need to use the suffix (units) that are allowed by this command.
-134	Suffix too long	The suffix contained more than twelve characters.

-138	Suffix not allowed	A suffix was found after a numeric element that does not allow suffixes (units).
-140	Character data error	A problem was found with a character data element. The exact problem cannot be specifically identified.
-141	Invalid character data	Either the character data element contains an invalid character or the element itself is not valid for this command.
-144	Character data too long	The character data element contains more than twelve characters.
-148	Character data not allowed	A character data element that you sent is valid, but it is not allowed in this point in the parsing.
-150	String data error	A problem was found with a string data element. The exact problem cannot be specifically identified.
-151	Invalid string data	A string type of data element was expected, but it is invalid for some reason. For example, an END message was received before the terminal quote character.
-158	String data not allowed	A string data element that you sent is valid, but it is not allowed at this point in the parsing.
-160	Block data error	A problem was found with a block data element. The exact problem cannot be specifically identified.
-161	Invalid block data	A block data element was expected, but it was invalid. For example, an END message was received before the end length was satisfied.
-168	Block data not allowed	A legal block data element was found, but it is not allowed at this point in the parsing.
-170	Expression error	A problem was found with an expression data element. The exact problem cannot be specifically identified.
-171	Invalid expression	An expression data element is not valid. For example, there may be unmatched parentheses or an illegal character.
-178	Expression data not allowed	A legal expression data was found, but it is not allowed at this point in the parsing.
-180	Macro error	A problem was found with a macro element. The exact problem cannot be specifically identified.
-181	Invalid outside macro definition	Indicates that a macro parameter placeholder was encountered outside of a macro definition.
-183	Invalid inside macro definition	Indicates that the program message unit sequence, sent with a *DDT or *DMC command, is syntactically invalid
-184	Macro parameter error	Indicates that a command inside the macro definition had the wrong number or type of parameters.

0 Error

Err\#	Message	Verbose/Correction Information
0	No error	The queue is empty. Either every error in the queue has been read, or the queue was cleared by power-on or ${ }^{* C L S .}$

Condition Errors 1 to 99, Calibration

Condition Errors 6 to 34, Calibration Skipped

Errors with instrument internal alignment routines being skipped. (Selected to not be executed.)

An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 6 indicates that the RF Alignment not being done during alignments has been detected, error 1006 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
6	Align RF skipped	W	
8	unused bit4 is set		
10	unused bit4 is set		
12	unused bit4 is set		
14	unused bit4 is set		
16	unused bit5 is set		
18	unused bit6 is set		
20	unused bit7 is set		
22	unused bit8 is set		
24	unused bit9 is set		
26	unused bit10 is set		
28	unused bit11 is set		
30	unused bit12 is set		
32	unused bit13 is set		
34	unused bit14 is set		

Condition Errors 36 to 64, Calibration Needed or Failed

Errors with instrument internal alignment routines.
An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 42 indicates an RF Alignment Failure has been detected, error 1042 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
36	DCFM Zero Failure	E	
38	IQ Calibration Failure	E	
40	TG Alignment Failure	E	
42	RF Alignment Failure	E	
44	IF Alignment Failure	E	
46	LO Alignment Failure	E	
48	ADC Alignment Failure	E	
50	FM Demod Alignment Failure	E	
52	Extended Align Needed Sum	E	
54	Extended Align Failure Sum	E	
56	Tracking Peak Needed	W	
58	Align Skipped Sum	E	
60	Align RF Now Needed	E	
62	Corrections Off	W	
64	Align All Now Needed	E	

Condition Errors 65 to 92, Calibration Needed (Extended)

Errors with instrument internal alignment routines.
An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 66 indicates that the requirement for an Alignment of the EMI conducted frequency range has been detected; error 1066 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
65	unused bit0 is set		
66	Align $9 \mathrm{kHz}-30 \mathrm{MHz}$ required	An EMI conducted frequency range alignment is needed.	
68	Align 30MHz-1GHz required	E	An EMI radiated frequency range alignment is needed.
72	unput Attenuation not calibrated	E	Corrected measurements have been requested and the required RF front-end setting of \times dB has not been calibrated.
74	unused bit6 is set		
76	unused bit7 is set		
88	unused bit8 is set		
82	unused bit9 is set	unused bit10 is set	
88	unused bit11 is set		
98	unused bit12 is set		
98	unused bit14 is set		

Condition Errors 67 to 95, Calibration Failure (Extended)

Errors with instrument internal alignment routines failing.
An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 67 indicates that the RF Alignment not being done during alignments has been detected, error 1067 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
67	Align 9 kHz to 30 MHz failed	W	
69	Align 30 MHz to 1 GHz failed	W	
71	Characterize Preselector failure	W	The preselector characterization routine failed.
73	unused bit4 is set		
75	unused bit4 is set		
77	unused bit5 is set		
79	unused bit6 is set		
81	unused bit7 is set		
83	unused bit8 is set		
85	unused bit9 is set		
87	unused bit10 is set		
89	unused bit11 is set		
91	unused bit12 is set		
93	unused bit13 is set	unused bit14 is set	
95			

Condition Errors 101 to 199, Measurement Integrity

Errors with making measurements: triggering, over range, bad acquisition/data, bad settings.

An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 129 indicates a Meas Uncal condition has been detected, error 1129 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
133	Signal Summary	E	
135	No Result	E	
135	No Result; Meas invalid with I/Q inputs	E	The current measurement does not support I/Q input; switch to the RF or another input or select a different measurement
135	No Result;Turn on MCE	E	To calculate Timing and Phase results in the Code Domain Power view of Mod Accuracy, the "Multi Channel Estimator" must be set to ON. Otherwise these results are invalid.
137	(unused)		
139	Uncalibrated Summary	E	
141	Input Overload	W	
141	Input Overload;ADC over range	W	The signal at the input to the IF section is too high. You should increase the attenuation or lower the signal level.
141	Input Overload;I/Q ADC over range	W	The I or Q input exceeds the ADC upper limit.
141	Input Overload;I/Q Voltage over range	W	The input voltage on the I or Q channel exceeds the channel limit. In differential mode the over voltage may occur without causing an ADC overload, for example, if I is at +5.01 V and I-bar is at +5.0 the ADC will be in range but both I and I-bar will exceed the voltage limit.
143	(unused)		
145	(unused)		
147	Insufficient Data	E	
147	Insufficient Data; ENR table empty	E	A measurement was attempted or a SCPI query of an ENR table was made and there were no entries in the relevant ENR table (Common, Meas or Cal).

147	Insufficient Data; frequency list empty	E	A measurement was attempted with List frequency mode or a SCPI query of the frequency list table was made and the frequency list table is empty.	
147	Insufficient Data; Incr. Demod Time	E	There is insufficient acquisition data to provide accurate metrics. You should increase the Demod Time to acquire enough data.	
147	Insufficient Data; Loss table empty	E	A measurement is attempted or a SCPI query of a before or after loss table is made and there are no entries in the relevant loss table	
149	(unused)			
151	Memory Error	E		
151	Memory Error; Shorten capture interval	E	A shortage of free memory related to longer capture intervals has occurred. The measurement is aborted and all results return invalid values	
153	I/O Error	E		
153	I/O Error; Ext Source needs IP Addr	E	No IP address entered for external source and external LO control is ON .	
155	Trig Error	E		
157	Invalid Data		This is the "dirty marker", no message in the status line and nothing in the history queue, but there IS an on screen indication so in that sense this is a special case.	
159	Settings Alert	W		
159	Settings Alert; Acquisition truncated	W	In the Analog Demod mode, certain extreme settings combinations will result in a required acquisition length in excess of the capacity of the analyzer. Increase the AF Spectrum RBW or the RF Spectrum RBW, decrease the Channel BW, and/or decrease the Demod Waveform Sweep Time.	
159	Settings Alert; Diff probe mismatch; <I\|Q	I, Q>	W	The attenuation values two probes on the I and/or Q channels differ by too much for a valid differential reading.
159	Settings Alert;LO may overload IF	W	If the sweep type is Swept, the start frequency of the instrument is less than 10 MHz , and you put Swept IF Gain in Manual High, then a warning condition is generated and remains in effect as long as this condition exists.	
161	Setting Modified	E		
161	Setting Modified; Filter not applied	E	The filter you have selected is larger than the sampling frequency. You should select a different filter.	

Condition Errors 201 to 299, Signal Integrity

Errors with the signals being measured: signals not found (timing/frequency/amplitude), signals noisy or degraded.

An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.
For example, error 207 indicates a Burst Not Found condition has been detected, error 1207 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
203	Legraded Performance	E bit0 is set	E
207		E	

207 (cont	Burst Not Found (cont.)	E	1xEV-DO: Data was acquired but a 1xEV burst was not found, with the timeslot mode disabled. Bluetooth: The burst that has been found does not correspond to the currently selected Bluetooth packet type (the burst length may be too short). WLAN: The instrument cannot find a valid WLAN burst. You may need to extend the search length.
209	Timing Error	E	
209	Timing Error:No time ref pilot burst	E	The pilot burst used for time reference is not active.
211	Carrier(s) incorrect or missing	E	
213	Freq Out of Range	E	
213	Freq Out of Range; External LO	E	One or more external LO frequencies are out of range. Check that the LO frequency limits are set correctly and check the entered measurement frequencies and measurement mode.
213	Freq Out of Range; System input (IF)	E	One or more system input frequencies are out of range. If using a frequency list, check that all entries are valid for current measurement mode.
215	Sync Error	E	W-CDMA: Cannot sync DPCCH pilot. Cannot synchronize measurement with DPCCH pilot for Power Control measurement, because the pilot signal cannot be found. Make sure DPCCH is present in the W-CDMA uplink signal, and that the slot format and scramble code are set correctly.
215	Sync Error;Midamble sync fail	E	Failed to find the uplink slot, which caused the synchronization with the midamble to fail.
215	Sync Error; No freq ref pilot burst	E	The pilot burst used for frequency reference is not active.
215	Sync Error;No pilot burst	E	There is no Pilot burst detected.
215	Sync Error;Preamble length zero	E	Burst type is "Data" or "Preamble" and the measurement cannot find a Preamble
215	Sync Error;Sync code not found	E	Synchronization code is not found in the measured time slot.

217	Demod Error	E	This error is normally generated because of one of the following reasons: 1. There is no carrier signal. 2. Walsh channels other than the pilot are active. 3. There is some other modulation problem that will prevent the measurement from being made. This problem must be corrected before the measurement can continue. cdma 2000 \& W-CDMA: Cannot correlate to the input signal and no active channel is found. (from composite EVM measurement) An active channel must meet the default threshold criteria that it is within 20 dB of the highest power code channel. The threshold can be changed using the active set threshold function in the Meas Setup menu. cdmaOne: A correlation failure with the pilot CDMA channel occurred during synchronous demodulation. 1xEV-DO: Cannot correlate to the input signal and no active channel is found. (from composite EVM measurement) An active channel must meet the default threshold criteria that it is within 20 dB of the highest power code channel. The threshold can be changed using the active set threshold function in the Meas Setup menu.
217	Demod Error; Can't correlate	E	Cannot correlate to the input signal and no active channel is found. (from composite EVM measurement) An active channel must meet the default threshold criteria that it is within 20 dB of the highest power code channel. The threshold can be changed using the active set threshold function in the Meas Setup menu.
217	Demod Error;Data interval too short	E	There are not enough input I/Q pairs for the measurement calculation. This may be caused by an incorrect data capture.
217	Demod Error;Muxed bits not found	E	Multiplexed Data Demod Bits are not generated even though Data channel is selected, because all 16 data code channels are not active
217	Demod Error;No active channel	E	There is no active channel detected.
217	Demod Error; No full subframe found	E	No sub-frame or only part of one sub-frame is detected.
217	Demod Error;Not an active slot	E	There is no active slot detected.
219	Signal Too Noisy	E	NADC \& PDC: The valid EVM measurement cannot be performed, because the input signal is too noisy. GSM \& EDGE: In a GSM measurement, indicates that a burst could not be found in a signal that appears noisy.
221	Slot Error	E	
221	Slot Error; No idle slot found	E	No valid idle slot found in captured data, or no idle slot found in captured interval. Synchronization may succeed and pilot found when this message is issued, but no results are included in peak/average calculation.

221	Slot error; No active slot found	E	No valid active slot found in captured data, or no active slot found in captured interval. Synchronization may succeed and pilot found when this message is issued, but no results are included in peak/average calculation.
223	unused bit10 is set	E	
225	unused bit11 is set	E	
227	unused bit12 is set	E	
229	unused bit13 is set	E	
231	unused bit14 is set	E	

Condition Errors 301 to 399, Uncalibrated Integrity

Errors with measurement calibration/alignment routines and signals.
An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 307 indicates an "AC: unspec'd below 10 MHz " condition has been detected; error 1307 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
301	Meas Uncal	W	
303	Sig ID On	W	
305	No Long Code Phase	W	
307	AC coupled: Accy unspec'd <10 MHz	W	AC input coupling will function at lower frequencies, but the performance is not specified below 10 MHz.
309	User cal	W	
309	User Cal; Adjusted for new RBW	W	The measurement RBW has been changed since the last calibration (\sim CAL)

309	User Cal; Cal invalidated	E	The existing user cal has been invalidated because of one of the following reasons: Frequency: Setting the frequency outside the current valid user cal set (for example: If the current sweep range is 2 to 3 GHz , then setting the start frequency to 1.9 GHz will invalidate the current user cal. Other frequency changes that will invalidate the user cal are: If the cal was performed at a fixed frequency and you change this frequency. - If you are in "Freq List" mode and you change it to extend beyond the current user cal range. In this case you will see an error message. DUT Type: If the DUT Type parameter changes, causing the measurement frequencies to be pushed outside the current cal. Attenuation: If an attenuation setting is selected but has not been calibrated. Preamp: If set to condition different from current cal settings, for example: if calibrated with the preamp on, turning it off will invalidate the cal. Points: Changing the number of measured frequency points can make the stored preselector offsets become inaccurate and hence invalidate the calibration. This occurs when the following conditions exist: - A successful calibration has been performed. - \quad Some measured freq points are > 3.6 GHz. - The new points > 3.6 GHz are located more than 50 MHz away from the current calibration points.
309	User Cal; Cal will be interpolated	W	The measurement frequency range has been changed such that it is a subset of the calibrated range. ($\sim \mathrm{CAL}$)
309	User Cal; Freq outside cal range	E	The existing user cal has been invalidated because the current measurement frequencies lie partially or wholly outside the range of frequencies used for user-cal. (UNCAL)
311	Calibration	W	
311	Calibration; ENR table extrapolated	W	One or more calibration or measurement frequency points exceed the currently loaded Cal or Meas ENR Table frequency ranges. The corresponding ENR table's lowest frequency ENR value will be re-used for frequencies less than the table range, and the highest frequency ENR value will be re-used for frequencies greater than the table range. (~ENR)
311	Calibration; No ENR data present	W	No ENR Data (ENR)
313	unused bit6 is set	W	
315	unused bit7 is set	W	
317	unused bit8 is set	W	
319	unused bit9 is set	W	

Instrument Messages
Condition Errors 301 to 399, Uncalibrated Integrity

321	unused bit10 is set	W	
323	unused bit11 is set	W	
325	unused bit12 is set	W	
327	unused bit13 is set	W	
329	unused bit14 is set	W	

Condition Errors 401 to 499, Power

Errors with signal power unleveled, overloaded, oscillating.
An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 409 indicates a 50 MHz Oscillator Unleveled condition has been detected, error 1409 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
401	RPP Tripped	W	
403	Source Unleveled	W	
405	Source LO Unleveled	E	
407	Lo Unleveled	E	
409	50 MHz Oscillator Unleveled	E	
411	50 MHz Input Power too High for Cal	W	
413	Input Overload	W	
415	unused bit7 is set	W	
417	Lo Out Unleveled overload		
419	Preselector Overload		
421	unused bit10 is set		
423	unused bit11 is set		
425	unused bit12 is set	unused bit13 is set	
429	unused bit14 is set		

Condition Errors 501 to 599, Frequency

Errors with signal frequency unlocked, span/bandwidth/freq reference problems.

An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 503 indicates a Frequency Reference Unlocked condition has been detected, error 1503 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
501	Source Synthesizer Unlocked	E	
503	Frequency Reference Unlocked	E	
505	2nd Lo Unlocked	E	
507	BB Data Clock Synth Unlocked	E	
509	Lo Unlocked	E	
511	Invalid Span or BW	W	
513	IF Synthesizer Unlocked	E	
515	Calibration Oscillator Unlocked	E	
517	Even Second Clock Synth Unlocked	E	
519	Demodulation		The external frequency reference signal is missing or is not within the proper amplitude range.
521	External ref out of range	E	
523	unused bit11 is set		
525	unused bit12 is set		
527	unused bit13 is set	unused bit14 is set	
529			

Condition Errors 601 to 699, Error Summaries

The instrument hardware status registers keep track of various error conditions. The bits in this register summarize the status of several different status registers.

An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 601 indicates a bit in the Voltage Summary register has been set, error 1601 indicates that failure has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
601	Voltage		
603	Current		
605	Time		
607	Power		
609	Temperature		
611	Frequency		
613	Phase		
615	Modulation		
617	Calibration		
619	Integrity		
621	unused bit10 is set		
623	CALL		
625	unused bit12 is set		
627	Integrity		
629	Command Warning		

Condition Errors 701 to 799, Operation

Errors showing that the instrument is busy doing something.
An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.

For example, error 711 indicates that the Waiting for Trigger condition has been detected; error 1711 indicates that condition has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
701	Calibrating		
703	Setting		
705	Ranging		
707	Sweeping		
709	Measuring		
711	Waiting for Trigger		
713	Waiting for ARM		
715	Correcting		
717	Paused	W	
719	NMR Ready Summary		
721	DC Coupled		
723	Printing		
725	Mass Memory Busy		
727	Instrument Summary		
729	Program Running		

Condition Errors 801 to 899, Temperature

Errors with instrument internal temperatures.
An event with the error number shown in the table means the condition has been detected.

When the condition is cleared, an event with the error number plus 1000 is generated.
For example, error 801 indicates that the Ref Osc Oven Cold condition has been detected; error 1801 indicates that condition has been cleared.

An E in the Error or Warning column means that an error is put up on the front panel and sent out to SCPI when this condition is detected. A W in this column means that a Warning is put up on the front panel but nothing goes out to SCPI. Nothing in this column means nothing is put up; status bit only.

Err\#	Message	Error or Warning	Verbose/Correction Information
801	Reference Oscillator Oven Cold	W	
803	unused bit1 is set		
805	unused bit2 is set		
807	unused bit3 is set		
809	unused bit4 is set		
811	unused bit5 is set		
813	unused bit6 is set		
815	unused bit7 is set		
817	unused bit8 is set		
819	unused bit9 is set		
821	unused bit10 is set		
823	unused bit11 is set		
825	unused bit12 is set		
827	unused bit13 is set		
829	unused bit14 is set		

4 RF Section Troubleshooting (RF/Microwave Analyzers)

What You Will Find in This Chapter

The following information is found in this chapter:

1. Theory of operation of the RF section
2. Isolating the cause of an hard ware problem by verifying the functionality of assemblies in the RF section signal path.

NOTE Each section describes how the assembly works and gives information to help you troubleshoot the assembly. Each description covers the purpose of the assembly, describes the main components, and lists external connections to the assembly.

This following descriptions are found in this chapter:
RF Section Description on page 124
Troubleshooting on page 132
Quick Check to Verify the Low Band Signal Path on page 132
Troubleshooting a Low Band Problem on page 137
Quick Check to Verify High Band RF Path \#1 on page 159
Troubleshooting a High Band Problem on page 163
High Band Preamp (P07) on page 188
High Band Mixing Equations on page 188
Microwave Preselector Bypass (Option MPB) on page 189

RF Section Description

Purpose

This section covers only those optional frequency ranges listed below for the N9010A, Signal Analyzer.

- Option 503, 3.6 GHz Frequency Range
- Option 507, 7 GHz Frequency Range
- Option 513, 13.6 GHz Frequency Range
- Option 526, 26.5 GHz Frequency Range

The RF input signal can be routed through three different front end signal paths. These various paths are switched in and out based on where the signal analyzer center frequency is tuned.

1. Low band RF path is used when the input frequency is $\leq 3600 \mathrm{MHz}$
2. High band RF path \#1 is used when the input frequency is $>3.6 \mathrm{GHz}$ to 13.6 GHz
3. High band RF path \#2 is used when the input frequency is > 13.6 GHz to 26.5 GHz

The RF section is designed to convert RF input signals to an intermediate frequency (IF) that is present at the RF output of the A13 Front End assembly. This IF depends on installed options and the IF path selected. This chapter will assume the default operation in Spectrum Analyzer mode. Therefore, the IF will be 322.5 MHz .

Table 4-1

IF Path	IF	Mode
10 MHz (standard)	322.5 MHz	Spectrum Analyzer or IQ Analyzer
25 MHz (Option B25)	322.5 MHz	IQ Analyzer
40 MHz (Option B40)	250 MHz	IQ Analyzer

RF Section Troubleshooting (RF/Microwave Analyzers)
RF Section Description

The RF section is comprised of the following major assemblies:

- A9 Input Attenuator A
- A10 Input Attenuator B
- A11 Low Band Switch Assembly
- A12 YTF Preselector
- A14 L.O. Synthesizer Assembly
- A13 RF Front End Assembly
- A15 Front End Control Assembly
- SW1 and SW2 - Option MPB Microwave Preselector Bypass

NOTE
SW1 and SW2 and their associated cables are the microwave preselector bypass hard ware. This hard ware is present in analyzers containing any or all of the following three options:

- MPB, Microwave Preselector Bypass
- B40, 40 MHz Analysis Bandwidth
- DP2, Digital Signal Processing \& 2 GB Capture Memory

However, if there is no license for option MPB, the hardware will default to the non-bypassed path (high band microwave signals will be routed through the A12 YTF Preselector). If a license for Option MPB is present, it will be possible to bypass the A12 YTF Preselector.

1. RF input frequencies < 3600 MHz route through the low band path. Refer to Chapter 12, "Block Diagrams" for details.

The RF input signal level can be optimized by either Input Attenuator A or Input Attenuator B. The low band switch is biased in such a way that the signal is routed to the input of the A13 RF Front End assembly. There are (3) different signal paths on the input of the RF Front End assembly that the signal can be routed through depending on installed options and front panel settings.

- Electronic Attenuator path, 0-24 dB (Option EA3)
- Low Band Preamplifier path, 20 dB nominal gain (Option P03)
- Direct to Mixer \#1

NOTE
The RF input signal can route through the Electronic Attenuator section or the Preamplifier, but not both. All RF input frequencies < 3600 MHz go to Mixer \#1.

The RF input signal is then mixed with the 1st L.O. from the A14 L.O. Synthesizer assembly in Mixer \#1 to a 1st intermediate frequency of 5122.5 MHz . Since the RF input signal is $<3600 \mathrm{MHz}$ for low band, this RF input signal is upconverted in Mixer \#1 to the 1st I.F. This 1st I.F. signal is then downconverted in Mixer \#2 using the 4800 MHz 2nd L.O. generated on the A16 Reference assembly to a 2nd intermediate frequency of 322.5 $\mathrm{MHz}(5122.5 \mathrm{MHz}$ (1st I.F.) - 4800 MHz (2nd L.O.)). The 2nd I.F. output is at A13J7 on the A13 RF Front End Assembly. This signal path is used for all frequency range options when the RF input frequencies are < 3600 MHz . The control voltages and biasing for these assemblies come from the A15 Front End Control assembly.
2. RF input frequencies from 3.6 GHz to 13.6 GHz go through high band path \#1. Refer to Chapter 12, "Block Diagrams" for details.

This signal level can be optimized by either Input Attenuator A or Input Attenuator B. The signal is then routed to the low band switch, which will route the signal to the A12 YTF Preselector.

The signal then routes to the A12 YTF Preselector before going to the A13 RF Front End Assembly. The input switch in the RF Front End Assembly routes the RF input signal to Mixer \#2. The RF input signal is then mixed with the 1st L.O. from the A14 L.O. Synthesizer Assembly in Mixer \#2 to a 1st intermediate frequency of 322.5 MHz . The 322.5 MHz I.F. output is at A13J7 of the RF Front End Assembly. This is the signal path for Option 507, 7 GHz Frequency Range, Option 513, 13.6 GHz Frequency Range, and Option 526, 26.5 GHz Frequency Range (up to 13.6 GHz). The control voltages and biasing for these assemblies come from the A15 Front End Control Assembly.
3. RF input frequencies from 13.6 GHz to 26.5 GHz go through high band path \#2. Refer to Chapter 12, "Block Diagrams" for details.

This signal level can be optimized by either Input Attenuator A or Input Attenuator B. The signal is then routed to the low band switch, which will route the signal to the A12 YTF Preselector.
The low band switch is biased by the A15 Front End Control Assembly. The signal then routes to the A12 YTF Preselector before going to the A13 RF Front End Assembly. The input switch in the RF Front End Assembly routes the RF input signal to Mixer \#3. The RF input signal is then mixed with the 1st L.O. from the A14 L.O. Synthesizer Assembly in Mixer \#3 to a 1st intermediate frequency of 322.5 MHz . The LO is doubled at tuned frequencies above 17 GHz . The 322.5 MHz I.F. output is at A13J7 of the RF Front End Assembly. This is the signal path for Option 526, 26.5 GHz Frequency Range (for frequencies $\geq 13.6 \mathrm{GHz}$). The control voltages and biasing for these assemblies come from the A15 Front End Control Assembly.

RF Section Theory of Operation

A9 Input Attenuator A

This assembly has two 2 dB attenuator sections, a DC block and a cal signal input port. With the DC block switched in (AC coupled mode), the low end minimum frequency range increases from 9 kHz to 10 MHz due to capacitive effects.

A10 Input Attenuator B

This assembly has a total of 66 dB of attenuation to control the RF level going to the mixer assemblies in the A13 RF Front End Assembly. There is a $6 \mathrm{~dB}, 10$ $\mathrm{dB}, 20 \mathrm{~dB}$, and 30 dB section in the A 10 assembly. Total input attenuation with the A 9 and the A 10 combined is 60 dB in 10 dB steps (2 dB steps if Option FSA, Fine Step Attenuator, is installed).

A11 Low Band Switch

This assembly operates across the entire frequency range of the analyzer. The switch has 2 main functions:

- Switch RF input frequencies from 9 kHz to 3.59 GHz RF Output to A13 RF Front End Assembly.
- Switch RF input frequencies from 3.6 GHz to 26.5 GHz Microwave RF Output to A12, YTF Preselector.
- Optional high band preamplifier, which has a typical gain of 30 dB and a noise figure from 9 dB up to 7 GHz .

A12 YTF Preselector

The YTF Preselector is used for input frequencies greater than 3.6 GHz . Signals less than 3.6 GHz bypass the YTF assembly and are routed directly to the A13 RF Front End Assembly. The YTF Preselector is a YIG tunable bandpass filter whose main purpose is to filter out unwanted spurious or image response signals. When the YTF is calibrated, the tunable bandpass will track the RF input signal. The YTF Preselector has a 3 dB bandwidth greater than 40 MHz and an insertion loss of $\sim 6.5 \mathrm{~dB}$.

The preselector requires centering for optimum amplitude accuracy. The Auto Align routine will perform a rough centering during the preselector two-point tuning algorithm. However, when troubleshooting, press Amplitude,
Preselector Center to manually center the preselector.
The YTF Preselector is not present in analyzers with Option 503, 3.6 GHz frequency range.

A14 L.O. Synthesizer Assembly

The L.O. Synthesizer Assembly provides the 1st L.O. power that is required for the A13 RF Front End Assembly. The 1st L.O. has a frequency range from 3.80 to 8.70 GHz . Harmonics of the 1st L.O. are used to down convert RF input signals up to 26.5 GHz . Table 4-1 provides some examples of how the L.O. is multiplied for the given center frequency of the analyzer and which high band mixer is being used on the A13 RF Front End assembly. The output power is +13 to +18 dBm . In order to maximize the conversion efficiency, sufficient L.O. power must be supplied to the mixer in the A13 RF Front End Assembly from this assembly.

Table 4-2

X-Series Signal Analyzers

Analyzer Center Frequency		
5 GHz	1st L.0. @ A14J740	Desired 1st L.0. Harmonic @ Mixer 2 or 3
10 GHz	5.3225 GHz	$5.3225 \mathrm{GHz}^{\mathrm{b}}$
13.5 GHz	6.16125 GHz	$10.3225 \mathrm{GHz}^{\mathrm{b}}$
14.5 GHz	7.41125 GHz	$13.8225 \mathrm{GHz}^{\mathrm{b}}$
22 GHz	5.5806250 GHz	$14.8225 \mathrm{GHz}^{\mathrm{c}}$

a. Set span to Zero Span to measure 1st L.O.
b. A13 Mixer 2 (refer to Chapter 12, "Block Diagrams.")
c. A13 Mixer 3 (refer to Chapter 12, "Block Diagrams.")

A13 RF Front End Assembly

This assembly is a self-contained microcircuit that is repaired at the assembly level. See Figure 4-1.

Figure 4-1
A13 RF Front End Assembly View from Front Panel

This assembly contains the following circuits:

- Input Low-pass filter (RF input signals < 3.6 GHz)
- Low Band Limiter
- Optional Electronic Attenuator (0-24 dB attenuation control)
- Optional Low Band Preamplifier
- RF Mixer \#1 (RF input signals < 3.6 GHz)
- 1st L.O. Sub-system (3.8 GHz to 8.7 GHz)
- 1st I.F. Amplifier (5122.5 MHz)
- I.F. Band pass filter (5122.5 MHz)
- I.F. Low-pass filter (5122.5 MHz)
- Mixer \#2 (RF input signals 3.6 GHz to 13.599 GHz)
- Microwave Input Amplifier
- Mixer \#3 (RF input signals 13.6 GHz to 26.5 GHz)
- 2nd I.F. Amplifier (322.5 MHz)
- Microwave L.O. Sub-system (3.8 GHz to 8.7 GHz)
- L.O. Doubler

Table 4-3 A13 RF Front End Signals

Signal Name	Description	From	To
RF Input	9 kHz to 3.59 GHz RF Input	A11J2, Low Band Switch	A13J2
Microwave Input	3.6 GHz to 26.5 GHz U-wave RF Input	YTF Output or SW1	A13J9
E-cal Input	Cal Signal Port	A16J705, Ref. Bd	A13J6
1st L.0. Input	3.8225 to 8.7225 GHz 1st L.0.	A14J40, Synth. Bd	A13J4
2nd L.0. Input	4.8 GHz 2nd L.0.	A16J702, Ref Bd	A13J1
I.F. Output	322.5 MHz I.F. Signal	A13J7	A2J100, AIF or A15J902, EFEC
To Band Pass Filter	Filter Port, 1st I.F. Amplifier Output	A13J10	5.1225 GHz Cavity Input
From Band Pass Filter	Filter Port, 2nd Mixer Input	5.1225 GHz Cavity Output	A13J11

Front End Control Assembly

Provides the correct biasing and switch control logic to the following RF assemblies:

- Input Attenuator A
- Input Attenuator B
- Low Band Switch
- YTF Preselector (Input signals > 3.6GHz)
- RF Front End Assembly
- (Optional) Low Band Preamplifier
- (Optional) Electronic Attenuator (0-24 dB)
- (Optional) Microwave Preselector Bypass

NOTE Refer to Chapter 6, "Front End Control Troubleshooting." for detailed descriptions \& troubleshooting procedures

Troubleshooting

Quick Check to Verify the Low Band Signal Path

The analyzer has an internal 50 MHz amplitude reference signal that is used to verify the low band path. Refer to Chapter 12, "Block Diagrams" for details.

Equipment needed:
Functioning Spectrum Analyzer
DVM
Cables \& Connectors

NOTE To perform the following checks, it will be necessary to remove the outer cover and the top brace. See Chapter 15 for removal procedures.

Turn the analyzer on and allow it to complete its full boot up process to Spectrum Analyzer mode. Use the internal $50 \mathrm{MHz},-25 \mathrm{dBm}$ calibrator signal as a reference for troubleshooting by pressing Mode Preset, Input/Output, RF Calibrator, $50 \mathbf{~ M H z}$ on the analyzer. Now press FREQ (Channel), 50 MHz, SPAN (X Scale), 1 MHz, Peak Search. The 50 MHz reference signal should measure $50 \mathrm{MHz} @-25 \mathrm{dBm} \pm 2 \mathrm{~dB}$ on the analyzer display. If the power level is within tolerance, the low band path is functioning correctly at 50 MHz . To verify the high band path go to "Quick Check to Verify High Band RF Path \#1" on page 159.

If the power level is not within tolerance, press SPAN (X Scale), Zero Span, AMPTD (Y Scale), Attenuation, 10 dB .

IMPORTANT Turn off auto align by pressing System, Alignments, Auto Align, Off.

Disconnect the W15 or W36 cable from A13J7 on the RF Front End Assembly (1) 322.5 MHz output. See Figure 4-2.

Figure 4-2

Connect A13J7 output to a functioning spectrum analyzer and verify the 322.5 MHz intermediate frequency is measuring $-28.5 \pm 3 \mathrm{~dB}$ using the same analyzer settings as in Figure 4-3.

Figure 4-3
322.5 MHz Intermediate Frequency

* Agilent

If this power level is correct the RF assembly from the A9 50 MHz Reference signal input port to $\mathrm{A} 13 \mathrm{~J} 7,322.5 \mathrm{MHz}$ I.F. Output is operating correctly using a 50 MHz input calibrator signal. Reconnect the W15 or W36 cable to A13J7.

NOTE

Flatness issues or power level problems at other input frequencies below 3600 MHz may exist. This type of problem can be diagnosed using the suspect RF input frequency.

If this power level is incorrect, the following assemblies need to be verified in the order listed using the 50 MHz internal calibrator signal. Be sure the 50 MHz calibrator is turned on Input/Output, RF Calibrator, $\mathbf{5 0} \mathbf{~ M H z}$ when verifying the performance.

1. A16 Reference Assembly
2. A14 L.O. Synthesizer
3. A15 Front End Control Assembly
4. A9 Input Attenuator A
5. A10 Input Attenuator B
6. A11 Low Band Switch
7. A12 YTF Preselector
8. A13 RF Front End Assembly

NOTE
In order to gain access to the front end components, remove the side chassis (1) by removing the 10 screws (2). Refer to Figure 4-4.

Figure 4-4 Remove the Side Chassis

Troubleshooting a Low Band Problem

1. Reference Assembly Verification

Remove cable W19 from A9 Input Attenuator A (1) and measure the 50 MHz calibrator signal on the cable end with a functioning Spectrum Analyzer. Refer to Figure 4-5.

Figure 4-5 W19 Location

If the Reference assembly calibrator is functioning properly the 50 MHz calibrator signal will measure 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{~dB}$. See Figure 4-6. If this level is incorrect, the Reference assembly is most likely defective.
Reconnect W19 at A9 Input Attenuator A.
Figure 4-6
50 MHz Calibrator Signal
Agilent
Peak Search

RF Section Troubleshooting (RF/Microwave Analyzers)
Troubleshooting

2. L.O. Synthesizer Assembly Verification

Press the following keys on the analyzer:
FREQ (Channel), 1 GHz

SPAN (X Scale)

Zero Span

Refer to Figure 4-7. Disconnect cable W4 at A14J740 of the L.O. Synthesizer Assembly (1).

Figure 4-7 W4 and W6 Location

Connect the functioning Spectrum Analyzer and appropriate high frequency cable and connector to A14J740. Adjust the functioning Spectrum Analyzer to measure a signal at 6122.5 MHz at $+16 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as seen in Figure 4-8.

Figure 4-8 Measure 1st L.O.

Figure 4-9 $\quad 4.800 \mathrm{GHz}$ Signal at A14J200

If this power level is incorrect, the most probable cause is the A16 Reference Assembly. If this level is correct and yet the signal previously measured at A14J740 is incorrect, the most probable cause is the A14 L.O. Synthesizer Assembly. Reconnect W4 cable to A14J740. Reconnect W6 cable to A14J200.

3. Front End Control Assembly Verification

Verifying the Front End Control Assembly requires the RF Front End Troubleshooting board E4410-60115 or kit number N9020-60005. The kit includes the troubleshooting board and associated interconnect cables. The troubleshooting board and cables will help verify the control logic from this assembly to Input Attenuator A, Input Attenuator B, Low Band Switch, YTF Preselector, (Optional) Low Band Preamplifier, (Optional) Electronic Attenuator and the RF Front End Assembly. The control logic should be verified going to each assembly while the Front End Troubleshooting board is connected.

NOTE Even though the YTF Preselector is not used in low band (input frequencies < 3.59 GHz), it is easy to test the switch control logic with the RF Front End Troubleshooting board installed in case there is a high band problem. The Low Band Preamplifier (Option P03), and Electronic Attenuator (Option EA3) logic should be tested if these options are installed in the analyzer.

- Turn off the instrument.
- Connect the E4410-60115 Front End Troubleshooting board to the A15 Front End Control Assembly as shown in Figure 4-10 and Figure 4-11.

Figure 4-10 RF Front End Troubleshooting Board

Figure 4-11 RF Front End Troubleshooting Board

- Turn the instrument on and allow it to complete its full boot up process to the signal analyzer application.
- Turn Auto Align off by pressing System, Alignments, Auto Align, Off on the analyzer.

CAUTION Resistors on the board can get very hot.

- Verify all power supply LED's on the Front End Troubleshooting board are turned on. Under the J 2 connector, the supplies are $+15 \mathrm{VDC},+9 \mathrm{VDC},+5.2$ VDC, and -15 VDC. Under the J 1 connector, the supplies are $+15 \mathrm{VDC},-15$ VDC, +9 VDC and +5.2 VDC. Verify both input attenuator power supplies. DS9 under J3 should be on if the +25 V supply is up for Attenuator A. DS10 under J 4 should be on if the +25 V supply is up for Attenuator B . If any of the power supply LED's are not turned on, see Chapter 2, "Boot Up and Initialization Troubleshooting".

NOTE The analyzer will display an error dialogue box when booting up. Simply click "OK" so the instrument can complete its boot process. Additionally, the analyzer noise floor will be near the top of the display since the RF assemblies are not powered up. This is normal with the Front End Troubleshooting board connected to the A15 Front End Driver Assembly

4. Input Attenuator A Control Logic Verification

- Press AMPTD, Attenuation 0 dB

All the attenuation LED's on the Front End Troubleshooting board should be off except for DS9 and DS10, +25V supply for Attenuator A and Attenuator B. Refer to Figure 4-12.

Figure 4-12 Front End Troubleshooting Board Attenuation LEDs

Change the input attenuation to the values indicated in Table 4-4. Verify that LEDs DS15 and DS16 are illuminated as per Table 4-4. Note that the 2 dB and 4 dB attenuator settings are only available on analyzers with Option FSA, Fine Step Attenuator.
Table 4-4
Attenuator A Logic

Attenuator Setting (dB)	DS15 2 dB Step LED	DS16 2 dB Step LED
0		
2^{a}	X	
4^{a}	X	X

a. These settings available only if analyzer has Option FSA, Fine Step Attenuator

The analyzer default setting for RF Coupling is AC mode. Verify the AC Select LED DS14 is illuminated at this time. Set Input/Output, RF Input, RF Coupling to DC. DS14 should turn off and DS11, the DC Select yellow LED, should illuminate. Switch the RF Coupling back to AC. If the LEDs illuminate correctly, the switch control logic to Input Attenuator A from the A15 Front End Control Assembly is correct. If the LEDs are not illuminating as expected, the most probable cause is the A15 Front End Control Assembly.

5. Input Attenuator B Control Logic Verification

Enter the input attenuation settings listed in Table 4-5 and verify that the proper LEDs illuminate on the Front End Troubleshooting board according to Table 4-5. Note that the 6 dB and 16 dB attenuator settings are only available on analyzers with Option FSA, Fine Step Attenuator.

Table 4-5
Attenuator B Logic

Attenuator Setting (dB)	$\begin{aligned} & \text { DS20 } \\ & 30 \mathrm{~dB} \\ & \text { Step LED } \end{aligned}$	DS19 20 dB Step LED	$\begin{aligned} & \text { DS18 } \\ & 10 \mathrm{~dB} \\ & \text { Step LED } \end{aligned}$	DS17 6 dB Step LED
$6^{\text {a }}$				X
10			X	
$16^{\text {a }}$			X	X
20		X		
30	X			
40	X		X	
50	X	X		
60	X	X	X	

a. These settings available only if analyzer has Option FSA, Fine Step Attenuator

Set the input attenuator back to 10 dB by pressing AMPTD, Attenuation, 10 dB on the analyzer. If the LED's illuminate correctly, the switch control logic for the input attenuators from the A15 Front End Control Assembly is correct. If the LED's are not illuminating as expected, the most probable cause is the A15 Front End Control Assembly.

6. Low Band Switch Control Logic Verification

 (All except Option 503)Press Mode Preset on the analyzer. Press FREQ, $\mathbf{5 0} \mathbf{~ M H z}$, SPAN, $\mathbf{2} \mathbf{~ M H z}$ on the analyzer. Connect the DVM positive lead to the test points listed in Table 4-6, and the negative lead to the bottom of R46 (blue resistor near the bottom) on the Front End Troubleshooting board. Verify the voltages in Table 4-6.
Table 4-6

Test Point	Nominal Voltage
$\ln 1 \mathrm{~A}$	-9.85
$\ln 2 \mathrm{~A}$	-9.85
$\ln 1 \mathrm{~B}$	+9.75
$\ln 2 \mathrm{~B}$	+9.75

Press Freq $\mathbf{5} \mathbf{G H z}$ on the analyzer. Verify the voltages in Table 4-7.
Table 4-7

Test Point	Nominal Voltage
$\operatorname{In} 1 \mathrm{~A}$	+9.72
$\operatorname{In} 2 \mathrm{~A}$	-9.84
$\ln 1 \mathrm{~B}$	-9.84
$\ln 2 \mathrm{~B}$	+9.72

If the voltages are not correct, the most probable cause is the A15 Front End Control Assembly.

7. YTF Preselector Control Logic Verification (All except Option 503)

NOTE In order to properly measure the preselector tune output from the A15 Front End Control Assembly, the following items are required:

- E9637A Banana plug to BNC (f) adapter
- E9632A BNC (M) to SMA (f)
- 8120-1460 Small coaxial cable SMA (m) to mmcx (m)

Connect the mmcx end of the cable to A 15 J 300 , preselector tune output at the upper left corner of A15 Front End Control Assembly.

Press Single on the analyzer. Verify the voltages in Table 4-8 as the center frequency of the analyzer is changed.

Table 4-8 YTF Tune Voltages

Center Frequency (GHz)	\sim Tune Voltage (VDC)	Tolerance (VDC)
5.0	1.6	± 0.5
10^{a}	3.228	± 1.0
15^{b}	4.85	± 1.0
20^{b}	6.5	± 1.0
26^{b}	8.45	± 1.0

a. Options 513 and 526
b. Option 526

NOTE
Tolerances can be used as a guideline. The true test is whether or not the analyzer will function and meet published specification.

If any of the preselector tune voltages do not match the levels shown in Table 4-8, the most probable causes are a misaligned YTF or the A15 Front End Control Assembly. Perform the YTF characterization (press System,
Alignments, More, Ad vanced, Characterize Preselector).
To further test the YTF control current, select Amps on the DVM and place the positive lead of the DVM on one of the YTF Coil Current P8 pins and the other DVM lead to the other Coil Current pin.

NOTE In order to measure the control current correctly, press Single on the analyzer in between each measurement.

If any of the preselector control currents do not match the levels shown in Table 4-9, the most probable causes are a misaligned YTF or the A15 Front End Control Assembly. Perform the YTF characterization (press System,
Alignments, More, Ad vanced, Characterize Preselector) and re-check the control current at various center frequencies.

Table 4-9 YTF Tune Current

Center Frequency $(\mathbf{G H z})$	Control Current $(\mathbf{m A})$	Tolerance $(\mathbf{m A})$
5.0	106	± 20
10^{a}	215	± 25
15^{b}	324	± 30
20^{b}	430	± 40
26^{b}	560	± 50

a. Options 513 and 526
b. Option 526

NOTE
Tolerances should be used as a guideline. The true test is whether or not the analyzer will function and meet published specification.

RF Section Troubleshooting (RF/Microwave Analyzers) Troubleshooting

8. Front End Assembly Control Logic Verification

Since the RF Front End Troubleshooting board is connected, now is a good time to test out the remaining control circuits from the A15 Front End Control Assembly.

Table 4-10 Front End Control Logic

Test Point	Description	Instrument Settings	Voltage (VDC)	Tolerance (VDC)
S2A	Sets switch for Low Band/preamp path	CF 50 MHz preamp on	+9.67	± 0.5
S2B	Sets switch for Low Band/preamp path	CF 50 MHz preamp on	+9.83	± 0.5
S3A	Sets E-atten to 5 dB preamps off	E -atten $=5 \mathrm{~dB}$	+9.67	± 0.5
S3B	Sets E-atten to 5 dB preamps off	E-atten $=5 \mathrm{~dB}$	+9.83	± 0.5
S4A	Sets E-atten to 10 dB preamps off	E -atten $=10 \mathrm{~dB}$	+9.67	± 0.5
S4B	Sets E-atten to 10 dB preamps off	E -atten $=10 \mathrm{~dB}$	+9.83	± 0.5
S5A	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.67	± 0.5
S5B	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.83	± 0.5
S6A	Sets E-atten to 1 dB preamps off	E -atten $=1 \mathrm{~dB}$	+9.67	± 0.5
S6B	Sets E-atten to 1 dB preamps off	E-atten $=1 \mathrm{~dB}$	+9.83	± 0.5
S7A	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.67	± 0.5
S7B	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.83	± 0.5
S8A	Sets E-atten to 20 dB preamps off	E -atten $=20 \mathrm{~dB}$	+9.67	± 0.5
S8B	Sets E-atten to 20 dB preamps off	E -atten $=20 \mathrm{~dB}$	+9.83	± 0.5
S9A	Controls in \& out to low band preamps off	E -atten $=$ off	+9.83	± 0.5
S9B	Controls in \& out to low band preamps off	E-atten = off	+9.67	± 0.5
S11A	Sets path for 1st or 2nd L.O.	CF 1 GHz	+9.67	± 0.5
S11B	Sets path for 1st or 2nd L.O.	CF 1 GHz	+9.83	± 0.5
S12A	Sets path for L.O. normal or x2 for band 4	CF 1 GHz	+9.83	± 0.5
S12B	Sets path for L.O. normal or x2 for band 4	CF 1 GHz	+9.67	± 0.5
S13A	Sets path for L.O. to either of the high band mixers and L.O. output	CF 5 GHz CF 20 GHz	$\begin{array}{r} -9.67 \\ +9.67 \end{array}$	± 0.5
S13B	Sets path for L.O. to either of the high band mixers and L.O. output	CF 5 GHz CF 20 GHz	$\begin{aligned} & +9.83 \\ & -9.83 \end{aligned}$	± 0.5
S14A	Sets path to either band $1 \& 2$ mixer or band 3 \& 4 mixer	CF 5 GHz CF 20 GHz	$\begin{array}{r} -9.83 \\ +9.83 \end{array}$	± 0.5
S14B	Sets path to either band $1 \& 2$ mixer or band 3 \& 4 mixer	CF 5 GHz CF 20 GHz	$\begin{aligned} & +9.67 \\ & -9.67 \end{aligned}$	± 0.5

Table 4-10 Front End Control Logic

Test Point	Description	Instrument Settings	Voltage (VDC)	Tolerance (VDC)
VCC1	Voltage always on		4.8	± 0.5
VCC2	Voltage always on		4.8	± 0.5
VCC3	Voltage always on		7.85	± 0.5
VCC4	Voltage always on		5.0	± 0.5
VCC5	Voltage always on	6.0	± 0.5	
TWAD1	Amplifier bias to A13 RF Front End Assembly		6.0	± 0.5
TWAD2	Amplifier bias to A13 RF Front End Assembly		$\boxed{5}$	± 0.5
TWAD3	Amplifier bias to A13 RF Front End Assembly		6.0	± 0.5
TWAD4	Amplifier bias to A13 RF Front End Assembly		6.0	± 0.5
TWAD5	Amplifier bias to A13 RF Front End Assembly		± 0.5	

NOTE Tolerances should be used as a guideline.

If any of the voltages measured do not match the levels shown in Table 4-10, the most probable cause is the A15 Front End Control Assembly. Once the switch control logic has been verified, turn off the instrument, disconnect the RF Front End Troubleshooting board cables, and reconnect the analyzer cables to the A15 Front End Control Assembly. Turn the instrument on and allow it to complete its full boot up process to Spectrum Analyzer mode.

Input Attenuator A Power Level Verification

Press Mode Preset, Input/Output, RF Calibrator, $\mathbf{5 0} \mathbf{~ M H z}$, AMPTD,
Attenuation, $\mathbf{0} \mathbf{d B}$ on the analyzer. Refer to Figure 4-13, remove cable W11 from A9 (1) Output. Measure the 50 MHz calibrator signal on the output of the attenuator using a functioning Spectrum Analyzer.

Figure 4-13 Cable W11

The level should be $-25 \mathrm{dBm} \pm 2 \mathrm{~dB}$ as shown in Figure 4-14.
Figure 4-14 $\quad 50 \mathrm{MHz}$ Calibrator Signal on Output of Attenuator A

NOTE
The paragraph which follows applies only to analyzers equipped with Option FSA, Fine Step Attenuator.

Press Mech Atten and enter 2 dB . The 50 MHz calibrator signal measured on the functioning Spectrum Analyzer should measure 2 dB lower than the previous step ($\sim-27 \mathrm{dBm}$). Press Mech Atten and enter 4 dB . The 50 MHz calibrator signal measured on the functioning Spectrum Analyzer should measure an additional 2 dB lower than the previous step ($\sim-29 \mathrm{dBm}$). If the power levels measure correctly, reconnect W11 cable. If either of these levels is incorrect, Input Attenuator A is the most probable cause, provided the control logic from the A15 Front End Control Assembly was previously verified.

Input Attenuator B Power Level Verification

Press AMPTD, Attenuation, $\mathbf{0} \mathbf{d B}$. Remove output cable W9 from A10 (2). Refer to Figure 4-13. Measure the 50 MHz calibrator signal on the output of the attenuator using a functioning Spectrum Analyzer.

The level should be $-25 \mathrm{dBm} \pm 2 \mathrm{~dB}$ as shown in Figure 4-15.
Figure 4-15 $\quad 50 \mathrm{MHz}$ Calibrator Signal on Output of Attenuator B

If the analyzer is equipped with Option FSA, press Mech Atten and enter 6 dB . The 50 MHz calibrator signal measured on the functioning Spectrum Analyzer should measure 6 dB lower than the previous step ($\sim-31 \mathrm{dBm}$) as shown in Figure 4-16.

Figure 4-16 $\quad 50 \mathrm{MHz}$ Calibrator Signal on Output of Attenuator B (with 6 dB Attenuation)

Press Mech Atten and enter 10 dB . The 50 MHz calibrator signal measured on the functioning Spectrum Analyzer should measure 10 dB lower than the first step ($\sim-35 \mathrm{dBm}$). Continue testing all the attenuation settings as described in Table 4-11.
Table 4-11

Attenuator Setting (dB)	Expected Level (dBm @ 50 MHz)	Tolerance
16^{a}	-41	$\pm 3 \mathrm{~dB}$
20	-45	$\pm 3 \mathrm{~dB}$
30	-55	$\pm 3 \mathrm{~dB}$
40	-65	$\pm 4 \mathrm{~dB}$
50	-75	$\pm 4 \mathrm{~dB}$
60	-85	

a. Requires Option FSA

NOTE 1. It may be difficult to measure the higher attenuator settings using the -25 dBm internal calibrator signal. Use an external source with the frequency set to 50 MHz and adjust the output level to 0 dBm . This will increase the measured power levels noted in the table above by 25 dB .
2. Tolerances should be used as a guideline.

If the power levels measure correctly, reconnect the W9 cable and reset the input attenuation to 10 dB by pressing Mech Atten, $\mathbf{1 0} \mathbf{~ d B}$ on the analyzer.

If either of these levels measure incorrectly, Input Attenuator B is the most probable cause, provided the switch control logic has been verified.

Low Band Switch Power Level Verification

Refer to Figure 4-17. Disconnect the W3 cable at A11J2 of the A11 Low Band Switch (1).

Figure 4-17 Cable W3 Location

When the analyzer is tuned to a center frequency of 50 MHz , the Low Band switch should have minimal loss. Press Input/Output, RF Calibrator, $\mathbf{5 0} \mathbf{~ M H z}$,
AMPTD, Attenuation, 10 dB on the analyzer. Measure the 50 MHz calibrator signal on the output of A11J2 using a functioning Spectrum Analyzer. The level should be $-35 \mathrm{dBm} \pm 5 \mathrm{~dB}$ as shown in Figure 4-18.

Figure 4-18 $\quad 50 \mathrm{MHz}$ Calibrator Signal at Output of W3 Cable

If the power level is incorrect the most probable cause is the low band switch assembly. Reconnect W3 cable.
The following Low Band path items have been verified in the RF section:

- 50 MHz Calibrator signal power level from the A16 Reference Assembly
- 1st L.O. power level from the A14 L.O. Synthesizer
- Switch control logic from the A15 Front End Control Assembly to:
- Input Attenuator A
- Input Attenuator B
- Low Band Switch
- Front End Assembly
- Input Attenuator A power level check
- Input Attenuator B power level check
- Low Band Switch logic and power level check

If all the power levels and biasing from the A15 Front End Control Assembly measure correctly up to this point, the most probable cause would be the A13 RF Front End Assembly.

Quick Check to Verify High Band RF Path \#1

(RF Input Frequencies > 3600 MHz and $<\mathbf{1 3 . 6} \mathrm{GHz}$)
Refer to Chapter 12, "Block Diagrams." for details.
Equipment needed:
Functioning Spectrum Analyzer
Functioning Signal Generator to 15 GHz
DVM
Cables \& Connectors

NOTE To perform the following checks, it will be necessary to remove the outer cover and the top brace. See Chapter 15 for removal procedures.

Turn the analyzer on and allow it to complete its full boot up process to Signal Analyzer mode. Use the internal $4.8 \mathrm{GHz},-28 \mathrm{dBm}$ calibrator signal as a reference for troubleshooting by pressing Mode Preset, Input/Output, RF Calibrator, 4.8 GHz on the analyzer. Now press FREQ (Channel), 4.8 GHz , SPAN (X Scale), Zero Span, AMPTD (Y Scale), Attenuation 10 dB on the analyzer.

IMPORTANT Turn off auto align by pressing System, Alignments, Auto Align, Off.

Disconnect cable W15 or W36 at A13J7, 322.5 MHz output on the Front End Assembly (1). See Figure 4-19.

Figure 4-19 W15 or W36 Location

Connect A13J7 output to a functioning spectrum analyzer and verify the 322.5 MHz intermediate frequency is measuring $-32 \pm 4 \mathrm{~dB}$ as shown in Figure 4-20.

Figure 4-20 $\quad 322.5 \mathrm{MHz}$ Intermediate Frequency

If this power level is correct the entire RF section is operating correctly in high band. If this power level is incorrect verify the following assemblies in the order listed using the 4.8 GHz internal calibrator signal.

1. A16 Reference Assembly
2. A14 L.O. Synthesizer
3. A15 Front End Control Assembly
4. A9 Input Attenuator A
5. A10 Input Attenuator B
6. A11 Low Band Switch
7. A12 YTF Preselector
8. A13 RF Front End Assembly

High Band \#2 RF signal path utilizes a high band mixer internal to the A13 RF Front End Assembly for RF input frequencies from 13 GHz to 26.5 GHz . Since all the control voltages and biasing were already fully tested, failures from 13 $\mathrm{GHz}-26.5 \mathrm{GHz}$ will most likely be caused by the A13 RF Front End Assembly. If the failure is amplitude related, proper adjustments such as frequency response and the YTF Preselector adjust should be performed first before changing the A13 RF Front End Assembly. Refer to Chapter 12, "Block Diagrams." for details.

In order to gain access to the front end components, remove the side chassis (1). See Figure 4-21.

Figure 4-21 Remove the Side Chassis

Troubleshooting a High Band Problem

1. Reference Assembly Verification

Refer to Figure 4-22. Remove cable W19 from A9 Input Attenuator A (1). Measure the 4.8 GHz calibrator signal on the cable end with a functioning Spectrum Analyzer.

Figure 4-22 W19 Location

RF Section Troubleshooting (RF/Microwave Analyzers)
Troubleshooting

If the Reference Assembly calibrator is functioning properly the 4.8 GHz calibrator signal will measure 4.8 GHz at $-28 \mathrm{dBm} \pm 3 \mathrm{~dB}$ as shown in Figure $4-23$. If this level is incorrect, the Reference Assembly is most likely defective. Reconnect W19 at A9 (1).

Figure 4-23 \quad 4.8 GHz Calibrator Signal

2. L.O. Synthesizer Assembly Verification

Press the following keys on the analyzer:

Mode Preset

FREQ (Channel), 5 GHz

SPAN (X Scale), Zero Span

Refer to Figure 4-24. Disconnect cable W4 at A14J740 of the L.O. Synthesizer Assembly (1).

Figure 4-24 W4 and W6 Location

Connect the functioning Spectrum Analyzer and appropriate high frequency cable and connector to A14J740. Adjust the analyzer to measure a signal at 5322.5 MHz at $+16 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as shown in Figure 4-25.

Figure 4-25 Measure 1st L.O.

If this power level is incorrect remove W6 at A14J200. Refer to Figure 4-24. Connect the functioning spectrum analyzer to the cable output using the appropriate high-frequency cable.

Adjust the functioning spectrum analyzer to measure a signal at 4.8 GHz at $+4.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$ as shown in Figure 4-26.

Figure 4-26 \quad 4.8 GHz Signal

If this power level is incorrect, the most probable cause is the A16 Reference Assembly. If this level is correct and yet the signal previously measured at A14J740 is incorrect, the most probable cause is the A14 L.O. Synthesizer Assembly. Reconnect W4 cable to A14J740. Reconnect W6 cable to A14J200.

3. Front End Control Assembly Verification

IMPORTANT If the Front End Control Assembly logic was verified in the 'Low Band Quick Check' section above, skip to "Input Attenuator A Power Level Verification (Option FSA only)" step below.

Verifying the Front End Control Assembly requires the RF Front End Troubleshooting board E4410-60115 or kit number N9020-60005. The kit includes the troubleshooting board and associated interconnect cables. The troubleshooting board and cables will help verify the control logic from this assembly to Input Attenuator A, Input Attenuator B, Low Band Switch, YTF Preselector, (Optional) Low Band Preamplifier, (Optional) High Band
Preamplifier, (Optional) Electronic Attenuator and the RF Front End Assembly. The control logic should be verified going to each assembly while the Front End Troubleshooting board is connected.

- Turn off the instrument.
- Connect the E4410-60115 Front End Troubleshooting board to the A15 Front End Control Assembly as shown in Figure 4-27 and Figure 4-28.

Figure 4-27 RF Front End Troubleshooting Board

Figure 4-28 RF Front End Troubleshooting Board

- Turn the instrument on and allow it to complete its full boot up process to the signal analyzer application.
- Turn Auto Align off by pressing System, Alignments, Auto Align, Off on the analyzer.

CAUTION Resistors on the board can get very hot.

- Verify all power supply LED's on the Front End Troubleshooting board are turned on. Under the J2 connector, the supplies are $+15 \mathrm{VDC},+9 \mathrm{VDC}$, +5.2 VDC , and -15 VDC . Under the J 1 connector, the supplies are +15 VDC, $-15 \mathrm{VDC},+9 \mathrm{VDC}$ and +5.2 VDC . Verify both input attenuator power supplies. DS9 under J3 should be on if the +25 V supply is up for Attenuator A. DS10 under J 4 should be on if the +25 V supply is up for Attenuator B . If any of the power supply LED's are not turned on, see Chapter 2, "Boot Up and Initialization Troubleshooting".
- Press AMPTD, Attenuation 0 dB

NOTE The analyzer will display an error dialogue box when booting up. Simply click "OK" so the instrument can complete its boot process. Additionally, the analyzer noise floor will be near the top of the display since the RF assemblies are not powered up. This is normal with the Front End Troubleshooting board connected to the A15 Front End Driver Assembly

4. Input Attenuator A Control Logic Verification

- Press AMPTD, Attenuation 0 dB

All the attenuation LED's on the Front End Troubleshooting board should be off except for DS9 and DS10, +25V supply for Attenuator A and Attenuator B.
Refer to Figure 4-29.

Figure 4-29
Front End Troubleshooting Board Attenuation LEDs

Table 4-12 Attenuator A Logic

Attenuator Setting (dB)	DS15 2dB Step LED	DS16 $2 d B$ Step LED
0		
2^{a}	X	
4^{a}	X	X

a. These settings available only if analyzer has Option FSA, Fine Step Attenuator

The analyzer default setting for RF Coupling is AC mode. Verify the AC Select LED DS14 is illuminated at this time. Set Input/Output, RF Input, RF Coupling to DC. DS14 should turn off and DS11, the DC Select yellow LED, should illuminate. Switch the RF Coupling back to AC. If the LEDs illuminate correctly, the switch control logic to Input Attenuator A from the A15 Front End Control Assembly is correct. If the LEDs are not illuminating as expected, the most probable cause is the A15 Front End Control Assembly.

5. Input Attenuator B Control Logic Verification

Enter the input attenuation settings listed in Table 4-13 and verify that the proper LEDs illuminate on the Front End Troubleshooting board according to Table 4-13. Note that the 6 dB and 16 dB attenuator settings are only available on analyzers with Option FSA, Fine Step Attenuator.
Table 4-13 Attenuator B Logic

Attenuator Setting (dB)	DS20 30 dB Step LED	$\begin{aligned} & \text { DS19 } \\ & 20 \mathrm{~dB} \\ & \text { Step LED } \end{aligned}$	$\begin{aligned} & \text { DS18 } \\ & 10 \mathrm{~dB} \\ & \text { Step LED } \end{aligned}$	DS17 6 dB Step LED
$6^{\text {a }}$				X
10			X	
$16^{\text {a }}$			X	x
20		X		
30	X			
40	X		X	
50	X	X		
60	X	X	X	

a. These settings available only if analyzer has Option FSA, Fine Step Attenuator

Set the input attenuator back to 10 dB by pressing AMPTD, Attenuation, 10 dB on the analyzer. If the LED's illuminate correctly, the switch control logic for the input attenuators from the A15 Front End Control Assembly is correct. If the LED's are not illuminating as expected, the most probable cause is the A15 Front End Control Assembly.

6. Low Band Switch Control Logic Verification

 (All except Option 503)Press Mode Preset on the analyzer. Press FREQ, $\mathbf{5 0} \mathbf{~ M H z}$, SPAN, $\mathbf{2} \mathbf{~ M H z}$ on the analyzer. Connect the DVM positive lead to the test points listed in Table 4-14, and the negative lead to the bottom of R46 (blue resistor near the bottom) on the Front End Troubleshooting board. Verify the voltages in Table 4-14.
Table 4-14

Test Point	Nominal Voltage
$\ln 1 \mathrm{~A}$	-9.85
$\ln 2 \mathrm{~A}$	-9.85
$\ln 1 \mathrm{~B}$	+9.75
$\ln 2 \mathrm{~B}$	+9.75

Press Freq $\mathbf{5} \mathbf{G H z}$ on the analyzer. Verify the voltages in Table 4-15.
Table 4-15

Test Point	Nominal Voltage
$\operatorname{In} 1 \mathrm{~A}$	+9.72
$\operatorname{In} 2 \mathrm{~A}$	-9.84
$\ln 1 \mathrm{~B}$	-9.84
$\ln 2 \mathrm{~B}$	+9.72

If the voltages are not correct, the most probable cause is the A15 Front End Control Assembly.

7. YTF Preselector Control Logic Verification

NOTE In order to properly measure the preselector tune output from the A15 Front End Control Assembly, the following items are required:

- E9637A Banana plug to BNC (f) adapter
- E9632A BNC (M) to SMA (f)
- 8120-1460 Small coaxial cable SMA (m) to mmcx (m)

Connect the mmcx end of the cable to A 15 J 300 , preselector tune output at the upper left corner of A15 Front End Control Assembly.

Press Single on the analyzer. Verify the voltages in Table 4-16 as the center frequency of the analyzer is changed.

Table 4-16 YTF Tune Voltages

Center Frequency (GHz)	\sim Tune Voltage (VDC)	Tolerance (VDC)
5.0	1.6	± 0.5
10^{a}	3.228	± 1.0
15^{b}	4.85	± 1.0
20^{b}	6.5	± 1.0
26^{b}	8.45	± 1.0

a. Options 513 and 526
b. Option 526

NOTE Tolerances can be used as a guideline. The true test is whether or not the analyzer will function and meet published specification.

If any of the preselector tune voltages do not match the levels in Table 4-16, the most probable causes are a misaligned YTF or the A15 Front End Control Assembly. Perform the YTF characterization (press System, Alignments, More, Ad vanced, Characterize Preselector).

To further test the YTF control current, select Amps on the DVM and place the positive lead of the DVM on one of the YTF Coil Current P8 pins and the other DVM lead to the other Coil Current pin.

NOTE In order to measure the control current correctly, press Single on the analyzer in between each measurement.

If any of the preselector control currents do not match the levels in Table 4-17, the most probable causes are a misaligned YTF or the A15 Front End Control Assembly. Perform the YTF characterization (press System, Alignments, More, Advanced, Characterize Preselector) and re-check the control current at various center frequencies.
Table 4-17 YTF Tune Current

Center Frequency (GHz)	Control Current (mA)	Tolerance $(\mathbf{m A})$
5.0	106	± 20
10^{a}	215	± 25
15^{b}	324	± 30
20^{b}	430	± 40
26^{b}	560	± 50

a. Options 513 and 526
b. Option 526

NOTE
Tolerances should be used as a guideline. The true test is whether or not the analyzer will function and meet published specification.

RF Section Troubleshooting (RF/Microwave Analyzers) Troubleshooting

8. Front End Assembly Control Logic Verification

Since the RF Front End Troubleshooting board is connected, now is a good time to test out the remaining control circuits from the A15 Front End Control Assembly.

Table 4-18 Front End Control Logic

Test Point	Description	Instrument Settings	Voltage (VDC)	Tolerance (VDC)
S2A	Sets switch for Low Band/preamp path	CF 50 MHz preamp on	+9.67	± 0.5
S2B	Sets switch for Low Band/preamp path	CF 50 MHz preamp on	+9.83	± 0.5
S3A	Sets E-atten to 5 dB preamps off	E -atten $=5 \mathrm{~dB}$	+9.67	± 0.5
S3B	Sets E-atten to 5 dB preamps off	E-atten $=5 \mathrm{~dB}$	+9.83	± 0.5
S4A	Sets E-atten to 10 dB preamps off	E -atten $=10 \mathrm{~dB}$	+9.67	± 0.5
S4B	Sets E-atten to 10 dB preamps off	E -atten $=10 \mathrm{~dB}$	+9.83	± 0.5
S5A	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.67	± 0.5
S5B	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.83	± 0.5
S6A	Sets E-atten to 1 dB preamps off	E -atten $=1 \mathrm{~dB}$	+9.67	± 0.5
S6B	Sets E-atten to 1 dB preamps off	E-atten $=1 \mathrm{~dB}$	+9.83	± 0.5
S7A	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.67	± 0.5
S7B	Sets E-atten to 2 dB preamps off	E-atten $=2 \mathrm{~dB}$	+9.83	± 0.5
S8A	Sets E-atten to 20 dB preamps off	E -atten $=20 \mathrm{~dB}$	+9.67	± 0.5
S8B	Sets E-atten to 20 dB preamps off	E -atten $=20 \mathrm{~dB}$	+9.83	± 0.5
S9A	Controls in \& out to low band preamps off	E -atten $=$ off	+9.83	± 0.5
S9B	Controls in \& out to low band preamps off	E-atten = off	+9.67	± 0.5
S11A	Sets path for 1st or 2nd L.O.	CF 1 GHz	+9.67	± 0.5
S11B	Sets path for 1st or 2nd L.O.	CF 1 GHz	+9.83	± 0.5
S12A	Sets path for L.O. normal or x2 for band 4	CF 1 GHz	+9.83	± 0.5
S12B	Sets path for L.O. normal or x2 for band 4	CF 1 GHz	+9.67	± 0.5
S13A	Sets path for L.O. to either of the high band mixers and L.O. output	CF 5 GHz CF 20 GHz	$\begin{array}{r} -9.67 \\ +9.67 \end{array}$	± 0.5
S13B	Sets path for L.O. to either of the high band mixers and L.O. output	CF 5 GHz CF 20 GHz	$\begin{aligned} & +9.83 \\ & -9.83 \end{aligned}$	± 0.5
S14A	Sets path to either band $1 \& 2$ mixer or band 3 \& 4 mixer	CF 5 GHz CF 20 GHz	$\begin{array}{r} -9.83 \\ +9.83 \end{array}$	± 0.5
S14B	Sets path to either band $1 \& 2$ mixer or band 3 \& 4 mixer	CF 5 GHz CF 20 GHz	$\begin{aligned} & +9.67 \\ & -9.67 \end{aligned}$	± 0.5

Table 4-18 Front End Control Logic

Test Point	Description	Instrument Settings	Voltage (VDC)	Tolerance (VDC)
VCC1	Voltage always on		4.8	± 0.5
VCC2	Voltage always on		4.8	± 0.5
VCC3	Voltage always on		7.85	± 0.5
VCC4	Voltage always on		5.0	± 0.5
VCC5	Voltage always on	5.0	± 0.5	
TWAD1	Amplifier bias to A13 RF Front End Assembly		6.0	± 0.5
TWAD2	Amplifier bias to A13 RF Front End Assembly		6.0	± 0.5
TWAD3	Amplifier bias to A13 RF Front End Assembly		6.0	± 0.5
TWAD4	Amplifier bias to A13 RF Front End Assembly		6.0	± 0.5
TWAD5	Amplifier bias to A13 RF Front End Assembly		± 0.5	

If any of the voltages measured do not match the levels in Table 4-18, the most probable cause is the A15 Front End Control Assembly. Once the switch control logic has been verified, turn off the instrument. Disconnect the RF Front End Troubleshooting board cables, and reconnect the analyzer cables to the A15 Front End Control Assembly. Turn the instrument on and allow it to complete its full boot up process to Spectrum Analyzer mode.

Input Attenuator A Power Level Verification
(Option FSA only)

Press Mode Preset, Input/Output, RF Calibrator, 4.8 GHz, AMPTD,

Attenuation, $\mathbf{0} \mathbf{d B}$ on the analyzer. Refer to Figure 4-30, remove cable W11 from A9 (1) Output. Measure the 4.8 GHz calibrator signal on the output of the attenuator using the proper high frequency cables and connect to the functioning Spectrum Analyzer.

Figure 4-30

The level should be $-28 \mathrm{dBm} \pm 2 \mathrm{~dB}$ as shown in Figure 4-31.
Figure 4-31 \quad 4.8 GHz Calibrator Signal on Output of Attenuator A

NOTE
The paragraph which follows applies only to analyzers equipped with Option FSA, Fine Step Attenuator.

Press Mech Atten and enter 2 dB . The 4.8 GHz calibrator signal measured on the functioning Spectrum Analyzer should measure 2 dB lower than the previous step ($\sim-30 \mathrm{dBm}$). Press Mech Atten and enter 4 dB . The 4.8 GHz calibrator signal measured on the functioning Spectrum Analyzer should measure an additional 2 dB lower than the previous step ($\sim-32 \mathrm{dBm}$). If the power levels measure correctly, reconnect W11 cable. If either of these levels is incorrect, Input Attenuator A is the most probable cause, provided the control logic from the A15 Front End Control Assembly was previously verified.

Input Attenuator B Power Level Verification

Press AMPTD, Attenuation, 0 dB. Remove output cable W9 from A10 (2). Refer to Figure 4-30. Measure the 4.8 GHz calibrator signal on the output of the attenuator using a functioning Spectrum Analyzer.

The level should be $-28 \mathrm{dBm} \pm 2 \mathrm{~dB}$ as shown in Figure 4-32.
Figure 4-32 \quad 4.8 GHz Calibrator Signal on Output of Attenuator B

If the analyzer is equipped with Option FSA, press Mech Atten and enter 6 dB . The 4.8 GHz calibrator signal measured on the functioning Spectrum Analyzer should measure 6 dB lower than the previous step ($\sim-34 \mathrm{dBm}$).
Press Mech Atten and enter 10 dB . The 4.8 GHz calibrator signal measured on the functioning Spectrum Analyzer should measure 10 dB lower than the first step ($\sim-38 \mathrm{dBm}$). Continue testing all the attenuation settings as described in Table 4-19.

Table 4-19

Attenuator Setting	Expected Level dBm @ 4.8 GHz	Tolerance
16^{a}	-44	$\pm 3 \mathrm{~dB}$
20	-48	$\pm 3 \mathrm{~dB}$
30	-58	$\pm 3 \mathrm{~dB}$
40	-68	$\pm 4 \mathrm{~dB}$
50	-78	$\pm 4 \mathrm{~dB}$
60	-88	$\pm 4 \mathrm{~dB}$

a. Requires Option FSA

NOTE 1. It may be difficult to measure the higher attenuator settings using the - 28 dBm internal calibrator signal. Use an external source with the frequency set to 4.8 GHz and adjust the output level to 0 dBm . This will increase the measured power levels noted in the table above by 28 dB .
2. Tolerances should be used as a guideline.

If the power levels measure correctly, reconnect the W9 cable and reset the input attenuation to 10 dB by pressing Mech Atten, $\mathbf{1 0} \mathbf{~ d B}$ on the analyzer.

If either of these levels measure incorrectly, Input Attenuator B is the most probable cause, provided the switch control logic has been verified.

Low Band Switch Power Level Verification

(for High Band)
Refer to Figure 4-33. Carefully disconnect both ends of the W8 cable at A11J3 and A12 (1) input. If the microwave preselector bypass hardware is installed, disconnect both ends of W31 at A11J3 and SW2 port C.

Figure 4-33 W8 Location

CAUTION
Be careful not to short out components on the front panel interface board or the components on top of the A12 YTF Preselector when removing W8 or W31.

Press Input/Output, RF Calibrator, 4.8 GHz , AMPTD, Attenuation, 10 dB , FREQ, 4.8 GHz, SPAN, Zero Span on the analyzer.

IMPORTANT Turn off auto align by pressing System, Alignments, Auto Align, Off.

Measure the 4.8 GHz calibrator signal on the output of A11J3 Low Band Switch high band output port using a functioning Spectrum Analyzer. The level should be $-46 \mathrm{dBm} \pm 3 \mathrm{~dB}$ as shown in Figure $4-34$. There is $\sim 8 \mathrm{~dB}$ of loss through the A11 Low Band Switch when using the 4.8 GHz reference signal.

Figure 4-34 \quad 4.8 GHz Calibrator Signal at Output of W8 Cable

If the power level is correct, do not reconnect W8 or W31 at this time. Refer to Figure 4-35, disconnect W7 at A12 (1) output and install a connector such that the A12 YTF Preselector output can be measured. If the preselector bypass hardware is installed, disconnect W33 at A12.

Figure 4-35
Cable W7 at A12 Output

Once the connector is installed, carefully reconnect W8 or W31to make the measurement. If the power level is incorrect, the most probable cause is the A12, YTF Preselector.

A12 YTF Preselector Power Level Verification

Press Input/Output, RF Calibrator, 4.8 GHz, AMPTD, Attenuation, 10 dB , SPAN (X Scale), Zero Span on the analyzer. Measure the 4.8 GHz calibrator on the output of either the W7 (or, if the microwave preselector bypass hardware is installed, W34) cable using a functioning spectrum analyzer. When the 4.8 GHz calibrator signal is used, there will be $\sim 5 \mathrm{~dB}(\sim 8 \mathrm{~dB}$ if microwave preselector bypass hardware is installed) $\pm 4 \mathrm{~dB}$ of insertion loss through the YTF Preselector. The tolerance is large because the A12 YTF loss varies between devices, and the YTF might not be perfectly aligned, or the frequency response adjustment may be required.

If the signal level is incorrect, and Option MPB, Microwave Preselector Bypass is installed and licensed, press AMPTD, More, uW Path Control, uW
Preselector Bypass. If the signal level is now $\sim-51 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as shown in Figure $4-36$, suspect the A12 YTF is either out of adjustment or faulty.
To perform the YTF alignment, reconnect W7 or W34 and press System,
Alignments, More, Ad vanced, Characterize Preselector. The routine may take several minutes to align the YTF. Display the 4.8 GHz calibrator on screen as explained in the quick check section. If the signal level is still incorrect, suspect all assemblies, cables, and switches between the W7 (or W34) cable and the output of the A11 Low Band Switch.

Reconnect W7 and W8 cables (or W31 and W34 cables).
Figure 4-36 \quad 4.8 GHz Calibrator Signal at Output of W7 Cable

If the power level is incorrect, the most probable cause is the YTF Preselector. Reconnect W7 and W8 cables (or W31 and W34 cables).

The following High Band path items have been verified in the RF section:

- 4.8 GHz Calibrator signal power level from the A16 Reference Board
- 1st L.O. power level from the A14 L.O. Synthesizer
- Switch control logic from the A15 Front End Control Board to:
- Input Attenuator A
- Input Attenuator B
- Low Band Switch
- YTF Preselector
- RF Front End Assembly
- Input Attenuator A
- Input Attenuator B
- Low Band Switch
- YTF Preselector

If all the power levels and biasing from the A15 Front End Control board measure correctly up to this point, the most probable cause would be the A13 Front End Assembly.

NOTE
High Band \#2 RF signal path utilizes a high band mixer internal to the A13 RF Front End Assembly for RF input frequencies from 13.6 GHz to 26.5 GHz .
Since all the control voltages and biasing were already fully tested, failures from 13.6 GHz - 26.5 GHz will most likely be caused by the A13 RF Front End Assembly. If the failure is amplitude related, proper adjustments such as frequency response and the YTF Preselector adjust should be performed first before changing the A13 RF Front End Assembly. Refer to Chapter 12, "Block Diagrams." for details.

High Band Preamp (P07)

If any of the preamp options listed above is installed, the High Band preamp can be verified as follows:

View the 4.8 GHz calibrator signal on screen. Press AMPTD, More, Internal
Preamp, Full Range to activate the preamp. The expected operation is the signal level will not change more than $\pm 0.5 \mathrm{~dB}$ and the noise floor will increase due to the fact the input attenuation was automatically increased.

If the amplitude error when switching the preamp on and off is greater than 0.5 dB , assure that any other internal alignment failures are resolved since the System Gain alignment must run before optimum performance is possible. The amplitude error could be caused by poor frequency response, and performing the high band frequency response adjustment (using the calibration software) will adjust the preamp on, high band path. Assure you have evaluated all causes including A15 Front End Controller switching problems, before you replace the Front End assembly.

High Band Mixing Equations

For input signal frequencies from 3.6 GHz to 8.4 GHz and 13.6 GHz to 17 GHz :

$$
\begin{aligned}
& R F=L O \times N-I F \\
& I F=L O \times N-R F \\
& L O \times N=I F+R F
\end{aligned}
$$

where RF is the input signal at the signal analyzer
where N is the harmonic mixing mode:

$$
\begin{aligned}
& \mathrm{N}=1 \text { for } 3.5 \mathrm{GHz} \text { to } 8.4 \mathrm{GHz} \\
& \mathrm{~N}=2 \text { for } 13.5 \mathrm{GHz} \text { to } 17 \mathrm{GHz}
\end{aligned}
$$

For input signal frequencies above 8.4 GHz to 13.6 GHz and 17 GHz to 26.5 GHz:

$$
\begin{aligned}
& R F=L O \times 2 \times N-I F \\
& I F=L O \times 2 \times N-R F \\
& L O \times 2 \times N=I F+R F
\end{aligned}
$$

where RF is the input signal at the signal analyzer where N is the harmonic mixing mode:
$\mathrm{N}=1$ for 8.4 GHz to 13.6 GHz
$\mathrm{N}=2$ for 17 GHz to 26.5 GHz

Microwave Preselector Bypass (Option MPB)

Allows the YTF to be bypassed, improving amplitude accuracy.
Assure start frequency is 3.6 GHz or greater. Press Amplitude, uW Path

Control, uW Preselector Bypass.

When the bypass switches Switch 1 and Switch 2 change state you will hear a click. Depending on the signal source connected, you may see many "signals" appear on screen because without pre-filtering, the analyzer will display image and multiple responses. The real input signal should not change amplitude when you switch the uW Preselector Bypass on and off.

Troubleshooting

5 RF Section Troubleshooting
 (Millimeter-Wave Analyzers)

What You Will Find in This Chapter

The following information is found in this chapter:

1. Theory of operation of the RF section.
2. Isolating the cause of an hardware problem by verifying the functionality of assemblies in the RF section signal path.

NOTE Each section describes how the assembly works and gives information to help you troubleshoot the assembly. Each description covers the purpose of the assembly, describes the main components, and lists external connections to the assembly.

The following sections are found in this chapter:
RF Section Description on page 192
Quick Check to Verify the Low Band Signal Path on page 199
Troubleshooting a Low Band Problem on page 202
Quick Check to Verify High Band RF Path on page 209
Troubleshooting a High Band Problem on page 214

RF Section Description

This section covers only those optional frequency ranges listed below for the N9010A Signal Analyzer.

- Option 532, 32 GHz Frequency Range
- Option 544, 44 GHz Frequency Range

The RF input signal can be routed through four different front end signal paths. These various paths are switched in and out based on where the signal analyzer center frequency is tuned.

1. Low band RF path is used when the input frequency is $\leq 3600 \mathrm{MHz}$
2. High band RF path \#1 is used when the input frequency is $>3.6 \mathrm{GHz}$ to 17.1 GHz
3. High band RF path \#2 is used when the input frequency is $>17 \mathrm{GHz}$ to 34.5 GHz
4. High band RF Path \#3 is used when the input frequency is $>34.4 \mathrm{GHz}$ to 44 GHz

The RF section is designed to convert RF input signals to an intermediate frequency that is present at the RF output of the A13 Front End assembly. This intermediate frequency (IF) depends on installed options and the IF path selected. This chapter will assume the default operation in Spectrum Analyzer mode. Therefore the IF frequency will be 322.5 MHz .

Table 5-1

IF Path	IF	Mode
10 MHz (standard)	322.5 MHz	Spectrum Analyzer or IQ Analyzer
25 MHz (Option B25)	322.5 MHz	IQ Analyzer
40 MHz (Option B40)	250 MHz	IQ Analyzer

The RF section is comprised of the following major assemblies:

- A9 Input Attenuator A
- A10 Input Attenuator B
- A11 Low Band Switch Assembly
- A12 YTF Preselector
- A13 RF Front End Assembly - shown on the block diagram as A13 and A13A1, however replacement A13 assemblies include the A13A1.
- A15 Front End Control Assembly
- Option MPB - Microwave Preselector Bypass

1. RF input frequencies < $\mathbf{3 6 0 0} \mathbf{M H z}$ route through the low band path. Refer to the RF Lowband Path Block Diagram in Chapter 12for details.

The RF input signal level can be optimized by Input Attenuator A and/or Input Attenuator B. The low band switch assembly contains a limiter that offers added protection for the mixer, and routes the input signal to the low band input of the A13 RF Front End assembly. There are (3) different signal paths on the input of the RF Front End assembly that the signal can be routed through depending on installed options and front panel settings.

- Electronic Attenuator path, 0-24 dB (Option EA3)
- Low Band Preamplifier path, 20 dB nominal gain (Any preamp option)
- Direct to Mixer \#1

NOTE
The RF input signal can route through the Electronic Attenuator section or the Preamplifier, but not both. All RF input frequencies < 3600 MHz go to Mixer \#1.

The RF input signal is then mixed with the 1st LO from the A20 YTO assembly to a 1st intermediate frequency of 5122.5 MHz . Since the RF input signal is $<3600 \mathrm{MHz}$ for low band, this RF input signal is upconverted in Mixer \#1 to the 1st IF. This 1st IF signal is then downconverted in Mixer \#2 using the 4800 MHz 2nd LO generated on the A16 Reference assembly to a 2nd intermediate frequency of $322.5 \mathrm{MHz}(5122.5 \mathrm{MHz}$ (1st IF) 4800 MHz (2nd LO)). The 2nd IF output is at A13A1J7. This signal path is used for all frequency range options when the RF input frequencies are < 3600 MHz . The control voltages and biasing for these assemblies come from the A15 Front End Control assembly.
2. RF input frequencies from 3.6 GHz to 17.1 GHz go through the high band path. Refer to the RF Highband Path \#1 Block Diagram (Millimeter-Wave Analyzers) in Chapter 12 for details.

The input signal level can be optimized by Input Attenuator A and/or Input Attenuator B. The Low Band Switch assembly routes the signal through the A12 YTF Preselector. If one of the optional high band preamps is licensed, the signal can be routed through the preamp. The A15 Front End Controller provides switching signals.

The Low Band Switch assembly performs the following tasks:

- Provides a limiter that offers added protection for the mixer and optional preamp.
- Contains the high band preamp.
- Routes the input signal to either the low band input of the A13 Front End assembly or to the A12 YTF Preselector. If Option MPB is installed, the signal is routed through a transfer switch, SW4.

The high band input switch in the Front End Assembly routes the RF input signal to Mixer \#2, where it mixes with the LO and provides a 1st intermediate frequency of 322.5 MHz . The 322.5 MHz IF output is at A13J7. The control voltages and biasing are provided by the A15 Front End Control Assembly. The LO is doubled for tuned frequencies > 8.4 GHz in this path.
3. RF input frequencies from 17.1 GHz to 34.5 GHz go through the high band path. Refer to the RF Highband Path \#2 Block Diagram (Millimeter-Wave Analyzers) in Chapter 12, "Block Diagrams." for details.

The signal path for 17.1 GHz to 34.5 GHz operation is almost the same as the 3.6 GHz to 17.1 GHz path. The only difference is that Mixer \#3 is used in this path. The LO is doubled for all tuned frequencies in this path.
4. RF input frequencies from 34.5 GHz to 44 GHz go through the high band path. Refer to the RF Highband Path \#3 Block Diagram (Millimeter-Wave Analyzers) in Chapter 12, "Block Diagrams." for details.

The signal path for 34.5 GHz to 44 GHz operation is almost the same as the 3.6 GHz to 17.1 GHz path. The only difference is that Mixer \#4 is used in this path. The LO is doubled for all tuned frequencies in this path.

RF Section Troubleshooting (Millimeter-Wave Analyzers)
RF Section Description
A9 Input Attenuator A
This assembly has two 2 dB attenuator sections, a 6 dB attenuator section, and a cal signal input port. The 2 dB and 6 dB sections are only used if Option FSA is installed.

A10 Input Attenuator B

This assembly has a total of 60 dB of attenuation to control the signal level into the Low Band Switch assembly. There is a $10 \mathrm{~dB}, 20 \mathrm{~dB}$, and 30 dB section in the A10 assembly. Total input attenuation with the A9 and the A10 combined is 60 dB in 10 dB steps if Option FSA is not installed, or 2 dB steps if Option FSA is installed (not all sections are used simultaneously).

A11 Low Band Switch

This assembly operates across the entire frequency range of the analyzer. The switch has 3 main functions:

- Switch RF input frequencies from 3 Hz to 3.59 GHz RF Output to A13 RF Front End Assembly.
- Switch input frequencies from 3.6 GHz to 44 GHz Millimeter-Wave RF Output to A12, YTF Preselector.
- Contains optional high band preamplifier, which has a typical gain of 35 dB to 40 dB and a noise figure from 9 to 23 dB up to 44 GHz .

A12 YTF Preselector

The YTF Preselector is used for input frequencies greater than 3.6 GHz . Signals less than 3.6 GHz bypass the YTF assembly and are routed to the low band input of the A13 RF Front End Assembly. The YTF Preselector is a YIG tunable bandpass filter whose main purpose is to track the input signal and to filter out unwanted spurious or image response signals. The YTF Preselector has a 3 dB bandwidth greater than 40 MHz and an insertion loss of $\sim 6.5 \mathrm{~dB}$.

The preselector requires centering for optimum amplitude accuracy. The Auto Align routine will perform a rough centering during the preselector two point tuning algorithm. However, when troubleshooting, press Amplitude,
Preselector Center to manually center the preselector.

A13 RF Front End Assembly (Options 532, 544)

This assembly contains the major front end conversion components. The A13 is repaired at the assembly level. Replacement A13 assemblies include the A13A1 1st IF Bandpass Filter. See Figure 5-1.

Figure 5-1 A13 RF Front End Assembly View from Front Panel

RF Section Troubleshooting (Millimeter-Wave Analyzers)
RF Section Description

This assembly contains the following circuits:

- Input Low-pass filter (RF input signals < 3.6 GHz)
- Optional Low Band Electronic Attenuator (0-24 dB attenuation control)
- Optional Low Band Preamplifier and Limiter
- RF Mixer \#1 (RF input signals < 3.6 GHz)
- 1st LO Sub-system (3.8 GHz to 8.7 GHz)
- 1st IF Amplifier (5122.5 MHz)
- 1st IF Band Pass Filter (A13A1) (low band)
- Mixer \#2 (RF input signals 3.6 GHz to 17.1 GHz)
- Microwave Input Amplifier
- Mixer \#3 (RF input signals 17 GHz to 34.5 GHz)
- Mixer \#4 (RF input signals 34.4 GHz to 44 GHz)
- LO Doubler
- External Mixing Diplexer

A15 Front End Control Assembly

Provides the correct biasing and switch control logic to the following RF assemblies:

- Input Attenuator A
- Input Attenuator B
- Low Band Switch
- YTF Preselector (Input signals > 3.6 GHz)
- (Option MPB) Microwave Preselector Bypass
- Front End Assembly including switched filter
- (Optional) High Band Preamplifier
- (Optional) Low Band Preamplifier
- (Option EA3) Electronic Attenuator (0-24 dB)

NOTE Refer to Chapter 6, "Front End Control Troubleshooting." for detailed descriptions \& troubleshooting procedures

Troubleshooting

Quick Check to Verify the Low Band Signal Path

The analyzer has an internal 50 MHz amplitude reference signal that is used to verify the low band path. This 50 MHz calibrator is used when the analyzer performs many of the internal alignment routines. Therefore, the functionality of the 50 MHz calibrator and low band path are critical to passing Align All Now. Refer to the RF Lowband Path Block Diagram (Millimeter-Wave Analyzers) in Chapter 12 for details. Reference the instrument settings box on the block diagram.
Equipment needed:
Spectrum Analyzer with frequency range to 8 GHz
Signal source with output power 0 dBm and frequency range to at least 3.6 GHz

Power splitter, 11667B or 11667C
2 each, quality SMA or 3.5 mm cables
90° SMA (m) to SMA (f) adapter
MMCX (f) to SMA (f) cable
SMA (f) to SMA (f) adapter
SMA (m) to SMA (m) adapter
3.5 mm (f) to 2.4 mm (m) adapters (2 required)

NOTE To perform the following checks, it will be necessary to remove the outer cover and the top brace. See Chapter 15 for removal procedures.

Turn the instrument on and allow it to complete its full boot up process to Spectrum Analyzer mode. Use the internal $50 \mathrm{MHz},-25 \mathrm{dBm}$ calibrator signal as a reference for troubleshooting by pressing Mode Preset, Input/Output, RF Calibrator, $50 \mathbf{~ M H z}$ on the analyzer. Now press FREQ (Channel), $\mathbf{5 0} \mathbf{~ M H z}$, SPAN (X Scale), 1 MHz, Peak Search. The 50 MHz reference signal should measure $50 \mathrm{MHz} @-25 \mathrm{dBm} \pm 2 \mathrm{~dB}$ on the analyzer display. If the power level is within tolerance, the low band path is functioning correctly at 50 MHz . If the power level is incorrect, select the 4.8 GHz RF Calibrator and set the analyzer center frequency to 4.8 GHz . Since several of the same signal path components are shared between low band and high band, determining if the problem appears in both paths is helpful.

To verify the high band path go to "Quick Check to Verify High Band RF Path" on page 209.

If the power level is not within tolerance, press SPAN (X Scale), Zero Span, AMPTD (Y Scale), Attenuation, 10 dB .

IMPORTANT Turn off auto align by pressing System, Alignments, Auto Align, Off.

Disconnect the W36 cable from A13J7 on the Front End Assembly IF Out. See Figure 5-1.

Connect A13J7 output to a functioning spectrum analyzer and verify the 322.5 MHz intermediate frequency is measuring $-22 \mathrm{dBm} \pm 3 \mathrm{~dB}$ using the same analyzer settings as in Figure 5-2.

Figure 5-2 $\quad 322.5 \mathrm{MHz}$ Intermediate Frequency

If this power level is correct the signal path from the A9 50 MHz Reference signal input port to A13J7, IF Output is operating correctly using a 50 MHz input calibrator signal. Reconnect the W36 cable to A13J7.

NOTE Flatness issues or power level problems at other input frequencies below 3600 MHz may exist. This type of problem can be diagnosed using an external source to verify performance.

If this power level is incorrect, the following assemblies need to be verified using the 50 MHz internal calibrator signal. Be sure the 50 MHz calibrator is turned on. Press Input/Output, RF Calibrator, $\mathbf{5 0} \mathbf{~ M H z}$ when verifying the performance.

1. A11 Low Band Switch
2. A10 Input Attenuator B
3. A9 Input Attenuator A
4. A16 Reference Assembly (50 MHz calibrator, 2nd LO)
5. A13 RF Front End Assembly

NOTE
In order to gain access to the front end components, remove the front frame assembly, but leave the ribbon cable connected so you can still control the instrument. Remove the right side chassis. Refer to the removal procedures in Chapter 15, "Assembly Replacement Procedures".

Troubleshooting a Low Band Problem

Refer to the RF Lowband Path Block Diagram (Millimeter-Wave Analyzers) in Chapter 12and follow the instructions in the settings box. To enable the internal $50 \mathrm{MHz},-25 \mathrm{dBm}$ calibrator signal press Input/Output, RF Calibrator, 50 MHz .

The Low Band signal path (sometimes referred to as Band 0) is used for all signals less than 3.6 GHz when the analyzer is used in normal operation. If the stop frequency is set to 3.6 GHz , the analyzer displays only the Low Band signal path. If the analyzer stop frequency is set above 3.6 GHz and the start frequency is set below 3.6 GHz , the analyzer will sweep up to 3.6 GHz in low band and then automatically switch to the high band path above 3.6 GHz .

A11 Low Band Switch Verification

Disconnect W3 from A13J2. See Figure 5-3 for location of connector. Attach a right angle SMA adapter to W3 and measure the output of the Low Band Switch with a spectrum analyzer. Expected signal is 50 MHz at -35.3 dBm since the Low Band Switch has a few tenths of a dB loss.

If the signal level is incorrect, remove A10 Input Attenuator B output cable and measure the output power. Expected signal is 50 MHz at -35 dBm . See Figure $4-2$ for location of attenuator. If the attenuator output signal is correct but the Low Band output at W3 is incorrect, suspect the A11 Low Band Switch, the interconnect cables, or the control signals. The control signals are explained in Chapter 6, "Front End Control Troubleshooting", on page 223.

Figure 5-3 RF Section (Options 532, 544)

A9 Input Attenuator and A10 Input Attenuator Verification

Calibrator Switch Test

On the A16 Reference assembly, disconnect semi rigid cable W3 from A16J701 and measure A16J701 with a spectrum analyzer. Expected signal is 50 MHz at $-25 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (RF calibrator set to 50 MHz). If signal level is incorrect, suspect A16 Reference assembly is faulty, or the 50 MHz calibrator amplitude requires adjustment using the field calibration software.

To verify calibrator switch operation, connect external signal source set to 50 MHz and -25 dBm to the RF input connector of analyzer under test. Press Input/Output, RF Calibrator, Off. If the signal level at the attenuator output is now correct, suspect the A9 Attenuator cal switch or a faulty control signal from the A15 Front End Controller assembly.

Attenuator Check

Set the signal source connected to the analyzer input port to 0 dBm . On the analyzer, press Amplitude, Attenuation, and change input attenuation to 0 dB . The measuring spectrum analyzer connected to A10 Attenuator output port should indicate a 0 dBm level.

Change the input attenuation on the analyzer under test to 2 dB (if Option FSA is present) or to 10 dB (if Option FSA is not present). See the chart below for expected measurement values at the A10 Attenuator output port.

Table 5-2

Analyzer Under Test Attenuator Setting (dB)	Power at A10 Output Port (dBm)	Input Attenuator Being Tested (Options 532, 544)
0	0 dBm (reference)	Both set to through path
$2^{\text {a }}$	-2	A9
4^{a}	-4	A9
6^{a}	-6	A9
8^{a}	-8	A9
10	-10	A10
20	-20	A10
30	-30	A10
40	-40	A10
50	-50	A10
60	-60	A10

a. These settings only available if Option FSA is installed.

Second LO Level Verification

The second LO signal comes from the A16 Reference Assembly and is only used in Low Band. The second LO signal can be measured on the Front End Assembly at A13J1 or the A16 Reference Assembly at A16J702. Expected signal is 4800 MHz at +10 dBm when a low loss test cable is used and with the measuring spectrum analyzer input attenuator set to at least 20 dB to prevent overload.

L.O. Synthesizer Assembly Verification

Press the following keys on the analyzer:
FREQ (Channel), 1 GHz
SPAN (X Scale)
Zero Span
Refer to Figure 5-4. Disconnect cable W4 at A14J740 of the L.O. Synthesizer Assembly (1).

Figure 5-4 W4 and W6 Location

RF Section Troubleshooting (Millimeter-Wave Analyzers)
Troubleshooting

Connect the functioning Spectrum Analyzer and appropriate high frequency cable and connector to A14J740. Adjust the functioning Spectrum Analyzer to measure a signal at 6122.5 MHz at $+16 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as seen in Figure 5-5.

Figure 5-5 Measure 1st L.O.

If this power level is incorrect remove W6 at A14J200. Refer to Figure 5-4. Adjust the functioning spectrum analyzer to measure a signal at 4.800 GHz at $+4.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$. See Figure 5-6.

Figure 5-6 $\quad 4.800 \mathrm{GHz}$ Signal at A14J200

If this power level is incorrect, the most probable cause is the A16 Reference Assembly. If this level is correct and yet the signal previously measured at A14J740 is incorrect, the most probable cause is the A14 L.O. Synthesizer Assembly. Reconnect W4 cable to A14J740. Reconnect W6 cable to A14J200.

A13 Front End Assembly Verification

NOTE

The A13 Front End assembly is shown as A13 and A13A1 for troubleshooting clarification. However, A13A1 is not separately replaceable. The entire A13 assembly must be replaced which includes A13A1.

Many portions of the Front End Assembly have been verified earlier in the Low Band troubleshooting process outlined above.

The input signal level was measured on W3 as part of the A11 Low Band Switch verification.

The output signal level was measured at A13J7 during the quick check to verify the Low Band Signal Path.

The Second LO input was tested during the Second LO Verification.
The LO input at W4, and the LO outputs were tested when performing the First LO Verification.

It is possible to measure the A13W1 input cable to A13A1 where it connects to A13A1J2, and the output of the A13A1 at A13W2 where it connects to A13J11. A13A1 IF Band Pass Filter is not separately replaceable, but being able to determine where the signal level is faulty, can aid in verifying the faulty assembly. See the block diagram for signal levels.

Electronic Attenuator Test (Option EA3)

The electronic attenuator is aligned as part of the System Gain internal alignment process. See the description of the initial alignments and the location of the alignment history file in the Boot Up and Initialization Troubleshooting chapter. Viewing the Alignment History file will tell you if other alignment tests failed, and reveal which electronic attenuator steps failed.

To verify the electronic attenuator operation on instruments with Option EA3, set up the analyzer to view the 50 MHz calibrator signal on screen. Press

Input/Output, RF Calibrator, 50 MHz , Center Frequency, 50 MHz , Span,

 500 kHzPress Peak Search to place a marker on the calibrator signal, then press Marker Delta

Activate the electronic attenuator. Press AMPTD, Attenuation, Enable Elec Atten. Then press Elec Atten.

Press the up arrow key to step through all attenuator steps while monitoring the marker delta readout. The signal level should not change more than 0.4 dB as indicated by the marker delta readout.

If the attenuator switches slowly, or the signal is not present when the electronic attenuator is switched into the signal path or the signal appears only when the attenuator is switched on, suspect the control signals from the A15 Front End Controller are faulty or the A13 Front End assembly is faulty. If the attenuator switches, but the switching error between attenuator settings is greater than
$\pm 0.4 \mathrm{~dB}$, assure that any other internal alignment failures are resolved since the System Gain alignment must run before optimum performance is possible. Assure you have evaluated all causes before you replace the Front End assembly.

If you determine the problem is at a frequency other than 50 MHz , perform the low band flatness adjustment before replacing the Front End assembly.

Low Band Preamp (Option P03, P07, P32, P44)

The Preamp is aligned as part of the System Gain internal alignment process. See the description of the initial alignments and the location of the alignment history file in Chapter 2, "Boot Up and Initialization Troubleshooting", on page 45. Viewing the Alignment History file will tell you if other alignment tests failed, and reveal pass or fail information for the preamp.

If any of the preamp options are installed, the Low Band preamp can be verified as follows:

Set up the analyzer to view the 50 MHz calibrator signal on screen
Press AMPTD, Attenuation, and verify that the Enable Elec Atten key is set to Off. It is not possible to turn on both the electronic attenuator and preamp at the same time.

Press AMPTD, More, Internal Preamp, Low Band to activate the preamp.
The expected operation is the signal level will not change more than $\pm 0.5 \mathrm{~dB}$ and the noise floor will increase due to the fact the input attenuator is automatically increased. If the amplitude error when switching the preamp on and off is greater than 0.5 dB , assure that any other internal alignment failures are resolved since the System Gain alignment must run before optimum performance is possible. Assure you have evaluated all causes including A15 Front End Controller switching problems, before you replace the Front End assembly.

If you determine the problem is at a frequency other than 50 MHz , perform the low band flatness adjustment before replacing the Front End assembly.

Low Band Mixing Equations

Low Band first mixer:
RF = LO - IF
$\mathrm{IF}=\mathrm{LO}-\mathrm{RF}$
$L O=I F+R F$
where RF is the input signal at the signal analyzer
Low Band second mixer:
$R F=L O+I F$
$\mathrm{IF}=\mathrm{RF}-\mathrm{LO}$
$L O=R F-I F$
where RF in this case is the first IF signal (signal at A13J11)

Quick Check to Verify High Band RF Path

Refer to the RF Highband Path \#1 Block Diagram (Options 532, 544) in Chapter 12.

The High Band signal path (sometimes referred to as Band 1-Band 6) is used for all signals 3.6 GHz and above. If the start frequency is set to 3.6 GHz and above, the analyzer displays only the High Band signal path. If the analyzer start frequency is below 3.6 GHz and the Stop frequency is set above 3.6 GHz, the analyzer will start sweeping in Low Band up to 3.6 GHz , and then automatically switch to the high band path above 3.6 GHz.

Equipment needed:
Spectrum Analyzer with frequency range to 14 GHz
Signal source with output power 0 dBm and frequency range to at least the maximum frequency of the EXA

Power splitter, 11667C
2 each, quality 2.4 mm cables
90° SMA (m) to SMA (f) adapter
MMCX (f) to SMA (f) cable
SMA (f) to SMA (f) adapter
SMA (m) to SMA (m) adapter
3.5 mm (f) to 2.4 mm (m) adapters (2 required)
$3.5 \mathrm{~mm}(\mathrm{~m})$ to 2.4 mm (f) adapter

NOTE To perform the following checks, it will be necessary to remove the outer

 cover and the top brace. See Chapter 15 for removal procedures.Turn the instrument on and allow it to complete its full boot up process to Signal Analyzer mode. Use the internal $4.8 \mathrm{GHz},-28 \mathrm{dBm}$ calibrator signal as a reference for troubleshooting by pressing Mode Preset, Input/Output, RF Calibrator, 4.8 GHz on the analyzer. Now press FREQ (Channel), 4.8 GHz, SPAN (X Scale), 1 MHz, Peak Search).

The 4.8 GHz reference signal should measure $-28 \mathrm{dBm} \pm 2 \mathrm{~dB}$ on the analyzer display. If the power level is within tolerance, the 3.6 GHz to 17.1 GHz path is functioning correctly at 4.8 GHz .

If the power level is incorrect, select the 50 MHz RF calibrator and set the analyzer center frequency to 50 MHz . Since several of the same signal path components are shared between high band and low band, determining if the problem appears in both paths is helpful.

RF Section Troubleshooting (Millimeter-Wave Analyzers)
Troubleshooting

Disconnect cable W36 at A13J7, 322.5 MHz output on the Front End Assembly. See Figure 5-7. Select Span, 0 Hz.

Figure 5-7 A13A1J7 Location (Options 532, 544)

Connect A13J7 output to a functioning spectrum analyzer and verify the 322.5 MHz intermediate frequency is measuring $-32 \pm 4 \mathrm{~dB}$ as shown in Figure 5-8.

Figure 5-8 $\quad 322.5 \mathrm{MHz}$ Intermediate Frequency

If this power level is correct the Front End assembly is operating correctly in high band. If this power level is incorrect verify the following assemblies using the 4.8 GHz internal calibrator signal.

1. A11 Low Band Switch
2. A10 Input Attenuator B
3. A9 Input Attenuator A
4. A16 Reference Assembly (4.8 GHz calibrator)
5. A12 YTF Preselector
6. A13 Front End Assembly

High Band \#2 signal path utilizes a high band mixer internal to the A13 Front End Assembly for input frequencies from 17.0 GHz to 34.5 GHz . High Band \#3 signal path utilizes a high band mixer internal to the A13 Front End Assembly for input frequencies from 34.4 to 44 GHz . Failures from 3.6 GHz to 44 GHz will most likely be caused by the A13 RF Front End Assembly. If the failure is amplitude related, proper adjustments such as frequency response and the YTF Preselector adjust should be performed first before changing the A13 RF Front End Assembly.

In order to gain access to the front end components, remove the side chassis (1) by removing the 16 screws (2). See Figure 5-9.

Figure 5-9 Remove the Side Chassis

Troubleshooting a High Band Problem

Refer to the RF Highband Path \#1 Block Diagram (Option 532, 544) in Chapter 12and follow the instructions in the settings box. To enable the internal 4.8 GHz, -28 dBm calibrator signal press Input/Output, RF Calibrator, 4.8 GHz.

A13 Front End Input Verification

Disconnect W46 (if Option MPB is installed) or W7 (if Option MPB is not installed) from A13J9 See Figure 5-10 for location of connector. Loosen the other end of W46 or W7 if possible to avoid damaging the cable. Attach a right angle SMA adapter to W46 or W7 and measure the input to the A13 Front End with a spectrum analyzer.

Figure 5-10 A13J9 Location

Expected signal is 4.8 GHz at $-51 \mathrm{dBm} \pm 4 \mathrm{~dB}$. The tolerance is large because the A12 YTF (microwave preselector) loss varies between devices, and the YTF may not be perfectly aligned, or the frequency response adjustment may be required.

If the signal level is incorrect, and Option MPB (Microwave Preselector Bypass) is installed, press Amplitude, More, uWPath Control, uW Preselector Bypass. If the signal level is now -52 dBm , suspect the A12 YTF is out of adjustment or faulty.

To perform the YTF alignment, reconnect W46 or W7 cable, and press System, Alignments, More, Ad vanced, Characterize Preselector. The routine may take several minutes to align the YTF. Display the 4.8 GHz calibrator signal on screen as explained in the quick check section. If the signal level is still incorrect, suspect all assemblies, cables, switches and the A15 Reference calibrator signal between the W46/W7 cable and the input to the A9 Attenuator.

If Option MPB is not present, remove A10 Input Attenuator B output cable and measure the output power. Expected signal is $4.8 \mathrm{GHz}-38 \mathrm{dBm}$. See Figure 5-11 for location of attenuator. If the attenuator output signal is correct suspect the A11 Low Band Switch, and if Option MPB is installed, suspect switch 4. Also suspect the switching signals from the A15 Front End controller. The control signals are explained in the Front End Control Troubleshooting section.

Figure 5-11 RF Section

A9 Input Attenuator A and A10 Input Attenuator B Verification

Calibrator Switch Test

On the A16 Reference assembly, disconnect semi rigid cable W19 from A16J701 and measure A16J701 with a spectrum analyzer. Expected signal is 4.8 GHz at $-28 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$. If signal level is incorrect, suspect A16 Reference Assembly.

To verify calibrator switch operation, connect external signal source set to 4.8 GHz and -25 dBm to the RF input connector of analyzer under test. Press Input/Output, RF Calibrator, Off. If the signal level at the attenuator output is now correct, suspect the A9 Attenuator cal switch or a faulty control signal from the A15 Front End Controller assembly.

Attenuation Check

Set the signal source connected to the analyzer input port to 0 dBm . On the analyzer, press Amplitude, Attenuation, and change input attenuation to 0 dB . The measuring spectrum analyzer connected to A10 Attenuator output port should indicate a 0 dBm level. Change the input attenuation on the analyzer under test to 2 dB (if Option FSA is present), or to 10 dB (if Option FSA is not present).

See the chart below for expected measurement values at the A10 Attenuator output port.

Table 5-3

Analyzer Under Test Attenuator Setting (dB)	Power at A10 Output Port (dBm)	Input Attenuator Being Tested
0	0 dBm (reference)	Both set to through path
$2^{\text {a }}$	-2	A9
$4^{\text {a }}$	-4	A9
$6^{\text {a }}$	-6	A9
$8^{\text {a }}$	-8	A9
10	-10	A10
20	-20	A10
30	-30	A10
40	-40	A10
50	-50	A10
60	-60	A10
70	-70	A9 set to 10 dB,

a. These settings only available if Option FSA is installed.

L.O. Synthesizer Assembly Verification

Press the following keys on the analyzer:
Mode Preset
FREQ (Channel), 5 GHz
SPAN (X Scale), Zero Span

Refer to Figure 5-12. Disconnect cable W4 at A14J740 of the L.O. Synthesizer Assembly (1).

Figure 5-12 W4 and W6 Location

Connect the functioning Spectrum Analyzer and appropriate high frequency cable and connector to A14J740. Adjust the analyzer to measure a signal at 5322.5 MHz at +16 dBm $\pm 4 \mathrm{~dB}$ as shown in Figure 5-13.

Figure 5-13 Measure 1st L.O.

If this power level is incorrect remove W6 at A14J200. Refer to Figure 5-12. Connect the functioning spectrum analyzer to the cable output using the appropriate high-frequency cable.

Adjust the functioning spectrum analyzer to measure a signal at 4.8 GHz at $+4.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$ as shown in Figure 5-14.

Figure 5-14 \quad 4.8 GHz Signal

If this power level is incorrect, the most probable cause is the A16 Reference Assembly. If this level is correct and yet the signal previously measured at A14J740 is incorrect, the most probable cause is the A14 L.O. Synthesizer Assembly. Reconnect W4 cable to A14J740. Reconnect W6 cable to A14J200.

A13 Front End Assembly Verification

NOTE

The A13 Front End assembly is shown as A13 and A13A1 for troubleshooting clarification. However, A13A1 is not separately replaceable. The entire A13 assembly must be replaced which includes A13A1.

Many portions of the Front End Assembly have been verified earlier in the High Band troubleshooting process outlined above.

The input signal level was measured on W46 or W7 as part of the A13 Front End Input Verification.

The output signal level was measured at A13J7 during the quick check to verify the High Band signal path.

The LO input at A13J4, and the LO outputs were tested when performing the First LO Verification.

High Band Preamp (Option P07, P32, P44)

If a preamp option listed above is installed, the High Band preamp can be verified as follows:

View the 4.8 GHz calibrator signal on screen. Press AMPTD, More, Internal Preamp, Full Range to activate the preamp.The expected operation is the signal level will not change more than $+/-0.5 \mathrm{~dB}$ and the noise floor will increase due to the fact the input attenuation was automatically increased.

If the amplitude error when switching the preamp on and off is greater than 0.5 dB , assure that any other internal alignment failures are resolved since the System Gain alignment must run before optimum performance is possible. The amplitude error could be caused by poor frequency response, and performing the high band frequency response adjustment (using the calibration software) will adjust the preamp on, high band path. Assure you have evaluated all causes including A15 Front End Controller switching problems, before you replace the Front End assembly.

High Band Mixing Equations

For input signal frequencies from 3.6 GHz to 8.4 GHz :

```
\(R F=L O \times N-I F\)
IF = LO \(\times N-R F\)
\(L O \times N=I F+R F\)
```

 where \(R F\) is the input signal at the signal analyzer
 where N is the harmonic mixing mode:
 \(\mathrm{N}=1\) for 3.5 GHz to 8.4 GHz
 For input signal frequencies above 8.4 GHz to 44 GHz :

$$
\begin{aligned}
& R F=L O \times 2 \times N-I F \\
& I F=L O \times 2 \times N-R F \\
& L O \times 2 \times N=R F+I F
\end{aligned}
$$

$$
\text { where } \mathrm{RF} \text { is the input signal at the signal analyzer }
$$

$$
\text { where } N \text { is the harmonic mixing mode: }
$$

$$
\mathrm{N}=1 \text { for } 8.4 \mathrm{GHz} \text { to } 17.1 \mathrm{GHz}
$$

$$
\mathrm{N}=2 \text { for } 17.1 \mathrm{GHz} \text { to } 34.0 \mathrm{GHz}
$$

$$
\mathrm{N}=4 \text { for } 34.0 \mathrm{GHz} \text { to } 44 \mathrm{GHz}
$$

Microwave Preselector Bypass (Option MPB)

Allows the YTF to be bypassed improving amplitude accuracy.
Assure start frequency is 3.6 GHz or greater. Press Amplitude, uW Path
Control, uW Preselector Bypass. When the bypass switch, Switch 4, changes state you will hear a click. Depending on the signal source connected, you may
see many "signals" appear on screen because without preselection, the analyzer will display images and multiples. The real input signal should not change amplitude when you switch the uW Preselector Bypass on and off.

Troubleshooting

6 Front End Control Troubleshooting

What You Will Find in This Chapter

The following information is found in this chapter:
A15 Front End Control Description on page 224
A15 Front End Control Assembly Troubleshooting on page 229

A15 Front End Control Description

Purpose

The A15 Front End Controller board functionality can be broken down into (3) main categories

1. Provides switch control logic and bias voltages to the major RF front end assemblies in the analyzer.
2. Contains on board circuitry providing various signal outputs to other locations within the analyzer.
3. Provides control logic for various instrument options within the analyzer.

These signals are routed to and from the A15 via ribbon cables, wiring harnesses and coaxial cables. The RF front end assemblies require the correct control logic and bias in order to function properly. If the voltages from the A15 are not correct, the RF input signals will most likely be displayed at an incorrect power level if they even get displayed at all.
Depending upon the options installed, one of two different A15 Front End Control board assemblies may be installed. The standard A15 Front End Control assembly ("FEC") can only control the high band preamplifier options (P07) and the electronic attenuator option (EA3). The A15 Enhanced Front End Control assembly ("EFEC") can also control the millimeter wave high band preamplifier options (P32 and P44), IF Out options (CR3 and CRP), the microwave preselector bypass option (MPB), and provide the IF signal for the 40 MHz analysis bandwidth option (B40). The A15 Enhanced Front End Control assembly is standard on EXA's with either option 532 or 544.

Standard RF Assemblies Controlled by the A15:

- A9 Input Attenuator A (4 dB total for options 503, 507, 513, and 526, 10 dB total for options 532 and 544)
- A10 Input Attenuator B (66 dB total for options 503, 507, 513, and 526, 60 dB total for options 532 and 544)
- A11 Low Band Switch
- A12 YIG Tuned Filter
- A13 RF Front End Assembly

A15 On Board Circuits:

- RF Burst Trigger (When set to Relative Trigger or when center frequency is < 300 MHz .)
- YTF Tune Ramp
- Preselector Tune Out (Provides output voltage, not specified, reserved for future use)
- Mixer Bias
- Amplifier Bias
- Switch Control
- Sweep Ramp (reserved for future use)

Refer to Table 6-1 for details regarding which options are supported by the two choices of A15 assemblies.

Table 6-1 A15 Option Related Control

Option	Description	Physical Location in Analyzer	A15 Support
P03	Preamplifier, 3.6 GHz	A15 to A13	FEC or EFEC
P07	Preamplifier, 7.0 GHz	A15 to A11	FEC or EFEC
P32	Preamplifier, 32 GHz	A15 to A11	EFEC
P44	Preamplifier, 44 GHz	A15 to A11	EFEC
CRP	Arbitrary IF Output	A15 to AUX IF OUT (rear panel)	EFEC
CR3	Second IF Output	A15 to AUX IF OUT (rear panel)	EFEC
MPB	Microwave Preselector Bypass	A15 to SW1 and SW2	EFEC
EA3	Electronic Attenuator, 3.6 GHz	A15 to A13	FEC or EFEC
B40	40 MHz Analysis Bandwidth	A15 to A3	EFEC
DP2	 2	A15 to A3 Capture Memory	EFEC
532	Frequency Range, 32 GHz	A15 to A13	EFEC
544	Frequency Range, 44 GHz	A15 to A13	EFEC

Figure 6-1 A15 Front View, Physical Connectors (EFEC)

Figure 6-2 A15 Front View, Physical Connectors (standard FEC)

The table below describes the connector location and the final destinations of the RF signal, switch control logic or bias voltage.

Table 6-2 A15 Connectors and Destinations

A15 Connector Designation		Description	Destination
FEC	EFEC		
N/A	J900	Narrowband I.F. Out	To A2
N/A	J901	Wideband I.F. Out	To A3
N/A	J902	322.5 MHz I.F. In	From A13
N/A	J903	EXT I.F. In	From A13 to A15 (Option EXM)
N/A	J1100	Aux I.F. Out	To Rear Panel
N/A	J1300	Switched I.F. Filter Out	Reserved for future use 507,513 \& SW3 or 526) or to SW4 (Option MPB with Option 532 or 544)
N/A	J801	YTF Bypass Out	To A11
J103	J700	Low Band Switch Logic Out	To A9 \& A10
J801	J800	Mechanical Attenuator Logic Out	Reserved for future use
J302	J301	Sweep Out	To A13
J104	J102	R.F. Front End Logic Out	N/A (test point only)
J300	J302	Preselector Tune Out	To A12
J301	J300	YTF Bias Control Out	Reserved for future use
N/A	J802	Low Noise Bypass Switch Logic Out	From A8
J100	J100	Motherboard Connector	

A15 Front End Control Assembly Troubleshooting

The N9020A, MXA Signal Analyzer utilizes an RF front end troubleshooting board that can be used to verify some, but not all of the control circuitry on the N9010A, EXA Signal Analyzer due to the additions of front end assemblies. The troubleshooting board kit part number is N9020-60005 and includes the troubleshooting board and required interconnect cables. If you have the interconnect cables, you can order the board by itself using part number E4410-60115. When using the troubleshooting board and cables on a EXA the control logic for Input Attenuator A, Input Attenuator B, Low Band Switch and some of the power supplies can be verified. The remaining control voltages and RF signals can be measured directly with a voltmeter, oscilloscope or functioning spectrum analyzer.

In order to verify the wide bandwidth I.F.'s and Aux I.F. output frequencies and power levels the following specialty cables and connector will be needed:

MMCX (m) to SMB (f) cable, p/n 8121-0655
MMCX (f) to MMCX (f) barrel. Huber \& Suhner 31_mmcx-50-0-1/111_0E
Visit: http://www.hubersuhner.com/de/ie70/hs-index
Other standard cables and connectors need to be used to adapt to the voltmeter or the RF input of the functioning spectrum analyzer.

Verifying Input Attenuator A, Input Attenuator B, Low Band Switch

 Logic and Power Supplies1. Turn off the instrument.
2. Disconnect ribbon cables from A15J700 and A15J800 as shown Figure 6-3.

Figure 6-3 Ribbon Cables at A15J700 and A15J800

front_cables_ts
3. Connect the E4410-60115 RF Front End Troubleshooting board to the A15 Front End Control board using the E4410-60157 attenuator control cable. When connecting the attenuator control cable, E4410-60157, note that one end has two 10-pin connectors with one connector extending beyond the other. The shorter connector is marked with a red stripe. Connect the end with the 20-pin connector to A15J800. Connect the two 10-pin connectors to either J3 or J4 of the RF Front End Troubleshooting board based upon the EXA's frequency range as described below:

Table 6-3 EXA Frequency Range

Frequency Range Option	Shorter 10-pin connector (marked with red stripe)	Longer 10-pin connector
$503,507,513$, or 526	J 3	J 4
532,544	J 4	J 3

4. If the EXA has frequency range option $503,507,513$, or 526 , also connect the Low Band Switch Control Cable, E4410-60160 between A15J700 and J2 of the RF Front End Troubleshooting board. Do not connect this cable if the frequency range option is 532 or 544 .

Figure 6-4 RF Front End Troubleshooting Board

5. Place the RF front end troubleshooting board on an ESD safe bag or foam to ensure nothing shorts out. See Figure 6-5.

Figure 6-5 RF Front End Troubleshooting Board Placement

6. Turn the instrument on and allow it to complete its full boot up process to the Spectrum Analyzer application.

NOTE
You may notice an Align Now, All required message on the analyzer display. This can occur when the test board is connected.
7. Turn Auto Align off by pressing System, Alignments, Auto Align, Off on the analyzer.

CAUTION Resistors on the test board can get very hot. Handle with care.

Power Supply Verification

Looking at the test board, verify power supply green LED's DS5, DS6, DS7 and DS8 located under the J2 connector are turned on. Additionally red LED's DS9 and DS10 should also be on. The power supply voltages are listed in the table below.

Table 6-4 Power Supply Voltages

LED	Power Supply
DS5	+15 VDC

Table 6-4
Power Supply Voltages

LED	Power Supply
DS6	+9.0 VDC
DS7	+5.2 VDC
DS8	-15 VDC
DS9	+25 VDC
DS10	+25 VDC

If any of the power supply LED's are not turned on, see Chapter 2, "Boot Up and Initialization Troubleshooting".

Input Attenuator A Control Logic Verification (Option 503, 507, 513, 526)

Press AMPTD, Attenuation $0 \mathbf{d B}$ on the analyzer.
Attenuation LED's DS15-20 on the test board should be off.
When the input attenuation is changed from 0 dB to 2 dB , the 2 dB Step LED DS15 should illuminate. When the input attenuation is changed from 2 dB to 4 $\mathrm{dB}, \mathrm{DS} 15$ and DS16 should be illuminated as per Table 6-5. Note that the 2 dB and 4 dB settings are only available on analyzers with Option FSA, Fine Step Attenuator.
Table 6-5 Input Attenuator A LED's

Attenuator Setting (dB)	DS15	DS16
0	OFF	OFF
$2^{\text {a }}$	ON	OFF
$4^{\text {a }}$	ON	ON

a. These settings available only if analyzer has Option FSA, Fine Step Attenuator.

If this is incorrect, the most probable cause is the A15, Front End Control assembly.

The analyzer default setting for RF Coupling is AC mode. Verify the AC Select LED DS14 is illuminated at this time. Press Input/Output, RF Input, RF
Coupling, AC/DC to DC on the analyzer. DS14 should turn off and DS11, DC Select LED should illuminate. Switch the RF Coupling back to AC. If the LED's do not illuminate correctly, the most probable cause is the A15 Front End Control Assembly.

Input Attenuator A Control Logic Verification (Option 532 or 544)

Ignore DS11 in this procedure.

Press System, Show, Hard ware. Look for an entry for the Low Band Switch and verify that the HW ID is 45. If the HW ID is something other than 45 (for example, 10) or there is no entry for the Low Band Switch, the analyzer will control the attenuators as if they are 26.5 GHz attenuators, not the 50 GHz attenuators that are actually installed. If this occurs, skip this procedure and troubleshoot the Low Band Switch.

Press AMPTD, Attenuation 0 dB on the analyzer.
Attenuation LEDs DS14 through DS20 should be off.
When the input attenuation is changed from 0 to 8 dB in 2 dB steps, LEDs DS14 through DS16 should be illuminated as per Table 6-6. Note that the 2, 4, 6 , and 8 dB attenuator settings are only available on analyzers with Option FSA, Fine Step Attenuator.

Table 6-6 Input Attenuator A LED's (Opt 543, 544, 550)

Attenuator Setting (dB)	DS14	DS15	DS16
0	OFF	OFF	OFF
$2^{\text {a }}$	OFF	ON	OFF
4^{a}	ON	ON	OFF
6^{a}	OFF	OFF	ON
8^{a}	OFF	ON	ON

a. These settings available only if analyzer has Option FSA, Fine Step Attenuator.

If this is incorrect, the most probable cause is the A15 Front End Control Assembly.

Input Attenuator B Control Logic Verification (Option 503, 507, 513, 526)

Press AMPTD, Attenuation $6 \mathbf{d B}$ on the analyzer and verify the 6 dB Step LED DS17 is illuminated. Change to the input attenuation settings found in Table 6-7 and verify the proper LED's illuminate on the Front End Troubleshooting board according to Table 6-7. Note that the 6 dB and 16 dB attenuator settings are only available on analyzers with Option FSA, Fine Step Attenuator.

Table 6-7 Input Attenuator B LED's

Attenuator Setting (dB)	DS20 $\mathbf{3 0 ~ d B}$ Step LED	DS19 $\mathbf{2 0 ~ d B ~}$ Step LED	DS18 10 dB Step LED	DS17 $\mathbf{6 ~ d B}$ Step LED
$6^{\text {a }}$	OFF	OFF	OFF	ON
10	OFF	OFF	ON	OFF
16	OFF	OFF	ON	ON
20	ON	ON	OFF	OFF
30	ON	OFF	OFF	OFF
40	ON	ON	ON	OFF
50	ON	ON	OFF	OFF
60	OFF			

a. These settings available only if analyzer has Option FSA, Fine Step Attenuator.

If the LED's illuminate correctly, the switch control logic for the input attenuators from the A15 Front End Control Assembly is correct. If the LED's are not illuminating as expected, the most probable cause is the A15 Front End Control Assembly.

Set the input attenuator back to 10 dB by pressing AMPTD, Attenuation, 10 dB on the analyzer.

Input Attenuator B Control Logic Verification (Option 532 or 544)

Press AMPTD, Attenuation $10 \mathbf{d B}$ on the analyzer and verify that the 10 dB Step LED DS18 is illuminated.

Table 6-8 Input Attenuator B LED's (Opt 543, 544, 550)

Attenuator Setting (dB)	DS17	DS18	DS19
10	OFF	ON	OFF
20	OFF	OFF	ON
30	ON	OFF	OFF
40	ON	ON	OFF
50	ON	OFF	ON
60	ON	ON	ON

If the LEDs illuminate correctly, the switch control logic for the input attenuators from the A15 Front End Control assembly is correct. If the LEDs are not illuminating as expected, the most probable cause is the A15 Front End Control Assembly.
Set the input attenuator back to 10 dB by pressing AMPTD, Attenuation, 10 dB on the analyzer.

Low Band Switch Control Logic Verification (Option 507, 513, 526 only)

NOTE If your EXA has Option 532 or 544 skip to "Disconnect RF Front End Troubleshooting Board" on page 237.

Press Mode Preset on the analyzer. Press FREQ, $\mathbf{5 0} \mathbf{~ M H z , ~ S P A N , ~} \mathbf{2} \mathbf{~ M H z}$ on the analyzer. Make sure the auto alignments are turned off by pressing System, Alignments, Auto Align, Off. Connect the voltmeter positive lead to test point listed in the table below and the negative lead to the instrument chassis. These test points are located under the J2 connector. Verify the voltages in Table 6-9.

Table 6-9

Test Board Test Point	Voltage (VDC)
$\ln 1 \mathrm{~A}$	-9.90
$\ln 2 \mathrm{~A}$	-9.90
$\ln 1 \mathrm{~B}$	+10.0
$\ln 2 \mathrm{~B}$	+10.0

Press FREQ, $\mathbf{5} \mathbf{G H z}$ on the analyzer. Verify the voltages in Table 6-10.
Table 6-10

Test Board Test Point	Voltage (VDC)
$\ln 1 \mathrm{~A}$	+10.0
$\ln 2 \mathrm{~A}$	-9.90
$\ln 1 \mathrm{~B}$	-10.0
$\ln 2 \mathrm{~B}$	+10.0

If the voltages are not correct, the most probable cause is the A15 Front End Control board.

NOTE The procedure above will not work on analyzers with frequency range options 532 or 544.

Disconnect RF Front End Troubleshooting Board

You do not need the RF front end troubleshooting board to test out the remaining front end hardware components. At this point it is advisable to shutdown the analyzer and disconnect the test board and cables. Be sure to
reconnect the EXA Low Band switch ribbon cable and the input attenuator ribbon that were originally plugged into the Front End Control board before testing the input attenuator and low band switch logic.

Preselector Tune Output

The Presel Tune connector A15J300 (FEC) or A15J302 (EFEC) is a test point used to verify the internal A12, YIG Tuned Filter drive voltage variations with center frequency. The YTF is used in the high band path (3.6 GHz to the analyzer's maximum frequency). Connect Presel Tune to a voltmeter. Use the MMCX (m) to SMB (f) to connect to Presel Tune on the A15 board and appropriate adaptors to connect to the voltmeter. Refer to Figure 6-1 or Figure 6-2 or Presel Tune location. You may also need a Banana plug to BNC (f) adapter, part number E9637A for the Voltmeter. The preselector tune output voltage can be measured to verify this portion of the A15 is functioning.

Press System, Alignments, Auto Align, Off on the analyzer once it has fully booted to the spectrum analyzer application. Press Span, Zero Span on the analyzer. The preselector tune output voltage in high band should change when the center frequency of the analyzer is changed.

NOTE Preselector tune output measurements are not valid for Option 503, 3 GHz frequency range.

Table 6-11 Preselector Tune Output Voltages

Center Frequency $(\mathbf{G H z})$	\sim Tune Voltage (VDC)	Valid Frequency Range Option
5.0	1.6	$507,513,526$
10.0	3.3	513,526
15.0	4.85	526
20.0	6.5	526
26.0	8.45	526

Table 6-12 Preselector Tune Output Voltages (Option 532, 550)

Center Frequency (GHz)	\sim Tune Voltage (VDC)	Valid Frequency Range Option
5.0	0.9	532,544
10.0	1.8	532,544
15.0	2.7	532,544
20.0	3.6	532,544
25.0	4.6	532,544
30.0	5.5	532,544
40.0	7.3	544
42.5	7.75	544
43.5	8.0	544

Even if the voltages listed in the table are correct it does not guarantee the proper control current is getting to the YTF. There is not a convenient way to measure the control current, so if a high band issue is suspect it is recommended that the A15 is changed out first before changing the YTF since the A15 board has easy access.

Verifying Microwave Preselector Bypass Switch (Option MPB)

If the analyzer has frequency range option 507,513 , or 526 , the switches which perform the microwave preselector bypass are SW1 and SW2, which operate in unison. If the frequency range option is 532 or 544 SW4 performs this function.

SW1, SW2, and SW4 can be verified three different ways:

- "Click" Test
- Oscilloscope
- R.F. Signal Tracing

"Click" Test

This test changes between two different path modes. When this is done a distinct "click" noise from SW1 and SW2 or SW4 can be heard. In the case of SW1 and SW2, since both switches switch at the same time, it is difficult to decipher if one is switching and the other is not.

Press Mode, Preset on the analyzer. Press FREQ, 5 GHz, SPAN, 1 MHz,
AMPTD, More 1 of 2, uW Path Ctrl. Standard Path is the default. Select uW Preselector Bypass and you should hear a distinct "click" noise if the control logic from the A15 Front End Control board is getting to the appropriate switch.

Oscilloscope Test

Measurements can be made to verify the current logic is getting to the appropriate switch from the A15. In order to perform this measurement, the outer cover and chassis RF bracket on the right hand side of the instrument must be removed. Refer to Chapter 15, "Assembly Replacement Procedures" for the removal procedures.

Figure 6-6, Figure 6-7, and Figure 6-8 illustrate the measurement location where the oscilloscope probe should be used to measure the logic. There are two connector bodies with three wires each. On one connector, the three wires are green, black and orange. On the other connector, the three wires are green, black, and yellow. On each connector, black is ground.

On analyzers with Option 507, 513, and 526, both connectors are used; one connects to SW1 and the other to SW2. It does not matter which connector connects to which switch. Both connectors are programmed to behave identically.

However, on analyzers with Option 532 or 544 only the green, black, yellow connector is used to control SW4.

Figure 6-6
SW1 and SW2 Connector Location

Figure 6-7 SW4 Connector Location (Option 532 and 544)

Figure 6-8 Connector Close-up

To verify the control logic, press Mode Preset on the analyzer. Press FREQ, 5 GHz, SPAN, 1 MHz, AMPTD, More 1 of 2, uW Path Ctrl. Standard Path is selected by default. Carefully place the scope probe tip on the conductive portion where the green wire goes into the connector, see Figure 6-9.

Figure 6-9 Connector Detail

SW1_SW2points

The voltage should be ~ 21.5 VDC steady state at this point. When you switch from Standard Path to uW Preselector Bypass, you should see a negative going pulse to 0 VDC on the oscilloscope for $\sim 15 \mathrm{mS}$ before the voltage returns to ~ 21.5 VDC steady state. The oscilloscope triggering may need to be adjusted to see the negative going pulse. This can be tested on both connectors that contain the green wire.

Monitor the yellow or orange wires on each connector, one at a time. The yellow or orange wire starts at ~21.5 VDC. When switching from uW
Preselector Bypass to Standard Path, you should see a negative going pulse to 0 VDC on the oscilloscope for $\sim 15 \mathrm{mS}$ before the voltage returns to ~21.5 VDC steady state.

If both the green wires and the yellow or orange wires measure this pulse correctly, the control logic from the A15, Front End Controller board is operating correctly.

The black wire is ground.

RF Signal Tracing

Refer to Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" for this method of troubleshooting if you are unable to use an Oscilloscope

Verifying Narrowband IF Out (A15J900)

The outer cover and top shield need to be removed to verify A15J900 I.F. output to the A2 Analog IF assembly. Refer to Chapter 15, "Assembly Replacement Procedures" for the removal procedure. Press Mode, Spectrum
Analyzer, Mode Preset on the analyzer. Press Input/Output, RF Calibrator, 50 MHz, Freq, 50 MHz , Span, 0 Hz , Amptd, Attenuation, 10 dB , Amptd, More 1 of 2, Internal Preamp Off, System, Alignments, Auto Align, Off. Disconnect the cable marked J900 that plugs into the top of the A15, Front End Controller board and connect a functioning spectrum analyzer where the cable was plugged in. J900's output should be 322.5 MHz at $\sim-23 \mathrm{dBm}$ on the functioning spectrum analyzer if the Front End Controller board is switching this level correctly. If -23 dBm is not being measured correctly, remove the cable labeled J902 from the Front End Controller board and measure the output of that cable. This should also measure 322.5 MHz at $\sim-23 \mathrm{dBm}$. If the output of the J902 cable measures correctly and yet the output of J900 is incorrect, the most probable cause is the A15, Front End Controller board.

Reconnect all cables to their correct location when finished with the measurements.

IMPORTANT When plugging in an mmcx connector, a distinct "snap" should be heard when the cable is seated correctly.

Verifying Wideband IF Out (A15J901, Option B40 only)

The outer cover and top shield need to be removed to verify A15J901 output. Refer to Chapter 15, "Assembly Replacement Procedures" for the removal procedure. Press Mode, IQ Analyzer (Basic), Mode Preset on the analyzer. Press Input/Output, RF Calibrator, 50 MHz , Freq, 50 MHz , Amptd, Attenuation, 10 dB, Amptd, More 1 of 2, Internal Preamp Off, System, Alignments, Auto Align, Off. Disconnect the cable marked J901 that plugs into the Front End Controller board and connect a functioning spectrum analyzer where the cable was plugged in. J901's I.F. output will vary depending on the I.F. path that is chosen. Press Mode Setup, IF Path and select $\mathbf{4 0 ~ M H z}$. If the switch path is working correctly in the A15 Front End Controller board, the functioning spectrum analyzer should measure 250 MHz at ~-30 dBm.

In order for these I.F. levels to measure correctly, the I.F. input at A15J902 must be correct. Refer to Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)". Reconnect all cables to their correct location when finished.

Verifying Aux IF Out, Rear Panel (Option CR3, CRP only)

The Aux I.F. output connector on the rear panel is installed on all analyzers equipped with the EFEC version of the A15, however the actual Aux I.F. output frequency will vary depending on the options installed. These options are all enabled with a license key. The first step in verifying the Aux I.F. output is the make sure the option is licensed by pressing System, Show, System on the analyzer and make sure the option identifies itself in the table.

The I.F. switch path and frequency generation occurs on the A15, Front End Controller board. This troubleshooting procedure provides the instrument setups to verify options CR3 and CRP. Test the Aux I.F. output based on the options installed in the analyzer.

Standard Analyzer

No test to perform.

Verifying Option CR3

Press the following keys on the analyzer:
Mode, Spectrum Analyzer, Mode Preset, Input/Output, RF Calibrator, 50 MHz , Freq, 50 MHz , Span, 0 Hz , System, Alignments, Auto Align, Off, Input/Output, More 1 of 2, Output Config, Aux IF Out, Second IF

Connect the Aux I.F. Output on the rear panel to the RF Input of a functioning spectrum analyzer. If the A15 Front End Controller is switching the I.F. correctly, you should measure 322.5 MHz at $-35 \mathrm{dBm} \pm 3 \mathrm{~dB}$ as per Figure 6-10.

Figure 6-10 $\quad 322.5 \mathrm{MHz}$

Verifying Option CRP

Press the following keys on the analyzer:
Mode, Spectrum Analyzer, Mode Preset, Input/Output, RF Calibrator, 50 MHz, Freq, 50 MHz , Span, 0 Hz , System, Alignments, Auto Align, Off, Input/Output, More 1 of 2, Output Config, Aux IF Out, Arbitrary IF.

The default is 70 MHz , which can be measured on a functioning spectrum analyzer. The amplitude level should be $-35 \mathrm{dBm} \pm 3 \mathrm{~dB}$ as per Figure 6-11. With the Arbitrary IF as the active function, you can vary the I.F. from 10 MHz to 70 MHz in 500 kHz steps and measure the Aux IF output. The amplitude level should remain fairly flat across the entire arbitrary IF output range.

Figure 6-11 $\quad 70 \mathrm{MHz}$

7 Analog/Digital IF Troubleshooting

What You Will Find in This Chapter

The following information is presented in this chapter:

1. Theory of operation of the IF section.
2. Isolating the cause of a hard ware problem by verifying the functionality of assemblies in the IF section signal path.

The analyzer can have one of two sets of IF hardware installed. The standard 25 MHz BW IF hardware supports analysis bandwidths up to 25 MHz . The optional 40 MHz BW IF hardware supports analysis bandwidths up to 40 MHz . The optional IF hardware is installed if any of the following options are installed:

- B40, 40 MHz Analysis Bandwidth
- MPB, Microwave Preselector Bypass
- DP2, Digital Processor \& 2 GB Capture Memory

NOTE The following sections provide for each assembly a description of how the assembly works and then gives information to help you troubleshoot the assembly. Each description explains the purpose of the assembly, describes the main components, and lists external connections to the assembly.

This following sections are found in this chapter:
25 MHz BW IF Section
A2 Analog I.F. Assembly Description on page 251
A2 Analog I.F. Assembly Theory of Operation on page 252
A2 Analog I.F. Troubleshooting on page 255
A3 Digital I.F. Assembly Description on page 262
A3 Digital I.F. Assembly Theory of Operation on page 263
A3 Digital I.F. Troubleshooting on page 265

40 MHz BW IF Section
A2 Analog IF Assembly Description on page 270

A2 Analog IF Assembly Theory of Operation on page 271
A2 Analog IF Troubleshooting on page 274
A3 Digital IF Assembly Description on page 281
A3 Digital IF Assembly Theory of Operation on page 282
A3 Digital IF Troubleshooting on page 284

25 MHz BW IF Section

A2 Analog I.F. Assembly Description

The analyzer's RF input signal is down converted to a 322.5 MHz intermediate frequency in the A13 RF Front End Assembly. This 322.5 MHz signal is the input to the A2 Analog I.F. Assembly. The Analog I.F. down converts the 322.5 MHz signal to a final 22.5 MHz intermediate frequency. In order to obtain optimal dynamic range and minimize unwanted spurious signals, this signal is filtered, amplified and attenuated throughout this assembly. The final 22.5 MHz signal goes through a series of variable band pass filters each having a specific bandwidth. Three things determine the signal path and which filters are chosen:

- Instrument resolution bandwidth (RBW) setting
- Application used
- Mode applied

This assembly contains the burst carrier trigger circuitry for performing mobile communication measurements. The output of the assembly is a filtered 22.5 MHz signal that goes to the ADC on the A3 Digital I.F. Assembly.

Inputs to the A2

322.5 MHz signal (from either the A13 RF Front End Assembly or the A15 Front End Control Assembly)

LO Input (300 MHz signal from A16 Reference Assembly)
22.5 MHz Cal Comb Signal (from the A3 Digital I.F. Assembly)

Outputs from the A2

22.5 MHz signal (to A3 Digital I.F. Assembly)

RF Trigger Detector (to A3 Digital I.F. Assembly)

A2 Analog I.F. Assembly Theory of Operation

NOTE Refer to Chapter 12, "Block Diagrams".

Input Switch and Filter

A 322.5 MHz input signal is received from the A13 RF Front End Assembly. For analyzers equipped with Option CR3 and/or CRP, the 322.5 MHz input signal is routed from the A13 Front End Assembly to the IF MUX on the A15 Front End Control Assembly and from there to the A2 Analog IF Assembly. The signal then goes through a band pass filter centered at 322.5 MHz with a 25 MHz band width. A cal comb signal can be automatically switched in at the input of the assembly to calibrate the prefilters.

Step Attenuator and Amplifier

A 1 dB step attenuator follows to compensate for band gain differences. The signal then goes through a high-dynamic range amplifier.

Image Filters

One of three different filter paths will be selected automatically, depending on the analyzer mode.

- The through path is selected in IQ Analyzer Mode and wide-band demod.
- The 12 MHz ceramic bandpass filter is used for normal Signal Analyzer swept and FFT operation.
- The 300 kHz Surface Acoustic Wave (SAW) is used for ACP modes.

Mixer

There are two mixers that reside on this assembly. The first mixer is used to down convert the 322.5 MHz input to the final 22.5 MHz I.F. The other mixer is described in the I.F. Comb Cal section.

3rd LO

The 300 MHz 3rd L.O. signal comes from the A16 Reference Assembly and conditions it for use as an L.O. in the two mixers that reside on this assembly. The third L.O. power is $\sim+10 \mathrm{dBm}$ to optimize the conversion efficiency of the first mixer.

I.F. Comb Cal

The 2nd mixer is used to mix the 300 MHz L.O. from the Reference Assembly with the 22.5 MHz cal comb signal from the A3 Digital I.F. to allow calibration of the prefilters and overall passband phase and amplitude. The signal is attenuated by 20 dB if necessary. A limiter is used to reduce amplitude variation effects.

Post Down Conversion Amplification and Prefiltering

The 22.5 MHz I.F. goes through a fixed gain amplifier. Then prefilters are switched in and out. The signal then goes through a variable gain amplifier.

The prefilters provide four single-pole filters to limit the bandwidth of the signal reaching the ADC on the A3 Digital I.F. assembly. There are five different signal paths for the 22.5 MHz I.F. when using Signal Analyzer swept mode:

1. LC wide
2. LC narrow
3. Crystal wide
4. Crystal narrow
5. Through path

The LC wide signal path is used when the analyzer Res BW setting is 180 kHz to 390 kHz.

The LC narrow signal path is used when the analyzer Res BW setting is 30 kHz to 160 kHz.

The Crystal wide signal path is used when the analyzer Res BW setting is 4.3 kHz to 27 kHz .

The Crystal narrow signal path is used when the analyzer Res BW setting is $<3.9 \mathrm{kHz}$.

The through path is used when the analyzer Res BW setting is 430 kHz and greater in analyzer swept mode.

NOTE
In IQ Analyzer mode or in Spectrum Analyzer mode with Sweep Type of FFT, the analyzer span setting determines the pre-filter settings.

Anti-Alias Filter and Final Amplifier

The anti-alias filters attenuate unwanted out-of-band noise and distortion products. The first anti-alias filter is centered at 22.5 MHz and is 25 MHz wide.

The signal can bypass the second anti-alias filter when the analyzer utilizes either the IQ Analyzer swept, or wide-band demod.

The through path is selected when the image filter is in the 25 MHz mode (for IQ Analyzer swept and wide-band demod)

In all other cases the signal will pass through the second 12 MHz anti-alias filter.

The step gain block provides an additional switchable 10 dB gain to overcome the ADC noise floor and provide an additional 2 dB of analyzer sensitivity.

Burst Carrier Trigger

The Burst Carrier Trigger detector provides a binary signal to be used as a trigger based on the presence of an RF input signal or not. The variable gain amplifiers drive a detector and its output drives a comparator which generates the trigger signal.

A2 Analog I.F. Troubleshooting

There are three steps to verify the A2 Analog I.F. Assembly.

- Measure the input power and frequency accuracy of the 322.5 MHz signal (from the A13 RF Front End assembly or the A15 Front End Control Assembly).
- Measure the output power and frequency accuracy of the 22.5 MHz signal (to the A3 Digital I.F. Assembly)
- Measure the 300 MHz input LO signal (from the A16 Reference Assembly)

Verifying the 322.5 MHz Input Power

1. Turn the instrument off.
2. Remove instrument cover. Refer to Chapter 15, "Assembly Replacement Procedures" in this service guide.
3. Turn on the N9010A Signal Analyzer and wait for the instrument to complete the boot up process.
4. Press System, Alignments, Auto Align, Off.
5. Press Input/Output, RF calibrator, 50 MHz .
6. Verify the 50 MHz signal is at -25 dBm on the analyzer display by pressing FREQ, 50 MHz , SPAN, 1 MHz, Peak Search on the N9010A. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{dBm}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)"in this service guide.
7. To continue verifying press SPAN, Zero Span. Verify the input attenuator on the N9010A is set to 10 dB . Look near the top of the display near the center and verify that Atten: 10 dB is visible. If needed change the input attenuator by pressing AMPTD, Attenuation, 10 dB on the analyzer.
8. Carefully disconnect the W15 or W36 cable at A13J7 as shown in Figure 7-1 or Figure 7-2.

Figure 7-1 A13 RF Front End Assembly - RF/Microwave Instruments

Figure 7-2 A13 RF Front End Assembly - Millimeter Wave Instruments

9. Connect A 13 J 7 to a functioning spectrum analyzer using the appropriate SMA connectors and cables.
10.Press Freq, 322.5 MHz , Span, 1 MHz , Peak Search on the functioning spectrum analyzer
11.The analyzer should read 322.5 MHz at $-30 \mathrm{dBm} \pm 3 \mathrm{dBm}$ as shown in Figure 7-3.

Figure 7-3 A13 322.5 MHz Output

NOTE
If the 322.5 MHz signal is not measuring the correct power level, refer to Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.

Reconnect W15 at A13J7.

IMPORTANT Measuring at this location is for convenience. The 322.5 MHz signal is an output at A13J7. Since the W15 cable connects from this output to the input of the Analog I.F. assembly at A2J100, the small coaxial cable has not been tested at this point. If the analyzer is equipped with any combination of options CR3, CRP, 532 , or 544 , the 322.5 MHz signal will also be routed from A13J7 to A15J902 via W36 and from A15J900 to A2J100 via W37.

Verifying the 22.5 MHz Output Power

1. Turn the instrument off.
2. Turn the instrument over so the bottom side of the analyzer is facing up.
3. Turn on the N9010A Signal Analyzer and wait for the instrument to complete the boot up process.
4. Press System, Alignments, Auto Align, Off.
5. Press Input/Output, RF calibrator, 50 MHz .
6. Verify the 50 MHz signal is at -25 dBm by pressing FREQ, 50 MHz , SPAN, 1 MHz , Peak Search on the analyzer. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{dBm}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.
7. To continue verifying press SPAN, Zero Span. Verify the input attenuator on the N9010A is set to 10 dB . Look near the top of the display near the center and verify that Atten: 10 dB is visible. If needed change the input attenuator by pressing AMPTD, Attenuation, 10 dB on the analyzer.
8. Refer to Figure 7-4, carefully disconnect the W13 cable at A3J15.

Figure 7-4 A3 Digital I.F. Cables

w12_bottom
9. Connect the W13 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer to verify the 22.5 MHz I.F. and amplitude is correct.
10.Press Freq, 22.5 MHz, Span, 1 MHz, Peak Search on the functioning spectrum analyzer.
11. The analyzer marker should read 22.5 MHz at $-25 \mathrm{dBm} \pm 4 \mathrm{dBm}$ as shown in Figure 7-5.

Figure 7-5 A2 Analog I.F. Output

If the 22.5 MHz signal is not measuring the correct power level, do not assume the Analog I.F. is the most probable cause until the 3rd L.O. frequency and power level have been verified below.

If the 22.5 MHz signal is within tolerance, carefully reconnect the W 13 cable.

NOTE
You should hear a distinct snap when reconnecting the W13 cable. If this cable is not installed properly, intermittent signal fluctuations may occur on the analyzer display.

Verifying the 300 MHz L.O. Input Power from the A16 Reference Assembly

1. Refer to Figure 7-6, carefully disconnect the W14 at A2J300

Figure 7-6 A2 Analog I.F. Cables

2. Connect the W14 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer.
3. Press Freq, $\mathbf{3 0 0}$ MHz, Span, 1 MHz, Amplitude, 10 dBm, Peak Search on the functioning spectrum analyzer.
4. The analyzer marker should read 300 MHz at $10 \mathrm{dBm} \pm 3 \mathrm{dBm}$ as shown in Figure 7-7.

Figure 7-7 300 MHz L.O.

If the 300 MHz signal is not measuring the correct power level, see the A16 Reference Assembly troubleshooting section in this service guide. If the 300 MHz L.O. is measuring the correct power level and frequency and the 22.5 MHz signal is low, the most probable cause is the A2 Analog I.F. assembly.

A3 Digital I.F. Assembly Description

The A3 Digital I.F. has circuitry that is needed to analyze complex communication signals that can occupy up to 10 MHz of information bandwidth. It digitizes the final 22.5 MHz I.F. from the A2 Analog I.F. board, by processing the time domain continuous data into I/Q (in-phase and quadrature) signals before sending the data to the A4 CPU assembly for further processing and front panel display.

The Digital I.F. has the following main functions:

- Digitizes the final 22.5 MHz Intermediate Frequency
- 14 bit ADC with a 90 MHz sample rate
- DSP for standard spectrum analysis
- Capture memory for complex signals
- Noise Source Control
- Dither for final I.F.
- Provides the alignment sequence generator for wide band alignments
- Provides wide band Comb Calibration Signal
- Trigger interpolation and associated alignment

A3 Digital I.F. Assembly Theory of Operation

NOTE Refer to Chapter 12, "Block Diagrams.".

Data Acquisition

The 22.5 MHz IF comes from the A2 Analog IF assembly. The input level to the A3 Digital IF assembly is -25 dBm . The IF input has a 25 MHz bandwidth centered at 22.5 MHz . The analog circuitry leading to the ADC converts the singled ended signal from the Analog IF to differential required by the ADC. In addition, it is part of a filter, part of which is on the AIF, which improves distortion. Finally, it couples in the dither signal. The ADC is a 14 bit device sampling continuously at $90 \mathrm{Ms} /$ Second.

Rear Panel Triggers

The board has two trigger inputs and two trigger outputs all used via a BNC connector. The trigger inputs are used when an external device has a trigger signal and the user wants to use that external trigger to trigger the signal analyzer. The trigger outputs are used to synchronize other pieces of test equipment to the analyzer. These outputs are configurable through the Input/Output menu via the front panel of the instrument.

The trigger inputs each allow trigger levels to be set from -5 to +5 volts using the control DAC. The circuits have relatively high input impedance. The trigger outputs have 50Ω source impedance with TTL drive levels into no load.

Control DAC

The control DAC is used to set trigger levels and the gain of the reconstruction system. All three outputs can be adjusted from -2.5 to +2.5 volts.

Sample Rate Generator

The 10 MHz reference signal comes from the A16 Reference Assembly. This signal is fairly high power at +10 dBm . The signal goes through a 10 MHz to 30 MHz tripler. A 0 to 5 V 10 MHz square wave is generated. Capacitors form a single-pole band pass filter to select the 3rd harmonic, 30 MHz .

The signal then passes through a 30 MHz to 90 MHz tripler. A 0 to 5 V 30 MHz square wave is generated. Capacitors form a single-pole band pass filter to select the 3rd harmonic, 90 MHz .

Noise Source Voltage Regulator

Various external noise sources can be connected to the rear panel of the analyzer. These noise sources require a very accurate 28 volt DC power supply.

The 28 volt BNC output connector is used with the 346 series noise sources.
The Smart Noise Source (SNS) interface includes power switching for the 28 volt and 15 volt power supply. In addition, it has buffers to interface to the SNS I2C bus for control and read back of ENR data automatically. The SNS connector is used with the SNS series noise sources.

DSP

The signal from the ADC is sent to the Digital Signal Processor.

Digital Bus Common Mode Filtering

The Digital Bus is a real time digital interface. It is sometimes referred to as Messenger or LVDS. The implementation on the Digital IF is unidirectional, meaning it can only source data, not receive it. Common mode filtering is required to translate the digital ground referenced signals to analog ground at the rear panel.

A3 Digital I.F. Troubleshooting

Verifying the 22.5 MHz Input Power

1. Perform an instrument shut down.
2. Remove the cover of the analyzer. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this service guide.
3. Turn the instrument over so that the bottom is facing up.
4. Turn on the analyzer and wait for the instrument to complete the boot up process.
5. Press System, Alignments, Auto Align, Off
6. Press Input, RF Calibrator, 50 MHz
7. Verify the 50 MHz signal is at -25 dBm by pressing FREQ, 50 MHz , SPAN, 1 MHz , Peak Search on the analyzer. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{dBm}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)", on page 123 in this service guide.
8. To continue verifying press SPAN, Zero Span. Verify the input attenuator on the analyzer is set to 10 dB . (Look near the top of the display near the center and verify Atten: 10 dB)

NOTE
If the analyzer is not in 10 dB of input attenuation press AMPTD, Attenuation, 10 dB .
9. Refer to Figure 7-8, carefully disconnect W13 at A3J15.

Figure 7-8 A3 Digital I.F. Cables

w12_bottom
10.Connect the W13 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer.
11.Press Freq, 22.5 MHz Span, 1 MHz, Peak Search on the functioning spectrum analyzer.
12.The analyzer should read 22.5 MHz at $-25 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as shown in Figure 7-9.

Figure 7-9
A3 Digital I.F. Input

If the 22.5 MHz signal is not measuring the correct power level, see "A2 Analog I.F. Troubleshooting" on page 255 in this service guide.

Verifying the 10 MHz Reference Input

1. Perform an instrument shut down.
2. Remove the cover of the analyzer. Refer to Chapter 15, "Assembly Replacement Procedures", on page 441 in this service guide.
3. Turn the instrument over so that the bottom is facing up.
4. Turn on the analyzer and wait for the instrument to complete the boot up process.
5. Press System, Alignments, Auto Align, Off.
6. Press Input/Output, RF calibrator, 50 MHz .
7. Verify the 50 MHz signal is at -25 dBm by pressing FREQ, 50 MHz , SPAN, 1 MHz , Peak Search on the analyzer. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{dBm}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)", on page 123 in this service guide.
8. To continue verifying press SPAN, Zero Span. Verify the input attenuator on the analyzer is set to 10 dB . (Look near the top of the display near the center and verify Atten: 10 dB)

If the analyzer is not in 10 dB of input attenuation press AMPTD, Attenuation, 10 dB .
9. Refer to Figure 7-10, carefully disconnect W12 at A3J14.

Figure 7-10

w12_bottom
10.Connect the W12 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer.
11.Press Freq, 10 MHz , Span, 1 MHz , Peak Search on the functioning spectrum analyzer.
12. The analyzer should read 10 MHz at $+5 \mathrm{dBm} \pm 3 \mathrm{dBm}$ as shown in Figure 7-11.

Figure 7-11 A3 Digital I.F. Reference Input

If the 22.5 MHz and 10 MHz signals measure the correct frequency and amplitude and yet the display is not processing the signal properly, the most probable causes are the A3 Digital IF or the A4 CPU. It is difficult to separate these two assemblies given the architecture of the analyzer. Each assembly will have to be tried to see which one is causing the failure.

40 MHz BW IF Section

A2 Analog IF Assembly Description

When the 10 MHz or 25 MHz IF Path is selected, or when any swept measurement is made, the analyzer's RF input signal is down converted to a 322.5 MHz intermediate frequency in the A13 RF Front End Assembly. This 322.5 MHz signal is routed through the IF MUX on the A15 Front End Control Assembly and then input to the A2 Analog I.F. Assembly.

The Analog I.F. down converts the 322.5 MHz signal to a final 22.5 MHz intermediate frequency. In order to obtain optimal dynamic range and minimize unwanted spurious signals, this signal is filtered, amplified and attenuated throughout this assembly. The final 22.5 MHz signal goes through a series of variable band pass filters each having a specific bandwidth. Three things determine the signal path and which filters are chosen:

- Instrument resolution bandwidth (RBW) setting
- Application used
- Mode applied

This assembly contains one of the two burst carrier trigger (BCT) circuits for performing mobile communication measurements. The BCT on the A2 assembly is relatively narrowband. The other BCT circuit is part of the IF MUX on the A15 Front End Control Assembly and has a much wider bandwidth.

The output of the A2 assembly is a filtered 22.5 MHz signal that goes to one of the two ADCs on the A3 Digital I.F. Assembly.

Inputs to the A2

322.5 MHz signal (from A15 Front End Control Assembly)

LO Input (300 MHz signal from A16 Reference Assembly)
22.5 MHz Cal Comb Signal (from the A3 Digital IF Assembly)

Outputs from the A2
22.5 MHz signal (to A3 Digital IF Assembly)

RF Trigger Detector (to A3 Digital IF Assembly)

A2 Analog IF Assembly Theory of Operation

NOTE Refer to Chapter 12, "Block Diagrams".

Input Switch and Filter

A 322.5 MHz input signal is received from the A15 Front End Control Assembly. The signal then goes through a band pass filter centered at 322.5 MHz with a 25 MHz bandwidth. A comb cal signal can be automatically switched in at the input of the assembly to calibrate the prefilters.

Step Attenuator and Amplifier

A 1 dB step attenuator follows to compensate for band gain differences. The signal then goes through a high-dynamic range amplifier.

Image Filters

One of three different filter paths will be selected automatically, depending on the analyzer mode.

- The through path is selected in IQ Analyzer Mode and wide-band demod.
- The 12 MHz ceramic bandpass filter is used for normal Signal Analyzer swept and FFT operation.
- The 300 kHz Surface Acoustic Wave (SAW) is used for ACP modes.

Mixer

There are two mixers that reside on this assembly. The first mixer is used to down convert the 322.5 MHz input to the final 22.5 MHz IF . The other mixer is described in the IF Comb Cal section.

3rd LO

The 300 MHz 3rd LO signal comes from the A16 Reference Assembly and conditions it for use as an LO in the two mixers that reside on this assembly. The third LO power is $\sim+10 \mathrm{dBm}$ to optimize the conversion efficiency of the first mixer.

IF Comb Cal

The 2nd mixer is used to mix the 300 MHz LO from the Reference Assembly with the 22.5 MHz cal comb signal from the A3 Digital IF to allow calibration of the prefilters and overall passband phase and amplitude. The signal is attenuated by 20 dB if necessary.

Post Down Conversion Amplification and Prefiltering

The 22.5 MHz IF goes through a fixed gain amplifier. Then prefilters are switched in and out. The signal then goes through a variable gain amplifier.

The prefilters provide four single-pole filters to limit the bandwidth of the signal reaching the ADC on the A3 Digital IF assembly. There are five different signal paths for the 22.5 MHz IF when using Signal Analyzer swept mode:

1. LC wide
2. LC narrow
3. Crystal wide
4. Crystal narrow
5. Through path

The LC wide signal path is used when the analyzer Res BW setting is 180 kHz to 390 kHz .

The LC narrow signal path is used when the analyzer Res BW setting is 30 kHz to 160 kHz .

The Crystal wide signal path is used when the analyzer Res BW setting is 4.3 kHz to 27 kHz .

The Crystal narrow signal path is used when the analyzer Res BW setting is < 3.9 kHz .

The through path is used when the analyzer Res BW setting is 430 kHz and greater in analyzer swept mode.

NOTE
In IQ Analyzer mode or in Spectrum Analyzer mode with Sweep Type of FFT, the analyzer span setting determines the pre-filter settings.

Anti-Alias Filter and Final Amplifier

The anti-alias filters attenuate unwanted out-of-band noise and distortion products. The first anti-alias filter is centered at 22.5 MHz and is 25 MHz wide.

The signal can bypass the second anti-alias filter when the analyzer utilizes either the IQ Analyzer swept, or wide-band demod.

The through path is selected when the image filter is in the 25 MHz mode (for IQ Analyzer swept and wide-band demod)

In all other cases the signal will pass through the second 12 MHz anti-alias filter.

The step gain block provides an additional switchable 10 dB gain to overcome the ADC noise floor and provide an additional 2 dB of analyzer sensitivity.

Burst Carrier Trigger

The Burst Carrier Trigger detector provides a binary signal to be used as a trigger based on the presence of an RF input signal or not. The variable gain amplifiers drive a detector and its output drives a comparator which generates the trigger signal.

A2 Analog IF Troubleshooting

There are three steps to verify the A2 Analog IF Assembly.

- Measure the input power and frequency accuracy of the 322.5 MHz signal (from the A13 RF Front End assembly)
- Measure the output power and frequency accuracy of the 22.5 MHz signal (to the A3 Digital IF Assembly)
- Measure the 300 MHz input LO signal (from the A16 Reference Assembly)

Verifying the 322.5 MHz Input Power

1. Turn the instrument off.
2. Remove instrument cover. Refer to Chapter 15, "Assembly Replacement Procedures" in this service guide.
3. Turn on the analyzer and wait for the instrument to complete the boot up process.
4. Press System, Alignments, Auto Align, Off.
5. Press Input/Output, RF calibrator, 50 MHz .
6. Verify the 50 MHz signal is at -25 dBm on the analyzer display by pressing FREQ, 50 MHz, SPAN, 1 MHz , Peak Search on the analyzer. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{~dB}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.
7. To continue verifying press SPAN, Zero Span. Verify the input attenuator on the analyzer is set to 10 dB . Look near the top of the display near the center and verify that Atten: 10 dB is visible. If needed change the input attenuator by pressing AMPTD, Attenuation, 10 dB on the analyzer.
8. Carefully disconnect W37 cable at A15J900 as shown in Figure 7-12.

Figure 7-12 A15 RF Front End Control Assembly

9. Connect A15J900 to a functioning spectrum analyzer using the appropriate MMCX connectors and cables.
10.Press Freq, 322.5 MHz , Span, 1 MHz , Peak Search on the functioning spectrum analyzer.
11.The analyzer should read 322.5 MHz at $-23 \mathrm{dBm} \pm 3 \mathrm{~dB}$ as shown in Figure 7-13.

Figure 7-13 A15 322.5 MHz Output

NOTE If the 322.5 MHz signal is not measuring the correct power level, refer to Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.

Reconnect W37 to A15J900.

IMPORTANT Measuring at this location is for convenience. The 322.5 MHz signal is an output at A15J900. Since the W37 cable connects from this output to the input of the Analog I.F. assembly at A2J100, the small coaxial cable has not been tested at the A2J100 end.

Verifying the 22.5 MHz Output Power

1. Perform an instrument shutdown.
2. Turn the instrument over so the bottom side of the analyzer is facing up.
3. Turn on the analyzer and wait for the instrument to complete the boot up process.
4. Press System, Alignments, Auto Align, Off.
5. Press Input/Output, RF calibrator, 50 MHz .
6. Verify the 50 MHz signal is at -25 dBm by pressing FREQ, 50 MHz , SPAN, 1 MHz , Peak Search on the analyzer. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{~dB}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.
7. To continue verifying press SPAN, Zero Span. Verify the input attenuator on the analyzer is set to 10 dB . Look near the top of the display near the center and verify that Atten: 10 dB is visible. If needed change the input attenuator by pressing AMPTD, Attenuation, 10 dB on the analyzer.
8. Refer to Figure 7-14, carefully disconnect the W41 cable at A3J19.

Figure 7-14 A3 Digital IF Cables

9. Connect the W41 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer to verify the 22.5 MHz I.F. and amplitude is correct.
10.Press Freq, 22.5 MHz, Span, 1 MHz, Peak Search on the functioning spectrum analyzer.
11.The analyzer marker should read 22.5 MHz at $-25 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as shown in Figure 7-15.

Figure 7-15 A2 Analog IF Output

12.If the 22.5 MHz signal is not measuring the correct power level, do not assume the Analog IF is the most probable cause until the 3rd LO frequency and power level have been verified below.
13.If the 22.5 MHz signal is within tolerance, carefully reconnect the W41 cable to A3J19.

NOTE You should hear a distinct snap when reconnecting the W41 cable. If this cable is not installed properly, intermittent signal fluctuations may occur on the analyzer display.

Verifying the 300 MHz LO Input Power from the A16 Reference Assembly

1. Refer to Figure 7-16, carefully disconnect the W14 at A2J300.

Figure 7-16 A2 Analog IF Cables

2. Connect the W14 cable to the MMCX female to SMA female adapter. Use an appropriate cable to go from the SMA adapter to the RF input of a functioning spectrum analyzer.
3. Press Freq, $\mathbf{3 0 0}$ MHz, Span, 1 MHz, Amplitude, 10 dBm, Peak Search on the functioning spectrum analyzer.
4. The analyzer marker should read 300 MHz at $10 \mathrm{dBm} \pm 3 \mathrm{~dB}$ as shown in Figure 7-17.

Figure 7-17 300 MHz LO

5. If the 300 MHz signal is not measuring the correct power level, see the A16 Reference Assembly troubleshooting section in this service guide.
6. If the 300 MHz LO is measuring the correct power level and frequency and the 22.5 MHz signal is low, the most probable cause is the A2 Analog IF assembly.

A3 Digital IF Assembly Description

The A3 Digital I.F. has circuitry that is needed to analyze complex communication signals that can occupy up to 40 MHz of information bandwidth. This assembly has two inputs:

1. The final 22.5 MHz I.F. from the A2 Analog I.F. for IF band width paths up to 25 MHz wide. This input is used for swept and FFT spectrum analysis.
2. The 250 MHz IF from the A15 Front End Control Assembly for IF band width of 40 MHz .

Each input has a separate ADC that processes the time domain continuous data into I/Q (in-phase and quadrature) signals before sending the data to the A4 CPU assembly for further processing and front panel display.

The Digital I.F. has the following main functions:

- Digitizes the 22.5 MHz and the 250 MHz IF signals
- 16 bit ADC with a 100 MHz sample rate to digitize the 22.5 MHz IF
- 12 bit ADC with a 200 MHz sample rate to digitize the 250 MHz IF
- DSP for standard spectrum analysis
- Capture memory for complex signals
- Noise Source Control
- Dither for final I.F
- Provides the alignment sequence generator for wide band alignments
- Provides wide band Comb Calibration Signal
- Trigger interpolation and associated alignment

A3 Digital IF Assembly Theory of Operation

NOTE Refer to Chapter 12, "Block Diagrams".

Data Acquisition

The 22.5 MHz IF comes from the A2 Analog IF assembly. The input level to the A3 Digital IF assembly is -25 dBm when observing the 50 MHz calibrator signal. The IF input has a 25 MHz bandwidth centered at 22.5 MHz . The analog circuitry leading to the ADC converts the singled ended signal from the Analog IF to differential required by the ADC. In addition, it is part of a filter, part of which is on the AIF, which improves distortion. Finally, it couples in the dither signal. The ADC is a 16 bit device sampling continuously at $100 \mathrm{Ms} /$ second.

The 250 MHz IF comes from the A15 Front End Control assembly. The input level is approximately -25 dBm when observing the 50 MHz calibrator signal. The IF input has a 40 MHz bandwidth centered at 250 MHz . The analog circuitry leading to the ADC converts the single-ended signal from the Front End Control to differential required by the ADC. Finally, it couples in the dither signal. The ADC is a 12-bit device sampling continuously at $200 \mathrm{Ms} /$ second.

Rear Panel Triggers

The board has two trigger inputs and two trigger outputs all used via BNC connectors on the rear panel. The trigger inputs are used when an external device has a trigger signal and the user wants to use that external trigger to trigger the signal analyzer. The trigger outputs are used to synchronize other pieces of test equipment to the analyzer. These outputs are configurable through the Input/Output menu via the front panel of the instrument.

The trigger inputs each allow trigger levels to be set from -5 to +5 volts using the control DAC. The circuits have relatively high input impedance. The trigger outputs have 50Ω source impedance with TTL drive levels into no load.

DSP

The outputs of the ADCs go to the T2 digital FPGA. T2 links the ADC with memory and the Feldspar DSP. T2 does all the swept SA DSP and orchestrates measurements. It also provides outputs to the reconstruction system. Feldspar is a DPSP ASIC which performs all the DSP for wide-band applications.

Reconstruction

Analog data from the digital FPGA, T2, is fed into a DAC that recreates an analog signal. It can be either video or the demodulated audio. The signal can be routed to the analyzer's audio system (to listen to the demodulated signals) or to the ANALOG OUT connector on the rear panel.

Clock Distribution

The 100 MHz reference from the A16 Reference Assembly feeds a power divider. One output of the divider is buffered, doubled, and filtered to generate the 200 MHz clock needed for ADC2, the ADC for the 40 MHz BW path,. The remaining output of the power divider is attenuated and buffered before being fed to the clock distribution IC. This IC generates all the other clocks needed by the A3 Digital I.F. Assembly as well as the 10 MHz OUT connector on the rear panel.

Noise Source Voltage Regulator

Various external noise sources can be connected to the rear panel of the analyzer. These noise sources require a very accurate 28 volt DC power supply.

The 28 volt BNC output connector is used with the 346 series noise sources.
The Smart Noise Source (SNS) interface includes power switching for the 28 volt and 15 volt power supply. In addition, it has buffers to interface to the SNS I2C bus for control and read back of ENR data automatically. The SNS connector is used with the SNS series noise sources.

Digital Bus Common Mode Filtering

The Digital Bus is a real time digital interface. It is sometimes referred to as Messenger or LVDS. The implementation on the Digital IF is unidirectional, meaning it can only source data, not receive it. Common mode filtering is required to translate the digital ground referenced signals to analog ground at the rear panel.

A3 Digital IF Troubleshooting

Verifying the 22.5 MHz Input Power

1. Perform an instrument shutdown.
2. Remove the cover of the analyzer. Refer to Chapter 15, "Assembly Replacement Procedures" in this service guide.
3. Turn the instrument over so that the bottom side of the analyzer is facing up.
4. Turn on the analyzer and wait for the instrument to complete the boot up process.
5. Press System, Alignments, Auto Align, Off
6. Press Input/Output, RF Calibrator, 50 MHz
7. Verify the 50 MHz signal is at -25 dBm by pressing FREQ, 50 MHz , SPAN, 1 MHz , Peak Search on the analyzer. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{~dB}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.
8. To continue verifying press SPAN, Zero Span. Verify the input attenuator on the analyzer is set to 10 dB . Look near the top of the display near the center and verify Atten: 10 dB is visible. If needed change the input attenuator by pressing AMPTD, Attenuation, 10 dB on the analyzer.
9. Refer to Figure 7-18, carefully disconnect W41 cable at A3J19.

Figure 7-18 A3 Digital IF Cables

10.Connect the W41 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer to verify the 22.5 MHz I.F. signal frequency and amplitude is correct.
11.Press Freq, 22.5 MHz Span, 1 MHz, Peak Search on the functioning spectrum analyzer.
12.The analyzer should read 22.5 MHz at $-25 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as shown in Figure 7-19.

Figure 7-19 $\quad 22.5 \mathrm{MHz}$ IF Input

13.If the 22.5 MHz signal is not measuring the correct power level, see "A2 Analog I.F. Troubleshooting" on page 255 in this service guide.
14.If the 22.5 MHz signal is within tolerance, carefully reconnect the W41 cable to A3J19.

Verifying the 250 MHz IF Input Power (Option B40 only)

NOTE Perform this procedure only if the analyzer is equipped with Option B40, Analysis Bandwidth, 40 MHz

1. Perform an instrument shutdown.
2. Remove the cover of the analyzer. Refer to Chapter 15, "Assembly Replacement Procedures" in this service guide.
3. Turn the instrument over so that the bottom side of the analyzer is facing up.
4. Turn on the analyzer and wait for the instrument to complete the boot up process.
5. Press Mode, IQ Analyzer (Basic), Mode Setup, IF Path, 40 MHz.
6. Press System, Alignments, Auto Align, Off.
7. Press Input/Output, RF calibrator, 50 MHz .
8. Verify the 50 MHz signal is at -25 dBm by pressing FREQ, 50 MHz , SPAN, 1 MHz , Peak Search on the analyzer. The marker readout should be 50 MHz at $-25 \mathrm{dBm} \pm 3 \mathrm{~dB}$. If this reference signal is measuring incorrectly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.
9. To continue verifying press Meas, IQ Waveform. Verify the input attenuator on the analyzer is set to 10 dB . Look near the top of the display near the center and verify Atten: 10 dB is visible. If needed change the input attenuator by pressing AMPTD, Attenuation, 10 dB on the analyzer
10.Refer to Figure 7-20, carefully disconnect W38.

Figure 7-20 A3 Digital IF Cables

11.Connect the W38 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer to verify the 250 MHz I.F. signal frequency and amplitude is correct.
12. Press Freq, 250 MHz, Span, 1 MHz, Peak Search on the functioning spectrum analyzer.
13.The analyzer marker should read 250 MHz at $-30 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as shown in Figure 7-21.

Figure 7-21 250 MHz IF Input

14.If the 250 MHz signal is not measuring the correct power level, see Chapter 6, "Front End Control Troubleshooting" in this service guide.
15.If the 250 MHz signal is within tolerance, carefully reconnect the W38 cable to A3J15.

NOTE You should hear a distinct snap when reconnecting the cable. If this cable is not installed properly, intermittent signal fluctuations may occur on the analyzer display.

Verifying the 100 MHz Reference Input

1. Perform an instrument shutdown.
2. Remove the cover of the analyzer. Refer to Chapter 15, "Assembly Replacement Procedures" in this service guide.
3. Turn the instrument over so that the bottom side of the analyzer is facing up.
4. Turn on the analyzer and wait for the instrument to complete the boot up process.
5. Press System, Alignments, Auto Align, Off.
6. Press Input/Output, RF calibrator, 50 MHz .
7. Refer to Figure 7-22, carefully disconnect W42 cable at A3J14.

Figure 7-22 A3 Digital IF Cables

8. Connect the W42 cable to the MMCX female to SMA female connector. Use an appropriate cable to go from the SMA connector to the RF input of a functioning spectrum analyzer to verify the 100 MHz reference frequency and amplitude is correct.
9. Press AMPTD, Ref Level, 20 dBm, Freq, 100 MHz, Span, 1 MHz, Peak Search on the functioning spectrum analyzer.
10.The analyzer marker should read 100 MHz at $+10 \mathrm{dBm} \pm 4 \mathrm{~dB}$ as shown in Figure 7-23.

Figure 7-23 100 MHz Reference Input

11.If the 100 MHz signal is measuring incorrectly, see Chapter 8, "L.O. Synthesizer/Reference Troubleshooting" in this service guide.
12.If the 22.5 MHz IF, 250 MHz IF (if appropriate) and 100 MHz reference signals measure the correct frequency and amplitude and yet the display is not processing the signal properly, the most probable causes are the A3 Digital IF or the A4 CPU. It is difficult to separate these two assemblies given the architecture of the analyzer. Each assembly will have to be tried to see which one is causing the failure.

Analog/Digital IF Troubleshooting
40 MHz BW IF Section

What You Will Find in This Chapter
The following information is found in this chapter:
A14 L.O. Synthesizer Assembly Description on page 294
A14 L.O. Synthesizer Theory of Operation on page 295
A14 L.O. Synthesizer Troubleshooting on page 296
A16 Reference Assembly Description on page 304
A16 Reference Assembly Troubleshooting on page 306

A14 L.O. Synthesizer Assembly Description

Purpose

The L.O. Synthesizer assembly provides the 1st Local Oscillator to the A13 RF Front End Assembly for RF conversion. This assembly has the following inputs and outputs:

- Power Supply inputs
- Serial Bus input for L.O. Control
- Sweep input for L.O. Control
- 4800 MHz input signal from A16 Reference Assembly
- 1st L.O. output signal to A13 RF Front End Assembly

The input signal to the L.O. Synthesizer Assembly is a 4800 MHz signal that is generated on the A16 Reference Assembly. The 1st L.O. is then phase locked to this 4800 MHz reference, which is then phase locked back to the 10 MHz reference located on the A16 Reference Assembly. The quality of the phase lock design that locks the 1st L.O. has a direct relationship on the overall stability of the analyzer. Users can also provide their own external reference. The frequency accuracy of the user frequency reference is directly related to the overall frequency accuracy of the signal analyzer.
The 1st L.O. has a tuning range from 3.8 GHz to 8.7 GHz and an output power from +13 to +18 dBm . The RF input signal mixes with the 1 st L.O. in one of three possible mixers on the RF Front End Assembly. For more detailed description on the RF Front End Assembly, see Chapter 4, "RF Section Troubleshooting (RF/Microwave Analyzers)" in this service guide.

A14 L.O. Synthesizer Theory of Operation

The main oscillator is a low frequency Voltage Controlled Oscillator (VCO) that has a frequency range from 570 MHz to 1150 MHz . This VCO has low-phase noise that is multiplied to the desired 1st LO frequency range.

This VCO/Multiplier technology uses built-in filters after each multiplier to suppress the undesired harmonics. The resultant output has enough power with a wide enough frequency range to measure RF input signals up to 26.5 GHz.

Brief Description of the Major Blocks:

- The Field Programmable Gate Array (FPGA) L.O. Controller has the capability to perform automatic pretune update, unlock detection, reference signal phase adjustment, and automatic segment sequencing using block RAM and its segment state machine.
- The fractional-N divider performs frequency division of the feedback VCO signal.
- The VCO is a low noise, voltage control oscillator multiplied up to the actual LO frequency. This wide-band oscillator features isolated input ports, allowing the main tune port and the FM tune port to be formed. It has more than an octave of tuning range with relatively flat tuning sensitivity.
- The LO Multiplier is a frequency multiplier with switched filters and amplifiers to produce the required output frequency.

A14 L.O. Synthesizer Troubleshooting

Turn on the analyzer and wait for the instrument to complete the boot up process. There are (6) processes to perform, which will verify the L.O. Synthesizer Assembly is functioning properly:

- Press Freq, $\mathbf{5 0} \mathbf{~ M H z , ~ S P A N , ~ Z e r o ~ S p a n . ~ L E D ' s ~ D S 1 - D S 3 ~ l o c a t e d ~ n e a r ~ t h e ~ t o p ~}$ of the board next to J 10 should all be off. See LED location in Figure 8-1 below.
- Press System, Alignments, Align Now, All. If the alignment functions correctly with no error messages on the analyzer display, most of the board is working properly.
- Measure 4800 MHz Input frequency (from A16 Reference Assembly)
- Measure 4800 MHz Input Power (from A16 Reference Assembly)
- Measure L.O. Output Power.
- Measure L.O. Output Frequency.

These items can be checked with a functioning spectrum analyzer using cables and connectors that function well up to 10 GHz .

Figure 8-1 A14 L.O. Synthesizer Assembly

Verifying the 4800 MHz Input Power \& Frequency Stability:

- Turn on the analyzer and wait for the instrument to complete the boot up process.
- Press FREQ, 4.2 GHz, SPAN, Zero Span.
- Disconnect A14W6 cable at A14J200 (see Figure 8-2).

DS2 and DS3 will illuminate when the W6 cable is removed. This is normal.

- Connect A14W6 cable end to the RF input of the functioning spectrum analyzer.

Figure 8-2 W4 and W6 Location

- The analyzer marker should read 4800 MHz at $+4.5 \mathrm{dBm} \pm 2 \mathrm{~dB}$ as shown in Figure 8-3.

Figure 8-3 4800 MHz Wide Span

- Verify the 4800 MHz input signal from the A16 Reference Assembly is stable by pressing SPAN, $\mathbf{5 0} \mathbf{~ k H z}, \mathbf{B W}, \mathbf{1} \mathbf{~ k H z}$. The signal on the functioning spectrum analyzer should be very stable both in frequency and power as shown in Figure 8-4.
- Reconnect the W6 cable to A14J200.

Figure 8-4 $\quad 4800 \mathrm{MHz}$ Narrow Span

NOTE
If the 4800 MHz signal is not measuring the correct power level, see the "A16 Reference Assembly Troubleshooting" section later in this chapter.

Verifying the 1st L.O. Output Power:

- Turn on the analyzer and wait for the instrument to complete the boot up process.
- If the analyzer has Option 503, press FREQ, 600 MHz, Span, Zero Span. If the analyzer does not have Option 503 press FREQ, 4.2 GHz, SPAN, Zero Span.
- Refer to Figure 8-1, disconnect A14W4 cable at A14J740.
- Connect A14J740 1st LO output to the RF input of the functioning spectrum analyzer using a cable that will function up to 10 GHz .
- Press Frequency, 4.5225 GHz (if the analyzer does not have Option 503) or Frequency 5.7225 GHz (if the analyzer has Option 503), Span, 5 MHz, Peak Search on the functioning spectrum analyzer. If the functioning spectrum analyzer has a preselector peak or preselector centering function, perform that operation to guarantee the preselector is optimized for the measurement.
- The analyzer marker should read 4.5225 GHz or 5.7225 GHz at +16.55 dBm $\pm 3 \mathrm{~dB}$ as shown in Figure 8-5.

Figure 8-5 \quad 4.5225 GHz 1st L.O. Measurement

NOTE
If the 4.5225 GHz or 5.7225 GHz signal is not measuring the correct power level, the LO Synthesizer assembly is the most probable cause.

Continue changing the center frequency of the analyzer as per Table 8-1 and measure the LO output expected frequency and power using the functioning spectrum analyzer.

NOTE
Perform the preselector peak or preselector centering on the functioning spectrum analyzer if any of the expected 1st L.O. power levels are not within tolerance.

Table 8-1

Center Frequency of analyzer $(\mathbf{M H z})$	Expected 1st L.0. Frequency (GHz) @A14J704	Expected 1st L.0. Power (dBm) @A14J704
4200^{a}	4.5225	$+16.5 \pm 3 \mathrm{~dB}$
4300^{a}	4.6225	$+16 \pm 3 \mathrm{~dB}$
600	5.7225	$+16 \pm 3 \mathrm{~dB}$
700	5.8225 $($ see Figure 8-6)	$+16 \pm 3 \mathrm{~dB}$
2100	7.2225	$+16 \pm 3 \mathrm{~dB}$
2200	7.3225 $($ see Figure 8-7)	$+16 \pm 3 \mathrm{~dB}$

a. Does not apply to analyzers with Option 503.

Figure 8-6 $\quad 5.8225 \mathrm{GHz}$ 1st L.O. Measurement

Figure 8-7 \quad 7.3225 GHz 1st L.O. Measurement

A16 Reference Assembly Description

Purpose

The A16 Reference Assembly provides various output signals that are used as both reference signals and local oscillators throughout the analyzer. These signals are phase locked back to the 10 MHz reference oscillator to provide optimum frequency accuracy and stability. The reference signals and local oscillators can be phase locked in one of two ways:

1. The internal 10 MHz reference located on this Assembly.
2. An externally provided reference such as a house standard or the reference from a base transceiver station.

When the analyzer is using the internal 10 MHz reference, the annotation near the top of the display states SENSE: INT or INT REF.

The externally provided reference will accept an input signal of nominally 10 MHz . This externally provided reference signal must have a power level greater than +5 dBm . If the external reference is $10 \mathrm{MHz} \pm<200 \mathrm{~Hz}$ and Freq Ref In is set to Sense, the analyzer will automatically switch from SENSE:INT to SENSE:EXT.

The frequency accuracy of the analyzer is directly tied to the accuracy of the frequency reference that is being used.

Table 8-2 A16 Reference Assembly Signals

Signal Description	From Location	Originates From	To Location	Purpose
External Reference Input $(10 \mathrm{MHz})$	Input from User	n / a	A16704 Reference Bd	Phase Lock analyzer with user reference. Level must be $>+5 \mathrm{dBm}$.
$\begin{aligned} & 4800 \mathrm{MHz} \\ & \text { 2nd L.O. Output } \end{aligned}$	A16J702	$\begin{aligned} & 100 \mathrm{MHz} \\ & \text { VCXO x } 48 \end{aligned}$	A13J1, RF Front End Assy	Downconvert low band 1st I.F. to 322.5 MHz 2nd I.F.
2400 MHz Output	A16J715	$\begin{aligned} & 100 \mathrm{MHz} \\ & \mathrm{VCXO} \times 24 \end{aligned}$	No Connect	Test Port -12.5 dBm to -15.5 dBm level.
4800 MHz 1 st L.O. Reference Output	A16J703	$\begin{aligned} & 100 \mathrm{MHz} \\ & \mathrm{VCXO} \times 48 \end{aligned}$	A11J200, L.O. Synthesizer Bd	Phase lock 1st L.O. back to the 10 MHz Reference. $+4.5 \mathrm{dBm} \pm 3 \mathrm{~dB}$.
50 MHz Ecal/ 300 MHz Comb Output	A16J705	$\begin{aligned} & 100 \mathrm{MHz} \\ & \mathrm{VCXO} / 2 \end{aligned}$	A13J6, RF Front End Assy	50 MHz Cal Signal or 300 MHz Comb for wideband I.F. phase linearity alignment
50 MHz Align Signal	A16J701	$\begin{aligned} & 100 \mathrm{MHz} \\ & \mathrm{VCXO} / 2 \end{aligned}$	A9 Cal Signal Input, Input Attenuator A	50 MHz Low band alignment signal
4800 MHz Align Signal	A16J701	$\begin{aligned} & 100 \mathrm{MHz} \\ & \mathrm{VCXO} \times 48 \end{aligned}$	A9 Cal Signal Input, Input Attenuator A	4800 MHz High band alignment signal
$\begin{aligned} & 300 \mathrm{MHz} \\ & \text { 3rd L.O. Output } \end{aligned}$	A16J711	$\begin{aligned} & 100 \mathrm{MHz} \\ & \mathrm{VCXO} \times 3 \end{aligned}$	A2J300, Analog I.F.	Downconvert 322.5 MHz 2nd I.F. to 22.5 MHz 3rd I.F.
10 MHz Output	A16J710	10 MHz Reference	A3J14 ${ }^{\text {a }}$, Digital I.F.	Used as a reference to other assemblies throughout the instrument
100 MHz Output	A16J706	100 MHz VCXO	A3J14 ${ }^{\text {b }}$, Digital I.F.	Used as a reference to other assemblies throughout the instrument

a. The 10 MHz signal from A16J710 is used as the reference for the standard A3 Digital IF, which supports analysis band widths up to 25 MHz .
b. The 100 MHz signal from A16J706 is used as the reference for the optional A3 Digital IF, which supports analysis bandwidths up to 40 MHz . This A3 is used in analyzers with any of the following options: B40, MPB, DP2.

A16 Reference Assembly Troubleshooting

If the Reference Assembly is suspect, verify the reference signals, local oscillator output frequencies, and power levels as per Table 8-3 using a functioning spectrum analyzer. In order to measure the signals, remove the rear panel. Refer to "Rear Panel" removal procedure on section on page 509 for details. The board layout identifies the input and output connectors on the Reference Assembly. If these outputs measure correctly, the Reference Assembly is functioning correctly. If not, the Reference Assembly is the most probable cause provided the power supply is operating correctly. Refer to "A7 Midplane Assembly Troubleshooting" on page 339 if the power supplies are suspect.

Figure 8-8 A16 Reference Assembly Layout

Table 8-3 Connector Details

Signal Description	Signal Location	Expected Frequency (MHz)	Expected Power Level (dBm)	Special Instrument Conditions	Figure
300 MHz Comb Generator Out	A16J705	Comb sequence covering ~ 310 to 335 MHz . Comb tooth separation varies	$\begin{aligned} & \sim-10 \mathrm{dBm} \text { to } \\ & -20 \mathrm{dBm} \end{aligned}$	Input/Output, RF Calibrator, 300MHz Comb (flatness ref.)	Figure $8-9$
50 MHz Ecal Out	A16J705	50 MHz	$\begin{aligned} & -26 \text { to }-29 \mathrm{dBm} \\ & \text { typical } \end{aligned}$	While monitoring A16J705 output, place functioning spectrum analyzer in Max Hold. Press System, Alignments, Align Now, All to view signal.	Figure $8-10$
$\begin{aligned} & 4800 \mathrm{MHz} \\ & \text { 2nd L.O. Out } \end{aligned}$	A16J702	4800 MHz	$+9.0 \mathrm{dBm}$	Must be in low band. Press Freq, $\mathbf{5 0} \mathbf{~ M H z}$	Figure 8-11
$\begin{aligned} & 4800 \mathrm{MHz} \\ & \text { 1st L.O. } \\ & \text { Reference Out } \end{aligned}$	A16J703	4800 MHz	$+4.5 \mathrm{dBm}$		Figure $8-12$
$50 \mathrm{MHz}$ Reference Out	A16J701	50 MHz	-25dBm	Input/Output, Amptd Ref, 50 MHz	Figure 8-13
$\begin{aligned} & 4800 \mathrm{MHz} \\ & \text { Reference Out } \end{aligned}$	A16J701	4800 MHz	$-28 \mathrm{dBm}$	Input/Output, Amptd Ref, 4800 MHz	Figure 8-14
2400 MHz Out	A16J715	2400 MHz	-12.5 to -15.5 dBm		Figure $8-15$
$\begin{aligned} & 300 \mathrm{MHz} \\ & \text { 3rd L.O. Out } \end{aligned}$	A16J711	300 MHz	+10 dBm		Figure $8-16$
10 MHz Output ${ }^{\text {a }}$	A16J710	10 MHz	$+7 \mathrm{dBm}$		Figure $8-17$
100 MHz Output ${ }^{\text {b }}$	A16J706	100 MHz	+13 dBm		Figure 8-18

a. Used in units without any of the following options: B40, DP2, MPB
b. Used in units with any of the following options: B40, DP2, MPB

Figure 8-9 $\quad 300 \mathrm{MHz}$ Comb Generator

Figure 8-10 $\quad 50 \mathrm{MHz}$ ECAL Out

Figure 8-11 $\quad 4800 \mathrm{MHz}$ 2nd L.O. Out

Figure 8-12 $\quad 4800 \mathrm{MHz}$ 1st L.O. Reference Out

Figure 8-13 $\quad 50 \mathrm{MHz}$ Reference Out

Figure 8-14 4800 MHz Reference Out

Figure 8-15 2400 MHz Reference Out

Figure 8-16 $\quad 300 \mathrm{MHz}$ 3rd L.O. Out

Figure 8-17 $\quad 10 \mathrm{MHz}$ Output

Figure 8-18 $\quad 100 \mathrm{MHz}$ Output

L.O. Synthesizer/Reference Troubleshooting
 A16 Reference Assembly Troubleshooting

Table 8-4 LED Activity

LED Number	Description	Status
DS1	When Program Code is Loading	On=Loading code from EEPROM Off=Ready
DS2	When 4.8 GHz Frequency is Low	On=Fault (Output Frequency too low) Off=Normal
DS3	When 4.8 GHz Frequency is High	On=Fault (Output Frequency too high) Off=Normal
DS4	Is the 4.8 GHz Reference PLL Locked?	On=Normal Off=Fault
DS5	Is the 4.8 GHz Vtune Optimized?	On=Vtune centered in range Off=Vtune off center. No real fault
DS6	Is the 100 MHz PLL Unlocked?	On=Fault Off=Normal
DS7	Is the 100 MHz PLL Locked?	On=Normal Off=Fault
DS8	Is the 100 MHz Out being properly Detected?	On=Normal Off=Fault
DS9	Opt. PFR Out Enabled	On=Internal PFR enabled Off= Internal PFR disabled (Ext. Ref. Mode)

9 CPU/Disk Drive Troubleshooting

What You Will Find in This Chapter

NOTE Each section first describes how the assembly works, then gives information to help you troubleshoot the assembly. Each description explains the purpose of the assembly, describes the main components, and lists external connections to the assembly.

This following sections are found in this chapter:
A4 CPU Description on page 316
A5 Disk Drive on page 320
Troubleshooting software related issues on page 322
Reloading the X-Series Software on page 323
Disk Drive Recovery Process on page 324
Replacing the instrument disk drive on page 325

A4 CPU Description

If the CPU board is suspect in an instrument failure, a full description of the instrument boot process is described in Chapter 2, "Boot Up and Initialization Troubleshooting".

CPU Identification

Since the EXA was introduced, there have been a total of 5 CPU versions used. Three have been standard (N9010A-PC1, N9010A-PC3, and N9010A-PC5) and two provided optional higher performance (N9010A-PC2 and N9010A-PC4). The optional CPUs can be installed as upgrades in any vintage of EXA.

In all but the N9010A-PC1, the A5 Disk Drive is a user-removable assembly. In the N9010A-PC1, the CPU assembly had to be opened up to remove the A5 Disk Drive.

In general, if the XSA Signal Analyzer application is running, you can identify the installed CPU by its CPU option. Press System, Show, System and looks for an entry "N9010A-PCx", where "x" is a number between 1 and 5 . However, there are two instances where such an entry will not appear:

- Instrument Software Revision <A. 02.00 - Earlier software revisions were only compatible with N9010A-PC1 and will not recognize newer CPUs. The implied CPU option is N9010A-PC1.
- Instrument Software Revision A. 03.00 to A. 04.20 - These software revisions are compatible with N9010A-PC3, but will not display N9010A-PC3 in the Show System screen. The implied CPU option is N9010A-PC3.

If the CPU is functional to the point where the Windows XP Desktop appears, but the XSA Signal Analyzer application is not running, connect a mouse to the analyzer and click Start. Right-click on My Computer and select Properties. Look at the text following "Manufactured and Supported by:", which will contain the description of the CPU.

Table 9-1 CPUs used in the EXAs

Description	Instrument SW Revision	CPU Option	Serial Number Range	Frequency Range Option	Disk Drive
Intel © Pentium ${ }^{\mathrm{TM}} \mathrm{M}$ Processor 1600 MHz	<A.02.00	None Listed	<MY/SG/US5006 0000	$503,507,513$, 526	Internal
	>A.02.00	N9010A-PC1	<MY/SG/US5006 0000	$503,507,513$, 526	
Intel® Core ${ }^{\text {TM }}$ Duo CPU T2500 @2.00 GHz	$>$ A.02.00	N9010A-PC2	Optional, may be installed in any EXA	$503,507,513$, 526	Removable

Table 9-1 CPUs used in the EXAs

Description	Instrument SW Revision	CPU Option	Serial Number Range	Frequency Range Option	Disk Drive
Intel® Celeron ${ }^{\text {TM M M CPU }} 440$ @ 1.86 GHz	$\begin{aligned} & \text { A. } 03.06 \text { to } \\ & \text { A. } 04.20 \end{aligned}$	None Listed	$\begin{aligned} & \text { >=MY/SG/US500 } \\ & 60000 \text { to } \\ & \text { <MY/SG/US5222 } \\ & 000 \end{aligned}$	$\begin{aligned} & 503,507,513, \\ & 526 \end{aligned}$	Removable
	>=A.04.21	N9010A-PC3	$\begin{aligned} & \text { >=MY/SG/US500 } \\ & 60000 \text { to } \\ & \text { <MY/SG/US5222 } \\ & 000 \end{aligned}$	$\begin{aligned} & 503,507,513, \\ & 526 \end{aligned}$	
Intel $®$ Cores $^{\text {TM }}$ i7 CPU L $620 @$ 2.00 GHz	>=A.10.04	N9010A-PC4	Optional, may be installed in any EXA	Any	Removable
Intel® Celeron ${ }^{\text {TM }}$ P4505 @ 1.87 GHz	>=A.10.04	N9010A-PC5	$\begin{aligned} & >=M Y / S G / U S 522 \\ & 20000 \end{aligned}$	$\begin{aligned} & 503,507,513, \\ & 526 \end{aligned}$	Removable
	>=A.10.04		$\begin{aligned} & >=M Y / S G / U S 514 \\ & 40000 \end{aligned}$	532, 544	

The CPU can also be identified by its CPU assembly part number. For older CPUs, this part number can only be viewed by removing the CPU assembly from the rear of the analyzer. For newer CPUs, this part number appears below the external monitor connector and is visible with the CPU installed in the analyzer.

When the CPU assembly removed, you may see two part numbers, only one of which is for the CPU assembly. The CPU assembly part number is on the bottom of the assembly near the GPIB connector. Refer to the table below to correlate CPU part number to CPU Option and the proper CPU replacement part number. Refer also to Service Note N9010A-01A for updates.

Table 9-2

Description	CPU Option	CPU Replacement Part Number
0960-2688	N9010A-PC1	N9020-60031
W1312-60068	N9010A-PC2	N9020-60081
W1312-60072	N9010A-PC3	N9020-60115
W1312-60190	N9010A-PC2	N9020-60081
W1312-60191	N9010A-PC3	N9020-60115
W1312-60196	N9010A-PC4	N9020-60135
W1312-60197	N9010A-PC5	N9020-60140

Disk Drive

The A5 Disk Drive assembly is contained within the A4 CPU board assembly and is replaced as an individual assembly. Also, when the A4 CPU board assembly is replaced the existing A5 Disk Drive assembly will be used.

Front Panel Interface

The instrument USB bus is the electrical interface to the instrument front panel. One of the USB ports on the host controller hub located on the A4 CPU board assembly is routed to the A1A2 Front Panel Interface board for this use. The port is a High Speed USB (2.0) compliant port.

Graphics Controller

The entire graphics subsystem is contained within a single chip, along with the interface logic to map memory from main system memory for the video RAM. There are two outputs of the graphics controller that are used by the instrument. One provides the LCD video data to drive the internal instrument LCD display and the other supplies the rear panel VGA output.

Power Supply Control

The power control line from the front panel momentary power switch connects to the A4 CPU board assembly. When the front panel power switch is turned on the A4 CPU board assembly pulls the PS_ON line to the A6 Power Supply assembly to a TTL low level, which tells the power supply to turn on. Once the $+12 \mathrm{VD},+5.1 \mathrm{~V} \mathrm{D}$, and +3.35 V D supplies are all on and within specification the A6 Power Supply assembly pulls the PWROK_H line to a TTL high state, which then causes the A4 CPU board to come out of reset and boot-up.

Outputs from the A4 CPU board assembly also drive the two front panel power state LEDs.

Provisions have also been made to allow the CPU board to remember which power state it was in when a power failure occurs. The instrument will return to the same power state after a power failure.

Rear Panel Connectivity

The A4 CPU board assembly has direct access to the rear panel of the instrument. The external connections provided on the A4 CPU board assembly include:

- External VGA
- LAN (RJ45) 10/100 based-T Ethernet port
- USB
- $4 \times$ Type-A ports (USB 2.0 compatible)
- $1 \times$ Type-B port (USB 2.0 compatible) EXA behaves like a USB device (client)
- GPIB

System Memory

The type and amount of system RAM in the instrument may vary depending on the age and options installed in an instrument.

Standard instruments have either 1 or 2 GBytes of DDR DRAM, in either one or two 184-pin DIMM memory modules, while instruments with Option PC2 will have 4 GBytes of DDR SDRAM in two 200-pin SODIMM memory modules.

While the memory controller chips do support a wide range of DDR memory types, only memory fully qualified by Keysight Technologies is supported. Full qualification includes mechanical vibration and shock, thermal and power dissipation and the basic electrical characteristics.

While the A4A1 SRAM Module system memory can be obtained separate from the A4 CPU board assembly for instruments with the 184-pin DIMM memory modules, the 200-pin SODIMM memory modules are not field replaceable.
All replacement A4 CPU board assemblies come with the appropriate memory modules installed.

System Processor

The A4 CPU board assembly uses an Intel Pentium-M series processor chip.

A5 Disk Drive

There are two different types of A5 Disk Drives available. The standard drive is a typical hard disk drive, while the option SSD drive is a solid state (FLASH) drive. There are also different drive capacities and interface types that have been, and are being used, and due to continual changes being made by the drive manufacturers these will continue to change from time to time.

The A5 Disk Drive is physically connected to the CPU assembly. Failures of this disk drive can be either hardware or software related. The first step in trouble shooting is to determine if the failure is software related. If software is found not to be the issue, the disk drive should be replaced.

NOTE Before replacing the A5 disk drive it is highly recommended that the factory calibration data be backed up to an external drive if at all possible. If this data is not backed up prior to replacing the disk drive all instrument adjustments and performance verification tests will need to be run after the drive is replaced.

For information on how to backup this data see the "Calibration Data Backup and Restore" section in Chapter 16 of this manual.

Refer also to Service Note N9010A-03 for compatibility of removable disk drives and CPUs.

Overview

The A5 Disk Drive assembly has been divided up into four different partitions. They are:

Table 9-3

C. This partition contains the operating system and software installed by Keysight. This is an open system which means you can install additional software, which should be installed on the C: drive. However, only a limited set of software applications are tested for use with the instrument software. The installation and/or use of other software is not warranted, and could interfere with the operation of the instrument software. If the Agilent Recovery process is ever run, the original version of the C: drive, as shipped from the factory, will be restored. The user will need to reload any other software that was previously installed into the instrument.
Do not save any user data to the C: drive partition, as any data saved in this partition will be lost if the Agilent Recovery process is run.
D. This partition is reserved for data storage. The User Accounts that are preconfigured by Keysight and their My Documents folder are mapped to the D : drive. This is for the convenience of backing-up the user data. You should always back-up the data on the D: drive. This allows you to restore the data if the A5 Disk Drive assembly ever needs to be replaced.

Data saved in this partition will not be lost if the Agilent Recovery process is run.
E. This partition is reserved for Keysight's use. The primary use of the E: drive is for storing of the instrument Calibration and Alignment data. Do not change or overwrite the files on this drive. This could cause your instrument to not meet specifications, or even to stop functioning correctly. It is also recommended that you back up the contents of this drive. This allows you to restore the data if the A5 Disk Drive assembly ever needs to be replaced, which could otherwise require that all instrument adjustments be performed.

NOTE: For information on how to backup this data, see the Calibration Data Backup and Restore section in Chapter 16 of this manual.

While data saved in this partition will not be lost if the Agilent Recovery process is run, do not use this drive for data storage.

In addition, a hidden recovery partition is located on the drive. This partition contains an image of the C: drive as it was when the instrument was shipped from the factory. To restore the C: drive using the image stored in this recovery partition see the section titled "Disk Drive Recovery Process" on page 324.

Troubleshooting software related issues

The C: drive contains the Windows XP operating system software and the X-Series software. Boot problems can be caused by either a failure of the Windows XP operating system or the X-Series software. The failure could have occurred due to a failed installation procedure, X -Series software update failure or a virus.

To correct these issues there are two procedures that can be initiated to resolve a software related issue.

- Reload the X-Series software.
- Use the Recovery Process to reinstall the Windows XP operating system and X-Series software as it was when it left the factory.

Reloading the X-Series Software

The X-Series software contains all the required components for the signal analyzer application as well as all software options. If the X-Series software has become corrupt the Windows XP operating system will boot but the X-Series software application will fail to start. In these cases go to Chapter 18, "Instrument Software." for information on how to update the X-Series software. This procedure will not affect the instrument's calibration or user files.

If this does not resolve the boot issue, or the instrument never boots the Windows XP operating system proceed to the "Disk Drive Recovery Process".

Disk Drive Recovery Process

The Agilent Recovery System can be used to repair software errors on the instrument's disk drive, or to restore the original factory configuration of the system software. The Agilent Recovery System is stored in a separate hidden disk drive partition. Repairing errors on the disk drive may result in loss of data or files. Restoring the original factory system software does not restore any of the following items:

- Windows system configurations that were made after the instrument was shipped from the factory. For example, Windows and Service Pack updates, user accounts, and windows configuration settings. After an Agilent Recovery, these configurations will have to be redone by the end user.
- Additional software that was installed after the instrument was shipped from the factory. After an Agilent Recovery, that software will need to be re-installed by the end user.
- Any data or programs saved on the D: or E: drives. This data will be retained on the drive and not altered by the recovery process.
- Any updates that were made to the Agilent measurement application software.

Calibration data is not lost during this process because it resides on the E drive partition.

Agilent Recovery System

The instrument disk drive recovery system is stored in a separate disk drive partition. It can be used to attempt to repair errors or restore the original factory instrument system on the disk drive.

Using the Instrument Recovery System

1. Make sure the instrument is turned off.
2. Turn on the instrument.
3. After the "Agilent Technologies" screen is displayed the following screen contents will be displayed for 5 seconds.

Figure 9-1

Please select the operating system to start:

Microsoft Hindous XP Professional

Agilent Recovery System
Use the up and down arrou keys to move the highlight to your choice.
Press ENTER to choose.
Seconds until highlighted choice will be started automatically: 4

For troubleshooting and aduanced startup options for Windows, press F8.
4. Press the down arrow key to move the highlight to "Agilent Recovery System", press the Enter key.
5. When the Agilent Recovery System has booted, follow the on-screen instructions to recover the image of the C drive.
6. After exiting the Agilent Recovery System, the instrument will reboot a few times.
7. Update the X -Series software to the latest version by downloading it from the following URL:
www.keysight.com/find/xseries_software

Replacing the instrument disk drive

If the above two procedures did not resolve the booting issue. The disk drive should be replaced. Please refer to the "Disk Drive" replacement section on page 518.

CPU/Disk Drive Troubleshooting
Disk Drive Recovery Process

10 Power Supply/Midplane Troubleshooting

What You Will Find in This Chapter

The following information is found in this chapter:
A6 Power Supply Description on page 328
A6 Power Supply Basic Troubleshooting (Cover On) on page 334
A7 Midplane Description on page 336
A7 Midplane Assembly Troubleshooting on page 339

A6 Power Supply Description

Purpose

The A6 Power Supply assembly provides all the necessary DC voltages for the entire signal analyzer to operate correctly. If any of the power supplies are not within their operating voltages, the analyzer will not function. The power supply outputs provide power to all the printed circuit boards, microcircuit assemblies, front panel display and fans, any of which can cause an over current condition if not operating correctly. The power supply will remain on in an over current state for a minimum of 0.1 second. The power supply will turn off no later than 0.4 seconds after the beginning of the over current state. Any one output over current condition will latch the supply off until the line voltage is removed from the rear panel AC power input connector and then reconnected. The power supply assembly plugs into the A7 Midplane Assembly from the rear of the instrument. (see Figure 10-1.)

Figure 10-1 Power Supply and Midplane

ps_location

Power Supply Theory of Operation

The A6 Power Supply assembly is serviced as an assembly only; no component level repair is supported.
The A6 Power Supply assembly provides most all of the necessary DC voltages for the signal analyzer. If any of the power supplies are not within their operating voltages, the instrument will not function properly.

The A6 Power Supply assembly is a switching supply that operates at a frequency of $\sim 120 \mathrm{kHz}$.

The A6 Power Supply assembly is an auto ranging supply, requiring no user selection of the input voltage. The input AC voltage and frequency requirements for the A6 Power Supply assembly are printed on the rear panel of the instruments as well as on the power supply itself.

While there are no test points or status LEDs accessible for troubleshooting on the A6 Power Supply assembly, there are both test points and status LEDs for all of the different power supply voltages, as well as other power supply status lines, on the A7 Midplane Board assembly. See the "A7 Midplane Description" on page 336 for detailed information on the location of each

Supply Voltages

The following voltage levels are produced by the A6 Power Supply assembly:
Table 10-1

Voltage Level	Ground Reference	A7 Midplane Connector
+15 V SB	ACOM	$J 101$
+5.1 V SB	DCOM	$J 111 / J 112$
+32 V A	ACOM	$J 101$
+15 V A	ACOM	$J 103 / J 104$
+9 V A	ACOM	$J 104$
+5.2 V A	ACOM	$J 102$

Voltage Level	Ground Reference	A7 Midplane Connector
+12 V D	DCOM	J 111
+5.1 V D	DCOM	$\mathrm{J} 109 / \mathrm{J} 110$
+3.35 V D	DCOM	$\mathrm{J} 107 / \mathrm{J} 108$
-15 V A	ACOM	J 105
$-7 V$ A	ACOM	J 105
FAN POS	FAN NEG	J 101
FAN NEG	FAN POS	J 101

Control Inputs

There are a number of control inputs for the A6 Power Supply assembly. They are:

PS_ON

PS_ON is a signal that when pulled low tells the A6 Power Supply assembly to turn on all of its outputs. This signal comes from the A4 CPU board assembly and is initiated by pressing the front panel power button.

DITHER

DITHER is an AC coupled analog signal going to the supply that is used to frequency modulate the power supply switching frequency for the purpose of lowering any power supply related interference.

OFFn

OFFn is an input that is to be used only as a "Panic Stop". This signal can be used for such functions as an emergency over temperature shut down. This type of shut down is a last resort and does not perform the recommended operating system shut down of the instrument.

TEMP_SEN

TEMP_SEN is an analog input to the fan speed control circuit. The fan runs at a slow speed at room temperature to reduce noise and then will ramp up to full speed as the temperature increases.

Control/Status Outputs

There are a number of control and status outputs for the A6 Power Supply assembly. They are:

PWROK_H

PWROK_H is used to verify that the $+12 \mathrm{~V} \mathrm{D},+5.1 \mathrm{~V} \mathrm{D}$, and +3.35 V D are all on and within specification. A TTL high level on this output brings the CPU out of reset and initiates the instrument boot up process.

LINE_TRIG

LINE_TRIG is a TTL level signal that is synchronous to the AC line input. This signal is typically used in signal analyzers to trigger an instrument sweep synchronous to the AC power line.

PS_TEMP

PS_TEMP is a read out of the internal temperature of the power supply.

PS_FAULT

PS_FAULT will be a TTL low level signal to indicate that the supply is experiencing an over voltage, over current, or over temperature condition.

Fuse

The A6 Power Supply has no user replaceable fuse. While there is a fuse internal to the supply this is not meant for field replacement. If the internal fuse is blown, the power supply has experienced a major failure and should be replaced.

Stand by Supplies

The A6 Power Supply assembly has two standby supplies that should always be on if the AC input voltage requirements are met. These are the +15 V STBY and the +5.1 V STBY supplies. These supplies are used by the instrument to keep certain circuits alive even when the power is turned off.

Over Current Protection

The A6 Power Supply assembly has built in over current protection that will shut down the supply if current draw from the instrument is too great. The power supply will remain on in an over current state for a minimum of 1 second. The power supply shall turn off no later than 5 seconds after beginning the over current state. The power supply shall remain off until the line voltage is removed and then reconnected or the front panel power switch is cycled. Over current shut down does not apply to the standby supplies, the fan voltage, and the +32 V A supply.

Thermal Protection

The A6 Power Supply assembly will protect itself by shutting down if it overheats. It will also reset itself with no user interaction after the temperature is reduced by approximately 10 degrees C .

Power Supply Output Signals

Table 10-2 describes the output signals from the Power Supply assembly.
Table 10-2 Power Supply Output Signals

Signal Name	Description	Maximum Output Current (Amps)	Test Load (Amps)
$+32 \mathrm{~A}$	32 Volt Analog power supply.	1.8	0.5
+15A	15 Volt Analog power supply	4.25	1.3
+15SB	15 Volt Standby power supply	--	--
+9A	9 Volt Analog power supply	4.0	1.4
+9A_Sense			
$+5.2 \mathrm{~A}$	5.2 Volt Analog power supply	11.5	3.7
+5.2_Sense			
-7A	-7 Volt Analog power supply	4.5	1.5
-7A_Sense			
-15A	-15 Volt Analog power supply	1.5	0.5
ACOM	Analog Ground. Connected to common ground inside power supply.	--	--
ACOM_Sense	Remote sense for analog ground.	--	--
PS_Faultn	Power supply fault output, active low.	--	--
PS_Temp	Analog temperature output. Control element for fan speed.	--	--
Line_Trig	Line Trigger Output.	--	--
Dither	Dither input from A7 Midplane for switching frequency modulation.	--	--
Temp_Sense	External temperature input for fan speed control.	--	--
Offn	Off input, active low. Used to turn off all non-standby supplies.	--	--
Fan_P	Positive fan power supply.	1.0	0.5
Fan_N	Negative fan power supply.	1.0	0.5
+12D	12 Volt Digital power supply.	8.0	2.6
+5.1D	5.1 Volt Digital power supply.	8.5	2.7
+5.1D_Sense	Remote sense for +5.1 digital supply.	--	--
+5.1SB	5.1 Volt Standby power supply.	0.5	0.2
+3.35D	3.35 Volt Digital power supply.	6.5	2.0
+3.35D_Sense	Remote sense for +3.35 digital supply.	--	--

Table 10-2 Power Supply Output Signals

Signal Name	Description	Maximum Output Current (Amps)	Test Load (Amps)
DCOM	Digital ground. Connected to the common ground point inside the power supply.	--	--
DCOM_Sense	Remote sense for DCOM.	--	--
PWR_OK	Power OK Output.	--	--
PS_ONn	Power supply turn on input, active low.	--	--
ChassisCOM	Power supply outer case. Connected to common ground point inside the power supply.	--	--

A6 Power Supply Basic Troubleshooting (Cover On)

NOTE There are no user replaceable fuses on the power supply. If the internal fuse is blown, the power supply has experienced a major failure and should be replaced. If you determine that the power supply is the failed assembly, replace the power supply. If the power supply is suspect, perform the following quick checks before removing the instrument cover.

1. Ensure the instrument is plugged into a known good $A C$ power source and the yellow standby LED near the power on switch is illuminated. A lit yellow LED indicates the +5.1 SB VDC power supply voltage is providing enough voltage to light the LED.
2. Power on the instrument and verify that the green LED on the front panel is lit. A lit LED indicates the power supply has received an "ON" command from the A4, CPU assembly and that the +5.2 A VDC supply is on.
3. Verify both fans are operating on the side panel of the instrument. The fans can be heard once the analyzer is powered up. If the fans are operating, the fan power supply is functioning.
4. The front panel probe power connector can be used to check the +15 VDC (+/-7\%) and -12.5 VDC (+/-10\%) supplies. The -12.5 VDC is produced by post regulating the -15 VDC supply. A voltmeter can be used to verify these supplies. Refer to Figure 10-2 for a diagram of the probe power connector.

CAUTION Exercise great care when measuring voltages on the Probe Power connector. Accidentally shorting the +15 V or -12.6 V supply to ground can cause damage to the A1A2 or A1A5 assemblies.

Figure 10-2 Probe Power Connector
PROBE POWER

sa869a
If these initial checks are functioning properly and yet the signal analyzer will not boot up properly, or the display is not turning on, refer to Chapter 2, "Boot Up and Initialization Troubleshooting" in this service manual.

It is possible that some portion of the initial troubleshooting check may fail. Chapter 2 should also be referenced if this is the case. As an example, the A15 Front End Control Assembly may be pulling down the +15 volt supply that is used for the probe power on the front panel. Chapter 2 describes the entire instrument boot process, from initial power on to a successful signal analyzer sweep. If any portion of the boot process fails, Chapter 2 describes a step-by-step troubleshooting procedure to help isolate the root cause of the failure.

A7 Midplane Description

Purpose

The Midplane links the following major assemblies:

- A4 CPU Assembly
- A6 Power Supply Assembly
- A8 Motherboard
- A16 Reference Assembly

Refer to Figure 10-3. The Midplane Assembly (7) plugs into the Motherboard. The CPU, Power Supply, and Reference Assemblies plug directly into the Midplane board from the rear of the instrument. The Analog and Digital I.F. Assemblies plug into the analyzer from the rear of the instrument into the Motherboard itself.

Instrument Power Supply LEDs and Test Points

While the A6 Power Supply assembly has no user accessible LEDs or test points the A7 Midplane board assembly does provide these for all of the different instrument power supplies as well as many of the power supply status lines. A complete list of these can be found in Table 10-4 and the location of each can be seen in Figure 10-4.

Additional Power Supply Regulation

There are two analog power supply regulators on the A7 Midplane board assembly. They are the +3.3 VA and -5.2 VA supplies. The +3.3 VA supply is regulated down from the instrument +5.1 VA supply while the -5.2 VA supply is regulated down from the -7VA instrument supply. Both of these supply voltages have test points and LEDs on the A7 Midplane board assembly as seen in Figure 10-4.

Instrument Secure Storage

This is Non-volatile storage of instrument model number, serial number, and software license keys. While the license keys are also contained on the C: drive of the instrument, the model and serial numbers are only saved in this secure memory. There is no way for the user to access this memory in any way. This is reserved for the factory and field software when needed for instrument initialization, as well as the instrument software when installing an option license key. If for some reason any of these cannot be remembered by the instrument there could be a problem with this memory and the A7 Midplane board assembly would need to be replaced.

Power Supply Dithering

A triangle wave of approximately 100 Hz is generated and goes directly to the A6 Power Supply assembly. This is used to frequency modulate the power supply switching frequency for the purpose of lowering any power supply related interference. If for some reason the level of the power supply related interference is higher than normal this circuitry, or the A6 Power Supply assembly, could be suspect.

Miscellaneous Circuitry

Other circuitry on the A7 Midplane include a circuit to phase lock the CPU clock to the analyzer's 10 MHz reference and a Complex Programmable Logic Device (CPLD) used as an Instrument Local Bus (ILB) buffer to A16 Reference Assembly connector at J21.

Figure 10-3 Midplane

Table 10-3

Item	Description
1	A2 Analog I.F. Assembly A3 Digital I.F. Assembly
2	A4 CPU Replacement Kit (w/o disk drive)
3	A6 Power Supply
4	
5	A16 Reference Assembly
6	A15 Front End Control Assembly
7	A7 Midplane Assembly

NOTE
The L.O. Synthesizer, Front End Control Assembly, Analog IF, and Digital IF plug into the Motherboard. All other assemblies mentioned plug into the Midplane from the rear of the instrument.

A7 Midplane Assembly Troubleshooting

If there is an analyzer function such as a boot up issue where the power supplies are suspect, view the power supply LED's on the Midplane Assembly by removing the instrument outer cover. See Figure 10-4.

Figure 10-4 Midplane Assembly

As shown above, the Midplane Assembly has test points for each power supply that can be used as measurement points. These DC voltages can be verified with a voltmeter. Continuity measurements can also be performed on each power supply if a shorted condition is suspect. Refer to the table below for measurement details.

NOTE Voltage readings are referenced to ACOM (TP4). All ohmmeter measurements were taken from the power supply test point to ACOM. Due to capacitive effects, wait for the ohmmeter readings to stabilize.

Table 10-4 A7 Midplane Board Test Points

Power Supply	Test Point	Description	Expected Voltmeter Reading (VDC) Power ON	Expected Ohmmeter Reading ($\mathrm{K} \Omega$) Power OFF
+32A	TP3	32 Volt Analog supply	$+32 \pm 2.0$	$1.3 \mathrm{k} \Omega$
+15A	TP6	15 Volt Analog supply	$+15 \pm 1.0$	260Ω
+15SB	TP2	15 Volt Standby supply	+15 ± 1.0	264Ω
+12D	TP16	12 Volt Digital supply	$+12 \pm 1.0$	264Ω
+9A	TP7	9 Volt Analog supply	$+9 \pm 1.0$	120Ω
$+5.2 \mathrm{~A}$	TP5	5.2 Volt Analog supply	$+5.2 \pm 0.75$	$3.6 \mathrm{k} \Omega$
+5.1D	TP15	5.1 Volt Digital supply	$+5.1 \pm 0.75$	40Ω
+5.1SB	TP17	5.1 Volt Standby	$+5.1 \pm 0.75$	228Ω
+3.35D	TP13	3.35 Volt Digital supply	$+3.35 \pm 0.75$	47Ω
+3.3A	TP10	3.3 Volt Analog supply	$+3.3 \pm 0.75$	36Ω
-5.2A	TP11	-5.2 Volt Analog supply	-5.2 ± 0.75	1.9Ω
-7A	TP8	-7 Volt Analog supply	-7 ± 1.0	445Ω
-15A	TP9	-15 Volt Analog supply	-15 ± 1.0	390Ω
n/a	TP1	Fan Positive supply	$\begin{aligned} & 8.5 \text { to } 13.5 \mathrm{VDC} \\ & \sim 8.8 \mathrm{VDC} @ 25 \mathrm{C} \end{aligned}$	490Ω
n/a	TP4	Analog Common	n/a	n/a
n/a	TP14	Digital Common	n / a	n/a
n/a	TP12	Power OK	$+3.9 \pm 0.75$	$9.2 \mathrm{k} \Omega$

11 Front Panel/Motherboard Troubleshooting

What You Will Find in This Chapter

The following information is found in this chapter:
A8 Motherboard Description on page 342
A1 Front Panel Assembly on page 344

A8 Motherboard Description

Purpose

The Motherboard is an electrical link between many of the electrical assemblies in the instrument. The main functions of this PC board include:

- Distribute power
- Control and common signals between all the measurement PC boards including the A7 Midplane and the Front Panel Assembly
- Circuitry for fan speed control
- 10 MHz Reference distribution

Figure 11-1 Motherboard

The Motherboard is a horizontally mounted, located near the bottom of the analyzer. The Motherboard has the following connector types:

- (6) Analog Card Cage Connectors (J1, J11, J31, J41, J51, J61)
- (4) Digital Card Cage Signals and voltages using PCI connectors (J4, J12, J32, J42)
- (1)Analog Power (J2)
- (1) Mixed Power (J3)
- (2) Front Panel Connectors (J5 and J9)
- (2) Fan Connector (J6 and J7)

Figure 11-2 Motherboard Connectors

Table 11-1

Motherboard Connector	What Plugs In?
$J 1$	A7, Midplane
$J 2$	A7, Midplane
$J 3$	A7, Midplane
$J 4$	A7, Midplane
J5 Midplane	
$J 6$	B2, Fan \#2
$J 7$	B1, Fan \#1
$J 9$	Front Panel

Motherboard Connector	What Plugs In?
J11	A3, Digital I.F, analog signals
J12	A3, Digital I.F, analog signals
J31	Option Slot
J32	Option Slot
J41	Option Slot
J42	A14, L.O. Synthesizer Slot
J51	A15, Front End Control
J61	

A8 Motherboard Troubleshooting

There are no troubleshooting procedures for this assembly. If the Motherboard is suspect, it must be replaced.

A1 Front Panel Assembly

The major components of the A1 Front Frame Assembly are the A1A2 Front Panel Interface Board, A1A3 LCD, A1A4 LCD Inverter Board/DC-DC Converter, and the A1A5 Front Panel USB Interface Board, all of which are serviceable as individual components.

The A1 assembly is used to display the measurement results, accept user input via the keyboard, and connect USB peripheral devices.

A1A2 Front Panel Interface Board

The A1A2 Front Panel Interface board is serviced as an assembly only; no component level repair is supported.

The Front Panel Interface Board contains LCD control, Inverter drive, audio amplifiers, internal speaker, a 4 port USB hub, and a USB keyboard microcontroller.

The two different front panel rubber keypads attach to the back side of the board, which has the keyboard contacts printed on the reverse side.
The 4 ports from the USB hub contained on this board go to the 2 front panel USB connectors, the keyboard microcontroller, and the fourth port is unused.

A1A3 LCD
The LCD used is an 8.4 inch XGA TFT display, which as a resolution of 1024 x 768. It has two backlights that are not individually replaceable.

A1A4 LCD Inverter Board/DC-DC Converter

The Inverter Board provides the high voltage required by the LCD backlights used on older EXA's. Newer EXA's us a DC-DC Converter to power the LED backlights.

A1A5 Front Panel USB Interface Board

The Front Panel USB Interface Board provides the front panel USB connections.

12 Block Diagrams

What You Will Find in This Chapter

The following sections are found in this chapter:
RF Lowband Path Block Diagram on page 347
RF Highband Path \#1 Block Diagram on page 348
RF Highband Path \#2 Block Diagram on page 349 mmW RF Lowband Path Block Diagram on page 350
mmW RF Highband Path \#1 Block Diagram on page 351
mmW RF Highband Path \#2 Block Diagram on page 352
mmW RF Highband Path \#3 Block Diagram on page 353
25 MHz Bandwidth I.F. System Block Diagram on page 354
40 MHz Bandwidth I.F. System Block Diagram on page 355
Reference and Synthesizer Block Diagram on page 356
EXA Computer Block Diagram on page 357

Block Diagrams

sa83a

OPTION 503, 507, 513, 526 RF/ $\mu \mathrm{W}$ EXA RF BLOCK DIAGRAM

OPTION 507, 513, 526μ W EXA RF BLOCK DIAGRAM

OPTION 526μ W EXA RF BLOCK DIAGRAM

OPTION 532, 544 mmW EXA RF BLOCK DIAGRAM
(Lowband Path - Input signals < 3.6 GHz)
footnotes

IF OUT from A13A1J7			NOTE: Power levels based on these settings: Mode: Spectrum Analyzer unless specified differently RF Calibrator $50 \mathrm{MHz},-25 \mathrm{dBm}$ Center Frequency 50 MHz Span 0 Hz Preamp OFF Auto Align OFF after initial Auto Align			
	1 F Path	IF Freq				
	10 MHz	332.5 MHz				
	25 MHz 40 MHz	322.5 MHz				
	40 MHz	250 MHz				
2 AUX IF OUT signal is only available						
See Low Band troubleshooting section warning message			Signal levels above 3 of measuring system			
			Units without any of the folowing options: 840, DP2, MPB			
Units with any of the folowing options: B40, DP2, MPB						

OPTION 532, 544 mmW EXA RF (Low Freq) BLOCK DIAGRAM

OPTION 532, 544 mmW EXA RF BLOCK DIAGRAM
(Highband Path \#1 - Input signals 3.6 to 17.1 GHz)

OPTION 532, 544 mmW EXA RF BLOCK DIAGRAM
(Highband Path \#2 - Input signals 17.1 to 34.5 GHz)

OPTION 544 mmW EXA RF BLOCK DIAGRAM
(Highband Path \#3 - Input signals 34.5 to 44 GHz)

(2) Units with any of the following options: CR3, CRP. 532,544

FOOTNOTES

1) Units with any of the following options: B40, DP2, MPB
(2) Units without any of the following options: B40, DP2, MPB
(3) The Tuning Equations below show the relationship between the A14 1 S Synthesizer output and the Tuner Frequency.

Band	Tuning Equation
-3.6 GHz	Los
-8.4	Lo Symth Output $=$ Tuned F
${ }^{8.4-13.6 \mathrm{CHz}}$	Lo Synth outh
${ }^{13.6-17.16 \mathrm{Az}}$	LOS Synt outu
17.1-2.5.9 Gzz	
-44 GHz	

EXA Computer Block Diagram

Block Diagrams
Block Diagrams

13 Service and Diagnostics Menus

Overview
The Service capabilities described below are accessed via the Service and Diagnostic menus in the System menu. The Service capabilities are intended for field service technicians. These technicians may be at an Keysight Service Center or at a self-maintaining customer site.

There are two types of Service capabilities:

1. Diagnostics - These are available to any user and will assist in initial troubleshooting of instrument malfunctions. Examples are the ability to read the mechanical relay cycles.
2. Service Functions - These are for use by the factory or field repair technicians, access is controlled. Examples are the ability to band lock the analyzer and control the DAC which sets the 10 MHz Reference frequency.

Controlling Access

There are two levels of service and diagnostics capabilities:

1. "Regular access" to diagnostic capabilities that everyone is allowed access. Care may be required to use a feature appropriately. This is the "Diagnostic" type of Service capability defined above.
2. "Secure service access" to the Service menu. This prevents the casual user from accessing and using these features. It is intended to provide this access to Keysight Service Centers or any customer who purchases the Service Guide. The "Service Functions" type of Service capability is defined above.

To access secured service capabilities the technician is required to enter a specific numeric Service Code that is controlled by the instrument software and, for older instrument software versions, Windows® Authentication (login). The Service Code is defined to be easily entered via the front panel; an external keyboard or mouse will not be required. Once access has been gained, it persists within the execution of the instrument application. If the user exits the instrument application, they must re-enter the Service Code to gain access.

Secure Service Access, Software Versions A.01.xx through A.03.xx

Secure service access is the Windows® login of "advanceduser". The "advanceduser" must be a member of the Power Users group. This account has not been pre-configured on the instrument. The administrator must create the login and make "advanceduser" a member of the Power Users group (refer to Windows XP Help and Support Center). Keysight recommend using the password "service4u" to ensure the analyzer can be supported by multiple people. The Service Code is "-2061".

Summary of Requirements for Service Menu Access, Software

 Versions A.01.xx through A.03.xx:- User login name: advanceduser
- Recommended Password: service4u
- User is member of "Power Users" group
- Service Code: -2061

Secure Service Access, Software Version \geq A. 04.00
To access the secure service capabilities press System, More, Service with the instrument application running. At this point you will see the window shown in Figure 13-1. Enter the Service Code and press Enter.

The Service Code is: -2061
Figure 13-1 Service Code Entry

Menus

NOTE
The menus shown on the following pages represent instrument software versions \geq A10.00. The menus for earlier software versions are similar, but lack some of the features shown below.

Hardware Statistical Information	
EXA Signal Analyzer	
Product Number: N9010A	
Serial Number: US47140116	
Firmware Revision: A.01.24	
Revision Date: 8/15/2007 7:54:31 AM	
Component Name	Value
MechAAtten \#1 Count Total	2091
50MHz Cal Switch	585
AC/DC Switch	438
1st 2dB Relay	498
2nd 2dB Relay	570
MechAAtten \#2 Count Total	2184
6dB Relay	555
10dB Relay	552
20dB Relay	606
30dB Relay	471
High temperature operating extreme	40
Low temperature operating extreme	0
Elapsed Time (On-Time)(hours)	137

Service Key Descriptions

Timebase

Allows the technician to adjust the 10 MHz reference ("timebase") manually.

Abstract

NOTE If the Timebase DAC value has been changed, but no Save operation performed before exiting this menu, a warning is provided to the user that they have not saved their setting:

Timebase DAC

Allows the technician the ability to adjust the 10 MHz reference ("timebase"). The adjustment is performed by changing the DAC setting controlling the reference. Once the reference is adjusted to the proper frequency, the DAC value can be saved in non-volatile memory by pressing the Save menu key.

Save

Saves the current Timebase DAC setting in the appropriate cal file. The operator is presented a prompt to confirm the operation:
Save Timebase DAC
This will save the Timebase DAC value to
non-volatile memory and become the value
used each time the instrument is started.
Are you sure you want to do this?
Press Enter to proceed, or ESC to Cancel
OK Cancel

Corrections

The Corrections menu allows the technician to activate and deactivate specific amplitude correction sets. With this capability, the technician can determine if an anomaly is a result of raw hardware performance or incorrect correction data. It also allows the technician the ability to measure the raw hardware performance when all corrections are set to Off.

RF Flatness

Displays a menu which allows the technician to activate and deactivate the corrections unique to the RF flatness of the analyzer. RF Flatness corrections consist of two major parts: raw flatness corrections and temperature corrections. These corrections are summed together and applied by using RF gain, IF gain, and/or "video shift" (post-digitized mathematical offset). The selections in this menu allow the corrections to be applied or not applied to facilitate troubleshooting the cause of flatness-related problems.

Flatness Video Shift On/Off

The Flatness Video Shift turns off the corrections for gain vs. frequency. It does not turn off the corrections for changes in the analog IF gain that accompany flatness changes. This function turns both the gain and video shift on or off, but does not affect the temperature corrections. When set to off, it is possible to measure the raw flatness of the spectrum analyzer while maintaining the temperature corrections.

When Flatness Video Shift is Off, the Advisory Event "Flatness Video Shift OFF" will be displayed.

When Flatness Video Shift is ON, the Advisory Event "Flatness Video Shift OFF" will be cleared.

Temperature Gain \& Tilt On/Off

This function controls both temperature adjustment mechanisms: overall gain vs. temperature, and the temperature-proportional tilt of the gain vs. frequency.

When Temperature Gain \& Tilt is OFF, the Advisory Event "Flatness Temperature Gain \& Tilt OFF" will be displayed.

When Temperature Gain \& Tilt is ON, the Advisory Event "Flatness Temperature Gain \& Tilt OFF" will be cleared.

IF Flatness

This function turns the corrections related to IF flatness On or Off.
When IF Flatness is OFF, the Advisory Event "IF Flatness corrections OFF" will be displayed.

When IF Flatness is ON, the Advisory Event "IF Flatness corrections OFF" will be cleared.

Snapshot Alignments On/Off

During normal auto alignment operation, the firmware will perform an RBW and IQ alignment when the analyzer RBW state is changed, and every 10 minutes thereafter. These alignments can hinder troubleshooting the analyzer since they can change correction factors when the state is changed. Turning snapshot alignments off disables the RBW portion of these alignments for more accurate troubleshooting. (Use IF Flatness ON/OFF to control the IQ alignment.)
When Snapshot Alignments are OFF, the Advisory Event "Snapshot OFF" will be displayed.

When Snapshot Alignments are ON, the Advisory Event "Snapshot OFF" will be cleared.

Band Lock

Provides the ability to tune the analyzer over as large a range as can be accommodated by the specified harmonic number and 1st LO frequency range. As a result, this feature can be used to check performance in the frequency band overlap regions. By definition, multi-band sweeps are not allowed.

When band lock is in effect the Advisory Event "Band Locked: Band <x>" where " x " is a value between 0 and 6 .

When band lock is not in affect the Advisory Event "Band Locked: Band <x>" is cleared.

Dependencies/Couplings:

1. Band Lock is only available on analyzers with frequency range options beyond 3.6 GHz
2. The individual bands available for selection also depends upon the particular frequency range option.

Off or value of -1
Turns Band Lock to Off. Analyzer will tune from band to band normally.

Band 0 or value of 0
Locks the analyzer to Band 0.
Band 1 or value of 1
Locks the analyzer to Band 1.
Band 2 or value of 2
Locks the analyzer to Band 2.
Band 3 or value of 3
Locks the analyzer to Band 3.
Band 4 or value of 4
Locks the analyzer to Band 4.
Band 5 or value of 5
Locks the analyzer to Band 5.
Band 6 or value of 6
Locks the analyzer to Band 6.

LO Band Lock

Provides the ability to tune the analyzer over as large a range as can be accommodated by the specified LO Band. As a result, this feature can be used to check performance in the LO band overlap regions. By definition, multi-band sweeps are not allowed.

When band lock is in effect the Advisory Event "LO Band Locked: Band <x>" where " x " is a value between 0 and 6 .

When band lock is not in affect the Advisory Event "LO Band Locked: Band $\langle x\rangle$ " is cleared.

Dependencies/Couplings:

LO Bandlock will be grayed-out if Bandlock is OFF. If Harmonic Bandlock is any setting other than OFF, LO Bandlock menu key is enabled. If LO Bandlock is other than OFF, and the Harmonic Bandlock is transitioned to OFF, the LO Bandlock is set to OFF.

Off
Turns LO Band Lock to Off. Analyzer will tune from LO band to LO band normally.

Band 0

Locks the analyzer to LO Band 0 .

Band 1

Locks the analyzer to LO Band 1.

Band 2

Locks the analyzer to LO Band 2.
Band 3
Locks the analyzer to LO Band 3.

LO Control

Provides keys that allow you to control the LO. This is only present on analyzers equipped with Option EXM, External Mixing.

2nd LO Gain DAC

This parameter provides the ability to adjust the output gain of the 2nd LO DAC. The range is from 0 to 4095 where 0 is the minimum gain and 4095 is the maximum gain. Setting a value of 4096 or greater returns control to the instrument. In External Mixing, this DAC controls the level of the 1st LO signal at the front panel EXT MIXER connector.

External LO Turnoff

Disconnects the 1st LO path which will minimize the effect of the 1st LO signal at the front panel EXT MIXER connector.

The Align Menu allows accessing Diagnostic capabilities of Alignment, and invoking alignments for individual subsystems.

Diagnostic

The Diagnostic menu contains items for controlling the operating behavior of Alignment and the Alignment reporting capabilities.

Visible Align

Controls the state of Visible Align. Visible Align replaces the "Aligning 1 or 10" messages with descriptive messages describing the alignment piece begin executed.

Align Log...

Invokes Notepad with the Alignment Log loaded. The log can be viewed or saved to an external media or drive. Notepad can be closed without a mouse or external keyboard by pressing ALT front-panel key, then arrow down to highlight Exit, then press Enter.

Align Log Mode

The Alignment System places information about the last alignment performed into a log. The log can be configured to operate in clear or append mode. In clear mode the log only contains information on the last alignment performed; the log is cleared with each alignment performed. In append mode each new alignment appends to the log. In append mode, care must be taken by the operator to not allow the log to grow to a size so large as to inhibit system operation.

Subsystem

The Subsystem menu allows invoking individual components of the internal alignments.

ADC

Immediately executes an alignment of the ADC subsystem. The instrument will stop any measurement currently underway, perform the alignment, then restart the measurement from the beginning.

A failure of ADC will set the Error Condition "Align ADC failed". A failure will not employ new ADC alignment data.

Successful completion of ADC will clear the Error Condition "Align ADC failed".

The Advisory Event "Alignment complete" is displayed when the alignment is complete.

Align ADC can be interrupted by pressing the Cancel (ESC)
front-panel key. When this occurs, no new ADC alignment data will be employed.

LO

Immediately executes an alignment of the LO subsystem. The instrument will stop any measurement currently underway, perform the alignment, then restart the measurement from the beginning.

A failure of LO will set the Error Condition "Align LO failed". A failure will not employ new LO alignment data.

Successful completion of LO will clear the Error Condition "Align LO failed".

The Advisory Event "Alignment complete" is displayed when the alignment is complete.
Align LO can be interrupted by pressing the Cancel (ESC) front-panel key. When this occurs, no new LO alignment data will be employed.

IF

Immediately executes an alignment of the IF subsystem. The instrument will stop any measurement currently underway, perform the alignment, then restart the measurement from the beginning.

A failure of IF will set the Error Condition "Align IF failed". A failure will not employ new IF alignment data.
Successful completion of IF will clear the Error Condition "Align IF failed" and clear bit 6 in the Status.

The Advisory Event "Alignment complete" is displayed when the alignment is complete.

Align IF can be interrupted by pressing the Cancel (ESC) front-panel key. When this occurs, no new IF alignment data will be employed.

Current IF Flatness

Immediately executes an alignment of the Current IF Flatness, for the purpose of improving the absolute amplitude accuracy within FFT Sweeps and improving the group delay in some digital demodulation measurements. The instrument will stop any measurement currently underway, perform the alignment, then restart the measurement from the beginning.

The Advisory Event "Alignment complete" is displayed when the alignment is complete.
Align Current IF Flatness can be interrupted by pressing the Cancel
(ESC) front-panel key. When this occurs, no new Current IF Flatness alignment data will be employed.

RF

This is exactly the same as the customer accessible Align Now, RF with one exception: the alignment can be invoked even if a previous Align Now, All has not been executed (this key is not grayed-out if using default alignment data). See description of Align Now, RF in the User's Guide.

Current Gain System

Immediately executes an alignment of the Current System Gain, for the purpose of improving small amplitude variations that occur as resolution bandwidth is switched. This alignment is done by measuring the response of the current system state configuration to the 50 MHz amplitude reference signal. All subsequent measurements are then compensated appropriately for absolute amplitude accuracy. The instrument will stop any measurement currently underway, perform the alignment, then restart the measurement from the beginning.

The Advisory Event "Alignment complete" is displayed when the alignment is complete.
Align Current System Gain can be interrupted by pressing the Cancel (ESC) front-panel key. When this occurs, no new Current System Gain alignment data will be employed.

LO Phase Noise Adjustment (software versions \geq A.04.00)
Immediately executes an optimization LO for Phase Noise. When the optimization is finished the value is stored in non-volatile memory. The instrument will stop any measurement currently underway, perform the alignment, and then restart the measurement from the beginning (similar to pressing the Restart key).
Diagnostics (software versions \geq A.04.00)
Pressing Diagnostics in the Service Menu brings up the Service Diagnostics submenu. The functions in this menu allow the technician to do more detailed, lower-level troubleshooting.

Show Software

The Show Software screen displays revision information for Keysight internal software that comprises the embedded application and programmable hardware devices (FPGAs and PLDs).

Figure 13-2 Example Screen

Software Assembly Name	Version
AcprMeasurement	1.3.47921.24555
ADemodApplication	1.3.47921.24555
ADemodLogicallicense	1.0.1.1
ADemodMeasurement	1.3.47921.24555
ADemodPhysicallicense	1.0.1.1
Agilent.Cdf.Api	3.5.12601.11917
Agilent.Cdf.DataAccess	2.2.9815.12243
Agilent.CommonBaseband.HWControl	2.6.9.0
Agilent.Lxi.LxiEventMrapper	1.0.6.0
Agilent.Physics	11.4.0.0
Agilent.Physics.Aborthandler	11.4.12.0
Agilent.Physics.CodeTimer	0.20 .1 .0
Agilent.Physics.LogicalHardware	11.4.12.0
Agilent.PhysicsServer	11.4.12.0
Agilent.PhysicsServices	0.20.1.0
Agilent.SA.Application	1.3.47921.24555
Agilent.SA.Application.ResourceCatalog	1.3.47921.24555
Agilent.SA.BackusDsp	3.14.0.0
Agilent.SA.BaseInst.ResourceCatalog	1.3.47921.24555
Agilent.SA.BaseInterfaces	1.3.47921.24555
Agilent.SA.Data	3.5.12601.11917
Agilent.SA.Dsp	1.3.47921.24555
Agilent.SA.DynamicTypes	0.0.0.0
Agilent.SA.GPSA.ResourceCatalog	1.3.47921.24555
Agilent.SA.GpsaCommon	1.3.47921.24555
Agilent.SA.GpsaDisplay	1.3.47921.24555
Agilent.SA.GpsaEngine	1.3.47921.24555
Agilent.SA.GPSAMeasurement	1.3.47921.24555
Agilent.SA.GpsaTypes	1.3.47921.24555
Agilent.SA.Graph	1.3.47921.24555
Agilent.SA.Graph.DrawEngine	1.2.3573.17385
Agilent.SA.Guilibrary	1.3.47921.24555
Agilent.SA.HardwareLogicalLicenses	1.0.2.2
Agilent.SA.Hooks	3.5.12601.11917
Agilent.SA.IACUI	1.3.47921.24555
Anilont CA Inetintorfaroe	13.4702124555

The software name is left justified, with the revision information right justified. This is a multi-page list with Next Page and Previous Page menu key control in accordance with other text screens (Show Systems, Show Errors, etc.).

14 Replaceable Parts

What You Will Find in This Chapter

1. Part number tables for assemblies, mechanical parts, cables, front panel connectors, and labels.
2. Part location diagrams for the following:

Figure 14-1, "Major Assemblies,"
Figure 14-2, "External Hard ware (Benchtop Configuration),"
Figure 14-3, "External Hardware and Bail Handle (Option PRC),"
Figure 14-4, "External Hard ware (Option PRC),"
Fig 14-5 and Fig 14-6 CPU Assembly on page 398 and page 399
Figure 14-7, "Disk Drive Tray Assembly (Option PC2, PC3, PC4, and PC5),"
Figure 14-8, "Top Brace and Reference Bracket,"
Figure 14-9, "RF Area - Standard Instrument,"
Figure 14-10, "RF Area - Option 532, 544,"
Figure 14-11, "RF Area - Options B40, MPB, or DP2,"
Figure 14-12, "RF Area - Option 532, 544 with Option B40, MPB, or DP2,"
Figure 14-13, "RF Area - Options B40, MPB, or DP2 (switch detail),"
Figure 14-14, "RF Area - Option 532, 544 with Option B40, MPB, or DP2 (switch detail),"

Figure 14-15, "Front End Parts - Standard Instruments,"
Figure 14-16, "Front End Parts - Option 532, 544,"
Figure 14-17, "Front End Parts - Options MPB, B40, DP2, CR3, or CRP,"
Figure 14-18, "Front End Control Cables - early serial numbers,"
Figure 14-19, "Front End Control Cables - later serial numbers,"
Figure 14-20, "Front End Control Cables - Options B40, MPB, DP2, CR3, or CRP,"

Figure 14-21, "Reference Board Cables - Instruments without Option B40, MPB, or DP2,"

Figure 14-22, "Reference Board Cables - Options B40, MPB, DP2,"
Figure 14-23, "AIF/DIF Cables - Standard Instruments,"
Figure 14-24, "AIF/DIF Cables, bottom - Standard Instruments,"
Figure 14-25, "AIF/DIF Cables - Options MPB, B40, or DP2,"
Figure 14-26, "AIF/DIF Cables, bottom - Options MPB, B40, or DP2,"
Figure 14-27, "AIF/DIF Assemblies - Standard Instruments,"
Figure 14-28, "AIF/DIF Assemblies - Option DP2, MPB, B40, 532, 544,"
Figure 14-29, "Chassis,"
Figure 14-30, "Motherboard,"
Figure 14-31, "Fan Hard ware,"
Figure 14-32, "Input Connector,"
Figure 14-33, "Front Frame Parts - LCD,"
Figure 14-34, "Front Frame Parts - LED,"
Figure 14-35, "Front Frame Parts (shields off) - LED,"
Figure 14-36, "Front Frame Exploded View - LCD,"
Figure 14-37, "Front Frame Exploded View - LED,"

How to Order Parts

To order an assembly or mechanical part listed in this chapter, go to: www.parts.keysight.com

If you do not have web access, or the parts you are interested in cannot be found in the parts list provided, contact your local Keysight Technologies sales and service office with the following information:

- Product model number
- Product serial number
- Description of where the part is located, what it looks like, and its function (if known)
- Quantity required

For a list of Keysight Technologies sales and service office locations, refer to "Contacting Keysight Technologies" on page 39.

Replaceable Parts

Some of the assemblies listed in the following table are related to options that are available with the EXA Signal Analyzer. These options are described below.

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
A1A1	Front Frame Assembly Replacement Kit ${ }^{\text {a }}$	N9020-60110
A1A1MP1	Front Frame	W1312-20108 ${ }^{\text {b }}$
A1A1MP2	Main Keypad Overlay ${ }^{\text {b }}$	
	Serial Number >MY/SG51250000	N9030-80002
	Serial Number <MY/SG51250000	E4410-80108
A1A1MP3	Connector Overlay	E4410-80109
A1A1MP4	Front Frame Ground Spring	W1312-00021
A1A1MP5	Braided Gasket	-----
A1A1MP6	Chromeric Gasket	-----
A1A1MP7	Front Frame Top Trim Strip (Use with Option PRC, Portable)	W1312-40004
A1A1MP8	Front Frame Top Trim Strip (Use with standard Bench analyzer)	W1312-40019
A1A1MP9-10	Front Frame Side Trim Strip	W1312-40005
A1A1MP11-12	Vinyl Side Trim (Use with standard Bench Analyzer)	5041-9172
A1A1MP13-17	Hole Plug	6960-0525
A1A1MP18	Cover Plate	N9020-00002
A1A1MP19	Overlay, Left Display	N9020-80026
A1A1MP20-21	Hole Plug, for 0.25 inch hole	6960-0076
A1A2	Front Panel Interface Board	
	Serial Number \geq MY/SG51250000	W1312-60137
	Serial Number \geq MY/SG48010101, US48010001 to Serial Number <MY/SG51250000	W1312-60042
	Serial Number <MY/SG48010101 ${ }^{\text {c }}$	N9020-60033
A1A2MP1	Speaker	9164-0453
A1A2MP2	Speaker Foam	W1312-40016
A1A3	Liquid Crystal Display	
	Serial Number \geq MY/SG51250000	2090-0997
	Serial Number <MY/SG51250000	2090-1040

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
A1A4	DC-DC Converter (LED display backlight power) Serial Number >MY51250000, SG51250000	0950-5235
	Inverter Board (display backlight power) Serial Number <MY51250000, SG51250000	0950-4635
A1A5	Front Panel Daughter Board	W1312-63193
A1MP1	Main Keypad	E4410-40100
A1MP2	Display Keypad	E4410-40101
A1MP3	Frequency Label, 3.6 GHz	N9010-80008
A1MP4	Frequency Label, 7 GHz	N9010-80009
A1MP5	Frequency Label, 13.6 GHz	N9010-80010
A1MP6	Frequency Label, 26.5 GHz	N9010-80011
A1MP7	LCD Glass Filter	1000-1513
A1MP8	LCD Lens Gasket	W1312-40006
A1MP9	RPG Knob	W1312-40017
A1MP10-13	Cable Clamp (Front Panel Cables)	1400-1439
A1MP14	Display Bracket	
	Serial Number \geq MY/SG51250000	W1312-00145
	Serial Number < MY/SG51250000	W1312-00023
A1MP15	Inverter Board Shield	W1312-00024
A1MP16	Frequency Label, 32 GHz	N9010-80006
A1MP17	Frequency Label, 44 GHz	N9010-80007
A1MP23	Front Panel Interface/Speaker Bracket	N9020-00028
A1MP24	Magnetic Shield (Display Bracket to Front Panel Interface/Speaker Bracket)	N9020-00029
A1W1	Flex Circuit, Display to Front Panel Interface Board	
	Serial Number \geq MY/SG51250000	W1312-60122
	Serial Number <MY/SG51250000	W1312-60010
A1W2	Power Cable, Front Panel Interface Board to Inverter Board	W1312-60011
A1W3	Power Cable, Front Panel Interface board to DC-DC Converter	W1312-60130
A1W4	Power Cable, DC-DC Converter to Display	W1312-60131
A2	Analog I.F. Assembly	
	Standard Instruments, Option 503, 507, 513, 526	E4410-60104
	Option B40, MPB, DP2, 532, 544	N9020-60011

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
A3	Digital I.F. Assembly (Includes connector plate, EMI gasket, washers, nuts)	
	Standard Instruments	N9020-60119
	Options B40, MPB, or DP2	N9020-60165
A3W1	Cable Assembly, Smart Noise Source (Wire Harness)	E4410-60163
A4 Refer also to Service Note N9010A-01A	CPU Replacement Kit (w/o disk drive)	
	Standard analyzers with Option 503, 507, 513, 526 and Serial Number > MY/SG/US52220000 ${ }^{\text {d }}$	N9020-60140
	Standard analyzers with Option 532, 544 and Serial Number \geq MY/SG/US51440000	
	Standard analyzers with Option 503, 507, 513, 526 and Serial Number \geq MY/SG/US50060000 to <MY/SG/US52220000 ${ }^{\text {d }}$	N9020-60115
	Standard analyzers with Serial Number <MY/SG/US50060000	N9020-60031
	Option PC2 (Dual Core) ${ }^{\text {d }}$	N9020-60081
	Option PC4 (High Performance Dual Core) ${ }^{\text {d }}$	N9020-60135
A4A1	Disk Drive Interconnect Board	W1312-63079
A4BT1	CPU Board Battery (CR2032)	1420-0356
A5 Refer also to Service Note N9010A-03	Disk Drive Replacement Kit	
	Serial Number \geq MY/SG/US50060000 (Solid State, SATA ${ }^{\text {d }}$) or Option SSD	N9020-60125
	Serial Number < MY/SG/US50060000 (IDE)	N9020-60066
A5MP1	Disk Drive Tray	W1312-40078
A5MP2	Disk Drive Rear Panel	W1312-00103
A5MP3	Disk Drive Assembly Handle	1440-0421
A5W1	Disk Drive Ribbon Cable	8121-1611
A6	Power Supply	0950-4894
A7	Midplane Assembly	N9020-60120
A8	Motherboard Assembly	N9000-66404
A9	RF Attenuator A	
	0 to 4 dB (Options 503, 507, 513, 526)	33360-60007
	0 to 10 dB (Options 532, 544)	33326-60012
A10	RF Attenuator B	
	0 to 66 dB (Options 503, 507, 513, 526)	33321-60080
	0 to 60 dB (Options 532, 544)	33325-60018

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
A11	Low Band Switch Assembly	
	Option 503	E4410-60121 ${ }^{\text {e }}$
	Options 507, 513, 526	E4410-60121
	Options 532, 544	N9020-60051
A12	YTF Preselector (except Option 503)	
	Options 507, 513, 526	5087-7730
	Options 532, 544	5087-7326
A12MP1	Gap Pad YTF Base	5022-7179
A13	RF Front End Assembly	
	Options 503, 507, 513, 526	N9020-60189
	Options 532, 544	N9010-60007
A13A1	Bandpass Filter	
	Standard Instruments, Options 503, 507, 513, 526	0955-1719
	Options B40, MPB, DP2, CR3, CRP, 532, 544	0955-2176
A13W1	Cable Assembly, A13J10 to A13A1 Input (Semi Rigid)	
	Standard Instruments	E4410-20176
	Options B40, MPB, DP2, CR3, or CRP	E6607-21176
A13W2	Cable Assembly, A13J11 from A13A1 Output (Semi Rigid)	
	Standard Instruments	E4410-20177
	Options B40, MPB, DP2, CR3, or CRP	E6607-21177
A13MP1	Spacer, Bandpass Filter Mounting Adapter (Options B40, MPB, DP2, CR3, or CRP)	E6607-25005
A14	L.O. Synthesizer Assembly	E4410-60102
A15	Front End Control Assembly	
	Standard Instruments, Options 503, 507, 513, 526 with Serial Number <MY51250493, <SG51250069, <US51450000 ${ }^{\text {C }}$	N9020-60127
	Standard Instruments, Options 503, 507, 513, 526 with Serial Number >MY51250493, >SG51250069, >US51450000	N9020-60098
	Options B40, MPB, DP2, CR3, CRP, 532, 544	N9020-60172
A16	Reference Assembly	E4410-60108
AT1	Fixed Attenuator, 6 dB (Option 507, 513, 526 with Options B40, MPB, or DP2) (connects to SW2)	08493-60026
B1-B2	Fan	3160-4199

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
J1	Type-N (f) RF Input Connector Assembly (Option 503, 507, 513, 526)	5002-0702
	2.4 m Input Connector Assembly (Option 532, 544)	N9030-60011
	EMI O-Ring 18.75 mm ID (used between RF Input Connector and Front Frame)	8160-1637
J2	EXT MIXER Connector (discard washer and nut, if supplied)	1250-1666
MP1	Chassis Base	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	E4410-00102
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-00032
	Serial Number >MY/SG/US51440000 (Option 532, 544)	N9020-00032
MP2	Chassis Side, Right (inner)	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00046
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00135
	Serial Number >MY/SG/US51440000 (Option 532, 544)	W1312-00135
MP3	Chassis Side, Left (inner)	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00047
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00136
	Serial Number >MY/SG/US51440000 (Option 532, 544)	W1312-00136
MP4	Midplane Bracket	W1312-00048
MP5	Chassis Front Bracket	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00049
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00098
	Serial Number >MY/SG/US51440000 (Option 532, 544)	W1312-00098
MP6	Fan Bracket	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00133
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00137
	Serial Number >MY/SG/US51440000 (Option 532, 544)	W1312-00137
MP7	Top Brace (includes foam strips)	N9020-60018
MP8	Chassis Side, Right (Outer, attaches to Lowband Switch bracket, Attenuator brackets, and Chassis bottom)	
	Serial Number < MY/SG50510001 ${ }^{\text { }}$	E4410-00101
	Serial Number \geq MY/SG50510001 to <MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-00031
	Serial Number \geq MY/SG52180000 (Option 503, 507, 513, 526)	N9020-00034
	Serial Number \geq MY/SG514400000 (Option 532, 544)	N9020-90034

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
MP9	Rear Panel Replacement Kit (includes foam strip)	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60028
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60142
	Serial Number >MY/SG/US51440000 (Option 532, 544)	N9020-60142
MP10	Label, AUX IF OUT (rear panel)	N9020-80081
MP11-12	Coax Cable Clips	5041-7250
MP13-15	Tie Wrap (For long semi-rigid cables)	1400-0249
MP16	Dress Cover (includes magnetic gasket)	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60020
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60141
	Serial Number >MY/SG/US51440000 (Option 532, 544)	N9020-60141
MP17-20	Rear Feet (Benchtop Configuration)	5041-9611
MP21-22	Strap Handles (Benchtop Configuration)	N9020-60002
MP25-26	Fan Guard	3160-0281
MP27-34	Rivet, Fan Mounting (8 pieces)	0361-1272
MP35	Z-Bracket Power Supply to Chassis	W1312-00016
MP36-37	Attenuator Bracket	
	Option 503, 507, 513, 526	E4410-00103
	Option 532, 544	N9020-00019
MP38	Low Band Switch Assembly Bracket	
	Serial Number < MY/SG/US50510001, Option 503, 507, 513, 526	E4410-00109
	Serial Number \geq MY/SG/US50510001, Option 503, 507, 513, 526	N9020-00023
	Option 532, 544	N9020-00013
MP39	O-ring, Type N (f) RF Input Connector	8160-1637
MP40	PC Board Plastic Guides (10 pieces)	W1312-40001
MP41-44	Front Bumpers (Option PRC, Portable)	W1312-40020
MP45-48	Rear Bumpers (Option PRC, Portable)	W1312-40021
MP49	Bail Handle (Option PRC, Portable)	W1312-60036
MP50	Front Panel Protective Cover (Option CVR)	W1312-40025
n/a	Front End Troubleshooting Kit	N9020-60005
n/a	Front End Troubleshooting Bd.	E4410-60115
MP51	CPU \& Power Supply Guide Pin Grommets (8 pieces)	0400-0353

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
MP52	50Ω Termination (for A13)	1810-0118
MP53	Spiral Wrap	0890-0025
MP54	Rear Frame Lock Washer (External Reference Cable)	2190-0102
MP55	Rear Frame Lock Nut (External Reference Cable)	0590-2332
MP57-60	Bottom Feet Hole Plugs (Option PRC, Portable)	W1312-40032
MP61-64	Strap Handle Plugs (Option PRC, Portable)	W1312-40024
MP65	Top Bracket, Reference Assembly	N9000-00104
MP66-69	Bottom Feet (Benchtop Configuration)	5041-9167
MP70-71	Tilt Stands (Benchtop Configuration)	1460-1345
MP72-75	Bottom Feet Key Locks (Benchtop Configuration)	5021-2840
MP78	Input Connector O-Ring	8160-1637
MP79	Bracket, Preselector Bypass Switch 1 (on top of bottom switch)	E4410-00104
MP80	Bracket, Preselector Bypass Switch 2 (on top of top switch)	E4410-00110
MP81	Shield, Magnetic, Attenuator A (Option 532, 544)	N9020-00043
MP82	Shield, Magnetic, Attenuator B (Option 532, 544)	N9020-00044
MP83	Gusset, Chassis (near RF Input connector)	W1312-00093
SW1 \& 2	Coaxial Switch (Options B40, MPB, or DP2)	N1810-60065
W1	Cable, Front Panel Interface Board to Motherboard (Ribbon)	
	Serial Number $\geq \mathrm{MY} / \mathrm{SG48010101}$, US480100019	N9020-60036
	Serial Number <MY/SG48010101, US48010001 ${ }^{\text {h }}$	E4410-60171
W2	Cable, Interconnect from A2J820 to A3J20	
	Standard Instruments, Option 503, 507, 513, 526	E4410-60162
	Option B40, MPB, DP2, 532, 544	N9020-60046
W3	Cable Assembly, A11J2 to A13J2 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20162
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20101
	Option 532, 544	N9020-20131
W4	Cable Assembly, A14J740 to A13J4 (Semi Rigid)	N9020-20156
W5	Cable Assembly, A16J702 to A13J1 (Semi Rigid)	N9020-20155
W6	Cable Assembly, A16J703 to A14J200 (Semi Rigid)	N9020-20154

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
W7	Cable Assembly, A12 Output to A13J9 (Semi Rigid)	
	Option 503, 507, 513, 526	N9020-20124
	Option 532, 544	N9010-20006
W8	Cable Assembly, A11J3 to A12 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20160
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20123
	Option 532, 544	N9010-20005
W9	Cable Assembly, A10 Output to A11J1 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20159
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20153
	Option 532, 544	N9010-20004
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20156
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20141
	Option 532, 544	N9020-20133
W11	Cable Assembly, A9 Output to A10 Input (Semi Rigid), Option 503, 507, 513, 526	E4410-20158
	Cable Assembly, A9 Output to A10 Input (Semi Rigid), Option 532, 544	N9010-20002
W12	Cable Assembly, A16J710 to A3J14 (Flexible Coax)	8121-1401
W13	Cable Assembly, A2J601 to A3J15 (Flexible Coax)	8121-1411
W14	Cable Assembly, A16J711 to A2J300 (Flexible Coax)	8121-1401
W15	Cable Assembly, A13J7 to A2J100 (Flexible Coax)	8121-1400
W16	Cable Assembly, A9 \& A10 to A15J801 or A15J102 (Ribbon Cable)	E4410-60157
W17	Cable Assembly, A13 to A15J104 (Ribbon Cable)	E4410-60156
W18	Cable Assembly, A11J4 to A15J103 or A15J700 (Ribbon Cable), Option 503, 507, 513, 526	E4410-60160
	Cable Assembly, A11J4 to A15J103 or A15J700 (Ribbon Cable), Option 532, 544	N9020-60092
W19	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option 503, 507, 513, 526	E4410-20169
	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option 532, 544	N9010-20003
W20	Cable Assembly, A13J6 to A16J705 (Flexible Coax)	8121-1400

Table 14-1 All Replaceable Parts

Reference Designator	Description	Part Number
W22	Cable Assembly, A15J301 or A15J300 to A12J1 (Wire Harness)	
	Standard Instruments, Option 507, 513, 526 with serial number <MY51250493, <SG51250069, <US51450000	E4410-60158
	Standard Instruments, Option 507, 513, 526 with serial number >MY51250493, >SG51250069, >US51450000	N9020-60059
	Options B40, MPB, DP2, CR3, CRP, 532, 544	N9020-60059
W23	Cable Assembly, Ext. Reference Cable (rear frame) to A16J704 (Flexible Coax)	8121-1402
W26	Cable Assembly, A13J13 to A15J903 (Flexible Coax) Option EXM	8121-2025
W27	Cable Assembly, J2 (front panel) to W28 (Semi Rigid) Option EXM	N9020-20166
W28	Cable Assembly, W27 to A13J8 (Semi Rigid) Option EXM	N9020-20198
W30	Cable Assembly, A15J801 to SW1 and SW2 (Wire Harness)	E4410-60159
W31	Cable Assembly, SW2 Center Port to A11J3 (Semi-rigid)	E4410-20161
W32	Cable Assembly, SW2 Port 2 to A12J2 (Semi-rigid)	E4410-20163
W33	Cable Assembly, SW1 Port 2 to A12J1 (Semi-rigid)	E4410-20165
W34	Cable Assembly, SW1 Center Port to A13J9 (Semi-rigid)	E4410-20164
W35	Cable Assembly, AT1 to SW1 Port 1 (Semi-rigid)	E4410-20178
W36	Cable Assembly, A15J902 to A13J7 (Flexible Coax)	8121-1862
W37	Cable Assembly, A15J900 to A2J100 (Flexible Coax)	8121-1401
W38	Cable Assembly, A15J901 to A3J15 (Flexible Coax)	8121-1861
W39	Cable Assembly, A15J1100 to Rear Panel Port 9 (Flexible Coax)	8121-2028
W40	Cable Assembly,A13J6 to A3J17 (Flexible Coax)	8121-1940
W41	Cable Assembly, A2J601 to A3J19 (Flexible Coax)	8120-8868
W42	Cable Assembly, A16J706 to A3J14 (Flexible Coax)	8121-1401
W43	Cable Assembly, A16J705 to A3J18 (Flexible Coax)	8121-1401
W45	Cable Assembly, A11J3 to SW4 Port 1 (Semi Rigid) Option 532, 544 with Option MPB	N9010-20009
W46	Cable Assembly, SW4 Port 2 to A13J9 (Semi Rigid) Option 532, 544 with Option MPB	N9020-20130
W47	Cable Assembly, SW4 Port 3 to A12 Output (Semi Rigid) Option 532, 544 with Option MPB	N9020-20129
W48	Cable Assembly, SW4 Port 4413 to A12 Input (Semi Rigid) Option 532, 544 with Option MPB	N9020-20128

a. Frequency range label not included in kit. See A1MP3 - A1MP6
b. Non-orderable item, see A1A1
c. Replacement Kit
d. Disk drive removable through rear panel.
e. The E4410-60121 is the preferred replacement for the N9020-60255, Low Band Switch that may be installed in some N9010As with Option 503.
f. Refer to part number for $\mathrm{S} / \mathrm{N}>\mathrm{MY} / \mathrm{SG} 50510001$ if the analyzer is equipped with Option B40, MPB, or DP2.
g. Locking connector on both ends
h. Locking connector, Motherboard only

Table 14-2
Attaching Hardware

Attach	To	Qty	Part Number	Type	Tool	Torque
Analog IF	Digital IF	3	0515-0372	$\begin{aligned} & \text { M3 X } 0.5 \\ & (8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Analog IF (Top Shield)	Analog IF (Bottom Shield)	16	0515-0664	$\begin{aligned} & \text { M3 X } 0.5 \\ & (12 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Attenuators	Attenuator Bracket	2 per	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Attenuators	Chassis	2 per	0515-0372	$\begin{aligned} & \mathrm{M} 3 \times 0.5 \\ & \text { (} 8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Bail Handle	Front Frame	4	0515-0435	$\begin{aligned} & \text { M4 X } 0.7 \\ & (14 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-20	21 inch-lbs
Bandpass Filter	Bandpass Filter Spacer	3	0515-0661	M2 X 0.4 (6 mm long)	Torx T-6	3 inch-lbs
Bandpass Filter Spacer	RF Front End Assembly	4	0515-0658	M2 $\times 0.4$ (6 mm long)	Torx T-6	3 inch-lbs
Bracket, Preselector Bypass SW1	Low Band Switch Bracket	2	0515-1992	$\begin{aligned} & \mathrm{M} 2.5 \times 0.45 \\ & (20 \mathrm{~mm} \text { long }) \end{aligned}$	Torx T-8	6 inch-lbs
Bracket, Preselector Bypass SW2	Low Band Switch Bracket	2	0515-1992	$\begin{aligned} & \mathrm{M} 2.5 \times 0.45 \\ & (20 \mathrm{~mm} \text { long }) \end{aligned}$	Torx T-8	6 inch-lbs
Chassis Bottom	Chassis Sides, Midplane \& Front Bracket	15	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Chassis Side (Right Outside)	Lowband Switch Bracket, Attenuator Brackets, Chassis bottom	7	0515-0372	$\begin{aligned} & \mathrm{M} 3 \times 0.5 \\ & (8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
CPU Assembly	Chassis	6	0515-0372	$\begin{aligned} & \text { M3 X } 0.5 \\ & \text { (} 8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
CPU Shield	CPU \& Hard Disk Drive	19	0515-1227	M3 $\times 0.5$ (6 mm long)	Torx T-10	9 inch-lbs

Table 14-2 Attaching Hardware

Attach	To	Qty	Part Number	Type	Tool	Torque
CPU Shield (Option PC2)	CPU Assembly	3	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
		19	0515-1227	$\begin{aligned} & \mathrm{M} 3 \times 0.5 \\ & (6 \mathrm{~mm} \text { long }) \end{aligned}$	Torx T-10	9 inch-lbs
DC-DC Converter	Display Bracket Serial Number >MY/SG51240000	2	0515-0430	M3 $\times 6.0$	Torx T-10	9 inch-lbs
Digital IF	LVDS Connector	2	0515-4439	M 2.5×6.0	Small Pozi	5 inch-lbs
Display	Display Bracket Serial Number >MY/SG51240000	4	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Display	Display Bracket Serial Number MY/SG51240000	4	0515-1934	M2.5 $\times 0.45$ (6 mm long)	Torx T-8	5 inch-lbs
Display Bracket \& Front Panel Interface/Speaker Bracket	Front Frame	7	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Disk Drive (Option PC2, PC3, PC4, PC5)	Disk Drive Tray	4	0515-0372 (<Rev 6) 0515-1035 (>Rev 7) (flat-head screw)	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Disk Drive Interconnect (Option PC2, PC3, PC4, PC5)	CPU Assembly	2	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Disk Drive Handle (Option PC2, PC3, PC4, PC5)	Disk Drive Rear Panel	2	0515-1227	$\begin{aligned} & \text { M3 X } 0.5 \\ & (6 \mathrm{~mm} \text { long }) \end{aligned}$	Torx T-10	9 inch-lbs
Disk Drive Rear Panel (Option PC2, PC3, PC4, PC5)	Disk Drive Tray	4	0515-2219	M2.5 $\times 0.45$ (5 mm long)	Torx T-8	9 inch-lbs
External Reference BNC	Rear Panel	1	2190-0102	Lock Washer	n/a	n/a
External Reference BNC	Rear Panel	1	0590-2332	Hex Nut	9/16" Nut Driver	21 inch-lbs
Fan Assembly	Chassis	5	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Fan	Fan Bracket	8	0361-1272	Rivets	n/a	n/a

Table 14-2 Attaching Hardware

Attach	To	Qty	Part Number	Type	Tool	Torque
Front Bumpers (Opt. PRC)	Front Frame	8	0515-0435	$\mathrm{M} 4 \times 0.7$ (14 mm long)	Torx T-20	21 inch-lbs
Front Chassis Bracket \& Midplane Bracket	Chassis Sides	10	0515-0372	$\begin{aligned} & \mathrm{M} 3 \times 0.5 \\ & (8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Front Frame	Chassis	8	0515-1035	$\begin{aligned} & \text { M3 X } 0.5 \\ & \text { (} 8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Front Frame Bottom	Chassis	2 per	0515-1035	$\begin{aligned} & \mathrm{M} 3 \times 0.5 \\ & \text { (} 8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Front Panel Assy.	Chassis	6	0515-1035	$\begin{aligned} & \mathrm{M} 3 \times 0.5 \\ & \text { (} 8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Front Panel Daughter Board	Front Frame	3	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Front Panel Interface	Front Frame	13	0515-1521	$\begin{aligned} & \text { M3 } \times 0.5 \\ & (5 \mathrm{~mm} \text { long }) \end{aligned}$	Torx T-10	9 inch lbs.
Inverter Board	Inverter Bracket	2	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Low Band Switch Assy.	Chassis	2	0515-0372	$\begin{aligned} & \text { M3 X } 0.5 \\ & \text { (} 8 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-10	9 inch-lbs
Low Band Switch Assy.	Low Band Switch Bracket	4	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Low Band Switch Bracket.	Bracket, Preselector Bypass SW2	1	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Midplane Assembly	Midplane Bracket	6	0515-0375	M3 $\times 0.5$ (16 mm long)	Torx T-10	9 inch-lbs
Motherboard	Chassis Base	4	0515-0372	M3 X0.5 (8 mm long)	Torx T-10	9 inch-lbs
Power Supply 'Z' Bracket	Chassis Sides	2	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Power Supply 'Z' Bracket	Power Supply	3	0515-1227	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs

Table 14-2 Attaching Hardware

Attach	To	Qty	Part Number	Type	Tool	Torque
Rear Bumper Feet (Opt. PRC)	Rear Panel	4	0515-1619	M 4×0.7 (25 mm long)	Torx T-20	21 inch-lbs.
Rear Bumper Feet (Opt. PRC)	Rear Panel	4	3050-0893	Flat Washer	n/a	n/a
Rear Feet	Rear Panel	4	0515-1619	M 4×0.7 (25 mm long)	Torx T-20	21 inch-lbs
Rear Feet	Rear Panel	4	3050-0893	Flat Washer	n/a	n/a
Rear Frame	Chassis	18	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Rear Frame	Top Bracket, Reference Assembly	4	0515-1227	M3 X 0.5 (8 mm long)	Torx T-10	9 inch-lbs
RF Front End Assembly	Chassis	4	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
RF Input Connector	Chassis	2	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Strap Handle Plugs (Opt. PRC)	Instrument Cover	4	0515-5209	$\begin{aligned} & \text { M5 } \times 0.8 \\ & (14 \mathrm{~mm} \text { long) } \end{aligned}$	Torx T-20	21 inch-lbs
Strap Handles	Chassis Side	2 per	0515-0710	M4 X 0.8 (18 mm long)	Torx T-20	21 inch-lbs
SW1 Bracket	SW1	2	0515-1992	$\begin{aligned} & \mathrm{M} 2.5 \times 0.45 \\ & (20 \mathrm{~mm} \text { long }) \end{aligned}$	Torx T-8	6 inch-lbs
SW2 Bracket	SW2	2	0515-1992	$\begin{aligned} & \text { M2.5 } \times 0.45 \\ & (20 \mathrm{~mm} \text { long }) \end{aligned}$	Torx T-8	6 inch-lbs
SW2 Bracket	Low Band Switch Bracket	1	0515-0372	M3 $\times 0.5$ (8 mm long)	Torx T-10	9 inch-lbs
Top Brace	Top Bracket, Reference Assembly	4	0515-1227	M3 $\times 0.5$ (6 mm long)	Torx T-10	9 inch-lbs
Top Brace	Board Assemblies	6	0515-1227	M3 $\times 0.5$ (6 mm long)	Torx T-10	9 inch-lbs

Table 14－2 Attaching Hard ware

Attach	To	Qty	Part Number	Type	Tool	
Top Brace \＆Reference Assembly Bracket	Chassis Components	12	$0515-0372$	M3 X 0.5 $(8 \mathrm{~mm}$ long）	Torx T－10 YTF Preselector Chassis	4

Replaceable Parts
Hardware

Hardware

Figure 14-1 Major Assemblies

major_assy_exa
Table 14- $\overline{3}$

Item	Description	Keysight Part Number
1	Standard Instrument A2 Analog I.F. Assembly A3 Digital I.F. Assembly Option DP2, MPB, B40, 532, 544 A2 Analog I.F. Assembly A3 Digital I.F. Assembly	E4410-60104 N9020-60119 $\begin{aligned} & \text { N9020-60011 } \\ & \text { N9020-60165 } \end{aligned}$
2	A4 CPU Replacement Kit (w/o disk drive)	
	Standard analyzers with Option 503, 507, 513, 526 and Serial Number > MY/SG/US52220000	N9020-60140
	Standard analyzers with Option 532, 544 and Serial Number \geq MY/SG/US51440000	
	Standard analyzers with Option 503, 507, 513, 526 and Serial Number \geq MY/SG/US50060000 to <MY/SG/US52220000 ${ }^{\text {d }}$	N9020-60115
	Standard analyzers with Serial Number <MY/SG/US50060000	N9020-60031
	Option PC2 (Dual Core) ${ }^{\text {d }}$	N9020-60081
	Option PC4 (High Performance Dual Core) ${ }^{\text {d }}$	N9020-60135
3	A6 Power Supply	0950-4894
4	A16 Reference Assembly	E4410-60108

Replaceable Parts
Hardware

Table 14-3

Item	Description	Keysight Part Number
5	A14 L.O. Synthesizer Assembly	E4410-60102
6	A15 Front End Control Assembly	N9020-60127
	Standard Instruments, Options 503, 507, 513, 526 with Serial Number <MY51250493, <SG51250069, <US51450000	
	Standard Instruments, Options 503, 507, 513, 526 with Serial Number $>M Y 51250493, ~>S G 51250069, ~>U S 51450000 ~$	N9020-60098
	Options B40, MPB, DP2, CR3, CRP, 532, 544	N9020-60172
	A7 Midplane Assembly	N9020-60120

Replaceable Parts

Hardware

Figure 14-2 External Hardware (Benchtop Configuration)

outer_case
Table $14-4$

Item	Description	Keysight Part Number
1, 2	MP21-22 Strap Handles (Benchtop Configuration) (includes screws)	N9020-60002
3	Screw M4 X 0.7 (25 mm long)	0515-1619
4	MP17-20 Rear Feet (Benchtop Configuration)	5041-9611
5	MP16 Dress Cover (includes magnetic gasket)	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60020
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60141
	Serial Number >MY/SG/US51440000 (Option 532, 544)	N9020-60141

Figure 14-3 External Hard ware and Bail Handle (Option PRC)

Table 14-5

Item	Description	Keysight Part Number
1	Screw M4 X $0.7(14 \mathrm{~mm}$ long)	$0515-0435$
2	MP49 Bail Handle (Option PRC, Portable)	W1312-600366
3	Screw M4 $\times 0.7(14 \mathrm{~mm}$ long)	$0515-0435$
4	MP41-44 Front Bumpers (Option PRC, Portable)	W1312-40020
5	MP61-64 Strap Handle Plugs (Option PRC, Portable)	W1312-400024
6	Screw M5 X 0.8 (14 mm long)	$0515-5209$

Replaceable Parts
Hardware

Figure 14-4 External Hardware (Option PRC)

Table 14-6

Item	Description	Keysight Part Number
1	Screw M4 $\times 0.7(25 \mathrm{~mm}$ long)	$0515-1619$
2	MP45-48 Rear Bumpers (Option PRC, Portable) (includes	
Screws)	W1312-40021	

Replaceable Parts
Hardware

Figure 14-5 CPU Assembly (PC1)

Table 14-7

Item	Description	Keysight Part Number
1	A4BT1 CPU Board Battery (CR2032)	$1420-0356$
2	Disk Drive Ribbon Cable	$8121-1611$
3	Hard Disk Drive	N9020-60066

Figure 14-6 CPU Assembly (Option PC2, PC3, PC4, and PC5)

cpu nocover
Table $14-8$

Item	Description	Keysight Part Number
1 Refer also to Service Note N9010A-01A	A4 CPU Replacement Kit	
	Standard analyzers with Option 503, 507, 513, 526 and Serial Number > MY/SG/US52220000	N9020-60140
	Standard analyzers with Option 532, 544 and Serial Number \geq MY/SG/US51440000	
	Standard analyzers with Option 503, 507, 513, 526 and Serial Number \geq MY/SG/US50060000 to <MY/SG/US52220000 ${ }^{\text {d }}$	N9020-60115
	Standard analyzers with Serial Number <MY/SG/US50060000	N9020-60031
	Option PC2 (Dual Core) ${ }^{\text {d }}$	N9020-60081
	Option PC4 (High Performance Dual Core) ${ }^{\text {d }}$	N9020-60135
2	A4BT1 CPU Board Battery (CR2032)	1420-0356
3	A4A1 Disk Drive Interconnect Board	W1312-63079
4	Screw M3 x 0.5 (8 mm long)	0515-0372

Figure 14-7 Disk Drive Tray Assembly (Option PC2, PC3, PC4, and PC5)

Table 14-9

Item	Description	Keysight Part Number
1	A5 Disk Drive Replacement Kit	(refer to A5 on page 380)
2	A5MP1 Disk Drive Tray	W1312-40078
3	A5MP2 Disk Drive Rear Panel	W1312-00103
4	A5MP3 Disk Drive Assembly Handle	1440-0421
5	Screw M3 $\times 0.5$ (8 mm long) (For rev 6 and earlier of drive tray. For rev 7 and later, us 0515-1035 M3 (8 mm Flat-HD))	0515-0372
6	Screw M 2.5×0.45 (5 mm long)	0515-2219
7	Screw M3 $\times 0.5$ (6 mm long)	0515-1227

Figure 14-8 Top Brace and Reference Bracket

Table 14-10

Item	Description	Keysight Part Number
1	MP7 Top Brace (includes foam strips)	N9020-60018
2	MP65 Top Bracket, Reference Assembly	N9000-00104
3	Screw M3 $\times 0.5(8 \mathrm{~mm}$ long $)$	$0515-0372$
4	Screw M3 $\times 0.5(6 \mathrm{~mm}$ long $)$	$0515-1227$
5	Screw M3 $\times 0.5(8 \mathrm{~mm}$ long $)$	$0515-0372$

Figure 14-9 RF Area - Standard Instrument

Table 14-11

Item	Description	Keysight Part Number
1	A9 RF Attenuator A (0 to 4 dB)	33360-60007
2	A10 RF Attenuator B (0 to 66 dB)	33321-60080
3	A11 Low Band Switch Assembly	E4410-60121
4	A12 YTF Preselector (except Option 503)	5087-7730
W3	Cable Assembly, A11J2 to A13J2 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20162
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20101
W7	Cable Assembly, A12 Output to A13J9 (Semi Rigid)	N9020-20124
W8	Cable Assembly, A11J3 to A12 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20160
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20123

Replaceable Parts
Hardware

Table 14-11

Item	Description	Keysight Part Number
W9	Cable Assembly, A10 Output to A11J1 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20159
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20153
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20156
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20141
W11	Cable Assembly, A9 Output to A10 Input (Semi Rigid), Option 503, 507, 513,	E4410-20158
W18	Cable Assembly, A11J4 to A15J103 or A15J700 (Ribbon Cable), Option 503, 507, 513, 526	E4410-60160
W19	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option 503, 507, 513, 526	E4410-20169

Replaceable Parts

Hardware

Figure 14-10 RF Area - Option 532, 544

Table 14-12

Item	Description	Keysight Part Number
1	A9 RF Attenuator A 0 to 10 dB (Options 532, 544)	$33326-60012$
2	A10 RF Attenuator B 0 to 60 dB (Options 532, 544)	$33325-60018$
3	A11 Low Band Switch Assembly	N9020-60051
4	A12 YTF Preselector (except Option 503)	Cable Assembly, A11J2 to A13J2 (Semi Rigid)
W3	Cable Assembly, A12 Output to A13J9 (Semi Rigid)	N9020-20131
W7	Cable Assembly, A11J3 to A12 Input (Semi Rigid)	N9010-20006
W9	Cable Assembly, A10 Output to A11J1 (Semi Rigid)	N9010-20004
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	N9020-20133
W11	Cable Assembly, A9 Output to A10 Input (Semi Rigid)	N9010-20002
W19	Cable Assembly, A16J701 to A9 Cal Signal Input/Port2 (Semi Rigid)	N9010-20003

Figure 14-11 RF Area - Options B40, MPB, or DP2

Table 14-13

Item	Description	Keysight Part Number
1	A9 RF Attenuator A (0 to 4 dB)	33360-60007
2	A10 RF Attenuator B (0 to 66 dB)	33321-60080
3	A11 Low Band Switch Assembly	E4410-60121
4	A12 YTF Preselector (except Option 503)	5087-7730
5	SW1 Coaxial Switch (Options B40, MPB, or DP2)	N1810-60065
6	SW2 Coaxial Switch (Options B40, MPB, or DP2)	N1810-60065
7	AT1 Fixed Attenuator, 6 dB	08493-60026
W3	Cable Assembly, A11J2 to A13J2 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20162
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20101
W9	Cable Assembly, A10 Output to A11J1 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20159
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20153
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20156
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20141

Replaceable Parts
Hardware

Table 14-13

Item	Description	Keysight Part Number
W11	Cable Assembly, A9 Output to A10 Input (Semi Rigid), Option 503, 507, 513, 526	E4410-20158
W18	Cable Assembly, A11 J4 to A15J103 or A15J700 (Ribbon Cable), Option 503, $507,513, ~ 526 ~$	E4410-60160
W19	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option $503,507, ~ 513, ~ 526 ~$	E4410-20169
W32	Cable Assembly, SW2 Port 2 to A12J2 (Semi-rigid)	E4410-20163
W33	Cable Assembly, SW1 Port 2 to A12J1 (Semi-rigid)	E4410-20165

Figure 14-12 RF Area - Option 532, 544 with Option B40, MPB, or DP2

rf_area_mmW_MPB_parts
Table 14-14

Item	Description	Keysight Part Number
1	A9 RF Attenuator A 0 to 10 dB (Options 532, 544)	33326-60012
2	A10 RF Attenuator B 0 to 60 dB (Options 532, 544)	33325-60018
3	A11 Low Band Switch Assembly	N9020-60051
4	A12 YTF Preselector (except Option 503)	5087-7326
5	J1 2.4 m Input Connector Assembly (Option 532, 544)	N9030-60011
W3	Cable Assembly, A11J2 to A13J2 (Semi Rigid)	N9020-20131
W7	Cable Assembly, A12 Output to A13J9 (Semi Rigid)	N9010-20006
W9	Cable Assembly, A10 Output to A11J1 (Semi Rigid)	N9010-20004
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	N9020-20133
W11	Cable Assembly, A9 Output to A10 Input (Semi Rigid)	N9010-20002
W19	Cable Assembly, A16J701 to A9 Cal Signal Input/Port2 (Semi Rigid)	N9010-20003
W45	Cable Assembly, A11J3 to SW4 Port 1 (Semi Rigid)	N9010-20009
W46	Cable Assembly, SW4 Port 2 to A13J9 (Semi Rigid))	N9020-20130
W47	Cable Assembly, SW4 Port 3 to A12 Output (Semi Rigid))	N9020-20129
W48	Cable Assembly, SW4 Port 4 to A12 Input (Semi Rigid))	N9020-20128

Figure 14-13 RF Area - Options B40, MPB, or DP2 (switch detail)

Table 14-15

Item	Description	Keysight Part Number
5	SW1 Coaxial Switch (Options B40, MPB, or DP2)	N1810-60065
6	SW2 Coaxial Switch (Options B40, MPB, or DP2)	N1810-60065
7	AT1 Fixed Attenuator, 6 dB	08493-60026
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20156
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20141
W31	Cable Assembly, SW2 Center Port to A11J3 (Semi-rigid)	E4410-20161
W32	Cable Assembly, SW2 Port 2 to A12J2 (Semi-rigid)	E4410-20163
W33	Cable Assembly, SW1 Port 2 to A12J1 (Semi-rigid)	E4410-20165
W34	Cable Assembly, SW1 Center Port to A13J9 (Semi-rigid)	E4410-20164
W35	Cable Assembly, AT1 to SW1 Port 1 (Semi-rigid)	E4410-20178

Figure 14-14 RF Area - Option 532, 544 with Option B40, MPB, or DP2 (switch detail)

Table 14-16

Item	Description	Keysight Part Number
5	SW1 Coaxial Switch (Options B40, MPB, or DP2)	N1810-60065
6	SW2 Coaxial Switch (Options B40, MPB, or DP2)	N1810-60065
7	AT1 Fixed Attenuator, 6 dB	08493-60026
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	N9020-20133
W31	Cable Assembly, SW2 Center Port to A11J3 (Semi-rigid)	E4410-20161
W32	Cable Assembly, SW2 Port 2 to A12J2 (Semi-rigid)	E4410-20163
W33	Cable Assembly, SW1 Port 2 to A12J1 (Semi-rigid)	E4410-20165
W34	Cable Assembly, SW1 Center Port to A13J9 (Semi-rigid)	E4410-20164
W35	Cable Assembly, AT1 to SW1 Port 1 (Semi-rigid)	E4410-20178

Figure 14-15 Front End Parts - Standard Instruments

front_end_parts
Table 14-17

Item	Description	Keysight Part Number
1	A13 RF Front End Assembly	N9020-60189
2	A13A1 Bandpass Filter	0955-1719
A13W1	Cable Assembly, A13J10 to A13A1 Input (Semi Rigid)	E4410-20176
A13W2	Cable Assembly, A13J11 from A13A1 Output (Semi Rigid)	E4410-20177
3	A12 YTF Preselector (except Option 503)	5087-7730
4	$J 1$ Type-N (f) RF Input Connector Assembly (Option 503, 507, 513, 526)	5002-0702
5	A11 Low Band Switch Assembly	E4410-60121
W3	Cable Assembly, A11J2 to A13J2 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20162
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20101
W4	Cable Assembly, A14J740 to A13J4 (Semi Rigid)	N9020-20156
W5	Cable Assembly, A16J702 to A13J1 (Semi Rigid)	N9020-20155

Replaceable Parts
Hardware

Table 14-17

Item	Description	Keysight Part Number
W7	Cable Assembly, A12 Output to A13J9 (Semi Rigid)	N9020-20124
	Cable Assembly, A11J3 to A12 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20160
	Serial Number \geq MY/SG50510001, Option 503, 507, 513,526	N9020-20123
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	E4410-20156
	Serial Number < MY/SG50510001, Option 503, 507, 513,526	N9020-20141
	Serial Number \geq MY/SG50510001, Option 503, 507, 513,526	$8121-1400$
W15	Cable Assembly, A13J7 to A2J100 (Flexible Coax)	E4410-60156
	Cable Assembly, A13 to A15J104 (Ribbon Cable)	$8121-1400$
W20	Cable Assembly, A13J6 to A16J705 (Flexible Coax)	

Replaceable Parts
Hardware

Figure 14-16 Front End Parts - Option 532, 544

front_end_parts_mmW
Table 14-18

Item	Description	Keysight Part Number
1	A13 RF Front End Assembly	N9010-60007
2	A13A1 Bandpass Filter	0955-1719
A13W1	Cable Assembly, A13J10 to A13A1 Input (Semi Rigid)	E4410-20176
A13W2	Cable Assembly, A13J11 from A13A1 Output (Semi Rigid)	E4410-20177
3	A12 YTF Preselector	5087-7326
4	J1 2.4 m Input Connector Assembly (Option 532, 544)	N9030-60011
5	A11 Low Band Switch Assembly	N9020-60051
W3	Cable Assembly, A11J2 to A13J2 (Semi Rigid)	N9020-20131
W4	Cable Assembly, A14J740 to A13J4 (Semi Rigid)	N9020-20156
W5	Cable Assembly, A16J702 to A13J1 (Semi Rigid)	N9020-20155
W7	Cable Assembly, A12 Output to A13J9 (Semi Rigid)	N9010-20006

Replaceable Parts
Hardware

Table 14-18

Item	Description	Keysight Part Number
W8	Cable Assembly, A11J3 to A12 Input (Semi Rigid)	N9010-20005
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	N9020-20133
W15	Cable Assembly, A13J7 to A2J100 (Flexible Coax)	$8121-1400$
W17	Cable Assembly, A13 to A15J104 (Ribbon Cable)	E4410-60156
W20	Cable Assembly, A13J6 to A16J705 (Flexible Coax)	$8121-1400$

Figure 14-17 Front End Parts - Options MPB, B40, DP2, CR3, or CRP

front_end_parts_opt
Table 14-19

Item	Description	Keysight Part Number
1	A13 RF Front End Assembly	N9020-60189
2	A13A1 Bandpass Filter	0955-1719
A13W1	Cable Assembly, A13J10 to A13A1 Input (Semi Rigid)	E6607-21176
A13W2	Cable Assembly, A13J11 from A13A1 Output (Semi Rigid)	E6607-21177
3	A12 YTF Preselector (except Option 503)	5087-7730
4	J1 Type-N (f) RF Input Connector Assembly (Option 503, 507, 513, 526)	5002-0702
5	A11 Low Band Switch Assembly	E4410-60121
W3	Cable Assembly, A11J2 to A13J2 (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20162
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20101
W4	Cable Assembly, A14J740 to A13J4 (Semi Rigid)	N9020-20156
W5	Cable Assembly, A16J702 to A13J1 (Semi Rigid)	N9020-20155

Replaceable Parts
Hardware

Table 14-19

Item	Description	Keysight Part Number
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	
	Serial Number < MY/SG50510001, Option 503, 507, 513, 526	E4410-20156
	Serial Number \geq MY/SG50510001, Option 503, 507, 513, 526	N9020-20141
W17	Cable Assembly, A13 to A15J104 (Ribbon Cable)	E4410-60156
	Cable Assembly, A13J6 to A16J705 (Flexible Coax)	8121-1400
W32	Cable Assembly, SW2 Port 2 to A12J2 (Semi-rigid)	E4410-20163
W33	Cable Assembly, SW1 Port 2 to A12J1 (Semi-rigid)	E4410-20164
W34	Cable Assembly, SW1 Center Port to A13J9 (Semi-rigid)	$8121-1862$
W36	Cable Assembly, A15J902 to A13J7 (Flexible Coax)	E410

Figure 14-18 Front End Control Cables - early serial numbers

Figure 14-19 Front End Control Cables - later serial numbers

Replaceable Parts

Hardware

Table 14-20

Item	Description	Keysight Part Number
1	A15 Front End Control Assembly	
	Standard Instruments, Options 503, 507, 513, 526 with Serial Number <MY51250493, <SG51250069, <US51450000 ${ }^{\text {C }}$	N9020-60127
	Standard Instruments, Options 503, 507, 513, 526 with Serial Number >MY51250493, >SG51250069, >US51450000	N9020-60098
	Options B40, MPB, DP2, CR3, CRP , 532, 544	N9020-60172
2	A14 L.O. Synthesizer Assembly	E4410-60102
W4	Cable Assembly, A14J740 to A13J4 (Semi Rigid)	N9020-20156
W6	Cable Assembly, A16J703 to A14J200 (Semi Rigid)	N9020-20154
W16	Cable Assembly, A9 \& A10 to A15J801 or A15J102 (Ribbon Cable)	E4410-60157
W17	Cable Assembly, A13 to A15J104 (Ribbon Cable)	E4410-60156
W18	Cable Assembly, A11J4 to A15J103 or A15J700 (Ribbon Cable), Option 503, 507, 513, 526	E4410-60160
	Cable Assembly, A11J4 to A15J103 or A15J700 (Ribbon Cable), Option 532, 544	N9020-60092
W22	Cable Assembly, A15J301 or A15J300 to A12J1 (Wire Harness)	
	Standard Instruments, Option 507, 513, 526 with serial number <MY51250493, <SG51250069, <US51450000	E4410-60158
	Standard Instruments, Option 507, 513, 526 with serial number >MY51250493, >SG51250069, >US51450000	N9020-60059
	Options B40, MPB, DP2, CR3, CRP, 532, 544	N9020-60059

The Front End Control Assembly used in Options MPB, B40, DP2, CR3, and CRP has these additional cables:

Figure 14-20 Front End Control Cables - Options B40, MPB, DP2, CR3, or CRP

Table 14-21

Item	Description	Keysight Part Number
W36	Cable Assembly, A15J902 to A13J7 (Flexible Coax)	$8121-1862$
W37	Cable Assembly, A15J900 to A2J100 (Flexible Coax)	$8121-1401$
W38	Cable Assembly, A15J901 to A3J15 (Flexible Coax)	$8121-1861$
W39	Cable Assembly, A15J1100 to Rear Panel Port 9 (Flexible Coax)	$8121-2028$

Figure 14-21 Reference Board Cables - Instruments without Option B40, MPB, or DP2

reference cables
Table 14-22

Item	Description	Keysight Part Number			
1	A16 Reference Assembly	E4410-60108			
W5	Cable Assembly, A16J702 to A13J1 (Semi Rigid)	N9020-20155			
W6	Cable Assembly, A16J703 to A14J200 (Semi Rigid)	N9020-20154			
W12	Cable Assembly, A16J710 to A3J14 (Flexible Coax)	$8121-1401$			
W14	Cable Assembly, A16J711 to A2J300 (Flexible Coax)	$8121-1401$			
W19	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option 503, 507, 513, 526	E4410-20169			
	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option 532, 544	N9010-20003			
W20	Cable Assembly, A13J6 to A16J705 (Flexible Coax)				$8121-1400$
W23	Cable Assembly, Ext. Reference Cable (rear frame) to A16J704 (Flexible Coax)	8121 -1402			

Figure 14-22 Reference Board Cables - Options B40, MPB, DP2

reference_cables_option
Table 14-23

Item	Description	Keysight Part Number
1	A16 Reference Assembly	E4410-60108
W5	Cable Assembly, A16J702 to A13J1 (Semi Rigid)	N9020-20155
W6	Cable Assembly, A16J703 to A14J200 (Semi Rigid)	N9020-20154
W14	Cable Assembly, A16J711 to A2J300 (Flexible Coax)	8121-1401
W19	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option 503, 507, 513, 526	E4410-20169
	Cable Assembly, A16J701 to A9 Cal Signal Input/Port 2 (Semi Rigid), Option 532, 544	N9010-20003
W20	Cable Assembly, A13J6 to A16J705 (Flexible Coax)	8121-1400
W23	Cable Assembly, Ext. Reference Cable (rear frame) to A16J704 (Flexible Coax)	8121-1402
W42	Cable Assembly, A16J706 to A3J14 (Flexible Coax)	8121-1401
W43	Cable Assembly, A16J705 to A3J18 (Flexible Coax)	8121-1401

Figure 14-23 AIF/DIF Cables - Standard Instruments

Figure 14-24
AIF/DIF Cables, bottom - Standard Instruments

Table 14-24

Item	Description	Keysight Part Number
A3W1	Cable Assembly, Smart Noise Source (Wire Harness)	E4410-60163
W12	Cable Assembly, A16J710 to A3J14 (Flexible Coax)	$8121-1401$
W13	Cable Assembly, A2J601 to A3J15 (Flexible Coax)	$8121-1411$
W14	Cable Assembly, A16J711 to A2J300 (Flexible Coax)	$8121-1401$
W15	Cable Assembly, A13J7 to A2J100 (Flexible Coax)	$8121-1400$

Figure 14-25 AIF/DIF Cables - Options MPB, B40, or DP2

Figure 14-26 AIF/DIF Cables, bottom - Options MPB, B40, or DP2

Table 14-25

Item	Description	Keysight Part Number
W13	Cable Assembly, A2J601 to A3J15 (Flexible Coax)	$8121-1411$
W14	Cable Assembly, A16J711 to A2J300 (Flexible Coax)	8121 -1401
W37	Cable Assembly, A15J900 to A2J100 (Flexible Coax)	8121 -1401
W38	Cable Assembly, A15J901 to A3J15 (Flexible Coax)	8121 -1861
W40	Cable Assembly,A13J6 to A3J17 (Flexible Coax)	8121 -1940
W41	Cable Assembly, A2J601 to A3J19 (Flexible Coax)	$8120-8868$
W42	Cable Assembly, A16J705 to A3J18 (Flexible Coax)	8121 -1401

Replaceable Parts

Hardware

Figure 14-27 AIF/DIF Assemblies - Standard Instruments

> aif_dif_separate

Table 14-26

Item	Description	Keysight Part Number
1	A2 Analog I.F. Assembly	E4410-60104
2	A3 Digital I.F. Assembly	N9020-60119
3	Screw, M3 X 0.5 (8 mm long)	0515-0372
W2	Cable, Interconnect from A2J820 to A3J20	E4410-60162
A3W1	Cable Assembly, Smart Noise Source (Wire Harness)	E4410-60163

Replaceable Parts

Hardware

Figure 14-28 AIF/DIF Assemblies - Option DP2, MPB, B40, 532, 544

aif_dif_separate_b40

Table 14-27

Item	Description	Keysight Part Number
1	A2 Analog I.F. Assembly	N9020-60011
2	A3 Digital I.F. Assembly	N9020-60165
3	Screw, M3 X 0.5 (8 mm long)	0515-0372
W2	Cable, Interconnect from A2J820 to A3J20	N9020-60046
A3W1	Cable Assembly, Smart Noise Source (Wire Harness)	E4410-60163

Figure 14-29 Chassis

Replaceable Parts

Hardware

Table 14-28

Item	Description	Keysight Part Number
MP5	Chassis Front Bracket	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00049
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00098
	Serial Number >MY/SG/US51440000 (Option 532, 544)	W1312-00098
MP6	Fan Bracket	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00133
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	W1312-00137
	Serial Number >MY/SG/US51440000 (Option 532, 544)	W1312-00137
MP8	Chassis Side, Right (Outer, attaches to Lowband Switch bracket, Attenuator brackets, and Chassis bottom)	
	Serial Number < MY/SG50510001	E4410-00101
	Serial Number \geq MY/SG50510001 to <MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-00031
	Serial Number \geq MY/SG52180000 (Option 503, 507, 513, 526)	N9020-00034
	Serial Number \geq MY/SG51440000 (Option 532, 544)	N9020-90034
MP9	Rear Panel Replacement Kit (includes foam strip)	
	Serial Number <MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60028
	Serial Number >MY/SG/US52180000 (Option 503, 507, 513, 526)	N9020-60028
	Serial Number >MY/SG/US51440000 (Option 532, 544)	N9020-60028
MP36-37	Attenuator Bracket	
	Option 503, 507, 513, 526	E4410-00103
	Option 532, 544	N9020-00019

Figure 14-30 Motherboard

motherboard_replace
Table 14-29

Item	Description	Keysight Part Number
1	A8 Motherboard Assembly	N9000-66404
2	Screw M3 $\times 0.5(8 \mathrm{~mm}$ long $)$	$0515-0372$

Replaceable Parts
Hardware

Figure 14-31 Fan Hardware

Table 14-30

Item	Description	Keysight Part Number
1	B1 Fan	$3160-4199$
2	B2 Fan	$3160-4199$
3	MP25-26 Fan Guard	$3160-0281$
4	MP27-34 Rivet, Fan Mounting (8 pieces)	$0361-1272$

Figure 14-32 Input Connector

Table 14-31

Item	Description	Keysight Part Number
1	Screw M3 $\times 0.5$ (8 mm long)	0515-0372
2	J1 Type-N (f) RF Input Connector Assembly (Option 503, 507, 513, 526)	5002-0702
	J1 2.4 m Input Connector Assembly (Option 532, 544)	N9030-60011
3	MP78 Input Connector O-Ring	8160-1637
4	Screw M3 $\times 0.5$ (8 mm long)	0515-0372
5	MP83 Gusset, Chassis (near RF Input connector)	W1312-00093
W10	Cable Assembly, J1 to A9 Input (Semi Rigid)	
	$\begin{aligned} & \text { Serial Number < MY/SG50510001, Option 503, 507, 513, } \\ & 526 \end{aligned}$	E4410-20156
	$\begin{aligned} & \text { Serial Number } \geq \text { MY/SG50510001, Option 503, 507, 513, } \\ & 526 \end{aligned}$	N9020-20141
	Option 532, 544	N9020-20133

Replaceable Parts

Hardware

Figure 14-33 Front Frame Parts - LCD

Table 14-32

Item	Description	Keysight Part Number
9	A1A2 Front Panel Interface Board	
	Serial Number \geq MY/SG48010101, US48010001 to Serial Number <MY/SG51250000	W1312-60042
	Serial Number <MY/SG48010101	N9020-60033
10	A1A2MP1 Speaker	9164-0453
11	A1A2MP2 Speaker Foam	W1312-40016
12	A1A3 Liquid Crystal Display	2090-1040
13	A1A4 Inverter Board (Display Backlight Power)	0950-4635
14	A1A5 Front Panel Daughter Board	W1312-63193
23	A1MP10-13 Cable Clamp (Front Panel Cables)	1400-1439
24	A1W1 Flex Circuit, Display to Front Panel Interface Board	W1312-60010
25	A1W2 Power Cable, Front Panel Interface Board to Inverter Board	W1312-60011

Table 14-32

\left.| Item | Description | Keysight Part Number |
| :---: | :---: | :---: |
| 26 | W1 Cable, Front Panel Interface Board to Motherboard | |
| | | |$\right]$

Replaceable Parts
Hardware

Figure 14-34 Front Frame Parts - LED

Table 14-33

Item	Description	Keysight Part Number
12	A1MP14 Display Bracket	W1312-00145
14	A1A5 Front Panel Daughter Board	W1312-63193
25	A1MP24 Magnetic Shield (Display Bracket to Front Panel	
Interface/Speaker Bracket)		

Figure 14-35 Front Frame Parts (shields off) - LED

Table 14-34

Item	Description	Keysight Part Number
9	A1A2 Front Panel Interface Board	
	Serial Number \geq MY/SG51250000	W1312-60137
	Serial Number \geq MY/SG48010101, US48010001 to Serial Number <MY/SG51250000	W1312-60042
	Serial Number <MY/SG48010101	N9020-60033
10	A1A2MP1 Speaker	9164-0453
11	Speaker Foam	W1312-40016
21	A1W1 Flex Circuit, Display to Front Panel Interface Board	
	Serial Number \geq MY/SG51250000	W1312-60122
	Serial Number <MY/SG51250000	W1312-60010
23	A1W2 Power Cable, Front Panel Interface Board to Inverter Board	W1312-60011

Figure 14-36 Front Frame Exploded View - LCD

Replaceable Parts

Hardware

Table 14-35

Item	Description	Keysight Part Number
1	A1A1MP1 Front Frame	W1312-20108 ${ }^{\text {a }}$
2	A1A1MP2 Main Keypad Overlay ${ }^{\text {b }}$	E4410-80108
3	A1A1MP3 Connector Overlay	E4410-80109
4 a	A1A1MP7 Front Frame Top Trim Strip (Use with Option PRC, Portable)	W1312-40004 (Illustrated)
4 b	A1A1MP8 Front Frame Top Trim Strip (Use with standard Bench analyzer)	W1312-40019 (Not Illustrated)
5	A1A1MP9-10 Front Frame Side Trim Strip	W1312-40005
6	A1A1MP4 Front Frame Ground Spring	W1312-00021
7	A1A1MP5 Braided Gasket	--
8	A1A1MP6 Chromeric Gasket	--
9	A1A2 Front Panel Interface Board	
	Serial Number \geq MY/SG51250000	W1312-60137
	Serial Number \geq MY/SG48010101, US48010001 to Serial Number <MY/SG51250000	W1312-60042
	Serial Number <MY/SG48010101	N9020-60033
10	A1A2MP1 Speaker	9164-0453
11	A1A2MP2 Speaker Foam	W1312-40016
12	A1A3 Liquid Crystal Display	
	Serial Number \geq MY/SG51250000	2090-0997
	Serial Number <MY/SG51250000	2090-1040
13	A1A4 Inverter Board (display backlight power) Serial Number <MY51250000, SG51250000	0950-4635
14	A1A5 Front Panel Daughter Board	W1312-63193
15	A1MP1 Main Keypad	E4410-40100
16	A1MP2 Display Keypad	E4410-40101
17	A1MP9 RPG Knob	W1312-40017
18	A1MP3 Frequency Label, 3.6 GHz A1MP4 Frequency Label, 7 GHz A1MP5 Frequency Label, 13.6 GHz A1MP6 Frequency Label, 26.5 GHz	N9010-80008 N9010-80009 N9010-80010 N9010-80011
19	A1MP7 LCD Glass Filter	1000-1513
20	A1MP8 LCD Lens Gasket	W1312-40006
21	A1MP14 Display Bracket	
	Serial Number \geq MY/SG51250000	W1312-00145
	Serial Number <MY/SG51250000	W1312-00023

Table 14-35

Item	Description	Keysight Part Number
22	A1MP15 Inverter Board Shield	W1312-00024
23	A1MP10-13 Cable Clamp (Front Panel Cables)	1400-1439
24	A1W1 Flex Circuit, Display to Front Panel Interface Board	
	Serial Number \geq MY/SG51250000	W1312-60122
	Serial Number <MY/SG51250000	W1312-60010
25	A1W2 Power Cable, Front Panel Interface Board to Inverter Board	W1312-60011
26	W1 Cable, Front Panel Interface Board to Motherboard (Ribbon)	
	Serial Number \geq MY/SG48010101, US48010001	N9020-60036
	Serial Number <MY/SG48010101, US48010001	E4410-60171
27	Screw M3 $\times 0.5$ (8mm long)	0515-0372
28, 29, 30	Screw M3 $\times 0.5$ (8mm long)	0515-0372
31	Screw M3 $\times 0.5$ (5 mm long)	0515-1521

a. Non-orderable item, see A1A1.

Figure 14-37 Front Frame Exploded View - LED

Replaceable Parts

Hardware

Table 14-36

Item	Description	Keysight Part Number
1	Front Frame	--- ${ }^{\text {a }}$
2	A1A1MP2 Main Keypad Overlay ${ }^{\text {b }}$	N9030-80002
3	A1A1MP3 Connector Overlay	E4410-80109
4	A1A1MP18 Cover Plate	N9020-00002
5	A1A1MP9-10 Front Frame Side Trim Strip	W1312-40005
6	A1A1MP4 Front Frame Ground Spring	W1312-00021
9	A1A2 Front Panel Interface Board	W1312-60137
10	A1A2MP1 Speaker	9164-0453
11	A1A2MP2 Speaker Foam	W1312-40016
12	A1A3 Liquid Crystal Display	2090-0997
14	A1A5 Front Panel Daughter Board	W1312-63193
15	A1MP1 Main Keypad	E4410-40100
16	A1MP2 Display Keypad	E4410-40101
17	A1MP9 RPG Knob	W1312-40017
18	A1MP3 Frequency Label, 3.6 GHz A1MP4 Frequency Label, 7 GHz A1 MP5 Frequency Label, 13.6 GHz A1MP6 Frequency Label, 26.5 GHz A1MP16 Frequency Label, 32 GHz A1MP17 Frequency Label, 44 GHz	N9010-80008 N9010-80009 N9010-80010 N9010-80011 N9010-80006 N9010-80007
19	A1MP8 LCD Lens Gasket	W1312-40006
20	A1MP7 LCD Glass Filter	1000-1513
24	A1A4 DC-DC Converter (LED display backlight power)	0950-5235
25	A1MP24 Magnetic Shield (Display Bracket to Front Panel Interface/Speaker Bracket)	N9020-00029
26	A1MP23 Front Panel Interface/Speaker Bracket	N9020-00028
30	A1MP14 Display Bracket	W1312-00145
34	A1W1 Flex Circuit, Display to Front Panel Interface Board	W1312-60122
35	A1W3 Power Cable, Front Panel Interface board to DC-DC Converter	W1312-60130
36	A1W4 Power Cable, DC-DC Converter to Display	W1312-60131

a. Non-orderable item, see A1A1.

Service Guide

15 Assembly Replacement Procedures

What You Will Find in This Chapter

Procedures in this chapter enable you to locate, remove, and replace the following major assemblies in your instrument.
Refer to Chapter 14, "Replaceable Parts." for part numbers, assembly descriptions, and ordering information.
"Instrument Outer Case" on page 445
"Top Brace and Reference Bracket" on page 450
"RF Area (Option 503, 507, 513, 526)" on page 452
"RF Area (Option 532, 544)" on page 484
"RF Front End Assembly - Options 503, 507, 513, 526" on page 500
"RF Front End Assembly - Options 532, 544" on page 502
"Front End Control Assembly" on page 504
"L.O. Synthesizer Assembly" on page 507
"Rear Panel" on page 509
"Reference Assembly" on page 510
"Power Supply Assembly" on page 512
"CPU Assembly" on page 515
"Disk Drive" on page 518
"Analog I.F. (AIF)/Digital I.F. (DIF) Assembly" on page 531
"Midplane Assembly" on page 536
"Motherboard Assembly" on page 539
"Fan Assembly" on page 544
"Input Connector Assembly" on page 547
"Front Frame Assembly" on page 549
"Display Assembly - LCD" on page 555
"Display Assembly - LED" on page 564

Before Starting

Before starting to disassemble the instrument:
o Check that you are familiar with the safety symbols marked on the instrument. And, read the general safety considerations and the safety note definitions given in the front of this guide.
o The instrument contains static sensitive components. Read the section entitled "ESD Information" on page 23.

Safety

WARNING \quad| The opening of covers or removal of parts is likely to expose dangerous |
| :--- |
| voltages. Disconnect the product from all voltage sources while it is |
| being opened. |

WARNING
The instrument contains potentially hazardous voltages. Refer to the safety symbols on the instrument and the general safety considerations at the beginning of this service guide before operating the unit with the cover removed. Failure to heed the safety precautions can result in severe or fatal injury.

Tools you will need

Figure 15-1 TORX Tool

s1736a
Table 15-1

Description	Keysight Part Number
TORX Hand Driver - Size T-10	$8710-1623$
TORX Hand Driver - Size T-20	$8710-1615$
$9 / 16$ inch nut driver	$8720-0008$
5/16 inch open-end wrench	source locally
cable puller	$5021-6773$

Adjustments Tests after an instrument repair

Refer to Table 16-1 on page 569 for information about post-repair procedures. If one or more instrument assemblies have been repaired or replaced, perform the related adjustments and performance verification tests.

Major Assembly Locations

Figure 15-2 Major Assemblies

major_assy_exa
Table 15-2

Item	Description
1	A2 Analog I.F. Assembly/A3 Digital I.F. Assembly
2	A4 CPU Assembly
3	A6 Power Supply
4	A16 Reference Assembly
5	A14 L.O. Synthesizer Assembly
6	A15 Front End Control Assembly
7	A7 Midplane Assembly

Instrument Outer Case

CAUTION If the instrument is placed on its face during any of the following procedures, be sure to use the front panel protective cover (MP50), a soft surface, or soft cloth to avoid damage to the front panel, keys, or input connector.

NOTE If the analyzer has Option PRC, Portable Configuration, refer to the "Option PRC" section on page 447 to remove the outer case.

Standard Instrument

Removal

1. Disconnect the instrument from ac power.
2. Refer to Figure 15-3. Using the T-20 driver, remove the four screws (two on each side) (1) that attach the handle strap (2) on each side of the instrument.
3. Using the T-20 driver, remove the four screws (including washers) (3) (two on each side) that hold the rear feet (4) (two on each side) in place.
4. Pull the instrument cover (5) off towards the rear of the instrument.

Figure 15-3 Standard Instrument Outer Case Removal

outer_case

Replacement

1. Disconnect the instrument from ac power.
2. Slide the instrument cover back onto the deck from the rear. The seam on the cover should be on the bottom. Be sure the cover seats into the gasket groove in the Front Frame Assembly.
3. Replace the four rear feet to the rear of the instrument (two on each side). Torque the rear feet screws to 21 inch pounds.
4. Replace the handle straps on both sides of the instrument. Torque the handle strap screws to 21 inch pounds.

Option PRC

Removal

1. Disconnect the instrument from ac power.

Refer to Figure 15-4. Using the T-20 driver, remove the four screws (two on each side) (1) that hold the bail handle (2) to the front frame.

Figure 15-4 Bail Handle Removal

2. Using the $T-20$ driver, remove the four screws (two on each side) (6) that hold the strap handle plugs (5) in place.
3. Refer to Figure 15-5. Using the T-20 driver, remove the four screws including washers (1) that hold the rear bumpers (2) (two on each side) in place.

Figure 15-5 Option PRC Instrument Outer Case Removal

4. Pull the instrument cover (3) off towards the rear of the instrument.

Replacement

1. Disconnect the instrument from ac power.
2. Slide the instrument cover back onto the deck from the rear. The seam on the cover should be on the bottom. Be sure the cover seats into the gasket groove in the Front Frame Assembly.
3. Refer to Figure 15-4. Replace the strap handle plugs (5) in place and attach using the T-20 driver to replace the four screws (two on each side) (6). Torque to 21 inch pounds.
4. Place the bail handle into position on the front frame and using the T-20 driver, replace the four screws (two on each side) (1) that hold the bail handle (2) to the front frame. Torque to 21 inch pounds.
5. Refer to Figure 15-5. Replace the four rear bumpers to the rear of the instrument. Torque to 21 inch pounds.

Top Brace and Reference Bracket

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Refer to Figure 15-6. To remove the top brace (1), use the T-10 driver to remove the eight screws (3) (0515-0372) attaching the top brace to the chassis, and the ten screws (4) (0515-1227) attaching the top brace to the boards. There will be an additional screw attaching the top brace to the BBIQ main board if Option BBA is present on the analyzer.
3. To remove the reference bracket (2), use the T-10 driver to remove the six screws (5) (including two at the rear panel) attaching the reference bracket to the instrument.

Figure 15-6
Top Brace and Reference Bracket Removal

Replacement

1. Refer to Figure 15-6. To replace the top brace or the reference bracket, place them into the correct position and attach the appropriate screws. Torque to 9 inch-pounds.

RF Area (Option 503, 507, 513, 526)

Refer to Figure 15-7 and Figure 15-8. The RF area consists of RF attenuator A (1), RF attenuator B (2), low band switch assembly (3), and YTF Preselector (4).

Instruments with Options DP2, MPB, or B40 will also have coaxial switch \#1 (5), coaxial switch \#2 (6), and 6 dB fixed attenuator (7) (Figure 15-8).

NOTE \quad The YTF Preselector is not typically installed in instruments with Option 503.

Figure 15-7 RF Area Components and Cables - Standard Instruments

Figure 15-8 RF Area Components and Cables - Options DP2, MPB, B40

To gain access to any of these parts, follow these steps:

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the top brace. Refer to the Front Frame Assembly removal procedure.
3. Remove the front panel. Refer to the Front Frame Assembly removal procedure.
4. Refer to Figure 15-9. Remove the chassis side, right (1) by removing the thirteen screws (2) using the T-10 driver.

Figure 15-9 RF Bracket Removal

Removal

1. Refer to Figure 15-10. Remove the ribbon cable W18.
2. Remove the semi-rigid cables W3, W8, and W9 using the $5 / 16$ inch wrench.

W8 will not be present in instruments with Option 503.
3. Remove the two screws (2) using the $\mathrm{T}-10$ driver. The low band switch (1) can now be removed from the chassis.

Figure 15-10 Low Band Switch Removal

4. Refer to Figure 15-11. To separate the switch from the bracket, remove the four screws (3) using the T-10 driver.

Figure 15-11 Low Band Switch and Bracket Separation

Replacement

1. Refer to Figure 15-11. Place the switch onto the bracket and replace the four screws (3). Torque to 9 inch-pounds in the sequence shown, starting with \#1.
2. Place the switch/bracket into place into the chassis and replace the two screws. Torque to 9 inch-pounds starting with the screw closest to the front of the instrument.
3. Refer to Figure 15-10. Replace the semi-rigid cables W3, W8, and W9. Torque to 10 inch-pounds.

NOTE
W8 will not be present in instruments with Option 503.
4. Replace the ribbon cable W18.
5. Refer to Figure 15-9. Position the chassis side, right onto the chassis and replace the thirteen screws. Torque to 9 inch-pounds.
6. Replace the front panel. Refer to the Front Frame Assembly replacement procedure.
7. Replace the top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
8. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Low Band Switch -

Standard Instruments with Serial Number > MY/SG50510001

Removal

1. Refer to Figure 15-12. Remove the ribbon cable W18.
2. Remove the semi-rigid cables $\mathrm{W} 3, \mathrm{~W} 8$, and W 9 using the $5 / 16$ inch wrench.

W8 will not be present in instruments with Option 503.
3. Remove the two screws (2) using the $\mathrm{T}-10$ driver. The low band switch (1) can now be removed from the chassis.

Figure 15-12 Low Band Switch Removal

4. Refer to Figure 15-13. To separate the switch from the bracket, remove the four screws (3) using the T-10 driver.

Figure 15-13 Low Band Switch and Bracket Separation

Replacement

1. Refer to Figure 15-13. Place the switch onto the bracket and replace the four screws (3). Torque to 9 inch-pounds in the sequence shown, starting with \#1.
2. Place the switch/bracket into place into the chassis and replace the two screws. Torque to 9 inch-pounds starting with the screw closest to the front of the instrument.
3. Refer to Figure 15-12. Replace the semi-rigid cables W3, W8, and W9. Torque to 10 inch-pounds.

NOTE
W8 will not be present in instruments with Option 503.
4. Replace the ribbon cable W18.
5. Refer to Figure 15-9. Position the chassis side, right onto the chassis and replace the thirteen screws. Torque to 9 inch-pounds.
6. Replace the front panel. Refer to the Front Frame Assembly replacement procedure.
7. Replace the top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
8. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Low Band Switch and Coaxial Switches

 Options DP2, MPB, B40
Removal

1. Refer to Figure 15-14. Remove semi-rigid coax cables W32 and W33.

Figure 15-14 Remove W33 and W32

w33_w32
2. Refer to Figure 15-15. Remove semi-rigid coax cables W31 and W34.

Figure 15-15 Remove W34 and W31

3. Refer to Figure 15-16. Remove semi-rigid coax cable W35 and the fixed attenuator (1).

Figure 15-16 W35 and Attenuator Removal

4. Remove ribbon cable W18 from J4 of the A11 Low Band Switch.
5. Refer to Figure 15-17. Disconnect the two wire harness connectors W30 from the switches (1).

NOTE
Even though the wire colors on W30 harness are different, it does not matter which one plugs into which switch.

Figure 15-17 Wire Harness Disconnect

6. Refer to Figure 15-18. Using the T-10 driver, remove the single screw (4) to separate the switch 2/bracket assembly (1)/(2) from the low band switch bracket. To separate switch 2 (1) from it's bracket (2), remove the two 0515-1992 screws (3) using the T-8 driver.

Figure 15-18 Switch 2 Removal

7. Refer to Figure 15-19. Using the T-8 driver, remove the two 0515-1992 screws (3) to separate the \#1 switch/bracket assembly (1)/(2) from the low band switch bracket (4).

Figure 15-19 Switch 1 Removal

8. Refer to Figure 15-20. Remove the semi-rigid cables W 3 , W9, and W10.

Figure 15-20 Removing Coax Cables

9. Refer to Figure 15-21. Using the T-10 driver, remove the two screws (1) to separate the low band switch/bracket from the chassis.

Figure 15-21 Low Band Switch/Bracket Removal

10.Refer to Figure 15-22. To separate the low band switch from the bracket, use the T-10 driver to remove the four screws (3).

Figure 15-22 Low Band Switch and Bracket Separation

Replacement

1. Refer to Figure 15-22. Place the switch onto the low band switch bracket and replace the four screws (3). Torque to 9 inch-pounds in the sequence shown, starting with \#1.
2. Refer to Figure 15-23. Place the switch/bracket into place onto the chassis and replace the two screws. Torque to 9 inch-pounds starting with the screw closest to the front of the instrument.

Figure 15-23

Bracket Installation

3. Refer to Figure 15-24. Install W9 between the output of the A10 Input Attenuator and A11J1. Torque to 10 inch-pounds.

Figure 15-24 Installing New Coax Cables

4. Install W3 between J2 of the A13 Front End Assembly and J2 of the A11 Low Band Switch. Torque to 10 inch-pounds.
5. Install W 10 between the Type N input connector and the input of the A 9 Input Attenuator. Torque to 10 inch-pounds.
6. Refer to Figure 15-25. Place one of the two coaxial switches (1) and the Switch 1 Bracket (2) onto the low band switch bracket. Mount the switch with the Keysight label facing up. Attach the bracket and switch to the low band switch bracket using two 0515-1992 screws (3) using the T-8 driver. Do not torque the screws at this time

Figure 15-25 Switch 1 Placement

7. Refer to Figure 15-26. Place the second switch/bracket assembly (1)/(2) on the bracket previously installed. Assure Keysight label on switch is facing up. Attach the bracket and switch using two 0515-1992 screws (3) using the T-8 driver. Secure the bracket to the low band switch bracket with a single screw (4) using the T-10 driver. Do not torque.

Figure 15-26 Switch 2 Placement

8. Align switches so they are parallel with the side of the instrument then torque the four screws (3) securing the switches to the brackets to 6 inch-pounds using the T-8 driver. Torque the screw (4) that secures the switch brackets together to 9 inch-pounds using the T-10 driver.
9. Refer to Figure 15-27. Connect the two wire harness connectors W30 to the switches (1). Once connected, position the connections along side the switches.

NOTE
Even though the wire colors on W30 harness are different, it does not matter which one plugs into which switch.

Figure 15-27 Wire Harness Routing

10.Connect ribbon cable W18 to J4 of the A11 Low Band Switch.
11.Refer to Figure 15-28. Attach the coaxial fixed attenuator (1) Switch 2 port 1. Torque to 10 inch-lbs.

Figure 15-28 Attenuator Installation

12. Connect W35 semi-rigid coax cable between the coaxial fixed attenuator (1) and port 1 of Switch 1 (the lower switch). Torque to 10 inch-pounds.
13. Refer to Figure 15-29. Connect W34 semi-rigid coax cable between the center port of Switch 1 (the lower switch) and J9 of the A13 Front End Assembly. Torque to 10 inch-pounds.
14.Connect W31 semi-rigid coax cable between the center port of Switch 2 (the upper switch) and J3 of the A11 Low Band Switch. Torque to 10 inch-pounds.

Figure 15-29 Install W34 and W31

15.Refer to Figure 15-30. Connect W33 semi-rigid coax cable between port 2 of Switch 1 (the lower switch) and the output of the A12 YTF Preselector. Torque the cable at the A12 end first to 10 inch-pounds and then torque the cable at the Switch 1 end to 10 inch-pounds.
16.Connect W32 semi-rigid coax cable between port 2 of Switch 2 (the upper switch) and the input of the A12 YTF Preselector. Torque the cable at the A12 end first to 10 inch-pounds and then torque the cable at the Switch 2 end to 10 inch-pounds.

Figure 15-30 Install W33 and W32

Attenuators

Removal

1. Refer to Figure 15-31. To remove Attenuator A (1) or Attenuator B (2), remove the semi-rigid cables W9, W10, W11 and W19 attached to the attenuator using the 5/16 inch wrench.
2. Remove the W16 ribbon cable attached to the attenuator.
3. Remove the two screws (3) or (4) for each attenuator bracket to remove from the chassis using the T-10 driver.
4. Remove the two screws to separate the attenuator from the bracket.

Figure 15-31 Attenuators Removal

Replacement

1. Refer to Figure 15-31. Position the attenuator in the bracket so that the ribbon connector end is "up".
2. Replace the two screws that attach the attenuator to the bracket. Torque to 9 inch-pounds.
3. Position the attenuator and bracket into the chassis and attach with the two screws. Torque to 9 inch-pounds.
4. Replace the ribbon cable and semi-rigid cables W9, W10, W11 and W19 to the attenuator. Torque the semi-rigid cables to 10 inch-pounds.

YTF Preselector

Removal

1. Refer to Figure 15-32. Remove cables W7 and W8 from the YTF Preselector (1).

Figure 15-32 YTF Preselector Removal

2. Remove the wire harness W22.
3. Refer to Figure 15-33. From the bottom of the instrument, remove the four screws (2). The YTF Preselector can now be removed from the chassis.

Figure 15-33 YTF Preselector Screws

Replacement

1. Inspect the chassis where the YTF Preselector mounts and remove the gap pad if present (see Figure 15-34, item (1)). The gap pad may remain attached to the faulty YTF Preselector.
2. Refer to Figure 15-34. Install the replacement gap pad (1) into the recess in the base of the replacement YTF Preselector (2) Refer to A12MP1 in Chapter 14, "Replaceable Parts." for the gap pad part number. Peel back one corner of the clear plastic backing on the pink side of the gap pad. Remove the blue backing from the other side of the gap pad. Install the gap pad as shown with the pink side exposed. Carefully peel off the clear plastic backing and smooth the gap pad into the recess.

Figure 15-34
Gap Pad Installation

3. Refer to Figure 15-33. Place the YTF Preselector into the chassis with the connectors toward the front of the instrument. Replace the four screws (2). Torque to 9 inch-pounds.
4. Figure 15-32. Replace the cables W7 and W8. Torque to 10 inch-pounds.
5. Replace the wire harness W22.
6. Refer to Figure 15-9. Position the chassis side, right onto the chassis and replace the thirteen screws. Torque to 9 inch-pounds.
7. Replace the front panel. Refer to the Front Frame Assembly replacement procedure.
8. Replace the top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
9. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

RF Area (Option 532, 544)

Refer to Figure 15-35 and Figure 15-36. The RF area consists of RF attenuator A (1), RF attenuator B (2), low band switch assembly (3), and YTF Preselector (4).

Instruments with Options DP2, MPB, or B40 will also have coaxial switch (6), (Figure 15-36).

Figure 15-35 RF Area Components and Cables - Option 532, 544

Figure 15-36 RF Area Components and Cables - Option 532, 544 with Option DP2, MPB, B40

To gain access to any of these parts, follow these steps:

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the top brace. Refer to the Front Frame Assembly removal procedure.
3. Remove the front panel. Refer to the Front Frame Assembly removal procedure.
4. Refer to Figure 15-37. Remove the chassis side, right (1) by removing the thirteen screws (2) using the T-10 driver.

Figure 15-37 RF Bracket Removal

Low Band Switch

Removal

1. Refer to Figure 15-39 and Figure 15-39. Remove the ribbon cable W18.
2. Remove the semi-rigid cables $\mathrm{W} 3, \mathrm{~W} 8$, and W 9 using the $5 / 16$ inch wrench.
3. Remove the two screws (2) using the T-10 driver. The low band switch and bracket (1) can now be removed from the chassis.

Figure 15-38 Low Band Switch Cable Removal

Figure 15-39 Low Band Switch Removal

4. Refer to Figure 15-40. To separate the switch from the bracket, remove the four screws (3) using the T-10 driver.

Figure 15-40 Low Band Switch and Bracket Separation

Replacement

1. Refer to Figure 15-40. Place the switch onto the bracket and replace the four screws (3). Torque to 9 inch-pounds in the sequence shown, starting with \#1.
2. Place the switch/bracket into place into the chassis and replace the two screws. Torque to 9 inch-pounds starting with the screw closest to the front of the instrument.
3. Refer to Figure 15-39. Replace the semi-rigid cables W3, W8, and W9. Torque to 10 inch-pounds.
4. Replace the ribbon cable W18.
5. Refer to Figure 15-37. Position the chassis side, right onto the chassis and replace the thirteen screws. Torque to 9 inch-pounds.
6. Replace the front panel. Refer to the Front Frame Assembly replacement procedure.
7. Replace the top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
8. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Low Band Switch and Coaxial Switch

 Options DP2, MPB, B40
Removal

1. Refer to Figure 15-41. Remove semi-rigid coax cables W3, W45, W46, W47, and W48.

Figure 15-41 Remove Semi-Rigid Cables

2. Refer to Figure 15-42. Unplug the ribbon cable from the A15 Front End Control assembly.

Figure 15-42 Remove SW4

3. Remove the two screws (1) that attach the bracket to the chassis. The bracket/switch (2) can now be removed.
4. Refer to Figure 15-43. Remove the three screws (1) to separate the switch from the bracket assembly.

Figure 15-43 Switch / Bracket Separation

sw4_bracket

Replacement

1. Refer to Figure 15-43. Place the switch onto the bracket and replace the three screws (1). Torque to 6 inch-pounds.
2. Refer to Figure 15-42. Place the switch/bracket into place onto the chassis and replace the two screws. Torque to 9 inch-pounds.
3. Plug in the ribbon cable into the A15 Front End Control assembly.
4. Refer to Figure 15-41. Install W3, W45, W46, W47, and W48. Torque to 10 inch-pounds.

Attenuators

Removal

1. Refer to Figure 15-44. To remove Attenuator A (1) or Attenuator B (2), remove the semi-rigid cables W9, W10, W11 and W19 attached to the attenuator using the 5/16 inch wrench.
2. Remove the W16 ribbon cable attached to the attenuator.
3. Remove the two screws (3) or (4) for each attenuator bracket to remove from the chassis using the T-10 driver.
4. Remove the two screws to separate the attenuator from the bracket.

Figure 15-44 Attenuators Removal

Replacement

1. Refer to Figure 15-44. Position the attenuator in the bracket so that the ribbon connector end is "up".
2. Replace the two screws that attach the attenuator to the bracket. Torque to 9 inch-pounds.
3. Position the attenuator and bracket into the chassis and attach with the two screws. Torque to 9 inch-pounds.
4. Replace the ribbon cable and semi-rigid cables W9, W10, W11 and W19 to the attenuator. Torque the semi-rigid cables to 10 inch-pounds.

YTF Preselector

Removal

1. Refer to Figure 15-45. Remove cables W7 and W8 (or W47 and W48 if Option MPB is installed) from the YTF Preselector (1).

Figure 15-45 YTF Preselector Removal

2. Remove the wire harness W22.
3. Refer to Figure 15-46. From the bottom of the instrument, remove the four screws (2). The YTF Preselector can now be removed from the chassis.

Figure 15-46 YTF Preselector Screws

Replacement

1. Inspect the chassis where the YTF Preselector mounts and remove the gap pad if present (see Figure 15-34, item (1)). The gap pad may remain attached to the faulty YTF P

Refer to Figure 15-47. Install the replacement gap pad (1) into the recess in the base of the replacement YTF Preselector (2) Refer to A12MP1 in Chapter 14, "Replaceable Parts." for the gap pad part number. Peel back one corner of the clear plastic backing on the pink side of the gap pad. Remove the blue backing from the other side of the gap pad. Install the gap pad as shown with the pink side exposed. Carefully peel off the clear plastic backing and smooth the gap pad into the recess.

Figure 15-47 Gap Pad Installation

reselector.
2. Refer to Figure 15-46. Place the YTF Preselector into the chassis with the connectors toward the front of the instrument. Replace the four screws (2). Torque to 9 inch-pounds.
3. Figure $15-45$. Replace the cables W7 and W8 (or W47 and W48). Torque to 10 inch-pounds.
4. Replace the wire harness W22.
5. Refer to Figure 15-23. Position the chassis side, right onto the chassis and replace the thirteen screws. Torque to 9 inch-pounds.
6. Replace the front panel. Refer to the Front Frame Assembly replacement procedure.
7. Replace the top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
8. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

RF Front End Assembly - Options 503, 507, 513, 526

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the instrument top brace. Refer to the Top Brace and Reference Bracket removal procedure.
3. Remove the front panel. Refer to the Front Frame Assembly removal procedure.
4. Refer to Figure 15-48. Using the $5 / 16$ inch wrench, remove the cables W3, W4, W5, W7, W15 or W36, and W20 attached to the RF Front End Assembly (1).

NOTE \quad W7 will not be present in instruments with Option 503.
5. Remove the ribbon cable W17 from the RF Front End Assembly.
6. Remove the four screws (2) using the T-10 driver. The RF Front End Assembly can now be removed from the chassis.

Figure 15-48 RF Front End Assembly Removal

Replacement

1. Refer to Figure 15-48. Place the RF Front End Assembly into the chassis. Replace the four screws (2). Torque to 9 inch-pounds in the sequence shown, starting with \#1.
2. Reattach ribbon cable W17 to the RF Front End Assembly.
3. Reattach the cables W3, W4, W5, W7, W15 or W36, and W20 to the RF Front End Assembly (1). Torque the semi-rigid cables to 10 inch-pounds.

NOTE W7 will not be present in instruments with Option 503.
4. Replace the front panel. Refer to the Front Frame Assembly replacement procedure.
5. Replace the instrument top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
6. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

RF Front End Assembly - Options 532, 544

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the instrument top brace. Refer to the Top Brace and Reference Bracket removal procedure.
3. Remove the front panel. Refer to the Front Frame Assembly removal procedure.
4. Refer to Figure 15-49. Using the $5 / 16$ inch wrench, remove the cables W3, W4, W5, W7, W15 (or W36), and W20 attached to the RF Front End Assembly (1).
5. Remove the ribbon cable W17 from the RF Front End Assembly.
6. Remove the four screws (2) using the T-10 driver. The RF Front End Assembly can now be removed from the chassis.

Figure 15-49 RF Front End Assembly (Option 532, 544) Removal

[^0]
Replacement

1. Refer to Figure 15-49. Place the RF Front End Assembly into the chassis. Replace the four screws (2). Torque to 9 inch-pounds.
2. Reattach ribbon cable W17 to the RF Front End Assembly.
3. Reattach the cables W3, W4, W5, W7, W15 (or W36), and W20 to the RF Front End Assembly (1). Torque the semi-rigid cables to 10 inch-pounds.
4. Replace the front panel. Refer to the Front Frame Assembly replacement procedure.
5. Replace the instrument top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
6. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Front End Control Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the instrument top brace. Refer to the Top Brace and Reference Bracket removal procedure.
3. Refer to Figure 15-50. Remove the ribbon cables W16, W17, and W18 and the wire harness W22 from the Front End Control assembly (1).

NOTE \quad W22 will not be present in instruments with Option 503.

NOTE | Instruments with Options DP2, MPB, B40, CR3, or CRP will have the |
| :--- |
| Enhanced Front End Control Assembly which will have additional cables as |
| shown in Figure 15-51. |

4. The Front End Control assembly can now be unplugged from the motherboard by leveraging up on the ejector and lifting the board up on the other side.

Figure 15-50 Front End Control Assembly Removal

front_end_control
Figure 15-51 Enhanced Front End Control Assembly Cables

Replacement

1. Refer to Figure 15-50. Install the Front End Control assembly into slot 6 in the chassis securing with the ejector.
2. Reattach the ribbon cables W16, W17, and W18 and the wire harness W22 to the Front End Control assembly (1). If the instrument has the Enhanced Front End Control Assembly, reattach the additional cables as shown in.Figure 15-51.

NOTE
W22 will not be present in instruments with Option 503.
3. Replace the instrument top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
4. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

L.O. Synthesizer Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the instrument top brace. Refer to the Top Brace and Reference Bracket removal procedure.
3. Refer to Figure 15-52. Remove the cables W4 and W6 from the L.O. Synthesizer assembly (1) using the 5/16 inch wrench.
4. The L.O. Synthesizer assembly can now be unplugged from the motherboard by pulling up on the board and lifted out of the chassis.

Figure 15-52 L.O. Synthesizer Assembly Removal

Replacement

1. Refer to Figure 15-52. Install the L.O. Synthesizer assembly into slot 5 in the chassis and press down to plug it into the motherboard.
2. Reattach the cables W4 and W6 to the L.O. Synthesizer assembly (1). Torque to 10 inch-pounds.
3. Replace the instrument top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
4. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Rear Panel

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Refer to Figure 15-53. Using the $\mathrm{T}-10$ driver, remove the twenty screws (2) attaching the rear panel (1) to the chassis and to the reference bracket. The rear panel can now be removed.
3. Refer to Figure 15-54. Remove W23 cable from the A16 Reference Assembly (1) at A16J704.

NOTE
If the rear panel is being replaced with a new rear panel, remove W23 at the rear panel using a $9 / 16$-inch nut driver. Instruments with Option CR3 or CRP will have an additional cable W39 that is attached to the rear panel.

Figure 15-53 Rear Panel Removal

Replacement

1. Reattach W23 cable to A16J704 or to the rear panel depending on how you removed it.
2. Refer to Figure 15-53. Place the rear panel (1) into position in the chassis. Replace the twenty screws (2) to attach the rear panel to the chassis. Torque to 9 inch-pounds.
3. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Reference Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the reference bracket. Refer to the Top Brace and Reference Bracket removal procedure.
3. Remove the rear panel. Refer to the Rear Panelremoval procedure.
4. For standard instruments, refer to Figure 15-54. Remove cables W5, W6, W12, W14, W19, W20, and W23 from the reference assembly (1). Use the $5 / 16$ inch wrench where necessary.

Figure 15-54 Reference Board Cables - Instruments without Option B40, MPB, or DP2

5. For instruments with Option B40, MPB, or DP2, refer to Figure 15-55. Remove cables W5, W6, W14, W19, W23, W42, and W43 from the reference assembly (1). Use the 5/16 inch wrench where necessary.

reference_cables_option
6. The reference assembly can be removed from the chassis by leveraging up on the ejector and pulling the board out on the other side.

Replacement

1. Slide the reference assembly into the slot at the rear of the instrument and push on the assembly to mate the connectors to the midplane assembly. Secure with the ejector.
2. Refer to Figure 15-54 and Figure 15-55. Replace the cables to the correct locations. Torque the semi-rigid cables to 10 inch-pounds.
3. Replace the rear panel. Refer to the Rear Panelreplacement procedure.
4. Replace the reference bracket. Refer to the Top Brace and Reference Bracket replacement procedure.
5. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Power Supply Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the rear panel. Refer to the Rear Panelremoval procedure.
3. Remove the top brace and reference bracket. Refer to the Top Brace and Reference Bracket removal procedure.
4. Remove the reference assembly. Refer to the Reference Assembly removal procedure.
5. Remove the CPU assembly. Refer to the CPU Assembly removal procedure.
6. Refer to Figure 15-56. Remove the three screws (1) attaching the power supply (2) to the power supply bracket (3).
7. The power supply assembly can be removed from the chassis by pulling straight out the back.

Figure 15-56 Power Supply Assembly Removal

Replacement

1. Slide the power supply assembly into the slot at the rear of the instrument and push on the assembly to mate the connectors to the midplane assembly.
2. Refer to Figure 15-56. Replace the three screws (1) through the power supply bracket (3) and into the power supply (2). Torque to 9 inch-pounds.
3. Replace the CPU assembly. Refer to the CPU Assembly replacement procedure.
4. Replace the reference assembly. Refer to the Reference Assembly replacement procedure.
5. Replace the top brace and reference bracket. Refer to the Top Brace and Reference Bracket replacement procedure.
6. Replace the rear panel. Refer to the Rear Panelreplacement procedure.
7. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

CPU Assembly

Removal

Depending on the vintage of your instrument, the CPU assembly will look either like Figure 15-57 or Figure 15-58.

Figure 15-57 Current CPU Assembly - Rear Panel View

Figure 15-58 Old CPU Assembly - Rear Panel View

1. Refer to Figure 15-59 or Figure 15-60. Remove the six screws (1) attaching the CPU assembly to the chassis.
2. The CPU assembly can be removed from the chassis by pulling straight out the back. Use the two ejectors to pull the CPU assembly out from the chassis.

NOTE If the A4BT1 CPU board battery was changed, refer to Chapter 16, "Post-Repair Procedures." for setup instructions.

Figure 15-59 New CPU Assembly Removal

Figure 15-60 Old CPU Assembly Removal

Replacement

1. Slide the CPU assembly into the slot at the rear of the instrument and push on the assembly to mate the connectors to the midplane assembly. Secure the board with the ejectors.
2. Refer to Figure 15-59 or Figure 15-60. Replace the six screws (1) that attach the CPU assembly to the chassis. Torque to 9 inch-pounds.

Disk Drive

There are two different types of disk drive installations that have been used in the X-Series Signal Analyzers. Originally the drive was located inside of the A4 CPU assembly, which would need to be removed and opened up in order to replace the drive. However, in newer instruments the disk drive has been relocated such that it can be removed through the rear panel of the instrument. Of course, instruments that originally had their disk drive located inside of the A4 CPU assembly could have been upgraded with Option PC2 or Option PC4 and would now have a rear panel removable disk drive as well.
If the A5 Disk Drive is being replaced on an newer instrument, or has had an Option PC2 or PC4 upgrade, follow the procedure below under the heading "Rear Panel Removable Disk Drive". If the instrument has an older CPU, and has not had an Option PC2 or PC4 upgrade, follow the procedure below under the heading "Internally Mounted Disk Drive" for instructions on replacing the A5 Disk Drive.

NOTE \quad Refer to Figure 15-57 and Figure 15-58 for illustrations of the difference between the new CPU and old CPU assemblies.

CAUTION Electrostatic discharge (ESD) can damage or destroy electronic components. All work on electronic assemblies should be performed at a static-safe workstation. Refer to the documentation that pertains to your instrument for information about static-safe workstations and ordering static-safe accessories.

Rear Panel Removable Disk Drive

Drive Removal and Replacement

CAUTION Electrostatic discharge (ESD) can damage or destroy electronic components. All work on electronic assemblies should be performed at a static-safe workstation. Refer to the documentation that pertains to your instrument for information about static-safe workstations and ordering static-safe accessories.

Before replacing the A5 disk drive it is highly recommended that the factory calibration data be backed up to an external drive if at all possible. If this data is not backed up prior to replacing the disk drive all instrument adjustments and performance verification tests will need to be run after the drive is replaced.

For information on how to backup this data see the "Calibration Data Backup and Restore" section in Chapter 16, "Post-Repair Procedures." of this manual.

If this data cannot be backed up because the instrument will not fully boot, go ahead and change the A5 Disk Drive and perform all adjustments listed in Chapter 16, "Post-Repair Procedures." for the A5 assembly.

1. Turn the instrument off and remove the AC power cord.
2. Refer to Figure 15-61. Locate and remove the existing disk drive carrier assembly (2) from the instrument by loosening the rear panel screw (1).

Figure 15-61 Removing the Disk Drive Carrier Assembly

3. Refer to Figure 15-62. Remove the 4 machine screws (1) from the disk drive carrier assembly that secure the drive (2).

Figure 15-62 Disk Drive Screws

4. Remove the disk drive (2) from the carrier assembly.
5. Place the new disk drive onto the carrier assembly and attach with the 4 machine screws (1). Torque to 9 in-lbs.
6. Refer to Figure 15-61. Replace the disk drive carrier assembly (2) into the instrument and tighten the screw to 9 in-lbs.
7. Locate the Windows Vista License Sticker that came with the replacement disk drive and apply it to the rear of the instrument as shown in Figure 15-63, covering the existing license sticker.

Figure 15-63 Windows License Sticker Rear Panel Location

NOTE While the replacement disk drive has the Windows XP operating system loaded onto it, the license that accompanies it in this kit is for Windows Vista. This is being done within the scope of our license agreement with Microsoft and is necessary at this time, as the instrument applications software is not supported or qualified with any operating system other than Windows XP.
8. Refer to Chapter 16, "Post-Repair Procedures." and perform all of the specified tasks for replacing the A5 Disk Drive assembly.

Internally Mounted Disk Drive

Drive Removal and Replacement

1. Turn the instrument off and remove the AC power cord.
2. Before replacing the A5 disk drive it is highly recommended that the factory calibration data be backed up to an external drive if at all possible. If this data is not backed up prior to replacing the disk drive all instrument adjustments and performance verification tests will need to be run after the drive is replaced.

For information on how to backup this data see the "Calibration Data Backup and Restore" section in Chapter 16 of this manual.

If this data cannot be backed up because the instrument will not fully boot, go ahead and change the A5 Disk Drive and perform all adjustments listed in Chapter 16, "Post-Repair Procedures." for the A5 assembly.
3. Refer to Figure 15-60. Locate and remove the existing CPU assembly from the instrument by removing the 6 rear panel screws (1). The CPU assembly can be removed from the chassis by pulling straight out the back. Use the two ejectors to pull the CPU assembly out from the chassis.
4. Refer to Figure 15-64. Remove and discard the 15 machine screws (1) from the CPU assembly. The screws need to be discarded because dried precoated screws can cause cross threading.

NOTE
Do not remove the 4 Hard Drive screws yet.

Figure 15-64 CPU Top Shield Screws

cpu_topscrews
5. Refer to Figure 15-65. Carefully lift up the CPU top shield and unlock the Hard Drive ribbon cable from the CPU Board by pressing down and out on the two locking tabs located on the sides of the connector as shown.

Figure 15-65 Hard Drive Ribbon Cable

6. Refer to Figure 15-66. Uninstall the existing Hard Drive from the Top Shield by removing and discarding the 4 machine screws (1) from the CPU assembly. Screws need to be discarded because dried precoated screws can cause cross threading.

Figure 15-66 CPU/Hard Drive Parts

7. Remove the ribbon cable from the Hard Disk Drive and set the ribbon cable aside. Discard the defective Hard Disk Drive.
8. Locate the Programmed Hard Disk Drive.
9. Connect the Hard Drive ribbon cable to the Programmed Hard Disk Drive.
10.Install the Programmed Hard Disk Drive to the Top Shield using precoated four Machine Screws (0515-5074) as shown in Figure 15-67. Torque screws to 9 inch-pounds.

Figure 15-67 Top Shield/Hard Drive Assembly

11.Connect the Hard Drive ribbon cable from the Top Shield/Hard Drive/Ribbon Cable assembly to the CPU assembly. When the ribbon cable is fully seated the two locking tabs will grip the sides of the ribbon cable connector.
12.Install the Top Shield/Hard Drive/Ribbon Cable assembly to the CPU assembly using fifteen precoated Machine Screws (0515-5074). Torque screws to 9 inch-pounds.
13. Refer to Figure 15-60. Replace the CPU assembly in the instrument with 6 screws. Torque to 9 inch-pounds.
14.Locate the Windows Vista License Sticker that came with the replacement hard drive and apply the sticker to the rear of the instrument as shown in Figure 15-68, covering the existing sticker if present.

Figure 15-68 Windows License Sticker Rear Panel Location

NOTE While the replacement disk drive has the Windows XP operating system loaded onto it, the license that accompanies it in this kit is for Windows Vista. This is being done within the scope of our license agreement with Microsoft and is necessary at this time, as the instrument applications software is not supported or qualified with any operating system other than Windows XP.
15.Refer to the Chapter 16, "Post-Repair Procedures.", and perform all of the specified task for replacing the A5 Disk Drive assembly.

Disk Drive Interconnect

Removal

1. Remove the A5 Disk Drive assembly for the instrument. Refer to the "Disk Drive" removal procedure.
2. Remove the A4 CPU assembly from the instrument. Refer to the "CPU Assembly" removal procedure.
3. Refer to Figure 15-69. Remove the A4 CPU assembly cover (1) by first removing the 19 flat-head screws (2) and 3 pan-head screws (3). The 19 flat-head screws need to be discarded and replaced since they are precoated with a thread locking compound and new screws will need to be used when the cover is re-installed.

Figure 15-69 A4A1 Disk Drive Interconnect Board Removal

4. Remove the 2 screws (4) that attached the A4A1 Disk Drive Interconnect board (5) to the A4 CPU assembly.
5. Unplug and remove the A4A1 Disk Drive Interconnect board from the A4 CPU assembly by carefully sliding the board out towards the disk drive bay opening (6).

Installation

1. Refer to Figure 15-69. Plug the A4A1 Disk Drive Interconnect board (5) into the A4 CPU assembly by carefully sliding it into place from the disk drive bay opening (6).
2. Install the 2 screws (4) that secure the A4A1 Disk Drive Interconnect board to the A4 CPU assembly and torque them to 9 inch-lbs.
3. Replace the A4 CPU assembly cover (1) and attach it with 19 new flat-head screws (2) and the 3 pan-head screws (3). Torque all screws to 9 inch-lbs.
4. Re-install the A4 CPU assembly into the instrument. Refer to the CPU Assembly installation procedure.
5. Re-install the A5 Disk Drive assembly into the instrument. Refer to the Disk Drive installation procedure.

Analog I.F. (AIF)/Digital I.F. (DIF) Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the rear panel. Refer to the Rear Panelremoval procedure.
3. Refer to Figure 15-70 and Figure 15-71. Depending on the age of your instrument and the installed options, remove the appropriate cables from the bottom of the DIF assembly.

Figure 15-70 W12, W13 Removal - Standard Instruments

w12_bottom

Figure 15-71 W38, W40, W41, W42 Removal - Option B40, MPB, or DP2

4. Refer to Figure 15-72. Pull the AIF/DIF assembly part way out of the chassis. Remove cables W13, W14, and W15 or W37 from the AIF assembly.
5. The AIF/DIF assembly can be removed from the chassis by pulling straight out the back.

Figure 15-72 AIF/DIF Assembly Removal

Separate AIF/DIF Assembly

1. To separate the AIF (1) from the DIF (2), unplug ribbon cable W2 from the AIF assembly.
2. Refer to Figure 15-73. From underneath the assembly, remove the three screws (3).

Figure 15-73 AIF/DIF Separation

aif_dif_separate

AIF/DIF Pre-installation

1. Set the DIF in position over the AIF. Reinstall the three screws removed before. Torque to 9 inch-pounds, starting with the middle screw.
2. To reconnect the AIF and the DIF, reconnect the ribbon cable W2.

Replacement

1. Slide the AIF/DIF assembly into the slot at the rear of the instrument and push on the assembly to mate the connectors to the midplane assembly.
2. Refer to Figure 15-72. Replace cables W13, W14, and W15 or W37 to the AIF assembly.
3. Refer to Figure 15-70 and Figure 15-71. Replace the appropriate cables to the bottom of the DIF assembly.
4. Replace the rear panel. Refer to the Rear Panelreplacement procedure.
5. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Midplane Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the rear panel. Refer to the Rear Panelremoval procedure.
3. Remove the top brace and reference bracket. Refer to the Top Brace and Reference Bracket removal procedure.
4. Remove the reference assembly. Refer to the Reference Assembly removal procedure.
5. Remove the CPU assembly. Refer to the CPU Assembly removal procedure.
6. Remove the power supply assembly. Refer to the Power Supply Assembly removal procedure.
7. Refer to Figure 15-74. Remove the power supply support bracket (1) by removing the two screws (2).

Figure 15-74 Power Supply Bracket

8. Refer to Figure 15-75. Remove the six screws (2) attaching the midplane assembly (1) to the midplane bracket. The midplane assembly can now be pulled up from the chassis by leveraging up on the ejectors.

Figure 15-75 Midplane Assembly Removal

Replacement

1. Refer to Figure 15-75. Install the midplane assembly into the chassis and attach to the midplane bracket using the six screws (2) removed earlier. Torque to 9 inch-pounds.
2. Replace the power supply support bracket with the two screws. Torque to 9 inch-pounds.
3. Replace the power supply assembly. Refer to the Power Supply Assembly replacement procedure.
4. Replace the CPU assembly. Refer to the CPU Assembly replacement procedure.
5. Replace the reference assembly. Refer to the Reference Assembly replacement procedure.
6. Replace the top brace and reference bracket. Refer to the Top Brace and Reference Bracket replacement procedure.
7. Replace the rear panel. Refer to the Rear Panelreplacement procedure.
8. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Motherboard Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the rear panel. Refer to the Rear Panelremoval procedure.
3. Remove the top brace and reference bracket. Refer to the Top Brace and Reference Bracket removal procedure.
4. Remove the reference assembly. Refer to the Reference Assembly removal procedure.
5. Remove the CPU assembly. Refer to the CPU Assembly removal procedure.
6. Remove the power supply assembly. Refer to the Power Supply Assembly removal procedure.
7. Remove the AIF/DIF assembly. Refer to the Analog I.F. (AIF)/Digital I.F. (DIF) Assembly removal procedure.
8. Remove the Front End Control assembly. Refer to the Front End Control Assembly removal procedure.
9. Remove the L.O. Synthesizer assembly. Refer to the L.O. Synthesizer Assembly removal procedure.
10.Remove the Midplane assembly. Refer to the Midplane Assembly removal procedure.
11.Remove the Front Frame Assembly. Refer to the Front Frame Assemblyremoval procedure.
12.Remove the RF bracket. Refer to Figure 15-9 on page 454.
13.Remove the fan assembly. Refer to the Fan Assemblyremoval procedure.
14.Refer to Figure 15-76 and Figure 15-77. Remove the midplane bracket (1) by removing the eight screws (2) (two on each side and four on the bottom).

Figure 15-76 Midplane Bracket Removal

Figure 15-77 Bottom Screws

15. Refer to Figure 15-78. Remove the left side chassis (same side as the fan) by removing the seven screws (four on the bottom).

Figure 15-78 Chassis Side Removal

16. Refer to Figure 15-79. Remove the motherboard (1) by removing the four screws (2).

Figure 15-79 Motherboard Assembly Removal

Replacement

1. Refer to Figure 15-79. Place the motherboard (1) into position in the chassis and replace the four screws (2). Torque to 9 inch-pounds.
2. Refer to Figure 15-78. Replace the left side chassis by replacing the seven screws. Torque to 9 inch-pounds.
3. Refer to Figure 15-76. Replace the midplane bracket (1) by replacing the eight screws (2). Torque to 9 inch-pounds.
4. Replace the fan assembly. Refer to the Fan Assemblyreplacement procedure.
5. Replace the RF bracket. Refer to Figure 15-9 on page 454. Torque the screws to 9 inch-pounds.
6. Replace the Front Frame Assembly. Refer to the Front Frame Assemblyreplacement procedure.
7. Replace the Midplane assembly. Refer to the Midplane Assembly replacement procedure.
8. Replace the L.O. Synthesizer assembly. Refer to the L.O. Synthesizer Assembly replacement procedure.
9. Replace the Front End Control assembly. Refer to the Front End Control Assembly replacement procedure.
10.Replace the AIF/DIF assembly. Refer to the Analog I.F. (AIF)/Digital I.F. (DIF) Assembly replacement procedure.
11.Replace the power supply assembly. Refer to the Power Supply Assembly replacement procedure.
12.Replace the CPU assembly. Refer to the CPU Assembly replacement procedure.
13.Replace the reference assembly. Refer to the Reference Assembly replacement procedure.
14.Replace the top brace and reference bracket. Refer to the Top Brace and Reference Bracket replacement procedure.
15.Replace the rear panel. Refer to the Rear Panelreplacement procedure.
10. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Fan Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the top brace. Refer to the Top Brace and Reference Bracket removal procedure.
3. Remove the Front Frame Assembly. Refer to the Front Frame Assembly removal procedure.
4. Refer to Figure 15-80. Remove the eight screws (1) that attach the fan assembly to the chassis.

Figure 15-80 Fan Assembly Removal

5. Unplug the fan wires from the motherboard. The fan assembly can now be lifted from the chassis.

Replacing a Fan

1. Refer to Figure 15-81. To replace a fan, it is necessary to remove the 4 plastic rivets (4) that attach the fan (1) and guard (3) to the fan bracket. To do this use a small screwdriver to unscrew the rivet and remove it from the bracket.

Figure 15-81 Fan Replacement

2. Position the new fan on the work surface with the arrows pointing to the right and down.
3. Orient the fan guard so that the rings are on the outside, and that the " V " of the support legs are pointing to the neighboring fan.
4. With the rivets center posts raised, snap the rivets into place through the fan grill and fan bracket and into the fan. Screw the center posts into place.

Replacement

1. Plug the fan wires into the motherboard.
2. Refer to Figure 15-80. Place the fan assembly into position in the chassis. Replace the eight screws (1) to attach the fan assembly to the chassis. Torque to 9 inch-pounds.
3. Replace the Front Frame Assembly. Refer to the Front Frame Assembly replacement procedure.
4. Replace the top brace. Refer to the Top Brace and Reference Bracket replacement procedure.
5. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Input Connector Assembly

Removal

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.
2. Remove the Front Frame Assembly. Refer to the Front Frame Assembly removal procedure.
3. Refer to Figure 15-82. Disconnect the semi-rigid cable W10 from the Input Connector Assembly (2).

Figure 15-82 Input Connector Assembly Removal

4. Remove the two screws (1) that attach the Input Connector Assembly (2) to the chassis. The connector assembly can now be lifted from the chassis.
5. To remove the gusset (5) remove the three screws (4), one on the side of the chassis and two on the bottom.

Replacement

1. Refer to Figure 15-82. Place the Input Connector Assembly (2) into position in the chassis. Replace the two screws (1) to attach the Input Connector Assembly to the chassis. Torque to 9 inch-pounds.

Make sure that the 0-ring (3) is installed correctly on the input connector.
2. Reconnect the semi-rigid cable W10 to the Input Connector Assembly. Torque to 10 inch-pounds.
3. Place the gusset (5) in position and replace the three screws (4) that attach it to the chassis. Torque to 9 inch-pounds.
4. Replace the Front Frame Assembly. Refer to the Front Frame Assembly replacement procedure.
5. Replace the instrument outer case. Refer to the Instrument Outer Casereplacement procedure.

Front Frame Assembly

Removal

NOTE
Make sure any connectors on the front panel are removed.

1. Remove the instrument outer case. Refer to the Instrument Outer Caseremoval procedure.

NOTE
If the analyzer has Option PRC, Portable Configuration, and you want to remove the bail handle and bumpers from the front frame, refer to the "Bail Handle Removal (Option PRC)" section on page 551.
2. Refer to Figure 15-83. Using the T-10 driver, remove the eight screws (1), four on each side, to detach the Front Frame Assembly from the chassis.

Figure 15-83 Front Frame Assembly Removal

3. Refer to Figure 15-84. Pull the Front Frame Assembly carefully away from the chassis. Remove the ribbon cable W1 from the mother board.
4. If the instrument has Option BBA (BBIQ inputs), there will be an additional cable (W24) that will need to be removed. W24 connects to the A18 BBIQ Interface Board. Pull the Front Frame Assembly carefully away from the chassis. Remove the ribbon cable W1 from the mother board.

Figure 15-84 Front Panel Cable

Replacement

1. Reattach the ribbon cable W1.
2. Reattach the ribbon cable W24 for instruments with Option BBA.
3. Refer to Figure 15-83. Carefully position the Front Frame Assembly onto the chassis. Ensure no cables are crushed. Replace the eight screws (1), four on each side of the chassis. Torque to 9 inch pounds.
4. Replace the outer case. Refer to the Instrument Outer Casereplacement procedure.

Bail Handle Removal (Option PRC)

1. Refer to Figure 15-85. Using the T-20 driver, remove the four screws (1), two on each side, to detach the Bail Handle Assembly (2) from the front frame.
2. Using the T-20 driver, remove the two screws (3) on each front bumper (4) and remove from the front frame.
3. When replacing these parts, torque to 21 inch-pounds.

Figure 15-85 Bail Handle and Front Bumpers Removal

Front Frame Assembly Components - LCD

NOTE
 Access to any of the Front Frame assemblies requires removal of the Front Frame Assembly from the chassis.

Figure 15-86 Front Frame Assembly Parts Locator - LCD

Table 15-3

Item	Reference Designator	Description
9	A1A2	Front Panel Interface Board
10	A1A2MP1	Speaker
11	A1A2MP2	Speaker Foam
12	A1A3	Liquid Crystal Display
13	A1A4	Inverter Board (display backlight power) Serial Number <MY51250000, SG51250000
14	A1A5	Front Panel Daughter Board
23	A1MP10-13	Cable Clamp (Front Panel Cables)
24	A1W1	Flex Circuit, Display to Front Panel Interface Board
25	A1W2	Power Cable, Front Panel Interface Board to Inverter Board
26	W1	Cable, Front Panel Interface Board to Motherboard (Ribbon)
28, 29, 30	-	Screw - M3 X 8 mm (TORX Pan Head)
31	-	Screw - M3 X 5 mm (TORX Flat Head)

Figure 15-87 Front Frame Assembly Exploded View - LCD

Assembly Replacement Procedures

Front Frame Assembly

Table 15-4

Item	Reference Designator	Description
1	A1A1	Front Frame
2	A1A1MP2	Main Keypad Overlay ${ }^{\text {b }}$
3	A1A1MP3	Connector Overlay
4	A1A1MP7	Front Frame Top Trim Strip (Use with standard Bench analyzer)
5	A1A1MP9-10	Front Frame Side Trim Strip
6	A1A1MP4	Front Frame Ground Spring
7	A1A1MP5	Braided Gasket
8	A1A1MP6	Chromeric Gasket
9	A1A2	Front Panel Interface Board
10	A1A2MP1	Speaker
11	A1A2MP2	Speaker Foam
12	A1A3	Liquid Crystal Display
13	A1A4	Inverter Board (display backlight power) Serial Number <MY51250000, SG512500
14	A1A5	Front Panel Daughter Board
15	A1MP1	Main Keypad
16	A1MP2	Display Keypad
17	A1MP9	RPG Knob
18	A1MP3 A1MP4 A1MP5 A1MP6	Frequency Label, 3.6 GHz Frequency Label, 7 GHz Frequency Label, 13.6 GHz Frequency Label, 26.5 GHz
19	A1MP7	LCD Glass Filter
20	A1MP8	LCD Lens Gasket
21	A1MP14	Display Bracket
22	A1MP15	Inverter Board Shield
23	A1MP10-13	Cable Clamp (Front Panel Cables)
24	A1W1	Flex Circuit, Display to Front Panel Interface Board
25	A1W2	Power Cable, Front Panel Interface Board to Inverter Board
26	W1	Cable, Front Panel Interface Board to Motherboard (Ribbon)
27	-	Screw - M $2.5 \times 8 \mathrm{~mm}$ (TORX Pan Head)
28	-	Screw - M3 X 8 mm (TORX Pan Head)
29	-	Screw - M3 X 8 mm (TORX Pan Head)
30	-	Screw - M3 X 8 mm (TORX Pan Head)

Table 15-4

Item	Reference Designator	

Display Assembly - LCD
Removal

1. Refer to Figure 15-86. Ribbon cable W1 (26) must be separated from the display by pulling up to separate the velcro that is used to adhere the cable to the bracket.
2. Refer to Figure 15-86. Disconnect the cable A1W2 (25) from the LCD Inverter board (13) and unclip the cable from the cable clamps.
3. Disconnect the flex circuit A1W1 (24) from the front panel interface board (9).
4. Remove the four screws (30) securing the display bracket (12) to the Front Frame Assembly. The display can now be removed from the Front Frame Assembly.

CAUTION Once the display assembly has been removed from the Front Frame Assembly, the glass filter is no longer secured. DO NOT tip the assembly in such a manner that would cause it to fall out of place, as this may cause injury and/or damage to the glass.
5. Refer to Figure 15-88. Disconnect the backlight wires (2) from the inverter board.

Figure 15-88 Inverter Board Removal

6. To remove the A1A4 LCD Inverter board (1), remove the two screws (3) securing the inverter board to the display bracket (5).
7. To remove the A1A3 LCD (4), flip the assembly over and remove the four screws securing the LCD to the display bracket (5).

Replacement

1. To replace the A1A3 LCD (4), place it on the display bracket (5) and replace the four screws. Torque to 9 inch pounds.
2. To replace the A1A4 Inverter board (1), place it on the display bracket (5) and replace the two screws (3). Torque to 9 inch pounds.
3. Reattach the backlight wires (2) onto the inverter board.
4. Refer to Figure 15-86. Place the display bracket into position in the Front Frame Assembly. Reconnect the flex circuit A1W1 (24) to the front panel interface board (9).
5. Replace the four screws (30) that secure the display bracket to the Front Frame Assembly. Torque to 9 inch pounds.
6. Reconnect the cable A1W2 (25) to the Inverter board (13). Reclip the cable into the cable clamps.
7. Adhere the velcro on ribbon cable W 1 to the display.

Daughter Board, Interface Board and Keypad

Removal

1. Refer to Figure 15-91. Remove the RPG knob (17) by carefully pulling it off.
2. Remove the display. Refer to the Display Assembly - LCDremoval procedure.
3. Refer to Figure 15-86. Remove the A1A5 Front Panel Daughter board (14) by removing the three screws (28) and unplugging it from the front panel interface board.
4. Remove the thirteen screws (31) securing the A1A2 Front Panel Interface board to the Front Frame Assembly. The Front Panel Interface board with the keypad attached can now be lifted from the Front Frame Assembly.
5. To separate the keypad from the Front Panel Interface board, use a push tool or pliers to carefully separate the pull through tabs.

Replacement

1. Install the keypad onto the Front Panel Interface board using the pull through tabs and alignment holes. Use a push tool or pliers to ensure that all of the pull through tabs are properly captive on the board.
2. Install the A1A2 Front Panel Interface board/keypad assembly into the Front Frame Assembly, and replace the thirteen screws (31) to secure. Torque to 9 inch pounds.
3. Replace the A1A5 Front Panel Daughter board (14) by plugging it into the Front Panel Interface board using the board to board connectors and secure it with the three screws (28). Torque to 9 inch pounds.
4. Replace the display. Refer to the Display Assembly - LCDreplacement procedure.
5. Replace the RPG knob by firmly pressing it on.

Front Frame Assembly Components - LED

NOTE
Access to any of the Front Frame assemblies requires removal of the Front Frame Assembly from the chassis.

Figure 15-89 Front Frame Parts - LED

Table 15-5

Item	Description
12	A1MP14 Display Bracket
14	A1A5 Front Panel Daughter Board
25	A1MP24 Magnetic Shield (Display Bracket to Front Panel Interface/Speaker Bracket)
26	A1MP23 Front Panel Interface/Speaker Bracket
30	Screw, Front Panel Daughter Board()

Figure 15-90 Front Frame Parts (shields off) - LED

Table 15-6

Item	Description
9	A1A2 Front Panel Interface Board
10	A1A2MP1 Speaker
11	A1A2MP2 Speaker Foam
21	A1W1 Flex Circuit, Display to Front Panel Interface Board
23	A1W3 Power Cable, Front Panel Interface board to DC-DC Converter

Figure 15-91 Front Frame Exploded View - LED

Assembly Replacement Procedures

Front Frame Assembly

Table 15-7

	Item	Description
	1	Front Frame
	2	Main Keyboard Overlay
	3	Overlay, Left Display
	4	Cover Plate
	5	Front Frame Side Trim Strip (plastic)
6		Front Frame Ground Spring
	9	A1A2 Front Panel Interface Board
10		A1A2MP1 Speaker
	11	A1A2MP2 Speaker Foam
	12	A1A3 Liquid Crystal Display
	14	A1A5 Front Panel Daughter Board
	15	A1MP1 Main Keypad
	16	A1MP2 Display Keypad
	17	A1MP9 RPG Knob
18		A1MP3-6 or A1MP16-17 Frequency Label
	19	A1MP8 LCD Lens Gasket
20		A1MP7 LCD Glass Filter
24		A1A4 DC-DC Converter (LED display backlight power)
	25	A1MP24 Magnetic Shield (Display Bracket to Front Panel Interface/Speaker Bracket)
26		A1MP23 Front Panel Interface/Speaker Bracket
	30	A1MP14 Display Bracket
34		A1W1 Flex Circuit, Display to Front Panel Interface Board
35		A1W3 Power Cable, Front Panel Interface board to DC-DC Converter
36		A1W4 Power Cable, DC-DC Converter to Display

Figure 15-92 Front Frame Assembly Shields - LED

Table 15-8

Item	Description
1	A1MP23 Front Panel Interface/Speaker Bracket
28	Screw M3 \times 0.5 (5mm long) (0515-0372)

Display Assembly - LED
Removal

1. Refer to Figure 15-92. Remove the front panel shield by removing the four screws (28).
2. Refer to Figure 15-93. Disconnect the flex circuit A1W1 (1) and A1W3 (2) from the front panel interface board (4).

Figure 15-93 Display Removal - LED

3. Remove the screw (3) securing the display bracket to the Front Frame Assembly. The display can now be removed from the Front Frame Assembly.

CAUTION
Once the display assembly has been removed from the Front Frame Assembly, the glass filter is no longer secured. DO NOT tip the assembly in such a manner that would cause it to fall out of place, as this may cause injury and/or damage to the glass.
4. Refer to Figure 15-94. To separate the LCD (2) from the display bracket (1), remove the four screws (3). When reassembling, torque the four screws to 5 inch-pounds.
5. To separate the DC to DC Converter (4) from the display bracket (1), remove the two screws (5). When reassembling, torque the two screws to 9 inch-pounds.

Figure 15-94 LED and Display Bracket Separation

Replacement

1. Refer to Figure 15-93. Place the display bracket into position in the Front Frame Assembly. Reconnect the flex circuit A1W1 (1) and A1W3 (2) to the front panel interface board (4).
2. Replace the screw(3) that secures the display bracket to the Front Frame Assembly. Torque to 9 inch-pounds.
3. Replace the front panel shield.

Daughter Board, Interface Board and Keypad

Removal

1. Refer to Figure 15-91. Remove the RPG knob (17) by carefully pulling it off.
2. Remove the display. Refer to the Display Assembly - LEDremoval procedure.
3. Refer to Figure 15-89. Remove the A1A5 Front Panel Daughter board (14) by removing the three screws (30) and unplugging it from the front panel interface board.
4. Remove the thirteen screws securing the A1A2 Front Panel Interface board to the Front Frame Assembly. The Front Panel Interface board with the keypad attached can now be lifted from the Front Frame Assembly.
5. To separate the keypad from the Front Panel Interface board, use a push tool or pliers to carefully separate the pull through tabs.

Replacement

1. Install the keypad onto the Front Panel Interface board using the pull through tabs and alignment holes. Use a push tool or pliers to ensure that all of the pull through tabs are properly captive on the board.
2. Install the A1A2 Front Panel Interface board/keypad assembly into the Front Frame Assembly, and replace the thirteen screws to secure. Torque to 9 inch-pounds.
3. Replace the A1A5 Front Panel Daughter board (14) by plugging it into the Front Panel Interface board using the board to board connectors and secure it with the three screws (30). Torque to 9 inch-pounds.
4. Replace the display. Refer to the Display Assembly - LCDreplacement procedure.
5. Replace the RPG knob by firmly pressing it on.

16 Post-Repair Procedures

What You Will Find in This Chapter

This chapter provides information that will enable you to return an instrument to full operation following the replacement of any instrument assembly. This information includes a table that shows which adjustments and/or performance tests must be executed after replacing an assembly.

Before Starting

There are three things you should do before starting any of the procedures listed or described in this chapter:

- Familiarize yourself with the safety symbols, and read the general safety considerations and the safety note definitions in the front of this guide, before you begin the procedures in this chapter.
- Check that the analyzer has been turned on and allowed to warm up.
- Ensure that the analyzer is operating within a temperature range of $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.

Test equipment you will need

Refer to Table 1-1 on page 28, for a list of recommended equipment and critical test equipment specifications for the performance verification and adjustments.

Post-Repair Procedures

Table 16-1 lists the adjustments and performance verification tests needed after an assembly replacement.

After an assembly is replaced, find the assembly that has been replaced in the left-hand column, and then perform the recommended adjustment and/or performance verification test. Making the recommended adjustments and/or performance verification tests doesn't guarantee all published specifications are being met. Only a full instrument calibration will do this.

NOTE \quad Refer to the analyzer user's guide for information on instrument warm-up before performing any of the procedures listed in this chapter.

The following procedures are also included in the "Additional Tasks" on page 572.

- "Calibration Data Backup and Restore"
- "BIOS Settings Verification"
- "End User License Agreement (EULA) Acceptance (Software versions \leq A.06.08)"
- "End User License Agreement (EULA) Acceptance (Software versions \geq A.07.00)"
- "FPGA Synchronization"
- "Programming Model and Serial Numbers"

Table 16-1 Post-Repair Testing Requirements

Assembly	Adjustments to Perform (in the order listed) ${ }^{\text {a }}$	Performance Verifications to Perform After Adjustments ${ }^{\text {a }}$
A1A2 Front Panel Interface	None	Residual Responses Displayed Average Noise Level
A1A3 Liquid Crystal Display	None	Residual Responses Displayed Average Noise Level
A2 Analog I.F. Assembly	IF Frequency Response ${ }^{\text {b }}$	Power Bandwidth Accuracy Resolution Bandwidth Switching Uncertainty Residual Responses Displayed Average Noise Level I.F. Frequency Response Absolute Amplitude Accuracy Display Scale Fidelity
A3 Digital I.F. Assembly	FPGA Synchronization ${ }^{\text {c }}$	Power Bandwidth Accuracy Resolution Bandwidth Switching Uncertainty Residual Responses Displayed Average Noise Level I.F. Frequency Response Absolute Amplitude Accuracy Display Scale Fidelity
A4 CPU Assembly	BIOS Settings Verification ${ }^{\text {C }}$ Set Instrument Time and Date ${ }^{\text {d }}$	Residual Responses Displayed Average Noise Level
A4BT1 Battery	$\begin{aligned} & \text { BIOS Settings Verification }{ }^{\text {C }} \\ & \text { Set Instrument Time and Date } \end{aligned}$	Residual Responses Displayed Average Noise Level
A5 Disk Drive ${ }^{e}$	```Accept End User License Agreement (EULA)}\mp@subsup{}{}{\mathbf{C} Instrument Software Update }\mp@subsup{}{}{f All Adjustments}\mp@subsup{}{}{\mathbf{e}```	Residual Responses Displayed Average Noise Level Frequency Response (All Tests)
A6 Power Supply	None	Residual Responses Displayed Average Noise Level Spurious Responses
A7 Midplane board	None	Residual Responses Displayed Average Noise Level
A8 Motherboard	None	Residual Responses Displayed Average Noise Level
A9 \& A10 RF Attenuators	Hardware Statistical Reset Utility 50 MHz Calibrator Adjustment Frequency Response (All Adjustments) Attenuator Slope	Residual Responses Displayed Average Noise Level Spurious Responses Third Order Intermodulation Absolute Amplitude Accuracy Input Attenuation Switching Uncertainty Frequency Response (All Tests)

Table 16-1 Post-Repair Testing Requirements (Continued)

Assembly	Adjustments to Perform (in the order listed) ${ }^{\mathbf{a}}$	Performance Verifications to Perform After Adjustments ${ }^{\text {a }}$
A11 Low Band Switch	Frequency Response (All Tests) Attenuator Slope	Residual Responses Displayed Average Noise Level Spurious Responses Third Order Intermodulation Second Harmonic Distortion Absolute Amplitude Accuracy Frequency Response (All Tests)
A12 YTF Preselector	YTF Alignment (Press System, Alignments, Ad vanced, Characterize Preselector) Frequency Response (All Adjustments) Attenuator Slope	Residual Responses Displayed Average Noise Level Spurious Responses Third Order Intermodulation Second Harmonic Distortion Absolute Amplitude Accuracy Frequency Response (All Tests)
A13 Front End Assembly	Frequency Response (All Tests) Attenuator Slope	Residual Responses Displayed Average Noise Level Spurious Responses Third Order Intermodulation Second Harmonic Distortion Absolute Amplitude Accuracy Frequency Response (All Tests)
A14 L.O. Synthesizer Assembly	FPGA Synchronization ${ }^{\text {c }}$	Residual Responses Displayed Average Noise Level Spurious Responses Phase Noise (All Tests) Frequency Response (All Tests)
A15 Front End Control Assembly	FPGA Synchronization ${ }^{\text {c }}$ YTF Alignment (Press System, Alignments, Ad vanced, Characterize Preselector) Front End Controller Attenuator Adjustment (Option CR3 or CRP)	Residual Responses Displayed Average Noise Level Absolute Amplitude Accuracy Frequency Response (All Tests)
A16 Reference Assembly	FPGA Synchronization ${ }^{\text {C }}$ 10 MHz Frequency Reference Adjust 50 MHz Calibrator Amplitude Adjust 4800 MHz Calibrator Amplitude Adjustment (Option MPB)	Frequency Reference Accuracy Residual Responses Displayed Average Noise Level Frequency Readout Accuracy Count Accuracy Absolute Amplitude Accuracy Phase Noise (All Tests)
SW1, SW2, or SW4 Preselector Bypass Switch (Opt MPB)	Frequency Response (all tests) Attenuator Slope Hardware Statistical Reset	Frequency Response (all)

a. Calibration Application Software is required for all performance tests and most adjustments. For details go to http://www.keysight.com/find/calibrationsoftware
b. IF Frequency Response adjustment only performed if Option B25 and/or B40 are present and analyzer is equipped with Option MPB.
c. See the Additional Tasks section in this chapter for detailed instructions on this task.
d. To set the instrument time and date press Start, Control Panel, Date Time Language and Regional Options, Date and Time
e. Before replacing the A5 Disk Drive, see the "Calibration Data Backup and Restore" section in this chapter for details.
f. See Chapter 17, "Instrument Software" for instructions on updating the instrument software to the latest version.

NOTE
Some Adjustment tests may be found in the Utility portion of the Test Plan.

Additional Tasks

Calibration Data Backup and Restore

Data Backup

In order for the instrument being repaired to not need all of the instrument adjustments and performance verification tests to be run after the A5 Disk Drive is replaced the calibration data will need to be backed up onto an external drive prior to removing the existing disk drive.

NOTE While the backing up and restoring of the calibration data to the new disk drive will return the instrument performance to the state that it was prior to a repair this does not guarantee that all instrument performance parameters meet their specified values. A full instrument calibration would be required to verify this.

There are two different types of calibration file databases that the instrument being repaired could be using, and three different backup procedures that might need to be followed. Which backup procedure to be run will depend on the software version that currently exists in the instrument being repaired.

To determine which calibration data backup procedure needs to be run determine the current instrument software version by pressing System, Show, System on the instrument and follow the steps outlined below for that version.

S/W Revision Less Than A.01.55

1. Close the instrument application software by pressing File, Exit, Enter using the front panel keys.
2. Connect a USB mouse to one of the instrument front panel USB ports.
3. Connect a USB FLASH drive to the other front panel USB port.
4. Using the mouse double-click on the Windows Explorer link on the desktop and navigate to the following folder:
$\mathrm{E}: \backslash A l i g n$ DataStorage
5. Copy the following file onto the USB FLASH drive:

CurrentDataSet.xml

S/W Revision Greater Than or Equal To A.01.55 and Less Than A.02.00

1. Close the instrument application software by pressing File, Exit, Enter using the front panel keys.
2. Connect a USB mouse to one of the instrument front panel USB ports.
3. Connect a USB FLASH drive to the other front panel USB port.
4. Using the mouse double-click on the Windows Explorer link on the desktop and navigate to the following folder:

C: \Program Files \backslash Agilent \backslash SignalAnalysis \backslash Physics
5. Double-click on BackupAndRestore.exe and the window shown in Figure 16-1 will appear.

Figure 16-1 Calibration Data Backup

6. Under the "Specify Backup Folder or File Name" use the mouse to select the "..." button to open the "Browse For Folder" dialog box.
7. Select the USB FLASH drive and press OK.

NOTE While you can use the "Make New Folder" button in the "Browse For Folder" dialog box to create a sub-folder on the USB FLASH drive, and you can specify a filename in the "Specify Backup Folder or File Name" window, you can also just use the root directory on the drive and let the instrument select a default filename for you.
8. Select "Backup" and wait for the calibration database to be backed up.
9. When the backup has completed close the Calibration Data Backup And Restore window.

S/W Revision Greater Than or Equal To A.02.00

1. Connect a USB keyboard and mouse to two of the instrument rear panel USB ports
2. Connect a USB FLASH drive to one of the front panel USB ports.
3. Press System, Alignments, Backup or Restore Align Data.
4. The Alignment Data Wizard window as shown in Figure 16-2 will appear.

Figure 16-2 Alignment Data Wizard

5. Follow the on-screen instruction to backup the calibration data to the USB FLASH drive.

Data Restore (.xml File)

If the instrument being repaired was using a software version prior to A.01.55 it would have been using an .xml database file for its calibration data, and this data will need to be restored using the following process.

1. Close the instrument application software by pressing File, Exit, Enter using the front panel keys.
2. Connect a USB mouse to one of the instrument front panel USB ports.
3. Locate the USB FLASH drive that was earlier used to backup the instrument calibration file and insert it into one of the instrument front panel USB ports.
4. Using the mouse double-click on the Windows Explorer link on the desktop and navigate to the folder on the USB FLASH drive where you previously saved the calibration data file.
5. Locate the following file, which was previously saved to the USB FLASH drive:

CurrentDataSet.xml
6. Highlight the calibration data file and copy the file to the instrument clipboard by selecting Edit, Copy from the Windows Explorer pull-down menu.
7. Navigate to the folder below and paste the file by selecting Edit, Paste from the Windows Explorer pull-down menu:
$\mathrm{E}: \backslash A l i g n D a t a S t o r a g e$
8. Verify that the CurrentDataSet.xml file was copied to the new disk drive
9. Cycle the instrument power.

When the instrument application software starts up it will see this older format data file and convert it to the new SQL database. Any further backing up of the data will now be done through the instrument Alignment Data Wizard application which can be found in the instrument application software under System, Alignments, Backup or Restore Align Data...

Data Restore (SQL Database)

If the instrument being repaired was using instrument software version A.01.55 or newer prior to this repair it was already using an SQL database file for its calibration data, so it can be easily restored with the instrument Alignment Data Wizard using the following procedure.

1. Connect a USB mouse to one of the instrument front panel USB ports.
2. Locate the USB FLASH drive that was earlier used to backup the instrument calibration file and insert it into one of the instrument front panel USB ports.
3. Restore the instrument calibration data by pressing: System, Alignments, Backup or Restore Align Data... The Alignment Data Wizard window as shown in Figure 16-2 will appear.
4. Follow the on-screen instruction to restore the previously saved calibration data from the USB FLASH drive.

BIOS Settings Verification

Whenever either the A4 CPU assembly or the A4BT1 CPU Battery is changed there are certain BIOS settings that need to be verified. If these are not set correctly the instrument may not boot up or operate correctly.

The BIOS settings that need to be verified, as well as the BIOS configuration screens used, will vary depending on the A4 CPU assembly.

Selection of BIOS Settings Procedure

The EXA has had three standard CPUs and two optional CPUs:

- Single-Core Processor (standard on EXAs with serial numbers prior to MY/SG/US50060000; identifies as Option N9010A-PC1 with instrument software A. 02.00 or later)
- Celeron Processor (standard on EXAs with Option 503, 507, 513, and 526 with serial numbers between MY/SG/US50060000 and <MY/SG/US52220000; identifies as Option N9010A-PC3 with instrument software A.04.26 or later)
- High-Performance Celeron Processor (standard on EXAs with Option 503, 507, 513, and 526 with serial numbers >MY/SG/US52220000 and standard on EXAs with Option 532 and 544 with serial numbers >MY/SG/US51440000; identifies as Option N9010A-PC5; only supported on instrument software version A. 10.04 or later)
- Dual-Core Processor (optional on EXAs; identifies as N9010A-PC2; only supported on instrument software versions A. 02.00 and later; available as an upgrade for older EXAs)
- High-Performance Dual-Core Processor (optional on EXAs; identifies as N9010A-PC4; only supported on instrument software versions A.10.04 or later)

Each of these CPUs used unique BIOS when they were introduced. However, the high-performance dual-core processors and the high-performance Celeron Processor use the same BIOS.

The steps below will help you identify which BIOS settings procedure to perform.

1. Connect an external USB keyboard to one of the front panel USB ports.
2. Turn on the analyzer power.
3. Confirm Agilent Technologies splash screen comes up within a few seconds. "Agilent Technologies" will appear in white letters on a black background.
4. Press "F2" and then "Delete" on the external keyboard when at the Agilent Technologies splash screen to enter the CPU BIOS Setup Utility. The older CPUs (N9010A-PC1, N9010A-PC2, and N9010A-PC3) respond to "F2" while the newer CPUs (N9010A-PC4 and N9010A-PC5) respond to the "Delete" key.
5. If the CPU BIOS Setup Utility main screen appears as in Figure 16-3, follow the procedure for the Single-Core Processor.
6. If the CPU BIOS Setup Utility main screen appears as in Figure 16-4, follow the procedure for the Older Dual-Core Processor
7. If the CPU BIOS Setup Utility main screen appears as in Figure 16-5, follow the procedure for the Celeron.
8. If the CPU BIOS Setup Utility main screen appears as in Figure 16-5, follow the procedure for the High-Performance Celeron/Dual-Core Processor.

Figure 16-3 Single-Core Processor BIOS Setup Utility Main Screen

Figure 16-4 Older Dual-Core Processor BIOS Setup Utility Main Screen

Figure 16-5 Celeron Processor BIOS Setup Utility Main Screen

Figure 16-6
High Performance Celeron/Dual-Core Processor BIOS Setup Utility Main Screen

Single-Core Processor

There are two settings in the CPU BIOS that must be verified and may require changing when the A4 CPU assembly or A4BT1 CPU battery is replaced. These settings need to be correct in order for the analyzer to boot up and operate correctly.

- "IDE 2" must be set to \#1 in the "Boot priority order"
- "CK-408 Spread Spectrum" must be set to "Enabled"

Changing and saving these BIOS settings requires a USB external keyboard. Changes to the BIOS are fairly straightforward and should take ~30 seconds.

Verifying Boot Priority

1. Press the Right Arrow on the external keyboard twice to highlight the Boot tab as shown in Figure 16-7.

Figure 16-7 Boot Tab Highlighted

2. If IDE 2 is not listed 1st in the boot priority, press the Down Arrow on the external keyboard to highlight IDE 2 as shown in Figure 16-7.
3. Press the "+" key on the external keyboard to bring IDE 2 to the top of the list as shown in Figure 16-8.

Figure 16-8 IDE 2 at Top of List

Enabling Spread Spectrum

1. Press the Left Arrow on the external keyboard to highlight the Advanced tab as shown in Figure 16-9.

Figure 16-9 Advanced Tab Highlighted

2. Press the Down Arrow on the external keyboard to highlight CK-408 Spread Spectrum
3. Use the " + " key on the external keyboard to change the setting from [Disabled] to [Enabled]
4. Press "F10" on the keyboard to save changes and exit.
5. Press the Enter key on the external keyboard to confirm the BIOS configuration changes as per Figure 16-10.

Figure 16-10 Confirm BIOS Configuration

6. Perform the remaining adjustments and performance tests as per Table 16-1 for the assembly that was changed.

Older Dual-Core Processor

There is one setting in the CPU BIOS that must be verified and may require changing when the A4 CPU assembly or A4BT1 CPU battery is replaced. This setting needs to be correct in order for the analyzer to always boot up correctly.

- "IDE HDD" must be set to \#1 in the "Boot priority order"

Changing and saving these BIOS settings requires a USB external keyboard. Changes to the BIOS are fairly straightforward and should take ~ 30 seconds.

Verifying Boot Priority

1. Press the Right Arrow on the external keyboard three times to highlight the Boot tab as shown in Figure 16-11.

Figure 16-11 Boot Tab Highlighted

2. With Boot Order highlighted as shown in Figure 16-11 press Enter on the external keyboard to enter the Boot Order Configuration screen.

Figure 16-12 IDE HDD Selected

3. If IDE HDD is not listed first in the boot priority, press the Down Arrow on the external keyboard to highlight IDE HDD as shown in Figure 16-12.
4. Press the "+" key on the external keyboard to bring IDE HDD to the top of the list as shown in Figure 16-13.

Figure 16-13 IDE HDD at Top of List

Save Changes

1. Press "F10" on the keyboard to save changes.
2. Press the Enter key on the external keyboard to confirm the BIOS configuration changes as per Figure 16-14.

Figure 16-14 Confirm BIOS Configuration

Celeron Processor

There is one setting in the CPU BIOS that must be verified and may require changing when the A4 CPU assembly or A4BT1 CPU battery is replaced. This setting needs to be correct in order for the analyzer to always boot up correctly.

- "IDE HDD" must be set to \#1 in the "Boot priority order"

Changing and saving these BIOS settings requires a USB external keyboard. Changes to the BIOS are fairly straightforward and should take ~ 30 seconds.

Verifying Boot Priority

1. Press the Right Arrow on the external keyboard five times to highlight the Boot tab as shown in Figure 16-15.

Figure 16-15 Boot Tab Highlighted

2. If "IDE 0 " is not listed first in the boot priority, press the Down Arrow on the external keyboard to highlight "IDE 0" as shown in Figure 16-16.

Figure 16-16 IDE 0 Selected

3. Press the "+" key on the external keyboard to bring IDE 0 to the top of the list as shown in Figure 16-17.

Figure 16-17 IDE 0 at the Top of List

Save Changes

1. Press "F10" on the keyboard to save changes.
2. Press the Enter key on the external keyboard to confirm the BIOS configuration changes as per Figure 16-18.

Figure 16-18 Confirm BIOS Configuration

High-Performance Celeron/Dual-Core Processor

Save Changes

1. Press "F3" on the external keyboard to select Optimized Defaults. A dialog box will appear asking you to confirm your selection. Select "Yes" and press the Enter key on the external keyboard.

Figure 16-19 Selecting Optimized Defaults

Save Changes

1. Press the right arrow on the external keyboard to select the "Save and Exit" tab.
2. Press the down arrow key to select "Save Changes and Exit" as shown in "Save Changes". Press the Enter key.
3. Press the Enter key again to confirm.

Figure 16-20 Save Changes

Aptio Setup Utility - Copy Main Advanced Chipset Boot Security	Megatrends, Inc.
Save Changes and Exit Discard Changes and Exit Save Changes and Reset Discard Changes and Reset Save Options Save Changes Discard Changes Restore Defaults Save as User Defaults Restore User Defaults	Exit system setup after saving the changes.
Boot Override SATA: INTEL SSDSA2M080G2GC Launch EFI Shell from filesystem device	+: Select Screen Tl: Select Item Enter: Select + /-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save ESC: Exit
Version 2.00.1201. Copyright (C) 2009 American Megatrends, Inc.	

End User License Agreement (EULA) Acceptance (Software versions \leq A.06.08)

NOTE
 The Microsoft End-User License agreement will be displayed whenever the A5 Disk Drive has been replaced, and this must be accepted.

The License Agreement screen asks you to accept the terms of the End-User License Agreement for Windows XP. You must accept this agreement to continue the Windows XP installation and configuration. If you do not accept this agreement, the instrument shuts down and the next time you turn it on the Windows XP Setup Wizard starts from the beginning again.

Accepting the End-User License Agreement (EULA) Screen

The instrument will display the Agilent Welcome Screen shown in Figure 16-21 and wait for Enter to be pressed to continue.

Figure 16-21 Agilent Welcome Screen (Software versions \leq A.06.08)

1. Press Enter to proceed with the Windows XP setup.
2. When you see the Windows XP Setup Wizard screen as seen in Figure 16-22, press Enter to move to the License Agreement screen.

Figure 16-22 Windows XP Setup Wizard

3. When the Windows XP License Agreement window comes up, select "I accept this agreement" and press Next.
4. The Date and Time Settings screen is used to set the appropriate date, time and time zone. These settings will be configured later by the end user.

Select Next to continue the Windows XP Setup Wizard.
5. Wait for the Windows XP Setup Wizard to complete. The instrument will restart itself a few times.
6. Once the Windows XP Setup Wizard has completed the instrument is ready for the next step of configuration.

End User License Agreement (EULA) Acceptance (Software versions \geq A.07.00)

Beginning with instrument software version A. 07.00 and later, it is no longer necessary to actively accept the end-user license agreement (EULA) when replacing the A5 Disk Drive. However, a Welcome screen, as in Figure 16-23 below, will give you information about the EULA.

Accepting the End-User License Agreement (EULA) Screen

The instrument will display the Agilent Welcome Screen shown in Figure 16-23 and wait for Enter to be pressed to continue.

Figure 16-23
Agilent Welcome Screen (Software versions \geq A.07.00)

1. Press Enter to proceed with the Windows XP setup. See Figure 16-24.

Figure 16-24 Windows XP Setup Wizard

2. The Date and Time Settings screen is used to set the appropriate date, time and time zone. These settings may be configured later by the end user.

Select Next to continue the Windows XP Setup Wizard.
3. Wait for the Windows XP Setup Wizard to complete. The instrument will restart itself a few times.
4. Once the Windows XP Setup Wizard has completed the instrument is ready for the next step of configuration.

FPGA Synchronization

There is FPGA (Field-Programmable Gate Array) program code on many different assemblies inside of the instrument, and all of these must be of a compatible version with the instrument software revision. In order to ensure that this requirement is met when either an assembly is replaced that contains FPGA code on it, or if the A5 Disk Drive is replaced with a drive that has a different version of software than the previous drive, you will need to take certain steps to ensure that the instrument operates properly.

NOTE Even if an instrument appears to work properly when an assembly with FPGA code is replaced, that does not mean that the FPGA code is completely compatible with the software version installed in the instrument. There could be incompatibilities that will only be seen under certain measurement conditions.

Depending on the revision of the instrument software there are two possible ways to synchronize the FPGA codes with the instrument software revision. To determine which synchronization process will need to be run perform the following:

1. Check the current instrument software revision. To determine the software revision press System, Show, System on the instrument.
2. If the instrument software revision is prior to A. 02.00 the instrument software will need to be updated. See Chapter 17, "Instrument Software" for instructions.

When the instrument software update is run all of the instrument FPGA code will be updated to the revision required for the installed software.

Once the software update has been installed the FPGA code synchronization procedure will be completed.
3. If the instrument software revision is A. 02.00 or newer the FPGA code for all of the different assemblies can be updated following the procedure below titled "Updating the Instrument FPGA Code".

Updating the Instrument FPGA Code

Instruments that have software revision A. 02.00 or newer have a utility included in them that will update the FPGA code on all of the different assemblies in the instrument that have it. When this utility is run it will detect the assemblies that need to be updated and will update them to the correct revision.

NOTE
Once you start the FPGA programming process you MUST NOT interrupt the process for any reason. This would include turning the instrument off or unplugging the power cord to the instrument. Doing so will result in an inoperative instrument, requiring the affected assembly to be replaced.

1. Close the instrument application software by pressing File, Exit, Enter using the front panel keys.
2. Connect a USB mouse and keyboard to one of the instrument front panel USB ports.
3. Using the mouse, click Start, Log Off, Log Off.
4. Re-login as "administrator". The default password is "agilent4u". Click OK.
5. Using the mouse double-click on the Windows Explorer link on the desktop and navigate to the following folder:

C: \Program Files \backslash Agilent \backslash SignalAnalysis \backslash Physics
6. In this folder find and execute the file named:

FPGA_Prog.bat
7. The FPGA Programming Utility will start and a window as shown in Figure 16-25 will appear.

Figure 16-25 FPGA Programming Utility

To program the FPGA code enter 1 and press Enter. You will need to confirm this selection by pressing 1 and Enter one more time.
8. The programming of the FPGA code could take a few minutes to complete. Once it has finished the instrument will reboot itself to use the new code and this process will then be completed.

Programming Model and Serial Numbers

Since the instrument model and serial numbers are stored only on the A7 Midplane board assembly, this information will be lost when this board assembly is replaced. Until the instrument model and serial numbers are restored the instrument application software will not allow any user measurements to be made, due to the fact that all previously installed license keys will not be accepted. However, the license files will not be automatically deleted. Once the model and serial numbers are restored the license files will then be recognized and accepted, returning the instrument to the capability that was available prior to the A7 Midplane board assembly replacement.

To program the model and serial numbers into a replacement A7 Midplane board assembly the N7814A Keysight X-Series Signal Analyzer Calibration Application Software will be required.

Information regarding N7814A Keysight X-Series Signal Analyzer Calibration Application Software can be found at:
http://www.keysight.com/find/calibrationsoftware
When the calibration software first detects the instrument it will recognize that it does not have a valid model and serial number and will prompt the user to enter the correct values.

Abstract

NOTE Be very careful when entering the instrument serial number into the software, because once it has been written it can no longer be changed.

Since the instrument model and serial numbers are stored on the A7 Midplane board assembly, this should only be required when this assembly has been replaced with a new one.

17 Functional Tests

Functional Test Versus
 Performance Verification

Functional tests are tests of various instrument parameters that give a high degree of confidence that the analyzer is operating correctly. They are recommended as a check of analyzer operation for incoming inspection or after a repair. Measurement uncertainty analysis is not available for functional tests, and the analyzer is checked against limits that are wider than the published specifications. The functional tests are designed to test an analyzer operating within the temperature range defined by the analyzer specifications using a minimum set of test equipment. If a test does not pass, performance verification tests must be run to determine whether a problem exists.
Functional tests use a minimum set of test equipment to check a much smaller range of parameters (and a limited number of data points for each parameter) than do performance verification tests. Functional tests use limits that are wider than the published specifications; measurement uncertainty analysis is not available for functional tests.

NOTE
If a functional test does not pass, you must run performance verification tests to determine whether a problem exists.

Performance verification tests span a wide range of instrument parameters and provide the highest level of confidence that the instrument conforms to published specifications. These tests can be time consuming and require extensive test equipment.

Before Performing a Functional Test

1. Ensure that you have the proper test equipment.
2. Switch on the unit under test (UUT) and let it warm up (in accordance with warm-up requirements in the instrument specifications).
3. Allow sufficient warm-up time for the required test equipment (refer to individual instrument documentation for warm-up specifications).
4. Ensure that the analyzer's frequency reference is set to Internal:
a. Press the Input/Output, More, Freq Ref In keys.
b. If the Freq Ref In softkey does not show Internal, press the Freq Ref In softkey and select Internal.
5. Following instrument warm-up, perform the auto align routine:

Press System, Alignments, Align Now, All.

Abstract

NOTE Functional test accuracy depends on the precision of the test equipment used. Ensure that all of the test equipment is calibrated before running a functional test.

Test Equipment

The table below summarizes the test equipment needed to perform all of the functional tests. Alternate equipment model numbers are given in case the recommended equipment is not available. If neither the recommended nor the alternative test equipment are available, substitute equipment that meets or exceeds the critical specifications listed.

Table 17-1

Analyzer Option	Item	Critical Specifications	Recommended Keysight Model	Alternate Keysight Model
	Adapters			
$\begin{aligned} & 503,507, \\ & 513,526 \end{aligned}$	3.5 mm (f) to 3.5 mm (f) (connector saver for source)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.1:1	83059B	1250-1749
532, 544	2.4 mm (f) to 2.4 mm (f)	Frequency: 10 MHz to 44 GHz VSWR: < 1.1:1	11900B	
532, 544	2.4 mm (f) to 3.5 mm (f) (connector saver for source)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.1:1	11901B	
All	BNC (f) to SMA (m)	Frequency: 40 MHz	1250-1200	
All	Type $\mathrm{N}(\mathrm{f})$ to Type N (f)	Frequency: 10 MHz to 18 GHz VSWR: < 1.05:1	1250-1472	1250-0777
All	Type $\mathrm{N}(\mathrm{m})$ to $3.5 \mathrm{~mm}(\mathrm{~m})$	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1743	
All	Type $\mathrm{N}(\mathrm{m})$ to 3.5 mm (f)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1744	
All	Type N (f) to 3.5 mm (f)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1745	
All	Type $\mathrm{N}(\mathrm{m})$ to BNC (f)	Frequency: 10 MHz to 1 GHz VSWR: < 1.05:1	1250-1476	
	Attenuators			
All	10 dB Step Attenuator	Frequency: 50 MHz Range: 0 to 70 dB	8495A	8496A
All	10 dB Fixed Attenuator (2 required)	Frequency: 50 MHz VSWR: < 1.2:1	8493C Option 010	$\begin{aligned} & \text { 8493A Option } \\ & 010 \\ & \text { or } \\ & \text { 8493B Option } \\ & 010 \end{aligned}$
Preamp Options (Pxx)	30 dB Fixed Attenuator	Accuracy: $<0.05 \mathrm{~dB}$ @ 50 MHz	11708A	
	Cables			
All	3.5 mm (1 meter)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.4:1 Loss: < 2.0 dB	11500E	8120-4921

Functional Tests

Test Equipment

Table 17-1

Analyzer Option	Item	Critical Specifications	Recommended Keysight Model	Alternate Keysight Model
532, 544	$\begin{aligned} & 2.4 \mathrm{~mm}(\mathrm{f}) \text { to } 2.4 \mathrm{~mm}(\mathrm{~m}) \\ & \text { (1 meter) } \end{aligned}$	Frequency: 10 MHz to 44 GHz VSWR: < $1.55: 1$ at 44 GHz Loss: < 6.0 dB	8120-6164	
All	Cable, BNC (3 required)	120 cm (48 in.) BNC cable	10503A	
	Signal Source			
All	Synthesized Sweeper	Frequency: 10 MHz to $44 \mathrm{GHz}^{\mathrm{a}}$ Harmonic level: <-40 dBc Amplitude range: 10 to -20 dBm Frequency Accuracy: 0.02\%	PSG ${ }^{\text {b }}$	$\begin{aligned} & \text { 83630B, } \\ & \text { 83640B, } \\ & \text { 83650B } \end{aligned}$
	Power Meter			
All	Power Meter	Power Reference Accuracy: $\pm 1.2 \%$ Compatible with power sensor	E4418B	E4419B
All	Power Sensor	Frequency Range: 50 MHz to 3.66 GHz Amplitude Range: -70 to -20 dBm	8481D	$\begin{aligned} & \text { 8487D } \\ & \text { 8485D } \end{aligned}$
$\begin{aligned} & 503,507, \\ & 513 \end{aligned}$	Power Sensor	Frequency Range: 50 MHz to 13.66 GHz Amplitude Range: -30 to +20 dBm	8481A	
526	Power Sensor	Frequency Range: 50 MHz to 26.5 GHz Amplitude Range: -30 to +20 dBm	8485A	
532, 544	Power Sensor	Frequency Range: 50 MHz to $44 \mathrm{GHz}^{\mathrm{a}}$ Amplitude Range: -30 to +20 dBm	8487A	
P03	Low Power Sensor	Frequency Range: 50 MHz to 3.6 GHz Amplitude Range: -70 to -20 dBm	8481D	$\begin{aligned} & \text { 8485D } \\ & \text { 8487D } \end{aligned}$
Pxx other than P03	Low Power Sensor	Frequency Range: 50 MHz to $44 \mathrm{GHz}^{\mathrm{C}}$ Amplitude Range: -70 to -20 dBm	8487D	8485D
	Miscellaneous Equipment			
All	Filter, 50 MHz Low Pass	Cutoff Frequency: 50 MHz Rejection at 65 MHz: > 40 dB Rejection at 75 MHz: > 60 dB Rejection at 80 MHz : > 60 dB Frequency: 10 MHz to 26.5 GHz	0955-0306	
526	Power Splitter, 3.5 mm	Nominal Insertion Loss: 6 dB Tracking Between Ports: < 0.25 dB	11667B	
532, 544	Power Splitter, 2.4 mm	Nominal Insertion Loss: 8.5 dB Tracking Between Ports: $<0.4 \mathrm{~dB}$	11667C	
$\begin{aligned} & 503,507, \\ & 513 \end{aligned}$	Power Splitter	Nominal Insertion Loss: 6 dB Tracking Between Ports: < 0.25 dB	11667A	11667B
$\begin{aligned} & 503,507, \\ & 513,526 \end{aligned}$	Termination, 50Ω	Type N (m) Connector Frequency: 30 Hz to 26.5 GHz	909A Option 012	
532, 544	Termination, 50Ω	2.4 mm (f) Connector Frequency: 30 Hz to 50 GHz	85138B	

a. Maximum frequency equal to or greater than the maximum frequency of the EXA.
b. PSG model numbers: E8244A, E8254A, E8247C Option 520, E8247C Option H31 or 540, E8257D Option 520, E8257D Option 550, E8257D Option 567, E8267D Option 544.
c. Maximum frequency equal to or greater than the maximum frequency of the preamplifier option.

Displayed Average Noise Level (DANL)

Test Limits (with 0 dB input attenuation)
See Table 17-1 for values.

The Displayed Average Noise Level (DANL) of the signal analyzer is measured across a 10 kHz frequency span at several center frequencies. The analyzer input is terminated into a 50Ω load. A test is performed to assure the measurement is not performed in the presence of a residual response. The measurement is then averaged, and the result is normalized to a 1 Hz bandwidth.

Item	Critical Specifications (for this test)	Recommended Keysight Model
Termination, 50Ω Type- $\mathrm{N}(\mathrm{m})^{\mathrm{a}}$	Frequency: 10 Mhz to 18 GHz	909 A Option 012
Termination, $50 \Omega 2.4 \mathrm{~mm}(f)^{\mathrm{b}}$	Frequency: 10 Mhz to 50 GHz	85138 B

a. For Options 503, 507, 513, and 526
b. For Options 532 and 544

Figure 17-1 DANL Test Setup

50Ω

TERMINATION

Mxa_ee82a

Procedure

1. Configure the equipment as shown in Figure 17-1
2. Press Mode, Spectrum Analyzer, Mode Preset on the analyzer.
3. Set up the signal analyzer by pressing:

FREQ Channel, Center Freq, 10, MHz
Input/Output, RF Input, RF Coupling, select DC (except Options 532
and 544)
SPAN X Scale, Span, 10, kHz
AMPTD Y Scale, -70 , dBm
AMPTD Y Scale, Attenuation, Mech Atten, 0, dB

BW, Res BW, 1, kHz
BW, Video BW, 100, Hz
Meas Setup, Average/Hold, Number, 20, Enter
Trace/Detector, Trace Average
Single

4. Press Restart, then wait for Average/Hold to display 20/20.
5. Press View/Display, Display, then press Display Line, On.
6. Rotate the knob and set the display line at the average amplitude of the displayed noise floor by visual inspection.
7. Confirm that the measurement is performed on the analyzer noise floor and not on a residual response within the displayed 10 kHz span.

NOTE
Ignore the residual response if one appears when taking the measurement.
8. Enter the value of the display line as the Measured Average Noise Level at 10 MHz column in Table 17-1.
9. Normalize the measured value to a 1 Hz BW by adding 30 dB to the measured value.

NOTE The 30 dB value is added because the formula used to calculate the value of the noise power in a 1 Hz BW when measured with a 1 kHz BW is:

Normalized Noise = 10 Log (BW 2/BW 1) where BW 2 is the 1 kHz BW we measure and BW 1 is 1 Hz BW to which we want to normalize.

Therefore, $10 \log (1000)=30 \mathrm{~dB}$, so the noise floor will be 30 dB lower in a 1 Hz BW.
10. Enter the normalized value of the displayed average noise level in Table 17-1.
11.The value of the normalized displayed average noise should be less than the specification value.
12.Change the analyzer center frequency to the next value listed in Table 17-1. Press: FREQ Channel, Center Freq, [Table 2-1 Value], GHz
13.Repeat step 7 through step 12 to fill in the remainder of Table 17-1 for your analyzer frequency range.

Functional Tests
Displayed Average Noise Level (DANL)

Center Frequency	Measured Average Noise Level (dBm)	Normalized Average Noise Level/ (1 Hz BW) (dBm)	```Test Limits (dBm) Options 503,507, 513,526```	Test Limits (dBm) Options 532, 544
10 MHz			-145	-150
2 GHz			-145	-149
6 GHz			-144	-142
13 GHz			-140	-144
20 GHz			-133	-142
26.5 GHz			-129	-139
30 GHz			N/A	-135
35 GHz			N/A	-130
40 GHz			N/A	-130
43.5 GHz			N/A	-130

Frequency Readout Accuracy

Test Limits

Frequency Readout Accuracy is equivalent to the following equation:
$\pm(0.25 \% \times$ span $+\mathbf{5} \% \times R B W+2 \mathrm{~Hz}+\mathbf{0 . 5} \times$ horizontal resolution $)$
See results table for actual values.
The frequency readout accuracy is measured in several spans and center frequencies that allow both internal analyzer synthesizer modes and prefilter bandwidths to be tested. Frequency reference error is eliminated by using the same frequency standard for the analyzer and signal source.

Item	Critical Specification (for this test)	Recommended Keysight Model
Adapter, Type-N (m), to $3.5 \mathrm{~mm}(\mathrm{f})^{\mathrm{a}}$	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.1:1	1250-1744
Adapter, 3.5 mm (f) to 3.5 mm (f) ${ }^{\text {a }}$	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.1:1	83059B
Adapter, 2.4 mm (f) to 2.4 $\mathrm{mm}(\mathrm{f})^{\mathrm{b}}$	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.1:1	11900B
Cable, 2.4 mm , 1 meter $^{\text {b }}$	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.4:1	8120-6164
Cable, 3.5 mm , 1 meter $^{\text {a }}$	Frequency: 10 MHz to 1.51 GHz VSWR: < 1.4:1	11500E
Cable, BNC, 120 cm	Frequency: 10 MHz	10503A
Synthesized Sweeper	Frequency: 10 MHz to 1.51 GHz	PSG

a. For Options $503,507,513$, and 526
b. For Options 532 and 544

Figure 17-2 Frequency Readout Accuracy Test Setup

Procedure

1. Configure the equipment as shown in Figure 17-2. Confirm the analyzer's built-in auto alignment has been performed within the past 24 hours.
2. On the synthesized sweeper, press PRESET, then set the controls as follows:

FREQUENCY, 1505, MHz
POWER LEVEL, -10, dBm
RF, On
3. Set up the signal analyzer by pressing:

```
Mode, Spectrum Analyzer Mode Preset Input/Output, More, Freq Ref In, External
FREQ Channel, Center Freq, 1505, MHz
SPAN X Scale, Span, 2990, MHz
Trace/Detector, More, Detector, Sample
Single
```

4. Press Restart.

Press Peak Search on the analyzer. If the instrument is functioning correctly, the marker reading in the active function block will be between the values listed in Table 17-2. Record the marker value in the Marker Frequency Readout column in Table 17-2.
5. On the signal analyzer, change the span and center frequency as listed in Table 17-2.
6. Change the synthesized sweeper frequency to match the center frequency of the analyzer.
7. Repeat step 4 through step 6 until the Marker Frequency Readout column of Table 17-2 is complete.

Table 17-2 Frequency Readout Accuracy Results

Span (MHz)	Center Frequency (MHz)	Minimum	Marker Frequency Readout	Maximum
2990	1505	1495.9 MHz		1514.1 MHz
127.2	1505	1504.56 MHz	1505.44 MHz	
54.1	1505	1504.8122 MHz		1505.1878 MHz
7.95	1505	1504.97240 MHz		1505.0276 MHz
0.106	1505	1504.999630 MHz		1505.000370 MHz
1.98	517.59	517.58316 MHz		517.59684 MHz
1.98	832.50	832.49316 MHz		832.50684 MHz

Second Harmonic Distortion (SHD)

Test Limits

Applied Frequency	Mixer Level	Distortion
40 MHz	-10 dBm	$<-55 \mathrm{dBc}$

This test checks the second harmonic distortion of the signal analyzer by tuning to twice the input frequency and examining the level of the distortion product. A low pass filter is inserted between the source and the signal analyzer to prevent the source second harmonic from artificially raising the second harmonic product displayed on the analyzer.

The power level at the input mixer is 20 dB higher than specified to allow the distortion product to be seen. For example, the instrument specification may state that with a -15 dBm signal at the input mixer, the distortion product should be suppressed by >-60 dBc.

The equivalent Second Harmonic Intercept (SHI) is 45 dBm $(-15 \mathrm{dBm}+60 \mathrm{dBc})$. This test is performed with -10 dBm at the mixer and verifies the distortion product is suppressed by -55 dBc . This ensures the SH is also $45 \mathrm{dBm}(-10 \mathrm{dBm}+55 \mathrm{dBc})$.

Item	Critical Specifications (for this test)	Recommended Keysight Model
Adapter, Type-N(m) to BNC(f)	Frequency: 10 MHz to 80 MHz VSWR: < $1.05: 1$	$1250-1476$
Adapter, BNC(f) to SMA(m)	Frequency: 40 to 80 MHz	$1250-1200$
Adapter, $3.5 \mathrm{~mm}(\mathrm{f})$ to $3.5 \mathrm{~mm}(\mathrm{f})$	Frequency: 10 MHz to 80 MHz VSWR: < $1.1: 1$	83059 B
Cable, BNC $120 \mathrm{~cm}(2$ required)	Frequency: 10 to 40 MHz	0955-0306
Filter, 50 MHz Low Pass	Cutoff Frequency: 50 MHz Rejection at $65 \mathrm{MHz}:>40 \mathrm{~dB}$ Rejection at $75 \mathrm{MHz}:>60 \mathrm{~dB}$	
Synthesized Sweeper	Frequency: 50 MHz Spectral Purity: Better than -30 dBc	PSG

Figure 17-3 Second Harmonic Distortion Test Setup

Procedure

1. Configure the equipment as shown in Figure 17-3.
2. Press Mode, Spectrum Analyzer, Mode Preset on the signal analyzer and Preset the synthesized sweeper.
3. Set up the synthesized sweeper by pressing:

Frequency, 40, MHz
Amplitude, -10, dBm
4. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External
FREQ Channel, Center Freq, 40, MHz
SPAN X Scale, Span, 1, MHz
5. On the analyzer, press Peak Search.
6. Adjust the synthesized sweeper amplitude for a signal analyzer display of $-10 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
7. On the analyzer, activate the marker delta function by pressing the Marker and Delta keys.
8. On the signal analyzer, press:

FREQ Channel, Center Freq, 80, MHz
Meas Setup, Average/Hold Number, 20, Enter
Trace/Detector, Trace Average Single
9. Press Peak Search. Enter the displayed value under the Measured Second Harmonic Distortion (dBc) heading in Table 17-3.

Table 17-3 Second Harmonic Distortion Results

Applied Frequency $(\mathbf{M H z})$	Measured Second Harmonic Distortion $(\mathbf{d B c})$	Mixer Level $(\mathbf{d B m})$	Specification $(\mathbf{d B c})$
40		-10	-55

Amplitude Accuracy at 50 MHz

Test Limits

Amplitude Accuracy should remain within 1.13 dB of the measured source value across the range of source levels and changes in resolution bandwidth. The Preamp (option P03, P07, P32, P44) should remain within $\pm 1.3 \mathrm{~dB}$ of measured values.

A synthesized sweeper is used as the signal source for the test. The source amplitude is varied using the signal source amplitude control. The attenuation and resolution bandwidth are varied on the signal analyzer. The source amplitude is measured by the power meter and signal analyzer at each setting, and the values compared. The difference between each pair of measurements indicates the amplitude accuracy.

Item	Critical Specifications	Recommended Keysight Model
Adapter ${ }^{\text {a }}$	Type-N (m), to 3.5 mm (m)	1250-1743
Adapter ${ }^{\text {a }}$	3.5 mm (f) to 3.5 mm (f)	83059B
Adapter ${ }^{\text {b }}$	2.4 mm (f) to 3.5 mm (m)	11901A
Adapter ${ }^{\text {b }}$	2.4 mm (f) to 3.5 mm (f)	11901B
Attenuator, 30 dB	Accuracy: $<0.5 \mathrm{~dB}$ at 50 MHz	11708A
Cable	3.5 mm , 1 meter	11500E
Cable	BNC, 120 cm	10503A
Power Meter	Compatible with power sensor	E4418B
Power Sensor	Amplitude Range: -25 dBm to 10 dBm	8485A
Power Splitter	3.5 mm (f) connectors 6 dB loss	11667B
Synthesized Sweeper	Typical Temperature Stability: $0.01 \mathrm{dBc} /{ }^{\circ} \mathrm{C}$	PSG

a. For Options $503,507,513$, and 526
b. For Options 532 and 544

Figure 17-4 Amplitude Accuracy Test Setup

mxa_ee181a

Procedure

1. Zero and calibrate the power meter.
2. Configure equipment as shown in Figure 17-4, with the power splitter connected directly to the signal analyzer input through the adapter.

CAUTION To minimize stress on the test equipment connections, support the power sensor.
3. If the auto alignment for the analyzer has not been performed within the past 24 hours, press System, Alignments, Align Now, All to perform the auto alignment routine.
4. Press Mode, Spectrum Analyzer, Mode Preset on the analyzer.
5. Set up the synthesized sweeper by pressing:

CW, 50, MHz
Power Level, -4, dBm
RF (On)
6. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External
FREQ Channel, Center Freq, 50, MHz
SPAN X Scale, 2, MHz
AMPTD Y Scale, Attenuation, Mech Atten, 10, dB

Input/Output, RF Input, RF Coupling, select DC (except Options 532, and 544)
Sweep/Control, Sweep Setup, Swp Time Rules, SA - Accuracy
Meas Setup, Average/Hold Number, 20, Enter
Trace/Detector, Trace Average
Single

7. Perform the following steps for each row listed in Table 17-4:
a. Set the synthesized sweeper amplitude to the value listed in the Nominal Source Amplitude column in Table 17-4
b. Set the Mech Atten as indicated in the Attenuation column in Table 17-4
c. Set the Span as listed in the Span column of Table 17-4
d. Record the source amplitude, as measured by the power meter, in the Power Meter Amplitude column of Table 17-4
e. On the signal analyzer, press Restart.
f. Wait for the signal analyzer to finish averaging.
g. Press Peak Search.
h. Record the signal amplitude, as measured by the analyzer in the Measured Amplitude column of Table 17-4
i. Calculate the signal amplitude accuracy error using the following equation, and record the results under the Amplitude Accuracy Error column:
Amplitude Accuracy Error = Meas_amp - Power_meter

Table 17-4 Amplitude Accuracy Results

Nominal Source Amplitude (dBm)	Attenuation (dB)	Span (MHz)	Measured Amplitude Meas_amp (dBm)	Power Meter Amplitude Power_meter (dBm)	Amplitude Accuracy Error (dB)	Test Limit (dB)
-4	10	2			$\pm 1.20 \mathrm{~dB}$	
-9	10	1			$\pm 1.20 \mathrm{~dB}$	
-14	10	0.5			$\pm 1.20 \mathrm{~dB}$	
-4	20	0.1			$\pm 1.20 \mathrm{~dB}$	
-14	20	0.1			$\pm 1.20 \mathrm{~dB}$	
-4	30	0.1			$\pm 1.20 \mathrm{~dB}$	
-14	30	0.1			$\pm 1.20 \mathrm{~dB}$	

Testing Preamp Option (P03, P07, P32, P44)
 Instruments containing Options P03, P07, P32, or P44 must have the preamp function turned on and tested.

Procedure

1. On the analyzer, press AMPTD Y Scale, More, Internal Preamp, Low Band.
2. Connect the equipment as shown in Figure 17-4 on page 618, using a 30 dB Pad between the adaptor and the signal analyzer input.
3. Set the synthesized sweeper amplitude to the value listed in the Nominal Source Amplitude column in Table 17-5.
4. Set the signal analyzer input attenuation to 0 dB .
5. Set the Span as listed in Table 17-5.
6. Record the source amplitude, as measured by the power meter, in the Power Meter Amplitude column of Table 17-5.
7. On the signal analyzer, press Restart.
8. Wait for the analyzer to finish averaging.
9. Press Peak Search.
10.Record the signal amplitude as measured by the analyzer in the measured amplitude column of Table 17-5.
11.Calculate the signal amplitude accuracy using the following equation:

Amplitude Accuracy Error = Meas_amp + 30 dB - Power_meter
12.Record the results under the Amplitude Accuracy Error column of Table 17-5

Table 17-5 Amplitude Accuracy Results (Option P03, P07, P32, P44)

Nominal Source Amplitude (dBm)	Low- band Preamp	Res BW $(\mathbf{k H z})$	Span $(\mathbf{k H z})$	Measured Amplitude Meas_amp (dBm)	Power Meter Amplitude Power_meter (dBm)	Amplitude Accuracy Error (dB)	Test Limit (dB)
-13	ON	1	106			$\pm 1.20 \mathrm{~dB}$	

Frequency Response (Flatness)

Test Limits

Frequency Range	Limit Relative to $\mathbf{5 0} \mathbf{~ M H z}$
9 kHz to 3.6 GHz	$\pm 1.7 \delta \mathrm{~B}$
$>3.6 \mathrm{GHz}$ to 7.0 GHz	$\pm 3.0 \delta \mathrm{~B}$
$>7.0 \mathrm{GHz}$ to 13.6 GHz	$\pm 3.5 \delta \mathrm{~B}$
$>13.6 \mathrm{GHz}$ to 26.5 GHz	$\pm 4.2 \delta \mathrm{~B}$
$>26.5 \mathrm{GHz}$ to 34.5 GHz	$\pm 3.5 \delta \mathrm{~B}$
$>34.5 \mathrm{GHz}$ to 44 GHz	$\pm 4.2 \delta \mathrm{~B}$

The frequency response test measures the signal analyzer's amplitude error as a function of the tuned frequency. Measurements are made ranging from 50 MHz to the maximum frequency range of your analyzer. The signal source amplitude is measured with a power meter to eliminate error due to source flatness. The measured value is normalized to 50 MHz .

Item	Critical Specifications (for this test)	Recommended Keysight Model
Adapter, Type $N(m)$ to $3.5 \mathrm{~mm}(\mathrm{~m})^{\mathrm{a}}$	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1743
Adapter, $3.5 \mathrm{~mm}(f) \text { to } 3.5 \mathrm{~mm}(f)^{\mathbf{a}}$	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.1:1	83059B
Cable, $3.5 \mathrm{~mm}, 1$ meter ${ }^{\text {a }}$ (Opt 503, 507, 513, 526)	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.4:1	11500E
Cable, $2.4 \mathrm{~mm}, 1$ meter ${ }^{\text {b }}$ (Opt 532, 544)	Frequency: 10 MHz to 50 GHz VSWR: < 1.55:1	8120-6164
Cables, BNC 120 cm	Frequency: 10 MHz	10503A
Power Meter	Compatible with power sensor	E4418B
Power Sensor	Frequency Range: 50 MHz to 26.5 GHz	8485A
Power Sensor ${ }^{\text {b }}$	Frequency Range: 50 MHz to 44 GHz	8487A
Power Splitter ${ }^{\text {a }}$	Frequency Range: 50 MHz to 26.5 GHz Tracking between ports: $<0.25 \mathrm{~dB}$	11667B
Power Splitter ${ }^{\text {b }}$	Frequency Range: 50 MHz to 44 GHz Tracking between ports: < 0.4 dB	11667C

Item	Critical Specifications (for this test)	Recommended Keysight Model
Synthesized Sweeper	Frequency Range: 50 MHz to maximum frequency of EXA	PSG

a. For Options $503,507,513$, and 526
b. For Options 532 and 544

Figure 17-5 Frequency Response Test Setup

Procedure

1. Zero and calibrate the power meter and power sensor as described in the power meter operation manual.
2. Configure the equipment as shown in Figure 17-5.

NOTE Connect the power splitter to the signal analyzer input using the appropriate adapter. Do not use a cable.
3. Assure the signal analyzer's built-in auto alignment has been performed within the last 24 hours.
4. Press Mode, Spectrum Analyzer, Mode Preset on the signal analyzer, and press Preset on the synthesized sweeper.
5. Set up the synthesized sweeper by pressing:

CW, 50, MHz

Power level, -4, dBm
6. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External
FREQ Channel, Center Freq, 50, MHz
SPAN X Scale, Span, 50, kHz
AMPTD Y Scale, Ref Level, 0, dBm

7. Adjust the synthesized sweeper output power for a power meter reading of $-10 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
8. On the signal analyzer, press Single.
9. Press the Peak Search key on the signal analyzer to position the marker on the peak of the signal.
10.Refer to Table 17-6, "Frequency Response (Flatness) Results." Enter the amplitude of the signal displayed on the signal analyzer into the Meas Amp column of Table 17-6.
11.Enter the power meter reading into the Power $_{\text {Meter }}$ column of Table 17-6.
12.Tune the synthesized sweeper and signal analyzer to the next frequency listed in Table 17-6.
10. Enter the power sensor calibration factor into the power meter.
14.For frequencies 3.6 GHz and above, press AMPTD Y Scale, then Presel Center to center the preselector filter for an optimum amplitude measurement.
15.Repeat step 7 through step 14 and complete the remainder of Table 17-6 for the frequency range of your analyzer.
16.Compute the measurement error $\left(\right.$ Meas $_{\text {Error }}=$ Meas $_{\text {Amp }}-$ Power $\left._{\text {Meter }}\right)$.
17.Compute the flatness error normalized to 50 MHz : (Meas $_{\text {Error }}-$ Meas $_{\text {Error }} @ 50 \mathrm{MHz}$)
11. Enter the computed flatness error valu651e into the Flat ${ }_{\text {Norm }}$ column of Table 17-6.
19.Compare the value of Flat $_{\text {Norm }}$ to the test limit.

Functional Tests

Frequency Response (Flatness)

Table 17-6 Frequency Response (Flatness) Results

Center Frequency	Analyzer Amplitude Meas $_{\text {amp }}$	Power Meter Measurement Power $_{\text {meter }}$	Meas Error Meas $_{\text {error }}$	```Flatness Normalized to 50 MHz Flat Norm```	Flatness Error Test Limits (dB)
50 MHz				0	Ref
1 GHz					$\pm 1.7 \mathrm{~dB}$
2 GHz					1.7 dB
3 GHz					$\pm 1.7 \mathrm{~dB}$
3.5 GHz					$\pm 1.7 \mathrm{~dB}$
4 GHz					$\pm 3.0 \mathrm{~dB}$
6 GHz					± 3.0 dB
8 GHz					$\pm 3.5 \mathrm{~dB}$
9 GHz					$\pm 3.5 \mathrm{~dB}$
11 GHz					$\pm 3.5 \mathrm{~dB}$
13 GHz					$\pm 3.5 \mathrm{~dB}$
14 GHz					$\pm 4.2 \mathrm{~dB}$
17 GHz					$\pm 4.2 \mathrm{~dB}$
20 GHz					$\pm 4.2 \mathrm{~dB}$
23 GHz					$\pm 4.2 \mathrm{~dB}$
26 GHz					$\pm 4.2 \mathrm{~dB}$
29 GHz					$\pm 3.5 \mathrm{~dB}$
32 GHz					$\pm 3.5 \mathrm{~dB}$
35 GHz					$\pm 4.2 \mathrm{~dB}$
38 GHz					$\pm 4.2 \mathrm{~dB}$
41 GHz					$\pm 4.2 \mathrm{~dB}$
42.5 GHz					$\pm 4.2 \mathrm{~dB}$
43.5 GHz					$\pm 4.2 \mathrm{~dB}$

Frequency Response (Flatness), Preamp On
 Test Limits

Frequency Range	Limit Relative to $50 \mathbf{~ M H z}$
100 kHz to 3.6 GHz	$\pm 2.0 \delta \mathrm{~B}$
$>3.6 \mathrm{GHz}$ to 8.4 GHz	$\pm 3.0 \delta \mathrm{~B}$
$>8.4 \mathrm{GHz}$ to 13.6 GHz	$\pm 3.5 \delta \mathrm{~B}$
$>13.6 \mathrm{GHz}$ to 26.5 GHz	$\pm 4.0 \delta \mathrm{~B}$
$>26.5 \mathrm{GHz}$ to 34.5 GHz	$\pm 4.5 \delta \mathrm{~B}$
$>34.5 \mathrm{GHz}$ to 44 GHz	$\pm 6.0 \delta \mathrm{~B}$

The frequency response test, with preamplifier on, measures the signal analyzer's amplitude error as a function of the tuned frequency. Measurements are made ranging from 50 MHz to the maximum frequency range of the preamp. The signal source amplitude is measured with a power meter to eliminate error due to source flatness. The measured value is normalized to 50 MHz .

Item	Critical Specifications (for this test)	Recommended Keysight Model
Adapter, Type N(m) to 3.5 mm(m)	Frequency: 10 MHz to 18 GHz VSWR: < 1.1:1	1250-1743
Adapter, $3.5 \mathrm{~mm}(\mathrm{f})$ to $3.5 \mathrm{~mm}(\mathrm{f})$	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.1:1	83059B
Cable, $3.5 \mathrm{~mm}, 1$ meter $^{\text {a }}$	Frequency: 10 MHz to 26.5 GHz VSWR: < 1.4:1	11500E
Cable, $2.4 \mathrm{~mm}, 1$ meter ${ }^{\text {b }}$	Frequency: 10 MHz to 44 GHz VSWR: < 1.55:1	8120-6164
Cables, BNC 120 cm	Frequency: 10 MHz	10503A
Power Meter	Compatible with power sensor	E4418B
Attenuator, 30 dB Fixed	Frequency: 50 MHz Accuracy: $\pm 0.05 \mathrm{~dB}$	11708A
Power Sensor ${ }^{\text {a }}$	Frequency Range: 50 MHz to 26.5 GHz Amplitude Range: - 65 dBm to -55 dBm	8485D
Power Sensor ${ }^{\text {b }}$	Frequency Range: 50 MHz to 44 GHz Amplitude Range: -65 dBm to -55 dBm	8487D

Item	Critical Specifications (for this test)	Recommended Keysight Model
Power Splitter ${ }^{\text {a }}$	Frequency Range: 50 MHz to 26.5 GHz Tracking between ports: $<0.25 \mathrm{~dB}$	11667 B
Power Splitter b	Frequency Range: 50 MHz to 44 GHz Tracking between ports: $<0.4 \mathrm{~dB}$	11667 C
Synthesized Sweeper	Frequency Range: 50 MHz to 26.5 GHz maximum frequency of the EXA	PSG

a. For Options P03, P07, P13, and P26
b. For Options P32 and P44

Figure 17-6 Frequency Response Test Setup

Procedure

1. Zero and calibrate the power meter and power sensor as described in the power meter operation manual.
2. Configure the equipment as shown in Figure 17-6.

NOTE Connect the power splitter to the signal analyzer input using the appropriate adapter. Do not use a cable.
3. Assure the signal analyzer's built-in auto alignment has been performed within the last 24 hours.
4. Press Mode, Spectrum Analyzer, Mode Preset on the signal analyzer, and press Preset on the synthesized sweeper.
5. Set up the synthesized sweeper by pressing:

CW, 50, MHz
Power level, -54 , dBm
6. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External
FREQ Channel, Center Freq, 50, MHz
SPAN X Scale, Span, 50, kHz
AMPTD Y Scale, More, Internal Preamp, Full Range
AMPTD Y Scale, Attenuation, Mech Atten, 0, dB
AMPTD Y Scale, Ref Level, -55, dBm
7. Adjust the synthesized sweeper output power for a power meter reading of $-60 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$.
8. On the signal analyzer, press Single.
9. Press the Peak Search key on the signal analyzer to position the marker on the peak of the signal.
10.Refer to Table 17-6, "Frequency Response (Flatness) Results." Enter the amplitude of the signal displayed on the signal analyzer into the Meas Amp column of Table 17-6.
11.Enter the power meter reading into the Power $_{\text {Meter }}$ column of Table 17-6.
12.Tune the synthesized sweeper and signal analyzer to the next frequency listed in Table 17-6.
13.Enter the power sensor calibration factor into the power meter.
14.For frequencies 3.6 GHz and above, press AMPTD Y Scale, then Presel Center to center the preselector filter for an optimum amplitude measurement.
15.Repeat step 7 through step 14 and complete the remainder of Table 17-6 for the frequency range of your preamp.
16.Compute the measurement error $\left(\right.$ Meas $_{\text {Error }}=$ Meas $_{\text {Amp }}-$ Power $\left._{\text {Meter }}\right)$.
17.Compute the flatness error normalized to 50 MHz :
(Meas $_{\text {Error }}-$ Meas $_{\text {Error }} @ 50 \mathrm{MHz}$)
18. Enter the computed flatness error value into the Flat ${ }_{\text {Norm }}$ column of Table 17-6.
19.Compare the value of Flat $_{\text {Norm }}$ to the test limit.

Functional Tests
Frequency Response (Flatness), Preamp On

Table 17-7 Frequency Response (Flatness) Results

Center Frequency	Analyzer Amplitude Meas $_{\text {amp }}$	Power Meter Measurement Power $_{\text {meter }}$	Meas Error Meas $_{\text {error }}$	Flatness Normalized to 50 MHz Flat $_{\text {Norm }}$	Flatness Error Test Limits (dB)
50 MHz				0	Ref
1 GHz					$\pm 2.0 \mathrm{~dB}$
2 GHz					$\pm 2.0 \mathrm{~dB}$
3 GHz					$\pm 2.0 \mathrm{~dB}$
3.5 GHz					$\pm 2.0 \mathrm{~dB}$
4 GHz					$\pm 3.0 \mathrm{~dB}$
6 GHz					± 3.0 dB
8 GHz					± 3.0 dB
9 GHz					$\pm 3.5 \mathrm{~dB}$
11 GHz					$\pm 3.5 \mathrm{~dB}$
13 GHz					$\pm 3.5 \mathrm{~dB}$
14 GHz					$\pm 4.0 \mathrm{~dB}$
17 GHz					$\pm 4.0 \mathrm{~dB}$
20 GHz					$\pm 4.0 \mathrm{~dB}$
23 GHz					$\pm 4.0 \mathrm{~dB}$
26 GHz					$\pm 4.0 \mathrm{~dB}$
29 GHz					$\pm 4.0 \mathrm{~dB}$
32 GHz					$\pm 4.0 \mathrm{~dB}$
35 GHz					$\pm 5.0 \mathrm{~dB}$
38 GHz					$\pm 5.0 \mathrm{~dB}$
41 GHz					$\pm 5.0 \mathrm{~dB}$
42.5 GHz					$\pm 4.0 \mathrm{~dB}$
43.5 GHz					$\pm 5.0 \mathrm{~dB}$

Scale Fidelity

Test Limits

The scale fidelity error will be $\leq \pm 1.0 \mathrm{~dB}$ with $\leq-10 \mathrm{dBm}$ at the mixer.

This test checks the scale fidelity of the instrument by maintaining a constant reference level and measuring signals of different amplitudes over most of the display range. This test sets the input attenuator to 10 dB and the Reference Level to 0 dBm . The external attenuator is set to 0 dB , and the amplitude of the source is adjusted to set the displayed signal at the reference level.

The instrument's internal marker is used to measure the reference amplitude. The Marker Delta function is activated and the RF input is reduced using the external precision step attenuator. Signal input levels from 0 dBm to -50 dBm are measured.

Item	Critical Specifications (for this test)	Recommended Keysight Model
Adapter, Type-N (m), to $3.5 \mathrm{~mm}(\mathrm{f})^{\mathrm{a}}$	Frequency: 50 MHz VSWR: < 1.1:1	1250-1745
Adapter, 3.5 mm (f) to $3.5 \mathrm{~mm}(\mathrm{f})^{\mathrm{a}}$	Frequency: 50 MHz VSWR: < 1.1:1	83059B
Adapter, $\begin{aligned} & 2.4 \mathrm{~mm}(\mathrm{f}) \text { to } 3.5 \mathrm{~mm}(\mathrm{f}) \\ & (2 \text { required) } \end{aligned}$	Frequency: 50 MHz VSWR: < 1.1:1	11901B
Attenuator, 10 dB Step	Range: 0-50 dB Frequency: 50 MHz Accuracy: $\pm 0.25 \mathrm{~dB}$	8495A
Attenuator, 10 dB fixed (2 required)	Frequency: 50 MHz VSWR: < 1.2:1	8493C, option 010
Cable, 3.5 mm , 1 meter (2 required)	Frequency: 50 MHz VSWR: < 1.4:1	11500E
Cable, BNC 120 cm	Frequency: 10 MHz	10503A
Synthesized Sweeper	Output Level Accuracy: 0 to $-15 \mathrm{dBm}: \pm 1.0 \mathrm{~dB}$ at 50 MHz	PSG

a. For Options $503,507,513$, and 526
b. For Options 532 and 544

Figure 17-7 Scale Fidelity Setup

NOTE Averaging is used for all measurements to improve repeatability and reduce measurement uncertainty.

Procedure

1. Configure the equipment as shown in Figure 17-7.
2. Preset the Source and press Mode, Spectrum Analyzer, Mode Preset on the analyzer.
3. Set up the synthesized sweeper by pressing:

Frequency, 50, MHz
Amplitude, +5 , dBm
RF On/Off, On
4. Set up the signal analyzer by pressing:

Input/Output, More, Freq Ref In, External
FREQ Channel, Center Freq, 50, MHz
SPAN X Scale, Span, 1, MHz
AMPTD Y Scale, Ref Level, 0, dBm
Meas Setup, Average/Hold Number, 10, Enter
Trace/Detector, Trace Average
Peak Search
5. Set the external 10 dB step attenuator to 0 dB .
6. Adjust the amplitude on the signal source until the marker amplitude on the analyzer reads $-15 \mathrm{dBm} \pm 0.2 \mathrm{~dB}$.
7. On the analyzer, press the Single, Restart to trigger a 10 sweep average.
8. On the analyzer, activate the Marker Delta function by pressing Peak Search, Marker Delta.
9. Perform the following steps for each attenuator setting listed in the table below:
a. Select the next External attenuator setting.
b. Press the Restart key to trigger a 10 sweep average.
c. Enter the delta marker value into Table 17-8.
d. Check delta marker reading against the test limits.

Table 17-8 Scale Fidelity Results

External Attenuator Setting	Minimum (dB)	Marker Delta Value (dB)	Maximum (dB)
0	$\mathrm{~N} / \mathrm{A}$	Reference	N / A
10	-11.0	-21.0	-31.0
20	-41.0		-9.0
30	-51.0		-19.0
40			-29.0
50		-49.0	

18 Instrument Software

What You Will Find in This Chapter

Instrument Software Overview on page 634
Software Licensing on page 635
Software Updates on page 636
Instrument Measurement Application Software on page 636
89601 VSA Software on page 636

Instrument Software Overview

The instrument software, installed in every instrument, contains not only the spectrum analyzer measurement application, but also all of the other currently available measurement applications. However, only the licensed applications will be seen and available for use.

To view the currently licensed measurement applications press System, Show,
System. In addition to listing the application model number and description you will also see the revision of each. However, the complete package itself also has a revision associated with it, which can also be found on this screen as the "Firmware Revision".

Since the instrument application software is distributed in one complete package, when an update is installed they are all updated at the same time. One of the benefits of this is that you cannot have revisions that are incompatible with each other installed in an instrument. However, there is one exception to this, which would be the 89601A VSA software. While the latest revision of the 89601A VSA software is installed in each instrument as it left the factory, it must be updated, and kept in sync with the rest of the instrument application software independently.

All application software needs to have a valid license in order to be available for use. This also includes the spectrum analyzer application (N9060A).

License keys are valid for one major revision. The software can be updated to any minor revision within the same major revision without the need of a new license. For example, a license that is valid for revision A.01.00 will be valid for all revisions up to and including revision A.01.99.
If the software is updated to a higher major revision a new license key will need to be installed. For example, a new license would be required if the revision number changes from A.01.xx to A. 02.00 or higher.

Software Updates

Instrument Measurement Application Software

Updates are installed much like most other types of commercial software packages. The latest revision of the software, along with complete installation instructions, can be obtained by one of two methods, which are:

Web Download:

The latest revision of the software can be downloaded from:
www.keysight.com/find/xseries_software

Software On Media:

The latest revision of the software can be purchased on a USB storage device as option N9010AK-SWM.

89601 VSA Software

Updates for the 89601 VSA software can be downloaded from:
http://sa.tm.keysight.com/89600/Software
The revision of the 89601 VSA software must be compatible with the revision of the instrument measurement application software package that is installed in the instrument. To determine what revisions are compatible, and if a further updates are required, please see the software compatibility information on the instrument measurement application software download web page listed above.

Index

RF front end see A13 RF front end assembly

Numerics

50 ohm load, 19
50 ohm/75 ohm minimum loss pad, 19
75 ohm matching transformer, 19

A

A10 input attenuator
description, 128, 195
low band troubleshooting, 144, 170
part number, 378
removal, 479, 494
A10 Input Attenuator B troubleshooting, 203
A11 low band switch
description, 128, 196
low band troubleshooting, 147, 173
part number, 378
removal, 455, 459, 463, 491
A11 low band switch Option 532, 544 removal, 487
A11 Low Band Switch troubleshooting, 202
A12 YTF
description, 128, 196
high band troubleshooting, 174
low band troubleshooting, 148
part number, 378
removal, 481, 496
A13 front end assembly
troubleshooting, 206
A13 Front End Assembly
Verification, 219
A13 Front End İnput Verification, 214
A13 RF front end assembly
description, 130, 197
removal, 500, 502
A14 L.O. synthesizer assembly
description, 129, 294
high band troubleshooting, 165, 216
low band troubleshooting, 139, 204
part number, 378
removal, 507
troubleshooting, 296
A15 front end control assembly description, 131,198, 224
high band troubleshooting, 168
low band troubleshooting, 142
part number, 378
removal, 504
troubleshooting, 229
A16 reference assembly
description, 304
high band troubleshooting, 163
low band troubleshooting, 137
part number, 378
removal, 510
troubleshooting, 306
A1A2 front panel interface board
description, 344
part number, 378
removal, 558, 566
A1A3 LCD
description, 344
part number, 378
removal, 555, 564
troubleshooting, 59
A1A4 inverter board
part number, 378
removal, 558, 566
A1A4 LCD Inverter Board description, 344
A1A5 front panel daughter board
part number, 378
removal, 558, 566
A1A5 Front Panel USB Interface Board
description, 344
A2 analog IF assembly
description, 251, 270
part number, 378
removal, 531
troubleshooting, 255, 274
A3 digital IF assembly
description, 262, 281
part number, 378
removal, 531
troubleshooting, 265, 284
A4 CPU assembly
description, 316
part number, 378
removal, 515
troubleshooting, 316
A4BT1 CPU board battery
part number, 378
post-repair setup, 569
replacement, 515
A5 disk drive
description, 320
troubleshooting, 320
A5 hard disk drive
part number, 378
recovery process, 324
removal, 518
removal, Option PC2, 518
A6 power supply
description, 328
part number, 378
removal, 512
troubleshooting, 334
A7 midplane
description, 336
part number, 378
troubleshooting, 339
A7 midplane assembly
part number, 378
A8 motherboard
description, 342
part number, 378
removal, 539
troubleshooting, 343
A9 input attenuator
description, 128, 195
low band troubleshooting, 144, 170
part number, 378
removal, 479, 494
A9 Input Attenuator A and A10 Input
Attenuator B Verification, 215
A9 Input Attenuator A
troubleshooting, 203
AC probe, 19
access to service menus, 359
accessories, 18
50 ohm load, 19
50 ohm/75 ohm minimum loss pad, 19
75 ohm matching transformer, 19
AC probe, 19
broadband preamplifiers, 19
power splitters, 20
RF limiters, 20
transient limiters, 20
adjustments
equipment, 28
required test equipment, 28
test equipment, 28
advisory messages, 72
after repairs
see post-repair procedures, 568
Agilent Technologies
splash screen, 48
Align menu description, 370
alignment failure, 64
Alignments key, 46
amplifiers, 19
amplitude accuracy test, 617
option 1DS, 620
amplitude linearity test, 629
analog IF
see A2 analog IF assembly
application updating, 634
attenuators, removal, 479, 494

B

B1, B2 fans part number, 378
removal, 544
troubleshooting, 55
backlights, 60
bail handle
part number, 378
removal, 447
Band Lock menu description, 368
basics, troubleshooting, 46
battery
see A4BT1 CPU board battery
before troubleshooting, 21
BIOS settings verification, 577
blank display, 59
block diagrams, 346
boot priority, 581
boot process
problems, 51
boot up process, 47
broad band preamplifiers, 19

C

cables
part numbers, 378
calibration application software, 25
call centers, 39
cautions and warnings, 21
chassis parts
part numbers, 378
checking firmware revision, 46
computer block diagram, 346
connector
see RF input connector
contacting Keysight, 39
corrections menu description, 366
CPU assembly
see A4 CPU assembly

D

DANL test, 608
daughter board
see A1A5 front panel daughter board
DC probes
use of, 19
diagnostics menus, 359
digital IF
see A3 digital IF assembly
disk drive
see A5 hard disk drive
disk drive recovery process, 324
display
see A1A3 LCD
display output, rear panel, 59
displayed average noise level. See
DANL, 608
dress case see outer case

E

electronic attenuator path, 126, 193
Electronic Attenuator Test (Option
EA3) troubleshooting, 207
electrostatic discharge, 23
enabling spread spectrum, 583, 588, 592, 593
entitlement certificate, 16
equipment
adjustments, 28
functional tests, 605
performance verification tests, 28
warm-up time, 604
error messages, 46, 71, 72
example, 73
format, 72
viewing messages in queue, 74
error queues
capacity, 73
clearing, 74
front panel, 73
overflow handling, 73
remote interface (SCPI), 73
viewing entries, 74
ESD Information, 23
ESD safety accessories, 20
external hardware, 393, 395, 396,
397, 401, 402, 404, 405, 407, 408,
409, 410, 412, 414, 416, 418, 427,
429, 430, 431, 432, 434, 435, 436,
439, 505, 559, 560, 561
external VGA monitor, 59

F

fans
see B1, B2 fans
firmware, 46
firmware revision, checking, 46
firmware updating, 634
frequency ranges, 124, 192
frequency readout accuracy test, 611
frequency response
(flatness) test, 621
frequency response (flatness) test preamp on, 625
front end assembly
see A13 RF front end assembly
front end control board
see A15 front end control assembly
front end troubleshooting kit, 26
front frame
description, 344
part number, 378
removal, 549
front panel error queue, 73
front panel interface
see A1A2 front panel interface board, 378
functional testing
performance verification, 603
functional tests, 46
before performing, 604
equipment list, 605
introduction, 603
vs performance verification tests, 603
warm-up time, 604
See also individual functional tests, 603
Functional Tests Guide on
CD-ROM, 18

G

Getting Started Guide on CD-ROM, 18
green LED, 48

H

handle
see bail handle
hard disk drive
see A5 hard disk drive
hard disk drive, Option PC2
hard ware
external, 393, 395, 396, 397, 401, 402, 404, 405, 407, 408, 409, 410, 412, 414, 416, 418, 427, 429, 430, 431, 432, 434, 435, 436, 439, 505, 559, 560, 561
high band mixing equations, 220
high band path, 124, 192
High Band Preamp (Option P08, P13,
P26) troubleshooting, 220
high band signal level verification, 69
high band troubleshooting, 159, 163, 209, 214

I

IF Flatness menu description, 366
initial alignment failure, 64
initialization problem, 63
input attenuators
see A9 and A10 input attenuator
input connector
see RF input connector
instrument
return for service, 43
instrument frequency ranges, 124, 192
instrument messages, 71
Instrument Messages Guide on

CD-ROM, 18

instrument options, 17
instrument packaging, 43
instrument serial number, 42
instrument upgrade, 17
internal alignments, 64
inverter board
see A1A4 inverter board

K

keyboard
USB, 27
keypad
part number, 378
removal, 558, 566
Keysight Technologies
contacting, 39
Sales and Service offices, 39

```
L
LCD
    see A1A3 LCD
LED
    front panel, 46
    green, 48
    power on, 53
    standby, 51
    yellow, 48,51
license key, 16
licensing software, 635
limiters
    RF and transient, 20
LO Band Lock menu description, 369
load, 50 ohm, }1
loading MXA software, }32
low band mixing equations, }20
low band path, 124,192
low band preamplifier path, 126,193
low band signal level verification,68
low band switch
    see A11 low band switch
low band troubleshooting, 132,199
```


M

```
major assembly locations, 444
manual set, 18
measurement application
updating, 634
Measurement Guides and
Programming Examples Guides on CD-ROM, 18
message URL http
//sa.tm.agilent.com/89600/Softwar e, 636
//sa.tm.keysight.com/89600/Softwa re, 636
//www.agilent.com/find/calibration software, 38
//www.agilent.com/find/exa_suppor t, 39
//www.keysight.com/find/calibratio nsoftware, 38, 570, 602
//www.keysight.com/find/exa_man uals, 18
//www.keysight.com/find/exa_supp ort, 39
//www.keysight.com/find/exa_upgr ades, 17, 18
message URL
www.agilent.com/find/xseries_sof tware, 325, 636
message URL
www.keysight.com/find/assist, 40 , 41
message URL www.keysight.com/find/xseries_s oftware, 636
message URL www.parts.keysight.com, 377
messages
advisories, 72
error, 71
errors, 72
warnings, 72
```

messages, warning, 72
Microwave Preselector Bypass (Option MPB) troubleshooting, 220
midplane
see A7 midplane
midplane assembly
removal, 536
midplane bracket
part number, 378
motherboard
see A8 motherboard
mouse
USB, 27
N

N7814A
see calibration application software

0

operating system, 16
problems, 59
options, 18
original instrument packing, 43
other instrument packing, 44
outer case (Option PRC), removal, 447
outer case, removal, 445
overview, MXA signal analyzer, 16

P

packaging, 43
parts
replaceable, 378
PCI enumeration error, 58
performance verification tests
equipment, 28
required test equipment, 28
test equipment, 28
performance verification tests vs
functional tests, 603
post-repair procedures, 568
power amplifiers, 19
power on LED, 53
power splitters, 20
power supply
see A6 power supply, 378
preamplifiers, 19
preload measurement
applications, 47
preselector
see A12 YTF
probes
AC and DC, 19
R
rear panel
removal, 509
rear panel display output, 59
recovery process, 324
reference assembly
see A16 reference assembly
reference bracket
part number, 378
removal, 450
remove
see individual assemblies
repairs
see post-repair procedures
replace
see individual assemblies
replaceable parts, 378
required equipment, 28
required test equipment
adjustments, 28
performance verification tests, 28
troubleshooting, 28
return instrument for service, 43
RF area components, 452
RF area components Option 532, 544, 484
RF Flatness menu description, 366
RF input connector
part number, 378
removal, 547
RF limiters, 20
RF path block diagram, 346
RF section
description, 124, 192
RPG knob part number, 378

S

Safety Information, 442
Sales and Service offices, 39
SCPI interface error queue, 73
second harmonic distortion test, 614
separate analog IF assembly and digital IF assembly, 534
serial number, 42
service
equipment, 25
returning your instrument, 43
tools, 443
service menus, 359
service strategy, 16
signal level verification, 68
Snapshot Alignments menu description, 366
software licensing, 635
specifications, 46
Specifications Guide on CD-ROM, 18
splash screen, 48, 57, 58
splitters, 20
spread spectrum, 583, 588, 592, 593
stand by LED, 51
static safety accessories, 20
static-safe workstation, 23
status messages, 72
storage device
USB, 27
support URL, 39
support web site, 39
synthesizer
see A14 L.O. synthesizer assembly

Index

T

test equipment
adjustments, 28
performance verification tests, 28
post-repair, 567
troubleshooting, 28
tests. See functional tests
timebase key description, 365
top brace
part number, 378
removal, 450
transient limiter, 20
troubleshooting
basics, 46
before you start, 21
equipment needed, 28
high band, 159, 209
low band, 132, 199
see individual assemblies

U

updating firmware, 634
updating measurement applications, 634
upgrades, 17
URL, 39, 46
USB keyboard and mouse, 27
USB storage device, 27
User's/Programmers Reference
Guides on CD-ROM, 18

V
video controller, 63
video signal path integrity, 63

W

warning messages, 72
warnings and cautions, 21
web site URL, 46
Y
yellow LED, 48, 51
yig filter
see A12 YTF
YTF
see A12 YTF

[^0]: front_end_parts_mmW_remove

