

 DAS-1600/1400/1200
 Series
 Function Call Driver

U S E R ’ S G U I D E

DAS-1600/1400/1200 Series
Function Call Driver

User’s Guide

Revision C – May 1996
Part Number: 80950

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000

●

 FAX: (508) 880-0179

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1994, 1995, 1996.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

xi

Preface

This manual describes how to write programs for DAS-1600/1400/1200
Series boards using the DAS-1600/1400/1200 Series Function Call
Driver. The DAS-1600/1400/1200 Series Function Call Driver supports
the following DOS-based languages:

●

Microsoft

 QuickBasic

 (Version 4.5)

●

Microsoft Professional Basic (Version 7.0 and higher)

●

Microsoft Visual Basic

for DOS (Version 1.0)

●

Microsoft C/C++ (Version 4.0 and higher)

●

Borland

 C/C++ (Version 1.0 and higher)

●

Borland Turbo Pascal

 for DOS (Version 7.0 and higher)

The DAS-1600/1400/1200 Series Function Call Driver also supports the
following Windows

-based languages:

●

Microsoft C/C++ (Version 7.0 and higher)

●

Borland C/C++ (Version 4.0 and higher)

●

Microsoft Visual Basic for Windows (Version 3.0 and higher)

●

Microsoft Visual C++

 (Version 1.0 and higher)

●

Borland Turbo Pascal for Windows (Version 1.0 and higher)

The manual is intended for programmers using a DAS-1600/1400/1200
Series board in an IBM

 PC AT

 or compatible computer. It is assumed
that you have read the user’s guide for your board to familiarize yourself
with the board’s features, and that you have completed the appropriate
hardware installation and configuration.

xii

It is also assumed that you are experienced in programming in your
selected language and that you are familiar with data acquisition
principles.

The

DAS-1600/1400/1200 Series Function Call Driver User’s Guide

 is
organized as follows:

●

Chapter 1 provides an overview of the Function Call Driver, a
summary of the Function Call Driver functions, a series of flow
diagrams illustrating the procedures used when programming each of
the operations supported by the Function Call Driver, and information
on how to get help.

●

Chapter 2 contains the background information needed to use the
functions included in the Function Call Driver.

●

Chapter 3 contains a programming overview and language-specific
information related to using the Function Call Driver.

●

Chapter 4 contains detailed descriptions of the functions, arranged in
alphabetical order.

●

Appendix A contains a list of the error codes returned by the Function
Call Driver.

●

Appendix B contains instructions for converting counts to voltage and
for converting voltage to counts.

●

An index completes this manual.

Keep the following conventions in mind as you use this manual:

●

References to DAS-1600/1400/1200 Series boards apply to all
members of the family. When a feature applies to a particular board,
that board’s name is used.

●

References to BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBasic, Microsoft Professional Basic, and Microsoft
Visual Basic for DOS). When a feature applies to a specific language,
the complete language name is used. References to Visual Basic for
Windows apply to Microsoft Visual Basic for Windows.

●

Keyboard keys are represented in bold.

Table of Contents

iii

Preface

1

Getting Started

Overview .1-1
Summary of Functions .1-2
Programming Flow Diagrams .1-6

Preliminary Steps for All Operations 1-7
Steps for an Analog Input Operation.1-8
Steps for an Analog Output Operation 1-14
Steps for a Digital Input Operation .1-18
Steps for a Digital Output Operation 1-21

Getting Help. .1-24

2

Available Operations

System Operations .2-1
Initializing the Driver .2-2
Initializing a Board .2-2
Retrieving Revision Levels .2-3
Handling Errors. .2-4

Analog Input Operations .2-4
Operation Modes. .2-4

Single Mode .2-5
Synchronous Mode. .2-5
Interrupt Mode .2-5
DMA Mode .2-6

Frames .2-6
Memory Allocation and Management.2-10

Dimensioning a Local Array .2-10
Dynamically Allocating a Memory Buffer.2-10
Assigning a Starting Address .2-12

Gains and Ranges .2-12
Channels .2-14

Specifying a Single Channel .2-16
Specifying a Group of Consecutive Channels2-17
Specifying Channels in a Channel-Gain Queue.2-18

iv

Conversion Modes. .2-19
Paced Mode .2-19
Burst Mode. .2-19
Burst Mode with SSH .2-21

Pacer Clocks .2-21
Internal Pacer Clock .2-22
External Pacer Clock .2-23

Buffering Modes .2-23
Single-Cycle Mode. .2-24
Continuous Mode .2-24

Triggers .2-24
Internal Trigger. .2-24
External Analog Trigger. .2-25
External Digital Trigger .2-28

Analog Output Operations (DAS-1600 Series Only).2-29
Operation Modes. .2-29

Single Mode .2-29
Synchronous Mode. .2-30
Interrupt Mode .2-30

Frames .2-31
Memory Allocation and Management.2-32
Channels .2-34
Pacer Clocks .2-34

Internal Pacer Clock .2-35
External Pacer Clock .2-36

Buffering Modes .2-37
Single-Cycle Mode. .2-37
Continuous Mode .2-37

Triggers .2-37
Internal Trigger. .2-38
External Digital Trigger .2-38

Digital I/O Operations .2-39
Operation Modes. .2-39

Single Mode .2-39
Synchronous Mode. .2-40
Interrupt Mode .2-40

Frames .2-41
Memory Allocation and Management.2-42
Digital Input/Output Channel .2-45
Pacer Clocks .2-48

Internal Pacer Clock .2-48
External Pacer Clock .2-50

v

Buffering Modes .2-50
Single-Cycle Mode. .2-50
Continuous Mode .2-51

Triggers .2-51
Internal Trigger. .2-51
External Digital Trigger .2-52

Counter/Timer I/O Operations .2-52

3

Programming with the Function Call Driver

Programming Overview .3-2
C/C++ Programming Information .3-3

Dynamically Allocating a Memory Buffer3-3
Accessing Data from a Dynamically Allocated
 Memory Buffer .3-4
Dimensioning a Local Array .3-4
Creating a Channel-Gain Queue .3-5
Handling Errors. .3-6
Programming in Microsoft C/C++ (for DOS).3-7
Programming in Microsoft C/C++ (for Windows)3-8
Programming in Borland C/C++ (for DOS)3-9
Programming in Borland C/C++ (for Windows).3-10

Pascal Programming Information .3-11
Reducing the Memory Heap .3-11
Dynamically Allocating a Memory Buffer3-12
Accessing Data from a Dynamically Allocated
 Memory Buffer .3-13
Dimensioning a Local Array .3-13
Creating a Channel-Gain Queue .3-14
Handling Errors. .3-14
Programming in Borland Turbo Pascal (for DOS)3-15
Programming in Borland Turbo Pascal for Windows3-15

Visual Basic for Windows Programming Information.3-16
Dynamically Allocating a Memory Buffer3-16
Accessing Data from a Dynamically Allocated
 Memory Buffer with Fewer than 64 KB of Data 3-17
Accessing Data from a Dynamically Allocated
 Memory Buffer with More than 64 KB of Data3-17
Accessing More than 64 KB of Data from a
 Dynamically Allocated Memory Buffer3-19
Dimensioning a Local Array .3-19
Creating a Channel-Gain Queue .3-19
Converting Integer Data for Digital I/O Operations3-21

vi

Handling Errors. .3-22
Programming in Microsoft Visual Basic for Windows3-23

BASIC Programming Information. .3-24
Reducing the Memory Heap .3-24
Dynamically Allocating a Memory Buffer3-24
Accessing Data from a Dynamically Allocated
 Memory Buffer with Fewer than 64 KB of Data 3-25
Accessing Data from a Dynamically Allocated
 Memory Buffer with More than 64 KB of Data3-25
Accessing More than 64 KB of Data from a
 Dynamically Allocated Memory Buffer3-27
Dimensioning a Local Array .3-28
Creating a Channel-Gain Queue .3-28
Converting Integer Data for Digital I/O Operations3-29
Handling Errors. .3-30
Programming in Microsoft QuickBasic 3-31
Programming in Microsoft Professional Basic3-32
Programming in Microsoft Visual Basic for DOS 3-33

4

Function Reference

DAS1600_8254Control .4-7
DAS1600_8254GetClk0 .4-10
DAS1600_8254GetCounter .4-13
DAS1600_8254GetTrig0 .4-16
DAS1600_8254SetClk0. .4-19
DAS1600_8254SetCounter .4-21
DAS1600_8254SetTrig0 .4-24
DAS1600_DevOpen. .4-27
DAS1600_GetDevHandle .4-30
K_ADRead. .4-32
K_ClearFrame .4-35
K_CloseDriver .4-37
K_ClrADFreeRun .4-39
K_ClrContRun .4-41
K_DASDevInit. .4-43
K_DAWrite .4-45
K_DIRead .4-48
K_DMAAlloc. .4-51
K_DMAFree .4-54
K_DMAStart .4-56
K_DMAStatus .4-58
K_DMAStop .4-61

vii

K_DOWrite .4-64
K_FormatChnGAry .4-67
K_FreeDevHandle .4-69
K_FreeFrame .4-71
K_GetADConfig .4-73
K_GetADFrame. .4-75
K_GetADMode .4-77
K_GetClkRate .4-79
K_GetDAFrame .4-81
K_GetDevHandle. .4-83
K_GetDIFrame. .4-85
K_GetDOFrame. .4-87
K_GetErrMsg. .4-89
K_GetShellVer .4-91
K_GetVer .4-94
K_IntAlloc .4-97
K_IntFree .4-100
K_IntStart. .4-102
K_IntStatus. .4-104
K_IntStop .4-107
KMakeDMABuf .4-110
K_MoveArrayToBuf .4-112
K_MoveArrayToBufL .4-114
K_MoveBufToArray .4-116
K_MoveBufToArrayL .4-118
K_MoveDataBuf .4-120
K_OpenDriver .4-122
K_RestoreChnGAry. .4-125
K_SetADFreeRun .4-127
K_SetADTrig .4-129
K_SetBuf .4-132
K_SetBufI .4-135
K_SetBufL .4-137
K_SetBurstTicks .4-139
K_SetChn .4-141
K_SetChnGAry .4-143
K_SetClk .4-146
K_SetClkRate. .4-148
K_SetContRun .4-151
K_SetDITrig. .4-153
K_SetDMABuf .4-156
K_SetG. .4-159

viii

K_SetSSH .4-162
K_SetStartStopChn .4-164
K_SetStartStopG .4-166
K_SetTrig .4-169
K_SetTrigHyst .4-171
K_SyncStart .4-173

A

Error/Status Codes

B

Data Formats

Converting Voltage to Counts. B-1
Specifying a Trigger Level . B-2
Specifying a Hysteresis Value . B-3
Specifying an Analog Output Value
 (DAS-1600 Series Only) . B-3

Converting Counts to Voltage. B-5

Index

List of Figures

Figure 2-1. Frame-Based Operation .2-7
Figure 2-2. Analog Input Channels .2-16
Figure 2-3. Analog Trigger Conditions 2-25
Figure 2-4. Using a Hysteresis Value.2-27
Figure 2-5. Digital Trigger Conditions.2-28

List of Tables

Table 1-1. Summary of Functions. .1-3
Table 2-1. A/D Frame Elements .2-8
Table 2-2. Analog Input Ranges .2-13
Table 2-3. Channels in Maximum Configuration2-15
Table 2-4. Default Settling Times .2-19
Table 2-5. D/A Frame Elements .2-31
Table 2-6. DI Frame Elements .2-41
Table 2-7. DO Frame Elements. .2-42
Table 2-8. Dimensioning Arrays for Digital I/O

Operations .2-43
Table 2-9. Digital I/O Channel Usage;

No EXPs, All Ports Output 2-46

ix

Table 2-10. Digital I/O Channel Usage;
EXPs Used, All Ports Output.2-47

Table 2-11. Digital I/O Channel Usage;
No EXPs, A and B Output, CL and CH Input . . .2-47

Table 2-12. Digital I/O Channel Usage;
No EXPs, B and CH Output, A and CL Input . . .2-48

Table 3-1. Protected-Mode Memory Architecture3-18
Table 3-2. Real-Mode Memory Architecture3-26
Table 4-1. Functions .4-2
Table 4-2. Data Type Prefixes. .4-6
Table A-1. Error/Status Codes . A-1
Table B-1. Span Values for Analog Output Equations B-4
Table B-2. Span Values for A/D Conversion Equations B-6

Table 2-1. Supported Operations .2-1
Table 2-2. Analog Input Ranges .2-10
Table 2-3. Channels in Maximum Configuration2-12
Table 2-4. Default Settling Times .2-17
Table 2-5. Dimensioning Arrays for Digital I/O Operations 2-35
Table 2-6. Digital I/O Channel Usage;
No EXPs, All Ports Output2-38
Table 2-7. Digital I/O Channel Usage;
EXPs Used, All Ports Output2-39
Table 2-8. Digital I/O Channel Usage;
No EXPs, A and B Output, CL and CH Input2-39
Table 2-9. Digital I/O Channel Usage;
No EXPs, B and CH Output, A and CL Input2-40
Table 3-1. A/D Frame Elements .3-5
Table 3-2. D/A Frame Elements .3-7
Table 3-3. DI Frame Elements .3-8
Table 3-4. DO Frame Elements. .3-9
Table 3-5. Setup Functions for Synchronous-Mode
Analog Input Operations3-13
Table 3-6. Setup Functions for Interrupt-Mode
Analog Input Operations3-15
Table 3-7. Setup Functions for DMA-Mode
Analog Input Operations3-17
Table 3-8. Setup Functions for Synchronous-Mode
Analog Output Operations3-20
Table 3-9. Setup Functions for Interrupt-Mode
Analog Output Operations3-22
Table 3-10. Setup Functions for Synchronous-Mode
Digital Input and Digital Output Operations3-24
Table 3-11. Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operations3-26
Table 3-12. Protected-Mode Memory Architecture3-45
Table 3-13. Real-Mode Memory Architecture3-52
Table 4-1. Functions .4-2
Table 4-2. Data Type Prefixes. .4-7
Table A-1. Error/Status Codes . A-1
Table B-1. Span Values for Analog Output Equations B-3
Table B-2. Span Values for A/D Conversion Equations B-5

Figure 2-1. Analog Input Channels .2-13
Figure 2-2. Analog Trigger Conditions 2-23
Figure 2-3. Using a Hysteresis Value.2-24
Figure 2-4. Digital Trigger Conditions.2-25
Figure 3-1. Single-Mode Function .3-2
Figure 3-2. Interrupt-Mode Operation3-3

Overview 1-1

1

Getting Started

This chapter contains the following sections:

●

Overview

 - a description of the DAS-1600/1400/1200 Function Call
Driver.

●

Summary of Functions

 - a brief description of the
DAS-1600/1400/1200 Function Call Driver functions.

●

Programming Flow Diagrams

 - an illustration of the procedures to
follow when programming a DAS-1600/1400/1200 Series board
using the DAS-1600/1400/1200 Function Call Driver.

●

Getting Help

 - information on how to get help when installing or
using the DAS-1600/1400/1200 Function Call Driver.

Overview

The DAS-1600/1400/1200 Series Function Call Driver is a library of data
acquisition and control functions (referred to as the Function Call Driver
or FCD functions). It is part of the following two software packages:

●

DAS-1600/1400/1200 Series standard software package

 - This is
the software package that is shipped with DAS-1600/1400/1200
Series boards; it includes the following:

– Libraries of FCD functions for Microsoft QuickBasic, Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

– Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

1-2 Getting Started

– Utility programs, running under DOS, that allow you to
configure, calibrate, and test the features of
DAS-1600/1400/1200 Series boards.

– Language-specific example programs.

●

ASO-1600/1400/1200 software package

 - This is the Advanced
Software Option for DAS-1600/1400/1200 Series boards. You
purchase the ASO-1600/1400/1200 software package separately from
the board; it includes the following:

– Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

– Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
C/C++, Borland C/C++, Microsoft Visual C++, Microsoft Visual
Basic for Windows, and Borland Turbo Pascal for Windows.

– Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

– Utility programs, running under DOS and Windows, that allow
you to configure, calibrate, and test the functions of
DAS-1600/1400/1200 Series boards.

– Language-specific example programs.

Before you use the Function Call Driver, make sure that you have
installed the software, set up the board, and created a configuration file
using the setup and installation procedures described in Chapter 3 of the
user’s guide for your board.

Summary of Functions

Table 1-1 provides a brief description of the functions in the
DAS-1600/1400/1200 Series Function Call Driver. For more detailed
information about the functions, refer to Chapter 4.

Summary of Functions 1-3

Table 1-1. Summary of Functions

Type of
Function Name of Function Description

Initialization DAS1600_DevOpen Initializes the DAS-1600/1400/1200 Series
Function Call Driver.

K_OpenDriver Initializes any Function Call Driver.

K_CloseDriver Closes a Function Call Driver.

DAS1600_GetDevHandle Initializes a DAS-1600/1400/1200 Series board.

K_GetDevHandle Initializes any Keithley DAS board.

K_FreeDevHandle Frees a device handle.

K_DASDevInit Reinitializes a board.

Operation K_ADRead Reads a single analog input value.

K_DAWrite Writes a single analog output value.

K_DIRead Reads a single digital input value.

K_DOWrite Writes a single digital output value.

K_DMAStart Starts a DMA-mode operation.

K_DMAStatus Gets the status of a DMA-mode operation.

K_DMAStop Stops a DMA-mode operation.

K_IntStart Starts an interrupt-mode operation.

K_IntStatus Gets the status of an interrupt-mode operation.

K_IntStop Stops an interrupt-mode operation.

K_SyncStart Starts a synchronous-mode operation.

Frame
management

K_GetADFrame Accesses a frame for an analog input operation.

K_GetDAFrame Accesses a frame for an analog output operation.

K_GetDIFrame Accesses a frame for a digital input operation.

K_GetDOFrame Accesses a frame for a digital output operation.

K_FreeFrame Frees a frame.

K_ClearFrame Sets all frame elements to their default values.

1-4 Getting Started

Memory
management

K_DMAAlloc Dynamically allocates a memory buffer for a
DMA-mode operation.

K_DMAFree Frees a memory buffer that was dynamically
allocated for a DMA-mode operation.

K_IntAlloc Dynamically allocates a memory buffer for an
interrupt-mode or synchronous-mode operation.

K_IntFree Frees a memory buffer that was dynamically
allocated for an interrupt-mode or
synchronous-mode operation.

KMakeDMABuf Converts a local array to a buffer suitable for a
DMA-mode operation.

K_MoveArrayToBuf Transfers data from a local integer array to a
dynamically allocated memory buffer.

K_MoveArrayToBufL Transfers data from a local long array to a
dynamically allocated memory buffer.

K_MoveBufToArray Transfers data from a dynamically allocated
memory buffer to a local integer array.

K_MoveBufToArrayL Transfers data from a dynamically allocated
memory buffer to a local long array.

K_MoveDataBuf Moves data from one memory area to another.

Buffer address K_SetBuf Specifies the address of a local array (C/C++ or
Pascal) or a dynamically allocated memory buffer
(C/C++, Pascal, Visual Basic for Windows, or
BASIC) for an interrupt-mode or
synchronous-mode operation.

K_SetBufI Specifies the address of a local integer array
(BASIC or Visual Basic for Windows) for an
interrupt-mode or synchronous-mode operation.

K_SetBufL Specifies the address of a local long array (BASIC
or Visual Basic for Windows) for an interrupt-mode
or synchronous-mode operation.

K_SetDMABuf Specifies the address of a dynamically allocated
memory buffer for a DMA-mode operation.

Table 1-1. Summary of Functions (cont.)

Type of
Function Name of Function Description

Summary of Functions 1-5

Buffering mode K_SetContRun Specifies continuous mode.

K_ClrContRun Specifies single-cycle mode.

Conversion
mode

K_SetADFreeRun Specifies burst mode.

K_ClrADFreeRun Specifies paced mode.

K_SetSSH Specifies burst mode with SSH (simultaneous
sample-and-hold).

Channel and
gain

K_SetChn Specifies a single channel.

K_SetStartStopChn Specifies the first and last channels in a group of
consecutive channels.

K_SetG Specifies the gain for a group of consecutive
channels.

K_SetStartStopG Specifies the first and last channels in a group of
consecutive channels and the gain for all channels
in the group.

K_SetChnGAry Specifies the starting address of a channel-gain
queue.

K_FormatChnGAry Converts the format of a channel-gain queue.

K_RestoreChnGAry Restores a converted channel-gain queue.

K_GetADConfig Gets the input channel configuration (differential or
single-ended).

K_GetADMode Gets the input range type (bipolar or unipolar).

Clock K_SetClk Specifies the pacer clock source.

K_SetClkRate Specifies the clock rate for the internal pacer clock.

K_GetClkRate Gets the clock rate for the internal pacer clock.

K_SetBurstTicks Specifies the count value used to adjust the settling
time.

Table 1-1. Summary of Functions (cont.)

Type of
Function Name of Function Description

1-6 Getting Started

Programming Flow Diagrams

This section contains a series of programming flow diagrams illustrating
the procedures used when programming each of the operations supported
by the DAS-1600/1400/1200 Series Function Call Driver. Although error
checking is not shown in the flow diagrams, it is recommended that you
check the error/status code returned by each function used in your
program.

Trigger K_SetTrig Specifies the trigger source.

K_SetADTrig Sets up an external analog trigger.

K_SetTrigHyst Specifies the hysteresis value.

K_SetDITrig Sets up an external digital trigger.

82C54
counter/timer

1

DAS1600_8254Control Writes data to the 82C54 counter/timer control

register.

DAS1600_8254SetCounter Specifies the value of a counter.

DAS1600_8254SetClk0 Specifies the clock source for counter 0.

DAS1600_8254SetTrig0 Enables/disables the gate signal.

DAS1600_8254GetCounterGets the value of a counter.

DAS1600_8254GetClk0 Gets the clock source for counter 0.

DAS1600_8254GetTrig0 Gets the status of the gate signal.

Miscellaneous K_GetErrMsg Gets the address of an error message string.

K_GetVer Gets revision numbers.

K_GetShellVer Gets the current DAS shell version.

Notes

1

These functions allow you to program the 82C54 counter/timer on the DAS-1600/1400/1200 Series
board. See Appendix E of your user’s guide for more information.

Table 1-1. Summary of Functions (cont.)

Type of
Function Name of Function Description

Programming Flow Diagrams 1-7

Preliminary Steps for All Operations

Using another
board?

Install all required files,
including the function and
variable type definition file

Declare and initialize program
variables

Initialize the driver
(K_OpenDriver or DAS1600_DevOpen)

Initialize a board
(K_GetDevHandle or DAS1600_GetDevHandlre)

No

Yes

Perform the steps appropriate to your
operation (see the operation-specific

flow diagrams)

1-8 Getting Started

Steps for an Analog Input Operation

Declare the variable
in which to store the

input value

Read the count value
(K_ADRead)

Performing a
single-mode
operation?

Yes

Access a frame
(K_GetADFrame)

Operation complete

Convert the count value

No

Continued on next page

Programming Flow Diagrams 1-9

Steps for an Analog Input Operation (cont.)

Using a
dynamically

allocated
memory
buffer?

No

Specify the starting address
of the buffer

(K_SetDMABuf)

Continued on next page

Allocate a buffer
(K_DMAAlloc)

No

Specify the
starting address

of the buffer
(K_SetBuf)

Yes

Allocate a buffer
(K_IntAlloc)

Declare and dimension
a local array

Continued from previous page

Using DMA
mode?

Yes

No

Using
C/C++ or
Pascal?

Specify the
starting address

of the array
(K_SetBuf)

Specify the starting
address of the array

(K_SetBufI)

Yes

1-10 Getting Started

Steps for an Analog Input Operation (cont.)

Using
Visual Basic
or BASIC?

Modify the
channel-

gain
queue?

Yes

Using a
channel-

gain

No

Yes Define the
channel-gain

queue

Yes Format the
channel-gain queue
(K_FormatChnGAry)

Continued from previous page

Specify the starting address
of the channel-gain queue

(K_SetChnGAry)

No

Restore the
channel-gain queue

(K_RestoreChnGAry)

Using a
group of

consecutive
channels?

No

Yes
Specify the first and last channels

and the gain for all channels
(K_SetStartStopG or

K_SetStartStopChn and K_SetG)

Specify a single channel
(K_SetChn)

Specify the gain
for the single channel

(K_SetG)

Continued on next page

No

Programming Flow Diagrams 1-11

Steps for an Analog Input Operation (cont.)

Using
continuous
buffering
mode?

Using DMA
or interrupt

mode?

Using the
internal
clock?

Continued from previous page

Continued on next page

Specify the clock source
(K_SetClk)

Yes Set the clock rate
(K_SetClkRate)

No

Using DMA
mode?

Specify the conversion mode
(K_SetADFreeRun or K_SetSSH)

Using burst
or burst with
SSH mode?

Specify paced conversion mode
(K_ClrADFreeRun)

Yes

No

Yes

No

Specify single-cycle buffering mode
(K_ClrContRun)

Specify continuous buffering mode
(K_SetContRun)

Yes Yes

No No

1-12 Getting Started

Steps for an Analog Input Operation (cont.)

Using an
external
analog
trigger?Specify an internal trigger

(K_SetTrig)

No

Yes Specify an external trigger
(K_SetTrig)

Using an
external
trigger?

Specify digital
trigger conditions

(K_SetDITrig)

Continued from previous page

Specify analog
trigger conditions

(K_SetADTrig)

Specify the
hysteresis value
(K_SetTrigHyst)

Yes

No

Start the operation
(K_DMAStart, K_IntStart, or K_SyncStart)

Monitor the status of the operation
(K_DMAStatus or K_IntStatus)

Using DMA
or interrupt

mode?

No

Yes

Using
continuous
buffering
mode?

Continued on next page

Stop the operation
(K_DMAStop or K_IntStop)

Yes

No

Programming Flow Diagrams 1-13

Steps for an Analog Input Operation (cont.)

Using a
dynamically

allocated
buffer?

Continued from previous page

Operation complete

Yes Yes

Transfer data from the
buffer to a local array
(K_MoveBufToArray)

NoNo

Free the buffer
(K_DMAFree or K_IntFree)

Read data
from the array

Convert data
from the array

Read data
from the buffer

Convert data
from the buffer

Free the frame
(K_FreeFrame)

Using
C/C++ or
Pascal?

1-14 Getting Started

Steps for an Analog Output Operation

Declare the variable
in which to store the

output value

Performing a
single-mode
operation?

Yes

Access a frame
(K_GetDAFrame)

No Write the output value
(K_DAWrite)

Continued on next page

Operation complete

No

Specify the
starting address

of the buffer
(K_SetBuf)

Using a
dynamically

allocated
memory
buffer?

Allocate a buffer
(K_IntAlloc)

Declare and dimension
a local array

Yes

No

Using
C/C++ or
Pascal?

Specify the
starting address

of the array
(K_SetBuf)

Specify the starting
address of the array

(K_SetBufI)

Yes

Programming Flow Diagrams 1-15

Steps for an Analog Output Operation (cont.)

Writing to
both

channels?

Continued on next page

Continued from previous page

No

Specify a single channel
(K_SetChn)

Specify both channels
(K_SetStartStopChn)

Yes

Using
continuous
buffering
mode?

Using
interrupt
mode?

Using the
internal
clock?

Specify the clock source
(K_SetClk)

Yes Set the clock rate
(K_SetClkRate)

No

Specify single-cycle buffering mode
(K_ClrContRun)

Specify continuous buffering mode
(K_SetContRun)

Yes Yes

No No

1-16 Getting Started

Steps for an Analog Output Operation (cont.)

Using an
external
digital

trigger?

Continued from previous page

Continued on next page

Yes

No Specify the digital
trigger conditions

(K_SetDITrig)

Specify an external trigger
(K_SetTrig)

Specify an internal trigger
(K_SetTrig)

Using
Visual Basic
or BASIC?

Yes

No

Using a
dynamically

allocated
buffer?

Transfer data to the
dynamically allocated buffer

(K_MoveArrayToBuf)

Load output values into
program’s local array

Load output values
into array or buffer

Yes

No

Programming Flow Diagrams 1-17

Steps for an Analog Output Operation (cont.)

Using
interrupt
mode?

Continued from previous page

Start the operation
(K_IntStart or K_SyncStart)

Monitor the status of the operation
(K_IntStatus)

No

Yes

Using
continuous
buffering
mode?

Stop the operation
(K_IntStop)

Yes

No

Using a
dynamically

allocated
buffer?

Operation complete

Yes

No

Free the buffer
(K_IntFree)

Free the frame
K_FreeFrame

1-18 Getting Started

Steps for a Digital Input Operation

Declare a variable in which
to store the input value

Read the input value
(K_DIRead)

Access a frame
(K_GetDIFrame)

Continued on next page

Performing a
single-mode
operation?

Yes

No

Operation complete

No

Specify the
starting address

of the buffer
(K_SetBuf)

Using a
dynamically

allocated
memory
buffer?

Allocate a buffer
(K_IntAlloc)

Declare and dimension
a local array

Yes

No

Using
C/C++ or
Pascal?

Specify the
starting address

of the array
(K_SetBuf)

Specify the starting
address of the array

(K_SetBufI or K_SetBufL)

Yes

Programming Flow Diagrams 1-19

Steps for a Digital Input Operation (cont.)

Continued from previous page

Using the
internal
clock?

Specify the clock source
(K_SetClk)

Yes Set the clock rate
(K_SetClkRate)

No

Continued on next page

Using an
external
digital

trigger?

Using
continuous
buffering
mode?

Using
interrupt
mode?

Specify single-cycle buffering mode
(K_ClrContRun)

Specify continuous buffering mode
(K_SetContRun)

Yes Yes

No No

Yes

No Specify the digital
trigger conditions

(K_SetDITrig)

Specify an external trigger
(K_SetTrig)

Specify an internal trigger
(K_SetTrig)

Start the operation
(K_IntStart or K_SyncStart)

1-20 Getting Started

Steps for a Digital Input Operation (cont.)

Using
interrupt
mode?

Monitor the status of the operation
(K_IntStatus)

No

Yes

Using
continuous
buffering
mode?

Stop the operation
(K_IntStop)

Yes

No

Continued from previous page

Using
C/C++ or
Pascal?

Using a
dynamically

allocated
buffer?

Operation complete

Yes Yes

Transfer the data from
the buffer to a local array
(K_MoveBufToArray or
K_MoveBufToArrayL)

NoNo Free the buffer
(K_IntFree)

Read data
from the array

Read data
from the buffer

Free the frame
(K_FreeFrame)

Programming Flow Diagrams 1-21

Steps for a Digital Output Operation

Declare the variable
in which to store the

output value

Performing a
single-mode
operation?

Yes

Access a frame
(K_GetDOFrame)

No

Continued on next page

Write the output value
(K_DOWrite)

Operation complete

No

Specify the
starting address

of the buffer
(K_SetBuf)

Using a
dynamically

allocated
memory
buffer?

Allocate a buffer
(K_IntAlloc)

Declare and dimension
a local array

Yes

No

Using
C/C++ or
Pascal?

Specify the
starting address

of the array
(K_SetBuf)

Specify the starting
address of the array

(K_SetBufI or K_SetBufL)

Yes

1-22 Getting Started

Steps for a Digital Output Operation (cont.)

Continued on next page

Continued from previous page

Using the
internal
clock?

Specify the clock source
(K_SetClk)

Yes Set the clock rate
(K_SetClkRate)

No

Using an
external
digital

trigger?

Using
continuous
buffering
mode?

Using
interrupt
mode?

Specify continuous buffering mode
(K_SetContRun)

Yes Yes

No No

Yes

No Specify the digital
trigger conditions

(K_SetDITrig)

Specify an external trigger
(K_SetTrig)

Specify an internal trigger
(K_SetTrig)

Specify single-cycle buffering mode
(K_ClrContRun)

Programming Flow Diagrams 1-23

Steps for a Digital Output Operation (cont.)

Using
interrupt
mode?

Using
Visual Basic
or BASIC?

Yes

No

Using a
dynamically

allocated
buffer?

Transfer the data to the
dynamically allocated buffer

(K_MoveArrayToBuf or
K_MoveArrayToBufL)

Load output values into
program’s local array

Load output values
into array or buffer

Yes

No

Continued from previous page

Start the operation
(K_IntStart or K_SyncStart)

Monitor the status of the operation
(K_IntStatus)

No

Yes

Using
continuous
buffering
mode?

Continued on next page

Stop the operation
(K_IntStop)

Yes

No

1-24 Getting Started

Steps for a Digital Output Operation (cont.)

Getting Help

If you need help installing or using the DAS-1600/1400/1200 Series
Function Call Driver, call your local sales office or call Keithley
MetraByte at the following number for technical support:

(508) 880-3000

Monday - Friday, 8:00

A.M.

 - 6:00

P.M.

, Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

Using a
dynamically

allocated
buffer?

Continued from previous page

Operation complete

Yes

No

Free the buffer
(K_IntFree)

Free the frame
(K_FreeFrame)

Getting Help 1-25

Please make sure that you have the following information available before
you call:

DAS-1600/1400/1200
Series
board configuration

Model
Serial #
Revision code
Base address setting
Interrupt level setting
Input configuration
Input range type
DMA channel

2, 3, 4, 5, 6, 7, None
single-ended, differential
unipolar, bipolar
1, 3

Computer

Manufacturer
CPU type
Clock speed (MHz)
Amount of RAM
Video system
BIOS type

Operating system

DOS version
Windows version

Software package

Name
Serial #
Version
Invoice/Order #

Compiler
(if applicable)

Language
Manufacturer
Version

Accessories

Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number

System Operations 2-1

2

Available Operations

This chapter contains conceptual information about the
DAS-1600/1400/1200 Function Call Driver functions. It includes the
following sections:

●

System Operations

 - information on initializing the Function Call
Driver, initializing a board, retrieving revision levels, and handling
errors.

●

Analog Input Operations

 - information on operation modes, frames,
memory allocation and management, gains and ranges, channels,
conversion modes, pacer clocks, buffering modes, and triggers.

●

Analog Output Operations (DAS-1600 Series Only)

- information
on operation modes, frames, memory allocation and management,
channels, pacer clocks, buffering modes, and triggers.

●

Digital I/O Operations

 - information on operation modes, frames,
memory allocation and management, the digital I/O channel, pacer
clocks, buffering modes, and triggers.

●

Counter/Timer I/O Operations

 - information on using the 82C54
counter/timer circuitry of DAS-1600/1400/1200 Series boards.

System Operations

This section describes the miscellaneous and general maintenance
operations that apply to DAS-1600/1400/1200 Series boards and to the
DAS-1600/1400/1200 Series Function Call Driver. It includes
information on initializing the driver, initializing a board, retrieving
revision levels, and handling errors.

2-2 Available Operations

Initializing the Driver

You must initialize the DAS-1600/1400/1200 Series Function Call Driver
and any other Keithley DAS Function Call Drivers you are using in your
program. To initialize the drivers, use the

K_OpenDriver

 function.
Specify the driver you are using and the configuration file that defines the
use of the driver. The driver returns a unique identifier for that use of the
driver; this identifier is called the driver handle.

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your programs. If you no longer
require a driver and you want to free some memory or if you have used all
30 driver handles, use the

K_CloseDriver

 function to free a driver handle
and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver are
shut down and unloaded from memory.)

Note:

If you are programming in Turbo Pascal (for DOS) or BASIC,

K_OpenDriver

 and

K_CloseDriver

 are not available. You must use the
board-specific

DAS1600_DevOpen

 function instead.

DAS1600_DevOpen

 initializes the DAS-1600/1400/1200 Series
Function Call Driver according to the configuration file you specify. Refer
to page 4-27 for more information. In Turbo Pascal (for DOS) and
BASIC, closing the DAS-1600/1400/1200 Series Function Call Driver is

not required.

Initializing a Board

The DAS-1600/1400/1200 Series Function Call Driver supports up to two
boards. You must use the

K_GetDevHandle

 function to initialize each
board you want to use. Specify the driver handle and the board number
(0 or 1).

K_GetDevHandle

 verifies that the board is present and sets the
board to its power-up state. (Note that

K_GetDevHandle

 does not set the
analog output and digital output channels to a known state.)

System Operations 2-3

K_GetDevHandle

 returns a unique identifier for each board; this
identifier is called the device handle. Device handles allow you to
communicate with more than one board. Use the device handle returned
by

K_GetDevHandle

 in subsequent function calls related to the board.

You can specify a maximum of 30 device handles for all the Keithley
DAS products accessed from all your programs. If you are no longer
using a Keithley DAS product and you want to free some memory or if
you have used all 30 device handles, use the

K_FreeDevHandle

 function
to free a device handle.

Note:

If you are programming in Turbo Pascal (for DOS) or BASIC,

K_GetDevHandle

 and

K_FreeDevHandle

 are not available. You must
use the board-specific

DAS1600_GetDevHandle

function instead. Refer
to page 4-30 for more information. In Turbo Pascal (for DOS) and

BASIC, freeing a device handle is not required.

Use

K_GetDevHandle

 the first time you initialize a board only. To
reinitialize a board, use the

K_DASDevInit

 function, specifying the
device handle returned by

K_GetDevHandle

.

K_DASDevInit

 stops all
operations currently in progress and sets the board back to its power-up
state. (Note that

K_DASDevInit

 does not reset the current analog output
and digital output values.)

Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same program or if you are having problems with your
program, you may want to verify which versions of the Function Call
Driver, Keithley DAS Driver Specification, and Keithley DAS Shell are
used by your board.

The

K_GetVer

 function allows you to get both the revision number of the
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

The

K_GetShellVer

 function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all DAS boards).

2-4 Available Operations

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your program runs successfully, it is recommended that you
check the returned code after the execution of each function. If the status
code equals 0, the function executed successfully and your program can
proceed. If the status code does not equal 0, an error occurred; ensure that
your program takes the appropriate action. Refer to Appendix A for a
complete list of error codes.

Each supported language uses a different procedure for error checking;
refer to the following pages for more information:

For C-language programs only, the Function Call Driver provides the

K_GetErrMsg

 function, which gets the address of the string
corresponding to an error code.

Analog Input Operations

This section describes analog input operations. It includes information on
the operation modes available, how to access a frame, how to allocate and
manage memory, and how to specify channels and gains, the conversion
mode, the pacer clock source, the buffering mode, and the trigger source
for an analog input operation.

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to
computer memory. You can perform an analog input operation in single
mode, synchronous mode, interrupt mode, or DMA mode, as described in
the following sections.

C/C++ page 3-6

Pascal page 3-14

Visual Basic for Windows page 3-22

BASIC page 3-30

Analog Input Operations 2-5

Single Mode

In single mode, the board acquires a single sample from an analog input
channel. The driver initiates the conversion; you cannot perform any other
operation until the single-mode operation is complete.

Use the

K_ADRead

 function to perform an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the variable in
which to store the converted data.

The data in the variable is stored as a count value. Refer to Appendix B
for information on converting the count value to voltage.

Synchronous Mode

In synchronous mode, the board acquires a single sample or multiple
samples from one or more analog input channels. A hardware pacer clock
initiates conversions. The hardware transfers the data from the board to a
user-defined buffer in computer memory. After the driver transfers the
specified number of samples, the driver returns control to the program.
You cannot perform any other operation until the synchronous-mode
operation is complete.

Use the

K_SyncStart

 function to start an analog input operation in
synchronous mode.

The data in the user-defined buffer is stored as count values. Refer to
Appendix B for information on converting the count values to voltage.

Interrupt Mode

In interrupt mode, the board acquires a single sample or multiple samples
from one or more analog input channels. A hardware clock initiates
conversions. Once the analog input operation begins, control returns to
your program. The hardware transfers the data from the board to a
user-defined buffer in computer memory using an interrupt service
routine.

Use the

K_IntStart

 function to start an analog input operation in
interrupt mode.

2-6 Available Operations

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-24 for more information on
buffering modes. Use the

K_IntStop

 function to stop a continuous-mode
interrupt operation. Use the

K_IntStatus

 function to determine the
current status of an interrupt operation.

The data in the user-defined buffer is stored as count values. Refer to
Appendix B for information on converting the count values to voltage.

DMA Mode

DMA mode provides the fastest data transfer rates. In DMA mode, the
board acquires a single sample or multiple samples from one or more
analog input channels. A hardware clock initiates conversions. Once the
analog input operation begins, control returns to your program. The
hardware transfers the data from the board to a user-defined DMA buffer
in computer memory.

Use the

K_DMAStart

 function to start an analog input operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-24 for more information on
buffering modes. Use the

K_DMAStop

 function to stop a
continuous-mode DMA operation. Use the

K_DMAStatus

 function to
determine the current status of a DMA operation.

The data in the user-defined buffer is stored as count values. Refer to
Appendix B for information on converting the count values to voltage.

Frames

Synchronous-mode, interrupt-mode, and DMA-mode analog input
operations require frames. A frame is a data structure whose elements
define the attributes of the operation. Use the

K_GetADFrame

 function
to access an analog input frame, called an A/D (analog-to-digital) frame.
The driver returns a unique identifier for the frame; this identifier is called
the frame handle.

Analog Input Operations 2-7

Specify the attributes of the operation by using a separate setup function
to define each element of the A/D frame. Use the frame handle returned
by the driver in each setup function to ensure that you always define the
same operation. For example, assume that you access an A/D frame with
the frame handle ADFrame. To specify the channel on which to perform
the operation, use the

K_SetChn

 setup function, referencing the frame
handle ADFrame; to specify the gain at which to read the channel, use the

K_SetG

 setup function, also referencing the frame handle ADFrame.

When you are ready to perform the operation you set up, use the

K_SyncStart

,

K_IntStart

, or

K_DMAStart

 function to start the
operation, again referencing the appropriate frame handle. Figure 2-1
illustrates the use of an A/D frame for a DMA-mode operation where the
frame handle is ADFrame.

Figure 2-1. Frame-Based Operation

Frames help you create structured programs. They are useful for
operations that have many defining attributes, since providing a separate
argument for each attribute could make a function’s argument list
unmanageably long. In addition, some attributes, such as the clock source
and trigger source, are only available for operations that use frames.

Start Channel

Stop Channel

Clock Source

Trigger Source
.
.
.

First analog input channel

Last analog input channel

Pacer clock source

Trigger source
.
.
.

Attributes of OperationADFrame

K_DMAStart (ADFrame)

2-8 Available Operations

If you want to perform a synchronous-mode, interrupt-mode, or
DMA-mode operation on a board and all frames have been accessed, use
the

K_FreeFrame

 function to free a frame that is no longer in use. You
can then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the

K_ClearFrame

 function to reset all the elements of a
frame to their default values.

Table 2-1 lists the elements of an A/D frame, the default value of each
element, the setup functions used to define each element, and the page(s)
in this manual on which to find additional information.

Table 2-1. A/D Frame Elements

Element Default Value Setup Function Page Number

Buffer

1

 0 (NULL) K_SetBuf page 4-132

K_SetBufI page 4-135

K_SetDMABuf page 4-156

Number of Samples 0 K_SetBuf page 4-132

K_SetBufI page 4-135

K_SetDMABuf page 4-156

Buffering Mode Single-cycle K_SetContRun page 4-151

K_ClrContRun

2

page 4-41

Start Channel 0 K_SetChn page 4-141

K_SetStartStopChn page 4-164

K_SetStartStopG

3

 page 4-166

Stop Channel 0 K_SetStartStopChn page 4-164

K_SetStartStopG

3

 page 4-166

Gain 0 (gain of 1) K_SetG

3

 page 4-159

K_SetStartStopG

3

 page 4-166

Channel-Gain Queue 0 (NULL) K_SetChnGAry

3

 page 4-143

Analog Input Operations 2-9

Conversion Mode Paced K_SetADFreeRun page 4-127

K_ClrADFreeRun

2

 page 4-39

SSH Mode Disabled K_SetSSH page 4-162

Clock Source Internal K_SetClk page 4-146

Pacer Clock Rate

1

 0 K_SetClkRate page 4-148

Burst Clock Rate 0 K_SetBurstTicks page 4-139

Trigger Source Internal K_SetTrig page 4-169

Trigger Type Digital K_SetADTrig page 4-129

K_SetDITrig page 4-153

Trigger Channel 0 K_SetADTrig page 4-129

Trigger Polarity Positive edge K_SetADTrig page 4-129

K_SetDITrig page 4-153

Trigger Level 0 K_SetADTrig page 4-129

Trigger Hysteresis 0 K_SetTrigHyst page 4-171

Notes

1

This element must be set.

2

Use this function to reset the value of this particular frame element to its default
setting without clearing the frame or getting a new frame. Whenever you clear a
frame or get a new frame, this frame element is set to its default value
automatically.

3

Not applicable to DAS-1200 Series boards.

Table 2-1. A/D Frame Elements (cont.)

Element Default Value Setup Function Page Number

2-10 Available Operations

Memory Allocation and Management

Synchronous-mode, interrupt-mode, and DMA-mode analog input
operations require memory in which to store acquired data. The ways you
can allocate and manage memory are described in the following sections.

Dimensioning a Local Array

The simplest way to reserve memory is to dimension an array within your
program’s memory area. The advantage of this method is that the array is
directly accessible to your program. The limitations of this method are as
follows:

●

Certain programming languages limit the size of local arrays.

●

Local arrays are not recommended for DMA-mode operations.

●

Local arrays occupy permanent memory areas; these memory areas
cannot be freed to make them available to other programs or
processes.

●

You cannot use local arrays with Windows 95, 32-bit programs.

Since the DAS-1600/1400/1200 Series Function Call Driver stores data in
16-bit integers, you must dimension all local arrays as integers.

Dynamically Allocating a Memory Buffer

The recommended way to reserve memory is to dynamically allocate a
memory buffer outside of your program’s memory area. The advantages
of this method are as follows:

●

The size of the buffer is limited only by the amount of free physical
memory available in your computer at run-time.

●

You can free a dynamically allocated memory buffer to make it
available to other programs or processes.

The limitation of this method is that, for BASIC and Visual Basic for
Windows, data in a dynamically allocated memory buffer is not directly
accessible to your program. You must use the

K_MoveBufToArray

function to move the data from the dynamically allocated buffer to a local
array within your program; refer to page 4-116 for more information.

Analog Input Operations 2-11

Use the

K_IntAlloc function to dynamically allocate a memory buffer for
synchronous-mode and interrupt-mode operations; use the K_DMAAlloc
function to dynamically allocate a memory buffer for DMA-mode
operations. Specify the number of samples to store in the buffer (up to
5,000,000 for K_IntAlloc and up to 32,767 for K_DMAAlloc). The
driver returns the starting address of the buffer and a unique identifier for
the buffer (this identifier is called the memory handle).

If you no longer require the buffer, free the buffer for another use by
specifying the memory handle in the K_IntFree function (for
synchronous-mode and interrupt-mode operations) or the K_DMAFree
function (for DMA-mode operations).

Notes: If you are writing Windows 95, 32-bit programs, you must install
the Keithley Memory Manager. Refer to your board user’s guide for
information.

For DOS-based languages, the area used for dynamically allocated
memory buffers is referred to as the far heap; for Windows-based
languages, this area is referred to as the global heap. These heaps are
areas of memory left unoccupied as your program and other programs
run.

For DOS-based languages, the K_IntAlloc and K_DMAAlloc functions
use the DOS Int 21H function 48H to dynamically allocate far heap
memory. For Windows-based languages, the K_IntAlloc and
K_DMAAlloc functions call the GlobalAlloc API function to allocate the
desired buffer size from the global heap.

For Windows-based languages, dynamically allocated memory is
guaranteed to be fixed and locked in memory.

To eliminate page wrap conditions and to guarantee that dynamically
allocated memory is suitable for use by the computer’s 8237 DMA
controller, K_DMAAlloc may allocate an area twice as large as actually
needed. Once the data in this buffer is processed and/or saved elsewhere,
use K_DMAFree to free the memory for other uses.

2-12 Available Operations

Assigning a Starting Address

After you dimension your array or allocate your buffer, you must assign
the starting address of the array or buffer and the number of samples to
store in the array or buffer.

Each supported programming language requires a particular procedure
for dimensioning local arrays, allocating a memory buffer, and assigning
the starting address; refer to the following pages for more information:

Gains and Ranges

Each channel on a DAS-1600/1400 Series board can measure analog
input signals in one of four, software-selectable unipolar or bipolar analog
input ranges; the input range type (unipolar or bipolar) is
switch-selectable. Each channel on a DAS-1200 Series board can
measure analog input signals in one of four, switch-selectable bipolar
analog input ranges.

Table 2-2 lists the analog input ranges supported by
DAS-1600/1400/1200 Series boards and the gain and gain code
associated with each range. Gain codes are used by the Function Call
Driver to represent the gain.

C/C++ page 3-3

Pascal page 3-11

Visual Basic for Windows page 3-16

BASIC page 3-24

Analog Input Operations 2-13

For a single-mode operation, you specify the gain code in the
K_ADRead function.

For a synchronous-mode, interrupt-mode, or DMA-mode operation, you
specify the gain code in the K_SetG or K_SetStartStopG function; the
function you use depends on how you specify the logical channels, as
described in the following section.

Table 2-2. Analog Input Ranges

Boards

Analog Input Range

Gain Gain CodeBipolar Unipolar

DAS-1601
DAS-1401

±10.0 V 0.0 to +10.0 V 1 0

±1.0 V 0.0 to +1.0 V 10 1

±100 mV 0 to +100 mV 100 2

±20 mV 0 to +20 mV 500 3

DAS-1602
DAS-1402

±10.0 V 0.0 to +10.0 V 1 0

±5.0 V 0.0 to +5.0 V 2 1

±2.5 V 0.0 to +2.5 V 4 2

±1.25 V 0.0 to +1.25 V 8 3

DAS-12011

Notes
1 The gains of DAS-1200 Series boards are switch-selectable. You do not

specify the gain through software.

±5.0 V Not available 1 Not applicable

±0.5 V Not available 10 Not applicable

±0.05 V Not available 100 Not applicable

±0.01 V Not available 500 Not applicable

DAS-12021 ±5.0 V Not available 1 Not applicable

±2.5 V Not available 2 Not applicable

±1.25 V Not available 4 Not applicable

±0.625 V Not available 8 Not applicable

2-14 Available Operations

Channels

DAS-1600/1400/1200 Series boards are switch-configurable for either 16
single-ended analog input channels (numbered 0 through 15) or eight
differential analog input channels (numbered 0 through 7).

The driver determines the channel configuration (single-ended or
differential) by reading the configuration file. If desired, you can use the
K_GetADConfig function to get the channel configuration by reading the
switches on the board.

If you require more than the 16 single-ended or eight differential onboard
channels, you can use any combination of up to eight 16-channel EXP-16
or EXP-16/A expansion accessories, and/or 8-channel EXP-GP
expansion accessories to increase the number of available channels to
128, or you can use up to 16 16-channel EXP-1600 expansion accessories
to increase the number of available channels to 256. You can also use up
to four MB02 backplanes to increase the number of available channels to
76.

Note: You cannot perform DMA-mode operations on channels on
EXP-16, EXP-16/A, EXP-GP, or EXP-1600 expansion accessories.

You assign expansion accessories to consecutive onboard analog input
channels, beginning with onboard channel 0. To ensure that the
DAS-1600/1400/1200 Series Function Call Driver reads the channel
numbers correctly, you must attach all EXP-16s and EXP-16/As first,
followed by all EXP-GPs, then all EXP-1600s. You can also use the
remaining onboard channels. Refer to your board user’s guide and to the
documentation provided with your expansion accessories for more
information.

The maximum supported configuration is eight EXP-16s or EXP-16/As,
eight EXP-GPs, 16 EXP-1600s, or four MB02 backplanes. Table 2-3 lists
the software (or logical) channels associated with each expansion
accessory.

Analog Input Operations 2-15

Figure 2-2 illustrates the use of one EXP-16, two EXP-GPs, one
EXP-1600, and the 12 remaining onboard channels on a
DAS-1600/1400/1200 Series board configured for single-ended mode.
The physical channels on the EXP-16 attached to analog input channel 0
are referred to in software as logical channels 0 to 15; the physical
channels on the EXP-GP attached to analog input channel 1 are referred
to in software as logical channels 16 to 23; the physical channels on the
EXP-GP attached to analog input channel 2 are referred to in software as
logical channels 24 to 31; the physical channels on the EXP-1600
attached to analog input channel 3 are referred to in software as logical

Table 2-3. Channels in Maximum Configuration

Onboard
Channel

Software (Logical) Channels

EXP-16 /
EXP-16/A EXP-GP EXP-1600 MB02

0 0 to 15 0 to 7 0 to 15 0 to 15

1 16 to 31 8 to 15 16 to 31 16 to 31

2 32 to 47 16 to 23 32 to 47 32 to 47

3 48 to 63 24 to 31 48 to 63 48 to 63

4 64 to 79 32 to 39 64 to 79 64

5 80 to 95 40 to 47 80 to 95 65

6 96 to 111 48 to 55 96 to 111 66

7 112 to 127 56 to 63 112 to 127 67

8 Not available 64 128 to 143 68

9 Not available 65 144 to 159 69

10 Not available 66 160 to 175 70

11 Not available 67 176 to 191 71

12 Not available 68 192 to 207 72

13 Not available 69 208 to 223 73

14 Not available 70 224 to 239 74

15 Not available 71 240 to 255 75

2-16 Available Operations

channels 32 to 47; the remaining 12 onboard analog input channels (4
through 15) are referred to in software as logical channels 48 through 59.

Figure 2-2. Analog Input Channels

Note: The configuration utility CFG1600.EXE is useful in determining
logical channel assignments for a given expansion accessory
arrangement.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following sections describe how to
specify the channels you are using.

Specifying a Single Channel

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use the K_ADRead function to
specify the channel and the gain code.

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire a single sample or multiple samples from a

0

3

EXP-16
channels
0 to 15

EXP-GP
channels
16 to 23

EXP-GP
channels
24 to 31

Onboard
channels
48 to 59

DAS-1600/1400/1200
Series Board

1
2

4
.
.

15
.

EXP-1600
channels
32 to 47

Analog Input Operations 2-17

single analog input channel. Use the K_SetChn function to specify the
channel and the K_SetG function to specify the gain code.

Refer to Table 2-2 on page 2-13 for a list of the analog input ranges
supported by DAS-1600/1400 Series boards and the gain code associated
with each range. Note that the gain code is not applicable to DAS-1200
Series boards.

Specifying a Group of Consecutive Channels

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire samples from a group of consecutive
channels. Use the K_SetStartStopChn function to specify the first and
last channels in the group. The channels are sampled in order from first to
last; the channels are then sampled again until the required number of
samples is read.

For example, assume that you have an EXP-16/A attached to onboard
channel 0 on a DAS-1600/1400/1200 Series board configured for
single-ended mode. You specify the start channel as 14, the stop channel
as 17, and you want to acquire five samples. Your program reads data first
from channels 14 and 15 (on the EXP-16/A), then from channels 16 and
17 (onboard channels 1 and 2), and finally from channel 14 again.

You can specify a start channel that is higher than the stop channel in the
following cases:

● You are not using any expansion accessories.

● The analog input channels are configured as single-ended.

For example, assume that the start channel is 15, the stop channel is 2,
and you want to acquire five samples. Your program reads data first from
channel 15, then from channels 0, 1, and 2, and finally from channel 15
again.

Use the K_SetG function to specify the gain code for all channels in the
group. (All channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Refer to Table 2-2 on page 2-13 for a list of the analog input ranges
supported by DAS-1600/1400 Series boards and the gain code associated

2-18 Available Operations

with each range. Note that the gain code is not applicable to DAS-1200
Series boards.

Analog Input Operations 2-19

Specifying Channels in a Channel-Gain Queue

For synchronous-mode and interrupt-mode analog input operations on
DAS-1600/1400 Series boards, you can acquire samples from channels in
a software channel-gain queue. In the channel-gain queue, you specify the
channels you want to sample, the order in which you want to sample
them, and a gain code for each channel.

You can set up the channels in a channel-gain queue either in consecutive
order or in nonconsecutive order. You can also specify the same channel
more than once.

The channels are sampled in order from the first channel in the queue to
the last channel in the queue; the channels in the queue are then sampled
again until the specified number of samples is read.

Refer to Table 2-2 on page 2-13 for a list of the analog input ranges
supported by DAS-1600/1400 Series boards and the gain code associated
with each range.

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using; refer to the following pages for
more information:

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the starting address of the
channel-gain queue.

Note: You cannot use a channel-gain queue with DMA-mode operations
or with DAS-1200 Series boards.

C/C++ page 3-5

Pascal page 3-14

Visual Basic for Windows page 3-19

BASIC page 3-28

2-20 Available Operations

Conversion Modes

The conversion mode determines how the board regulates the timing of
conversions when you are acquiring multiple samples from a single
channel or from a group of multiple channels (known as a scan). You can
specify paced mode, burst mode, or burst mode with SSH, as described in
the following sections. Refer to your board user’s guide for more
information about conversion modes.

Paced Mode

You can specify paced mode for a synchronous-mode, interrupt-mode, or
DMA-mode analog input operation. Use paced mode if you want to
accurately control the period between conversions of individual channels
in a scan. Paced mode is the default conversion mode. To reset the
conversion mode to paced mode, use the K_ClrADFreeRun function.

Burst Mode

You can specify burst mode for a DMA-mode analog input operation
only. Use burst mode if you want to accurately control the period between
conversions of the entire scan. Use the K_SetADFreeRun function to
specify burst mode.

By default, conversions of individual channels in a scan are performed as
quickly as possible for the specified gain. Table 2-4 lists the default
settling times and burst mode conversion rates for each
DAS-1600/1400/1200 Series board gain.

Table 2-4. Default Settling Times

Board Gain Settling Time
Burst Mode
Conversion Rate

DAS-1601
DAS-1401

1 10 µs 100 kHz

10 10 µs 100 kHz

100 14 µs 71.42 kHz

500 34 µs 29.4 kHz

Analog Input Operations 2-21

In some cases, you may want to adjust the rate of conversions of
individual channels in a scan (called the burst mode conversion rate or
settling time) to slow the data acquisition rate. For example, in computers
with a built-in memory cache, caching takes precedence over DMA
operations and data can be lost if you try to acquire data too quickly. You
can adjust the settling time by specifying a count value using the
K_SetBurstTicks function; you can use any count value between 2 and
255.

Use the following formula to determine the appropriate count value:

For example, if you want a settling time of 30 µs, specify a count of 7 as
shown in the following equation:

Note: You cannot specify burst mode for a synchronous-mode or
interrupt-mode operation.

DAS-1602
DAS-1402
DAS-1202

1 10 µs 100 kHz

2 10 µs 100 kHz

4 10 µs 100 kHz

8 10 µs 100 kHz

DAS-1201 1 22 µs 45.45 kHz

10 22 µs 45.45 kHz

100 22 µs 45.45 kHz

500 102 µs 9.8 kHz

Table 2-4. Default Settling Times (cont.)

Board Gain Settling Time
Burst Mode
Conversion Rate

Count Settling Time (in microseconds) 2–
4

--=

30 2–()
4

------------------- 28
4
------ 7= =

2-22 Available Operations

Burst Mode with SSH

You can specify burst mode with SSH for a DMA-mode analog input
operation only. Use burst mode with SSH if you are using an SSH-4/A or
SSH-8 accessory to simultaneously sample all channels in a scan and you
want to accurately control the period between conversions of the entire
scan. Use the K_SetSSH function to specify burst mode with SSH.

By default, conversions of individual channels in a scan are performed as
quickly as possible for the specified gain. Refer to Table 2-4 on page 2-20
for a list of the default settling times.

Notes: You cannot specify burst mode with SSH for a synchronous-mode
or interrupt-mode operation.

If you use an SSH-8 accessory, one extra count is required to allow the
SSH-8 to sample and hold the values. Refer to the SSH-8 accessory
documentation for more information.

Pacer Clocks

You can specify a pacer clock for a synchronous-mode, interrupt-mode,
or DMA-mode operation. In paced mode, the pacer clock determines the
period between the conversion of one channel and the conversion of the
next channel. In burst mode or burst mode with SSH, the pacer clock
determines the period between the conversions of one scan and the
conversions of the next scan.

You can specify the internal pacer clock or an external pacer clock, as
described in the following sections; refer to your board user’s guide for
more information.

Note: The rate at which the computer can reliably read data from the
board depends on a number of factors, including your computer, the
operating system/environment, the gains of the channels, and other
software issues.

Analog Input Operations 2-23

Internal Pacer Clock

The internal pacer clock uses two cascaded counters of the onboard
82C54 counter/timer. The counters are normally in an idle state. When
you start the analog input operation (using K_SyncStart, K_IntStart , or
K_DMAStart), a conversion is initiated. Note that a slight delay occurs
between when you start the operation and when the conversion is
initiated.

After the first conversion is initiated, the counters are loaded with a count
value and begin counting down. When the counters count down to 0,
another conversion is initiated and the process repeats.

If the 10 MHz time base is specified in the configuration file, each count
represents 0.1 µs; if the 1 MHz time base is specified in the configuration
file, each count represents 1.0 µs. Use the K_SetClkRate function to
specify the number of counts (clock ticks) between conversions. For
example, if you specify a count of 100 with a 10 MHz time base, the
period between conversions is 10 µs (100 ksamples/s); if you specify a
count of 87654, the period between conversions is 8.8 ms (114.1
samples/s).

You can specify a count between 100 and 4,294,967,295 for the 10 MHz
time base and between 10 and 4,294,967,295 for the 1 MHz time base.
The period between conversions ranges from 10 µs to 7.16 minutes (for
the 10 MHz time base) and from 10 µs to 71.6 minutes (for the 1 MHz
time base).

Use the following formula to determine the number of counts to specify:

For example, if you are using the 10 MHz time base and want a
conversion rate of 10 ksamples/s, specify a count of 1000, as shown in the
following equation:

counts time base
conversion rate
------------------------------------=

10 000 000, ,
10 000,

------------------------------ 1000=

2-24 Available Operations

The internal pacer clock is the default pacer clock. To reset the pacer
clock source to an internal pacer clock, use the

K_SetClk

 function.

Note:

To avoid overrun errors when using the internal pacer clock with a
DAS-1201 Series board, specify a count value of at least 200 for the

10 MHz time base and at least 20 for the 1 MHz time base.

External Pacer Clock

You connect an external pacer clock to the IP0/TRIG0/XPCLK pin (25)
on the main I/O connector (J1).

When you start an analog input operation (using

K_SyncStart

,

K_IntStart

, or

K_DMAStart

), conversions are armed. At the next rising
edge of the external pacer clock (and at every subsequent rising edge of
the external pacer clock), a conversion is initiated.

Use the

K_SetClk

 function to specify an external pacer clock.

Note:

The analog-to-digital converter (ADC) can acquire samples at a
maximum of 100 ksamples/s (one sample every 10

µ

s) for the DAS-1601,
DAS-1602, DAS-1401, DAS-1402, and DAS-1202 boards or
50 ksamples/s (one sample every 20

µ

s) for the DAS-1201 board. If you
are using an external pacer clock, make sure that the clock initiates

conversions at a rate that the ADC can handle.

 Buffering Modes

The buffering mode determines how the driver stores the converted data
in the buffer. For an interrupt-mode or DMA-mode analog input
operation, you can specify single-cycle or continuous buffering mode, as
described in the following sections.

Note:

Buffering modes are not meaningful for synchronous-mode

operations, since only single-cycle mode applies.

Analog Input Operations 2-25

Single-Cycle Mode

In single-cycle mode, after the board converts the specified number of
samples and stores them in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode. To reset the buffering
mode to single-cycle mode, use the

K_ClrContRun

 function.

Continuous Mode

In continuous mode, the board continuously converts samples and stores
them in the buffer until it receives a stop function; any values already
stored in the buffer are overwritten. Use the

K_SetContRun

 function to
specify continuous buffering mode.

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
a synchronous-mode, interrupt-mode, or DMA-mode analog input
operation, you can specify an internal trigger, an external analog trigger,
or an external digital trigger, as described in the following sections.

The trigger event is not significant until the operation has been started
(using

K_SyncStart

,

K_IntStart

, or

K_DMAStart

). The point at which
conversions begin relative to the trigger event depends on the pacer clock;
refer to page 2-22 for more information.

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when
you start the operation. Note that a slight delay occurs between the time
you start the operation and the time the trigger event occurs.

The internal trigger is the default trigger source. To reset the trigger
source to an internal trigger, use the

K_SetTrig

 function.

2-26 Available Operations

External Analog Trigger

An analog trigger event occurs when one of the following conditions is
met by the analog input signal on a specified analog trigger channel:

●

The analog input signal rises above a specified voltage level
(positive-edge trigger).

●

The analog input signal falls below a specified voltage level
(negative-edge trigger).

●

The analog input signal is above a specified voltage level
(positive-level trigger).

●

The analog input signal is below a specified voltage level
(negative-level trigger).

Figure 2-3 illustrates these analog trigger conditions, where the specified
voltage level is +5 V. Note that a slight delay occurs between the time the
trigger condition is met and the time the driver realizes the trigger
condition is met and begins conversions.

Figure 2-3. Analog Trigger Conditions

Negative-edge
or negative-level
trigger occurs

Analog input operation
start function is executed

Positive-edge trigger occurs

0 V

Level + 5 V

Positive-level
trigger occurs

Analog Input Operations 2-27

Use the K_SetTrig function to specify an external trigger. Then, use the
K_SetADTrig function to specify the following:

● Analog input channel to use as the trigger channel - The trigger
channel always measures signals at a gain of 1.

● Voltage level - You specify the voltage level as a count value between
0 and 4095. Refer to Appendix B for information on how to convert a
voltage value to a count value.

● Trigger polarity and sensitivity - The trigger can be a positive-edge,
negative-edge, positive-level, or negative-level trigger.

For positive-edge and negative-edge triggers, you can specify a hysteresis
value to prevent noise from triggering an operation. Use the
K_SetTrigHyst function to specify the hysteresis value. The point at
which the trigger event occurs is described as follows:

● Positive-edge trigger - The analog signal must be below the specified
voltage level by at least the amount of the hysteresis value and then
rise above the voltage level before the trigger event occurs.

● Negative-edge trigger - The analog signal must be above the
specified voltage level by at least the amount of the hysteresis value
and then fall below the voltage level before the trigger event occurs.

The hysteresis value is an absolute number, which you specify as a count
value between 0 and 4095. When you add the hysteresis value to the
voltage level (for a negative-edge trigger) or subtract the hysteresis value
from the voltage level (for a positive-edge trigger), the resulting value
must also be between 0 and 4095.

For example, assume that you are using a negative-edge trigger on a
channel on a DAS-12020 Series board configured for an analog input
range of ±5 V. If the voltage level is +4.8 V (4014 counts), you can
specify a hysteresis value of 0.1 V (41 counts) because 4014 + 41 is less
than 4095, but you cannot specify a hysteresis value of 0.3 V (123 counts)
because 4014 + 123 is greater than 4095. Refer to Appendix B for
information on how to convert a voltage value to a count value.

In Figure 2-4, the specified voltage level is +4 V and the hysteresis value
is 0.1 V. The analog signal must be below +3.9 V and then rise above
+4 V before a positive-edge trigger occurs; the analog signal must be
above +4.1 V and then fall below +4 V before a negative-edge trigger
event occurs.

2-28 Available Operations

Figure 2-4. Using a Hysteresis Value

Note: The analog trigger is a software-based trigger. When you start the
analog input operation (using K_SyncStart, K_IntStart , or
K_DMAStart), the driver samples the specified trigger channel until the
trigger condition is met. Control does not return to your program until the
trigger condition is met. (To terminate the operation if a trigger event does
not occur, press Ctrl+Break .)

Level +4 V

Positive-edge
trigger occurs

+3.9 V

+4.1 V

Level +4 V

Analog input operation
start function is executed

Negative-edge
trigger occurs

Hysteresis = 0.1 V

Hysteresis = 0.1 V

Analog Input Operations 2-29

External Digital Trigger

An external digital trigger occurs when one of the following occurs on the
digital trigger signal connected to the IP1/XTRIG pin (6) on the main I/O
connector:

● A rising edge on the IP1/XTRIG pin (positive-edge trigger).

● A falling edge on the IP1/XTRIG pin (negative-edge trigger).

● The signal is high on the IP1/XTRIG pin (positive-level trigger).

● The signal is low on the IP1/XTRIG pin (negative-level trigger).

Use the K_SetTrig function to specify an external trigger. Then, use the
K_SetDITrig function to specify the trigger conditions. The trigger
conditions are illustrated in Figure 2-5. Note that a slight delay occurs
between the time the trigger condition is met and the time the driver
realizes the trigger condition is met and begins conversions.

Figure 2-5. Digital Trigger Conditions

Trigger signal

Positive-edge
trigger occurs

Analog input operation
start function is executed

Negative-edge and
negative-level
trigger occurs

Positive-level
trigger occurs

2-30 Available Operations

Note: The external digital trigger is a software-based trigger. When you
start the analog input operation (using K_SyncStart, K_IntStart , or
K_DMAStart), the driver reads the signal connected to the IP1/XTRIG
pin until the trigger condition is met. Control does not return to your
program until the trigger condition is met. (To terminate the operation if a
trigger event does not occur, press Ctrl+Break .)

Analog Output Operations (DAS-1600 Series Only)

This section describes analog output operations. It includes information
on the operation modes available, how to access a frame, how to allocate
and manage memory, and how to specify channels, the pacer clock
source, the buffering mode, and the digital trigger conditions for an
analog output operation.

Operation Modes

The operation mode determines which attributes you can specify for an
analog output operation and how values are written from computer
memory to the board. You can perform an analog output operation in
single mode, synchronous mode, or interrupt mode, as described in the
following sections.

Single Mode

In single mode, the driver writes a single value to one or both analog
output channels; you cannot perform any other operation until the
single-mode operation is complete.

Use the K_DAWrite function to perform an analog output operation in
single mode. You specify the board you want to use, the analog output
channels, and the value you want to write.

You specify the analog output value as a count value. Refer to
Appendix B for information on converting a voltage value to a count
value.

Analog Output Operations (DAS-1600 Series Only) 2-31

Note: The hardware does not support simultaneous updating of the
DACs. However, if you specify both analog output channels, the channels
are updated as close to simultaneously as possible. When you call
K_DAWrite , channel 0 is updated; channel 1 is updated several
microseconds later.

Synchronous Mode

Synchronous mode provides the fastest means of updating the analog
output channels. In synchronous mode, the driver writes a single value or
multiple values from a user-defined buffer in computer memory to one or
both analog output channels. A hardware pacer clock paces the updates of
the channels. After the driver writes the specified number of values, the
driver returns control to the program. You cannot perform any other
operation until the synchronous-mode operation is complete.

Use the K_SyncStart function to start an analog output operation in
synchronous mode.

You specify the analog output values as count values. Refer to
Appendix B for information on converting voltage values to count values.

Interrupt Mode

In interrupt mode, the driver writes a single value or multiple values from
a user-defined buffer in computer memory to one or both analog output
channels. A hardware clock paces the updating of the analog output
channels. Once the analog output operation begins, control returns to your
program. The driver continues to write values to the analog output
channels using an interrupt service routine.

Use the K_IntStart function to start an analog output operation in
interrupt mode.

2-32 Available Operations

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-38 for more information on
buffering modes. Use the K_IntStop function to stop a continuous-mode
interrupt operation. Use the K_IntStatus function to determine the
current status of an interrupt operation.

You specify the analog output values as count values. Refer to
Appendix B for information on converting voltage values to count values.

Frames

Synchronous-mode and interrupt-mode analog output operations require
frames. Use the K_GetDAFrame function to access an analog output
frame, called a D/A (digital-to-analog) frame. The driver returns the
frame handle for the frame. Refer to page 2-6 for more information about
frames.

Table 2-5 lists the elements of a D/A frame, the default value of each
element, the setup functions used to define each element, and the page(s)
in this manual on which to find additional information.

Table 2-5. D/A Frame Elements

Element Default Value Setup Function Page Number

Buffer1 0 (NULL) K_SetBuf page 4-132

K_SetBufI page 4-135

Number of Samples 0 K_SetBuf page 4-132

K_SetBufI page 4-135

Buffering Mode Single-cycle K_SetContRun page 4-151

K_ClrContRun2 page 4-41

Start Channel 0 K_SetChn page 4-141

K_SetStartStopChn page 4-164

Stop Channel 0 K_SetStartStopChn page 4-164

Clock Source Internal K_SetClk page 4-146

Analog Output Operations (DAS-1600 Series Only) 2-33

Memory Allocation and Management

Synchronous-mode and interrupt-mode analog output operations require
memory in which to store the data that is written to the analog output
channels.

Since analog output operations typically require small arrays of data, you
can reserve memory by dimensioning a local array within your program’s
memory area. Since the Function Call Driver writes data as 16-bit
integers, you must dimension all local arrays as integers.

If you are using both analog output channels, when you start the analog
output operation (using K_SyncStart or K_IntStart), the driver writes
the first value in the array to the first channel and the second value in the
array to the second channel. To ensure predictable results, make sure that
the number of values stored in the array is a multiple of 2. For example, if
you are using both analog output channels, you can dimension an array of
100 values, but you should not dimension an array of 75 values.

Pacer Clock Rate1 0 K_SetClkRate page 4-148

Trigger Source Internal K_SetTrig page 4-169

Trigger Type Digital K_SetDITrig page 4-153

Notes
1 This element must be set.
2 Use this function to reset the value of this particular frame element to its default

setting without clearing the frame or getting a new frame. Whenever you clear a
frame or get a new frame, this frame element is set to its default value
automatically.

Table 2-5. D/A Frame Elements (cont.)

Element Default Value Setup Function Page Number

2-34 Available Operations

After you dimension your array, you must assign the starting address of
the array and the number of samples stored in the array. Each supported
programming language requires a particular procedure for dimensioning
an array and assigning the starting address; refer to the following pages
for more information:

You can also use the K_IntAlloc function to dynamically allocate a
memory buffer, if desired. Specify the number of values you want to store
in the buffer (up to a maximum of 5,000,000). The driver returns the
starting address of the buffer and the memory handle for the buffer. If you
no longer require the buffer, free the buffer for another use by specifying
the memory handle in the K_IntFree function.

For BASIC and Visual Basic for Windows, data in a dynamically
allocated memory buffer is not directly accessible to your program. You
must use the K_MoveArrayToBuf function to move this data from a
local array within your program to the dynamically allocated buffer; refer
to page 4-112 for more information.

Note: You cannot use a local array with Windows 95, 32-bit programs;
you must use K_IntAlloc to dynamically allocate a memory buffer. You
must also install the Keithley Memory Manager; refer to your board
user’s guide for information.

C/C++ page 3-4

Pascal page 3-13

Visual Basic for Windows page 3-19

BASIC page 3-28

Analog Output Operations (DAS-1600 Series Only) 2-35

Channels

DAS-1600 Series boards contain two digital-to-analog converters
(DACs), each of which is associated with an analog output channel. You
can perform an analog output operation on a single channel or on both
channels.

For single-mode analog output operations, you can write a single value to
one analog output channel or to both analog output channels. Use the
K_DAWrite function to specify the channels.

For synchronous-mode and interrupt-mode analog output operations, you
can write a single value or multiple values to a single analog output
channel. Use the K_SetChn function to specify the channel.

For synchronous mode and interrupt mode, you can also write a single
value or multiple values to both analog output channels. Use the
K_SetStartStopChn function to specify channel 0 as the start channel
and channel 1 as the stop channel. At each pulse of the pacer clock, the
driver writes a new value to both channels.

For example, assume that your array contains two waveforms (0, 4095, 1,
4094, 2, 4093 . . . 0, 4095). At the first pulse of the pacer clock, the driver
writes 0 to channel 0 and 4095 to channel 1, at the next pulse of the pacer
clock, the driver writes 1 to channel 0 and 4094 to channel 1, and so on.

Pacer Clocks

When performing a synchronous-mode or interrupt-mode analog output
operation, you can use a pacer clock to determine the period between
updates of the analog output channels. You can specify the internal pacer
clock or an external pacer clock, as described in the following sections.

Note: The actual rate at which the analog output channels are updated
also depends on other factors, including your computer, the operating
system/environment, and other software issues.

2-36 Available Operations

Internal Pacer Clock

The internal pacer clock uses two cascaded counters of the onboard
82C54 counter/timer. The counters are normally in an idle state. When
you start the analog output operation (using K_SyncStart or
K_IntStart), the specified analog output channels are updated. Note that
a slight delay occurs between when you start the operation when the
channels are updated.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, the analog output channels are
updated again and the process repeats.

If the 10 MHz time base is specified in the configuration file, each count
represents 0.1 µs; if the 1 MHz time base is specified in the configuration
file, each count represents 1.0 µs. Use the K_SetClkRate function to
specify the number of counts (clock ticks) between updates. For example,
if you specify a count of 2000 with a 10 MHz time base, the period
between updates is 200 µs (5 ksamples/s); if you specify a count of
87654, the period between updates is 8.8 ms (114.1 samples/s).

You can specify a count between 100 and 4,294,967,295 for the 10 MHz
time base and between 10 and 4,294,967,295 for the 1 MHz time base.
The period between updates ranges from 10 µs to 7.16 minutes (for the
10 MHz time base) and from 10 µs to 71.6 minutes (for the 1 MHz time
base).

Use the following formula to determine the number of counts to specify:

For example, if you are using the 10 MHz time base and want an update
rate of 1 ksample/s, specify a count of 10,000, as shown in the following
equation:

The internal pacer clock is the default pacer clock. To reset the pacer
clock source to an internal pacer clock, use the K_SetClk function.

counts time base
update rate
--------------------------=

10 000 000, ,
1 000,

------------------------------ 10 000,=

Analog Output Operations (DAS-1600 Series Only) 2-37

Notes: The hardware does not support simultaneous updating of the
DACs. However, if you specify both analog output channels (using
K_SetStartStopChn), the channels are updated as close to
simultaneously as possible. Each time the counters of the internal pacer
clock count down to 0, channel 0 is updated; channel 1 is updated several
microseconds later.

You cannot use the internal pacer clock for an analog output operation if
the clock is being used by another operation.

The driver accepts a count value as low as 10 for the 1 MHz time base and
as low as 100 for the 10 MHz time base. However, a low count value may
cause an overrun error. The maximum observed update rates for the
internal pacer clock are 1 ksamples/s when running under Windows and 5
ksamples/s when running under DOS.

External Pacer Clock

You connect an external pacer clock to the IP0/TRIG0/XPCLK pin (25)
on the main I/O connector (J1).

At the next rising edge of the external pacer clock after you start an
analog output operation (using K_SyncStart or K_IntStart) and at every
subsequent rising edge of the external pacer clock, the specified analog
output channels are updated. Note that a slight delay may occur between
the rising edge of the external pacer clock and the update of the channels.

Use the K_SetClk function to specify an external pacer clock.

Note: The hardware does not support simultaneous updating of the
DACs. However, if you specify both analog output channels (using
K_SetStartStopChn), the channels are updated as close to
simultaneously as possible. At each rising edge of the external pacer
clock, channel 0 is updated; channel 1 is updated several microseconds
later.

You cannot use an external pacer clock for an analog output operation if
the clock is being used by another operation.

2-38 Available Operations

Buffering Modes

The buffering mode determines how the driver writes the values in the
buffer to the analog output channels. For interrupt-mode analog output
operations, you can specify single-cycle or continuous buffering mode, as
described in the following sections.

Note: Buffering modes are not meaningful for synchronous-mode
operations, since only single-cycle mode applies.

Single-Cycle Mode

In single-cycle mode, after the driver writes the values stored in the
buffer, the operation stops automatically. Single-cycle mode is the default
buffering mode. To reset the buffering mode to single-cycle mode, use the
K_ClrContRun function.

Continuous Mode

In continuous mode, the driver continuously writes values from the buffer
until the program issues a stop function; when all the values in the buffer
have been written, the driver writes the values again. Use the
K_SetContRun function to specify continuous buffering mode.

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode and interrupt-mode analog output operations, you can
specify an internal trigger or an external digital trigger, as described in the
following sections.

The trigger event is not significant until the operation has been started
(using K_SyncStart or K_IntStart). The point at which an analog output
channel is updated depends on the pacer clock; refer to page 2-35 for
more information.

Analog Output Operations (DAS-1600 Series Only) 2-39

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when
you start the analog output operation. Note that a slight delay occurs
between the time you start the operation and the time the trigger event
occurs.

The internal trigger is the default trigger source. To reset the trigger
source to an internal trigger, use the K_SetTrig function.

External Digital Trigger

An external digital trigger occurs when one of the following occurs on the
digital trigger signal connected to the IP1/XTRIG pin (6) on the main I/O
connector:

● A rising edge on the IP1/XTRIG pin (positive-edge trigger).

● A falling edge on the IP1/XTRIG pin (negative-edge trigger).

● The signal is high on the IP1/XTRIG pin (positive-level trigger).

● The signal is low on the IP1/XTRIG pin (negative-level trigger).

Use the K_SetTrig function to specify an external trigger. Then, use the
K_SetDITrig function to specify the digital trigger conditions. The
trigger conditions are illustrated in Figure 2-5 on page 2-29.

Note: The external digital trigger is a software-based trigger. When you
start the analog output operation (using K_SyncStart or K_IntStart), the
driver reads the signal connected to the IP1/XTRIG pin until the trigger
condition is met. Control does not return to your program until the trigger
condition is met. (To terminate the operation if a trigger event does not
occur, press Ctrl+Break .) In addition, a slight delay occurs between the
time the trigger condition is met and the time the driver realizes the
trigger condition is met and begins updating the analog output channel.

2-40 Available Operations

Digital I/O Operations

This section describes digital I/O operations. It includes information on
the operation modes available, how to access a frame, how to allocate and
manage memory, how to use the digital I/O channel, and how to specify
the pacer clock source, the buffering mode, and the digital trigger
conditions for a digital I/O operation.

Operation Modes

The operation mode determines which attributes you can specify for a
digital I/O operation. You can perform digital I/O operations in single
mode, synchronous mode, or interrupt mode, as described in the
following sections.

Single Mode

In a single-mode digital input operation, the driver reads the value of
digital input channel 0 once; in a single-mode digital output operation, the
driver writes a value to digital output channel 0 once. You cannot perform
any other operation until the single-mode operation is complete.

Use the K_DIRead function to perform a digital input operation in single
mode; you specify the board you want to use, the digital input channel,
and the variable in which to store the value.

Use the K_DOWrite function to perform a digital output operation in
single mode; you specify the board you want to use, the digital output
channel, and the digital output value.

Digital I/O Operations 2-41

Synchronous Mode

Synchronous mode provides the fastest means of performing a digital I/O
operation. In a synchronous mode digital input operation, the driver reads
the value of digital input channel 0 multiple times; in a synchronous mode
digital output operation, the driver writes a single value or multiple values
to digital output channel 0 multiple times. A hardware pacer clock paces
the digital I/O operation. You cannot perform any other operation until the
synchronous-mode operation is complete.

Use the K_SyncStart function to start a digital I/O operation in
synchronous mode.

Interrupt Mode

In an interrupt-mode digital input operation, the driver reads the value of
digital input channel 0 multiple times; in an interrupt-mode digital output
operation, the driver writes a single value or multiple values to digital
output channel 0 multiple times.

A hardware clock paces the digital I/O operation. Once the digital I/O
operation begins, control returns to your program. The driver continues to
read values from or write values to the digital I/O channel using an
interrupt service routine.

Use the K_IntStart function to start a digital I/O operation in interrupt
mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-51 for more information on
buffering modes. Use the K_IntStop function to stop a continuous-mode
interrupt operation. Use the K_IntStatus function to determine the
current status of an interrupt operation.

2-42 Available Operations

Frames

Synchronous-mode and interrupt-mode digital I/O operations require
frames. Use the K_GetDIFrame function to access a digital input frame,
called a DI frame; use the K_GetDOFrame function to access a digital
output frame, called a DO frame. The driver returns the frame handle for
the frame. Refer to page 2-6 for more information about frames.

Table 2-6 lists the elements of a DI frame; Table 2-7 lists the elements of
a DO frame. The tables also list the default value of each element, the
setup functions used to define each element, and the page(s) in this
manual on which to find additional information.

Table 2-6. DI Frame Elements

Element Default Value Setup Function Page Number

Buffer1

Notes
1 This element must be set.

0 (NULL) K_SetBuf page 4-132

K_SetBufI page 4-135

K_SetBufL page 4-137

Number of Samples 0 K_SetBuf page 4-132

K_SetBufI page 4-135

K_SetBufL page 4-137

Buffering Mode Single-cycle K_SetContRun page 4-151

K_ClrContRun2

2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

page 4-41

Clock Source Internal K_SetClk page 4-146

Pacer Clock Rate1 0 K_SetClkRate page 4-148

Trigger Source Internal K_SetTrig page 4-169

Trigger Type Digital K_SetDITrig page 4-153

Digital I/O Operations 2-43

Memory Allocation and Management

Synchronous-mode and interrupt-mode digital I/O operations require
memory in which to store the data that is read or written.

Since digital I/O operations typically require small arrays of data, you can
reserve memory by dimensioning a single local array within your
program’s memory area. Your array must be able to accommodate the
digital I/O lines you are using. Table 2-8 lists the types of arrays you can
dimension. The configuration of the digital I/O lines is discussed in the
next section.

Table 2-7. DO Frame Elements

Element Default Value Setup Function Page Number

Buffer1

Notes
1 This element must be set.

0 (NULL) K_SetBuf page 4-132

K_SetBufI page 4-135

K_SetBufL page 4-137

Number of Samples 0 K_SetBuf page 4-132

K_SetBufI page 4-135

K_SetBufL page 4-137

Buffering Mode Single-cycle K_SetContRun page 4-151

K_ClrContRun2

2 Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

page 4-41

Clock Source Internal K_SetClk page 4-146

Pacer Clock Rate1 0 K_SetClkRate page 4-148

Trigger Source Internal K_SetTrig page 4-169

Trigger Type Digital K_SetDITrig page 4-153

2-44 Available Operations

For example, if you are using the 24 bidirectional bits for digital input and
you want to read the bits five times, dimension an array of five long-type
variables. If you are using 12 bits for digital output and you want to write
to the ports 10 times, dimension an array of 10 integer-type variables.

Note: You cannot dimension a byte-type array in BASIC or Visual Basic
for Windows. If you are using four or eight digital I/O lines, dimension an
integer-type array instead. Refer to page 3-21 (Visual Basic for Windows)
or page 3-29 (BASIC) for information on converting the integer data to
data you can use.

After you dimension your array, you must assign the starting address of
the array and the number of samples to store in the array. Each supported
programming language requires a particular procedure for dimensioning
an array and assigning the starting address; refer to the following pages
for more information:

Table 2-8. Dimensioning Arrays for Digital I/O Operations

Number of
Digital I/O Lines

Type of Array

4 Byte (8 bits)

8

12 Integer (16 bits)

16

20 Long (32 bits)

24

28

C/C++ page 3-4

Pascal page 3-13

Visual Basic for Windows page 3-19

BASIC page 3-28

Digital I/O Operations 2-45

You can also use the K_IntAlloc function to dynamically allocate a
memory buffer, if desired. Specify the number of values to store in the
buffer (up to a maximum of 32,767). The driver returns the starting
address of the buffer and a unique identifier for the buffer (this identifier
is called the memory handle). If you no longer require the buffer, free the
buffer for another use by specifying the memory handle in the K_IntFree
function.

For BASIC and Visual Basic for Windows, data in a dynamically
allocated memory buffer is not directly accessible to your program. The
number of digital I/O lines configured for the digital I/O channel
determines the function you should use to move the data to or from the
dynamically allocated buffer, as shown in the following table:

Note: You cannot use a local array with Windows 95, 32-bit programs;
you must use K_IntAlloc to dynamically allocate a memory buffer. You
must also install the Keithley Memory Manager; refer to your board
user’s guide for information.

Digital I/O Lines Function Description Page

Less than 16 digital
input lines

K_MoveBufToArray Moves digital input data from
the buffer to a local integer array
in your program.

page 4-116

More than 16
digital input lines

K_MoveBufToArrayL Moves digital input data from
the buffer to a local long array in
your program.

page 4-118

Less than 16 digital
output lines

K_MoveArrayToBuf Moves digital output data from a
local integer array in your
program to the buffer.

page 4-112

More than 16
digital output lines

K_MoveArrayToBufL Moves digital output data from a
local long array in your program
to the buffer.

page 4-114

2-46 Available Operations

Digital Input/Output Channel

DAS-1600/1400/1200 Series boards contain four unidirectional digital
input lines and four unidirectional digital output lines that are accessible
through the main I/O connector (J1). DAS-1600/1200 Series boards
provide an additional 24 bits of bidirectional digital I/O on the PIO cable
connector (J2 on the DAS-1600, J4 on the DAS-1200). These 24 bits are
configured as follows:

● Port A, 8-bit

● Port B, 8-bit

● Port CH (High), 4-bit

● Port CL (Low), 4-bit

Since each of these four ports is configurable for either input or output, 16
port configurations are available. In any of these configurations, the driver
concatenates data from each input port with data from the onboard digital
inputs, if they are available, into a composite value on a single digital
input channel (channel 0). Similarly, the driver concatenates data from
each output port with data from the onboard digital outputs into a
composite value on a single digital output channel (channel 0).

Data on digital input channel 0 or digital output channel 0 can be up to 28
bits wide when all ports are configured for one direction (input or output)
and the onboard digital lines are available. A value of 1 in the bit position
indicates that the input or output is high; a value of 0 in the bit position
indicates that the input or output is low. If no signal is connected to a
digital input line, the input appears high (value is 1).

Note the following limitations when using the digital I/O lines:

● If you are using an external pacer clock, you cannot use the
IP0/TRIG0/XPCLK line for general-purpose digital input operations.

● If you are using an external digital trigger, you cannot use the
IP1/XTRIG line for general-purpose digital input operations.

● If you are using an expansion accessory, you cannot use any of the
unidirectional digital output lines for general-purpose digital output
operations.

● If you are using counter 0 as an external gate, you cannot use
IP2/CTR0 GATE for general-purpose digital input operations.

Digital I/O Operations 2-47

Starting from the least significant bit of the digital I/O channel, Port A
uses the first eight bits available, Port B uses the next eight bits available,
Port CL uses the next four bits available, Port CH uses the next four bits
available, and the unidirectional bits use the next four bits available.

If a particular port is configured for input, none of the bits in the output
channel is used; if a particular port is configured for output, none of the
bits in the input channel is used.

For example, a DAS-1600/1200 Series board is configured with no EXPs
and with Port A, Port B, Port CL, and Port CH all configured for output.
Table 2-9 illustrates how the bits in the digital I/O channels are used.

As another example, a DAS-1600/1200 Series board is configured with
one or more EXPs and with Port A, Port B, Port CL, and Port CH
configured for output. Table 2-10 illustrates how the bits in the digital I/O
channels are used. Note that the four unidirectional output bits are
dedicated to EXP board control and are not available.

Table 2-9. Digital I/O Channel Usage;
No EXPs, All Ports Output

Bits Output Channel Use Input Channel Use

0 to 3 Port A 4 unidirectional input bits

4 to 7

8 to 11 Port B

12 to 15

16 to 19 Port CL

20 to 23 Port CH

24 to 27 4 unidirectional output bits

2-48 Available Operations

As another example, a DAS-1600/1200 Series board is configured with
no EXPs, with Port A and Port B configured for output, and with Port CL
and Port CH configured for input. Table 2-11 illustrates how the bits in
the digital I/O channels are used.

As a final example, a DAS-1600/1200 Series board is configured with no
EXPs, with Port B and Port CH configured for output, and with Port A
and Port CL configured for input. Table 2-12 illustrates how the bits in the
digital I/O channels are used.

Table 2-10. Digital I/O Channel Usage;
EXPs Used, All Ports Output

Bits Output Channel Use Input Channel Use

0 to 3 Port A 4 unidirectional input bits

4 to 7

8 to 11 Port B

12 to 15

16 to 19 Port CL

20 to 23 Port CH

Table 2-11. Digital I/O Channel Usage;
No EXPs, A and B Output, CL and CH Input

Bits Output Channel Use Input Channel Use

0 to 3 Port A Port CL

4 to 7 Port CH

8 to 11 Port B 4 unidirectional input bits

12 to 15

16 to 19 4 unidirectional output bits

Digital I/O Operations 2-49

Pacer Clocks

When performing synchronous-mode and interrupt-mode digital I/O
operations, you can use a pacer clock to determine the period between
reading the digital input channel or writing to the digital output channel.

You can specify the internal pacer clock or an external pacer clock, as
described in the following sections.

Note: The actual read/write rate also depends on other factors, including
your computer, the operating system/environment, and other software
issues.

Internal Pacer Clock

The internal pacer clock uses two cascaded counters of the onboard
82C54 counter/timer. The counters are normally in an idle state. When
you start the digital I/O operation (using K_SyncStart or K_IntStart), a
value is read or written. Note that a slight delay occurs between when you
start the operation and when the value is read or written.

The counters are loaded with a count value and begin counting down.
When the counters count down to 0, another value is read or written and
the process repeats.

Table 2-12. Digital I/O Channel Usage;
No EXPs, B and CH Output, A and CL Input

Bits Output Channel Use Input Channel Use

0 to 3 Port B Port A

4 to 7

8 to 11 Port CH Port CL

12 to 15 4 unidirectional output bits4 unidirectional input bits

2-50 Available Operations

If the 10 MHz time base is specified in the configuration file, each count
represents 0.1 µs; if the 1 MHz time base is specified in the configuration
file, each count represents 1.0 µs. Use the K_SetClkRate function to
specify the number of counts (clock ticks) between reads/writes. For
example, if you specify a count of 2000 with a 10 MHz time base, the
period between reads/writes is 200 µs (5 ksamples/s); if you specify a
count of 87654, the period between reads/writes is 8.8 ms (114.1
samples/s).

You can specify a count between 100 and 4,294,967,295 for the 10 MHz
time base and between 10 and 4,294,967,295 for the 1 MHz time base.
The period between reads/writes ranges from 10 µs to 7.16 minutes (for
the 10 MHz time base) and from 10 µs to 71.6 minutes (for the 1 MHz
time base).

Use the following formula to determine the number of counts to specify:

For example, if you are using the 10 MHz time base and want to write
data to digital output channel 0 at a rate of 500 samples/s, specify a count
of 20,000, as shown in the following equation:

The internal pacer clock is the default pacer clock. To reset the pacer
clock source to an internal pacer clock, use the K_SetClk function.

Notes: You cannot use the internal pacer clock for a digital I/O operation
if the clock is being used by another operation.

The driver accepts a count value as low as 10 for the 1 MHz time base and
as low as 100 for the 10 MHz time base. However, a low count value may
cause an overrun error. The maximum observed read/write rates for the
internal pacer clock are 1 ksamples/s when running under Windows and 5
ksamples/s when running under DOS.

counts time base
read/write rate
----------------------------------=

10 000 000, ,
500

------------------------------ 20 000,=

Digital I/O Operations 2-51

External Pacer Clock

You connect an external pacer clock to the IP0/TRIG0/XPCLK pin (25)
on the main I/O connector (J1).

At the next rising edge of the external pacer clock after you start a digital
I/O operation (using

K_SyncStart

 or

K_IntStart

) and at every
subsequent rising edge of the external pacer clock, a value is read or
written. Note that a slight delay may occur between the rising edge of the
external pacer clock and the reading of or writing to the channel.

Use the

K_SetClk

 function to specify an external pacer clock.

Note:

You cannot use an external pacer clock for a digital I/O operation if

the clock is being used by another operation.

 Buffering Modes

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode digital I/O operations, you can specify
single-cycle or continuous buffering mode, as described in the following
sections.

Note:

Buffering modes are not meaningful for synchronous-mode

operations, since only single-cycle mode applies.

Single-Cycle Mode

In a single-cycle-mode digital input operation, after the driver fills the
buffer, the operation stops automatically. In a single-cycle-mode digital
output operation, after the driver writes the values stored in the buffer, the
operation stops automatically.

Single-cycle mode is the default buffering mode. To reset the buffering
mode to single-cycle mode, use the

K_ClrContRun

 function.

2-52 Available Operations

Continuous Mode

In a continuous-mode digital input operation, the driver continuously
reads digital input channel 0 and stores the values in the buffer until the
program issues a stop function; any values already stored in the buffer are
overwritten. In a continuous mode digital output operation, the driver
continuously writes values from the buffer to digital output channel 0
until the program issues a stop function; when all the values in the buffer
have been written, the driver writes the values again.

Use the

K_SetContRun

 function to specify continuous buffering mode.

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode and interrupt-mode digital I/O operations, you can
specify an internal trigger or an external digital trigger, as described in the
following sections.

The trigger event is not significant until the operation has been started
(using

K_SyncStart

 or

K_IntStart

). The point at which a value is read or
written depends on the pacer clock; refer to page 2-49 for more
information.

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when
you start the digital I/O operation. Note that a slight delay occurs between
the time you start the operation and the time the trigger event occurs.

The internal trigger is the default trigger source. To reset the trigger
source to an internal trigger, use the

K_SetTrig

 function.

Counter/Timer I/O Operations 2-53

External Digital Trigger

An external digital trigger occurs when one of the following occurs on the
digital trigger signal connected to the IP1/XTRIG pin (6) on the main I/O
connector:

●

A rising edge on the IP1/XTRIG pin (positive-edge trigger).

●

A falling edge on the IP1/XTRIG pin (negative-edge trigger).

●

The signal is high on the IP1/XTRIG pin (positive-level trigger).

●

The signal is low on the IP1/XTRIG pin (negative-level trigger).

Use the

K_SetTrig

 function to specify an external trigger. Then, use the

K_SetDITrig

 function to specify the digital trigger conditions. The
trigger conditions are illustrated in Figure 2-5 on page 2-29.

Note:

The external digital trigger is a software-based trigger. When you

start the digital I/O operation (using K_SyncStart or K_IntStart), the
driver reads the signal connected to the IP1/XTRIG pin until the trigger
condition is met. Control does not return to your program until the trigger
condition is met. (To terminate the operation if a trigger event does not
occur, press

Ctrl+Break

.) In addition, a slight delay occurs between the
time the trigger condition is met and the time the driver realizes the

trigger condition is met and begins reading or writing a value.

Counter/Timer I/O Operations

DAS-1600/1400/1200 Series boards contain a 82C54 counter/timer; the
82C54 contains three counters: counter 0, counter 1, and counter 2. If
these counters are not being used for an internal operation, you can use
them for another task, such as frequency measurement.

The DAS-1600/1400/1200 Series Function Call Driver provides the
following functions for programming the 82C54 counter/timer:

● DAS1600_8254Control - Allows you to write to the 82C54
counter/timer control register.

● DAS1600_8254SetCounter - Sets one of the counters on the 82C54
counter/timer.

● DAS1600_8254SetClk0 - Specifies whether you want counter 0 of
the 82C54 counter/timer to use the 100 kHz onboard clock or an
external signal connected to the CTR0 CLOCK IN pin (21) of the
main I/O connector.

● DAS1600_8254SetTrig0 - Specifies whether you want the signal at
the IP0/TRIG0/XPCLK pin (25) of the main I/O connector to act as a
hardware gate for counters 1 and 2.

● DAS1600_8254GetCounter - Indicates the current count value of
one of the counters on the 82C54 counter/timer.

● DAS1600_8254GetClk0 - Indicates whether counter 0 of the 82C54
counter/timer is using the 100 kHz onboard clock or an external
signal connected to the CTR0 CLOCK IN pin (21) of the main I/O
connector.

● DAS1600_8254GetTrig0 - Indicates whether the signal at the
IP0/TRIG0/XPCLK pin (25) of the main I/O connector is acting as a
hardware gate for counters 1 and 2.

Refer to Appendix E of your board user’s guide for more information on
programming the 82C54 counter/timer.

Notes: Counter 0 is always available for general-purpose tasks. If you
are using the internal pacer clock, counter 1 and counter 2 are not
available for general-purpose tasks. If you are using an external clock
source, all three counters are available for general-purpose tasks.

You cannot use the counter/timer functions with Windows 95, 32-bit
programs.

3-1

3

Programming with the
Function Call Driver

This chapter contains a programming overview and language-specific
information related to using the Function Call Driver. It includes the
following sections:

●

Programming Overview

- an overview of the tasks required to write
a program using the DAS-1600/1400/1200 Series Function Call
Driver.

●

C/C++ Programming Information

 - language-specific information
for programming in Microsoft C/C++ (including Visual C++) and
Borland C/C++.

●

Pascal Programming Information

 - language-specific information
for programming in Borland Turbo Pascal (for DOS) and Borland
Turbo Pascal for Windows.

●

Visual Basic for Windows Programming Information

 -
language-specific information for programming in Microsoft Visual
Basic for Windows.

●

BASIC Programming Information

 - language-specific information
for programming in Microsoft QuickBasic, Microsoft Professional
Basic, and Microsoft Visual Basic for DOS.

3-2 Programming with the Function Call Driver

Programming Overview

To write a program using the DAS-1600/1400/1200 Series Function Call
Driver, perform the following steps:

1. Define the program's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.

2. Write your program. Refer to the following for additional
information:

– Programming flow diagrams for the preliminary tasks, on
page 1-7, which illustrate the programming tasks common to all
programs.

– Programming flow diagrams for an analog input operation, on
page 1-8.

– Programming flow diagrams for an analog output operation, on
page 1-14.

– Programming flow diagrams for a digital input operation, on
page 1-18, and for a digital output operation, on page 1-21.

– Chapter 4, which contains detailed descriptions of the Function
Call Driver functions.

– The example programs in the DAS-1600/1400/1200 Series
standard software package and the ASO-1600/1400/1200
software package. The FILES.TXT file in the installation
directory lists and describes the example programs.

3. Compile and link the program. Refer to the following for information
on compile and link statements and other language-specific
considerations:

– C/C++ Programming Information on page 3-3.

– Pascal Programming Information on page 3-11.

– Visual Basic for Windows Programming Information on
page 3-16.

– BASIC Programming Information on page 3-24.

– The EXAMPLES.TXT file, which provides information on
compiling and linking example programs.

C/C++ Programming Information 3-3

C/C++ Programming Information

The following sections contain information you need to reserve memory,
to create a channel-gain queue, and to handle errors when programming
in C or C++, as well as language-specific information for Microsoft
C/C++ (including Visual C++) and Borland C/C++.

Notes:

When programming in C/C++, make sure that you use proper
typecasting to prevent C/C++ type-mismatch warnings.

When programming in Borland C/C++, make sure that linker options are

set so that case-sensitivity is disabled.

Dynamically Allocating a Memory Buffer

Notes:

The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

If you are using a large buffer and programming in a Windows-based
language, it is recommended that you install the Keithley Memory
Manager before you begin programming. Refer to your board user’s

guide for more information about the Keithley Memory Manager.

The following code fragment illustrates how to use

K_DMAAlloc

 to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use

K_SetDMABuf

 to assign the starting address of the buffer.

. . .
void far *AcqBuf; //Declare pointer to buffer
WORD hMem; //Declare word for memory handle
. . .
wDasErr = K_DMAAlloc (hFrame, Samples, &AcqBuf, &hMem);
wDasErr = K_SetDMABuf (hFrame, AcqBuf, Samples);
. . .

3-4 Programming with the Function Call Driver

The following code illustrates how to use

K_DMAFree

 to later free the
allocated buffer, using the memory handle stored by

K_DMAAlloc

.

. . .
wDasErr = K_DMAFree (hMem);
. . .

Accessing Data from a Dynamically Allocated Memory Buffer

You access the data stored in a dynamically allocated buffer through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer described in the previous section
(AcqBuf). The following code fragment illustrates how to access and
display the data.

. . .
int huge *pData; //Declare a pointer called pData
. . .
pData = (int huge *) AcqBuf; //Assign pData to buffer
for (i = 0; i < 10; i++)

printf ("Sample #%d %X", i, *(pData+i));
. . .

Note:

Declaring pData as a huge pointer allows the program to directly
access all data within the memory buffer, regardless of the buffer size. If
you declare pData as an integer pointer, after you store 64 KB of data, the

data currently in the buffer is overwritten.

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use

K_SetBuf

 to assign the starting address of the array.

. . .
int Data[10000]; //Dimension array of 10,000 samples
. . .
wDasErr = K_SetBuf (hFrame, Data, 10000);
. . .

C/C++ Programming Information 3-5

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable
{

WORD num_of_codes;
struct{

BYTE Chan;
char Gain;

} GainChanAry[256];
} GainChanTable;

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1602 board by declaring and
initializing a variable of type GainChanTable.

GainChanTable MyChanGainQueue =
{8, //Number of entries
0, 0, //Channel 0, gain of 1
1, 1, //Channel 1, gain of 2
2, 2, //Channel 2, gain of 4
3, 3, //Channel 3, gain of 8
3, 0, //Channel 3, gain of 1
2, 1, //Channel 2, gain of 2
1, 2, //Channel 1, gain of 4
0, 3}; //Channel 0, gain of 8

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

When you start the next analog input operation (using

K_SyncStart

 or

K_IntStart

), channel 0 is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

3-6 Programming with the Function Call Driver

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the

K_GetDevHandle

function.

. . .
if ((wDASErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) ! = 0)

{
printf ("Error %X during K_GetDevHandle", wDASErr);
exit (1);
}

. . .

The following code fragment illustrates how to use the

K_GetErrMsg

function to access the string corresponding to an error code.

. . .
if ((wDasErr = K_SetChn (hAD, 2) ! = 0)

{
Error = K_GetErrMsg (hDev, wDasErr, &pMessage);
printf ("%s", pMessage);
exit (1);
}

C/C++ Programming Information 3-7

Programming in Microsoft C/C++ (for DOS)

To program in Microsoft C/C++ (for DOS), you need the following files;
these files are provided in the ASO-1600/1400/1200 software package.

To create an executable file in Microsoft C/C++ (for DOS), use the
following compile and link statements. Note that

filename

 indicates the
name of your program.

File Description

DAS1600.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C

DAS1600.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++

DAS1600.HPP Include file when compiling in C++

USE1600.OBJ Linkable object

Type of Compile Compile and Link Statements

C CL /c

filename

.c
LINK

filename

+use1600.obj,,,das1600+dasrface;

C++ CL /c

filename

.cpp
LINK

filename

+use1600.obj,,,das1600+dasrface;

3-8 Programming with the Function Call Driver

Programming in Microsoft C/C++ (for Windows)

The files you need to program in Microsoft C/C++ (for Windows),
including Microsoft Visual C++, depend on whether you are writing
16-bit or 32-bit programs. The following files are provided either in the
ASO-1600/1400/1200 software package or on the ASO-Win95/32-Bit
disk, which is shipped with the ASO-1600/1400/1200 software package.

Program File Description

16 bits DASSHELL.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DAS1600.DLL Dynamic Link Library of board-specific functions

DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)

DAS1600.H Include file of board-specific function definitions (used
when compiling in C)

DAS1600.HPP Include file of board-specific function definitions (used
when compiling in C++)

DASIMP.LIB Import library of Shell functions

D1600IMP.LIB Import library of board-specific functions

32 bits DASSHL32.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DASSHL16.DLL Dynamic Link Library of support functions

DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)

DASSHL32.LIB Import library of Shell functions

C/C++ Programming Information 3-9

To create an executable file in the Microsoft C/C++ (for Windows)
environment, perform the following steps. Refer to the documentation
supplied with your compiler for complete information.

1. Create a project file.

2. Add all necessary files to the project make file. Make sure that you
include

filename

.c (or

filename

.cpp),

filename

.rc,

filename

.def,
DASIMP.LIB (or DASSHL32.LIB), and D1600IMP.LIB (16-bit
programs only), where

filename

 indicates the name of your program.

3. Create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Programming in Borland C/C++ (for DOS)

To program in Borland C/C++ (for DOS), you need the following files;
these files are provided in the ASO-1600/1400/1200 software package.

To create an executable file in Borland C/C++ (for DOS), use the
following compile and link statements. Note that

filename

 indicates the
name of your program.

File Description

DAS1600.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C

DAS1600.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++

DAS1600.HPP Include file when compiling in C++

USE1600.OBJ Linkable object

Type of
Compile Compile and Link Statements

C BCC

filename

.c use1600.obj das1600.lib dasrface.lib

C++ BCC

filename

.cpp use1600.obj das1600.lib dasrface.lib

3-10 Programming with the Function Call Driver

Programming in Borland C/C++ (for Windows)

The files you need to program in Borland C/C++ (for Windows) depend
on whether you are writing 16-bit or 32-bit programs. The following files
are provided either in the ASO-1600/1400/1200 software package or on
the ASO-Win95/32-Bit disk, which is shipped with the
ASO-1600/1400/1200 software package.

Program File Description

16 bits DASSHELL.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DAS1600.DLL Dynamic Link Library of board-specific functions

DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)

DAS1600.H Include file of board-specific function definitions (used
when compiling in C)

DAS1600.HPP Include file of board-specific function definitions (used
when compiling in C++)

DASIMP.LIB Import library of Shell functions

D1600IMP.LIB Import library of board-specific functions

32 bits DASSHL32.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DASSHL16.DLL Dynamic Link Library of support functions

DASDECL.H Include file of Shell function definitions (used when
compiling in C or C++)

DASSHL32.LIB Import library of Shell functions

Pascal Programming Information 3-11

To create an executable file in the Borland C/C++ environment, perform
the following steps. Refer to the documentation supplied with your
compiler for complete information.

1. Create a project file.

2. Add all necessary files to the project make file. Make sure that you
include

filename

.c (or

filename

.cpp),

filename

.rc,

filename

.def,
DASIMP.LIB (or DASSHL32.LIB), and D1600IMP.LIB (16-bit
programs only), where

filename

 indicates the name of your program.

3. Make sure that you turn OFF both the Case sensitive link and the
Case sensitive exports and imports options.

4. Create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Pascal Programming Information

The following sections contain information you need to reserve memory,
to create a channel-gain queue, and to handle errors when programming
in Pascal, as well as language-specific information for Borland Turbo
Pascal (for DOS) and Borland Turbo Pascal for Windows.

Reducing the Memory Heap

Note:

Reducing the memory heap is recommended for Borland Turbo
Pascal (for DOS) only; if you are programming in Borland Turbo Pascal

for Windows, reducing the memory heap is not required.

By default, when Borland Turbo Pascal (for DOS) programs begin to run,
Pascal reserves all available DOS memory for use by the internal memory
manager; this allows you to perform

GetMem

 and

FreeMem

 operations.
Pascal uses the compiler directive $M to distribute the available memory.
The default configuration is {$M 16384, 0, 655360}, where 16384 bytes
is the stack size, 0 bytes is the minimum heap size, and 655360 is the
maximum heap size.

3-12 Programming with the Function Call Driver

It is recommended that you use the compiler directive $M to reduce the
maximum heap reserved by Pascal to 0 bytes by entering the following:

{$M (16384, 0, 0)}

Reducing the maximum heap size to 0 bytes makes all far heap memory
available to DOS (and therefore available to the driver) and allows your
program to take maximum advantage of the

K_IntAlloc

 and

K_DMAAlloc

 functions. You can reserve some space for the internal
memory manager or for DOS, if desired. Refer to your Borland Turbo
Pascal (for DOS) documentation for more information.

Dynamically Allocating a Memory Buffer

Notes:

The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

If you are using a large memory buffer and programming in Borland
Turbo Pascal for Windows, it is recommended that you use the Keithley
Memory Manager before you begin programming. Refer to your board

user’s guide for more information about the Keithley Memory Manager.

The following code fragment illustrates how to use

K_DMAAlloc

 to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use

K_SetDMABuf

 to assign the starting address of the buffer.

It is recommended that you declare a dummy type array of ^Integer. The
dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

Pascal Programming Information 3-13

{$m (16384, 0, 0)} { Turbo Pascal for DOS only }
. . .
Type

IntArray = Array[0..1] of Integer;
. . .
Var

AcqBuf : ^IntArray; { Declare buffer of dummy type }
hMem : Word; { Declare word for memory handle, hMem }

. . .
wDasErr := K_DMAAlloc (hFrame, Samples, @AcqBuf, hMem);
wDasErr := K_SetDMABuf (hFrame, AcqBuf, Samples);
. . .

The following code illustrates how to use

K_DMAFree

 to later free the
allocated buffer, using the memory handle stored by

K_DMAAlloc

.

. . .
wDasErr := K_DMAFree (hMem);
. . .

Accessing Data from a Dynamically Allocated Memory Buffer

You access the data stored in a dynamically allocated buffer through
Pascal pointer indirection. For example, assume that you want to display
the first 10 samples in the buffer. The following code fragment illustrates
how to access and display the data.

. . .
for i := 0 to 10 do begin

writeln (’Sample #’, i,’ =’, AcqBuf^[i]);
End;
. . .

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array.

. . .
Data : Array[0..9999] of Integer;
. . .
wDasErr := K_SetBuf (hFrame, Data(0), 10000);
. . .

3-14 Programming with the Function Call Driver

Creating a Channel-Gain Queue

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-1602 board by defining a Record as
a new type. You must use K_SetChnGAry to assign the starting address
of MyChanGainQueue to the frame defined by hFrame.

Type
 GainChanTable = Record
 num_of_codes : Integer;
 queue : Array[0..15] of Byte;
 end;
. . .
Const
 MyChanGainQueue : GainChanTable =
 num_of_codes : (8); { Number of entries }
 queue :(0, 0, { Channel 0, gain of 1 }

 1, 1, { Channel 1, gain of 2 }
 2, 2, { Channel 2, gain of 4 }
 3, 3, { Channel 3, gain of 8 }
 3, 0, { Channel 3, gain of 1 }
 2, 1, { Channel 2, gain of 2 }
 1, 2, { Channel 1, gain of 4 }
 0, 3) { Channel 0, gain of 8 }
);

wDasErr := K_SetChnGAry (hFrame, MyChanGainQueue.num_of_codes);

When you start the next analog input operation (using K_SyncStart or
K_IntStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the
DAS1600_GetDevHandle function.

wDasErr := DAS1600_GetDevHandle(0, hDev);
if wDasErr <> 0 then
BEGIN
 FormatStr(HexErr, ' %4x ', wDasErr);
 writeln('Error', HexErr,'during DAS1600_GetDevHandle');
 Halt(1);
END;

Pascal Programming Information 3-15

Programming in Borland Turbo Pascal (for DOS)

To program in Borland Turbo Pascal, you need the D1600TP7.TPU file.
D1600TP7.TPU is a Turbo Pascal unit for Version 7.0 and is provided in
the ASO-1600/1400/1200 software package.

Note: If you must create a new Turbo Pascal unit when compiling in
Borland Turbo Pascal for versions higher than 7.0, refer to FILES.TXT
for a list of the files to use.

To create an executable file in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas

where filename indicates the name of your program.

Programming in Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO-1600/1400/1200
software package.

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

1. Load filename.pas into the Borland Turbo Pascal for Windows
environment, where filename indicates the name of your program.

2. Create an executable file (.EXE).

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DAS1600.DLL Dynamic Link Library

DASDECL.INC Include file

DAS1600.INC Include file

3-16 Programming with the Function Call Driver

Visual Basic for Windows Programming Information

The following sections contain information you need to allocate memory,
to create a channel-gain queue, to convert integer data for digital I/O
operations, and to handle errors when programming in Microsoft Visual
Basic for Windows, as well as language-specific information for
Microsoft Visual Basic for Windows.

Dynamically Allocating a Memory Buffer

Notes: The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

If you are using a large memory buffer, it is recommended that you use
the Keithley Memory Manager before you begin programming. Refer to
your board user’s guide for more information about the Keithley Memory
Manager.

The following code fragment illustrates how to use K_DMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use K_SetDMABuf to assign the starting address of the buffer.

. . .
Global AcqBuf As Long ’ Declare pointer to buffer
Global hMem As Integer ’ Declare integer for memory handle
. . .
wDasErr = K_DMAAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K_SetDMABuf (hFrame, AcqBuf, Samples)
. . .

The following code illustrates how to use K_DMAFree to later free the
allocated buffer, using the memory handle stored by K_DMAAlloc .

. . .
wDasErr = K_DMAFree (hMem)
. . .

Visual Basic for Windows Programming Information 3-17

Accessing Data from a Dynamically Allocated Memory Buffer
with Fewer than 64 KB of Data

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in a dynamically allocated memory buffer. You must
use K_MoveBufToArray to move a subset (up to 32,766 samples) of the
data into a local array as required. The following code fragment illustrates
how to move the first 100 samples of the buffer in the operation described
in the previous section (AcqBuf) to a local array.

. . .
Dim Buffer(1000) As Integer ’ Declare local array
. . .
wDasErr = K_MoveBufToArray (Buffer(0), AcqBuf, 100)
. . .

Accessing Data from a Dynamically Allocated Memory Buffer
with More than 64 KB of Data

When Windows is running, the CPU operates in 16-bit protected mode.
Memory is addressed using a 32-bit selector:offset pair. The selector is
the CPU’s handle to a 64-KB memory page; it is a code whose value is
significant only to the CPU. No mathematical relationship exists between
a selector and the memory location it is associated with. In general, even
consecutively allocated selectors have no relationship to each other.

When a memory buffer of more than 64 KB (32,768 values) is used,
multiple selectors are required. Under Windows, K_IntAlloc uses a
“tiled” method to allocate memory whereby a mathematical relationship
does exist among the selectors. Specifically, if you allocate a buffer of
more than 64 KB, each selector that is allocated has an arithmetic value
that is eight greater than the previous one. The format of the address is a
32-bit value whose high word is the 16-bit selector value and low word is
the 16-bit offset value. When the offset reaches 64 KB, the next
consecutive memory address location can be accessed by adding eight to
the selector and resetting the offset to zero; to do this, add &h80000 to the
buffer starting address.

Table 3-1 illustrates the mapping of consecutive memory locations in
protected-mode “tiled” memory, where xxxxxxxx indicates the address
calculated by the CPU memory mapping mechanism.

3-18 Programming with the Function Call Driver

The following code fragment illustrates moving 1,000 values from a
memory buffer (AcqBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. First,
start with the buffer address passed in K_SetBuf. Then, determine how
deep (in 64-KB pages) into the buffer the desired starting sample is
located and add &h80000 to the buffer address for each 64-KB page.
Finally, add any additional offset after the 64 KB pages to the buffer
address.

Dim AcqBuf As Long
Dim NumSamps As Long

Dim Array(1000) As Integer

NumSamps = 50000
wDasErr = K_IntAlloc (hFrame, NumSamps, AcqBuf, hMem)
.
. ’Acquisition routine
.
DesiredSamp = 40000
DesiredByte = DesiredSamp * 2 ’Number of bytes into buffer
AddSelector = DesiredByte / &h10000 ’Number of 64K pages into buffer
RemainingOffset = DesiredByte Mod &h10000 ’Additional offset

DesiredBuffLoc = AcqBuf + (AddSelector * &h80000) + RemainingOffset

wDasErr = K_MoveBufToArray (Array(0), DesiredBuffLoc, 1000)

Table 3-1. Protected-Mode Memory Architecture

Selector:Offset 32-Bit Linear
Address

. . . . :

32E6:FFFE xxxxxxxx

32E6:FFFF xxxxxxxx + 1

32EE:0000 xxxxxxxx + 2

32EE:0001 xxxxxxxx + 3

. . . . :

Visual Basic for Windows Programming Information 3-19

Accessing More than 64 KB of Data from a
Dynamically Allocated Memory Buffer

To move more than 32,767 values from the memory buffer to the
program’s local array, the program must call K_MoveBufToArray more
than once. For example, assume that pBuf is a pointer to a dynamically
allocated buffer that contains 65,536 values. The following code fragment
illustrates how to move 65,536 values from the dynamically allocated
buffer to a local array within the program:

...
Dim Data [3, 16384] As Integer
...
wDasErr = K_MoveBufToArray (Data(0,0), pBuf, 16384)

’Same selector, add 32,768 bytes to offset: add &h8000
wDasErr = K_MoveBufToArray (Data(1,0), pBuf + &h8000, 16384)
’Add 8 to selector, offset = 0: add &h80000
wDasErr = K_MoveBufToArray (Data(2,0), pBuf + &h80000, 16384)
’Add 8 to selector, add 32,768 bytes to offset: add &h88000
wDasErr = K_MoveBufToArray (Data(3,0), pBuf + &h88000, 16384)

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBufI to assign the starting address of the array.

. . .
Global Data(9999) As Integer ’ Allocate array
. . .
wDasErr = K_SetBufI (hFrame, Data(0), 10000)
. . .

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

3-20 Programming with the Function Call Driver

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you must use K_FormatChnGAry to
reformat the channel-gain queue so that it can be used by the
DAS-1600/1400/1200 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1602 board and
how to use K_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

. . .
Global MyChanGainQueue(9) As Integer ’Maximum # of entries
. . .
MyChanGainQueue(0) = 4 ’ Number of channel-gain pairs
MyChanGainQueue(1) = 0 ’ Channel 0
MyChanGainQueue(2) = 0 ’ Gain of 1
MyChanGainQueue(3) = 1 ’ Channel 1
MyChanGainQueue(4) = 1 ’ Gain of 2
MyChanGainQueue(5) = 2 ’ Channel 2
MyChanGainQueue(6) = 2 ’ Gain of 4
MyChanGainQueue(7) = 2 ’ Channel 2
MyChanGainQueue(8) = 3 ’ Gain of 8
. . .
wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))
. . .

Once the channel-gain queue is formatted, your Visual Basic for Windows
program can no longer read it. To read or modify the array after it has
been formatted, you must use K_RestoreChnGAry as follows:

. . .
wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))
. . .

When you start the next analog input operation (using K_SyncStart or
K_IntStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at
a gain of 2, channel 2 is sampled at a gain of 4, and so on.

Visual Basic for Windows Programming Information 3-21

Converting Integer Data for Digital I/O Operations

You cannot dimension a byte-type array or allocate a byte-type buffer in
Visual Basic for Windows. If you specify in your configuration file that
you are using four or eight digital I/O lines, you must dimension an
integer-type array or allocate an integer-type buffer instead.

For digital input operations, the driver stores two samples in each integer
of the array or buffer. To convert the data to a usable format, whether you
access the data directly using K_SetBufI (if the data is stored in a locally
dimensioned array) or indirectly using K_MoveBufToArray and
K_SetBuf (if the data is stored in a dynamically allocated buffer), you
must unpack the data.

The following code fragment illustrates how to unpack 1,000 8-bit
samples that have been stored in an array of half the size, with each
element in the array holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

For n = 0 to 998 step 2
UnpackedData(n) = PackedData(n/2) AND &HFF
UnpackedData(n+1) = (PackedData(n/2) / 256) AND &HFF

Next n

For digital output operations, you must pack two samples into each
integer in the program’s local array. This ensures that when the driver
accesses the data, either directly using K_SetBufI (if the driver is using a
locally dimensioned array) or indirectly using K_MoveArrayToBuf and
K_SetBuf (if the driver is using a dynamically allocated buffer), the
samples will be in consecutive memory locations as the driver expects.

The following code fragment illustrates how to pack 1,000 8-bit samples
into an array of half the size, with each element in the packed array
holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

For n = 0 to 499
PackedData(n) = UnpackedData(n*2)+256*UnpackedData(n*2+1)

Next n

3-22 Programming with the Function Call Driver

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the K_GetDevHandle
function:

. . .
wDASErr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (wDASErr <> 0) Then

MsgBox "K_GetDevHandle Error: " + Hex$ (wDASErr),
MB_ICONSTOP, "DAS-1600 SERIES ERROR"

End
End If
. . .

Visual Basic for Windows Programming Information 3-23

Programming in Microsoft Visual Basic for Windows

The files you need to program in Microsoft Visual Basic for Windows
depend on whether you are writing a 16-bit or 32-bit program. The
following files are provided either in the ASO-1600/1400/1200 software
package or on the ASO-Win95/32-Bit disk, which is shipped with the
ASO-1600/1400/1200 software package.

To create an executable file in Visual Basic for Windows, perform the
following steps. Refer to the documentation supplied with your compiler
for complete information.

1. Start Visual Basic for Windows.

2. Add the necessary include files to the project: DASDECL.BAS (or
DASDEC32.BAS) and DAS1600.BAS (16-bit programs only).

3. Create an executable file (.EXE).

Program File Description

16 bits DASSHELL.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DAS1600.DLL Dynamic Link Library of board-specific functions

DASDECL.BAS Include file of Shell function definitions

DAS1600.BAS Include file of board-specific function definitions

32 bits DASSHL32.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DASSHL16.DLL Dynamic Link Library of support functions

DASDEC32.BAS Include file of Shell function definitions

3-24 Programming with the Function Call Driver

BASIC Programming Information

The following sections contain information you need to reserve memory,
to create a channel-gain queue, to convert integer data for digital I/O
operations, and to handle errors when programming in BASIC, as well as
language-specific information for Microsoft QuickBasic, Microsoft
Professional Basic, and Microsoft Visual Basic for DOS.

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distribute the available memory (the Far Heap). It is necessary
to redistribute the Far Heap if you want to use a dynamically allocated
buffer. It is recommended that you include the following code at the
beginning of BASIC programs to free the Far Heap for the driver’s use:

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Dynamically Allocating a Memory Buffer

Note: The code fragments assume that you are using DMA mode; the
code for synchronous and interrupt mode is identical, except that you use
the appropriate synchronous-mode or interrupt-mode functions instead of
the DMA-mode functions.

The following code fragment illustrates how to use KDMAAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use KSetDMABuf to assign the starting address of the buffer.

. . .
Dim AcqBuf As Long ’ Declare pointer to buffer
Dim hMem As Integer ’ Declare integer for memory handle
. . .
wDasErr = KDMAAlloc% (hFrame, Samples, AcqBuf, hMem)
wDasErr = KSetDMABuf% (hFrame, AcqBuf, Samples)
. . .

BASIC Programming Information 3-25

The following code illustrates how to use KDMAFree to later free the
allocated buffer, using the memory handle stored by KDMAAlloc .

. . .
wDasErr = KDMAFree% (hMem)
. . .

Accessing Data from a Dynamically Allocated Memory Buffer
with Fewer than 64 KB of Data

In BASIC, you cannot directly access analog input samples stored in a
dynamically allocated memory buffer. You must use KMoveBufToArray
to move a subset of the data (up to 32,766 samples) into a local array. The
following code fragment illustrates how to move the first 100 samples of
the buffer in the operation described in the previous section (AcqBuf) into
a local array:

. . .
Dim Buffer(1000) As Integer ’ Declare local array
. . .
wDasErr = KMoveBufToArray% (Buffer(0), AcqBuf, 100)
. . .

Accessing Data from a Dynamically Allocated Memory Buffer
with More than 64 KB of Data

Under DOS, the CPU operates in real mode. Memory is addressed using a
32-bit segment:offset pair. Memory is allocated from the far heap, the
reserve of conventional memory that occupies the first 64 KB of the 1 MB
of memory that the CPU can address in real mode. In the segmented
real-mode architecture, the 16-bit segment:16-bit offset pair combines
into a 20-bit linear address using an overlapping scheme. For a given
segment value, you can address 64 KB of memory by varying the offset.

When a memory buffer of more than 64 KB (32,768 values) is used,
multiple segments are required. When an offset reaches 64 KB, the next
linear memory address location can be accessed by adding &h1000 to the
buffer segment and resetting the offset to zero.

Table 3-2 illustrates the mapping of consecutive memory locations at a
segment page boundary.

3-26 Programming with the Function Call Driver

The following code fragment illustrates how to move 1,000 values from a
memory buffer (AcqBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. You
must first calculate the linear address of the buffer’s starting point, then
add the number of bytes deep into the buffer that the desired starting
sample is located, and finally convert this adjusted linear address to a
segment:offset format:

Dim AcqBuf As Long
Dim NumSamps As Long
Dim LinAddrBuff As Long
Dim DesLocAddr As Long
Dim AdjSegOffset As Long

Dim Array(1000) As Integer

. . . ’Initialize array with desired values

NumSamps = 50000
wDasErr = KIntAlloc% (hFrame, NumSamps, AcqBuf, hMem)
DesiredSamp = 40000
DesiredByte = DesiredSamp * 2 ’Number of bytes into buffer

’To obtain the 20-bit linear address of buffer, shift the
’segment:offset to the right 16 bits (leaves segment only),
’multiply by 16, then add offset
LinAddrBuff = (AcqBuf / &h10000) * 16 + (AcqBuf AND &hFFFF)

Table 3-2. Real-Mode Memory Architecture

Segment:Offset 20-Bit Linear
Address

. . . . :

74E4:FFFE 84E3E

74E4:FFFF 84E3F

84E4:0000 84E40

84E4:0001 84E41

. . . . :

BASIC Programming Information 3-27

’20-bit linear address of desired location in buffer
DesLocAddr = LinAddrBuff + DesiredByte

’Convert desired location to segment:offset format
AdjSegOffset = (DesLocAddr / 16) * &h10000 + (DesLocAddr AND &hF)

wDasErr = KMoveBufToArray% (Array(0), AdjSegOffset, 1000)

Accessing More than 64 KB of Data from a
Dynamically Allocated Memory Buffer

To move more than 64 KB of data (32,767 values) from the memory
buffer to the program’s local array, the program must call
KMoveBufToArray more than once. For example, assume that pBuf is a
pointer to a dynamically allocated buffer that contains 65,536 values. The
following code fragment illustrates how to move 65,536 values from the
memory buffer to a local array (Data) in the program.

Although it is recommended that you perform all calculations on the
linear address and then convert the result to the segment:offset format (as
shown in the previous code fragment), this example illustrates an
alternative method of calculating the address by working on the
segment:offset form of the address directly. You can use this method if
you already know how deep you want to go into the buffer with each
move and the offset of the starting buffer address is zero, as is the case
when the buffer is allocated with KIntAlloc . In this method, you add
&h10000000 to the buffer address for each 64-KB page and then add the
remainder of the buffer:

...
Dim Data[3,16384] As Integer
...
wDasErr = KMoveBufToArray% (Data(0,0), pBuf, 16384)

’Same segment, add 32,768 bytes to offset: add &h8000
wDasErr = KMoveBufToArray% (Data(1,0), pBuf + &h8000, 16384)

’Next segment, offset = 0: add &h10000000
wDasErr = KMoveBufToArray% (Data(2,0), pBuf + &h10000000, 16384)

’Next segment, remainder = 32,768 bytes: add &h10008000
wDasErr = KMoveBufToArray% (Data(3,0), pBuf + &h10008000, 16384)

3-28 Programming with the Function Call Driver

Dimensioning a Local Array

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
KSetBufI to assign the starting address of the array.

. . .
Dim Data(9999) As Integer ’ Allocate array
. . .
wDasErr = K_SetBufI% (hFrame, Data(0), 10000)
. . .

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you must use KFormatChnGAry to
reformat the channel-gain queue so that it can be used by the
DAS-1600/1400/1200 Series Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-1602 board and
how to use KSetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

. . .
Dim MyChanGainQueue(9) As Integer ’Maximum # of entries
. . .
MyChanGainQueue(0) = 4 ’ Number of channel-gain pairs
MyChanGainQueue(1) = 0 ’ Channel 0
MyChanGainQueue(2) = 0 ’ Gain of 1
MyChanGainQueue(3) = 1 ’ Channel 1
MyChanGainQueue(4) = 1 ’ Gain of 2
MyChanGainQueue(5) = 2 ’ Channel 2
MyChanGainQueue(6) = 2 ’ Gain of 4
MyChanGainQueue(7) = 2 ’ Channel 2
MyChanGainQueue(8) = 3 ’ Gain of 8
. . .

BASIC Programming Information 3-29

wDasErr = KFormatChnGAry% (MyChanGainQueue(0))
wDasErr = KSetChnGAry% (hFrame, MyChanGainQueue(0))
. . .

Once the channel-gain queue is formatted, your BASIC program can no
longer read it. To read or modify the array after it has been formatted, you
must use KRestoreChnGAry as follows:

. . .
wDasErr = KRestoreChnGAry% (MyChanGainQueue(0))
. . .

When you start the next analog input operation (using KSyncStart or
KIntStart), channel 0 is sampled at a gain of 1, channel 1 is sampled at a
gain of 2, channel 2 is sampled at a gain of 4, and so on.

Converting Integer Data for Digital I/O Operations

You cannot dimension a byte-type array or allocate a byte-type buffer in
BASIC. If you specify in your configuration file that you are using four or
eight digital I/O lines, you must dimension an integer-type array or
allocate an integer-type buffer instead.

For digital input operations, the driver stores two samples in each integer
of the array or buffer. To convert the data to a usable format, whether you
access the data directly using KSetBufI (if the data is stored in a locally
dimensioned array) or indirectly using KMoveBufToArray and KSetBuf
(if the data is stored in a dynamically allocated buffer), you must unpack
the data.

The following code fragment illustrates how to unpack 1,000 8-bit
samples that have been stored in an array of half the size, with each
element in the array holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

For n = 0 to 998 step 2
UnpackedData(n) = PackedData(n/2) AND &HFF
UnpackedData(n+1) = (PackedData(n/2) / 256) AND &HFF

Next n

3-30 Programming with the Function Call Driver

For digital output operations, you must pack two samples into each
integer in the program’s local array. This ensures that when the driver
accesses the data, either directly using KSetBufI (if the driver is using a
locally dimensioned array) or indirectly using KMoveArrayToBuf and
KSetBuf (if the driver is using a dynamically allocated buffer), the
samples will be in consecutive memory locations as the driver expects.

The following code fragment illustrates how to pack 1,000 8-bit samples
into an array of half the size, with each element in the packed array
holding two bytes of data.

Dim UnpackedData(1000) As Integer
Dim PackedData(500) As Integer

For n = 0 to 499
PackedData(n) = UnpackedData(n*2)+256*UnpackedData(n*2+1)

Next n

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the
DAS1600GetDevHandle function.

. . .
wDASErr = DAS1600GETDEVHANDLE% (BoardNum, hDev)
IF (wDASErr <> 0) THEN
BEEP
PRINT "Error";HEX$(wDASErr);"occurred during’DAS1600GETDEVHANDLE%’"
 END
END IF
. . .

BASIC Programming Information 3-31

Programming in Microsoft QuickBasic

To program in Microsoft QuickBasic, you need the following files; these
files are provided in the DAS-1600/1400/1200 Series standard software
package.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:

QB /L D1600Q45 filename.bas

where filename indicates the name of your program.

2. Create an executable file (.EXE).

File Description

D1600Q45.LIB Linkable driver for QuickBasic, Version 4.5,
stand-alone, executable (.EXE) programs

D1600Q45.QLB Command-line loadable driver for the QuickBasic,
Version 4.5, integrated environment

QB4DECL.BI Include file

DASDECL.BI Include file

DAS1600.BI Include file

3-32 Programming with the Function Call Driver

Programming in Microsoft Professional Basic

To program in Microsoft Professional Basic, you need the following files;
these files are provided in the DAS-1600/1400/1200 Series standard
software package.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:

QBX /L D1600QBX filename.bas

where filename indicates the name of your program.

2. Create an executable file (.EXE).

File Description

D1600QBX.LIB Linkable driver for Professional Basic stand-alone,
executable (.EXE) programs

D1600QBX.QLB Command-line loadable driver for the Professional
Basic integrated environment

DASDECL.BI Include file

DAS1600.BI Include file

BASIC Programming Information 3-33

Programming in Microsoft Visual Basic for DOS

To program in Microsoft Visual Basic for DOS, you need the following
files; these files are provided in the DAS-1600/1400/1200 Series standard
software package.

To create an executable file in Microsoft Visual Basic for DOS, perform
the following steps:

1. Invoke the Visual Basic for DOS environment by entering the
following:

VBDOS /L D1600VBD.QLB filename.BAS

where filename indicates the name of your program.

2. Create an executable file (.EXE).

File Description

D1600VBD.LIB Linkable driver for Visual Basic for DOS
stand-alone, executable (.EXE) programs

D1600VBD.QLB Command-line loadable driver for the Visual Basic
for DOS integrated environment

DASDECL.BI Include file

DAS1600.BI Include file

. 4-1

4

Function Reference

The FCD functions are organized into the following groups:

●

Initialization functions

●

Operation functions

●

Frame management functions

●

Memory management functions

●

Buffer address functions

●

Buffering mode functions

●

Conversion mode functions

●

Channel and gain functions

●

Clock functions

●

Trigger functions

●

82C54 counter/timer functions

●

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-2 Function Reference

Table 4-1. Functions

Function Type Function Name Page Number

Initialization DAS1600_DevOpen page 4-27

K_OpenDriver page 4-122

K_CloseDriver page 4-37

DAS1600_GetDevHandle page 4-30

K_GetDevHandle page 4-83

K_FreeDevHandle page 4-69

K_DASDevInit page 4-43

Operation K_ADRead page 4-32

K_DAWrite page 4-45

K_DIRead page 4-48

K_DOWrite page 4-64

K_DMAStart page 4-56

K_DMAStatus page 4-58

K_DMAStop page 4-61

K_IntStart page 4-102

K_IntStatus page 4-104

K_IntStop page 4-107

K_SyncStart page 4-173

Frame Management K_GetADFrame page 4-75

K_GetDAFrame page 4-81

K_GetDIFrame page 4-85

K_GetDOFrame page 4-87

K_FreeFrame page 4-71

K_ClearFrame page 4-35

. 4-3

Memory Management K_DMAAlloc page 4-51

K_DMAFree page 4-54

K_IntAlloc page 4-97

K_IntFree page 4-100

KMakeDMABuf page 4-110

K_MoveArrayToBuf page 4-112

K_MoveArrayToBufL page 4-114

K_MoveBufToArray page 4-116

K_MoveBufToArrayL page 4-118

K_MoveDataBuf page 4-120

Buffer Address K_SetBuf page 4-132

K_SetBufI page 4-135

K_SetBufL page 4-137

K_SetDMABuf page 4-156

Buffering Mode K_SetContRun page 4-151

K_ClrContRun page 4-41

Conversion Mode K_SetADFreeRun page 4-127

K_ClrADFreeRun page 4-39

K_SetSSH page 4-162

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

4-4 Function Reference

Channel and Gain K_SetChn page 4-141

K_SetStartStopChn page 4-164

K_SetG page 4-159

K_SetStartStopG page 4-166

K_SetChnGAry page 4-143

K_FormatChnGAry page 4-67

K_RestoreChnGAry page 4-125

K_GetADConfig page 4-73

K_GetADMode page 4-77

Clock K_SetClk page 4-146

K_SetClkRate page 4-148

K_GetClkRate page 4-79

K_SetBurstTicks page 4-139

Trigger K_SetTrig page 4-169

K_SetADTrig page 4-129

K_SetTrigHyst page 4-171

K_SetDITrig page 4-153

82C54
Counter/Timer

1

DAS1600_8254Control page 4-7

DAS1600_8254SetCounter page 4-21

DAS1600_8254SetClk0 page 4-19

DAS1600_8254SetTrig0 page 4-24

DAS1600_8254GetCounter page 4-13

DAS1600_8254GetClk0 page 4-10

DAS1600_8254GetTrig0 page 4-16

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

. 4-5

Keep the following conventions in mind throughout this chapter:

●

Under “Boards Supported,”

All

 refers to the following boards:
DAS-1601, DAS-1602, DAS-1401, DAS-1402, DAS-1201,
DAS-1202.

●

Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

●

The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

●

Variable names are shown in italics.

●

The return value for all DAS-1600/1400/1200 Series FCD functions
is an integer error/status code. Error/status code 0 indicates that the
function executed successfully. A nonzero error/status code indicates
that an error occurred. Refer to Appendix A for additional
information.

●

In the usage section, the variables are not defined. It is assumed that
they are defined as shown in the prototype. The name of each variable
in both the prototype and usage sections includes a prefix that
indicates the associated data type. These prefixes are described in
Table 4-2.

Miscellaneous K_GetErrMsg page 4-89

K_GetVer page 4-94

K_GetShellVer page 4-91

Notes

1

These functions allow you to program the 82C54 counter/timer on the
DAS-1600/1400/1200 Series board. See Appendix E of your user’s guide for
more information.

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

4-6 Function Reference

Table 4-2. Data Type Prefixes

Prefix Data Type Comments

sz Pointer to string terminated by
zero

This data type is typically used for variables that
specify the driver's configuration file name.

h Handle to device, frame, and
memory block

This data type is used for handle-type variables. You
declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.

ph Pointer to a handle-type variableThis data type is used when calling the FCD functions
to get a driver handle, a device handle, a frame handle,
or a memory handle. The actual variable is passed to
the driver by reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a number,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for example,

anVar

 denotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an
unsigned long to the driver by value.

DAS1600_8254Control

4-7

Boards
Supported

All

Purpose

Writes data to the 82C54 counter/timer control register of the specified
board.

Prototype C/C++

DASErr far pascal DAS1600_8254Control (WORD

nBrdNum

,
WORD

nCtrlData

);

Turbo Pascal

Function DAS1600_8254Control (

nBrdNum

 : Word;

nCtrlData

 : Word) : Word;

Turbo Pascal for Windows

Function DAS1600_8254Control (

nBrdNum

 : Word;

nCtrlData

 : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows

Declare Function DAS1600_8254Control Lib "DAS1600.DLL"
(ByVal

nBrdNum

 As Integer, ByVal

nCtrlData

 As Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254CONTROL% ALIAS
"DAS1600_8254Control" (BYVAL

nBrdNum

 AS INTEGER,
BYVAL n

CtrlData

 AS INTEGER)

Parameters

nBrdNum

Board number.
Valid values:

0

 or

1

nCtrlData

Data value that is written to the 82C54 control
register. Only the low byte is used.

Return Value

Error/status code. Refer to Appendix A.

DAS1600_8254Control (cont.)

4-8 Function Reference

Remarks

This function sets the 82C54 counter/timer control register for the board
defined by

nBrdNum

 to the value of

nCtrlData

. If the counter/timer
specified in the control word is currently used by an operation, an error is
returned.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also

DAS1600_8254SetCounter, DAS1600_8254GetCounter,
DAS1600_8254SetClk0, DAS1600_8254GetClk0,
DAS1600_8254SetTrig0, DAS1600_8254GetTrig0

Usage C/C++

#include "DAS1600.H" // Use DAS1600.HPP for C++
...
WORD nCtrlData;
...
wDasErr = DAS1600_8254Control (0, nCtrlData);

Turbo Pascal

uses D1600TP7;
...
nCtrlData : Word;
...
wDasErr := DAS1600_8254Control (0, nCtrlData);

Turbo Pascal for Windows

{$I DAS1600.INC}
...
nCtrlData : Word;
...
wDasErr := DAS1600_8254Control (0, nCtrlData);

DAS1600_8254Control (cont.)

4-9

Visual Basic for Windows

(Add DAS1600.BAS to your project)

...
Global nCtrlData As Integer
...
wDasErr = DAS1600_8254Control (0, nCtrlData)

BASIC

' $INCLUDE: 'DAS1600.BI'
...
DIM nCtrlData AS INTEGER
...
wDasErr = DAS16008254Control% (0, nCtrlData)

DAS1600_8254GetClk0

4-10 Function Reference

Boards
Supported

All

Purpose

Gets the clock source for counter 0 of the 82C54 counter/timer.

Prototype C/C++

DASErr far pascal DAS1600_8254GetClk0 (WORD

nBrdNum

,
WORD far

*pClkSrc

);

Turbo Pascal

Function DAS1600_8254GetClk0 (

nBrdNum

 : Word;
Var

pClkSrc

 : Word) : Word;

Turbo Pascal for Windows

Function DAS1600_8254GetClk0 (

nBrdNum

 : Word;
Var

pClkSrc

 : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows

Declare Function DAS1600_8254GetClk0 Lib "DAS1600.DLL"
(ByVal

nBrdNum

 As Integer,

pClkSrc

 As Integer) As Integer

BASIC

DECLARE FUNCTION DAS16008254GETCLK0% ALIAS
"DAS1600_8254GetClk0" (BYVAL

nBrdNum

 AS INTEGER,
SEG

pClkSrc

 AS INTEGER)

Parameters

nBrdNum

Board number.
Valid values:

0

 or

1

pClkSrc

Counter 0 clock source.
Value stored:

0

 for Internal

1

 for External

Return Value

Error/status code. Refer to Appendix A.

DAS1600_8254GetClk0 (cont.)

4-11

Remarks

For the board defined by nBrdNum, this function stores the counter 0
clock source in pClkSrc.

The internal clock source is the onboard clock; an external clock source is
an external signal connected to the CTR 0 CLOCK IN pin (21) of the
main I/O connector.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also DAS1600_8254SetClk0

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
WORD nClkSrc;
...
wDasErr = DAS1600_8254GetClk0 (0, &nClkSrc);

Turbo Pascal
uses D1600TP7;
...
nClkSrc : Word;
...
wDasErr := DAS1600_8254GetClk0 (0, nClkSrc);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
nClkSrc : Word;
...
wDasErr := DAS1600_8254GetClk0 (0, nClkSrc);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
Global nClkSrc As Integer
...
wDasErr = DAS1600_8254GetClk0 (0, nClkSrc)

DAS1600_8254GetClk0 (cont.)

4-12 Function Reference

BASIC
' $INCLUDE: 'DAS1600.BI'
...
DIM nClkSrc AS INTEGER
...
wDasErr = DAS16008254GetClk0% (0, nClkSrc)

DAS1600_8254GetCounter

4-13

Boards
Supported

All

Purpose Gets the current value of the specified counter and writes it to the location
pointed to by pCntrData.

Prototype C/C++
DASErr far pascal DAS1600_8254GetCounter (WORD nBrdNum,
WORD nCntr, word far *pCntrData);

Turbo Pascal
Function DAS1600_8254GetCounter (nBrdNum : Word; nCntr : Word;
Var pCntrData : Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254GetCounter (nBrdNum : Word; nCntr : Word;
Var pCntrData : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254GetCounter Lib "DAS1600.DLL"
(ByVal nBrdNum As Integer, ByVal nCntr As Integer,
pCntrData As Integer) As Integer

BASIC
DECLARE FUNCTION DAS16008254GETCOUNTER% ALIAS
"DAS1600_8254GetCounter" (BYVAL nBrdNum AS INTEGER,
BYVAL nCntr AS INTEGER, SEG pCntrData AS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

nCntr Counter that you want read.
Valid values: 0 to 2

pCntrData Location where the counter value is written.

Return Value Error/status code. Refer to Appendix A.

DAS1600_8254GetCounter (cont.)

4-14 Function Reference

Remarks For the board defined by nBrdNum, this function gets the current value of
the counter specified by nCntr and writes the value to the location
specified by pCntrData.

You must use the DAS1600_8254Control function to set up the 82C54
before you use this function. If the counter/timer is running when you use
this function, the count value may not be valid because the counter may
be changing the value during the read. Use the 82C54 counter-latch
function or the 82C54 readback function to obtain a valid count. The
82C54 returns one byte each time you use this function (in the low byte of
pCntrData); therefore, you must call this function twice.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also DAS1600_8254Control, DAS1600_8254SetCounter

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
WORD nCntrData;
...
wDasErr = DAS1600_8254GetCounter (0, 0, &nCntrData);

Turbo Pascal
uses D1600TP7;
...
nCntrData : Word;
...
wDasErr := DAS1600_8254GetCounter (0, 0, nCntrData);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
nCntrData : Word;
...
wDasErr := DAS1600_8254GetCounter (0, 0, nCntrData);

DAS1600_8254GetCounter (cont.)

4-15

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
Global nCntrData As Integer
...
wDasErr = DAS1600_8254GetCounter (0, 0, nCntrData)

BASIC
' $INCLUDE: 'DAS1600.BI'
...
DIM nCntrData AS INTEGER
...
wDasErr = DAS16008254GetCounter% (0, 0, nCntrData)

DAS1600_8254GetTrig0

4-16 Function Reference

Boards
Supported

All

Purpose Indicates whether the gate signal is enabled or disabled.

Prototype C/C++
DASErr far pascal DAS1600_8254GetTrig0 (WORD nBrdNum,
WORD far *pTrigEnabled);

Turbo Pascal
Function DAS1600_8254GetTrig0 (nBrdNum : Word;
Var pTrigEnabled : Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254GetTrig0 (nBrdNum : Word;
Var pTrigEnabled : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254GetTrig0 Lib "DAS1600.DLL"
(ByVal nBrdNum As Integer, pTrigEnabled As Integer) As Integer

BASIC
DECLARE FUNCTION DAS16008254GETTRIG0% ALIAS
"DAS1600_8254GetTrig0" (BYVAL nBrdNum AS INTEGER,
SEG pTrigEnabled AS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

pTrigEnabled Indicates whether the gate signal is
enabled or disabled.
Value stored:0 for Disabled

1 for Enabled

Return Value Error/status code. Refer to Appendix A.

DAS1600_8254GetTrig0 (cont.)

4-17

Remarks For the board defined by nBrdNum, this function indicates whether the
gate signal is enabled or disabled in pTrigEnabled.

The gate signal is the signal at the IP0/TRIG0/XPCLK pin (25) of the
main I/O connector. The gate signal determines when counters 1 and 2 of
the 82C54 counter/timer are used. If the gate signal is disabled
(pTrigEnabled = 0), counters 1 and 2 are always used (counters 1 and 2
continually count down). If the gate signal is enabled (pTrigEnabled = 1),
counters 1 and 2 are used only when the signal at the IP0/TRIG0/XPCLK
pin (25) is low; whenever the signal at the IP0/TRIG0/XPCLK pin (25)
goes high, counters 1 and 2 stop counting down.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also DAS1600_8254SetTrig0

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
WORD pTrigEnabled;
...
wDasErr = DAS1600_8254GetTrig0 (0, &pTrigEnabled);

Turbo Pascal
uses D1600TP7;
...
pTrigEnabled : Word;
...
wDasErr := DAS1600_8254GetTrig0 (0, pTrigEnabled);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
pTrigEnabled : Word;
...
wDasErr := DAS1600_8254GetTrig0 (0, pTrigEnabled);

DAS1600_8254GetTrig0 (cont.)

4-18 Function Reference

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
Global pTrigEnabled As Integer
...
wDasErr = DAS1600_8254GetClk0 (0, pTrigEnabled)

BASIC
' $INCLUDE: 'DAS1600.BI'
...
DIM pTrigEnabled AS INTEGER
...
wDasErr = DAS16008254GetTrig0% (0, pTrigEnabled)

DAS1600_8254SetClk0

4-19

Boards
Supported

All

Purpose Specifies the clock source for counter 0 of the 82C54 counter/timer.

Prototype C/C++
DASErr far pascal DAS1600_8254SetClk0 (WORD nBrdNum,
WORD nClkSrc);

Turbo Pascal
Function DAS1600_8254SetClk0 (nBrdNum : Word;
nClkSrc : Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254SetClk0 (nBrdNum : Word;
nClkSrc : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254SetClk0 Lib "DAS1600.DLL"
(ByVal nBrdNum As Integer, ByVal nClkSrc As Integer) As Integer

BASIC
DECLARE FUNCTION DAS16008254SETCLK0% ALIAS
"DAS1600_8254SetClk0" (BYVAL nBrdNum AS INTEGER,
BYVAL nClkSrc AS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

nClkSrc Counter 0 clock source.
Valid values: 0 for Internal

1 for External

Return Value Error/status code. Refer to Appendix A.

DAS1600_8254SetClk0 (cont.)

4-20 Function Reference

Remarks For the board defined by nBrdNum, this function specifies the counter 0
clock source in nClkSrc.

The internal clock source is the onboard clock; an external clock source is
an external signal connected to the CTR 0 CLOCK IN pin (21) of the
main I/O connector.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also DAS1600_8254GetClk0

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
wDasErr = DAS1600_8254SetClk0 (0, 1);

Turbo Pascal
uses D1600TP7; (* Use D1800TP6 for TP ver 6.0 *)
...
wDasErr := DAS1600_8254SetClk0 (0, 1);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
wDasErr := DAS1600_8254SetClk0 (0, 1);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
wDasErr = DAS1600_8254SetClk0 (0, 1)

BASIC
' $INCLUDE: 'DAS1600.BI'
...
wDasErr = DAS16008254SetClk0% (0, 1)

DAS1600_8254SetCounter

4-21

Boards
Supported

All

Purpose Sets the specified counter to the value of nCntrData.

Prototype C/C++
DASErr far pascal DAS1600_8254SetCounter (WORD nBrdNum,
WORD nCntr, WORD nCntrData);

Turbo Pascal
Function DAS1600_8254SetCounter (nBrdNum : Word; nCntr : Word;
nCntrData : Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254SetCounter (nBrdNum : Word; nCntr : Word;
nCntrData : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254SetCounter Lib "DAS1600.DLL"
(ByVal nBrdNum As Integer, ByVal nCntr As Integer,
ByVal nCntrData As Integer) As Integer

BASIC
DECLARE FUNCTION DAS16008254SETCOUNTER% ALIAS
"DAS1600_8254SetCounter" (BYVAL nBrdNum AS INTEGER,
BYVAL nCntr AS INTEGER, BYVAL nCntrData AS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

nCntr Counter that you want set.
Valid values: 0 to 2

nCntrData Value that you want to set the counter to.

Return Value Error/status code. Refer to Appendix A.

DAS1600_8254SetCounter (cont.)

4-22 Function Reference

Remarks For the board defined by nBrdNum, this function sets the counter
specified by nCntr to the value of nCntrData (least significant byte).

You must use the DAS1600_8254Control function before the
DAS1600_8254SetCounter function to set up the data transfer, which
can be performed as follows:

● Least significant byte (LSB) only

● Most significant byte (MSB) only

● Least significant byte (LSB) followed by most significant byte (MSB)

The 82C54 counter/timer accepts eight bits of data each time you use this
function; therefore, you must call the function twice to program the 16
bits of each counter.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also DAS1600_8254Control, DAS1600_8254GetCounter

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
WORD nCntrData;
...
wDasErr = DAS1600_8254SetCounter (0, 0, nCntrData);

Turbo Pascal
uses D1600TP7;
...
nCntrData : Word;
...
wDasErr := DAS1600_8254SetCounter (0, 0, nCntrData);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
nCntrData : Word;
...
wDasErr := DAS1600_8254SetCounter (0, 0, nCntrData);

DAS1600_8254SetCounter (cont.)

4-23

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
Global nCntrData As Integer
...
wDasErr = DAS1600_8254SetCounter (0, 0, nCntrData)

BASIC
' $INCLUDE: 'DAS1600.BI'
...
DIM nCntrData AS INTEGER
...
wDasErr = DAS16008254SetCounter% (0, 0, nCntrData)

DAS1600_8254SetTrig0

4-24 Function Reference

Boards
Supported

All

Purpose Enables and disables the signal at the IPO/TRIG0/XPCLK pin (25) of the
main I/O connector to act as a hardware gate signal.

Prototype C/C++
DASErr far pascal DAS1600_8254SetTrig0 (WORD nBrdNum,
WORD nTrigEnable);

Turbo Pascal
Function DAS1600_8254SetTrig0 (nBrdNum : Word;
nTrigEnable : Word) : Word;

Turbo Pascal for Windows
Function DAS1600_8254SetTrig0 (nBrdNum : Word;
 nTrigEnable : Word) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_8254SetTrig0 Lib "DAS1600.DLL"
(ByVal nBrdNum As Integer, ByVal nTrigEnable As Integer) As Integer

BASIC
DECLARE FUNCTION DAS16008254SETTRIG0% ALIAS
"DAS1600_8254SetTrig0" (BYVAL nBrdNum AS INTEGER,
ByVal nTrigEnable AS INTEGER)

Parameters nBrdNum Board number.
Valid values: 0 or 1

nTrigEnable Specifies whether the gate signal is
enabled or disabled.
Valid values: 0 for Disabled

1 for Enabled

Return Value Error/status code. Refer to Appendix A.

DAS1600_8254SetTrig0 (cont.)

4-25

Remarks For the board defined by nBrdNum, this function specifies whether the
gate signal is enabled or disabled in nTrigEnable.

The gate signal is the signal at the IP0/TRIG0/XPCLK pin (25) of the
main I/O connector. The gate signal determines when counters 1 and 2 of
the 82C54 counter/timer are used. If you disable the gate signal
(nTrigEnable = 0), counters 1 and 2 are always used (counters 1 and 2
continually count down). If you enable the gate signal (nTrigEnable = 1),
counters 1 and 2 are used only when the signal at the IP0/TRIG0/XPCLK
pin (25) is low; whenever the signal at the IP0/TRIG0/XPCLK pin (25)
goes high, counters 1 and 2 stop counting down.

Refer to Appendix E of your board user’s guide or to the manufacturer’s
data sheet for information about programming the 82C54 counter/timer.

You cannot use this function with Windows 95, 32-bit programs.

See Also DAS1600_8254Control, DAS1600_8254SetTrig0

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
wDasErr = DAS1600_8254SetTrig0 (0, 1);

Turbo Pascal
uses D1600TP7;
...
wDasErr := DAS1600_8254SetTrig0 (0, 1);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
wDasErr := DAS1600_8254SetTrig0 (0, 1);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
wDasErr = DAS1600_8254SetTrig0 (0, 1)

DAS1600_8254SetTrig0 (cont.)

4-26 Function Reference

BASIC
' $INCLUDE: 'DAS1600.BI'
...
wDasErr = DAS16008254SetTrig0% (0, 1)

DAS1600_DevOpen

4-27

Boards
Supported

All

Purpose Initializes the DAS-1600/1400/1200 Series Function Call Driver.

Prototype C/C++
DASErr far pascal DAS1600_DevOpen (char far *szCfgFile,
char far *pBoards);

Turbo Pascal
Function DAS1600_DevOpen (Var szCfgFile : char;
Var pBoards : Integer) : Word;

Turbo Pascal for Windows
Function DAS1600_DevOpen (Var szCfgFile : char;
Var pBoards : Integer) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_DevOpen Lib "DAS1600.DLL"
(ByVal szCfgFile As String, pBoards As Integer) As Integer

BASIC
DECLARE FUNCTION DAS1600DEVOPEN% ALIAS
"DAS1600_DevOpen" (BYVAL szCfgFile AS STRING,
SEG pBoards AS INTEGER)

Parameters szCfgFile Driver configuration file.
Valid values: The name of a configuration file.

pBoards Number of boards defined in szCfgFile.
Value stored:1 or 2

Return Value Error/status code. Refer to Appendix A.

DAS1600_DevOpen (cont.)

4-28 Function Reference

Remarks This function initializes the driver according to the information in the
configuration file specified by szCfgFile and stores the number of boards
defined in szCfgFile in pBoards.

You create a configuration file using the CFG1600.EXE utility. Refer to
your board user’s guide for more information.

You cannot use this function with Windows 95, 32-bit programs.

See Also K_OpenDriver

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
char nBoards;
...
wDasErr = DAS1600_DevOpen ("DAS1600.CFG", &nBoards);

Turbo Pascal
uses D1600TP7;
...
szCfgName : String;
nBoards : Integer;
...
szCfgName := 'DAS1600.CFG' + #0;
wDasErr := DAS1600_DevOpen (szCfgName[1], nBoards);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
szCfgName : String;
nBoards : Integer;
...
szCfgName := 'DAS1600.CFG' + #0;
wDasErr := DAS1600_DevOpen (szCfgName[1], nBoards);

DAS1600_DevOpen (cont.)

4-29

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
DIM nBoards AS INTEGER
DIM szCfgName AS STRING
...
szCfgName = "DAS1600.CFG" + CHR$(0)
wDasErr = DAS1600_DevOpen(szCfgName, nBoards)

BASIC
' $INCLUDE: 'DAS1600.BI'
...
DIM nBoards AS INTEGER
DIM szCfgName AS STRING
...
szCfgName = "DAS1600.CFG" + CHR$(0)
wDasErr = DAS1600DEVOPEN%(SSEGADD(szCfgName), nBoards)

DAS1600_GetDevHandle

4-30 Function Reference

Boards
Supported

All

Purpose Initializes a DAS-1600/1400/1200 Series board.

Prototype C/C++
DASErr far pascal DAS1600_GetDevHandle (short nBrdNum,
void far *far *phDev);

Turbo Pascal
Function DAS1600_GetDevHandle (nBrdNum : Integer;
Var phDev : Longint) : Word;

Turbo Pascal for Windows
Function DAS1600_GetDevHandle (nBrdNum : Integer;
Var phDev : Longint) : Word; far; external 'DAS1600';

Visual Basic for Windows
Declare Function DAS1600_GetDevHandle Lib "DAS1600.DLL"
(ByVal nBrdNum As Integer, phDev As Long) As Integer

BASIC
DECLARE FUNCTION DAS1600GETDEVHANDLE% ALIAS
"DAS1600_GetDevHandle" (BYVAL nBrdNum AS INTEGER,
SEG phDev AS LONG)

Parameters nBrdNum Board number.
Valid values: 0 or 1

phDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the board specified by nBrdNum, and stores the
device handle of the specified board in phDev.

You cannot use this function with Windows 95, 32-bit programs.

DAS1600_GetDevHandle (cont.)

4-31

The value stored in phDev is intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored in phDev.

See Also K_GetDevHandle

Usage C/C++
#include "DAS1600.H" // Use DAS1600.HPP for C++
...
void far *hDev;
...
wDasErr = DAS1600_GetDevHandle (0, &hDev);

Turbo Pascal
uses D1600TP7;
...
hDev : Longint; { Device Handle }
...
wDasErr := DAS1600_GetDevHandle (0, hDev);

Turbo Pascal for Windows
{$I DAS1600.INC}
...
hDev : Longint; { Device Handle }
...
wDasErr := DAS1600_GetDevHandle (0, hDev);

Visual Basic for Windows
(Add DAS1600.BAS to your project)

...
Global hDev As Long ' Device Handle
...
wDasErr = DAS1600_GetDevHandle (0, hDev)

BASIC
' $INCLUDE: 'DAS1600.BI'
...
DIM hDev AS LONG ' Device Handle
wDasErr = DAS1600GetDevHandle%(0, hDev)

K_ADRead

4-32 Function Reference

Boards
Supported

All

Purpose Reads a single analog input value.

Prototype C/C++
DASErr far pascal K_ADRead (DWORD hDev, BYTE nChan,
BYTE nGain, void far *pData);

Turbo Pascal
Function K_ADRead (hDev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word;

Turbo Pascal for Windows
Function K_ADRead (hDev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_ADRead Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal nGain As Integer, pData As Integer) As Integer

BASIC
DECLARE FUNCTION KADREAD% ALIAS "K_ADRead"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL nGain AS INTEGER, SEG pData AS INTEGER)

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0 to 255

K_ADRead (cont.)

4-33

nGain Gain code.
Valid values:

pData Acquired analog input value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function reads the analog input channel nChan on the board
specified by hDev at the gain represented by nGain, and stores the value
in pData.

The data stored in pData is a count value. Refer to Appendix B for
information on converting the count to voltage.

For DAS-1200 Series boards, the value of nGain is ignored.

See Also K_DMAStart, K_IntStart, K_SyncStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
int wADValue;
...
wDasErr = K_ADRead (hDev, 0, 0, &wADValue);

Board Gain Gain Code

DAS-1601
DAS-1401

1 0

10 1

100 2

500 3

DAS-1602
DAS-1402

1 0

2 1

4 2

8 3

K_ADRead (cont.)

4-34 Function Reference

Turbo Pascal
uses D1600TP7;
...
wADValue : Integer;
...
wDasErr := K_ADRead (hDev, 0, 0, @wADValue);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wADValue : Integer;
...
wDasErr := K_ADRead (hDev, 0, 0, @wADValue);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wADValue As Integer
...
wDasErr = K_ADRead (hDev, 0, 0, wADValue)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wADValue AS INTEGER
...
wDasErr = KADRead% (hDev, 0, 0, wADValue)

K_ClearFrame

4-35

Boards
Supported

All

Purpose Sets the elements of a frame to their default values.

Prototype C/C++
DASErr far pascal K_ClearFrame (DWORD hFrame);

Turbo Pascal
Function K_ClearFrame (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClearFrame (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KCLEARFRAME% ALIAS "K_ClearFrame"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the elements of the frame specified by hFrame to their
default values.

K_ClearFrame (cont.)

4-36 Function Reference

The following table lists the frame types and where to look for their
default values.

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_ClearFrame (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_ClearFrame (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_ClearFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_ClearFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KClearFrame% (hAD)

A/D Table 2-1 on page 2-8

D/A Table 2-5 on page 2-32

DI Table 2-6 on page 2-42

DO Table 2-7 on page 2-43

K_CloseDriver

4-37

Boards
Supported

All

Purpose Closes a previously initialized Keithley DAS Function Call Driver.

Prototype C/C++
DASErr far pascal K_CloseDriver (DWORD hDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_CloseDriver (hDrv : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

BASIC
Not supported

Parameters hDrv Driver handle you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the driver handle specified by hDrv and closes the
associated use of the Function Call Driver. This function also frees all
device handles and frame handles associated with hDrv.

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

See Also K_FreeDevHandle

K_CloseDriver (cont.)

4-38 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_CloseDriver (hDrv);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_CloseDriver (hDrv);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_CloseDriver (hDrv)

K_ClrADFreeRun

4-39

Boards
Supported

All

Purpose Specifies paced conversion mode for an analog input operation.

Prototype C/C++
DASErr far pascal K_ClrADFreeRun (DWORD hFrame);

Turbo Pascal
Function K_ClrADFreeRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClrADFreeRun (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_ClrADFreeRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KCLRADFREERUN% ALIAS
"K_ClrADFreeRun" (BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the conversion mode for the operation defined by
hFrame to paced mode and sets the Conversion Mode element in the
frame accordingly.

K_GetADFrame and K_ClearFrame also enable paced conversion
mode.

See Also K_ClearFrame, K_GetADFrame, K_SetADFreeRun

K_ClrADFreeRun (cont.)

4-40 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_ClrADFreeRun (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_ClrADFreeRun (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_ClrADFreeRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_ClrADFreeRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KClrADFreeRun% (hAD)

K_ClrContRun

4-41

Boards
Supported

All

Purpose Specifies single-cycle buffering mode.

Prototype C/C++
DASErr far pascal K_ClrContRun (DWORD hFrame);

Turbo Pascal
Function K_ClrContRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClrContRun (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_ClrContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KCLRCONTRUN% ALIAS "K_ClrContRun"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the buffering mode for the operation defined by hFrame
to single-cycle mode and sets the Buffering Mode element in the frame
accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame also enable single-cycle
buffering mode.

This function is not meaningful for synchronous-mode operations.

K_ClrContRun (cont.)

4-42 Function Reference

For more information on buffering modes, refer to the following pages:

See Also K_SetContRun

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_ClrContRun (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_ClrContRun (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_ClrContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_ClrContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KClrContRun% (hAD)

Analog input operations page 2-24

Analog output operations page 2-38

Digital I/O operations page 2-51

K_DASDevInit

4-43

Boards
Supported

All

Purpose Reinitializes a board.

Prototype C/C++
DASErr far pascal K_DASDevInit (DWORD hDev);

Turbo Pascal
Function K_DASDevInit (hDev : Longint) : Longint;

Turbo Pascal for Windows
Function K_DASDevInit (hDev : Longint) : Longint; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL.DLL"
(ByVal hDev As Long) As Integer

BASIC
DECLARE FUNCTION KDASDEVINIT% ALIAS "K_DASDevInit"
(BYVAL hDev AS LONG)

Parameters hDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops all operations currently in progress and sets the board
specified by hDev back to its power-up state.

K_DASDevInit (cont.)

4-44 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_DASDevInit (hDev);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_DASDevInit (hDev);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_DASDevInit (hDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_DASDevInit (hDev)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KDASDevInit% (hDev)

K_DAWrite

4-45

Boards
Supported

DAS-1601, DAS-1602

Purpose Writes a single analog output value.

Prototype C/C++
DASErr far pascal K_DAWrite (DWORD hDev, BYTE nChan,
DWORD dwData);

Turbo Pascal
Function K_DAWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word;

Turbo Pascal for Windows
Function K_DAWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DAWrite Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal dwData As Long) As Integer

BASIC
DECLARE FUNCTION KDAWRITE% ALIAS "K_DAWrite"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL dwData AS LONG)

Parameters hDev Handle associated with the board.

nChan Analog output channel.
Valid values: 0 = Channel 0

1 = Channel 1
2 = Both channels

dwData Analog output value.
Valid values: 0 to 4095

K_DAWrite (cont.)

4-46 Function Reference

Return Value Error/status code. Refer to Appendix A.

Remarks This function writes the value dwData to the analog output channel
specified by nChan on the board specified by hDev.

dwData is a 32-bit variable, but the output value must contain only 12
bits.

The data stored in dwData is a count value. For information on converting
a voltage value to a count, refer to Appendix B.

Refer to page 2-30 for more information on analog output operations.

See Also K_IntStart, K_SyncStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwDAValue;
...
dwDAValue = ((DWORD) (5.0 * 4096 / 20) + 2048) << 4;
wDasErr = K_DAWrite (hDev, 0, dwDAValue);

Turbo Pascal
uses D1600TP7;
...
dwDAValue : Longint;
...
dwDAValue := Round((5.0 * 4096.0 / 20.0) + 2048) shl 4;
wDasErr := K_DAWrite (hDev, 0, dwDAValue);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
dwDAValue : Longint;
...
dwDAValue := Round((5.0 * 4096.0 / 20.0) + 2048) shl 4;
wDasErr := K_DAWrite (hDev, 0, dwDAValue);

K_DAWrite (cont.)

4-47

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global dwDAValue As Long
...
dwDAValue = (INT (5.0 * 4096! / 20!) + 2048) * 16
wDasErr = K_DAWrite (hDev, 0, dwDAValue)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM dwDAValue AS LONG
...
dwDAValue = (INT (5.0 * 4096! / 20!) + 2048) * 16
wDasErr = KDAWrite% (hDev, 0, dwDAValue)

K_DIRead

4-48 Function Reference

Boards
Supported

All

Purpose Reads a single digital input value.

Prototype C/C++
DASErr far pascal K_DIRead (DWORD hDev, BYTE nChan,
void far *pData);

Turbo Pascal
Function K_DIRead (hDev : Longint; nChan : Byte;
pData : Pointer) : Word;

Turbo Pascal for Windows
Function K_DIRead (hDev : Longint; nChan : Byte;
pData : Pointer) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DIRead Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer, pData As Any)
As Integer

BASIC
DECLARE FUNCTION KDIREAD% ALIAS "K_DIRead"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
SEG pData AS ANY)

Parameters hDev Handle associated with the board.

nChan Digital input channel.
Valid value: 0

pData Digital input value.

Return Value Error/status code. Refer to Appendix A.

K_DIRead (cont.)

4-49

Remarks This function reads the values of all digital input lines on the board
specified by hDev and stores the value in pData.

Make sure that the variable you declare for pData is large enough to
accommodate the number of digital input lines you are using. Refer to
page 2-46 for a description of the digital input lines.

 See Also K_IntStart, K_SyncStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wDIValue;
...
wDasErr = K_DIRead (hDev, 0, &wDIValue);

Turbo Pascal
uses D1600TP7;
...
wDIValue : Word;
...
wDasErr := K_DIRead (hDev, 0, @wDIValue);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDIValue : Word;
...
wDasErr := K_DIRead (hDev, 0, @wDIValue);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wDIValue As Integer
...
wDasErr = K_DIRead (hDev, 0, wDIValue)

K_DIRead (cont.)

4-50 Function Reference

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wDIValue AS INTEGER
...
wDasErr = KDIRead% (hDev, 0, wDIValue)

K_DMAAlloc

4-51

Boards
Supported

All

Purpose Allocates a buffer for a DMA-mode analog input operation.

Prototype C/C++
DASErr far pascal K_DMAAlloc (DWORD hFrame,
DWORD dwSamples, void far * far *pBuf, WORD far * phMem);

Turbo Pascal
Function K_DMAAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word;

Turbo Pascal for Windows
Function K_DMAAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DMAAlloc Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long,
phMem As Integer) As Integer

BASIC
DECLARE FUNCTION KDMAALLOC% ALIAS "K_DMAAlloc"
(BYVAL hFrame AS LONG, BYVAL dwSamples AS LONG,
SEG pBuf AS LONG, SEG phMem AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values: 1 to 32768

pBuf Starting address of the allocated buffer.

phMem Handle associated with the allocated buffer.

K_DMAAlloc (cont.)

4-52 Function Reference

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function allocates a memory
block (a buffer of the size dwSamples) from the available memory heap.
On return, pBuf contains the far memory address of a buffer that is
suitable for a DMA-mode analog input operation and phMem contains the
handle associated with the allocated buffer.

The data in the allocated buffer is stored as counts. For information on
converting the count values to voltages, refer to Appendix B.

Turbo Pascal (for DOS) and BASIC require that you redistribute available
memory before you dynamically allocate a buffer. Refer to “Reducing the
Memory Heap” on page 3-11 (Turbo Pascal) or page 3-24 (BASIC) for
additional information.

See Also K_DMAFree, K_SetDMABuf

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated DMA buffer
WORD hMem; // Memory handle to buffer
...
wDasErr = K_DMAAlloc (hAD, dwSamples, &pBuf, &hMem);

Turbo Pascal
uses D1600TP7;
...
pBuf : Pointer; { DMA buffer pointer }
hMem : Word; { Handle to DMA buffer }
...
wDasErr := K_DMAAlloc (hAD, dwSamples, @pBuf, hMem);

K_DMAAlloc (cont.)

4-53

Turbo Pascal for Windows
{$I DASDECL.INC}
...
pBuf : Pointer; { DMA buffer pointer }
hMem : Word; { Handle to DMA buffer }
...
wDasErr := K_DMAAlloc (hAD, dwSamples, @pBuf, hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global pBuf As Long
Global hMem As Integer
...
wDasErr = K_DMAAlloc (hAD, dwSamples, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf AS LONG
DIM hMem AS INTEGER
...
wDasErr = KDMAAlloc% (hAD, dwSamples, pBuf, hMem)

K_DMAFree

4-54 Function Reference

Boards
Supported

All

Purpose Frees a buffer allocated for a DMA-mode analog input operation.

Prototype C/C++
DASErr far pascal K_DMAFree (WORD hMem);

Turbo Pascal
Function K_DMAFree (hMem : Word) : Integer;

Turbo Pascal for Windows
Function K_DMAFree (hMem : Word) : Integer;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DMAFree Lib "DASSHELL.DLL"
(ByVal hMem As Integer) As Integer

BASIC
DECLARE FUNCTION KDMAFREE% ALIAS "K_DMAFree"
(BYVAL hMem AS INTEGER)

Parameters hMem Handle to DMA buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the buffer specified by hMem; the buffer was
previously allocated dynamically using K_DMAAlloc .

See Also K_DMAlloc, K_SetDMABuf

K_DMAFree (cont.)

4-55

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_DMAFree (hMem);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_DMAFree (hMem);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_DMAFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_DMAFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KDMAFree% (hMem)

K_DMAStart

4-56 Function Reference

Boards
Supported

All

Purpose Starts a DMA-mode analog input operation.

Prototype C/C++
DASErr far pascal K_DMAStart (DWORD hFrame);

Turbo Pascal
Function K_DMAStart (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStart (hFrame : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DMAStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KDMASTART% ALIAS "K_DMAStart"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the DMA-mode operation defined by hFrame.

See Also K_DMAStatus, K_DMAStop

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_DMAStart (hAD);

K_DMAStart (cont.)

4-57

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_DMAStart (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_DMAStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_DMAStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KDMAStart% (hAD)

K_DMAStatus

4-58 Function Reference

Boards
Supported

All

Purpose Gets status of a DMA-mode analog input operation.

Prototype C/C++
DASErr far pascal K_DMAStatus (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_DMAStatus (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStatus (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DMAStatus Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC
DECLARE FUNCTION KDMASTATUS% ALIAS "K_DMAStatus"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,
SEG pCount AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of DMA-mode analog input operation.
Value stored:0 for DMA operation idle

1 for DMA operation active

pCount Number of samples that were acquired into the
current buffer.

K_DMAStatus (cont.)

4-59

Return Value Error/status code. Refer to Appendix A.

Remarks For the DMA operation defined by hFrame, this function stores the status
in pStatus and the number of samples acquired in pCount.

A DMA data overrun occurs if data is lost when the transfer of data
between memory and the board is slower than the rate at which the
hardware requests the data.

See Also K_DMAStart, K_DMAStop

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_DMAStatus (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_DMAStatus (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_DMAStatus (hAD, wStatus, dwCount);

K_DMAStatus (cont.)

4-60 Function Reference

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_DMAStatus (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wStatus AS INTEGER
DIM dwCount AS LONG
...
wDasErr = KDMAStatus% (hAD, wStatus, dwCount)

K_DMAStop

4-61

Boards
Supported

All

Purpose Stops a DMA-mode analog input operation.

Prototype C/C++
DASErr far pascal K_DMAStop (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_DMAStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_DMAStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DMAStop Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As
Integer

BASIC
DECLARE FUNCTION KDMASTOP% ALIAS "K_DMAStop"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,
SEG pCount AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of DMA-mode analog input operation.
Value stored:0 for DMA operation idle

1 for DMA operation active

pCount Number of samples that were acquired into the
current buffer.

K_DMAStop (cont.)

4-62 Function Reference

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops the DMA-mode operation defined by hFrame and
stores the status of the DMA-mode operation in pStatus and the number
of samples acquired in pCount.

A DMA data overrun occurs if data is lost when the transfer of data
between memory and the board is slower than the rate at which the
hardware requests the data.

If a DMA operation is not in progress, K_DMAStop is ignored.

See Also K_DMAStart, K_DMAStatus

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_DMAStop (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_DMAStop (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_DMAStop (hAD, wStatus, dwCount);

K_DMAStop (cont.)

4-63

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_DMAStop (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wStatus AS INTEGER
DIM dwCount AS LONG
...
wDasErr = KDMAStop% (hAD, wStatus, dwCount)

K_DOWrite

4-64 Function Reference

Boards
Supported

All

Purpose Writes a single digital output value to the digital output channel.

Prototype C/C++
DASErr far pascal K_DOWrite (DWORD hDev, BYTE nChan,
DWORD dwData);

Turbo Pascal
Function K_DOWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word;

Turbo Pascal for Windows
Function K_DOWrite (hDev : Longint; nChan : Byte;
dwData : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DOWrite Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal dwData As Long) As Integer

BASIC
DECLARE FUNCTION KDOWRITE% ALIAS "K_DOWrite"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL dwData AS LONG)

Parameters hDev Handle associated with the board.

nChan Digital output channel.
Valid value: 0

dwData Digital output value.

Return Value Error/status code. Refer to Appendix A.

K_DOWrite (cont.)

4-65

Remarks This function writes the value dwData to the digital output lines on the
board specified by hDev.

Refer to page 2-46 for a description of the digital I/O lines.

See Also K_IntStart, K_SyncStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwDOValue;
...
dwDOValue = 0x5;
wDasErr = K_DOWrite (hDev, 0, dwDOValue);

Turbo Pascal
uses D1600TP7;
...
dwDOValue : Longint;
...
dwDOValue := $5;
wDasErr := K_DOWrite (hDev, 0, dwDOValue);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
dwDOValue : Longint;
...
dwDOValue := $5;
wDasErr := K_DOWrite (hDev, 0, dwDOValue);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global dwDOValue As Long
...
dwDOValue = &H5
wDasErr = K_DOWrite (hDev, 0, dwDOValue)

K_DOWrite (cont.)

4-66 Function Reference

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM dwDOValue AS LONG
...
dwDOValue = &H5
wDasErr = KDOWrite% (hDev, 0, dwDOValue)

K_FormatChnGAry

4-67

Boards
Supported

DAS-1601, DAS-1602, DAS-1401, DAS-1402

Purpose Converts the format of a channel-gain queue.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KFORMATCHNGARY% ALIAS
"K_FormatChnGAry" (SEG pArray AS INTEGER)

Parameters pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks This function converts a channel-gain queue created using BASIC or
Visual Basic for Windows using double-byte (16-bit) values into a
channel-gain queue of single-byte (8-bit) values that the K_SetChnGAry
function can use, and stores the starting address of the converted
channel-gain queue in pArray.

After you use this function, your program can no longer read the
converted queue. You must use the K_RestoreChnGAry function to
return the list to its original format.

You cannot use a channel-gain queue with DAS-1200 Series boards.

K_FormatChnGAry (cont.)

4-68 Function Reference

See Also K_SetChnGAry, K_RestoreChnGAry

Usage

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global ChanGainArray(16) As Integer ' Chan/Gain array
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = KFormatChnGAry% (ChanGainArray(0))

K_FreeDevHandle

4-69

Boards
Supported

All

Purpose Frees a previously specified device handle.

Prototype C/C++
DASErr far pascal K_FreeDevHandle (DWORD hDev);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_FreeDevHandle (hDev : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal hDev As Long) As Integer

BASIC
Not supported

Parameters hDev Device handle you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the device handle specified by hDev as well as all
frame handles associated with hDev.

See Also K_GetDevHandle

K_FreeDevHandle (cont.)

4-70 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_FreeDevHandle (hDev);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_FreeDevHandle (hDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_FreeDevHandle (hDev)

K_FreeFrame

4-71

Boards
Supported

All

Purpose Frees a frame.

Prototype C/C++
DASErr far pascal K_FreeFrame (DWORD hFrame);

Turbo Pascal
Function K_FreeFrame (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_FreeFrame (hFrame : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KFREEFRAME% ALIAS "K_FreeFrame"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to frame you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the frame specified by hFrame, making the frame
available for another operation.

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

K_FreeFrame (cont.)

4-72 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_FreeFrame (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_FreeFrame (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_FreeFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KFreeFrame% (hAD)

K_GetADConfig

4-73

Boards
Supported

All

Purpose Get a DAS board’s analog input channel configuration.

Prototype C/C++
DASErr far pascal K_GetADConfig (DWORD hDev,
WORD far *pMode);

Turbo Pascal
Function K_GetADConfig (hDev : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetADConfig (hDev : Longint; Var pMode : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetADConfig Lib "DASSHELL.DLL"
(ByVal hDev As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGETADCONFIG% ALIAS
"K_GetADConfig" (BYVAL hDev AS LONG,
SEG pMode AS INTEGER)

Parameters hDev Handle associated with the board.

pMode Analog input channel configuration.
Value stored:0 for Differential

1 for Single-ended

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the code that
indicates the analog input channel configuration in pMode.

K_GetADConfig (cont.)

4-74 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wADConfig;
...
wDasErr = K_GetADConfig (hDev, &wADConfig);

Turbo Pascal
uses D1600TP7;
...
wADConfig : Word;
...
wDasErr := K_GetADConfig (hDev, wADConfig);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wADConfig : Word;
...
wDasErr := K_GetADConfig (hDev, wADConfig);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wADConfig As Integer
...
wDasErr = K_GetADConfig (hDev, wADConfig)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wADConfig AS INTEGER
...
wDasErr = KGetADConfig% (hDev, wADConfig)

K_GetADFrame

4-75

Boards
Supported

All

Purpose Accesses an A/D frame for an analog input operation.

Prototype C/C++
DASErr far pascal K_GetADFrame (DWORD hDev,
DWORD far * phFrame);

Turbo Pascal
Function K_GetADFrame (hDev : Longint;
Var phFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetADFrame (hDev : Longint;
Var phFrame : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, phFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGETADFRAME% ALIAS "K_GetADFrame"
(BYVAL hDev AS LONG, SEG phFrame AS LONG)

Parameters hDev Handle associated with the board.

phFrame Handle to the frame that defines the operation.

Remarks This function specifies that you want to perform a DMA-mode,
interrupt-mode, or synchronous-mode analog input operation on the
board specified by hDev, and accesses an available A/D frame with the
handle phFrame.

The frame is initialized to its default settings; refer to Table 2-1 on page
2-8 for a list of the default settings.

See Also K_ClearFrame, K_FreeFrame

K_GetADFrame (cont.)

4-76 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hAD;
...
wDasErr = K_GetADFrame (hDev, &hAD);

Turbo Pascal
uses D1600TP7;
...
hAD : Longint;
...
wDasErr := K_GetADFrame (hDev, hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
hAD : Longint;
...
wDasErr := K_GetADFrame (hDev, hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global hAD As Long
...
wDasErr = K_GetADFrame (hDev, hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM hAD AS LONG
...
wDasErr = KGetADFrame% (hDev, hAD)

K_GetADMode

4-77

Boards
Supported

All

Purpose Get a DAS board’s analog input range type.

Prototype C/C++
DASErr far pascal K_GetADMode (DWORD hDev,
WORD far *pMode);

Turbo Pascal
Function K_GetADMode (hDev : Longint; Var pMode : Word) : Word;

Turbo Pascal for Windows
Function K_GetADMode (hDev : Longint; Var pMode : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetADMode Lib "DASSHELL.DLL"
(ByVal hDev As Long, pMode As Integer) As Integer

BASIC
DECLARE FUNCTION KGETADMODE% ALIAS "K_GetADMode"
(BYVAL hDev AS LONG, SEG pMode AS INTEGER)

Parameters hDev Handle associated with the board.

pMode Analog input range type.
Value stored:0 for Bipolar

1 for Unipolar

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the code that
indicates the analog input range type in pMode.

K_GetADMode (cont.)

4-78 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wADMode;
...
wDasErr = K_GetADMode (hDev, &wADMode);

Turbo Pascal
uses D1600TP7;
...
wADMode : Word;
...
wDasErr := K_GetADMode (hDev, wADMode);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wADMode : Word;
...
wDasErr := K_GetADMode (hDev, wADMode);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wADMode As Integer
...
wDasErr = K_GetADMode (hDev, wADMode)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wADMode AS INTEGER
...
wDasErr = KGetADMode% (hDev, wADMode)

K_GetClkRate

4-79

Boards
Supported

All

Purpose

Gets the number of clock ticks used by the internal pacer clock.

Prototype C/C++

DASErr far pascal K_GetClkRate (DWORD

hFrame

,
DWORD far

*pRate

);

Turbo Pascal

Function K_GetClkRate (

hFrame

 : Longint; Var

pRate

 : Longint) : Word;

Turbo Pascal for Windows

Function K_GetClkRate (

hFrame

 : Longint; Var

pRate

 : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long,

pRate

 As Long) As Integer

BASIC

DECLARE FUNCTION KGETCLKRATE% ALIAS "K_GetClkRate"
(BYVAL

hFrame

 AS LONG, SEG

pRate

 AS LONG)

Parameters

hFrame

Handle to the frame that defines the operation.

pRate

Number of clock ticks between conversions.

Return Value

Error/status code. Refer to Appendix A.

Remarks

For the operation defined by

hFrame

, this function stores the number of
clock ticks used by the internal pacer clock in

pRate

.

After a synchronous-mode, interrupt-mode, or DMA-mode operation, the
value stored in

pRate

 represents the actual count used, not necessarily the
count set by

K_SetClkRate

.

The

pRate

 variable contains the value of the Pacer Clock Rate element.

K_GetClkRate (cont.)

4-80 Function Reference

See Also

K_SetClkRate

Usage C/C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwRate;
...
wDasErr = K_GetClkRate (hAD, &dwRate);

Turbo Pascal

uses D1600TP7;
...
dwRate : Longint;
...
wDasErr := K_GetClkRate (hAD, dwRate);

Turbo Pascal for Windows

{$I DASDECL.INC}
...
dwRate : Longint;
...
wDasErr := K_GetClkRate (hAD, dwRate);

Visual Basic for Windows

(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global dwRate As Long
...
wDasErr = K_GetClkRate (hAD, dwRate)

BASIC

' $INCLUDE: 'DASDECL.BI'
...
DIM dwRate AS LONG
...
wDasErr = KGetClkRate% (hAD, dwRate)

K_GetDAFrame

4-81

Boards
Supported

DAS-1601, DAS-1602

Purpose

Accesses a D/A frame for an analog output operation.

Prototype C/C++

DASErr far pascal K_GetDAFrame (DWORD

hDev

,
DWORD far *

phFrame

);

Turbo Pascal

Function K_GetDAFrame (

hDev

 : Longint;
Var

phFrame

 : Longint) : Word;

Turbo Pascal for Windows

Function K_GetDAFrame (

hDev

 : Longint;
Var

phFrame

 : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_GetDAFrame Lib "DASSHELL.DLL"
(ByVal

hDev

 As Long,

phFrame

 As Long) As Integer

BASIC

DECLARE FUNCTION KGETDAFRAME% ALIAS "K_GetDAFrame"
(BYVAL

hDev

 AS LONG, SEG

phFrame

 AS LONG)

Parameters

hDev

Handle associated with the board.

phFrame

Handle to the frame that defines the analog
output operation.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function specifies that you want to perform a synchronous-mode or
interrupt-mode analog output operation on the board specified by

hDev

,
and accesses an available analog output frame with the handle

phFrame

.

The frame is initialized to its default settings; refer to Table 2-5 on page
2-32 for a list of the default settings.

K_GetDAFrame (cont.)

4-82 Function Reference

See Also

K_FreeFrame, K_ClearFrame

Usage C/C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDA;
...
wDasErr = K_GetDAFrame (hDev, &hDA);

Turbo Pascal

uses D1600TP7;
...
hDA : Longint;
...
wDasErr := K_GetDAFrame (hDev, hDA);

Turbo Pascal for Windows

{$I DASDECL.INC}
...
hDA : Longint;
...
wDasErr := K_GetDAFrame (hDev, hDA);

Visual Basic for Windows

(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global hDA As Long
...
wDasErr = K_GetDAFrame (hDev, hDA)

BASIC

' $INCLUDE: 'DASDECL.BI'
...
DIM hDA AS LONG
...
wDasErr = KGetDAFrame% (hDev, hDA)

K_GetDevHandle

4-83

Boards
Supported

All

Purpose

Initializes any Keithley DAS board.

Prototype C/C++

DASErr far pascal K_GetDevHandle (DWORD

hDrv

,
WORD

nBoardNum

, DWORD far *

phDev

);

Turbo Pascal

Not supported

Turbo Pascal for Windows

Function K_GetDevHandle (

hDrv

 : Longint;

nBoardNum

 : Integer;
Var

phDev

 : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal

hDrv

 As Long, ByVal

nBoardNum

 As Integer,

phDev

 As Long)
As Integer

BASIC

Not supported

Parameters

hDrv

Driver handle of the associated Function Call
Driver.

nBoardNum

Board number.
Valid values:

0

or

1

phDev

Handle associated with the board.

Return Value

Error/status code. Refer to Appendix A.

K_GetDevHandle (cont.)

4-84 Function Reference

Remarks

This function initializes the board associated with hDrv and specified by
nBoardNum, and stores the device handle of the specified board in phDev.

The value stored in phDev is intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored in phDev.

See Also K_FreeDevHandle

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDev;
...
wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
hDev : Longint;
...
wDasErr := K_GetDevHandle (hDrv, 0, hDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global hDev As Long
...
wDasErr = K_GetDevHandle (hDrv, 0, hDev)

K_GetDIFrame

4-85

Boards
Supported

All

Purpose Accesses a DI frame for a digital input operation.

Prototype C/C++
DASErr far pascal K_GetDIFrame (DWORD hDev,
DWORD far * phFrame);

Turbo Pascal
Function K_GetDIFrame (hDev : Longint;
Var phFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetDIFrame (hDev : Longint;
Var phFrame : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetDIFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, phFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGETDIFRAME% ALIAS "K_GetDIFrame"
(BYVAL hDev AS LONG, SEG phFrame AS LONG)

Parameters hDev Handle associated with the board.

phFrame Handle to the frame that defines the digital input
operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies that you want to perform a synchronous-mode or
interrupt-mode digital input operation on the board specified by hDev, and
accesses an available digital input frame with the handle phFrame.

The frame is initialized to its default settings; refer to Table 2-6 on page
2-42 for a list of the default settings.

K_GetDIFrame (cont.)

4-86 Function Reference

See Also K_FreeFrame, K_ClearFrame

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDI;
...
wDasErr = K_GetDIFrame (hDev, &hDI);

Turbo Pascal
uses D1600TP7;
...
hDI : Longint;
...
wDasErr := K_GetDIFrame (hDev, hDI);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
hDI : Longint;
...
wDasErr := K_GetDIFrame (hDev, hDI);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global hDI As Long
...
wDasErr = K_GetDIFrame (hDev, hDI)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM hDI AS LONG
...
wDasErr = KGetDIFrame% (hDev, hDI)

K_GetDOFrame

4-87

Boards
Supported

All

Purpose Accesses a DO frame for a digital output operation.

Prototype C/C++
DASErr far pascal K_GetDOFrame (DWORD hDev,
DWORD far * phFrame);

Turbo Pascal
Function K_GetDOFrame (hDev : Longint;
Var phFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetDOFrame (hDev : Longint;
Var phFrame : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetDOFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, phFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGETDOFRAME% ALIAS "K_GetDOFrame"
(BYVAL hDev AS LONG, SEG phFrame AS LONG)

Parameters hDev Handle associated with the board.

phFrame Handle to the frame that defines the digital
output operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies that you want to perform a synchronous-mode or
interrupt-mode digital output operation on the board specified by hDev,
and accesses an available digital output frame with the handle phFrame.

The frame is initialized to its default settings; refer to Table 2-7 on page
2-43 for a list of the default settings.

K_GetDOFrame (cont.)

4-88 Function Reference

See Also K_FreeFrame, K_ClearFrame

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDO;
...
wDasErr = K_GetDOFrame (hDev, &hDO);

Turbo Pascal
uses D1600TP7;
...
hDO : Longint;
...
wDasErr := K_GetDOFrame (hDev, hDO);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
hDO : Longint;
...
wDasErr := K_GetDOFrame (hDev, hDO);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global hDO As Long
...
wDasErr = K_GetDOFrame (hDev, hDO)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM hDO AS LONG
...
wDasErr = KGetDOFrame% (hDev, hDO)

K_GetErrMsg

4-89

Boards
Supported

All

Purpose Gets the address of an error message string.

Prototype C/C++
DASErr far pascal K_GetErrMsg (DWORD hDev, short nDASErr,
char far * far * pErrMsg);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Not supported

BASIC
Not supported

Parameters hDev Handle associated with the board.

nDASErr Error message number.

pErrMsg Address of error message string.

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the address of the
string corresponding to error message number nDASErr in pErrMsg.

Refer to page 2-4 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

K_GetErrMsg (cont.)

4-90 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
char far *pErrMsg;
...
wDasErr = K_GetErrMsg (hDev, nDasErr, &pErrMsg);

K_GetShellVer

4-91

Boards
Supported

All

Purpose Gets the current DAS shell version.

Prototype C/C++
DASErr far pascal K_GetShellVer (WORD far *pVersion);

Turbo Pascal
Function K_GetShellVer (Var pVersion : Word) : Word;

Turbo Pascal for Windows
Function K_GetShellVer (Var pVersion : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersion As Integer) As Integer

BASIC
DECLARE FUNCTION KGETSHELLVER% ALIAS "K_GetShellVer"
(SEG pVersion AS INTEGER)

Parameters pVersion A word value containing the major and minor
version numbers of the DAS shell.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stores the current DAS shell version in pVersion. To obtain
the major version number of the DAS shell, divide pVersion by 256. To
obtain the minor version number of the DAS shell, perform a Boolean
AND operation with pVersion and 255 (0FFh).

K_GetShellVer (cont.)

4-92 Function Reference

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wShellVer;
...
wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Turbo Pascal
uses D1600TP7;
...
wShellVer : Word;
...
wDasErr := K_GetShellVer (wShellVer);
FormatStr (VerStr, '%4x', wShellVer / 256, '.', wShellVer And $ff);
writeln(' Shell Ver ', VerStr);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wShellVer : Word;
...
wDasErr := K_GetShellVer (wShellVer);
FormatStr (VerStr, '%4x', wShellVer / 256, '.', wShellVer And $ff);
writeln(' Shell Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wShellVer As Integer
...
wDasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +

LTRIM$ (STR$ (wShellVer AND &HFF))
MsgBox "Shell Ver: " + ShellVer$

K_GetShellVer (cont.)

4-93

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wShellVer AS INTEGER
...
wDasErr = KGetShellVer% (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." +

LTRIM$ (STR$ (wShellVer AND &HFF))
PRINT "Shell Ver: " + ShellVer$

K_GetVer

4-94 Function Reference

Boards
Supported

All

Purpose Gets revision numbers.

Prototype C/C++
DASErr far pascal K_GetVer (DWORD hDev, short far * pSpecVer,
short far * pDrvVer);

Turbo Pascal
Function K_GetVer (hDev : Longint; Var pSpecVer : Word;
Var pDrvVer : Word) : Word;

Turbo Pascal for Windows
Function K_GetVer (hDev : Longint; Var pSpecVer : Word;
Var pDrvVer : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetVer Lib "DASSHELL.DLL"
(ByVal hDev As Long, pSpecVer As Integer, pDrvVer As Integer)
As Integer

BASIC
DECLARE FUNCTION KGETVER% ALIAS "K_GetVer"
(BYVAL hDev AS LONG, SEG pSpecVer AS INTEGER,
SEG pDrvVer AS INTEGER)

Parameters hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.

Return Value Error/status code. Refer to Appendix A.

K_GetVer (cont.)

4-95

Remarks For the board specified by hDev, this function stores the revision number
of the Function Call Driver in pDrvVer and the revision number of the
driver specification in pSpecVer.

The values stored in pSpecVer and pDrvVer are 2-byte (16-bit) integers;
the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.10, the major revision level is 2 and the minor revision level
is 10; therefore, the high byte of pDrvVer contains the value of 2 (512)
and the low byte of pDrvVer contains the value of 10; the value of both
bytes is 522.

To obtain the major version number of the Function Call Driver, divide
pDrvVer by 256; to obtain the minor version number of the Function Call
Driver, perform a Boolean AND operation with pDrvVer and 255 (0FFh).

To obtain the major version number of the driver specification, divide
pSpecVer by 256; to obtain the minor version number of the driver
specification, perform a Boolean AND operation with pSpecVer and 255
(0FFh).

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
short nSpecVer, nDrvVer;
...
wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Turbo Pascal
uses D1600TP7;
...
nSpecVer : Word;
nDrvVer : Word;
...
wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);
FormatStr (VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And $ff);
writeln(' Driver Ver ', VerStr);

K_GetVer (cont.)

4-96 Function Reference

Turbo Pascal for Windows
{$I DASDECL.INC}
...
nSpecVer : Word;
nDrvVer : Word;
...
wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);
FormatStr (VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And $ff);
writeln(' Driver Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global nSpecVer As Integer
Global nDrvVer As Integer
...
wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +

LTRIM$ (STR$ (nDrvVer AND &HFF))
MsgBox "Driver Ver: " + DrvVer$

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM nSpecVer AS INTEGER
DIM nDrvVer AS INTEGER
...
wDasErr = KGetVer% (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." +

LTRIM$ (STR$ (nDrvVer AND &HFF))
PRINT "Driver Ver: " + DrvVer$

K_IntAlloc

4-97

Boards
Supported

All

Purpose Allocates a buffer for an interrupt-mode or synchronous-mode operation.

Prototype C/C++
DASErr far pascal K_IntAlloc (DWORD hFrame, DWORD dwSamples,
void far * far *pBuf, WORD far *phMem);

Turbo Pascal
Function K_IntAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word;

Turbo Pascal for Windows
Function K_IntAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntAlloc Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long,
phMem As Integer) As Integer

BASIC
DECLARE FUNCTION KINTALLOC% ALIAS "K_IntAlloc"
(BYVAL hFrame AS LONG, BYVAL dwSamples AS LONG,
SEG pBuf AS LONG, SEG phMem AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values:

pBuf Starting address of the allocated buffer.

Analog I/O operations 1 to 5000000

Digital I/O operations 1 to 32767

K_IntAlloc (cont.)

4-98 Function Reference

phMem Handle associated with the allocated buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function allocates a buffer of
the size specified by dwSamples, and stores the starting address of the
buffer in pBuf and the handle of the buffer in phMem.

For analog input and analog output operations, the data in the allocated
buffer is stored as counts. Refer to Appendix B for information on
converting a count value to voltage (for analog input operations) or for
converting a voltage value to a count (for analog output operations).

Turbo Pascal (for DOS) and BASIC require that you redistribute available
memory before you dynamically allocate a buffer. Refer to “Reducing the
Memory Heap” on page 3-11 (Turbo Pascal) or page 3-24 (BASIC) for
additional information.

The value stored in phMem is intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored in phMem.

See Also K_IntFree, K_SetBuf

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
WORD hMem; // Memory Handle to buffer
...
wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);

Turbo Pascal
uses D1600TP7;
...
pBuf : Pointer; { buffer pointer }
hMem : Word; { Handle to buffer }
...
wDasErr := K_IntAlloc (hAD, 1000, pBuf, hMem);

K_IntAlloc (cont.)

4-99

Turbo Pascal for Windows
{$I DASDECL.INC}
...
pBuf : Pointer; { buffer pointer }
hMem : Word; { Handle to buffer }
...
wDasErr := K_IntAlloc (hAD, 1000, pBuf, hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global pBuf As Long
Global hMem As Integer
...
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf AS LONG
DIM hMem AS INTEGER
...
wDasErr = KIntAlloc% (hAD, 1000, pBuf, hMem)

K_IntFree

4-100 Function Reference

Boards
Supported

All

Purpose Frees a buffer allocated for an interrupt-mode or synchronous-mode
operation.

Prototype C/C++
DASErr far pascal K_IntFree (WORD hMem);

Turbo Pascal
Function K_IntFree (hMem : Word) : Integer;

Turbo Pascal for Windows
Function K_IntFree (hMem : Word) : Integer; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal hMem As Integer) As Integer

BASIC
DECLARE FUNCTION KINTFREE% ALIAS "K_IntFree"
(BYVAL hMem AS INTEGER)

Parameters hMem Handle to interrupt buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the buffer specified by hMem; the buffer was
previously allocated dynamically using K_IntAlloc .

See Also K_IntAlloc

K_IntFree (cont.)

4-101

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_IntFree (hMem);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_IntFree (hMem);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_IntFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_IntFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KIntFree% (hMem)

K_IntStart

4-102 Function Reference

Boards
Supported

All

Purpose Starts an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStart (DWORD hFrame);

Turbo Pascal
Function K_IntStart (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStart (hFrame : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KINTSTART% ALIAS "K_IntStart"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the interrupt operation defined by hFrame.

Refer to the following pages for an illustration of the programming tasks
associated with interrupt-mode operations:

Analog input page 1-8

Analog output page 1-14

Digital input page 1-18

Digital output page 1-21

K_IntStart (cont.)

4-103

See Also K_IntStatus, K_IntStop

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_IntStart (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_IntStart (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_IntStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KIntStart% (hAD)

K_IntStatus

4-104 Function Reference

Boards
Supported

All

Purpose Gets status of interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStatus (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_IntStatus (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStatus (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long)
As Integer

BASIC
DECLARE FUNCTION KINTSTATUS% ALIAS "K_IntStatus"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,
SEG pCount AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt operation.
See Remarks below for value stored

pCount Current number of samples transferred.

Return Value Error/status code. Refer to Appendix A.

K_IntStatus (cont.)

4-105

Remarks For the interrupt-mode operation defined by hFrame, this function stores
the status in pStatus and the number of samples acquired in pCount.

A data overrun/underrun occurs if data is lost when the transfer of data to
or from computer memory cannot keep up with the clock rate.

The value stored in pStatus depends on the settings in the Status word, as
shown below:

The bits are described as follows:

● Bit 0: Indicates whether an interrupt-mode operation is in progress.

● Bits 1 and 2: For input operations, these bits indicate whether a data
overrun occurred. For output operations, these bits indicate whether a
data underrun occurred. The overrun or underrun event automatically
stops all conversions.

Both bits 1 and 2 are set when the driver detects an overrun/underrun
event. It is recommended that you read bit 2 only; bit 1 is set to
provide compatibility with previous revisions of the driver.

● Bits 3 to 15: Unassigned.

See Also K_IntStart, K_IntStop

Bit 0123456789101112131415

0 = Interrupt operation inactive
1 = Interrupt operation active

00 = No data overrun/underrun
11 = Data overrun/underrun

K_IntStatus (cont.)

4-106 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_IntStatus (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_IntStatus (hAD, wStatus, dwCount);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStatus (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wStatus AS INTEGER
DIM dwCount AS LONG
...
wDasErr = KIntStatus% (hAD, wStatus, dwCount)

K_IntStop

4-107

Boards
Supported

All

Purpose Stops an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Turbo Pascal
Function K_IntStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStop (hFrame : Longint; Var pStatus : Word;
Var pCount : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntStop Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long)
As Integer

BASIC
DECLARE FUNCTION KINTSTOP% ALIAS "K_IntStop"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,
SEG pCount AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt operation.

pCount Number of samples.

Return Value Error/status code. Refer to Appendix A.

K_IntStop (cont.)

4-108 Function Reference

Remarks This function stops the interrupt operation defined by hFrame and stores
the status of the interrupt operation in pStatus and the number of samples
acquired in pCount.

Refer to page 4-105 for the meaning of the value stored in pStatus.

A data overrun/underrun occurs if data is lost when the transfer of data
between computer memory and the board is too slow.

If an interrupt-mode operation is not in progress, K_IntStop is ignored.

See Also K_IntStart, K_IntStatus

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStop (hAD, &wStatus, &dwCount);

Turbo Pascal
uses D1600TP7;
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_IntStop (hAD, wStatus, dwCount);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wStatus : Word;
dwCount : Longint;
...
wDasErr := K_IntStop (hAD, wStatus, dwCount);

K_IntStop (cont.)

4-109

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStop (hAD, wStatus, dwCount)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wStatus AS INTEGER
DIM dwCount AS LONG
...
wDasErr = KIntStop% (hAD, wStatus, dwCount)

KMakeDMABuf

4-110 Function Reference

Boards
Supported

All

Purpose Converts a local array to a buffer suitable for a DMA-mode operation.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Not supported

BASIC
DECLARE FUNCTION KMakeDMABuf% (dwSamples AS LONG,
pBuf() AS INTEGER, pBufAddr AS LONG, pStartIx AS INTEGER)

Parameters dwSamples Number of samples.

pBuf $DYNAMIC integer array.

pBufAddr Starting address of the DMA buffer.

pStartIx Index into pBuf that identifies the location in
which the first sample is stored.

Return Value Error/status code. Refer to Appendix A.

KMakeDMABuf (cont.)

4-111

Remarks This function ensures that the array address provided to K_SetDMABuf
is suitable for a DMA-mode analog input operation.

Instead of using this function, it is recommended that you use the BASIC
SetMem function in conjunction with the K_DMAAlloc function to
allocate a memory buffer. Refer to page 3-24 for more information.

See Also K_SetDMABuf

Usage

BASIC
' $INCLUDE: 'DASDECL.BI'
...
$DYNAMIC DIM ADBuf(10000)As Integer
$STATIC
DIM pDMABuf AS LONG
...
wDasErr = KMakeDMABuf% (dwSamples, ADBuf, pDMABuf, pStartIx)

K_MoveArrayToBuf

4-112 Function Reference

Boards
Supported

All

Purpose Transfers data from a local array within the program to a buffer allocated
through K_IntAlloc or K_DMAAlloc .

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_MoveArrayToBuf Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByVal pDest As Long, pSource As Integer,
ByVal nCount As Integer) As Integer

BASIC
DECLARE FUNCTION KMOVEARRAYTOBUF% ALIAS
"K_MoveDataBuf" (ByVal pDest As Long, SEG pSource As Integer,
ByVal nCount As Integer)

Parameters pDest Address of destination buffer.

pSource Address of source array.

nCount Number of samples to transfer.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

K_MoveArrayToBuf (cont.)

4-113

Remarks This function transfers the number of samples specified by nCount from
the array at address pSource to the buffer at address pDest.

If the buffer used to store output data for your program was allocated
through K_IntAlloc or K_DMAAlloc , the data in the buffer is not
accessible to the program; you must use K_MoveArrayToBuf to move
the data from a local array within the program to a dynamically allocated
buffer. If the array used to store output data for your program was
dimensioned locally within the program’s memory area, the data in the
array is accessible to your program and you do not have to use this
function.

See Also K_DMAAlloc, K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Dim DACArray(2000) As Integer
...
wDasErr = K_IntAlloc (hDA, 1000, pBuf, hMem)
...
wDasErr = K_MoveArrayToBuf (pBuf, DACArray(0), 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM DACArray(2000) AS INTEGER
...
wDasErr = KIntAlloc% (hDA, dwSamples, pBuf, hMem)
...
wDasErr = KMoveArrayToBuf% (pBuf, DACArray(0), 1000)

K_MoveArrayToBufL

4-114 Function Reference

Boards
Supported

All

Purpose Transfers data from a local long array within the program to a buffer
allocated through K_IntAlloc or K_DMAAlloc .

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_MoveArrayToBufL Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByVal pDest As Long, pSource As Long,
ByVal nCount As Integer) As Integer

BASIC
DECLARE FUNCTION KMOVEARRAYTOBUFL% ALIAS
"K_MoveDataBuf" (ByVal pDest As Long, SEG pSource As Long,
ByVal nCount As Integer)

Parameters pDest Address of destination buffer.

pSource Address of source array.

nCount Number of samples to transfer.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

K_MoveArrayToBufL (cont.)

4-115

Remarks This function transfers the number of samples specified by nCount from
the array at address pSource to the buffer at address pDest.

This function is intended for digital output operations when you are
writing to more than 16 digital output lines.

If the buffer used to store output data for your program was allocated
through K_IntAlloc or K_DMAAlloc , the data in the buffer is not
accessible to the program; you must use K_MoveArrayToBufL to move
the data from a local array within the program to a dynamically allocated
buffer. If the long array used to store output data for your program was
dimensioned locally within the program’s memory area, the data in the
array is accessible to your program and you do not have to use this
function.

See Also K_DMAAlloc, K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Dim DOArray(2000) As Integer
...
wDasErr = K_IntAlloc (hDO, 1000, pBuf, hMem)
...
wDasErr = K_MoveArrayToBufL (pBuf, DOArray(0), 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM DOArray(2000) AS INTEGER
...
wDasErr = KIntAlloc% (hDO, dwSamples, pBuf, hMem)
...
wDasErr = KMoveArrayToBufL% (pBuf, DOArray(0), 1000)

K_MoveBufToArray

4-116 Function Reference

Boards
Supported

All

Purpose Transfers data from a buffer allocated through K_IntAlloc or
K_DMAAlloc to a local array within your program.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (pDest As Integer, ByVal pSource As Long,
ByVal nCount As Integer) As Integer

BASIC
DECLARE FUNCTION KMOVEBUFTOARRAY% ALIAS
"K_MoveDataBuf" (SEG pDest As Integer, ByVal pSource As Long,
ByVal nCount As Integer)

Parameters pDest Address of destination array.

pSource Address of source buffer.

nCount Number of samples to transfer.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

K_MoveBufToArray (cont.)

4-117

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the array at address pDest.

If the buffer used to store acquired data for your program was allocated
through K_IntAlloc or K_DMAAlloc , the data in the buffer is not
accessible to your program and you must use K_MoveBufToArray to
move the data from the allocated buffer to a local array within your
program. If the array used to store acquired data for your program was
dimensioned locally within the program’s memory area, the data in the
array is accessible to your program and you do not have to use this
function.

See Also K_DMAAlloc, K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Dim ADArray(2000) As Integer
...
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)
...
wDasErr = K_MoveBufToArray (ADArray(0), pBuf, 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ADArray(2000) AS INTEGER
...
wDasErr = KIntAlloc% (hAD, 1000, pBuf, hMem)
...
wDasErr = KMoveBufToArray% (ADArray(0), pBuf, 1000)

K_MoveBufToArrayL

4-118 Function Reference

Boards
Supported

All

Purpose Transfers data from a buffer allocated through K_IntAlloc or
K_DMAAlloc to a local long array within your program.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_MoveBufToArrayL Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (pDest As Long, ByVal pSource As Long,
ByVal nCount As Integer) As Integer

BASIC
DECLARE FUNCTION KMOVEBUFTOARRAYL% ALIAS
"K_MoveDataBuf" (SEG pDest As Long, ByVal pSource As Long,
ByVal nCount As Integer)

Parameters pDest Address of destination array.

pSource Address of source buffer.

nCount Number of samples to transfer.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

K_MoveBufToArrayL (cont.)

4-119

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the array at address pDest.

This function is intended for digital input operations when you are
reading more than 16 digital input lines.

If the buffer used to store acquired data for your program was allocated
through K_IntAlloc or K_DMAAlloc , the data in the buffer is not
accessible to your program and you must use K_MoveBufToArrayL to
move the data from the allocated buffer to a local long array within your
program. If the long array used to store acquired data for your program
was dimensioned locally within the program’s memory area, the data in
the array is accessible to your program and you do not have to use this
function.

See Also K_DMAAlloc, K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Dim DIArray(2000) As Integer
...
wDasErr = K_IntAlloc (hDI, 1000, pBuf, hMem)
...
wDasErr = K_MoveBufToArrayL (DIArray(0), pBuf, 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM DIArray(2000) AS INTEGER
...
wDasErr = KIntAlloc% (hDI, 1000, pBuf, hMem)
...
wDasErr = KMoveBufToArrayL% (DIArray(0), pBuf, 1000)

K_MoveDataBuf

4-120 Function Reference

Boards
Supported

All

Purpose Moves a specified number of samples from one memory area to another.

Prototype C/C++
DASErr far pascal K_MoveDataBuf (short far *pDest,
short far *pSource, WORD nCount) ;

Turbo Pascal
Function K_MoveDataBuf (pDest : Longint; pSource : Longint;
nCount : Word) : Integer;

Turbo Pascal for Windows
Function K_MoveDataBuf (pDest : Longint; pSource : Longint;
nCount : Word) : Integer; far; external ’DASSHELL’;

Visual Basic for Windows
Declare Function K_MoveDataBuf Lib "DASSHELL.DLL"
(pDest As Integer, ByVal pSource As Long, ByVal nCount As Integer)
As Integer

BASIC
DECLARE FUNCTION KMOVEDATABUF% ALIAS
"K_MoveDataBuf" (SEG pDest AS INTEGER,
BYVAL pSource AS LONG, BYVAL nCount AS INTEGER)

Parameters pDest Address of destination buffer.

pSource Address of source buffer.

nCount Number of samples to transfer.
Value values:1 to 32767

Return Value Error/status code. Refer to Appendix A.

K_MoveDataBuf (cont.)

4-121

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the array at address pDest.

See Also K_DMAAlloc, K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)
...
wDasErr = K_MoveDataBuf (ADArray[0], pBuf, 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KIntAlloc% (hAD, 1000, pBuf, hMem)
...
wDasErr = KMoveDataBuf% (ADArray[0], pBuf, 1000)

K_OpenDriver

4-122 Function Reference

Boards
Supported

All

Purpose Initializes any Keithley DAS Function Call Driver.

Prototype C/C++
DASErr far pascal K_OpenDriver (char far * szDrvName,
char far * szCfgName, DWORD far * phDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_OpenDriver (Var szDrvName : char; Var szCfgName : char;
Var phDrv : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvName As String, ByVal szCfgName As String,
phDrv As Long) As Integer

BASIC
Not supported

Parameters szDrvName Driver name.
Valid value: "DAS1600" (for
DAS-1600/1400/1200 Series boards)

szCfgName Driver configuration file.
Valid value: The name of a configuration file;
0 if the driver has already been opened

phDrv Handle associated with the driver.

Return Value Error/status code. Refer to Appendix A.

K_OpenDriver (cont.)

4-123

Remarks This function initializes the DAS-1600/1400/1200 Series Function Call
Driver according to the information in the configuration file specified by
szCfgName, and stores the driver handle in phDrv.

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board.

For DAS-1600/1400/1200 Series boards, the string stored in szDrvName
must be DAS1600.

The value stored in phDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in phDrv.

You create a configuration file using the CFG1600.EXE utility. Refer to
your board user’s guide for more information. If szCfgName = 0,
K_OpenDriver checks whether the driver has already been opened and
linked to a configuration file and if it has, uses the current configuration;
this is useful in the Windows environment.

See Also DAS1600_DevOpen

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
DWORD hDrv;
...
wDasErr = K_OpenDriver ("DAS1600", "DAS1600.CFG", &hDrv);

Turbo Pascal for Windows
{$I DASDECL.INC}
szDrvName : String;
szCfgName : String;
hDrv : Longint;
...
szDrvName := 'DAS1600' + #0;
szCfgName := 'DAS1600.CFG' + #0;
wDasErr := K_OpenDriver (szDrvName[1], szCfgName[1], hDrv);

K_OpenDriver (cont.)

4-124 Function Reference

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

DIM hDrv As Long
...
wDasErr = K_OpenDriver ("DAS1600", "DAS1600.CFG", hDrv)

K_RestoreChnGAry

4-125

Boards
Supported

DAS-1601, DAS-1602, DAS-1401, DAS-1402

Purpose Restores a converted channel-gain queue.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KRESTORECHNGARY% ALIAS
"K_RestoreChnGAry" (SEG pArray AS INTEGER)

Parameters pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks This function restores the channel-gain queue at the address specified by
pArray to its original format so that it can be used by your BASIC or
Visual Basic for Windows program. The channel-gain queue was
converted using K_FormatChnGAry .

You cannot use a channel-gain queue with DAS-1200 Series boards.

See Also K_FormatChnGAry, K_SetChnGAry

K_RestoreChnGAry (cont.)

4-126 Function Reference

Usage

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global ChanGainArray(16) As Integer ' Chan/Gain array
...
wDasErr = K_RestoreChnGAry (ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array
...
wDasErr = KRestoreChnGAry% (ChanGainArray(0))

K_SetADFreeRun

4-127

Boards
Supported

All

Purpose Specifies burst conversion mode.

Prototype C/C++
DASErr far pascal K_SetADFreeRun (DWORD hFrame);

Turbo Pascal
Function K_SetADFreeRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_SetADFreeRun (hFrame : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetADFreeRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSETADFREERUN% ALIAS
"K_SetADFreeRun" (BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the conversion mode for the operation defined by
hFrame to burst mode. Refer to page 2-20 for information on conversion
modes.

See Also K_ClrADFreeRun

K_SetADFreeRun (cont.)

4-128 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetADFreeRun (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetADFreeRun (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetADFreeRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetADFreeRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetADFreeRun% (hAD)

K_SetADTrig

4-129

Boards
Supported

All

Purpose Sets up an analog trigger.

Prototype C/C++
DASErr far pascal K_SetADTrig (DWORD hFrame, short nOpt,
short nChan, DWORD dwLevel);

Turbo Pascal
Function K_SetADTrig (hFrame : Longint; nOpt : Word; nChan : Word;
dwLevel : Longint) : Word;

Turbo Pascal for Windows
Function K_SetADTrig (hFrame : Longint; nOpt : Word; nChan : Word;
dwLevel : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nOpt As Integer,
ByVal nChan As Integer, ByVal dwLevel As Long) As Integer

BASIC
DECLARE FUNCTION KSETADTRIG% ALIAS "K_SetADTrig"
(BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER,
BYVAL nChan AS INTEGER, BYVAL dwLevel AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

K_SetADTrig (cont.)

4-130 Function Reference

nOpt Analog trigger polarity and sensitivity.
Valid values:

nChan Analog input channel used as trigger channel.
Valid values: 0 to 255

dwLevel Level at which the trigger event occurs.
Valid values: 0 to 4095

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the channel
used for an analog trigger in nChan, the level used for the analog trigger
in dwLevel, and the trigger polarity and trigger sensitivity in nOpt.

You specify the value for dwLevel in counts. Refer to Appendix B for
information on converting the actual voltage to a count.

The nOpt variable sets the value of the Trigger Polarity and Trigger
Sensitivity elements.

The nChan variable sets the value of the Trigger Channel element.

The dwLevel variable sets the value of the Trigger Level element.

K_SetADTrig does not affect the operation defined by hFrame unless the
Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_SyncStart, K_IntStart , or
K_DMAStart .

See Also K_SetTrig

Value Polarity Sensitivity

0 Positive Edge-sensitive

1 Positive Level-sensitive

2 Negative Edge-sensitive

3 Negative Level-sensitive

K_SetADTrig (cont.)

4-131

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetADTrig (hAD, 0, 0, 2047);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetADTrig (hAD, 0, 0, 2047);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetADTrig (hAD, 0, 0, 2047);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetADTrig (hAD, 0, 0, 2047)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetADTrig% (hAD, 0, 0, 2047)

K_SetBuf

4-132 Function Reference

Boards
Supported

All

Purpose Specifies the starting address of a previously allocated or dimensioned
buffer and the number of samples in the buffer.

Prototype C/C++
DASErr far pascal K_SetBuf (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Turbo Pascal
Function K_SetBuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_SetBuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

BASIC
DECLARE FUNCTION KSETBUF% Alias "K_SetBuf"
(BYVAL hFrame AS LONG, BYVAL pBuf AS LONG,
BYVAL dwSize AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values:

Analog I/O operations 1 to 5000000

Digital I/O operations 1 to 32767

K_SetBuf (cont.)

4-133

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of a previously allocated buffer in pBuf and the number of
samples (the size of the buffer) in dwSamples.

For C and Pascal programs, use this function whether you dimensioned
your array locally or allocated your buffer dynamically using
K_IntAlloc . For a buffer allocated dynamically using K_DMAAlloc , use
K_SetDMABuf .

For C, make sure that you use proper typecasting to prevent C/C++
type-mismatch warnings. For Pascal, a special procedure is needed to
satisfy the type-checking requirements; refer to page 3-12 for more
information.

For Visual Basic for Windows and BASIC, use this function only for a
buffer allocated dynamically using K_IntAlloc . For a buffer allocated
dynamically using K_DMAAlloc , use K_SetDMABuf . For a locally
dimensioned array, use K_SetBufI.

The pBuf variable sets the value of the Buffer element.

The dwSamples variable sets the value of the Number of Samples
element.

See Also K_DMAAlloc, K_IntAlloc, K_SetBufI, K_SetDMABuf

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 1000);

K_SetBuf (cont.)

4-134 Function Reference

Turbo Pascal
uses D1600TP7;
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_IntAlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_IntAlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global pBuf As Long
...
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)
wDasErr = K_SetBuf (hAD, pBuf, 1000)

BASIC
’ $INCLUDE: ’DASDECL.BI’
...
DIM pBuf AS LONG
...
wDasErr = KIntAlloc% (hAD, 1000, pBuf, hMem)
wDasErr = KSetBuf% (hAD, pBuf, 1000)

K_SetBufI

4-135

Boards
Supported

All

Purpose Specifies the starting address of a locally dimensioned integer array and
the number of samples in the array.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_SetBufI Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrame As Long, pBuf As Integer, ByVal dwSize As Long)
As Integer

BASIC
DECLARE FUNCTION KSETBUFI% Alias "K_SetBuf"
(BYVAL hFrame AS LONG, SEG pBuf AS INTEGER,
BYVAL dwSize AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the locally dimensioned
integer array.

dwSize Number of samples.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

K_SetBufI (cont.)

4-136 Function Reference

Remarks For the operation defined by hFrame, this function specifies the starting
address of a locally dimensioned integer buffer in pBuf and the number of
samples stored in the buffer in dwSize.

Do not use this function for C and Pascal; for these languages, use
K_SetBuf.

For Visual Basic for Windows and BASIC, use this function only for a
locally dimensioned array. For a buffer allocated dynamically using
K_IntAlloc , use K_SetBuf. For a buffer allocated dynamically using
K_DMAAlloc , use K_SetDMABuf .

The pBuf variable sets the value of the Buffer element.

The dwSize variable sets the value of the Number of Samples element.

See Also K_DMAAlloc, K_IntAlloc, K_SetBuf, K_SetDMABuf

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Dim ADData(2000) As Integer
...
wDasErr = K_SetBufI (hAD, ADData(0), 2000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
Dim ADData(2000) AS LONG
...
wDasErr = KSetBufI% (hAD, ADData(0), 2000)

K_SetBufL

4-137

Boards
Supported

All

Purpose Specifies the starting address of a locally dimensioned long array and the
number of samples in the array.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_SetBufL Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrame As Long, pBuf As Long, ByVal dwSize As Long)
As Integer

BASIC
DECLARE FUNCTION KSETBUFL% Alias "K_SetBuf"
(BYVAL hFrame AS LONG, SEG pBuf AS LONG,
BYVAL dwSize AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the user-dimensioned long
array.

dwSize Number of samples.

Return Value Error/status code. Refer to Appendix A.

K_SetBufL (cont.)

4-138 Function Reference

Remarks For the operation defined by hFrame, this function specifies the starting
address of a locally dimensioned long array in pBuf and the number of
samples stored in the buffer in dwSize.

This function is useful for digital I/O operations when you are accessing
more than 16 of the digital input or digital output lines.

Do not use this function for C and Pascal; for these languages, use
K_SetBuf.

For Visual Basic for Windows and BASIC, use this function only for a
locally dimensioned array. For a buffer allocated dynamically using
K_IntAlloc , use K_SetBuf. For a buffer allocated dynamically using
K_DMAAlloc , use K_SetDMABuf .

The pBuf variable sets the value of the Buffer element.

The dwSize variable sets the value of the Number of Samples element.

See Also K_DMAAlloc, K_IntAlloc, K_SetBuf, K_SetDMABuf

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Dim DOData(2000) As Long
...
wDasErr = K_SetBufL (hAD, DOData(0), 2000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
Dim DOData(2000) AS LONG
...
wDasErr = KSetBufL% (hAD, DOData(0), 2000)

K_SetBurstTicks

4-139

Boards
Supported

All

Purpose Specifies the count value used to adjust the settling time.

Prototype C/C++
DASErr far pascal K_SetBurstTicks (DWORD hFrame, short nTicks);

Turbo Pascal
Function K_SetBurstTicks (hFrame : Longint; nTicks : Word) : Word;

Turbo Pascal for Windows
Function K_SetBurstTicks (hFrame : Longint; nTicks : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetBurstTicks Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nTicks As Integer) As Integer

BASIC
DECLARE FUNCTION KSETBURSTTICKS% ALIAS
"K_SetBurstTicks" (BYVAL hFrame AS LONG,
BYVAL nTicks AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nTicks Count value used to adjust the settling time.
Valid values: 2 to 255

Return Value Error/status code. Refer to Appendix A.

K_SetBurstTicks (cont.)

4-140 Function Reference

Remarks For the operation defined by hFrame, this function specifies the count
value used to adjust the settling time in nTicks.

Refer to page 2-20 for more information.

See Also K_SetADFreeRun

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
wDasErr = K_SetBurstTicks (hAD, 10);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetBurstTicks (hAD, 10);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetBurstTicks (hAD, 10);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetBurstTicks (hAD, 10)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetBurstTicks% (hAD, 10)

K_SetChn

4-141

Boards
Supported

All

Purpose Specifies a single channel.

Prototype C/C++
DASErr far pascal K_SetChn (DWORD hFrame, short nChan);

Turbo Pascal
Function K_SetChn (hFrame : Longint; nChan : Word) : Word;

Turbo Pascal for Windows
Function K_SetChn (hFrame : Longint; nChan : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nChan As Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHN% ALIAS "K_SetChn"
(BYVAL hFrame AS LONG, BYVAL nChan AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform operation.
Valid values: 0 to 255 (analog input)

0 or 1 (analog output)

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the single
channel used in nChan.

The nChan variable sets the Start Channel element and the Stop Channel
element.

K_SetChn (cont.)

4-142 Function Reference

See Also K_SetStartStopChn, K_SetStartStopG

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetChn (hAD, 2);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetChn (hAD, 2);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetChn (hAD, 2);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetChn (hAD, 2)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetChn% (hAD, 2)

K_SetChnGAry

4-143

Boards
Supported

DAS-1601, DAS-1602, DAS-1401, DAS-1402

Purpose Specifies the starting address of a channel-gain queue.

Prototype C/C++
DASErr far pascal K_SetChnGAry (DWORD hFrame, void far *pArray);

Turbo Pascal
Function K_SetChnGAry (hFrame : Longint;
Var pArray : Integer) : Word;

Turbo Pascal for Windows
Function K_SetChnGAry (hFrame : Longint;
Var pArray : Integer) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHNGARY% ALIAS "K_SetChnGAry"
(BYVAL hFrame AS LONG, SEG pArray AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of the channel-gain queue in pArray.

The pArray variable sets the value of the Channel-Gain Queue element.

Refer to page 2-19 for information on setting up a channel-gain queue.

K_SetChnGAry (cont.)

4-144 Function Reference

If you created your channel-gain queue in BASIC or Visual Basic for
Windows, you must use K_FormatChnGAry to convert the channel-gain
queue before you specify the address with K_SetChnGAry.

You cannot use a channel-gain queue with DAS-1200 Series boards.

See Also K_FormatChnGAry, K_RestoreChnGAry

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
// (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
 0, 0, // chan 0, gain 1
 1, 1}; // chan 1, gain 2
...
wDasErr = K_SetChnGAry (hAD, &ChanGainArray);

Turbo Pascal
uses D1600TP7;
...
{ Define Gain/Channel array type }
TYPE GainChanTable = Record

num_of_codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of_codes : (8); { # of chan/gain pairs }
queue : (0,0, 1,1)

);
...
wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

K_SetChnGAry (cont.)

4-145

Turbo Pascal for Windows
{$I DASDECL.INC}
...
{ Define Gain/Channel array type }
TYPE GainChanTable = Record

num_of_codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of_codes : (8); { # of chan/gain pairs }
queue : (0,0, 1,1)

);
...
wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global ChanGainArray(16) As Integer
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(16) AS INTEGER
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = KFormatChnGAry% (ChanGainArray(0))
wDasErr = KSetChnGAry% (hAD, ChanGainArray(0))

K_SetClk

4-146 Function Reference

Boards
Supported

All

Purpose Specifies the pacer clock source.

Prototype C/C++
DASErr far pascal K_SetClk (DWORD hFrame, short nMode);

Turbo Pascal
Function K_SetClk (hFrame : Longint; nMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetClk (hFrame : Longint; nMode : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSETCLK% ALIAS "K_SetClk"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: 0 for Internal

1 for External

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the pacer
clock source in nMode.

The nMode variable sets the Clock Source element.

The internal clock source is the output of the onboard 82C54
counter/timer; an external clock source is an external signal connected to
the IP0/TRIG0/XPCLK pin (25).

K_SetClk (cont.)

4-147

For more information on pacer clock sources, refer to the following
pages:

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify internal as the default
clock source.

See Also K_SetClkRate

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetClk (hAD, 1);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetClk (hAD, 1);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetClk (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetClk (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetClk% (hAD, 1)

Analog input operations page 2-22

Analog output operations page 2-35

Digital I/O operations page 2-49

K_SetClkRate

4-148 Function Reference

Boards
Supported

All

Purpose Specifies the number of clock ticks used by the internal pacer clock.

Prototype C/C++
DASErr far pascal K_SetClkRate (DWORD hFrame,
DWORD dwDivisor);

Turbo Pascal
Function K_SetClkRate (hFrame : Longint; dwDivisor : Longint) : Word;

Turbo Pascal for Windows
Function K_SetClkRate (hFrame : Longint; dwDivisor : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer

BASIC
DECLARE FUNCTION KSETCLKRATE% ALIAS "K_SetClkRate"
(BYVAL hFrame AS LONG, BYVAL dwDivisor AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

dwDivisor Number of clock ticks between conversions.
Valid values: 10 to 4294967295 (1 MHz)

100 to 4294967295 (10 MHz)

Return Value Error/status code. Refer to Appendix A.

K_SetClkRate (cont.)

4-149

Remarks For the operation defined by hFrame, this function specifies the number
of clock ticks used by the internal pacer clock in dwDivisor.

The dwDivisor variable sets the Pacer Clock Rate element.

Refer to page 2-23 for more information about the internal pacer clock.

See Also K_SetClk, K_GetClkRate

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwClkDiv;
...
dwClkDiv = 1000000 / 10000;
wDasErr = K_SetClkRate (hAD, dwClkDiv);

Turbo Pascal
uses D1600TP7;
...
dwClkDiv : Longint;
...
dwClkDiv := 1000000 / 10000;
wDasErr := K_SetClkRate (hAD, dwClkDiv);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
dwClkDiv : Longint;
...
dwClkDiv := 1000000 / 10000;
wDasErr := K_SetClkRate (hAD, dwClkDiv);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global dwClkDiv As Long
...
dwClkDiv = 1000000 / 10000
wDasErr = K_SetClkRate (hAD, dwClkDiv)

K_SetClkRate (cont.)

4-150 Function Reference

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM dwClkDiv AS LONG
...
dwClkDiv = 1000000 / 10000
wDasErr = KSetClkRate% (hAD, dwClkDiv)

K_SetContRun

4-151

Boards
Supported

All

Purpose Specifies continuous buffering mode.

Prototype C/C++
DASErr far pascal K_SetContRun (DWORD hFrame);

Turbo Pascal
Function K_SetContRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_SetContRun (hFrame : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSETCONTRUN% ALIAS "K_SetContRun"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify single-cycle buffering
mode.

K_SetContRun (cont.)

4-152 Function Reference

For more information on buffering modes, refer to the following pages:

See Also K_ClrContRun

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetContRun (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetContRun (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetContRun% (hAD)

Analog input operations page 2-24

Analog output operations page 2-38

Digital I/O operations page 2-51

K_SetDITrig

4-153

Boards
Supported

All

Purpose Sets up an external digital trigger.

Prototype C/C++
DASErr far pascal K_SetDITrig (DWORD hFrame, short nOpt,
short nChan, DWORD nPattern);

Turbo Pascal
Function K_SetDITrig (hFrame : Longint; nOpt : Word; nChan : Word;
nPattern : Longint) : Word;

Turbo Pascal for Windows
Function K_SetDITrig (hFrame : Longint; nOpt : Word; nChan : Word;
nPattern : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetDITrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nOpt As Integer,
ByVal nChan As Integer, ByVal nPattern As Long) As Integer

BASIC
DECLARE FUNCTION KSETDITRIG% ALIAS "K_SetDITrig"
(BYVAL hFrame AS LONG, BYVAL nOpt AS INTEGER,
BYVAL nChan AS INTEGER, BYVAL nPattern AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

K_SetDITrig (cont.)

4-154 Function Reference

nOpt Trigger polarity and sensitivity.
Valid values:

nChan Digital input channel.
Valid value: 0

nPattern Trigger pattern.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the digital
trigger polarity and sensitivity in nOpt.

Since the DAS-1600/1400/1200 Series Function Call Driver does not
currently support digital pattern triggering, the value of nPattern is
meaningless. Since the external digital trigger must be connected to
IP1/XTRIG pin (6), the value of nChan is meaningless. The nPattern and
nChan parameters are provided for future compatibility.

The nOpt variable sets the value of the Trigger Polarity and Trigger
Sensitivity elements.

K_SetDITrig does not affect the operation defined by hFrame unless the
Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_SyncStart, K_IntStart , or
K_DMAStart .

See Also K_SetTrig

Value Polarity Sensitivity

0 Positive Edge-sensitive

1 Positive Level-sensitive

2 Negative Edge-sensitive

3 Negative Level-sensitive

K_SetDITrig (cont.)

4-155

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetDITrig (hAD, 0, 0, 0);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetDITrig (hAD, 0, 0, 0);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetDITrig (hAD, 0, 0, 0);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetDITrig (hAD, 0, 0, 0)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetDITrig% (hAD, 0, 0, 0)

K_SetDMABuf

4-156 Function Reference

Boards
Supported

All

Purpose Specifies the starting address of a previously allocated buffer and the
number of samples in the buffer.

Prototype C/C++
DASErr far pascal K_SetDMABuf (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Turbo Pascal
Function K_SetDMABuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_SetDMABuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetDMABuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

BASIC
DECLARE FUNCTION KSETDMABUF% ALIAS "K_SetDMABuf"
(BYVAL hFrame AS LONG, BYVAL pBuf AS LONG,
BYVAL dwSamples AS LONG)

Parameters hFrame Handle to the frame that defines the DMA-mode
analog input operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values: 1 to 32768

Return Value Error/status code. Refer to Appendix A.

K_SetDMABuf (cont.)

4-157

Remarks For the operation specified by hFrame, this function specifies the starting
address of a previously allocated buffer in pBuf and the number of
samples stored in the buffer in dwSamples.

The pBuf variable contains the value of the Buffer element.

The dwSamples variable contains the value of the Number of Samples
element.

See Also K_DMAAlloc, KMakeDMABuf

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = K_DMAAlloc (hAD, 1000, &pBuf, &hMem);
wDasErr = K_SetDMABuf (hAD, pBuf, 1000);

Turbo Pascal
uses D1600TP7;
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_DMAAlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetDMABuf (hAD, pBuf, 1000);

K_SetDMABuf (cont.)

4-158 Function Reference

Turbo Pascal for Windows
{$I DASDECL.INC}
...
TYPE
BufType = Array [0..1] of Integer;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_DMAAlloc (hAD, 1000, Addr (pBuf), hMem);
wDasErr := K_SetDMABuf (hAD, pBuf, 1000);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global pBuf As Long
...
wDasErr = K_DMAAlloc (hAD, 1000, pBuf, hMem)
wDasErr = K_SetDMABuf (hAD, pBuf, 1000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf AS LONG
...
wDasErr = KDMAAlloc% (hAD, 1000, pBuf, hMem)
wDasErr = KSetDMABuf% (hAD, pBuf, 1000)

K_SetG

4-159

Boards
Supported

DAS-1601, DAS-1602, DAS1401, DAS-1402

Purpose Sets the gain.

Prototype C/C++
DASErr far pascal K_SetG (DWORD hFrame, short nGain);

Turbo Pascal
Function K_SetG (hFrame : Longint; nGain : Word) : Word;

Turbo Pascal for Windows
Function K_SetG (hFrame : Longint; nGain : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nGain As Integer) As Integer

BASIC
DECLARE FUNCTION KSETG% ALIAS "K_SetG"
(BYVAL hFrame AS LONG, BYVAL nGain AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

K_SetG (cont.)

4-160 Function Reference

nGain Gain code.
Valid values:

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the gain code
for a single channel or for a group of consecutive channels in nGain.

The nGain variable sets the Gain element.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify a gain of 1 (gain code 0)
as the default gain.

Gain codes do not apply to DAS-1200 Series boards.

See Also K_SetStartStopG

Board Gain Gain Code

DAS-1601
DAS-1401

1 0

10 1

100 2

500 3

DAS-1602
DAS-1402

1 0

2 1

4 2

8 3

K_SetG (cont.)

4-161

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetG (hAD, 1);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetG (hAD, 1);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetG (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetG (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetG% (hAD, 1)

K_SetSSH

4-162 Function Reference

Boards
Supported

All

Purpose Enables and disables SSH mode.

Prototype C/C++
DASErr far pascal K_SetSSH (DWORD hFrame, WORD nMode);

Turbo Pascal
Function K_SetSSH (hFrame : Longint; nMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetSSH (hFrame : Longint; nMode : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetSSH Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSETSSH% ALIAS "K_SetSSH"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nMode Code that indicates the status of SSH mode.
Valid values: 0 for Disabled

1 for Enabled

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the code that
indicates the status of SSH mode in nMode.

K_GetADFrame and K_ClearFrame also disable SSH mode.

Refer to page 2-22 for information on SSH mode.

K_SetSSH (cont.)

4-163

See Also K_SetADFreeRun, K_ClrADFreeRun

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetSSH (hAD, 1);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetSSH (hAD, 1);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetSSH (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetSSH (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetSSH% (hAD, 1)

K_SetStartStopChn

4-164 Function Reference

Boards
Supported

All

Purpose Specifies the first and last channels in a group of consecutive channels.

Prototype C/C++
DASErr far pascal K_SetStartStopChn (DWORD hFrame, short nStart,
short nStop);

Turbo Pascal
Function K_SetStartStopChn (hFrame : Longint; nStart : Word;
nStop : Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStopChn (hFrame : Longint; nStart : Word;
nStop : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nStart As Integer,
ByVal nStop As Integer) As Integer

BASIC
DECLARE FUNCTION KSETSTARTSTOPCHN% ALIAS
"K_SetStartStopChn" (BYVAL hFrame AS LONG,
BYVAL nStart AS INTEGER, BYVAL nStop AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0 to 255 (analog input)

0 or 1 (analog output)

nStop Last channel in a group of consecutive channels.
Valid values: 0 to 255 (analog input)

0 or 1 (analog output)

Return Value Error/status code. Refer to Appendix A.

K_SetStartStopChn (cont.)

4-165

Remarks For the operation defined by hFrame, this function specifies the first
channel in a group of consecutive channels in nStart and the last channel
in the group of consecutive channels in nStop.

The nStart variable sets the value of the Start Channel element.

The nStop variable sets the value of the Stop Channel element.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame and K_ClearFrame set the Start Channel and Stop
Channel elements to 0.

See Also K_SetStartStopG

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetStartStopChn (hAD, 0, 7);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetStartStopChn (hAD, 0, 7)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetStartStopChn% (hAD, 0, 7)

K_SetStartStopG

4-166 Function Reference

Boards
Supported

DAS-1601, DAS-1602, DAS-1401, DAS-1402

Purpose Specifies the first and last channels in a group of consecutive channels and
sets the gain for all channels in the group.

Prototype C/C++
DASErr far pascal K_SetStartStopG (DWORD hFrame, short nStart,
short nStop, short nGain);

Turbo Pascal
Function K_SetStartStopG (hFrame : Longint; nStart : Word;
nStop : Word; nGain : Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStopG (hFrame : Longint; nStart : Word;
nStop : Word; nGain : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetStartStopG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nStart As Integer,
ByVal nStop As Integer, ByVal nGain As Integer) As Integer

BASIC
DECLARE FUNCTION KSETSTARTSTOPG% ALIAS
"K_SetStartStopG" (BYVAL hFrame AS LONG,
BYVAL nStart AS INTEGER, BYVAL nStop AS INTEGER,
BYVAL nGain AS INTEGER)

K_SetStartStopG (cont.)

4-167

Parameters hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0 to 255

nStop Last channel in a group of consecutive channels.
Valid values: 0 to 255

nGain Gain code.
Valid values

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the first
channel in a group of consecutive channels in nStart, the last channel in a
group of consecutive channels in nStop, and the gain code for all channels
in the group in nGain.

The nStart variable sets the value of the Start Channel element.

The nStop variable sets the value of the Stop Channel element.

The nGain variable sets the value of the Gain element.

K_GetADFrame and K_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

Board Gain Gain Code

DAS-1601
DAS-1401

1 0

10 1

100 2

500 3

DAS-1602
DAS-1402

1 0

2 1

4 2

8 3

K_SetStartStopG (cont.)

4-168 Function Reference

Gain codes do not apply to DAS-1200 Series boards.

See Also K_SetChn, K_SetStartStopChn

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetStartStopG (hAD, 0, 7, 0);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetStartStopG (hAD, 0, 7, 0);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetStartStopG (hAD, 0, 7, 0)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetStartStopG% (hAD, 0, 7, 0)

K_SetTrig

4-169

Boards
Supported

All

Purpose Specifies the trigger source.

Prototype C/C++
DASErr far pascal K_SetTrig (DWORD hFrame, short nMode);

Turbo Pascal
Function K_SetTrig (hFrame : Longint; nMode : Word) : Word;

Turbo Pascal for Windows
Function K_SetTrig (hFrame : Longint; nMode : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

BASIC
DECLARE FUNCTION KSETTRIG% ALIAS "K_SetTrig"
(BYVAL hFrame AS LONG, BYVAL nMode AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: 0 for Internal trigger

1 for External trigger

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the trigger
source in nMode.

An internal trigger is a software trigger; the trigger event occurs when the
operation is started. Note that there is a slight delay between when the
operation is started and when the trigger event occurs. An external trigger

K_SetTrig (cont.)

4-170 Function Reference

is either an analog trigger or a digital trigger. Refer to page 2-25 for more
information about internal and external trigger sources.

If nMode = 1, an external digital trigger (positive edge on the IP1/XTRIG
pin (6)) is assumed. Use K_SetDITrig to change the conditions of the
digital trigger. Use K_SetADTrig to specify the conditions for an external
analog trigger.

K_GetADFrame and K_ClearFrame set the trigger source to internal.

See Also K_SetADTrig, K_SetDITrig

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetTrig (hAD, 1);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetTrig (hAD, 1);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetTrig (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetTrig (hAD, 1)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetTrig% (hAD, 1)

K_SetTrigHyst

4-171

Boards
Supported

All

Purpose Specifies the hysteresis value.

Prototype C/C++
DASErr far pascal K_SetTrigHyst (DWORD hFrame, short nHyst);

Turbo Pascal
Function K_SetTrigHyst (hFrame : Longint; nHyst : Word) : Word;

Turbo Pascal for Windows
Function K_SetTrigHyst (hFrame : Longint; nHyst : Word) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetTrigHyst Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nHyst As Integer) As Integer

BASIC
DECLARE FUNCTION KSETTRIGHYST% ALIAS "K_SetTrigHyst"
(BYVAL hFrame AS LONG, BYVAL nHyst AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nHyst Hysteresis value, specified in counts.
Valid values: 0 to 4095

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the hysteresis
value used for an analog trigger in nHyst.

You specify the hysteresis value in counts; refer to Appendix B for
information on converting the hysteresis voltage to a count.

The nHyst variable sets the Trigger Hysteresis element.

K_SetTrigHyst (cont.)

4-172 Function Reference

K_SetTrigHyst does not affect the operation defined by hFrame unless
the Trigger Source element is set to External (by a call to K_SetTrig)
before hFrame is used as a calling argument to K_SyncStart,
K_IntStart , or K_DMAStart .

Refer to page 2-26 for more information about analog triggers.

See Also K_SetADTrig

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetTrigHyst (hAD, 50);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SetTrigHyst (hAD, 50);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetTrigHyst (hAD, 50);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetTrigHyst (hAD, 50)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSetTrigHyst% (hAD, 50)

K_SyncStart

4-173

Boards
Supported

All

Purpose Starts a synchronous-mode operation.

Prototype C/C++
DASErr far pascal K_SyncStart (DWORD hFrame);

Turbo Pascal
Function K_SyncStart (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_SyncStart (hFrame : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SyncStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSYNCSTART% ALIAS "K_SyncStart"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the synchronous-mode operation defined by hFrame.

Refer to the following pages for an illustration of the programming tasks
associated with synchronous-mode operations:

Analog input page 1-8

Analog output page 1-14

Digital input page 1-18

Digital output page 1-21

K_SyncStart (cont.)

4-174 Function Reference

See Also K_IntStart, K_DMAStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SyncStart (hAD);

Turbo Pascal
uses D1600TP7;
...
wDasErr := K_SyncStart (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SyncStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SyncStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSyncStart% (hAD)

A-1

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the
DAS-1600/1400/1200 Series Function Call Driver, possible causes for
error conditions, and possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact Keithley MetraByte
(508-880-3000) for technical support.

Table A-1. Error/Status Codes

Error Code

Cause SolutionHex Decimal

0 0 No error has been detected. Status only; no action is necessary.

6000 24576

Error in configuration file:

 The
configuration file you specified in
the driver initialization function is
corrupt, does not exist, or contains
one or more undefined keywords.

Check that the file exists at the
specified path. Check for illegal
keywords in file; you can avoid illegal
keywords by using the configuration
utility to create and modify
configuration files.

6001 24577

Illegal base address in
configuration file:

The board's
base I/O address in the
configuration file is illegal and/or
does not match the base address
switches on the board.

Use the configuration utility to change
the base I/O address to one that
matches the base address switches on
the board.

6002 24578

Illegal IRQ level in configuration
file:

 The interrupt level in the
configuration file is illegal.

Use the configuration utility to change
the interrupt level to a legal one for
your board. Refer to the user’s guide
for legal interrupt levels.

A-2 Error/Status Codes

6003 24579

Illegal DMA channel in
configuration file:

 The DMA
channel in the configuration file is
illegal.

Use the configuration utility to change
the DMA channel to a legal one for
your board. Refer to the user’s guide
for legal DMA channels.

6005 24581

Illegal channel number:

 The
specified channel number is illegal
for the board and/or for the range
type (unipolar or bipolar).

Specify a legal channel number. Refer
to the user’s guide or to the
description of

K_SetStartStopChn

 in
Chapter 4 for legal channel numbers.

6006 24582

Illegal gain code:

The specified
analog I/O channel gain code is
illegal for this board.

Specify a legal gain code. Refer to the
user’s guide or to the description of

K_SetG

 in Chapter 4 for a list of legal
gain codes.

6007 24583

Illegal DMA address:

An FCD
function specified a buffer address
that is not suitable for a DMA
operation for the number of
samples required.

Use the

K_DMAAlloc

 function to
allocate dynamic buffers for DMA
operations. In Windows, make sure
that the Keithley Memory Manager is
installed; refer to Appendix D of the
user’s guide for information.

6008 24584

Illegal number in configuration
file:

 The configuration file contains
one or more numeric values that
are illegal.

Use the configuration utility to check
and then change the configuration file.

600A 24586

Configuration file not found:

 The
driver cannot find the
configuration file specified as an
argument to the driver initialization
function.

Check that the file exists at the
specified path. Check that the file
name is spelled correctly in the driver
initialization function parameter list.

600B 24587

Error returning DMA buffer:

DOS returned an error in INT 21H
function 49H during the execution
of

K_DMAFree

.

Check that the memory handle passed
as an argument to

K_DMAFree

 was
previously obtained using

K_DMAAlloc

.

600C 24588

Error returning interrupt
buffer:

 The memory handle
specified in

K_IntFree

 is invalid.

Check the memory handle stored by

K_IntAlloc

 and make sure that it was
not modified.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-3

600D 24589

Illegal frame handle:

 The
specified frame handle is not valid
for this operation.

Check that the frame handle exists.
Check that you are using the
appropriate frame handle.

600E 24590

No more frame handles:

 No
frames are left in the pool of
available frames.

The Function Call Driver supports a
maximum of 30 frames of all types.
Use

K_FreeFrame

 to free a frame
that the program is no longer using.

600F 24591

Requested buffer size too large:

The requested buffer cannot be
dynamically allocated because of
its size.

Specify a smaller buffer size; refer to
the description of

K_IntAlloc

 in
Chapter 4 for the legal range. If the
Keithley Memory Manager is
installed, use KMMSETUP.EXE to
increase the reserved buffer heap size.

6010 24592

Cannot allocate interrupt buffer:

(Windows-based languages only)

K_IntAlloc

 failed because there
was not enough available DOS
memory.

Remove some Terminate and Stay
Resident programs (TSRs) that are no
longer needed.

6012 24594

Interrupt buffer deallocation
error:

 (Windows-based languages
only) An error occurred when

K_IntFree

 attempted to free a
memory handle.

Make sure that the memory handle
passed as an argument to

K_IntFree

was previously obtained using

K_IntAlloc

.

6015 24597

DMA Buffer too large:

 The
number of samples specified in

K_DMAAlloc

 is too large.

Refer to the description of

K_DMAAlloc

 in Chapter 4 for the
buffer size range.

6016 24598

VDS - Region not contiguous:

An
error occurred while using
Windows Virtual DMA Services.
You tried to use

K_DMAAlloc

 and
the Keithley Memory Manager was
not installed.

Refer to the user’s guide for
information on how to install and set
up the Keithley Memory Manager.

6017 24599

VDS - DMA wraparound:

 See
error 6016.

 See error 6016.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-4 Error/Status Codes

6018 24600

VDS - Unable to lock region:

See
error 6016.

See error 6016.

6019 24601

VDS - No buffer available:

See
error 6016.

See error 6016.

601A 24602

VDS - Region too large:

See error
6016.

See error 6016.

601B 24603

VDS - Buffer in use:

See error
6016.

See error 6016.

601C 24604

VDS - Illegal region:

See error
6016.

See error 6016.

601D 24605

VDS - Region not locked:

See
error 6016.

See error 6016.

601E 24606

VDS - Illegal page:

See error
6016.

See error 6016.

601F 24607

VDS - Illegal buffer:

See error
6016.

See error 6016.

6020 24608

VDS - Copy out of range:

See
error 6016.

See error 6016.

6021 24609

VDS - Illegal DMA channel:

See
error 6016.

See error 6016.

6022 24610

VDS - Count overflow:

See error
6016.

See error 6016.

6023 24611

VDS - Count underflow:

See
error 6016.

See error 6016.

6024 24612

VDS - Function not supported:

See error 6016.
See error 6016.

6025 24613

Illegal OBM mode:

 The mode
number specified in

K_SetOBMMode

 is illegal.

Specify a legal mode value.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-5

6026 24614

Illegal DMA structure:

An error
occurred during the execution of

K_DMAFree

.

Try using

K_DMAFree

 again. If the
error continues, contact Keithley
MetraByte for technical support.

6027 24615

DMA allocation error:

 See error
6026.

 See error 6026.

6028 24616

NULL DMA handle:

See error
6026.

 See error 6026.

6029 24617

DMA unlock error:

See error
6026.

 See error 6026.

602A 24618

DMA free error:

See error 6026. See error 6026.

602B 24619

Not enough memory to
accommodate request:

The
number of samples you requested
in the Keithley Memory Manager
is greater than the largest
contiguous block available in the
reserved heap.

Specify a smaller number of samples.
Free a previously allocated buffer. Use
the KMMSETUP.EXE utility to
expand the reserved heap.

602C 24620

Requested buffer size exceeds
maximum:

 The number of
samples you requested from the
Keithley Memory Manager is
greater than the allowed maximum.

Specify a value within the legal range
when calling

K_DMAAlloc

. Refer to
the description of

K_DMAAlloc

 in
Chapter 4 for legal values.

602D 24621

Illegal device handle:

A bad
device handle was passed to a
function such as

K_GetADFrame

.
The handle used was not initialized
through a call to

K_GetDevHandle

 or

DAS1600_GetDevHandle

,

or it
was corrupted by your program.

Check the device handle value.

602E 24622

Illegal setup option:

 An illegal
option was specified to a function
that accepts a user option, such as

K_SetDITrig

.

Check the option value passed to the
function where the error occurred.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-6 Error/Status Codes

6030 24624

DMA word-page wrap:

 During

K_DMAAlloc

, a DMA word-page
wrap condition occurred and the
allocation attempt failed since
there is not enough free memory to
accommodate the allocation
request.

Reduce the number of samples and
retry. Install and configure the
Keithley Memory Manager.

6031 24625

Illegal memory block handle:

 A
bad memory handle was passed to

K_IntFree

 or

K_DMAFree

. The
handle used was not initialized
through a call to

K_IntAlloc

 or

K_DMAAlloc

, or it was corrupted
by you program.

Restart your program and monitor the
memory handle value(s).

6032 24626

Out of memory handles:

 An
attempt to allocate a memory block
using

K_IntAlloc

 or

K_DMAAlloc

 failed because the
maximum number of handles has
already been assigned.

Use

K_IntFree

 or

K_DMAFree

 to
free previously allocated memory
blocks before allocating again.

6034 24628

Memory corrupted:

Int 21H
function 48H, used to allocate a
memory block from the DOS far
heap, returned the DOS error 7;
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
an illegal area of DOS memory.

Recheck the parameters set by

K_DMAAlloc

 and

K_SetDMABuf

.
If a fatal system error, restart your
computer.

6035 24629

Driver in use:

 You attempted to
initialize a driver that was already
initialized by a call to

K_OpenDriver

. (This can occur
since, under Windows, it is
possible to open the same driver
from multiple programs that are
running simultaneously.)

To continue using the driver with the
same configuration, pass a null string
as the second argument to

K_OpenDriver

. To use the driver
with a different configuration, close
any programs currently accessing the
driver, and then open the driver again
(using

K_OpenDriver

).

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-7

6036 24630

Illegal driver handle:

 The
specified driver handle is not valid.

Someone may have closed the driver;
if so, use

K_OpenDriver

to reopen
the driver with the desired driver
handle. Try again using another driver
handle.

6037 24631

Driver not found:

 The specified
driver cannot be found.

Check your link statement to make
sure the specified driver is included.
Make sure that the device name string
is entered correctly in

K_OpenDriver.

6038 24632 Invalid source pointer:
(Windows-based languages only)
The pointer to the source buffer
that you passed as an argument to
K_MoveBufToArray is invalid for
the specified count. (The source
pointer, when added to the number
of samples, exceeds the
programmed addressing range of
that pointer.)

Check the pointer to the source buffer
and the number of samples to transfer
that you specified in
K_MoveBufToArray .

6039 24633 Invalid destination pointer:
(Windows-based languages only)
The pointer to the destination
buffer (local array) that you passed
as an argument to
K_MoveBufToArray is invalid for
the specified count. (The
destination pointer, when added to
the number of samples, exceeds the
dimension of the local array.)

Check the dimension of the local array
and the number of samples to transfer
that you specified in
K_MoveBufToArray .

603A 24634 Illegal setup value: An illegal
value was passed to the function in
which the error occurred.

Check the legal ranges of all
parameters passed to this function.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-8 Error/Status Codes

603B 24635 Error freeing buffer selector:
K_DMAFree or K_IntFree failed
because one or more of the
selectors that reference the
memory buffer could not be freed.

Check that the memory buffer being
freed was previously obtained through
K_DMAAlloc or K_IntAlloc.

603C 24636 Error allocating buffer selector:
K_DMAAlloc or K_IntAlloc
failed because a selector could not
be allocated from Window’s Local
Descriptor Table.

Close all programs and restart
Windows. If the error continues,
contact Keithley MetraByte for
technical support.

603D 24637 Error allocating memory buffer:
K_DMAAlloc or K_IntAlloc
failed because a necessary internal
buffer could not be allocated to
complete the operation. You
attempted to specify the starting
address of a locally dimensioned
array in Windows 95.

Close all programs and restart
Windows. In Windows 95, make sure
that you use K_IntAlloc or
K_DMAAlloc to dynamically allocate
a memory buffer and make sure that
you use K_SetBuf or K_BufListAdd
to specify the starting address of the
dynamically allocated memory buffer.
If the error continues, contact Keithley
MetraByte for technical support.

7000 28672 No board name: The driver
initialization function did not find a
board name in the specified
configuration file.

Specify a legal board name in the
configuration file.

7001 28673 Illegal board name: The board
name in the specified configuration
file is illegal.

Specify a legal board name in the
configuration file.

7002 28674 Illegal board number: The driver
initialization function found an
illegal board number in the
specified configuration file.

Specify a legal board number:
0 or 1.

7003 28675 Illegal base address: The driver
initialization function found an
illegal base address in the specified
configuration file.

Specify a base address in the inclusive
range &H200 (512) to &H3F0 (1008)
in increments of 10h (16). Make sure
that &H precedes hexadecimal
numbers.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-9

7004 28676 Illegal DMA channel: The driver
initialization function found an
illegal DMA channel in the
specified configuration file.

Specify a legal DMA channel:
1 or 3.

7005 28677 Illegal interrupt level: The driver
initialization function found an
illegal interrupt level in the
specified configuration file.

Specify a legal interrupt level:
2 through 7.

7006 28678 Illegal number of EXPs: The
driver initialization function found
an illegal number of expansion
accessories in the specified
configuration file.

Specify a legal number of expansion
accessories:
0 through 8.

7007 28679 Illegal clock select: The driver
initialization function found an
illegal clock specification in the
specified configuration file.

Specify a legal clock:
1 MHz or 10 MHz.

7008 28680 Illegal wait state: The driver
initialization function found an
illegal wait state specification in
the specified configuration file.

Specify a legal condition for wait
state: yes or no.

7009 28681 Illegal ADC channel mode: The
driver initialization function found
an illegal input range type in the
specified configuration file.

Specify a legal input range type:
bipolar or unipolar.

700A 28682 Illegal ADC channel
configuration: The driver
initialization function found an
illegal input configuration in the
specified configuration file.

Specify a legal input configuration:
single-ended or differential.

700B 28683 Illegal DAC0 mode: The driver
initialization function found an
illegal D/A mode in the specified
configuration file.

Specify a legal D/A mode:
bipolar or unipolar.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-10 Error/Status Codes

700C 28684 Illegal DAC1 mode: The driver
initialization function found an
illegal D/A mode in the specified
configuration file.

Specify a legal D/A mode:
bipolar or unipolar.

700D 28685 Illegal DAC0 ref: The driver
initialization function found an
illegal reference voltage in the
specified configuration file.

Specify a legal D/A reference voltage:
5 V, 10 V, or user-defined.

700E 28686 Illegal DAC1 ref: The driver
initialization function found an
illegal reference voltage in the
specified configuration file.

Specify a legal D/A reference voltage:
5 V, 10 V, or user-defined.

700F 28687 Illegal port A: The driver
initialization function found an
illegal digital I/O configuration in
the specified configuration file.

Specify a legal digital I/O
configuration: input or output.

7010 28688 Illegal port B: The driver
initialization function found an
illegal digital I/O configuration in
the specified configuration file.

Specify a legal digital I/O
configuration: input or output.

7011 28689 Illegal port C low: The driver
initialization function found an
illegal digital I/O configuration in
the specified configuration file.

Specify a legal digital I/O
configuration: input or output.

7012 28690 Illegal port C high: The driver
initialization function found an
illegal digital I/O configuration in
the specified configuration file.

Specify a legal digital I/O
configuration: input or output.

7013 28691 Illegal EXP-16 number: The
driver initialization function found
an illegal number of EXP-16s in
the specified configuration file.

Specify a legal number of EXP-16
accessories: 0 through 8.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-11

7014 28692 Illegal EXP-16 gain: The driver
initialization function found an
illegal gain value in the specified
configuration file.

Specify a legal gain value for the
EXP-16 accessories.

7015 28693 Illegal number of EXPGP: The
driver initialization function found
an illegal number of EXP-GPs in
the specified configuration file.

Specify a legal number of EXP-GP
accessories: 0 through 8.

7016 28694 Illegal EXPGP number: The
driver initialization function found
an illegal number assigned to one
of the EXP-GPs in the specified
configuration file.

Specify a legal EXP-GP number:
0 through 7.

7017 28695 Illegal EXPGP gain: The driver
initialization function found an
illegal EXP-GP gain value in the
specified configuration file.

Specify a legal gain value for the
EXP-GP accessories: X1 or X2.5.

7018 28696 Illegal EXPGP Chan: The driver
initialization function found an
illegal gain assigned to one of the
channels on one of the EXP-GPs in
the specified configuration file.

Specify a legal gain for each EXP-GP
channel:
1, 10, 100, 1000 (X1) or
2.5, 25, 250, 2500 (X2.5)

7019 28697 Illegal CJR: The driver
initialization function found an
illegal channel assigned to the
cold-junction reference (CJR)
value in the specified configuration
file.

Specify a legal CJR channel:
1 through 7, −1 (unused)

701A 28698 Illegal rev. number: The revision
of the driver you are using does not
match the revision of the Keithley
DAS Driver Specification.

Make sure that you are using the
appropriate driver.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-12 Error/Status Codes

701B 28699 Resource busy: The program
attempted to start an operation
while a similar operation was in
progress.

An attempt was made to execute
interrupt and DMA operations
simultaneously. Only one of these
operations is allowed at one time. Use
K_IntStop or K_DMAStop to stop
the in-progress operation before
initiating the second operation.

701C 28700 Unknown error number: A
request for an undefined message
string was made.

Check the error number specified in
K_GetErrMsg and try again.

701D 28701 Channel Gain Array Not
Supported: A DMA operation was
attempted with a channel-gain
queue.

Use interrupt mode or synchronous
mode. Use a single channel or a group
of consecutive channels.

701E 28702 DMA not supported on EXP
Channels: A DMA operation was
attempted on an EXP board.

Use interrupt mode or synchronous
mode.

701F 28703 Incorrect A/D Uni/Bip switch
setting: The unipolar/bipolar
switch on the board does not match
the setting in the configuration file.

Make sure that both settings match.
Use the CFG1600.EXE utility to
modify the configuration file or
change the switch setting on the
board.

7021 28705 Incorrect A/D 16/8 channel
switch setting: The single-ended/
differential switch on the board
does not match the setting in the
configuration file.

Make sure that both settings match.
Use the CFG1600.EXE utility to
modify the configuration file or
change the switch setting on the
board.

7022 28706 Illegal settling time: An invalid
burst mode conversion rate count is
set.

Make sure that the count value
specified in K_SetBurstTicks is in
the range of 2 to 255.

7023 28707 Illegal number of SSH: The
number of SSH accessories in the
configuration file is not valid.

Check the number of SSH accessories
specified in the configuration file;
should be
1 to 4 (for SSH-4/A) or
1 to 2 (for SSH-8).

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-13

7024 28708 Illegal SSH chan: The number of
SSH channels in the configuration
file is not valid.

Check the number of channels
specified in the configuration file;
should be
0 to 3 (for SSH-4/A) or
0 to 7 (for SSH-8).

7025 28709 Illegal SSH gain: The SSH-8 or
SSH-4/A channel gain in the
configuration file is not valid.

Check the gain selection in the
configuration file.

7026 28710 Illegal SSH4 mode: The SSH-4/A
mode in the configuration file is not
valid.

Check the mode in the configuration
file; should be master or slave.

7027 28711 Illegal SSH timing: The SSH
mode in the configuration file is not
valid.

Check the SSH timing selection in the
configuration file; should be internal
or external.

7029 28713 Illegal SSH type: The SSH type in
the configuration file is not valid.

Check the SSH type in the
configuration file; must be
SSH4A or SSH8.

702A 28714 Illegal SSH pacer: The SSH clock
selection in the configuration file is
not valid (for SSH-8 only).

Check the clock selection in the
configuration file; must be 10 MHz.

702B 28715 Illegal Start/Stop Chan in Diff
Mode: In differential mode, the
start channel cannot be greater than
the stop channel.

Change the start channel and stop
channel numbers.

702C 28716 Illegal EXP-1600 number: The
driver initialization function found
an illegal number of EXP-1600s in
the specified configuration file.

Specify a legal number of EXP-1600
accessories: 0 through 16.

702D 28717 Illegal EXP-1600 gain: The driver
initialization function found an
illegal gain value in the specified
configuration file.

Specify a legal gain value for the
EXP-1600 accessories: 0.5, 1, 5, 10,
50, 100, 250, 500

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-14 Error/Status Codes

702E 28718 Burst mode is supported for
DMA only: You attempted to use
burst or burst with SSH conversion
mode for a synchronous-mode or
interrupt-mode operation.

Use K_ClrADFreeRun to set the
conversion mode to paced mode. Use
K_DMAStart to start your operation
in DMA mode.

702F 28719 Incompatible board detected:
You attempted to use the
DAS-1600/1400/1200 Series
Function Call Driver or the
DAS-1600/1400/1200 Series
Control Panel with a board not
manufactured by Keithley
MetraByte.

The DAS-1600/1400/1200 Series
Function Call Driver and the
DAS-1600/1400/1200 Series Control
Panel are intended for use with
Keithley MetraByte boards only.
Contact Keithley MetraByte
(508-880-3000) or your local sales
office for information on supported
boards.

8001 32769 Function not supported: You
have attempted to use a function
not supported by the Function Call
Driver.

Contact Keithley MetraByte for
technical support.

8003 32771 Illegal board number: An illegal
board number was specified in the
board initialization function.

Refer to the description of
K_GetDevHandle or
DAS1600_GetDevHandle in
Chapter 4 for legal board numbers.

8004 32772 Illegal error number: The error
message number specified in
K_GetErrMsg is invalid.

The error number must be one the
error numbers listed in this appendix.

8005 32773 Board not found at configured
address: The board initialization
function does not detect the
presence of a board.

Make sure that the base address
setting of the switches on the board
matches the base address setting in the
configuration file.

8006 32774 A/D not initialized: You attempted
to start a frame-based analog input
operation without the A/D frame
being properly initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-15

8007 32775 D/A not initialized: You attempted
to start a frame-based analog
output operation without the D/A
frame being properly initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8008 32776 Digital input not initialized: You
attempted to start a frame-based
digital input operation without the
DI frame being properly
initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8009 32777 Digital output not initialized: You
attempted to start a frame-based
digital output operation without the
DO frame being properly
initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

800B 32779 Conversion overrun: Data was
overwritten before it was
transferred to the computer’s
memory.

Adjust the clock source to slow down
the rate at which the board acquires
data. Remove other programs that are
running and using computer
resources.

8016 32790 Interrupt overrun : The board
communicated a hardware event to
the software by generating a
hardware interrupt, but the
software was still servicing a
previous interrupt. This is usually
caused by a pacer clock rate that is
too fast.

Check the maximum throughput rate
for your computer’s programming
environment and use K_SetClkRate
to specify an appropriate rate.

801A 32794 Interrupts already active: You
have attempted to start an operation
whose interrupt level is being used
by another system resource.

Use K_IntStop to stop the first
operation before starting the second
operation.

801B 32795 DMA already active: You
attempted to start a DMA-mode
operation using a DMA channel
that is currently used by another
active operation.

Use K_DMAStop to stop the first
operation before starting the second
operation.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-16 Error/Status Codes

8020 32800 FIFO Overflow event detected:
During data acquisition, the
temporary on-board data storage
(FIFO) overflowed.

The conversion rate is too fast for your
computer’s programming
environment; use K_SetClkRate to
reduce the conversion rate. If you are
using DMA-mode and your board
supports dual-DMA, use the
configuration utility to reconfigure
your board to use dual-DMA.

8021 32801 Illegal clock sync mode: The
two operations you are trying to
synchronize cannot be
synchronized on your board.

Check the synchronizing clock source
that you specified in K_SetSync.

FFFF 65535 User aborted operation: You
pressed Ctrl+Break during a
synchronous-mode operation or
while waiting for an analog trigger
event to occur.

Start the operation again, if desired.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

Converting Voltage to Counts B-1

B

Data Formats

This appendix contains the following sections:

●

Converting Voltage to Counts

- instructions for converting a voltage
value to a count value that the DAS-Scan Function Call Driver can
understand.

●

Converting Counts to Voltage

 - instructions for converting a count
value returned by the DAS-Scan Function Call Driver to a voltage
value.

Converting Voltage to Counts

When specifying an analog trigger level (as in

K_SetADTrig

), a
hysteresis value (as in

K_SetTrigHyst

), or an analog output value (as in

K_DAWrite

), you must convert the voltage to a count value that the
DAS-1600/1400/1200 Series Function Call Driver can understand. The
following sections describe how to convert voltage to counts for each of
these situations.

Note:

The DAS-1600/1400/1200 Series Function Call Driver provides
the

K_GetADMode

 function, which gets the analog input range type
(bipolar or unipolar). You may find this function useful when converting

counts to voltage.

B-2 Data Formats

Specifying a Trigger Level

To convert a voltage value to a count when specifying an analog trigger
level, use the equation that is appropriate for your A/D mode, substituting
the desired voltage for

V

trig

.

Bipolar (DAS-1600/1400 Series)

Bipolar (DAS-1200 Series)

Unipolar (DAS-1600/1400 Series only)

For example, assume that you want to specify an analog trigger level of
2.5 V for a channel on a DAS-1601 board configured for a bipolar input
range. The count is determined as follows:

Count
V trig 4096×

20
------------------------------ 2048+=

Count
V trig 4096×

10
------------------------------ 2048+=

Count
V trig 4096×

10
------------------------------=

2.5 4096×
20

------------------------- 2048+ 2560=

Converting Voltage to Counts B-3

Specifying a Hysteresis Value

To convert a voltage value to a count when specifying a hysteresis value,
use the equation that is appropriate for your A/D mode, substituting the
desired voltage for

V

hyst

.

DAS-1600/1400 Series

DAS-1200 Series

For example, assume that you want to specify a hysteresis value of 0.05 V
for a channel on a DAS-1601 board. The count is determined as follows:

Specifying an Analog Output Value (DAS-1600 Series Only)

Perform the following steps to convert a voltage value to a count when
specifying an analog output value:

1. Use the equation that is appropriate for your D/A mode, substituting
the desired voltage for

V

out

. Refer to Table B-1 for the appropriate

span

 value.

Bipolar

Unipolar

Count
Vhyst 4096×

20
-------------------------------=

Count
Vhyst 4096×

10
-------------------------------=

0.05 4096×
10

---------------------------- 20=

Count
Vout 4096×

span
----------------------------- 2048+=

Count
Vout 4096×

span
-----------------------------=

B-4 Data Formats

For example, assume that you want to specify an analog output of 3 V for
a DAS-1602 that is set up for a bipolar output with a

−

5 V reference. The
count is determined as follows:

2. Next, pack the count into a variable, as follows:

variable data = (left-shift count four bits) bit-wise AND with FFF0

Table B-1. Span Values for Analog Output Equations

Mode
Reference
Voltage Output Range Span

Bipolar

−

5 -5 V to 4.998 V 10

−

10 -10 V to 9.995 V 20

Unipolar

−

5 0.0 V to 4.999 V 5

−

10 0.0 V to 9.998 V 10

3 4096×
10

--------------------- 2048+ 3277=

Converting Counts to Voltage B-5

Converting Counts to Voltage

The DAS-Scan Function Call Driver can read count values only. When
reading an analog input value (as in

K_ADRead

), you can convert the
count value returned by the DAS-Scan Function Call Driver to a voltage
value.

FCD functions return counts as left-justified values in the upper 12 bits of
variables declared as integers. Perform the following steps to convert a
count to an analog input voltage:

1. Use the following equation to unpack a count:

count = (right-shift data four bits) bit-wise AND with 0FFF

2. This method produces a count value that ranges from 0 through 4095.
(Note that the lower four bits contain the channel number.)

3. Use the equation that corresponds to your A/D mode, substituting the

count

 value arrived at in step 1 and the appropriate

span

 value from
Table B-2.

Bipolar

Unipolar

Voltage count 2048–() span×
4096

--=

Voltage count span×
4096

---------------------------------=

B-6 Data Formats

Table B-2. Span Values for A/D Conversion Equations

Board A/D Mode Gain Input Range Span

DAS-1601
DAS-1401

Unipolar 1 0.0 V to 10.0V 10 V

10 0.0 V to 1.0 V 1 V

100 0.0 V to 100 mV 0.1 V

500 0.0 V to 20 mV 0.02 V

Bipolar 1

−

10 V to 9.995 V 20 V

10

−

1.0 V to 0.9995 V 2 V

100

−

100 mV to 99.95 mV 0.2 V

500

−

20 mV to 19.99 mV 0.04 V

DAS-1602
DAS-1402

Unipolar 1 0.0 V to 10 V 10.0 V

2 0.0 V to 5 V 5.0 V

4 0.0 V to 2.5 V 2.5 V

8 0.0 V to 1.25 V 1.25 V

Bipolar 1

−

10 V to 9.995 V 20.0 V

2

−

5 V to 4.9976 V 10.0 V

4

−

2.5 V to 2.4988 V 5.0 V

8

−

1.25 V to 1.2494 V 2.5 V

DAS-1201 Bipolar 1

−

5.0 V to 4.9976 V 10.0 V

10

−

0.5 V to 0.49976 V 1.0 V

100

−

0.05 V to 0.049976 V 0.1 V

500

−

0.01 V to 0.009995 V 0.02 V

DAS-1202 Bipolar 1

−

5.0 V to 4.9976 V 10.0 V

2

−

2.5 V to 2.4988 V 5.0 V

4

−

1.25 V to 1.2494 V 2.5 V

8

−

0.625 V to 0.62469 V 1.250 V

Converting Counts to Voltage B-7

For example, assume that you want to read analog input data from a
channel on a DAS-1601 board configured for the unipolar input range and
a gain of 1. The count value is 3072. The voltage is determined as
follows:

As another example, assume that you want to read the analog input data
from a channel on a DAS-1402 board configured for a bipolar input range
and a gain of 2. The count value is 1024. The voltage is determined as
follows:

3072 10×
4096

------------------------ 7.5 V=

1024 2048–() 10×
4096

--- 2.5 V–=

X-1

Index

Numerics

82C54 counter/timer

2-52

A

accessing a frame

2-6

accessing data
BASIC

3-25

,

3-27

C languages

3-4

Turbo Pascal

3-13

Visual Basic for Windows

3-17

,

3-19

accessories

2-14

ADC:

see

 analog-to-digital converter
adjusting the burst mode conversion rate

2-20

adjusting the settling time

2-20

allocating memory:

see

memory allocation
analog input

buffering modes

2-23

channels

2-14

conversion modes

2-19

gains

2-12

memory allocation

2-10

operation modes

2-4

pacer clocks

2-21

programming flow diagrams

1-8

ranges

2-12

trigger sources

2-24

analog output

2-29

buffering modes

2-37

channels

2-34

memory allocation

2-32

operation modes

2-29

pacer clocks

2-34

programming flow diagrams

1-14

trigger sources

2-37

analog trigger

2-25

analog-to-digital converter

2-23

ASO-1600/1400/1200 software package

1-2

assigning the starting address
analog input operations

2-12

analog output operations

2-33

digital I/O operations

2-43

B

BASIC
accessing data

3-25

,

3-27

converting integer data for digital I/O
operations

3-29

creating a channel-gain queue

3-28

dimensioning a local array

3-28

dynamically allocating a memory buffer

3-24

handling errors

3-30

programming in Professional Basic

3-32

programming in QuickBasic

3-31

programming in Visual Basic for DOS

3-33

reducing the memory heap

3-24

board initialization

2-2

boards supported

2-2

Borland C/C++ (for DOS)
programming information

3-9

see also

 C languages
Borland C/C++ (for Windows)

programming information

3-10

see also

 C languages
Borland Turbo Pascal (for DOS):

see

 Turbo
Pascal

Borland Turbo Pascal for Windows:

see

Turbo Pascal

buffer address
analog input operations

2-12

analog output operations

2-33

digital I/O operations

2-43

X-2 Index

buffer address functions

4-3

buffering mode
analog input operations

2-23

analog output operations

2-37

digital I/O operations

2-50

buffering mode functions

4-3

burst mode

2-19

burst mode conversion rate

2-20

burst mode with SSH

2-21

C

C languages
accessing data

3-4

creating a channel-gain queue

3-5

dimensioning a local array

3-4

dynamically allocating a memory buffer

3-3

handling errors

3-6

programming in Borland C/C++ (for
DOS)

3-9

programming in Borland C/C++ (for
Windows)

3-10

programming in Microsoft C/C++ (for
DOS)

3-7

programming in Microsoft C/C++ (for
Windows)

3-8

channel and gain functions

4-4

channel-gain queue

2-18

channels
analog input

2-14

analog output

2-34

digital I/O

2-45

,

4-138

multiple using a channel-gain queue

2-18

multiple using a group of consecutive
channels

2-17

software (logical)

2-14

clock functions

4-4

clock sources:

see

 pacer clocks

commands:

see

 functions
compile and link statements

Borland C/C++ (for DOS)

3-9

Microsoft C/C++ (for DOS)

3-7

Turbo Pascal (for DOS)

3-15

continuous mode
analog input operations

2-24

analog output operations 2-37
digital I/O operations 2-51

conventions 4-5
conversion mode functions 4-3
conversion modes 2-19
conversion rate 2-22
converting counts to voltage B-5
converting data for digital I/O operations

BASIC 3-29
Visual Basic for Windows 3-21

converting voltage to counts B-1
counter/timer I/O 2-52
counter/timer I/O functions 4-4
counter/timers: see 82C54 counter/timer
creating an executable file

Borland C/C++ (for DOS) 3-9
Borland C/C++ (for Windows) 3-11
Microsoft C/C++ (for DOS) 3-7
Microsoft C/C++ (for Windows) 3-9
Professional Basic 3-32
QuickBasic 3-31
Turbo Pascal (for DOS) 3-15
Turbo Pascal for Windows 3-15
Visual Basic for DOS 3-33
Visual Basic for Windows 3-23

D
DACs: see digital-to-analog converters
DAS-1600/1400/1200 Series Function Call

Driver: see Function Call Driver
DAS-1600/1400/1200 Series standard

software package 1-1

X-3

DAS1600_8254Control 2-53, 4-7
DAS1600_8254GetClk0 2-53, 4-10
DAS1600_8254GetCounter 2-53, 4-13
DAS1600_8254GetTrig0 2-53, 4-16
DAS1600_8254SetClk0 2-53, 4-19
DAS1600_8254SetCounter 2-53, 4-21
DAS1600_8254SetTrig0 2-53, 4-24
DAS1600_DevOpen 2-2, 4-27
DAS1600_GetDevHandle 2-3, 4-30
data conversion B-1

converting counts to voltage B-5
converting data for digital I/O operations

in BASIC 3-29
converting data for digital I/O operations

in Visual Basic 3-21
converting voltage to counts B-1

data transfer modes: see operation modes
data types 4-6
default values

A/D frame elements 2-8
burst mode conversion rate 2-19
D/A frame elements 2-31
DI frame elements 2-41
DO frame elements 2-42
settling time 2-19

device handle 2-3
digital I/O 2-39

buffering modes 2-50
channels 2-45
converting data in BASIC 3-29
converting data in Visual Basic for

Windows 3-21
digital input programming flow diagrams

1-18
digital output programming flow

diagrams 1-21
lines 2-45, 4-138
memory allocation 2-42
operation modes 2-39
pacer clocks 2-48
ports 2-45
trigger sources 2-51

digital trigger
analog input operations 2-28
analog output operations 2-38
digital I/O operations 2-52

digital-to-analog converters 2-34
dimensioning a local array

analog input operations 2-10
analog output operations 2-32
digital I/O operations 2-42

dimensioning memory: see memory
allocation

DMA mode
analog input operations 2-6

driver handle 2-2
driver: see Function Call Driver
dynamically allocating a memory buffer

analog input operations 2-10
analog output operations 2-33
digital I/O operations 2-44

E
error codes A-1
error handling 2-4

BASIC 3-30
C languages 3-6
Turbo Pascal 3-14
Visual Basic for Windows 3-22

executable file: see creating an executable
file

expansion accessories 2-14, 2-21
external pacer clock

analog input operations 2-23
analog output operations 2-36
digital I/O operations 2-50

external trigger
analog input operations 2-28
analog output operations 2-38
digital I/O operations 2-52

X-4 Index

F
files required

Borland C/C++ (for DOS) 3-9
Borland C/C++ (for Windows) 3-10
Microsoft C/C++ (for DOS) 3-7
Microsoft C/C++ (for Windows) 3-8
Professional Basic 3-32
QuickBasic 3-31
Turbo Pascal (for DOS) 3-15
Turbo Pascal for Windows 3-15
Visual Basic for DOS 3-33
Visual Basic for Windows 3-23

flow diagrams 1-6
frame 2-6

A/D 2-6
D/A 2-31
DI 2-41
DO 2-41
handle 2-6, 2-31, 2-41

frame management functions 4-2
Function Call Driver initialization 2-2
functions

buffer address 4-3
buffering mode 4-3
channel and gain 4-4
clock 4-4
conversion mode 4-3
counter/timer I/O 4-4
frame management 4-2
initialization 4-2
memory management 4-3
miscellaneous 4-5
operation 4-2
summary 1-2
trigger 4-4

G
gain codes 2-13
gains 2-12, 2-13
gate signal 4-17, 4-25
group of consecutive channels 2-17

H
handle

device 2-3
driver 2-2
frame 2-6, 2-31, 2-41

hardware trigger
analog input operations 2-28
analog output operations 2-38
digital I/O operations 2-52

help 1-24
hysteresis 2-26

I
initialization functions 4-2
initializing a board 2-2
initializing the driver 2-2
input range type 2-12, B-1
internal pacer clock

analog input operations 2-22
analog output operations 2-35
digital I/O operations 2-48

internal trigger
analog input operations 2-24
analog output operations 2-38
digital I/O operations 2-51

interrupt mode
analog input operations 2-5
analog output operations 2-30
digital I/O operations 2-40

X-5

K
K_ADRead 2-5, 2-16, 4-32
K_ClearFrame 2-8, 4-35
K_CloseDriver 2-2, 4-37
K_ClrADFreeRun 2-19, 4-39
K_ClrContRun 2-24, 2-37, 2-50, 4-41
K_DASDevInit 4-43
K_DAWrite 2-29, 2-34, 4-45
K_DIRead 2-39, 4-48
K_DMAAlloc 2-11, 4-51
K_DMAFree 2-11, 4-54
K_DMAStart 2-6, 4-56
K_DMAStatus 2-6, 4-58
K_DMAStop 2-6, 4-61
K_DOWrite 2-39, 4-64
K_FormatChnGAry 4-67
K_FreeDevHandle 2-3, 4-69
K_FreeFrame 2-8, 4-71
K_GetADConfig 2-14, 4-73
K_GetADFrame 2-6, 4-75
K_GetADMode 4-77, B-1
K_GetClkRate 4-79
K_GetDAFrame 2-31, 4-81
K_GetDevHandle 2-2, 4-83
K_GetDIFrame 2-41, 4-85
K_GetDOFrame 2-41, 4-87
K_GetErrMsg 2-4, 4-89
K_GetShellVer 2-3, 4-91
K_GetVer 2-3, 4-94
K_IntAlloc 2-11, 2-33, 2-44, 4-97
K_IntFree 2-11, 2-33, 2-44, 4-100
K_IntStart 2-5, 2-30, 2-40, 4-102
K_IntStatus 2-6, 2-31, 2-40, 4-104
K_IntStop 2-6, 2-31, 2-40, 4-107
K_MoveArrayToBuf 2-33, 2-44, 4-112
K_MoveArrayToBufL 2-44, 4-114
K_MoveBufToArray 2-10, 2-44, 4-116
K_MoveBufToArrayL 2-44, 4-118
K_MoveDataBuf 4-120
K_OpenDriver 2-2, 4-122
K_RestoreChnGAry 4-125

K_SetADFreeRun 2-19, 4-127
K_SetADTrig 2-26, 4-129
K_SetBuf 4-132
K_SetBufI 4-135
K_SetBufL 4-137
K_SetBurstTicks 2-20, 4-139
K_SetChn 2-16, 2-34, 4-141
K_SetChnGAry 2-18, 4-143
K_SetClk 2-23, 2-35, 2-36, 2-49, 2-50,

4-146
K_SetClkRate 2-22, 2-35, 2-49, 4-148
K_SetContRun 2-24, 2-37, 2-51, 4-151
K_SetDITrig 2-28, 2-38, 2-52, 4-153
K_SetDMABuf 4-156
K_SetG 2-16, 2-17, 4-159
K_SetSSH 2-21, 4-162
K_SetStartStopChn 2-17, 2-34, 2-36, 4-164
K_SetStartStopG 2-17, 4-166
K_SetTrig 2-24, 2-26, 2-28, 2-38, 2-51,

2-52, 4-169
K_SetTrigHyst 2-26, 4-171
K_SyncStart 2-5, 2-30, 2-40, 4-173
KMakeDMABuf 4-110

L
logical channels 2-14

M
maintenance operations: see system

operations
managing memory: see memory allocation
memory allocation

analog input operations 2-10
analog output operations 2-32
digital I/O operations 2-42, 4-138

memory handle 2-11

X-6 Index

memory heap
BASIC 3-24
Turbo Pascal 3-11

memory management functions 4-3
Microsoft C/C++ (for DOS)

programming information 3-7
see also C languages

Microsoft C/C++ (for Windows)
programming information 3-8
see also C languages

Microsoft Professional Basic: see
Professional Basic

Microsoft QuickBasic: see QuickBasic
Microsoft Visual Basic for DOS: see Visual

Basic for DOS
Microsoft Visual Basic for Windows: see

Visual Basic for Windows
miscellaneous functions 4-5
miscellaneous operations: see system

operations

O
operation functions 4-2
operation modes

analog input 2-4
analog output 2-29
digital I/O 2-39

operations
analog input 2-4
analog output 2-29
counter/timer I/O 2-52
digital I/O 2-39
system 2-1

P
paced mode 2-19
pacer clock

analog input operations 2-21
analog output operations 2-34
digital I/O operations 2-48

Pascal
see Turbo Pascal

ports 2-45
preliminary procedures 1-7
procedures 1-6

analog input 1-8
analog output 1-14
digital input 1-18
digital output 1-21
preliminary 1-7

Professional Basic
programming information 3-32
see also BASIC

programming flow diagrams 1-6
programming information

Borland C/C++ (for DOS) 3-9
Borland C/C++ (for Windows) 3-10
Microsoft C/C++ (for DOS) 3-7
Microsoft C/C++ (for Windows) 3-8
Professional Basic 3-32
QuickBasic 3-31
Turbo Pascal (for DOS) 3-15
Turbo Pascal for Windows 3-15
Visual Basic for DOS 3-33
Visual Basic for Windows 3-23

programming overview 3-2

X-7

Q
QuickBasic

programming information 3-31
see also BASIC

R
range type 2-12
read rate 2-49
resetting a board 2-3
return values 2-4
revision levels 2-3
routines: see functions

S
scan 2-17, 2-19
settling time 2-20
setup functions

A/D frame 2-8
D/A frame 2-31
DI frame 2-41
DO frame 2-42

simultaneous sample-and-hold mode 2-21
simultaneous updating 2-30, 2-36
single mode

analog input operations 2-5
analog output operations 2-29
digital I/O operations 2-39

single-cycle mode
analog input operations 2-24
analog output operations 2-37
digital I/O operations 2-50

software channels 2-14

software packages: see
ASO-1600/1400/1200 software
package, DAS-1600/1400/1200
Series standard software package

SSH mode 2-21
standard software package 1-1
starting

analog input operations 2-4
analog output operations 2-29
digital I/O operations 2-39

starting address: see buffer address
status codes 2-4, A-1
storing data: see buffering mode
summary of functions 1-2
synchronous mode

analog input operations 2-5
analog output operations 2-30
digital I/O operations 2-40

system operations 2-1

T
tasks 1-6

analog input 1-8
analog output 1-14
digital input 1-18
digital output 1-21
preliminary 1-7

technical support 1-24
time base

analog input operations 2-22
analog output operations 2-35
digital I/O operations 2-49

trigger functions 4-4
troubleshooting 1-24

X-8 Index

Turbo Pascal
accessing data 3-13
creating a channel-gain queue 3-14
dimensioning a local array 3-13
dynamically allocating a memory buffer

3-12
handling errors 3-14
programming in Borland Turbo Pascal

(for DOS) 3-15
programming in Borland Turbo Pascal

for Windows 3-15
reducing the memory heap 3-11

U
update rate 2-35

V
Visual Basic for DOS

programming information 3-33
see also BASIC

Visual Basic for Windows
accessing data 3-17, 3-19
converting data for digital I/O operations

3-21
creating a channel-gain queue 3-19
dimensioning a local array 3-19
dynamically allocating a memory buffer

3-16
handling errors 3-22
programming information 3-23

W
write rate 2-49

	ToC:

