DAS-1800AO Series Register-Level Programming

DAS-1800AO Series
 Register-Level Programming User's Guide

Revision A - September 1994
Part Number: 91290

New Contact Information

Keithley Instruments, Inc. 28775 Aurora Road Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday - Friday 8:00 a.m. to 5:00 p.m (EST)
Fax: (440) 248-6168

Visit our website at http://www.keithley.com

The information contained in this manual is believed to be accurate and reliable. However, Keithley Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

MetraByte is a trademark of Keithley Instruments. All other brand and product names are trademarks or registered trademarks of their respective companies.
© Copyright Keithley Instruments, Inc., 1994.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is unlawful.

Keithley MetraByte Division

Keithley Instruments, Inc.

440 Myles Standish Blvd. Taunton, MA 02780
Telephone: (508) 880-3000 • FAX: (508) 880-0179

Preface

The DAS-1800AO Series Register-Level Programming User's Guide provides a description of the I/O addresses in DAS-1800AO Series boards.

The manual is intended for experienced programmers whose applications require operational control that is not provided by the software packages currently available for DAS-1800AO Series boards. It is assumed that users have read the DAS-1800AO Series User's Guide to familiarize themselves with the boards' functions, that they have completed the appropriate hardware installation and configuration, and that they are familiar with data acquisition principles.

Note: This manual is not intended for application programmers who are using the DAS-1800 Series Function Call Driver or a menu-driven software package. If you are using the DAS-1800 Series Function Call Driver, refer to the DAS-1800AO Series Function Call Driver User's Guide. If you are using a menu-driven software package, refer to the documentation supplied with the package.

The DAS-1800AO Series Register-Level Programming User's Guide is organized as follows:

- Chapter 1 contains a description of the I/O addresses in DAS-1800AO Series boards.
- Chapter 2 contains guidelines you should follow when programming certain operations of DAS-1800AO Series boards.
- Appendix A contains a summary of the bits in the DAS-1800AO Series registers.

Throughout the manual, references to DAS-1800AO Series boards apply to DAS-1801AO and DAS-1802AO boards; references to DAS-1800 Series boards apply to all members of the DAS-1800 family of data acquisition boards. When a feature applies to a particular board, that board's name is used.

Table of Contents

Preface
1 I/O Addresses
A/D Data, A/D CNVRT, or A/D QRAM Data 1-4
A/D Data 1-5
A/D CNVRT 1-9
A/D QRAM Data 1-9
A/D Data Select Register 1-11
Digital I/O Register 1-12
A/D Control Register A 1-13
A/D Control Register B 1-16
A/D Control Register C 1-20
A/D Status Register 1-22
Burst Length Register 1-29
Burst Mode Conversion Rate Register. 1-30
A/D QRAM Address Start Register 1-31
A/D Counter Registers 1-33
D/A Data 1-34
D/A Data Select Register 1-36
D/A Recycle Count Register 1-38
D/A Control Register A 1-39
D/A Control Register B 1-42
D/A Control Register C 1-45
D/A Status Register 1-47
D/A Conversion Counter Register 1-53

2 Programming Information

Setting Up the Board for Software-Initiated A/D Conversions 2-1
Programming the A/D QRAM 2-2
Setting Up the Board for Software-Initiated D/A Conversions 2-3
Setting Up the Board for D/A Conversions in Recycle Mode 2-4
Using SSH 2-5
Summary of Trigger and Gate Functions for A/D Conversions. 2-6
Summary of Trigger and Gate Functions for D/A Conversions. 2-7
Pin Assignments 2-10

A Summary of I/O Address Bits

List of Figures
Figure 2-1. Main I/O Connector 2-10
List of Tables
Table 1-1. I/O Address Map $1-1$
Table 1-2. Data Format for A/D Conversions (Bipolar) 1-6
Table 1-3. Data Format for A/D Conversions (Unipolar) 1-7
Table 1-4. A/D Gain Codes 1-10
Table 1-5. A/D Data Select Register Bit... 1-11
Table 1-6. Interrupt Level Select Bits 1-18
Table 1-7. A/D DMA Channel Select Bits 1-19
Table 1-8. A/D Pacer Clock Select Bits 1-22
Table 1-9. Summary of A/D Status Register Bits 1-28
Table 1-10. Data Format for D/A Conversions 1-35
Table 1-11. Digital-to-Analog Converters 1-37
Table 1-12. D/A DMA Channel Select Bits 1-44
Table 1-13. D/A Gain Codes. 1-46
Table 1-14. D/A Pacer Clock Select Bits 1-47
Table 1-15. Summary of D/A Status Register Bits 1-53
Table 2-1. Trigger/Gate Functions(Internal A/D Pacer Clock)2-6
Table 2-2. Trigger/Gate Functions (External Pacer Clock) 2-7
Table 2-3. Trigger/Gate Functions
(Internal D/A Pacer Clock) 2-8
Table 2-4. Trigger/Gate Functions (External Pacer Clock) 2-9
Table 2-5. Pin Assignments 2-11
Table A-1. Summary of I/O Address Bits A-1

I/O Addresses

DAS-1800AO Series boards require a total of 268 -bit locations in the I/O space of your host computer: 16 locations starting at the base address and 10 locations starting at the base address plus 400 h . You assign the base address by setting switches on the DAS-1800AO Series board; refer to the DAS-1800AO Series User's Guide for more information on setting the base address.

Since the base address is variable, the individual I/O addresses are described as offsets from the selected base address, as shown in Table 1-1. The write and read functions of the registers are also summarized in Table 1-1.

Table 1-1. I/O Address Map

Location	Name	Type	Function
${\text { Base }+0 h^{1}}^{*}$	A/D Data ${ }^{2}$	Read	A/D conversion data stored in the A/D FIFO. Refer to page 1-5.
	A/D CNVRT ${ }^{2}$	Write	Initiates an A/D conversion. Refer to page 1-9.
	A/D QRAM Data ${ }^{2}$	R/W	Specifies the channel and gain code at the currently selected location in the A/D QRAM. Refer to page 1-9.
Base +2 h	A/D Data Select	R/W	Specifies the register at Base Address + 0h that you want to access. Refer to page 1-11.

Table 1-1. I/O Address Map (cont.)

Location	Name	Type	Function
Base +3 h	Digital I/O	Read	Returns the value of the four digital input lines (DI0 to DI3) and the board identification. Refer to page 1-12.
		Write	Writes a value to the four digital output lines (DO0 to DO3). Refer to page 1-12.
Base + 4h	A/D Control A	R/W	Controls the trigger/gate and A/D FIFO enable functions for A/D conversions. Refer to page 1-13.
Base + 5h	A/D Control B	R/W	Controls interrupt mode and DMA mode for A/D conversions and controls the interrupt level for D/A conversions. Refer to page 1-16.
Base +6 h	A/D Control C	R/W	Controls the input range type (unipolar or bipolar), the input configuration (single-ended or differential), the A / D pacer clock source, and burst-mode A/D conversions. Refer to page 1-20.
Base +7 h	A/D Status	Read	Allows you to monitor the status of eight onboard signals. Refer to page 1-22.
		Write	Enables/disables A/D conversions and clears/masks the event-driven interrupt bits. Refer to page 1-22.
Base +8 h	Burst Length	R/W	Specifies the number of channels in the scan when performing burst-mode A/D conversions. Refer to page 1-29.
Base +9 h	Burst Mode Conversion Rate	R/W	Specifies the burst mode conversion rate when performing burst-mode A/D conversions. Refer to page 1-30.
Base + Ah	A/D QRAM Address Start	R/W	Specifies the starting address of the channel-gain queue within the A/D QRAM. Refer to page 1-31.
Base + Bh	Not used	---	-- -
Base + Ch	A/D Counter 0	R/W	Allow you to program the three counters of the 82C54 Programmable Counter/Timer. Refer to page 1-33.
Base + Dh	A/D Counter 1	R/W	
Base + Eh	A/D Counter 2	R/W	
Base + Fh	A/D Counter Control	Write	
Base $+400{ }^{1}$	D/A Data	Write	The output value to load into the D/A FIFO. Refer to page 1-34.

Table 1-1. I/O Address Map (cont.)

Location	Name	Type	Function
Base +402 h	D/A Data Select	R/W	Specifies the DACs you want to update and the three most significant bits of the D/A recycle count value. Refer to page 1-36.
Base +403 h	D/A Recycle Count	R/W	Specifies the eight least significant bits of the D/A recycle count value. Refer to page 1-38.
Base +404 h	D/A Control A	R/W	Controls the trigger/gate and D/A FIFO enable functions for D/A conversions. Refer to page 1-39.
Base $+405 h$	D/A Control B	R/W	Controls interrupt mode and DMA mode for D/A conversions. Refer to page 1-42.
Base $+406 h$	D/A Control C	R/W	Controls the output range and the D/A pacer clock. Refer to page 1-45.
Base +407 h	D/A Status	Read	Allows you to monitor the status of eight onboard signals. Refer to page 1-47.
Base +408 h	D/A Conversion Counter LSB	R/W	Specify the count to load into the D/A Counter. Refer to page 1-53.
Base +409 h	D/A Conversion Counter MSB	R/W	Enables/disables D/A conversions and clears/masks the event-driven interrupt bits. Refer to page 1-47.

Notes

Notes from or a write to base address +0 h or base address +400 h is a 16-bit operation; therefore, the locations at base address +1 h and base address +401 h are not available.
${ }^{2}$ An indirect addressing technique is used to determine which of these registers is accessed. Refer to page 1-4 for more information.

Note: All register bits shown with a value of 0 (except the board identification bits) are reserved for internal use and are subject to change without notice. Do not use these bits.

The board identification bits, which are in the upper nibble of the Digital I/O register (Base Address +3 h, Read), are fixed at a value of 0101 (5h) for DAS-1800AO Series boards. These bits will never change.

All register bits shown with a value of X are not implemented for DAS-1800AO Series boards.

The following sections describe the I/O map in more detail.

A/D Data, A/D CNVRT, or A/D QRAM Data (Base Address + Oh, Read/Write)

The location at Base Address +0 h is used for three different purposes, depending on the state of the DSL0 bit of the A/D Data Select register (Base Address +2 h , Write) and whether you are reading or writing to the location at Base Address $+0 h$.

The location at Base Address +0 h is used as follows:

- A/D Data (DSL0 = 0, Read) - A/D Data contains analog-to-digital (A/D) conversion data stored in the A/D FIFO. Refer to the next section for more information about A/D Data.
- A/D CNVRT (DSL0 = 0, Write) - A/D CNVRT initiates an A/D conversion. Refer to page 1-9 for more information about A / D CNVRT.
- A/D QRAM Data (DSL0 = 1, Read/Write) - A/D QRAM Data specifies the channel and gain code at the currently selected location in the A/D QRAM (the A/D QRAM is the onboard RAM storage for the channel-gain queue). Refer to page 1-9 for more information about A/D QRAM Data.

Refer to page 1-11 for more information about DSLO.

A/D Data (Base Address + Oh, Read)

A/D Data is the A/D conversion data stored in the A/D FIFO. A/D Data is accessed when DSL0 of the A/D Data Select register is set to 0 .

Bit assignments for A/D Data in DAS-1800AO Series boards set for a bipolar input range are as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D1 1	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0				

Bit assignments for A/D Data in DAS-1800AO Series boards set for a unipolar input range are as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	$\begin{aligned} & \text { D1 } \\ & 1 \end{aligned}$	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

A/D Data uses 16-bit data transfers on the computer bus; however, data in DAS-1800AO Series boards is 12 -bits long and right-justified.

When reading data in a bipolar input range, data is represented in twos complement format; D11 is the sign bit and bits 15 through 12 are sign-extender bits that are always equal to D11. A code of 11111000 00000000 represents negative full scale, a code of 0000011111111111 represents positive full scale, and a code of 0000000000000000 represents 0 V . Table 1-2 lists the appropriate codes for several analog input ranges.

Table 1-2. Data Format for A/D Conversions (Bipolar)

Range	Input Voltage	Twos Complement Code	Value of D15 to D0
$\pm 20 \mathrm{mV}$	+19.999 mV	+2047	0000011111111111
	0.000 mV	0	0000000000000000
	$-9.7 \mu \mathrm{~V}$	-1	1111111111111111
	-20.000 mV	-2048	1111100000000000
$\pm 0.1 \mathrm{~V}$	+99.951 mV	+2047	0000011111111111
	0.000 mV	0	0000000000000000
	$-48.83 \mu \mathrm{~V}$	-1	1111111111111111
	$-0.1000 \mathrm{~V}$	-2048	1111100000000000
$\pm 1 \mathrm{~V}$	$+0.9995 \mathrm{~V}$	+2047	0000011111111111
	0.000 mV	0	0000000000000000
	$-0.488 \mathrm{mV}$	-1	1111111111111111
	$-1.0000 \mathrm{~V}$	-2048	1111100000000000
$\pm 1.25 \mathrm{~V}$	+1.2494 V	+2047	0000011111111111
	0.000 V	0	0000000000000000
	$-0.61 \mathrm{mV}$	-1	1111111111111111
	$-1.2500 \mathrm{~V}$	-2048	1111100000000000
$\pm 2.5 \mathrm{~V}$	+2.4988 V	+2047	0000011111111111
	0.0000 V	0	0000000000000000
	$-1.221 \mathrm{mV}$	-1	1111111111111111
	$-2.5000 \mathrm{~V}$	-2048	1111100000000000
$\pm 5 \mathrm{~V}$	+4.9976 V	+2047	0000011111111111
	0.0000 V	0	0000000000000000
	-2.44 mV	-1	1111111111111111
	$-5.0000 \mathrm{~V}$	-2048	1111100000000000

Table 1-2. Data Format for A/D Conversions (Bipolar) (cont.)

Range	Input Voltage	Twos Complement Code	Value of D15 to D0
	+9.9951 V	+2047	0000011111111111
	0.0000 V	0	0000000000000000
	-4.88 mV	-1	1111111111111111
	-10.0000 V	-2048	1111100000000000

When reading data in a unipolar input range, the data represents the positive magnitude of the measured value; bits 15 through 12 are always 0 to indicate positive magnitude. A code of 0000000000000000 represents 0 V and a code of 0000111111111111 represents positive full scale. Table 1-3 lists the appropriate codes for several analog input ranges.

Table 1-3. Data Format for A/D Conversions (Unipolar)

Range	Input Voltage	Positive Magnitude	Value of D15 to D0
	19.995 mV	4095	0000111111111111
	10.000 mV	2048	0000100000000000
	$4.88 \mu \mathrm{~V}$	1	0000000000000001
	0.000 mV	0	0000000000000000
0 to 0.1 V	99.976 mV	4095	0000111111111111
	50.000 mV	2048	0000100000000000
	24.414 mV	1	0000000000000001
	0.000 mV	0	0000000000000000

Table 1-3. Data Format for A/D Conversions (Unipolar) (cont.)

Range	Input Voltage	Positive Magnitude	Value of D15 to D0
0 to 1 V	0.9995 V	4095	0000111111111111
	0.5000 V	2048	0000100000000000
	0.244 mV	1	0000000000000001
	0.000 mV	0	0000000000000000
0 to 1.25 V	1.2497 V	4095	0000111111111111
	0.6250 V	2048	0000100000000000
	0.305 mV	1	0000000000000001
	0.0000 V	0	0000000000000000
0 to 2.5 V	2.4994 V	4095	0000111111111111
	1.2500 V	2048	0000100000000000
	0.610 mV	1	0000000000000001
	0.0000 V	0	0000000000000000
0 to 5 V	4.9988 V	4095	0000111111111111
	2.5000 V	2048	0000100000000000
	1.22 mV	1	0000000000000001
	0.0000 V	0	0000000000000000
0 to 10 V	9.9976 V	4095	0000111111111111
	5.0000 V	2048	0000100000000000
	2.44 mV	1	0000000000000001
	0.0000 V	0	0000000000000000

A/D CNVRT (Base Address + Oh, Write)

Writing any value to A/D CNVRT initiates an A/D conversion; the actual value written is ignored. A/D CNVRT is accessed when DSL0 of the A/D Data Select register is set to 0 .

An A / D conversion is initiated only if the following conditions exist:

- The software A/D pacer clock is selected ($\mathbf{S 1}$ and $\mathbf{S 0}$ of A/D Control register C are set to 00). Refer to page 1-22 for information.
- Conversions are enabled (CVEN of the A/D Status register is set to 1). Refer to page 1-22 for information.
- A/D CNVRT is selected (DSL0 of the A/D Data Select register is set to 0). Refer to page 1-11 for information.

A/D QRAM Data (Base Address + Oh, Read/Write)

A/D QRAM Data specifies the channel and gain code at the currently selected location in the A/D QRAM. A/D QRAM Data is accessed when DSL0 of the A/D Data Select register is set to 1 .

Note: The location currently selected in the A/D QRAM depends on the starting address specified in the A/D QRAM Address Start register and the number of times the starting address has been decremented. Refer to page 1-31 for more information.

Bit assignments for A/D QRAM Data are as follows:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
X	X	X	X	X	GEXT	GN1	GN0	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0

The bits are described as follows:

- GEXT (External Gain Control) - Controls the GEXT pin (pin 39) of the main I/O connector. The GEXT pin can be used for such things as setting the gain of a DAS-1800AO Series accessory board.
- GN1 and GN0 (Gain Code Select) - Specifies the gain code for the currently selected location in the A/D QRAM. The gain codes are shown in Table 1-4.

Table 1-4. A/D Gain Codes

Gain Code		A/D Gain Value	
GN1	GN0	DAS-1801AO	DAS-1802AO
0	0	1	1
0	1	5	2
1	0	50	4
1	1	250	8

- MUX7 to MUX0 (Analog Input Multiplexer Control) - Specifies the channel number for the currently selected location in the A/D QRAM. For a single-ended input configuration, you can specify channels 0 to 15 without expansion or channels 0 to 255 with expansion; for a differential input configuration, you can specify channels 0 to 7 without expansion or channels 0 to 127 with expansion.

Before reading data from or writing data to A/D QRAM Data, you must do the following:

- Specify the starting address of the A/D QRAM in the A/D QRAM Address Start register. Refer to page 1-31 for more information.
- Disable A/D conversions by setting CVEN of the A/D Status register to 0 . Refer to page 1-22 for more information.
- Select A/D QRAM Data by setting DSL0 of the A/D Data Select register to 1 . Refer to the next section for more information.

A/D Data Select Register (Base Address + 2h, Read/Write)

The A/D Data Select register is a read/write register that specifies the 16 -bit register at Base Address +0 h that you want to access. This register is set to 00 h during power-up reset.

Bit assignments for the A/D Data Select register are as follows:

The DSL0 (Data Select) bit specifies the register at Base Address + 0h that you want to access, as shown in Table 1-5.

Table 1-5. A/D Data Select Register Bit

DSLO	Read Register	Write Register
0	A/D Data	A/D CNVRT
1	A/D QRAM Data	A/D QRAM Data

Digital I/O Register (Base Address + 3h, Read/Write)

The Digital I/O register is a read/write register that allows you to read the state of the four digital input lines (DI0 to DI3) on DAS-1800AO Series boards or write to the four digital output lines (DO0 to DO3) on DAS-1800AO Series boards.

Bit assignments when reading the Digital I/O register are as follows:

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 1 | DI3 | DI2 | DI1 | DI0 |

Bit assignments when writing to the Digital I/O register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
X	X	X	X	DO 3	DO 2	DO 1	DO 0

Notes: Although the digital input lines (DI0 to DI3) use the same I/O locations as the digital output lines (DO0 to DO3), these lines are independent. The data read from the Digital I/O register is not the same as the data written to the Digital I/O register unless the digital output lines are externally connected to the digital input lines.

When reading the Digital I/O register, the value of bits 4 through 7 is fixed at 0101 (5h) for DAS-1800AO Series boards; these bits are used for board identification.

A/D Control Register A
 (Base Address + 4h, Read/Write)

A/D Control register A is a read/write register that controls the trigger/gate and A/D FIFO enable functions for A/D conversions. This register is set to 00 h during power-up or system reset.

Bit assignments for A / D Control Register A are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ATEN	TGPL	TGSL	TGEN	CGSL	CGEN	SHEN	FFEN

The bits are described as follows:

- ATEN (About-Trigger Enable) - Enables/disables about-trigger mode, as follows:
- \quad ATEN $=0$ disables about-trigger mode.
- $\mathbf{A T E N}=1$ enables about-trigger mode.

About-trigger mode uses A/D Counter 0 as a post-trigger counter. A/D Counter 0 must be programmed for Interrupt On Terminal Count (82C54 Mode 0). Conversions can be started by software (TGEN of this register is set to 0) or by an external trigger (TGEN of this register is set to 1).
At the first active edge at the TGIN pin (pin 46) of the main I/O connector (if TGEN $=0$) or at the next active edge at the TGIN pin (if TGEN = 1), A/D Counter 0 is loaded with the number of post-trigger conversions you want to perform and begins counting down. When A/D Counter 0 counts down to zero (A/D Counter 0 Terminal Count), A/D conversions stop. If interrupts are enabled (IL2 to IL0 of A/D Control register B are set to an appropriate level), an interrupt is generated when A / D Counter 0 reaches zero.

You specify the number of post-trigger conversions in the A/D Counter registers; refer to page 1-33. You specify the active polarity of the TGIN signal in TGPL of this register.

- TGPL (A/D Trigger/Gate Input Polarity Select) - Specifies the active polarity of the external trigger/gate signal (the signal at the TGIN pin (pin 46) of the main I/O connector) for A/D conversions, as follows:
- If TGPL $=0, \mathrm{~A} / \mathrm{D}$ conversions begin at a negative edge of the external trigger signal or A/D conversions occur whenever the external gate signal is low.
- If TGPL $=1, \mathrm{~A} / \mathrm{D}$ conversions begin at a positive edge of the external trigger signal or A/D conversions occur whenever the external gate signal is high.

Note: The TGSL bit of this register determines whether the signal at the TGIN pin of the main I/O connector is used as an external trigger signal or an external gate signal.

- TGSL (Trigger/Gate Select) - Specifies whether the signal at the TGIN pin (pin 46) of the main I/O connector is used as an external trigger signal or an external gate signal for A/D conversions, as follows:
- TGSL $=0$ selects an external trigger (edge-sensitive).
- TGSL $=1$ selects an external gate (level-sensitive).

Notes: This bit has no function if an external trigger/gate is disabled (TGEN of this register is set to 0).

In about-trigger mode, make sure that $\mathbf{T G S L}=0$.

- TGEN (A/D Hardware Trigger/Gate Enable) - Enables/disables the TGIN pin (pin 46) of the main I/O connector as an external trigger or gate for A / D conversions, as follows:
- TGEN $=0$ disables an external trigger/gate.
- TGEN $=1$ enables an external trigger/gate.

Notes: The TGSL bit of this register determines whether the signal at TGIN is used as an external trigger signal or an external gate signal.

TGEN does not enable/disable TGIN as the gate source for the cascaded A/D Counter 1/Counter 2; to do this, set CGSL of this register to 1 .

If TGEN = 1 and about-trigger mode is enabled (ATEN of this register is set to 1), the first external trigger starts conversions and the second external trigger loads the post-trigger counter (A/D Counter 0). If TGEN $=0$ and about-trigger mode is enabled, conversions start immediately and the first active edge at the TGIN pin loads the post-trigger counter.

- CGSL (A/D Counter 1/Counter 2 Gate Source Select) - Specifies the gate source for the cascaded A/D Counter 1/Counter 2 (the internal A/D pacer clock), as follows:
- CGSL $=0$ selects the CGEN bit of this register as the internal gate source; A/D Counter 1/Counter 2 counts down only when CGEN is set to 1 .
- CGSL $=1$ selects the TGIN pin (pin 46) of the main I/O connector as the external gate source; A/D Counter 1/Counter 2 counts down only when the signal at TGIN is active (the active polarity is determined by TGPL of this register).
- CGEN (A/D Counter 1/Counter 2 Gate Enable/Disable) - This bit is the internal gate source for the cascaded A/D Counter 1/Counter 2. It is set as follows:
- CGEN $=0$ disables the internal gate source.
- CGEN = 1 enables the internal gate source.

Note: This bit has no function unless CGSL of this register is set to 0 .

- SHEN (Sample and Hold Enable/Disable) - Enables/disables the capability of a DAS-1800AO Series boards to work with an external sample-and-hold source, as follows:
- SHEN = 0 disables the sample-and-hold capability.
- \quad SHEN $=1$ enables the sample-and-hold capability.

Refer to page 2-5 for more information about using a sample-and-hold source with DAS-1800AO Series boards.

- FFEN (A/D FIFO Enable) - Enables/resets the A/D FIFO's read and write address pointers, as follows:
- FFEN $=0$ resets the A/D FIFO's address pointers.
- FFEN = 1 enables the A/D FIFO's address pointers.

Note: To ensure proper FIFO operation, it is recommended that you reset the A/D FIFO's read and write address pointers (set FFEN to 0) before you enable the A/D FIFO (set FFEN to 1).

Refer to page 2-6 for a summary of the trigger and gate functions specified in A/D Control register A.

A/D Control Register B (Base Address + 5h, Read/Write)

A/D Control register B is a read/write register that controls interrupt mode and DMA mode for A/D conversions. This register is set to 00 h during power-up or system reset.

Bit assignments for A / D Control register B are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
CIEN	FIMD	IL2	IL1	IL0	DL2	DL1	DL0

The bits are described as follows:

- CIEN (Interrupt Enable/Disable on A/D Counter 1/Counter 2 Terminal Count) - Enables/disables the generation of an interrupt when A/D Counter 2 of the cascaded A/D Counter 1/Counter 2 (the internal A/D pacer clock) reaches terminal count, as follows:
- CIEN $=0$ disables the interrupt on A/D Counter 2 terminal count.
- CIEN $=1$ enables the interrupt on A/D Counter 2 terminal count.
- FIMD (A/D FIFO Interrupt Mode Select) - Specifies the A/D FIFO interrupt mode, as follows:
- FIMD = 0 generates an interrupt on an A/D FIFO Not Empty event. (An A/D FIFO Not Empty event occurs when at least one sample has been stored in the A/D FIFO.)
- FIMD = 1 generates an interrupt on an A/D FIFO Half Full event. (An A/D FIFO Half Full event occurs when the A/D FIFO becomes half full of data.)

Note: This bit has no function unless interrupts are enabled (IL2 to IL0 of this register are set to an appropriate level) and DMA is disabled (DL2 to DL0 of this register are set to 000 or 100).

- IL2 to IL0 (Interrupt Level Select) - Specifies the interrupt level for both A/D and D/A conversions, as shown in Table 1-6. Specifying an interrupt level automatically enables interrupt mode for A/D conversions.

Table 1-6. Interrupt Level Select Bits

IL2	IL1	ILO	Interrupt Level
0	0	0	Interrupts disabled
0	0	1	Level 3
0	1	0	Level 5
0	1	1	Level 7
1	0	0	Interrupts disabled
1	0	1	Level 10
1	1	0	Level 11
1	1	1	Level 15

Note: DAS-1800AO Series boards use pulsed interrupts; this allows a DAS-1800AO Series board to share an interrupt level with another DAS-1800AO Series board. However, sharing an interrupt level with an I/O device other than another DAS-1800AO Series board may cause a bus conflict.

If IL2 to IL0 are set to an appropriate level and DMA is disabled for A/D conversions (DL2 to DL0 of this register are set to 000 or 100), any of the following events generates an interrupt:

- A/D FIFO Not Empty (only if FIMD of this register is set to 0)
- A/D FIFO Half Full (only if FIMD of this register is set to 1)
- A/D FIFO Overflow
- A/D DMA Terminal Count
- A/D Counter 0 Terminal Count
- A/D Counter 2 Terminal Count (only if CIEN of this register is set to 1)

Refer to the description of the A/D Status register on page 1-22 for more information about these interrupt events.

If IL2 to IL0 are set to an appropriate level and DMA is enabled for A/D conversions (DL2 to DL0 of this register are set to an appropriate channel or channels), an interrupt is generated on terminal count from the computer's DMA controller.

- DL2 to DL0 (A/D DMA Channel Select) - Specifies the DMA channel (or channels) for A/D conversions, as shown in Table 1-7. Specifying a DMA channel (or channels) automatically enables DMA mode for A/D conversions.

Caution: Make sure that the DMA channel you select for A/D conversions is different from the DMA channel you select for D/A conversions (DL1 and DL0 of D/A Control register B). If the DMA channels are the same, a hardware conflict will exist. Refer to page 1-44 for information on selecting a DMA channel for D/A conversions.

Table 1-7. A/D DMA Channel Select Bits

DL2	DL1	DL0	A/D DMA Channel
0	0	0	DMA disabled
0	0	1	Channel 5
0	1	0	Channel 6
0	1	1	Channel 7
1	0	0	DMA disabled
1	0	1	Channels 5 and 6
1	1	0	Channels 6 and 7
1	1	1	Channels 7 and 5

Notes: As long as the A/D FIFO contains data, a DMA request remains active on the PC bus.

If D2 to D0 are set to an appropriate channel or channels and interrupts are enabled for A/D conversions (IL2 to IL0 of this register are set to an appropriate level), an interrupt is generated on terminal count from the computer's DMA controller.

The DMA controller must be programmed for DEMAND mode.
In dual DMA mode, the first DMA channel in the pair is used for the first data transfer. For example, if DL2 to DL0 = 101, DMA channel 5 is used for the first data transfer and DMA channel 6 is used for the next data transfer.

A/D Control Register C (Base Address + 6h, Read/Write)

A/D Control Register C is a read/write register that controls the input range type (unipolar or bipolar), the input configuration (single-ended or differential), the A/D pacer clock source, and burst-mode A/D conversions. This register is set to 00 h during power-up or system reset.

Bit assignments for A / D Control register C are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	
U/B	S/D	0		UQEN	CMEN	BMDE	S1	S0

The bits are described as follows:

- U/B (Unipolar/Bipolar Select) - Specifies the input range type, as follows:
- $\mathbf{U} / \mathbf{B}=0$ specifies bipolar mode.
- $\mathbf{U} / \mathbf{B}=1$ specifies unipolar mode.
- S/D (Single-ended/Differential Select) - Specifies the input configuration, as follows:
- $\mathbf{S} / \mathbf{D}=0$ specifies differential mode.
- $\quad \mathbf{S} / \mathbf{D}=1$ specifies single-ended mode.
- UQEN (Upper QRAM Address Bits Enable) - Enables/disables the QAS6 and QAS7 bits of the A/D QRAM Address Start register, as follows:
- UQEN $=0$ disables QAS6 and QAS7.
- UQEN = 1 enables QAS6 and QAS7.

Caution: For DAS-1800AO Series boards, this bit must always be set to 1 .

- CMEN (Common Mode Input Enable) - Enables/disables common-mode input. Common-mode input allows you to connect your analog input return signal to the low side of the analog input instrumentation amplifier instead of to analog ground.

The CMEN bit is set as follows:

- CMEN $=0$ disables common-mode input.
- CMEN = 1 enables common-mode input.

Note: Set this bit to 1 only when your board is in single-ended mode.

- BMDE (Burst Mode Enable/Disable) - Enables/disables burst-mode A/D conversions, as follows:
- BMDE $=0$ disables burst mode.
- $\mathbf{B M D E}=1$ enables burst mode.

Note: If you are using a sample-and-hold accessory board with your DAS-1800AO Series board, you must enable burst mode.

- S1 and S0 (A/D Pacer Clock Source Select) - Specifies the pacer clock source for A/D conversions, as shown in Table 1-8.

Table 1-8. A/D Pacer Clock Select Bits

S1	S0	A/D Pacer Clock Source
0	0	Software clock
0	1	Internal A/D pacer clock
1	0	External pacer clock (rising edge)
1	1	External pacer clock (falling edge)

A/D Status Register (Base Address + 7h, Read/Write)

Reading the A/D Status register allows you to monitor the status of eight onboard signals. Writing to the A/D Status register enables/disables A/D conversions and clears/masks the event-driven interrupt bits. This register is set to a value of 00 h during power-up or system reset.

Bit assignments for the A/D Status register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
CVEN	FNE	FHF	OVF	C0TC	C2TC	DMATC	INT

The bits are described as follows:

- CVEN (Enable/Disable A/D Conversions) - Enables/disables A/D conversions, as follows:
- CVEN $=0$ disables A/D conversions; no A/D conversions take place.
- CVEN = 1 enables A/D conversions; A/D conversions take place depending on the states of triggers, gates, and pacer clocks.

The board automatically disables A/D conversions $(\mathbf{C V E N}=0)$ in the following situations:

- An A/D FIFO Overflow event occurs (OVF of this register is set to 1).
- In about-trigger mode, an A/D Counter 0 Terminal Count event occurs (C2TC of this register is set to 1).

Note: You can write to CVEN only if you also write a 0 to bit 6 (FNE) of this register; this prevents your overwriting CVEN when you clear other bits in this register. Since the state of FNE comes directly from the A/D FIFO, writing a 0 to bit 6 does not set FNE to 0 .

- FNE (A/D FIFO Not Empty) - The state of this bit comes directly from the A/D FIFO and indicates whether the A/D FIFO contains at least one sample, as follows:
- \quad FNE $=0$ indicates that the A/D FIFO is empty.
- \quad FNE $=1$ indicates that the A/D FIFO contains data.

If the following conditions are true when the A/D FIFO Not Empty event occurs ($\mathbf{F N E}$ is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 :

- Interrupts are set to occur on A/D FIFO Not Empty (FIMD of A/D Control register B is set to 0).
- Interrupts are enabled (IL2 to IL0 of A/D Control register B are set to an appropriate level).
- DMA is disabled (DL2 to DL0 of A/D Control register B are set to 000 or 100).

Note: Since the state of FNE comes directly from the A/D FIFO, you cannot manually change FNE.

- FHF (A/D FIFO Half Full) - The state of this bit comes directly from the A/D FIFO and indicates whether the A/D FIFO is at least half full of data, as follows:
- $\quad \mathbf{F H F}=0$ indicates that the A/D FIFO is not yet half full of data (less than 512 words).
- $\quad \mathbf{F H F}=1$ indicates that the A/D FIFO is at least half full of data (512 words or more).

If the following conditions are true when the A/D FIFO Half Full event occurs (FHF is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 :

- Interrupts are set to occur on A/D FIFO Half Full (FIMD of A/D Control register B is set to 1).
- Interrupts are enabled (IL2 to IL0 of A/D Control register B are set to an appropriate level).
- DMA is disabled (DL2 to DL0 of A/D Control register B are set to 000 or 100).

Notes: Since the state of FHF comes directly from the A/D FIFO, you cannot manually change FHF.

The generated interrupt is useful in conjunction with the Intel INSW instruction to move large blocks of data.

- OVF (A/D FIFO Overflow) - Indicates whether an A/D FIFO Overflow event occurred. An A/D FIFO Overflow event occurs when the A/D FIFO contains the maximum amount of data it can hold (1024 words) and is about to overflow.
The OVF bit is set as follows:
- OVF $=0$ indicates that an A/D FIFO Overflow event did not occur.
- $\mathbf{O V F}=1$ indicates that an A/D FIFO Overflow event occurred; to prevent data loss, the board automatically disables A/D conversions $(\mathbf{C V E N}=0)$.

If interrupts are enabled ($\mathbf{I L} \mathbf{2}$ to $\mathbf{I L 0}$ of A/D Control register B are set to an appropriate level) when the A/D FIFO Overflow event occurs (OVF is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 .

Notes: This bit is enabled only if the A/D FIFO is enabled (FFEN of A/D Control register A is set to 1).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 4 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 4 with a 1 whenever you write to this register.

- C0TC (A/D Counter 0 Terminal Count) - Indicates whether an A/D Counter 0 Terminal Count event occurred. An A/D Counter 0 Terminal Count event occurs when A/D Counter 0 (the post-trigger counter) reaches terminal count.

The C0TC bit is set as follows:

- C0TC $=0$ indicates that an A/D Counter 0 Terminal Count event did not occur.
- $\mathbf{C 0 T C}=1$ indicates that an A/D Counter 0 Terminal Count event occurred.

If interrupts are enabled (IL2 to IL0 of A/D Control register B are set to an appropriate level) when the A/D Counter 0 Terminal Count event occurs (C0TC is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 .

Notes: This bit is enabled only if about-trigger mode is enabled (ATEN of A/D Control register A is set to 1) and A/D Counter 0 is programmed for Interrupt On Terminal Count (82C54 Mode 0).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 3 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 3 with a 1 whenever you write to this register.

- C2TC (A/D Counter 2 Terminal Count) - Indicates whether an A/D Counter 2 Terminal Count event occurred. An A/D Counter 2 Terminal Count event occurs when A/D Counter 2 of the cascaded A/D Counter 1/Counter 2 (the internal A/D pacer clock) reaches terminal count.

The C2TC bit is set as follows:

- C2TC $=0$ indicates that an A/D Counter 2 Terminal Count event did not occur.
- C2TC = 1 indicates that an A/D Counter 2 Terminal Count event occurred; to prevent data loss, the board automatically disables A / D conversions $(\mathbf{C V E N}=0)$.

If interrupts are enabled (IL2 to IL0 of A/D Control register B are set to an appropriate level) when the A/D Counter 2 Terminal Count event occurs (C2TC is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 .

Notes: This bit is enabled only if an interrupt on A/D Counter 2 Terminal Count is enabled (CIEN of A/D Control register B is set to 1); the bit is set when the board detects a falling-edge terminal count pulse (82C54 Mode 2).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 2 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 2 with a 1 whenever you write to this register.

- DMATC (A/D DMA Terminal Count) - Indicates whether an A/D DMA Terminal Count event occurred. An A/D DMA Terminal Count event occurs when DMA terminal count is reached for A/D conversions.

The DMATC bit is set as follows:

- DMATC $=0$ indicates that an A/D DMA Terminal Count event did not occur.
- DMATC $=1$ indicates that an A/D DMA Terminal Count event occurred.

If interrupts are enabled (IL2 to IL0 of A/D Control register B are set to an appropriate level) when the A/D DMA Terminal Count event occurs (DMATC is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 .

Notes: This bit is enabled only if DMA is enabled (DL2 to DL0 of A/D Control register B are set to an appropriate channel or channels).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 1 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 1 with a 1 whenever you write to this register.

- INT (A/D Interrupt Set) - Indicates whether one of the following interrupt events has occurred:
- A/D DMA Terminal Count (DMATC = 1)
- A/D Counter 2 Terminal Count $(\mathbf{C} 2 T C=1)$
- A/D Counter 0 Terminal Count $(\mathbf{C 0 T C}=1)$
- A/D FIFO Overflow ($\mathbf{O V F}=1$)
- A/D FIFO Half Full ($\mathbf{F H F}=1$)
- A/D FIFO Not Empty (FNE = 1)

The INT bit is set as follows:

- INT $=0$ indicates that no interrupt event has occurred.
- INT = 1 indicates that at least one of the interrupt events has occurred; to determine which interrupt event(s) occurred, read bits 1 to 6 of this register.

Notes: This bit has no function unless interrupts are enabled (IL2 to IL0 of A/D Control register B are set to an appropriate level).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 0 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 0 with a 1 whenever you write to this register.

Table 1-9 summarizes the ways that you can manipulate the bits in the A/D Status register. Note that writing a 0 to a clearable bit sets the bit to 0 ; writing a 1 to a settable bit sets the bit to 1 ; writing a 1 to a maskable bit preserves the bit's value and prevents the bit from being cleared unintentionally.

Table 1-9. Summary of A/D Status Register Bits

Bit	Read Operation	Write Operations		
		Clear	Set	Mask
CVEN	\checkmark	\checkmark	\checkmark	$\boldsymbol{\nu}^{1}$
FNE	\checkmark			
FHF	\checkmark			
OVF	\checkmark	\checkmark		\checkmark
C0TC	\checkmark	\checkmark		\checkmark
C2TC	\checkmark	\checkmark		\checkmark
DMATC	\checkmark	\checkmark		\checkmark
INT	\checkmark	\checkmark		\checkmark

Notes
This bit is masked with the FNE bit (bit 6); you can write to CVEN only if you write a 0 to bit 6 (FNE) at the same time.

Burst Length Register (Base Address + 8h, Read/Write)

The Burst Length register is a read/write register that specifies the number of channels in the scan when performing burst-mode A / D conversions. The number of channels in the scan is the same as the number of conversions performed for each tick of the A/D pacer clock. This register is set to 00 h during power-up or system reset.

Bit assignments for the Burst Length register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
BLV7	BLV6	BLV5	BLV4	BLV3	BLV2	BLV1	BLV0

The BLV7 to BLV0 (Burst Length Value) bits represent one less than the number of channels in the scan (Burst Length Value $=\mathbf{B L V}+1$). For example, if your scan consists of five channels, set BLV7 to BLV0 to 4 (0000 0100). The value of BLV7 to BLV0 can range from 0 to 255.

Note: These bits have no function unless burst mode is enabled (BMDE of A/D Control register C is set to 1).

If you are using SSH (simultaneous sample-and-hold) mode, one extra A/D pacer clock pulse is required to allow the SSH accessory board to sample and hold the values; therefore, in SSH mode, set BLV7 to BLV0 to exactly the number of channels in the scan. For example, if your scan consists of five channels, set BLV7 to BLV0 to 5 (0000 0101). In SSH mode, the number of channels in the scan is limited to 255 .

Burst Mode Conversion Rate Register (Base Address + 9h, Read/Write)

The Burst Mode Conversion Rate register is a read/write register that specifies the burst mode conversion rate when performing burst-mode A/D conversions. The burst mode conversion rate is the number of burst mode conversion clock ticks between the conversion of one channel in the scan and the conversion of the next channel in the scan (each burst mode conversion clock tick represents $1 \mu \mathrm{~s}$). This register is set to 00 h during power-up or system reset.

Bit assignments for the Burst Mode Conversion Rate register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0		BRV5	BRV4	BRV3	BRV2	BRV1

The BRV5 to BRV0 (Burst Rate Value) bits represent one less than the number of 1μ s clock ticks. For example, if you want to specify $30 \mu \mathrm{~s}$ between conversions ($33.33 \mathrm{ksamples} / \mathrm{s}$), set BRV5 to BRV0 to 29 (0001 1101). The value of BRV5 to BRV0 can range from 2 to 63 ($3 \mu \mathrm{~s}$ to $64 \mu \mathrm{~s}$).

Use the following formula to determine the value to specify for $\mathbf{B R V}$:

$$
\text { Burst mode conversion rate }=\frac{1 \mathrm{MHz}}{\mathrm{BRV}+1}
$$

For example, if you want a burst mode conversion rate of 10 ksamples/s, specify 99 clock ticks.

Note: These bits have no function unless burst mode is enabled (BMDE of A / D Control register C is set to 1).

A/D QRAM Address Start Register (Base Address + Ah, Read/Write)

The A/D QRAM Address Start register is a read/write register that specifies the starting address of the channel-gain queue within the A / D QRAM (the 256-location onboard RAM storage for the channel-gain queue). The A/D QRAM Address Start register is set to 00h during power-up and system reset.

Bit assignments for the A/D QRAM Address Start register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
QAS7	QAS6	QAS5	QAS4	QAS3	QAS2	QAS1	QAS0

The QAS7 to QAS0 (QRAM Address Start) bits represent the starting address of the channel-gain queue within the A/D QRAM.

To set up your channel-gain queue, you first specify the starting address of the channel-gain queue (using this register) and then load the channel-gain data into the A/D QRAM (using A/D QRAM Data); refer to page 1-9 for more information.

The A/D QRAM address counter is a down counter. If n is the number of channels in the channel-gain queue, you specify a starting address of ($n-1$). You load the first channel-gain data at A/D QRAM address ($n-1$), the next channel-gain data at A/D QRAM address ($n-2$), and so on down to the last channel-gain data, which you load at address 0 . For example, if your channel-gain queue consists of five channels, specify a starting address of 4 , and then load the channel-gain data at address locations $4,3,2,1$, and 0 of the A/D QRAM.

After you load channel-gain data at a location in the A/D QRAM, the A/D QRAM address counter automatically decrements. Therefore, you do not have to load the new A/D QRAM address each time you load channel-gain data.

You specify the starting address once before you load the first channel-gain data and then again after you have loaded all the channel-gain data. This second address write selects the first channel in the channel-gain queue and places the channel-gain data into the sample-and-hold circuitry of the analog-to-digital converter (ADC) in preparation for the start of A / D conversions.

Note: After you set up the A/D QRAM, make sure that you do not begin A/D conversions until the A/D circuitry has had time to settle. The time depends on the gain of the first channel in the channel-gain queue; refer to the DAS-1800AO Series User's Guide for more information.

During operation, about 500 ns after the board starts a conversion (while the sample-and-hold circuitry of the ADC is holding the previous channel), the A/D QRAM address counter decrements in preparation for the next conversion. After the board performs conversions on all the channels in the channel-gain queue, the cycle repeats, starting with the starting address of the channel-gain queue.

Notes: Writing to the A/D QRAM Address Start register automatically loads the A/D QRAM address counter with the specified starting address.

To perform conversions on a single channel, use this register to set the A/D QRAM start address to 00 h and use A/D QRAM Data to load the A/D QRAM with the appropriate channel number and gain code.

A/D Counter Registers
 (Base Address +Ch, +Dh, +Eh, +Fh)

The A/D Counter registers allow you to program the three counters of the 82C54 Programmable Counter/Timer. Refer to the Intel 82C54 data sheet for a full description of features. (You can obtain the data sheet from Intel by calling 800-548-4725).

On DAS-1800AO Series boards, A/D Counter 0 of the 82C54 is used as the post-trigger counter in about-trigger mode. The value loaded into A / D Counter 0 can range from 1 to 65,535 ; this value represents the number of samples you want to acquire after an about-trigger event. An about-trigger event occurs when the first active edge at the TGIN pin (pin 46) is detected (if TGEN of A/D Control register A is set to 0) or when the next active edge at the TGIN pin is detected (if TGEN of A/D Control register A is set to 1).

A/D Counter 0 is enabled only if about-trigger mode is enabled (ATEN of A/D Control register A is set to 1) and an about-trigger event has occurred. You must program A/D Counter 0 for 82C54 Mode 0.

On DAS-1800AO Series boards, A/D Counter 1 and A/D Counter 2 of the 82C54 are used as the internal A/D pacer clock, as the synchronized A/D and D/A pacer clock, or as a programmable interrupt generator. A/D Counter 1 and A / D Counter 2 are cascaded, with the output of A / D Counter 2 as the source of A/D pacing, D/A pacing, and programmed interrupts. You must program A/D Counter 1/Counter 2 for 82C54 Mode 2.

The relationship between A/D Counter 1 and A/D Counter 2 is illustrated as follows:

$$
\begin{aligned}
& \text { A/D Counter } 1 \text { count value }=\frac{5 \mathrm{MHz}}{\mathrm{~A} / \mathrm{D} \text { Counter } 1 \text { rate }} \\
& \text { A/D Counter } 2 \text { count value }=\frac{\mathrm{A} / \mathrm{D} \text { Counter } 1 \text { rate }}{\mathrm{A} / \mathrm{D} \text { Counter } 2 \text { rate }}
\end{aligned}
$$

Therefore, you can use the following formulas to determine the count values to load into A/D Counter 1 and A/D Counter 2. The value loaded into each counter can range from 2 to $65,535$.

$$
\text { Total count value }=\frac{5 \mathrm{MHz}}{\mathrm{~A} / \mathrm{D} \text { conversion rate }}
$$

A / D Counter 1 count value $\times \mathrm{A} / \mathrm{D}$ Counter 2 count value $=$ Total count value

For example, if you want to sample A/D data at a rate of 10 kHz , the total count value must be $500(5,000,000 \div 10,000=500)$. You can choose one of several count value combinations for A / D Counter 1 and A/D Counter 2, such as the following:

- A / D Counter 1 count value $=2, \mathrm{~A} / \mathrm{D}$ Counter 2 count value $=250$
- A / D Counter 1 count value $=10, \mathrm{~A} / \mathrm{D}$ Counter 2 count value $=50$

Note: Before loading A/D Counter 1 and A/D Counter 2, make sure that the internal gate source for the counters is disabled (CGSL and CGEN of A/D Control register A are both set to 0).

D/A Data (Base Address + 400h, Write)

D/A Data is the output value to load into the D/A FIFO.
D/A Data uses 16-bit data transfers on the computer bus; however, data in DAS-1800AO Series boards is 12-bits long, right-justified, and in twos complement format.

Bit assignments for D/A Data are as follows:

| $\mathbf{1 5}$ | $\mathbf{1 4}$ | $\mathbf{1 3}$ | $\mathbf{1 2}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: |
| X | X | X | X | DD11 | DD10 | DD9 | DD8 | DD7 | DD6 | DD5 | DD4 | DD3 | DD 2 | DD 1 | DD 0 |

Table 1-10 lists the appropriate codes for several analog output ranges.

Table 1-10. Data Format for D/A Conversions

Output Voltage		Twos Complement Code	Value of DD11 to DD0
$\mathbf{\pm 5}$ V Range	$\mathbf{\pm 1 0}$ V Range		
+4.9976 V	+9.9951 V	+2047	011111111111
0.0000 V	0.0000 V	0	000000000000
-2.44 mV	-4.88 mV	-1	111111111111
-5.0000 V	-10.0000 V	-2048	100000000000

Note: You specify a single digital-to-analog converter (DAC) or both DACs in the D/A Data Select register; refer to the next section. If D/A software conversions are disabled ($\mathbf{S 1}$ and $\mathbf{S 0}$ of D/A Control register C are not set to 00), the DACs are updated with the values in the D/A FIFO at the next pacer clock pulse. If D/A software conversions are enabled (S1 and $\mathbf{S 0}$ of D/A Control register C are set to 00), you must first load the D/A FIFO by writing values to D/A Data and then set CNVT of the D/A Status register to 1 to update the DACs.

D/A Data Select Register (Base Address + 402h, Read/Write)

The D/A Data Select register is a read/write register that specifies the DACs you want to update and the three most significant bits of the D/A recycle count value. The D/A Data Select register is set to 00h during power-up and system reset.

Bit assignments for the D/A Data Select register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
RCV10	RCV9	RCV8	0	0	0	DSL1	DSL0

The bits are described as follows:

- RCV10 to RCV8 (Recycle Count Value) - Three most significant bits of the recycle count value. Along with the eight least significant bits of the recycle count value (in the D/A Recycle Count register), these bits specify the size of the waveform stored in the 2048-location D/A FIFO. Refer to page 1-38 for more information about the D/A Recycle Count register.

Note: These bits have no function unless D/A recycle mode is enabled (RCEN of D/A Control register A is set to 1).

When you write to these bits, make sure that you do not inadvertently change the DACs selected by DSL0 and DSL1 of this register. It is recommended that you always read this register before writing a new value to it.

- DSL1 and DSL0 (Data Select) - Specifies the DAC or DACs to update, as shown in Table 1-11.

Table 1-11. Digital-to-Analog Converters

DSL1	DSLO	DACs to Update
0	0	DAC 0
0	1	DAC 1
1	0	DAC 0 and DAC 1^{1}
1	1	Not used

Notes
DAC 0 and DAC 1 are updated simultaneously. DAC 0 is updated with the first value in the D/A FIFO; DAC 1 is updated with the next value in the D/A FIFO.

Note: When you write to these bits, make sure that you do not inadvertently change the three most significant bits of the recycle count value (selected by RCV10 to RCV8 of this register). It is recommended that you always read this register before writing a new value to it.

D/A Recycle Count Register (Base Address + 403h, Read/Write)

The D/A Data Select register contains the eight least significant bits of the D/A recycle count value. The D/A Recycle Count register is set to 00h during power-up and system reset.

Bit assignments for the D/A Recycle Count register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
RCV7	RCV6	RCV5	RCV4	RCV3	RCV2	RCV1	RCV0

Note: These bits have no function unless D/A recycle mode is enabled (RCEN of D/A Control register A is set to 1).

Along with the three most significant bits of the recycle count value (in the D/A Data Select register), the eight bits in this register specify the size of the waveform stored in the 2048-location D/A FIFO. The RCV10 to RCV0 (Recycle Count Value) bits represent one less than the number of output values required to produce the waveform, as shown in the following equation:

$$
\text { Recycle waveform size }=\mathrm{RCV}+1
$$

For example, if the waveform requires 1,500 output values in the D/A FIFO, set RCV10 to RCV0 to 1,499 ($\mathbf{R C V 1 0}$ to $\mathbf{R C V 8 ~ = ~ 1 0 1 ; ~ R C V 7 ~ t o ~}$ $\mathbf{R C V 0}=1101$ 1011). The size of the waveform can range from 2 samples to 2048 samples; therefore, the value of $\mathbf{R C V 1 0}$ to $\mathbf{R C V 0}$ can range from 1 to 2047.

Note: If you specify both DACs (DSL1 and DSL0 of the D/A Data Select register are set to 10), the D/A FIFO contains two interleaved waveforms (one for each DAC). The first value loaded in the D/A FIFO is written to DAC 0 , the second value is written to DAC 1 , the third value is written to DAC 0 , and so on.

Each waveform must be the same size. The recycle count value (RCV10 to RCV0) is one less than the size of the waveform for a single DAC (2 to 1024 samples); therefore, the value of RCV10 to RCV0 can range from 1 to 1023 .

D/A Control Register A (Base Address + 404h, Read/Write)

D/A Control Register A is a read/write register that controls the trigger/gate and D/A FIFO enable functions for D/A conversions. This register is set to 00 h during power-up or system reset.

Bit assignments for D / A Control Register A are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
RTEN	TGPL	TGSL	TGEN	CGSL	CGEN	RCEN	FFEN

The bits are described as follows:

- RTEN (D/A Retrigger Enable) - Enables/disables retrigger mode, as follows:
- \quad RTEN $=0$ disables retrigger mode.
$-\quad$ RTEN $=1$ enables retrigger mode.
In retrigger mode, each time an external trigger event occurs, the board resets the D/A FIFO's read pointer and starts generating the waveform stored in the D/A FIFO from the beginning. Retrigger mode allows you to synchronize the generation of the waveform to an external trigger event.

Note: This bit has no function unless D/A recycle mode is enabled (RCEN of this register is set to 1) and an external trigger/gate is enabled (TGEN of this register is set to 1).

- TGPL (D/A Trigger/Gate Input Polarity Select) - Specifies the active polarity of the external trigger/gate signal (the signal at the TGIN pin (pin 46) of the main I/O connector) for D/A conversions, as follows:
$-\quad$ If TGPL $=0, \mathrm{D} / \mathrm{A}$ conversions begin at a negative edge of the external trigger signal or D/A conversions occur whenever the external gate signal is low.
- If TGPL $=1, \mathrm{D} / \mathrm{A}$ conversions begin at a positive edge of the external trigger signal or D/A conversions occur whenever the external gate signal is high.

Note: The TGSL bit of this register determines whether the signal at the TGIN pin is used as an external trigger signal or an external gate signal.

- TGSL (Trigger/Gate Select) - Specifies whether the signal at the TGIN pin (pin 46) of the main I/O connector is used as an external trigger signal or an external gate signal for D/A conversions, as follows:
- TGSL $=0$ selects an external trigger (edge-sensitive).
- TGSL $=1$ selects an external gate (level-sensitive).

Note: This bit has no function unless an external trigger/gate is enabled (TGEN of this register is set to 1).

- TGEN (Hardware Trigger/Gate Enable) - Enables/disables the TGIN pin (pin 46) of the main I/O connector as an external trigger or gate for D/A conversions, as follows:
- TGEN = 0 disables an external trigger/gate.
- TGEN = 1 enables an external trigger/gate.

Note: The TGSL bit of this register determines whether the signal at TGIN is used as an external trigger signal or an external gate signal.

- CGSL (D/A Counter Enable Source Select) - Specifies the source that enables the D/A Counter (the internal D/A pacer clock), as follows:
- CGSL $=0$ selects the CGEN bit of this register as the internal enable source; the D/A Counter counts down only when CGEN is set to 1 .
- CGSL $=1$ selects the TGIN pin (pin 46) of the main I/O connector as the external enable source; the D/A Counter counts down only when the signal at TGIN is active (the active polarity is determined by TGPL of this register).
- CGEN (D/A Counter Enable/Disable) - This bit is the internal enable source for the D/A Counter. It is set as follows:
- CGEN $=0$ disables the internal enable source.
- $\mathbf{C G E N}=1$ enables the internal enable source.

Note: This bit has no function unless CGSL of this register is set to 0 .

- RCEN (D/A Recycle Mode Enable/Disable) - Enables/disables recycle mode, as follows:
- \quad RCEN $=0$ disables D/A recycle mode.
- $\quad \mathbf{R C E N}=1$ enables D/A recycle mode.

In recycle mode, after you load the waveform into the D/A FIFO (by multiple writes to D/A Data) and specify the size of the waveform (in RCV10 to RCV0 of the D/A Data Select and D/A Recycle Count registers), D/A conversions take place depending on the states of triggers, gates, and pacer clocks. Once D/A conversions begin, the DACs are continually updated with the values stored in the D/A FIFO to generate a continuous waveform.

The waveform continues to be generated in its entirety unless D/A conversions are terminated by software (CVEN of the D/A Status register is set to 0) or (if retrigger mode and an external trigger/gate are both enabled) another external trigger event occurs. If another external trigger event occurs, the board starts generating the waveform again from the beginning.

If retrigger mode is enabled (RTEN of this register is set to 1) and an external trigger/gate is enabled (TGEN of this register is set to 1), you can synchronize the waveform to an external trigger event.

- FFEN (D/A FIFO Enable) - Enables/resets the D/A FIFO's read and write address pointers, as follows:
- FFEN $=0$ disables (resets) the D/A FIFO.
- \quad FFEN $=1$ enables the D/A FIFO.

Note: To ensure proper FIFO operation, it is recommended that you reset the D/A FIFO (set FFEN to 0) before you enable the D/A FIFO (set FFEN to 1).

Refer to page 2-7 for a summary of the trigger and gate functions specified in D/A Control register A.

D/A Control Register B

(Base Address + 405h, Read/Write)

D/A Control register B is a read/write register that controls interrupt mode and DMA mode for D/A conversions. This register is set to 00 h during power-up or system reset.

Bit assignments for D/A Control register B are as follows:

\mathbf{y}	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
0	FIMD	DIEN	0	0	DDEN	DL1	DL0

The bits are described as follows:

- FIMD (D/A FIFO Interrupt Mode Select) - Specifies the D/A FIFO interrupt mode, as follows:
- FIMD $=0$ generates an interrupt on a D/A FIFO Not Half Full event. (A D/A FIFO Not Half Full event occurs when the D/A FIFO goes from 1025 words to 1024 words.)
- FIMD = 1 generates an interrupt on a D/A FIFO Not Full event. (A D/A FIFO Not Full event occurs when the D/A FIFO is no longer full.)

Note: This bit has no function unless interrupts are enabled (DIEN of this register is set to 1) and DMA is disabled (DL1 and DL0 of this register are set to 00).

- DIEN (D/A Interrupt Enable) - Enables/disables interrupt mode for D/A conversions, as follows:
- DIEN $=0$ disables D/A interrupts.
- \quad DIEN $=1$ enables D/A interrupts.

The interrupt level for D/A conversions is specified in IL2 to IL0 of A/D Control register B; refer to page 1-17.

If DIEN = 1 and DMA is disabled for D/A conversions (DDEN of this register is set to 0), any of the following events generates an interrupt:

- D/A FIFO Not Full (only if FIMD of this register is set to 1)
- D/A FIFO Not Half Full (only if FIMD of this register is set to 0)
- D/A FIFO Underflow
- D/A DMA Terminal Count

Refer to the description of the D/A Status register on page 1-47 for more information about these interrupt events.

If DIEN = 1 and DMA is enabled for D/A conversions (DDEN of this register is set to 1), an interrupt is generated on terminal count from the computer's DMA controller.

- DDEN (D/A DMA Enable) - Enables/disables DMA mode for D/A conversions, as follows:
- DDEN $=0$ disables DMA mode.
- DDEN = 1 enables DMA mode.

The DMA channel for D/A conversions is specified in DL1 and DL0 of this register.
If DDEN = 1 and interrupts are enabled for D/A conversions (DIEN of this register is set to 1), an interrupt is generated on terminal count from the computer's DMA controller.

- DL1 and DL0 (D/A DMA Channel Select) - Specifies the DMA channel for D/A conversions, as shown in Table 1-12.

Caution: Make sure that the DMA channel you select for D/A conversions is different from the DMA channel you select for A/D conversions (DL2 to DL0 of A/D Control register B). If the DMA channels are the same, a hardware conflict will exist. Refer to page 1-19 for more information about selecting a DMA channel (or channels) for A / D conversions.

Table 1-12. D/A DMA Channel Select Bits

DL1	DL0	D/A DMA Channel
0	0	DMA disabled
0	1	Channel 5
1	0	Channel 6
1	1	Channel 7

Notes: As long as the D/A FIFO has room to store at least one more value, a DMA request remains active on the PC bus.

If DL1 and DL0 are set to an appropriate channel and interrupts are enabled (DIEN of this register is set to 1), an interrupt is generated on terminal count from the computer's DMA controller.

The DMA controller must be programmed for DEMAND mode.
Dual DMA mode is not supported for D/A conversions.

D/A Control Register C (Base Address + 406h, Read/Write)

D/A Control Register C is a read/write register that controls the output range and the D/A pacer clock. This register is set to 00 h during power-up or system reset.

Bit assignments for D/A Control register C are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
GN1	GN0	0	0	PSEN	XCPL	S1	S0

The bits are described as follows:

- GN1 and GN0 (D/A Gain Select) - Specifies the gain code that determines the output range for both DACs, as shown in Table 1-13.

Table 1-13. D/A Gain Codes

Gain Code		Output Range	
GN1	GN0	DAC 1	DAC 0
0	0	$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
0	1	$\pm 5 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
1	0	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
1	1	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$

- PSEN (D/A Prescaler Enable) - Enables/disables the divide-by-ten prescaler of the D/A internal pacer clock, as follows:
- PSEN $=0$ disables the prescaler; the D/A Counter is clocked at 5 MHz (the time between updates is equal to the D/A Counter value multiplied by 200 ns).
- PSEN = 1 enables the prescaler; the D/A Counter is clocked at 500 kHz (the time between updates is equal to the D/A Counter value multiplied by $2 \mu \mathrm{~s}$).
- XCPL (External Pacer Clock Polarity) - Specifies the active polarity of the external pacer clock when used for D/A conversions, as follows:
- $\quad \mathbf{X C P L}=0$ indicates positive polarity (rising edge).
- $\quad \mathbf{X C P L}=1$ indicates negative polarity (falling edge).
- S1 and S0 (D/A Pacer Clock Source Select) - Specifies the pacer clock source for D/A conversions, as shown in Table 1-14.

Table 1-14. D/A Pacer Clock Select Bits

S1	S0	D/A Pacer Clock Source
0	0	Software clock
0	1	Internal D/A pacer clock
1	0	External pacer clock
1	1	Internal A/D pacer clock

D/A Status Register
 (Base Address + 407h, Read/Write)

Reading the D/A Status register allows you to monitor the status of eight onboard signals. Writing to the D/A Status register enables/disables D/A conversions and clears/masks the event-driven interrupt bits. This register is set to a value of 30h during power-up or system reset.

Bit assignments for the D/A Status register are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	\mathbf{c}	$\mathbf{1}$
CVEN	CNVT	FNH	FNF	FNE	FUF	DMATC	INT

The bits are described as follows:

- CVEN (Enable/Disable D/A Conversions) - Enables/disables D/A conversions, as follows:
- CVEN = 0 disables D/A conversions; no D/A conversions take place.
- CVEN = 1 enables D/A conversions; D/A conversions take place depending on the states of triggers, gates, and pacer clocks.

If interrupts are enabled (DIEN of D/A Control register B is set to 1) when a D/A FIFO Underflow event occurs (FUF of this register is set to 1), the board automatically disables D/A conversions $(\mathbf{C V E N}=0)$.

Note: You can write to CVEN only if you also write a 0 to bit 5 (FNH) of this register; this prevents your overwriting CVEN when you clear other bits in this register. Since the state of FNH comes directly from the D/A FIFO, writing a 0 to bit 5 does not set FNH to 0.

- CNVT (Software-Initiated Conversion) - The meaning of this bit depends on whether you are writing to it or reading it.
Writing to this bit determines whether to perform a single, software-initiated D/A conversion, as follows:
- CNVT $=0$ performs no action.
- CNVT = 1 initiates a single D/A conversion; the DAC or DACs specified in DSL1 and DSL0 of the D/A Data Select register are immediately updated with the next one or two output values in the D/A FIFO.

Note: Writing a 1 to this bit performs a D/A conversion only if D/A software conversions are enabled ($\mathbf{S 1}$ and $\mathbf{S 0}$ of D/A Control register C are set to 00).

If both DACs are selected in the D/A Data Select register (DSL1 and DSL0 = 10), both DACs are simultaneously updated with a single write to CNVT.

Reading this bit indicates whether the DACs are still converting data, as follows:
$-\quad$ CNVT $=0$ indicates that the DACs are not converting data; you can initiate another D/A conversion, if desired.

- CNVT $=1$ indicates that the DACs are still converting data; do not initiate another D/A conversion at this time.
- FNH (D/A FIFO Not Half Full) - The state of this bit comes directly from the D/A FIFO and indicates whether the D/A FIFO is less than half full of data, as follows:
$-\quad \mathbf{F N H}=0$ indicates that the D/A FIFO is at least half full of data (1025 words or more).
$-\quad \mathbf{F N H}=1$ indicates that the D/A FIFO is less than half full of data (less than 1025 words).

If the following conditions are true when a D/A FIFO Not Half Full event occurs ($\mathbf{F N H}$ is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 :

- Interrupts are set to occur on D/A FIFO Not Half Full (FIMD of D/A Control register B is set to 0).
- Interrupts are enabled (DIEN of D/A Control register B is set to $1)$.
- DMA is disabled (DL1 and DL0 of D/A Control register B are set to 00).

Note: Since the state of FNH comes directly from the D/A FIFO, you cannot manually change $\mathbf{F N H}$.

- FNF (D/A FIFO Not Full) - The state of this bit comes directly from the D/A FIFO and indicates whether the D/A FIFO is no longer full of data, as follows:
$-\quad \mathbf{F N F}=0$ indicates that the D/A FIFO is full of data.
$-\quad \mathbf{F N F}=1$ indicates that the D/A FIFO is no longer full of data.

If the following conditions are true when a D/A FIFO Not Full event occurs (FNF is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 :

- Interrupts are set to occur on D/A FIFO Not Full (FIMD of D/A Control register B is set to 1).
- Interrupts are enabled (DIEN of D/A Control register B is set to 1).
- DMA is disabled (DL1 and DL0 of D/A Control register B are set to 00).

Note: Since the state of FNF comes directly from the D/A FIFO, you cannot manually change FNF.

- FNE (D/A FIFO Not Empty) - The state of this bit comes directly from the D/A FIFO and indicates whether the D/A FIFO contains at least one value, as follows:
- \quad FNE $=0$ indicates that the D/A FIFO contains no data.
- $\mathbf{F N E}=1$ indicates that the D/A FIFO contains data.

Note: Since the state of FNE comes directly from the D/A FIFO, you cannot manually change FNE.

- FUF (D/A FIFO Underflow) - Indicates whether a D/A FIFO Underflow event occurred. A D/A FIFO Underflow event occurs when the D/A FIFO runs out of data.

The FUF bit is set as follows:

- FUF $=0$ indicates that a D/A FIFO Underflow event did not occur.
- \quad FUF $=1$ indicates that a D/A FIFO Underflow event occurred.

If interrupts are enabled (DIEN of D/A Control register B is set to 1) when a D/A FIFO Underflow event occurs (FUF is set to 1), the board automatically does the following:

- Generates an interrupt and sets INT of this register to 1.
- Disables D/A conversions (CVEN = 0).

Notes: This bit is enabled only if the D/A FIFO is enabled (FFEN of D/A Control register A is set to 1).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 2 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 2 with a 1 whenever you write to this register.

- DMATC (D/A DMA Terminal Count) - Indicates whether a D/A DMA Terminal Count event occurred. A D/A DMA Terminal Count event occurs when DMA terminal count is reached for D/A conversions.

The DMATC bit is set as follows:

- DMATC $=0$ indicates that a D/A DMA Terminal Count event did not occur.
- DMATC = 1 indicates that a D/A DMA Terminal Count event occurred.

If interrupts are enabled (DIEN of D/A Control register B is set to 1) when the D/A DMA Terminal Count event occurs (DMATC is set to 1), the board automatically generates an interrupt and sets INT of this register to 1 .

Note: This bit is enabled only if DMA is enabled (DDEN of D/A Control register B is set to 1).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 1 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 1 with a 1 whenever you write to this register.

- INT (D/A Interrupt Set) - Indicates whether one of the following interrupt events has occurred:
- D/A DMA Terminal Count (DMATC $=1$)
- D/A FIFO Underflow (FUF = 1)
- D/A FIFO Not Full (FNF = 1)
- D/A FIFO Not Half Full (FNH = 1)

The INT bit is set as follows:

- \quad INT $=0$ indicates that no interrupt event has occurred.
- INT = 1 indicates that at least one of the interrupt events has occurred; to determine which interrupt event(s) occurred, read bits $1,2,4$, and 5 of this register.

Note: This bit has no function unless interrupts are enabled (DIEN of D/A Control register B is set to 1).

You cannot manually write a 1 to this bit. However, you can clear this bit by writing a 0 to bit 0 of this register. To prevent this bit from being cleared unintentionally, make sure that you mask bit 0 with a 1 whenever you write to this register.

Table 1-15 summarizes the ways that you can manipulate the bits in the D/A Status register. Note that writing a 0 to a clearable bit sets the bit to 0 ; writing a 1 to a settable bit sets the bit to 1 ; writing a 1 to a maskable bit preserves the bit's value and prevents the bit from being cleared unintentionally.

Table 1-15. Summary of D/A Status Register Bits

Bit	Read Operation	Write Operations		
		Clear	Set	Mask
CVEN	\checkmark	\checkmark	\checkmark	$\boldsymbol{\nu}^{1}$
CNVT	\checkmark		\checkmark	
FNH	\checkmark			
FNF	\checkmark			
FNE	\checkmark			
FUF	\checkmark	\checkmark		\checkmark
DMATC	\checkmark	\checkmark		\checkmark
INT	\checkmark	\checkmark		\checkmark

Notes
This bit is masked with the FNH bit (bit 5); you can write to CVEN only if you write a 0 to bit 5 (FNH) at the same time.

D/A Conversion Counter Register (Base Address + 408h, Base Address + 409h, Read/Write)

The D/A Conversion Counter registers specify the count you want to load into the D/A Counter (the 16-bit, down counter of the internal D/A pacer clock). This register is set to 00 h during power-up reset.

The D/A Counter is loaded in two 8-bit writes. The eight least significant bits are written first and are stored in the D/A Conversion Counter LSB register (Base Address +408 h); the eight most significant bits are written last and are stored in the D/A Conversion Counter MSB register (Base Address + 409h).

Bit assignments for the D/A Conversion Counter LSB register (Base Address +408 h) are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
DRV7	DRV6	DRV5	DRV4	DRV3	DRV2	DRV1	DRV0

Bit assignments for the D/A Conversion Counter MSB register (Base Address +409 h) are as follows:

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
DRV15	DRV14	DRV13	DRV12	DRV11	DRV10	DRV9	DRV8

The DRV15 to DRV0 (D/A Counter Value) bits represent one less than the count you want to load into the D/A Counter. For example, if you want to load a count of 1,000 into the D/A Counter, specify a value of 999 (00000011 in the D/A Conversion Counter LSB register; 11100111 in the D/A Conversion Counter MSB register). The D/A Counter count can range from 2 to 65,536 ; therefore, the value of DRV15 to DRV0 can range from 1 to 65,535 .

After the D/A Counter counts down to zero, it is automatically reloaded.

If you are using the D/A internal pacer clock ($\mathbf{S 1}$ and $\mathbf{S 0}$ of D/A Control register C are set to 01), the update rate depends on whether the divide-by-ten prescaler of the internal D/A pacer clock is enabled or disabled, as follows:

- If the prescaler is disabled (PSEN of D/A Control register C is set to 0), the update rate is determined by the following formula:

$$
\text { Update rate }=\frac{5 \mathrm{MHz}}{(\mathrm{D} / \mathrm{A} \text { Counter Value }+1)}
$$

- If the prescaler is enabled (PSEN of D/A Control register C is set to 1), the update rate is determined by the following formula:

$$
\text { Update rate }=\frac{500 \mathrm{kHz}}{(\mathrm{D} / \mathrm{A} \text { Counter Value }+1)}
$$

For example, if the prescaler is enabled and you specify a D/A Counter Value of 999, the internal D/A pacer clock performs D/A conversions at a rate of 500 Hz (2 ms between updates).

2

Programming Information

This chapter contains some information you may find useful when programming various functions of DAS-1800AO Series boards.

Setting Up the Board for Software-Initiated A/D Conversions

To set up a DAS-1800AO Series board for software-initiated A/D conversions on four analog input channels, perform the following steps:

1. Reset the A/D FIFO by writing the value 00 h to A/D Control register A (Base Address + 4h).
2. Set up the A / D operation by writing to A / D Control register C (Base Address +6 h). For example, to set up a unipolar input range type, a single-ended input configuration, a software pacer clock, and an internal trigger, write the value D0h. Note that the UQEN bit (bit 4) must be set to 1 .
3. Program the A / D QRAM with the channel and gain data for the four analog input channels. Refer to the next section for information.
4. Point to A/D Data by writing the value 00 h to the A/D Data Select register (Base Address + 2h).
5. Enable the A/D FIFO by writing the value 01 h to A / D Control register A (Base Address + 4h).
6. Enable A/D conversions by writing the value 80 h to the A/D Status register (Base Address + 7h).
7. Initiate an A / D conversion by writing any word value to A / D CNVRT (Base Address + 0h).
8. Monitor the status of the A/D FIFO by continuously reading the A/D Status register (Base Address + 7h) until bit 6 (FNE) equals 1.
9. When FNE = 1 (indicating that the A/D FIFO is not empty), read the A/D Data (Base Address + 0h).
10. Repeat steps 7, 8 , and 9 until values from all four channels have been read.
11. Disable A/D conversions by writing the value 00 h to the A / D Status register (Base Address + 7h).
12. Reset the A/D FIFO by writing the value 00 h to A/D Control register A (Base Address + 4h).

Programming the A/D QRAM

This section assumes that you are programming the A/D QRAM with channel and gain data for four analog input channels (channels 0 to 3) on a DAS-1802AO board. Channels 0 and 1 have a gain of 2; channels 2 and 3 have a gain of 4 .

To program the A/D QRAM, perform the following steps:

1. Point to the A / D QRAM by writing the value 01 h to A / D Data Select register (Base Address + 2h).
2. Specify the starting address of the channel-gain queue within the A/D QRAM (the number of channels in the scan minus one) by writing the value 03h to the A/D QRAM Address Start register (Base Address + Ah).
3. Load the A/D QRAM with the channel and gain data, as follows:
a. Write the value 0100 h (channel 0 , gain of 2) to the A/D QRAM (Base Address + 0h).
b. Write the value 0101h (channel 1, gain of 2) to the A/D QRAM (Base Address + 0h).
c. Write the value 0202h (channel 2, gain of 4) to the A/D QRAM (Base Address + 0h).
d. Write the value 0203h (channel 3, gain of 4) to the A/D QRAM (Base Address + 0h).
4. Reinitialize the A / D QRAM to the starting address of the channel-gain queue by again writing the value 03 h to the A/D QRAM Address Start register (Base Address + Ah).
5. Wait for the ADC circuitry to settle before starting A / D conversions.

Setting Up the Board for Software-Initiated D/A Conversions

To set up a DAS-1800AO Series board for software-initiated D/A conversions on DAC 0 and DAC 1, perform the following steps:

1. Reset the D/A FIFO by writing the value 00h to D/A Control register A (Base Address + 404h).
2. Set up the D / A operation by writing to D / A Control register C (Base Address +406 h). For example, to set up a $\pm 5 \mathrm{~V}$ output range for DAC $0, \mathrm{a} \pm 10 \mathrm{~V}$ output range for DAC 1 , and software conversions, write the value 80 h .
3. Specify both DACs by writing the value $02 h$ to the D/A Data Select register (Base Address +402 h).
4. Enable the D/A FIFO by writing the value 01h to D/A Control register A (Base Address + 404h).
5. Enable D/A conversions by writing the value 80 h to the D/A Status register (Base Address +407 h).
6. Specify the output value for DAC 0 by writing the appropriate data word to the D/A FIFO (Base Address $+400 h$).
7. Specify the output value for DAC 1 by writing the appropriate data word to the D/A FIFO (Base Address + 400h).
8. Initiate a D / A conversion by writing the value 60 h to the D / A Status register (Base Address +407 h). Note that writing a 1 to the FNH bit (bit 5) prevents the CVEN bit (bit 7) from being overwritten.
9. Monitor the status of the DACs by continuously reading the D/A Status register (Base Address +407 h) until bit 6 (CNVT) equals 0.
10. When CNVT $=0$ (indicating that the DACs are no longer converting data), repeat steps $6,7,8$, and 9 for additional D/A conversions.
11. Disable D/A conversions by writing the value 00 h to the D/A Status register (Base Address +407 h).
12. Reset the D/A FIFO by writing the value 00h to D/A Control register A (Base Address + 404h).

Setting Up the Board for D/A Conversions in Recycle Mode

This section assumes that you are setting up a DAS-1800AO Series board to perform D/A conversions on DAC 0 and DAC 1 in recycle mode. The D/A FIFO will contain two waveforms, each 16 samples long.

To set up the board, perform the following steps:

1. Reset the D/A FIFO by writing the value 00 h to D/A Control register A (Base Address + 404h).
2. Set up the D / A operation by writing to D / A Control register C (Base Address +406 h). For example, to set up a $\pm 10 \mathrm{~V}$ output range for both DACs and the internal D/A pacer clock with the prescaler enabled, write the value C 9 h .
3. Specify both DACs by writing the value 02 h to the D/A Data Select register (Base Address + 402h). Note that since each waveform in the D/A FIFO is 16 samples long, you can set the upper three bits of the recycle count value to 0 .
4. Load the D/A Conversion Counter registers (Base Address +408 h and Base Address +409 h) with one less than the appropriate D/A Counter Value. For example, to program an update rate of 1 kHz , load the D/A Conversion Counter registers with 499, as follows:
a. Write the value F3h to the D/A Conversion Counter LSB register (Base Address + 408h).
b. Write the value 01 h to the D/A Conversion Counter MSB register (Base Address + 409h).
5. Specify one less than the size of the waveform (16 samples) by writing 0Fh to the D/A Recycle Count register (Base Address + 403h).
6. Enable the D/A FIFO and recycle mode by writing the value 03 h to D/A Control register A (Base Address + 404h).
7. Specify an output value for DAC 0 by writing the appropriate data word to the D/A FIFO (Base Address + 400h).
8. Specify an output value for DAC 1 by writing the appropriate data word to the D/A FIFO (Base Address +400 h).
9. Repeat steps 7 and 8 until you have loaded the D/A FIFO with all 32 waveform values (16 samples for DAC 0 and 16 samples for DAC 1).
10. Enable D/A conversions by writing the value 80 h to the D/A Status register (Base Address + 407h).
11. After all the D/A conversions are complete, disable D/A conversions by writing the value 00 h to the D/A Status register (Base Address + 407h).
12. Reset the D/A FIFO by writing the value 00 h to D/A Control register A (Base Address + 404h).

Using SSH

DAS-1800AO Series boards provide the SSHO signal, which allows you to interface with a generic SSH (simultaneous sample-and-hold) device. The SSHO signal is an output from the DAS-1800AO Series board. The signal is initiated either by the internal A/D pacer clock or by an external pacer clock. You specify the pacer clock source in SL1 and SL0 of A/D Control register C; refer to page 1-22 for more information.

The SSHO signal is normally low, putting the SSH device into sample mode. About 50 ns after a pacer clock pulse, the SSHO signal goes high, putting the SSH device into hold mode. A/D conversions begin one burst mode conversion clock period after the pacer clock pulse. The SSHO signal remains high until 200 ns after the ADC starts converting the last channel in the scan. At that point, the SSHO signal goes low and remains low until the next pacer clock pulse.

To ensure enough sample time for the SSH device, make sure that the minimum pacer clock period is as follows:
(Number of channels in scan +1$) \times$ Burst mode conversion clock period

You specify the number of channels in the scan in the Burst Length register (Base Address +8 h); refer to page 1-29 for more information. You specify the burst mode conversion clock period in the Burst Mode Conversion Rate register (Base Address +9 h); refer to page 1-30 for more information.

Summary of Trigger and Gate Functions for A/D Conversions

Table 2-1 summarizes the trigger and gate functions specified with A / D Control register A when using the internal A/D pacer clock (the cascaded A/D Counter 1/Counter 2). Table 2-2 summarizes the trigger and gate functions specified with A/D Control register A when using an external pacer clock (the XPCLK pin (pin 44) of the main I/O connector).

Table 2-1. Trigger/Gate Functions (Internal A/D Pacer Clock)

Function	ATEN	TGSL	TGEN	CGSL	CGEN	Trigger/Gate Source 1
Internal trigger/gate	0	X	0	0	0 or 1^{2}	CGEN bit
External gate	0	1	1	1	X	TGIN pin
External post-trigger	0	0	1	1	X	TGIN pin
External pre-trigger or about-trigger (with internal start trigger)	1	0	0	0	0 or 1^{2}	1st $=$ CGEN bit 2nd $=$ TGIN pin
External pre-trigger or about-trigger (with external start trigger)	1	0	1	1	X	1st $=$ TGIN pin 2nd $=$ TGIN pin

Notes

It is assumed that conversions are enabled (CVEN of the A/D Status register is set to 1) when the trigger/gate event occurs.
${ }^{2}$ The state of this bit determines whether A/D conversions can occur. If CGEN $=0, \mathrm{~A} / \mathrm{D}$ conversions are disabled; if CGEN = 1, A/D conversions are enabled.

Table 2-2. Trigger/Gate Functions (External Pacer Clock)

Function	ATEN	TGSL	TGEN	CGSL	CGEN	Trigger/Gate $_{\text {Source }^{1}}$
Internal trigger/gate	0	X	0	0	Available 2	CVEN bit
External gate	0	1	1	0	Available 2	TGIN pin
External post-trigger	0	0	1	0	Available 2	TGIN pin
External pre-trigger or about-trigger (with internal start trigger)	1	0	0	0	Available 2	1st = CVEN bit 2nd = TGIN pin
External pre-trigger or about-trigger (with external start trigger)	1	0	1	0	Available ${ }^{2}$	1st = TGIN pin 2nd = TGIN pin

Notes

${ }^{\text {N }}$ Except for the internal trigger/gate, it is assumed that conversions are enabled (CVEN of the A/D Status register is set to 1) when the trigger/gate event occurs.
${ }^{2}$ When an external clock is used for A/D conversions, A/D Counter 1/Counter 2 is available for interrupt generation for digital I/O operations.

Summary of Trigger and Gate Functions for D/A Conversions

Table 2-3 summarizes the trigger and gate functions specified with D/A Control register A when using the internal D/A pacer clock (the D/A Counter). Table 2-4 summarizes the trigger and gate functions specified with D/A Control register A when using an external pacer clock (the XPCLK pin (pin 44) of the main I/O connector).

Note: When using the internal A/D pacer clock to pace D/A conversions, use Table 2-4 to program trigger and gate functions for D/A conversions. In this case, D/A conversions do not begin until A/D conversions begin. Therefore, you would typically program an external trigger for A/D conversions and an internal gate for D/A conversions. You would not program an external trigger for A/D conversions and an internal gate for D/A conversions if you are using retrigger mode or if you are triggering A/D conversions and D/A conversions with opposite trigger edges.

Table 2-3. Trigger/Gate Functions (Internal D/A Pacer Clock)

Function	RTEN	TGSL	TGEN	CGSL	CGEN	Trigger/Gate Source ${ }^{1}$
Internal trigger/gate	0	X	0	0	0 or 1^{2}	CGEN bit
External gate	0	1	1	1	X	TGIN pin
External trigger	0 or 1^{3}	0	1	1	X	TGIN pin

Notes
It is assumed that conversions are enabled (CVEN of the D/A Status register is set to 1) when the trigger/gate event occurs.
${ }^{2}$ The state of this bit determines whether D/A conversions can occur. If CGEN $=0, D / A$ conversions are disabled; if CGEN $=1, \mathrm{D} / \mathrm{A}$ conversions are enabled.
${ }^{3}$ The state of this bit determines whether the board resets the D/A FIFO's read pointer and starts generating the waveform stored in the D/A FIFO from the beginning each time an external trigger event occurs. If RTEN $=0$, the board does not reset the D/A FIFO's read pointer; if RTEN = 1, the board resets the D/A FIFO's read pointer.

Table 2-4. Trigger/Gate Functions (External Pacer Clock)

Function	RTEN	TGSL	TGEN	CGSL	CGEN	Trigger/Gate Source 1
Internal trigger/gate	0	X	0	0	X	CVEN bit
External gate	0	1	1	0	X	TGIN pin
External trigger	0 or 1^{2}	0	1	0	X	TGIN pin

Notes
Except for the internal trigger/gate, it is assumed that conversions are enabled (CVEN of the D/A Status register is set to 1) when the trigger/gate event occurs.
${ }^{2}$ The state of this bit determines whether the board resets the D/A FIFO's read pointer and starts generating the waveform stored in the D/A FIFO from the beginning each time an external trigger event occurs. If RTEN $=0$, the board does not reset the D/A FIFO's read pointer; if RTEN $=1$, the board resets the D/A FIFO's read pointer.

Pin Assignments

Figure 2-1 shows the main I/O connector and its pin assignments on a DAS-1800AO Series board; Table 2-5 contains a more detailed description of the pins.

Figure 2-1. Main I/O Connector

Table 2-5. Pin Assignments

Pin	Name	Function
1	USER_COMMON_MODE	User input for connecting to the low side of the instrumentation amplifier in single-ended mode
2	CH00 LO / CH08 HI	Analog input
3	CH01 LO / CH09 HI	Analog input
4	CH02 LO / CH10 HI	Analog input
5	CH03 LO / CH11 HI	Analog input
6	CH04 LO / CH12 HI	Analog input
7	CH05 LO / CH13 HI	Analog input
8	CH06 LO / CH14 HI	Analog input
9	CH07 LO / CH15 HI	Analog input
10	Not connected	-
11	Not connected	-
12	+15 V	+15 regulated voltage output (30 mA maximum)
13	PGND	$\pm 15 \mathrm{~V}$ power return
14	DGND	Digital ground
15	DI 1	Digital input
16	DI 3	Digital input
17	DO 1	Digital output
18	DO 3	Digital output
19	DOSTRB	Digital output latch strobe (output)
20	TGOUT	Trigger/gate output
21	MUX 3	Upper analog input channel output (from A/D QRAM)
22	MUX 5	Upper analog input channel output (from A/D QRAM)
23	MUX 7	Upper analog input channel output (from A/D QRAM)
24	+5 V	+5 V power supply (1 A maximum)
25	DGND	Digital ground

Table 2-5. Pin Assignments (cont.)

Pin	Name	Function
26	CH00 HI	Analog input
27	CH01 HI	Analog input
28	CH02 HI	Analog input
29	CH03 HI	Analog input
30	CH04 HI	Analog input
31	CH05 HI	Analog input
32	CH06 HI	Analog input
33	CH07 HI	Analog input
34	LL GND	Low-level analog return
35	ODAC 0	Analog output
36	ODAC 1	Analog output
37	$-15 \mathrm{~V}$	-15 regulated voltage output (30 mA maximum)
38	PGND	$\pm 15 \mathrm{~V}$ power return
39	GEXT	External gain control output (from A/D QRAM)
40	DI 0	Digital input
41	DI 2	Digital input
42	DO 0	Digital output
43	DO 2	Digital output
44	XPCLK	External pacer clock input
45	SSHO	Simultaneous sample-and-hold output to SSH device ${ }^{1}$
46	TGIN	External trigger/gate input
47	MUX 4	Upper analog input channel output (from A/D QRAM)
48	MUX 6	Upper analog input channel output (from A/D QRAM)
49	$+5 \mathrm{~V}$	+5 V power supply (1 A maximum)
50	DGND	Digital ground

Notes
Notes
For non-SSH applications, you can use this pin as internal A/D pacer clock output.

A

Summary of I/O Address Bits

Table A-1 contains an alphabetical list of the bits at the I/O addresses used by DAS-1800AO Series boards, a brief description of the bits, and the pages you can refer to for additional information.

Table A-1. Summary of I/O Address Bits

Bit Name	Operation	Description	Page Reference
ATEN	A/D	Enables/disables about-trigger mode.	page 1-13
BLV7 to BLV0	A/D	Specify the number of channels in the scan when using burst mode.	page 1-29
BMDE	A/D	Enables/disables burst mode.	page 1-21
BRV5 to BRV0	A/D	Specify the burst mode conversion rate.	page 1-30
C0TC	A/D	Indicates whether A/D Counter 0 has reached terminal count.	page 1-25
C2TC	A/D	Indicates whether A/D Counter 2 has reached terminal count.	page 1-26
CGEN	D/A	Enables/disables the cascaded A/D Counter 1/ Counter 2.	page 1-15
	A/D	Enables/disables the D/A Counter. Specifies the gate source for the cascaded A/D Counter 1/Counter 2.	page 1-41
	D/A	Specifies the enable source for the D/A Counter.	page 1-41
CIEN	A/D	Enables/disables an interrupt on A/D Counter 2 terminal count.	page 1-17
CMEN	A/D	Enables/disables common-mode input.	page 1-21

Table A-1. Summary of I/O Address Bits (cont.)

Bit Name	Operation	Description	Page Reference
CNVT	D/A	Performs a single D/A conversion; determines whether the DAC(s) are still converting data.	page 1-48
CVEN	A/D	Enables/disables A/D conversions.	page 1-22
	D/A	Enables/disables D/A conversions.	page 1-48
D11 to D0	A/D	Contain A/D conversion data stored in the A/D FIFO.	page 1-5
DD11 to DD0	D/A	Specify an output value to load into the D/A FIFO.	page 1-34
DDEN	D/A	Enables/disables DMA mode for D/A conversions.	page 1-44
DI3 to DI0	DIO	Contain the state of the digital input lines.	page 1-12
DIEN	D/A	Enables/disables interrupt mode for D/A conversions.	page 1-43
DL2 to DL0	A/D	Specify the DMA channel for A/D conversions and enables DMA mode for A/D conversions.	page 1-19
DL1 and DL0	D/A	Specify the DMA channel for D/A conversions.	page 1-44
DMATC	A/D	Indicates whether DMA terminal count has been reached for A/D conversions.	page 1-26
	D/A	Indicates whether DMA terminal count has been reached for D/A conversions.	page 1-51
DO3 to DO0	DIO	Specify the values to write to the digital output lines.	page 1-12
DRV15 to DRV0	D/A	Specify the value to load into the D/A Counter.	page 1-54
DSL0	A/D	Specifies the register at Base Address $+0 h$ that you want to access.	page 1-11
DSL1 and DSL0	D/A	Specify the DAC(s) to update.	page 1-37
FFEN	A/D	Enables/resets the read/write address pointers of the A/D FIFO.	page 1-16
	D/A	Enables/resets the read/write address pointers of the D/A FIFO.	page 1-42
FHF	A/D	Indicates whether the A/D FIFO is half full.	page 1-24

Table A-1. Summary of I/O Address Bits (cont.)

Bit Name	Operation	Description	Page Reference
FIMD	A/D	Specifies the A/D FIFO interrupt mode.	page 1-17
	D/A	Specifies the D/A FIFO interrupt mode.	page 1-43
FNE	A/D	Indicates whether the A/D FIFO contains data.	page 1-23
	D/A	Indicates whether the D/A FIFO contains data.	page 1-50
FNF	D/A	Indicates whether the D/A FIFO is not full.	page 1-49
FNH	D/A	Indicates whether the D/A FIFO is not half full.	page 1-49
FUF	D/A	Indicates whether the D/A FIFO has run out of data.	page 1-50
GEXT	A/D	Controls the GEXT pin (pin 39) of the main I/O connector.	page 1-10
GN1 and GN0	A/D	Specify the gain code for A/D conversions.	page 1-10
	D/A	Specify the gain code for D/A conversions.	page 1-46
IL2 to IL0	A/D	Specify the interrupt level for A/D conversions and enables interrupt mode for A/D conversions.	page 1-17
	D/A	Specify the interrupt level for D/A conversions.	page 1-17
INT	A/D	Indicates whether an interrupt event occurred for A/D conversions.	page 1-27
	D/A	Indicates whether an interrupt event occurred for D/A conversions.	page 1-52
MUX7 to MUX0	A/D	Specify the channel number for A/D conversions.	page 1-10
OVF	A/D	Indicates whether the A/D FIFO is about to overflow.	page 1-24
PSEN	D/A	Enables/disables the prescaler of the D/A internal pacer clock.	page 1-46
QAS7 to QAS0	A/D	Specify the starting address of the channel-gain queue.	page 1-31
RCEN	D/A	Enables/disables recycle mode.	page 1-41
RCV10 to RCV0	D/A	Specify the size of the waveform stored in the D/A FIFO.	page 1-36 page 1-38
RTEN	D/A	Enables/disables retrigger mode.	page 1-39

Table A-1. Summary of I/O Address Bits (cont.)

Bit Name	Operation	Description	Page Reference
S1 and S0	A/D	Specify the pacer clock source for A/D conversions.	page 1-22
	D/A	Specify the pacer clock source for D/A conversions.	page 1-47
S/D	A/D	Specifies the input configuration (single-ended or differential).	page 1-21
SHEN	D/A	Enables/disables the sample-and-hold capability.	page 1-16
TGEN	A/D	Enables/disables the TGIN pin as an external trigger or an external gate for A/D conversions.	page 1-14
	D/A	Enables/disables the TGIN pin as an external trigger or an external gate for D/A conversions.	page 1-40
TGPL	Specifies the active polarity of the external trigger/gate signal for A/D conversions.	page 1-14	
TGSL	Specifies the active polarity of the external trigger/gate signal for D/A conversions.	page 1-40	
X/D	Specifies whether the signal at the TGIN pin is used as an external trigger signal or an external gate signal for A/D conversions.	page 1-14	page

