
Measuring Pulsed Waveforms with the High Speed
Analog-to-Digital Converter in the Model 2651A
High Power System SourceMeter® Instrument

Green initiatives and energy efficiency standards worldwide
have motivated engineers to find ways to design more efficient
semiconductor devices and integrated circuits. In industrial
applications, engineers are trying to improve the efficiency of
switching power supplies and power inverters. In commercial
and residential applications, the push for LEDs (light emitting
diodes) drives the design of AC-DC converters to make these DC
devices operate on AC power and use pulse width modulation as
a light dimming technique.

For these inherently pulsed applications, it is important to
test the discrete components that make up the end product
under pulsed conditions. Test instruments with only DC
capability can deliver an amount of power to a device that causes
enough heat dissipation to alter its characteristics. The desire to
measure the true state of the device without the effects of self-
heating is another motivation for pulsed characterization.

The use of a pulsed stimulus demands faster measurements.
The Model 2651A meets this need with its high speed ADCs
(analog-to-digital converters). Coupled with the ability to
measure asynchronously from the source, this feature makes
the Model 2651A suitable for many transient characterization
applications. The following demonstrates how to configure
the ADCs to perform measurements on pulsed waveforms and
considers techniques to obtain optimal results.

High Speed ADC vs. Integrating ADC
Traditional precision SMUs (source-measure units) use
integrating ADCs. An integrating ADC averages the signal over
a certain time interval known as the integration time. Figure 1
depicts a simplified dual-slope integrating ADC. This type of
ADC operates by charging a capacitor with the unknown signal
and then discharging the capacitor using a reference voltage. The
ratio of the charge and discharge times is proportional to the
ratio of the unknown signal to the reference signal.

While having the advantage of high accuracy and excellent
noise immunity, this ADC technology does not lend itself to
high speed measurements. The charge-discharge cycles on
the capacitor result in long inter-measurement intervals. For
example, though the smallest integration interval for the Model
2651A is 0.001PLC (16.67μs for 60Hz, 20μs for 50Hz), the smallest
inter-measurement interval is 50μs.

In addition to the two integrating ADCs for voltage and
current, the Model 2651A also includes two high speed ADCs
with the capability of sampling signals at burst rates of up to

1MHz.1 These ADCs use sampling technology similar to an
oscilloscope and take snapshots of the signal over time. A high
speed ADC of the Model 2651A has higher resolution (18 bits)
than an oscilloscope (typically 8 bits) resulting in more precise
transient characterization in comparable bandwidths.

Figure 2 illustrates the difference between the integrating
and high speed ADCs. While returning more readings,
the measurements performed by the high speed ADC are
less accurate and less repeatable than those performed by
the integrating ADC. For applications that demand higher
throughput, the lower accuracy can be tolerated, or if needed,
improved by averaging several readings. Typically, integrating

1 Up to 5,000 readings can be acquired at the maximum acquisition rate.

Number 3116

Application Note
Se ries

–

+

C

RVin

Vref
To other timing,
control, and
comparison
circuitry

Figure 1. Simplified diagram of dual-slope integrating ADC.

2.15

2.10

2.05

2.00

1.95

1.90

1.85
 0 200 400 600 800 1000 1200

Sampled Data
Integrating ADC Data

Vo
lt

s
(V

)

Time (µs)

Figure 2. Comparison of possible results from integrating and sampling ADC
technologies.

ADC measurements with integration rates of 0.01PLC or faster
can be made with similar accuracy using the high speed ADC.

Having two high speed ADCs ensures that voltage and
current measurement can be made simultaneously. The ability
to sample current is a unique feature of the Model 2651A and
may replace the need for a current probe and an oscilloscope in
some applications.

The combination of the Model 2651A’s high speed ADCs and
trigger model supports precisely timed measurements on pulsed
signals. Additionally, the Model 2651A introduces a feature that
allows the user to trigger measurements asynchronously from
source operations, such as before, during, or after a pulse. This

capability can also be used with the integrating ADCs. Figure 3
diagrams five examples of pulsed signals and measurements
that can be made with the Model 2651A. The sections below
discuss how to configure the Model 2651A to perform each of
these examples.

Figure 4 illustrates the relationship between a pulse, the
triggering conditions that create the pulse, and the definition of
high speed ADC measurement parameters.

General Information Regarding the Examples
In the sections that follow, each of the examples makes use of
a few common functions. The code for these functions is in
Appendix A.

Example #1: Digitizing the Top of a Pulse

Potential Uses

For some applications, such as thermal impedance of power
diodes and LEDS, characterizing the slope of the measured
voltage at the top of the pulse is important. This capability is
also useful for characterizing pulse amplitude flatness. The
high speed ADCs can digitize the top of the pulse when the
measurements are made synchronously with the source.

How the Measurement is Made

The pulses are timed using trigger timers. Measurements are
triggered at the beginning of the pulse, but delayed to the settled
part of the pulse by programming a measure delay.

The trigger model setup is depicted in Figure 5. The Test
Script Processor (TSP®) script for Example #1 is located in
Appendix B along with the commands for executing the test
and obtaining the results. The sample results taken using a 0.1W
resistor are shown in Figure 6.

Example #2: Performing a Spot Mean
Measurement at the Top of the Pulse

Potential Uses

Often, analysis software is used to average sampled data to
improve accuracy. The Model 2651A can automatically perform
averages on measurements.

How the Measurement is Made

The averaging and median filters of the Model 2651A can be used
on the high speed ADC readings, making it possible to return
spot mean measurements. The same test performed in Example
#1 can be modified to return a spot mean measurement instead
of the raw sample data by changing a few lines of code.

The trigger model configuration is the same as used for
Example #1. Appendix C contains the TSP script for Example
#2 and the commands for executing the test and obtaining the

Averaging
Filter

a.

b.

c.

d.

e.

Figure 3a. Example #1, measuring at the top of the pulse.

Figure 3b. Example #2, performing a spot mean measurement at the top of
the pulse.

Figure 3c. Example #3, digitizing the entire pulse.

Figure 3d. Example #4, triggering measurements to begin before the pulse.

Figure 3e. Example #5, triggering measurement to begin after the pulse.

Measurement
Interval

Measure
Delay

Measurement
Trigger

Source Action
Trigger

EndPulse
Action Trigger

Time

Figure 4. Specifying a pulse using the Model 2651A.

results. The test results are shown in Figure 6 next to the raw
sample data and are also listed in Table 1.

Table 1. Spot mean measurement results for Example #2.

Current (A) Voltage (V)

19.7816 1.97854

19.8421 1.98492

Example #3: Digitizing the Entire Pulse
Including the Rising and Falling Edges

Potential Uses

At times, it is useful to characterize how a pulse is transmitted
through a device or system. These applications require that the
entire pulse be digitized, including the rising and falling edges.
This measurement is possible using the high speed ADCs to
measure asynchronously to the source operation.

digio.trigger[1] smua.trigger

mode = digio.TRIG_FALLING

EVENT_ID

IDLE_EVENT_ID

SWEEPING_EVENT_ID
stimulus

User asserts
line in script

Idle

No

Yes

Arm
Layer

Trigger
Layer

count =
pulseCount – 1passthrough = false

trigger.timer[1]

EVENT_ID

Arm
Count
>1?stimulus

period

count = 1

arm.stimulus

passthrough = false

trigger.timer[2]

EVENT_IDstimulus
pulseWidth

No

Yes Trigger
Count
>1?

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

Sweep
Armed

Source
Action

source.stimulus

Measure
Action

measure.stimulus

EndPulse
Action

EndSweep
Action

endpulse.stimulus

User-configured
connections
Static trigger model
connections

Figure 5. Trigger model configuration for Examples #1 and #2.

25

20

15

10

5

0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Cu
rr

en
t

(A
) Voltage (V)

Time (µs)

Measuring at the Top of the Pulse

 0 50 100 150 200 250 300

Digitized Current (A)
Spot Mean of Current
Digitized Voltage (V)
Spot Mean of Voltage

Figure 6. Results of Examples #1 and #2. The load is a 0.1W resistor.

How the Measurement is Made

Timers are again used to trigger the start and end of the pulse.
The trigger used to start the pulse is also used to start the
measurement process.

Figure 7 diagrams the trigger model configuration.
Appendix D contains the TSP script for Example #3 and the
commands for executing the test and obtaining the results. The
results for the example data are shown in Figure 8.

Example #4: Pre-Pulse Characterization:
Triggering Measurements before the Pulse

Potential Uses

Pulses are sometimes used to provide power stresses to the
device. It is useful to note the device state before the stress
is applied. This can be done by programming a pulse with a

digio.trigger[1] smua.trigger

mode = digio.TRIG_FALLING

EVENT_ID

IDLE_EVENT_ID

SWEEPING_EVENT_ID
stimulus

User asserts
line in script

Idle

No

Yes

Arm
Layer

Trigger
Layer

Asynchronous Measurement

count =
pulseCount – 1passthrough = false

trigger.timer[1]

EVENT_ID

Arm
Count
>1?stimulus

period

count = 1

arm.stimulus

passthrough = false

trigger.timer[2]

EVENT_IDstimulus
pulseWidth

No

Yes Trigger
Count
>1?

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

Sweep
Armed

Source
Action

source.stimulus

EndPulse
Action

endpulse.stimulus

Measure
Action

EndSweep
Action

measure.stimulus

User-configured
connections
Static trigger model
connections

Figure 7. Trigger model configuration for Example #3.

25

20

15

10

5

0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Cu
rr

en
t

(A
) Voltage (V)

Time (µs)

Digitize Entire Pulse

 0 50 100 150 200 250 300

Current
Voltage

Figure 8. Results from Example #3 showing the voltage and current
measurements as performed by the high speed ADCs. There is a 0.1W
resistive load.

non-zero idle level and triggering the measurements before
the pulse.

How the Measurement is Made
This example is arranged so that the user can specify how long
before the pulse the measurements should occur. Timers are
used to program the start of the measurement and the beginning
and end of the pulse.

The trigger model configuration for this example is shown in
Figure 9. Appendix E contains the TSP script of Example #4 and
the commands for executing the test and obtaining the results.
The results for the example code are shown in Figure 10.

digio.trigger[1] smua.trigger

mode = digio.TRIG_FALLING

EVENT_ID

IDLE_EVENT_ID

SWEEPING_EVENT_ID
stimulus

Idle

No

Yes

Arm
Layer

Trigger
Layer

Asynchronous Measurement

count =
pulseCount – 1passthrough = false

trigger.timer[1]

EVENT_ID

Arm
Count
>1?stimulus

period

count = 1

arm.stimulus

passthrough = false

trigger.timer[2]

EVENT_IDstimulus
prePulseTrig

count = 1passthrough = false

trigger.timer[3]

EVENT_IDstimulus
pulseWidth

No

Yes Trigger
Count
>1?

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

Sweep
Armed

Source
Action

source.stimulus

EndPulse
Action

endpulse.stimulus

Measure
Action

EndSweep
Action

measure.stimulus

User-configured
connections
Static trigger model
connections

Figure 9. Trigger model configuration for Example #4.

20

18

16

14

12

10

8

6

4

2

0

6

5

4

3

2

1

0

Cu
rr

en
t

(A
) Voltage (V)

Time (µs)

Triggering Measurements Before the Pulse

 0 1000 2000 3000 4000 5000 6000 7000

Current
Voltage
Simulated Voltage Pulse

Figure 10. Results from Example #4. There is a 0.5W resistive load.

Example #5: Post-Pulse Characterization:
Triggering Measurements after the Pulse

Potential Uses

When using pulse testing to stress a device, the device must
also be characterized after the stress is applied. This is typically
done by sourcing a pre-defined test voltage or current after the
pulse. The test level is chosen so as not to cause any additional
thermal or electrical stress to the device. The measurement can
be made by sourcing a pulse with a non-zero idle level and using
the high speed ADCs to perform the measurement. The results
from the high speed ADCs indicate how the device recovers from
the stress.

How the Measurement is Made

The pulses are timed using trigger timers. The measurement
is triggered by the EndPulse event of the trigger model,

digio.trigger[1] smua.trigger

mode = digio.TRIG_FALLING

EVENT_ID

IDLE_EVENT_ID

SWEEPING_EVENT_ID
stimulus

User asserts
line in script

Idle

No

Yes

Arm
Layer

Trigger
Layer

Asynchronous Measurement

count =
pulseCount – 1passthrough = false

trigger.timer[1]

EVENT_ID

Arm
Count
>1?stimulus

period

count = 1

arm.stimulus

passthrough = false

trigger.timer[2]

EVENT_IDstimulus
pulseWidth

No

Yes Trigger
Count
>1?

SWEEP_COMPLETE_EVENT_ID

ARMED_EVENT_ID

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

Sweep
Armed

Source
Action

source.stimulus

EndPulse
Action

endpulse.stimulus

Measure
Action

EndSweep
Action

measure.stimulus

User-configured
connections
Static trigger model
connections

Figure 11. Trigger model configuration for Example #5.

20

18

16

14

12

10

8

6

4

2

0

6

5

4

3

2

1

0

Cu
rr

en
t

(A
) Voltage (V)

Time (µs)

Triggering Measurements After the Pulse

 –100 0 1000 2000 3000 4000 5000 6000 7000

Current
Voltage
Simulated Voltage Pulse

Figure 12. Results from Example #5. There is a 0.5W resistive load.

which causes the pulse to return to the idle level. If desired,
a measurement delay can be used to postpone the start of the
measurements until after the falling edge occurs.

Figure 11 diagrams the trigger model configuration for this
example. Appendix F contains the TSP script of Example #5 and
the commands for executing the test and obtaining the results.
The results for the example code are shown in Figure 12.

Getting Pulses and Measurements on Time
The ability to pulse in pulse-only current and voltage regions
coupled with the ability to make measurements with the high
speed ADCs means that the user must carefully consider test
timing. In the Model 2651A, the taking of measurements is given
priority over source and display operations. Therefore, display
updates may not occur and source timing can be compromised if
the system is busy making or processing measurements. Consider
the following precautions in order to avoid erratic pulse timing.
These precautions can also help to prevent damaging devices
from the excessive power that can be generated from the
Model 2651A’s ability to output very high currents in pulse and
DC regions.

•	 For precise timing, always use fixed ranges for source and
measurement functions. (Note: Asynchronous measurements
mandate the use of fixed ranging for both the integrating and
high speed ADCs.)

•	 When operating in the extended pulse-only operation region,
obey all maximum duty cycle and pulse width limitations.
The instrument will turn off the output to prevent thermal
runaway. However, continuing to issue triggers for source
or EndPulse actions may result in source and/or EndPulse
action overruns.

•	 Sustained high speed data acquisition rates may result in
undesired pulse timing. This is more likely when the measure
interval for the high speed ADC is smaller than 10μs and when
a pulse train has a high duty cycle. If a particular configuration
results in undesired pulse timing, then abort the present
test and perform one of the following to obtain the desired
timing: reduce the measurement trigger frequency, reduce the
measurement count, or increase the measurement interval.

•	 In asynchronous operation, all expected measurements must
be triggered before the End Sweep action occurs. Refer to
Example #5 for an example of how to use a measure delay to
postpone the start of measurements after the trigger.

•	 Any source polarity changes during a sweep incur a 100μs
delay before the source level is set. The number 0 is
considered a positive value.

 – For negative-going pulses that start from zero, use a
‘negative zero’, which is a negative number that is very near
zero, e.g., -1e-12. See the code for Examples #1, #2, and #3.

 – When the source polarity must be changed during a sweep,
the user must account for the polarity change delay in the
TSP script in order to obtain proper pulse timing.

A user can monitor the state of the instrument using its
status model. Action overruns set bits in different registers
of the status model according to the trigger object in which
the action overrun is generated. (Each time a register is read,
all bits are cleared.) For the SMU trigger object, an action
overrun occurs when a new input trigger is detected before the
previously triggered action has been started2. Figure 13 shows
the SMU trigger overrun operation status register set. Note that
each action block (Arm, Source, Measure, and EndPulse) has
a corresponding overrun bit in the status model. Appendix G
contains the TSP script demonstrating how to monitor the Model
2651A’s operation overrun Event register for overruns to the
Source, Measure, or EndPulse action blocks.

Each of the SMU action blocks latches (or remembers) one
trigger, even if it cannot immediately act upon that trigger. An
action overrun is not generated by the latched trigger. However,
if multiple triggers are issued while an action is in process, then
overruns are generated. For instance, if the Model 2651A is busy
making a large number of high speed measurements, it may
not be able to respond to the EndPulse event. The first time the
EndPulse event is triggered, the SMU will hold off ending the
pulse and the result is a pulse with a longer width than expected.
If the SMU is still making or processing measurements when the
next EndPulse event is triggered, an EndPulse action overrun is
generated and the next pulse does not end.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Arm Overrun (ARM)
Source Overrun (SRC)

Measure Overrun (MEAS)
End Pulse Overrun (ENDP)

Operation Status SMU A
Trigger Overrun Register

status.operation.instrument.smua.trigger_overrun

To Trigger Overrun Bit
(TRGOVR) in

Operation Status SMU A
Summary Register

(status.operation.instrument.smua)

Figure 13. SMU trigger overrun operation status register set.

Conclusion
The high speed ADCs in Keithley’s Model 2651A provide a more
detailed look at measurements of pulsed waveforms. They can
be used for a variety of transient characterization applications
previously not possible with an SMU.

2 For asynchronous measurement mode, a measurement action overrun is generated each
time a new measurement is triggered while the SMU is taking measurements. No triggers
are latched for asynchronous measurements.

Appendix A. Common Functions, runPulse() and printData()
The examples in the following appendices use common functions. The TSP scripts for these functions are listed below. These lines of
code may be copied, saved, and run as a script so that the functions are available.
--Runs the pulse after it is configured
function runPulse()
 smua.source.output = 1
 delay(0.001)
 smua.trigger.initiate()
 digio.trigger[1].assert()
 waitcomplete()
 smua.source.output = 0

end
--Prints the results from the reading buffers.
function printData()
 if smua.nvbuffer1.n == 0 then
 print(“No readings in buffer”)
 else
 print(“Timestamps\tCurrent\tVoltage”)
 for i = 1, smua.nvbuffer1.n do
print(string.format(“%g\t%g\t%g”, smua.nvbuffer1.timestamps[i], smua.nvbuffer1.readings[i], smua.nvbuffer2.readings[i]))
 end
 end
end

Appendix B. Code for Example #1, Digitizing the Top of a Pulse
This is the TSP script that is used to configure the Model 2651A SourceMeter instrument to digitize the top of the pulse when the
measurements are made synchronously with the source. The commands for executing the code and obtaining the results are listed
below the TSP script.
function digitizeTopSync(iAmpl, vLimit, pulseWidth, period, pulseCount, sampleInterval, measCount, measDelay)
 reset()
 errorqueue.clear()
 status.reset()

 local l_iZero --Variable for the idle level of the sweep

 --[[
 The ‘if’ statement below controls the idle level of the sweep. Set to 0 for positive pulses. Set to ‘negative zero’ for
 negative pulses. Eliminates polarity change delay. See “Getting Pulses and Measurements On Time” for more information.
]]
 if iAmpl <0 then
 local l_iZero = -1e-13
 else
 local l_iZero = 0
 end

 -- Prepare the reading buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.appendmode = 0
 smua.nvbuffer1.collecttimestamps = 1
 smua.nvbuffer1.collectsourcevalues = 0
 smua.nvbuffer2.clear()
 smua.nvbuffer2.appendmode = 0
 smua.nvbuffer2.collecttimestamps = 1
 smua.nvbuffer2.collectsourcevalues = 0

 --Set up the source
 smua.source.func = smua.OUTPUT_DCAMPS
 smua.sense = smua.SENSE_REMOTE --Enables remote sense (4W measurements)
 smua.source.rangei = iAmpl
 smua.source.leveli = l_iZero --Sets the pulse off value.
 smua.source.limitv = vLimit -- Sets the DC voltage limit
 smua.trigger.source.listi({iAmpl}) --Sets the values for the source sweep
 smua.trigger.source.limitv = vLimit --Sets the voltage limit
 smua.trigger.source.action = smua.ENABLE --Enables the source sweep

 --Set up the measurements
 smua.measure.rangev = vLimit -- Set the measure voltage range
 smua.measure.adc = smua.ADC_FAST --Configures the SMU to use the high speed ADC
 smua.measure.interval = sampleInterval --Sets the measurement interval
 smua.measure.delay = measDelay --Sets the initial measurement delay
 smua.measure.count = measCount --Sets the measurement count
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2) -- Configure the SMU to measure both voltage and current
 smua.trigger.measure.action = smua.ENABLE -- Enables measurements in sync with the source sweep

 --Set up a digital I/O line to trigger the start of the period timer
 digio.trigger[1].mode = digio.TRIG_FALLING
 digio.trigger[1].clear()

 -- Timer 1 controls the pulse period by triggering the pulse to begin
 trigger.timer[1].delay = period
 --The timer should always have a count of 1. The ‘if’ statement below configures the timer count.
 if pulseCount > 1 then
 trigger.timer[1].count = (pulseCount - 1)
 else
 trigger.timer[1].count = 1
 end
 trigger.timer[1].passthrough = true --Timer issues an event at the start of the first interval.
 trigger.timer[1].stimulus = digio.trigger[1].EVENT_ID -- Period timer is triggered by a digital I/O line
 trigger.timer[1].clear()

 -- Timer 2 controls the pulse width
 trigger.timer[2].delay = pulseWidth
 trigger.timer[2].count = 1
 trigger.timer[2].passthrough = false --Pulse width timer only issues event when interval elapses
 trigger.timer[2].stimulus = trigger.timer[1].EVENT_ID --Timer starts when period timer issues event
 trigger.timer[2].clear()

 -- Return to the bias level at the end of the pulse/sweep
 smua.trigger.endpulse.action = smua.SOURCE_IDLE
 smua.trigger.endsweep.action = smua.SOURCE_IDLE
 smua.trigger.count = pulseCount --Sets the number of pulses to generate
 smua.trigger.arm.count = 1 --Sets the number of times to iterate through the entire sweep
 smua.trigger.arm.stimulus = 0
 smua.trigger.source.stimulus = trigger.timer[1].EVENT_ID --Source starts when period timer generates event
 smua.trigger.measure.stimulus = smua.trigger.SOURCE_COMPLETE_EVENT_ID -- Start measuring when the source action is complete
 smua.trigger.endpulse.stimulus = trigger.timer[2].EVENT_ID -- Start EndPulse action as soon as the pulse width timer ends

end

Executing the Code

Send the following lines to configure and execute two 20A, 100μs pulses with a 200μs period and a voltage limit of 10V. Fifty
measurements are requested, taken at 1μs intervals with an initial measurement delay of 50μs.

digitizeTopSync(20, 10, 100e-6, 200e-6, 2, 1e-6, 50, 50e-6)
runPulse()

Results

The raw sample data is stored in the dedicated nonvolatile buffers, smua.nvbuffer1 and smua.nvbuffer2. Use the following command
to print the data through the remote command interface:
printData()

Sample results taken using a resistor are shown in Figure 6.

Appendix C. Code for Example #2, Performing a Spot
Mean Measurement at the Top of the Pulse
Below is the example code to configure the Model 2651A to perform a spot mean measurement at the top of the pulse. Highlighting
is used to distinguish the command lines that are different from those in Example #1 (Appendix B). The commands for executing the
code and obtaining the results are listed below the TSP script.

function spotMeanTopSync(iAmpl, vLimit, pulseWidth, period, pulseCount, sampleInterval, filtCount, measDelay)
 reset()
 errorqueue.clear()
 status.reset()

 local l_iZero --Variable for the idle level of the sweep

 --[[
 The ‘if’ statement below controls the idle level of the sweep. Set to 0 for positive pulses. Set to ‘negative zero’ for
 negative pulses. Eliminates polarity change delay. See “Getting Pulses and Measurements On Time” for more information.
]]
 if iAmpl <0 then
 local l_iZero = -1e-13
 else
 local l_iZero = 0
 end

 -- Prepare the reading buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.appendmode = 0
 smua.nvbuffer1.collecttimestamps = 1
 smua.nvbuffer1.collectsourcevalues = 0
 smua.nvbuffer2.clear()
 smua.nvbuffer2.appendmode = 0
 smua.nvbuffer2.collecttimestamps = 1
 smua.nvbuffer2.collectsourcevalues = 0

 --Set up the source
 smua.source.func = smua.OUTPUT_DCAMPS
 smua.sense = smua.SENSE_REMOTE --Enables remote sense (4W measurements)
 smua.source.rangei = iAmpl
 smua.source.leveli = l_iZero --Sets the pulse off value.
 smua.source.limitv = vLimit -- Sets the DC voltage limit
 smua.trigger.source.listi({iAmpl}) --Sets the values for the source sweep
 smua.trigger.source.limitv = vLimit --Sets the voltage limit
 smua.trigger.source.action = smua.ENABLE --Enables the source sweep

 --Set up the measurements
 smua.measure.rangev = vLimit -- Set the measure voltage range
 smua.measure.adc = smua.ADC_FAST --Configures the SMU to use the high speed ADC
 smua.measure.interval = sampleInterval --Sets the measurement interval
 smua.measure.delay = measDelay --Sets the initial measurement delay
 smua.measure.count = 1 --Sets the number of measurements to take each time the measure action block is triggered
 smua.measure.filter.type = smua.FILTER_REPEAT_AVG
 smua.measure.filter.count = filtCount
 smua.measure.filter.enable = smua.FILTER_ON
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2) -- Configure the SMU to measure both voltage and current
 smua.trigger.measure.action = smua.ENABLE --Enables measurements in sync with the source sweep

 --Set up a digital I/O line to trigger the start of the period timer
 digio.trigger[1].mode = digio.TRIG_FALLING
 digio.trigger[1].clear()

 -- Timer 1 controls the pulse period by triggering the pulse to begin
 trigger.timer[1].delay = period
 --The timer should always have a count of 1. The ‘if’ statement below configures the timer count.
 if pulseCount > 1 then
 trigger.timer[1].count = (pulseCount - 1)
 else
 trigger.timer[1].count = 1
 end
 trigger.timer[1].passthrough = true --Timer issues an event at the start of the first interval.
 trigger.timer[1].stimulus = digio.trigger[1].EVENT_ID -- Period timer is triggered by a digital I/O line
 trigger.timer[1].clear()

 -- Timer 2 controls the pulse width
 trigger.timer[2].delay = pulseWidth

 trigger.timer[2].count = 1
 trigger.timer[2].passthrough = false --Pulse width timer only issues event when interval elapses
 trigger.timer[2].stimulus = trigger.timer[1].EVENT_ID --Timer starts when period timer issues event
 trigger.timer[2].clear()

 -- Return to the bias level at the end of the pulse/sweep
 smua.trigger.endpulse.action = smua.SOURCE_IDLE
 smua.trigger.endsweep.action = smua.SOURCE_IDLE
 smua.trigger.count = pulseCount --Sets the number of pulses to generate
 smua.trigger.arm.count = 1 --Sets the number of times to iterate through the entire sweep
 smua.trigger.arm.stimulus = 0
 smua.trigger.source.stimulus = trigger.timer[1].EVENT_ID --Source starts when period timer generates event
 smua.trigger.measure.stimulus = smua.trigger.SOURCE_COMPLETE_EVENT_ID -- Start measuring when the source action is complete
 smua.trigger.endpulse.stimulus = trigger.timer[2].EVENT_ID -- Start EndPulse action as soon as the pulse width timer ends

end

Executing the Code

Send the following lines to configure and execute two 20A, 100μs pulses with a 200μs period and a voltage limit of 10. Two
measurements are requested, each with an average of 50 readings taken at 1μs intervals with an initial measurement delay of 50μs.

spotMeanTopSync(20, 10, 100e-6, 200e-6, 2, 1e-6, 50, 50e-6)
runPulse()

Results

The raw sample data is stored in the dedicated nonvolatile buffers, smua.nvbuffer1 and smua.nvbuffer2. Use the following command
to print the data through the remote command interface:
printData()

The results are shown in Figure 6 next to the raw sample data and are also listed in Table 1.

Appendix D. Code for Example #3, Digitizing the Entire
Pulse Including the Rising and Falling Edges
The example code below lists the commands necessary to digitize one to two pulses at the maximum sample rate. (Note: To increase
the pulse count, the sample interval or pulse period must be increased to allow sufficient time for data processing and to avoid
erratic source timing. For more details, see “Getting Pulses and Measurements on Time” in this application note.) The commands for
executing the code and obtaining the results are listed after the TSP script.

function digitizePulse(iAmpl, vLimit, pulseWidth, period, pulseCount, sampleInterval)
 reset()
 errorqueue.clear()
 status.reset()

 --[[
 The ‘if’ statement below controls the idle level of the sweep. Set to 0 for positive pulses. Set to ‘negative zero’ for
 negative pulses. Eliminates polarity change delay. See “Getting Pulses and Measurements On Time” for more information.
]]
 local l_iZero

 if iAmpl <0 then
 l_iZero = -1e-13
 else
 l_iZero = 0
 end

-- Prepare the reading buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.appendmode = 0
 smua.nvbuffer1.collecttimestamps = 1
 smua.nvbuffer1.collectsourcevalues = 0
 smua.nvbuffer2.clear()
 smua.nvbuffer2.appendmode = 0
 smua.nvbuffer2.collecttimestamps = 1
 smua.nvbuffer2.collectsourcevalues = 0

 --Set up the source
 smua.source.func = smua.OUTPUT_DCAMPS
 smua.sense = smua.SENSE_REMOTE --Enable remote sense (4W measurements)
 smua.source.rangei = iAmpl
 smua.source.leveli = l_iZero --Sets the pulse off value.
 smua.source.limitv = vLimit -- Sets the DC voltage limit
 smua.trigger.source.listi({iAmpl}) -- Sets the amplitude values for the pulse sweep
 smua.trigger.source.limitv = vLimit --Sets the voltage limit
 smua.trigger.source.action = smua.ENABLE --Enables the source sweep

 --Set up the measurements
 smua.measure.rangev = vLimit -- Set the measure voltage range
 smua.measure.adc = smua.ADC_FAST -- Configures SMU to use high speed aDC
 smua.measure.interval = sampleInterval --Set measurement interval
 smua.measure.delay = 0 --Configures no initial measurement delay
 -- Set the measure count to be 50% greater than the width of the pulse to ensure we capture rising and falling edges of pulse
 smua.measure.count = pulseWidth / smua.measure.interval * 1.5
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2) -- Configure the SMU to measure both voltage and current
 smua.trigger.measure.action = smua.ASYNC -- Configure SMU measurements to occur asynchrnously with source sweep

 --Set up a digital I/O line to trigger the start of the period timer
 digio.trigger[1].mode = digio.TRIG_FALLING
 digio.trigger[1].clear()

 -- Timer 1 controls the pulse period by triggering the pulse to begin
 trigger.timer[1].delay = period

 --The timer should always have a count of 1. The ‘if’ statement below configures the timer count.
 if pulseCount > 1 then
 trigger.timer[1].count = (pulseCount - 1)
 else
 trigger.timer[1].count = 1
 end

 trigger.timer[1].passthrough = true --Timer issues an event at the start of the first interval.
 trigger.timer[1].stimulus = digio.trigger[1].EVENT_ID -- Period timer is triggered by a digital I/O line
 trigger.timer[1].clear()

 -- Timer 2 controls the pulse width

 trigger.timer[2].delay = pulseWidth
 trigger.timer[2].count = 1
 trigger.timer[2].passthrough = false --Pulse width timer only issues event when interval elapses
 trigger.timer[2].stimulus = trigger.timer[1].EVENT_ID --Timer starts when period timer issue event
 trigger.timer[2].clear()

 -- Return to the bias level at the end of the pulse/sweep
 smua.trigger.endpulse.action = smua.SOURCE_IDLE
 smua.trigger.endsweep.action = smua.SOURCE_IDLE
 smua.trigger.count = pulseCount -- Configures number of pulses to complete
 smua.trigger.arm.count = 1
 smua.trigger.arm.stimulus = 0
 smua.trigger.source.stimulus = trigger.timer[1].EVENT_ID -- Trigger source sweep using events generated by period timer
 smua.trigger.measure.stimulus = trigger.timer[1].EVENT_ID -- Start measuring when the period timer starts the source action
 smua.trigger.endpulse.stimulus = trigger.timer[2].EVENT_ID -- Start EndPulse action as soon as the pulse width timer ends

end

Executing the Code

Send the following lines to configure and execute a single 20A, 200μs pulse with a voltage limit of 10V and take high speed ADC
measurements at 1μs intervals.

digitizePulse(20, 10, 200e-6, 2e-3, 1, 1e-6)
runPulse()

Results

The raw sample data is stored in the dedicated nonvolatile buffers, smua.nvbuffer1 and smua.nvbuffer2. Use the following command
to print the data through the remote command interface:
printData()

The results for the example data are shown in Figure 8. The load is a 0.1W resistor.

Appendix E. Code for Example #4, Pre-Pulse Characterization:
Triggering Measurements before the Pulse
Below is the TSP script for Example #4. The commands for executing the code and obtaining the results are listed after the
TSP script.

function measThenPulse(vPulse, vIdle, iLimit, pulseWidth, period, pulseCount, prePulseTrig, measCount, sampleInterval)
 reset()
 errorqueue.clear()
 status.reset()

 --If the programmed pulse is negative and biased from zero, then program negative zero
 if vIdle == 0 and vPulse <0 then
 vIdle = -1e-12
 else
 vIdle = vIdle
 end

 -- Prepare the reading buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.appendmode = 0
 smua.nvbuffer1.collecttimestamps = 1
 smua.nvbuffer1.collectsourcevalues = 0
 smua.nvbuffer2.clear()
 smua.nvbuffer2.appendmode = 0
 smua.nvbuffer2.collecttimestamps = 1
 smua.nvbuffer2.collectsourcevalues = 0

 --Set up the source
 smua.source.func = smua.OUTPUT_DCVOLTS --Set source function to DC Volts
 smua.sense = smua.SENSE_REMOTE -- Enable remote sense (4W measurements)
 smua.source.rangev = vPulse
 smua.source.levelv = vIdle --Sets the pulse off value.
 --The ‘if’ statement below sets the DC current limit
 if iLimit > 20 then
 smua.source.limiti = 20
 else
 smua.source.limiti = iLimit
 end
 smua.trigger.source.listv({vPulse}) -- Configures amplitude levels for source sweep
 smua.trigger.source.limiti = iLimit --Sets current limit during pulsing
 smua.trigger.source.action = smua.ENABLE --Enables source sweep

 --Set up the measurements
 smua.measure.rangei = iLimit -- Set the measure current range
 smua.measure.adc = smua.ADC_FAST -- Configures SMU to use high speed ADC
 smua.measure.interval = sampleInterval -- Sets measurement interval
 smua.measure.delay = 0
 smua.measure.count = measCount
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2) -- Configure the SMU to measure both voltage and current
 smua.trigger.measure.action = smua.ASYNC -- Configures measurements to occur asynchrnously from source sweep

 --Set up a digital I/O line to trigger the start of the period timer
 digio.trigger[1].mode = digio.TRIG_FALLING
 digio.trigger[1].clear()

 -- Timer 1 controls the start of the measurement and serves as system clock
 trigger.timer[1].delay = period
 --Timer must always have a count of 1 or more. The following ‘if’ statement sets the timer count appropriately.
 if pulseCount > 1 then
 trigger.timer[1].count = (pulseCount - 1)
 else
 trigger.timer[1].count = 1
 end

 trigger.timer[1].passthrough = true --Timer issues an event at the start of the first interval.
 trigger.timer[1].stimulus = digio.trigger[1].EVENT_ID -- Period timer is triggered by a digital I/O line
 trigger.timer[1].clear()

 -- Timer 2 controls the delay from the start of measurement to the start of the pulse
 trigger.timer[2].delay = prePulseTrig
 trigger.timer[2].count = 1
 trigger.timer[2].passthrough = false --Only issue event when timer interval has elapsed

 trigger.timer[2].stimulus = trigger.timer[1].EVENT_ID
 trigger.timer[2].clear()

 --Timer 3 controls the pulse width
 trigger.timer[3].delay = pulseWidth
 trigger.timer[3].count = 1
 trigger.timer[3].passthrough = false -- Only issue event when timer interval has elapsed
 trigger.timer[3].stimulus = trigger.timer[2].EVENT_ID
 trigger.timer[3].clear()

 -- Return to the bias level at the end of the pulse/sweep
 smua.trigger.endpulse.action = smua.SOURCE_IDLE
 smua.trigger.endsweep.action = smua.SOURCE_IDLE
 smua.trigger.count = pulseCount --Sets number of pulses to perform
 smua.trigger.arm.count = 1
 smua.trigger.arm.stimulus = 0
 smua.trigger.source.stimulus = trigger.timer[2].EVENT_ID -- Start next pulse once prePulseTrigger time interval has elapsed
 smua.trigger.measure.stimulus = trigger.timer[1].EVENT_ID -- Start measuring when the period timer issues an event
 smua.trigger.endpulse.stimulus = trigger.timer[3].EVENT_ID -- Start EndPulse action as soon as the pulse width timer ends

end

Executing the Code

Send the following lines to configure and execute three pulses which pulse from 1 to 5V with a width of 300μs and a period of 3ms
with a current limit of 20A. Ten measurements taken at 10μs intervals are taken 100μs before the pulse begins.

measThenPulse(5, 1, 20, 300e-6, 3e-3, 3, 100e-6, 10, 10e-6)
runPulse()

Results

The raw sample data is stored in the dedicated nonvolatile buffers, smua.nvbuffer1 and smua.nvbuffer2. Use the following command
to print the data through the remote command interface:
printData()

The results for the example code are shown in Figure 10. The load is a 0.5W resistor.

Appendix F. Code for Example #5, Post-Pulse Characterization:
Triggering Measurements after the Pulse
Below is the TSP script that can be used to program the Model 2651A to perform Example #5. The commands for executing the code
and obtaining the results are listed after the TSP script.
function pulseThenMeas(vPulse, vIdle, iLimit, pulseWidth, period, pulseCount, measDelay, measCount, sampleInterval)
 errorqueue.clear()
 reset()
 status.reset()

 --If the programmed pulse is negative and biased at zero, then program negative zero
 if vIdle == 0 and vPulse <0 then
 vIdle = -1e-12
 else
 vIdle = vIdle
 end

 -- Prepare the reading buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.appendmode = 1
 smua.nvbuffer1.collecttimestamps = 1
 smua.nvbuffer1.collectsourcevalues = 0
 smua.nvbuffer2.clear()
 smua.nvbuffer2.appendmode = 1
 smua.nvbuffer2.collecttimestamps = 1
 smua.nvbuffer2.collectsourcevalues = 0

 --Set up the source
 smua.source.func = smua.OUTPUT_DCVOLTS --Set source function to DC Volts
 smua.sense = smua.SENSE_REMOTE -- Enable remote sense (4W measurements)
 smua.source.rangev = vPulse
 smua.source.levelv = vIdle --Sets the pulse off value.
 --The ‘if’ statement below sets the DC current limit
 if iLimit > 20 then
 smua.source.limiti = 20
 else
 smua.source.limiti = iLimit
 end
 smua.trigger.source.listv({vPulse}) -- Configures amplitude levels for source sweep
 smua.trigger.source.limiti = iLimit --Sets current limit during pulsing
 smua.trigger.source.action = smua.ENABLE --Enables source sweep

 --Set up the measurements
 smua.measure.rangei = iLimit -- Set the measure current range
 smua.measure.adc = smua.ADC_FAST --Configures SMU to use high speed ADC
 smua.measure.interval = sampleInterval -- Sets measurement interval
 smua.measure.delay = measDelay --Set the time from the end of the pulse to the start of measurements using measure delay
 smua.measure.count = measCount --Sets number of measurements
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2) -- Configure the SMU to measure both voltage and current
 smua.trigger.measure.action = smua.ASYNC -- Configures measurements to occur asynchronously with the source sweep

 --Set up a digital I/O line to trigger the start of the period timer
 digio.trigger[1].mode = digio.TRIG_FALLING
 digio.trigger[1].clear()

 -- Timer 1 controls the start of the measurement and serves as system clock
 trigger.timer[1].delay = period
 --Timer must always have a count of 1 or more. The following ‘if’ statement sets the timer count appropriately.
 if pulseCount > 1 then
 trigger.timer[1].count = (pulseCount - 1)
 else
 trigger.timer[1].count = 1
 end

 trigger.timer[1].passthrough = true --Timer issues an event at the start of the first interval.
 trigger.timer[1].stimulus = digio.trigger[1].EVENT_ID -- Period timer is triggered by a digital I/O line
 trigger.timer[1].clear()

 -- Timer 2 controls the pulse width
 trigger.timer[2].delay = pulseWidth
 trigger.timer[2].count = 1
 trigger.timer[2].passthrough = false --Only issue events after timer interval elapses
 trigger.timer[2].stimulus = trigger.timer[1].EVENT_ID -- Start timer interval when period timer issues event
 trigger.timer[2].clear()

 -- Configure SMU Trigger Model for Sweep

 -- Return to the bias level at the end of the pulse/sweep
 smua.trigger.endpulse.action = smua.SOURCE_IDLE
 smua.trigger.endsweep.action = smua.SOURCE_IDLE
 smua.trigger.count = pulseCount --Set number of pulses to complete
 smua.trigger.arm.count = 1
 smua.trigger.arm.stimulus = 0
 smua.trigger.source.stimulus = trigger.timer[1].EVENT_ID --Trigger source action when period timer generates event
 smua.trigger.measure.stimulus = trigger.timer[2].EVENT_ID -- Trigger measurements when the end pulse action is started
 smua.trigger.endpulse.stimulus = trigger.timer[2].EVENT_ID -- Start EndPulse action as soon as the pulse width timer ends
end

Executing the Code

Send the following lines to configure and execute three pulses that pulse from 1V to 5V with a width of 300μs and a period of 3ms
with a current limit of 20A. Twenty measurements taken at 10μs intervals are taken 100μs after the pulse ends.

pulseThenMeas(5, 1, 20, 300e-6, 3e-3, 3, 100e-6, 50, 10e-6)
runPulse()

Results

The raw sample data is stored in the dedicated nonvolatile buffers, smua.nvbuffer1 and smua.nvbuffer2. Use the following command
to print the data through the remote command interface:
printData()

The results for the example code are shown in Figure 12. The load is a 0.5W resistor.

Appendix G. Monitoring the Operation Overrun Event Register
The following TSP script demonstrates how to monitor the Model 2651A’s operation overrun Event register for overruns to the
Source, Measure, or EndPulse action blocks.

function checkSwpStatus()

 trigOvrEvent = status.operation.instrument.smua.trigger_overrun.event
 print(“Overall smu trigger overrun event register value”, trigOvrEvent)

 --For more detail look at bits 2, 3, 4
 --bit 2 = source, bit 3 = measure, bit 4 = endpulse
 --The bit.test function returns a boolean: true if set, false if not set
 sourceOvr = bit.test(trigOvrEvent, 3)
 print(“Source Overrun bit:”, sourceOvr)
 measOvr = bit.test(trigOvrEvent, 4)
 print(“Measure Overrun bit:”, measOvr)
 endPulseOvr = bit.test(trigOvrEvent, 5)
 print(“EndPulse Overrun bit:”, endPulseOvr)

 --If any bit in the register is set, then return a Boolean set to true for overrun occurred.
 if trigOvrEvent > 0 then
 ovrBool = true
 else
 ovrBool = false
 end
 return ovrBool
end

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

KEITHLEY INSTRUMENTS, INC. ■ 28775 AURORA RD. ■ CLEVELAND, OH 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

BELGIUM
Sint-Pieters-Leeuw
Ph: 02-3630040
Fax: 02-3630064
info@keithley.nl
www.keithley.nl

CHINA
Beijing
Ph: 86-10-8447-5556
Fax: 86-10-8225-5018
china@keithley.com
www.keithley.com.cn

FRANCE
Saint-Aubin
Ph: 01-64532020
Fax: 01-60117726
info@keithley.fr
www.keithley.fr

GERMANY
Germering
Ph: 089-84930740
Fax: 089-84930734
info@keithley.de
www.keithley.de

INDIA
Bangalore
Ph: 080-26771071, -72, -73
Fax: 080-26771076
support_india@keithley.com
www.keithley.com

ITALY
Peschiera Borromeo (Mi)
Ph: 02-5538421
Fax: 02-55384228
info@keithley.it
www.keithley.it

JAPAN
Tokyo
Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
info.jp@keithley.com
www.keithley.jp

KOREA
Seoul
Ph: 82-2-574-7778
Fax: 82-2-574-7838
keithley@keithley.co.kr
www.keithley.co.kr

MALAYSIA
Penang
Ph: 60-4-643-9679
Fax: 60-4-643-3794
sea@keithley.com
www.keithley.com

NETHERLANDS
Gorinchem
Ph: 0183-635333
Fax: 0183-630821
info@keithley.nl
www.keithley.nl

SINGAPORE
Singapore
Ph: 65-6747-9077
Fax: 65-6747-2991
sea@keithley.com
www.keithley.com

SWITZERLAND
Zürich
Ph: 044-8219444
Fax: 044-8203081
info@keithley.ch
www.keithley.ch

TAIWAN
Hsinchu
Ph: 886-3-572-9077
Fax: 886-3-572-9031
info_tw@keithley.com
www.keithley.com.tw

UNITED KINGDOM
Theale
Ph: 0118-9297500
Fax: 0118-9297519
info@keithley.co.uk
www.keithley.co.uk

© Copyright 2011 Keithley Instruments, Inc. Printed in the U.S.A. No. 3116 03.23.11

