
1

Testing High Brightness LEDs under Pulse
Width Modulation Using the Model 2651A
High Power System SourceMeter® Instrument

Introduction
With a worldwide focus on energy conservation, the high
power consumption of traditional light sources has come under
heavy scrutiny and governments are demanding improvements
in the energy efficiency of lighting sources. This demand has
lead to heavy investment in and development of alternatives to
the incandescent bulb. Compact Fluorescent (CFL) bulbs have
become prevalent in the marketplace and, although they are
much more efficient and last longer than traditional bulbs, they
still fall short of being ideal replacements. High Brightness Light
Emitting Diodes (HBLEDs), however, have proven themselves
to be a much better option. Like incandescent bulbs, they reach
full brightness immediately and do not contain any difficult-
to-dispose-of chemicals. They also offer advantages over
incandescents: they have incredibly long lifetimes and efficiency
levels are continuously being increased.

Unfortunately, the cost of HBLEDs is still too high for most
consumers to select them over cheaper technologies, despite
the large reduction in energy consumption they offer. In order
to reduce the cost of HBLEDs to consumers, manufacturers
are constantly working to improve yields and further increase
efficiency levels. Meeting this demand requires proper testing
and proper testing requires the proper test equipment.
Manufacturers demand a lot from their test equipment today
to test high brightness LEDs properly. This application note
explores some of the electrical test requirements and how the
Model 2651A High Power System SourceMeter® instrument can
be applied to meet these demands.

The Demand for More Power
HBLEDs are commonly defined as LEDs that operate at 1W of
power or higher, with typical operating ranges of from 1W to 3W.
Instead of running on 10–30mA of current and being packaged
in small 3mm or 5mm plastic domes, HBLEDs run at 300mA–1A
or more and are mounted on a small, thermally conductive
board designed to draw heat away from the LED’s junction.
Despite how bright a single HBLED can be, it is typically not
bright enough to be used by itself in most lighting applications.
Instead, multiple HBLEDs are commonly combined to create
a single luminaire, whether for an LED light bulb for a retrofit
application or an entire lighting fixture. Even though they are
combined in actual use, production testing is typically performed
at the individual package level, requiring modest power delivery
capability, which is well within the capabilities of most modern

instrument-based source-measure units (SMUs), such as the
Keithley Series 2400, 2600B and 2651A SourceMeter instruments.

For many applications, combining multiple LEDs into a
single luminaire works well when it’s desirable to have the
light spread in multiple directions and the size of the luminaire
provides sufficient space to fit multiple LEDs. However, in other
applications where space is limited and/or the light must be
directional, this approach is either undesirable or simply will not
work. This demand for a lot of light in a small package has lead
to the development of high power LED modules, which consist
of one or more large-die LEDs. When multiple die are present,
they’re either wired in parallel or in series, depending on the
application and the available power source. The die of these
LEDs are much larger than the die of typical HBLEDs and can
handle much larger currents as well. It’s common for a single die
to be required to withstand current levels as high as 10A.

Testing high power HBLED modules properly demands test
equipment that can deliver a lot of power to the DUT. Although
SMUs, given their ability to source and measure in a single
instrument, are the best type of test equipment for testing LEDs,
most SMUs on the market simply can’t deliver the level of power
required. High power HBLED modules often require 100W of
power or more, but most instrument-based SMUs are capable
of delivering only 40W or less. Keithley’s Model 2651A High
Power System SourceMeter instrument is capable of delivering
up to 200W of continuous DC power and up to 2000W of pulsed
power, making it more than powerful enough to test both
today’s and tomorrow’s high power modules (Figure 1).

+20A

+50A

–50A

–10A

+10A
+5A

–5A

–20A

+10V–10V +20V–20V 0V

0A

+40V–40V

DC and
Pulse

Pulse
only

Figure 1: Power envelope for the Model 2651A High Power System
SourceMeter Instrument.

Number 3129

Application Note
Se ries

2

Pulse Width Modulation
Pulse width modulation is a common method of controlling
the brightness of LEDs. When using this technique, the current
through the LED is pulsed at a constant frequency with a
constant pulse level, but the width of the pulse is varied
(Figure 2). Varying the width of the pulse changes the amount
of time the LED is in the ON state, as well as the perceived
level of brightness. In this drive scheme, the LED is actually
flashing, but the frequency of the flashing is so high that it’s
indistinguishable to the human eye from a constant light level.
Although it’s possible to control the brightness of an LED simply
by lowering the forward drive current, pulse width modulation is
the preferable technique for a number of reasons.

50% Duty Cycle

75% Duty Cycle

25% Duty Cycle

Figure 2: In pulse width modulation, the pulse level and frequency remain
constant but the duty cycle is varied.

The first and arguably the most important reason for using
pulse width modulation is to maintain consistency of the color of
the light as the LED’s brightness is reduced. In an LED, the color
of the light it emits is related to the forward voltage at which it
operates. Although the forward voltage of an LED will remain
relatively constant as the forward current is changed, it actually
does vary by as much as tens to even hundreds of millivolts. This
occurs especially at lower current levels (Figure 3). This slight
variation in forward voltage equates to a slight variation in light
color, which is undesirable for the end user. If heating effects
are ignored, in the pulse width modulation technique, the LED

is pulsed using exactly the same current level on every pulse, so
the forward voltage is the same for every pulse; therefore, the
color of the light emitted will not vary.

Another important reason pulse width modulation is
preferable is because this technique provides linear control over
brightness. The amount of light an LED emits is not linearly
related to the amount of current used to drive it. In other words,
reducing the drive current by 50% will not cut the light output
by 50%; instead, it will drop by some other amount. This would
make a dimming scheme based on varying current difficult to
apply because it would be necessary to characterize each LED’s
light output vs. forward current then calibrate the drive scheme
to that curve. Using pulse width modulation is a much simpler
way to get linear control over brightness. With pulse width
modulation, in order to make the LEDs output 50% as much
light, all that’s necessary is to reduce the duty cycle by 50%. If
the LEDs are only ON for half as long, only half as much light
will be produced.

Power efficiency is another advantage of the pulse width
modulation approach. Because pulse width modulation uses
a constant current level for each pulse, it’s possible to select
a pulse level where the LED operates most efficiently, that is,
where the lumen output per watt is the greatest. That means
the LED is operating at maximum efficiency no matter what
brightness level is used. Another way in which pulse width
modulation enhances efficiency is that LEDs will actually output
more light for a given drive current when pulsed rather than at
DC. Many manufacturers’ datasheets include a graph of forward
current vs. luminous flux. If the manufacturer has characterized
the LED under both pulsed and DC drive currents, one can
observe that the pulsed characterization curve lies above the DC
characterization curve. This is due to the reduced self-heating
that the pulsed drive current produces. Finally, pulse width
modulation enhances power efficiency even in the circuitry
that drives it. The switching circuitry used in Pulsed Width
Modulation wastes very little power. When the switch circuitry
is turned off, virtually no current flows and virtually zero power
is being used. When the switch is turned on, due to the very low
on state resistances, nearly all the power is delivered to the LED
and very little is consumed by the switch. In a variable current
drive scheme, power to the LED is often reduced by consuming
the excess power elsewhere in the circuit.

Pulse Width Modulation with
the Model 2651A High Power
System SourceMeter Instrument
NOTE: The techniques described here for outputting a pulse

width modulated waveform with the Model 2651A are
applicable to all members of the Series 2600B System
SourceMeter instrument family.

IF

VF

Figure 3: Forward voltage changes significantly when the forward current is
low and becomes relatively constant as forward current becomes large.

3

Given that LEDs are often used with pulse width modulation,
it’s only appropriate that they be tested with pulse width
modulation techniques. As part of Pulsed Width Modulation
testing, an LED is usually tested by running a series of pulses
through it while using a spectrometer to take an integrated
measurement of the light output over the course of many pulses.
This measurement may take tens or hundreds of milliseconds
to complete. During the pulsed output, the forward voltage is
measured on every pulse to look for changes as the temperature
of the LED rises. Figure 4 illustrates this test.

VF measurements on every pulse

. . .

Spectrometer integration time

Figure 4: The LED is pulsed with a series of pulses and a VF measurement
is taken at each pulse. A spectrometer concurrently takes optical
measurements.

The Model 2651A High Power System SourceMeter instrument
is capable of outputting a pulse width modulated waveform with
up to 100% duty cycle from 0–20A, 50% duty cycle from 20–30A,
and 35% duty cycle from 30–50A. The Model 2651A’s advanced
trigger model allows for precision pulse widths and duty
cycles and tight synchronization with other instruments. These
synchronization features can be used to combine two Model
2651As to achieve a Pulsed Width Modulation waveform with
pulse current levels twice as high as a single Model 2651A allows
with the same duty cycle. This note details how to configure
the Model 2651A to output a 30A, 50% duty cycle waveform
with a digital I/O output trigger for triggering a spectrometer. It
also details how to combine two Model 2651As to increase the
current to 60A for this same test.

Required Equipment
Performing this test requires the following equipment:

• PC with GPIB or Ethernet adapter

• GPIB cable or RJ45 LAN Crossover Ethernet cable

• Model 2651A High Power System SourceMeter Instrument

• Model 2651A-KIT-1 Low-Impedance/High-Current
Coaxial Cable

• 8-pin signal control cable

• 2-pin terminal block extender for use with the Model
2651A-KIT-1

• 8-pin terminal block extender for use with 8-pin signal
control cable

• Digital I/O DB-25 Male Connector Kit Hardware

• 12 AWG or thicker cabling to connect from terminal
blocks to device

Add the following equipment to perform this test at up to
100A with a 35% duty cycle or at up to 60A with a 50% duty cycle:

• Model 2651A High Power System SourceMeter Instrument

• Model 2651A-KIT-1 Low-Impedance/High-Current
Coaxial Cable

• 8-pin Signal Control Cable

• 2-pin terminal block extender for use with the Model
2651A-KIT-1

• 8-in terminal block extender for use with 8-pin signal
control cable

• TSP-Link RJ45 LAN Crossover Cable

Communications

Single SourceMeter Instrument

To perform this test using a single 2651A SourceMeter instrument
configuration, connect the instrument to the computer via GPIB
or Ethernet as illustrated in Figure 5.

Model 2651A SMU #1
(TSP-Link Node #1)

Controller

GPIB/Ethernet

Figure 5: Communications setup for a single SourceMeter instrument.

Dual SourceMeter Instruments

For a dual 2651A SourceMeter instrument configuration, connect
the first Model 2651A to the computer via GPIB or Ethernet.
Connect the second Model 2651A to the first Model 2651A via the
TSP-Link connection. Assign the first Model 2651A to Node #1
and the second Model 2651A to Node #2. These connections are
illustrated in Figure 6.

Model 2651A SMU #1
(TSP-Link Node #1)

Model 2651A SMU #2
(TSP-Link Node #2)

TSP-LINK

Controller

GPIB/Ethernet

Figure 6: Communications setup for two Model 2651A instruments.

Connecting the Spectrometer to the Digital I/O

In order for the Model 2651A to trigger the spectrometer, the
spectrometer’s start of test trigger line must be connected to the
Model 2651A’s digital I/O port. Connect the trigger line from
the spectrometer to pin #1 of the 25-pin D-Sub connector on
the back panel of the Model 2651A. Ground connections can be
found on any of pins 15 through 21. The proper connections are
illustrated in Figure 7.

4

13

25

DIGITAL I/O

Model 2651A

14

1

Spectrometer
Trigger In

Trigger Line

Ground

GND

Figure 7: Connections from Model 2651A digital I/O port to spectrometer.

NOTE: In dual SourceMeter instrument configurations, connect
only to the digital I/O port of SMU #1. The digital I/O
port of SMU #2 is not used.

Device Connections
Figures 8 and 9 illustrate the connections from the SourceMeter
instruments to the LED device under test. Figure 8 illustrates
the connections for a single SourceMeter instrument; Figure 9
illustrates the connections for dual SourceMeter instruments.

From
Model 2651A

12AWG or thicker
recommended

+

–

S LO
G

G
G
G

S HI

From
Model 2651A

Figure 8: Connections from a single Model 2651A SourceMeter instrument to
LED device under test.

+

–

S LO
G

G
G
G

S HI

S LO
G

G
G
G

S HI

From
Model 2651A

#1

From
Model 2651A

#1

From
Model 2651A

#2

From
Model 2651A

#2

12AWG or thicker
recommended

12AWG or thicker
recommended

Figure 9: Connections from dual Model 2651A SourceMeter instruments to
LED device under test.

When using dual Model 2651A SourceMeter instruments, the
two SMUs are connected in parallel to create a single source
with twice as much current capacity. Read and understand the
section titled “Combining SMU outputs” in the Model 2651A High
Power System SourceMeter Instrument Reference Manual before
performing this test.

NOTE: Wiring from the 2-pin terminal block extender that is
connected to the end of the low-impedance/high-current
coaxial cable provided with the Model 2651A to the
device under test should be made with 12 AWG wire or
heavier in order to support the high current levels. Also,
the length of these wires should be kept to a minimum to
minimize inductance.

Configuring the Trigger Model
The advanced trigger model must be used to source current
levels above those available in the DC operating regions of the
Model 2651A. This same trigger model gives the Model 2651A
its precise pulse widths and tight synchronization and makes
accurate pulse width modulation possible. The following sections
illustrate how to configure the trigger model to output a pulse
width modulated waveform and trigger a spectrometer with the
Model 2651A.

Configuring the Trigger Model for a Single
Model 2651A SourceMeter Instrument

The trigger model shown in Figure 10 will perform a pulse
width modulation test on an LED using a single Model 2651A.
In this configuration, Timer 1 controls the pulse period, Timer
2 controls the pulse width and Timer 3 inserts a delay between
the start of the pulse and the start of the measurement. Timer 4
creates a delay between the start of the waveform output and the
start of the spectrometer measurement. When Timer 4 expires, it
triggers Digital I/O Trigger 1, which sends the start trigger to the
spectrometer.

Configuring the Trigger Model for Dual
Model 2651A SourceMeter Instruments

The trigger model shown in Figure 11 will perform a pulse
width modulation test on an LED using two Model 2651A
SourceMeter instruments with their outputs connected together
in parallel. Timer 1 of Model 2651A #1 controls the pulse period
of both SMUs. It does this by relaying its output trigger signal
on TSP-Link® Trigger 1, which is then sent to Model 2651A #2.
Due to the extremely low latency of TSP-Link triggering, Model
2651A #2 is kept in sync with Model 2651A #1 to within 500ns.
Because this signal is sent once every time Timer 1 expires, long-
term synchronization between the SMUs is ensured because the
two SMUs are synchronized at the start of every pulse cycle.

As in the single SMU configuration, Timer 2 controls the
pulse width and Timer 3 inserts a delay between the start of the
pulse and the start of the measurement. Each SMU uses its own

5

trigger.timer[1].

stimulus EVENT_ID
1ms

 count = 99

trigger.timer[2].

stimulus EVENT_ID
500μs

passthrough = false count = 1

trigger.timer[4].

stimulusEVENT_ID
1ms

passthrough = falsecount = 1

To
Spectrometer

Controls Pulse Period

Controls Pulse Width

Delays Start of Spectrometer
Measurement

smua.trigger.

Trigger Layer

Arm Layer

arm.count = 1

count = 100

Idle

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

SWEEP_COMPLETE_EVENT_ID

IDLE_EVENT_ID

ARMED_EVENT_ID

SWEEPING_EVENT_ID

source.stimulus

measure.stimulus

endpulse.stimulus

arm.stimulus

EVENT_ID

stimulus

digio.trigger[1].

2651A Trigger Model

trigger.timer[3].

stimulus EVENT_ID
490μs

passthrough = false count = 1

Controls Measure Delay

passthrough = true

mode = digio.TRIG_FALLING

Figure 10: Trigger model for pulsed width modulation test on LED with a single Model 2651A System SourceMeter instrument.

trigger.timer[1].

stimulus EVENT_ID
1ms

trigger.timer[2].

stimulus EVENT_ID
500μs

tsplink.trigger[1].

stimulus

EVENT_ID

trigger.timer[2].

stimulus EVENT_ID
500μs

tsplink.trigger[1].

stimulus

EVENT_ID

2651A #1 Trigger Model

EVENT_ID

stimulus

digio.trigger[1].

trigger.timer[4].

stimulusEVENT_ID
1ms

smua.trigger.

Trigger Layer

Arm Layer

arm.count = 1

count = 100

Idle

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

SWEEP_COMPLETE_EVENT_ID

IDLE_EVENT_ID

ARMED_EVENT_ID

SWEEPING_EVENT_ID

source.stimulus

measure.stimulus

endpulse.stimulus

arm.stimulus

smua.trigger.

Trigger Layer

Arm Layer

arm.count = 1

count = 100

Idle

SOURCE_COMPLETE_EVENT_ID

MEASURE_COMPLETE_EVENT_ID

PULSE_COMPLETE_EVENT_ID

SWEEP_COMPLETE_EVENT_ID

IDLE_EVENT_ID

ARMED_EVENT_ID

SWEEPING_EVENT_ID

source.stimulus

measure.stimulus

endpulse.stimulus

arm.stimulus

Controls Pulse Period

Controls Pulse Width

Delays Start of Spectrometer
Measurement

2651A #2 Trigger Model

To
Spectrometer

Controls Pulse Width

trigger.timer[3].

stimulus EVENT_ID
490μs

Controls Measure Delay

trigger.timer[3].

stimulus EVENT_ID
490μs

mode = tsplink.TRIG_FALLING

mode = tsplink.TRIG_FALLING

passthrough = true count = 99

passthrough = false count = 1

passthrough = false count = 1

passthrough = falsecount = 1

passthrough = false count = 1

passthrough = false count = 1

mode = digio.TRIG_FALLING

Figure 11: Trigger model for pulsed width modulation test on LED with dual Model 2651A System SourceMeter instruments.

6

Timer 2 and Timer 3 to control its pulse width and measure
delay. Given the accuracy of the timers and the synchronization
at the start of every pulse, it’s certain that both SMUs will output
a pulse with the same pulse width and take measurements at
the same time. Finally, once again Timer 4 on Model 2651A #1
creates a delay between the start of the pulse waveform and the
start of the spectrometer measurement by delaying the output of
Digital I/O Trigger 1.

Configuring the Frequency and Duty Cycle

In both the single and dual SMU configurations, configuring
the waveform for a particular frequency and duty cycle requires
setting the appropriate pulse period and pulse width in the
trigger model. Frequency (f) is related to pulse period (P) by
the equation P = 1 / f; therefore, it’s possible to control the
frequency of the waveform by setting the appropriate pulse
period. For a 1kHz waveform, P = 1/1kHz = 1ms. Duty cycle
(D.C.) is the ratio of pulse width (PW) over pulse period (P) or
D.C. = PW / P; therefore, the duty cycle can be set by setting the
appropriate value for pulse width; this value can be calculated
using the equation D.C. * P = PW.

Modulating the Pulse Width

The trigger model diagrams in Figures 10 and 11 show the pulse
width being controlled by Timer 2, which has a fixed timeout
value. This is represented in code by calling the ICL command

trigger.timer[2].delay = pulseWidth

where pulseWidth is a fixed delay value in seconds. Having a
fixed timeout value means that the pulse width for every cycle in
a single waveform output will be the same for the entire length
of the waveform. Modulating the pulse width during a single
waveform output requires that the timeout value of Timer 2 be
variable. To facilitate this, the timers of the advanced trigger
model can be assigned a delay list rather than a single value. This
can be done by calling the ICL command

trigger.timer[2].delaylist = pulseWidthTable

where pulseWidthTable is a table containing multiple delay
values in seconds. With a delay list assigned to Timer 2, each
pulse in the waveform can be assigned a different pulse width;
therefore, the waveform can be pulse width modulated.

NOTE: The example script in this application note allows for
both fixed and variable pulse widths. See the function
documentation for details.

Example Program Code
NOTE: The Test Script Processor (TSP®) Script in this application

note is for demonstration purposes only and is not
optimized for fastest production throughput. Please
contact a Keithley Applications Engineer for system
throughput optimization considerations.

NOTE: The TSP Script in this application note is designed to be
run from Test Script Builder. It can be run from other
programming environments such as Microsoft® Visual
Studio or National Instruments LabVIEW®; however,
modifications may be required.

The TSP script provided in this application note contains all the
code necessary to perform a pulse width modulation test with
optical measurement on a high brightness LED using one or two
Model 2651A High Power System SourceMeter instruments. The
code for this script can be found in Appendix A: Source Code.

The script performs the following functions:

• Initializes the TSP-Link connection (only when using
two units)

• Configures the SMU(s) ranges and measurement settings

• Configures the trigger model(s)

• Prepares the readings buffers for data

• Outputs the PWM waveform

• Returns the collected data to the instrument console in a
format that can be copied and pasted directly into a Microsoft
Excel® spreadsheet.

The script is written using TSP functions rather than a single
block of inline code. TSP functions are similar to functions in
other programming languages such as C or Visual Basic and
must be called before the code contained in them is executed.
Because of this, running the script alone will not execute the
test. To execute the test, first run the script to load the functions
into Test Script memory and then call the functions. Refer to the
documentation for Test Script Builder for directions on how to
run scripts and enter commands using the instrument console.

Within the script, there are several comments describing
what is being performed by the lines of code, as well as
documentation for the functions contained in the script. Lines
starting with

node[2].

are commands that are being sent to Model 2651A #2 through
the TSP-Link interface. All other commands are executed on
Model 2651A #1.

Example Program Usage
This script contains two functions for outputting a pulse width
modulated waveform: one for use with a single Model 2651A
High Power System SourceMeter instrument and one for use with
two Model 2651A High Power System SourceMeter instruments.
These functions contain parameters whose values are used to
configure the waveform, allowing the user to set properties
of the waveform such as the frequency and duty cycle without
needing to rewrite any code. The following sections provide
explanations of each function and its parameters.

7

PWM_Test_Single()

PWM_Test_Single(pulseLevel, pulseLimit, frequency, dutyCycle, numpulses, specDelay)

This function will output a pulse width modulated waveform using a single Model 2651A High Power System SourceMeter
instrument. A forward voltage measurement will be taken with the Fast ADC on every pulse in the waveform and measurements will
be placed 10μs before the falling edge of the pulse. Use the parameters of this function to configure the properties of the Pulsed
Width Modulation waveform and to set the delay between the start of the waveform and the start of the spectrometer measurement.
If any parameters are left blank, a default value will be used.

Parameter Units Description
pulseLevel Amps The current level to pulse to during the test

Min: –50
Max: +50
Default: 1

Comments:
The value set here goes into determining what operating region the SMU is in and will therefore have an effect on the maximum duty cycle
value that can be set without error.

pulseLimit Volts Voltage limit of the pulses during the test
Max: 40
Default: 1

Comments:
The value set here goes into determining what operating region the SMU is in and will therefore have an effect on the maximum duty cycle
value that can be set without error.

frequency Hz The number of pulses per second
Min: 0.1
Max: 10,000
Default: 100

Comments:
Frequency and Duty Cycle determine the pulse width of the waveform. The minimum frequency that can be used without error may be
higher than the value shown if the operating region for the test is outside of the DC operating area.

dutyCycle % The on time of the pulse as a percentage of the pulse period
Min: 0.01
Max: 99
Default: 1

Comments:
This parameter may be assigned a single value or a table of values. If it is assigned a single value, then all pulses in the waveform will
have the same duty cycle. If this parameter is assigned a table of values, then the duty cycle for each pulse will be determined by a
corresponding entry in the table. For example, if the table has the values 50, 25, and 40, then the first pulse in the waveform will have a
duty cycle of 50%, the second pulse will have a duty cycle of 25%, and the third pulse a duty cycle of 40%. If there are more pulses in the
waveform than there are values in the table, then when the last value in the table is reached, the values in the table will be reused from the
beginning of the table starting with the next pulse. Using the previous example, if the number of pulses to output is 5, then the duty cycles
of the pulses will be 50%, 25%, 40%, 50%, and 25%.
Frequency and Duty Cycle determine the pulse width of the waveform. Pulse and duty cycle of the instrument are limited depending on
the region of the power envelope the SMU is operating in. The minimum and maximum duty cycle that can be used without error may be
higher or lower than the values shown depending on the operating region and selected frequency for the test. If the duty cycle specified
results in a pulse width/duty cycle that is too large for the operating region, the SMU will limit the pulse width/duty cycle itself to its
maximum allowable value. This will appear in the output waveform in the form of pulses that are cut short or are missing.
See the Model 2651A Specification for details on maximum pulse widths and duty cycles.

numpulses N/A The number of pulses in the waveform
Min: 2
Max: 100,000 or greater
Default: 10

specDelay Seconds The time between the start of the PWM output and the output of the Digital I/O trigger to start the spectrometer measurement.
Min: 0
Default: 0

The following is an example call to function PWM_Test_Single().

PWM_Test_Single(30, 10, 1000, 50, 100, 1e-3)

This call will output a pulse width modulated waveform of 100 pulses with a pulse level of 30A, a 10V voltage limit, a frequency of
1kHz, and a duty cycle of 50%. Spectrometer measurements will begin 1ms after the start of the waveform output. At the completion
of the test, the SMU output will be turned off and the forward voltage measurements collected during the test will be printed to the
instrument console in a format compatible with copying and pasting into a Microsoft Excel spreadsheet. An example of this output
can be seen in Figure 12.

8

Figure 12: 30A 1kHz pulsed waveform with 50% duty cycle from a Keithley
Model 2651A into a high power LED module.

In the previous example, the duty cycle of the waveform was
fixed at 50%. To create a waveform where the pulse width varies
for each pulse, it’s necessary to pass the function a table of duty
cycles. The following example calls demonstrate this.

dutyTable = {20, 40, 60, 80, 60, 40, 20, 40, 60
PWM_Test_single(20, 10, 1000, dutyTable, 9, 1e-3)

This call will output a pulse width modulated waveform of 9
pulses with a pulse level of 20A, a 10V voltage limit, a frequency
of 1kHz and a varying duty cycle. The duty cycle for each pulse
will be read from the table. The first pulse will have a duty cycle
of 20%, the second pulse a duty cycle of 40%, the third pulse
a duty cycle of 60% and so on. Spectrometer measurements
will begin 1ms after the start of the waveform output. At the
completion of the test, the SMU output will be turned off and
the forward voltage measurements collected during the test will
be printed to the instrument console in a format compatible for
copy and pasting into Microsoft Excel. An example of this output
can be seen in Figure 13.

Figure 13: 20A 1kHz pulse width modulated waveform from a Keithley Model
2651A into a high power LED module.

PWM_Test_Dual()

PWM_Test_Dual(pulseLevel, pulseLimit, frequency,
dutyCycle, numpulses, specDelay)

This function uses two Model 2651A High Power System
SourceMeter instruments to output a pulse width modulated
waveform with as much as twice as much current as a single
Model 2651A is capable of.

This function will output a pulse width modulated waveform
using two Model 2651A High Power System SourceMeter
instruments connected together via TSP-Link. By combining the
SMU’s outputs in parallel, twice the current of a single Model
2651A can be delivered to the device under test. Just like the
single SMU test, a forward voltage measurement will be taken
on every pulse in the waveform and measurements will be
taken with the Fast ADC, placed 10μs before the falling edge of
the pulse. Use the parameters of this function to configure the
properties of the Pulsed Width Modulation waveform and to set
the delay between the start of the waveform and the start of the
spectrometer measurement. If any parameters are left blank, a
default value will be used.

9

Parameter Units Description
pulseLevel Amps The current level to pulse to during the test

Min: –100
Max: +100
Default: 1

Comments:
The value set here goes into determining what operating region the SMU is in and will therefore have an effect on the maximum duty
cycle value that can be set without error.

pulseLimit Volts Voltage limit of the pulses during the test
Max: 40
Default: 1

Comments:
The value set here goes into determining what operating region the SMU is in and will therefore have an effect on the maximum duty
cycle value that can be set without error.

frequency Hz The number of pulses per second
Min: 0.1
Max: 10,000
Default: 100

Comments:
Frequency and Duty Cycle determine the pulse width of the waveform. The minimum frequency that can be used without error may be
higher than the value shown if the operating region for the test is outside of the DC operating area.

dutyCycle % The on time of the pulse as a percentage of the pulse period
Min: 0.01
Max: 99
Default: 1

Comments:
This parameter may be assigned a single value or a table of values. If it is assigned a single value then all pulses in the waveform will
have the same duty cycle. If this parameter is assigned a table of values then the duty cycle for each pulse will be determined by a
corresponding entry in the table. For example, if the table has the values 50, 25, 40 then the first pulse in the waveform will have a duty
cycle of 50%, the second pulse will have a duty cycle of 25% and the third pulse a duty cycle of 40%. If there are more pulses in the
waveform than there are values in the table, then when the last value in the table is reached, the values in the table will be reused from
the beginning of the table starting with the next pulse. Using the previous example, if the number of pulses to output is 5 then the duty
cycles of the pulses will be 50%, 25%, 40%, 50%, 25%.

Frequency and Duty Cycle determine the pulse width of the waveform. Pulse and duty cycle of the instrument are limited depending on
the region of the power envelope the SMU is operating in. The minimum and maximum duty cycle that can be used without error may be
higher or lower than the values shown depending on the operating region and selected frequency for the test. If the duty cycle specified
results in a pulse width/duty cycle that is too large for the operating region, the SMU will limit the pulse width/duty cycle itself to its
maximum allowable value. This will appear in the output waveform in the form of pulses that are cut short or are missing.
See the Model 2651A Specification for details on maximum pulse widths and duty cycles.

numpulses N/A The number of pulses in the waveform
Min: 2
Max: 100,000 or greater
Default: 10

specDelay Seconds The time between the start of the PWM output and the output of the Digital I/O trigger to start the spectrometer measurement.
Min: 0
Default: 0

The following is an example call to function PWM_Test_Dual().

PWM_Test_Dual(60, 10, 1000, 50, 100, 1e-3)

This call will output a pulse width modulated waveform of 100 pulses with a pulse level of 60A, a 10V voltage limit, a frequency of
1kHz, and a duty cycle of 50%. Spectrometer measurements will begin 1ms after the start of the waveform output. At the completion
of the test, the SMU output will be turned off, and the forward voltage measurements collected during the test will be printed to
the instrument console in a format compatible with copy and pasting into Microsoft Excel. An example of this output can be seen in
Figure 14.

10

Figure 14: 60A 1kHz pulsed waveform with 50% duty cycle from dual
Keithley Model 2651As into a high power LED module.

Just like the single SMU function, this function allows for
a variable duty cycle as well. To create a waveform where the
pulse width varies for each pulse it’s necessary to pass the
function a table of duty cycles. The following example calls
demonstrate this.

dutyTable = {20, 40, 60, 80, 60, 40, 20, 40, 60}
PWM_Test_Dual(40, 10, 1000, dutyTable, 9, 1e-3)

This call will output a pulse width modulated waveform of 9
pulses with a pulse level of 40A, a 10V voltage limit, a frequency
of 1kHz, and a varying duty cycle. The duty cycle for each pulse
will be read from the table. The first pulse will have a duty cycle
of 20%, the second pulse a duty cycle of 40%, the third pulse
a duty cycle of 60% and so on. Spectrometer measurements
will begin 1ms after the start of the waveform output. At the
completion of the test, the SMU output will be turned off and
the forward voltage measurements collected during the test will
be printed to the instrument console in a format compatible for
copy and pasting in to Microsoft Excel. An example of this output
can be seen in Figure 15.

Figure 15: 40A 1kHz pulse width modulated waveform from dual Keithley
Model 2651As into a high power LED module.

Conclusion
HBLEDs are advancing at an incredible pace and manufacturers
are working hard to make them the lighting source choice of
the future. In order to get there, LED manufacturers must jump
several hurdles, ever trying to reduce the cost of manufacturing
LEDs while simultaneously trying to increase their efficiency
and light output. At the center of meeting these objectives,
manufacturers require accurate, reliable, and repeatable source
and measurement equipment with the power and flexibility to
adapt to their ever-changing testing needs.

Series 2600B System SourceMeter instruments offer the
features and flexibility to keep up with LED manufacturers’
testing needs. Innovative features like the advanced trigger
model allow Series 2600B instruments to make repeatable
measurements accurately and reliably using complex drive
schemes such as pulse width modulated waveforms, AC
waveforms, and even arbitrary waveforms. The newest
addition to this product line, the Model 2651A High Power
System SourceMeter Instrument, provides additional power
to handle even the brightest high power LED modules while
still maintaining low current accuracy. Series 2600B System
SourceMeter instruments, with their flexible output capabilities
and their ability to source and measure accurately in a single
instrument, make them the perfect choice for testing HBLEDs.

11

Appendix A: Source Code
NOTE: The code in this script will work without modification only with the Model 2651A High Power System SourceMeter

instrument. However, this script can also work with other Series 2600B System SourceMeter instruments with only minor
modifications.

--[[
 Title: Pulse Width Modulation Script
 Desription: The purpose of this script is to generate a pulse width
 modulated waveform for use in testing High Brightness LED modules.
 Users of this script should call the functions in the User Functions
 section. Functions in the Utility Functions section are used by the
 User Functions to execute the test.

 System Setup:
 PWM_Test_Single()
 1x Model 2651A
 PWM_TEST_Dual()
 2x Model 2651A
 1x TSP-Link Cable

 Node 1: 2651A #1 (Master)
 Node 2: 2651A #2 (Slave)
]]--

--================
-- User Functions
--================
--[[PWM_Test_Single()

 This function uses a single SMU to output a pulse width modulated waveform.
--]]
function PWM_Test_Single(pulseLevel, pulseLimit, frequency, dutyCycle, numPulses, specDelay)
 if (pulseLevel == nil) then pulseLevel = 1 end
 if (pulseLimit == nil) then pulseLimit = 1 end
 if (frequency == nil) then frequency = 100 end
 if (dutyCycle == nil) then dutyCycle = 1 end
 if (numPulses == nil) then numPulses = 10 end
 if (specDelay == nil) then specDelay = 0 end

 local pulsePeriod
 local pulseWidth
 local measDelay
 -- Calculate the timing parameters from the frequency and duty cycle
 pulsePeriod,pulseWidth,measDelay = CalculateTiming(frequency, dutyCycle)

 -- Do a quick check on the input parameters
 f,msg = SimpleRegionCheck(pulseLevel, pulseLimit, dutyCycle, 1)
 if (f == false) then
 print(msg)
 quit()
 end

 reset()
 smua.reset()
 smua.source.func = smua.OUTPUT_DCAMPS
 smua.sense = smua.SENSE_REMOTE
 smua.source.autorangei = 0
 smua.source.rangei = pulseLevel
 smua.source.leveli = 0
 -- Set the DC bias limit. This is not the limit used during the pulses.
 smua.source.limitv = 1

12

 smua.measure.autozero = smua.AUTOZERO_ONCE
 smua.measure.autorangev = 0
 smua.measure.rangev = pulseLimit
 -- The fast ADC allows us to place the measurements very close to the falling edge of
 -- the pulse allowing for settled measurements even when pulse widths are very small
 smua.measure.adc = smua.ADC_FAST
 smua.measure.count = 1
 smua.measure.interval = 1e-6
 -- Uncomment the following lines to turn on measure filtering. When enabled, the SMU
 -- will take multiple measurements and average them to produce a single reading.
 -- Because the Fast ADC can take one measurement every microsecond, several measurements
 -- can be aquired in a small time to produce an averaged reading.
 --smua.measure.filter.count = 5
 --smua.measure.filter.enable = smua.FILTER_ON

 -- This measure delay sets the delay between the measurement trigger being received
 -- and when the actual measurement(s) start. This is set to 0 because we will be
 -- delaying the trigger itself and do not need additional delay.
 smua.measure.delay = 0

 -- Setup the Reading Buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.appendmode = 1
 smua.nvbuffer1.collecttimestamps= 1
 smua.nvbuffer2.clear()
 smua.nvbuffer2.appendmode = 1
 smua.nvbuffer2.collecttimestamps= 1

 -- Configure the Trigger Model
 --============================

 -- Timer 1 controls the pulse period
 trigger.timer[1].count = numPulses > 1 and numPulses - 1 or 1
 trigger.timer[1].delay = pulsePeriod
 trigger.timer[1].passthrough = true
 trigger.timer[1].stimulus = smua.trigger.ARMED_EVENT_ID

 -- Timer 2 controls the pulse width
 trigger.timer[2].count = 1
 if (type(pulseWidth) == "table") then
 -- Use a delay list if the duty cycle will vary for each pulse
 trigger.timer[2].delaylist = pulseWidth
 else
 -- else every pulse will be the same duty cycle
 trigger.timer[2].delay = pulseWidth
 end
 trigger.timer[2].passthrough = false
 trigger.timer[2].stimulus = smua.trigger.SOURCE_COMPLETE_EVENT_ID

 -- Timer 3 controls the measurement
 trigger.timer[3].count = 1
 if (type(measDelay) == "table") then
 -- If the duty cycle is variable then the measure delay will be as well
 trigger.timer[3].delaylist = measDelay
 else
 trigger.timer[3].delay = measDelay
 end
 trigger.timer[3].passthrough = false
 trigger.timer[3].stimulus = smua.trigger.SOURCE_COMPLETE_EVENT_ID

 -- Configure SMU Trigger Model for Sweep

13

 smua.trigger.source.lineari(pulseLevel, pulseLevel, numPulses)
 smua.trigger.source.limitv = pulseLimit
 smua.trigger.measure.action = smua.ASYNC
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2)
 smua.trigger.endpulse.action = smua.SOURCE_IDLE
 smua.trigger.endsweep.action = smua.SOURCE_IDLE
 smua.trigger.count = numPulses
 smua.trigger.arm.stimulus = 0
 smua.trigger.source.stimulus = trigger.timer[1].EVENT_ID
 smua.trigger.measure.stimulus = trigger.timer[3].EVENT_ID
 smua.trigger.endpulse.stimulus = trigger.timer[2].EVENT_ID
 smua.trigger.source.action = smua.ENABLE

 -- Configure the Digital I/O trigger
 ConfigureSpectrometerTrigger(specDelay)

 -- Start the Test
 --===============
 -- Turn the output on
 smua.source.output = 1
 -- Start the trigger model execution
 smua.trigger.initiate()

 -- While the trigger model is outputing the waveform and collecting the
 -- measurements, the script will scan the status model for any overruns
 -- that may occur as a result of using impropper settings.
 local ovr = false
 local msg = ""
 while ((status.operation.sweeping.condition ~= 0) and (ovr == false)) do
 ovr, msg = CheckForOverRun(localnode)
 end
 if (ovr == true) then
 smua.abort()
 print(msg)
 end
 -- Turn the output off
 smua.source.output = 0
 -- Return the data
 PrintData()
end

--[[PWM_Test_Dual()

 This function uses two SMUs connected together in parallel to ouput a pulse width
 modulated wavform. By using two SMUs higher current levels/duty cycles can be achieved.
--]]
function PWM_Test_Dual(pulseLevel, pulseLimit, frequency, dutyCycle, numPulses, specDelay)
 if (pulseLevel == nil) then pulseLevel = 1 end
 if (pulseLimit == nil) then pulseLimit = 1 end
 if (frequency == nil) then frequency = 100 end
 if (dutyCycle == nil) then dutyCycle = 1 end
 if (numPulses == nil) then numPulses = 10 end
 if (specDelay == nil) then specDelay = 0 end

 local pulsePeriod
 local pulseWidth
 local measDelay

 -- Calculate the timing parameters from the frequency and duty cycle
 pulsePeriod,pulseWidth,measDelay = CalculateTiming(frequency, dutyCycle)

 -- Do a quick check on the input parameters

14

 f,msg = SimpleRegionCheck(pulseLevel, pulseLimit, dutyCycle, 2)
 if (f == false) then
 print(msg)
 quit()
 end

 -- Initialize the TSP-Link
 errorqueue.clear()
 tsplink.reset()
 errcode,errmsg,stat = errorqueue.next()
 if (errcode ~= 0) then
 print(errmsg)
 exit()
 end
 reset()
 ConfigureLocalSMU(pulseLevel, pulseLimit, pulsePeriod, pulseWidth, measDelay, numPulses)
 ConfigureRemoteSMU(pulseLevel, pulseLimit, pulsePeriod, pulseWidth, measDelay, numPulses)

 -- Start the Test
 --===============
 -- Turn the output on
 smua.source.output = 1
 node[2].smua.source.output = 1
 -- Start the trigger model execution
 node[2].smua.trigger.initiate()
 smua.trigger.initiate()

 -- While the trigger model is outputing the waveform and collecting the
 -- measurements, the script will scan the status model for any overruns
 -- that may occur as a result of using impropper settings.
 local ovr1 = false
 local ovr2 = false
 local msg1 = ""
 local msg2 = ""
 -- Loop until the sweep is either complete, or an overrun condition is detected
 while (((status.operation.sweeping.condition ~= 0) or (node[2].status.operation.sweeping.condition ~=
0)) and (ovr1 == false) and (ovr2 == false)) do
 ovr1, msg1 = CheckForOverRun(localnode)
 ovr2, msg2 = CheckForOverRun(node[2])
 end
 if ((ovr1 == true) or (ovr2 == true)) then
 smua.abort()
 node[2].smua.abort()
 print("SMU#1:", msg1)
 print("SMU#2:", msg2)
 end
 -- Turn the output off
 node[2].smua.source.output = 0
 smua.source.output = 0
 -- Return the data
 PrintDataDual()
end

--===================
-- Utility Functions
--===================
function ConfigureLocalSMU(pulseLevel, pulseLimit, pulsePeriod, pulseWidth, measDelay, numPulses)
 smua.reset()
 smua.source.func = smua.OUTPUT_DCAMPS
 smua.sense = smua.SENSE_REMOTE
 smua.source.autorangei = 0

15

 smua.source.rangei = pulseLevel/2
 smua.source.leveli = 0
 -- Set the DC bias limit. This is not the limit used during the pulses.
 smua.source.limitv = 1
 smua.source.offmode = smua.OUTPUT_NORMAL
 smua.source.offfunc = smua.OUTPUT_DCVOLTS
 smua.source.offlimiti = 1e-3

 smua.measure.autozero = smua.AUTOZERO_ONCE
 smua.measure.autorangev = 0
 smua.measure.rangev = pulseLimit
 -- The fast ADC allows us to place the measurements very close to the falling edge of
 -- the pulse allowing for settled measurements even when pulse widths are very small
 smua.measure.adc = smua.ADC_FAST
 smua.measure.count = 1
 smua.measure.interval = 1e-6
 -- Uncomment the following lines to turn on measure filtering. When enabled, the SMU
 -- will take multiple measurements and average them to produce a single reading.
 -- Because the Fast ADC can take one measurement every microsecond, several measurements
 -- can be aquired in a small time to produce an averaged reading.
 --smua.measure.filter.count = 5
 --smua.measure.filter.enable = smua.FILTER_ON

 -- This measure delay sets the delay between the measurement trigger being received
 -- and when the actual measurement(s) start. This is set to 0 because we will be
 -- delaying the trigger itself and do not need additional delay.
 smua.measure.delay = 0

 -- Setup the Reading Buffers
 smua.nvbuffer1.clear()
 smua.nvbuffer1.appendmode = 1
 smua.nvbuffer1.collecttimestamps= 1
 smua.nvbuffer2.clear()
 smua.nvbuffer2.appendmode = 1
 smua.nvbuffer2.collecttimestamps= 1

 -- Configure the Trigger Model
 --============================

 -- Timer 1 controls the pulse period
 trigger.timer[1].count = (numPulses > 1) and numPulses - 1 or 1
 trigger.timer[1].delay = pulsePeriod
 trigger.timer[1].passthrough = true
 trigger.timer[1].stimulus = smua.trigger.ARMED_EVENT_ID

 -- Timer 2 controls the pulse width
 trigger.timer[2].count = 1
 if (type(pulseWidth) == "table") then
 -- Use a delay list if the duty cycle will vary for each pulse
 trigger.timer[2].delaylist = pulseWidth
 else
 -- else every pulse will be the same duty cycle
 trigger.timer[2].delay = pulseWidth
 end
 trigger.timer[2].passthrough = false
 trigger.timer[2].stimulus = smua.trigger.SOURCE_COMPLETE_EVENT_ID

 -- Timer 3 controls the measurement delay
 trigger.timer[3].count = 1
 if (type(measDelay) == "table") then
 -- If the duty cycle is variable then the measure delay will be as well
 trigger.timer[3].delaylist = measDelay

16

 else
 trigger.timer[3].delay = measDelay
 end
 trigger.timer[3].passthrough = false
 trigger.timer[3].stimulus = smua.trigger.SOURCE_COMPLETE_EVENT_ID

 -- TSP-Link Trigger 1 is used to synchronize the SMUs by telling
 -- the second SMU when to pulse.
 tsplink.trigger[1].clear()
 tsplink.trigger[1].mode = tsplink.TRIG_FALLING
 tsplink.trigger[1].stimulus = trigger.timer[1].EVENT_ID

 -- Configure SMU Trigger Model for Sweep
 smua.trigger.source.lineari(pulseLevel/2, pulseLevel/2, numPulses)
 smua.trigger.source.limitv = pulseLimit
 smua.trigger.measure.action = smua.ASYNC
 smua.trigger.measure.iv(smua.nvbuffer1, smua.nvbuffer2)
 smua.trigger.endpulse.action = smua.SOURCE_IDLE
 smua.trigger.endsweep.action = smua.SOURCE_IDLE
 smua.trigger.count = numPulses
 smua.trigger.arm.stimulus = 0
 smua.trigger.source.stimulus = trigger.timer[1].EVENT_ID
 smua.trigger.measure.stimulus = trigger.timer[3].EVENT_ID
 smua.trigger.endpulse.stimulus = trigger.timer[2].EVENT_ID
 smua.trigger.source.action = smua.ENABLE
end

function ConfigureRemoteSMU(pulseLevel, pulseLimit, pulsePeriod, pulseWidth, measDelay, numPulses)
 node[2].smua.reset()
 node[2].smua.source.func = node[2].smua.OUTPUT_DCAMPS
 node[2].smua.sense = node[2].smua.SENSE_REMOTE
 node[2].smua.source.autorangei = 0
 node[2].smua.source.rangei = pulseLevel/2
 node[2].smua.source.leveli = 0
 -- Set the DC bias limit. This is not the limit used during the pulses.
 node[2].smua.source.limitv = 1
 node[2].smua.source.offmode = node[2].smua.OUTPUT_NORMAL
 node[2].smua.source.offfunc = node[2].smua.OUTPUT_DCAMPS
 node[2].smua.source.offlimitv = 40

 node[2].smua.measure.autozero = node[2].smua.AUTOZERO_ONCE
 node[2].smua.measure.autorangev = 0
 node[2].smua.measure.rangev = pulseLimit
 -- The fast ADC allows us to place the measurements very close to the falling edge of
 -- the pulse allowing for settled measurements even when pulse widths are very small
 node[2].smua.measure.adc = node[2].smua.ADC_FAST
 node[2].smua.measure.count = 1
 node[2].smua.measure.interval = 1e-6
 -- Uncomment the following lines to turn on measure filtering. When enabled, the SMU
 -- will take multiple measurements and average them to produce a single reading.
 -- Because the Fast ADC can take one measurement every microsecond, several measurements
 -- can be aquired in a small time to produce an averaged reading.
 --node[2].smua.measure.filter.count = 5
 --node[2].smua.measure.filter.enable = node[2].smua.FILTER_ON

 -- This measure delay sets the delay between the measurement trigger being received
 -- and when the actual measurement(s) start. This is set to 0 because we will be
 -- delaying the trigger itself and do not need additional delay.
 node[2].smua.measure.delay = 0

 -- Setup the Reading Buffers
 node[2].smua.nvbuffer1.clear()

17

 node[2].smua.nvbuffer1.appendmode = 1
 node[2].smua.nvbuffer1.collecttimestamps= 1
 node[2].smua.nvbuffer2.clear()
 node[2].smua.nvbuffer2.appendmode = 1
 node[2].smua.nvbuffer2.collecttimestamps= 1

 -- Configure the Trigger Model
 --============================

 -- Timer 2 controls the pulse width
 node[2].trigger.timer[2].count = 1
 if (type(pulseWidth) == "table") then
 -- Use a delay list if the duty cycle will vary for each pulse
 node[2].trigger.timer[2].delaylist = pulseWidth
 else
 -- else every pulse will be the same duty cycle
 node[2].trigger.timer[2].delay = pulseWidth
 end
 node[2].trigger.timer[2].passthrough = false
 node[2].trigger.timer[2].stimulus = node[2].smua.trigger.SOURCE_COMPLETE_EVENT_ID

 -- Timer 3 controls the measurement delay
 node[2].trigger.timer[3].count = 1
 if (type(measDelay) == "table") then
 -- If the duty cycle is variable then the measure delay will be as well
 node[2].trigger.timer[3].delaylist = measDelay
 else
 node[2].trigger.timer[3].delay = measDelay
 end
 node[2].trigger.timer[3].passthrough = false
 node[2].trigger.timer[3].stimulus = node[2].smua.trigger.SOURCE_COMPLETE_EVENT_ID

 -- TSP-Link Trigger 1 is used to synchronize the SMUs. SMU #2 receives
 -- its trigger to pulse from SMU #1
 node[2].tsplink.trigger[1].clear()
 node[2].tsplink.trigger[1].mode = node[2].tsplink.TRIG_FALLING
 -- Release the trigger line when the pulse is complete
 node[2].tsplink.trigger[1].stimulus = 0

 -- Configure SMU Trigger Model for Sweep
 node[2].smua.trigger.source.lineari(pulseLevel/2, pulseLevel/2, numPulses)
 node[2].smua.trigger.source.limitv = pulseLimit
 node[2].smua.trigger.measure.action = node[2].smua.ASYNC
 node[2].smua.trigger.measure.iv(node[2].smua.nvbuffer1, node[2].smua.nvbuffer2)
 node[2].smua.trigger.endpulse.action = node[2].smua.SOURCE_IDLE
 node[2].smua.trigger.endsweep.action = node[2].smua.SOURCE_IDLE
 node[2].smua.trigger.count = numPulses
 node[2].smua.trigger.arm.stimulus = 0
 node[2].smua.trigger.source.stimulus = node[2].tsplink.trigger[1].EVENT_ID
 node[2].smua.trigger.measure.stimulus = node[2].trigger.timer[3].EVENT_ID
 node[2].smua.trigger.endpulse.stimulus = node[2].trigger.timer[2].EVENT_ID
 node[2].smua.trigger.source.action = node[2].smua.ENABLE
end

function ConfigureSpectrometerTrigger(specDelay)
 -- Digital I/O line 1 triggers the spectrometer measurements
 -- Timer 4 puts a delay between the start of the pulse train and the
 -- output of the digital IO trigger on Digital I/O line 1
 digio.trigger[1].clear()
 digio.trigger[1].mode = digio.TRIG_FALLING

 -- If the delay value is > 0 then configure a timer to provide the delay

18

 if specDelay > 0 then
 trigger.timer[4].count = 1
 trigger.timer[4].delay = specDelay
 trigger.timer[4].passthrough = false
 trigger.timer[4].stimulus = smua.trigger.ARMED_EVENT_ID

 digio.trigger[1].stimulus = trigger.timer[4].EVENT_ID
 else
 -- Else bypass the timer and trigger the digital I/O immediately
 -- Configure the Digital I/O pin that will trigger the spectrometer
 digio.trigger[1].stimulus = smua.trigger.ARMED_EVENT_ID
 end
end

function CheckForOverRun(pNode)
 -- Check SMUA Trigger Overruns
 if (bit.bitand(pNode.status.operation.instrument.smua.trigger_overrun.condition, 2) == 2) then
 return true, "smua arm trigger is overrun"
 end
 if (bit.bitand(pNode.status.operation.instrument.smua.trigger_overrun.condition, 4) == 4) then
 return true, "smua source trigger is overrun"
 end
 if (bit.bitand(pNode.status.operation.instrument.smua.trigger_overrun.condition, 8) == 8) then
 return true, "smua measure trigger is overrun"
 end
 if (bit.bitand(pNode.status.operation.instrument.smua.trigger_overrun.condition, 16) == 16) then
 return true, "smua endpulse trigger is overrun"
 end

 local CFORi = 0
 -- Check Timers for Overrun
 if (pNode.status.operation.instrument.trigger_timer.trigger_overrun.condition > 0) then
 return true, string.format("Timer trigger is overrun: 0x%x", CFORi)
 end

 -- Check Blenders for Overrun
 if (pNode.status.operation.instrument.trigger_blender.trigger_overrun.condition > 0) then
 return true, string.format("blender trigger is overrun: 0x%x", CFORi)
 end

 -- Check TSP-Link Triggers for Overrun
 if (pNode.status.operation.instrument.tsplink.trigger_overrun.condition > 0) then
 return true, string.format("TSP-Link trigger is overrun: 0x%x", CFORi)
 end

 -- Check DIGIO Triggers for Overrun
 if (pNode.status.operation.instrument.digio.trigger_overrun.condition > 0) then
 return true, string.format("digio trigger is overrun: 0x%x", CFORi)
 end

 -- Check LAN Triggers for Overrun
 if (pNode.status.operation.instrument.lan.trigger_overrun.condition > 0) then
 return true, string.format("LAN trigger is overrun: 0x%x", CFORi)
 end

 return false, "no overrun detected"
end

function PrintData()
 print("Timestamp\tVoltage\tCurrent")
 for i=1,smua.nvbuffer1.n do
 print(smua.nvbuffer1.timestamps[i], smua.nvbuffer2[i], smua.nvbuffer1[i])

19

 end
end

function PrintDataDual()
 local voltage
 local current
 print("Timestamp\tVoltage\tCurrent")
 for i=1,smua.nvbuffer1.n do
 voltage = (smua.nvbuffer2[i] + node[2].smua.nvbuffer2[i])/2
 current = smua.nvbuffer1[i] + node[2].smua.nvbuffer1[i]
 print(smua.nvbuffer1.timestamps[i], voltage, current)
 end
end

function CalculateTiming(frequency, dutyCycle)
 local pulsePeriod = 1/frequency
 local pulseWidth
 local measDelay

 -- If duty cycle was a table then we need to create delay lists for the timers
 if (type(dutyCycle)=="table") then
 pulseWidth = {}
 measDelay = {}
 for i=1,table.getn(dutyCycle) do
 if ((dutyCycle[i] > 99) or (dutyCycle[i] < 0.01)) then
 print(string.format("Error: dutyCycle[%d] must be between 0.01% and 99%.", i))
 exit()
 end
 -- Calculate pulse width from period and duty cycle. Subtract 3us of overhead
 pulseWidth[i] = pulsePeriod * (dutyCycle[i]/100) - 3e-6
 -- Set measure delay so measurement happen 10us before the falling edge of the pulse
 measDelay[i] = pulseWidth[i] - 10e-6
 end
 else -- Duty cycle was a single value so we only need a single delay value for the timers
 if ((dutyCycle > 99) or (dutyCycle < 0.01)) then
 print("Error: dutyCycle must be between 0.01% and 99%.")
 exit()
 end
 pulseWidth = pulsePeriod * (dutyCycle/100) - 3e-6
 measDelay = pulseWidth - 10e-6
 end
 return pulsePeriod, pulseWidth, measDelay
end

function SimpleRegionCheck(pulseLevel, pulseLimit, dutyCycle, SMUs)
 -- This function only serves as a quick check that the entered parameters are
 -- within the max allowable duty cycles for the operating regions. This function
 -- does not check that the pulse widths are within the maximums as well.

 local pLev = math.abs(pulseLevel)
 f = true
 msg = "Checks passed."
 if ((pulseLimit >= 10e-3) and (pulseLimit <= 10)) then
 if ((pLev > 30*SMUs) and (dutyCycle > 35)) then
 msg = string.format("Duty Cycle too high for pulse region 5. Duty cycle must be 35%% or less
for pulse levels above %dA.", 30*SMUs)
 f = false
 elseif (((pLev > 20*SMUs) and (pLev <= 30*SMUs)) and (dutyCycle > 50)) then
 msg = string.format("Duty Cycle too high for pulse region 2. Duty cycle must be 50%% or less
for pulse levels between %dA and %dA.", 20*SMUs, 30*SMUs)
 f = false
 end

 elseif ((pulseLimit > 10) and (pulseLimit <= 20)) then
 if ((pLev > 20*SMUs) and (dutyCycle > 10)) then
 msg = string.format("Duty Cycle too high for pulse region 6. Duty cycle must be 10%% or less
for pulse levels above %dA.", 20*SMUs)
 f = false
 elseif (((pLev > 10*SMUs) and (pLev <= 20*SMUs)) and (dutyCycle > 40)) then
 msg = string.format("Duty Cycle too high for pulse region 3. Duty cycle must be 40%% or less
for pulse levels between %dA and %dA.", 10*SMUs, 20*SMUs)
 f = false
 end
 elseif (pulseLimit > 20) and (pulseLimit <= 40) then
 if ((pLev > 10*SMUs) and (dutyCycle > 1)) then
 msg = string.format("Duty Cycle too high for pulse region 7. Duty cycle must be 1%% or less
for pulse levels above %dA.", 10*SMUs)
 f = false
 elseif (((pLev > 5*SMUs) and (pLev <= 10*SMUs)) and (dutyCycle > 40)) then
 msg = string.format("Duty Cycle too high for pulse region 4. Duty cycle must be 40%% or less
for pulse levels between %dA and %dA.", 5*SMUs, 10*SMUs)
 f = false
 end
 else
 msg = "Error: pulseLimit out of range. pulseLimit must be between 10mV and 40V."
 f = false
 end

 return f,msg
end

--PWM_Test_Single(1, 2, 100, 1, 10, 0)
-- duty = {20, 40, 60, 80, 60, 40, 20, 40, 60}
--PWM_Test_Single(20, 10, 1000, duty, 9, 1e-3)
--PWM_Test_Dual(40, 10, 1000, duty, 9, 1e-3)

Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments.

All other trademarks and trade names are the property of their respective companies.

KEITHLEY INSTRUMENTS ■ 28775 AURORA RD. ■ CLEVELAND, OH 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

A Greater Measure of ConfidenceA Tektronix Company

BENELUX
+31-40-267-5506
www.keithley.nl

BRAZIL
55-11-4058-0229
www.keithley.com

CHINA
86-10-8447-5556
www.keithley.com.cn

FRANCE
+33-01-69-86-83-60
www.keithley.fr

GERMANY
+49-89-84-93-07-40
www.keithley.de

INDIA
080-30792600
www.keithley.in

ITALY
+39-049-762-3950
www.keithley.it

JAPAN
81-120-441-046
www.keithley.jp

KOREA
82-2-6917-5000
www.keithley.co.kr

	 MALAYSIA
 60-4-643-9679
 www.keithley.com

	 MEXICO
 52-55-5424-7907
 www.keithley.com

	 RUSSIA
 +7-495-664-7564
 www.keithley.ru

SINGAPORE
01-800-8255-2835
www.keithley.com.sg

TAIWAN
886-3-572-9077
www.keithley.com.tw

UNITED	KINGDOM
+44-1344-39-2450
www.keithley.co.uk

For further information on how to purchase or to locate a sales partner please visit www.keithley.com/buy

© Copyright 2014 Keithley Instruments Printed in the U.S.A No. 3129 4.9.14

