
Using the Arbitrary Waveform Capabilities of
the Series 2600B and Series 2650A System
SourceMeter® SMU Instruments to Perform Ford
EMC-CS-2009.1 CI 230 Power Cycling Testing

Introduction

Arbitrary waveform generators are very flexible instruments
capable of outputting voltage waveforms of virtually any shape.
These instruments are quite useful because they provide a
controlled method of recreating the varying signals that may be
seen by a device after it is placed into a system. By recreating
these signals, device designers can use them to test their
devices. Unfortunately, arbitrary waveform generators typically
cannot supply very much current and max out at just a few
hundred milliamps. For many devices, this level of current is
simply insufficient. To achieve higher currents, the arbitrary
waveform generator can be combined with a power amplifier,
but this requirement for additional hardware not only adds cost
but increases the complexity of the test system. A much better
solution would be a single box that can output both an arbitrary
waveform and the additional current required by the device. One
such instrument is the Source Measure Unit (SMU) instrument.

SMU instruments combine the capabilities of a precision
DC power supply with the measurement capabilities of a highly
accurate DMM. These instruments are most commonly used
when a very precise current or voltage must be sourced and an
accurate voltage or current measurement must be made. These
instruments are used to characterize devices by sweeping voltage
or current across the device and measuring the corresponding
current or voltage. Because performing sweeps is so common,
most of these instruments have sweep capabilities built right
in, allowing the user to program the instrument to perform
linear, logarithmic or list sweeps easily with a minimal number
of commands. Although the linear sweep is certainly the most
common type, the real power lies with the list sweep. In a list
sweep, the user provides the value of every point in the sweep.
This sweep type allows the SMU instrument to be used as an
arbitrary waveform generator.

One test that requires arbitrary waveform capability but
requires more current than an arbitrary waveform generator
can provide is the CI 230 Power Cycling test as specified by
the Ford EMC-CS-2009.1 specification. This test simulates
the changes in supply voltage seen by the electrical and/or
electronic components and subsystems of the automobile when
the engine is being started. It specifies the use of four different
waveforms, each being quite complex and including DC levels,
step functions, ramp functions, and a 4Hz sine wave. The
specifications for these waveforms can be seen in Figure 1.

The automobile components and subsystems tested often
require several amps of current in order to function properly.

With arbitrary waveform capabilities and the ability to source
up to 20A of DC current, SMU instruments are very capable for
performing this test. This application note shows how to use
Keithley Series 2600B and Series 2650A System SourceMeter SMU
Instruments as arbitrary waveform generators to generate these
complex waveforms.

Configuring the SMU for AWG Output
Configuring the Series 2600B and Series 2650A System
SourceMeter SMU Instruments for arbitrary waveform output is
very similar to configuring them for any normal list sweep. The
major difference is that for arbitrary waveform output, a

constant update rate is necessary for the source output, so
some additional timing control is required. To set up the
SMU instruments for arbitrary waveform output, take the
following steps:

Number 3248

Application Note
Se ries

Figure 1: Ford EMC-CS-2009.1 CI 230 power cycling waveforms

• Generate a waveform table

• Configure the SMU instrument for list sweeps

• Configure the trigger model timing

• (Optional) Configure measurements

Generate a Waveform Table
List sweeps in Series 2600B and Series 2650A System
SourceMeter SMU Instruments use a table of values to define
the points in the sweep. In order to get the SMU instrument to
output a waveform, it’s first necessary to get the waveform into
a table. These tables are defined using the native Lua scripting
capabilities of these instruments’ Test Script Processors and can
be created quickly with as little as one line of code.

<tableName> = {<point1>, <point2>, …, <pointN>}

In the example above, <tableName> is a new table variable
that was both declared and assigned this single line of code.
<point1> through <pointN> are the values of the entries in the
table. For example:

wfrmTbl = {2, 4, 6, 4, 2}

This line of code creates a table named wfrmTbl with five
entries 2, 4, 6, 4, and 2. Alternatively, a table can be created in a
loop and the values assigned one at a time. For example:

wfrmTbl = {} -- Declare an empty table variable

for i=1,10 do

 wfrmTbl[i] = 2 * i -- Add an entry to the
table

end

In this example, the code creates a table containing a linear
ramp function from 2 to 20 over 10 points. By using a loop like
this along with the math functions built into the Lua scripting
language, it’s possible to generate tables that implement even
more complex waveforms like sine waves, triangle waves,
exponential rise and decays and more.

Unlike some SMU instruments where the number of points in
a list sweep is limited to just 2500, the number of points in a list
sweep on the Series 2600B and Series 2650A SourceMeter SMU
Instruments is limited only by the amount of memory available
on the instrument. With the large memory size that is standard
on these instruments, they can easily handle multiple waveforms
with hundreds of thousands of points, to create incredibly
complex waveforms.

Configure the SMU Instrument for List Sweeps
To configure the SMU instrument for a list sweep, one must
first configure the basic settings of the SMU instrument source.
Follow these steps to configure the source:

• Configure the source function (Current or Voltage)

• Configure the sense mode (Local or Remote)

• Disable source auto ranging

• Set the source range

• Set the source limit

• Set source delay to 0

NOTE: Source auto ranging must be disabled and source
delay set to 0 in order to ensure consistent timing
between points.

Example Source Configuration

smua.source.func = smua.OUTPUT_DCVOLTS

smua.sense = smua.SENSE_LOCAL

smua.source.autorangev = smua.AUTORANGE_OFF

smua.source.rangev = 20

smua.source.limiti = 0.1

smua.source.delay = 0

Once the source has been configured, the sweep function
of the SMU instrument can be set up. Using the table generated
earlier, the list sweep function can be set up with the following
lines of code.

smua.trigger.source.listv(wfrmTbl) Tells the SMU to use the table
wfrmTbl as the source list for
the sweep.

smua.trigger.count = table.
getn(wfrmTbl)

Sets the number of points for the
trigger model to loop through
during the sweep. This should be set
to the same number as the number
of points in the table in order to
output the entire waveform.

smua.trigger.endsweep.action =
smua.SOURCE _ HOLD

This setting tells the SMU what
level to set the source after the
sweep has completed. Setting it to
smua.SOURCE _ HOLD tells the SMU
to leave it at the same level as the
last point in the sweep. Setting it to
smua.SOURCE _ IDLE would tell it
to return the source to the level it
was at before the sweep was started.

NOTE: By default, the trigger model will run through the sweep
only once each time the trigger model is initiated. To
make the SMU instrument output the sweep more than
once, add the command smua.trigger.arm.count =
<cycles> where <cycles> is the number of times to
output the sweep. To output the sweep indefinitely, set
the value to 0. Note that if the arm count is set to 0, it
will be necessary to send the command smua.abort()
to stop the output.

Configure the Trigger Model Timing

Iterating through the points of a sweep is controlled by the SMU
instrument’s trigger model. By default, the trigger model of the
Series 2600B and Series 2650A SourceMeter SMU Instruments
will iterate through the sweep as quickly as possible. This
can cause variability as well as an unknown in what the time
is between the points. In order to function like an arbitrary
waveform generator, the time between the points needs to be
constant. This can be done by configuring a timer in the trigger
model to trigger the source event.

Use the following line of code to configure Timer 1 to trigger
the source event.

smua.trigger.source.stimulus = trigger.timer[1].
EVENT_ID

The source event of the trigger model is the event where the
output level gets updated. By forcing it to wait for an event from
Timer 1 before it performs its action, it is possible to control
the rate at which the output is updated. Next, it’s necessary to
configure the timer to set the update interval. Use the following
lines of code to configure Timer 1.

trigger.timer[1].
delay = 125e-6

This sets the interval at which the timer
generates events. A value of 125µs provides a
source update rate of 8,000 points per second.
Values a low as 50µs can be used if all the
points in the waveform are of the same polarity
(all positive or all negative). If the waveform
contains changes in polarity, values of 125µs or
greater are recommended.

trigger.timer[1].count =
table.getn(wfrmTbl) - 1

This sets the number of times the timer will
count down and generate an event before it
stops. This should be set to the number of
points in the sweep minus 1. The first point
in the sweep will be triggered when the timer
is triggered because the timer will pass this
trigger through.

trigger.timer[1].
passthrough = true

This sets whether to pass the trigger event that
started the timer through to the timer’s output
or not. If set to true an event will be generated
by the timer immediately after the timer itself
is triggered. If set to false the timer will not
generate its first event until the timer has
finished counting down for the first time.

trigger.timer[1].
stimulus = smua.trigger.
ARMED _ EVENT _ ID

This sets the event that triggers the timer to
start. Using the smua.trigger.ARMED _
EVENT _ ID will cause the timer to start
counting down as soon as the SMU trigger
model is armed and enters the trigger layer.
This happens automatically after the trigger
model is initiated if no wait events have been
configured. Output of the sweep can be
forced to wait for an event such as a digital I/O
trigger or a front panel key press by assigning
the timer’s stimulus to one of these other
events’ event id.

Configure Measurements

Unlike an arbitrary waveform generator, an SMU instrument
is capable of not only sourcing an arbitrary waveform but also
measuring it. Being able to measure in addition to source
allows the power the DUT consumes to be tested. In order to
add measurements to the SMU instrument’s arbitrary waveform
output, we must perform some configuration first. If we simply
enabled the measurements, we would find that our arbitrary
waveform output would no longer have the same timing between
points and each point in the waveform would be extended by
the amount of time required to take the measurement. In order
to avoid affecting the source output, we must configure the
measurements to fit within the time in between source points.

Several settings in the SMU instrument affect the amount of
time a measurement takes. To make the measurements fit within
the source update interval, do the following:

• Turn off auto ranging

• Turn off auto-zero

• Reduce the measure delay

• Reduce the NPLC setting

• Account for measurement overhead

Turn off Auto Ranging and Auto-Zero

Auto ranging and auto-zero introduce variability in the time
required to acquire a measurement and should be turned off.

Reduce the Measure Delay

The measure delay is the amount of time that the SMU
instrument waits after the measurement is triggered before
the analog-to-digital converter (ADC) starts the conversion. By
default, the measurement is triggered immediately after the
source event has completed; therefore, measure delay sets the
time from when the source updates to the time when the analog-
to-digital conversion starts. When using the SMU instrument as
an arbitrary waveform generator, the optimal value for measure
delay places the start of the conversion as close to the end of the
source update interval as possible without extending the interval.
The optimal value can be calculated as follows.

Measure Delay = Source Interval – (Conversion Time + Overhead)

Source Interval is the time between updates of the source
output as configured previously using Timer 1. Conversion Time
is the time required for the ADC to perform the conversion
and is affected directly by the NPLC value. Overhead is the time
associated with processing and storing the result of the analog-
to-digital conversion.

Reduce the NPLC Setting

The Number of Power Line Cycles (NPLC) setting adjusts the
number of power line cycles over which the ADC performs the
conversion and directly affects how long the measurement will
take. By default, the NPLC value is set to 1, which means the
analog-to-digital conversion will be performed over one power
line cycle or 16.67ms for 60Hz power. By reducing the NPLC
value, the amount of time the conversion takes is reduced.
For example, reducing the NPLC value to 0.001 reduces the
conversion time down to 16.67µs (16.67ms * 0.001 = 16.67µs).
The NPLC setting should be made small enough such that
the conversion time plus measure delay plus the associated
measurement overhead is less than or equal to the source
update interval.

NOTE: Reducing the NPLC reduces the ADC’s ability to reject
noise and therefore results in a nosier measurement.

Account for Measurement Overhead

Associated with every measurement is some overhead for the
system to process the result of the analog-to-digital conversion
and move it into memory. This is the overhead described in
the equations in the previous sections. This overhead can vary
between 20µs and 50µs and must be accounted for to ensure
that the measurement does not affect the source interval. To
be safe, a value of 60µs should be assumed for measurement
overhead and used in the equations.

Running the Sweep
Once the SMU instrument has been configured, outputting
the arbitrary waveform is very simple; turn the output on
and initiate the trigger model. To do this, simply send the
following commands:

smua.source.output = smua.OUTPUT_ON
smua.trigger.initiate()

If the trigger stimulus for Timer 1 was configured for the
SMU instrument’s armed event, then the waveform output
will start right away; otherwise, the output will wait until the
configured trigger stimulus is received.

Using the Included Script
Appendix A of this application note includes a script that can
be loaded onto the Series 2600B and Series 2650A System
SourceMeter SMU Instruments that makes generating arbitrary
waveforms on these SMU instruments easy. (See the instruments’
reference manuals for details on loading and running scripts.)
After loading and running the script, arbitrary waveform
generation can be configured and run by simply calling a few
functions from the script. For example, after loading and running
the script, outputting a sine wave can be done by sending the
following commands to the instrument:

SetupSineFunction(100, 4, 2, 0.1, false, nil)
RunAWG()

The script includes functions for generating the standard
AWG waveforms (sine, square, ramp, pulse and noise) and the
EMC-CS-2009.1 CI 230 waveforms, as well as a function for
loading a waveform from a CSV file located on the USB thumb
drive plugged into the instrument’s front panel. The following
functions are available for use from this script.

• SetupAWG()

• SetupSineFunction()

• SetupSquareFunction()

• SetupRampFunction()

• SetupPulseFunction()

• SetupNoiseFunction()

• RunAWG()

• StopAWG()

• ReadWaveformFromFile()

• GenerateCI230WaveformA()

• GenerateCI230WaveformB()

• GenerateCI230WaveformC()

• GenerateCI230WaveformD()

Documentation for these functions is included within the
comments of the code.

NOTE: Although the included script is capable of generating the
square and pulse waveforms, the built-in pulse functions
of the Series 2600B and Series 2650A System SourceMeter
SMU Instruments are better suited for generating these
functions. See the instruments’ reference manuals
for details.

Generating EMC-CS-2009.1 CI 230 Waveforms

The script included in this application note contains functions
that create waveform tables for the four EMC-CS-2009.1 CI 230
waveforms. Each of these complex waveforms is 11.1 seconds
long. With a source update interval of 125µs, 88,800 points are
required to implement each of these waveforms. Creating these
points manually by listing each and every one out by hand would
take an extremely long time. Instead, the functions in this script
use the power of Keithley’s Test Script Processor to generate the
points programmatically by breaking the waveform into multiple
segments. The number of points in each segment is calculated,
then these points are processed in a loop to produce the output
value for each point. This approach saves time and reduces error
by eliminating the need to list out these points individually.

The following lines of code demonstrate how to use these
functions to generate the CI 230 waveforms and save each one in
its own table.

wfrmA = {}

wfrmB = {}

wfrmC = {}

wfrmD = {}

GenerateCI230WaveformA(wfrmA)

GenerateCI230WaveformB(wfrmB)

GenerateCI230WaveformC(wfrmC)

GenerateCI230WaveformD(wfrmD)

The first four lines create table variables in which to store
the waveforms. The second four lines create the waveforms and
store them in the tables. Once the waveform tables have been
generated, outputting any one waveform requires only two lines
of code. For example, to output CI 230 Waveform C, use the
following lines of code.

SetupAWG(0, 20, 0.1, wfrmC, false, nil)
RunAWG()

This first line sets the SMU instrument up for arbitrary
waveform output using the table created earlier as the source
for the waveform. The second line starts the output. Figure 2 is
a scope shot capturing the output of the four waveforms from
a Model 2612B System SourceMeter SMU Instrument. Figure 3
and Figure 4 are close-up views of the start and end of these
waveform outputs.

Figure 2: Output of CI 230 power cycling waveforms from Keithley Model
2612B System SourceMeter SMU Instrument

Figure 3: Close-up view of the start of the CI 230 waveforms from the
Keithley Model 2612B System SourceMeter SMU instrument

Figure 4: Close-up view of the end of the CI 230 waveforms from the Keithley
Model 2612B System SourceMeter SMU Instrument

Conclusion
Arbitrary waveform generators are very powerful tools because
they allow sourcing a waveform of any shape. However, they
are designed for use with small, low power devices and cannot
deliver the current required by larger devices or systems.
SMUs are very versatile instruments that can provide arbitrary
waveform capabilities as well as the current required by larger
devices and systems. With the ability to supply as much as 20A
and 200W of DC power, SMU instruments like the Model 2651A
High Power SourceMeter Instrument are capable of testing even
the most demanding devices. SMU instruments provide the
ability to measure as well as source, so in addition to testing
devices with arbitrary waveforms, they allow monitoring the
device’s current consumption. This provides engineers with
more insight into what their device under test is doing and is
incredibly useful for diagnosis when things go wrong. Using
SMUs, more detailed testing can be performed on devices,
resulting in more robust and reliable designs.

Appendix A: Arbitrary Waveform Script
See the attachment 2600, 2650 Arbitrary Waveform Generator.txt
in this PDF.

Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.

All other trademarks and trade names are the property of their respective companies.

KEITHLEY INSTRUMENTS, INC. ■ 28775 AURORA RD. ■ CLEVELAND, OH 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com

A Greater Measure of Confidence

BENELUX
+31-40-267-5506
www.keithley.nl

BRAZIL
55-11-4058-0229
www.keithley.com

CHINA
86-10-8447-5556
www.keithley.com.cn

FRANCE
+33-01-69-86-83-60
www.keithley.fr

GERMANY
+49-89-84-93-07-40
www.keithley.de

INDIA
080-30792600
www.keithley.in

ITALY
+39-049-762-3950
www.keithley.it

JAPAN
81-120-441-046
www.keithley.jp

KOREA
82-2-6917-5000
www.keithley.co.kr

	 MALAYSIA
 60-4-643-9679
 www.keithley.com

	 MEXICO
 52-55-5424-7907
 www.keithley.com

	 RUSSIA
 +7-495-664-7564
 www.keithley.ru

SINGAPORE
01-800-8255-2835
www.keithley.com.sg

TAIWAN
886-3-572-9077
www.keithley.com.tw

UNITED	KINGDOM
+44-1344-39-2450
www.keithley.co.ukw

For further information on how to purchase or to locate a sales partner please visit www.keithley.com/company/buy

© Copyright 2013 Keithley Instruments, Inc. Printed in the U.S.A No. 3248 12.3.14

-- Arbitrary Waveform Generator Script for Series 2600B and 2650A SourceMeter instruments

--[[

	This script is designed to output an arbitrary waveform using any

	Series 2600A/B SourceMeter instrument or a Series 265oA High Power

	SourceMeter instrument. This script contains functions that

	configure the instrument to output an arbitrary waveform function

	with a fixed source update rate. A user can specify an arbitrary

	waveform by providing the script with a table of output values.

	

	This script is designed to be simple and easy to follow. Due to

	its simplicity it does not include much in the way of parameter and

	error checking. Passing invalid values to any of the functions are

	very likely to create errors. Note: that no error generated should

	cause damage to the SMU. However, inappropriate use could cause

	damage to any device under test.

	

	The user of this script uses it at their own risk!

--]]

-- Local variables used exclusively by this script

local _arbFunc -- Used by script to hold generated waveform tables

local _startV -- Used by script to track the starting voltage

local _srcRate = 8000 -- Source Update Rate used by the script

--[[Sets the source update rate (pts/sec) used by the script. Do not

	set higher than 8,000 if your waveform will have polarity changes

	0V crossings) or you will experience overrun errors and thus

	incomplete output of your waveform. If your	waveform does not

	contain polarity changes (all points are positive or all points are

	negative) then you can go as high as 20,000.

--]]

--[[Name: SetupAWG()

	

	Usage: err,msg = SetupAWG(startV, rangeV, limitI, wfrmTbl, remoteSense, trigLineIn)

	

	Description:

		This function will configure the instrument to output the

		waveform defined in the table wfrmTbl. After calling this

		function you can output the waveform by calling RunAWG().

	

	Parameters:

		startV:		The voltage the output will start from before

			outputing the wavform.

		rangeV:		The voltage range that will be used to source the

			waveform.

		limitI:		The maximum current that will be allowed to flow.

		remoteSense:	Set to true to enable 4-Wire (Kelvin)

			measurements or to false for 2-Wire measurements.

		trigLineIn:	Valid values are between 0 and 14 or nil. 0

			selects the front panel TRIG button. 1 to 14 selects a

			Digital I/O line. Pass nil for immeditate triggering.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occured.

--]]

function SetupAWG(startV, rangeV, limitI, wfrmTbl, remoteSense, trigLineIn)

	-- Do some parameter checks

	--=========================

	if startV == nil then startV = 0 end

	if remoteSense ~= true then remoteSense = false end

	if type(trigLineIn) == "number" then

		trigLineIn = math.floor(trigLineIn)

		if trigLineIn < 0 or trigLineIn > 14 then

			return true, "Error: Selected trigger line is not valid. trigLineIn must be a number between 0 and 14 or nil."

		end

	elseif trigLineIn ~= nil then

		return true,"Error: Invalid parameter trigLineIn. trigLineIn must be a number between 0 and 14 or nil."

	end

	_startV = startV

	-- Setup the SMU for arb waveform output

	--======================================

	reset()

	smua.reset()

	smua.source.func					= smua.OUTPUT_DCVOLTS

	if remoteSense == true then

		smua.sense						= smua.SENSE_REMOTE

	else

		smua.sense						= smua.SENSE_LOCAL

	end

	smua.source.autorangev			= smua.AUTORANGE_OFF

	smua.source.autorangei			= smua.AUTORANGE_OFF

	smua.source.rangev				= rangeV

	smua.source.levelv				= startV

	smua.source.limiti				= limitI

	smua.source.delay				= 0

	smua.source.settling			= smua.SETTLE_FAST_POLARITY

	-- Configure the Trigger Model

	--============================

	-- Timer 1 controls the time per point

	trigger.timer[1].delay			= 1 / _srcRate

	trigger.timer[1].count			= table.getn(wfrmTbl) > 1 and table.getn(wfrmTbl) - 1 or 1

	if trigLineIn == nil then

		-- Immediate

		trigger.timer[1].stimulus	= smua.trigger.ARMED_EVENT_ID

	elseif trigLineIn == 0 then

		-- Front panel TRIG button

		display.trigger.clear()

		trigger.timer[1].stimulus	= display.trigger.EVENT_ID

	else

		-- Digio Trigger

		digio.trigger[trigLineIn].clear()

		digio.trigger[trigLineIn].mode = digio.TRIG_EITHER

		trigger.timer[1].stimulus	= digio.trigger[trigLineIn].EVENT_ID

	end

	trigger.timer[1].passthrough	= true

	

	-- Configure SMU Trigger Model for arb waveform output

	smua.trigger.source.listv(wfrmTbl)

	smua.trigger.source.limiti		= limitI

	smua.trigger.measure.action		= smua.DISABLE

	smua.trigger.endpulse.action	= smua.SOURCE_HOLD

	smua.trigger.endsweep.action	= smua.SOURCE_HOLD

	smua.trigger.count				= table.getn(wfrmTbl)

	smua.trigger.arm.count			= 1

	smua.trigger.arm.stimulus		= 0

	smua.trigger.source.stimulus	= trigger.timer[1].EVENT_ID

	smua.trigger.measure.stimulus	= 0

	smua.trigger.endpulse.stimulus	= 0

	smua.trigger.source.action		= smua.ENABLE

	--==============================

	-- End Trigger Model Configuration

--[[Uncomment this code to output a trigger on line 14 that you can

		use to synchronize other instruments with the ARB output.

	-- Digio Output Trigger

	--=================

	digio.trigger[14].clear()

	digio.trigger[14].mode = digio.TRIG_FALLING

	digio.trigger[14].stimulus = smua.trigger.ARMED_EVENT_ID

	--=================

--]]	

	if errorqueue.count > 0 then

		return true,"Error occured during setup. Please check that your parameters are valid."

	else

		return false,"No error."

	end

end

--[[Name: SetupSineFunction()

	

	Usage: err,msg = SetupSineFunction(frequency, amplitude, offset, limitI, remoteSense, trigLineIn)

	

	Description:

		This function will configure the instrument to output the sine

		wave function. After calling this function call RunAWG() to

		start the output.

	

	Parameters:

		frequency:	The frequency of the sine wave. Recommended values

			are between 0.1 and 1000.

		amplitude:	The amplitude of the sine wave from peak to peak.

		offset:		The offset from 0 for the sine wave output.

		limitI:		The current limit setting.

		remoteSense:Set to true for 4-wire sensing, false for 2-wire

		trigLineIn:	Valid values are between 0 and 14 or nil. 0

			selects the front panel TRIG button. 1 to 14 selects a

			Digital I/O line. Pass nil for immediate triggering.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occured.

--]]

function SetupSineFunction(frequency, amplitude, offset, limitI, remoteSense, trigLineIn)

	_arbFunc = nil

	collectgarbage()

	_arbFunc = {}

	err,msg = GenerateSineWaveform(frequency, amplitude, offset, _arbFunc)

	if err then return err,msg end

	return SetupAWG(offset, math.abs(amplitude)/2 + math.abs(offset), limitI, _arbFunc, remoteSense, trigLineIn)

end

--[[Name: SetupSquareFunction()

	

	Usage: err,msg = SetupSquareFunction(frequency, amplitude, offset, dutyCycle, limitI, remoteSense, trigLineIn)

	Description:

		This function will configure the instrument to output the

		square wave function. After calling this function call

		RunAWG() to start the output.

		Note: This function is only provided for completeness. Series

		2600B and 2650A instruments provide pulse functions that are

		better suited for square wave output than this script. These

		factory pulse functions allow for pulse width resolution of

		1us.

	

	Parameters:

		frequency:	The frequency of the output. Recommended values

			are between 0.1 and 1000.

		amplitude:	The amplitude of the square wave from peak to peak.

		offset:		The offset from 0 for the square wave output.

		dutyCycle:	Sets the duty cycle of the square wave. Valid

			values are a ratio of high to low time and between 0 and 1.

		limitI:		The current limit setting.

		remoteSense:Set to true for 4-wire sensing, false for 2-wire

		trigLineIn:	Valid values are between 0 and 14 or nil. 0

			selects the front panel TRIG button. 1 to 14 selects a

			Digital I/O line. Pass nil for immediate triggering.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occured.

--]]

function SetupSquareFunction(frequency, amplitude, offset, dutyCycle, limitI, remoteSense, trigLineIn)

	_arbFunc = nil

	collectgarbage()

	_arbFunc = {}

	err,msg = GenerateSquareWaveform(frequency, amplitude, offset, dutyCycle, _arbFunc)

	if err == true then return err,msg end

	return SetupAWG(offset - amplitude/2, math.abs(amplitude)/2 + math.abs(offset), limitI, _arbFunc, remoteSense, trigLineIn)

end

--[[Name: SetupRampFunction()

	

	Usage: err,msg = SetupRampFunction(frequency, amplitude, offset, symmetry, limitI, remoteSense, trigLineIn)

	

	Description:

		This function will configure the instrument to output the ramp

		function. After calling this function call RunAWG() to start

		the output.

	

	Parameters:

		frequency:	The frequency of the output. Recommended values

			are between 0.1 and 1000.

		amplitude:	The amplitude of the ramp function from peak to peak

		offset:		The offset from 0 for the ramp function output

		symmetry:	Sets the symmetry of the square wave. Valid values

			are a ratio of ramp up to ramp down time, between 0 and 1.

		limitI:		The current limit setting.

		remoteSense:Set to true for 4-wire sensing, false for 2-wire

		trigLineIn:	Valid values are between 0 and 14 or nil. 0

			selects the front panel TRIG button. 1 to 14 selects a

			Digital I/O line. Pass nil for immediate triggering.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occured.

--]]

function SetupRampFunction(frequency, amplitude, offset, symmetry, limitI, remoteSense, trigLineIn)

	_arbFunc = nil

	collectgarbage()

	_arbFunc = {}

	err,msg = GenerateRampWaveform(frequency, amplitude, offset, symmetry, _arbFunc)

	if err then return err,msg end

	return SetupAWG(offset - amplitude/2, math.abs(amplitude)/2 + math.abs(offset), limitI, _arbFunc, remoteSense, trigLineIn)

end

--[[Name: SetupPulseFunction()

	Usage: err,msg = SetupPulseFunction(period, high, low, pulseWidth, limitI, remoteSense, trigLineIn)

	

	Description:

		This function will configure the instrument to output the

		pulse function. After calling this function call RunAWG()

		to start the output.

		Note: This function is only provided for completeness. Series

		2600B and 2650A instruments provide pulse functions that are

		better suited for pulse output than this script. The pulse

		functions allow for pulse width resolution of 1us.

	

	Parameters:

		period:	The length in time of one pulse cycle in seconds.

			Value must be greater than pulseWidth.

		high:	The peak value of the pulse.

		low:	The base level of the pulse.

		pulseWidth: The width of the pulse in seconds.

		limitI:		The current limit setting.

		remoteSense:Set to true for 4-wire sensing, false for 2-wire

		trigLineIn:	Valid values are between 0 and 14 or nil. 0

			selects the front panel TRIG button. 1 to 14 selects a

			Digital I/O line. Pass nil for immediate triggering.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occured.

--]]

function SetupPulseFunction(period, high, low, pulseWidth, limitI, remoteSense, trigLineIn)

	_arbFunc = nil

	collectgarbage()

	_arbFunc = {}

	err,msg = GeneratePulseWaveform(period, high, low, pulseWidth, _arbFunc)

	if err then return err,msg end

	return SetupAWG(low, math.abs(high), limitI, _arbFunc, remoteSense, trigLineIn)

end

--[[Name: SetupNoiseFunction()

	Usage: err,msg = SetupNoiseFunction(amplitude, offset, lengthSeconds, limitI, remoteSense, trigLineIn)

	

	Description:

		This function will configure the instrument to output the

		noise function. After calling this function call RunAWG()

		to start the output.

	

	Parameters:

		amplitude:	The amplitude of the noise from peak to peak

		offset:		The offset from 0 for the noise output

		lengthSeconds: Sets the amount of time the noise outputs before

			it repeats.

		limitI:		The current limit setting.

		remoteSense:Set to true for 4-wire sensing, false for 2-wire

		trigLineIn:	Valid values are between 0 and 14 or nil. 0

			selects the front panel TRIG button. 1 to 14 selects a

			Digital I/O line. Pass nil for immediate triggering.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occured.

--]]

function SetupNoiseFunction(amplitude, offset, lengthSeconds, limitI, remoteSense, trigLineIn)

	_arbFunc = nil

	collectgarbage()

	_arbFunc = {}

	err,msg = GenerateNoiseWaveform(amplitude, offset, lengthSeconds, _arbFunc)

	if err then return err,msg end

	return SetupAWG(offset, math.abs(amplitude)/2 + math.abs(offset), limitI, _arbFunc, remoteSense, trigLineIn)

end

--[[Name: RunAWG()

	

	Usage: err,msg = RunAWG(numCycles)

	

	Description:

		This function turns the SMU output on and starts waveform

		output. Use StopAWG() to stop the waveform output and turn the

		SMU output off.

	

	Parameters:

		numCycles: The number of cycles of the waveform that the SMU

			will output. Setting this value to 0 will cause the SMU to

			output the waveform indefinitely. If this parameter is

			omitted then only one cycle will be output.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occured.

--]]

function RunAWG(numCycles)

	if numCycles == nil or numCycles < 0 then

		numCycles = 1

	end

	

	-- Set the number of cycles to output

	smua.trigger.arm.count = numCycles

	-- Turn output on

	smua.source.output = smua.OUTPUT_ON

	-- Start the trigger model execution

	smua.trigger.initiate()

	if errorqueue.count > 0 then

		return true,"Error occurred. See error queue for details."

	else

		return false,"No error."

	end

end

--[[Name: StopAWG()

	Usage: err,msg = StopAWG()

	Description:

		This function stops the waveform output and turns the SMU

		output off.

--]]

function StopAWG()

	smua.abort()

	smua.source.output = 0

	smua.source.levelv = _startV

	if errorqueue.count > 0 then

		return true,"Error occured. See error queue for details."

	else

		return false,"No error."

	end

end

--[[Name: ReadWaveformFromFile()

	Usage: err,msg = ReadWaveformFromFile(filepath, wfrmTbl)

	

	Description:	This function reads the contents of a .csv file and

		loads it into a table that can be used with the SetupAWG()

		function. The .csv file must be loacated on a USB thumbdrive

		inseted into the front panel of the instrument. This function

		expects the .csv file to be in a format where each point in the

		waveform is on its own line. This function makes it possible to

		generate a list of points in a program such as Excel and load

		them into the instrument.

	

	Parameters:

		filepath: A string containing the path to the .csv file located

			on the USB drive

		wfrmTbl: The table where the contents of the .csv file

			will be loaded to.

	Returns:

		err: Returns true if error was detected else returns false

		msg: A string describing the error that occurred.

--]]

function ReadWaveformFromFile(filepath, wfrmTbl)

	local file

	local err

	file, err = io.open(filepath, "r")

	if err ~= nil then

		return true, "Error: Could not open file."

	end

	local line = file:read()

	local i = 1

	while line ~= nil do

		wfrmTbl[i] = tonumber(line)

		i = i + 1

		line = file:read()

	end

	io.close(file)

	return false, "No error."

end

--[[Name: GenerateCI230WaveformX()

	Usage: GenerateCI230WaveformX(wfrmTbl)

	Description:

		The functions below generate waveform tables for the CI 230

		waveforms as specified in the Ford EMC-CS-2009.1 specification.

		Replace the X in GenerateCI230WaveformX with the desired

		waveform to generate (A, B, C, or D).

	Parameters:

		wfrmTbl:	A table to store the generated waveform in.

--]]

function GenerateCI230WaveformA(wfrmTbl)

	-- 100msec of 12.5V then back to 0V for 11 seconds then end at 13.5 V

	-- # of points in a segment =

	-- length of the segment in seconds X source update rate

	

	-- 1) 100ms of 12.5V

	local seg1 = 0.100 * _srcRate

	for i=1, seg1 do

		wfrmTbl[i] = 12.5

	end

	

	-- 2) 11 seconds of 0V

	local seg2 = seg1 + 11 * _srcRate

	for i=seg1+1, seg2 do

		wfrmTbl[i] = 0

	end

	

	-- 3) Add an extra point so output goes to 13.5 at the end

	wfrmTbl[seg2 + 1] = 13.5

end

function GenerateCI230WaveformB(wfrmTbl)

	-- 0V for 5ms, 12.5V for 200ms, ramp from 12.5 down to 5V over 5ms, 5V for 15ms, ramp from 5V to 9V over 50ms,

	-- 4HZ sine wave centered at 9V with 2V pk-pk for 10s, ramp from 9V to 13.5V over 500ms, 13.5V for 325 ms, end at 13.5V

	local stepsize = 0

	

	-- 1) 0V for 5ms

	local seg1 = 0.005 * _srcRate

	for i=1, seg1 do

		wfrmTbl[i] = 0

	end

	

	-- 2) 12.5V for 200ms

	local seg2 = seg1 + 0.200 * _srcRate

	for i=seg1+1, seg2 do

		wfrmTbl[i] = 12.5

	end

	

	-- 3) Ramp 12.5V -> 5V over 5ms

	local seg3 = seg2 + 0.005 * _srcRate

	stepsize = (5 - 12.5)/(0.005 * _srcRate)

	for i=seg2+1, seg3 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 4) 5V for 15ms

	local seg4 = seg3 + 0.015 * _srcRate

	for i=seg3+1, seg4 do

		wfrmTbl[i] = 5

	end

	

	-- 5) Ramp 5V -> 9V over 50ms

	local seg5 = seg4 + 0.050 * _srcRate

	stepsize = (9-5)/(0.050 * _srcRate)

	for i=seg4+1, seg5 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 6) 4Hz Sine centered at 9V with 2V pk-pk for 10s

	local seg6 = seg5 + 10 * _srcRate

	for i=seg5+1, seg6 do

		wfrmTbl[i] = 2/2*math.sin(4 * 2*math.pi*(i-seg5)/_srcRate) + 9

	end

	

	-- 7) Ramp from 9V to 13.5V over 500ms

	local seg7 = seg6 + 0.500 * _srcRate

	stepsize = (13.5 - 9)/(0.500 * _srcRate)

	for i=seg6+1, seg7 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 8) 13.5V for 325ms

	local seg8 = seg7 + 0.325 * _srcRate

	for i=seg7+1, seg8 do

		wfrmTbl[i] = 13.5

	end

end

function GenerateCI230WaveformC(wfrmTbl)

	-- 0V for 190ms, 12.5V for 15ms, ramp from 12.5 down to 5V over 5ms, 5V for 15ms, ramp from 5V to 9V over 50ms,

	-- 4HZ sine wave centered at 9V with 2V pk-pk for 10s, ramp from 9V to 13.5V over 500ms, 13.5V for 100 ms, end at 0V

	local stepsize = 0

	

	-- 1) 0V for 190ms

	local seg1 = 0.190 * _srcRate

	for i=1, seg1 do

		wfrmTbl[i] = 0

	end

	

	-- 2) 12.5V for 15ms

	local seg2 = seg1 + 0.015 * _srcRate

	for i=seg1+1, seg2 do

		wfrmTbl[i] = 12.5

	end

	

	-- 3) Ramp 12.5V -> 5V over 5ms

	local seg3 = seg2 + 0.005 * _srcRate

	stepsize = (5 - 12.5)/(0.005 * _srcRate)

	for i=seg2+1, seg3 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 4) 5V for 15ms

	local seg4 = seg3 + 0.015 * _srcRate

	for i=seg3+1, seg4 do

		wfrmTbl[i] = 5

	end

	

	-- 5) Ramp 5V -> 9V over 50ms

	local seg5 = seg4 + 0.050 * _srcRate

	stepsize = (9-5)/(0.050 * _srcRate)

	for i=seg4+1, seg5 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 6) 4Hz Sine centered at 9V with 2V pk-pk for 10s

	local seg6 = seg5 + 10 * _srcRate

	for i=seg5+1, seg6 do

		wfrmTbl[i] = 2/2*math.sin(4 * 2*math.pi*(i-seg5)/_srcRate) + 9

	end

	

	-- 7) Ramp from 9V to 13.5V over 500ms

	local seg7 = seg6 + 0.500 * _srcRate

	stepsize = (13.5 - 9)/(0.500 * _srcRate)

	for i=seg6+1, seg7 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 8) 13.5V for 100ms

	local seg8 = seg7 + 0.100 * _srcRate

	for i=seg7+1, seg8 do

		wfrmTbl[i] = 13.5

	end

	

	-- 9) End at 0V for 225ms

	local seg9 = seg8 + 0.225 * _srcRate

	for i=seg8+1, seg9 do

		wfrmTbl[i] = 0

	end

end

function GenerateCI230WaveformD(wfrmTbl)

	-- 12.5V for 205ms, ramp from 12.5V down to 5V over 5ms, 5V for 15ms, ramp from 5V to 9V over 50ms,

	-- 4HZ sine wave centered at 9V with 2V pk-pk for 10s, ramp from 9V to 13.5V over 500ms, end at 13.5V

	local stepsize = 0

	

	-- 1) 12.5V for 205ms

	local seg1 = 0.205 * _srcRate

	for i=1, seg1 do

		wfrmTbl[i] = 12.5

	end

	

	-- 2) Ramp 12.5V -> 5V over 5ms

	local seg2 = seg1 + 0.005 * _srcRate

	stepsize = (5 - 12.5)/(0.005 * _srcRate)

	for i=seg1+1, seg2 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 3) 5V for 15ms

	local seg3 = seg2 + 0.015 * _srcRate

	for i=seg2+1, seg3 do

		wfrmTbl[i] = 5

	end

	

	-- 4) Ramp 5V -> 9V over 50ms

	local seg4 = seg3 + 0.050 * _srcRate

	stepsize = (9-5)/(0.050 * _srcRate)

	for i=seg3+1, seg4 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 5) 4Hz Sine centered at 9V with 2V pk-pk for 10s

	local seg5 = seg4 + 10 * _srcRate

	for i=seg4+1, seg5 do

		wfrmTbl[i] = 2/2*math.sin(4 * 2*math.pi*(i-seg4)/_srcRate) + 9

	end

	

	-- 6) Ramp from 9V to 13.5V over 500ms

	local seg6 = seg5 + 0.500 * _srcRate

	stepsize = (13.5 - 9)/(0.500 * _srcRate)

	for i=seg5+1, seg6 do

		wfrmTbl[i] = wfrmTbl[i-1] + stepsize

	end

	

	-- 7) End at 13.5V for 325ms

	local seg7 = seg6 + 0.325 * _srcRate

	for i=seg6+1, seg7 do

		wfrmTbl[i] = 13.5

	end

end

--[[

	The functions below are utility functions used by the Setup

	functions to generate the waveform points. You do not need to call

	these functions yourself unless you wish to generate your own copy

	of the waveform table for these Arb Functions.

	

	Note: These functions do only a minimal amount of error checking

--]]

function GenerateSineWaveform(frequency, amplitude, offset, wfrmTbl)

	if frequency > (_srcRate / 4) then

		return true, "Frequency must be less than 1/4 th source rate."

	elseif frequency <= 0 then

		return true, "Frequency must be greater than 0."

	end

	

	local pointsInCycle = math.floor(_srcRate / frequency)

	for i=1, pointsInCycle do

		wfrmTbl[i] = amplitude / 2 * math.sin(frequency * 2 * math.pi*(i)/_srcRate) + offset

	end

	return false, "No error."

end

function GenerateSquareWaveform(frequency, amplitude, offset, dutyCycle, wfrmTbl)

	if frequency > (_srcRate / 4) then

		return true, "Frequency must be less than 1/4 th source rate."

	elseif frequency <= 0 then

		return true, "Frequency must be greater than 0."

	end

	if dutyCycle < 0 or dutyCycle > 1 then

		return true,"dutyCycle must be a number between 0 and 1."

	end

	local pointsInCycle = math.floor(_srcRate / frequency)

	local highPoints = math.floor(pointsInCycle * dutyCycle)

	if dutyCycle == 0 then

		for i=1, pointsInCycle do wfrmTbl[i] = offset - amplitude / 2 end

	elseif dutyCycle == 1 then

		for i=1, pointsInCycle do wfrmTbl[i] = offset + amplitude / 2 end

	else

		for i=1, highPoints do

			wfrmTbl[i] = offset + amplitude / 2

		end

		for i=highPoints + 1, pointsInCycle do

			wfrmTbl[i] = offset - amplitude / 2

		end

	end

	return false, "No error."

end

function GenerateRampWaveform(frequency, amplitude, offset, symmetry, wfrmTbl)

	if frequency > (_srcRate / 4) then

		return true, "Frequency must be less than 1/4 th source rate."

	elseif frequency <= 0 then

		return true, "Frequency must be greater than 0."

	end

	if symmetry < 0 or symmetry > 1 then

		return true,"symmetry must be a number between 0 and 1."

	end

	local pointsInCycle = math.floor(_srcRate / frequency)

	local risePoints = math.floor(pointsInCycle * symmetry)

	local fallPoints = pointsInCycle - risePoints

	if symmetry == 0 then

		for i=1, pointsInCycle do

			wfrmTbl[i] = offset + amplitude / 2 - amplitude * (i / pointsInCycle)

		end

	elseif symmetry == 1 then

		for i=1, pointsInCycle do

			wfrmTbl[i] = offset - amplitude / 2 + amplitude * (i / pointsInCycle)

		end

	else

		for i=1, risePoints do

			wfrmTbl[i] = offset - amplitude / 2 + amplitude * (i / risePoints)

		end

		for i=1, fallPoints do

			wfrmTbl[risePoints + i] = offset + amplitude / 2 - amplitude * (i / fallPoints)

		end

	end

	return false, "No error."

end

function GeneratePulseWaveform(period, high, low, pulseWidth, wfrmTbl)

	if pulseWidth < (1/_srcRate) then

		return true,string.format("pulseWidth must be greater than %0.6g seconds.", 1/_srcRate)

	end

	if pulseWidth > period then

		return true, "pulseWidth must be less than period."

	end

	local pointsInCycle = math.floor(period * _srcRate)

	local highPoints = math.floor(pulseWidth * _srcRate)

	

	for i=1, highPoints do

		wfrmTbl[i] = high

	end

	for i=highPoints + 1, pointsInCycle do

		wfrmTbl[i] = low

	end

	return false, "No error."

end

function GenerateNoiseWaveform(amplitude, offset, lengthSeconds, wfrmTbl)

	if lengthSeconds < (1/_srcRate) then

		return true,string.format("lengthSeconds must be greater than or equal to %0.6g seconds.", 1/_srcRate)

	end

	for i=1, math.floor(_srcRate * lengthSeconds) do

		wfrmTbl[i] = amplitude * math.random() - amplitude / 2 + offset

	end

	return false, "No error."

end

function test()

	wfrmA = {}

	wfrmB = {}

	wfrmC = {}

	wfrmD = {}

	GenerateCI230WaveformA(wfrmA)

	GenerateCI230WaveformB(wfrmB)

	GenerateCI230WaveformC(wfrmC)

	GenerateCI230WaveformD(wfrmD)

end

