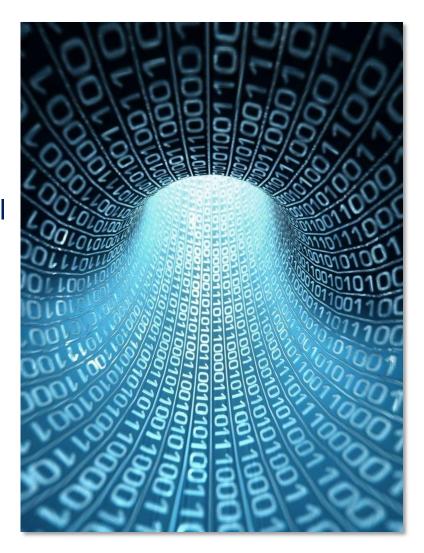

HMC Overview

A Revolutionary Approach to System Memory

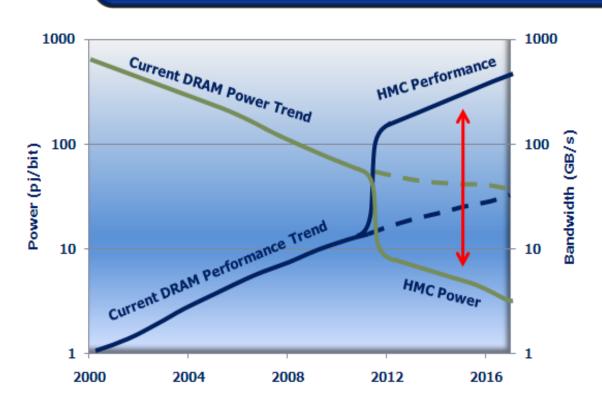
- Inception
- Architecture
- Reliability
- Comparisons to other Memories
- Industry Adoption
 - HMC Consortium
- Summary

Memory Challenges By Application

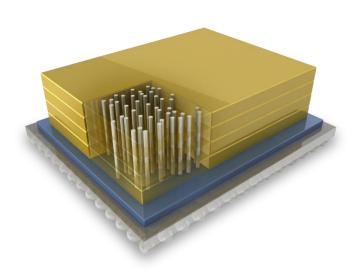
Higher Performance for Server Applications


Reduced Latency for Networking Applications

Lower Power for Mobile Applications


Needed: A Memory Revolution

- Continued global demand for mobility: connected anytime, anywhere, any device
- Device proliferation fueling exponential data growth
- Cloud services stretching current networking, storage and server capabilities
- Big data analytics challenge: information rich but data poor


Hybrid Memory Cube (HMC)

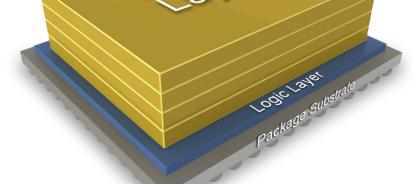
Fast process logic and advanced DRAM design in one optimized package

- Power Efficient
- Smaller Footprint
- Increased Bandwidth
- Reduced Latency

- ► Inception what is it
- Architecture
- Reliability
- Comparisons to other Memories
- Industry Adoption
 - HMC Consortium
- Summary

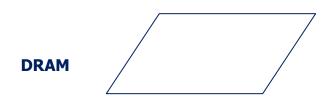
HMC Architecture Enabling Technologies

Abstracted Memory Management

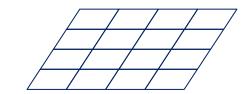

Memory Vaults Versus DRAM Arrays

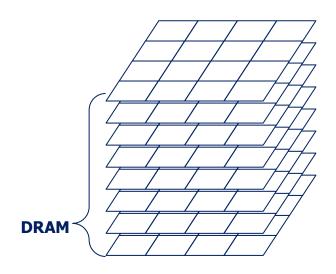
Logic Base Controller

Through-Silicon Via (TSV) Assembly


Innovative Design & Process Flow

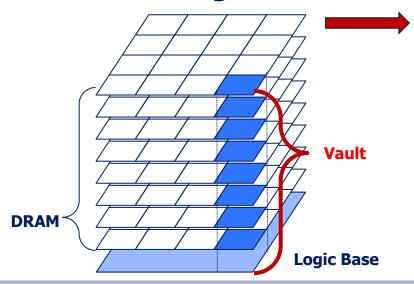
Advanced Package Assembly


Start with a clean slate

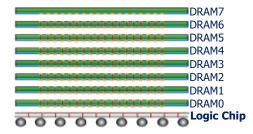


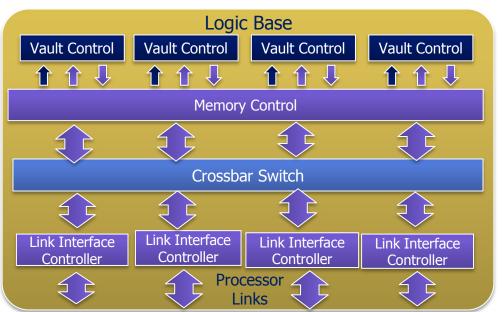
Re-partition the DRAM and strip away the common logic

DRAM

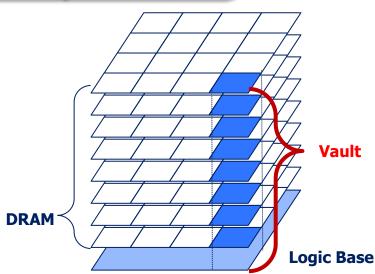


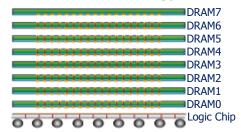
Stack multiple DRAMs

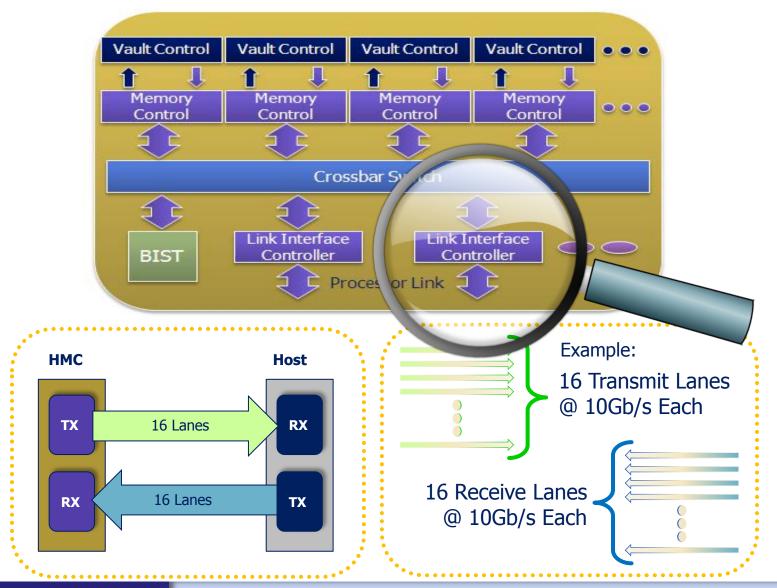


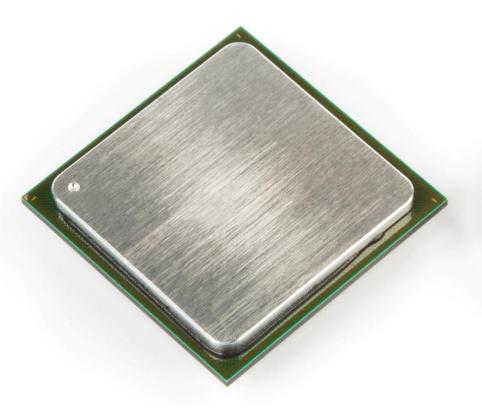


Re-insert common logic on to the Logic Base die

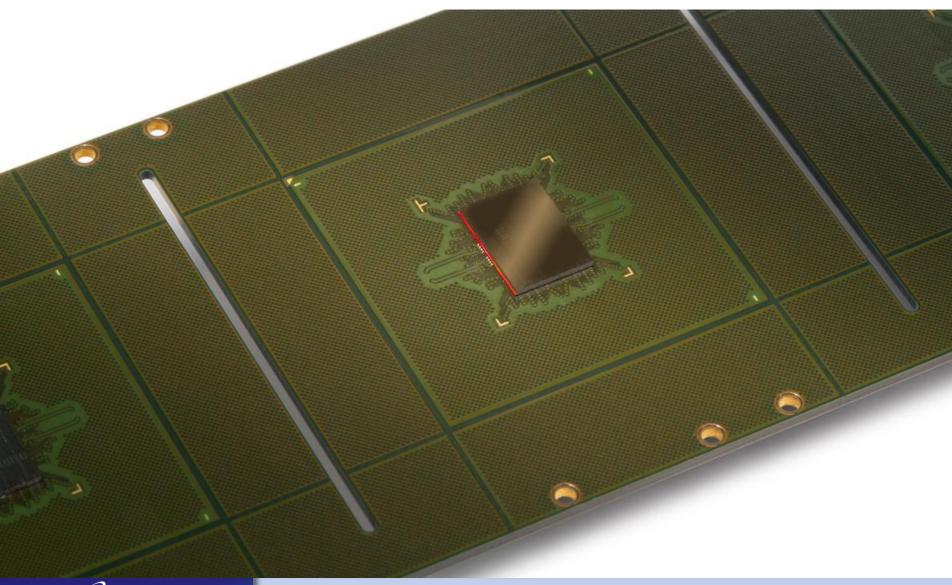




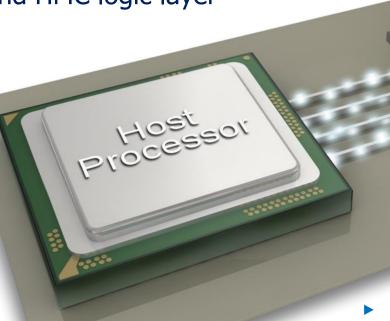

Add advanced switching, optimized memory control and simple interface to host processor(s)...



Link Controller Interface



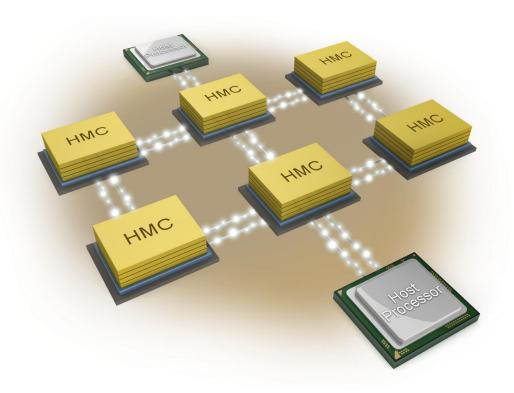
The Package



The Stack-up

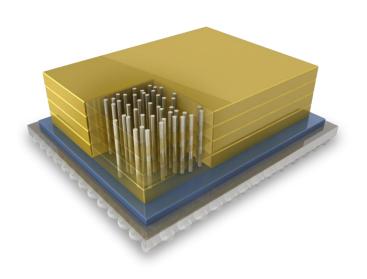
HMC Near Memory

 All links between host CPU and HMC logic layer



- HPC/Server CPU/GPU
- Graphics
- Networking systems
- Test equipment

HMC Far Memory

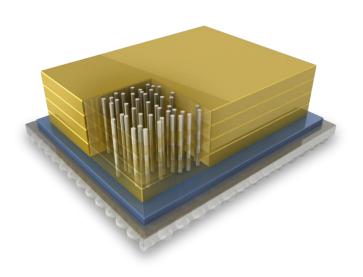

- HMC links connect to host or other cubes
 - Links form networks of cubes
 - Scalable to meet system requirements

Future interfaces

- Higher speed electrical
- Optical
- Whatever the most appropriate interface for the job!

- ► Inception what is it
- Architecture
- Reliability
- Comparisons to other Memories
- Industry Adoption
 - HMC Consortium
- Summary

RAS Feature Comparison


FEATURE	DRAM	RDIMM	НМС
Extensive Test Flow	✓		✓
Data ECC		✓	✓
Address/Command Parity		✓	✓
Mirroring (back-up memory)			√ ✓
Sparing (Chipkill)			✓ ✓
Lockstep (redundancy w/better ECC)			√ √
CRC Coding			✓
Self Repair			✓
BIST			✓
Error Status and Debug Registers			✓
DIMM Isolation (flags faulty DIMM)			√ ✓
Memory Scrubbing			✓

[✓] Supported

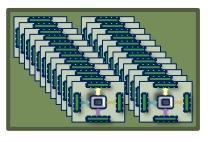
[✓] ✓ Redundant or not needed



- ► Inception what is it
- Architecture
- Reliability
- Comparisons to other Memories
- Industry Adoption
 - HMC Consortium
- Summary


Extreme Performance Comparison

- What does it take to support 1.28TB/s of performance?
 - Comparison of HMC to DDR3L-1600 and DDR4-3200


Active Signals

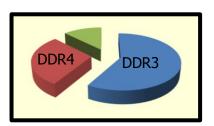
- ✓ DDR3 requires ~14,300
- ✓ DDR4 requires ~7,400
- ✓ HMC only needs ~2,160, HMC is ~85% less than DDR3

Operating Power

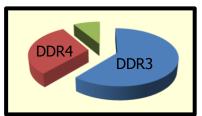
- ✓ DDR3 requires ~2.25KW
- ✓ DDR4 requires ~1.23KW
- √ HMC only needs ~350W, HMC is ~72% less than DDR4

Board Space

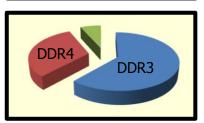
- ✓ DDR3 requires ~165,000 sq mm
- ✓ DDR4 requires ~82,500 sq mm
- √ HMC only needs ~8,712 sq mm, HMC is ~90% less than DDR4


Assumptions:

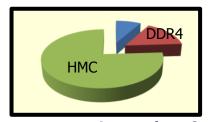
1DPC, (SR x4) RDIMMs, 6.2W/channel for DDR3 @ 12.8GB/s, 8.4W/channel for DDR4 @ 25.6GB/s 5W per Link for HMC @ 160GB/s, 143 pins/channel for DDR3, 148 pins for DDR4, 270 per HMC, RDIMM area equals 10mm pitch x 165mm long, HMC w/keep outs equal 1089 sq mm, CPU for RDIMMS = 65W, CPU for HMC = 95W, each CPU supports up to 4 channels.


High Performance Comparison (single link)

- What does it take to support 60GB/s of performance?
 - Comparison of HMC to DDR3L-1600 and DDR4-3200


Channels

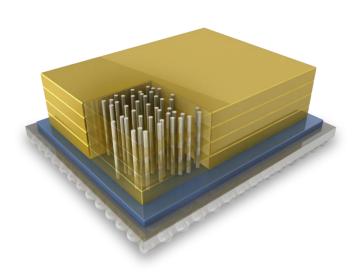
- ✓ DDR3 requires 5 channels
- ✓ DDR4 requires 3 channels
- √ HMC only needs 1 Link


Board Area

- ✓ DDR3 requires ~7,734 sq mm
- ✓ DDR4 requires ~3,843 sq mm
- √ HMC only needs ~1,089 sq mm

Active Pins

- ✓ DDR3 requires 670 pins
- ✓ DDR4 requires 345 pins
- √ HMC only needs 72 pins


BW/pin

- ✓ DDR3 ~90MB/pin
- ✓ DDR4 ~174MB/pin
- √ HMC ~833MB/pin

Assumptions: Same as previous example of 1.28TB/s Bandwidth

- ► Inception what is it
- Architecture
- Reliability
- Comparisons to other Memories
- Industry Adoption
 - HMC Consortium
- Summary

HMC Consortium (HMCC)

HMCC Mission

Promote widespread adoption and acceptance of an industry standard serial interface and protocol for Hybrid Memory Cube

- HMCC specification and technical detail confidential
- Adopters get early access to HMCC specification

Log into hybridmemorycube.org to become an adopter and get into the game!

http://www.hvbridmemorvcube.org/

HMC Consortium Launches to Positive Reviews

"HMC could lead to unprecedented levels of memory performance ..." – Electronics News

"HMC offers the potential to alleviate the [memory] bottleneck...." —EE Times

"...the Hybrid Memory Cube guys are solving a huge problem that's been a pain point for the industry for a few years...

- GigaOm

"Micron created an entirely new category of memory..."

-Tom's Hardware

Micron[®]

Broad Industry Adoption

Developer group led by industry giants:

26

- More than 150 organizations pursing adopter status
- 49 fully registered Adopters to date:

APIC Corporation

Cadence Design Systems, Inc.
Convey Computer Corporation

Cray Inc. DAVE Srl

Design Magnitude Inc. eSilicon Corporation Exablade Corporation

Galaxy Computer System Co., Ltd.

GDA Technologies
GLOBALFOUNDRIES

Infinera Corporation

GraphStream Incorporated Huawei Technologies

Inphi

ISI/Nallatech

LeCroy Corporation

Luxtera Inc. Marvell

Maxeler Technologies Ltd. Montage Technology, Inc.

Netronome

Northwest Logic Oregon Synthesis

Science & Technology Innovations

Suitcase TV Ltd Tongji University

University of Heidelberg ZITI

Arira Design

Dream Chip Technologies GmbH Engineering Physics Center of MSU

Ezchip Semiconductor

Fujitsu Advanced Technologies Limited

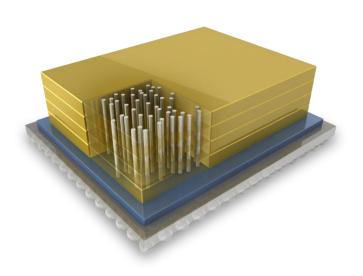
Juniper Networks LogicLink Design, Inc. New Global Technology

OmniPhy

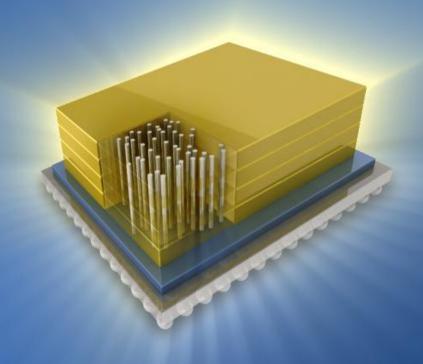
SEAKR Engineering

Tabula

Teradyne, Inc


UMC

USC Information Sciences Institute


September 11, 2012 Micron Confidential ©2012 Micron Technology, Inc.

- ► Inception what is it
- Architecture
- Reliability
- Comparisons to other Memories
- Industry Adoption
 - HMC Consortium
- Summary

HMC - A Revolutionary Memory Shift

- Increased Bandwidth
- Power Efficiency
- Smaller Size
- Scalability
- Reduced Latency

