
ASO-TC

User’s Guide

Revision A
Plimxl June. 1993

Part No. 24469
0 Keithley Data Acquisition 1993

WARNING

Keithley Data Acquisition assumes no liability for damages
consequent to the use of this Product. This Product is not designed
with components of a level of reliability that is suitable for use in
life support or critical applications.

The information contained in this manual is believed to he accurate and reliable.
However, Keithley Data Acquisition assumes no responsihilit,y for its use; nor for any
infringements or patents or other rights of third parties that may result from its use.
No license is granted by implication or olhetwise under any patent rights of Keithley
Data Acquisition.

Keithley Data Acquisition does not wnrrnnr that the Product will meet the Customer’s
requirements or will operate in the combinations which may he selected for use by Ihe
Customer or that the operation of the Program will he uninterrupted or error free or
that all Program defects will he corrected.

Keithley Data Acquisition does not and cannot wxrant the performance or results thar
may he obtained hy using the Program. Accordingly, the Program and its
documentation are sold “as is” without warranty as to their performance
merchantability, or fimess for any particular purpose. The entire risk as to the results
and performruxe of the program is assumed hy you.

All brand and product names mentioned in this manual are trademarks or registered
lrademarks of their respective companies.

Reproduction or adaptation of any part of this documentation beyond that pemiitted
hy Section I I7 of the 1976 United States Copyright Act without permission of
Keithley Data Acquisition is unlawful.

Keithley Data Acquisition - 440 Myles Standish Blvd. - Taunton, MA 02780
Telephone: (508) 8X0-3000 - Fax: (508) 8X0-0179

Contents

Chapter 1
I.1
1.2

1.3
1.4
1.5

Chapter 2
2. I

2.2

2.3
2.4
2.5

Chapter 3
3.1
3.2

Appendix A Function Call Driver error messages , . . 85
A.1 Error Codes XS

A.2 Error Conditions 99

Introduction . . . ,
About the ASO-TC
Prerequisites

Getting help
Installing the AS0 for DOS
Installing the AS0 for Windows

....

......

......

......

......

......

The Function Call Driver ,
Awilahle operations
Overview of programming with
the Function Call Driver
Board/Driver initialization tasks
Operation-specific programming tasks
Language-specific progranming notes

. 1
I
2

2
2
4

.......... 7

............. I

............ I?

............ I3

............ I4

............ 21

Functions 43
Functional grouping 43
Function reference 47

Introduction 1

1.1 About the ASO-TC
The ASO-TC is the Advanced Soliwarc Option (ASO) for the DAS-TC analog
input hoard. The AS0 includes a set of soliwarc components that you can USC.
in conjunction with a programming language. to crate application progrxns
that execute the operations available on the DAS-TC.

The primaty component of the AS0 is the Function Call Driver. This driver
provides your application program with high-level access to the acquisition and
control operations available on the DAS-TC. The AS0 :IISO includes suppon
files, example programs, a configuration utility, antI a data togging utility.
For information on the contiguratiori and data logging utilities. refer to the
DAS-TC User’s Guide.

The Function Call Driver enahles your program to define and execute txzml
operations hy using calls to driver-provided fimctiolls. For example. your
program can call the driver-provided K-ADRead function to execute ;L singlc-
point. A/D input operation.

The AS0 includes several different veaions of the Function C;dI Driver. The
.LIB and .TPU versions are prnvided for DOS application development in ‘C’
and Pascal languages. The Dynamic Link Library (DLL) is provided for
Windows application development.

The AS0 and this manual provide the necessary tools, example programs
and information to develop Function Call Driver prr,grilms in the following
languages:

. Borland C/C++ (version 2.0 and higher)

Chapter I - Introduction 1

. Borland Turbo Pascal (version 6.0)

* Borland Turbo Pascal for Windows (version I .O)

* Microsoft C (version 5. I and ahove)

* Microsoft C++ (version 7.0)

* Microsoft Quick C for Windows (version I .O)

. Microsoft Visual Basic for Windows (version I .O and higher)

Note If you are using :I version of Turbo Pascal higher 111x1 version 6.0, see section
2.5 for the procedure required to make a Turho Pascal unit compuihle with
your version.

1.2 Prerequisites
The AS0 is designed exclusively for use with the DAS-TC. This manual
assumes that you understand die information presented in the DA.!?-TC Uxr’s
Guidr. Addiliomdly, you must complete the hoard installation and
configurat,ion procedures oullined in the DAS-TC User’s Guide before you
attempt, rmy of the procedures described in this manual.

The fundamental goal of this manurtl is (0 provide you with the informalinn
you need Lo write DAS-TC applicmion progmms lhal use die AS0 driver. II is
recommended that you proceed through this manual according to the sequcncc
suggested hy the rahle of conlents; this will minimize the amounl of time and
effort required to develop your AS0 applicalion programs for the DAS-TC.

1.3 Getting help
The following resources provide infommlion ahout using the ASO:

. this manual

. Ihe LIAS-TC User’s Guide

. the AS0 example programs (these are copied to your system’s hard disk
during the inslallrrtion procedure)

. the documentation for the programming language you are using

Call our Applications Engineering Department if you need additional
assistance. An applications engineer will help you diagnose and solve you,
problem over Ihe telephone.

2 ASO-TC User’s Guide - Rev. A

r

Keithley Data Acquisition

Applications Engineering

508-880-3000

Monday - Friday, 8 A.M. - 7 P.M.

ASO package Version

Invoice/Order #

DAS-TC Serial #

Base address serting

Computer MklllUfXXUlW

CPU type

Clock speed (MHz)

Math co-processor’!

Amount of RAM

Video system

Compiler Language

Manufacrurer

Version

xoxx 2X6 3X6 4X6 ort1cr

X I2 20 25 33 Olhcr

Yes No

CGA Hcrculcs EGA VGA

1.4 Installing the AS0 for DOS
To code AS0 applidons progruns in a DOS-based language. land the
sofiwarc using the ASO-DOS distribution diskettes.

The tiles on the ASO-DOS distribution diskettes are in compressed formar.
You must use the installation program included on the diskettes 1o install the
AS0 sotburc. Since the aggregate size of the expanded AS0 files is
approximately 1.5 MB, check Ihat there is at lea,,r this much space available on
your PC’s hard disk before you attempt to install the ASO.

Perform the following procedure to install the AS0 software (nole Ihat it is
;~ssumed that the floppy drive is designaled u drive A):

I. Make a hack-up copy of the dislrihution diskette(s).

2. Insert ASO-DOS diskette #I into the lloppy drive

3. Type Ihe following comnmmls at the DOS prompt:

A: [Enter]
install [Enter]

The imtallation program prompts you for your insl,alla~ion preferences,
including the name of the subdirectory int,o which the ASO-DOS files arc
copied. The installation progr;un expands the tiles on the AS0 diskette(s) and
copies them inter the ASO-TC subdirectory you specilied; refer to the lile
FILESIXX in your ASO-TC suhtlireclory for the names and descriplions of
these files.

1.5 Installing the AS0 for Windows
To code AS0 applications progrruns in a Windows-hued language, load rhc
software using the ASO-Windows distribution diskettes.

The files on Ihe ASO-Windows diskette are in compressed format. You must
use lhe serup progmm included on rhe diskette to install the software. Since
the aggregate size of the expanded files is approximately 2 MB, check lhiu
there is at least lhis much space available on your PC’s hard disk hefbre you
attempt to install Ihe tiles.

Perfmm the following procedure 10 install the Windows-hased software
(assume thal the floppy drive is designated as drive A):

I. M&e a hack-up copy of the ASO-Windows diskette.

2. Sun Windows.

3. Insert the ASO-Windows diskelte into Ihe lloppy drive.

4. From the Program Manager menu, choose File then Run....
5. AT rhe Command Line t,ype A : \ SETUP. EXE

4 ASO-TC User’s Guide - Rev. A

The setup progrrun prompts you for your instnllation preferences, including the
name of the subdirectory into which the ASO-Windows files we copied. If you
press Continue after you type in the p:~thniune. the setup program expands the
files and copies them into the ASO-TC subdirectory you speciticd; refer trl the
file FlLES.MJC in your ASO-TC subdirectory for rhe names and descriptions 01
these tiles.

The instdlatitrn process also creates a DAS-TC icon. This icon includes ;L C
eXal@e program, the WI)ASTCCF.EXE cOllfigUratiw1 utility, the dritdtrgger

utility, and RLESMJC. The configuration utility antI the dntalogger are
descrihcd in the DAS-TC Usrr Guide.

Chapter I - Introduction 5

The Function Call Driver 2

2.1 Available operations
The ASO-TC provides you with two types of analog-to-digital (A/D) input
operations:

* Single-call

* Frame-based

The following subsections describe these operations in mom detail

Both types of operations are implemented with functions, to which you pass
parameters. As with any function, you declare the corresponding arguments
hefore making the call.

Single-call A/D Input
operatlons

In a sirqle-cdl A/D input operation, you mad an analog input value using a
single call to a titnction. Analog-to-Digital conversion is performed
automatically.

You specify the attributes of the operation, such as the hoard that executes the
operation, the channel from which to read data, and the buffer in which to
store the data, as arguments to the function. The data is returned as a single
voltage or temperature value in cngineeting units.

Note The Function Call Driver reads the contiguration lile to determine the gain;
therefore. the gain parameter is ignored.

Use the K-ADRead function to read a single analog input value from a
specitied analog input channel.

Chapter 2 - The Function Call Driver 7

The DASTC-GETCJC function is a special-purpose single-call hmction for
reading the value of the CJC (Cold Junction Compensation) channel. You cxn
use the resulting value to correct a temperature reading in cases where you
want to perform your own linearization.

It” you wish, you can use K-ADRead or DASTC-GETCJC with software
looping to acquire more than one value from one or more channels. Typically,
when you are acquiring more than one value you may want to exercise more
control over the data transfer than is possible with single-call operations. In
such caes, use a frame-based operation, described next.

Frame-based A/D Input A frame-based input operadon is nornndly used to sample more than one value
operatlons from one or more channels. In the case of the DAS-TC, the data returned

consists of as many voltage or temperature values as there are analog input
samples. The values we returned in engineering units.

A frame-hased operation uses a single data structure called a frme to
represent the controllable attributes of the operation for a particular hoard. You
request a frame hy calling the function, K-ADFrame.

A frame-based operation is realized :IS a sequence of function calls. At a
minimurn, a frame-hased sequence includes functions that nnmage and set
frame elements, followed hy a function that performs the actual transfer 01
values.

The controllable attributes of the operation, such as die start channel, stop
channel, and number of wnples, arc known as frame &m~ws. The follrrwing
table lists the frame elements awilahle for the ASO-TC and the corresponding
function used to set each element. Refer to the appropriat,e function descripl,ion
in Section 3.2 for the valid settings of a frame’s elements.

8 ASO-TC User’s Guide - Rev. A

Element Function Page

Start/Stop Cliannel K-SetStartStopChn x2
I I I

I

I
1 K~FonnntClmGArv 1 57 I II

Chrumel-Gain Array
Address K_Rcs~o~cCI~GA~ 15

I
I

1 K SetClmGArv 1 7!, 11

Number of Samples
le

K.JntAlloc 69

K-SetBuf 76

Data Buffer Address K-SetButL 17

I K-SetButR I 7x

I K-SetContRun XI
Buffering Mode

K ClrContRun 5s I

One fr;lme corresponds to one set of element vdues. Once you set the frame‘s
elements. you can pass all of the settings to the function Itiat sliww the A/D
operation, using only the franw hrmlle. which idcntilies the frame (;ud the
hoard from which you called K-GetADFrame).

lf several operations acquiring data from a particular howd use the s;une
element settings, they can pass the same frame handle. Aftcwartls. you should
rele&se the frame by calling K-FreeFrame. The Function Call Driver allows
you to request up to eight frames, regardless of which hoard you arc using
when you call K-CktADFrame. For example. you could use live francs for
hoard I and three frames for hoard 2. Similarly, you could use eight fnlmes for
hoard I: however, no frxnes would he available for hoard 2 ill this exanlple.

Note Each of the programming languages is supported hy 2~ tile that contains a
definition of the FRAMEH variahle type. Therefore, you must tleclarc ;iII
frame handles to he of this type.

Chapter 2 - The Function Cd1 Driver 9

Operation Modes

For the DAS-TC, frame-hased A/D operations ;Lre availahlc in two modes:

* Sytlcllrotlous

. Interrupt

In Synchronous mode, the frame-hased sequence passes control to the Function
Call Driver, which acquires and converts data in the foreground. After the
specilied number of samples is acquired, the driver retutns control to lhe
application program. This operation mode is easier to program than interrupt
mode operations. It should not be used if some procedure requires a block of
data before executing and/or needs to monitor or contt’d the transfer. USC the
K,SyncStart function to start a frame&used operation in synchronous mode.

Inlerrupt mode allows the hoard to acquire and convert data in the hackground
while the application program retains control. The DAS-TC interrupts the
application when an acquired block of samples is ready to he transferred to a
user-defined buffer. The Function Call Driver’s interrupt handler gets control
just long enough to complete a block transfer; this period is sufficiently hricf
as to he imperceptible. Interrupt mode is useful when monitoring and contrd
over the tramfer is desired, concurrent, processing (without loss of data
integrily) is desired. or when blocks of acquired data must be partially
processed hefore the requested t,ransfcr is completed. Use the K-IntStart
function to starl a frame-based operation in interrupi mode.

Note On the DAS-TC, data is transferred in blocks. where block size = the numhcr
of channels specilied. Suppose, for example, you have requested 43 samples
using ten channels. The Function Cdl Driver actudly acquires 50 values in
tive blocks of ten samples each. The first 40 values are transferred from the
first four blocks that have been acquired, and the remaining three samples are
transferred from the fifth acquired block of ten samples.

Input Buffers

The Function Call Dtiver stores acquired samples in a buffer that you deline
with one of two methods:

* Locally delined (user-delined)

. Dynamically allocated

Once you have delined a buffer hy one of the two methods, USC ii K SetRuf -
call to pass the buffer Wlress to lhe Function Call Driver.

10 ASO-TC User’s Guide - Rev. A

You must define a local huffer as an array hefore you call K-SetBuf. You can
also use a local buffer for more permanent storage hy using K-MoveDataHuf
to move acquired data into your local buffer.

Use K-IntAlloc to dynamically allocate memory outside of your program arca
for later release with K-IntFree. If you are running in Windows standard
mode and transferring data using interrupts, you must use a dynimtically
allocated huffer to receive the acquired data, since your program’s memory
pointers may shift.

You can USC a combination of local and dynamically allocated huffem fur
storing blocks of acquired samples. The function. K-MoveDataBuf, provides a
convenient method, particularly in Visual Basic, for moving acquired data from
a dynamically allocated huffer into a local buffer.

Buffering Mode

You can specify either SINGLE-CYCLE or CONTINUOUS huffcring mode for
interrupt operations. In Single-Cycle mode, the spcciticd munher of samples is
stored in the huffer and the operation stops automatically. Use the
K-ClrContRun function to specify Single-Cycle buffering mode.

In Continuous mode, the hoard keeps acquiring the same number of new
values, placing the data in the huffer until it receives the stop function.
K-IntStop. The transfer index and huffcr pointers are reset hefore another
transfer cycle is initiated. and acquired values in the huffcr are overwritten
Use the K-SetContRun function to specify Continuous buffering mode.
If you do not specify Continous buffering mode, the DAS-TC defaults to
Single-Cycle mode.

Note If you are acquiring data using interrupts and Continuous huffcring. as soon as
the last, block of samples is transferred,

. the transfer count and huffcr pointer are reset te zero.

. K-IntStatus returns zero instead of the requested satnplc size in the inrle\-
parameter, and

. the driver hegins to overwrite your buffer’s data.

If your application requires consecutive blocks of data, you shuuld hcgin
processing your huffer Oefore your huffer is full, using K-IntStatus tn
determine how many blocks have heen transferred (this function’s in&.r
parameter increments by the block size).

Chapter 2 - The Functinn Call Driver 11

2.2 Overview of programming with the Function Call Driver
The procedure to write a Function Call Driver program is as follows:

I. Define the application’s requirements.

2. Write the program code.

3. Compile and link the program.

Defining the
application’s
requirements

Wrltlng the
program code

The subsections Ihat follow describe the details of each of thcsc st,eps.

Before you begin writing the program code, you should have a clear idea of’
the operations you expect your program to execute. Addidonally, you should
determine the order in which these operations must he executed and the
characteristics (number of samples, start and stop channels, and so on) that
define each operation. You may find it helpful to review the list of availahlc
operations in Section 2. I and to hmwse through the short descriptions of the
Functions in Section 3. I.

Several sources of information relate to this step:

* Section 2.3 explains the initial programming tasks that all Function Call
Driver programs must execute

* Section 2.4 describes typical frame-hased sequences of function calls

. Section 3.2 provides detailed information on individual fuunctions

* The AS0 includes several example source code tiles for Function Call
Driver programs. The FILES.IX)C file in the ASO-DOS installation directory
lists and describes the example programs. The FILES.IX)C in the ASO-
Windows installation directory lists and discribes the example programs
that run in Windows only.

Compiling and linking Reitir to Section 2.5 for compile and link instructions and other language-
the program specific considerations for each supported language.

12 ASO-TC User’s Guide - Rev. A

2.3 Board/Driver initialization tasks
Every Function Call Driver program must execute the following progr:unming
tasks:

1. Identify a function/variable type definition file
The method to identify this file is language-specilic; reler to Section 2.5
for additional infomlation.

2. Declare/initialize program wriahles

3. Call DASTC DevOpen to initialize the driver

4. Call DASTC-GetDevHandle to initialize the hoard and get a device
handle for the hoard.

The tasks listed are the minimum tasks your progrxil must complete hcforc it
attempts to execute sly operation-spccilic tasks. Your application may require
additional hoard/driver initialization tasks. For example. if your program
requires access to two hoards. then it must call I)ASTC_(;etI)evHandle tilr
each hoard.

Note A device handle is a variable whose value identities an installed hoard. The
purpose of a device handle is to provide a mechanism through which the
Function Call Driver can access a hoard. A device handlc is also ;L amvcnicnt
method for different function calls to reference ihe same hoard. Each twwd
must have n unique device handle.

Each of the programming languages is supported by ;I file that contains a
definition of the DDH (for DAS fhice Hrmdle) varinhle type: you should
declare all device handles to he of this type.

Chapter 2 - The Function Call Driver 13

Operation-specific programming tasks
After you perform the hoard/driver initialization tasks. perform the appropriate
openrtion-specil~ic tasks, as follows:

. For Single-Call A/D Operations - The only operation-spccitic task required
is using the appropriate single-call A/D function (K-ADRead or
DASTC-GETCJC).

. For Frame-Bared A/D Operations - The operatiol~l-specilic tasks required
for frame-hased A/D operations depend on whether you are using
synchronous or interrupt mode, whether you are using Stan and Stop
channels or Channel-Gain arrays, and whether you are using I~rcal huffcrs
dynamically allocated buffers, or both. For the page number that
corresponds to the operation you want to perform. set the table shown
below.

I Operation Method of specifying
mode acquisition channels

Syncl1r”n0us Start/Stop clxumels I Local I I IS

I Sy”cllr”n”us / Slarl/St”p channels 1 Dynamic I ‘5 I

Syncllr”n”us Channel-Gain army I Local I I I6

/ Synchronous I Channel-Gain array Dynamic I I I6

Interrupt

Interrupt

Interrupt

Start/Stop channels Local ’ 17

Start/Stop channels Dynamic I7

start/stop ch:ulnels Both IX

I Interrupt I Cllannel-Gain array I Local ‘ / IX 1

I Interrupt I Channel-Gain array Dynamic I I I9

I Intermpt I Chamu3-Gain anay I Both I I 20

’ Do not use this sequence if you are running in Windows standard mode

Note If you do no1 use the functions that set a frame‘s elements, the Function Call
Driver defaults to the values that resulted fnmi frame inilialization.

You must pass the address of the buffer that is receiving the data, by calling
K-SetRuf, K-SetRufI,, or K-SetHufR. The choice of K-SetHuf. K-SetHufl,,
or K,SetBufR depends on the pr”granm~ing language and buffer type. See
Section 3.2 for more information on these functions. No error mcssagc occurs
if this function is no1 included; however, the frame element, BufAddr, h;~s ii
default value of zero, and no samples arc rcturncd.

14 ASO-TC User’s Guide - Rev. A

Synchronous, Start/Stop channels, local buffer only

I.

2.

3

4.

5.

I.

2.

3

4.

5 .

6.

I.

Use this calling sequence tn perform a synchronous transfer, using Start/stop
channels and a local buffer only. Before calling the functions in the sequence.
define :L local buffer as ;m army of four-hyte elements.

Call K-GetADFrame to get the handle to :UI A/D frame.

Call K,SetRuf, K-SetRufL. or K-SetRufR to assign the huffcr xldrcss
previously ohtainetl to lhe Buffer Address element in the frame.

Call K-SetStartStopChn lo assign values IO the SIXT and Stnp Chrumcl
elements in the frame.

Call K-SyncStart tn start the operation. Data is stored in the I~x;~I huffer.

Call K-FreeFrame to return the franc tn the pool of available fmmcs
obtained. unless you are starting another sequence that uses the wne frame.

Synchronous Start/Stop channels, dynamically allocated
buffer only

Use this calling sequence to perform a synchronous transfer using Start/Stnp
channels and a dynamically allocated buffer only.

Call K-GetADFrame to get the handle to an A/D frame

Call K-IntAlloc tn allocate the huffcr into which the driver stnres the A/D
values outside of the program’s memory area.

Call K,SetRuf, K-SetBufL. or K,SetRufR to assign the buffer :alrlress
previously ohtnined In the Buffer Address element in the frame.

Call K,SetStartStopChn to assign values to the Stwt and Stop Channel
elements in the frame.

Call K-SyncStart to start the operation. Data is accessed via the pnintcr
returned hy K-IntAlloc.

Call K-IntFree to deallocate the buffer,

Call K-FreeFrame IO return Ilie fmnte In rltc pool of available frames
obtained, unless you are starting annther sequence that uses IIIC same fmmc.

Chapter 2 The Function Call Driver 15

I.

2.

3.

4.

5 _

6.

1.

2.

3.

4.

5 _.

6.

7.

8.

Synchronous, Channel-Gain array, local buffer only

Use tllis calling sequence to perfoml a synchronous lransfer using a Chaxnel-
Gain array and a local buffer only. Before calling the timctions in the
sequence, define a local huffcr as an array of four-hyte elements.

Call K-GetADFrame to ger the handle to an A/D frame.

Define and assign values to a Channel-Gain array.

Call K,SetRuf, K-SetRufL. or K-SetRufR to assign the buffer address
previously declared to the Buffer Address elemenl in Ihe frame.

Cal I K-SetChnGAry to assign the Channel-Gain array IO Ihe Channel-Gain
Array Address elemenr in the frame.

Call K,SyncStart to start the operation. Data is stored in lhc local buffer.

Call K-FreeFrame to return the frame to ke pool of available frames

Synchronous, Channel-Gain array, dynamically allocated
buffer only
USC This calling sequence I0 perform a synchrontrus transfer using a Channcl-
Gain array and a local huffer only.

Call K-GetADFrame to get the handle to an A/D frame.

Define and assign values 1o a Channel-Cain array.

Call K-IntAlloc to allocate the buffer into which the driver stores the A/D
values outside of the program’s memory area.

Call K,SetBuf. K-SetRufl,, or K,SetRufR to assign the address of the hul’kr
previously declared 10 Ihe Buffer Address elemenl in the frame.

Call K-SetChnGAry tr, assign rhc Channel-Gain array to the Channel-Gain
Array Address element in the frame.

Call K-SyncStart to start the operation. Data is accessed via the pointer
returned hy K-IntAlloc.

Call K-IntFree to deallocate Ihe buffer.

Call K-FreeFrame to ret,um lhe frame 10 rhe pool of availahlc frames, unless
you are starting another sequence that uses the same frame.

16 ASO-TC User’s Guide - Rev. A

I.

2.

3.

4.

5

6.

I.

2.

3.

4.

5.

6.

I. Call K-IntFree to deallocate the buffer.

Interrupt, Start/Stop channels, local buffer only
Use this calling sequence to perform an intermpt transfer using Start/Stop
channels and a local buffer only. Before calling the functions in the sequence.
define a local huffcr as an array of four-byte elements.

Call K-GetADFrame to get the handle to an A/D fr:une

Call K-SetRuf, K-SetBufL. or K-SetRufR to assign the huffcr address
previously declared to the Buffer Address element in the frarnc.

Call K,FetStartStopChn to assign values to the Start and Stop Channel
elements in the frame associated with the fnunc handle previously ohrained.

Call K-IntStart to start the operation

Call K-IntStatus to monitor the status of the operation. When cwnpletion is
detected, the data is available in the local huffcr.

Call K-FreeFrame to return the fnunc tn the pool of nvailahlc frames. unless
you are starting another sequence that uses the same frame.

Interrupt, Start/Stop channels, dynamically allocated buffer
only
Use this calling sequence to perform an interrupt transfer using Start/Stop
channels and a dynamically allocated huffcr only.

Call K-GetADFrame to get the handle to an A/D frame.

Call K-IntAlloc to allocate a buffer into which the driver stores the A/D
values outside of the program’s memory area.

Call K,SetRuf, K-SetBufL, or K-SetBufR to assign the huffer address
previously declared to the Buffer Address element in the frame.

Call K,SetStartStopChn to assign values to the Stan and Strop Channel
elenients in the frame associated with the frame handle previously obtained.

Call K-IntStart to start the operation.

Call K-InkStatus to monitor the status of the operation. When cwnpletion is
detected, the data is accessed via the pointer returned hy K-IntAlloc.

Chapter 2 - The Function Call Driver 17

8

I.

2.

3.

4.

5.

6.

I.

x.

9.

I.

2.

Call K-FreeFrame to return the frame to the pool of available frames, unless
you are starting another sequence that uses the same frame.

Interrupt, Start/Stop channels, dynamically allocated and local
buffers
Use this calling sequence to perform an interrupt transfer using Start/Stop
cltam~els and hoth huffcrs. Before calling the functions in the sequence, dctine
a local huffer as an array of four-byte elements.

Call K-GetADFrame te get the handle to an A/D fraane.

Call K-IntAlloc to allocate a buffer into which the driver stores the A/D
values outside of me program’s memory area.

Call K-SetBuf, K-SetBufL. or K-SetBufR tn assign the huffcr address
previously declared to the Buffer Address element in the frante.

Call K-SetStartStopChn to assign values to the Srart and Stop Chamtel
elements in the frame associated with me frame handle previously ohtained.

Call K-IntStart to start the operation

Call K-IntStatns to monitor the status of the operation. When completion is
detected, the data is accessed via the pointer returned by K-IntAlloc.

Call K-MoveDataBuf to transfer the acquired data from a huffer allocated hy
K-IntAlloc to the user-defned array.

Call K-IntFree to deallocate the huffcr

Call K-FreeFrame IO return the frame to the pool of available frames, unless
you arc starting another sequence that uses the same frame.

Interrupt, Channel-Gain array, local buffer only

Use this calling sequence Lo perform :m interrupt transfer using a Channel-Gain
array and a local buffer only. Before calling the functions in the sequence,
deline a local huffcr as an array of four-byte elements.

Call K-GetADFrame to get the handle to an A/D frame, unless you arc
starting another sequence that uses the same frame.

Detine and assign values tn a Channel-Gain array.

18 ASO-TC User’s Guide - Rev. A

3.

4.

5.

6.

I.

I.

2.

3.

4.

5.

6.

I.

8.

9.

Call K-SetRuf, K-SetBuf’I,, or K-SetBuf’R to assign the address of the huffcr
previously declared to the Buffer Address element in the frame.

Call K,SetChnC.Ary to assign rhc Channel-Gain array previously nhtained to
the Channel-Gain Array Address element in the frame.

Call K-IntStart to start the operation.

Call K-IntStatus to monitor the status of the operation. When completion is
detected, data is available in the local huffcr.

Call K-FreeFrame to rchmi the frame 10 the pool of available frames. unless
you are starling a another sequence that uses the same frame.

Interrupt, Channel-Gain array, dynamically allocated buffer
only
Use this calling sequence lo perform an intermpt transfer using a Channel-Gain
array and a dynamically allocated buffer only.

Call K-GetADFrame tn get the handle tn an A/D frame.

Deline and assign values to a Channel-Gain array

Call K-IntAllac to allocate Ihe buffer into which the driver stores the A/D
values outside of the program’s memory area.

Call K,SetRuf, K-SetHufL, or K-SetBufR to assign the address OT the hurfer
previously declared to the Buffer Address element in the frame.

Call K,SetChnGAry to &ssign the Channel-Gain array previously ohtaincd mu
the Channel-Gain Array Address element in the frame.

Call K-IntStart to start the operation

Call K-IntStatus to monitor the status of the operation. When completion is
detected, the data is accessed via the pointer returned hy K-IntAlloc.

Call K-IntFree to deallocate the buffer.

Call K-FreeFrame to return the frame to the pool of available frames. unless
you are starting a sequence that uses the same frame.

Chapter 2 - The Function Call Driver 19

I.

2.

3.

4.

5

6.

I.

8.

9.

IO.

Interrupt, Channel-Gain array, dynamically allocated and local
buffers
Use this calling sequence to perform an interrupt transfer using a channel-Gain
array and both a local and a dynamically allocated buffer. Before calling lhc
funcdons in the sequence, detine a local buffer as im array.

Call K-GetADFrrme to gel the handle to an A/D frame.

Define and assign values to a Chatmel-Gain array.

Call K-IntAlloc to allocate a buffer into which the driver stores the A/D
values outside of the program’s memory area.

Call K-Set&If. K-SetBufL, or K-SetBufR to assign the hul’fer address
previously declared to the Buffer Address element in lhe frame.

Call K,SetChnGAry to assign the channel-gain array previously obtained to
the Channel-Gain Army Address clement in the frame.

Call K-IntStart to start the operation

Call K-IntStatus to monitor the status of the operation. When completion is
detected, the data is accessed via the pointer returned hy K-IntAlloc.

Call K-MoveDataBuf to transfer data from a buffer you have allocaled by
K-IntAlloc to the array.

Call K-IntFree to deallocate the buffer

Call K-FreeFrame to return the frame to the pool of available frames.

20 ASO-TC User’s Guide - Rev. A

2.5 Language-specific programming notes
This sectinn provides specific programming guidelines for each of the
supported liuiguages. Additional programming infomlation is available in the
AS0 example progrzuns. Rcfcr to the FILESDOC lile for names ;1nd
descriptions of the AS0 cxamplc programs.

Note The example progrruns in this section are no1 actual programs hut arc
fragments that arc designed to illustrate iul interrupt-mode A/D input sequence
that uses a Channel-Gain array.

Borland C/C++ and Microsoft C/C++

Related Flies DASTCLIB
DASRFACE.LIB
USERPR0T.H
USERPROT,BCP

Compile and Link Rorland C:
InstructIons BCC -ml fi1ename.c dastc.lib dasrface.lib

Borland C++
If you want to compile your prtrgram as a Borlruid C++ progr:un.

1. Use the supplied tile USERPROT,BCP instead of USERPR0T.H

2. Specify the C++ compilation in one of the following two ways:
a. Specify .CPP iis the extcrision for your source tile. or
h. USC the BCC -1’ command line switch.

Microsoft C/C++:
CL /AL /c fi1ename.c
LINK filename ,,,DASTC+DASRFACE;

Code example This example executes an interrupt-mode A/D sequence using a Channct-Cain
array.
,**********~************~**.****~*~**~***~~~**.~**~*.*.*~.*j
/* CEXAMP2.C DRSTC‘ f,

/* * ,'

,* 'C' - Interrupt Mode A/D transfer f/
/* with Channel/Gain Array t

/* 'i
/* To create ~11 EXE using Microsoft C: f,

/* f.

/* CL /c CEXAMP2.C (use /Tp<FileName.. for C++ compile)';
/* LINK CEXAMPZ,,,DASTC+DASRFACE; *i

/* +i

1' To create an EXE using Borland C++ (Ver 2.0 dnd up!: .I

/* *,

Chapter 2 - The Function Call Driver 21

/* BCC -ml -c CEXAMP2.C dastc.lib dasrface.11b *I
/* */
,***************"*******************~*************~~~*******,

//use this include file statement for MS C
#include "userpr0t.h"

//use this include file statement for MS C++
/*
extern "C" (
#include "userprot.h"
1
*/

//use this include file for Borland C++ and use -P switc!h
//for C++ compile
/*
extern "C" (
#include "userprot.bcp"
)
*/

#include -:stdio.h,
#define Samples 16
DWORD LocnlBuffer[Samples];

GainChanTable ChanGainArray =
(

16,
o,o,
2,o.
4,o.
6.0.
8.0.
lO,O,
12,0,

14.0,

l,O,

3,0,
5.0.
7.0.
9.0,
11.0,
13.0,

15,O

I :

main0

22 ASO-TC User’s Guide - Rev. A

I
DDH DASTC-brd0 ; // handle for board 0
FRAMEH AD-brd0 ; // frame for board 0 A/D operations

long Index;
short BoardNumber, Err, Status, m;
char NumberOfBoards;
float C.JC=O:

,,--.~.-~-........~~..

// init~ialize board hardware and drivel-

printf("\n");
printf("Initializiny the board - - - PLEASE waitin');

if ((Err = DASTC-DevOpen("DASTC.CFG". &Numbel-OfBoalds iI
!=O)

(
printf(' Error %x on Device open ', Err 1 ;
return Err- ;
1

,,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~-----------------~~~.~.~.

// The DEVICE Handle must be obtained in order to war-k wirh
// a specific board

// It is used subsequently to obtain FRAME Handles

BoardNumber = 0;
if ((Err = DASTC_GetDevHandle(BoardNumber, LDASTCCbrdO 1

1 !=O)

(

printf("Error getting Devic!e Handle" I;
return 1 ;
1

if ((Err=DASTC-GETCJC(Bon1-dNumber, LCJC) 1 != 0 !
(
printf("Error getting CJC Temperature" 1;
return 1 ;
I

printf("C.JC Temperature = %f\n", CJC);

,,------------------------------------.--..--..-.-.--~~~~--~

// The FRAME Handle must be obtained using the DEVICE Handle
// in order to make each type of function call,
// in this case, Analog Input.
// The variable is suffixed with a "0" to reference board 0.

if ((err = K-GetADFrame(DASTC-brd0, GADpb~dO I I != 0 1

Chapter 2 - The Function Call Driver 23

,
printf ("Error gett.ing Frame Handle” 1;
return 1 ;
1

,,--~---~--~~-.-..--

// The FRAME Handle is now used in Analog Input czalls.

printf("\n\nInterrupt Mode with Chan Gain Array\n\n\n" 1;

if ((Err = K-SetBuf(AD-brd0, LocalBuffer, Samples)) !=

0 1
(
printf("Error %x Occ!urred during K-SetBuf call. .\I>',

Err);
retLlrn 1;
I

if ((Err = K-SetChnGAry(AD.,brdO, &ChanGainArray)) !=O

1
(
PrintfVError %x Occurred during K-SetChnGAry call.

.\n", Err);
return I;
)

// u-comment this block of code for continuous run
//printf("Continuous Run Selected.\n");
//if ((Err = K-SetContRun(AD_brdO)) != 0 1
// (
// Printf("Error %x Occurred duriny K_SetContinRun call.
//.\n", Err);
// return 1;
// 1

if (i Err = K-IntStart(AD-brd0)) !=O)
(
Printf("Error %x Occurred during K-IntStart call. .\n",

Err);

return 1;

1

printf("TYPE any key to stop\n\n");
do

(
if ((Err = K-IntStatus(AD-brd0 , &Status, &Index))

!= 0)
(
Printf("Error %x Occurred during K_IntStatus call.

.\P', Err);

24 ASO-TC User’s Guide - Rev. A

printf("Conversions completed= %tid\r", Index);
1

while ((Status & 1) && !-kbhit0 1;

if ((Err = K-IntStop(AD-brd0 , &Status, &Index 1 1 != 0
(
Printf("Error %x Occurred during K_IntStop call. .'ln*

Err);
return 1;
I

printf("\n");

for Cm = 0; m i Samples ; m++)

printf("Sample No. %d %ld\n", mcl, LocnlBuffel~[mJ,;

printf("\n");

,,~~~~~~~~~~~~~~~~~~~---------~~~~~.....~.~~~~~-~-----------

// Release memory used by the frame.
if ((Err = K-FreeFrame(AD_brdO 1 , != 0,

(
PrintfVError %x Occurred during K-FreeFrame call.

.\W, Err) ;
return 1:
1

Borland Turbo Pascal

Related Files DASTCTPU

Complle and Link
instructions

TPC/$E+ /$N+ filename.pas

In the Turhn environment

Chapter 2 - The Function Call Driver 25

Code example

the exmple program shown below, you must create a TPU (Turbo Pascal unit)
tile that is comprttihle with your version. In FILESDOC you will find ;I
reference to DASTCTPU.BAT. Rml this hatch file in order to crcatc the
compatible TPU. The Ale, DASTCTPU.BAT contains the DOS command:

tpc DASTC.PAS

This tile also includes the sources for the TPU, and a description of this
procedure.

This example executes :m interrupt-mode A/D sequence using a Channel-&tin
array.

Program tpexamp2;
(

Interrupt Mode A/D transfer with Channel/Gain Array

For this example ONLY;
the configuration file must speclify FLOATING POINT.

)

uses crt, DASTC;

GainChanTable = Record
num-of-codes : Integer;
queue : Array[0..31] of Byte;

end;

const
ChanGainArray : GainChanTable = (
num_of_codes : (16):
queue : (O,O,

1.0.
2,0,
3.0.

4.0.

5,0,

6,0,

7.0.

8.0.
9.0.
10.0,
11,O.
12,0,

13.0,

14,0,

15.0)

26 ASO-TC User’s Guide - Rev. A

“Fir
BufPtr : ^1nteger;
BoardNumber, m : Integer;
NumberOfBoards : Inteyel- ;
status, Ertn : Word;
Samples, Index, DASTC-brd0, AD_brdO : Longint:
ConfiyFile : Striny;
DataBuffer : Array[0..20] of Real;
CJC : Real:

begin

(-----~---~--------~~~~.~~~~~~--------...~..~~~~---------

initialize board hardware and driver 1

BufPtr := @DataBuffer[O];
ConfigFile := 'DASTC.CFG' + #0 ;

Ertn := DASTC-DevOpen(ConfigFile[l], NumberOfBoards i:

if Ertn .:> 0 then
begin

writeln('Error ', Ertn, 'on Devicr open' 1;
Halt(l);

end:

(~-~--~-~--~------------------~~~.~~~~~.~~~~~-~~~-~~~----.-~

The DEVICE Handle must be obtained in order to work with a
specific board It is used subsequently to obtain FRAME
Handles)

BoardNumber := 0;
Ertn := DASTC-GetDevHandle(BoardNumbrl, DASTC-brd0);

if Ertn -:~I 0 then
begin

writeln('Error getting Device Handle');
Halt(l);

end;

Ertn := DASTC-GETCJC(BoardNumber, CJC);

if Ert~n -:r'. 0 then
begin

writeln('Error getting CJC Temperature' 1:
Halt(l);

Chapter 2 - The Function Call Driver 27

writeln('CJC Temperatur-e = ', CJC 1 ;

(-~--~~-~-~-.----~~~-

The FRAME Handle must be obtained using the DEVICE Handle
in order to make each type of function call, in this case,
Analog Input. The variable is suffixed with a "0' Tao
reference board 0.)

Ertn := K_GetADFrame(DASTC-brd0, AD-brd0 1 ;

if Ertn in> 0 then
begin

writeln('Error getting Frame Handle' 1;
Halt(l);

end;

(----------~-----------------------------------..-.

The FRAME Handle is now used in Analog Input calls. 1

writeln('Interrupts Mode with Chan Gain Array' 1;

samples := 20;
Ertri := I<-SetBuf(AD-brd0, Longint(BufPtr), Samples) ;

if Ertn <~> 0 then
begin

writeln('Error in I<-SetBuf call 1;
Halt(l);

end;

Ertn := K-SetChnGAry(AD-&do, ChanGainArray.num_of_c!ud-ies)

if Ertn .r> 0 then
begin

writrln('Error in I<-SetChnGAry czall);
Halt(l1;

end:

Ertn := K-IntStart(AD-brd0 , ;

if Ertn <> 0 then
begin

writeln('Error in K-IntStart call');
Halt(l);

end;

28 ASO-TC User’s Guide - Rev. A

repeat

Ertn := K-IntStatus(AD-brd0 , Status. Index ! ;

if Ertn c:. 0 then
begin

writelni 'Error in K_IntStatus call 1;
Halt(l);

end:

writeln('Conversions Completed = ', Index 1;

until (Status AND I) = 0;

writeln(");

for m := 0 to Samples-I Do
writeln(DataBuffer[m I):

(----------~--~~~~~~-~--------~~~~~~~------------~.~-~...

Release memory used by the frame.)

Ertn := IZ-FreeFrame(AD-brd0 1 ;

if Ertn so> 0 then
begin

writelnl 'Error in K-FreeFrame call');
Halt(l);

end:

end.

Borland Turbo Pascal for Windows

Related files DASTCTPWJNC
DASTC.DLL

Notes For Windows use DASTCDLL. The information presented for Burlnnd Turk)
Pwxd applies here with the fdlowing uddikms:

. Use be compiler direcrivc ($1 .__) 10 include lhc supplied include lilt
DASTCTPW.INC.

- Substitute ‘WinCrt’ for the ‘Crt’ unit; this is neccssxy in order that the
console I/O procedures (wrileln. rexlln, etc...) opcrme pmpcrly.

Chapter 2 - The Fmdon Call Driver 29

The following code fragment illustrates Ihese substitutions:

Program TPW-EX:
(UNITS USED BY THIS PROGRAM 1
Uses WinCrt;

Code example

(LOCAL VARIABLES)
Var

(BEGIN MAIN MODULE)
BEGIN

‘($1 DASTCTPW.INC)

Program TPWEX2;
(
~~******~~~~~~~~***

TPWEX2.PAS
DASTC

Turbo Pascal for Windows :

The following is an example program that demonstrates the
use of AD interrupt conversions using a channel/gain queue.

1

(The WinCrt unit allows Windows to handle 'writeln' and
'readln' the same

way as in DOS)

uses WinCrt;

GainChanTable = Record
mm-of-codes : Integer;
queue : Array[0..31] of Byte;

end:

const
ChanGainArray : GainChanTable = (
mm-of-codes : (16);
CpE"SS : (0,O.

l,O,
2.0.
3.0.

30 ASO-TC User’s Guide - Rev. A

4.0.
5.0,
6.0.
7,O.
6,@.
9.0.
10,O.
ll,O,
12,o.
13,o.
14,o.
15,O)

: ;

Vclr
BufPtr : ^Integer;
BoardNumber, m : Integer;
NumberOfBoards : Integel- ;
Ertn. than, status : Word;
Samples, Index, InPort, DASTC-brdO, AD:al-d0 : Lonyirit~:
Config?ile : string;
DataBuffer : Array[0..201 of Longint:

GJC : Sinyle;

iSI DASTCTPW.INC) (DLL function protor~ypes. j

begin

i--------------------------.---------..------..-.--.

initialize board hardware and driver 1

BufPtr := @DataEuffer[O];
ConfigFile := 'DASTC.CFG' + #O ;

Ertn := DkS?C-DevOpen(ConfigFile[ll, NumberOfBoards 1;

if Ertti <~> 0 then
begin

writeln('Error ', C,rtn, 'on Device open 1;
Haltll);

end;

i----------------‘-------------------~---~~---~~------------

The DEVICE Handle must be obtained in order to work with a
specific: board It is used subsequently to obtain FRAME
Handles 1

Chapter 2 - The Function C&It Driver 31

BoardNumber := 0;

Ertn := DASTC-GetDevHandle(BoardNumber, DASTC-brd0 1;

if Ertn <~> 0 then
begin

writeln('Error getting Device Handle' 1;
Halt(l);

end:

(--~------

The FRAME Handle must be obtained using the DEVICE Handle in
order to make each type of function call, in this case,
Analog Input. The variable is suffixed with a "0" Tao
reference board 0. 1

Ertn := K_GetADFrame(DASTC-brd0, AD-brd0) ;

if Ertn <~> 0 then
begin

writeln('Error yettiny Frame Handle' 1 ;
Halt(l);

end;

(-~-~~---~~~~--------.

The FRAME Handle is now used in Analog Input calls. 1

writeln('Interrupt Mode with Chan Gain Array'):

Samples := 20;
Ertn := K-SetBuf(ADLbrdO, longirlt(bufptr), Samples) i

if Ertn <> 0 then
begin

writeln('Error in K-SetBuf call');
Halt (1) ;

end ;

Ertn := K_SetChnGAry(ADpbrdO, ChanGainArray.num_of_c!odes 1

if Ertn c~> 0 then
begin

writeln('Error in I<-SetChnGAry all' i;
Halt(l);

end;

Ertn := KpIntStart(AD_brdO) ;

32 ASO-TC User’s Guide - Rev. A

begin
writeln('Error in K-IntSLwt call' 1;
Halt(l);

end;

repeat

Ertn := K-IntStatus(AD-brd0 , Satus, Index) ;

if Ertn Jo. 0 then
begin

writeln('Er-r-or in K-InStatus call' j;
Halt(l);

end;

until (Status AND 1) = 0;

writeln(");
writeln('Interrupt~s Completed ');
writeln(");

for m := 0 to Samples-l Do
writeln('Channel [',m.'l = ',DataBuftrr[m I

);

(~----~~~~~~~~~---------------.~-~-~------------~~.~~~....

Release memory used by the frame. 1

Ertn := R_FreeFrame(AD-brd0) ;

if Ertn i> 0 then
begin

writeln('Error in KLFreeFrnme call');
Halt(l);

end;

end.

Chapter 2 - The Function Cdl Driver 33

Microsoft Quick C for Windows

Related files DASTCDLL

Compile and Link
instructions

I. Load frlenume.C inlo lhe Quick C fbr Windows environment il’ you arc
editing Otis file.

2. Create a project lile, that includes filentm~e.C, filenamr.DEF, filencLme.KC
and filenume.H.

3. Select PK(~)JECT l BUILD lo create a stand-done .EXE that can hc CxeCUted

from within Windows.

Notes The .DEF tile must be included to import fiuxticrns from DASTCDLL.

The programming procedure required to call the functions from Quick C fur
Windows programs is identical to the procedure described for Microsoft C.

This example executes an inrerrupt-mode A/D sequence using a Channel-Gain
WKIY.

,***~**~*********~***~
*
*
* Keithley/Mrtrabyte DASTC Example Program for
*
* Microsoft Windows 3.0 and 3.1
*
*
*
* This Program Accesses the DASTC functions through
*
* DASTC.DLL.
*
* this is fragment taken from the "W1NEXAMP.C" program
*
*******************"************************~~~*********~~****,

#include "winexamp.h"
#include "userprot.h"

long LocalBuffer[2O1; // Declare i, buffer- for- ""t
AD Data

long far *FirstElement;
Buffer
WORD MemHandle;
Pointer

// Pointer to Interrupt

// Handle of the abovi-

34 ASO-TC User’s Guide - Rev. A

char NumberOfBoards;
configure

short Done = 0:

// Number of boards Tao

short Stratus;
Interrupt
long Index;
Interrupt
short Err;
functions

DDH DASTC;
FRAMEH AD;

// Device Handle
// Frame Handle

float CJC;

//**** Open the confiy file and read it...

if((Err=DASTC-DevOpen("DASTC.cfg", GNumbex-OfBo<>rdsi , ! = Oi

wsprintf(szErr, "DASTC Error = %4x", Err-i;
MessageBox(NULL, szErr," Error ', MB-OK I

MB-ICONEXCLAMATION);
return I;

1
//**** NOW yet a Device Handle

if((Err=DASTC_GetDevHandle(O,&DASTC) 1 != 01
(

wsprintf(szErr, "DASTC Err-or q 84.x". EL-T);
MessageBox(NULL, szErr," Error *, MB-OK I

MB-ICONEXCLAMATION);
ret"rrl I;

I

//**** NOW get the CJC Temperature
if((Err=DASTC-GETCJC(O,&CJC)) != 0)

(
wsprintf(szErr, "DASTC Error = %4x", Err):
MessayeBox(N"LL, szErr," Errol- ", MB-OK I

MB-ICONEXCLAMATION):
return I;

1

wsprintf(szData, "CJC Temperature = %f", CJC);

Chnpter 2 - The Functirm Call Driver 35

//**** Setup for INTERRUPT AD Conversions
//**** Get a AD Frame
if((Err = K-GetADFrame(DASTC, &AD)) != 0)

(
wsprintf(szErr,"DASTC Error = %4x", Err);
MessngeBox(NULL, szErr," Error ', MB-OK I

MB-ICONEXCLAMATION);
return 1;

i

//**** Allocate a Buffer
if((Err = K_IntAlloc(AD, 16, &FirstElement, GMemHandle) 1
!=O)

(
wsprintf(szErr, "DASTC Error = %4x", Err);
MessageBox(NULL, szErr," Error ', MB-OK 1

MBJCONEXCLAMATION);
return I;

1
//**** Tell the Frame about the Buffer
if((Err = K-SetBuf(AD, FirstElement, 16)) != 0)

(
wsprintf(szErr,"DASTC Error = 84x", Err);
MessageBox(NULL, szErr," Error ', MB-OK I

MB-ICONEXCLAMATION);
return 1;

I
//**** Set the Start/Stop Channels and Gain
if((Err = K_SetStartStopChn(AD, 0, 15)) != 0)

(
wsprintf(szErr,"DASTC Error = %4x", Err);
MessageBox(NULL, szErr," Error ', MB-OK I

MB-ICONEXCLAMATION);
return 1;

1

IrqOP = 1; // Set Operation Flag
Done = 0; // Clear Done Flaq
Status = 0; // Clear Interrupt Status Flag

UpdateWindow(hWndMain1 ; // Print Running

//**** Start Interrupt MODE AD
if((Err = K_IntStart(AD)) != 0)

(
wsprintf(szErr,"DASTC Error = %4x". Err);
MessageBox(NULL, szErr," Error (I, MB-OK I

MB-ICONEXCLAMATION):
return 1;

1

36 ASO-TC User’s Guide - Rev. A

//***' Stdrt~ a lOms timer to monitor status

if{ !SetTimer(hWndMain, ID-TIMER, 10, NULL) 1
(

MessageBox(NULL, "TIMER ERROR..."," Error -, MB-OK /
MB-ICONEXCLAMATION);

return I;
1

###b###%##################b#b####bb#bbbbbbbbb~~~~ub~~~~~~u~~
// timer routine that polls for interrupt completion

if((Err = K-IntStatus(AD, &Status, GIndex)) != 01
(

KillTimer(hWndMain, ID-TIMER);

wsprintf(szErr,'DASTC Error = '%4x", Erl-1;
MessayeBox(N"LL, szErr," Er-ror ", MB-OK ,

MB-ICONEXCLAMATION);

if((Err = K-IntStop(AD, &Status, &Index)) != 0)

(! / F1-rr the fraimr
wsprintf(szErr, "DASTC Error = %4x", EL-r-i;
MessageBox(NULL, szErr," Error ', MB-OK i

MB-ICONEXCLAMATION):
I

if((Err = K_IntFree(MemHandle)) != 0)
(,, Fr-re the txame

wsprintf(szErr,"DASTC Err-or = 84x". Err);
MesssgeBox(NULL, szErr," !3r~-or ', MB-OK I
MB-ICONEXCLAMATION);

1
if((Err = K-FreeFrame(!= 0)

(!/ Free th< framr
wsprintf(szErr,"DASTC Error = %4x", Err!:
MessageBoxiNULL, szErr." Errol~ ", MB-OK I

MB-ICONEXCLAMATION);

1
break;

)

InvalidateRgn(hWndMain, hRgn, FALSE); // Update client Arid
// with count

if(

(

(Status & I)==01

KillTimerlhWndMain, ID-TIMER);
if((Err = K-IntStop(AD, &Status, GIndex) 1 != 0)

(li Free the fL.a,r
wsprintf(szErr, "DASTC Error = %4x", ErrI:
MessageBox(NULL, szErr," Erl-o~- ', MB-OK /

Chapter 2 - The Function Call Driver 37

MB-ICONEXCLAMATION);

I

,, Movn Data to our Local Buffer
K_MoveDatnBuf(Loc!alBuffer, FirstElement, 161;

if

if

(Err = I(_IntFree(MemHandle)) != 0)
// Free the frame

wsprintf(szErr, "DASTC Error = %4x", Err);
MessageBox(NULL, szErr," Error ', MB-OK I

MB-ICONEXCLAMATION);

(Err = K-FreeFrame(!= 0)
// Free the frame

wsprintf(szErr, “DASTC Error = %4x", Err);
MessageBox(NULL, szErr," Error ', MB-OK I

MB-ICONEXCLAMATION);

Microsoft Visual Basic for Windows

Related files

Notes

DASTCDLL
DASTCGLB.BAS
Q41FACE.BI

Before you begin coding ytrur Visual Basic prognun. you must copy ((io111
inside the Visual Bid environment) the cot~lents of DASTCGLB.BAS inlo
your applicat,iotl’s GLOBAL.BAS. Use the i’dlowing procedure to xld the
contents ol’ DASTCGLB.BAS to GLOBAL.BAS (you should make il hxk-up
copy ol‘ GLOBAL.BAS hcforc you modil’y it):

Code example

1. Select FILE c Arm FILE... from the Visual Basic main menu.

2. Select DASTCGLB.BAS.

3. Highlight the contents of the entire DASTCGLB.BAS lile.

4. Select EDIT w COPY IO copy the contents 01’ DASTCGLB.BAS to the
Windows clipboard.

5. Double-click on tiL(~)HAL.IiAS in lhc Prujccr window.

6. Select EDIT p PASTE.

7. Select FILE c SAVE PKOJECT.

38 ASO-TC User’s Guide - Rev. A

##b#444~4bbb#~~~

DAS-TC Visual Basic Example:
Interrupts transfer usiny Gain/Channel array witch local
buffer.

This is d code fragment taken from DASTCEXl.FRM.
##44#4##4b44b4bb~~wR~b~

###44#44bb~b~~~w~~R~~

Channel / Gain Interrupts Event routine

(double click on the "Channel / Gain Queue' START button in
the "Interrupt Mode A/D” frame to see this code)
######################################4#4#4##4~#44444b4bw~~~

sub StartQInt-Click 0

scalemode = 2

timer2.enabled = False

Cls

SSFlag = False

Print

MyErr = DASTC_devopen["DASTC.cfg". board%)
If MyErr Ed> 0 Then

MsgBox "DASTC-dewpen Error", 48, "Error-"
Exit Sub

End If

MyErr = DASTC_getdevh~ndle(O, DASTC)
If MyErr i"> 0 Then

MsgBox "DASTC-getdevhandle Error", 48, "EL-rol-"
Exit Sub

End If

MyErr = I<-GetADFrane(DASTC, ad)
If MyErr -:i 0 Then
MsgBox "K-GetADFrame Error", 48, "Er~~ol-"

Exit Sub
End If

MyErr = k_clearframe
If MyErr <~> 0 Then
MsgBox “I<-ClearFrame Error”, 48, “Error”

Exit Sub
End If

MyErr = K-IntAlloc!(ad, samples, GBuffer, HANDLE)
If MyErr <~> 0 Then

MyErr = K_FreeFrame(ad)
0s = "I<-IntAlloc Error = u + Hex$(MyErr)
MsgBox 0:;. 48, "Error"

Exit Sub
End If

Print u Buffer Handle = '; Hex$(HANDLE)
Print ' AD Interrupt Buffer z '; Hex$(GBuffer)

MyErr = I<_SetBuf(ad, ByVal GBuffer, samples)
If MyErr i> 0 Then
MyErr = K-FreeFrame
MyErr = K-IntFree(HANDLEi
MsgBox "K-SetBuf Error", 48, "Error"

Exit Sub
End If

MyErr = K_SetChnGAry(ad, ChanGainArray(0) 1
If MyErr .z> 0 Then
MyErr = KpFreeFrame(ad)
MsgBox "K-SetChnGAry Error", 48, "Error'

Exit Sub

End If

MyErr = I<-IntStart(ad)
If MyErr <~> 0 Then
MyErr = K-FreeFrame
MsyBox “K-1ntSt~art~ Error”, 48, “Error”

Exit Sub
End If

Status = 1 ' Enable Stat~us Flag

timer2.enabled = True

End Sub

40 ASO-TC User’s Chide - Rev. A

######################################k###b##4b#~#bb~4bbb~~~
Timer routine used to detect interrupt completion and then
to transfer data.

(double click on timer icon to see this code)
##4#####b44b4#444~n~~bu

Sub TimerZ-Timer 0

MyErr = K-IntStatusCad, Status, Index)
If MyErr .:~:. 0 Then
MyErr = K-IntStop(ad, Status, Index)
MyErr = K-FreeFrame
MsgBox "K-IntStatus Error", 48, "Err-or"

Exit Sub
End If

PSet (0, 55)
o$ = "Count = v + FormatS(Index, "dkkdflfl~i
Print OS

If (Status And 1) = 0 Then

timerZ.enabled = False

MyErr = I~-IntStopCad, Status, Index)
MyErr = I<-MoveDataBuf (Buffer(O), ByV,\l GBuffrr, :~.xnpi+:;

* 2)
MyErr = K-IntFreeCHANDLE)
If MyErr .:;. 0 Then

o$ = "KmIntFree Error = ' + Hex$(MyEl-1-1
MsgBox o$, 48, "error"
Exit Sub

End If

Print : Print ' Interr-upt Operation Complete. "

MyErr = I<-FreeFrame

Print

For x = 0 To samples - I
Print " Buffer("; x; '1 = '; Buffer(x)

Next x
End If
End Sub

Functions 3

3.1 Functional grouping
The function calls can he classilied according to the t’unctionnlity that each
provides. This seclion lists each function ;IS a tnemher of one of the l’ullowing
gITl”ps:

This section provides shorf descriptions of each timction: rekr to Sectiw~ 3.2
for ndditional information on ciicli function.

Initialization

DASTC~DevOpcn

DASTC-GetDcvHmlle

K-DASDcvlnit

Initialize and configure the driver.

Ohtaiti a device handle.

Reset and initialize the device and driver.

Memory management

K-IntAlloc

K-IntFree

K-MoveDataBuf

Frame management

K-GetADFrame Obtain the handle to m A/D frame.

Allocate a buffer suitable for m interrupl-
mode A/D operation.

De-allocate NI inlerrupt buffer Ihal was
previously allocated with K-IntAlloc.

Free the memory used by a frame ml
return the frame lo the pool of nvailahle
frm1es.

Frame-element management

K-ClearFrame Clears all the elements of im A/D frame.

K_ClrContRutt Set the value of a frame’s Buffering Mode
clement to SINGLE-CYCLE.

Convert a Visual Basic Chmrel-Gain array
into m equivalent Fu‘unctim Call Driver
Clumel-Gab army (Visual Basic Only).

K-GetBuf Get the values of an A/D frmmc’s Buffet
Address ml Number of Somplcs clemmts.

K-GetCImGAry Get the value of m A/D frame’s Chamel-
Gain Array Address element.

K-GetContRun Get the value of a frame’s Buffering Mode
element.

KmGetStartStopClul Get the values of :m A/D frame’s Start
Cl1:m11el and stop Channel elements.

44 ASO-DAS-TC User’s Guide - Rev. A

K-InitFr:une

K-RestoreChnGAry

K-SetBuf

K-SetBulL

K-SetBulR

Inilialize a hoard’s A/D circuitry and set ;UI
A/D frame’s elements to their default
values.

Convert a Function Call Driver Channel-
Gain array into an equivalent Visual Basic
Channel-Gain xray (Visual Basic only).

Set the values of an A/D frame’s Buffer
Address and Number of Samples elements
(Pascal and C languages only).

Set the values of a frame’s Buffer Address
and Nutnher trf Samples elements for user-
defined long integer arrays (Visual Basic for
Windows only).

Set the values nf ~1 franx’s Buffer Address
and Number of Samples clenlents for uscr-
detined floating-point arrays (Visual Basic
for Windows only).

K-SelChnGAry Set the value of n frame’s Channel-Gain
Array Address element.

K-SelContRun Set the value of ;L frame’s Buffering Mode
element to CONTINU(NS.

K-SetStartStopChn Set lhe values of an A/D franc’s Start
Channel and Stop Channel elements.

Frame-based operation control

K-IntStart Start an interrupl-mode A/D oper;dinn

K-IntSratus Determine the stams of an interrupt-nwde
A/D operation.

K-IntStop Ahort an interrupt-mode A/D operation.

K-SyncStnrt Stan a syltchn,tlous-tnode A/D operation.

Chapter 3 - Callable Functions 45

Single-call l/O

K_ADRcad Rend a single A/D mluc.

DASTC-GETCJC Returns tile value of the CJC on the DAS-
TC in degrees Celsius; this value is used to
correct temperalure input values.

Miscellaneous operations

K-GetErrMsg Get the address of ;ul error message string
(avvailahle only as C-language function).

K_GetVcr Determine the driver revision and driver
specilication.

46 ASO-DAS-TC User’s Guide - Rev. A

3.2 Function reference
This section contains reference entries each function. The entries qpear in
alphatmical order by function KUW These referctice entries provide the details
associated with the use of each function.

The information related to the following topics pertains to scvcral functions:

. the gain codes lhe driver uses lo represent gains ml the A/D input ranges
lhat correspond to each gain

. the return value li~)r every call to a Functim

Gains

Return values

Thcsc topics arc described in the next scvcral paragrapl~s and referred to
throughout the reference entries that follow.

The AS0 drivers use gain codes to represent gains. The valid gailt codes arc 0.
I. 2, 3: the table below lists the gains that correspml to these gain codes. 2s
well as the A/D input ranges affected hy each gain.

Table 1 DAS-TC gains and A/D voltage gains

gain code DAS-TC gain DAS-TC voltage input range

0 I -2.5 10 +I0 v

I 125 -20 10 x0 1llV

2 lh6.61 -IS to hO mv

3 400 -6.25 to 2s mv

Note Gains arc only available when a channel is configured as a voltage input. You
ccui program the gain only through an A/D input qeratirm that uses ;t
Channel-Gain array. If you are acquiring data hy either a K-ADRead. or ;UI
A/D input operation that uses Start/Stop chatmcls. the gidti frm the .CFG lile
is used.

Strictly speaking, the function return value is of type error. “Returns” is also
used to mean that the driver executes the function and stores the result iti user-
dctined variables or allocated huffem. Whether used ;~s placeholder, to pass ;I
value, or to contain results from a function return. :I variable must he declared
with a type consistent with the corresponding paramctcr.

Chapter 3 - Callable Functions 47

Number type

Buffers

The number lype that is returned is either Integer or Floating Point, and is
determined by one of the following:

. the built-in default (which is the same as the configuration tile ill
distribution time);

. the default conliguration file (DASTCCFG); or,

. the specilied configuration tile.

When the number type is integer, a twos complement, 32-hit, number is
ret~umed. If it particular channel is configured as a temperature input, the v:duc
retumcd is in ,111 degrees. If a particular channel is conligured as a voltage
input, the value remmed in in microvolts. To convert .Ol degrees to degrees,
divide the value by 100; to convert microvolts to volts, divide the value by
I ,OOO,OOO.

When Ihe number type is Hosting point, an IEEE 32.hit real number is
returned. The value returned is in volts or degrees.

Declare a user-defined data buffer with a type appropriate to the number type
that was conligured.

A single sample is four bytes long. Therefore, you should declare a local
buffer as al array of four-byte elements, the size of which is at least equal to
tlie number of samples you arc requesting.

Declare pointers to buffers allocated by K-IntAlloc with ;I type
that is appropriate to the number type that was conligured.

48 ASO-DAS-TC User’s Guide - Rev. A

DASTC DevODen

Purpose Initialize and configure the driver

Prototype c
DASErr far pascal DASTC-DevOpen(char f:\r * cffK/r.
char far * numl~evicrs);

Pascal

Visual Basic for Windows
DASTC-DevOpcn Lih “DASTCdII” (ByVal cfRFile.
rum&vices As Integer) As Integer

Parameters

Number of devices Mined in cfxFi/c. Vnlitl vulucs: 1. 2

Notes DASTC-DevOpen initializes 11x driver according to the information ill cf,F’Fi/z. On
retum, rum&vices contains the numhcr of devices for which cfjFi/t, colit;dris
configuration infomdon.

If cffifrle is -1, the built-in deft~ults ;Lrc used. They are identical to the defdls iii the
DASTCCFG tile when this lilt is initially distributed. This tile specilies tlt:it rhe
device is set as follows:

Chapter 3 - Callable Fuilctions 49

The following parameters have the sam defaults for both TC
hoards:

Normal Mode Rejection
Freuuencv 60 Hz

II Nunlher Tvne I Inteaer II

Specify 0 for &File to cause the driver to search for DASTC.CFG.

50 ASO-DAS-TC User’s Guide - Rev. A

DASTC-GETCJC

Purpose Returns the value of the CJC on the DAS-TC in degrees Celsius; this value is
used to correct ten~peraturc input values.

Prototype c
DASErr far pascal DASTC-GETCJC (inl rlrvNrm~/w~, Iloat far * C.ICwn/>);

Pascal
Function DASTC-GETCJC (&wV~m~bw : Intcgcr; Vx C.IC/rmp : Single) :
Word:

Visual BASIC for Wlndows
DASTC-GETCJC Lib “DASTCdll” (ByVal &wN~m~/wr As Integer. CK’rcr?~/?
As Single) As Integer

Parameters

Notes This function call reads temperature at the STA-TC or STC-TC terminals.

dn~Vum/x!~ Board number. Valid values: 0. 1

CJCwq> CJC sensor temperature value in degrees Celsius.

Upon return. CJCtmr/) contains the CJC (Cold Junction Compensation)
tcmpemturc associated with the device identilied hy rlrvNun~/w~. The value
stored in CJCfenzp is floating point regardless of the format specitied in the
configuration Me.

In order to obtain a temperature reading from a thermocouple type not
recognized by the Driver. you need to perfomi your own linearization For :L
corrected temperalure reading, you c;m call DASTC-GE’KIC and use the
resulting value to correct the linearization.

Depending upon the volariliry of the ambient temperature where the CJC
resides, the more samples you take, the more often you should call
DASTC~QETCJC.

This call does not use a frame.

An ermr is returned if XI Interrupt operation is in progress.

Chapter 3 - Callable Functions 51

DASTC GetDevHandle

Purpose Obtain a device hundlc.

Prototype C
DASErr far pascal DASTC_GetDcvHandle (int devNumber, void far * far *
devHmdlr);

Pascal
Function DASTC-GetDcvHandle(devNumOer : Integer; Var devHundle : Lrnigint) :
Word:

Visual Basic for Windows
DASTCGctDevHandle Lih “DASTCdII” (ByVal rlevN~&xr As InIeger.
&vHun& As Long) As Integer

Parameters Device number. V:did values: 0, I

Device handle

Notes On return, devHundie contains the handle associated with the device idcntilied hy
devNumher.

The value returned in devHandl~~ is intended to he used exclusively iis XI argument
to functions that require a device handle. Your progr~n should no1 modify the value
returned in &vHnwdle.

The driver supports up to two DAS-TC hoards; a unique h:mdlc tnust hc associntcd
with each supported hoard.

In addilion to ohlaining a device haldIe, DASTC_(;etl)evHandle performs the
following tasks:

. ahorb all in-progress A/D operations

. checks if device identilied hy devHc~td/c~ is present

. checks if settings in conliguration lile match actual hoard settings

. initializes the hoard to its default state

52 ASO-DAS-TC User’s Guide - Rev. A

K-ADRead

Purpose Read ;L single A/D value.

Pascal
Function K-ADRead(rlevHrrnd/~ : Longint; chnn : Byte;
,qrrinCorle : Byte; Vw Afkdue : Lo&t) : Word;

Visual BASIC for Windows
K-ADRend Lih “DASTCdII” (ByVal dcvH~/~rlk As Long. By&I chwl As Integer.
ByVal gcrinCurlr As Integer. ADvcrl~~e As Long) As Intcgcr

Parameters

Notes

See Table 1, page 47 for the A/D voltage ranges and their corresponding gains

The return values ;tre in microvolts or III degrees ror integer types. and arc 1x11
scaled lor bloating point.

This tinction returns XI error if an Interrupt opcmtion is in progress

Chapter 3 - Callable Functions 53

K ClearFrame

Purpose Clears all the elements of an A/D frame.

Prototype C
DASErr far pascal K-ClearFrame(FRAMEH firmeHandlr);

Pascal
Function K-ClearFrme(framrHnn&~ : Longint) : Word;

Visual Basic for Windows
K-CleurFrme Lib “DASTCdII” (ByVal frameHandk As Long) As Integer

Parameters Frame handle

Notes K-ClearFrame initializes to zero all of the elements in the frame identified hy
.frameHandle.

54 ASO-DAS-TC User’s Guide - Rev. A

K-ClrContRun

Purpose Set the vitlue of ;L finme’s Buffering Mode element to SINGLE-CYCLE

Prototype c
DASErr far pnscul K-ClrContRun(FRAMEH frrrmeHu/~d/r 1;

Pascal
Funct~ion K-ClrCotrtRun(frmreHmdr : Longint) : Word:

Visual Basic for Windows
K-ClrContRun Lih “DASTCdII” (ByVaI frcmrc~Hcrncllr As Long) As Integer

Parameters Frrune handle

Notes K-ClrContRun sets the Buffering Mode to SINGLE-CYCLE in the fr;uuc identified hy
frumeHandlc.

Chapter 3 - Callahlc Functions 55

K-DASDevlnit

Purpose Reset and initialize the device and driver.

Prototype C
DASErr far pascal K-DASDevInit(DDH dlevHan&);

Pascal
Function K-DASDevlnil(cle~~Hand/r : Longint) : Word;

Visual BASIC for Wlndows
K-DASDevInit, Lih “DASTCdII” (ByVal devHund/e As Long)
As Integer

Parameters Device handle

Notes K-UASUevInit performs the following tasks:

. Ahons all in-progress A/D operations

. Checks if device identitied by devHand1~ is present

. Checks if settings in configuration file match actual hoard setlings

. Initializes the hoard to its internal defaults or to the configuration tile values

56 ASO-DAS-TC User’s Guide - Rev. A

K-FormatChnGAry

Purpose Convert il Visud Btkc Ch;tnnel-Gain army into XI equivalent Function Cd1 Driver
Chtu~nel-Gain array (Visunl Basic Only).

Prototype Visual Bask for Windows
K-FonnatClmGAry Lib “DASTCXII” (hrnCninArrcry As Integer) As Integer

Parameters

Notes A Chruinel-Gain Array delincs two cllaracteristics of ~1 A/D operation:

. the sequence in which die. input chwnels are sanqkxl ru~tl.

. Ihe gain npplied to cnch of the clxuunels configured for voltilge in Ihat sequence.

A Chruunel-Gain Array c:w define up 10 I6 r;mdornly sequenced ch:uwz-g;lin pairs
Adjacent pairs C:UI specify the siune channel (with cqual or unequal gains). The
following table illustrates the required fonn;~t of a Chruwz-Gain w~3y for Visual
Basic.

The gnin must he specified ;LS il gnin code. Refer to Table I on page 47 for rhe input
rage affected hy each gain.

Gain Code 0 I 2 3

Gain I I25 166.67 400

K-FormatChnGAry convens the Visual Basic Channel-Gain array identilietl hy
chunGc~inArruy into an equivalent Channel-Gain array hut formatted fbr use hy the
Function Call Driver. On return, chunCuinArruy idcntifics the resulting unay, which
replaces the Visual Basic array. TIE function, K-SetChnArray. requires you to pnss
a reference to the resulting array, which is unreadable in Visual Basic. To resort the
array so that it is rcadahle from Visud Basic, use the complementary function,
K-HestoreChnCary.

A Channel-Gain array cnahlcs you to specify different gains for different input
channels.

58 ASO-DAS-TC User’s Guide - Rev. A

K-FreeFrame

Purpose Free the memory used hy :t frrune ;ind return the fratne it to the pool of avxilrrhle
frinnes.

Prototype c
DASErr far pascal K_FreeFrtne(FRAMEH frcm~c~~dle):

Pascal
Function K-FreeFrtune(jkn~+/rmd/r : Longinl) : Word;

Visual Basic for Windows
K-FreeFrame Lih “DASTCdII” (ByVal frrm~eHrmd/u As Long) As lntegcr

Parameters frrmeHrmd/e Frame h;mdle

Notes K-FreeFrame frees the nietnory used hy the frzune identified hy /k~dfod/c: the
fnnne is then returned to the pool of availnhle frruncs. The franc eletnents are
autotnntic;illy cleared to zero.

Do not use this t‘unction if you pl;ui to use the szunc franc for future ~111s to lhe
driver.

Chapter 3 - Callnhle Functions 59

K-GetADFrame

Purpose Obtain the handle to an A/D frame

Prototype C
DASErr far pascal K_GetADFrxne(DDH doHandle,
FRAMEH far * frameHandle);

Pascal
Function K-GetADFrame(devHandle : Longint;
Var frameHnndlr : Longint) : Word;

Visual Basic for Windows
K_GctADFrame Lih “DASTCdII” (ByVaI drvHundk As Long,
frameHandle As Long) As Integer

Parameters Device handle

Notes On return, frameHnndk contains the lundlc to an A/D frame associated wilh the
device identitied hy devHandlc.

60 ASO-DAS-TC User’s Guide - Rev. A

K-GetBuf

Purpose Get the dues of an A/D frame’s Buffer Address and Nunher of Samples elemctas.

Prototype

Pascal
Function K-GetBuf(frnmeH~nd/e : Longint; Var /mfAddr : Integer;
Vw sump/~9 : Longint) : Word:

Visual Basic for Windows
K-GetBuf Lih “DASTC.dIl” (ByVal frtrmrHrmrl/c~ As Long. bufAddr As Long,
samples As Long) As Integer

Parameters Frame handle

Buffer Address

Notes On return, the following parameters contain the value of au1 element in the frame
identitied by fwneHondle:

- DufAddr contains the value of the Buffer Address clement

. scrmples contains the value of the Nunher of S;u~~ples element

Chapter 3 - Cnllahle Functions 61

K-GetChnGAry

Purpose Get the value of an A/D frame’s Channel-Gain Army Address clement

Prototype C
DASErr far pascal K-GetChnGAry(FRAMEH frameHandle,
void far * far * chnnGuinArroy);

Pascal
Function K_GelClmGAry(frumeHan& : Longint;
Var chunGainArrr~y : Integer) : Word;

Visual Basic for Wlndows
K_GetClmGAly Lih “DASTCdII” (By&d frameHandle As Long,
c:hnnGrrinArrtly As Long) As Integer

Parameters frameHandle Handle to A/D frame

chanC;ainArray Chtumel-Gain Array Address

Notes On return, chanGainArray contains the value of the Chrmtlel-Gain Array Address
element in the frame identilied by frameHundlr.

Refer to K-SetChnGAry for a description of Channel-Gain arrays.

62 ASO-DAS-TC User’s Guide - Rev. A

K GetContRun

Purpose Get the value of a frame’s Buffering Mode element.

Prototype C
DASErr far ptncal K-GetContRun(FRAMEH frtmwHwrdlr.
short far * mode);

Pascal
Function K-GetContRun(frrrmeHund/c : Longint;
Var mode : Word) : WonI:

Visual Basic for Wlndows
K-GetContRun Lib “DASTCdll” (ByVaI frcmreHnnd/r As Long.
Modr As Integer) As Integer

Parameters Handle to A/D frame

mode Code that indicates Buffering Motle.
O=Single-cycle. l=Continuous

Notes On return, mode contains n code that indicates the Buffering Mode in the fmnic
identified hy frameHmnd/r.

Chapter 3 - Callahlc Functions 63

K-GetErrMsg

Parameters devHund/c? Device h:tntlle

Notes

64 ASO-DAS-TC User’s Guide - Rev. A

K-GetStartStopChn

Purpose Get the values of en A/D fnune’s Start Cltnnnel end Stop Channel eletnentS

Prototype C
DASErr l’;tr p;tscal K-GetStartStopClu~(FRAMEH firmi~Hcr,td/c,,
shori far * sfal’l. short far * s,o,,):

Pascal
Function K-GetStartStopClun(frrmreH~nd/e : Longint; VU SI(II’I : Word;
Var stop : Word) : Word;

Visual Basic for Wlndows
KGetStanStopClu~ Lih “DASTCdII” (ByVal finrrte/f~rnd/e As Lung.
mart As Integer. sro[, As Integer) As Integer

Parameters

Start Clxtnnel. Vxlid v;tlues: 0. 1....,15

Stop Cliwu~el. Valid v:ilues: 6. I,.,., 15

Notes On return, the following parameters contain the value of itn element in the lmme
identified hy fr~mrHcr~td/e:

. smr contains tlte value of the Stan Cliannel element

. stop contains the vnlue ol the Stop Cltannel elenuznt

Clxtptcr 3 - Callahlc Funetinns 65

K-GetVer

Purpose Determine the driver revision and driver speciticat~ion.

Prototype C
DASErr far pascal K-GetVer(DDH dd/undle, shorl far * s@!c,
SilOrt far * version);

Pascal
Function K-GetVer(devHm& : Longint; Var s/xx: : Word;
Var version : Word) : Word;

Visual Basic for Wlndows
K-GetVer Lib “DASTCdII” (ByVaI devHun& As Long, qxc As Integer,
version As Integer) As Integer

Parameters Device handle

Driver specilication

Driver version

Notes On return, spec contains the revision number of the Keithley DAS Driver
Specilication to which the driver confomis; version contains the driver’s version
numhcr.

spec and version are two-byte integers; the high byte contains the major revision
level and the low hyte ctmtains the minor revision level (in the version number 2.1,
for example, the major and minor revision levels are 2 nntl 1, respectively).

On return, use the following equations tu extract the major and minor revision levels
from either spec or version:

major revision level = rerlrmd value
256

66 ASO-DAS-TC User’s Guide - Rev. A

The remainder is dropped.

minor revision level = rrtutm~I vcrlrr~! MOD 256

where returned vnlur represents either qxfc or version.

Chapter 3 - C;tllahle Functions 67

K-InitFrame

Purpose Initialize II hoard’s A/D circuitry XNJ set an A/D frame’s elements to their default
values.

Prototype C
DASErr far pascal K_lnitFrame(FRAMEH frameHundle);

Pascal
Function K_InitFrame(frumeHandle : Longint) : Word;

Visual Basic for Windows
K~InitFrrune Lih “DASTCdII” (ByVal frameHandle As Long) As Integer

Parameters frmeHundlr Handle to A/D frame

Notes K-InitFrame initializes Ihe A/D circuitry on the DAS-TC that is associated with the
frame identified hy framcHan&.

If an interrupt-mode A/D operation is not active, K-InitFrame checks the validity 01
the hoard numher :wsociatetl with the frame idedied hy frameHrmdle and enables
A/D operations.

If an interrupt-mode A/D operation is active, K-InitFrame retums an error that
indicates that the hoard is busy.

68 ASO-DAS-TC User’s Guide - Rev. A

K-IntAlloc

Purpose Allocate u buffer suittthle for an iutermpt-mode A/D oper;km.

Prototype C
DASErr l&r pascal K-IntAlloc(FRAMEH frrrmcHrrnd/r. DWORD scmr/~/es.
void far * far * intAddr. WORD fx * memHnnd/r);

Pascal
Function K~IntAlloc(fmrne~~~~d/e : Lonyint ; samples : Longlnt;
Var intAddr : Longint ; Var memHrrnd/e : Word) : Wurd;

Visual Basic for Windows
K-IntAlloc Lih “DASTCdII” (ByVal frcrmc/f~nrf/r As Long.
ByVal snmplcs As Long, intAddr As Long, mcmHond/e As Integer) As lntegcr

Parameters Hnndle to A/D frame

Number of samples. blid values: 045,535

Address of intenupt huffcr

Notes

mamHnndle Handle to interrupt huffer

On return, intAddr contains the xldress of :! huffcr that is suit;thle fbr UI intcrrupt-
mode A/D opemtion of scrmples stunpIes; memHrmdk contkns il h;uldlc to the buffer
that this function allocates.

Chapter 3 - Calkkhle Functions 69

K-IntFree

Purpose De-allocate un interrupt buffer tlxti was previously allocnretl with K-IntAlluc.

Prototype C
DASErr t’ar pascrtl KmlntFree(WORD memHun&);

Pascal
Function K-IntFree(memHwrrl/e : Word) : Integer:

Visual Etaslc for Wlndows
K-IntFree Lib “DASTCdI” (ByVal mwnHundle As Integer) As ltrtegcl

Parameters Handle to intempt Mfer

Notes K-IntFree de-allocates the interrupt buffer itlentitied hy memHuntflr.

70 ASO-DAS-TC User’s Guide - Rev. A

K-IntStart

Purpose Starl an inlerrupt-mode A/D operation.

Prototype C
DASErr far pascal K-IntStw(FRAMEH JkrmeHrrndk);

Pascal
Function KJntStart(frrtnreH~md/r : Lmgint) : Word;

Visual Basic for Windows
K-IntStwt Lib “DASTCdII” (ByVaI framrHcmd/e As Long) As Integer

Parameters frnmrHrrndlr Handle to A/D frame

Notes K-IntStart slmls the interrupt-mode A/D opcntion delined in the frume identilied
hyfr~meh~tnrlle. An error is returned if ati Interrupt operation is in progress.

Acquired samples are stored at a location identilied by the Buffer Address element 01
the frame identilied by frrrmeHnnrf/r.

The values acquired are in microvolts or .OI degrees for integer types. :mtl arc not
scaled for tloating point.

Chapter 3 - Calklhle Functions 71

K-IntStatus

Purpose Dctemline the status of an interrupt-mode A/D operation

Prototype C
DASErr far poscal K-IntStatus(FRAMEH frameHandlf, short far * sfutus,
long f&r * index);

Pascal
Function K-IntStatus(frtlmcHnn& : Longint; Var srczrus : Word;
Var index : Longint) : Word;

Visual Bask for Windows
K-Int~Status Lih “DASTCdII” (ByVal framfHnnd/r As Long, S~(IIMS As Integer,
index As Long) As Integer

Parameters Handle to A/D frame

Status Code that indicates status uf interrupt operation. Valid values:
0 = Interrupt-mode A/D operation idle
~1 = Interrupt-mode A/D operation active

Buffer array index. Used by this function to slore the buffer array
index.

Notes On retum, SNAFUS contains a code that indicates the stiltus of the Interrupt operation
defined hy the frame identitied by frumeHw&; index cotxains the number of the
next buffer element, at the time the function was called. which is to he written with
the next sample.

For Continuous buffer mode, index is reset to zero when the last block transfer is
completed and another acquisition cycle has hccn initiated.

72 ASO-DAS-TC User’s Guide - Rev. A

I<IntStop

Purpose Ahort an interrupt-tnode A/D openltion.

Prototype

Pascal
Function K-IntSttrp(frrrmeHund/e : Longint; Var SINUS : Word;
Vu indcv : Longint) : Word;

Visual Basic for Windows
K-IntStop Lib “DASTCdII” (ByVaI ~km2eHrrndle As Long. .SU~IIUS As Integer.
index As Long) As Integer

Parameters frrrmr~Hun& Handle to A/D franc

.St(JtUS Code that indicates st;LIus of intemq operation. Valid v;tIucs:
0 = Intempt operatiotl idle
1 = Interrupt operation active (interrupt was stopped)

index Buffer array index. Used hy this funcGon lo sore the huffcr ;trray
index.

Notes K-IntStop nhoms the interrupt operation defined hy the iratnc idcntilicd hy
frameHandle. On return, SRUUS contains ;L code that indicates what the status was
when the f’unction was called; index contains the nunlher of the next buffer elcuxxt.
at the time the function was called, which is to he written with the next san~plc.

K-IntStop does nothing if ai interrupt-mode A/D operation is uot in prugress

Chnptcr 3 - Callable Functions 73

K-MoveDataBuf

Purpose Transfer acquired A/D samples between a memuty buffer and an array.

Prototype c
DASErr far pascal K_MoveDataBuf(int far * desr, int far * SOUIZ’L’,
unsigned int samples);

Pascal
Function K_MoveDataBuf(dest : Longint; SOIU~~J : Longint;
snmplrs : Word) : Integer;

Visual Basic for Wlndows
K_MoveDataBuf Lih “DASTCdII” (dest As Any, sourc:e As Any,
ByVal sum&s As Integer) As Integer

Parameters dest Address of destination buffer

Address of source buffer

samples Nmnher of samples tn rransfei

Notes K-MoveDataBuf moves sarn@es samples from the huffcr at sou,r:e to the huffeel
at dest.

Although this fbnction is valid for all of the supported languages, it is intended
primarily for use with those languages (such as Visual Basic) that do not provide a
convenient method of accessing memory directly. This function is also needed in
languages that are running in a Windows standard envimrunent, where acquired
samples musl he initially written into a dynamically allocated buffer before rhe data
GIJ~ he stored in a local buffer.

74 ASO-DAS-TC User’s Guide - Rev. A

K-RestoreChnGAry

Purpose Convert a Function Call Driver Channel-Gain array into an equivalent Visual Basic
Channel-Gain array (Visual Bkc Only).

Prototype Visual Basic for Wlndows
K-RestoreChnGAry Lih “DASTCdII” (chonGuinAwa,y As Integer) As Inkger

Parameters chu&uinArmy Storage location for Channel-Gain array

Notes Use this function to restore the Channel-Gain Array in a i’wtnat readable to Visultl
Basic.

Do nor call this function until il K-SyncStart or K-IntStart has heen cdled.

Chapter 3 - Callable Furstions 75

K SetBuf

Purpose Set the values of an A/D frame’s Buffer Address and Number of Samples elements
(Pascal and c languages only).

Prototype c
DASErr far pascal K-SetBuf(FRAMEH frclmrHnnd/e, void fur * DufAddr,
long sumples);

Pascal
Function K-SetBuf(frnrdfandle : Longint; bufAddr : Longint;
.wmpl~5 : Longint) : Word:

Parameters

Nutnhcr of Samples (145,535)

Notes K-SetHuf assigns values to the following elctncnts in the fraue identilicd hy
frmeHandle:

. Ihe Buffer Address element is nssigncd the value in /mfAddr

. the Number of Samples element is assigned the value in .raraplrs

If using Visual Basic for Windows, hufAddr must he the address 01‘ :I dyn:unic~lly
allocated buffer obtained from K-IntAlloc. For user-defined arrays, see K-SetBufL
ii’ integer type is contigured, and K-SetHufR it’ Ilonting-point type is conligurcd.

76 ASO-DAS-TC User’s Guide - Rev. A

K-SetBufL

Purpose Set the values of a franc’s Buffer Address and Number of Santples elenlents for
user-defined long integer arrays (Visual Basic for Windows only).

Prototype Visual Bask for Windows
K-SetBulL Lib “DAS 16OO.dll” (ByVal frmrHcrndlr As Lung. hr?fAddr As LOII~.
ByVal sc~mplrs As Long) As Integer

Parameters frumeHandlr France handle

Address of user-created buffer tlclined as a long xray

Number of s;unples to he stored in huffcr

Notes K,SetHufL sets the Buffer Address to hufAddr and the Nutnher of Sxnples to
srrmples in the fnune identified hy jrcmr~~Hrrndlc~.

Chapter 3 - Collnhlc Functions 77

K-SetBufR

Purpose Set the values of a fratne’s Buffer Address and Nutnher of Samples elements for
user-delined floating-point arrays (Visual Basic for Windows only).

Prototype Visual Basic for Windows
K-SetBufR Lih “DAS 160o.dll” (ByVal frcrmdfrmdlr As Long, hfAddr As Single,
ByVal scdm&!.s As Long) As Integer

Parameters frameHnndlc France handle

hufAddr Address of user-created buffer delinctl as a long array

samples Nutnher of samples to be stored in buffer

Notes K-SetHufR sets the Buffer Address to hufAddr and the Nuniher of Santplcs to
.srrm~k~ in the franc identitied hy f~umeHandlr.

70 ASO-DAS-TC User’s Guide - Rev. A

K-SetChnGAry

Purpose Sel the value of a t’ramc’s Channel-Gain Array Address element

Prototype C

DASErr far pnscal K-SetChnGAry(FRAMEH f,‘cmwHcurcf/c~.
void f:u’ * chunGoinArrrry);

Pascal
Function K-SctChnGAry(fnrme~undle : Longint;
Var &nC&Arrcr,y : Integer) : Wwd;

Visual Bask for Wlndows
K-SetChnGAry Lih “DASTCdII” (ByVaI fkmeHu&/r As Long.
chwtCrrinA/wy As Integer) As Intcgcr

Parameters Hnndle to A/D t’rrame

Chrumel-Gain Army Address

Notes K-SetChnGAry sets the value of the Channel-Gain Array Address element to
c‘hnnCcrinArrrry in the franc idcntilied hy I’ramcHandle.

A Channel-Gain Array defines two characteristics of im A/D trpemtion:

. the sequence in which the input cI~;umcIs are sampled and.

. the gain applied to each of the channels contigured for voltage in that scqucnc(:

A Clmnncl-Gain Array cm1 define up to I6 randomly sequenced channel-gain pairs.
Adjacent pairs can specify the same clum~el (with equd or unequal gains). The
li~llowing table illustrates the required fwniat of a Chamiel-Gain army fur the C x111
P;Lscal languages.

Byte I) I 2 7 4 5 2N 2N+ I

V;lk N than ~ gain ch:u~ g:dn cI1:ul gaiu

of pairs pair I p3ir2 pair N

Clqwr 3 - Callable Functions 79

The gain must he specified as n gain code. Refer to Table I on page 47 for the input
rage affected hy each gain.

Gain Code 0 I 2 3

Gain I I25 166.61 400

A Clxumel-Gain array enables you to specify differenl gains for differcnl inpul
chru111cls.

80 ASO-DAS-TC User’s Guide - Rev. A

K SetContRun

Purpose Set the value 01’ a frame’s Buffering Mode element to CONTINUOUS.

Prototype C
DASErr far pascal K-SetContRun(FRAMEH fmmc+/cmd/~~, shon 1:

Pascal
Function K-SetContRun(fm?wHmdk : Lougint) : Word:

Visual Basic for Windows
K-SetContRun Lih “DASTCdII” (ByVal fwne~an~lle As Long 1 As Integer

Parameters frameHun& Handle to A/D frame

Notes K,SetContHun sets the Buffering Mode to CONTINUOUS in the frame identilied by
frumeHundle.

The default setting for bufcring nrodr is SINC;LE-CYCLE

Chepter 3 - Cnllahlc Functims 81

K-SetStartStopChn

Purpose Set the values of an A/D fra~nc’s Start Chauxl and Stop Channel elements.

Prototype c
DASErr far pascal K-SetSmrtStopChn(FRAMEH frumeHandk, short sfart,
short slop);

Pascal
Function K-SetStartStopChn(frclmeHandk : Longint; suul : Wad;
stop : Word) : Word;

Visual Basic for Wlnctows
K-SetStartStopChn Lib “DASTCdII” (By&d frameHandle As Long,
ByVal sfarf As Integer, ByVaI stop As Integer) As Integer

Parameters frnmeHnnde Handle to A/D franc

start Start Channel. Valid values: 0, 1,...,15

stop Stop Channel. Valid values: 0, I,...,15

Notes K-SetStartStopChn assigns values tu the ldowing elcmcnts in lhe franc identilicd
hy frameHandle:

. the Start Channel element is assigned the value in wrt

. the Stop Channel elenlent is assigned the value in stop

During a Start/Stop scan, the gains applied are either the internal defaulls or those
rend from the conliguration tile at load tinx

Use K SetChnGAry to specify a non-sequential clwmcl-scanning sequence and/or
to specify channel gains.

If the Stop channel number is greater than rhe Start channel number, then llle scan
order is

For exatnple, if Stop=13 and Sfart=IO, the scan order is IO,1 1,12, and 13.

82 ASO-DAS-TC User’s Guide - Rev. A

Chapter 3 - Calkthlc Functions 83

K-SyncStart

Purpose Start a synchronous-mode A/D operation

Prototype C
DASErr far ~xxcal K_SyncStafl(F’RAMEH frrrmdfondle 1;

Pascal
Function KSyncStart(framcHande : Longint) : Word;

Visual Basic for Wlnctows
K_SyncStarl Lih “DASTCtlll” (ByVal frclmcHandle As Long) As Intcgcr

Parameters Handle to A/D franie

Notes K-SyncStart st;~rt~ rhe synchronous-mode A/D operation delined in the frume
identitied hy frcmehrrndle. An crrnr is returned if iu1 Interrupt operation is in
progress.

The values acquired are in microvolts or .()I degrees for integer lypes. and arc not
sc:~lcd for floating point.

84 ASO-DAS-TC User’s Guide - Rev. A

Function Call Driver
Error Messages A

A.1 Error Codes

Error OOOOh No error.

Error 6000h Error In Configuration File

CU4.W The configuration file supplied to DASTC-DevOpcn() is wrrupt or dots not
exist. Il’ lile is known tn he good. then it prohahly cont;tins one ur ntnre
undefined keywords.

Solution Check ii’ the tile exists at the spccilied path. Check l’nr illegal keywords in tile:
the host way to lix illegal keywords is to let the supplied DASTCCFG.EXE
utility do it.

Error 6001 h Illegal Base Address In Configuratlon File.

Error 6002h Illegal IRQ level In Configuration File.

Error 6004h Error openlng configuratlon file.

Error 6006h Illegal Channel Number

CNuse The specilied I/O operation channel is nut of rage. The IegaI range is O-15

Sol~rrion Specify legal channel numher.

Error 6006h Illegal galn.

Appendix A - Function Call Driver crrnr messages 85

Error 6006h Bad number In configuration file.
CUlLW An illegal specification of a number is detected in the Conliguration lile. Nolc

that if specifying a hexadecimal number for the Bnse Address, that number
musf he proceeded with ‘&H’.

Solution Cheek the numher following ‘Address’ in the Configuration tile.

Error 6009h Incorrect version number.

Error 600Ah Configuratlon file not found.
CU!ASl2 This error is returned hy lhc DASTC-DevOpcn() function whenever lhe

specified configuration tile is not found.

Solution Check the conliguration lile nuuc (spelling!), palh, etc...

Error 600Ch Error returning INT buffer.
CUUSP This error occurs during K-IntFree() whenever DOS retunes an error in INT

2 III function 49H.

Solution Make sure that the parameter passed to K_INTFree() was previously ohtoined
via K-lNTAlloc().

Error 600Dh Bad frame handle.
CUUX This error is usually returned hy Frame Management or an Operation Function

whenever an illegal Frame handle is passed to one of thcsc functions.

Solurion Check the Frame Handle.

Error 600Eh No more frame handles.

Error 600Fh Requested INT buffer too large.

Error 6010h Cannot allocate INT buffer.

Error 6011 h INT buffer already allocated.

Error 6012h INT buffer De-Allocatlon Error.

Error 6013h INT buffer never allocated.

Error 7000h No board name

Cuuse DASTC-DevOpen() function did not fmd the keyword ‘Name’or a name
following in the specified conliguration tile.

Solution Make sure Ihat, a hoard nanc is specilied in your configuration lile. The legal
DAS-TC name is: DASTC.

66 ASO-DAS-TC User’s Guide - Rev. A

Error 7001 h Bad board name

Cnusc DASTC-DevOpen() function found the hoard ‘nzune’ in the specilied
configuration file to he illegal. The legal DASTC name is: DASTC.

Solution Check the name following keyword ‘Name in your contiguration tile

Error 7002h Bad board number

Cnusr DASTC-DevOpen() firnction found the ‘Board’ number in the specilied
conliguration file to he illegal. The legal hoard nunlhers are II and I.

Solution Check the number following ‘Board’ in your conliguration lile.

Error 7003h Bad base address

Cuuse DASTC-DevOpen() function found the hoard’s hasc I/O ‘Address’ in the
specifed conliguration file to he illegal. The legal address are 2tH)h (S 12)
through 3FOh (100X) in increments of IOh (16) inclusive.

,So/ution Check the number following ‘Address’ in your configuration lilt. NOTE that
to specify il Hex number, the number must he preceded by ‘&H’.

Error 7004h Bad Interrupt Level.
c uuw DASTC-DevOpen() function found the Interrupt Level in the specified

configuration file to he illegal. The legal Intermpt levels arc 2. 3. 4. 5. and 7.

Solution Check the number following ‘Intlevel’ in your conliguration tile.

Error 7006h Bad Normal Mode Rejection Frequency.

Error 7006h Bad Number Type.

Error 7007h Bad Channel Conflguratlon.
CUUSlJ One or more of these conditions exists:

- Channel # is out of range
- Channel argument is illegal

Error 7006h Check Sum Error.
Cause Checksum in communication packet failed, resulting in ;L co~11111uliic~li~~ii

failure.

Error 7009h Board Not Inltlallzed.
Cause One or more of the following conditions exists:

- A function was called hefore K-DASDevlnit was called.
- The PC Side Board diagnostics done during board initialization failed.
- Attempt to return the DAS-TC ID failed.
- Wrong Base Address.

Error 700Ah lnltlallzatlon Failure.

Appendix A - Function Call Driver crmr messages 87

Error 700Bh

Error 700Ch

Error 8000h

Error 8001 h

Cm4Sf

Solution

Error 8002h

CUUX

Solution

Error 8003h

Cause

Solution

Error 8005h

CLXW

Solution

Error 8006h

Cum!

Error 801 Ah
CUUSC

Solution

Protocol Communlcatlon Error.

Bad Voltage to Temperature Calculation Error.

No error.

Function not supported

A request is made to ;L function that is nor supported by ;L DAS-TC. This errof
should not occur in it srcutdard release sottware.

Insure that the function is one lisred in chapler 3. If the problem c:mnol he
resolved, contx1 the Keithley Technical Support Deparlment.

Function out of bounds

Illegal function number is specified. This error should not occur in :L st;mdard
release soliware.

Contact the Keithley Technical Support Dcpartmenl.

Illegal board number

The driver supports up I,O two hoards: 0 and 1.

Check the hoard numher parameter in your call to DASTC- GetDcvHandleO.

No board

This error is issued during K_DASDevlnit() whenever the hoard presence lest
Ms. This is normally caused hy a conflict in the specified hoard 1/O address
and the xtuill I/O address the hoard is configured for. Also, lhis error is issued
when the hoard is not present in the system.

Check the hoard’s base I/O address dip switch and make sure it mulches lhc
base address in your conliguration file.

A/D not lnltlallzed

A Cuncrion was called before K-DASDevInit was called.

Interrupts Already Active.
An attempt is made to start an Inrerrupt-hased operation while anodler is
already act,ive.

Stop current Interrupt mode lirsl and ret,ry.

88 ASO-DAS-TC User’s Guide - Rev. A

A.2 Error Conditions

Voltage/Thermocouple
Error Condltlons

When ;L vollnge/tllennocoupIc input is under or over the voltage range set t’ur :i
particular channel. the DAS-TC responds will) the tbllowing readouts.

For under the voltnge/them~ocouple rang:

* Floating Point is IO,OOO.OO

. Integer is 47 I,227,136

For over the voltage/thcm~ocouple range:

* Floating Point is +lO.OOO.oO

* Integer is +1.176,256.512

Appendix A - Function Call Driver error messages 99

	TOC:

