
KPCI-1801HC KPCI-1802HC

333kHz, 12-Bit, High Channel Count Multifunction Boards

- 64 single-ended or 32 differential, 12-bit inputs
- Maximum sample rate up to 333kSamples/s
- High gain capability for thermocouples (KPCI-1801HC)
- 2K sample FIFO
- Burst mode
- Pre-, post-, and about-triggering
- 2 analog outputs
- 4 digital inputs, 8 digital outputs
- 32-bit DriverLINX[®] drivers plus a suite of bundled software including ExceLINX[™], VisualSCOPE[™], and LabVIEW[®] drivers

Ordering Infoation

KPCI-1801HC 333kHz, 12-Bit, High Channel Count Multifunction Board, high gain KPCI-1802HC

333kHz, 12-Bit, High Channel Count Multifunction Board, low gain

1.888.KEITHLEY (U.S. only) www.keithley.com

Functional Description

The KPCI-1801HC/1802HC multifunction data acquisition boards combine high performance with high channel capacity. They make it simple to gather analog data, read and output digital signals, provide analog stimulus, and much more. Both boards provide 32 differential or 64 single-ended inputs and two analog outputs. The KPCI-1801HC offers software programmable high-gain inputs of 1, 5, 50, and 250, while the KPCI-1802HC features low gain inputs of 1, 2, 4, and 8.

You can sample any single channel at any gain up to 333kSamples/s. Multiple channels can be sampled at aggregate rates up to 312.5kSamples/s.

These boards feature continuous, high speed data acquisition. An onboard 2048-location FIFO buffer and 32-bit bus-mastering DMA ensure the continuous acquisition of large amounts of data. A 64-location channel gain queue allows high speed acquisition with channels at different gains and in non-sequential order using DMA or interrupt-based data transfer modes. The KPCI-1801HC/1802HC support bus mastering, interrupt, or target mode data transfer methods.

The programmable burst mode capability allows you to acquire data from a series of channel scans at high speed with a programmed interval between scans. This mode emulates a simultaneous sample-and-hold function.

These boards feature flexible clocking, triggering, and gating modes. You

can configure the boards to accept an external pacer clock input or use the onboard time base to provide a conversion rate from 4.32 samples/hour to 333kSamples/s. External hardware trigger and gate inputs allow precise control over when data is acquired, and flexible trigger modes allow you to acquire data in relationship to a specific event. An event that starts or stops acquisition can be either an internal or an external digital trigger. You can configure the boards for several triggering modes, including: pre-trigger, post-trigger and about-trigger.

- Pre-trigger mode allows acquisition to occur until an external trigger occurs.
- Post-trigger is the standard acquisition mode; acquisition begins after an internal or external trigger event and continues until an end condition occurs or the specified number of samples are collected.
- About-trigger mode allows acquisition to occur both before and after an external trigger.

The analog inputs are software-configurable for single-ended or differential inputs and bipolar or unipolar input ranges. The analog inputs are multiplexed into a high speed 12-bit analog-to-digital converter. Two 12-bit analog outputs are provided with output voltage ranges of ± 10.0 V.

A total of eight digital outputs and 4 digital inputs are available for control of the A/D and D/A converters. A strobe signal is provided for latching the digital output signals into external circuitry. +5V, -15V, and +15V are available at the connector for supplying power to external accessories or circuitry.

ACCESSORIES AVAILABLE

C-16MB1 CAB-1800	MB01 Backplane to STA-1800HC cable KPCI-1801HC/1802HC to STA-1800HC	CAB-1802/S*	KPCI-1801HC/1802HC to STA-1800HC or STP-100 100-pin, 72" shielded cable
	100-pin, 18" cable	CONN-1800HC	Connector/Cable Adapter Accessory
CAB-1801	KPCI-1801HC/1802HC to STA-1800HC STP-100 100-pin, 36" cable	MB-01**	16-Channel Direct-Connection Module Mounting Rack
CAB-1802	KPCI-1801HC/1802HC to STA-1800HC or STP-100 100-pin, 72" cable	MB-05**	8-Channel Direct-Connection Module
CAB-1800/S*	KPCI-1801HC/1802HC to STA-1800HC or STP-100 100-pin, 18" shielded cable	STA-1800HC	Mounting Rack Screw Terminal Accessory for CJC with
CAB-1801/S*	KPCI-1801HC/1802HC to STA-1800HC 100-pin, 36" shielded cable	STP-100	Thermocouples Screw Terminal Panel for 100-pin connectors

*Required for CE emissions compliance

**Signal conditioning modules for the MB-01 and MB-05 can be found in the Signal Conditioning and Accessories section.

KPCI-1801HC KPCI-1802HC

333kHz, 12-Bit, High Channel Count Multifunction Boards

Specifications (KPCI-1801HC)

ANALOG INPUTS

NUMBER OF CHANNELS: 32 differential or 64 single ended; software configurable. A/D FIFO BUFFER SIZE: 2048 samples. CHANNEL GAIN QUEUE LENGTH: 64 entries. A/D RESOLUTION: 12 bits.

INPUT GAIN AND RANGE:

Gain	Range (Bipolar)	Range (Unipolar)
1	±5 V	0-5 V
5	±1 V	0-1 V
50	±100 mV	0-100 mV
250	±20 mV	0-20 mV

 INPUT RANGE SELECTION: Software selectable via channel gain queue entry.

 INPUT OVERVOLTAGE: ±15V continuous, powered or unpowered.

 INPUT BIAS CURRENT: ±40nA maximum @25°C; ±60nA max. over operating range.

 INPUT IMPEDANCE: >100MΩ or greater in parallel with 90pF or less, all gains.

 SINGLE CHANNEL THROUGHPUT: 333kS/s.

 SCANNING THROUGHPUT (multiple channels scanned at the same gain):

 Gain
 Throughput (Bipolar)

 Throughput (Dipolar)

	1		312.5 kS/s	312.5 kS/s			
	1		•	• • • • • • • • •			
	5		312.5 kS/s	312.5 kS/s			
	50		312.5 kS/s	200 kS/s			
	250		75 kS/s	60 kS/s			
]	LINEARITY: Integral: ±1 LSB max. Differential: ±1 LSB max.						
1	ERROR: ±0.02% reading ±1 LSB max. for gains < 250, @25°C typical. ±0.03% reading ±1 LSB max. for gain = 250, @25°C typical.						
TEMPERATURE COEFFICIENTS:							
Offset-Unipolar: ±10µV			$\pm 10 \mu V/^{\circ}C \pm (14$	$\mu V/^{\circ}C \div gain)$ typical.			
Offset-Bipolar:		-Bipolar:	$\pm 10 \mu V/^{\circ}C \pm (12$	$\mu V/^{\circ}C \div gain)$ typical.			
C-1 FO		- 50	1 20	see 1			

Gain < 50 Gain = 50					
Gain = 25	0: ±35ppm/°C	±35ppm/°C typical.			
ipolar Inp	out Error	25°C ± 5°C			
Range	Resolution (V)	%FSR	%rdg		
±5 V	0.002441	0.051%	0.030%		
+1 V	0.000/188	0.055%	0.030%		

0-5	V	0.001221	0.027%	0.030%	
Range Resolution (V)		% FSR %	(rdg–[FSR/2	2])	
UNipolar Input Error		25°C	± 5°C		
±20	mV	0.00000976	0.300%	0.048%	
±100	mV	0.0000488	0.100%	0.035%	

Range		Resolution (V)	%FSR %(rdg–[FSR/	
0-5	V	0.001221	0.027%	0.030%
0-1	V	0.000244	0.031%	0.030%
0 - 100	mV	0.0000244	0.076%	0.035%
0-20	mV	0.00000488	0.276%	0.048%

Note: Accuracies and rms calculations are based on an average of 50 samples. Add noise to get maximum uncertainty of a single sample. FSR = Full Scale Range. rdg = Reading.

COMMON MODE REJECTION: Gain = 1: 74dB @ 60Hz. Gain = 5: 80dB @ 60Hz. Gain ≥50: 100dB @ 60Hz.

DATA TRANSFER MODES: DMA (PCI bus master), Interrupt (target-mode transfer), Polled (targetmode transfer).

ANALOG OUTPUTS

NUMBER OF CHANNELS: 2. RESOLUTION: 12 bits. RANGE: ±10V. ACCURACY: ±5mV typical unloaded; output impedance = 4Ω. OUTPUT CURRENT: ±5mA max. MAXIMUM CAPACITIVE LOAD: 100μF. DATA TRANSFER MODES: DMA (PCI bus master), Interrupt (target-mode transfer), Polled (target-mode transfer). D/A FIFO BUFFER SIZE: 16 samples.

1.888.KEITHLEY (U.S. only)

www.keithley.com

Specifications (KPCI-1802HC)

ANALOG INPUTS

NUMBER OF CHANNELS: 32 differential or 64 single ended; software configurable. A/D FIFO BUFFER SIZE: 2048 samples. CHANNEL GAIN QUEUE LENGTH: 64 entries.

A/D RESOLUTION: 12 bits.

INPUT GAIN AND RANGE:

Gain	Range (Bipolar)	Range (Unipolar)
1	±10 V	0-10 V
2	±5 V	0-5 V
4	±2.5 V	0-2.5 V
8	±1.25 V	0-1.25 V

INPUT RANGE SELECTION: Software selectable via channel gain queue entry. INPUT OVERVOLTAGE: ±15V continuous, powered or unpowered. INPUT BIAS CURRENT: ±40nA max. @25°C; ±60nA max. over operating range.

INPUT IMPEDANCE: >100MΩ or greater in parallel with 90pF or less, all gains. SINGLE CHANNEL THROUGHPUT: 333k5/s. SCANNING THROUGHPUT (multiple channels scanned at the same gain):

Gain	Throughput (Bipolar)	Throughput (Unipolar)
1	312.5 kS/s	312.5 kS/s
2	312.5 kS/s	312.5 kS/s
4	312.5 kS/s	312.5 kS/s
8	312.5 kS/s	312.5 kS/s

LINEARITY: Integral: ±1 LSB max. Differential: ±1 LSB max.

ERROR: ±0.02% reading ±1 LSB max. for gains < 250, @25°C typical. **TEMPERATURE COEFFICIENTS:**

Offset–Unipolar: $\pm 10\mu$ V/°C $\pm (14\mu$ V/°C \div gain) typical.

Unset-Unipolar:	$\pm 10\mu\nu/C \pm (14\mu\nu/C - gam)$ typical.
Offset-Bipolar:	$\pm 10\mu V/^{\circ}C \pm (12\mu V/^{\circ}C \div gain)$ typical.
Gain:	±20ppm/°C typical.

 Bipolar Input Error
 25°C ± 5°C

 Range
 Resolution (V)
 %FSR
 %rdg

 ±10 V
 0.004883
 0.050%
 0.030%

I	Unipolar Input Error		25°C ±	5°C	
	±1.25 V	0.00061	0.053%	0.030%	
	±2.5 V	0.001221	0.051%	0.030%	
	±5 V	0.002441	0.050%	0.030%	

Range	Resolution (V)	%FSR %	(rdg-[FSR/2])
0-10 V	0.002441	0.026%	0.030%
0-5 V	0.001221	0.026%	0.030%
0-2.5 V	0.00061	0.027%	0.030%
0-1.25 V	0.000305	0.029%	0.030%

Note: Accuracies and rms calculations are based on an average of 50 samples. Add noise to get maximum uncertainty of a single sample. FSR = Full Scale Range. rdg = Reading.

COMMON MODE REJECTION (typical): Gain = 1: 74dB DC-60Hz. Gain = 2: 4: 80dB DC-60Hz

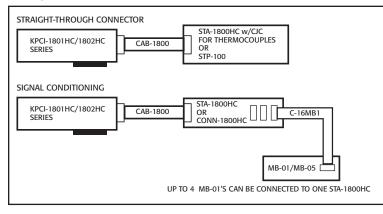
$$Gain = 8:$$
 86dB DC-60Hz.

DATA TRANSFER MODES: DMA (PCI bus master), Interrupt (target-mode transfer), Polled (targetmode transfer).

ANALOG OUTPUTS

NUMBER OF CHANNELS: 2. RESOLUTION: 12 bits. RANGE: $\pm 10V$. ACCURACY: $\pm 5mV$ typical into high impedance; output impedance = 4Ω . OUTPUT CURRENT: $\pm 5mA$ max. MAXIMUM CAPACITIVE LOAD: 100μ F. DATA TRANSFER MODES: DMA (PCI bus master), Interrupt (target-mode transfer), Polled (target-mode transfer). D0/ EVEO NUMERE SUPE 16 accords

D/A FIFO BUFFER SIZE: 16 samples.



В

KPCI-1801HC KPCI-1802HC

333kHz, 12-Bit, High Channel Count Multifunction Boards

Configuration Guide

ENVIRONMENT

TEMPERATURE, OPERATING: 0°C to 50°C.

- TEMPERATURE, NONOPERATING: -20°C to 70°C.
- HUMIDITY: 0 to 95% Relative (non-condensing), operating or nonoperating.
- EMC: Conforms to European Union directive 89/336/EEC. SAFETY: Conforms to European Union directive 73/23/EEC
- DIMENSIONS: 203mm long × 108mm wide × 19mm deep (8 in

(meets EN 61010-1/IEC 1010).

× 4.25 in × 0.75 in).

1.888.KEITHLEY (U.S. only)

www.keithley.com

Connector Pin Assignments

The analog input, analog output, digital input, and digital output connections are made with a 100-pin D-type connector at the rear of the computer.

	\sim				
	Bank	Bank			
	A	B			
	Pin	Pin			
AGND CH16 HI	1	1	AGND CH00 HI		
CH16 LO / CH48 HI	3	23	CH00 LO / CH32 H		
CH17 HI	4	4	CH01 HI		
CH17 LO / CH49 HI	5	5	CH01 LO / CH33 H		
CH18 HI	6	6	CH02 HI		
CH18 LO / CH50 HI CH19 HI	7	7	CH02 LO / CH34 H CH03 HI		
CH19 LO / CH51 HI	9	9	CH03 LO / CH35 H		
CH20 HI	10	10	CH04 HI		
CH20 LO / CH52 HI	11	11	CH04 LO / CH36 H		
CH21 HI CH21 LO / CH53 HI	12 13	12 13	CH05 HI CH05 LO / CH37 H		
CH22 HI	14	14	CH06 HI		
CH22 LO / CH54 HI	15	15	CH06 LO / CH38 H		
CH23 HI	16	16	CH07 HI		
CH23 LO / CH55 HI AGND	17 18	17 18	CH07 LO / CH39 HI AGND		
CH24 HI	19	19	CH08 HI		
CH24 LO / CH56 HI	20	20	CH08 LO / CH40 H		
CH25 HI	21	21	CH09 HI		
CH25 LO / CH57 HI CH26 HI	22 23	22 23	CH09 LO / CH41 H CH10 HI		
CH26 LO / CH58 HI	24	24	CH10 LO / CH42 H		
CH27 HI	25	25	CH11 HI		
CH27 LO / CH59 HI CH28 HI	26 27	26 27	CH10 LO / CH43 HI CH12 HI		
CH28 LO / CH60 HI	28	27	CH12 LO / CH44 H		
CH29 HI	29	29	CH13 HI		
CH29 LO / CH61 HI	30	30	CH13 LO / CH45 H		
CH30 HI CH30 LO / CH62 HI	31 32	31 32	CH14 HI CH14 LO / CH46 HI		
CH31 HI	33	33	CH15 HI		
CH31 LO / CH63 HI	34	34	CH15 LO / CH47 HI		
AGND DAC1 OUT	35 36	35 36	AGND DAC0 OUT		
-15V	37	30	+15V		
DGND	38	38	DGND		
NC	39	39	DI0/XPCLK		
SSHO TGOUT	40 41	40 41	DI1/TGIN DI2		
DOSTB	41	41	DI2 DI3		
DO4	43	43	DOO		
DO5	44	44	D01		
DO6 DO7	45 46	45 46	D02 D03		
+5V	40	40	+5V		
+5V	48	48	+5V		
DGND	49	49	DGND		
DGND	50	50	DGND		
	\smile				
KPCI-	1801		802HC		
KPCI-1801HC/1802HC					

