
ASO-ADC-16

User’s Guide

Revision A

Printed February, 1333

Parr No. 24460

0 Keithley Data Acquisition 1993

WARNlNG WARNlNG

Keithley Data Acquisition assumes no liability for damages consequent to the Keithley Data Acquisition assumes no liability for damages consequent to the
use of this Product. This Product is not designed with components of a level use of this Product. This Product is not designed with components of a level
of reliability that is suitable for use in life support or critical applications. of reliability that is suitable for use in life support or critical applications.

The information contained in this manual is believed to be accurate and reliable.
However, Keithley Data Acquisition assumes no responsibility for its use; nor for
any infringements or patents or other rights of third parties that may result from
its use. No license is granted by implication or otherwise under any patent rights
of Keithley Data Acquisition.

Keithley Data Acquisition does not warrant that the Product will meet the
Customer’s requirements ot will operate in the combinations which may be
selected for use by the Customer or that the operation of the Program will be
uninterrupted or error free or that all Program defects will be corrected.

Keithley Data Acquisition does not and cannot warrant the performance or results
that may be obtained by using the Program. Accordingly, the Program and its
documentation ate sold “as is” without warranty as to their performance
merchantability, ot fitness for any particular purpose. The entire risk as to the
results and performance of the program is assumed by you.

All brand and product names mentioned in this manual are trademarks or
registered trademarks of their respective companies.

Reproduction or adaptation of any part of this documentation beyond that
permitted by Section 117 of the 1976 United States Copyright Act without
permission of Keirhley Data Acquisition is unlawful.

Keithley Data Acquisition l 440 Myles Standish Blvd. l Taunton, MA 02780

Telephone: (508) 880-3000 l Fax: (508) 880-0179

Contents

Chapter 1
1.1

1.2

1.3

1.4

Introduction 1
About the ASO-ADC-I6 1

Prerequisites 3

Getting additional help 3

Installing the AS0 5

Chapter 2
2.1

2.2

2.3

2.4

2.5

The Function CalI Driver 7
Available operations 7

Overview of programming with the Function Call Driver 9

General programming tasks 1 1

Operation-specific programming rasks 11

Language-specific programming notes 17

Chapter 3 Callable Functions 25
3.1 Functional grouping 25

3.2 Function reference 29

Chapter 4 File I/O Driver 65
4.1 Overview 65

4.2 Loading and unloading the driver 66

4.3 Language-specific programming notes 70

Chapter 5 Fiie I/O Commands 81
5.1 Functional grouping 8 1

5.2 Command reference 84

Appendix A

Appendix B

Function CaIl Driver error messages 97

File I/O Command Driver error messages 103

.; ,f

Introduction

About the ASO-ADC- 16

The ASO-ADC-16 is the Advanced Software Option (ASO) for the
ADC-16 analog input and digital l/O board. The AS0 includes a set of
software components that you can use, in conjunction with a programming
language, to create application programs that execute the operations
available on the ADC-16.

The two primary components of the AS0 are the Function Call Driver
and the File I/O Driver. These drivers represent two distinct methods of
providing your application program with high-level access to the
acquisition and control operations available on the ADC-16. The AS0 also
includes support files, example programs, and a configuration utility.

The Function Call Driver and the File I/O Driver are independent of each
other; your application program will use one or the other, but nor both.
The two drivers are implemented differently and provide slightly different
fmctionality. You should use whichever driver is appropriate for your
pt-ogramming skills and your application’s requirements.

Function Call Driver The Function Call Driver enables your program to define and execute
board operations via calls to dl-iver-provided ftmctions. For example, your
program can call the driver-provided K-ADRead fwcrion to execute a
single-point, A/D input operation.

The AS0 includes several different versions of the Function Call
Driver. The .LIB and .TPU versions are provided for DOS application
development. The Dynamic Link Library (DLL) is provided for Windows
application development.

The AS0 and this manual provide the necessary tools, example programs
and information to develop Function Call Driver programs in the
following languages:

. Borland C++ (version 2.0 and higher)

. Borland Turbo C (version 2.01)

. Borland Ttlrbo Pascal (version 6.0)

. Borland Turbo Pascal for Windows (version 1 .O)

. Microsoft C (version 5.1 and above)

w Microsoft Quick C for Windows (version 1 .O)

. Microsoft Visual Basic (version 1 .O and higher)

File I/O Driver Thr File I/O Driver enables your program to define, execute, and retrieve
the results of board operations by writing (to the driver) dl-iver
-provided File I/O Commands. For example, your program can wire the
Read Channel 1 command to execute a single-point, A/D input operation.

You can use the File l/O Driver to create DOS applications with any
language that supports file l/O. The AS0 and this manual provide the
necessary tools, example programs and information to develop File I/O
Driver programs in the following languages:

. Interpreted BASIC

m QuickBASIC

. Borland Turbo C

. Borland Txbo Pascal

n Microsoft C

. Microsoft Pascal

1.2
-

1.3
-

Prerequisites
The AS0 is designed exclusively for use with the ADC-16. This manuzal
ass~unes that you understand the information presented in the ADC-I6
&r’s Guide. Additionally, you must complete the board installation and
configuratioo procedures outlined in the ADC-I6 lherl Grride before you
attempt any of the procedures described in this manual.

The fmdamental goal of this manual is to provide you with the
information you need to write ADC-I6 application programs that u.w the
AS0 drivers. It is recommended that you proceed through this manual
according to the sequence suggested by the table of contems; this
will minimize the amount of time and effort required to develop your
ASO-ADC-16 application programs.

Getting additional help

The following resources provide information about using the ASO:

. this manual

. the ADC-I6 lherk Gaide

. the AS0 example programs (these are copied to your system’s hard disk
during the installation procedure)

. the documentation for the programming language you arc using

Call our Technical Support Department if you need additional auistance
A Technical Support Engineer will help you diagnose and solve your
problem over the telephone.

Keithley Data Acquisition - Technical Support

508-880-3000

Monday - Friday, 8 A.M. - 7 P.M.

For the most efficient and IlelpfuJ assisraoce, please compile the following
information before calling our Technical Support Department:

STA-IX8 Number installed

Computer Manufacturer

CPU type

Clock speed (MHz)

Math co-processor?

Amount of RAM

Video system

Version

Invoice/Order #

ADC-16 Serial #

Base address setting

A/D fttll-scale setting

Language

Manufacturer

Version

i3.2768 V +5 V

8088 286 386 486 0rhe1

8 12 20 25 33 Otllel-

Yes No

CGA Het-c&s EGA VGA

4 ASO-A[)(::-16 User’s Guidr - Iicv. A

1.4 Installing the AS0
-

The files on these AS0 distribution diskettes are in compressed format.
You must use the installation program included oo the diskettes to insraIl
the AS0 software. Since the aggregate size of the expanded AS0 files is
approxtmately 1 .O MB, check that there is at least this much space
available oo your PC’s hard disk before you attempt to install the ASO.

Perform the following procedure to install the AS0 software (note that it
is assumed that the floppy drive is designaced A:):

1. Make a back-up copy of the distribution diskette(s).

2. Insert AS0 diskette #l into the floppy drive

3. Type the following commands at the DOS prompt:

A: 1~1
install [LEn!e~r&/

The installation program prompts you for your iostallarion preferrnccs.
including the name of the directory into which the AS0 files will br
copied. The installation program expands the files on the AS0 diskette(s)
and copies them into the directory you specified; refer to the IiIe
FIl.ES.IXK: in the AS0 installation directory for the names and
descriptions of these files.

The Function Call Driver

2.1 Available operations

The Function Call Driver provides functions through which an application
program can perform the following operations:

Immediateexecution operations
. Single-value A/D input

. Single-value digital input

n Single-value digital output

Frame-based operations
H Multi-value, interrupt-mode A/D iuput

n Multi-value, synchronous-mode A/D input

Immediate-execution operations and frame-based operations are described
in the following subsections.

immediate-execution The three immediate-execution operations and the Callable Function
operations associated with each are as follows:

l Single-value A/D input: K_&DRead
. Single-value dig&al input: K-DIRead
l Single-value digital output: K_DOWrite

The calling arguments for these functions define the attributes of the
associated operation. Upon receipt of a call to one of these hmctions. the
driver immediately executes the associated operation.

(:hapter 2 - The t;unction (:all I)rivcr 7

Frame-based
operations

The two frame-based operations and the Callable Function associated wirb
each are as follows:

. Multi-value, interrupt-mode A/D input: K-IntStart

. Multi-value, synchronous-mode A/D input: K-SyncStart

The description of frame-based operations requires the introduction of a
few new terms.

Afiume is a data structure whose elements correspond ro the defining
attributes of a board operation. The driver L~S two different types of
frames: A/D and Digital Output frames. The driver mainrains a pool of
four A/D frames and four Digital Output frames.

The values of a frame’s elements define the operation? attributes. For
example, the elements contained in an A/D frame al-e as follows:

n Srdrt Channel - defines the first channel in a scan

n Stop Channel - defines the last channel in a scan

. Gain element - defines the gain applied to all channels in the scan

The driver provides fimctions that set the value of one or more elements.
For example, K-SetG sets the value of a frame’s Gain elemeot, and
K_SetStarxStopChn sets the values of a frame’s Start Channel and Stop
Channel elements.

A jmm handle is a variable whose value identifies a frame. The sole
purpose of a frame handle is to provide a mechanism through which
different function calls can reference the same frame.

A device handle is a variable whose value identifies an insrdlled board. The
sole purpose of a device handle is to provide a mechanism through whirl
different fitnction calls can reference the same board.

A frame-based operation is so-called because the function that pcrfol-ms the
ape!-atmn uses a frame handle as its single calling argument. The frdrnr
handle identifies a frame whose element values are the operation’s
attributes. The values of all of a frame’s elements must be set brfore that
frame’s handle can be used as a calling argument to a funcrion that
exccutcs a frame-based operation.

2.2 Overview of programming with the Function Call Driver
The procedure to write a Function Call Driver program is a& followx

1. Define the application’s requirements.

2. Write the program code.

3. Compile and link the program.

The subsections that follow describe the details of each of these wps.

Defining the
application’s
requirements

Before you begin writing the program code. you should have a char idea
of the board operations you expect your program to execute. Additionally.
you should determine the sequence in which these operations must be
executed and the characteristics (number of channels, gains. and ho on)
that define each operation. You may find it helpful to review the list of
available operations in Section 2. I and to browse through the short
descriptions of the Callable Functions in Section 3. I.

Writing the
program code

Several so~~rces of information relate to this step:

. Section 2.3 explains the programming tasks that are common to all
Function Call Driver programs

. Section 2.4 describes the sequence of function calls requil-ed to execute
each of the available operations

. Section 3.2 provides detailed information on individual fimctions

. The AS0 includes several example source code files for Function Call
Driver programs. The FILIXIXK file in the AS0 installation directory
lists and describes the example programs.

The phrase ycneralprogrumming tasks, as it is used in this chapter, refers to
the programming tasks that every Function Call Driver program must
execute. The task of obtaining a device handle, for example, qualifies as a
general programming task, since the sequence of function calls required to
execute any of the available board operations includes at least one f&tion
whose calling arguments include a device handle. Section 2.3 provides the
details of the general-programming tasks.

Each available operation also has an associated set of tasks that the
program must perform to execute the operation; these are referred to as
operation-specific programming tasks. Section 2.4 provides the derails of the
operarlon-specific programming tasks for each available operation.

Compiling and linking Refer to Section 2.5 for compile and link instructions and other language-
the program specific considerations for each supported language.

General programming tasks
Every Function Call Driver program must execute the following
programming tasks:

I. Identify a function/variable type definition file
The method to identify this file is language-specific; refer to Section 2.5
for addirional information.

2. Declare/initialize program variables

3. Call ADCl6-DevOpen to initialize the driver

4. Call ADClb-GetDevHandle to initialize the board and get a device
handle for the board

- 2.3

2.4
-

The tasks listed are the minimum rasks your program must complete
before it attempts to execute any operarion-specific tasks. Your application
may require additional general-progralnmiIlg tasks. For example, if your
program requires access to two boards, then it mwst call
ADCl6_GetDevHandle for each board.

Operation-specific programming tasks
This section describes the set of programming casks char your program
must perform to execute the following operations:

n Single-value A/D input

n Single-value digital input

. Single-value digital output

. Interrupt-mode A/D input using channel-gain array

. Synchronous-mode A/D input using channel-gain array

n Interrupt-mode A/D input using start/stop channels

. SynchronoLts-mode A/D input using start/srop channels

The set of tasks listed for each operation are valid only if the application
program has already completed the general-programmitlg tasks.

Single-value A/D input

To execute a single-value A/D input, your program musr call K-ADRead.
The calling arguments identify the board that executes the operation, the
channel on which the value is acquired, the gain applied to that channel,
and the buffer in which the value is stored.

Single-value digital input

To execute a single-value digital input, your program must call K_DIRead.
The calling arguments identify the board that executes the operation, the
channel on which the value is acquired, and the buffer in which the value
is stored.

Single-value digital output

To execute a singk-value digital output, your program must call

K-DOW&. The calling arguments identify the boa!-d that executes the
operation, the channel on which the value is written, and the buffer f+om
which the value is written.

12 AS0ALX-I 6 User’s Guide - Kev. A

1.

2.

3.

4.

5.

6.

7.

8.

9.

Interrupt-mode A/D input using start/stop channels

Your program must perform the following tasks to execute an interrupr-
mode A/D input operarion whose channel-scanning sequencr is given by
the sequence’s start and srop cl~annels:

Allocate a buffer in which rhe driver stores the A/D values. Use
K~INTAlloc if you want to allocate this buffer outside the program’s
memory area (you must use K_INTAlloc if you are writing an application
that will execute in Windows standard mode).

Call K-GetADFtame to get the handle to an A/D frame

Call K-SetBuf’to assign the buffer address obtained io stt=p I to the Ruffer
Address element in the frame associated with [he frame hat& obtained in
srep 2.

Call K-SecStartStopG or K-SetStztStopChn and K-SetG to assign values
to the Start Channel, Srop Channel, and Gain elemenu in the frame
associated with the frame handle obtained in step 2.

Call K-INTStart to start the operation.

Call K-INTStatus to monitor the status of the operation,

(Optional for C and Pascal programs)
Call K-MoveDataBuf to transfer the acquired data from the buffer to a
user-defined array.

If K-INTAlloc was used to allocate a buffer io step 1, call KPINTFree to
deallocate the buffer.

Call K-FreeFrame to return the frame (associated with the frame handle
from srep 2) to the pool of available frames.

Chapter 2 - ‘l‘hc Function (31 l)rivcr 13

Interrupt-mode A/D input using channel-gain array

Your program must perform the following tasks ro execute an interrupt-
mode A/D input operation whose cllannel-scannitl~ sequence is given by a
channel-gain array:

1. Define and assign values to a channel-gain array. The format and other
information pertaining to channel-gain arrays is listed tmder the reference
entry for K-SetChnGAry on page 60.

2. Allocate a buffer in which the driver stores the A/D values. Use
K_INTAlloc if you want to allocate this buffer outside the program’s
memory area (you must use K-INTAlloc if you are writing an application
that will execute in Windows standard mode).

3. Call K-GetADFrame to get the handle to an A/D frame.

4. Call K_SetBufto assign the buffer address obtained in step 2 to the Buffet
Address element in the frame associated with the frame handle obtained in
step 3.

5. Call K_SerChnGAry to assign the channel-gain array from step 1 to the
Channel-Gain Array Address element in the frame associated with the
frame handle obtained in step 3.

6. Call K-INTStart to start the operation

7. Call K-INTStatus to monitor the stattts of the operation,

8. (Optional for C and Pascal programs)
Call K_MoveDaraBuf to transfer the acquired data from the buffer to a
user-defined array.

9. If K-INTAIIoc was used to allocate a buffer in step 2, call K-INTFree to
deallocate the buffer.

10. Call K-FreeFrame to return the frame (associated with the frame handle
from step 3) to the pool of available frames.

Synchronous-mode A/D input using start/stop channels

Your program must perform the following tasks to execute a synchronou+
mode A/D input operation whose channel-scanning sequencr i\ given by
the sequence’s start and stop channels:

1, Allocate a buffer in which the driver stores the A/D values. Usr
K-INTAlloc if you want to allocate this buffer outside the program’\
memory area.

2. Call K-GetADFrame to get the handle to an A/D frame.

3. Call K_SetBuf to assign the buffer address obtained in step 1 to the Rufft-r
Address element in the frame associated with the frame handle obtained in
step 2.

4. Call K_SetSrartStopG or K~SetStarrStopChn and K_SetG to assign valurs
to the Starr Channel, Stop Channel, and Gain elements io the frame
associated with the frame handle obtained in step 2.

5. Call K-Sync&art to start the operation.

6. (Optional for C and Pascal programs)
Call K-MoveDataBuf to transfer the acquired data from the buffer to a
user-defined array.

7. If K-INTAIloc was used to allocate a buffer in step 1, call K_INTFree to
deallocate the buffer.

8. Call K_FreeFrame to return the frame (associated with the frame handlr
from step 2) to the pool of available frames.

Synchronous-mode A/D input using channel-gain array

Your program must perform the following tasks to execute a sy~~l~ronous-
mode A/D input operation whose channel-scanning sequence is given by a
channel-gain array:

1. Define and assign values to a channel-gain array. The format and other
information pertaining to channel-gain arrays is listed under the reference
entry for K-SetChnGAry oo page 60.

2. Allocate a buffer in which the driver stores the A/D values. Use
K~lNTAlloc if you want to allocate this buffer outside the program’s
memory area.

3. Call K-GetADFrame to get the handle to an A/D frame.

4. Call K-SetBufto ass@ the buffer address obtained in step 2 to the Buffer
Address element in the frame associated with the frame handle obtained in
step 3.

5. Call K_SetChnGAry to assign the channel-gain array from step 1 to the
Channel-Gain Array Address element in the frame associated with the
frame handle obtained in step 3.

6. Call K_SyncStart to start the operation.

7. (Optional for C and Pascal programs)
Call K-MoveDataBuf to transfer the acquired data from the buffer to a
user-defined array.

8. If K~INTAUoc was used to allocate a buffer in step 1, call KPINTFree to
deallocate the buffer.

3. Call K-FreeFrame to return the fi-ame (associated with the frame handle
from step 3) to the pool of available frames.

2.5 language-specific programming notes
This section provides specific programming guidelines for each of the
supported languages. Additional programming information is available in
the AS0 example programs. Refer to the FILES.DOC tile for names and
descriptions of the AS0 example programs.

Borland C++, Microsoft C and Borland Turbo C

Related files ADCI6.LIB
DASRFACE.LIB
USERPROTH

Compile and link
instructions

Borland C++:
BCC -c -ml fi1ename.c
TLINK c0l+filename,filename..adcl6+dasrface+cl:

Microsoft C:
CL /AL /c fi1ename.c
LINK filename.,,ADC16+DASRFACE:

Turbo C:
TCC -c -ml fi1ename.c
TLINK cOl+filename,filename..adcl6+dasrface+cl:

Example program Execute a single A/D conversion

I* C include files *I
#include "8tdio.h"
i/include "std1ib.h"

I* ADC-16 driver include file i/
#include "userprot.h"

I* Local variables *I
DOH AOC16;
char NumOfBoards:
int Err:
long Advalue:

I" Device Handle *I
/* #boards in AOC16.CFG */
I' Function ret err flag *I
I* Storage for A/D value *I

I* Begin main module "I
main0
t

I* Initialize the hardware/software 'I
if ((Err = ADC16-DevOpen("ADC16.CFG", &NumofBoards)) !=OJ
t
putch (7); printf(' Error %X during DevOpen ', Err 1:
exit(Err1:
I
I* Establish communication with the driver .&I
I* through a device handle *I
if ((Err = ADC16-GetDevHandle(0, &ADClG) 1 != 0 1
i
putch (7): printf("Error %X during GetDevHandle ".Err);
exit(Err):
1
I* Read channel 0 at gain 1: store sample in Advalue *I
if ((Err = KmALlRead (ADC16, 0, 0, &ADvalue)) != 0)
1
putch(7): printf ("Error %X in Km~ADRead operation ", Err):
exit(Err);
I

I* Display ADvalue *I
printf ("A/D value from channel 0 is : %x\n". ADvalue):
I

Borland C++

If you want to compile a Borland C++ program as a standard C program.
refer to the information presented in the previous section. If you want to
compile your program as a Borland C++ program, refer to the informarion
presented in the previous section with the following exceprions:

1. Use the supplied file USERPROTBCP instead of USERPR0T.H.

2. Specify the C++ compilation in one of the following two way\:

a. Specify .CPP as the extension for your source file, or

b. Use the BCC 4’ command line swirch.

Borland Turbo Pascal

Compile and link
instructions

TPC ,filename.pas

Example program Execute a single A/D conversion

Program TPEXAMPLE;
[UNITS USED BY THIS PROGRAM I
Uses Crt. ADC16:
I LOCAL VARIABLES I
Var
Devhandle : Longint: I Device Handle I
ConfigFile : String; I String to hold name of configuration file j
NumOfBoards : Integer:
BoardNumber : Integer:
Ertn : Word; I Error flag 1
Gain : Byte; I Overall gain 1
ADvalue : Longint; I Holds A/D sample I
Chan : Byte: (A/D channel I
(BEGIN MAIN MODULE I
BEGIN
I STEP 1: This step is mandatory: it initializes the
internal data tables according to the information
contained in the configuration file ADCI6.CFG.
I
ConfigFile := 'ADC16.CFG' + #O:
Ertn := ADC16~DevOpen(ConfigFile[ll. NumOfEoards 1:
IF Ertn 0 0 THEN
BEGIN

writeln('Error ', Ertn. 'an Device open'):
Halt(l):

END:
(STEP 2: This step is mandatory: it establishes
communication with the driver through the
Device Handle.
I

(hapter 2 - 'The hnction (:all Ikiver 19

BoardNumber := 0:
Ertn := ADCl66GetOevHandle(BoardNumber. Devhandle 1;
IF Ertn 0 0 THEN
BEGIN

writeln('Error ', Ertn. getting Device Handle' 1:
Halt(l):

END;
{ STEP 3: Read A/D sample from channel 0 at gain 1
(Gain Code 0) and store in local variable.
J
Chan := 0:
Gain := 0;
Ertn := KmADReadCDevhandle. Chap, Gain, ADvalue):
IF Ertn 0 0 THEN
BEGIN

writelnC^G. 'Error ii '.Ertn, 'Occurred during KKADRead call');
Halt(l):

END:
writeln('A/D VALUE : ', ADvalue):
END.

Related files

Borland Turbo Pascal for Windows

ADCI6TPW.INC
ADCl6.DLL

NOkS If you use ADCI G.DLL, the information presented for Borland Turbo
Pascal applies here with the following additions:

n Use the compiler directive ($1 ,,. } to include the supplied includr file
ADCl6TPW:INC.

. Substitute ‘Wit&-t for the ‘Crt’ unit; this is necessary in order that the
console 1/O procedures (writeln, readln, etc...) operate properly.

The following code fragment illustrates these additions:

Program TPW.~EX:
{ UNITS USED BY THIS PROGRAM 1
Uses WinCrt:

'1 LOCAL VARIABLES I
Var

1 ADC16 function prototypes that reference .OLL 1
($1 ADC16TPW.INCI
(BEGIN MAIN MODULE 1
BEGIN

20 ASO-AD(::-16 L&r’s Guide - liev. A

If you use ADCl GTPW.INC, the information presented for Bol-land
Turbo Pascal applies here with the following exceptions:

n Substitute ADCl6TPW.INC for the ADCIG unit.

- Substitute ‘WinCrt’ for the ‘Or unit: this is necessary in order that the
console 110 procedures (w&In. readln, etc...) operate properly.

The following code fragment illustrates these substitutions:

Program TPW-EX;
I UNITS USED BY THIS PROGRAM I
Uses WinCrt. ADC16TPW:

'I LOCAL VARIABLES I
yar

I BEGIN MAIN MODULE I
BEGIN

Microsoft Quick C for Windows

Related files ADCl6.DLL

Compile and Link
instructions

1. Load fi&une.c into the Quick C for Windows environment

2. Create a project file.

3. Select PI<OJE~:I’ c BUII,L) to create a stand-alone .EXF. that can br
executed from within Windows.

Notes The programming procedure required to call the Callable Functions from
Quick C for Windows programs is identical to the procedure described for
Microsoft C.

(hpter 2 - 'l'he Funcri<rn (:all Ihivcr 21

Related files

Microsoft Visual Basic for Windows

ADClG.DLL
ADClGEX.BAS

Notes Before you begin coding your Visual Basic proogrm~, you must copy (from
inside the Visual Basic environment) the contents of ADClGEX.BAS into
your application’s GLOBAL.BAS. Use the following procedure to add the
contents of ADCl6EX.BAS to GLOBAL.BAS (you should make a back-up
copy of GLOBAL.BAS before you modify it):

1. Select FILE h Arm FILE... from the Viswl Basic main menu.

2. Select ADClGEX.BAS.

3. Highlight the contents of the entire ADC16EX.BAS file.

4. Select Em b COPY to COPY the Comm of ADClGEX.BAS to the
Windows clipboard.

5. Double-click on GLORALRAS in the Project window.

6. Select Erm b PASTE.

7. S&XX FIII h SAVE PKOIEC:T.

22 AS0AM:- I6 User’s (;uidr - Kcv. A

Example program Execute a single A/D conversion.

Sub CommandlLClick 0
board% = 0
Cls

For x = 0 to 9' Clear our buffer
Ibuffer = 0
Next x

MyErr = ADC16~~~devopen("..\ADC16.CFG". board%)
If MyErr 0 0 Then

MsgBox "ADCIG~~mdevopen Error", 48. "Error'
GoTo exyl

End If

Print
Print "Scanning Channels ': strtch: "-': stpch

MyErr = ADClbLgetdevhandle(0. adcl6)
If MyErr <> 0 Then

MsgBox "ADCl6mgetdevhandle Error", 48. "Error"
GoTo exyl

End If

Print
Print "AD Data :*
Print

For x = strtch to stpch
MyErr = K.-ADRead(adcl6. x. Chgain. retval)
lBuffer(x) = retval
Print ' Channel -; x; - = -; HexB(lBuffer(x))

Next x

Print
Print

exyl:

End Sub

3.1

Callable Functions 3

Functional grouping
The Callable Functions can be classified according to the f~mctionality that
each provides. This secriot~ lists each Callable Function as a mrmbcr of
one of the following groups:

n Initialization

n Memory management

n Frame management

n Frame-element management

m Frame-based operation comol

. Immcdiatc-execution operations

. Miscellaneous operations

This section provides short descriptions of each function; refer to Srction
3.2 for additional information on each function.

Initialization

ADCl b_DevOpen

ADCl 6&GetDevHandle

K-DASDevInit

Initialize and configure the driver.

Obrain a device handle.

Reset and initialize the device and driver.

Memory management

K_lntAlloc

K-IntFree

K-MoveDataBuf

Frame management

K_FreeFrame

K-GetADFrame Obtain the handle to an A/D frame.

K_GetDOFrame Obtain the handle to a digital output
frame.

Allocate a buffer suitable for an interrupt-
mode A/D operation.

De-allocate an interrupt buffer that was
previously allocated with K~lnrAlloc.

Transfer acquired A/D samples between a
menmy buffer and an array.

Free the memory used by a frame and
return the frame it to the pool of
available frames.

Frame-element management

KPClearFrame Set all the elelnelm Of aI1 A/D frdIIle t0

their default values.

K-GetBuf Get the values of an A/D frame’s Buffer
Address and Number of Samples
elements.

K-GetChn

K-GetChnGAry

K-GetDOCurVal

Get the value of an A/D frame’s Start
Channel element.

Get the value of an A/D frame’s
Channel-Gain Array Address element,

Get the value of a digital output frame’s
Digital Output Value element.

Frame-element management (cont’d)

K_GetG

K-GetStartStopChn

K_GetStartStopG

K-InitFrame

K-SetBuf

K-SetChn

K-SetChnGAry

K_SetG

K_SetStartStopChn

K-SerStartStopG

Get the value of an A/D frame’s Gain
Code element.

Get the values of an A/D frame’s Srart
Channel and Stop Cbannet ete~nenr\.

Get the values of an A/D frame‘> Srarr
Channel, Srop Channel. and Gain Code
etenw1ts.

Initialize a board’s A/D circuitry and >CI
an A/D frame’s elements to their default
YdlweS.

Set the values of an A/D frame’s Huff&
Address and Number of Samples
elements.

Set the value of an A/D frame’s Srarr
Channel etemenr.

Set the value of a frame’s Channel-Gain
Array Address element.

Set fbe value of a11 A/D frdIlW’~ Gdill
Code element.

Set the VatLIes Of all A/D frdllle’s Srdrt
Channel and Stop Channel elements.

Set the vatues of an A/D fi-ame’s Start
Channel, Stop Channel, and Gain Code
elements.

Frame-based operation control

K_IntStart Start an interrupt-mode A/D operation.

K-IntStatus Determine the srdtus of an interrupt-
mode A/D operation.

K-IntStop Abort an interrupt-mode A/D operation.

KpSync.‘%drt Start a synchronous-mode A/D operation.

Immediate-execution operations

K-ADRead Read a single A/D value.

K_DIRead Read a single digital value.

KPDOWrite Write a single digital value.

Miscellaneous operations

KPGetErrMsg Get the address of an error message string
(available only as C-language function).

K-GetVer Detemine the driver revision and drivel
specification.

3.2 Function reference
This section contains reference entries for the Callable Functions. Tbc
entries appear one pet page and in ascending alphabetical order (by
function name). These reference entries provide the derails associated with
the use of each function.

This section is not a good resource for general and conceptual information
about writing Function Call Driver programs. Moreover, much of tlw
information presented here requites a thorough understanding of the
concepts presented in Chapter 2. Do not ncprct to write n Function Cdl
Driver program merely, by consthing the reference entries for the jurcriom yorr
expect to u*c in yore program.

The info!-mation related to the following topics pertains to srvcral Caltabtr
Functions:

. the format of A/D values and the procedure to determine the votragr
that produced a specific A/D value

. the gain codes the driver mes to represent gains and the A/D input
ranges that correspond to each gain

. the teturn value for every call to a Callable Function

These topics are described in the neyt several paragraphs and referred to
throughout the reference entries that follow.

A/D values and
corresponding
voltages

There are thtee Callable Functions through which your program cau
acquire A/D values: K-ADRead, K-IntStart, and K_SyncStart. Although
the method to create/assign a storage buffer for the acquired value(s) is
different for each of these functiotls, they all state the A/D value in the
same format. Consequently, the interpretation of the A/D data is the same
regatdtess of the function with which it was acquired.

The driver configuration file specifies two attributes that affect how you
should interpret A/D values: the A/D Number Type and the A/D Full
Scale Range. The possible values for these attributes are as follows:

. A/D Number Type: Sign/Magnitude or 2i Complement

. A/D Full Scale Range: ~3.2767 VOF +5.0 V

The procedure to determine the voltage that produced a particular A/D
value depends on the A/D Number Type. The two cases are presented
below. The following variables are used in botlr cases:

n nzngc is the maximum voltage in the range specified by the A/D Full
Scale Range, which is either 3.2767 V or 5.0 V.

. ADvalue is the value acquired by the A/D operation

Case 1 A/D Number Type = Sign/Magnitude

If bit 15 = 0,

volrdge = ADvalue AND 7FFF

- 32,767
x range

If bit 15 = I,

volrage = ADvalue AND 7FFF

32,767
x range

Cave 2 A/D Number Type = 2’s Complement

If bit 15 = 0,

voltage = ADvalue

32,767
x range

If bit 15 = I,

voltage = (ADuah& AND 7FFF
- 32,767

x range

Gain codes The Function Call Driver uses gain codes to indicate gains. The valid gain
codes are 0, 1, 2. The table below lists the gain that corresponds to rach
gain code. Additionally, this table shows the A/D input range for both
settings of the A/D Full Scale Range (the A/D Full SC& Range is qxcificd
by the driver configuration file).

gain A/D input range for A/D input range for

code
gain 1-3.2767 V *5.0 v

lidI-scale range full-scale range

0 1 *3.2767 V +5 v

1 10 i327.67 mV *500 mv

2 100 i32.767 mV *50 mv

Every call to a Callable Function returns an integer-type (16.bir) mum
value. A return value of 0 indicates that the function executed sutrrs~t%lly;
a non-zero return value indicates an error. The non-zero return values
correspond to error codes; these error codes and their corresponding rrron
are listed in Appendix A. Your program should always check a funcrion
cdtt’s return vdlur and, in rtle case of an error, perfort an appropriate
action.

ADC 16-DevOpen

Purpose Initialize and configure the driver.

Prototype C
DASErr far Pascal ADCl6_DevOpen(char far * cJsFlt,
char far * numDevices);

Pascal
Function ADC16PDevOpen(Var c&File : char;
Var numDevicer : Integer) : Word;

Visual Basic for Windows
ADCIGPDevOpen Lib “ADClG.dll” (ByVal c&Filt$,
numDevices As Integer) As Integer

c&File Driver configuration file

numDevices Number of devices defined in c&File. Valid values: 1, 2

Notes ADCl6-DevOpen initializes the driver according to the information in cfKFile.
On return, numDevices contains the number of devices for which &File conrains
configuratioo information.

ADCl6~DevOpen writes a zero value to OPO and OPl; this turns off the
ADC-16’s r-&y 0 and relay 1.

Specify -1 for c&Fib to set the driver to its default configuration; the default
configuration specifies that the device is set as follows:

Board number 0 1

Board name ADC16 ADC16

Base address 300 Hex 308 Hex

Range i3.2767 V +3.2767 V

A/D Number Type SignMagnitude SignMagnitude

Interrupt level AHex F Hex

Illstalled STA-EX8s 0 0

ADC 16-GetDevHandle

Purpose Obtain a device handle.

Prototype C
DASErr far Pascal ADClb-GetDevHandle (int dtvNumber,
void far * far * &Handle);

Function ADCl6_GetDevHandle(devNwnber : Inreger;
Var devHandle : Longint) : Word;

Visual BASIC for Windows
ADCl G_GetDevHandle Lib “ADClb.dll” (ByVal devilirmrber As Integer.
devHandle As Long) As Integer

Parameters deuNwnber

d&Handle

Device number. Valid values: 0, 1

Device handle

Notes On return, devHandle contains the handle associated with the device identified
by &vNmber.

The value returned in deoHandle is intended to be used exclusively as an
argument to functions that require a device handle. Your program should not
modify the value returned in &Handle.

The driver supports up to two devices: a unique handle is associated wirh each
supported device.

In addition to obtaining a device handle, ADClb-GetDevHandle performs the
following tasks:

. aborts all in-progress A/D operations

n writes a 0 to OF0 and OPl

. checks if device identified by deuHandle is present

. checks if settings in configuration file match actual board settings

. initializes the board to its default state

K-ADRead

Purpose Read a single A/D value.

Prototype C
DASErr fat pascal K-ADRead(DDH devHandle, unsigned chat &an,
unsigned chat gain&de, void far * ADvalue);

Pascal
Function K_ADRead(devHandle : Longint; than : Byte:
gaincode : Byte; Vat ADvalue : Longint) : Word;

Visual BASIC for Windows
K_ADRead Lib “ADCl6.dll” (ByVal devHandle As Long, ByVal cban As Integer,
ByVal gainCode As Integer, ADvalue As Long) As Integer

Parameters devHandle Handle to acquisition device

than Input channel. Valid values: 0, l,..., 7(m+l), where m is the
number of connected STA-EXS.

gainCode Gain code. Valid values: 0 = lx, I = 10x, 2 = 100x

ADvalue Storage location of acquired A/D value

Notes On mum, ADvalue contains the value read from channel cl/an (at thr gain
indicated by gain code) of the device identified by devHandle.

See page 29 for the procedute to detetmine the voltage that produced the value
returned in ADvalue.

See page 31 for the A/D voltage ranges that cortespond to each gain.

34 AS0AD(I;- I6 User’s (:;uide - Rev. A

K ClearFrame

Purpose Set all the elements of an A/D frame to their default values.

Prototype C
DASErr far Pascal KPClearFrame(FRAMEH @ameHarrdk);

Pascal
Function K_ClearFrame(flameHandle : Longint) : Word;

Visual Basic for Windows
K_CleatFrame Lib “ADCl6.dII” (Byvdl /FameHandle As Long) As lntegrt

Parameters j?ameHandle Frame handle

Notes On retutn, the elements in the frame identified by frameHandle contain the
following values:

Buffet Address 0

Start Channel 0

Stop Channel 0

Gain Code 0

Channel-Gain Array Address 0

Purpose Reset and initialize the device and dtiver.

Prototype C
DASErr far Pascal KPDASDevlnit(DDH devHandle);

Pascal
Ftmction K-DASDevlnit(devHandle : Longint) : Word;

Visual BASIC for Windows
KPDASDevlnit Lib “ADClG.dll” (ByVal ahHandle As Long)
As Integer

Parameters devHandle Device handle

Notes K_DASDevInit pet-forms the following tasks:

. Aborts all in-progress A/D operations

. Wtites a 0 to 01’0 and OPl

. Checks if device identified by devHandle is present

. Checks if settings in configuration file match actual board settings

. loitializes the board to its defaLllt state

36 AS0AlX- I6 User’s (;uide - Rev. A

KpDlRead

Purpose Read a single digital value.

Prototype C
DASErr far pascal K_DIRead(DDH deuHandk, unsigned char chnn.
void far * Dlualr~c);

Pascal
Function K_DIRead(devHandle : Longint; than : Byte;
Var D/value : Longint) : Word;

Visual Basic for Windows
K-DIRead Lib “ADClG.dII” (ByVal devHandle As Long,
ByVal than As Integer, Dlvnl~le As Long) As Integer

Parameters deuHandle Device handle

chan

Dlualue

Digital inpur channel. Valid value: 0

Digital input value. Valid values: 0, 1, 2, 3

Notes On return, D/value contains the digital value read from cbannrl c/ma of rbr
device identified by &uHandle.

D/value is a 32-bit variable. The acquired digital value is stored in bits 0 and I:
the values in the remaining bits of DIvaLle are not well-defined. Tbr figure
below illustrates the format of D/value.

K DOWrite

Purpose Write a single digital value.

Prototype C
DASErr far pascal K-DOWrite(DDH deuHandle, unsigned char chun,
long DOvalue);

Pascal
Function K-DOWrite(devHandle : Longint; than : Byte;,
DOvalue : Longint) : Word;

Visual Basic for Windows
K_DOWrite Lib “ADCl6.dII” (ByVal devHundle As Long,
ByVal than As Integer, ByVal DOvalue As Long) As Integer

Parameters devHandle Device handle

than

DOvalue

Digiral output channel. Valid value: 0

Digital output value. Valid values: 0, l,..., 31

Notes K-DOWrite outputs the value in DOvalue to channel cban on the device
identified by deuHandle

DOvalue is a 32-bit variable; the significance of the bits in DOvalue depeods on
if there is a connection between the board and an STA-EX8:

If the board is not connected to an STA-EM:
The output value comprises the values in bits 0 - 4; the values in bits 5 31
are not significant. This format is illustrated in the following figute:

If the board is connected to me or more STA-EX8:
The output value comprises the values in bits 0 and 1; the values in bits
2 - 31 are not significant. This format is illustrated in the following figure:

K-FreeFrame

Purpose Free rhe memory used by a frame and return the frame it to rhe pool of available
frames.

Prototype C
DASErr far Pascal K_FreeFrame(FRAMEH j%meHandle):

Pascal
Fun&on K-FreeFrame(fiameHandit : Longinr) : Word:

Visual Basic for Windows
K_FreeFrame Lib “ADCl6.dll” (ByVal j%neHandk As Long) As Inrcger

Parameters j?ameHandle Frame handle

Notes K-FreeFrame frees the memory used by the frame identified by frameHand& the
frame is rhen rerurned to the pool of available frames. The pool of available
frames initially contains wo A/D frames and two digirat ourput frames.

K-GetADFrame

Purpose Obrain the handle to an A/D frame.

Prototype C
DASErr far Pascal K-GecADFrame(DDH deuHandle,
FRAMEH far * jiameHandle);

Pascal
Funcrion KPGetADFrame(&Handle : Longint:
Var jhneHandle : Longinr) : Word;

Visual Basic for Windows
KPGetADFrame Lib “ADCl6.dlt” (ByVal dcvHandle As Long,
fiameHandle As Long) As Integer

Parameters deuHandle

fiameHandle

Device handle

Handle to A/D frame

Notes On return, fFameHandle contains the handle co an A/D frame associared with rhe
device identified by devHandle.

K GetBuf

Purpose Get the values of an A/D frame’s Buffer Address and Number of Samples
elements.

Prototype C
DASErr far pascal K_GetBuf(FRAMEH jkmeHandlp, void far ’ far ’ brifAddr,
long far * sampler);

Function K_GetBuf(fFameHandlr : Longint; Var bufA&r : Integer;
Vat samples : Longint) : Word;

Visual Basic for Windows
K-GetBuf Lib “ADCI6.dll” (ByVal jameHandle As Long, br@& As Long.
samples As Long) As Integer

Parameters jGamcHandk Frame handle

bufAddr

sampler

Buffer Address

Number of Samples

Notes On return, the following parameters contain the value of an cle~ne~~t in rhr frame
identified by JFameHandlr:

n bztfAddr contains the value of the Buffer Address elemenr

. samples contains the value of the Number of Samples elemeur

K-GetC hn

Purpose Get the value of an A/D frame’s Srart Channel element

Prototype C
DASErr far pascal K_GetChn(FRAMEH fi ameHandle, short fal- * &an);

Pascal
Function K-GetChn(jkameHandle : Longint; Var cban : Word) : Word;

Visual Basic for Windows
K-GetChn Lib “ADCI 6.dll” (ByVal fjameHandle As Long, than As Integer)
As Integer

Parameters frameHandle Handle to A/D frame

than Start Channel. Valid values: 0, 1,...,7(m+l), where m is the
number of connected STA-EX8.

Notes On return, than contains the value of the Stdl-t Channel elemeot in the frame
identified by frameHandle.

K-GetChnGAry

Purpose Get the value of an A/D frame’s Channel-Gain Array Address element

Prototype c
DASErr far pascal K-GetChnGAry(FRAMEH frameHatrdle,
void far * far * chanGainArray);

Pascal
Function K_GetChnGAry(frameHandle : Longint;
Var cbanGainArray : Integer) : Word:

Visual Basic for Windows
K_GetChnGAly Lib “ADCIb.dll” (ByVdl fiameHandle As Long.
chanGainArtay As Long) As Integer

Parameters jFameHandle Handle to A/D frmw

chanCairuhay Channel-Gain Array Address

Notes On return, chanGainArray contains the value of the Channel-Gain Array Addru
element in the frame identified by frameHandk.

Refer to K_SetCbnGAry for a description of Channel-Gain arrays.

K-GetDOCurVal

Purpose Get the value of a digital output frame’s Digital Output Value elements.

Prototype C
DASErr far Pascal K-GetDOCurVdl(FRAMEH jiameHandle,
long far * DOvalue);

Pascal
Function K-GetDOCurVal(fiameHandle : Longint;
Var DOvalue : Longint) : Word;

Visual Basic for Windows
KPGetDOCurVal Lib “ADClb.dll” (ByVal j?ameHandle As Long,
DOvalue As Long) As Integer

Parameters frameHandle

DOvalue

Handle to digital output frame

Digital Output Value

Notes On return, DOvalue contains the value of the Digirdl Output Value element in
the frame identified by /FameHandle. This value represents the value that was
specified as the DOvalue parameter for the most recent call to K_DOWrire; it is
oat necessarily the value currently at the digital output port.

K-GetDOFrame

Purpose Obtain the handle to a digital output frame.

Prototype C
DASErr far pascal KPGetDOFrame(DDH deuHandle,
FRAMEH far * fiameHandle);

Pascal
Function K-GetDOFrame(c&Handle : Longint;
VarjPameHandlc : Longint) : Word;

Visual Basic for Windows
K_GetDOFrame Lib “ADCI 6.dll” (ByVal &Handle As Long,
ByVal f+ameHandle As Long) As Integer

Parameters deuHandle Device handle

fiameHandle Handle to digital output frame

Notes On return, fkmeHandle contains the handle ro a digital output frame asociarcd
with the device identified by devHandle.

Since the driver does not support frame-based digital output operations,
K_GetDOFrame serves a very specific and limited purpose in ADC-I6 Funcrion
Call Driver programs. K-GetDOCwVal requires the handle to a digitAl output
frame as one of its calling arguments, and the only way to obtain a bandle to a
digital output frame is through K_GetDOFrame. Consequently, if you want to
use K-GetDOCurVaJ, you must first call K-GetDOFrame; this is tbr only
circumstance in which your program should call K-GetDOFnme.

K-GetErrMsg

Purpose Get the address of an error message string. This kmction is available only as a
C-language function.

Prototype C
DASErr far Pascal K_GetErrMsg(DDH &Handle, short msgNum,
char far * far * ewMsg);

Parameters deuHandle Device handle

?tUgNWYi

errMsg

Error message number

Error message string

Notes On return, erMrg conrains a pointer to a string that corresponds to msgNum fol
the device identified by devHandle.

Refer to Appendix A for error numbers and error messages.

K GetG

Purpose Get the value of an A/D frame’s Gain Code element

Prototype C
DASErr far Pascal K-GetG(FRAMEH fr ameHandle, short far l gaitLode);

Pascal
Function K_GetG(f?ameHandle : Longint; Var gainCode : Word) : Word;

Visual Basic for Windows
K_GetG Lib “ADClG.dll” (ByVal f+ameHandle As Long, gain&de As Inreger)
As Integer

Parameters fiameHandle

gain Code

Handle to A/D frame

Gain Code. Valid values: 0 = lx, 1 = 10x. 2 = 100x

Notes On return, gainCode contains the value of the Gain Code element in tlw frame
identified by j?ameHandle.

See page 31 for the A/D voltage ranges that correspond to each gait).

K-GetStartStopChn

Purpose Get the values of an A/D frame’s Start Channel and Stop Channel elements

Prototype C
DASErr far Pascal K-GetStartStopChn(FRAMEH j?ameHandle,
short far * start, short far * stDp);

Pascal
Function K-GetSrartStopChn(fameHandle : Longint; Var start : Word;
Var stop : Word) : Word;

Visual Basic for Windows
KPGetStartStopChn Lib “ADC16,dll” (ByVal fiameHandle As Long,
start As Integer, stop As Integer) As Integer

Parameters frameHandle Handle to A/D frame

start Srdrt Channel. Valid values: 0, 1,...,7(m+l), where m is the

number of connected STA-EX8.

Stop Channel. Valid values: 0, 1,...,7(m+l), where m is the
number of connected STA-EX8.

Notes On return, the following parameters contain the value of an element in the frame
identified by jameHandle:
. start contains the value of the Start Channel element

. stop contains the value of the Stop Channel element

K-GetStartStopG

Purpose Get the values of an A/D frame’s Starr Channel, Stop Channel. and Gain Codr
elements.

Prototype C
DASErr far pascal K-GetStartStopG(FRAMEH ,fiameHmdle. short Far ’ jran.
short far * .wop, short far * gainCode);

Pascal
Function K-GetStartStopG(fkzmeHarrdk : Longint; Var start : Word;
Var stop : Word; Var gainCode : Word) : Word;

Visual Basic for Windows
K-GetStartStopG Lib “ADCl6,dll” (ByVal f;ameHandle As Long,
start As Integer, stop As Integer, ~ainCode As Integer) As lntegrr

Parameters ,fiamrHandlc Handle to A/D frame

start Start Channel. Valid values: 0, 1,....7(m+l), where m is the
number of connected STA-EXS.

stop Stop Channel. Valid values: 0. 1,....7(m+l), where m i> tbt
number of connected STA-EXS.

g&Code Gain Code. Valid values: 0 = lx, 1 = 10x, 2 = 100x

On return, the following parameters contain the value of an element in rhc frame
identified by ,frameHandle

. Itart contains the value of the Starr Channel element

. mp contains the value of the Stop Channel element

n g&Lode conrains the value of the Gain Code elemenr

See page 31 for the A/D voltage ranges that correspond to rach gain.

K-GetVer

Purpose Determine the driver revision and driver specification

Prototype C
DASErr Edr Pascal K_GerVer(DDH dwHandle, short Far * spec,
short far * version);

Pascal
Ftmction KPGetVer(devHandle : Longiot; Var spec : Word;
Var version : Word) : Word;

Visual Basic for Windows
KPGetVer Lib “ADCl6.dll” (ByVal devHandle As Long, rper As Integer,
version As Integer) As lnteget

Parameters devHandle Device handle

spec

version

Driver specification

Driver version

Notes On return, spec conrains the revision number of the Keithley DAS Drivel-
Specification to which the driver cooforms; version coomios the driver’s version
number.

zpec atld uerrion are two-byte integers; the high byte conrains the major revision
level and the low byte contaim the minor revisioo level (in the version number
2.1, for example, the major and minor revision levels are 2 aod 1, respectively).

Use the following equatioos to extract the major and minor revision levels from
the values returned io either spec and version:

major revision level = returned value

256

millor revision level = returned v&e MOD 256

where returned value represents either spec or version.

Purpose Initialize a board’s A/D circuitry and set an A/D frame’s elements to their default
values.

Prototype C
DASErr far Pascal KPlnitFrame(FRAMEH fiumtH~ndk):

Function K_lnitFrame(jzmeHandle : Longint) : Word;

Visual Basic for Windows
K_lnitFrame Lib “ADClG.dll” (ByVal /%zmeHandie As Long) As Integer

Parameters ~fizmeHandle Handle to A/D frame

Notes KPhitFrame initializes the A/D circuitry on the ADC-16 that is associated wih
the frame identified by jiumetlandk.

If an interrupt-mode A/D operation is not active, then K-InitFclme checks the
validity of the board number associated with the frame identified by/kmeH~ndle
and then enables A/D operations.

If an interrupt-mode A/D operation is active, then K_InitFrame returm an error
that indicates that the board is busy.

K-IntAlloc

Purpose Allocate a buffer suitable for an interrupt-mode A/D operation.

Prototype C
DASErr fdr pasal K-lntAlloc(FRAMEH frameHandle, DWORD rawq&
void far * far * intAo& WORD far * mcmHandle);

Pascal
Function K~lntAlloc(frameHandle : Longint ; samples : Longlnt;
Var intAddr : Longint ; Var memHandle : Word) : Word;

Visual Basic for Windows
K_lntAlloc Lib “ADCl6.dll” (ByVal frameHandle As Long,
ByVal sampler As Long, intAddr As Long, memHandle As Integer) As lnteget

Parameters fiameHandle Handle to A/D frame

Notes

samples Number of samples. Valid values: 0, l,..., 32,767

intAddr Address of interrupt buffer

memHandle Handle to interrupt buffer

On return, &A&r contains the address of a buffer that is suirable for an
interrupt-mode A/D operation of samples samples; memHandle contains a handle
to the buffer that this flmction allocates.

52 ASO-ADC-16 User's Guide - Rev. A

K-IntFree

Purpose De-allocate an interrupt buffer that was previously allocated with K_IntAlloc.

Prototype C
DASErr far Pascal K-IntFree(WORD memHandle);

Pascal
Function K-IntFree(memHandle : Word) : Integer;

Visual Basic for Windows
K_lntFree Lib “ADCl6.dll” (ByVal memHandk As Integer) As Integer

Parameters memHandle Handle to interrupt buffer

Notes K-IntFree de-allocates the interrupt buffer identified by memHand/e,

Purpose Start an interrupt-mode A/D operation,

Prototype C
DASErr far Pascal K-lntStart(FR4MEH fFameHandle);

Pascal
Function K-IntStart(jPameHandk : Longint) : Word;

Visual Basic for Windows
KPlntStart Lib “ADCl6.dll” (ByVal fi ameHandlc As Long) As I nteget

Parameters fiameffandle Handle to A/D frame

Notes K-IntStart starts the interrupt-mode A/D operation defined in the frame
identified by fiamehandle.

See page 29 for a description of the format in which the driver stores the
acquired values.

See page 13 for a discussion of the programming tasks associated with interrupt-
mode A/D operations.

K-IntStatus

Purpose Determine the status of an interrupt-mode A/D operation,

Prototype C
DASErr far Pascal K-IntStatus(FRAMEH flameHandle, short far ’ rMm$.
long far * samples):

Pascal
Ftmction K~lntStatus(frameHandLe : Longint; Var rtamr : Word;
Var samples : Longint) : Word;

Visual Basic for Windows
K-lotStatus Lib “ADC16.dll” (ByVal fr ameHandle As Long. rratttr As I otrger.
sampler As Long) As Integer

Parameters ,fiameHandk Handle to A/D frame

status Code that indicates status of interrupt operation. Valid valtm:
0 = Interrupt-mode A/D operation idle
1 = Interrupt-mode A/D operation active

samples Number of samples already transferred to interrupt buffer

Notes On return, ztam contains a code that indicates the status of the Interrupt
operation defined by the frame identified by fiameHandle; samples cootaim tlw
number of samples already transferred to the Interrupt buffer at the rime the
function was called.

K-IntStop

Purpose Abort an interrupt-mode A/D operation.

Prototype C
DASErr far Pascal K-IntStop(FRAMEH fiumeHandle, short far * sta~u,
long far * samples);

Pascal
Function KPIntStop(@meHandle : Longint; Var sfatxr : Word;
Vu sampler : Longint) : Word;

Visual Basic for Windows
KPIntStop Lib “ADClG.dll” (ByVal /kmeHandle As Long, status As Integer,
samples As Long) As Integer

Parameters fiameHandle Handle to A/D frame

status Code that indicates sums of interrupt operation. Valid values:
0 = Interl-opt Opel-acion idle
1 = Interrupt operation active
2 = Data overrun (see note below)

samples Number of samples already transferred to interrupt buffel

Notes K-IntStop aborts the interrupt operation defined by the fi-ame identified by
j?ameHundle. On return, xatus contains a code that indicates what the status was
when the function was called; sampler contains the number of samples already
transferred to the interrupt buffer when the fktion was called.

Data overrun occurs if data is lost when the transfer of dam between the boa!-d
and the PC’s memory is slower than the rate at which the board is acquit-ing
data.

K-IntStop does nothing if an interrupt-mode A/D Opel-ation is not in progress.

56 AS0AM:-16 User’s (Guide - Iicv. A

K-MoveDataBuf

Purpose Transfer acquired A/D samples between a memory buffer and an array.

Prototype C
DASErr far pascal K-MoveDataBuf(int far * ht. int Far * rorwce,
unsigned int umples);

POSCCII

Function K-MoveDataBuf(dest : Longint; z~~ucc : Longint;
samples : Word) : Integer;

Visual Basic for Windows
KpMoveDataBuf Lib “ADCI 6.dll” (dest As Any. murce As Any.
ByVal samples As Integer) As Integer

Parameters dest Address of destination buffer

Address of source buffer

Number of samples to transfer

Notes

Although this function is valid for all of the supported languages. it is intended
primarily for use with those languages (such as Visual Basic) that do not provide
a convenient method to access memory direcrly. This function is not nerded in
languages (such as C) that provide access to memory buffers through pointers.

K-SetBuf

Purpose Set the values of an A/D frame’s Buffer Address and Number of Samples
elements.

Prototype C
DASErr far pascal K-SetBuf(FRAMEH j?ameHandle, void far * bujA&r,
long samples);

Pascal
Function K-SetBuf(j&meHandle : Longint; bufAddr : Longint;
samples : Longint) : Word;

Visual Basic for Windows
K-SetBuf Lib “ADClG.dII” (ByVal /hmeHandle As Long, bufAddr As Any,
ByVal samples As Long) As Integer

Parameters fiameHandle Handle to A/D frame

bufAddr Buffer Address

samples Number of Samples

Notes K_SetBuf assigns values to the following elements in the frame identified by
jmneHandle:

. the Buffer Address element is assigned the value in bufAaUr

. the Number of Samples element is assigned the value in samples

K-SetChn

Purpose Set the value of an A/D frame’s Start Channel elenwnt

Prototype C
DASErr far Pascal K-SetChn(FRAMEH f?umeHundle, short charr);

Pascal
Function K-SetChn(fLameHandle : Longint; ckn : Word) : Word;

Visual Basic for Windows
K_SetCbn Lib “ADCl6.dll” (ByVal fiumeHmdle As Long.
ByVal chnn As Integer) As Integer

Parameters frameHandle Handle to A/D frame

than Start Channel. Valid values: 0, 1,...,7(m+l), where m is the
number of connected STA-EXR.

K-SetChn sets the value of the Start Channel element to clmn ill the frame
identified by jumeHund.k.

K-SetChnGAry

Purpose Set the value of a frame’s Channel-Gain Array Address element.

Prototype C
DASErr far pascal K-SetChnGAry(FRAMEH j?ameHandle,
void far * chanGainArray);

Pascal
Function K-SetChnGAry(frameHandle : Longint;
Var chanGainArtay : Integer) : Word;

Visual Basic for Windows
K-SetChnGAry Lib “ADCl6.dll” (ByVal jamHandle As Long,
chanGainhay As Integer) As Integer

Parameters j?ameHandle Handle to A/D frame

chanGaim4rray Channel-Gain Array Address

Notes K-SetChnGAry sets the value of the Channel-Gain Array Address element to
chanGainAway in the frame identified by frameHandle.

A Channel-Gain Array defines two characteristics of an A/D operation:

. the sequence in which the input channels are sampled and,

. the gain applied to each channel in that sequence.

A Channel-Gain Array can define up m 256 randomly sequenced channel-gain
pairs. Adjacent pairs can specify the same channel (with equal or unequal gaiw).
The figure below illustrates the required format of a channel gain array.

we 0 1 2 3 4 5 ZN-1 2N

V&K N than : gain than ~ gain than gain

of pairs pair 1 pair 2 pair N

The gain must be specified as a gain code. Refer to K-SetStat&opG on page 63
for valid gain codes and channel numbers.

60 ASO-AM:-16 Usrr’s (:;uidc - Rev. A

Purpose Set the value of an A/D frame’s Gain Code element.

Prototype c
DASErr far Pascal K-SetG(FRAMEH fiameHandle, short gainCode);

Pascal
Function K_SetG(j?ameHandk : Longint; @nCode : Word) : Word;

Visual Basic for Windows
K_SetG Lib “ADClb.dll” (ByVal frameHandle As Long.
ByVal gain&de As Integer) As Integer

Parameters JiameHandle

gain Code Gain Code. Valid valuer: 0 = lx, 1 = 10x. 2 = 100x

Notes K-SetG sets the Gain Code element to gainCode in the frame identified by
fiameHandle.

See page 31 for the A/D voltage ranges that correspond to each gain

K-SetStartStopChn

Purpose Set the values of an A/D frame’s Start Channel and Stop Channel elements.

Prototype c
DASErr far Pascal KPSetStartStopChn(FRAMEH /FameHandle, short Jtart:
short xoj9);

Pascal
Function K-SetStartStopChn(8ameHandle : Longint; start : Word;
stop : Word) : Word;

Visual Basic for Windows
K-SetStartStopChn Lib “ADClG.dll” (By&l fiameHandle As Long,
ByVal stalz As Integer, ByVal stop As Integer) As Integer

Parameters jiameHandle Handle to A/D h-ame

start Start Channel. Valid values: 0, 1,...,7(m+l), where rn is the
number of connected STA-EX8.

stop Stop Channel. Valid values: 0, 1,...,7(m+l), whew m is the
number of connected STA-EXH.

Notes K-SetStartStopChn assigns values to the following elements in the frame
identified by fiameHandle:
. the Start Channel element is assigned the value in start

. the Stop Channel element is assigned the value in stop

Use K_SetChnGAry to specify a non-sequential channel-scanning sequence.

Purpose Set the values of an A/D frame’s Start Channel, Stop Clunnel, and Gain Code
elements.

Prototype c
DASErr fat pascal K_SetStartStopG(FRAMEH frameHandle, short mzrr.
short sop, short gainCode);

Function K-SetStartStopG(fiameHandle : Longint; start : Word;
stop : Word: gainCode : Word) : Word;

Visual Basic for Windows
K_SetStartStopG Lib “ADC16.dll” (ByVal ,fiameHand/e As Long,
ByVal start As Integer, ByVal stop As I ntegct, By&I gaincode As Integer)
As Integer

Parameters ,fiameHandlc Handle to A/D frame

start Start Channel. Valid values: 0. 1,....7(m+l), where m i\ rlw
number of connected STA-EXS.

stop Stop Channel. Valid values: 0, 1,....7(m+l), where m i\ rhr
number of connected STA-EXS.

gainCode Gain Code. Valid values: 0 = Ix. 1 = 10x. 2 = 100x

Notes K-SetStartStopG assigns values to the following elements io the frame idrntilird
by jGameHandle:
. the Start Channel element is assigned the value in start

. the Stop Channel element is assigned the value in stop

. the Gain Code element is assigned the value in ,gahCode

Use K-SetChnGAty to specie) different gains for different channels or to specify
an m-ordered ctlannel-scanning sequence.

See page 31 for the A/D voltage ranges that correspond to each gain

K SyncStart

Purpose Start a sytlctlronous-mode A/D operation.

Prototype C
DASErr far Pascal KPSyncStart(FRAMEH j’iamet-landle);

Pascal
Function K_SyncStart(JzmeHundle : Longint) : Word;

Visual Basic for Windows
K-SyncSrart Lib “ADCl6.dll” (ByVal fiameHandle As Long) As loreget

Parameters /izmeHandle Handle to A/D hame

Notes K_SyncStan starts the synchronous-mode A/D operation defined in the frame
identified byjGnzehand.!t.

See page 29 for a description of the format in which the driver stores the
acquired values.

See page 15 for a discussion of the programming casks associated with
synchronoils-mode A/D operations.

File I/O Driver

4.1 Overview
The File I/O Driver serves as an interface between your application
program and the board’s acquisition & control operation\. The driver ha\
its own set of File l/O Coumlands. Each of these English-like commandz
corresponds to a board operation. Your program can use the command\
to perform a variety of acquisition & control operations.

The driver acts like a file device: consequently. your program cx LW it\
own file I/O functions (for example, INPUT and WIN7 if you arc
programming in HASI to communicate with the driver. To rxcutr a
board operation, your program outputs a File l/O Command to the drivrr.
The driver interprets the command, executes the corresponding opcrdtion.
and stores the result in its internal buffer. Your program can then input
this result from the driver.

(hprcr 4 - File I/() l)rivcr 65

Driver components The File I/O Driver consists of two components: the dl-iver program
(MA~)(~:I 6.EXE) and one of the Virtual Instrmm3~t programs (VLEXE 01
VITASKEXE). You can use either of the Virtual Instrument programs.
These two programs differ in the amount of memory each uses and in
their ability to provide access to the Pop Up Control Panel (tefer to the
ADC-I6 Useri Guide for a complete description of the Pop Up Contl-ol
Panel).

VLEXE
VI.EXE uses approximately 51 K of RAM. If your program requires access
to the Pop Up Contml Panel, you must load VI.EXE.

VITA!XI!XE
VI’I’ASK.EXE uses approximately 21 K of RAM. If your program does not
require access to the Pop Up Control Panel, you can load either
VITASK.EXE or VLEXE.

4.2 loading and unloading the driver -
As described in the previous section, the driver consists of the driver
program (MADC16,EXE) and one of the Virtual Instrument programs
(VI.EXE or Vl’I’ASK.EXE). The order in which you load these programs is
significant.

To load the driver, load the driver programs in the following orders
VI.EXE or VI’I’ASK.EXE
MAL)CI 6.EXE.

To unload the driver, unload the driver ptograms in the following order-:
MAD(:: I 6. EXE
VI.EXE or VITASK.EXE.

To load or unload the drivel; you must execute two sepal-ate DOS
command lines (one for either VI.EXl! or VI’I’ASK.EXE, one fat
MAL)CI 6.EXE). There are two ways to execute thesr command lines:

. You can enter the command lines at the DOS prompt, or

n You can create a batch file that contains the command lines and then
tun the batch file.

In either case, make sure that you execute the commands io the correct
order.

Command line syntax The command line syntax descriptions presented in this section use the
following typographic conventions:

. [] - Entries enclosed between square brackets ate mandatory. Do not
include the brackets in the command line.

. { 1 - Entries enclosed between curly brackets are optional. To include
the optional entry in the command line, specify only what is between
the brackets (do not include the brackets in the command line).

. () - Entries enclosed in parentheses represent the valid values for a
command argument. The valid values are separated by commas. SprciFy
only one of the valid values from the group (do not include the
parentheses in the command line).

. The case of the letters in an entry is not significant; entries can be
specified in uppercase, lowercase. or mixed case.

l Entries shown in bold&x type must be specified exactly as shown
(except for case).

. Entries shown in italic describe the type of entry that should be
specified. For example. if the entry is given as /&name, then the entry
you specify must be a valid filename (%s’I:IM’I’, for example).

VI syntax

VITASK syntax

(&vc[:]] {path}VI i [mono]) { [IHK=kq] 1 { [IMK=kq] 1 1 [/SK=kcy] 1 1 [IU] i

[mono]
Specifies that VI will run in Monochromatic mode. If mono is not
specified, VI will assume that it is running on a color nmnitor.

[/HK=kq]
(Help Key) Specifies the key that involces the Pop Up Control Panel
Help screen. key must be one of the following:

A, B, .,,, 2
0, 1, 9
Fl, F2, FIO
Tab, Esc, or !

or any of the above preceded by Ctrl or Ctrl Alt.

examples:
/HK=F2 specifies [@zzI as the Help Key
/HK=Alt Tab specifies 1~~~1 ~ [~atl as the Help Key

[/MK=key]
(Mode Select Key) Specifies the ltey that switches the Pop Up Control
Panel to Keyboard Control Mode. See explanation of [/HK=] above fol
valid kry values.

[/SK=kq]
(Instrument Select Key) Specifies the ltey that cycles througll multiple
ADC16 boards. See explanation of [/HK=] above for valid kLy values.

idrive[:] I {pathJVlTASK ([IU] I

[/cJl
Unloads VI from memory.

MADC 16 syntax {drhe[:]t (,mhIMADCl6 {/F=c@let (lPK=keyt {/Name=bonrdNmc) (IV}

(/F=c&File/
Specifies the board configuration file.

{/PK=key}
(Pop Up Control Panel Key) Specifies the key that invokes the Pop Up
Control Panel. See the description of [/HK=] under VI syntax for the valid
kg values. The dehult Pop Up Control Paoel Key is Ah F6.

{IName=boardName)
(Board Name) Assigns a user-specified oame to the board that i\ at the
address specified in the driver configuration file. You most ox /Name=
when you have two boards installed and you waor to simultaneously
display the Pop Up Control Panel for both of them. boardName n~~tsc
comain one to eight characters; any character that i\ valid for a DOS tik
name can bz used.

wt
Unloads MADC16 from ntemory.

Example Suppose the following conditions exist:

m your program needs access to the Pop Up Control Panel

. you want the driver configured according to the information in a
configuration file named (:US’l‘OM.(:F(;

m VI.EXE. MAD(::Ih.EXF., and CUS’I‘OM.(:E‘(; are io the (::\Al)(:lh
directory

The following command lines load the File I/O Driver appropriately for
the conditions listed above:

C:\ADClG\VI

C:\ADClG\MADC16 /F=C:\ADC16\CUSTOM,CFCi

(kapru 4 File I/O Ihivcr 69

4.3 language-specific programming notes -
This section provides specific programming guidelines for each of the
supported languages. Additional programming information is available in
the AS0 example programs. Refer to the FILES.DOC tile for names and
descriptions of the AS0 example programs.

Borland Turbo C

Supported versions

Opening the driver

2.0 and higher

The code listed below shows the correct procedure to open the driver and
clear its internal buffer. This code references the PrintError error handlet
defined under- Trapping Errors.

1" Open Driver for reading and writirlg ~*I
ADC16 = fopen("$ADC16"."r+"):

I* Check for Error *I
if (ADC16 == NULL) PrintErrorO;

I* Clear the driver's internal buffer ~^I
fprintfc ADC16, "Clear" 1;
fflush (ADC16):
if (errno !=O) return(l):

Sending commands/ The following notes provide general guidelines for sending commands and
Retrieving results retrieving results with Borland Ttrrbo C:

n Use fprintf() to send commands to the driver.

- Use fgets() to retrieve results from the driver.

n Call rewind() between successive calls to fprinrf() and fputs().

l Call fclose() and freopen() betweet successive calls to fgets() and
fprintf().

m Call flush() after an fprintf() to insure tlmt the command sent by
fprintf() is flushed from the DOS buffer.

70 A% I-AIIX- 16 User’s (~;uide - kv. A

I' Repeat until Status=0 (DONE) "1
do

I
/* Check log status *I
fprintfc ADC16. "Read Logstat" i:
fflush (ADClG);
/* If error print it, then exit with error ^I
if (err-no != 0)
1

PrintErrorO;
exit(l)

I
I* Rewind required between successive input and output '!
rewind(AOC16):
I* If error on read then exit "i
if (!fgets (Str. 80. ADC16)) exit(l);
I* Convert data to integer "1
sscanf(Str."Xd".Status 1

I
while(Status != 0):

Trapping errors The following code defines an error handler:

void PrintError
I
Ii Rewind required between successive input and output 'I/

rewind(ADC16);
/' Get error number */

if (!fgets (Str. 80. ADCI6))
I" Convert data to integer "I

sscanf(Str,"%d".ErrNum 1
I* Get error number *I

if (!fgets (Str. 80. ADC16)I
I* Convert data to integer *I

sscanf(Str."%s".ErrStrl 1
I* Get error number *I

if (!fgets (Str. 80. ADC16))
P Convert data to integer "I

sscanf(Str."%s".ErrStrE 1
I* Print error results *I

printf("Error Number \n%x ", ErrNum):
printf("\nError About %s". ErrStrl 1:
printf("\nTotal Line Xs". ErrStr2 1:

I

(:haprcr 4 - File I/O I)rivcr 71

Supported versions

Opening the driver

Microsoft C

4.0 and higher

The code listed below shows the correct procedure to open the driver and
clear its internal buffer. This code references the PrintError errof- handlel
defined under Trapping Errors.

I* Open Driver for reading and writing *I
ADC16 = fopen("$ADC16"."r+"):

I" Check for Error *I
if (ADC16 == NULL) PrintErrorO;

I* Clear the driver's internal buffer "I
fprintfc ADC16. "Clear" 1;
if (fflush (ADC16) == EOF) return(l):

Sending commands/
Retrieving resulfs

The following notes provide general guidelines for sending commands and
retrieving results with Microsoft C:

. Use fprintf() to send commands to the driver.

n Use fgets() to retrieve results from the driver.

. Call rewind() between successive calls to fprintf() and @uts() and
between successive calls to fputs() and fprintf().

l Call Hush() after fprintf() to insure that the command sent by
fprintf() is flushed from the DOS buffer.

The following code demonstrates how to send a command and retrieve the
results:

/" Repeat until Status=0 (DONE) */
do

I* Check log Status *I
fprintfc ADC16, "Read Logstat" 1:
1' If error print it, then exit with error *I
if (fflush (ADC16) == EOF)

PrintErrorO:
exit(l)
I
I* Rewind required between successive input and output *I
rewind(ADC16):
/* If error on read thw exit 'I
if (!fgets (Str. 80. ADC16)) exit(l):

I* Convert data to integer '1
sscanf(Str."%d",Status 1

I
whiled Status != 0 1;

Trapping errors The following code defines an error handler:

void PrintError
I
I* Rewind required between successive input and output 'I

rewind(ADC16):
I* Get error number *I

if (!fgets (Str. 80. ADClb))
I* Convert data to integer *I

sscanf(Str,"%d".ErrNum 1
I* Get error number *I

if (!fgets (Str. 80. ADC16))
I* Convert data to integer *I

sscanf(Str."%s".ErrStrl 1
I* Get error number *I

if (!fgets (Str, 80. ADCI6))
I* Convert data to integer 'I

sscanf(Str,"%s".ErrStrZ 1
/* Print error results */

printf("Error Number \n%x I", ErrNum):
printf("\nError About %s". ErrStrl 1:
printf("\nTotal Line %s", ErrStr2 1:

Supported versions

Opening the driver

Borland Turbo Pascal

4.0 and higher

The code listed below shows the correct procedure to open the driver and
clear its internal buffer. This code references the GetError error handler
defined under Tclpping Errors.

(* Main 'k)
BEGIN
Assign(ADClGIN. 'bADC16'):
Assign(ADC16OUT. '$ADC16');

(" Input, PASCAL has no read/write text files *)
Reset(ADC16IN):

(* Output, PASCAL has no read/write text files *)
Rewrite(ADC16OUT):

(Ihaprer 4 - t;ilc I/O Ihivcr 73

Sending commands/
Retrieving results

The following notes provide general guidelines for sending commands and
rettieving results with Borland Xwbo Pascal:

. USC Writeln() to send commands to the driver.

. Use Readln() to retrieve results from the drivel:

. All strings used for retrieving data from the driver mut be declared as
STRING[255].

The following code demonstrates how to send a command and retrieve the
results:

status := 1:
V' Wait for status to be DONE "1

WHILE Status 0 0 DO
BEGIN
writeln(ADC16OUT;Read Logstat'):
IF (IOResult 0 0) THEN GetError :

(* Status was declared as integer *~I
ReadLn(AOC16IN,Status);
END

Trapping errars The following code defines an et,-ot handler:

PROCEDURE GetError ;
BEGIN
readln(ADC16IN.ErrNum):
readln(ADC16IN.AStr):
readln(ADC16IN.BStr);
writeln('Driver Error Has Occurred !!'I:
writeln('MADC16 Error Number => '.ErrNum):
writeln('Error => ',BStr):
writeln('On Command Line of => ',Astr):
Halt(l)
END:

Microsoft Pascal

Supported versions 3.0 and higbet

Opening the driver Microsoft Pascal programs communicate with the driver via a file handle of
the Pascal type TEXT. This type of file handle allows files to
simtlltaneously be open for input and output. Consequently. only one tilt
handle is required and should be ASSIGNed for both input and output.

The codr listed below shows the correct procedure to open the driver and
clear its internal buffer. This code references the GetError error handler
defined under Trapping Errors.

C* Main ~*I
BEGIN

(" Open device driver for I/O random access '1
Assign(ADC16 .'$AOC16');

(" Direct Mode insures flush after WriteLn "i
ADC16.MODE := DIRECT:

(" Rewrite opens and rewinds the file ~I)
Rewrite(ADC16):

(hptcr 4 - Filu I/0 Ikivcr 75

Sending commands/ The following notes provide general guidelines for sending commands and
Retrieving results retrieving results with Microsoft Pascal:

. Use Writeln() to send commands to the driver.

m Use Readln() to retrieve results from the driver.

. All strings used for retrieving data from the driver must be declared as
STRING[255].

The following code demonstmes how to send a command and retrieve the
results:

status := 1;
(" Wait for status to be DONE *)

WHILE status 0 0 DO
BEGIN

(" Rewinds file and flushes previous contents "1
Seek(ADC16.1);

(* Clear I/O error flag before all file ops ')
ADC16,ERRS := 0 :

(" Trap Errors Instead of Exit To DOS *)
AOC16.TRAP := TRUE ;
writeln(ADClb.'Read Logstat');
Seek(ADC16,l):
IF (ADC16.ERRS 0 0) THEN
GetError ;

(" Rewrite opens and rewinds the file "1
Rewrite(ADC16):
ADClG.ERRS := 0 :
ADClG.TRAP := TRUE ;
Seek(ADC16.1) ;

(* Status was declared as integer *)
ReadLn(ADClG.Status):
Rewrite(ADC16)
END

Trapping errors The following code defines an error handler:

PROCEDURE GetError;
BEGIN
(* Rewinds file and flushes previous contents "1

Seek(ADCl6.1);
ADC16.ERRS := 0 :

(*~ Clear I/O Error Flag Before All File 0~:. "1
(" Trap errors instead of exit To DOS '1

ADC16.TRAP := TRUE:
P Read error number string from driver 'i

readln(ADCl6,EN):
Vk Read original command line from driver 'J

readln(ADC16.AString):
i* Read Error Description From Driver I)

readln(ADCl6,BString):
writeln(chr(7)); (' BELL "1
writeln('Driver Error Has Occurred ! !'):
writeln('ADC-I6 Error Number => '.EN):
writeln('Error => ',BStrinq);
writeln ('On Command Line => '.Astring,:
Abort('Program terminated due to error. .'.@.W

Interpreted BASIC

Supported versions

Opening the driver

All

The following code slmws the cottect procedure to open the driver and
clear its internal buffer:

150
200
250
260
300
350
400
450
460
500

' Give Line number to goto if an error occurs
ON ERROR GOT0 5000

Establish File Token i/l with $AOCI6 for output
All commands will be output using Token l/l

OPEN "BADC16" FOR OUTPUT AS #l
Clear ADC16 File I/O return buffer

PRINT i/l, "CLEAR"
Establish File Token 112 with SADCl6 for input
All inputs will be read using Token ii2

OPEN "$ADC16" FOR INPUT AS 112

(hptur 4 File l/O I)rivcr 77

Sending commands/ The following notes provide general guidelines for sending commands and
Retrieving results retrieving results with Interpreted BASIC:

m Use PRINT to send commands to the driver.

. Use INPUT to retrieve results from the driver.

The following code demonstrates how to send a command and retrieve the

1000 PRINT #l/READ LOGSTAT'

1010 INPUT #2, ST%
1020 IF VAL(STB)OO goto 1010

Send command which will
fill Device's Return Buffer
with Status.
Read status into string.
If the Value of Status is

' not zero. then AD is busy.
Wait for status to be done.

Trapping errors The following code defines an error handlers

5000 Beep
5010 IF ERR=75 GOT0 5060
5020 IF ERR=68 GOT0 5060
5030 IF ERR=57 GOT0 5060
5040 IF ERR = 62 GOT0 5130

5050 Print ERR : RESUME

5060 INPUT #Z,EN
5070 LINE INPUT #Z.A$

5080 LINE INPUT 1/Z. B

5090 PRINT "Error number ":EN

START OF ERROR HANDLER
Signal error.
GWBASIC may return
75, 68. or 57 for
a SYNTAX error.
Error 62 is an attempt

' to read from a device ttlat
has no data to read.

' If none of the above, then
error is not from driver.
Read driver error ii.
Read part of line that
contained error.
Read entire line ils
received.
Print info received from
from syntax error.

5100 PRINT "ERROR "86
5110 PRINT "On command line of ":A$
5120 STOP Stop execution
5130 PRINT "Data Not Available" Print error 62 message
5140 STOP

78 ASO-AlK:-lh User's (;uiJc - I<cw A

QuickBASIC

Supported versions All

Opening the driver The following code shows the correct procedure to open the driver and
clear its inre&l buffer:

ON ERROR GOT0 ErrHandler

OPEN "$ADC16" FOR OUTPUT AS i/l

PRINT #I, "CLEAR"

OPEN "'6ADC16" FOR INPUT AS 1/Z

Give line number to gotc
if an error occurs.
Establish file token ill
with IADC16 for output.
All commands will be output
using token (il.
Clear ADC16 file I/O
return buffer.
Establish file taker #2
with $ADCI6 for input.
All inputs will be read
using token 112.

Sending commands/ The following notes provide general guidelines for sending commands and
Retrieving results retrieving results with Quick BASIC:

l Use PRINT to send commands to the driver.

l Use INPUT to retrieve resulrs from rhe driver.

The following code demonstrates how to send a command and retrieve the
results:

WaitForDone:
PRINT #l,"READ AD STATUS"

INPUT 112. STB
IF VAL(ST$)<>O goto WaitForDone

Send command which will
' fill device return buffer

with Status.
Read Status into string.

' If the value of status
is not zero ther AD
is busy; wait for Status
to be done.

(:llaprer 4 - MC II0 IIrivcr 79

Trapping errors The following code defines an error handler:

Err-Handler:
Beep ' Signal error.
IF ERR=75 GOT0 SyntaxError ' QuickBASIC may return

IF ERR=68 GOT0 SyntaxError ' 75. 58, or 67 for

IF ERR=57 GOT0 SyntaxError ' a SYNTAX error.
IF ERR = 62 GOT0 DataOutError Error 62 is an attempt to

' read from a device that has
no data to read.

Print ERR : RESUME If none of the above, then
error is not from driver.

SyntaxError:
INPUT IIZ.EN
LINE INPUT iiZ.A$

LINE INPUT i/Z, B$

PRINT "Error number ";EN

PRINT "ERROR "BB
PRINT "On command line of
STOP

":A%

Read driver error ii.
Read part of line that
contained error.
Read entire line as
received.
Print info received from
from syntax error.

Stop execution.

DataOutError:
PRINT "Data Not Available"
STOP

' Print error 62 message

80 AS0ADC-I 6 User’s (~;uillc - Kev. A

File I/O Commands 5

5.1 Functional grouping -
The File I/O Commands can be logically grouped according to the
functionality that each provides. This section lists each command ah a
member of one of the following groups:

. Setup and Initialization

. A/D operations

n Pop Up Control Panel

Setup and
Initialization

ClC%U
Clears all data that the driver has prepared for your programs next input
operation.

AID operations ADStart
Enables A/D acquisition.

ADStop
Disables A/D acquisition,

Read ADType
Returns the A/D transfer mode in which the next A/D operation will
execute.

AID operations
(cont’d)

Read Channel
Returns the A/D value acquired on a specified channel

Read Gain
Returns a code that indicates the current global gain

Read Level
Returns the current interrupt level.

Read {Mode/LogFde/Date/BloddlogS~tl
Returns the conditions that define the next StartLog.

Read Range
Returns the current h&scale A/D range.

Read Startchannel
Returns the channel number of the first channel in the current
channel scan.

Read Stopchannel
Returns the channel number of the last channel in the current
channel scan.

Set ADTj.pe
Specifies the A/D transfer mode in which the next A/D operation will
execute.

Set Gain
Sets the global gain.

Set Level
Sets the interrupt level to be used for the next A/D operation

Set {Mode/LogFile/Dare/BloddLogS~t}
Sets conditions that define the next StartLog.

82 AS0ADC-I 6 User’s Guide - Kev. A

A/D operations
(cont’d)

set Startchannel
Specifies the first channel that will be scanned during the nmt
A/D operation.

set Stopchannel
Specifies the last channel that will be scanned during the next A/D
operation.

StartLog
Writes the current A/D data into a file.

StopLag
Stops current logging operation.

Pop up Control Panel Hide
Hides the Pop Up Control Panel.

Lock
Disables keyboard and IIIOUSC control of the Pop Up Control Partrl

Read Units
Returns the units that the Pop Up Control Panel will MC to display data.

Set U&5
Sets the units that the Pop Up Control Panel will wse to display data,

Show
Causes the display of a specified panel of the Pop Up Control Panel.

UniOCk
Enables keyboard and mouse control of the Pop Ut> Control Panel

5.2 Command reference
The following notes describe the conventions and stand& terminology
used in the remainder of this chapter:

About Syntax entries . The Syntax heading for each command lists two lines. The first line is
rhe standard form of the command. The second line is rhe abbreviated
form of the command. The abbreviated form shows the minimum
characters in each keyword that must be present in order for the dl-ivcl
to recognize the command. The driver recognizes both forms; the
abbreviated form is provided as a convenience.

. Se is shown as the minimum abbreviation for Set keyword. However,
Set (or its abbreviation Se) can be omitted from any command whose
standard form includes the Set keyword. For example, Set ADType can
be specified as ADType.

. {] - Curly brackets enclose a set of command keywords from which
one must be selected to define the command; keywords are separated by
a backslash. For example, Read {Mode/LogFile/DateIBIock/LogStat}
represents five commands: Read Mode, Read LogFile. Read Date,
Read Block, and Read LogStat.

. () - Entries enclosed in parentheses are c~l~stunt arguments (see note
about variable arguments below). The constant arguments are sepal-ared
by commas. The constut arguments must bc specified exactly as they
are shown. For example, Set Units (ADcodes,Volts) indicates that the
Set Units command rakes a single argument, and that argument must
be either ADcodes or Volts.

. Variable arguments are shown in italic and describe the type of Y;LIW
that should be specified. For example, ,f&;lume indicates that the
argument should represent a valid filename.

Format of
returned values

“Returns” means that the driver executes the command and stores the
result in its internal buffer. Your program can reuieve this result from thr
d' b rwer y using one of your programming language’s input FIIIicGons.

All of these results are returned as ASCII text strings. Many of these text
wings, however, represenr decimal integers. You should wriw your
program so that it inrerprets each resulr appropriately.

Gain Codes and
A/D input ranges

The gain and the A/D full-scale range determine the A/D input rangr (thr
A/D fill1 scale range is specified by the driver configurxion file). The tablr
shown below lists the A/D input range rhar corresponds to each gain/full-
scale range combinarion.

gain

1

10

100

A/D input range for A/D input range for
zt3.2767 V fihcak range *5.0 v Full-scale rangcz

e3.2767 V *5 v

k327.67 mV *500 n1V

k32.767 mV * 50 mv

ADStart

SyntalC ADStart
ADStort

Description Enables A/D acquisition.

ADStop

Syntax ADStop
ADStop

Description Disables A/D acquisition.

Clear

syntax Clear
Cl

Description Clears all data that the driver has prepared for your program’s next input
operation.

Notes Since some versions of DOS do not call the driver when your p~mgram
issues an Open, the driver might contain input-ready data that was
prepared by a previous program. Consequently, you should issue a Clear
immediately following any Open.

86 AS0AD<:-I 6 User’s Guide - Rev. A

Syntax Hide
Hi

Description

Notes

Hides the Pop Up Control Panel

Hide is ignored if VITASK (instead of VI) was loaded intmcdiarrly beforr
MADC16 was loaded: refer to page 66 for a description of rlw diffPrences
between VI and VITASK.

Show cancels the effect of Hide.

lock

Syntax Lock
Lo

Description Disables keyboard and mouse control of the Pop Up Control Panel

Notes Use Unlock to cancel the effect of Lock.

Read ADType

Syntax Read ADType
Re ADT

Description

Return codes

Returns a code that indicates the current A/D transfer mode.

0 = Synchronous-mode
1 = Interrupt-mode

Notes The current A/D transfer mode is the mode specified by the most recently
issued Ser ADType.

Read Channel

Syntax Read Channel channel
Re Ch channel

Description Returns the A/D value acquired on the channel specified by channel. The
valid values for channel are 0, I,..., 7.

Notes The currem units and the current gain (as specified by the most recently
issued Set Units and Set Gain, respectively) determine the implied units of
the returned value as follows:

. If the current units = Volts and the current gain = 1, then the value is
returned in units of Volts.

. If the current units = Volts and the current gain = 10 or 100, then the
value is returned in units of MilliVolts.

Read Gain

Syntax Read Gain
Re Go

Description

Return codes

Returns the current global gain

1, 10, 100. Refer to the table on page 85 for the A/D input ranges that
correspond to each of these gains.

Read level

Syntax Read Level
Re Lev

Description

Notes

Returns the current interrupt level.

The current interrupt level is defined by the value of the level argument
specified in the most recently issued Set Level.

88 ASO-AM::-1 6 User’s Guide - Rev. A

Read {Mode/LogFile/Date/Block/LogStat}

Syntax Read Mode
Re MO

Read LogFile
Re Logfile

Read Date
Re Da

Read Block
Re Eil

Description

Read LogStot
Re Logstat

Read Mode
Returns the value of the mode argument specified in the mosr r~crnrly
issued Set Mode. The value of mode represents the mode (New, Append or
Ovel-write) in which the data will be written to the dara file by the next
StartLog.

Read LogFile
Returns the/&name argument specified in the most recently issued
Set LogFile. filename represents rhe name of the data file that will be uxd
by the next StartLog.

Read {Mode/LogFile/Date/Block/LogStat} (cont’d)

Return codes

Read Date
Returns the date argument specified in the most recently issued Set Date
dnte indicates if date stamping is enabled.

Read Block
Retums the block argument specified io the most recently issued Set Block.
block represents the otmber of data blocks that will be logged by the next
start Log.

Read LogStat
Returns the current log status,

Read Mode
0 = New
1 = Overwrite
2 = Append

Read Date
0 = Date stamping Off
1 = Date starnpiog On

Read LogStat
0 = Logging Off
1 = Logging On

Read Range

Syntax Read Range
Re Ron

Description

Return codes

Returns a code that indicates the cumot A/D full-scale range

0 = k3.2768 V
1 = +5.0 v

Read Startchannel

Syntax Read Startchannel
Re Sta

Description Retums the channel umber of the first channel in the current chaonel
scan.

Notes The first channel in the current scan is defined by the most recently issued
set Startchannel.

Read Stopchannel

Syntax Read Stopchannel
Re Sto

Description Returns the channel number of the last channel in the current chanoel
scao.

Notes The last channel in the current scao is defined by the most recently isswd
Set Stopchannel.

Read Units

Syntax Read Units
Re Un

Description (Applies only if the Pop Up Control Panel is visible). Returns a codr that
indicates the current display units on the Pop Up Control Panel.

Return codes 0 = A/D codes
1 = Volts

Set ADType

Syntax Set ADType (Interrupt,Synchronous)
Se ADT (Int,Syn)

Description Specifies the A/D transfer mode in which the next A/D operation will
execute.

Notes Interrupt mode allows for the acquisition and transfer of dara using the
interrupt level set by the most recently issued Set Level. The driver detects
the interrupt that the ADC-16 issues at the conclusion of a conversion and
then reads the acquired data into memory. Because of the driver and CPU
involvement required to read the data into memory, the maximum
conversion rate in interrupt mode is limited to approximately 5 Khz.

Operations that execute in interrupt mode must use a single gain for each
channel in the scan. Interrupt-mode operations execute entirely io the
background.

Synchronous mode operates in the foreground. When an AD command
begins executing, no other board functions are available until the A/D
operation terminates. The maximum conversion throughput available in
synchronous mode is machine dependent.

Set Gain

Syntax Set Gain goin
Se Go gain

Description

Arguments

Specifies guin as the current global gain.

channel
0, 1,...,7

gain
1, 10, 100

Set level

Syntax Set Level (2,3,4,5,7,10,1 I ,15)
SeLev(2,3,4,5,7,10,11,15)

Description Sets the interrupt level to be used for the next A/D operation

Chapter 5 - Filr I/O (:Olrlmands 93

Set {Mode/LogFile/Date/Block/LogRate}

SyIltCUC Set Mode (Append,New,Overwrite)
Se MO (Ap,Ne,Ov)

Set LogFile h&Name
Se Logfile fileName

Set Date (On,Off)
Se Da (On,Off)

Set Block numBlocks
Se El numBlocks

Description

Set LogRate rafe
Se tograte rate

Set Mode (Append,New,Overwrite)
Specifies the mode in which the data will be written to the file by the next
StartLog.

Set LogFile fileName
Specifies j&Name as the name of file that will be used by the next
SWtL0g.

Set Date (On,Off)
Specifies if date stamping is enabled.

Set Block numBlocks
Specifies numBlocks as the number of blocks that will be saved by the next
StanLog. The valid values for numBlocks at-e 0, 1,...,99999.

Set LogRate rob
Specifies rate as the number of seconds between successive A/D
acquisitions. The valid values for rate are as follows:

. 2.0, 2.1,..., 99.9, or

. 102, 108,...,102 + 6m,...,5994 with m an integer in the range [0,382]

Syntax Set StartChannel channel
Se Sta channel

Description Specifies channel as the first channel to be scanned during tlw next A/D
operation.

Set StopChannel

Syntax Set StopChannel channel
Se Sto channel

Description Specifies channel as the last channel to be scanned during the next A/D
operation.

Set Units

Syntax Set Units (ADcodes,Volts)
Se Un (ADcqVo)

Description Sets the units that the Pop Up Control Panel will use to display data.

Show

Syntax

Description

Arguments

show (1,2)
Sh Il.21
Causes thr display of the specified panel of tlw Pop Up Control Panel

1 = Main panel
2 = LogFile panel

Notes This command is ignored if VITASK (instead of VI) was loaded
immediately before MADCl6 was loaded.

Startlog

Syntax Startlog
Startlog

Description WI-ices he currenf A/D data into a file accol-ding to
he condirions specified by the most recenrly issued
Set (Mode/LogFile/Date/BIoddlogS~~l.

Stoplog

Syntax stoplog
Sloplog

Description Stops current logging operation.

Unlock

Syntax Unlock
Un

Description

Notes

Enables keyboard and mouse control of he Pop Up Conrl-ol Panel.

Use Lock to CdllCCl the effecr of U&I&.

96 ASO-AM-I 6 User’s Guide - Rrv. A

Function Call Driver
error messages A

Error 6OOOH Error In Configuration File

Cause The configuration file supplied to ADClb_DevOpen() is corrupt or doer
not exist. If file is known to be good. then it probably conuins out or
more undefined keywords.

Solution Check if the file exists at the specified path. Check for illegal keywords in
file; the best way to fix illegal keywords is to let the supplied
ADCI 6CFG.EXE utility do it.

Error 6001 H Illegal Base Address in Configuration File

Error 6004H Error Opening Configuration File

Error 6005H Illegal Channel Number

Cause The specified I/O operation channel is out of range. For A/D operations.
the legal channel numbers are 0, I,.... 7(m+l), where m is the number of
STA-EX8s connected to the board. For digital optxarions, 0 is the only
valid channel.

Solution Specify legal channel number.

Error 6006H Illegal gain

Cuuse The specified Analog Input (A/D) operation gain code is out of range. The
allowed codes are: 0, 1, 2. Refer to the appropriate function call
description for more detail.

Solution Specify legal gain code.

Error 6008H Bad Number in Configuration File

Cause An illegal specification of a number is detected in the Configuration file.
Note that if specifying a hexadecimal number for the Base Address, that
number must proceeded with ‘&H’.

Solution Check the number following ‘Address’ in the Configuration file.

Error 6009H Incorrect Version Number

Error 600AH Configuration file not found

Cause This error is returned by the ADClb_DevOpen() ftlnction whenever the
specified configuration file is not found.

Solution Check the configuration file name (spelling!), path, etc...

Error 600CH Error in returning INT Buffer

Cause This error occurs during KPIntFree() whenever DOS returns an error in
INT 21H function 43H.

Solution Make sure that the parameter passed to K-IntFt-ee() was previously
obrained via K-IntAlloc().

Error 600DH Bad Frame handle

Cause This error is usually returned by Frame Management or an Operation
Function whenever an illegal Frame handle is passed to one of these
functions.

Solution Check the Frame Handle.

Error 600eH No more Frame Handles

Error 600fH Requested Int Buffer loo large

Error 601 OH Cannot Allocate Int Buff

Error 601 I H Int Buffer Already allocated

Error 6012H Int Buffer De-Allocation Error

Error 6013H Int Buffer Never Allocated

Error 7000H No board name

Cause ADCIG-DevOpen() function did not find a board ‘Name in the specitird
configuration file.

Solution Make sure that a name is specified in your configuration file. The legal
name is ADC16.

Error 7001 H Bad board name

Cause ADCI 6-DevOpen() function found the board ‘name’ in the specified
configuration file to be illegal. The legal name is ADCl6.

Solzaion Check the keyword following ‘Name’ in your configuration tile.

Error 7002H Bad board number

Cause ADClG_DevOpen() function found the ‘Board’ number in the specified
configuration file to be illegal. The legal board numbers are 0 and 1.

Solution Check the number following ‘Board’ in your configuration file.

Error 7003H Sad base address

Cause ADCIG-DevOpen() function found the board’s base l/O ‘Address’ in the
specified configuration file to be illegal. The legal address arc 200H (512)
through 3FOH (1008) in increments of 10H (16) inclusive.

Solution Check the number following ‘Address’ in your configuration file. NOTE
that to specify a Hex number, the number must be preceded by ‘&H’.

Error 7005H Bad interrupt Level

Cause ADClG-DevOpen() function found the Interrupt Level in the specified
configuration file to be illegal. The legal Interrupt levels are 2, 3, 4. 5, 7.
IO, 11, 15.

Solution Check the number following ‘IntLevel’ in your configuration file.

Error 7006H Bad number of EXPs

Cause ADC16PDevOpen() function found the number of EXPs in the specified
configuration file to be illegal. The legal number of EXPs is 0 through 8
inclusive.

Solution Check the number following ‘STAEX8’ in your configuration file.

Error 7018H No board name

Cause ADClbPDevOpen() function found the board ‘Name’ in the specified
configuration file to be illegal. The legal name is ADCl6.

Solution Check the keyword following ‘Name’ in your configuration file.

Error 701 bH Resource Busy

Error 8001 H Function not supported

Cause A request is made to a fmction not supported by the ADC16 driver. This
erl-or should not occur in a srandard release so&are.

Solution Contact Keithley Data Acquisition Technical Support.

Error 8002H Function out of bounds

Cause Illegal function number is specified. This error should not occur in a
standard release software.

Solution Contact Keithley Data Acquisition Technical Supporr.

Error 8003H Illegal board number

Cause The ADC16 driver supports up to two boards: 0 and 1.

Solution Check the board number parameter in your call to ADCl6~
GetDevHandleO.

Error 8004H Bad error

Cause An illegal error number was passed to function K-GetErrMsg(). The legal
error numbers are listed in this appendix.

Solution Check the error number.

Error 8005H No board

Cause This error is issued during K-DASDevlnit() wbencver tbe board prcsrnrr
test fails. This is normally caused by a conflict in the specified board I/O
address and the actual I/O address the board is configured for. Also, tltis
error is issued when the board is not present in the system.

Solution Check the board’s base 110 address dip swircb and make sure it matches
the base address in your configuration file.

Error 8006H A/D not initialized
Error 8008H Digital Input not initialized
Error 8009H Digital Output not initialized

Cause An attempt to start the particular operation without first initializing the
associated Frame.

Solution Use K-lnitFrame() to initialize the particular frame you wish to use.

Error 80 1 AH Interrupts active

Gum An attempt is made to start an Interrupt-based operation while another i\
already active.

Solution Stop cumnt interrupt-mode operation first and retry.

Error 8020 Sad Revision

C&We Specified DAS revision number is not valid,

Error 8021 Error - Resource Busy

Cause Illegal handle for frame.

Error 8022 Unknown error

Error FFFFH User aborted operation by pressing lC!f& - [&ki or iC!rl: -, c .

> ,,

File I/O Driver
error messages

Error 850 Illegal character encountered.

Error 85 I Illegal ADC-16 Command

Caure The driver does not recognize the command.

S&ti0n Refer to the File I/O Command Reference to check the syntax aud spelling
of the command.

Error 852 ADC-16 SE1 Command Error

Caure Keyword specified in a SET command is not valid.

Solution Refer to the File l/O Command Reference to check which keywords are
valid for the command.

Error 853 ADC-16 REad Command Error

Cause Keyword specified in a READ command is nor valid.

Solution Refer to the File I/O Command Reference to check which keywords arc
valid for the command.

Error 854 Illegal ADType, Should be SYNChronous or INTerrupt

Error 855 Illegal Gain, should 1, 10, or 100.

Error 856

Error 857

Error 858

Error 859

Error 860

Error 861

Error 862

Error 863

Error 864

Error 865

Error 866

Error 867

Error 868

Error 869

Error 870

Error 871

Illegal Interrupt level, should be 2, 3,4,5,7, 10, 11, 15.

Interrupt mode NOT Enabled.

Illegal unit selection, should be ADCOdes or VOlts.

Illegal Start Channel Selection, should be 0 to 7.

Illegal Stop Channel Selection, should be 0 to 7.

Error, STOP Device before using this command.

Error, Channel must be 0 to 7.

Error, START acquisitions before Reading Channel Data.

Error, Data OVERFLOW or Channel NOT Enabled.

Illegal Command MUST be SHOW, SHOW 1, or SHOW 2.

Log File Name Error.

Illegal File Mode, MUST be NEW, Overwrite or Append

Illegal Date Mode, MUST be OFf or ON.

Illegal Number of Blocks, MUST be l-99999.

Illegal log Rote Setting.

Start Acquisitions before Logging.

	TOC:

