GPSG-1000

GPS/Galileo Portable Positional Simulator

Versatile time-saving portable test set for GPS/GALILEO receivers

- GPS signals simulated: L1, L1C*, L2C*, L5*
- Galileo signals simulated: E1, E5**, E5a**, E5b**
- · Simultaneous GPS/Galileo simulation
- WAAS/EGNOS SBAS simulation
- Static and dynamic simulations via NMEA-0183 File Record and Playback
- 6 or 12 channel configurations available with upgrade path (RAIM supported)
- Programmable space vehicle (SV) parametrics and health
- User or built-in GPS receiver referenced time and date
- PVT data available via RS-232
- User Defined Data Transferable between Linked GPSG units
- Remote control interface Ethernet
- * For tracking of L1C, L2C or L5 signals some receivers require synchronized L1 transmissions.
- ** For tracking of E5 signals some receivers require synchronized E1 transmissions.

General

The GPSG-1000 is a single carrier, multi-channel simulator designed to be software upgradable.

Applications

- · General testing of civil GPS and Galileo receivers
- Limited testing of military GPS receivers, L1 C/A code or L1 (P)Y pseudo code only

Channels

The six channel GPSG-1000 configuration provides 3D positional simulation with five channels for RAIM operation and one channel may be allocated to SBAS simulation.

The twelve channel GPSG-1000 configuration provides the same capability as the six channel unit, plus six additional channels. This allows any combination of visible SVs to be selected. One or two channels may be allocated to SBAS simulation.

Simulation

The Simulation page shows the selected GNSS signals generated and provides a PVT (Position, Velocity and Time) display. The data displayed also includes the current waypoint leg, heading and distance to go.

In the Static mode of operation, a 3D position may be user entered in Latitude/Longitude/Height format. Almanac data is derived either from the built-in L1 C/A Code GPS receiver or via an external file load. Positional simulation may also be synchronized to UTC via the receiver.

GPS Galileo SBAS
SV PRN Visible SVs
2, 4, 5, 10, 12, 17, 24, 25
Carrier Services
L1 C/A, Pseudo P(Y)
PVT
Sim Date Sim Time Elapsed Speed Altitude Rate
11/06/2013 16:35:10 00:03:05 100.6 Mph 1000 ft/min
Latitude Longitude Altitude
39° 15' 9.1195" N 94° 47' 24.7105" W 4109 ft
From To Distance To Go Heading
1) Kansas City Intl 2) Emporia KS 95 mi 233°
Ext Ref Running Stop
Simulation

SV Selection

All GPSG-1000 configurations allow GPS and Galileo satellites to be mixed. SVs are allocated automatically for optimal geometry according to simulated position. The user may turn off individual SVs, to create scenarios with poor geometry for RAIM testing.

Each SV may have Doppler, Amplitude, Step Error and Code Carrier Coherence parameters deviated from nominal and Satellite Health set.

Signal Fading and Dynamic Signal Amplitude and Simulator RF level may be applied to all satellites.

SBAS

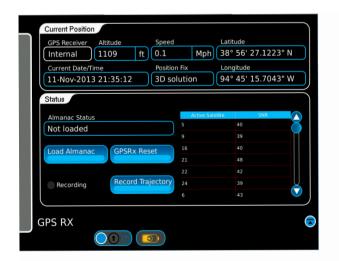
SBAS satellites WAAS/EGNOS are automatically allocated based on simulated position. The user can select the number of SBAS SVs that will be allocated during the positional simulation.

Simulation Channels I/O	Motion
Available Chan	nels
GNSS Allocation (single mode) GNSS SVs 12	SBAS SVs
GNSS Allocation (dual mode) GPS SVs Galileo SVs 6 5	SBAS SVs 1
	Apply
Setup	


Waypoints

Waypoints may be created and stored in Latitude/ Longitude/ Altitude form or automatically recalled from the provided waypoint data base organized by an airport or city. Waypoints may be selected for inclusion in a route in dynamic mode or as a single position in static mode.

				Sorted b	×	Add
	Code	ICAO Code	Name	City S	itate	Delete
1	ACY	KACY	Atlantic City Intl	Atlantic City	35	
2	AKL	NZAA	Auckland Intl	Auckland	37	Edit
3	ALB	KALB	Albany Intl	Albany	42	Edit
4	AMS	EHAM	Schiphol	Amsterdam	52	(· ·
5	ANC	PANC	Ted Stevens Anchorag	Anchorage	61	Use
6	ANK	LTAD	Etimesgut	Ankara	35	
7	ASU	SGAS	Silvio Pettirossi Intl	Asuncion	25	
8	ATH	LGAV	Eleftherios Venizelos Intl	Athens	37	
9	ATL	KATL	Hartsfield Jackson Atla	Atlanta	32	
~		~****	ALL PLACE LA	AL. DLAS		Defaults
	/poin					


Routes

In the Dynamic position mode of operation, the Route page may be used to sequentially enter user defined route points. Routes comprising of up to 10,000 route points, may be saved and recalled under a user entered route name, using the route file management system. Route points can be reordered, edited or deleted. 3D position data comprising Latitude, Longitude and Altitude may be manually entered, or selected from the waypoints page. Additional parameters that define a route point are Speed, Linear Acceleration and Altitude Rate. Turns may be executed at the route point, utilizing a user defined Turn Radius. Realistic turns are maintained to 10G. Routes may be defined to playback once, or continuously in an endless loop.

Record and Playback

Data files can be created and played using the GPSG-1000 and its internal GPS receiver. The location of the unit in three dimensional space, time, date, and individual SV power information can be recorded as it is moved from point to point. This data can then be played back through the unit's trajectory simulation mode. The unit's trajectory simulation mode will also accept tiles containing NMEA 0183 messages for playback, giving the user the flexibility to use their own receiver to record data for playback.

Setup

The Setup page is partitioned via a tab selection scheme to allow control for Simulation, Almanac, Channels and I/O.

The simulation tab provides controls for GNSS System Selection and Carrier, also Digital Noise, Multipath (fading) model selection, PRN RF Signal levels, Positon Source, Simulation Type, SBAS, System Units, Motion Model selection, and Lat/Long Format selection.

Simulation Channels I/O Motion					
GNSS Carrier SBAS Simulation GPS L1 Auto Dynamic Digital Noise Fading PRN Signal Position Source Off None Fixed User					
Simulation Start Time Clock Date Time User setting Nov 6, 2013 16:32:05					
BF Output Units Lat/Long Format RF Level RF Port Imperial DD°MM'SS.SS" -130 dBm Coupler Motion Model Unlimited Unlimited Unlimited					
Setup					

File

The file management system is partitioned via a tab selection scheme. File management is provided for almanacs, routes, trajectory, waypoints, and simulator settings. Facilities include loading, storage, and naming of files. Files for almanacs, routes, simulator settings, trajectory data and waypoints may be imported/exported to allow sharing between GPSG-1000 units.

GENERAL SPECIFICATIONS

USER INTERFACE

Display

12" color LCD, sunlight readable with back light

Controls

Touch screen

ANTENNA COUPLER

Antenna Coupler

Cavity, patch

Coupling

21 dB typical at 1575.42 MHz

Isolation

>25 dB at 1575.42 MHz

>30 dB typical at 1575.42 MHz

DIRECT CONNECTION PORTS

Impedance

50 Ω

SWR

1.3:1 maximum

Connector

TNC x 2

Coupling

AC (maximum DC input 50 V)

GENERATOR

GPS Frequencies

L1: 1575.42 MHz (C/A, pseudo P(Y), SBAS)

L1C: 1575.42 MHz

L2: 1227.60 MHz (pseudo P(Y))

L2C: 1227.60 MHz

L5: 1176.45 MHz (New Civil SoL)

Galileo Frequencies

E1: 1575.420 MHz (pseudo-PRS, [pseudo-G/NAV]), (OS, CS, SoL, [I/ NAV])

E5: 1191.795 MHz center frequency

E5a: 1176.45 MHz (OS, (F/NAV))

E5b: 1207.14 MHz (CS, SoL, (I/NAV))

Accuracy

Same as master oscillator

Inter Channel Bias

Zero (digital design)

Frame Sync Output

LVTTL

Channels

1-6, 1-12 SV simulation, selectable

GPS: PRN=1 to 32

Galileo: PRN=1 to 36

SBAS: PRN=120 to 138.

Positional simulation via menu entry of Latitude and Longitude or positional offset and waypoint.

Positional Simulation

Static: Via user entry of Latitude/Longitude/Altitude or selectable from waypoint database.

Dynamic: Create, store and recall routes consisting of multiple route points.

User Defined Doppler Error

Selectable frequency offset ±5.0 kHz, 1 Hz increment

Amplitude Offset

Sets SV carrier amplitude offset from main attenuator setting $\pm 15~\text{dB}$ in 1 dB increments.

Step Error

Sets SV pseudo range error $\pm 10 \mbox{ km}$ in 1 m increments (used for RAIM testing)

Satellite Health

Allows selection of GOOD or BAD

Code Carrier Coherence

Sets frequency variation between code carriers

Range 2 m/S

Increment 1 mm/S

GPS CODES

L1 C/A

Code Rate

1.023 Mc/s

Primary Sequence Length

1023 bits

Modulation

BPSK

Symbol Rate

50 sps

SBAS

WAAS/EGNOS L1, L5

L2C

Code Rate

0.5115 Mc/s

Sequence Length

10230/767250 bits

Modulation

BPSK

Symbol Rate

50 sps

L1 P(Y) (not encrypted)

Code Rate 10.230 Mc/s Sequence Length 15345000 bits Modulation BPSK Note: Long random codes simulated

L1C

Code Rate 10.230 Mc/s Sequence Length 10230 bits Modulation BOC (1, 1)

L5

Code Rate 10.230 Mc/s Sequence Length 10230 bits Modulation QPSK

GALILEO SERVICES

E1

Pseudo G/NAVLong random codes simulatedCode Rate2.5575 Mc/sSequence Length25575 bitsSymbol Rate100 spsModulationInterplex/CBOCSub ModulationBOC (15,2.5)Note: PRS not supported

E1

OS Complete implementation (I/NAV)

CS

Null message content (pseudo I/NAV)

SoL

Compliant, no integrity alerts (I/NAV)

Code Rate

1.023 Mc/s Sequence Length

4092 (primary) x 1 (secondary) bits **Symbol Rate** 250 sps **Modulation** Interplex/CBOC

Sub Modulation

CBOC(6,1,1)

E5a

OS Complete implementation (F/NAV) Code Rate 10.23 Mc/s Sequence Length 10230 (primary) x 20 (secondary) bits Symbol Rate 50 sps Modulation ALTBOC Sub Modulation None

E5b

os Complete implementation (F/NAV) CS Null message content (pseudo I/NAV) SoL Compliant, no integrity alerts (I/NAV) Code Rate 10.23 Mc/s Sequence Length 10230 (primary) x 4 (secondary) bits Symbol Rate 250 sps Modulation ALTBOC Sub Modulation None

Almanac

Obtainable from built-in GPS receiver or external file load in .alm format.

NAV Data

Navigation data is computed in real-time to match the simulation.

Positional Simulation

Maximum Relative Velocity

±1000 Kts (514 m/s)

Maximum Relative Acceleration

±98 m/s²

Maximum Relative Jerk

±20 m/s³

Maximum Altitude

100,000 ft.

Error Models

Atmospheric

Positional Simulation Accuracy

Pseudorange

<0.1 m

Pseudorange Rate

 ± 0.01 m/s (RMS) with respect to master oscillator

RF Output Level

Direct

-93 to -155 in 1 dB step

ANT Coupler

-68 to -130 in 1 dB step

 $\pm 2~\text{dB}$ accuracy into 50 Ω (AC coupled) standard cable, 4 dB loss

Signal Quality

Spurious

<-35 dBc over the bandwidth (40 MHz)

Harmonics

<-45 dBc

MASTER OSCILLATOR

Frequency

10 MHz nominal

Temperature Stability

 $\pm 0.05 \ ppm$

Aging Rate

±0.3 ppm/yr, ±2.5 ppm/ 10 yr.

Uncertainty

±1 ppm

External Reference Input

Input Level

0.25 to 6.0 Vp-p

Input Impedance

50 ohm nominal

Input Frequency

10.0 MHz ±10 Hz

External Reference Output

Output Level

1.5 Vp-p nominal into 50 Ω

Output Frequency

10.0 MHz nominal

BATTERY

14.4V 6.75Ah Lithium Ion

Battery Temperature Range for Charging

0° to 45°C

DC INPUT

11-32 VDC 75 W max. 5 A max.

ENVIRONMENTAL

Test Set Certifications Operational Temperature $-20^\circ \le T \le 55^\circ C$ Storage Temperature $-30^\circ \le T \le 71^\circ C$ **Operational Humidity** MIL-PRF-28800F Class 2 Storage Humidity MIL-PRF-28800F Class 2 Altitude ≤10,000 feet Vibration Limits MIL-PRF-28800F Class 2 Shock, Functional MIL-PRF-28800F Class 2 Transit Drop MIL-PRF-28800F Class 2 Drip Proof MIL-PRF-28800F Class 2 Dust MIL-PRF-28800F Class 2 Salt MIL-PRF-28800F Class 2 **Explosive Atmosphere** MIL-STD-810F Method 511.4, Procedure 1 Safety Compliance UL-61010:2001 CSA 22.2 No 1010.1 WEEE

ROHS

EMC

Emissions MIL-PRF28800F Class 2 EN 61326:1998 Class A EN 61000-3-2 EN 61000-3-3 Immunity MIL-PRF28800F Class 2 EN 61326:1998 Class A **External AC-DC Converter Certifications** Safety Compliance

UL 1950 DS CSA 22.2 No. 234 VDE EN 60 950 EMI/RFI Compliance FCC Docket 20780 Curve "B" EMC EN 61326

Transit Case Certifications

FED-STD-101C Method 5007.1 Drop Test Paragraph 6.3, Procedure A, Level A Falling Dart Impact ATA 300 Category I Vibration, Loose Cargo FED-STD-101C Method 5019 Vibration, Sweep ATA 300 Category I Simulated Rainfall MIL-STD-810F Method 506.4 Procedure II of 4.1.2 FED-STD-101C Method 5009.1 Sec 6.7.1 Immersion MIL-STD-810F Method 512.4

ENVIRONMENTAL (SUPPLIED EXTERNAL AC TO DC **CONVERTER**)

Use

Indoors

Altitude

≤10.000 feet

Operating Temperature

5°C to 40°C

Storage Temperature

-20°C to 71°C

PHYSICAL CHARACTERISTICS

GPSG-1000

Height

10.63 in. (27.0 cm)

Width

13.97 in. (35.5 cm)

Depth

3.425 in. (8.7 cm)

Weight (Test set only)

<10 lbs. (4.5 kg)

ANTENNA COUPLER

Height

7.54 in. (191.5 cm)

Width

7.46 in. (189.5 cm)

Depth

7.46 in. (189.5 cm) (Note: Maximum antenna height accommodated 1.5 in)

RF Gasket

Flexible seal

Connector

TNC

Positioning

By hand or with optional 8ft placement pole via hook.

Placement Security

Weighted peripheral bag

Multiple GPS Antenna Support

Supports two to three GPS antennas using optional antenna coupler kits.

VERSIONS, OPTIONS AND ACCESSORIES

Order Number	Description					
87339	GPSG-1000 6 Satellite Simulator					
87715	GPSG-1000 12 Satellite Option					
Standard Accessories						
88493	Transit case (qty 1)					
67374	Power supply					
87636	Antenna coupler					
90113	RX Antenna					
90114	Cable, coax 50 ft.					
62302	Power cord (U.S)					
64020	Power cord (European)					
88037	Operation Manual (CD)					
88038	Getting Started Manual (paper)					
Optional Accessories						
87040	External battery charger					
86196	Spare battery pack					
90106	Kit, Antenna coupler placement pole 8 ft.					
91136	Kit, CPLR Dual GPS Antenna System					
91137	Kit, CPLR Triple GPS Antenna System					

Maintenance Manual (CD)

FRANCE

GERMANY

INDIA

JAPAN

Tel: [+33] 1 60 79 96 00

Fax: [+33] 1 60 77 69 22

Tel: [+49] 89 99641 0

Fax: [+49] 89 99641 160

Tel: [+91] 80 [4] 115 4501

Fax: [+91] 80 [4] 115 4502

Tel: [+81] (3) 3500 5591

Fax: [+81] (3) 3500 5592

CHINA Beijing

89023

Tel: [+86] (10) 6539 1166 Fax: [+86] (10) 6539 1778

CHINA Shanghai Tel: [+86] 21 2028 3588 Fax: [+86] 21 2028 3558

CHINA Shenzhen Tel: [+86] (755) 3301 9358 Fax: [+86] (755) 3301 9356

FINI AND Tel: [+358] (9) 2709 5541 Fax: [+358] (9) 804 2441

As we are always seeking to improve our products, the information in this document gives only a general indication of the product capacity, performance and suitability, none of which shall form part of any con-tract. We reserve the right to make design changes without notice. All trademarks are acknowledged. Parent company Aeroflex, Inc. ©Aeroflex 2013.

KOREA

Tel: [+82] (2) 3424 2719 Fax: [+82] (2) 3424 8620 **SCANDINAVIA** Tel: [+45] 9614 0045 Fax: [+45] 9614 0047 SINGAPORE Tel: [+65] 6873 0991 Fax: [+65] 6873 0992 TAIWAN

Tel: [+886] 2 2698 8058 Fax: [+886] 2 2698 8050

www.aeroflex.com

info-test@aeroflex.com

UK Stevenage

Tel: [+44] (0) 1438 742200 Fax: [+44] (0) 1438 727601 Freephone: 0800 282388 USA Tel: [+1] (316) 522 4981 Fax: [+1] (316) 522 1360

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused.

Part No. 46891/371, Issue 13, 02/14