
6/27/22, 7:12 AM MC6800 disassembler available for Ghidra

https://groups.io/g/TekScopes/message/194319 1/4

/  Messages (https://groups.io/g/TekScopes/messages?msgnum=194319)
/  MC6800 disassembler available for Ghidra

 Mute This Topic (https://groups.io/g/TekScopes/ft/91988908/194319?csrf=5513314409256117711&mute=1&p=%2C%2C%2C20%2C0%2C0%2C0)

MC6800 disassembler available for Ghidra

Single

Hey y'all,

TL;DR: you can now disassemble and successfully reverse MC6800 with Ghidra
by downloading this (
https://github.com/sigurasg/ghidra/tree/6800-specs-add/Ghidra/Processors/MC6800
(https://github.com/sigurasg/ghidra/tree/6800-specs-add/Ghidra/Processors/MC6800))
language spec.

Some time before Christmas I'd set about reverse engineering the ROMs in
the 2465 as a project. I started by downloading Ghidra, and running the
6805 disassembler on the ROMs. This didn't work at all, as it turns out the
6805 is a VERY different architecture and instruction set than the MC6800
(6802/6808 et al).
After discovering this, I set about writing a processor "language spec" for
the MC6800 for Ghidra, which was aided a fair bit by the existence of a
MC6809 processor spec. The results from using my spec were quite
disappointing, so I shifted to writing a MAME emulator for the 2465 instead.

Last week I was contacted by someone who's been trying to use my MC6800
spec to reverse some pinball machines, complaining about how I was handling
the JMP/JSR instructions. While looking at the patch they sent me, I
realized that there was a big gaffe in my language spec. Instead of
handling the operands to JSR/JMP as effective addresses, I'd been
dereferencing them.
After fixing this gaffe, Ghidra works like magic for me. If you've ever
reverse-engineered firmware before, but haven't used Ghidra (or IDA Pro)
before, you'll be amazed - guaranteed. The big trick those tools have is
"decompilation" where the assembly code is summarized into C-like code,
which makes it almost humane to read.

As a case in point, here's the "decompiled" reset routine from the 2465
after spending about 15 minutes to set up a memory map with suitable
definitions for the scope's IO registers and massaging the RAM test portion
of it for better results.
From this code it's reasonably easy to see what's initialized on RESET, how
the RAM is tested and so on.

--- cut here ---
/* WARNING: Switch with 1 destination removed at 0xff37 */
/* WARNING: Globals starting with '_' overlap smaller symbols at the same
address */

 Siggi
Jun 25  (https://groups.io/g/TekScopes/message/194319)

https://groups.io/g/TekScopes/messages?msgnum=194319
https://groups.io/g/TekScopes/ft/91988908/194319?csrf=5513314409256117711&mute=1&p=%2C%2C%2C20%2C0%2C0%2C0
https://github.com/sigurasg/ghidra/tree/6800-specs-add/Ghidra/Processors/MC6800
https://groups.io/g/TekScopes/message/194319

6/27/22, 7:12 AM MC6800 disassembler available for Ghidra

https://groups.io/g/TekScopes/message/194319 2/4

void RESET_SERVICE(void)
{
 bool bVar1;
 byte bits_to_set;
 byte bits_expected;
 undefined uVar2;
 byte bit_count;
 byte ros_2_data;
 byte *ram_ptr;
 byte *ram_ptr2;
 byte *ram_ptr3;
 bool last_bit;

 bit_count = 0x38;
 write_volatile_1(IORegion_0800.io.PORT2_CLK[0],0x21);
 do {
 read_volatile(IORegion_0800.io.fine[0].LED_CLK);
 read_volatile(IORegion_0800.io.fine[0].DISP_SEQ_CLK);
 bit_count = bit_count - 1;
 } while (bit_count != 0);
 ros_2_data = 0xbf;
 do {
 write_volatile_1(IORegion_0800.io.ROS_2_CLK[0],ros_2_data);
 ros_2_data = ros_2_data >> 1;
 } while (ros_2_data != 0);
 read_volatile(IORegion_0800.io.ROS_1_CLK[0]);
 read_volatile(IORegion_0800.io.ROS_1_CLK[0]);
 do {
 SMALL_RAMTOP = 0;
 _DAT_07fe = CONCAT11(DAT_07fe,0xff);
 ram_ptr = (byte *)&IORegion_0800;
 do {
 ram_ptr = ram_ptr + -1;
 *ram_ptr = 0;
 } while (ram_ptr != (byte *)0x0);
 ram_ptr2 = (byte *)&IORegion_0800;
 do {
 ram_ptr2 = ram_ptr2 + -1;
 if (*ram_ptr2 != 0) {
RAM_BAD:
 /* WARNING: Subroutine does not return */
 KERNEL_TEST_FAILURE(0);
 }
 bits_to_set = 0x80;
 do {
 *ram_ptr2 = bits_to_set;
 if (bits_to_set != *ram_ptr2) goto RAM_BAD;
 last_bit = (bool)(bits_to_set & 1);
 bits_to_set = bits_to_set & 0x80 | (char)bits_to_set >> 1;
 } while (last_bit == false);
 } while (ram_ptr2 != (byte *)0x0);
 ram_ptr3 = (byte *)&IORegion_0800;
 do {
 ram_ptr3 = ram_ptr3 + -1;
 bits_expected = 0xff;

6/27/22, 7:12 AM MC6800 disassembler available for Ghidra

https://groups.io/g/TekScopes/message/194319 3/4

 do {
 if (bits_expected != *ram_ptr3) goto RAM_BAD;
 *ram_ptr3 = *ram_ptr3 >> 1;
 bVar1 = (bool)(bits_expected & 1);
 bits_expected = bits_expected >> 1;
 } while (bVar1);
 } while (ram_ptr3 != (byte *)0x0);
 _DAT_07fe = 0xfca8;
 uVar2 = FUN_f35f();
 if (DAT_01e2 != '\0') {
 /* WARNING: Subroutine does not return */
 KERNEL_TEST_FAILURE(uVar2);
 }
 if ((byte)~DAT_1004 == DAT_1005) {
 _DAT_07fe = 0xfcbf;
 FUN_f35f();
 if (DAT_01e2 != '\0') {
 if (DAT_01e2 != -0x7d) {
LAB_fcd9:
 /* WARNING: Subroutine does not return */
 KERNEL_TEST_FAILURE(0xf1);
 }
 DAT_01e2 = '\0';
 _DAT_07fe = 0xfcd1;
 FUN_f39c();
 if (DAT_0157 != _DAT_1007) goto LAB_fcd9;
 }
 _DAT_07fe = 0xfce1;
 uVar2 = FUN_100f();
 if (DAT_01e2 != '\0') {
 /* WARNING: Subroutine does not return */
 KERNEL_TEST_FAILURE(uVar2);
 }
 DAT_7fff = 0x40;
 if (DAT_400f == '@') {
 DAT_7f87 = 1;
 _DAT_07fe = 0xfcfd;
 FUN_ff39();
 }
 DAT_7fff = 0x80;
 if (DAT_400f == -0x80) {
 DAT_7f94 = DAT_7f90 | 4;
 DAT_7f96 = 2;
 _DAT_07fe = 0xfd1e;
 FUN_ff39();
 }
 }
 _DAT_07fe = 0xfd23;
 FUN_c570();
 _DAT_07fe = 0xfd26;
 FUN_c8f3();
 _DAT_07fe = 0xfd2b;
 FUN_c570();
 _DAT_07fe = 0xfd30;
 FUN_c570();

6/27/22, 7:12 AM MC6800 disassembler available for Ghidra

https://groups.io/g/TekScopes/message/194319 4/4

 DAT_0090 = 0xbf;
 } while(true);
}
--- cut here ---
I'm trying to get this spec merged into the Ghidra distribution, but alas
without luck so far.

Siggi

 Reply  Like  More

 (https://groups.io/g/TekScopes/message/194318) #194319  (https://groups.io/g/TekScopes/message/194320)

https://groups.io/g/TekScopes/message/194318
javascript:void(0)
https://groups.io/g/TekScopes/message/194320

