
 

      DAS-4200 Series
       Function Call Driver

 

U S E R ’ S  G U I D E



 

DAS-4200 Series
Function Call Driver

User’s Guide

 

Revision B - May 1996
Part Number: 94510



 

New Contact Information

 

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

 

Visit our website at http://www.keithley.com



 

Keithley MetraByte Division

Keithley Instruments, Inc.

 

 

440 Myles Standish Blvd. Taunton, MA 02780

Telephone: (508) 880-3000 

 

●

 

 FAX: (508) 880-0179

 

The information contained in this manual is believed to be accurate and reliable. However, Keithley 
Instruments, Inc., assumes no responsibility for its use or for any infringements of patents or other rights 
of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent rights of Keithley Instruments, Inc.

KEITHLEY INSTRUMENTS, INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, 
OR CONSEQUENTIAL DAMAGES RELATED TO THE USE OF THIS PRODUCT. THIS 
PRODUCT IS NOT DESIGNED WITH COMPONENTS OF A LEVEL OF RELIABILITY 
SUITABLE FOR USE IN LIFE SUPPORT OR CRITICAL APPLICATIONS.

Refer to your Keithley Instruments license agreement for specific warranty and liability information.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Copyright Keithley Instruments, Inc., 1995, 1996.

All rights reserved. Reproduction or adaptation of any part of this documentation beyond that permitted 
by Section 117 of the 1976 United States Copyright Act without permission of the Copyright owner is 
unlawful.



 

vii

 

Preface

 

The 

 

DAS-4200 Series Function Call Driver User’s Guide

 

 describes how 
to write programs for DAS-4200 Series boards using the DAS-4200 
Series Function Call Driver. The DAS-4200 Series Function Call Driver 
supports the following DOS-based languages:

 

●

 

Microsoft

 



 

 C/C++ (Version 6.0 and higher)

 

●

 

Borland

 



 

 C/C++ (Version 1.0 and higher)

The DAS-4200 Series Function Call Driver supports the following 
Windows-based languages:

 

●

 

Microsoft C/C++ (Version 7.0 and higher)

 

●

 

Microsoft Visual C++ (Version 1.0 and higher)

 

●

 

Borland C/C++ (Version 4.0 and higher)

 

●

 

Microsoft Visual Basic

 



 

 for Windows (Version 3.0 and higher)

The manual is intended for programmers using a DAS-4200 Series board 
in an IBM

 



 

 PC AT

 



 

 or compatible computer. It is assumed that users 
have read the 

 

DAS-4200 Series User’s Guide

 

 to familiarize themselves 
with the board’s features, and that they have completed the appropriate 
hardware installation and configuration. It is also assumed that users are 
experienced in programming in their selected language and that they are 
familiar with data acquisition principles. 



 

viii

 

The 

 

DAS-4200 Series Function Call Driver User’s Guide

 

 is organized as 
follows:

 

●

 

Chapter 1 contains installation information, a brief description of 
available functions, and an illustration of the procedures to follow 
when programming a DAS-4200 Series board using the DAS-4200 
Series Function Call Driver. The last section of this chapter explains 
how to get help.

 

●

 

Chapter 2 contains the background information needed to use the 
functions included in the DAS-4200 Series Function Call Driver.

 

●

 

Chapter 3 contains a programming overview and language-specific 
information related to using the DAS-4200 Series Function Call 
Driver. 

 

●

 

Chapter 4 contains detailed descriptions of the DAS-4200 Series 
Function Call Driver functions, arranged in alphabetical order.

 

●

 

Appendix A contains a list of the error codes returned by DAS-4200 
Series Function Call Driver functions. 

 

●

 

Appendix B contains instructions for converting counts to voltage and 
for converting voltage to counts.

An index completes this manual.

Keep the following conventions in mind as you use this manual:

 

●

 

References to DAS-4200 Series boards apply to both the 
DAS-4201/128K and the DAS-4201/512K boards. When a feature 
applies to a particular board, that board’s name is used.

 

●

 

Unless otherwise noted, references to Windows include Windows 3.1, 
Windows 3.11 for Workgroups, and Windows 95.

 

●

 

Keyboard keys and function names are represented in bold typeface. 



 

Table of Contents

 

iii

 

Preface

 

1

 

Overview

 

Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1
Supporting Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2
Accessories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-3

 

2

 

Technical Reference

 

Analog-to-Digital Converter (ADC)  . . . . . . . . . . . . . . . . . . . . . .2-3
Reference Voltage Range and Vernier Gain  . . . . . . . . . . . . . .2-3
Static Conversion Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3
Noise Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-6
Dynamic Conversion Errors . . . . . . . . . . . . . . . . . . . . . . . . . .2-6

Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-7
Input Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8

Onboard Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8
Buffer Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-9
Nonvolatile Memory (EEPROM). . . . . . . . . . . . . . . . . . . .2-9

Host Computer Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-10
I/O Address Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-10
Memory Address Space . . . . . . . . . . . . . . . . . . . . . . . . . .2-10

Bus Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12
Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12
Pacer Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13

Internal Pacer Clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13
External Pacer Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-14
Adjusting the Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . .2-14

Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-15
Trigger Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-15

Software Trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-15
Analog Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-16
Digital Trigger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-18



 

iv

 

Trigger Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-18
Post-Trigger Acquisition  . . . . . . . . . . . . . . . . . . . . . . . . .2-18
About-Trigger Acquisition . . . . . . . . . . . . . . . . . . . . . . . .2-21

Trigger Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-24
Equivalent Time Sampling (ETS)  . . . . . . . . . . . . . . . . . . . . . . .2-25
Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-28

 

3

 

Setup and Installation

 

Unpacking the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1
Installing the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2

Installing the DAS-4200 Series Standard Software Package .3-2
Installing the ASO-4200 Software Package  . . . . . . . . . . . . . .3-3

DOS Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
Windows Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4

Configuring the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-5
Creating a Configuration File . . . . . . . . . . . . . . . . . . . . . . . . .3-7
Setting Jumpers on the Board . . . . . . . . . . . . . . . . . . . . . . . . .3-9

Setting the Base I/O Address . . . . . . . . . . . . . . . . . . . . . .3-11
Setting the Memory Address  . . . . . . . . . . . . . . . . . . . . . .3-12
Excluding the Memory Area  . . . . . . . . . . . . . . . . . . . . . .3-13
Setting the Interrupt Level . . . . . . . . . . . . . . . . . . . . . . . .3-14
Setting Trigger Synchronization. . . . . . . . . . . . . . . . . . . .3-15
Setting the Input Impedance for Analog 

Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-15
Setting the Input Impedance for the Clock 

I/O Connector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-17
Setting the Input Impedance for the Trigger 

I/O Connector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-19
Adding a Ground Connection  . . . . . . . . . . . . . . . . . . . . .3-20

Installing the Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-21
Attaching Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-22

 

4

 

Scope and Test Program

 

Control Keys for D4200.EXE  . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1
Scope and Test Program Menus. . . . . . . . . . . . . . . . . . . . . . . . . .4-4

A/D Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4
Display Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7
Gates Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-9
Options Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-11
Configuration Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-11

Saving Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-12



 

v

 

Recalling Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-13
Calibrating the DAS-4200 Series Board  . . . . . . . . . . . . . . . . . .4-14
Using Parameter Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-15

 

5

 

Troubleshooting

 

Identifying Symptoms and Possible Causes  . . . . . . . . . . . . . . . .5-1
Testing Board and Host Computer. . . . . . . . . . . . . . . . . . . . . . . .5-3
Testing Accessory Slot and I/O Connections . . . . . . . . . . . . . . . .5-4
Technical Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-4

 

A

 

Specifications

 

B

 

Keithley Memory Manager

 

Installing and Setting Up the KMM in Windows 3.x. . . . . . . . . B-2
Using KMMSETUP.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
Using a Text Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-3

Installing and Setting Up the KMM in Windows 95 . . . . . . . . . B-4
Removing the KMM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4

 

Index

List of Figures

 

Figure 2-1. DAS-4200 Series Functional Block Diagram . . . .2-1
Figure 2-2. Ideal Transfer Function of a 3-Bit ADC . . . . . . . .2-4
Figure 2-3. Non-Ideal Transfer Function of a 3-Bit ADC . . . .2-5
Figure 2-4. Host Computer Memory Address Space . . . . . . .2-11
Figure 2-5. Analog Trigger Modes. . . . . . . . . . . . . . . . . . . . .2-17
Figure 2-6. Post-Trigger Acquisition . . . . . . . . . . . . . . . . . . .2-19
Figure 2-7. Memory Usage in Post-Trigger Acquisition . . . .2-20
Figure 2-8. About-Trigger Acquisition  . . . . . . . . . . . . . . . . .2-22
Figure 2-9. Memory Usage in About-Trigger Acquisition. . .2-23
Figure 2-10. Possible Trigger Position . . . . . . . . . . . . . . . . . . .2-24
Figure 2-11. Trigger Jitter with Synchronized Divider  . . . . . .2-24
Figure 2-12. Equivalent Time Sampling (ETS) . . . . . . . . . . . .2-25
Figure 2-13. ETS Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-27
Figure 2-14. Peak Detection . . . . . . . . . . . . . . . . . . . . . . . . . . .2-29
Figure 3-1. Jumper Locations. . . . . . . . . . . . . . . . . . . . . . . . .3-10
Figure 3-2. Analog Input Circuitry. . . . . . . . . . . . . . . . . . . . .3-16
Figure 3-3. Clock I/O Connector Circuitry  . . . . . . . . . . . . . .3-18
Figure 3-4. Trigger I/O Connector Circuitry  . . . . . . . . . . . . .3-19



 

vi

 

List of Tables

 

Table 2-1. Analog Input Ranges . . . . . . . . . . . . . . . . . . . . . . .2-8
Table 2-2. Available Conversion Rates Using

Internal Clock  . . . . . . . . . . . . . . . . . . . . . . . . . . .2-13
Table 3-1. Configuring DAS-4200 Series Boards  . . . . . . . . .3-6
Table 3-2. Base I/O Address . . . . . . . . . . . . . . . . . . . . . . . . .3-11
Table 3-3. Memory Address . . . . . . . . . . . . . . . . . . . . . . . . .3-13
Table 3-4. Interrupt Level Selection . . . . . . . . . . . . . . . . . . .3-14
Table 3-5. Changing the Input Impedance  . . . . . . . . . . . . . .3-17
Table 4-1. Control Keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
Table 4-2. Suffixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4
Table 4-3. A/D Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-5
Table 4-4. Display Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-7
Table 4-5. Gates Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-10
Table 4-6. Options Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . .4-11
Table 5-1. Troubleshooting Information. . . . . . . . . . . . . . . . .5-1
Table A-1. DAS-4200 Series Specifications . . . . . . . . . . . . . A-1



 

Table 1-1. Summary of Functions. . . . . . . . . . . . . . . . . . . . . .1-3
Table 2-1. A/D Frame Elements . . . . . . . . . . . . . . . . . . . . . . .2-6
Table 2-2. Analog Input Ranges and Gains  . . . . . . . . . . . . .2-10
Table 2-3. Conversion Rates and Sample Periods
for the Internal Pacer Clock2-11
Table 3-1. Protected-Mode Memory Architecture . . . . . . . .3-12
Table 4-1. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2
Table 4-2. Data Type Prefixes. . . . . . . . . . . . . . . . . . . . . . . . .4-4
Table A-1. Error/Status Codes . . . . . . . . . . . . . . . . . . . . . . . . A-1
Table B-1. Some Span Values For Analog Input Data Conversion 
Equations B-2



 

Figure 2-1. Interrupt-Mode Operation . . . . . . . . . . . . . . . . . . .2-5
Figure 2-2. Analog Trigger Conditions  . . . . . . . . . . . . . . . . .2-14
Figure 2-3. Digital Trigger Conditions. . . . . . . . . . . . . . . . . .2-15
Figure 4-1. Status Word Settings . . . . . . . . . . . . . . . . . . . . . .4-26



 

1-1

 

1

 

Getting Started

 

This chapter contains the following sections:

 

●

 

Overview

 

 - a description of the DAS-4200 Series Function Call 
Driver. 

 

●

 

Summary of Functions

 

 - a brief description of the DAS-4200 Series 
Function Call Driver functions.

 

●

 

Programming Flow Diagrams

 

 - an illustration of the procedures to 
follow when programming a DAS-4200 Series board using the 
DAS-4200 Series Function Call Driver. 

 

●

 

Getting Help

 

 - information on how to get help when installing or 
using the DAS-4200 Series Function Call Driver. 



 

1-2 Getting Started

 

Overview

 

The DAS-4200 Series Function Call Driver is a library of data acquisition 
and control functions (referred to as the Function Call Driver or FCD 
functions). It is part of the 

 

ASO-4200

 

 software package, which includes 
the following:

 

●

 

Libraries of FCD functions for Microsoft C/C++ and Borland C/C++ 
(for DOS).

 

●

 

Dynamic Link Libraries (DLLs) of FCD functions for Microsoft 
Visual Basic for Windows, Microsoft C/C++ (for Windows), and 
Borland C/C++ (for Windows).

 

●

 

Support files, containing program elements, such as function 
prototypes and definitions of variable types, that are required by the 
FCD functions.

 

●

 

Utility programs, running under DOS, that allow you to configure, 
calibrate, and test the DAS-4200 Series boards.

 

●

 

Language-specific example programs.

Before you use the Function Call Driver, make sure that you have 
installed the software, set up the board, and created a configuration file 
using the setup and installation procedures described in the 

 

DAS-4200 
Series User’s Guide

 

.



 

Summary of Functions 1-3

 

Summary of Functions

 

Table 1-1 provides a brief description of the functions in the DAS-4200 
Series Function Call Driver. For more detailed information about the 
functions, refer to Chapter 4.

 

Table 1-1.  Summary of Functions  

 

Function Type Function Name Description

 

Initialization K_OpenDriver Initializes any Function Call Driver. 

K_CloseDriver Closes a Function Call Driver. 

K_GetDevHandle Initializes any Keithley DAS board. 

K_FreeDevHandle Frees a device handle. 

K_DASDevInit Reinitializes a board. 

Operation K_IntStart Starts an interrupt-mode operation. 

K_IntStatus Gets the status of an interrupt-mode operation. 

K_IntStop Stops an interrupt-mode operation. 

Frame Management K_GetADFrame Accesses a frame for an analog input operation. 

K_FreeFrame Frees a frame. 

K_ClearFrame Sets all frame elements to their default values.

Memory Management K_IntAlloc Dynamically allocates a memory buffer for an 
interrupt-mode operation. 

K_IntFree Frees a memory buffer that was dynamically 
allocated for an interrupt-mode operation. 

K_MoveBufToArray Transfers data from a dynamically allocated 
memory buffer to a local integer array. 

Buffer Address K_SetBuf Specifies the starting address of a local array 
(C/C++) or a dynamically allocated memory 
buffer (C/C++, Visual Basic for Windows) for an 
interrupt-mode operation. 

K_SetBufI Specifies the starting address of a local array 
(Visual Basic for Windows) for an interrupt-mode 
operation.



 

1-4 Getting Started

 

Programming Flow Diagrams

 

This section contains a series of programming flow diagrams illustrating 
the procedures used when programming each of the operations supported 
by the DAS-4200 Series Function Call Driver. Although error checking is 
not shown in the flow diagrams, it is recommended that you check the 
error/status code returned by each function used in your program. 

 

Channel and Gain K_SetChn Specifies the channel to use for the operation. 

K_SetG Specifies the gain for the specified channel. 

Clock K_SetClk Specifies the pacer clock source. 

K_SetClkRate Specifies the clock rate for the internal pacer 
clock. 

K_GetClkRate Gets the clock rate for the internal pacer clock.

Trigger K_SetTrig Specifies the trigger source.

K_SetADTrig Sets up an external analog trigger.

K_SetDITrig Sets up an external digital trigger.

K_SetAboutTrig Enables the about trigger and specifies the 
number of post-trigger samples. 

K_ClrAboutTrig Disables the about trigger.

Miscellaneous K_GetErrMsg Gets the address of an error message string. 

K_GetVer Gets revision numbers. 

K_GetShellVer Gets the current DAS shell version. 

 

Table 1-1.  Summary of Functions  (cont.)

 

Function Type Function Name Description



 

Programming Flow Diagrams 1-5

 

Preliminary Steps

Using another 
board?

Install all required files, 
including the function and 
variable type definition file.

Declare and initialize program 
variables. 

Initialize the driver
(K_OpenDriver).

Initialize a board
(K_GetDevHandle).

No

Yes

For each board, perform the remaining 
steps appropriate to the analog input 

operation (beginning on the next page).

Access a frame
(K_GetADFrame).



 

1-6 Getting Started

 

Steps for an Analog Input Operation

Continued from previous page

Specify the channel to use
(K_SetChn).

Specify the gain 
for the channel

(K_SetG).

Specify an external pacer clock source 
(K_SetClk) and set up the external clock 

(hardware setup).

Specifiy an internal clock 
source (K_SetClk).

Internal

Continued on next page

How is 
memory to be 

allocated?

Specify the starting address of the buffer
(K_SetBuf).

Specify the starting 
address of the local 
array (K_SetBufI).

Allocate a buffer
(K_IntAlloc).

Declare and dimension 
a local array.

Local array

Dynamically allocated 
memory buffer

External

What type 
of clock 
source?

Set the clock rate 
(K_SetClkRate).



 

Programming Flow Diagrams 1-7

 

Steps for an Analog Input Operation (cont.)

What type of 
external start 

trigger?

Specify an internal 
start trigger 
(K_SetTrig)l

No

Yes

Specify an external start 
trigger (K_SetTrig)

Specify digital trigger 
conditions (K_SetDITrig)

Continued from previous page

Specify the 
analog

trigger conditions

Analog

Digital

Go to page 1-9

Disable the 
about trigger 

(K_ClrAboutTrig)

Continued on next page
External start trigger.

What type of 
trigger?

About trigger Specify an internal 
start trigger 
(K_SetTrig)l

Specify the number of
post-trigger delay samples

(K_SetPostTrigDelay)
Delaying 

data 
collection?

Yes

No

Using a 
trigger?



 

1-8 Getting Started

 

Steps for an Analog Input Operation (cont.)

What type 
of about 
trigger?

Specify digital
about trigger 

conditions
(K_SetDITrig)

Continued from previous page

Specify the analog
about trigger conditions

(K_SetADTrig)

Analog

Digital

Continued on next page

Enable the about trigger 
and specify the number of

post-trigger samples
(K_SetAboutTrig)

Before and  after the about 
trigger occurs

Enable the about trigger 
and specify 1 sample

(K_SetAboutTrig)

Only before about 
trigger occurs

When reading 
data?



 

Programming Flow Diagrams 1-9

 

Steps for an Analog Input Operation (cont.)

Start the operation
(K_IntStart)

Monitor the status of the operation
(K_IntStatus)

Continued from previous page or from page 1-7

Which 
programming 

language?

C / C++

Transfer data from the buffer to a 
local array (K_MoveBufToArray)

Visual Basic for 
Windows

Free the buffer
(K_IntFree)Read data from the array

Read data
from the buffer

Convert data
from the buffer

Operation complete

Convert data
from the array

Free the frame
K_FreeFrame

Stop the operation
(K_IntStop)



 

1-10 Getting Started

 

Getting Help

 

If you need help installing or using the DAS-4200 Series Function Call 
Driver, call your local sales office or call the following number for 
technical support: 

 

(508) 880-3000

Monday - Friday, 8:00 

 

A.M.

 

 - 6:00 

 

P.M.

 

, Eastern Time

 

An applications engineer will help you diagnose and resolve your 
problem over the telephone.

Please make sure that you have the information on the following page 
available before you call. 



 

Getting Help 1-11

 

DAS-4200Series
board configuration

 

Model
Serial #
Revision code
Base address setting
Interrupt level setting
Input configuration
Input range type

_____________________
_____________________
_____________________
_____________________
_____________________
single-ended, differential
unipolar, bipolar

 

Computer

 

Manufacturer
CPU type
Clock speed (MHz)
Amount of RAM
Video system
BIOS type

_____________________
_____________________
_____________________
_____________________
_____________________
_____________________

 

Operating system

 

DOS version
Windows version

_____________________
_____________________

 

Software package

 

Name
Serial #
Version
Invoice/Order #

_____________________
_____________________
_____________________
_____________________

 

Compiler
(if applicable)

 

Language
Manufacturer
Version

_____________________
_____________________
_____________________

 

Accessories

 

Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number
Type/Number

_____________________
_____________________
_____________________
_____________________
_____________________
_____________________
_____________________
_____________________



 

2-1

 

2

 

Available Operations

 

This chapter contains the following sections:

 

●

 

System Operations

 

 - descriptions of the miscellaneous operations 
and general maintenance operations that apply to DAS-4200 Series 
boards and to the DAS-4200 Series Function Call Driver. 

 

●

 

Analog Input Operations

 

 - description of the operation mode 
available for analog input operations and instructions for allocating 
memory and setting parameters for an analog input operation.



 

2-2 Available Operations

 

System Operations

 

This section describes the miscellaneous operations and general 
maintenance operations that apply to DAS-4200 Series boards and to the 
DAS-4200 Series Function Call Driver. It includes information on 
initializing a driver, initializing a board, retrieving revision levels, and 
handling errors.

 

Initializing the Driver

 

You must initialize the DAS-4200 Series Function Call Driver and any 
other Keithley DAS Function Call Drivers you are using in your program. 
To initialize the drivers, use the 

 

K_OpenDriver

 

 function. You specify the 
driver you are using and the configuration file that defines the use of the 
driver. The driver returns a unique identifier for the driver; this identifier is 
called the driver handle.

You can specify a maximum of 30 driver handles for all the Keithley 
MetraByte drivers initialized from all your programs. If you no longer 
require a driver and you want to free some memory or if you have used all 
30 driver handles, you can use the 

 

K_CloseDriver

 

 function to free a 
driver handle and close the associated driver.

If the driver handle you free is the last driver handle specified for a 
Function Call Driver, the driver is shut down. (For Windows-based 
languages only, the DLLs associated with the Function Call Driver are 
shut down and unloaded from memory.) 

 

Initializing a Board

 

The DAS-4200 Series Function Call Driver supports up to two boards. 
You must use the 

 

K_GetDevHandle

 

 function to specify the boards you 
want to use. The driver returns a unique identifier for each board; this 
identifier is called the device handle.

Device handles allow you to communicate with more than one board. You 
use the device handle returned by 

 

K_GetDevHandle

 

 in subsequent 
function calls related to the board. 



 

System Operations 2-3

 

You can specify a maximum of 30 device handles for all the Keithley 
MetraByte boards accessed from all your programs. If a board is no 
longer being used and you want to free some memory or if you have used 
all 30 device handles, you can use the 

 

K_FreeDevHandle

 

 function to 
free a device handle.

Use 

 

K_GetDevHandle

 

 the first time you initialize a board only. Once 
you have a device handle, you can reinitialize a board as needed by using 
the 

 

K_DASDevInit

 

 function. 

 

Retrieving Revision Levels

 

If you are using functions from different Keithley DAS Function Call 
Drivers in the same program or if you are having problems with your 
program, you may want to verify which versions of the Function Call 
Driver, Keithley DAS Driver Specification, and Keithley DAS Shell are 
installed on your computer. 

The 

 

K_GetVer

 

 function allows you to get both the revision number of the 
DAS-4200 Series Function Call Driver and the revision number of the 
Keithley DAS Driver Specification to which the driver conforms. 

The 

 

K_GetShellVer

 

 function allows you to get the revision number of 
the Keithley DAS Shell (the Keithley DAS Shell is a group of functions 
that are shared by all DAS boards). 

 

Handling Errors

 

Each FCD function returns a code indicating the status of the function. To 
ensure that your program runs successfully, it is recommended that you 
check the returned code after the execution of each function. If the status 
code equals 0, the function executed successfully and your program can 
proceed. If the status code does not equal 0, an error occurred; ensure that 
your program takes the appropriate action. Refer to Appendix A for a 
complete list of error codes.



 

2-4 Available Operations

 

Each supported programming language uses a different procedure for 
error checking. Refer to the following for information: 

For C-language programs only, the DAS-4200 Series Function Call 
Driver provides the 

 

K_GetErrMsg

 

 function, which gets the address of 
the string corresponding to an error code. 

 

Analog Input Operations

 

This section describes the following:

 

●

 

Analog input operation mode available.

 

●

 

How to allocate and manage memory for analog input operations.

 

●

 

How to specify the following for an analog input operation: a 
channel, a gain and range, a clock source, a trigger source, and the 
trigger acquisition type.

 

Operation Mode

 

DAS-4200 Series boards support interrupt mode only. In interrupt mode, 
the board acquires multiple samples from a single analog input channel. A 
hardware clock initiates A/D conversions. Once the analog input 
operation begins, control returns to your program. The hardware 
continues to store the acquired data in its onboard memory until the 
specified number of samples is acquired, then transfers the data all at once 
to a user-defined buffer in the computer using an interrupt service routine.

Use the 

 

K_IntStart

 

 function to start an analog input operation in 
interrupt mode. Use the 

 

K_IntStop

 

 function to stop the operation. Use 
the 

 

K_IntStatus

 

 function to determine the current status of the operation.

The converted data is stored as counts. For information on converting 
counts to voltage, refer to Appendix B.

 

C/C++ page 3-5

Visual Basic for Windows page 3-14



 

Analog Input Operations 2-5

 

Frames

 

The DAS-4200 Series Function Call Driver uses frames to perform 
interrupt-mode analog input operations. A frame is a data structure whose 
elements define the attributes of the operation. For each board you are 
using in a program, use the 

 

K_GetADFrame

 

 function to access an 
analog input frame, called an A/D (analog-to-digital) frame. The driver 
returns a unique identifier for the frame; this identifier is called the frame 
handle.

Specify the attributes of the operation by using a separate setup function 
to define each element of the A/D frame. Use the frame handle returned 
by the driver in each setup function to ensure that you always define the 
same operation. For example, assume that you access an A/D frame with 
the frame handle ADFrame. To specify the channel on which to perform 
the operation, use the 

 

K_SetChn

 

 setup function, referencing the frame 
handle ADFrame. To specify the gain at which to read the channel, use 
the 

 

K_SetG

 

 setup function, also referencing the frame handle ADFrame.

When you are ready to perform the operation you have set up, use the 

 

K_IntStart

 

 function to start the operation, again referencing the 
appropriate frame handle. Figure 2-1 illustrates the use of an A/D frame 
for an interrupt-mode operation, where the frame handle is ADFrame.

 

Figure 2-1.  Interrupt-Mode Operation

Channel

Clock Source

Trigger Source
.
.
.

Analog input channel

Pacer clock source

Trigger source
.
.
.

Attrib utes of OperationADFrame

K_IntStart (ADFrame)



 

2-6 Available Operations

 

Frames help you create structured programs. They are useful for 
operations that have many defining attributes, since providing a separate 
argument for each attribute could make a function’s argument list 
unmanageably long.

If you want to perform an interrupt-mode operation and all frames have 
been accessed, you can use the 

 

K_FreeFrame

 

 function to free a frame 
that is no longer in use. You can then redefine the elements of the frame 
for the next operation. 

When you access a frame, the elements are set to their default values. You 
can also use the 

 

K_ClearFrame

 

 function to reset all the elements of a 
frame to their default values. 

Table 2-1 lists the elements of an A/D frame, the default value of each 
element, the setup function used to define each element, and the pages in 
this guide on which to find information specific to the function.

 

Table 2-1.  A/D Frame Elements  

 

Element Default Value Setup Function See Also

 

Buffer

 

1

 

 0 (NULL) K_SetBuf page 4-37

K_SetBufI page 4-39

Number of Samples 0 K_SetBuf page 4-37

K_SetBufI page 4-39

Channel 0 K_SetChn page 4-41

Gain 0 (gain of 1) K_SetG page 4-47

Clock Source Internal A/D pacer clock K_SetClk page 4-42

Pacer Clock Rate

 

1

 

0 K_SetClkRate page 4-43

Trigger Source Internal K_SetTrig page 4-49

Trigger Type Digital K_SetADTrig page 4-35

K_SetDITrig page 4-45

Trigger Channel 0 (for analog trigger) K_SetADTrig page 4-35

0 (for digital trigger) Not applicable

 

2

 

page 4-45



 

Analog Input Operations 2-7

 

Memory Allocation and Management

 

Interrupt-mode analog input operations require a memory buffer in which 
to store acquired data. DAS-4201/128K boards can acquire 131,072 
samples (128K); DAS-4201/512K boards can acquire 524,288 samples 
(512K).

 

Note:  

 

Even though you can allocate a memory buffer greater than the 
board requires, it is recommended that you allocate a maximum buffer 
size of 128K for DAS-4201/128K boards and 512K for DAS-4201/512K 

 

boards.

The ways you can allocate and manage memory are described in the 
following sections.

 

Trigger Polarity Positive K_SetADTrig page 4-35

K_SetDITrig page 4-45

Trigger Sensitivity Edge (for analog) K_SetADTrig page 4-35

Edge (for digital) Not applicable

 

2

 

page 4-45

Trigger Level 0 K_SetADTrig page 4-35

About-Trigger 
Acquisition

Disabled K_SetAboutTrig page 4-33

K_ClrAboutTrig

 

3

 

page 4-7

Notes

 

1 

 

This element must be set.

 

2 

 

The default value of this element cannot be changed.

 

3 

 

Use this function to reset the value of this particular frame element to its default setting 
without clearing the frame or getting a new frame. Whenever you clear a frame or get a new 
frame, this frame element is set to its default value automatically.

 

Table 2-1.  A/D Frame Elements  (cont.)

 

Element Default Value Setup Function See Also



 

2-8 Available Operations

 

Dynamically Allocating a Memory Buffer

 

You can allocate a memory buffer dynamically outside of your program’s 
memory area. This way is recommended for the DAS-4200 Series boards. 
The advantages of this method are as follows:

 

●

 

The size of the buffer is limited by the amount of free physical 
memory available in your computer at run time.

 

●

 

A dynamically allocated memory buffer can be freed to make it 
available to other programs or processes.

Use the 

 

K_IntAlloc

 

 function to dynamically allocate a memory buffer. 
You specify the operation requiring the buffer and the number of samples 
to store in the buffer. The driver returns the starting address of the buffer 
and a unique identifier for the buffer; this identifier is called the memory 
handle. When the buffer is no longer required, you can free the buffer for 
another use by specifying this memory handle in the 

 

K_IntFree

 

 function.

For Visual Basic for Windows, data in a dynamically allocated buffer is 
not directly accessible to your program. You must use the 

 

K_MoveBufToArray

 

 function to move the data from the dynamically 
allocated buffer to the program’s local array; refer to page 4-30 for more 
information.

 

Notes:  

 

If you are writing Windows 95, 32-bit programs, you must install 
the Keithley Memory Manager. See your board user’s guide for details.

For DOS-based languages, the area used for dynamically allocated 
memory buffers is referred to as the far heap; for Windows-based 
languages, this area is referred to as the global heap. These heaps are 
areas of memory left unoccupied as your program and other programs 
run.

For DOS-based languages, the 

 

K_IntAlloc

 

 function uses the DOS Int 
21H function 48H to dynamically allocate far heap memory. For 
Windows-based languages, the 

 

K_IntAlloc

 

 function calls the 

 

GlobalAlloc

 

 API function to allocate the desired buffer size from the 
global heap. 

For Windows-based languages, dynamically allocated memory is 

 

guaranteed to be fixed and locked in memory.



 

Analog Input Operations 2-9

 

Dimensioning a Local Array

 

A simpler way to reserve a memory location is to dimension an array 
within your program’s memory area. The advantage of this method is that 
the array is directly accessible to your program. The limitations of this 
method are as follows:

 

●

 

Certain programming languages limit the size of local arrays.

 

●

 

Local arrays occupy permanent memory areas; these memory areas 
cannot be freed to make them available to other programs or 
processes.

 

●

 

You cannot use local arrays with Windows 95, 32-bit programs.

Because of these limitations and because the DAS-4200 Series boards can 
store up to 524,288 samples onboard, dimensioning a local array is not 
recommended.

Since the DAS-4200 Series Function Call Driver stores data in 16-bit 
integers, you must dimension all local arrays as integers.

 

Assigning the Starting Address

 

After you allocate a buffer or dimension an array, you must assign the 
starting address of the array or buffer and the number of samples to store 
in the buffer or array. Each supported programming language requires a 
particular procedure for assigning a starting address. Refer to the 
following table for information:

 

Language Memory Location Function Refer to

 

C/C++ Array or Buffer K_SetBuf page 3-4

Visual Basic for 
Windows

Array K_SetBufI page 3-11

Buffer K_SetBuf page 3-10



 

2-10 Available Operations

 

Channels

 

DAS-4200 Series boards provide two analog input channels; the software 
refers to Channel A as channel 0 and Channel B as channel 1. You can 
perform an analog input operation on a single channel at a time. To 
acquire samples from both channels, you must alternate between the two 
channels after an acquisition is done.

You can acquire a single sample or multiple samples from a single analog 
input channel. Use the 

 

K_SetChn

 

 function to specify the channel.

 

Gains and Ranges

 

Each channel on the DAS-4200 Series board can measure signals in one 
of eight, software-selectable bipolar analog input ranges. 

Table 2-2 lists the analog input ranges supported by DAS-4200 Series 
boards and the gain and gain code associated with each range. Use the 

 

K_SetG

 

 function to specify the gain code (the gain code is used by 

 

K_SetG

 

 to represent the gain). 

 

Table 2-2.  Analog Input Ranges and Gains 

 

Analog Input 
Range

Gain
Gain
Code

 

±2 V 1 0

±1 V 2 1

±500 mV 4 2

±250 mV 8 3

±125 mV 16 4

±62.5 mV 32 5

±31.25 mV 64 6

±15.625 mV 128 7



 

Analog Input Operations 2-11

 

Pacer Clocks

 

The pacer clock determines the period between A/D conversions. You can 
specify an internal or an external pacer clock, as described in the 
following subsections. Refer to the 

 

DAS-4200 Series User’s Guide

 

 for 
more information.

 

Internal Pacer Clock

 

The internal pacer clock is the 100-MHz oscillator on the DAS-4200 
Series board. The default clock source is internal; to reset the clock source 
to the internal clock, use the 

 

K_SetClk

 

 function.

When you start an analog input operation (using 

 

K_IntStart

 

), 
conversions are performed at a rate of 3.2 Gsamples/s divided by a clock 
divider value. Use the 

 

K_SetClkRate

 

 function to specify the clock 
divider value. Table 2-3 lists the supported clock divider values and the 
corresponding conversion rates and sample periods for the internal pacer 
clock.

 

Table 2-3.  Conversion Rates and Sample Periods
for the Internal Pacer Clock  

 

Clock 
Divider

Conversion 
Rate

Sample 
Period

 

32 100 Msamples/s 10 ns

64 50 Msamples/s 20 ns

128 25 Msamples/s 40 ns

256 12.5 Msamples/s 80 ns

512 6.25 Msamples/s160 ns

1024 3.13 Msamples/s 320 ns

2048 1.56 Msamples/s640 ns

4096 0.78 Msamples/s 1280 ns



 

2-12 Available Operations

 

Note:  

 

If you enter a clock divider value that is not one of those listed in 
Table 2-3, the driver uses the next fastest rate. For example, if you enter a 
clock divider value of 63, the driver uses a clock divider value of 32 to 
perform the faster conversion rate. To determine the actual clock divider 

 

value used, use the 

 

K_GetClkRate 

 

function.

 

External Pacer Clock

 

You connect an external clock to the Clock I/O connector of the 
DAS-4200 Series board. To specify an external clock source, use the 

 

K_SetClk

 

 function. 

When you start an analog input operation (using 

 

K_IntStart

 

), 
conversions are armed. At the next rising edge of the external pacer clock 
(and at every subsequent rising edge of the external pacer clock), a 
conversion is initiated.

 

Triggers

 

A trigger is an event that occurs based on a specified set of conditions. 
The operation must have a start trigger that determines when the 
acquisition starts. In addition, you can choose the optional about trigger to 
determine when the acquisition stops. 

You can define operations that acquire data after the trigger event occurs 
(post-trigger acquisition), operations that acquire data before a trigger 
event (pre-trigger acquisition), and operations that acquire data before 
and after a trigger event (about-trigger acquisition). If you specify an 
about trigger, the operation stops when a specified number of samples has 
been acquired after the occurrence of the about-trigger event.

The following sections describe the supported trigger sources and the 
ways to acquire data using triggers.



 

Analog Input Operations 2-13

 

Trigger Sources

 

You can specify an internal or an external trigger source. An internal 
trigger is a software trigger. External triggers can be either analog triggers 
or digital triggers. The trigger event is not significant until the operation 
the trigger governs has been started (using 

 

K_IntStart

 

). 

The internal trigger, external analog trigger, and external digital trigger 
are described in the following subsections. 

 

Internal Trigger

An internal trigger is a software trigger. The trigger event occurs when 
you start the operation using the K_IntStart  function. Note that there is a 
slight delay between the time you start the operation and the time the 
trigger event occurs.

The internal trigger is the default trigger source. To reset the trigger 
source to internal, use the K_SetTrig function. 

External Analog Trigger

You can use the signal on the analog input channel being sampled as the 
trigger signal for an analog trigger. The trigger conditions for analog 
triggers are illustrated in Figure 2-2 and described as follows:

● Positive-Edge Trigger - A trigger event occurs the first time the 
trigger signal changes from a voltage that is less than the trigger level 
to a voltage that is greater than the trigger level.

● Negative-Edge Trigger - A trigger event occurs the first time the 
trigger signal changes from a voltage that is greater than the trigger 
level to a voltage that is less than the trigger level.

● Positive-Level Trigger - A trigger event occurs the first time the 
trigger signal is a voltage that is greater than the trigger level.

● Negative-Level Trigger - If the trigger polarity is negative and the 
sensitivity is level, a trigger event occurs the first time the trigger 
signal is a voltage that is less than the trigger level.



2-14 Available Operations

Figure 2-2.  Analog Trigger Conditions

To specify an external analog trigger, first use the K_SetTrig function to 
specify an external trigger. Then, use the K_SetADTrig  function to 
specify the analog input channel to use as the trigger channel, the trigger 
level, and the trigger polarity and sensitivity. You specify the trigger level 
as a count value.

Refer to Appendix B for information on how to convert a voltage to a 
count value. 

External Digital Trigger

The digital trigger signal is connected to the Trigger I/O connector of the 
DAS-4200 Series boards. To specify an external digital trigger, first use 
the K_SetTrig function to specify an external trigger. Then, use the 
K_SetDITrig  function to specify whether you want the trigger event to 
occur on the rising edge of the digital trigger signal (positive-edge 
trigger) or on a falling edge of the digital trigger signal (negative-edge 
trigger). The trigger events are illustrated in Figure 2-3.

Negative-edge
or negative-level
trigger occurs

Analog input operation
start function is executed

Positive-edge trigger occurs

0 V

Level   + 5 V

Positive-level
trigger occurs



Analog Input Operations 2-15

Figure 2-3.  Digital Trigger Conditions

Trigger Acquisition

The ways you can acquire data using triggers are described in the 
following subsections. 

Post-Trigger Acquisition

Use post-trigger acquisition in applications where you want to collect 
data after a specific trigger event. You specify a start trigger only; the start 
trigger determines when the operation starts and can be either an internal, 
an external analog, or an external digital trigger. To stop the operation, 
use the K_IntStop  function. 

To specify post-trigger acquisition, perform the following steps:

1. Specify the start trigger. 

– Use K_SetTrig to specify an internal or an external trigger 
source (specify external for an analog or digital trigger).

– If you specify an external start trigger in K_SetTrig, define the 
start trigger conditions using K_SetADTrig  (for an analog 
trigger) or K_SetDITrig  (for a digital trigger).

2. If you specified an external analog or digital start trigger, use 
K_ClrAboutTrig  to disable the about trigger.

Trigger signal

Positive-edge 
trigger event occurs

Negative-edge 
trigger event occurs



2-16 Available Operations

Pre-Trigger Acquisition

Use pre-trigger acquisition in applications where you want to collect data 
before a specific trigger event. The start trigger is always an internal 
trigger; the operation starts when your program calls the K_IntStart  
function. The operation stops when the about-trigger event occurs. The 
about trigger can be either an external analog or external digital trigger. 

To specify pre-trigger acquisition, perform the following steps:

1. Use K_SetTrig to specify an internal start-trigger source.

2. Use K_SetAboutTrig  to enable the about trigger and to set the 
number of samples to 1.

Note:  The minimum number of samples that you can specify in 
K_SetAboutTrig  is 1. 

3. Specify the trigger conditions for the about trigger. 

– If the about trigger is an external analog trigger, use 
K_SetADTrig  to specify the trigger conditions for the about 
trigger.

– If the about trigger is an external digital trigger, use K_SetDITrig  
to specify the trigger conditions for the about trigger. 

About-Trigger Acquisition

Use about-trigger acquisition in applications where you want to collect 
data both before and after a specific trigger event. The start trigger is 
always an internal trigger; the operation starts when your program calls 
the K_IntStart  function. The operation stops after a specified number of 
samples has been acquired after the about-trigger event occurs. The about 
trigger can be either an external analog or external digital trigger.

To specify about-trigger acquisition, perform the following steps:

1. Use K_SetTrig to specify an internal start-trigger source.

2. Use K_SetAboutTrig  to enable the about trigger and to specify the 
desired number of post-trigger samples.



Analog Input Operations 2-17

3. Specify the trigger conditions for the about trigger. 

– If the about trigger is an external analog trigger, use 
K_SetADTrig  to specify the trigger conditions for the about 
trigger.

– If the about trigger is an external digital trigger, use K_SetDITrig  
to specify the trigger conditions for the about trigger. 

After the about-trigger acquisition is completed, the software 
automatically ensures that the post-trigger samples are the last samples in 
the buffer.



 

3-1

 

3

 

Programming with
the Function Call Driver

 

This chapter contains a programming overview and language-specific 
information related to using the DAS-4200 Series Function Call Driver. It 
includes the following sections:

 

●

 

Programming Overview - 

 

an overview of the tasks required to write 
a program using the DAS-4200 Series Function Call Driver.

 

●

 

C/C++ Programming Information -

 

 language-specific information 
for programming in Microsoft C/C++ (including Visual C++) and 
Borland C/C++.

 

●

 

Visual Basic for Windows Programming Information -

 

 
language-specific information for programming in Microsoft Visual 
Basic for Windows.



 

3-2 Programming with the Function Call Driver

 

Programming Overview

 

To write a program using the DAS-4200 Series Function Call Driver, 
perform the following steps:

1. Define the program's requirements. Refer to Chapter 2 for a 
description of the board operations supported by the Function Call 
Driver and the functions that you can use to define each operation. 

2. Write your program. Refer to the following for additional 
information:

– Programming flow diagrams for the preliminary tasks, on page 
1-5, which illustrate the programming tasks common to all 
programs.

– Programming flow diagrams for an analog input operation, on 
page 1-6.

– Chapter 4, which contains detailed descriptions of the FCD 
functions.

– The example programs in the ASO-4200 software package. The 
FILES.TXT file in the installation directory lists and describes 
the example programs.

3. Compile and link the program. Refer to the language-specific 
programming information (page 3-2 to page 3-9 for C/C++ or page 
3-15 for Visual Basic for Windows), or to the EXAMPLES.TXT file 
in the installation directory for compile and link statements and other 
language-specific considerations for each supported language.

 

C/C++ Programming Information

 

The following sections contain information you need to allocate and 
assign a memory buffer when programming in C or C++, as well as 
language-specific information for Microsoft C/C++ (including 
Visual C++) and Borland C/C++ for DOS and Windows. 



 

C/C++ Programming Information 3-3

 

Note:  

 

When programming in C/C++, proper typecasting may be required 
to avoid C/C++ type-mismatch warnings. Make sure that linker options 

 

are set so that case-sensitivity is disabled.

 

Dynamically Allocating and Assigning a Memory Buffer

 

This section provides code fragments that describe how to allocate and 
assign a single, dynamically allocated memory buffer when programming 
in C or C++. Refer to the example programs on disk for more 
information.

 

Note:  

 

To ensure that you can allocate a large enough buffer or buffers, it 
is recommended that you install the Keithley Memory Manager before 
you begin programming. Refer to the 

 

DAS-4200 Series User’s Guide

 

 for 

 

information on the Keithley Memory Manager.

The following code fragment illustrates how to use 

 

K_IntAlloc

 

 to 
allocate a buffer of size Samples for the frame defined by hFrame and 
how to use 

 

K_SetBuf

 

 to assign the starting address of the buffer.

 

. . .
void far *AcqBuf; //Declare pointer to buffer
WORD hMem; //Declare word for memory handle
. . .
wDasErr = K_IntAlloc (hFrame, Samples, &AcqBuf, &hMem);
wDasErr = K_SetBuf (hFrame, AcqBuf, Samples);
. . .

 

The following code illustrates how to use 

 

K_IntFree

 

 to later free the 
allocated buffer, using the memory handle stored by 

 

K_IntAlloc

 

.

 

. . .
wDasErr = K_IntFree (hMem);
. . .



 

3-4 Programming with the Function Call Driver

 

Accessing Data from a Dynamically Allocated Memory Buffer

 

You access the data stored in a dynamically allocated buffer through 
C/C++ pointer indirection. For example, assume that you want to display 
the first 10 samples of the buffer described in the previous section 
(AcqBuf). The following code fragment illustrates how to access and 
display the data.

 

. . .
int huge *pData; //Declare a pointer called pData
. . .
pData = (int huge *) AcqBuf; //Assign pData to buffer
for (i = 0; i < 10; i++)

printf ("Sample #%d %X", i, *(pData+i));
. . .

 

Note:  

 

Declaring pData as a huge pointer allows the program to directly 
access all data within the computer’s memory buffer, regardless of the 

 

buffer size.

 

Dimensioning a Local Array

 

Although it is not generally recommended for this driver, you can use a 
single, local array for an interrupt-mode analog input operation. A local 
array is useful when you are acquiring small amounts of data (less than 
32,767 samples). The following code fragment illustrates how to 
dimension an array of 8,192 samples for the frame defined by hFrame and 
how to use K_SetBuf to assign the starting address of the array.

 

. . .
int Data(8192);   //Dimension array of 8,192 samples
. . .
wDasErr = K_SetBuf (hFrame, Data, 8192);
. . .

 

Refer to the example programs on disk for more information.



 

C/C++ Programming Information 3-5

 

Handling Errors

 

It is recommended that you always check the returned value (wDasErr in 
the previous examples) for possible errors. The following code fragment 
illustrates how to check the returned value of the 

 

K_GetDevHandle

 

 
function.

 

. . .
if ((wDASErr = K_GetDevHandle (hDrv, BoardNum, &hDev)) ! = 0)

{
printf ("Error %X during K_GetDevHandle", wDASErr);
exit (1);
}

. . .

 

The following code fragment illustrates how to use the 

 

K_GetErrMsg

 

 
function to access the string corresponding to an error code.

 

. . .
if ((wDasErr = K_SetChn (hAD, 0) ! = 0)

{
Error = K_GetErrMsg (hDev, wDasErr, &pMessage);
printf ("%s", pMessage);
exit (1);
}



 

3-6 Programming with the Function Call Driver

 

Programming in Microsoft C/C++ (for DOS)

 

To program in Microsoft C/C++ (for DOS), you need the following files; 
these files are provided in the ASO-4200 software package. 

To create an executable file in Microsoft C/C++ (for DOS), use the 
following compile and link statements. Note that 

 

filename

 

 indicates the 
name of your program. 

 

File Description

 

DAS4200.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C 

DASDECL.HPP Include file when compiling in C++

USE4200.OBJ Linkable object

 

Type of Compile Compile and Link Statements

 

1

Notes

 

1 

 

These statements assume a large memory model; in DOS, only the large 
memory model is acceptable.

C CL /c 

 

filename

 

.c
LINK 

 

filename

 

+use4200.obj,,,das4200+dasrface;

C++ CL /c 

 

filename

 

.cpp
LINK 

 

filename

 

+use4200.obj,,,das4200+dasrface;



 

C/C++ Programming Information 3-7

 

Programming in Microsoft C/C++ (for Windows)

 

The files you need to program in Microsoft C/C++ (for Windows), 
including Microsoft Visual C++, depend on whether you are writing 
16-bit or 32-bit programs. The following files are provided either in the 
ASO-4200 software package or on the ASO-Win95/32-Bit disk, which is 
shipped with the ASO-4200 software package: 

To create an executable file in the Microsoft C/C++ for Windows 
environment, perform the following steps. Refer to the documentation 
supplied with your compiler for information.

1. Create a project file.

2. Add all necessary files to the project make file. Make sure that you 
include 

 

filename

 

.c (or 

 

filename

 

.cpp), 

 

filename

 

.rc, 

 

filename

 

.def, 
DASIMP.LIB (or DASSHL32.LIB), and D4200IMP.LIB (16-bit 
programs only), where 

 

filename

 

 indicates the name of your program.

3. Create a stand-alone executable file (.EXE) that you can run from 
within Windows.

 

Program File Description

 

16 bits DASSHELL.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DAS4200.DLL Dynamic Link Library of board-specific functions

DASDECL.H Include file of Shell function definitions (used when 
compiling in C or C++)

DASIMP.LIB Import library of Shell functions

32-bits DASSHL32.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DASSHL16.DLL Dynamic Link Library of support functions

DAS4200.DLL Dynamic Link Library of board-specific functions

DASDECL.H Include file of Shell function definitions (used when 
compiling in C or C++)

DASSHL32.LIB Import library of Shell functions



 

3-8 Programming with the Function Call Driver

 

Programming in Borland C/C++ (for DOS)

 

To program in Borland C/C++ (for DOS), you need the following files; 
these files are provided in the ASO-4200 software package. 

To create an executable file in Borland C/C++ (for DOS), use the 
following compile and link statements. Note that 

 

filename

 

 indicates the 
name of your program. 

 

File Description

 

DAS4200.LIB Linkable driver

DASRFACE.LIB Linkable driver

DASDECL.H Include file when compiling in C

DASDECL.HPP Include file when compiling in C++

USE4200.OBJ Linkable object

 

Type of Compile Compile and Link Statements

 

1

Notes

 

1 

 

These statements assume a large memory model; in DOS, only the large memory 
model is acceptable. 

C BCC 

 

filename

 

.c use4200.obj das4200.lib dasrface.lib

C++ BCC 

 

filename

 

.cpp use4200.obj das4200.lib dasrface.lib



 

C/C++ Programming Information 3-9

 

Programming in Borland C/C++ (for Windows)

 

The files you need to program in Borland C/C++ (for Windows) depend 
on whether you are writing 16-bit or 32-bit programs. The following files 
are provided either in the ASO-4200 software package or on the 
ASO-Win95/32-Bit disk, which is shipped with the ASO-4200 software 
package:  

To create an executable file in the Borland C/C++ (for Windows) 
environment, perform the following steps:

1. Create a project file. 

2. Add all necessary files to the project make file. Make sure that you 
include 

 

filename

 

.c (or 

 

filename

 

.cpp), 

 

filename

 

.rc, 

 

filename

 

.def, 
DASIMP.LIB (or DASSHL32.LIB), and D4200IMP.LIB (16-bit 
programs only), where 

 

filename

 

 indicates the name of your program. 

 

Program File Description

 

16 bits DASSHELL.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DAS4200.DLL Dynamic Link Library of board-specific functions

DASDECL.H Include file of Shell function definitions (used when 
compiling in C or C++)

DASIMP.LIB Import library of Shell functions

32-bits DASSHL32.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DASSHL16.DLL Dynamic Link Library of support functions

DAS4200.DLL Dynamic Link Library of board-specific functions

DASDECL.H Include file of Shell function definitions (used when 
compiling in C or C++)

DASSHL32.LIB Import library of Shell functions



 

3-10 Programming with the Function Call Driver

 

3. Make sure that you turn OFF the following options for the project:

– Case sensitive link

– Case sensitive exports and imports 

– Ignore default libraries

4. Create a stand-alone executable file (.EXE) that you can run from 
within Windows. 

 

Microsoft Visual Basic for Windows

 

Programming Information

 

The following sections contain information you need to dimension an 
array or dynamically allocate a memory buffer when programming in 
Microsoft Visual Basic for Windows, as well as language-specific 
information for Microsoft Visual Basic for Windows.

 

Dynamically Allocating and Assigning a Memory Buffer

 

This section provides code fragments that describe how to allocate and 
assign a single, dynamically allocated memory buffer when programming 
in Microsoft Visual Basic for Windows. Refer to the example programs 
on disk for more information.

 

Note:  

 

To ensure that you can allocate a large enough buffer, it is 
recommended that you use the Keithley Memory Manager before you 
begin programming. Refer to your 

 

DAS-4200 Series User’s Guide

 

 for 

 

more information on the Keithley Memory Manager.



 

Microsoft Visual Basic for Windows Programming Information 3-11

 

You can use a single, dynamically allocated memory buffer for an 
interrupt-mode analog input operation. The following code fragment 
illustrates how to use 

 

K_IntAlloc

 

 to allocate a buffer of size Samples for 
the frame defined by hFrame and how to use 

 

K_SetBuf

 

 to assign the 
starting address of the buffer. 

 

. . .
Global AcqBuf As Long ’ Declare pointer to buffer
Global hMem As Integer ’ Declare integer for memory handle
. . .
wDasErr = K_IntAlloc (hFrame, Samples, AcqBuf, hMem)
wDasErr = K_SetBuf (hFrame, AcqBuf, Samples)
. . .

 

The following code illustrates how to use 

 

K_IntFree

 

 to later free the 
allocated buffer, using the memory handle stored by 

 

K_IntAlloc

 

.

 

. . .
wDasErr = K_IntFree (hMem)
. . .

 

Accessing Data from a Dynamically Allocated Memory Buffer

 

In Microsoft Visual Basic for Windows, you cannot directly access analog 
input samples stored in a dynamically allocated memory buffer. You must 
use 

 

K_MoveBufToArray

 

 to move a subset (up to 32,766 samples) of the 
data into a local array as required.

When Windows is running, the CPU operates in 16-bit protected mode. 
Memory is addressed using a 32-bit selector:offset pair. The selector is 
the CPU’s handle to a 64K byte memory page; it is a code whose value is 
significant only to the CPU. No mathematical relationship exists between 
a selector and the memory location it is associated with. In general, even 
consecutively allocated selectors have no relationship to each other. 

When a memory buffer of more than 64K bytes (32K values) is used, 
multiple selectors are required. Under Windows, 

 

K_IntAlloc

 

 uses a 
“tiled” method to allocate memory whereby a mathematical relationship 
does exist among the selectors. Specifically, when you allocate a buffer of 
more than 64K bytes, each selector that is allocated has an arithmetic 
value that is eight greater than the previous one. The format of the address 
is a 32-bit value whose high word is the 16-bit selector value and low 
word is the 16-bit offset value. When the offset reaches 64K bytes, the 



 

3-12 Programming with the Function Call Driver

 

next consecutive memory address location can be accessed by adding 
eight to the selector and resetting the offset to zero; to do this, add 
&h80000 to the buffer starting address. 

Table 3-1 illustrates the mapping of consecutive memory locations in 
protected-mode “tiled” memory, where 

 

xxxxxxxx

 

 indicates the address 
calculated by the CPU memory mapping mechanism.

The following code fragment illustrates moving 1,000 values from a 
memory buffer (AcqBuf) allocated with 50,000 values to the program’s 
local array (Array), starting at the sample at buffer index 40,000. First, 
start with the buffer address passed in 

 

K_SetBuf

 

. Then, determine how 
deep (in 64K byte pages) into the buffer the desired starting sample is 
located and add &h80000 to the buffer address for each 64K byte page. 
Finally, add any additional offset after the 64K byte pages to the buffer 
address.

 

Dim AcqBuf As Long
Dim NumSamps As Long

Dim Array(1000) As Integer

NumSamps = 50000
wDasErr = K_IntAlloc (hFrame, NumSamps, AcqBuf, hMem)
.
. ’Acquisition routine
.

 

Table 3-1.  Protected-Mode Memory Architecture

 

Selector:Offset 32-Bit Linear
Address

 

. . . . : . . . . . . . . .

32E6:FFFE

 

xxxxxxxx

 

32E6:FFFF

 

xxxxxxxx

 

 + 1

32EE:0000

 

xxxxxxxx

 

 + 2

32EE:0001

 

xxxxxxxx

 

 + 3

. . . . : . . . . . . . . .



 

Microsoft Visual Basic for Windows Programming Information 3-13

 

DesiredSamp = 40000
DesiredByte = DesiredSamp * 2 ’Number of bytes into buffer
AddSelector = DesiredByte / &h10000 ’Number of 64K pages into buffer
RemainingOffset = DesiredByte Mod &h10000 ’Additional offset

DesiredBuffLoc = AcqBuf + (AddSelector * &h80000) + RemainingOffset

wDasErr = K_MoveBufToArray (Array(0), DesiredBuffLoc, 1000)

 

To move more than 32,767 values from the memory buffer to the 
program’s local array, the program must call 

 

K_MoveBufToArray 

 

more 
than once. For example, assume that pBuf is a pointer to a dynamically 
allocated buffer that contains 65,536 values. The following code fragment 
illustrates how to move 65,536 values from the dynamically allocated 
buffer to a local array within the program:

 

...
Dim Data [3, 16384] As Integer
...
wDasErr = K_MoveBufToArray (Data(0,0), pBuf, 16384)

’Same selector, add 32,768 bytes to offset: add &h8000
wDasErr = K_MoveBufToArray (Data(1,0), pBuf + &h8000, 16384)
’Add 8 to selector, offset = 0: add &h80000
wDasErr = K_MoveBufToArray (Data(2,0), pBuf + &h80000, 16384)
’Add 8 to selector, add 32,768 bytes to offset: add &h88000
wDasErr = K_MoveBufToArray (Data(3,0), pBuf + &h88000, 16384)

Dimensioning and Assigning a Local Array

If you request fewer than 32,767 samples for an interrupt-mode analog 
input operation, you can use a single, local array. The following code 
fragment illustrates how to dimension an array of 8192 samples for the 
frame defined by hFrame and how to use K_SetBufI to assign the starting 
address of the array.

. . .
Global Data(8191) As Integer     ’Allocate array
. . .
wDasErr = K_SetBufI (hFrame, Data(0), 8192)
. . .

Refer to the example programs on disk for more information.



3-14 Programming with the Function Call Driver

Handling Errors

It is recommended that you always check the returned value (wDasErr in 
the previous examples) for possible errors. The following code fragment 
illustrates how to check the returned value of the K_GetDevHandle 
function:

. . .
wDASErr = K_GetDevHandle (hDrv, BoardNum, hDev)
If (wDASErr <> 0) Then

MsgBox "K_GetDevHandle Error: " + Hex$ (wDASErr),
MB_ICONSTOP, "DAS-4200 SERIES ERROR"

End
End If
. . .



Microsoft Visual Basic for Windows Programming Information 3-15

Programming in Microsoft Visual Basic for Windows

The files you need to program in Microsoft Visual Basic for Windows 
depend on whether you are writing a 16-bit or 32-bit program. The 
following files are provided either in the ASO-4200 software package or 
on the ASO-Win95/32-Bit disk, which is shipped with the ASO-4200 
software package. 

To create an executable file from the Microsoft Visual Basic for Windows 
environment, perform the following steps:

1. Start Visual Basic for Windows, and open your project.

2. Add the appropriate include file(s) to your project:

– 16-bit programs - DASDECL.BAS and DAS4200.BAS files

– 32-bit programs - DASDEC32.BAS file

3. Create an executable (EXE) file.

Program File Description

16 bits DASSHELL.DLL Dynamic Link Library

DASSUPRT.DLL Dynamic Link Library

DAS4200.DLL Dynamic Link Library

DASDECL.BAS Include file

DAS4200.BAS Include file of board-specific function definitions 

32 bits DASSHL32.DLL Dynamic Link Library of Shell functions

DASSUPRT.DLL Dynamic Link Library of support functions

DASSHL16.DLL Dynamic Link Library of support functions

DASDEC32.BAS Include file of Shell function definitions



 

. 4-1

 

4

 

Function Reference

 

The FCD functions are organized into the following groups:

 

●

 

Initialization functions

 

●

 

Operation functions

 

●

 

Frame management functions

 

●

 

Memory management functions

 

●

 

Buffer address functions

 

●

 

Channel and gain functions

 

●

 

Clock functions

 

●

 

Trigger functions

 

●

 

Miscellaneous functions

The particular functions associated with each function group are presented 
in Table 4-1. The remainder of the chapter presents detailed descriptions 
of all the FCD functions, arranged in alphabetical order.



 

4-2 Function Reference

 

Table 4-1.  Functions  

 

Function Type Function Name Page Number

 

Initialization K_OpenDriver page 4-31

K_CloseDriver page 4-6

K_GetDevHandle page 4-15

K_FreeDevHandle page 4-9

K_DASDevInit page 4-8

Operation K_IntStart page 4-24

K_IntStatus page 4-25

K_IntStop page 4-28

Frame Management K_GetADFrame page 4-11

K_FreeFrame page 4-10

K_ClearFrame page 4-5

Memory Management K_IntAlloc page 4-21

K_IntFree page 4-23

K_MoveBufToArray page 4-30

Buffer Address K_SetBuf page 4-37

K_SetBufI page 4-39

Channel and Gain K_SetChn page 4-41

K_SetG page 4-47

Clock K_SetClk page 4-42

K_SetClkRate page 4-43

K_GetClkRate page 4-13

Trigger K_SetTrig page 4-49

K_SetADTrig page 4-35

K_SetDITrig page 4-45

K_SetAboutTrig page 4-33

K_ClrAboutTrig page 4-7



 

. 4-3

 

Keep the following conventions in mind throughout this chapter:

 

●

 

The data types DWORD, WORD, and BYTE are defined in the 
language-specific include files. 

 

●

 

Variable names are shown in italics.

 

●

 

The return value for all DAS-4200 Series FCD functions is the 
error/status code. A value of 0 indicates that the function executed 
successfully. A non-zero value indicates that an error occurred. Refer 
to Appendix A for more information. 

 

●

 

The description shows the prototype for the function.

 

●

 

In the Usage section, the variables are not defined. It is assumed that 
the variables are defined as shown in the prototype.

 

Miscellaneous K_GetErrMsg page 4-17

K_GetVer page 4-19

K_GetShellVer page 4-18

 

Table 4-1.  Functions  (cont.)

 

Function Type Function Name Page Number



 

4-4 Function Reference

 

The name of each function argument in the Prototype and Usage sections 
includes a prefix that indicates the associated data type. These prefixes are 
described in Table 4-2.

 

Table 4-2.  Data Type Prefixes  

 

Prefix Data Type Comments

 

sz Pointer to string terminated by 
zero

This data type is typically used for variables that 
specify the driver's configuration file name. 

h Handle to device, frame, and 
memory block

This data type is used for handle-type variables. You 
declare handle-type variables in your program as long 
or DWORD, depending on the language you are using. 
The actual variable is passed to the driver by value.

ph Pointer to a handle-type variableThis data type is used when calling the FCD functions 
to get a driver handle, frame handle, device handle, or 
memory handle. The actual variable is passed to the 
driver by reference.

p Pointer to a variable This data type is used for pointers to all types of 
variables, except handles (h). It is typically used when 
passing a parameter of any type to the driver by 
reference.

n Number value This data type is used when passing a number, 
typically a byte, to the driver by value.

w 16-bit word This data type is typically used when passing an 
unsigned integer to the driver by value.

a Array This data type is typically used in conjunction with 
other prefixes listed here; for example, 

 

anVar

 

 denotes 
an array of numbers.

f Float This data type denotes a single-precision floating-point 
number.

d Double This data type denotes a double-precision 
floating-point number.

dw 32-bit double word This data type is typically used when passing an 
unsigned long to the driver by value.



 

K_ClearFrame

 

4-5

 

Purpose

 

Sets the elements of a frame to their default values.

 

Prototype C/C++

 

DASErr far pascal K_ClearFrame (DWORD 

 

hFrame

 

);

 

Visual Basic for Windows

 

Declare Function K_ClearFrame Lib "DASSHELL.DLL" 
(ByVal 

 

hFrame

 

 As Long) As Integer

 

Parameters

 

hFrame

 

Handle to the frame that defines the operation.

 

Return Value

 

Error/status code. Refer to Appendix A.

 

Remarks

 

This function sets the elements of the frame specified by 

 

hFrame

 

 to their 
default values.

Refer to Table 2-1 on page 2-6 for the default values of the elements of an 
A/D frame.

 

See Also

 

K_GetADFrame

 

Usage C/C++

 

#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_ClearFrame (hAD);

 

Visual Basic for Windows

 

(Add DASDECL.BAS or DASDEC32.BAS to your project)

 

...
wDasErr = K_ClearFrame (hAD)



 

K_CloseDriver 

 

4-6 Function Reference

 

Purpose

 

Closes a previously initialized Keithley DAS Function Call Driver.

 

Prototype C/C++

 

DASErr far pascal K_CloseDriver (DWORD 

 

hDrv

 

);

 

Visual Basic for Windows

 

Declare Function K_CloseDriver Lib "DASSHELL.DLL" 
(ByVal 

 

hDrv

 

 As Long) As Integer

 

Parameters

 

hDrv

 

Driver handle you want to free.

 

Return Value

 

Error/status code. Refer to Appendix A.

 

Remarks

 

This function frees the driver handle specified by 

 

hDrv

 

 and closes the 
associated use of the Function Call Driver. This function also frees all 
device handles and frame handles associated with 

 

hDrv

 

. 

If 

 

hDrv

 

 is the last driver handle specified for the Function Call Driver, the 
driver is shut down (for all languages) and unloaded (for Windows-based 
languages only).

 

See Also

 

K_FreeDevHandle

 

Usage C/C++

 

#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_CloseDriver (hDrv);

 

Visual Basic for Windows

 

(Add DASDECL.BAS or DASDEC32.BAS to your project)

 

...
wDasErr = K_CloseDriver (hDrv)



 

K_ClrAboutTrig

 

4-7

 

Purpose

 

Disables the about trigger for an analog input operation.

 

Prototype C/C++

 

DASErr far pascal K_ClrAboutTrig (DWORD 

 

hFrame

 

);

 

Visual Basic for Windows

 

Declare Function K_ClrAboutTrig Lib "DASSHELL.DLL" 
(ByVal 

 

hFrame

 

 As Long) As Integer

 

Parameters

 

hFrame

 

Handle to the frame that defines the operation.

 

Return Value

 

Error/status code. Refer to Appendix A.

 

Remarks

 

This function disables the about trigger for the operation defined by 

 

hFrame

 

.

If you disable the about trigger, the trigger source specified in 

 

K_SetTrig

 

 
is always the start trigger.

 

K_GetADFrame

 

 and 

 

K_ClearFrame

 

 also disable the about trigger.

 

See Also

 

K_ClearFrame, K_GetADFrame, K_SetAboutTrig

 

Usage C/C++

 

#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_ClrAboutTrig (hAD);

 

Visual Basic for Windows

 

(Add DASDECL.BAS or DASDEC32.BAS to your project)

 

...
wDasErr = K_ClrAboutTrig (hAD)



 

K_DASDevInit 

 

4-8 Function Reference

 

Purpose

 

Reinitializes a board.

 

Prototype C/C++

 

DASErr far pascal K_DASDevInit (DWORD 

 

hDev

 

);

 

Visual Basic for Windows

 

Declare Function K_DASDevInit Lib "DASSHELL.DLL" 
(ByVal 

 

hDev

 

 As Long) As Integer

 

Parameters

 

hDev

 

Handle associated with the board.

 

Return Value

 

Error/status code. Refer to Appendix A.

 

Remarks

 

Use 

 

K_GetDevHandle

 

 the first time you initialize a board only. Once you 
have a device handle, use this function to reinitialize the board.

 

See Also

 

K_GetDevHandle

 

Usage C/C++

 

#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_DASDevInit (hDev);

 

Visual Basic for Windows

 

(Add DASDECL.BAS or DASDEC32.BAS to your project)

 

...
wDasErr = K_DASDevInit (hDev)



 

K_FreeDevHandle

 

4-9

 

Purpose

 

Frees a previously specified device handle.

 

Prototype C/C++

 

DASErr far pascal K_FreeDevHandle (DWORD 

 

hDev

 

);

 

Visual Basic for Windows

 

Declare Function K_FreeDevHandle Lib "DASSHELL.DLL" 
(ByVal 

 

hDev

 

 As Long) As Integer

 

Parameters

 

hDev

 

Device handle you want to free.

 

Return Value

 

Error/status code. Refer to Appendix A.

 

Remarks

 

This function frees the device handle specified by hDev as well as all 
frame handles associated with hDev.

See Also K_GetDevHandle

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_FreeDevHandle (hDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_FreeDevHandle (hDev)



K_FreeFrame 

4-10 Function Reference

Purpose Frees a frame.

Prototype C/C++
DASErr far pascal K_FreeFrame (DWORD hFrame);

Visual Basic for Windows
Declare Function K_FreeFrame Lib "DASSHELL.DLL" 
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to frame you want to free.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the frame specified by hFrame, making the frame 
available for another operation.

See Also K_GetADFrame

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_FreeFrame (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_FreeFrame (hAD)



K_GetADFrame

4-11

Purpose Accesses an A/D frame for an analog input operation.

Prototype C/C++
DASErr far pascal K_GetADFrame (DWORD hDev, 
DWORD far * phFrame);

Visual Basic for Windows
Declare Function K_GetADFrame Lib "DASSHELL.DLL" 
(ByVal hDev As Long, phFrame As Long) As Integer

Parameters hDev Handle associated with the board.

phFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function specifies that you want to perform an analog input operation 
on the board specified by hDev, and accesses an available A/D frame with 
the handle phFrame. The frame is initialized to its default settings; the 
default settings are given in Table 2-1 on page 2-6.

The value stored in phFrame is intended to be used exclusively as an 
argument to functions that require a frame handle. Your program should 
not modify the value stored in phFrame.

See Also K_ClearFrame, K_FreeFrame

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
DWORD hAD;
...
wDasErr = K_GetADFrame (hDev, &hAD);



K_GetADFrame (cont.) 

4-12 Function Reference

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global hAD As Long
...
wDasErr = K_GetADFrame (hDev, hAD)



K_GetClkRate

4-13

Purpose Gets the clock divider for the internal pacer clock.

Prototype C/C++
DASErr far pascal K_GetClkRate (DWORD hFrame, 
DWORD far *pRate);

Visual Basic for Windows
Declare Function K_GetClkRate Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, pRate As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pRate Clock divider.
Value stored: See the table below.

The following table shows the clock divider values stored and the 
corresponding conversion rates and sample periods for the internal pacer 
clock

Return Value Error/status code. Refer to Appendix A.

Clock 
Divider

Conversion 
Rate

Sample 
Period

32 100 Msamples/s 10 ns

64 50 Msamples/s 20 ns

128 25 Msamples/s 40 ns

256 12.5 Msamples/s 80 ns

512 6.25 Msamples/s160 ns

1024 3.13 Msamples/s 320 ns

2048 1.56 Msamples/s640 ns

4096 0.78 Msamples/s 1280 ns



K_GetClkRate (cont.) 

4-14 Function Reference

Remarks For the operation defined by hFrame, this function stores the clock divider 
for the internal pacer clock in pRate.

The pRate variable contains the value of the Pacer Clock Rate element. 

See Also K_SetClkRate

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
DWORD dwRate;
...
wDasErr = K_GetClkRate (hAD, &dwRate);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global dwRate As Long
...
wDasErr = K_GetClkRate (hAD, dwRate)



K_GetDevHandle

4-15

Purpose Initializes any Keithley DAS board.

Prototype C/C++
DASErr far pascal K_GetDevHandle (DWORD hDrv, 
WORD nBoardNum, DWORD far * phDev);

Visual Basic for Windows
Declare Function K_GetDevHandle Lib "DASSHELL.DLL" 
(ByVal hDrv As Long, ByVal nBoardNum As Integer, phDev As Long) 
As Integer

Parameters hDrv Driver handle of the associated Function Call 
Driver.

nBoardNum Board number. 
Valid values: 0 to 1

phDev Handle associated with the board.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the board associated with hDrv and specified by 
nBoardNum, and stores the device handle of the specified board in phDev.

The value stored in phDev is intended to be used exclusively as an 
argument to functions that require a device handle. Your program should 
not modify the value stored in phDev.

Use this function the first time you initialize a board only. Once you have 
a device handle (phDev), use the K_DASDevInit  function to reinitialize 
the board.

See Also K_DASDevInit, K_FreeDevHandle



K_GetDevHandle (cont.) 

4-16 Function Reference

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
DWORD phDev;
...
wDasErr = K_GetDevHandle (hDrv, 0, &phDev);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global phDev As Long
...
wDasErr = K_GetDevHandle (hDrv, 0, phDev)



K_GetErrMsg

4-17

Purpose Gets the address of an error message string.

Prototype C/C++
DASErr far pascal K_GetErrMsg (DWORD hDev, short nDASErr, 
char far * far * pErrMsg);

Visual Basic for Windows
Not supported

Parameters hDev Handle associated with the board.

nDASErr Error message number.

pErrMsg Address of error message string.

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the address of the 
string corresponding to error message number nDASErr in pErrMsg.

Refer to page 2-3 for more information about error handling. Refer to 
Appendix A for a list of error codes and their meanings.

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
char far *pErrMsg;
...
wDasErr = K_GetErrMsg (hDev, wDASErr, &pErrMsg);



K_GetShellVer 

4-18 Function Reference

Purpose Gets the current DAS shell version.

Prototype C/C++
DASErr far pascal K_GetShellVer (WORD far *pVersion);

Visual Basic for Windows
Declare Function K_GetShellVer Lib "DASSHELL.DLL" 
(pVersion As Integer) As Integer

Parameters pVersion A word value containing the major and minor 
version numbers of the DAS shell.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stores the current DAS Shell version in pVersion. 

To obtain the major version number of the DAS shell, divide pVersion by 
256. To obtain the minor version number of the DAS shell, perform a 
Boolean AND operation with pVersion and 255 (0FFh).

Usage

C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
WORD wShellVer;
wDasErr = K_GetShellVer (&wShellVer);
printf ("Shell Ver %d.%d", wShellVer >> 8, wShellVer & 0xff);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)
...
Global wShellVer As Integer
...
wDasErr = K_GetShellVer (wShellVer)
ShellVer$ = LTRIM$(STR$(INT(wShellVer / 256))) + "." +
   LTRIM$(STR$(wShellVer AND &HFF))
Msgbox "Shell Version: " + ShellVer$



K_GetVer

4-19

Purpose Gets revision numbers.

Prototype C/C++
DASErr far pascal K_GetVer (DWORD hDev, short far * pSpecVer, 
short far * pDrvVer);

Visual Basic for Windows
Declare Function K_GetVer Lib "DASSHELL.DLL" 
(ByVal hDev As Long, pSpecVer As Integer, pDrvVer As Integer) 
As Integer

Parameters hDev Handle associated with the board.

pSpecVer Revision number of the Keithley DAS Driver 
Specification to which the driver conforms.

pDrvVer Driver version number.

Return Value Error/status code. Refer to Appendix A.

Remarks For the board specified by hDev, this function stores the revision number 
of the DAS-4200 Series Function Call Driver in pDrvVer and the revision 
number of the driver specification in pSpecVer.

The values stored in pSpecVer and pDrvVer are two-byte (16-bit) integers; 
the high byte of each contains the major revision level and the low byte of 
each contains the minor revision level. For example, if the driver version 
number is 2.10, the major revision level is 2 and the minor revision level 
is 10; therefore, the high byte of pDrvVer contains the value of 2 (512) 
and the low byte of pDrvVer contains the value of 10; the value of both 
bytes is 522.

To obtain the major version number of the Function Call Driver, divide 
pDrvVer by 256; to obtain the minor version number of the Function Call 
Driver, perform a Boolean AND operation with pDrvVer and 255 (0FFh). 

To obtain the major version number of the driver specification, divide 
pSpecVer by 256; to obtain the minor version number of the driver 
specification, perform a Boolean AND operation with pSpecVer and 255 
(0FFh). 



K_GetVer (cont.) 

4-20 Function Reference

Usage

C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
short nSpecVer, nDrvVer;
...
wDasErr = K_GetVer (hDev, &nSpecVer, &nDrvVer);
printf ("Driver Ver %d.%d", nDrvVer >> 8, nDrvVer & 0xff);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)
...
Global nSpecVer As Integer
Global nDrvVer As Integer
...
wDasErr = K_GetVer (hDev, nSpecVer, nDrvVer)
DrvVer$ = LTRIM$(STR$(INT(nDrvVer / 256))) + "." + 
   LTRIM$(STR$(nDrvVer AND &HFF))
Msgbox "Driver Version: " + DrvVer$



K_IntAlloc

4-21

Purpose Allocates a buffer for an analog input operation.

Prototype C/C++
DASErr far pascal K_IntAlloc (DWORD hFrame, DWORD dwSamples, 
void far * far *pBuf, WORD far *phMem);

Visual Basic for Windows
Declare Function K_IntAlloc Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal dwSamples As Long, pBuf As Long, 
phMem As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of samples. 
Valid values:

1 to 131072 for the DAS-4201/128K board
1 to 524288 for the DAS-4201/512K board

pBuf Starting address of the allocated buffer.

phMem Handle associated with the allocated buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function allocates a buffer of 
the size specified by dwSamples, and stores the starting address of the 
buffer in pBuf and the handle of the buffer in phMem.

The data in the allocated buffer is stored as counts. Refer to Appendix B 
for information on converting a count value to voltage. 

The value stored in phMem is intended to be used exclusively as an 
argument to functions that require a memory handle. Your program 
should not modify the value stored in phMem.

See Also K_IntFree, K_SetBuf



K_IntAlloc (cont.) 

4-22 Function Reference

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
void far *pBuf;   // Pointer to allocated buffer
WORD phMem;   // Memory Handle to buffer
...
wDasErr = K_IntAlloc (hAD, 131072, &pBuf, &phMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global pBuf As Long
Global phMem As Integer
...
wDasErr = K_IntAlloc (hAD, 131072, pBuf, phMem)



K_IntFree

4-23

Purpose Frees a buffer allocated for an analog input operation.

Prototype C/C++
DASErr far pascal K_IntFree (WORD phMem);

Visual Basic for Windows
Declare Function K_IntFree Lib "DASSHELL.DLL" 
(ByVal phMem As Integer) As Integer

Parameters phMem Handle to buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function frees the buffer specified by phMem; the buffer was 
previously allocated dynamically using K_IntAlloc .

See Also K_IntAlloc

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_IntFree (phMem);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_IntFree (phMem)



K_IntStart 

4-24 Function Reference

Purpose Starts an analog input operation.

Prototype C/C++
DASErr far pascal K_IntStart (DWORD hFrame);

Visual Basic for Windows
Declare Function K_IntStart Lib "DASSHELL.DLL" 
(ByVal hFrame As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

Return Value Error/status code. Refer to Appendix A.

Remarks This function starts the operation defined by hFrame. Refer to page 1-4 
for a summary of the programming tasks associated with analog input 
operations. 

See Also K_IntStatus, K_IntStop

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_IntStart (hAD);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_IntStart (hAD)



K_IntStatus

4-25

Purpose Gets the status of an analog input operation.

Prototype C/C++
DASErr far pascal K_IntStatus (DWORD hFrame, short far *pStatus, 
DWORD far *pCount);

Visual Basic for Windows
Declare Function K_IntStatus Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, pStatus As Integer, pCount As Long) 
As Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of operation; see Remarks below for 
value stored.

pCount Current number of samples transferred into the 
buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function stores the status in 
pStatus and the current number of samples transferred into the buffer in 
pCount.

The value stored in pStatus depends on the settings in the Status word, as 
shown below:

Bit 0123456789101112131415

0 = Interrupt operation inactive
1 = Interrupt operation active

0 = Buffer not filled
1 = Buffer filled

About-trigger
00 = Disabled
01 = Armed
11 = Done



K_IntStatus (cont.) 

4-26 Function Reference

Figure 4-1.  Status Word Settings

The bits are described as follows:

● Bit 0: This bit indicates whether an analog input operation is in 
progress.

● Bits 1 to 3: Not used.

● Bit 4: This bit is set when the buffer that is assigned to the active 
operation has been filled with data.

● Bits 6 and 7: These bits indicate the state of the about trigger.

● Bits 8 to 15: Not used.

See Also K_IntStart, K_IntStop



K_IntStatus (cont.)

4-27

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStatus (hAD, &wStatus, &dwCount);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStatus (hAD, wStatus, dwCount)



K_IntStop 

4-28 Function Reference

Purpose Stops an analog input operation.

Prototype C/C++
DASErr far pascal K_IntStop (DWORD hFrame, short far *pStatus, 
DWORD far *pCount);

Visual Basic for Windows
Declare Function K_IntStop Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, pStatus As Integer, pCount As Long) As 
Integer

Parameters hFrame Handle to the frame that defines the operation.

pStatus Status of operation. 

pCount Current number of samples transferred into the 
buffer.

Return Value Error/status code. Refer to Appendix A.

Remarks This function stops the board from acquiring data, disables the operation, 
and returns the status of the operation at the point when your program 
called this function. No data is transferred into the buffer in computer 
memory.

Refer to page 4-25 for more information on the status word returned.

If you are using an external start or about trigger, call this function if the 
trigger event does not occur.

See Also K_IntStart, K_IntStatus

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
WORD wStatus;
DWORD dwCount;
...
wDasErr = K_IntStop (hAD, &wStatus, &dwCount);



K_IntStop (cont.)

4-29

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global wStatus As Integer
Global dwCount As Long
...
wDasErr = K_IntStop (hAD, wStatus, dwCount)



K_MoveBufToArray 

4-30 Function Reference

Purpose Transfers data from a buffer allocated through K_IntAlloc  to a locally 
dimensioned array.

Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_MoveBufToArray Lib "DASSHELL.DLL" Alias 
"K_MoveDataBuf" (pDest As Integer, ByVal pSource As Long, 
ByVal nCount As Integer) As Integer

Parameters pDest Address of destination array.

pSource Address of source buffer.

nCount Number of samples to transfer.
Value values:1 to 32767

Return Value Error/status code. Refer to Appendix A.

Remarks This function transfers the number of samples specified by nCount from 
the buffer at address pSource to the array at address pDest.

In Visual Basic for Windows, the buffer allocated through K_IntAlloc  is 
not accessible to your program; you must use K_MoveBufToArray to 
move the data from the allocated buffer to the program’s local array. 

See Also K_IntAlloc

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)
...
Dim ADArray(2000) As Integer
...
wDasErr = K_IntAlloc (hAD, 131072, pBuf, hMem)
...
wDasErr = K_MoveBufToArray (ADArray(0), pBuf, 1000)



K_OpenDriver

4-31

Purpose Initializes any Keithley DAS Function Call Driver.

Prototype C/C++
DASErr far pascal K_OpenDriver (char far * szDrvName, 
char far * szCfgName, DWORD far * phDrv);

Visual Basic for Windows
Declare Function K_OpenDriver Lib "DASSHELL.DLL" 
(ByVal szDrvName As String, ByVal szCfgName As String, 
phDrv As Long) As Integer

Parameters szDrvName Board name.
Valid value: "DAS4200"  (for DAS-4200

Series boards)

szCfgName Driver configuration file.
Valid values: The name of a configuration file;

0 if driver has already been
opened

phDrv Handle associated with the driver.

Return Value Error/status code. Refer to Appendix A.

Remarks This function initializes the DAS-4200 Series Function Call Driver 
according to the information in the configuration file specified by 
szCfgName, and stores the driver handle in phDrv.

You can use this function to initialize the Function Call Driver associated 
with any Keithley MetraByte DAS board. For DAS-4200 Series boards, 
the string stored in szDrvName must be DAS4200. Refer to other 
Function Call Driver user’s guides for the appropriate string to store in 
szDrvName for other Keithley MetraByte DAS boards. 

The value stored in phDrv is intended to be used exclusively as an 
argument to functions that require a driver handle. Your program should 
not modify the value stored in phDrv.

You create a configuration file using the CFG4200.EXE utility. Refer to 
your DAS-4200 Series User’s Guide for more information.



K_OpenDriver (cont.) 

4-32 Function Reference

If szCfgName = 0, K_OpenDriver checks whether the driver has already 
been opened and linked to a configuration file and if it has, uses the 
current configuration; this is useful in the Windows environment.

Usage

C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
DWORD phDrv;
...
wDasErr = K_OpenDriver ("DAS4200", "DAS4200.CFG", &phDrv);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)
...
DIM phDrv As Long
...
wDasErr = K_OpenDriver("DAS4200", "DAS4200.CFG", phDrv)



K_SetAboutTrig

4-33

Purpose Enables the about trigger and specifies the number of post-trigger 
samples.

Prototype C/C++
DASErr far pascal K_SetAboutTrig (DWORD hFrame, 
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetAboutTrig Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwSamples Number of post-trigger samples.
Valid values:

1 to 131072 for the DAS-4201/128K board
1 to 524288 for the DAS-4201/512K board

Return Value Error/status code. Refer to Appendix A.

Remarks This function enables the about trigger and specifies the number of 
post-trigger samples in dwSamples. 

Note that you cannot use an about trigger with an external start trigger. If 
you enable the about trigger and specify an external trigger source in 
K_SetTrig, the software assumes that the external trigger is the about 
trigger. For pre-trigger and about-trigger acquisition, the start trigger is 
always an internal trigger.

See Also K_ClrAboutTrig

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetAboutTrig (hAD, 100);



K_SetAboutTrig (cont.) 

4-34 Function Reference

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

wDasErr = K_SetAboutTrig (hAD, 100)



K_SetADTrig

4-35

Purpose Sets up an external analog start or about trigger.

Prototype C/C++
DASErr far pascal K_SetADTrig (DWORD hFrame, short nOpt, 
short nChan, DWORD dwLevel);

Visual Basic for Windows
Declare Function K_SetADTrig Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal nOpt As Integer, 
ByVal nChan As Integer, ByVal dwLevel As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nOpt Analog trigger polarity and sensitivity. 
Valid values: 0 for Positive edge

1 for Positive level
2 for Negative edge
3 for Negative level

nChan Analog input channel.
Valid values: 0, 1

dwLevel Level at which the trigger event occurs, specified 
in counts.
Valid values:  −128 to 127

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the channel 
used for an analog trigger in nChan, the level used for the analog trigger 
in dwLevel, and the trigger polarity and trigger sensitivity in nOpt.

The analog input channel you specify in nChan must be the same as the 
analog input channel that is sampled; otherwise, the driver returns an 
error.

You specify the value for dwLevel in counts. Refer to Appendix B for 
information on converting the actual voltage to a count value.



K_SetADTrig (cont.) 

4-36 Function Reference

The values you specify set the following elements in the frame identified 
by hFrame:

● nOpt sets the value of the Trigger Polarity and Trigger Sensitivity 
elements.

● nChan sets the value of the Trigger Channel element.

● dwLevel sets the value of the Trigger Level element.

K_SetADTrig  does not affect the operation defined by hFrame unless the 
Trigger Source element is set to External (by a call to K_SetTrig) before 
hFrame is used as a calling argument to K_IntStart .

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetADTrig (hAD, 0, 1, 127);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetADTrig (hAD, 0, 1, 127)



K_SetBuf

4-37

Purpose Specifies the starting address of a previously allocated buffer and the 
number of samples in the buffer.

Prototype C/C++
DASErr far pascal K_SetBuf (DWORD hFrame, void far *pBuf, 
DWORD dwSamples);

Visual Basic for Windows
Declare Function K_SetBuf Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal pBuf As Long, 
ByVal dwSamples As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of buffer.

dwSamples Number of samples.
Valid values:

1 to 131072 for the DAS-4201/128K board
1 to 524288 for the DAS-4201/512K board

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting 
address of a previously allocated buffer in pBuf and the number of 
samples (the size of the buffer) in dwSamples.

For C/C++ programs, make sure that you use proper typecasting to 
prevent C/C++ type-mismatch warnings. 

For Visual Basic for Windows, use this function only for dynamically 
allocated buffers. For locally dimensioned arrays, use K_SetBufI.

The values you specify set the following elements in the frame identified 
by hFrame:

● pBuf sets the value of the Buffer element.

● dwSamples sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBufI



K_SetBuf (cont.) 

4-38 Function Reference

Usage C/C++

#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
void far *pBuf;   // Pointer to allocated buffer
...
wDasErr = K_IntAlloc (hAD, 131072, &pBuf, &hMem);
wDasErr = K_SetBuf (hAD, pBuf, 131072);

Visual Basic for Windows

(Add DASDECL.BAS or DASDEC32.BAS to your project)
...
Global pBuf As Long
...
wDasErr = K_IntAlloc (hAD, 131072, pBuf, hMem)
wDasErr = K_SetBuf (hAD, pBuf, 131072)



K_SetBufI

4-39

Purpose Specifies the starting address of a locally dimensioned integer array and 
the number of samples in the array. 

Prototype C/C++
Not supported

Visual Basic for Windows
Declare Function K_SetBufI Lib "DASSHELL.DLL" Alias "K_SetBuf" 
(ByVal hFrame As Long, pBuf As Integer, ByVal dwSize As Long) As 
Integer

Parameters hFrame Handle to the frame that defines the operation.

pBuf Starting address of the locally dimensioned 
integer array.

dwSize Number of samples.
Valid values: 1 to 32768 

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the starting 
address of a locally dimensioned integer array in pBuf and the number of 
samples stored in the array in dwSize. 

Do not use this function for C; instead, use K_SetBuf.

For Visual Basic for Windows, use this function only for locally 
dimensioned arrays. For buffers allocated dynamically using K_IntAlloc , 
use K_SetBuf.

The pBuf variable sets the value of the Buffer element; the dwSize 
variable sets the value of the Number of Samples element.

See Also K_IntAlloc, K_SetBuf



K_SetBufI (cont.) 

4-40 Function Reference

Usage Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
Global ADData(8191) As Integer
...
wDasErr = K_SetBufI (hAD, ADData(0), 8192)



K_SetChn

4-41

Purpose Specifies a single channel.

Prototype C/C++
DASErr far pascal K_SetChn (DWORD hFrame, short nChan);

Visual Basic for Windows
Declare Function K_SetChn Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal nChan As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nChan Channel on which to perform an analog input 
operation.
Valid values: 0, 1 

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the single 
channel used in nChan.

Software channel 0 corresponds to Channel A on the board; software 
channel 1 corresponds to Channel B on the board.

The value you specify in nChan sets the Channel element in the frame 
identified by hFrame.

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetChn (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetChn (hAD, 1)



K_SetClk 

4-42 Function Reference

Purpose Specifies the pacer clock source.

Prototype C/C++
DASErr far pascal K_SetClk (DWORD hFrame, short nMode);

Visual Basic for Windows
Declare Function K_SetClk Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Pacer clock source. 
Valid values: 0 for Internal

1 for External

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the pacer 
clock source in nMode. The value you specify in nMode sets the Clock 
Source element in the frame identified by hFrame.

K_GetADFrame and K_ClearFrame specify internal as the default 
clock source.

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetClk (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetClk (hAD, 1)



K_SetClkRate

4-43

Purpose Specifies the clock divider for the internal pacer clock.

Prototype C/C++
DASErr far pascal K_SetClkRate (DWORD hFrame, 
DWORD dwDivisor);

Visual Basic for Windows
Declare Function K_SetClkRate Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal dwDivisor As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

dwDivisor Clock divider.
Valid values: See the table below.

The following table shows the valid clock divider values and the 
corresponding conversion rates and sample periods for the internal pacer 
clock:

Return Value Error/status code. Refer to Appendix A.

Clock 
Divider

Conversion 
Rate

Sample 
Period

32 100 Msamples/s 10 ns

64 50 Msamples/s 20 ns

128 25 Msamples/s 40 ns

256 12.5 Msamples/s 80 ns

512 6.25 Msamples/s160 ns

1024 3.13 Msamples/s 320 ns

2048 1.56 Msamples/s640 ns

4096 0.78 Msamples/s 1280 ns



K_SetClkRate (cont.) 

4-44 Function Reference

Remarks For the operation defined by hFrame, this function specifies the clock 
divider for the internal pacer clock in dwDivisor.

The value you specify in dwDivisor sets the Pacer Clock Rate element in 
the frame identified by hFrame.

If you enter a clock divider value that is not one of those specified as a 
valid value above, the driver uses the next fastest rate. For example, if you 
enter a clock divider value of 63, the driver uses a clock divider value of 
32 to perform the faster conversion rate. To determine the actual clock 
divider used, use K_GetClkRate.

Refer to page 2-11 for more information on the internal pacer clock.

See Also K_GetClkRate

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetClkRate (hAD, 64);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetClkRate (hAD, 64)



K_SetDITrig

4-45

Purpose Sets up an external digital start or about trigger.

Prototype C/C++
DASErr far pascal K_SetDITrig (DWORD hFrame, short nOpt, 
short nChan, DWORD nPattern);

Visual Basic for Windows
Declare Function K_SetDITrig Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal nOpt As Integer, 
ByVal nChan As Integer, ByVal nPattern As Long) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nOpt Trigger polarity and sensitivity. 
Valid values: 0 for Positive edge

2 for Negative edge

nChan Digital input channel.
Valid value: 0

nPattern Trigger pattern.
Valid value: 0

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the trigger 
polarity and sensitivity in nOpt.

Since an external digital trigger is always connected to the Trigger I/O 
connector on the board, the value of nChan is meaningless. In addition, 
the DAS-4200 Series Function Call Driver does not support digital 
pattern triggering; therefore, the value of nPattern is meaningless. The 
nChan and nPattern parameters are provided for future compatibility.

The values you specify set the following elements in the frame identified 
by hFrame:

● nOpt sets the value of the Trigger Polarity element.

● nChan sets the value of the Trigger Channel element.

● nPattern sets the value of the Trigger Pattern element.



K_SetDITrig (cont.) 

4-46 Function Reference

K_SetDITrig  does not affect the operation defined by hFrame unless the 
Trigger Source element is set to External (by a call to K_SetTrig) before 
hFrame is used as a calling argument to K_IntStart .

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetDITrig (hAD, 0, 0, 0);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetDITrig (hAD, 0, 0, 0)



K_SetG

4-47

Purpose Sets the gain.

Prototype C/C++
DASErr far pascal K_SetG (DWORD hFrame, short nGain);

Visual Basic for Windows
Declare Function K_SetG Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal nGain As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nGain Gain code.
Valid values: 0 to 7, described as follows:

Return Value Error/status code. Refer to Appendix A.

Analog Input 
Range

Gain
Gain
Code

±2 V 1 0

±1 V 2 1

±500 mV 4 2

±250 mV 8 3

±125 mV 16 4

±62.5 mV 32 5

±31.25 mV 64 6

±15.625 mV 128 7



K_SetG (cont.) 

4-48 Function Reference

Remarks For the operation defined by hFrame, this function specifies the gain code 
for a single channel in nGain.

The value you specify in nGain sets the Gain element in the frame 
identified by hFrame.

K_GetADFrame and K_ClearFrame specify 0 as the default gain code.

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetG (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetG (hAD, 1)



K_SetTrig

4-49

Purpose Specifies the start trigger source.

Prototype C/C++
DASErr far pascal K_SetTrig (DWORD hFrame, short nMode);

Visual Basic for Windows
Declare Function K_SetTrig Lib "DASSHELL.DLL" 
(ByVal hFrame As Long, ByVal nMode As Integer) As Integer

Parameters hFrame Handle to the frame that defines the operation.

nMode Trigger source.
Valid values: 0 for Internal start trigger

1 for External start trigger

Return Value Error/status code. Refer to Appendix A.

Remarks For the operation defined by hFrame, this function specifies the trigger 
source in nMode.

An internal trigger is a software trigger; conversions begin when your 
program calls K_IntStart . An external trigger is either an analog trigger 
or a digital trigger.

You cannot use an external start trigger when the about trigger is enabled. 
If you specify an external trigger and the about trigger is enabled (using 
K_SetAboutTrig ), the software returns an error.

If nMode = 1, an external digital trigger is assumed. Use K_SetDITrig  to 
change the conditions of the digital trigger. Use K_SetADTrig  to specify 
the conditions for an external analog trigger.

K_GetADFrame and K_ClearFrame set the trigger source to internal.



K_SetTrig (cont.) 

4-50 Function Reference

Usage C/C++
#include "DASDECL.H"   // Use "DASDECL.HPP for C++
...
wDasErr = K_SetTrig (hAD, 1);

Visual Basic for Windows
(Add DASDECL.BAS or DASDEC32.BAS to your project)

...
wDasErr = K_SetTrig (hAD, 1)



 

A-1

 

A

 

Error/Status Codes

 

Table A-1 lists the error/status codes that are returned by the DAS-4200 
Series Function Call Driver, possible causes for error conditions, and 
possible solutions for resolving error conditions.

If you cannot resolve an error condition, contact the Keithley MetraByte 
Applications Engineering Department.

 

Table A-1.  Error/Status Codes  

 

Error Code
Cause Solution

Hex Decimal

 

0 0 No error has been detected. Status only; no action is necessary. 

6000 24576

 

Error in configuration file:

 

 The 
configuration file you specified in 
the driver initialization function is 
corrupt, does not exist, or contains 
one or more undefined keywords.

Check that the file exists at the 
specified path. Check for illegal 
keywords in file; you can avoid 
illegal keywords by using the 
configuration utility to create and 
modify configuration files.

6001 24577

 

Illegal base address in 
configuration file: 

 

The board's 
base I/O address in the 
configuration file is illegal and/or 
does not match the base address 
switches on the board.

Use the configuration utility to 
change the base I/O address to one 
that matches the base address 
switches on the board. 

6002 24578

 

Illegal IRQ level in configuration 
file:

 

 The interrupt level in the 
configuration file is illegal.

Use the configuration utility to 
change the interrupt level to a legal 
one for your board. Refer to the 
user’s guide for legal interrupt 
levels.



 

A-2 Error/Status Codes

 

6003 24579

 

Illegal DMA channel in 
configuration file:

 

 The DMA 
channel in the configuration file is 
illegal.

Use the configuration utility to 
change the DMA channel to a legal 
one for your board. Refer to the 
user’s guide for legal DMA 
channels.

6005 24581

 

Illegal channel number:

 

 The 
specified channel number is illegal 
for the board and/or for the range 
type (unipolar or bipolar). 

Specify a legal channel number. 
Refer to the user’s guide or to the 
description of 

 

K_SetChn

 

 in 
Chapter 4 for legal channel 
numbers. 

6006 24582

 

Illegal gain code: 

 

The specified 
channel gain code is illegal for this 
board.

Specify a legal gain code. Refer to 
the user’s guide or to the 
description of 

 

K_SetG

 

 in 
Chapter 4 for a list of legal gain 
codes. 

6007 24583

 

Illegal DMA address: 

 

An FCD 
function specified a buffer address 
that is not suitable for a DMA 
operation for the number of 
samples required.

Use the 

 

K_DMAAlloc

 

 function to 
allocate dynamic buffers for DMA 
operations. In Windows, make sure 
that the Keithley Memory Manager 
is installed; refer to the user’s guide 
for information. 

6008 24584

 

Illegal number in configuration 
file:

 

 The configuration file contains 
one or more numeric values that 
are illegal.

Use the configuration utility to 
check and then change the 
configuration file. 

600A 24586

 

Configuration file not found:

 

 The 
driver cannot find the 
configuration file specified as an 
argument to the driver initialization 
function.

Check that the file exists at the 
specified path. Check that the file 
name is spelled correctly in the 
driver initialization function 
parameter list.

600B 24587

 

Error returning DMA buffer: 

 

DOS returned an error in INT 21H 
function 49H during the execution 
of 

 

K_DMAFree

 

.

Check that the memory handle 
passed as an argument to 

 

K_DMAFree

 

 was previously 
obtained using 

 

K_DMAAlloc

 

.

 

Table A-1.  Error/Status Codes  (cont.)

 

Error Code
Cause Solution

Hex Decimal



 

A-3

 

600C 24588

 

Error returning interrupt 
buffer:

 

 The memory handle 
specified in 

 

K_IntFree

 

 is invalid.

Check the memory handle stored 
by 

 

K_IntAlloc

 

 and make sure that 
it was not modified. 

600D 24589

 

Illegal frame handle:

 

 The 
specified frame handle is not valid 
for this operation.

Check that the frame handle exists. 
Check that you are using the 
appropriate frame handle. 

600E 24590

 

No more frame handles:

 

 No 
frames are left in the pool of 
available frames. 

Use 

 

K_FreeFrame

 

 to free a frame 
that the application is no longer 
using.

600F 24591

 

Requested buffer size too large:

 

 
The requested buffer cannot be 
dynamically allocated because of 
its size.

Specify a smaller buffer size; refer 
to the description of 

 

K_IntAlloc

 

 in 
Chapter 4 for the legal range. If in 
Windows Enhanced mode with the 
Keithley Memory Manager 
installed, use KMMSETUP.EXE to 
increase the reserved buffer heap 
size.

6010 24592

 

Cannot allocate interrupt buffer: 

 

(Windows-based languages only) 

 

K_IntAlloc

 

 failed because there 
was not enough available DOS 
memory.

Remove some Terminate and Stay 
Resident programs (TSRs) that are 
no longer needed. 

6012 24594

 

Interrupt buffer deallocation 
error:

 

 (Windows-based languages 
only) An error occurred when 

 

K_IntFree

 

 attempted to free a 
memory handle. 

Make sure that the memory handle 
passed as an argument to 

 

K_IntFree

 

 was previously 
obtained using 

 

K_IntAlloc

 

.

6015 24597

 

DMA Buffer too large:

 

 The 
number of samples specified in 

 

K_DMAAlloc

 

 is too large. 

Refer to the description of 

 

K_DMAAlloc

 

 in Chapter 4 for the 
buffer size range. 

 

Table A-1.  Error/Status Codes  (cont.)

 

Error Code
Cause Solution

Hex Decimal



 

A-4 Error/Status Codes

 

6016 24598

 

VDS - Region not contiguous: 

 

An 
error occurred while using 
Windows Virtual DMA Services. 
You tried to use 

 

K_DMAAlloc

 

 in 
Windows Enhanced mode and the 
Keithley Memory Manager was not 
installed

Refer to the user’s guide for 
information on how to install and 
set up the Keithley Memory 
Manager.

6017 24599

 

VDS - DMA wraparound:

 

 See 
error 6016. 

 See error 6016. 

6018 24600

 

VDS - Unable to lock region: 

 

See 
error 6016. 

See error 6016. 

6019 24601

 

VDS - No buffer available: 

 

See 
error 6016. 

See error 6016. 

601A 24602

 

VDS - Region too large: 

 

See error 
6016. 

See error 6016. 

601B 24603

 

VDS - Buffer in use: 

 

See error 
6016. 

See error 6016. 

601C 24604

 

VDS - Illegal region: 

 

See error 
6016. 

See error 6016. 

601D 24605

 

VDS - Region not locked: 

 

See 
error 6016. 

See error 6016. 

601E 24606

 

VDS - Illegal page: 

 

See error 
6016. 

See error 6016. 

601F 24607

 

VDS - Illegal buffer: 

 

See error 
6016. 

See error 6016. 

6020 24608

 

VDS - Copy out of range: 

 

See 
error 6016. 

See error 6016. 

6021 24609

 

VDS - Illegal DMA channel: 

 

See 
error 6016. 

See error 6016. 

6022 24610

 

VDS - Count overflow: 

 

See error 
6016. 

See error 6016. 

 

Table A-1.  Error/Status Codes  (cont.)

 

Error Code
Cause Solution

Hex Decimal



 

A-5

 

6023 24611

 

VDS - Count underflow: 

 

See 
error 6016. 

See error 6016. 

6024 24612

 

VDS - Function not supported: 

 

See error 6016. 
See error 6016. 

6025 24613

 

Illegal OBM mode:

 

 The mode 
number specified in 

 

K_SetOBMMode

 

 is illegal.

Refer to the description of 

 

K_SetOBMMode

 

 in Chapter 4 for 
legal mode values.

6026 24614

 

Illegal DMA structure: 

 

An error 
occurred during the execution of 

 

K_DMAFree

 

.

Try using 

 

K_DMAFree

 

 again. If 
the error continues, contact the 
Keithley MetraByte Applications 
Engineering Department.

6027 24615

 

DMA allocation error:

 

 See error 
6026. 

 See error 6026. 

6028 24616

 

NULL DMA handle: 

 

See error 
6026. 

 See error 6026. 

6029 24617

 

DMA unlock error: 

 

See error 
6026. 

 See error 6026. 

602A 24618

 

DMA free error: 

 

See error 6026.  See error 6026. 

602B 24619

 

Not enough memory to 
accommodate request: 

 

The 
number of samples you requested 
in the Keithley Memory Manager 
is greater than the largest 
contiguous block available in the 
reserved heap.

Specify a smaller number of 
samples. Free a previously 
allocated buffer. Use the 
KMMSETUP utility to expand the 
reserved heap.

602C 24620

 

Requested buffer size exceeds 
maximum:

 

 The number of 
samples you requested from the 
Keithley Memory Manager is 
greater than the allowed maximum. 

Specify a value within the legal 
range when calling 

 

K_DMAAlloc 

 

or

 

 K_IntAlloc 

 

in Windows 
Enhanced mode. Refer to the 
description of 

 

K_DMAAlloc 

 

or

 

 
K_IntAlloc

 

 in Chapter 4 for legal 
values. 

 

Table A-1.  Error/Status Codes  (cont.)

 

Error Code
Cause Solution

Hex Decimal



 

A-6 Error/Status Codes

 

602D 24621

 

Illegal device handle: 

 

A bad 
device handle was passed to a 
function such as 

 

K_GetADFrame

 

. 
The handle used was not initialized 
using 

 

K_GetDevHandle

 

 or it was 
corrupted by your program.

Check the device handle value.

602E 24622

 

Illegal Setup option:

 

 An illegal 
option was specified to a function 
that accepts a user option, such as 

 

K_SetDITrig

 

.

Check the option value passed to 
the function where the error 
occurred.

6030 24624

 

DMA word-page wrap:

 

 During 

 

K_DMAAlloc

 

, a DMA word-page 
wrap condition occurred and the 
allocation attempt failed since 
there is not enough free memory to 
accommodate the allocation 
request.

Reduce the number of samples and 
retry. If in Windows Enhanced 
mode, install and configure the 
Keithley Memory Manager.

6031 24625

 

Illegal memory handle:

 

 A bad 
memory handle was passed to 

 

K_IntFree

 

 or 

 

K_DMAFree

 

. The 
handle used was not initialized 
through a call to 

 

K_IntAlloc

 

 or 

 

K_DMAAlloc

 

, or it was corrupted 
by you program.

Restart your program and monitor 
the memory handle value(s).

6032 24626

 

Out of memory handles:

 

 An 
attempt to allocate a memory block 
using 

 

K_IntAlloc

 

 or 

 

K_DMAAlloc

 

 failed because the 
maximum number of handles has 
already been assigned.

Use 

 

K_IntFree

 

 or 

 

K_DMAFree

 

 to 
free previously allocated memory 
blocks before allocating again.

 

Table A-1.  Error/Status Codes  (cont.)

 

Error Code
Cause Solution

Hex Decimal



 

A-7

 

6034 24628

 

Memory corrupted: 

 

Int 21H 
function 48H, used to allocate a 
memory block from the DOS far 
heap, returned the DOS error 7; 
this means that memory is 
corrupted. It is likely that you 
stored data (through a DMA-mode 
or interrupt-mode operation) into 
an illegal area of DOS memory.

Recheck the parameters set by 

 

K_DMAAlloc

 

 and 

 

K_SetDMABuf

 

. If a fatal system 
error, restart your computer.

6035 24629

 

Driver in use:

 

 The driver 
attempted to configure a device 
that had already been configured 
by a call to 

 

K_OpenDriver

 

. (This 
can occur since, under Windows, it 
is possible to open the same driver 
from multiple programs that are 
running simultaneously.)

To continue using the driver with 
the same configuration, pass a null 
string as the second argument to 

 

K_OpenDriver

 

. To use the driver 
with a different configuration, 
close any programs currently 
accessing the driver, and then open 
the driver again (using 

 

K_OpenDriver

 

).

6036 24630

 

Illegal driver handle:

 

 The 
specified driver handle is not valid.

Someone may have closed the 
driver; if so, use 

 

K_OpenDriver 

 

to 
reopen the driver with the desired 
driver handle. Try again using 
another driver handle.

6037 24631

 

Driver not found:  The specified 
driver cannot be found.

Check your link statement to make 
sure the specified driver is 
included. Make sure that the device 
name string is entered correctly in 
K_OpenDriver. 

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



A-8 Error/Status Codes

6038 24632 Invalid source pointer: 
(Windows-based languages only) 
The pointer to the source buffer 
that you passed as an argument to 
K_MoveBufToArray  is invalid for 
the specified count. (The source 
pointer, when added to the number 
of samples, exceeds the 
programmed addressing range of 
that pointer.)

Check the pointer to the source 
buffer and the number of samples 
to transfer that you specified in 
K_MoveBufToArray .

6039 24633 Invalid destination pointer:  
(Windows-based languages only) 
The pointer to the destination 
buffer (local array) that you passed 
as an argument to 
K_MoveBufToArray  is invalid for 
the specified count. (The 
destination pointer, when added to 
the number of samples, exceeds the 
dimension of the local array.) 

Check the dimension of the local 
array and the number of samples to 
transfer that you specified in 
K_MoveBufToArray .

603A 24634 Illegal setup value: An illegal 
value was passed to the function in 
which the error occurred.

Check the legal ranges of all 
parameters passed to this function. 

603B 24635 Error freeing buffer selector: 
K_DMAFree  or K_IntFree failed 
because one or more of the 
selectors that reference the 
memory buffer could not be freed.

Check that the memory buffer 
being freed was previously 
obtained through K_DMAAlloc  or 
K_IntAlloc.

603C 24636 Error allocating buffer selector: 
K_DMAAlloc  or K_IntAlloc 
failed because a selector could not 
be allocated from the Windows 
Local Descriptor Table.

Close all applications and restart 
Windows. If the error continues, 
contact the Keithley MetraByte 
Applications Engineering 
Department.

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



A-9

603D 24637 Error allocating memory buffer: 
K_DMAAlloc  or K_IntAlloc 
failed because a necessary internal 
buffer could not be allocated to 
complete the operation. You 
attempted to specify the starting 
address of a locally dimensioned 
array in Windows 95. 

Close all programs and restart 
Windows. In Windows 95, make 
sure that you use K_IntAlloc  or 
K_DMAAlloc  to dynamically 
allocate a memory buffer and make 
sure that you use K_SetBuf or 
K_BufListAdd  to specify the 
starting address of the dynamically 
allocated memory buffer. If the 
error continues, contact Keithley 
MetraByte for technical support.

7000 28672 No board number: The board 
number field was missing or out of 
place in the specified configuration 
file.

Specify the board number in the 
configuration file.

7001 28673 Bad AD Channel Mode: The only 
input range type supported by the 
board is bipolar.

Specify bipolar in the configuration 
file.

7002 28674 Bad board number: The driver 
initialization function found an 
illegal board number in the 
specified configuration file.

Specify a legal board number:
0 to 1

7003 28675 Bad base address: The driver 
initialization function found an 
illegal base I/O address in the 
specified configuration file.

Specify a base I/O address in the 
inclusive range &H240 (576) to 
&H2F8 (760) in increments of 8H 
(8). Make sure that &H precedes 
hexadecimal numbers. 

7004 28676 Bad memory address: The driver 
initialization function found an 
illegal memory address in the 
specified configuration file.

Specify a memory address in the 
inclusive range &HA000 to 
&HDC00 in increments of 400H. 
Make sure that &H precedes 
hexadecimal numbers.

7005 28677 Bad interrupt level: The driver 
initialization function found an 
illegal interrupt level in the 
specified configuration file.

Specify a legal interrupt level: 5, 7, 
9, 10, 11, 12, or 15

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



A-10 Error/Status Codes

7006 28678 Bad bus transfer width: The 
driver initialization function found 
an illegal bus transfer width in the 
configuration file.

Specify a legal width type: 16, 8

7007 28679 Bad zero wait-state: The driver 
initialization function found an 
illegal input in the specified 
configuration file.

Specify enabled or disabled.

7008 28680 Bad unipolar filter : The driver 
initialization function found an 
illegal unipolar filter level in the 
specified configuration file. 

Specify a legal unipolar filter 
value: 0 to 7

7009 28681 Invalid analog trigger channel: 
The analog input channel specified 
in K_SetADTrig  does not match 
the analog input channel being 
sampled (specified in K_SetChn).

Make sure that the analog trigger 
channel is the same as the analog 
input channel that is sampled.

700A 28682 Illegal start- and about-trigger 
combination: The start trigger 
must be internal when the about 
trigger is enabled.

Either set the start trigger to 
internal using K_SetTrig, or 
disable the about trigger using 
K_ClrAboutTrig .

700B 28683 Illegal coupling: The driver 
initialization found an illegal 
coupling value in the configuration 
file.

Specify either AC or DC in the 
configuration file.

700C 28684 Illegal number of samples: The 
driver detected a request to acquire 
more samples than the DAS-4200 
Series board could hold.

Specify a number of samples 
within the size of the buffer 
(131,072 for 128K buffers, 
544,288 for 512K buffers)

700E 28686 Error - Resource busy: The 
program attempted to start an 
operation while a similar operation 
was in progress.

Use K_IntStop  to stop the 
in-progress operation before 
initiating the second operation.

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



A-11

700F 28687 Error - Start and stop channels 
are not equal: The start channel 
parameter is not equal to the stop 
channel parameter.

Ensure that the start channel 
parameter is equal to the stop 
channel parameter.

7015 28693 Error - Illegal number of 
about-trigger samples: The 
number of about-trigger samples is 
greater than the acquisition buffer 
size.

Reduce the number of 
about-trigger samples to the size of 
the buffer or increase the buffer 
size.

7801 30721 No board at base address: The 
DAS-4200 Series board was not 
found at the base I/O address 
specified.

Run CFG4200 and check the base 
I/O address settings. Make sure 
that the settings in the 
configuration file match the 
settings of the jumpers on the 
board.

7802 30722 Windows cannot find memory 
map: Windows did not return the 
selector for the memory location of 
the board requested.

Check to make sure that your 
memory manager excludes the 
memory your board is using. For 
example, if you are using 
EMM386, your CONFIG.SYS file 
should contain a line similar to the 
following:
DEVICE=C:\DOS\EMM386.EXE 
X=CC00-CFFF
(Note this should be typed on one 
line.)

7804 30724 Warning old board revision: The 
board you are using is an older 
revision. Calibrations will not be 
accurate.

Contact the Keithley MetraByte 
Applications Engineering 
Department.

7806 30726 Warning EEPROM incorrectly 
set: The EEPROM settings are not 
giving a consistent value.

Run D4200 to set up the EEPROM.

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



A-12 Error/Status Codes

8001 32769 Function not supported: You 
have attempted to use a function 
not supported by the Function Call 
Driver.

Contact the Keithley MetraByte 
Applications Engineering 
Department. 

8003 32771 Illegal board number: An illegal 
board number was specified in the 
board initialization function.

Refer to the description of 
K_GetDevHandle in Chapter 4 for 
legal board numbers.

8004 32772 Illegal error number:  The error 
message number specified in 
K_GetErrMsg  is invalid.

The error number must be one the 
error numbers listed in this 
appendix. 

8005 32773 Board not found at configured 
address: The board initialization 
function does not detect the 
presence of a board.

Make sure that the base address 
setting of the switches on the board 
matches the base address setting in 
the configuration file. 

8006 32774 A/D not initialized:  You attempted 
to start a frame-based analog input 
operation without the A/D frame 
being properly initialized.

Always call K_ClearFrame 
before setting up a new 
frame-based operation.

8007 32775 D/A not initialized:  You attempted 
to start a frame-based analog 
output operation without the D/A 
frame being properly initialized.

Always call K_ClearFrame 
before setting up a new 
frame-based operation.

8008 32776 Digital input not initialized:  You 
attempted to start a frame-based 
digital input operation without the 
DI frame being properly 
initialized.

Always call K_ClearFrame 
before setting up a new 
frame-based operation.

8009 32777 Digital output not initialized:  You 
attempted to start a frame-based 
digital output operation without the 
DO frame being properly 
initialized.

Always call K_ClearFrame 
before setting up a new 
frame-based operation.

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



A-13

800B 32779 Conversion overrun: Data was 
overwritten before it was 
transferred to the computer’s 
memory. 

Adjust the clock source to slow 
down the rate at which the board 
acquires data. Remove other 
programs that are running and 
using computer resources. 

8016 32790 Interrupt overrun : The board 
communicated a hardware event to 
the software by generating a 
hardware interrupt, but the 
software was still servicing a 
previous interrupt. This is usually 
caused by a pacer clock rate that is 
too fast.

Check the maximum throughput 
rate for your computer’s 
programming environment and use 
K_SetClkRate to specify an 
appropriate rate.

801A 32794 Interrupts already active: You 
have attempted to start an operation 
whose interrupt level is being used 
by another system resource.

Use K_IntStop  to stop the first 
operation before starting the 
second operation. 

801B 32795 DMA already active: You 
attempted to start a DMA-mode 
operation using a DMA channel 
that is currently used by another 
active operation.

Use K_DMAStop  to stop the first 
operation before starting the 
second operation.

801C 32796 Timer channel already active: 
This error appears when you try to 
perform an operation and the timer 
channel is already in use by 
another system resource.

Stop the first operation before 
starting the next operation, or wait 
until the first operation stops before 
starting the next operation.

8020 32800 FIFO Overflow event detected: 
During data acquisition, the 
temporary on-board data storage 
(FIFO) overflowed.

The conversion rate is too fast for 
your computer’s programming 
environment; use K_SetClkRate 
to reduce the conversion rate. If 
you are using DMA-mode and 
your board supports dual-DMA, 
use the configuration utility to 
reconfigure your board to use 
dual-DMA.

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



A-14 Error/Status Codes

8021 32801 Illegal clock sync mode: The two 
operations you are trying to 
synchronize cannot be 
synchronized on your board. 

Check the synchronizing clock 
source that you specified in 
K_SetSync. Make sure that your 
board supports clock 
synchronization. 

FFFF 65535 User aborted operation: You 
pressed Ctrl +Break during a 
synchronous-mode operation or 
while waiting for an analog trigger 
event to occur. 

Start the operation again, if 
desired. 

Table A-1.  Error/Status Codes  (cont.)

Error Code
Cause Solution

Hex Decimal



 

Converting Counts to Voltage B-1

 

B

 

Data Formats

 

The DAS-4200 Series Function Call Driver can read and write counts 
only. When reading a value, you may want to convert the count to a more 
meaningful voltage value; when writing a value (as in 

 

K_SetTrig

 

), you 
must convert the voltage value to a count value.

The remainder of this appendix contains instructions for converting 
counts to voltage and for converting voltage to counts.

 

Converting Counts to Voltage

 

You may want to convert counts to voltage when reading an analog input 
value.

To convert an analog input value to a voltage, use the following equation, 
where 

 

count

 

 is the count value, and 

 

span

 

 is the appropriate value from 
Table B-1 on page B-2:

Voltage count span×
256

---------------------------------=



 

B-2 Data Formats

 

For example, assume that you want to read analog input data from a 
channel on the DAS-4200 Series board configured for the ±1 V input 
range. The channel collects the data at a gain of 2; the count value is 72. 
The voltage is determined as follows:

As another example, assume that you want to read analog input data from 
a channel on a DAS-4200 Series board configured for the ±500 mV input 
range. The channel collects the data at a gain of 4; the count value is -112. 
The voltage is determined as follows:

 

Table B-1.  Some Span Values For Analog Input Data Conversion Equations

 

Gain Input Range Span (V)

 

1

 

−

 

2 to 2 V 4

2

 

−

 

1 to 1 V 2

4

 

−

 

500 to 500 mV 1

8

 

−

 

250 to 250 mV 0.50

16

 

−

 

125 to 125 mV 0.25

32

 

−

 

62.5 to 62.5 mV 0.125

64

 

−

 

31.25 to 31.25 mV .0625

128

 

−

 

15.625 to 15.625 mV 0.03125

72 2  V ×  
256

--------------------- 0.5625  V=

112– 1×   V
256

--------------------------- 0.4375–
 ( ) =



 

Converting Voltage to Counts B-3

 

Converting Voltage to Counts

 

You must convert voltage to a count value when specifying an analog 
trigger level.

To convert a voltage to a count value when specifying an analog trigger 
level, use one of the following equations, where 

 

V

 

trig

 

 is the desired 
voltage, and 

 

span

 

 is the appropriate value from Table B-1 on page B-2:

For example, assume that you want to specify an analog trigger level of 
100 mV for a channel on the DAS-4200 Series board configured for a 
input range of ±125 mV. The count value is determined as follows:

Count
Vtrig 256×

span
---------------------------=

0.1  V 256 × 
0.25  V

----------------------------- 102.4=



 

X-1

 

Index

 

A

 

about-trigger acquisition 

 

2-17

 

allocating memory buffers 

 

2-8

 

C/C++ 

 

3-3

 

Microsoft Visual Basic for Windows 

 

3-10

 

analog input
programming flow diagrams 

 

1-6

 

analog input operations
channels 

 

2-10

 

converting analog input values to 
voltages 

 

B-1

 

input ranges 

 

2-10

 

memory allocation 

 

2-7

 

operation modes 

 

2-4

 

pacer clocks 

 

2-11

 

triggers 

 

2-12

 

analog trigger 

 

2-13

 

, 

 

B-3

 

assigning the starting address of a memory 
location 

 

2-9

 

B

 

board initialization 

 

2-2

 

Borland C/C++
compile and link statements for DOS 

 

3-8

 

creating an executable file for DOS 

 

3-8

 

dynamically allocating a memory buffer 

 

3-3

 

files required for DOS 

 

3-8

 

files required for Windows 

 

3-9

 

handling errors 

 

3-5

 

buffer address 

 

2-9

 

buffer address function 

 

1-3

 

, 

 

4-2

 

C

 

C/C++: 

 

see

 

 Borland C/C++, Microsoft 
C/C++

channel and gain functions 

 

1-4

 

, 

 

4-2

 

channels 

 

2-10

 

clock functions 

 

1-4

 

, 

 

4-2

 

clock sources: 

 

see

 

 pacer clocks
compile and link statements

Borland C/C++ (for DOS) 

 

3-8

 

Microsoft C/C++ (for DOS) 

 

3-6

 

conventions 

 

4-3

 

converting
counts to voltages 

 

B-1

 

voltages to counts 

 

B-3

 

creating an executable file
Borland C/C++ (for DOS) 

 

3-8

 

Microsoft C/C++ (for DOS) 

 

3-6

 

Visual Basic for Windows 

 

3-15

 

D

 

data conversions
converting counts to voltages 

 

B-1

 

converting voltages to counts 

 

B-3

 

data types 

 

4-4

 

default values of A/D frame elements 

 

2-6

 

device handle 

 

2-2

 

digital trigger 

 

2-14

 

driver handle 

 

2-2

 

driver initialization 

 

2-2

 

dynamically allocating a memory buffer 

 

2-8

 

C/C++ 

 

3-3

 

Visual Basic for Windows 

 

3-10

 

E

 

elements of frame 

 

2-6

 

error codes 

 

A-1



 

X-2 Index

 

error handling 

 

2-3

 

Borland C/C++ 

 

3-5

 

Microsoft C/C++ 

 

3-5

 

Visual Basic for Windows 

 

3-14

 

external pacer clock 

 

2-12

 

F

 

files required
Borland C/C++ (for DOS) 

 

3-8

 

Borland C/C++ (for Windows) 

 

3-9

 

Microsoft C/C++ (for DOS) 

 

3-6

 

Microsoft C/C++ (for Windows) 

 

3-7

 

flow diagrams 

 

1-4

 

frame elements 

 

2-6

 

frame handle 

 

2-5

 

frame management functions 

 

1-3

 

, 

 

4-2

 

frame types 

 

2-5

 

functions
buffer address 

 

1-3

 

, 

 

4-2

 

channel and gain 

 

1-4

 

, 

 

4-2

 

clock 

 

1-4

 

, 

 

4-2

 

frame management 

 

1-3

 

, 

 

4-2

 

initialization 

 

1-3

 

, 

 

4-2

 

K_ClearFrame 

 

2-6

 

, 

 

4-5

 

K_CloseDriver 

 

2-2

 

, 

 

4-6

 

K_ClrAboutTrig 

 

4-7

 

K_DASDevInit 

 

2-3

 

, 

 

4-8

 

K_FreeDevHandle 

 

2-3

 

, 

 

4-9

 

K_FreeFrame 

 

2-6

 

, 

 

4-10

 

K_GetADFrame 

 

2-5, 4-11
K_GetClkRate 4-13
K_GetDevHandle 4-15
K_GetErrMsg 2-4, 4-17
K_GetShellVer 2-3, 4-18
K_GetVer 2-3, 4-19
K_IntAlloc 2-8, 4-21
K_IntFree 2-8, 4-23
K_IntStart 2-4, 4-24
K_IntStatus 2-4, 4-25

K_IntStop 2-4, 4-28
K_MoveBufToArray 4-30
K_OpenDriver 2-2, 4-31
K_SetAboutTrig 4-33
K_SetADTrig 2-14, 4-35
K_SetBuf 2-9, 4-37
K_SetBufI 4-39
K_SetChn 4-41
K_SetClk 2-12, 4-42
K_SetClkRate 4-43
K_SetDITrig 2-14, 4-45
K_SetG 4-47
K_SetTrig 2-13, 2-14, 4-49
memory management 1-3, 4-2
miscellaneous 1-4, 4-3
operation 1-3, 4-2
summary 1-3
trigger 1-4, 4-2

H
handle

device 2-2
driver 2-2
frame 2-5
memory 2-8

help 1-10

I
initialization functions 1-3, 4-2
initializing a board 2-2
initializing the driver 2-2
internal pacer clock 2-11
internal trigger 2-13
interrupt-mode operations 2-4



X-3

K
K_ClearFrame 2-6, 4-5
K_CloseDriver 2-2, 4-6
K_ClrAboutTrig 4-7
K_DASDevInit 2-3, 4-8
K_FreeDevHandle 2-3, 4-9
K_FreeFrame 2-6, 4-10
K_GetADFrame 2-5, 4-11
K_GetClkRate 4-13
K_GetDevHandle 4-15
K_GetErrMsg 2-4, 4-17
K_GetShellVer 2-3, 4-18
K_GetVer 2-3, 4-19
K_IntAlloc 2-8, 4-21
K_IntFree 2-8, 4-23
K_IntStart 2-4, 4-24
K_IntStatus 2-4, 4-25
K_IntStop 2-4, 4-28
K_MoveBufToArray 4-30
K_OpenDriver 2-2, 4-31
K_SetAboutTrig 4-33
K_SetADTrig 2-14, 4-35
K_SetBuf 2-9, 4-37
K_SetBufI 4-39
K_SetChn 4-41
K_SetClk 2-12, 4-42
K_SetClkRate 4-43
K_SetDITrig 2-14, 4-45
K_SetG 4-47
K_SetTrig 2-13, 2-14, 4-49

M
maintenance operations: see system 

operations
memory allocation 2-7

C/C++ 3-3
Visual Basic for Windows 3-10

memory handle 2-8
memory management functions 1-3, 4-2
Microsoft C/C++

allocating a memory buffer 3-3
compile and link statements for DOS 3-6
creating an executable file for DOS 3-6
files required for DOS 3-6
files required for Windows 3-7
handling errors 3-5

Microsoft Visual Basic for Windows
see Visual Basic for Windows

miscellaneous functions 1-4, 4-3
miscellaneous operations: see system 

operations

O
operation functions 1-3, 4-2
operations

analog input 2-4
system 2-2

P
pacer clocks 2-11
post-trigger acquisition 2-15
preliminary procedures 1-5
pre-trigger acquisition 2-16
procedures 1-4

analog input 1-6
preliminary 1-5

programming flow diagrams 1-4
programming information

C/C++ 3-2
Visual Basic for Windows 3-10

programming overview 3-2



X-4 Index

R
return values 2-3
revision levels 2-3
routines: see functions

S
software trigger: see internal trigger
specifying an analog trigger level B-3
starting address: see buffer address
starting an operation 2-4
status 2-4
status codes 2-3
stopping an operation 2-3, 2-4
summary of functions 1-3
system operations 2-2

T
tasks 1-4

analog input 1-6
preliminary 1-5

technical support 1-10
trigger functions 1-4, 4-2
trigger level, specifying an analog trigger 

B-3
triggers 2-12
troubleshooting 1-10

V
Visual Basic for Windows

allocating a memory buffer 3-10
creating an executable file 3-15
handling errors 3-14


