

 DASDLL
 Function Call Driver

U S E R ’ S G U I D E

DASDLL
Function Call Driver

User’s Guide

Revision A – December 1994
Part Number: 86590

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000

●

 FAX: (508) 880-0179

The information contained in this manual is believed to be accurate and reliable. However, Keithley
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments, Inc. All other brand and product names are
trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1994.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is
unlawful.

ix

Preface

This manual describes how to write application programs using the
DASDLL Function Call Driver. The DASDLL Function Call Driver
supports the following Windows

-based languages:

●

Microsoft Visual C++

 (Version 1.0 and higher)

●

Microsoft Visual Basic for Windows (Version 3.0 and higher)

The manual is intended for application programmers using one of the
following boards in an IBM

 PC AT

 or compatible computer:

●

DAS-8 Series

●

DAS-16 Series

●

DAS-20

●

DAS-40 Series

●

DAS-HRES

●

DDA-06

●

Series 500

●

PIO Series

●

PDMA Series

Throughout this manual, these boards are referred to as DASDLL-
supported boards.

It is assumed that users

●

have read the External DAS Driver user’s guide and the user’s guide
for their particular board to familiarize themselves with the board’s
features.

x

●

have completed the appropriate hardware installation and
configuration.

●

are experienced in programming in their selected language and are
familiar with data acquisition principles.

The

DASDLL Function Call Driver User’s Guide

 is organized as follows:

●

Chapter 1 provides an overview of the Function Call Driver and
describes the installation procedure. Information is included on
setting up the board and how to get help, if necessary.

●

Chapter 2 describes the available operations and contains the
background information needed to use the functions included in the
Function Call Driver.

●

Chapter 3 contains programming guidelines and language-specific
information related to using the Function Call Driver.

●

Chapter 4 contains detailed descriptions of the functions and their
usage, arranged in alphabetical order.

●

Appendix A contains a list of the error codes returned by the Function
Call Driver, along with specific causes and suggested solutions.

●

Appendix B contains instructions for converting counts to voltage and
for converting voltage to counts.

●

Appendix C provides board-specific operating specifications on gains
and channels.

●

Appendix D includes instructions for installing the Keithley Memory
Manager.

An index completes this manual.

Note:

The DASDLL-supported boards vary in their features and
operating parameters. Information presented in this manual is generic to
cover every board’s requirements. For board-specific information, refer to
your board’s user’s guide and External DAS Driver user’s guide. Your
board’s user’s guide is shipped with your board; the External DAS Driver

user’s guide is shipped with the DASDLL software package.

Table of Contents

iii

Preface

1

Getting Started

Installing the Software .1-2
Setting Up the Board and the Driver .1-3
Getting Help. .1-4

2

Available Operations

System Operations .2-2
Initializing the Driver .2-2
Initializing a Board .2-3
Retrieving Revision Levels .2-5
Handling Errors. .2-5

Analog Input Operations .2-6
Operation Modes. .2-6
Memory Allocation and Management.2-8
Channels and Gains. .2-10

Single Channel .2-10
Multiple Channels Using a Group of
 Consecutive Channels .2-11
Multiple Channels Using a Channel-Gain Queue 2-11

Pacer Clock .2-12
Buffering Modes .2-14
Triggers .2-14

Analog Trigger .2-15
Digital Trigger .2-16

Analog Output Operations .2-17
Operation Modes. .2-17
Memory Allocation and Management.2-18
Channels .2-20

Single Channel .2-21
Multiple Channels .2-21

Pacer Clock .2-21
Buffering Modes .2-23
Triggers .2-24

iv

Digital I/O Operations .2-25
Operation Modes. .2-25
Memory Allocation and Management.2-27
Channels .2-28
Pacer Clock .2-30
Buffering Modes .2-31
Triggers .2-32

3

Programming with the Function Call Driver

How the Driver Works .3-1
Programming Overview .3-9
Preliminary Tasks. .3-10
Operation-Specific Programming Tasks.3-10

Analog Input Operations .3-10
Single Mode .3-11
Synchronous Mode. .3-11
Interrupt Mode .3-13
DMA Mode .3-15

Analog Output Operations .3-17
Single Mode .3-17
Synchronous Mode. .3-18
Interrupt Mode .3-19
DMA Mode .3-21

Digital I/O Operations. .3-23
Single Mode .3-23
Synchronous Mode. .3-24
Interrupt Mode .3-25
DMA Mode .3-27

Language-Specific Programming Information.3-29
Microsoft Visual C++ Language .3-29

Allocating and Assigning Memory Buffers3-30
Allocating the Memory Buffers.3-30
Accessing the Data .3-31

Creating a Channel-Gain Queue 3-31
Handling Errors .3-32
Programming in Microsoft Visual C++3-33

Microsoft Visual Basic for Windows.3-34
Allocating and Assigning Memory Buffers3-34

Allocating the Memory Buffers.3-34
Accessing the Data .3-35

v

Creating a Channel-Gain Queue 3-35
Handling Errors .3-37
Programming in Microsoft Visual Basic for Windows . .3-37

4

Function Reference

DASDLL_DevOpen. .4-7
DASDLL_DMAAlloc .4-9
DASDLL_DMAFree .4-11
DASDLL_GetBoardName. .4-12
DASDLL_GetDevHandle .4-13
K_ADRead. .4-15
K_ClearFrame .4-17
K_CloseDriver .4-18
K_ClrContRun .4-19
K_DASDevInit. .4-21
K_DAWrite .4-22
K_DIRead .4-24
K_DMAStart .4-26
K_DMAStatus .4-27
K_DMAStop .4-30
K_DOWrite .4-32
K_FormatChnGAry .4-34
K_FreeDevHandle .4-35
K_FreeFrame .4-36
K_GetADFrame. .4-37
K_GetADTrig .4-38
K_GetBuf .4-40
K_GetBufB .4-42
K_GetChn .4-44
K_GetChnGAry .4-45
K_GetClk .4-46
K_GetClkRate .4-48
K_GetContRun. .4-50
K_GetDAFrame .4-52
K_GetDevHandle. .4-54
K_GetDIFrame. .4-56
K_GetDOFrame. .4-58
K_GetErrMsg. .4-60
K_GetG .4-61
K_GetShellVer .4-63
K_GetStartStopChn .4-65
K_GetStartStopG .4-67

vi

K_GetTrig .4-69
K_GetVer .4-71
K_IntStart. .4-73
K_IntStatus. .4-74
K_IntStop .4-77
K_MoveArrayToBuf .4-79
K_MoveBufToArray .4-81
K_OpenDriver .4-83
K_RestoreChnGAry. .4-85
K_SetADTrig .4-86
K_SetBuf .4-88
K_SetBufB .4-90
K_SetChn .4-92
K_SetChnGAry .4-93
K_SetClk .4-95
K_SetClkRate. .4-97
K_SetContRun .4-99
K_SetDMABuf .4-101
K_SetDMABufB .4-103
K_SetG. .4-105
K_SetStartStopChn .4-106
K_SetStartStopG .4-108
K_SetTrig .4-110
K_SyncAlloc .4-112
K_SyncFree .4-114
K_SyncStart .4-115

A

Error/Status Codes

B

Data Formats

Converting Counts to Voltage. B-1
Converting Voltage to Counts. B-4

C

Operating Specifications

Gains . C-1
Channels. C-8

vii

D

Keithley Memory Manager

Installing and Setting Up the KMM. D-2
Using KMMSETUP.EXE . D-2
Using a Text Editor . D-3

Removing the KMM . D-4

Index

List of Figures

Figure 2-1. Logical Board Numbers. .2-4
Figure 2-2. Analog Trigger Conditions 2-16
Figure 3-1. Single-Mode Function .3-1
Figure 3-2. Interrupt-Mode Operation3-3

List of Tables

Table 1-1. Boards Supported. .1-1
Table 2-1. Supported Operations .2-1
Table 2-2. Time Bases. .2-12
Table 3-1. A/D Frame Elements .3-4
Table 3-2. D/A Frame Elements .3-6
Table 3-3. DI Frame Elements .3-7
Table 3-4. DO Frame Elements. .3-8
Table 3-5. Setup Functions for Synchronous-Mode

Analog Input Operations3-12
Table 3-6. Setup Functions for Interrupt-Mode

Analog Input Operations3-14
Table 3-7. Setup Functions for DMA-Mode

Analog Input Operations3-16
Table 3-8. Setup Functions for Synchronous-Mode

Analog Output Operations3-18
Table 3-9. Setup Functions for Interrupt-Mode

Analog Output Operations3-20
Table 3-10. Setup Functions for DMA-Mode

Analog Output Operations3-22
Table 3-11. Setup Functions for Synchronous-Mode

Digital Input and Output Operations3-24
Table 3-12. Setup Functions for Interrupt-Mode

Digital Input and Digital Output Operations3-26
Table 3-13. Setup Functions for DMA-Mode

Digital Input and Digital Output Operations3-28
Table 4-1. Functions .4-2

viii

Table 4-2. Data Type Prefixes. .4-6
Table A-1. Error/Status Codes . A-1
Table B-1. Data Formats (Analog Input) B-2
Table B-2. Full Scale Values . B-3
Table B-3. Data Formats (Analog Output) B-5
Table C-1. Gain Codes for DASDLL-Supported Boards . . . C-2
Table C-2. Gain Codes for Series 500 Boards. C-6
Table C-3. Channels Available on

DASDLL-Supported Boards C-8

1-1

1

Getting Started

The DASDLL Function Call Driver is a library of data acquisition and
control functions (referred to as the Function Call Driver or FCD
functions). Table 1-1 lists the Keithley DAS boards supported by the
DASDLL Function Call Driver.

Throughout this manual, the boards in Table 1-1 are referred to as
DASDLL-supported boards.

Table 1-1. Boards Supported

Series Boards

DAS-8 DAS-8, DAS-8LT, DAS-8PGA, DAS-8PGA-G2,
DAS-8/AO

DAS-16 DAS-16, DAS-16F, DAS-16G1, DAS-16G2

DAS-20 DAS-20

DAS-40 DAS-40G1, DAS-40G2

DAS-HRES DAS-HRES

DDA-06 DDA-06

500 AMM1A, AMM2, AIM2, AIM3A, AIM4, AIM6
AIM7, AIM8, AIM9

PIO PIO-12, PIO-24, PIO-32, PIO-96, PIO-HV

PDMA PDMA-16, PDMA-32

1-2 Getting Started

The DASDLL software package contains the following:

●

Dynamic Link Libraries (DLLs) of FCD functions for Microsoft
Visual C++ and Microsoft Visual Basic for Windows.

●

Support files, containing program elements, such as function
prototypes and definitions of variable types, that are required by the
FCD functions.

●

Language-specific example programs.

The following sections describe how to install the software, how to set up
a board to use the DASDLL Function Call Driver, and how to get help, if
necessary.

Installing the Software

To install the DASDLL software package, perform the following steps:

1. Make a backup copy of the supplied disks. Use the copies as your
working disks and store the originals as backup disks.

2. Insert disk #1 into the disk drive.

3. Start Windows, if necessary.

4. From the Program Manager menu, choose File and then choose Run.

5. Assuming that you are using disk drive A, type the following at the
command line in the Run dialog box, and then select OK:

A:SETUP

The installation program prompts you for your installation
preferences, including the drive and directory you want to copy the
software to. It also prompts you to insert additional disks, as
necessary.

1-3

6. Continue to insert disks and respond to prompts, as appropriate.

When the installation program prompts you for a drive designation,
enter a designation of your choosing or accept the default drive C.
When the installation program prompts you for a directory name,
enter a name of your choosing or accept the default name.

The installation program creates a directory on the specified drive and
copies all files, expanding any compressed files.

The installation program also creates a DASDLL family group; this
group includes example Windows programs.

7. When the installation program notifies you that the installation is
complete, review the following files:

– FILES.TXT lists and describes all the files copied to the hard disk
by the installation program.

– README.TXT contains information that was not available when
this manual was printed.

Setting Up the Board and the Driver

Before you use the DASDLL Function Call Driver, you must perform the
following tasks:

1. Set up your board’s hardware. Refer to your board’s user’s guide and
your External DAS Driver user’s guide for information.

2. Exit Windows and return to DOS.

3. Run the configuration program for your board from DOS. The
configuration program is shipped with the External DAS Driver for
your board. Refer to your External DAS Driver user’s guide for
information.

Note:

You cannot run the configuration program or load the External
DAS Driver from the MS-DOS Prompt when in Windows. You must

exit Windows and return to DOS.

1-4 Getting Started

4. Load the External DAS Driver for your board from DOS. Refer to
your External DAS Driver user’s guide for information.

5. Load Windows.

Note:

If you want to set up your AUTOEXEC.BAT file to
automatically load the External DAS Driver, make sure that you
include the line that loads the External DAS Driver before the line

that loads Windows.

Getting Help

If you need help installing or using the DASDLL Function Call Driver,
call your local sales office or the Keithley MetraByte Applications
Engineering Department at:

(508) 880-3000

Monday - Friday, 8:00

A.M.

 - 6:00

P.M.

, Eastern Time

An applications engineer will help you diagnose and resolve your
problem over the telephone.

1-5

Please make sure that you have the following information available before
you call:

DASDLL-supported
board configuration

Model
Serial #
Revision code
Base address setting
Interrupt level setting
Input configuration
Input range type
DMA channel
Other

single-ended, differential
unipolar, bipolar

Computer

Manufacturer
CPU type
Clock speed (MHz)
Amount of RAM
Video system
BIOS type

Operating system

DOS version
Windows version
Windows mode

3.0, 3.1
Standard, Enhanced

Software package

Serial #
Version
Invoice/Order #

Compiler
(if applicable)

Language
Manufacturer
Version

Accessories

Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number

2-1

2

Available Operations

This chapter contains the background information you need to use the
FCD functions to perform operations on DASDLL-supported boards. The
supported operations are listed in Table 2-1.

Note:

The DASDLL-supported boards vary in their features and
operating parameters. Information presented in this chapter is generic to
cover every board’s requirements. For board-specific information, refer to
your board’s user’s guide and External DAS Driver user’s guide. Your
board’s user’s guide is shipped with your board; the External DAS Driver

user’s guide is shipped with the DASDLL software package.

Table 2-1. Supported Operations

Operation Page Reference

System page 2-2

Analog input page 2-6

Analog output page 2-17

Digital input and output (I/O) page 2-25

2-2 Available Operations

The following features are not supported by the DASDLL Function Call
Driver, even though the External DAS Driver for your DASDLL may
support them:

●

More than two memory buffers per frame

●

Simultaneous sample-and-hold (SSH)

●

Programmable external pacer clock polarity

●

About-trigger acquisition

●

Hardware gate

●

Counter/timer functions

●

Timed interrupt functions

●

Time of Day (TOD) functions

System Operations

This section describes the miscellaneous and general maintenance
operations that apply to DASDLL-supported boards and to the DASDLL
Function Call Driver. It includes information on the following operations:

●

Initializing the driver

●

Initializing a board

●

Retrieving revision levels

●

Handling errors

Initializing the Driver

You must initialize the DASDLL Function Call Driver and any other
Keithley DAS Function Call Drivers you are using in your application
program. To initialize the drivers, use the

K_OpenDriver

 function. You
specify the driver you are using; the driver returns a unique identifier for
the driver (this identifier is called the driver handle).

If a particular driver is no longer required and you want to free some
memory, you can use the

K_CloseDriver

 function to free a driver handle
and close the associated driver. The driver is shut down and the DLLs
associated with the driver are shut down and unloaded from memory.

2-3

Note:

You can also use the

DASDLL_DevOpen

 function to initialize the
driver and determine the number of boards found by the DASDLL

Function Call Driver.

Initializing a Board

The number of boards supported by the DASDLL Function Call Driver
depends on the number of External DAS Drivers you loaded and the
number of boards supported by each External DAS Driver. You must use
the

K_GetDevHandle

 function to specify the boards you want to use.
The driver returns a unique identifier for each board; this identifier is
called the board handle.

Board handles allow you to communicate with more than one board. You
use the board handle returned by

K_GetDevHandle

 in subsequent
function calls related to the board.

You can specify a maximum of 30 board handles for all the Keithley
MetraByte boards accessed from your application program. If a board is
no longer being used and you want to free some memory or if you have
used all 30 board handles, you can use the

K_FreeDevHandle

 function to
free a board handle.

Note:

You can also use the

DASDLL_GetDevHandle

function to

specify the boards you are using.

The board number you specify in

K_GetDevHandle

is a logical board
number; it is determined by how you loaded your External DAS Drivers.
For example, Figure 2-1 illustrates a system in which you first loaded the
DAS-8 External DAS Driver (configured for two boards) and then loaded
the DAS-16 External DAS Driver (configured for two boards).

2-4 Available Operations

Figure 2-1. Logical Board Numbers

Note:

The DASDLL Function Call Driver treats Series 500 modules as

separate boards.

You can use the

DASDLL_GetBoardName

 function to return
information about the boards and drivers loaded in your system. When
you enter a logical board number, the driver returns the name of the driver
associated with the board. A NULL pointer is returned if no driver is
associated with the board.

For example, if you set up a loop to return the names of the drivers
associated with the boards shown in Figure 2-1, the driver returns four
strings and a NULL pointer. The first two strings represent the DAS-8
External DAS Driver; the next two strings represent the DAS-16 External
DAS Driver; the fifth string is a NULL pointer.

The returned strings indicate that your system contains four boards. The
first two logical boards, 0 and 1, are DAS-8 Series boards; the next two,
boards 2 and 3, are DAS-16 Series boards.

DAS-16 External DAS Driver

Board 1

Board 2

Logical Board Number = 0

Logical Board Number = 1

Board 1

Board 2 Logical Board Number = 3

Logical Board Number = 2

DAS-8 External DAS Driver

2-5

To reinitialize a board during an operation, use the

K_DASDevInit

function.

K_GetDevHandle

,

DASDLL_GetDevHandle

, and

K_DASDevInit

 perform the following tasks:

●

Abort all operations currently in progress that are associated with the
board identified by the board handle.

●

Verify that the board identified by the board handle is the board
specified in the configuration file.

Retrieving Revision Levels

If you are having problems with your application program, you may want
to verify which versions of the Function Call Driver, Keithley DAS Driver
Specification, and Keithley DAS Shell are used by your board.

The

K_GetVer

 function allows you to get both the revision number of the
Function Call Driver and the revision number of the Keithley DAS Driver
Specification to which the driver conforms.

The

K_GetShellVer

 function allows you to get the revision number of
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions
that is shared by all DASDLL-supported boards).

Handling Errors

Each FCD function returns a code indicating the status of the function. To
ensure that your application program runs successfully, it is
recommended that you check the returned code after the execution of
each function. If the status code equals 0, the function executed
successfully and your program can proceed. If the status code does not
equal 0, an error occurred; ensure that your application program takes the
appropriate action. Refer to Appendix A for a complete list of error codes.

Each supported programming language uses a different procedure for
error checking. Refer to the following for information:

Visual C++ page 3-33

Visual Basic for Windows page 3-37

2-6 Available Operations

For Visual C++ only, the Function Call Driver provides the

K_GetErrMsg

 function, which gets the address of the string
corresponding to an error code.

Analog Input Operations

This section describes the following:

●

Analog input operation modes available.

●

How to allocate and manage memory for analog input operations.

●

How to specify the following for an analog input operation:

– Channels and gains

– Conversion mode

– Clock source

– Buffering mode

– Trigger source

Note:

The DASDLL-supported boards vary in their features and
operating parameters. For board-specific information, such as voltage
input ranges, refer to your board’s user’s guide and External DAS Driver

user’s guide.

Operation Modes

The operation mode determines which attributes you can specify for an
analog input operation and how data is transferred from the board to
computer memory. You can perform analog input operations in one of the
following modes:

●

Single mode

 - In single mode, the board acquires a single sample
from an analog input channel. The driver initiates the conversion; you
cannot perform any other operation until the single-mode operation is
complete.

2-7

Use the

K_ADRead

 function to start an analog input operation in
single mode. You specify the board you want to use, the analog input
channel, the gain at which you want to read the signal, and the
variable in which to store the converted data.

●

Synchronous mode

 - In synchronous mode, the board acquires a
single sample or multiple samples from one or more analog input
channels. A hardware pacer clock initiates conversions. You cannot
perform any other operation until the synchronous-mode operation is
complete. After the driver transfers the specified number of samples
to the host, the driver returns control to the application program,
which reads the data.

Use the

K_SyncStart

 function to start an analog input operation in
synchronous mode.

●

Interrupt mode

 - In interrupt mode, the board acquires a single
sample or multiple samples from one or more analog input channels.
A hardware clock initiates conversions. Once the analog input
operation begins, control returns to your application program.

Use the

K_IntStart

 function to start an analog input operation in
interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-14 for more information
on buffering modes. Use the

K_IntStop

 function to stop a
continuous-mode interrupt operation. Use the

K_IntStatus

 function
to determine the current status of an interrupt operation.

●

DMA mode

 - In DMA mode, the board acquires a single sample or
multiple samples from one or more analog input channels. A
hardware clock initiates conversions. Once the analog input operation
begins, control returns to your application program. DMA mode
provides the fastest data transfer rates.

Use the

K_DMAStart

 function to start an analog input operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-14 for more information on
buffering modes. Use the

K_DMAStop

 function to stop a
continuous-mode DMA operation. Use the

K_DMAStatus

 function
to determine the current status of a DMA operation.

2-8 Available Operations

The converted data is stored as counts. For information on converting
counts to voltage, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog input operations use one or two
memory buffers to store acquired data; synchronous-mode analog input
operations use one memory buffer to store acquired data. (You can use
two memory buffers if your External DAS Driver supports double
buffering; the driver automatically switches from the primary buffer to the
secondary buffer when the primary buffer is full.)

Note:

Except for DASDLL-40 Series boards, it is recommended that you
always use a single memory buffer, particularly for analog input

operations faster than 1 kHz.

Use one of the following functions to allocate memory:

●

K_SyncAlloc

for synchronous-mode or interrupt-mode operations.

●

DASDLL_DMAAlloc

for DMA-mode operations.

You specify the following:

●

Operation requiring the memory buffer.

●

Number of samples to store in the memory buffer (up to 32,767).

The driver returns the starting address of the memory buffer and a unique
identifier for the buffer (this identifier is called the memory handle).

When the memory buffer is no longer required, you can free the buffer for
another use by specifying the memory handle in one of the following
functions:

●

K_SyncFree

 for synchronous-mode or interrupt-mode operations.

●

DASDLL_DMAFree

 for DMA-mode operations.

2-9

If you are using two memory buffers, you can work on data in the inactive
buffer while the active buffer continues to collect data. To determine the
active buffer, use the

K_IntStatus

 function (for interrupt mode) or the

K_DMAStatus

 function (for DMA mode). Depending on the speed of
your operation and the particular board you are using, data may be lost
when the driver switches from one memory buffer to the other. To
determine whether any data has been lost, use the

K_IntStatus

 function
(for interrupt mode) or the

K_DMAStatus

 function (for DMA mode).

Notes:

For synchronous-mode and interrupt-mode operations and for
DMA-mode operations on DAS-16 Series boards, memory is allocated
from the first 1MB of DOS memory only; therefore, the amount of
memory you can allocate may be limited.

For DAS-20 and DAS-HRES boards that run in DMA mode, it is
recommended that you use the Keithley Memory Manager before you
begin programming to ensure that you can allocate large enough memory
buffers. Refer to Appendix D for more information about the Keithley
Memory Manager.

To eliminate page wrap conditions and to guarantee that memory is
suitable for use by the computer’s controller,

DASDLL_DMAAlloc

 may
allocate an area twice as large as actually needed. Once the data in this
buffer is processed and/or saved elsewhere, use

DASDLL_DMAFree

 to
free the memory for other uses.

For Visual Basic for Windows, the program cannot transfer data directly
from the memory buffer. You must use the

K_MoveBufToArray

 function
to move the data from the memory buffer to the program’s local array;

refer to page 4-81 for more information.

After you allocate your memory buffers, you must assign the starting
address of the buffers and the number of samples to store in the buffers.
Each supported programming language requires a particular procedure
for allocating a memory buffer and assigning the starting address. Refer
to the following for information:

Visual C++ page 3-33

Visual Basic for Windows page 3-37

2-10 Available Operations

Channels and Gains

Analog input channels on DASDLL-supported boards measure signals in
several analog input ranges. The analog input range for a particular
channel depends on the gain of the channel. The driver uses gain codes to
represent the gain.

For example, on a DAS-8PGA analog input board, an analog input range
of 0 to 10 V translates to a gain of 1 and a gain code of 9. Refer to
Appendix C for a summary of the gain codes used by DASDLL-
supported boards.

For most DASDLL-supported boards, channels can be configured as
single-ended or differential. The number of channels supported depends
on which configuration you use.

If you require more than the supported number of channels, you can use
expansion accessories to increase the number of available channels. Refer
to your board’s user’s guide and to the appropriate expansion accessory
documentation for more information.

Refer to Appendix C for a summary of the number of channels on
DASDLL-supported boards.

You can perform an analog input operation on a single channel or on a
group of multiple channels. The following subsections describe how to
specify the channels you are using.

Single Channel

For single-mode analog input operations, you can acquire a single sample
from a single analog input channel. Use the

K_ADRead

 function to
specify the channel and the gain code.

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire a single sample or multiple samples from a
single analog input channel. Use the

K_SetChn

 function to specify the
channel and the

K_SetG

 function to specify the gain code.

2-11

Multiple Channels Using a Group of Consecutive Channels

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire samples from a group of consecutive
channels. Use the K_SetStartStopChn function to specify the first and
last channels in the group. The channels are sampled in order from first to
last; the channels are then sampled again until the required number of
samples is read.

Use the K_SetG function to specify the gain code for all channels in the
group. (All channels must use the same gain code.) Use the
K_SetStartStopG function to specify the gain code, the start channel,
and the stop channel in a single function call.

Multiple Channels Using a Channel-Gain Queue

For synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, you can acquire samples from channels in a channel-gain
queue. In the channel-gain queue, you specify the channels you want to
sample, the order in which you want to sample them, and a gain code for
each channel.

You can set up the channels in a channel-gain queue either in consecutive
order or in nonconsecutive order. You can also specify the same channel
more than once. The channels are sampled in order from the first channel
in the queue to the last channel in the queue; the channels in the queue are
then sampled again until the required number of samples is read.

The way that you specify the channels and gains in a channel-gain queue
depends on the language you are using. Refer to the following for
information:

Visual C++ page 3-33

Visual Basic for Windows page 3-37

2-12 Available Operations

After you create the channel-gain queue in your program, use the
K_SetChnGAry function to specify the starting address of the
channel-gain queue.

Note: You can use a channel-gain queue with DMA-mode operations on
DAS-20 and DAS-40 Series boards only.

Pacer Clock

The pacer clock determines the period between the conversion of one
channel and the conversion of the next channel. For synchronous-mode,
interrupt-mode, and DMA-mode analog input operations, use the
K_SetClk function to specify one of the following pacer clocks:

● Internal pacer clock - The internal pacer clock uses an onboard
counter. You load a value into the counter to determine the period
between conversions. Depending on the time base of the counter,
each count represents a particular time period. Table 2-2 lists the time
bases available on DASDLL-supported boards.

Table 2-2. Time Bases

Board Time Base

DAS-8 Depends on PC bus clock frequency1

DAS-8LT
DAS-8PGA
DAS-8PGA-02
DAS-8/AO

1 MHz

DAS-16 Series 1 MHz or 10 MHz1

DAS-20 5 MHz

DAS-40 Series 4 MHz

DAS-HRES 1 MHz, 8 MHz, or 10 MHz1

DDA-06 Not applicable2

Series 500 1 MHz

2-13

Use the K_SetClkRate function to specify the number of counts
(clock ticks) between conversions. For example, if you are using a
DAS-8PGA board (1 MHz time base), each count represents 1.0 µs. If
you specify a count of 30, the period between conversions is 30 µs
(33.33 ksamples/s).

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

For example, if you want a conversion rate of 10 ksamples/s on a
DAS-8PGA board, specify a count of 100, as shown in the following
equation:

The internal pacer clock is the default pacer clock.

● External pacer clock - You connect an external pacer clock to the
appropriate pin on the main I/O connector.

When you start an analog input operation (using K_SyncStart,
K_IntStart , or K_DMAStart), conversions are armed. At the next
active edge of the external pacer clock (and at every subsequent active
edge of the external pacer clock), a conversion is initiated.

Refer to your DAS board’s user’s guide to determine which edge
(positive or negative) is the active edge supported for your board.

PIO Series Not applicable2

PDMA Series 10 MHz

Notes
1 Specified in the External DAS Driver configuration.
2 DDA-06 and PIO Series boards do not support an internal

pacer clock.

Table 2-2. Time Bases (cont.)

Board Time Base

counts time base
conversion rate
------------------------------------=

1 000 000, ,
10 000,

--------------------------- 100=

2-14 Available Operations

Notes:

Make sure that the pacer clock initiates conversions at a rate that
the analog-to-digital converter (ADC) can handle.

The rate at which the computer can reliably read data from the board
depends on a number of factors, including your computer, the operating

system/environment, the gains of the channels, and other software issues.

Buffering Modes

The buffering mode determines how the driver stores the converted data
in the buffer. For interrupt-mode and DMA-mode analog input
operations, you can specify one of the following buffering modes:

●

Single-cycle mode

 - In single-cycle mode, after the board converts
the specified number of samples and stores them in the buffer, the
operation stops automatically. Single-cycle mode is the default
buffering mode.

●

Continuous

mode

 - In continuous mode, the board continuously
converts samples and stores them in the buffer until it receives a stop
function; any values already stored in the buffer are overwritten. Use
the

K_SetContRun

 function to specify continuous buffering mode.

Note:

Buffering modes are not meaningful for synchronous-mode

operations.

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode, interrupt-mode, and DMA-mode analog input
operations, use the

K_SetTrig

 function to specify one of the following
trigger sources:

●

Internal trigger

 - An internal trigger is a software trigger. The trigger
event occurs immediately after you start the analog input operation
(using

K_SyncStart

,

K_IntStart

, or

K_DMAStart

). The point at
which conversions begin depends on the pacer clock; refer to page
2-12 for more information. The internal trigger is the default trigger
source.

2-15

●

External trigger

 - When you start the analog input operation (using

K_SyncStart

,

K_IntStart

 or

K_DMAStart

), the application
program waits until an external trigger event occurs. For Series 500
boards, the external trigger is an analog trigger; for DAS-8 Series,
DAS-16 Series, DAS-20, DAS-40 Series, and DAS-HRES boards, the
external trigger is a digital trigger. The point at which conversions
begin depends on the pacer clock; refer to page 2-12 for more
information.

Note:

DDA-06 and PIO Series boards do not support an external

trigger.

Analog and digital triggers are described in the following sections.

Analog Trigger

Only Series 500 boards support an external analog trigger. An analog
trigger event occurs when a particular condition is met by the analog
input signal on a specified analog trigger channel. Use the

K_SetADTrig

function to specify the following:

●

Analog input channel to use as the trigger channel.

●

Voltage level. You specify the voltage level as a count value between
0 and 8191, where 0 represents

−

10 V and 8191 represents +10 V.

●

Trigger polarity and sensitivity. Depending on your board, the trigger
event occurs when one of the following conditions is met:

–

Positive-edge trigger

 - The analog input signal rises above the
specified voltage level.

–

Negative-edge trigger

 - The analog input signal falls below the
specified voltage level.

Figure 2-2 illustrates these analog trigger conditions, where the
specified voltage level is +5 V.

2-16 Available Operations

Figure 2-2. Analog Trigger Conditions

Digital Trigger

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, and DAS-HRES
boards support an external digital trigger. A digital trigger event occurs
when a particular condition is met by the digital trigger signal, which is
connected to the appropriate pin on the main I/O connector. Depending
on your board, the trigger event occurs when one of the following
conditions is met:

● Positive-edge trigger - A rising edge occurs on the digital trigger
signal.

● Negative-edge trigger - A falling edge occurs on the digital trigger
signal.

● Positive-level trigger - The digital trigger signal is high.

● Negative-level trigger - The digital trigger signal is low.

Refer to your board’s user’s guide and External DAS Driver user’s guide
for information about the digital trigger conditions supported for your
board.

Negative-edge
trigger occurs

Analog input operation
start function is executed

Positive-edge trigger occurs

0 V

Level + 5 V

2-17

Analog Output Operations

This section describes the following:

● Analog output operation modes available.

● How to allocate and manage memory for analog output operations.

● How to specify the following for an analog output operation:

– Channel

– Clock source

– Buffering mode

– Digital trigger condition

Operation Modes

The operation mode determines which attributes you can specify for an
analog output operation. You can perform analog output operations in one
of the following modes:

● Single mode - In single mode, the driver writes a single value to an
analog output channel; you cannot perform any other operation until
the single-mode operation is complete.

Use the K_DAWrite function to start an analog output operation in
single mode. You specify the board you want to use, the analog output
channel, and the value you want to write.

● Synchronous mode - In synchronous mode, the driver writes a single
value or multiple values to an analog output channel. A hardware
pacer clock paces the updating of the channel. You cannot perform
any other operation until the synchronous-mode operation is
complete. After the driver writes the specified number of values, the
driver returns control to the application program.

Use the K_SyncStart function to start an analog output operation in
synchronous mode.

● Interrupt mode - In interrupt mode, the driver writes a single value
or multiple values to an analog output channel. A hardware clock
paces the updating of the channel. Once the analog output operation
begins, control returns to your application program.

2-18 Available Operations

Use the K_IntStart function to start an analog output operation in
interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-23 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation.

● DMA mode - In DMA mode, the driver writes a single value or
multiple values to an analog output channel. A hardware clock paces
the updating of the channel. Once the analog output operation begins,
control returns to your application program. DMA mode provides the
fastest data transfer rates.

Use the K_DMAStart function to start an analog output operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-23 for more information on
buffering modes. Use the K_DMAStop function to stop a
continuous-mode DMA operation. Use the K_DMAStatus function
to determine the current status of a DMA operation.

For an analog output operation, the values are written as counts. For
information on converting voltage to counts, refer to Appendix B.

Memory Allocation and Management

Interrupt-mode and DMA-mode analog output operations use one or two
memory buffers to store acquired data; synchronous-mode analog output
operations use one memory buffer to store acquired data. (You can use
two memory buffers if your External DAS Driver supports double
buffering; the driver automatically switches from the primary buffer to the
secondary buffer when the primary buffer is empty.)

Note: It is recommended that you always use a single memory buffer,
particularly for analog output operations faster than 1 kHz.

2-19

Use one of the following functions to allocate memory:

● K_SyncAlloc for synchronous-mode or interrupt-mode operations.

● DASDLL_DMAAlloc for DMA-mode operations.

You specify the following:

● Operation requiring the memory buffer.

● Number of samples to store in the memory buffer (up to 32,767).

The driver returns the starting address of the memory buffer and a unique
identifier for the buffer (this identifier is called the memory handle).

When the memory buffer is no longer required, you can free the buffer for
another use by specifying the memory handle in one of the following
functions:

● K_SyncFree for synchronous-mode or interrupt-mode operations.

● DASDLL_DMAFree for DMA-mode operations.

If you are using two memory buffers, you can work on data in the inactive
buffer while the active buffer continues to collect data. To determine the
active buffer, use the K_IntStatus function (for interrupt mode) or the
K_DMAStatus function (for DMA mode). Depending on the speed of
your operation and the particular board you are using, data may be lost
when the driver switches from one memory buffer to the other. To
determine whether any data has been lost, use the K_IntStatus function
(for interrupt mode) or the K_DMAStatus function (for DMA mode).

If you are using a group of analog output channels, when you start the
analog output operation (using K_SyncStart, K_IntStart , or
K_DMAStart), the driver simultaneously writes one value to each
channel in the group. The driver writes the first value in the memory
buffer to the first channel, the second value in the buffer to the second
channel, the third value in the buffer to the third channel, and so on. To
ensure predictable results, make sure that the number of values stored in
the memory buffer is an even multiple of the number of channels in the
group.

2-20 Available Operations

Notes: For synchronous-mode and interrupt-mode operations, memory
is allocated from the first 1MB of DOS memory only; therefore, the
amount of memory you can allocate may be limited.

For DAS-20 boards that run in DMA mode, it is recommended that you
use the Keithley Memory Manager before you begin programming to
ensure that you can allocate large enough memory buffers. Refer to
Appendix D for more information about the Keithley Memory Manager.

To eliminate page wrap conditions and to guarantee that memory is
suitable for use by the computer’s controller, DASDLL_DMAAlloc may
allocate an area twice as large as actually needed. Once the data in this
buffer is processed and/or saved elsewhere, use DASDLL_DMAFree to
free the memory for other uses.

For Visual Basic for Windows, the program cannot transfer data directly
to the memory buffer. You must use the K_MoveArrayToBuf function to
move the data from the program’s local array to the memory buffer; refer
to page 4-79 for more information.

After you allocate your memory buffers, you must assign the starting
address of the buffers and the number of samples stored in the buffers.
Each supported programming language requires a particular procedure
for allocating a buffer. Refer to the following for information:

Channels

DASDLL-supported boards that perform analog output operations
contain one or more digital-to-analog converters (DACs). Each DAC is
associated with an analog output channel. You can perform the analog
output operation on a single channel or on a group of multiple channels.
The following subsections describe how to specify the channels you are
using.

Visual C++ page 3-30

Visual Basic for Windows page 3-34

2-21

Single Channel

For single-mode analog output operations, you can write a single value to
a single analog output channel. Use the K_DAWrite function to specify
the channel.

For synchronous-mode, interrupt-mode, and DMA-mode analog output
operations, you can write a single value or multiple values to a single
analog output channel. Use the K_SetChn function to specify the
channel. At each pulse of the pacer clock, the driver updates all the analog
output channels and then writes a new value to the specified channel only.

Multiple Channels

For synchronous-mode, interrupt-mode, and DMA-mode analog output
operations, you can write a single value or multiple values to a group of
consecutive analog output channels. Use the K_SetStartStopChn
function to specify the first and last channels in the group. At each pulse
of the pacer clock, the driver updates all the analog output channels and
then writes new values to the channels in the group only.

For example, assume that the start channel is 0, the stop channel is 1, and
your array contains two waveforms (0, 4095, 1, 4094, 2, 4093, . . 4095,
0). At the first pulse of the pacer clock, the driver updates all the analog
output channels and then simultaneously writes 0 to channel 0 and 4095
to channel 1; at the next pulse of the pacer clock, the driver updates all the
analog output channels and then simultaneously writes 1 to channel 0 and
4094 to channel 1.

Pacer Clock

The pacer clock determines the period between updates of an analog
output channel. For synchronous-mode, interrupt-mode, or DMA-mode
analog output operations, use the K_SetClk function to specify one of the
following pacer clocks:

● Internal pacer clock - The internal pacer clock uses an onboard
counter. You load a value into the counter to determine the period
between updates. Depending on the time base of the counter, each
count represents a particular time period. Refer to Table 2-2 on page
2-12 for a list of the time bases available on DASDLL-supported
boards.

2-22 Available Operations

Use the K_SetClkRate function to specify the number of counts
(clock ticks) between updates. For example, if you are using a
DAS-8/AO board (1 MHz time base), each count represents 1.0 µs. If
you specify a count of 30, the period between updates is 30 µs
(33.33 ksamples/s).

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

For example, if you want an update rate of 10 ksamples/s on a
DAS-8/AO board, specify a count of 100, as shown in the following
equation:

The internal pacer clock is the default pacer clock.

● External pacer clock - You connect an external pacer clock to the
appropriate pin on the main I/O connector.

When you start an analog output operation (using K_SyncStart,
K_IntStart , or K_DMAStart), conversions are armed. At the next
active edge of the external pacer clock (and at every subsequent active
edge of the external pacer clock), the analog output channel is
updated.

Refer to your DAS board’s user’s guide to determine which edge
(positive or negative) is the active edge supported for your board.

counts time base
update rate
--------------------------=

1 000 000, ,
10 000,

--------------------------- 100=

2-23

Notes: At each pulse of the pacer clock, the driver updates all the analog
output channels on the board and then writes new values to the channels
specified in K_SetChn or K_SetStartStopChn only.

You cannot use the internal pacer clock or the external pacer clock for
analog output operations if the clock is being used by another operation.

The actual update rate also depends on other factors, including your
computer, the operating system/environment, and other software issues.

Buffering Modes

The buffering mode determines how the driver writes the values in the
host buffer to the analog output channel. For interrupt-mode and
DMA-mode analog output operations, you can specify one of the
following buffering modes:

● Single-cycle mode - In single-cycle mode, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

● Continuous mode - In continuous mode, the driver continuously
writes values from the buffer until the application program issues a
stop function; when all the values in the buffer have been written, the
driver writes the values again. Use the K_SetContRun function to
specify continuous buffering mode.

Note: Buffering modes are not meaningful for synchronous-mode
operations.

2-24 Available Operations

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode, interrupt-mode, and DMA-mode analog output
operations, use the K_SetTrig function to specify one of the following
trigger sources:

● Internal trigger - An internal trigger is a software trigger. The trigger
event occurs immediately after you start the analog output operation
(using K_SyncStart, K_IntStart, or K_DMAStart). The point at
which the channel is updated depends on the pacer clock; refer to
page 2-21 for more information. The internal trigger is the default
trigger source.

● External trigger - DAS-8/AO, DAS-16 Series, DAS-20, DAS-40
Series, and DAS-HRES boards support an external trigger. An
external trigger is a digital trigger signal connected to the appropriate
pin on the main I/O connector. When you start the analog output
operation (using K_SyncStart, K_IntStart , or K_DMAStart), the
application program waits until the trigger event occurs. Depending
on your board, the trigger event occurs when one of the following
conditions is met:

– Positive-edge trigger - A rising edge occurs on the digital trigger
signal.

– Negative-edge trigger - A falling edge occurs on the digital
trigger signal.

– Positive-level trigger - The digital trigger signal is high.

– Negative-level trigger - The digital trigger signal is low.

Refer to your board’s user’s guide and External DAS Driver user’s guide
for information about the digital trigger conditions supported for your
board.

The point at which updates begin depends on the pacer clock; refer to
page 2-21 for more information.

2-25

Digital I/O Operations

This section describes the following:

● Digital I/O operation modes available.

● How to allocate and manage memory for digital I/O operations.

● Digital I/O channels.

● How to specify the following for a digital I/O operation:

– Clock source

– Buffering mode

– Digital trigger condition

Operation Modes

The operation mode determines which attributes you can specify for a
digital I/O operation. You can perform digital I/O operations in one of the
following modes:

● Single mode - In a single-mode digital input operation, the driver
reads the value of a digital input channel once; in a single-mode
digital output operation, the driver writes a value to a digital output
channel once. You cannot perform any other operation until the
single-mode operation is complete.

Use the K_DIRead function to start a digital input operation in single
mode; you specify the board you want to use, the digital input
channel, and the variable in which to store the value. Use the
K_DOWrite function to start a digital output operation in single
mode; you specify the board you want to use, the digital output
channel, and the digital output value.

2-26 Available Operations

● Synchronous mode - In a synchronous-mode digital input operation,
the driver reads the value of a digital input channel multiple times; in
a synchronous-mode digital output operation, the driver writes a
single value or multiple values to a digital output channel multiple
times. A hardware pacer clock paces the digital I/O operation. You
cannot perform any other operation until the synchronous-mode
operation is complete.

Use the K_SyncStart function to start a digital I/O operation in
synchronous mode.

● Interrupt mode - In an interrupt-mode digital input operation, the
driver reads the value of a digital input channel multiple times; in an
interrupt-mode digital output operation, the driver writes a single
value or multiple values to a digital output channel multiple times.

A hardware clock paces the digital I/O operation. Once the digital I/O
operation begins, control returns to your application program.

Use the K_IntStart function to start a digital I/O operation in
interrupt mode.

You can specify either single-cycle or continuous buffering mode for
interrupt-mode operations. Refer to page 2-31 for more information
on buffering modes. Use the K_IntStop function to stop a
continuous-mode interrupt operation. Use the K_IntStatus function
to determine the current status of an interrupt operation.

● DMA mode - In a DMA-mode digital input operation, the driver
reads the value of a digital input channel multiple times; in a
DMA-mode digital output operation, the driver writes a single value
or multiple values to a digital output channel multiple times.

A hardware clock paces the digital I/O operation. Once the digital I/O
operation begins, control returns to your application program. DMA
mode provides the fastest data transfer rates.

Use the K_DMAStart function to start a digital I/O operation in
DMA mode.

You can specify either single-cycle or continuous buffering mode for
DMA-mode operations. Refer to page 2-31 for more information on
buffering modes. Use the K_DMAStop function to stop a
continuous-mode DMA operation. Use the K_DMAStatus function
to determine the current status of a DMA operation.

2-27

Memory Allocation and Management

Interrupt-mode and DMA-mode digital I/O operations use one or two
memory buffers to store the data to be read or written; synchronous-mode
digital I/O operations use one memory buffer to store the data to be read
or written. (You can use two memory buffers if your External DAS Driver
supports double buffering; the driver automatically switches from the
primary buffer to the secondary buffer when the primary buffer is full or
empty.)

Note: It is recommended that you always use a single memory buffer,
particularly for digital I/O operations faster than 1 kHz.

Use one of the following functions to allocate memory:

● K_SyncAlloc for synchronous-mode or interrupt-mode operations.

● DASDLL_DMAAlloc for DMA-mode operations.

You specify the following:

● Operation requiring the memory buffer.

● Number of samples to store in the memory buffer (up to 32,767).

The driver returns the starting address of the memory buffer and a unique
identifier for the buffer (this identifier is called the memory handle).

When the memory buffer is no longer required, you can free the buffer for
another use by specifying the memory handle in one of the following
functions:

● K_SyncFree for synchronous-mode or interrupt-mode operations.

● DASDLL_DMAFree for DMA-mode operations.

If you are using two memory buffers, you can work on data in the inactive
buffer while the active buffer continues to collect data. To determine the
active buffer, use the K_IntStatus function (for interrupt mode) or the
K_DMAStatus function (for DMA mode). Depending on the speed of
your operation and the particular board you are using, data may be lost
when the driver switches from one memory buffer to the other. To
determine whether any data has been lost, use the K_IntStatus function
(for interrupt mode) or the K_DMAStatus function (for DMA mode).

2-28 Available Operations

Notes: For synchronous-mode and interrupt-mode operations, memory
is allocated from the first 1MB of DOS memory only; therefore, the
amount of memory you can allocate may be limited.

To eliminate page wrap conditions and to guarantee that memory is
suitable for use by the computer’s controller, DASDLL_DMAAlloc may
allocate an area twice as large as actually needed. Once the data in this
buffer is processed and/or saved elsewhere, use DASDLL_DMAFree to
free the memory for other uses.

For Visual Basic for Windows, the data in the memory buffer is not
directly accessible by your program. For digital input operations, you
must use the K_MoveBufToArray function to move the data from the
memory buffer to the program’s local array; refer to page 4-81 for more
information. For digital output operations, you must use the
K_MoveArrayToBuf function to move the data from the program’s local
array to the memory buffer; refer to page 4-79 for more information.

After you allocate your memory buffers, you must assign the starting
address of the buffers and the number of samples stored in the buffers.
Each supported programming language requires a particular procedure
for allocating a buffer. Refer to the following for information:

Channels

You can read values from or write values to one or more of the digital I/O
lines on your board. Refer to your board’s user’s guide and External DAS
Driver user’s guide for information about the number of digital I/O lines
available on your board.

For Series 500 boards, the DASDLL Function Call Driver treats each
8-bit digital input port or 8-bit digital output port as a separate channel.

Visual C++ page 3-30

Visual Basic for Windows page 3-34

2-29

For DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
DDA-06, PIO Series, and PDMA Series boards, the DASDLL Function
Call Driver supports one digital input channel and one digital output
channel. When specifying your digital I/O ports in the External DAS
Driver configuration, you must make sure that all the digital I/O lines can
be accommodated on a single channel. For example, if you want to use all
24 bits on a PIO-12 board for digital output, you must configure a single
24-bit channel. You cannot configure three 8-bit channels.

For single-mode digital I/O operations, use the K_DIRead function to
specify a single digital input channel; use K_DOWrite to specify a single
digital output channel. For synchronous-mode, interrupt-mode, and
DMA-mode digital I/O operations, use the K_SetChn function to specify
a single digital I/O channel or the K_SetStartStopChn function to
specify multiple digital I/O channels.

Each bit in a digital I/O channel corresponds to one of the digital I/O lines
on the board. The bits can be configured as digital inputs or digital
outputs. A value of 1 in a bit position indicates that the input or output is
high; a value of 0 in a bit position indicates that the input or output is low.
If no signal is connected to a digital input line, the input appears high
(value is 1).

Notes: On some DASDLL-supported boards, a digital I/O line may also
be used for another purpose, such as an external trigger. In these cases,
you cannot use the digital I/O line for general-purpose digital I/O
operations.

2-30 Available Operations

Pacer Clock

The pacer clock determines the period between reading the digital input
channel or writing to the digital output channel. For synchronous-mode,
interrupt-mode, and DMA-mode digital I/O operations, use the K_SetClk
function to specify one of the following pacer clocks:

● Internal pacer clock - The internal pacer clock uses an onboard
counter. You load a value into the counter to determine the period
between reads/writes. Depending on the time base of the counter,
each count represents a particular time period. Refer to Table 2-2 on
page 2-12 for a list of the time bases available on DASDLL-supported
boards.

Use the K_SetClkRate function to specify the number of counts
(clock ticks) between reads/writes. For example, if you are using a
DAS-8PGA board (1 MHz time base), each count represents 1.0 µs. If
you specify a count of 30, the period between reads/writes is 30 µs
(33.33 ksamples/s).

When using an internal pacer clock, use the following formula to
determine the number of counts to specify:

For example, if you want a read/write rate of 10 ksamples/s on a
DAS-8/AO board, specify a count of 100, as shown in the following
equation:

The internal pacer clock is the default pacer clock.

● External pacer clock - You connect an external pacer clock to the
appropriate pin on the main I/O connector.

When you start a digital I/O operation (using K_SyncStart,
K_IntStart , or K_DMAStart), conversions are armed. At the next
active edge of the external pacer clock (and at every subsequent active
edge of the external pacer clock), a conversion is initiated. Refer to
your board’s user’s guide to determine which edge (positive or
negative) is the active edge supported for your board.

counts time base
read/write rate
----------------------------------=

1 000 000, ,
10 000,

--------------------------- 100=

2-31

Notes: You cannot use the internal pacer clock or the external pacer
clock for digital I/O operations if the clock is being used by another
operation.

The actual read/write rate also depends on other factors, including your
computer, the operating system/environment, and other software issues.

Buffering Modes

The buffering mode determines how the driver reads or writes the values
in the buffer. For interrupt-mode and DMA-mode digital I/O operations,
you can specify one of the following buffering modes:

● Single-cycle mode - In a single-cycle-mode digital input operation,
after the driver fills the buffer, the operation stops automatically. In a
single-cycle-mode digital output operation, after the driver writes the
values stored in the buffer, the operation stops automatically.
Single-cycle mode is the default buffering mode.

● Continuous mode - In a continuous-mode digital input operation, the
driver continuously reads a digital input channel and stores the values
in the buffer until the application program issues a stop function; any
values already stored in the buffer are overwritten. In a continuous
mode digital output operation, the driver continuously writes values
from the buffer to a digital output channel until the application
program issues a stop function; when all the values in the buffer have
been written, the driver writes the values again. You use the
K_SetContRun function to specify continuous buffering mode.

Note: Buffering modes are not meaningful for synchronous-mode
operations.

2-32 Available Operations

Triggers

A trigger is an event that occurs based on a specified set of conditions. For
synchronous-mode and interrupt-mode digital I/O operations, use the
K_SetTrig function to specify one of the following trigger sources:

● Internal trigger - An internal trigger is a software trigger. The trigger
event occurs immediately after you start the digital I/O operation
(using K_SyncStart or K_IntStart). The point at which a value is
read or written depends on the pacer clock; refer to page 2-30 for
more information. The internal trigger is the default trigger source.

● External trigger - DAS-8 Series, DAS-16 Series, DAS-20, and
DAS-HRES boards support an external trigger. An external trigger is
a digital trigger signal connected to the appropriate pin on the main
I/O connector. When you start the digital I/O (using K_SyncStart,
K_IntStart , or K_DMAStart), the application program waits until
the trigger event occurs. Depending on your board, the trigger event
occurs when one of the following conditions is met:

– Positive-edge trigger - A rising edge occurs on the digital trigger
signal.

– Negative-edge trigger - A falling edge occurs on the digital
trigger signal.

– Positive-level trigger - The digital trigger signal is high.

– Negative-level trigger - The digital trigger signal is low.

Refer to your board’s user’s guide and External DAS Driver user’s guide
for information about the digital trigger conditions supported for your
board.

The point at which updates begin depends on the pacer clock; refer to
page 2-30 for more information.

3-1

3

Programming with the
Function Call Driver

This chapter contains an overview of the structure of the Function Call
Driver, as well as programming guidelines and language-specific
information to assist you when writing application programs with the
Function Call Driver.

How the Driver Works

The Function Call Driver allows you to perform I/O operations in various
operation modes. For single mode, the I/O operation is performed with a
single call to a function; the attributes of the I/O operation are specified as
arguments to the function. Figure 3-1 illustrates the syntax of the
single-mode, analog input operation function

K_ADRead

.

Figure 3-1. Single-Mode Function

K_ADRead (board,

 channel,

 gain,

 buffer)

Board number

Analog input channel

Gain applied to channel

Buffer for data

Single-Mode Function Attrib utes of Operation

3-2 Programming with the Function Call Driver

For other operation modes, such as synchronous mode, interrupt mode,
and DMA mode, the driver uses frames to perform the I/O operation. A
frame is a data structure whose elements define the attributes of the I/O
operation. Each frame is associated with a particular board.

Frames help you create structured application programs. You set up the
attributes of the I/O operation in advance, using a separate function call
for each attribute, and then start the operation at an appropriate point in
your program.

Frames are useful for operations that have many defining attributes, since
providing a separate argument for each attribute could make a function’s
argument list unmanageably long. In addition, some attributes, such as the
clock source and trigger source, are only available for I/O operations that
use frames.

You indicate that you want to perform an I/O operation by getting an
available frame for the driver. The driver returns a unique identifier for the
frame; this identifier is called the frame handle. You then specify the
attributes of the I/O operation by using setup functions to define the
elements of the frame associated with the operation. For example, to
specify the channel on which to perform an I/O operation, you might use
the

K_SetChn

 setup function.

For each setup function, the Function Call Driver provides a readback
function, which reads the current definition of a particular element. For
example, the

K_GetChn

 readback function reads the channel number
specified for the I/O operation.

You use the frame handle you specified when accessing the frame in all
setup functions, readback functions, and other functions related to the I/O
operation. This ensures that you are defining the same I/O operation.

When you are ready to perform the I/O operation you have set up, you can
start the operation in the appropriate operation mode, referencing the
appropriate frame handle. Figure 3-2 illustrates the syntax of the
interrupt-mode operation function

K_IntStart

.

3-3

Figure 3-2. Interrupt-Mode Operation

Different I/O operations require different types of frames. For example, to
perform a digital input operation, you use a digital input frame; to
perform an analog output operation, you use an analog output frame.

For DASDLL-supported boards, synchronous-mode, interrupt-mode, and
DMA-mode operations require frames. The DASDLL Function Call
Driver provides the following types of frames:

●

Analog input frames, called A/D (analog-to-digital) frames. You use
the

K_GetADFrame

 function to access an available A/D frame and a
frame handle.

●

Analog output frames, called D/A (digital-to-analog) frames. You use
the

K_GetDAFrame

 function to access an available D/A frame and a
frame handle.

●

Digital input frames, called DI frames. You use the

K_GetDIFrame

function to access an available DI frame and a frame handle.

●

Digital output frames, called DO frames. You use the

K_GetDOFrame

 function to access an available DO frame and a
frame handle.

Start Channel

Stop Channel

Clock Source

Trigger Source
.
.

First analog input channel

Last analog input channel

Pacer clock source

Trigger source
.
.

Attrib utes of OperationFrame

K_IntStart (frameHandle)

3-4 Programming with the Function Call Driver

If you want to perform a synchronous-mode, interrupt-mode, or
DMA-mode operation and all frames of a particular type have been
accessed, you can use the

K_FreeFrame

 function to free a frame that is
no longer in use. You can then redefine the elements of the frame for the
next operation.

When you access a frame, the elements are set to their default values. You
can also use the

K_ClearFrame

 function to reset all the elements of a
frame to their default values.

For DASDLL-supported boards, the elements for each specific frame type
are listed as follows:

●

A/D frame elements - Table 3-1.

●

D/A frame elements - Table 3-2 on page 3-6.

●

DI frame elements - Table 3-3 on page 3-7.

●

DO frame elements - Table 3-4 on page 3-8.

These tables also list the default values of each element, the setup
functions used to define each element, and the readback functions used to
read the current definition of the element.

Table 3-1. A/D Frame Elements

Element Default Value Setup Function Readback Function

Buffer

1

 0 (NULL) K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf
K_GetBufB

Number of
Samples

0 K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf
K_GetBufB

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

K_GetContRun

Start Channel 0 K_SetChn
K_SetStartStopChn
K_SetStartStopG

K_GetChn
K_GetStartStopChn
K_GetStartStopG

3-5

Stop Channel 0 K_SetStartStopChn
K_SetStartStopG

K_GetStartStopChn
K_GetStartStopG

Gain 0 K_SetG
K_SetStartStopG

K_GetG
K_GetStartStopG

Channel-Gain
Queue

0 (NULL) K_SetChnGAry K_GetChnGAry

Clock Source Internal K_SetClk K_GetClk

Pacer Clock Rate

1

0 K_SetClkRate K_GetClkRate

Trigger Source Internal K_SetTrig K_GetTrig

Trigger Type Digital K_SetADTrig
K_SetDITrig

K_GetADTrig
K_GetDITrig

Trigger Channel 0 (for analog trigger) K_SetADTrig K_GetADTrig

0 (for digital trigger) K_SetDITrig K_GetDITrig

Trigger Polarity
and Sensitivity

Positive edge (for
analog trigger)

K_SetADTrig K_GetADTrig

Positive edge (for
digital trigger)

K_SetDITrig K_GetDITrig

Trigger Level 0 K_SetADTrig K_GetADTrig

Trigger
Hysteresis

0 K_SetTrigHyst K_GetTrigHyst

Notes

1

This element must be set.

2

Use this function to reset the value of this particular frame element to its default setting without
clearing the frame or getting a new frame. Whenever you clear a frame or get a new frame, this frame
element is set to its default value automatically.

Table 3-1. A/D Frame Elements (cont.)

Element Default Value Setup Function Readback Function

3-6 Programming with the Function Call Driver

Table 3-2. D/A Frame Elements

Element Default Value Setup Function Readback Function

Buffer

1

Notes

1

This element must be set.

0 (NULL) K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf
K_GetBufB

Number of Samples 0 K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf
K_GetBufB

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

2

Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

K_GetContRun

Start Channel 0 K_SetChn
K_SetStartStopChn

K_GetChn
K_GetStartStopChn

Stop Channel 0 K_SetStartStopChn K_GetStartStopChn

Clock Source Internal K_SetClk K_GetClk

Pacer Clock Rate

1

0 K_SetClkRate K_GetClkRate

Trigger Source Internal K_SetTrig K_GetTrig

Trigger Type Digital K_SetDITrig K_GetDITrig

Trigger Channel 0 (for digital
trigger)

K_SetDITrig K_GetDITrig

Trigger Polarity and
Sensitivity

Positive edge K_SetDITrig K_GetDITrig

3-7

Table 3-3. DI Frame Elements

Element Default Value Setup Function Readback Function

Buffer

1

Notes

1

This element must be set.

0 (NULL) K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf
K_GetBufB

Number of Samples 0 K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf
K_GetBufB

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

2

Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

K_GetContRun

Start Channel 0 K_SetChn
K_SetStartStopChn

K_GetChn
K_GetStartStopChn

Stop Channel 0 K_SetStartStopChn K_GetStartStopChn

Clock Source Internal K_SetClk K_GetClk

Pacer Clock Rate

1

0 K_SetClkRate K_GetClkRate

Trigger Source Internal K_SetTrig K_GetTrig

Trigger Type Digital K_SetDITrig K_GetDITrig

Trigger Channel 0 (for digital
trigger)

K_SetDITrig K_GetDITrig

Trigger Polarity and
Sensitivity

Positive edge K_SetDITrig K_GetDITrig

3-8 Programming with the Function Call Driver

Note:

The DASDLL Function Call Driver provides many other functions
that are not related to controlling frames, defining the elements of frames,
or reading the values of frame elements. These functions include
single-mode operation functions, initialization functions, memory

management functions, and miscellaneous functions.

Table 3-4. DO Frame Elements

Element Default Value Setup Function Readback Function

Buffer

1

Notes

1

This element must be set.

0 (NULL) K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf
K_GetBufB

Number of Samples 0 K_SetBuf
K_SetBufB
K_SetDMABuf
K_SetDMABufB

K_GetBuf

Buffering Mode Single-cycle K_SetContRun
K_ClrContRun

2

2

Use this function to reset the value of this particular frame element to its default setting
without clearing the frame or getting a new frame. Whenever you clear a frame or get a
new frame, this frame element is set to its default value automatically.

K_GetContRun

Start Channel 0 K_SetChn
K_SetStartStopChn

K_GetChn
K_GetStartStopChn

Stop Channel 0 K_SetStartStopChn K_GetStartStopChn

Clock Source Internal K_SetClk K_GetClk

Pacer Clock Rate

1

0 K_SetClkRate K_GetClkRate

Trigger Source Internal K_SetTrig K_GetTrig

Trigger Type Digital K_SetDITrig K_GetDITrig

Trigger Polarity and
Sensitivity

Positive edge K_SetDITrig K_GetDITrig

3-9

For information about using the FCD functions in your application
program, refer to the following sections of this chapter. For detailed
information about the syntax of FCD functions, refer to Chapter 4.

Programming Overview

To write an application program using the DASDLL Function Call Driver,
perform the following steps:

1. Define the application's requirements. Refer to Chapter 2 for a
description of the board operations supported by the Function Call
Driver and the functions that you can use to define each operation.

2. Write your application program. Refer to the following for additional
information:

– Preliminary Tasks, the next section, describes the programming
tasks that are common to all application programs.

– Operation-Specific Programming Tasks, on page 3-10, describes
operation-specific programming tasks and the sequence in which
these tasks must be performed.

– Chapter 4 contains detailed descriptions of the FCD functions.

– The DASDLL software package contains several example
programs. The FILES.TXT file in the installation directory lists
and describes the example programs.

3. Compile and link the program. Refer to Language-Specific
Programming Information, starting on page 3-29, for compile and
link statements and other language-specific considerations for each
supported language.

3-10 Programming with the Function Call Driver

Preliminary Tasks

For every Function Call Driver application program, you must perform
the following preliminary tasks:

1. Include the function and variable type definition file for your
language. This file is included in the DASDLL software package.

2. Declare and initialize program variables.

3. Use the

K_DevOpen

 function to initialize the driver.

4. Use the

K_GetDevHandle

 function to specify the board you want to
use and to initialize the board. If you are using more than one board,
use the

K_GetDevHandle

 function once for each board you are
using.

Operation-Specific Programming Tasks

After completing the preliminary tasks, perform the appropriate
operation-specific programming tasks. The operation-specific tasks for
analog and digital I/O operations are described in the following sections.

Note:

Any FCD functions that are not mentioned in the
operation-specific programming tasks can be used at any point in your

application program.

Analog Input Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, synchronous-mode,
interrupt-mode, and DMA-mode analog input operations.

3-11

Single Mode

For a single-mode analog input operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single analog input
value.

2. Use the

K_ADRead

 function to read the single analog input value;
specify the attributes of the operation as arguments to the function.

Synchronous Mode

For a synchronous-mode analog input operation, perform the following
tasks:

1. Use the

K_GetADFrame

 function to access an A/D frame.

2. Use the

K_SyncAlloc

 function to allocate the buffers in which to
store the acquired data.

3.

If you want to use a channel-gain queue to specify the channels
acquiring data

, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-5.

Note:

When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list

of the default values of A/D frame elements.

3-12 Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

Table 3-5. Setup Functions for Synchronous-Mode
Analog Input Operations

Attribute Setup Functions

Buffer

1

Notes

1

This element must be set.

K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Start Channel K_SetChn
K_SetStartStopChn
K_StartStopG

Stop Channel K_SetStartStopChn
K_SetStartStopG

Gain K_SetG
K_SetStartStopG

Channel-Gain Queue K_SetChnGAry

Clock Source K_SetClk

Pacer Clock Rate

1

 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig
K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetADTrig
K_SetDITrig

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

3-13

5. Use the

K_SyncStart

 function to start the synchronous-mode
operation.

6.

If you are programming in Visual Basic for Windows

, use the

K_MoveBufToArray

 function to transfer the acquired data from the
allocated buffer to the program’s local array.

7. Use the

K_SyncFree

 function to deallocate the buffers.

8. Use the

K_FreeFrame

 function to return the frame you accessed in
step 1 to the pool of available frames.

Interrupt Mode

For an interrupt-mode analog input operation, perform the following
tasks:

1. Use the

K_GetADFrame

 function to access an A/D frame.

2. Use the

K_SyncAlloc

 function to allocate the buffers in which to
store the acquired data.

3.

If you want to use a channel-gain queue to specify the channels
acquiring data

, define and assign the appropriate values to the queue
and note the starting address. Refer to page 2-11 for more information
about channel-gain queues.

4. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-6.

Note:

When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list

of the default values of A/D frame elements.

3-14 Programming with the Function Call Driver

Table 3-6. Setup Functions for Interrupt-Mode
Analog Input Operations

Attribute Setup Functions

Buffer

1

Notes

1

This element must be set.

K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Buffering Mode K_SetContRun
K_ClrContRun

2

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

Start Channel K_SetChn
K_SetStartStopChn
K_StartStopG

Stop Channel K_SetStartStopChn
K_SetStartStopG

Gain K_SetG
K_SetStartStop

Channel-Gain Queue K_SetChnGAry

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig
K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetADTrig
K_SetDITrig

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

3-15

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

5. Use the K_IntStart function to start the interrupt-mode operation.

6. Use the K_IntStatus function to monitor the status of the
interrupt-mode operation.

7. If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been acquired.

8. If you are programming in Visual Basic for Windows, use the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to the program’s local array.

9. Use the K_SyncFree function to deallocate the buffers.

10. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

DMA Mode

For a DMA-mode analog input operation, perform the following tasks:

1. Use the K_GetADFrame function to access an A/D frame.

2. Use the DASDLL_DMAAlloc function to allocate the buffers in
which to store the acquired data.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-7.

Note: When you access a new A/D frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-1 on page 3-4 for a list
of the default values of A/D frame elements.

3-16 Programming with the Function Call Driver

Table 3-7. Setup Functions for DMA-Mode
Analog Input Operations

Attribute Setup Functions

Buffer1

Notes
1 This element must be set.

K_SetDMABuf
K_SetDMABufB

Number of Samples K_SetDMABuf
K_SetDMABufB

Buffering Mode K_SetContRun
K_ClrContRun2

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

Start Channel K_SetChn
K_SetStartStopChn
K_StartStopG

Stop Channel K_SetStartStopChn
K_SetStartStopG

Gain K_SetG
K_SetStartStopG

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetADTrig
K_SetDITrig

Trigger Channel K_SetADTrig
K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetADTrig
K_SetDITrig

Trigger Level K_SetADTrig

Trigger Hysteresis K_SetTrigHyst

3-17

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. Use the K_DMAStart function to start the DMA-mode operation.

5. Use the K_DMAStatus function to monitor the status of the
DMA-mode operation.

6. If you specified continuous buffering mode, use the K_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been acquired.

7. If you are programming in Visual Basic for Windows, use the
K_MoveBufToArray function to transfer the acquired data from the
allocated buffer to the program’s local array.

8. Use the DASDLL_DMAFree function to deallocate the buffers.

9. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Analog Output Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, synchronous-mode,
interrupt-mode, and DMA-mode analog output operations.

Single Mode

For a single-mode analog output operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single analog
output value.

2. Use the K_DAWrite function to write the single analog output value;
specify the attributes of the operation as arguments to the function.

3-18 Programming with the Function Call Driver

Synchronous Mode

For a synchronous-mode analog output operation, perform the following
tasks:

1. Use the K_GetDAFrame function to access a D/A frame.

2. Use the K_SyncAlloc function to allocate the buffers in which to
store the data to be written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-8.

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-2 on page 3-6 for a list
of the default values of D/A frame elements.

Table 3-8. Setup Functions for Synchronous-Mode

Analog Output Operations

Attribute Setup Functions

Buffer1 K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

3-19

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are programming in Visual Basic for Windows, use the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use the K_SyncStart function to start the synchronous-mode
operation.

6. Use the K_SyncFree function to deallocate the buffer.

7. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Interrupt Mode

For an interrupt-mode analog output operation, perform the following
tasks:

1. Use the K_GetDAFrame function to access a D/A frame.

2. Use the K_SyncAlloc function to allocate the buffers in which to
store the data to be written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-9.

Trigger Type K_SetDITrig

Trigger Channel K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetDITrig

Notes
1 This element must be set.

Table 3-8. Setup Functions for Synchronous-Mode
Analog Output Operations (cont.)

Attribute Setup Functions

3-20 Programming with the Function Call Driver

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-2 on page 3-6 for a list
of the default values of D/A frame elements.

Table 3-9. Setup Functions for Interrupt-Mode
Analog Output Operations

Attribute Setup Functions

Buffer1

Notes
1 This element must be set.

K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Buffering Mode K_SetContRun
K_ClrContRun2

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetDITrig

Trigger Channel K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetDITrig

3-21

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are programming in Visual Basic for Windows, use the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use the K_IntStart function to start the interrupt-mode operation.

6. Use the K_IntStatus function to monitor the status of the
interrupt-mode operation.

7. If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been written.

8. Use the K_SyncFree function to deallocate the buffers.

9. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

DMA Mode

For a DMA-mode analog output operation, perform the following tasks:

1. Use the K_GetDAFrame function to access a D/A frame.

2. Use the DASDLL_DMAAlloc function to allocate the buffers in
which to store the data to be written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-10.

Note: When you access a new D/A frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-2 on page 3-6 for a list
of the default values of D/A frame elements.

3-22 Programming with the Function Call Driver

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are programming in Visual Basic for Windows, use the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use the K_DMAStart function to start the DMA-mode operation.

Table 3-10. Setup Functions for DMA-Mode
Analog Output Operations

Attribute Setup Functions

Buffer1

Notes
1 This element must be set.

K_SetDMABuf
K_SetDMABufB

Number of Samples K_SetDMABuf
K_SetDMABufB

Buffering Mode K_SetContRun
K_ClrContRun2

2 Use this function to reset the value of this particular
frame element to its default setting without clearing
the frame or getting a new frame.

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetDITrig

Trigger Channel K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetDITrig

3-23

6. Use the K_DMAStatus function to monitor the status of the
DMA-mode operation.

7. If you specified continuous buffering mode, use the K_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been written.

8. Use the DASDLL_DMAFree function to deallocate the buffers.

9. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Digital I/O Operations

The following subsections describe the operation-specific programming
tasks required to perform single-mode, synchronous-mode,
interrupt-mode, and DMA-mode digital I/O operations.

Single Mode

For a single-mode digital I/O operation, perform the following tasks:

1. Declare the buffer or variable in which to store the single digital I/O
value.

2. Use one of the following digital I/O single-mode operation functions,
specifying the attributes of the operation as arguments to the function:

Function Purpose

K_DIRead Reads a single digital input value.

K_DOWrite Writes a single digital output value.

3-24 Programming with the Function Call Driver

Synchronous Mode

For a synchronous-mode digital I/O operation, perform the following
tasks:

1. Use the K_GetDIFrame function to access a DI frame; use the
K_GetDOFrame function to access a DO frame.

2. Use the K_SyncAlloc function to allocate the buffers in which to
store the data to be read or written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-7.

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-3 on page 3-7 for a list
of the default values of DI frame elements. Refer to Table 3-4 on page
3-8 for a list of the default values of DO frame elements.

Table 3-11. Setup Functions for Synchronous-Mode
Digital Input and Output Operations

Attribute Setup Functions

Buffer1 K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Clock Source K_SetClk

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetDITrig

3-25

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are performing a digital output operation and you are
programming in Visual Basic for Windows, use the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use the K_SyncStart function to start the synchronous-mode
operation.

6. If you are performing a digital input operation and you are
programming in Visual Basic for Windows, use the
K_MoveBufToArray function to transfer the data from the allocated
buffer to the program’s local array.

7. Use the K_SyncFree function to deallocate the buffers.

8. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Interrupt Mode

For an interrupt-mode digital I/O operation, perform the following tasks:

1. Use the K_GetDIFrame function to access a DI frame; use the
K_GetDOFrame function to access a DO frame.

2. Use the K_SyncAlloc function to allocate the buffers in which to
store the data to be read or written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-12.

Trigger Channel K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetDITrig

Notes
1 This element must be set.

Table 3-11. Setup Functions for Synchronous-Mode
Digital Input and Output Operations (cont.)

Attribute Setup Functions

3-26 Programming with the Function Call Driver

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-3 on page 3-7 for a list
of the default values of DI frame elements. Refer to Table 3-4 on page
3-8 for a list of the default values of DO frame elements.

Table 3-12. Setup Functions for Interrupt-Mode
Digital Input and Digital Output Operations

Attribute Setup Functions

Buffer1

Notes
1 This element must be set.

K_SetBuf
K_SetBufB

Number of Samples K_SetBuf
K_SetBufB

Buffering Mode K_SetContRun
K_ClrContRun2

2 Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetDITrig

Trigger Channel K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetDITrig

3-27

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are performing a digital output operation and you are
programming in Visual Basic for Windows, use the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use the K_IntStart function to start the interrupt-mode operation.

6. Use the K_IntStatus function to monitor the status of the
interrupt-mode operation.

7. If you specified continuous buffering mode, use the K_IntStop
function to stop the interrupt-mode operation when the appropriate
number of samples has been written.

8. If you are performing a digital input operation and you are
programming in Visual Basic for Windows, use the
K_MoveBufToArray function to transfer the data from the allocated
buffer to the program’s local array.

9. Use the K_SyncFree function to deallocate the buffers.

10. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

DMA Mode

For a DMA-mode digital I/O operation, perform the following tasks:

1. Use the K_GetDIFrame function to access a DI frame; use the
K_GetDOFrame function to access a DO frame.

2. Use the DASDLL_DMAAlloc function to allocate the buffers in
which to store the data to be read or written.

3. Use the appropriate setup functions to specify the attributes of the
operation. The setup functions are listed in Table 3-13.

3-28 Programming with the Function Call Driver

Note: When you access a new DI or DO frame, the frame elements
contain default values. If the default value of a particular element is
suitable for your operation, you do not have to use the setup function
associated with that element. Refer to Table 3-3 on page 3-7 for a list
of the default values of DI frame elements. Refer to Table 3-4 on page
3-8 for a list of the default values of DO frame elements.

Table 3-13. Setup Functions for DMA-Mode
Digital Input and Digital Output Operations

Attribute Setup Functions

Buffer1

Notes
1 This element must be set.

K_SetDMABuf
K_SetDMABufB

Number of Samples K_SetDMABuf
K_SetDMABufB

Buffering Mode K_SetContRun
K_ClrContRun2

2 Use this function to reset the value of this
particular frame element to its default setting
without clearing the frame or getting a new
frame.

Start Channel K_SetChn
K_SetStartStopChn

Stop Channel K_SetStartStopChn

Pacer Clock Rate1 K_SetClkRate

Trigger Source K_SetTrig

Trigger Type K_SetDITrig

Trigger Channel K_SetDITrig

Trigger Polarity and
Sensitivity

K_SetDITrig

3-29

Refer to Chapter 2 for background information about the setup
functions; refer to Chapter 4 for detailed descriptions of the setup
functions.

4. If you are performing a digital output operation and you are
programming in Visual Basic for Windows, use the
K_MoveArrayToBuf function to transfer the data from the
program’s local array to the allocated buffer.

5. Use the K_DMAStart function to start the DMA-mode operation.

6. Use the K_DMAStatus function to monitor the status of the
DMA-mode operation.

7. If you specified continuous buffering mode, use the K_DMAStop
function to stop the DMA-mode operation when the appropriate
number of samples has been written.

8. If you are performing a digital input operation and you are
programming in Visual Basic for Windows, use the
K_MoveBufToArray function to transfer the data from the allocated
buffer to the program’s local array.

9. Use the DASDLL_DMAFree function to deallocate the buffers.

10. Use the K_FreeFrame function to return the frame you accessed in
step 1 to the pool of available frames.

Language-Specific Programming Information

This section provides programming information for each of the supported
languages. Note that the compilation procedures for each language
assumes that the paths and/or environment variables are set correctly.

Microsoft Visual C++ Language

The following sections contain information you need to allocate and
assign memory buffers and to create a channel-gain queue when
programming in Microsoft Visual C++, as well as language-specific
information for Microsoft Visual C++.

3-30 Programming with the Function Call Driver

Note: When programming in Microsoft Visual C++, proper typecasting
may be required to avoid C++ type-mismatch warnings.

Allocating and Assigning Memory Buffers

This section provides code fragments that describe how to allocate and
assign memory buffers when programming in Visual C++. Refer to the
example programs on disk for more information.

Note: The code fragments assume that you are using DMA mode; the
code for synchronous-mode and interrupt mode is identical, except that
you use the appropriate synchronous-mode or interrupt-mode functions
instead of the DMA-mode functions.

Allocating the Memory Buffers

You can use a single memory buffer or two memory buffers for
synchronous-mode, interrupt-mode, and DMA-mode analog I/O and
digital I/O operations.

The following code fragment illustrates how to use
DASDLL_DMAAlloc to allocate two buffers of size Samples for the
frame defined by hFrame and how to use K_SetDMABuf and
K_SetDMABufB to assign the starting addresses of the buffers.

. . .
void far *AcqBufA; //Declare pointer to first buffer
void far *AcqBufB; //Declare pointer to second buffer
WORD hMemA; //Declare word for first memory handle
WORD hMemB; //Declare word for second memory handle
. . .
wDasErr = DASDLL_DMAAlloc (hFrame, Samples, &AcqBufA, &hMemA);
wDasErr = K_SetDMABuf (hFrame, AcqBufA, Samples);
wDasErr = DASDLL_DMAAlloc (hFrame, Samples, &AcqBufB, &hMemB);
wDasErr = K_SetDMABufB (hFrame, AcqBufB, Samples);
. . .

3-31

The following code illustrates how to use DASDLL_DMAFree to later
free the allocated buffers, using the memory handles stored by
DASDLL_DMAAlloc .

. . .
wDasErr = DASDLL_DMAFree (hMemA);
wDasErr = DASDLL_DMAFree (hMemB);
. . .

Accessing the Data

You access the data stored in an allocated buffer through pointer
indirection. For example, assume that you want to display the first 10
samples of the first buffer described in the previous section (AcqBufA).
The following code fragment illustrates how to access and display the
data.

. . .
int far *pData; //Declare a pointer called pData
. . .
pData = (int far *) AcqBufA; //Assign pData to 1st buffer
for (i = 0; i < 10; i++)

printf ("Sample #%d %X", i, *(pData+i));
. . .

Creating a Channel-Gain Queue

The DASDECL.H and DASDECL.HPP files define a special data type
(GainChanTable) that you can use to declare your channel-gain queue.
GainChanTable is defined as follows:

typedef struct GainChanTable
{

WORD num_of_codes;
struct{

char Chan;
char Gain;

} GainChanAry[256];
} GainChanTable;

3-32 Programming with the Function Call Driver

The following example illustrates how to create a channel-gain queue
called MyChanGainQueue for a DAS-40G2 board by declaring and
initializing a variable of type GainChanTable.

GainChanTable MyChanGainQueue =
{8, //Number of entries
0, 0, //Channel 0, gain of 1
1, 1, //Channel 1, gain of 2
2, 2, //Channel 2, gain of 4
3, 3, //Channel 3, gain of 8
3, 0, //Channel 3, gain of 1
2, 1, //Channel 2, gain of 2
1, 2, //Channel 1, gain of 4
0, 3}; //Channel 0, gain of 8

After you create MyChanGainQueue, you must assign the starting
address of MyChanGainQueue to the frame defined by hFrame, as
follows:

wDasErr = K_SetChnGAry (hFrame, &MyChanGainQueue);

When you start the next analog input operation (using K_SyncStart,
K_IntStart, or K_DMAStart), channel 0 is sampled at a gain of 1,
channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4,
and so on.

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the K_GetDevHandle
function.

. . .
if ((DASErr = K_GetDevHandle (hDrv, BoardNum, &hDev))! = 0)

{
printf (“Error %X during K_GetDevHandle”, DASErr);
exit (1);
}

. . .

3-33

Programming in Microsoft Visual C++

To program in Microsoft Visual C++, you need the following files; these
files are provided in the DASDLL software package.

To create an executable file in Visual C++, perform the following steps:

1. Create a project file by choosing New from the Project menu. The
project file should contain all necessary files, including filename.c,
filename.rc, filename.def, DASIMP.LIB, and DASDLL.LIB, where
filename indicates the name of your application program.

2. From the Project menu, choose Rebuild All FILENAME.EXE to
create a stand-alone executable file (.EXE) that you can execute from
within Windows.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DASDLL.DLL Dynamic Link Library

DASDECL.H Include file for C

DASDLL.H Include file for C

DASDECL.HPP Include file for C++

DASDLL.HPP Include file for C++

DASIMP.LIB DAS Shell Imports

DASDLL.LIB DASDLL Imports

3-34 Programming with the Function Call Driver

Microsoft Visual Basic for Windows

The following sections contain information you need to allocate and
assign memory buffers and to create a channel-gain queue when
programming in Microsoft Visual Basic for Windows, as well as
language-specific information for Microsoft Visual Basic for Windows.

Allocating and Assigning Memory Buffers

This section provides code fragments that describe how to allocate and
assign memory buffers when programming in Microsoft Visual Basic for
Windows. Refer to the example programs on disk for more information.

Note: The code fragments assume that you are using DMA mode; the
code for synchronous-mode and interrupt mode is identical, except that
you use the appropriate synchronous-mode or interrupt-mode functions
instead of the DMA-mode functions.

Allocating the Memory Buffers

You can use a single memory buffer or two memory buffers for
synchronous-mode, interrupt-mode, and DMA-mode analog I/O and
digital I/O operations.

The following code fragment illustrates how to use
DASDLL_DMAAlloc to allocate two buffers of size Samples for the
frame defined by hFrame and how to use K_SetDMABuf and
K_SetDMABufB to assign the starting addresses of the buffers.

. . .
Global AcqBufA As Long ’ Declare pointer to first buffer
Global AcqBufB As Long ’ Declare pointer to second buffer
Global hMemA As Integer ’ Declare integer for first memory handle
Global hMemB As Integer ’ Declare integer for second memory handle
. . .
wDasErr = DASDLL_DMAAlloc (hFrame, Samples, AcqBufA, hMemA)
wDasErr = K_SetDMABuf (hFrame, AcqBufA, Samples)
wDasErr = DASDLL_DMAAlloc (hFrame, Samples, AcqBufB, hMemB)
wDasErr = K_SetDMABuf (hFrame, AcqBufB, Samples)
. . .

3-35

The following code illustrates how to use DASDLL_DMAFree to later
free the allocated buffers, using the memory handles stored by
DASDLL_DMAAlloc .

. . .
wDasErr = DASDLL_DMAFree (hMemA)
wDasErr = DASDLL_DMAFree (hMemB)
. . .

Accessing the Data

In Microsoft Visual Basic for Windows, you cannot directly access
samples stored in an allocated memory buffer. For analog input
operations, you must use K_MoveBufToArray to move a subset of the
data into the program’s local array as required. The following code
fragment illustrates how to move the first 100 samples of the first buffer
described in the previous section (AcqBufA) to the program’s local array.

. . .
Dim Buffer(1000) As Integer ’ Declare local memory buffer
. . .
wDasErr = K_MoveBufToArray (Buffer(0), AcqBufA, 100)
. . .

Creating a Channel-Gain Queue

Before you create your channel-gain queue, you must declare an array of
integers to accommodate the required number of entries. It is
recommended that you declare an array two times the number of entries
plus one. For example, to accommodate a channel-gain queue of 256
entries, you should declare an array of 513 integers ((256 x 2) + 1).

Next, you must fill the array with the channel-gain information. After you
create the channel-gain queue, you must use K_FormatChnGAry to
reformat the channel-gain queue so that it can be used by the DASDLL
Function Call Driver.

3-36 Programming with the Function Call Driver

The following code fragment illustrates how to create a four-entry
channel-gain queue called MyChanGainQueue for a DAS-16G2 board
and how to use K_SetChnGAry to assign the starting address of
MyChanGainQueue to the frame defined by hFrame.

. . .
Global MyChanGainQueue(9) As Integer ’Maximum # of entries
. . .
MyChanGainQueue(0) = 4 ’ Number of channel-gain pairs
MyChanGainQueue(1) = 0 ’ Channel 0
MyChanGainQueue(2) = 0 ’ Gain of 1
MyChanGainQueue(3) = 1 ’ Channel 1
MyChanGainQueue(4) = 1 ’ Gain of 2
MyChanGainQueue(5) = 2 ’ Channel 2
MyChanGainQueue(6) = 2 ’ Gain of 4
MyChanGainQueue(7) = 2 ’ Channel 2
MyChanGainQueue(8) = 3 ’ Gain of 8
. . .
wDasErr = K_FormatChnGAry (MyChanGainQueue(0))
wDasErr = K_SetChnGAry (hFrame, MyChanGainQueue(0))
. . .

Once the channel-gain queue is formatted, your Visual Basic for Windows
program can no longer read it. To read or modify the array after it has
been formatted, you must use K_RestoreChnGAry as follows:

. . .
wDasErr = K_RestoreChnGAry (MyChanGainQueue(0))
. . .

When you start the next analog input operation (using K_SyncStart,
K_IntStart, or K_DMAStart), channel 0 is sampled at a gain of 1,
channel 1 is sampled at a gain of 2, channel 2 is sampled at a gain of 4,
and so on.

3-37

Handling Errors

It is recommended that you always check the returned value (wDasErr in
the previous examples) for possible errors. The following code fragment
illustrates how to check the returned value of the K_GetDevHandle
function.

. . .
DASErr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (DASErr <> 0) Then

MsgBox “K_GetDevHandle Error: “ + Hex$ (DASErr),
MB_ICONSTOP, “DASDLL ERROR”

End
End If
. . .

Programming in Microsoft Visual Basic for Windows

To program in Microsoft Visual Basic for Windows, you need the
following files; these files are provided in the DASDLL software package.

To create an executable file from the Microsoft Visual Basic for Windows
environment, choose Make EXE File from the Run menu.

File Description

DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DASDLL.DLL Dynamic Link Library

DASDECL.BAS Include file; must be added to the Project List

DASDLL.BAS Include file; must be added to the Project List

. 4-1

4

Function Reference

The FCD functions are organized into the following groups:

●

Initialization functions

●

Operation functions

●

Frame management functions

●

Memory management functions

●

Buffer address functions

●

Buffering mode functions

●

Channel and gain functions

●

Clock functions

●

Trigger functions

●

Miscellaneous functions

The particular functions associated with each function group are presented
in Table 4-1. The remainder of the chapter presents detailed descriptions
of all the FCD functions, arranged in alphabetical order.

4-2 Function Reference

Table 4-1. Functions

Function Type Function Name Page Number

Initialization K_OpenDriver page 4-83

K_CloseDriver page 4-18

DASDLL_DevOpen page 4-7

K_GetDevHandle page 4-54

K_FreeDevHandle page 4-35

DASDLL_GetDevHandle page 4-13

DASDLL_GetBoardName page 4-12

K_DASDevInit page 4-21

Operation K_ADRead page 4-15

K_DAWrite page 4-22

K_DIRead page 4-24

K_DOWrite page 4-32

K_DMAStart page 4-26

K_DMAStatus page 4-27

K_DMAStop page 4-30

K_IntStart page 4-73

K_IntStatus page 4-74

K_IntStop page 4-77

K_SyncStart page 4-115

Frame Management K_GetADFrame page 4-37

K_GetDAFrame page 4-52

K_GetDIFrame page 4-56

K_GetDOFrame page 4-58

K_FreeFrame page 4-36

K_ClearFrame page 4-17

. 4-3

Memory Management DASDLL_DMAAlloc page 4-9

DASDLL_DMAFree page 4-11

K_SyncAlloc page 4-112

K_SyncFree page 4-114

K_MoveArrayToBuf page 4-79

K_MoveBufToArray page 4-81

Buffer Address K_SetBuf page 4-88

K_SetBufB page 4-90

K_GetBuf page 4-40

K_GetBufB page 4-42

K_SetDMABuf page 4-101

K_SetDMABufB page 4-103

Buffering Mode K_SetContRun page 4-99

K_ClrContRun page 4-19

K_GetContRun page 4-50

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

4-4 Function Reference

Channel and Gain K_SetChn page 4-92

K_SetStartStopChn page 4-106

K_SetG page 4-105

K_SetStartStopG page 4-108

K_SetChnGAry page 4-93

K_FormatChnGAry page 4-34

K_RestoreChnGAry page 4-85

K_GetChn page 4-44

K_GetStartStopChn page 4-65

K_GetG page 4-61

K_GetStartStopG page 4-67

K_GetChnGAry page 4-45

Clock K_SetClk page 4-95

K_SetClkRate page 4-97

K_GetClk page 4-46

K_GetClkRate page 4-48

Trigger K_SetTrig page 4-110

K_SetADTrig page 4-86

K_GetTrig page 4-69

K_GetADTrig page 4-38

Miscellaneous K_GetErrMsg page 4-60

K_GetVer page 4-71

K_GetShellVer page 4-63

Table 4-1. Functions (cont.)

Function Type Function Name Page Number

. 4-5

Keep the following conventions in mind throughout this chapter:

●

If DAS-8 Series, DAS-16 Series, DAS-40 Series, PIO Series, or
PDMA Series is listed in the Boards Supported section, all boards in
the series are supported. For Series 500, refer to your Series 500
documentation for information on which specific Series 500 modules
are supported for a particular function.

●

The data types DWORD, WORD, and BYTE are defined in the
language-specific include files.

●

Variable names are shown in italics.

●

For valid value and value stored information, refer to the board’s
user’s guide and the External DAS Driver user’s guide for that board.

●

The return value for all FCD functions is an integer error/status code.
Error/status code 0 indicates that the function executed successfully.
A nonzero error/status code indicates that an error occurred. Refer to
Appendix A for additional information.

●

In the usage section, the variables are not defined. It is assumed that
they are defined as shown in the syntax. The name of each variable in
both the prototype and usage sections includes a prefix that indicates
the associated data type. These prefixes are described in Table 4-2.

4-6 Function Reference

Table 4-2. Data Type Prefixes

Prefix Data Type Comments

sz Pointer to string terminated by
zero

This data type is typically used for variables that
specify the driver's configuration file name.

h Handle to device, frame, and
memory block

This data type is used for handle-type variables. You
declare handle-type variables in your program as long
or DWORD, depending on the language you are using.
The actual variable is passed to the driver by value.

ph Pointer to a handle-type variableThis data type is used when calling the FCD functions
to get a driver handle, a frame handle, or a memory
handle. The actual variable is passed to the driver by
reference.

p Pointer to a variable This data type is used for pointers to all types of
variables, except handles (h). It is typically used when
passing a parameter of any type to the driver by
reference.

n Number value This data type is used when passing a number,
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with
other prefixes listed here; for example,

anVar

 denotes
an array of numbers.

f Float This data type denotes a single-precision floating-point
number.

d Double This data type denotes a double-precision
floating-point number.

dw 32-bit double word This data type is typically used when passing an
unsigned long to the driver by value.

DASDLL_DevOpen

4-7

Boards
Supported

All

Purpose

Opens the driver and returns the number of boards found.

Prototype Visual C++

DASErr far pascal DASDLL_DevOpen (char far *

szCfgFile

,
char far *

pBoards

);

Visual Basic for Windows

Declare Function DASDLL_DevOpen Lib "DASDLL.DLL"
(ByVal

szCfgFile

 As String,

pBoards

 As Integer) As Integer

Parameters

szCfgFile

Driver configuration file.

pBoards

Number of boards found.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function opens the DASDLL Function Call Driver and stores the
number of boards found in

pBoards

.

The DASDLL Function Call Driver does not use a configuration file. It is
recommended that you enter a NULL string for

szCfgFile.

See Also

K_OpenDriver

DASDLL_DevOpen (cont.)

4-8 Function Reference

Usage

Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
#include "DASDLL.H" // Use DASDLL.HPP for C++
...
char nBoards;
...
wDasErr = DASDLL_DevOpen ("", &nBoards);

Visual Basic for Windows

(Include DASDECL.BAS and DASDLL.BAS in your program make file)

...
DIM nBoards AS INTEGER
...
wDasErr = DASDLL_DevOpen ("", nBoards)

DASDLL_DMAAlloc

4-9

Boards
Supported

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Purpose

Allocates a buffer for a DMA-mode operation.

Prototype Visual C++

DASErr far pascal DASDLL_DMAAlloc (DWORD

hFrame

,
DWORD

dwSamples

, void far * far

*pBuf

, WORD far *

phMem

);

Visual Basic for Windows

Declare Function DASDLL_DMAAlloc Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long, ByVal

dwSamples

 As Long,

pBuf

 As Long,

phMem

 As Integer) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

dwSamples

Number of samples.
Valid values:

1

 to

32767

pBuf

Starting address of the allocated buffer.

phMem

Handle associated with the allocated buffer.

Return Value

Error/status code. Refer to Appendix A.

Remarks

For the operation defined by

hFrame

, this function allocates a memory
block (a buffer of the size

dwSamples

) from the available memory heap.
On return,

pBuf

 contains the address of a buffer that is suitable for a
DMA-mode operation and

phMem

 contains the handle associated with
the allocated buffer.

Use

K_SetDMABuf

 or

K_SetDMABufB

 to assign

pBuf

 to a frame. You
can use

phMem

 to free the allocated memory block by calling

DASDLL_DMAFree

.

See Also

DASDLL_DMAFree, K_SetDMABuf, K_SetDMABufB

DASDLL_DMAAlloc (cont.)

4-10 Function Reference

Usage

Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated DMA buffer
WORD hMem; // Memory Handle to buffer
...
wDasErr = DASDLL_DMAAlloc (hFrame, dwSamples, &pBuf, &hMem);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global pBuf As Long
Global hMem As Integer
...
wDasErr = DASDLL_DMAAlloc (hFrame, dwSamples, pBuf, hMem)

DASDLL_DMAFree

4-11

Boards
Supported

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Purpose

Frees a buffer allocated for a DMA-mode operation.

Prototype Visual C++

DASErr far pascal DASDLL_DMAFree (WORD

hMem

);

Visual Basic for Windows

Declare Function DASDLL_DMAFree Lib "DASSHELL.DLL"
(ByVal

hMem

 As Integer) As Integer

Parameters

hMem

Handle to DMA buffer.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function frees the buffer specified by

hMem

; the buffer was
previously allocated using

DASDLL_DMAAlloc

.

See Also

DASDLL_DMAAlloc, K_SetDMABuf, K_SetDMABufB

Usage Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = DASDLL_DMAFree (hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = DASDLL_DMAFree (hMem)

DASDLL_GetBoardName

4-12 Function Reference

Boards
Supported

All

Purpose Returns information about the boards and drivers loaded in your system.

Prototype Visual C++
DASErr far pascal DASDLL_GetBoardName (WORD nBrdNum,
char far *far* pDrvName);

Visual Basic for Windows
Not supported

Parameters nBrdNum Logical board number.

pDrvName Driver associated with board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function gets the name of the driver associated with the board
specified by nBrdNum and stores the name in pDrvName.

See Also K_GetDevHandle, DASDLL_GetDevHandle

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
char *pDrvName;
...
wDasErr = DASDLL_GetBoardName (0, &pDrvName);

DASDLL_GetDevHandle

4-13

Boards
Supported

All

Purpose Initializes a DASDLL-supported board.

Prototype Visual C++
DASErr far pascal DASDLL_GetDevHandle (WORD nBrdNum,
DWORD far * phDev);

Visual Basic for Windows
Declare Function DASDLL_GetDevHandle Lib "DASDLL.DLL"
(ByVal nBrdNum As Integer, phDev As Long) As Integer

Parameters nBrdNum Logical board number.

phDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the board specified by nBrdNum, and stores the
board handle of the specified board in phDev.

The value stored in phDev is intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored in phDev.

See Also K_GetDevHandle, DASDLL_GetBoardName, K_DASDevInit

DASDLL_GetDevHandle (cont.)

4-14 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
#include "DASDLL.H" // Use DASDLL.HPP for C++
...
void far *phDev;
...
wDasErr = DASDLL_GetDevHandle (0, &phDev);

Visual Basic for Windows
(Include DASDECL.BAS and DASDLL.BAS in your program make file)

...
Global hDev As Long ' Device Handle
...
wDasErr = DASDLL_GetDevHandle (0, hDev)

K_ADRead

4-15

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20 , DAS-40 Series, DAS-HRES,
Series 500

Purpose Reads a single analog input value.

Prototype Visual C++
DASErr far pascal K_ADRead (DWORD hDev, BYTE nChan,
BYTE nGain, void far *pData);

Visual Basic for Windows
Declare Function K_ADRead Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal nGain As Integer, pData As Integer) As Integer

Parameters hDev Handle associated with the board.

nChan Analog input channel.

nGain Gain code.

pData Acquired analog input value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function reads the analog input channel nChan on the board
specified by hDev at the gain represented by nGain, and stores the count
in pData.

Refer to Appendix B for information on converting the count stored in
pData to voltage.

Refer to your External DAS Driver user’s guide for a description of the
data that can be stored in pData.

Refer to Appendix C for board-specific operating specifications on gains
and channels.

See Also K_DMAStart, K_IntStart, K_SyncStart

K_ADRead (cont.)

4-16 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
int wADValue;
...
wDasErr = K_ADRead (hDev, 0, 0, &wADValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wADValue As Integer
...
wDasErr = K_ADRead (hDev, 0, 0, wADValue)

K_ClearFrame

4-17

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Sets the elements of a frame to their default values.

Prototype Visual C++
DASErr far pascal K_ClearFrame (DWORD hFrame);

Visual Basic for Windows
Declare Function K_ClearFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the elements of the frame specified by hFrame to their
default values.

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_ClearFrame (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_ClearFrame (hFrame)

K_CloseDriver

4-18 Function Reference

Boards
Supported

All

Purpose Closes a previously initialized Keithley DAS Function Call Driver.

Prototype Visual C++
DASErr far pascal K_CloseDriver (DWORD hDrv);

Visual Basic for Windows
Declare Function K_CloseDriver Lib "DASSHELL.DLL"
(ByVal hDrv As Long) As Integer

Parameters hDrv Driver handle you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the driver handle specified by hDrv and closes the
associated use of the Function Call Driver. This function also frees all
board handles and frame handles associated with hDrv.

If hDrv is the last driver handle specified for the Function Call Driver, the
driver is shut down and unloaded.

See Also K_OpenDriver

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_CloseDriver (hDrv);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_CloseDriver (hDrv)

K_ClrContRun

4-19

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Enables single-cycle buffering mode.

Prototype Visual C++
DASErr far pascal K_ClrContRun (DWORD hFrame);

Visual Basic for Windows
Declare Function K_ClrContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function sets the buffering mode for the operation defined by hFrame
to single-cycle mode and sets the Buffering Mode element in the frame
accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame also enable single-cycle
buffering mode.

This function is not meaningful for synchronous-mode operations.

For more information on buffering modes, refer to page 2-14 (for analog
input operations), page 2-23 (for analog output operations), and page 2-31
(for digital I/O operations).

See Also K_SetContRun, K_GetContRun

K_ClrContRun (cont.)

4-20 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_ClrContRun (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_ClrContRun (hFrame)

K_DASDevInit

4-21

Boards
Supported

All

Purpose Reinitializes a board.

Prototype Visual C++
DASErr far pascal K_DASDevInit (DWORD hDev);

Visual Basic for Windows
Declare Function K_DASDevInit Lib "DASSHELL.DLL"
(ByVal hDev As Long) As Integer

Parameters hDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops all current operations and resets the board specified by
hDev and the driver to their power-up states.

See Also K_GetDevHandle, DASDLL_GetDevHandle

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_DASDevInit (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_DASDevInit (hDev)

K_DAWrite

4-22 Function Reference

Boards
Supported

DAS-8/AO, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
DDA-06, Series 500

Purpose Writes a single analog output value.

Prototype Visual C++
DASErr far pascal K_DAWrite (DWORD hDev, BYTE nChan,
DWORD dwData);

Visual Basic for Windows
Declare Function K_DAWrite Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal dwData As Long) As Integer

Parameters hDev Handle associated with the board.

nChan Analog output channel.

dwData Analog output value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function writes the value dwData to the analog output channel
specified by nChan on the board specified by hDev.

Refer to Table C-3 in Appendix C for supported channels.

Refer to Appendix B for information on converting data for analog output
operations.

Refer to your External DAS Driver user’s guide for a description of the
data that can be stored in dwData.

Refer to page 2-17 for more information on analog output operations.

See Also K_DMAStart, K_IntStart, K_SyncStart

K_DAWrite (cont.)

4-23

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwDAValue;
...
dwDAValue = ((DWORD) (5.0 * 4096 / 20) + 2048) << 4;
wDasErr = K_DAWrite (hDev, 0, &dwDAValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global dwDAValue As Long
...
dwDAValue = (INT (5.0 * 4096! / 20!) + 2048) * 16
wDasErr = K_DAWrite (hDev, 0, dwDAValue)

K_DIRead

4-24 Function Reference

Boards
Supported

All

Purpose Reads a single digital input value.

Prototype Visual C++
DASErr far pascal K_DIRead (DWORD hDev, BYTE nChan,
void far *pData);

Visual Basic for Windows
Declare Function K_DIRead Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer, pData As Any)
As Integer

Parameters hDev Handle associated with the board.

nChan Digital input channel.

pData Digital input value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function reads the values of all digital input lines on the channel
specified by nChan on the board specified by hDev and stores the value in
pData.

Refer to your External DAS Driver user’s guide for a description of the
data that can be stored in pData.

 See Also K_IntStart, K_SyncStart

K_DIRead (cont.)

4-25

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wDIValue;
...
wDasErr = K_DIRead (hDev, 0, &wDIValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wDIValue As Integer
...
wDasErr = K_DIRead (hDev, 0, wDIValue)

K_DMAStart

4-26 Function Reference

Boards
Supported

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Purpose Starts a DMA-mode operation.

Prototype Visual C++
DASErr far pascal K_DMAStart (DWORD hFrame);

Visual Basic for Windows
Declare Function K_DMAStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the DMA operation defined by hFrame.

For a discussion of the programming tasks associated with DMA-mode
operations, refer to page 3-15 (for analog input operations), page 3-21 (for
analog output operations), and page 3-27 (for digital I/O operations).

See Also K_SyncStart, K_DMAStatus, K_DMAStop

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_DMAStart (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_DMAStart (hFrame)

K_DMAStatus

4-27

Boards
Supported

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Purpose Gets status of a DMA-mode operation.

Prototype Visual C++
DASErr far pascal K_DMAStatus (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Visual Basic for Windows
Declare Function K_DMAStatus Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long)
As Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of DMA-mode operation; see Remarks
for value stored.

pCount Number of samples in the current buffer.

Return Value Error/status code. Refer to Appendix A.

K_DMAStatus (cont.)

4-28 Function Reference

Remarks For the DMA operation defined by hFrame, this function stores the status
in pStatus and the number of samples acquired in pCount.

The value stored in pStatus depends on the settings in the Status word, as
shown below:

The bits are described as follows:

● Bit 0: Indicates whether a DMA-mode operation is in progress.

● Bit 1: If you are using two buffers, indicates which buffer is active. If
you are using one buffer, this bit is always 0.

● Bit 2: If you are using two buffers, indicates whether data was lost
when switching from one buffer to the other.

● Bits 3 through 15: Not used.

See Also K_DMAStart, K_DMAStop

Bit 0123456789101112131415

0 = DMA operation inactive
1 = DMA operation active

0 = No data lost
1 = Data lost

0 = Buffer A active
1 = Buffer B active

K_DMAStatus (cont.)

4-29

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_DMAStatus (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_DMAStatus (hFrame, wStatus, dwCount)

K_DMAStop

4-30 Function Reference

Boards
Supported

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Purpose Stops a DMA-mode operation.

Prototype Visual C++
DASErr far pascal K_DMAStop (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Visual Basic for Windows
Declare Function K_DMAStop Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long)
As Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of DMA-mode operation; see Remarks
for K_DMAStatus on page 4-28 for the value
stored.

pCount Number of samples in the current buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops the DMA operation defined by hFrame and stores the
status of the DMA operation in pStatus and the number of samples
acquired in pCount.

If a DMA operation is not in progress, K_DMAStop is ignored.

See Also K_DMAStart, K_DMAStatus

K_DMAStop (cont.)

4-31

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_DMAStop (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_DMAStop (hFrame, wStatus, dwCount)

K_DOWrite

4-32 Function Reference

Boards
Supported

All

Purpose Writes a single digital output value to the digital output channel.

Prototype Visual C++
DASErr far pascal K_DOWrite (DWORD hDev, BYTE nChan,
DWORD dwData);

Visual Basic for Windows
Declare Function K_DOWrite Lib "DASSHELL.DLL"
(ByVal hDev As Long, ByVal nChan As Integer,
ByVal dwData As Long) As Integer

Parameters hDev Handle associated with the board.

nChan Digital output channel.

dwData Digital output value.

Return Value Error/status code. Refer to Appendix A.

Remarks This function writes the value dwData to the digital output lines on the
channel specified by nChan on the board specified by hDev.

Refer to your External DAS Driver user’s guide for a description of the
data that can be stored in dwData.

See Also K_IntStart, K_SyncStart

K_DOWrite (cont.)

4-33

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwDOValue;
...
dwDOValue = 0x5;
wDasErr = K_DOWrite (hDev, 0, dwDOValue);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global dwDOValue As Long
...
dwDOValue = &H5
wDasErr = K_DOWrite (hDev, 0, dwDOValue)

K_FormatChnGAry

4-34 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Purpose Converts the format of a channel-gain queue.

Prototype Visual C++
Not supported

Visual Basic for Windows
Declare Function K_FormatChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

Parameters pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks This function converts a channel-gain queue using double-byte (16-bit)
values to a channel-gain queue of single-byte (8-bit) values that the
K_SetChnGAry function can use.

After you use this function, your program can no longer read the
converted list. You must use the K_RestoreChnGAry function to return
the list to its original format.

See Also K_SetChnGAry, K_RestoreChnGAry

Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global ChanGainArray(16) As Integer ' Chan/Gain array
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))

K_FreeDevHandle

4-35

Boards
Supported

All

Purpose Frees a previously specified board handle.

Prototype Visual C++
DASErr far pascal K_FreeDevHandle (DWORD hDev);

Visual Basic for Windows
Declare Function K_FreeDevHandle Lib "DASSHELL.DLL"
(ByVal hDev As Long) As Integer

Parameters hDev Board handle you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the board handle specified by hDev as well as all
frame handles associated with hDev.

See Also K_GetDevHandle

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_FreeDevHandle (hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_FreeDevHandle (hDev)

K_FreeFrame

4-36 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Frees a frame.

Prototype Visual C++
DASErr far pascal K_FreeFrame (DWORD hFrame);

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to frame you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the frame specified by hFrame, making the frame
available for another operation.

See Also K_GetADFrame, K_GetDAFrame, K_GetDIFrame, K_GetDOFrame

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_FreeFrame (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_FreeFrame (hFrame)

K_GetADFrame

4-37

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500

Purpose Accesses an A/D frame for an analog input operation.

Prototype Visual C++
DASErr far pascal K_GetADFrame (DWORD hDev,
DWORD far * pFrame);

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

Parameters hDev Handle associated with the board.

pFrame Handle to the frame that defines the operation.

Remarks This function specifies that you want to perform a DMA-mode,
interrupt-mode, or synchronous-mode analog input operation on the
board specified by hDev, and accesses an available A/D frame with the
handle pFrame.

See Also K_ClearFrame, K_FreeFrame

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hAD;
...
wDasErr = K_GetADFrame (hDev, &hAD);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global hAD As Long
...
wDasErr = K_GetADFrame (hDev, hAD)

K_GetADTrig

4-38 Function Reference

Boards
Supported

Series 500

Purpose Gets the current analog trigger conditions.

Prototype Visual C++
DASErr far pascal K_GetADTrig (DWORD hFrame, short far *pOpt,
short far *pChan, DWORD far *pLevel);

Visual Basic for Windows
Declare Function K_GetADTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pOpt As Integer, pChan As Integer,
pLevel As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pOpt Analog trigger polarity and sensitivity.
Valid values: 0 for Positive edge

2 for Negative edge

pChan Analog input channel used as trigger channel.

pLevel Level at which the trigger event occurs.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the channel used
for an analog trigger in pChan, the level used for the analog trigger in
pLevel, and the trigger polarity and sensitivity in pOpt.

The pOpt variable contains the value of the Trigger Polarity element; the
pChan variable contains the value of the Trigger Channel element; the
pLevel variable contains the value of the Trigger Level element.

The value of pLevel is represented as a count value between 0 and 8191,
where 0 represents −10 V and 8181 represents +10 V.

See Also K_SetADTrig, K_GetTrig

K_GetADTrig (cont.)

4-39

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
int nOpt, nChan;
DWORD dwLevel;
...
wDasErr = K_GetADTrig (hFrame, &nOpt, &nChan, &dwLevel);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global nOpt As Integer
Global nChan As Integer
Global dwLevel As Long
...
wDasErr = K_GetADTrig (hFrame, nOpt, nChan, dwLevel)

K_GetBuf

4-40 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Gets the address and size of the first memory buffer assigned to a frame.

Prototype Visual C++
DASErr far pascal K_GetBuf (DWORD hFrame, void far * far *pBuf,
DWORD far *pSamples);

Visual Basic for Windows
Declare Function K_GetBuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pBuf As Long, pSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of buffer.

pSamples Number of samples.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation specified by hFrame, this function stores the address of
the first memory buffer in pBuf and the number of samples stored in that
buffer in pSamples.

Use this function to get the address of a synchronous-mode,
interrupt-mode, or DMA-mode memory buffer whose address was
specified by K_SetBuf or KSetDMABuf .

The pBuf variable contains the value of the Buffer element; the pSamples
variable contains the value of the Number of Samples element.

See Also K_GetBufB, K_SetBuf

K_GetBuf (cont.)

4-41

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pADBuffer;
DWORD dwSamples;
...
wDasErr = K_GetBuf (hFrame, &pADBuffer, &dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Dim pADBuffer As Long
...
wDasErr = K_GetBuf (hFrame, pADBuffer, dwSamples)

K_GetBufB

4-42 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Gets the address and size of the second memory buffer assigned to a
frame.

Prototype Visual C++
DASErr far pascal K_GetBufB (DWORD hFrame, void far * far *pBuf,
DWORD far *pSamples);

Visual Basic for Windows
Declare Function K_GetBufB Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pBuf As Long, pSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of buffer.

pSamples Number of samples.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation specified by hFrame, this function stores the address of
the second memory buffer in pBuf and the number of samples stored in
that buffer in pSamples.

Use this function to get the address of an interrupt-mode or DMA-mode
memory buffer whose address was specified by K_SetBufB or
K_SetDMABufB . (Syncronous-mode operations do not support a second
memory buffer.)

The pBuf variable contains the value of the Buffer element; the pSamples
variable contains the value of the Number of Samples element.

See Also K_GetBuf, K_SetBufB

K_GetBufB (cont.)

4-43

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pADBuffer;
DWORD dwSamples;
...
wDasErr = K_GetBufB (hFrame, &pADBuffer, &dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Dim pADBuffer As Long
...
wDasErr = K_GetBufB (hFrame, pADBuffer, dwSamples)

K_GetChn

4-44 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Gets a single channel number.

Prototype Visual C++
DASErr far pascal K_GetChn (DWORD hFrame, short far *pChan);

Visual Basic for Windows
Declare Function K_GetChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pChan As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pChan Channel on which to perform the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the channel
number in pChan.

The pChan variable contains the value of the Start Channel element.

See Also K_SetChn, K_GetStartStopChn, K_GetStartStopG

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
short nChan;
...
wDasErr = K_GetChn (hFrame, &nChan);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global nChan AS Integer
...
wDasErr = K_GetChn (hFrame, nChan)

K_GetChnGAry

4-45

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Purpose Gets the starting address of a channel-gain queue.

Prototype Visual C++
DASErr far pascal K_GetChnGAry (DWORD hFrame,
void far * far *pArray);

Visual Basic for Windows
Not supported

Parameters hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the starting
address of the channel-gain queue in pArray.

The pArray variable contains the value of the Channel-Gain Queue
element.

Refer to page 2-11 for information on setting up a channel-gain queue.

See Also K_SetChnGAry

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pArray;
...
wDasErr = K_GetChnGAry (hFrame, &pArray);

K_GetClk

4-46 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PDMA Series

Purpose Gets the pacer clock source.

Prototype Visual C++
DASErr far pascal K_GetClk (DWORD hFrame, short far *pMode);

Visual Basic for Windows
Declare Function K_GetClk Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pMode Pacer clock source.
Valid values: 0 for Internal

1 for External

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the pacer clock
source in pMode.

An internal clock source is the output of the onboard counter; an external
clock source is an external signal connected to the appropriate pin.

For more information about pacer clock sources, refer to page 2-6 (for
analog input operations), page 2-17 (for analog output operations), and
page 2-25 (for digital I/O operations).

The pMode variable contains the value of the Clock Source element.

See Also K_SetClk, K_GetClkRate

K_GetClk (cont.)

4-47

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
Word wMode;
...
wDasErr = K_GetClk (hFrame, &wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wMode As Integer
...
wDasErr = K_GetClk (hFrame, wMode)

K_GetClkRate

4-48 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PDMA Series

Purpose Gets the number of clock ticks used by the internal pacer clock.

Prototype Visual C++
DASErr far pascal K_GetClkRate (DWORD hFrame,
DWORD far *pRate);

Visual Basic for Windows
Declare Function K_GetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pRate As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pRate Number of clock ticks between conversions.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the number of
clock ticks used by the internal pacer clock in pRate.

After a synchronous-mode, interrupt-mode, or DMA-mode operation, the
value stored in pRate represents the actual count used, not necessarily the
count set by K_SetClkRate.

The pRate variable contains the value of the Pacer Clock Rate element.

See Also K_SetClkRate, K_GetClk

K_GetClkRate (cont.)

4-49

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwRate;
...
wDasErr = K_GetClkRate (hFrame, &dwRate);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global dwRate As Long
...
wDasErr = K_GetClkRate (hFrame, dwRate)

K_GetContRun

4-50 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Gets the buffering mode.

Prototype Visual C++
DASErr far pascal K_GetContRun (DWORD hFrame, short far *pMode);

Visual Basic for Windows
Declare Function K_GetContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pMode Buffering mode.
Valid values: 0 for Single-cycle mode

1 for Continuous mode

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the buffering
mode in pMode.

For a description of buffering modes, refer to page 2-14 (for analog input
operations), page 2-23 (for analog output operations), and page 2-31 (for
digital I/O operations).

The pMode variable contains the value of the Buffering Mode element.

See Also K_SetContRun, K_ClrContRun

K_GetContRun (cont.)

4-51

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wMode;
...
wDasErr = K_GetContRun (hFrame, &wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wMode As Integer
...
wDasErr = K_GetContRun (hFrame, wMode)

K_GetDAFrame

4-52 Function Reference

Boards
Supported

DAS-8/AO, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, Series
500

Purpose Accesses a D/A frame for an analog output operation.

Prototype Visual C++
DASErr far pascal K_GetDAFrame (DWORD hDev,
DWORD far * pFrame);

Visual Basic for Windows
Declare Function K_GetDAFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

Parameters hDev Handle associated with the board.

pFrame Handle to the frame that defines the D/A
operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies that you want to perform a synchronous-mode,
interrupt-mode, or DMA-mode analog output operation on the board
specified by hDev, and accesses an available D/A frame with the handle
pFrame.

See Also K_ClearFrame, K_FreeFrame

K_GetDAFrame (cont.)

4-53

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDA;
...
wDasErr = K_GetDAFrame (hDev, &hDA);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global hDA As Long
...
wDasErr = K_GetDAFrame (hDev, hDA)

K_GetDevHandle

4-54 Function Reference

Boards
Supported

All

Purpose Initializes any Keithley DAS board.

Prototype Visual C++
DASErr far pascal K_GetDevHandle (DWORD hDrv, WORD nBrdNum,
DWORD far * pDev);

Visual Basic for Windows
Declare Function K_GetDevHandle Lib "DASSHELL.DLL"
(ByVal hDrv As Long, ByVal nBrdNum As Integer, pDev As Long)
As Integer

Parameters hDrv Driver handle of the associated Function Call
Driver.

nBrdNum Logical board number.

pDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the board associated with hDrv and specified by
nBrdNum, and stores the board handle of the specified board in pDev.

The value stored in pDev is intended to be used exclusively as an
argument to functions that require a board handle. Your program should
not modify the value stored in pDev.

See Also K_FreeDevHandle, DASDLL_GetDevHandle,
DASDLL_GetBoardName, K_DASDevInit

K_GetDevHandle (cont.)

4-55

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDev;
...
wDasErr = K_GetDevHandle (hDrv, 0, &hDev);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global hDev As Long
...
wDasErr = K_GetDevHandle (hDrv, 0, hDev)

K_GetDIFrame

4-56 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
PIO Series, PDMA Series

Purpose Accesses a DI frame for a digital input operation.

Prototype Visual C++
DASErr far pascal K_GetDIFrame (DWORD hDev,
DWORD far * pFrame);

Visual Basic for Windows
Declare Function K_GetDIFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

Parameters hDev Handle associated with the board.

pFrame Handle to the frame that defines the digital input
operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies that you want to perform a synchronous-mode,
interrupt-mode, or DMA-mode digital input operation on the board
specified by hDev, and accesses an available digital input frame with the
handle pFrame.

See Also K_ClearFrame, K_FreeFrame

K_GetDIFrame (cont.)

4-57

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDI;
...
wDasErr = K_GetDIFrame (hDev, &hDI);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global hDI As Long
...
wDasErr = K_GetDIFrame (hDev, hDI)

K_GetDOFrame

4-58 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
PIO Series, PDMA Series

Purpose Accesses a DO frame for a digital output operation.

Prototype Visual C++
DASErr far pascal K_GetDOFrame (DWORD hDev,
DWORD far * pFrame);

Visual Basic for Windows
Declare Function K_GetDOFrame Lib "DASSHELL.DLL"
(ByVal hDev As Long, pFrame As Long) As Integer

Parameters hDev Handle associated with the board.

pFrame Handle to the frame that defines the digital
output operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies that you want to perform a synchronous-mode,
interrupt-mode, or DMA-mode digital output operation on the board
specified by hDev, and accesses an available digital output frame with the
handle pFrame.

See Also K_ClearFrame, K_FreeFrame

K_GetDOFrame (cont.)

4-59

Usage Visual C++
#include “DASDECL.H” // Use DASDECL.HPP for C++
...
DWORD hDO;
...
wDasErr = K_GetDOFrame (hDev, &hDO);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global hDO As Long
...
wDasErr = K_GetDOFrame (hDev, hDO)

K_GetErrMsg

4-60 Function Reference

Boards
Supported

All

Purpose Gets the address of an error message string.

Prototype Visual C++
DASErr far pascal K_GetErrMsg (DWORD hDev, short nDASErr,
char far * far * pErrMsg);

Visual Basic for Windows
Not supported

Parameters hDev Handle associated with the board.

nDASErr Error message number.

pErrMsg Address of error message string.

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the address of the
string corresponding to error message number nDASErr in pErrMsg.

Refer to page 2-5 for more information about error handling. Refer to
Appendix A for a list of error codes and their meanings.

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
char far *pErrMsg;
...
wDasErr = K_GetErrMsg (hDev, nDasErr, &pErrMsg);

K_GetG

4-61

Boards
Supported

DAS-8PGA, DAS-8/AO, DAS-16 Series, DAS-20, DAS-40 Series,
DAS-HRES, Series 500

Purpose

Gets the gain.

Prototype Visual C++

DASErr far pascal K_GetG (DWORD

hFrame

, short far

*pGain

);

Visual Basic for Windows

Declare Function K_GetG Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long,

pGain

 As Integer) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

pGain

Gain code.

Return Value

Error/status code. Refer to Appendix A.

Remarks

For the operation defined by

hFrame

, this function stores the gain code
for a single channel or for a group of consecutive channels in

pGain

.

Refer to Appendix C for specific operating specifications on gains and
channels.

See Also

K_SetG, K_GetStartStopG

K_GetG (cont.)

4-62 Function Reference

Usage Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wGain;
...
wDasErr = K_GetG (hFrame, &wGain);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global wGain As Integer
...
wDasErr = K_GetG (hFrame, wGain)

K_GetShellVer

4-63

Boards
Supported

All

Purpose

Gets the current DAS shell version.

Prototype Visual C++

DASErr far pascal K_GetShellVer (WORD far

*pVersion

);

Visual Basic for Windows

Declare Function K_GetShellVer Lib "DASSHELL.DLL"
(

pVersion

 As Integer) As Integer

Parameters

pVersion

A word value containing the major and minor
version numbers of the DAS shell.

Return Value

Error/status code. Refer to Appendix A.

Remarks

To obtain the major version number of the DAS shell, divide

pVersion

 by
256. To obtain the minor version number of the DAS shell, perform a
Boolean AND operation with

pVersion

 and 255 (0FFh).

See Also

K_GetVer

K_GetShellVer (cont.)

4-64 Function Reference

Usage

Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wShellVer;
...
wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global wShellVer As Integer
...
wDasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIM$ (STR$ (INT (wShellVer / 256))) + "." + :
 LTRIM$ (STR$ (wShellVer AND &HFF))
PRINT "Driver Ver: " + ShellVer$

K_GetStartStopChn

4-65

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose

Gets the first and last channels in a group of consecutive channels.

Prototype Visual C++

DASErr far pascal K_GetStartStopChn (DWORD

hFrame

,
short far

*pStart

, short far

*pStop

);

Visual Basic for Windows

Declare Function K_GetStartStopChn Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long,

pStart

 As Integer,

pStop

 As Integer) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

pStart

First channel in a group of consecutive channels.

pStop

Last channel in a group of consecutive channels.

Return Value

Error/status code. Refer to Appendix A.

Remarks

For the operation defined by

hFrame

, this function stores the first channel
in a group of consecutive channels in

pStart

 and the last channel in the
group of consecutive channels in

pStop

.

The

 pStart

 variable contains the value of the Start Channel element; the

pStop

 variable contains the value of the Stop Channel element.

See Also

K_SetStartStopChn, K_GetChn, K_GetStartStopG

K_GetStartStopChn (cont.)

4-66 Function Reference

Usage Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
short nStart, nStop;
...
wDasErr = K_GetStartStopChn (hFrame, &nStart, &nStop);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global nStart As Integer
Global nStop As Integer
...
wDasErr = K_GetStartStopChn (hFrame, nStart, nStop)

K_GetStartStopG

4-67

Boards
Supported

DAS-8PGA, DAS-8/AO, DAS-16 Series, DAS-20, DAS-40 Series,
DAS-HRES, Series 500

Purpose

Gets the first and last channels in a group of consecutive channels and the
gain for all channels in the group.

Prototype Visual C++

DASErr far pascal K_GetStartStopG (DWORD

hFrame

,
short far

*pStart

, short far

*pStop

, short far

*pGain

);

Visual Basic for Windows

Declare Function K_GetStartStopG Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long,

pStart

 As Integer,

pStop

 As Integer,

pGain

 As Integer) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

pStart

First channel in a group of consecutive channels.

pStop

Last channel in a group of consecutive channels.

pGain

Gain code.

Return Value

Error/status code. Refer to Appendix A.

Remarks

For the operation defined by

hFrame

, this function stores the first channel
in a group of consecutive channels in

pStart

, the last channel in the group
of consecutive channels in

pStop

, and the gain code for all channels in the
group in

pGain

.

Refer to Appendix C for the gain associated with the gain code.

The

 pStart

 variable contains the value of the Start Channel element; the

pStop

 variable contains the value of the Stop Channel element; the

 pGain

variable contains the value of the Gain element.

See Also

K_SetStartStopG, K_GetChn, K_GetStartStopChn

K_GetStartStopG (cont.)

4-68 Function Reference

Usage

Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
short nStart, nStop, nGain;
...
wDasErr = K_GetStartStopG (hFrame, &nStart, &nStop, &nGain);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
Global nStart As Integer
Global nStop As Integer
Global nGain As Integer
...
wDasErr = K_GetStartStopG (hFrame, nStart, nStop, nGain)

K_GetTrig

4-69

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500

Purpose Gets the trigger source.

Prototype Visual C++
DASErr far pascal K_GetTrig (DWORD hFrame, short far *pMode);

Visual Basic for Windows
Declare Function K_GetTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pMode Trigger source.
Valid values: 0 for Internal trigger

1 for External trigger

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the trigger
source in pMode.

The pMode variable contains the value of the Trigger Source element.

An internal trigger is a software trigger. An external trigger is either an
analog trigger or a digital trigger. For more information about trigger
sources, refer to page 2-14 (for analog input operations), page 2-24 (for
analog output operations), and page 2-32 (for digital I/O operations.

See Also K_SetTrig

K_GetTrig (cont.)

4-70 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wMode;
...
wDasErr = K_GetTrig (hFrame, &wMode);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wMode As Integer
...
wDasErr = K_GetTrig (hFrame, wMode)

K_GetVer

4-71

Boards
Supported

All

Purpose Gets revision numbers.

Prototype Visual C++
DASErr far pascal K_GetVer (DWORD hDev, short far * pSpecVer,
short far * pDrvVer);

Visual Basic for Windows
Declare Function K_GetVer Lib "DASSHELL.DLL"
(ByVal hDev As Long, pSpecVer As Integer, pDrvVer As Integer)
As Integer

Parameters hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver
Specification to which the driver conforms.

pDrvVer Driver version number.

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the revision number
of the Function Call Driver in pDrvVer and the revision number of the
driver specification in pSpecVer.

The values stored in pSpecVer and pDrvVer are two-byte (16-bit) integers;
the high byte of each contains the major revision level and the low byte of
each contains the minor revision level. For example, if the driver version
number is 2.1, the major revision level is 2 and the minor revision level is
1; therefore, the high byte of pDrvVer contains the value of 2 (512) and
the low byte of pDrvVer contains the value of 1; the value of both bytes is
513.

K_GetVer (cont.)

4-72 Function Reference

To extract the major and minor revision levels from the value stored in
pDrvVer or pSpecVer, use the following equations:

See Also K_GetShellVer

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
short nSpecVer, nDrvVer;
...
wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global nSpecVer As Integer
Global nDrvVer As Integer
...
wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$ (STR$ (INT (nDrvVer / 256))) + "." + :
 LTRIM$ (STR$ (nDrvVer AND &HFF))
PRINT "Driver Ver: " + DrvVer$

major revision level Integer portion of
returned value

256

=

minor revision level returned value MOD 256=

K_IntStart

4-73

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose

Starts an interrupt-mode operation.

Prototype Visual C++

 DASErr far pascal K_IntStart (DWORD hFrame);

Visual Basic for Windows

Declare Function K_IntStart Lib "DASSHELL.DLL"
(ByVal

hFrame

 As Long) As Integer

Parameters

hFrame

Handle to the frame that defines the operation.

Return Value

Error/status code. Refer to Appendix A.

Remarks

This function starts the interrupt-mode operation defined by

hFrame

.

For a discussion of the programming tasks associated with interrupt-mode
operations, refer to page 3-13 (for analog input operations), page 3-19
(for analog output operations), and page 3-25 (for digital I/O operations).

See Also

K_IntStatus, K_IntStop

Usage Visual C++

#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_IntStart (hFrame);

Visual Basic for Windows

(Include DASDECL.BAS in your program make file)

...
wDasErr = K_IntStart (hFrame)

K_IntStatus

4-74 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
PIO Series, PDMA Series

Purpose

Gets status of interrupt-mode operation.

Prototype Visual C++

 DASErr far pascal K_IntStatus (DWORD hFrame , short far *pStatus ,
DWORD far

*pCount

);

Visual Basic for Windows

Declare Function K_IntStatus Lib "DASSHELL.DLL"
(ByVal

hFrame As Long, pStatus As Integer, pCount As Long)
As Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt-mode operation; see Remarks
for value stored.

pCount Number of samples that were acquired.

Return Value Error/status code. Refer to Appendix A.

K_IntStatus (cont.)

4-75

Remarks For the interrupt operation defined by hFrame, this function stores the
status in pStatus and the number of samples acquired in pCount.

The value stored in pStatus depends on the settings in the Status word, as
shown below:

The bits are described as follows:

● Bit 0: Indicates whether an interrupt-mode operation is in progress.

● Bit 1: If you are using two buffers, indicates which buffer is active. If
you are using one buffer, this bit is always 0.

● Bit 2: If you are using two buffers, indicates whether data was lost
when switching from one buffer to the other.

● Bits 3 through 15: Not used.

See Also K_IntStart, K_IntStop

Bit 0123456789101112131415

0 = Interrupt operation inactive
1 = Interrupt operation active

0 = No data lost
1 = Data lost

0 = Buffer A active
1 = Buffer B active

K_IntStatus (cont.)

4-76 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStatus (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStatus (hFrame, wStatus, dwCount)

K_IntStop

4-77

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-HRES, Series 500,
PIO Series, PDMA Series

Purpose Stops an interrupt-mode operation.

Prototype Visual C++
DASErr far pascal K_IntStop (DWORD hFrame, short far *pStatus,
DWORD far *pCount);

Visual Basic for Windows
Declare Function K_IntStop Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pStatus As Integer, pCount As Long)
As Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of interrupt operation; see Remarks for
K_IntStatus on page 4-75 for the value stored.

pCount Number of samples that were acquired.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops the interrupt operation defined by hFrame and stores
the status of the interrupt operation in pStatus and the number of samples
acquired in pCount.

If an interrupt operation is not in progress, K_IntStop is ignored.

See Also K_IntStart, K_IntStatus

K_IntStop (cont.)

4-78 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStop (hFrame, &wStatus, &dwCount);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStop (hFrame, wStatus, dwCount)

K_MoveArrayToBuf

4-79

Boards
Supported

DAS-8/AO, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, Series
500, PIO Series, PDMA Series

Purpose Transfers data from the program’s local array to a buffer allocated
through K_SyncAlloc or DASDLL_DMAAlloc .

Prototype Visual C++
Not supported

Visual Basic for Windows
Declare Function K_MoveArrayToBuf Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (ByVal pDest As Long, pSource As Integer,
ByVal nCount As Integer) As Integer

Parameters pDest Address of destination buffer.

pSource Source array.

nCount Number of samples to transfer.
Valid values: 1 to 32767 (0 = 32768)

Return Value Error/status code. Refer to Appendix A.

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the buffer at address pDest.

The buffer used to store output data for your program is not accessible to
the program; you must use this function to move the data from the
program’s local array to the allocated buffer.

See Also DASDLL_DMAAlloc, K_SyncAlloc

K_MoveArrayToBuf (cont.)

4-80 Function Reference

Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
wDasErr = K_SyncAlloc (hDA, dwSamples, pBuf, hMem)
...
wDasErr = K_MoveArrayToBuf (pBuf, DACArray[0], dwSamples)

K_MoveBufToArray

4-81

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Transfers data from a buffer allocated through K_SyncAlloc or
DASDLL_DMAAlloc to your program’s local array.

Prototype Visual C++
Not supported

Visual Basic for Windows
Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias
"K_MoveDataBuf" (pDest As Integer, ByVal pSource As Long,
ByVal nCount As Integer) As Integer

Parameters pDest Destination array.

pSource Address of source buffer.

nCount Number of samples to transfer.
Valid values: 1 to 32767 (0 = 32768)

Return Value Error/status code. Refer to Appendix A.

Remarks This function transfers the number of samples specified by nCount from
the buffer at address pSource to the array at address pDest.

The buffer used to store acquired data for your program is not accessible
to your program; you must use this function to move the data from the
allocated buffer to your program’s local array.

See Also DASDLL_DMAAlloc, K_SyncAlloc

K_MoveBufToArray (cont.)

4-82 Function Reference

Usage

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
wDasErr = K_SyncAlloc (hAD, dwSamples, pBuf, hMem)
...
wDasErr = K_MoveBufToArray (ADArray[0], pBuf, dwSamples)

K_OpenDriver

4-83

Boards
Supported

All

Purpose Initializes any Keithley DAS Function Call Driver.

Prototype Visual C++
DASErr far pascal K_OpenDriver (char far * szDrvName,
char far * szCfgName, DWORD far * pDrv);

Visual Basic for Windows
Declare Function K_OpenDriver Lib "DASSHELL.DLL"
(ByVal szDrvName As String, ByVal szCfgName As String,
pDrv As Long) As Integer

Parameters szDrvName Driver name.
Valid value: "DASDLL"

(for DASDLL-supported boards)

szCfgName Driver configuration file.

pDrv Handle associated with the driver.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the DASDLL Function Call Driver and stores the
driver handle in pDrv.

The DASDLL Function Call Driver does not use a configuration file. It is
recommended that you enter a NULL string for szCfgName.

You can use this function to initialize the Function Call Driver associated
with any Keithley MetraByte DAS board. For DASDLL-supported
boards, the string stored in szDrvName must be DASDLL. Refer to other
Function Call Driver user’s guides for the appropriate string to store in
szDrvName for other Keithley MetraByte DAS boards.

The value stored in pDrv is intended to be used exclusively as an
argument to functions that require a driver handle. Your program should
not modify the value stored in pDrv.

K_OpenDriver (cont.)

4-84 Function Reference

See Also K_CloseDriver, DASDLL_DevOpen

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD hDrv;
...
wDasErr = K_OpenDriver ("DASDLL", "", &hDrv);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
DIM hDrv As Long
...
wDasErr = K_OpenDriver ("DASDLL", "", hDrv)

K_RestoreChnGAry

4-85

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Purpose Restores a converted channel-gain queue.

Prototype Visual C++
Not supported

Visual Basic for Windows
Declare Function K_RestoreChnGAry Lib "DASSHELL.DLL"
(pArray As Integer) As Integer

Parameters pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks This function restores a channel-gain queue that was converted using
K_FormatChnGAry to its original format so that it can be used by your
Visual Basic for Windows program.

See Also K_FormatChnGAry, K_SetChnGAry

Usage

Visual Basic for Windows
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
Global ChanGainArray (16) As Integer
...
wDasErr = K_RestoreChnGAry (ChanGainArray (0))

K_SetADTrig

4-86 Function Reference

Boards
Supported

Series 500

Purpose Sets up an analog trigger.

Prototype Visual C++
DASErr far pascal K_SetADTrig (DWORD hFrame, short nOpt,
short nChan, DWORD dwLevel);

Visual Basic for Windows
Declare Function K_SetADTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nOpt As Integer,
ByVal nChan As Integer, ByVal dwLevel As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nOpt Analog trigger polarity and sensitivity.
Valid values: 0 for Positive edge

2 for Negative edge

nChan Analog input channel used as trigger channel.

dwLevel Level at which the trigger event occurs.
Valid values: 0 to 8191

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the channel
used for an analog trigger in nChan, the level used for the analog trigger
in dwLevel, and the trigger polarity and trigger sensitivity in nOpt.

You specify the value for dwLevel as a count value between 0 and 8191,
where 0 represents −10 V and 8191 represents +10 V.

Refer to Appendix C for board-specific operating specifications on
channels.

K_SetADTrig (cont.)

4-87

The nOpt variable sets the value of the Trigger Polarity and Trigger
Sensitivity elements; the nChan variable sets the value of the Trigger
Channel element; the dwLevel variable sets the value of the Trigger Level
element.

K_SetADTrig does not affect the operation defined by hFrame unless the
Trigger Source element is set to External (by a call to K_SetTrig) before
hFrame is used as a calling argument to K_SyncStart, K_IntStart , or
K_DMAStart .

See Also K_GetADTrig, K_SetTrig

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetADTrig (hFrame, 0, 0, 2047);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetADTrig (hFrame, 0, 0, 2047)

K_SetBuf

4-88 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Specifies the starting address of the first memory buffer used in
synchronous mode or interrupt mode.

Prototype Visual C++
DASErr far pascal K_SetBuf (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetBuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of the first memory buffer in pBuf and the number of samples (the
size of the buffer) in dwSamples.

Use this function for synchronous mode and interrupt mode only. For
DMA mode, use K_SetDMABuf .

The pBuf variable sets the value of the Buffer element; the dwSamples
variable sets the value of the Number of Samples element.

See Also K_SetBufB, K_GetBuf

K_SetBuf (cont.)

4-89

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = K_SyncAlloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetBuf (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
...
wDasErr = K_SyncAlloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetBuf (hFrame, pBuf, dwSamples)

K_SetBufB

4-90 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Specifies the starting address of the second memory buffer used in
interrupt mode.

Prototype Visual C++
DASErr far pascal K_SetBufB (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetBufB Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of the second memory buffer in pBuf and the number of samples
(the size of the buffer) in dwSamples.

Use this function for interrupt mode only. For DMA mode, use
K_SetDMABufB . (Syncronous-mode operations do not support a second
memory buffer.)

The pBuf variable sets the value of the Buffer element; the dwSamples
variable sets the value of the Number of Samples element.

See Also K_SetBuf, K_GetBufB

K_SetBufB (cont.)

4-91

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = K_SyncAlloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetBufB (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
...
wDasErr = K_SyncAlloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetBufB (hFrame, pBuf, dwSamples)

K_SetChn

4-92 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Specifies a single channel.

Prototype Visual C++
DASErr far pascal K_SetChn (DWORD hFrame, short nChan);

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nChan As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform operation.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the single
channel used in nChan.

Refer to Appendix C for board-specific operating specifications on
channels.

The nChan variable sets the value of the Start Channel element and the
Stop Channel element.

See Also K_GetChn, K_SetStartStopChn, K_SetStartStopG

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetChn (hFrame, 2);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetChn (hFrame, 2)

K_SetChnGAry

4-93

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Purpose Specifies the starting address of a channel-gain queue.

Prototype Visual C++
DASErr far pascal K_SetChnGAry (DWORD hFrame, void far *pArray);

Visual Basic for Windows
Declare Function K_SetChnGAry Lib "DASSHELL.DLL"
(ByVal hFrame As Long, pArray As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pArray Channel-gain queue starting address.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting
address of the channel-gain queue in pArray.

The pArray variable sets the value of the Channel-Gain Queue element.

Refer to page 2-11 for information on setting up a channel-gain queue.

Refer to Appendix C for board-specific information on channels and
gains.

If you created your channel-gain queue in Visual Basic for Windows, you
must use K_FormatChnGAry to convert the channel-gain queue before
you specify the address with K_SetChnGAry.

See Also K_FormatChnGAry, K_RestoreChnGAry

K_SetChnGAry (cont.)

4-94 Function Reference

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
// DECLARE AND INITIALIZE CHAN/GAIN PAIRS
// (GainChanTable-TYPE IS DEFINED IN dasdecl.h)
GainChanTable ChanGainArray= {2, // # of entries
 0, 0, // chan 0, gain 1
 1, 1}; // chan 1, gain 2
...
wDasErr = K_SetChnGAry (hFrame, &ChanGainArray);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global ChanGainArray(16) As Integer
...
' Create the array of channel/gain pairs
ChanGainArray(0) = 2 ' # of chan/gain pairs
ChanGainArray(1) = 0: ChanGainArray(2) = 0
ChanGainArray(3) = 1: ChanGainArray(4) = 1
wDasErr = K_FormatChnGAry (ChanGainArray(0))
wDasErr = K_SetChnGAry (hFrame, ChanGainArray(0))

K_SetClk

4-95

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PDMA Series

Purpose Specifies the pacer clock source.

Prototype Visual C++
DASErr far pascal K_SetClk (DWORD hFrame, short nMode);

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Pacer clock source.
Valid values: 0 for Internal

1 for External

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the pacer
clock source in nMode.

The nMode variable sets value of the Clock Source element.

The internal clock source is the output of the onboard counter; an external
clock source is an external signal connected to the appropriate pin on the
main I/O connector.

For more information about pacer clock sources, refer to page 2-6 (for
analog input operations), page 2-17 (for analog output operations), and
page 2-25 (for digital I/O operations).

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame specify internal as the default
clock source.

See Also K_GetClk, K_SetClkRate

K_SetClk (cont.)

4-96 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetClk (hFrame, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetClk (hFrame, 1)

K_SetClkRate

4-97

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PDMA Series

Purpose Specifies the number of clock ticks used by the internal pacer clock.

Prototype Visual C++
DASErr far pascal K_SetClkRate (DWORD hFrame,
DWORD dwDivisor);

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwDivisor Number of clock ticks between conversions.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the number
of clock ticks used by the internal pacer clock in dwDivisor.

The dwDivisor variable sets the value of the Pacer Clock Rate element.

For more information about the pacer clock, refer to page 2-12 (for
analog input operations), page 2-21 (for analog output operations), and
page 2-30 (for digital I/O operations).

See Also K_GetClkRate, K_SetClk

K_SetClkRate (cont.)

4-98 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
DWORD dwClkDiv;
...
dwClkDiv = 1000000 / 10000;
wDasErr = K_SetClkRate (hFrame, dwClkDiv);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
Global dwClkDiv As Long
...
dwClkDiv = 1000000 / 10000
wDasErr = K_SetClkRate (hFrame, dwClkDiv)

K_SetContRun

4-99

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Enables continuous buffering mode.

Prototype Visual C++
DASErr far pascal K_SetContRun (DWORD hFrame);

Visual Basic for Windows
Declare Function K_SetContRun Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function sets the buffering
mode to continuous mode and sets the Buffering Mode element in the
frame accordingly.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame enable single-cycle buffering
mode.

For a description of buffering modes, refer to page 2-6 (for analog input
operations), page 2-17 (for analog output operations) section, and
page 2-25 (for digital I/O operations).

See Also K_ClrContRun, K_GetContRun

K_SetContRun (cont.)

4-100 Function Reference

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetContRun (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetContRun (hFrame)

K_SetDMABuf

4-101

Boards
Supported

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES, PDMA Series

Purpose Specifies the starting address of the first memory buffer used in DMA
mode.

Prototype Visual C++
DASErr far pascal K_SetDMABuf (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetDMABuf Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the DMA-mode
operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation specified by hFrame, this function stores the address of
the first memory buffer in pBuf and the number of samples stored in the
buffer in dwSamples.

Use this function for DMA mode only. For synchronous mode and
interrupt mode, use K_SetBuf.

The pBuf variable contains the value of the Buffer element; the
dwSamples variable contains the value of the Number of Samples
element.

See Also DASDLL_DMAAlloc, K_SetDMABufB

K_SetDMABuf (cont.)

4-102 Function Reference

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = DASDLL_DMAAlloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetDMABuf (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
...
wDasErr = DASDLL_DMAAlloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetDMABuf (hFrame, pBuf, dwSamples)

K_SetDMABufB

4-103

Boards
Supported

DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES

Purpose Specifies the starting address of the second memory buffer used in DMA
mode.

Prototype Visual C++
DASErr far pascal K_SetDMABufB (DWORD hFrame, void far *pBuf,
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetDMABufB Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal pBuf As Long,
ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the DMA-mode
operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values: 1 to 32767

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation specified by hFrame, this function stores the address of
the second memory buffer in pBuf and the number of samples stored in
the buffer in dwSamples.

Use this function for DMA mode only. For interrupt mode, use
K_SetBufB. (Syncronous-mode operations do not support a second
memory buffer.)

The pBuf variable contains the value of the Buffer element; the
dwSamples variable contains the value of the Number of Samples
element.

See Also DASDLL_DMAAlloc, K_SetDMABuf

K_SetDMABufB (cont.)

4-104 Function Reference

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
...
wDasErr = DASDLL_DMAAlloc (hFrame, dwSamples, &pBuf, &hMem);
wDasErr = K_SetDMABufB (hFrame, pBuf, dwSamples);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
...
wDasErr = DASDLL_DMAAlloc (hFrame, dwSamples, pBuf, hMem)
wDasErr = K_SetDMABufB (hFrame, pBuf, dwSamples)

K_SetG

4-105

Boards
Supported

DAS-8PGA, DAS-8/AO, DAS-16 Series, DAS-20, DAS-40 Series,
DAS-HRES, Series 500

Purpose Sets the gain.

Prototype Visual C++
DASErr far pascal K_SetG (DWORD hFrame, short nGain);

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nGain As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nGain Gain code.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the gain code
for a single channel or for a group of consecutive channels in nGain.

Refer to Appendix C for board-specific operating specifications on gains.

The nGain variable sets the value of the Gain element.

K_GetADFrame and K_ClearFrame specify a gain of 1 (gain code 0)
as the default gain.

See Also K_GetG, K_SetStartStopG

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetG (hFrame, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetG (hFrame, 1)

K_SetStartStopChn

4-106 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Specifies the first and last channels in a group of consecutive channels.

Prototype Visual C++
DASErr far pascal K_SetStartStopChn (DWORD hFrame, short nStart,
short nStop);

Visual Basic for Windows
Declare Function K_SetStartStopChn Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nStart As Integer,
ByVal nStop As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.

nStop Last channel in a group of consecutive channels.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the first
channel in a group of consecutive channels in nStart and the last channel
in the group of consecutive channels in nStop.

Refer to Appendix C for board-specific operating specifications on
channels.

The nStart variable sets the value of the Start Channel element; the nStop
variable sets the value of the Stop Channel element.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame and K_ClearFrame set the Start Channel and Stop
Channel elements to 0.

See Also K_GetStartStopChn, K_SetChn, K_SetStartStopG

K_SetStartStopChn (cont.)

4-107

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetStartStopChn (hFrame, 0, 7);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetStartStopChn (hFrame, 0, 7)

K_SetStartStopG

4-108 Function Reference

Boards
Supported

DAS-8PGA, DAS-8/AO, DAS-16 Series, DAS-20, DAS-40 Series,
DAS-HRES, Series 500

Purpose Specifies the first and last channels in a group of consecutive channels and
sets the gain for all channels in the group.

Prototype Visual C++
DASErr far pascal K_SetStartStopG (DWORD hFrame, short nStart,
short nStop, short nGain);

Visual Basic for Windows
Declare Function K_SetStartStopG Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nStart As Integer,
ByVal nStop As Integer, ByVal nGain As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nStart First channel in a group of consecutive channels.

nStop Last channel in a group of consecutive channels.

nGain Gain code.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the first
channel in a group of consecutive channels in nStart, the last channel in a
group of consecutive channels in nStop, and the gain code for all channels
in the group in nGain.

The nStart variable sets the value of the Start Channel element; the nStop
variable sets the value of the Stop Channel element; the nGain variable
sets the value of the Gain element.

Refer to Appendix C for board-specific operating specifications on gains
and channels.

K_GetADFrame and K_ClearFrame set the Start Channel, Stop
Channel, and Gain elements to 0.

K_SetStartStopG (cont.)

4-109

See Also K_GetStartStopG, K_SetChn, K_SetStartStopChn

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetStartStopG (hFrame, 0, 7, 0);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetStartStopG (hFrame, 0, 7, 0)

K_SetTrig

4-110 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500

Purpose Specifies the trigger source.

Prototype Visual C++
DASErr far pascal K_SetTrig (DWORD hFrame, short nMode);

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: 0 for Internal trigger

1 for External trigger

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the trigger
source in nMode.

An internal trigger is a software trigger. An external trigger is either an
analog trigger or a digital trigger. For more information about trigger
sources, refer to page 2-14 (for analog input operations), page 2-24 (for
analog output operations), and page 2-32 (for digital I/O operations).

For DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, and
DAS-HRES boards, if nMode = 1, the external trigger is a digital trigger.
For Series 500 boards, if nMode = 1, the external trigger is an analog
trigger; use K_SetADTrig to specify the conditions for an external analog
trigger.

K_GetADFrame, K_GetDAFrame, K_GetDIFrame,
K_GetDOFrame, and K_ClearFrame set the trigger source to internal.

See Also K_GetTrig

K_SetTrig (cont.)

4-111

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SetTrig (hFrame, 1);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SetTrig (hFrame, 1)

K_SyncAlloc

4-112 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Allocates a buffer for a synchronous-mode or interrupt-mode operation.

Prototype Visual C++
DASErr far pascal K_SyncAlloc (DWORD hFrame,
DWORD dwSamples, void far * far *pBuf, WORD far *pMem);

Visual Basic for Windows
Declare Function K_SyncAlloc Lib "DASSHELL.DLL"
(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long,
pMem As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples.
Valid values: 1 to 32767

pBuf Starting address of the allocated buffer.

pMem Handle associated with the allocated buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function allocates a buffer of
the size specified by dwSamples, and stores the starting address of the
buffer in pBuf and the handle of the buffer in pMem.

See Also K_SyncFree, K_SetBuf, K_SetBufB

K_SyncAlloc (cont.)

4-113

Usage

Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
void far *pBuf; // Pointer to allocated buffer
WORD hMem; // Memory Handle to buffer
...
wDasErr = K_SyncAlloc (hFrame, dwSamples, &pBuf, &hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)
...
Global pBuf As Long
Global hMem As Integer
...
wDasErr = K_SyncAlloc (hFrame, dwSamples, pBuf, hMem)

K_SyncFree

4-114 Function Reference

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Frees a buffer allocated for a synchronous-mode or interrupt-mode
operation.

Prototype Visual C++
DASErr far pascal K_SyncFree (WORD hMem);

Visual Basic for Windows
Declare Function K_SyncFree Lib "DASSHELL.DLL"
(ByVal hMem As Integer) As Integer

Parameters hMem Handle to memory buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the buffer specified by hMem; the buffer was
previously allocated using K_SyncAlloc.

See Also K_SyncAlloc

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SyncFree (hMem);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SyncFree (hMem)

K_SyncStart

4-115

Boards
Supported

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
Series 500, PIO Series, PDMA Series

Purpose Starts a synchronous-mode operation.

Prototype Visual C++
DASErr far pascal K_SyncStart (DWORD hFrame);

Visual Basic for Windows
Declare Function K_SyncStart Lib "DASSHELL.DLL"
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the synchronous operation defined by hFrame.

For a discussion of the programming tasks associated with
synchronous-mode operations, refer to page 3-11 (for analog input
operations), page 3-18 (for analog output operations), and page 3-24 (for
digital I/O operations).

See Also K_DMAStart

Usage Visual C++
#include "DASDECL.H" // Use DASDECL.HPP for C++
...
wDasErr = K_SyncStart (hFrame);

Visual Basic for Windows
(Include DASDECL.BAS in your program make file)

...
wDasErr = K_SyncStart (hFrame)

A-1

A

Error/Status Codes

Error and status codes may be returned by either the DASDLL Function
Call Driver or your External DAS Driver. Table A-1 lists the error/status
codes that are returned by the DASDLL Function Call Driver, as well as
possible causes for errors and possible solutions for resolving errors.
Refer to your External DAS Driver user’s guide for a list of the
error/status codes returned by the External DAS Driver.

If you cannot resolve an error, contact the Keithley MetraByte
Applications Engineering Department.

Table A-1. Error/Status Codes

Error Code

Cause SolutionHex Decimal

0 0 No error has been detected. Status only; no action is necessary.

6000 24576

Error in configuration file:

 The
configuration file you specified in
the driver initialization function is
corrupt, does not exist, or contains
one or more undefined keywords.

Check that the file exists at the
specified path. Check for illegal
keywords in file; you can avoid illegal
keywords by using the configuration
utility to create and modify
configuration files.

6001 24577

Illegal base address in
configuration file:

The board's
base I/O address in the
configuration file is illegal and/or
does not match the base address
switches on the board.

Use the configuration utility to change
the base I/O address to one that
matches the base address switches on
the board.

A-2 Error/Status Codes

6002 24578

Illegal IRQ level in configuration
file:

 The interrupt level in the
configuration file is illegal.

Use the configuration utility to change
the interrupt level to a legal one for
your board. Refer to the External DAS
Driver user’s guide for the board for
legal interrupt levels.

6003 24579

Illegal DMA channel in
configuration file:

 The DMA
channel in the configuration file is
illegal.

Use the configuration utility to change
the DMA channel to a legal one for
your board. Refer to the External DAS
Driver user’s guide for legal DMA
channels.

6005 24581

Illegal channel number:

 The
specified channel number is illegal
for the board and/or for the range
type (unipolar or bipolar).

Specify a legal channel number. Refer
to the External DAS Drivers user’s
guide or to Appendix C for legal
channel numbers.

6006 24582

Illegal gain code:

The specified
analog I/O channel gain code is
illegal for this board.

Specify a legal gain code. Refer to the
External DAS Driver user’s guide or
to Appendix C for a list of legal gain
codes.

6007 24583

Illegal DMA address:

An FCD
function specified a buffer address
that is not suitable for a DMA
operation for the number of
samples required.

Use the

K_DMAAlloc

 function to
allocate dynamic buffers for DMA
operations. In Windows, make sure
that the Keithley Memory Manager is
installed; refer to Appendix D for
information.

6008 24584

Illegal number in configuration
file:

 The configuration file contains
one or more numeric values that
are illegal.

Use the configuration utility to check
and then change the configuration file.

600A 24586

Configuration file not found:

 The
driver cannot find the
configuration file specified as an
argument to the driver initialization
function.

Check that the file exists at the
specified path. Check that the file
name is spelled correctly in the driver
initialization function parameter list.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-3

600B 24587

Error returning DMA buffer:

DOS returned an error in INT 21H
function 49H during the execution
of

K_DMAFree

.

Check that the memory handle passed
as an argument to

K_DMAFree

 was
previously obtained using

K_DMAAlloc

.

600C 24588

Error returning interrupt
buffer:

 The memory handle
specified in

K_IntFree

 is invalid.

Check the memory handle stored by

K_IntAlloc

 and make sure that it was
not modified.

600D 24589

Illegal frame handle:

 The
specified frame handle is not valid
for this operation.

Check that the frame handle exists.
Check that you are using the
appropriate frame handle.

600E 24590

No more frame handles:

 No
frames are left in the pool of
available frames.

Use

K_FreeFrame

 to free a frame
that the application is no longer using.

600F 24591

Requested buffer size too large:

The requested buffer cannot be
allocated because of its size.

Specify a smaller buffer size. If in
Windows Enhanced mode with the
Keithley Memory Manager
(VDMAD.386) installed, use
KMMSETUP.EXE to increase the
reserved buffer heap size.

6010 24592

Cannot allocate interrupt buffer:

(Windows-based languages only)

K_IntAlloc

 failed because there
was not enough available DOS
memory.

Remove some Terminate and Stay
Resident programs (TSRs) that are no
longer needed.

6012 24594

Interrupt buffer deallocation
error:

 (Windows-based languages
only) An error occurred when

K_IntFree

 attempted to free a
memory handle.

Make sure that the memory handle
passed as an argument to

K_IntFree

was previously obtained using

K_IntAlloc

.

6015 24597

DMA Buffer too large:

 The
number of samples specified in

K_DMAAlloc

 is too large.

Specify a smaller buffer size.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-4 Error/Status Codes

6016 24598

VDS - Region not contiguous:

An
error occurred while using
Windows Virtual DMA Services.
You tried to use

K_DMAAlloc

 in
Windows Enhanced mode and the
Keithley Memory Manager
(VDMAD.386) was not installed.

Refer to Appendix D for information
on how to install and set up the
Keithley Memory Manager
(VDMAD.386).

6017 24599

VDS - DMA wraparound:

 See
error 6016.

 See error 6016.

6018 24600

VDS - Unable to lock region:

See
error 6016.

See error 6016.

6019 24601

VDS - No buffer available:

See
error 6016.

See error 6016.

601A 24602

VDS - Region too large:

See error
6016.

See error 6016.

601B 24603

VDS - Buffer in use:

See error
6016.

See error 6016.

601C 24604

VDS - Illegal region:

See error
6016.

See error 6016.

601D 24605

VDS - Region not locked:

See
error 6016.

See error 6016.

601E 24606

VDS - Illegal page:

See error
6016.

See error 6016.

601F 24607

VDS - Illegal buffer:

See error
6016.

See error 6016.

6020 24608

VDS - Copy out of range:

See
error 6016.

See error 6016.

6021 24609

VDS - Illegal DMA channel:

See
error 6016.

See error 6016.

6022 24610

VDS - Count overflow:

See error
6016.

See error 6016.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-5

6023 24611

VDS - Count underflow:

See
error 6016.

See error 6016.

6024 24612

VDS - Function not supported:

See error 6016.
See error 6016.

6025 24613

Illegal OBM mode:

 The mode
number specified in

K_SetOBMMode

 is illegal.

Refer to the description of

K_SetOBMMode

 for legal mode
values.

6026 24614

Illegal DMA structure:

An error
occurred during the execution of

K_DMAFree

.

Try using

K_DMAFree

 again. If the
error continues, contact the Keithley
MetraByte Applications Engineering
Department.

6027 24615

DMA allocation error:

 See error
6026.

 See error 6026.

6028 24616

NULL DMA handle:

See error
6026.

 See error 6026.

6029 24617

DMA unlock error:

See error
6026.

 See error 6026.

602A 24618

DMA free error:

See error 6026. See error 6026.

602B 24619

Not enough memory to
accommodate request:

The
number of samples you requested
in the Keithley Memory Manager
is greater than the largest
contiguous block available in the
reserved heap.

Specify a smaller number of samples.
Free a previously allocated buffer. Use
the KMMSETUP utility to expand the
reserved heap.

602C 24620

Requested buffer size exceeds
maximum:

 The number of
samples you requested from the
Keithley Memory Manager is
greater than the allowed maximum.

Specify a value within the legal range
when calling

K_DMAAlloc

 in
Windows Enhanced mode.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-6 Error/Status Codes

602D 24621

Illegal device handle:

A bad
device handle was passed to a
function such as

K_GetADFrame

.
The handle used was not initialized
through a call to

DASDLL_GetDevHandle

,

or it
was corrupted by your program.

Check the device handle value.

602E 24622

Illegal Setup option:

 An illegal
option was specified to a function
that accepts a user option, such as

K_SetDITrig

.

Check the option value passed to the
function where the error occurred.

6030 24624

DMA word-page wrap:

 During

K_DMAAlloc

, a DMA word-page
wrap condition occurred and the
allocation attempt failed since
there is not enough free memory to
accommodate the allocation
request.

Reduce the number of samples and
retry. If in Windows Enhanced mode,
install and configure VDMAD.386.
Refer to Appendix D.

6031 24625

Illegal memory handle:

 A bad
memory handle was passed to

K_IntFree, K_SyncFree,

or

K_DMAFree

. The handle used
was not initialized through a call to

K_IntAlloc, K_SyncAlloc,

or

K_DMAAlloc

, or it was corrupted
by you program.

Restart your program and monitor the
memory handle value.

6032 24626

Out of memory handles:

 An
attempt to allocate a memory block
using

K_IntAlloc, K_SyncAlloc,

or

K_DMAAlloc

 failed because
the maximum number of handles
has already been assigned.

Use

K_IntFree, K_SyncFree,

or

K_DMAFree

 to free previously
allocated memory blocks before
allocating again.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-7

6034 24628

Memory corrupted:

Int 21H
function 48H, used to allocate a
memory block from the DOS far
heap, returned the DOS error 7;
this means that memory is
corrupted. It is likely that you
stored data (through a DMA-mode
or interrupt-mode operation) into
an illegal area of DOS memory.

Recheck the parameters set by

K_DMAAlloc

 and

K_SetDMABuf

.
If a fatal system error, restart your
computer.

6035 24629

Driver in use:

 You attempted to
initialize a driver that was already
initialized by a call to

K_OpenDriver

. (This can occur
since, under Windows, it is
possible to open the same driver
from multiple programs that are
running simultaneously.)

Make sure that you initialize a driver
only once during a single Windows
session. To continue using the driver
with its current configuration, pass a
null string as the second argument to

K_OpenDriver

. To use the driver
with a different configuration, close
the driver (using

K_CloseDriver

) and
then open the driver again (using

K_OpenDriver

).

6036 24630

Illegal driver handle:

 The
specified driver handle is not valid.

Someone may have closed the driver;
if so, use

K_OpenDriver

to reopen
the driver with the desired driver
handle. Try again using another driver
handle.

6037 24631

Driver not found:

 The specified
driver cannot be found.

Check your link statement to make
sure the specified driver is included.
Make sure that the device name string
is entered correctly in

K_OpenDriver

.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-8 Error/Status Codes

6038 24632

Invalid source pointer:

(Windows-based languages only)
The pointer to the source buffer
that you passed as an argument to

K_MoveBufToArray is invalid
for the specified count. (The source
pointer, when added to the number
of samples, exceeds the
programmed addressing range of
that pointer.)

Check the pointer to the source buffer
and the number of samples to transfer
that you specified in
K_MoveBufToArray .

6039 24633 Invalid destination pointer:
(Windows-based languages only)
The pointer to the destination
buffer (local array) that you passed
as an argument to
K_MoveBufToArray is invalid
for the specified count. (The
destination pointer, when added to
the number of samples, exceeds the
dimension of the local array.)

Check the dimension of the local array
and the number of samples to transfer
that you specified in
K_MoveBufToArray .

603A 24634 Illegal setup value: An illegal
value was passed to the function in
which the error occurred.

Check the legal ranges of all
parameters passed to this function.

8001 32769 Function not supported: You
have attempted to use a function
not supported by the Function Call
Driver.

Make sure that the function is
supported by the board you are using.
Contact the Keithley MetraByte
Applications Engineering
Department.

8003 32771 Illegal board number: An illegal
board number was specified in the
board initialization function.

Specify a legal board number.

8004 32772 Illegal error number: The error
message number specified in
K_GetErrMsg is invalid.

The error number must be one the
error numbers listed in this appendix.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-9

8005 32773 Board not found at configured
address: The board initialization
function does not detect the
presence of a board.

Make sure that the base address
setting of the switches on the board
matches the base address setting in the
configuration file.

8006 32774 A/D not initialized: You attempted
to start a frame-based analog input
operation without the A/D frame
being properly initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8007 32775 D/A not initialized: You attempted
to start a frame-based analog
output operation without the D/A
frame being properly initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8008 32776 Digital input not initialized: You
attempted to start a frame-based
digital input operation without the
DI frame being properly
initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

8009 32777 Digital output not initialized: You
attempted to start a frame-based
digital output operation without the
DO frame being properly
initialized.

Always call K_ClearFrame before
setting up a new frame-based
operation.

800B 32779 Conversion overrun: Data was
overwritten before it was
transferred to the computer’s
memory.

Adjust the clock source to slow down
the rate at which the board acquires
data. Remove other application
programs that are running and using
computer resources.

8016 32790 Interrupt overrun : The board
communicated a hardware event to
the software by generating a
hardware interrupt, but the
software was still servicing a
previous interrupt. This is usually
caused by a pacer clock rate that is
too fast.

Check the maximum throughput rate
for your computer’s programming
environment and use K_SetClkRate
to specify an appropriate rate.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

A-10 Error/Status Codes

801A 32794 Interrupts already active: You
have attempted to start an operation
whose interrupt level is being used
by another system resource.

Use K_IntStop to stop the first
operation before starting the second
operation.

801B 32795 DMA already active: You
attempted to start a DMA-mode
operation using a DMA channel
that is currently used by another
active operation.

Use K_DMAStop to stop the first
operation before starting the second
operation.

8020 32800 FIFO Overflow event detected:
During data acquisition, the
temporary on-board data storage
(FIFO) overflowed.

The conversion rate is too fast for your
computer’s programming
environment; use K_SetClkRate to
reduce the conversion rate. If you are
using DMA-mode and your board
supports dual-DMA, use the
configuration utility to reconfigure
your board to use dual-DMA.

FFFF 65535 User aborted operation: You
pressed [Ctrl]+[Break] during a
synchronous-mode operation or
while waiting for an analog trigger
event to occur.

Start the operation again, if desired.

Table A-1. Error/Status Codes (cont.)

Error Code

Cause SolutionHex Decimal

B-1

B

Data Formats

The DASDLL Function Call Driver can read and write counts only. When
writing a value (as in

K_DAWrite

), you must convert the voltage value to
a count; when reading a value (as in

K_ADRead

), you may want to
convert the count to a more meaningful voltage value.

This appendix contains instructions for converting counts to voltage and
for converting voltage to counts.

Converting Counts to Voltage

You may want to convert counts to voltage when reading an analog input
value.

Perform the following steps to convert a count value to voltage when
reading an analog input value:

1. Unpack the count, if necessary. The way you unpack the count
depends on the board you are using. Table B-1 lists the data format
supported and the location of the data for each DASDLL-supported
board.

B-2 Data Formats

For example, if you are using a DAS-16 Series board (12-bit board),
use the following equation to produce a count value that ranges from
0 through 4095.

count = (right-shift data four bits) bit-wise AND with 0FFF

2. Use the equation that is appropriate for the analog input range type,
substituting the count value for

count

 and the span of the analog input
range for

span.

The

full scale value

 depends on the number of bits
supported by the board; refer to Table B-2.

Bipolar

Unipolar

Table B-1. Data Formats (Analog Input)

Board Data Format Location of Data

DAS-8 Series Straight binary Lower 12 bits

DAS-16 Series Straight binary Upper 12 bits

DAS-20 Bipolar: twos complement
Unipolar: straight binary

Upper 12 bits

DAS-40 Series Switch-configurable Lower 12 bits

DAS-HRES Straight binary All 16 bits

Series 500: AMM1A Straight binary Upper 12 bits

Series 500: AMM2 Straight binary All 16 bits

Voltage count half full scale value–() span×
full scale value

---=

Voltage count span×
full scale value
------------------------------------=

B-3

For example, assume that you are using a DAS-16 Series board
(12-bit board) and want to read analog input data from a channel
configured for a span of 10 V and a unipolar input range. The count
value is 3072. The voltage is determined as follows:

As another example, assume that you are using a DAS-16 Series
board and want to read the analog input data from a channel
configured for a span of 10 V and a bipolar input range. The count
value is 1024. The voltage is determined as follows:

Table B-2. Full Scale Values

Number of Bits Full Scale Value

8 256

12 4096

16 65536

3072 10×
4096

------------------------ 7.5 V=

1024 2048–() 10×
4096

--- 2.5 V–=

B-4 Data Formats

Converting Voltage to Counts

You must convert voltage to counts when specifying an analog output
value.

Perform the following steps to convert a voltage value to a count when
specifying an analog output value:

1. Use the equation that is appropriate for the analog output range type,
substituting the desired voltage for

V

out

and the span of the analog
output range for

span

. The

full scale value

 depends on the number of
bits supported by the board; refer to Table B-2 on page B-3.

Bipolar

Unipolar

For example, assume that you are using a DAS-16 Series board
(12-bit board) and want to specify an analog output of 3 V for a
channel configured for a span of 10 V and a bipolar output range. The
count is determined as follows:

2. Pack the count into a variable, if necessary. The way you pack the
count depends on the board you are using. Table B-1 lists the data
format supported and the location of the data for each
DASDLL-supported board.

Count
Vout full scale value×

span
-- half full scale value+=

Count
Vout full scale value×

span
--=

3 4096×
10

--------------------- 2048+ 3277=

B-5

For example, if you are using a DAS-16 Series board (12-bit board),
use the following equation:

variable data = (left-shift count four bits) bit-wise AND with FFF0

Table B-3. Data Formats (Analog Output)

Board Data Format Location of Data

DAS-8/AO Straight binary Lower 12 bits

DAS-16 Series Straight binary Upper 12 bits

DAS-20 Twos complement Lower 12 bits

DAS-40 Series Straight binary Lower 12 bits

DAS-HRES Straight binary All 16 bits

DDA-06 Straight binary Lower 12 bits

Series 500: AOM1/2 Straight binary Lower 12 bits

Series 500: AOM1/5 Straight binary Lower 12 bits

Series 500: AOM2/1 Straight binary Lower 12 bits

Series 500: AOM2/2 Straight binary All 16 bits

Series 500: AOM3 Straight binary Lower 12 bits

Series 500: AOM4 Straight binary Lower 12 bits

Series 500: AOM5 Sign and magnitude Lower 12 bits

= magnitude
MSB = sign bit

C-1

C

Operating Specifications

This appendix provides board-specific operating specifications on gains
and channels.

Gains

DASDLL FCD functions use gain codes to represent the gain assigned to
a particular channel on a DASDLL-supported board. These gain codes are
listed in the following tables:

●

Table C-1 on page C-2 lists analog input ranges, gains, and
corresponding gain codes for DASDLL-supported boards that
support analog input operations.

●

Table C-2 on page C-6 lists the gains and gain codes for Series 500
boards. Note that some Series 500 boards combine the use of local
and global gains to determine the total gain assigned to a channel.

Refer to your External DAS Driver board’s user’s guide for more
information.

C-2 Operating Specifications

.

Table C-1. Gain Codes for DASDLL-Supported Boards

Series Board A/D Mode Gain Input Range
Gain
Code

DAS-8

1

DAS-8PGA
DAS-8/AO

Unipolar 1 0 to 10 V 9

10 0 to 1 V 11

100 0 to 100 mV 13

500 0 to 20 mV 15

Bipolar 1 ±10 V 8

2 ±5 V 0

20

±5

00 mV 10

200 ±50 mV 12

1000 ±10 mV 14

DAS-8PGA-G2 Unipolar 1 0 to 10 V 9

2 0 to 5 V 11

4 0 to 2.5 V 13

8 0 to 1.25 V 15

Bipolar 1 ±10 V 8

2 ±5 V 0

4 ±2.5 V 10

8 ±1.25 V 12

16 ±0.625 V 14

C-3

DAS-16

2

DAS-16G1 Unipolar 1 0 to 10 V 0

10 0 to 1 V 1

100 0 to 100 mV 2

500 0 to 20 mV 3

Bipolar 1 ±10 V 0

10 ±1 V 1

100 ±100 mV 2

500 ±20 mV 3

DAS-16G2 Unipolar 1 0 to 10 V 0

2 0 to 5 V 1

4 0 to 2.5 mV 2

8 0 to 1.25 mV 3

Bipolar 1 ±10 V 0

2 ±5 V 1

4 ±2.5 V 2

8 ±1.25 V 3

DAS-20 DAS-20 Unipolar 1 0 to 10 V 0 or 2

10 0 to 1 V 4

100 0 to 100 mV 6

Bipolar 0.5 ±10 V 1

1 ±5 V 3

10 ±0.5 V 5

100 ±50 mV 7

Table C-1. Gain Codes for DASDLL-Supported Boards (cont.)

Series Board A/D Mode Gain Input Range
Gain
Code

C-4 Operating Specifications

DAS-40 DAS-40G1 0 to 10 V

3

1 0 to 10 V 0

10 0 to 1 V 1

100 0 to 100 mV 2

500 0 to 20 mV 3

±10 V

3

1 ±10 V 0

10 ±1 V 1

100 ±100 mV 2

500 ±20 mV 3

±5 V

3

1 ±5 V 0

10 ± 500 mV 1

100 ± 50 mV 2

500 ±10 mV 3

DAS-40G2 0 to 10 V

3

1 0 to 10 V 0

2 0 to 5 V 1

4 0 to 2.5 V 2

8 0 to 1.25 V 3

±10 V

3

 1 ±10 V 0

2 ±5 V 1

4 ±2.5 V 2

8 ±1.25 V 3

±5 V

3

1 ±5 V 0

2 ±2.5 V 1

4 ±1.25 V 2

8 ±625 mV 3

Table C-1. Gain Codes for DASDLL-Supported Boards (cont.)

Series Board A/D Mode Gain Input Range
Gain
Code

C-5

DAS-HRES DAS-HRES Unipolar 1 0 to 10 V 0

2 0 to 5 V 1

4 0 to 2.5 V 2

8 0 to 1.25 V 3

Bipolar 1 ±10 V 0

2 ±5 V 1

4 ±2.5 V 2

8 ±1.25 V 3

Notes

1

The DAS-8 and the DAS-8LT do not have programmable gains. The analog input
range for both boards is always ±5 V.

2

Gains on the DAS-16 and DAS-16F boards are switch-selectable.

3

Analog input range is switch-selectable.

Table C-1. Gain Codes for DASDLL-Supported Boards (cont.)

Series Board A/D Mode Gain Input Range
Gain
Code

C-6 Operating Specifications

Table C-2. Gain Codes for Series 500 Boards

Module

1

Local Gain Global Gain Total Gain Gain Code

AMM1A
AMM2

1 1 1 0

1 2 2 1

1 5 5 2

1 10 10 3

10 1 10 4

10 2 20 5

10 5 50 6

10 10 100 7

AIM2
AIM4
AIM9

-- -- 1 0

-- -- 2 1

-- -- 5 2

-- -- 10 3

AIM3A 1 1 1 0

1 2 2 1

1 5 5 2

1 10 10 3

10 1 10 4

10 2 20 5

10 5 50 6

10 10 100 7

100 1 100 8

100 2 200 9

100 5 500 10

100 10 1000 11

C-7

AIM6 -- -- 50 0

-- -- 100 1

-- -- 250 2

-- -- 500 3

AIM7 -- -- 100 0

-- -- 200 1

-- -- 500 2

-- -- 1,000 3

AIM8 1 1 1 0

1 2 2 1

1 5 5 2

1 10 10 3

10 1 10 4

10 2 20 5

10 5 50 6

10 10 100 7

100 1 100 8

100 2 200 9

100 5 500 10

100 10 1000 11

1000 1 1000 12

1000 2 2000 13

1000 5 5000 14

1000 10 10000 15

Notes

1

 Series 500 modules not listed in this table do not have programmable gains.

Table C-2. Gain Codes for Series 500 Boards (cont.)

Module

1

Local Gain Global Gain Total Gain Gain Code

C-8 Operating Specifications

Channels

Table C-3 lists the number of available analog input and analog output
channels on DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series,
DAS-HRES, DDA-06, PIO Series, and PDMA Series boards.

Notes:

For information on the number of analog input and analog output
channels supported on Series 500 boards, refer to the

Keithley
Instruments 500/575 External DAS Drivers

 user’s guide.

DAS-8 Series, DAS-16 Series, DAS-20, DAS-40 Series, DAS-HRES,
DDA-06, PIO Series, and PDMA Series boards support one digital input
channel (channel 0) and one digital output channel (channel 0). Series
500 boards treat each 8-bit digital input port or 8-bit digital output port as
a separate channel. For information on the number of available digital I/O
channels on Series 500 boards, refer to the

Keithley Instruments 500/575

External DAS Drivers

 user’s guide.

Table C-3. Channels Available

Series Board Type

A/D Channels
D/A
ChannelsOnboard Expansion

DAS-8 DAS-8 8 single-ended 128 0

 DAS-8LT 8 single-ended 128 0

DAS-8PGA 8 single-ended or 8 differential

1

 128 0

DAS-8PGA-G2 8 single-ended or 8 differential

1

 128 0

DAS-8/AO 8 differential 128 2

DAS-16 DAS-16 16 single-ended or 8 differential

1

 256 2

DAS-16F 16 single-ended or 8 differential

1

 256 2

DAS-16G1 16 single-ended or 8 differential

1

 256 2

DAS-16G2 16 single-ended or 8 differential

1

 256 2

C-9

DAS-20 DAS-20 16 single-ended or 8 differential

1

 256 2

DAS-40 DAS-40 16 single-ended or 8 differential

1

 Not supported 2

DAS-HRES DAS-HRES 8 differential Not supported 2

DDA DDA-06 0 0 6

Notes

1

Switch-selectable.

Table C-3. Channels Available (cont.)

Series Board Type

A/D Channels
D/A
ChannelsOnboard Expansion

D-1

D

Keithley Memory Manager

The process that Windows uses to allocate memory can limit the amount
of memory available to Keithley DAS boards operating in Windows
Enhanced mode. To reserve a memory heap large enough for the needs of
your application, use the Keithley Memory Manager (KMM) that is
included in the DASDLL software package.

The reserved memory heap is part of the total physical memory available
in your system. When you start up Windows, the KMM reserves the
memory heap. Then, whenever your application program requests
memory, the memory buffer is allocated from the reserved memory heap
instead of from the Windows global heap. The KMM is DAS board
independent and can be used by multiple Keithley DAS Windows
application programs simultaneously.

Note:

The memory allocated with the KMM can be used by any DMA

controller, if applicable.

The following are supplied with the KMM:

●

VDMAD.386

 - Customized version of Microsoft’s Virtual DMA
Driver. This file consists of a copy of Microsoft’s Virtual DMA Driver
and a group of functions that are added to perform the KMM
functions. When you use the KMM to reserve a memory heap,
Microsoft’s Virtual DMA Driver is replaced by the VDMAD.386 file.

Note:

If you have multiple versions of VDMAD.386, it is
recommended that you install the latest version; to determine which

version is the latest version, refer to the time stamp of the file.

D-2 Keithley Memory Manager

●

KMMSETUP.EXE

 - Windows program that helps you set up the
VDMAD.386 parameters and then modifies your SYSTEM.INI file
accordingly.

Installing and Setting Up the KMM

To install and set up the KMM whenever you start up Windows, you must
modify the SYSTEM.INI file. You can modify the SYSTEM.INI file
using either the KMMSETUP.EXE program or a text editor.

Using KMMSETUP.EXE

Using the KMMSETUP.EXE program, you can modify your Windows
SYSTEM.INI file as follows:

1. Invoke KMMSETUP.EXE in one of the following ways:

– From the Program Manager menu, choose File and then Run, and
then type the complete path and program name for KMMSETUP.

– Select the KMMSETUP icon, if installed.

2. In the New VDMAD.386 box, enter the path and name of the
VDMAD.386 file, as follows:

C:\WINDOWS\VDMAD.386

The string you enter replaces

*vdmad

 in the

device=*vdmad

 line in
your SYSTEM.INI file.

Note:

Normally, the VDMAD.386 file is stored in the WINDOWS
directory. If it is stored elsewhere, enter the correct path and name or

use the Browse button to find the file.

3. Notice the Current Setting box. The value specified reflects the
current size of the reserved memory heap in kilobytes.

4. In the Desired Setting box, enter the desired size of the reserved
memory heap in kilobytes.

The value you enter replaces the

KEIDMAHEAPSIZE=

 line in the
[386Enh] section of your SYSTEM.INI file.

D-3

Note:

The memory size you specify is no longer available to
Windows. For example, if your computer has 8 MBytes of memory
installed and you specify

KEIDMAHEAPSIZE=1000

 (1 MByte),
Windows can only see and use 7 MBytes.

If you specify a value less than 128, a 128K byte minimum heap size
is assumed. The maximum heap size is limited only by the physical

memory installed in your system and by Windows itself.

5. Select the Update button to update the SYSTEM.INI file with the
changes you have made.

6. Restart Windows to ensure that the system changes take effect.

Using a Text Editor

Using a text editor, you can modify your Windows SYSTEM.INI file in
the [386Enh] section, as follows:

1. Replace the line

device=*vdmad

 with the following:

device=c:\windows\vdmad.386

Note:

Normally, the VDMAD.386 file is stored in the WINDOWS

directory. If it is stored elsewhere, enter the correct path and name.

2. Add the following line:

KEIDMAHEAPSIZE=<

size

>

where

size

 indicates the desired size of the reserved memory heap in
kilobytes.

D-4 Keithley Memory Manager

Note:

The memory size you specify is no longer available to
Windows. For example, if your computer has 8 MBytes of memory
installed and you specify

KEIDMAHEAPSIZE=1000

 (1 MByte),
Windows can only see and use 7 MBytes.

If you do not add the

KEIDMAHEAPSIZE

 keyword or if the size you
specify is less than 128, a 128K byte minimum heap size is assumed.
The maximum heap size is limited only by the physical memory

installed in your system and by Windows itself.

3. Restart Windows to ensure that the system changes take effect.

Removing the KMM

If you make changes to the SYSTEM.INI file, you can always remove the
updated information from the SYSTEM.INI file and return all previously
reserved memory to Windows.

If you are using KMMSETUP.EXE, select the Remove button to remove
the updated information. If you are using a text editor, modify and/or
delete the appropriate lines in SYSTEM.INI. In both cases, make sure
that you restart Windows to ensure that the system changes take effect.

X-1

Index

A

allocating memory buffers:

see

 memory
buffers

allocating memory:

see

 memory allocation
analog input channels

2-10

analog input operations

2-6

programming tasks

3-10

analog input ranges

2-10

analog output channels

2-20

analog output operations

2-17

programming tasks

3-17

analog trigger

2-15

B

board
handle

2-3

initialization

2-3

setup

1-3

board, logical

2-3

boards supported:

see

 DASDLL-supported
boards

buffer address
analog input operations

2-9

analog output operations

2-20

digital I/O operations

2-28

buffer address functions

4-3

buffering mode functions

4-3

buffering modes
analog input operations

2-14

analog output operations

2-23

digital I/O operations

2-31

C

C++:

see

 Visual C++
channel and gain functions

4-4

channel-gain queue

2-11

creating in Visual Basic for Windows

3-35

creating in Visual C++

3-31

channels
analog input

2-10

analog output

2-20

digital I/O

2-28

multiple using a channel-gain queue

2-11

multiple using a group of consecutive
channels

2-11

,

2-19

,

2-21

summary

C-8

clock functions

4-4

clock source:

see

 pacer clock
commands:

see

 functions
common tasks

3-10

continuous mode
analog input operations

2-14

analog output operations

2-23

digital I/O operations

2-31

conventions

4-5

conversion rate

2-13

converting
raw counts to voltage

B-1

voltage to raw counts

B-4

counter time base

2-12

creating an executable file
Visual Basic for Windows

3-37

Visual C++

3-33

X-2 Index

D

DACs:

see

 digital-to-analog converters
DASDLL_DevOpen

2-3

,

4-7

DASDLL_DMAAlloc

2-8

,

2-18

,

2-27

,

4-9

DASDLL_DMAFree

2-8

,

2-19

,

2-27

,

4-11

DASDLL_GetBoardName

2-4

,

4-12

DASDLL_GetDevHandle

2-3

,

4-13

DASDLL-supported boards

1-1

data formats

B-1

data transfer modes:

see

 operation modes
data types

4-6

default values
A/D frame elements

3-4

D/A frame elements

3-6

DI frame elements

3-7

DO frame elements

3-8

digital I/O lines

2-28

digital I/O operations

2-25

programming tasks

3-23

digital trigger

2-16

,

2-24

,

2-32

digital-to-analog converters

2-20

DMA mode
analog input operations

2-7

,

3-15

analog output operations

2-18

,

3-21

digital I/O operations

2-26

,

3-27

driver handle

2-2

driver setup

1-3

driver:

see

 Function Call Driver

E

elements of frame

3-2

error codes A-1
error handling 2-5

Visual Basic for Windows 3-37
Visual C++ 3-32

executable file: see creating an executable
file

external pacer clock 2-13, 2-22, 2-30
external trigger 2-15, 2-24, 2-32

F
files required

Visual Basic for Windows 3-37
Visual C++ 3-33

frame management functions 4-2
frames 3-2

elements 3-2
handles 3-2
types 3-3

Function Call Driver
initialization 2-2
structure 3-1

functions
buffer address 4-3
buffering mode 4-3
channel and gain 4-4
clock 4-4
DASDLL_DevOpen 2-3, 4-7
DASDLL_DMAAlloc 2-8, 2-18, 2-27,

4-9
DASDLL_DMAFree 2-8, 2-19, 2-27,

4-11
DASDLL_GetBoardName 2-4, 4-12
DASDLL_GetDevHandle 2-3, 4-13
frame management 4-2
initialization 4-2
K_ADRead 2-7, 2-10, 4-15
K_ClearFrame 3-4, 4-17
K_CloseDriver 2-2, 4-18
K_ClrContRun 4-19
K_DASDevInit 2-5, 4-21
K_DAWrite 2-17, 2-21, 4-22
K_DIRead 2-25, 2-29, 4-24
K_DMAStart 2-7, 2-18, 2-26, 4-26
K_DMAStatus 2-7, 2-18, 2-26, 4-27
K_DMAStop 2-7, 2-18, 2-26, 4-30
K_DOWrite 2-25, 2-29, 4-32
K_FormatChnGAry 4-34
K_FreeDevHandle 2-3, 4-35
K_FreeFrame 3-4, 4-36
K_GetADFrame 3-3, 4-37

X-3

K_GetADTrig 4-38
K_GetBuf 4-40
K_GetBufB 4-42
K_GetChn 4-44
K_GetChnGAry 4-45
K_GetClk 4-46
K_GetClkRate 4-48
K_GetContRun 4-50
K_GetDAFrame 3-3, 4-52
K_GetDevHandle 2-3, 4-54
K_GetDIFrame 3-3, 4-56
K_GetDOFrame 3-3, 4-58
K_GetErrMsg 2-6, 4-60
K_GetG 4-61
K_GetShellVer 2-5, 4-63
K_GetStartStopChn 4-65
K_GetStartStopG 4-67
K_GetTrig 4-69
K_GetVer 2-5, 4-71
K_IntStart 2-7, 2-18, 2-26, 4-73
K_IntStatus 2-7, 2-18, 2-26, 4-74
K_IntStop 2-7, 2-18, 2-26, 4-77
K_MoveArrayToBuf 2-20, 2-28, 4-79
K_MoveBufToArray 2-9, 2-28, 4-81
K_OpenDriver 2-2, 4-83
K_RestoreChnGAry 4-85
K_SetADTrig 2-15, 4-86
K_SetBuf 4-88
K_SetBufB 4-90
K_SetChn 2-10, 2-21, 2-29, 4-92
K_SetChnGAry 2-12, 4-93
K_SetClk 2-12, 2-21, 2-30, 4-95
K_SetClkRate 2-13, 2-22, 2-30, 4-97
K_SetContRun 2-14, 2-23, 2-31, 4-99
K_SetDMABuf 4-101
K_SetDMABufB 4-103
K_SetG 2-10, 2-11, 4-105
K_SetStartStopChn 2-11, 2-21, 2-29,

4-106
K_SetStartStopG 2-11, 4-108
K_SetTrig 2-14, 2-24, 2-32, 4-110
K_SyncAlloc 2-8, 2-18, 2-27, 4-112

K_SyncFree 2-8, 2-19, 2-27, 4-114
K_SyncStart 2-7, 2-17, 2-26, 4-115
memory management 4-3
miscellaneous 4-4
operation 4-2
trigger 4-4

G
gain codes 2-10

summary C-1
gains 2-10
getting help 1-4
group of consecutive channels 2-11

H
handles

board 2-3
driver 2-2
memory 2-8, 2-19, 2-27

handling errors: see error handling
help 1-4

I
initialization functions 4-2
initializing a board 2-3
initializing the driver 2-2
installing

Keithley Memory Manager D-2
software 1-2

internal pacer clock 2-12, 2-21, 2-30
internal trigger 2-14, 2-24, 2-32
interrupt mode

analog input operations 2-7, 3-13
analog output operations 2-17, 3-19
digital I/O operations 2-26, 3-25

X-4 Index

K
K_ADRead 2-7, 2-10, 4-15
K_ClearFrame 3-4, 4-17
K_CloseDriver 2-2, 4-18
K_ClrContRun 4-19
K_DASDevInit 2-5, 4-21
K_DAWrite 2-17, 2-21, 4-22
K_DIRead 2-25, 2-29, 4-24
K_DMAStart 2-7, 2-18, 2-26, 4-26
K_DMAStatus 2-7, 2-26, 4-27
K_DMAStop 2-7, 2-26, 4-30
K_DOWrite 2-25, 2-29, 4-32
K_FormatChnGAry 4-34
K_FreeDevHandle 2-3, 4-35
K_FreeFrame 3-4, 4-36
K_GetADFrame 3-3, 4-37
K_GetADTrig 4-38
K_GetBuf 4-40
K_GetBufB 4-42
K_GetChn 4-44
K_GetChnGAry 4-45
K_GetClk 4-46
K_GetClkRate 4-48
K_GetContRun 4-50
K_GetDAFrame 3-3, 4-52
K_GetDevHandle 2-3, 4-54
K_GetDIFrame 3-3, 4-56
K_GetDOFrame 3-3, 4-58
K_GetErrMsg 2-6, 4-60
K_GetG 4-61
K_GetShellVer 2-5, 4-63
K_GetStartStopChn 4-65
K_GetStartStopG 4-67
K_GetTrig 4-69
K_GetVer 2-5, 4-71
K_IntStart 2-7, 2-18, 2-26, 4-73
K_IntStatus 2-7, 2-18, 2-26, 4-74
K_IntStop 2-7, 2-18, 2-26, 4-77
K_MoveArrayToBuf 2-20, 4-79
K_MoveBufToArray 2-9, 4-81
K_OpenDriver 2-2, 4-83

K_RestoreChnGAry 4-85
K_SetADTrig 2-15, 4-86
K_SetBuf 4-88
K_SetBufB 4-90
K_SetChn 2-10, 2-21, 2-29, 4-92
K_SetChnGAry 2-12, 4-93
K_SetClk 2-12, 2-21, 2-30, 4-95
K_SetClkRate 2-13, 2-22, 2-30, 4-97
K_SetContRun 2-14, 2-23, 2-31, 4-99
K_SetDMABuf 4-101
K_SetDMABufB 4-103
K_SetG 2-10, 2-11, 4-105
K_SetStartStopChn 2-11, 2-21, 2-29, 4-106
K_SetStartStopG 2-11, 4-108
K_SetTrig 2-14, 2-24, 2-32, 4-110
K_SyncAlloc 2-8, 2-18, 2-27, 4-112
K_SyncFree 2-8, 2-19, 2-27, 4-114
K_SyncStart 2-7, 2-17, 2-26, 4-115
Keithley Memory Manager D-1
KMM: see Keithley Memory Manger

L
logical board 2-3

M
maintenance operations: see system

operations
managing memory: see memory allocation
memory allocation

analog input operations 2-8
analog output operations 2-18
digital I/O operations 2-27
Visual Basic for Windows 3-34
Visual C++ 3-30

memory handle 2-8, 2-19, 2-27
memory management functions 4-3

X-5

memory manager
installing D-2
removing D-4

Microsoft Visual Basic for Windows: see
Visual Basic for Windows

Microsoft Visual C++: see Visual C++
miscellaneous functions 4-4
miscellaneous operations: see system

operations
multiple channels

analog input 2-11
analog output 2-19, 2-21

O
operation functions 4-2
operation modes

analog input operations 2-6
analog output operations 2-17
digital I/O operations 2-25

operations
analog input 2-6
analog output 2-17
digital I/O 2-25
system 2-2

P
pacer clock

analog input operations 2-12
analog output operations 2-21
digital I/O operations 2-30
external 2-13, 2-22, 2-30
internal 2-12, 2-21, 2-30

programming information
Visual Basic for Windows 3-34
Visual C++ 3-29

programming overview 3-9

programming tasks
analog input operations 3-10
analog output operations 3-17
common 3-10
digital I/O operations 3-23
operation-specific 3-10
preliminary 3-10

R
read/write rate 2-30
readback functions

A/D frame 3-4
D/A frame 3-6
DI frame 3-7
DO frame 3-8

resetting a board 2-5
retrieving revision levels 2-5
return values: see error handling
revision levels 2-5
routines: see functions

S
scan 2-11
setting up

board 1-3
driver 1-3
Keithley Memory Manager D-2

setup functions
A/D frame 3-4
D/A frame 3-6
DI frame 3-7
DO frame 3-8

single mode
analog input operations 2-6, 3-11
analog output operations 2-17, 3-17
digital I/O operations 2-25, 3-23

X-6 Index

single-cycle mode
analog input operations 2-14
analog output operations 2-23
digital I/O operations 2-31

software installation 1-2
starting

analog input operations 2-6
analog output operations 2-17
digital I/O operations 2-25

starting address: see buffer address
status codes 2-5, A-1
storing data: see buffering modes
synchronous mode

analog input operations 2-7, 3-11
analog output operations 2-17, 3-18
digital I/O operations 2-26, 3-24

system operations 2-2

T
tasks: see programming tasks
technical support 1-4
time base 2-12
trigger

analog 2-15
analog input operations 2-14
analog output operation 2-24
digital 2-16
digital I/O operations 2-32
external 2-15, 2-24, 2-32
internal 2-14, 2-24, 2-32

trigger functions 4-4
trigger level: see voltage level
troubleshooting 1-4

U
unsupported features 2-2
update rate 2-22

V
Visual Basic for Windows 3-34
Visual C++ 3-29
voltage level 2-15

	ToC:

