

Agilent PSA Series Spectrum Analyzers E4406A Vector Signal Analyzer 1xEV-D0 Measurement Personality

Referring both 3GPP2 1xEV-D0 Revision-0 and Revision-A

Technical Overview with Self-Guided Demonstration Option 204

The 1xEV-DO measurement personality, available on the Agilent PSA Series high-performance spectrum analyzers and the E4406A vector signal analyzer (VSA), solves your problems in 1x evolution data only (1xEV-DO) measurements with powerful signal analysis capabilities designed for standards-based measurements and easy-to-use functions in one analyzer. That means you can accelerate your development schedule to quickly obtain manufacturing efficiency.

Make the Transition to Third-Generation (3G) Wireless Technology Faster and Easier

Migrating from cdma2000 to 1xEV-D0 will introduce new challenges in the design and test of base stations and mobile transmitters. Be at ease in this transition with a comprehensive, one-analyzer solution from Agilent.

- Expand design possibilities with powerful measurement capability and flexibility for both 1xEV-D0 revision 0 and revision A.
- Expedite troubleshooting and design verification with numerous features and an intuitive user interface.
- Streamline manufacturing with speed, reliability, and ease of use.
- Improve yields with highly accurate measurements and operator independent results.
- Simplify test systems with digital demodulation, RF power measurements, spur searches, and general high-performance spectrum analysis in one analyzer.

The Agilent PSA Series offers high-performance spectrum analysis up to 50 GHz with powerful one-button measurements, a versatile feature set, and a leading-edge combination of flexibility, speed, accuracy, and dynamic range. Expand the PSA to include 1xEV-D0 digital signal analysis capability with the 1xEV-D0 measurement personality (Option 204).

For many manufacturing needs, the E4406A VSA, a vector signal analyzer, is an affordable platform that also offers the 1xEV-DO personality.

The 1xEV-D0 measurement personality provides key transmitter measurements for analyzing systems based on 3GPP2 Technical Specifications Group cdma2000 (TSG-C) specifications (C.S0032-A and C.S0033-A, 2005-12). 3GPP2 C.S0024-A (2005-07) is also referred to support modulation analysis on both forward link and reverse link signals. This technical overview includes

- demonstrations
- PSA Series key specifications for 1xEV-D0 measurements
- ordering information
- related literature

All demonstrations utilize the PSA Series and the E4438C ESG vector signal generator; however, they can also be performed with the E4406A VSA. Keystrokes surrounded by [] indicate hard keys located on the front panel, while key names surrounded by {} indicate soft keys located on the right edge of the display.

E4406A vector signal analyzer

Demonstration preparation

To perform the demonstrations, the ESG and the PSA Series require the following options.

Note: Signal Studio 1xEV-DO (E4438C-404) provides the signal configuration for 1xEV-DO Revision-0. 1xEV-DO Revision-A, subtype 2 signal configuration, is already available with another software N7601A-SW1. For more details, please visit our web site at http://www.agilent.com/find/signalstudio/

To configure the instruments, simply connect the ESG's 50 Ω RF output to the PSA's 50 Ω RF input with a 50 Ω RF cable. Turn on the power in both instruments.

Now set up the ESG and Signal Studio to provide a 1xEV-DO forward link signal via LAN connection from the external PC.

Product type	Model number	Required options
ESG vector signal generator	E4438C	502, 503, 504, or 506 – frequency range up to at least 2 GHz 601 or 602 baseband generator 404 – Signal Studio 1xEV-DO software (rev 2.0 or later)
PSA Series spectrum analyzer	E4440A/E4443A/E4445A/ E4446A/E4447A/E4448A (Use PSA with firmware revisi For E4406A VSA, firmware revi	B7J – Digital demodulation hardware 204 – 1xEV-DO measurement personality on A.09 or later. sion A.10 or later is necessary.)
ESG Instructions		Keystrokes
Preset the ESG.		[Preset]
Check the IP Address		[Utility] {GPIB/RS-232/LAN} {LAN Setup} eg. {IP Addresss 192.168.100.1}

ESG Signal Studio-1xEV-DO		
Instructions:	Keystrokes:	
Run the Signal Studio 1xEV-DO.	Double-click the shortcut on your PC desktop or access the program via Windows start menu.	
Verify the communication between ESG and Signal Studio via LAN.	Instruments menu has the list to connection. Input the Hostname or IP address of the ESG. Then press [Test Connection] button.	
If "OK" comes out on Result and "EV-DO option is valid" on Note, it's ready to generate and download the signal data.	If you cannot see the "OK" on Result, please check the instrument hostname and IP address.	
Select 1xEV-DO Forward link signal setup.	[Quick Setup] > [1xEV-DO Forward Link]	
Name the signal as "FWD1".	Change the Project Name "Untitled" to "FWD1".	
Set the carrier frequency and amplitude.	Frequency = 1 GHz, amplitude = -20 dBm	
Change the configuration of the signals.	On Carrier 0, turn Traffic channel ON	
Download the waveform to ESG.	Click [Generate] and [Download]	

Connect the PC, ESG and PSA

Connect a PC or laptop (loaded with the Signal Studio-1xEV software and Agilent I/O Library) to the ESG over the GPIB or LAN interface. The setup procedure for this guide assumes the LAN interface is used. To use LAN interface from Signal Studio, you need to set up LAN Client with I/O Configuration of Agilent I/O Library. Follow the steps below, using

50 Ω RF cables:

- Connect the ESG RF Output port • to the PSA RF Input port.
- Connect the ESG 10 MHz Out to • the PSA Ext Ref In port.
- Connect the ESG event 1 port to ٠ the PSA Ext Trigger Input (rear panel).

See Figure 1 for a diagram of this setup.

Channel power

The channel power measurement determines the total rms power in a user-specified bandwidth. The power spectral density (PSD) is also displayed in dBm/Hz.

Control the following channel power measurement parameters:

- integration bandwidth (defaults to 1.23 MHz)
- channel power span (defaults • to 2 MHz)
- number of trace averages (defaults to 20)
- data points displayed (64 to 65536, defaults to 512)

This exercise demonstrates the onebutton channel power measurement on the PSA.

Figure 2.

Figure 1. A computer running Signal Studio-1xEV-DO software (top) is connected to the ESG Vector Signal Generator (middle). The RF output of the ESG is connected to the RF input of the PSA Series with 1xEV-DO measurement personality (bottom).

PSA Instructions Keystrokes	
Perform factory preset.	[System] {Power On/Preset}
(skip this step for E4406A VSA)	{Preset Type} {Factory} [Preset]
Enter the 1xEV-D0 mode in the analyzer. {1xEV-D0}	[Mode] ({More} if necessary})
Choose transmitter device. The PSA can make measurements on both the forward and reverse links, but only the forward link will be demonstrated in this guide.	[Mode Setup] {Radio} {Device BTS}
Activate channel power measurement. Observe the white bars indicating the spectrum channel width and the quantitative values given beneath. (Figure 2)	[MEASURE] {Channel Power}

Power versus time

Power versus time (PvT) is a key measurement for 1xEV-D0 signals. 3GPP2 C.S0032 defines the "3.1.2.3.1 Total power" and "3.1.2.3.2 Pilot/ MAC channel power". Measurement of the burst signal is necessary in the transmitter test for 1xEV-D0 idle slot based on the "Pilot/MAC channel power" requirement. The burst mask test is very important for 1xEV-D0 idle slot signal. As seen in the below window, the limit mask can be set for 5 regions.

Active slot also can be measured in PvT to support the "Total power" test item. In this measurement, only upper and lower limit lines can be seen because the signal is continuous, not bursted.

In this exercise, the PvT measurement for idle slot burst signal can be seen. If the signal has different idle slot gain, the burst search threshold can be adjustable to the target signal configuration.

ESG Signal Studio-1xEV-DO

Instructions:	Keystrokes
Remove traffic channel to change the signal from Active slot to Idle slot (Pilot + MAC, burst signal).	Click the Traffic channel tab to turn OFF.
Download the waveform to ESG.	Click [Generate] and [Download]

PSA

Instructions	Keystrokes
Activate PvT measurement.	[MEASURE] {Power vs Time}
Set triggering for external rear port.	[Meas Setup] {Trig Source} {Ext Rear}
Select single measurement (not continuous).	[Meas Control] {Measure Single}
Restart the measurement. (Figure 3).	[Restart]

Figure 3.

PvT measurement display with burst search threshold line (white)

🔆 Agilent	1×EV-D0	Measure
BTS Ch Freq 1.00000 Power vs Time	GHz Subtype0/1 Averages: 100 PASS	Channel Power
Ref 10.00 dBm	RF Envelope	
10.00 dB/		Intermod
ExtAt 0.0		Power vs Time
Frame -414.93 µs Res Bw 1.50000 MH	418.40 z Samples 200001 points @ 133.33	Spurious SEmissions S&ACP
Power Ref: C Region Avg Pwr dBm dB e -85.77 -65.13	Burst Length: 183.33 µ: Max Pk Min Pk d8m d8 d8m d8 -8454 -5398 -5574	Occupied BW
B -30.49 -9.84 C -28.64 8.80 D -29.15 -8.51 E -85.69 -65.85	-20.97 -0.33 -05.99 -05.35 -19.85 1.59 -23.87 -2.43 -21.06 -0.42 -06.34 -65.70 -84.55 -63.91 -87.36 -65.72	More 1 of 2

Spurious emissions & ACP

Because the ACP measurement for 1xEV-DO is based on "Conducted Spurious Emissions" by 3GPP2, this measurement is merged into the personality as well. The measurement mode can be selected as either ACP or SEM (spectrum emission mask). When switching modes between ACP and SEM, the offset frequency, RBW, and limit lines are automatically adjusted according to the measurement definition in the 3GPP2 standard. Even though this is a burst signal, a RMS detector can be selected and the measurement offset and measurement interval can be set in units of chips and microseconds. The spurious emissions & ACP measurement has default offset and interval settings that can be accessed via the {Pre-Defined Ofs/Intvl} soft key menu under [Meas Setup].

This exercise illustrates SEM and ACP measurements for idle slots. Notice in the PSA measurement that the mask limit is represented by a green trace on the screen.

P	SA	

Figure 4.

PSA	
Instructions	Keystrokes
Activate the spurious emissions & ACP measurement.	[MEASURE] {Spurious emissions & ACP}
Set triggering for external rear port.	[Meas Setup] {Trig Source} {Ext Rear}
Restart the measurement (Figure 4).	[Restart]

P	S	A	

Instructions	Keystrokes
Change measurement mode from SEM to ACP.	[Meas Setup] {Meas Mode ACP}
Restart the measurement (Figure 5).	[Restart]

Note:

Because the PSA series performs fast Fourier transforms (FET) for this measurement, the local oscillator (LO) steps in discrete frequency increments. (The step size is assigned under [Meas Setup] {Offset/Limits} {Step Freq}.) A measurement is made at each frequency point; offset segments group the points. For each segment, the resolution bandwidth can be individually specified. {Step Freq} and {Res BW} default to coupled mode. When these parameters are set manually, it is essential that the resolution bandwidth be larger than the step size. If not, some signal components will be missed when they fall between successive peaks of the resolution bandwidth filter. In fact, it is good practice to make the {Res BW} twice as wide as the step size given that the filter is Gaussian. This ensures that successive filter bandwidth steps will overlap.

Figure 5. **ACP** measurement

for idle slot

🔆 Agilent Meas Setup 1×EV-D0 Avg Number BTS Ch Freg 1.00000 GHz <u>Off</u> Ûn Spectrum Emission Mask Subtype0/1 PASS Avg Mode Exp Repeat ef 0.00 dBi Spectrum (Ref: Total Pwr, Seg: Offset) 10.0 dB, Meas Mode SEM **Restore** Meas ExtAt 0.0 Defaults enter 1.00000 GHz Abe Limi Rellimi 99000 MH otal Pwr Ref: __21,20 dbm/ Dffaet to Edge Start(Hz) - Stoodha> Meas Bk/(Hz) dBc 750,0000 k 750,0000 k 38,00 k -57 1,0800 m 38,00 k -71 1.23 MHz <-Integ-> Trig Source Upper Ext Rear -57.12 -78.32 -92.44 -58.96 -72.79 -80.16 -93.99 More 1 of 2

Occupied bandwidth

The standards recommended by the 3GPP2 for 1xEV-D0 have occupied bandwidth (0BW) requirements for some of the band classes. Effectively, OBW determines the frequency bandwidth that contains 99 percent of the total radiated power.

- Specify the resolution bandwidth (defaults to 30 kHz) and the span (defaults to 3.75 MHz).
- Customize a simple PASS/FAIL limit test (defaults to 1.48 MHz).
- Specify number of averages (defaults to 10).

In this measurement, the total power of the displayed span is measured. Then the power is measured inward from the right and left extremes until 0.5 percent of the power is accounted for in each of the upper and lower parts of the span. The calculated difference is the occupied bandwidth. For simple setup, the PSA defaults to a 1.48-MHz PASS/FAIL limit value.

ESG Signal Studio-1xEV-DO

Instructions:	Keystrokes	
Add traffic channel for Active slot with QPSK modulation.	Click the Traffic channel tab to turn ON.	
Download the waveform to the ESG.	Click [Generate] and [Download]	

PSA

Instructions

Change the occupied bandwidth (Figure 6)

Keystrokes
[MEASURE] {Occupied BW}

Figure 6. Occupied bandwidth

🔆 Agilent 1×EV-D0 Measure Channel Power BTS Ch Freg 1.00000 GHz Subtype0/1 Averages: 10 PASS Occupied BW Occupied BW Ref-20,00 dBm 10.00 dB Intermod MaxP -9.0 ExtAt 0.0 Power vs Time Spurious Emissions & ACP Trig Free 3.75000 MHz Points 513 CF 1.00000 GHz Res Bw 29.9997 kHz Span Occupied Occupied BW Total Power В₩ 1.2497 MHz -20.85 dBm More 1 of 2

7

Code domain analysis

The code domain analysis measurement provides a variety of results. First, code domain power analysis measures the distribution of signal power across the set of code channels, normalized to the total signal power. This measurement helps to verify that each code channel is operating at its proper level and helps to identify problems throughout the transmitter design from coding to the RF section. System imperfections, such as amplifier non-linearity, will present themselves as an undesired distribution of power in the code domain.

For the time division multiplexed (TDM) feature of 1xEV-DO signals, we need to verify that the access network (base station) is transmitting the correct power in each of the channels. Errors in the code domain usually arise from the channel elements that construct the individual channels or from incorrect network software settings. Since the pilot channel is the active channel, its power level relative to the carrier is displayed below the code domain plot. This can also be verified using the markers. Not only the pilot channel but also MAC and traffic channels can be seen in code domain. Once you capture a signal in the code domain measurement, you can change the channel types from pilot to MAC and traffic.

A traffic channel of 1xEV-DO could have three modulation types: QPSK, 8PSK, and 16QAM, For the traffic channel code domain analysis, the PSA will de-spread any single code channel in chip power versus time trace, symbol IQ polar vector, slot power versus time, and demodulated bits. Multiplexed demodulated bits information is also available by switching [Trace/View] menu.

Now examine the 1xEV-DO signal using each of the algorithms.

PSA

Instructions	Keystrokes
Activate the code domain measurement.	[MEASURE] {More} {Code Domain}
Swith the physical layer type.	[Mode Setup] {Demod} {Physical Layer Subtype 0/1 2}
Change the channel type from pilot to MAC (Figure 7).	[Meas Setup] {More} {Channel Type} {MAC}
Restart the measurement	[Restart]

1×EV-D0

Demod

Evt Rot

Completed

Figure 7.

Figure 8.

with subtype 1

(1xEV-D0 rev. 0)

1xEV-DO code domain for the MAC channel with subtype 2

Agilent

BTS Ch Freq 1.00000 GHz

 $(1 \times E)$

(1xEV-D0 rev. A)	Code Domain - MAC Ref 0.00 dB 10.00 dB/	Subtype Code Do	2 main Power		-
	0 Walsh C	ode	6 3	9 k k k. 1:	Physical Layer Subtype 0/1 2
	Total Power: -20 Total Active Ch: -0.0 Preamble Length: 0 Preamble MAC Index:	0.35 dBm 886 dBc chips	I Avg Active Ch: I Max Inactive Ch: Q Avg Active Ch: Q Max Inactive Ch: Active Channels:	-3.016 d -46.015 d -3.016 d -45.712 d 2	IBC IBC IBC
PSA		K . 1			
Switch the physical lay 2}	ver type.	[Mode Se	es etup] {Demod} {F	Physical Lay	yer Subtype <u>0/1</u>
Change the channel type to data.		[Meas Se	etup] {More} {Ch	annel Type	e} {Data}

View the constellation of the traffic channels. [Trace/View] {Code Domain (Quad View)} Place the marker on channel 15 and despread [Marker] [15] {Enter} {More} {Mkr -> Despread} the channel to view the data (Figure 8)

🔆 Agilent 1xEV-D0 Trace/View 1xEV-DO code domain Ext Ref for the DATA channel Power Graph BTS Ch Freq 1.00000 GHz Completed & Metrics Code Domain - Data Subtype 0/1 15.0000 Marker CDP Graph & CDE Graph Slot Power:W16(15) Ref 0.00 7.5 dB Code Domain (Quad View) Walsh Code 0.0000 slo I/Q Symb Polar Vector: W16(15) Ref 0 00 Chip Power Demod Bits MUX Data **Demod Bits**

Note:

Notice that there are two active MAC channels. Each MAC channel is identified by a MAC Index(I) value that is between 0 and 63 that defines an 64 ary Walsh cover. The Reverse Activity (RA) channel is assigned MAC index 4 and Reverse Power Control (RPC) channels are assigned MAC index 5 to 63. The Walsh code assigned to the MAC index values are determined using the following equation:

W ⁶⁴ i/2	for MAC Index i = 0,2,4,,6
1/2	

for MAC Index i =	1,3,5,,63
TOT IVIAL INDEX I	=

Modulation accuracy (waveform quality)*

An important measure of modulation accuracy for 1xEV-DO signals is rho. Rho is the ratio of the correlated power to the total power. The correlated power is computed by removing frequency, phase, and time offset and performing a cross correlation between the correlated signal and an ideal reference. Rho is important because uncorrelated power appears as interference to a receiver. However, a rho measurement can also be performed on signals with multiple code channels. This measurement is known as composite rho. It allows you to verify the overall modulation accuracy for a transmitter, regardless of the channel configuration, as long as a pilot channel is present. A composite rho measurement accounts for all spreading and scrambling problems in the active channels and for all baseband IF and RF impairment in the transmitter chain.

Another effective way to quantify modulation accuracy is to compare the signal being measured to an ideal signal. Figure 9 defines the error vector, a measure of the amplitude and phase differences between the ideal modulated signal and the actual modulated signal. The root-mean-square (RMS) of the error vector is computed and expressed as a percentage of the square root of the mean power of the ideal signal. This is the error vector magnitude (EVM). EVM is a common modulation quality metric widely used in digital communications.

Composite EVM measures the EVM of the multi-code channel signal. It is valuable for determining the quality of the transmitter for a multi-channel signal, detecting spreading or scrambling errors, identifying certain problems between baseband and RF sections, and analyzing errors that cause high interference in the signal.

PSA

Instructions	Keystrokes
Activate modulation accuracy measurement (Figure 10).	[MEASURE] {More} {Mod Accuracy}
Turn on averaging for 10 slot length.	[Meas Setup] {Avg Number 10 slots <u>On</u> Off
Select single measurement (not continuous).	[Meas Control] {Measure Single}.
Restart the modulation accuracy measurement.	[Restart]

In PSA revision 8 or earlier and E4406A revision 9 or earlier, measurement name was "Modulation accuracy (composite rho)". To use the same measurement name defined in 3GPP2 conformance test, we've changed the name in the latest firmware (PSA A.09 and E4406A A.10). The PSA measures rho and EVM, as well as magnitude, phase, and code domain errors. In this exercise, the above measurements will be explored.

The measurement results are shown in the left window and the I/Q constellation is in the right window. If you prefer to view the numeric results only, please change displays in [Trace/View] key.

- Measure EVM, rho, frequency error, I/Q origin offset, and pilot offset with the active channel numbers for the selected channel type.
- Customize limits for rms EVM, peak EVM, rho, frequency error and I/Q origin offset.
- Select channel type from some selections: pilot, MAC, data, preamble, and overall in forward link. pilot, DRC, ACK, and data in reverse link.
- Comply the waveform quality measurements in 3GPP2 defined in C.S0032 (forward link) and C.S0033 (reverse link).
- View I/Q polar vector constellation, magnitude error, phase error, and EVM plots.
- Specify PN offset (forward link).
- Read power, timing, phase and EVM data for each active channel in Power Timing and Phase view (forward link).
- Set flexible long code mask for I and Q separately between 0000000000 and 3FFFFFFFFF (reverse link).
- Choose to include or exclude the I/Q origin offset in the EVM calculation.
- Use the optional preamplifier to measure low-level signals.
- Statistic analysis can be provided by [View/Trace] when averaging

This exercise explores the different ways in which the modulation accuracy measurement can be used.

PSA

Instructions	Keystrokes
Change channel type from pilot to data.	[Meas Setup] {More} {Display channel Type} {Data}
Restart the measurement (Figure 11).	[Restart]
Change the view for numeric results only (Figure 12).	[Trace/View] {Result Metrics (One Slot)}

Figure 11.

Modulation accuracy for data channel

Figure 12.

Numeric result summary of measured channel for one-slot

🔆 Agilent	1:	xEV-D0		Trace/View
BTS Ch Freq 1.000 Mod Accuracy	00 GHz Subtype	Ext Completed 0/1 Averages: 10	PASS	I/Q Measured Polar Graph
	Result Metr	ics		Result Metrics (One-Slot)
Measured Ch: Rho: EVM:	Data 0.99883 3.42 % rms	Slot Type: Active Data Mod Scheme:	QPSK	Channel Peak/Avg Metrics
Pk CDE: Magnitude Error:	8.74 % pk -42.95 dB 2.45 % rms	at W16(3):Q		Summary Peak/Avg Metrics
Phase Error: Frequency Error: I/Q Origin Offset:	20.53 ° rms 0.30 Hz -71.39 dB			
Pilot Offset: Active Channels Preamble Length:	Pilot: 1 0 chips	MAC: 2 Data: MAC Index:	16	Display Channel Type Data
Max MHC Inactive Ch: Max Data Active Ch: Min Data Active Ch:	-43.95 dB -15.00 dB -15.10 dB	at W16(9):Q at W16(5):I		More 1 of 2

OPSK EVM

The QPSK EVM measurement is used to get some indication of the modulation quality at the chip level for a single-channel signal. It can detect baseband filtering, modulation, and RF impairments, but does not detect spreading or scrambling errors.

In the default setting, the Meas Offset and Interval are set as: 464 chips and 96 chips, respectively. QPSK modulation can be found not only in the pilot channel, but also in the MAC and traffic (data) channels if selected. Using the modulation accuracy (composite rho) measurement, you can check the EVM results for each channel with QPSK modulation. To set the target segment in the 1xEV-DO signal, you can select the measurement offset and interval. The variable measurement offset and intervals are very useful selecting the desired slot to be analyzed with the QPSK EVM measurement. For example, Pilot #1, MAC #3, and Idle slot #2 can be selected in {Preset Meas Ofs/Intvl} under [Meas Setup] soft key menu.

- Determine rms and peak EVM (maximum and average).
- View I/Q polar vector diagram or magnitude error, phase error, and EVM plots.
- Enable adjacent carrier filtering.

This exercise involves changing the 1xEV-D0 signal to a single-channel signal.

PSA

Instructions	Keystrokes
Perform the QPSK EVM measurement.	[MEASURE] {More} {QPSK EVM}
Turn averaging off.	[Meas Setup] {Avg Number Off}
Set triggering for external rear.	{Trig Source} {Ext Rear}
Select single measurement (not continuous).	[Meas Control] {Measure Single}
Restart the QPSK EVM measurement (Figure 14)	[Restart]

Reverse link modulation analysis for 1xEV-D0

For the reverse link of 1xEV-D0, Option 204 provides the following measurements in Code Domain and Modulation Accuracy (Waveform Quality).

ESG Signal Studio-1xEV-DO

Instructions:	Keystrokes
Select 1xEV-DO Reverse link signal setup for 1xEV-DO revision 0 configuration.	[Quick Setup] > [1xEV-DO Reverse Link]
Name the signal as "REV1".	Change the Project Name "Untitled" to "REV1"
Set the carrier frequency and amplitude.	Frequency = 1 GHz, Amplitude = -20 dBm
Change the configuration of the signals.	On Carrier 0, Pilot = ON, DRC = ON with DRC relative gain 3.00 dB, ACK = ON with ACK relative gain 3.00 dB, DATA = ON with DATA relative gain 3.75 dB. I and Q Mask should be 0 (zero)
Download the waveform to ESG.	Click [Generate] and [Download]
PSA	
Instructions	Keystrokes
Change the radio setup from BTS (Fwd) to MS (Rev). [Mode Setup] {Radio} {Device MS}
Go to code domain measurement.	[MEASURE] {Code Domain}
After capturing the signal, change the code order from Hadamard to Bit Reverse.	[Display] {Code Order} {Bit Reverse}
Switch view to Code Domain quad view.	[Trace/View] {Code Domain (quad view)}
Put a marker on ACK channel to see the power control of symbol power trace.	[Marker] [3] [Enter] {More} {Mkr -> Despread}
Modify the measurement setup to see longer data.	[Meas Setup] {Meas Offset} = 0 slot, {Meas Interval} = 3 slot
Switch view to Demodulated bits (Figure 14).	[Trace/View] {Demod Bits}
Move to modulation accuracy measurement.	[MEASURE] {Mod Accuracy}
Select IQ polar vector graph and switch to other views (Figure 15).	[Trace/View] {I/Q Measured Polar Graph}

. . .

Figure 15.

Modulation accuracy

Reverse link modulation analysis for 1xEV-DO (continued)

Signal Studio 1xEV-D0 (E4438C-404) provides the signal configuration for 1xEV-DO Revision-0. 1xEV-DO Revision-A, subtype 2 signal configuration, is already available with another software N7601A-SW1. For more details, please visit our web site at http://www.agilent.com/find/signalstudio/

Screen shots on this page were captured with a sample signal generated by Agilent Signal Studio for 1xEV-DO Rev.A N7601A-SW1.

1xEV-D0 revision A (subtype 2) All channels ON, E2E4 **Relative Gain:** (RRI/AuxPilot: 0dB) DRC: 1dB ACK/DSC: 3dB Data: 5dB Long Code Mask l: 0x0, Q: 0x0 RRI bit: NA Data: Data Rate: 1843.2kbps, Bit Pattern: PN9

PSA

Instructions	Keystrokes		
Switch the subtype from $0/1$ to 2.	[Mode Setup] {Demod} {Physical Layer Subtype 2}		
Go to Code Domain measurement and run <u>a measurement.</u>	[MEASURE] {Code Domain} [Start]		
Change the view to Code Domain quad view.	[Trace/View] {Code Domain (quad view)}		
Put a marker on data channel on Q phase and despread to see more symbol retails.	[Marker] [20.5] [Enter] {Mkr -> Despread}		
Change the branch to IQ combined analysis (Figure 16).	[Meas Setup] {I/Q Branch IQC}		
Move to Mod Accuracy measurement.	[MEASURE] {Mod Accuracy}		
Switch the view to see the detailed statistic results (Figure 17).	[Trace/View] {Peal/Avg Metrics}		

Figure 16. Code domain quad

view with data in 8PS constellation on IQ combined branch

🔆 Agilent		1×EV-D0	Meas Setup
MS Ch Freq 1.00 Code Domain	000 GHz Subtyp	Ext Ref Completed e 2	Meas Type Abs <u>Rel</u>
Marker 20.5000 Ref 0.00 QMkr #1: W2(1)) 614.4ksps	Ref-50.00 Symb Power:W2(1)	Walsh Code Length 2
1€CDP -9.85dB CDE dB/	-35.26dB	10.00 dB/ saturation of the second se	Walsh Code Number 1
0 Kalsh Code 31		0.9000 ksymb 12.288 ksymb	I/Q Branch I Q <u>IQC</u>
I/Q Symb Polar Vec	tor: W2(1)	Code: W2(1) 614.4 ksps 8PSK RMS EVM: 4.95 % rms	Meas Interval 1.0 Slots
		Pk EVM: 12.29 % pk Magnitude Error: 3.52 % rms Phase Error: 1.99 ° rms	Meas Offset 0.0 Slots
17, AT.		Total Power: –20.26 dBm Channel Power: –6.50 dBc	More 1 of 3

Figure 17.

Mod Accuracy in Peak	₩ Agilent	1×EV	-D0	Trace/View
and Average result metrics view	MS Ch Freq 1. Mod Accuracy	00000 GHz Subtype 2	Ext Ref Running Averages: 4 PASS	I/Q Measured Polar Graph
		Average	Peak Hold	Peak/Avg Metrics
	Rho: RMS EVM: Peak EVM: Pk CDE:	0.99893 3.26 % 8.57 % -45.09 dB	0.99884 3.41 % 8.62 % -44.50 dB at W32(4):I	I/Q Error (Quad View)
	RMS Mag Error: RMS Phase Error: Freq Error:	2.31 % 3.38 ° -0.11 Hz	2.44 % 3.41 ° -0.44 Hz	Code Domain Power
	1/W Urigin Uffset: Pilot Offset: Max Inactive CH:	-56.33 dB 	-52.90 dB -45.83 dBc at W32(0):Q	
	Hctive CH Pilot W16(0):I RRI W16(4):I ACK/DSC W32(12):I	Hvg Pwr △ from F -9.74 dBc Reference -9.75 dBc -0.01 d -6.73 dBc -0.01 d	Pliot Peak Pwr ∆ from Pilot be –9.72 dBc Reference IB –9.74 dBc –0.02 dB –6.73 dBc 2.99 dB	
	DRC W16(8):Q Aux Pilot W32(28):I Data E4E2	-8.75 dBc 0.99 dB -9.76 dBc -0.02 d -4.73 dBc 5.01 dB	-8.75 dBc 0.97 dB IB -9.75 dBc -0.03 dB -4.72 dBc 5.00 dB	

PSA Series Key Specifications¹

1xEV-D0 measurement personality (10 MHz to 3 GHz) The following specifications apply to models E4443A/45A/40A/ only. Models E4446 and E4448A have similar but not warranted performance.

Channel power	
Minimum power at RF input	–74 dBm (nominal)
Absolute power accuracy	$\pm 0.67 \text{ dB} (\pm 0.18 \text{ dB typical})$
Relative power accuracy:	±0.08 dB (±0.03 dB typical)
Power vs. time (PvT)	
Minimum power at RF input	–73 dBm (nominal)
Absolute power accuracy:	(20 to 30 °C)
Attenuation > 2 dB	±0.24 dB (nominal)
Attenuation < 2 dB	±0.30 dB (nominal)
Measurement floor	–84 dBm (nominal)
Relative power accuracy:	
Fixed channel, fixed input attenuator	
Mixer level –52 to –12dB	±0.03 dB (nominal)
CCDF	
Minimum carrier power at RF input	–40 dBm (nominal)
Histogram resolution	0.01 dB
Intermodulation distortion	
Minimum carrier power at RF input	–30 dBm (nominal)
Occurried handwidth	
Minimum corrier newer at PE input	40 dBm
Frequency accuracy	0.3 percent (nominal)
Spurious emissions & ACP	
Minimum carrier power at RF input	-20 dBm
750 kHz offset (30 kHz RBW/)	
Sensitivity, absolute:	
750 kHz offset (30 kHz RBW)	–97.9 dBm (–99.9 dBm typical)
Accuracy, relative:	
750 kHz offset	0.14 dB
Code domain	
Specification applies at 0 dBm input power	
For pilot, 2 MAC channels,	
and 16 channels of QPSK data	
Relative code domain power accuracy	±0.15 dB
OPSK FVM	
Minimum power at RF input	-20 dBm (nominal)
EVM accuracy	±1.0 percent (nominal)
Frequency error accuracy	±10 Hz (nominal) + (transmitter frequency x
	frequency reference error)
Modulation accuracy (composite rho)	
Minimum carrier power at RF input	–50 dBm (nominal)
Accuracy	
Composite EVM	±1.0 dB (nominal)
Rho	± 0.0010 (at rho = 0.99751, EVM 5 percent)
	± 0.0044 (at rho = 0.94118, EVM 25 percent)
Frequency error	± 10 Hz + (transmitter frequency x frequency reference error)
	(nominal)

1. For specifications on the E4406A VSA, please refer to the E4406A VSA data sheet, literature number 5968-3030E.

		Measurement F	Personalities	
		E444xA-226	Phase noise	
PSA Series sp	ectrum analyzer	E444xA-219	Noise figure	Requires 1DS
F4443A 3 Hz to	6 7 GHz	E444xA-241	Flexible digital modulation analysis	
E4445A 3 Hz to	13 2 GHz	E444xA-BAF	W-CDMA	Requires B7J
ΕΔΔΔΛΔ 3 Hz to 26 5 GHz		E444xA-210	HSDPA/HSUPA	Requires B7J and BAF
FΔΔΔ7Δ 3 Hz to Δ2.3 GHz		E444xA-202	GSM w/ EDGE	Requires B7J
F4446Δ 3 Hz to	44 GHz	E444xA-B78	cdma2000	Requires B7J
E4448A 3 Hz to	50 GHz	E444xA-214	1xEV-DV	Requires B7J and B78
		E444xA-204	1xEV-DO	Requires B7J
Ontiona		E444xA-BAC	cdmaOne	Requires B7J
-		E444xA-BAE	NADC, PCD	Requires B7J
lo add options to a product,		E444xA-217	WLAN	Requires 122 or 140
use the following ordering scheme:		E444xA-211	TD-SCDMA	
Model E444xA (x = 0, 3, 5, 6, 7 or 8	E444xA-215	External source control	
Example options	E444UA-B7J, E4448A-IDS	E444xA-266	Programming code compatibility suite	
		E444xA-233	Built-in measuring receiver personality	
Warranty & Service		Hardware		
Standard warrar	nty is three years.	E444xA-1DS	RF-internal preamplifier	Excludes 110
R-51B-001-5C	Warranty Assurance		100 kHz to 3 GHz	
	Plan, Return to Agilent,	E444xA-110	RF/µW internal preamplifier	Exclude 1DS
	5 years		(10 MHz to upper frequency limit	
			of the PSA)	
Calibration ¹		E444xA-B7J	Digital demodulation hardware	
Included	Calibration Assurance	E444xA-122	80 MHz bandwidth digitizer	E4440A/43A/45A only,
	Plan, Return to Agilent,		Ū.	excludes 140, 107, H70
	3 years, standard	E444xA-140	40 MHz bandwidth digitizer	E4440A/43A/45A only,
R-50C-011-5	Calibration Assurance		-	excludes 122, 107, H70
	Plan, Return to Agilent,	E444xA-123	Switchable MW preselector bypass	Excludes AYZ
	5 years	E444xA-124	Y-axis video output	
R-50C-016-3	Agilent Calibration +	E444xA-AYZ	External mixing	E4440A/47A/46A/48A
	Uncertainties +			only, excludes 123
	Guardbanding, 3 years	E444xA-107	Audio input 100 Ω	Requires 233 to operate;
R-50C-016-5	Agilent Calibration +			Excludes 122, 140
	Uncertainties +	E444xA-111	USB device side I/O interface	
	Guardbanding, 5 years	E444xA-115	512 MB user memory	Excludes 117. Shipped
AMG	Agilent Calibration +			standard in all PSA
	Uncertainties +			instruments with serial
	Guardbanding, accredited			number prefix ≥MY4615
	calibration			unless 117 is installed
A6J	ANSI Z540-1-1994	E444xA-117	Secure memory erase	Excludes 115
	Calibration	E4440A-BAB	Replaces type-N input connector	E4440A only; required by
R-50C-021-3	ANSI Z540-1-1994		with APC 3.5 connector	E4440A-233
	Calibration, 3 years	E444xA-H70	70 MHz IF output	Excludes 122, 140. Not
R-50C-021-5	ANSI Z540-1-1994			available for E4447A
	Calibration, 5 years	PC Software		
UK6	Commercial calibration	E444xA-230	BenchLink Web Remote Control	
	certificate with data		Software	
	To be ordered with PSA	EE444xA-235	Wide BW digitizer external	Requires 122
E444xA-0BW	Service manual		calibration wizard	E4443A/45A/40A only
R-52A	Calibration software	Accessories		
	and licensing (ordered	E444xA-1CM	Rack mount kit	
	with PSA)	E444xA-1CN	Front handle kit	
N/810A	PSA Series calibration	E444xA-1CP	Rack mount with handles	
	application software	E444xA-1CR	Rack slide kit	
	(stand-alone order)	E444xA-015	6 GHz return loss measurement acces	sory kit
		E444xA-045	Millimeter wave accessory kit	
		E444xA-0B1	Extra manual set including CD ROM	

1. Options not available in all countries.

Related Literature

Publication Title Number	Publication Type	Publication
PSA in general		
Selecting the Right Signal Analyzer for Your Needs	Selection Guide	5968-3413E
PSA Series	Brochure	5980-1284E
PSA Series	Configuration Guide	5989-2773EN
Self-Guided Demonstration for Spectrum Analysis	Product Note	5988-0735EN
Wide bandwidth and vector signal analysis		
40/80 MHz Bandwidth Digitizer	Technical Overview	5989-1115EN
Using Extended Calibration Software for Wide Bandwidth Measurements, PSA Option 122 & 89600 VSA	Application Note 1443	5988-7814EN
PSA Series Spectrum Analyzer Performance Guide Using 89601A Vector Signal Analysis Software	Product Note	5988-5015EN
89650S Wideband VSA System with High Performance Spectrum Analysis	Technical Overview	5989-0871EN
Measurement personalities and applications		
Phase Noise Measurement Personality	Technical Overview	5988-3698EN
Noise Figure Measurement Personality	Technical Overview	5988-7884EN
External Source Measurement Personality	Technical Overview	5989-2240EN
Flexible Modulation Analysis Measurement Personality	Technical Overview	5989-1119EN
W-CDMA and HSDPA/HSUPA Measurement Personalities	Technical Overview	5988-2388EN
GSM with EDGE Measurement Personality	Technical Overview	5988-2389EN
cdma2000 and 1xEV-DV Measurement Personalities	Technical Overview	5988-3694EN
cdmaOne Measurement Personality	Technical Overview	5988-3695EN
WLAN Measurement Personality	Technical Overview	5989-2781EN
NADC/PDC Measurement Personality	Technical Overview	5988-3697EN
TD-SCDMA Measurement Personality	Technical Overview	5989-0056EN
Built-in Measuring Receiver Personality / Agilent N5531S Measuring Receiver	Technical Overview	5989-4795EN
BenchLink Web Remote Control Software	Product Overview	5988-2610EN
IntuiLink Software	Data Sheet	5980-3115EN
Programming Code Compatibility Suite	Technical Overview	5989-1111EN
Hardware options		
PSA Series Spectrum Analyzers Video Output (Option 124)	Technical Overview	5989-1118EN
PSA Series Spectrum Analyzers, Option H70,70 MHz IF Output	Product Overview	5988-5261EN
Spectrum analyzer fundamentals		
Optimizing Dynamic Range for Distortion Measurements	Product Note	5980-3079EN
PSA Series Amplitude Accuracy	Product Note	5980-3080EN
PSA Series Swept and FFT Analysis	Product Note	5980-3081EN
PSA Series Measurement Innovations and Benefits	Product Note	5980-3082EN
Spectrum Analysis Basics	Application Note 150	5952-0292
Vector Signal Analysis Basics	Application Note 150-15	5989-1121EN
8 Hints for Millimeter Wave Spectrum Measurements	Application Note	5988-5680EN
Spectrum Analyzer Measurements to 325 GHz with the Use of External Mixers	Application Note 1453	5988-9414EN
EMI	Application Note 150-10	5968-3661E

www.agilent.com www.agilent.com/find/psa

	myAgilent	Technologies' products services, please contact office. The complete list	
myAgilent	www.agilent.com/find/myagilent A personalized view into the information most relevant to you.		
	www.lxistandard.org		/
LXI	LAN eXtensions for Instruments puts the power of Ethernet and	Americas	
	the Web inside your test systems. Agilent is a founding member of the LXI consortium.	Canada Brazil	(8
	Three-Year Warranty	Mexico United States	
3	www.agilent.com/find/ThreeYearWarranty Beyond product specification, changing the ownership experience.	Asia Pacific	1-
WARRANTY	Agilent is the only test and measurement company that offers three-year warranty on all instruments, worldwide	Australia China	1 80
(ILARAAA)2	Agilent Assurance Plans	Hong Kong India	80 1
ASSURANCE ASSURANCE	www.Agilent.com/find/AssurancePlans Five years of protection and no budgetary surprises to ensure your instruments are operating to specifications and you can continually rely on accurate measurements.	Japan Korea Malaysia Singapore	
	www.agilent.com/quality	Other AP Countrie	90 es
DEKRA Certified	Agilent Electronic Measurement Group	Europe & Middle	Eas
Cudir Maniperneni Syram	DEKRA Certified ISO 9001:2008 Quality Management System	Belgium Denmark	32 45
	Agilent Channel Partners	Finland France	35 08
	www.agilent.com/find/channelpartners	Gormony	*0 //

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

.... n Agilent s, applications or t your local Agilent st is available at: d/contactus

Canada Brazil Mexico United States	(877) 894 4414 (11) 4197 3600 01800 5064 800 (800) 829 4444			
Asia Pacific				
Australia	1 800 629 485			
China	800 810 0189			
Hong Kong	800 938 693			
India	1 800 112 929			
Japan	0120 (421) 345			
Korea	080 769 0800			
Malaysia	1 800 888 848			
Singapore	1 800 375 8100			
Taiwan	0800 047 866			
Other AP Countries	(65) 375 8100			
Europe & Middle East				
Belgium	32 (0) 2 404 93 40			
Denmark	45 45 80 12 15			
Finland	358 (0) 10 855 2100			
France	0825 010 700*			
	*0.125 €/minute			
Germany	49 (0) 7031 464 6333			
Ireland	1890 924 204			

972-3-9288-504/544 Israel Italy 39 02 92 60 8484 Netherlands 31 (0) 20 547 2111 Spain 34 (91) 631 3300 Sweden 0200-88 22 55 United Kingdom 44 (0) 118 927 6201

For other unlisted countries:

www.agilent.com/find/contactus (BP-09-27-13)

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2013 Published in USA, November 25, 2013 5988-4828EN

