
Firewire Ready for Instrument and Control Applications

By Gary Sakmar
Keithley Instruments, Inc.

The 1394 Trade Association (1394TA) has published two new data
communication protocols that facilitate the use of IEEE-1394 (Firewire) for
measurement and control applications. The introduction of these protocols opens
up new possibilities for system developers by providing efficient, high-speed
communication between PC controllers and electronic instrumentation and
control devices.

There are two major advantages of connecting measurement and control devices
using industry standard I/O, such as that defined by Firewire:

1. Cost -- Standard I/O connectors and cables are less expensive than those
using proprietary designs, which usually are produced in lower volumes.

2. Ease of use -- You simply plug standard, familiar cables into connectors that
already exist on the PC. In Firewire’s case, there is no need open up the
computer to install a host bus adapter and you do not have to deal with hardware
or software configurations for such an adapter.

Within the framework of the general Firewire specification, there is the
opportunity for data communication rates up to 400MHz, with 1GHz planned for
the near future. However, until now, system designers were in a quandary on
how best to implement use of Firewire. What they needed was a lightweight
protocol that would make it easy to implement these high-speed
communications.

The Industrial Instrument and Control Working Group of the1394TA, which
consisted of members from Keithley Instruments, 3A International, Agilent and
National Instruments, solved this problem by sponsoring development of two
protocols that facilitate use of IEEE-1394 in measurement and control
applications. Protocol 1394TA IICP-1.0 details the basic methodology for
asynchronous communications to electronic instrumentation and control devices.
Protocol 1394TA IICP488-1.0 describes use of the first protocol to communicate
IEEE-488.1 and -488.2 messages and command/control sequences on a
Firewire bus. This facilitates the use of GPIB (SCPI) commands with Firewire.

(These protocols can be downloaded as PDF files from the 1394TA web site at
www.1394TA.org/Download/Technology/Specifications/iicp1.0.pdf and
www.1394TA.org/Download/Technology/Specifications/iicp4881.0.pdf.

http://www.1394ta.org/Download/Technology/Specifications/iicp1.0.pdf
http://www.1394ta.org/Download/Technology/Specifications/iicp4881.0.pdf

The 1394 serial bus interface is already becoming a standard offering on some
PCs, and many more manufacturers plan on providing it to meet I/O needs for
consumer electronics. Instrument and control system developers are now taking
greater interest in Firewire, not only because of its bandwidth, but also because
of the following advantages:

• Self-configured addressing (users do not have to set address switches
and there is no potential for address conflicts)

• A tiered-star topology allowing up to 63 connected devices

Implementation of IICP Communications

Figure 1 illustrates the IICP488 communication model with the IICP488 protocol
layered above IICP. Developing measurement and control systems with IICP and
Firewire should sound familiar to anyone who has done similar work with other
data communication protocols. Implementation is uncomplicated.
COMPUTER IICP DEVICE
Figure 1. IICP488 Communication Model

An IICP connection consists of IICP plugs on the computer and on the hardware
devices. A plug contains two ports: one port typically is used to send and receive
data frames while the other port is used to send and receive control frames. (A
frame is a set of logical, contiguous data.) An example of a data frame, when
using IICP488, is a SCPI command or response. An example of a control frame
in IICP488 is an SRQ packet. Each plug port has device memory mapped to
1394 space.
For those using GPIB devices in their systems, another advantage of Firewire
and IICP488 is the ability to reuse major chunks of application code. As alluded
to above, sending and receiving GPIB messages is done through a data port.
Since data port messages are pure data, there is nothing that needs to be
stripped off and no message parsing is required. An IICP488 data message is
received and acted on just as if it were transmitted over a GPIB bus. Only the
transaction and physical layers of the communication system have changed.
Many implementation details of IICP are left to the developer. However,
implementing a 1394 API for a PC platform typically is a matter of obtaining one
from a third party source, or writing your own as a layer above the Microsoft 1394
bus class driver. In either case, the API should provide the means to:

• Send, compare and swap the lock transactions and responses
• Write quadlet transactions
• Write block transactions
• Map buffers and plug registers to 1394 space
• Receive notification when these are accessed by the connected node

Node Management
Any node can act as an IICP connection manager to establish plug connections.
This is done by first locking connection registers and then sending a sequence of
connection request packets. Each packet contains information needed by the
hardware device to determine the address of the plug created on the connected
node. By using this method, an IICP connection client never has to process
simultaneous connection requests from multiple threads or multiple controllers.
The connection manager also is responsible for maintaining the connection in
case of bus resets, new node addresses appearing or new IICP devices being
added.
Firewire bus resets are completely handled by the IICP layer. Discovery of
Firewire IICP devices is accomplished with software that goes through a process
of determining the protocol a particular device understands. The IEEE 1394-1995
and IEEE 1212 specifications define the use of a configuration ROM for this
purpose.
IICP recognizes there are many devices, such as sensors and low-cost D/A
converters, that use memory mapped I/O. Therefore, a simple interrupt
mechanism is defined for these devices, which in some instances may eliminate
the need for polling by a controller. Also, Firewire defines a 48-bit address space,
some of which a memory-mapped I/O device can use for device-dependent
functions.

All these features are designed to make Firewire use as easy as possible. It is a
communication bus worthy of consideration when you need higher data rates and
a simple method of interconnecting measurement and control devices.

Gary Sakmar is Development Group Manager for Keithley Instruments, Inc.
where he is responsible for new technology and software development. He also
is co-chairman of the Industrial Instrument and Control Working Group (IIWG) of
the 1394 Trade Association. He has over 15 years of experience in test,
measurement and data acquisition systems.

