INSTRUCTION MANUAL MODEL 103A NANOVOLT AMPLIFIER

© COPYRIGHT 1974
KEITIIIEY INSTRUMENTS. INC. 28775 AURORAROAD. CLEVELAND.OH1O44139.12161248-0400 TELEX: 98-5469•CA日LE KEITHLEY

Section	Page
Spectatications	

ILLUSTRATIONS

Fig. No.
Title
yage
Front Panel, Model 103A.
Front Panel Controls and Terminals.
Rear Panel - Mode1s 103A and 1031A.
Overall Block Diagram.
Single-Ended Mode.
bifferential Mode.
Power Receptacle.
Power Input Connection.
Johnson Noise/ Hz Versus Source Resistance. Gain/Phase Vs. Frequency for R-C Type Filter.
Equivalent Circuit For Noise Analysis.
Use of Model 1037 Transformer.
Noise Bandwidth.
Noise Contour Single-Ended Mode.
Noise Contour Differential Mode.
Use as an Oscilloscope Preamplifier.
Use in System 84 Lockin Amplifier.
Mode1 2000 Rack Mounting.
Mode 11007 Dual Rack Mounting.
Overall Block Diagram.
Non-inverting Stage " A ".
Non-inverting Stage "B".
Single-ended Mode.
Differential Mode.
Non-inverting Stage "E".
Non-inverting Stage "F".
High-Low Cut Filter.
DC Offset Adjustment.
$\pm 18 \mathrm{~V}$ Power Supply.
Component Layout, PC-293.
Component Layout, PC-294 (Mother Board).
Component Layout, PC-295 (Model 1031A Power Supply).
Component Layout, PC-261 (Model 1031A Regulator).
Test Set-up For Frequency Response Check.
Chassis Assembly, Exploded View.
Bottom Cover Assembly.

1
3
3
4
4
4
5
5
5
6
9
10
10
11
11
12
12
13
14
16
16
16
17
17
17
17
18
18
29
19
20
21
22
24
29
29

SPECIFICATIONS

INPUT: Differential or single-ended (front-panel switch-selected).
GAIN: 100 to 10,000 in three calibrated decade steps, continuously adjustable between steps to a minimum gain below 10.
GAIN ACCURACY: $+1 \%$ at 100 Hz .
GAIN STABILITY: Better than $0.05 \% /{ }^{\circ} \mathrm{C}$.
INPUT IMPEDANCE: Differential: 1000 megohms shunted by 20 pr either input to ground. Single-ended: 50 megohms shunted by 30 pF .
FREQUENCY RESPONSE (Wideband): -3 dB at 0.1 Hz and $300 \mathrm{kHz} ;+1 \% 1 \mathrm{~Hz}$ to 30 klfz
FREQUENCY CUTOPFS: Hi Cuts: -3 dB at 10 Hz to 300 kHz in 1 X and 3 X steps. Lo Cuts: -3 dB at 0.1 $\mathrm{Hz}, 1 \mathrm{~Hz}$ and 10 Hz to 10 kHz in 1 X and $3 X$ steps. INPUT NOISE FIGURE*: Better than 3 dB from a 1 kilohm source between 2 kHz and 10 kHz , also from 100 kilohms to 100 megohms below 1 kHz . Typically better than 0.02 dB at l kHz from 300 kilohms.
NOISE* (Input Shorted): Less than 4.2 nanovolts rms per root Hz at 2 kHz . Less than 15 nanovolts rms per root Hz at: 10 Hz .
(* Single-ended input noise i.s specified; multiply voltage noise by 2 for differential input.)

CMRR: Greater than $70 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 kHz .
CMV: 1 volt peak-tonpeak maximum to 10 kHz , decreasing to $30 \mathrm{mV} \mathrm{p}-\mathrm{p}$ at 300 kHz
MAXIMUM INPUI OVERLOAI: 20 volts peak-to-peak normal-mode or common-mode.
OVERLOAD INDICATION: An indicator lamp shows input or output overload to 100 khe and commonmode overload to 10 kita.
TOTAL HARMONIC DISTORTION: less than 0.1%.
OUTPUT: 10 volts peak-to-peak to $100 \mathrm{kHz}, 3 \mathrm{~V}$ $\mathrm{p}-\mathrm{p}$ to 300 kHz .
OUTPU' RESIS'ANCE: l kilohm.
WARM-UP: 15 minutes
CONNECTORS: Input and Outpat (iront), BNC; Power (rear), Amphenol 126-1429.
POWER: ± 18 volts de $\pm 5 \%$ regulated to $\pm 0.1 \% .50$ milliamperes from both + and -
DIMENSIONS, WEIGHI: Style M 3-1/2" half-rack, overall bench size $4^{\prime \prime}$ high $x 8-1 / 2^{\prime \prime}$ wide $x 12$. $1 / 4^{\prime \prime}$ deep ($100 \times 217 \times 313 \mathrm{~mm}$). Net weight, 6 lbs. ($2,6 \mathrm{~kg}$).
ACCESSORIES FURNISHED: One Model 1083 Power Cable, 3 feet, connects Model 103A to Model 1031 A Powct Supply or to Model 840 AlmoLOCTM Amplifier auxiliary power output:

SECTION 1. GENERAL DESCRIPTION

1-1. GENERAL. The Model 103A Nanovolt Amplifier is an ac amplifier intended for use in high-gain lownoise applications.

1-2. FEATURES.

a. Selectable Input Mode. The input mode can be set for either single-ended or differential configuration to match the source.
b. Adjustable Frequency Response. A combination of high cut and low cut filter sections permit selection of optimum frequency bandwidth.
c. Overload Indication. An automatic overload indication circuit detects overloads under various operating conditions.
d. High Output Leve1. The full scale output is ten volts pk-to-pk (d-c coupled) to easily drive a recorder, amplifier, or oscilloscope without further amplification.

TABLE 1-1.
Front Panel Controls and Terminals

Control or Terminal	Functional Description	Paragraph
INPUT Switch (S201B)	Sets input mode as follows:	
A-B Input	Differential Mode.	2-4, a
-B Input	Single Ended Mode.	2-4, a
OVERLOAD RESET Switch (S201A)	Activates overload reset circuitry.	2-4, a
3 dB FREO Hz Switch	Sets overall amplifier frequency response.	2-4, a
HIGH Filter (S301A)	Sets High Cut	2-4, a
LoW Filter (S301B)	Sets Low Cut	
GAIN Switch (S302)	Sets overall gain. in 20 dB steps.	2-4, a
GAIN ADJUST Control (R306)	Adjusts gain over 20 dB span.	2-4, a
INPUT A (J202)	Non-inverting Input receptacle.	2-2, a
INPUT B (J201)	Inverting Input receptacle.	2-2, a
HIGH OUT (J301)	High output receptacle.	2-2, b
LOW OUT (J302)	Low output receptacle.	2-2, b
OVERLOAD Lamp (DS 101)	Indicates overload condition.	2-5, d

TABLE 1-2.
Rear Panel Controls and Terminals

Control or Terminal	Functional Description	Paragraph
POWER INPUT (P301)	Input receptacle for $\pm 18 \mathrm{~V}$ power.	2-2, c
$\frac{\text { DC OUTPUT ADJ. }}{\text { Control }} \begin{aligned} & \text { 非1 } \\ & \text { Control } \\ & \text { (R312) } \end{aligned}$	Adjusts dc output offsets.	2-5, i

FIGURE 2. Front Panel Controls and Terminals.

FIGURE 3. Rear Pane1 - Models 103 A and 1031 A.

SECTION 2. OPERATION

2-1. THEORY OF OPERATION.

a. General. The Model 103A Nanovolt Amplifier is a high gain voltage amplifier designed for use with single ended or differential inputs. The amplifier is essentially composed of two high impedance input amplifiers, a suming amplifier, a combination high-low cut filter section, two stages of X10 gain, and an output buffer amplifier as shown in Figure 4.
b. Single-Ended Mode (-B INPUT). In this mode the input amplifiers are connected together to form a single-ended inverting amplifier as shown in Figure 5. The signal at INPUT B will be amplified and inverted. The signal at INPUT A is not connected. Amplifiers "A" and "B" are summed to provide very low noise characteristics.
c. Differential Mode ($A-B$ INPUT). In this mode the input amplifiers are connected as separate amplifiers which are summed differentially as shown in Figure 6. The output is a function of $A-B$ times the gain of the amplifier.

2-2. CONNECTIONS.

a. Input The Model 103 A has two input receptacles designated "INPUT A" and "INPUT $\mathrm{B}^{\prime \prime}$. These receptacles (J201 and J202) are BNC types which mate with coaxial cables such as Keithley Models 8201 and 8202 coaxial cables. The inner contact of each receptacle is the circuit high. The outer shell is the circuit low which is floating with respect to the Model l03A chas sis. Only INPUT B should be used for single-ended input operation. For differential operation both in.puts should be used. A complete discussion of input modes is given in Section 2-5.
b. Output. The Model 103Λ has two output receptacles designated "HOW OUT" and "HIGH OUT". These receptacles ($J 301$ and J302) are BNC types which mate with coaxial cables such as Keithley Models 8201 and 8202 coaxial cables. The inner contact of "LOW OUT" receptacle is at circuit low (the same as the outer shell of INPUT A and INPUT B). The inner contact of "HIGH OUT" is the amplified output. The outer shell of each "OU'T" connector is at chassis ground. There

FIGURE 4. Overa11 Block Diagram.

FIGURE 5. Single-Ended Mode.

FIGURE 6. Differential Mode.

FIGURE 7a. Power Receptacle.
is no connection between circuit low and chassis ground within the Model 103A itself. Connection can be made via the power supply used with the Model $103 A$. A complete discussion of low to ground connections is given in Section 2-2 c.
c. Power Input. The Model 103A has a special four terminal receptacle on the rear panel for input power connections. This receptacle (P301) is an Amphenol. 126-214 connector which mates with Keithley Model 1083 Power Cable. The four terminals are designated A, B, C, and D as shown in Figure 7a. The Model 1083 Power Cable can be used to connect with the Model 840 Auxiliary Power receptacle or any one of three power receptacles on the Model 103la. To avoid unnecessary ground loops the Model 103A has been designed so that circuit low to chassis ground connection is made at only one point in the power supply (either Model 840 or Model 1031A). If a different power supply is used (a regulated supply or batteries) the connection between circuit low to chassis ground should be made at the supply using a 10 ohm resistor.

2-3. MEASUREMENT CONS IDERATIONS.

a. Noise Sources. The electrical source applied to the input of any amplifier can be composed of voltages or currents which obscure the signal of interest. These extraneous noise signals represent the electrical uncertainty and can be classified in three general categories: Random, " $1 / f$ ", and discrete frequency.

1. Random Noise. This type of noise has a characteristic of constant energy per unit bandwidth. Random noise should be distinguished as to noise generated in the source and noise in the signal recovery system. An essential characteristic of resistive sources is thermal or "Johnson" noise, due to the thermal motion of electrons in the material of the resistor. Its instantaneous amplitude is unpredictable, but the statistical probability that it will have an amplitude in an interval dV volts is given by $p(V) d V$, where $p(V)$ is the Gaussian probability density function:

$$
\mathrm{p}(\mathrm{~V})=\frac{1}{\left(2 \pi \sigma^{2}\right)^{2}} \quad\left(\mathrm{e}^{-\mathrm{v}^{2} / 2 \sigma^{2}}\right) \text { Rq. } 1
$$

FIGURE 7b. Power Inpul Comectios.
where the parameter σ is the rms value ot the fluctuations and the quantity universally accepted to describe the noise output irom a resistor.

$$
\sigma=\mathrm{E}_{\mathrm{JN}}=\left(4 \mathrm{kTR}_{\mathrm{s}} \mathrm{~B}^{\mathrm{B}}\right)^{\frac{1}{2}} \quad \mathrm{Lq} \cdot 2
$$

where $k=$ Boltzmann's constant $=1.38: 10^{-23} \mathrm{~J} / \mathrm{o}_{\mathrm{K}}$; $\mathrm{T}=$ resistor temperature, $O K ; R=r e s i s t a n c e$, ohms; and $B=$ noise bandwidth, hertz. fohnson noise is "white noise"; that is, its rms value pet unit bandwidth (rms density) is constant from de to irequencies extending into the infrared reginn. for analytical purposes, the noisy resistor is roptesented by a noiseless resistor and a noise voltage menerator. The source-resistance Johnson noise is the minimum possible noise that can accompany the signal. Other types of noise from other sources may obscure the signal as well, but the Johnson noise will always be present. Besides the Johnson noise that arises in the source resistance, there is additional Johuson noise produced by resistors in the amplitier.

FLGURE 8. Johnson Noise/ $\sqrt{\text { Be }}$ Versus Source Resistance.
2. Flicker noise (1/f). This noise has a characteristic of constant energy per percent bandwidth. Random noise such as generated by tubes and transistors shows a low frequency characteristic or $1 / \mathrm{f}$ relationship.
3. Discrete Frequency Noise. This is noise generated by various discrete frequency sources such as power lines, radio frequency generators, etc.

b. Shielding.

1. Electric Fields. Shielding is usually necessary when the instrument is in the presence of very large ac fields or when very sensitive measurements are being made. The shields of the measurement circuit and leads should be connected together to ground at only one point. This provides a "tree" configuration, which minimizes ground loops.
2. Magnetic Fields. Magnetic shielding is useful where very large magnetic fields are present. Shielding, which is available in the form of plates, foil or cables, can be used to shield the measuring circuit, the lead wires, or the instrument itself.
c. Grounding. The Model l03A has been designed to operate with either the Model 1031A Power Supply or the Mode1 840 Amplifier. The circuit low is isolated from chassis ground by a 10 ohm resistor in the power supply. For best results, no other connection should be made between circuit low and chassis ground. Since the Model 103 A chassis is connected to earth ground through the accessory power cable, it is not necessary to connect the Model 103 A chassis to ground. When the Model 103 A is connected to the Model 840 differential input (as shown in Figure 15), the CMRR of the Model 840 minimizes the effects of ground loops.

2-4. CONTROLS.

a. Front Panel.

1. INPUT Switches (S201B). These switches are pushbutton types with two normal configurations. The switch positions are designated as "A-B" and "-B". These two pushbuttons are interlocked so that depressing one will release the other automatically. However it is possible to depress both or have both buttons released but these conditions are not useable modes of operation.
2. OVERLOAD RESET Switch (S201A). This switch is a momentary contact pushbutton type. The overload reset circuit is activated only when the pushbutton is depressed. When the OVERLOAD Indicator light goes off the reset has been accomplished.
3. 3dB FREQ Hz (S301). This switch is a dua1concentric type. The inner dial sets the "HIGH Cut" filter in ten positions from 10 Hz to 300 kHz . The outer dial sets the "LOW Cut" filter in nine positions from 0.1 to 10 kHz .
4. GAIN. Gain is set by use of a dual-concentric GAIN switch S302 and GAIN ADJUST control R306. The GAIN ADJUST control has a "CAL" position when set to fully clockwise.

b. Rear Panel.

1. DC OUTPUT ADJ "1" (R312). These controls adjust 2. DC OUTPUT ADJ "2" (R311).

FIGURE 9. Gain/Phase Vs. Frequency For R-C Type Filter.

2-5. OPERATING CONSIDERATIONS.

a. Input Mode. The Model 103A provides several input modes to accommodate either single ended or differential input connections. The INPUT Switch (S201B) has two pushbuttons designated " $A-B$ " and " $-B$ " respectively.

1. Single-ended Operation. This mode of operation is selected by depressing the " $-B$ " pushbutton. The amplifier is thereby connected as an inverting amplifier such that a positive going signal at INPUT B will result in an amplified negative going output. When the " -3 " pushbutton is depressed (completely) the "A-B" pushbutton is released automatically thereby disabling INPUT A (such that a signal connected to INPUT A will not be amplified).
2. Differential Operation. This mode of operation is selected by depressing the "A-B" pushbutton. The amplifier is thereby connected as a differential amplifier such that the output will be the algebraic difference between the signals simultaneously applied to INPUT A and INPUT B. When the "A-B" pushbutton is depressed (completely) the " -3 " pushbutton is released automatically. The signal applied to $I N$ PUT A will always be amplified noninverting such that the output polarity will be the same as the input polarity at INPUT A.

NOTE

The INPUT mode switch (S201B) is designed such that a total oi four switch configurations are possible. These are summarized as in rable 2-1.

TABLE 2-1.
INPUT Mode Switch Configuration

Pushbutton $A-B$	$\begin{gathered} \text { Positions } \\ -B \end{gathered}$	Gain	Output With Positive Signal Applied Simultaneously to INPITT A and INPITH B
Released	Depressed	Normal	INPUT B is amplified and inverted.
Depressed	Released	Normal	INPtII A minus INPUP B is amplified.
Depressed	Depressed	Uncalibrated	Do not use this mode.
Released	Released	Uncalibrated	Do not use this mode.

b. I.OW-HIGH Cut Filters. The LOW and HIGH Cut Filters are adjustable by means of a dual-concentric switch designated $S 301$. The filter positions represent the "3di3. down" frequencies for the overall amplifier. The LOW switch (S301B) has nine positions calibrated in steps from 0.1 Hz to 10 kHz . The HIGH switch (S30lA) has ten positions calibrated in steps from 10 Hz to 300 kHz . Since the two switches are designed to function in overlapping frequency steps, it is possible to set the switches for a LOW cut at

10 kHz and a HIGH cut at 10 Hz , althouph the amplifier response (for this condition) would be extremely compressed. Therefore, for best results, the switches should always be set such that the low cut stiteh position does not overlap the HIGll cut switch position. The gain accuracy of the amplifier is affected by the position of the LOW and HIGH cut ifleers. The error introduced by specific filter positions is given in Table 2-2.

TABLE 2-2.
Gain Attenuation Due to Filter Settings.

Operating Frequency Hz	LOW Cut Setting Hz	HIGH Cut Setting Hz	Amplitude Error at Operating Frequency
1 k	100	100 k	1/2\%
1 k	1.0	10 k	1/2\%
1 k	100	10 k	1%
1 k	300	10 k	5%
1 k	100	3 k	5 \%
1 k	300	3 k	10%
1 k	300	1 k	32%
1 k	1 k	1 k	50%

TABLE 2-3.
Gain Settings of Model 103A

GAIN Switch Setting	GAIN ADJUST Setting	Overall Gain (G) Possible		Calibrated (Yes or No)
100	CAL	$G=100$	(40 dB)	YES
100	Fully CCW	$G<10$		NO
1 k	CAL	$G=1000$	(60 dB)	YES
1 k	Fully CCW	$G<100$		NO
10 k	CAL	$G=10000$	(80 dB)	YES
10 k	Fully CCW	$G<1000$		NO

c. Gain. The gain of the Model 103 A is set by a dual-concentric GAIN control composed of GAIN switch S302 and GAIN ADJUST control R306. The GAIN ADJUST control is a variable gain-attenuation potentiometer. This control can be adjusted from 0 to over 20 dB attenuation. The outer GAIN switch (S302) provides amplifier gains in three steps; 100 (40 dB), $1 \mathrm{k}(60 \mathrm{~dB}$), and $10 k(80 \mathrm{~dB})$. The gain of the Model 103A i.s calibrated only when the GAIN ADJUST is set to "CAL" or 0 dB position. The gain can be set through the use of both controls as shown in Table 2-3.
d. Overloads. Although the Model l03A amplifier is ac coupled to the input, the amplifier has been designed to have a very low frequency response. Therefore the internal circuits have very long time constants. The long time constants affect the operation of the Model $103 A$ under input overloads and power turn-on conditions. Three types of overloads must be considered in this discussion.

1. Transient Overloads. Transient overloads can occur from power turn-on, de input transients, and severe line voltage transients. When power is applied to the Model 103A power input terminals the long time constants of the ± 18 volt filtering circuits can cause a transient overload condition as indicated by the OVERLOAD lamp (DS101). The lamp may remain lighted up to two or three minutes until the transient condition is diminished. After approximately one minute the OVERLOAD RESET pushbution should be depressed to reduce the effects of the transient overload. If a large de offset is applied to the input terminals a transient overload condition can occur indicated by the OVERLOAD lamp. The OVERLOAD RESET pushbutton can be depressed to reduce the effects of the transient overload. Very severe power line transients can cause a transient overload very similar to power turn-on overloads.

NOTE

When the Model 103A is set for maximum gain (10k) overloads up to 100 X full scale ($100 \mathrm{mV} \mathrm{P}-\mathrm{P}$) can be applied and the Model 103A will recover as soon as the overload is removed. This feature is a result of $d-c$ coupled amplifiers (post filter) which have fast recovery times.
2. Prefilter Overloads. Overloads can occur ahead of the HIGll-LOW cut filter which may not cause an overload at the output. Since a prefilter overload may occur due to large amplitude noise signals, the overload is sensed and the OVERLOAD indicator is lighted whenever an overload condition is present. However, prefilter overloads above 100 kHz may not be detected.
3. Steady-State Overloads. Overloads can occur in the output stages due to saturation. Since the output will saturate when driven beyond 10 volts peak-to-peak, the OVERLOAD indicator will be lighted as long as this condition exists. To remove the overload condition, the GAIN setting can be reduced, the input signal can be attenuated, or filtered through the use of the HIGH-LOW cut filters. The OVERLOAD RESET button can be used to restablish normal bias conditions in the amplifier.

NOTE

When the RESET button is depressed, the input impedance is reduced as follows: Input to ground is $50 \mathrm{k} \cap$ (for single-ended) Input to ground is $100 \mathrm{k}_{\substack{ }}$ (for differential)
e. Power Supply. (Mode1 1031A). The Model 103A must be powered by an external power supply since no internal power is provided. The power required by the Model 103 A is ± 18 volts at up to 50 milliamperes current. Since the Model 103 A is primarily designed for use with the Model 840 AUTOLOC Amplifier, the power for the Model 103 A can be supplied by the Model 840 auxiliary power output. In this situation, the Model 103 A would be energized only when the Model 840 power switch was on. When the Model 103 A is used separately, the Model L031A Power Supply should be used.
f. Signal-to-Noise Ratio. The Signal-to-Noise Ratio (SNR) is a quantitive expression for the relative amount of noise which would tend to obscure the signal of interest. In order to evaluate the SNR for the amplifier it is necessary to identify all noise sources associated with the amplifier as well as the source itself. For the purpose of evaluating the Model 103 the equivalent circuit of Figure lo will be used. The Model 103A has been characterized as a noiseless amplifier with the following noise generating or frequency dependent factors.

1. Noise Generators

En = Voltage Noise of Amplifier,
In = Current Noise of Amplifier.
ERI = Voltage Noise (Thermal) of Input Resistor.
ERS $=$ Voltage Noise (Thermal) of Source Resistor.
2. Impedance Factors
*R1 = Resistance of the Amplifier Input.
$* \mathrm{R}_{\mathrm{S}}=$ Resistance of the Source.
$c_{1}=$ Capacitance Shunting the Input (Total).

* or $R_{e}=R_{1} / / R_{S}=$ Equivalent Resistance at Input.

The output of the Model 103A is the amplified signal $E_{S} A_{O}$ plus the total noise referred to the output E_{T} where:

$$
\mathrm{E}_{\mathrm{T}}=\left(\frac{4 k \mathrm{~T} e}{1+w^{2} k e^{2} C^{2}}+\frac{\operatorname{In}^{2} R e^{2}}{1+w^{2} R e^{2} C^{2}}+\mathrm{En}^{2}\right)^{\frac{1}{2}} \mathrm{En}^{\frac{1}{2}} \text { Ao Eq. } 3
$$

$\mathrm{f}_{\mathrm{N}}=$ noise bandwidth
Therefore $S N R=\frac{E_{S} \Lambda_{o}}{\mathrm{E}_{\mathrm{T}}}$ Eq. 4

A popular figure of merit based upon the SNR is called the amplifier "Noise Figure". The Noise Figure (NF) is usually expressed in decibels according to the following definition.
kq. 3

$$
N F=10 \log 10 \quad\left(\frac{\text { Total Noise }}{\text { Thermal Sinise of Souree }}\right)
$$

Using the parameters derived fron the equivalent circuit of Figure lothe NF :or the Yodel lusi dan be exprested as follows: (:or a 1 :or noist bandinitu)

M, m
$N F=10 \log _{10}\left(\frac{4 k T k+\left(1+\omega \operatorname{kic} \theta^{2}\right) 1 n^{2}-1 n^{2} a^{2}}{2}\right)$
\therefore :

An analysis of $N F$ as shown in equation is indicates the following.

1. For an amplifier driven from a voltage source ES the NF is maximum when $\mathrm{K}_{\mathrm{S}}=0$.
2. For a given source resistance, the smallest NF indicates the least noisy amplifier. Thereiore a "roiseless" amplifier has a iff of 0 d! since $\mathrm{E}_{\mathrm{y}}=$ $0, \mathrm{I}_{\mathrm{N}}=0$.

However consideration should be given to thr weability of very low NF when measuring a relatively noisy or high-level signal. An example would be a comparison of two different amplifiers under the came experimental conditions where ks - Iof onns and n_{n} lot be. Assume amplifier l has a X of 20 dis while amplitice 2 has a NF oi 3 d!. Fron the comparison amplitier 2 would appear to be the better amplifier altioush at greater expense. The cotal equivalent noise (referred to the input) would be 130 nv and 18 nv for amplifiers 1 and 2 respectively. However ii the input signal Jevel for the particular experiment was $1-0$ rms then the noise contribution from either amplifier is small compared to the signal of interest. Thus the less expensive instrument (amolifier l) would be the ohoice where economy is important.

FIGURE 10. Equivalent Circuit For Noise Analysis.
G. Impedance Matching. The maximum SNR can be obtained by optimizing both frequency and source impedance. Since the frequency is usually established by the particular experiment or reference generator, impedance matching will provide the most significant improvement of SNR for the majovity of applications. The optimum resistance $R_{\text {opt }}$ is determined as follows:

$$
R_{\text {opt }}=\frac{E_{N}}{I_{N}} \text { (ohras) Eq. 6a }
$$

A matching transformer such as Keithley Model 1037 can be used to improve the SNR when using very low source resistances. For an ideal transformer the resistance reflected across the amplifier input can be expressed as follows:

$$
R=a^{2} R_{S} \quad E q \cdot b b
$$

where $a=$ turns ratio of transformer $R=$ reflected resistance as a function of the actual source resistance R_{S}.

FIGURE 11. Use of Mode1 1037 Transformer.
h. Noise Bandwidth. For a wide band amplifier the noise bandwidth can be defined in terms of the established signal bandwidth. The signal bandwidth for the Model $103 A$ is a function of the high and low cut 3 dB frequencies as in equation 7 .

$$
\text { Signal Bandwidth }=\Delta f=\left(f_{2}-f_{1}\right) \text { Eq. } 7
$$

The noise bandwidth (NBW) for rms random noise in a spectrum from $011 z$ to ∞ is given by equation 8 .

$$
\mathrm{NBW}=\frac{1}{\mathrm{~A}^{2}} \int_{0}^{\infty} / \mathrm{A}_{\mathrm{S}} /^{2} \mathrm{df} \quad \text { Eq. } 8
$$

where $\mathrm{A}=$ Gain Setting
$A_{S}=$ System Gain
System gain can be defined in terms of the 3 dB frequencies of the Model 103 A as in equation 9.

$$
\text { System Gain }\left(A_{S}\right)=\frac{A}{\left(1-j \frac{f}{E}\right)\left(1+j \frac{f}{f^{2}}\right)} \quad \text { Eq. } 9
$$

where $\mathrm{f}=$ operating frequency
$\mathrm{f}_{1}=$ Lower 3 dB frequency
$\mathrm{E}_{2}=$ Upper 3 dB frequency
Thus the equivalent noise bandwidth is given in equa.. tion 10 .

$$
\begin{aligned}
& \text { NBW }=\frac{\pi}{2}\left(\frac{f_{2}^{2}}{f_{2}^{2}-f_{1}^{2}}\right)\left(f_{2}-f_{1}\right) \quad \text { Eq. } 10 \\
& \text { If. } f_{2}>f_{1}, \text { then NBW }=\frac{\pi}{2} \quad(\Delta f)
\end{aligned}
$$

FIGURE 12, Noise Bandwidth.

1. Noise Figure Contours. The notse figure for an amplifier can be expressed in terms of a set of data for all possible operating conditions. One way to graphically portray this data is the noise figure contour. The contours are essentially the loci of data points for a specified noise figure as a function of source resistance and frequency of interest. For example, the Noise Contour shown in Figure 13a shows a locus of data points for which the noise figure is .05 dB . One set of conditions which constitute a data point on this contour would be:

$$
\text { Condition 1. } \begin{aligned}
& \text { Source Resistance }=10^{6} \Omega \\
&=10 \mathrm{~Hz} \\
& \text { Frequency }
\end{aligned}
$$

A second set of conditions would be:

$$
\begin{aligned}
\text { Condition 2. } & \begin{aligned}
\text { Source Resistance } & =10^{5} \mathrm{~A} \\
& \text { Frequency }
\end{aligned}=300 \mathrm{~Hz}
\end{aligned}
$$

The noise contour is a convenient way to specify the noise performance of an amplitier for every source resistance and frequency combination over which it was designed to operate.

FIGURE 13a. Noise Contour Single-Ended Mode. (Typical for the Model. 103A)

FIGURE 13b. Noise Contour Jifierential Mode. (Typical for the Model lu3d)
mit display of $10 \mathrm{mV} / \mathrm{division}$ signals. For fine adjustment control flould be used; otherwise use control 非.
Condition 2. If the output level is not within the nominal $\pm 100 \mathrm{mV}$ at gain of lok the following procedure should be used.
a). Set gain at 10 k (CAL) and I.OW cut switch to 100 Hz .
b). Adjust for output zero using control $\% 2$.
c). Depress and hold the overload resef.
d). Adjust for output zero using control : 1 .
e). Release OVERLOAD RESET and repeat b), c), d).

SECTION 3. APPLICATIONS

3-1. GENERAL. Although the Mode1 103A can be used as a general purpose instrument, a few specific applications can more fully illustrate the important features.

3-2. TYPICAL APPLICATIONS.

a. Oscilloscope Preamplifier. When used as a preamplifier for a dual input oscilloscope the Model 103A can be connected as shown in Figure 14. The oscilloscope chassis should be connected to earth ground directly. The Model 103A outputs can be connect differentially or single-ended if necessary. When connecting the Model 103A output to a single input oscilloscope, the HIGH OUT receptacle should be used. Since the Model 103A low is isolated by 10 ohms above chassis ground when powered by the Model 1031A, no other connection is required. If another power supply is used such as battertes, it is necessary to connect a 10 ohm resistor between low and chassis.
b. Lock-in System Preamplifier. When used with a phase-sensitive detector such as the Keithley Model 840 the Model l03A can be connected as shown in Figure 15. In this application the Mode1 103A outputs mate with the differential input of the Model 840 thereby minimizing the effects of ground loop connections. For this application the Model 840 should be set for "DIFF" input mode. Since the Mode 1840 accessory power output provides low and ground as well as ± 18 volts, it is not necessary to connect the Model 103A chassis to earth ground.

FIGURE 14. Use as an Oscilloscope Preamplifier.

FIGURE 15. Use in System 84 Lockin Amplifier.

SECTION 4. ACCESSORIES

4-1. GENERAL. The following Keithley accessories can be used with the Model 103A to provide additional convenience and versatility.

4-2. OPERATING INSTRUCTIONS. A separate Instruction Manual is supplied with each accessory giving complete operating information.

Model 2000 Rack Mounting Kit

Description:

The Model 2000 is a rack mounting kit which converts any half-rack, Style M instrument from bench mounting to rack mounting in a standard 19 -inch rack. The dimensions are $3-1 / 2^{\prime \prime}$ high $x 19^{\prime \prime}$ wide. The hardware included in this kit consists of a blank panel which can be mounted on either side of a half-rack instrument.

Parts List:

$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Description	Requd	keithley Part fo.
21	Angle Bracket	1	24783A
22	Screws, \ddagger ¢-32 $\times 5 / 8$,	4	-
27	Staked Panel	1	250048

FIGURE 16. Model 2000 Rack Mounting.

Models 8201,8202 Coaxial Cables

Description:
These cables are coaxial types with BNC connectors on each end. The Model 8201 cable is 10 inches long while the Model 8202 is 20 inches.

Application:

These cables mate with the BNC receptacles on the Models 103 A and 840 .

Model 1083 Power Cable

Description:

This cable is a four conductor cable (3 feet long) with Amphenol (126-1427, 126-1429)male and female connectors. The pins are identified as A, B, C, and D.

Application:

The Model 1083 can be used for power connections between: Model 1031A and Model 103 A
or Model 840 and Model 103 A .

Description：
The Model 1007 is dual rack mounting kit with over－ all dimensions $3-1 / 2^{\prime \prime}$ high and $19^{\prime \prime}$ wide．The hard－ ware included in this kit consists of two Angle Brackets，one Mounting Clamp，and extra mounting screws．

Application：
The Model 1007 converts any half－rack，style M instru－ ment from bench mounting to rack mounting in a stand－ ard 19－inch rack．

Installation：
a．Before assembling the rack kit，determine the position of each instrument．Since the instruments can be mounted in either location，their position should be determined by the user＇s measurement．The following instructions refer to instruments＂A＂ and＂B＂positioned as shown in Figure 17.
b．Once the position of each instrument has been determined，the＂side dress＂panels（Item 11）on adjacent sides should be removed．Removal is accom－ plished by loosening the socket head screws（Item 24） in two places．Slide the＂side dress＂panels to the rear of the instrument to remove．
c．The＂mounting clamp＂（Item 23）is installed on instrument＂A＂using the original hardware（Item 24）． With the socket head screws removed，insert the＂mount－ ing clamp＂behind the＂corner bracket＂（Item 7）and replace the screws to hold the mounting clamp in place．

Parts List：

Item No．	Description	$\begin{aligned} & \text { Qty } \\ & \text { Req'd } \end{aligned}$	Keithley Part No．
21	Angle Bracket	2	24783A
22	Screw，非6－32×5／8，Phillips	4	－
23	Mounting Clamp	1	24798B
24	Screw，非6－32x1／2，FH Socket （original hardware）	4	－
		1	－
26	Kep Nut，非6－32	1	－

d．Tighten the socket head screws（Item 24）on instrument＂B＂．Insert the＂mounting clamp＂behind the＂corner bracket＂on instrument＂B＂as shown．
e．When mounting instruments having the same depth， a screw（Item 25）and kep nut（Item 26）are required to secure the two instruments together．
f．Attach an＂angle bracket＂（Item 21）on each instrument using hardware（Item 22）in place of the original hardware（Item 24）．
g．The bottom cover feet and tilt bail assemblies may be removed if necessary．
h．The original hardware，side dress panels，feet and tilt bail assemblies should be retained for future conversion back to bench mounting．

FIGURE 17．Mode1 1007 Dual Rack Mounting．

Model 1031A Power Supply

Description:

The Model 1031 A is a regulated power supply which can deliver - 18 volts d-c at up to a total of 150 mA .

Application:
The Model 1031A has been designed to operate one, two, or three Model 103 A amplifiers. Three power output receptacles are provided on the rear panel to mate
 with accessory Model 1083 power cables.

Model 1037 Transfotmer

Description:

The Model 1037 is an impedance matching transformer with a gain of 100 . A triaxial type receptacle is provided for the primary winding connections (high, low, shield ground). A coaxial type receptacle ior the secondary winding mates with Keithley Model 8202 coaxial cable.

Application:

The Model 1037 has been expressly designed for use with the Model 103 A for applications that require optimum performance from source impedances below 100 ohms. It can also be used with the Model 840 directly to give 100 nv full scale (1 k . input impedance at 100 Hz).

Specifications:

Turns Ratio: 1 to 100
Input and Output: Floating Differential
Input Impedance: 1 kilohm at 100 Hz (2H)
Maximum Input: $200 \mathrm{mV} \mathrm{P}-\mathrm{P}, 10 \mathrm{mV} \mathrm{d}-\mathrm{c}$
Frequency Response: $\pm 3 \%$ from 5 llz to 1 kHz (from a 10 ohm source)
Noise Figure: Better than 3 dB between 5 Hz and 1 kHz (from a 10 ohm source)
Noise(input shorted): Less than 0.4 nV per root Hz between 5 Hz and l kll \%
CMRR: Greater than 110 dB (below 1 kHz)
CMV: $100 \mathrm{v} \mathrm{P}-\mathrm{P}$ maximum
Recommended Load: Greater than 10 megohms
Connectors: Input, Triaxial; Output, Two BNC Types
Dimensions, Weight: $3-1 / 8$ high $\times 4-5 / 8$ wide $\times 3-5 / 8$
deep inches $(80 \times 119 \times 94 \mathrm{~mm})$, Net weight, 20 oz
Accessories Furnished: l- Model 6011 Triaxial cable
2- Model 8202 BNC cables (20't)

Degaussing Procedure:
The input of the Model 1037 is direct coupled with a d-c resistance of about two ohms. The transiormer core will be saturated by a d-c current of approximately 5 mA . A higher current will tend to magnitize the core and therefore increase the microphonic noise in the transformer. To demagnitize the core (degauss) apply a $100 \mathrm{mV} \mathrm{P}-\mathrm{P}$ sine wave at ? 0 - 30 Hz . Slowly decrease the amplitude of the sine wave to zero.

NoTE:

Do not apply more than 1 volt d-c to the Nudel 1037 since the transtormer windings may be danared.

SECTION 5. CIRCUIT DESCRIPTION

5-1. GENERAL. The Mode1 J03A is composed of a main amplifier, overload sensing circuit, high and low frequency adjust circuits, and supply-voltage filter circuits. The main amplifier and frequency adjust circuits are located on the "Mother Board", PC-294. The overload and filter circuits are located on the "Overload Board", PC-293.

5-2. MAIN AMPIIFIER (PC-294). The main amplifier is composed of two identical input amplifiers (identified as "A" and "B"), a differential amplifier stage ("C"), a buffer stage ("D"), two stages of X10 gain ("E" and " F ") and an output buffer stage (" G ") as shown in Figure 18.
a. Stage "A". This amplifier stage is composed of transistors Q203, Q204, Q206, Q208, Q210, Q213 and Q214. Gain is set by resistors R 217 and R 218 where: $\mathrm{Gain}_{\mathrm{A}}=\frac{\mathrm{R} 217+\mathrm{R} 218}{\mathrm{R} 217}=10$.
Potentiometer R 244 adjusts bias current through resistors R213 and R214.
b. Stage "B". This amplifier stage is composed of transistors Q201, Q202, Q205, Q207, Q209, Q211, and Q212. Gain is set by resistors R 212 and R 213 where:

$$
\operatorname{Gain}_{B}=\frac{\mathrm{R} 212+\mathrm{R} 213}{\mathrm{R} 212}=10
$$

Potentiometer R 237 adjusts the bias current through R211 and R212.

FIGURE 18. Overall Block Diagram.

FIGURE 19. Non-inverting Stage "A".
FIGURE 20. Non-inverting Stage "B".
c. Stage "C". This amplifier is composed of integrated circuit QA201A and various gain set resistors which are connected for either single-ended or differential mode.

1. Single-Ended Mode. For this mode amplifiers "A" and "B" are connected as summing inputs to amplifier "C" as shown in Figure 21. The gain of amplifier " C " is determined by resistors R 247 , R248, and R249 as follows:

Gain $_{C}\left(\right.$ with respect to " A ") $=\frac{\mathrm{R} 248}{\mathrm{R} 249}=5$
Gain_{C} (with respect to " B " $)=\frac{\mathrm{R} 248}{\mathrm{R} 247}=5$
Total Gain $C=10$.

FTGURE 21. Single-ended Mode.
d. Stage " D ". This amplifier stage is a unity-gain buffer amplifier composed of QA30l. This amplifier is a self-contained voltage follower integrated circuit package.
e. Stage "E". This amplifier stage is composed of integrated circuit QA302A connected as a non-inverting amplifier as shown in Figure 23. Gain is set by resistors R308 and R313, where:

$$
\text { Gaine }=\frac{\mathrm{R} 308+\mathrm{R} 313}{\mathrm{R} 308}=10
$$

FIGURE 23. Non-inverting Stage "E".
2. Differential Mode. For this mode, amplifiers " A " and " B " are connected to the non-inverting and inverting inputs respectively of amplifier "C" as shown in Figure 22, The gain of the non-inverting input is set by resistors R250, R252, R253, R247, R248 and R249 as follows:
Gainc (non-inverting)
$=\left(\frac{\mathrm{R} 250+\mathrm{R} 253}{\mathrm{R} 250+\mathrm{R} 252+\mathrm{R} 253}\right)\left(\frac{\mathrm{R} 247 / / \mathrm{R} 249+\mathrm{R} 248}{\mathrm{R} 247 / / \mathrm{R} 249}\right)=10$. The gain of the inverting input is set by resistors R247, R248 and R249.

GainC (inverting) $=\frac{R 248}{1247 / / R 249}=10$.
Potentiometer k 253 is the low irequency common mode rejection adjustment

FIGURE 22. Differential Mode.
f. Stage "F". This amplifier stage is composed of integrated circuit $Q A 302 B$ connected as a non-inverting amplifier as shown in Figure 24. Gain is set by resistors R316 and R317, where:

$$
\operatorname{Gain}_{\mathrm{F}}=\frac{\mathrm{R} 316+\mathrm{R} 317}{\mathrm{R} 316}=10
$$

g. Stage "G". This amplifier is a unity-gain buffer amplifier composed of QA303. This amplifier is a self-contained voltage follower integrated circuit package.

FIGURE 24 . Non-inverting Stage " F^{\prime} ".

5-3. FREQUENCY RESPONSE ADJUST CIRCUITRY. (PC-294). The Model 103 A permits adjustment of overall frequency response through the adjustment of separate "HIGH CUT" and "LOW CUT" filter circuits.
a. HIGH CUT Filter. The high-cut filter circuit is adjustable by means of switch S30lA. This switch has 10 positions designated 10 Hz to 300 kHz . Each position represents the " 3 dB Down" point on the overall frequency response characteristic. The filter is essentially a low-pass filter as shown in Figure 25. The response of the filter is approximately given by the equation:

$$
\mathrm{f}_{\mathrm{H}}(3 \mathrm{~dB})=\frac{1}{2 \pi \mathrm{RC}}=\frac{10}{\mathrm{C}} \text { where } \mathrm{C}=\text { value in } \mathrm{uF} .
$$

b. LOW CUT Filter, The low-cut filter circuit is ad justable by means of switch S301B. This switch has nine positions designated 0.1 Hz to 10 klz . Each position represents the " 3 dB Down" point on the overall frequency response characteristic. The filter is essentially a high-pass filter as shown in Figure 25. The response of the filter is approximately given by the equation:

$$
f_{L}(3 \mathrm{~dB})=\frac{1}{2 \pi R C}=\frac{10}{C} \text { where } C=\text { value in } u F .
$$

FIGURE 25. High-Low Cut Filter.

5-6. OVERLOAD CIRCUIT. (PC-293). This circuit senses an overload level at four points in the amplifier as shown in Figure 18. The sense amplifier detects a threshold level of $\div 5$ or -5 volts $d c$. A positive peak detector is composed of integrated circuit QAlOlA. A negative peak detector is composed of integrated circuit QA101E. The threshold voltage is set by voltage divider consisting of resistors R108 and Rllo. Transistor Q103 drives the overload lamp DSl01 whenever an overload is sensed at any of the sense points.

5-7. +15V FILTER CIRCUIT. (PC-293). This circuit is an electronic filter which provides up to 60 dB of rejection at 60 llz . The +15 V derived is used to bias amplifier stages "A", "B", and "C". Transistors Ql04 and Q105 form the "r" filter while Q106 and Ql07 form the "-" filter.

5-4. GAIN ADJUST CIRCUJTRY. (PC-294). The Model 103A provides gain in calibrated steps of 100 , (40 d 3 B) 1 k , (60 dB) and $10 \mathrm{k}(80 \mathrm{~dB}$) by means of switch S 302 . Since amplifier stages " B " and "C" provide a fixed gain of X100 (single-ended mode) amplifier stages "E" and "F" must be switched in to the overall amplifier to provide gains of $1 k$ and $10 k$. The gain can be adjusted by use of an attenuator control designated GAIN ADJ. (R306). This control provides over 20 dB of attenuation. (minimum gain is therefore just under 10)

5-5. DC BIAS ADJUSTMENT CIRCUIT. (PC-294). This circuit is used to adjust the output de level. Two controls on the rear panel are identified as DC OUIPUT ADJ "1" and "2".
a. Adjustment "1" (R312). This control adjusts the d-c voltage offset of QA302A. Resistor R3l2 is connected to the non-inverting input of stage "E" as shown in Figure 26.
b. Adjustment "2" (R311). This control ad justs the $d-c$ current offset of QA 302 A . Resistor R3ll is con~ nected to the inverting input of stage " E " as shown in Figure 26.

FIGURE 26. DC Offset Adjustment.

5-8. ACCESSORY POWER SUPPLY. (MODEL 1031A). The accessory power supply provides regulated ± 18 volts dc at up to 150 mA (sufficient to power up to 3 Model 103A Amplifiers simultancously). The Model 1031A is composed of a "Mother Board", PC-295 and a "Regulator Board", PC-261.
a. Mother Board. Power for the $\pm 18 \mathrm{~V}$ supplies is provided by separate transformer windings and bridge rectifiers as shown on schematic 24808D.
b. Regulator Board. The +18 V regulators are composed of identical components. The regulators are connected as shown in Figure 27.

1. +18V Regulator. Transistor Qlol is the series pass regulator. Integrated circuit QAlOI is a selfcontained reference and regulating circuit. Potentiometer RlO4 is an adjustment control, Resistor Rl02 serves as a current limit device.
2. -18 V Regulator. Transistor Q102 is the series pass regulator. Integrated circuit QAloz is a selfcontained reference and regulating circuit. Potentiometer R109 is an adjustment control. Resistor R107 serves as a current limit device.

FIGURE 27. $\pm 18 \mathrm{v}$ Power Supply.

FIGURE 28. Component Layout, PC-293.

FIGURE 30. Component Layout, PC-295 (Model 103lA power Supply)

FIGURE 31. Component Layout, PC-261 (Mode1 1031A Regulator)

SECTION 6. CALIBRATION

6-1. GENERAL. This section contains information necessary to maintain the instrument to published specifications.

6-2. REQUIRED TEST EQUIPMENT. Test equipment needed for calibrating the Model $103 A$ is described in Table 6-1.

TABLE 6-1.
Recommended Test Equipment For Calibration.

Item	Description	Mfr.	Type
A	Oscilloscope	Tektronix	504
B	AC/DC Voltmeter	Keithley	171
C	Signal Generator	Waverek	110 B
D	Lock-in Amplifier	Keithley	840
E	AC RatioStandard	Gertsch	1011 A
F	Attenuators, 20dB	GR	$874-G 20$
G	Termination, 50Ω	GR	$874-W 50 \mathrm{~B}$
H	Potentiometer lok,		
	IO turn	Keithley	RP41-10K
I	Power Supply	Keithley	1031 A

6-3. ADJUSTMENT AND CALIBRATION PROCEDURE. This procedure should be used whenever it is necessary to calibrate the Model 103A to ensure that it meets published specifications.

a. Initial Turn ON.

1. Place shorting caps on both INPUT A and B and set INPUT switch (S201) to $A-B$.
2. Set both the LOW FREQ. and HIGH FREQ. switch (S301) to the $1 K$ position and set the GAIN t:o 100 and the ADJUST pot (R306) full CW (CAL).
3. Connect the power cable from one of the rear panel outputs of the Model 1031A (Item I) to the POWER INPUT connector (P 301) on the rear panel of the Model 103A and turn the Model 1031A on.
4. After about 5 to 10 seconds, the OVERLOAD Lamp (DS101) should be lighted and after about 1 to 2 minutes it should go off. If not, press the OVERLOAD RESET switch (S201).

b. Bias Adjustment.

1. Set the Model 103A INPUT to $A-B$ and connect the DC Voltmeter (Item B) between TP-201 and TP-203. DC Voltmeter must be floating.
2. Adjust BIAS ADJ pot " A " (R244) for a $50 \mathrm{mV} \pm$ 5 mV reading on the DC Voltmeter.
3. Connect the DC Voltmeter between $T P-204$ and TP-207 and adjust BIAS ADJ pot "B" (R237) for a $50 \mathrm{mV} \pm 5 \mathrm{mV}$ reading on the DC Voltmeter.

c. Output DC Adjustment.

1. Set the Model 103 A GAN to 100 and connect the DC Voltmeter to the Model 103 A output (HJGH and LIOW OUT).
2. The $D C$ Voltmeter should read zero : 10 nV.
3. Set the Model 103 A GAN to IOR atid pust in and hold the Overload Reset switci (s? 11).
4. Adjust the dC OUTPUT NDJ th pot (R312) on the rear of the Model 103 A for zero: LOnV.
5. Release the Reset Switch (S2O1) and adjust the DC OUTPUT ADJ $\$ 2$ pot (R311) on the rear of the Model 103A for zero : 10 mV .
d. Common Mode Rejection Adjust.
6. Set the Model lo3A controls as follows:

$$
\begin{aligned}
& \text { Input }-\mathrm{A}-\mathrm{B} \\
& \text { Lo Cut }-0.1 \mathrm{~Hz} \\
& \text { Hi Cut }-300 \mathrm{kHz} \\
& \text { Gain }-10 \mathrm{~K}
\end{aligned}
$$

2. Comect the Signal Generator (Item C) to both Model 103A INPUTS (A and B) and set the Signal Generator amplitude to 1 volt peak-to-peak and frequency to 100 Hz .
3. Monitor the Model 103A OUTPU't (HIGH and LOW) on Oscilloscope (Item A) and set the Low Frequency CMRR Pot (R253) for minimum deflection. It should be less than 3 volts peak-to-peak and consist main1 y of the second harmonic of 100 Hz . Check at 10 Hz for less than 3 volts peak-to-peak.
4. Increase the Signal Generator frequency to 1.0 kHz and aujust the High Frequency CMRR trimmer capacitor (C211) for minimum deflection. It should be less than 3 volts peak-to-peak.
5. Increase the Signal Generator amplitude slightly. The Model 103A Overload Lamp (DS101) should be lighted.
6. Decrease the Signal Generator amplitude to 1 volt peak-to-peak and set the Model 103 A GAIN to 100.
e. High Cut Adjustment (300knz Gain).
7. Leave all controls set as in step d-6 except set the Model $103 A$ input to " $-B^{\prime \prime}$.
8. Using the $10 K \Omega$ Potentiometer (Item H), set the Signal Generator for $20 \mathrm{NV} \mathrm{p}-\mathrm{p}$ at 300 kHz as monitored on the Oscilloscope.
9. Adjust the 300 kHz trimmer capacitor (C311) for 1.4 volts peak-to-peak at the Model 103A OUTPUT (-3 dB).

6-4. CHECK-OUT PROCEDURE.
a. Gain Check.

1. Connect Potentiometer (Item II) to the Signal Generator output, connect the Potentiometer output to the input of the AC Ratio Standard. Using the Signal Generator variablemattenuator and the Potentiometer (Item H), set the signal at the ΛC Ratio Standard input for $100 \mathrm{mV} \pm 100 \mu \mathrm{~V}$ RMS at 100 Hz as monitored on the AC Voltmeter.
2. Connect the output of the AC Ratio Standard to the $-B$ INPUT of the 103 A and set the 103 A controls as follows:

$$
\begin{aligned}
& \text { Input }-(-) \mathrm{B} \\
& \text { Lo Cut }-0.1 \mathrm{~Hz} \\
& \text { H1 Cut }-300 / \mathrm{Hz} \\
& \text { Gain }-100
\end{aligned}
$$

3. Connect the OUTPUT of the Model 103A to the input of the $A C$ Voltmeter and set the $A C$ Voltmeter Controls as follows:
```
Range Full. Scale - 5 volts
Null Full Scale - 100mv
Function -- AC
Dials - 1.0000
```

4. Set the AC Ratio Standard dials as follows:

$$
\begin{array}{ccccccc}
10^{-1} & 10^{-2} & 10^{-3} & 10^{-4} & 10^{-5} & 10^{-6} & 10^{-7} \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

The AC Voltmeter should read 1.0000 volts $\pm 10 \mathrm{mV}$ RMS .
5. Set the AC Ratio Standard dials as follows:

$$
\begin{array}{ccccccc}
10^{-1} & 10^{-2} & 10^{-3} & 10^{-4} & 10^{-5} & 10^{-6} & 10^{-7} \\
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

and set the 103 A gain to 1 k .
6. The AC Voltmeter should read 1.0000 volt \pm 10 mV RMS.
7. Set the AC Ratio Standard dials as follows:

$$
\begin{array}{ccccccc}
10^{-1} & 10^{-2} & 10^{-3} & 10^{-4} & 10^{-5} & 10^{-6} & 10^{-7} \\
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}
$$

and set the 103A gain to 10k.
8. The AC Voltmeter should read 1.0000 volt \pm 10 mV RMS.
9. Turn the Model 103A GAIN ADJUST (R306) full. CCW. The AC Voltmeter should now read less than 100 mV .

b. Frequency Response.

1. Connect the Signal Generator to the 20 dB pads and 50 ohm termination as shown in Figure 35 and set the Signal Generator for $35 \mathrm{mV} \pm 350 \mu \mathrm{~V}$ at the 50 ohm termination as monitored on the AC Voltmeter.
2. Set the Signal Generator frequency to 15 kHz , the 103 A GAIN to 100 and connect the test set up as shown in Figure 35.
3. Set the AC Voltmeter controls as follows:
Range Full Scale -5 volts
Null Full Scale -100 mV
Polarity
Dials

TEE

FIGURE 32. Test Set-up for Frequency Response Check.
4. Set the Model 103A HIGH FREQ. (S301A) to 300 kHz and the LOW FREQ. (S301B) to 0.1 Hz .
5. Connect the AC Voltmeter to the Model 103A OUTPUT. The AC Voltmeter should read 3.5000 volts $\pm 35 \mathrm{mV}$ RMS.
6. Repeat this check at 20 Hz and 30 kHz .

```
c. Noise Input Shorted.
```

1. Place a shorting cap on the Model 103A - B INPUT and set the Model lo3A controls as follows:
```
Input - - B
Lo Cut - 0.1 Hz
H1 Cut - 300kHz
Gain - 10k
```

2. Connect the Model 103A OUTPUT to the Lock-in Amplifier Signal Channel (+) INPUT and set the Lockin controls as follows:

+ Diff -	$-(+)$
Sensitivity	-.1 mV
Sens. Mult.	$-X 10$
Tuned-Wideband	- Tuned
Time constant	-300 ms
Suppression	$-0 F F$
Phase	-0°
Quadrature	-0°
Freq. Band	$-1-10 \mathrm{~Hz}$
Trigger	$-(+)$

3. Set the Signal Generator for a 20 volr peak-to-peak sinewave at 10 Hz as monitored on the Oscilfoscope and connect the Signal Generiator to the bockin Reference Channe] INPUT.
4. Connect the Lock-in rear pamel DC outpul to the Oscilloscope vertical input and sel the oscilloscope controls as follows:

Vertical input	- 1 Valts/isiv
Coupling.	- A\%
Sweep speres?	- . 1 sec/bia
Trisger	- Interna!
Coupling,	- Ac.

5. Make certain that the Model 103: , lock-in and Oscilloscope are all plugex into a 117 VAC line and turned on. The siqnal observed on the Oscilloscope must not excesd 7.3 volts peak-topeak (\%.5 major divisions).
 WhDERAND, change the lock-in FRBMELACY BAR! to 1K - lokllz and set the sifmal Generator for a 20 volt peak-to-peak sincwave at zinh:
6. Set the oscilloscope vertical input to . 5 volis/div. and swedp speed to 5ms/div. Nll other controls to remain at the same settings.
7. The sifunal observed on the Oscilloscope must not exceed 2 volts prak-to-peak (4 rator divisions).

SECTION 7. REPLACEABLE PARTS

7-1. REPLACEABLE PARTS IAST: This section contains a list of components used in this instrument for user reference. The Replaceable Parts list describes the individual parts giving Circuit Designation, Description, Suggested Manufacturer (Code Number), Manufac-
turer's part Number, and the keithbey part : inmber. Also included is a Figure keference Bumber where applicable. The complete nane and address ot each Manufacturer is listed in the Conl--TO-BAME I.isting; following the parts list.

TABLE: 7-1.
Abbreviations and Symbols

A	ampere		farad		ohn
		Fig	Figure		
CbVar	Carbon Variable				pico (10 ${ }^{-12}$)
Cerd	Ceramic Disc	cicb	Glass enclosed Carbon	PC	Printed Circuit
Cer Prinmer	Ceramic Trimmer			Poly	Polystyrene
Comp	Composition		kilo (10 ${ }^{3}$)		
				Ref.	Reference
DCb	Deposited Carbon		micro (10^{-6})		
Desig.	Designation			TCu	Timmer Copperweld
EAL		Mfr	Meg (10 $)$		
ETB	Flectrolytic, tubular	MtF	Metal Film		
ETT	Elcetrolytic, tantalum	My	Mylar	W	watt
				WW	Wirewound
		No.	Number	WWVar	Wirewound Variable

7-2. ELECTRICAL SCHEMATICS AND DIAGRAMS. Schematics and diagrams are included to describe the electrical circuits as discussed in Section 5. Table 7-2 identifies all schematic part numbers included.

7-3. HOW TO USE THE REPLACEABLE PARTS LIST. This Parts List is arranged such that the individual types of components are listed in alphabetical order. Main Chassis parts are listed followed by printed circuit boards and other subassemblies.

7-4. HOW TO ORDER PAR'TS.
a. Replaceable parts may be ordered through the

TABLH 7-2.
Electrical Schematics and Diagrams

Description	Circuit Designation	Schematic
Mother Board, Part 1	PC-2.94	247731)
Mother Board, Part 2	$\mathrm{P} \mathrm{C}-294$	24730D
Filter \& Overload	$\mathrm{P}^{2} \mathrm{C}-293$	2.47710
Regulator (103 LA)	PC-261.	$248131)$
Power Supply (1031A)	PC-295	$2480^{88}{ }^{\text {D }}$

Sales Service bepartment, Keithley Instruments, Inc. or your nearest keithicy representative.
b. When ordering parts, include the following information.

1. Instrument Model Number.
2. Instrument Serial Number.
3. Part Description.
4. Schematic Circuit Designation.
5. Keithley Part Number.
c. All parts listed are maintained in keithley Spare larts Stock. Any part not listed can be made available upon request. Parts identified by the Keithley Manufacturing Code Number 80164 should be ordered directly from keithley Instruments, Inc.

TABLE 7-3.
PC Board Designation Series

Series	Description	Designation	Page No.
100	()verload \& Filter	PC-2.93	30
200	Input dmplifier	PC-294,	31
300	Output maplifier	P-294	34
100	Regulat.r(1031A)	PC- 361	35
200	Power Supply	$P C-295$	36

TABIE 7-4
Mechanical parts List
Model lo3A Nanovolt Amplilier.

1 tem No.	Description	Qty. Per Assembly	Keithley Part No.	Figure No.
-	Chassis Assembly	-	-	33
-	Front panel Assembly	-	-	
1	Front lanel	1.	24.83513	
2	Screw, Slocted, 6-32 $\times 3 / 8$	4	-	
3	Front Panel bverlay	1	2472913	
4	Rear Panel	1	2.474013	
5	Side fixtrusion l.eft	1	247540	
6	Side Extrusion light	1	247540	
7	Corner liracket	2	247453	
8	Screw, Socket, 6-32 $\quad 1 / 2$	4	-	
9	Screw, Phillips, $6-32 \times 3 / 8$	4	-	
10	Clip for Side press	2	FA-101	
11	Side Dress lanel	2	24.755 B	
-	'lop Cover Assembly	-	-	
12	Top Cover	1	247320	
13	Screw, Socket, 6-32 $\times 5 / 16$	4	-	
-	Bottom Cover Assembly	-	2476313	34
14	Bottom Cuver	1	247330	
15	Screw, Socket, 6-32 : 5/16	4	-	
-	Feet Assembly	-	-	
16	Feet	4	24322 B	
17	Bal!	4	FE-6	
18	Tilt Bail	1	1/147B	
19	Screw, Phillips, 6-32	4	-	
20	Kep Nut, 6-32	4	-	

TABLE 7-5.
Mechanical Parts List Model 1031 A Power Supplv.

Item No.	Description	Qty. Per Assembly	Keithley Part No.	Figure No.
-	Chassis Assembly	-	-	33
-	Front lanel Assembly	-	-	
1	Front Panel	1	24802 B	
2	Screw, Slotted, 6-32 $\times 3 / 8$	4	-	
3	Front Panel Overlay	1	2480113	
4	Rear Panel	1	248040	
5	Side Extrusion Left	1	2483613	
6	Side Extrusion Right	1	248376	
7	Corner Bracket	2	2474513	
8	Screw, Socket, 6-32 $\times 1 / 2$	4	-	
9	Screw, Phillips, 6-32 < $3 / 8$	4	-	
10	Clip for Side Dress	2	FA-101	
11	Side bress Panel	2	2475513	
-	Top Cover Assembly	-	-	
12	Top Cover	1	248273	
13	Screw, Socket, 6-32 5 , 616	4	-	
-	Bottam Cover Assembly	-	2476313	34
14	Bottom Cover	1	247330	
15	Screw, Socket, 6-32 $\times 5 / 16$	4	-	
-	Feet Assembly	-	-	
16	Feet	4	243223	
17	Ball	4	FE-6	
18	Till Bajl	1	1714713	
19	Screw, Phillips, 6-32	4	-	
20	Kep Nut, 6-32	4	-	

FIGURE 33. Chassis Assembly - Exploded View.

FIGURE 34. Bottom Cover Assembly.

MODEL 103 A AMPLIFIER

OVERLOAD \& FILTER CIRCUIT, "100" SERIES. PC-293

CAPACITORS

Circuit Desig.	Value	Ruting	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { lief } \end{aligned}$
Cl0l	. $1 . \mathrm{F}$	250 V	MtF	73445	C280AF-0.1 1 F	C178-. 1.1	28
Cl02	. 10 F	250 V	MtF	73445	C280AE-0.1 1 F	¢178-.18	28
Cl 03	10 2F	20 V	ETt	17554	TSl)1-20-10 $0_{1: F}$	c179-118.1	28
C104	$10 \mu \mathrm{~F}$	20 V	ET「	17554	TSD1-20-10 iF	6179-109	28
C 105	10 HF	20 V	ETH'	17554	TSD $1-20-10 \mathrm{~F}$	6179-109	28
C106	$100 \mu \mathrm{~F}$	25 V	EAL	29309	JC8100258P	C211-1009	28
C 1.07	$500 \mu \mathrm{~F}$	25 V	EAL	29309	JC12500258P	c211.-500.	28
C108	$100 \mu \mathrm{~F}$	25 V	EAL	29309	JC8100258P	C211-100M	28
Cl09	$10 \mu F$	20 V	EIT	17554	TSD1-20-10 ${ }_{\mu} \mathrm{F}$	C179-10.9	28
C110	$500 \mu \mathrm{~F}$	25 V	EAL	29309	JCl 2500258 P	C211-500M	28
C111	$100 \mu \mathrm{~F}$	25 V	EAL	29309	JC8100258P	C211-100M	28
Cll2	$10 \mu \mathrm{~F}$	20 V	ETT	17554	TSD $1-20-10 \mu \mathrm{~F}$	C179-10.	28
Cll 13	$100 \mu \mathrm{~F}$	25 V	EAL	29309	JC8100258P	C211-100M	28

DIODES

Circuit Desig.	Type	Mf. Code	Mfr. Part No.	Keithley Part No.	Fig. kef.
D101	Silicon	01295	$1 N 914$	PF-28	28
D102	Silicon	01295	1 N914	KF-28	28
D103	Silicon	01295	1 N914	KF-28	28
D104	Silicon	01295	1 N914.	RF-28	28
D105	Silicon	01295	1 N914	KF-28	28
Dl06	Silicon	01295	$1 N 914$	RF-28	28
D107	Silicon	01.295	$1 N 914$	RF-28	28
D108	Silicon	01295	1×914	RF-28	28
D109	Silicon	01295	1×645	$\mathrm{RF}-14$	28
D110	Silicon	01295	1×645	RF-14	28

MISCELLANEOUS

Circuit Desig.	Type	Mfr. Code	Mír. Part No.	Keithley part No.	Fig. Ref.
QA101	Operational Amplifier (Dual)	07263	A749C	$1 \mathrm{C}-27$	28
DS 101	Pilot Lamp, Amber	07294	CFO3ACS 1869	PL-51	28

RESISTORS

Circuit Desig.	Value	Rating		Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.
R101	$10 \mathrm{k} \leqslant 2$	10\%, 1/4	W	Comp	44655	CB-103-10\%	R76-10K	28
R102	$10 \mathrm{k} \Omega$	10\%, 1/4	W	Comp	44655	CB-103-10\%	R $76-10 \mathrm{~K}$	28
R103	$1 \mathrm{k} \Omega$	10\%, 1/4	W	Comp	44655	CB-102-10\%	R $76-1 \mathrm{~K}$	28
R104	1 k ¢	10\%, 1/4	W	Comp	44655	CB-102-10\%	R76-1K	28
R105	$49.9 \mathrm{k} \Omega$	1\%, 1/8	W	MtF	07716	CEA-49.9K-1\%	k88-49.9K	28
R106	4.99 k !	1\%, 1/8	W	MtF	07716	CEA-4.99K-1\%	R88-4.99K	28
R107	12.1 k?	1\%, 1/8	W	MtF	07716	CEA-12. $1 \mathrm{~K}-1 \%$	R88-12.1K	28
R108	$4.99 \mathrm{k} \%$	1\%, $1 / 8$	W	MtF	07716	CEA-4.99K-1\%	R88-4.99k	28
R109	$49.9 \mathrm{k} \Omega$	1\%, 1/8	W	MtF	07716	CLA-49.9K-1\%	R88-49.9K	28
R110	12.1 k	$1 \%, 1 / 8$	W	MtF	07716	CEA-12.1K-1\%	R88-12.1K	28

OVERIOAD \& FILTER CIRCUIT, " 100 " SERIES, PC-293 RESISTORS (cont'd)

Circuit Desig.	Value		Rating		Type	Mfr. Code	MEr. Part No.	Keithley Part No.	Fig. Ref.
R111	10	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-103-10\%	R76-10K	28
R112	10	$k \Omega$	1.0\%, 1/4	W	Comp	44655	CB-103-10\%	R76-10K	28
R113	10	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-103-10\%	R76-10	28
R114	560	Ω	10\%, 1/2	W	Comp	01121	EB-560-10\%	R1-560	28
R115	10	Ω	10\%, 1/4	W	Comp	44655	CB-100-10\%	R76-10	28
K116	100	Ω	10\%, 1/4	W	Comp	44655	CB-101-10\%	R76-100	28
R117	1	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-102-10\%	R76-1k	28
R118	10	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-10K-1\%	k88-10k	28
R119	100	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-100K-1\%	1888-100K	28
R120	1	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-102-10\%	R76-1K	28
R121	1	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-102-10\%	k76-1k	28
R122	100	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-100K-1\%	R88-100K	28
R123	10	$k \Omega$	1\%, $1 / 8$	W	MtF	07716	CEA-10K-1\%	R88-10K	28
R124	1	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-102-10\%	R76-1K	28
R125	1	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-102-10\%	R $76-1 \mathrm{~K}$	28
R126	100	Ω	10\%, 1/4	W	Comp	44655	CB-101-10\%	R76-100	28
R127	1.	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-102-10\%	R76-1K	28

TRANSISIORS

Circuit Desig.	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.
Q101	Silicon, NPN, Case ro-106	07263	2N3565	TG-39	28
Q102	Silicon, PNP, Case R-110	07263	S 17638	TG-33	28
Q103	Silicon, NPN, Case T0-106	07263	2N3565	TG-39	28
Q104	Silicon, NPN, Case TO-92	04713	2N5089	TG-62	28
Q105	Silicon, NPN, Case TO-92	04713	2N3904	TG-47	28
Q106	Stilicon, PNP	04713	2N3906	TG-84	28
Q107	Silicon, PNP	04713	2N3906	TG-84	28

INPUT AMPLIEIER CIRCUIT, " 200 " SERIES PC-294
CAPACITORS

Circuit Desig.	Value	Rating	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.
C201	$10 \quad \mu \mathrm{~F}$	20 V	ETT	17554	TSD1-20	C.79-10M	29
C202	0.1 HF	200 V	My	13050	SM1A-0.1 $\mu \mathrm{F}$	c.47-. 1M	29
C203	Not Used						
C204	. $0047 \mu \mathrm{~F}$	600 V	CerD	72982	801-Z5U0-472M	C22-.0047M	29
C205	0.1 价	200 V	My	13050	SM1A-0.1رF	C47-. 1M	29
C206	$100 \mu \mathrm{~F}$	15V, 10\%	ETT	06751	TSD515107A	C205-100M	29
C207	$100 \quad \mu \mathrm{~F}$	15V, 10\%	E'IT	06751	TSD515107A	C205-100M	29
C 208	470 pF	1000 V	CerD	56289	DD-471-10\%	C64-470P	29
C209	470 pF	1000 V	Cerd	56289	DD-471-10\%	C64-470P	29
C210	.001 $\mu \mathrm{F}$	1000 V	CerD	72982	$801000 \times 5 \mathrm{FO}$	C64-.001M	29
C211	7-25 pr	300 V	Var	72982	538-037	C175-7/2.5P	29
C212	. $0022 \mu \mathrm{~F}$	1000 V	Cerd	72982	$811000 \times 5 \mathrm{~F} 0222 \mathrm{~K}$	C22-.0022M	29
C213	. 0022 退	1000 V	Cerd	72982	$811000 \times 5 \mathrm{~F} 022.2 \mathrm{~K}$	C22-.0022M	29
C214	100 HF	15V, 10\%	E'1T	06751	TSD515107A	C205-100M	29
C215	$100 \mu \mathrm{~F}$	10V, 10%	ETT	06751	TSD515107A	C205-100M	29

Input Amplifier circuit, " 200 " SERIES, PC-294
CAPACITORS (cont'd)

Circuit Desig.	Value		Rating		Type	Mir. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.
C216	. 01	A	600	v	Cerd	72982	871-2.5U0-103M	C22-.01m	29
C217	10	: F	20	v	ETT	17554	TSD1-20-10 $\mathrm{F}^{\text {F }}$	C179-10M	29
C218	10	. F	20	v	ETT	17554	TSDI-20-10 $\mathrm{F}^{\text {F }}$	C179-10M	29
C219	. 0047	. F	600	v	Cerb	72982	801-25U0-472M	C22-.0047M	29
C220	10	:F	20	v	ETT	17554	TSDI-20-10 1 F	C179-109	29
C221	. 02	. F	600	v	CerD	72982	811-25U0-203M	C22-.02M	29
C222	. 0047	F	600	v	Cerl)	72982	801~2540-472M	C22-.0047M	29

DIODES

Circuit Desig.	Type	Mfr. Code	Mfr. Part No.	Keithley part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ref. } \\ & \hline \end{aligned}$
D201	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$	01295	1 N 914	RF-28	29
D202	Transistor, NPN, Case TO-106	07263	2N3565	T($\mathrm{i}-39$	29
D203	Transistor, NPN, Case TO-106	07263	2N3565	T 6 - 39	29
D204	Rectifier, $400 \mathrm{~mA}, 225 \mathrm{~V}$	01295	1N645	RF-14	29
D205	Rectifier, $400 \mathrm{~mA}, 225 \mathrm{~V}$	01295	1×645	RF-14	29
B206	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$	01295	1N914	RF-28	29

Miscellaneous

Circuit Desig.	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ref. } \\ & \hline \end{aligned}$
J201	Receptacle, BNC (UC-1094A/U)	02660	31-2221	Cs-249	29
J202	Receptacle, BNC (UG-1094A/U)	02660	31-2221	CS-249	29
S201	Switch, Push Button "INPUT \& RESET"	80164	SW-343	SW-343	29
QA201	Integrated Circuit, (Dual)	07263	U6E7739393	IC-28	29

RESISTORS

Circuit Desig.	Value		Rating		Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ref. } \\ & \hline \end{aligned}$
R201	15	k ?	1\%, 1/8 W		MtF	07716	CEA-15K-1\%	R88-15K	29
R202	15	k?	1\%, 1/8 W		MtF	07716	CEA-15K-1\%	R88-15K	29
R203	100	k	1\%, 1/8 W		MtF	07716	CEA-100K-1\%	R88-100K	29
R204	100	k 3	1\%, 1/8 W		MtF	07716	CEA-100K-1\%	R88-100K	29
R205	10	M?	1\%, 1/2 W		DCb	91637	DCF-1/2-10M	R12-10M	29
R206	10^{9}	2	20\%, 1/2 W		Comp	75042	GBT-109	R37-109	29
R207	1.5	M:	1\%, 1/2 W		MtF	07716	CEC-1.5M-1\%	R94-1.5M	29
R208	109	0	20\%, 1/2 W		Comp	75042	GBT-10 ${ }^{9}$	R37-10 ${ }^{9}$	29
R209	10	$\mathrm{k} \Omega$	$1 \%, 1 / 8$ W		MtF	07716	CEA-10K-1\%	R88-10K	29
R210	1	$\mathrm{k} \Omega$	1\%, 1/8 W	W	MtF	07716	CEA-1K-1\%	R88-1K	29
R211	301	Ω	1\%, 1/8	W	MtF	07716	CEA-301-1\%	R88-301	29
R212	200	0	0.1\%, 1/8	W	MtF	91637	MMF-1/8-200	R179-200	29
R213	1.8	$\mathrm{k} \Omega$	0.1\%, 1/8	W	MtF	91637	MMF-1/8-1.8K	R179-1.8K	29
R214	10	k?	$1 \%, 1 / 8$	w	MtF	07716	CEA-10k-1\%	R88-10K	29
R215	1	k.2	1\%, 1/8	W	MtF	07716	CEA-1K-1\%	R88-1K	29
R216	301	a	1\%, 1/8	W	MtF	07716	CEA-301-1\%	R88-301	29
R217	200	$?$	0.1\%, 1/8	W	MtF	91637	M MF-1/8-200	R179-200	29
R218	1.8	k?	0.1\%, 1/8	W	MtF	91637	M MF-1/8-1.8K	R179-1.8K	29
R219	30.1	k2	1\%, 1/8	W	MtF	07716	CEA-30.1K-1\%	R88-30.1K	29
R220	30.1	k^{3}	1\%, 1/8	W	MtF	07716	CEA-30.1K-1\%	R88-30.1K	29

input amplifier circutt, " 200 " SERIES, PC-294
RESISTORS (cont'd)

$\begin{aligned} & \text { Circuit } \\ & \text { Desig. } \end{aligned}$	Value		Rating		Type	Mfr. Code	Mir. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ket. } \end{aligned}$
R221	2.21.	k	1\%, 1/8	W	MLF	07716	CEA-2.21K-1\%	K88-?.21k	29
R222	30.1	k:2	1\%, $1 / 8$	W	MtF	07716	CEA-30.1K- -1%	R88-30.1k	29
K223	30.1	k?	$1 \%, 1 / 8$	W	MtF	07716	CEA-30.1K-1\%	1888-30.1k	29
R224	2.21	k Ω	1\%, 1/8	W	MtF	07716	CEA-2.21K-1\%	1288-2.21K	2.9
R225	301	Ω	1\%, 1/8	W	MtF	07716	CEA-301-1\%	R88-301	29
R226	301	3	$1 \%, 1 / 8$	W	MtF	07716	CEA-301-1\%	1288-301	29
R227	90.9	kis	1\%, 1/8	W	MtF	07716	CEA-90.9K-1\%	R88-90.9K	29
R228	90.9	$k \Omega$	$1 \%, 1 / 8$	W	MtF	07716	CEA-90.9K-1\%	R88-90.9k	29
R229	10	$k \Omega$	1\%, 1/8	W	MtF	07716	CFA-10K- 1%	R88-10K	29
R230	20	ks2	$1 \%, 1 / 8$	W	MtF	07716	CEA-20K-1\%	R88-20k	$? 9$
R231	1.0	$k \Omega 2$	1\%, 1/8	W	MLF	07716	CEA-10K-1\%	R88-10k	29
R232	20	$k \Omega$	1\%, 1/8	W	MEF	07716	CEA-20K-1\%	K88-10k	29
R233	174	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-174K-1\%	1288-17\%K	29
R234	2.	$k \Omega$	$1 \%, 1 / 8$	W	MtF	07716	CEA- $2 \mathrm{~K}-1 \%$	1288-2K	29
R235	174	ภ	1\%, 1/8	W	MEF	07716	CEA-174-1\%	288-174	29
R236	30.1	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA $-30.1 \because-1 \%$	R88-30.1K	29
R237	2	$k \Omega$	1/4	W	CbVar	37942	MTC-L4	RP67-2K	29
R238	49.9	Ω	1\%, $1 / 8$	W	MtF	07716	CEA-49.9K-1\%	R88-49.9	29
R239	49.9	Ω	1\%, 1/8	W	MtF	07716	CEA-49.9K-1\%	K88-49.9	29
R240	2	$k \Omega$	1\%, 1/8	W	MEF	07716	CEA-2K-1\%	K88-2K	29
R241	174	Ω	1\%, 1/8	W	MtF	07716	CEA-174-1\%	1288-174	29
R242	174	Ω	$1 \%, 1 / 8$	W	MtF	07716	CEA-174-1\%	1288-174	29
R243	30.1	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-30.1K-1\%	k88-30.1k	29
R244	2	$k \Omega$	$1 / 4$	W	CbVar	37942	91-C-L4	kP67-2K	29
R245	49.9	Ω	1\%, 1/8	W	MtF	07716	CEA-49.9K-1\%	R88-49.9	29
R246	49.9	Ω	$1 \%, 1 / 8$	W	MEF	07716	CEA-49.9K-1\%	888-49.9	29
R247	2	$\mathrm{k} \Omega$	0.1\%, 1/8	W	MtF	91637	MFF-1/8-2K	R179-2K	29
R248	10	$k \Omega$	0.1\%, 1/8	W	MtF	91637	MFF-1/8-10K	R179-10K	29
R249	2	$k \Omega$	0.1\%, 1/8	W	MtF	91637	MFF-1/8-2k	R179-2K	29
R250	9.76	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-9.76K-1\%	R88-9.76K	29
R251	10	$k \Omega$	1\%, 1/8	W	NtF	07716	CEA-10K-1\%	R88-10K	29
R252	1	$k \Omega$	0.1\%, 1/8	W	MtF	91637	MFF-1/8-1K	R179-1K	29
R253	500	Ω	1/4	W	CbVar	37942	MTC-I. 4	RP67-500	29
R254	33	Ω	10\%, 1/4	W	Comp	44655	CB-330-10\%	R76-33	29
R255	10	Ω	10\%, 1/4	W	Comp	44655	CB-100-10\%	R76-33	29
R256	10	$k \Omega$	10\%, 1/8	W	MtF	07716	CEA-10K-1\%	K88-10K	29
R257	10	Ω	10\%, 1/4	W	Comp	44655	CB-102-10\%	R76-10	29

TRANSISTORS

Circuit Desig.	Type	Mir. Code	Mir. Part No.	Keithey Part No.	Fig. Ref.
Q201	JFET, Case $\mathrm{TO}-72$	17856	2N4869A	TG-83	29
Q202	NPN, Case TO-92	$04 \% 13$	2N5089	TG-6?	29
Q203	JFET, Case T0-72	17856	2N4869A	TG-83	29
Q204	NPN, Case TO-92	04713	2N5089	TG-62	29
Q205	NPN, Case TO-92	04713	2N5089	TG-62	29
Q206	NPN, Case T0-92	04713	2N5089	TG-62	29
Q207	PNP, Case TO-92	04713	2N3905	TG-53	29
Q208	PNP, Case 'JO-92	04713	2N3905	TC: 5.3	29
Q209	PNP, Case TO-92	04713	2N3905	TC-53	29
Q210	PNP, Case '50-92	04713	2N3905	T C - 5.3	29
Q211	N1'N, Case TO-92	04713	2N3903	T 5 - -49	29
Q212	PNP, Case '0-92	04713	203905	TG-53	29
Q213	NPN, Case TO-92	04713	2 N 3903	TG-49	29
Q214	PNP, Case To-92	04713	2 N 3905	T6-53	29

OUTPUT AMPLIFIER, "300" SERIES PC-294

CAPACITORS

Circuit Desig.	Value		Rating		Type	Mfr. Code	Mfr. Part No.	Keithley part No.	Fig. Ref.
C301	10	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-10 $\mu \mathrm{F}$	C179-10M	29
C302	1	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-1 $\mu \mathrm{F}$	C204-1M	29
C303	. 33	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-0.33 ${ }^{\text {a }}$	C204..33M	29
C304	. 1	$\mu \mathrm{F}$		V					
C305	. 033	$\mu \mathrm{F}$	100	V	My	88480	3FR3331E	C146-.033M	29
C306	. 01	$\mu \mathrm{F}$	200	V	Poly	84171	2PJ-0.01uF	C108-.01M	29
C307	. 0033	μF	1000	V	Cerd	14659	10SS-j)33	C64-.0033M	29
C308	. 001	$\mu \mathrm{F}$	200	V	Poly	84171	2PJ-0.001 F	Cl08-. 001 M	29
C309	330	$\mu \mathrm{F}$	1000	V	CerD	72982	831000X5F	C64-330P	29
C310	82	pF	1000	V	CerD	72982	$831000 \times 5 \mathrm{~F}$	C64-330P	29
C311	7-25	pF	300	V	Var	72982	538-037	C175-7/25P	29
C312	10	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-10 10 F	C179-10M	29
C313	100	$\mu \mathrm{F}$	15	V	ETT	06751	TSD515-100 ${ }^{\text {F }}$	C205-100M	29
C314	10	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-10 4 F	C204-10M	29
C315	1	μF	20	V	ETT	17554	TSD - $20-1 \mu \mathrm{~F}$	C204-1M	29
C316	. 33	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-0.33uF	C204-.33M	29
C317	. 1	$\mu \mathrm{F}$							
C318	. 033	μ^{F}	100	V	My	88480	3FR3331E	C146-.033M	29
C319	. 01	${ }_{\mu} \mathrm{F}$	200	V	Poly	84171	2P.J-0.01uF	Cl08-.01M	29
C320	. 0033	$\mu \mathrm{F}$	1.000	V	CerD	14659	10SS-D33	C64-.0033M	29
C321	. 001	$\mu \mathrm{F}$	200	V	Poly	84171	$2 \mathrm{PJ}-0.001 \mu \mathrm{~F}$	C108-.001.	29
C322	. 01		600	V	CerD	72982	871-25U0-103M	C22-.01	29
C323	10	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-10 HF	C179-10M	29
C324	. 01	$\mu \mathrm{F}$	600	V	Cerd	72982	871-25U0-103M	C22-.01	29
C325	10	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-10 F	C179-10M	29
C326	10	μF	20	V	ETT	17554	TSD1-20-10 F	C179-10M	29
C327	10	$\mu \mathrm{F}$	20	V	ETT	17554	TSD1-20-10 F	C179-10M	29

INTEGRATED CIRCUITS

Circuit Desig.	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.
QA301	Operational Amplifier	12040	LM310H	IC-18	29
QA302	Integrated Circuit, (Dual)	07263	U6E7739393	IC. -28	29
QA303	Operational Amplifier	12040	LM310H1	IC-18	29

MISCELLANEOUS

Circuit Desig.	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.
J301	Receptacle, BNC	95712	6672 NT 34	CS-15	-
J302	Receptacle, BNC	95712	6672 NT34	CS-15	-
J303	Connector, Housing	22526	20370	CS-251	-
J304	Connector, Housing	22526	20370	CS-251	-
P301.	Receptacle, Male, 4 Pins	02660	126-1427	CS-162	-
S301	Switch, Rotary, "LO/III CUT"	80164	SW-342	SW-342	-
S302	Switch, Rotary, 'GAIN"	80164	SW-341	SW-341	-
D301	Diode	01295	1N914	RF-28	-
J305	Not Used				
J306	Receptacle, 22 Pins	09922	PSC4SS2212	CS -182	-

OUTPUT AMPLIFIER, "300" SERIES, PC-294 RESISTORS

Circuit Desig.	Value		Rating		Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	$\mathrm{Fi}_{\mathrm{g}} .$ Ket.
R301	10	Ω	10\%, 1/4	W	Comp	44655	CB-10R-10\%	R76-10	29
R302	15.8	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-15.8K-1\%	R88-15.8k	29
R303	2	$k \Omega$							
R304	10	Ω	10\%, 1/4	W	Comp	44655	CB-10R-10\%	R76-10	29
R305	1.5	$k \Omega$	10\%, 1/4	W	Comp	44655	CB-152-10\%	R76-1.5k	29
R306	15	$k \Omega$	10\%		Var	71450	X3P102B	RP93-15k	29
R307	1	$k \Omega$	0.1\%, 1/8	W	MtF	91637	MMF-1/8-1K	R179-1K	29
R308	1	$k \Omega$	1\%, 1/8	W	MtF	07716	CEA-1K-1\%	k88-1k	29
R309	10	$M \Omega$	1\%, 1/2	W	DCb	91637	DCF-1/2-109	R12-104	29
R310	10	$\mathrm{M} \Omega$	1\%, 1/2	W	DCb	91637	DCF-1/2-10.4	1212-10M	29
R311	50	$k \Omega$	20\%, 2	W	Cermet	71450	5.50	RP74-50k	29
R31.2	50	$k \Omega$	20\%, 2	W	Cermet	71450	550	RP74-50K	29
R313	9	$k \Omega$	0.1\%, 1/8	W	MtF	91637	MMF-1/8-9K	K179.9.9	29
R314	33	Ω	10\%, 1/4	W	Comp	44655	C3-33R-10\%	R76-33	29
R315	10	Ω	10\%, 1/4	W	Comp	44655	CB-10R-10\%	K76-10	29
R316	1	$k \Omega$	0.1\%, 1/8	W	MtF	91637	MMF-1/8-1K	K179-1k	29
R317	9	$k \Omega$	0.1\%, 1/8	W	MtT	91637	MFF-1/8-9K	R179-9K	29
R318	33	Ω	10\%, 1/4	W	Comp	44655	CR-33R-10\%	K76-33	29
R319	10	Ω	10\%, 1/4	W	Comp	44655	CB-10R-10\%	R76-10	29
R320	2	$\mathrm{k} \Omega$	1\%, 1/8	W	MtF	07716	CEA-2K-1\%	1288-2K	29
R321	10	Ω	10\%, 1/4	W	Comp	44655	CB-10R-10\%	K76-10	29
R322	1	$k \Omega$	1.0\%, 1/2	W	Comp	01121	EB-102-10\%	kl-1k	29
R323	10	Ω	10\%, 1/4	W	Comp	44655	CB-10R-10\%	R76-10	29

MODEL 1031A POWER SUPPLY

regulator board, "100" SERIES, PC-261
CAPACITORS

Circuit Desig.	Value	Rating		Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ref. } \\ & \hline \end{aligned}$
Cl01	$10 \mu \mathrm{~F}$	20 V	v	ETT	17554	Tsul-20	C179-10M	31
C102	470 pF	1000 V	V	Cerl	72982	801000×5 F0	C64-470F	31
C103	$10 \mu \mathrm{~F}$	20 V	V	ETT	17554	TSD 1-20	C179-10M	31
C104	$10 \mu \mathrm{~F}$	20 V	V	ETT	17554	TSD1-20	C179-10M	31
C105	470 pF	1000 V	v	Cerd	72982	$801000 \times 5 \mathrm{FO}$	C64-470	31
C106	$10 \mu \mathrm{~F}$	20	v	ETT	17554	TSD 1 -20	C179-10M	31

Misceilaneous

Circuit Desig.	Type	Mfr. Code	Mr. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ref. } \\ & \hline \end{aligned}$
Q101	'Transistor, NPN, Power, Case To-66	02735	40312	TG-54	31
Q102	Transistor, NPN, Power, Case TO-66	02735	40312	TG - 54	31
QA101	Integrated Circuit, Reference Amplifier	07263	USR772339	10-14	31
QA101	Integrated Circuit, Reference Amplifier	07263	U5R772339	10-14	31
JlO	Not Used	--	--	--	--
$J 102$	Test Jack	83330	430	TJ-7	31
J103	Test Jack	83330	4.30	TJ-7	31
$J 104$	Test Jack	83330	430	TJ-7	31

REGULATOR BOARD, " 100 " SERIES, PC-261

RESISTORS

Circuit Desig.	Value		Rating	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.
R101	845	Ω	1\%, 1/8 W	MtF	07716	CEA-845-1\%	R88-845	31
R102	3.0	Ω	5\%, 1/2 W	Comp	01121	EB-3.0-5\%	R19-3	31
R103	2	$k \Omega$	1\%, 1/8 W	MtF	07716	CEA-2K-1\%	R88-2K	31
R104	200	Ω	.75w	Comp	80294	3009 P	RP89-200	31
R105	1.3	$k \Omega$	1\%, 1/8 W	MtF	07716	CEA-1. $3 \mathrm{~K}-1 \%$	R88-1.3K	31
R106	845	Ω	1\%, 1/8 W	MtF	07716	CEA-845-1\%	R88-845	31
R107	3.0	Ω	5\%, l/2 W	Comp	01121	EB-3.0-5\%	R19-3	31
R108	2	$\mathrm{k} \Omega$	1\%, $1 / 8 \mathrm{~W}$	MtF	07716	CEA-2K-1\%	R88-2K	31
R109	200	Ω	. 75 W	Comp	80294	3009P	RP89-200	31
R110	1.3	$k \Omega$	1\%, 1/8 W	MtF	07716	CEA-1.3K-1\%	R88-1.3K	31

MODEL 1031A POWER SUPPLY

MOTHER BOARD, " 200 " SERIES, PC-295.
CAPACITORS

Circuit Desig.	Value	Rating	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	Fig. Ref.	
C201	200	μF	35	V	EAL	90201	MTV200N35	C177-200M

DIODES

Circuit Desig.	Type	Mfr. Code	Mfr. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ref. } \end{aligned}$
D201	Full-wave Bridge, 2A, 100V	83701	PD - 10	RF-36	30
D202	stilicon	01295	1N645	RF-14	30
D203	Full-wave Bridge, 2A, 100V	83701	PD-10	RF-36	30
D204	Silicon	01295	1N645	RF-14	30

MISCELLANEOUS

Circuit Desig.	Type	Mir. Code	Mfr. Part No.	Keithley Part No.	$\begin{aligned} & \text { Fig. } \\ & \text { Ref. } \end{aligned}$
R201	Resistor, 10Ω, 10%, 1W, Comp.	01121	GB-10R-10\%	R2-10	30
R202	Resistor, $100 \mathrm{k} \Omega, 10 \%, 1 / 2 \mathrm{~W}, \mathrm{Comp}$.	01121	EB-104-10\%	R1-100K	30
J201	Connector, 10-Pin	22526	20052	CS-237	30
J202	Connector, 5-Pin	22526	20370	CS-251	30
J203	Connector, 10-Pin	22526	20052	CS-237	30
J204	Receptacle, 15-Pin	09922	PSC4SS 1512	CS-175	30
J205	Socket (for DS201)	72619	7538XP50	SO-58	30
J206	Connector, 5-Pin	22526	20370	CS-251	30
T201	Transformer	80164	-	TR-136	30
DS201	Pilot Lamp	03797	CG03ACSN1. 10	PL-52	3
S201	Switch, "Line"	80164	SW-151.	SW-151	3
S202	Switch, "POWER ON"	80164	-	SW-271	-
F201	Fuse, Slo-Blo, $1 / 8 \mathrm{~A}, 3 \mathrm{AG}$	71400	MDL-1/8A	FU-20	3
P201	Power Cord	70903	172585	CO-6	3
J207	Receptacle, 4-Pin	02660	126-1429	CS-163	
J208	Receptacle, 4-Pin	02660	126-1429	CS-163	3
J209	Receptacle, 4-Pin	02660	126-1429	CS-163	3

CODE-TO-NAME LIST
CODE TO NAME List of Suggested Manufacturers.
Keference: Federal Supply Code for Manfacturers, Cataloging llandbook 14-2.

00656	Aerovox Corp. 740 Belleville Ave. New Bedford, Mass. 02741
00686	Film Capacitors, Inc. 100 Eighth St. Passaic, N.J.
01121	Allen-Bradley Corp. 1201 South 2nd St. Milwaukee, Wisc. 53204
01295	```Texas Instruments, Inc. Semiconductor-Components Div. Dallas, Texas 75231```
01686	RCI. Electronics, Inc. 195 McGregor St. Manchester, N.ll. 03102
02101	```Varo Inc. Electrokinetics Div. Santa Barbara, Calif. 93102```
02660	Amphenol Corp. 2801 South 25th Ave. Broadview, I11. 60153
02734	Radio Corp. of America Defense Electronic Products Camden, N.J.
02735	Kadio Corp. of America Receiving Tube Div. Somerville, N.J.
02777	```Hopkins lingineering Co. 12900 Foothill Blvd. San Fernando, Calif. 91342```
02985	```Tepro Electric Corp. 5 St. Paul St. Rochester, N.Y. 14604```
03508	```General Electric Co, Semiconductor l'roducts Dept. Syracuse, N.Y. 13201```
04009	Arrow-Hart \& Hegeman Electric Co 103 Hawthorne St. Hartford, Conn. 06106
04713	Motorola Semiconductor Prod. Inc 5005 E. McDowell Rd. Phoenix, Ariz. 85008
05079	```Tansistor Electronics, Inc. 1000 West Road Bennington, Vt, 05201```
05397	Union Carbide Corp. Electronics Div. New York, N.Y. 10017
06751	Components, Inc. Arizona Div. Phoenix, Ariz. 85019
06980	```Varian Assoc. ETMAC Div. 301 Industrial Way San Carlos, Calif. 94070```

07137 Transistor Electronics Corp.
Hwy. 169 - Co. Rd. 18 Minneapolis, Minn. 55424

07263 Fairchild Camera \& Inst. Corp. 313 Frontage Road Mountain View, Calif.

07716 IRC, Inc 2850 Mt . Pleasant: Burlington, lowa 52601

08811 GL Flectronics Div. of GL lidustries, Ine. Westville, N.J. 08093

09052 Gulton Industries, Inc. Alkaline Battery Div. Metuchen, N.J.

09823 Burgess Battery Co. Div. of Servel Inc. Freeport, Ill.

09922 Burndy Corp.
Richards Ave.
Norwalk, Conn. 06852
10582 CTS of Asheville Inc.
Mills Gap Road
Skyland, N.C.
11502 IRC Inc.
Greenway Road
Boone, N.C. 28607
11837 Electro Scientific Indus., Inc. 13645 NW Science Park Dr. Portland, Or. 97229

12040 National Semiconductor Corp. Conmerce Irive Danbury, Conn. 06813

12065 Transitron Electronic Corp. 144 Addison St. East Boston, Mass.

12697 Clarostat Mfg. Co., Inc. Lower Washington St. Dover, N.H. 03820

12954 Dickson Electronics Corp. 302 S. Wells Fargo Ave. Scottsdale, Ariz.

13050 Potter Co.
llighway 51 N .
Wesson, Miss. 39191
13327 Solitron Devices, Inc.
256 Oak Tree Road
Iappan, N.Y. 10983
13934 Midwec Corp.
602. Maín

Oshkosh, Nebr. 69154

14655 Cornell-Dubilier Electric Corp. 50 Paris Street Newark, N.J.

14659 Sprague flectris fo.
P.O. BOX 1509

Visalia, Calif. 93278
15238 ITT Semicondurtors
Div. of ITT Corp.

Lawrence, Mas:s . 01841
Daven Div. of T.A. Edison Ind. Mçiaw Ectison Co
Livingtaton, X.J.
161% Teledyne systems Co.
Commanications biv.
Los Angeles, Calit. 90066
17554 Gomponents, Inc.
Smith St.
Biddeford, Ma. (04005
23020 General keed Co.
174 Main St.
Metuchen, $\because .3 .088 / 40$
24655 Geaceal Fadio Co.
22 Baker ive.
Hesit Consord, Mass. 01781

2768? Hathaway lnstruments, Inc,
5800 E. dewell dve.
Denver, Colorado 80222
28520 Heyman Mfg. Co.
$14 / \mathrm{N}, \mathrm{Michigan}$ Ave.
Kenilworth, fi.J.
29309 Richey Electronics Inc. 130 Dickerson Rd. Nashville, Tenn. 37213

35529 Leeds and Northrup 4901 Stenton Ave. Ihiladelphia, Pa. 19144

3794? Mallory, P. K. aind Co., Inc. 3029 E . Washington St. Indianapolis, ind. $\$ 6206$

44655 Ohmite Mfs. Co.
3601 Howard St.
Skokie, III. 60076
53201 Sangamo lilectric Co. 1301 North 11 th Springficld, r11. 62705

54294 Shallcross Mfg. Co. 24 Preston St.
Solma, N.C.
56289 Sprague Filectric Co.
North Adams,
Massachusetts
58474 Superior Electric Co., The 383 Midde St.
isristol, Comm. 06012

61637 Union Carbide Corp.
270 l'ark Ave.
New York, N.Y. 10017

63060	Victoreen Instrument Co. 5806 Hough Ave. Cleveland, Ohio 44103	75042	IRC Inc. 401 North Broad St. Philadelphia, Pa. 19108	86684	Radio Corp. of America Electronic Components \& Devices Harrison, N.J.
70309	Allied Control Co., Inc. 2 East End Ave. New York, N.Y.	75915	Littlefuse, Inc. 800 E. Northwest Hwy. Des Plaines, Ill. 60016	87216	Phileo Corp. Lansdale Div., Church Rd. Lansdale, Pa. 19446
70903	Belden Mfg. Co. 415 So. Kilpatrick Chicago, Ill. 60644	76055	Mallory Controls, Div. of Mallory P. R. \& Co., Inc. Frankfort, Ind.	90201	Mallory Capacitor 3029 East Washington Indianapolis, Ind. 46206
71002	Birnbach Radio Co., Inc. 147 Hudson St. New York, N.Y.	76493	Miller, J. w. Co. 5915 S . Main St. Los Angeles, Calif. 90003	90303	Mallory Battery Co. Tarrytown, New York
71279	Cambridge Thermionic Corp. 430 Concord Avenue Cambridge, Mass.	76545	Mueller Flectric Co. 1583 E. 31st St. Cleveland, Ohio 44114	91637	$\begin{aligned} & \text { Dale Electronics, Inc. } \\ & \text { P.O. Box } 609 \\ & \text { Columbus, Nebr. } 68601 \end{aligned}$
71400	Bussmann Mfg. Div. of McGraw-Edison Co. St. Louis, Mo.	77764	Resistance Products Co. 914 S .13 th St. Harrisburgh, Pa. 17104	91662	Elco Corp. Willow Grove, Pennsylvania
71450	CTS Corp. 1142 W. Beardsley Ave. Rlkhart, Ind.	79727	Continental-Wirt Electronics Corp. Philadelphia, Pa.	91737	Gremar Mfg. Co., Inc. 7 North Ave. Wakefield, Mass.
71468	ITT Cannon Electric, Inc. 3208 Humbolt St. Los Angeles, Calif. 90031	80164	Keithley Instruments, Inc. 28775 Aurora Road Cleveland, Ohio 44139	91802	Industrial Devices Inc. 982 River Rd. Edgewater, N.J. 07020
71.590	Centralab Div. of Globe-Union, Inc. Milwaukee, Wisc. 53212	80294	Bourns, Inc. 61.35 Magnolia Ave. Riverside, Calif. 92506	91929	Honeywell Inc. Micro Switch Div. Ereeport, Ili. 61032
71785	Cinch Mfg, Co. and Howard B. Jones Div. Chicago, Ill. 60624	81073	Grayhill, Inc. 561 Hillgrove Ave. La Grange, I11. 60525	93332	Sylvania Electric Products, Inc. Semiconductor Products Div. Woburn, Mass.
72619	Dialight Corp. 60 Stewart Ave. Brooklyn, N.Y. 11237	81483	International Rectifier Corp. 1523 East Grand Ave. E1 Segundo, Calif.	93656	Electric Cord Co. 1275 Bloomfield Ave. Caldwell, N.J.
72653	G-C Electronics Co. 400 S . Wyman Rockford, 111. 61101	82389	Switcheraft, Inc. 5527 N. Elscon Ave. Chicago, Ill. 60630	94144	Raytheon Co., Industrial Operation Components Div. Quincy, Mass.
72699	General Instrument Corp. Capacitor Division Newark, N.J. 07104	83125	General Instrument Corp. Capacitor Division Darlington, S.C. 29532	94154	```Tung-Sol Electric, Inc. Newark, New Jersey```
72982	Erie Technological Prods Inc. 644 W .12 th St. Erie, Pa. 16512	83330	Smith, Herman H., Inc. 812 Snediker Ave. Brooklyn, N.Y. ll207	94310	Tru-Ohm Products Memeor Components Div. Huntington, Ind. 46750
73138	Beckman Instruments, Inc. Helipot Division Fullerton, Calif, 92634	83594	Burroughs Corp. Electronic Components Div. Plainfield, N.J. 07061	94696	Magnecraft Electric Co. 5579 North Lynch Chicago, Ill.
73445	Amperex Electronic Co., Div, of North American Philips Co., Inc. Hicksville, N.Y.	83701	Electronic Devices, Inc. Brooklyn, New York	95348	Gordos Corp. 250 Glenwood Ave. Bloomfield, N.J. 07003
73690	Elco Resistor Co. 1158 Broadway New York, N.Y.	84171	Arco Electronics, Inc. Community Drive Great Neck, N.Y. 11022	95712	```Dage Electric Co., Inc. Hurricane Road Franklin, Ind.```
74276	Signalite Inc. 1933 Heck Ave. Neptune, N.J. 07753	84411	TRW Capacitor Div. 112 W. First St. Ogallala, Nebr.	97933	Raytheon Co. Components Div. Semiconductor Operation Mountain View, Calif.
74970	Johnson, E. F., Co. 297 Tenth Ave. S.W. Waseca, Minn. 56093	84970	Sarkes Tarzian, Inc. E. Hillside Dr. Bloomington, Ind.	99120	Plastic Capacitors, Inc. 2620 N. Clybourn Ave. Chicago, Ill.

SCHEMATIC DIAGRAMS

Index of Schematic Diagrams.

Schematic	Description	Page
24773D	Mode1 103A, Mother Board Circuitry PC-294, " 200 " Series	40
24780D	Mode1 103A, Mother Board Circuitry PC-294, "300" Series	41.
24771D	Model 103A, Filter \& Overload Circuitry PC-293, "100" Series	42
24813D	Mode1 1031A and 840, Regulator Circuitry PC-261, " 200 " Serdes	43
24784D	Model 1031A, Mother Board Circuitry PC-295, "200" Series	44

KEITHLEY INSTRUMENTS, INC.

MODEL NO. \qquad SERIAL NO. \qquad P.O. NO. \qquad DATE \qquad R-

NAME \qquad PHONE \qquad
COMPANY
ADDRESS \qquad CITY \qquad STATE \qquad ZIP

1. Describe problem and symptoms using quantitative data whenever possible (enclose readings, chart recordings, etc.) \qquad
\qquad (Attach additional sheets as necessary).
2. Show a block diagram of your measurement system including all instruments connected (whether power is turned on or not). Also describe signal source.
(3. List the positions of all controls and switches on both front and rear panels of the instrument. \qquad
\qquad
3. Describe input signal source levels, frequencies, etc. \qquad
\qquad
\qquad
4. List and describe all cables used in the experiment (length, shielding, etc.).
\qquad
\qquad
5. List and describe all other equipment used in the experiment. Give control settings for each. \qquad
\qquad
6. Environment:

Where is the measurement being performed? (Factory, controlled laboratory, out-of-doors, etc.)
What power line voltage is used? Vriation? Frency?
Ambient temperature? ©_ ${ }^{\circ}$. Variation? ${ }^{\circ} \mathrm{F}$. Rel. Humidity? Other \qquad
8. Additional Information. (If special modifications have been made by the user,
please describe below.) please describe below.)

ρ^{∞}

OPTO-ISOLATOR (PC-428) TESTER

OPTO-ISOLATOR (PC-428) TESTER
\qquad
$J 306$

