

DAS-1800AO Series

User's Guide

WARRANTY

Hardware

Keithley Instruments, Inc. warrants that, for a period of one (1) year from the date of shipment (3 years for Models 2000, 2001, 2002, 2010 and 2700), the Keithley Hardware product will be free from defects in materials or workmanship. This warranty will be honored provided the defect has not been caused by use of the Keithley Hardware not in accordance with the instructions for the product. This warranty shall be null and void upon: (1) any modification of Keithley Hardware that is made by other than Keithley and not approved in writing by Keithley or (2) operation of the Keithley Hardware outside of the environmental specifications therefore.

Upon receiving notification of a defect in the Keithley Hardware during the warranty period, Keithley will, at its option, either repair or replace such Keithley Hardware. During the first ninety days of the warranty period, Keithley will, at its option, supply the necessary on site labor to return the product to the condition prior to the notification of a defect. Failure to notify Keithley of a defect during the warranty shall relieve Keithley of its obligations and liabilities under this warranty.

Other Hardware

The portion of the product that is not manufactured by Keithley (Other Hardware) shall not be covered by this warranty, and Keithley shall have no duty of obligation to enforce any manufacturers' warranties on behalf of the customer. On those other manufacturers' products that Keithley purchases for resale, Keithley shall have no duty of obligation to enforce any manufacturers' warranties on behalf of the customer.

Software

Keithley warrants that for a period of one (1) year from date of shipment, the Keithley produced portion of the software or firmware (Keithley Software) will conform in all material respects with the published specifications provided such Keithley Software is used on the product for which it is intended and otherwise in accordance with the instructions therefore. Keithley does not warrant that operation of the Keithley Software will be uninterrupted or error-free and/or that the Keithley Software will be adequate for the customer's intended application and/or use. This warranty shall be null and void upon any modification of the Keithley Software that is made by other than Keithley and not approved in writing by Keithley.

If Keithley receives notification of a Keithley Software nonconformity that is covered by this warranty during the warranty period, Keithley will review the conditions described in such notice. Such notice must state the published specification(s) to which the Keithley Software fails to conform and the manner in which the Keithley Software fails to conform to such published specification(s) with sufficient specificity to permit Keithley to correct such nonconformity. If Keithley determines that the Keithley Software does not conform with the published specifications, Keithley will, at its option, provide either the programming services necessary to correct such nonconformity or develop a program change to bypass such nonconformity in the Keithley Software. Failure to notify Keithley of a nonconformity during the warranty shall relieve Keithley of its obligations and liabilities under this warranty.

Other Software

OEM software that is not produced by Keithley (Other Software) shall not be covered by this warranty, and Keithley shall have no duty or obligation to enforce any OEM's warranties on behalf of the customer.

Other Items

Keithley warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation

Items not Covered under Warranty

This warranty does not apply to fuses, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow instructions.

Limitation of Warranty

This warranty does not apply to defects resulting from product modification made by Purchaser without Keithley's express written consent, or by misuse of any product or part.

Disclaimer of Warranties

EXCEPT FOR THE EXPRESS WARRANTIES ABOVE KEITHLEY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OF MERCHANT-ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEITHLEY DISCLAIMS ALL WARRANTIES WITH RESPECT TO THE OTHER HARDWARE AND OTHER SOFTWARE.

Limitation of Liability

KEITHLEY INSTRUMENTS SHALL IN NO EVENT, REGARDLESS OF CAUSE, ASSUME RESPONSIBILITY FOR OR BE LIABLE FOR: (1) ECONOMICAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, PUNITIVE OR EXEMPLARY DAMAGES, WHETHER CLAIMED UNDER CONTRACT, TORT OR ANY OTHER LEGAL THEORY, (2) LOSS OF OR DAMAGE TO THE CUSTOMER'S DATA OR PROGRAMMING, OR (3) PENALTIES OR PENALTY CLAUSES OF ANY DESCRIPTION OR INDEMNIFICATION OF THE CUSTOMER OR OTHERS FOR COSTS, DAMAGES, OR EXPENSES RELATED TO THE GOODS OR SERVICES PROVIDED UNDER THIS WARRANTY.

Keithley Instruments, Inc. 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168

1-888-KEITHLEY (534-8453) \bullet www.keithley.com

Sales Offices: BELGIUM: Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 00 40 • Fax: 02/363 00 64

CHINA: Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892

FINLAND: Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 75 08 10 • Fax: 09-25 10 51 00 FRANCE: 3, allée des Garays • 91127 Palaiseau Cédex • 01-64 53 20 20 • Fax: 01-60 11 77 26 GERMANY: Landsberger Strasse 65 • 82110 Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34

GREAT BRITAIN: Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 0118 929 7500 • Fax: 0118 929 7519

INDIA: Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560 001 • 91-80-509-1320/21 • Fax: 91-80-509-1322

ITALY: Viale San Gimignano, 38 • 20146 Milano • 02-48 39 16 01 • Fax: 02-48 30 22 74

JAPAN: New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 • Fax: 81-3-5733-7556

KOREA: 2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838

NETHERLANDS: Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821

SWEDEN: c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 169 70 Solna • 08-509 04 679 • Fax: 08-655 26 10

SWITZERLAND: Kriesbachstrasse 4 • 8600 Dübendorf • 01-821 94 44 • Fax: 01-820 30 81

TAIWAN: 1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031

DAS-1800AO Series User's Guide

Revision D - August 2000 Part Number: 91280 The information contained in this manual is believed to be accurate and reliable. However, the manufacturer assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of the manufacturer.

THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY THAT IS SUITED FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

DriverLINX, SSTNET, and LabOBJX are registered trademarks and DriverLINX/VB is a trademark of Scientific Software Tools, Inc.

Microsoft and Windows are registered trademarks and Visual C++ and Visual Basic are trademarks of Microsoft Corporation.

Borland is a registered trademark and Borland C++, Delphi, and Turbo Pascal are trademarks of Borland International, Inc.

IBM is a registered trademark of International Business Machines Corporation.

Acrobat is a registered trademark of Adobe Systems Incorporated.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Copyright © Keithley Instruments, Inc., 1999, 1995.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted by Section 117 of the 1979 United States Copyright Act without permission of the Copyright owner is unlawful.

KEITHLEY

Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present.

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to the manual for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line voltage or replacing consumable materials. Maintenance procedures are described in the manual. The procedures explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, and perform safe installations and repairs of products. Only properly trained service personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that are rated Installation Category I and Installation Category II, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most measurement, control, and data I/O signals are Installation Category I and must not be directly connected to mains voltage or to voltage sources with high transient over-voltages. Installation Category II connections require protection for high transient over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are for connection to Category I sources unless otherwise marked or described in the Manual.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30V RMS, 42.4V peak, or 60VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit is capable of operating at or above 1000 volts, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance limited sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective devices to limit fault current and voltage to the card.

Before operating an instrument, make sure the line cord is connected to a properly grounded power receptacle. Inspect the connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input power disconnect device must be provided, in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its specifications and operating instructions or the safety of the equipment may be impaired.

Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating information, and as shown on the instrument or test fixture panels, or switching card.

When fuses are used in a product, replace with same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use of a lid interlock.

If $\stackrel{\triangle}{=}$ or $\stackrel{\triangle}{m}$ is present, connect it to safety earth ground using the wire recommended in the user documentation.

The \(\frac{1}{2} \) symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.

The symbol on an instrument shows that it can source or measure 1000 volts or more, including the combined effect of normal and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.

The **WARNING** heading in a manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.

The CAUTION heading in a manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits, including the power transformer, test leads, and input jacks, must be purchased from Keithley Instruments. Standard fuses, with applicable national safety approvals, may be used if the rating and type are the same. Other components that are not safety related may be purchased from other suppliers as long as they are equivalent to the original component. (Note that selected parts should be purchased only through Keithley Instruments to maintain accuracy and functionality of the product.) If you are unsure about the applicability of a replacement component, call a Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water based cleaner. Clean the exterior of the instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with no case or chassis (e.g., data acquisition board for installation into a computer) should never require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the factory for proper cleaning/servicing.

Table of Contents

Preface

1	Overview	
	Features	-1
	Supporting Software1	-3
	Accessories	L -4
2	Functional Description	
	Analog Input Features	2-3
	Differential/Single-Ended Selection	
	Ground Selection for Single-Ended Inputs	
	Unipolar/Bipolar Selection	
	Channel-Gain Selection	
	Channel Expansion	
	Multiplexer Control Lines MUX 4 to MUX 7	
	External Gain Control Line GEXT	
	Gains and Ranges	
	Maximum A/D Throughput Rates	
	Data Conversion Modes	
	Clock Sources	12
	Pacer Clock Sources2-	12
	Burst Mode Conversion Clock	13
	Triggers	14
	Pre-Trigger Acquisition	
	About-Trigger Acquisition	16
	Post-Trigger Acquisition	17
	Gates	17
	Data Transfer Modes	18
	Analog Output Features	19
	Voltage Range Selection	20
	Maximum D/A Throughput Rates2-	20
	Clock Sources	21
	Triggers and Gates2-	22
	Data Transfer Modes	23
	Digital I/O Features	24
	Using Digital Control Signal DOSTB2-	24

	Using Digital Control Signals TGOUT and TGIN	2-25
	Using Digital Control Signal SSHO	2-26
	Data Transfer Modes	2-27
	Assigning an Interrupt	2-28
	Power	2-28
3	Setup and Installation	
	Unwrapping and Inspecting a Board	3-1
	Installing the Software	3-2
	Installing the DAS-1800AO Series Standard Software	
	Package	3-2
	Before Installing DriverLINX	
	Selecting the DriverLINX components to Install	3-3
	Installing DriverLINX	3-4
	Setting the Base Address	3-5
	Installing a Board	3-6
	Configuring the DAS-1800AO Board with DriverLINX	3-6
4	Cabling and Wiring	
	Attaching an STA-1800U	4-1
	Attaching an STP-50	4-5
	Attaching an SSH-8	4-6
	Attaching an MB01 Backplane	4-7
	Attaching MB02 Backplanes	4-8
	Attaching EXP-1800 Accessories	4-10
	Connecting Signals	4-11
	Precautions	4-11
	Precautions for Using a DAS-1801AO Board at High	
	Gains	4-11
	Additional Precautions	4-12
	Connecting a Signal to a Single-Ended Analog Input	
	Connecting a Signal to a Differential Analog Input	4-13
	Common Connection Schemes for Differential Inputs	
	Avoiding Ground Loops with Differential Inputs	
	Connecting Analog Output Signals	
	Connecting Digital I/O Signals	
	Connecting Digital Control Signals	
	Connecting and Synchronizing Multiple Boards	4-17

5	DriverLINX Analog I/O Panel
6	Calibration6-1Equipment Requirements6-1Potentiometers and Test Points6-1DriverLINX Calibration Utility6-2
7	TroubleshootingProblem Isolation7-1Using the DriverLINX Event Viewer7-1Device Initialization Error Messages7-2Identifying Symptoms and Possible Causes7-2Testing the Board and Host Computer7-5Testing the Accessory Slot and I/O Connections7-5Technical Support7-6
Α	Specifications
В	Connector Pin Assignments Main I/O Connector of DAS-1800AO Series Boards
С	DriverLINX Configuration Notes Configuration C-1 Model C-2 Address C-3 Calibrate C-3 A/D Channels C-3 A/D Volts C-3 D/A Volts C-3 AI IRQ C-4 AI DMA 1, AO DMA 1 C-4 Clock C-4

Special Device Settings
Common-mode reference
Number of EXP-1800s
Simultaneous sample and hold configuration
Disable AO recycle mode
Implementation Notes
Analog Input Subsystem
Analog Input Initialization
Internal Clocking
Burst Mode Sampling
Repeat Mode Sampling
External Clocking
External Triggering
External Gating
Simultaneous Sampling
Analog Input Multiplexer
Data Coding C-13
A/D Conversion Delay
A/D Data Lost
Analog Output Subsystem
Analog Output Initialization
Internal Clocking
Synchronous Analog Input/Output Clocking
External Clocking
External Triggering
Data Coding
D/A Conversion Delay
D/A Data Lost
Digital Input and Output Subsystems C-20
Logical Channels
Digital Input Initialization
Digital Output Initialization
Digital I/O Conversion Delay
Digital I/O Data Lost
Counter/Timer Subsystem
Counter/Timer Initialization
Counter/Timer Interrupt

LIST OF FIGU	ires
Figure 2-1.	Block Diagram of
	DAS-1800AO Series Boards
Figure 2-2.	Timing of A/D Conversion Modes
	for a Queue of Channels 4 to 72-12
Figure 2-3.	Enabling Conversions with Software
	Triggering/Gating and With
	Internal and External Clocks
Figure 2-4.	Enabling Conversions with a
	Hardware Trigger2-16
Figure 2-5.	Hardware Gate
Figure 2-6.	Timing Relationship between Data
	from DO0 to DO3 and Latch Strobe DOSTB 2-25
Figure 2-7.	Timing for the TGOUT Signal2-26
Figure 2-8.	Timing for SSHO Signal
	When Not Used for SSH Hardware2-27
Figure 3-1.	Location of Base Address Switch on
	DAS-1800AO Series Boards
Figure 4-1.	Connector Layout of an STA-1800U Accessory4-2
Figure 4-2.	Cabling and Connections for Attaching an
	STA-1800U to a DAS-1800AO Series Board4-2
Figure 4-3.	Pin Assignments for the Main I/O Connector
	of a DAS-1800AO Series Board
Figure 4-4.	Pin Assignments for Main I/O Connectors
	J1 and J2 of the STA-1800U
Figure 4-5.	Attaching an STP-50 to a
-	DAS-1800AO Series Board4-5
Figure 4-6.	Pin Assignments for Screw Terminals
	of the STP-504-5
Figure 4-7.	Cabling and Connections for Attaching
-	an SSH-8 to a DAS-1800AO Series Board 4-6
Figure 4-8.	Attaching an MB01 Backplane to a
-	DAS-1800AO Series Board4-7
Figure 4-9.	Cabling and Connections for Attaching MB02
	Backplanes to an STA-1800U
Figure 4-10.	Daisy-Chaining STA-1800U Accessories with
	Attached MB02 Backplanes
Figure 4-11.	Daisy-Chaining EXP-1800 Accessories 4-10
Figure 4-12.	•
-	DAS-1800AO Series Board Configured for
	Single-Ended Inputs 4-13

Figure 4-13.	Three Types of Connections for Wiring a
	Signal Source to a DAS-1800AO Series Board
	Configured for Differential Inputs4-14
Figure 4-14.	
_	Avoids a Ground Loop
Figure 4-15.	Differential Input Configuration with a
	Ground Loop
Figure 4-16.	Two Connection Schemes for
	Synchronizing Multiple Boards4-17
Figure 6-1.	Potentiometers and Test Points on the
-	DAS-1800AO Series Boards
Figure B-1.	Pin Assignments for the Main I/O Connector of a
	DAS-1800AO Series Board B-1
Figure B-2.	Pin Assignments for Main I/O Connectors
	J1 and J2 of the STA-1800U Accessory B-2
Figure B-3.	Pin Assignments for STA-1800U Connector J3 . B-3
Figure B-4.	Pin Layouts and Assignments for STA-1800U
	Connectors J4 to J7 and Jumper Pads J8 to J11 B-4
List of Table	es
Table 2-1.	DAS-1801AO Gains and Ranges for
1 4 2 1 1	Unipolar and Bipolar Modes
Table 2-2.	DAS-1802AO Gains and Ranges for
1 4010 2 2.	Unipolar and Bipolar Modes
Table 2-3.	DAS-1800AO Series Board A/D Throughput for
1 4010 2 01	Channel-to-Channel Sampling in Bipolar Mode
	with Fixed Gain
Table 2-4.	DAS-1800AO Series Board A/D Throughput
	for Channel-to-Channel Sampling in
	Unipolar Mode with Fixed Gain
Table 2-5.	Maximum A/D Throughput for
	DAS-1801AO in Bipolar Mode2-9
Table 2-6.	Maximum A/D Throughput for
	DAS-1801AO in Unipolar Mode 2-10
Table 2-7.	Maximum A/D Throughput for
	DAS-1802AO in Bipolar Mode2-10
Table 2-8.	Maximum A/D Throughput for
	DAS-1802AO in Unipolar Mode 2-11
Table 3-1.	I/O Address Map (000H to 3FFH)3-7
Table 7-1.	Troubleshooting Information
Table A-1.	Analog Input Specifications A-1
Table A-2.	Analog Output Specifications

Table A-3.	Digital I/O Specifications
Table A-4.	Power Supply Requirements
Table C-1.	Modes Supported by DAS-1800 Models C-6
Table C-2.	Allowed Operations and Events for
	Supported Subsystem Modes
Table C-3.	Table of logical channel numbers for
	eight external EXP-1800 Multiplexers C-12

Preface

This guide is intended to help you understand the installation, interface requirements, functions, and operation of the DAS-1801AO and DAS-1802AO boards. Unless this guide refers specifically to the DAS-1801AO or DAS-1802AO board, it refers to all boards collectively as the DAS-1800AO Series boards. At the same time, the term *DAS-1800 Series* refers to all members of the DAS-1800 family of data acquisition boards.

This guide focuses primarily on describing the DAS-1800AO Series boards and their capabilities, setting up the boards and their associated software, making typical hookups, and operating the DriverLINX software. There are also sections on calibration and troubleshooting. To follow the information and instructions contained in this manual, you must be familiar with the operation of an IBM PC or compatible in the Windows 95/98 or Windows NT environment. You must also be familiar with data acquisition principles and their applications.

The DAS-1800AO Series User's Guide is organized as follows:

- Section 1 provides an overview of the features of DAS-1800AO Series boards, including a description of supported software and accessories.
- Section 2 describes operating features of the boards in more detail.
 This section contains a block diagram and brief descriptions of the features as they relate to your options for setting up and using the boards.
- Section 3 contains instructions for inspection, software installation, configuration, and board installation.

- Section 4 shows the preferred methods for making I/O (Input/Output) connections, using the available accessories and cables.
- Section 5 Briefly describes the DriverLINX Analog I/O program and Test program.
- Section 6 describes how to calibrate DAS-1800 Series boards.
- Section 7 contains information on isolating and determining the source of operating problems. This section also contains instructions for obtaining technical support.
- Appendix A lists the specifications for DAS-1800AO Series boards.
- Appendix B lists the pin assignments for the main I/O connectors of DAS-1800AO Series boards and for the connectors of DAS-1800 Series accessories.
- Appendix C contains DriverLINX configuration information for the DAS-1800 Series boards.
- An index completes this manual.

Overview

The DAS-1800AO Series boards are multi-function data acquisition boards that operate with DriverLINX software that requires:

- an IBM PC or compatible AT (386 or Pentium CPU) with minimum of 2 MB of memory.
- at least one CD ROM drive, one fixed disk drive, and one floppy disk drive.
- Microsoft Windows 95/98 or Windows NT 4.0 or higher.
- a compiler supporting Microsoft Windows development.
- a mouse is highly recommended.

The DAS-1801AO is a 12-bit, high-gain board, while the DAS-1802AO is a 12-bit, low-gain board. This section describes features, supporting software, and accessories of the DAS-1800AO Series boards.

Features

Analog input features of the DAS-1800AO Series boards are as follows:

- The board acquires data at up to 333 ksamples/s with 12-bit resolution.
- The board is software-configurable for 16 single-ended or 8 differential onboard channels or up to 256 differential channels using expansion accessories.
- Channels are individually software-configurable for gain.
- A 1024-location FIFO (First In First Out) data buffer ensures data integrity at all sampling rates.

Features 1-1

- A 256-location channel-gain queue supports high-speed sampling at the same or different gains and in sequential or non-sequential channel order.
- Burst mode data acquisition emulates simultaneous-sample-and-hold (SSH) capability.
- The boards support real-time simultaneous-sample-and-hold capability.
- Data transfer modes include single- or dual-channel DMA, interrupt, or programmed I/O.
- DMA and interrupt levels are software-selectable.
- The polarity of hardware trigger and gate for A/D (analog-to-digital) conversions is software-selectable.
- A/D triggering supports pre-, post-, and about-trigger acquisitions.

Analog output features of the DAS-1800AO Series boards are as follows:

- Analog output is available through two, 12-bit, deglitched DACs (digital-to-analog converters).
- Each DAC converts up to 500 ksamples/s.
- DAC output ranges are $\pm 5V$ and $\pm 10V$.
- The DACs are supported by a 2048-word data FIFO.
- The DACs can be updated individually or simultaneously.
- At power-up, the DAC outputs are 0V.
- The polarity of hardware trigger and gate for D/A (digital-to-analog) conversions are software-selectable.
- The analog output section can perform recycle-mode waveform generation using the onboard FIFO.
- The DACs can be updated by DMA, interrupt, or programmed I/O transfers.

Digital I/O features of the DAS-1800AO Series boards are as follows:

- The boards have four digital inputs.
- The boards have four digital outputs with a latch strobe.

1-2 Overview

General features of the DAS-1800AO Series boards are as follows:

- Pulsed interrupts allow multiple DAS-1800 Series boards to share interrupt levels.
- All user connections are made through a 50-pin I/O connector at the rear panel of the computer.
- All features are software-programmable except for a board's base address switch.
- The boards provide ±15V power for accessories and external circuitry.
- Interrupt levels (levels 3, 5, 7, 10, 11, and 15) are software-selectable.
- The boards use burst demand mode DMA for increased data transfer throughput.
- The boards make 16-bit data transfers on the AT bus.

For more information on these features refer to Section 2, Functional Description.

Supporting Software

- DAS-1800AO Series standard software package Shipped with DAS-1800AO Series boards. Includes DriverLINX for Microsoft Windows 95/98 or Windows NT and function libraries for writing application programs under Windows in a high-level language such as Microsoft Visual C++, Microsoft Visual Basic, Borland Delphi support files, LabVIEW, utility programs, and language-specific example programs.
- **DriverLINX** the high-performance real-time data-acquisition device drivers for Windows application development includes:
 - DriverLINX API DLLs and drivers supporting the DAS-1800AO Series hardware.
 - Analog I/O Panel A DriverLINX program that verifies the installation and configuration of DriverLINX to your DAS-1800AO Series board and demonstrates several virtual bench-top instruments.

- Learn DriverLINX an interactive learning and demonstration program for DriverLINX that includes a Digital Storage Oscilloscope.
- Source Code for the sample programs.
- DriverLINX Application Programming Interface files —
 application programming interface files for the DAS-1800AO
 Series.
- LabVIEW support for DriverLINX application programming interface files for the DAS-1800AO Series.
- DriverLINX On-line Help System provides immediate help as you operate DriverLINX.
- Supplemental Documentation on DriverLINX installation and configuration, analog and digital I/O programming, counter/timer programming, technical reference, and information specific to the DAS-1800AO Series hardware.
- **DAS-1800AO Series utilities** The following utilities are provided as part of both the DAS-1800AO Series standard software packages:
 - Analog I/O Utility DriverLINX utility used for data acquisition and testing board operation.
 - Test Utility DriverLINX utility used for testing board operation.
 - Calibration Utility DriverLINX utility used for calibration.

Accessories

The following accessories are available for use with DAS-1800AO Series boards:

- STA-1800U screw terminal accessory. This accessory connects to the main I/O connector of a DAS-1800AO Series board through a CDAS-2000 cable to make all I/O signals accessible through labeled screw terminals.
- **STP-50** screw terminal panel. This accessory provides general-purpose screw-terminal connections in a compact form factor.

1-4 Overview

- SSH-8 An 8-channel simultaneous-sample-and-hold accessory for the DAS-1800AO Series boards. Refer to the SSH-8 User's Guide for more information.
- **MB Series modules and MB01/02 backplanes** Plug-in, isolated, signal-conditioning modules and backplanes. Refer to the *MB Series User's Guide* for more information.
- **EXP-1800** A 16-channel expansion accessory that connects directly to DAS-1800AO Series boards. Refer to the *EXP-1800 User's Guide* for more information.
- **C16-MB1** A cable with a 37-pin, female, D-type connector and a 26-pin, female header connector for connecting an STA-1800U to an MB01 backplane.
- C-2600 An 18-inch ribbon cable for connecting an STA-1800U to an MB02 backplane.
- C-1800 An 18-inch ribbon cable with two 37-pin female type D connectors for connecting an STA-1800U to an SSH-8.
- CDAS-2000 Series The CDAS-2000 is a 24-inch ribbon cable for connecting a DAS-1800AO Series board to an STA-1800U, an STP-50, or an EXP-1800. The SDAS-2000 is a 24-inch shielded version of the CDAS-2000.
- CAB-50 Series A cable you use to form a daisy chain of EXP-1800s; this cable is available in two lengths, as follows: the CAB-50 is 4 inches long, and the CAB-50/1 is 18 inches long.
- CACC-2000 A 24-inch ribbon cable for daisy chaining additional STA-1800U accessories to the first STA-1800U or additional EXP-1800 accessories to the first EXP-1800.

Accessories 1-5

Functional Description

This section describes the features of the analog input, analog output, and digital I/O sections of the DAS-1800AO Series boards. These descriptions are provided to familiarize you with the operating options and to enable you to make the best use of your board. Figure 2-1 shows the block diagram of the DAS-1800AO Series boards.

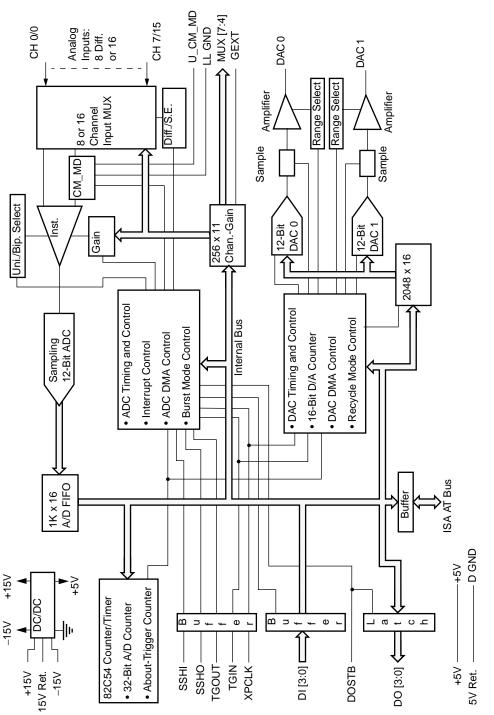


Figure 2-1. Block Diagram of DAS-1800AO Series Boards

Analog Input Features

The analog input section of a DAS-1800AO Series board multiplexes all the active input channels (up to 16 single-ended or 8 differential) down to a single, sampling ADC (analog-to-digital converter). Sampling resolution of the ADC is 12 bits (one part in 4096). Other features of the analog input section include software-configurable inputs, a channel-gain queue, data conversion modes, clock sources, trigger and gate control, and data transfer modes. These features are described in the following subsections.

Differential/Single-Ended Selection

Using DriverLINX software, you can set DAS-1800AO Series boards to operate at either differential or single-ended inputs (see "DriverLINX Configuration Notes" on page C-1). Differential inputs measure the difference between two signals. Single-ended inputs are referred to a common ground, also called *common-mode ground reference*.

When you connect single-ended inputs to a DAS-1800AO Series board, you can use the board's LL GND (analog ground) or U_CM MD (user-common mode) connections for your common-mode ground reference. You specify your choice using DriverLINX (see "DriverLINX Configuration Notes" on page C-1).

Generally, you want to use differential inputs for low-level signals whose noise component is a significant part of the signal or if the signal has a non-ground common mode. You want to use single-ended inputs for high-level signals whose noise component is not significant.

The specific level at which one of these input configurations becomes more effective than the other depends on the application. However, you should use differential inputs for voltage ranges of 100mV and below.

Ground Selection for Single-Ended Inputs

When you use single-ended inputs, you have two ways of grounding input signals: the analog ground (default) and the user-common ground. The two schemes differ in how the low side of the instrumentation amplifier is connected. In the default mode, the low side of the amplifier is connected to analog ground (LL GND). In the user-common mode, the low side of the amplifier is connected to a pin on the connector for user-common ground (U_CM MD).

The user-common mode provides a means for eliminating ground loops in the system by connecting the reference ground for inputs to the U_CM MD input pin. Since the U_CM MD pin connects to the high input impedance of the instrumentation amplifier, the signal contains no power-supply return current.

The user-common mode also provides a means for making single-ended measurements of signals referred to a voltage that is not ground or whose output range does not include ground. For example, a common way to perform 4 to 20mA current monitoring is to connect a loop with a 250Ω resistor to ground; the resistor yields a 1 to 5V output in this current range. This method works but uses only 80% of the input range when connected to a 0 to 5V range. A better way is to use a 312.5Ω resistor and refer all measurements to 1.25V. The actual output voltage then ranges from 1.25V to 6.25V; however, since the amplifier low side is connected to 1.25V, the measurement range is now a span of 5V, making the entire input range available and increasing resolution of the measurements by 20%.

If you use single-ended input configurations, the user-common mode is the recommended alternative. Use the default mode only if you want the convenience of not having to connect a separate wire for low input.

Unipolar/Bipolar Selection

Using DriverLINX, you can set the DAS-1800AO Series boards to operate in either unipolar or bipolar input mode (see "DriverLINX Configuration Notes" on page C-1). A unipolar signal is always positive (0 to 5V, for example), while a bipolar signal can swing up and down between positive and negative peak values (±5V, for example).

The DAS-1800AO Series boards use positive magnitude to represent unipolar signals and 2's complement for bipolar signals. When the input range offers the same peak-voltage capacity for unipolar or bipolar modes, the unipolar mode doubles the converter's resolution.

Channel-Gain Selection

The DAS-1800AO Series boards offer up to 16 single-ended or 8 differential onboard analog input channels. Using EXP-1800 expansion accessories, you can increase the number of inputs to 256, which are differential only. To accommodate channel and gain settings for up to 256 inputs, the DAS-1800AO Series boards contain a RAM storage circuit for a 256-position channel-gain queue. Each of the 256 queue positions holds your choice of a channel number and a corresponding gain. You can enter multiple channels sequentially or non-sequentially and with the same or different gain codes. Channel expansion, channel sequencing control, and available gains and input ranges for DAS-1800AO Series boards are discussed in the following subsections.

Channel Expansion

If you require additional analog input channels, you can configure your DAS-1800AO Series board for single-ended inputs and attach up to 16 EXP-1800 expansion accessories or up to 16 MB02 backplanes. Either option can increase your input capacity to 256.

If you use MB02 backplanes, use one STA-1800U for every four backplanes. Connect each group of four backplanes to an STA-1800U, as shown in Section 4, and daisy-chain any additional STA-1800U accessories to the first STA-1800U.

Sampling sequences and gain settings for all expansion-board channels are communicated through the control lines described in the following two subsections.

Multiplexer Control Lines MUX 4 to MUX 7

Multiplexer lines MUX 4 to MUX 7 control the channel sequencing of EXP-1800 and MB01/02 expansion accessories. These lines carry the channel-sequencing information from the channel-gain QRAM through the main I/O connector of DAS-1800AO Series boards.

External Gain Control Line GEXT

External gain line GEXT sets channel gains on EXP-1800 accessories to 1 or 50. This line carries the channel-gain settings from the channel-gain QRAM through the main I/O connector of the DAS-1800AO Series boards.

Gains and Ranges

The available gains and their corresponding input ranges are listed in Table 2-1 for the DAS-1801AO and Table 2-2 for the DAS-1802AO.

Table 2-1. DAS-1801AO Gains and Ranges for Unipolar and Bipolar Modes

Gain	Unipolar Range	Bipolar Range	
1	1 0 to 5V -5.0 to		
5 0 to 1V		-1.0 to +1.0V	
50 0 to 100mV		-100 to +100mV	
250 0 to 20mV		−20 to +20mV	

Table 2-2. DAS-1802AO Gains and Ranges for Unipolar and Bipolar Modes

Gain	Unipolar Range	Bipolar Range	
1 0.0 to +10.0V		-10 to +10V	
2 0.0 to +5.0V		-5.0 to +5.0V	
4 0 to 2.5V		-2.5 to + 2.5 V	
8	0 to 1.25V	-1.25 to +1.25V	

Maximum A/D Throughput Rates

Because you can change input ranges on a per-channel basis, throughput may drop if you group channels with varying gains in sequence. The drop occurs because the channels with low-level inputs (magnitude of 100mV or less) are slower than those with high-level inputs and because the channels with low-level inputs must drive out the residual signals left by the high-level inputs. The best way to maximize throughput is to use a combination of sensible channel grouping and external signal conditioning. When using the channel-gain queue, consider the following suggestions:

- Keep all channels configured for a particular range together, even if you have to arrange the channels out of sequence.
- If your application requires high-speed scanning of low-level signals, use external signal conditioning to amplify the signal to ±5V or 0 to 5V. This method offers the advantages of increasing total system throughput and reducing noise.
- If you are not using all the channels, you can make a particular channel-gain entry twice to allow for settling time. In this case, you want to ignore the results of the first entry.
- If you are measuring steady-state signals, do not use the channel-gain queue. Instead, use software to step through the channels and perform single-channel acquisitions. For example, use software-controlled, single-channel acquisitions to acquire 1000 samples on channel 0 at a gain of 1 and then 2000 samples on channel 1 at a gain of 250 to virtually eliminate interference. This method is the best for measuring steady-state signals even if all the channels are at the same gain.

You must give special consideration to the direct measurement of low-level signals with the DAS-1801AO board. When using the ± 20 mV, 0 to 20mV, ± 100 mV, or 0 to 100mV ranges, measurement throughput drops for two reasons:

- The amplifier needs more time to settle to rated accuracy when switching to a high gain.
- Noise in the measurements is higher and thus can require post-acquisition filtering (averaging) to achieve accurate results.

The DAS-1801AO has best noise performance if presented with a perfect signal in these ranges, but perfect signals are virtually nonexistent in the real world. Since the DAS-1801AO has very high bandwidth (bandwidth for low-level signals is about 8 to 10MHz) any noise is amplified and digitized. As a result, you must carry out the measurement of low-level signals carefully to minimize noise effects.

Low-level transducers are best used with signal conditioning. Use the ± 20 mV, 0 to 20mV, ± 100 mV, and 0 to 100mV ranges with the differential input mode.

The tables that follow show throughput for various configurations. Note that these throughputs are based on driving the input with an ideal voltage source. The output impedance and drive of the source are far more critical when making large gain changes between two channels whose inputs are at opposite extremes of their input ranges, as when a signal near –20mV is measured after a signal at near +5V. You will get better performance driving adjacent channels at the same gain. The source needs to be able to drive both the capacitance of the cable and the RC (resistor-capacitor) product of the multiplexer resistance and the output capacitance of the multiplexer and board. The multiplexer is typically about 360Ω (1k Ω maximum) in series with 90pF output capacitance.

On DAS-1800AO Series boards, the maximum throughput for sampling one channel at any gain is 333 ksamples/s. The throughput for channel-to-channel sampling with fixed gain in bipolar mode (0.024% maximum error) is shown in Table 2-3.

Table 2-3. DAS-1800AO Series Board A/D Throughput for Channel-to-Channel Sampling in Bipolar Mode with Fixed Gain

DAS-1801AO Input Range	DAS-1802AO Input Range	Throughput
_	±10.0V	312.5 ksamples/s
±5.00V	±5.00V	312.5 ksamples/s
_	±2.50V	312.5 ksamples/s
_	±1.25V	312.5 ksamples/s
±1.00V	_	312.5 ksamples/s
±100mV	_	312.5 ksamples/s
±20mV	_	75 ksamples/s

The throughput for channel-to-channel sampling with fixed gain in unipolar mode (0.024% maximum error) is shown in Table 2-4.

Table 2-4. DAS-1800AO Series Board A/D Throughput for Channel-to-Channel Sampling in Unipolar Mode with Fixed Gain

DAS-1801AO Input Range	DAS-1802AO Input Range	Throughput
_	0 to 10.0V	312.5 ksamples/s
0 to 5.00V	0 to 5.00V	312.5 ksamples/s
_	0 to 2.50V	312.5 ksamples/s
_	0 to 1.25V	312.5 ksamples/s
0 to 1.00V	_	312.5 ksamples/s
0 to 100mV	_	250 ksamples/s
0 to 20mV	_	60 ksamples/s

The maximum throughput for a DAS-1801AO board, operating in bipolar mode and having less than 1 LSB of error when driven from an ideal voltage source, is shown in Table 2-5.

Table 2-5. Maximum A/D Throughput for DAS-1801AO in Bipolar Mode

	Maximum Throughput			
	To ±5V	To ±1.0V	To ±100mV	To ±20mV
From ±5.0V	312.5 ksamples/s	250 ksamples/s	200 ksamples/s	70 ksamples/s
From ±1.0V	250 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	70 ksamples/s
From ±100mV	200 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	70 ksamples/s
From ±20mV	70 ksamples/s	70 ksamples/s	70 ksamples/s	75 ksamples/s

The maximum throughput for a DAS-1801AO board, operating in unipolar mode and having less than 1 LSB of error when driven from an ideal voltage source, is shown in Table 2-6.

Table 2-6. Maximum A/D Throughput for DAS-1801AO in Unipolar Mode

	Maximum Throughput				
	To 0 to 5V	To 0 to 1.0V	To 0 to 100mV	To 0 to 20mV	
From 0 to 5.0V	312.5 ksamples/s	200 ksamples/s	200 ksamples/s	50 ksamples/s	
From 0 to 1.0V	200 ksamples/s	312.5 ksamples/s	250 ksamples/s	60 ksamples/s	
From 0 to 100mV	200 ksamples/s	250 ksamples/s	250 ksamples/s	60 ksamples/s	
From 0 to 20mV	50 ksamples/s	60 ksamples/s	60 ksamples/s	60 ksamples/s	

The maximum throughput for a DAS-1802AO board, operating in bipolar mode and having less than 1 LSB of error when driven from an ideal voltage source, is shown in Table 2-7.

Table 2-7. Maximum A/D Throughput for DAS-1802AO in Bipolar Mode

	Maximum Throughput				
	To ±10.0V	To ±5.0V	To ±2.50V	To ±1.25V	
From ±10.0V	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	
From ±5.0V	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	
From ±2.50V	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	
From ±1.25V	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	312.5 ksamples/s	

The maximum throughput for a DAS-1802AO board, operating in unipolar mode and having less than 1 LSB of error when driven from an ideal voltage source, is shown in Table 2-8.

Table 2-8. Maximum A/D Throughput for DAS-1802AO in Unipolar Mode

	Maximum Throughput				
	To 0 to 10.0V	To 0 to 5.0V	To 0 to 2.5V	To 0 to 1.25V	
From 0 to 10.0V	312.5 ksamples/s	312.5 ksamples/s	250 ksamples/s	200 ksamples/s	
From 0 to 5.0V	312.5 ksamples/s	312.5 ksamples/s	250 ksamples/s	200 ksamples/s	
From 0 to 2.5V	250 ksamples/s	250 ksamples/s	312.5 ksamples/s	200 ksamples/s	
From 0 to 1.25V	200 ksamples/s	200 ksamples/s	200 ksamples/s	312.5 ksamples/s	

Data Conversion Modes

The analog input section of DAS-1800AO Series boards support two modes of A/D data conversion: paced and burst. The conversion rate for each of these two modes is controlled by a different clock: the pacer clock for paced mode and the burst mode conversion clock for burst mode. Other differences between the two data conversion modes are as follows:

- Paced mode Paced mode is the default data conversion mode and is the mode best-suited for continuous scanning of a queue of channels at a constant rate. In the paced mode, the conversion rate equals the pacer clock rate. The sample rate, which is the rate at which a single channel is sampled, is the pacer clock rate divided by the number of channels in the queue.
- **Burst mode** In burst mode, each pulse from the pacer clock starts a scan of a queue of channels. The conversion rate during a burst mode scan is equal to the rate of the burst mode conversion clock. The sample rate, which is the rate at which a single channel is sampled, is equal to the pacer clock rate. Burst mode can also be used for pseudo-simultaneous-sample-and-hold in conjunction with DMA or interrupt operations.

Figure 2-2 shows the timing relationships of the paced and burst modes for a queue of channels 4 to 7.

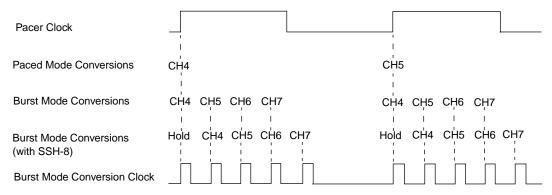


Figure 2-2. Timing of A/D Conversion Modes for a Queue of Channels 4 to 7

Clock Sources

DAS-1800AO Series boards provide two clocks for A/D conversions: a pacer clock and a burst mode conversion clock. In paced mode, the pacer clock works alone to time interrupt-mode and DMA-mode operations; in burst mode and burst mode with SSH, the pacer clock and the burst mode conversion clock work together to time interrupt-mode and DMA-mode operations. The timing for these two modes is illustrated in Figure 2-2. The paced mode and burst mode conversion clock sources are described in the following subsections.

Pacer Clock Sources

The following clock sources can be used by DAS-1800AO Series boards for A/D paced mode conversions:

- **Software** DAS-1800AO Series boards allow you to acquire single or multiple samples under program control.
- Hardware (internal) The internal pacer clock uses the onboard 82C54 counter/timer and a crystal-controlled 5MHz time base. The internal pacer clock is programmable between a maximum rate of 333kHz and a minimum rate of 0.0012Hz. When not used to pace the analog input, the internal clock can serve to pace other events such as the digital I/O through the use of interrupts. The internal A/D pacer clock can also serve to pace D/A conversions (during simultaneous A/D sampling and D/A conversions).

• Hardware (external) — An external pacer clock must be a TTL-compatible signal attached to XPCLK (pin 44) of the main I/O connector (pin 44 of the main I/O connector is accessible through pin 38 of STA-1800U connectors J1 and J2). The active edge for this clock is programmable.

An external clock is useful if you want to pace at rates not available with internal clocking, if you want to pace at uneven intervals, or if you want to pace on the basis of an external event. An external clock also allows you to synchronize multiple boards with a common timing source (see "Connecting and Synchronizing Multiple Boards" on page 4-17).

Note: The ADC acquires samples at a maximum of 333 ksamples/s (one sample every 3.0µs). If you are using an external clock, make sure that it does not initiate conversions at a faster rate than the ADC can handle.

If you are acquiring samples from multiple channels, the maximum sampling rate for each channel is equal to the maximum allowable conversion rate divided by the number of channels (see "Maximum A/D Throughput Rates" on page 2-7).

Burst Mode Conversion Clock

In burst mode and burst mode with SSH, the internal burst mode conversion clock determines the A/D conversion rate, while the pacer clock (internal or external) determines the rate at which bursts occur. In this manual, the conversion rate during burst mode conversion is referred to as the *burst mode conversion rate*, and the rate at which bursts occur is referred to as the *scan rate*.

DAS-1800 Series software allows you to program the A/D pacer clock to adjust the interval between scans. This software also allows you to adjust the burst mode conversion rate. The burst mode conversion clock frequency is programmable for a range of 15.625kHz to 333 kHz (64µs to 3µs in 1µs increments).

The sample rate (pacer clock rate) should be set for no more than the burst mode conversion clock rate divided by the number of channels in the burst. The maximum burst mode conversion clock rate is gain-sensitive, as explained in "Maximum A/D Throughput Rates" on page 2-7.

With the SSH-8 attached to a DAS-1800AO Series board, the sample rate (pacer clock rate) can be no more than the burst mode conversion rate divided by the sum of one plus the number of channels in the burst. For information on the signal interface between a DAS-1800AO Series board and SSH-8, refer to "Using Digital Control Signal SSHO" on page 2-26.

Triggers

A trigger can start or stop an interrupt-mode or DMA-mode analog input operation. An operation can use either one or two triggers. Every operation must have a *start trigger* that marks the beginning of an operation. You can use an optional second trigger, the *about trigger*, to define when an operation stops. You can use one of the following trigger sources to start an analog input operation:

- **Internal** When you enable the analog input operation, conversions begin immediately.
- External Analog While a hardware analog trigger is not a hardware function of the DAS-1800AO Series boards, you can program an analog trigger using one of the analog input channels as the trigger channel. The DAS-1800AO Series DriverLINX software provides functions for an analog trigger; refer to "DriverLINX Configuration Notes" on page C-1 and the DriverLINX on-line documentation provided with your DAS-1800AO Series board.
- External Digital Connect the digital trigger to TGIN (pin 46) of the main I/O connector (pin 46 of the main I/O connector is accessible through pin 42 of STA-1800U connectors J1 and J2). Trigger types are as follows:
 - Positive-edge trigger Triggering occurs on the rising edge of the trigger signal.
 - Negative-edge trigger Triggering occurs on the falling edge of the trigger signal.

The actual points at which conversions begin depend on whether the clock source is internal or external, as follows:

- Internal Clock The 82C54 counter/timer is idle until the trigger occurs. Within 400ns, the first conversion begins. Subsequent conversions are synchronized to the internal clock. An internal clock can be used with an internal gate, an external trigger, or an external gate.
- External Clock Conversions are armed when the trigger occurs; they begin with the next active edge of the external clock and continue with subsequent active edges. An external clock can be used with an internal gate, an external trigger, or an external gate.

The polarity of external triggers in the DAS-1800AO Series boards is software-selectable. Figure 2-3 illustrates the enabling of conversions with software triggering/gating and with internal and external clock sources. In the diagram, the software enabling of the conversion process represents the point at which the computer issues a write to allow conversions. The delay shown between that point and startup of the onboard clock is less than 1µs. Figure 2-4 illustrates the enabling of conversions with a hardware trigger.

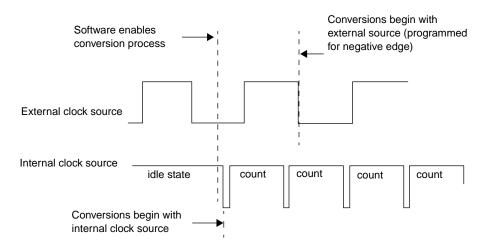


Figure 2-3. Enabling Conversions with Software Triggering/Gating and With Internal and External Clocks

If you specify an about trigger, the operation stops when a specified number of samples has been acquired after the occurrence of the about trigger. As described in the following subsections, availability of the about trigger provides the capability to define operations that acquire data before a trigger (pre-trigger acquisition), operations that acquire data before and after a trigger (about-trigger acquisition), and operations that acquire data after a trigger (post-trigger acquisition).

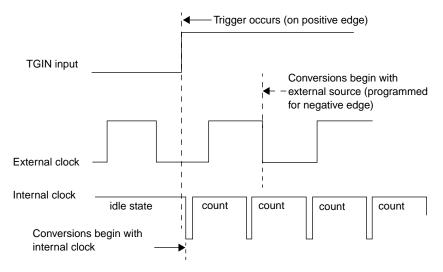


Figure 2-4. Enabling Conversions with a Hardware Trigger

Pre-Trigger Acquisition

In pre-trigger acquisition, the data of interest appears before a specific digital trigger. Acquisition starts on an internal, analog, or digital trigger and continues until the digital-trigger. Pre-trigger acquisition is available with DMA-mode operations only.

About-Trigger Acquisition

In about-trigger acquisition, the data of interest appears both before and after a specific digital trigger. Acquisition starts on an internal, analog, or digital trigger and continues until a specified number of samples has been acquired after the digital trigger. About-trigger acquisition is available only with DMA-mode operations.

Post-Trigger Acquisition

In post-trigger acquisition, the data of interest appears after a specific event. Acquisition starts on an internal, analog, or digital trigger and continues until a specified number of samples has been acquired or until the operation is stopped by software.

Gates

A gate in the active state allows conversions to proceed. Connect the external gate to TGIN (pin 46) of the main I/O connector.

The way conversions are synchronized depends on whether you are using an internal or an external clock, as follows:

- With internal clocking The 82C54 stops counting when the gate signal goes inactive. When the gate signal goes active, the 82C54 is reloaded with its initial count value and starts counting again; therefore, with internal clocking, conversions are synchronized to the gate signal.
- With external clocking The signal from the external clock continues uninterrupted while the gate signal is inactive; therefore, with external clocking, conversions are synchronized to the external clock.

Figure 2-5 illustrates the use of the hardware gate with both an external clock and an internal clock.

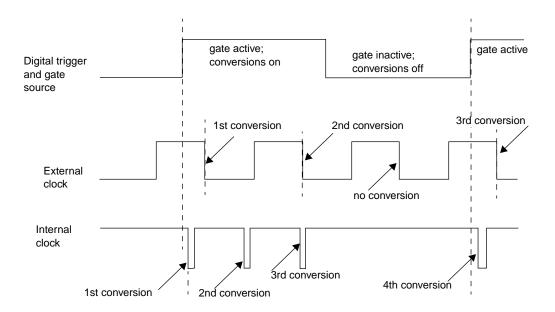


Figure 2-5. Hardware Gate

Data Transfer Modes

Using the appropriate software, you can transfer data from the DAS-1800AO Series boards to the computer using the following data transfer modes:

- **Single** In single mode, the board is driven by software to acquire and convert a single sample from an analog input channel.
- **Interrupt** An interrupt is generated when the board needs to transfer data to the computer. Interrupts are also generated by the following events: FIFO not full, FIFO half full, about-trigger terminal count, data overflow, and end of DMA transfer.

An interrupt occurs in the background, allowing the CPU to execute other instructions. The interrupt level is software-selectable.

Unpredictable interrupt latencies in the Windows environment can make maximum board speeds unachievable in the interrupt mode. When in the Windows environment, you are advised to use single- or dual-channel DMA instead of the interrupt transfer mode.

 DMA — DMA is a method of bypassing the CPU to transfer data directly between an I/O device and computer memory. In the IBM PC AT family, DMA is directed by the DMA controllers and can run in the background while the CPU is executing other instructions. The ability to run independent of the CPU and at high-transfer rates makes DMA an attractive method for transferring data in data acquisition systems.

DAS-1800AO Series boards use DMA channels 5, 6, and 7 to perform single- or dual-channel DMA transfers of A/D data from the board to memory. When you set up your configuration file, you can specify these channels individually for single-channel DMA or in pairs for dual-channel DMA.

Each DMA channel can transfer up to 65,536 A/D samples before it has to be reprogrammed with a new memory address. When more than 65,536 samples are required by an application, the FIFO automatically buffers the samples while the DMA channel is being re-programmed for another address. In most situations, this FIFO buffering capability allows you to acquire large amounts of *gap-free* data into multiple buffers at up to maximum board speed using a single DMA channel.

Generally, if you are programming operations in the Windows Enhanced mode, you should use dual-channel DMA to acquire data reliably at maximum board speeds.

Analog Output Features

The analog output section of a DAS-1800AO Series board contains two 12-bit DACs with bipolar outputs. Each DAC is deglitched (a glitch is a transient that can occur during certain types of voltage changes). You can update the DACs individually or simultaneously by writing a data word to each DAC or by using interrupts or DMA.

You can pace analog output conversion with an internal or external clock and an internal or external trigger/gate. Analog output pacing can be synchronous with or independent of analog input pacing.

A 2048 x 16 location FIFO provides a buffer storage for the analog output. The analog output's *Recycle* mode allows you to generate a waveform based on continuous duplication of the contents of this FIFO. Recycle mode can work with FIFO contents in a range of 2 to 2048 samples. The waveform can be generated at maximum rate and without burdening the computer bus with data transfers.

Analog output features are discussed in the following subsections.

Voltage Range Selection

Each DAC has bipolar output voltage ranges of $\pm 5V$ and $\pm 10V$. The ranges are software-selectable. The DAC outputs power up to 0V at reset.

Maximum D/A Throughput Rates

The maximum achievable throughput rate of each DAC is specified as 500 ksamples/s. Actual rates may be reduced by the factors of settling time and data transfer mode.

Settling time can reduce throughput when a DAC must convert voltage swings at or close to full scale ($\pm 5V$ or $\pm 10V$). Each DAC and its associated circuitry require more time to settle from a large voltage swing. A typical DAC settling time for a 20V ($\pm 10V$) swing is 3 μ s, which equates to a DAC throughput of 333 ksamples/s.

Settling time can also reduce throughput for small voltage steps when the input code represents a voltage step that puts a DAC through a major transition (from the digital code 1000 0000 0000 to the digital code 0111 1111 1111). This transition produces a glitch that requires a significant settling time. While the DACs contain circuitry to remove glitches from the output, the effect on settling time remains. A typical DAC settling time for a major transition is less than 2µs, which equates to a maximum throughput of 500 ksamples/s.

Data transfer modes (see "Data Transfer Modes" on page 2-23) affect throughput by the nature of their operation and their use of the computer bus. Recycle mode is the fastest of the data transfer modes. Recycle mode allows waveforms of up to 2048 samples to recycle in onboard memory and does not require use of the computer bus. Throughput rates for recycle mode easily reach 500 ksamples/s for each DAC.

The DMA data transfer mode uses the computer bus. This mode allows combined throughput rates of up to 500 ksamples/s for the two DACs.

The interrupt data transfer mode also uses the computer bus. This mode is useful for combined throughput rates of less than 200 ksamples/s for the two DACs.

Clock Sources

You can initiate analog output conversions one-at-a-time through program control or continuously by one of three hardware clocks. Clock sources for these conversions are discussed as follows:

- **Software** Program control allows the conversion of single or multiple samples and is useful for very slow or DC applications.
- **Hardware (internal)** The internal clock consists of a 16-bit counter with optional divide-by-ten prescaler driven by a 5 MHz crystal oscillator. The internal clock is programmable between a maximum rate of 500 kHz and a minimum rate of 7.63 Hz.
- Hardware (external) The external clock must be an externally applied TTL-compatible signal attached to XPCLK (pin 44) of the main I/O connector (pin 44 of the main I/O connector is accessible through pin 38 of STA-1800U connectors J1 and J2). The external clock for the analog input section also uses XPCLK. The active edge for this clock is programmable.

An external clock is useful if you want to pace at rates not available with internal clocking, if you want to pace at uneven intervals, or if you want to pace on the basis of an external event. An external clock also allows you to synchronize multiple boards with a common timing source (see "Connecting and Synchronizing Multiple Boards" on page 4-17).

• Hardware (internal A/D clock) — This source is the pacer clock (see "Clock Sources" on page 2-12). Using this clock to pace D/A as well as A/D conversions allows you to perform tightly coupled stimulus-response operations at rates of up to 333 ksamples/s.

Triggers and Gates

There are several options for starting and stopping D/A conversions when pacing with a hardware clock. Conversions can be enabled through program control or through an external hardware trigger or gate. Conversions can be disabled through program control or through an external hardware gate. In addition, you can continuously retrigger a waveform running in recycle mode to its beginning using an external hardware trigger. Refer to "Data Transfer Modes" on page 2-23 for information on recycle mode. Trigger types are as follows:

- Positive-edge trigger Triggering occurs on the rising edge of the trigger signal.
- Negative-edge trigger Triggering occurs on the falling edge of the trigger signal.

Available trigger/gate sources and their applications are as follows:

- Internal Trigger You can use software (program) control to enable or disable analog output conversions. D/A conversions begin about 1µs after the computer issues the necessary write while using an internal hardware clock or begin on the next active edge of an external clock.
- external Trigger You can start analog output conversions by connecting a trigger signal to the TGIN (pin 46) input of the main I/O connector. This input is TTL-compatible and is shared with the analog input section. The active edge of this signal is programmable. Conversions begin about 400ns after the active edge of an external trigger when using an internal hardware clock or on the next active edge of an external clock. The DAS-1800 Series DriverLINX program provides functions for an analog trigger; refer to "DriverLINX Configuration Notes" on page C-1 and the DriverLINX on-line documentation provided with your DAS-1800AO Series board.

- **Retrigger** When using the recycle mode, a waveform stored in the onboard memory can be continuously retriggered from some point before its end to its beginning using an external signal connected to the TGIN input on pin 46 of the main I/O connector. The active edge of the external signal is programmable.
- External Gate You enable analog output conversions only while a signal connected to the TGIN (pin 46) input of the main I/O connector is active. This input is TTL-compatible and is shared with the analog input section. The polarity of the signal is programmable. When using an internal hardware clock, D/A conversions begin about 400ns after an external gate becomes active and terminate when the gate signal becomes inactive. When using an external clock, D/A conversions begin on the next active clock edge after an external gate becomes active and terminate when the gate signal becomes inactive.

Data Transfer Modes

DAS-1800AO Series boards support the following data transfer modes for the analog output section:

- **Single** In single mode, the software driver writes a single value to one analog output channel.
- Interrupt DAS-1800AO Series boards support the following interrupt levels for the transfer of data to the analog output section: 3, 5, 7, 10, 11, and 15. The levels are software-selectable. An interrupt at the selected level is generated for such events as data underflow, DMA terminal count, FIFO not full, and FIFO not half full.
- **DMA** DAS-1800AO Series boards support the following DMA channels for the transfer of data to the analog output section: 5, 6, and 7. You select a single DMA channel for D/A data transfers.
- **Recycle** In recycle mode, a waveform of 2 to 2048 samples is loaded into D/A FIFO memory. This waveform cycles to the DAC output continuously at a rate determined by the number of samples in the waveform and the rate of the D/A clocking source.

If an output waveform from a DAC is repetitive and is less than or equal to 2048 samples, the recommended mode is *recycle*. Recycle mode does not use the computer bus during waveform generation and is therefore independent of bus speeds and the operating environment (Windows). Output rates of 500 ksamples/s are achievable by each DAC.

If an output waveform from a DAC is non-repetitive or contains more than 2048 samples, the recommended mode is interrupt or DMA; these modes are typically used by the analog input section, as well.

Note: Actual throughput of the analog output section also depends on the data transfer rate of the analog input, your computer, and any other processes occurring at the same time.

Under Windows, DMA data transfers are recommended; they produce typical throughputs of 333 ksamples/s (and up to 500 ksamples/s).

Digital I/O Features

DAS-1800AO Series boards contain four digital inputs (DI0 to DI3) and four digital outputs (DO0 to DO3). Logic 1 on an I/O line indicates that the input/output is high (greater than 2.0V); logic 0 on an I/O line indicates that the input/output is low (less than 0.8V). The digital inputs are compatible with TTL-level signals. These inputs are provided with $10k\Omega$ pull-up resistors to +5V; therefore, the inputs appear high (logic 1) with no signal connected.

Using Digital Control Signal DOSTB

The DAS-1800AO Series boards provide strobe signal DOSTB (on pin 19) for the purpose of strobing data through the digital outputs and latching the data into a register in external equipment. Where DAS-1800AO Series boards use the positive edge of the strobe to strobe data out, you must use the negative edge to strobe data into other equipment because the negative edge gives you a 300ns lag to allow for delays. Data is valid until the next strobe, as shown in Figure 2-6.

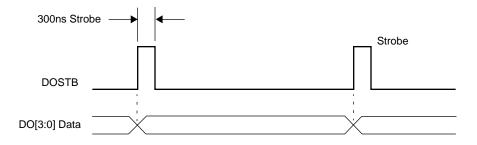


Figure 2-6. Timing Relationship between Data from DO0 to DO3 and Latch Strobe DOSTB

Using Digital Control Signals TGOUT and TGIN

You can use the trigger/gate output TGOUT (on pin 20) signal only when the onboard pacer clock is used to time conversions. Use TGOUT to synchronize other DAS-1800 Series boards or to trigger or gate user-specific events as follows:

- When using digital control signal TGIN as a trigger, TGOUT behaves as shown in Figure 2-7a. Note that when you use this option, TGOUT does not retrigger and thus cannot be used with about-trigger acquisitions. Note also that there is a delay of about 200 ns between the active edge of TGIN and the starting edge of TGOUT.
- When using digital control signal TGIN as a gate, TGOUT behaves as shown in Figure 2-7b. Note that there is a delay of about 200ns between the active edge of TGIN and the starting edge of TGOUT.
- When using an internal trigger/gate, TGOUT behaves as shown in Figure 2-7c. Note that the delay between the active edge of the internal trigger/gate and the starting edge of TGOUT is less than 1µs.

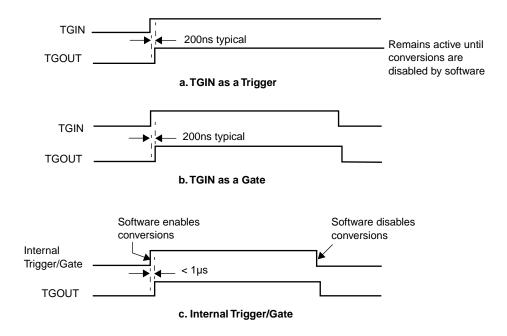


Figure 2-7. Timing for the TGOUT Signal

Using Digital Control Signal SSHO

The SSHO digital control signal is normally generated by DAS-1800AO Series boards to accommodate external SSH hardware. The SSHO signal is initiated by either the onboard counter/timer clock or a user-supplied external clock. Characteristics of the SSHO signal when used for SSH hardware control are as follows:

- SSHO is normally low, signifying that the SSH hardware is in sample mode.
- SSHO goes high (into the Hold mode) about 50ns after an active edge
 of the pacer clock and remains there until 200ns after the ADC starts
 conversion of the last channel in the burst.
- SSHO remains low until another active edge of the pacer clock. To
 ensure adequate sample time for the SSH hardware, the pacer clock
 period should be set as follows:

Pacer Clock Period \geq (Number of Channels + 1) \times (Burst Period)

The burst period can be 3.0 to 64µs. A/D conversion begins one burst period after an active edge of the sample clock. Burst mode must be used when the SSH-8 is connected to DAS-1800AO Series boards.

When you are not using the SSHO signal for SSH-8 control, you can use it as a converter clock output signal. SSHO is active only during A/D conversions. The timing for SSHO generation when the DAS-1800AO Series boards are not used for control of SSH hardware is shown in Figure 2-8.

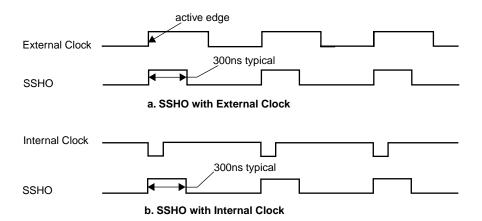


Figure 2-8. Timing for SSHO Signal When Not Used for SSH Hardware

Data Transfer Modes

You can perform digital I/O operations in one of the following data transfer modes:

- **Single** In a single-mode digital input operation, the software driver reads the value of digital input channel 0 once. In a single-mode digital output operation, the software driver writes a value to digital output channel 0 once.
- Interrupt In an interrupt-mode digital input operation, the software driver reads the value of digital input channel 0 multiple times. In an interrupt-mode digital output operation, the software driver writes a single value or multiple values to digital output channel 0 multiple times.

Assigning an Interrupt

You assign an interrupt level to a DAS-1800 Series board through the DriverLINX software configuration (see "DriverLINX Configuration Notes" on page C-1). When you install more than one board in a computer, you assign interrupt levels to the boards in one of the following ways:

- You can assign a different interrupt level to each board (if enough levels are available).
- You can assign the same interrupt level to some boards and different interrupt levels for each of the remaining boards.

Note: Some computers can accept as many as three DAS-1800HC boards.

• You can assign one interrupt level to be shared by all boards.

If a DAS-1800 Series board is sharing an interrupt level with one or more other DAS-1800 Series boards and requests an interrupt, the DriverLINX software determines the source of the request by scanning each board until the interrupt request flag is located. DriverLINX then signals the computer to respond accordingly.

Power

DAS-1800AO Series boards use the +5V and the +12V provided by your computer. An onboard DC/DC converter develops $\pm15V$ at a maximum current draw of 30mA for external use. In addition to the $\pm15V$, the DAS-1800AO Series boards supply +5V from the computer to pins 24 and 49 on the main I/O connector at up to a maximum of 1.0A.

Setup and Installation

This section describes inspection, software installation, configuration, and hardware installation for the DAS-1800AO Series boards.

Read this section before you attempt to install and use your DAS-1800AO Series board.

Unwrapping and Inspecting a Board

Caution: Your computer must be turned OFF and grounded before performing the following procedure.

After you remove the wrapped board from its outer shipping carton, proceed as follows:

- 1. The board is packaged at the factory in an anti-static wrapper that must not be removed until you have discharged any static electricity by either of the following methods:
 - If you are equipped with a grounded wrist strap, you discharge static electricity as soon as you hold the wrapped board.
 - If you are not equipped with a grounded wrist strap, discharge static electricity by holding the wrapped board in one hand while placing your other hand firmly on a metal portion of the computer chassis.
- 2. Carefully unwrap the board from its anti-static wrapping material. (You may store the wrapping material for future use.)

- 3. Inspect the board for signs of damage. If damage is apparent, arrange to return the board to the factory (see "Technical Support" on page 7-6).
- 4. Check the remaining contents of your package against the packing list to be sure your order is complete. Report any missing items, immediately.
- 5. When you are satisfied with the inspection, proceed with the software and hardware setup instructions.

Note: DAS-1800AO Series boards are factory calibrated; they require no further adjustment prior to installation. If at a later time you decide to recalibrate the board, refer to Section 6 for instructions.

Installing the Software

Caution: To prevent a system crash the first time you install and test any new hardware, exit all other programs. If you are using a disk cache, disable write caching. If the system does crash and you are using disk compression software or a disk cache utility, run the utility that checks the directory structures.

Installing the DAS-1800AO Series Standard Software Package

Important: Before you begin installing any hardware or software for the DAS-1800AO, read the *DriverLINX Installation and Configuration Guide* and the *Appendix F: Configuration and Implementation Notes—for Keithley DAS-1800* manuals that are packaged with the DriverLINX software. They are accessed from the DriverLINX CD-ROM after you have installed Adobe Acrobat.

Before Installing DriverLINX

- 1. Inventory your DAS-1800AO board's configuration settings.
- 2. Determine the resources your DAS-1800AO Series board requires.
- 3. Inventory your computer's resources already allocated to other installed devices.
- 4. Determine whether your computer has sufficient resources for your DAS-1800AO board.
- 5. Determine whether your DAS-1800AO board can use your computer's free resources.
- 6. Set any jumpers/switches to configure your DAS-1800AO board to use your computer's free resources.
- 7. Set any other jumpers/switches to configure your DAS-1800AO board the way you want it to operate. Make a note of the switch and jumper settings in order to configure the board using DriverLINX.

Selecting the DriverLINX components to Install

For your convenience in installing and uninstalling the DriverLINX components you need, the DriverLINX CD Browser will assist you in selecting the components to install:

- **Install Drivers** This required component installs only the files you need for configuring your hardware and running third–party data–acquisition applications that require DriverLINX.
- **Install Interfaces** This optional component installs the files and example programs that you will need to develop custom applications for DriverLINX using C/C++, Visual Basic, Delphi, and LabVIEW.
- Install LabVIEW This component installs the files and programs that you will need to develop applications for DriverLINX using LabVIEW.
- **Install Documentation** This optional component installs electronic documentation for DriverLINX that you can read, search, and print using the Adobe Acrobat Reader.
- **Install Acrobat** This optional component installs the Adobe Acrobat Reader for the DriverLINX electronic documentation.

Installing DriverLINX

- 1. Insert the DriverLINX CD-ROM into your computer's CD-ROM Drive.
- 2. Start the DriverLINX setup program. On most systems, wait a few seconds for automatic startup. Otherwise, run the setup.exe program from the CD-ROM.
- 3. The DriverLINX CD-ROM Browser Map window appears on the screen. Click 'Install Drivers,' and follow the series of on-screen instructions.

Note: To display an explanation of a menu option on the DriverLINX CD browser map that appears next and on subsequent setup screens, place the mouse pointer over the menu item. A star next to a menu item means that the item was selected previously.

- 4. Select 'Read Me First,' and follow the instructions.
- 5. Select 'Install Documentation.' If you do not have Adobe Acrobat installed on your computer, install it by selecting 'Install Adobe Acrobat.'
- 6. Open the manuals appropriate to the DAS-1800 installation and read them before installing your DAS-1800 board or configuring DriverLINX:
- Installation and Configuration
- Appendix F: Configuration and Implementation Notes—for Keithley DAS-1800.
- DriverLINX Technical Reference Manual
- DriverLINX Analog I/O Programming Guide
- DriverLINX Digital I/O Programming Guide
- DriverLINX Counter/Timer Programming Guide
- Appendix, I/O Port, Interrupt, and DMA Channel Usage
- Other manuals appropriate to your installation.

7. Following the DriverLINX prompts, turn off your computer and install your DAS-1800AO board into an appropriate free slot in your computer.

Setting the Base Address

The base address switch is preset at the factory for a hexadecimal value of 300 (768 decimal). If this address appears to conflict with the address of another device in the computer (including other DAS-1800HC Series boards), you must reset the base address switch.

The base address switch is a 7-position DIP switch located as shown in Figure 3-1. To reset this switch for another address, use DriverLINX software configuration (see "DriverLINX Configuration Notes" on page C-1), to determine the new switch settings. The settings for the base address switch must match the settings in the DriverLINX program.

Note: The settings for the base address switch must match the settings shown in DriverLINX.

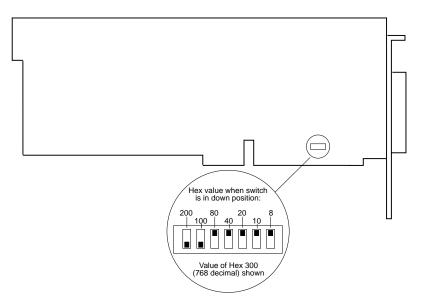


Figure 3-1. Location of Base Address Switch on DAS-1800AO Series Boards

Installing a Board

Caution: Installing or removing a board while power is on can damage your computer.

Use the following steps to install a DAS-1800AO Series board in an accessory slot of your computer:

- 1. Turn off power to the computer and all attached equipment.
- 2. Remove the computer chassis cover.
- 3. Select an unoccupied accessory slot, and remove the corresponding cover plate from the I/O connector panel.
- 4. Make sure the settings of the base-address switch match the settings shown in the configuration-utility switch diagram.
- 5. Insert and secure the board in the selected slot.
- 6. Replace the computer cover.

You can use the DriverLINX Analog I/O Panel (see Section 5) to check board operation.

Configuring the DAS-1800AO Board with DriverLINX

Note: Be sure to note and follow all programming differences between installations for Windows NT and Windows 95/98.

Be sure to make note of the configuration of all switches and jumpers on the board. You will use this information to enter the correct configuration parameters using DriverLINX. Also locate any information or notes about the interrupt and DMA channels used by the other hardware devices in your computer system.

Table 3-1 lists I/O addresses commonly used by IBM PC/XT, AT, and compatible computers. Determine an even boundary of eight I/O addresses within the range of 000H to 3F8H that are not being used by another resource in your system (including another DAS-1800 Series board), and set the switches to the appropriate base address.

Table 3-1. I/O Address Map (000H to 3FFH)

Address Range	Use
000H to 00FH	8237 DMA #1
020H to 021H	8259 PIC #1
040H to 043H	8253 Timer
060H to 063H	8255 PPI (XT)
060H to 064H	8742 Controller (AT)
060H to 06FH	8042 Keyboard controller
070H to 071H	CMOS RAM and NMI mask register (AT)
080H to 08FH	DMA page registers
0A0H to 0A1H	8259 PIC #2 (AT)
0A0H to 0AFH	NMI mask register (XT)
0C0H to 0DFH	8237 DMA #2 (AT - word-mapped)
0F0H to 0FFH	80287 Numeric processor (AT)
170H to 177H	Hard disk controller #1
1F0H to 1F8H	Hard disk controller #2
1F0H to 1FFH	Hard disk controller (AT)
200H to 2FFH	Game / control
210H to 21FH	Expansion unit (XT)
238H to 23BH	Bus mouse
23CH to 23FH	Alternate bus mouse
278H to 27FH	Parallel printer
2B0H to 2DFH	EGA
2E0H to 2EFH	GPIB (AT)

Table 3-1. I/O Address Map (000H to 3FFH) (cont.)

Address Range	Use
2E8H to 2EFH	Serial port
2F8H to 2FFH	Serial port
300H to 31FH	Prototype card
320H to 32FH	Hard disk (XT)
370H to 377H	Floppy disk controller #2
378H to 37FH	Parallel printer
380H to 38FH	SDLC
3A0H to 3AFH	SDLC
3B0H to 3BBH	MDA
3BCH to 3BFH	Parallel printer
3C0H to 3CFH	VGA EGA
3D0H to 3DFH	CGA
3E8H to 3EFH	Serial port
3F0H to 3F7H	Floppy disk controller #1
3F8H to 3FFH	Serial port

The Expansion Board Configuration for Keithley DAS-1800 Series dialog in DriverLINX allows you to record the settings of your analog input multiplexers and enable the expansion channels. Make sure that the switch settings match the settings you define in DriverLINX. Refer to the *DriverLINX Appendix F: Configuration and Implementation Notes—Keithley DAS-1800 manual.*

After you have successfully installed the DAS-1800AO Series board in your computer, start Windows.

Run "Learn DriverLINX" (**LearnDL.exe**) from the DriverLINX program group to tell DriverLINX how you configured your DAS-1800AO Series board and to verify that everything is properly installed and configured.

- 1. Start Windows as you normally would and select the Program Manager window.
- 2. Either select the "Learn DriverLINX" icon created when you installed DriverLINX or enter "<drive>:/DRVLNX/LEARNDL" in the *Command Line* edit box. The Command Line edit box is activated by selecting the *Run...* option. <drive> is the letter of the hard disk drive where DriverLINX is installed.
- 3. Immediately after loading Learn DL, the Open DriverLINX DLL dialog box appears. Select the name of the hardware–specific DLL from the list for your DAS-1800 Series board. The name is an abbreviation of the board's model number.
- 4. From the main menu bar of Learn DL, select the *Device* menu and choose *Select*....
- 5. Select the Logical Device you wish to configure and then click on the *OK* button.
- 6. Again select the *Device* menu and then choose the *Configure...* option to display the Device Configuration Dialog Box.
- 7. From the *Model* list, select the model name for your DAS-1800 Series board you are configuring.
- 8. If the value displayed in the *Address* edit box is not correct, type the correct value into the box. You can enter the address in decimal or hexadecimal, using the c–notation for hex (that is, 768 decimal = 0x300 hexadecimal).
- 9. Choose the correct options for the *Analog*, *Digital*, and *Counter/Timer Sections* by first clicking on the appropriate radio button in the middle of the dialog box and then completing the group of dialog fields in the lower third of the dialog box. Be sure to click on both the *Input* and *Output* radio buttons for the *Analog* and *Digital* groups to see all the dialog fields.
- 10. After you have made all your selections, save the configuration parameters by clicking on the *OK* button. This will create or update the configuration file, <device>.INI, in the Windows directory.
- 11. Repeat the preceding steps, starting at step 5, for each Logical Device you wish to configure.

You can use DriverLINX to verify board operation.

- 1. To physically initialize the DAS-1800AO, select *Device/Initialize* from the main menu in Learn DriverLINX.
- 2. The first time the DAS-1800AO is initialized or after a configuration change, DriverLINX runs a diagnostic program to verify the operation and accuracy of the configuration settings.

You are now ready to make I/O connections. Refer to Section 4 for descriptions of common I/O accessories and connections for DAS-1800AO Series Boards.

Cabling and Wiring

This section describes the cabling and wiring required for attaching accessories and I/O lines to your DAS-1800AO Series boards.

Caution: To avoid electrical damage, turn off power to the computer and any attached accessories before making connections to DAS-1800AO Series boards.

Attaching an STA-1800U

The STA-1800U screw terminal accessory is an interface for I/O connections to DAS-1800AO Series boards; it contains the following components:

- Two 50-pin male connectors (J1 and J2). Use J1 for cabling to the main I/O connector of a DAS-1800AO Series board; use J2 for cabling to a second STA-1800U.
- 53 labeled screw terminals for connections from sensor outputs and test equipment.
- Four 26-pin male connectors for cabling to MB02 backplanes.
- One 37-pin male connector for cabling to SSH-8 accessories or to an MB01 backplane.

Figure 4-1 shows the connector layout of an STA-1800U accessory.

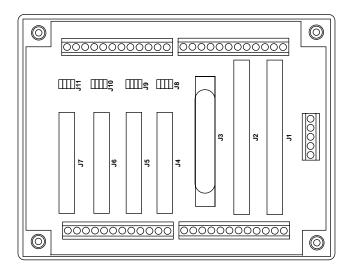


Figure 4-1. Connector Layout of an STA-1800U Accessory

To attach an STA-1800U to a DAS-1800AO Series board, use a CDAS-2000 Series cable. Connect the cable from the main I/O connector of the DAS-1800AO Series board to connector J1 of the STA-1800U, as shown in Figure 4-2.

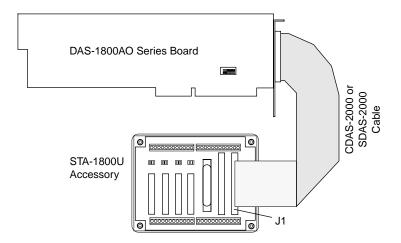


Figure 4-2. Cabling and Connections for Attaching an STA-1800U to a DAS-1800AO Series Board

4-2 Cabling and Wiring

Pin assignments for main I/O connectors of DAS-1800AO Series boards are shown in Figure 4-3.

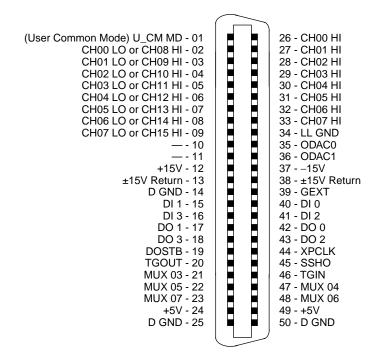


Figure 4-3. Pin Assignments for the Main I/O Connector of a DAS-1800AO Series Board

Pin assignments for I/O connectors J1 and J2 of the STA-1800U are shown in Figure 4-4.

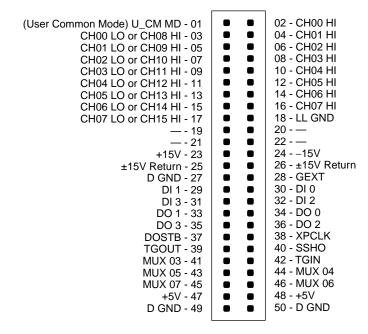


Figure 4-4. Pin Assignments for Main I/O Connectors J1 and J2 of the STA-1800U

4-4 Cabling and Wiring

Attaching an STP-50

The STP-50 is a compact screw-terminal panel that you cable to the main I/O connector of a DAS-1800AO Series board using a CDAS-2000 Series cable, as shown in Figure 4-5. Pin assignments for the screw terminals of this panel are shown in Figure 4-6.

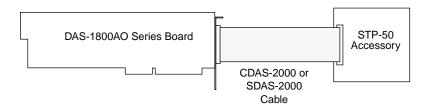


Figure 4-5. Attaching an STP-50 to a DAS-1800AO Series Board

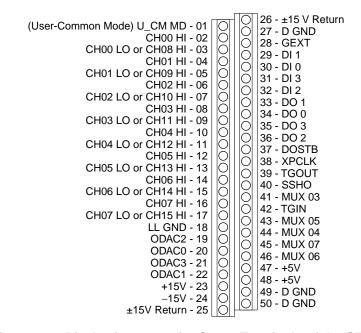


Figure 4-6. Pin Assignments for Screw Terminals of the STP-50

Attaching an SSH-8

DAS-1800AO Series boards can accept one or two SSH-8 accessories. The SSH-8 is a simultaneous sample-and-hold accessory whose functions and capabilities are described in the *SSH-8 User's Guide*. This accessory can serve as a front-end analog interface for DAS-1800AO Series boards when connected through an STA-1800U. Note that attached SSH-8 accessories must be set as slaves. Attach an SSH-8 to an STA-1800U using a C-1800 cable, as shown in Figure 4-7. Refer to the *SSH-8 User's Guide* for more information.

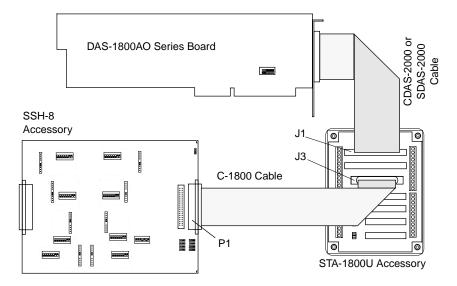


Figure 4-7. Cabling and Connections for Attaching an SSH-8 to a DAS-1800AO Series Board

4-6 Cabling and Wiring

Attaching an MB01 Backplane

A DAS-1800AO Series board accepts one MB01 backplane through an STA-1800U accessory. Cabling for attaching an MB01 backplane to an STA-1800U accessory is shown in Figure 4-8.

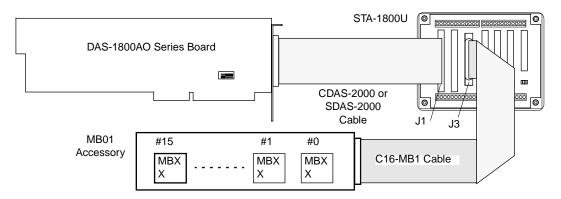


Figure 4-8. Attaching an MB01 Backplane to a DAS-1800AO Series Board

Attaching MB02 Backplanes

A DAS-1800AO Series board configured for single-ended inputs and working through multiple STA-1800U accessories can support up to 16 MB02 backplanes. A single STA-1800U contains receptacles (J4 to J7) for up to four MB02 backplane cables. Cabling for the four MB02 backplanes attached to an STA-1800U accessory is shown in Figure 4-9.

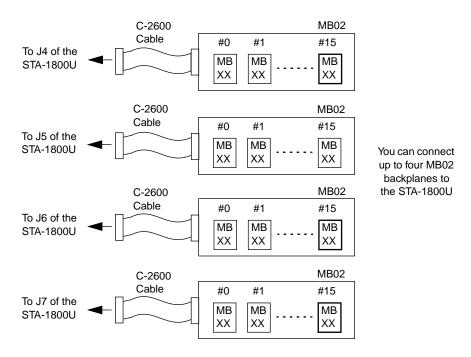


Figure 4-9. Cabling and Connections for Attaching MB02
Backplanes to an STA-1800U

Use one STA-1800U for every four MB02 backplanes. Additional STA-1800U accessories are daisy-chained to the first STA-1800U, using CACC-2000 cables to connect J2 of one STA-1800U to J1 of the next, as shown in Figure 4-10.

4-8 Cabling and Wiring

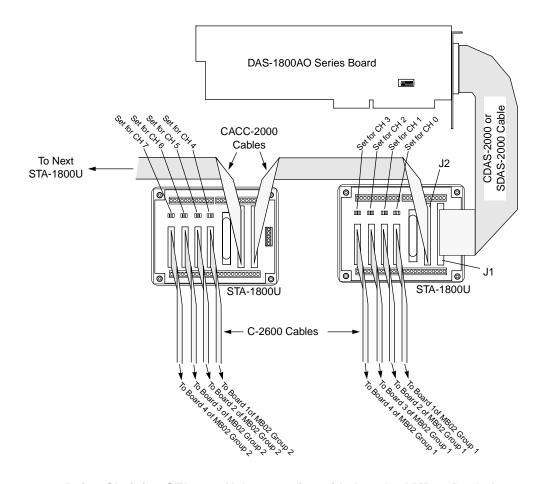


Figure 4-10. Daisy-Chaining STA-1800U Accessories with Attached MB02 Backplanes

The jumper pad beside each STA-1800U receptacle (J4 to J7) selects the channel of the DAS-1800AO Series board that the attached MB02 backplane is to use. On the first STA-1800U, the jumpers connect STA-1800U receptacles J4 to J7 to DAS-1800AO Series channels 0 to 3, respectively (default settings), as shown in the diagram. On a second STA-1800U, you position the jumpers to connect receptacles J4 to J7 to channels 4 to 7, respectively; and so on. Refer to Figure B-4, in Appendix B, for a diagram of receptacles J4 to J7 and their associated jumper pads.

For more information on MB Series backplanes and modules, refer to the MB Series User's Guide.

Attaching EXP-1800 Accessories

An EXP-1800 accessory connects directly to the main I/O connector of a DAS-1800AO Series board through a CDAS-2000 Series cable, as shown in Figure 4-11. To connect an additional EXP-1800, connect a CAB-50/1 cable as shown in Figure 4-11.

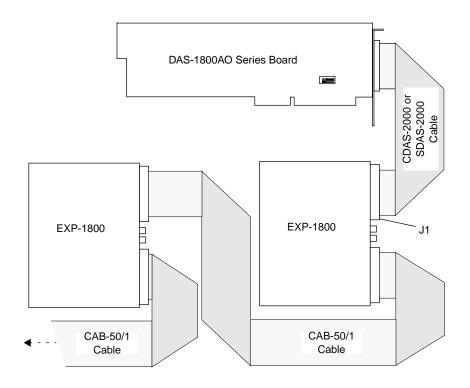


Figure 4-11. Daisy-Chaining EXP-1800 Accessories

You can attach up to 16 EXP-1800 accessories to a DAS-1800AO Series board in this manner; however, some of the added EXP-1800s require external power. For more information on the EXP-1800, refer to the EXP-1800 User's Guide.

4-10 Cabling and Wiring

Connecting Signals

This section contains precautionary advice to consider before making I/O connections. The section also shows some circuits for wiring signal sources to input channels of DAS-1800AO Series boards.

The circuit diagrams represent a single signal source wired to a single channel (channel *n*). In reality, you can wire 8 separate signal sources to 8 differential inputs or 16 separate signal sources to 16 single-ended inputs.

DAS-1800AO Series boards contain separate grounds for low-level analog, ±15V power return, and digital signals. An analog ground (LL GND) is for analog signals, a ±15V return is for analog power, and a digital ground (D GND) is for digital signals and the +5V power-supply return.

Precautions

If you expect to use a DAS-1801AO board at high gain, read the precautionary information in the following subsection. Other considerations for I/O connections are offered under "Additional Precautions" on page 4-12.

Precautions for Using a DAS-1801AO Board at High Gains

Operating a DAS-1801AO board at gains of 50 or 250 can lead to problems if your application is unable to cope with noise. At a gain of 250, each bit of A/D output corresponds to $10\mu V$ of analog input. Thus, with the high speed and bandwidth of this board, analog noise and performance degradation come easily unless you take precautions to avoid them. The following ideas and suggestions are aimed at avoiding these problems:

- Operate a DAS-1801AO board in 8-channel differential mode. Using the board in 16-channel, single-ended mode at high gains introduces enough ground-loop noise to produce large fluctuations in readings.
- Minimize noise from crosstalk and induced-voltage pickup in the flat cables and screw-terminal accessories by using shielded cable.
 Connect the shield to LL GND and the inner conductors to Channel LO and HI. Channel LO and LL GND should have a DC return (or

connection) at some point; this return should be as close to the signal source as possible. Induced noise from RF and magnetic fields can easily exceed tens of microvolts, even on one- or two-foot cables; shielded cable eliminates this problem.

- Avoid bi-metallic junctions in the input circuitry. For example, the kovar leads, used on reed relays, typically have a thermal emf to copper of 40μV/°C. Thermals can introduce strange random variations caused by air currents, and so on.
- Consider filtering. This approach can use hardware (resistors, capacitors, and so on), but is often accomplished more easily with software. Instead of reading the channel once, read it 10 or more times in quick succession and average the readings. If the noise is random and gaussian, it will be reduced by the square-root of the number of readings.

Additional Precautions

Do NOT mix your data acquisition inputs with the AC line or you risk damaging the computer. Data acquisition systems give users access to inputs of the computer. An inadvertent short between data and power lines can cause extensive and costly damage to your computer. The manufacturer can accept no liability for this type of accident. To prevent this problem, use the following precautions:

- Avoid direct connections to the AC line.
- Make sure all connections are tight and sound so that signal wires do not come loose and short to high voltages.
- Use isolation amplifiers where necessary.

4-12 Cabling and Wiring

Connecting a Signal to a Single-Ended Analog Input

Figure 4-12 shows the connections between a signal source and a channel of a DAS-1800AO Series board configured for single-ended input mode. For information on single-ended ground connections, refer to "Ground Selection for Single-Ended Inputs" on page 2-4.

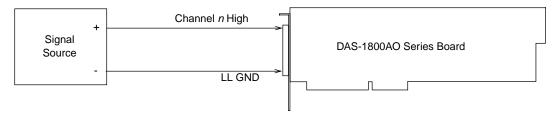


Figure 4-12. Connections for Wiring a Signal Source to a DAS-1800AO Series Board Configured for Single-Ended Inputs

Note: When you wire signals to the analog input channels, you are advised to wire all unused channels to LL GND. This action prevents the input amplifiers from saturating and ensures the accuracy of your data.

Connecting a Signal to a Differential Analog Input

This section describes common connection schemes for differential inputs and discusses the principles for avoiding ground loops.

Common Connection Schemes for Differential Inputs

Figure 4-13 shows three connection schemes for wiring a signal source to a channel of a DAS-1800AO Series board configured for differential input mode.

The upper two circuits of the diagram require the addition of resistors to provide a bias-current return. You can determine the value of the bias return resistors (R_b) from the value of the source resistance (R_s) , using the following relationships:

• When R_s is greater than 100Ω , use the connections in the upper circuit. The resistance of each of the two bias return resistors must equal $2000 R_s$.

Connecting Signals 4-13

• When R_s is less than 100 Ω , use the connections in the middle circuit. The resistance of the bias return resistor must be greater than 1000 R_s .

In the lower circuit of Figure 4-13, bias current return is inherently provided by the source. The circuit requires no bias resistors. $R_{\rm s}$ is the signal source resistance while $R_{\rm v}$ is the resistance required to balance the bridge.

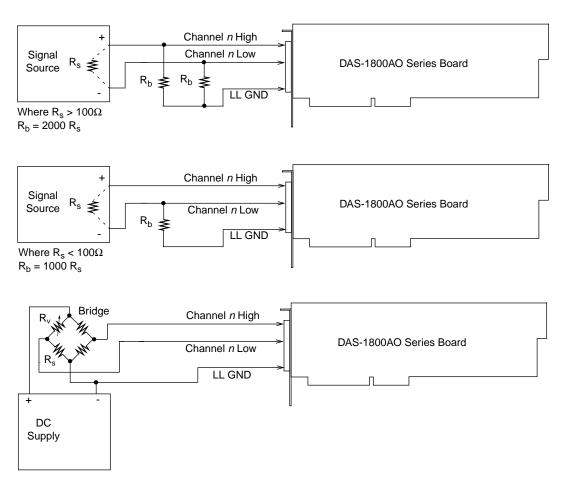


Figure 4-13. Three Types of Connections for Wiring a Signal Source to a DAS-1800AO Series Board Configured for Differential Inputs

4-14 Cabling and Wiring

Avoiding Ground Loops with Differential Inputs

Very often, the signal-source ground and the DAS-1800AO Series board ground are not at the same voltage level because of the distances between equipment wiring and the building wiring. This difference is referred to as a common-mode voltage (V_{cm}) because it is normally common to both sides of a differential input (it appears between each side and ground). Since a differential input responds only to the difference in the signals at its high and low inputs, its common-mode voltages cancel out and leave only the signal. However, if your input connections contain a ground loop, your input could see the sum of the signal-source and common-mode voltages. Figure 4-14 shows the proper way to connect a differential input. Figure 4-15 illustrates the effect of a ground loop.

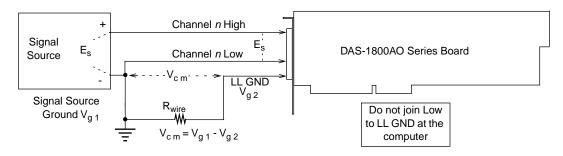


Figure 4-14. A Differential Input Configuration that Avoids a Ground Loop

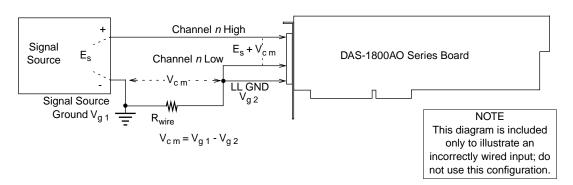


Figure 4-15. Differential Input Configuration with a Ground Loop

Connecting Signals 4-15

Connecting Analog Output Signals

Outputs for DAC 0 and DAC 1 are assigned to main I/O connector pins 35 and 36, respectively. These outputs are available on screw terminals of the STP-50 (see "Attaching an STP-50" on page 4-5) and on appropriately labeled screw terminals of the STA-1800U. Also on the STA-1800U, DAC 0 is present on pin 3 of connector J4 and DAC 1 is present on pin 3 of connector J5. Refer to Figure B-4 in Appendix B. The presence of these outputs on connectors J4 and J5 of the STA-1800U makes the outputs available to any MB02 backplanes attached to those connectors.

Connecting Digital I/O Signals

DAS-1800AO Series boards have four digital inputs and four digital outputs, as described in "Digital I/O Features" on page 2-24. Make your connections to the digital I/O terminals through corresponding terminals of the STA-1800U. The terminals are labeled as follows:

- **Digital input** The digital input terminals are DI 0 to DI 3.
- **Digital output** The digital output terminals are DO 0 to DO 3.

Connecting Digital Control Signals

DAS-1800AO Series boards use five digital control signals. Make your connections to the digital control terminals through corresponding terminals of the STA-1800U. The terminals are labeled as follows:

- SSHO The simultaneous sample-and-hold output terminal. This signal is described in "Using Digital Control Signal SSHO" on page 2-26. Use the SSHO terminal for connecting this signal.
- TGIN The trigger/gate input, described in the next section and in "Using Digital Control Signals TGOUT and TGIN" on page 2-25. Also, refer to "Triggers" on page 2-14 and to "Gates" on page 2-17. Use the trigger/gate TGIN for connecting a TGIN signal.
- TGOUT The trigger/gate output, described in the next section and in "Using Digital Control Signals TGOUT and TGIN" on page 2-25. Use the TGOUT terminal for connecting this signal.

- **XPCLK** The external pacer clock input, described in the next section and in "Clock Sources" on page 2-12. Use the external clock terminal XPCLK for connecting this signal.
- **DOSTB** The digital output strobe, described in "Using Digital Control Signal DOSTB" on page 2-24. Use the DOSTB terminal for connecting this signal.

Connecting and Synchronizing Multiple Boards

You can synchronize up to three DAS-1800 Series boards using trigger and gate signals from the main I/O connectors. Each board can run at the same or different conversion rate as the other boards in the system.

The onboard pacer clock is designed to be tightly coupled with trigger and gate operations. After each board receives the trigger or gate, conversions begin within a defined period of time. If each board is programmed for a different conversion rate, the first conversion on each board occurs after this time period and subsequent conversions occur at the programmed rate.

Figure 4-16 shows two connection schemes for synchronizing multiple boards. Both schemes are using the onboard pacer clock to time acquisitions.

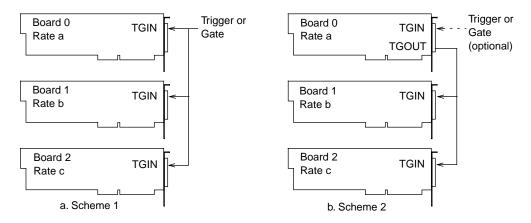


Figure 4-16. Two Connection Schemes for Synchronizing Multiple Boards

In Scheme 1, you connect the trigger/gate inputs of the three boards together and supply the trigger or gate input. A/D conversions on each board start 400 ± 100 ns from the active edge of the trigger input. All conversions start within 100 ± 100 ns of each other from board to board. When using scheme 1, you can use the onboard pacer clock or an external pacer clock.

In Scheme 2, you can start conversions in either of two ways: by a hardware trigger/gate input or by software. The board connections are in a master/slave relationship. Board 0 is the master and boards 1 and 2 are the slaves.

If you use a software enable for board 0 of scheme 2, the board 0 pacer clock starts and triggers conversions in the slave boards. However, board 0 conversions do not begin until *after* conversions begin in the the slave boards. The delay of board 0 conversions is caused by a protection feature built into the register that creates software-triggered conversions. The function of the protection feature is to prevent false conversions.

If you use a hardware trigger for board 0 of scheme 2, board 0 triggers conversions in all three boards immediately. Note that TGOUT is an active, high-going signal. Therefore, you must program the slave-board TGIN inputs for a positive-going trigger or gate.

4-18 Cabling and Wiring

Testing the Board

This section describes how to use DriverLINX to test functions of DAS-1800AO Series boards.

DriverLINX Analog I/O Panel

The DriverLINX Analog I/O Panel is an application that demonstrates analog input/output using DriverLINX. With the Analog I/O Panel you can:

- Analyze analog signals using the two-channel Oscilloscope.
- Measure analog voltages using the Digital Volt Meter.
- Generate Sine, Square, and Triangle waves using the SST Signal Generator.
- Output DC Level voltages using the Level Control.

The Analog I/O Panel is useful for:

- Testing the DAS-1800AO DriverLINX installation and configuration.
- Verifying signal inputs to your DAS-1800AO board.
- Sending test signals to external devices.

To access this DriverLINX Analog I/O Panel:

- 1. Start the Analog I/O Panel with the "AIO Panel" item on the Windows start menu. Then perform the following steps.
- 2. Click the [...] button in the Driver Selection section.
- 3. Select the driver for your board using the *Open DriverLINX* dialog.
- 4. Click OK.

- 5. Select the Logical Device you want to operate by dragging the pointer in the Device Selection section. The Analog I/O Panel displays the Scope, Meter, SST, and Level control tabs, depending on the capabilities of your DAS-1800AO board.
- 6. The Scope uses two analog input channels, referred to as ChA and ChB. Drag the channel selectors in the AI Channel Mapping section to map them to different channel numbers.
- 7. The SST Signal Generator uses two analog output channels, referred to as ChA and ChB. Drag the channel selectors in the AO Channel Mapping section to map them to different channel numbers.

You can now select the Scope, Meter, SST, and Level Control tabs to operate your DAS-1800AO board.

Test Panel Application

Depending upon the DriverLINX drivers you have installed on your system, you will have one or more of the following example applications:

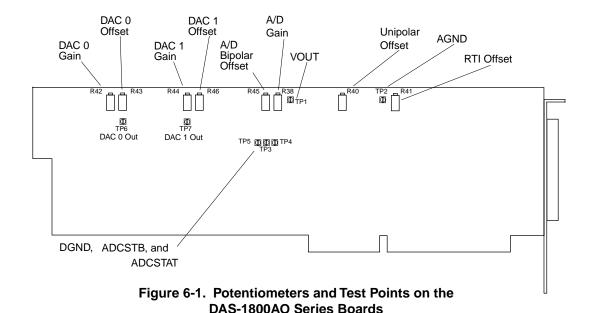
- Single–Value AI for analog input
- Single–Value AO for analog output
- PIO Panel for digital input and output
- *CTM Test Bench* for counter/timer applications.

To access this DriverLINX Test Panel, select Test Panel with the "Test Panel" item on the Windows start menu.

5-2 Testing the Board

Calibration

Your DAS-1800AO Series board is initially calibrated at the factory. You are advised to check the calibration of a board every six months and to calibrate again when necessary. This section provides the information you need to calibrate a DAS-1800AO Series board.


Equipment Requirements

The equipment requirements for calibrating a DAS-1800AO Series board are as follows:

- A digital voltmeter accurate to 6½ digits, such as a Keithley Instruments Model 196 or 2001.
- An adjustable ±10V voltage calibrator, such as a Keithley Instruments Model 236.
- An STA-1800U or an STP-50 accessory and a CDAS-2000 cable; or a user-designed interface.
- The appropriate number of CDAS-2000 cables for EXP-1800 accessories, if used.

Potentiometers and Test Points

Figure 6-1 shows the locations of the potentiometers and test points involved with the calibration of a DAS-1800AO Series board. In the diagram, the term RTI is *Referred to Input*. The calibration utility, described in the next section, directs you to these components and explains what to do with them during the calibration process.

DriverLINX Calibration Utility

DriverLINX Calibration Utility will guide you through the calibration procedure. Before calibration, specify the following parameters in the setup panel to get the correct instructions:

- **Logical Device** Board's device number, model, and address.
- **Accessory** Connection method used to connect the board to the calibration stimulus.
- **Shorted Channel** Input channel to be "shorted" high to low.
- **Voltage Channel** Input channel to use to apply the various calibration voltage levels.
- Calibration Range Input range to be calibrated.

6-2 Calibration

Troubleshooting

If your DAS-1800AO Series board is not operating properly, use the information in this chapter to isolate the problem. If the problem appears serious enough to warrant technical support, refer to "Technical Support" on page 7-6 for information on how to contact an applications engineer.

Problem Isolation

If you encounter a problem with a DAS-1800AO Series board, use the instructions in this section to isolate the cause of the problem before calling Keithley for technical support.

Using the DriverLINX Event Viewer

The DriverLINX Event Viewer displays the Windows system event log. Applications and hardware drivers make entries in the system event log to assist in predicting and troubleshooting hardware and software problems.

DriverLINX uses the event log to report problems during driver loading or unexpected system errors. The event log can assist in troubleshooting resource conflicts and DriverLINX configuration errors. If you are having trouble configuring or initializing a Logical Device, check the event log for information from the DriverLINX driver.

Using the DriverLINX Event Viewer, you can view DriverLINX event log entries under Windows 95/98 or Windows NT. DriverLINX event log entries can help you or technical support troubleshoot data-acquisition hardware and software problems.

Problem Isolation 7-1

Device Initialization Error Messages

During device initialization, DriverLINX performs a thorough test of all possible subsystems on the DAS-1800AO Series board as well as the computer interface. If DriverLINX detects any problems or unexpected responses, it reports an error message to help isolate the problem. The device initialization error messages fall into three basic categories:

- "Device not found" Board address does not match hardware setting or conflicts with another board. Verify the board's address settings. Also, do not confuse hexadecimal with decimal addresses in the DriverLINX Device Configure dialog box.
- "Invalid IRQ level" or "Invalid DMA level" Selected level does
 not match hardware setting, conflicts with another board's IRQ/DMA
 levels, or is dedicated to the computer's internal functions (COM
 port, disk drive controller, network adapter, etc.).
- "Hardware does not match configuration" Operating mode/range switch or jumper setting does not match selection(s) made in the DriverLINX *Device Configuration* dialog box.

Identifying Symptoms and Possible Causes

Use the troubleshooting information in Table 7-1 to isolate the problem. Table 7-1 lists general symptoms and possible solutions for problems with DAS-1800AO Series boards.

7-2 Troubleshooting

Table 7-1. Troubleshooting Information

Symptom	Possible Cause	Possible Solution
Board does not respond	Base address is incorrect or not consistent with what the program is addressing.	Check the base-address-switch setting on the board against the setting shown in the configuration utility. If the base address is set correctly, make sure no other computer device is using any of the I/O locations beginning at the specified base address. If necessary, reconfigure the base address. Refer to page 3-5 for instructions on setting the base address.
	The interrupt level or DMA is incorrect or not consistent with what the program is addressing.	Make sure no other computer device is using the interrupt level or DMA specified in your program. If necessary, reset the interrupt level.
	The board configuration is incorrect.	Check the remaining settings in the configuration file.
	The board is incorrectly aligned in the accessory slot.	Check the board for proper seating.
	The board is damaged.	Contact the Keithley Hardware Applications Engineering Department; see page 7-6.
Intermittent operation	The most common cause of this problem is that the I/O bus speed is in excess of 8MHz.	Reduce I/O bus speed to a maximum of 8MHz (to change the I/O bus speed, run BIOS setup). See your computer documentation for instructions on running BIOS setup.
	Vibrations or loose connections exist.	Cushion source of vibration and tighten connections.
	The board is overheating.	Check environmental and ambient temperature. See the documentation for your computer.
	Electrical noise exists.	Provide better shielding or reroute unshielded wiring.

Problem Isolation 7-3

Table 7-1. Troubleshooting Information (cont.)

Symptom	Possible Cause	Possible Solution
Data appears to be invalid	The most common cause of this problem is that the I/O bus speed is in excess of 8MHz.	Reduce I/O bus speed to a maximum of 8MHz (to change the I/O bus speed, run BIOS setup). See the documentation for your computer for instructions on running BIOS setup.
	An open connection exists.	Check wiring to screw terminal.
	Another system resource is using the specified base address.	Reconfigure the base address of the DAS-1800AO Series board; refer to Section 3 for more information. Check the I/O assignments of other system resources and reconfigure, if necessary.
	Transducer is connected to channel being read.	Check the transducer connections.
	Board is set for single-ended mode, while transducer is a differential type or vice versa.	Check transducer specifications and board configuration.
Computer does not	Board not seated properly.	Check the installation of the board.
boot	The base address setting of the DAS-1800AO Series board conflicts with that of another system resource.	Check the base address settings of your system resources; each address must be unique.
	The power supply of the host computer is too small to handle all the system resources.	Check the needs of all system resources and obtain a larger power supply.
System lockup	A timing error occurred.	Press [Ctrl] + [Break] .

If your board is not operating properly after using the information in Table 7-1, continue with the next two sections to further isolate the problem.

7-4 Troubleshooting

Testing the Board and Host Computer

To isolate the problem to the DAS-1800AO Series board or to the host computer, use the following steps:

1. Turn the power to the host computer OFF and remove power connections to the computer.

Caution: Removing a board with the power ON can cause damage to your board and/or computer.

- 2. While keeping connections to accessory board intact, unplug the accessory connector or cable from the DAS-1800AO Series board.
- 3. Remove the DAS-1800AO Series board from the computer and visually check for damage. If a board is obviously damaged, refer to "Technical Support" on page 7-6 for information on returning the board.
- 4. With the DAS-1800AO Series board out of the computer, check the computer for proper operation. Power up the computer and perform any necessary diagnostics.

At this point, if you have another DAS-1800AO Series board that you know is functional, you can test the slot and I/O connections using the instructions in the next section. If you do not have another board, refer to the instructions on page 7-6 before calling Keithley Technical Support.

Testing the Accessory Slot and I/O Connections

When you are sure that the computer is operating properly, test the computer accessory slot and I/O connections using another DAS-1800AO Series board that you know is functional. To test the computer accessory slot and the I/O connections, follow these steps:

- 1. Turn computer power OFF and install a functional DAS-1800AO Series board. Do not make any I/O connections.
- 2. Turn computer power ON and check operation with the functional board in place. This test checks the computer accessory slot. If you were using more than one DAS-1800AO Series board when the problem occurred, use the functional board to test the other slot.

Problem Isolation 7-5

- 3. If the accessory slots are functional, use the functional board to check the I/O connections. Reconnect and check the operation of the I/O connections, one at a time.
- 4. If operation fails for an I/O connection, check the individual inputs one at a time for shorts and opens.
- 5. If operation remains normal to this point, the problem is in the DAS-1800AO Series board(s) originally in the computer. If you were using more than one board, try each board one at a time in the computer to determine which is faulty.
- 6. If you cannot isolate the problem, refer to the next section for instructions on obtaining assistance.

Technical Support

Before returning any equipment for repair, call Keithley for technical support at:

1-888-KEITHLEY Monday - Friday, 8:00 a.m. - 5:00 p.m., Eastern Time

An applications engineer will help you diagnose and resolve your problem over the telephone. Please make sure that you have the following information available before you call:

7-6 Troubleshooting

DAS-1800AO Series Board Configuration	Model Serial # Revision code Base address setting Interrupt level setting Number of channels Input (S.E. or Diff.) Mode (uni. or bip.) DMA chan(s) Number of SSH-8s Number of EXPs.	
Computer	Manufacturer CPU type Clock speed (MHz) KB of RAM Video system BIOS type	
Operating System	DOS version Windows version Windows mode	
Software package	Name Serial # Version Invoice/Order #	
Compiler (if applicable)	Language Manufacturer Version	
Accessories	Type Type Type Type Type Type Type Type	

Technical Support 7-7

If a telephone resolution is not possible, the applications engineer will issue you a Return Material Authorization (RMA) number and ask you to return the equipment. Include the RMA number with any documentation regarding the equipment.

When returning equipment for repair, include the following information:

- Your name, address, and telephone number.
- The invoice or order number and date of equipment purchase.
- A description of the problem or its symptoms.
- The RMA number on the **outside** of the package.

Repackage the equipment, using the original anti-static wrapping, if possible, and handle it with ground protection. Ship the equipment to:

ATTN.: RMA# _____ Repair Department Keithley Instruments, Inc. 28775 Aurora Road Cleveland, Ohio 44139-1891

Telephone 1-888-KEITHLEY FAX (440) 248-6168

Note: If you are submitting your equipment for repair under warranty, you must include the invoice number and date of purchase.

To enable Keithley to respond as quickly as possible, you must include the RMA number on the outside of the package.

7-8 Troubleshooting

Specifications

Tables A-1 to A-4 list specifications for the DAS-1800AO Series boards.

Table A-1. Analog Input Specifications

Feature	DAS-1801AO DAS-1802AO		
Number of channels	Software-selectable as 8 differential or 16 single-ended		
Input mode	Software-selectable as unipolar or	bipolar	
Resolution	12-bit (1 part in 4096)		
Data format	16-bit 2's complement		
FIFO size	1024 word		
Gain (range)	• 1 (0.0 to +5.0V for unipolar) • 1 (±5.0V for bipolar)	• 1 (0.0 to +10V for unipolar) • 1 (±10V for bipolar)	
	• 5 (0.0 to +1.0V for unipolar) • 5 (±1.0V for bipolar)	• 2 (0.0 to +5.0V for unipolar) • 2 (±5.0V for bipolar)	
	• 50 (0 to 100mV for unipolar) • 50 (±100mV for bipolar) • 4 (0.0 to +2.5V for unipolar) • 4 (±2.5V for bipolar)		
	• 250 (0 to +20mV for unipolar) • 250 (±20mV for bipolar) • 8 (0.0 to 1.25V for unipolar) • 8 (±1.25V for bipolar)		
Absolute accuracy	Typical: 0.01% of reading ±1 LSB for all ranges		
	Maximum error: • 0.02% of reading ±1 LSB max @ 25°C for gain < 250 • 0.03% of reading ±1 LSB max @ 25°C for gain = 250		

Table A-1. Analog Input Specifications (cont.)

Feature	DAS-1801AO	DAS-1802AO		
Temperature coefficient of accuracy (includes ADC)	Offset: • $\pm 20\mu V/^{\circ}C \pm (12\mu V/^{\circ}C \div gain)$ maximum for bipolar • $\pm 20\mu V/^{\circ}C \pm (14\mu V/^{\circ}C \div gain)$ maximum for unipolar			
	Gain: • ±20ppm/°C for gain < 50 • ±30ppm/°C for gain = 50 • ±35ppm/°C for gain = 250			
Linearity ¹	• Integral: ±½ LSB typical, ±1 LSB • Differential: ±1 LSB	3 maximum		
Throughput	Refer to "Maximum A/D Throughp	out Rates" on page 2-7		
Dynamic parameters	 Acquisition time: 0.3µs Aperture delay: 13.0ns Aperture uncertainty: 150ps rms Conversion time: 3.0µs max. (includes acquisition time) 			
Input bias current	• ±40nA max. @ 25°C • ±60nA maximum over operating	range		
Common-mode rejection ratio	 74 dB for gain = 1 80 dB for gain = 5 100 dB for gain = 50 100 dB for gain = 250 	• 74 dB for gain = 1 • 80 dB for gain = 2 • 80 dB for gain = 4 • 86 dB for gain = 8		
Input overvoltage	• ±15V continuous powered • ±15V continuous unpowered			
Noise ²	Bipolar electrical noise (in counts) • p-p = 1, rms = 0.1 for gain = 1 • p-p = 1, rms = 0.1 for gain = 5 • p-p = 2, rms = 0.2 for gain = 50 • p-p = 3, rms = 0.5 for gain = 250 Unipolar electrical noise (in counts): • p-p = 1, rms = 0.1 for gain = 1 • p-p = 1, rms = 0.1 for gain = 5 • p-p = 3, rms = 0.4 for gain = 50 • p-p = 5, rms = 0.9 for gain = 250	Bipolar electrical noise (in counts) • p-p = 1, rms = 0.1 for gain = 1 • p-p = 1, rms = 0.1 for gain = 2 • p-p = 1, rms = 0.1 for gain = 4 • p-p = 1, rms = 0.1 for gain = 8 Unipolar electrical noise (in counts): • p-p = 1, rms = 0.1 for gain = 1 • p-p = 1, rms = 0.1 for gain = 2 • p-p = 1, rms = 0.1 for gain = 4 • p-p = 1, rms = 0.1 for gain = 8		

A-2 Specifications

Table A-1. Analog Input Specifications (cont.)

Feature	DAS-1801AO	DAS-1802AO	
DMA	 Burst demand mode DMA Request on FIFO Not Empty Programmable levels (levels 5, 6, and 7) Single/dual DMA modes 		
Interrupt	 On FIFO Not Empty On FIFO Half Full On A/D Counter 0 Terminal Count On Data Overflow Programmable interrupt levels (levels 3, 5, 7, 10, 11, and 15) 		
Channel QRAM	256 x 8 bits (256 channels maximu	nm)	
Gain QRAM	256 x 3 bits (4 onboard gain ranges	s; 2 external)	
Trigger sources (all with programmable polarity)	Internal clock, internal gate Internal clock, external trigger Internal clock, external gate External clock, internal gate External clock, external trigger External clock, external gate		
Trigger types	Pre-trigger About-trigger (using A/D counter 0) Post-trigger		
Burst mode acquisition control	 Rate: programmable 16 ksamples/s to 333 ksamples/s Length: programmable 1 to 256 conversions Other: simultaneous sample-and-hold support 		
Sample clock	• Internal: 32-bit counter (82C54) • External: programmable edge polarity		
Minimum external pacer clock pulse width	10ns		
Maximum external pacer clock rate	333kHz		
Minimum hardware trigger pulse width	10ns		

¹ Monotonicity is guaranteed over the operating range.

² The figures in the table show the electrical noise introduced by the analog front end *but do not include the uncertainty inherent in the quantization process*. The inherent quantization noise introduced by any ADC is due to uncertainty at code boundaries and adds a peak-to-peak value of 1 LSB to the electrical noise; it also makes the rms level 0.5 LSBs.

Table A-2. Analog Output Specifications

Feature	DAS-1800AO Series Boards	
Channels	2, deglitched	
Range	±5V, ±10V (software selectable for each DAC)	
Resolution	12-bit (1 part in 4096 or 244 ppm)	
Current output	±15mA maximum	
Output impedance	4Ω (maximum @ 300kHz)	
Capacitive drive	100μF maximum	
Glitch energy	Zero glitch feedthrough	
Hold error	1.5nV * s , typical (i.e. 1mV * 1.5μs); 7.5nV * s, maximum	
Gain accuracy	Adjustable to 0	
Offset accuracy	Adjustable to 0	
Linearity	 Integral: ±0.25 LSB typical; ±0.75 LSB maximum Differential: ±0.75 LSB maximum Monotonicity: guaranteed over operating range 	
Settling time	• 3µs for 20V step, typical • 1.8µs for LSB of major carry, typical	
Slew rate	10V/μs minimum	
Throughput	500 ksamples/s maximum for each DAC using recycle mode and with small voltage steps	
Output at reset or power-up	0V	
Data transfer size	16 bits (AT bus)	
FIFO	2048 word	
Format	12-bit, 2's complement, right-justified	
DMA	 Burst demand mode DMA Programmable DMA levels (levels 5, 6, and 7) Request on FIFO Not Full 	
Interrupt	 On FIFO not full On FIFO not half full On data underflow On DMA terminal count Uses selected A/D interrupt level 	

A-4 Specifications

Table A-2. Analog Output Specifications (cont.)

Feature	DAS-1800AO Series Boards	
Trigger source (with programmable polarity)	 Internal clock, internal gate Internal clock, external trigger Internal clock, external gate External clock, internal gate External clock, external trigger External clock, external gate 	
Sample clock	 Internal: 16-bit counter using 5MHz clock (with selectable divide-by-10 prescaler) or using pacer clock External: Programmable edge polarity 	

Table A-3. Digital I/O Specifications

Feature	DAS-1800AO Series Boards	
Digital output signals DOSTB, SSHO, and TGOUT	• V _{OH} (min.) = 2.4V @ I _{OH} = -3mA • V _{OL} (max.) = 0.5V @ I _{OL} = 24mA	
Digital output signals DO 0 to DO 3, GEXT, and MUX 3 to MUX 7	• V_{OH} (min.) = 2.7V @ I_{OH} = -0.4mA • V_{OL} (max.) = 0.5V @ I_{OL} = 8mA	
Digital input signals DI 0 to DI 3, XPCLK, and TGIN ¹	• V_{IH} (min.) = 2.0V; I_{IH} (max.) = 0.02mA • V_{IL} (max.) = 0.8V; I_{IL} (max.) = -0.2mA	
Digital output strobe pulse width	300ns typical; data is latched on the rising edge of DOSTB	

 $^{^{1}}$ Digital inputs DI 0 to DI 3 are pulled up with $10k\Omega$ resistors; inputs TGIN and XPCLK are not pulled up.

Table A-4. Power Supply Requirements

Attribute	DAS-1800AO Series Boards	
+5VDC input	510mA typical; 835mA maximum	
+12VDC input	455mA typical; 690mA maximum	
Maximum current available at the ±15V outputs	30mA	
Maximum current available at the +5V output	1A	

A-6 Specifications

Connector Pin Assignments

This appendix contains pin assignments for connectors of the DAS-1800AO Series boards and the STA-1800U accessory.

Main I/O Connector of DAS-1800AO Series Boards

Figure B-1 shows pin assignments for main I/O connectors of DAS-1800AO Series boards.

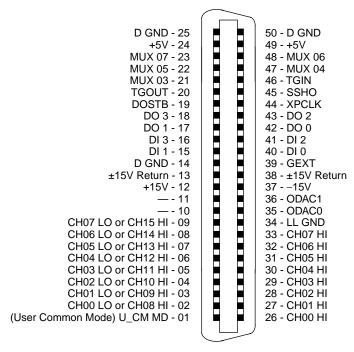


Figure B-1. Pin Assignments for the Main I/O Connector of a DAS-1800AO Series Board

I/O Connectors J1 and J2 of the STA-1800U Accessory

Figure B-2 shows pin assignments for I/O connectors J1 and J2 of the STA-1800U accessory.

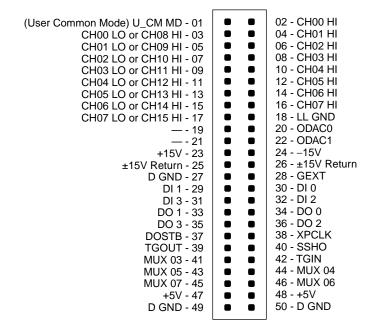


Figure B-2. Pin Assignments for Main I/O Connectors J1 and J2 of the STA-1800U Accessory

Connector J3 of the STA-1800U Accessory

Connector J3 of the STA-1800U screw terminal accessory is a 37-pin male D connector that accepts a C-1800 cable from an SSH-8 accessory or a C16-MB1 cable for an MB01 backplane. Pin assignments for J3 are shown in Figure B-3.

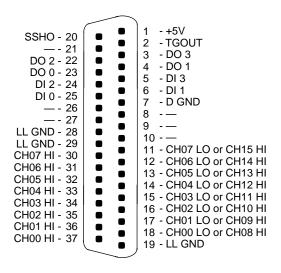


Figure B-3. Pin Assignments for STA-1800U Connector J3

Connectors J4 to J7 and Jumper Pads J8 to J11 of the STA-1800U Accessory

Connectors J4 to J7 of the STA-1800U accessory are 26-pin male connectors that each accept a C-2600 cable from an MB02 backplane. Figure B-4 shows the pin assignments for J4 to J7.

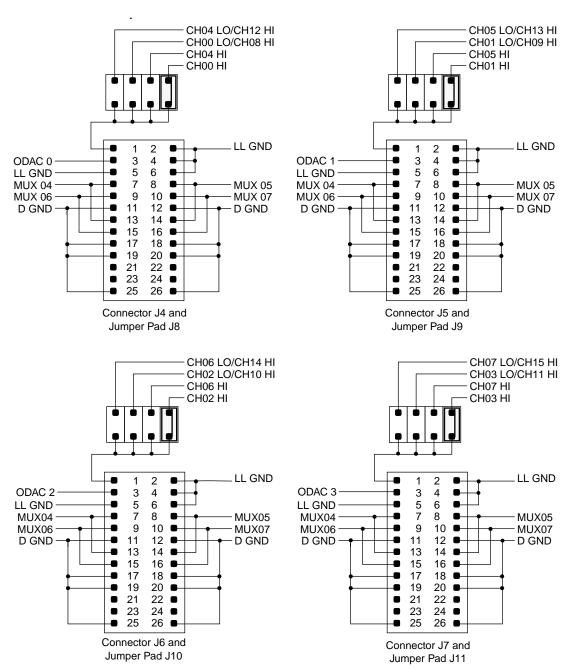


Figure B-4. Pin Layouts and Assignments for STA-1800U Connectors J4 to J7 and Jumper Pads J8 to J11

DriverLINX Configuration Notes

This appendix contains the following sections:

- Configuration describes how DriverLINX works with DAS-1800AO boards.
- **Special Device Settings** describes settings used specifically for the DAS-1800AO boards.
- **Implementation Notes** describes how DriverLINX implements features of the DAS-1800AO boards.
- Analog Input Subsystem describes how to configure DAS-1800AO analog inputs.
- **Analog Output Subsystem** describes how DriverLINX is used to configure analog outputs.
- **Digital Input and Output Subsystems** describes how DriverLINX is used for configuring digital inputs and outputs.
- **Counter/Timer Subsystem** describes some of DriverLINX counter/timer functions.

Configuration

The following section describes detailed information about how DriverLINX implements features of the Keithley DAS-1800AO A/D boards.

Configuration C-1

Model

In this section, "DAS-1800AO" refers to all models in the DAS-1800AO Series. "DAS-1801" refers to the models with low range analog input, while "DAS-1802" refers to the models with high range analog input. A suffix, such as "ST," designates models with certain features. The suffix "XX-DA" refers to both the ST-DA and HR-DA models. DriverLINX for the Keithley DAS-1800AO supports the following models:

DAS-1801ST	DAS-1801AO
DAS-1802ST	DAS-1802AO
DAS-1802HR	DAS-1801ST-DA
DAS-1801HC	DAS-1802ST-DA
DAS-1802HC	DAS-1802HR-DA

The primary differences among these boards are the number of input channels, A/D resolution, and analog output implementation. All DAS-1800 models are fully software programmable except for the base address. You must select the base address with a DIP switch. All 12-bit versions share the same maximum A/D conversion rate of 333kHz. The 16-bit versions (DAS-1802HR and DAS-1802HR-DA) have a maximum A/D conversion rate of 100kHz. All DAS-1800 models include a 1K sample FIFO buffer and support burst mode sampling, software programmable analog input gain, and have a hardware channel/gain queue. The channel/gain queue supports out-of-sequence channels and different input channel gains.

The DAS-1801 boards have gains of 1, 5, 50, and 250 with unity gain input range of ±5V. The DAS-1802 boards have gains of 1, 2, 4, and 8 with unity gain input range of ±10V. The DAS-1800ST has 16 single-ended or 8 differential analog input channels with 12-bit resolution, 4 digital input lines, and 4 digital output lines. The DAS-1802HR has 16-bit A/D resolution with a maximum sampling rate of 100kHz and is otherwise the same as the ST. The DAS-1800HC is the same as the ST except for 64 single-ended or 32 differential input channels, two 12-bit DAC's, and 8 digital outputs. The DAS-1800AO features DMA data transfer and a 2K sample FIFO buffer for two 12-bit DACs and is otherwise the same as the ST. The DAS-1800ST-DA has four 12-bit DACs and the DAS-1802HR-DA has two 16-bit DACs.

Address

The default address used by all DAS-1800 boards is 768 decimal or 0x300 hex. If you have more the one Keithley board or another peripheral card at the same address, you will have to change the DIP switch settings for the device address on the board.

Calibrate

The DAS-1800 does not support auto-calibration. The Device Configuration dialog box displays this setting as disabled.

A/D Channels

On the DAS-1800HC, A/D channel configuration is software programmable for 64 single-ended or 32 differential analog inputs. A/D channel configuration for the DAS-1800 boards is software programmable for 16 single-ended or 8 differential analog inputs.

A/D Volts

You must specify the minimum and maximum analog input, full-scale voltages at unity gain. For the DAS-1801 boards, the minimum voltage is -5V and the maximum voltage is +4.9976V. For the DAS-1802 boards, the minimum voltage is -10V. The maximum voltage is +9.9951V (12-bit A/D) and +9.9997V (16-bit DAS-1802HR).

D/A Volts

You must specify the minimum and maximum analog output, full-scale voltages at unity gain. Only the AO, HC, and XX-DA boards provide analog output. The output range for the HC and XX-DA boards is bipolar only and is fixed at ±10 volts. For these boards, the minimum voltage is -10V. The maximum voltage is +9.9951V (12-bit DACs) and +9.9997V (16-bit DAS-1802HR-DA). The output range for the DAS-1800AO boards is bipolar only and is software programmable for ±10 volts or ±5 volts. For this board, unity gain minimum voltage is -5V and maximum voltage is +4.9976V.

Configuration C-3

AI IRQ

You must select an interrupt request level to support IRQ or DMA mode data transfer. Valid IRQ levels are: 3, 5, 7, 10, 11, or 15. Two devices can share interrupt lines only if you do not use them at the same time.

AI DMA 1, AO DMA 1

You must select DMA and IRQ levels to support DMA mode data transfer for analog input. The DAS-1800AO also supports DMA operation for analog output. Valid DMA levels are: 5, 6, or 7. Two devices can share DMA levels only if you do not use them at the same time.

Clock

The counter/timer input from the master clock for analog input (and output for DAS-1800AO) has a fixed frequency of 5MHz.

Special Device Settings

The DAS-1800 series driver has special settings. To specify these settings, click the *Special* button on the *Device* property page and enter them in the *Configure DAS-1800 Options* dialog box.

Common-mode reference

The DAS-1800 has two options for the grounding single-ended analog inputs. They determine the ground reference for the A/D input amplifier.

- LL GND references the analog ground
- U_CM MD references the user-common ground

Use the U_CM MD setting to eliminate ground-loops.

Number of EXP-1800s

You can expand the number of single-ended analog input channels connected to your DAS-1800 board by using 1 to 16 EXP-1800 expansion boards. Each EXP-1800 is 1-to-16 multiplexer that replaces one onboard channel with 16 expansion channels. Configure your DriverLINX Logical Device to use the additional channels by entering the number of EXP-1800s here. See "Analog Input Multiplexer" on page C-11 for details on accessing multiplexer channels.

Simultaneous sample and hold configuration

You can connect one to two external Simultaneous Sample and Hold (SSH-8) units to the DAS-1800 analog input subsystem. Enter the number of SSH-8s connected in the *Configure DAS-1800 Options* dialog box.

For each SSH-8 unit, select the number in the *SSH* # list box and enter the following configuration parameters:

- Base channel specify which A/D input channel connects to an SSH-8 unit.
- Channel gain click on the channel and then select its SSH-8 external amplifier gain.
- Channel offset click on the channel and then select its channel offset.

Disable AO recycle mode

For the DAS-1800AO hardware, DriverLINX can automatically promote AO tasks meeting certain criteria to run from the DAC FIFO buffer in recycle mode. If the *Disable AO recycle mode* box is checked, DriverLINX will not use recycle mode. If the box is not checked, DriverLINX will use recycle mode for applicable tasks. See "Analog Output Subsystem" on page C-15 for details.

Implementation Notes

The following section describes how DriverLINX implements features of the Keithley DAS-1800 A/D boards.

Table C-1 summarizes the data acquisition modes that each subsystem on the Keithley DAS-1800 supports.

Table C-1. Modes Supported by DAS-1800 Models

Subsystem	Polled	Interrupt	DMA	Other
Analog Input	X	X	X	X
Analog Output	X	X	X^1	X
Digital Input	X	X		X
Digital Output	X	X		X
Counter/Timer				X
Device				X

¹ Only the DAS-1800AO boards support DMA transfer of data for Analog Output tasks.

Table C-2 summarizes the operations implemented for each of the supported modes of the DriverLINX subsystem using the Keithley DAS-1800 boards.

Table C-2. Allowed Operations and Events for Supported Subsystem Modes

Subsystem Mode	Operation ¹	Events		
		Timing	Start	Stop
Analog Input		-1	-	-
Polled	Start	rate, dig, null	cmd, dig, null	null, TC, dig
Interrupt	Start, Stop, Status	rate, dig	cmd, dig	cmd, TC, dig
DMA	Start, Stop, Status	rate, dig	cmd, dig	cmd, TC, dig
Other	Initialize			
Analog Output		•	•	•
Polled	Start	null	null	null
Polled (1800AO)	Start	rate, dig, null	cmd, dig, null	null, TC, dig
Interrupt ²	Start, Stop, Status	rate, dig	cmd, dig, null	cmd, TC, dig, null
DMA (1800AO)	Start, Stop, Status	rate, dig	cmd, dig	cmd, TC, dig
Other	Initialize			
Digital Input		·		
Polled	Start	null	null	null
Interrupt	Start, Stop, Status	rate	cmd, dig	cmd, TC, dig
Other	Initialize			
Digital Output		•	•	•
Polled	Start, Stop, Status	rate	cmd, dig	cmd, TC, dig
Interrupt	Start, Stop, Status	rate	cmd, dig	cmd, TC, dig
Other	Initialize			
Counter/Timer		•	•	•
Other	Initialize			
Device		•		<u>'</u>
Other	Initialize, Configure, Capabilities, Request, Release			

¹ All subsystems allow the MESSAGE operation and the Analog I/O subsystems allows the CONVERT operation which are not shown in the table.

² The DAS-1800AO does not support single value transfers in Interrupt mode and therefore null, Start, and Stop Events are not valid.

The following list explains the Event abbreviations in the preceding table:

- **null** Null or None Event when a Service Request does not require an event.
- cmd Command Event when DriverLINX starts or stops a task on software command.
- TC Terminal Count Event when DriverLINX processes all data buffers once.
- **rate** Rate Event specifies how DriverLINX paces or clocks data transfer.
- **dig** Digital Event specifies a trigger, clock, or other control signal to pace, start, or stop a task.

Analog Input Subsystem

The DAS-1800AO boards contain one A/D converter and a 16-channel multiplexer. You can configure the A/D inputs as 16 single-ended or 8 differential channels. The input channels, labeled **CH00HI** [26] and **CH00LO/CH08 HI** [2], etc., are located on the 50-pin Centronics-style male connector that projects through the rear panel of the computer.

All models provide software programmable input channel gain and a 256 location channel/gain queue. The hardware channel/gain queue enables high-speed sampling up to the maximum rate of channels out of sequence with different gain. You can also use it to sample the same channel more than once at different gains.

Analog Input Initialization

Initialization of the analog input subsystem aborts any active DMA or interrupt data acquisition tasks and stops the clock. Also, the driver checks for the presence of hardware and agreement with the configuration parameters.

Internal Clocking

Specify internal clocking using a Rate Timing Event as a rate generator (RATEGEN) on Logical Channel 0 with an internal source. For hardware independence, the application may specify the clock channel using the symbolic constant, DEFAULTTIMER, which always uses the Logical Channel assigned by hardware for analog input. With a 5MHz master clock, each tic is 200ns.

Burst Mode Sampling

All DAS-1800 boards support burst mode sampling. To set up burst mode sampling, specify the *mode* field of a Rate Event as BURSTGEN. The *period* field is the time in clock tics between bursts. The *onCount* field is the time in clock tics between successive samples within a burst, and *pulses* specifies the number of samples in a burst. The number of pulses in a burst must equal the number of channels scanned in the burst. *POLLED*, *INTERRUPT*, and *DMA* modes can support burst mode sampling, but exceeding the maximum sustainable acquisition rate in each mode will cause loss of data. Also, the duration specified in the *onCount* field must be within the range of 6µs (30 tics) minimum (20µs for DAS-1800HR) to 64µs (320 tics) maximum.

Repeat Mode Sampling

The DAS-1802HR-DA provides an option to sample the same channel 1 to 4095 times before advancing to the next channel in the channel/gain queue. To set up repeat mode sampling, choose a rate or burst timing event as described above. Bit-wise OR the *pulses* field with PULSE_REPEAT_COUNT_FLAG to set the MSB. Specify the number of pulses in each burst in the low-order word of the *pulses* field by using a bit-wise AND with PULSE_COUNT_MASK. Specify the repeat count in the high-order word by using a bit-wise AND with PULSE_REPEAT_COUNT_MASK.

External Clocking

Specify external clocking using a Rate Timing Event on channel 0 with an external clock source specified. For hardware-independence, you can specify the hardware external clock channel by the symbolic constant, *DI_EXTCLK*. Connect the external clock source to **XPCLK** [44]. The hardware external clocking feature of the DAS-1800 supports positive or negative active edge clocking. BE SURE that external clock source is TTL compatible, 0V minimum to +5V maximum!

External Triggering

Specify external triggering using a Digital Start Event reading from the 4-bit digital input port (channel 0) or external trigger input (channel 2). For hardware-independence, you can specify the hardware external trigger channel by the symbolic constant, *DI_EXTTRG*. Digital Start Events contain *mask*, *pattern*, and *match* fields. The mask is logically AND with the digital input data on the Logical Channel and then compared against the *pattern* for a match/mismatch. DriverLINX will use hardware triggering if the Digital Start Event corresponds to a positive or negative edge at trigger input, **TGIN** [46].

External Gating

DriverLINX implements external gates using a Timing Event with the Generator Gated by the **TGIN**[46] input. Acquisition is active while the **TGIN** input is at TTL high.

Simultaneous Sampling

The DAS-1800 hardware and DriverLINX support simultaneous sampling through the SSH-8 accessory. Specify the A/D channels connected to the SSH-8 and the SSH-8 amplifier gain values in the *Configure DAS-1800 Options* dialog box. See "Special Device Settings" on page C-4.

Select BURST mode for the Timing Event and set the *onCount* to 0. This represents zero time between sampling each channel (simultaneous sampling). Refer to the appropriate hardware user's manual for cabling requirements.

Analog Input Multiplexer

The EXP-1800 Input Multiplexers can expand the number of physical channels to 256 single-ended analog input channels. The DAS-1800 hardware automatically switches the multiplexer channels. This feature allows acquisition from the multiplexer channels in DMA mode.

To enable DriverLINX to use multiplexer(s), select the "16 SE" option for Analog Input Channels in the Device Configuration dialog box. Then enter the number of EXP-1800s in the Special Device Settings dialog. With this configuration, DriverLINX treats the DAS-1800 as having a possible 272 Logical Channels, instead of 16, analog input channels. Channels 0-15 refer to the native analog input channels on the DAS-1800 while channels 16-271 address one of the 256 mux channels.

While a DAS-1800 with 16 external multiplexers has 272 logical channels, it still has only 256 physical channels. Each mux supports 16 channels and the hardware electronically switches the 16 mux inputs to the one physical channel on the DAS-1800 where you attached the mux. Therefore, addressing a native channel (0-15), which has a mux attached, is logically equivalent to directly addressing the lowest numbered channel on the attached mux.

DriverLINX uses a static addressing scheme for attaching multiplexers. Removing an input from one native channel and attaching a mux to that input channel does not change the logical addresses of any other input channel. Also, if you reattach the input you removed from the native channel to the first mux channel, existing software can still read that input at its original logical address.

To determine the DriverLINX Logical Channel number for an EXP-1800 Multiplexer channel, use the following formula or refer to Table C-3. Note that DriverLINX uses a 0-based numbering scheme for all analog input channels and "a/d chan" refers to the native physical channel on a DAS-1800 where you attached the mux.

logical chan = $(a/d chan + 1) \times 16 + mux chan$

For example, the Logical Channel address for mux channel 4 attached to analog channel 3 is

$$(3+1) \times 16 + 4 = 68$$
.

To specify multiplexer input channels 1, 2, and 3 for an EXP-1800 connected to native input channel 0, add 16, 32, and 48 to the channel/gain list.

Table C-3. Table of logical channel numbers for eight external EXP-1800 Multiplexers

	Native Chan	0	1	2	3	4	5	6	7	
	Mux #	MUX #1	MUX #2	MUX #3	MUX #4	MUX #5	MUX #6	MUX #7	MUX #8	etc.
MUX Input Chan #										
0		16	32	48	64	80	96	112	128	
1		17	33	49	65	81	97	113	129	
2		18	34	50	66	82	98	114	130	
3		19	35	51	67	83	99	115	131	
4		20	36	52	68	84	100	116	132	
5		21	37	53	69	85	101	117	133	
6		22	38	54	70	86	102	118	134	
7		23	39	55	71	87	103	119	135	
8		24	40	56	72	88	104	120	136	
9		25	41	57	73	89	105	121	137	
10		26	42	58	74	90	106	122	138	
11		27	43	59	75	91	107	123	139	
12		28	44	60	76	92	108	124	140	
13		29	45	61	77	93	109	125	141	
14		30	46	62	78	94	110	126	142	
15		31	47	63	79	95	111	127	143	

Data Coding

The DAS-1800 converts the analog input signal data and returns its value in an integer format. For bipolar mode, the hardware returns A/D data as 2's complement in the range of -2048 to 2047 for 12-bit and -32768 to 32767 for 16-bit A/Ds. For unipolar mode, the hardware returns data as straight binary. The range is 0 to 4095 for 12-Bit ADCs and 0 to 65535 for 16-Bit ADCs.

The DAS-1800 returns data in integer format for all data transfer modes—*POLLED*, *INTERRUPT*, and *DMA*. The "native" data format of all DAS-1800 A/D boards is integer. There are no channel "tags." The 12 least significant bits of the word contain the 12-bit A/D data (right justified). In bipolar mode, the 4 most significant bits all contain the sign. For a 12-bit A/D at a gain of 1 in the ±10V range (bipolar mode), the voltage resolution would be.

$$\frac{20V}{4096} = 4.88mV$$

Input Voltage	A/D Binary Value
-10.0V	-2048
0.0V	0
+0.00488V	1
+9.99512V	2047

For a 12-bit A/D at a gain of 1 in the 0 to +10V range (unipolar mode), the voltage resolution would be

$$\frac{10V}{4096} = 2.44 \text{mV}$$

Input Voltage	A/D Binary Value
0.0V	0
+5.0V	2048
+5.00244V	2049
+9.99756V	4095

The values returned by the A/D converter range from -2048 to 2047 in bipolar mode and 0 to 4095 for unipolar mode independent of the gain or channel configuration. For a 12-bit A/D at a gain of 100 in the ± 100 mV range (bipolar mode), the voltage resolution would be

$$\frac{200 mV}{4096} = 48.8 \mu V$$

Input Voltage	A/D Binary Value
-100.0mV	-2048
0.0V	0
+48.8μV	2046
+99.9512μV	2047

A/D Conversion Delay

The maximum A/D conversion delay is 833 seconds (13 min, 53 sec) or a minimum sampling rate of 0.0012Hz with a 5MHz master clock input frequency.

The minimum A/D conversion delay is 30 clock tics at 200ns per tic (5MHz clock) or 3µs. The DAS-1800 series can sample at a maximum rate of 333kHz for one channel and 312kHz for multiple channels.

A/D Data Lost

The DAS-1800 provides hardware monitoring of A/D data overruns. DriverLINX notifies applications that an overrun has occurred by posting an event message, DL_DATALOST. DriverLINX posts this message only the first time the board detects an overrun during an acquisition task. The DAS-1800 hardware will stop acquisition when an overrun has occurred.

Analog Output Subsystem

The DAS-1800AO models offer two channels of multiplying 12-bit D/A converters that support DMA mode of data transfer at continuous output rates of up to 500kHz. A 2K sample FIFO buffer allows continuous, gap-free data transfer for data buffers larger than 2K. Alternatively, for data buffers smaller than 2K samples, the AO task can "free-run" entirely from the on-board DAC FIFO buffer using the board's recycle mode.

For the DAS-1800AO hardware, DriverLINX can automatically promote AO tasks meeting the following criteria as specified in the Service Request to run from the DAC FIFO buffer in recycle mode:

Mode = INTERRUPT Stop Event type = COMMAND Notify flag (in buffer list) = FALSE Data buffer samples < 2048

The advantages of using the DAC FIFO buffer for free-run, recycle mode analog output are:

- traffic on the memory bus is significantly reduced at high output rates.
- the system response latency will be noticeably shortened.
- the analog output timing will be immune to traffic on the memory and I/O buses.

The disadvantages are:

- you cannot change the analog output values while the analog output task is running.
- there is a delay while DriverLINX loads the FIFO.
- buffer-filled notification messages cannot be posted as the hardware does not permit detection of end-of-buffer conditions.
- the *STATUS* operation cannot provide the "number of buffers processed" report.

You can disable automatic promotion to recycle mode by DriverLINX. This forces all AO tasks to run from computer memory instead of the DAC FIFO. See "Special Device Settings" on page C-4.

Analog Output Initialization

By default, the Analog Output subsystem loads zero into both D/A channels forcing the initial output voltage to zero. You can specify a different initial output voltage using the DriverLINX *Configuration Control Panel*.

Internal Clocking

Specify internal clocking using a Rate Timing Event as a rate generator (RATEGEN) on Logical Channel 0 (channel 1 for DAS-1800AO) with an internal source. For hardware independence, the application may specify the clock channel using the symbolic constant, DEFAULTTIMER, which always uses the Logical Channel assigned by hardware for analog output.

Synchronous Analog Input/Output Clocking

The DAS-1800AO is ideal for use in "stimulus/response" type applications where a signal is applied to a "circuit" to determine its response characteristics (such as propagation delay time). The output response of the circuit must be measured simultaneously with the application of the stimulus to immediately capture the response for precise calculation of delay times and phase angles. This technique will eliminate the measurement errors caused by asynchronous analog I/O.

DriverLINX supports synchronous analog I/O using a shared pacing clock source. To synchronize analog input with analog output, set up two service requests as follows:

- 1. Analog Output Service Request (SR). The Timing Event should be a Rate Generator using Logical Channel 0 (AI clock). This specifies that the AO SR will use the same pacing source as the next, or currently active, AI SR. The Period must be 0.
- 2. Analog Input SR with any valid Timing Event. When the AI task starts sampling, the AO task will also sample using the same clock source (internal or external).

Although both SRs share the same clock source, they are otherwise logically independent of each other. Your application must manage and respond to each Service Request separately. If the AI task terminates before the AO task, the AO task will still be logically active, but the clock

will send timing pulses to the AO task until the next AI task starts. If you want to terminate the AO task when the AI task stops, either set up both SRs with equal buffer sizes and Stop Events or issue a Stop operation request for the AO task.

External Clocking

Specify external clocking using a Rate Timing Event on channel 0 with an external clock source specified. For hardware-independence, you can specify the hardware external trigger channel by the symbolic constant, *DI_EXTCLK*. Connect the external clock source to **XPCLK** [44]. The hardware external clocking feature of the DAS-1800 supports positive or negative active edge clocking. BE SURE that external clock source is TTL compatible, 0V minimum to +5V maximum!

External Triggering

Specify external triggering using a Digital Start Event reading from the digital input port (channel 0) or external trigger input (channel 2). For hardware-independence, you can specify the hardware external trigger channel by the symbolic constant, *DI_EXTTRG*. Digital Start Events contain *mask*, *pattern*, and *match* fields. The mask is logically AND with the digital input data on the Logical Channel and then compared against the *pattern* for a match/mismatch. DriverLINX will use hardware triggering if the Digital Start Event corresponds to a positive or negative edge at input port line, **TGIN** [46]. During an AO task running in the recycle mode, if Simultaneous = TRUE and the Start Event is a hardware Digital Input trigger, the DI event will restart the FIFO pointer to beginning.

Data Coding

The output range of each D/A channel is fixed at ± 10 V for all DAS-1800 boards except the DAS-1800AO which has two software programmable ranges; ± 5 V and ± 10 V.

The DAS-1800ST-DA uses 2's complement data coding for the four 12-bit D/Achannels. The output range is fixed at ± 10 volts. The minimum DAC code is -2048 (-10V) and the maximum code is +2047 (+9.9951V).

The DAS-1802HR-DA uses 2's complement data coding for the two 16-bit D/A channels. The output range is fixed at ± 10 volts. The minimum DAC code is -32768 (-10V) and the maximum code is +32767 (+9.9997V).

The DAS-1800AO uses 2's complement coding. The two 12-bit DACs have two independently controllable, software programmable output ranges of $\pm 5V$ and $\pm 10V$. The minimum DAC code is -2048 (-5 or -10V) and the maximum code is +2047 (+4.9976 or +9.9951V).

Select the analog output range by using the Gain2Code support function that returns the hardware value to the *channelGain* field (startGainCode VB property) of the Service Request. Select a gain of -1 for ± 5 V and a gain of -2 for ± 10 V. The negative sign implies bipolar operation. (Unipolar mode is not available for analog output).

If you select the $\pm 5V$ range, the D/A output range will be from -5 to $\pm 5V$ as follows:

Voltage Resolution =
$$\frac{10V}{4096}$$
 = 2.4414mV

Binary Value	D/A Output Voltage
-2048	-5.0000V
0	0.0000V
1	+2.4414mV
+2047	+4.9976V

D/A Conversion Delay

The DAS-1800AO has a dedicated counter/timer for analog output, which provides the ability to pace D/A conversions in hardware. This board supports Polled, Interrupt, and DMA modes of data transfer. Minimum conversion delay is primarily a function of the D/A mode selected and operating parameters of other active tasks, if any. The DAC hardware is capable of converting data at 500kHz. It will run at that rate under Windows with DriverLINX if the D/A task runs alone or in the recycle mode with an active analog input task. On a typical 486DX2/66-based computer, running in the synchronous analog input/output mode, a

100kHz rate for each task is easily attainable without degrading overall system performance. If both AI and AO tasks use DMA (different channels), 200kHz for each is achievable, but system response noticeably slows.

The other DAS-1800 models cannot support direct hardware timing of D/A output. D/A conversions are timed using either software polling of the analog input counter/timer or interrupts from A/D end-of-conversion signal. Either technique requires software to update the hardware registers with new values as rapidly as possible after a clock event occurs. Variations in interrupt latencies and bus timing will add noticeable jitter to D/A signals output at high rates. You should run empirical tests to determine suitability of D/A output for the intended purpose.

The D/A conversion delay to output a periodic waveform with a given number of samples per period is simple to determine. For example, the conversion delay for a 200Hz wave with 100 samples/cycle is

$$T = \frac{1}{\text{frequency}} = \frac{1}{200 \text{Hz}} = 5 \text{ms}$$

D/A conversion delay =
$$\frac{5ms}{100 \text{ samples}}$$
 = 50ms

D/A Data Lost

DAS-1800AO models provide hardware monitoring of DAC FIFO underflow in DMA and Interrupt modes only. DriverLINX notifies applications that data loss has occurred by posting an event message, DL_DATALOST. The task will become inactive once this error occurs and the hardware will stop data transfer.

Digital Input and Output Subsystems

Logical Channels

For logical channel 0, the digital input port is a composite of the signals **DI 0**, **DI 1**, **DI 2**, **DI 3** and the output port is a composite of the signals **DO 0**, **DO 1**, **DO 2**, **DO 3**.

Logical Channel	Physical Digital Input	Physical Digital Output
0	DI 0-3	DO 0-3
1		MUX4 - MUX7 + GEXT
2	TGIN	

You can use the external multiplexer outputs **MUX4-7** as pseudo digital outputs for applications requiring more than 4 digital outputs. Since the channel/gain QRAM controls the state of these outputs, changes to the state of these lines during active analog input tasks is not possible as it is for **DO 0-3**. You must output the data for logical channel 1 (MUX port) before starting an analog input task. The hardware maintains the last value written to this port until you change it with another task.

The DAS-1800 implements digital hardware Stop Event triggers (**TGIN**) using a counter/timer to count the number of samples specified for the Stop Event *Delay*. The value must be greater than zero and is the number of samples acquired since the Start Event. If you specify a Digital Start Event and a Digital Stop Event, the Stop Event must be exactly the same as the Start Event.

DriverLINX implements all digital I/O on the DAS-1800 boards as immediate, single-value transfers on execution of the Service Request. All digital I/O is right-justified. DriverLINX ignores unused bits on output and returns zero on input. Logical Channel 0 Digital Inputs return 4-bit values.

Digital Input Initialization

Logical Channel 0 is unchanged by initialization.

Digital Output Initialization

Initialization of the Digital Output subsystem resets the value of all outputs to zero.

Digital I/O Conversion Delay

For Digital I/O on Logical Channel 0, you may use the same clocking technique as discussed for the analog output subsystem in Interrupt modes.

Digital I/O Data Lost

The hardware cannot detect Digital I/O data overruns so DriverLINX does not send the DL_DATALOST message when digital overruns occur.

Counter/Timer Subsystem

The DAS-1800 uses an Intel 8254 Programmable Interval Timer that consists of 3 internal 16-bit counters, Counter 0, Counter 1, and Counter 2. For A/D pacing, the DAS-1800 boards operate Counters 1 and 2 in a fixed divider, 32-bit configuration. The input of Counter 1 connects to a 5MHz crystal oscillator and the output of Counter 1 connects to the input of Counter 2. The DAS-1800 uses Counter 0 for trigger delay and its input, output, and gate control are not available.

Although the DAS-1800 uses a chip that has 3 counters, it ties two of them together internally (Counters 1 and 2) and dedicates the third to internal functions. Therefore, DriverLINX implements only one logical counter, Logical counter 0, which corresponds to the internal A/D pacing clock (8254 counters 1 and 2). You can use Logical counter 0 to pace Analog Output or Digital I/O tasks indirectly through hardware interrupts. The DAS-1800AO has an additional counter/timer for supporting timed Analog Output tasks in hardware. DriverLINX implements two logical counters in this case, Logical counter 0, which corresponds to the internal A/D pacing clock, and logical counter 1, which corresponds to the internal D/A pacing clock.

Counter/Timer Initialization

Power-up state of the counters is undefined. Initialization establishes the state of each counter as a binary rate generator with a down count of 65535.

Counter/Timer Interrupt

DriverLINX supports counter/timer interrupts indirectly. You can set up an INTERRUPT mode A/D task and use the interrupts to pace the counter/timer task.

Index EXP-1800 1-5, 2-5, 4-10 MB Series modules 1-5 MB01 1-5, 4-7 MB02 1-5, 2-5, 4-8 **Numerics** SSH-8 1-5, 4-6 STA-1800U 1-4, 2-5, 4-1, 4-2, 4-6, 4-7, 2's complement 2-5, A-1 4-8, 4-9 82C54 counter/timer 2-2, 2-12, 2-15, 2-17 STP-50 1-4, 4-5 acquisition time A-2 Acrobat Α for DriverLINX installation 3-3 ADC (analog-to-digital converter) 2-2, 2-3, A/D 2-13, 2-26 clock sources address hardware, external 2-13 configuration 3-9 hardware, internal 2-12 DriverLINX default C-3 software 2-12 AI DMA 1, AO DMA 1 data conversion modes setting in DriverLINX C-4 burst 2-11 AI IRQ paced 2-11 setting in DriverLINX C-4 data transfer mode allowed operations DMA 2-19 in DriverLINX C-7 interrupt 2-18 analog single 2-18 ground (LL GND) 2-4, 4-11 throughput rates 2-7 input 2-3, 2-12 A/D channels input signals, connecting 4-13 DriverLINX support for C-3 output 2-19 A/D conversion delay output signals, connecting 4-16 input programming in DriverLINX C-14 analog input multiplexer A/D data lost input programming in DriverLINX C-11 monitoring in DriverLINX C-14 analog input subsystem A/D volts programming in DriverLINX C-8 DriverLINX support for C-3 analog output initialization about-trigger acquisition 2-16 output programming in DriverLINX accessory C16-MB1 cable 1-5, 4-7 analog output subsystem C-1800 cable 1-5, 4-6 programming in DriverLINX C-15 C-2600 cable 1-5, 4-8 anti-static wrapper 3-1 CAB-50 Series cable 1-5 AO recycle mode CAB-50/1 cable 4-10 disabling in DriverLINX C-5 CACC-2000 cable 4-9 aperture delay A-2 CDAS-2000 Series cable 1-5, 4-2, 4-5,

4-6, 4-7, 4-9, 4-10

В	channel
hadada a	expansion 2-5
backplane	gain queue 2-3, 2-5
MB01 1-5, 4-7	grouping 2-7
MB02 1-5, 4-8	selection for MB02 accessories 4-9
bandwidth 2-8	clock
base address	A/D external 2-15
switch 3-5	A/D internal 2-15
block diagram 2-1	burst mode conversion 2-11
browser map	counter/timer 2-26
DriverLINX installation 3-4	D/A external 2-21
burst mode	D/A internal 2-21
control 2-2	function in DriverLINX C-4
conversion clock 2-11, 2-12, 2-13, 2-14	pacer 2-11
conversion rate 2-13	clock sources
period 2-27	A/D 2-12
burst mode sampling	A/D pacer 2-12
input programming in DriverLINX C-9	D/A 2-21
	common mode 2-3
	voltages 4-15
С	Commonly used I/O addresses 3-7
C	common-mode reference
C/C++	setting in DriverLINX C-4
function libraries for programming in 1-3	computer
cable	requirements for DAS-1700 and
C16-MB1 1-5, 4-7	DriverLINX 1-1
C-1800 1-5, 4-6	computer resources
C-2600 1-5, 4-8	determination for installation 3-3
CAB-50 Series 1-5	conditioning, external signal 2-7
CAB-50/1 4-10	configuration
CACC-2000 4-9	in DriverLINX C-1
CDAS-2000 Series 1-5, 4-2, 4-5, 4-6,	connecting
4-7, 4-9, 4-10	analog input signals 4-13
cabling and wiring 4-1	analog output signals 4-16
calibration	differential inputs 4-13
DriverLINX utility 6-2	digital control signals 4-16
calibration utility 6-1	digital I/O signals 4-16
CD ROM	EXP-1800 4-10
DriverLINX installation 3-4	MB01 backplane 4-7

X-2 Index

MB02 backplane 4-8	interrupt 2-23
multiple boards 4-17	recycle 2-23
signals 4-11	single 2-23
single-ended inputs 4-13	throughput rates 2-20
SSH-8 accessory 4-6	triggering
STA-1800U 4-1, 4-2	internal 2-22
STP-50 4-5	D/A conversion delay
connector	output programming in DriverLINX
J1 and J2 of the STA-1800U 4-4, B-2	C-18
J3 of the STA-1800U B-3	D/A data lost
J4 to J7 of the STA-1800U B-3	output monitoring in DriverLINX C-19
main I/O 4-4, B-1	D/A volts
conversion	DriverLINX suppport for C-3
enabled by internal/external clocks 2-15	DAC (digital-to-analog converter) 2-2, 2-19,
enabled by software 2-15	2-20, 2-21, 2-23, 2-24
rate 2-11	daisy-chaining EXP-1800 accessories 4-10
rate, burst mode, A/D 2-13	DAS-1700 board models
synchronized to external clock 2-17	DriverLINX support for C-2
synchronized to gate 2-17	data acquisition modes
counter/timer	supported in DriverLINX C-6
82C54 2-2, 2-12, 2-15, 2-17	data coding
clock 2-26	input programming in DriverLINX C-13
counter/timer initialization	output programming in DriverLINX
programming in DriverLINX C-22	C-17
counter/timer interrupt	data conversion modes
programming in DriverLINX C-22	burst 2-11
counter/timer subsystem	paced 2-11
programming in DriverLINX C-21	data transfer modes
counter/timer, 82C54 2-17	A/D 2-18
CPU, bypassing 2-19	digital I/O 2-27
	DC/DC converter 2-28
	Delphi
D	function libraries for programming in 1-3
D	diagram, block 2-1
D GND (digital ground) 4-11	differential inputs 2-3, 4-13
D/A	digital
conversion rate control	ground (DGND) 4-11
external clock 2-21	I/O signals, connecting 4-16
internal clock 2-21	inputs 4-16
software 2-21	outputs 4-16
data transfer modes	trigger 2-14
DMA 2-23	

digital control signal	DOSTB
DOSTB	connecting 4-17
connecting 4-17	using 2-24
using 2-24	DriverLINX
SSHO	analog I/O panel
connecting 4-16	description 1-3
using 2-26	using 5-1
TGIN	API DLLs
connecting 4-16	description 1-3
using 2-25	browser map 3-4
TGOUT	calibration utility 6-2
connecting 4-16	CD ROM installation 3-4
using 2-25	computer resource requirements 1-1
XPCLK	configuration 3-5
connecting 4-17	description 1-3
using 2-13	event viewer 7-1
digital I/O conversion delay	installation 3-2
programming in DriverLINX C-21	selecting components to install 3-3
digital I/O data lost	special device settings for DAS-1700
monitoring in DriverLINX C-21	C-4
digital I/O operating mode	test panel procedure 5-2
interrupt 2-27	using to verify board operation 3-10
single 2-27	DriverLINX configuration notes C-1
digital input and output subsystems	drivers
programming in DriverLINX C-20	for DriverLINX installation 3-3
digital input initialization	
programming in DriverLINX C-20	
digital output initialization	_
programming in DriverLINX C-21	E
disable AO recycle mode	electrical noise A-2
set in DriverLINX C-5	event viewer
DMA	in DriverLINX 7-1
dual-channel 2-19	EXP-1800
levels A-3	
mode 2-19, 2-23	input programming for in DriverLINX C-11
operations 2-11	table of logical channel numbers for C-12
single-channel 2-19	EXP-1800 accessory 1-5, 2-5, 4-10
documentation	EXP-1800s accessory 1-3, 2-3, 4-10
for DriverLINX installation 3-3	number set in DriverLINX C-5
installing in DriverLINX 3-4	expanision board utility programs
	configuration 3-8
	comiguration 3-0

X-4 Index

expansion board	glitch 2-19, 2-20		
configuring in DriverLINX 3-8	ground		
external	analog (LL GND) 2-4		
A/D clock 2-15	digital (D GND) 4-11		
A/D pacer clock 2-13	loop		
D/A clock 2-21	avoiding 4-15		
digital trigger 2-14	noise 4-11		
gate 2-23	user-common (U_CM MD) 2-4		
external clocking	grounding		
input programming in DriverLINX C-10	modes set in DriverLINX C-4		
output programming in DriverLINX	grouping, channel 2-7		
C-17			
external gating			
input programming in DriverLINX C-10	Н		
external triggering	••		
input programming in DriverLINX C-10	hardware trigger 2-16		
output programming in DriverLINX	hed 4-9		
C-17	high-level		
	inputs 2-7		
	signals 2-3		
F			
•			
factory calibration 3-2	1		
features	:::::::::::::::::::::::::::::::::::::::		
analog input 2-3	initialization		
analog output 2-19	analog input programming in DriverLINX C-8		
digtal I/O 2-24			
FIFO 2-19, 2-20	input		
filtering, post-acquisition 2-7	analog 2-3		
frequency, burst mode conversion clock 2-13	differential 2-3		
front-end analog interface 4-6	digital 2-24		
	high level 2-7		
	low-level 2-7		
	ranges 2-5, 2-6		
G	installing		
gain codes 2.5	DAS-1800AO Series board 3-6		
gain codes 2-5	interfaces		
gate	for DriverLINX installation 3-3		
external D/A 2-23 hardware 2-17, 2-18	internal		
•	A/D clock 2-15		
signal 2-17 GEXT external gain control line 2-6	A/D pacer clock 2-12		
OLA I CAUTHAI VAIII COILLOI IIILE 2-0	D/A clock 2-21		

internal clocking	mode
output programming in DriverLINX	data acquisition supported in
C-16	DriverLINX C-6
interrupt	model
latencies 2-19	configuration 3-9
levels A-3	modes
mode 2-18, 2-23, 2-27	A/D data conversion 2-11
operations 2-11	A/D data transfer 2-18
I/O addresses, commonly used 3-7	D/A data transfer 2-23
1/O addresses, commonly used 3-7	•
	DMA 2-19, 2-23
	interrupt 2-18, 2-23
1	recycle 2-23
J	modules, MB Series 1-5
jumpers	monotonicity A-3
setting prior to installation 3-3	multiplex 2-3
setting prior to instantation 5-5	MUX
	input programming in DriverLINX C-11
	MUX 4 to MUX 7 control lines 2-5
L	
_	
LabVIEW	0
function libraries for programming in 1-3	O
Learn DriverLINX	online help
description 1-4	for DriverLINX 1-4
for configuration of board 3-8	options
linearity A-2	configuration 3-9
LL GND (low-level ground) 4-11	<u> </u>
	oscilloscope
logical channels	in analog I/O panel 5-1
programming in DriverLINX C-20	outputs
logical device	analog 2-19
configuration 3-9	digital 2-24
low-level	
inputs 2-7	
signals 2-3	Р
	•
	paced mode 2-11
	pacer clock
M	A/D 2-11
MB Series modules 1-5	A/D external hardware 2-13
	A/D internal hardware 2-12
MB01 backplane 1-5, 4-7	period 2-26
MB02 backplane 1-5, 2-5, 4-8	rate 2-11
	14t0 2 11

X-6 Index

pin assignments	\$
J1 and J2 of the STA-1800U 4-4, B-2	1 2.11
J3 of the STA-1800U B-3	sample rate 2-11
J4 to J7 of the STA-1800U B-4	sampling resolution 2-3
jumper pads J8 to J11 of the STA-1800U	scan, burst mode 2-11
B-4	scanning 2-7
main I/O connector 4-3, B-1	settling time 2-7, 2-20
STP-50 screw terminals 4-5	signal conditioning 1-5, 2-7
positive magnitude 2-5	signals
post-trigger acquisition 2-17	connecting 4-11
potentiometers 6-1	DOSTB 2-24
power 2-28	gate 2-17
pre-trigger acquisition 2-16	high-level 2-3
pseudo-simultaneous sample and hold 2-11	low-level 2-3
	residual 2-7
	SSHO 2-26
	TGIN 2-25
Q	TGOUT 2-25
	simultaneous sample and hold
quantization A-3	set in DriverLINX C-5
queue, channel-gain 2-5	simultaneous sampling
	input programming in DriverLINX C-10
	simultaneous-sample-and-hold accessory 1-5
R	single mode 2-18, 2-23, 2-27
N	single-ended inputs 2-3
RAM storage 2-5	software
ranges, input 2-5	triggering/gating 2-15
rate	specifications
conversion 2-11	analog input A-1
pacer clock 2-11	analog output A-4
sample 2-11	digital I/O A-5
RC (resistor-capacitor) 2-8	power supply A-6
recycle mode 2-23	SSH-8 accessory 1-5, 4-6
repeat mode sampling	SSHO
input programming in DriverLINX C-9	connecting 4-16
resistors	timing for 2-27
bias return 4-13	using 2-26
pull-up 2-24	SST signal generator
resolution A-1	in analog I/O panel 5-1
resolution, sampling 2-3	STA 4-8
retrigger 2-23	STA-1800U accessory 1-4, 2-5, 4-1, 4-2, 4-6,
	4-7, 4-8, 4-9

STP-50 accessory 1-4, 4-5	TTL-compatible 2-13, 2-21
strobe signal, DOSTB 2-24	Turbo Paxcal
switch, base address 3-5	function libraries for programming in 1-3
switches	
setting prior to installation 3-3	
synchronous analog input/output clocking	
output programming in DriverLINX	U
C-16	user common ground (II CM MD) 2.4
system throughput 2-7	user-common ground (U_CM MD) 2-4 using
	2
	digital inputs 2-24 digital outputs 2-24
Т	utility
•	calibration 6-1
technical support 7-6	Candiation 0-1
test panel	
procedure 5-2	
Test Point	V
function libraries for programming in 1-3	_
test points 6-1	Visual Basic
TGIN	function libraries for programming in 1-3
connecting 4-16	volt meter
using 2-25	in analog I/O panel 5-1
TGOUT	voltage output
connecting 4-16	using analog I/O panel 5-1
using 2-25	voltages 2-28
throughput	
channel-to-channel 2-8	
one channel 2-8	W
time base 2-12	VV
timing of A/D conversion modes 2-12	Windows Enhanced mode 2-19
transducers 2-8	wrapper, anti-static 3-1
trigger	•
external digital 2-14	
internal 2-14	
negative edge 2-14, 2-22	X
polarity 2-15	XPCLK
positive-edge 2-14, 2-22	
software 2-15	connecting 4-17
trigger acquisition	using 2-13
about-trigger 2-16	
post-trigger 2-17	
pre-trigger 2-16	

X-8 Index

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168

1-888-KEITHLEY (534-8453) • www.keithley.com

Sales Offices: BELGIUM: Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 00 40 • Fax: 02/363 00 64

CHINA: Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892

 FINLAND:
 Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 75 08 10 • Fax: 09-25 10 51 00

 FRANCE:
 3, allée des Garays • 91127 Palaiseau Cédex • 01-64 53 20 20 • Fax: 01-60 11 77 26

 GERMANY:
 Landsberger Strasse 65 • 82110 Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34

GREAT BRITAIN: Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 0118 929 7500 • Fax: 0118 929 7519 **INDIA:** Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560 001 • 91-80-509-1320/21 • Fax: 91-80-509-1322

ITALY: Viale San Gimignano, 38 • 20146 Milano • 02-48 39 16 01 • Fax: 02-48 30 22 74

JAPAN: New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 • Fax: 81-3-5733-7556

KOREA: 2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838

NETHERLANDS: Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821

SWEDEN: c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 169 70 Solna • 08-509 04 679 • Fax: 08-655 26 10

SWITZERLAND: Kriesbachstrasse 4 • 8600 Dübendorf • 01-821 94 44 • Fax: 01-820 30 81

TAIWAN: 1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031