
Migrating Test Applications from the Keithley Model
2400 SourceMeter® SMU Instrument to a Series
2600B System SourceMeter SMU Instrument

Introduction
Keithley’s Series 2600B System SourceMeter instruments are
the test and measurement industry’s fastest SMU (Source
Measurement Unit) instruments. Based on Keithley’s third-
generation SMU architecture, the Series 2600B line combines
fast and accurate analog performance with up to two source and
measure channels in a half-rack package. They are also capable
of extremely high speed test sequencing and automation as a
result of their embedded TSP® (Test Script Processor) scripting
engine. Additionally, the Series 2600B provides full software
emulation of Keithley’s second generation SMU architecture,
found in the Model 2400 instruments, enabling these users to
easily and quickly migrate their applications to the new, higher
throughput Series 2600B instruments.

Test software based on SCPI (Standard Commands for
Programming Instrumentation) commands is used to control
the Model 2400 remotely. Series 2600/2600A instruments
don’t natively respond to SCPI commands; instead, they use a
command set known as ICL (Instrument Command Language)
commands. This difference in command sets once required users
to re-write their code if they wished to use a Series 2600/2600A
instrument in the place of a Model 2400. For many users with
existing test stands, re-writing test software to support the
new instrument’s command set was simply not feasible due to
the time and costs involved or simply because the source code
was not available. Today, however, Series 2600B instruments
provide a solution for these users because they are able to
accept the SCPI commands of the Model 2400 by using a 2400
Personality Script.

The TSP scripting engine of Series 2600B instruments runs
a test script named Persona2400 to emulate the operation of a
Model 2400. This script accepts the SCPI commands of the Model
2400 and then quickly and seamlessly translates them into the
native ICL commands that Series 2600B instruments understand.
The TSP scripting engine can accomplish this translation so
quickly that, for a typical Model 2400 SCPI command sequence,
users can expect up to a 2× improvement in test execution time
when they replace a Model 2400 with a Series 2600B instrument
running the Persona2400 script. Once the script is up and
running, from the perspective of a Series 2600B instrument
programmer, the instrument appears simply to be a faster
Model 2400.

Advanced Capabilities of the
2400 Personality Script
Because of the Model 2400’s industry popularity, other SMU
instruments have been developed in an attempt to emulate it;
however, many of the Model 2400’s key capabilities are omitted.
The Series 2600B are the only SMU instruments that emulate all
Model 2400 commands, including source-memory sweeps; linear,
log, and list sweeps; Trigger Link and digital I/O; status model;
and identification query.

Source-Memory Sweeps
Source-Memory sweeps allow the instrument to be pre-loaded
with multiple Source and Measure configurations and then cycle
through them quickly from a single command. Source-Memory
is critical to high-speed production testing with the Model 2400.
The Persona2400 script has full support for Source-Memory
sweeps, including highly advanced features like Source-Memory
location branching.

Linear, Log and List Sweeps
Sweeps allow the instrument to cycle quickly through
multiple source values, taking measurements at each point.
The Persona2400 script uses the Series 2600B line’s advanced
trigger model to perform sweeps, giving sweeps more accurate
timing with less timing jitter than sweeps performed on the
original Model 2400, which results in even more consistent
measurements.

Trigger Link and Digital I/O
The Persona2400 script supports the Trigger Link and digital I/O
ports of the Model 2400. This is critical for high-speed automated
binning applications and synchronization with other pieces of
equipment. The pins from the Trigger Link and digital I/O ports
on the Model 2400 have all been mapped to the pins of the
25-pin D-sub connector on the back of Series 2600B instruments.
Table 1 outlines the complete pin mapping.

Status Model
The status model is used to monitor the state of the instrument
and generate service requests (SRQs) to signal the controller
to perform on operation on the instrument. It is often used to
increase system responsiveness. The Persona2400 script supports
all registers of the 2400 status model and generates SRQs from
these registers.

Number 3193

Application Note
Se ries

A Tektronix Company

Identification Query (Legacy Mode)

Nearly every instrument ever made supports the *IDN?
identification query command. However, most instruments
will only report their own model number, even when they
are attempting to emulate another instrument. This can cause
problems when trying to use the instrument as a drop-in
replacement because when the test software performs an ID
query at startup, it will detect the wrong instrument and will
abort the test. For many test systems, accessing the source
code to change the supported model to the new model is often
difficult if not impossible, especially when pre-compiled drivers
are in use. Series 2600B instruments have a legacy mode to
address this problem. Legacy mode allows the Series 2600B
instrument to respond to an ID query that it is a different
model than it truly is. When emulating a Model 2400, a Series
2600B instrument will report that it is a Model 2400 and will
even report the correct firmware revision; this helps users save
countless hours and headaches.

Performing Model 2400 emulation in script offers Series
2600B instrument users a variety of advantages over other Model
2400 emulation implementations, including the ability to:

•	 Extend the SCPI command set that the instrument accepts,
thereby expanding the capability

•	 Intermix SCPI commands with ICL commands and
TSP scripting

•	 Enter and exit 2400 emulation without the need to re-boot
the instrument

Adapting Existing Applications
for Use with Emulation
To use a Series 2600B instrument as a replacement for a Model
2400 in an existing application, a few simple steps are first
required to configure the Series 2600B instrument and the test
system to operate in emulation mode:

1. Load the Persona2400 script

2. Configure the Model 2400 emulation mode

3. Start the Model 2400 emulation mode

For applications that involve more advanced programming
considerations, two additional steps might be required:

4. Connect Trigger Link and digital I/O (if necessary)

5. Identify and adapt any unsupported or partially supported
commands (if necessary)

Step 1: Load the Persona2400 script

Every Series 2600B System SourceMeter instrument comes with a
USB flash drive that contains the Person2400 script (2600B-800A.
tsp). The script is also available for downloading from Keithley’s
website (www.keithley.com). The script may be loaded onto
the instrument from the front panel using a USB flash drive
or remotely. However, because the USB flash drive offers the

simplest way to load the script into the instrument, it is the
recommended method. To load the Persona2400 script from the
Series 2600B instrument’s front panel:

1. Insert the USB flash drive containing the Persona2400 script
(2600B-800A.tsp) into the front panel USB port.

2. Press the MENU button, then select SCRIPT from the Main
Menu and then press ENTER.

3. From the Script menu, select LOAD then press ENTER.

4. From the Load Script menu, select USB1 and then
press ENTER.

5. Select 2600B-800A.tsp and press ENTER. After a few seconds,
a confirmation message will appear, indicating that loading
the script was successful, then the Script Action menu
will load.

6. Select SAVE-INTERNAL from the Script Action menu, then
press ENTER.

7. Select YES from the Save Script Internal menu and then press
ENTER. After a few seconds, the Script Action menu will
appear again.

8. Press the EXIT button as many times as necessary to return
to the main screen.

At this point, the script is loaded in the instrument’s non-
volatile memory and is ready to run.

Step 2: Configure the Model 2400 emulation mode

Before entering 2400 emulation mode for the first time, we
recommend configuring the emulation mode first. To do this,
go to the front panel of the Series 2600B instrument and follow
these instructions:

1. Press the LOAD key, then select USER from the menu and
then press the ENTER key.

2. Select Configure2400 and then press the ENTER key. Press
the RUN key to load the Configure2400 configuration menu.

The Configure2400 configuration menu has several
selections, but the two most important ones are RunAtPowerOn
and DisplayErrors.

To configure the Series 2600B instrument as a true drop-in
replacement for a Model 2400, RunAtPowerOn must be enabled.
This will configure the Series 2600B instrument to run the
Persona2400 script automatically and start the emulation mode
immediately after the instrument boots. If RunAtPowerOn is not
enabled, the 2400 emulation mode must be started manually.

DisplayErrors allows enabling or disabling the display of
errors on the instrument’s front panel. If enabled, when an
error occurs, test execution will pause and an error message
describing the error will be displayed on the front panel for a
few seconds before execution resumes. This is most useful for
debugging, so we recommend enabling it the first time a Series
2600B instrument is used in place of a Model 2400 because it

will help quickly identify if the code is using any
unsupported commands. However, to ensure
the fastest execution time, DisplayErrors should
be disabled.

After each option in the Configure2400
configuration menu has been selected and
configured, the instrument will return to its main
screen. Configure2400 is the currently active
script, so simply press the RUN key to re-enter the
Configure2400 configuration menu.

Step 3: Start the Model 2400 emulation mode
If the Model 2400 emulation mode is configured
and RunAtPowerOn is enabled, simply power the
instrument off and back on and the Model 2400
emulation mode will begin automatically after the
instrument boots. If RunAtPowerOn is not enabled
or there’s some reason not to reboot, then the
emulation mode can be started manually from the
front panel by doing the following:

1. Press the LOAD key, then select USER from the
menu and then press ENTER.

2. Select Run2400 from the USER TESTS: menu
and then press ENTER.

Alternatively, the emulation mode can be
started remotely by sending the command
Engine2400() to the instrument. This command
is useful in test systems where it’s necessary to be
able to start the emulation mode without operator
intervention.

Advanced Programming Considerations
Step 4: Connect Trigger Link and Digital I/O
The Persona2400 script maps the Trigger Link and
digital I/O lines of the Model 2400 to the digital I/O
lines of the Series 2600B’s 25-pin D-sub connector.
Table 1 outlines a complete pin mapping. Although

the Persona2400 script does support Trigger Link, it’s important to be aware of
the limitations.

On a Model 2400, it is possible to use a single Trigger Link line as both an
input trigger and an output trigger at the same time. The digital I/O of Series
2600B instruments does not support this mode of operation, so input and
output triggers must be on separate Trigger Link lines.

The other limitation is in how the input trigger can be assigned to event
detectors in the 2400 trigger model. In the trigger model of the Model 2400,
the Source, Delay, and Sense event detectors can all be enabled to wait on
a single input trigger line. If all three event detectors are enabled, then the
input trigger line needs to be triggered three times to get past all three event
detectors (refer to Figure 1 for details). The Series 2600B’s trigger model does
not support this mode of operation, so the input trigger may only be assigned
to a single event detector.

For most users, these differences in capability will not cause a problem
because these modes of operation aren’t used often. However, it’s important to
be aware of them for troubleshooting purposes if the application uses Trigger
Link and any issues arise in getting the application up and running.

Model 2400 Line

Series 2600B
DB-25

Connector Pin
TLink1 1
TLink2 2
TLink3 3
TLink4 4
Digital output 1 5
Digital output 2 6
Digital output 3 7
Digital output 4 (or EOT, /EOT,
BUSY, /BUSY) 8

SOT 9
Ground 15-21
+5V 22, 23, 25
Output enable (OE) or interlock (INT) 25

Table 1. Model 2400 to Series 2600B Digital I/O Mapping Figure 1. Model 2400 trigger model limitation in emulation mode

Step 5: Identify and adapt any unsupported
or partially supported commands

The Persona2400 emulation script is fully compatible with
most of the SCPI commands of the Model 2400, but due to
fundamental differences between Series 2600B instruments and
the Model 2400, some commands are not supported or are only
partially supported. If a command is unsupported or partially
supported, it is usually because there is no way to perform the
operation the command was intended to execute on a Series
2600B instrument.

One example of a partially supported command is
:SYSTem:AZERo:CACHing:REFResh. This command, which
refreshes the autozero cache on the Model 2400, has no Series
2600B equivalent because Series 2600B instruments handle
autozero caching completely automatically and therefore omits a
manual refresh method. The command is partially supported in
that the instrument will accept the command without generating
an error, but the instrument will not perform any operations
when the command is received.

For most partially supported commands, accepting the
command and doing nothing is the default case because these
commands will not affect the operation of the overall test.
Therefore, it is usually safe to leave them in existing test code
without modification. However, for some partially supported
commands, operation will be affected, which will usually result
in the occurrence of an error later in the test program, most
often when the :INIT command is called. This type of error is
most likely to occur with the partially supported commands that
configure the input and output Trigger Link triggers as described
previously. For commands such as these, if the command is being
used to configure the instrument in an unsupported mode of
operation, code adjustments will be necessary.

Unsupported commands are those for which no operation
exists and accepting the command and ignoring it would
result in incorrect operation in all cases. For example, the
:SYSTem:GUARd command configures the guard signal on the
Model 2400 for either ohms guard or cable guard. Series 2600B
instruments are equipped with hardware that only supports
cable guard and cannot support ohms guard in any way. If
the Series 2600B instrument were to accept and ignore the
:SYSTem:GUARd command, the user might believe that ohms
guard was supported when it is not and the only indication of
this would be incorrect measurements. Allowing this to happen
would make it hard to identify the source of the problem in the
system; therefore, it is better not to support the command at all
and generate an error instead.

The fastest and simplest way to find unsupported commands
in the code is to enable DisplayErrors, then step through the
code line by line. When the instrument arrives at a line that
sends an unsupported command, an error -113: Undefined
header message will appear on the front panel of the instrument.

Assuming that the code runs without error on a Model 2400,
then the line sent just prior to the display of the -113 error will
be an unsupported command.

Unsupported commands must be removed from the code to
avoid generating errors.

Diagnostic Commands
The Persona2400 script supports some additional SCPI
commands that are not a part of the Model 2400’s command
set. These commands are used to perform diagnostic functions
and can be found in the DIAGNOSTIC sub-system of the SCPI
command tree. These commands are of great utility to users
who develop systems with the Series 2600B that must support
both SCPI commands and ICL commands. Table 2 lists the
DIAGNOSTIC commands available.

Command Description
:DIAGnostic:ECHO
<String>|<NRf>|<NDN>|<Bool>

Will cause the instrument to send back to
the controller the parameter value.

:DIAGnostic:EXIT
Exits the 2400 emulation mode and
returns the instrument to accepting
ICL commands.

:DIAGnostic:VERSION? Queries the version of the 2400
Personality script.

:DIAGnostic:MODEL?
Queries the actual model number of the
instrument the 2400 Personality script is
running on.

:DIAGnostic:FWREV?
Queries the actual firmware revision of the
instrument the 2400 Personality script is
running on.

:DIAGnostic:DISPlay:ERRors
<bool>

Turns on or off the displaying of errors
on the front panel. If turned on, an error
message will be displayed on the front
panel and execution will be paused
momentarily when an error occurs. If
turned off, a message will not display
when the error occurs and execution will
not pause. Errors will still be added to the
error queue no matter what this is set to.

Table 2. Diagnostic commands available in the Persona2400 script

Adding New SCPI Commands to the Script
One of the biggest advantages of the Model 2400 emulation
mode running as a script on a Series 2600B instrument
rather than in firmware is that the Persona2400 script is open
source code, so any user is free to modify it to change or add
functionality. Therefore, if a command is listed as unsupported,
but there’s an implementation method that would work for a
particular application, the new command can simply be added to
the script, thereby extending its capability.

To edit the Persona2400 script, first load it into an editing
environment such as Keithley Test Script Builder, which is
included on the CD that comes with every Series 2600B
instrument; Test Script Builder is also available for download
from www.keithley.com. Test Script Builder is designed for
editing TSP scripts and will make the editing process easier;
however, a simple code editor such as Notepad can be
used as well.

Follow this procedure to add a new command to the script:

1. Add the new command to the global command tree.

2. Add command aliases to support both long and short forms

of the command.

3. Implement the command.

a. Assign parsers to parse any parameters the command

may accept.

b. Add a function to implement the operation of

the command.

c. Add a function to implement the query operation of

the command.

To clarify this procedure, the following example illustrates

how to add a new command to the :DIAGnostic sub-system

that will allow setting and querying the state of the five unused

digital I/O pins of the Series 2600B 25-pin D-sub connector.

Adding a command to the global command tree

The global command tree contains all the commands that the

Persona2400 script accepts; this is where to start when adding a

new command.

Press Ctrl-F in the code editor to open the “Find” window and

search for the line gCommandTree =. This line identifies the

top of the global command tree table. The global command tree

table is organized by sub-systems and each sub-system is added

as a sub-table of the global command table. This is where to add

the new command in its long form.

Scroll down through the table or use the “Find” window to

find the “DIAGNOSTIC” sub-table, which looks like this:

[“DIAGNOSTIC”] =

{

 [“ECHO”] =

 {

 mCommand = {}

 },

 [“EXIT”] =

 {

 mCommand = {},

 },

 …

Several more sub-tables can be found under the

“DIAGNOSTIC” sub-table, each one representing a command in

the :DIAGnostic sub-system. To add the new command, add

the following lines of code to the end of the “DIAGNOSTIC”

sub-table:

 [“DIGIO”] =

 {

 mCommand = {},

 mQuery = {},

 },

Adding the “DIGIO” sub-table tells the command parser that
:DIAGnostic:DIGIO is a valid path. To let the parser know that
:DIAGnostic:DIGIO is also a valid command, mCommand = {}
must be added as an entry of the “DIGIO” sub-table. To let the
parser know that :DIAGnostic:DIGIO? is a valid query, mQuery
= {} must be added as an entry of the “DIGIO” sub-table.
Only add the mCommand or mQuery lines if the command will
support them.

Adding command aliases
After the new command is added to the global command tree,
aliases must also be added in order to call the command using
the short form rather than the long form. The full form of the
new command is :DIAGnostic:DIGIO and the short form is
:DIAG:DIGIO. In order for the short form to work, an alias for it
must be added to the script.

Search for the word “Aliases” using the code editor’s “Find”
window to go to the top of the section of the Persona 2400
script where aliases are defined. The aliases are grouped by sub-
system and listed in alphabetical order, but an alias can be added
anywhere in this section. However, inserting the alias for the
new command near the other aliases for its particular sub-system
is recommended.

Use the “Find” window to search for gCommandTree[“DIAG”].
Under this line, add the following code:

gCommandTree[“DIAG”][“DIGIO”] =
gCommandTree[“DIAGNOSTIC”][“DIGIO”]

The command illustrated in this example has only one short
form, so only one alias is needed. However, if a new command
has more than one short form, it should be added here as well.
Refer to the aliases for other commands for additional examples.

Implement the command
The new command in this example is intended to let us set the
value of the unused digital I/O bits on the Series 2600B’s 25-pin
D-sub and perform a query to read the bits. To do this, the
command will need to accept an integer number as a parameter
and then use this number to set the value of the digital I/O bits.
To do this, we must first assign our command a parameter parser
to parse the command’s parameter, then create two functions:
one to implement the command and one to implement
the query.

Use the code editor’s “Find” window to find this line:

gCurrentRoot = gCommandTree[“DIAGNOSTIC”]
[“DISPLAY”][“ERRORS”]

The lines immediately following this line assign the
:DIAGnostic:DISPlay:ERRors command a parser to parse its
parameter, then assign it functions that implement the command
and query. These lines of code are similar to those required to
implement the new command and are a good reference point
from which to start.

To implement the new command, scroll down below the lines
of code that implement the :DIAGnostic:DISPlay:ERRors
command and add the following line of code to assign
gCurrentRoot to the new command.

gCurrentRoot = gCommandTree[“DIAGNOSTIC”]
[“DIGIO”]

In this line, gCurrentRoot acts much like a pointer in C/
C++ to point to our command in the global command tree. This
is done to reduce code clutter and improve code execution speed
because the TSP engine won’t have to parse and decode the
entire gCommandTree[“DIAGNOSTIC”][“DIGIO”] variable name
every time something has to be changed.

The following sections describe how to assign the parameter
parser and add the functions to implement the command.

Assigning a parser to parse parameters

In order for the Persona2400 script to support command
parameters, the command must be assigned one or more
parameter parsers. A parameter parser examines the parameters
at the end of the command string and parses them based on an
expected data type. For example, if the parameter following a
command is supposed to be a Boolean value, then a Boolean
parameter parser should be assigned to it. If the command
parameter that is passed is a valid Boolean value, then its value
will be made available to the function that implements the
command. If the parameter is anything else, the Persona2400
script will handle it and generate an instrument error. If it’s
not necessary for the command to support parameters, then
assigning parameter parsers is not necessary and this step can
be skipped.

The new command in this example expects an Integer as a
parameter, so it should be assigned an Integer parser. To add the
parameter parser to the new command, add the following line of
code after the gCurrentRoot assignment.

gCurrentRoot.mCommand.mParameters =
gParserTable.mInteger

The value assigned to gCurrentRoot.mCommand.
mParameters is expected to be a table of parsers. However, in
this line of code, it appears as though it is not a table but perhaps
the parser itself has been assigned, so this shouldn’t work.
However, the reason gParserTable.mInteger is acceptable
is because it is not the parser but rather a predefined table of
parsers that contains only the integer parser. The definition for

gParserTable.mInteger can be found elsewhere in the script
and includes this line:

gParserTable.mInteger = {gParserTable.
mParseInteger}r

For our new command, we assigned an integer parser
because we want our command to output the integer value on
the unused digital I/O bits, but for other commands, it may be
necessary to parse a different data type. Table 3 lists several
different data types and the names of the predefined parser
tables that support those types.

Data Type Parser Table Name
Boolean gParserTable.mBoolean
Integer gParserTable.mInteger
Floating Point Number gParserTable.mNRf
String gParserTable.mString

Table 3. Parameter parsers for common data types

Add a function to implement the
operation of the command

In order for a command to do anything, it needs some code
to run. To do this, the Persona2400 script needs execution
functions added to the command’s sub-tables. Previously, when
we added a new command to the global command tree, we
placed two sub-tables named mCommand and mQuery in our
command’s table. It is in these sub-tables where the Persona2400
script looks for the command’s code and where we need to place
the code that implements our command. We do this by placing a
function named mExecute in each of these sub-tables.

To implement the command, place the following code after
the line that assigns the parameter parser.

gCurrentRoot.mCommand.mExecute = function
(lParameters)

-- Save the current writeprotect mask
to restore later

local bitMask = digio.writeprotect

-- Write protect the lower bits that
are in use

digio.writeprotect = 511

-- The 5 unused digio bits are the
upper bits.

-- Multiply by 512 to shift the value
left 9 bits

-- then write to the port.

digio.writeport(lParameters[1] * 512)

-- Restore the previous write protect
state

digio.writeprotect = bitMask

end

This code creates the mExecute function in the command’s
mCommand sub-table and contains our code. The function
has one parameter named lParameters that is used by the

Persona2400 script to pass the parameters that were parsed
by the parameter parser to the command execution code.
This parameter is actually a table of values and has support
for commands with multiple parameters. However, our new
command in this example only uses a single parameter so our
code will only access the first entry in the table.

The rest of the code in the function simply implements the
command. For our example command, the code takes the value
passed in as a parameter, manipulates the data and then assigns
it to the unused digital I/O bits.

Add a function to implement the query
operation of the command

With our new example command, we wanted not only to
support setting the unused digital I/O bits of the Series 2600B
instrument but to be able to query the current value of the bits.
To do this, we need to add a function that implements the query.
After the command’s implementation code, add the following
lines of code:

gCurrentRoot.mQuery.mExecute = function ()

-- Divide by 512 to shift the value
right 9 bits

Print(math.floor(digio.readport()/512))

end

This code creates the mExecute function in the command’s
mQuery sub-table and contains the query code. Unlike the
mCommand.mExecute function, the mQuery.mExecute
function does not contain a parameter. This is because queries
do not support parameters, so the Persona2400 script will have
nothing to pass to it. For our new example command, our query
code simply reads the digital I/O port, does some manipulation
on the data, and then prints it back so the controller can read it.

Using SCPI commands in TSP scripts
Another advantage of implementing Model 2400 emulation on
the Series 2600B via a script rather than in firmware is that it
allows combining SCPI commands with ICL commands and TSP
scripting. The Persona2400 script facilitates this by providing a
TSP script function Execute2400(cmdString) whose parameter
(cmdString) is a string containing the SCPI command to be
executed. When the Persona2400 script is used this way, the
Series 2600B instrument is being operated in its native mode and
is simply calling into the Persona2400 script’s API. This provides
a migration path that allows users to dabble in TSP scripting
without the need to learn the Series 2600B’s ICL commands.

1. Do the following to combine SCPI commands with ICL
commands and TSP scripting:

2. Load and Run the Persona2400 script into non-volatile
memory but do not start the 2400 emulation mode. If
the script has already been loaded and 2400 emulation

mode is currently running, then press the EXIT key on

the front panel or send the command :DIAG:EXIT to exit

emulation mode.

3. Send the command Initialize2400() to the instrument

once. This initializes the 2400 emulation engine without

placing the instrument into 2400 emulation mode. This

command can be placed at the beginning of a test script.

Send SCPI commands to the instrument by calling the

function Execute2400(cmdString) and sending the SCPI

command as the parameter.

The following example script performs a linear voltage sweep

using SCPI commands and a for loop:

-- Initialize 2400 emulation

Initialize2400()

-- Configure the source and measure

Execute2400(“*RST”)

Execute2400(“:SENS:CURR:PROT 0.01”)

Execute2400(“:SENS:FUNC VOLT,CURR”)

Execute2400(“:FORM:ELEM VOLT,CURR”)

-- Output on

Execute2400(“:OUTP ON”)

-- Loop through source levels to perform a
sweep from 0 to 10V

for levelv=0,10 do

-- Set the source level

Execute2400(string.format(“:SOUR:VOLT
%f”, levelv))

-- Take a measurement

Execute2400(“:READ?”)

end

-- Output off

Execute2400(“:OUTP OFF”)

Conclusion

The 2600B System SourceMeter instrument supports all the

advanced features of the Model 2400 that make high speed

production testing possible (like Source-Memory sweep, Trigger

Link, digital I/O binning, and status model support). This makes

the Series 2600B instruments true drop-in replacements for the

Model 2400. The emulation mode’s script-based implementation

allows users greater flexibility, giving them the ability to modify

how a command is implemented and extend the command set

with new commands. It allows them to mix Model 2400 SCPI

commands with native ICL commands and TSP scripting and lets

them switch in and out of emulation mode quickly without the

necessity of waiting for the instrument to reboot.

Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

KEITHLEY INSTRUMENTS, INC. ■ 28775 AURORA RD. ■ CLEVELAND, OH 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

BELGIUM
Sint-Pieters-Leeuw
Ph: 02-3630040
Fax: 02-3630064
info@keithley.nl
www.keithley.nl

CHINA
Beijing
Ph: 86-10-8447-5556
Fax: 86-10-8225-5018
china@keithley.com
www.keithley.com.cn

FRANCE
Les Ulis
Ph: 01-69868360
Fax: 01-69868361
info@keithley.fr
www.keithley.fr

GERMANY
Germering
Ph: 089-84930740
Fax: 089-84930734
info@keithley.de
www.keithley.de

INDIA
Bangalore
Ph: 080-30792600
Fax: 080-30792688
support_india@keithley.com
www.keithley.in

ITALY
Peschiera Borromeo (Mi)
Ph: 02-5538421
Fax: 02-55384228
info@keithley.it
www.keithley.it

JAPAN
Tokyo
Ph: 81-3-6714-3070
Fax: 81-3-6714-3080
info.jp@keithley.com
www.keithley.jp

KOREA
Seoul
Ph: 82-2-6917-5000
Fax: 82-2-6917-5005
keithley@keithley.co.kr
www.keithley.co.kr

MALAYSIA
Penang
Ph: 60-4-643-9679
Fax: 60-4-643-3794
sea@keithley.com
www.keithley.com

NETHERLANDS
Son
Ph: 040-2675502
Fax: 040-2675509
info@keithley.nl
www.keithley.nl

SINGAPORE
Singapore
Ph: 01-800-8255-2835
Fax: 65-6356-4483
sea@keithley.com
www.keithley.com.sg

TAIWAN
Hsinchu
Ph: 886-3-572-9077
Fax: 886-3-572-9031
info_tw@keithley.com
www.keithley.com.tw

UNITED KINGDOM
Bracknell
Ph: 044-1344-392450
Fax: 044-1344-392457
info@keithley.co.uk
www.keithley.co.uk

© Copyright 2012 Keithley Instruments, Inc. Printed in the U.S.A No. 3193 10.17.12

A Greater Measure of ConfidenceA Tektronix Company

