
Abstract
Manufacturers’ specifications are a complicated interplay of consumer demand, 
contractual agreement and definition of “fitness for use” warranty. To better 
understand the implications of using manufacturers’ specifications in an uncer-
tainty analysis, we will explore technical topics such as the following …

 – How specifications are created and managed
 – Advantage of using specification
 – Statistic versus managed specification
 – Stationary and non-stationary random processes
 – GUM concepts like “safe”
 – Issue and definition of pseudo systematic error

This exploration will be done using no advanced math or statistics. This paper 
examines these issues in the informal context of a Pachinko gambling device. 
As a result, it will become clear why an uncertainty analysis (employing TYPE B 
data) is a worst case analysis. This can affect how calibration laboratories use 
uncertainty data in the quality system and on customer facing documents and 
training.

Keysight Technologies
Using a Manufacturer’s 
Specification as a Type B  
Error Contribution

White Paper



Why are manufacturers’ specifications allowed in uncertainty 
calculation regimens such as those discussed in GUM and E4/02?  
The answer is simply, “convenience.” A full ANOVA would require 
very specific knowledge about modern standards. Much of this 
paper is dedicated to the types of error contributions that are 
encapsulated in manufacturers’ specifications. These ideas are 
presented in a way that makes very complicated subjects easier 
to communicate.

Robert L Brown, Keysight Technologies
Presented at 2006 NCSL International Workshop and Symposium

1.0 Introduction
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2.0 Nature of a Manufacturers’ Specification

It is important to be aware of the conflict between manufacturers’ needs and 
those of a metrologist seeking a statistic.

2.1 Manufacturers’ Needs

The manufacturer needs to communicate the definition of “fitness for use.”

2.2 Customers’ (End User) Needs

The customer wants to depend upon the manufacturer’s specification. The 
customer needs to know (User Manual) how to get the promised performance 
and what obligations that he has (environment, calibration interval, etc.). The 
customer wants to be able to substitute a “stock” instrument in his system 
with confidence that it will perform as well as the one replaced. The customer 
often wants a maintenance contract. Product specifications provide the required 
“meeting of the minds” to indicate those repairs that are (or are not) covered by 
that maintenance contract.

2.3 Metrologists’ Uncertainty Needs

When using specifications as Type B contributors, metrologists’ needs are the 
same as the End User (2.2). However, if an application uses characterized data 
to obtain better performance than published specifications, then that application 
is not supported by the manufacturer (and is beyond the scope of this paper). 
However, some of the concepts in this paper are useful for those characterized 
applications.

2.4 Managed Specifications

The specification is therefore a promise. Manufacturers do collect statistics 
as they design for manufacturing. However, in the end, the manufacturer must 
decide what he can promise to deliver for a period of many years. In section 7.0 
we will discuss the incredibly large margins required to make that promise cost 
effective. GUM1 sections E.2.1 and E.2.2, make a case for a realistic uncertainty 
with a confidence interval. However, the use of specifications in an uncertainty 
analysis will in most cases make the analysis conservative (and in conflict with 
E.2). It is impossible to predict, at the time the specification is defined, when 
and for which (future) serial numbers the specification will be realistic. The 
flexibility that is afforded to manufacturing (due to process margins Cpk and Cp) 
actually makes the price of many modern standards (especially multi-parameter) 
much less expensive. Robust engineering designs allow manufacturing to make 
the promise, and manage to the specification.
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3.0 Pachinko Machine Error Contribution Types

To identify the major types of error contributions, we will examine a device 
designed to create randomness: the Pachinko gambling machine. We will iden-
tify types by how they need to be handled rather than by source or root cause. 
This discussion will emphasize the difficult issue of “time.”

3.1 Pachinko Machine Metrics

For our analysis purposes (Figure 1A) the machine will be outfitted with a coor-
dinate system. The horizontal scale is in units of peg spacing. Note that zero 
indicates the initial position of every ball that is dropped into the array of pegs. 
The vertical scale is in units of months, Jan = 1, Feb = 2, etc.

3.2 Combined Uncertainty

When describing randomness, we will consider one sigma numbers in this 
example. The question to answer is, “What is the combined uncertainty of 
the machine?” A Pachinko machine (Figure 1A) features a binning mechanism 
that creates a histogram of Pachinko balls. You can see by inspection that the 
standard deviation is approximately 3.9 units.

A B

Figure 1.
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3.3 Potential Variation Shapes

Uncertainty in the actual path of a ball is represented graphically by a dark 
shaded shape. The top of the shape indicates the assumed entry point. The 
width of the base of the shape indicates the standard uncertainty of the exit. 
The names given (Figure 1B) to these shapes were chosen to make the analogy 
to a calibration standard more convenient later in this paper. The line down the 
center indicates the expected (most likely) path of the ball. When the analogy is 
complete, and an infinitely dense lattice of pegs is assumed, this expected path 
is a straight line.

3.3.1 Calibration Shape
The top (Figure 1B) shape (isosceles triangle) indicates that a ball that enters at 
the top (they all do) will be distributed at the bottom by a standard uncertainty 
indicated by the width of the base. The base was calculated by making a table 
of the space into which the first 100 balls fell. (The two most likely spaces 
got the value 0.5, the next 1.5, etc). Then the standard deviation of those 100 
observations was calculated to be 2.32 units. The width of the base reflects this 
value. For the purpose of analogy, the vertical distance is not interesting in units 
of time. The shape only indicates the input and the output of the calibration 
process.

3.3.2 Drift Shape
The middle (Figure 1B) shape (dome) indicates the randomness in a ball’s path 
caused by the pegs. The base width was calculated in a similar way to the 
calibration uncertainty. The 100 data points indicated where a ball exited the 
maze relative to the space that it entered. Then the standard deviation of those 
100 observations was calculated to be 2.91 units. The width of the base reflects 
this value.

In this shape, the vertical distance is significant and measured in units of 
months. The dome shape is also significant. We know that the ball is equally 
likely to move left or right at each peg. If the ball never moved more than one 
space left or right then the result of this path is the Binomial Distribution and 
the variance of the drift shape would be np(1-p) = n/4. However, it is clear from 
watching the simulation that horizontal motion of multiple spaces is common. 
As long as the expected (average) horizontal motion is constant, the variance 
will increase linearly with n. Since we are indicating the standard deviation, the 
dome shape width indicates that standard deviation at each height.

 Sigma = SQRT(2.415 * t)             Equation 1
 where t is in months
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3.3.3 Reproducibility Shape
The lower (Figure 1B) shape (isosceles triangle) indicates the randomness in 
a ball’s path exiting the pegs at an other than vertical angle. Note that there 
is additional uncertainty caused by the histogram binning. As in the previous 
cases, a table of 100 values was constructed by noticing which bin captured the 
ball. The value is the horizontal displacement of the bin relative to the space 
where the ball exited the lattice. The width of the base reflects the standard 
deviation of the 100 observations. The vertical distance is not significant in units 
of time.

3.3.4 Total Combined Standard Uncertainty Bar
The shaded bar at the bottom indicates the combined effect of the three 
Potential Variation Shapes discussed above. The width of this bar is simply the 
RSS (root sum of squares) combination of the three standard uncertainties, 
approximately 3.9 units as expected.

3.4 Using Potential Variation Shapes

What if we repeatedly drop balls into the middle of the lattice? Can we use what 
we have learned to predict the result?

Figure 2.

What if we drop balls into the lattice at the X (Figure 2) on the 15th of March. 
What will be the Combined Standard Uncertainty of the Total result?

 – There will be no Calibration contributor
 – The Drift contribution will be 1 month’s worth;  

(Equation 1) UD = SQRT(2.415 * 1) = 1.55
 – The Repeatability will be as in 3.3.3, UR = 1.1

Total sigma = SQRT(UD
2 + UR

2) = 1.9 units
The mean = –5 units
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4.0 Calibration Standard (Pachinko Analogy)

Unlike a Pachinko machine, a calibration standard is designed to minimize 
randomness. The purpose of a calibration standard is to preserve a parameter. 
It needs to transport a parameter value from one place to another and from one 
time to another. We will use the obvious Pachinko randomness to help model 
the difficult to manage, tight tolerances of a calibration standard.

4.1 Simple Model

Assumptions:
 – Calibration, Drift and Reproducibility contributors are independent
 – No (left/right) bias in the random walk (peg symmetry horizontally)
 – The drift/time random walk is relatively constant (uniform peg spacing)

As a result of these assumptions, the expected value of population is zero error.
If these same assumptions are appropriate for a calibration standard that you 
use or manufacture, then the Pachinko model will apply to that standard also.

 Expected Value = Mean = 0
 Combined Standard Uncertainty = SQRT(UC

2 + UD
2 +UR

2)
 where UD = SQRT(k * t), t = cal interval and k = (variance at t = 1)

A B
Figure 3.
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To help adapt to the Calibration Standard, we will allow only a small number of 
balls. Each ball will be stenciled with a year, beginning with year 2000 and end-
ing this year. (Figure 3B) This models a calibration standard that was purchased 
and calibrated Jan 1, 2000. With a calibration standard we get to drop only one 
single ball each year on Jan 1 (beginning of the one year calibration cycle).

Figure 4.

4.2 Pseudo Systematic Error

Customers who use this standard earlier in the year will experience less pseudo 
systematic error than near the end of the calibration cycle (Figure 4). In this 
model, the actual value of the standard was low by 7 units on July 15, 2000 but, 
4 units high on July 15, 2001. The user has no way of knowing the actual error. 
The user will believe that the standard is still accurate with a visible random 
variation, equal to the reproducibility contribution. The pseudo systematic error 
appears to be trapped in time and is sometimes referred to as a “time trap”. 
For novice metrologists, Pseudo Systematic errors are easier to grasp than the 
concept of random variables in the frequency domain.

In the absence of Delta Environment Systematic Errors (4.3.3), total Pseudo 
Systematic Error can be measured, with an uncertainty of the calibration con-
tribution. This is the motivation for time series analysis of the “incoming” data 
from the calibration reports.

Keep in mind, that the calibration contribution includes a component similar to 
the Reproducibility component and time traps of its own. If the traceability path 
is very long, you could easily be getting a value from the Standards Lab that was 
sampled at the National Laboratory many years ago.
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A B
Figure 5.

C

4.3.1 Asymmetric Drift Bias: (Figure 5A)
This is analogous to pegs that are slightly off center. This bias is related to the 
size of the drift uncertainty (look up binomial distribution). Since there is no way 
to distinguish this linear drift (due to Asymmetric Drift Bias) from non-random 
drift (4.3.2), it is recommended that asymmetric random drift never be assumed.

4.3.2 Non-random Drift: (Figure 5B)
Non-random drift without an associated random drift is analogous to binding the 
pegs into chutes, using wire. This can be considered to be the regression func-
tion (as in linear regression) when separating the random drift (residuals) from 
the non-random drift (function).

Sources of non-random drift include:
 – Aging of the standard
 – Wear-out mechanisms
 – Use
 – Tension releasing from last mechanical adjustment

The example in Figure 5B shows non-random drift dominating the random drift. 
This can happen in a standard weight. Each time it is used, a small amount of 
mass is removed.

4.3 Full Model (Inclusion of Systematic Error)

In practice, the design of a calibration standard must include systematic errors. 
Systematic errors are those errors that cause the expected (or mean) error to be 
non-zero. Those errors are of three types.
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4.3.3 Offset: (Figure 5C)
This type of systematic error, represented in Figure 5C, cannot be realized with 
pegs and balls as depicted. However, the figure does better communicate the 
nature of the offset error in a calibration standard. In a balls and pegs machine, 
it would be an offset in the top and bottom scales in the diagram.

The illustration in Figure 5C was chosen to emphasize that Offset should be 
considered the non-random calibration error contributor. This reminds us that 
the most difficult and often undiagnosed Offset errors are “Delta Environment” 
errors.

Sources of Delta Environment errors include:
 – Equipment used at a different temperature, humidity, or altitude than when cali-

brated
 – Uncorrected offsets when used that were corrected when calibrated
 – Procedure for using the standard is very different than the calibration procedure 

used
The full model will include a constant term that represents the offset error.

4.3.4 Full Model Error Equation
Summarizing what has been said above,

 Error( t ) = EO + E * t + C + D + R            Equation 2

 EO = Delta Environment and uncorrected offsets (often assumed = 0)
 E = Systematic drift of the standard (often assumed = 0)
 C = Calibration random variable with expectation = 0, sigma = UC
 D = Drift random variable with expectation = 0, sigma = UD = SQRT(k * t)
 R = Reproducibility random variable with expectation = 0, sigma = UR

If we could know (we can’t) the value of each term at the precise instant, t, that 
a standard is used, then we would have the exact error and know the “true” 
value spoken about in GUM.
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5.0 Using a Calibration Standard

When a calibration laboratory uses GUM to estimate the uncertainties of the 
calibration procedures, it is required to:

1. Identify the significant systematic errors

2. Correct the significant systematic errors

3. Add an error contribution for each of the correction factors

Random errors are to be expected values, not “safe” or worst case.

5.1 Systematic Errors

To the extent that some systematic errors are “hidden” in the manufacturer’s 
specification, this requirement cannot always be met. For example, there is 
usually a temperature requirement in the user manual, but no indication of the 
amount or direction of the error when using the calibration standard near the 
edge of the requirement.

5.2 Random Errors

In practice, no one recommends that the expected value of the drift component 
be used, even if it is the dominant contributor. If the expected value were used, 
then the variance, UD(t)2, would be multiplied by the probability distribution of 
calibration events, P(t), and integrated over the standard’s calibration interval 
to obtain the expected drift variance (the expected value of the variance is an 
unbiased estimator).

If (as is most common) the standard is used uniformly throughout the year, 
then the corrected UD is given by UD/SQRT(2). In fact, no one objects to using 
the worst case UD and many would likely object to this reduction in favor of the 
worst case number.
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6.0 Multi-Function Electronic Standards

Multiple parameters can effect the uncertainty budget in subtle ways.

6.1 Accumulated Effect of Many Uncorrelated Parameters

To illustrate the problem of multiple sources for error, let’s consider a multi-
function voltmeter. Assume that the specification for each functional parameter 
is 95% confidence. Remember that only one parameter needs to fail to get an 
Out Of Tolerance for the entire box. If each of the 100 parameters was uncor-
related with the others, then the expected number of failures per calibration 
would be 5. This won’t do. All functioning boxes will fail “incoming” data when 
in for calibration.

It is easy to see that for confidence of 95%, each of the 100 independent 
parameters would require: Parameter Confidence = 0.95(1/100) = 0.950.01 = 0.99949. 
This problem is mitigated in the design by making the parameters correlated. A 
good example is a self-calibrating multimeter or calibrator that depends primarily 
on the accuracy of only 2 high precision (internal) standards and an extremely 
linear A/D converter. This multi-function dynamic is one of the reasons that 
the true performance is typically much better than the product specification. 
A single parameter may have a budget tighter than the parameter’s published 
specification.

6.2 Highly Correlated Parameters

To illustrate the problem of correlated sources for error, let us consider the 
flatness of a radio frequency standard. Suppose that adjustment of the highest 
frequency gain is correlated with the lowest frequency in that band. If the 
calibration procedure can only minimize the difference (but never achieve zero), 
then the adjustment of absolute gain may (by design) require one parameter to 
be high and the other low. This offset, in effect, removes that difference from 
the available specification budget.
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7.0 Single Parameter Calibration Standard

In this section we will be explore the second reason that true performance 
is typically much better than the product specification. That reason is, “the 
unknown.”

The manufacturer has a similar problem to that of a calibration procedure. Both 
have an uncertainty budget and a finite number of contributors. A product with 
cutting-edge specifications (like a metrology standard) has a large number of 
known error contributors. But there are also a large number of potential error 
contributors that may be unknown. Accommodation of the unknown contributor 
in a robust manufacturing process is accomplished by margin.

7.1 Design Changes

Not all design changes are intentional. Any supplier of parts can change the 
design. Also, deliberate changes in the design to improve the product, can 
uncover a previously unimportant error contributor. Consider again the Pachinko 
machine. Look closely at the top row of pegs.

Figure 6.
A B C D E
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7.1.1 Parts Change – Square Pegs
The supplier of pegs begins shipping pegs with flat contact surfaces. There is 
now a variability in the drift distribution. Drift now depends upon the orientation 
of the peg when inserted by production assembly workers.

 – Peg A: Original design: no bias
 – Peg B: Horizontal: no bias
 – Peg C: Tilt: right bounce bias
 – Peg D: Edge: no bias
 – Peg E: Tilt: left bounce bias

There is an increase in the drift variability, but the dominant contributor to drift 
variability is still peg spacing. Peg spacing is in good control and maintained by 
the accurate physical distance between holes in the back plane. The product 
has less margin but still meets specifications.

7.1.2 Process Change – Robotics
The Pachinko machine manufacturer soon finds the need to automate in order 
to keep up with the increasing demand. Robotics are installed to achieve faster 
peg placement and more consistent results. However, insufficient attention is 
paid to peg orientation and pegs are ALL placed as in Figure 6E.

The minor variability in the drift standard uncertainty disappeared, and became 
slightly less than the original design sigma. However, a significant bias was also 
introduced in the expected value toward the left. Then gamblers (noticing that 
more balls fall to the left of zero) can gain an advantage over the house odds.

Fortunately, this process flaw was identified as an out of control value for E 
(Equation 2).

 E = Systematic drift of the standard (often assumed = 0)

The batch of first production machines for the new robot assembly line was 
re-worked, with careful registration of pegs as in Figure 6B. The peg supplier 
contract was amended, specifying round pegs for future peg orders.
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8.0 Using the Standard

The customer purchases a calibration standard because the instrument’s speci-
fications are sufficient for the procedure(s) in which it will be used.

8.1 What is the Standard Uncertainty Contribution

It has become convention to use (Specification Limit) / SQRT(3) as the stan-
dard uncertainty. That is a reasonable estimate of the worst case (when not 
stated conservatively) published specification. It is beyond the scope of this 
paper debate which worst case probability distribution to assume. However, 
we have discussed the difficulties in predicting and controlling the D term in 
Equation 2 (4.3.4). If you encounter the worst case condition from a factory, 
it will likely be caused by uncertainty in the value of UD and ability to control 
UD. This can result in a relatively uniform distribution in the value of UD but 
certainly not the value of Total Error. It is the recommendation of this author 
to use (Specification Limit) / SQRT(3) as the standard uncertainty and treat the 
contributor as if it were Gaussian Normal. If there is reason in the specifica-
tion to assume otherwise (such as a resolution specification), then use that 
information.

8.2 Monitoring a Calibration Standard

A calibration and maintenance contract is an effective way to manage costs 
and guarantee the product specification of a Calibration Standard. There are 
additional risks that are the responsibility of the ETE manager and Calibration 
System manager.

 – Units get damaged
 – Units age
 – Units get repaired with side effects

A well managed calibration standard can avoid the consequences of these 
types of defects. By monitoring your customers’ calibration results, using check 
standards and monitoring calibration histories of your standards, you can avoid 
a great number of potential problems.

8.2.1 Out of Tolerance Reports
If the standard receives an OOT report from a calibration event, the lab that 
owns the equipment will have a process to evaluate the impact and take 
appropriate action for its customers. Even though the instrument was adjusted 
and has a compliant calibration for “out going” data, this unit may not be 
operational. The lab should check the previous calibration for an OOT on the 
same parameter. In this case, the unit should be repaired; it does not meet the 
manufacturer’s specification. It is not a good policy to shorten the calibration 
interval. Shortening the calibration interval can mask an accelerating problem, 
where early detection could minimize the impact.

8.2.2 Shipping the Standard
It is not a good policy to allow a standard out of the calibration laboratory. This 
is especially true of primary standards that are calibrated by a higher echelon 
laboratory. A check standard is critical when shipping for external calibration. 
Compare the standard to the check standard before shipping and again, immedi-
ately upon its return.
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8.3 Adjustment Strategy

If you are using a return to factory calibration service, then the factory recom-
mend practice will be optimal. You can determine the adjustment strategy by 
monitoring the calibration report history for your standard. Adjustment for offset 
(8.3.3) may require additional attention if you are claiming compliance with GUM 
in the uncertainty analysis.

8.3.1 Adjust to Nominal Value
This is the most common adjustment. This is for standards that have a value of 
zero for terms EO and E in Equation 2 (4.3.4). You can identify this adjustment by 
no bias in the “out going” validation data report (Figure 1B).

8.3.2 Adjust for Drift
This compensates for the effect of a non-zero value for E in Equation 2 (4.3.4). 
You can identify this adjustment by a bias in “out going” validation report data 
and a bias in the opposite direction when reviewing the “incoming” data at the 
next calibration event (Figure 5B). The manufacturer has included the uncer-
tainty of this correction in the published specification.

8.3.3 Unadjusted Offset
Small offsets are often not accommodated by an (other than nominal) adjust-
ment strategy. Rarely, however you may see a dominant offset that is not 
adjusted out. This is usually due to the adverse effect on another parameter 
(6.2). This has the effect of radically tightening the manufacturer’s error budget 
and treating this more like a one sided test limit.

8.3.4 DUTs
As a commercial standard is used to calibrate a “Device Under Test”, you have 
a similar adjust policy problem. This problem is greater when there is no written 
adjust policy available from the manufacturer of the DUT. You can validate your 
own adjust policy by monitoring the DUT calibration histories for the same 
model (8.2).

8.4 GUM Compliance

When using the specification as a type B contributor to the standard’s uncer-
tainty, the unadjusted offset (8.3.2) is not consistent with GUM. In practice this 
condition is usually ignored and the standard uncertainty is usually (8.1) entered 
as (Specification Limit) / SQRT(3). However, if you encounter the unadjusted 
offset in your own DUT calibration procedure, it will require special attention 
(much better than 4:1 TUR) in the same way that a manufacturer attends to this 
case (8.3.2).
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9.0 Summary

Although the true performance is typically much better than the product 
specification, it is guaranteed that some parameters for some serial numbers 
will be represented accurately without margin. Most customers and all manu-
facturers intend for specifications to be treated as the statistic for worst case 
performance.

The typical performance of a calibration parameter is often much better than the 
specification, except when it is not. The problem statement is, “when is it not?” 
This does not matter to owner of the standard unless the owner is depending 
upon “better than specification” performance. If the owner is using character-
ized data or extended calibration intervals, then a very thorough risk analysis is 
indicated.
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