Keysight Technologies
TS-8900 Automotive Electronics
Functional Test System

Data Sheet

A Functional Test System

- For automotive electronics manufacturing
- Suitable for medium to high pin count automotive electronic control unit (ECU) applications
- That uses industry standard PXI, GPIB and LXI instrumentations

TS-8900 is the latest addition to the widely established TS-Series of end-of-line test system for automotive electronics manufacturing. Designed to reduce your cost of test, the TS-8900 achieves this by providing a higher throughput and higher test coverage while reducing your equipment capital cost. It is ideal for medium to high channel count applications such as:

- Powertrain ECU
- Body and comfort ECU
- Safety ECU

TS-8900 Platform Overview

The Keysight Technolocies, Inc. TS-8900 provides a cost effective solution to automotive electronics manufacturers who are constantly under pressure to produce quality ECUs at a faster and lower cost than their competition without compromising test coverage.

The TS-8900 is a commercial off-the-shelf PXI-based platform designed specifically for automotive electronics functional test. This provides the benefits of enabling test development engineers to perform faster test development, execution and line integration.

With instruments engineered specifically for automotive applications to meet 3 critical components:

- time to deployment
- flexibility to accommodate a wide scope of ECUs and
- decreasing the total cost of test

The TS-8900 comprises a standard platform with test system of both hardware and software that is easily customized to suit your particular test strategy and range of ECUs.

With over 400 automotive applications-tuned libraries in our software, customers will be able to accelerate their platform test development and deployment up to $3 x$ faster than building test systems from individual components.

The TS-8900 is scalable to meet manufacturers' needs that have requirements to deploy automotive end-of-line test systems that can start small and then scale up as their production capacity needs increase with time, thus keeping cost of tests low.

TS-8900 Platform Characteristics

Speed

The TS-8900 is designed specifically for automotive ECUs with medium to high pin count in mind. With high voltage, current and channel count support built in the load, stimulus and instruments of the system, customers are able to adopt new test methodologies like parallel testing cost effectively while increasing throughput. With over 400 automotive applications-tuned libraries in Keysight's TestExec SL 7.0, customers are able to develop \& deploy their end-of-line test systems faster.

Scalability

The TS-8900's modular design empowers customers to design \& deploy systems that are scalable from, for example, a single device under test (DUT) functional test system to a four-DUT functional test system that is able to test four DUTs simultaneously. Customers thus have the flexibility of growing their functional test system capacities as the demand grows.

Accuracy and repeatability

Equipment stability and signal paths used during the test measurement are compensated based on calibrated data (e.g. SENSE input feature). This provides customers accurate loads, stimulus and measurements resulting in repeatable tests. TS-8900 leverages the measurement speed, accuracy, and repeatability strengths of Keysight instruments, creating reliable and high performance automotive electronics functional test systems.

Global standard and single vendor support

The TS-8900 provides a standard platform with Keysight global support to customers. This is achieved via TS-8900 compliance to various global safety standards and Keysight's global support infrastructure, thus lowering the total cost of test for customers where they can develop once and deploy everywhere.

TS-8900 Platform Architecture

The TS-8900 comprises seven major sub-systems:

- System controller (software and I/0)
- Serial communication
- Power sources
- Measuring/Stimulus instrumentation (PXI, LXI, GPIB)
- DUT-Specific connections (loads, etc.)
- Signal/Load switching (DC/AC)
- Mass interconnect

System Controller

The TS-8900 system controller comprises an industrial PC with 3.0 GHz Intel Core2Duo processor and 2 GB RAM with pre-installed Test Exec. 7.0 and Windows XP. With up to 3 PCI slots available, the TS-8900 provides customers with a scalable system controller that is able to able to support up to 1 PCl -based CAN module, a GPIB module and with 1 PCl slot to spare. The TS-5000 family application software comprises of 400 built-in libraries for automotive applications, empowering test engineers to develop test plans in shorter time frames.

Front view

TS-8900 Platform Architecture (continued)

Keysight TestExec SL is a test executive designed for high-volume, high throughput functional test application across multiple industries. This robust software empowers test developers with built-in functions that will ultimately reduce development time and improve throughput. These powerful functions encompass:

- A fully customizable operator user interface
- An open architecture for multiple-instrument integration
- A flexible test sequencing
- A set of easy-to-learn debugging tools and provisions for line integration in most manufacturing test environments.

TestExec SL boosts productivity, offers unique advantages for test automation and is unbeaten for ease of use. With its modular architecture, you can use the high-level tools and powerful features to accelerate program development and test integration with TestExec SL.

The Test Exec. 7.0 multithreading feature improves test time throughput via parallel execution of test measurements in the test plan. Figure 1 below reveals a test time reduction of up to 40% for a particular test plan using this feature in comparison to the test plan being executed in serial mode.

Figure 1. Parallel execution of test measurements with the multi-threading feature in TestExec 7.0 reduces test time by 40% in this illustration.

TS-8900 Platform Architecture (continued)

Power Sources

The TS-8900 provides customers with modular power supplies that support up 3300 W . Customers have the following modular power supply options to select:

- N5744A DC System Power Supply, 20 V, 38 A, 760 W
- N5745A DC System Power Supply, 30 V, 25 A, 750 W
- N5764A Power Supply, 20 V, 76 A, 1520 W
- N5765A Power Supply, 30 V, 50 A, 1500 W
- N8734A Power Supply, 20 V, 165 A, 3300 W
- N6702A Low-Profile MPS mainframe, 1200 W

The N5700 series provide users with an easy to integrate, cost-effective and high power density power supplies that starts from a 1U rack space. The N8734A provides up to 3.3 kW in a 2 U rack package with flexible AC input voltage options. It supports USB, LAN (LXI C) and GPIB interfaces providing customers with more interface flexibilities.

Measuring/Stimulus Instrumentation

The TS-8900 stimulus and measurement instruments are categorized in the following:

- PXI-interface instruments (M9186A, M9216A, M9185A)
- LXI-interface instruments (L4532A, L4534A, L4451A)
- GPIB-interface instruments (33521A, 33522A, 53220A)

PXI-interface instruments

The PXI interface instruments for TS-8900 comprises the following:

- M9186A Isolated Single Channel Voltage/Current Source, 100 V
- M9216A High Voltage Acquisition module, 32-Channel, 250 kS/s, 16-bit, 100 V Input
- M9185A Isolated D/A Converter, 8/16 Channels, 16-bit, 16 V
- M9182A Digital Multimeter, 6½ digit, PXI
- M9183A Digital Multimeter, 6122 digit Enhanced Performance, PXI
- M9187A PXI Digital IO: 32 inputs, 32 outputs, 0.3 V to 50 V

With support for high voltage/current range, SENSE input and safety interlock features, the M9186A offers customers an elegant voltage/current source that does not require conditioning circuitry with accurate and repeatable results while protecting the DUT and instrument from damage due to high voltage spikes.

TS-8900 Platform Architecture (continued)

The M9185A provides isolated 16-bit 8 / 16 channels of DC voltage channels with support of up to 16 V , providing the user with a direct input to the automotive DUT which for light vehicles will normally require up to 12 V .

The M9216A provides users up to 32 voltage measurement channels with a $10 \mathrm{mV}-100 \mathrm{~V}$ auto measurement range in one single PXI card. This new high voltage acquisition module enables customers to improve their voltage measurements throughput by via new parallel test methodology compared to the current sequential measurement methodology using a digital multimeter (DMM) and switch matrix. With a sampling rate of 250 kSamples/s per channel, the M9216A supports measurement of higher frequency signals of up to 100 kHz .

New test methodology: Parallel vs sequential voltage measurement

The M9216A empowers customers with improved throughput via parallel voltage measurements compared to the industry standard of sequential measurements. With reference to Figure 2 below, the M9216A enables significant voltage measurement improvements compared to sequential measurements using a digital multimeter and switch matrix configuration.

The M9182A and M9183A provides users with the highest transactional speeds in the market at 4500 readings/s and 20,000 readings/s respectively. The M9183A also supports advanced triggering, capacitance measurements and more temperature functions, providing users with flexibility to support a broad range of measurements.

> Subsystem voltage measurement - Sequential vs. Parallel Measurement

Total Test time: 3 ms
Speed Improvement = 87.5\%

- Parallel measurement
- Does not require an external switch matrix or multiplexer
- Total test time displayed is based on a sample test plan and only serves as an example. Actual test times vary by application.

Figure 2. The Keysight M9216A enables significant throughput improvement via parallel voltage measurement.

TS-8900 Platform Architecture (continued)

LXI-interface instruments

The Keysight L4532A and L4534A are high resolution, standalone LXI digitizers. They offer two or four channels of simultaneous sampling at up to $20 \mathrm{MSa} / \mathrm{s}$, with 16 bits of resolution. Inputs are isolated and can measure up to $\pm 250 \mathrm{~V}$ to handle your most demanding applications. Input channels with the ability to measure waveforms up to 250 V are beneficial when analyzing high voltage and transient signals as seen in many automotive applications. The L4532A and L4534A can make measurements that other products cannot. For example, since the $\pm 250 \mathrm{~V}$ input range is combined with 16 -bit analog to digital converters (ADCs), isolated front-end and low input offset allows a small voltage, such as a 250 mV , and a larger voltage, such as 250 V , to be measured at the same time.

The Keysight L4451A is a high performance 4-channel D/A converter that is LXI Class C compliant. With its small size and Ethernet connectivity, the D/A converter can be placed wherever your application needs it. The Keysight L4451A has four isolated analog channels that are useful to source bias voltages to your device under Test (DUT), to control your analog programmable power supplies, or use the outputs as set points for your control systems. You can use the standard waveforms provided or create your own with over 500,000 points. These points can be dynamically allocated among one or more channels and output as a point-to-point arb. Using this LXI instrument, you will obtain all the benefits of an Ethernet connection, instrument Web server, stan-dard software drivers and more. The L4451A has four independent, isolated channels that can output DC voltage up to $\pm 16 \mathrm{~V}$ or DC current up to $\pm 20 \mathrm{~mA}$ with 16 bits of resolution. The gain and offset can be adjusted on-the-fly.

GPIB-interface instruments

The 33521A and 33522A provides you with the first 30 MHz Function/Arbitrary waveform generator in its class, 1 - and 2- channel configurations, function pulses and point-bypoint arbitrary waveforms in one instrument. Build many arbitrary waveforms without a PC with the embedded waveform builder. The 33521A and the 33522A provides the highest signal fidelity in their class, full bandwidth pulses and real point-by point arbitrary waveforms.

The 53220A represents a new generation of 350 MHz RF and Universal counter/timers with new performance and usability standards. The 53220A belongs to a family of first frequency counters with LXI-C compliance, the combination of high speed measurements and built-in analysis provide new functionality that has not previously been available in basic frequency counters/timers.

Switch/Load Switching Unit (DC/AC)

The E6198B is a standard switch/load unit platform with standard Keysight global support that provides customers with an off-the-shelf switch/load box solution. Specifically designed for automotive ECUs with support for up to 30 A current input with fly-back protection and 48 channels (2 A per channel). The E6198B supports inductive and capacitive loads, with single load, dual load, or quad-load configuration providing customers with the flexibility to support various automotive ECUs for medium to high pin count applications. The E6198B is powered by a total of three power supplies ensuring optimal power supply for high pin count automotive ECUs with dedicated power supplies for each voltage line.

Keysight Loadcards Specifications								
Function	E6175A	E6176A	E6177A	E6177B	E6178A	N9377A	N9378A	N9379A
Number of channels (maximum)	8	16	24	24	8	16, dual-load	24 , quad-load	48, dual-load
Number of channels - unshared relays	4	16	24	24	8	16	24	48
Maximum current per channel	$\begin{aligned} & 7.5 \mathrm{~A} \\ & \text { (15 A } \\ & \text { peak) } \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{~A} \\ & \text { (15 A } \\ & \text { peak) } \end{aligned}$	2 A	2 A	30 A	$\begin{aligned} & 7.5 \mathrm{~A} \\ & \text { (15 A } \\ & \text { peak) } \end{aligned}$	2 A	2 A
Current measuring with sense resistor	Yes	Yes	No	Yes	No	Yes	No	No
Current measuring with current transducer	Yes	No	No	No	Yes	No	No	No
Flyback protection available (user installed)	Yes	Yes	No	No	Yes	Yes	No	No
Engineered for application	Inductive load	Common load	Low current	Low current \qquad	High current	High current dual-load	Low current quad-load	Low current dual-load

M9186A Product Specifications

Voltage Source Accuracy

Range	Conditions	Accuracy \pm (\% of output + offset)
$\pm 16 \mathrm{~V}$	Up to 200 mA at no load.	$0.02 \%+3 \mathrm{mV}$
	Current Sense using the SENSE pin	200 mA range: $1.5 \%+500 \mu \mathrm{~A}$
	with respect to OUTPUT.	20 mA range: $0.5 \%+50 \mu \mathrm{~A}$
		20 mA range: $0.5 \%+50 \mu \mathrm{~A}$
		2 mA range: $0.5 \%+10 \mu \mathrm{~A}$
		$200 \mu \mathrm{~A} \mathrm{range:} 0.3 \%+5 \mu \mathrm{~A}$
-10 to +100 V	Up to 20 mA at no load.	$0.02 \%+40 \mathrm{mV}$
	Current Sense using the SENSE pin	$0.75 \%+300 \mu \mathrm{~A}$
	with respect to OUTPUT.	

Current Source Accuracy

Range	Conditions	Accuracy \pm (\% of output + offset)
$\pm \pm 200 \mathrm{~mA}$	Over $\pm 16 \mathrm{~V}$ at no load.	$0.3 \%+500 \mu \mathrm{~A}$
$\pm 20 \mathrm{~mA}$		$0.1 \%+50 \mu \mathrm{~A}$
$\pm 2 \mathrm{~mA}$		$0.3 \%+5 \mu \mathrm{~A}$
$\pm 200 \mu \mathrm{~A}$		$0.1 \%+0.5 \mu \mathrm{~A}$
$\pm 20 \mathrm{~mA}$	Over -10 to +100 Vdc at no load.	$0.3 \%+500 \mu \mathrm{~A}$

General Specifications

Description	Specification
Temperature Range	00° to $55^{\circ} \mathrm{C}$
- Operating	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- Storage	$80 \%, 0^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ (Non condensing)
Relative Humidity	Altitude : $10,000 \mathrm{ft}$ (Operating)/15,000 ft (Non-operating)
Certifications and Compliance	$2006 / 95 / \mathrm{EC} ; 2004 / 108 / \mathrm{CC}$
- CE Mark Compliance	Pollution Degree 2
- Safety	EN/IEC $61326-1$ Industrial Environment
- EMC Immunity	EN/IEC $61326-1$ Class A
- EMC Emissions	30 minutes
Warm-Up Time	6 W at $5 \mathrm{~V}, 3 \mathrm{~W}$ at $3.3 \mathrm{~V}, 1 \mathrm{~W}$ at 12 V

Additional Information

Recommended Calibration Interval 1 Year

Physical Characteristics

Dimensions	$3 \mathrm{U}, 2-\mathrm{Slot}, \mathrm{PXI} / \mathrm{cPCI}$ module; $40.30 \mathrm{~mm} \times 129.11 \mathrm{~mm} \times 212.73 \mathrm{~mm}$ $(1.59 \mathrm{in} . \times 5.08 \mathrm{in} . \times 8.38 \mathrm{in})$.
Weight	$0.56 \mathrm{~kg}(1.23 \mathrm{lb})$
Front Panel Connector	Mini-Fit Jr (6 circuits)
	NOTE - Front panel connector can accept wire gauges up to 16 AWG.

M9186A Product Specifications (continued)

General Specifications

Configuration Hardware	
Model 1	Description
M9186A	M9186A PXI isolated single channel voltage/current source
Related products Software ${ }^{2}$	Description Model Keysight IO Libraries Drivers, soft front panels and programming examples and MATLAB
Keysight IO Libraries	Software and product information on CD
Accessories	

Ordering

Model	Description
M9186A	M9186A PXI isolated single channel voltage/current source, 100 V

Warranty and Calibration

Advantage Services: Calibration and Warranty

Keysight Advantage Services is committed to your success throughout your equipment's lifetime.

Warranty Description

Standard warranty is 1 year

R-9MB-001-3C	1 year return-to-Keysight warranty extended to 3 years
R-9MB-001-5C	1 year return-to-Keysight warranty extended to 5 years

[^0]
M9216A Product Specifications

Multiplexer	32
Input channels	8 channels to ADC
Output channels	8 channels to auxiliary out
	8 channels to auxiliary out 2
Maximum input voltage	100 V
Maximum input current	0.5 A
Maximum common return pin voltage with respect to chassis ground	45 V

Power	
Maximum current consumption from PXI	
5 V	0.8 A
3.3 V	0.5 A
Maximum input voltage	100 V
Maximum input current	0.5 A
Maximum common return pin voltage with respect to chassis ground	45 V
Warm up time	0.5 hour

M9216A Product Specifications (continued)

General Specifications

Environmental and physical	
Operating temperature	0 to $55^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Relative humidity	0\% to 80\% non condensing
Dimensions	3U, 2-slot, PXI/cPCI module; $40.30 \mathrm{~mm} \times 129.11 \mathrm{~mm} \times 212.73 \mathrm{~mm}$ (1.59 in. $\times 5.08$ in. $\times 8.38$ in.)
Weight	$0.51 \mathrm{~kg}(1.12 \mathrm{lb})$
Certifications and Compliance	Altitude : $10,000 \mathrm{ft}$ (Operating)/ $15,000 \mathrm{ft}$ (Non-operating)
CE Mark Compliance	2006/95/EC; 2004/108/EC
Safety	Pollution Degree 2
EMC Immunity	EN/IEC 61326-1 Industrial Environment
EMC Emissions	EN/IEC 61326-1 Class A
Additional information	
Recommended Calibration Interval	1 Year
Configuration	
Hardware	
Model ${ }^{1}$	Description
M9216A	M9216A PXI 32-channel high voltage data acquisition
Related products	
Software	
Model ${ }^{2}$	Description
Keysight IO Libraries	Keysight IO Libraries Drivers, soft front panels and programming examples in LabVIEW, LabWindows/CVI, Visual Studio ${ }^{\text {® }}$ C, C++ and C\#, Visual Basic, and MATLAB
Accessories	
M9216A-CD1	Software and product information on CD

M9185A Product Specifications

DAC specifications	
Number of Channels	8 or 16 channels
Resolution	16 -bit
Isolation	$>80 \mathrm{Vdc} /$ ac peak (channel-to-chassis or channel to channel)
Synchronization	Software commands or external trigger.
Settling Time	$500 \mu \mathrm{~s}$ (typical)
DC Voltage	$\pm 16 \mathrm{~V}$ up to 10 mA
Range	16 -bit $=500 \mu \mathrm{~V}$
Resolution	$\pm(0.05 \%+3.0 \mathrm{mV})$
Accuracy	$<80 \mathrm{mVpk}$-pk (typical)
Ripple and Noise	
	$\pm 20 \mathrm{~mA}$
DC Current	16 -bit $=630 \mathrm{nA}$
Range	$\pm(0.09 \%+5.0 \mu \mathrm{~A})$
Resolution	$<2 \mu \mathrm{Arms}$ (typical)
Accuracy	

I/O Trigger Characteristics

Trigger Input:	
Input Level	TTL compatible (3.3 V logic, 5 V tolerant)
Slope	Rising or falling (selectable)
Pulse Width	$>100 \mathrm{nS}$
Input Impedance	$>10 \mathrm{k} \Omega$ typical, DC coupled
Trigger Output:	
Level	TTL compatible into $1 \mathrm{k} \Omega$ (3.3 V logic)
Output Impedance	50Ω typical

M9185A Product Specifications (continued)

General Specifications

Environmental and physical	
Operating temperature	0 to $55^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Relative humidity	$80 \%, 0^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C}$ (non condensing)
Altitude	10,000 ft (Operating)/15,000 ft (Non-operating)
Dimensions	8-channel: 40.30 mm x $128.40 \mathrm{~mm} \times 215.00 \mathrm{~mm}$ 1.59 in $\times 5.06$ in $\times 8.46$ in 16-channel: $60.50 \mathrm{~mm} \times 128.40 \mathrm{~mm} \times 215.00 \mathrm{~mm}$ 2.38 in $\times 5.06$ in $\times 8.46$ in
Weight	8 -Channel; $0.47 \mathrm{~kg}(1.04 \mathrm{lb})$ 16-Channel; $0.60 \mathrm{~kg}(1.32 \mathrm{lb})$
Output connector	Stacked VHDCI receptacle
CE mark compliance	2006/95/EC; 2004/108/EC
Safety	Pollution degree 2
EMC immunity	EN/IEC 61326-1 industrial environment
EMC emissions	EN/IEC 61326-1 Class A
Warm-up time	30 minutes
Additional information	
Recommended calibration interval	1 Year
Configuration Hardware	
M9185A ${ }^{1}$	M9185A PXI 8/16-channel D/A converter
Related products Software	
Keysight IO libraries ${ }^{2}$	Keysight IO Libraries Drivers, soft front panels and programming examples in LabVIEW, LabWindows/CVI, Visual Studio C, C++ and C\#, Visual Basic, and MATLAB
Accessories	
M9185A-CD1	Software and product information on CD

[^1]
N5744A, N5745A, N5764A, and N5765A Performance Specifications

1. Minimum voltage is guaranteed to a maximum of 0.2% of the rated output voltage. Minimum current is guaranteed to a maximum of 0.4% of the rated output current.
2. Up to 20 MHz
3. From $5 \mathrm{~Hz}-1 \mathrm{MHz}$
4. Time for output voltage to recover within 0.5% of its rated output for a load change from 10 to 90% of its rated output current. Voltage set point from 10% to 100% of rated output
5. Add this to the output reponse time to obtain the total programming time
6. From $5 \mathrm{~Hz}-1 \mathrm{MHz}$, at 10% to 100% of output voltage at full load (for 6 V units from 33% to 100% of output voltage)

N8734A Performance Specifications

Performance Specifications			
DC output ratings	Voltage ${ }^{1}$		20 V
	Current ${ }^{2}$		165 A
	Power		3300 W
Output ripple and noise	$\mathrm{CV}_{\mathrm{p} \cdot \mathrm{p}}{ }^{3}$		60 mV
Load effect	$\mathrm{CV}_{\text {mms }}{ }^{4}$		8 mV
	CV load regulation ${ }^{5}$		8 mV
Source effect	CC load regulation ${ }^{6}$ CV line regulation ${ }^{7}$		$\begin{aligned} & 38 \mathrm{~mA} \\ & 4 \mathrm{mV} \end{aligned}$
Programming accuracy	CC line regulation ${ }^{7}$		18.5 mA
	Voltage ${ }^{1}$	0.05\% +	10 mV
Measurement accuracy	Current ${ }^{2.8}$	0.1\% +	330 mA
	Voltage	0.1\% +	20 mV
Load transient recovery time	Current ${ }^{8}$	0.1\% +	495 mA
	Time ${ }^{9}$		$<1 \mathrm{~ms}$
Supplemental Characteristics			
Output response time	Up-prog response time ${ }^{10}$ Down-prog response time Full-load ${ }^{10}$ Down-prog response time No-load ${ }^{11}$		80 ms
			100 ms
			800 ms
Command response time (add this to the output response time to obtain the total programming time)			100 ms (typical)
Remote sense compensation			2 V
Over-voltage protection	Range		$1-24 \mathrm{~V}$
Output ripple and noise	CC rms ${ }^{12}$		660 mA
Programming resolution Measurement resolution	Voltage		2.4 mV
	Current		19.8 mA
Front panel display accuracy (4 digits: ± 1 count)	Voltage		100 mV
	Current		825 mA
Temperature stability (over 8 hours, after a 30 minute warm-up. with constant line, load, and temperature)	Voltage Current		10 mV
			82.5 mA
Temperature coefficient (after a 30 minute warm-up)	Voltage from Current from	m rated output voltage	$\begin{aligned} & 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{aligned}$

1. Minimum voltage is guaranteed to maximum 0.2% of rated output voltage.
2. Minimum current is guaranteed to maximum 0.4% of rated output current.
3. 20 MHz
4. $5 \mathrm{~Hz}-1 \mathrm{MHz}$
5. From no-load to full-load, constant input voltage. Maximum drop in remote sense.
6. For load voltage change equal to the unit voltage rating, constant input voltage
7. Single-phase and 3-Phase 208 V models: $170 \sim 265 \mathrm{VAC}$, constant load. 3-Phase 400 V models: 342~460 VAC, constant load.
8. The constant current programming readback and monitoring accuracy does not include the warm-up and load regulation thermal drift.
9. Time for output voltage to recover within 0.5% of its rated output for a load change 10-90\% of rated output current, local sense.
10 .From 10% to 90% or 90% to 10% of rated output voltage, with rated, resistive load
10. From 90% to 10% of rated output voltage.
11. For $8 \mathrm{~V}-15 \mathrm{~V}$ models the ripple is measured from 2 V to rated output voltage and rated output current. For other models, the ripple is measured at $10-100 \%$ of rated output voltage and rated output current.

N8734A Performance Specifications (continued)

Supplemental Characteristics (continued)

Analog programming and monitoring	
$\mathrm{V}_{\text {out }}$ voltage programming	$0-100 \%, 0-5 \mathrm{~V}$ or 0-10 V, user selectable. Accuracy and linearity: $\pm 0.5 \%$ of rated $\mathrm{V}_{\text {out }}$.
$\mathrm{I}_{\text {out }}$ voltage programming ${ }^{1}$	0-100\%, 0-5 V or 0-10 V, user selectable. Accuracy and linearity: $\pm 1 \%$ of rated $\mathrm{I}_{\text {out }}$.
$\mathrm{V}_{\text {out }}$ resistor programming	$0-100 \%, 0-5 / 10$ Kohm full scale, user selectable. Accuracy and linearity: $\pm 1 \%$ of rated $\mathrm{V}_{\text {out }}$.
$\mathrm{I}_{\text {out }}$ resistor programming ${ }^{1}$	$0-100 \%, 0-5 / 10$ Kohm full scale, user selectable. Accuracy and linearity: $\pm 1.5 \%$ of rated $\mathrm{I}_{\text {out }}$.
On/Off control (rear panel)	Controlled by voltage: 0-0.6 V/2-15 V, or dry contact, user selectable logic.
Output current monitor ${ }^{1}$	0-5 V or 0-10 V, user selectable, Accuracy: $\pm 1 \%$.
Output voltage monitor	0-5 V or 0-10 V, user selectable, Accuracy: $\pm 1 \%$.
Power supply OK signal	TTL high (4-5 V) = 0K; $0 \mathrm{~V}=$ Fail; 500 ohm series resistance.
CV/CC Indicator	3.3 kW : $\mathrm{CV}=\mathrm{TTL}$ high ($4-5 \mathrm{~V}$) (source current: 10 mA); CC $=T \mathrm{TL}$ low $(0-0.6 \mathrm{~V})$ (sink current $=10 \mathrm{~mA}$) 5 kW : Open collector; CV mode: OFF, CC mode: $\mathrm{ON}, \mathrm{Max}$ voltage $=30 \mathrm{~V}$; Max sink current $=10 \mathrm{~mA}$
Enable/disable	Dry contact. Open: off, Short: on. Max. voltage at terminal $=6 \mathrm{~V}$
Series and parallel capability	
Parallel operation	Up to 4 identical units (same model number) can be connected in master/slave mode with single-wire current balancing
Series operation	Up to 2 identical units (same model number) can be connected using external protection diodes (see Output Terminal Isolation on page 17)
Savable states	
In volatile memory	16 (in memory locations 0-15)
Interface capabilities	
GPIB	SCPI - 1993, IEEE 488.2 compliant interface
LXI Compliance	Class C (only applies to units with the LXI label on the front panel)
USB 2.0	Requires Keysight I/O Library version M. 01.01 and up, or 14.0 and up
10/100 LAN	Requires Keysight I/O Library version L.01.01 and up, or 14.0 and up
Environmental conditions	
Environment	Indoor use, installation category II (AC input), pollution degree 2
Operating temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ @ 100\% load
Storage temperature	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Operating humidity	30% to 90% relative humidity (no condensation)
Storage humidity	10\% to 95\% relative humidity (no condensation)
Altitude	Up to 3000 meters. Above 2000 m , derate the output current by $2 \% / 100 \mathrm{~m}$ and derate the maximum ambient temperature by $1^{\circ} \mathrm{C} / 100 \mathrm{~m}$.
Built-in Web server	Requires Internet Explorer 5+ or Netscape 6.2+

[^2]
N8734A Performance Specifications (continued)

Supplemental Characteristics (continued)

Dimensions		Height: $88 \mathrm{~mm}(3.46$ in); Width: 423 mm (16.65 in); Depth: 442.5 mm (17.42 in) (excluding connectors and handles)
Weight		3.3 kW: 13 kg (28.6 lbs.); $5 \mathrm{~kW}: 16 \mathrm{~kg}$ (35.2 lbs .)
Regulatory compliance	EMC	Complies with the European EMC directive 89/336/EEC for Class A test and measurement products.
		Complies with the Australian standard and carries the C-Tick mark.
		This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme à la norme NMB-001 du Canada.
		Electrostatic discharges $>1 \mathrm{kV}$ near the I / O connectors may cause the unit to reset and require operator intervention.
	Safety	Complies with the European Low Voltage Directive 73/23/EEC and carries the CE-marking.
		Complies with the US and Canadian safety standards for test and measurement products.
		Any LEDs used in this product are Class 1 LEDs as per IEC 825-1
Acoustic noise declaration		Statements provided to comply with requirements of the German Sound Emission Directive, from 18 January 1991.
		Sound Pressure Lp $<70 \mathrm{~dB}(\mathrm{~A})$, *At Operator Position, *Normal Operation, *According to EN 27779 (Type Test).
		Schalldruckpegel $\mathrm{Lp}<70 \mathrm{~dB}(\mathrm{~A}){ }^{*}$ Am Arbeitsplatz, *Normaler Betrieb, *Nach EN 27779 (Typprüfung).

Output terminal isolation

8 V to 60 V units
No output terminal may be more than ± 60 VDC from any other terminal or chassis ground.
80 V to 600 V units \quad No positive output terminal may be more than $\pm 600 \mathrm{VDC}$ from any other terminal or chassis ground.
No negative output terminal may be more than ± 400 VDC from any other terminal or chassis ground.

N8734A Performance Specifications (continued)

AC Input	Nominal input	230 VAC single-phase option ${ }^{13}$ 208 VAC 3-phase option 400 VAC 3-phase option	$\begin{aligned} & 190-240 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz} \\ & 190-240 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz} \\ & 380-415 \mathrm{VAC} ; 50 / 60 \mathrm{~Hz} \end{aligned}$
	Input current	230 VAC single-phase option ${ }^{13}$ 208 VAC 3-phase option	23-24 A Max @ 100\% load 3.3 kW models: 13.6-14.5 A Max @ 100\% load 5 kW models: 21-22 A max @ 100\% load
		400 VAC 3-phase option	3.3 kW models: 6.8-7.2 A Max @ 100\% load 5 kW models: 10.5-12 A Max @ 100\% load
	Input range	230 VAC single-phase option ${ }^{13}$ 208 VAC 3-phase option 400 VAC 3-phase option	$\begin{aligned} & 170-265 \mathrm{VAC} ; 47-63 \mathrm{~Hz} \\ & 170-265 \mathrm{VAC} ; 47-63 \mathrm{~Hz} \\ & 342-460 \mathrm{VAC} ; 47-63 \mathrm{~Hz} \end{aligned}$
	Input VA	3.3 kW models 5 kW models	$\begin{aligned} & 4000 \mathrm{VA} \\ & 5800 \mathrm{VA} \end{aligned}$
	Power factor	230 VAC single-phase option ${ }^{13}$ 208 \& 400 VAC 3-phase options	0.99 at nominal input and rated output power 3.3 kW models: 0.95 at nominal input and rated output power 5 kW models: 0.94 at nominal input and rated output power
	Efficiency	3.3 kW models 5 kW models	$\begin{aligned} & 82 \%-88 \% \\ & 83 \%-88 \% \end{aligned}$
	Inrush current	230 VAC single-phase option ${ }^{13}$ 208 VAC 3-phase option 400 VAC 3-phase option	$\begin{aligned} & <50 \mathrm{~A} \\ & <50 \mathrm{~A} \\ & <20 \mathrm{~A} \end{aligned}$

1. Available on 3.3 kW models only.

M9182A and M9183A Technical Specifications and Characteristics

M9182A and M9183A: Accuracy specifications \pm (\% of reading $+\%$ of range) ${ }^{1,2}$					
Function	Range ${ }^{3}$	Frequency	$\begin{aligned} & 24 \text { hour } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \text { day } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \text { year } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$
DC voltage	200.0000 mV		$0.0030+0.0005$	$0.0040+0.0008$	$0.0050+0.0010$
	2.000000 V		$0.0020+0.0002$	$0.0030+0.0002$	$0.0040+0.0003$
	20.00000 V		$0.0040+0.0006$	$0.0050+0.0007$	$0.0070+0.0008$
	200.0000 V		$0.0030+0.0001$	$0.0040+0.0001$	$0.0050+0.0003$
	300.0000 V		$0.0130+0.0002$	$0.0230+0.0003$	$0.0250+0.0003$
True RMS, AC voltage ${ }^{4,5}$	$200.0000 \mathrm{mV}^{6}$	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	$3.00+0.18$	$3.10+0.19$	$3.20+0.22$
		$20 \mathrm{~Hz}-47 \mathrm{~Hz}$	$0.37+0.08$	$0.38+0.09$	$0.40+0.10$
		$47 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.13+0.05$	$0.14+0.06$	$0.15+0.06$
(Fast RMS off)		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.25+0.08$	$0.26+0.10$	$0.27+0.12$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$1.90+0.18$	$1.95+0.19$	$2.00+0.20$
	2.000000 V	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	$3.00+0.10$	$3.10+0.11$	$3.20+0.13$
		$20 \mathrm{~Hz}-47 \mathrm{~Hz}$	$0.37+0.07$	$0.38+0.08$	$0.40+0.09$
		$47 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.05+0.05$	$0.06+0.06$	$0.07+0.06$
		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.32+0.06$	$0.33+0.66$	$0.35+0.08$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$1.90+0.08$	$2.00+0.09$	$2.10+0.10$
	20.00000 V	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	$3.00+0.07$	$3.10+0.08$	$3.30+0.10$
		$20 \mathrm{~Hz}-47 \mathrm{~Hz}$	$0.37+0.06$	$0.38+0.07$	$0.40+0.08$
		$47 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.06+0.05$	$0.07+0.06$	$0.07+0.07$
		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.18+0.09$	$0.20+0.11$	$0.22+0.13$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$1.30+0.15$	$1.40+0.18$	$1.50+0.20$
	200.0000 V	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	$3.00+0.07$	$3.10+0.08$	$3.30+0.08$
	\& 300.0000 V	$20 \mathrm{~Hz}-47 \mathrm{~Hz}$	$0.43+0.06$	$0.44+0.07$	$0.45+0.08$
		$47 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.07+0.05$	$0.08+0.07$	$0.09+0.08$
		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.28+0.07$	$0.30+0.08$	$0.32+0.10$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$1.30+0.09$	$1.60+0.12$	$2.40+0.13$
True RMS, AC voltage ${ }^{4.5}$	$200.0000 \mathrm{mV}^{6}$	$350 \mathrm{~Hz}-800 \mathrm{~Hz}$	$0.60+0.08$	$0.65+0.09$	$0.70+0.10$
		$800 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.13+0.05$	$0.14+0.06$	$0.15+0.06$
		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.55+0.08$	$0.60+0.10$	$0.63+0.12$
(Fast RMS on)		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$5.30+0.18$	$5.40+0.19$	$5.60+0.20$
	2.000000 V	$350 \mathrm{~Hz}-800 \mathrm{~Hz}$	$0.93+0.07$	$0.96+0.08$	$1.00+0.09$
		$800 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.07+0.05$	$0.08+0.06$	$0.08+0.06$
		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.62+0.06$	$0.65+0.66$	$0.70+0.08$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$5.10+0.08$	$5.20+0.09$	$5.30+0.10$
	20.00000 V	$350 \mathrm{~Hz}-800 \mathrm{~Hz}$	$0.93+0.06$	$0.96+0.07$	$1.00+0.08$
		$800 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.07+0.05$	$0.07+0.06$	$0.07+0.07$
		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.31+0.09$	$0.33+0.11$	$0.35+0.13$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$2.00+0.15$	$2.20+0.18$	$2.40+0.20$
	200.0000 V	$350 \mathrm{~Hz}-800 \mathrm{~Hz}$	$1.00+0.06$	$1.10+0.07$	$1.10+0.08$
	\& 300.0000 V	$800 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.07+0.05$	$0.07+0.07$	$0.08+0.08$
		$10 \mathrm{kHz}-50 \mathrm{kHz}$	$0.34+0.07$	$0.45+0.08$	$0.50+0.10$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$2.50+0.09$	$2.80+0.12$	$3.20+0.13$

1. Specifications are for 1 hour warm up, within 1 hour self-cal, aperture $\geq 0.5 \mathrm{sec}$, slow $A C$ filter.
2. For temperatures outside the range of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, but within $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, add $0.1 \times$ accuracy specification per ${ }^{\circ} \mathrm{C}$.
3. 20% over range on all ranges except 300 V range, 10% over range for 300 V range.
4. Minimum input specified: 5 mV or 1% of range, whichever is larger.
5. Signal is limited to 8×10^{6} Volt Hz product. For example, at 32 kHz , the highest input is 250 V .
6. For inputs from 5 mV to 10 mV , add $100 \mu \mathrm{~V}$ to the specification.

M9182A and M9183A Technical Specifications and Characteristics (continued)

Function	Range ${ }^{3}$	Frequency, test current or burden voltage	$\begin{aligned} & 24 \text { hour } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \text { day } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \text { year } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$
Resistance ${ }^{4}$	$\begin{aligned} & 20.00000 \Omega \\ & \text { (M9183A only) } \end{aligned}$	10 mA	$0.004+0.002$	$0.009+0.004$	$0.014+0.005$
	200.0000Ω	1 mA	$0.004+0.002$	$0.010+0.002$	$0.013+0.003$
	$2.000000 \mathrm{k} \Omega$	1 mA	$0.003+0.002$	$0.008+0.002$	$0.012+0.002$
	$20.00000 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$	$0.003+0.002$	$0.008+0.002$	$0.012+0.002$
	$200.0000 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$	$0.006+0.002$	$0.010+0.002$	$0.016+0.003$
	$2.000000 \mathrm{M} \Omega$	$1 \mu \mathrm{~A}$	$0.018+0.002$	$0.030+0.003$	$0.040+0.004$
	$20.00000 \mathrm{M} \Omega$	100 nA	$0.120+0.002$	$0.130+0.003$	$0.200+0.003$
	200.0000 M Ω (M9183A only)	4 nA	$0.800+0.010$	$1.000+0.015$	$1.300+0.025$
DC current	$\begin{aligned} & 200.0000 \mathrm{nA} \\ & \text { (M9183A only) } \end{aligned}$	< $100 \mu \mathrm{~V}$	$0.130+0.020$	$0.160+0.023$	$0.170+0.030$
	$\begin{aligned} & 2.000000 \mu \mathrm{~A} \\ & \text { (M9183A only) } \end{aligned}$	$<100 \mu \mathrm{~V}$	$0.050+0.004$	$0.080+0.003$	$0.210+0.008$
	$20.00000 \mu \mathrm{~A}$ (M9183A only)	$<100 \mu \mathrm{~V}$	$0.050+0.002$	$0.080+0.003$	$0.130+0.004$
	$\begin{aligned} & 200.0000 \mu \mathrm{~A} \\ & \text { (M9183A only) } \end{aligned}$	$<2.5 \mathrm{mV}$	$0.052+0.100$	$0.070+0.150$	$0.100+0.200$
	2.000000 mA	$<25 \mathrm{mV}$	$0.020+0.015$	$0.030+0.020$	$0.040+0.028$
	20.00000 mA	< 250 mV	$0.020+0.002$	$0.035+0.003$	$0.045+0.003$
	200.0000 mA	< 55 mV	$0.020+0.025$	$0.030+0.030$	$0.040+0.040$
	2.000000 A	< 520 mV	$0.100+0.003$	$0.150+0.004$	$0.200+0.005$
True RMS, AC current ${ }^{5}$	$2.000000 \mathrm{~mA}^{6}$	$\begin{aligned} & 10 \mathrm{~Hz}-20 \mathrm{~Hz} \\ & 20 \mathrm{~Hz}-47 \mathrm{~Hz} \\ & 47 \mathrm{~Hz}-1 \mathrm{kHz} \\ & 1 \mathrm{kHz}-10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 2.70+0.20 \\ & 0.90+0.20 \\ & 0.04+0.08 \\ & 0.12+0.20 \end{aligned}$	$\begin{aligned} & 2.90+0.20 \\ & 0.90+0.20 \\ & 0.08+0.15 \\ & 0.14+0.20 \end{aligned}$	$\begin{aligned} & 2.90+0.20 \\ & 1.00+0.20 \\ & 0.12+0.20 \\ & 0.22+0.20 \end{aligned}$
	20.00000 mA	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$ $20 \mathrm{~Hz}-47 \mathrm{~Hz}$ $47 \mathrm{~Hz}-1 \mathrm{kHz}$ $1 \mathrm{kHz}-10 \mathrm{kHz}$	$\begin{aligned} & 1.80+0.15 \\ & 0.60+0.15 \\ & 0.07+0.05 \\ & 0.21+0.15 \end{aligned}$	$\begin{aligned} & 2.60+0.15 \\ & 0.90+0.15 \\ & 0.15+0.10 \\ & 0.30+0.20 \end{aligned}$	$\begin{aligned} & 2.80+0.15 \\ & 1.00+0.15 \\ & 0.16+0.15 \\ & 0.40+0.20 \end{aligned}$
	200.0000 mA	$\begin{aligned} & 10 \mathrm{~Hz}-20 \mathrm{~Hz} \\ & 20 \mathrm{~Hz}-47 \mathrm{~Hz} \\ & 47 \mathrm{~Hz}-1 \mathrm{kHz} \\ & 1 \mathrm{kHz}-10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1.80+0.20 \\ & 0.60+0.20 \\ & 0.10+0.05 \\ & 0.30+0.15 \end{aligned}$	$\begin{aligned} & 2.70+0.20 \\ & 0.90+0.20 \\ & 0.17+0.09 \\ & 0.35+0.18 \end{aligned}$	$\begin{aligned} & 2.80+0.20 \\ & 1.00+0.20 \\ & 0.20+0.11 \\ & 0.40+0.20 \end{aligned}$
	2.000000 A	$10 \mathrm{~Hz}-20 \mathrm{~Hz}$ $20 \mathrm{~Hz}-47 \mathrm{~Hz}$ $47 \mathrm{~Hz}-1 \mathrm{kHz}$ $1 \mathrm{kHz}-10 \mathrm{kHz}$	$\begin{aligned} & 1.80+0.20 \\ & 0.66+0.30 \\ & 0.30+0.19 \\ & 0.40+0.20 \end{aligned}$	$\begin{aligned} & 2.50+0.23 \\ & 0.80+0.30 \\ & 0.33+0.19 \\ & 0.45+0.23 \end{aligned}$	$\begin{aligned} & 2.70+0.25 \\ & 0.90+0.30 \\ & 0.35+0.20 \\ & 0.50+0.25 \end{aligned}$
Frequency or period ${ }^{7}$	200 mV to 300 V	$1 \mathrm{~Hz}-130 \mathrm{~Hz}$	$0.025+0.002$	$0.025+0.002$	$0.025+0.002$
		$130 \mathrm{~Hz}-640 \mathrm{~Hz}$	$0.025+0.003$	$0.025+0.003$	$0.025+0.003$
		$640 \mathrm{~Hz}-2.5 \mathrm{kHz}$	$0.030+0.003$	$0.030+0.003$	$0.030+0.003$
		$2.5 \mathrm{kHz}-40 \mathrm{kHz}$	$0.030+0.003$	$0.030+0.003$	$0.030+0.003$
		$40 \mathrm{kHz}-200 \mathrm{kHz}$	$0.050+0.004$	$0.050+0.004$	$0.050+0.004$
		$200 \mathrm{kHz}-300 \mathrm{kHz}$	$0.070+0.002$	$0.070+0.002$	$0.070+0.002$

1. Specifications are for 1 hour warm up, within 1 hour self-cal, aperture ≥ 0.5 sec, slow $A C$ filter.
2. For temperatures outside the range of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, but within $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, add $0.1 \times$ accuracy specification per ${ }^{\circ} \mathrm{C}$.
3. 20% over range on all ranges except 300 V range, 10% over range for 300 V range.
4. Specifications are for 4-wire resistance measurements, or 2-wire using Math Null. Without Math Null, add $1 \mathrm{~m} \Omega$ additional error to the specification.
5. Minimum input specified: $60 \mu \mathrm{~A}$ or 1.5% of range, whichever is larger.
6. For inputs from 60 to $120 \mu \mathrm{~A}$, add $10 \mu \mathrm{~A}$ to the specification.
7. Minimum amplitude greater of: 100 mV , or 5% of range for 1 Hz to 2.5 kHz , or 25% of range for 2.5 kHz to 300 kHz .

M9182A and M9183A Technical Specifications and Characteristics (continued)

M9182A and M9183A: Accuracy specifications \pm (\% of reading + \% of range) ${ }^{1,2}$					
Function	Range	Full scale reading or resolution	$\begin{aligned} & 24 \text { hour } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 90 \text { day } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \text { year } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$
Duty cycle ${ }^{3}$ [M9183A only]	2-100 Hz	0.02 \%	0.03 ± 0.03	0.03 ± 0.03	0.03 ± 0.03
	$100 \mathrm{~Hz}-1 \mathrm{kHz}$	0.20 \%	0.03 ± 0.30	0.03 ± 0.30	0.03 ± 0.30
	$1-10 \mathrm{kHz}$	2.00 \%	0.03 ± 3.00	0.03 ± 3.00	0.03 ± 3.00
Pulse width ${ }^{4}$ [M9183A only]	$2 \mu \mathrm{~s}-1 \mathrm{~s}$	$1 \mu s$. $01 \pm 4 \mu \mathrm{~s}$	$01 \pm 4 \mu s$	$01 \pm 4 \mu s$
Capacitance ${ }^{5}$	1000.0 pF	1199.9 pF	$1.00+0.10$	$1.00+0.10$	$1.00+0.10$
	10.000 nF	11.999 nF	$1.20+0.05$	$1.20+0.05$	$1.20+0.05$
[M9183A and	100.00 nF	119.99 nF	$1.00+0.10$	$1.00+0.10$	$1.00+0.10$
M9182A]	$1.0000 \mu \mathrm{~F}$	$1.1999 \mu \mathrm{~F}$	$1.00+0.10$	$1.00+0.10$	$1.00+0.10$
	$10.000 \mu \mathrm{~F}$	$11.999 \mu \mathrm{~F}$	$1.00+0.10$	$1.00+0.10$	$1.00+0.10$
	$100.00 \mu \mathrm{~F}$	119.99 F	$1.00+0.10$	$1.00+0.10$	$1.00+0.10$
	1.0000 mF	1.1999 mF	$1.20+0.10$	$1.20+0.10$	$1.20+0.10$
	10.000 mF	11.999 mF	$2.00+0.10$	$2.00+0.10$	$2.00+0.10$

Definitions for specifications

Specification (spec): Represents warranted performance of a calibrated instrument that has been stored for a minimum of two hours within the operating temperature range of 0 to $55^{\circ} \mathrm{C}$, unless otherwise stated, and after a one hour warm-up period. The specifications include measurement uncertainty. Data represented in this document are specifications unless otherwise noted.

Typical (typ): Represents characteristic performance, which 80% of the instruments manufactured will meet. This data is not warranted, does not include measurement uncertainty, and is valid only at room temperature (approximately $25^{\circ} \mathrm{C}$).

Nominal (nom): The expected mean or average performance, or an attribute whose performance is by design, such as the 50Ω connector. This data is not warranted and is measured at room temperature (approximately $25^{\circ} \mathrm{C}$).

Measured (meas): An attribute measured during the design phase for purposes of communicating expected performance, such as amplitude drift vs. time. This data is not warranted and is measured at room temperature (approximately $25^{\circ} \mathrm{C}$).

Note: All graphs contain measured data from several units at room temperature unless otherwise noted.

1. Specifications are for 1 hour warm up, within 1 hour self-cal, aperture $\geq 0.5 \mathrm{sec}$, slow $A C$ filter.
2. For temperatures outside the range of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, but within $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, add $0.1 \times$ accuracy specification per ${ }^{\circ} \mathrm{C}$.
3. Specifications are $\%$ of reading $(0.03) \pm$ adder.
4. Specifications are $\%$ of reading + time.
5. Specifications apply to input signals $\geq 5 \%$ of range, for values $<500 \mathrm{pF}$ add 15% of range.

M9182A and M9183A Technical Specifications and Characteristics (continued)

M9182A and M9183A Sensitivity (nom)		
Function	Lowest Range	Sensitivity
DCV	200.0000 mV	$0.1 \mu \mathrm{~V}$
ACV	200.0000 mV	$0.1 \mu \mathrm{~V}$
Resistance (M9183A)	20.00000Ω	$10 \mu \Omega$
Resistance (M9182A)	200.0000Ω	$100 \mu \Omega$
DCI (M9183A)	200.0000 nA	0.1 pA
DCI (M9182A)	2.000000 mA	10 nA
ACI	2.000000 mA	1 nA
Capacitance	1000.0 pF	0.1 pF

M9182A and M9183A temperature accuracy (spec) ${ }^{1}$					
Temperature function	Type	R0 (Ω)	Sensitivity	Range/max temperature	$\begin{aligned} & 1 \text { year } \\ & 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \end{aligned}$
RTD temperature measurement ${ }^{2,3}$	pt385	$100 \Omega, 200 \Omega$	$0.01^{\circ} \mathrm{C}$	-150 to $650^{\circ} \mathrm{C}$	$\pm 0.06^{\circ} \mathrm{C}$
		$500 \Omega, 1 \mathrm{k} \Omega$	$0.01^{\circ} \mathrm{C}$	-150 to $650^{\circ} \mathrm{C}$	$\pm 0.03^{\circ} \mathrm{C}$
	Cu (Copper)	Less than 12Ω	$0.01^{\circ} \mathrm{C}$	-100 to $200^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.18^{\circ} \mathrm{C} \text { at } \leq 20^{\circ} \mathrm{C} \\ & \pm 0.05^{\circ} \mathrm{C} \text { otherwise } \end{aligned}$
		Higher than 90Ω	$0.01^{\circ} \mathrm{C}$	-100 to $200^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 0.10^{\circ} \mathrm{C} \text { at } \leq 20^{\circ} \mathrm{C} \\ & \pm 0.05^{\circ} \mathrm{C} \text { otherwise } \end{aligned}$
Thermocouple temperature measurement ${ }^{4,5}$	B	NA	$0.01^{\circ} \mathrm{C}$	$2200^{\circ} \mathrm{C}$	$\pm 0.38^{\circ} \mathrm{C}$
	E	NA	$0.01^{\circ} \mathrm{C}$	$1200^{\circ} \mathrm{C}$	$\pm 0.035^{\circ} \mathrm{C}$
	J	NA	$0.01^{\circ} \mathrm{C}$	$2000^{\circ} \mathrm{C}$	$\pm 0.06^{\circ} \mathrm{C}$
	K	NA	$0.01^{\circ} \mathrm{C}$	$3000^{\circ} \mathrm{C}$	$\pm 0.07^{\circ} \mathrm{C}$
	N	NA	$0.01^{\circ} \mathrm{C}$	$3000^{\circ} \mathrm{C}$	$\pm 0.10^{\circ} \mathrm{C}$
	R	NA	$0.01^{\circ} \mathrm{C}$	$2700^{\circ} \mathrm{C}$	$\pm 0.25^{\circ} \mathrm{C}$
	S	NA	$0.01^{\circ} \mathrm{C}$	$3500^{\circ} \mathrm{C}$	$\pm 0.35^{\circ} \mathrm{C}$
	T	NA	$0.01^{\circ} \mathrm{C}$	$550^{\circ} \mathrm{C}$	$\pm 0.06^{\circ} \mathrm{C}$
Thermistor ${ }^{3}$	$2.25 \mathrm{k} \Omega$	NA	$0.01^{\circ} \mathrm{C}$	-80 to $150^{\circ} \mathrm{C}$	$\pm 0.1^{\circ} \mathrm{C}$
	$5 \mathrm{k} \Omega$	NA	$0.01^{\circ} \mathrm{C}$	-80 to $150^{\circ} \mathrm{C}$	$\pm 0.1^{\circ} \mathrm{C}$
	$10 \mathrm{k} \Omega$	NA	$0.01^{\circ} \mathrm{C}$	-80 to $150^{\circ} \mathrm{C}$	$\pm 0.1^{\circ} \mathrm{C}$

1. Specifications are for one hour warm up, within one hour self-cal, aperture $\geq 0.5 \mathrm{sec}$, slow $A C$ filter.
2. 4 -wire RTD measurement, R0 variable 10Ω to $10 \mathrm{k} \Omega$.
3. For total measurement accuracy, add temperature probe error.
4. For total measurement accuracy, add thermocouple error and cold junction compensation.
5. DMM linearization temperature range may be greater than that of the thermocouple device.

M9182A and M9183A Technical Specifications and Characteristics (continued)

Source-Measure [(spec) unless otherwise stated)]

[^3]
M9182A and M9183A Technical Specifications and Characteristics (continued)

Triggering Characteristics

The M9182A and M9183A have advanced triggering capabilities that exceed those found on other digital multimeters. Advanced triggering allows you to capture the signal you need in a variety of applications.

External hardware trigger			
Trigger input voltage level range (at DIN 7 connector)		+3 to +15 V activates the trigger	
Minimum trigger pulse width		Aperture + $50 \mu \mathrm{~s}$	
Trigger input impedance		3 k ,	
Internal reading buffer		Circular, 80 readings	
Edge		Selectable positive or negative edg	
PXI bus trigger inputs			
Trigger input voltage level range (via PXI backplane)		CMOS level (see PXI standard)	
Minimum trigger pulse width		1/Aperture $+50 \mu \mathrm{~s}$	
Internal reading buffer		Circular, 80 readings	
Edge		Selectable positive or negative edg	
Trigger modes			
Analog threshold trigger (Pre-trigger or post-trigger)	Trigger point		Selectable negative ed
	Buffer type		Circular
	Captures		80 readings
	Aperture range		130μ s to 160
			$2.5 \mu \mathrm{~s}$ to 160
	Read interval range		1/aperture
	Post-trigger readings		Selectable f
	Pre-trigger readings		Selectable f
Trigger delay (Default values ensure 1st reading accuracy in most configurations)	Delay after trigger		50μ to 16
	Resolution		$1 \mu \mathrm{~s}$ to 65 m

M9182A and M9183A Technical Specifications and Characteristics (continued)

Resolution vs. Aperture and Reading Rate for DCV, DCI, Ω

Measurement aperture	Maximum readings per second	Resolution
10 ms	98	$61 / 2$ digits (22 bits)
$625 \mu \mathrm{~s}$	1,200	$51 / 2$ digits (18 bits)
$130 \mu \mathrm{~s}$	4,500	$41 / 2$ digits (14 bits)
$2.5 \mu \mathrm{~s}$	20,000	$41 / 2$ digits (14 bits)

Transaction Speed

Transactional I/O speed is a single reading measurement. This is important when you are taking many single measurements with the DMM. The M9183A delivers the highest transactional measurement speed in its class. These fast readings, up to 20,000 readings per second with a read interval rate of $50 \mu \mathrm{~s}$, translate into higher testsystem throughput and lower cost of test per unit tested.

Read interval can be programmed in us increments for values up to 65 mS , and in 20μ s increments to 1 second

Variable delay can be programmed to allow fully settled readings in any configuration.

Switch between functions	Aperture (A)	Function change time (ms)
DCV	$A<16 \mathrm{~ms}$	15.6
	$A \geq 16 \mathrm{~ms}$	A + 25
Resistance to DCI	A $<16.66 \mathrm{~ms}$	7.8
	$16.66 \mathrm{~ms} \leq \mathrm{A}<40 \mathrm{~ms}$	A $\times 0.65$
	$40 \mathrm{~ms}<\mathrm{A}<66.66 \mathrm{~ms}$	7.8
	$A \geq 66.66 \mathrm{~ms}$	$(\mathrm{A} \times 0.51)+45$
DCV to capacitance	$\mathrm{A}<33.33 \mathrm{~ms}$	23.4
	$\mathrm{A} \geq 33.33 \mathrm{~ms}$	$(\mathrm{A} \times 0.65)+50$
Resistance to capacitance	$\mathrm{A} \leq 33.33 \mathrm{~ms}$	23.4
	$33.33 \mathrm{~ms}<\mathrm{A}<80 \mathrm{~ms}$	$(\mathrm{A} \times 2)+35$
	$80 \mathrm{~ms} \leq \mathrm{A}<160 \mathrm{~ms}$	23.4
	$\mathrm{A} \geq 160 \mathrm{~ms}$	160

M9182A and M9183A Technical Specifications and Characteristics (continued)

DC voltage	
Measurement method	Delta-sigma A/D conversion
Input resistance	200 mV , 2.0 V ranges: > $10 \mathrm{G} \Omega$ with typical leakage of < 50 pA ;
	$20 \mathrm{~V}, 200 \mathrm{~V}, 300 \mathrm{~V}$ ranges: $10.0 \mathrm{M} \Omega$
Input isolation	330 VDC, 250 VAC from Earth ground
Input overvoltage protection	330 VDC all ranges
DCV noise rejection	Normal mode rejection at 50,60 , or $400 \mathrm{~Hz} \pm 0.5 \% ;>95 \mathrm{~dB}$ (apertures \geq 0.160 s); CMRR ($1 \mathrm{k} \Omega$ lead imbalance) $\geq 120 \mathrm{~dB}$
True RMS AC voltage	
Measurement method	AC coupled (10 Hz to 100 kHz) true RMS — measures the AC component only analog RMS DC converter
Crest factor	Maximum crest factor of 4 at full scale, 7 at 10\% of range
Input impedance	$1 \mathrm{M} \Omega$, in parallel with $<300 \mathrm{pF}$
Settling time	<0.05 sec to within 0.15 of final value Fast RMS: $<0.05 \mathrm{sec}$ to within 0.1% of final value
Peak input	8×106 volt Hz product (example: 250 V @ 32 kHz)
Input overvoltage protection	330 VAC all ranges
ACV noise rejection	Common mode rejection at 50 Hz or $60 \mathrm{~Hz} ; 1 \mathrm{k} \Omega$ imbalance in either lead $>60 \mathrm{~dB}$
Resistance	
Measurement method	Selectable 2-wire or 4-wire. Current source referenced to LO output
Offset compensation (M9183A only)	All ranges, use with apertures $>5 \mathrm{~ms}$
Maximum test voltage	240 mV for 20Ω and 200Ω ranges; 2.4 V for $20 \mathrm{k} \Omega$ to $20 \mathrm{M} \Omega$ ranges; 1.0 V for $200 \mathrm{M} \Omega$ range (M9183A only)
Maximum lead resistance (4-wire)	$50 \mathrm{k} \Omega$ for $200 \mathrm{k} \Omega$, $2.0 \mathrm{M} \Omega$, and $20 \mathrm{M} \Omega$ ranges; $5 \mathrm{k} \Omega$ for $20 \mathrm{k} \Omega$ range 500Ω for 200Ω and $2 \mathrm{k} \Omega$ ranges
Input protection	330 V on all ranges
DC current	
Shunt resistance	10Ω for 2 mA and $20 \mathrm{~mA}, 0.1 \Omega$ for $200 \mathrm{~m} \Omega$ and 2 A ; Virtual zero shunt for lower current ranges (M9183A only)
Input protection	Protected with 2.5 A, 250 V fast blow fuse
True RMS AC current	
Measurement method	AC coupled true RMS measurement (measures the AC component only.) analog RMS DC converter.
Shunt resistance	10Ω for 2 mA and $20 \mathrm{~mA}, 0.1 \Omega$ for 200 mA and 2 A ; virtual zero shunt for lower current ranges (M9183A only)
Input protection	Protected with $2.5 \mathrm{~A}, 250 \mathrm{~V}$ fast blow fuse

M9182A and M9183A Technical Specifications and Characteristics (continued)

N6702A MPS Mainframes Technical Specifications

Technical specifications

Maximum total output power (= sum of total	N6700B	400 W	when operating from $100-240$ VAC input
module output power)	N6702A	600 W	when operating from $100-240$ VAC input

Command processing time	From receipt of command to start of the output change	$\leq 1 \mathrm{~ms}$
Protection response characteristics	INH input Fault on coupled outputs	$5 \mu \mathrm{~s}$ from receipt of inhibit to start of shutdown $<10 \mu \mathrm{~s}$ (from receipt of fault to start of shutdown)
Digital control characteristics	Maximum voltage ratings	$16.5 \mathrm{VDC} /-5 \mathrm{VDC}$ between pins (pin 8 is internally connected to chassis ground).
	Pins 1 and 2 as FLT output	Maximum low-level output voltage $=0.5 \mathrm{~V}$ @ 4 mA Maximum low-level sink current $=4 \mathrm{~mA}$
		Typical high-level leakage current $=0.14 \mathrm{~mA}$ @ 16.5 VDC

Pins 1-7 as digital/trigger Maximum low-level output voltage $=0.5 \mathrm{~V} @ 4 \mathrm{~mA} ; 1 \mathrm{~V} @ 50 \mathrm{~mA} ; 1.75$
(pin $8=$ common) outputs $\quad \mathrm{V}$ @ 100 mA
Maximum low-level sink current $=100 \mathrm{~mA}$
Typical high-level leakage current $=0.12 \mathrm{~mA} @ 16.5 \mathrm{VDC}$
Pins 1-7 as digital/trigger Maximum low-level input voltage $=0.8 \mathrm{~V}$
inputs and pin 3 as INH Minimum high-level input voltage $=2 \mathrm{~V}$
input (pin $8=$ common) Typical low-level current $=2 \mathrm{~mA} @ 0 \mathrm{~V}$ (internal 2.2 k pull-up Typical high-level leakage current $=0.12 \mathrm{~mA} @ 16.5 \mathrm{VDC}$

Interface	GPIB:	SCPI - 1993, IEEE 488.2 compliant interface
capabilities	LXI compliance	Class C (applies to mainframes with firmware revision C.00.02 and up)
	USB 2.0	Requires Keysight IO Library version M.01.01 and up, or 14.0 and up
	$10 / 100$ LAN	Requires Keysight IO Library version L.01.01 and up, or 14.0 and up
	Built-in web server	Requires Internet Explorer 5+ or Netscape 6.2+
Environmental	Operating environment	Indoor use, installation category II (for AC input), pollution degree 2
conditions	Temperature range	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (current is derated 1% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$ ambient
	temperature)	
	Relative humidity	Up to 95%
	Altitude	Up to 2000 meters
	Storage temperature	$-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	LED statement	Any LEDs used in this product are Class 1 LEDs as per IEC 825-1

N6702A MPS Mainframes Technical Specifications (continued)

Technical specifications	
Regulatory compliance	Complies with the European EMC directive $89 / 336 / E E C$ for Class A test and measurement products. Complies with the Australian standard and carries the C-Tick mark.
	This ISM device complies with Canadian ICES-001.
Cet appareil ISM est conforme à la norme NMB-001 du Canada.	
Electrostatic discharges greater than 1 kV near the I/O connectors may	
cause the unit to reset and require operator intervention.	
Safety	Complies with the European Low Voltage Directive 73/23/EEC and carries the CE-marking. This product also complies with the US and Canadian safety standards for test and measurement products.

Acoustic noise declaration	This statement is provided to comply with the requirements of the German Sound Emission Directive, from 18 January 1991.	Sound Pressure $\mathrm{Lp}<70 \mathrm{~dB}(\mathrm{~A})$, ${ }^{*}$ At Operator Position, *Normal Operation, *According to EN 27779 (Type Test). Schalldruckpegel $\mathrm{Lp}<70 \mathrm{~dB}(\mathrm{~A})$ ${ }^{*}$ Am Arbeitsplatz, *Normaler Betrieb, *Nach EN 27779 (Typprüfung).
Output terminal isolation	Maximum Rating	No output terminal may be more than 240 VDC from any other terminal or chassis ground.
AC input	Nominal input ratings	$100 \mathrm{VAC}-240 \mathrm{VAC} ; 50 / 60 \mathrm{Hz/400Hz}$
	Input range	$86 \mathrm{VAC}-264 \mathrm{VAC}$

Weight \quad N6700B with 4 installed \quad Net: 12.73 kg ; 28 lbs.
modules

N6701A with 4 installed Net: 11.82 kg; 26 lbs.
modules
N6702A with 4 installed Net: 14.09 kg; 31 lbs.
modules
Single-wide power module \quad Net: $1.23 \mathrm{~kg} ; 2.71 \mathrm{lbs}$
Double-wide power module \quad Net: $2.18 \mathrm{~kg} ; 4.8 \mathrm{lbs}$

N6702A MPS Mainframes Technical Specifications (continued)

Power Module Option Characteristics

Autoranging Characteristic

L4532A and L4534A Specifications (continued)

Specifications		
L4532A (2 channel) or L4534A (4 channel) digitizers with ADCs per channel		
Max sample rate	20 MSa /s	
Sample resolution	16 Bits	
Input configuration	Isolated inputs (each channel independently isolated)	
Isolation voltage (low to chassis)	$\pm 40 \mathrm{~V}$	
Maximum input (Hi to Low)	$\pm 250 \mathrm{Vpk}^{1}$	
Maximum input range	$\pm 256 \mathrm{~V}$	
Input impedance	$1 \mathrm{M} \Omega$ \|	40 pF
Input coupling	DC or AC	
AC cutoff freq (-3 dB)	$<10 \mathrm{~Hz}$	
Input ranges:	$\begin{aligned} & \pm 256 \mathrm{~V}, \pm 128 \mathrm{~V}, \pm 64 \mathrm{~V}, \pm 32 \mathrm{~V}, \\ & \pm 16 \mathrm{~V}, \pm 8 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 1 \mathrm{~V}, \\ & \pm 500 \mathrm{mV}, \pm 250 \mathrm{mV} \end{aligned}$	
Over voltage protection	Yes	
Maximum overvoltage transient	$\pm 400 \mathrm{Vpk}$	
Analog bandwidth (-3 dB)	20 MHz typical	
Noise filtering (2-pole Bessel)	$200 \mathrm{KHz}, 2 \mathrm{MHz}$ typical	
Power requirements		
Line Voltage:	100 to 240 VAC (universal)	
Line frequency:	50 Hz or 60 Hz	
Power consumption:	45 W (100 VA)	
Safety conforms to		
IEC/EN 61010-1:2001(EU)		
CAN/CSA-C22.2 No. 61010-1-04 (Canada)		
UL 61010-1 (2nd Edition) (US)		
AS 61010.1:2003 (Australia/New Zealand)		
EMC conforms to		
IEC 61326-1:2005-12 (EU)		
EN 61326-1:2006		
ICES-001:2004 (Canada)		
AS/NZS CISPR 11:2004		
1. CAT I IEC measurement Category I. Inputs may be connected only to circuits that are isolated from AC mains. 2. EXTernal can be used as an ARM source or a Trigger source, but not both at the same time.		
3. OR can only be used if the EXTernal source is being used as a Trigger source.		
4. Pulse width $1 \mu \mathrm{~s}$ (200 ns for records taking <2 $\mu \mathrm{s}$ to complete).		
5. TTL output pulse can be configured for either rising or falling edge.		
Latency between Level/wi (trigger) sample.		

Arm and Trigger

Each Arm event gates 1 or more trigger events. Each Trigger event causes acquisition of data into a single record at the configured sample rate. The number of data records is configurable from 1 to 1024.

Source	ARM	Trigger	Description
IMMediate	\bullet		Trigger or ARM at INIT time
EXTernal ${ }^{2}$	\bullet	\bullet	BNC TTL input edge (selectable rising/falling edge
Software	-	-	Instrument commands
Timer	\bullet		0.0 s to 3600.0 s with 50 ns resolution
Channel/Edge			Selectable level, rising/ falling, hysteresis
Channel/Window			Selectable high and low levels, leaving/entering, hysteresis
$0 \mathrm{R}^{3}$			Logical OR of channel trigger source and External
Sampling			
Programmable sample rates:			/s, $2 \mathrm{KSa} / \mathrm{s}, 5 \mathrm{KSa} / \mathrm{s}$, a/s, 20 KSa /s, 50 KSa /s, 100 $\mathrm{s}, 200 \mathrm{KSa} / \mathrm{s}, 500 \mathrm{KSa} / \mathrm{s}$, $\mathrm{a} / \mathrm{s}, 2 \mathrm{MSa}$ s, $5 \mathrm{MSa} / \mathrm{s}$, Sa/s, 20 MSa /s
External event output:			
Event types:		Trigger, end-of-record, end-of-acquisition	
Output signal: ${ }^{4,5}$		TTL (rising edge)	
Impedance:		25 ohm or 50 ohm	

Trigger modes:	
Pre trigger	0 to record length -4
Post trigger	Record length-pretrigger
Timestamp triggered event	Elapsed time since INIT, or CONTinuous running timestamp
Timestamp resolution	12.5 ns
Trigger delay	$0-3600 \mathrm{~s}$ with 50 ns resolution
Trigger holdoff	$0-10 \mathrm{~s}$ with 50 ns resolution
Trigger latency ${ }^{6}$	12.5 ns
Trigger reactive	
Ext input trigger latency	40 ns to 51 ns
Ext output trigger latency	4 ns to 21 ns

L4532A and L4534A Specifications (continued)

Accuracy ${ }^{1}$					
DC Accuracy - Total specification (\% of reading + \% of range) ${ }^{4}$					
	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$		$\mathrm{T}_{\text {autozero }} \pm 3^{\circ} \mathrm{C}^{5}$	Temp coefficient outside $18-28^{\circ} \mathrm{C}$	
Range	$\pm \%$ of reading	$\pm \%$ of range	$\pm \%$ of range	$\pm \%$ of reading/C	$\pm \%$ of range/C
250 mV	0.10	0.30	0.11	0.010	0.015
500 mV	0.10	0.20	0.06	0.010	0.010
$1 \mathrm{~V}, 2 \mathrm{~V}$	0.10	0.12	0.04	0.010	0.010
$4 \mathrm{~V}, 64 \mathrm{~V}$	0.10	0.30	0.05	0.010	0.015
$8 \mathrm{~V}, 128 \mathrm{~V}$	0.10	0.20	0.04	0.010	0.010
$16 \mathrm{~V}, 32 \mathrm{~V}, 256 \mathrm{~V}$	0.10	0.12	0.04	0.010	0.010
Integral nonlinearity	± 5 LSB				
Differential nonlinear	± 1 LSB typical, no missing codes				
Input bias current	< 10 nA typical				

Dynamic Characteristics ${ }^{4}$ (Measured using a 65536 point FFT)

Input range 980 kHz input (-1 dBFS)

	SFDR	THD	SNR	SINAD -dB	ENOB 2
250 mV	71	-dBc	-dB		10.8
500 mV	77	79	67	66.7	11.3
1 V	81	83	70	69.8	11.8
2 V	85	85	73	72.7	12.0
4 V	70	82	75	74.2	10.3
8 V	70	80	64	63.9	10.5
16 V	70	83	65	64.9	10.5
Input range 10 MHz input $(-1 \mathrm{dBFS})$		81	65	64.9	
250 mV	71	71			10.5
500 mV	71	73	66	64.8	10.8
1 V	69	68	68	66.8	10.8
2 V	63	62	72	66.5	9.9

AC flatness (DC-4 MHz)	$\pm 0.28 \mathrm{~dB}$ relative to 1 kHz
250 mV	$\pm 0.20 \mathrm{~dB}$ relative to 1 kHz
$500 \mathrm{mV}, 1 \mathrm{~V}, 2 \mathrm{~V}, 4 \mathrm{~V}, 8 \mathrm{~V}, 16 \mathrm{~V}, 32 \mathrm{~V}$	$\pm 0.2 \mathrm{~dB} \pm 0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
$64 \mathrm{~V}, 128 \mathrm{~V}, 256 \mathrm{~V}$	relative to 1 kHz
Crosstalk (Ch to Ch) $\mathrm{R}_{\mathrm{s}}=50 \mathrm{Ohm}$	$<-90 \mathrm{~dB} @ 1 \mathrm{MHz}$

1. 100,000 reading average @ $1 \mathrm{MSa} / \mathrm{s}$
2. For 1 V range and greater, typical offset with constant temperature is 0.01% of range.
3. $\mathrm{ENOB}=($ SINAD -1.76$) / 6.02$
4. External timebase measurements made with 1 Vpp sinewave with <2 ps RMS jitter.

L4532A and L4534A Specifications (continued)

Timing and synchronization	
Internal timebase accuracy	$\pm 50 \mathrm{ppm}$
Internal timebase output (Clock out BNC)	
Frequency	10 MHz
Level	>1 Vpp
External timebase reference (Clock in BNC)	
Lock range	$\begin{aligned} & 10 \mathrm{MHz} \pm 5000 \mathrm{pp} \\ & (10 \mathrm{MHz} \pm 50 \mathrm{kHz}) \end{aligned}$
Clock lock skew (typical)	$\pm 10 \mathrm{~ns}$ (typical)
Level	1 Vpp sinewave min <2 psec rms jitter
Input resistance nominal	$100 \mathrm{k} \Omega$ nominal
Waveform memory	
Data memory	
Standard ${ }^{1}$	$32 \mathrm{MSa} / \mathrm{ch}$
Extended ${ }^{1}$	$128 \mathrm{MSa} / \mathrm{ch}$
Random access to readings Multiple record mode	Capture multiple records from multiple triggers
Waveform measurements	
Voltage	peak-to-peak, minimum, maximum, average, RMS, amplitude, base, top, overshoot, preshoot, upper, middle, lower
Time	rise, fall, period, frequency, positive width, negative width, duty cycle
Utilities	
Calibration	
Calibration cycle	1 year
Internal calibration source	0 to $\pm 16 \mathrm{~V}$ typical
Electronic calibration	Requires an external 6.5 digit DMM and PC
Self test	Power on self test, Complete test performed via *TST? command

Hardware	
1 U Full rack LXI	$\begin{aligned} & 425.7 \mathrm{~mm} \mathrm{~W} \times 44.5 \mathrm{H} \mathrm{x} \\ & 367.9 \mathrm{~mm} \mathrm{D} \end{aligned}$
Weight	
L4532A (2 Ch)	3.3 kg
L4534A (4 Ch)	3.63 kg
Front panel	Power switch \& display
Back panel (Connectors)	
Power input	
Input channels	BNC
Cal Src Out	BNC
10 MHz In	BNC
10 MHz Out	BNC
Trig In/Out	BNC
I/O interface	LAN (Gbit), USB 2.0
Software	
Web interface:	Internet Explorer, IE (version 6 \& 7), Mozilla Firefox and Netscape. Requires Javaenabled browser (Java 1.6 or greater)
Programming language:	ASCII commands, IEEE 488.2 compliant
Computer interfaces:	
LAN: Standard LAN 10/100/1000BaseTx	(VXI-11² compliant), Sockets (service at port 5025), Telnet (service at port 5024))
USB: Standard USB 2.0	(USBTMC ${ }^{3}$ compliant)
Programming via direct native command set:	
VISA IO control (LAN or USB)	Keysight IO Libraries Suite 15.0 or greater recommended
LAN sockets control (LAN only)	<Sockets programming>
Programming via software driver IVI-COM, IVI-C Driver for Window 2000/XP/Vista, G driver for LabVIEW	
Compatible with programming tools and environments: Keysight VEE Pro, Microsoft Visual Studio.NET, C/C++, Visual Basic 6, National Instruments Test Stand, Measurement Studio, LabWindows/CVI, LabVIEW	

1. Nominal values. Specific sample max is $33,554,432$ and $134,205,440$ samples.

2 VXI-11 allows transfer of IEEE 488.1 and IEEE 488.2 messages over a TCP/IP network. Supported by Keysight IO Library Suite (included)
3. USB Test and Measurement Class (TMC) that communicates over USB, complying with IEEE 488.1 and IEEE 488.2 standards.

Supported by Keysight IO Library Suite (included)

L4532A and L4534A Specifications (continued)

Minimum system requirements (1/0 libraries \& drivers)			
Operating system W	Windows XP SP2 (or later) Windows 2000 Professional SP4 (or late		Windows Vista 32-bit (Home, Basic, Premium, Business, Ultimate, Enterprise)
Processor 4	450 MHz Pentium II or higher required. 800 MHz recommended		1 GHz 32 -bit (x86)
Available memory 12	128 MB minimum, (256 MB or greater recommended)		512 MB minimum (1 GB recommended)
Available disk space 2	280 MB minimum, 1 GB recommended for Microsoft.NET fr 65 MB for Keysight IO Libraries Suite	framework 2.0,	
Video S	Super VGA (800 x 600), 256 colors or mo		Support for Direct X 9 graphics with 128 MB graphics memory recommended (Super VGA graphics is supported)
Browser M	Microsoft Internet Explorer 5.01 or greate		Microsoft Internet Explorer 7 or greater
Environmental		Ordering information	
Operational environment: Pollution degree 2, indoors		L4532A 2 channel $20 \mathrm{MSa} / \mathrm{s}$ digitizer	
Operating temperature: 0 to $55^{\circ} \mathrm{C}$		Opt 001	Standard memory (32 MS/ch)
Storage temperature: $\quad-40$ to $+70^{\circ} \mathrm{C}$		Opt 002	Extended memory (128 MS/ch)
Warm-up period: $<60 \mathrm{~min}$ to rated specs		L4534A	4 channel 20 MSa /s digitizer
Relative humidity @ $40^{\circ} \mathrm{C}$: 20 to 95% non-condensing			Standard memory ($32 \mathrm{MS} / \mathrm{ch}$)
Vibration:	Keysight's ETM limits	Opt 002	
Data storage/transfer		Includes Product Reference CD (Products doc and examples), IO Libraries CD, and Power Cord.	
Pre trigger data:	Up to full record length -4 samples	$\begin{array}{ll}\text { Accessories } \\ \text { Opt } 908 & \\ \text { Rack mount kit L4532-67001 }\end{array}$	
Record Length:	8 samples to $32 \mathrm{MSa} / 128 \mathrm{MSa}$	Option OBO	Deletes printed manual set
Post trigger data:	4 samples to 128 MSamples		(Full documentation included on CD ROM)
Maximum number of triggers:	Number of records (triggers) configurable to 1024 records	Option ABA	English printed manual set
Resolution:	One sampling interval		
Timestamp rollover	>1.5 years For	For additional information please visit: http://www.Keysight.com/find/L4534A	
Maximum data transfer rate from memory		http://www.K	ysight.com/find/L4534A
$\begin{aligned} & \text { USB } 2.0 \\ & \text { Gbit LAN } \end{aligned}$	$\begin{aligned} & 8 \mathrm{MB} / \mathrm{s} \\ & 15.0 \mathrm{MB} / \mathrm{s} \end{aligned}$	Related Keysight literature	
		Keysight VEE Pro, Data sheet, Literature No. 5989-7427EN	
		Keysight E2094N Literature No.	N IO Libraries Suite, Data sheet, 5989-1439EN

L4451A Specifications and Characteristics

L4451A Specifications and Characteristics (continued)

Memory	
Type	Volatile
Size	500 K for waveforms
States	5 instrument states with user label in non-volatile memory
General specifications	
Power supply	Universal 100 V to $240 \mathrm{~V} \pm 10 \%$
Power line frequency	50 Hz to $60 \mathrm{~Hz} \pm 10 \%$ automatically sensed
Power consumption	15 VA
Operating Environment	Full accuracy for $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
	Full accuracy to 80% R.H. at $40^{\circ} \mathrm{C}$
Storage environment	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{L}$)	$40.9 \times 212.3 \times 379.3 \mathrm{~mm}(1.61 \times 8.36 \times 14.93$ in)
Weight	$3.7 \mathrm{~kg}, 8.2 \mathrm{lbs}$
Safety conforms to	CSA, UL/IEC/EN 61010-1
EMC conforms to	IEC/EN 61326-1, CISPR 11
Warranty	1 year
Software	
Keysight connectivity software included	Keysight I/O Libraries Suite 14 or greater (E2094N)
Minimum system requirements	
PC hardware	Intel Pentium 100 MHz , 64 Mbyte RAM, 210 Mbyte disk space
	Display $800 \times 600,256$ colors, CD-ROM drive
Operating system ${ }^{1}$	Windows 98 SE/NT/2000/XP
Computer interfaces	
	Standard LAN 10BaseT/100BaseTx Optional IEEE 488.2 GPIB
Software driver support for programming languages	
Software drivers	IVI-C and IVI-COM for Windows NT/2000/XP LabVIEW
Compatible with programming tools and environments	
Keysight	VEE Pro
	T\&M Toolkit
	(reqs Visual Studio.NET)
National Instruments	TestStand
	Measurement Studio
	LabWindows/CVI
	LabVIEW
	Switch Executive
Microsoft	Visual Studio.NET
	C/C++
	Visual Basic 6

[^4]
33521A Specifications

Unless otherwise stated, all specifications apply with a 50Ω resistive load.

Instrument characteristics		
Models \& options		
33521A	1-channel	
33522A	2-channel	
Option 002	Increases arbitrary waveform memory to 16 MSa /channel	
Option 010	OCXO timebase for ultra-high stability	
Option 400	GPIB interface	
Waveforms		
Standard	Sine, square, ramp, pulse, triangle, Gaussian noise, PRBS (Pseudorandom Binary Sequence), DC	
Built-in arbitrary	Cardiac, exponential fall, exponential rise, Gaussian pulse, Haversine, Lorentz, D-Lorentz, negative ramp, sinc	
User-defined arbitrary	Up to 1 MSa (16 MSa with Option 002) with multi-segment sequencing	
Operating modes \& modulation types		
Operating modes	Continuous, modulate, frequency sweep, burst, output gate	
Modulation types	AM, FM, PM, FSK, BPSK, PWM, Sum (carrier + modulation)	
Waveform characteristics		
Sine		
Frequency range	$1 \mu \mathrm{~Hz}$ to $30 \mathrm{MHz}, 1-\mu \mathrm{Hz}$ resolution	
Amplitude flatness (spec) ${ }^{1,2}$ (relative to 1 kHz)	$\begin{aligned} & <100 \mathrm{kHz}: \\ & 100 \mathrm{kHz} \text { to } 5 \mathrm{MHz}: \\ & 5 \text { to } 20 \mathrm{MHz}: \\ & 20 \text { to } 30 \mathrm{MHz}: \end{aligned}$	$\begin{aligned} & \pm 0.10 \mathrm{~dB} \\ & \pm 0.15 \mathrm{~dB} \\ & \pm 0.30 \mathrm{~dB} \\ & \pm 0.40 \mathrm{~dB} \end{aligned}$
Harmonic distortion (typical) ${ }^{2,3}$	$\begin{aligned} & \text { < } 20 \mathrm{kHz}: \\ & 20 \text { to } 100 \mathrm{kHz}: \\ & 100 \mathrm{kHz} \text { to } 1 \mathrm{MHz}: \\ & 1 \text { to } 20 \mathrm{MHz}: \\ & 20 \text { to } 30 \mathrm{MHz}: \end{aligned}$	$\begin{aligned} & <-70 \mathrm{dBc} \\ & <-65 \mathrm{dBc} \\ & <-50 \mathrm{dBc} \\ & <-40 \mathrm{dBc} \\ & <-35 \mathrm{dBc} \end{aligned}$
THD (typical)	20 Hz to 20 kHz :	< 0.04\%
Non-harmonic spurious (typical) ${ }^{2,3}$	$\begin{array}{ll} \hline \text { Standard: } & <-75 \\ \text { Option 010: } & <-75 \\ & \text { (or }< \\ \hline \end{array}$	$\begin{aligned} & \text { reasing +20 } \\ & \text { reasing }+20 \\ & \text { n, whichever } \end{aligned}$
Phase noise (SSB) (typical)	Standard	Option 010
1 kHz offset:	-105	-110 dBc/Hz
10 kHz offset:	-115	$-125 \mathrm{dBc} / \mathrm{Hz}$
100 kHz offset:	-125	$-135 \mathrm{dBc} / \mathrm{Hz}$

[^5]
33521A Specifications (continued)

Waveform characteristics (continued) Square \& pulse	
Frequency range	$1 \mu \mathrm{~Hz}$ to $30 \mathrm{MHz}, 1 \mu \mathrm{~Hz}$ resolution
Rise and fall times (nominal)	Square: 8.4 ns , fixed Pulse: 8.4 ns to $1 \mu \mathrm{~s}$, independently variable, $100-\mathrm{ps}$ or 3 -digit resolution
Overshoot (typical)	<2\%
Duty cycle	0.01\% to $99.99 \%{ }^{1}$
Pulse width	16 ns minimum, 100-ps resolution
Jitter (cycle-to-cycle, typical)	< 40 ps rms
Built-in arbitrary	Cardiac, exponential fall, exponential rise, Gaussian pulse, Haversine, Lorentz, D-Lorentz, negative ramp, sinc
Ramp \& triangle	
Frequency range	$1 \mu \mathrm{~Hz}$ to $200 \mathrm{kHz}, 1 \mu \mathrm{~Hz}$ resolution
Ramp symmetry	0.0% to $100.0 \%, 0.1 \%$ resolution (0% is negative ramp, 100% is positive ramp, 50% is Triangle)
Nonlinearity (typical)	< 0.05% from 5% to 95% of the signal amplitude
Gaussian noise	
Bandwidth (typical)	1 mHz to 30 MHz , variable
Crest factor (nominal)	4.6
Repetition period	> 50 years
Pseudorandom binary sequence (PRBS)	
Bit rate	1 mbps to $50 \mathrm{Mbps}, 1 \mathrm{mbps}$ resolution
Sequence length	$2^{m-1}, \quad m=7,9,11,15,20,23$
Rise and fall times (nominal)	8.4 ns to $1 \mu \mathrm{~s}$, variable, 100-ps or 3-digit resolution
Arbitrary waveform characteristics	
Waveform length	8 Sa to 1 MSa (16 MSa with Option 002) in increments of 1 sample
Sample rate	$1 \mu \mathrm{Sa} / \mathrm{s}$ to $250 \mathrm{MSa} / \mathrm{s}, 1 \mu \mathrm{Sa} / \mathrm{s}$ resolution
Voltage resolution	16 bits
Bandwidth (-3 dB, nominal)	Filter Off: 40 MHz "Normal" Filter On: $0.27 \times$ (Sample Rate) "Step" Filter On: $0.13 \times$ (Sample Rate)
Rise and fall time	0.35 / Bandwidth (10 ns min) with "Normal" or "Step" filter On
Settling time (typical)	$<200 \mathrm{~ns}$ to 0.5% of final value
Jitter (typical)	Filter Off: $<40 \mathrm{ps} \mathrm{rms}$ "Normal" or "Step" filter On: $<5 \mathrm{ps}$

[^6]
33521A Specifications (continued)

Arbitrary waveform characteristics (continued)

Waveform sequencing

Operation	Individual arbitrary waveforms (segments) can be combined into user-defined lists (sequences) to form longer, more complex waveforms. Each sequence step specifies whether to repeat the associated segment a certain number of times, to repeat it indefinitely, to repeat it until a Trigger event occurs, or to stop and wait for a Trigger event. Additionally, the behavior of the Sync output can be specified in each step. To improve throughput, up to 32 sequences totalling up to 1,024 segments can be pre-loaded into volatile memory.
Segment length	8 Sa to 1 MSa (16 MSa with Option 002) in increments of 1 sample
Sequence length	1 to 512 steps
Segment repeat count	1 to 1×10^{6}, or infinite
Output characteristics Isolation	
Outputs	Connector shells for channel output(s), Sync, and Mod In are connected together but isolated from the instrument's chassis. Maximum allowable voltage on isolated connector shells is $\pm 42 \mathrm{Vpk}$
Signal output	
Output impedance (nom)	50Ω
On, off, inverted	User-selectable for each channel
Voltage limit	User-definable $\mathrm{V}_{\text {MAX }}$ and $\mathrm{V}_{\text {MIN }}$ limits
Overload protection	Output turns off automatically when an overload is applied Instrument will tolerate a short-circuit to ground indefinitely
Built-in arbitrary	Cardiac, exponential fall, exponential rise, Gaussian pulse, Haversine, Lorentz, D-Lorentz, negative ramp, sinc
Amplitude	
Range	1 mV pp to 10 V pp into 50Ω 2 mV pp to 20 Vpp into open circuit
Resolution	4 digits
Units	Vpp, Vrms, or dBm, selectable
Accuracy ${ }^{1.2}$ (spec)	$\pm 1 \%$ of setting $\pm 1 \mathrm{mVpp}$ at 1 kHz
DC offset	
Range ${ }^{5}$	$\pm(5$ VDC - Peak AC) into 50Ω $\pm(10 \mathrm{VDC}$ - Peak AC$)$ into open circuit
Resolution	4 digits
Units	VDC
Accuracy ${ }^{1,2}$ (spec)	$\pm 1 \%$ of Offset setting $\pm 0.25 \%$ of Amplitude setting $\pm 2 \mathrm{mV}$
Frequency accuracy	
Standard freqeuncy referen	
1 year, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	$\pm 1 \mathrm{ppm}$ of setting $\pm 15 \mathrm{pHz}$
1 year, $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	$\pm 2 \mathrm{ppm}$ of setting $\pm 15 \mathrm{pHz}$
High-stability frequency ref	Option 010
1 year, $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	$\pm 0.1 \mathrm{ppm}$ of setting $\pm 15 \mathrm{pHz}$

1. Add $1 / 10$ th of the output amplitude and offset accuracy specification per ${ }^{\circ} \mathrm{C}$ for operation at temperatures beyond $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
2. Auto range ON .

33521A Specifications (continued)

1. Add $1 / 10$ th of the output amplitude and offset accuracy specification per ${ }^{\circ} \mathrm{C}$ for operation at temperatures beyond $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
2. All frequency changes are phase-continuous.
3. Subject to pulse width limits.
4. Subject to maximum output voltage limits.

33521A Specifications (continued)

Burst ${ }^{1}$	
Type	Counted or gated
Count	1 to 1x108 cycles, or infinite
Gated	Produces complete cycles while Ext Trig is asserted
Start/stop phase ${ }^{2}$	-360° to $360^{\circ}, 0.1^{\circ}$ resolution
Trigger source	Internal Timer or Ext Trig connector
Marker	Adjustable to any cycle; indicated by the trailing edge of the Sync pulse
Sweep ${ }^{3}$	
Type	Linear, Logarithmic, List (up to 128 user-defined frequencies)
Operation	Linear and Logarithmic sweeps are characterized by a Sweep time (during which the frequency changes smoothly from Start to Stop), a Hold time (during which the frequency stays at the Stop frequency), and a Return time (during which the frequency changes smoothly from Stop to Start). Returns are always linear.
Direction	Up (Start freq < Stop freq) or Down (Start freq > Stop freq)
Start and stop frequencies	Any frequency within the waveform's range
Sweep time	Linear: 1 ms to $3600 \mathrm{~s}, 1 \mathrm{~ms}$ resolution; 3601 s to $250,000 \mathrm{~s}, 1 \mathrm{~s}$ resolution Logarithmic: 1 ms to 500 s
Hold time	0 s to $3600 \mathrm{~s}, 1 \mathrm{~ms}$ resolution
Return time	0 s to $3600 \mathrm{~s}, 1 \mathrm{~ms}$ resolution
Trigger source ${ }^{4}$	Immediate (continuous), external, single, bus, or timer
Marker	Adjustable to any frequency between Start and Stop for Linear and Logarithmic types or any frequency in the list for List type; indicated by the trailing edge of the sync pulse
Internal timer for FSK, BPSK, BURST, and SWEEP	
Range	$1 \mu \mathrm{~s}$ to 8000 s , 6-digit or 4 ns resolution
2-channel characteristics (33522A only)	
Operating modes	Independent, coupled parameter(s), combined (Ch $1+$ Ch 2), Equal (Ch $2=$ Ch 1), or differential (Ch $2=-$ Ch 1)
Parameter coupling	None, frequency (ratio or difference) and/or amplitude and DC offset
Relative phase	0° to $360^{\circ}, 0.1^{\circ}$ resolution
Skew (typical)	<200 ps (when performing identical operations)
Crosstalk (typical)	$<-85 \mathrm{~dB}$

[^7]
33521A Specifications (continued)

Sync/marker output

Connector	Front-panel BNC, isolated from chassis	
Functions	Sync, sweep marker, burst marker, or arbitrary waveform marker	
Assignment	Channel 1 or channel 2	
Polarity	Normal or inverted	
Voltage level (nominal)	3 Vpp into open circuit, 1.5 Vpp into 50Ω	
Output impedance (nominal)	50Ω	
Minimum pulse width (nominal)	16 ns	
External trigger/gate		
Connector	Rear-panel BNC, chassis-referenced	
Function	Input or output	
Assignment	Channel 1, channel 2, or both (as input) Channel 1 or channel 2 (as output)	
Polarity	Positive or negative slope	
Voltage level (nominal)	0 V to 0.4 V for low, $>2.3 \mathrm{~V}$ for high, 3.5 V maximum (as input) $3 \mathrm{Vpp}($ nom $)$ into open circuit, 1.5 Vpp (nom) into 50Ω (as output)	
Impedance (nominal)	$10 \mathrm{k} \Omega$, DC-coupled (as input) 50Ω (as output)	
Minimum pulse width (nominal)	16 ns	
Input rate	DC to 1 MHz	
Minimum pulse width	100 ns (as input)	
Duty cycle (nominal)	50\% (as output)	
Trigger delay	0 s to $1000 \mathrm{~s}, 4 \mathrm{~ns}$ resolution; applies to all trigger events	
Input latency (typical)	< 135 ns with Trigger Delay set to zero	
Input jitter (typical)	$<2.5 \mathrm{~ns}$, rms	
Fanout	<= 4 total Keysight 33521A and 33522A	
Modulation input		
Connector	Rear-panel BNC, isolated	
Assignment	Channel 1, Channel 2, or both	
Voltage level	$\pm 5 \mathrm{~V}$ full-scale	
Input impedance (nominal)	$5 \mathrm{k} \Omega$	
Bandwidth (-3 dB, typical)	0 Hz to 100 kHz	
Frequency reference input		
Connector	Rear-panel BNC, isolated from chassis and all other connectors	
Reference selection	Internal, external, or auto	
Frequency range	$\begin{array}{ll} \text { Standard: } & 10 \mathrm{MHz} \pm 20 \mathrm{~Hz} \\ \text { Option 010: } & 10 \mathrm{MHz} \pm 1 \mathrm{~Hz} \end{array}$	
Lock time (typical)	<2 s	
Voltage level	200 mV pp to 5 V pp	
Input Impedance (nominal)	$1 \mathrm{k} \Omega$ \|	20 pF , AC-coupled

33521A Specifications (continued)

Frequency reference output				
Connector	Rear-panel BNC, chasis-referenced			
Frequency (nominal)	10 MHz			
Output impedance (nominal)	50Ω, AC-coupled			
Level (nominal)	$0 \mathrm{dBm}, 632 \mathrm{mV}$ pp into 50Ω			
Real-time clock/calendar				
Set and read	Year, month, day, hour, minute, second			
Battery	CR-2032 coin-type, replacable, > 5-year life (typical)			
Programming times (measurement)				
Configuration change speed				
	LAN (socket)	LAN (VXI-11)	USB 2.0	GPIB
Change function	5 ms	6 ms	5 ms	5 ms
Change frequency	2 ms	3 ms	2 ms	3 ms
Change amplitude	20 ms	20 ms	19 ms	22 ms
Select user arb (16 k)	9 ms	11 ms	9 ms	9 ms
Arbitrary waveform download speed to volatile				
(binary transfer)	LAN (socket)	LAN (VXI-11)	USB 2.0	GPIB
4 k sample	6 ms	18 ms	8 ms	39 ms
1 M sample	1.3 s	2.6 s	13 s	9.1 s
Memory				
Aribtrary waveform and instrument state memory				
Volatile	1×10^{6} samples per channel or 16×106 samples per channel (Option 002) 512 sequence steps per channel			
Non-volatile	File sytem file space is limited to 64 MB ($\sim 32 \mathrm{MSa}$ of arbitrary waveform records)			
Instrument state				
Store / Recall	User defined instrument states			
Power Off	Power Off state automatically saved			
Power On	Factory default settings or last power off settings			
USB File System				
Front-panel port	USB 2.0 high-speed mass storage (MSC) class device			
Capability	Read or write instrument configuration settings, instrument states and user arbitrary waveform and sequence files.			
Speed	$10 \mathrm{MB} / \mathrm{s}$ (nominal)			

33521A Specifications (continued)

General characteristics	
Computer interfaces	
LXI- C (rev1.3)	USB2.0 (USB-TMC488 protocol) \& VXI-11 protocol)
	GPIB/IEEE-488.1, IEEE-488.2

1 year standard, 3 years optional

Input channel characteristics (nominal)	53210A	53220A	53230A
Channels			
Standard (DC - 350 MHz)	Ch 1		
Optional (6 or 15 GHz)	Ch 2		
Standard inputs (nominal)			
Frequency range			
DC coupled		50 MHz	
AC coupled, $50 \Omega^{1}$ or $1 \mathrm{M} \Omega$		Hz-350	
Input			
Connector	Front pa	adds p	f) inputs ${ }^{2}$
Input impedance (typical)		1.5\% or 5	
Input coupling		ctable DC	
Input filter		Hz cut-off cut-off fre	
Amplitude range			
Input range		V) full s	
Sensitivity ${ }^{3,4}$ (typical)		00 MHz : MHz: 4	
Noise ${ }^{3}$		ax), 35	
Input event thresholds			
Threshold levels		in 2.5 mv	
Noise reject ${ }^{4}$		ectable 0	
Slope		Positive	
Auto-scale		current or 50 V)	
Auto-level	ce for ea	electable o-level (\% ut. Meas table use	Trigger Ie
Minimum signal frequency for auto level		Slow (50	
Minimum signal for auto level		300 mVp	
Maximum input			
50Ω damage level		1 W	
50Ω protection threshold		ctivate b terminati itching to	
$1 \mathrm{M} \Omega$ damage level		z: 350 Vp ate linea z: 10 Vpk	
1. AC coupling occurs after 50Ω te 2. When ordered with optional rear though the specifications provide 3. Multiply value(s) by 10 for the 50 4. Stated specification assumes No	standard/b the rear te Noise Rej	active on he front ter vity minimu	universal stalled is not

53210A, 53220A, 53230A Specifications (continued)

1. Assumes sine wave.
2. Assumes AM Rate > 10/gate. For Option 106, use a tolerance of 15% modulation depth for frequencies less than 900 MHz .

53210A, 53220A, 53230A Measurement Characteristics

Measurement range (nominal)	53210A	53220A	53230A
Frequency, period (average) measurements			
Common			
Channels	Ch 1 or optional Ch 2	Ch 1, Ch 2 or optional Ch 3	
Digits/s	10 digits/s	12 digits/s	12 digits/s
Maximum display Resolution ${ }^{1}$	12 digits	15 digits	15 digits
Measurement technique	Reciprocal	Reciprocal and resolution enhanced	Reciprocal, resolution-enhanced or continuous (gap-free)
Signal type	Continuous Wave (CW)		CW and pulse/burst (Option 150)
Level \& slope	Automatically preset or user selectable		
Gate	Internal or external		
Gate time ${ }^{2}$	1 ms to 1000 s in $10 \mu \mathrm{~s}$ steps	100μ s to 1000 s in $10 \mu \mathrm{~s}$ steps	$1 \mu \mathrm{~s}$ to 1000 s in $1 \mu \mathrm{~s}$ steps
Advanced gating ${ }^{3}$	N/A	Start delay (time or ev (time or	ents) and stop hold-off events)
FM tolerance		$\pm 50 \%$	
Frequency, period			
Range ${ }^{4}$	DC (1 mHz) to 350 MHz (2.8 ns to 1000 s)		
Microwave input (optional)	Option $106-100 \mathrm{MHz}$ to 6 GHz (166 ps to 10 ns) Option $115-300 \mathrm{MHz}$ to 15 GHz (66 ps to 3.3 ns)		
Frequency ratio ${ }^{5}$			
Range	10^{15} Displayable range		
Timestamp/modulation domain			
Sample rate ${ }^{6}$	N/A	N/A	$1 \mathrm{MSa} / \mathrm{s}, 800 \mathrm{kSa} / \mathrm{s}$, $100 \mathrm{kSa} / \mathrm{s}, 10 \mathrm{kSa} / \mathrm{s}$
\#Edges/timestamp	N/A	N/A	Auto-acquired per acquisition
Acquisition length	N/A	N/A	up to 1 MSa or 100,000 s (max)
Time interval (single-shot) measurements ${ }^{7}$			
Common			
Channels	N/A	Ch 1 or 2	
Single-shot time resolution	N/A	100 ps	20 ps
Gating	N/A	Internal or external gate Start delay (time or events) and stop hold-off (time or events)	
Slope	N/A	Independent start, stop slopes	
Level	N/A	Independent start, stop slopes	
Channel-to-channel time skew (typical)	N/A	100 ps	50 ps
1. Maximum display resolution for frequen resolution is 15 digits, time interval bas 2. Continuous, gap-free measurements lim to 1000 s in $10 \mu \mathrm{~s}$ steps. 3. Refer to the gate characteristics section gate capabilities. 4. For totalize, time interval and frequency measurement readings beyond the range readings is not specified.	y and period. Totalize display measurements are 12 digits. s the gate time setting to $10 \mu \mathrm{~s}$ for more details on advanced easurements, you may get stated, but the accuracy of those	5. Measurements on each input channel are performed simultaneously using one gate interval. The actual measurement gate interval on each channel will be synchrounous with edges of each input signal. 6. Maximum sample rate. Actual sample rate will be limited by the input signal edge rate for signals slower than the selected sample rate. Maximum timestamp rate offers minimal FM tolerance. If high FM tolerance is required, use lower timestamp rates. 7. Specifications apply if measurement channels are in 5 V range, DC coupled, 50Ω terminated and at fixed level for: time interval	

53210A, 53220A, 53230A Measurement Characteristics (continued)

1. For totalize, time interval and frequency measurements, you may get measurement readings beyond the range stated, but the accuracy of those readings is not specified.
2. Assumes two frequencies are identical, only shifted in phase.

53210A, 53220A, 53230A Measurement Characteristics (continued)

	53210A	53220A	53230A
Pulse/burst frequency and pulse envelope detector (Option 150) ${ }^{1}$			
Pulse/burst measurements	N/A	N/A	Carrier frequency, carrier period, pulse repetition interval (PRI), pulse repetition frequency (PRF), positive and negative width
Pulse/burst width for carrier frequency measurements ${ }^{2}$	N/A	N/A	$\begin{gathered} >200 \mathrm{~ns} \\ \text { Narrow: }<17 \mu \mathrm{~s} \\ \text { Wide: }>13 \mu \mathrm{~s} \end{gathered}$
Minimum pulse/burst width for envelope measurements	N/A	N/A	$>50 \mathrm{~ns}$
Acquisition	N/A	N/A	Auto, Manual ${ }^{3}$
PRF, PRI range	N/A	N/A	1 Hz - 10 MHz
Pulse detector response time (typical) ${ }^{4}$	N/A	N/A	15 ns rise, fall
Pulse width accuracy	N/A	N/A	$20 \mathrm{~ns}+\left(2^{*}\right.$ carrier period)
Power ratio (typical)	N/A	N/A	$>15 \mathrm{~dB}$
Power ranged and sensitivity (sinusoidal) (typical) ${ }^{5}$	N/A	N/A	+13 dBm (1 Vrms) to -13 dBm (50 mVrms)

1. Option 150 microwave pulse/burst measurement descriptions.
2. Applies when burst width ${ }^{*}$ Carrier Freq >80.
3. Manual control of gate width and gate delay are allowed only for wide pulsed mode.
4. For pulsed signals $>-7 \mathrm{dBm}(100 \mathrm{mVrms})$ while gated on.
5. For option 115 , use $-10 \mathrm{dBm}(71 \mathrm{mVrms})$ for lower sensitivity limit.

53210A, 53220A, 53230A Gate, Trigger and Timebase Characteristics

Gate characteristics (nominal)	53210A	53220A	53230A
Gate			
Source	Time, external	Time, external or advanced	
Gate time (step size) ${ }^{1}$	1 ms - $1000 \mathrm{~s}(10 \mu \mathrm{~s}$)	$100 \mu s-1000 \mathrm{~s}(10 \mu s)$	$1 \mu \mathrm{~s}-1000 \mathrm{~s}(1 \mu \mathrm{~s})$
Advanced: gate start			
Source	N/A	Internal or external, Ch 1/Ch 2 (unused standard channel input)	
Slope	N/A	Positive or negative	
Delay time ${ }^{1}$	N/A	0 s to 10 s in 10 ns steps	
Delay events (edges)	N/A	0 to 10^{8} for signals up to 100 MHz	
Advanced: gate stop hold-off			
Source	N/A	Internal or external, Ch 1/Ch 2 (unused standard channel input)	
Slope	N/A	Positive or negative	
Hold-off time ${ }^{1}$	N/A	Hold-off Time settable from 60 ns to 1000 s	
Hold-off events (edges)	N/A	0 to 10^{8} (minimum wid	ve or negative) $>60 \mathrm{~ns}$)
External gate input characteristics (typical)			
Connector	Rear panel BNC(f) Selectable as external gate input or gate output signal		
Impedance	$1 \mathrm{k} \Omega$ when selected as external gate input		
Level	TTL compatible		
Slope	Selectable positive or negative		
Gate to gate timing	3μ g gate end to next gate start		
Damage level	$<-5 \mathrm{~V},>+10 \mathrm{~V}$		
Gate output characteristics (typical)			
Connector	Rear panel BNC(f) Selectable as external gate input or gate output signal		
Impedance	50Ω when selected for gate output		
Level	TTL compatible		
Slope	Selectable positive or negative		
Damage level	$<-5 \mathrm{~V},>+10 \mathrm{~V}$		

[^8]
53210A, 53220A, 53230A Gate, Trigger and Timebase Characteristics

1. Continuous, gap-free measurements limits the Gate Time setting to $10 \mu \mathrm{~s}$ to 1000 s in $10 \mu \mathrm{~s}$ steps.

53210A, 53220A, 53230A Math, Graphing and Memory Characteristics (nominal)

1. These Math operations do not apply for Continuous Totalize or Timestamp measurements.
2. Limit Test only displays on instrument front panel. No hardware output signal is available.

53210A, 53220A, 53230A Speed Characteristics ${ }^{1}$ (meas)

	53210A
Measurement/IO timeout (nominal)	no timeout or 10 ms to 2000 s, in 1 ms steps

Single measurement throughput ${ }^{2}$: readings/s

(time to take single measurement and transfer from volatile reading memory over I/O bus)
Typical (Avg. using READ?):

LAN (VXI-11)	110	120
LAN (sockets)	200	200
USB	200	200
GPIB	210	220

Optimized (Avg. using *TRG;DATA:REM? 1, WAIT):

LAN (VXI-11)	160	180
LAN (sockets)	330	350
USB	320	350
GPIB	360	420

Block reading throughput ${ }^{2}$: readings/s (Example uses: $\mathbf{5 0 , 0 0 0}$ readings)
(time to take blocks of measurements and transfer from volatile reading memory over I/O bus)
Typical (Avg. using READ?):

LAN (VXI-11)	300	990	8700
LAN (sockets)	300	990	9700
USB	300	990	9800
GPIB	300	990	4600
Optimized (Avg. using *TRG;DATA:REM? 1, WAIT):			
LAN (VXI-11)	300	990	54700
LAN (sockets)	300	990	55800
USB	300	990	16300

1. Operating speeds are for a direct connection to a $>2.5 \mathrm{GHz}$ dual core CPU running Windows XP Pro SP3 or better with 4 GB RAM and a 10/100/1000 LAN interface
2. Throughput data based on gate time. Typical reading throughput assumes ASCII format, Auto level OFF with READ? SCPI command. For improved reading throughput you should also consider setting (FORM:DATA REAL,64), (DISP OFF), and set fastest gate time available.

53210A, 53220A, 53230A Speed Characteristics ${ }^{1}$ (measurement) (continued)

1. Operating speeds are for a direct connection to a $>2.5 \mathrm{GHz}$ dual core CPU running Windows ${ }^{\circledR}$ XP Pro SP3 or better with 4 GB RAM and a 10/100/1000 LAN interface.
2. Maximum 53230A rates represent $>=20 \mathrm{MHz}$ input signals with min gate times, no delays or holdoffs. Measurement rates for the $53210 \mathrm{~A} \& 53220 \mathrm{~A}$ are limited by min gate time. Actual meas rates are limited by the repetition rate of the input being measured.

53210A, 53220A, 53230A General Characteristics (nominal)

	53210 A 53220 A 53230 A
Warm-up time	45 -minutes
Display	4.3" Color TFT WQVGA (480 x 272), LED backlight
User interface and help languages	English, German, French, Japanese, Simplified Chinese, Korean
USB flash drive	FAT, FAT32
Programming language	
SCPI	532xx Series and 53131A/53132A/53181A Series compatibility mode
Programming interface	
LXI-C 1.3	10/100/1000 LAN (LAN Sockets and VXI-11 protocol)
USB 2.0 device port	USB 2.0 (USB-TMC488 protocol)
GPIB interface (Option 400)	GPIB (IEEE-488.1, IEEE-488.2 protocol)
Web user interface	LXI Class C Compatible
Mechanical	
Bench dimensions	$261.1 \mathrm{~mm} \mathrm{~W} \times 103.8 \mathrm{~mm} \mathrm{H} \times 303.2 \mathrm{~mm} \mathrm{D}$
Rack mount dimensions	$212.8 \mathrm{~mm} \mathrm{~W} \times 88.3 \mathrm{~mm} \mathrm{H} \times 272.3 \mathrm{~mm} \mathrm{D} \mathrm{(2U} \mathrm{x} \mathrm{1/2} \mathrm{width)}$
Weight	$3.9 \mathrm{~kg}(8.6 \mathrm{lbs})$ fully optioned 3.1 kg (6.9 lbs) without Option 300 (battery option)
Environmental	
Storage temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating environment	EN61010, pollution degree 2; indoor locations
Operating temperature	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Operating humidity	5% to $80 \% \mathrm{RH}$, non-condensing
Operating altitude	Up to 3000 meters or 10,000 ft
Regulatory	
Safety	Complies with European Low Voltage Directive and carries the CE-marking Conforms to UL 61010-1, CSA C22. $261010-1$, IEC 61010-1:2001, CAT I
EMC	Complies with European EMC Directive for test and measurement products. IEC/EN 61326-1 CISPR Pub 11 Group 1, class A AS/NZS CISPR 11 ICES/NMB-001 Complies with Australian standard and carries C-Tick Mark This ISM device complies with Canadian ICES-001 Cet appareil ISM est conforme a la norme NMB-001 du Canada
Acoustic noise (nominal)	SPL 35 dB (A)
Line power	
Voltage	$100 \mathrm{~V}-240 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz} \pm 5 \%$ $100 \mathrm{~V}-120 \mathrm{~V}, 400 \mathrm{~Hz} \pm 10 \%$
Power consumption	90 VA max when powered on or charging battery; 6 VA max when powered off/standby

Dimensions apply to all three models: 53210A, 53220A, 53230A.

[^9]
53210A, 53220A, 53230A Timebase

Timebase Uncertainty $=($ Aging + Temperature + Calibration Uncertainty $)$

Front/rear view of 53230A

1. All Timebase Aging Errors apply only after an initial 30 -days of continuous powered operation and for a constant altitude $\pm 100 \mathrm{~m}$. After the first 1 -year of operation, use $1 / 2 \times$ (30 -day and 1 -year) aging rates shown.
2. Only use the Factory Calibration error values for the period before your first re-calibration. Factory Calibration uncertainty includes the instrument settability error, the factory calibration source uncertainty, and additional timebase uncertainty due to factory calibration before the required initial 30 -days of powered operation. Settability defines the resolution increments you can reach is in steps of 0.1 ppb (0.01 ppb on Option 010).
3. Warm-up error applies when the instrument is powered on in a stable operating environment. When moved between different operating environments add the Temperature error during the initial 30 -minutes of powered operation
4. Retrace error may occur whenever the instrument line-power is removed or whenever the instrument is battery operated and the battery fully discharges. Retrace error is the residual timebase shift that remains 72 -hours after powering-on an instrument that has experienced a full power-cycle of the timebase. Additional frequency shift errors may occur for instrument exposure to severe impact shocks $>50 \mathrm{~g}$.

53210A, 53220A, 53230A Accuracy Specifications

Definitions

Random Uncertainty
The RSS of all random or Type-A measurement errors expressed as the total RMS or 1- σ measurement uncertainty.
Random uncertainty will reduce as $1 / \sqrt{ } \mathrm{N}$ when averaging N measurement results for up to a maximum of approximately 13 -digits or 100 fs .

Systematic Uncertainty

The 95% confidence residual constant or Type-B measurement uncertainty relative to an external calibration reference.
Generally, systematic uncertainties can be minimized or removed for a fixed instrument setup by performing relative measurements to eliminate the systematic components.
Timebase Uncertainty
The 95% confidence systematic uncertainty contribution from the selected timebase reference. Use the appropriate uncertainty for the installed timebase or when using an external frequency reference substitute the specified uncertainty for your external frequency reference.

Basic accuracy ${ }^{1}= \pm\left[\left(k^{*}\right.\right.$ Random Uncertainty) + Systematic Uncertainty + Timebase Uncertainty]

Measurement Function	1- \square Random Uncertainty	Systematic Uncertainty	Timebase Uncertainty ${ }^{2}$
Frequency ${ }^{3}$ Period (parts error)	$\frac{1.4^{*}\left(\mathrm{~T}_{\mathrm{ss}}{ }^{2}+\mathrm{T}_{\mathrm{E}}\right)^{1 / 2}}{\mathrm{R}_{\mathrm{E}}^{*} \text { g gate }}$	If $R_{E} \geq 2: 10 \mathrm{ps} /$ gate (max), $2 \mathrm{ps} /$ gate (typ) ${ }^{4}$ If $R_{E}<2$ or REC mode ($R_{E}=1$): $200 \mathrm{ps} /$ gate	-
Option 106 \& 115: Frequency ${ }^{3}$ Period (parts error)	$\frac{1.4^{*}\left(\mathrm{~T}_{\mathrm{ss}}{ }^{2}+\mathrm{T}_{\mathrm{E}}{ }^{1 / 2}\right.}{\mathrm{R}_{\mathrm{E}}{ }^{*} \text { gate }}$	$\begin{aligned} & \text { If } R_{E} \geq 2: 10 \mathrm{ps} / \text { gate }(\mathrm{max}), 2 \mathrm{ps} / \text { gate (typ) } \\ & \text { If } R_{E}<2: 100 \mathrm{ps} / \text { gate } \end{aligned}$	-
Frequency Ratio A/B (typ) ${ }^{5}$ (parts error)	1.4* Random Uncertainty of the worst case Freq input	Uncertainty of Frequency A plus Uncertainty of Frequency B	
Single Period (parts error) ${ }^{17}$	$\frac{1.4^{*}\left(\mathrm{~T}_{\mathrm{Ss}}^{2}+\mathrm{T}_{\mathrm{E}}\right)^{1 / 2}}{\text { Period Measurement }}$	$\frac{\mathrm{T}_{\text {accuracy }}}{\text { Period Measurement }}$	\bullet
Time Interval (TI) ${ }^{17}$, Width ${ }^{17}$, or Rise/Fall Time ${ }^{7.17}$ (parts error)	$\frac{1.4^{*}\left(\mathrm{~T}_{\mathrm{ss}}{ }^{2}+\mathrm{T}_{\mathrm{E}}\right)^{1 / 2}}{\mid \mathrm{TI} \text { Measurement } \mid}$	Linearity $^{6}+$ Offset 8 \mid TI Measurement \mid Linearity $=T_{\text {accuracy }}$ Offset (typ) $=\mathrm{T}_{\text {LTE }}+$ skew $+\mathrm{T}_{\text {accuracy }}$	\bullet
$\begin{gathered} \text { Duty } 5,9,10,17 \\ \text { (fraction of cycle error) } \end{gathered}$	$2^{*}\left(\mathrm{~T}_{\text {ss }}{ }^{2}+\mathrm{T}_{\mathrm{E}}\right)^{1 / 2 *}$ Frequency	$\left(\mathrm{T}_{\text {LTE }}+2^{*} \mathrm{~T}_{\text {accuracy }}\right)^{*}$ Frequency	
Phase ${ }^{5,9,17}$ (Degrees error)	$\begin{gathered} 2^{*}\left(\mathrm{~T}_{\mathrm{ss}}{ }^{2}+\mathrm{T}_{\mathrm{E}}^{2}\right)^{1 / 2} * \text { Frequency * } \\ 360^{\circ} \end{gathered}$	$\left(\mathrm{T}_{\text {LTE }}+\text { skew }+2^{*} \mathrm{~T}_{\text {accuracy }}\right)^{*}$ Frequency ${ }^{*} 360{ }^{\circ}$	
Totalize ${ }^{11}$ (counts error)	± 1 count 11		
Volts pk to pk ${ }^{12}$ (typ) 5 V range		DC $-1 \mathrm{kHz}: 0.15 \%$ of reading $+0.15 \%$ of range $1 \mathrm{kHz}-1 \mathrm{MHz}$: 2% of reading $+1 \%$ of range $1 \mathrm{MHz}-200 \mathrm{~Hz}: 5 \%$ of reading $+1 \%$ of range $+0.3^{*}$ (Freq/250 MHz) * reading	

Optional Microwave Channel Opt 150 - Pulse/Burst Measurements ${ }^{\text {3,13 }}$			
PRF, PRI (parts error) ${ }^{14}$	$\begin{aligned} & \text { If } R_{E}>1: 200 \mathrm{ps} /\left(R_{E}^{*} \text { gate }\right) \\ & \text { If } R_{E}=1: 500 \mathrm{ps} / \text { gate } \end{aligned}$	$\frac{200 \mathrm{ps}}{\mathrm{R}_{\mathrm{E}}^{*} \text { gate }}$	\bullet
Pulse/burst Carrier Frequency ${ }^{15}$ (Narrow Mode) (parts error)	100 ps	200 ps	
	Burst Width	Burst Width	\bullet
Pulse/burst Carrier Frequency ${ }^{16}$ (Wide Mode) (parts error)	$\frac{40 \mathrm{ps}}{\mathrm{R}_{\mathrm{E}}{ }^{*} \text { Burst Width }}$	$\frac{100 \mathrm{ps}}{\mathrm{R}_{\mathrm{E}}{ }^{*} \text { Burst Width }}$	\bullet

53210A, 53220A, 53230A Accuracy Specifications (continued)

1. Apply the appropriate errors detailed for each measuring function.
2. Use Timebase Uncertainty in Basic Accuracy calculations only for Measurement Functions that show the • symbol in the Timebase Uncertainty column.
3. Assumes Gaussian noise distribution and non-synchronous gate, non-gaussian noise will effect Systematic Error. Note all optional microwave channel specifications (continuous wave and pulse/burst) assume sine signal.
4. Typical is achieved with an average of 100 readings with 100 samples per trigger. Worst case is trigger and sample count set to 1 .
5. Improved frequency ratio, duty and phase specifications are possible by making independent measurements.
6. Minimum Pulse Width for using stated linearity is 5 ns ; Pulse Widths of $2-5 \mathrm{~ns}$ use linearity=400 ps.
7. Residual instrument Rise/ Fall Time $10 \%-90 \% 2.0 \mathrm{~ns}$ (typ). Applies to fixed level triggering. Threshold can still be set based on $\%$ of auto-level detected peaks, but since these peak levels may contain unknown variations, accurate measurements need to be based on absolute threshold levels.
8. Input signal slew rates and settling time have effects on offset. Offset is calibrated with rise times $<100 \mathrm{ps}$.
9. Constant Duty or Phase are required during the measurement interval. Duty and Phase are calculated based on two automated sequential measurements - period and width or $\mathrm{TI} A$ to B, respectively.
10. Duty is represented as a ratio (not as a percent).
11. Additional count errors need to be added for gated totalize error, latency or jitter. If gated, add gate accuracy term (See Totalize measurements in the Measurement Characteristics section).
12. Volts pk error apply for signal levels between full range and $1 / 10$ th range. Spec applies to sine wave only. 50 V range reading accuracy is 2% at $\mathrm{DC}-1 \mathrm{KHz}, 5 \% 1 \mathrm{KHz}-1 \mathrm{MHz}$ band. Accuracy above 200 MHz is not specified on both ranges.
13. Specifications apply to signals from $\pm 13 \mathrm{dBm}$, operable to $\pm 19 \mathrm{dBm}$.
14. Use the R_{E} equation, but use the input PRF for $F_{I N}$. Assume sharp envelope transition.
15. Applies when Burst Width ${ }^{*}$ Carrier Freq >80.
16. Specifications based on gate and width for automated detection. If in manual mode, delay and width selected will impact accuracy specification. For approximate accuracy for manual gate, use the R_{E} calculation, but $F_{I N}$ is now 10^{6} and use gate as burst width. For input signals where $\mathrm{PRI}<250 \mu \mathrm{~s}$, double the 1- σ Random Uncertainty specification, unless a Trigger Count of 1 and a large Sample Count acquisition method are used.
17. Specifications apply if measurement channels are in 5 V range, $D C$ coupled, 50Ω terminated and at fixed level. The following minimum pulse width requirements apply:

Single-Period: < 250 MHz , 50\% Duty
Phase, Dual Channel Time Interval: < 160 MHz, 50\% Duty

Definition of Measurement Error Sources and Terms used in Calculations

| | 53210 A | 53220A | 53230A |
| :--- | :---: | :---: | :---: | :---: |
| R_{E} | 1 | use R_{E} equation | use R_{E} equation |
| $\mathrm{T}_{\text {SS }}$ | 100 ps | 100 ps | 20 ps |
| Skew | | 100 ps | 50 ps |
| $\mathrm{T}_{\text {accuracy }}$ | | 200 ps | 100 ps |

Confidence Level (k)

For 99\% Confidence use $\mathrm{k}=2.5$ in accuracy calculations. For 95% Confidence use k= 2.0 in accuracy calculations.

E6198B Load Cards and Pin Cards Specifications

Keysight Loadcards Specifications								
Function	E6175A	E6176A	E6177A	E6177B	E6178A	N9377A	N9378A	N9379A
Number of channels (maximum)	8	16	24	24	8	16. dual-load	24 , quad-load	48 , dual-load
Number of channels - unshared relays	4	16	24	24	8	16	24	48
Maximum current per channel	7.5 A (15 A peak)	7.5 A (15 A peak)	3 A	3 A	30 A	$\begin{aligned} & \hline 7.5 \mathrm{~A} \\ & (15 \mathrm{~A} \\ & \text { peak) } \\ & \hline \end{aligned}$	2 A	2 A
Current measuring with sense resistor	Yes	Yes	No	Yes	No	Yes	No	No
Current measuring with current transducer	Yes	No	No	No	Yes	No	No	No
Flyback protection available (user installed)	Yes	Yes	No	No	Yes	Yes	No	No
Engineered for application	Inductive load	Common load	Low current	Low current	High current	High current dual-load	Low current quad-load	Low current quad-load

E8782A and E8783A Specifications

General specifications	
Parameter	Specification
Power requirement	Voltage: +5 Vdc
Capacitance - DUT pin to UUT common	Open channel: 100 pF Closed channel: 300 pF
Channels	E8782A E8783A
	40 measurement 64 measurement 24 instrument
Resistance	DUT pin to auxiliary input: 1 ohm (maximum) DUT pin to analog bus connector: 1 ohm* (maximum) * with 100 ohm protection resistor bypassed
Pin channel voltage	200 volts
Number of concurrent analog channels	4
Operating temperature	0 to $40^{\circ} \mathrm{C}$
Operating humidity	80% relative humidity, 0 to $40^{\circ} \mathrm{C}$
Maximum current consumption	3 A at 5 V
Relay characteristics	
Parameter	Specification
Type	Dry reed
Switching speed	Close: 500 ms Open: 400 ms
Switching characteristics	1.0 A carry 0.5 A while switching 7.5 volt-amps maximum instantaneous switching
Other relay parameters	300 VDC standoff voltage 200 VDC switching voltage 60

TS-8900 Ordering Information

TS-8900 Ordering Information (continued)

Part No	Description
U8970A-0C-APPSW	TS-5400 APPLICATION SOFTWARE OPTION CLASS
U8970A-SW1	TS-5000 FAMILY APPLICATION SOFTWARE 7.0V
U8970A-OC-GPIBLXI	GPIB/LXI INSTRUMENTS OPTION CLASS
U8970A-115	GPIB/LXI ARB 33521A - 30 MHZ 1-CHANNEL
U8970A-116	GPIB/LXI ARB 33522A, $30 \mathrm{MHZ} \mathrm{2-CHANNELS}$
U8970A-120	GPIB/LXI COUNTER 53220A, 350MHZ 12 DIGITS/S 100PS
U8970A-125	LXI DIGITIZER L4532A, 20 MS /S 16-BIT 2-CHANNELS
U8970A-130	LXI DIGITIZER L4534A, 20 MS/S 16-BIT 4-CHANNELS
U8970A-131	LXI DAC L4451A, 4-CHANNELS WITH WAVEFORM MEMORY
U8970A-617	LXI DAC L4451A CABLE - EXPRESSCONNECT 4-CHANNELS
U8970A-OC-PXIMOD	PXI INSTRUMENTS OPTION CLASS
U8970A-300	PXIE CHASSIS M9018A - 18-SLOT 3U 8GB/S
U8970A-305	PCIE CABLE INTERFACE M9021A - GEN 2 X8
U8970A-330	PXI SED M9216A - 32-CHANNEL 250KS/S 16-BIT 100V INPUT
U8970A-618	PXI SED M9216A CABLE - EXPRESSCONNECT 32-CHANNELS
U8970A-619	PXI SED M9216A CABLE - EXPRESSCONNECT AUX 32-CHANNELS
U8970A-335	PXI Isolated DAC M9185A - 8Channel
U8970A-336	PXI Isolated DAC M9185A - 16Channel
U8970A-620	PXI ISOLATED DAC M9185A CABLE - EXPRESSCONNECT 8-CHANNELS
U8970A-340	PXI ISOLATED V/I SOURCE M9186A - 3W 100V SINGLE CHANNEL
U8970A-621	PXI ISOLATED V/I SOURCE M9186A CABLE - EXPRESSCONNECT
U8970A-350	PXI DIO M9187A - 64-BIT 0.3-50V
U8970A-622	PXI DIO M9187A CABLE - EXPRESSCONNECT 64-BIT 0.3-50V
U8970A-310	PXI DMM M9182A - 6.5 Digit
U8970A-311	PXI DMM M9183A - 7.5 Digit
U8970A-OC-PWRSUP	POWER SUPPLY OPTION CLASS
U8970A-503	DC POWER SUPPLY N5764A - 20V, 76A, 1520W, INCLUDING CABLE
U8970A-501	DC POWER SUPPLY N5744A - 20V, 38A, 760W INCLUDING CABLE
U8970A-502	DC POWER SUPPLY N5745A - 30V, 25A, 750W INCLUDING CABLE
U8970A-504	DC POWER SUPPLY N5765A - 30V, 50A, 1500W INCLUDING CABLE
U8970A-505	DC POWER SUPPLY N8734A - 20V, 165A, 3300W INCLUDING CABLE
U8970A-506	DC POWER SUPPLY N8735A - 30V, 110A, 3300W INCLUDING CABLE
E2233B-ATO	Modular Power Supply - 1200W Max
E2233B-OC-COMBO	N6702A Combination Materials
E2233B-OC-CABLES	N7602A Power Supply Cables
E2233B-OC-MODULE	E2233B DC Power Modules
E2233B-004	N6776A DC Power Module, 100V, 3A, 300W
E2233B-003	N6775A DC Power Module, 60V, 5A, 300W
E2233B-002	N6774A DC Power Module, 35V, 8.55A, 300W
E2233B-001	N6773A DC Power Module, 20V, 15A, 300W
E2233B-CORE	CORE MATERIAL for N6702A

myKeysight

myKeysight

www.lxistandard.org consortium.
www.pxisa.org measurements.
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.
www.axiestandard.org

AdvancedTCA ${ }^{\oplus}$ Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Keysight is a founding member of the AXIe consortium. ATCA ${ }^{\oplus}$, AdvancedTCA ${ }^{\oplus}$, and the ATCA logo are registered US trademarks of the PCI Industrial Computer Manufacturers Group.

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty
www.keysight.com/find/ThreeYearWarranty
Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate
www.keysight.com/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2008
Quality Management System
Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas	
Canada	(877) 8944414
Brazil	551133517010
Mexico	0018002542440
United States	(800) 8294444
Asia Pacific	
Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	0120 (421) 345
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	(65) 63758100
Europe \& Middle East	
Austria	0800001122
Belgium	080058580
Finland	0800523252
France	0805980333
Germany	08006270999
Ireland	1800832700
Israel	1809343051
Italy	800599100
Luxembourg	+32800 58580
Netherlands	08000233200
Russia	88005009286
Spain	0800000154
Sweden	0200882255
Switzerland	0800805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	08000260637

For other unlisted countries: www.keysight.com/find/contactus (BP-07-10-14)
www.keysight.com/find/modular www.keysight.com/find/ts8900

This information is subject to change without notice.
© Keysight Technologies, 2012-2014
Published in USA, August 2, 2014
5990-7758EN
www.keysight.com

[^0]: 1. For the M9186A to work properly, at least one PXI chassis and one PXI controller type must be available.
 2. Keysight IO Libraries Suite 16.0 is required. The modular product won't work with Keysight IO Libraries Suite versions earlier than version 16.0
[^1]: 1. For the M9185A to work properly, at least one PXI chassis and one PXI controller type must be available.
 2. Keysight IO Libraries Suite 16.0 is required. The modular product won't work with Keysight IO Libraries Suite versions earlier than version 16.0.
[^2]: 1. The constant current programming readback and monitoring accuracy does not include the warm-up and load regulation thermal drift.
[^3]: 1. Specifications are for one hour warm up, within one hour self-cal, slow AC filter.
 2. For temperatures outside the range of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, but within $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, add $0.1 \times$ accuracy specification per ${ }^{\circ} \mathrm{C}$.
 3. Repetitive reading at an aperture of 133 ms or higher.
[^4]: 1. Load I/O Libraries Version M for Windows NT support or version 14.0 for Windows 98 SE support
[^5]: Add $1 / 10$ th of the output amplitude and offset accuracy specification per ${ }^{\circ} \mathrm{C}$ for operation at temperatures beyond $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
 Auto range ON.
 DC Offset set to zero.

[^6]: 1. Subject to pulse width limits.
[^7]: 1. Counted Burst operation is not allowed for Gaussian Noise.
 2. limited to arbitrary waveforms that are <1 million points; phase resolution limited by number of points in arbitrary waveforms $<3,600$ points.
 3. All frequency changes are phase-continuous.
 4. External trigger only for sweep time $>8000 \mathrm{sec}$.
[^8]: 1. Continuous, gap-free measurements limits the Gate Time setting to $10 \mu \mathrm{~s}$ to 1000 s in $10 \mu \mathrm{~s}$ steps.
[^9]: 1. Assumes calibrated battery.
