
www.keithley.com

A G R E A T E R M E A S U R E O F C O N F I D E N C E

DataAcq SDK
User’s Manual
DASDK-900-01 Rev. A / January 2005

WARRANTY
Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of 3 years from
date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries,
diskettes, and documentation.

During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.

To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio.
You will be given prompt assistance and return instructions. Send the product, transportation prepaid, to the indicated service facil-
ity. Repairs will be made and the product returned, transportation prepaid. Repaired or replaced products are warranted for the bal-
ance of the original warranty period, or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley’s express written consent, or misuse
of any product or part. This warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leak-
age, or problems arising from normal wear or failure to follow instructions.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES PROVIDED HEREIN
ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF ITS INSTRU-
MENTS AND SOFTWARE EVEN IF KEITHLEY INSTRUMENTS, INC., HAS BEEN ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO:
COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON,
OR DAMAGE TO PROPERTY.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc.

Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139
440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) • www.keithley.com

12/04

DataAcq SDK
User’s Manual

©2005, Keithley Instruments, Inc.
All rights reserved.

First Printing, January 2005
Cleveland, Ohio, U.S.A.

Document Number: DASDK-900-01 Rev. A

Manual Print History

The print history shown below lists the printing dates of all Revisions and Addenda created for this manual. The Revi-
sion Level letter increases alphabetically as the manual undergoes subsequent updates. Addenda, which are released
between Revisions, contain important change information that the user should incorporate immediately into the manual.
Addenda are numbered sequentially. When a new Revision is created, all Addenda associated with the previous Revision
of the manual are incorporated into the new Revision of the manual. Each new Revision includes a revised copy of this
print history page.

Revision A (Document Number DASDK-900-01A)... January 2005

All Keithley product names are trademarks or registered trademarks of Keithley Instruments, Inc.
Other brand and product names are trademarks or registered trademarks of their respective holders.

Safety Precautions

5/03
The following safety precautions should be observed before using
this product and any associated instrumentation. Although some in-
struments and accessories would normally be used with non-haz-
ardous voltages, there are situations where hazardous conditions
may be present.

This product is intended for use by qualified personnel who recog-
nize shock hazards and are familiar with the safety precautions re-
quired to avoid possible injury. Read and follow all installation,
operation, and maintenance information carefully before using the
product. Refer to the manual for complete product specifications.

If the product is used in a manner not specified, the protection pro-
vided by the product may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use
and maintenance of equipment, for ensuring that the equipment is
operated within its specifications and operating limits, and for en-
suring that operators are adequately trained.

Operators use the product for its intended function. They must be
trained in electrical safety procedures and proper use of the instru-
ment. They must be protected from electric shock and contact with
hazardous live circuits.

Maintenance personnel perform routine procedures on the prod-
uct to keep it operating properly, for example, setting the line volt-
age or replacing consumable materials. Maintenance procedures
are described in the manual. The procedures explicitly state if the
operator may perform them. Otherwise, they should be performed
only by service personnel.

Service personnel are trained to work on live circuits, and perform
safe installations and repairs of products. Only properly trained ser-
vice personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that
are rated Measurement Category I and Measurement Category II, as
described in the International Electrotechnical Commission (IEC)
Standard IEC 60664. Most measurement, control, and data I/O sig-
nals are Measurement Category I and must not be directly connect-
ed to mains voltage or to voltage sources with high transient over-
voltages. Measurement Category II connections require protection
for high transient over-voltages often associated with local AC
mains connections. Assume all measurement, control, and data I/O
connections are for connection to Category I sources unless other-
wise marked or described in the Manual.

Exercise extreme caution when a shock hazard is present. Lethal
voltage may be present on cable connector jacks or test fixtures.
The American National Standards Institute (ANSI) states that a
shock hazard exists when voltage levels greater than 30V RMS,
42.4V peak, or 60VDC are present. A good safety practice is to ex-
pect that hazardous voltage is present in any unknown circuit
before measuring.
Operators of this product must be protected from electric shock at
all times. The responsible body must ensure that operators are pre-
vented access and/or insulated from every connection point. In
some cases, connections must be exposed to potential human con-
tact. Product operators in these circumstances must be trained to
protect themselves from the risk of electric shock. If the circuit is
capable of operating at or above 1000 volts, no conductive part of
the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits.
They are intended to be used with impedance limited sources.
NEVER connect switching cards directly to AC mains. When con-
necting sources to switching cards, install protective devices to limit
fault current and voltage to the card.

Before operating an instrument, make sure the line cord is connect-
ed to a properly grounded power receptacle. Inspect the connecting
cables, test leads, and jumpers for possible wear, cracks, or breaks
before each use.

When installing equipment where access to the main power cord is
restricted, such as rack mounting, a separate main input power dis-
connect device must be provided, in close proximity to the equip-
ment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any
other instruments while power is applied to the circuit under test.
ALWAYS remove power from the entire test system and discharge
any capacitors before: connecting or disconnecting cables or jump-
ers, installing or removing switching cards, or making internal
changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the com-
mon side of the circuit under test or power line (earth) ground. Always
make measurements with dry hands while standing on a dry, insulated
surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its
specifications and operating instructions or the safety of the equip-
ment may be impaired.

Do not exceed the maximum signal levels of the instruments and ac-
cessories, as defined in the specifications and operating informa-
tion, and as shown on the instrument or test fixture panels, or
switching card.

When fuses are used in a product, replace with same type and rating
for continued protection against fire hazard.

Chassis connections must only be used as shield connections for
measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is ap-
plied to the device under test. Safe operation requires the use of a
lid interlock.

If a screw is present, connect it to safety earth ground using the
wire recommended in the user documentation.

The symbol on an instrument indicates that the user should re-
fer to the operating instructions located in the manual.

The symbol on an instrument shows that it can source or mea-
sure 1000 volts or more, including the combined effect of normal
and common mode voltages. Use standard safety precautions to
avoid personal contact with these voltages.

The symbol indicates a connection terminal to the equipment
frame.

The WARNING heading in a manual explains dangers that might
result in personal injury or death. Always read the associated infor-
mation very carefully before performing the indicated procedure.

The CAUTION heading in a manual explains hazards that could
damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and
all test cables.

To maintain protection from electric shock and fire, replacement
components in mains circuits, including the power transformer, test
leads, and input jacks, must be purchased from Keithley Instru-
ments. Standard fuses, with applicable national safety approvals,
may be used if the rating and type are the same. Other components
that are not safety related may be purchased from other suppliers as
long as they are equivalent to the original component. (Note that se-
lected parts should be purchased only through Keithley Instruments
to maintain accuracy and functionality of the product.) If you are
unsure about the applicability of a replacement component, call a
Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water based
cleaner. Clean the exterior of the instrument only. Do not apply
cleaner directly to the instrument or allow liquids to enter or spill on
the instrument. Products that consist of a circuit board with no case
or chassis (e.g., data acquisition board for installation into a com-
puter) should never require cleaning if handled according to instruc-
tions. If the board becomes contaminated and operation is affected,
the board should be returned to the factory for proper cleaning/ser-
vicing.

!

Table of Contents

About this Manual . xiii

Intended Audience. xiii

What You Should Learn from this Manual. xiii

Organization of this Manual. xiv

Conventions Used in this Manual . xiv

Related Information . xv

Where to Get Help . xv

Chapter 1: Overview . 1

What is the DataAcq SDK? . 2

Installation. 3

Using the DataAcq SDK Online Help . 4

About the Examples Programs. 5

About the Library Function Calling Conventions. 7

Chapter 2: Function Summary . 9

Data Acquisition Functions. 10

Information Functions . 10

Initialization and Termination Functions 21

Configuration Functions . 22

Operation Functions . 27

Data Conversion Functions . 30

Data Management Functions . 31

Buffer Management Functions . 31

Buffer List Management Functions . 33
vii

Contents

viii
Chapter 3: Using the DataAcq SDK 35

System Operations . 37

Initializing a Device . 37

Specifying a Subsystem . 38

Configuring a Subsystem. 39

Handling Errors. 40

Handling Messages. 40

Releasing the Subsystem and the Driver 40

Analog and Digital I/O Operations . 41

Data Encoding . 41

Resolution. 42

Channels . 42

Specifying the Channel Type . 43

Specifying a Single Channel . 44

Specifying One or More Channels 44

Specifying the Channel List Size 45

Specifying the Channels in the Channel List 46

Inhibiting Channels in the Channel List 47

Specifying Synchronous Digital I/O Values
in the Channel List . 48

Ranges. 50

Gains . 51

Specifying the Gain for a Single Channel 51

Specifying the Gain for One or More Channels 51

Filters. 53

Data Flow Modes . 54

Single-Value Operations . 54

Continuous Operations . 55

Continuous Post-Trigger Mode 57

Continuous Pre-Trigger Mode 58

Contents
Continuous About-Trigger Mode. 59

Triggered Scan Mode . 61

Scan-Per-Trigger Mode . 62

Internal Retrigger Mode . 63

Retrigger Extra Mode . 64

Clock Sources. 65

Internal Clock Source . 65

External Clock Source . 66

Extra Clock Source . 67

Trigger Sources . 67

Software (Internal) Trigger Source 68

External Digital (TTL) Trigger Source 68

External Analog Threshold (Positive) Trigger Source . 69

External Analog Threshold (Negative) Trigger Source 69

Analog Event Trigger Source . 70

Digital Event Trigger Source . 70

Timer Event Trigger Source . 70

Extra Trigger Source . 70

Buffers . 71

Ready Queue . 71

Inprocess Queue . 72

Done Queue . 74

Buffer and Queue Management 76

Buffer Wrap Modes . 78

DMA and Interrupt Resources . 79

Counter/Timer Operations. 81

Counter/Timer Operation Mode . 82

Event Counting . 82

Up/Down Counting . 84
ix

Contents

x

Frequency Measurement . 86

Using the Windows Timer. 86

Using a Pulse of a Known Duration 87

Edge-to-Edge Measurement . 90

Rate Generation . 93

One-Shot . 96

Repetitive One-Shot . 99

C/T Clock Sources . 101

Internal C/T Clock . 102

External C/T Clock . 102

Internally Cascaded Clock . 103

Extra C/T Clock Source . 104

Gate Types . 104

Software Gate Type . 105

High-Level Gate Type . 105

Low-Level Gate Type . 105

Low-Edge Gate Type . 106

High-Edge Gate Type . 106

Any Level Gate Type . 106

High-Level, Debounced Gate Type 107

Low-Level, Debounced Gate Type 107

High-Edge, Debounced Gate Type 107

Low-Edge, Debounced Gate Type 108

Level, Debounced Gate Type . 108

Pulse Output Types and Duty Cycles 108

Simultaneous Operations . 110

Chapter 4: Programming Flowcharts. 113

Single-Value Operations . 115

Continuous Buffered Input Operations 117

Contents
Continuous Buffered Output Operations 119

Event Counting Operations . 121

Up/Down Counting Operations . 123

Frequency Measurement Operations . 125

Edge-to-Edge Measurement Operations. 127

Pulse Output Operations. 129

Simultaneous Operations . 131

Chapter 5: Product Support . 149

Appendix A: Sample Code . 153

Single-Value Analog Input . 154

Declare Variables and User Functions 154

Initialize the Driver . 155

Get a Handle to the Subsystem . 156

Set the DataFlow to Single Value . 156

Configure the Subsystem . 156

Acquire a Single Value . 157

 Convert the Value to Voltage . 157

Release the Subsystem and Terminate the Session. 158

Handle Errors . 158

Continuous Analog Input . 159

Declare Variables and User Functions 159

Initialize the Driver . 161

Get a Handle to the Subsystem . 162

Set the DataFlow to Continuous . 162

Specify the Channel List and Channel Parameters 162

Specify the Clocks . 163

Specify DMA Usage . 164

Set Up Window Handle and Buffering 164

Configure the Subsystem . 165
xi

Contents

xii
Start the Continuous Analog Input Operation 165

Deal with Messages and Buffers . 165

Convert Values to Voltage . 168

Clean Up. 169

Handle Errors . 169

Index . 171

About this Manual
This manual describes how to get started using the DataAcq SDKTM
(Software Development Kit) to develop application programs for
data acquisition devices that conform to the DT-Open LayersTM
standard.

Intended Audience

This document is intended for engineers, scientists, technicians,
OEMs, system integrators, or others responsible for developing
application programs using Microsoft® Developer’s Studio
(version 6.0 and higher) to perform data acquisition operations.

It is assumed that you are a proficient programmer, that you are
experienced programming in the Windows® 2000 or Windows XP
operating environment on the IBM PC or compatible computer
platform, and that you have familiarity with data acquisition
principles and the requirements of your application.

What You Should Learn from this Manual

This manual provides installation instructions for Windows 2000 and
Windows XP, summarizes the functions provided by the DataAcq
SDK, and describes how to use the functions to develop a data
acquisition program. Using this manual, you should be able to
successfully install the DataAcq SDK and get started writing an
application program for data acquisition.

This manual is intended to be used with the online help for the
DataAcq SDK, which you can find in the same program group as the
DataAcq SDK software. The online help for the DataAcq SDK
contains all of the specific reference information for each of the
functions, error codes, and Windows messages.
xiii

About this Manual

xiv
Organization of this Manual

This manual is organized as follows:

• Chapter 1, “Overview,” tells how to install the DataAcq SDK in
Windows 2000 and Windows XP.

• Chapter 2, “Function Summary,” summarizes the functions
provided in the DataAcq SDK.

• Chapter 3, “Using the DataAcq SDK,” describes the operations
that you can perform using the DataAcq SDK.

• Chapter 4, “Programming Flowcharts,” provides programming
flowcharts for using the functions provided in the DataAcq SDK.

• Chapter 5, “Product Support,” describes how to get help if you
have trouble using the DataAcq SDK.

• Appendix A, “Sample Code,” provides code fragments that
illustrate the use of the functions in the DataAcq SDK.

• An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information that requires special emphasis,
cautions provide information to help you avoid losing data or
damaging your equipment, and warnings provide information to
help you avoid catastrophic damage to yourself or your
equipment.

• Items that you select or type are shown in bold. Function names
also appear in bold.

• Code fragments are shown in courier font.

About this Manual
Related Information

Refer to the following documentation for more information on using
the DataAcq SDK:

• DataAcq SDK Online Help. This Windows help file is located in
the same program group as the DataAcq SDK software and
contains all of the specific reference information for each of the
functions, error codes, and Windows messages provided by the
DataAcq SDK. Refer to page 4 for information on how to open
this help file.

• Device-specific documentation, which consists of a getting
started manual and a user’s manual. The getting started manual
describes how to install the data acquisition device, how to install
the device driver for the device, and how to get started using the
device. The user’s manual describes the features of the device
and the capabilities supported by the device driver for the device.
These manuals are on the Keithley CDTM.

• Windows 2000 or Windows XP documentation.

• For C programmers, refer to Microsoft C Reference, Document
Number LN06515-1189, Microsoft Corporation, and The C
Programming Language, Brian W. Kernighan and Dennis Ritchie,
Prentice Hall, 1988, 1987 Bell Telephone Laboratories, Inc,
ISBN 0-13-109950-7.

Where to Get Help

Should you run into problems installing or using the DataAcq SDK,
the Keithley Technical Support Department is available to provide
technical assistance.
xv

About this Manual

xvi

1
Overview

What is the DataAcq SDK? . 2

Installation. 3

Using the DataAcq SDK Online Help . 4

About the Examples Programs. 5

About the Library Function Calling Conventions. 7
1

Chapter 1

2

What is the DataAcq SDK?
The DataAcq SDK is a programmer’s DLL (Dynamic Linked Library)
that supports Keithley’s data acquisition devices under Microsoft
Windows 2000 and Windows XP.

The DataAcq SDK functions are fully compatible with DT-Open
Layers™, which is a set of standards for developing integrated,
modular application programs under Windows.

Because DT-Open Layers is modular and uses Windows DLLs, you
can add support for a new data acquisition device at any time. Just
add the new DT-Open Layers device driver, modify your code to
incorporate the features of the new device, and then recompile the
code. All calls to DataAcq SDK functions currently in your
application program can remain untouched.

Overview

1

1

1

1

1

1

1

1

1

Installation
The DataAcq SDK is installed automatically when you install the
device driver for the module. Refer to your getting started manual for
more information.
3

Chapter 1

4

Using the DataAcq SDK Online Help
The DataAcq SDK User’s Manual is intended to be used with the
online help for the DataAcq SDK. The online help contains all of the
specific reference information for each of the functions, error codes,
and Windows messages not included in this manual.

To open the online help file, select DataAcq SDK/DataAcq SDK
Help from the Windows Start menu.

Overview

1

1

1

1

1

1

1

1

1

About the Examples Programs
To help you understand more about using the functions of the
DataAcq SDK in an actual program, the DataAcq SDK provides a C
example program (CEXMPL32.EXE). This example program allows
you to configure any of the subsystems on the data acquisition
device. The source code is located in the \Examples\CExample
directory. Resource files are also provided.

In addition to CEXMPL.EXE, the following simple example programs
are also provided. These programs are designed to use minimum
Windows user interface code, while demonstrating the functionality
of the DataAcq SDK. Source code and resource files are provided for
each of these programs:

• ContAdc − Opens the first available DT-Open Layers device,
opens and configures an A/D subsystem, and performs
continuous operations. The results are displayed in a dialog box.

• ContDac − Opens the first available DT-Open Layers device,
opens and configures a D/A subsystem, and performs
continuous operations outputting a square wave. The results are
displayed in a dialog box.

• DtConsole − Opens the first available DT-Open Layers device,
opens and configures an A/D subsystem, and performs a
continuous A/D operation on a console screen.

• GenerateFreq − Opens the first available DT-Open Layers device,
opens and configures a C/T subsystem, and continuously
outputs a pulse. The results are displayed in a dialog box.

• MeasureFreq − Opens the first available DT-Open Layers device,
opens and configures a C/T subsystem, and continuously
measures a pulse. The results are displayed in a dialog box.

• SvAdc − Opens the first available DT-Open Layers device, opens
and configures an A/D subsystem, and performs a single-value
operation. The results are displayed in a message box.
5

Chapter 1

6

• SvDac − Opens the first available DT-Open Layers device, opens
and configures a D/A subsystem, and performs a single-value
operation with maximum positive and maximum negative range.
The results are displayed in a message box.

• SvDin − Opens the first available DT-Open Layers device, opens
and configures a DIN subsystem, and performs a single-value
operation. The results are displayed in a message box.

• SvDout − Opens the first available DT-Open Layers device, opens
and configures a DOUT subsystem, and performs a single-value
operation. The results are displayed in a message box.

• ThermoAdc − Opens the first available DT-Open Layers device,
opens and configures an A/D subsystem, and performs a
thermocouple measurement. The results are displayed in a dialog
box.

Each example program provided in the DataAcq SDK comes with the
MSVC.DSW (workspace) and MSVC.DSP (project) files for use in the
integrated development environment provided by the Microsoft
Developer’s Studio. No special switches are necessary beyond
instructing the IDE to create a Windows EXE or DLL.

Note: The DataAcq SDK installation program automatically
includes an environment variable (DA_SDK). All the example
programs use this environment variable; therefore, you can build the
example programs without adding any include or library files to
your projects.

Overview

1

1

1

1

1

1

1

1

1

About the Library Function Calling
Conventions

The DataAcq SDK functions adhere to the Microsoft Pascal calling
conventions. You can find prototypes for these functions in the
include files OLDAAPI.H and OLMEM.H. It is recommended that
you follow these calling conventions for proper operation.

DataAcq SDK functions return an ECODE value, which is an
unsigned long value indicating the status of the requested function. It
is recommended that you check the return status value for an error
condition using the symbolic constants defined in the include files.
This practice is illustrated in the C example program
(CEXMPL32.EXE).

Note: For detailed information on the error codes, refer to the
DataAcq SDK online help.
7

Chapter 1

8

2
Function Summary

Data Acquisition Functions. 10

Data Management Functions . 31
9

Chapter 2

10
Data Acquisition Functions
The following groups of data acquisition functions are available:

• Information functions,

• Initialization and Termination functions,

• Configuration functions,

• Operation functions, and

• Data Conversion functions.

These functions are briefly described in the following subsections.

Note: For specific information about each of these functions, refer
to the DataAcq SDK online help. See page 4 for information on
opening the online help file.

Information Functions

To determine the capabilities of your installed devices, subsystems
on each device, and software, use the Information functions listed in
Table 1.

Table 1: Information Functions

Query about Function Description

Devices olDaEnumBoards Lists all currently installed DT-Open
Layers data acquisition devices,
drivers, and driver parameters.

olGetBoardInfo Gets the driver name, model name,
and instance number of the specified
board, based on its board name.

Function Summary

2

2

2

2

2

2

2

2

2

Devices (cont.) olDaGetDeviceName Gets the full name of the specified
device (this name is set by the driver
as part of the installation procedure).

Subsystems olDaEnumSubSystems Lists the names, types, and element
number for each subsystem
supported by the specified device.

olDaGetDevCaps Returns the number of elements
available for the specified subsystem
on the specified device.

olDaGetSSCaps Returns information about whether
the specified subsystem capability is
supported and/or the number of
capabilities supported. Refer to
Table 2 for a list of possible
capabilities and return values.

olDaGetSSCapsEx Returns information about extended
subsystem capabilities. Refer to
Table 3 for a list of possible
capabilities and return values.

olDaEnumBoardsEx Lists all currently-installed DT-Open
Layers DataAcq drivers and returns
some registry information for each.

olDaEnumSSCaps Lists the possible settings for the
specified subsystem capabilities,
including filters, ranges, gains, and
resolution.

olDaGetDASSInfo Returns the subsystem type and
element number of the specified
subsystem with the specified device
handle.

Table 1: Information Functions (cont.)

Query about Function Description
11

Chapter 2

12
Table 2 lists the subsystem capabilities that you can query using the
olDaGetSSCaps function; this function returns values as integers.
Table 3 lists the subsystem capabilities that you can query using the
olDaGetSSCapsEx function; this function returns values as
floating-point numbers. Note that capabilities may be added as new
devices are developed; for the most recent set of capabilities, refer to
the DataAcq SDK online help.

Subsystems
(cont.)

olDaGetQueueSize Returns the size of the specified
queue (ready, done or inprocess) for
the specified subsystem. The size
indicates the number of buffers on
the specified queue.

olDaEnumSSList Lists all subsystems on the
simultaneous start list.

Software olDaGetDriverVersion Returns the device driver version
number.

olDaGetVersion Returns the software version of the
DataAcq SDK.

olDaGetErrorString Returns the string that corresponds
to a device error code value.

Table 1: Information Functions (cont.)

Query about Function Description

Function Summary

2

2

2

2

2

2

2

2

2

Table 2: Capabilities to Query with olDaGetSSCaps

Query about Capability Function Returns

Data Flow
Mode

OLSSC_SUP_SINGLEVALUE Nonzero if subsystem supports
single-value operations.

OLSSC_SUP_CONTINUOUS Nonzero if subsystem supports
continuous post-trigger
operations.

OLSSC_SUP_CONTINUOUS_
PRETRIG

Nonzero if subsystem supports
continuous pre-trigger operations.

OLSSC_SUP_CONTINUOUS_
ABOUTTRIG

Nonzero if subsystem supports
continuous about-trigger (both
pre- and post-trigger) operations.

Simultaneous
Operations

OLSSC_SUP_
SIMULTANEOUS_START

Nonzero if subsystem can be
started simultaneously with
another subsystem on the device.

Pausing
Operations

OLSSC_SUP_PAUSE Nonzero if subsystem supports
pausing during continuous
operation.

Windows
Messaging

OLSSC_SUP_POSTMESSAGE Nonzero if subsystem supports
asynchronous operations.

Buffering OLSSC_SUP_BUFFERING Nonzero if subsystem supports
buffering.

OLSSC_SUP_WRPSINGLE Nonzero if subsystem supports
single-buffer wrap mode.

OLSSC_SUP_WRPMULTIPLE Nonzero if subsystem supports
multiple-buffer wrap mode.

OLSSC_SUP_
INPROCESSFLUSH

Nonzero if subsystem supports
the transferring of data from a
buffer on a subsystem’s
inprocess queue.
13

Chapter 2

14
DMA OLSSC_NUMDMACHANS Number of DMA channels
supported.

OLSSC_SUP_GAPFREE_
NODMA

Nonzero if subsystem supports
gap-free continuous operation
with no DMA.

OLSSC_SUP_GAPFREE_
SINGLEDMA

Nonzero if subsystem supports
gap-free continuous operation
with a single DMA channel.

OLSSC_SUP_GAPFREE_
DUALDMA

Nonzero if subsystem supports
gap-free continuous operation
with two DMA channels.

Triggered
Scan Mode

OLSSC_SUP_TRIGSCAN Nonzero if subsystem supports
triggered scans.

OLSSC_MAXMULTISCAN Maximum number of scans per
trigger or retrigger supported by
the subsystem.

OLSSC_SUP_RETRIGGER_
SCAN_PER_TRIGGER

Nonzero if subsystem supports
scan-per-trigger triggered scan
mode (retrigger is the same as
the initial trigger source).

OLSSC_SUP_RETRIGGER_
INTERNAL

Nonzero if subsystem supports
internal retriggered scan mode.
(retrigger source is on the device;
initial trigger is any available
trigger source).

OLSSC_SUP_RETRIGGER_
EXTRA

Nonzero if subsystem supports
retrigger-extra triggered scan
mode (retrigger can be any
supported trigger source; initial
trigger is any available trigger
source).

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns

Function Summary

2

2

2

2

2

2

2

2

2

Channel-Gain
List

OLSSC_CGLDEPTH Number of entries in channel-gain
list.

OLSSC_SUP_RANDOM_CGL Nonzero if subsystem supports
random channel-gain list setup.

OLSSC_SUP_SEQUENTIAL_
CGL

Nonzero if subsystem supports
sequential channel-gain list
setup.

OLSSC_SUP_
ZEROSEQUENTIAL_CGL

Nonzero if subsystem supports
sequential channel-gain list setup
starting with channel zero.

Channel-Gain
List (cont.)

OLSSC_SUP_
SIMULTANEOUS_SH

Nonzero if subsystem supports
simultaneous sample-and-hold
operations.The channel-gain list
must be set up with both a
sample channel and a hold
channel.

OLSSC_SUP_CHANNELLIST_
INHIBIT

Nonzero if subsystem supports
channel-gain list entry inhibition.

Gain OLSSC_SUP_PROGRAMGAIN Nonzero if subsystem supports
programmable gain.

OLSSC_NUMGAINS Number of gain selections.

OLSSC_SUP_SINGLEVALUE_
AUTORANGE

Nonzero if subsystem supports
autoranging operations.

Synchronous
Digital I/O

OLSSC_SUP_
SYNCHRONOUS_DIGITALIO

Nonzero if subsystem supports
synchronous digital output
operations.

OLSSC_MAXDIGITALIOLIST_
VALUE

Maximum value for synchronous
digital output channel list entry.

I/O Channels OLSSC_NUMCHANNELS Number of I/O channels.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns
15

Chapter 2

16
Channel Type OLSSC_SUP_SINGLEENDED Nonzero if subsystem supports
single-ended inputs.

OLSSC_MAXSECHANS Number of single-ended
channels.

OLSSC_SUP_DIFFERENTIAL Nonzero if subsystem supports
differential inputs.

OLSSC_MAXDICHANS Number of differential channels.

Filters OLSSC_SUP_
FILTERPERCHAN

Nonzero if subsystem supports
filtering per channel.

OLSSC_NUMFILTERS Number of filter selections.

Ranges OLSSC_NUMRANGES Number of range selections.

OLSSC_SUP_
RANGEPERCHANNEL

Nonzero if subsystem supports
different range settings for each
channel.

Resolution OLSSC_SUP_
SWRESOLUTION

Nonzero if subsystem supports
software-programmable
resolution.

OLSSC_NUMRESOLUTIONS Number of different resolutions
that you can program for the
subsystem.

Data
Encoding

OLSSC_SUP_BINARY Nonzero if subsystem supports
binary encoding.

OLSSC_SUP_2SCOMP Nonzero if subsystem supports
twos complement encoding.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns

Function Summary

2

2

2

2

2

2

2

2

2

Triggers OLSSC_SUP_SOFTTRIG Nonzero if subsystem supports
internal software trigger.

OLSSC_SUP_EXTERNTRIG Nonzero if subsystem supports
external digital (TTL) trigger.

OLSSC_SUP_
THRESHTRIGPOS

Nonzero if subsystem supports
positive analog threshold trigger.

OLSSC_SUP_
THRESHTRIGNEG

Nonzero if subsystem supports
negative analog threshold trigger.

OLSSC_SUP_
ANALOGEVENTTRIG

Nonzero if subsystem supports
analog event trigger.

OLSSC_SUP_
DIGITALEVENTTRIG

Nonzero if subsystem supports
digital event trigger.

OLSSC_SUP_
TIMEREVENTTRIG

Nonzero if subsystem supports
timer event trigger.

OLSSC_
NUMEXTRATRIGGERS

Number of extra trigger sources
supported.

Clocks OLSSC_SUP_INTCLOCK Nonzero if subsystem supports
internal clock.

OLSSC_SUP_EXTCLOCK Nonzero if subsystem supports
external clock.

OLSSC_NUMEXTRACLOCKS Number of extra clock sources.

OLSSC_SUP_
SIMULTANEOUS_CLOCKING

Non-zero if subsystem supports
simultaneous clocking of all
channels.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns
17

Chapter 2

18
Counter/Timer
Modes

OLSSC_SUP_CASCADING Nonzero if subsystem supports
cascading.

OLSSC_SUP_CTMODE_
COUNT

Nonzero if subsystem supports
event counting mode.

OLSSC_SUP_CTMODE_RATE Nonzero if subsystem supports
rate generation (continuous pulse
output) mode.

OLSSC_SUP_CTMODE_
ONESHOT

Nonzero if subsystem supports
(single) one-shot mode.

OLSSC_SUP_CTMODE_
ONESHOT_RPT

Nonzero if subsystem supports
repetitive one-shot mode.

OLSSC_SUP_CTMODE_
UP_DOWN

Nonzero if subsystem supports
up/down counting mode.

OLSSC_SUP_CTMODE_
MEASURE

Returns a value indicating how
edge-to-edge measurement
mode is supported (see page 90
for more information).

OLSSC_SUP_CTMODE_
CONT_MEASURE

Returns a value indicating how
edge-to-edge measurement
mode is supported (see page 90
for more information).

Counter/Timer
Pulse Output
Types

OLSSC_SUP_PLS_HIGH2LOW Nonzero if subsystem supports
high-to-low output pulses.

OLSSC_SUP_PLS_LOW2HIGH Nonzero if subsystem supports
low-to-high output pulses

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns

Function Summary

2

2

2

2

2

2

2

2

2

Counter/Timer
Gates

OLSSC_SUP_GATE_NONE Nonzero if subsystem supports
an internal (software) gate type.

OLSSC_SUP_GATE_HIGH_
LEVEL

Nonzero if subsystem supports
high-level gate type.

OLSSC_SUP_GATE_LOW_
LEVEL

Nonzero if subsystem supports
low-level gate type.

OLSSC_SUP_GATE_HIGH_
EDGE

Nonzero if subsystem supports
high-edge gate type.

OLSSC_SUP_GATE_LOW_
EDGE

Nonzero if subsystem supports
low-edge gate type.

OLSSC_SUP_GATE_LEVEL Nonzero if subsystem supports
level change gate type.

OLSSC_SUP_GATE_HIGH_
LEVEL_DEBOUNCE

Nonzero if subsystem supports
high-level gate type with input
debounce.

OLSSC_SUP_GATE_LOW_
LEVEL_DEBOUNCE

Nonzero if subsystem supports
low-level gate type with input
debounce.

OLSSC_SUP_GATE_HIGH_
EDGE_DEBOUNCE

Nonzero if subsystem supports
high-edge gate type with input
debounce.

OLSSC_SUP_GATE_LOW_
EDGE_DEBOUNCE

Nonzero if subsystem supports
low-edge gate type with input
debounce.

OLSSC_SUP_GATE_LEVEL_
DEBOUNCE

Nonzero if subsystem supports
level change gate type with input
debounce.

Interrupt OLSSC_SUP_INTERRUPT Nonzero if subsystem supports
interrupt-driven I/O.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns
19

Chapter 2

20
FIFOs OLSSC_SUP_FIFO Nonzero if subsystem has a FIFO
in the data path.

OLSSC_FIFO_SIZE_IN_K Size of the output FIFO, in
kilobytes.

Processors OLSSC_SUP_PROCESSOR Nonzero if subsystem has a
processor on device.

Software
Calibration

OLSSC_SUP_SWCAL Nonzero if subsystem supports
software calibration.

Table 3: Capabilities to Query with olDaGetSSCapsEx

Query about Capability Function Returns

Triggered
Scan Mode

OLSSCE_MAXRETRIGGER Maximum retrigger frequency
supported by the subsystem.

OLSSCE_MINRETRIGGER Minimum retrigger frequency
supported by the subsystem.

Clocks OLSSCE_BASECLOCK Base clock frequency supported
by the subsystem.

OLSSCE_MAXCLOCKDIVIDER Maximum external clock divider
supported by the subsystem.

OLSSCE_MINCLOCKDIVIDER Minimum external clock divider
supported by the subsystem.

OLSSCE_MAXTHROUGHPUT Maximum throughput supported
by the subsystem.

OLSSCE_MINTHROUGHPUT Minimum throughput supported
by the subsystem.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns

Function Summary

2

2

2

2

2

2

2

2

2

Initialization and Termination Functions

Once you have identified the available devices, use the Initialization
functions described in Table 4.

When you are finished with your program, use the Termination
functions listed in Table 5.

Table 4: Initialization Functions

Function Description

olDaInitialize Provides the means for the software to associate specific
requests with a particular device; it must be called before any
other function. This function loads a specified device's
software support and provides a “device handle” value. This
value is used to identify the device, and must be supplied as
an argument in all subsequent function calls that reference the
device.

olDaGetDASS Allocates a subsystem for use by returning a handle to the
subsystem.

Table 5: Termination Functions

Function Description

olDaReleaseDASS Releases the specified subsystem and relinquishes all
resources associated with it.

olDaTerminate Ends a session between your application and the specified
device. The device is returned to an inactive state and all
resources are returned to the system.
21

Chapter 2

22
Configuration Functions

Once you have initialized a subsystem and determined what its
capabilities are, set or get the value of the subsystem’s parameters by
calling the Configuration functions listed in Table 6.

Table 6: Configuration Functions

Feature Function Description

Data Flow
Mode

olDaSetDataFlow Sets the data flow mode.

olDaGetDataFlow Gets the data flow mode.

Windows
Messaging

olDaSetNotificationProcedure Specifies the notification
procedure to call for
information messages from
the subsystem.

olDaGetNotificationProcedure Gets the address of the
notification procedure.

olDaSetWndHandle Sets the window to which
information messages are
sent.

olDaGetWndHandle Gets the window handle.

Buffer Wrap
Mode

olDaSetWrapMode Sets the buffer processing
wrap mode.

olDaGetWrapMode Gets the buffer processing
wrap mode.

DMA olDaSetDmaUsage Sets the number of DMA
channels to be used.

olDaGetDmaUsage Gets the number of DMA
channels to be used.

Function Summary

2

2

2

2

2

2

2

2

2

Triggered
Scans

olDaSetTriggeredScanUsage Enables or disables triggered
scan mode.

olDaGetTriggeredScanUsage Gets the triggered scan
mode setting.

olDaSetMultiscanCount Sets the number of times to
scan per trigger/retrigger.

olDaGetMultiscanCount Gets the number of times to
scan per trigger/retrigger.

olDaSetRetriggerMode Sets the retrigger mode.

olDaGetRetriggerMode Gets the retrigger mode.

olDaSetRetriggerFrequency Sets the frequency of the
internal retrigger when using
internal retrigger mode.

olDaGetRetriggerFrequency Gets the frequency of the
internal retrigger when using
internal retrigger mode.

Channel-
Gain List

olDaSetChannelListSize Sets the size of the
channel-gain list.

olDaGetChannelListSize Gets the size of the
channel-gain list.

olDaSetChannelListEntry Sets the channel number of
a channel-gain list entry.

olDaGetChannelListEntry Gets the channel number of
a channel-gain list entry.

olDaSetGainListEntry Sets a gain value for a
channel-gain list entry.

olDaGetGainListEntry Gets the gain value of a
channel-gain list entry.

Table 6: Configuration Functions (cont.)

Feature Function Description
23

Chapter 2

24
Channel-
Gain List
(cont.)

olDaSetChannelListEntryInhibit Enables/disables channel
entry inhibition for a
channel-gain list entry.

olDaGetChannelListEntryInhibit Gets the channel entry
inhibition setting of a
channel-gain list entry.

olDaSetDigitalIOListEntry Sets the digital value to
output for the channel-gain
list entry.

olDaGetDigitalIOListEntry Gets the digital value to
output for the channel-gain
list entry.

Synchronous
Digital I/O

olDaSetSynchronousDigitalIOUsage Enables or disables
synchronous digital I/O
operations.

olDaGetSynchronousDigitalIOUsage Gets the synchronous digital
I/O setting.

Channel
Type

olDaSetChannelType Sets the channel
configuration type of a
channel.

olDaGetChannelType Gets the channel
configuration type of a
channel.

Filters olDaSetChannelFilter Sets the filter cut-off
frequency for a channel.

olDaGetChannelFilter Gets the filter cut-off
frequency for a channel.

Table 6: Configuration Functions (cont.)

Feature Function Description

Function Summary

2

2

2

2

2

2

2

2

2

Ranges olDaSetRange Sets the voltage range for a
subsystem.

olDaGetRange Gets the voltage range for a
subsystem.

olDaSetChannelRange Sets the voltage range for a
channel.

olDaGetChannelRange Gets the voltage range for a
channel.

Resolution olDaSetResolution Sets the number of bits of
resolution.

olDaGetResolution Gets the number of bits of
resolution.

Data
Encoding

olDaSetEncoding Sets the data encoding type.

olDaGetEncoding Gets the data encoding type.

Triggers olDaSetTrigger Sets the post-trigger source.

olDaGetTrigger Gets the post-trigger source.

olDaSetPretriggerSource Sets the pre-trigger source.

olDaGetPretriggerSource Gets the pre-trigger source.

olDaSetRetrigger Sets the retrigger source for
retrigger-extra retrigger
mode.

olDaGetRetrigger Gets the retrigger source for
retrigger-extra retrigger
mode.

Table 6: Configuration Functions (cont.)

Feature Function Description
25

Chapter 2

26
Clocks olDaSetClockSource Sets the clock source.

olDaGetClockSource Gets the clock source.

olDaSetClockFrequency Sets the frequency of the
internal clock or a
counter/timer’s output
frequency.

olDaGetClockFrequency Gets the frequency of the
internal clock or a
counter/timer’s output
frequency.

olDaSetExternalClockDivider Sets the input divider value
of the external clock.

olDaGetExternalClockDivider Gets the input divider value
of the external clock.

Counter/
Timers

olDaSetCTMode Sets the counter/timer mode.

olDaGetCTMode Gets the counter/timer mode.

olDaSetCascadeMode Sets the counter/timer
cascade mode.

olDaGetCascadeMode Gets the counter/timer
cascade mode.

olDaSetGateType Sets the gate type for the
counter/timer mode.

olDaGetGateType Gets the gate type for the
counter/timer mode.

olDaSetPulseType Sets the pulse type for the
counter/timer mode.

olDaGetPulseType Gets the pulse type for the
counter/timer mode.

Table 6: Configuration Functions (cont.)

Feature Function Description

Function Summary

2

2

2

2

2

2

2

2

2

Operation Functions

Once you have set the parameters of a subsystem, use the Operation
functions listed in Table 7.

Counter/
Timers
(cont.)

olDaSetPulseWidth Sets the pulse output width
for the counter/timer mode.

olDaGetPulseWidth Gets the pulse width for the
counter/timer mode.

olDaGetMeasureStartEdge Gets the start edge for
edge-to-edge measurement
operations.

olDaSetMeasureStartEdge Sets the start edge for
edge-to-edge measurement
operations.

olDaGetMeasureStopEdge Gets the stop edge for
edge-to-edge measurement
operations.

olDaSetMeasureStopEdge Sets the stop edge for
edge-to-edge measurement
operations.

Table 6: Configuration Functions (cont.)

Feature Function Description
27

Chapter 2

28
Table 7: Operation Functions

Operation Function Description

Single-Value
Operations

olDaGetSingleValue Reads a single input value from
the specified subsystem channel.

olDaGetSingleValueEx Determines the appropriate gain
for the range (called
autoranging), if desired, reads a
single input value from the
specified subsystem channel,
and returns the value as both a
code and a voltage.

olDaPutSingleValue Writes a single output value to
the specified subsystem channel.

Configure
Operation

olDaConfig After setting up a specified
subsystem using the
configuration functions,
configures the subsystem with
new parameter values.

Start/Stop
Operations

olDaStart Starts the operation for which the
subsystem has been configured.

olDaPause Pauses a continuous operation
on the subsystem.

olDaContinue Continues the previously paused
operation on the subsystem.

olDaStop Stops the operation and returns
the subsystem to the ready state.

olDaAbort Stops the subsystem’s operation
immediately.

olDaReset Causes the operation to
terminate immediately, and
re-initializes the subsystem.

Function Summary

2

2

2

2

2

2

2

2

2

Buffer
Operations

olDaGetBuffer Gets a completed buffer from the
done queue of the specified
subsystem.

olDaPutBuffer Assigns a data buffer for the
subsystem to the ready queue.

olDaFlushBuffers Transfers all data buffers held by
the subsystem to the done
queue.

olDaFlushFromBufferInprocess Copies all valid samples, up to a
given number of samples, from
the inprocess buffer to a
specified buffer. It also sets the
logical size of the buffer with
flushed data to the number of
samples copied and places the
inprocess buffer on the done
queue when it has been filled
with the remaining samples.

Counter/
Timer
Operations

olDaReadEvents Gets the number of events that
have been counted since the
subsystem was started with
olDaStart.

olDaMeasureFrequency Measures the frequency of the
input clock source for the
selected counter/timer.

Table 7: Operation Functions (cont.)

Operation Function Description
29

Chapter 2

30
Data Conversion Functions

Once you have acquired data, you can use the functions listed in
Table 8 to convert the data, if desired.

Simultaneous
Operations

olDaGetSSList Gets a handle to a simultaneous
start list.

olDaPutDassToSSList Puts the specified subsystem on
the simultaneous start list.

olDaSimultaneousPreStart Simultaneously prestarts
(performs setup operations on)
all subsystems on the specified
simultaneous start list.

olDaSimultaneousStart Simultaneously starts all
subsystems on the specified
simultaneous start list.

olDaReleaseSSList Releases the specified
simultaneous start list and
relinquishes all resources
associated with it.

Table 8: Data Conversion Functions

Function Description

olDaCodeToVolts Converts a code value to voltage value,
using the range, gain, resolution, and
encoding you specify.

olDaVoltsToCode Converts a voltage value to code value,
using the range, gain, resolution, and
encoding you specify.

Table 7: Operation Functions (cont.)

Operation Function Description

Function Summary

2

2

2

2

2

2

2

2

2

Data Management Functions
Data management functions the various layers of the DT-Open
Layers architecture together. The fundamental data object in the
DataAcq SDK is a buffer. All functions that create, manipulate, and
delete buffers are encapsulated in the data management portion of
the DataAcq SDK.

The following groups of data management functions are available:

• Buffer management functions, and

• List management functions.

The following subsections summarize these functions.

Note: For specific information about each of these functions, refer
to the DataAcq SDK online help. See page 4 for information on
launching the online help file.

Buffer Management Functions

The Buffer Management functions, listed in Table 9, are a set of
object-oriented tools intended for both application and system
programmers. When a buffer object is created, a buffer handle
(HBUF) is returned. This handle is used in all subsequent buffer
manipulation.
31

Chapter 2

32
Table 9: Buffer Management Functions

Function Description

olDmAllocBuffer Creates a buffer object of a specified number of
samples, where each sample is 2 bytes.

olDmCallocBuffer Creates a buffer object of a specified number of
samples of a specified size.

olDmCopyBuffer Copies data from the buffer to the specified array.

olDmCopyFromBuffer Copies data from the buffer to the specified array.

olDmCopyToBuffer Copies data from the specified array to the buffer.

olDmFreeBuffer Deletes a buffer object.

olDmGetBufferPtr Gets a pointer to the buffer data.

olDmGetBufferSize Gets the physical buffer size (in bytes).

olDmGetDataBits Gets the number of valid data bits.

olDmSetDataBits Sets the number of valid data bits.

olDmSetDataWidth Sets the width of each data sample.

olDmGetDataWidth Gets the width of each data sample.

olDmGetErrorString Gets the string corresponding to a data management
error code value.

olDmGetMaxSamples Gets the physical size of the buffer (in samples).

olDmGetTimeDateStamp Gets the time and date of the buffer's data.

olDmSetValidSamples Sets the number of valid samples in the buffer.

olDmGetValidSamples Gets the number of valid samples.

olDmGetVersion Gets the version of the data management library.

olDmMallocBuffer Creates a buffer object of a specified number of bytes.

olDmReAllocBuffer Reallocates a buffer object (alloc() interface).

Function Summary

2

2

2

2

2

2

2

2

2

Buffer List Management Functions

Buffer List Management functions, described in Table 10, provide a
straightforward mechanism for handling buffer lists, called queues,
that the software creates internally as well as other lists that you
might want to create. You are not required to use these functions;
however, you may find them helpful in your application. Buffer List
Management functions are particularly useful when dealing with a
device that acquires or outputs continuous data. Refer to Chapter 5
for more information on queues and other lists.

olDmReCallocBuffer Reallocates a buffer object (calloc() interface).

olDmReMallocBuffer Reallocates a buffer object (malloc() interface).

Table 10: Buffer List Management Functions

Function Description

olDmCreateList Creates a user-defined list object.

olDmEnumBuffers Enumerates all buffers on a queue or on a list
you created.

olDmEnumLists Enumerates all queues or lists.

olDmFreeList Deletes a user-defined list.

olDmGetBufferFromList Removes a buffer from the start of a queue or
user-defined list.

olDmGetListCount Gets the number of buffers on a queue or
user-defined list.

olDmGetListHandle Finds the queue or user-defined list that a
buffer is on.

Table 9: Buffer Management Functions (cont.)

Function Description
33

Chapter 2

34
olDmGetListIds Gets a description of the queue or list.

olDmPeekBufferFromList Gets the handle of the first buffer in the queue
or list but does not remove the buffer from the
queue or list.

olDmPutBufferToList Adds a buffer to the end of a queue or list.

Table 10: Buffer List Management Functions (cont.)

Function Description

3
Using the DataAcq SDK

System Operations . 37

Analog and Digital I/O Operations . 41

Counter/Timer Operations. 81

Simultaneous Operations . 110
35

Chapter 3

36
This chapter provides conceptual information to describe the
following operations provided by the DataAcq SDK:

• System operations, described starting on page 37;

• Analog and digital I/O operations, described starting on page 41;

• Counter/timer operations described starting on page 81; and

• Simultaneous operations starting on page 110.

Use this information with the reference information provided in the
DataAcq SDK online help when programming your data acquisition
devices; refer to page 4 for more information on launching this help
file.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

System Operations
This DataAcq SDK provides functions to perform the following
general system operations:

• Initializing a device,

• Specifying a subsystem,

• Configuring a subsystem,

• Handling errors,

• Handling messages, and

• Releasing a subsystem and driver.

The following subsections describe these operations in more detail.

Initializing a Device

To perform a data acquisition operation, your application program
must initialize the device driver for the device you are using with the
olDaInitialize function. This function returns a device handle, called
HDEV. You need one device handle for each device. Device handles
allow you to access more than one device in your system.

If you are unsure of the DT-Open Layers devices in your system, use
the olDaEnumBoards function, which lists the device name, device
driver name, and system resources used by each DT-Open Layers
device in your system, or the olDaGetBoardInfo function, which
returns the driver name, model name, and instance number of the
specified board, based on its board name.

Once you have initialized a device, you can specify a subsystem, as
described in the next section.
37

Chapter 3

38
Specifying a Subsystem

The DataAcq SDK allows you to define the following subsystems:

• Analog input (A/D subsystem),

• Analog output (D/A subsystem),

• Digital input (DIN subsystem),

• Digital output (DOUT subsystem),

• Counter/timer (C/T subsystem), and

• Serial port (SRL subsystem).

Note: The SRL subsystem is provided for future use. It is not
currently used by any DT-Open Layers compatible data acquisition
device.

A device can have multiple elements of the same subsystem type.
Each of these elements is a subsystem of its own and is identified by a
subsystem type and element number. Element numbering is
zero-based; that is, the first instance of the subsystem is called
element 0, the second instance of the subsystem is called element 1,
and so on. For example if two digital I/O ports are on your device,
two DIN or DOUT subsystems are available, differentiated as
element 0 and element 1.

Once you have initialized the device driver for the specified device,
you must specify the subsystem/element on the specified device
using the olDaGetDASS function. This function returns a subsystem
handle, called HDASS. To access a subsystem, you need one
subsystem handle for each subsystem. Subsystem handles allow you
to access more than one subsystem on a device.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

If you are unsure of the subsystems on a device, use the
olDaEnumSubSystems or olDaGetDevCaps function.
olDaEnumSubSystems lists the names, types, and number of
elements for all subsystems supported by the specified device.
olDaGetDevCaps returns the number of elements for a specified
subsystem type on a specified device.

Note: You can call any function that contains HDASS as a
parameter for any subsystem. In some cases, however, the
subsystem may not support the particular capability. If this occurs,
the subsystem returns an error code indicating that it does not
support that function.

Once you have specified a subsystem/element, you can configure the
subsystem and perform a data acquisition operation, as described in
the following section.

Configuring a Subsystem

You configure a subsystem by setting its parameters or capabilities.
For more information on the capabilities you can query and specify,
refer to the following:

• For analog and digital I/O operations, refer to page 41;

• For the counter/timer operations, refer to page 81, and

• For simultaneous operations, refer to page 110.

Once you have set up the parameters appropriately for the operation
you want to perform, call the olDaConfig function to configure the
parameters before performing the operation.
39

Chapter 3

40
Handling Errors

An error code is returned by each function in the DataAcq SDK. An
error code of 0 indicates that the function executed successfully (no
error). Any other error code indicates that an error occurred. Your
application program should check the value returned by each
function and perform the appropriate action if an error occurs.

Refer to the DataAcq SDK online help for detailed information on the
returned error codes and how to proceed should they occur.

Handling Messages

The data acquisition device notifies your application of buffer
movement and other events by generating messages.

To determine if the subsystem can post messages, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_POSTMESSAGE. If this function returns a nonzero
value, the capability is supported.

Specify the window to receive messages using the
olDaSetWndHandle function or the procedure to handle these
messages using the olDaSetNotificationProcedure function.

Refer to the DataAcq SDK online help for more information on the
messages that can be generated and how to proceed should they
occur.

Releasing the Subsystem and the Driver

When you are finished performing data acquisition operations,
release the simultaneous start list, if used, using the
olDaReleaseSSList function. Then, release each subsystem using the
olDaReleaseDASS function. Release the driver and terminate the
session using the olDaTerminate function.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Analog and Digital I/O Operations
The DataAcq SDK defines the following capabilities that you can
query and/or specify for analog and/or digital I/O operations:

• Data encoding,

• Resolution,

• Channels (including channel type, channel list, channel inhibit
list, and synchronous digital I/O list),

• Ranges,

• Gains,

• Filters,

• Data flow modes,

• Triggered scan mode,

• Clock sources,

• Trigger sources,

• Buffers, and

• DMA and interrupt resources.

The following subsections describe these capabilities in more detail.

Data Encoding

For A/D and D/A subsystems only, the DataAcq SDK defines two
data encoding types: binary and twos complement.

To determine the data encoding types supported by the subsystem,
use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_BINARY for binary data encoding or
OLSSC_SUP_2SCOMP for twos complement data encoding. If this
function returns a nonzero value, the capability is supported. Use the
olDaSetEncoding function to specify the data encoding type.
41

Chapter 3

42
Resolution

To determine if the subsystem supports software-programmable
resolution, use the olDaGetSSCaps function, specifying the
capability OLSSC_SUP_SWRESOLUTION. If this function returns a
nonzero value, the capability is supported.

To determine the number of resolution settings supported by the
subsystem, use the olDaGetSSCaps function, specifying the
capability OLSSC_NUMRESOLUTION. To list the actual bits of
resolution supported, use the olDaEnumSSCaps function, specifying
the OL_ENUM_RESOLUTION capability.

Use the olDaSetResolution function to specify the number of bits of
resolution to use for the subsystem.

Channels

Each subsystem (or element of a subsystem type) can have multiple
channels. To determine how many channels the subsystem supports,
use the olDaGetSSCaps function, specifying the
OLSSC_NUMCHANNELS capability.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Specifying the Channel Type

The DataAcq SDK supports the following channel types:

• Single-ended - Use this configuration when you want to
measure high-level signals, noise is insignificant, the source of
the input is close to the device, and all the input signals are
referred to the same common ground.

To determine if the subsystem supports the single-ended channel
type, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_SINGLEENDED capability. If this function returns
a nonzero value, the capability is supported.

To determine how many single-ended channels are supported by
the subsystem, use the olDaGetSSCaps function, specifying the
OLSSC_MAXSECHANS capability.

Specify the channel type as single-ended for each channel using
the olDaSetChannelType function.

• Differential - Use this configuration when you want to measure
low-level signals (less than 1 V), you are using an A/D converter
with high resolution (greater than 12 bits), noise is a significant
part of the signal, or common-mode voltage exists.

To determine if the subsystem supports the differential channel
type, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_DIFFERENTIAL capability. If this function returns
a nonzero value, the capability is supported.

To determine how many differential channels are supported by
the subsystem, use the olDaGetSSCaps function, specifying the
OLSSC_MAXDICHANS capability.

Specify the channel type as differential for each channel using the
olDaSetChannelType function.
43

Chapter 3

44
Note: For pseudo-differential analog inputs, specify the
single-ended channel type; in this case, how you wire these signals
determines the configuration. This option provides less noise
rejection than the differential configuration, but twice as many
analog input channels.

For older model devices, this setting is jumper-selectable and must
be specified in the driver configuration dialog.

The channel list is not used to set the channel type.

 The following subsections describe how to specify channels.

Specifying a Single Channel

The simplest way to acquire data from or output data to a single
channel is to specify the channel for a single-value operation; refer to
page 54 for more information on single-value operations.

You can also specify a single channel using a channel list, described
in the next section.

Specifying One or More Channels

You acquire data from or output data to one or more channels using a
channel list.

The DataAcq SDK provides features that allow you to group the
channels in the list sequentially (either starting with 0 or with any
other analog input channel) or randomly. In addition, the DataAcq
SDK allows you to specify a single channel or the same channel more
than once in the list. Your device, however, may limit the order in
which you can enter a channel in the channel list.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

To determine how the channels can be ordered in the channel list for
your subsystem, use the olDaGetSSCaps function, specifying the
OLSSC_RANDOM_CGL capability. If this function returns a nonzero
value, the capability is supported; you can order the channels in the
channel list in any order, starting with any channel. If this capability
is not supported, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_SEQUENTIAL_CGL capability. If this function returns
a nonzero value, the capability is supported; you must order the
channels in the channel list in sequential order, starting with any
channel. If this capability is not supported, use the olDaGetSSCaps
function, specifying the OLSSC_SUP_ZEROSEQUENTIAL_CGL
capability. If this function returns a nonzero value, the capability is
supported; you must order the channels in the channel list in
sequential order, starting with channel 0.

To determine if the subsystem supports simultaneous
sample-and-hold mode use the olDaGetSSCaps function, specifying
the OLSSC_SUP_SIMULTANEOUS_SH capability. If this function
returns a nonzero value, the capability is supported. You must enter
at least two channels in the channel list. Generally, the first channel is
the sample channel and the remaining channels are the hold
channels.

The following subsections describe how to specify channels in a
channel list.

Specifying the Channel List Size

To determine the maximum size of the channel list for the subsystem,
use the olDaGetSSCaps function, specifying the
OLSSC_CGLDEPTH capability.

Use the olDaSetChannelListSize function to specify the size of the
channel list.
45

Chapter 3

46
Note: The OLSSC_CGLDEPTH capability specifies the maximum
size of the channel list, channel inhibit list, synchronous digital I/O
list, and gain list.

Specifying the Channels in the Channel List

Use the olDaSetChannelListEntry function to specify the channels in
the channel list in the order you want to sample them or output data
from them.

The channels are sampled or output in order from the first entry to
the last entry in the channel list. Channel numbering is zero-based;
that is, the first entry in the channel list is entry 0, the second entry is
entry 1, and so on.

For example, if you want to sample channel 4 twice as frequently as
channels 5 and 6, you could program the channel list as follows:

In this example, channel 4 is sampled first, followed by channel 5,
channel 4 again, then channel 6.

Channel-List
Entry Channel Description

0 4 Sample channel 4.

1 5 Sample channel 5.

2 4 Sample channel 4 again.

3 6 Sample channel 6.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Inhibiting Channels in the Channel List

If supported, you can set up a channel-inhibit list; this feature is
useful if you want to discard values acquired from specific channels,
as is typical in simultaneous sample-and-hold applications.

To determine if a subsystem supports a channel-inhibit list, use the
olDaGetSSCaps function, specifying the
OLSSC_SUP_CHANNELLIST_INHIBIT capability. If this function
returns a nonzero value, the capability is supported.

Using the olDaSetChannelListEntryInhibit function, you can enable
or disable inhibition for each entry in the channel list. If enabled, the
acquired value is discarded after the channel entry is sampled; if
disabled, the acquired value is stored after the channel entry is
sampled.

In the following example, the values acquired from channels 11 and 9
are discarded and the values acquired from channels 10 and 8 are
stored.

Channel-List
Entry Channel

Channel Inhibit
Value Description

0 11 True Sample channel 11 and discard
the value.

1 10 False Sample channel 10 and store the
value.

2 9 True Sample channel 9 and discard the
value.

3 8 False Sample channel 8 and store the
value.
47

Chapter 3

48
Specifying Synchronous Digital I/O Values in the Channel List

If supported, you can set up a synchronous digital I/O list; this
feature is useful if you want to write a digital output value to
dynamic digital output channels when an analog input channel is
sampled.

To determine if the subsystem supports synchronous (dynamic)
digital output operations, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_SYNCHRONOUSDIGITALIO capability.
If this function returns a nonzero value, the capability is supported.

Use the olDaSetSynchronousDigitalIOUsage function to enable or
disable synchronous (dynamic) digital output operation for a
specified subsystem.

Once you enable a synchronous digital output operation, specify the
values to write to the synchronous (dynamic) digital output channels
using the olDaSetDigitalIOListEntry function for each entry in the
channel list.

To determine the maximum digital output value that you can specify,
use the olDaGetSSCaps function, specifying the
OLSSC_MAXDIGITALIOLIST_VALUE capability.

As each entry in the channel list is scanned, the corresponding value
in the synchronous digital I/O list is output to the dynamic digital
output channels.

In the following example, when channel 7 is sampled, a value of 1 is
output to the dynamic digital output channels. When channel 5 is
sampled, a value of 1 is output to the dynamic digital output
channels. When channels 6 and 4 are sampled, a value of 0 is output
to the dynamic digital output channels.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

If your device had two dynamic digital output channels and a value
of 1 is output (01 in binary format), a value of 1 is written to dynamic
digital output channel 0 and a value of 0 is written to dynamic digital
output channel 1. Similarly, if a value of 2 is output (10 in binary
format), a value of 0 is written to dynamic digital output channel 0
and a value of 1 is written to dynamic digital output channel 1.

Note: If you are controlling sample-and-hold devices with these
channels, you may need to program the first channel at the sample
logic level and the following channels at the hold logic level; see
your device/device driver documentation for details.

Channel-List
Entry Channel

Synchronous
Digital I/O Value Description

0 7 1 Sample channel 7 and output a
value of 1 to the dynamic digital
output channels.

1 5 1 Sample channel 5 and output a
value of 1 to the dynamic digital
output channels.

2 6 0 Sample channel 6 and output a
value of 0 to the dynamic digital
output channels.

3 4 0 Sample channel 4 and output a
value of 0 to the dynamic digital
output channels.
49

Chapter 3

50
Ranges

The range capability applies to A/D and D/A subsystems only.

Depending on your subsystem, you can set the range for the entire
subsystem or the range for each channel.

To determine if the subsystem supports the range-per-channel
capability, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_RANGEPERCHANNEL capability. If this function
returns a nonzero value, the capability is supported.

To determine how many ranges the subsystem supports, use the
olDaGetSSCaps function, specifying the OLSSC_NUMRANGES
capability.

To list the minimum and maximum ranges supported by the
subsystem, use the olDaEnumSSCaps function, specifying the
OL_ENUM_RANGES capability.

Use olDaSetRange to specify the range for a subsystem. If your
subsystem supports the range-per-channel capability, use
olDaSetChannelRange to specify the range for each channel.

Notes: The channel list is not used to set the range for a channel.

For older device models, the range is jumper-selectable and must be
specified in the driver configuration dialog.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Gains

The range divided by the gain determines the effective range for the
entry in the channel list. For example, if your device provides a range
of ±10 V and you want to measure a ±1.5 V signal, specify a range of
±10 V and a gain of 4; the effective input range for this channel is then
±2.5 V (10/4), which provides the best sampling accuracy for that
channel.

The way you specify gain depends on how you specified the
channels, as described in the following subsections.

Note: If your device supports autoranging for single-value
operations, the device can determine the appropriate gain for your
range rather than you having to specify it. Refer to page 54 for more
information on autoranging.

Specifying the Gain for a Single Channel

The simplest way to specify gain for a single channel is to specify the
gain in a single-value operation; refer to page 54 for more
information on single-value operations.

You can also specify the gain for a single channel using a gain list,
described in the next section.

Specifying the Gain for One or More Channels

You can specify the gain for one or more channels using a gain list.
The gain list parallels the channel list. (The two lists together are
often referred to as the channel-gain list or CGL.)
51

Chapter 3

52
To determine if the subsystem supports programmable gain, use the
olDaGetSSCaps function, specifying the
OLSSC_SUP_PROGRAMGAIN capability. If this function returns a
nonzero value, the capability is supported.

To determine how many gains the subsystem supports, use the
olDaGetSSCaps function, specifying the OLSSC_NUMGAINS
capability.

To list the gains supported by the subsystem, use the
olDaEnumSSCaps function, specifying the OL_ENUM_GAINS
capability.

Specify the gain for each entry in the channel list using the
olDaSetGainListEntry function.

In the following example, a gain of 2 is applied to channel 5, a gain of
4 is applied to channel 6, and a gain of 1 is applied to channel 7.

Note: If your subsystem does not support programmable gain,
enter a value of 1 for all entries.

If your subsystem does not support the gain-per-channel capability,
set all entries in the gain list to the same value.

Channel-List
Entry Channel Gain Description

0 5 2 Sample channel 5 using a gain of 2.

1 6 4 Sample channel 6 using a gain of 4.

2 7 1 Sample channel 7 using a gain of 1.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Filters

This capability applies to A/D and D/A subsystems only.

Depending on your subsystem, you can specify a filter for each
channel. To determine if the subsystem supports a filter for each
channel, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_FILTERPERCHAN capability. If this function returns a
nonzero value, the capability is supported.

To determine how many filters the subsystem supports, use the
olDaGetSSCaps function, specifying the OLSSC_NUMFILTERS
capability.

To list the cut-off frequency of all filters supported by the subsystem,
use the olDaEnumSSCaps function, specifying the
OL_ENUM_FILTERS capability.

If the subsystem supports filtering per channel, specify the filter for
each channel using the olDaSetChannelFilter function. The filter is
equal to or greater than a cut-off frequency that you supply.

Notes: The channel list is not used to set the filter for a channel.

If the subsystem supports more than one filter but does not support
a filter per channel, the filter specified for channel 0 is used for all
channels.
53

Chapter 3

54
Data Flow Modes

The DataAcq SDK defines the following data flow modes for A/D,
D/A, DIN, and DOUT subsystems:

• Single value, and

• Continuous (post-trigger, pre-trigger, and about-trigger).

The following subsections describe these data flow modes in detail.

Single-Value Operations

Single-value operations are the simplest to use but offer the least
flexibility and efficiency. In a single-value operation, a single data
value is read or written at a time. The result is returned immediately.

To determine if the subsystem supports single-value operations, use
the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_SINGLEVALUE. If this function returns a nonzero
value, the capability is supported.

Specify the operation mode as OL_DF_SINGLEVALUE using the
olDaSetDataFlow function.

Some devices also support autoranging for single-value analog input
operations, where the device determines the best gain for the
specified range. To determine if the subsystem supports autoranging
for single-value operations, use the olDaGetSSCaps function,
specifying the capability
OLSSC_SUP_SINGLEVALUE_AUTORANGE. If this function
returns a nonzero value, the capability is supported.

If autoranging is supported, use the olDaGetSingleValueEx function
to specify the range and analog input channel and to have the
software determine the best gain for the range. The device then
acquires the data from the specified channel and returns the result
immediately in both counts and engineering units (such as voltage).

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

If autoranging is not supported, use the olDaGetSingleValue
function to acquire a single value from an analog or digital input
channel. You specify the channel and gain, then the device acquires
the data from the specified channel and returns the result
immediately, in counts. If you later want to convert the count value to
engineering units, you can use the olDaCodeToVolts function.
Similarly, if you want to convert the engineering units to counts, you
can use the olDaVoltsToCode function.

To output a single value to an analog or digital output channel, use
the olDaPutSingleValue function. You specify the channel, gain, and
value, and the device outputs the single value to the specified analog
or digital channel immediately.

For a single-value operation, you cannot specify a channel-gain list,
clock source, trigger source, DMA channel, or buffer.

Single-value operations stop automatically when finished; you
cannot stop a single-value operation manually.

Continuous Operations

For a continuous operation, you can specify any supported
subsystem capability, including a channel-gain list, clock source,
trigger source, pre-trigger source, retrigger source, DMA channel,
and buffer.

Call the olDaStart function to start a continuous operation.

To stop a continuous operation, perform either an orderly stop using
the olDaStop function or an abrupt stop using the olDaAbort or
olDaReset function.
55

Chapter 3

56
In an orderly stop (olDaStop), the device finishes acquiring the
specified number of samples, stops all subsequent acquisition, and
transfers the acquired data to a buffer on the done queue; all
subsequent triggers or retriggers are ignored. (Refer to page 71 for
more information on buffers and queues.)

In an abrupt stop (olDaAbort), the device stops acquiring samples
immediately; the acquired data is transferred to a buffer and put on
the done queue; however, the buffer may not be completely filled. All
subsequent triggers or retriggers are ignored.

The olDaReset function reinitializes the subsystem after stopping it
abruptly.

Note: For analog output operations, you can also stop the operation
by not sending new data to the device. The operation stops when no
more data is available.

Some subsystems also allow you to pause the operation using the
olDaPause function and to resume the paused operation using the
olDaContinue function. To determine if pausing is supported, use
the olDaGetSSCaps function, specifying the OLSSC_SUP_PAUSE
capability. If this function returns a nonzero value, the capability is
supported.

The following continuous modes are supported by the DataAcq SDK:
continuous (post-trigger), continuous pre-trigger, and continuous
about-trigger. These modes are described in the following
subsections.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Continuous Post-Trigger Mode

Use continuous post-trigger when you want to acquire or output data
continuously when a trigger occurs.

To determine if the subsystem supports continuous (post-trigger)
operations, use the olDaGetSSCaps function, specifying the
capability OLSSC_SUP_CONTINUOUS. If this function returns a
nonzero value, the capability is supported.

For continuous (post-trigger) mode, specify the operation mode as
OL_DF_CONTINUOUS using the olDaSetDataFlow function.

Use the olDaSetTrigger function to specify the trigger source that
starts the operation. Refer to page 67 for more information on
supported trigger sources.

When the post-trigger event is detected, the device cycles through the
channel list, acquiring and/or outputting the value for each entry in
the channel list; this process is defined as a scan. The device then
wraps to the start of the channel list and repeats the process
continuously until either the allocated buffers are filled or you stop
the operation. Refer to page 44 for more information on channel lists;
refer to page 71 for more information on buffers.

Figure 1 illustrates continuous post-trigger mode using a channel list
of three entries: channel 0, channel 1, and channel 2. In this example,
post-trigger analog input data is acquired on each clock pulse of the
A/D sample clock; refer to page 65 for more information on clock
sources. The device wraps to the beginning of the channel list and
repeats continuously.
57

Chapter 3

58
Figure 1: Continuous Post-Trigger Mode

Continuous Pre-Trigger Mode

Use continuous pre-trigger mode when you want to acquire data
before a specific external event occurs.

To determine if the subsystem supports continuous pre-trigger mode,
use the olDaGetSSCaps function, specifying the
_SUP_CONTINUOUS_PRETRIG capability. If this function returns a

nonzero value, the capability is supported.

Specify the operation mode as OL_DF_CONTINUOUS_PRETRIG
using the olDaSetDataFlow function.

Pre-trigger acquisition starts when the device detects the pre-trigger
source and stops when the device detects an external post-trigger
source, indicating that the first post-trigger sample was acquired (this
sample is ignored).

Use the olDaSetPretriggerSource function to specify the trigger
source that starts the pre-trigger operation (generally this is a
software trigger). Specify the post-trigger source that stops the
operation using olDaSetTrigger. Refer to page 67 and to your
device/driver documentation for supported pre-trigger and
post-trigger sources.

Post-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D Sample
Clock

Post-trigger data acquired
continuously

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Figure 2 illustrates continuous pre-trigger mode using a channel list
of three entries: channel 0, channel 1, and channel 2. In this example,
pre-trigger analog input data is acquired on each clock pulse of the
A/D sample clock; refer to page 65 for more information on clock
sources. The device wraps to the beginning of the channel list and the
acquisition repeats continuously until the post-trigger event occurs.
When the post-trigger event occurs, acquisition stops.

Figure 2: Continuous Pre-Trigger Mode

Continuous About-Trigger Mode

Use continuous about-trigger mode when you want to acquire data
both before and after a specific external event occurs. This operation
is equivalent to doing both a pre-trigger and a post-trigger
acquisition.

To determine if the subsystem supports continuous about-trigger
mode, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_CONTINUOUS_ABOUTTRIG capability. If this
function returns a nonzero value, the capability is supported.

Specify the operation mode as OL_DF_CONTINUOUS_ABOUTTRIG
using the olDaSetDataFlow function.

Pre-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D
Sample
Clock

Post-trigger event occurs

Chan 0

Pre-trigger data acquired
Acquisition stops
59

Chapter 3

60
The about-trigger acquisition starts when the device detects the
pre-trigger source. When it detects an external post-trigger source,
the device stops acquiring pre-trigger data and starts acquiring
post-trigger data.

Use the olDaSetPretriggerSource function to specify the pre-trigger
source that starts the pre-trigger operation (this is generally a
software trigger) and olDaSetTrigger to specify the trigger source
that stops the pre-trigger acquisition and starts the post-trigger
acquisition. Refer to page 67 and to your device/driver
documentation for supported pre-trigger and post-trigger sources.

The about-trigger operation stops when the specified number of
post-trigger samples has been acquired or when you stop the
operation.

Figure 3 illustrates continuous about-trigger mode using a channel
list of three entries: channel 0, channel 1, and channel 2. In this
example, pre-trigger analog input data is acquired on each clock
pulse of the A/D sample clock. The device wraps to the beginning of
the channel list and the acquisition repeats continuously until the
post-trigger event occurs. When the post-trigger event occurs,
post-trigger acquisition begins on each clock pulse of the A/D
sample clock; refer to page 65 for more information on clock sources.
The device wraps to the beginning of the channel list and acquires
post-trigger data continuously.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Figure 3: Continuous About-Trigger Mode

Triggered Scan Mode

In triggered scan mode, the device scans the entries in a channel-gain
list a specified number of times when it detects the specified trigger
source, acquiring the data for each entry that is scanned.

To determine if the subsystem supports triggered scan mode, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_TRIGSCAN
capability. If this function returns a nonzero value, the capability is
supported. Note that you cannot use triggered scan mode with
single-value operations.

To enable (or disable) triggered scan mode, use the
olDaSetTriggeredScanUsage function.

To determine the maximum number of times that the device can scan
the channel-gain list per trigger, use the olDaGetSSCaps function,
specifying the OLSSC_MAXMULTISCAN capability.

Use the olDaSetMultiscanCount function to specify the number of
times to scan the channel-gain list per trigger.

Pre-trigger event occurs

Chan 0
Chan 1

Chan 0

. . .

A/D
Sample
Clock

Post-trigger event occurs

Pre-trigger data acquired Post-trigger data acquired

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1
61

Chapter 3

62
The DataAcq SDK defines the following retrigger modes for a
triggered scan; these retrigger modes are described in the following
subsections:

• Scan-per-trigger,

• Internal retrigger, and

• Retrigger extra.

Note: If your device driver supports it, retrigger extra is the
preferred triggered scan mode.

Scan-Per-Trigger Mode

Use scan-per-trigger mode if you want to accurately control the
period between conversions of individual channels and retrigger the
scan based on an internal or external event. In this mode, the
retrigger source is the same as the initial trigger source.

To determine if the subsystem supports scan-per-trigger mode, use
the olDaGetSSCaps function, specifying the
OLSSC_SUP_RETRIGGER_SCAN_PER_TRIGGER capability. If this
function returns a nonzero value, the capability is supported.

Specify the retrigger mode as scan-per-trigger using the
olDaSetRetriggerMode function.

When it detects an initial trigger (post-trigger mode only), the device
scans the channel-gain list a specified number of times (determined
by the olDaSetMultiscanCount function), then stops. When the
external retrigger occurs, the process repeats.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

The conversion rate of each channel in the scan is determined by the
frequency of the A/D sample clock; refer to page 65 for more
information on clock sources. The conversion rate of each scan is
determined by the period between retriggers; therefore, it cannot be
accurately controlled. The device ignores external triggers that occur
while it is acquiring data. Only retrigger events that occur when the
device is waiting for a trigger are detected and acted on. Some
devices may generate an OLDA_WM_TRIGGER_ERROR message.

Internal Retrigger Mode

Use internal retrigger mode if you want to accurately control both the
period between conversions of individual channels in a scan and the
period between each scan.

To determine if the subsystem supports internal retrigger mode, use
the olDaGetSSCaps function, specifying the
OLSSC_SUP_RETRIGGER_INTERNAL capability. If this function
returns a nonzero value, the capability is supported.

Specify the retrigger mode as internal using the
olDaSetRetriggerMode function.

The conversion rate of each channel in the scan is determined by the
frequency of the A/D sample clock; refer to page 65 for more
information on clock sources. The conversion rate between scans is
determined by the frequency of the internal retrigger clock on the
device. You specify the frequency on the internal retrigger clock
using the olDaSetRetriggerFrequency function.

When it detects an initial trigger (pre-trigger source or post-trigger
source), the device scans the channel-gain list a specified number of
times (determined by the olDaSetMultiscanCount function), then
stops. When the internal retrigger occurs, determined by the
frequency of the internal retrigger clock, the process repeats.
63

Chapter 3

64
It is recommended that you set the retrigger frequency as follows:

Min. Retrigger = # of CGL entries x # of CGLs per trigger + 2 µs
Period A/D sample clock frequency

Max. Retrigger = 1
Frequency Min. Retrigger Period

For example, if you are using 512 channels in the channel-gain list
(CGL), scanning the channel-gain list 256 times every trigger or
retrigger, and using an A/D sample clock with a frequency of 1 MHz,
set the maximum retrigger frequency to 7.62 Hz, since

7.62 Hz = 1_______
(512 * 256) +2 µs

1 MHz

Retrigger Extra Mode

Use retrigger extra mode if you want to accurately control the period
between conversions of individual channels and retrigger the scan on
a specified retrigger source; the retrigger source can be any of the
supported trigger sources.

To determine if the subsystem supports retrigger extra mode, use the
olDaGetSSCaps function, specifying the
OLSSC_SUP_RETRIGGER_EXTRA capability. If this function returns
a nonzero value, the capability is supported.

Specify the retrigger mode as retrigger extra using the
olDaSetRetriggerMode function.

Use the olDaSetRetrigger function to specify the retrigger source.
Refer to page 67 and to your device/device driver documentation for
supported retrigger sources.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

The conversion rate of each channel in the scan is determined by the
frequency of the A/D sample clock; refer to page 65 for more
information on clock sources. The conversion rate of each scan is
determined by the period between retriggers.

If you are using an internal retrigger, specify the period between
retriggers using olDaSetRetriggerFrequency (see page 63). If you are
using an external retrigger, the period between retriggers cannot be
accurately controlled. The device ignores external triggers that occur
while it is acquiring data. Only retrigger events that occur when the
device is waiting for a trigger are detected and acted on. Some
devices may generate an OLDA_WM_TRIGGER_ERROR message.

Clock Sources

The DataAcq SDK defines internal, external, and extra clock sources,
described in the following subsections. Note that you cannot specify
a clock source for single-value operations.

Internal Clock Source

The internal clock is the clock source on the device that paces data
acquisition or output for each entry in the channel-gain list.

To determine if the subsystem supports an internal clock, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_INTCLOCK
capability. If this function returns a nonzero value, the capability is
supported.

Specify the clock source as internal using the olDaSetClockSource
function. Then, use the olDaSetClockFrequency function to specify
the frequency at which to pace the operation.
65

Chapter 3

66
To determine the maximum frequency that the subsystem supports,
use the olDaGetSSCapsEx function, specifying the
OLSSCE_MAXTHROUGHPUT capability. To determine the
minimum frequency that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the
OLSSCE_MINTHROUGHPUT capability.

Note: According to sampling theory (Nyquist Theorem), you
should specify a frequency for an A/D signal that is at least twice as
fast as the input’s highest frequency component. For example, to
accurately sample a 20 kHz signal, specify a sampling frequency of
at least 40 kHz. Doing so avoids an error condition called aliasing, in
which high frequency input components erroneously appear as
lower frequencies after sampling.

External Clock Source

The external clock is a clock source attached to the device that paces
data acquisition or output for each entry in the channel-gain list. This
clock source is useful when you want to pace at rates not available
with the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external clock, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_EXTCLOCK
capability. If this function returns a nonzero value, the capability is
supported.

Specify the clock source as external using the olDaSetClockSource
function. Then, use the olDaSetExternalClockDivider to specify the
clock divider used to determine the frequency at which to pace the
operation; the clock input source divided by the clock divider
determines the frequency of the clock signal.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

To determine the maximum clock divider that the subsystem
supports, use the olDaGetSSCapsEx function, specifying the
OLSSCE_MAXCLOCKDIVIDER capability. To determine the
minimum clock divider that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the
OLSSCE_MINCLOCKDIVIDER capability.

Extra Clock Source

Your device driver may define extra clock sources that you can use to
pace acquisition or output operations.

To determine how many extra clock sources are supported by your
subsystem, use the olDaGetSSCaps function, specifying the
OLSSC_NUMEXTRACLOCKS capability. Refer to your
device/driver documentation for a description of the extra clock
sources.

The extra clock sources may be internal or external. Refer to the
previous sections for information on how to specify internal and
external clocks and their frequencies or clock dividers.

Trigger Sources

The DataAcq SDK defines the following trigger sources:

• Software (internal) trigger,

• External digital (TTL) trigger,

• External analog threshold (positive) trigger,

• External analog threshold (negative) trigger,

• Analog event trigger,

• Digital event trigger,

• Timer event trigger, and

• Extra trigger.
67

Chapter 3

68
To specify a post-trigger source, use the olDaSetTrigger function;
refer to page 57 for more information. To specify a pre-trigger source,
use the olDaSetPretriggerSource function; see page 58 for more
information. To specify a retrigger source, use the olDaSetRetrigger
function; see page 64 for more information.

The following subsections describe these trigger sources. Note that
you cannot specify a trigger source for single-value operations.

Software (Internal) Trigger Source

A software trigger occurs when you start the operation; internally,
the computer writes to the device to begin the operation.

To determine if the subsystem supports a software trigger, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_SOFTTRIG. If this function returns a nonzero value, the
capability is supported.

External Digital (TTL) Trigger Source

An external digital trigger is a digital (TTL) signal attached to the
device.

To determine if the subsystem supports an external digital trigger,
use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_EXTERNTRIG. If this function returns a nonzero value,
the capability is supported.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

External Analog Threshold (Positive) Trigger Source

An external analog threshold (positive) trigger is generally either an
analog signal from an analog input channel or an external analog
signal attached to the device. An analog trigger occurs when the
device detects a transition from a negative to positive value that
crosses a threshold value. The threshold level is generally set using a
D/A subsystem on the device.

To determine if the subsystem supports analog threshold triggering
(positive polarity), use the olDaGetSSCaps function, specifying the
capability OLSSC_SUP_THRESHTRIGPOS. If this function returns a
nonzero value, the capability is supported.

Refer to your device/device driver documentation for a description
of this trigger source.

External Analog Threshold (Negative) Trigger Source

An external analog threshold (negative) trigger is generally either an
analog signal from an analog input channel or an external analog
signal attached to the device. An analog trigger event occurs when
the device detects a transition from a positive to negative value that
crosses a threshold value. The threshold level is generally set using a
D/A subsystem on the device.

To determine if the subsystem supports analog threshold triggering
(negative polarity), use the olDaGetSSCaps function, specifying the
capability OLSSC_SUP_THRESHTRIGNEG. If this function returns a
nonzero value, the capability is supported.

Refer to your device/device driver documentation for a description
of this trigger source.
69

Chapter 3

70
Analog Event Trigger Source

For this trigger source, a trigger is generated when an analog event
occurs. To determine if the subsystem supports an analog event
trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_ANALOGEVENTTRIG. If this function returns a
nonzero value, the capability is supported.

Digital Event Trigger Source

For this trigger source, a trigger is generated when a digital event
occurs. To determine if the subsystem supports a digital event
trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_DIGITALEVENTTRIG. If this function returns a
nonzero value, the capability is supported.

Timer Event Trigger Source

For this trigger source, a trigger is generated when a counter/timer
event occurs. To determine if the subsystem supports a timer event
trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_TIMEREVENTTRIG. If this function returns a nonzero
value, the capability is supported.

Extra Trigger Source

Extra trigger sources may be defined by your device driver. To
determine how many extra triggers are supported by the subsystem,
use the olDaGetSSCaps function, specifying the capability
OLSSC_NUMEXTRATRIGGERS. Refer to your device/driver
documentation for a description of these triggers.

The extra trigger sources may be internal or external. Refer to the
previous sections for information on how to specify internal and
external triggers.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Buffers

The buffering capability usually applies to A/D and D/A subsystems
only. Note that you cannot use a buffer with single-value operations.

A data buffer is a memory location that you allocate in host memory.
This memory location is used to store data for continuous input and
output operations.

To determine if the subsystem supports buffers, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_BUFFERING. If this function returns a nonzero value,
the capability is supported.

Buffers are stored on one of three queues: the ready queue, the
inprocess queue, or the done queue. These queues are described in
more detail in the following subsections.

Ready Queue

For input operations, the ready queue holds buffers that are empty
and ready for input. For output operations, the ready queue holds
buffers that you have filled with data and that are ready for output.

Allocate the buffers using the olDmMallocBuffer, olDmAllocBuffer,
or olDmCallocBuffer function. olDmAllocBuffer allocates a buffer
of samples, where each sample is 2 bytes; olDmCallocBuffer
allocates a buffer of samples of a specified size; olDmMallocBuffer
allocates a buffer in bytes.

For analog input operations, it is recommended that you allocate a
minimum of three buffers; for analog output operations, you can
allocate one or more buffers. The size of the buffers should be at least
as large as the sampling or output rate; for example, if you are using a
sampling rate of 100 ksamples/s (100 kHz), specify a buffer size of
100,000 samples.
71

Chapter 3

72
Once you have allocated the buffers (and, for output operations,
filled them with data), put the buffers on the ready queue using the
olDaPutBuffer function.

For example, assume that you are performing an analog input
operation, that you allocated three buffers, and that you put these
buffers on the ready queue. The queues appear on the ready queue as
shown in Figure 4.

Figure 4: Example of the Ready Queue

Inprocess Queue

When you start a continuous (post-trigger, pre-trigger, or
about-trigger) operation, the data acquisition device takes the first
available buffer from the ready queue and places it on the inprocess
queue.

The inprocess queue holds the buffer that the specified data
acquisition device is currently filling (for input operations) or
outputting (for output operations). The buffer is filled or emptied at
the specified clock rate.

Ready Queue

Inprocess Queue

Done Queue

Buffer 1 Buffer 2 Buffer 3

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Continuing with the previous example, when you start the analog
input operation, the driver takes the first available buffer (Buffer 1, in
this case), puts it on the inprocess queue, and starts filling it with
data. The queues appear as shown in Figure 5.

Figure 5: Example of the Inprocess Queue

If required, you can use the olDaFlushFromBufferInprocess
function to transfer data from a partially-filled buffer on an inprocess
queue to a buffer you create (if this capability is supported).
Typically, you would use this function when your data acquisition
operation is running slowly.

To determine if the subsystem supports transferring data from a
buffer on the inprocess queue, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_INPROCESSFLUSH capability. If this
function returns a nonzero value, this capability is supported.

Ready Queue

Inprocess Queue

Done Queue

Buffer 1

Buffer 2 Buffer 3
73

Chapter 3

74
Note: Some devices transfer data to the host in segments instead of
one sample at a time. For example, data from some boards is
transferred to the host in 64 byte segments; the number of valid
samples is always a multiple of 64 depending on the number of
samples transferred to the host when
olDaFlushFromBufferInprocess was called. It is up to your
application to take this into account when flushing an inprocess
buffer. Refer to your device documentation for more information.

Done Queue

Once the data acquisition device has filled the buffer (for input
operations) or emptied the buffer (for output operations), the buffer
is moved from the inprocess queue to the done queue. Then, either
the OLDA_WM_BUFFER_DONE message is generated when the
buffer contains post-trigger data, or in the case of pre-trigger and
about-trigger acquisitions, an
OLDA_WM_PRETRIGGER_BUFFER_DONE message is generated
when the buffer contains pre-trigger data.

Note: For pre-trigger acquisitions only, when the operation
completes or you stop a pre-trigger acquisition, the
OLDA_WM_QUEUE_STOPPED message is also generated.

Continuing with the previous example, the queues appear as shown
in Figure 6 when you get the first OLDA_WM_BUFFER_DONE
message.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Figure 6: Example of the Done Queue

Then, the driver moves Buffer 2 from the ready queue to the
inprocess queue and starts filling it with data. When Buffer 2 is filled,
Buffer 2 is moved to the done queue and another
OLDA_WM_BUFFER_DONE message is generated.

The driver then moves Buffer 3 from the ready queue to the inprocess
queue and starts filling it with data. When Buffer 3 is filled, Buffer 3 is
moved to the done queue and another OLDA_WM_BUFFER_DONE
message is generated. Figure 7 shows how the buffers are moved.

Figure 7: How Buffers are Moved to the Done Queue

Ready Queue

Inprocess Queue

Done Queue
Buffer 1

Buffer 2 Buffer 3

Ready Queue

Inprocess Queue

Done Queue Buffer 1 Buffer 2 Buffer 3
75

Chapter 3

76
If you transferred data from an inprocess queue to a new buffer using
olDaFlushFromBufferInprocess, the new buffer is put on the done
queue for your application to process. When the buffer on the
inprocess queue finishes being filled, this buffer is also put on the
done queue; the buffer contains only the samples that were not
previously transferred.

Buffer and Queue Management

Each time it gets an OLDA_WM_BUFFER_DONE message, your
application program should remove the buffers from the done queue
using the olDaGetBuffer buffer management function.

Your application program can then process the data in the buffer. For
an input operation, you can copy the data from the buffer to an array
in your application program using the olDmGetBufferPtr function.
For continuously paced analog output operations, you can fill the
buffer with new output data using the olDaGetBufferPtr function.

If you want to convert the count value to engineering units, you can
use the olDaCodeToVolts function. Similarly, if you want to convert
the engineering units to counts, you can use the olDaVoltsToCode
function.

When you are finished processing the data, you can put the buffer
back on the ready queue using the olDaPutBuffer function if you
want your operation to continue.

For example, assume that you processed the data from Buffer 1 and
put it back on the ready queue. The queues would appear as shown
in Figure 8.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Figure 8: Putting Buffers Back on the Ready Queue

When the data acquisition operation is finished, use the
olDaFlushBuffers function to transfer any data buffers left on the
subsystem’s ready queue to the done queue.

Once you have processed the data in the buffers, remove the buffers
from the done queue using the olDaFreeBuffer function.

Note: For analog output operations only, the
OLDA_WM_IO_COMPLETE message is generated when the last
data point has been output from the analog output channel. In some
cases, this message is generated well after the data is transferred
from the buffer (when the OLDA_WM_BUFFER_DONE and
OLDA_WM_QUEUE_DONE messages are generated.

Ready Queue

Inprocess Queue

Done Queue

Buffer 1

Buffer 2

Buffer 3
77

Chapter 3

78
Buffer Wrap Modes

Most Keithley data acquisition devices can provide gap-free data,
meaning no samples are missed when data is acquired or output. You
can acquire gap-free data by manipulating data buffers so that no
gaps exist between the last sample of the current buffer and the first
sample of the next buffer.

Note: The number of DMA channels, number of buffers, and buffer
size are critical to the device’s ability to provide gap-free data. It is
also critical that the application process the data in a timely fashion.

If you want to acquire gap-free input data, it is recommended that
you specify a buffer wrap mode of none using the
olDaSetWrapMode buffer management function. When a buffer
wrap mode of none is selected, if you process the buffers and put
them back on the ready queue in a timely manner, the operation
continues indefinitely. When no buffers are available on the ready
queue, the operation stops, and an OLDA_WM_QUEUE_DONE
message is generated.

If you want to continuously reuse the buffers in the queues and you
are not concerned with gap-free data, specify multiple buffer wrap
mode using olDaSetWrapMode. When multiple wrap mode is
selected and no buffers are available on the ready queue, the driver
moves the oldest buffer from the done queue to the inprocess queue
(regardless of whether you have processed its data), and overwrites
the data in the buffer. This process continues indefinitely unless you
stop it. When it reuses a buffer on the done queue, the driver
generates an OLDA_WM_BUFFER_REUSED message.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

If you want to perform gap-free analog output operations, specify
single wrap mode using olDaSetWrapMode. When single wrap
mode is specified, a single buffer is reused continuously. In this case,
the driver moves the buffer from the ready queue to the inprocess
queue and outputs the data from the buffer. However, when the
buffer is emptied, the driver (or device) reuses the data and
continuously outputs it. This process repeats indefinitely until you
stop it. When you stop the operation, the buffer is moved to the done
queue. Typically, no messages are posted in this mode until you stop
the operation.

To determine the buffer wrap modes available for the subsystem, use
the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_WRPSINGLE (for single wrap mode) or
OLSSC_SUP_WRPMULTIPLE (for multiple wrap mode). If this
function returns a nonzero value, the capability is supported.

DMA and Interrupt Resources

You cannot use DMA or interrupt resources for single-value
operations.

To determine if your subsystem supports interrupt resources, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_INTERRUPT. If this function returns a nonzero value,
the capability is supported.

Generally, you specify interrupt resources on the device itself or in
the driver configuration dialog.

To determine if gap-free data acquisition is supported, use the
olDaGetSSCaps function, specifying
OLSSC_SUP_GAPFREE_NODMA (for gap free data using no DMA
channels), OLSSC_SUP_GAPFREE_SINGLEDMA (for gap free data
using one DMA channel), or OLSSC_SUP_GAPFREE_DUALDMA
(for gap free data using two DMA channels). If this function returns a
nonzero value, the capability is supported.
79

Chapter 3

80
To determine how many DMA channels are supported, use the
olDaGetSSCaps function, specifying the capability
OLSSC_NUMDMACHANS.

Use the olDaSetDmaUsage function to specify the number of DMA
channels to use. These channels must also be specified in the driver
configuration dialog.

Note: DMA channels are a limited resource and the request may
not be honored if the requested number of channels is unavailable.
For example, suppose that a device that supports both A/D and
D/A subsystems provides hardware for two DMA channels, and
that one DMA channel is currently allocated to the A/D subsystem.
In this case, a request to the D/A subsystem to use two DMA
channels will fail.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Counter/Timer Operations
Each user counter/timer channel accepts a clock input signal and
gate input signal and outputs a clock output signal (also called a
pulse output signal), as shown in Figure 9.

Figure 9: Counter/Timer Channel

Each counter/timer channel corresponds to a counter/timer (C/T)
subsystem. To specify the counter to use in software, specify the
appropriate C/T subsystem. For example, counter 0 corresponds to
C/T subsystem element 0; counter 3 corresponds to C/T subsystem
element 3.

The DataAcq SDK defines the following capabilities that you can
query and/or configure for counter/timer operations:

• Counter/timer operation mode,

• Clock source,

• Gate source,

Clock Input SIgnal
(internal, external, or
internally cascaded)

Counter/Timer

Gate Input Signal
(software or
external input)

Pulse Output Signal
81

Chapter 3

82
• Pulse output type, and

• Pulse output duty cycle.

The following subsections describe these capabilities in more detail.

Counter/Timer Operation Mode

The DataAcq SDK supports the following counter/timer operations:

• Event counting,

• Up/down counting,

• Frequency measurement,

• Edge-to-edge measurement,

• Rate generation (continuous pulse output),

• One-shot, and

• Repetitive one-shot.

The following subsections describe these counter/timer operations.

Event Counting

Use event counting mode to count events from the counter’s
associated clock input source.

To determine if the subsystem supports event counting, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_COUNT. If this function returns a nonzero
value, the capability is supported.

To specify an event counting operation, use the olDaSetCTMode
function, specifying the OL_CTMODE_COUNT parameter.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Specify the C/T clock source for the operation. In event counting
mode, an external C/T clock source is more useful than the internal
C/T clock source; refer to page 101 for more information on
specifying the C/T clock source.

Also specify the gate type that enables the operation; refer to page 104
for more information on specifying the gate type.

Start an event counting operation using the olDaStart function. To
read the current number of events counted, use the olDaReadEvents
function.

To stop the event counting operation, call olDaStop, olDaAbort, or
olDaReset; olDaReset function stops the operation and reinitializes
the subsystem after stopping it.

Some subsystems also allow you to pause the operation using the
olDaPause function and then resume the paused operation using the
olDaContinue function. To determine if pausing is supported, use
the olDaGetSSCaps function, specifying the OLSSC_SUP_PAUSE
capability. If this function returns a nonzero value, the capability is
supported.

Figure 10 shows an example of an event counting operation. In this
example the gate type is low level.
83

Chapter 3

84
Figure 10: Example of Event Counting

Up/Down Counting

Use up/down counting mode to increment or decrement the number
of rising edges that occur on the counter’s associated clock input,
depending on the level of the counter’s associated gate signal. If the
gate signal is high, the C/T increments; if the gate signal is low, the
C/T decrements.

To determine if the subsystem supports up/down counting, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_UP_DOWN. If this function returns a
nonzero value, the capability is supported.

To specify an up/down counting operation, use the olDaSetCTMode
function, specifying the OL_CTMODE_UP_DOWN parameter.

Gate Input
Signal Low level

enables operation

High level
disables operation

External C/T
Clock
Input Signal

Event counting
operation starts

Event counting
operation stops

3 events are counted while
the operation is enabled

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Specify the C/T clock source for the operation as external. Note that
you do not specify the gate type in software.

Start an up/down counting operation using the olDaStart function.
To read the current number of rising edges counted, use the
olDaReadEvents function.

To stop the event counting operation, call olDaStop, olDaAbort, or
olDaReset; olDaReset function stops the operation and reinitializes
the subsystem after stopping it.

Some subsystems also allow you to pause the operation using the
olDaPause function and then resume the paused operation using the
olDaContinue function. To determine if pausing is supported, use
the olDaGetSSCaps function, specifying the OLSSC_SUP_PAUSE
capability. If this function returns a nonzero value, the capability is
supported.

Figure 11 shows an example of an up/down counting operation. The
counter increments when the gate signal is high and decrements
when the gate signal is low.

Figure 11: Example of Up/Down Counting

Gate Input
Signal

High-level gate;
count increments
on rising edges

Low-level gate;
count decrements
on rising edges

External C/T
Clock
Input Signal

Up/down counting
operation starts

Up/down counting
operation stops

3 rising edges are
counted while the gate
is high; count = 0 + 3 = 3

2 rising edges
are counted while
the gate is low;
count = 3 - 2 = 1
85

Chapter 3

86
Frequency Measurement

You can also use event counting mode to measure the frequency of
the clock input signal for the counter, since frequency is the number
of events divided by a specified duration.

To determine if the subsystem supports event counting (and
therefore, frequency measurement), use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_CTMODE_COUNT.
If this function returns a nonzero value, the capability is supported.

You can perform a frequency measurement operation in one of two
ways: using the Windows timer to specify the duration or using a
pulse of a known duration as the gate input signal to a counter/timer
configured for event counting mode. The following subsections
describe these ways of measuring frequency.

Using the Windows Timer

To perform a frequency measurement operation on a single C/T
subsystem using the Windows timer to specify the duration, perform
the following steps:

1. Use the olDaSetCTMode function, specifying the
OL_CTMODE_COUNT parameter.

2. Specify the input clock source using olDaSetClockSource. In
frequency measurement mode, an external C/T clock source is
more useful than the internal C/T clock source; refer to page 101
for more information on the external C/T clock source.

3. Use the olDaSetGateType function, specifying the
OL_GATE_NONE parameter, to set the gate type to software.

4. Use the olDaMeasureFrequency function to specify the duration
of the Windows timer (which has a resolution of 1 ms) and to
start the frequency measurement operation.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Frequency is determined using the following equation:

Frequency = Number of Events
Duration of the Windows Timer

When the operation is complete, the
OLDA_WM_MEASURE_DONE message is generated. Use the
LongtoFreq (lParam) macro, described in the DataAcq SDK
online help, to return the measured frequency value.

Figure 12 shows an example of a frequency measurement operation.
Three events are counted from the clock input signals during a
duration of 300 ms. The frequency is 10 Hz (3/.3).

Figure 12: Example of Frequency Measurement

Using a Pulse of a Known Duration

If you need more accuracy than the Windows timer provides, you
can connect a pulse of a known duration to the external gate input of
a counter/timer configured for event counting; refer to the devices’
user manuals for wiring details.

External C/T
Clock
Input Signal

frequency measurement
starts

frequency
measurement stops

Duration over which the
frequency is measured = 300 ms

3 Events Counted
87

Chapter 3

88
The following example describes how to use the DataAcq SDK to
measure frequency using two C/T subsystems: one that generates a
variable-width one-shot pulse as the gate input to a second C/T
subsystem configured for event counting mode:

1. Set up one C/T subsystem for one-shot mode as follows:

a. Use the olDaSetCTMode function, specifying the
OL_CTMODE_ONESHOT parameter.

b. For this C/T subsystem, specify the clock source (with
olDaSetClockSource), the clock frequency (with
olDaSetClockFrequency if using an internal clock source, or
olDaSetExternalClockDivider if using an external clock
source), the gate type (with olDaSetGateType), the type of
output pulse (with olDaSetPulseType), and the pulse width
(with olDaSetPulseWidth). The pulse width and period are
used to determine the time that the gate is active.

c. Configure this C/T subsystem with olDaConfig.

d. Get the actual clock frequency used by this C/T subsystem
with olDaGetClockFrequency or
olDaGetExternalClockDivider. You will use this value in
the measurement period calculation.

e. Get the actual pulse width used by this C/T subsystem with
olDaGetPulseWidth. You will use this value in the
measurement period calculation.

2. Set up another C/T subsystem for event counting mode:

a. Use the olDaSetCTMode function, specifying the
OL_CTMODE_COUNT parameter, to set up this C/T
subsystem for event counting mode (and, therefore, a
frequency measurement operation).

b. For this C/T subsystem, use olDaSetClockSource to specify
the clock source you want to measure. For frequency
measurement operations, an external C/T clock source is
more useful than the internal C/T clock source; refer to page
101 for more information on the external C/T clock source.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

c. For this C/T subsystem, use the olDaSetGateType function
to specify the gate type; ensure that the gate type for this C/T
subsystem matches the active period of the output pulse
from the C/T subsystem configured for one-shot mode.

d. Configure this C/T subsystem with olDaConfig.

3. Start the counter/timer configured for event counting mode with
olDaStart.

4. Start the counter/timer configured for one-shot mode with
olDaStart.

5. Allow a delay approximately equal to the measurement period to
allow the one-shot to finish; events are counted only during the
active period of the one-shot pulse.

6. For the event-counting C/T subsystem, read the number of
events counted with olDaReadEvents.

7. Determine the measurement period using the following
equation:

Measurement = 1 * Active Pulse Width of
Period Actual Clock Frequency One-Shot C/T

8. Determine the frequency of the clock input signal using the
following equation:

Frequency Measurement = Number of Events
Measurement Period
89

Chapter 3

90
Edge-to-Edge Measurement

Use edge-to-edge measurement to measure the time interval between
a specified start edge and a specified stop edge. The start edge and
the stop edge can occur on the rising edge of the counter’s associated
gate input, the falling edge of the counter’s associated gate input, the
rising edge of the counter’s associated clock input, or the falling edge
of the counter’s associated clock input. When the start edge is
detected, the counter starts incrementing, and continues
incrementing until the stop edge is detected.

To determine if the subsystem supports edge-to-edge measurement,
use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_MEASURE. This function returns a bit value
indicating how edge-to-edge measurement mode is supported for the
specified device. For example, if edge-to-edge measurements are
supported on the gate signal only (using both rising and falling
edges), a bit value of 3 is returned. Table 5 lists the possible bit values.

Table 5: Values for OLSCC_SUP_CTMODE_MEASURE

Value Name Description

0x00 − Edge-to-edge measurements are not
supported.

0x01 SUP_GATE_RISING_BIT Supports edge-to-edge measurements
based on the rising edge of the gate signal.

0x02 SUP_GATE_FALLING_BIT Supports edge-to-edge measurements
based on the falling edge of the gate signal.

0x04 SUP_CLOCK_RISING_BIT Supports edge-to-edge measurements
based on the rising edge of the clock signal.

0x08 SUP_CLOCK_FALLING_BIT Supports edge-to-edge measurements
based on the falling edge of the clock signal.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

To specify an edge-to-edge measurement operation, use the
olDaSetCTMode function, specifying the OL_CTMODE_MEASURE
parameter.

Specify the C/T clock source for the operation as internal.

Start an edge-to-edge measurement operation using the olDaStart
function. To read the current counter value, use the olDaReadEvents
function.

To stop the event counting operation, call olDaStop, olDaAbort, or
olDaReset; olDaReset function stops the operation and reinitializes
the subsystem after stopping it.

Some subsystems also allow you to pause the operation using the
olDaPause function and then resume the paused operation using the
olDaContinue function. To determine if pausing is supported, use
the olDaGetSSCaps function, specifying the OLSSC_SUP_PAUSE
capability. If this function returns a nonzero value, the capability is
supported.

Figure 13 shows an example of an edge-to-edge measurement
operation. The start edge is a rising edge on the gate signal; the stop
edge is a falling edge on the gate signal.
91

Chapter 3

92
Figure 13: Example of Edge-to-Edge Measurement

You can use edge-to-edge measurement to measure the following:

• Pulse width of a signal pulse (the amount of time that a signal
pulse is in a high or a low state, or the amount of time between a
rising edge and a falling edge or between a falling edge and a
rising edge). You can calculate the pulse width as follows:

− Pulse width = Number of counts/18 MHz

• Period of a signal pulse (the time between two occurrences of the
same edge - rising edge to rising edge or falling edge to falling
edge). You can calculate the period as follows:

− Period = 1/Frequency

− Period = Number of counts/18 MHz

• Frequency of a signal pulse (the number of periods per second).
You can calculate the frequency as follows:

− Frequency = 18 MHz/Number of Counts

Gate Input
Signal

Rising-edge on gate;
count starts

Falling-edge on gate;
count stop

External C/T
Clock
Input Signal

Edge-to-edge measurement
operation starts

Edge-to-edge measurement
operation stops

3 rising edges are counted
between the start edge and
the stop edge

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Rate Generation

Use rate generation mode to generate a continuous pulse output
signal from the counter; this mode is sometimes referred to as
continuous pulse output or pulse train output. You can use this pulse
output signal as an external clock to pace analog input, analog
output, or other counter/timer operations.

To determine if the subsystem supports rate generation, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_RATE. If this function returns a nonzero
value, the capability is supported.

To specify a rate generation mode, use the olDaSetCTMode function,
specifying the OL_CTMODE_RATE parameter.

Specify the C/T clock source for the operation. In rate generation
mode, either the internal or external C/T clock input source is
appropriate depending on your application; refer to page 101 for
information on specifying the C/T clock source.

Specify the frequency of the C/T clock output signal. For an internal
C/T, the olDaSetClockFrequency function determines the frequency
of the output pulse. For an external C/T clock source, the frequency
of the clock input source divided by the clock divider (specified with
the olDaSetExternalClockDivider function) determines the
frequency of the output pulse.

Specify the polarity of the output pulses (high-to-low transitions or
low-to-high transitions) and the duty cycle of the output pulses; refer
to page 108 for more information.

Also specify the gate type that enables the operation; refer to page 104
for more information on specifying the gate type.
93

Chapter 3

94
Start rate generation mode using the olDaStart function. While rate
generation mode is enabled, the counter outputs a pulse of the
specified type and frequency continuously. As soon as the operation
is disabled, the pulse output operation stops.

To stop rate generation if it is in progress, call olDaStop, olDaAbort,
or olDaReset; olDaReset stops the operation and reinitializes the
subsystem after stopping it.

Some subsystems also allow you to pause the operation using the
olDaPause function and resume the paused operation using the
olDaContinue function. To determine if pausing is supported, use
the olDaGetSSCaps function, specifying the OLSSC_SUP_PAUSE
capability. If this function returns a nonzero value, the capability is
supported.

Figure 14 shows an example of an enabled rate generation operation
using an external C/T clock source with an input frequency of 4 kHz,
a clock divider of 4, a low-to-high pulse type, and a duty cycle of 50%.
(The gate type does not matter for this example.) A 1 kHz square
wave is the generated output.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Figure 14: Example of Rate Generation Mode with a 50% Duty Cycle

Figure 15 shows the same example using a duty cycle of 75%.

Figure 15: Example of Rate Generation Mode with a 75% Duty Cycle

Pulse
Output
Signal

External C/T
Clock
Input Signal
(4 kHz)

50% duty cycle

Continuous Pulse
Output Operation Starts

Pulse
Output
Signal

External C/T
Clock
Input Signal
(4 kHz)

75% duty cycle

Continuous Pulse
Output Operation Starts
95

Chapter 3

96
Figure 16 shows the same example using a duty cycle of 25%.

Figure 16: Example of Rate Generation Mode with a 25% Duty Cycle

One-Shot

Use one-shot mode to generate a single pulse output signal from the
counter when the operation is triggered (determined by the gate
input signal). You can use this pulse output signal as an external
digital (TTL) trigger to start analog input, analog output, or other
operations.

To determine if the subsystem supports one-shot mode, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_ONESHOT. If this function returns a
nonzero value, the capability is supported.

To specify a one-shot operation, use the olDaSetCTMode function,
specifying the OL_CTMODE_ONESHOT parameter.

Pulse
Output
Signal

External C/T
Clock
Input Signal
(4 kHz)

25% duty cycle

Continuous Pulse
Output Operation Starts

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Specify the C/T clock source for the operation. In one-shot mode, the
internal C/T clock source is more useful than an external C/T clock
source; refer to page 101 for more information on specifying the C/T
clock source.

Specify the polarity of the output pulse (high-to-low transition or
low-to-high transition) and the duty cycle of the output pulse; refer to
page 108 for more information.

Note: In the case of a one-shot operation, use a duty cycle as close
to 100% as possible to output a pulse immediately. Using a duty
cycle less then 100% acts as a pulse output delay.

Also specify the gate type that triggers the operation; refer to page
104 for more information.

To start a one-shot pulse output operation, use the olDaStart
function. When the one-shot operation is triggered (determined by
the gate input signal), a single pulse is output; then, the one-shot
operation stops. All subsequent clock input signals and gate input
signals are ignored.

Use software to specify the counter/timer mode as one-shot and wire
the signals appropriately.

Figure 17 shows an example of a one-shot operation using an external
gate input (rising edge), a clock output frequency of 1 kHz (one pulse
every 1 ms), a low-to-high pulse type, and a duty cycle of 99.99%.
Figure 18 shows the same example using a duty cycle of less than or
equal to 1%.
97

Chapter 3

98
Figure 17: Example of One-Shot Mode Using a 99.99% Duty Cycle

Figure 18: Example of One-Shot Mode Using a Duty Cycle Less Than
or Equal to 1%

Pulse
Output
Signal

External
Gate
Signal

99.99% duty cycle

One-Shot Operation Starts

1 ms period

Pulse
Output
Signal

External
Gate
Signal

< 1% duty cycle

One-Shot Operation Starts

1 ms period

-

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Repetitive One-Shot

Use repetitive one-shot mode to generate a pulse output signal each
time the device detects a trigger (determined by the gate input
signal). You can use this mode to clean up a poor clock input signal
by changing its pulse width, then outputting it.

To determine if the subsystem supports repetitive one-shot mode,
use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_ONESHOT_RPT. If this function returns a
nonzero value, the capability is supported.

To specify a repetitive one-shot operation, use the olDaSetCTMode
function, specifying the OL_CTMODE_ONESHOT_RPT parameter.

Specify the C/T clock source for the operation. In repetitive one-shot
mode, the internal C/T clock source is more useful than an external
C/T clock source; refer to page 101 for more information on
specifying the C/T clock source.

Specify the polarity of the output pulses (high-to-low transitions or
low-to-high transitions) and the duty cycle of the output pulses; refer
to page 108 for more information. Also specify the gate type that
triggers the operation; refer to page 104 for more information.

To start a repetitive one-shot pulse output operation, use the
olDaStart function. When the one-shot operation is triggered
(determined by the gate input signal), a pulse is output. When the
device detects the next trigger, another pulse is output.

This operation continues until you stop the operation using
olDaStop, olDaAbort, or olDaReset; olDaReset stops the operation
and reinitializes the subsystem after stopping it.
99

Chapter 3

100
Some subsystems also allow you to pause the operation using the
olDaPause function and resume the paused operation using the
olDaContinue function. To determine if pausing is supported, use
the olDaGetSSCaps function, specifying the OLSSC_SUP_PAUSE
capability. If this function returns a nonzero value, the capability is
supported.

Note: Triggers that occur while the pulse is being output are not
detected by the device.

Figure 19 shows an example of a repetitive one-shot operation using
an external gate (rising edge); a clock output frequency of 1 kHz (one
pulse every 1 ms), a low-to-high pulse type, and a duty cycle of
99.99%.

Figure 19: Example of Repetitive One-Shot Mode Using a 99.99% Duty Cycle

Pulse
Output
Signal

External
Gate
Signal

99.99% duty cycle

Repetitive One-Shot
Operation Starts

1 ms period

99.99% duty cycle 99.99%
duty cycle

1 ms period

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Figure 20 shows the same example using a duty cycle of 50%.

Figure 20: Example of Repetitive One-Shot Mode Using a 50% Duty Cycle

C/T Clock Sources

The DataAcq SDK defines the following clock sources for
counter/timers:

• Internal C/T clock,

• External C/T clock,

• Internally cascaded clock, and

• Extra C/T clocks.

The following subsections describe these clock sources.

Pulse
Output
Signal

External
Gate
Signal

50% duty
cycle

Repetitive One-Shot
Operation Starts

1 ms period

50% duty
cycle

1 ms period
101

Chapter 3

102
Internal C/T Clock

The internal C/T clock is the clock source on the device that paces a
counter/timer operation for a C/T subsystem.

To determine if the subsystem supports an internal C/T clock, use
the olDaGetSSCaps function, specifying the
OLSSC_SUP_INTCLOCK capability. If this function returns a
nonzero value, the capability is supported.

To specify the clock source, use the olDaSetClockSource function.

Using the olDaSetClockFrequency function, specify the frequency of
the clock output signal.

To determine the maximum frequency that the subsystem supports,
use the olDaGetSSCapsEx function, specifying the
OLSSCE_MAXTHROUGHPUT capability. To determine the
minimum frequency that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the
OLSSCE_MINTHROUGHPUT capability.

External C/T Clock

The external C/T clock is a clock source attached to the device that
paces counter/timer operations for a C/T subsystem. The external
C/T clock is useful when you want to pace at rates not available with
the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external C/T clock, use
the olDaGetSSCaps function, specifying the
OLSSC_SUP_EXTCLOCK capability. If this function returns a
nonzero value, the capability is supported.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Specify the clock source using the olDaSetClockSource function.
Specify the clock divider using the olDaSetExternalClockDivider
function; the clock input signal divided by the clock divider
determines the frequency of the clock output signal.

To determine the maximum clock divider that the subsystem
supports, use the olDaGetSSCapsEx function, specifying the
OLSSCE_MAXCLOCKDIVIDER capability. To determine the
minimum clock divider that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the
OLSSCE_MINCLOCKDIVIDER capability

Internally Cascaded Clock

You can also internally connect or cascade the clock output signal
from one counter/timer to the clock input signal of the next
counter/timer in software. In this way, you can create a 32-bit
counter out of two 16-bit counters.

To determine if the subsystem supports internal cascading, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_CASCADING
capability. If this function returns a nonzero value, the capability is
supported.

Specify whether the subsystem is internally cascaded or not (single)
using the olDaSetCascadeMode function.

Note: If a counter/timer is cascaded, you specify the clock input
and gate input for the first counter in the cascaded pair. For
example, if counters 1 and 2 are cascaded, specify the clock input
and gate input for counter 1.
103

Chapter 3

104
Extra C/T Clock Source

Extra C/T clock sources may be defined by your device driver.

To determine how many extra clock sources are supported by your
subsystem, use the olDaGetSSCaps function, specifying the
OLSSC_NUMEXTRACLOCKS capability. Refer to your
device/driver documentation for a description of these clocks.

To specify internal or external extra clock sources and their
frequencies and/or clock dividers, refer to the previous subsections.

Gate Types

The active edge or level of the gate input to the counter enables or
triggers counter/timer operations. The DataAcq SDK defines the
following gate input types:

• Software,

• High level,

• Low level,

• High edge,

• Low edge,

• Any level,

• High level debounced,

• Low level debounced,

• High edge debounced,

• Low edge debounced, and

• Any level debounced.

To specify the gate type, use the olDaSetGateType function. The
following subsections describe these gate types.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Software Gate Type

A software gate type enables any specified counter/timer operation
immediately when the olDaSetGateType function is executed.

To determine if the subsystem supports a software gate, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_NONE
capability. If this function returns a nonzero value, the capability is
supported.

High-Level Gate Type

A high-level external gate type enables a counter/timer operation
when the external gate signal is high, and disables a counter/timer
operation when the external gate signal is low. Note that this gate
type is used only for event counting, frequency measurement, and
rate generation; refer to page 82 for more information on these
modes.

To determine if the subsystem supports a high-level external gate
input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_HIGH_LEVEL capability. If this function
returns a nonzero value, the capability is supported.

Low-Level Gate Type

A low-level external gate type enables a counter/timer operation
when the external gate signal is low, and disables the counter/timer
operation when the external gate signal is high. Note that this gate
type is used only for event counting, frequency measurement, and
rate generation; refer to page 82 for more information on these
modes.

To determine if the subsystem supports a low-level external gate
input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_LOW_LEVEL capability. If this function returns
a nonzero value, the capability is supported.
105

Chapter 3

106
Low-Edge Gate Type

A low-edge external gate type triggers a counter/timer operation on
the transition from the high edge to the low edge (falling edge). Note
that this gate type is used only for one-shot and repetitive one-shot
mode; refer to page 99 for more information on these modes.

To determine if the subsystem supports a low-edge external gate
input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_LOW_EDGE capability. If this function returns
a nonzero value, the capability is supported.

High-Edge Gate Type

A high-edge external gate type triggers a counter/timer operation on
the transition from the low edge to the high edge (rising edge). Note
that this gate type is used only for one-shot and repetitive one-shot
mode; refer to page 82 for more information on these modes.

To determine if the subsystem supports a high-edge external gate
input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_HIGH_EDGE capability. If this function returns
a nonzero value, the capability is supported.

Any Level Gate Type

A level gate type enables a counter/timer operation on the transition
from any level. Note that this gate type is used only for event
counting, frequency measurement, and rate generation; refer to page
82 for more information on these modes.

To determine if the subsystem supports a level external gate input,
use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_LEVEL capability. If this function returns a
nonzero value, the capability is supported.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

High-Level, Debounced Gate Type

A high-level, debounced gate type enables a counter/timer operation
when the external gate signal is high and debounced. Note that this
gate type is used only for event counting, frequency measurement,
and rate generation; refer to page 82 for more information on these
modes.

To determine if the subsystem supports a high-level debounced
external gate input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_HIGH_LEVEL_DEBOUNCE capability. If this
function returns a nonzero value, the capability is supported.

Low-Level, Debounced Gate Type

A low-level, debounced gate type enables a counter/timer operation
when the external gate signal is low and debounced. Note that this
gate type is used only for event counting, frequency measurement,
and rate generation; refer to page 82 for more information on these
modes.

To determine if the subsystem supports a low-level debounced
external gate input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_LOW_LEVEL_DEBOUNCE capability. If this
function returns a nonzero value, the capability is supported.

High-Edge, Debounced Gate Type

A high-edge, debounced gate type triggers a counter/timer operation
on the rising edge of the external gate signal; the signal is debounced.
Note that this gate type is used only for one-shot and repetitive
one-shot mode; refer to page 82 for more information on these modes.

To determine if the subsystem supports a high-edge debounced
external gate input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_HIGH_EDGE_DEBOUNCE capability. If this
function returns a nonzero value, the capability is supported.
107

Chapter 3

108
Low-Edge, Debounced Gate Type

A low-edge, debounced gate type triggers a counter/timer operation
on the falling edge of the external gate signal; the signal is
debounced. Note that this gate type is used only for one-shot and
repetitive one-shot mode; refer to page 82 for more information on
these modes.

To determine if the subsystem supports a low-edge debounced
external gate input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_LOW_EDGE_DEBOUNCE capability. If this
function returns a nonzero value, the capability is supported.

Level, Debounced Gate Type

A level, debounced gate type enables a counter/timer operation on
the transition of any level of the external gate signal; the signal is
debounced. Note that this gate type is used only for event counting,
frequency measurement, and rate generation; refer to page 82 for
more information on these modes.

To determine if the subsystem supports a high-edge debounced
external gate input, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_GATE_LEVEL_DEBOUNCE capability. If this function
returns a nonzero value, the capability is supported.

Pulse Output Types and Duty Cycles

The DataAcq SDK defines the following pulse output types:

• High-to-low transitions - The low portion of the total pulse
output period is the active portion of the counter/timer clock
output signal.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

To determine if the subsystem supports high-to-low transitions
on the pulse output signal, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_PLS_HIGH2LOW capability. If this
function returns a nonzero value, the capability is supported.

• Low-to-high transitions - The high portion of the total pulse
output period is the active portion of the counter/timer pulse
output signal.

To determine if the subsystem supports low-to-high transitions
on the pulse output signal, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_PLS_LOW2HIGH capability. If this
function returns a nonzero value, the capability is supported.

Specify the pulse output type using the olDaSetPulseType function.

The duty cycle (or pulse width) indicates the percentage of the total
pulse output period that is active. A duty cycle of 50, then, indicates
that half of the total pulse is low and half of the total pulse output is
high. Specify the pulse width using the olDaSetPulseWidth function.

Figure 21 illustrates a low-to-high pulse with a duty cycle of
approximately 30%.

Figure 21: Example of a Low-to-High Pulse Output Type

Total Pulse Period

Active Pulse Width

low pulse

high pulse
109

Chapter 3

110
Simultaneous Operations
If supported, you can synchronize subsystems to perform
simultaneous operations. Note that you cannot perform
simultaneous operations on subsystems configured for single-value
operations.

To determine if the subsystems support simultaneous operations, use
the olDaGetSSCaps function for each subsystem, specifying the
OLSSC_SUP_SIMULTANEOUS_START capability. If this function
returns a nonzero value, the capability is supported.

You can synchronize the triggers of subsystems by specifying the
same trigger source for each of the subsystems that you want to start
simultaneously and wiring them to the device, if appropriate.

Use the olDaGetSSList function to allocate a simultaneous start list.
Then, use the olDaPutDassToSSList function to put the subsystems
that you want to start simultaneously on the start list.

To determine the device handles given to each subsystem on the
simultaneous start list, use the olDaEnumSSList function.

Pre-start the subsystems using the olDaSimultaneousPreStart
function. Pre-starting a subsystem ensures a minimal delay once the
subsystems are started. Once you call the olDaSimultaneousPreStart
function, do not alter the settings of the subsystems on the
simultaneous start list.

Start the subsystems using the olDaSimultaneousStart function.
When started, both subsystems are triggered simultaneously.

Using the DataAcq SDK

3

3

3

3

3

3

3

3

3

Note: Do not call olDaStart when using simultaneous start lists,
since the subsystems are already started.

When you are finished with the operations, call the
olDaReleaseSSList function to free the simultaneous start list. Then,
call the olDaReleaseDASS function for each subsystem to free it
before calling olDaTerminate.

To stop the simultaneous operations, call olDaStop (for an orderly
stop), olDaAbort (for an abrupt stop) or olDaReset (for an abrupt
stop that reinitializes the subsystem).
111

Chapter 3

112

4
Programming Flowcharts
Single-Value Operations . 115

Continuous Buffered Input Operations 117

Continuous Buffered Output Operations 119

Event Counting Operations . 121

Up/Down Counting Operations . 123

Frequency Measurement Operations . 125

Edge-to-Edge Measurement Operations. 127

Pulse Output Operations. 129

Simultaneous Operations . 131
113

Chapter 4

114
If you are unfamiliar with the capabilities of your device and/or
subsystem, query the device as follows:

• To determine the number and types of DT-Open Layers devices
and drivers installed, use the olDaEnumBoards function.

• To determine the subsystems supported by the device, use the
olDaEnumSubSystems or olDaGetDevCaps function.

• To determine the capabilities of a subsystem, use the
olDaGetSSCaps or olDaGetSSCapsEx function, specifying one
of the capabilities listed in Table 2 on page 13.

• To determine the gains, filters, ranges, and resolutions if more
than one is available, use the olDaEnumSSCaps function.

Then, follow the flowcharts presented in the remainder of this
chapter to perform the desired operation.

Notes: Depending on your device, some of the settings may not be
programmable. Refer to your device driver documentation for
details.

Although the flowcharts do not show error checking, it is
recommended that you check for errors after each function call.

Some steps represent several substeps; if you are unfamiliar with the
detailed operations involved with any one step, refer to the
indicated page for detailed information. Optional steps appear in
shaded boxes.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Single-Value Operations

Set the subsystem parameters
(see page 133).

Set the data flow to
OL_DF_SINGLEVALUE using

olDaSetDataFlow.

Get a handle to the subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Configure the subsystem using
olDaConfig.

Go to the next page.

Specify A/D for an analog input subsystem, D/A
for an analog output subsystem, DIN for a digital
input subsystem, or DOUT for a digital output
subsystem.
115

Chapter 4

116
Acquiring
data?

Yes

No

Acquire a single value using
olDaGetSingleValue or
olDaGetSingleValueEx.

Output a single value using
olDaPutSingleValue.

Acquire/
output

another
value?

No

Release the subsystem using
olDaReleaseDASS.

Release the driver and terminate the
session using olDaTerminate.

Yes

Continued from previous page.

Convert the data from counts to
voltage using olDaCodeToVolts or

from voltage to counts using
olDaVoltsToCode, if desired.

If you use olDaGetSingleValueEx,
you can have the device determine
the best gain to use (autorange is
True); the value is returned in both
counts and voltage.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Continuous Buffered Input Operations

Get a handle to the A/D or DIN
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the channel list and channel
parameters (see page 134).

Set the subsystem parameters
(see page 133).

Set the data flow using
olDaSetDataFlow.

Set the DMA channel usage using
olDaSetDmaUsage.

Go to the next page.

Specify OL_DF_CONTINUOUS (the default
value) for post-trigger operations,
OL_DF_CONTINUOUS_PRETRIG for
continuous p operations, or
OL_DF_CONTINUOUS_ABOUTTRIG for
continuous about-trigger operations).
117

Chapter 4

118

Set up the clocks, triggers, and
pre-triggers (see page 135).

Set up buffering (see page 138).

Configure the A/D or DIN subsystem
using olDaConfig.

Deal with messages and buffers
(see page 140).

Stop the operation (see page 146).

Start the operation with olDaStart.

Clean up the subsystem
(see page 147).

Continued from previous page.

If you want to use triggered scan mode,
set up the scan (see page 137.)

After configuration, if using an internal clock, you
can use olDaGetClockFrequency to get the
actual frequency that the internal sample clock
can achieve; if using an external clock, you can
use olDaGetExternalClockDivider to get the
actual clock divider that the device can achieve;
if using internal retrigger mode, you can use
olDaGetRetriggerFrequency to get the actual
frequency that the internal retrigger clock can
achieve.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Continuous Buffered Output Operations

Get a handle to the D/A or DOUT
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the channel list and channel
parameters (see page 134).

Set the subsystem parameters
(see page 133).

Set the data flow to
OL_DF_CONTINUOUS using

olDaSetDataFlow.

Set the DMA channel usage using
olDaSetDmaUsage.

Go to the next page.
119

Chapter 4

120

Set up buffering (see page 139).

Configure the D/A or DOUT subsystem
using olDaConfig.

Deal with messages and buffers
(see page 143).

Stop the operation (see page 146).

Clean up the subsystem
(see page 147).

Start the operation with olDaStart.

Continued from previous page.

Set up the clocks and triggers
 (see page 135).

After configuration, if using an internal clock,
you can use olDaGetClockFrequency to get
the actual frequency that the internal output
clock can achieve; or if using an external clock,
you can use olDaGetExternalClockDivider to
get the actual clock divider that the device can
achieve.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Event Counting Operations

Get a handle to the C/T subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the clocks and gates
(see page 145).

Set the cascade mode using
olDaSetCascadeMode.

Specify the mode as OL_CTMODE_COUNT
using olDaSetCTMode.

Configure the subsystem using
olDaConfig.

Go to the next page.
121

Chapter 4

122
Start the operation using olDaStart.

Read the events counted using
olDaReadEvents.

Stop the operation (see page 146).

Clean up the subsystem (see page 148).

Continued from previous page.

Get update
of events

total?

Yes

No

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Up/Down Counting Operations

Get a handle to the C/T subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Specify the mode as
OL_CTMODE_UP_DOWN

using olDaSetCTMode.

Go to the next page.

Configure the subsystem using
olDaConfig.

Specify the appropriate C/T
subsystem/element.

Specify the clock source as
OL_CLK_EXTERNAL using

olDaSetClockSource.
123

Chapter 4

124
Start the operation using olDaStart.

Read the events counted using
olDaReadEvents.

Stop the operation (see page 146).

Continued from previous page.

Get update
of events

total?

Yes

No

Clean up the subsystem (see page 148).

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Frequency Measurement Operations

Note: If you need more accuracy than the system timer provides,
refer to page 86.

Get a handle to the C/T subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the clocks
(see page 135).

Specify the mode as OL_CTMODE_COUNT
using olDaSetCTMode.

Go to the next page.

Set the cascade mode using
olDaSetCascadeMode.
125

Chapter 4

126
Configure the subsystem using
olDaConfig.

Continued from previous page.

Start the frequency measurement
operation using olDaMeasureFrequency.

Get
measure

done
message?

Yes

No

Message is in the form
OLDA_WM_MEASURE_DONE.

Use the LongtoFreq (lParam)
macro to get the measured

frequency value:
float = Freq;

Freq = LongtoFreq (lParam);

Clean up the subsystem (see page 148).

Programming Flowcharts

127

4

4

4

4

4

4

4

4

4

Edge-to-Edge Measurement Operations

Get a handle to the C/T subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Specify the mode as
OL_CTMODE_MEASURE
using olDaSetCTMode.

Go to the next page.

Configure the subsystem using
olDaConfig.

Specify the appropriate C/T
subsystem/element.

Specify the start edge
using olDaSetMeasureStartEdge.

Specify the clock source as
OL_CLK_INTERNAL using

olDaSetClockSource.

The clock divider determines the
frequency at which to pace the operation
(this is the frequency of the counter’s
associated output signal).

Specify the clock divider using
olDaSetExternalClockDivider.

Specify the stop edge
using olDaSetMeasureStopEdge.

Specify OL_GATE_RISING for a rising
edge on the counter’s associated gate
input, OL_GATE_FALLING for a falling
edge on the counter’s associated gate
input, OL_CLOCK_RISING for a rising
edge on the counter’s associated clock
input, or OL_CLOCK_FALLING for a falling
edge on the counter’s associated clock
input.

Chapter 4

128
Start the operation using olDaStart.

Continued from previous page.

Release the device driver and terminate
the session with olDaTerminate.

Release each subsystem with
olDaReleaseDASS.

Event
done

message
returned?

Yes

No

Message is in the form OLDA_WM_EVENT_DONE.
Note that if you want to perform another
edge-to-edge measurement, you can call olDaStart
again or use the OLDA_WM_EVENT_DONE
handler to call olDaStart again.

The LParam parameter of the
message contains the count.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Pulse Output Operations

Get a handle to the C/T subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the clocks and gates
(see page 145).

Set the cascade mode using
olDaSetCascadeMode.

Specify the mode using
olDaSetCTMode.

Go to the next page.

Specify OL_CTMODE_RATE for rate
generation (continuous pulse output),
OL_CTMODE_ONESHOT for single
one-shot, or OL_CTMODE_ONESHOT_RPT
for repetitive one-shot.
129

Chapter 4

130
Stop the operation (see page 146).

Specify the output pulse type using
olDaSetPulseType.

Specify the duty cycle of the output
pulse using olDaSetPulseWidth.

This step is not needed for single one-shot
operations.

Clean up the subsystem (see page 148).

Continued from previous page.

Configure the subsystem using
 olDaConfig.

Start the operation using olDaStart.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Simultaneous Operations

Configure the subsystem that you
want to run simultaneously.

Put each subsystem to be
simultaneously started on the start list

using olDaPutDassToSSList.

Prestart the subsystems on the
simultaneous start list with

olDaSimultaneousPreStart.

Allocate a simultaneous start list using
olDaGetSSList.

See the previous flow diagrams in this
chapter; you cannot perform
single-value operations
simultaneously.

Start the subsystems on the
simultaneous start list with
olDaSimultaneousStart.

Go to the next page.
131

Chapter 4

132

Deal with messages (see page 140 for
analog input operations; see page 143

for analog output operations).

Stop the operation (see page 146).

Clean up the subsystem (see page
page 147 for analog I/O operations).

Continued from previous page.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Set Subsystem Parameters

olDaSetChannelType

Specify the channel type (single-ended or
differential). Specify single-ended if you are using
pseudo-differential channels.

olDaSetResolution Specify the resolution.

olDaSetEncoding
For A/D and D/A subsystems, specify the data
encoding type.

olDaSetRange or
olDaSetChannelRange

For A/D and D/A subsystems, specify the voltage
range for the entire subsystem using olDaSetRange
or for each channel using olDaSetChannelRange.

olDaSetChannelFilter Specify the filter for each A/D or D/A channel.
133

Chapter 4

134
Set Up Channel List and Channel Parameters

olDaSetChannelListSize Specify the size of the channel list, gain list,
channel inhibit list, and synchronous digital
I/O list.

olDaSetChannelListEntry Set up the channel list for the subsystem.

olDaSetGainListEntry

Specify the gain for each channel in the channel
list (the gain list parallels the channel list). Use a
gain of 1 for channels that do not support
programmable gain.

olDaSetChannelListEntryInhibit
Enable or disable inhibition for the specified
channel entries. If inhibited, the acquired values
from the specified entries are discarded.

olDaSetSynchronousDigitalIOUsage

Enable/disable a synchronous digital output
operation. If using a DOUT subsystem that is
currently in use, the handle to the DOUT
subsystem must be freed with olDaReleaseDASS
before configuring the this subsystem with
olDaConfig.

olDaSetDigitalIOListEntry
For A/D subsystems only, specify the values to
output to the dynamic digital output channels as
each entry in the channel list is sampled.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Set Clocks, Triggers, and Pre-Triggers

Specify OL_CLK_EXTERNAL to select the external
clock or OL_CLK_EXTRA to select an extra available
external clock.

Using an
internal
clock?

olDaSetClockSource

olDaSetClockFrequency

Specify the frequency of the
internal clock. The driver
sets the actual frequency as
closely as possible to the
number specified.

olDaSetClockSource

Specify the source of the trigger to start post-trigger
acquisition or output, or for A/D subsystems only, to
stop pre-trigger acquisition if used. Refer to your
device driver documentation for details.

olDaSetExternalClockDivider

Yes

No

olDaSetTrigger

Specify a clock divider to apply to the external clock
source. The driver sets the actual clock divider as
closely as possible to the number specified.

Go to the next page.

Specify OL_CLK_INTERNAL to select the internal clock or
OL_CLK_EXTRA to select an extra available internal clock.
135

Chapter 4

136
Continued from previous
page.

Using pre- or
about-trigger

mode?

Yes

olDaSetPretriggerSource

For A/D subsystems only, specify
the trigger (usually software) to start
the pre-trigger or about-trigger
acquisition.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Set Up Triggered Scan

Specify the retrigger mode: OL_RETRIGGER_
INTERNAL (internal retrigger clock is the retrigger; any
supported trigger source is initial trigger),
OL_RETRIGGER_SCAN_PER_TRIGGER (retrigger source
same as initial trigger source), or OL_RETRIGGER_EXTRA
(external retrigger source is the retrigger; any supported trigger
source is the initial trigger).

olDaSetRetriggerMode

Specify the retrigger source.
Refer to your device driver
documentation for details.

Set the frequency of the
retrigger clock. The driver sets
the actual frequency as closely
as possible to the number
specified.

olDaSetTriggeredScanUsage Enable triggered scan mode.

Using internal
retrigger
mode?

Yes

olDaSetRetriggerFrequency

No

Using
retrigger extra

mode?

Yes

No

olDaSetRetrigger

Specify the number of times to scan the channel-gain
list per trigger/retrigger.

olDaSetMultiscanCount
137

Chapter 4

138
Set Up Input Buffering

Specify the procedure to handle Windows
messages.

Using main
window to

handle
messages?

Yes

Allocate
more

buffers?

Yes

olDaSetNotificationProcedure

No

Use olDmAllocBuffer to allocate a buffer of
samples, where each sample is 2 bytes; use
olDmCallocBuffer to allocate a buffer of samples
of a specified size; or use olDmMallocBuffer to
allocate a buffer in bytes.

Put the buffer on the ready queue.

olDaSetWrapMode

A minimum of three buffers is recommended for
continuous input operations.

olDaSetWndHandle
Specify the window in which to
post messages.

olDmAllocBuffer,
olDmMallocBuffer, or

olDmCallocBuffer

olDaPutBuffer

Specify the buffer wrapping mode (if
OL_WRP_NONE, buffers are not reused if no buffers
are found on the ready queue; if
OL_WRP_MULTIPLE, completed buffers are taken
from the done queue and continuously reused when
no buffers are found on the ready queue; if
OL_WRP_SINGLE, a single buffer is continuously
reused).

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Set Up Output Buffering

Specify the procedure to handle Windows
messages.

Using main
window to

handle
messages?

Yes

Allocate
more

buffers?

Yes

olDaSetNotificationProcedure

No

Put the buffer on the ready queue.

olDaSetWrapMode

olDaSetWndHandle
Specify the window in which to
post messages.

olDmAllocBuffer,
olDmMallocBuffer, or

olDmCallocBuffer

olDaPutBuffer

Specify the buffer wrapping mode (if OL_WRP_NONE, buffers are
not reused if no buffers are found on the ready queue; if
OL_WRP_MULTIPLE, completed buffers from the done queue are
continuously reused when no buffers are found on the ready queue;
if OL_WRP_SINGLE, a single buffer is continuously reused).

olDmSetValidSamples Specify the valid number of data points in the buffer.

Fill the buffer.

Use olDmAllocBuffer to allocate a buffer of
samples, where each sample is 2 bytes; use
olDmCallocBuffer to allocate a buffer of samples of
a specified size; or use olDmMallocBuffer to
allocate a buffer in bytes.

Put the buffer on the ready queue.
139

Chapter 4

140
Deal with Messages and Buffers for Input Operations

Get error
message?

Retrieve the
buffer from the
done queue.

No

Go to the next page.

Yes
Report the error.

Get buffer
reused

message?

No

Yes

You may want to
increment a counter.

Get queue
done

message?

No

Yes
Report that the operation
has stopped. You might

also want to clean up the
subsystem

 (see page 147).

Get buffer
done

message?

No

Yes Process
data?

No

Yes
olDaGetBuffer

Determine the
number of
samples in the
buffer.

olDmGetValidSamples

Go to the next page.

The following error messages can be
reported: OLDA_WM_OVERRUN or
OLDA_WM_TRIGGER_ERROR.

The buffer reused message is
OLDA_WM_BUFFER_REUSED.

The queue done messages are
OLDA_WM_QUEUE_DONE and
OLDA_WM_QUEUE_STOPPED.

The buffer done message is
OLDA_WM_BUFFER_DONE or
OLDA_WM_PRETRIGGER_BUFFER_DONE.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Continued from previous page. Continued from previous page.

olDmGetBufferPtr
Get a pointer
to the buffer.

Process the data/buffer
in your program.

olDaPutBuffer

Wait for
message?

Yes
Return to the top of

page 140.

Convert the data from counts to
voltage using olDaCodeToVolts or

from voltage to counts using
olDaVoltsToCode, if desired.

Recycle the buffer if you want the subsystem to fill it again when
using OL_WRP_NONE or OL_WRP_MULTIPLE. See page 142
if you want to transfer data from an inprocess buffer. For a burst
of data, you may want to clean up after processing; refer to page
148 for more information.
141

Chapter 4

142
Transfer Data from an Inprocess Buffer

olDaGetQueueSize
Determine the number of buffers on the inprocess
queue (at least one buffer must be on the inprocess
queue to perform this operation).

Copy the data from the inprocess buffer to the
allocated buffer for immediate processing. An
OLDA_WM_BUFFER_DONE message is
generated when the operation completes.

olDaFlushFromBufferInprocess

olDmAllocBuffer,
olDmMallocBuffer, or

olDmCallocBuffer

See page 140 to deal with the
buffers.

Use olDmAllocBuffer to allocate a buffer of samples,
where each sample is 2 bytes; use olDmCallocBuffer
to allocate a buffer of samples of a specified size; or use
olDmMallocBuffer to allocate a buffer in bytes.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Deal with Messages and Buffers for Output Operations

Get error
message?

No

Go to the next page.

Yes
Report the error.

Get buffer
reused

message?

No

Yes

You may want to
increment the counter.

Get queue
done

message?

No

Yes
Report that the operation
has stopped. You might

also want to clean up the
subsystem

(see page 147).

Get buffer
done

message?

No

Yes

No

Yes
olDaGetBuffer

Go to the next page.

The following error messages can be
reported: OLDA_WM_UNDERRUN or
OLDA_WM_TRIGGER_ERROR.

The buffer reused message is
OLDA_WM_BUFFER_REUSED.

The queue done messages are
OLDA_WM_QUEUE_DONE and
OLDA_WM_QUEUE_STOPPED.

The buffer done
message is
OLDA_WM_
BUFFER_DONE.
Retrieve the buffer
from the done queue.

Refill
buffers?
143

Chapter 4

144
Continued from previous page. Continued from previous page.

olDmGetBufferPtr
Get a pointer
to the buffer.

Fill the buffer.

olDaPutBuffer

Wait for
message?

Yes
Return to the top of

page 143.

olDmSetValidSamples

Recycle the buffer if you want the
subsystem to empty it again when
using OL_WRP_NONE or
OL_WRP_MULTIPLE.

IO complete
message
returned?

Yes
The IO complete message is OLDA_WM_IO_COMPLETE.
It is generated when the last data point has been output
from the analog output channel. Note that in some cases,
this message is generated well after the data is transferred
from the buffer (when the OLDA_WM_BUFFER_DONE and
OLDA_WM_QUEUE_DONE messages are generated.

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Set Clocks and Gates for Counter/Timer Operations

Specify OL_CLK_EXTERNAL to select the external
clock or OL_CLK_EXTRA to select an extra available
external clock.

Using an
internal
clock?

olDaSetClockSource

Specify OL_CLK_INTERNAL to
select the internal clock or
OL_CLK_EXTRA to select an
extra available internal clock.

olDaSetClockFrequency

Specify the frequency of the output
pulse from the internal clock. The
driver sets the actual frequency as
closely as possible to the number
specified.

olDaSetClockSource

olDaSetExternalClockDivider

Yes

No

olDaSetGateType

Specify a clock divider to apply to the external clock
source to set the frequency of the output pulse. The
driver sets the actual clock divider as closely as
possible to this number.

Specify the gate to enable or trigger a counter/timer operation. Specify
OL_GATE_NONE for a software gate, OL_GATE_HIGH_LEVEL for a
high-level gate, OL_GATE_LOW_LEVEL for a low-level gate,
OL_GATE_HIGH_EDGE for a high-edge gate, OL_GATE_LOW_EDGE
for a low-edge gate, OL_GATE_LEVEL for any level gate,
OL_GATE_HIGH_LEVEL_DEBOUNCE for a debounced high-level
gate, OL_GATE_LOW_LEVEL_DEBOUNCE for a debounced low-level
gate, OL_GATE_HIGH_EDGE_DEBOUNCE for a debounced
high-edge gate, OL_GATE_LOW_EDGE_DEBOUNCE for a debounced
low-edge gate, or OL_GATE_LEVEL_DEBOUNCE for a debounced
level gate.
145

Chapter 4

146
Stop the Operation

olDaAbort and olDaReset stop
the operation on the subsystem
immediately; the current buffers are
not filled or emptied before they are
put on the done queue. olDaReset
also reinitializes the subsystem to a
known state and flushes all buffers to
the done queue.

Stop in an
orderly
way?

olDaStop

olDaStop stops the operation on
the subsystem in the recommended
way; the current inprocess buffers
are filled or emptied and put on the
done queue. The driver posts at least
one buffer done and queue stopped
message.

olDaReset

olDaAbort

Yes

No

Reinitialize?
Yes

No

Pause the
operation?

Yes

No

olDaPause

Continue a
paused

operation?

Yes

No

olDaContinue

Programming Flowcharts

4

4

4

4

4

4

4

4

4

Clean Up Buffered I/O Operations

olDaFlushBuffers
Flush all buffers on the ready and/or
inprocess queues to the done queue.

olDaGetQueueSize
Determine the number of buffers on the done
queue.

olDaGetBuffer Retrieve each buffer on the done queue.

olDmFreeBuffer
Free each buffer retrieved from the done
queue.

More
buffers to

free?

Yes

No

olDaReleaseDASS Release each subsystem.

olDaTerminate
Release the device driver and terminate the
session.

olDaReleaseSSList
For simultaneous operations only, release the
simultaneous start list.
147

Chapter 4

148
Clean Up Counter/Timer Operations

olDaReleaseDASS Release each subsystem.

olDaTerminate
Release the device driver and terminate the
session.

olDaReleaseSSList
For simultaneous operations only, release the
simultaneous start list.

5
Product Support
149

Chapter 5

150
For the latest tips, software fixes, and other product information, you
can always access our World-Wide Web site at the following address:
http://www.keithley.com

Should you experience problems using the DataAcq SDK, follow
these steps:

1. Read all the appropriate sections of this manual. Make sure that
you have added any “Read This First” information to your
manual and that you have used this information.

2. Check for a README file on the Keithley CD. If present, read this
file for the latest installation and usage information.

3. Check that you have installed your hardware devices properly.
For information, refer to the documentation supplied with your
devices.

4. Check that you have installed the device drivers for your
hardware devices properly. For information, refer to the
documentation supplied with your devices.

5. Check that you have installed your software properly.

If you are still having problems, the Keithley Technical Support
Department is available to provide technical assistance.

For the most efficient service, complete the form on page 151 and be
at your computer when you call for technical support. This
information helps to identify specific system and
configuration-related problems and to replicate the problem in
house, if necessary.

Product Support

5

5

5

5

5

5

5

5

5

Information Required for Technical Support

Name:___Phone__________________________

Contract Number: __

Address: ___

__

Hardware product(s): ___

serial number: ___

configuration: ___

Device driver: ____________________________________ ________________________________

___ version: _________________________

Software:__ ________________________________

serial number: ________________________________ version:__________________________

PC make/model: ___

operating system: _____________________________ version:__________________________

Windows version: __

processor: ___________________________________ speed:___________________________

RAM: _______________________________________ hard disk space:____________________

network/number of users: _______________________ disk cache:________________________

graphics adapter: _____________________________ data bus:_________________________

I have the following boards and applications installed in my system:____________________________

__

__

I am encountering the following problem(s): __

__

__

__

and have received the following error messages/codes: ____________________________________

__

__

I have run the board diagnostics with the following results: __________________________________

__

You can reproduce the problem by performing these steps:

1. ___

__

2. ___

__

3. ___

__
151

Chapter 5

152

A
Sample Code

Single-Value Analog Input . 154

Continuous Analog Input . 159
153

Appendix A

154
Single-Value Analog Input
The following code fragments illustrate the steps required to perform
a single-value analog input operation. Refer to the example program
svadc.c in the directory C:\da_sdk\Examples\ for the entire
program.

This program calls a user-defined function called GetDriver(), which
enumerates the devices installed in the system.

Declare Variables and User Functions

This code fragment defines the variables used and the user-defined
GetDriver() function; note that this program uses the device’s default
values for channel type, resolution, data encoding, range, and
channel filter.

typedef struct tag_board {
HDRVR hdrvr; /* driver handle */
HDASS hdass; /* subsystem handle */
ECODE status; /* board error status */
char name[STRLEN]; /* string for board name */
char entry[STRLEN]; /* string for board name */
} BOARD;

typedef BOARD FAR* LPBOARD;

static BOARD board;

BOOL __export FAR PASCAL
GetDriver(lpszName,lpszEntry,lParam)

LPSTR lpszName; /* board name */
LPSTR lpszEntry; /* system.ini entry */
LPARAM lParam; /* optional user data */
UINT channel = 0;
DBL gain = 1.0;

Sample Code

A

A

A

A

A

A

A

A

A

DBL min,max;
float volts;
long value;
UINT encoding,resolution;

Initialize the Driver

The following code fragment, in WinMain (), calls the
CHECKERROR error handler macro and the olDaEnumBoards
function, which initializes the first available DT-Open Layers device.
olDaEnumBoards calls GetDriver(), which lists the name of the
device:

board.hdrvr = NULL;
CHECKERROR(olDaEnumBoards(GetDriver,

(LPARAM) (LPBOARD) &board));

This code fragment is in GetDriver() and gets the device name:

{
LPBOARD lpboard = (LPBOARD)(LPVOID)lParam;
/* fill in board strings */
lstrcpyn(lpboard->name,lpszName,STRLEN);
lstrcpyn(lpboard->entry,lpszEntry,STRLEN);

This code is in WinMain() and checks for errors within the callback
function:

CHECKERROR (board.status);
/* check for NULL driver handle - means no boards */
if (board.hdrvr == NULL){

MessageBox(HWND_DESKTOP, "No DT-Open Layer
boards!!!", "Error",
MB_ICONEXCLAMATION | MB_OK);

return ((UINT)NULL);
}

155

Appendix A

156
This code fragment is in WinMain() and initializes the device:

lpboard->status = olDaInitialize(lpszName,
&lpboard->hdrvr);

if (lpboard->hdrvr != NULL)
return FALSE;

/* false to stop enumerating */
else

return TRUE; /* true to continue */
}

Get a Handle to the Subsystem

The following code fragment gets a handle to the A/D subsystem
and checks for errors:

CHECKERROR(olDaGetDASS(board.hdrvr,OLSS_AD,0,
&board.hdass));

Set the DataFlow to Single Value

The following code fragment sets the dataflow mode of the A/D
subsystem to single value and checks for errors.

CHECKERROR (olDaSetDataFlow(board.hdass,
OL_DF_SINGLEVALUE));

Configure the Subsystem

The following code fragment configures the A/D subsystem and
checks for errors.

CHECKERROR (olDaConfig(board.hdass));

Sample Code

A

A

A

A

A

A

A

A

A

Acquire a Single Value

The following code fragment acquires a single analog input value
from channel 0 of the A/D subsystem (using a gain of 1) and checks
for errors.

CHECKERROR (olDaGetSingleValue(board.hdass, &value,
channel, gain));

 Convert the Value to Voltage

The following code fragment uses the default range, encoding, and
resolution of the A/D subsystem to convert the acquired value into
voltage and to check for errors. Note that this step is optional.

CHECKERROR (olDaGetRange(board.hdass,&max,&min));
CHECKERROR (olDaGetEncoding(board.hdass,

&encoding));
CHECKERROR (olDaGetResolution(board.hdass,

&resolution));

/* Convert value to volts */
if (encoding != OL_ENC_BINARY)

{
/* convert to offset binary by inverting the */
/* sign bit */
 value ^= 1L << (resolution-1);

/* zero upper bits */
value &= (1L << resolution) - 1;

}
volts=(float)max-(float)min)/(1L<<resolution)*

value+float)min;

/* display value with message box */
157

Appendix A

158
sprintf(str,"Single Value AD Op.\nADC Input =
%.3f V", volts);

MessageBox(HWND_DESKTOP, str, board.name,
MB_ICONINFORMATION | MB_OK);

Release the Subsystem and Terminate the Session

The following code fragment releases the A/D subsystem, terminates
the session, and checks for errors:

CHECKERROR (olDaReleaseDASS(board.hdass));
CHECKERROR (olDaTerminate(board.hdrvr));

Handle Errors

The following code fragment handles the errors from the DataAcq
SDK and displays the error codes. Note that this step is optional but
recommended.

#define STRLEN 80 /* String size for general text*/
/* manipulation. */

char str[STRLEN]; /* Global string for general */
/* text manipulation */

#define SHOW_ERROR(ecode)
MessageBox(HWND_DESKTOP,olDaGetErrorString(ecode,

str,STRLEN),"Error",
MB_ICONEXCLAMATION|MB_OK);

#define CHECKERROR(ecode) \
if ((board.status = (ecode)) != OLNOERROR)\

{\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTerminate(board.hdrvr);\
return ((UINT)NULL);

}

Sample Code

A

A

A

A

A

A

A

A

A

Continuous Analog Input
The following code fragments illustrate the steps required to perform
a continuous (post-trigger) analog input operation. Refer to the
example program contadc.c in the directory C:\da_sdk\Examples\
for the entire program.

This program calls two user-defined functions: GetDriver(), which
enumerates the devices installed in the system, and OutputBox(),
which creates a dialog box to handle information and error window
messages from the A/D subsystem.

Declare Variables and User Functions

This code fragment defines the variables used and the user-defined
GetDriver() function; note that this program uses the device’s default
values for channel type, resolution, data encoding, range, and
channel filter.

typedef struct tag_board {
 HDRVR hdrvr; /* driver handle */
 HDASS hdass; /* subsystem handle */
 ECODE status; /* board error status */
 HBUF hbuf; /* subsystem buffer handle */
 WORD FAR* lpbuf; /* buffer pointer */
 char name[STRLEN]; /* string for board name */
 char entry[STRLEN]; /* string for board name */

} BOARD;

typedef BOARD FAR* LPBOARD;

static BOARD board;
static ULNG count = 0;
BOOL __export FAR PASCAL GetDriver(lpszName,

pszEntry, lParam)
159

Appendix A

160
 LPSTR lpszName; /* board name */
 LPSTR lpszEntry; /* system.ini entry */
 LPARAM lParam; /* optional user data */

BOOL __export FAR PASCAL InputBox(hDlg, message,
wParam, lParam)

HWND hDlg;
/* window handle of the dialog box */
UINT message;
/* type of message */
WPARAM wParam;
/* message-specific information */
LPARAM lParam;

DBL min,max;
float volts;
long value;
ULNG samples;
UINT encoding,resolution;

DBL freq;
UINT size,dma,gainsup;
int i;

UINT channel = 0;
DBL gain = 1.0;

Sample Code

A

A

A

A

A

A

A

A

A

Initialize the Driver

The following code fragment, in WinMain(), calls the CHECKERROR
error handler macro and the olDaEnumBoards function, which
initializes the first available DT-Open Layers device.
olDaEnumBoards calls GetDriver(), which lists the name of the
device:

board.hdrvr = NULL;
CHECKERROR(olDaEnumBoards(GetDriver,

(LPARAM)(LPBOARD)&board));
CHECKERROR (board.status);

/* check for NULL driver handle - means no boards */
if (board.hdrvr == NULL){

MessageBox(HWND_DESKTOP, " No Open Layer
boards!!!",

"Error", MB_ICONEXCLAMATION | MB_OK);
return ((UINT)NULL);
}

This code is in GetDriver() and gets the device name:

{
LPBOARD lpboard = (LPBOARD)(LPVOID)lParam;

/* fill in board strings */
lstrcpyn(lpboard->name,lpszName,STRLEN);
lstrcpyn(lpboard->entry,lpszEntry,STRLEN);
}

161

Appendix A

162
This code is in WinMain() and initializes the device:

lpboard->status = olDaInitialize(lpszName,
&lpboard->hdrvr);

if (lpboard->hdrvr != NULL)
return FALSE; /* false to stop enumerating */

else
return TRUE; /* true to continue */

}

Get a Handle to the Subsystem

The following code fragment gets a handle to the A/D subsystem
and checks for errors:

CHECKERROR (olDaGetDASS(board.hdrvr,OLSS_AD,0,
&board.hdass));

Set the DataFlow to Continuous

The following code fragment sets the dataflow mode of the A/D
subsystem to single value and checks for errors:

CHECKERROR (olDaSetDataFlow(board.hdass,
OL_DF_CONTINUOUS));

Specify the Channel List and Channel Parameters

The following code fragment specifies a channel-gain list size of 1;
specifies channel 0 in the channel-gain list; if the subsystem supports
programmable gain, specifies a gain of 1 for this entry; and checks for
errors:

/* Specify a channel-list size of 1.*/
CHECKERROR (olDaSetChannelListSize(board.hdass,1));

/* Specify a channel 0 in the channel list.*/

Sample Code

A

A

A

A

A

A

A

A

A

CHECKERROR (olDaSetChannelListEntry(board.hdass,0,
channel));

/* Check if the subsystem supports programmable */
/* gain. */
CHECKERROR (olDaGetSSCaps(board.hdass,

OLSSC_SUP_PROGRAMGAIN, gainsup));
/* Set the gain for entry 0 in the channel list */
/* if the board supports it. */
if (gainsup)
CHECKERROR (olDaSetGainListEntry(board.hdass,

0,gain));

Specify the Clocks

The following code fragment specifies the frequency of the internal
A/D sample clock and checks for errors:

/* Check the maximum frequency for the internal */
/* clock */
CHECKERROR(olDaGetSSCapsEx(board.hdass,

OLSSCE_MAXTHROUGHPUT, &freq));

/* set 1000 Hz frequency */
freq = min (1000.0, freq);
CHECKERROR (olDaSetClockFrequency(board.hdass,

freq));
163

Appendix A

164
Specify DMA Usage

The following code fragment specifies one DMA channel for the A/D
subsystem and checks for errors:

/* Check the number of DMA channels supported. */
CHECKERROR(olDaGetSSCaps(board.hdass,

OLSSC_NUMDMACHANS, &dma));

/* Set one dma channel.*/
dma = min (1, dma);
CHECKERROR (olDaSetDmaUsage(board.hdass,dma));

Set Up Window Handle and Buffering

The following code fragment specifies a handle to the message
window, set up buffers, and check for errors:

/* Specify window handle. */
CLOSEONERROR (olDaSetWndHandle(board.hdass, hDlg,

(UINT)NULL));

/*Specify the buffer wrap mode as multiple */
CHECKERROR (olDaSetWrapMode(board.hdass,

OL_WRP_MULTIPLE));

/*Specify the buffers and put them on the ready */
/*queue. */
size = (UINT)freq/10;
/* Specify the buffer size. */

/* Allocate three input buffers and */
/* put the buffers on the ready queue. */

Sample Code

A

A

A

A

A

A

A

A

A

for (i=0;i<3;i++)
{

CHECKERROR (olDmCallocBuffer(0,0,(ULNG) size,
2,&board.hbuf));

CHECKERROR (olDmGetBufferPtr(board.hbuf,
(LPVOID FAR*) &board.lpbuf));

CHECKERROR (olDaPutBuffer(board.hdass,
board.hbuf));

}

Configure the Subsystem

The following code fragment configures the A/D subsystem and
checks for errors.

CHECKERROR (olDaConfig(board.hdass));

Start the Continuous Analog Input Operation

The following code fragment acquires a single analog input value
from channel 0 of the A/D subsystem (using a gain of 1) and checks
for errors:

CLOSEONERROR (olDaStart(board.hdass));

Deal with Messages and Buffers

The following code fragment deals with messages and buffers for the
A/D subsystem:

/* Use a dialog box to collect information */
/* and error messages from the subsystem. */
DialogBox(hInstance, (LPCSTR)INPUTBOX,

HWND_DESKTOP, InputBox);

/* This function processes messages for the */
/* input dialog box. */
165

Appendix A

166
switch (message) {

case WM_INITDIALOG:
/* message: initialize dialog box*/
/* set the title to the board name */
SetWindowText(hDlg,board.name);
return (TRUE); /* A message was returned. */

case OLDA_WM_BUFFER_REUSED:
/* message: buffer reused*/
break;
case OLDA_WM_BUFFER_DONE:
/* message: buffer done*/

/* Get buffer off the done queue. */
CHECKERROR (olDaGetBuffer(board.hdass,

&board.hbuf));
/*If there is a buffer, get subsystem */
/*information for code to volts conversion */
if (board.hbuf != NULL){
CLOSEONERROR (olDaGetRange(board.hdass,

&max,&min));
CLOSEONERROR (olDaGetEncoding(board.hdass,

&encoding));
CLOSEONERROR (olDaGetResolution (board.hdass,

&resolution));

/* get max samples in input buffer */
CLOSEONERROR (olDmGetMaxSamples(board.hbuf,

&samples));

/* get last sample in buffer */
value = board.lpbuf[samples-1];

/* Get pointer to buffer data */
CHECKERROR (olDmGetBufferPtr (board.hbuf,

(LPVOID FAR*) &board.lpbuf));

Sample Code

A

A

A

A

A

A

A

A

A

/* Put buffer back on the ready queue. */
CHECKERROR (olDaPutBuffer(board.hdass,

board.hbuf));

case OLDA_WM_QUEUE_DONE:
/* using wrap multiple or none */
/* if this message is received, */
/* acquisition has stopped. */
EndDialog(hDlg, TRUE);

case OLDA_WM_QUEUE_STOPPED:
/* using wrap multiple or none */
/* if this message is received, */
/* acquisition has stopped. */
EndDialog(hDlg, TRUE);

case OLDA_WM_TRIGGER_ERROR:

/* Process trigger error message */
MessageBox(hDlg,"Trigger error: acquisition

stopped", "Error", MB_ICONEXCLAMATION |
MB_OK);

EndDialog(hDlg, TRUE);

case OLDA_WM_OVERRUN_ERROR:
/* Process underrun error message */
MessageBox(hDlg,"Input overrun error:

acquisition stopped", "Error",
MB_ICONEXCLAMATION | MB_OK);

EndDialog(hDlg, TRUE);

case WM_COMMAND:
/* message: received a command */
#ifdef WIN32
switch (LOWORD(wParam)) {
#else
switch (wParam) {
167

Appendix A

168
#endif
case IDOK:
case IDCANCEL:

CLOSEONERROR (olDaAbort(board.hdass));
EndDialog(hDlg, TRUE);

return (TRUE); /* Did process a message. */
}
break;

 }
return (FALSE); /* Didn't get a message */

}

Convert Values to Voltage

The following code fragment uses the default range, encoding, and
resolution of the A/D subsystem to convert the acquired values into
voltages and to check for errors. Note that this step is optional.

/* convert value to volts */
if (encoding != OL_ENC_BINARY) {

/* convert to offset binary by inverting */
*/ sign bit */
value ^= 1L << (resolution-1);

/* zero upper bits */
value &= (1L << resolution) - 1;
}
volts = ((float)max-(float)min)/(1L<<resolution) *

value + (float)min;

/* display value */
sprintf(str,"%.3f Volts",volts);
SetDlgItemText (hDlg, IDD_VALUE, str);
}

Sample Code

A

A

A

A

A

A

A

A

A

Clean Up

The following code fragment flushes the buffers, releases the
subsystem, and terminates the program when the continuous A/D
operation is complete:

/* Get the input buffers from the done queue and */
/* free the input buffers */
CHECKERROR (olDaFlushBuffers(board.hdass));

for (i=0;i<3;i++)
{

CHECKERROR (olDaGetBuffer(board.hdass,
&board.hbuf));

CHECKERROR (olDmFreeBuffer(board.hbuf));
}

/* release the subsystem and terminate */
/* the session */
CHECKERROR (olDaReleaseDASS(board.hdass));
CHECKERROR (olDaTerminate(board.hdrvr));

Handle Errors

The following code fragment handles the errors from the DataAcq
SDK and displays the error codes. Note that this step is optional but
recommended.

/* Error handling macros */

#define STRLEN 80 /* String size for general */
 /* text manipulation */

char str[STRLEN]; /* Global string for general */
/* text manipulation. */
169

Appendix A

170
#define SHOW_ERROR(ecode)
MessageBox(HWND_DESKTOP,olDaGetErrorString(ecode,

(str,STRLEN),"Error", MB_ICONEXCLAMATION |
MB_OK);

#define CHECKERROR(ecode)
if ((board.status = (ecode))!= OLNOERROR)\
{\

SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTerminate(board.hdrvr);\

return ((UINT)NULL);}
#define CLOSEONERROR(ecode)

if ((board.status = (ecode)) != OLNOERROR)\
{\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTerminate(board.hdrvr);\
EndDialog(hDlg, TRUE);\
return (TRUE);}

Index
A
A/D subsystem 38
aborting an operation

A/D 55
D/A 55
digital input 55
digital output 55
edge-to-edge measurement 91
event counting 83
rate generation 94
repetitive one-shot 99
simultaneous 111
up/down counting 85

about the example programs 5
about-trigger mode 59
aliasing 66
analog event trigger 70
analog input channel configuration

differential 43
pseudo-differential 44
single-ended 43

analog input operations 41
inhibiting channels in the channel list

47
specifying a single channel 44
specifying buffers 71
specifying clock sources 65
specifying DMA channels 79
specifying filters 53
specifying gain 51
specifying ranges 50

specifying synchronous digital I/O
values in the channel list 48

specifying the channel list size 45
specifying the channel type 43
specifying the channels in the

channel list 46
specifying the data encoding 41
specifying the data flow 54
specifying the resolution 42
specifying trigger sources 67
specifying triggered scan mode 61

analog output operations 41
specifying a single channel 44
specifying buffers 71
specifying clock sources 65
specifying DMA channels 79
specifying filters 53
specifying gain 51
specifying ranges 50
specifying the channel list size 45
specifying the channel type 43
specifying the channels in the

channel list 46
specifying the data encoding 41
specifying the data flow 54
specifying the resolution 42
specifying trigger sources 67

analog threshold (negative) trigger 69
analog threshold (positive) trigger 69
architecture 35
autoranging 28, 54
171

Index

172
B
binary data format 41
buffer list management functions 33
buffer management functions 31
buffers 71, 140, 143

done queue 74
inprocess queue 72
ready queue 71
transferring data from an inprocess

buffer 142
wrap modes 78

C
C/T clock sources 101

external C/T clock 102
extra C/T clock 104
internal C/T clock 102
internally cascaded C/T clock 103

C/T subsystem 38
calling conventions 7
capabilities, used with

olDaGetSSCaps 13
capabilities, used with

olDaGetSSCapsEx 20
cascading counters 103
channel list inhibition 47
channel list size 45
channel list specification 46
channel list, specifying synchronous

digital I/O values 48
channel type 43
cleaning up operations

A/D 147
counter/timer 148
D/A 147
digital I/O 147

clock divider 127
clock input signal 81
clock sources

clock divider 127
external 66
external C/T clock 102
extra 67
extra C/T clock 104
internal 65, 123, 127
internal C/T clock 102
internally cascaded C/T clock 103

configuration functions 22
configuring a subsystem 39
continuing an operation

A/D 56
D/A 56
digital input 56
digital output 56
edge-to-edge measurement 91
event counting 83
rate generation 94
repetitive one-shot 100
up/down counting 85

continuous operations 55
continuous (post-trigger) mode 57
continuous about-trigger mode 59
continuous pre-trigger mode 58
flowcharts for A/D 117
flowcharts for D/A 119
flowcharts for digital input 117
flowcharts for digital output 119
sample code for continuous A/D 159

continuous pulse output 93
conventions used xiv
conventions, calling 7
conversion rate 63, 65

Index
counter/timer operations 81
C/T clock sources 101
channels 81
duty cycle 108
gate types 104
operation modes 82
pulse output types 108

counting events 82, 84, 90

D
D/A subsystem 38
data acquisition functions 10

configuration 22
conversion 30
information 10
initialization and termination 21
operation 27

data buffers 71
data conversion functions 30
data encoding 41
data flow modes 54
data management functions 31

buffer list management 33
buffer management 31

data transfer, from an inprocess buffer
142

DataAcq SDK
architecture 35
overview 2

dealing with messages and buffers
input operations 140
output operations 143

debounced gate type
any level 108
high-edge 107
high-level 107

low-edge 108
low-level 107

device, initialization 37
differential inputs 43
digital event trigger 70
digital input operations 41

specifying a single channel 44
specifying buffers 71
specifying clock sources 65
specifying DMA channels 79
specifying gain 51
specifying the channel list size 45
specifying the channel type 43
specifying the channels in the

channel list 46
specifying the data flow 54
specifying the resolution 42
specifying trigger sources 67

digital output operations 41
specifying a single channel 44
specifying buffers 71
specifying clock sources 65
specifying DMA channels 79
specifying gain 51
specifying the channel list size 45
specifying the channel type 43
specifying the channels in the

channel list 46
specifying the data flow 54
specifying the resolution 42
specifying trigger sources 67

DIN subsystem 38
DMA channels 79
done queue 74
DOUT subsystem 38
DT-Open Layers 2
duty cycle 108
173

Index

174
E
edge-to-edge measurement operations

90
flowcharts 127

encoding 41
error checking 114
error codes 40
event counting operations 82

flowcharts 121
event trigger

analog 70
digital 70
timer 70

example programs 5
external analog threshold (negative)

trigger 69
external analog threshold (positive)

trigger 69
external C/T clock 102
external clock source 66
external digital (TTL) trigger 68
external retrigger mode 62
extra C/T clock 104
extra clock sources 67
extra retrigger mode 64
extra trigger sources 70

F
filters 53
flowcharts 113

cleaning up A/D operations 147
cleaning up counter/timer

operations 148
cleaning up D/A operations 147
cleaning up digital I/O operations

147

continuous A/D operations 117
continuous D/A operations 119
continuous digital input operations

117
continuous digital output operations

119
dealing with messages and buffers

140, 143
edge-to-edge measurement

operations 127
event counting operations 121
frequency measurement operations

125
pulse output operations 129
setting up buffers for A/D operations

138
setting up buffers for D/A operations

139
setting up buffers for digital input

operations 138
setting up buffers for digital output

operations 139
setting up channel lists 134
setting up clocks 135, 145
setting up gates 145
setting up pre-triggers 135
setting up subsystem parameters 133
setting up triggered scans 137
setting up triggers 135
simultaneous operations 131
single-value operations 115
stopping operations 146
transferring data from an inprocess

buffer 142
up/down counting operations 123

Index
frequency measurement operations 86
flowcharts 125
using a pulse of a known duration 87
using the Windows timer 86

functions
buffer list management 33
buffer management 31
configuration 22
data conversion 30
information 10
initialization and termination 21
operation 27
summary 9

G
gain list 51
gains 51
gate input signal 81, 104
gate types 104

any level 106
high-edge 106
high-edge, debounced 107
high-level 105
high-level, debounced 107
level, debounced 108
low-edge 106
low-edge, debounced 108
low-level 105
low-level, debounced 107
software 105

H
handling errors 40
handling messages 40
help, launching online 4

high-edge gate type 106
high-edge, debounced gate type 107
high-level debounced gate type 107
high-level gate type 105
high-to-low pulse output 108

I
information functions 10
inhibiting channels in the channel list

47
initialization functions 21
initializing a device 37
inprocess buffer, transferring data 142
inprocess queue 72
input configuration

differential analog 43
single-ended analog 43

internal
clock 123, 127

internal C/T clock 102
internal clock sources 65
internal retrigger mode 63
internal trigger 68
interrupts 79

L
launching the online help 4
level gate type 106
level, debounced gate type 108
list management functions 33
LongtoFreq macro 126
low-edge gate type 106
low-edge, debounced gate type 108
low-level gate type 105
low-level, debounced gate type 107
175

Index

176
low-to-high pulse output 109

M
macro 126
measuring frequency 86
message handling 40

flowcharts for A/D 140
flowcharts for D/A 143
flowcharts for digital input 140
flowcharts for digital output 143

messages
OLDA_WM_BUFFER_DONE 74
OLDA_WM_BUFFER_REUSED 78
OLDA_WM_MEASURE_DONE 87
OLDA_WM_PRETRIGGER_

BUFFER_DONE 74
OLDA_WM_QUEUE_DONE 78
OLDA_WM_QUEUE_STOPPED 74

multiple wrap mode 78

N
no wrap mode 78
Nyquist Theorem 66

O
OL_ENUM_FILTERS 53
OL_ENUM_GAINS 52
OL_ENUM_RANGES 50
OLDA_WM_BUFFER_DONE 74, 140,

143
OLDA_WM_BUFFER_REUSED 78,

140, 143
OLDA_WM_IO_COMPLETE 77, 144
OLDA_WM_MEASURE_DONE 87

OLDA_WM_OVERRUN 140
OLDA_WM_PRETRIGGER_BUFFER_

DONE 74, 140
OLDA_WM_QUEUE_DONE 78, 140,

143
OLDA_WM_QUEUE_STOPPED 74,

140, 143
OLDA_WM_TRIGGER_ERROR 63,

65, 140, 143
OLDA_WM_UNDERRUN 143
olDaAbort 28, 146

in A/D operations 55
in D/A operations 55
in digital input operations 55
in digital output operations 55
in edge-to-edge measurement

operations 91
in event counting operations 83
in rate generation operations 94
in repetitive one-shot operations 99
in simultaneous operations 111
in up/down counting operations 85

olDaCodeToVolts 30, 55, 76, 116, 141
olDaConfig 28, 39

in continuous A/D operations 118
in continuous D/A operations 120
in continuous digital input

operations 118
in continuous digital output

operations 120
in edge-to-edge measurement

operations 127
in event counting operations 121
in frequency measurement

operations 126
in pulse output operations 130
in single-value operations 115

Index
in up/down counting operations 123
olDaContinue 28, 146

in A/D operations 56
in D/A operations 56
in digital input operations 56
in digital output operations 56
in edge-to-edge measurement

operations 91
in event counting operations 83
in rate generation operations 94
in repetitive one-shot operations 100
in up/down counting operations 85

olDaEnumBoards 10, 37, 114
olDaEnumBoardsEx 11
olDaEnumLists 33
olDaEnumSSCaps 11, 114
olDaEnumSSList 12
olDaEnumSubSystems 11, 39, 114
olDaFlushBuffers 29, 77, 147
olDaFlushFromBufferInprocess 29,

73, 76, 142
olDaFreeBuffer 77
olDaGetBoardInfo 10, 37
olDaGetBuffer 29, 76, 147

in continuous A/D operations 140
in continuous D/A operations 143
in continuous digital input

operations 140
in continuous digital output

operations 143
olDaGetCascadeMode 26
olDaGetChannelFilter 24
olDaGetChannelListEntry 23
olDaGetChannelListEntryInhibit 24
olDaGetChannelListSize 23
olDaGetChannelRange 25
olDaGetChannelType 24

olDaGetClockFrequency 26
olDaGetClockSource 26
olDaGetCTMode 26
olDaGetDASS 21, 38

in continuous A/D operations 117
in continuous D/A operations 119
in continuous digital input

operations 117
in continuous digital output

operations 119
in edge-to-edge measurement

operations 127
in event counting operations 121
in frequency measurement

operations 125
in pulse output operations 129
in single-value operations 115
in up/down counting operations 123

olDaGetDASSInfo 11
olDaGetDataFlow 22
olDaGetDevCaps 11, 39, 114
olDaGetDeviceName 11
olDaGetDigitalIOListEntry 24
olDaGetDmaUsage 22
olDaGetDriverVersion 12
olDaGetEncoding 25
olDaGetErrorString 12
olDaGetExternalClockDivider 26
olDaGetGainListEntry 23
olDaGetGateType 26
olDaGetMeasureStartEdge 27
olDaGetMeasureStopEdge 27
olDaGetMultiscanCount 23
olDaGetNotificationProcedure 22
olDaGetPretriggerSource 25
olDaGetPulseType 26
olDaGetPulseWidth 27
177

Index

178
olDaGetQueueSize 12, 142, 147
olDaGetRange 25
olDaGetResolution 25
olDaGetRetrigger 25
olDaGetRetriggerFrequency 23
olDaGetRetriggerMode 23
olDaGetSingleValue 28, 55, 116
olDaGetSingleValueEx 28, 54, 116
olDaGetSSCaps 11, 114
olDaGetSSCapsEx 11, 114
olDaGetSSList 30, 110, 131
olDaGetSynchronousDigitalIOUsage

24
olDaGetTrigger 25
olDaGetTriggeredScanUsage 23
olDaGetVersion 12
olDaGetWndHandle 22
olDaGetWrapMode 22
olDaInitialize 21, 37

in continuous A/D operations 117
in continuous D/A operations 119
in continuous digital input

operations 117
in continuous digital output

operations 119
in edge-to-edge measurement

operations 127
in event counting operations 121
in frequency measurement

operations 125
in pulse output operations 129
in single-value operations 115
in up/down counting operations 123

olDaMeasureFrequency 29, 86, 126
olDaPause 28, 146

in A/D operations 56
in D/A operations 56

in digital input operations 56
in digital output operations 56
in edge-to-edge measurement

operations 91
in event counting operations 83
in rate generation operations 94
in repetitive one-shot operations 100
in up/down counting operations 85

olDaPutBuffer 29, 72, 76
in continuous A/D operations 138,

141
in continuous D/A operations 139,

144
in continuous digital input

operations 141
in continuous digital output

operations 139, 144
olDaPutDassToSSList 30, 110, 131
olDaPutSingleValue 28, 55, 116
olDaReadEvents 29, 83, 85, 91, 122,

124
olDaReleaseDASS 21, 40, 111

in A/D operations 147
in counter/timer operations 148
in D/A operations 147
in digital input operations 147
in digital output operations 147
in event counting operations 128
in single-value operations 116

olDaReleaseSSList 30, 111, 147, 148
olDaReset 28, 146

in A/D operations 55
in D/A operations 55
in digital input operations 55
in digital output operations 55
in edge-to-edge measurement

operations 91

Index
in event counting operations 83
in rate generation operations 94
in repetitive one-shot operations 99
in simultaneous operations 111
in up/down counting operations 85

olDaSetCascadeMode 26, 103
in event counting operations 121
in frequency measurement

operations 125
in pulse output operations 129

olDaSetChannelFilter 24, 53, 133
olDaSetChannelListEntry 23, 46, 134
olDaSetChannelListEntryInhibit 24,

47, 134
olDaSetChannelListSize 23, 45, 134
olDaSetChannelRange 25, 50, 133
olDaSetChannelType 24, 43, 133
olDaSetClockFrequency 26, 65, 93,

102, 135
in C/T operations 145

olDaSetClockSource 26, 65, 66, 102,
103, 123, 127, 135

in C/T operations 145
olDaSetCTMode 26

in edge-to-edge measurement
operations 91, 127

in event counting operations 82, 88,
121

in frequency measurement
operations 125

in one-shot mode 88
in one-shot operations 86, 96
in pulse output operations 129
in rate generation operations 93
in repetitive one-shot operations 99
in up/down counting operations 84,

123

olDaSetDataFlow 22
in continuous (post-trigger)

operations 57
in continuous A/D operations 117
in continuous about-trigger

operations 59
in continuous D/A operations 119
in continuous digital input

operations 117
in continuous digital output

operations 119
in continuous pre-trigger operations

58
in single-value operations 54, 115

olDaSetDigitalIOListEntry 24, 48, 134
olDaSetDmaUsage 22, 80

in continuous A/D operations 117
in continuous D/A operations 119
in continuous digital input

operations 117
in continuous digital output

operations 119
olDaSetEncoding 25, 41, 133
olDaSetExternalClockDivider 26, 66,

93, 103, 127, 135
in C/T operations 145

olDaSetGainListEntry 23, 52, 134
olDaSetGateType 26, 104, 105, 145
olDaSetMeasureStartEdge 27, 127
olDaSetMeasureStopEdge 27, 127
olDaSetMultiscanCount 23, 61, 137
olDaSetNotificationProcedure 22, 40

in continuous A/D operations 138
in continuous D/A operations 139
in continuous digital input

operations 138
179

Index

180
in continuous digital output
operations 139

olDaSetPretriggerSource 25, 58, 60,
68, 136

olDaSetPulseType 26, 109, 130
olDaSetPulseWidth 27, 109, 130
olDaSetRange 25, 50, 133
olDaSetResolution 25, 42, 133
olDaSetRetrigger 25, 64, 68, 137
olDaSetRetriggerFrequency 23, 63,

137
olDaSetRetriggerMode 23, 62, 63, 64,

137
olDaSetSynchronousDigitalIOUsage

24, 48, 134
olDaSetTrigger 25, 57, 68, 135
olDaSetTriggeredScanUsage 23, 61,

137
olDaSetWndHandle 22, 40

in continuous A/D operations 138
in continuous D/A operations 139
in continuous digital input

operations 138
in continuous digital output

operations 139
olDaSetWrapMode 22, 78

in continuous A/D operations 138
in continuous D/A operations 139
in continuous digital input

operations 138
in continuous digital output

operations 139
olDaSimultaneousPreStart 30, 110,

131
olDaSimultaneousStart 30, 110, 131
olDaStart 28

in A/D operations 55, 118

in D/A operations 55, 120
in digital input operations 55, 118
in digital output operations 55, 120
in edge-to-edge measurement

operations 91, 128
in event counting operations 83, 122
in one-shot operations 97
in pulse output operations 130
in rate generation operations 94
in repetitive one-shot operations 99
in simultaneous operations 111
in up/down counting operations 85,

124
olDaStop 28, 146

in A/D operations 55
in D/A operations 55
in digital input operations 55
in digital output operations 55
in edge-to-edge measurement

operations 91
in event counting operations 83
in rate generation operations 94
in repetitive one-shot operations 99
in simultaneous operations 111
in up/down counting operations 85

olDaTerminate 21, 40, 111, 147
in C/T operations 148
in digital input operations 147
in digital output operations 147
in event counting operations 128
in single-value operations 116

olDaVoltsToCode 30, 55, 76, 116, 141
olDmAllocBuffer 32, 71

in A/D operations 138
in D/A operations 139
in digital input operations 138
in digital output operations 139

Index
in inprocess buffer operations 142
olDmCallocBuffer 32, 71

in A/D operations 138
in D/A operations 139
in digital input operations 138
in digital output operations 139
in inprocess buffer operations 142

olDmCopyBuffer 32
olDmCopyFromBuffer 32
olDmCopyToBuffer 32
olDmCreateList 33
olDmEnumBuffers 33
olDmFreeBuffer 32, 147
olDmFreeList 33
olDmGetBufferFromList 33
olDmGetBufferPtr 32, 76

in continuous A/D operations 141
in continuous D/A operations 144
in continuous digital input

operations 141
in continuous digital output

operations 144
olDmGetBufferSize 32
olDmGetDataBits 32
olDmGetDataWidth 32
olDmGetErrorString 32
olDmGetListCount 33
olDmGetListHandle 33
olDmGetListIDs 34
olDmGetMaxSamples 32
olDmGetTimeDateStamp 32
olDmGetValidSamples 32

in continuous A/D operations 140
in continuous digital input

operations 140
olDmGetVersion 32

olDmMallocBuffer 32, 71
in A/D operations 138
in D/A operations 139
in digital input operations 138
in digital output operations 139
in inprocess buffer operations 142

olDmPeekBufferFromList 34
olDmPutBufferToList 34
olDmReAllocBuffer 32
olDmReCallocBuffer 33
olDmReMallocBuffer 33
olDmSetDataWidth 32
olDmSetValidSamples 32, 139

in continuous D/A operations 144
in continuous digital output

operations 144
OLSCC_SUP_SEQUENTIAL_CGL 45
OLSS_SUP_EXTCLOCK 17
OLSSC_CGLDEPTH 15, 45
OLSSC_FIFO_SIZE_IN_K 20
OLSSC_MAXDICHANS 16
OLSSC_MAXDIGITALIOLIST_

VALUE 15, 48
OLSSC_MAXMULTISCAN 14, 61
OLSSC_MAXSECHANS 43
OLSSC_NUM_DMACHANS 80
OLSSC_NUM_RANGES 50
OLSSC_NUM_RESOLUTION 42
OLSSC_NUMCHANNELS 16, 42
OLSSC_NUMDMACHANS 14
OLSSC_NUMEXTRACLOCKS 17, 67,

104
OLSSC_NUMEXTRATRIGGERS 17,

70
OLSSC_NUMFILTERS 16, 53
OLSSC_NUMGAINS 15, 52
OLSSC_NUMRANGES 16
181

Index

182
OLSSC_NUMRESOLUTIONS 16
OLSSC_RANDOM_CGL 45
OLSSC_SUP_2SCOMP 16, 41
OLSSC_SUP_ANALOGEVENTTRIG

17, 70
OLSSC_SUP_BINARY 16, 41
OLSSC_SUP_BUFFERING 13, 71
OLSSC_SUP_CASCADING 18, 103
OLSSC_SUP_CHANNELLIST_

INHIBIT 15, 47
OLSSC_SUP_CONTINUOUS 13, 57
OLSSC_SUP_CONTINUOUS_

ABOUTTRIG 13, 59
OLSSC_SUP_CONTINUOUS_

PRETRIG 13, 58
OLSSC_SUP_CTMODE_COUNT 18,

82, 86
OLSSC_SUP_CTMODE_MEASURE

18, 90
OLSSC_SUP_CTMODE_ONESHOT

18, 96
OLSSC_SUP_CTMODE_ONESHOT_

RPT 18, 99
OLSSC_SUP_CTMODE_RATE 18, 93
OLSSC_SUP_CTMODE_UP_DOWN

18, 84
OLSSC_SUP_DIFFERENTIAL 16, 43
OLSSC_SUP_DIGITALEVENTTRIG

17, 70
OLSSC_SUP_EXP2896 16, 42
OLSSC_SUP_EXP727 16, 42
OLSSC_SUP_EXTCLOCK 66, 102
OLSSC_SUP_EXTERNTRIG 17, 68
OLSSC_SUP_FIFO 20
OLSSC_SUP_FILTERPERCHAN 16,

53

OLSSC_SUP_GAPFREE_DUALDMA
14, 79

OLSSC_SUP_GAPFREE_NODMA 14,
79

OLSSC_SUP_GAPFREE_
SINGLEDMA 14, 79

OLSSC_SUP_GATE_GATE_LEVEL 19
OLSSC_SUP_GATE_HIGH_EDGE 19,

106
OLSSC_SUP_GATE_HIGH_EDGE_

DEBOUNCE 19, 107, 108
OLSSC_SUP_GATE_HIGH_LEVEL

19, 105
OLSSC_SUP_GATE_HIGH_LEVEL_

DEBOUNCE 19, 107
OLSSC_SUP_GATE_LEVEL 106
OLSSC_SUP_GATE_LEVEL_

DEBOUNCE 19
OLSSC_SUP_GATE_LOW_EDGE 19,

106
OLSSC_SUP_GATE_LOW_EDGE_

DEBOUNCE 19
OLSSC_SUP_GATE_LOW_LEVEL 19,

105
OLSSC_SUP_GATE_LOW_LEVEL_

DEBOUNCE 19
OLSSC_SUP_GATE_NONE 19, 105
OLSSC_SUP_INPROCESSFLUSH 13,

73
OLSSC_SUP_INTCLOCK 17, 65, 102
OLSSC_SUP_INTERRUPT 19, 79
OLSSC_SUP_MAXRETRIGGER 20
OLSSC_SUP_MAXSECHANS 16
OLSSC_SUP_MINRETRIGGER 20
OLSSC_SUP_PAUSE 13, 56
OLSSC_SUP_PLS_HIGH2LOW 18,

109

Index
OLSSC_SUP_PLS_LOW2HIGH 18,
109

OLSSC_SUP_POSTMESSAGE 13, 40
OLSSC_SUP_PROCESSOR 20
OLSSC_SUP_PROGRAMGAIN 15, 52
OLSSC_SUP_RANDOM_CGL 15
OLSSC_SUP_RANGEPERCHANNEL

16, 50
OLSSC_SUP_RETRIGGER_EXTRA

14, 64
OLSSC_SUP_RETRIGGER_

INTERNAL 14, 63
OLSSC_SUP_RETRIGGER_SCAN_

PER_TRIGGER 14, 62
OLSSC_SUP_SEQUENTIAL_CGL 15
OLSSC_SUP_SIMULTANEOUS_

CLOCKING 17
OLSSC_SUP_SIMULTANEOUS_SH

15, 45
OLSSC_SUP_SIMULTANEOUS_

START 13, 110
OLSSC_SUP_SINGLEENDED 16, 43
OLSSC_SUP_SINGLEVALUE 13, 54
OLSSC_SUP_SINGLEVALUE_

AUTORANGE 15, 54
OLSSC_SUP_SOFTTRIG 17, 68
OLSSC_SUP_SWCAL 20
OLSSC_SUP_SWRESOLUTION 16, 42
OLSSC_SUP_SYNCHRONOUS_

DIGITALIO 15
OLSSC_SUP_SYNCHRONOUS

DIGITALIO 48
OLSSC_SUP_THRESHTRIGNEG 17,

69
OLSSC_SUP_THRESHTRIGPOS 17,

69

OLSSC_SUP_TIMEREVENTTRIG 17,
70

OLSSC_SUP_TRIGSCAN 14, 61
OLSSC_SUP_WRPMULTIPLE 13, 79
OLSSC_SUP_WRPSINGLE 13, 79
OLSSC_SUP_ZEROSEQUENTIAL_

CGL 15, 45
OLSSCE_BASECLOCK 20
OLSSCE_MAXCLOCKDIVIDER 20,

67, 103
OLSSCE_MAXTHROUGHPUT 20, 66,

102
OLSSCE_MINCLOCKDIVIDER 20,

67, 103
OLSSCE_MINTHROUGHPUT 20, 66,

102
one-shot mode 96
online help, launching 4
operation functions 27
operation modes, counter/timer 82

edge-to-edge measurement 90
event counting 82
frequency measurement 86
one-shot pulse output 96
rate generation 93
repetitive one-shot pulse output 99
up/down counting 84

operations
analog input 41
analog output 41
counter/timer 81
digital input 41
digital output 41
simultaneous 110

outputting pulses
continuously 93
one-shot 96
183

Index

184
repetitive one-shot 99
overview of the DataAcq SDK 2

P
parameters

setting up buffers for A/D operations
138

setting up buffers for D/A operations
139

setting up buffers for digital input
operations 138

setting up buffers for digital output
operations 139

setting up channel lists and channel
parameters 134

setting up clocks 135
setting up clocks for counter/timer

operations 145
setting up gates 145
setting up pre-triggers 135
setting up the subsystem 133
setting up triggered scans 137
setting up triggers 135

pausing an operation
A/D 56
D/A 56
digital input 56
digital output 56
edge-to-edge measurement 91
event counting 83
rate generation 94
repetitive one-shot 100
up/down counting 85

post-trigger mode 57
pre-trigger mode 58
programmable gain 52

programming flowcharts 113
pseudo-differential channels 44
pulse output 81

duty cycle 108
flowcharts 129
one-shot 96
output types 108
rate generation (continuous) 93
repetitive one-shot 99

pulse train output 93
pulse types

high-to-low 108
low-to-high 109

pulse width 109

Q
queues

done 74
inprocess 72
ready 71

R
ranges 50
rate generation mode 93
ready queue 71
releasing the subsystem and driver 40
repetitive one-shot mode 99
resetting an operation

A/D 55
D/A 55
digital input 55
digital output 55
edge-to-edge measurement 91
event counting 83
rate generation 94

Index
repetitive one-shot 99
simultaneous 111
up/down counting 85

resolution 42
retrigger modes

internal retrigger 63
retrigger extra 64
scan-per-trigger 62

S
sample code

for continuous A/D 159
for single-value A/D 154

scan-per-trigger retrigger mode 62
service and support procedure 150
setting up buffers

for A/D operations 138
for D/A operations 139
for digital input operations 138
for digital output operations 139

setting up channel lists 134
setting up channel parameters 134
setting up clocks 135
setting up clocks for counter/timer

operations 145
setting up gates 145
setting up pretriggers 135
setting up subsystem parameters 133
setting up triggered scans 137
setting up triggers 135
simultaneous operations 110

flowcharts 131
single wrap mode 79
single-ended inputs 43
single-value operations 54

flowcharts 115

sample code for analog input 154
software architecture 35
software gate type 105
software trigger 68
specifying a single channel 44
specifying a subsystem 38
specifying buffers 71
specifying channels in the channel list

46
specifying clock sources 65
specifying DMA channels 79
specifying filters 53
specifying gains 51
specifying ranges 50
specifying single-value operations 54
specifying synchronous digital I/O

values in the channel list 48
specifying the data flow 54
specifying trigger sources 67
specifying triggered scan mode 61
SRL subsystem 38
starting an operation

A/D 55
D/A 55
digital input 55
digital output 55
edge-to-edge measurement 91
event counting 83
frequency measurement 86
one-shot 97
rate generation 94
repetitive one-shot 99
up/down counting 85

stopping an operation
A/D 55
D/A 55
digital input 55
185

Index

186
digital output 55
edge-to-edge measurement 91
event counting 83
flowchart 146
rate generation 94
repetitive one-shot 99
simultaneous 111
up/down counting 85

subsystem 38
setting up parameters 133

system operations 37
configuring a subsystem 39
handling errors 40
handling messages 40
initializing a device 37
releasing the subsystem and driver

40
specifying a subsystem 38

T
technical support 150
terminating the session 40
termination functions 21
threshold (negative) trigger 69
threshold (positive) trigger 69
timer event trigger 70
transferring data from an inprocess

buffer 142
trigger source 67

analog event 70
digital event trigger 70
external analog threshold (negative)

69
external analog threshold (positive)

69
external digital (TTL) 68

extra trigger 70
software (internal) 68
timer event trigger 70

triggered scan mode 61
troubleshooting checklist 150
troubleshooting procedure 150
twos complement data format 41
type, channel 43

U
up/down counting operations 84

flowcharts 123
using the online help 4

W
wrap modes 78

multiple 78
none 78
single 79

12/04

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

A G R E A T E R M E A S U R E O F C O N F I D E N C E

Keithley Instruments, Inc.
Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) • www.keithley.com

	Front Cover
	Warranty Page
	Title Page
	Manual Print History
	Safety Precautions
	Table of Contents
	About this Manual
	Intended Audience
	What You Should Learn from this Manual
	Organization of this Manual
	Conventions Used in this Manual
	Related Information
	Where to Get Help

	Overview
	What is the DataAcq SDK?
	Installation
	Using the DataAcq SDK Online Help
	About the Examples Programs
	About the Library Function Calling Conventions

	Function Summary
	Data Acquisition Functions
	Information Functions
	Initialization and Termination Functions
	Configuration Functions
	Operation Functions
	Data Conversion Functions

	Data Management Functions
	Buffer Management Functions
	Buffer List Management Functions

	Using the DataAcq SDK
	System Operations
	Initializing a Device
	Specifying a Subsystem
	Configuring a Subsystem
	Handling Errors
	Handling Messages
	Releasing the Subsystem and the Driver

	Analog and Digital I/O Operations
	Data Encoding
	Resolution
	Channels
	Specifying the Channel Type
	Specifying a Single Channel
	Specifying One or More Channels
	Specifying the Channel List Size
	Specifying the Channels in the Channel List
	Inhibiting Channels in the Channel List
	Specifying Synchronous Digital I/O Values in the Channel List

	Ranges
	Gains
	Specifying the Gain for a Single Channel
	Specifying the Gain for One or More Channels

	Filters
	Data Flow Modes
	Single-Value Operations
	Continuous Operations
	Continuous Post-Trigger Mode
	Continuous Pre-Trigger Mode
	Continuous About-Trigger Mode

	Triggered Scan Mode
	Scan-Per-Trigger Mode
	Internal Retrigger Mode
	Retrigger Extra Mode

	Clock Sources
	Internal Clock Source
	External Clock Source
	Extra Clock Source

	Trigger Sources
	Software (Internal) Trigger Source
	External Digital (TTL) Trigger Source
	External Analog Threshold (Positive) Trigger Source
	External Analog Threshold (Negative) Trigger Source
	Analog Event Trigger Source
	Digital Event Trigger Source
	Timer Event Trigger Source
	Extra Trigger Source

	Buffers
	Ready Queue
	Inprocess Queue
	Done Queue
	Buffer and Queue Management
	Buffer Wrap Modes

	DMA and Interrupt Resources

	Counter/Timer Operations
	Counter/Timer Operation Mode
	Event Counting
	Up/Down Counting
	Frequency Measurement
	Using the Windows Timer
	Using a Pulse of a Known Duration

	Edge-to-Edge Measurement
	Rate Generation
	One-Shot
	Repetitive One-Shot

	C/T Clock Sources
	Internal C/T Clock
	External C/T Clock
	Internally Cascaded Clock
	Extra C/T Clock Source

	Gate Types
	Software Gate Type
	High-Level Gate Type
	Low-Level Gate Type
	Low-Edge Gate Type
	High-Edge Gate Type
	Any Level Gate Type
	High-Level, Debounced Gate Type
	Low-Level, Debounced Gate Type
	High-Edge, Debounced Gate Type
	Low-Edge, Debounced Gate Type
	Level, Debounced Gate Type

	Pulse Output Types and Duty Cycles

	Simultaneous Operations

	Programming Flowcharts
	Single-Value Operations
	Continuous Buffered Input Operations
	Continuous Buffered Output Operations
	Event Counting Operations
	Up/Down Counting Operations
	Frequency Measurement Operations
	Edge-to-Edge Measurement Operations
	Pulse Output Operations
	Simultaneous Operations

	Product Support
	Sample Code
	Single-Value Analog Input
	Declare Variables and User Functions
	Initialize the Driver
	Get a Handle to the Subsystem
	Set the DataFlow to Single Value
	Configure the Subsystem
	Acquire a Single Value
	Convert the Value to Voltage
	Release the Subsystem and Terminate the Session
	Handle Errors

	Continuous Analog Input
	Declare Variables and User Functions
	Initialize the Driver
	Get a Handle to the Subsystem
	Set the DataFlow to Continuous
	Specify the Channel List and Channel Parameters
	Specify the Clocks
	Specify DMA Usage
	Set Up Window Handle and Buffering
	Configure the Subsystem
	Start the Continuous Analog Input Operation
	Deal with Messages and Buffers
	Convert Values to Voltage
	Clean Up
	Handle Errors

	Index
	Back Cover

