INSTRUCTION MANUAL MODEL 710, 711 MILLIVOLT DISCRIMINATOR

TABLE OF CONTENTS

SECTION
INTPRODUCTITON I
SPECIFICATIONS II
DESCRIPTION III
OPERATITON. IV
MAINIENANCE V
Voltage Chart
Schematic Diagram
Replaceable Parts List

SECTION I - INVIRODUCTION

A. Models 710 and 711 Millivolt Discriminators

These Millivolt Discriminators are extremely stable, lightmodulator de amplifiers operating a thyratron tube and relay. They are identical except for the method of the trip level. adjustments.

Trip level of the 710 and 711 is variable from 0.2 to $10 \mathrm{milli}-$ volts. The range may be extended to 1000 volts with on internal resistive divider, or to 10^{-8} ampere with a current shunt. Adjustment of the 710 is made with an external reference and potentiometer located behind the front panel. The 7.11 is adjusted by means of a calibrated dial in the front panel. Dial setting is accurate within ± 200 uv .

The instruments may be made either locking or non-locking. They are chatter-free on non-locking and locking operation; modification for locking action is easily made by adding a normally open switch.

Long term repeatability of the 710 and 711 is better than 200 microvolts, and the speed of response is between 40 and 60 milliseconds with a signal 50% larger than the trip level. Standard units are wired to trip for signals exceeding the trip point and are fail-safe in that fallure of any component causes the alarm condition. On units wired to trip for a signal that decreases below the trip point, the unit is not fail-safe if a. loss of reference signal occurs.

Careful shielding, filtering, and guarding permit floating operation up to 500 volts above ground, with excellent rejection to extraneous voltages. Input and output terminals are isolated. from each other and from ground.

Immunity to vibration and Indefinite life under rigorous environmental conditions are assured by the use of premium subminiature tubes and a Keithley designed photo-resistive modulator having no moving parts. Permissable overload is greater than 10,000 times.

SECTION II - SPECIFICATIONS

Models 710 and 711 are identical except for the means of adjusting the trip level.

TRIP LEVEL: Model 710: Adjustment made with an external reference and potentiometer located behind front panel. Model 7ll: Adjustment made with a calibrated dial on the front panel. Dial setting of trip level is accurate within $\pm 200 \mathrm{uV}$.

SENSITMVITY: 0.2 to 10 mililivolts. Range can be extended to 1000 volts with an internal resistive divider.

MAXIMUM SOURCE IMPEDANCE: 100 K

INPUT IMPEDANCE: From LO to GROUND or INPUT to OUTPUT, over 1000 megohms shunted by . 0047 mf . Across input terminals, greater than 1 megohm. Maximum voltage above ground, 500 vol.ts, de or peak.

OUTPUT: Relay contacts, DPDT, 5 amps, 110 v , noninductive.
REPEATABILITY OF TRTP POINT: Better than 200 microvolts.
STABILITY OF TRIP POINI: $\pm 0.3 \%$ with $\pm 10 \%$ line change.

60 CPS REJECTION: 100 millivolts of 60 cps on de signal will cause Less than 1% shift of trip point.

RESFONSE SPEED: As shown in Figure 1, speed depends somewhat on the degree to which the trip point is exceeded. Reclosure time is approximately 30 milliseconds.

TRIP POLARITY: Positive or negative
PERMISSIBLE OVERLOAD: Greater than 10,000 times.

TRIP RESEI: Automatic when the standard non-locking mode of operation is used; differential between trip and reset is less than 200 uV. When modified for locking action, a reset switch is added.

IRTP INDICATION: Red light on front panel.
VOLTAGE REFERENCE: One RM4O1R mercury battery. Battery life is in excess of 10,000 hours.

TUBE, TRANSISTOR COMPLEMENTI: 1.-6948; 1-6788; 1-5643; 1-2N398
MODULATORS: 2 Keithley Model 1510 Modulators
POWER: $117 \mathrm{v}, 60 \mathrm{cps}, 12 \mathrm{w} ; 230 \mathrm{v}$ models on orderACCESSORIES SUPPLIED: Mating connectors; input, output
ACCESSORIES AVATLABTF: Model 7101. Case: Model 7102 Rack Framefor mounting up to 7 units.
DTMENSTONS: $8^{\prime \prime}$ high $x ~ 2 \frac{1}{4}$ "wide $\times 13 \frac{11}{\prime \prime}$ deep.

SECTION ITI - DESCRTPTION

The Model 710 and 711 Millivolt Discriminators consist of a three stage vacuum amplifier following a modulator and an input filter. The output of the amplifier is synchronously demodulated and filtered to provide a D.C. signal at the grid of a thyratron. The thyratron controls a relay.

The input contains the D.C. to A.C. modulator, an input filler to reject spurious A.C. signals and the Trip Level reference set.

The modulator used in the Millivolt Discriminator employs two photoconductive cells, PD-101 and PD-102, which operate from the transformer secondary. This action is similar to a single-pole doublethrow mechanical chopper with the result that the D.C. Input and the D.C. reference are converted to an A.C. signal. With no signal at the input of the amplifier either from the reference or the input, the negative bias cuts off the thyratron and the relay drops out. When a reference signal is fed to the amplifier, the negative bias at the grid of the thyratron is cancelled and the thyratron fires and energizes the relay. This is the normal condition of operation, that is with the relay energized. Operating in this manner the Model 710 and 711 will indicate an alarm condition in the event of any tube failure in the unit or from the loss of this reference signal by any other means. The transistor, Ql protects against loss of bias on the thyratron. If bias is lost, the transistor opens the cathode circuit of V3 and gives the alarm condition. The modulator compares the input signal to the signal set by the Trip Level. If the input signal is less than the level set by the Trip Level pot., the D.C. voltage to the thyratron grid keeps the thyratron on. If the input signal exceeds the reference signal the thyratron extinguishes and indicates the alarm condition by means of a red light on the front panel.

Spurious A.C. signals are prevented from entering the input by means of a "twin-tee" filter consisting of R-102 through R-106 and C-101 through C-1.03 which is tuned to Iine frequency. R-1.04 and R-106 are set at the factory for maximum rejection to line frequency.

The demodulator circuit employs a four-diode bridge with silicon diodes. A balanced configuration is used so that careful balance of the transformer secondary is not necessary. The demodulator is driven synchronously with the neon lamps which switch the input modulator. The demodulator output is a pulsating D.C. signal which is filtered and fed to the grid of the thyratron.

The basic sensitivity of the instrument is 10 millivolts, however, reduced sensitivity may be obtained by the use of a divider.

The output is obtained as a D.P.D.T. set of contacts from a relay which is used for control.
A. INPUT CONNECTIONS - The Model 710 and 711 will operate grounded or floating. For grounded operation, one side of the signal source should be grounded.
B. OPERAITION - The power is turned on by plugging in the power cord. Be sure that the instrument is wired for the proper ine voltage. The Model 710 and 711 will operate satisfactorily on 50 or 60 cps. For method of changing from 115 to 230 volts consult schematic.

The trip point on the Model 710 is set by means of an extermal reference and a multi-turn wire wound potentiometer located behind the front panel and on the Model 711 by means of a calibrated dial on the front panel. The RELAY OPFN light will go on when the limit is exceeded. No other operating adjustment is necessary.
C. NON-LOCKING OPERATION - The instrument is normally supplied for non-locking operation and the relay will re-close when the signal drops about 200 microvolts below the trip point.
D. LOCKING OPERATION AND CONVERSION IO LOCKING OPERATIION - On the output plug at the rear of the instmument, pins (I) and (J) are jumpered. If this jumper is removed, the unit will perform as a locking relay. To reset, pins (I) and (J) mast be momentarily shorted after the signal has fallen below the set limit. When units are supplied as locking relays, a reset button, connected across pins (I) and (J), is mounted on the front panel. Remote reset may be obtained by an external control across the reset pins.
E. REVERSE POLARITTY OPERATION - If it is desired to operate with negative signals the input signal is merely reversed.
F. OUTPUT CONNECTIONS - The output is obtained as a DPDT set of contacts from a relay. The rating of the relay is 5 amperes NONINDUCIIVE. If inductive loads or higher currents are to be switched, the output should be followed by a second relay of high enough current capacity.

The only maintenance required is the replacement of the mercury standard cell every 10,000 hours. If the highest reliability is required, it is recomended that the vacuum tubes also be replaced on that schedule.

IROUBLE SHOOITNG CHART - MODEL '710 and 711

SYMPIOM CAUSE OF TROUBLE REMEDY AND CHECKS
A.C. Power Cord plugged, pilot light does not light and no readings obtained.

Defective Power Cord, Plug or Receptacle Fuse ($\mathrm{F}-1$) blown

Check Power source and connections. Fuse Check ($\mathrm{F}-\mathrm{I}$)

No (+) voltage readings obtainable, pilot lamp lights and Relay Open lamp (red) 11ghts.

Relay open Lamp (red) on at all times.	Defective V-1, V-2, or V-3. Defective B-1 Open Potentiometer, R-120 Open Relay Coil N/O Relay Contact not making Defective D-102 Jumper on Output Plug	Check Tubes. Replace if necessary. Check Battery. Replace if necessary. Check for continuity. Replace if necessary. Check coil Resistance. 6200 ohms, $\pm 10 \%$ Adjust Check D-102, replace if necessary. Check to see if output plug is jumpered between pins (I) and (J)

Check D201. If necessary, replace.

Defective D201

Defective V-1, V-2, or V-3. Defective $\mathrm{B}-1$

Open Potentiometer, R-120
Open Relay Coil
N/O Relay Contact not making
Defective D-102 Check D-102, replace if necessary. Check to see if outbetween pins (I) and (J)
$\underset{\text { times }}{\operatorname{Lamp}}(\mathrm{red})$ off, at a.ll
Lamp (red) off, at all
times

Defective DS-2
Defective D-202, D-203
D-204, or D-205
Defective C-110

Check, replace if necessary.
Check, replace if necessary. Check, replace if necessary.

Differential is greater than 200 microvolts

Amplifiter gain down
Defective V-1, V-2, or V-3

The waveforms in Figure (2) have been prepared to help check for proper operation and localize a possible malfunction.

To obtain the waveforms, short the input leads to chassis. Set the trip level pot for 1 mv and connect on oscilloscope between chassis and the points indicated below:

Figure (1)
$A-V-1, \operatorname{Pin} 5$
$B-V-2, \operatorname{Pin} 1$
$C-V-2, \operatorname{Pin} 8$
$D-J u n c t i o n ~ o f ~ D-103 \& D-105$ (See Schematic)
$E-V-3, \operatorname{Pin} 7$

Failure to obtain the desired waveform at any of the above points would indicate the fault to be at that stage or some component preceeding it.

Use conventional AC Amplifier trouble-shooting methods to localize fault. Refer to Schematic and Voltage \& Resistance Chart.

REPTACEABLE PARTS LIST - MODEL TIO

Circuit		
Desig.	Description	Part No.
B-1	Battery, RM401-R	BA-8
C-101	Capacitor, mylar, . 047 mfl .200 V	C47-.047
C-102	Capacitor, Same as C-101	
C-103	Capacitor, mylar, . 1 mfd. 200 V.	C47-. 1
C-1.04	Capacitor, ceramic disc., . $01 \mathrm{mfd}, 600 \mathrm{~V}$.	C22-. 01
C-105	Capacitor, Electrolytic, $4.7 \mathrm{mfd}, 1.5 \mathrm{~V}$	C71..4.7
C-106	Capacitor, Same as $\mathrm{C}-104$	
C-107	Capacitor, Ceramic disc. . $02 \mathrm{mfd}, 600 \mathrm{~V}$	C22-. 02
C-108	Capacitor, Same as $\mathrm{C}-107$	
C-109	Capacitor, Same as C-107	
C-110	Capacitor, Electrolytic, 50 mfd .6 V .	C1.7-50
C-111	Capacitor, Same as C.-101.	
C-112	Capacitor, Ceramic Disc. 47 PF	C22.-47
C-113	Capacitor, Ceramic Disc. . $0047 \mathrm{mfd} ., 600 \mathrm{~V}$.	C22-.0047
C-114	Capacitor, Metalized paper tubular, 1 mfd 200V	C.18-1.0
C-201	Capacitor, Inry Electrolytic Tubular, 20 mfd . 250 V. DC	C27-20
C-202	Capacitor, Same as C-201	
C-203	Capacitor, Same as C-201	
$\mathrm{C}-204$	Capacitor, Dry Electrolytic Tubular, 1000 mfd. 12 V. DC	C11-1000
$\frac{D-101}{D-106}$	Rectifier, IN2069	RF-20
$\begin{aligned} & \mathrm{D}-201 \\ & \mathrm{D}-205 \end{aligned}$	Rectifier, JN2OT3	RF-17
F-1.	Fuse, .5 A Slow Blow	FU-4
DS-1	Light Assembly, Pilot \#47	PL-139
DS-2	Light Assembly, Pilot $\#+7$	PL-13R
J-2	Jack, Input - Cannon XLR-3-32	CS-71
J-1	Jack, Output - Amphenol ANV 3102A-18-1s(C)	CS-23
P-1	PIug, Output - Anphenol AN 3106-A-18-IP	CS-22
P-2	Plug, Input - Cannon XIR-3-11	CS-72
R-101	Resistor, Composition, 22M, 10%, $\frac{1}{2}$ watt	RI-22M
R-102	Resistor, Deposited Carbon, 60K, 1\%, $\frac{1}{2}$ watt	R12-60K
R-103	Resistor, Deposited Carbon, 23.3K, 1\%, $\frac{1}{2}$ watt	R12-23.3K
R-104	Potentiometer, Carbon, loK	RP2-10K
$\mathrm{R}-105$	Resistor, Deposited Carbon, 40K, 1\%, $\frac{1}{2}$ watt	R12-40K
R-106	Potentiometer, Carbon, 20K	RP7-20K
R-107	Resistor, Composition 100K, 10\%, $\frac{1}{2}$ watt	R1-100K
R-108	Resistor, Composition 3.3M, 10\%, $\frac{1}{2}$ watt	R1.3.3M
R-109	Resistor, Composition 4.7K, 10\%, $\frac{1}{2}$ watt	R1-4.7K
R-110	Resistor, Composition 270K, 10%, $\frac{1}{2}$ watt	R1-270K

REPLACEABLE PARIS LIST - MODEU 710

Circuit		
Desig.	Description	Part No.
R-111	Resistor, Composition 10M, 10%, $\frac{1}{2}$ watt	R1-10M
R-112	Resistor, Composition, 470K, 10%, $\frac{1}{2}$ watt	R1-470K
R-113	Resistor, Same as R-111	
$\mathrm{R}-114$	Resistor, Same as R-107	
R-115	Resistor, Composition, 680K, 10%, $\frac{1}{2}$ watt	R1-280K
$\mathrm{R}-116$	Resistor, Composition, $1 \mathrm{~K}, 1.0 \%$, $\frac{1}{2}$ watt	R.-1K
R-117	Resistor, Same as R-107	
R-118	Realistor, Same as R-107	
R-119	Resistor, Composition, $47 \mathrm{~K}, 10 \%$, 考 watt	R.1-47K
R-120	Potentiometer, Trimpot Wirewound, 1 K	RF29-1K
R-121	Resistor, Wirewound, 120K, 1\%, $\frac{1}{4}$ watt	R18-21-120K
R-201	Resistor, Composition, 1K, 10%, $\frac{1}{2}$ watt	RI-IK
R-202	Resistor, Same as R-201	
R-203	Resistor, Same as R-119	
R-204	Resistor, Same as R-107	
R-205	Resistor, Composition, $120 \mathrm{~K}, 10 \%$, $\frac{1}{2}$ watt	R1-120K
R-206	Resistor, Composition 10\%, $\frac{1}{2}$ watt, 4.7 K	R1.-4.7K
R-207	Resistor, Composition, 330 ohms, 10%, $\frac{1}{2}$ watt	R1-330
R-208	Resistor, Wirewound, 25 ohm, 5\%, 5 watt	R4A-25
K-1.	Relay, P \& B - MJ-1287	RL-14
T--1	Transformer (Central Kl-176)	TR-43
V-1	Vacuum Tube, Sylvania 6788	EV-6788
V-2	Vacuum Tube, Sylvania 6948	EV-6948
V-3	Vacuum Tube, Sylvania 5643	EV-5643
Q-1	Transistor , RCA EN398	TG-13
PD101	Components of Model 1501 Light Mod. Assembly	13085A
ENIO1	Components of Model 1501 Light Mod. Assembly	13085A
PD102	Components of Model 1501 Light Mod. Assembly	13085A
ENH102	Components of Model 1501 Light Mod. Assembly	13085A

REPLACEABLE PARTS LIST－MODEI 711

Circuit		Keithley
Desig．	Description	Part No．
B1．	Battery，RM401－R	BA－8
C101	Capacitor，mylar，． 047 mfd .200 V	C47－． 047
C102	Capacitor，Same as Cl01	
C103	Capacitor，Mylar，． 1 mfd． 200 V	C47－． 1
C104	Capacitor，ceramic disc．，． 01 mfd .600 V	C22－． 01
C105	Capacitor，Electrolytic， $4.7 \mathrm{mfd}, 15 \mathrm{~W}$	C71－4．7
C106	Capacitor，Same as C104	
C107	Capacitor，Ceramic disc．． 02 mfid .600 V	C22－． 02
C108	Capacitor，Same as C107	
C109	Capacitor，Same as C107	
C1． 10	Capacitor，Electrolytic， 50 mfd .6 V	C17－50
C111	Capacitor，Same as C101	
C112	Capacitor，Ceramic disc． 47 YF	C22－47
C113	Capacitor，Ceramic disc．． 0047 mfd .600 V	C22－． 0047
C114	Capacitor，Mylar， 1 mfd 200 V	C66－1．0
C201	Capacitor，Dry Electrolytic Tubular， 20 mfd． 250 V DC	C27－20
C202	Capacitor，Same as C201	
C203	Capacitor，Same as C201	
C204	Capacitor，Dry Electrolytic Tubular， 1000 mfd .12 V DC	C11－1000
D101	Rectifier，1N2071	RF－17
D102	Rectifier，1N2071	RF－17
D 1.03	Rectifier	（1）
D104	Rectifier	（2）
D105	Rectifier	（1）
D106	Rectifier	（2）
D201	Rectifier，1N2071．	RF－17
D202	Rectifier，1N2069	RF－20
$\begin{aligned} & \text { thru } \\ & \text { D205 } \end{aligned}$		
F1	Fuse， 5 amp，Slow Blow	FU－4
DS1	Light Assmebly，Pilot \＃ 447	PL－13G
DS2	Light Assmebly，Pilot $⿰ ⿰ 三 丨 ⿰ 丨 丨 47$	PI，－13R

[^0]REPLACEABLE PARTS LIS' - MODEL 711 (Cont'd)

Circuit Desig.	Description	Keithley Part No.
J2	Jack, Input .- Cannon XIR-3-32	CS-71
J1	Jack, Output - Amphenol AN 3102A-18-1S(C)	CS-23
Pl	Plug, Output - Amphenol AN 3106-A-18-1P	CS-22
P2	Plug, Input - Cannon XIR-3-11	CS-72
R101	Resistor, Composition, $2.2 \mathrm{M}, 10 \%, 1 / 2$ watt	R1-2.2M
R102	Resistor, Deposited Carbon, 60K., $1 \%, 1 . / 2$ watt	R12-60K
R103	Resj.stor, Deposited Carbon, $23.3 \mathrm{~K}, 1 \%, 1 / 2$ watt	R12-23.3K
R104	Potentiometer, Carbon, lok	RP2-10K
R105	Resistor, Deposited Carbon, 40K, 1\%, 1/2 watt	R12-40K
R106	Potentiometer, Carbon, 20K	RP7-20K
R107	Resistor, Composition $100 \mathrm{~K}, 10 \%, 1 / 2$ watt	R1-100K
R108	Resistor, Composition 3.3M, $10 \%, 1 / 2$ watt	R1-3.3M
R109	Resistor, Composition $4.7 \mathrm{~K}, 10 \%, 1 / 2$ watt	R1-4.7K
R110	Resistor, Composition $270 \mathrm{~K}, 10 \%, 1 / 2$ watt	R1-270K
R111.	Resistor, Composition, $10 \mathrm{M}, 10 \%, 1 / 2$ watt	R1. -10 M
R112	Resistor, Composition $470 \mathrm{~K}, 10 \%, 1 / 2$ watt	R1-470K
R113	Resistor, Same as R111	
R114	Resistor, Same as R107	
R115	Resistor, Composition, 180K, $10 \%, 1 / 2$ watt	R1-180K
R116	Resistor, Composition, $1 \mathrm{~K}, 10 \%, 1 / 2$ watt	R1-1K
R117	Resi.stor, Same as R107	
R118	Resistor, Same as R107	
R119	Resistor, Composition, $47 \mathrm{~K}, 10 \%, 1 / 2$ watt	R1-4.7K
R120	Potentiometer, Wirewound, 1K	RP28-1K
R121	Resistor, Wirewound, $120 \mathrm{~K}, 1 \%, 1 / 4$ watt	R18-6-120K
R122	Potentiometer, Trimpot Wirewound, 10K	RP39-10K
R201.	Resistor, Composition, $1 \mathrm{~K}, 10 \%, 1 / 2$ watt	RI-1K
R202	Resistor, Same as R201	
R203	Resistor, Same as R119	
R204	Resistor, S me as Rl07	
R205	Resistor, Composition, 120K, $10 \%, 1 / 2$ watt	R1-120K
R206	Resistor, Composition, $4.7 \mathrm{~K}, 10 \%, 1 / 2$ watt	R1-4.7K
R207	Resistor, Composition, 330 ohms, $10 \%, 1 / 2$ watt	R1-330
R208	Resistor, Wirewound, 25 ohm, 5%, 5 watt	R4A-25
K.l.	Relay, P \& B - MF-1287	RL- 1.4
T1	Transformer (Central Kl-176)	TR-43

A.

B.

D.

E.

[^0]: （1）D103 and Dl． 05 are matched，Keithley Part No． 14168 A ，replace only as a pair．
 （2）D104 and D106 are matched，Keithley part No． 14168 A ，replace only as a pair．

