

 DAS-TC
 Function Call Driver

U S E R ’ S G U I D E

DAS-TC
Function Call Driver

User’s Guide

Revision A – March 1996
Part Number: 84080

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000

●

 FAX: (508) 880-0179

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1996.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

vii

Preface

The

DAS-TC Function Call Driver User’s Guide

 describes how to write
application programs for DAS-TC and DAS-TC/B boards using the
DAS-TC Function Call Driver. The DAS-TC Function Call Driver
supports the following DOS-based languages:

●

Microsoft

 QuickBasic

 (Version 4.5)

●

Microsoft Professional Basic (Version 7.0 and higher)

●

Microsoft C/C++ (Version 7.0 and higher)

●

Borland

 C/C++ (Version 4.0 and higher)

●

Borland Turbo Pascal

 for DOS (Version 6.0 and higher)

The DAS-TC Function Call Driver also supports the following
Windows

-based languages:

●

Microsoft C/C++ (Version 7.0 and higher)

●

Borland C/C++ (Version 4.0 and higher)

●

Microsoft Visual Basic for Windows

 (Version 3.0 and higher)

●

Microsoft Visual C++

 (Version 1.5)

●

Borland Turbo Pascal for Windows (Version 1.0)

The manual is intended for application programmers using a DAS-TC or
DAS-TC/B board in an IBM

 PC AT

 or compatible computer. Before
using this manual, read the user’s guide for your board

to familiarize
yourself with the board’s features and complete the appropriate hardware
installation and configuration. It is assumed that you are experienced in
programming in your selected language and that you are familiar with
data acquisition principles.

viii

The

DAS-TC Function Call Driver User’s Guide

 is organized as follows:

●

Chapter 1 contains the information needed to get started using the
DAS-TC Function Call Driver and to get help.

●

Chapter 2 contains the background information needed to use the
functions included in the DAS-TC Function Call Driver.

●

Chapter 3 contains programming guidelines and language-specific
information related to using the DAS-TC Function Call Driver.

●

Chapter 4 contains detailed descriptions of the DAS-TC Function
Call Driver functions, arranged in alphabetical order.

●

Appendix A contains a list of the error codes returned by DAS-TC
Function Call Driver functions.

●

Appendix B contains information on the data formats used.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

●

References to BASIC apply to all DOS-based BASIC languages
(Microsoft QuickBasic and Microsoft Professional Basic). When a
feature applies to a specific language, the complete language name is
used. References to Visual Basic for Windows apply to Microsoft
Visual Basic for Windows.

●

Keyboard keys are represented in bold.

Table of Contents

iii

Preface

1

Getting Started

2

Available Operations

System Operations .2-1
Initializing the Driver .2-2
Initializing a Board .2-2
Retrieving Revision Levels .2-3
Handling Errors. .2-4

Analog Input Operations .2-4
Operation Modes. .2-5

Single Mode .2-5
Synchronous Mode. .2-6
Interrupt Mode .2-6

Memory Allocation and Management.2-7
Dimensioning a Local Array .2-7
Dynamically Allocating a Memory Buffer.2-8
Assigning the Starting Address .2-9

Channels, Gains, and Inputs .2-10
Specifying a Single Channel or a Group of Consecutive
Channels .2-11
Specifying Channels in a Channel-Gain Queue.2-12

Buffering Modes .2-13

3

Programming with the Function Call Driver

How the Driver Works .3-1
Programming Overview .3-5
Preliminary Tasks. .3-6
Analog Input Programming Tasks .3-6

Single-Mode Operations .3-6
Synchronous-Mode Operations. .3-7
Interrupt-Mode Operations .3-9

iv

C/C++ Programming Information .3-11
Dimensioning and Assigning a Local Array3-11
Dynamically Allocating and Assigning a Memory Buffer . .3-12

Allocating a Memory Buffer .3-12
Accessing the Data .3-13

Creating a Channel-Gain Queue .3-13
Handling Errors. .3-14
Programming in Microsoft C/C++ (for DOS).3-15
Programming in Microsoft C/C++ (for Windows)3-16
Programming in Borland C/C++ (for DOS)3-17
Programming in Borland C/C++ (for Windows).3-18

Turbo Pascal Programming Information3-20
Dimensioning and Assigning a Local Array3-20
Dynamically Allocating and Assigning a Memory Buffer . .3-20

Reducing the Memory Heap .3-21
Allocating a Memory Buffer .3-22
Accessing the Data .3-23

Creating a Channel-Gain Queue .3-23
Handling Errors. .3-24
Programming in Borland Turbo Pascal (for DOS)3-24
Programming in Borland Turbo Pascal for Windows3-25

Visual Basic for Windows Programming Information.3-26
Dimensioning and Assigning a Local Array3-26
Dynamically Allocating and Assigning a Memory Buffer . .3-26

Allocating a Memory Buffer .3-27
Accessing the Data from Buffers with Fewer than
64K Bytes3-27
Accessing the Data from Buffers with More than

64K Bytes .3-28
Creating a Channel-Gain Queue .3-30
Handling Errors. .3-31
Programming in Microsoft Visual Basic for Windows3-31

BASIC Programming Information. .3-32
Dimensioning and Assigning a Local Array3-32
Dynamically Allocating and Assigning a Memory Buffer . .3-32

Reducing the Memory Heap .3-33
Allocating a Memory Buffer .3-33
Accessing the Data from Buffers with Fewer

than 64K Bytes .3-34
Accessing the Data from Buffers with More

than 64K Bytes .3-34
Creating a Channel-Gain Queue .3-37

v

Handling Errors. .3-38
Programming in Microsoft QuickBasic 3-39
Programming in Microsoft Professional Basic3-40

4

Function Reference

DASTC_DevOpen .4-5
DASTC_GETCJC .4-8
DASTC_GetDevHandle. .4-11
K_ADRead. .4-13
K_ADReadL .4-16
K_ADReadR .4-19
K_ClearFrame .4-22
K_CloseDriver .4-24
K_ClrContRun .4-26
K_DASDevInit. .4-28
K_FormatChnGAry .4-30
K_FreeDevHandle .4-32
K_FreeFrame .4-34
K_GetADFrame. .4-36
K_GetDevHandle. .4-38
K_GetErrMsg. .4-40
K_GetShellVer .4-42
K_GetVer .4-45
K_IntAlloc .4-48
K_IntFree .4-51
K_IntStart. .4-53
K_IntStatus. .4-55
K_IntStop .4-58
K_MoveBufToArrayL .4-61
K_MoveBufToArrayR .4-63
K_OpenDriver .4-65
K_RestoreChnGAry. .4-68
K_SetBuf .4-70
K_SetBufL .4-72
K_SetBufR .4-74
K_SetChnGAry .4-76
K_SetContRun .4-79
K_SetStartStopChn .4-81
K_SyncStart .4-84

vi

A

Error/Status Codes

B

Data Formats

Integer Number Types . B-1
Floating-Point Number Types . B-2

Index

List of Figures

Figure 3-1. Single-Mode Function .3-2
Figure 3-2. Interrupt-Mode Operation3-3

List of Tables

Table 2-1. Supported Operations .2-1
Table 2-2. Input Types .2-10
Table 2-3. Gain Codes for Voltage Inputs 2-11
Table 3-1. A/D Frame Elements .3-4
Table 3-2. Setup Functions for Synchronous-Mode

Analog Input Operations .3-8
Table 3-3. Setup Functions for Interrupt-Mode

Analog Input Operations .3-9
Table 3-4. Protected-Mode Memory Architecture3-28
Table 3-5. Real-Mode Memory Architecture3-35
Table 4-1. Functions .4-2
Table 4-2. Data Type Prefixes. .4-4
Table A-1. Error/Status Codes . A-1
Table B-1. Integer Input Error Conditions. B-2
Table B-2. Floating-Point Input Error Conditions. B-2

1-1

1

Getting Started

The DAS-TC Function Call Driver is a library of data acquisition and
control functions (referred to as the Function Call Driver or FCD
functions). It is part of the following two software packages:

●

DAS-TC standard software package

 - This is the software package
that is shipped with the DAS-TC and DAS-TC/B boards; it includes
the following:

– Libraries of FCD functions for Microsoft QuickBasic and
Microsoft Professional Basic.

– Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

– Utility programs (DOS-based only) that allow you to configure
and test the features of DAS-TC and DAS-TC/B boards.

– Language-specific example programs.

●

ASO-TC software package

 - This is the advanced software option
for the DAS-TC boards. It includes the following:

– Libraries of FCD functions for Microsoft C/C++, Borland
C/C++, and Borland Turbo Pascal.

– Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
C/C++, Borland C/C++, Microsoft Visual Basic for Windows,
Microsoft Visual C++, and Borland Turbo Pascal for Windows.

– Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by
the FCD functions.

1-2 Getting Started

– Utility programs (DOS-based and Windows-based) that allow
you to configure and test the features of the DAS-TC and
DAS-TC/B boards.

– Language-specific example programs.

Before you use the Function Call Driver, make sure that you have
installed the software and your board using the procedures described in
the user’s guide for your board.

If you need help installing or using the DAS-TC Function Call Driver,
call your local sales office or call the following number for technical
support:

(508) 880-3000

Monday - Friday, 8:00

A.M.

 - 6:00

P.M.

, Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

1-3

Please make sure that you have the following information available before
you call:

DAS-TC/B board

Model
Serial #
Revision code
Base Address
Interrupt Level
Thermocouple type

Computer

Manufacturer
CPU type
Clock speed (MHz)
Math coprocessor
Amount of RAM
Video system
BIOS type
Memory manager

386 486 Pentium ____

Yes No

EGA VGA SVGA

Operating
system

DOS version
Windows version

3.0 3.1 95

Software
package

Name
Serial #
Version
Invoice/Order #

Compiler
(if applicable)

Language
Manufacturer
Version

Accessories

Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number

System Operations 2-1

2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DAS-TC and DAS-TC/B boards.
Table 2-1 lists the supported operations.

System Operations

This section describes the miscellaneous and general maintenance
operations that apply to DAS-TC and DAS-TC/B boards and to the
DAS-TC Function Call Driver. It includes information on the following
operations:

●

Initializing the driver

●

Initializing a board

●

Retrieving revision levels

●

Handling errors

Table 2-1. Supported Operations

Operation Page Reference

System page 2-1

Analog input page 2-4

2-2 Available Operations

Initializing the Driver

You must initialize the DAS-TC Function Call Driver and any other
Keithley DAS Function Call Drivers you are using in your application
program. To initialize the drivers, use the

K_OpenDriver

 function. You
specify the driver you are using and the configuration file that defines the
use of the driver. The driver returns a unique identifier for the driver; this
identifier is called the driver handle.

You can specify a maximum of 30 driver handles for all the Keithley
MetraByte drivers initialized from all your application programs. If you
no longer require a driver and you want to free some memory or if you
have used all 30 driver handles, you can use the

K_CloseDriver

 function
to free a driver handle and close the associated driver.

If the driver handle you free is the last driver handle specified for a
Function Call Driver, the driver is shut down. (For Windows-based
languages only, the DLLs associated with the Function Call Driver are
shut down and unloaded from memory.)

Note:

If you are programming in BASIC or Turbo Pascal,

K_OpenDriver

 and

K_CloseDriver

 are not available. You must use the

DASTC_DevOpen

 function instead.

DASTC_DevOpen

 initializes the
DAS-TC Function Call Driver according to the configuration file you
specify. Refer to page 4-5 for more information. In BASIC and Turbo

Pascal, closing the DAS-TC Function Call Driver is not required.

Initializing a Board

The DAS-TC Function Call Driver supports up to two DAS-TC or
DAS-TC/B boards. You must use the

K_GetDevHandle

 function to
specify the boards you want to use. The driver returns a unique identifier
for each board; this identifier is called the device handle.

Device handles allow you to communicate with more than one Keithley
MetraByte DAS board. You use the device handle returned by

K_GetDevHandle

 in subsequent function calls related to the board.

System Operations 2-3

You can specify a maximum of 30 device handles for all the Keithley
MetraByte DAS boards accessed from all your application programs. If a
board is no longer being used and you want to free some memory or if
you have used all 30 device handles, you can use the

K_FreeDevHandle

function to free a device handle.

Note:

If you are programming in BASIC or Turbo Pascal,

K_GetDevHandle

 and

K_FreeDevHandle

 are not available. You must
use the

DASTC_GetDevHandle

function instead. Refer to page 4-11 for
more information. In BASIC or Turbo Pascal, freeing a device handle is

not required.

Use

K_GetDevHandle

 or

DASTC_GetDevHandle

 the first time you
initialize a DAS-TC or DAS-TC/B board only. Once you have a device
handle, you can reinitialize a board as needed by using the

K_DASDevInit

 function.

Retrieving Revision Levels

If you are using functions from different Keithley DAS Function Call
Drivers in the same application program or if you are having problems
with your application program, you may want to verify which versions of
the Function Call Driver, Keithley DAS Driver Specification, and
Keithley DAS Shell are used by your Keithley MetraByte DAS board.

The

K_GetVer

 function allows you to get both the revision number of the
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

The

K_GetShellVer

 function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that are shared by all Keithley MetraByte DAS boards).

2-4 Available Operations

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to Appendix A for a complete list of error codes.

Each supported language uses a different procedure for error checking;
refer to the following pages for more information:

For C-language application programs only, the Function Call Driver
provides the

K_GetErrMsg

 function, which gets the address of the string
corresponding to an error code.

Analog Input Operations

This section describes the following:

●

Analog input operation modes available.

●

How to allocate and manage memory for analog input operations.

●

How to specify the following for an analog input operation:

– Channels and input range

– Buffering mode

C/C++ page 3-14

Turbo Pascal page 3-24

Visual Basic for Windows page 3-31

BASIC page 3-38

Analog Input Operations 2-5

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the DAS-TC and
DAS-TC/B boards to computer memory. You can perform analog input
operations in single mode, synchronous mode, and interrupt mode, as
described in the following sections.

Single Mode

In single mode, the board acquires a single sample from an analog input
channel. The driver initiates the conversion; you cannot perform any other
operation until the single-mode operation is complete.

Use the

K_ADRead

 function that is appropriate to your programming
language to start an analog input operation in single mode. For each
function you specify the board you want to use, the analog input channel
to read, the gain for that channel (for voltage inputs only), and the
variable in which to store the converted data.

Note:

For thermocouple inputs, specify 0 for the gain; the gain is ignored

for thermocouple inputs.

Depending on your configuration, the data is returned as a single voltage
or temperature value in engineering units. Refer to Appendix B for more
information on the format of the data returned.

If you wish, you can use a

K_ADRead

 function with software looping to
acquire more than one value from one or more channels. Typically, when
acquiring more than one value you want more control over the data
transfer than is possible with a single-mode function; in such cases, use
either synchronous or interrupt mode, described in the next sections.

Note:

To read the value of the CJC (cold junction compensation)
channel, use the single-mode function

DASTC_GETCJC

. You can use
the resulting value to correct a temperature reading when you want to

perform your own linearization.

2-6 Available Operations

Synchronous Mode

In synchronous mode, the board acquires a single sample or multiple
samples from one or more analog input channels. After transferring the
specified number of samples to computer memory, the driver returns
control to the application program. You cannot perform any other
operation until a synchronous-mode operation is complete.

The DAS-TC and DAS-TC/B boards transfer data in blocks, where the
block size equals the number of channels specified. Suppose, for
example, you requested 43 samples using 10 channels. The Function Call
Driver actually acquires 50 values in five blocks of 10 samples each. The
first 40 values are transferred from the first four blocks that were acquired
and the remaining three samples are transferred from the fifth acquired
block of 10 samples.

Use the

K_SyncStart

 function to start an analog input operation in
synchronous mode.

Depending on your configuration, the data is returned as voltage or
temperature values in engineering units. Refer to Appendix B for more
information on the format of the data returned.

Interrupt Mode

In interrupt mode, the board acquires a single sample or multiple samples
from one or more analog input channels. Once the analog input operation
begins, control returns to your application program. The hardware
transfers the data from the board to a user-defined buffer in computer
memory using an interrupt service routine.

As in synchronous mode, in interrupt mode, the DAS-TC and DAS-TC/B
boards transfer data in blocks, where the block size equals the number of
channels specified.

Use the

K_IntStart

 function to start an analog input operation in
interrupt mode.

Depending on your configuration, the data is returned as voltage or
temperature values in engineering units. Refer to Appendix B for more
information on the format of the data returned.

Analog Input Operations 2-7

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-13 for more information on
buffering modes. Use the

K_IntStop

 function to stop a continuous-mode
interrupt operation. Use the

K_IntStatus

 function to determine the
current status of an interrupt operation.

Memory Allocation and Management

Synchronous-mode and interrupt-mode analog input operations on the
DAS-TC and DAS-TC/B boards require a single array or memory buffer
in which to store acquired data. The ways you can allocate and manage
memory are described in the following sections.

Dimensioning a Local Array

For the DAS-TC and DAS-TC/B boards, the simplest way to reserve a
memory buffer is to dimension an array within your application program.
The advantage of this method is that the array is directly accessible to
your application program. The limitations of this method are as follows:

●

Certain programming languages limit the size of local arrays.

●

Local arrays occupy permanent memory areas; these memory areas
cannot be freed to make them available to other programs or
processes.

Make sure that the array you dimension matches the data type (long
integer or floating point) specified in the configuration file. A single
sample is four bytes long. Therefore, you should declare a local array as
an array of four byte elements, the size of which is at least equal to the
number of samples you are acquiring. For example, if you want to acquire
16,384 samples, you must dimension a 64K byte array.

2-8 Available Operations

Dynamically Allocating a Memory Buffer

If you wish, you can also reserve a memory buffer by allocating it
dynamically outside of your application program’s memory area. The
advantages of this method are as follows:

●

The size of the buffer is limited by the amount of free physical
memory available in your computer at run time.

●

A dynamically allocated memory buffer can be freed to make it
available to other programs or processes.

The limitation of this method is that for Visual Basic for Windows and
BASIC, the data in a dynamically allocated memory buffer is not directly
accessible to your program. You must use the

K_MoveBufToArrayL

function

(for long integer arrays) or the

K_MoveBufToArrayR

function
(for floating-point arrays) to move the data from the dynamically
allocated memory buffer to the program’s local array. For Visual Basic for
Windows, refer to page 3-26 for more information; for BASIC, refer to
page 3-32 for more information.

Use the

K_IntAlloc

 function to dynamically allocate a memory buffer for
a synchronous-mode or interrupt-mode operation. You specify the
operation requiring the buffer and the number of samples to store in the
buffer. The driver returns the starting address of the buffer and a unique
identifier for the buffer; this identifier is called the memory handle. When
the buffer is no longer required, you can free the buffer for another use by
specifying this memory handle in the

K_IntFree

 function.

Make sure that the pointers to the buffers allocated by

K_IntAlloc

 are
appropriate to the number type (long integer or floating point) specified in
the configuration file.

Analog Input Operations 2-9

Notes:

For DOS-based languages, the area used for dynamically
allocated memory buffers is referred to as the far heap; for
Windows-based languages, this area is referred to as the global heap.
These heaps are areas of memory left unoccupied as your application
program and other programs run.

For DOS-based languages, the

K_IntAlloc

 function uses the DOS Int 21h
function 48h to dynamically allocate far heap memory. For
Windows-based languages, the

K_IntAlloc

 function calls the

GlobalAlloc

 API function to allocate the desired buffer size from the
global heap.

For Windows-based languages, dynamically allocated memory is

guaranteed to be fixed and locked in memory.

Assigning the Starting Address

After you dimension your array or allocate your buffer, you must assign
the starting address of the array or buffer and the number of samples to
store in the array or buffer. Each supported programming language
requires a particular function and procedure for assigning the starting
address; refer to the following table for more information:

Language Function Refer to

C/C++ K_SetBuf page 3-11

Turbo Pascal K_SetBuf page 3-20

Visual Basic for Windows K_SetBufL

1

K_SetBufR

Notes

1

Use

K_SetBufL

 for long integer arrays or buffers; use

K_SetBufR

for floating-point arrays or buffers.

page 3-26

BASIC K_SetBufL
K_SetBufR

page 3-32

2-10 Available Operations

Channels, Gains, and Inputs

DAS-TC and DAS-TC/B boards are software-configurable for up to 16
differential analog input channels (numbered 0 through 15). You can mix
and match thermocouple and voltage inputs. You configure the channels
using the DASTCCFG.EXE configuration utility; refer to the user’s guide
for your board for more information. Table 2-2 lists the input types
supported by the DAS-TC and DAS-TC/B boards.

The input range is usually determined by the settings in the configuration
file. However, for voltage inputs only, you can specify an input range
using the gain and gain code, shown in Table 2-3. (The gain code is used
by the FCD functions to represent the gain.) For thermocouple inputs, the
gain is ignored; specify a gain code of 0 for thermocouple inputs.

Table 2-2. Input Types

Voltage Inputs

−

2.5 V to 10 V

−

20 mV to 80 mV

−

15 mV to 60 mV

−

6.25 mV to 25 mV

Thermocouple
Inputs

Type J

Type K

Type E

Type T

Type R

Type S

Type B

Analog Input Operations 2-11

Depending on the settings in the configuration file, data is returned in
volts, degrees Celsius, or degrees Fahrenheit, as appropriate for the input
types configured. Refer to Appendix B for information on the data
formats.

How you specify a channel and the input range differs depending on the
operation mode and the sequence of channels you want to use, as
described in the following sections.

Specifying a Single Channel or a Group of Consecutive Channels

For single-mode operations, you can acquire a single sample from a
single channel. Use the

K_ADRead

 function appropriate to your
programming language to specify an analog input channel and the gain
for the channel (for voltage inputs only).

Note:

For thermocouple inputs, the gain is ignored; specify a gain code

of 0 for channels configured as thermocouple inputs.

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from a single channel or a group of consecutive
channels. Use the

K_SetStartStopChn

 function to specify the first and
last channels in the group; to read a single channel, specify the same
channel as both the start and the stop channel. The input ranges of the
channels are determined by the settings in the configuration file.

Table 2-3. Gain Codes for Voltage Inputs

Gain
Code Gain

Voltage
Input Range

0 1

−

2.5 V to 10 V

1 125

−

20 mV to 80 mV

2 166.67

−15 mV to 60 mV

3 400 −6.25 mV to 25 mV

2-12 Available Operations

The channels are sampled in order from the first to the last. For example,
if the start channel is 10 and the stop channel is 15, the channels are
sampled in the following order: 10, 11, 12, 13, 14, 15. If the start channel
is 10 and the stop channel is 3, the channels are sampled in the following
order: 10, 11, 12, 13, 14, 15, 0, 1, 2, 3. The channels are repeatedly
sampled in the specified order until the required number of samples is
read.

Note: When you use the K_SetStartStopChn function, the Function
Call Driver reads the configuration file to determine whether the signal
connected to the specified channel is a voltage input or a thermocouple
input and to determine the appropriate gain for that channel. If you want
to change the gain without changing the configuration file, use a
channel-gain queue, as described in the next section.

Specifying Channels in a Channel-Gain Queue

For synchronous-mode and interrupt-mode analog input operations, you
can acquire samples from channels in a software channel-gain queue. In
the channel-gain queue, you specify the channels you want to sample, the
gain for the channels (voltage inputs only), and the order in which you
want to sample them.

Note: For thermocouple inputs, the gain is ignored; specify a gain code
of 0 for channels configured as thermocouple inputs.

You can set up the channels in a channel-gain queue either in consecutive
or nonconsecutive order. You can also specify the same channel more than
once.

The channels are sampled in order from the first channel in the queue to
the last channel in the queue; the channels in the queue are then sampled
again until the specified number of samples is read.

Analog Input Operations 2-13

The way that you specify the channels in a channel-gain queue depends
on the language you are using. Refer to the following pages for more
information:

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the starting address of the
channel-gain queue.

Buffering Modes

The buffering mode determines how the driver stores the converted data
in the array or buffer. For interrupt-mode analog input operations, you can
specify one of the following buffering modes:

● Single-cycle mode- In single-cycle mode, after the board converts the
specified number of samples and stores them in the array or buffer,
the operation stops automatically. Single-cycle mode is the default
buffering mode. To reset the buffering mode to single-cycle, use the
K_ClrContRun function.

● Continuous mode - In continuous mode, the board continuously
converts samples and stores them in the array or buffer until it
receives a stop function; any values already stored in the array or
buffer are overwritten. Use the K_SetContRun function to specify
continuous buffering mode.

If you are using continuous buffering, as soon as the last block of
samples is transferred, the following occur:

– the transfer count and buffer pointer are reset to zero

– K_IntStatus returns zero instead of the requested sample size in
the index parameter

– the driver begins to overwrite your buffer’s data

C/C++ page 3-13

Turbo Pascal page 3-23

Visual Basic for Windows page 3-30

BASIC page 3-37

2-14 Available Operations

Therefore, if your application requires consecutive blocks of data,
you should begin processing the buffer before the buffer is full, using
K_IntStatus to determine how many blocks have been transferred
(this function’s index parameter increments by the block size).

Note: Buffering modes are not meaningful for synchronous-mode
operations, since only single-cycle mode applies.

How the Driver Works 3-1

3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the Function Call
Driver, as well as programming guidelines and language-specific
information to assist you when writing application programs with the
Function Call Driver.

How the Driver Works

When writing application programs, you can use functions from one or
more Keithley MetraByte DAS Function Call Drivers. You initialize each
driver according to a particular configuration file. If you are using more
than one driver or more than one configuration file with a single driver,
the driver handle uniquely identifies each driver or each use of the driver.

You can program one or more boards in your application program. Up to
two DAS-TC or DAS-TC/B boards are supported. You initialize each
board using a unique device handle to identify each board. Each device
handle is associated with a particular driver.

The Function Call Driver allows you to perform operations in various
operation modes. For single mode, the operation is performed with a
single call to a function; the attributes of the operation are specified as
arguments to the function. Figure 3-1 illustrates the syntax of the
single-mode, analog input operation function

K_ADRead

. The

K_ADReadL

 and

K_ADReadR

 functions have the same syntax.

3-2 Programming with the Function Call Driver

Figure 3-1. Single-Mode Function

For other operation modes, such as interrupt mode, the driver uses frames
to perform the operation. A frame is a data structure whose elements
define the attributes of the operation. Each frame is associated with a
particular board, and therefore, with a particular driver.

Frames help you create structured application programs. You set up the
attributes of the operation in advance, using a separate function call for
each attribute, and then start the operation at an appropriate point in your
program.

Frames are useful for operations that have many defining attributes, since
providing a separate argument for each attribute could make a function’s
argument list unmanageably long. In addition, some attributes, such as the
buffering mode, are available only for operations that use frames.

You indicate that you want to perform an operation by getting an
available frame for the driver. The driver returns a unique identifier for the
frame; this identifier is called the frame handle. You then specify the
attributes of the operation by using setup functions to define the elements
of the frame associated with the operation. For example, to specify the
channels on which to perform an operation, you would use the

K_SetStartStopChn

 setup function.

K_ADRead (board ,

 channel ,

 gain ,

 buffer)

Board number

Analog input channel

Gain applied to channel

Buffer for data

Single-Mode Function Attrib utes of Operation

How the Driver Works 3-3

You use the frame handle you specified when accessing the frame in all
setup functions and other functions related to the operation. This ensures
that you are defining the same operation.

When you are ready to perform the operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle. Figure 3-2 illustrates the syntax of the
interrupt-mode operation function

K_IntStart

.

Figure 3-2. Interrupt-Mode Operation

For DAS-TC and DAS-TC/B boards, synchronous-mode and
interrupt-mode analog input operations require frames, called A/D
(analog-to-digital) frames. Use the

K_GetADFrame

 function to access
an available A/D frame.

If you want to perform a synchronous-mode or interrupt-mode analog
input operation and all A/D frames have been accessed, you can use the

K_FreeFrame

 function to free a frame that is no longer in use. You can
then redefine the elements of the frame for the next operation.

When you access a frame, the elements are set to their default values. You
can also use the

K_ClearFrame

 function to reset all the elements of a
frame to their default values.

Start Channel

Stop Channel

Buffering Mode

.

.

.

First analog input channel

Last analog input channel

Single cycle or continuous

.

.

.

Attrib utes of OperationFrame

K_IntStart (frameHandle)

3-4 Programming with the Function Call Driver

Table 3-1 lists the elements of an A/D frame for DAS-TC and DAS-TC/B
boards. This table also lists the default value of each element and the
setup function used to define each element.

Note:

The DAS-TC Function Call Driver provides many other functions
that are not related to controlling frames, defining the elements of frames,
or reading the values of frame elements. These functions include
initialization functions, memory management functions, and

miscellaneous functions.

Table 3-1. A/D Frame Elements

Element Default Value Setup Function

Buffer

1

Notes

1

You must set this element.

0 (NULL) K_SetBuf

2

K_SetBufL
K_SetBufR

2

Use

K_SetBuf

 for C/C++ and Turbo Pascal languages; use

K_SetBufL

 (for
long integer arrays) or

K_SetBufR

 (for floating-point arrays) for Visual Basic
and BASIC languages.

Number of Samples 0 K_SetBuf

2

K_SetBufL
K_SetBufR

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

3

3

Use this function to reset the value of this particular frame element to its
default setting without clearing the frame or getting a new frame. Whenever
you clear a frame or get a new frame, this frame element is set to its default
value automatically.

Start Channel 0 K_SetStartStopChn

Stop Channel 0 K_SetStartStopChn

Gain 0 Not applicable

4

4

The gain value is ignored; the driver reads the value from the configuration
file.

Channel-Gain Queue 0 (NULL) K_SetChnGAry

Programming Overview 3-5

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming Overview

To write an application program using the DAS-TC Function Call Driver,
perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the operations supported by the Function Call Driver
and the functions that you can use to define each operation.

2. Write your application program. Refer to the following for additional
information:

– Preliminary Tasks, the next section, which describes the
programming tasks that are common to all application programs.

– Analog Input Programming Tasks on page 3-6, which describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

– Chapter 4, which contains detailed descriptions of the FCD
functions.

– The example programs in the DAS-TC standard software
package and the ASO-TC software package. The FILES.TXT file
in the installation directory lists and describes the example
programs.

3. Compile and link the program. Refer to the following pages for
information on compile and link statements and other
language-specific considerations:

C/C++ page 3-11

Turbo Pascal page 3-20

Visual Basic for Windows page 3-26

BASIC page 3-32

3-6 Programming with the Function Call Driver

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. Depending on the specific language you are using, this file
is included in the DAS-TC standard software package or the ASO-TC
software package.

2. Declare and initialize program variables.

3. Use a driver initialization function (

K_OpenDriver

or

DASTC_DevOpen

) to initialize the driver.

4. Use a board initialization function (

K_GetDevHandle

or

DASTC_GetDevHandle

) to specify the DAS-TC or DAS-TC/B
board you want to use and to initialize the board. If you are using two
DAS-TC or DAS-TC/B boards, repeat this step.

After completing the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog input operations are described in the following sections.

Analog Input Programming Tasks

The following sections describe the operation-specific programming tasks
required to perform single-mode, synchronous-mode, and interrupt-mode
analog input operations.

Single-Mode Operations

For a single-mode analog input operation, perform the following tasks:

1. Declare the array or variable in which to store the single analog input
value.

2. Use the appropriate

K_ADRead

 function to read the single analog
input value; specify the attributes of the operation as arguments to the
function.

Analog Input Programming Tasks 3-7

The following table lists the three

K_ADRead

 functions and explains
when to use each function. For details on each function, refer to
Chapter 4.

Synchronous-Mode Operations

For a synchronous-mode analog input operation, perform the following
tasks:

1. Use the

K_GetADFrame

 function to access an A/D frame.

2. Dimension the array in which to store the acquired data. (Use the

K_IntAlloc

 function if you want to allocate the buffer dynamically
outside your program's memory area.)

3.

If you want to use a channel-gain queue to specify the channels
acquiring data

, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-12 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-2.

Note:

When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list

of the default values of A/D frame elements.

Function Use with

K_ADRead C/C++, Turbo Pascal, and Turbo Pascal for
Windows for any single-mode operation.

K_ADReadL Visual Basic for Windows and BASIC, when you
want to store the value read as a long integer.

K_ADReadR Visual Basic for Windows and BASIC, when you
want to store the value read as a floating-point
number.

3-8 Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use the

K_SyncStart

 function to start the synchronous-mode
operation.

6.

If you are programming in Visual Basic for Windows or BASIC and
you used

K_IntAlloc

 to allocate your buffer

, use the

K_MoveBufToArrayL

 function (for long integer arrays) or the

K_MoveBufToArrayR

 function (for floating-point arrays) to
transfer the acquired data from the allocated buffer to the program’s
local array.

7.

If you used

K_IntAlloc

 to allocate your buffer

, use the

K_IntFree

function to deallocate the buffer.

8. Use the

K_FreeFrame

 function to return the frame you accessed in
step 1 to the pool of available frames.

Table 3-2. Setup Functions for Synchronous-Mode
Analog Input Operations

Attribute Setup Functions

Buffer K_SetBuf

1

K_SetBufL
K_SetBufR

Notes

1

Use

K_SetBuf

 for C/C++ and Turbo Pascal languages;
use

K_SetBufL

 (for long integer arrays) or

K_SetBufR

(for floating-point arrays) for Visual Basic and BASIC
languages.

Number of Samples K_SetBuf

1

K_SetBufL
K_SetBufR

Start Channel K_SetStartStopChn

Stop Channel K_SetStartStopChn

Channel-Gain Queue K_SetChnGAry

Analog Input Programming Tasks 3-9

Interrupt-Mode Operations

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use the

K_GetADFrame

 function to access an A/D frame.

2. Dimension the array in which to store the acquired data. (Use the

K_IntAlloc

 function if you want to allocate a buffer dynamically
outside your program's memory area.)

3.

If you want to use a channel-gain queue to specify the channels
acquiring data

, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-12 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-3.

Note:

When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list

of the default values of A/D frame elements.

Table 3-3. Setup Functions for Interrupt-Mode
Analog Input Operations

Attribute Setup Functions

Buffer K_SetBuf

1

K_SetBufL
K_SetBufR

Number of Samples K_SetBuf

1

K_SetBufL
K_SetBufR

Buffering Mode K_SetContRun
K_ClrContRun

Start Channel K_SetStartStopChn

3-10 Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use the

K_IntStart

 function to start the interrupt-mode operation.

6. Use the

K_IntStatus

 function to monitor the status of the
interrupt-mode operation.

7.

If you specified continuous buffering mode

, use the

K_IntStop

function to stop the interrupt-mode operation when the appropriate
number of samples has been acquired.

8.

If you are programming in Visual Basic for Windows or BASIC and
you used

K_IntAlloc

 to allocate your buffer

, use the

K_MoveBufToArrayL

 function (for long integer arrays) or the

K_MoveBufToArrayR

 function (for floating-point arrays) to
transfer the acquired data from the allocated buffer to the program’s
local array.

9.

If you used

K_IntAlloc

 to allocate your buffer

, use the

K_IntFree

function to deallocate the buffer.

10. Use the

K_FreeFrame

 function to return the frame you accessed in
step 1 to the pool of available frames.

Stop Channel K_SetStartStopChn

Channel-Gain Queue K_SetChnGAry

Notes

1

Use K_SetBuf for C/C++ and Turbo Pascal
languages; use K_SetBufL (for long integer arrays)
or K_SetBufR (for floating-point arrays) for Visual
Basic and BASIC languages.

Table 3-3. Setup Functions for Interrupt-Mode
Analog Input Operations (cont.)

Attribute Setup Functions

C/C++ Programming Information 3-11

C/C++ Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors in C or C++, as well as other language-specific information
for Microsoft C/C++ and Borland C/C++.

Notes: Make sure that you use proper typecasting to prevent C/C++
type-mismatch warnings.

Make sure that linker options are set so that case-sensitivity is disabled.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in C or C++. Refer to the example
programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations. The following code fragment
illustrates how to dimension an array of 10,000 samples for the frame
defined by hFrame and how to use K_SetBuf to assign the starting
address of the array.

. . .
DWORD Data[10000];//Dimension array of 10,000 samples
. . .
wDasErr = K_SetBuf (hFrame, Data, 10000);
. . .

3-12 Programming with the Function Call Driver

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in C or
C++. Refer to the example programs on disk for more information.

Note: If you are using a large memory buffer, you may be limited in the
amount of memory you can allocate. It is recommended that you install
the Keithley Memory Manager before you begin programming to ensure
that you can allocate a large enough buffer. Refer to the user’s guide for
your board for more information on the Keithley Memory Manager.

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to use K_IntAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use K_SetBuf to assign the starting address of the buffer.

. . .
void far *AcqBuf; //Declare pointer to buffer
WORD hMem; //Declare word for memory handle
. . .
wDasErr = K_IntAlloc (hFrame, Samples, &AcqBuf, &hMem);
wDasErr = K_SetBuf (hFrame, AcqBuf, Samples);
. . .

The following code illustrates how to use K_IntFree to later free the
allocated buffer, using the memory handle stored by K_IntAlloc .

. . .
wDasErr = K_IntFree (hMem);
. . .

C/C++ Programming Information 3-13

Accessing the Data

You access the data stored in a dynamically allocated buffer through
C/C++ pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer described in the previous section
(AcqBuf). The following code fragment illustrates how to access and
display the data.

int huge *pData; //Declare a pointer called pData
. . .
pData = (int huge*) AcqBuf; //Assign pData to buffer
for (i = 0; i < 10; i++)

printf ("Sample #%d %X", i, *(pData+i));
. . .

Note: Declaring pData as a huge pointer allows the program to directly
access all data in the buffer regardless of the buffer size.

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable
{

WORD num_of_codes;
struct{

byte Chan;
char Gain;

} GainChanAry[256];
} GainChanTable;

3-14 Programming with the Function Call Driver

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-TC or DAS-TC/B board by
declaring and initializing a variable of type GainChanTable:

GainChanTable MyChanGainQueue =
{8, //Number of entries
0, 0, //Channel 0, gain is ignored for

//thermocouples
1, 3, //Channel 1, gain of 400
2, 2, //Channel 2, gain of 166.67
3, 1, //Channel 3, gain of 125
3, 0, //Channel 3, gain of 1
2, 3, //Channel 2, gain of 400
1, 3, //Channel 1, gain of 400
0, 0}; //Channel 0, gain is ignored

//for thermocouples

Note: Gain for thermocouple inputs is ignored; specify a gain code of 0
for channels configured as thermocouple inputs.

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

When you start the next analog input operation (using K_SyncStart or
K_IntStart), the channels are sampled in the following order: channel 0,
1, 2, 3, 3, 2, 1, 0.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the K_GetDevHandle
function.

if ((wDasErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) ! = 0)
{
printf ("Error %X during K_GetDevHandle", wDasErr);
exit (1);
}

C/C++ Programming Information 3-15

The following code fragment illustrates how to use the K_GetErrMsg
function to access the string corresponding to an error code.

. . .
if ((wDasErr = K_SetStartStopChn (hAD, 2, 15) ! = 0)

{
Error = K_GetErrMsg (hDev, wDasErr, &pMessage);
printf ("%s", pMessage);
exit (1);
}

Programming in Microsoft C/C++ (for DOS)

To program in Microsoft C/C++ (for DOS), you need the following files;
these files are provided in the ASO-TC software package.

To create an executable file in Microsoft C/C++ (for DOS), use the
following compile and link statements. Note that filename indicates the
name of your application program.

File Description

DASTC.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C

DTCDECL.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++

DASTC.HPP Include file when compiling in C++

USEDASTC.OBJ Linkable object

Type of Compile Compile and Link Statements

C CL /c filename.c
LINK filename+usetc.obj,,,dastc+dasrface;

C++ CL /c filename.cpp
LINK filename+usetc.obj,,,dastc+dasrface;

3-16 Programming with the Function Call Driver

Programming in Microsoft C/C++ (for Windows)

To program in Microsoft C/C++ (for Windows), including Microsoft
Visual C++, you need the following files; these files are provided in the
ASO-TC software package.

To create an executable file in Microsoft C/C++ (for Windows), use the
following compile and link statements. Note that filename indicates the
name of your application program.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DASTC.DLL Dynamic Link Library

DASDECL.H Include file when compiling in C

DTCDECL.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++

DASTC.HPP Include file when compiling in C++

DASIMP.LIB DAS Shell Imports

DASTCIMP.LIB DAS-TC Imports

Type of Compile Compile and Link Statements

C CL /c filename.c
LINK filename,,,dtcimp+dasimp,filename.def;
RC −r filename.rc
RC filename.res

C++ CL /c filename.cpp
LINK filename,,,dtcimp+dasimp,filename.def;
RC −r filename.rc
RC filename.res

C/C++ Programming Information 3-17

To create an executable file in the Microsoft C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Add all necessary files to the project make file by choosing Edit from
the Project menu. Make sure that you include filename.c (or
filename.cpp), filename.rc, filename.def, DASIMP.LIB, and
DTCIMP.LIB, where filename indicates the name of your application
program.

3. From the Project menu, choose Rebuild All FILENAME.EXE to
create a stand-alone executable file (.EXE) that you can execute from
within Windows.

Programming in Borland C/C++ (for DOS)

To program in Borland C/C++ (for DOS), you need the following files;
these files are provided in the ASO-TC software package.

File Description

DASTC.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C

DTCDECL.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++

DASTC.HPP Include file when compiling in C++

USEDASTC.OBJ Linkable object

3-18 Programming with the Function Call Driver

To create an executable file in Borland C/C++ (for DOS), use the
following compile and link statements. Note that filename indicates the
name of your application program.

Programming in Borland C/C++ (for Windows)

To program in Borland C/C++ (for Windows), you need the following
files; these files are provided in the ASO-TC software package.

Type of
Compile Compile and Link Statements 1

Notes
1 These statements assume a large memory model; however, any memory

model is acceptable.

C BCC filename.c usetc.obj dastc.lib dasrface.lib

C++ BCC filename.cpp usetc.obj dastc.lib dasrface.lib

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DASTC.DLL Dynamic Link Library

DASDECL.H Include file when compiling in C

DTCDECL.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++

DASTC.HPP Include file when compiling in C++

DASTCIMP.LIB DAS Shell Imports

DTCIMP.LIB DAS-TC Imports

C/C++ Programming Information 3-19

To create an executable file in Borland C/C++ (for Windows), use the
following compile and link statements. Note that filename indicates the
name of your application program.

To create an executable file in the Borland C/C++ (for Windows)
environment, perform the following steps:

1. Create a project file by choosing New from the Project menu.

2. Inside the Project window, select the project name and click on the
right mouse button.

3. Select the Add node option and add all necessary files to the project
make file. Make sure that you include filename.c (or filename.cpp),
filename.rc, filename.def, DASIMP.LIB, and DTCIMP.LIB, where
filename indicates the name of your application program.

4. From the Options menu, select Project.

5. From the Project Options dialog box, select Linker\General and make
sure that you turn OFF both the Case sensitive link and Case sensitive
exports and imports options.

6. From the Project menu, choose Build All to create a stand-alone
executable file (.EXE) that you can execute from within Windows.

Type of Compile Compile and Link Statements

C BCC -c filename.c
TLINK filename,,,dtcimp+dasimp, filename.def;
BRC -r filename.rc
BRC filename.res

C++ BCC -c filename.cpp
TLINK filename,,,dtcimp+dasimp, filename.def;
BRC -r filename.rc
BRC filename.res

3-20 Programming with the Function Call Driver

Turbo Pascal Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors when programming in Turbo Pascal, as well as
language-specific information for Borland Turbo Pascal (for DOS) and
Borland Turbo Pascal for Windows.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in Turbo Pascal. Refer to the
example programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations.

The following code fragment illustrates how to dimension an array of
10,000 samples for the frame defined by hFrame and how to use
K_SetBuf to assign the starting address of the array.

. . .
Data : Array[0..9999] of Longint;
. . .
wDasErr := K_SetBuf (hFrame, Data(0), 10000);
. . .

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in
Turbo Pascal. Refer to the example programs on disk for more
information.

Turbo Pascal Programming Information 3-21

Note: If you are using a large buffer and you are programming in
Borland Turbo Pascal for Windows, you may be limited in the amount of
memory you can allocate. It is recommended that you use the Keithley
Memory Manager before you begin programming to ensure that you can
allocate a large enough buffer. Refer to the user’s guide for your board for
more information about the Keithley Memory Manager.

Reducing the Memory Heap

Note: Reducing the memory heap is recommended for Borland Turbo
Pascal (for DOS) only; if you are programming in Borland Turbo Pascal
for Windows, reducing the memory heap is not required.

By default, when Borland Turbo Pascal (for DOS) programs begin to run,
Pascal reserves all available DOS memory for use by the internal memory
manager; this allows you to perform GetMem and FreeMem operations.
Pascal uses the compiler directive $M to distribute the available memory.
The default configuration is {$M 16384, 0, 655360}, where 16384 bytes
is the stack size, 0 bytes is the minimum heap size, and 655360 is the
maximum heap size.

It is recommended that you use the compiler directive $M to reduce the
maximum heap reserved by Pascal to zero bytes by entering the
following:

{$M (16384, 0, 0)}

Reducing the maximum heap size to zero bytes makes all far heap
memory available to DOS (and therefore available to the driver) and
allows your application program to take maximum advantage of the
K_IntAlloc function. You can reserve some space for the internal
memory manager or for DOS, if desired. Refer to your Borland Turbo
Pascal (for DOS) documentation for more information.

3-22 Programming with the Function Call Driver

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to use K_IntAlloc to
allocate a buffer of size Samples for the frame defined by hFrame and
how to use K_SetBuf to assign the starting address of the buffer.

It is recommended that you declare a dummy type array of ^Integer. The
dimension of this array is irrelevant; it is used only to satisfy Pascal’s
type-checking requirements.

{$m (16384, 0, 0)} { Turbo Pascal for DOS only }
. . .
Type

IntArray = Array[0..1] of Longint;
. . .
Var

AcqBuf : ^IntArray; { Declare buffer of dummy type }
hMem : Word; { Declare word for memory handle, hMem }

. . .
wDasErr := K_IntAlloc (hFrame, Samples, @AcqBuf, hMem);
wDasErr := K_SetBuf (hFrame, AcqBuf, Samples);
. . .

The following code illustrates how to use K_IntFree to later free the
allocated buffer, using the memory handle stored by K_IntAlloc .

. . .
wDasErr := K_IntFree (hMem);
. . .

Turbo Pascal Programming Information 3-23

Accessing the Data

You access the data stored in a dynamically allocated buffer through
Pascal pointer indirection. For example, assume that you want to display
the first 10 samples of the buffer in the operation described in the previous
section (AcqBuf). The following code fragment illustrates how to access
and display the data.

. . .
for i := 0 to 9 do begin

writeln (’Sample #’, i,’ =’, AcqBuf^[i]);
End;
. . .

Creating a Channel-Gain Queue

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-TC or DAS-TC/B board by
defining a Record as a new type. You must use K_SetChnGAry to assign
the starting address of MyChanGainQueue to the frame defined by
hFrame.

Type
 GainChanTable = Record
 num_of_codes : Integer;
 queue : Array[0..255] of Byte;
 end;
. . .
Const
 MyChanGainQueue : GainChanTable = (
 num_of_codes : (8); { Number of entries }
 queue :(0, 0, { Channel 0, gain is ignored for thermocouples}

 1, 3, { Channel 1, gain of 400}
 2, 2, { Channel 2, gain of 166.67}
 3, 1, { Channel 3, gain of 125}
 3, 0, { Channel 3, gain of 1}
 2, 3, { Channel 2, gain of 400}
 1, 3, { Channel 1, gain of 400}
 0, 0) { Channel 0, gain is ignored for thermocouples}
);
. . .

wDasErr := K_SetChnGAry (hFrame, MyChanGainQueue.num_of_codes);

3-24 Programming with the Function Call Driver

Note: Gain for thermocouple inputs is ignored; specify a gain code of 0
for channels configured as thermocouple inputs.

When you start the next analog input operation (using K_SyncStart or
K_IntStart), the channels are sampled in the following order: channel 0,
1, 2, 3, 3, 2, 1, 0.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the
DASTC_GetDevHandle function.

...
wDasErr := DASTC_GetDevHandle (0, hDev);
if wDasErr <> 0 then
BEGIN
 FormatStr (HexErr, ' %4x ', wDasErr);
 writeln ('Error', HexErr, 'during DASTC_GetDevHandle');
 Halt (1);
END;
...

Programming in Borland Turbo Pascal (for DOS)

To program in Borland Turbo Pascal, you need the file DASTC.TPU,
which is the Turbo Pascal unit for Version 6.0. This file is provided in the
ASO-TC software package.

To create an executable file in Borland Turbo Pascal, use the following
compile and link statement:

TPC filename.pas

where filename indicates the name of your application program.

Turbo Pascal Programming Information 3-25

Programming in Borland Turbo Pascal for Windows

To program in Borland Turbo Pascal for Windows, you need the
following files; these files are provided in the ASO-TC software package.

To create an executable file in Borland Turbo Pascal for Windows,
perform the following steps:

1. Load filename.pas into the Borland Turbo Pascal for Windows
environment, where filename indicates the name of your application
program.

2. From the Compile menu, choose Make.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DASTC.DLL Dynamic Link Library

DASDECL.INC Include file

DASTC.INC Include file

3-26 Programming with the Function Call Driver

Visual Basic for Windows Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors in Microsoft Visual Basic for Windows, as well as other
language-specific information for Microsoft Visual Basic for Windows.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in Microsoft Visual Basic for
Windows. Note that the code fragments assume Option Base 0. Refer to
the example programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations. The following code fragment
illustrates how to dimension a long integer array of 10,000 samples for
the frame defined by hFrame and how to use K_SetBufL to assign the
starting address of the long integer array.

. . .
Global Data(9999) As Long ’ Allocate array
. . .
wDasErr = K_SetBufL (hFrame, Data(0), 10000)
. . .

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in
Microsoft Visual Basic for Windows. Refer to the example programs on
disk for more information.

Note: If you are using a large buffer, you may be limited in the amount of
memory you can allocate. It is recommended that you use the Keithley
Memory Manager before you begin programming to ensure that you can
allocate large enough buffers. Refer to the user’s guide for your board for
more information about the Keithley Memory Manager.

Visual Basic for Windows Programming Information 3-27

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to use K_IntAlloc to
allocate a long integer buffer of size Samples for the frame defined by
hFrame and how to use K_SetBufL to assign the starting address of the
buffer.

. . .
Global AcqBuf As Long ’ Declare pointer to buffer
Global hMem As Integer ’ Declare integer for memory handle
. . .
wDasErr = K_IntAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K_SetBufL (hFrame, AcqBuf, Samples)
. . .

The following code illustrates how to use K_IntFree to later free the
allocated buffer, using the memory handle stored by K_IntAlloc .

. . .
wDasErr = K_IntFree (hMem)
. . .

Accessing the Data from Buffers with Fewer than 64K Bytes

In Microsoft Visual Basic for Windows, you cannot directly access analog
input samples stored in a dynamically allocated memory buffer. You must
use either the K_MoveBufToArrayL function (for long integer arrays) or
the K_MoveBufToArrayR function (for floating-point arrays) to move a
subset (up to 32,767 samples) of the data into a local array as required.
The following code fragment illustrates how to move the first 100
samples of the buffer in the operation described in the previous section
(AcqBuf) to a local array.

. . .
Dim Buffer(1000) As Long’ Declare local memory buffer
. . .
wDasErr = K_MoveBufToArrayL (Buffer(0), AcqBuf, 100)
. . .

3-28 Programming with the Function Call Driver

Accessing the Data from Buffers with More than 64K Bytes

When Windows is running, the CPU operates in 16-bit protected mode.
Memory is addressed using a 32-bit selector:offset pair. The selector is
the CPU’s handle to a 64K byte memory page; it is a code whose value is
significant only to the CPU. No mathematical relationship exists between
a selector and the memory location it is associated with. In general, even
consecutively allocated selectors have no relationship to each other.

When a memory buffer of more than 64K bytes is used, multiple selectors
are required. Under Windows, K_IntAlloc uses a “tiled” method to
allocate memory whereby a mathematical relationship does exist among
the selectors. Specifically, if you allocate a buffer of more than 64K bytes,
each selector that is allocated has an arithmetic value that is eight greater
than the previous one. The format of the address is a 32-bit value whose
high word is the 16-bit selector value and low word is the 16-bit offset
value. When the offset reaches 64K bytes, the next consecutive memory
address location can be accessed by adding eight to the selector and
resetting the offset to zero; to do this, add &h80000 to the buffer starting
address.

Table 3-4 illustrates the mapping of consecutive memory locations in
protected-mode “tiled” memory, where xxxxxxxx indicates the address
calculated by the CPU memory mapping mechanism.

Table 3-4. Protected-Mode Memory Architecture

Selector:Offset 32-Bit Linear Address

. . . . :

32E6:FFFE xxxxxxxx

32E6:FFFF xxxxxxxx + 1

32EE:0000 xxxxxxxx + 2

32EE:0001 xxxxxxxx + 3

. . . . :

Visual Basic for Windows Programming Information 3-29

The following code fragment illustrates moving 1,000 values from a
memory buffer (AcqBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. First,
start with the buffer address passed in K_SetBufL. Then, determine how
deep (in 64K byte pages) into the buffer the desired starting sample is
located and add &h80000 to the buffer address for each 64K byte page.
Finally, add any additional offset after the 64K byte pages to the buffer
address.

Dim AcqBuf As Long
Dim NumSamps As Long

Dim Array(999) As Long

NumSamps = 50000
wDasErr = K_IntAlloc (hFrame, NumSamps, AcqBuf, hMem)
. . .
’Acquisition routine
. . .
DesiredSamp = 40000
DesiredByte = DesiredSamp * 4 ’Number of bytes into buffer
AddSelector = DesiredByte / &h10000 ’Number of 64K pages into buffer
RemainingOffset = DesiredByte Mod &h10000 ’Additional offset

DesiredBuffLoc = AcqBuf + (AddSelector * &h80000) + RemainingOffset

wDasErr = K_MoveBufToArrayL (Array(0), DesiredBuffLoc, 1000)

To move more than 32,767 values from the memory buffer to the
program’s local array, the program must call K_MoveBufToArrayL
more than once. For example, assume that pBuf is a pointer to a
dynamically allocated buffer that contains 65,536 values. The following
code fragment illustrates how to move 65,536 values from the
dynamically allocated buffer to the program’s local array:

...
Dim Data [2, 32768] As Long
...
wDasErr = K_MoveBufToArrayL (Data(0,0), pBuf, 32768)

’Add 8 to selector, offset = 0: add &h80000
wDasErr = K_MoveBufToArrayL (Data(1,0), pBuf + &h80000, 32768)

’Add 8 to selector, offset=0: add &h100000
wDasErr = K_MoveBufToArrayL (Data(2,0), pBuf + &h100000, 32768)

3-30 Programming with the Function Call Driver

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you must use K_FormatChnGAry to
reformat the channel-gain queue so that it can be used by the DAS-TC
Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-TC or
DAS-TC/B board and how to use K_SetChnGAry to assign the starting
address of MyChanGainQueue to the frame defined by hFrame.

. . .
Global MyChanGainQueue(9) As Integer ’(4 channels x 2) + 1
. . .
MyChanGainQueue(0) = 4 ’ Number of channel-gain pairs
MyChanGainQueue(1) = 0 ’ Channel 0
MyChanGainQueue(2) = 0 ’ Gain ignored for thermocouples
MyChanGainQueue(3) = 1 ’ Channel 1
MyChanGainQueue(4) = 3 ’ Gain of 400
MyChanGainQueue(5) = 2 ’ Channel 2
MyChanGainQueue(6) = 2 ’ Gain of 166.67
MyChanGainQueue(7) = 2 ’ Channel 2
MyChanGainQueue(8) = 0 ’ Gain of 1
. . .
wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))
. . .

Note: Gain for thermocouple inputs is ignored; specify a gain code of 0
for channels configured as thermocouple inputs.

Visual Basic for Windows Programming Information 3-31

Once formatted, your Visual Basic for Windows program can no longer
read the channel-gain queue. To read or modify the array after it has been
formatted, you must use K_RestoreChnGAry as follows:

. . .
wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))
. . .

When you start the next analog input operation (using K_SyncStart or
K_IntStart), the channels are sampled in the following order: channel 0,
1, 2, 2.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the K_GetDevHandle
function.

. . .
wDasErr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (wDasErr <> 0) Then

MsgBox "K_GetDevHandle Error: " + Hex$ (wDasErr),
MB_ICONSTOP, "DAS-TC/B ERROR"

End
End If
. . .

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the ASO-TC software package.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DASTC.DLL Dynamic Link Library

DASDECL.BAS Include file; must be added to the project

DTCDECL.BAS Include file; must be added to the project

3-32 Programming with the Function Call Driver

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the File menu.

BASIC Programming Information

The following sections contain information you need to dimension an
array or allocate a memory buffer, to create channel-gain queues, and to
handle errors in BASIC, as well as other language-specific information
for Microsoft QuickBasic and Microsoft Professional Basic.

Dimensioning and Assigning a Local Array

This section provides code fragments that describe how to dimension and
assign a local array when programming in BASIC. Refer to the example
programs on disk for more information.

You can use a single, local array for synchronous-mode and
interrupt-mode analog input operations. The following code fragment
illustrates how to dimension a long array of 10,000 samples for the frame
defined by hFrame and how to use KSetBufL to assign the starting
address of the long integer array.

. . .
Dim Data(9999) As Long ’ Allocate array
. . .
wDasErr = KSetBufL% (hFrame, Data(0), 10000)
. . .

Dynamically Allocating and Assigning a Memory Buffer

This section provides code fragments that describe how to allocate and
assign a dynamically allocated memory buffer when programming in
BASIC. Refer to the example programs on disk for more information.

BASIC Programming Information 3-33

Reducing the Memory Heap

By default, when BASIC programs run, all available memory is left for
use by the internal memory manager. BASIC provides the SetMem
function to distribute the available memory (the Far Heap). It is necessary
to redistribute the Far Heap if you want to use dynamically allocated
buffers. It is recommended that you include the following code at the
beginning of BASIC programs to free the Far Heap for the driver’s use.

FarHeapSize& = SetMem(0)
NewFarHeapSize& = SetMem(-FarHeapSize&/2)

Allocating a Memory Buffer

You can use a single, dynamically allocated memory buffer for
synchronous-mode and interrupt-mode analog input operations.

The following code fragment illustrates how to use KIntAlloc to allocate
a buffer of size Samples for the frame defined by hFrame and how to use
KSetBufL to assign the starting address of the buffer.

. . .
Dim AcqBuf As Long ’ Declare pointer to buffer
Dim hMem As Integer ’ Declare memory handle
. . .
wDasErr = KIntAlloc% (hFrame, Samples, AcqBuf, hMem)
wDasErr = KSetBufL% (hFrame, AcqBuf, Samples)
. . .

The following code illustrates how to use KIntFree to later free the
allocated buffer, using the memory handle stored by KIntAlloc .

. . .
wDasErr = KIntFree% (hMem)
. . .

3-34 Programming with the Function Call Driver

Accessing the Data from Buffers with Fewer than 64K Bytes

In BASIC, you cannot directly access analog input samples stored in a
dynamically allocated memory buffer. You must use either the
KMoveBufToArrayL function (for long integer arrays) or the
KMoveBufToArrayR function (for floating-point arrays) to move a
subset of the data (up to 32,767 samples) into a local array. The following
code fragment illustrates how to move the first 100 samples of the buffer
in the operation described in the previous section (AcqBuf) into a local
memory buffer.

. . .
Dim Buffer(99) As Long ’ Declare local memory buffer
. . .
wDasErr = KMoveBufToArrayL% (Buffer(0), AcqBuf, 100)
. . .

Accessing the Data from Buffers with More than 64K Bytes

Under DOS, the CPU operates in real mode. Memory is addressed using a
32-bit segment:offset pair. Memory is allocated from the far heap, the
reserve of conventional memory that occupies the first 640K bytes of the
1M byte of memory that the CPU can address in real mode. In the
segmented real-mode architecture, the 16-bit segment:16-bit offset pair
combines into a 20-bit linear address using an overlapping scheme. For a
given segment value, you can address 64K bytes of memory by varying
the offset.

When a memory buffer of more than 64K bytes (32K values) is used,
multiple segments are required. When an offset reaches 64K bytes, the
next linear memory address location can be accessed by adding &h1000
to the buffer segment and resetting the offset to zero.

Table 3-5 illustrates the mapping of consecutive memory locations at a
segment page boundary.

BASIC Programming Information 3-35

The following code fragment illustrates how to move 1,000 values from a
memory buffer (AcqBuf) allocated with 50,000 values to the program’s
local array (Array), starting at the sample at buffer index 40,000. You
must first calculate the linear address of the buffer’s starting point, then
add the number of bytes deep into the buffer that the desired starting
sample is located, and finally convert this adjusted linear address to a
segment:offset format.

Dim AcqBuf As Long
Dim NumSamps As Long
Dim LinAddrBuff As Long
Dim DesLocAddr As Long
Dim AdjSegOffset As Long

Dim Array(999) As Long

. . . ’Initialize array with desired values

NumSamps = 50000
wDasErr = KIntAlloc% (hFrame, NumSamps, AcqBuf, hMem)

DesiredSamp = 40000
DesiredByte = DesiredSamp * 4 ’Number of bytes into buffer

’To obtain the 20-bit linear address of the buffer, shift the
’segment:offset to the right 16 bits (leaves segment only),
’multiply by 16, then add offset
LinAddrBuff = (AcqBuf / &h10000) * 16 + (AcqBuf AND &hFFFF)

Table 3-5. Real-Mode Memory Architecture

Segment:Offset 20-Bit Linear Address

. . . . :

74E4:FFFE 84E3E

74E4:FFFF 84E3F

84E4:0000 84E40

84E4:0001 84E41

. . . . :

3-36 Programming with the Function Call Driver

’20-bit linear address of desired location in buffer
DesLocAddr = LinAddrBuff + DesiredByte

’Convert desired location to segment:offset format
AdjSegOffset = (DesLocAddr / 16) * &h10000 + (DesLocAddr AND &hF)

wDasErr = KMoveBufToArrayL% (Array(0), AdjSegOffset, 1000)

To move more than 32,767 values from the memory buffer to the
program’s local array, the program must call KMoveBufToArrayL more
than once. For example, assume that pBuf is a pointer to a dynamically
allocated buffer that contains 65,536 values. The following code fragment
illustrates how to move 65,536 values from the memory buffer to the
program’s local array (Data).

Although it is recommended that you perform all calculations on the
linear address and then convert the result to the segment:offset format (as
shown in the previous code fragment), this example illustrates an
alternative method of calculating the address by working on the
segment:offset form of the address directly. You can use this method if
you already know how deep you want to go into the buffer with each
move and the offset of the starting address is 0, as is the case when the
buffer is allocated with KIntAlloc .

In this method, you add &h10000000 to the buffer address for each 64K
byte page and then add the remainder of the buffer.

...
Dim Data [2, 32768] As Long
...
wDasErr = KMoveBufToArrayL% (Data(0,0), pBuf, 32768)

’Add 8 to selector, offset = 0: add &h80000
wDasErr = KMoveBufToArrayL% (Data(1,0), pBuf + &h80000, 32768)

’Add 8 to selector, offset=0: add &h100000
wDasErr = KMoveBufToArrayL% (Data(2,0), pBuf + &h100000, 32768)

BASIC Programming Information 3-37

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you must use KFormatChnGAry to
reformat the channel-gain queue so that it can be used by the DAS-TC
Function Call Driver.

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-TC or
DAS-TC/B board and how to use KSetChnGAry to assign the starting
address of MyChanGainQueue to the frame defined by hFrame.

. . .
Dim MyChanGainQueue(9) As Integer ’(4 channels x 2) + 1
. . .
MyChanGainQueue(0) = 4 ’ Number of channel-gain pairs
MyChanGainQueue(1) = 0 ’ Channel 0
MyChanGainQueue(2) = 0 ’ Gain ignored for thermocouples
MyChanGainQueue(3) = 1 ’ Channel 1
MyChanGainQueue(4) = 3 ’ Gain of 400
MyChanGainQueue(5) = 2 ’ Channel 2
MyChanGainQueue(6) = 2 ’ Gain of 166.67
MyChanGainQueue(7) = 2 ’ Channel 2
MyChanGainQueue(8) = 0 ’ Gain of 1
. . .
wDasErr = KFormatChnGAry% (MyChanGainQueue(0))
wDasErr = KSetChnGAry% (hFrame, MyChanGainQueue(0))
. . .

Note: Gain is ignored for thermocouple inputs; specify a gain code of 0
for channels configured as thermocouple inputs.

3-38 Programming with the Function Call Driver

Once formatted, your BASIC program can no longer read the
channel-gain array. To read or modify the array after it has been
formatted, you must use KRestoreChnGAry as follows:

. . .
wDasErr = KRestoreChnGAry% (MyChanGainQueue(0))
. . .

When you start the next analog input operation (using KSyncStart or
KIntStart), the channels are sampled in the following order: channel 0, 1,
2, 2.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the DASTCGetDevHandle
function.

. . .
wDasErr = DASTCGETDEVHANDLE% (BoardNum, hDev)
IF (wDasErr <> 0) THEN
BEEP
PRINT "Error";HEX$(wDasErr);"occurred during‘DASTCGETDEVHANDLE%’"
 END
END IF
. . .

BASIC Programming Information 3-39

Programming in Microsoft QuickBasic

To program in Microsoft QuickBasic, you need the following files; these
files are provided in the DAS-TC standard software package.

For Microsoft QuickBasic, you can create an executable file from within
the programming environment, or you can use a compile and link
statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:

QB /L DTCQ45 filename.bas

where filename indicates the name of your application program.

2. From the File menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filename.bas /O
Link filename.obj,,,DTCQ45.lib+BCOM45.lib;

where filename indicates the name of your application program.

File Description

DTCQ45.LIB Linkable driver for QuickBasic (Version 4.5)
stand-alone, executable (.EXE) programs

DTCQ45.QLB Command-line loadable driver for the QuickBasic
(Version 4.5) integrated environment

QB4DECL.BI Include file

DASDECL.BI Include file

DASTC.BI Include file

3-40 Programming with the Function Call Driver

Programming in Microsoft Professional Basic

To program in Microsoft Professional Basic, you need the following files;
these files are provided in the DAS-TC standard software package.

For Microsoft Professional Basic, you can create an executable file from
within the programming environment, or you can use a compile and link
statement.

To create an executable file from within the programming environment,
perform the following steps:

1. Enter the following to invoke the environment:

QBX /L DTCQBX filename.bas

where filename indicates the name of your application program.

2. From the File menu, choose Make EXE File.

To use a compile and link statement, enter the following:

BC filename.bas /o;
Link filename.obj,,,DTCQBX.lib;

where filename indicates the name of your application program.

File Description

DTCQBX.LIB Linkable driver for Professional Basic,
stand-alone, executable (.EXE) programs

DTCQBX.QLB Command-line loadable driver for the Professional
Basic integrated environment

DASDECL.BI Include file

DASTC.BI Include file

. 4-1

4

Function Reference

The FCD functions are organized into the following groups:

●

Initialization functions

●

Operation functions

●

Frame management functions

●

Memory management functions

●

Buffer address functions

●

Buffering mode functions

●

Channel and gain functions

●

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-2 Function Reference

Table 4-1. Functions

Function Type Function Name Page Number

Initialization DASTC_DevOpen page 4-5

DASTC_GetDevHandle page 4-11

K_OpenDriver page 4-65

K_CloseDriver page 4-24

K_GetDevHandle page 4-38

K_FreeDevHandle page 4-32

K_DASDevInit page 4-28

Operation K_ADRead page 4-13

K_ADReadL page 4-16

K_ADReadR page 4-19

K_SyncStart page 4-84

K_IntStart page 4-53

K_IntStatus page 4-55

K_IntStop page 4-58

Frame Management K_GetADFrame page 4-36

K_FreeFrame page 4-34

K_ClearFrame page 4-22

Memory Management K_IntAlloc page 4-48

K_IntFree page 4-51

K_MoveBufToArrayL page 4-61

K_MoveBufToArrayR page 4-63

Buffer Address K_SetBuf page 4-70

K_SetBufL page 4-72

K_SetBufR page 4-74

. 4-3

Keep the following conventions in mind throughout this chapter:

●

Although the function names are shown with underscores, do not use
the underscores in the BASIC languages.

●

The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

●

Variable names are shown in italics.

●

The return value for all FCD functions is an integer error/status code.
Error/status code 0 indicates that the function executed successfully.
A nonzero error/status code indicates that an error occurred. Refer to
Appendix A for additional information.

●

In the usage section, the variables are not defined. It is assumed that
the variables are defined as shown in the prototype. The name of each
variable in both the prototype and usage sections includes a prefix
that indicates the associated data type. These prefixes are described in
Table 4-2.

Buffering Mode K_SetContRun page 4-79

K_ClrContRun page 4-26

Channel and Gain K_SetStartStopChn page 4-81

K_SetChnGAry page 4-76

K_FormatChnGAry page 4-30

K_RestoreChnGAry page 4-68

Miscellaneous K_GetErrMsg page 4-40

K_GetVer page 4-45

K_GetShellVer page 4-42

DASTC_GETCJC page 4-8

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

4-4 Function Reference

Table 4-2. Data Type Prefixes

Prefix Data Type Comments

sz Pointer to string terminated by
zero

This data type is typically used for variables that
specify the driver's configuration file name.

h Handle to device, frame, and
memory block

This data type is used for handle-type variables. You
declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.

ph Pointer to a handle-type variableThis data type is used when calling the FCD functions
to get a driver handle, a frame handle, a memory
handle, or a device handle. The actual variable is
passed to the driver by reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a number,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for example,

anVar

 denotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an
unsigned long to the driver by value.

DASTC_DevOpen

4-5

Purpose

Initializes the DAS-TC Function Call Driver.

Prototype C/C++

DASErr far pascal DASTC_DevOpen (char far

*szCfgFile

,
char far

*pBoards

);

Turbo Pascal

Function DASTC_DevOpen (Var

szCfgFile

 : char;
Var

pBoards

 : Integer) : Word; far; external 'DASTC';

Turbo Pascal for Windows

Function DASTC_DevOpen (Var

szCfgFile

 : char;
Var

pBoards

 : Integer) : Word; far; external 'DASTC';

Visual Basic for Windows

Declare Function DASTC_DevOpen Lib "DASTC.DLL"
(ByVal

szCfgFile

 As String,

pBoards

 As Integer) As Integer

BASIC

DECLARE FUNCTION DASTCDEVOPEN% ALIAS
"DASTC_DevOpen" (BYVAL

szCfgFile

 AS LONG,
SEG

pBoards

 AS INTEGER)

Parameters

szCfgFile

Driver configuration file.
Valid values: The name of a configuration file.

pBoards

Number of boards defined in

szCfgFile

.
Value stored:

1

or

 2

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function initializes the driver according to the information in the
configuration file specified by

szCfgFile

 and stores the number of
DAS-TC or DAS-TC/B boards defined in

szCfgFile

 in

pBoards

.

DASTC_DevOpen (cont.)

4-6 Function Reference

You create a configuration file using the DASTCCFG.EXE utility. If

szCfgFile

 =

0

,

DASTC_DevOpen

 looks for the DASTC.CFG
configuration file in the current directory. If

szCfgFile

 =

−1

,

DASTC_DevOpen

 uses the default configuration settings. Refer to the
user’s guide for your board for more information about configuration files
and settings.

See Also

K_OpenDriver

Usage C/C++

#include "DTCDECL.H" // Use DASTC.HPP for C++
...
char nBoards;
...
wDasErr = DASTC_DevOpen ("DASTC.CFG", &nBoards);

Turbo Pascal

uses DTCTPU;
...
szCfgName : String;
nBoards : Integer;
...
szCfgName := 'DASTC.CFG' + #0;
wDasErr := DASTC_DevOpen (szCfgName[1], nBoards);

Turbo Pascal for Windows

{$I DASTC.INC}
...
szCfgName : String;
nBoards : Integer;
...
szCfgName := 'DASTC.CFG' + #0;
wDasErr := DASTC_DevOpen (szCfgName[1], nBoards);

DASTC_DevOpen (cont.)

4-7

Visual Basic for Windows

(Add DTCDECL.BAS to your project)

...
DIM szCfgName AS STRING
DIM nBoards AS INTEGER
...
szCfgName = "DASTC.CFG" + CHR$(0)
wDasErr = DASTC_DevOpen(szCfgName, nBoards)

BASIC

' $INCLUDE: 'DASTC.BI'
...
DIM szCfgName AS STRING
DIM nBoards AS INTEGER
...
szCfgName = "DASTC.CFG" + CHR$(0)
wDasErr = DASTCDEVOPEN%(SSEGADD(szCfgName),nBoards)

DASTC_GETCJC

4-8 Function Reference

Purpose

Returns the value of the CJC on the DAS-TC or DAS-TC/B board in
degrees Celsius; this value is used to correct temperature input values.

Prototype C/C++

DASErr far pascal DASTC_GETCJC (int

nBrdNum

,
float far

*pCJCtemp

);

Turbo Pascal

Function DASTC_GETCJC (

nBrdNum

 : Integer;
Var

pCJCtemp

 : Real) : Word; far; external 'DASTC';

Turbo Pascal for Windows

Function DASTC_GETCJC

nBrdNum

 : Integer;
Var

pCJCtemp

 : Single) : Word; far; external 'DASTC';

Visual Basic for Windows

Declare Function DASTC_GETCJC Lib "DASTC.DLL"
(ByVal

nBrdNum

 As Integer,

pCJCtemp

 As Single) As Integer

BASIC

DECLARE FUNCTION DASTCGETCJC% ALIAS "DASTC_GETCJC"
(BYVAL

nBrdNum

 AS INTEGER, BYVAL

pCJCtemp

 AS SINGLE)

Parameters

nBrdNum

Board number.
Valid values:

0

or

1

pCJCtemp

CJC sensor temperatures in degrees Celsius.

Return Value

Error/status code. Refer to Appendix A.

Remarks

For the DAS-TC or DAS-TC/B board specified by

nBrdNum

,

this function
reads the cold junction compensation temperature at the STA-TC,
STC-TC, STA-TC/B, or STC-TC/B terminals connected to the board and
stores the value in

pCJCtemp

.

The board number specified in

nBrdNum

 refers to the board number
specified in the configuration file.

DASTC_GETCJC (cont.)

4-9

The value stored in

pCJCtemp

 is floating point regardless of the format
specified in the configuration file.

In order to obtain a temperature reading from a thermocouple type not
recognized by the Function Call Driver, you need to perform your own
linearization by calling

DASTC_GETCJC

 and using the resulting value
to correct the linearization.

Depending on the volatility of the ambient temperature where the CJC
resides, use

DASTC_GETCJC more often as you take more samples.

Usage C/C++
#include "DTCDECL.H" // Use DASTC.HPP for C++
...
float hTemp;
...
wDasErr = DASTC_GETCJC (0, &hTemp);

Turbo Pascal
uses DTCTPU;
...
hTemp : Real; {CJC Temperature}
...
wDasErr := DASTC_GETCJC (0, hTemp);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
hTemp : Single; { CJC Temperature }
...
wDasErr := DASTC_GETCJC (0, hTemp);

Visual Basic for Windows
(Add DTCDECL.BAS to your project)

...
Global hTemp As Single ' CJC Temperature
...
wDasErr = DASTC_GETCJC (0, hTemp)

DASTC_GETCJC (cont.)

4-10 Function Reference

BASIC
' $INCLUDE: 'DASTC.BI'
...
DIM hTemp AS Single' CJC Temperature
...
wDasErr = DASTCGETDEVHANDLE% (0, hTemp)

DASTC_GetDevHandle

4-11

Purpose Initializes a DAS-TC or DAS-TC/B board.

Prototype C/C++
DASErr far pascal DASTC_GetDevHandle (WORD nBrdNum,
void far * far *phDev);

Turbo Pascal
Function DASTC_GetDevHandle (nBrdNum : Word;
Var phDev : Longint) : Word; far; external 'DASTC';

Turbo Pascal for Windows
Function DASTC_GetDevHandle (nBrdNum : Word;
Var phDev : Longint) : Word; far; external 'DASTC';

Visual Basic for Windows
Declare Function DASTC_GetDevHandle Lib "DASTC.DLL"
(ByVal nBrdNum As Integer, phDev As Long) As Integer

BASIC
DECLARE FUNCTION DASTCGETDEVHANDLE% ALIAS
"DASTC_GetDevHandle" (BYVAL nBrdNum AS INTEGER,
SEG phDev AS LONG)

Parameters nBrdNum Board number.
Valid values: 0 or 1

phDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the DAS-TC or DAS-TC/B board specified by
nBrdNum and stores the device handle of the specified board in phDev.

The board number specified in nBrdNum refers to the board number
specified in the configuration file.

The value stored in phDev is intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored in phDev.

DASTC_GetDevHandle (cont.)

4-12 Function Reference

See Also K_GetDevHandle

Usage C/C++
#include "DTCDECL.H" // Use DASTC.HPP for C++
...
DWORD hDev;
...
wDasErr = DASTC_GetDevHandle (0, &hDev);

Turbo Pascal
uses DTCTPU;
...
hDev : Longint; { Device Handle }
...
wDasErr := DASTC_GetDevHandle (0, hDev);

Turbo Pascal for Windows
{$I DASTC.INC}
...
hDev : Longint; { Device Handle }
...
wDasErr := DASTC_GetDevHandle (0, hDev);

Visual Basic for Windows
(Add DTCDECL.BAS to your project)

...
Global hDev As Long ' Device Handle
...
wDasErr = DASTC_GetDevHandle (0, hDev)

BASIC
' $INCLUDE: 'DASTC.BI'
...
DIM hDev AS LONG ' Device Handle
...
wDasErr = DASTCGETDEVHANDLE% (0, hDev)

K_ADRead

4-13

Purpose For use with the C/C++, Turbo Pascal, and Turbo Pascal for Windows
languages only, reads a single analog input value.

Prototype C/C++
DASErr far pascal K_ADRead (DWORD hDev, BYTE nChan,
BYTE nGain, void far *pData);

Turbo Pascal
Function K_ADRead (hDev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word;

Turbo Pascal for Windows
Function K_ADRead (hDev : Longint; nChan : Byte; nGain : Byte;
pData : Pointer) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Not supported. Use K_ADReadL or K_ADReadR instead.

BASIC
Not supported. Use K_ADReadL or K_ADReadR instead.

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0 to 15

K_ADRead (cont.)

4-14 Function Reference

nGain Gain code.
Valid values are listed in the table below. For
thermocouple inputs, gain is ignored; specify a
gain code of 0 for thermocouple inputs.

pData Acquired analog input value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function reads the analog input channel nChan on the DAS-TC or
DAS-TC/B board specified by hDev and stores the value in pData.

Depending on the input type specified in the configuration file, the value
stored in pData is in microvolts or in hundredths of degrees for integer
types and is not scaled for floating point. Refer to Appendix B for more
information on the format of acquired data.

See Also K_IntStart, K_SyncStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
long dwADValue;
...
wDasErr = K_ADRead (hDev, 0, 0, &dwADValue);

Gain
Code

Gain Voltage
Input Range

0 1 −2.5 V to 10 V

1 125 −20 mV to 80 mV

2 166.67 −15 mV to 60 mV

3 400 −6.25 mV to 25 mV

K_ADRead (cont.)

4-15

Turbo Pascal
uses DTCTPU;
...
dwADValue : Long;
...
wDasErr := K_ADRead (hDev, 0, 0, @dwADValue);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
dwADValue : Long;
...
wDasErr := K_ADRead (hDev, 0, 0, @dwADValue);

K_ADReadL

4-16 Function Reference

Purpose For use with the Visual Basic for Windows and BASIC languages only,
reads a single analog input value. Use K_ADReadL when you want to
store the value as a long integer.

Prototype C/C++
Not supported. Use K_ADRead instead.

Turbo Pascal
Not supported. Use K_ADRead instead.

Turbo Pascal for Windows
Not supported. Use K_ADRead instead.

Visual Basic for Windows
Declare Function K_ADReadL Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal nGain As Integer, pData As Long) As Integer

BASIC
DECLARE FUNCTION KADREADL% ALIAS "K_ADRead"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL nGain AS INTEGER, SEG pData AS LONG)

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0 to 15

K_ADReadL (cont.)

4-17

nGain Gain code.
Valid values are listed in the table below. For
thermocouple inputs, gain is ignored; specify a
gain code of 0 for thermocouple inputs.

pData Acquired analog input value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function reads the analog input channel nChan on the DAS-TC or
DAS-TC/B board specified by hDev and stores the value in pData.

Depending on the input type specified in the configuration file, the value
stored in pData is in microvolts or in hundredths of degrees for long
integer types. Refer to Appendix B for more information on the format of
acquired data.

See Also K_ADReadR, K_IntStart, K_SyncStart

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global dwADValue As Long
...
wDasErr = K_ADReadL (hDev, 0, 0, dwADValue)

Gain
Code

Gain Voltage
Input Range

0 1 −2.5 V to 10 V

1 125 −20 mV to 80 mV

2 166.67 −15 mV to 60 mV

3 400 −6.25 mV to 25 mV

K_ADReadL (cont.)

4-18 Function Reference

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM dwADValue AS LONG
...
wDasErr = KADREADL% (hDev, 0, 0, dwADValue)

K_ADReadR

4-19

Purpose For use with the Visual Basic for Windows and BASIC languages only,
reads a single analog input value. Use K_ADReadR when you want to
store the value using a floating-point (real) data type.

Prototype C/C++
Not supported. Use K_ADRead instead.

Turbo Pascal
Not supported. Use K_ADRead instead.

Turbo Pascal for Windows
Not supported. Use K_ADRead instead.

Visual Basic for Windows
Declare Function K_ADReadR Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal nGain As Integer, pData As Single) As Integer

BASIC
DECLARE FUNCTION KADREADR% ALIAS "K_ADRead"
(BYVAL hDev AS LONG, BYVAL nChan AS INTEGER,
BYVAL nGain AS INTEGER, SEG pData AS SINGLE)

Parameters hDev Handle associated with the board.

nChan Analog input channel.
Valid values: 0 to 15

K_ADReadR (cont.)

4-20 Function Reference

nGain Gain code.
Valid values are listed in the table below. For
thermocouple inputs, gain is ignored; specify a
gain code of 0 for thermocouple inputs.

pData Acquired analog input value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function reads the analog input channel nChan on the DAS-TC or
DAS-TC/B board specified by hDev and stores the value in pData.

The value stored in pData is not scaled for floating point. Refer to
Appendix B for more information on the format of acquired data.

See Also K_ADReadL, K_IntStart, K_SyncStart

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global dwADValue As Single
...
wDasErr = K_ADReadR (hDev, 0, 0, dwADValue)

Gain
Code

Gain Voltage
Input Range

0 1 −2.5 V to 10 V

1 125 −20 mV to 80 mV

2 166.67 −15 mV to 60 mV

3 400 −6.25 mV to 25 mV

K_ADReadR (cont.)

4-21

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM dwADValue AS SINGLE
...
wDasErr = KADREADR% (hDev, 0, 0, dwADValue)

K_ClearFrame

4-22 Function Reference

Purpose Sets the elements of a frame to their default values.

Prototype C/C++
DASErr far pascal K_ClearFrame (DWORD hFrame);

Turbo Pascal
Function K_ClearFrame (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClearFrame (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KCLEARFRAME% ALIAS "K_ClearFrame"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the elements of the frame specified by hFrame to their
default values.

Refer to Table 3-1 on page 3-4 for the default values of an A/D frame.

See Also K_GetADFrame

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_ClearFrame (hAD);

K_ClearFrame (cont.)

4-23

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_ClearFrame (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_ClearFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_ClearFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KCLEARFRAME% (hAD)

K_CloseDriver

4-24 Function Reference

Purpose Closes a previously initialized Keithley DAS Function Call Driver.

Prototype C/C++
DASErr far pascal K_CloseDriver (DWORD hDrv);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_CloseDriver (hDrv : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

BASIC
Not supported

Parameters hDrv Driver handle you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the driver handle specified by hDrv and closes the
associated use of the Function Call Driver. This function also frees all
device handles and frame handles associated with hDrv.

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down (for all languages) and unloaded (for Windows-based
languages only).

See Also K_FreeDevHandle

K_CloseDriver (cont.)

4-25

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_CloseDriver (hDrv);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_CloseDriver (hDrv);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_CloseDriver (hDrv)

K_ClrContRun

4-26 Function Reference

Purpose Specifies single-cycle buffering mode.

Prototype C/C++
DASErr far pascal K_ClrContRun (DWORD hFrame);

Turbo Pascal
Function K_ClrContRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_ClrContRun (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_ClrContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KCLRCONTRUN% ALIAS "K_ClrContRun"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the buffering mode for the operation defined by hFrame
to single-cycle mode and sets the Buffering Mode element in the frame
accordingly.

K_GetADFrame and K_ClearFrame also enable single-cycle buffering
mode.

Refer to page 2-13 for more information on buffering modes.

See Also K_SetContRun

K_ClrContRun (cont.)

4-27

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_ClrContRun (hAD);

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_ClrContRun (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_ClrContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_ClrContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KCLRCONTRUN% (hAD)

K_DASDevInit

4-28 Function Reference

Purpose Reinitializes a Keithley MetraByte DAS board.

Prototype C/C++
DASErr far pascal K_DASDevInit (DWORD hDev);

Turbo Pascal
Function K_DASDevInit (hDev : Longint) : Longint;

Turbo Pascal for Windows
Function K_DASDevInit (hDev : Longint) : Longint; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL.DLL"
(ByVal hDev As Long) As Integer

BASIC
DECLARE FUNCTION KDASDEVINIT% ALIAS "K_DASDevInit"
(BYVAL hDev AS LONG)

Parameters hDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks Use K_GetDevHandle or DASTC_GetDevHandle the first time you
initialize the board only. Once you have a device handle, use this function
to reinitialize the board.

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_DASDevInit (hDev);

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_DASDevInit (hDev);

K_DASDevInit (cont.)

4-29

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_DASDevInit (hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_DASDevInit (hDev)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KDASDEVINIT% (hDev)

K_FormatChnGAry

4-30 Function Reference

Purpose Converts the format of a channel-gain queue.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KFORMATCHNGARY% ALIAS
"K_FormatChnGAry" (SEG pArray AS INTEGER)

Parameters pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks This function converts a channel-gain queue created in BASIC or Visual
Basic for Windows using 16-bit values to a channel-gain queue of 8-bit
values that the K_SetChnGAry function can use, and stores the starting
address of the converted channel-gain queue in pArray.

After you use this function, your program can no longer read the
converted channel-gain queue. You must use the K_RestoreChnGAry
function to return the queue to its original format. Refer to page 3-30 for
more information on creating channel-gain queues in Visual Basic; refer
to page 3-37 for more information on creating channel-gain queues in
BASIC.

See Also K_SetChnGAry, K_RestoreChnGAry

K_FormatChnGAry (cont.)

4-31

Usage

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global ChanGainArray(16) As Integer ' Chan/Gain array
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 3
wDasErr = K_FormatChnGAry (ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 3
wDasErr = KFORMATCHNGARY% (ChanGainArray(0))

K_FreeDevHandle

4-32 Function Reference

Purpose Frees a previously specified device handle.

Prototype C/C++
DASErr far pascal K_FreeDevHandle (DWORD phDev);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_FreeDevHandle (phDev : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal phDev As Long) As Integer

BASIC
Not supported

Parameters phDev Device handle you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the device handle specified by phDev as well as all
frame handles associated with phDev.

See Also K_GetDevHandle

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_FreeDevHandle (hDev);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_FreeDevHandle (hDev);

K_FreeDevHandle (cont.)

4-33

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_FreeDevHandle (hDev)

K_FreeFrame

4-34 Function Reference

Purpose Frees a frame.

Prototype C/C++
DASErr far pascal K_FreeFrame (DWORD hFrame);

Turbo Pascal
Function K_FreeFrame (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_FreeFrame (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KFREEFRAME% ALIAS "K_FreeFrame"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to frame you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the frame specified by hFrame, making the frame
available for another operation.

See Also K_GetADFrame

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_FreeFrame (hAD);

K_FreeFrame (cont.)

4-35

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_FreeFrame (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_FreeFrame (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KFREEFRAME% (hAD)

K_GetADFrame

4-36 Function Reference

Purpose Accesses an A/D frame for an analog input operation.

Prototype C/C++
DASErr far pascal K_GetADFrame (DWORD hDev,
DWORD far * phFrame);

Turbo Pascal
Function K_GetADFrame (hDev : Longint;
Var phFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_GetADFrame (hDev : Longint;
Var phFrame : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, phFrame As Long) As Integer

BASIC
DECLARE FUNCTION KGETADFRAME% ALIAS "K_GetADFrame"
(BYVAL hDev AS LONG, SEG phFrame AS LONG)

Parameters hDev Handle associated with the board.

phFrame Handle to the frame that defines the operation.

Remarks This function specifies that you want to perform a synchronous-mode or
interrupt-mode analog input operation on the DAS-TC or DAS-TC/B
board specified by hDev, and accesses an available A/D frame with the
handle phFrame.

The frame is initialized to its default settings; refer to Table 3-1 on page
3-4 for a list of the default settings.

The value stored in phFrame is intended to be used exclusively as an
argument to functions that require a frame handle. Your program should
not modify the value stored in phFrame.

See Also K_ClearFrame, K_FreeFrame

K_GetADFrame (cont.)

4-37

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hAD;
...
wDasErr = K_GetADFrame (hDev, &hAD);

Turbo Pascal
uses DTCTPU;
...
hAD : Longint;
...
wDasErr := K_GetADFrame (hDev, hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
hAD : Longint;
...
wDasErr := K_GetADFrame (hDev, hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global hAD As Long
...
wDasErr = K_GetADFrame (hDev, hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM hAD AS LONG
...
wDasErr = KGETADFRAME% (hDev, hAD)

K_GetDevHandle

4-38 Function Reference

Purpose Initializes any Keithley MetraByte DAS board.

Prototype C/C++
DASErr far pascal K_GetDevHandle (DWORD hDrv,
WORD nBoardNum, DWORD far * phDev);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Function K_GetDevHandle (hDrv : Longint; nBoardNum : Integer;
Var phDev : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByVal nBoardNum As Integer, phDev As Long)
As Integer

BASIC
Not supported

Parameters hDrv Driver handle of the associated Function Call
Driver.

nBoardNum Board number.
Valid values: 0 or 1

phDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the DAS-TC or DAS-TC/B board associated with
hDrv and specified by nBoardNum, and stores the device handle of the
specified board in phDev.

The board number specified in nBoardNum refers to the board number
specified in the configuration file.

K_GetDevHandle (cont.)

4-39

The value stored in phDev is intended to be used exclusively as an
argument to functions that require a device handle. Your program should
not modify the value stored in phDev.

See Also K_FreeDevHandle

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDev;
...
wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
hDev : Longint;
...
wDasErr := K_GetDevHandle (hDrv, 0, hDev);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global hDev As Long
...
wDasErr = K_GetDevHandle (hDrv, 0, hDev)

K_GetErrMsg

4-40 Function Reference

Purpose Gets the address of an error message string.

Prototype C/C++
DASErr far pascal K_GetErrMsg (DWORD hDev, short nDASErr,
char far * far * pszErrMsg);

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Not supported

BASIC
Not supported

Parameters hDev Handle associated with the board.

nDASErr Error message number.

pszErrMsg Address of error message string.

Return Value Error/status code. Refer to Appendix A.

Remarks For the DAS-TC or DAS-TC/B board specified by hDev, this function
stores the address of the string corresponding to the error message number
nDASErr in pszErrMsg.

Refer to page 2-4 and to page 3-14 for more information about error
handling. Refer to Appendix A for a list of error codes and their meanings.

K_GetErrMsg (cont.)

4-41

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
char far *pszErrMsg;
...
wDasErr = K_GetErrMsg (hDev, nDASErr, &pszErrMsg);

K_GetShellVer

4-42 Function Reference

Purpose Gets the current DAS shell version.

Prototype C/C++
DASErr far pascal K_GetShellVer (WORD far *pVersion);

Turbo Pascal
Function K_GetShellVer (Var pVersion : Word) : Word;

Turbo Pascal for Windows
Function K_GetShellVer (Var pVersion : Word) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(pVersion As Integer) As Integer

BASIC
DECLARE FUNCTION KGETSHELLVER% ALIAS "K_GetShellVer"
(SEG pVersion AS INTEGER)

Parameters pVersion A word value containing the major and minor
version numbers of the DAS shell.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stores the current DAS Shell version in pVersion.

To obtain the major version number of the DAS shell, divide pVersion by
256. To obtain the minor version number of the DAS shell, perform a
Boolean AND operation with pVersion and 255 (0FFh).

K_GetShellVer (cont.)

4-43

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wShellVer;
...
wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Turbo Pascal
uses DTCTPU;
...
wShellVer : Word;
...
wDasErr := K_GetShellVer (wShellVer);
FormatStr(VerStr, ' %4x ',nShellVer / 256, '.', nShellVer And $ff);
writeln (' Shell Ver ', VerStr);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wShellVer : Word;
...
wDasErr := K_GetShellVer (wShellVer);
FormatStr(VerStr,' %4x ', nShellVer / 256, '.', nShellVer And $ff);
writeln (' Shell Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global wShellVer As Integer
...
wDasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." + :
 LTRIM$ (STR$ (wShellVer AND &HFF))
MsgBox "Shell Ver: " + ShellVer$

K_GetShellVer (cont.)

4-44 Function Reference

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wShellVer AS INTEGER
...
wDasErr = KGETSHELLVER% (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." + :
 LTRIM$ (STR$ (wShellVer AND &HFF))
PRINT "Shell Ver: " + ShellVer$

K_GetVer

4-45

Purpose Gets revision numbers.

Prototype C/C++
DASErr far pascal K_GetVer (DWORD hDev, short far * pSpecVer,
short far * pDrvVer);

Turbo Pascal
Function K_GetVer (hDev : Longint; Var pSpecVer : Word;
Var pDrvVer : Word) : Word;

Turbo Pascal for Windows
Function K_GetVer (hDev : Longint; Var pSpecVer : Word;
Var pDrvVer : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_GetVer Lib "DASSHELL.DLL"
(ByVal hDev As Long, pSpecVer As Integer, pDrvVer As Integer)
As Integer

BASIC
DECLARE FUNCTION KGETVER% ALIAS "K_GetVer"
(BYVAL hDev AS LONG, SEG pSpecVer AS INTEGER,
SEG pDrvVer AS INTEGER)

Parameters hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.

Return Value Error/status code. Refer to Appendix A.

Remarks For the DAS-TC or DAS-TC/B board specified by hDev, this function
stores the revision number of the Function Call Driver in pDrvVer and the
revision number of the driver specification in pSpecVer.

K_GetVer (cont.)

4-46 Function Reference

The values stored in pSpecVer and pDrvVer are two-byte (16-bit) integers;
the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.10, the major revision level is 2 and the minor revision level
is 10; therefore, the high byte of pDrvVer contains the value of 2 (512)
and the low byte of pDrvVer contains the value of 10; the value of both
bytes is 522.

To obtain the major version number of the Function Call Driver, divide
pDrvVer by 256; to obtain the minor version number of the Function Call
Driver, perform a Boolean AND operation with pDrvVer and 255 (0FFh).

To obtain the major version number of the driver specification, divide
pSpecVer by 256; to obtain the minor version number of the driver
specification, perform a Boolean AND operation with pSpecVer and 255
(0FFh).

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
short nSpecVer, nDrvVer;
...
wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Turbo Pascal
uses DTCTPU;
...
nSpecVer : Word;
nDrvVer : Word;
...
wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);
FormatStr (VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And $ff);
writeln (' Driver Ver ', VerStr);

K_GetVer (cont.)

4-47

Turbo Pascal for Windows
{$I DASDECL.INC}
...
nSpecVer : Word;
nDrvVer : Word;
...
wDasErr := K_GetVer (hDev, nSpecVer, nDrvVer);
FormatStr(VerStr, ' %4x ', nDrvVer / 256, '.', nDrvVer And $ff);
writeln (' Driver Ver ', VerStr);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global nSpecVer As Integer
Global nDrvVer As Integer
...
wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." + :
 LTRIM$ (STR$ (nDrvVer AND &HFF))
MsgBox "Driver Ver: " + DrvVer$

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM nSpecVer AS INTEGER
DIM nDrvVer AS INTEGER
...
wDasErr = KGETVER% (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." + :
 LTRIM$ (STR$ (nDrvVer AND &HFF))
PRINT "Driver Ver: " + DrvVer$

K_IntAlloc

4-48 Function Reference

Purpose Allocates a buffer for an interrupt-mode or synchronous-mode operation.

Prototype C/C++
DASErr far pascal K_IntAlloc (DWORD hFrame, DWORD dwSamples,
void far * far *pBuf, WORD far *phMem);

Turbo Pascal
Function K_IntAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word;

Turbo Pascal for Windows
Function K_IntAlloc (hFrame : Longint; dwSamples : Longint;
pBuf : Pointer; Var phMem : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntAlloc Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long,
phMem As Integer) As Integer

BASIC
DECLARE FUNCTION KINTALLOC% ALIAS "K_IntAlloc"
(BYVAL hFrame AS LONG, BYVAL dwSamples AS LONG,
SEG pBuf AS LONG, SEG phMem AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values: 1 to 65535

pBuf Starting address of the allocated buffer.

phMem Handle associated with the allocated buffer.

Return Value Error/status code. Refer to Appendix A.

K_IntAlloc (cont.)

4-49

Remarks For the operation defined by hFrame, this function allocates a buffer of
the size specified by dwSamples, and stores the starting address of the
buffer in pBuf and the handle of the buffer in phMem.

BASIC and Turbo Pascal (for DOS) require that you redistribute available
memory before you dynamically allocate a buffer. Refer to page 3-32
(BASIC) or page 3-21 (Turbo Pascal) for additional information.

The value stored in phMem is intended to be used exclusively as an
argument to functions that require a memory handle. Your program
should not modify the value stored in phMem.

See Also K_IntFree, K_SetBuf, K_SetBufL, K_SetBufR

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
WORD hMem; // Memory Handle to buffer
...
wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);

Turbo Pascal
uses DTCTPU;
...
TYPE
BufType = Array [0..1] of Longint;
VAR
pBuf : ^BufType; { buffer pointer }
hMem : Word; { Handle to buffer }
...
wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);

K_IntAlloc (cont.)

4-50 Function Reference

Turbo Pascal for Windows
{$I DASDECL.INC}
...
TYPE
BufType = Array [0..1] of Longint;
VAR
pBuf : ^BufType; { buffer pointer }
hMem : Word; { Handle to buffer }
...
wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global pBuf As Long
Global hMem As Integer
...
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM pBuf AS LONG
DIM hMem AS INTEGER
...
wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)

K_IntFree

4-51

Purpose Frees a buffer allocated for an interrupt-mode or synchronous-mode
operation.

Prototype C/C++
DASErr far pascal K_IntFree (WORD hMem);

Turbo Pascal
Function K_IntFree (hMem : Word) : Integer;

Turbo Pascal for Windows
Function K_IntFree (hMem : Word) : Integer; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL"
(ByVal hMem As Integer) As Integer

BASIC
DECLARE FUNCTION KINTFREE% ALIAS "K_IntFree"
(BYVAL hMem AS INTEGER)

Parameters hMem Handle to buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the buffer specified by hMem; the buffer was
previously allocated dynamically using K_IntAlloc .

See Also K_IntAlloc

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_IntFree (hMem);

K_IntFree (cont.)

4-52 Function Reference

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_IntFree (hMem);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_IntFree (hMem);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_IntFree (hMem)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KINTFREE% (hMem)

K_IntStart

4-53

Purpose Starts an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStart (DWORD hFrame);

Turbo Pascal
Function K_IntStart (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStart (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KINTSTART% ALIAS "K_IntStart"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the interrupt-mode operation defined by hFrame.

The acquired values are stored at the location identified by the Buffer
Address element of the frame identified by hFrame.

Depending on the settings in the configuration file, the values are stored
in microvolts or in hundredths of degrees for integer types and are not
scaled for floating point.

Refer to page 3-9 for a discussion of the programming tasks associated
with interrupt-mode analog input operations.

See Also K_IntStatus, K_IntStop

K_IntStart (cont.)

4-54 Function Reference

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_IntStart (hAD);

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_IntStart (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_IntStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KINTSTART% (hAD)

K_IntStatus

4-55

Purpose Gets the status of an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStatus (DWORD hFrame, short far *pStatus,
DWORD far *pIndex);

Turbo Pascal
Function K_IntStatus (hFrame : Longint; Var pStatus : Word;
Var pIndex : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStatus (hFrame : Longint; Var pStatus : Word;
Var pIndex : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pIndex As Long)
As Integer

BASIC
DECLARE FUNCTION KINTSTATUS% ALIAS "K_IntStatus"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,
SEG pIndex AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt-mode operation.
Valid values: 0 = Interrupt operation idle

1 = Interrupt operation active

pIndex Buffer array index.

Return Value Error/status code. Refer to Appendix A.

Remarks For the interrupt-mode operation defined by hFrame, this function stores
the status in pStatus and the index of the next element in the buffer or
array to be written to in pIndex.

K_IntStatus (cont.)

4-56 Function Reference

In continuous buffering operations, pIndex is reset to zero when the last
block transfer has been completed and another acquisition cycle is
initiated.

See Also K_IntStart, K_IntStop

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwIndex;
...
wDasErr = K_IntStatus (hAD, &wStatus, &dwIndex);

Turbo Pascal
uses DTCTPU;
...
wStatus : Word;
dwIndex : Longint;
...
wDasErr := K_IntStatus (hAD, wStatus, dwIndex);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wStatus : Word;
dwIndex : Longint;
...
wDasErr := K_IntStatus (hAD, wStatus, dwIndex);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global wStatus As Integer
Global dwIndex As Long
...
wDasErr = K_IntStatus (hAD, wStatus, dwIndex)

K_IntStatus (cont.)

4-57

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wStatus AS INTEGER
DIM dwIndex AS LONG
...
wDasErr = KINTSTATUS% (hAD, wStatus, dwIndex)

K_IntStop

4-58 Function Reference

Purpose Stops an interrupt-mode operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORD hFrame, short far *pStatus,
DWORD far *pIndex);

Turbo Pascal
Function K_IntStop (hFrame : Longint; Var pStatus : Word;
Var pIndex : Longint) : Word;

Turbo Pascal for Windows
Function K_IntStop (hFrame : Longint; Var pStatus : Word;
Var pIndex : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_IntStop Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pIndex As Long)
As Integer

BASIC
DECLARE FUNCTION KINTSTOP% ALIAS "K_IntStop"
(BYVAL hFrame AS LONG, SEG pStatus AS INTEGER,
SEG pIndex AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt-mode operation.
Valid values: 0 = Interrupt operation idle

1 = Interrupt operation active

pIndex Buffer array index.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops the interrupt-mode operation defined by hFrame,
stores the status of the interrupt-mode operation in pStatus, and stores the
index of the next element in the buffer or array to be written to in pIndex.

K_IntStop (cont.)

4-59

In continuous buffering operations, pIndex is reset to zero when the last
block transfer has been completed and another acquisition cycle is
initiated.

If an interrupt-mode operation is not in progress, K_IntStop is ignored.

See Also K_IntStart, K_IntStatus

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwIndex;
...
wDasErr = K_IntStop (hAD, &wStatus, &dwIndex);

Turbo Pascal
uses DTCTPU;
...
wStatus : Word;
dwIndex : Longint;
...
wDasErr := K_IntStop (hAD, wStatus, dwIndex);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wStatus : Word;
dwIndex : Longint;
...
wDasErr := K_IntStop (hAD, wStatus, dwIndex);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global wStatus As Integer
Global dwIndex As Long
...
wDasErr = K_IntStop (hAD, wStatus, dwIndex)

K_IntStop (cont.)

4-60 Function Reference

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM wStatus AS INTEGER
DIM dwIndex AS LONG
...
wDasErr = KINTSTOP% (hAD, wStatus, dwIndex)

K_MoveBufToArrayL

4-61

Purpose

For use with the Visual Basic for Windows and BASIC languages only,
transfers data from a buffer allocated through

K_IntAlloc

 to the
program’s local array. Use

K_MoveBufToArrayL

 when you want to
store the data in a long-integer array.

Prototype C/C++

Not supported

Turbo Pascal

Not supported

Turbo Pascal for Windows

Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArrayL Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByVal

pDest

 As Long, ByVal

pSource

 As Long,
ByVal

nCount

 As Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEBUFTOARRAYL% ALIAS
"K_MoveDataBuf" (SEG

pDest

 AS LONG, BYVAL

pSource

 AS LONG,
BYVAL

nCount

 AS INTEGER)

Parameters

pDest

Address of destination array.

pSource

Address of source buffer.

nCount

Number of samples to transfer.
Valid values:

0

 to

32767

Return Value

Error/status code. Refer to Appendix A.

4

K_MoveBufToArrayL (cont.)

4-62 Function Reference

Remarks

This function transfers the number of bytes specified by

nCount

 from the
buffer at address

pSource

 to the array at address

pDest

.

If the buffer used to store acquired data for your program was allocated
through

K_IntAlloc

, the buffer is not accessible to your program and you
must use this function to move the data from the allocated buffer to the
program’s local array. If the array used to store acquired data for your
program was dimensioned locally within the program’s memory area, the
array is accessible to your program and you do not have to use this
function.

See Also

K_IntAlloc, K_MoveBufToArrayR

Usage Visual Basic for Windows

(Add DASDECL.BAS to your project)

...
Dim ADArray (1000) As Long
...
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)
...
wDasErr = K_MoveBufToArrayL (ADArray(0), pBuf, 1000)

BASIC

' $INCLUDE: 'DASDECL.BI'
...
DIM ADArray (1000) AS LONG
...
wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)
...
wDasErr = KMOVEBUFTOARRAYL% (ADArray(0), pBuf, 1000)

K_MoveBufToArrayR

4-63

Purpose

For use with the Visual Basic for Windows and BASIC languages only,
transfers data from a buffer allocated through

K_IntAlloc

 to the
program’s local array. Use

K_MoveBufToArrayR

 when you want to
store the data in a floating-point (real) array.

Prototype C/C++

Not supported

Turbo Pascal

Not supported

Turbo Pascal for Windows

Not supported

Visual Basic for Windows

Declare Function K_MoveBufToArrayR Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByVal

pDest

 As Single, ByVal

pSource

 As Long,
ByVal

nCount

 As Integer) As Integer

BASIC

DECLARE FUNCTION KMOVEBUFTOARRAYR% ALIAS
"K_MoveDataBuf" (SEG

pDest

 AS SINGLE,
BYVAL

pSource

 AS LONG, BYVAL

nCount

 AS INTEGER)

Parameters

pDest

Address of destination array.

pSource

Address of source buffer.

nCount

Number of samples to transfer.
Valid values:

0

 to

32767

Return Value

Error/status code. Refer to Appendix A.

K_MoveBufToArrayR (cont.)

4-64 Function Reference

Remarks

This function transfers the number of bytes specified by

nCount

 from the
buffer at address

pSource

 to the array at address

pDest

.

If the buffer used to store acquired data for your program was allocated
through

K_IntAlloc

, the buffer is not accessible to your program and you
must use this function to move the data from the allocated buffer to the
program’s local array. If the array used to store acquired data for your
program was dimensioned locally within the program’s memory area, the
array is accessible to your program and you do not have to use this
function.

See Also

K_IntAlloc, K_MoveBufToArrayL

Usage Visual Basic for Windows

(Add DASDECL.BAS to your project)

...
Dim ADArray (1000) As Single
...
wDasErr = K_IntAlloc (hAD, 1000, pBuf, hMem)
...
wDasErr = K_MoveBufToArrayR (ADArray(0), pBuf, 1000)

BASIC

' $INCLUDE: 'DASDECL.BI'
...
DIM ADArray (1000) AS SINGLE
...
wDasErr = KINTALLOC% (hAD, 1000, pBuf, hMem)
...
wDasErr = KMOVEBUFTOARRAYR% (ADArray(0), pBuf, 1000)

K_OpenDriver

4-65

Purpose

Initializes any Keithley DAS Function Call Driver.

Prototype C/C++

DASErr far pascal K_OpenDriver (char far *

szDrvName

,
char far *

szCfgName

, DWORD far *

phDrv

);

Turbo Pascal

Not supported

Turbo Pascal for Windows

Function K_OpenDriver (Var

szDrvName

 : char; Var

szCfgName

 : char;
Var

phDrv

 : LongInt) : Word; far; external 'DASSHELL';

Visual Basic for Windows

Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal

szDrvName

 As String, ByVal

szCfgName

 As String,

phDrv

 As Long) As Integer

BASIC

Not supported

Parameters

szDrvName

Driver name.
Valid value:

"DASTC"

 (for DAS-TC or
DAS-TC/B boards)

szCfgName

Driver configuration file.
Valid value: The name of a configuration file

0

 if driver has already been
opened.

phDrv

Handle associated with the driver.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function initializes the DAS-TC Function Call Driver according to
the information in the configuration file specified by

szCfgName

, and
stores the driver handle in

phDrv

.

K_OpenDriver (cont.)

4-66 Function Reference

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board.

For DAS-TC or DAS-TC/B boards, the string stored in

szDrvName

 must
be DASTC.

You create a configuration file using the DASTCCFG.EXE utility. If

szCfgName

 = 0,

K_OpenDriver

checks whether the driver has already
been opened and linked to a configuration file and if it has, uses the
current configuration; this is useful in the Windows environment. Refer to
the user’s guide for your board for more information about configuration
files.

The value stored in

phDrv

 is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in

phDrv

.

See Also

DASTC_DevOpen

Usage

C/C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDrv;
...
wDasErr = K_OpenDriver ("DASTC", "DASTC.CFG", &hDrv);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
szDrvName : String;
szCfgName : String;
hDrv : Longint;
...
szDrvName := 'DASTC' + #0;
szCfgName := 'DASTC.CFG' + #0;
wDasErr := K_OpenDriver (szDrvName[1], szCfgName[1], hDrv);

K_OpenDriver (cont.)

4-67

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
DIM hDrv As Long
...
wDasErr = K_OpenDriver ("DASTC", "DASTC.CFG", hDrv)

K_RestoreChnGAry

4-68 Function Reference

Purpose Restores a converted channel-gain queue.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KRESTORECHNGARY% ALIAS
"K_RestoreChnGAry" (SEG pArray AS INTEGER)

Parameters pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks This function restores the channel-gain queue at the address specified by
pArray to its original format so that it can be used by your BASIC or
Visual Basic for Windows program. The channel-gain queue was
converted using K_FormatChnGAry .

See Also K_FormatChnGAry, K_SetChnGAry

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global ChanGainArray(16) As Integer ' Chan/Gain array
...
wDasErr = K_RestoreChnGAry (ChanGainArray(0))

K_RestoreChnGAry (cont.)

4-69

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(16) AS INTEGER ' Chan/Gain array
...
wDasErr = KRESTORECHNGARY% (ChanGainArray(0))

K_SetBuf

4-70 Function Reference

Purpose Specifies the starting address of a previously allocated buffer or
dimensioned array and the number of samples to acquire.

Prototype C/C++
DASErr far pascal K_SetBuf (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Turbo Pascal
Function K_SetBuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word;

Turbo Pascal for Windows
Function K_SetBuf (hFrame : Longint; pBuf : Pointer;
dwSamples : Longint) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Not supported

BASIC
Not supported

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of buffer or array.

dwSamples Number of samples.
Valid values: 1 to 65535

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of a previously allocated buffer or array in pBuf and the number
of samples to acquire in dwSamples.

For C/C++ and Turbo Pascal application programs, use this function
whether you dimensioned your array locally or allocated your buffer
dynamically using K_IntAlloc .

K_SetBuf (cont.)

4-71

For Visual Basic for Windows and BASIC, use K_SetBufL for long
integer arrays or buffers or K_SetBufR for floating point arrays or
buffers.

The pBuf variable sets the value of the Buffer element; the dwSamples
variable sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBufL, K_SetBufR

Usage C/C++
#include "DASDECL.H" // Use "DASDECL.HPP for C++
...
long far *pBuf; // Pointer to allocated buffer
...
wDasErr = K_IntAlloc (hAD, 1000, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 1000);

Turbo Pascal
uses DTCTPU;
...
TYPE
BufType = Array [0..1] of Longint;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
TYPE
BufType = Array [0..1] of Longint;
VAR
pBuf : ^BufType; { buffer pointer }
...
wDasErr := K_IntAlloc (hAD, 1000, Addr(pBuf), hMem);
wDasErr := K_SetBuf (hAD, pBuf, 1000);

K_SetBufL

4-72 Function Reference

Purpose Specifies the starting address of a long integer array or buffer and the
number of samples to acquire.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_SetBufL Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrame As Long, pBuf As Long, ByVal dwSamples As Long)
As Integer

BASIC
DECLARE FUNCTION KSETBUFL% Alias "K_SetBuf"
(BYVAL hFrame AS LONG, SEG pBuf AS LONG,
BYVAL dwSamples AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the long integer array or
buffer.

dwSamples Number of samples.
Valid values: 1 to 65535

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of the long integer array or buffer in pBuf and the number of
samples to acquire in dwSamples.

For C/C++ and Turbo Pascal application programs, use K_SetBuf.

K_SetBufL (cont.)

4-73

For Visual Basic for Windows and BASIC, use this function only for long
integer arrays or buffers; for floating point arrays or buffers, use
K_SetBufR.

The pBuf variable sets the value of the Buffer element; the dwSamples
variable sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBuf, K_SetBufR

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Dim ADData(2000) As Long
...
wDasErr = K_SetBufL (hAD, ADData(0), 2000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ADData(2000) AS Long
...
wDasErr = KSETBUFL% (hAD, ADData(0), 2000)

K_SetBufR

4-74 Function Reference

Purpose Specifies the starting address of a floating point array or buffer and the
number of samples to acquire.

Prototype C/C++
Not supported

Turbo Pascal
Not supported

Turbo Pascal for Windows
Not supported

Visual Basic for Windows
Declare Function K_SetBufR Lib "DASSHELL.DLL" Alias "K_SetBuf"
(ByVal hFrame As Long, pBuf As Single, ByVal dwSamples As Long)
As Integer

BASIC
DECLARE FUNCTION KSETBUFR% Alias "K_SetBuf"
(BYVAL hFrame AS LONG, SEG pBuf AS Single,
BYVAL dwSamples AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the floating point array or
buffer.

dwSamples Number of samples.
Valid values: 1 to 65535

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of a floating point array in pBuf and the number of samples to
acquire in dwSamples.

For C/C++ and Turbo Pascal application programs, use K_SetBuf.

K_SetBufR (cont.)

4-75

For Visual Basic for Windows and BASIC, use this function only for
floating point arrays and buffers; for long integer arrays, use K_SetBufL.

The pBuf variable sets the value of the Buffer element; the dwSamples
variable sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBuf, K_SetBufL

Usage Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Dim ADData(2000) As Single
...
wDasErr = K_SetBufR (hAD, ADData(0), 2000)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ADData(2000) AS Single
...
wDasErr = KSETBUFR% (hAD, ADData(0), 2000)

K_SetChnGAry

4-76 Function Reference

Purpose Specifies the starting address of a channel-gain queue.

Prototype C/C++
DASErr far pascal K_SetChnGAry (DWORD hFrame, void far *pArray);

Turbo Pascal
Function K_SetChnGAry (hFrame : Longint;
Var pArray : Integer) : Word;

Turbo Pascal for Windows
Function K_SetChnGAry (hFrame : Longint;
Var pArray : Integer) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pArray As Integer) As Integer

BASIC
DECLARE FUNCTION KSETCHNGARY% ALIAS "K_SetChnGAry"
(BYVAL hFrame AS LONG, SEG pArray AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of the channel-gain queue in pArray.

The pArray variable sets the Channel-Gain Queue element.

Refer to page 2-12 for information on setting up a channel-gain queue.

If you created your channel-gain queue in BASIC or Visual Basic for
Windows, you must use K_FormatChnGAry to convert the channel-gain
queue before you specify the address with K_SetChnGAry.

See Also K_FormatChnGAry, K_RestoreChnGAry

K_SetChnGAry (cont.)

4-77

Usage

C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
// (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
 0, 3, // chan 0, gain is 400
 1, 0}; // chan 1, gain is ignored for thermocouples
...
wDasErr = K_SetChnGAry (hAD, &ChanGainArray);

Turbo Pascal
uses DTCTPU;
...
{ Define Gain/Channel array type }
TYPE GainChanTable = Record

num_of_codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of_codes : (8); { # of chan/gain pairs }
queue : (0,2, 1,1)

);
...
wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

K_SetChnGAry (cont.)

4-78 Function Reference

Turbo Pascal for Windows
{$I DASDECL.INC}
...
{ Define Gain/Channel array type }
TYPE GainChanTable = Record

num_of_codes : Integer;
queue : Array[0..15] of Byte;
END;

CONST ChanGainArray : GainChanTable = (
num_of_codes : (8); { # of chan/gain pairs }
queue : (0,2, 1,3)

);
...
wDasErr := K_SetChnGAry (hAD, ChanGainArray.num_of_codes);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
Global ChanGainArray(5) As Integer
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 3
ChanGainArray(3) = 1: ChanGainArray(4) = 2
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hAD, ChanGainArray(0))

BASIC
' $INCLUDE: 'DASDECL.BI'
...
DIM ChanGainArray(5) AS INTEGER
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 1
ChanGainArray(3) = 1: ChanGainArray(4) = 3
wDasErr = KFORMATCHNGARY% (ChanGainArray(0))
wDasErr = KSETCHNGARY% (hAD, ChanGainArray(0))

K_SetContRun

4-79

Purpose Specifies continuous buffering mode.

Prototype C/C++
DASErr far pascal K_SetContRun (DWORD hFrame);

Turbo Pascal
Function K_SetContRun (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_SetContRun (hFrame : Longint) : Word; far;
external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSETCONTRUN% ALIAS "K_SetContRun"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame and K_ClearFrame specify single-cycle as the default
buffering mode.

Refer to page 2-13 for a description of buffering modes.

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetContRun (hAD);

K_SetContRun (cont.)

4-80 Function Reference

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_SetContRun (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetContRun (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetContRun (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSETCONTRUN% (hAD)

K_SetStartStopChn

4-81

Purpose Specifies the first and last channels in a group of consecutive channels.

Prototype C/C++
DASErr far pascal K_SetStartStopChn (DWORD hFrame, short nStart,
short nStop);

Turbo Pascal
Function K_SetStartStopChn (hFrame : Longint; nStart : Word;
nStop : Word) : Word;

Turbo Pascal for Windows
Function K_SetStartStopChn (hFrame : Longint; nStart : Word;
nStop : Word) : Word; far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nStart As Integer,
ByVal nStop As Integer) As Integer

BASIC
DECLARE FUNCTION KSETSTARTSTOPCHN% ALIAS
"K_SetStartStopChn" (BYVAL hFrame AS LONG,
BYVAL nStart AS INTEGER, BYVAL nStop AS INTEGER)

Parameters hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.
Valid values: 0 to 15

nStop Last channel in a group of consecutive channels.
Valid values: 0 to 15

Return Value Error/status code. Refer to Appendix A.

K_SetStartStopChn (cont.)

4-82 Function Reference

Remarks For the operation defined by hFrame, this function specifies the first
channel in a group of consecutive channels in nStart and the last channel
in the group of consecutive channels in nStop. To specify a single channel,
enter the same channel number in nStart and nStop.

The nStart variable sets the value of the Start Channel element; the nStop
variable sets the value of the Stop Channel element.

When you use the K_SetStartStopChn function, the Function Call
Driver reads the configuration file to determine whether the signal
connected to the specified channel is configured for voltage input or
thermocouple input and to determine the appropriate gain for that
channel. If you want to change the gain without changing the
configuration file, use a channel-gain queue.

K_GetADFrame and K_ClearFrame set the Start Channel and Stop
Channel elements to 0.

See Also K_SetChnGAry

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_SetStartStopChn (hAD, 0, 7);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SetStartStopChn (hAD, 0, 7);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SetStartStopChn (hAD, 0, 7)

K_SetStartStopChn (cont.)

4-83

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSETSTARTSTOPCHN% (hAD, 0, 7)

K_SyncStart

4-84 Function Reference

Purpose Starts a synchronous-mode operation.

Prototype C/C++
DASErr far pascal K_SyncStart (DWORD hFrame);

Turbo Pascal
Function K_SyncStart (hFrame : Longint) : Word;

Turbo Pascal for Windows
Function K_SyncStart (hFrame : Longint) : Word;
far; external 'DASSHELL';

Visual Basic for Windows
Declare Function K_SyncStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

BASIC
DECLARE FUNCTION KSYNCSTART% ALIAS "K_SyncStart"
(BYVAL hFrame AS LONG)

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the synchronous-mode operation defined by hFrame.

Refer to page 3-7 for information on the programming tasks associated
with synchronous-mode analog input operations.

See Also K_IntStart

Usage C/C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SyncStart (hAD);

K_SyncStart (cont.)

4-85

Turbo Pascal
uses DTCTPU;
...
wDasErr := K_SyncStart (hAD);

Turbo Pascal for Windows
{$I DASDECL.INC}
...
wDasErr := K_SyncStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS to your project)

...
wDasErr = K_SyncStart (hAD)

BASIC
' $INCLUDE: 'DASDECL.BI'
...
wDasErr = KSYNCSTART% (hAD)

A-1

A

Error/Status Codes

Table A-1 lists the error/status codes that are returned by the DAS-TC
Function Call Driver, possible causes for error conditions, and possible
solutions for resolving error conditions.

If you cannot resolve an error condition, contact Keithley MetraByte for
technical support.

Table A-1. Error/Status Codes

Error Code

Cause SolutionHex Decimal

0 0 No error has been detected. Status only; no action is necessary.

6000 24576

Error in configuration file:

 The
configuration file you specified in
the driver initialization function is
corrupt, does not exist, or contains
one or more undefined keywords.

Check that the file exists at the
specified path. Check for illegal
keywords in file; you can avoid illegal
keywords by using the configuration
utility to create and modify
configuration files.

6001 24577

Illegal base address in
configuration file:

The base I/O
address of the card/board in the
configuration file is illegal and/or
does not match the base address
switches on the card/board.

Use the configuration utility to change
the base I/O address of the card/board
to one that matches the base address
switches on the card/board, if
applicable.

6002 24578

Illegal IRQ level in configuration
file:

 The interrupt level in the
configuration file is illegal.

Use the configuration utility to change
the interrupt level to a legal one for
your card/board. Refer to the user’s
guide for legal interrupt levels.

A-2 Error/Status Codes

6003 24579

Illegal DMA channel in
configuration file:

 The DMA
channel in the configuration file is
illegal.

Use the configuration utility to change
the DMA channel to a legal one for
your card/board. Refer to the user’s
guide for legal DMA channels.

6005 24581

Illegal channel number:

 The
specified channel number is illegal
for the card/board and/or for the
range type (unipolar or bipolar).

Specify a legal channel number. Refer
to the user’s guide or to the
description of

K_SetStartStopChn

 in
Chapter 4 for legal channel numbers.

6006 24582

Illegal gain code:

The specified
analog I/O channel gain code is
illegal for this card/board.

Specify a legal gain code. Refer to the
user’s guide or to the description of

K_SetG

 in Chapter 4 for a list of legal
gain codes.

6007 24583

Illegal DMA address:

An FCD
function specified a buffer address
that is not suitable for a DMA
operation for the number of
samples required.

Use the

K_DMAAlloc

 function to
allocate dynamic buffers for DMA
operations. In Windows, make sure
that the Keithley Memory Manager is
installed; refer to the user’s guide for
information.

6008 24584

Illegal number in configuration
file:

 The configuration file contains
one or more numeric values that
are illegal.

Use the configuration utility to check
and then change the configuration file.

600A 24586

Configuration file not found:

 The
driver cannot find the
configuration file specified as an
argument to the driver initialization
function.

Check that the file exists at the
specified path. Check that the file
name is spelled correctly in the driver
initialization function parameter list.

600B 24587

Error returning DMA buffer:

DOS returned an error in INT 21H
function 49H during the execution
of

K_DMAFree

.

Check that the memory handle passed
as an argument to

K_DMAFree

 was
previously obtained using

K_DMAAlloc

.

600C 24588

Error returning interrupt
buffer:

 The memory handle
specified in

K_IntFree

 is invalid.

Check the memory handle stored by

K_IntAlloc

 and make sure that it was
not modified.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-3

600D 24589

Illegal frame handle:

 The
specified frame handle is not valid
for this operation.

Check that the frame handle exists.
Check that you are using the
appropriate frame handle.

600E 24590

No more frame handles:

 No
frames are left in the pool of
available frames.

Use

K_FreeFrame

 to free a frame
that the application is no longer using.

600F 24591

Requested buffer size too large:

The requested buffer cannot be
dynamically allocated because of
its size.

Specify a smaller buffer size; refer to
the description of

K_IntAlloc

 in
Chapter 4 for the legal range. If in
Windows Enhanced mode with the
Keithley Memory Manager installed,
use KMMSETUP.EXE to increase the
reserved buffer heap size.

6010 24592

Cannot allocate interrupt buffer:

(Windows-based languages only)

K_IntAlloc

 failed because there
was not enough available DOS
memory.

Remove some Terminate and Stay
Resident programs (TSRs) that are no
longer needed.

6012 24594

Interrupt buffer deallocation
error:

 (Windows-based languages
only) An error occurred when

K_IntFree

 attempted to free a
memory handle.

Make sure that the memory handle
passed as an argument to

K_IntFree

was previously obtained using

K_IntAlloc

.

6015 24597

DMA Buffer too large:

 The
number of samples specified in

K_DMAAlloc

 is too large.

Refer to the description of

K_DMAAlloc

 in Chapter 4 for the
buffer size range.

6016 24598

VDS - Region not contiguous:

An
error occurred while using
Windows Virtual DMA Services.
You tried to use

K_DMAAlloc

 in
Windows Enhanced mode and the
Keithley Memory Manager was not
installed.

Refer to the user’s guide for
information on how to install and set
up the Keithley Memory Manager.

6017 24599

VDS - DMA wraparound:

 See
error 6016.

 See error 6016.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-4 Error/Status Codes

6018 24600

VDS - Unable to lock region:

See
error 6016.

See error 6016.

6019 24601

VDS - No buffer available:

See
error 6016.

See error 6016.

601A 24602

VDS - Region too large:

See error
6016.

See error 6016.

601B 24603

VDS - Buffer in use:

See error
6016.

See error 6016.

601C 24604

VDS - Illegal region:

See error
6016.

See error 6016.

601D 24605

VDS - Region not locked:

See
error 6016.

See error 6016.

601E 24606

VDS - Illegal page:

See error
6016.

See error 6016.

601F 24607

VDS - Illegal buffer:

See error
6016.

See error 6016.

6020 24608

VDS - Copy out of range:

See
error 6016.

See error 6016.

6021 24609

VDS - Illegal DMA channel:

See
error 6016.

See error 6016.

6022 24610

VDS - Count overflow:

See error
6016.

See error 6016.

6023 24611

VDS - Count underflow:

See
error 6016.

See error 6016.

6024 24612

VDS - Function not supported:

See error 6016.
See error 6016.

6025 24613

Illegal OBM mode:

 The mode
number specified in

K_SetOBMMode

 is illegal.

Specify a legal mode value; refer to
the description of

K_SetOBMMode

.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-5

6026 24614

Illegal DMA structure:

An error
occurred during the execution of

K_DMAFree

.

Try using

K_DMAFree

 again. If the
error continues, contact Keithley
MetraByte for technical support.

6027 24615

DMA allocation error:

 See error
6026.

 See error 6026.

6028 24616

NULL DMA handle:

See error
6026.

 See error 6026.

6029 24617

DMA unlock error:

See error
6026.

 See error 6026.

602A 24618

DMA free error:

See error 6026. See error 6026.

602B 24619

Not enough memory to
accommodate request:

The
number of samples you requested
in the Keithley Memory Manager
is greater than the largest
contiguous block available in the
reserved heap.

Specify a smaller number of samples.
Free a previously allocated buffer. Use
the KMMSETUP utility to expand the
reserved heap.

602C 24620

Requested buffer size exceeds
maximum:

 The number of
samples you requested from the
Keithley Memory Manager is
greater than the allowed maximum.

Specify a value within the legal range
when calling

K_DMAAlloc

 or

K_IntAlloc

 in Windows Enhanced
mode. Refer to Chapter 4 for legal
values.

602D 24621

Illegal device handle:

A bad
device handle was passed to a
function such as

K_GetADFrame

.
The handle used was not initialized
through a call to the card/board
initialization function (such as

K_GetDevHandle

)

or it was
corrupted by your program.

Check the device handle value.

602E 24622

Illegal setup option:

 An illegal
option was specified to a function
that accepts a user option, such as

K_SetDITrig

.

Check the option value passed to the
function where the error occurred.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-6 Error/Status Codes

6030 24624

DMA word-page wrap:

 During

K_DMAAlloc

, a DMA word-page
wrap condition occurred and the
allocation attempt failed since
there is not enough free memory to
accommodate the allocation
request.

Reduce the number of samples and
retry. If in Windows Enhanced mode,
install and configure the Keithley
Memory Manager.

6031 24625

Illegal memory block handle:

 A
bad memory handle was passed to

K_IntFree

 or

K_DMAFree

. The
handle used was not initialized
through a call to

K_IntAlloc

 or

K_DMAAlloc

, or it was corrupted
by your program.

Restart your program and monitor the
memory handle values.

6032 24626

Out of memory handles:

 An
attempt to allocate a memory block
using

K_IntAlloc

 or

K_DMAAlloc

 failed because the
maximum number of handles has
already been assigned.

Use

K_IntFree

 or

K_DMAFree

 to
free previously allocated memory
blocks before allocating again.

6034 24628

Memory corrupted:

Int 21H
function 48H, used to allocate a
memory block from the DOS far
heap, returned the DOS error 7;
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
an illegal area of DOS memory.

Recheck the parameters set by

K_DMAAlloc

 and

K_SetDMABuf

.
If a fatal system error, restart your
computer.

6035 24629

Driver in use:

 You attempted to
initialize a driver that was already
initialized by a call to

K_OpenDriver

. (This can occur
since, under Windows, it is
possible to open the same driver
from multiple programs that are
running simultaneously.)

To continue using the driver with the
same configuration, pass a null string
as the second argument to

K_OpenDriver

. To use the driver
with a different configuration, close
any application programs currently
accessing the driver, and then open the
driver again (using

K_OpenDriver

).

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-7

6036 24630

Illegal driver handle:

 The
specified driver handle is not valid.

Someone may have closed the driver;
if so, use

K_OpenDriver

to reopen
the driver with the desired driver
handle. Try again using another driver
handle.

6037 24631

Driver not found:

 The specified
driver cannot be found.

Check your link statement to make
sure the specified driver is included.
Make sure that the device name string
is entered correctly in

K_OpenDriver .

6038 24632 Invalid source pointer:
(Windows-based languages only)
The pointer to the source buffer
that you passed as an argument to
K_MoveBufToArrayL or
K_MoveBufToArrayR is invalid
for the specified count. (The source
pointer, when added to the number
of samples, exceeds the
programmed addressing range of
that pointer.)

Check the pointer to the source buffer
and the number of samples to transfer
that you specified in
K_MoveBufToArrayL or
K_MoveBufToArrayR .

6039 24633 Invalid destination pointer:
(Windows-based languages only)
The pointer to the destination
buffer (local array) that you passed
as an argument to
K_MoveBufToArrayL or
K_MoveBufToArrayR is invalid
for the specified count. (The
destination pointer, when added to
the number of samples, exceeds the
dimension of the local array.)

Check the dimension of the local array
and the number of samples to transfer
that you specified in
K_MoveBufToArrayL or
K_MoveBufToArrayR .

603A 24634 Illegal setup value: An illegal
value was passed to the function in
which the error occurred.

Check the legal ranges of all
parameters passed to this function.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-8 Error/Status Codes

603B 24635 Error freeing buffer selector:
K_DMAFree or K_IntFree failed
because one or more of the
selectors that reference the
memory buffer could not be freed.

Check that the memory buffer being
freed was previously obtained through
K_DMAAlloc or K_IntAlloc.

603C 24636 Error allocating buffer selector:
K_DMAAlloc or K_IntAlloc
failed because a selector could not
be allocated from Window’s Local
Descriptor Table.

Close all applications and restart
Windows. If the error continues,
contact Keithley MetraByte for
technical support.

603D 24637 Error allocating memory buffer:
K_DMAAlloc or K_IntAlloc
failed because a necessary internal
buffer could not be allocated to
complete the operation.

Close all applications and restart
Windows. If the error continues,
contact Keithley MetraByte for
technical support.

7000 28672 No board name: The driver
initialization function did not find a
board name in the specified
configuration file.

Specify a legal board name in the
configuration file.

7001 28673 Bad board name: The board name
in the specified configuration file is
illegal.

Specify a legal board name in the
configuration file.

7002 28674 Bad board number: The driver
initialization function found an
illegal board number in the
specified configuration file.

Specify a legal board number: 0 or 1

7003 28675 Bad base address: The driver
initialization function found an
illegal base address in the specified
configuration file.

Specify a base address in the inclusive
range &H200 (512) to &H3F0 (1008)
in increments of 10H (16). Make sure
that &H precedes hexadecimal
numbers.

7004 28676 Bad interrupt level: The driver
initialization function found an
illegal interrupt level in the
specified configuration file.

Specify a legal interrupt level: 3, 5, 7,
10, 11, 12, or 15 for DAS-TC/B
boards; 2, 3, 4, 5, 6, or 7 for DAS-TC
boards

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-9

7005 28677 Bad Normal Mode Rejection
Frequency: You attempted to use a
Normal Mode Rejection Frequency
that is not supported.

Specify a legal normal mode rejection
frequency in the configuration file
(50 Hz, 60 Hz, or 400 Hz).

7006 28678 Bad Number Type: You attempted
to use a number type that is not
supported.

Specify a legal number type in the
configuration file: integer or floating
point

7007 28679 Bad channel configuration: The
driver initialization function found
a channel number out of range or
an illegal channel argument.

Specify a legal channel configuration.
See K_SetStartStopChn.

7008 28680 Checksum Error: The checksum
is illegal resulting in
communication failure.

Reinitialize the board using
K_DASDevInit .

7009 28681 Board Not Initialized: A function
was called before the board was
initialized, initialization failed, or
the wrong base address was
specified.

Verify the base address and reinitialize
the board using K_DASDevInit .

700A 28682 Initialization Failure :
Initialization of the board failed.

Reinitialize the board using
K_DASDevInit . If the problem
persists, contact Keithley MetraByte
for technical support.

700B 28683 Protocol Communication Error:
Communication between the board
and the computer failed.

Reinitialize the board using
K_DASDevInit . If the problem
persists, contact Keithley MetraByte
for technical support.

700C 28684 Bad Voltage to Temperature
Calculation Error: An error
occurred when converting to
engineering units.

Reinitialize the board using
K_DASDevInit . If the problem
persists, contact Keithley MetraByte
for technical support.

8001 32769 Function not supported: You
have attempted to use a function
not supported by the Function Call
Driver.

Contact Keithley MetraByte for
technical support.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-10 Error/Status Codes

8003 32771 Illegal board number: An illegal
card/board number was specified in
the card/board initialization
function.

Refer to the description of the
card/board initialization function
(such as K_GetDevHandle) in
Chapter 4 for legal card/board
numbers.

8004 32772 Illegal error number: The error
message number specified in
K_GetErrMsg is invalid.

The error number must be one the
error numbers listed in this appendix.

8005 32773 Board not found at configured
address: The card/board
initialization function does not
detect the presence of a card/board.

If applicable, make sure that the base
address setting of the switches on the
card/board matches the base address
setting in the configuration file.

8006 32774 A/D not initialized: You attempted
to start a frame-based analog input
operation without the A/D frame
being properly initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8007 32775 D/A not initialized: You attempted
to start a frame-based analog
output operation without the D/A
frame being properly initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8008 32776 Digital input not initialized: You
attempted to start a frame-based
digital input operation without the
DI frame being properly
initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8009 32777 Digital output not initialized: You
attempted to start a frame-based
digital output operation without the
DO frame being properly
initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-11

800B 32779 Conversion overrun: The
conversion rate is too fast or the
time required to service an
interrupt is too long.

Adjust the clock source to slow down
the rate at which the card/board
acquires data. Remove other
application programs that are running
and using computer resources. Try
performing the operation in
synchronous mode instead of interrupt
mode.

8016 32790 Interrupt overrun : The
card/board communicated a
hardware event to the software by
generating a hardware interrupt,
but the software was still servicing
a previous interrupt. This is usually
caused by a pacer clock rate that is
too fast.

Check the maximum throughput rate
for your computer’s programming
environment and use K_SetClkRate
to specify an appropriate rate.

801A 32794 Interrupts already active: You
have attempted to start an operation
whose interrupt level is being used
by another system resource.

Use K_IntStop to stop the first
operation before starting the second
operation.

801B 32795 DMA already active: You
attempted to start a DMA-mode
operation using a DMA channel
that is currently used by another
active operation.

Use K_DMAStop to stop the first
operation before starting the second
operation.

8020 32800 FIFO Overflow event detected:
During data acquisition, the
temporary oncard/onboard data
storage (FIFO) overflowed.

The conversion rate is too fast for your
computer’s programming
environment; use K_SetClkRate to
reduce the conversion rate. If you are
using DMA-mode and your
card/board supports dual-DMA, use
the configuration utility to reconfigure
your card/board to use dual-DMA.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-12 Error/Status Codes

8021 32801 Illegal clock sync mode: The two
operations you are trying to
synchronize cannot be
synchronized on your card/board.

Check the synchronizing operation
that you specified in K_SetSync.
Make sure that your card/board
supports the synchronization of the
two operations.

FFFF 65535 User aborted operation: You
pressed Ctrl+Break during a
synchronous-mode operation or
while waiting for an analog trigger
event to occur.

Start the operation again, if desired.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

Integer Number Types B-1

B

Data Formats

The DAS-TC Function Call Driver returns data in engineering units. The
number type (integer or floating-point) specified in the configuration file
determines what the data means, as described in the following sections.

Note:

Ensure that the array or buffer you dimension matches the number

type selected.

Integer Number Types

When the number type specified in the configuration file is integer, a twos
complement 32-bit long integer is returned. If a channel is configured for
thermocouple input, the value returned is in hundredths of degrees. If a
channel is configured for voltage input, the value returned is in
microvolts.

To convert hundredths of degrees to degrees, divide the value by 100. To
convert microvolts to volts, divide the value by 1,000,000.

If the input is under or over the range setting of a particular channel, the
DAS-TC or DAS-TC/B board returns the values shown in Table B-1.

B-2 Data Formats

Floating-Point Number Types

When the number type specified in the configuration file is floating-point,
an IEEE 32-bit real number is returned. If a particular channel is
configured for thermocouple input, the value returned is in degrees. If a
particular channel is configured for voltage input, the value returned is in
volts.

If the input is under or over the range setting of a particular channel, the
DAS-TC or DAS-TC/B returns the values shown in Table B-2.

Table B-1. Integer Input Error Conditions

Input Type Condition Value Returned

Voltage Over the range setting

−

971,227,136 mV

Under the range setting

+

1,176,256,512 mV

Thermocouple Over the range setting

−

971,227,136

°

C or F

Under the range setting

+

1,176,256,512

°

C or F

Table B-2. Floating-Point Input Error Conditions

Input Type Condition Value Returned

Voltage Over the range setting

−

10,000.00 V

Under the range setting

+

10,000.00 V

Thermocouple Over the range setting

−

10,000.00

°

C or F

Under the range setting

+

10,000.00

°

C or F

X-1

Index

A

allocating memory

2-7

dynamically in BASIC

3-32

dynamically in C/C++

3-12

dynamically in Pascal

3-20

dynamically in Visual Basic for
Windows

3-26

locally in BASIC

3-32

locally in C/C++

3-11

locally in Pascal

3-20

locally in Visual Basic for Windows

3-26

analog input channels

2-10

analog input operations

2-4

programming tasks

3-6

analog input ranges

2-10

arrays

2-7

ASO-TC software package

1-1

B

BASIC

3-32

creating a channel-gain queue

3-37

dimensioning local arrays

3-32

dynamically allocating memory buffers

3-32

handling errors

3-38

programming in Professional Basic

3-40

programming in QuickBasic

3-39

board
initialization

2-2

number supported

2-2

reinitializing

2-3

Borland C/C++ (for DOS)

vii

programming information

3-17

see also

 C languages

Borland C/C++ (for Windows)

vii

programming information

3-18

see also

 C languages
Borland Turbo Pascal (for DOS)

vii

programming information

3-24

see also

 Pascal
Borland Turbo Pascal for Windows

vii

programming information

3-25

see also

 Pascal
buffer address

2-9

buffer address functions

4-2

buffering mode

2-13

buffering mode functions

4-3

buffers

2-8

C

C languages

3-11

creating a channel-gain queue

3-13

dimensioning local arrays

3-11

dynamically allocating memory buffers

3-12

handling errors

3-14

programming in Borland C/C++ (for
DOS)

3-17

programming in Borland C/C++ (for
Windows)

3-18

programming in Microsoft C/C++ (for
DOS)

3-15

programming in Microsoft C/C++ (for
Windows)

3-16

programming in Microsoft Visual C++

3-16

channel and gain functions

4-3

channel-gain queues

2-12

creating in BASIC

3-37

creating in C/C++

3-13

creating in Pascal

3-23

creating in Visual Basic for Windows

3-30

X-2 Index

channels

2-10

multiple using a channel-gain queue

2-12

multiple using a group of consecutive
channels

2-11

single

2-11

commands

2-1

see also

 functions
common tasks

3-6

compile and link statements
Borland C/C++ (for DOS)

3-18

Borland C/C++ (for Windows)

3-19

Microsoft C/C++ (for DOS)

3-15

Microsoft C/C++ (for Windows)

3-16

Professional Basic

3-40

QuickBasic

3-39

Turbo Pascal (for DOS)

3-24

continuous mode

2-13

conventions

4-3

creating an executable file

3-15

Borland C/C++ (for DOS)

3-18

Borland C/C++ (for Windows)

3-19

Microsoft C/C++ (for DOS)

3-15

Microsoft C/C++ (for Windows)

3-16

Professional Basic

3-40

QuickBasic

3-39

Turbo Pascal (for DOS)

3-24

Turbo Pascal for Windows

3-25

Visual Basic for Windows

3-32

D

DAS-TC Function Call Driver

1-1

DAS-TC standard software package

1-1

DASTC_DevOpen

2-2

,

4-5

DASTC_GETCJC

4-8

DASTC_GetDevHandle

2-3

,

4-11

data formats

B-1

data transfer modes

2-5

data types

4-4
default values, A/D frame elements 3-4
device handle 2-2, 3-1
dimensioning arrays 2-7
driver 1-1
driver handle 2-2

E
elements of frame 3-2
engineering units B-1
error codes A-1
error conditions

floating-point input B-2
integer input B-2

error handling 2-4
BASIC 3-38
C languages 3-14
Pascal 3-24
Visual Basic for Windows 3-31

executable file, creating 3-15

F
files required

Borland C/C++ (for DOS) 3-17
Borland C/C++ (for Windows) 3-18
Microsoft C/C++ (for DOS) 3-15
Microsoft C/C++ (for Windows) 3-16
Professional Basic 3-40
QuickBasic 3-39
Turbo Pascal (for DOS) 3-24
Turbo Pascal for Windows 3-25
Visual Basic for Windows 3-31

floating-point input error conditions B-2
floating-point number types B-2
frame handle 3-2
frame management functions 4-2

X-3

frames 3-2
elements 3-2
handles 3-2
types 3-3

Function Call Driver 1-1
initialization 2-2
structure 3-1

functions
buffer address 4-2
buffering mode 4-3
channel and gain 4-3
DASTC_DevOpen 2-2, 4-5
DASTC_GETCJC 4-8
DASTC_GetDevHandle 2-3, 4-11
frame management 4-2
initialization 4-2
K_ADRead 2-5, 4-13
K_ADReadL 4-16
K_ADReadR 4-19
K_ClearFrame 3-3, 4-22
K_CloseDriver 2-2, 4-24
K_ClrContRun 2-13, 4-26
K_DASDevInit 2-3, 4-28
K_FormatChnGAry 4-30
K_FreeDevHandle 2-3, 4-32
K_FreeFrame 3-3, 4-34
K_GetADFrame 3-3, 4-36
K_GetDevHandle 2-2, 4-38
K_GetErrMsg 2-4, 4-40
K_GetShellVer 2-3, 4-42
K_GetVer 2-3, 4-45
K_IntAlloc 2-8, 4-48
K_IntFree 2-8, 4-51
K_IntStart 2-6, 4-53
K_IntStatus 2-7, 4-55
K_IntStop 2-7, 4-58
K_MoveBufToArrayL 2-8, 4-61
K_MoveBufToArrayR 2-8, 4-63
K_OpenDriver 2-2, 4-65
K_RestoreChnGAry 3-31, 3-38, 4-68
K_SetBuf 2-9, 4-70

functions (cont.)
K_SetBufL 2-9, 4-72
K_SetBufR 2-9, 4-74
K_SetChnGAry 2-13, 4-76
K_SetContRun 2-13, 4-79
K_SetStartStopChn 2-11, 4-81
K_SyncStart 2-6, 4-84
memory management 4-2
miscellaneous 4-3
operation 4-2

G
gain codes 2-10
gains 2-10
group of consecutive channels 2-11

H
handles

device 2-2, 3-1
driver 2-2
frame 3-2
memory 2-8

help 1-2

I
initialization functions 4-2
initializing a board 2-2
initializing the driver 2-2
input ranges 2-10
input types 2-10
integer input error conditions B-2
integer number types B-1
interrupt-mode analog input operations 2-6,

3-9

X-4 Index

K
K_ADRead 2-5, 4-13
K_ADReadL 4-16
K_ADReadR 4-19
K_ClearFrame 3-3, 4-22
K_CloseDriver 2-2, 4-24
K_ClrContRun 2-13, 4-26
K_DASDevInit 2-3, 4-28
K_FormatChnGAry 4-30
K_FreeDevHandle 2-3, 4-32
K_FreeFrame 3-3, 4-34
K_GetADFrame 3-3, 4-36
K_GetDevHandle 2-2, 4-38
K_GetErrMsg 2-4, 4-40
K_GetShellVer 2-3, 4-42
K_GetVer 2-3, 4-45
K_IntAlloc 2-8, 4-48
K_IntFree 2-8, 4-51
K_IntStart 2-6, 4-53
K_IntStatus 2-7, 4-55
K_IntStop 2-7, 4-58
K_MoveBufToArrayL 2-8, 4-61
K_MoveBufToArrayR 2-8, 4-63
K_OpenDriver 2-2, 4-65
K_RestoreChnGAry 3-31, 3-38, 4-68
K_SetBuf 2-9, 4-70
K_SetBufL 2-9, 4-72
K_SetBufR 2-9, 4-74
K_SetChnGAry 2-13, 4-76
K_SetContRun 2-13, 4-79
K_SetStartStopChn 2-11, 4-81
K_SyncStart 2-6, 4-84

L
local arrays 2-7

M
maintenance operations 2-1
managing memory 2-7

see also allocating memory
memory allocation 2-7

see also allocating memory
memory buffers 2-8
memory handle 2-8
memory management functions 4-2
Microsoft C/C++ (for DOS) vii

programming information 3-15
see also C languages

Microsoft C/C++ (for Windows) vii
programming information 3-16
see also C languages

Microsoft Professional Basic vii
programming information 3-40
see also BASIC

Microsoft QuickBasic vii , 3-39
programming information 3-39
see also BASIC

Microsoft Visual Basic for Windows vii ,
3-31

see also BASIC
Microsoft Visual C++ vii

programming information 3-16
see also C languages

miscellaneous functions 4-3
miscellaneous operations 2-1

N
number types

floating-point B-2
integer B-1

X-5

O
operation functions 4-2
operation modes 2-5

interrupt 2-6
single 2-5
synchronous 2-6

operations
analog input 2-4
system 2-1

P
Pascal 3-20

creating a channel-gain queue 3-23
dimensioning local arrays 3-20
dynamically allocating memory buffers

3-20
handling errors 3-24
programming in Borland Turbo Pascal

(for DOS) 3-24
programming in Borland Turbo Pascal

for Windows 3-25
preliminary tasks 3-6
Professional Basic vii

programming information 3-40
see also BASIC

programming information
Borland C/C++ (for DOS) 3-17
Borland C/C++ (for Windows) 3-18
Microsoft C/C++ (for DOS) 3-15
Microsoft C/C++ (for Windows) 3-16
Professional Basic 3-40
QuickBasic 3-39
Turbo Pascal (for DOS) 3-24
Turbo Pascal for Windows 3-25
Visual Basic for Windows 3-31

programming overview 3-5

programming tasks
analog input operations 3-6
preliminary 3-6

Q
QuickBasic

programming information 3-39
see also BASIC

R
ranges 2-10
resetting a board 2-3
return values 2-4
revision levels 2-3
routines 2-1

see also functions

S
scan 2-11
setup functions

A/D frames 3-4
interrupt mode 3-9
synchronous mode 3-8

single channel 2-11
single-cycle mode 2-13
single-mode analog input operations 2-5, 3-6
software packages 1-1
standard software package 1-1
starting address 2-9
starting analog input operations 2-5
status codes 2-4, A-1
storing data 2-13

X-6 Index

synchronous-mode analog input operations
2-6, 3-7

system operations 2-1

T
tasks

analog input 3-6
preliminary 3-6

technical support 1-2
troubleshooting 1-2
Turbo Pascal (for DOS) vii

programming information 3-24
see also Pascal

Turbo Pascal for Windows vii
programming information 3-25
see also Pascal

V
Visual Basic for Windows vii , 3-26

creating a channel-gain queue 3-30
dimensioning local arrays 3-26
dynamically allocating memory buffers

3-26
handling errors 3-31
programming information 3-31

Visual C++ vii
programming information 3-16
see also C languages

	ToC:

