## APPENDIX A

## Model 3321 Specifications

## A. 1 MEASUREMENT PARAMETERS

## Kinds of Parameters

- Main Parameters

AUTO: Selects the main parameters, sub-parameters and equivalent circuits automatically.
L: Self-inductance (unit: H , henry)
C: Capacitance (unit: F, farad)
$|Z|$ : Magnitude of tmpedance (unit: $\Omega$ )
There are series and parallel measuring modes for each of $L, C$ and $R$.

- Sub-parameters

Q: Quality factor (quality of circuit)
D: Dissipation factor $(=\tan \delta=1 / \mathrm{Q}$ )
ESR: Equivalent series resistance (unit: $\Omega$ )
G: Parallel conductance (unit: S, siemens; $1 / \Omega$; Mho)
$\theta$ : Phase angle of impèdance (unit: degree)

- Equivalent Circuits

AUTO: Automatic selection
SER: Series
PAR: Parallel

- Automatic Parameter Selection Parameters can be automatically selected by the phase angle of impedance.
$\theta=+90^{\circ} \pm 45^{\circ} \rightarrow \mathrm{L}-\mathrm{Q}$
$\theta=-90^{\circ} \pm 45^{\circ} \rightarrow \mathrm{C}-\mathrm{D}$
$\theta=$ Other than the above $\rightarrow|Z|-\theta$
- Automatic Selection of Equivalent Circuits

Equivalent circuits can beautomatically selected by the value and phase angle of impedance, and the combination of parameters.

| Conditions for Selection <br> of Series Mode | Conditions for Selection <br> of Parallel Mode |
| :--- | :--- |
| $L, C$ | $-E S R$ |
| $L, C(\|Z\| \leq 1 k \Omega)-Q, D$ | L, C $(\|Z\|>1 k \Omega)-Q, D$ |
| $\|Z\|$ | $-\theta$ |

[^0]```
Measuring (display) Range
    IZ1, ESR: \(0.1 \mathrm{~m} \Omega\) to \(19.999 \mathrm{M} \Omega\)
    C: 0.001 pF to 199.99 mF
    L. 0.1 nH to 19.999 kH
    Q, D: 0.0001 to 19999
    G: \(0.001 \mu \mathrm{~S}\) to 199.995
    日: \(-180.00^{\circ}\) to \(+179.99^{\circ}\)
    These ranges are dependent on the frequency, measuring range, and
    phase angle of impedance.
```


## Accuracy

## Accuracy Guarantee Conditions

- Warm-up time: 30 minutes.
- Ambient temperature and humidity: $23^{\circ} \pm 5^{\circ} \mathrm{C}, \leq 90 \% \mathrm{RH}$.
- Zero correction: Performed under the above conditions.
- Callbration period: 12 months.

Accuracy of $|Z|$ and $\theta$
For $0.2 \Omega \leq|Z| \leq 20 \mathrm{M} \Omega$, see Table A-1.
For $|Z|<0.2 \Omega$, see Table A-2,
For $|Z|>20 M \Omega$, see Table A-3.

## Notes:

1. When a measurement is made at twice line frequency, the measured value may deviate beyond the accuracy range due to interaction with line frequency.
2. When the operating temperature is $5^{\circ}-40^{\circ} \mathrm{C}$, add the value shown in Table A-4 to that in Table A-1. Double the values shown in Table A-2 and A-3.
3. Tables A-1 through A-3 show the worst case value in each impedance range. Obtain the correct accuracy in the following ranges by linear Interpolation:

- $|Z|=1 \mathrm{M}$ to $20 \mathrm{M} \Omega$

In this range, as impedance increases, accuracy decreases.
acc1: Accuracy shown in one range below the range including a Z in Table A-1.
acc2: Accuracy (worst case value) shown in the range including a Z in Table A-1.

- $|Z|=0.2$ to $2 \Omega$

In this range, as impedance decreases, accuracy decreases.
accl: Accuracy (worst case value) shown in the range including a $Z$ in Table A-1.

## Notes Cont.:

acc2: Accuracy shown in one range above the range including a Z in Table A-1
$\mathrm{acc}=[\operatorname{acc} 1(\mathrm{Z} 2-\mathrm{Z})+\mathrm{acc} 2(\mathrm{Z}-\mathrm{Z} 1)] /(\mathrm{Z} 2-\mathrm{Z} 1)$

Z: Magnitude of measured impedance (measured value)
Z1: Lower limit value of each impedance range in Table A-1.
22: Upper limit value of each impedance range in Table A-1.
acc: Measuring accuracy of impedance $Z(|Z|$ is displayed by $\%$, and $\theta$ by degree.)
acc1: Measuring accuracy of impedance Z'1
acc2: Measuring accuracy of impedance of Z2
When obtaining the accuracy in the ambient temperature ranging from $5^{\circ}-40^{\circ} \mathrm{C}$, add each corresponding value in Table A-4 to accl and acc2 in advance.

- When level $=50 \mathrm{mV}$ rms, accuracy is not guaranteed in the following ranges.
$|Z| \geq 20 \mathrm{M} \Omega$
$|\mathrm{Z}| \geq 2 \mathrm{M} \Omega$ and frequency $=100 \mathrm{kHz}$
$|Z|<0.2 \Omega$


## Accuracy of ESR and $G$

In the case of $Q<0.1$ ( $D>10$ ), use the accuracy of $|Z|$ :
$|E S R|=|Z|$
$|G|=1 /|Z|$

## Accuracy of $L$ and $C$

In the case of $Q>10(\mathrm{D}<0.1)$, use the accuracy of $|Z|$ :
$\mathrm{L}=\frac{|Z|}{2 \pi f}$
$C=\frac{1}{2 \pi f|Z|}$
where $f$ is the test frequency in Hz .
Refer to Figure A-1, Conversion from LC to $|\mathrm{Z}|$.

## Accuracy of $D$ and $Q$

In case $D \ll 1(Q \gg 1)$, use the following equations:
Accuracy of $D= \pm(0.0175 \times \theta$ accuracy ( deg ) )
Accuracy of $Q= \pm\left(0.0175 \times \theta\right.$ accuracy $\left.(\mathrm{deg}) \times \mathrm{Q}^{2}\right)$
In any parameter, add the $\pm 1 / 2$ count, i.e., half of the resolution to the displayed value as actual accuracy.

Table A-1. Accuracy of $|\mathrm{Z}|$ and $\theta$ for $0.2 \Omega \leq|Z|<20 \mathrm{M} \Omega$

| $\begin{aligned} & \|Z\| \\ & (\Omega) \end{aligned}$ | LEVEL $=1 \mathrm{~V} \mathrm{rms}$ <br> Frequency, (Hz) |  |  |  | $\begin{gathered} \text { LEVEL }=50 \mathrm{mVrms} \\ \text { Frequency, ( } \mathrm{Hz} \text { ) } \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 120 | 1k | 10k | 100k | 120 | 1k | 10k | 100k |
| $10 \mathrm{M} \leq 1 Z 1<20 \mathrm{M}$ | $\begin{aligned} & 3.0 \% \\ & 1.5^{\circ} \end{aligned}$ | $\begin{aligned} & 1.0 \% \\ & 0.8^{\circ} \end{aligned}$ | $\begin{aligned} & 3.5 \% \\ & 2.0^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 20.0 \% \\ & 12.0^{\circ} \end{aligned}$ | $\begin{aligned} & 7.0 \% \\ & 4.0^{\circ} \end{aligned}$ | $\begin{aligned} & 3.5 \% \\ & 2.0^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 8.5 \% \\ & 5.0^{\circ} \\ & \hline \end{aligned}$ | \|- |
| $5 \mathrm{M} \leq 1 \mathrm{Z} \mid<10 \mathrm{M}$ | $\begin{aligned} & 1.5 \% \\ & 0.9^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.5 \% \\ & 0.4^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.8 \% \\ & 1.1^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 10,0 \% \\ & 6.0^{\circ} \end{aligned}$ | $\begin{array}{\|l\|} \hline 3.5 \% \\ 2.0^{\circ} \\ \hline \end{array}$ | $\begin{aligned} & 1.7 \% \\ & 1.0^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.5 \% \\ & 2.0^{\circ} \\ & \hline \end{aligned}$ | - |
| $2 \mathrm{M} \leq\|Z\|<5 \mathrm{M}$ | $\begin{aligned} & 0.75 \% \\ & 0.45^{\circ} \end{aligned}$ | $\begin{aligned} & 0.3 \% \\ & 0.2^{\circ} \end{aligned}$ | $\begin{aligned} & 0.9 \% \\ & 0.6^{\circ} \end{aligned}$ | $\begin{aligned} & 5.0 \% \\ & 3.0^{\circ} \end{aligned}$ | $\begin{aligned} & 2.0 \% \\ & 1.2^{\circ} \end{aligned}$ | $\begin{aligned} & 0.9 \% \\ & 0.6^{\circ} \end{aligned}$ | $\begin{aligned} & 1.6 \% \\ & 1.0^{\circ} \end{aligned}$ | $\left.\right\|^{-}$ |
| $1 \mathrm{M} \leq 1 \mathrm{Z} \mid<2 \mathrm{M}$ | $\begin{aligned} & 0.36 \% \\ & 0.22^{\circ} \end{aligned}$ | $\begin{aligned} & 0.2 \% \\ & 0.1^{\circ} \end{aligned}$ | $\begin{aligned} & 0.4 \% \\ & 0.2^{\circ} \end{aligned}$ | $\begin{aligned} & 3.0 \% \\ & 2.0^{\circ} \end{aligned}$ | $\begin{aligned} & 1.0 \% \\ & 0.6^{\circ} \end{aligned}$ | $\begin{aligned} & 0.4 \% \\ & 0.25^{\circ} \end{aligned}$ | $\begin{aligned} & 0.8 \% \\ & 0.5^{\circ} \end{aligned}$ | $\begin{aligned} & 14.0 \% \\ & 8.0^{\circ} \end{aligned}$ |
| $200 \mathrm{ks}\|\mathrm{Z}\|<1 \mathrm{M}$ | $\begin{aligned} & 0.25 \% \\ & 0.15^{\circ} \end{aligned}$ | $\begin{aligned} & 0.15 \% \\ & 0.09^{\circ} \end{aligned}$ | $\begin{aligned} & 0.27 \% \\ & 0.16^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 2.0 \% \\ & 1.2^{\circ} \end{aligned}$ | $\begin{aligned} & 0.5 \% \\ & 0.3^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 0.3 \% \\ & 0.18^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.4 \% \\ & 0.25^{\circ} \end{aligned}$ | $\begin{aligned} & 7.0 \% \\ & 4.0^{\circ} \end{aligned}$ |
| $20 \mathrm{k} \leq\|\mathrm{Z}\|<200 \mathrm{k}$ | $\begin{aligned} & 0.15 \% \\ & 0.10^{\circ} \end{aligned}$ | $\begin{aligned} & 0.1 \% \\ & 0.04^{\circ} \end{aligned}$ | $\begin{aligned} & 0.25 \% \\ & 0.15^{\circ} \end{aligned}$ | $\begin{aligned} & 1.2 \% \\ & 0.8^{\circ} \end{aligned}$ | $\begin{aligned} & 0.3 \% \\ & 0.18^{\circ} \end{aligned}$ | $\begin{aligned} & 0.16 \% \\ & 0.08^{\circ} \end{aligned}$ | $\begin{aligned} & 0.32 \% \\ & 0.18^{\circ} \end{aligned}$ | $\begin{aligned} & 3.0 \% \\ & 1.5^{\circ} \\ & \hline \end{aligned}$ |
| $2 \mathrm{k} \leq 1 \mathrm{Z} \mid<20 \mathrm{k}$ | $\begin{aligned} & 0.14 \% \\ & 0.09^{\circ} \end{aligned}$ | $\begin{array}{l\|} \hline 0.1 \% \\ 0.03^{\circ} \\ \hline \end{array}$ | $\begin{aligned} & 0.15 \% \\ & 0.08^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 0.8 \% \\ & 0.6^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.25 \% \\ & 0.15^{\circ} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.16 \% \\ 0.06^{\circ} \\ \hline \end{array}$ | $\begin{aligned} & 0.24 \% \\ & 0.14^{\circ} \end{aligned}$ | $\begin{aligned} & 2.0 \% \\ & 1.2^{\circ} \\ & \hline \end{aligned}$ |
| $10 \leq\|Z\|<2 k$ | $\begin{aligned} & 0.13 \% \\ & 0.08^{\circ} \end{aligned}$ | $\begin{aligned} & 0.1 \% \\ & 0.03^{\circ} \end{aligned}$ | $\begin{aligned} & 0.13 \% \\ & 0.1^{\circ} \end{aligned}$ | $\begin{aligned} & 0.7 \% \\ & 0.5^{\circ} \end{aligned}$ | $\begin{aligned} & 0.20 \% \\ & 0.12^{\circ} \end{aligned}$ | $\begin{aligned} & 0.15 \% \\ & 0.06^{\circ} \end{aligned}$ | $\begin{aligned} & 0.23 \% \\ & 0.13^{\circ} \end{aligned}$ | $\begin{aligned} & 1.6 \% \\ & 1.0^{\circ} \end{aligned}$ |
| $2 \leq\|Z\|<10$ | $\begin{aligned} & 0.25 \% \\ & 0.15^{\circ} \\ & \hline \end{aligned}$ | $\begin{array}{l\|} \hline 0.15 \% \\ 0.07^{\circ} \end{array}$ | $\begin{array}{\|l\|} 0.32 \% \\ 0.2^{\circ} \end{array}$ | $\begin{aligned} & 1.5 \% \\ & 0.8^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 0.5 \% \\ & 0.3^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.25 \% \\ & 0.14^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.5 \% \\ & 0.3^{\circ} \end{aligned}$ | $\begin{aligned} & 4.0 \% \\ & 2.3^{\circ} \\ & \hline \end{aligned}$ |
| $15\|Z\|<2$ | $\begin{aligned} & 0.35 \% \\ & 0.22^{\circ} \end{aligned}$ | $\begin{aligned} & 0.2 \% \\ & 0.12^{\circ} \end{aligned}$ | $\begin{aligned} & 0.5 \% \\ & 0.3^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \% \\ & 1.2^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0 \% \\ & 0.6^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.5 \% \\ & 0.3^{\circ} \end{aligned}$ | $\begin{aligned} & 0.8 \% \\ & 0.5^{\circ} \end{aligned}$ | $\begin{aligned} & 8.0 \% \\ & 5.0^{\circ} \\ & \hline \end{aligned}$ |
| $0.5 \leq\|Z\|<1$ | $\begin{aligned} & 0.7 \% \\ & 0.45^{\circ} \end{aligned}$ | $\begin{aligned} & 0.4 \% \\ & 0.25^{\circ} \end{aligned}$ | $\begin{aligned} & 0.8 \% \\ & 0.5^{\circ} \end{aligned}$ | $\begin{aligned} & 3.3 \% \\ & 2.0^{\circ} \end{aligned}$ | $\begin{aligned} & 1.8 \% \\ & 1.1^{\circ} \end{aligned}$ | $\begin{aligned} & 1.0 \% \\ & 0.6^{\circ} \end{aligned}$ | $\begin{aligned} & 1.5 \% \\ & 0.9^{\circ} \end{aligned}$ | $\begin{aligned} & 14.0 \% \\ & 8.5^{\circ} \\ & \hline \end{aligned}$ |
| $0.25\|Z\|<0.5$ | 1.4\% | 0.8\% | 1.25\% | 5.5\% | 3.7\% | 2.0\% | 2.9\% | 28.0\% |

$|Z|$ Accuracy: $\pm \%$ reading shown on upper line,
$\theta$ Accuracy: $\pm$ degrees shown on lower line.

Table A-2. Accuracy of $|Z|$ and $\theta$ for $|Z|<0.2 \Omega$

| IZ <br> $(\mathrm{Z} \mid$ | LEVEL $=1 \mathrm{~V} \mathrm{rms}$ <br> Frequency, $(\mathrm{Hz})$ <br>  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 120 | 1 k | 10 k | 100 k |
| $0 . \mathrm{S}\|\mathrm{Z}\|<0.2$ | $1.7 \%$ | $1.0 \%$ | $1.4 \%$ | $6.0 \%$ |
|  | +0.2 m | +0.2 m | +0.3 m | +3 m |

$|Z|$ Accuracy: $\pm(\%$ reading $+R$ ) shown.
$\theta$ Accuracy: ( $\theta$ Accuracy for $0.2 \leq|Z|<0.5$ in Table A-1) $\times(0.2 \Omega /|Z|)$

Table A-3. Accuracy of $|\mathrm{Z}|$ and $\theta$ for $|\mathrm{Z}| \geq 20 \mathrm{M} \Omega$

| $1 Y \mid$ <br> $(S)$ | LEVEL $=1 \mathrm{Vms}$ <br> Frequency, $(\mathrm{Hz})$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 120 | 1 k | 10 k | 100 k |
| $0 \leq\|\mathrm{Y}\| \leq 50 \mathrm{nS}$ | 1.8 nS | 0.6 nS | 2.1 nS | 12 nS |

$|Z|$ Accuracy: Specified by the $\pm$ deviation ( $\$$ ) of admittance $|\mathrm{Y}|$ shown. $\theta$ Accuracy: ( $\theta$ Accuracy for $10 \mathrm{M} \leq|\mathrm{Z}|<20 \mathrm{M}$ in Table A- $1 \times(|Z| / 20 \mathrm{M} \Omega)$.

Table A-4. Additional Error for $5^{\circ}{ }^{\circ} 40^{\circ} \mathrm{C}$

| $\sqrt{\|z\|}$ | LEVEL =1 Vrms Frequency, (Hz) |  | $\begin{gathered} \text { LEVEL }=50 \mathrm{mVrms} \\ \text { Frequency, }(\mathrm{Hz}) \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 120 \text { to } \\ & 10 \mathrm{k} \end{aligned}$ | 100k | $\begin{aligned} & 120 \text { to } \\ & 10 \mathrm{k} \end{aligned}$ | 100k |
| 10M $\leq 1 \mathrm{Z} \mid<20 \mathrm{M}$ | $\begin{aligned} & 0.2 \% \\ & 0.12^{\circ} \end{aligned}$ | $\begin{aligned} & 2.0 \% \\ & 1.2^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.3 \% \\ & 0.2^{\circ} \\ & \hline \end{aligned}$ | - |
| $5 \mathrm{M} \leq 1 \mathrm{Z} \mid<10 \mathrm{M}$ | $\begin{aligned} & 0.12 \% \\ & 0.07^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0 \% \\ & 0.6^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 0.2 \% \\ & 0.12^{\circ} \\ & \hline \end{aligned}$ | - |
| $2 \mathrm{M} \leq\|\mathrm{Z}\|<5 \mathrm{M}$ | $\begin{aligned} & 0.07 \% \\ & 0.04^{\circ} \end{aligned}$ | $\begin{aligned} & 0.5 \% \\ & 0.3^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.14 \% \\ & 0.09^{\circ} \end{aligned}$ | $-$ |
| $200 \mathrm{ks}\|\mathrm{Z}\|<2 \mathrm{M}$ | $\begin{aligned} & 0.04 \% \\ & 0.024^{\circ} \end{aligned}$ | $\begin{aligned} & 0.20 \% \\ & 0.12^{\circ} \end{aligned}$ | $\begin{aligned} & 0.1 \% \\ & 0.066^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.6 \% \\ & 0.4^{\circ} \\ & \hline \end{aligned}$ |
| $20 \mathrm{k} \leq 1 \mathrm{Z} \mid<200 \mathrm{k}$ | $\begin{aligned} & 0.04 \% \\ & 0.024^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.20 \% \\ & 0.12^{\circ} \end{aligned}$ | $\begin{aligned} & 0.06 \% \\ & 0.035^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.3 \% \\ & 0.2^{\circ} \\ & \hline \end{aligned}$ |
| $2 \mathrm{k} \leq 1 Z \mid<20 \mathrm{k}$ | $\begin{array}{\|l\|l\|} 0.04 \% \\ 0.024^{\circ} \\ \hline \end{array}$ | $\begin{aligned} & 0.08 \% \\ & 0.05^{\circ} \end{aligned}$ | $\begin{aligned} & 0.06 \% \\ & 0.035^{\circ} \end{aligned}$ | $\begin{aligned} & 0.15 \% \\ & 0.1^{\circ} \end{aligned}$ |
| 10¢\|Z|<2k | $\begin{aligned} & 0.04 \% \\ & 0.024^{\circ} \end{aligned}$ | $\begin{aligned} & 0,08 \% \\ & 0.05^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.06 \% \\ & 0.035^{\circ} \end{aligned}$ | $\begin{aligned} & \hline 0.15 \% \\ & 0.1^{\circ} \\ & \hline \end{aligned}$ |
| $2 \leq\|Z\|<10$ | $\begin{aligned} & 0.04 \% \\ & 0.024^{\circ} \end{aligned}$ | $\begin{aligned} & 0.10 \% \\ & 0.06^{\circ} \end{aligned}$ | $\begin{aligned} & 0.2 \% \\ & 0.12^{\circ} \end{aligned}$ | $\begin{aligned} & 1.0 \% \\ & 0.6^{\circ} \end{aligned}$ |
| $1 \leq\|Z\|<2$ | $\begin{array}{\|l\|} \hline 0.07 \% \\ 0.04^{\circ} \\ \hline \end{array}$ | $\begin{aligned} & 0.18 \% \\ & 0.1^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.4 \% \\ & 0.24^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.0 \% \\ & 1.2^{\circ} \\ & \hline \end{aligned}$ |
| $0.5 \leq\|Z\|<1$ | $\begin{aligned} & \hline 0.12 \% \\ & 0.07^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.33 \% \\ & 0.2^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.8 \% \\ & 0.5^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.0 \% \\ & 3.5^{\circ} \end{aligned}$ |
| $0.2 \mathrm{~s}\|\mathrm{Z}\|<0.5$ | $\begin{aligned} & 0.2 \% \\ & 0.12^{\circ} \end{aligned}$ | $\begin{aligned} & 0.6 \% \\ & 0.4^{\circ} \end{aligned}$ | $\begin{aligned} & 2.0 \% \\ & 1.2^{\circ} \\ & \hline \end{aligned}$ | $\begin{aligned} & 10.0 \% \\ & 6.0^{\circ} \end{aligned}$ |


(a) Converslon dlagram

(b) $\mathrm{C} \rightarrow|\mathrm{z}|$

(c) $L \rightarrow|Z|$

Figure A-1. Conversion Diagram from L or C to $|\mathrm{Z}|$

## Examples of Determining Accuracy

Ex. 1: Find the accuracy when $R=33 \mathrm{k} \Omega, f=10 \mathrm{kHz}, 1 \mathrm{~V}$, while $\mathrm{Q}<0.1$.

1. Find the accuracy from Table A-1, using the following parameters: 1V, 10 kHz and 20 k to $200 \mathrm{k} \Omega$.
2. When operating within a temperature range from 5 to $40^{\circ} \mathrm{C}$, add the value in Table A-4.
3. When accuracy is needed for $21 \mathrm{M} \Omega$ or $\leq 2 \Omega$, interpolate the value according to Note 3.
4. Add $\pm 1 / 2$ count of display value. When the display shows a measured value of $33.14 \mathrm{k} \Omega$, the $1 / 2$ count becomes $0.005 \mathrm{k} \Omega$.

Ex. 2; Find the accuracy when $C=10 \mu \mathrm{~F}, \mathrm{f}=1 \mathrm{kHz}, 50 \mathrm{mV}$, while $\mathrm{D}<0.1$.

1. Find $|\mathrm{Z}|$ from Figure A-1 Conversion Diagram.

- Find the line descending from $\mathrm{C}=10 \mu \mathrm{~F}$. Find the vertical line from frequency $=1 \mathrm{kHz}$. Mark their intersection,
- Extend a horizontal line from the intersection, to the left side. Read the value of $|\mathrm{Z}|(\approx 16 \Omega)$. Also, you can calculate the accuracy using the following equation.

$$
|Z|=|1 / 2 \pi f C|
$$

2. Find the accuracy from Table A-1, using the following parameters: $50 \mathrm{mV}, 1 \mathrm{kHz}$ and 10 to $2 \mathrm{k} \Omega$.
3. When operating within a temperature range from 5 to $40^{\circ} \mathrm{C}$, add the value in Table A-4.
4. When accuracy is needed for $\geq 1 \mathrm{M} \Omega$ or $\leq 2 \Omega$, interpolate the value according to Note 3 .
5. Add $\pm 1 / 2$ count of display value.

Ex. 3: Find the accuracy when $\mathrm{L}=680 \mu \mathrm{H}, \mathrm{f}=100 \mathrm{kHz}$, while $\mathrm{Q}>10$.

1. Find $|Z|$ from Figure A-1 Conversion Diagram.

- Draw a stralght line from $\mathrm{L}=680 \mu \mathrm{H}$, in parallel with the ascending lines. Find the intersection with the vertical line at frequency $=$ 100 kHz .
- Read IZI as shown in Ex. 2. Also, you can calculate the accuracy using the following equation:

$$
1 Z|=|2 \pi \mathrm{fL}|
$$

2. Find the accuracy from Table A-1, using the following parameters: $\mathrm{f}=100 \mathrm{kHz}$ and 10 to $2 \mathrm{k} \Omega$. Repeat procedures 3 to 5 in Ex. 2.

Ex. 4: Find the accuracy of $|Z|$ at any $\theta$ and for parameters other than $\theta$.

1. Measure $|Z|$ and $\theta$, or calculate the accuracy, using the other parameters.

$$
\begin{aligned}
\mathrm{Q} & =1 / \mathrm{D} & |\theta| & =|\arctan \mathrm{Q}| \\
& =2 \pi \mathrm{fLs} / \mathrm{ESR} & |Z| & =|2 \pi \mathrm{fLs} / \sin \theta| \\
& =1 /(2 \pi \mathrm{fCs} \mathrm{ESR}) & & =|1 /(2 \pi \mathrm{fCs} \sin \theta)| \\
& =2 \pi f \mathrm{Cp} / \mathrm{G} & & \\
& =1 /(2 \pi \mathrm{fLp} \mathrm{G}) & & =|2 \pi \mathrm{fLp} / \sin \theta|
\end{aligned}
$$

f: Frequency ( Hz )
Suffix s: Series equivalent circuit
p: Parallel equivalent ctrcuit
2. Find the accuracies of $|Z|$ and $\theta$. Refer to Ex. 1.
3. Find the maximums and minimums of $|Z|$ and $\theta$ from the measured values and accuracies of $|Z|$ and $\theta$.
$Z_{\text {max }}, \min =$ Measured value $|Z| \times[1 \pm$ Accuracy of $|Z|(\%) / 100]$
$\theta$ max, $\min =$ Measured value $\theta \pm$ Accuracy $\theta$ (degree)
4. Find the maximums and minimums of the parameters for the four sets of combinations of maximums and minimums of $|Z|$ and $\theta, u \operatorname{sing}$ the
calculating equation of each parameter, B is a susceptance, i.e., an imaginary component of admittance.
$\mathrm{ESR}=|Z| \cos \theta$
$\mathrm{G}=(1 /|Z|) \cos \theta$
$X=|Z| \sin \theta \quad B=-(1 /|Z|) \sin \theta$
$\mathrm{Ls}=\mathrm{X} / 2 \pi \mathrm{f} \quad \mathrm{Lp}=-1 / 2 \pi \mathrm{fB}$
$C s=-1 / 2 \pi \mathrm{fX} \quad \mathrm{Cp}=\mathrm{B} / 2 \pi \mathrm{f}$
$Q=|\sin \theta| / \cos \theta \quad D=\cos \theta /|\sin \theta|$
5. The accuracy is the value that the error of $1 / 2$ count of display is added to $\mid$ maximum value-measured value $\mid$ or 1 minimum value-measured value $I$, whichever is greater.

## A. 2 MEASURING SIGNAL

## Frequency

Range: $120,1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}(\mathrm{Hz})$
Accuracy: $\pm 0.005 \%$ ( $\pm 50 \mathrm{ppm}$ )
Signal level (HCUR open voltage with terminal)
$1 \mathrm{Vrms}: \quad \pm 3 \%$ at 1 kHz
$\pm 4 \%$ at 120 Hz to 10 kHz
$\pm 5 \%$ at 100 kHz
50 mVrms : $\pm 5 \%$ at kHz
$\pm 6 \%$ at 120 Hz to 10 kHz
$\pm 7 \%$ at 100 kHz
DC bias
Internal: 2V, $\pm 5 \%$
External: 0 to $\pm 35 \mathrm{~V}$

## A. 3 MEASURING RANGE

Number of ranges: 6 (Reference resistance: $100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, upper and lower extension ranges 2)
Selection: Automatic

## A. 4 MEASURING SPEED (reference value)

## Measuring time (fixed range and auto trigger mode)

When the range is not switched, the following values become effective:
150 ms (typ) $1 \mathrm{kHz}, 1 \mathrm{k} \Omega$
600 ms (max) all ranges, all frequencies

## Automatic range switching time (per range)

The automatic range switching time is nearly equal to the measuring time. When the frequency is $\leq 120 \mathrm{~Hz}$ and the impedanceis $21 \mathrm{M} \Omega$, it will take time for the measured value to stabilize. When measuring a device whoseimpedancechanges according to the magnitude of the measuring signal, time will extend until the value of the device becomes stable,
Level switching stabilization time: 200 ms to 4 s
The level switching stablization time will change according to the kinds of devices under test. Time increases when measuring non-linear elements, such as diodes, or when switching from 1 V to 50 mV . This is the time required for the stabilization of measured values. The time needed to change the device under test is excluded.
Bias stabilization time: $(4+0.015 \mathrm{C}) \mathrm{s}$
Where $\mathrm{C}=$ capacitance of device under test ( $\mu \mathrm{F}$ ).
Frequency switching stabilization time: 150 ms to 4 s
The frequency switching stabilization time increases when a high frequency is changed to a low frequency (e.g.: 100 kHz to 120 Hz )
Also, time changes according to the device under test. This is the time required for the stabilization of the measured value. The time taken to change the device under test is excluded.

Page 6 of 7

## A. 5 TRIGGER

Trigger mode: Automatic only.
Trigger delay time: 0 to 199.99 s

## A. 6 MEASUREMENT TERMINALS

4 terminals (BNC) + guard terminal

## A. 7 SETUP MEMORY

Memory Content: All settable data (except bias on-off). Battery Life: 3 years minimum when stored at $40^{\circ} \mathrm{C}$ max.

## A. 8 GPIB

Interface Functions: SH1, AH1, T6, L4, SR1, RL2, PP0, DC1, DT1, C0.

Setting: Of the items settable via the front panel, all the parameters except address and delimiter of GPIB can be set. Also, trigger, OPEN/SHORT compensation and memory operation can be performed.
Readout: All the settable parameters, measurement data and status.
Standards: Based on IEEE-488-1978 and IEEE-488A-1980.
Code: ISO 7 blt code (ASCII code).

## A. 9 GENERAL

Power requirements: AC line voltage: selectable to $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$, $240 \mathrm{~V} \pm 10 \%$ ( 250 V max.). 48 to 62 Hz , approx. 21 VA .
Operating Environment: $0^{\circ}$ to $40^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$ (non-condensing). Storage Environment: -10 to $+50^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$ (non-condensing).
Dimensions, Weight: 216 mm wide $\times 132.5 \mathrm{~mm}$ high $\times 350 \mathrm{~mm}$ deep ( $8-1 / 2 \mathrm{in} . \times 5-1 / 4 \mathrm{in} . \times 13-3 / 4 \mathrm{in}$.), excluding protrusions. Net weight 3.6 kg ( 7.9 lb .).


[^0]:    Displayed Resolution
    4-1/2 digits (19999 max)
    $D$ and $Q$ Resolution: 0.0001 min
    $\theta$ Resolution: $0.01^{\circ}$

