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Introduction

An accurate, high resolution spectrum analyzer can not
only make modulation measurements, it can also reveal
additional information about modulated signals.

Amplitude modulation, single sideband modulation
and frequency modulation measurements are described
and examples of typical spectrum analyzer displays are
given. Modulation depth can be determined to as low as
0-02%, harmonic distortion can be assessed and
measured. Using the zero span mode the demodulated
signal can be viewed.

Single sideband measurements that can be made with
a spectrum analyzer include modulation distortion, carrier
suppression, sideband breakthrough and spurious signal
identification.

Frequency modulation analysis is very important
since the Bessel null method may be used to calibrate
modulation meters and other equipment to a very high
degree of accuracy. An FM demodulation mode in the
2382 spectrum analyzer is used to view and measure
demodulated signals.
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Amplitude Modulation
Amplitude modulation is best understood theoretically
by considering an amplitude modulated wave to consist
of two separate signals, the r.f. carrier and the modulation
signal.

Let the carrier frequency be f., then the waveform can
be represented by:

V. = V¢ sin o.t, where o, = 27f,

Let the modulating signal frequency be f,, then it can
be represented by:

Vi = Vi sinot, where o, = 27f,

The modulated carrier is thus

Ve = (Ve + Vi sin opt) sin ogt

The ratio V.,/V. is the modulation depth, m,
then V,, = m V.

Thus v, = V¢ sin ot + m V. sin o,t sin ot

Now sin wt sin wnt = V2 [cos (0. — o)t

— cos (we + wm)t]

Hence v, = V¢ sin ot + (MVe) cos (W — o) t
_ (mVy)
2

cos (e + Om)t
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From this equation it can be seen that there are three
components of an amplitude modulated signal. The first
term is the carrier frequency which is of constant amplitude
and frequency. The second term is the lower sideband and
the third term is the upper sideband.

The two sidebands have an amplitude proportional to
the modulation index m and they are separated from the
carrier by frequency fc. For 100% modulation, half of the
power is in the sidebands so each sideband amplitude will
be 6 dB less than that of the carrier. For lower modulation
depths the sideband amplitudes are reduced. Figure 1
shows the theoretical spectrum of a carrier amplitude
modulated by a single frequency sinewave.

fc—fm fc fc+fm

Figure 1. Theoretical spectrum of a carrier amplitude
modulated by a single frequency sinewave.

Figure 2 shows a display from the 2382 Spectrum
Analyzer using the GPIB direct plot facility. An 88 MHz

Table 1 shows modulation depth for a range of carrier/
sideband amplitude differences.

Carrier/sideband Modulation
amplitude difference (dB) depth (%)
(m)
&
6 100
7.9 80
10.4 60
12 50
16.5 30
26 10
46 1
60 0.2
80 0.02

Table 1. Modulation depths for a range of
carrier/sideband amplitude differences.

Figure 3 shows the relationship between modulation
depth and carrier/sideband amplitude difference plotted
graphically, this graph may be used to quickly determine
modulation depth.
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Figure 2. Amplitude modulation. 1-75 kHz modulation
frequency, 50% modulation depth.
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Figure 3. Carrier/Sideband amplitude difference plotted
against modulation depth.



Modulation depths as low as 0-02% can be determined
with the 2382 as shown in figure 4. It is significant to realize
that such a low level of modulation would not be
discernible with an oscilloscope and that even lower levels
could be measured especially because with the 3Hz filter in
the 2382 very low signals can be resolved.
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Figure 4. Low level amplitude modulation depth of 0-02%

Harmonic distortion can also be measured, figure 5
shows the spectrum with 80% modulation depth.
Harmonics of the.modulation frequency give additional
symmetrical sidebands, the 2nd harmonic products at
3.50 kHz are approximately 30 dB down. The 3rd, 4th and
5th harmonics can also be measured and thus the total
harmonic distortion can be calculated.
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Figure 5. Harmonic distortion products ofa.m. sidebands.

Zero span mode is invaluable when analysing and
measuring amplitude modulation. The instrument is
turned into a fixed tuned receiver and the display shows
the demodulated waveform. For a valid display the
resolution bandwidth should be at least twice the
modulation frequency. A linear (volts/division) vertical
scale is generally used in zero span since a logarithmic
vertical scale is unfamiliar. Figure 6 shows the same signal
analyzed in figure 2 displayed on zerasspan mode, the
horizontal scale is 200 us/division so the modulation rate
can also be measured from this display. A notable feature
of the 2382 is that the timebase is very accurate since it is
locked to the crystal reference standard.
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Figure 6. Zero Span mode used to display demodulated
a.m.

Off-Air Measurements

AM broadcast transmitters can be analyzed using the 2382.
Figure 7 makes use of the MAX HOLD facility to show
spectrum occupancy. Many successive sweeps are stored
so that any over-modulation causing an excessively wide
bandwidth can be monitored.
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Figure 7. Max Hold mode used to measure a.m. spectrum
occupancy.



Zero span mode is also invaluable for off-air
monitoring, figure 8 shows a typical example. 2382 has a
built in loudspeaker which is accessed with the AUDIO key
so that the demodulated signal can be heard as well as
seen.
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Figure 8. Zero Span used to demodulate an a.m.

broadcast transmitter.

Single Sideband Modulation

Single sideband {SSB) modulation is similar to amplitude
modulation but only one sideband is transmitted and the
carrier is suppressed. The advantage of this method of
modulation is that spectrum occupancy is reduced and
transmitted power is less.

Many measurements need to be made on SSB
transmitters, two key ones will be examined. Further
detailed information is given in Measuretest number 54
“Using the Marconi 2382 400 MHz Spectrum Analyzer for
SSB and CW Transmitter Testing”.

Figure 9 shows the spectrum from an SSB transmitter
with a 1 kHz test tone applied to the upper sideband.
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Figure 9. SSB transmitter. 1 kHz test tone applied to upper
sideband.

Four important aspects can be analyzed from figure 9.

— Harmonic distortion. As well as the 1 kHz test tone in the
upper sideband there are additional distortion products
at 2 kHz and 3 kHz.

— Carrier suppression. The carrier is not completely
suppressed, the amplitude is approximately —67dBm.

— Lower sideband breakthrough. Unwanted breakthrough
into the lower sideband can be quantified, there are
significant components at 1 kHz and 3 kHz. ¢

— Spurious signals. Unwanted signals and noise are also
present in the upper sideband.

Figure 10 shows an even more important measurement,
the intermodulation performance. Two audio test tones at
1 kHz and 2 kHz are fed into the input of the transmitter.
Intermodulation, caused by non-linerity throughout the
transmitter, has caused intermodulation products to be
generated.
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Figure 10. SSB transmitter. 1 kHz and 2 kHz test tones to
measure intermodulation.

There are two aspects to be analyzed.

— Upper sideband. Intermodulation products at 3 kHz and
4 kHz indicate that the transmitter will occupy excessive
bandwidth since out of band intermodulation products
are generated as well as other spurious signals.

— Lower sideband. Intermodulation products falling in the
lower sideband are seen especially at 1kHz and 2kHz.
This is a problem because they will affect the quality of
information transmitted in a lower sideband if
independent sideband (ISB) transmission is used. If ISB
is not used then the intermodulation products will again
cause excessive bandwidth occupancy.



Frequency Modulation

An r.f. carrier of frequency f., frequency modulated by a
single sinusoidal tone of frequency f,, with modulation
index m can be expressed in the form:

Ve = V¢ sin (ot — m cosmmt)
Frequency Deviation

where modulation index m =
Modulation Frequency

The equation can be further expanded:

Ve = V¢ [Jo(m) sin ot
— J; (M) [cos (w¢ + ®p)t + cos (0, — w,)t]
— Jo (M) [sin (w¢ + 20,)t + sin (0, — 20,1
— J; (m) [sin. ..

This reveals that an f.m. spectrum theoretically has an
infinite number of sidebands which are symmetrical about
the carrier and separated by the modulation frequency. An
f.m. spectrum is thus more complex than an a.m.
spectrum. Sideband and carrier amplitudes are determined
by the unmodulated carrier amplitude and the Bessel
functions Jo, J1, J2, ... etc. and the modulation index. In
practice there is a finite number of sidebands since the
amplitudes of the higher frequency ones rapidly reduce to
zero and have negligible amplitude. The bandwidth of an
f.m. signal can be détermined by using Carson’s rule. This
states that the bandwidth is twice the sum of the maximum
frequency deviation and the modulating frequency. Figure
11 shows a typical spectrum of an f.m. signal.
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Typical f.m. spectrum. 1 kHz modulation
frequency, 3 kHz deviation.

Figure 11.

The carrier amplitude is not constant, it varies according
to the modulation index (peak deviation/modulation
frequency) and may become zero. Sideband amplitudes
also become zero at specific values of modulation index.
Modulation indices at which the carrier or sidebands have
zero amplitude can be calculated. Table 2 gives some
examples of the zeros, or Bessel nulls as they are more
commonly called.

&
Modulation Index

Order

of 1st Pair 2nd Pair 3rd Pair
Null Carrier | Sidebands| Sidebands| Sidebands

1 2-4048 3-832 5-136 6.380

2 5-5201 7-016 8417 9-761

3 8-6531 10-173 11-620 13-015

4 11.7915 13:324 14.796 16-223

5 14.9309 16-471 17-960 19-409

Table 2. Carrier and sideband Bessel nulls for a range of
conditions °

Such a table has limited practical use, what is more
valuable is a table which shows how to set up accurately
known deviations. Suppose for example that one wishes to
generate an f.m. deviation of 10 kHz. We know that if the
carrier amplitude drops to zero for the first time then the
modulation index is 2:4048, so the desired modulation
frequency can be calculated as follows:

. A FM Deviation
Since Modulation Index =

Modulation Frequency

FM Deviation

Then Modulation Frequency=

|

Modulation Index

10 kHz

2-4048

= 4-158 kHz

More practical values are given in table 3, this gives the
modulation frequencies which need to be set to generate
known deviations using both first and second carrier nulls.

The great advantage of this method is that as long as
distortion is low, the accuracy depends on setting the
modulation frequency correctly and this can be deter-
mined very accurately with a frequency counter.
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Carrier- Carrier-
first null second null
mod. index (2-:4048) mod. index (5-5201)
Freq. Dev. Mod. Freg. Freq. Dev. Mod. Freg.

in kHz in Hz in kHz in Hz
1 416 5 906

2 832 7.5 1359
3 1247 10 1812
4 1663 12.5 2264
5 2079 15 2717
6 2495 20 3623
7 2911 25 4529
7.5 3119 30 5435
8 3327 35 6340
9 3742 40 7246
10 4158 45 8152
12.5 5198 50 9058
15 6238 55 9963
20 8317 60 10869
25 10396 65 11775
30 12475 70 12681
35 14554 75 13587

Table 3. Modulation frequencies required to generate
standard f.m. deviation values using the Bessel
null method

Figures 12 and 13 show two examples of carrier nulls,
figure 12 is the first carrier null, deviation is 2-4 kHz,
modulation frequency is 1 kHz and the modulation index
is 2-4. Figure 13 shows the first 1st sideband pair null with
a modulation index of 3-83. It will be noted that the
amplitudes of the sidebands are not completely zero

since an exact null has not been achieved.
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12. First carrier Bessel null. 1-0 kHz modulation
frequency; 2-4 kHz deviation.

Figure 13. First 1st sideband pair null. 1-0 kHz modulation
frequency. 3-83 kHz deviation.

Errors may be introduced and it is therefore necessary
to take precautions to minimise them. A full analysis of
errors and uncertainties is given in Measuretest number
50 “Modulation Measurements for 2305 Modulation
Meter”. The factors that effect the accuracy of the Bessel
null method are summarised.

Depth of the carrier disappearance: A disappearance
of greater than 60 dB is necessary to reduce the incer-
tainty to less than 0:1%.

Modulation Distortion: Distortion products, especially
3rd harmonic, shifts the carrier null and introduces
errors because the value of the modulation index at
which the carrier is zero is changed.

Spurious a.m.: Also produces errors or shifts in the
position of the zero.

Modulation frequency accuracy: Contributes a negli-
gible error and can usually be ignored.

Setting a null precisely takes time since it is necessary
to wait for a new sweep before the effect of an adjust-
ment can be seen. The METER mode on the 2382 greatly
assists in setting a null, the mode allows one to stop the
instrument from sweeping and to just view the amplitude
of a selected frequency component. In this way the level
of the carrier or any sideband can be continuously read in
real time so that adjustment is much faster. Figure 14
shows the meter mode being used to set a carrier null.
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Figure 14. Meter mode used to speed up the setting of an
f.m. carrier null.

If there is not a Bessel null condition it is very difficult
to interpret a spectrum analyzer display. Various tech-
niques have been evolved but they are either time-
consuming or very inaccurate. There is one exception
however, narrow deviations may be measured directly
with a spectrum analyzer. When the modulation index is
less than 1 only two sidebands are significant. The ratio
of sideband to carrier level is equal to half of the
modulation index.

Sideband to carrier voltage ratio =
FM Deviation

2 x Modulation Frequency

The 2382 has an FM DEMOD mode to measure FM
directly. The demodulated FM signal is displayed on a
graticule which is vertically calibrated in f.m. deviation,
the horizontal scale is calibrated in time as for zero span.
Figure 15 shows an example, the vertical scale is 1 kHz/
division.
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The demodulated signal covers 5-75 graticule lines,
the peak-to-peak deviation is therefore 5:75 kHz and the
mean deviation is 2:875 kHz.

Accuracy of this method is +20% which is not as good
as a modulation meter but it is an extra measurement
that spectrum analyzers have traditionally not made.
Other advantages include the fact that f.m. can be
measured on lower level carriers and that deviations
down to a few Hz can be seen and measured to assist in
pinpointing carrier f.m. noise.

Low Level Power Line Modulation

The 3 Hz filter in the 2382 is invaluable to measure low
levels of modulation at power line frequencies (50 Hz or
60 Hz) caused by inadequate power supply smoothing.
Figure 16 shows a rather noisy carrier with a 50 Hz com-
ponent 49-80 dB down as measured by the markers. The
excellent close in noise of the instrument allows for 50 Hz
components to be determined at least 80 dB down to
facilitate the design of clean carrier signals and
oscillators.

It is important to interpret such a spectrum display
carefully since the spectrum could be caused either by
a.m. with a modulation depth of around 1% or by a small
amount of spurious f.m. Further investigation is essential
to fully resolve the causes of such a signal.

An oscilloscope or modulation meter may be needed
to assist in identifying the type of modulation.
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Instruments

Asymmetrical Sidebands
Pure a.m. and f.m. signals will have symmetrical spectra
thus if a spectrum display of modulation is asymmetrical
this will indicate the presence of unwanted signals. An
example is shown in figure 17, each sideband should be
26 dB down since modulation depth is 10% but incidental
f.m. has caused asymmetry such .that the fundamental
modulation sidebands differ in amplitude by 10 dB.
Asymmetry is caused because upper and lower f.m.
sideband pairs are 180 degrees out of phase. A spectrum
analyzer does not display this phase difference but since
the a.m. sideband pairs are in phase the incidental f.m.
will increase or decrease sideband power depending on
whether the f.m. and a.m. sidebands are in or out of
phase.
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Figure 17. Asymmetrical sidebands indicating incidental
f.m. on an a.m. signal.
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