KEITHLEY

Model 130A/131
Digital Multimeter Instruction Manual

Publication Date: June 1984
Document Number: 130A-901-01C

WARRANTY

Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of two years from date of shipment. During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.

To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the instrument, transportation prepaid, to the indicated service facility. Repairs will be made and the instrument returned, transportation prepaid. Repaired products are warranted for the balance of the original warranty period, or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from unauthorized modification or misuse of any product or part. This warranty also does not apply to fuses, batteries, or damage from battery leakage.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. Keithley Instruments, Inc. shall not be liable for any indirect, special or consequential damages.

STATEMENT OF CALIBRATION

This instrument has been inspected and tested in accordance with specifications published by Keithley Instruments, Inc.
The accuracy and calibration of this instrument are traceable to the National Bureau of Standards through equipment which is calibrated at planned intervals by comparison to certified standards maintained in the Laboratories of Keithley Instruments, Inc.

SPECIFICATIONS

DC VOLTS

RANGE	RESOLUTION	ACCURACY (2 YEARS) $\pm(\%$ rdg + counts $)$ $18^{\circ}-28^{\circ} \mathrm{C}$
200 mV	$100 \mu \mathrm{~V}$	
2 V	1 mV	
20 V	10 mV	$\pm(0.25 \%+1)$
200 V	100 mV	
1000 V	1 V	

MAXIMUM ALLOWABLE INPUT: 1000 V DC or peak AC non-switched, 750 V peak switched.
INPUT RESISTANCE: 10M 2 .
NORMAL MODE REJECTION RATIO: Greater than 46 dB at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$.
COMMON MODE REJECTION RATIO: Greater than 100 dB at DC, 50 Hz and 60 Hz ($1 \mathrm{k} \Omega$ unbalance).

$\overline{\text { AC VOLTS }}$

RANGE	RESOLUTION	ACCURACY (2 YEARS)* $\pm(\% \mathrm{rdg}+$ counts $)$ $18^{\circ}-\mathbf{2 8}{ }^{\circ} \mathrm{C}$	FREQUENCY RANGE
200 mV	$100 \mu \mathrm{~V}$		
2 V	1 mV		
20 V	10 mV	$\pm(1 \%+3)$	$45 \mathrm{~Hz}-500 \mathrm{~Hz}$
200 V	100 mV		
750 V	1 V		

MAXIMUM ALLOWABLE INPUT: 1000 V peak non-switched, 750 V peak switched; continuous except 200 mV range: 15 s max above 300 V .
INPUT IMPEDANCE: $10 \mathrm{M} \Omega$ shunted by less than 100 pF .
RESPONSE: Average responding, calibrated in rms of a sine wave.
*Above 10 counts.

OHMS

	ACCURACY (2 YEARS) $\pm(\% \mathrm{rdg}+$ counts)		
RANGE	RESOLUTION	$18^{\circ}-\mathbf{2 8}^{\circ} \mathrm{C}$	FULL SCALE
VOLTAGE			

MAXIMUM OPEN CIRCUIT VOLTAGE: 1.5V.
MAXIMUM ALLOWABLE INPUT: 300V DC or rms.
DC AMPS

		ACCURACY (2 YEARS) $\pm\left(\% \mathrm{~m}^{2}+\right.$ counts $)$	MAXIMUM FULL SCALE VOLTAGE
RANGE	RESOLUTION	$18^{\circ}-28^{\circ} \mathrm{C}$	BURDEN
2 mA	$1 \mu \mathrm{~A}$	$\pm(0.75 \%+1)$	0.25 V
20 mA	$10 \mu \mathrm{~A}$	$\pm(0.75 \%+1)$	0.25 V
200 mA	$100 \mu \mathrm{~A}$	$\pm(0.75 \%+1)$	0.25 V
200 mA	1 mA	$\pm(2 \%+1)$	0.7 V
10 A	10 mA	$\pm(2 \%+1)$	0.3 V

OVERLOAD PROTECTION: mA input: 2A fuse (250V), externally accessible; 10A input: 20A for 15 s unfused.
AC AMPS

		ACCURACY (2 YEARS) $\pm(\% \mathrm{rdg}+$ counts $)$ $18^{\circ}-28^{\circ} \mathrm{C}$	MAXIMUM FULL SCALE
RANGE	RESOLUTION	$(45 \mathrm{Hz-500Hz)}$	VOLTAGE
2 mA	$1 \mu \mathrm{~A}$	$\pm(2 \%+2)$	0.25 V
20 mA	$10 \mu \mathrm{~A}$	$\pm(2 \%+2)$	0.25 V
200 mA	$100 \mu \mathrm{~A}$	$\pm(2 \%+2)$	0.25 V
2000 mA	1 mA	$\pm(3 \%+5)$	0.7 V
10 A	10 mA	$\pm(3 \%+5)$	0.3 V

OVERLOAD PROTECTION: mA input: 2A fuse (250V), externally accessible; 10A input 20A for 15 s unfused.
*Above 10 counts.

GENERAL

DISPLAY: $31 / 2$ digit LCD, $0.6^{\prime \prime}$ height, with polarity and range indication.
OVERRANGE INDICATION: 3 least significant digits blanked.
MAXIMUM COMMON MODE VOLTAGE: 500V peak.
OPERATING ENVIRONMENT: 0° to $50^{\circ} \mathrm{C}$; less than 80% relative humid-
ity up to $35^{\circ} \mathrm{C}$, linearly derate $3 \% \mathrm{RH} /{ }^{\circ} \mathrm{C}$ from $35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
STORAGE ENVIRONMENT: $-35^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
TEMPERATURE COEFFICIENT: (0° to $18^{\circ} \mathrm{C}$ and 28° to $50^{\circ} \mathrm{C}$): Less than
$0.1 \times$ applicable accuracy specification per ${ }^{\circ} \mathrm{C}$.
POWER: 9V alkaline or carbon-zinc battery (NEDA 1604).
BATTERY LIFE: 100 hours typical with carbon-zinc cells, 200 hours with alkaline cells.

BATTERY INDICATOR: Diplay indicates BAT when less than 10% of life remains.
DIMENSIONS, WEIGHT: 178 mm long $\times 78 \mathrm{~mm}$ wide $\times 42 \mathrm{~mm}$ thick $17.0^{\prime \prime}$ $\times 3.1^{\prime \prime} \times 1.6^{\prime \prime}$). Net weigth $283 \mathrm{gm}(10 \mathrm{oz}$.)
ACCESSORIES SUPPLIED: Battery, test leads and operating instructions.

TABLE OF CONTENTS

General Information
Manual Addenda. 1
Optional Accessories .. . 1
Preparation for Use 2
Battery Installation/Replacement . 2
Safety Symbols and Terms . 3
Safety Precautions . 4
Operation
Safety Precautions for High Energy Circuits 6
Servicing Information
Dissassembly Instruction . 8

Calibration Procedure . 10
Parts List ... 11

GENERAL INFORMATION

The Model 130A Digital Multimeter is supplied ready for use with a battery. Descriptions of other available accessories, and other general information concerning the instrument can be found below.

MANUAL ADDENDA

Information contained in this manual is believed to be accurate at the time of printing. Any improvements or changes to this manual will be documented in an addendum which will be included with the instrument.

OPTIONAL ACCESSORIES

Model 1301 Temperature Probe is a rugged low cost temperature probe designed to allow precision temperature measurement from $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Model 1304 Soft Carrying Case and Stand

Model 1306 Deluxe Case is a rugged DMM carrying case that is large enough to accomodate the Model 130A plus various other DMM articles such as a spare battery, test leads, etc.
Model 1309 Spare Parts Kit is a collection of specially selected parts to maintain up to ten Model 130A DMMs for one year.
Model 1600A High Voltage Probe extends the DMM to 40 kV . It has a 1000:1 division ratio, which means that 1 V on the DMM corresponds to 1 kV .

Model 1651 50-Ampere Shunt allows current measurements to be made up to 50 -amperes. It is a $0.001 \Omega \pm 1 \% 4$-terminal shunt. When the DNM is set to the 2 V range, a 50 -ampere current will correspond to 50 mV (.0500V).
Model 1681 Clip-On Test Lead Set contains two leads, 1.2 m (48 inches) long, terminated with banana plug and spring action clip-on probe.
Model 1682A RF Probe allows voltage measurements from 100 kHz to 250 MHz .
Model 1683 Universal Test Lead Kit consists of two test leads, 1.2 m (48 inches) long with 12 screw-in tips, two banana plugs, two spade lugs, two alligator clips with boots, two needle tips with chucks and four heavy-duty tip plugs.

Model 1685 Clamp-On AC Current Probe measures AC current by clamping onto a single conductor. Interruption of the current path is unnecessary. The Model 1685 detects current by sensing magnetic field produced by current.
Model 1691 General Purpose Test Lead Set consists of two .91m (36 inches) test leads with probe tips terminated in banana plugs.

PREPARATION FOR USE

Carefully unpack the Model 130A from its shipping carton and inspect for any obvious signs of physical damage. Report any damage to the shipping agent at once. The following items are included with every Model 130A shipment.

1. Model 130A DMM
2. Model 130A Instruction Manual
3. 9V Battery NEDA 1604
4. Test Leads
5. Accessories as ordered.

BATTERY INSTALLATION/REPLACEMENT

The battery is accessible from the bottom of the instrument. Note the precautions on the case before installing or replacing the battery.

> WARNING
> Turn the Model 130A off and disconnect test leads before replacing the battery. Put the cover back into place on the compartment before resuming use of the instrument.

A 9 V battery is supplied with the instrument but not installed. To install or replace the battery, remove the cover from the battery compartment by sliding it off in the direction of the arrow located on the battery cover. The battery connector snaps on and off the terminal of the battery. Improper installation of the battery will cause the connecting wires to be severed by excess strain. Proper installation requires that the battery be positioned in such a manner (see drawing) that the leads protruding from the boot of the battery connector face toward the outside of the battery compartment. If the instrument is going to be stored for a long period of time or in a high temperature environment, remove the battery to prevent leakage damage.

Figure 1. Battery Installation

SAFETY SYMBOLS AND TERMS

The symbol

1on the instrument denotes that the user should refer to the operating instructions.
The symbol \mathcal{N} on the instrument denotes that up to 1000 V may be present on the terminal(s).
The WARNING used in this manual explains dangers that could result in personal injury or death.
The CAUTION used in this manual explains hazards that could damage the instrument.

SAFETY PRECAUTIONS

The following safety precautions should be observed before operating the Model 130A DMM.

1. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read over the manual carefully before operating this instrument.
2. Exercise extreme caution when a shock hazard is present at the instrument's input. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30 V rms or 42.4 V peak are present. A good safety practice is to expect that a hazardous voltage is present in any unknown circuit before measuring.
3. Inspect the test leads for possible wear, cracks or breaks before each use. If any defects are found, replace with test leads that have the same measure of safety as those supplied with the instrument.
4. For optimum safety do not touch the test leads or the instrument while power is applied to the circuit under test. Turn the power off and discharge all capacitors, before connecting or disconnecting the instrument.
5. Do not touch any objects which could provide a current path to the common side of the circuit under test or power line (earth) ground. Always make measurements with dry hands while standing on a dry, insulated surface, capable of withstanding the voltage being measured.
6. Exercise extreme safety when testing high energy power circuits (AC line of mains, etc.). Refer to the operation section.
7. Do not exceed the instrument's maximum allowable input as defined in the specifications and operation section.

OPERATION

The following paragraphs contain information concerning basic operation of the Model 130A. It is recommended that this information be reviewed before attempting to operate the Model 130A.

Figure 2. Front Panel Controls
WARNING
Do not apply more than 500 V peak above earth ground to the COM input jack.

CAUTION

Do not under any circumstance, use the 10A COM or 10A HI input jacks with the COM input jack for making measurements. This is a short and will damage the instrument.

SAFETY PRECAUTIONS FOR HIGH ENERGY CIRCUITS

To optimize safety when measuring voltage in high energy distribution circuits, read and use the directions in the following warning.

Abstract

WARNING Dangerous arcs of an explosive nature in a high energy circuit can cause severe personal injury or death. If the meter is connected to a high energy circuit, when set to a current range, low resistance range or any other low impedance range, the circuit is virtually shorted. Dangerous arcing can result even when the meter is set to a voltage range if the minimum safety spacing is reduced.

When making measurements in high energy circuits use test leads that meet the following requirements:

1. Test leads should be fully insulated.
2. Only use test leads than can be connected to the circuit (e.g. alligator or spade plugs) for a hands-off measurement.
3. Use test leads that do not reduce the arc protection by decreasing the voltage spacing.

Use the following sequence when testing power circuits:

1. De-energize the circuit using the regular installed connectdisconnect device such as the circuit breaker, main switch, etc.
2. Attach the test leads to the circuit under test. Use appropriate safety rated leads for this application.
3. Set the DMM to the proper function and range.
4. Energize the circuit using the installed connect-disconnect device and make measurements without disconnecting the DMM.
5. De-energize the circuit using the installed connect-disconnect device.
6. Disconnct the test leads from the circuit under test.

SERVICING INFORMATION

This section contains servicing information for the Model 130A.

WARNING

All service information is intended for qualified electronic maintenance personnel only.

FUSE CHECK

With the instrument set to the $2 \mathrm{k} \Omega$ range, connect a jumper from the V - Ω jack to the mA jack. The display should read approximately . 100. An overrange display would typically indicate a blown fuse. A display reading other than approximately $\mathbf{1 0 0}$ could indicate a defective current input circuit (see schematic).

FUSE REPLACEMENT

A 2 -amp fuse protects the 2 mA through 2000 mA current ranges. To gain access to the fuse, remove the fuse compartment cover in the same manner as removing the battery compartment cover.

> WARNING
> Turn off the Model 130A and disconnect the test leads before replacing the fuse. Reinstall fuse compartment cover before attempting to operate the instrument.

Remove the fuse by pulling outward on the plastic tab that encircles the fuse body. Install the plastic tab on the new fuse and snap the fuse back into the fuse holder. Do not replace the fuse with a higher rated value or instrument damage that is not covered by the warranty may occur.

DIODE TEST

The $20 \mathrm{k} \Omega$ range can be used for testing of semiconductor junctions. A junction is probably good if the Model 130A indicates an overrange reading when the semiconductor is reversed biased, and an on-range reading, when the semiconductor is forward biased. (The $V-\Omega$ jack is positive).

DISASSEMBLY INSTRUCTIONS

Place the unit face down on a bench or other similar surface and remove the battery compartment cover. Disconnect and remove the battery. Remove the two \#4-40 $\times 7 / 8$ retaining screws.

Grasp the bottom cover at the input jack end and with a lifting and forward pushing motion (see drawing), carefully remove the bottom cover. While removing the cover, feed the battery connector through the access hole in the bottom of the battery compartment.

The component side of the PC board is now exposed and the battery can be reconnected for troubleshooting. To read the display, some light downward pressure at the top of the circuit board may be required in order to make contact through the elastomer contact strip between the circuit board and the LCD.

The PC board and LCD assembly are not secured once the case retaining screws are removed. Be careful not to allow the PC board and LCD assembly to fall out or shift out of position during calibration.

To remove the PC board from the top cover, grasp the function switch assembly and lift until the input jacks become disengaged from the cover. The PC board can now be removed using a slight clockwise motion to free the two switch knobs from their normal positions in the case.

The LCD assembly will remain in the top cover when the PC board is removed. Again, be careful not to allow the LCD assembly to fall out accidentally.

The two switch knobs and bushings can be removed from the PC board assembly by simply pulling them off the switch shafts.

The LCD assembly, along with the zebra strip connector, lifts out of the case.

To reassemble the Model 130A, remove the cover on the fuse compartment (to position fuse pulling tab) and reverse the above procedures.

Be sure to replace the on-off switch cover. Common-mode voltage will be present on the switch, creating a possible hazard if the cover is not replaced.

Figure 3. Rear Panel Removal

Figure 4. Model 130A Exploded View

CALIBRATION

Calibration should be performed every two years or whenever the instrument is known to be out of specification. Calibration should be done at an ambient temperature of $23^{\circ} \pm 3^{\circ} \mathrm{C}\left(77^{\circ} \pm 5^{\circ} \mathrm{F}\right)$, with a relative humidity of less than 80%.

Equipment Needed: +190 mV DC voltage source with $.05 \%$ accuracy or better.

Model 130A Settings: DCV function, 200 mV range, $\mathrm{V}-\Omega$ and COM input jacks.

CALIBRATION PROCEDURE

Remove the battery cover to gain access to the calibration pot R103 (see Figure 1). Apply the +190 mV to the Model 130A input and adjust R103 for a display reading of 190.0 ± 1 digit. This is the only adjustment needed to calibrate the instrument. Calibration should be performed every two years.

Model 130A Parts List

Circuit Desig.	Description	$\begin{aligned} & \text { Sch } \\ & \text { Loc } \end{aligned}$	Keithley Part No.
BT101	Battery, 9V, NEDA 1604	C4	BA-14
C101	Capacitor, 110pF, 500V, Mica	H3	C-320-110P
C102	Capacitor, $.047 \mu \mathrm{~F}, 100 \mathrm{~V}$, Polyester	F3	C-305-.047
C103	Capacitor, $.047 \mu \mathrm{~F}, 100 \mathrm{~V}$, Polyester	E4	C-305-.047
C104	Capacitor, $.1 \mu \mathrm{~F}, 100 \mathrm{~V}$, Polyester	G3	C-305-1
C105	Capacitor, . $1 \mu \mathrm{~F}, 160 \mathrm{~V}$, Polypropylene	G3	C-306-1
C106	Capacitor, $1.5 \mu \mathrm{~F}, 20 \mathrm{~V}$, Tantalum	D4	C-314-1.5
C107	Capacitor, $4.7 \mu \mathrm{~F}, 20 \mathrm{~V}$, Tantalum	D2	C-314-4.7
C108	Capacitor, $1.5 \mu \mathrm{~F}, 20 \mathrm{~V}$, Tantalum	D4	C-314-1.5
C109	Capacitor, $.02 \mu \mathrm{~F}, 1000 \mathrm{~V}$, Ceramic Disc	C2	C-316-. 02
C110	Capacitor, $.1 \mu \mathrm{~F}, 50 \mathrm{~V}$, Ceramic	C2	C-238-1
C111	Capacitor, $.1 \mu \mathrm{~F}, 50 \mathrm{~V}$, Ceramic	D2	C-238-1
C112	Capacitor, $1 \mu \mathrm{~F}, 20 \mathrm{~V}$, Tantalum	D2	C-325-1
C113	Capacitor, $4.7 \mu \mathrm{~F}, 20 \mathrm{~V}$, Tantalum	F1	C-314-4./
CR101	Rectifier, 1A, 800V	C4	RF-38
CR102	Rectifier, 75mA, 75V	C6	RF-28
CR103	Rectifier, 75mA, 75V	C 2	RF-28
CR104	Rectifier, 75mA, 75V	C2	RF-28
CR105	Rectifier, 75mA, 75V	D2	RF-28
CR106	Rectifier, 75mA, 75V	D2	RF-28
CR107	Rectifier, 3A, 50V	A4	RF-34
CR108	Rectifier, 3A, 50V	B4	RF-34
CR109	Rectifier, 75mA, 75V	B3	RF-28
DS101	Liquid Crystal Display Connector, Strip	G5	$\begin{aligned} & \text { DD-27 } \\ & \text { CS-376-2 } \end{aligned}$
F101	Fuse, 2A, 250V, 3AB, Ceramic Body	A4	FU-62
J1001	Jack, Input	A1	130A-303
J1002	Jack, Input	A4	130A-303
J1003	Jack, Input	A4	130A-303
J1004	Jack, Input	B5	130A-303
J1005	Jack, Input	B5	130A-303
J1006	Connector Battery	C4	BH-29
$\begin{aligned} & \text { Q101 } \\ & \text { Q102 } \end{aligned}$	Transistor, NPN, Switch, 2N3904 Transistor, NPN, Silicon, GES5818	E5	$\begin{aligned} & \text { TG-47 } \\ & \text { TG-138 } \end{aligned}$
R101	Thick Film Resistor Network	SEV	TF-97
R102	Thick Film Resistor Network	SEV	TF-119
R103	Pot, 5008	G2	RP-119-500
R104	Thick Film Resistor Network	B3,B4	TF-94
R105	Resistor, 1MS, 10\%, 1W, Comp	E4	R-2-1M
R106 R107	Resistor, .1』, .5\%, 1W, WW NOT USED	B4	R-279. 1

Model 130A Parts List (Cont.)

Circuit Desig.	Description	Sch Loc	Keithley Part No.
R108	Resistor, 1002, .1\%, 1/10W, MtF	B3	R-283-100
R109	Resistor, $900 \Omega, 1 \%, 1 / 10 \mathrm{~W}, \mathrm{MtF}$	B2	R-283-900
R110	Resistor, $9 \mathrm{k} \Omega$, . $1 \%, 1 / 10 \mathrm{~W}, \mathrm{MtF}$	B2	R-283-9k
R111	Resistor, $90 \mathrm{k} \Omega, .1 \%, 1 / 10 \mathrm{~W}, \mathrm{MtF}$	B2	R-283-90k
R112*	Resistor, $900 \mathrm{k} \Omega, .1 \%, 1 / 10 \mathrm{~W}, \mathrm{MtF}$	B2	R-283-900K
R113	Resistor, $100 \mathrm{k} \Omega, 10 \%$, 1W, Comp	C1	R-2-100k
R114	NOT USED		
R115	Resistor, $4.72 \mathrm{k} \Omega, .1 \%, 1 / 10 \mathrm{~W}, \mathrm{MtF}$	D3	R-283-4.71k
R116	Resistor, $10 \mathrm{k} \Omega, .1 \%, 1 / 10 \mathrm{~W}, \mathrm{MtF}$	D2	R-283-10k
R117	Thick Film Resistor Network	SEV	TF-96
R118	Resistor, $0.01 \Omega, 0.5 \%, 1 \mathrm{~W}, \mathrm{WW}$	B5	R-280-. 01
R119	NOT USED		
R120	NOT USED		
R121	NOT USED		
R122**	Resistor, 9M ${ }^{\text {, }}$. 08%, 2W	B1	R-281-9M
R123*	Thick Film Resistor Network	B1	TF-104
RT101	Thermistor, 8mA, 500V, PTC	E2	RT-7
S101	Switch, SPDT, ON-OFF	C4	SW-417
S102	Switch, Rotary, Range	SEV	SW-432
S103	Switch, Rotary, Function	E2, F2	SW-433
U101	3 1/2-Digit Single Chip A/D Converter	G4	32440
U102	CMOS Quad Exclusive OR Gate	F5,F6	30847
U103	Low-Power JFet-Input OP-Amp	C2	IC-227
VR101	Diode, Low Voltage Reference Supplied Test Lead Set	G1	$\begin{aligned} & \text { DZ-62 } \\ & \text { CA-8 } \end{aligned}$

*R123 may be installed in your unit in place of R122 and R112 (see alternate configuration).

ALTERNATE CONFIGURATION

COMPONENT LAYOUT

KEITHLE Y

SERVICE FORM

Model No. \qquad Serial No. \qquad P.O. No. \qquad Date \qquad
Name \qquad Phone \qquad
Company \qquad
Address
City \qquad State \qquad Zip \qquad

List all control settings and describe problem. \qquad
\qquad
\qquad
\qquad

Show a block diagram of your measurement system including all instruments connected iwhether power is turned on or not). Also describe signal source.

Where is the measurement being performed? (factory, controlled laboratory, out-of-doors, etc.) \qquad What power line voltage is used? \qquad Variation? \qquad
Frequency? \qquad Ambient Temperature? \qquad ${ }^{\circ} \mathrm{F}$.
Variation? \qquad ${ }^{\circ} \mathrm{F}$. Rel. Humidity? \qquad Other? \qquad

Any additional information. (If special modifications have been made by the user, please describe below.)
\qquad
-Be sure to include your name and phone number on this service form.

KEITHLEY

Keithley Instruments, Inc./28775 Aurora Road/Cleveland, Ohio 44139/U.S.A./(216) 248-0400/Telex: 98-5469 WEST GERMANY: Keithley Instruments GmbH/Heiglhofstrasse 5/D-8000 Munchen 70/314 289/Telex: 1345000 GREAT BRITAIN: Keithloy Instruments, Ltd./1, Boulton Road/Reading, Berkshire RG2 ONL/(0734) 86 12 87/Telex: 847047 FRANCE: Keithley Instruments SARL/2 Bis, Rue Léon Blum/B.P. 60/91121 Palaiseau Cedex/(6) 0115 155/Telex: 600933 NETHERLANDS: Keithley Instruments BV/Arkelsedijk 4/NL-4206 AC Gorinchem/(01830) 25577/Telex: 24684 SWITZERLAND: Keithley Instruments SA/Kriesbachstr, 4/CH-8660 Dubendorf/01821 94 44/Telex: 57536 AUSTRIA: Keithiey Instruments Ges.m.b.H/Doblinger Hauptstr, 32/A-1190 Wien/0222 314 289/Telex: 134500

