TEK | SERVICE | $070-6299-00$ |
| :--- | :--- |
| MANUAL | Product Group 46 |

2225 OSCILLOSCOPE SERVICE

WARMIMG

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO. REFER TO OPERATORS SAFETY SUMMARY AND SERVICE SAFETY SUMMARY PRIOR TO PERFORMING ANY SERVICE.

Please Check for CHANGE INFORMATION at the Rear of This Manual

DIGITALY REMASTERED
 OUT OF PRINT- MANUAL SCANS

 By

 By}

ArtekMedia

P.O. BOX 175

Welch, MN 55089-0175
Phone: 651-269-4265
www.artekmedia.com
"High resolution scans of obsolete technical manuals"

If you are looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com

If you don't see the manual you need on the list drop us a line anyway we may still be able to obtain the manual you need or direct you to other sources. If you have an existing manual you would like scanned please write for details. This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).
4) Most manuals are text searchable
5) All manuals are fully bookmarked

All data is guaranteed for life (yours or mine ... whichever is shorter). If for ANY REASON your file becomes corrupted, deleted or lost, ArtekMedia will replace the file for the price of shipping, or free via FTP download.

Thanks

Dave \& Lynn Henderson
ArtekMedia

Copyright © 1987 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents issued and pending.

TEKTRONIX, TEK, SCOPE-MOBILE, and
 are registered trademarks of Tektronix, Inc.

Printed in U.S.A. Specification and price change privileges are reserved.

INSTRUMENT SERIAL NUMBERS

Each instrument has a serial number on a panel insert, tag, or stamped on the chassis. The first number or letter designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

B000000 Tektronix, Inc., Beaverton, Oregon, U.S.A.
HK00001 Hong Kong
100000 Tektronix Guernsey, Ltd., Channel Islands
200000 Tektronix United Kingdom, Ltd., London
300000 Sony/Tektronix, Japan
700000 Tektronix Holland, NV, Heerenveen, The Netherlands

TABLE OF CONTENTS

Page Page
LIST OF ILLUSTRATIONS iv
LIST OF TABLES v
OPERATORS SAFETY SUMMARY vi
SERVICING SAFETY SUMMARY vii
Section 1 SPECIFICATION
INTRODUCTION 1-1
ACCESSORIES 1-1
FOR MORE INFORMATION 1-1
RECOMMENDED RECALIBRATION
SCHEDULE 1-1
PERFORMANCE CONDITIONS 1-1
Section 2 OPERATING INSTRUCTIONS
PREPARATION FOR USE 2-1
SAFETY 2-1
LINE VOLTAGE SELECTION 2-1
LINE FUSE 2-2
POWER CORD 2-2
INSTRUMENT COOLING 2-2
INITIAL START-UP 2-2
REPACKAGING 2-3
CONTROLS, CONNECTORS, AND INDICATORS 2-4
POWER AND DISPLAY 2-4
VERTICAL 2-4
HORIZONTAL 2-5
TRIGGER 2-6
REAR PANEL 2-7
OPERATING CONSIDERATIONS 2-8
GRATICULE 2-8
GROUNDING 2-8
SIGNAL CONNECTIONS 2-8
INPUT-COUPLING
CAPACITOR PRECHARGING $2-9$
OPERATOR'S CHECKS AND ADJUSTMENTS 2-10
INITIAL SETUP 2-10
TRACE ROTATION ADJUSTMENT 2-10
PROBE COMPENSATION 2-10
Section 3 THEORY OF OPERATION -

SECTION ORGANIZATION

SECTION ORGANIZATION 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1

INTEGRATED CIRCUIT

INTEGRATED CIRCUIT DESCRIPTIONS DESCRIPTIONS 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 DESCRIPTIONS 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1
DETAILED CIRCUIT
DETAILED CIRCUIT DESCRIPTION 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
VERTICAL
VERTICAL 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
TRIGGER
TRIGGER 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7
SWEEP AND SWEEP
SWEEP AND SWEEP GENERATOR LOGIC 3-10 3-10 3-10 3-10 3-10 3-10 3-10 3-10 3-10 3-10 3-10
HORIZONTAL
HORIZONTAL 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12 3-12
FRONT PANEL
FRONT PANEL 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14
Z-AXIS AMPLIFIER
Z-AXIS AMPLIFIER 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14
POWER SUPPLY
POWER SUPPLY 3-16 3-16 3-16 3-16 3-16 3-16 3-16 3-16 3-16 3-16 3-16

TABLE OF CONTENTS (cont)

Page

Page

Section 4 PERFORMANCE CHECK PROCEDURE

INTRODUCTION 4-1
PURPOSE 4-1
PERFORMANCE CHECK INTERVAL 4-1
STRUCTURE 4-1
TEST EQUIPMENT REQUIRED 4-1
LIMITS AND TOLERANCES 4-1
PREPARATION FOR
CHECKS 4-1
INDEX TO PERFORMANCE CHECK STEPS 4-3
VERTICAL 4-4
INITIAL CONTROL
SETTINGS 4-4
PROCEDURE STEPS 4-4
HORIZONTAL 4-8
INITIAL CONTROL
SETTINGS 4-8
PROCEDURE STEPS 4-8
TRIGGER 4-12
INITIAL CONTROL SETTINGS 4-12
PROCEDURE STEPS 4-12
EXTERNAL Z-AXIS AND PROBE ADJUST 4-15
INITIAL CONTROL
SETTINGS 4-15
PROCEDURE STEPS 4-15

Section 5 ADJUSTMENT PROCEDURE
INTRODUCTION 5-1
PURPOSE 5-1
STRUCTURE 5-1
TEST EQUIPMENT REQUIRED 5-1
LIMITS AND TOLERANCES 5-1
ADJUSTMENTS AFFECTED BY REPAIRS 5-1
PREPARATION FOR ADJUSTMENT 5-1
INDEX TO ADJUSTMENT PROCEDURE STEPS 5-3
POWER SUPPLY AND
CRT DISPLAY 5-4
INITIAL CONTROL SETTINGS 5-4
PROCEDURE STEPS 5-4
VERTICAL 5-6
INITIAL CONTROL SETTINGS 5-6
PROCEDURE STEPS 5-6
HORIZONTAL 5-13
INITIAL CONTROL SETTINGS 5-13
PROCEDURE STEPS 5-13
TRIGGER 5-18
INITIAL CONTROL SETTINGS 5-18
PROCEDURE STEPS 5-18
EXTERNAL Z-AXIS AND PROBE ADJUST 5-22
INITIAL CONTROL SETTINGS 5-22
PROCEDURE STEPS 5-22

TABLE OF CONTENTS (cont)

Section 6 MAINTENANCE
STATIC-SENSITIVE COMPONENTS 6-1
PREVENTIVE MAINTENANCE 6-2
INTRODUCTION 6-2
GENERAL CARE 6-2
INSPECTION AND CLEANING 6-2
LUBRICATION 6-4
SEMICONDUCTOR CHECKS 6-4
PERIODIC READJUSTMENT 6-4
TROUBLESHOOTING 6-4
INTRODUCTION 6-4
TROUBLESHOOTING AIDS 6-4
RIBBON-CABLE CONNECTORS 6-6
TROUBLESHOOTING EQUIPMENT 6-6
TROUBLESHOOTING
TECHNIQUES 6-7
CORRECTIVE MAINTENANCE 6-10
INTRODUCTION 6-10
MAINTENANCE
PRECAUTIONS 6-10
Page Page

LIST OF ILLUSTRATIONS

Figure Page
The 2225 Oscilloscope viii
1-1 Max Input Voltage Vs Frequency Derating Curve 1-7
1-2 Instrument dimensional drawing 1-8
2-1 Voltage Selector switch, fuse, and power-cord receptacle 2-1
2-2 Power-cord and line-voltage data 2-2
2-3 Rear Panel 2-7
2-4 Graticule measurement markings 2-8
2-5 Probe compensation 2-11
2-6 Probe compensation locations 2-11
3-1 Block diagram of the Channel 1 Attenuator circuit 3-3
3-2 Block diagram of the Channel Switching circuit 3-5
3-3 Block diagram of the Sweep Generator and Logic circuit 3-10
3-4 Block diagram of the Horizontal Amplifier circuit 3-13
3-5 Simplified diagram of the DC Restorer circuitry 3-15
5-1 Attenuator trimmer adjustments 5-9
6-1 Multi-connector operation 6-6

LIST OF TABLES

Table Page
1-1 Electrical Characteristics 1-2
1-2 Environmental Characteristics 1-6
1-3 Physical Characteristics 1-7
4-1 Test Equipment Required 4-2
4-2 Deflection Accuracy Limits 4-5
4-3 Settings for Timing Accuracy Checks 4-9
4-4 Switch Combinations for Triggering Checks 4-12
5-1 Adjustments Affected by Repairs 5-2
5-2 Power Supply Limits 5-5
5-3 Deflection Accuracy Limits 5-8
5-4 Settings for Timing Accuracy Checks 5-15
5-5 Switch Combinations for Triggering Checks 5-19
6-1 Relative Susceptibility to Static-Discharge Damage 6-1
6-2 External Inspection Checklist 6-3
6-3 Internal Inspection Checklist 6-3
6-4 Power Supply Voltage and Ripple Limits 6-8
6-5 Maintenance Aids 6-12
7-1 Power Cords and Fuses 7-2
7-2 Optional Accessories 7-3
A-1 Magnified Sweep Speeds A-1

OPERATORS SAFETY SUMMARY

The safety information in this summary is for operating personnel. Warnings and cautions will also be found throughout the manual where they apply.

Terms in this Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

Terms as Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the markings, or a hazard to property, including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

Symbols in this Manual

\triangleThis symbol indicates where applicable cautionary or other information is to be found. For maximum input voltage see Table 1-1.

Symbols as Marked on Equipment

4

> DANGER-High voltage.

Protective ground (earth) terminal.
4 ATTENTION-Refer to manual.

Power Source

This product is intended to operate from a power source that does not apply more than 250 V rms between the supply conductors or between either supply conductor and ground. A protective ground connection, by way of the grounding conductor in the power cord, is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before making any connections to the product input or output terminals. A protective ground connection, by way of the grounding conductor in the power cord, is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts, including knobs and controls that may appear to be insulating, can render an electric shock.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use only a power cord that is in good condition.
For detailed information on power cords and connectors, see Figure 2-2.

Use the Proper Fuse

To avoid fire hazard, use only a fuse of the correct type, voltage rating and current rating as specified in the parts list for your product.

Do Not Operate in an Explosive Atmosphere

To avoid explosion, do not operate this instrument in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without the covers and panels properly installed.

SERVICING SAFETY SUMMARY

FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections or components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

Power Source

This product is intended to operate from a power source that does not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding connetor in the power cord is essential for safe operation.

The 2225 Oscilloscope.

SPECIFICATION

INTRODUCTION

ACCESSORIES

The instrument is shipped with the following accessories: operators manual, two probe kits, a power cord, and a power-cord clamp. The probes supplied with the 2225 have sturdy replaceable tips. Probe compensation is accomplished through a closeable window on the probe body. Part numbers for the standard accessories and for the suggested optional accessories are located in Section 7, Options and Accessories.

FOR MORE INFORMATION

Should you need additional information about your 2225 Oscilloscope or about other Tektronix products, contact the nearest Tektronix Sales Office or Distributor or consult the Tektronix product catalog. In the United States you may call the Tektronix National Marketing Center toll free at 1-800-426-2200.

RECOMMENDED RECALIBRATION SCHEDULE

To ensure accurate measurements, check the performance of this instrument every 2000 hours of operation, or, if used infrequently, once each year. Replacement of components in the instrument may also necessitate readjustment of the affected circuits.

PERFORMANCE CONDITIONS

The electrical characteristics given in Table 1-1 are valid when the instrument has been adjusted at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, has had a warm-up period of at least 20 minutes, and is operating at an ambient temperature between $0^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ (unless otherwise noted).

Items listed in the Performance Requirements column are verifiable qualitative or quantitative limits that define the measurement capabilities of the instrument.

Environmental characteristics are given in Table 1-2. This instrument meets the requirements of MIL-T-28800C, paragraphs 4.5.5.1.3, 4.5.5.1.4, and 4.5.5.1.2.2 for Type III, Class 5 equipment, except where noted otherwise.

Physical characteristics of the instrument are listed in Table 1-3.

Table 1-1
Electrical Characteristics

Characteristics	Performance Requirements
VERTICAL DEFLECTION SYSTEM	
Deflection Factor Range	5 mV per division to 5 V per division in a 1-2-5 sequence of 10 steps. Sensitivity increases to $500 \mu \mathrm{~V}$ per division with $\times 10$ vertical magnification.
Accuracy Without vertical magnification	$\pm 3 \%$.
With X 10 vertical magnification	$\pm 5 \%$.
Variable Control Range	Continuously variable between settings. Increases deflection factor by at least 2.5 to 1.
Step Response Rise Time $+5^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C}$	Rise time is calculated from: $\operatorname{Tr}=\frac{0.35}{\mathrm{BW}}$ 7 ns or less. ${ }^{\text {a }}$
$0^{\circ} \mathrm{C}$ to $+5^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	8.8 ns or less. ${ }^{\text {a }}$
Aberrations 5 mV per division	+6\%, -6\%, 6\% p-p.
10 mV per division to 0.2 V per division	+4\%, -4\%, 4\% p-p.
0.5 V per division	+6\%, -6\%, 6\% p-p.
$\begin{array}{r} \text { Bandwidth }(-3 \mathrm{~dB}) \\ +5^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C} \end{array}$	50 MHz or more.
$0^{\circ} \mathrm{C}$ to $+5^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	40 MHz or more. ${ }^{\text {a }}$
X10 Vertical Magnification	5 MHz or more.
Ac Coupled Lower Cutoff Frequency (-3 dB)	10 Hz or less. ${ }^{\text {a }}$
CHOP Mode Switching Rate	$500 \mathrm{kHz} \pm 30 \%{ }^{\text {a }}$
Input Characteristics Resistance	$1 \mathrm{M} \Omega \pm 2 \%{ }^{\text {a }}$
Capacitance	$25 \mathrm{pF} \pm 2 \mathrm{pF}$. ${ }^{\text {a }}$

Table 1-1 (cont)

Characteristics	Performance Requirements
Maximum Safe Input Voltage (DC or AC Coupled)	400 V (dc + peak ac) or 800 V ac $\mathrm{p}-\mathrm{p}$ at 10 kHz or less. ${ }^{\text {a }}$ (See Figure $1-1$ for frequency derating curve.)
Common-mode Rejection Ratio (CMRR) Without Vertical Magnification	At least 10 to 1 at 10 MHz .
With $\times 10$ Vertical Magnification	At least 10 to 1 at 1 MHz .
Trace Shift with VOLTS/DIV Switch Rotation	0.75 division or less; VOLTS/DIV Variable control in the CAL detent. ${ }^{\text {a }}$
Trace Shift as the VOLTS/DIV Variable Control is rotated.	1 division or less. ${ }^{\text {a }}$
Trace Shift with CH 2 INVERT	1.5 division or less. ${ }^{\text {a }}$
Trace Shift with $\times 10$ Vertical Magnification	2.0 divisions or less. ${ }^{\text {a }}$
Channel Isolation	Greater than 100:1 at 10 MHz .
Position Control Range	10.5 divisions above and below the center graticule line at $25^{\circ} \mathrm{C}$ with the cabinet installed.
Trace Separation Range	At least ± 3 divisions.
	TRIGGERING
P-P AUTO/TV LINE and NORM Modes	$5 \mathrm{MHz} \quad 50 \mathrm{MHz}$
Internal Signal	0.3 div . 1.0 div
External Signal	40 mV [200 mV
TV FIELD	1 division of composite sync. ${ }^{\text {a }}$
Lowest Usable Frequency in P-P AUTO Mode	A 1.0 division internal signal or 100 mV external signal of 20 Hz or higher frequency will trigger.
External Input	
Input Resistance	$1 \mathrm{M} \Omega \pm 10 \%{ }^{\text {a }}$
Input Capacitance	$25 \mathrm{pF} \pm 2.5 \mathrm{pF}$. ${ }^{\text {a }}$
Maximum Input Voltage	400 V (dc + peak ac) or 800 V ac $\mathrm{p}-\mathrm{p}$ at 10 kHz or less. ${ }^{\text {a }}$ (See Figure 1-1 for frequency derating curve.)
AC Coupled Lower Cutoff Frequency (-3 dB)	
Internal Signal	10 Hz or less. ${ }^{\text {a }}$
External Signal	20 Hz or less. ${ }^{\text {a }}$

[^0]Table 1-1 (cont)

Characteristics	Performance Requirements
Trigger Level Range	
NORM Mode	Level may be set to any point of trace that can be displayed.
EXT Source	At least $\pm 1.2 \mathrm{~V}, 2.4 \mathrm{~V} \mathrm{p-p}$.
EXT/10 Source	At least $\pm 12 \mathrm{~V}, 24 \mathrm{~V} \mathrm{p-p}$.
Variable Holdoff Range	Increases sweep holdoff time by at least a factor of 8 at maximum holdoff.
LF REJ Lower 3 dB point	$30 \mathrm{kHz} \pm 25 \% . \mathrm{a}$
HF REJ 3 dB point	$30 \mathrm{kHz} \pm 25 \% . \mathrm{a}$

HORIZONTAL DEFLECTION SYSTEM

Table 1-1 (cont)

Characteristics	Performance Requirements	
Z-AXIS		
Sensitivity	$5 \vee$ causes noticeable modulation. Positive-going input decreases intensity.	
Usable frequency range	Dc to $5 \mathrm{MHz} .^{\text {a }}$	
Maximum Safe Input Voltage	400 V (dc + peak ac) or 800 V p-p ac at 10 kHz or less. ${ }^{\text {a }}$ (See Figure 1-1 for frequency derating curve.)	
X-Y OPERATION (X1 MODE)		
Deflection Factors	Same as vertical deflection system with variable controls in the CAL detent. ${ }^{\text {a }}$	
Accuracy X-Axis	$\pm 5 \%$.	
Y-Axis	Same as vertical deflection system. ${ }^{\text {a }}$	
$\begin{aligned} & \text { Bandwidth }(-3 \mathrm{~dB}) \\ & \quad \times \text {-Axis } \end{aligned}$	Dc to at least 2 MHz .	
Y-Axis	Same as vertical deflection system. ${ }^{\text {a }}$	
Phase difference between X-Axis and Y-Axis Amplifiers	$\pm 3^{\circ}$ from dc to 150 kHz with DC input coupling. ${ }^{\text {a }}$	
PROBE ADJUST SIGNAL OUTPUT		
Voltage into $1 \mathrm{M} \Omega$ Load	$0.5 \mathrm{~V} \pm 5 \%$.	
Repetition Rate	$1 \mathrm{kHz} \pm 5 \%$. ${ }^{\text {a }}$	
POWER SUPPLY		
Line Voltage Ranges 115 V Setting	95 Vac to $128 \mathrm{Vac} .^{\text {a }}$	
$230 \vee$ Setting	185 Vac to $250 \mathrm{Vac}^{\text {a }}$	
Line Frequency	48 Hz to $440 \mathrm{~Hz} .^{\text {a }}$	
Maximum Power Consumption	70 watts (80 VA). ${ }^{\text {a }}$	
Line Fuse	UL 198.6 3AG (1/4 $\times 1$ 1/4 inch)	IEC127 (5 $\times 20 \mathrm{~mm}$)
115 Setting	1.0 A, Slow.	0.8 A, Slow.
230 Setting	0.5 A, Slow.	0.4 A, Slow.
CATHODE-RAY TUBE		
Display Area	$8 \times 10 \mathrm{~cm} .^{\text {a }}$	
Standard Phosphor	$\mathrm{GH}(\mathrm{P} 31){ }^{\text {a }}$	
Nominal Accelerating Voltage	$12,600 \mathrm{~V} \pm 60 \mathrm{~V} \cdot \mathrm{a}$	

Table 1-2
Environmental Characteristics

Characteristics	Performance Requirements
Temperature	
Operating	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ & \left(+32^{\circ} \mathrm{F} \text { to }+104^{\circ} \mathrm{F}\right) .{ }^{\mathrm{a}} \end{aligned}$
Nonoperating	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \left(-67^{\circ} \mathrm{F} \text { to }+167^{\circ} \mathrm{F}\right) .^{\mathrm{a}} \end{aligned}$
Altitude	
Operating	To 4,570 meters (15,000 feet). Maximum operating temperature decreased $1^{\circ} \mathrm{C}$ per 300 m (1000 feet) above $1500 \mathrm{~m}(5,000$ feet). a
Nonoperating	To 15,250 meters (50,000 feet). ${ }^{\text {a }}$
Relative Humidity Operating ($+30^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$) Nonoperating $\left(+30^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$	5 cycles (120 hours) referenced to MIL-T-28800C para 4.5.5.1.2.2 for type III, Class 5 instruments. Operating and nonoperating at $95 \%-5 \%$ to $+0 \%$ relatiave humidity.
Vibration	
Operating	15 minutes along each of three major axes at a total displacement of 0.015 inch $\mathrm{p}-\mathrm{p}(2.4 \mathrm{~g}$ at 55 Hz$)$ with frequency varied from 10 Hz to 55 Hz to 10 Hz in one minute sweeps. Hold for 10 minutes at 55 Hz in each of three major axes. All major resonances must be above 55 Hz . $^{\text {a }}$
Shock	
Operating and Nonoperating	30 g , half-sine, 11 -ms duration, three shocks per axis each direction, for a total of 18 shocks. ${ }^{\text {a }}$
Radiated and conducted emission requirements	Meets VDE 0871, Class B and FCC Docket 20870, part 15, subpart J. ${ }^{\text {a }}$

[^1]Table 1-3
Physical Characteristics

Characteristics	Description
Weight With Power Cord	$6.9 \mathrm{~kg}(15.2 \mathrm{lbs})$ or less.
Domestic Shipping Weight	$9.0 \mathrm{~kg}(19.8 \mathrm{lbs})$ or less.
Height	$138 \mathrm{~mm}(5.42 \mathrm{in})$. (See Figure 1-2 for a dimensional drawing).
Width With Handle Without Handle	$385 \mathrm{~mm}(15.2 \mathrm{in})$.
Depth Without Front Cover	$327 \mathrm{~mm}(12.9 \mathrm{in})$.
With Handle Extended	$443 \mathrm{~mm}(17.3 \mathrm{in})$.

Figure 1-1. Max Input Voltage Vs Frequency Derating Curve.

Figure 1-2. Instrument dimensional drawing.

OPERATING INSTRUCTIONS

This section is divided into four subsections. The first subsection, Preparation for Use, provides instructions for the user to follow before turning the instrument on, especially for the first time. Subsection two; Controls, Connectors, and Indicators; provides details on the operation of the front-panel
controls. Subsection three, Operating Considerations, provides the user with some of the more general information on measurement techniques. The last subsection, Operators Checks and Adjustments, provides simple checks and adjustments to be made on a routine basis by the user.

PREPARATION FOR USE

SAFETY

This subsection tells how to prepare for and to proceed with the initial start-up of the TEKTRONIX 2225 Oscilloscope.

Refer to the Safety Summary at the front of this manual for power source, grounding, and other safety considerations pertaining to the use of the instrument. Before connecting the oscilloscope to a power source, read both this subsection and the Safety Summary.

$\{$ CAUTION $\}$

This instrument may be damaged if operated with the LINE VOLTAGE SELECTOR switch (on the rear panel) set for the wrong applied ac source voltage or if the wrong fuse is installed.

LINE VOLTAGE SELECTION

The oscilloscope operates from either a $115-\mathrm{V}$ or a $230-V$ nominal ac power line with any frequency from 48 Hz to 440 Hz . Before connecting the power cord to a power source, verify that the LINE VOLTAGE SELECTOR switch, located on the rear panel, is set correctly and that the proper line fuse is installed. Refer to Figure 2-1 and the instrument rear panel.

Figure 2-1. Voltage Selector switch, fuse, and power-cord receptacle.

To convert the 2225 for operation on another line voltage range, set the LINE VOLTAGE SELECTOR switch to the required position and install the appropriate fuse (listed on the rear panel). The detachable power cord may need to be replaced to match the particular power source. Power-cord option numbers are given in Figure 2-1; fuse part numbers are listed in Options and Accessories (Section 7).

LINE FUSE

The instrument fuse holder is located on the rear panel and contains the line (main) fuse. Use the following procedure to verify that the proper fuse is installed or to install a replacement fuse.

1. Unplug the power cord from the power-input source (if plugged in).
2. Press in the fuse-holder cap and release it with a slight counterclockwise rotation.
3. Pull the cap (with the attached fuse inside) out of the fuse holder.

NOTE

The two types of fuses listed on the rear panel are not directly interchangeable; they require different types of fuse caps.
4. Verify that the fuse is the same type listed on the back of the instrument.
5. Reinstall the fuse (or replacement fuse) in the fuse-holder cap.
6. Reinstall the fuse and cap in the fuse holder by pressing in and giving a slight clockwise rotation of the cap.

POWER CORD

A detachable three-wire power cord with a threecontact plug is provided with each instrument for connecting to both the power source and protective ground. The protective-ground connector in the plug connects (through the protective-ground conductor) to the accessible metal parts of the instrument. For electrical-shock protection, insert this plug only into a power-source outlet that has a properly grounded protective-ground contact.

After plugging the power cord into its receptacle, secure it to the rear panel using the plastic clamp, screw, and washer provided.

Instruments are shipped with the power cord ordered by the customer. Available power-cord information is presented in Figure 2-2. Contact your Tektronix representative or local Tektronix Field Office for additional power-cord information.

Plug Configuration	Usage	Line Voltage	Reference Standards	Option Number
	North American 120V/ 15A	120 V	ANSI C73.11 NEMA 5-15-P IEC 83	Standard
	Universal Euro 240V/ 10-16A	240 V	CEE (7).II,IV.VII IEC 83	A1
	$\begin{gathered} \text { UK } \\ 240 V / \\ 13 A \end{gathered}$	240V	BS 1363 IEC 83	A2
	$\begin{aligned} & \text { Australian } \\ & 240 \mathrm{~V} / \\ & 10 \mathrm{~A} \end{aligned}$	240 V	AS C112	A3
	North American 240V/ 15A	240 V	ANSI C73.20 NEMA 6-15-P IEC 83	A4
	$\begin{aligned} & \text { Switzerland } \\ & 220 \mathrm{~V} / \\ & 6 \mathrm{~A} \end{aligned}$	2200	SEV	A5
Abbreviations: ANSI - American National Standards Institute AS - Standards Association of Australia BS - British Standards Institution CEE - International Commission on Rules for the Approval of Electrical Equipment IEC - International Electrotechnical Commission NEMA - National Electrical Manufacturer's Association SEV - Schweizevischer Elektrotechischer Verein				

(2931-21)6083-35
Figure 2-2. Power-cord and line-voltage data.

INSTRUMENT COOLING

To prevent instrument damage from overheated components, adequate internal airflow must be maintained at all times. Before turning on the power, verify that the air-intake holes on the sides and rear panel are free from any obstructions to airflow.

INITIAL START-UP

Up to now, you should have made the following preparations:

1. Read the safety information.
2. Verified that the LINE VOLTAGE SELECTOR switch is set for the source voltage to be used.
3. Verified the fuse for correct type and rating.
4. Attached the power cord.
5. Ensured that there is adequate ventilation around the instrument.
6. Plugged the power cord into the appropriate power-source outlet.

Now turn on your oscilloscope by pressing in the POWER button. Observe that the POWER-ON indicator, located below the button, is lit.

REPACKAGING

If this instrument is shipped by commercial transportation, use the original packaging material. Unpack the instrument carefully from the shipping container to save the carton and packaging material for this purpose.

If the original packaging is unfit for use or is not available, repackage the instrument as follows:

1. Obtain a corrugated cardboard shipping carton having inside dimensions at least six inches greater than the instrument dimensions and having a carton test strength of at least 275 pounds.
2. If the instrument is being shipped to a Tektronix Service Center for repair or calibration, attach a tag to the instrument showing the following: owner of the instrument (with address), the name of a person at your firm who may be contacted if additional information is needed, complete instrument type and serial number, and a description of the service required.
3. Wrap the instrument with polyethylene sheeting or equivalent to protect the outside finish and prevent entry of packing materials into the instrument.
4. Cushion the instrument on all sides by tightly packing dunnage or urethane foam between the carton and the instrument, allowing for three inches of padding on each side (including top and bottom).
5. Seal the carton with shipping tape or with an industrial stapler.
6. Mark the address of the Tektronix Service Center and your return address on the carton in one or more prominent locations.

CONTROLS, CONNECTORS, AND INDICATORS

The following descriptions are intended to familiarize the operator with the location and function of the instrument's controls, connectors, and indicators.

Refer to Figure 9-14 in the foldout pages for the location of all controls mentioned.

POWER AND DISPLAY

(1) INTENSITY Control-Adjusts the brightness of all displayed waveforms.
(2) BEAM FIND Button-Compresses the vertical and horizontal deflection to within the graticule area and intensifies the display to aid the user in locating traces that are overscanned or deflected outside of the crt viewing area.
(3) FOCUS Control-Adjusts for optimum display definition. Once set, proper focusing is maintained over a wide range of display intensity.
(4) TRACE ROTATION Control-Permits alignment of the trace with the horizontal graticule line. This control is a screwdriver adjustment that, once set, should require little attention during normal operation.

POWER Switch-Turns instrument power on or off.
(6) Power On Indicator-Lights up while instrument is operating.

VERTICAL

Channel 1 Vertical POSITION Control-Controls the vertical display position of the Channel 1 signal. In $\mathrm{X}-\mathrm{Y}$ mode the control is inactive.
(8) TRACE SEP Control-Permits the magnified traces that appear in Horizontal MAG Mode to be positioned up to three divisions above the associated Channel 1 or Channel 2 traces.

Trace separation between the magnified and unmagnified traces is independent of the Channel POSITION control settings. In other Horizontal modes, the TRACE SEP control is inoperative.

Channel 2 Vertical POSITION Control-Controls the vertical display position of the Channel 2 signal. In $X-Y$ mode the control vertically positions the display.
(10) Vertical MODE Switch CH 1-BOTHCH 2 -Selects either a single channel for display or the dual-channel display mode.

CH 1 -Selects only the Channel 1 input signal for display.

BOTH-Selects a combination of Channel 1 and Channel 2 input signals for display. The CH 1 -BOTH-CH 2 switch must be in the BOTH position for ADD, ALT, and CHOP operation.

CH 2-Selects only the Channel 2 input signal for display.
(11) CH 2 INVERT Switch-Inverts the Channel 2 display when in the CH 2 INVERT position. With CH 2 inverted, the oscilloscope may be operated as a differential amplifier when the BOTH-ADD vertical mode is selected.

Vertical MODE Switch ADD-ALT-CHOP-Sets the dual-channel vertical display mode.

ADD-Displays the sum of Channel 1 and Channel 2 input signals when BOTH is also selected. The difference of the Channel 1 and Channel 2 input signals is displayed when the Channel 2 signal is inverted.

ALT-Alternately displays the Channel 1 and Channel 2 input signals. The alternation occurs during retrace at the end of each sweep. ALT vertical mode is most useful for viewing both channel input signals at sweep rates of 0.5 ms per division and faster.

CHOP-Switches the display between the Channel 1 and Channel 2 vertical input signals during the sweep. The chopped switching rate (CHOP frequency) is approximately 500 kHz .
(13) CH 1 and CH 2 VOLTS/DIV Switches-Select the vertical channel deflection factors from 5 mV to 5 V per division in a 1-2-5 sequence.

1X-Front-panel marking that indicates the deflection factor set by the VOLTS/DIV switch when a 1 X probe or a coaxial cable is attached to the channel input connector.

10X PROBE-Front-panel marking that indicates the deflection factor set by the VOLTS/DIV switch when a 10X probe is attached to the channel input connector.
(14) Variable VOLTS/DIV and X10 Vertical Magnification Controls-Provide continuously variable deflection factors between calibrated positions of the VOLTS/DIV controls and X1 or X10 vertical magnification of the displayed signal. The VOLTS/DIV sensitivity may be reduced by up to at least 2.5 times at the fully counterclockwise rotation of the variable (CAL) knob. A detent position at full clockwise rotation indicates the calibrated VOLTS/DIV position of the variable knob.

X10 vertical magnification of a displayed signal is obtained by pulling the variable (CAL) knob to the out position. A yellow ring is visible on the knob in the $\times 10$ Vertical Magnification position.

AC-GND-DC (Input Coupling) SwitchesSelect the method of coupling the input signal from the $\mathrm{CH} 1 \mathrm{OR} X$ and CH 2 OR Y connectors to the vertical amplifiers.

AC-Capacitively couples the input signal to the vertical deflection system. The dc component of the input signal is blocked. The lower -3 dB bandpass is 10 Hz or less.

GND-Grounds the input of the vertical deflection channel; provides a zero (ground)
reference voltage display (does not ground the input signal).

DC-All frequency components of the input signal are coupled to the vertical deflection and signal acquisition systems.
(16) CH 1 ORX and CH 2 ORY Input ConnectorsProvide for application of signals to the inputs of the deflection systems.

In $\mathrm{X}-\mathrm{Y}$ mode, the signal connected to the CH 1 ORX input controls the horizontal deflection, and the signal connected to the $\mathrm{CH} 2 \mathrm{OR} Y$ input controls the vertical deflection.

HORIZONTAL

(17) COARSE Horizontal POSITION Control-Positions all the waveforms horizontally over a one-sweep-length range (for X1, X5, X10, or X50 Magnified).
(18) FINE Horizontal POSITION Control-Allows for fine adjustment of the horizontal position of displayed waveforms.
(19) Horizontal MODE Switch-Selects the horizontal mode of operation.

X1-This is the normal mode of operation with the waveform being unmagnified horizontally.

ALT-Displays the unmagnified waveform and the horizontally magnified waveform alternately.

MAG-Displays only the horizontally magnified waveform.

The amount of horizontal magnification is set by the Horizontal MAG switch (X5, X10, X50).
(20) SECIDIV Switch-Selects calibrated sweep rates from 0.5 s to $0.05 \mu \mathrm{~s}$ per division in a $1-2-5$ sequence of 22 steps. The $X-Y$ position selects the $\mathrm{X}-\mathrm{Y}$ mode; the CH 1 ORX input signal produces horizontal deflection for $X-Y$ displays, and the $C H 2$ OR Y input signal produces vertical deflection.
(21) Variable SECIDIV Control-Continuously varies the uncalibrated sweep time per division to at least 2.5 times the calibrated time per division set by the SEC/DIV switch. Full cew rotation of the variable (CAL) knob increases the slowest sweep time per division to at least two seconds.
(22) Horizontal MAG Switch-Sets the amount of horizontal magnification to $\mathrm{X} 5, \mathrm{X} 10$, or X50 when the Horizontal MODE switch is set to either ALT or MAG.
(23) GND Connector ($($) -Provides an auxiliary ground connection directly to the instrument chassis via a banana-tip jack.
(24) PROBE ADJUST Terminal-Provides an approximately $0.5-\mathrm{V}$, negative-going, square-wave signal (at about 1 kHz) for use in compensating voltage probes and checking the vertical deflection system. The PROBE ADJUST output signal is not intended as a reference for checking either the vertical or the horizontal accuracy of the instrument.

TRIGGER

(25) Trigger SLOPE Switch-Selects either the positive (-) or negative (\sim) slope of the trigger signal to start the sweep.
(26) Trigger LEVEL Control-Selects the amplitude point on the trigger signal that produces triggering.
(27) TRIG'D/READY Indicator-A dual-function LED indicator. in P-P AUTO and NORM trigger modes, the indicator is turned on when triggering occurs. In SGL SWP trigger mode, the indicator turns on when the trigger circuit is armed, awaiting a triggering event; it turns off again as soon as the single sweep is triggered.
(28) Trigger MODE Switch-Determines the sweep triggering mode.

P-P AUTO-TV LINE-Triggering occurs on trigger signals having adequate amplitude and a repetition rate of about 20 Hz or faster. In the absence of a proper trigger
signal, an autotrigger is generated, and the sweep freeruns.

NORM-Permits triggering at all sweep rates (an autotrigger is not generated in the absence of an adequate trigger signal). NORM trigger mode is especially useful for low-frequency and low-repetition-rate signals.

TV FIELD-Permits stable triggering on a television field signal (vertical sync). In the absence of an adequate trigger signal, the sweep freeruns. The instrument otherwise behaves as in P-P AUTO.

SGL SWP-Selects single sweepoperation.
(29) SGL SWP RESET Button-Arms the trigger circuit for a single sweep. Triggering requirements are the same as in NORM trigger mode. After the completion of a triggered sweep, pressing in the SGL SWP RESET button rearms the trigger circuitry to accept the next triggering event.
(30) HOLDOFF Control-Adjusts the variable holdoff time. Variable holdoff starts at the end of the sweep.
(31) Trigger SOURCE Switches-Determine the source of the internal and external trigger signal for the trigger generator circuits.

CH 1-Trigger signal is obtained from the CH 1 OR X input connector.

VERT MODE-Trigger signals are automatically obtained alternately from the CH 1 OR X and $C H 2$ OR Y input signals in ALT vertical mode. In CHOP vertical mode, the trigger signal source is the sum of the Channel 1 and Channel 2 input signals.

CH 2 -Trigger signal is obtained from the CH 2 OR Y input. The CH 2 INVERT switch also inverts the polarity of the internal Channel 2 trigger signal when the Channel 2 display is inverted.

EXT-Selects external trigger source. The actual form these triggers take is selected by the second SOURCE switch.

LINE-Routes a sample of the ac-powerline signal to the trigger circuit.

EXT/10-Divides the external signal applied to the EXT INPUT OR Z connector by a factor of ten before applying it to the trigger circuit.

EXT-Routes an external signal applied to the EXT INPUT OR Z connector to the trigger circuit.

EXT=Z-Routes the signal applied to the EXT INPUT OR Z connector to the z-axis amplifier rather than the trigger circuit.
(32) COUPLING Switch-Determines the method of coupling the signal applied to the trigger circuit.

AC-Capacitively couples the input signal; the dc component of the signal is blocked.

HF REJ-Rejects (attenuates) the highfrequency components (above 30 kHz).

LF REJ-Rejects (attenuates) the lowfrequency components (below 30 kHz).

DC-Directly couples all frequency components of the external signal to the trigger circuit.
(33) EXT INPUT OR Z Connector--Provides for connection of external signals either to the trigger circuit for external triggering or to the z-axis amplifier for intensity modulation of the crt display.

REAR PANEL

(34) Fuse Holder-Contains the ac-power-source fuse. See the rear-panel nomenclature for fuse rating and line-voltage range.
(35) Detachable Power Cord Receptacle-Provides the connection point for the ac-power source to the instrument.
(36) Line Voltage Selector (Mains Switch)-Selects the line voltage operating range of either 115 Vac or 230 Vac .

Figure 2-3. Rear Panel.

OPERATING CONSIDERATIONS

This part contains basic operating information and techniques that should be considered before attempting to make any measurements with the instrument.

GRATICULE

The graticule is internally marked on the faceplate of the crt to eliminate parallax-viewing errors and to enable measurements (see Figure 2-4). The graticule is marked with eight vertical and ten horizontal major divisions. In addition, each major division is divided into five subdivisions. The vertical deflection factors and horizontal timing are calibrated to the graticule so that accurate measurements can be made directly from the crt. Also, percentage marks for the measurement of rise and fall times are located on the left side of the graticule.

Figure 2-4. Graticule measurement markings.

GROUNDING

The most reliable signal measurements are made when the 2225 and the unit under test are connected by a common reference (ground lead) in addition to the signal lead or probe. The probe's ground lead provides the best grounding method for signal interconnection and ensures the maximum amount of signal-lead shielding in the probe cable. A separate ground lead can also be connected from the unit under test to the ground connector ($(\boldsymbol{m}$) located on the oscilloscope's front panel.

SIGNAL CONNECTIONS

Probes

Generally, the accessory probes supplied with the instrument provide the most convenient means of connecting a signal to the vertical inputs of the instrument. The probe and probe lead are shielded to prevent pickup of electromagnetic interference. The 10X attenuation factor of the probe offers a high input impedance that minimizes signal loading in the circuitry under test.

Both the probe itself and the probe accessories should be handled carefully at all times to prevent damage to them. Avoid dropping the probe body. Striking a hard surface can cause damage to both the probe body and the probe tip. Exercise care to prevent the cable from being crushed or kinked. Do not place excessive strain on the cable by pulling.

The standard-accessory probe is a compensated 10X voltage divider. It is a resistive voltage divider for low frequencies and a capacitive voltage divider for high-frequency signal components. Inductance introduced by either a long signal or ground lead forms a series-resonant circuit. This circuit will affect system bandwidth and will ring if driven by a signal containing significant frequency components at or near the circuit's resonant frequency. Oscillations (ringing) can then appear on the oscilloscope waveform display and distort the true signal waveshape. Always keep both the ground lead and the probe signal-input connections as short as possible to maintain the best waveform fidelity.

Misadjustment of probe compensation is a common source of measurement error. Due to variations in oscilloscope input characteristics, probe compensation should be checked and adjusted, if necessary, whenever the probe is moved from one oscilloscope to another or between channels. See the Probe Compensation procedure in Operator's Checks and Adjustments, or consult the instructions supplied with the probe.

Coaxial Cables

Coaxial cables may also be used to connect signals to the vertical input connectors, but they may have considerable effect on the accuracy of a displayed waveform. To maintain the original frequency characteristics of an applied signal, only highquality, low-loss coaxial cables should be used. Coaxial cables should be terminated at both ends in their characteristic impedance. If this is not possible, use suitable impedance-matching devices.

INPUT-COUPLING CAPACITOR PRECHARGING

When the Input Coupling switch is set to the GND position, the input signal is connected to ground through the input-coupling capacitor and a high value resistance. This series combination forms a precharging circuit that allows the input-coupling capacitor to charge to the average dc voltage level of the signal applied to the input connector. Thus, any large voltage transients that may accidentally be generated are not applied to the vertical amplifier
when the input coupling is switched from GND to AC. The precharging network also provides a measure of protection to the external circuitry by reducing the current level that is drawn from the external circuitry while the input-coupling capacitor is charging.

If $A C$ input coupling is in use, the following procedure should be followed whenever the probe tip is connected to a signal source having a different dc level than that previously applied. This procedure becomes especially useful if the dc-level difference is more than ten times the VOLTS/DIV switch setting.

1. Set the $A C-G N D-D C$ (input coupling) switch to GND before connecting the probe tip to a signal source.
2. Touch the probe tip to the oscilloscope ground (h) connector.
3. Wait several seconds for the input-coupling capacitor to discharge.
4. Connect the probe tip to the signal source.
5. Wait several seconds for the input-coupling capacitor to charge to the dc level of the signal source.
6. Set the AC-GND-DC switch to AC. A signal with a large dc component can now be vertically positioned within the graticule area, and the ac component of the signal can be measured in the normal manner.

OPERATOR'S CHECKS AND ADJUSTMENTS

To verify the operation and basic accuracy of your instrument before making measurements, perform the following checks and adjustment procedures. If adjustments are required beyond the scope of these operator's checks and adjustments, refer the instrument to qualified service personnel.

For new equipment checks, before proceeding with these instructions, refer to Preparation for Use in this manual to prepare the instrument for the initial start-up before applying power.

INITIAL SETUP

1. Verify that the POWER switch is OFF (switch is in the out position), and the Line Voltage Selector switch is set for the correct source voltage. Then plug the power cord into the ac power outlet.
2. Press in the POWER switch (ON) and set the instrument controls to obtain a baseline trace:

Display

INTENSITY	Midrange
FOCUS	Best defined display

Vertical (Both Channels)

VERTICAL MODE	CH 1
POSITION (both)	Midrange
VOLTS/DIV (both)	10 mV
AC-GND-DC (both)	DC
VOTS/DIV Variable	CAL (in detent)
(both) Magification (both) X1 (CAL knobs	

in)

Horizontal

SEC/DIV
SEC/DIV Variable POSITION MODE
0.5 ms

CAL (in detent) Midrange X1

Trigger

HOLDOFF
MIN (fully counterclockwise)

SOURCE	VERT MODE
MODE	P-P AUTO
SLOPE	Positive (\mp)
COUPLING	AC
LEVEL	For a stable display (with signal applied)

3. Adjust the INTENSITY and FOCUS controls for the desired display brightness and best focused trace.
4. Adjust the Vertical and Horizontal POSITION controls to position the trace within the graticule area.
5. Allow the instrument to warm up for 20 minutes before commencing the adjustment procedures. Reduce the INTENSITY level during the waiting time.

TRACE ROTATION ADJUSTMENT

NOTE

Normally, the trace will be parallel to the center horizontal graticule line, and TRACE ROTATION adjustment is not required.

1. Preset the instrument controls and obtain a baseline trace as described in Initial Setup.
2. Use the CH 1 POSITION control to move the baseline trace to the center horizontal graticule line.
3. If the baseline trace is not parallel to the center horizontal graticule line, use a small-bladed screwdriver or alignment tool to adjust the TRACE ROTATION control and align the trace with the graticule line.

PROBE COMPENSATION

Misadjustment of probe compensation is a source of measurement error. The attenuator probes are equipped with a compensation adjustment. To ensure optimum measurement accuracy, always check probe compensation before making
measurements. Probe compensation is accomplished by the following steps:

1. Preset the instrument controls and obtain a baseline trace as described in the Initial Setup.
2. Connect the two 10 X probes (supplied with the instrument) to the CH 1 ORX and CH 2 OR Y input connectors.
3. Connect the Channel 1 probe tip to the PROBE ADJUST terminal.
4. Use the CH 1 POSITION control to vertically center the display. If necessary, adjust the Trigger LEVEL control to obtain a stable display on the positive $(\boldsymbol{\sim})$ SLOPE.

NOTE
Refer to the instruction manual supplied with the probe for more complete information on the probe and probe compensation.
5. Check the waveform display for overshoot and rounding (see Figure 2-5); if necessary adjust the probe's compensation. Rotate the sleeve on the probe head to expose the adjustments (see Figure 2-6). Use a low-reactance alignment tool to adjust the LF comp capacitor for a square front corner on the waveform.

Figure 2-5. Probe compensation.

Figure 2-6. Probe compensation locations.
6. Disconnect the Channel 1 probe tip from the PROBE ADJUST rerminal.
7. Connect the Channel 2 probe tip to the PROBE ADJUST terminal.
8. Set the Vertical MODE to CH 2.
9. Use the CH 2 POSITION control to vertically center the display.
10. Repeat step 5 for the Channel 2 probe.

THEORY OF OPERATION

SECTION ORGANIZATION

This section of the manual contains a general summary of instrument functions followed by a detailed description of each major circuit. A basic block diagram, (Figure 9-4), and the schematic diagrams are located in the tabbed diagrams section at the back of this manual. They are used to show the interconnections between parts of the circuitry, to indicate circuit components, and to identify interrelationships with the front-panel controls.

The schematic diagram number associated with each description is identified in the text and is shown on the block diagram. For best understanding of the circuit being described, refer to the appropriate schematic diagram and the block diagram.

INTEGRATED CIRCUIT DESCRIPTIONS

Digital Logic Conventions

Digital logic circuits perform many functions within the instrument. Functions and operation of the logic
circuits are represented by logic symbology and terminology. Most logic functions are described using the positive-logic convention. Positive logic is a system where the more positive of two levels is the TRUE (or 1) state; the more negative level is the FALSE (or 0) state. In this logic description, the TRUE state is HI, and the FALSE state is LO. The specific voltages which constitute a HI or a LO state vary between specific devices. For specific device characteristics, refer to the manufacturer's data book.

Linear Devices

The operation of individual linear integrated circuit devices in this section use waveforms or other techniques such as voltage measurement and simplified simplified diagrams to illustrate their circuit operation.

GENERAL DESCRIPTION

In the following overall functional description of the 2225 Oscilloscope, refer to the block diagram (Figure 9-4) located in the diagrams section of this manual. In Figure 9-4 the numbered diamond symbol in each major block refers to the appropriate schematic diagram number.

Vertical

Signals to be displayed on the crt (cathode-ray tube) are applied to either or both the $\mathrm{CH} 1 \mathrm{OR} X$ and the CH 2 OR Y input connectors. The signals may be coupled to the attenuator either directly (DC) or through an input-coupling capacitor (AC). The inputs may also be disconnected, and the input to the attenuators grounded, by switching to the GND position of the input coupling switch. In the GND
position, the ac-coupling capacitor is allowed to precharge to the dc level present at the input connector. This precharging prevents large trace shifts of the display when switching from GND to AC coupling. The Attenuators are switched by the frontpanel VOLTS/DIV switches and scale the applied signal level to obtain the desired display amplitude.

The output signals from the Attenuators are applied to the Vertical Preamplifiers for amplification. The Channel 2 Preamplifier has additional circuitry, permitting the operator to invert the Channel 2 display on the cathode-ray tube (crt). Trigger pickoffs in each channel supply a trigger signal to the Trigger Amplifier when internal triggering is selected.

Input signals are selected for display by the Channel Switching circuit under control of the front-panel VERTICAL MODE switches. The output signal from
the Channel Switching circuit is applied to the Delayline Driver stage. This stage converts a current input into a voltage output and provides an impedance match for the Delay Line. The Delay Line produces approximately 90 ns of delay in the vertical signal. This delay allows time for the Horizontal circuitry to start the sweep before the vertical signal is applied to the crt, so that the operator can see the signal that triggered the sweep.

Final amplification of the vertical signal is done by the Vertical Output Amplifier. This stage produces the signal levels that vertically deflect the crt electron beam. The upper frequency response of the Amplifier can be reduced by enabling the X10 Gain circuitry. For locating the position of off-screen displays, the dynamic range of the Amplifier can be limited with the Beam Find circuitry. This circuitry also intensifies the trace and limits horizontal deflection.

Triggering

The Trigger circuitry uses either the Internal Trigger signal obtained from the input signal(s), an External Trigger signal, or a Line Trigger signal derived from the ac-power-source to develop trigger signals for the Sweep Generator. The P-P Auto Trigger circuit sets the range of the Trigger Level to conform approximately to the peak-to-peak amplitude of the selected trigger signal when either Auto or TV Field Trigger mode is selected. This allows triggering on most signals without needing to adjust the TRIGGER LEVEL control. In Norm mode, the TRIGGER LEVEL control must be adjusted to the signal level before a sweep will be triggered.

The triggering circuitry contains the TV Field Sync circuit. This circuit provides stable triggering on television vertical-sync pulses when in the TV Field triggering mode. TV Line triggering is possible using P-P AUTO trigger mode.

Sweep

The Sweep Logic circuit controls the sweep generation and Z-Axis unblanking for the Sweep display. When the TRIGGER Mode switches are set to either P-P AUTO or TV FIELD and no trigger signal is
present, the Auto Baseline circuit causes the Sweep Logic circuit to produce a sweep for reference purposes. In the NORM setting, the Auto Baseline circuit is disabled and sweeps are not generated until a trigger event occurs. This is useful for triggering on low-repetition rate signals. The SGL SWP (single sweep) trigger mode allows only one sweep to be generated after being reset. Following the single sweep, the Trigger circuit is disabled until the SGL SWP RESET button is pressed again.

The Sweep Logic circuit controls the operation of the Miller Sweep Generator circuit. The Sweep circuit produces a linear sweep with a ramp time that is controlled by the SEC/DIV switch setting. The sweep signal is applied to the Horizontal Preamplifier for initial amplification and then to the Horizontal Output Amplifier to drive the crt horizontal deflection plates.

Horizontal

The Horizontal Preamplifier gain is increased by a factor of 5,10 , or 50 when the Horizontal MAG control is used. Horizontal positioning of the display is accomplished in the Horizontal Preamplifier circuit.

In the $X-Y$ mode of operation, the Channel 1 signal from the internal Trigger circuitry passes through the $X-Y$ Amplifier to the Horizontal Preamplifier. In this operating mode, the Channel 1 Internal Trigger signal supplies the horizontal deflection to the crt, and the Miller Sweep circuit is disabled to inhibit sweep generation.

Z-Axis

The Z-Axis drive from the Sweep Logic circuit is applied to the Z-Axis Amplifier. The output signal from the Z-Axis Amplifier circuit sets the crt intensity. When using Chop Vertical mode, a blanking signal from the Chop Oscillator circuit blanks the crt display while switching between the vertical channels.

The DC Restorer circuit applies the output voltage of the Z-Axis Amplifier between the cathode and grid of the crt. High dc potentials on these elements prohibit direct coupling to the crt.

Power Supply

The Power Supply provides the necessary operating voltages for the instrument. Operating potentials are obtained from a circuit consisting of the Power Transformer, Pre-regulator, inverter and multiwinding transformer. The voltage produced by the Power Transformer output winding, after rectification, provides 45 Vdc minimum to the $40-\mathrm{kHz}$ Preregulator circuit, which in turn, supplies a nominal 38 Vdc to the 20 kHz Inverter stage. A High Voltage Multiplier circuit produces the accelerating, focus, and cathode potentials used by the crt.

Probe Adjust

A front-panel PROBE ADJUST output is provided for use in adjusting probe compensation. The voltage at the PROBE ADJUST terminal is a negative-going square wave that has a peak-to-peak amplitude of approximately 0.5 V with a repetition rate of approximately 1 kHz .

DETAILED CIRCUIT DESCRIPTION

VERTICAL

Attenuators

The Channel 1 and Channel 2 Attenuator circuits, shown on diagram 1, are identical with the exception of the additional Invert circuitry in the Channel 2 Paraphase Amplifier. Therefore, only the Channel 1 Attenuator is described, with the Invert circuitry of Channel 2 discussed separately.

The Attenuator circuit (see Figure 3-1) provides control of the input coupling, the vertical deflection factor, and the variable volts/division gain. Vertical input signals for display on the crt may be connected to either or both the CH 1 ORX and the CH 2 OR Y input connectors. In the $X-Y$ mode of operation, the signal applied to the CH 1 OR X connector provides horizontal (X-axis) deflection for the display, and the signal applied to the $\mathrm{CH} 2 \mathrm{OR} Y$ connector provides the vertical (Y-axis) deflection for the display.

Figure 3-1. Block diagram of the Channel 1 Attenuator circuit.

Input Coupling (AC-GND-DC)

A signal from the CH 1 OR X input connector may be ac or dc coupled to the High-Impedance Attenuator circuit or disconnected completely by the input Coupling Switch. Signals from the CH 1 OR X input connector are routed through resistor R1 to Input Coupling switch S101. When S101 is set for dc coupling, the Channel 1 signal goes directly to the input of the High-Impedance Attenuator stage. When ac coupled, the input signal passes through dc-blocking capacitor C2. The blocking capacitor stops the dc component of the input signal from reaching the Attenuator circuit. When switched into the signal path, attenuator AT1 attenuates the input signal by factors of $100,10,4$, or 2 . When S101 is set to GND, the direct signal path is opened, and the input of the attenuator is connected to ground. This provides a ground reference without the need to remove the applied signal from the input connector. The coupling capacitor precharges through R4 to prevent large trace shifts when switching from GND to $A C$.

Input Attenuator

The effective overall deflection factor of each vertical channel is determined by the setting of the Channel VOLTS/DIV switch. The basic deflection factor of the Vertical system is $5 \mathrm{mV} / \mathrm{DIV}$. For VOLT/DIV switch settings above $5 \mathrm{mV} / \mathrm{DIV}$, frequency compensated voltage dividers (attenuators) are switched into the circuit. Each channel has $2 \mathrm{X}, 4 \mathrm{X}, 10 \mathrm{X}$, and 100X attenuators that are selected in various combinations to produce the indicated deflection factor. Each attenuator contains an adjustable series capacitor to provide correct attenuation at high frequencies and an adjustable shunt capacitor to provide correct input capacitance.

Source Follower

The Channel 1 signal from the input attenuator is connected to source follower Q13A via R6 and C6. Resistor R5 provides the input resistance. FET Q13B is a constant current source for Q13A. Transistors Q13A and Q13B provide a high input impedance for the attenuator stage and the output drive current needed for Paraphase Amplifier U30 (the first stage of amplification).

In the event that excessive high-amplitude signals are applied to source follower Q13A, the signal will
be limited by CR7 and the gate-source junction of Q13A. If an excessive negative-going signal causes CR7 to become forward biased, Q13A gate is clamped to approximately -9.3 V . An excessive positive-going signal will forward bias the gatesource junction of Q13A. As soon as gate current flows, the gate voltage will stop increasing. Gate current is limited by the high resistance of R6.

Paraphase Amplifier

Paraphase Amplifier U3O converts the single-ended signal from Q13 into a differential signal for the Vertical Preamplifier. The signal from Q13B pin 2 goes to the base of one transistor in U30. The other input transistor in U3O is biased by the divider network formed by R30, R31, R32, and R33. Emitter current for the two input transistors is supplied by R22 and R23. Resistor R29 sets the gain for the stage. The network formed by C8 and R9 reduce the substrate capacitance of Q13 at high frequencies. R8 biases the diode substrate of Q13 off. The collector current of the two input transistors serves as emitter current for the differential output transistor pairs. Base bias voltages for the output pairs are developed by the divider network formed by R39, R41, R42, and Variable VOLTS/DIV potentiometer R43. The transistors of U30 have matched characteristics, so the ratio of currents in the two transistors, U83C and U83D, connected as diodes, determines the current ratios in the output transistor pairs of U30.

As Variable VOLTS/DIV potentiometer R43 is rotated from calibrated to uncalibrated, the conduction level of the transistors connected to R35 increases. Since the transistor pairs are cross connected, the increased conduction in one pair of transistors subtracts from the output current produced by the transistor pair connected to R38, and the overall gain of the amplifier decreases. Balance potentiometer R33 is adjusted to balance the amplifier for minimal dc trace shift as the CH 1 Variable VOLTS/DIV control is rotated.

Incorporated in the Channel 2 Paraphase Amplifier is circuitry that allows the user to invert the polarity of the Channel 2 signal. When CH 2 INVERT switch S90 is selected for NORM, the transistor pairs in U80 are biased as they are in U30, and the CH 2 trace is not inverted. For the CH 2 INVERT position of S90, connections to the bases of the output transistor pairs are reversed, reversing the polarity of the output signal to produce an inverted Channel 2 trace. Invert Balance potentiometer R83 is adjusted
for minimal dc trace shift in CH 2 INVERT when rotating CH 2 Variable VOLTS/DIV. Balance Potentiometer R84 is switched in with R83 when in NORM; it is adjusted for minimal dc trace shift when rotating CH 2 Variable VOLTS/DIV.

Vertical Preamplifiers

The Channel 1 and Channel 2 Vertical Preamplifiers, shown on diagram 2, are identical in operation. Operation of the Channel 1 amplifier is described. Differential signal current from the Paraphase Amplifier is amplified to produce drive current for the Delay Line Driver. Internal trigger signals for the Trigger circuitry are picked off prior to the Vertical Preamplifier. The Channel Switch circuitry controls channel selection for the crt display.

Common-base transistors Q102 and Q103, which complete the Paraphase Amplifier portion of the circuitry shown on diagram 1, convert differential current from the Paraphase Amplifier into levelshifted voltages that drive the bases of the input transistors of Vertical Preamplifier U130 and the Internal Trigger circuitry.

Common-mode components CR104, CR105, R104, and R105 provide X1 gain. X10 gain is selected by switching in CR111, CR112, R107, R110, R111, R112, and R128. X10 gain is adjusted by R112, and X10 balance is set by R107. C110 limits the bandwidth in X 10 mode to about 5.2 MHz to 7.8 MHz.

Emitter current for the input transistors of U130 is supplied by Q114 and Q115. The base bias voltage to Q114 and Q115 is unbalanced through potentiometer R123 (the CH 1 POSITION control) to produce vertical positioning of the Channel 1 trace. The collector current of each input transistor of U130 is the emitter current for two of the differential output transistors. One of the collectors of each output pair is grounded, and the other provides output drive to the Delay Line Driver. The base bias voltages of the transistors with grounded collectors are held at ground potential by R136. The base voltages of the other transistors are controlled by the Channel Switch circuitry.

When Channel 1 is selected to drive the Delay Line Driver, the Q output (pin 9) of U540A is HI. The transistors with the ungrounded collectors are then forward-biased, and the Channel 1 signal is conducted through to the Delay Line Driver. If Channel 1
is not selected, then the Q output of U540A is LO. The transistors with the ungrounded collectors are then reverse-biased, and the output signals will be conducted to ground by the other transistor pair. The gain of the Preamplifier is set by adjusting R145 to control the signal current that is shunted between the two differential outputs.

Channel Switch Logic

The Channel Switch circuitry, shown on diagram 2, utilizes the front-panel VerticaL MODE switches to select the crt display format. See Figure 3-2 for a block diagram of the circuit.

Figure 3-2. Block diagram of the Channel Switching circuit.

When any display mode other than $X-Y$ is selected, the XY line connected to S 550 is at ground potential. Vertical MODE switches S545 and S550 control the connection between the XY control line and the SET and RESET inputs of flip-flop U540A (SET and RESET are active LO) to obtain the various display formats described below.

CHANNEL 1 DISPLAY ONLY. The CH 1 position of S550 grounds the SET input of U540A while the RESET input is held HI by pull-up resistor R539. This sets U540A and produces a HI and a LO on the Q and \bar{Q} outputs respectively, and the Channel 1 Preamplifier signal then drives the Delay Line Driver (as described in the Vertical Preamplifier section). The Channel 2 Preamplifier will be disabled.

CHANNEL 2 DISPLAY ONLY. The CH 2 position of S550 holds the RESET input of U540A LO through CR538, and the SET input is held HI by pull-up resistor R538. This resets U540A, making the Q output of U540A LO and the \bar{Q} output HI. The Channel 2 Preamplifier signal is then enabled to drive the Delay Line Driver, while the CH 1 Preamplifier is disabled.

To display the ADD, ALT, or CHOP formats, S550 must be in the BOTH position to ground the A, C, and F pins of S545.

ADD DISPLAY. In the ADD position of S545, both the SET and RESET inputs of U540A are held LO by CR534 and CR537. This forces the Q and \bar{Q} outputs of U540A both HI , and signal currents from the Channel 1 and Channel 2 Preamplifiers add together to drive the Delay Line Driver.

CHOP DISPLAY. In the CHOP position, the CHOP ENABLE line is held LO, keeping the Q output of flip-flop U540B HI. This enables CHOP multivibrator U537D to begin switching. The switching rate is determined primarily by the component values of R544, R545, and C545. The output of U537C (the inverted output of the multivibrator circuit) supplies the CHOP clock to flip-flop U540A via U537A. The output of U537C also drives U537B, the CHOP Blanking Pulse Generator.

Coupling capacitor C547 and resistors R547 and R548 form a differentiating circuit that produces positive-going and negative-going short duration pulses. These pulses are inverted by U537B to generate the Chop Blank signal to the Z-Axis Amplifier. The pulses blank the crt during CHOP switching times.

The Alt Sync signal applied to one input of U537A is HI except during Holdoff. This allows the output of U537C to be inverted by U537A which drives the clock input of U540A. Since the \bar{Q} output of U540A is connected back to the D input, and both the SET and RESET inputs are HI (unasserted), the outputs of U540A toggle (change states) with each clock input. The Delay Line Driver is then driven alternately from the Channel 1 and Channel 2 Preamplifiers at the CHOP rate.

ALTERNATE DISPLAY. In ALT, the CHOP ENABLE line is held HI, disabling CHOP multivibrator U537D. The output of U537C will be HI and the CHOP BLANK signal from U537B will be LO. Input signals to U537A are the HI from U537C and the ALT SYNC signal from the Holdoff circuitry in the Sweep Generator. The output of U537A will then be the inverted ALT SYNC signal that clocks Channel Select flip-flop U540A. This causes the outputs of U540A to toggle at the end of each sweep so that the Channel 1 and Channel 2 Preamplifiers alternately drive the Delay Line Driver.

Delay Line Driver

The Delay Line Driver converts the signal current from the Vertical Preamplifiers into a signal voltage for input into the Delay Line. Transistors Q202, Q203, Q206, and Q207 form a differential shunt feedback amplifier with the gain controlled by R216 and R217. Common-mode dc stabilization of the Delay Line Drive Amplifier is provided by U225. Should the voltage at the junction of R222 and R223 deviate from zero, U225 will sink or source base current to Q202 and Q203 through R202 and R203. This will return the outputs of the Delay Line Driver to an average dc value of zero volts. Delay Line DL224 provides a vertical signal delay of approximately 90 ns so that the Sweep Generator has sufficient time to produce a sweep before the vertical signal that triggered the sweep reaches the vertical deflection plates.

Vertical Output Amplifier

The Vertical Output Amplifier drives the vertical deflection plates of the crt. Signals from the Delay Line go to a differential amplifier formed by Q230 and Q231 with low- and high-frequency compensation provided by the RC networks between the emitters. Thermal compensation is provided by thermistor RT236, and overall circuit gain is set by R233. The output stage of the amplifier is two, compoundshunt transistor pairs, Q254-Q256 and Q255-Q257, that convert the collector currents of Q230 and Q231 to proportional output voltages. Resistors R256 and R257 serve as feedback elements. High-frequency compensation is provided by C256 and C257.

Vertical Beam Find

Beam Find is used to reduce the vertical trace deflection to within the graticule area for locating off-screen and over-scanned traces. BEAM FIND switch S390 adjusts the Delay Line Driver amplifier biasing to limit the voltage swing at the crt plates. When S390 (diagram 6) is in the normal position (not pressed), the BEAM FIND voltage level on R226 is about 0.4 V . When the BEAM FIND switch is pressed, the voltage level on R226 goes to about -8.6 V . This level forces the output of U225 LO and biases Q202 and Q203 such that the amplifier dynamic range is limited.

Alternate Sweep Separation

The circuit consisting of Q283, Q284, Q285, and associated components provides a means of vertically positioning the Alternate (Magnified) sweep, with respect to the X1 mode trace during Alternate Horizontal Mode displays. During the Alternate (Magnified) sweep interval, the $\overline{\text { SEP }}$ signal from the Alternate Display switching circuit is LO, and Q283 is biased off. This allows TRACE SEP potentiometer R280 to affect the bias on one side of a differential current source composed of Q284 and Q285. The potentiometer supplies a dc offset current to the Vertical Output Amplifier that changes the position of the Alternate trace on the screen.

During the X 1 Mode sweep interval the $\overline{\text { SEP }}$ signal is HI (unasserted), and Q283 is biased on. The base voltages of Q284 and Q285 are then the same, and equal current is supplied to both sides of the amplifier so that no offset of the trace occurs.

TRIGGER

The Trigger Amplifier, shown on diagram 3, provides signals to the Trigger Generator from either the Vertical Preamplifiers, the EXT INPUT connector, or the power line. The SOURCE switch selects between Channel 1, Channel 2, line, or external trigger sources. The COUPLING switch selects AC, DC, LF REJECT, or HF REJECT trigger-signal coupling.

Internal Trigger

Signals from the Vertical Preamplifiers drive the CH 1 and CH 2 Internal Trigger Amplifier with channel selection determined by the Vertical and Horizontal MODE switches. Trigger pickoff from the Preamplifiers is accomplished by U315B and U315C for Channel 1 and U325A and U325B for Channel 2. The circuitry associated with Channel 2 is the same as Channel 1 except that it does not have a triggeroffset adjustment.

Differential vertical signals from the Channel 1 Preamplifier go to U315B and U315C. These emitterfollower transistors each drive one input transistor in U335. The collectors of the U335 input transistors in turn supply emitter current to two pairs of currentsteering transistors. The compensation and biasing network connected between the emitters of the input transistors in U335 is fixed for Channel 2 but not for Channel 1. Potentiometer R338 in the emitter circuit adjusts the bias levels of the two input transistors to match the dc offsets of the Channel 1 and Channel 2 Trigger Amplifiers.

One transistor in each side of the output differential amplifier pairs of U335 has its base bias set to zero volts. The bias voltage of the other transistor in each pair is controlled by the CH 1 TRIG signal from the Trigger Switch circuitry. When the CH 1 TRIG signal is LO, the transistors in each output pair with the collectors connected together are biased on, and the other transistors in the output pairs are off. The collector signal currents of the conducting transistors are equal in magnitude but of opposite polarity, so signal cancellation occurs. When the CH 1 TRIG signal is HI, the other transistors in each pair are biased on, and a differential signal is developed across output load resistors R339 and R340 to drive the Internal Trigger Amplifier.

Internal Trigger Amplifier

Internal trigger channels are chosen by the SOURCE switch being set to CH 1 , VERT MODE, or CH 2 . The logic function required to generate CH 1 TRIG and CH 2 TRIG is performed by U300, U304, CR300, CR301, and CR302. External Trigger is selected by the SOURCE switches being set to EXT, and EXT=Z or EXT or EXT/10. Line Trigger is selected by the SOURCE switches being set to EXT and LINE.

Channel 1. When the Trigger SOURCE is set to CH 1, Channel 1 is the trigger source whether displayed or not. The Channel 1 signal is also the trigger source under other settings of the Trigger SOURCE and Vertical MODE switches that call for the Channel 1 signal to be displayed. Those conditions are:

Trigger SOURRCE set to VERT MODE and the Vertical MODE is set to CH 1 , or

Trigger SOURCE set to VERT MODE and the Vertical MODE is set to BOTH and ALT.

CHANNEL 2. When the Trigger SOURCE is set to CH 2, then Channel 2 provides the trigger signal whether Channel 2 is displayed or not. As with Channel 1, other Trigger SOURCE and Vertical MODE settings will call up the Channel 2 as the trigger signal when Channel 2 is displayed. Those conditions are:

Trigger SOURCE set to VERT MODE and the Vertical MODE is set to CH 2 , or

Trigger SOURCE set to VERT MODE and the Vertical MODE is set to BOTH and ALT.

VERT MODE. When the SOURCE switch is set to VERT MODE the trigger source selection is determined by the Vertical MODE switch. Vertical MODEs of $\mathrm{CH} 1, \mathrm{CH} 2$, and BOTH in ALT are described above. Vertical MODEs of BOTH in ADD or CHOP result in the trigger source being the arithmetic sum of the Channel 1 and Channel 2 input signals.

EXT. When the SOURCE switches are set to EXT, and either EXT=Z or EXT, the trigger source is the signal applied to the EXT INPUT OR Z connector. With EXT and EXT/10 selected, the trigger signal is as above but attenuated by a factor of 10 . With EXT and LINE selected, the line-frequency signal, generated in the power supply, is passed to the External Trigger Input Amplifier (shown on diagram 6). In each case, the buffer consisting of Q370A and Q370B, drives differential amplifier U340. This amplifier has the same form as the CH 1 and CH 2 preamplifiers. External offset adjustment is provided by R360. The LO logic signal generated by U308B, EXTEN, switches on the external trigger path.

Trigger Amplifier

The Trigger Amplifier converts the differential signals from the vertical and external preamplifiers into a single-ended analog trigger signal that drives the X-Axis amplifier (for $X-Y$ Mode displays) and the Trigger Generator.

Transistors Q363 and Q365 act as a cascade stage to add the signals passed by the preamplifiers to the offset current provided by the coupling control amplifiers on diagram 3. The resulting differential output drives the differential pair Q366 and Q367. The collector load of transistor Q367 is R388. That load is driven via cascode transistor Q368 and "diode-connected" transistor U380D. Transistor Q366 drives current mirror U370D and U370B. Diode CR370 ensures that the collector-base voltage of U370D is not too low, and CR369 compensates for U370C, to equalize the collector potentials of U370B and U370D.

The collector current of U370C is the output of the current mirror and is equal to the collector current of Q366. R388 passes a current equal to the difference in the collectors of Q366 and Q367 (the trigger signal). Transistor U380C acts as an impedance buffer, whose voltage drop is compensated by U380D. The output from the emitter of U380C is the analog trigger signal. In $X-Y$ mode, U380B is biased off, allowing the trigger signal to be passed to the X-Axis Amplifier. U380E is switched off when HF REJECT is selected. This allows C372 to be switched in by U380A, thereby shunting signals of frequencies about 30 kHz and above.

Peak Rectifiers

The analog trigger signal is passed to the positive and negative Peak Rectifier circuits, The Peak Rectifiers generate voltages equal to the positive and negative peaks of the analog trigger waveform in P-P AUTO and TV FIELD modes. In NORM and SGL SWP modes, the Peak Rectifier outputs assume a voltage of about the full peak-to-peak limits of the trigger signal.

The analog trigger signal is applied to the bases of U415B and U435A. In P-P AUTO, C418 charges to the positive peak of the analog trigger signal less the U415B base-emitter drop. The base-emitter drop of U415D compensates so that the output of U425B is equal to the positive peak of the analog trigger signal. In NORM Trigger mode, the base drive to U415A rises to about +3 V , which drives the output of U425A to this level.

In P-P AUTO, C431 charges to the negative peak of the analog trigger signal, and Q435 will only switch on if the base drive to $U 435$ is less than that of U435B. If Q435 switches on, then C431 will discharge to a more negative voltage so the output of U425A will track the negative peak of the analog trigger signal. In NORM mode, U415E switches on, and C431 charges to about -3 V via CR431. Trigger LEVEL control R426 selects a trigger level voltage between the peak rectifier outputs to give trigger operation over a sufficient dynamic range.

Coupling Circuit

The Trigger Amplifier is optimized for bandwidth, not dynamic range. A current is added to the summing stage of Q363 and Q365 (via R397 and R398) to shift the desired switching point on the analog trigger signal to the threshold of the Schmitt Trigger circuit (fixed at zero volts). The selection of current drivers to feed the Trigger Amplifier is achieved by emitter switching of differential pairs U445C and U445D, U445A and U445B, and U435C and U435D. In NORMAL DC coupling, a fixed current proportional to the voltage on the LEVEL control is passed to the summing stage by U445C and U445D. This is enabled by logic signal DC from U308A being HI to bias on Q420.

In NORMAL AC coupling, the dc component of the analog trigger signal is extracted by a low-pass filter circuit R470, C471, C472, and U415C. The dc component is added to the LEVEL voltage, and the result is fed into amplifier U450A. The output of U450A controls differential pair U435C and U435D and completes the feedback loop that adjusts the offset current so that the input of U450A is held at zero volts. This forces the DC component of the analog trigger signal to be equal and opposite to the LEVEL voltage, giving AC coupling with DC shift. LF REJECT operates in exactly the same way, except that the time constant of the low-pass filter is changed by switching off U415C, allowing C473 to dominate the circuit. P-P AUTO operates by establishing a feedback loop with $\cup 450 B$ to hold the voltage on LEVEL at zero. Note that P-P AUTO does not distinguish between $D C$ and $A C$ coupling.

Trigger Level Comparator

The Trigger Level Comparator compares the level of trigger signals selected by the Trigger SOURCE switch to a zero voltage level. Positive- or negative-
slope triggering is selected by the front-panel Trigger SLOPE switch.

The analog trigger signal drives the base of U460B. The transistors of $\cup 460$ form a differential amplifier. With the input to U460E grounded, it is effectively a "single-ended" to differential amplifier. The crosscoupled collector outputs can reverse the direction of the signal fed to the succeeding stage depending on the selection by the SLOPE control.

Schmitt Trigger and TV Trigger Circuit

This circuitry generates a signal that drives the Trigger Logic as a function of the Trigger Level Comparator output signal and the Trigger MODE switches.

The output signals from the Trigger Level Comparator drive Q400 and Q401. These transistors are configured as a current mirror that converts the differential output to a single-ended current to drive amplifier U480C. Slope Balance potentiometer R481 corrects for dc offsets between positive and negative slopes. Shunt feedback amplifier U480C converts a current input to a voltage output to drive the input of the Schmitt Trigger, U480D, through R485. Positive feedback for the Schmitt Trigger is provided by Trigger Sensitivity potentiometer R489, and C489 reduces trigger jitter by increasing positive feedback at higher frequencies. The setting of R489 determines the circuit hysteresis.

When TV FIELD is not selected, the TVF signal connected to R487 is HI (unasserted). Transistors Q488 and Q489 are biased off, and a LO is placed on one input of U480A by R492-R493. This LO input will cause U480A to invert the output from U480D. With Q489 off, a LO will be placed on one input of U480B by R495, and U480B will also act as an inverter. The Trigger signal at the output of U480B is therefore the same as the input signal to U480A.

When TV FIELD is selected, the TVF line is LO (asserted). The outputs of U480D will determine the conduction states of Q488 and Q489, and the input of U480A connected to R492 will be HI. The output of U480A will be LO, and U480B will invert the signal at its other input. Signals at the collector of Q489 are filtered by C495, R495 and C496 to reject TV Video information and average the TV horizontal-sync pulses. Setting the trigger-level threshold near the center of the horizontal-sync-pulse swing establishes the untriggered level. When the TV vertical-sync block occurs, the output of the filter
applied to U480B pin 7 rises to a level that will cause the Trigger output gate U480B pin 3 to switch. Precise TV field synchronization is obtained as a result of this filtering action. The Trigger signal output will be the inverse of the filtered signal appearing at U480B pin 7.

SWEEP AND SWEEP GENERATOR LOGIC

The Sweep Logic circuitry and the Sweep Generator circuitry, shown on diagrams 4 and 5 respectively, produce a linear voltage ramp that drives the Horizontal Preamplifier. The Sweep Logic circuit also produces signals that are used to generate correct timing of the crt unblanking and intensity levels used for viewing the display. See Figure 3-3 for the block diagram of the Sweep Generator and Logic circuitry.

Miller Sweep Generator

The Miller Sweep Generator (diagram 5) produces a linear voltage ramp that drives the Horizontal Amplifier. It produces the ramp voltage by maintaining a constant current through timing capacitors, causing a linear voltage rise across them as they charge.

Field-effect transistors Q704A and Q704B are matched devices with Q704B acting as the current source for Q704A. Since the gate and source of Q704B are connected together, the source current available to Q704A is just enough so that there is no voltage drop across the gate-source junction of Q704A.

When the sweep is not running, Q701 is biased on, holding the selected timing capacitors in a discharged state. The low impedance of Q701 in the feedback path holds the Miller Sweep output near ground potential. The voltage across Q701, in addition to the base-emitter voltage of Q706, prevents Q706 from becoming saturated.

Figure 3-3. Block diagram of the Sweep Generator and Logic circuit.

The sweep ramp is initiated when Q536 (diagram 4) is biased off. The GATE signal going to the base of Q701 from the Sweep Logic circuit turns Q701 off. The timing capacitors then begin charging at a rate set by timing resistors R701, R702, and the position of the SEC/DIV switch S701. One end of timing resistor R701 is connected to the wiper of R721, and the other end is connected to the input of the Miller integrator. Due to feedback from the circuit output through the timing capacitors, the integrator input voltage at the gate of Q704A remains fixed and sets a constant voltage across the timing resistors. This constant voltage produces a constant charging current through the timing capacitors, which results in a linearly increasing voltage ramp at the output of the Miller Sweep circuit.

When the ramp reaches approximately 12 V , the Sweep Logic circuitry will initiate the holdoff period during which Q701 is turned on and the Sweep Generator is reset. This holdoff period is necessary so that the timing capacitors can be fully discharged before another sweep starts. Capacitors C704 and C703 are always in the charging circuit and are used for high sweep speeds. Capacitors C701 and C702 are used for medium sweep speeds; C701 alone is used for slow sweep speeds.

The SEC/DIV Variable circuitry utilizes an operational amplifier to maintain a constant reference voltage at one end of R721 independent of the circuit load. The voltage applied to the timing resistors varies with the setting of R721, the SEC/DIV Variable control. A fixed dc voltage is applied to the noninverting input of the operational amplifier, and feedback resistors R717 and R718 establish double that voltage at the anode of VR719. Resistor R722 is used to adjust the reference voltage when in the 0.5 ms to $10 \mu \mathrm{~s}$ SEC/DIV ranges to correct for mismatch between timing capacitors C701 and C702.

Sweep Logic

The purpose of the Sweep Logic circuit (diagram 4) is to control the sweep start dependent upon the trigger signal and Trigger MODE setting. It also provides the signal for Alternate Channel Switching and Alternate Magnification.

NORM. When NORM trigger is selected, the circuit is ready to start the sweep in response to a trigger signal. U530B has a LO on the SET, RESET, and D input. A trigger pulse received at the CLOCK pin of U530B will clock the LO on the D input to the Q output and enable the sweep to start. The output of the
sweep generator is fed back via W701-3 into the potential divider R501 and R502. This divider is arranged so that when the ramp voltage reaches approximately $12 \mathrm{~V}, \mathrm{U} 560 \mathrm{E}$ is turned on, producing a LO on the input of inverter U520A. The signal from U520B is inverted by U520C to give an overall OR function which is fed to the SET input of U530B. This overrides the CLOCK input and puts a HI on the Q output, resetting the sweep. The sweep reset is also fed to the input of monostable multivibrator $\cup 500 \mathrm{~B}$, which gives a holdoff time dependent upon the holdoff capacitor selected and the variable holdoff resistor chain. The holdoff pulse from the monostable maintains the HI on the SET input of U530B until the end of the holdoff period. At that time the SET is driven LO, allowing the next trigger pulse to start the sweep.

P-P AUTO. In the P-P AUTO mode, the sweep will free-run in the absence of a trigger signal. Should there be more than 50 ms between trigger pulses, the Auto Baseline circuit, consisting of U580B, U520D, U570A, and U570B, will initiate a sweep. The circuit of $U 580 B$ is a $20-\mathrm{Hz}$ clock pulse generator. The $20-\mathrm{Hz}$ clock signal is passed through Schmitt trigger U520D to provide a fast rise time. This is to ensure that U570A pin D and U570B pin D switch at the same time.

With no trigger signal, the first clock pulse from U580B resets U570A, putting a HI on the D of U570B. This will then be clocked (giving a LO on TRIGGERED) when the next $50-\mathrm{ms}$ pulse arrives. If the end of sweep has occurred and the holdoff period has elapsed, then the output of U520C will be LO. Because TRIGGERED and P-P AUTO are both LO, the output of U550D will put a LO on one input of U550B. As the other input is also LO, the output of U550B will put a HI on the RESET pin of U530B. That resets the flip-flop, placing a HI on the base of Q536 that turns it off and forces GATE LO at the collector of Q536 to initiate a sweep.

If a trigger occurs, the HI on the D pin of U 570 A is passed to the Q of U570A, to reset U570B, and put a HI on the TRIGGERED line. The output of U550B will then be LO, allowing $U 530 B$ to respond to the next trigger signal. When the TRIGGERED line is Hl the TRIG'D/READY light is turned on via U550A.

SINGLE SWEEP. When the SGL SWP MODE is selected, the SINGLE SWEEP line is LO, holding the D input of U570A LO. This effectively disables the

Auto Baseline Generator and also puts a LO on the TRIGGERED line. At the end of a sweep, the holdoff pulse is latched by U530A via U520B and U550C, and the D input of U530B is driven H. Thus the sweep will not start on receipt of a trigger. This condition is cleared by a pulse from single-shot monostable U500A, that clocks the LO on the D input of U530A to the Q output, allowing the next trigger to initiate a sweep. U500A is used as a switch debounce circuit. Timing components R506 and C506 are chosen to give a pulse width of about 30 ns , a pulse that is shorter than the fastest sweep speed. U500A also sets U510B, turning the TRIG'D light on via U550A. When the holdoff period is initiated (and U500A has timed out), U500B will clock a LO back onto the Q output of U510B, allowing the TRIG'D light to be turned off.

Alternate Magnification

The ALT Magnification mode is controlled by S601. In the X1 mode, $\overline{\mathrm{X} 1}$ is LO to set flip-flop U510A. The Q output of U510A ($\overline{\mathrm{SEP}}$) is therefore HI. This HI is inverted and level shifted by Q514 to drive the MAG line LO to the Horizontal Amplifier. In MAG mode, the $\overline{M A G}$ line from S601 is LO, and flip-flop U510A is reset. $\overline{\text { SEP }}$ is therefore LO, driving the MAG line H to the Horizontal Amplifier. The SEP signal line controls the trace separation circuitry in the Vertical Amplifier. In the ALT mode, U510A divides the ALT SYN signal by two so that on every other sweep the SEP and MAG lines are TRUIE.

Alternate Channel Switching

The ALT SYNC signal is provided for the channel switching circuit so that when ALT Vertical MODE is selected, channel switching will be synchronized with the timebase. When ALT MAG is not selected, the alternate switching pulse (ALT SYNC from U515A, pin 3) is supplied at the end of each sweep to the channel switching logic circuit. When ALT MAG is selected, flip-flop U510A divides ALT SYN by two so that the ALT SYNC channel switching pulse is supplied after each second sweep. This produces the following sequence of displays:

```
CH1 MAG
CH1 X1
CH2 MAG
CH2 X1
```

When BEAM FIND switch S390 (diagram 6) is pressed, the emitter of Q776 (diagram 5) goes LO to about -8 V . That voltage is applied to R 510 and

C511. Diode CR511 clamps the cathode of CR510 to about -0.6 V , so about 0 V is applied to the SET pin of U510A to set that flip-flop. The Q output of U510A is therefore HI, disabling the sweep separation and MAG circuits.

HORIZONTAL

The Horizontal Amplifier circuit, shown on diagram 5 , provides the signals that drive the horizontal deflection plates of the crt. Signals applied to the Horizontal Preamplifier may come from either the Miller Sweep Generator (for sweep deflection) or from the $X-Y$ Amplifier (when $X-Y$ display mode is selected). See Figure 3-4 for the block diagram of the Horizontal Amplifier.

The Horizontal POSITION control, X5, X10, X50 Magnifier circuitry, and the horizontal portion of the Beam Find circuitry are also part of the Horizontal Amplifier circuitry. The Horizontal Preamplifiers amplify input signals for application to the Horizontal Output Amplifier.

X1/X5 Horizontal Preamplifier.

The X1/X5 amplifier is a differential stage consisting of Q747, Q748, and associated components. When the X5 MAG line is LO, the X1 gain is set by resistor network R775 and R753, with current supplied through Q750. When X5 MAG is selected (HI), Q750 is switched off, and current is supplied through R730. Potentiometer R730 is adjusted to balance the current through Q747 and Q748. The X5 gain is set by R753, R755, R731, and R749. When in X1 mode, CR747 and CR748 are reverse biased so that the X5 stage has no effect.

X1/X10 Horizontal Preamplifier

The X1/X10 amplifier is a cascode differential amplifier consisting of U745, U755, and associated components. Signals from the X1/X5 Preamplifier are buffered by emitter followers Q759 and Q760 before being applied to the bases of U745C and U745D. When the X10 MAG line is LO (X1 selected), U755B and U755E are biased off, and U755A and U745E are biased on. Diodes CR773 and CR774 are reverse biased. The gain will then be set by R763. When X10 MAG is HI, U755B, U755E, CR773, and CR774 are biased on, and U755A and U745E are biased off. The gain of the X10 stage is set by R763, R767, and R777. Potentiometer R782 balances the currents in the preamplifier so that there is no horizontal trace shift when switching between X1 and X10 modes. Capacitors C773 and C755 damp the high-frequency gain of the preamplifier.

6299-29
Figure 3-4. Block diagram of the Horizontal Amplifier circuit.

X-Y Amplifier

The $X-Y$ Amplifier amplifies the Channel 1 signal (X-AXIS) from the Internal Trigger circuitry (diagram 3) and passes it to the Horizontal Preamplifier.

In the $X-Y$ mode of operation, the $\overline{X Y}$ line is pulled LO by a switch contact on S701 (the SEC/DIV switch). This LO biases Q732 on in the linear region. The circuit of Q732 and Q737 is a transconductance amplifier that changes an input voltage to output current. The input signal is applied through X-Gain adjust potentiometer R395 (diagram 3). The X-Axis Offset adjustment is R736. The signal current out of Q737 is fed into the shunt feedback stage consisting of U745A, U745B, R741, R742, R743, R744, and R745. Resistors R741 and R742 set the gain of the stage. The network consisting of R711, R712, R713, R714, and C714 improves the power supply noise rejection. The output of the shunt feedback stage drives the preamplifiers in all horizontal modes. The sweep is held at a constant low output level when in $X-Y$ mode.

When in the sweep mode, the $\overline{X Y}$ line is $H I$, and Q732 is biased off. This in turn biases Q737 off and disables the $X-Y$ Amplifier.

The $\overline{X Y}$ line also turns U380B on (see diagram 3), thereby not allowing the X-AXIS signal to get to the $X-Y$ amplifier. The sweep signal is applied through gain setting resistor R740 to the shunt feedback stage. The output of the shunt feedback stage drives the X1/X5 Preamplifier.

Horizontal Output Amplifier

The Horizontal Output Amplifier provides final amplification of the horizontal signal to drive the horizontal crt deflection plates.

Signals from the (+) and (-) sweep outputs of U755 drive two shunt-feedback amplifiers. Due to the feedback, the input impedance of these amplifiers is low. The base voltages of Q770 and Q780 are biased at nearly the same dc level by the forward-biased diodes (CR781 and CR791) located between the two emitters.

Transistors Q770, Q775, and Q779 form a cascodefeedback amplifier for driving the right crt horizontal deflection plate. Amplifier gain is set by R784, with C784 providing high-frequency compensation. For low-speed signals, Q779 serves as a current source for Q775. At high sweep rates, the deflection signal is coupled through C785 to the emitter of Q779 to provide added pull-up output current to drive the
crt. The amplifier formed by Q780, Q785, and Q789 drives the left crt horizontal deflection plate in the same manner as described above, with zener diode VR792 shifting the collector signal level of Q780 to the correct level to drive the emitter Q785.

Horizontal Beam Find

The BEAM FIND switch is buffered by emitter follower Q776. Diodes CR780 and CR790 are normally reverse biased by R776 when BEAM FIND is off. When BEAM FIND is active, Q776 is turned on, and its emitter is driven negative to about -8 V . The voltage on the cathode of VR776 drops to about 5 V , causing CR780 and CR790 to be forward biased. Current through CR780 and CR790 cause the output common-mode voltage of the two shunt-feedback amplifiers to be shifted negative to reduce the available voltage swing at the crt plates. This stops the trace from being deflected off-screen horizontally.

FRONT PANEL

The Front Panel circuitry is shown in diagram 6. Many of the switches and potentiometers are also shown on the other schematic diagrams adjacent to the circuitry controlled. Diagram 6 provides a diagram of the complete Front Panel to aid in servicing that circuit board. The active circuitry on the Front Panel includes the External Trigger buffer Amplifier, Q370B and Q370A, and the Horizontal Position Control current source, Q725. Operation of the FET External Trigger Buffer Amplifier is similar to the Channel 1 and Channel 2 Source Followers described previously.

All mode switching for the Vertical, Horizontal, and Trigger circuitry is done by the Front Panel switches.

Z-AXIS AMPLIFIER

The Z-Axis Amplifier, shown on diagram 7, controls the crt intensity level via several input-signal sources. The effect of these input signals is either to increase or decrease trace intensity or to completely blank portions of the display. The Z-Axis signal current as determined by the Z-Axis switching logic and the input current from the EXT NPUT OR Z connector (if in use), are summed at the emitter of common-base amplifier Q825. The summed current thereby sets the collector current of the stage. The common-base amplifier provides a low-impedance
termination for the input signals and isolates the signal sources from the rest of the Z-Axis Amplifier.

Common-base transistor Q829 passes a constant current through R832. This current is divided between Q825 and Q829, with the portion through Q829 driving the shunt-feedback output amplifier formed by Q835, Q840, and Q845. The bias level of Q825 therefore controls the emitter current available to Q829. Feedback-resistor R841 sets the transresistance gain for changing the input current to a proportional output voltage. Emitter-follower Q835 is dc coupled to Q840; and, for low-speed signals, Q845 acts as a current source. Fast transitions couple through C845, providing added current gain through Q845 for fast voltage swings at the output of the amplifier.

External Z-Axis input voltages establish proportional input currents through R823, and amplifier sensitivity is determined by the transresistance gain of the shunt-feedback amplifier. Diode CR823 protects the Z-Axis Amplifier if excessive signal levels are applied to the EXT INPUT OR Z connector.

The INTENSITY potentiometer controls the base voltage of Q804 to set the amount of emitter current that flows through that transistor and, therefore, the level of the Z-Axis signal.

When the sweep is displayed, the emitter of Q817 is LO, causing CR817 to be reverse biased. Diodes CR816, CR821, and CR820 are also reverse biased. This allows the current through R818 to flow through CR818 and turn on the Z-Axis.

When $X-Y$ is displayed, CR817 and CR816 are forward biased, reverse biasing CR821 and CR818. Diode CR819 is reverse biased, allowing the intensity to be set by the current through R820 and CR820.

When ALT MAG is selected, diodes CR816, CR817, CR819, and CR822 are all reverse biased, allowing the intensity to be controlled by the current flowing through R818 and R821. This action therefore increases the intensity of the MAG trace.

When CHOP Vertical MODE is selected, the CHOP BLANK signal is sent to the collector of Q825 through CR824 during the display-switching time. Diode CR825 is reverse biased, and the forward bias of Q829 rises to the blanking level. When blanked, the output of the Z -Axis Amplifier drops to reduce the crt beam current below viewing intensity.

At high beam currents, the crt cathode voltage tends to drop off slightly. To compensate for this,
the $2-\mathrm{kV}$ winding is referenced to the emitter of Q804, so that the output of the multiplier (12 kV) is reduced slightly at high intensity levels.

Z-Axis Beam Find

When the BEAM FIND button is pressed, the BEAM FIND line goes to about -8 V . This voltage level will shunt about 1 mA from the Z-Axis Amplifier, overriding any other current combinations to unblank the trace.

DC Restorer and Multiplier

The DC Restorer circuit sets the crt control-grid bias and couples the ac and do components of the Z-Axis Amplifier output to the crt control grid. Direct coupling of the Z-Axis Amplifier output to the crt control grid is not employed due to the high potential differences involved. Refer to Figure 3-5 during the following discussion.

Ac drive to the DC Restorer circuit is obtained from pin 4 of T902. The drive voltage has an ac peak amplitude of about 100 V , at a frequency of about 20 kHz and is coupled into the DC Restorer circuit through C853 and R853. The cathode of CR851 is biased by the wiper voltage of Grid Bias potentiometer R851, and the ac-drive voltage is clamped whenever the positive peaks reach a level that forward biases CR851.

The Z-Axis Amplifier output voltage, varying with display intensity between +10 V and +75 V , is applied to the DC Restorer at the anode of CR853. The ac-drive voltage holds CR853 reverse biased until the voltage falls below the Z-Axis Amplifier output voltage level. At that point, CR853 becomes forward biased and clamps the junction of CR851, CR853, and R854 to the Z-Axis output level. Thus, the ac-drive voltage is clamped at two levels to produce a square-wave signal with a positive dcoffset level.

Figure 3-5. Simplified diagram of the DC Restorer circuitry.

Theory of Operation-2225 Service

The DC Restorer is referenced to the $-2-k V$ crt cathode voltage through R858 and CR854. Initially, both C855 and C854 charge up to a level determined by the difference between the Z-Axis output voltage and the crt cathode voltage. Capacitor C855 charges from the Z-Axis output through R858, CR854, and CR855 to the crt cathode. Capacitor C854 charges through R858, CR854, R854, and CR853 to the crt cathode.

During the positive transitions of the ac drive, from the lower clamped level toward the higher clamped level, the charge on C854 increases due to the rising voltage. The voltage increase across C854 is equal to the amplitude of the positive transition. The negative transition is coupled through C854 to reverse bias CR854 and to forward bias CR855. The increased charge of C854 is then transferred to C855 as C854 discharges toward the Z-Axis output level. Successive cycles of the ac input to the DC Restorer charge C855 to a voltage equal to the initial level plus the amplitude of the clamped squarewave input.

The added charge held by C855 sets the controlgrid bias voltage. If more charge is added to that already present on C855, the control grid becomes more negative, and less crt writing-beam current flows. Conversely, if less charge is added, the control-grid voltage level becomes closer to the cathode-voltage level, and more crt writing-beam current flows.

During periods that C854 is charging, the crt control-grid voltage is held constant by the long time-constant discharge path of C855 through R860.

Fast-rise and fast-fall transitions of the Z-Axis output signal are coupled to the crt control grid through C855 to start the crt writing-beam current toward the new intensity level. The DC Restorer output level then follows the Z-Axis output-voltage level to set the new bias voltage for the crt control grid.

Neon lamps DS858 and DS856 protect the crt from excessive grid-to-cathode voltage if the potential on either the control grid or the cathode is lost for any reason.

High-voltage multiplier U975 uses the 2-kV winding of T902 to generate 12 kV to drive the crt anode. An internal half-wave rectifier diode in the multiplier produces -2 kV for the crt cathode. The $-2-\mathrm{kV}$ supply is filtered by a low-pass filter formed by

R975, C975, C976, R976, R978, and C979. Neon lamp DS870 protects against excessive voltage between the crt heater and crt cathode by conducting if the voltage difference exceeds approximately 75 V .

Focus voltage is also developed from the $-2-k V$ supply by a voltage divider formed by R894, R892, FOCUS potentiometer R893, R891, R890, R889, R888, R886, and Q885. The focus voltage tracks the intensity level through the action of Q885. The emitter voltage of Q804, set by the INTENSITY control, is applied to the emitter of Q885 through R885. When the emitter voltage of Q804 changes, the current through Q885 changes proportionally and alters the voltage at one end of the FOCUS control.

POWER SUPPLY

The Power Supply circuitry (diagram 7) converts the ac-power-line voltage into all the voltages required by the instrument. It comprises the Mains Input Board, Transformer, Preregulator, Series Pass, and Inverter circuits.

Mains Input Board

The power switch (S901) connects the ac-power line to the primary winding of the toroidal wound input transformer, T901, via fuse F901, filter components L901, L902, C903, C904, C905, and VOLTS SELECTOR switch S902. The secondary output is rectified and smoothed by CR901, CR902, CR903, CR904 and C900. With an ac-input voltage of 240 V , there is approximately 60 V between W903-pin 1 and W903-pin 2 at full load.

LINE SYNC. The additional components on the Mains Input Board produce a Line Sync signal for the Trigger circuit. Transistor Q 900 is a floating differential amplifier with a dc bias network comprising R905, R904, and R902. Resistors R906 and R903 apply a small line-frequency signal from the secondary of T901 to the base-emitter junction of Q900. The resultant collector current of Q900 is a line-frequency, sine-wave signal that is fed via W903-3 to the Main board.

Preregulator

The 60-V power supply from the Mains Input board, is applied to the Preregulator circuit formed by U910, Q913, and associated components. Zener diode VR910 and R910 reduce the incoming supply
for preregulator U910. The Preregulator oscillates at a nominal 39 kHz , as determined by timing components C908 and R908. The square-wave output is level-shifted by Q911, and fed to the Darlington pair circuit formed by Q912 and power transistor Q913. When Q913 is conducting, current ramps up through L910. When Q913 is off, the current ramps down while flowing in through the flywheel diode CR912. Preregulator U910 varies the duty cycle of conduction of Q913, so that the voltage on filter capacitor C914 is a nominal 39.5 V . The network R917, R922, R932, R934, and CR915 monitors the voltage across Q923; and, if that voltage is lower than the nominal 1.4 V , U910 increases the voltage across C914 until Q923 has the correct voltage.

If Q923 is open circuited, CR915 clamps the lower supply voltage to 31 V . The ratio of R932 and R922 across R934 together with R917, is chosen so that if Q923 is short circuited, the maximum voltage across C914 is 41 V . Thus the Preregulator supplies a sensible output under all conditions of the circuitry which it drives except during an overload condition. In this case the voltage developed across the current sense resistor (R907) reaches the offset voltage of 180 mV developed by R910 and R911, and U910 current limits the output to about 900 mA .

Series Pass

The function of Series Pass transistor Q923, is to reject ripple current having a frequency of twice the power-line frequency. The nominal DC voltage across it is only 1.4 V . Base current is supplied to Q923 via R923 and CR923 in the absence of drive from Q921, when the instrument is first switched on. Transistor Q923 is driven by both halves of U920 through Q921. The output at pin 7 of U920 serves to reject hum on the $38-\mathrm{V}$ supply by comparing the output of potential divider R930 and R929, with the reference diode VR931. The output at pin 1 of U920, slightly varies the value of the reference as seen at pin 6 via attenuator resistors R925 and R926. This variation maintains the $-8.6-\mathrm{V}$ supply at the value set by the -8.6-V Set potentiometer, R933.

Inverter

Inverter oscillator U940 is driven via Q918 and R946, at the same frequency as U910. U940 supplies two
non-overlapping complimentary square-wave outputs to Q930 and Q960. These transistors are in feedback loops, one of which is formed by the filter R953, CR953, reservoir capacitor C953, and level shifter VR939. The feedback is such that the base of Q940 is adjusted to drive Q950 sufficiently hard that the emitter swings to within 3 V of ground, but not hard enough to saturate it. The output voltages of transformer T902 secondary windings are full-wave rectified. The $100-\mathrm{V}$ supply voltage is derived from an auto-transformer winding in series with the primary winding. Resistors R942 and R941 feed a sample of the $38-\mathrm{V}$ supply voltage into the error amplifier connected to pins 1 and 2 of U940. If the $38-\mathrm{V}$ supply should go high, U940 will shut down.

Probe Adjust

The Probe Adjust circuitry, shown on diagram 4, is a square-wave generator and diode switching network that produces a negative-going, square-wave signal at the PROBE ADJUST terminal, J590. Amplifier U580A forms a multivibrator that has an oscillation period set by the time constant of R587 and C587. When the output of the multivibrator is at the positive supply voltage, CR588 is forward biased. This reverse biases CR589, and the PROBE ADJUST signal is held at ground potential by R590. When the multivibrator output switches states, and is at the negative supply voltage level, CR588 is reverse biased. Diode CR589 becomes forward biased, and the circuit output level drops to approximately -0.5 V .

Power Distribution

Power routing from the power supply to the other circuit board is shown in diagram 8. The schematic shows jumpers that may be used to isolate suspected loads from the power supply when troubleshooting power supply problems.

Circuit Board Interconnections

The signal interconnections between circuit boards are shown in diagram 9. This diagram may be used as an aid in signal tracing between the boards. The connectors are also convenient locations to check for the signals between boards when troubleshooting.

PERFORMANCE CHECK PROCEDURE

INTRODUCTION

PURPOSE

The Performance Check Procedure is used to verify the instrument's Performance Requirements statements listed in Table 1-1 and to determine the need for calibration. The performance checks may also be used as an acceptance test or as a preliminary troubleshooting aid.

PERFORMANCE CHECK INTERVAL

To ensure instrument accuracy, check its performance after every 2000 hours of operation, or once each year if used infrequently. A more frequent interval may be necessary if the instrument is subjected to harsh environments or severe usage.

STRUCTURE

The Performance Check Procedure is structured in subsections to permit checking individual sections of the instrument whenever a complete Performance Check is not required. At the beginning of each subsection there is an equipment-required list showing only the test equipment necessary for performing the steps in that subsection. In this list, the Item number that follows each piece of equipment corresponds to the Item number listed in Table 4-1.

Also at the beginning of each subsection is a list of all the front-panel control settings required to prepare the instrument for performing Step 1 in that subsection. Each succeeding step within a particular subsection should then be performed, both in the sequence presented and in its entirety, to ensure that control-setting changes will be correct for ensuing steps.

TEST EQUIPMIENT REQUIRED

The test equipment listed in Table 4-1 is a complete list of the equipment required to accomplish both
the Performance Check Procedure in this section and the Adjustment Procedure in Section 5. Test equipment specifications described in Table 4-1 are the minimum necessary to provide accurate results. Therefore, equipment used must meet or exceed the listed specifications. Detailed operating instructions for test equipment are not given in this procedure. If more operating information is required, refer to the appropriate test equipment instruction manual.

When equipment other than that recommended is used, control settings of the test setup may need to be altered. If the exact item of equipment given as an example in Table 4-1 is not available, check the Minimum Specification column to determine if any other available test equipment might suffice to perform the check or adjustment.

LIMITS AND TOLERANCES

The limits and tolerances given in this procedure are valid for an instrument that is operating in and has been previously calibrated in an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. The instrument also must have had at least a 20-minute warm-up period. Refer to Table 1-1 for tolerances applicable to an instrument that is operating outside this temperature range. All tolerances specified are for the instrument only and do not include testequipment error.

PREPARATION FOR CHECKS

It is not necessary to remove the instrument cover to accomplish any subsection in the "Performance Check Procedure," since all checks are made using operator-accessible front- and rear-panel controls and connectors.

The most accurate display adjustments are made with a stable, well-focused, low-intensity display. Unless otherwise noted, adjust the INTENSITY, FOCUS, and TRIGGER LEVEL controls as needed to view the display.

Table 4-1
Test Equipment Required

Item and Description	Minimum Specification	Purpose	Example of Suitable Test Equipment
1. Calibration Generator	Standard-amplitude signal levels: 5 mV to 50 V . Accuracy: $\pm 0.3 \%$. High-amplitude signal levels: 1 V to 60 V . Repetition rate: 1 kHz . Fast-rise signal level: 1 V . Repetition rate: 1 MHz . Rise time: 1 ns or less. Flatness: $\pm 0.5 \%$.	Signal source for gain and transient response checks and adjustments.	TEKTRONIX PG 506A Calibration Generator. ${ }^{\text {a }}$
2. Leveled Sine-Wave Generator	Frequency: 250 kHz to above 50 MHz . Output amplitude: variable from 10 mV to 5 V p.p. Output impedance: 50Ω. Reference frequency: 50 kHz . Amplitude accuracy: constant within 3% of reference frequency as output frequency changes.	Vertical, horizontal, and triggering checks and adjustments. Display adjustments and Z-Axis check.	TEKTRONIX SG 503 Leveled Sine-Wave Generator. ${ }^{\text {a }}$
3. Time-Mark Generator	Marker outputs: 10 ns to 0.5 s . Marker accuracy: $\pm 0.1 \%$. Trigger output: 1 ms to $0.1 \mu \mathrm{~s}$, time-coincident with markers.	Horizontal checks and adjustments. Display adjustment.	TEKTRONIX TG 501A Calibration Generator, a
4. Low-Frequency Sine-Wave Generator	Range: 1 kHz to 500 kHz . Output amplitude: 300 mV . Output impedance: 600Ω. Reference frequency: constant within 0.3 dB of reference frequency as output frequency changes.	Low-frequency trigger checks.	TEKTRONIX SG 502 Oscillator. ${ }^{\text {a }}$
5. Screwdriver	Length: 3-in. shaft. Bit size: 3/32 in.	Adjust variable resistors.	Xcelite R-3323.
6. Test Oscilloscope with 10X Probes	Bandwidth: dc to 100 MHz . Minimum deflection factor: $5 \mathrm{mV} / \mathrm{div}$. Accuracy: $\pm 3 \%$.	General troubleshooting, holdoff check.	TEKTRONIX 2235A Oscilloscope.
7. Digital Voltmeter (DMM)	Range: 0 to 140 V . Dc voltage accuracy: $\pm 0.15 \%, 4-1 / 2$ digit display.	Power supply checks and adjustments.	TEKTRONIX DM 504A Digital Multimeter.a
8. Coaxial Cable	Impedance: 50Ω. Length: 42 in. Connectors: BNC.	Signal interconnection.	Tektronix Part Number 012-0057-01.
9. Dual-Input Coupler	Connectors: BNC female-to-dual-BNC male.	Signal interconnection.	Tektronix Part Number 067-0525-01.
10. Termination	Impedance: 50Ω Connectors: BNC.	Signal termination.	Tektronix Part Number 011-0049-01.
11. Termination	Impedance: 600Ω. Connectors: BNC.	Signal termination.	Tektronix Part Number 011-0092-00.

[^2]Table 4-1, (cont)

Item and Description	Minimum Specification	Purpose	Example of Suitable Test Equipment
12. 10X Attenuator	Ratio: 10X. Impedance: 50Ω. Connectors: BNC.	Vertical compensation and triggering checks.	Tektronix Part Number $011-0059-02$.
13. Adapter	Connectors: BNC male-to- miniature-probe tip.	Signal interconnection.	Tektronix Part Number $013-0084-02$.
14. Adapter	Connectors: BNC male-to-tip plug.	Signal interconnection.	Tektronix Part Number $175-1178-00$.
15. Low-Reactance	Length: 1-in. shaft. Bit size: $3 / 32$ in.	Adjust variable Capacitors.	J.F.D. Electronics Corp. Adjustment Tool Number 5284.

INDEX TO PERFORMANCE CHECK STEPS

Vertical

Page

1. Check Deflection Accuracy
and Variable Range 4-4
2. Check Position Range 4-5
3. Check TRACE SEP Range 4-5
4. Check High Frequency Compensation 4-5
5. Check Bandwidth . 4-6
6. Check Channel Isolation 4-6
7. Check Common-Mode Rejection Ratio ... 4-6

Horizontal

1. Check Timing Accuracyand Linearity4-82. Check Sweep Length 4-10
3. Check COARSE and FINE Position Range 4-10
4. Check Variable Range 4-10
5. Check X Gain 4-11
6. Check X Bandwidth 4-11
Trigger
7. Check Trigger Sensitivity 4-12
8. Check LF P-P AUTO Trigger 4-13
9. Check External Trigger Ranges 4-13
10. Check Single Sweep Operation 4-14
External Z-Axis and Probe Adjust
11. Check External Z-Axis Operation 4-15
12. Check Probe Adjust Operation 4-15

VERTICAL

Equipment Required (See Table 4-1):

Calibration Generator (Item 1)
Leveled Sine-Wave Generator (Item 2)
$50-\Omega$ BNC Coaxial Cable (Item 8)
Dual-Input Coupler (Item 9)
$50-\Omega$ BNC Termination (Item 10)
10X BNC Attenuator (Item 12)
BNC Male-to-Miniature-Probe Tip (Item 13)

INITIAL CONTROL SETTINGS

Vertical	
POSITION (both)	Midrange
MODE	CH 1, NORM
VOLTS/DIV (both)	5 mV
VOLTS/DIV Variable (both)	CAL detent
Magnification (both)	X1 (CAL
AC-GND-DC	knobs in)
	DC
Horizontal	
POSITION (COARSE and FINE)	Midrange
MODE	X1
SEC/DIV	0.5 ms
SEC/DIV Variable	CAL detent
MAG	X5

Trigger

SLOPE	Positive $(-\Gamma)$
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	VERT MODE
COUPLING	DC

PROCEDURE STEPS

1. Check Deflection Accuracy and Variable Range

a. Connect a $20-\mathrm{mV}$ standard-amplitude signal from the calibration generator via a $50-\Omega$ BNC coaxial cable to the CH 1 OR X input connector.
b. CHECK-Deflection accuracy is within the limits given in Table 4-2 for each CH 1 VOLTS/DIV switch setting and corresponding standardamplitude signal. When at the $20-\mathrm{mV}$ VOLTS/DIV switch setting, rotate the CH 1 VOLTS/DIV Variable control fully counterclockwise and check that the display decreases to two divisions or less. Then return the CH 1 VOLTS/DIV Variable control to the CAL detent and continue with the $50-\mathrm{mV}$ check.
c. Move the cable from the CH 1 ORX input connector to the CH 2 OR Y input connector. Set the Vertical MODE switch to CH 2.
d. Set the calibration generator to output 20 mV .
e. Repeat Part b using the Channel 2 controls.
f. Set the calibration generator to 0.1 V .

Table 4-2
Deflection Accuracy Limits

VOLTS/DIV Switch Setting	STANDARD Amplitude Signal	ACCURACY Limits (Divisions)
5 mV	20 mV	3.88 to 4.12
10 mV	50 mV	4.85 to 5.15
20 mV	0.1 V	4.85 to 5.15
50 mV	0.2 V	3.88 to 4.12
0.1 V	0.5 V	4.85 to 5.15
0.2 V	1 V	4.85 to 5.15
0.5 V	2 V	3.88 to 4.12
1 V	5 V	4.85 to 5.15
2 V	10 V	4.85 to 5.15
5 V	20 V	3.88 to 4.12

2. Check Position Range

a. SET:

VOLTS/DIV (both)
10 mV
AC-GND-DC (both)
SEC/DIV
AC
0.2 ms
b. Adjust the CH 2 VOLTS/DIV Variable control to produce a 5.25 -division display.
c. Set CH 2 VOLTS/DIV to 5 mV .
d. Set the calibration generator to 0.2 V .
e. CHECK-The bottom and top of the trace may be positioned above and below the center horizontal graticule line by rotating the CH 2 POSITION control fully clockwise and counterclockwise respectively.
f. Move the cable from the CH 2 OR Y input connector to the CH 1 OR X input connector.
g. Set the Vertical MODE switch to CH 1.
h. Repeat Parts b through e using the Channel 1 controls.
i. Return both VOLTS/DIV Variable knobs to their detent positions.
j. Disconnect the test equipment from the instrument.

3. Check TRACE SEP Range

a. SET:
SEC/DIV
$10 \mu s$
Trigger SOURCE
EXT, EXT
b. Position the trace to the center horizontal graticule line using the Channel 1 POSITION control.
c. Set the Horizontal MODE to ALT.
d. CHECK—That the magnified trace can be positioned three divisions or more above the unmagnified trace.

NOTE

For instruments below serial number 202908, check that the magnified trace can also be positioned three divisions or more below the unmagnified trace.

4. Check High Frequency Compensation

a. SET:

$$
\begin{array}{ll}
\text { AC-GND-DC (both) } & \text { DC } \\
\text { SEC/DIV } & 0.2 \mu \mathrm{~s} \\
\text { Horizontal MODE } & \times 1 \\
\text { Trigger SOURCE } & \text { VERT }
\end{array}
$$

b. Connect the positive-going, fast-rise, square-wave output via a $50-\Omega$ BNC coaxial cable, a 10X BNC attenuator, and a $50-\Omega$ BNC termination to the $C H 1$ OR X input connector.
c. Set the generator to produce a $1-\mathrm{MHz}$, fivedivision display.
d. Position the bottom of the display to the bottom horizontal graticule line using the CH 1 POSITION control and position the leading edge of a pulse on the center vertical graticule line.
e. Check for aberrations at the top of the waveform of $\pm 6 \%$ (0.3 division) or less.
f. Set CH 1 VOLTS/DIV to 10 mV .
g. Set the generator to produce a $1-\mathrm{MHz}$, fivedivision display.
h. Check for aberrations of $\pm 4 \%$ (0.2 division) or less.
i. Repeat Parts g and h for each of the following CH 1 VOLTS/DIV switch settings: 20 mV through 0.2 V . Adjust the generator output and add or remove the 10X attenuator as necessary to maintain a five-division display at each VOLTS/DIV switch setting.
j. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the Vertical MODE switch to CH 2.
k. Repeat Parts c through i for Channel 2.
I. Disconnect the test equipment from the instrument.

5. Check Bandwidth

a. SET:

VOLTS/DIV (both)	5 mV
Vertical MODE	CH 1
SEC/DIV	$10 \mu \mathrm{~s}$

b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the $\mathrm{CH} 1 \mathrm{OR} X$ input connector.
c. Set the generator to produce a $50-\mathrm{kHz}$, sixdivision display.
d. Increase the signal frequency until a 4.2-division display is obtained.
e. CHECK-That the frequency is greater than 50 MHz .
f. Repeat Parts c through e for all VOLTS/DIV settings from 10 mV to 1 V .

NOTE

For the 1-V-per-division VOLTSIDIV settings, use a five-division display of the $50-\mathrm{kHz}$ reference frequency; use 3.5 divisions peak-topeak as the $-3 d B$ reference point of the bandwidth.
g. SET:

CH 1 VOLTS/DIV
CH 1 Vertical Magnification

5 mV X10 (pull CH1 CAL knob out)
h . Set the generator to produce a $50-\mathrm{kHz}$, sixdivision display.
i. Increase the signal frequency until a 4.2-division display is obtained.
j. CHECK-That the frequency is greater than 5 MHz .
k. Repeat Parts h through j for all ranges from 10 mV to 0.2 V .
I. Set the CH 1 Vertical Magnification to X 1 (push CAL knob in).
m. Set Vertical MODE to CH 2.
n. Repeat Parts b through 1 for CH 2 using the Channel 2 controls.

6. Check Channel Isolation

a. SET:

CH 1 VOLTS/DIV	0.5 V
CH 2 VOLTS/DIV	1 V
CH 1 AC-GND-DC	GND
SEC/DIV	$0.05 \mu \mathrm{~s}$

b. Set the generator to produce a $10-\mathrm{MHz}$, fivedivision display.
c. Set CH 2 VOLTS/DIV switch to 0.5 V for a 10 -division display.
d. Set Vertical MODE to CH 1.
e. Check that the CH 1 trace amplitude is less than 0.1 division.
f. Move the test-signal cable from the CH 2 OR Y input connector to the $\mathrm{CH} 1 \mathrm{OR} X$ input connector.
g. SET:

Vertical MODE	CH 2
CH 1 AC-GND-DC	DC
CH 2 AC-GND-DC	GND

h. Check that the display amplitude is less than 0.1 division.
i. Disconnect the test equipment from the instrument.
7. Check Common Mode-Rejection Ratio
a. SET:

VOLTS/DIV (both) AC-GND-DC (both)
b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC termination, and dual-input coupler to the $\mathrm{CH} 1 \mathrm{OR} X$ and CH 2 OR Y input connectors.
c. Set the generator to produce a $10-\mathrm{MHz}$, sixdivision display.
d. SET:

Vertical MODE
BOTH, CH2
INVERT, and ADD
e. CHECK-That the ADD trace is 0.6 division or less.
f. Disconnect the test equipment from the instrument.

HORIZONTAL

Equipment Required (See Table 4-1):
Calibration Generator (Item 1)
Leveled Sine-Wave Generator (Item 2)
Time-Mark Generator (Item 3)

```
Test Oscilloscope (Item 6)
50-\Omega Coaxial Cable (Item 8)
50-\Omega BNC Termination (Item 10)
```


INITIAL CONTROL SETTINGS

Vertical

POSITION (both)
MODE
VOLTS/DIV (both)
VOLTS/DIV Variable (both)
Magnification (both)
AC-GND-DC (both)

Horizontal

POSITION (COARSE and FINE)	Midrange
MODE	X1
SEC/DIV	$0.05 \mu \mathbf{s}$
SEC/DIV Variable	CAL detent
MAG	X5

Trigger

SLOPE	Positive $\left({ }^{-}\right)$
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	CH 1
COUPLING	AC

PROCEDURE STEPS

1. Check Timing Accuracy and Linearity

a. Connect $50-\mathrm{ns}$ time markers from the timemark generator via a $50-\Omega$ BNC coaxial cable and a $50-\Omega \mathrm{BNC}$ termination to the $\mathrm{CH} 1 \mathrm{OR} \times$ input connector.
b. Adjust the Trigger LEVEL control for a stable, triggered display.
c. Use the Horizontal POSITION controls to align the second time marker with the second vertical graticule line.
d. CHECK-Timing accuracy is within 3% (0.24 division at the tenth vertical graticule line), and linearity is within 5% (0.10 division over any two of the center eight divisions).

NOTE

For checking the timing accuracy of the SECIDIV switch settings from 50 ms to 0.5 s , watch the time marker tips only at the second and tenth vertical graticule lines while adjusting the COARSE and FINE Horizontal POSITION controls to line up the time markers.
e. Repeat Parts b through d for the remaining SEC/DIV and time-mark generator setting combinations shown in Table 4-3 under the Normal column.

Table 4-3
Settings for Timing Accuracy Checks

SECIDIV Switch Setting	Time-Mark Generator Setting			
	Normal	X5 Mag	X10 Mag	X50 Mag
$0.05 \mu \mathrm{~s}$	50 ns	10 ns		
0.1 ms	$0.1 \mu \mathrm{~s}$	20 ns	10 ns	
$0.2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	0.1 ms	20 ns	10 ns
$0.5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	0.1 ms	50 ns	10 ns
$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	0.1 ms	20 ns
$2 \mu s$	$2 \mu s$	$1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	0.1 ms
$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$
$10 \mu s$	$10 \mu \mathrm{~s}$	$2 \mu s$	$1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$
$20 \mu s$	$20 \mu s$	$10 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
0.1 ms	0.1 ms	$20 \mu \mathrm{~s}$	$10 \mu s$	$2 \mu s$
0.2 ms	0.2 ms	0.1 ms	$20 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
0.5 ms	0.5 ms	0.1 ms	$50 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
1 ms	1 ms	0.2 ms	0.1 ms	$20 \mu \mathrm{~s}$
2 ms	2 ms	1 ms	0.2 ms	0.1 ms
5 ms	5 ms	1 ms	0.5 ms	0.1 ms
10 ms	10 ms	2 ms	1 ms	0.2 ms
20 ms	20 ms	10 ms	2 ms	1 ms
50 ms	50 ms	10 ms	5 ms	1 ms
0.1 s	0.1 s	20 ms	10 ms	2 ms
0.2 s	0.2 s	0.1 s	20 ms	10 ms
0.5 s	0.5 s	0.1 s	50 ms	10 ms

NOTE

In X5 and X50 magnification in all "2" decade switch settings, the associated time marker settings give only five markers per ten divisions instead of the customary ten. When checking these ranges, position the markers on the second and tenth vertical graticule lines.
f. SET:

SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	MAG
Horizontal MAG	$\times 5$

g. Select 10 ns time markers from the time-mark generator.
h. Use the Horizontal POSITION controls to align the first time marker that is 50 ns beyond the start of the sweep with the second vertical graticule line.
i. CHECK-Timing accuracy is within 4% (0.32 division at the tenth vertical graticule line), and linearity is within 7\% (0.14 division over any two of the center eight divisions). Exclude any portion of the sweep past the 50th magnified division.
j. Repeat Parts h and i for the remaining SEC/DIV and time-mark generator setting combinations shown in Table 4-3 under the "X5 Magnified" column.
k. SET:
SEC/DIV
$0.1 \mu \mathrm{~s}$
Horizontal MAG $\times 10$
I. Select $10-\mathrm{ns}$ time markers from the timemark generator.
m. Use the Horizontal POSITION controls to align the first time marker that is 50 ns beyond the start of the sweep with the second vertical graticule line.
n. CHECK-Timing accuracy is within 4% (0.32 division at the tenth vertical graticule line), and linearity is within 7% (0.14 division over any two of the center eight divisions). Exclude any portion of the sweep past the 50th magnified division.
o. Repeat Parts m and n for the remaining SEC/DIV and time-mark generator setting combinations shown in Table 4-3 under the "X10 Magnified" column.
p. SET:

SEC/DIV	$0.5 \mu \mathrm{~s}$
Horizontal MAG	$\times 50$

q. Select 10 ns time markers from the timemark generator.
r. Use the Horizontal POSITION controls to align the first time marker that is 100 ns beyond the start of the sweep with the second vertical graticule line.
s. CHECK-Timing accuracy is within 5% (0.40 division at the tenth vertical graticule line), and linearity is within 9% (0.18 division over any two of the center eight divisions). Exclude any portion of the sweep past the 100 th magnified division.
t. Repeat Parts r and s for the remaining SEC/DIV and time-mark generator setting combinations shown in Table 4-3 under the X50 Magnified column.

2. Check Sweep Length

a. SET:

SEC/DIV	0.1 ms
Horizontal MODE	$\times 1$

b. Select 0.1 ms time markers from the timemark generator.
c. Position the start of the sweep at the first vertical graticule line using the Horizontal POSITION controls.
d. CHECK-That the sweep length is between 10.2 and 12 divisions.

3. Check COARSE and FINE Horizontal POSITION Range

a. CHECK-That the start of the sweep can be positioned to the right of the center vertical graticule line by rotating the COARSE Horizontal POSITION control fully clockwise.
b. CHECK-That the tenth time marker can be positioned to the left of the center vertical graticule line by rotating the COARSE Horizontal POSITION control fully counterclockwise.
c. CHECK-That the FINE Horizontal POSITION control can move the trace 0.4 division or more.

4. Check SEC/DIV Variable Range

a. Select $0.5-\mathrm{ms}$ time markers from the timemark generator.
b. Set the SEC/DIV Variable control fully counterclockwise.
c. CHECK-That the spacing between time markers is two divisions or less.
d. Return the SEC/DIV Variable knob to the CAL detent position.
e. Disconnect the test equipment from the instrument.
5. Check X Gain
a. SET:

VOLTS/DIV (both) SEC/DIV

10 mV $X-Y$ (fully ccw)
b. Connect a $50-\mathrm{mV}$, standard-amplitude signal from the calibration generator via a $50-\Omega$ BNC coaxial cable to the $\mathrm{CH} 1 \mathrm{OR} X$ input connector.
c. CHECK-That the display is between 4.85 and 5.15 divisions.
d. Disconnect the test equipment from the instrument.

6. Check X Bandwidth

a. Set both channels VOLTS/DIV switches to 50 mV .
b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the CH 1 OR X input connector.
c. Set the generator to produce an eightdivision horizontal display at an output frequency of 50 kHz .
d. Increase the output frequency until the X -Axis (horizontal) deflection amplitude is 5.7 divisions.
e. CHECK-That the frequency is 2 MHz or greater.
f. Disconnect the test equipment from the instrument.

TRIGGER

Equipment Required (See Table 4-1):
Leveled Sine-Wave Generator (Item 2)
Low-Frequency Sine-Wave Generator (Item 4) $50-\Omega$ BNC Coaxial Cable (Item 8)

Dual-Input Coupler (Item 9) $50-\Omega$ BNC Termination (Item 10) $600-\Omega$ BNC Termination (Item 11)

INITIAL CONTROL SETTINGS

Vertical

POSITION (both)
MODE
CH 1 VOLTS/DIV
CH 2 VOLTS/DIV
VOLTS/DIV Variable (both)
Magnification (both)

AC-GND-DC (both)

Horizontal

POSITION (COARSE and FINE)	Midrange
MODE	$\times 1$
SEC/DIV	$0.2 \mu \mathrm{~s}$
SEC/DIV Variable	CAL detent
MAG	X5

Trigger

SLOPE	Positive (- $)$
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	VERT MODE
COUPLING	DC

PROCEDURE STEPS

1. Check Trigger Sensitivity

a. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the $\mathrm{CH} 1 \mathrm{OR} X$ input connector.
b. Set the generator to produce a three-division display at an output frequency of 5 MHz .
c. Set channel 1 VOLTS/DIV switch to 1 V .
d. CHECK-That a stable display can be obtained by adjusting the Trigger LEVEL control for each switch combination given in Table 4-4 in both positive and negative slope. Ensure that the TRIG'D light comes on when triggered.

Table 4-4
Switch Combinations for Triggering Checks

Trigger MODE	Trigger SLOPE
NORM	Positive $_$
NORM	Negative $_$
P-P AUTO	Positive \ulcorner
P-P AUTO	Negative $_$

e. Move the test-signal cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the Vertical MODE switch to CH 2.
f. Repeat Part d.
g. SET:

SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	MAG

h. Set the generator output to produce a $50-\mathrm{MHz}$, one-division display.
i. Repeat Part d.
j. Move the test-signal cable from the CH 2 ORX input connector to the CH 1 OR Y input connector. Set the VERTICAL MODE switch to CH 1.
k. Repeat Part d.
I. Disconnect the test equipment from the instrument.
m. SET:

CH 1 VOLTS/DIV
20 mV
SEC/DIV
Horizontal MODE
Trigger MODE
Trigger SOURCE
$0.2 \mu \mathrm{~s}$
$\times 1$
P-P AUTO
EXT, EXT
n. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC termination, and a dual-input coupler to the CH 1 ORX input connector and EXT INPUT OR Z input connectors.
o. Set the generator to produce a four-division (80 mV) horizontal display at an output frequency of 5 MHz .
p. Repeat Part d.
q. SET:

CH 1 VOLT/DIV	50 mV
SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	MAG

u. Set the generator to produce a five-division (250 mV) horizontal display at an output frequency of 50 MHz .
v. Repeat Part d.
w. Disconnect the test equipment from the instrument.

2. Check LF P-P AUTO Trigger

a. SET:

CH 1 VOLTS/DIV	0.1 V
SEC/DIV	20 ms
Horizontal MODE	X1
Trigger MODE	P-P AUTO
Trigger SOURCE	CH 1
Trigger SLOPE	Positive $(-)$

b. Connect the low-frequency, sine-wave generator output via a $50-\Omega$ cable and a $600-\Omega$ termination to the CH 1 OR X input connector.
c. Set the low-frequency generator output to produce a $20-\mathrm{Hz}$, one-division display.
d. CHECK—For stable triggering in both positive and negative slopes. Ensure that the TRIG'D light comes on when triggered.
e. Disconnect the test equipment from the instrument.
3. Check External Trigger Range
a. SET:

CH 1 VOLTS/DIV 0.5 V

SEC/DIV $20 \mu \mathrm{~s}$
Trigger COUPLING AC
Trigger SLOPE
Positive ($-\Gamma$)
b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC termination, and a dual-input coupler to the CH 1 OR X and the EXT INPUT OR Z input connectors.
c. Set the leveled sine-wave generator to produce a $50-\mathrm{kHz}$, five-division display.
d. Position the waveform equally about the center horizontal graticule line.
e. SET:
Trigger MODE
NORM
Trigger SOURCE
EXT, EXT
f. CHECK-That the display is not triggered at either extreme of rotation of the Trigger LEVEL control.
g. Set the Trigger COUPLING switch to DC.
h. CHECK-That the display can be untriggered at either extreme or rotation of the Trigger LEVEL control.
i. Set the Trigger SOURCE switch to EXT/10.
j. CHECK-That the display can be triggered about the midrange of the Trigger LEVEL control.
k. Set the Trigger SLOPE switch to negative (L) and repeat Part j.

1. Disconnect the test equipment from the instrument.
2. Check Single Sweep Operation
a. SET:

CH 1 VOLTS/DIV
10 mV
SEC/DIV
Trigger SOURCE
Trigger COUPLING
Trigger SLOPE 0.5 ms CH 1 AC
Positive ($\quad\left({ }^{(}\right)$
b. Connect $50-\mathrm{mV}$, standard-amplitude signal from the calibration generator via a $50-\Omega$ BNC coaxial cable to the CH 1 OR X input connector.
c. Adjust the Trigger LEVEL control to obtain a stable display.
d. SET:

CH 1 AC-GND-DC GND
Trigger MODE
SGL SWP
e. Press the SGL SWP RESET button. The READY light should light up and remain on.
f. Set the $C H 1 A C-G N D-D C$ switch to $D C$.

NOTE
The INTENSITY control may require adjustment to observe the single-sweep trace.
g. CHECK-READY light goes out and a single sweep occurs.
h. Press the SGL SWP RESET button several times.
i. CHECK-A single-sweep trace occurs, and the READY light comes on briefly every time the SGL SWP RESET button is pressed.
j. Disconnect the test equipment from the instrument.

EXTERNAL Z-AXIS AND PROBE ADJUST

Equipment Required (See Table 4-1):
Leveled Sine-Wave Generator (Item 2)
Two 50- Ω BNC Coaxial Cable (Item 8)
Dual-Input Coupler (Item 9)

$50-\Omega$ BNC Termination (Item10)
10X Probe (provided with instrument)
Low-Reactance Alignment Tool (Item 15)

INITIAL CONTROL SETTINGS

Vertical

CH 1 POSITION
MODE
CH 1 VOLTS/DIV
CH 1 VOLTS/DIV Variable
Magnification
Channel 1 AC-GND-DC
Midrange
CH 1, NORM
1 V
CAL detent
X1 (CH 1 CAL knob in)
DC

Horizontal

POSITION (COARSE and FINE)
Horizontal MODE
SEC/DIV
SEC/DIV Variable
Midrange
X1
$20 \mu \mathrm{~s}$
CAL detent

Trigger

SLOPE	Positive ($-\boldsymbol{\sim}$)
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	EXT, EXT=Z
COUPLING	DC

PROCEDURE STEPS

1. Check External Z-Axis Operation
a. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC
termination, and a dual-input coupler to the CH 1 OR X and the EXT INPUT OR Z connectors.
b. Set the generator to produce a $5-\mathrm{V}, 50-\mathrm{kHz}$ signal.

NOTE

The INTENSITY level may need adjustment to view the intensity modulation on the displayed waveform.
c. CHECK-For noticeable intensity modulation. The positive part of the sine wave should be of lower intensity than the negative part.
d. Disconnect the test equipment from the instrument.

2. Check Probe Adjust Operation

a. SET:

$$
\begin{array}{ll}
\text { CH } 1 \text { VOLTS/DIV } & 10 \mathrm{mV} \\
\text { SEC/DIV } & 0.5 \mathrm{~ms} \\
\text { Trigger SOURCE } & \mathrm{CH} 1
\end{array}
$$

b. Connect the 10X Probe to the CH 1 ORX input connector and clip the probe tip to the PROBE connector on the instrument front panel. If necessary, adjust the probe compensation for a flat-topped square-wave display.
c. CHECK-Display amplitude is 4.75 to 5.25 divisions.
d. Disconnect the probe from the instrument.

ADJUSTMENT PROCEDURE

INTRODUCTION

PURPOSE

The Adjustment Procedure is used to return the instrument to conformance with the Performance Requirement statements listed in Table 1-1. Adjustments contained in this procedure should only be performed after checks from the Performance Check Procedure (Section 4) have indicated a need for readjustment or after repairs have been made to the instrument.

STRUCTURE

This procedure is structured into subsections, each of which can be performed independently to permit adjustment of individual sections of the instrument. For example, if only the Vertical section fails to meet the Performance Requirements or has been repaired, it can be readjusted with little or no effect on other sections of the instrument.

The Power Supply section, however, affects all other sections of the instrument. Therefore, if repairs or readjustments have been made that change the absolute value of any of the supply voltages, the entire Adjustment Procedure should be performed.

At the beginning of each subsection is a list of all the front-panel control settings required to prepare the instrument for performing Step 1 in that subsection. Each succeeding step within a subsection should be performed in sequence and in its entirety to ensure that control settings will be correct for ensuing steps. All steps within a subsection should be completed.

TEST EQUIPMENT REQUIRED

Table $4-1$ is a complete list of the test equipment required to accomplish both the Performance Check Procedure in Section 4 and the Adjustment Procedure in this section. To assure accurate measurements, it is important that test equipment used for making these checks meet or exceed the specifications described in Table 4-1. When considering
use of equipment other than that recommended, utilize the Minimum Specification column to determine whether available test equipment will suffice.

Detailed operating instructions for test equipment are not given in this procedure. If more operating information is required, refer to the appropriate test equipment instruction manual.

LIMITS AND TOLERANCES

The limits and tolerances stated in this procedure are instrument specifications only if they are listed in the Performance Requirements column of Table 1-1. Tolerances given are applicable only to the instrument undergoing adjustment and do not include test equipment error. Adjustment of the instrument must be accomplished at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, and the instrument must have had a warm-up period of at least 20 minutes.

ADJUSTMENTS AFFECTED BY REPAIRS

Repairs to a circuit may affect one or more adjustment settings of the instrument. Table 5-1 identifies the adjustment(s) affected due to repairs or replacement of components on a circuit board. Refer to Table 5-1 if a partial procedure is performed or if a circuit requires readjustment due to repairs to a circuit. To use this table, first find, in the leftmost column, the circuit that was repaired. Then move to the right, across that row, until you come to a darkened square, move up the column and check the accuracy of the adjustment found at the heading of that column. Readjust if necessary.

PREPARATION FOR ADJUSTMENT

The instrument cabinet must be removed to perform the Adjustment Procedure. See the Cabinet remove and replace instructions located in the Maintenance section of the manual.

All test equipment items listed in Table 4-1 in the Performance Check section are required to
accomplish a complete Adjustment Procedure. At the beginning of each subsection there is an equipment-required list showing only the test equipment necessary for performing the steps in that subsection. In this list, the item number following each piece of equipment corresponds to the item number listed in Table 4-1.

Before performing this procedure, do not preset any internal adjustments and do not change the -8.6 V power-supply adjustment. Altering this adjustment may necessitate a complete readjustment of the instrument, whereas only a partial adjustment might
otherwise be required. Only change an internal adjustment setting if a Performance Characteristic cannot be met with the original setting.

Before performing any procedure in this section, set the POWER switch to ON and allow a 20 -minute warm-up period.

The most accurate display adjustments are made with a stable, well-focused, low-intensity display. Unless otherwise noted, adjust the INTENSITY, FOCUS, and Trigger LEVEL controls as needed to view the display.

Table 5-1
Adjustments Affected by Repairs

INDEX TO ADJUSTMENT PROCEDURE STEPS
Power Supply and CRT Display Page

1. Check/Adjust Power Supply DC Levels 5-4
2. Adjust CRT Grid Bias 5-5
3. Adjust Astigmatism 5-5
4. Adjust Trace Alignment 5-5
5. Adjust Geometry 5-5
Vertical
6. Adjust Channel 1 Variable Balance 5-6
7. Adjust Channel 2 Variable Balance 5-6
8. Adjust Channel 2 Invert Balance 5-7
9. Adjust Vertical Gain 5-7
10. Check Deflection Accuracy and VOLTS/DIV Variable Range 5-7
11. Check Input Coupling 5-8
12. Check Position Range 5-8
13. Adjust $\mathrm{X} 1 / \mathrm{X} 10$ Balance 5-8
14. Adjust Attenuator Compensation 5-9
15. Check Vertical ALT Operation 5-10
16. Check CHOP Operation 5-10
17. Check TRACE SEP Range 5-10
18. Check ADD MODE Operation 5-10
19. Adjust High-Frequency Compensation 5-10
20. Check Bandwidth 5-11
21. Check Channel Isolation 5-12
22. Check Common-Mode Rejection Ratio 5-12

Horizontal

1. Adjust 1 -ms Timing 5-13
2. Adjust Magnifier Gain 5-13
3. Adjust Magnifier Registration 5-13
4. Check Sweep Length 5-14
5. Check Position Range 5-14
6. Check Variable Range 5-14
7. Adjust $10-\mu \mathrm{s}$ and $5-\mu \mathrm{s}$ Timing 5-14
8. Adjust High-Speed Timing 5-14
9. Check Timing Accuracy and Linearity 5-14
10. Adjust $X-Y$ Gain and Offset 5-16
11. Check X Bandwidth 5-17
12. Check Sweep Holdoff 5-17
Trigger
13. Adjust Trigger Offset Channel Balance 5-18
14. Adjust Trigger Sensitivity, Slope Balance, and P--P Offset 5-18
15. Check Trigger Sensitivity 5-19
16. Check LF P-P Auto Trigger 5-20
17. Adjust External Trigger Offset and Range 5-20
18. Check Single Sweep Operation 5-20
External Z-Axis and Probe Adjust
19. Check External Z-Axis Operation 5-22
20. Check Probe Adjust Operation 5-22

POWER SUPPLY AND CRT DISPLAY

```
Equipment Required (See Table 4-1):
    Leveled Sine-Wave Generator (Item 2)
    Time-Mark Generator (Item 3)
    Screwdriver (Item 5)
```

Digital Voltmeter (Item 7)
$50-\Omega$ BNC Coaxial Cable (Item 8)
$50-\Omega$ BNC Termination (Item 10)

See ADJUSTMENT LOCATIONS at the back of this manual for adjustment locations.

INITIAL CONTROL SETTINGS

INTENSITY

Visible display
PROCEDURE STEPS

1. Check/Adjust Power Supply DC Levels (R933)

Vertical

POSITION (both)	Midrange
MODE	CH 1, NORM
VOLTS/DIV (both)	10 mV
VOLTS/DIV Variable (both)	Cal detent
Magnification (both)	X1 (CAL
	knobs in)
AC-GND-DC (both)	GND

Horizontal

POSITION (COURSE and FINE)	Midrange
MODE	X1
SEC/DIV	X-Y (fully
	CCw)
SEC/DIV Variable	CAL detent
MAG	$X 5$

Trigger

SLOPE	Positive (-)
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	EXT, EXT
COUPLING	AC

d. CHECK—Voltage levels of the remaining power supplies listed in Table 5-2 are within the specified limits.
e. Disconnect the test equipment from the instrument.

Table 5-2
Power Supply Limits

Power Supply	Test Point	Reading (Volts)
-8.6 V	W989	-8.56 to -8.64
+5.1 V	W 991	+4.95 to +5.25
+8.7 V	$W 987$	+8.53 to +8.87
+38 V	W 972	+36.8 to +39.1
+99 V	W 984	+96.0 to +101.0

2. Adjust CRT Grid Bias (R851)

a. Adjust the front-panel FOCUS control to produce a well-defined dot.
b. Rotate the INTENSITY control fully counterclockwise.
c. ADJUST-Grid Bias (R851) for a visible dot, then back off the Grid Bias potentiometer until the dot just disappears.

3. Adjust Astigmatism (R874)

a. SET:

Vertical MODE	CH 1
CH 1 AC-GND-DC	DC
SEC/DIV	$5 \mu \mathrm{~s}$
Trigger SOURCE	CH 1

b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the $\mathrm{CH} 1 \mathrm{OR} X$ input connector.
c. Set the generator to produce a $50-\mathrm{kHz}$, fourdivision display.
d. ADJUST-Astig (R874) and the front-panel FOCUS control for the best defined waveform.
e. Disconnect the test equipment from the instrument.

4. Adjust Trace Alignment

a. Position the trace to the center horizontal graticule line.
b. ADJUST-The front-panel TRACE ROTATION control for optimum alignment of the trace with the center horizontal graticule line.

5. Adjust Geometry (R870)

a. SET:
CH 1 VOLTS/DIV
50 mV
SEC/DIV 0.1 ms
b. Connect $50-\mu$ s time markers from the timemark generator via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the CH 1 OR X input connector.
c. Position the baseline part of the display below the bottom horizontal graticule line using the CH 1 POSITION control.
d. Adjust the SEC/DIV Variable control for five markers per division.
e. ADJUST-Geom (R870) for minimum curvature of the time markers at the left and right edges of the graticule.
f. Set CH 1 AC-GND-DC switch to GND.
g. ADJUST-Geom (R870) for minimum curvature of the baseline trace when positioned at the top and bottom horizontal graticule lines using the CH 1 POSITION control.
h. Set the $C H$ 1 AC-GND-DC switch to $D C$.
i. Repeat Parts e through h for optimum compromise between the vertical and horizontal displays.
j. Disconnect the test equipment from the instrument.

VERTICAL

```
Equipment Required (See Table 4-1):
    Calibration Generator (Item 1)
    Leveled Sine-Wave Generator (Item 2)
    Screwdriver (Item 5)
    50-\Omega BNC Coaxial Cable (Item 8)
    Dual-Input Coupler (Item 9)
50-\Omega BNC Termination (Item10)
10X Attenuator (Item 12)
BNC Male-to-Miniature-Probe Tip (Item 13)
Low-Reactance Alignment Tool (Item 15)
10X Probe (Provided with instrument)
```

See ADJUSTMENT LOCATIONS at the back of this manual for adjustment locations.

INITIAL CONTROL SETTINGS

Vertical

POSITION (both)	Midrange
MODE	CH 1, NORM
VOLTS/DIV (both)	5 mV
VOLTS/DIV Variable(both)	CAL detent
Magnification (both)	X1 (CAL
	knobs in)
AC-GND-DC (both)	GND

Horizontal

POSITION (COARSE and FINE)	Midrange
MODE	$\times 1$
SEC/DIV	0.5 ms
SEC/DIV Variable	CAL detent
MAG	$\times 5$

Trigger

SLOPE	Positive $(-\Gamma)$
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	EXT, EXT
COUPLING	AC

PROCEDURE STEPS

1. Adjust Channel 1 Variable Balance (R33)

a. Rotate the CH 1 VOLTS/DIV Variable control fully counterclockwise.
b. Position the trace on the center horizontal graticule line using the CH 1 POSITION control.
c. Rotate the CH 1 VOLTS/DIV Variable control clockwise to the CAL detent.
d. ADJUST-Var Bal (R33) to set the trace to the center horizontal graticule line.
e. Repeat Parts a through d until there is no trace shift between the fully clockwise and the fully counterclockwise positions of the CH 1 VOLTS/DIV Variable control.
f. Return the CH 1 VOLTS/DIV Variable control to the CAL detent.
2. Adjust Channel 2 Variable Balance (R84) (SN 202908 and above)
a. Set Vertical Mode to Ch 2.
b. Rotate the CH 2 VOLTS/DIV Variable control fully counterclockwise.
c. Position the trace on the center horizontal graticule line using the CH 2 POSITION control.
d. Rotate the CH 2 VOLTS/DIV Variable control clockwise to the CAL detent.
e. ADJUST-Var Bal (R84), on the front-panel board to set the trace to the center horizontal graticule line.
f. Repeat Parts b through e until there is no trace shift between the fully clockwise and the fully counterclockwise positions of the CH 2 VOLTS/DIV Variable control.
g. Return the CH 2 VOLTS/DIV Variable control to the CAL detent.

3. Adjust Channel 2 Invert Balance (R83)

a. Position the trace on the center horizontal graticule line using the Channel 2 POSITION control.
b. Set Vertical MODE switch to CH 2 INVERT.
c. ADJUST-Invert Bal (R83) to set the trace to the center horizontal graticule line.
d. Set Vertical MODE switch to NORM.
e. Repeat Parts a through d until there is no trace shift when switching from NORM to CH 2 INVERT.
4. Adjust Vertical Gain (R145, R195, R112, and R162)
a. SET:

CH 1, NORM
Vertical MODE
AC-GND-DC (both)
Trigger SOURCE
Trigger COUPLING

AC-GND-DC (both)
Trigger COUPLING DC VERT MODE DC
b. Connect a $20-\mathrm{mV}$, standard-amplitude signal from the calibration generator via a $50-\Omega$ BNC cable to the $C H 1$ OR X input connector.
c. Center the display within the graticule using the CH 1 POSITION control.
d. ADJUST-CH 1 Gain (R145) for an exact fourdivision display.
e. Move the test-signal cable from the $\mathrm{CH} 1 \mathrm{OR} X$ input connector to the CH 2 OR Y input connector.
f. Set the Vertical MODE switch to CH 2.
g. Center the display within the graticule using the CH 2 POSITION control.
h. ADJUST-CH 2 Gain (R195) for an exact fourdivision display.
i. Repeat Parts bthrough h until the gain of the two channels is identical. (You must switch the Vertical MODE between CH 1 and CH 2 as needed to view the display.)
j. Change the generator output to 2 mV , and set the CH 1 and CH 2 vertical magnification to X 10 (pull CAL knobs out).
k. ADJUST-CH 2×10 Gain (R162) for an exact four-division display.
I. Move the test-signal cable from the $\mathrm{CH} 2 \mathrm{OR} Y$ input connector to the CH 1 OR X input connector.
m . Set the Vertical MODE switch to CH 1.
n. ADJUST-CH 1 X10 Gain (R112) for an exact four-division display.

5. Check Deflection Accuracy and VOLTS/DIV Variable Range

a. SET:

VOLTS/DIV Variable (both)	CAL detent
Vertical Magnification (both)	X1 (CAL
	knobs in)

b. CHECK-Deflection accuracy is within the limits given in Table 5-3 for each CH 1 VOLTS/DIV switch setting and corresponding standardamplitude signal. When at the $20-\mathrm{mV}$ VOLTS/DIV switch setting, rotate the CH 1 VOLTS/DIV Variable control fully counterclockwise and CHECK that the display decreases to two divisions or less. Then return the CH 1 VOLTS/DIV Variable control to the CAL detent and continue with the $50-\mathrm{mV}$ check.
c. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the Vertical MODE switch to CH 2.
d. Repeat Part b using the Channel 2 controls.

Table 5-3 Deflection Accuracy Limits

VOLTS/DIV Switch Setting	STANDARD Amplitude Signal	ACCURACY Limits (Divisions)
5 mV	20 mV	3.88 to 4.12
10 mV	50 mV	4.85 to 5.15
20 mV	0.1 V	4.85 to 5.15
50 mV	0.2 V	3.88 to 4.12
0.1 V	0.5 V	4.85 to 5.15
0.2 V	1 V	4.85 to 5.15
0.5 V	2 V	3.88 to 4.12
1 V	5 V	4.85 to 5.15
2 V	10 V	4.85 to 5.15
5 V	20 V	3.88 to 4.12

6. Check Input Coupling

a. Set the AC-GND-DC switches (both channels) to GND.
b. Position the trace on the center horizontal graticule line using the CH 2 POSITION control.
c. Change the generator output to 50 mV .
d. Set the $C H 2 A C-G N D-D C$ switch to $A C$.
e. CHECK-That the display is centered about the center horizontal graticule line.
f. Set the CH 2 AC-GND-DC switch to DC.
g. CHECK-That the display is ground referenced on the center horizontal graticule line.
h. Move the test-signal cable from the CH 2 OR Y input connector to the $\mathrm{CH} 1 \mathrm{OR} X$ input connector.
i. Set the Vertical MODE switch to CH 1.
j. Repeat Parts b through g using the Channel 1 controls.

7. Check Position Range

a. SET:

VOLTS/DIV (both)	10 mV
AC-GND-DC (both)	AC
SEC/DIV	0.2 ms Trigger
Trigger COUPLING	AC

b. Set the calibration generator for 0.1 V .
c. Adjust the CH 1 VOLTS/DIV Variable control to produce a 5.25 -division display.
d. Set the CH 1 VOLTS/DIV to 5 mV .
e. Set the calibration generator to produce a 0.2 V signal.
f. CHECK-The bottom and top of the trace may be positioned above and below the center horizontal graticule line by rotating the CH 1 POSITION control fully clockwise and counterclockwise respectively.
g. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector.
h. Set the Vertical MODE switch to CH 2.
i. Repeat Parts b through f using the Channel 2 controls.
j. Disconnect the test equipment from the instrument.

8. Adjust X1/X10 Balance

a. SET:

Vertical MODE CH 1
AC-GND-DC (both) GND
VOLTS/DIV Variable (both) CAL detent
b. Position the trace on the center horizontal graticule line using the CH 1 POSITION control.
c. Set CH 1 VOLTS/DIV Variable knob to $\times 10$ (pull CAL knob out).
d. ADJUST-X10 BAL (R107) to position the trace on the center horizontal graticule line.
e. Set CH 1 VOLTS/DIV Variable knob to X 1 (push CAL knob in).
f. Repeat Parts b through e until there is no trace shift between X 1 and X 10 positions.

g. Set Vertical MODE to CH 2.

h. Repeat Parts b through f for CH 2 , using the Channel 2×10 BAL adjust (R157) instead of R107 in Part d.
i. Return both VOLTS/DIV Variable controls to their CAL and X1 positions.

9. Adjust Attenuator Compensation

a. SET:

VOLTS/DIV (both)	5 mV
Vertical Magnification (both)	$\times 1$ (CAL
	knobs in
AC-GND-DC (both)	$D C$

b. Connect the high-amplitude, square-wave output from the calibration generator via a $50-\Omega$ BNC termination, a probe-tip-to-BNC adapter, and the 10X probe to the CH 2 OR Y input connector.
c. Set the generator to produce a $1-\mathrm{kHz}$, fivedivision display and compensate the probe using the probe compensation adjustment (see the probe instruction manual).
d. Set the CH 2 VOLTS/DIV switch to 10 mV .
e. Replace the probe and probe-tip-to-BNC adapter with a $50-\Omega$ BNC coaxial cable and $50-\Omega$ BNC termination.
f. Set the generator to produce a five-division display.
g. ADJUST-Trimmer 1 for flattest response on the square wave signal. See figure 5-1 for location of the trimmers.
h. Replace the $50-\Omega$ BNC coaxial cable and $50-\Omega$ BNC termination with the probe and probe-tip-toBNC adapter.
i. Set the generator to produce a five-division square wave.
j. ADJUST-Trimmer 1 N for flattest response on square wave.
k. Set the CH 2 VOLTS/DIV switch to 20 mV .

Figure 5-1.Attenuator trimmer adjustments.
I. Repeat Parts e through j except adjust the " 2 " and " $2 N$ " trimmers in Parts g and j respectively.
m. Set the CH 2 VOLTS/DIV switch to 50 mV .
n. Repeat Parts e through j except adjust the " 3 " and " $3 N$ " trimmers in Parts g and j respectively.
o. Set the CH 2 VOLTS/DIV switch to .5 V .
p. Repeat Parts e through j except adjust the "4" and " 4 N " trimmers in Parts g and j respectively.
q. Set the Vertical MODE switch to CH 1.
r. Repeat Parts b through p for the Channel 1 Attenuators.
s. Disconnect the test equipment from the instrument.

10. Check Vertical ALT Operation

a. SET:

AC-GND-DC (both)
GND
Vertical MODE
SEC/DIV
Trigger SOURCE

BOTH, NORM, and ALT
0.1 s

CH 1
b. Position the Channel 1 and Channel 2 traces about two divisions apart using the CH 1 and CH 2 POSITION controls.
c. CHECK-Channel 1 and Channel 2 traces move across the screen alternately.

11. Check CHOP Operation

NOTE

Chop Switch Balance adjust only applies to the following range of instruments: Serial Numbers 100000 - 100809 and 202908 209929 .
a. SET:

Vertical MODE

SEC/DIV
Trigger MODE
Trigger SOURCE

BOTH, NORM, and CHOP
$1 \mu \mathrm{~s}$
NORM
VERT MODE
b. ADJUST-Chop Switch Balance (R140) for no triggering on chop segments when rotating the Trigger LEVEL control.
12. Check TRACE SEP Range
a. SET:

VOLTS/DIV (both)
5 mV
Vertical MODE CH 1
SEC/DIV
Horizontal MODE
Trigger MODE
Trigger SOURCE
ALT
ALT
P-P AUTO
EXT, EXT
TRACE SEP
Fully ccw
b. Position the trace on the center horizontal graticule line using the CH 1 POSITION control.
c. CHECK-That the MAG trace can be positioned three divisions or more ABOVE the unmagnified trace using the TRACE SEP control. SN 202908 and abovecheck for positioning three divisions above and below the unmagnified trace.

13. Check ADD MODE Operation

a. SET:

VOLTS/DIV (both)	20 mV
AC-GND-DC (both)	DC
Vertical MODE	BOTH, NORM,
	and ALT
SEC/DIV	0.5 ms
Horizontal MODE	$\mathrm{X1}$
Trigger SOURCE	CH 1

b. Position both traces on the center horizontal graticule line using the CH 1 and CH 2 POSITION controls.
c. Set the calibration generator to produce a $50-\mathrm{mV}$ signal.
d. Connect the output of the calibration generator to both the CH 1 OR X input and the $C H 2 O R Y$ input with dual-input coupler.
e. Check that both channels show a 2.5-division display.
f. SET:

Vertical MODE ADD

AC-GND-DC (both) DC
g. CHECK-That the resultant display is five divisions $\pm 3 \%$ (4.85 to 5.15 divisions).
h. Disconnect the test equipment from the instrument.

14. Adjust High-Frequency Compensation

a. SET:

VOLTS/DIV (both)	10 mV Vertical
MODE	CH 1
SEC/DIV	$0.2 \mu \mathrm{~s}$

b. Connect the positive-going, fast-rise, squarewave output from the calibration generator via a $50-\Omega$ BNC coaxial cable, a $10 \times$ BNC attenuator, and a $50-\Omega$ BNC termination to the CH 1 OR X input connector.
c. Set the generator to produce a $1-\mathrm{MHz}$, fivedivision display.
d. Set the top of the display to the center horizontal graticule line using the CH 1 POSITION control.
e. ADJUST-Compensation (R241, R240, C256, C237 and C257) for flattest response. Repeat adjustments until no further improvements are noted.

NOTE

Check your instrument to see if C180 on the A1 circuit board is adjustable. If it is, perform Parts f, g, and h. If it is not, proceed with part i.
f. Move the test signal to CH 2 and set the Vertical MODE to CH 2.
g. ADJUST-CH 2 compensation capacitor C180 to match the $\mathrm{CH} 2,10 \mathrm{mV}$ compensation to the CH 1 10 mV compensation.
h. Move the test signal cable back to CH 1 and set the Vertical MODE to CH 1.
i. Set the CH 1 VOLTS/DIV switch to 5 mV .
j. Set the generator for a five-division signal.
k. Check for aberrations of $\pm 6 \%$ (0.3 division) or less.
I. Set the CH 1 VOLTS/DIV switch to 10 mV .
m . Set the generator for a five-division signal.
n. Check for aberrations of $\pm 4 \%$ (0.2 division) or less.
o. Repeat Part n for each CH 1 VOLTS/DIV switch settings from 20 mV through 0.2 V . Adjust the generator output and add or remove the 10X attenuator as necessary to maintain a five-division display at each VOLTS/DIV switch setting.

NOTE

Some generators do not produce enough signal amplitude to do parts p through t.
p. Set the CH 1 VOLTS/DIV switch to 0.5 V .
q. Check for aberrations of $\pm 6 \%$ (0.3 division) or less.
r. Set the CH 1 VOLTS/DIV switch to 1 V .
s. Check for aberrations of $\pm 12 \%$ (0.6 division) or less.
t. Repeat Part s for the 2 V and 5 VCH 1 VOLTS/ DIV switch settings. Adjust the generator output and add or remove the 10X attenuator as necessary to maintain a five-division display at each VOLTS/DIV switch setting.
u. Move the cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the Vertical MODE switch to CH 2.
v. Repeat Parts f through t for Channel 2.
w. Disconnect the test equipment from the instrument.

15. Check Bandwidth

a. SET:

VOLTS/DIV (both) 5 mV
Vertical MODE $\quad \mathrm{CH} 1$
SEC/DIV $\quad 10 \mu \mathrm{~s}$
Trigger SOLIRCE VERT MODE
b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the CH 1 OR X input connector.
c. Set the generator to produce a $50-\mathrm{kHz}$, sixdivision display.
d. Increase the sine-wave frequency until a 4.2-division display is obtained.
e. CHECK-the frequency is greater than 50 MHz .
f. Repeat Parts c through e for all ranges from 10 mV to 2 V .
g. SET:

CH 1 VOLTS/DIV
5 mV
CH 1 VOLTS/DIV Variable X10 (CAL knob out)
h. Set the generator to produce a $50-\mathrm{kHz}$, sixdivision display.
i. Increase the signal frequency until a 4.2-division display is obtained.
j. CHECK-The frequency is greater than 5 MHz .
k. Repeat Parts h through j for all ranges from 10 mV to 0.2 V .
I. Set the CH 1 VOLTS/DIV Variable to $\mathrm{X1}$ (push CAL knob in).
m. Set Vertical MODE to CH 2.
n. Repeat Parts b through I for Channel 2.
16. Check Channel Isolation
a. SET:

CH 1 VOLTS/DIV
1 V
CH 2 VOLTS/DIV
AC-GND-DC (CH 1)
AC-GND-DC (CH 2)
Vertical MODE
SEC/DIV
0.5 V

DC
GND
CH 1
$0.05 \mu \mathrm{~s}$
b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the CH 1 OR X input connector.
c. Set CH 1 VOLTS/DIV switch to 0.5 V for a 10-division display.
d. Set the generator to produce a $10-\mathrm{MHz}, 5 \mathrm{~V}$ peak-to-peak output.
e. Set Vertical MODE to CH 2 and ALT.
f. CHECK—That the CH 1 trace amplitude is less than 0.1 division.
g. Move the test-signal cable from the CH 1 ORX input connector to the CH 2 OR Y input connector.
h. SET:
Vertical MODE
CH 1
CH 1 AC-GND-DC
GND
CH 2 AC-GND-DC
DC
i. CHECK-That the display amplitude is less than 0.1 division.
j. Disconnect the test equipment from the instrument.

17. Check Common-Mode Rejection Ratio

a. SET:

VOLTSIDIV (both)
10 mV
AC-GND-DC (both) DC
Vertical MODE
BOTH, NORM, and ALT
b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC termination, and a dual-input coupler to the CH 1 OR X and CH 2 OR Y input connectors.
c. Set the generator to produce a $10-\mathrm{MHz}$, sixdivision display.
d. Set Vertical MODE to INV and ADD.
e. CHECK-That the ADD display is less than 0.6 division.
f. Disconnect the test equipment from the instrument.

HORIZONTAL

Equipment Required (See Table 4-1):
Calibration Generator (Item 1)
Leveled Sine-Wave Generator (Item 2)
Time-Mark Generator (Item3)
Screwdriver (Item 5)

Test Oscilloscope (Item 6)
$50-\Omega$ BNC Termination (Item 10)
Low-Reactance Alignment tool (Item 15)
$50-\Omega$ Coaxial Cable (Item 8)

See ADJUSTMENT LOCATIONS at the back of this manual for adjustment locations.

INITIAL CONTROL SETTINGS

Vertical

```
POSITION (both)
MODE
VOLTS/DIV (both)
VOLTS/DIV Variable (both)
Magnification (both)
AC-GND-DC (both)
```

Horizontal

POSITION	Midrange
MODE	$\times 1$
SEC/DIV	1 ms
SEC/DIV Variable	CAL detent

Trigger

SLOPE	Positive $(-\Gamma)$
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	CH 1
COUPLING	AC

PROCEDURE STEPS

1. Adjust 1 -ms Timing (R775)

a. Connect $1-m s$ time markers from the timemark generator via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the $\mathrm{CH} 1 \mathrm{OR} \times$ input connector.
b. Align the first time marker with the first (extreme left) vertical graticule line using the Horizontal POSITION control.

NOTE

When making timing measurements, use the tips of the time markers positioned at the center horizontal graticule line as the measurement reference points.
c. ADJUST-X1 Gain (R775) for one marker per division over the center eight divisions.
2. Adjust Magnifier Gain (R731, R777)
a. SET:

Horizontal MODE MAG
Horizontal MAG X5
b. Align the first time marker with the first (extreme left) vertical graticule line using the Horizontal POSITION control.
c. ADJUST-X5 Mag Gain (R731) for five divisions between magnified markers.
d. Set Horizontal MAG to X10.
e. ADJUST-X10 Mag Gain (R777) for 10 divisions between magnified markers.

3. Adjust Magnifier Registration (R782, R730)

a. Set the Horizontal MAG to X50.
b. Select 1 ms time-markers from the time-mark generator.
c. Position the first time marker to the center vertical graticule line using the Horizontal POSITION controls.
d. Set the Horizontal MAG to X10.
e. ADJUST-X50 Mag Reg (R730) to bring the first time marker to the center vertical graticule line.
f. Set the Horizontal MAG to X 1 .
g. ADJUST-X10 Mag Reg (R782) to overlay the first time marker to the center vertical graticule line.

4. Check Sweep Length

a. SET:

SEC/DIV
 Horizontal MODE
 0.1 ms X1

b. Select . 1-ms time markers from the time-mark generator.
c. Position the start of the sweep at the first vertical graticule line using the Horizontal POSITION control.
d. CHECK-That the sweep length is between 10.2 and 12 divisions.

5. Check Position Range

a. CHECK-That the start of the sweep can be positioned to the right of the center vertical graticule line by rotating the COARSE Horizontal POSITION control fully clockwise.
b. CHECK-That the tenth time marker can be positioned to the left of the center vertical graticule line by rotating the COARSE Horizontal POSITION control fully counterclockwise.
c. CHECK-That the FINE Horizontal POSITION control can move the trace more than 0.4 divisions.

6. Check Variable Range

a. Select $0.5-\mathrm{ms}$ time markers from the timemark generator.
b. Set the SEC/DIV Variable control knob fully counterclockwise
c. CHECK-That the spacing between time markers is two divisions or less.
d. Return the SEC/DIV Variable knob to the CAL detent.
7. Adjust $10-\mu s$ and $5-\mu s$ timing (R722, C703)
a. Set the SEC/DIV switch to $10 \mu \mathrm{~s}$.
b. Select $10-\mu \mathrm{s}$ time markers from the time-mark generator.
c. ADJUST-10- $\mu \mathrm{s}$ Timing (R722) for one marker per division.
d. Set the SEC/DIV switch to $5 \mu \mathrm{~s}$.
e. Select 5 - $\mu \mathrm{s}$ time markers from the time-mark generator.
f. ADJUST-5- s Timing (C703) for one marker per division.

8. Adjust High-Speed Timing (C784, C794)

a. SET:

CH 1 VOLTS/DIV	0.1 V
CH 1 AC-GND-DC	AC
SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	MAG
Horizontal MAG	$\times 10$
Trigger SOURCE	EXT, EXT

b. Select $10-\mathrm{ns}$ time markers from the time-mark generator.
c. Connect the time-mark generator trigger output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the EXT INPUT OR Z input connector.
d. Adjust the Trigger LEVEL control so that the markers are stably triggered.
e. ADJUST-5-ns Linearity (C784) and 5-ns Timing (C794) for two divisions between each marker.
9. Check Timing Accuracy and Linearity
a. SET:

CH VOLTS/DIV	0.5 V
SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	X 1

b. Select $50-\mathrm{ns}$ time markers from the timemark generator.
c. Adjust the Trigger LEVEL control for a stable, triggered display.
d. Use the Horizontal POSITION control to align the second time marker with the second vertical graticule line.
e. CHECK-Timing accuracy is within 3% (0.24 division at the tenth vertical graticule line), and linearity is within 5% (0.10 division over any two of the center eight divisions).

NOTE

When checking the timing accuracy for SECIDIV switch settings from 50 ms to 0.5 s , watch the time marker tips only at the second and tenth vertical graticule lines while adjusting the Horizontal POSITION control.
f. Repeat Parts c through e for the remaining SEC/DIV and time-mark-generator setting combinations shown in Table 5-4 under the Normal column.

Table 5-4
Settings for Timing Accuracy Checks

SECIDIV Switch Setting	Time-Mark Generator Setting			
	Normal	X5 Mag	X10 Mag	X 50 Mag
$0.05 \mu \mathrm{~s}$	50 ns	10 ns		
0.1 ms	$0.1 \mu \mathrm{~s}$	20 ns	10 ns	
0.2 ms	$0.2 \mu \mathrm{~s}$	0.1 rs	20 ns	10 ns
$0.5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	0.1 ms	50 ns	10 ns
$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	0.1 ms	20 ns
$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	0.1 ms
$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	0.1 us
$10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$
$20 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
0.1 ms	0.1 ms	$20 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
0.2 ms	0.2 ms	0.1 ms	$20 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
0.5 ms	0.5 ms	0.1 ms	$50 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
1 ms	1 ms	0.2 ms	0.1 ms	$20 \mu \mathrm{~s}$
2 ms	2 ms	1 ms	0.2 ms	0.1 ms
5 ms	5 ms	1 ms	0.5 ms	0.1 ms
10 ms	10 ms	2 ms	1 ms	0.2 ms
20 ms	20 ms	10 ms	2 ms	1 ms
50 ms	50 ms	10 ms	5 ms	1 ms
0.1 s	0.1 s	20 ms	10 ms	2 ms
0.2 s	0.2 s	0.1 s	20 ms	10 ms
0.5 s	0.5 s	0.1 s	50 ms	10 ms

NOTE

In X5 and X50 magnification in all "2" decade switch settings, the associated time marker settings give only five markers per 10 divisions instead of the customary 10. When checking these ranges, position the markers on the second and tenth vertical graticule lines.
g. Disconnect the test signal from the EXT INPUT OR Z connector.
h. SET:

SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	MAG
Horizontal MAG	$\times 5$
Trigger Source	CH 1

i. Select $10-\mathrm{ns}$ time markers from the time-mark generator. Adjust the Trigger LEVEL control to obtain a stable display.
j. Use the Horizontal POSITION control to align the first time marker that is 50 ns beyond the start of the sweep with the second vertical graticule line.
k. CHECK-Timing accuracy is within 4\% (0.32 division at the tenth vertical graticule line), and linearity is within 7\% (0.14 division over any two of the center eight divisions). Exclude any portion of the sweep past the 50th magnified division.
I. Repeat Parts jand k for the remaining SEC/DIV and time-mark-generator setting combinations shown in Table 5-4 under the X5 Magnified column.
m. SET:

SEC/DIV	$0.1 \mu \mathrm{~s}$
Horizontal MAG	$\times 10$

n. Select $10-n s$ time markers from the time-mark generator.
o. Use the Horizontal POSITION control to align the first time marker that is 50 ns beyond the start of the sweep with the second vertical graticule line.
p. CHECK-Timing accuracy is within 4\% (0.32 division at the tenth vertical graticule line), and linearity is within 7% (0.14 division over any two of the center eight divisions). Exclude any portion of the sweep past the 50th magnified division.
q. Repeat Parts o and p for the remaining SEC/ DIV and time-mark generator setting combinations shown in Table 5-4 under the X10 Magnified column.
r. SET:

SEC/DIV	$0.5 \mu \mathrm{~s}$
Horizontal MAG	$\times 50$

s. Select 10 -ns time markers from the time-mark generator.
t. Use the Horizontal POSITION control to align the first time marker that is 100 ns beyond the start of the sweep with the second vertical graticule line.
u. CHECK-Timing accuracy is within 5% (0.40 division at the tenth vertical graticule line), and linearity is within 9% (0.18 division over any two of the center eight divisions). Exclude any portion of the sweep past the 100th magnified division.
v. Repeat Parts t and u for the remaining SEC/ DIV and time-mark-generator setting combinations shown in Table 5-4 under the X50 Magnified column.
w. Disconnect the test equipment from the instrument.

10. Adjust X-Y Gain and Offset (R395, R736)

a. SET:

VOLTS/DIV (both)	10 mV
SEC/DIV	$\mathrm{X}-\mathrm{Y}$ (fully
	ccw)
Horizontal MODE	X 1

b. Connect a $50-\mathrm{mV}$, standard-amplitude signal from the calibration generator via a $50-\Omega \mathrm{BNC}$ coaxial cable to the $\mathrm{CH} 1 \mathrm{OR} X$ input connector.
c. ADJUST-X Gain (R395) for exactly a fivedivision display.
d. Center the display within the graticule using the CH 1 POSITION control.
e. SET:
$\begin{array}{ll}\text { CH } 1 \text { AC-GND-DC } & \text { GND } \\ \text { SEC/DIV } & 1 \mathrm{~ms}\end{array}$
f. Align the start of the trace with the first (extreme left) vertical graticule line using the Horizontal POSITION control.
g. Set the SEC/DIV switch to $\mathrm{X}-\mathrm{Y}$ (fully counterclockwise).
h. ADJUST-X Centering (R736) to position the spot at the center vertical graticule line.
i. Disconnect the test equipment from the instrument.
11. Check X Bandwidth
a. SET:

VOLTS/DIV (both)
50 mV
AC-GND-DC (both)
Vertical MODE

Trigger SOURCE

DC BOTH, NORM, and ALT CH 1
b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $50-\Omega$ BNC termination to the CH 1 OR X input connector.
c. Set the generator to produce an eight-division horizontal display at an output frequency of 50 kHz .
d. Increase the signal frequency until the horizontal deflection (X -axis) is equal to 5.7 divisions in length.
e. CHECK-That the frequency is greater than 2 MHz .
f. Disconnect the test equipment from the instrument.
12. Check Sweep Holdoff
a. SET:

VOLTS/DIV (both)	1 V
AC-GND-DC (both)	GND
Vertical MODE	CH 1
SEC/DIV	1 ms
Trigger SOURCE	EXT, EXT

b. Connect the test oscilloscope's 10X probe tip to the front end of R704 (toward the front panel). R704 is on the Timing circuit board.
c. Set HOLDOFF control fully counterclockwise (MIN setting).
d. Measure the HOLDOFF time.
e. Rotate the HOLDOFF control to the fully clockwise position
f. CHECK-Sweep holdoff time has increased by at least a factor of eight.
g. Repeat Parts c through f for SEC/DIV settings of 0.5 ms and $5 \mu \mathrm{~s}$.
h. Disconnect the 10X probe from R704.

TRIGGER

Equipment Required (See Table 4-1):

Leveled Sine-Wave Generator (Item 2)
Low-Frequency Sine-Wave Generator (Item 4)
Screwdriver (Item 5)
$50-\Omega$ BNC Coaxial Cable (Item 8)

Dual-Input Coupler (Item 9)
$50-\Omega$ BNC Termination (Item 10)
$600-\Omega$ BNC Termination (Item 11)

See ADJUSTMENT LOCATIONS at the back of this manual for adjustment locations.

INITIAL CONTROL SETTINGS

Vertical

```
POSITION (both) Midrange
MODE
VOLTS/DIV (both)
VOLTS/DIV Variable (both)
Magnification (both)
AC-GND-DC (both)
```

Horizontal

POSITION (COARSE and FINE)	Midrange
MODE	$\times 1$
SEC/DIV	$2 \mu \mathrm{~s}$
SEC/DIV Variable	CAL detent

Trigger

SLOPE	Positive $(-\Gamma)$
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	VERT MODE
COUPLING	DC

PROCEDURE STEPS

1. Adjust Trigger Offset Channel Balance (R338)

a. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC termination, and a dual-input coupler to the CH 1 OR X and the $C H 2$ OR Y input connectors.
b. Set the generator to produce a four-division display at an output frequency of 50 kHz .
c. Center the CH 1 and CH 2 traces vertically.
d. Adjust the SEC/DIV Variable control to give one and a half sine-wave periods across the graticule.
e. ADJUST-CH 1/CH 2 Balance (R338) (found under the attenuator board) until the sine waves coincide.
f. Return the SEC/DIV variable control to the detent (CAL) position.
2. Adjust Trigger Sensitivity, Slope Balance, and P-P Offset (R489, R481, and R478)
a. SET:

CH 1 VOLTS/DIV
0.1 V

Vertical MODE
CH 1
SEC/DIV
$20 \mu \mathrm{~s}$
Trigger SOURCE
CH 1
b. Connect the leveled sine-wave generator output via a 50Ω BNC coaxial cable and a 50Ω BNC termination to the CH 1 ORX input connector.
c. Set the generator to produce a 2.2 -division display at an output frequency of 50 kHz .
d. SET:

CH 1 VOLTS/DIV
Trigger MODE
1 V
NORM
e. ADJUST-Trigger Sensitivity (R489) and Trigger LEVEL control for minimum sensitivity with a stable trigger.

NOTE

Adjusting Trigger Sensitivity (R489) clockwise decreases trigger sensitivity.
f. ADJUST-Slope Bal (R481) and the Trigger LEVEL control so that a reliable trigger can be maintained when switching the Trigger SLOPE between positive (\sim) and negative (\sim).
g. Adjust the Trigger LEVEL control for a stable trigger.
h. Set the Trigger MODE to P-P AUTO.
i. ADJUST-P-P Offset (R478) until a stable trigger can be obtained when switching the Trigger SLOPE between positive (Γ) and negative (\sim).

3. Check Trigger Sensitivity

a. SET:

CH 1 VOLTS/DIV
0.1 V

CH 2 VOLTS/DIV
1 V
AC-GND-DC (both)
Vertical MODE

SEC/DIV
AC
BOTH, NORM, and ALT $0.2 \mu \mathrm{~s}$
b. Set the generator to produce a three-division display at an output frequency of 5 MHz .
c. Set the $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ switch to 1 V .
d. CHECK-A stable display can be obtained by adjusting the Trigger LEVEL control for each switch combination given in Table 5-5. Ensure that the TRIG'D light comes on when triggered.

Table 5-5
Switch Combinations for Triggering Checks

Trigger MODE	Trigger SLOPE
NORM	Positive $-\Gamma$
NORM	Negative L
P-P AUTO	Positive \quad -
P-P AUTO	Negative L

e. Move the test-signal cable from the CH 1 ORX input connector to the CH 2 ORY input connector. Set the Vertical MODE switch to CH 2.
f. Repeat part d.
g. SET:

SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	MAG
Horizontal MAG	$\times 5$

h. Set the generator to produce a $50-\mathrm{MHz}$, onedivision display.
i. Repeat Part d.
j. Move the test-signal cable from the CH 1 OR X input connector to the CH 2 OR Y input connector. Set the Vertical MODE switch to CH 1.
k. Repeat Part d.
I. Disconnect the test equipment from the instrument.
m. SET:

CH 1 VOLTS/DIV	20 mV
Vertical MODE	CH 1
SEC/DIV	$0.2 \mu \mathrm{~s}$
Horizontal MODE	X1
Trigger MODE	P-P AUTO
Trigger SOURCE	EXT, EXT

n. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC termination, and a dual-input coupler to the CH 1 OR X input connector and EXT INPUT OR Z input connectors.
o. Set the generator to produce a four-division (80 mV) display at an output frequency of 5 MHz .
p. Repeat Part d.
q. SET:

CH 1 VOLT/DIV	50 mV
SEC/DIV	$0.05 \mu \mathrm{~s}$
Horizontal MODE	MAG
Horizontal MAG	$\times 5$

r. Set the generator to produce a five-division (250 mV) display at an output frequency of 50 MHz .
s. Repeat Part d.
t. Disconnect the test equipment from the instrument.

4. Check LF P-P AUTO Trigger

a. SET:

CH 1 VOLTS/DIV
Trigger MODE
Trigger SOURCE
Trigger SLOPE
$0.1 \mathrm{~V} \mathrm{SEC/DIV}$ 20 ms P-P AUTO
CH 1
Positive (-)
b. Connect the low-frequency sine-wave generator output via a $50-\Omega$ BNC coaxial cable and a $600-\Omega$ BNC termination to the CH 1 OR X input connector.
c. Set the low-frequency sine-wave generator output to produce a $20-\mathrm{Hz}$, one-division display.
d. CHECK-For stable triggering in both positive (\square) and negative ($\sim)$ slope. Ensure that the TRIG'D light comes on when triggered.

5. Adjust External Trigger Offset and Range

a. SET:

CH 1 VOLTS/DIV	0.5 V
CH 1 AC-GND-DC	DC
Vertical MODE	CH 1
SEC/DIV	$20 \mu \mathrm{~s}$
Trigger MODE	$\mathrm{P}-\mathrm{P} \mathrm{AUTO}$
Trigger SOURCE	CH 1

Trigger COUPLING Trigger SLOPE

b. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC termination, and a dual-input coupler to the CH 1 OR X and the EXT INPUT OR Z input connectors.
c. Set the leveled sine-wave generator to produce a $50-\mathrm{kHz}$, five-division display.
d. Position the waveform equally about the center horizontal graticule line.
e. SET:

Trigger MODE
Trigger SOURCE
NORM
Trigger SOURCE
EXT, EXT
f. ADJUST-Ext Trig Offset (R360) so that the trace is untriggered at either end of the Trigger LEVEL control.
g. Set the Trigger COUPLING switch to DC.
h. CHECK-That the display can be untriggered at either end of the Trigger LEVEL control.
i. Set the Trigger SOURCE switch to $\frac{\text { EXT }}{10}$
j. CHECK-That the display can be triggered about the midrange of the Trigger LEVEL control.
k. Set the Trigger SLOPE switch to negative (乙) and repeat Part j.
I. Disconnect the test equipment from the instrument.

6. Check Single Sweep Operation

a. SET:

CH 1 VOLTS/DIV	10 mV
CH 1 AC-GND-DC	DC
Vertical MODE	CH 1
SEC/DIV	0.5 ms
Horizontal MODE	$\times 1$
Trigger MODE	NORM
Trigger SOURCE	CH 1
Trigger COUPLING	AC
Trigger SLOPE	Positive $(-\Gamma)$

b. Connect $50-\mathrm{mV}$ standard-amplitude signal from the calibration generator via a $50-\Omega$ BNC coaxial cable to the CH 1 OR X input connector.
c. Adjust the Trigger LEVEL control to obtain a stable display.
d. SET:

CH 1 AC-GND-DC	GND
Trigger MODE	SGL SWP

e. Press in the SGL SWP button. The READY light should turn on and remain lit.
f. Set the $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC .

NOTE

The INTENSITY control may require adjustment to observe the single-sweep trace.
g. CHECK-READY light goes out and a single sweep occurs.
h. Press the SGL SWP button several times.
i. CHECK-A single-sweep trace occurs and the READY light turns on briefly each time the SGL SWP button is pressed.
j. Disconnect the test equipment from the instrument.

EXTERNAL Z-AXIS AND PROBE ADJUST

Equipment Required (See Table 4-1):
Leveled Sine-Wave Generator (Item 2)
Screwdriver (Item 5)
$50-\Omega$ BNC Coaxial Cable (Item 8)

Dual-Input Coupler (Item 9)
$50-\Omega$ BNC Termination (Item 10)
10X Probe (Provided with instrument)

INITIAL CONTROL SETTINGS

Vertical

Channel 1 POSITION
MODE
CH 1 VOLTS/DIV
CH 1 VOLTS/DIV Variable
Magnification
CH 1 AC-GND-DC

Horizontal

POSITION (COARSE and FINE) HORIZONTAL MODE
SEC/DIV
SEC/DIV Variable

Trigger

SLOPE	Positive $(-\Gamma)$
LEVEL	Midrange
MODE	P-P AUTO
HOLDOFF	MIN
SOURCE	VERT MODE
COUPLING	DC

PROCEDURE STEPS

1. Check External Z-Axis Operation
a. Connect the leveled sine-wave generator output via a $50-\Omega$ BNC coaxial cable, a $50-\Omega$ BNC
termination, and a dual-input coupler to the CH 1 OR X and the EXT INPUT ORZ input connectors.
b. Set the generator to produce a five-division, $50-\mathrm{kHz}$ signal.
c. CHECK-For noticeable intensity modulation. The positive part of the sine wave should be of lower intensity than the negative part.
d. Disconnect the test equipment from the instrument.

2. Check Probe Adjust Operation

a. SET:

CH 1 VOLTS/DIV	10 mV
SEC/DIV	0.5 ms
Trigger SOURCE	CH 1

b. Connect the 10X Probe to the CH 1 OR X input connector and clip the probe tip to the PROBE ADJUST terminal on the instrument front panel. If necessary, adjust the probe compensation for a flattopped square-wave display (see Probe instruction manual).
c. CHECK-Display amplitude is 4.75 to 5.25 divisions.
d. Disconnect the probe from the instrument.

MAINTENANCE

This section contains information for conducting preventive maintenance, troubleshooting, and corrective maintenance on the instrument. Circuit
board removal procedures are included in the corrective maintenance part of this section.

STATIC-SENSITIVE COMPONENTS

The following precautions are applicable when performing any maintenance involving internal access to the instrument.

$\{$ CAUTION $\}$

Static discharge can damage any semiconductor component in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. Table 6-1 lists the relative susceptibility of various classes of semiconductors. Static voltages of 1 KV to 30 KV are common in unprotected environments.

When performing maintenance, observe the following precautions to avoid component damage:

1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers or on a metal rail. Label any package that contains static-sensitive components or assemblies.
3. Discharge the static voltage from your body by wearing a grounded antistatic wrist strap while handling these components. Servicing staticsensitive components or assemblies should be performed only at a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.

Table 6-1
Relative Susceptibility to Static-Discharge
Damage

Semiconductor Classes	Relative Susceptibility Levels $^{\text {a }}$
MOS or CMOS microcircuits or discretes, or linear microcircuits with MOS inputs (Most Sensi- tive)	1
ECL	2
Schottky signal diodes	3
Schottky TTL	4
High-frequency bipolar transistors	5
JFET	6
Linear microcircuits	7
Low-power Schottky TTL	8
TTL \quad (Least Sensitive)	9

${ }^{a}$ Voltage equivalent for levels (voltage discharged from a 100-pF capacitor through a resistance of 100Ω):
$1=100$ to 500 V
$6=600$ to 800 V
$2=200$ to 500 V
$7=400$ to 1000 V (est)
$3=250 \mathrm{~V}$
$8=900 \mathrm{~V}$
$4=500 V$
$g=1200 \mathrm{~V}$
$5=400$ to 600 V
5. Keep the component leads shorted together whenever possible.
6. Pick up components by their bodies, never by their leads.
7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work-surface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only approved antistatic, vacuum-type desoldering tools for component removal.

PREVENTIVE MAINTENANCE

INTRODUCTION

Preventive maintenance consists of cleaning, visual inspection, and checking instrument performance. When performed regularly, it may prevent instrument malfunction and enhance instrument reliability. The severity of the environment in which the instrument is used determines the required frequency of maintenance. An appropriate time to accomplish preventive maintenance is just before instrument adjustment.

general Care

The cabinet minimizes accumulation of dust inside the instrument and should normally be in place when operating the oscilloscope. The optional front cover for the instrument provides both dust and damage protection for the front panel and crt. Whenever the instrument is stored or is being transported, the front cover should be used.

$$
\begin{aligned}
& \text { Do not use chemical cleaning agents that } \\
& \text { might damage the plastics used in this instru- } \\
& \text { ment. Use a nonresidue-type cleaner, } \\
& \text { preferably isopropyl alcohol or a solution of } \\
& 1 \% \text { mild detergent with } 99 \% \text { water. Before } \\
& \text { using any other type of cleaner, consult your } \\
& \text { Tektronix Service Center or representative. }
\end{aligned}
$$

INSPECTION AND CLEANING

The instrument should be visually inspected and cleaned as often as cperating conditions require. Accumulation of dust in the instrument can cause overheating and component breakdown. Dust on components acts as an insulating blanket, preventing efficient heat dissipation. It also provides an
electrical conduction path that could result in instrument failure, especially under high-humidity conditions.

Exterior

INSPECTION. Inspect the external portions of the instrument for damage, wear, and missing parts; use Table 6-2 as a guide. Instruments that appear to have been dropped or otherwise abused should be checked thoroughly to verify correct operation and performance. Any problems found that could cause personal injury or could lead to further damage to the instrument should be repaired immediately.

Do not allow moisture to get inside the instrument during external cleaning. Use only enough liquid to dampen the cloth or applicator.

CLEANING. Loose dust on the outside of the instrument can be removed with a soft cloth or small softbristle brush. The brush is particularly useful for dislodging dirt on and around the controls and connectors. Dirt that remains can be removed with a soft cloth dampened in a mild detergent-and-water solution. Do not use abrasive cleaners.

A plastic light filter is provided with the oscilloscope. Clean the light filter and the crt face with a soft lintfree cloth dampened with either isopropyl alcohol or a mild detergent-and-water solution.

Interior

To gain access to internal portions of the instrument for inspection and cleaning, refer to the Removal and Replacement Instructions in the Corrective Maintenance part of this section.

Table 6-2
External Inspection Checklist

Item	Inspect For	Repair Action
Cabinet and Front Panel	Cracks, scratches, deformations, and damaged hardware or gaskets.	Touch up paint scratches and replace defective parts.
Front-panel controls	Missing, damaged, or loose knobs, buttons, and controls.	Repair or replace missing or defective items.
Connectors	Broken shells, cracked insulation, and deformed contacts. Dirt in connectors.	Replace defective parts. Clean or wash out dirt.
Carrying Handle	Correct operation.	Replace defective parts.
Accessories	Missing items or parts of items, bent pins, broken or frayed cables, and damaged connectors.	Replace damaged or missing items, frayed cables, and defective parts.

Table 6-3
Internal Inspection Checklist

Item	Inspect For	Repair Action
Circuit Boards	Loose, broken, or corroded solder connections. Burned circuit boards. Burned, broken, or cracked circuit-run plating.	Clean solder corrosion with an eraser and flush with isopropyl alcohol. Resolder defective con- nections. Determine cause of burned items and repair. Repair defective circuit runs.
Resistors	Burned, cracked, broken, or blistered.	Replace defective resistors. Check for cause of burned component and repair as necessary.
Solder Connections	Cold solder or rosin joints.	Resolder joint and clean with isopropyl alcohol.
Capacitors	Damaged or leaking cases. Corroded solder on leads or terminals.	Replace defective capacitors. Clean solder connections and flush with isopropyl alcohol.
Wiring and Cables	Loose plugs or connectors. Burned, broken, or frayed wiring.	Firmly seat connectors. Repair or replace defective wires or cables.
Chassis	Dents, deformations, and damaged hardware.	Straighten, repair, or replace defective hardware.

INSPECTION. Inspect the internal portions of the instrument for damage and wear, using Table 6-3 as a guide. Deficiencies found should be repaired immediately. The corrective procedure for most visible defects is obvious; however, particular care
must be taken if heat-damaged components are found. Overheating usually indicates other trouble in the instrument; therefore, it is important that the cause of overheating be corrected to prevent recurrence of the damage.

If any electrical component is replaced, conduct a Performance Check for the affected circuit and for other closely related circuits (see Section 4). If repair or replacement work is done on any of the power supplies, conduct a complete Performance Check and, if so indicated, an instrument readjustment (see Sections 4 and 5).

To prevent damage from electrical arcing, ensure that circuit boards and components are dry before applying power to the instrument.

CLEANING. To clean the interior, blow off dust with dry, low-pressure air (approximately 9 psi). Remove any remaining dust with a soft brush or a cloth dampened with a solution of mild detergent and water. A cotton-tipped applicator is useful for cleaning in narrow spaces and on circuit boards.

VOLT/DIV And SECIDIV SWITCHES. These are maintenance free. DO NOT CLEAN.

$\{$ CAUTION\}

Most spray-type circuit coolants contain Freon 12 as a propellant. Because many Freons adversely affect switch contacts, do not use spray-type coolants on the switches or attenuators. Carbon based solvents will damage the board material.

LUBRICATION

Most of the potentiometers used in this instrument are permanently sealed and generally do not require periodic lubrication. All switches, both rotary- and lever-type, are installed with proper lubrication applied where necessary and will rarely require any additional lubrication. A regular periodic lubrication program for the instrument is, therefore, not recommended.

SEMICONDUCTOR CHECKS

Periodic checks of the transistors and other semiconductors in the oscilloscope are not recommended. The best check of semiconductor performance is actual operation in the instrument.

PERIODIC READJUSTMENT

To ensure accurate measurements, check the performance of this instrument every 2000 hours of operation, or if used infrequently, once each year. In addition, replacement of components may necessitate readjustment of the affected circuits.

Complete Performance Check and Adjustment instructions are given in Sections 4 and 5. The Performance Check Procedure can also be helpful in localizing certain troubles in the instrument. In some cases, minor problems may be revealed or corrected by readjustment. If only a partial adjustment is performed, see the interaction chart, Table 5-1, for possible adjustment interaction with other circuits.

TROUBLESHOOTING

INTRODUCTION

TROUBLESHOOTING AIDS

Schematic Diagrams

Complete schematic diagrams are located on tabbed foldout pages in the Diagrams section. Portions of circuitry mounted on each circuit board are enclosed by heavy black lines. The assembly number and name of the circuit are shown near either the top or the bottom edge of the enclosed area.

Functional blocks on schematic diagrams are outlined with a wide grey line. Components within the outlined area perform the function designated by the block label. The Theory of Operation uses these functional block names when describing circuit operation as an aid in cross-referencing between the theory and the schematic diagrams.

Component numbers and electrical values of components in this instrument are shown on the schematic diagrams. Refer to the first page of the Diagrams section for the reference designators and symbols used to identify components. Important voltages and waveform reference numbers (enclosed in hexagonal-shaped boxes) are also shown on each diagram. Waveform illustrations are located adjacent to their respective schematic diagram.

Circuit Board Illustrations

Circuit board illustrations showing the physical location of each component are provided for use in conjunction with each schematic diagram. Each board illustration is found in the Diagrams section on the back of a foldout page, preceding the first schematic diagram(s) to which it relates.

The locations of waveform test points are marked on the circuit board illustrations with hexagonal outlined numbers corresponding to the waveform numbers on both the schematic diagram and the waveform illustrations.

Also provided in the Diagrams section is an illustration of the bottom side of the Main circuit board. This illustration aids in troubleshooting by showing the connection pads for the components mounted on the top side of the circuit board. By using this illustration, circuit tracing and probing for voltages and signals that are inaccessible from the top side of the board may be achieved without dismantling portions of the instrument.

Circuit Board Locations

The placement of each circuit board in the instrument is shown in board locator illustrations. These illustrations are located on foldout pages along with the circuit board illustration.

Circuit Board Interconnections

A circuit board interconnection diagram is provided in the Diagrams section to aid in tracing a signal path or power source between boards. All wire, plug, and jack numbers are shown along with their associated wire or pin numbers.

Power Distribution

A Power Distribution diagram is provided to aid in troubleshooting power-supply problems. This diagram shows the service jumper connections used to apply power to the various circuit boards. Excessive loading on a power supply by a circuit board fault may be isolated by disconnecting the appropriate service jumpers.

Grid Coordinate System

Each schematic diagram and circuit board illustration has a grid border along its left and top edges. A table located adjacent to each diagram lists the grid coordinates of each component shown on that diagram. To aid in physically locating components on the circuit board, this table also lists the grid coordinates of each component on the circuit board illustration.

Near each circuit board illustration is an alphanumeric listing of all components mounted on that board. The second column in each listing identifies the schematic diagram in which each component can be found. These component-locator tables are especially useful when more than one schematic diagram is associated with a particular circuit board.

Component Color Coding

Information regarding color codes and markings of resistors and capacitors is located on the colorcoding illustration (Figure 9-1) at the beginning of the Diagrams section.

RESISTOR COLOR CODE. Resistors used in this instrument are carbon-film, composition, or precision metal-film types. They are usually color coded with the EIA color code; however, some metal-film type resistors may have the value printed on the body. The color code is interpreted starting with the stripe nearest to one end of the resistor. Composition resistors have four stripes; these represent two
significant digits, a multiplier, and a tolerance value. Metal-film resistors have five stripes representing three significant digits, a multiplier, and a tolerance value.

CAPACITOR MARKINGS. Capacitance values of common disc capacitors and small electrolytics are marked on the side of the capacitor body. White ceramic capacitors are color coded in picofarads, using a modified EIA code.

Dipped tantalum capacitors are color coded in microfarads. The color dot indicates both the positive lead and the voltage rating. Since these capacitors are easily destroyed by reversed or excessive voltage, be careful to observe the polarity and voltage rating when replacing them.

DIODE COLOR CODE. The cathode end of each glass-encased diode is indicated by either a stripe, a series of stripes or a dot. For most diodes marked with a series of stripes, the color combination of the stripes identifies three digits of the Tektronix Part Number, using the resistor color-code system. The cathode and anode ends of a metal-encased diode may be identified by the diode symbol marked on its body.

Semiconductor Lead Configurations

Figure 9-2 in the Diagrams section shows the lead configurations for semiconductor devices used in the instrument. These lead configurations and case styles are typical of those used at completion of the instrument design. Vendor changes and performance improvement changes may result in changes of case styles or lead configurations. If the device in question does not appear to match the configuration shown in Figure 9-2, examine the associated circuitry or consult the manufacturer's data sheet.

RIBBON-CABLE CONNECTORS

The multipin connectors of the 2225 are designed to make the interboard connections directly to the ribbon cables. Insert the trimmed ribbon-cable wires into the connector slots (see Figure 6-1 A). Pressing down on the release bar (the top of the connector) with your fingertip will make it easier to push the wires into the connector (see Figure 6-1
C). The cable locks firmly into the connector (Figure $6-1$ B) when the pressure is removed from the release bar. To disconnect the ribbon cable from the connector, press down on the release bar and lift the cable out of the connector (see Figure 6-1 C and D). The ribbon cable wire should be evenly trimmed to expose 5 mm of wire (about $1 / 4$ inch) for correct insertion into the connectors.

The ribbon cables are either color coded in the standard color codes or have a striped index wire. Align the index wire with the pin 1 indicator when reinserting a cable into its connector.

Figure 6-1. Multi-connector operation.

TROUBLESHOOTING EQUIPMENT

The equipment listed in Table 4-1 of this manual, or equivalent equipment, may be useful when troubleshooting this instrument.

TROUBLESHOOTING TECHNIQUES

The following procedure is arranged in an order that enables checking simple trouble possibilities before requiring more extensive troubleshooting. The first four steps ensure proper control settings, connections, operation, and adjustment. If the trouble is not located by these checks, the remaining steps will aid in locating the defective component. When the defective component is located, replace it using the appropriate replacement procedure given under Corrective Maintenance in this section.

CAUTION
 caurion

Before using any test equipment to make measurements on static-sensitive, currentsensitive, or voltage-sensitive components or assemblies, ensure that any voltage or current supplied by the test equipment does not exceed the limits of the component to be tested

1. Check Control Settings

Incorrect control settings can give a false indication of instrument malfunction. If there is any question about the correct function or operation of any control, refer to either the Operating Information in Section 2 of this manual or to the Operators Manual.

2. Check Associated Equipment

Before proceeding, ensure that any equipment used with the instrument is operating correctly. Verify that input signals are properly connected and that the interconnecting cables are not defective. Check that the ac-power-source voltage to all equipment is correct.

WARNING

To avoid electrical shock, disconnect the instrument from the ac power source before making a visual inspection of the internal circuitry.

3. Visual Check

Perform a visual inspection. This check may reveal broken connections or wires, damaged components, semiconductors not firmly mounted, damaged circuit boards, or other clues to the cause of an instrument malfunction.

WARNING

Dangerous potentials exist at several points throughout this instrument. If it is operated with the cabinet removed, do not touch exposed connections or components.

4. Check Instrument Performance and Adjustment

Check the performance of either those circuits where trouble appears to exist or the entire instrument. The apparent trouble may be the result of misadjustment. Complete performance check and adjustment instructions are given in Sections 4 and 5 of this manual.

5. Isolate Trouble to a Circuit.

To isolate problems to a particular area, use any symptoms noticed to help locate the trouble. Refer to the troubleshooting charts in the Diagrams section as an aid in locating a faulty circuit.

6. Check Power Supplies.

WARNING

For safety reasons, an isolation transformer must be connected whenever troubleshooting is done in the Preregulator and Inverter Power Supply sections of the instrument.

When trouble symptoms appear in more that one circuit, first check the power supplies; then check the affected circuits by taking voltage and waveform readings. Check first for the correct output voltage of each individual supply. These voltages are measured between the power supply test points and ground (see the associated circuit board illustration and Table 6-5).

Voltage levels may be measured either with a DMM or with an oscilloscope. Voltage ripple amplitudes must be measured using an oscilloscope. Before checking power-supply circuitry, set the INTENSITY control to normal brightness, the SEC/DIV switch to 0.1 ms , the Trigger MODE to P-P AUTO, and the Vertical MODE switch to CH 1.

When measuring ripple, use a $1 X$ probe. The ripple values listed are based on a system limited in bandwidth to 30 kHz . Using a system with wider bandwidth will result in higher readings.

If the power-supply voltages and ripple are within the ranges listed in Table 6-4, the supply can be assumed to be working correctly. If they are outside the range, the supply may be either misadjusted or operating incorrectly. Use the Power Supply and CRT Display subsection in the Adjustment procedure to adjust the $-8.6-V$ supply.

A defective component elsewhere in the instrument can create the appearance of a power-supply problem and may also affect the operation of other circuits.

7. Check Circuit Board Interconnections.

After the trouble has been isolated to a particular circuit, again check for loose or broken connections, improperly seated semiconductors, and heatdamaged components.

8. Check Voltages and Waveforms.

Often the defective component can be located by checking circuit voltages or waveforms. Typical voltages are listed on the schematic diagrams. Waveforms indicated on the schematic diagrams by hexagonal-outlined numbers are shown adjacent to the diagrams. Waveform test points are shown on the circuit board illustrations.

Table 6-4
Power Supply Voltage and Ripple Limits

Power Supply	Test Point	Reading (Volts)	P-P Ripple (mV)
-8.6 V	W 989	-8.557 to -8.643	3 mV
+5.1 V	W 991	+4.95 to 5.25	4 mV
+8.6 V	W 987	+8.526 to 8.874	3 mV
+38 V	W 972	+37.24 to 39.14	10 mV
+99 V	W 984	+97.02 to 101.97	100 mV

NOTE

Voltages and waveforms indicated on the schematic diagrams are not absolute and may vary slightly between instruments. To establish operating conditions similar to those used to obtain these readings, see the Voltage and Waveform Setup Conditions preceding the waveform illustrations in the Diagrams section. Note the recommended test equipment, front-panel control settings, voltage and waveform conditions, and cableconnection instructions. Any special control settings required to obtain a given waveform are noted under the waveform illustration. Changes to the control settings from the initial setup, other than those noted, are not required.
9. Check Individual Components

WARNING

To avoid electric shock, always disconnect the instrument from the ac power source before removing or replacing components.

The following procedures describe methods of checking individual components. Two-lead components that are soldered in place are most accurately checked by first disconnecting one end from the circuit board. This isolates the measurement from the effects of the surrounding circuitry. See Figure 9-1 for component value identification and Figure 9-2 for semiconductor lead configurations.

$\{$ CAUTION\}

When checking semiconductors, observe the static-sensitivity precautions located at the beginning of this section.

TRANSISTORS. A good check of a transistor is actual performance under operating conditions. A transistor can most effectively be checked by substituting a known-good component. However, be sure that circuit conditions are not such that a replacement transistor might also be damaged. If substitute transistors are not available, use a dynamic-type transistor checker for testing. Statictype transistor checkers are not recommended, since they do not check operation under simulated operating conditions.

When troubleshooting transistors in the circuit with a voltmeter, measure both the emitter-to-base and emitter-to-collector voltages to determine whether they are consistent with normal circuit voltages. Voltages across a transistor may vary with the type of device and its circuit function.

Some of these voltages are predictable. The emitter-to-base voltage for a conducting silicon transistor will normally range from 0.6 V to 0.8 V . The emitter-to-collector voltage for a saturated transistor is about 0.2 V . Because these values are small, the best way to check them is by connecting a sensitive voltmeter across the junction rather than comparing two voltages taken with respect to ground. If the former method is used, both leads of the voltmeter must be isolated from ground.

If voltage values measured are less that those just given, either the device is shorted or no current is flowing in the external circuit. If values exceed the emitter-to-base values given, either the junction is reverse biased or the device is defective. Voltages exceeding those given for typical emitter-tocollector values could indicate either a nonsaturated device operating normally or a defective (opencircuited) transistor. If the device is conducting, voltage will be developed across the resistors in series with it; if open, no voltage will be developed across the resistors unless current is being supplied by a parallel path.

Abstract

When checking emitter-to-base junctions, do not use an ohmmeter range that has a high internal current. High current may damage the transistor. Reverse biasing the emitter-to-base junction with a high current may degrade the current-transfer ratio (Beta) of the transistor.

A transistor emitter-to-base junction also can be checked for an open or shorted condition by measuring the resistance between terminals with an ohmmeter set to a range having a low internal source current, such as the $R \times 1-k \Omega$ range. The junction resistance should be very high in one direction and much lower when the meter leads are reversed.

When troubleshooting a field-effect transistor (FET), the voltage across its elements can be checked in the same manner as previously described for other transistors. However, remember that in the normal depletion mode of operation, the gate-to-source junction is reverse biased; in the enhanced mode, the junction is forward biased.

INTEGRATED CIRCUITS. An integrated circuit (IC) can be checked with a voltmeter, test oscilloscope, or by direct substitution. A good understanding of circuit operation is essential when troubleshooting a circuit having IC components. Use care when checking voltages and waveforms around the IC so that adjacent leads are not shorted together. An IC test clip provides a convenient means of clipping a test probe to an IC.
\{CAUTION\}

When checking a diode, do not use an ohmmeter scale that has a high internal current. High current may damage a diode. Checks on diodes can be performed in much the same manner as those on transistor emitter-to-base junctions. Do not check tunnel diodes or back diodes with an ohmmeter; use a dynamic tester, such as the TEKTRONIX 576 Curve Tracer.

DIODES. A diode can be checked for either an open or a shorted condition by measuring the resistance between terminals with an ohmmeter set to a range having a low internal source current, such as the RX
$1-k \Omega$ range. The diode resistance should be very high in one direction and much lower when the meter leads are reversed.

Silicon diodes should have 0.6 V to 0.8 V across their junctions when conducting; Schottky diodes about 0.2 V to 0.4 V . Higher readings indicate that they are either reverse biased or defective, depending on polarity.

RESISTORS. Check resistors with an ohmmeter. Refer to the Replaceable Electrical Parts list for the tolerances of resistors used in this instrument. A resistor normally does not require replacement unless its measured value varies widely from its specified value and tolerance.

INDUCTORS. Check for open inductors by checking continuity with an ohmmeter. Shorted or partially shorted inductors can usually be found by checking the waveform response when high-frequency signals are passed through the circuit.

CAPACITORS. A leaky or shorted capacitor can best be detected by checking resistance with an ohmmeter set to one of the highest ranges. Do not
exceed the voltage rating of the capacitor. The resistance reading should be high after the capacitor is charged to the output voltage of the ohmmeter. An open capacitor can be detected with a capacitance meter or by checking whether the capacitor passes ac signals.

10. Repair and Adjust the Circuit

If any defective parts are located, follow the replacement procedures given under Corrective Maintenance in this section. After any electrical component has been replaced, the performance of that circuit and any other closely related circuit should be checked. Since the power supplies affect all circuits, performance of the entire instrument should be checked if work has been done on the power supplies or if the power transformer has been replaced. Readjustment of the affected circuitry may be necessary. Refer to the Performance Check and Adjustment Procedure, Sections 4 and 5 of this manual and to Table 5-1, Adjustments affected by repairs.

CORRECTIVE MAINTENANCE

INTRODUCTION

Corrective maintenance consists of component replacement and instrument repair. This part of the manual describes special techniques and procedures required to replace components in this instrument. If it is necessary to ship your instrument to a Tektronix Service Center for repair or service, refer to the Repackaging information in Section 2 of this manual.

MAINTENANCE PRECAUTIONS

To reduce the possibility of personal injury or instrument damage, observe the following precautions.

1. Disconnect the instrument from the ac-power source before removing or installing components.
2. Verify that the line-rectifier filter capacitor (C900) is discharged prior to performing any servicing.
3. When soldering on circuit boards or small insulated wires, use only a 15 -watt, pencil-type soldering iron.

OBTAINING REPLACEMENT PARTS

Most electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, many of the standard electronic components can usually be obtained from a local commercial source. Before purchasing or ordering a part from a source other than Tektronix, Inc., please check the Replaceable Electrical Parts list for the proper value, rating, tolerance, and description.

NOTE

Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use directreplacement components, unless it is known that a substitute will not degrade instrument performance.

Special Parts

In addition to the standard electronic components, some special parts are used in the instrument. These components are manufactured or selected by Tektronix, Inc., to meet specific performance requirements, or are manufactured for Tektronix, lnc., in accordance with our specifications. The various manufacturers can be identified by referring to the Cross Index-Manufacturer's Code number to Manufacturer at the beginning of the Replaceable Electrical Parts list. Most of the mechanical parts used in this instrument were manufactured by Tektronix, Inc. Order all special parts directly from your local Tektronix Field Office or representative.

Ordering Parts

When ordering replacement parts from Tektronix, Inc., be sure to include all of the following information:

1. Instrument type (include all modification and option numbers).
2. Instrument serial number.
3. A description of the part (if electrical, include its full circuit component number).
4. Tektronix part number.

Selectable Components

Several components in the instrument are selectable to obtain optimum circuit operation. Value selection of these components is done during the initial factory adjustment procedure. Usually, further selection is not necessary for subsequent adjustments unless a component has been changed
that affects circuitry for which a selected component has been specifically chosen.

MAINTENANCE AIDS

The maintenance aids listed in Table 6-5 include items required for performing most of the maintenance procedures in this instrument. Equivalent products may be substituted for those given, provided their characteristics are similar.

INTERCONNECTIONS

Interconnections in this instrument are made with wire-trap connectors soldered onto the circuit boards. If any individual wire in the cable is faulty, the entire cable assembly should be replaced. To remove a cable from a wire-trap connector, press down on top of the connector and lift out cable. Reinstallation is the reverse of this procedure. To provide correct orientation of a cable, a number " 1 " is stamped on the circuit board. The cable is either color-coded, so the index is the brown wire, or the index wire is striped a different color than the rest of the cable. Be sure the index wire is aligned with the " 1 " when a cable is reinserted into the connector (see Figure 6-1, shown previously).

TRANSISTORS AND INTEGRATED CIRCUITS

Transistors and integrated circuits should not be replaced unless they are actually defective. If removed from their sockets or unsoldered from the circuit board during routine maintenance, return them to their original board locations. Unnecessary replacement or transposing of semiconductor devices may affect the adjustment of the instrument. When a semiconductor is replaced, check the performance of any circuit that may be affected.

Any replacement component should be of the original type or a direct replacement. Bend transistor leads to fit their circuit board holes, and cut the leads to the same length as the original component. See Figure 9-2 in the Diagrams section for leadconfiguration illustrations.

Table 6-5
Maintenance Aids

Description	Specification	Usage	Example
1. Soldering Iron	15 to 25 W .	General soldering and unsoldering.	Antex Precision Model C.
2. Torx Screwdriver	Torx tips \#T9 and \#T15.	Assembly and disassembly.	Tektronix p/n \#T9 003-0965-00 \#T15 003-0966-00
3. Nutdrivers	1/4 inch, 7/16 inch. and $1 / 2$ inch.	Assembly and disassembly.	Xcelite \#8, \#14 and \#16.
4. Open-end Wrench	5/16 inch and $1 / 2$ inch.	Channel Input, EXT BNC connectors and Transformer.	
5. Hex Wrenches	1/16 inch.	Assembly and disassembly.	Allen wrenches.
6. Long-nose Pliers		Component removal and replacement.	
7. Diagonal Cutters		Component removal and replacement.	
8. Vacuum Solder Extractor.	No Static Charge Retention.	Unsoldering components.	Pace Model PC-10.
9. 1X Probe		Power supply ripple check.	Tektronix P6101 Probe (X 1), p / n 010-6101-03.
10. Lubricant	No-Noise. ${ }^{\text {® }}$	Switch lubrication.	Tektronix p/n 006-0442-02.
11. Isolation Transformer		Isolate the instrument from the ac-powersource outlet.	Tektronix Part Number 006-5953-00

Power-supply transistor Q913 is insulated from the chassis by a heat-transferring pad and insulation bushing. Reinstall the pad and bushing when replacing this transistor.

NOTE

After replacing a power transistor, check that the collector is not shorted to the chassis before applying power to the instrument.

To remove socketed, dual-in-line-packaged (DIP) integrated circuits, pull slowly and evenly on both ends of the device. Avoid disengaging one end of the integrated circuit from the socket before the other, since this may damage the pins.

To remove a soldered DIP IC when it is going to be replaced, clip all the leads of the device and remove
the leads from the circuit board one at a time. If the device must be removed intact for possible reinstallation, do not heat adjacent conductors consecutively. Apply heat to pins at alternate sides and ends of the IC as solder is removed. Allow a moment for the circuit board to cool before proceeding to the next pin.

SOLDERING TECHNIQUES

The reliability and accuracy of this instrument can be maintained only if proper soldering techniques are used to remove or replace parts. General soldering techniques, which apply to maintenance of any precision electronic equipment, should be used when working on this instrument.

WARNING

To avoid an electric-shock hazard, observe the following precautions before attempting any soldering: turn the instrument off, disconnect it from the ac power source, and wait at least three minutes for the linerectifier filter capacitors to discharge.

Use rosin-core wire solder containing 63% tin and 37% lead. Contact your local Tektronix Field Office or representative to obtain the names of approved solder types.

When soldering on circuit boards or small insulated wires, use only a 15 -watt, pencil-type soldering iron. A higher wattage soldering iron may cause etched-circuit conductors to separate from the board base material and melt the insulation on small wires. Always keep the soldering-iron tip properly tinned to ensure best heat transfer from the iron tip to the solder joint. Apply only enough solder to make a firm joint. After soldering, clean the area around the solder connection with an approved fluxremoving solvent (such as isopropyl alcohol) and allow it to air dry.

Attempts to unsolder, remove, and resolder leads from the component side of a circuit board may cause damage to the reverse side of the circuit board.

The following techniques should be used to replace a component on a circuit board:

1. Touch the vacuum desoldering tool to the lead at the soider connection. Never place the iron directly on the board; doing so may damage the board.

NOTE

Some components are difficult to remove from the circuit board due to a bend placed in the component leads during machine insertion. To make removal of machine-inserted components easier, straighten the component leads on the reverse side of the circuit board.
2. When removing a multipin component, especially an IC, do not heat adjacent pins consecutively. Apply heat to the pins at alternate sides and ends of the IC as solder is removed. Allow a moment for the circuit board to cool before proceeding to the next pin.

Excessive heat can cause the etched-circuit conductors to separate from the circuit board. Never allow the solder extractor tip to remain at one place on the board for more than three seconds. Damage caused by poor soldering techniques can void the instrument warranty.
3. Bend the leads of the replacement component to fit the holes in the circuit board. If the component is replaced while the board is installed in the instrument, cut the leads so they protrude only a small amount through the reverse side of the circuit board. Excess lead length may cause shorting to other conductive parts.
4. Insert the leads into the holes of the board so that the replacement component is positioned the same as the original component. Most components should be firmly seated against the circuit board.
5. Touch the soldering iron to the connection and apply enough solder to make a firm solder joint. Do not move the component while the solder hardens.
6. Cut off any excess lead protruding through the circuit board (if not clipped to the correct length in step 3).
7. Clean the area around the solder connection with an approved flux-removing solvent. Be careful not to remove any of the printed information from the circuit board.

REMOVAL AND REPLACEMENT INSTRUCTIONS

The exploded view drawings in the Replaceable Mechanical Parts list (Section 10) may be helpful during the removal and reinstallation of individual subassemblies or components. Circuit board and component locations are shown in the Diagrams section.

Cabinet

WARNING

To avoid electric shock, disconnect the instrument from the ac-power-input source before removing or replacing any component or assembly.

To remove the instrument cabinet, perform the following steps:

1. Disconnect the power cord from the instrument. For instruments with a power-cord securing clamp, remove the Phillips-head screw holding the power-cord securing clamp before disconnecting the power cord.
2. Remove two screws from the rear panel (located on each side) and remove it from the instrument.
3. Remove four screws, one from the left-rear side and three from the right-rear side of the cabinet.
4. Pull the front panel and attached chassis forward and out of the cabinet.
5. To reinstall the cabinet, perform the reverse of the preceding steps. Ensure that the cabinet is flush with the rear of the chassis and that the cabinet and rear-panel holes are aligned with the screw holes in the chassis frame.
6. Reconnect the power cord.

Cathode-Ray Tube

WARNING

Use care when handling a crt. Breakage of the crt may cause high-velocity scattering of glass fragments (implosion). Protective clothing and safety glasses should be worn. Avoid striking the crt on any object which may cause it to crack or implode. When storing a crt, either place it in a protective carton or set it face down on a smooth surface in a protected location with a soft mat under the faceplate.

The crt can be removed and reinstalled as follows:

1. Unsolder the Trace Rotation wires (J987) from the Front-Panel circuit board (note the connection locations and wire colors for reinstallation reference).

WARNING

The crt anode lead and the High-Voltage Multiplier output lead retain a high-voltage charge after the instrument is turned off. To avoid electrical shock, disconnect the crt anode lead from the High-Voltage Multiplier and ground the lead to the main instrument chassis.
2. Unplug the crt anode lead connector from the High-Voltage Multiplier located on the inner chassis. Discharge the anode lead to chassis ground.
3. Remove two front-panel screws that retain the plastic crt frame and light filter to the front panel. Remove the crt frame and light filter from the instrument.
4. Remove the grounding spring from between the top of the crt funnel and front chassis.
5. With the rear of the instrument facing you, place the fingers of both hands over the front edge of the front subpanel. Then, using both thumbs, press forward gently on the crt funnel near the front of the crt. When the crt base pins disengage from the socket, remove the crt and the crt shield through the instrument front panel. Place the crt in a safe place until it is reinstalled. If the plastic crt corner pads fall out, save them for reinstallation.

NOTE

When installing the crt into the instrument, reinstall any loose plastic crt corner pads that are out of place. Ensure all crt pins are straight and that the indexing keys on the crt base, socket, and shield are aligned. Ensure that the ground clip makes contact only with the outside of the crt shield.

To reinstall the crt, perform the reverse of the preceding steps.

Power Transformer

The Power Transformer (T901) can be removed and reinstalled as follows:

1. Disconnect connector J 902 from the Line Filter board. (The J902 connector is not polarized so can be fitted either way). Note the orientation of the connector for proper reinstallation.
2. Note the physical orientation of the Power Transformer. Undo the two locking nuts from the center of the Power Transformer.
3. Supporting the Transformer, withdraw the center bolt (complete with the rear stiffening plate).

To reinstall the Power Transformer, perform the reverse of the preceding steps.

Mains Input Circuit Board

The Mains Input circuit board can be removed and reinstalled as follows:

1. Disconnect connector J902 from the Mains Input board. (The J902 connector is not polarized so can be fitted either way. Note the orientation for correct reinstallation.)
2. Unsolder W903 from Mains Input board.
3. Disengage the Power switch extension shaft from the Mains Power switch (S901).
4. Remove the two screws and nuts that secure the AC Power inlet connector to the rear chassis.
5. Remove the grounding screw and nut that secures the Mains Input board to the inner chassis.

WARNING

The screw and nut which secure the Mains Input circuit board to the chassis provide safety grounding and must be properly replaced when reinstalling the Mains input circuit board
6. Pull the Mains Input board towards the inner chassis and up out of the instrument.

To reinstall the Mains Input board, perform the reverse of the preceding steps.

Attenuator/Timebase Circuit Board

The Attenuator/Timebase circuit board can be removed and reinstalled as follows:

1. Turn the instrument over (Main circuit board up) and unsolder the two resistors from the CH 1 and CH 2 attenuator switches. Also unsolder the grounding straps connected between the Front Panel and the Attenuator/Timebase boards, noting their respective positions. Turn the instrument over again and continue with the Attenuator/Timebase circuit board procedure.
2. Use a $1 / 16$-inch hex wrench to loosen the set screws on both the CH 1 and CH 2 VOLTS/DIV Variable knobs, and SEC/DIV Variable knob. Remove the knobs. Withdraw the CH 1 and CH 2 VOLTS/DIV knobs and SEC/DIV knob.
3. Remove the two rear screws that secure the Attenuator/Timebase board to the support pillars.
4. Remove the screw that secures the Front Panel brace to the Attenuator/Timebase board. Turn the instrument over (Main circuit board up) and remove the screw that secures the Front Panel brace pillar to the Attenuator/Timebase board.
5. Remove the Focus knob shaft by disengaging it from the Focus pot and pulling the shaft out through the front panel.
6. Disconnect the following cables from the Attenuator/Timebase circuit board, noting their locations for reinstallation reference:
a. J90, a six-wire cable located at the rear edge of the board.
b. J755, a four-wire cable located at the rear right-hand corner of the board.
c. J30, a four-wire cable located to the left of the CH 1 attenuator switch.
d. J80, a four-wire cable located between the CH 1 and CH 2 attenuator switches.
e. J7, a six-wire cable located between the CH 2 attenuator switch and the SEC/DIV switch.
f. J701, a six-wire cable located at the front right-hand corner of the board.
7. Pull the Attenuator/Timebase circuit board straight back from the front of the instrument until the attenuator switches are clear of the Front-Panel circuit board. Then lift out the entire assembly through the top of the instrument.

To reinstall the Attenuator/Timebase circuit board, perform the reverse of the preceding steps.

The Bottom Shield of the Attenuator/Timebase circuit board assembly can be removed by removing the two screws and nuts located at the front edge of the board.

Front-Panel Circuit Board

The Front-Panel circuit board can be removed and reinstalled as follows:

1. Perform the Attenuator/Timebase Circuit Board Assembly removal procedure.
2. Remove the knobs from the following control shafts by pulling them straight out from the front panel:
a. INTENSITY.
b. Channel 1 and Channel 2 POSITION.
c. TRACE SEP.
d. COARSE and FINE Horizontal POSITION controls.
e. LEVEL.
f. HOLDOFF.
3. Unsolder both the resistor (R382) to the EXT INPUT center connector and the wire strap to the EXT INPUT OR Z ground lug.
4. Remove the FOCUS control shaft by pulling it through the front panel.
5. Unsolder the resistors and wire straps to the CH 1 OR X and CH 2 OR Y input connectors.
6. Unsolder the Trace Rotation wires (J987) from the Front-Panel circuit board (note the connection locations and wire colors for reinstallation reference).
7. Remove the Power Switch extension shaft by disengaging from power switch and pulling it out through the Front Panel.
8. Disconnect the following cables from the Front Panel board (these cables also connect to the front edge of the Main circuit board): J1, J2, J3, J4, J5, and J6.
9. Disconnect J7 from the Front Panel board (cable also connects to the Attenuator).
10. Remove the five screws that secure the Front Panel board to the front chassis, noting their respective positions.
11. Withdraw the Front Panel circuit board from the front chassis taking care not to lose the slider switch covers.

To reinstall the Front-Panel circuit board, perform the reverse of the preceding steps.

Main Circuit Board

All components on the Main circuit board are accessible either directly or by removing either the crt, Power Transformer or the Attenuator/Timebase circuit board assembly. Removal of the Main circuit board is required only when it is necessary to replace the circuit board with a new one.

The Main circuit board and inner chassis can be removed and reinstalled together as follows:

WARNING

The crt anode lead and the output terminal to the High-Voltage Multiplier will retain a highvoltage charge after the instrument is turned off. To avoid electrical shock, ground the crt side of the anode lead to the main instrument chassis.

1. Remove the FOCUS conatrol shaft by pulling it out through the front panel.
2. Unsolder W893 from the Main board. The cable is connected to the Focus pot located on the rear of the inner chassis.
3. Unsolder W903 from the rear of the Mains Input board.
4. Disengage the following cables from their respective wire-trap connectors located on the Attenuator/Timebase board:
a. J755, four-wire cable located at rear right corner of board.
b. J90, six-wire cable located at center rear edge of board.
c. J30, four-wire cable located at the left hand side of the CH 1 attenuator switch.
d. J80, four-wire cable located between the CH 1 and CH 2 attenuator switches.
e. J701, six-wire cable located at front right corner of board.
5. Turn instrument upside down (bottom of Main board facing up) with the rear of the instrument facing you.
6. Remove the two screws that secure the heatsink for the vertical output transistors (Q256 and Q257) to the rear chassis.
7. Remove the screw that secures the heatsink for the power supply transistors (Q950, Q980, Q923 and Q913) to the rear chassis.
8. With the instrument still upside down, rotate it so that the front is facing you. Unsolder the wire connected to the Probe Adjust terminal from the Main board.
9. Disconnect the following cables from their respective wire-trap connectors located along
the front edge of the Main board: $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~J} 4$, J5, and J6.
10. Remove the three screws that secure the Main board to the pillars of the Attenuator/Timebase assembly.
11. Remove the four screws that secure the inner chassis.
12. Remove the grounding nut and screw that secure the inner chassis to the Mains Input circuit board.

WARNING

The screw and nut which secure the Mains Input circuit board to the chassis provide safety grounding and must be properly replaced when reinstalling the Mains input circuit board
13. Remove the two screws and nuts that secure the Main board to the left hand chassis member.
14. Remove the three screws and nuts that secure the Main board to the right hand chassis member.
15. Lift out Main board and inner chassis.

To reinstall the Main circuit board, perform the reverse of the preceding steps. When installing the Main circuit board, ensure that the circuit board is in the guides at the rear of the chassis.

OPTIONS AND ACCESSORIES

INTRODUCTION

This section lists the standard accessories (including Tektronix part numbers) that are shipped with each insturment. It also briefly describes the options that can be included with the original instrument order. If you wish to obtain any of these options after receibing your insturment, use the accessories lists contained in Tables 7-1 and 7-2. For additional information about instrument options and other optional accessories, consult the current Tektronix Product Catalog or contact your local Tektronix Field Office or distributor.

STANDARD ACCESSORIES

The following standard accessories are provided with each instrument:

Qty	Description	Part Number
1	Power Cord and Fuse	Per option ordered; see Table 7-1
1	Operator's Manual	$070-6298-01$
1	Power-cord Clamp	$343-0003-00$
1	Washer	$210-0803-00$
1	Self-Tapping Screw	$213-0882-00$
2	Probes, $10 \mathrm{X}, 2 \mathrm{~m}$, with accessories	P6103

OPTIONS

Option 02

This option is intended for users who need added front-panel protection and accessories-carrying ease demanded by frequent travel to remote service
sites. It includes a protective front-panel cover and an accessories pouch that attaches to the top of the instrument.

Option 1C

An oscilloscope camera is useful for capturing signle events and documenting measurement results. And it helps communicate results with clrity and credibility. Option 1C provides the Tektronix C-5C Option 04 Low-cost Camera for use with your oscilloscope.

Option 1K

When this option is specified, a K212 Portable Instrument Carty is included in the shipment. The cart provides a stable yet movable platform that is well suited for on-site instrument mobility in a variety of work areas.

Option 1R

When the oscilloscope is ordered with Option 1R, it is shipped in a configuration that permits easy installation into virtually any 19-inch-wide, electronic-equipment rack. All hardware is supplied for mounting the instrument into the rack.

Complete rackmounting instructions are provided in a separate document. These instructions also contain the procedures for converting a standard instrument into the Option 1R configuration by using the separately ordered rackmounting conversion kit.

Option 23
Two P6119 1X-10X Selectable-attenuation Probes are provided in place of the standard P6103 10X Probes.

POWER CORDS

Instruments are shipped with the detachable powercord and fuse configuration ordered by the customer.

Table 7-1 identifies the Tektronix part numbers for international power cords and associated fuses. Additional information about power-cord options is contained in Section 2, Preparation for Use.

Table 7-1
Power Cords and Fuses

Description	Part Number
Standard (United States)	
Power Cord, 2.5 m	161-0104-00
Fuse, 1.0 A, 250 V, 3AG, $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$, Slow	159-0019-00
Option A1 (Europe)	
Power Cord, 2.5 m	161-0104-06
Fuse, 0.5 A, 250 V , 3AG, 1/4" X 1/4", Slow	159-0032-00
Option A2 (United Kingdom)	
Power Cord, 2.5 m	161-0104-07
Fuse, 0.5 A, 250 V , 3AG, 1/4" $\times 1 / 4^{\prime \prime}$, Slow	159-0032-00
Option A3 (Australia)	
Power Cord, 2.5 m	161-0104-05
Fuse, 0.5 A, 250 V , 3AG, $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$, Slow	159-0032-00
Option A4 (North America)	
Power Cord, 2.5 m	161-0104-08
Fuse, 0.5 A, 250 V , 3AG, 1/4" X 1/4", Slow	159-0032-00
Option A5 (Switzerland)	
Power Cord, 2.5 m	161-0167-00
Fuse, $0.5 \mathrm{~A}, 250 \mathrm{~V}$, 3AG, 1/4" $\times 1 / 4^{\prime \prime}$, Slow	159-0032-00

Table 7-2
Optional Accessories

Description	Part Number
Front Panel Protective Cover	$200-3397-00$
Accessory Pouch	$016-0677-02$
Front Panel Protective Cover and Accessory Pouch	$020-1514-00$
Hand Carrying Case	$016-0792-01$
CRT Light Filter, Clear	$337-2775-01$
Rack Mount Conversion Kit	$016-0819-00$
Viewing Hoods	
Collapsible	$016-0592-00$
Polarised	$016-0180-00$
Binocular	$016-0566-00$
Alternative Power Cords	
European	$020-0859-00$
United Kingdom	$020-0860-00$
Australian	$020-0861-00$
North American	$020-0862-00$
Swis	$020-0863-00$
Attenuator Voltage Probes	
10X Standard	P6103
10X Subminiature	P6130
10X Environmental	P6008
1X-10X Selectable	P6119
100X High Voltage	P6009
1000X High Voltage	P6015
Current Probes	P6021, P6022, A6302/AM503,
A6303/AM503	
Active Probe, 10X FET	134
Active-probe Power Supply	K212
Ground Isolation Monitor	$070-6299-00$
Isolator (for multiple, independently referenced,	P6202A
differential measurements)	1101 A
DC Inverter	A6901
DC Inverter Mounting Kit	A6902B
Portable Power Supply	1107
Battery Pack	$016-0785-00$
Oscilloscope Cameras	1105
Low-cost	1106
Motorized	
2225 Service Manual	

REPLACEABLE ELECTRICAL PARTS

PARTS ORDERING INFORMA'TION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix. Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual

LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies arelisted in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS
Abbreviations conform to American National Standard Y1. 1

COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:

Read: Resistor 1234 of Assembly 23

Read: Resistor 1234 ol Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts)

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

NAME \& DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip Code
00853	SANGAMO WESTON INC COMPONENTS DIV	SANGAMO RD PO BOX 128	PICKENS SC 29671-9716
01121	ALLEN-BRADLEY $C 0$	1201 S 2ND ST	MILWAUKEE WI 53204-2410
02114	AMPEREX ELECTRONIC CORP FERROXCUBE DIV	5083 KINGS HWY	SAUGERTIES NY 12477
02735	RCA CORP SOLID STATE DIVISION	ROUTE 202	SOMERVILLE NJ 08876
03508	GENERAL ELECTRIC CO SEMI-CONDUCTOR PROOUCTS DEPT	W GENESEE ST	AUBURN NY 13021
04222	AVX CERAMICS DIV OF AVX CORP	19TH AVE SOUTH P 0 BOX 867	MTRTLE BEACH SC 29577
04426	ITW SWITCHES DIV OF ILLINOIS TOOL WORKS INC	6615 W IRVING PARK RD	CHICAGO IL 60634-2410
04713	MOTOROLA INC SEMICONDUCTOR PRODUCTS SECTOR	5005 E MCDOWELL RD	PHOENIX AZ 85008-4229
05397	UNION CARBIDE CORP MATERIALS SYSTEMS DIV	11901 MADISON AVE	CLEVELAND OH 44101
05828	GENERAL INSTRLMENT CORP GOVERNMENT SYSTEMS DIV	600 W JOHN ST	HICKSVILLE NY 11802
07263	FAIRCHILD SEMICONDUCTOR CORP NORTH AMERICAN SALES SUB OF SCHLUMBERGER LTD MS 118	10400 RIDGEVIEW CT	CUPERTINO CA 95014
07716	TRW INC TRW IRC FIXED RESISTORS/BURLINGTON	2850 MT PLEASANT AVE	BURLINGTON IA 52601
12954	MICROSEMI CORP - SCOTTSDALE	8700 E THOMAS RD P 0 BOX 1390	SCOTTSDALE AZ 85252
12969	UNITRODE CORP	5 FORBES RD	LEXINGTON MA 02173-7305
14433	ITT SEMICONDUCTORS DIV		WEST PALM BEACH FL
14552	MICROSEMI CORP	2830 S FAIRVIEN ST	SANTA ANA CA 92704-5948
14752	ELECTRO CUBE INC	1710 S DEL MAR AVE	SAN GABRIEL CA 91776-3825
15454	KETMA RODAN DIVISION	2900 BLUE STAR STREET	ANAHEIM CA 92806-2591
18796	MURATA ERIE NORTH AMERICAN INC STATE COLLEGE OPERATIONS	1900 W COLLEGE AVE	STATE COLLEGE PA 16801-2723
19396	ILLINOIS TOOL WORKS INC PAKTRON DIV	$\begin{aligned} & 1205 \text { MCCONVILLE RD } \\ & \text { PO BOX } 4539 \end{aligned}$	LYNCHBURG VA 24502-4535
19701	MEPCO/CENTRALAB A NORTH AMERICAN PHILIPS CO MINERAL WELLS AIRPORT	PO BOX 760	MINERAL WELLS TX 76067-0760
20932	KYOCERA INTEPNATIONAL INC	11620 SORRENTO VALLEY RD PO BOX 81543 PLANT NO 1	SAN DIEGO CA 92121
24546	CORNING GLASS WORKS	550 HIGH ST	BRADFORD PA 16701-3737
27014	NATIONAL SEMICONDUCTOR CORP	2900 SEMICONDUCTOR DR	SANTA CLARA CA 95051-0606
31918	ITT SCHADOW INC	8081 WALLACE RD	EDEN PRAIRIE MN 55344-2224
34899	FAIR-RITE PRODUCTS CORP	1 COMMERCIAL ROW	WALLKILL NY 12589
51406	MURATA ERIE NORTH AMERICA INC HEADQUARTERS AND GEORGIA OPERATIONS	2200 LAKE PARK DR	SMYRNA GA 30080
52763	STETCO INC	3344 SCHIERHORN	FRANKLIN PARK IL 60131
52769	SPRAGUE-GOODMAN ELECTRONICS INC	134 FULTON AVE	GARDEN CITY PARK NY 11040-5352
54473	MATSUSHITA ELECTRIC CORP OF AMERICA	ONE PANASONIC WAY PO BOX 1501	SECAUCUS NJ 07094-2917
55680	NICHICON /AMERICA/ CORP	927 E STATE PKY	SCHAUMEURG IL 60195-4526
56289	SPRAGUE ELECTRIC CO WORLD HEADQUARTERS	92 HAYDEN AVE	LEXINGTON MA 02173-7929
57668	ROHM CORP	8 WHATNEY PO BOX 19515	IRVINE CA 92713
59660	TUSONIX INC	7741 N BUSINESS PARK DR PO BOX 37144	TUCSON AZ 85740-7144
71400	BUSSMANN DIV OF COOPER INDUSTRIES INC	114 OLD STATE RD PO BOX 14460	ST LOUIS M0 63178
75042	IRC ELECTRONIC COMPONENTS PHILADELPHIA DIV TRW FIXED RESISTORS	401 N BROAD ST	PHILADELPHIA PA 19108-1001
80009	TEKTRONIX INC	14150 SW KARL BRAUN DR PO BOX 500	BEAVERTON OR 97077-0001

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufactumer	Address	City, State, Zip Code
91637	dale electronics inc	2064 12TH AVE P0 BOX 609	COLLMBUS NE 68601-3632
D5243	ROEDERSTEIN E SPEZIALFABRIK FUER KONDENSATOREN GMBN	LUDMILLASTRASSE 23-25	8300 LANDSHUT GERMANY
K0491	SEALECTRO LTD	WALTON ROAD FARLINGTON	PORTSMOUNT ENGLAND
K1439	STEALITE RODERSTEIN LTD HAGLEY HOUSE	EDGBASTON	BIRMINGHAM 16 ENGLAND
K2504	RS COMPONENTS LTD	P0 BOX 99	CORBY NORTHANTS NN17 9RS ENGLAND
K5545	AVEL LINDBERG LTD	ARCANY ROAD	ESSEX ENGLAND
K5856	AVELEY INDUSTRIAL EST. RCA LTD	SOUTH OCKENDON 373-399 LONDON ROAD	SURREY ENGLAND
	BEECH HOUSE	CAMBERLEY	
K7068	SILICONIX LTD	MORRISTON	SWANSEA WALES
K7779	SIGMENS LTD SIEMENS HOUSE	WINOMILL ROAD SUNBURY-ON-THAMES	MIDDLESEX TW16 7HS ENGLAND
K8788	PIHER INTERNATIONAL LTD	HORTON ROAD WEST DRAYTON	MIDDLESEX ENGLAND
K8996	MULLARD LIMITED	MULLARD HOUSE TORRINGTON PLACE	LONDON WC1 7 HD ENGLAND
54239	TEIKOKU TSUSHIN CORP	335 KARI YADO NAKAHARA-KU	KAWASKI JAPAN
TKOOA TK0213	G EMGLISH ELECTRONICS LTD TOPTRON CORP	34 BOWATER ROAD	LONDON SEI8 5TF ENGLAND TOKYO JAPAN
TK0515	ERICSSON COMPONENTS INC	403 INTERNATIONAL PKY PO BOX 853904	RICHARDSON TX 75085-3904
TK0961	NEC ELECTRONICS USA INC ELECTRON DIV	401 ELLIS ST PO BOX 7241	MOUNTAIN VIEW CA 94039
TKODY	A F BULGIN \& CO LTD	BYE PASS ROAD BARKING	ESSEX ENGLAND
TKODZ	ACROTRONICS	WOOD BURCOTE TRADING EST.	TOWCESTER ENGLAND
TKOEA	ARMON ELECTRONICS HERON HOUSE	109 WEMBLY HILL ROAD WEMBLY	MIDDX ENGLAND
TKOED	COMPONENTS BLREAU UNIT 4	135 DITTON WAY	CAMBRIDGE ENGLAND
TKOEE	EUREL LTD	2C PRIMROSE LAND ARLESEY	BEDFORDSHIRE ENGLAND
TKOEF	FERRANTI ELECTRONICS	FILEDS NEW ROAD SHADDERTON - OLDHAM	LANCS ENGLAND
TKOEG	G 8 ELECTRONIC COMPS SPINNEY ESTATE	HODOESDON ROAD	STANSTEAD ABBOTTS ENGLAND
TKOEM	MOLEX ELECTRONICS MOLEX HOUSE	FARNHAM ROAD BORDON	HAMPSHIRE ENGLAND
TKOFD	GB ELECTRONICS PROOUCTS LTD		WARE SG128EJ ENGLAND
TKOFV	EURAL LTD	ARLESEY	BEDS ENGLAND
TK1016	TOSHIBA AMERICA INC ELECTRONIC COMPONENTS DIV BUSINESS SECTOR	2692 DOW AVE	TUSTIN CA 92680
TK1573	WILHELM WESTERMAN	PO BOX 2345 AUGUSTA-ANLAGE 56	6800 MANNHEIM 1 WEST GERMANY
U1395	WELWN ELECTRIC	BEDLINGTON	NORTHLMBERLAND NE22 7AA ENGLAND
U3771	STANLER COMPONENTS BUSINESS CENTRE	HEY LANE	BRAINTREE ENGLAND
04144	MURATA ELECTRONICS UK LTD	SOUTHNODD FARNBOROUGH	HANTS ENGLAND

Component Mo.	Tektronix Part Mo.	Serial/Asse Effective	mbly No. Dscont	Nare \& Description	Mfr. Code	Mfr. Part No.
A1	670-9937-00	200001	202907	CIRCUIT BD ASSY:MAIN	80009	670-9937-00
A1	670-9937-05	202908		CIRCUIT BD ASSY:MAIN	80009	670-9937-05
A2	670-9936-00	200001	202907	CIRCUIT BD ASSY:ATTENUATOR \& TIMEBASE	80009	670-9936-00
A2	670-9936-05	202908		CIRCUIT 80 ASSY:ATTENLATOR \& T/B	80009	670-9936-05
A3	670-9940-00	200001	202907	CIRCUIT BD ASSY:FRONT PANEL	80009	670-9940-00
A3	670-9940-05	202908		CIRCUIT BD ASSY:FRONT PANEL	80009	670-9940-05
A4	670-9939-00	200001	202907	CIRCUIT BD ASSY:MAINS INPUT	80009	670-9939-00
A4	670-9939-05	202908		CIRCUIT BD ASSY:MAIN INLET	80009	670-9939-05
A5	670-9938-00	200001	202907	CIRCUIT BD ASSY:FOCUS CONTROL MOUNTING	80009	670-9938-00
A5	670-9938-05	202908		CIRCUIT BD ASSY:FOCUS CONTROL	80009	670-9938-05

Component Mo.	Tektronix Part No.	Serial/Asse Effective	anbly No. Dscont	Narle \& Description	Mfr. Code	Mfr. Part Mo.
A1	670-9937-00	200001	202907	CIRCUIT BD ASSY:MAIN	80009	670-9937-00
Al	670-9937-05	202908		CIRCUIT BD ASSY:MAIN	80009	670-9937-05
AlC106	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
AlC107	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C110	281-0810-00			CAP, FXD, CER DI:5.6PF, +/-0.5PF,100V	04222	MA101A5R60AA
A1C111	281-0775-01	200360	201732	CAP, FXD, CER DI:0.1UF, 20%,50V	04222	SA105E104MAA
A1C111	281-0773-00	201733		CAP, FXD,CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	MA201C103KAA
A1C111	281-0773-00			CAP, FXD,CER DI: $0.01 \mathrm{FF}, 10 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	04222	MA201C103KAA
A1C112	281-0775-01	200360	201732	CAP, FXD,CER DI: 0.1 UF, $20 \%, 50 \mathrm{~V}$	04222	SA105E104MAA
AlC112	281-0773-00	201733		CAP, FXD,CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	Maz01C103KAA
A1C112	281-0773-00			CAP, FXD,CER DI:0.01UF, 10\%,100V (U.S.A. \& GUERNSEY)	04222	MA201C103KAA
AlC114	281-0767-00			CAP, FXD,CER DI:330PF, 20\%,100V	04222	MA106C331MAA
A1C115	281-0767-00			CAP, FXD, CER DI:330PF, 20\%, 100V	04222	MA106C331MAA
A1C116	281-0775-01			CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$, 50 V	04222	SA105E104MAA
AlC124	281-0775-01			CAP, FXD, CER DI: 0.1 UF, 20%, 50 V	04222	SA105E104MAA
AlC125	281-0772-00			CAP, FXD,CER DI: $4700 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C472KAA
A1C126	283-0114-02			CAP, FXD, CER DI: $1500 \mathrm{PF}, 5 \%$, 200V	59660	805-405-Y500152J
A1C130	283-0642-00			CAP, FXD,MICA DI:33PF, +/-0.5PF,500V	00853	D105E33060
A1C133	281-0785-00			CAP, FXD, CER DI:68PF, 10%, 100 V	04222	MA101A680KAA
AlC153	281-0775-01	200360	201732	CAP, FXD,CER DI: 0.1 UF, 20%,50V	04222	SA105E104MAA
A1C153	281-0773-00	201733		$\begin{aligned} & \text { CAP, FXD, CER DI: } 0.01 \text { UF, } 10 \%, 100 \mathrm{~V} \\ & \text { (UNITED KINGDON ONLY) } \end{aligned}$	04222	MA201C103KAA
A1C153	281-0773-00	201733		CAP, FXD,CER DI:0.01UF,10\%,100V (U.S.A. \& GUERNSEY)	04222	MA201C103KAA
A1C156	281-0775-01			CAP, PXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C157	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C160	281-0810-00			CAP, FXD, CER DI:5.6PF,+/-0.5PF,100V	04222	MA101A5R60AA
AlC164	281-0767-00			CAP, FXD,CER DI:330PF, 20%,100V	04222	MA106C331MAA
A1C165	281-0767-00			CAP, FXD, CER DI:330PF, 20%, 100V	04222	MA106C331MAA
A1C174	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{LJF}, 20 \%$, 50 V	04222	SA105E104MAA
AlC175	281-0772-00			CAP, FXD, CER DI : 4700PF, $10 \%, 100 \mathrm{~V}$	04222	MA201C472KAA
A1C176	283-0114-02			CAP, FXD, CER DI: 1500PF, 5\%, 200V	59660	805-405-Y5D0152J
A1C180	283-0642-00	200001	208109	CAP, FXD, MICA DI:33PF, $+/-0.5 \mathrm{PF}, 500 \mathrm{~V}$	00853	D105E33060
A1C180	281-0158-00	208110		CAP, VAR,CER DI:7-45PF, 100WVD SLIBMIN CER DISC TOP ADJ (UNITED KINGDOM ONLY)	59660	518-006 G 7-45
A1C180	283-0642-00	B010100	B010699	CAP, FXD, MICA DI :33PF,+/-0.5PF,500V	00853	D105E330G0
AlC180	281-0158-00	B010700		CAP, VAR,CER DI:7-45PF, 100WDC SUBMIN CER DISC TOP ADJ (U.S.A. ONLY)	59660	518-006 G 7-45
A1C180	283-0642-00	100001	100120	CAP, FXD, MICA DI:33PF, +/-0.5PF,500V	00853	D105E33060
A1C180	281-0158-00	100121		CAP,VAR,CER DI:7-45PF,100WDC SUBMIN CER DISC TOP ADJ (GUERNSEY ONLY)	59660	518-006 G 7-45
A1C215	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C216	281-0756-00	202908		CAP, FXD,CER DI:2.2PF,+/-0.5PF,200V (UNITED KINGDOM ONLY)	04222	SA102A2R2DAA
A1C216	281-0756-00			CAP, FXD,CER DI:2.2PF,+/-0.5PF,200V (U.S.A. \& GJERNSEY)	04222	SA102A2R2DAA
A1C217	281-0756-00	202908		CAP, FXD,CER DI:2.2PF,+/-0.5PF,200V (UNITED KINEDOM ONLY)	04222	SA102A2R2DAA
A1C217	281-0756-00			CAP, FXD,CER DI:2.2PF,+/-0.5PF,200V (U.S.A. \& GUERNSEY)	04222	SA102A2R2DAA
A1C220	281-0775-01	203972		CAP, FXD,CER DI: $0.1 \mathrm{~F}, 20 \%, 50 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	SA105E104MAA
A1C220	281-0775-01			CAP, FXD,CER DI:0.1UF, $20 \%, 50 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	04222	SA105E104MAA

Component No.	Tektronix Part No.	Serial/Asse Effective	enbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1C225	281-0812-00	200360	205110	CAP,FXD,CER DI:1000PF,10\%,100V (UNITED KINGDOM ONLY) (UNITED KINGDOM ONLY)	04222	MA101C102KAA
A1C225	281-0865-00			CAP, FXD,CER DI: 1000PF, $5 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY) (U.S.A. \& GUERNSEY)	04222	SA201A102JAA
A1C237	281-0140-00			CAP, VAR, CER DI:5-25PF,100V	59660	518-023A 5-25
A1C239	281-0776-00			CAP, FXD,CER DI:120PF,5\%,100V	20932	401E0100AD121J
A1C240	283-0331-00			CAP, FXD, CER DI:43PF, $2 \%, 100 \mathrm{~V}$	18796	DD106B10NP0430J
A1C241	281-0816-00			CAP, FXD,CER DI:82 PF,5\%,100V	04222	MA106A820JAA
A1C242	281-0865-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	04222	SA201A102JAA
A1C250	281-0768-00			CAP,FXD,CER DI: $470 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$	04222	MA101A471MAA
A1C251	281-0768-00			CAP, FXD,CER DI: 470 PF, 20%, 100V	04222	MA101A471MAA
A1C255	281-0812-00	200360	205110	CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
A1C255	281-0865-00	205111		CAP,FXD,CER DI: 1000PF,5\%,100V (UNITED KINGDOM ONLY)	04222	SA201A1023AA
AlC255	281-0865-00			CAP, FXD,CER DI:1000PF,5\%,100V (U.S.A. \& GUERNSEY)	04222	SA201A102JAA
A1C256	281-0214-00			CAP, VAR, CER DI: $0.6-3 \mathrm{PF}, 400 \mathrm{~V}$	52763	313613-140
AlC257	281-0214-00			CAP, VAR,CER DI:0.6-3PF,400V	52763	313613-140
AlC258	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	SAI 05E104MAA
AlC262	281-0812-00			CAP, FXD,CER DI: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
AlC281	281-0775-01	200360	202907	CAP, FXD, CER DI:0.1UF, 20\%,50V (UNITED KINGDOM ONLY)	04222	SA105E104MAA
A1C292	290-1153-00			CAP, FXD, ELCTLT:47UF, +50-10\%,10V	K8996	030-24479
A1C304	281-0768-00			CAP, FXD,CER DI: 470PF, 20%, 100V	04222	MA101A471MAA
A1C305	281-0768-00			CAP, FXD, CER DI: 470PF, 20%, 100V	04222	MA101A471MAA
A1C310	281-0762-00			CAP, FXD,CER DI:27PF,20\%,100V	04222	MA101A270MAA
AlC335	281-0762-00			CAP, FXD,CER DI: $27 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$	04222	MA101A270MAA
AlC340	281-0762-00			CAP, FXD,CER DI: $27 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$	04222	MA101A270MAA
A1C349	285-1385-00			CAP, FXD, PLASTIC:43PF, $2.5 \%, 630 \mathrm{~V}$	K7779	831063-A6430-H6
AlC351	281-0775-01			CAP, FXD, CER DI:0.1UF, 20%, 50 V	04222	SA105E104MAA
AlC353	281-0810-00	202908	204242	CAP, FXD, CER DI:5,6PF,+/-0.5PF,100V	04222	MA101A5R60AA
AlC353	281-0812-00	204243	205110	CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%$,100V	04222	MA101C102KAA
AlC353	281-0865-00	205111		CAP, FXD,CER DI:1000PF,5\%,100V (UNITED KINGDOM ONLY)	04222	SA201A102JAA
A1C353	281-0865-00			CAP, FXD,CER DI: 1000 PF, $5 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	04222	SA201A102JAA
A1C369	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{JF}, 20 \%$,50V	04222	SA105E104MAA
A1C372	281-0815-00			CAP, FXD, CER DI:0.027UF,20\%,50V	04222	MA205C273MAA
A1C380	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{FF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C384	290-1159-00			CAP, FXD, ELCTLT:1000UF,20\%,16V	TKOED	TWSS
A1C387	281-0762-00			CAP, FXD, CER DI:27PF, 20\%,100V	04222	MA101A270MAA
A1C389	281-0775-01			CAP, FXD, CER DI: 0,1 UF, 20%, 50 V	04222	SA105E104MAA
A1C396	281-0814-00	207212		CAP, FXD, CER DI: $100 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	MA101A101KAA
A1C396	281-0814-00	100041		CAP,FXD,CER DI:100 PF,10\%,100V (GUERNSEY ONLY)	04222	MA101A101KAA
A1C396	281-0814-00	B010463		$\begin{aligned} & \text { CAP, FXD, CER DI:100 PF, } 10 \%, 100 \mathrm{~V} \\ & \text { (U.S.A. ONLY) } \end{aligned}$	04222	MA101A101KAA
A1C398	281-0773-00			CAP, FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A1C400	281-0762-00	200757		CAP,FXD,CER DI:27PF, 20\%,100V (UNITED KINGDOM ONLY)	04222	MA101A2704AA
A1C400	281-0762-00			CAP,FXD,CER DI:27PF, 20\%,100V (U.S.A. \& GUERNSEY)	04222	MA101A2704AA
A1C401	281-0775-01			CAP,FXD,CER DI: $0.1 \mathrm{LIF}, 20 \%$, 50 V	04222	SA105EIO4MAA
A1C408	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C418	290-1150-00			CAP, FXD, ELCTLT: 15UF,+50\%-10\%, 16WVDC	K8996	030-25159
A1C430	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%, 50V	04222	SA105E104MAA
A1C431	290-1150-00			CAP, FXD, ELCTLT: 15 UF,+50\%-10\%, 16WVDC	K8996	030-25159

Companent No.	Tektranix Part No.	Serial/Asse Effective	anbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1C435	281-0775-01			CAP, FXD, CER DI:0.1UF, 20%,50V	04222	SAI05E104MAA
A1C439	281-0773-00			CAP, FXD,CER DI:0.01UF,10\%,100V	04222	MA201C103KAA
A1C451	281-0773-00			CAP, FXD,CER DI:0.01UF,10\%,100V	04222	MA201C103KAA
A1C452	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C455	290-1150-00	202908		CAP, FXD, ELCTLT:15UF, $+50 \%-10 \%$, 16WVDC (UNITED KINGDOM ONLY)	K8996	030-25159
A1C455	290-1150-00			CAP, FXD, ELCTLT:15UF,+50\%-10\%,16WVDC (U.S.A. \& GUERNSEY)	K8996	030-25159
A1C462	290-0743-00			CAP, FXD, ELCTLT: 100UF,+50\%-20\%, 16WVDC	54473	ECE-B16V100L
A1C464	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C471	290-1150-00			CAP, FXD, ELCTLT: 15UF,+50\%-10\%, 16WVDC	K8996	030-25159
A1C472	290-1150-00			CAP, FXD, ELCTLT: 15UF, $+50 \%-10 \%, 16 \mathrm{WVC}$	K8996	030-25159
A1C473	281-0865-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	04222	SA201A102JAA
A1C480	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C481	281-0775-01			CAP, FXD, CER DI:0.1UF, 20%, 50 V	04222	SA105E104MAA
A1C489	281-0810-00			CAP, FXD, CER DI:5.6PF,+/-0.5PF,100V	04222	MA101A5R60AA
AlC495	281-0773-00			CAP, FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A1C496	281-0773-00			CAP, FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A1C500	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SAI05E104MAA
AlC501	281-0810-00			CAP, FXD, CER DI:5.6PF, +/-0.5PF,100V	04222	MA101A5R6DAA
A1C503	281-0772-00			CAP, FXD,CER DI: $4700 \mathrm{PF} .10 \%$, 100 V	04222	MA201C472KAA
A1C504	281-0775-01			CAP,FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
AlC505	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
AlC506	281-0767-00			CAP, FXD,CER DI:330PF,20\%,100V	04222	MA106C331MAA
AlC510	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C511	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C513	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{LJF}, 20 \%$, 50 V	04222	SA105E104MAA
AlC514	281-0775-01			CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$,50V	04222	SA105E104MAA
A1C515	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$,50V	04222	SA105E104MAA
A1C516	281-0812-00	200360	205110	CAP, FXD,CER DI:1000PF,10\%,100V	04222	MA101C102KAA
A1C516	281-0865-00	205111		CAP, FXD, CER DI: 1000PF,5\%,100V (UNITED KINGDOM ONLY)	04222	SA201A102JAA
A1C516	281-0865-00			CAP, FXD,CER DI:1000PF,5\%,100V (U.S.A. \& GUERNSEY)	04222	SA201A102JAA
A1C517	281-0776-00			CAP, FXD, CER DI:120PF, $5 \%, 100 \mathrm{~V}$	20932	401E0100AD121J
A1C519	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C520	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
AlC525	281-0758-00			CAP, FXD, CER DI: $15 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$	04222	SA102A150MAA
A1C530	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C536	281-0814-00			CAP, FXD, CER DI:100 PF, $10 \%, 100 \mathrm{~V}$	04222	MA101A101KAA
AlC537	281-0775-01			CAP, FXD, CER DI: 0.1 UF, 20%, 50 V	04222	SA105E104MAA
AlC538	281-0812-00	200360	205110	CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
AlC538	281-0865-00	205111		CAP,FXD,CER DI:1000PF,5\%,100V (UNITED KINGDOM ONLY)	04222	SA201A102JAA
A1C538	281-0865-00			CAP, FXD, CER DI:1000PF,5\%,100V (U.S.A. \& GUERNSEY)	04222	SA201A102JAA
A1C539	281-0812-00	200360	205110	CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
AlC539	281-0865-00	205111		CAP, FXD,CER DI: 1000 PF, $5 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	SA201A102JAA
A1C539	281-0865-00			CAP,FXD,CER DI:1000PF, $5 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	04222	SA201A102JAA
A1C540	290-1153-00			CAP, FXD, ELCTLT: 47UF, +50-10\%, 10V	K8996	030-24479
A1C545	283-0119-02			CAP, FXD, CER DI: $2200 \mathrm{PF}, 5 \%$, 200V	59660	855-402-Y5E0222J
A1C547	281-0768-00			CAP, FXD,CER DI: $470 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$	04222	MA101A471MAA
A1C550	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C554	281-0812-00	200360	205110	CAP, FXD, CER DI:1000PF, 10%, 100V	04222	MA101C102KAA
A1C554	281-0865-00	205111		CAP, FXD,CER DI: 1000PF,5\%,100V (UNITED KINGDOM ONLY)	04222	SA201A102JAA
A1C554	281-0865-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	04222	SA201A102JAA

Component Mo.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Cade	Mfr. Part Mo.
A1C555	281-0775-01			CAP, FXD, CER DI:0.1UF, 20%, 50 V	04222	SA105E104MAA
A1C560	281-0775-01			CAP, FXD, CER OI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C561	281-0812-00	200360	205110	CAP, FXD,CER 01: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
A1C561	281-0865-00	205111		CAP, FXD,CER DI: $1000 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	SA201A102JAA
AlC561	281-0865-00			CAP, FXD,CER DI: 1000PF, 5%, 100 V (U.S.A. \& GUERNSEY)	04222	SA201AIO2JAA
AlC562	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SAI05E104MAA
A1C570	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C571	281-0785-00			CAP, FXD, CER DI:68PF, $10 \%, 100 \mathrm{~V}$	04222	MA101A680KAA
AlC572	281-0758-00			CAP, FXD,CER DI:15PF, 20%, 100V	04222	SA102A150MAA
A1C584	281-0775-01	200001	208549	CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	SA105E104MAA
AlC584	285-1341-00	208550		CAP, FXD, PLASTIC: $0.1 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	TK1573	MKS2 0.1/100/20
A1C584	281-0775-01	B010100	B011072	CAP, FXD,CER DI: 0.1 UF, 20%, 50V	04222	SAIO5E104MAA
AlC584	285-1341-00	B011073		CAP, FXD, PLASTIC: $0.1 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ (U.S.A. ONLY)	TK1573	MKS2 0.1/100/20
AlC584	281-0775-01	100001	100227	CAP,FXD,CER DI:0.1UF,20\%,50V	04222	SAIOSE104MAA
A1C584	285-1341-00	100228		CAP,FXD, PLASTIC: $0.1 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ (GUERNSEY ONLY)	TK1573	MKS2 0.1/100/20
A1C587	281-0773-00			CAP, FXD, CER DI: 0.01 UF, $10 \%, 100 \mathrm{~V}$	04222	MA201CIO3KAA
A1C776	281-0773-00			CAP, FXD,CER DI: $0.01 \mathrm{LJF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A1C780	281-0771-00			CAP, FXD, CER DI:2200PF, 20\%,200V	04222	SAl06E222MAA
A1C782	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SAIO5E104MAA
A1C784	283-0317-00	200360	202907	CAP, FXD, CER DI:1PF,+/-0.1PF,500V	59660	861518COK0109B
A1C784	281-0214-00	202908		CAP, VAR, CER DI:0.6-3PF,400V (UNITED KINGDOM ONLY)	52763	313613-140
A1C784	281-0214-00			CAP, VAR,CER DI:0.6-3PF,400V (U.S.A. \& GUERNSEY)	52763	313613-140
A1C785	285-1101-00			CAP, FXD, PLASTIC:0.022UF, 10%,200V	19396	223K02PT485
A1C789	281-0771-00			CAP,FXD,CER DI:2200PF,20\%,200V	04222	SAI06E222MAA
A1C794	281-0214-00			CAP, VAR,CER DI:0.6-3PF,400V	52763	313613-140
A1C795	285-1101-00			CAP, FXD, PLASTIC:0.022UF,10\%,200V	19396	223K02PT485
A1C799	281-0771-00			CAP, FXD, CER DI:2200PF, $20 \%, 200 \mathrm{~V}$	04222	SAIO6E222MAA
A1C805	290-1150-00			CAP, FXD, ELCTLT:15UF,+50\%-10\%, 161NOC	K8996	030-25159
A1C819	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SAIO5E104MAA
A1C824	281-0785-00			CAP, FXD,CER DI:68PF,10\%,100V	04222	MAI01A680KAA
A1C825	281-0767-00			CAP, FXD, CER DI:330PF,20\%,100V	04222	MA106C331MAA
A1C828	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C832	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SAl05E104MAA
A1C834	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C835	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{LF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C845	281-0771-00			CAP, FXD, CER DI:2200PF, 20\%,200V	04222	SAIO6E22ZMAA
A1C847	283-0057-00	200360	200727	CAP, FXD, CER DI : $0.1 \mathrm{LF},+80-20 \%$, 200V	04222	SR306E104ZAA
A1C847	285-1341-00	200728		CAP, FXD, PLASTIC: $0.1 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	TK1573	MKS2 0.1/100/20
AlC847	285-1341-00			$\begin{aligned} & \text { CAP, FXD, PLASTIC: } 0.1 \text { UF, } 20 \%, 100 \mathrm{~V} \\ & \text { (U.S.A. \& GUERNSEY) } \end{aligned}$	TK1573	MKS2 0.1/100/20
A1C849	283-0057-00	200360	200727	CAP, FXD,CER DI: 0.1 UF,+80-20\%, 200V	04222	SR306E104ZAA
A1C849	285-1341-00	200728		CAP,FXD, PLASTIC: $0.1 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	TK1573	MKS2 0.1/100/20
AlC849	285-1341-00			CAP, FXD, PLASTIC: $0.1 \mathrm{FF}, 20 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	TK1573	MKS2 0.1/100/20
A1C851	283-0057-00	200360	200727	CAP, FXD,CER DI: $0.1 \mathrm{UF},+80-20 \%, 200 \mathrm{~V}$	04222	SR306E104ZAA
A1C851	285-1341-00	200728		CAP, FXD, PLASTIC: $0.1 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ (LWITED KINGDOM ONLY)	TK1573	MKS2 0.1/100/20
A1C851	285-1341-00			CAP, FXD, PLASTIC: $0.1 \mathrm{HF}, 20 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	TK1573	MKS2 0.1/100/20
A1C853	281-0767-00			CAP,FXD,CER DI:330PF,20\%,100V	04222	MA106C331MAA
A1C854	283-0279-00			CAP, FXD, CER DI:0.001UF,20\%,3000V	51406	DHR12Y5S102M3KV
A1C855	285-1184-00			CAP, FXD,MTLZD:0.01 UF,20\%,4000V	56289	430P591

Camponent No.	Tektronix Part No.	Serial/Asser Effective	ambly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1C871	283-0057-00	200360	200727	CAP, FXD, CER DI: $0.1 \mathrm{LJF},+80-20 \%, 200 \mathrm{~V}$	04222	SR306E104ZAA
A1C871	285-1341-00	200728		CAP, FXD, PLASTIC: $0.1 \mathrm{HF}, 20 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	TK1573	MKS2 0.1/100/20
A1C871	285-1341-00			CAP, FXD, PLASTIC: 0.1 UF, $20 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	TK1573	MKS2 0.1/100/20
A1C875	283-0057-00	200360	200727	CAP, FXD, CER DI: 0.1 UF, $+80-20 \%$, 200	04222	SR306E104ZAA
AlC875	285-1341-00	200728		CAP, FXD, PLASTIC: $0.1 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	TK1573	MKS2 0.1/100/20
A1C875	285-1341-00			CAP, FXD, PLASTIC: $0.1 \mathrm{FF}, 20 \%, 100 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	TK1573	MKS2 0.1/100/20
A1C893	283-0279-00			CAP, FXD, CER DI: 0.001 UF, $20 \%, 3000 \mathrm{~V}$	51406	DHR12Y5S102M3KV
A1C901	281-0815-00			CAP, FXD,CER DI: $0.027 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	MA205C273MAA
AlC902	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
AlC908	281-0865-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 5 \%$, 100V	04222	SA201A102JAA
A1C909	281-0767-00			CAP, FXD, CER DI:330PF, 20%, 100V	04222	MA106C331MAA
A1C910	281-0775-01			CAP, FXD,CER DI: 0.1 UF,20\%,50V	04222	SAI05E104MAA
A1C911	283-0057-00			CAP, FXD, CER DI: $0.1 \mathrm{LJF},+80-20 \%, 200 \mathrm{~V}$	04222	SR306E104ZAA
AlC912	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
AlC913	281-0773-00			CAP, FXD,CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
AlCS14	290-1160-00			CAP, FXD, ELCTLT: 15UF, 20%, 63 V	K8996	035-58159
A1C915	290-0768-00	202908		CAP, FXD, ELCTLT: 10 UF, $+50-20 \%$, 100WVDC (UNITED KINGDOM ONLY)	54473	ECE-A100V10L
A1C915	290-0768-00			CAP, FXD, ELCTLT: $10 \mathrm{UF},+50-20 \%, 100 \mathrm{WVDC}$ (U.S.A. \& GUERNSEY)	54473	ECE-A100V10L
A1C924	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A1C927	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A1C932	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SAI05E104MAA
A1C933	281-0775-01			CAP, FXD,CER DI: 0.1 UF, 20%, 50 V	04222	SA105E104MAA
A1C939	281-0767-00			CAP, FXD,CER DI:330PF,20\%,100V	04222	MA106C331MAA
A1C940	281-0865-00			CAP, FXD,CER DI: $1000 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	04222	SA201A102JAA
A1C941	281-0775-01			CAP, FXD,CER DI: 0.1 UF, 20%, 50 V	04222	SAI 05E104MAA
AlC942	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
AlC952	281-0814-00			CAP, FXD, CER DI:100 PF,10\%,100V	04222	MA101A101KAA
A1C953	290-1153-00			CAP, FXD, ELCTLT: 47UF, $+50-10 \%, 10 \mathrm{~V}$	K8996	030-24479
A1C962	281-0775-01			CAP, FXD,CER DI: 0.1 UF, 20%,50V	04222	SA105E104MAA
A1C963	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{LJF}, 20 \%, 50 \mathrm{~V}$	04222	SA105E104MAA
A1C970	281-0865-00			CAP, FXD, CER DI : $1000 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	04222	SA201A102JAA
AlC971	290-0831-00			CAP, FXD, ELCTLT: 470 UF, $+50-20 \%, 50 \mathrm{~V}$	54473	ECE-A1HV471S
A1C972	290-0831-00			CAP,FXD, ELCTLT:470UF,+50-20\%,50V	54473	ECE-AlHV471S
A1C975	285-1184-00			CAP, FXD,MTLZD:0.01 UF,20\%,4000V	56289	430P591
A1C976	285-1184-00			CAP, FXD, MTLZD:0.01 UF,20\%,4000V	56289	430P591
A1C979	285-1184-00			CAP,FXD,MTLZD:0.01 UF,20\%,4000V	56289	430P591
A1C982	281-0814-00			CAP, FXD, CER DI: $100 \mathrm{PF}, 10 \%$,100V	04222	MA101A101KAA
A1C983	290-1153-00			CAP, FXD, ELCTLT:47UF, +50-10\%,10V	K8996	030-24479
A1C984	290-0947-00			CAP, FXD, ELCTLT: $33 \mathrm{UF},+50-10 \%, 160 \mathrm{~V}$ W/SLEEVE	55680	UHC2C330TFA
A1C386	290-1159-00			CAP, FXD, ELCTLT: $1000 \mathrm{UF}, 20 \%, 16 \mathrm{~V}$	TKOED	TWSS
A1C987	290-1159-00			CAP,FXD, ELCTLT: 1000UF, $20 \%, 16 \mathrm{~V}$	TKOED	TWSS
A1C988	290-1159-00			CAP, FXD, ELCTLT: $1000 \mathrm{UF}, 20 \%, 16 \mathrm{~V}$	TKOED	TWSS
A1C989	290-1159-00			CAP, FXD, ELCTLT: 1000UF,20\%,16V	TKOED	TWSS
A1C990	290-1159-00			CAP, FXD, ELCTLT: 1000UF,20\%,16V	TKOED	TWSS
A1C991	290-1159-00			CAP, FXD, ELCTLT: 1000 UJF, $20 \%, 16 \mathrm{~V}$	TKOED	TWSS
A1CR104	152-0141-02	200360	202261	SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, 00-35	03508	DA2527 (1N4152)
A1CR104	152-0322-00	202262		SEMICOND DVC,DI :SCHOTTKY,SI,15V,1.2PF,D0-35 (UNITED KINGDOM ONLY)	TK0961	1SS97(2)T
A1CR104	152-0322-00			SEMICOND DVC,DI:SCHOTTKY,SI,15V,1.2PF,D0-35 (U.S.A. \& GUERNSEY)	TK0961	1SS97(2)T
A1CR105	152-0141-02	200360	202261	SEMICOND DVC, $\mathrm{DI}:$ SW, SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR105	152-0322-00	202262		SEMICOND DVC,DI:SCHOTIKY,SI,15V,1.2PF, D0-35 (UNITED KINGDOM ONLY)	TK0961	1SS97(2)T

Component Mo.	Tektronix Part No.	Serial/Assenbly Ho. Effective Dscont	Nande \& Description	Mfr. Code	Mfr. Part Ho.
AICR105	152-0322-00		SEMICOND DVC, DI :SCHOTTKY,SI,15V,1.2PF,D0-35 (U.S.A. \& GUERNSEY)	TK0961	1SS97(2)T
A1CR111	152-0141-02		SEMICOND DVC, DI :SW,SI,30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
AlCR112	152-0141-02		SEMICOND DVC, DI :SW,SI, 30V,150MA, 30V,00-35	03508	DA2527 (1N4152)
AlCR133	152-0141-02		SEMICOND DVC, DI :SW,SI, 30V,150MA,30V, D0-35	03508	DA2527 (1N4152)
A1CR136	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR139	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR154	152-0141-02	200360202261	SEMICOND DVC, DI:SW, SI, 30V,150MA,30V, DO-35	03508	DA2527 (1N4152)
A1CR154	152-0322-00	202262	SEMICOND DVC,DI:SCHOTTKY,SI,15V,1.2PF,D0-35 (UNITED KINGDOM ONLY)	TK0961	1SS97(2)T
A1CR154	152-0322-00		SEMICOND DVC,DI:SCHOTTKY,SI,15V,1,2PF,DO-35 (U.S.A. \& GUERNSEY)	TK0961	1SS97(2)T
A1CR155	152-0141-02	200360202261	SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR155	152-0322-00	202262	SEMICOND DVC,DI:SCHOTTKY,SI,15V,1.2PF,DO-35 (UNITED KINGDOM ONLY)	TK0961	1SS97(2) T
A1CR155	152-0322-00		SEMICOND DVC,DI:SCHOTTKY,SI,15V,1.2PF,DO-35 (U.S.A. \& GUERNSEY)	TK0961	1SS97(2)T
AICR161	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR162	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V, 150NA, 30V, DO-35	03508	DA2527 (1 N4152)
A1CR183	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
AlCR186	152-0141-02		SEMICOND DVC, DI :SW, SI , 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR189	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR300	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR301	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR302	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR319	152-0141-02		SEMICOND DVC, DI :SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR344	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR347	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A1CR348	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR349	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150WA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR357	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR369	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR370	152-0141-02		SEMICOND DVC.DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR417	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR420	152-0141-02	202908	SEMICOND DVC, DI :SW,SI, 30V, 15OMA, 30V, DO-35 (INNITED KINGDOM ONLY)	03508	DA2527 (1N4152)
A1CR420	152-0141-02		SEMICOND DVC,DI:SW,SI,30V,15OMA, 30V,DO-35 (U.S.A. \& GUERNSEY)	03508	DA2527 (1N4152)
A1CR421	152-0141-02	202908	SEMICOND DVC,DI:SW,SI,30V,150MA,30V,DO-35 (UNITED KINGDOM ONLY)	03508	DA2527 (1N4152)
A1CR421	152-0141-02		SEMICOND DVC,DI:SW,SI,30V,15OMA,30V,DO-35 (U.S.A. \& GUERNSEY)	03508	DA2527 (1N4152)
A1CR431	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR432	152-0322-00	202203	SEMICOND DVC.DI:SCHOTTKY,SI,15V,1.2PF,D0-35 (UNITED KINGDOM ONLY)	TK0961	1SS97(2) T
A1CR432	152-0322-00		SEMICOND DVC, DI:SCHOTTKY,SI,15V,1.2PF,D0-35 (U.S.A. \& GUERNSEY)	TK0961	1SS97(2)T
A1CR435	152-0141-02		SEMICOND DVC, DI :SW,SI, 30V,150MA,30V, D0-35	03508	DA2527 (1N4152)
AICR438	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR440	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA,30V, D0-35	03508	DA2527 (1N4152)
AICR441	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA,30V, D0-35	03508	DA2527 (1N4152)
AICR442	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR443	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150NA,30V,D0-35	03508	DA2527 (1N4152)
A1CR444	152-0141-02		SEMICOND DVC.DI:SW,SI,30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A1CR445	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
AICR446	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V,150MA,30V, D0-35	03508	OA2527 (1N4152)
AICR447	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
AICR510	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150NA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR511	152-0141-02		SEMICOND DVC, DI :SW, SI,30V,150MA,30V, D0-35	03508	DA2527 (1N4152)
A1CR513	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V, 150MA,30V, D0-35	03508	DA2527 (1N4152)

Component No.	Tektronix Part 10.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1CR521	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR530	152-0141-02	201795	SEMICOND DVC,DI:SW,SI, 3OV,150MA,3OV, DO-35 (UNITED KINGDOM ONLY)	03508	DA2527 (1N4152)
A1CR530	152-0141-02		SEMICOND DVC,DI:SW,SI, 3OV,150MA,30V,D0-35 (U.S.A. \& GUERNSEY)	03508	DA2527 (1N4152)
A1CR539	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR540	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA,30V, D0-35	03508	DA2527 (1N4152)
A1CR571	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V,150MA, 30V, D0-35	03508	OA2527 (1N4152)
A1CR584	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V,00-35	03508	DA2527 (1 N4152)
A1CR588	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V, 150MA , 30V, DO-35	03508	DA2527 (1N4152)
A1CR589	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR776	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
AlCR780	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR781	152-0141-02		SEMICOND DVC, DI :SW,SI, 30V,150MA, 30V,00-35	03508	DA2527 (1N4152)
A1CR790	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V,00-35	03508	DA2527 (1N4152)
A1CR791	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA,30V, $00-35$	03508	DA2527 (1N4152)
A1CR816	152-0141-02		SEMICOND DVC, DI:SW,SI,30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A1CR817	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A1CR818	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR819	152-0141-02		SEMICOND DVC,DI:SW,SI,30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A1CR821	152-0141-02		SEMICOND DVC, DI :SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR822	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150NA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR823	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR824	152-0322-00		SEMICOND DVC,DI:SCHOTTKY,SI,15V,1.2PF,D0-35	TK0961	1SS97(2)T
A1CR825	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR827	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR828	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
AlCR829	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
AlCR830	152-0141-02		SEMICOND DVC, DI :SW,SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR840	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V,150MA , 30V, DO-35	03508	DA2527 (1N4152)
AlCR845	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
AlCR851	152-0242-00		SEMICOND DVC, DI:SIG, SI, 225V,0.2A,D0-7	07263	FDH5004
A1CR853	152-0242-00		SEMICOND DVC, DI:SIG, SI , 225V,0.2A,00-7	07263	FDH5004
AlCR854	152-0242-00		SEMICOND DVC, DI:SIG, SI, 225V,0.2A, D0-7	07263	FDH5004
AlCR855	152-0242-00		SEMICOND DVC,DI:SIG, SI, 225V, $0.2 \mathrm{~A}, 00-7$	07263	FDH5004
A1CR912	152-0808-00		SEMICOND DVC. DI: RECT,SI, 400V,1.5 A,50 NS	80009	152-0808-00
A1CR915	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A1CR923	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A1CR933	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR953	152-0141-02		SEMICOND DVC,DI:SW,SI,30V,150MA,30V, $0-35$	03508	DA2527 (1N4152)
A1CR983	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A1CR984	152-0413-00	200360201732	SEMICOND DVC, DI:RECT,SI,400V,1.0A, A59	80009	152-0413-00
A1CR984	152-0414-00	201733	SEMICOND DVC,DI:RECT,SI,200V.1.0A, TEK A59 (UNITED KINGDOM ONLY)	80009	152-0414-00
A1CR984	152-0414-00		SEMICOND DVC,DI:RECT,SI,200V,1.OA, TEK A59 (U.S.A. \& GUERNSEY)	80009	152-0414-00
A1CR985	152-0413-00	200360201732	SEMICOND DVC, DI:RECT,SI,400V,1.0A, A59	80009	152-0413-00
A1CR985	152-0414-00	201733	SEMICOND DVC,DI:RECT,SI,200V,1.OA, TEK A59 (UNITED KINGDOM ONLY)	80009	152-0414-00
A1CR985	152-0414-00		SEMICOND DVC,DI:RECT,SI,200V,1.OA,TEK A59 (U.S.A. \& GUERNSEY)	80009	152-0414-00
AlCR986	152-0413-00	200360201732	SEMICOND DVC, DI:RECT,SI, 400V,1.0A,A59	80009	152-0413-00
A1CR986	152-0414-00	201733	SEMICOND DVC,DI:RECT,SI,200V,1.0A, TEK A59 (UNITED KINGDOM ONLY)	80009	152-0414-00
A1CR986	152-0414-00		SEMICOND DVC,DI:RECT,SI,200V,1.0A, TEK A59 (U.S.A. \& GUERNSEY)	80009	152-0414-00
AlCR987	152-0413-00	200360201732	SEMICOND DVC, DI :RECT, SI, 400V,1.0A, A59	80009	152-0413-00
A1CR987	152-0414-00	201733	SEMICOND DVC,DI:RECT,SI,200V,1.0A, TEK A59 (UNITED KIMGDOM ONLY)	80009	152-0414-00

Camponent Mo.	Tektronix Part Alo.	Serial/Asse Effective	ably No. Dscont:	Name \& Description	Mfr. Code	Mfr. Part Mo.
A1CR387	152-0414-00			SEMICOND DVC, DI:RECT,SI,200V,1.0A, TEK A59 (U.S.A. \& GUERNSEY)	80009	152-0414-00
A1CR988	152-0413-00	200360	201732	SEMICOND DVC, DI :RECT,SI, 400V,1.0A,A59	80009	152-0413-00
A1CR988	152-0414-00	201733		SEMICOND DVC,DI:RECT,SI,200V,1.OA, TEK A59 (UNITED KINGDOM ONLY)	80009	152-0414-00
AICR988	152-0414-00			SEMICOND DVC,DI:RECT,SI,200V,1.0A, TEK A59 (U.S.A. \& GUERNSEY)	80009	152-0414-00
A1CR989	152-0413-00	200360	201732	SEMICOND DVC,DI:RECT,SI,400V,1.0A, A59	80009	152-0413-00
A1CR989	152-0414-00	201733		SEMICOND DVC,DI:RECT,SI,200V,1.0A, TEK A59 (UNITED KINGDOM ONLY)	80009	152-0414-00
A1CR989	152-0414-00			SEMICOND DVC,DI:RECT.SI,200V,1.0A, TEK A59 (U.S.A. \& GUERNSEY)	80009	152-0414-00
AICR990	152-0601-01			SEMICOND DVC, DI:RECTIFIER,SI, 150V,1A,35NS	04713	MUR115RL
A1CR991	152-0601-01			SEMICOND DVC, DI :RECTIFIER,SI,150V,1A,35NS	04713	MUR115RL
A1DS856	150-0035-00			LAMP, GLOW: 90V MAX, 0.3MA,AID-T,WIRE LD	TK0213	JH005/3011JA
A1DS858	150-0035-00			LAMP,GLOW:90V MAX,0.3MA,AID-T,WIRE LD	TK0213	JH005/3011JA
A1DS870	150-0035-00			LAMP,GLOW:90V MAX,0.3MA,AID-T,WIRE LD	TK0213	JH005/3011JA
A1E102	276-0752-00	203186	203764	CORE, EM: FERRITE	34899	2743001111
A1E102	276-0532-00	203765		SHLD BEAD,ELEK:FERRITE (UNITED KINGDOM ONLY)	02114	56-590-65/4A6
AlE102	276-0532-00			SHLD BEAD, ELEK:FERRITE (U.S.A. \& GUERNSEY)	02114	56-590-65/4A6
A1E103	276-0752-00	203186	203764	CORE, EM: FERRITE	34899	2743001111
A1E103	276-0532-00	203765		SHLD BEAD, ELEK:FERRITE (UNITED KINGDOM ONLY)	02114	56-590-65/4A6
A1E103	276-0532-00			SHLD BEAD,ELEK:FERRITE (U.S.A. \& GUERNSEY)	02114	56-590-65/4A6
AlE152	276-0752-00	203186	203764	CORE, EM: FERRITE	34899	2743001111
AlE152	. 276-0532-00	203765		SHLD BEAD,ELEK:FERRITE (UNITED KINGDOM ONLY)	02114	56-590-65/4A6
A1E152	276-0532-00			SHLD BEAD, ELEK:FERRITE (U.S.A. \& GUERNSEY)	02114	56-590-65/4A6
A1E153	276-0752-00	203186	203764	CORE, EM: FERRITE	34899	2743001111
A1E153	276-0532-00	203765		SHLD BEAD,ELEK:FERRITE (UNITED KINGDOM ONLY)	02114	56-590-65/4A6
A1E153	276-0532-00			SHLD BEAD,ELEK:FERRITE (U.S.A. \& GUERNSEY)	02114	56-590-65/4A6
AlJ1	204-1034-00			CONN BOOY,RCPT: $1 \times$ 6,WITH SOLDER TAILS	TKOEM	52011-0610
A1J2	204-1034-00			CONN BODY,RCPT: $1 \times$ 6,WITH SOLDER TAILS	TKOEM	52011-0610
A1J3	204-1034-00			CONN BCOY,RCPT:1 X 6,WITH SOLDER TAILS	TKOEM	52011-0610
AlJ4	204-1034-00			CONN BODY,RCPT: $1 \times$ 6,WITH SOLDER TAILS	TKOEM	52011-0610
A1J5	204-1034-00			CONN BOOY,RCPT: $1 \times$ 6,WITH SOLDER TAILS	TKOEM	52011-0610
A1J6	204-1034-00			CONN BOOY,RCPT: 1×6,WITH SOLDER TAILS	TKOEM	52011-0610
A1L910	108-1376-00			COIL, RF: FXD, POWER INDUCTOR	TKOEG	ORDER BY DESCR
A1L970	108-1375-00			COIL, RF: PXD, 82UH,1A	TK00A	RL-1218-820K-1A
A1L986	108-1375-00			COIL, RF: FXD, 82UH,1A	TKOOA	RL-1218-820K-1A
A1L988	108-1375-00			COIL, RF: FXD, 82UH,1A	TKOOA	RL-1218-820K-1A
A1L990	108-1375-00			COIL, RF: PXD, 82UH,1A	TK00A	RL-1218-820K-1A
A1P900	198-5589-00	200001	208557	WIRE SET,ELEC:	TKOEE	ORDER BY DESCR
A1P900	198-5589-01	208558		WIRE SET,ELEC:	TKOFV	ORDER BY DESCR
A10102	151-0712-00			TRANSISTOR:PNP, SI , T0-92	80009	151-0712-00
A1Q103	151-0712-00			TRANSISTOR: PNP, SI , T0-92	80009	151-0712-00
A1Q104	151-0190-00			TRANSISTOR:NPN, SI , T0-92	80009	151-0190-00
A10105	151-0190-00			TRANSISTOR:NPN, SI , T0-92	80009	151-0190-00
A1Q114	151-0190-00			TRANSISTOR:NPN, SI , T0-92	80009	151-0190-00
A1Q115	151-0190-00			TRANSISTOR:NPN, SI , T0-92	80009	151-0190-00
A1Q152	151-0712-00			TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A1Q153	151-0712-00			TRANSISTOR: PNP, SI, T0-92	80009	151-0712-00
A10154	151-0190-00			TRANSISTOR: NPN, SI, TO-92	80009	151-0190-00
A1Q155	151-0190-00			TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00

Component No.	Tektronix Part No.	Serial/Assenbly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part Mo.
A1Q164	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A1Q165	151-0190-00		TRANSISTOR:NPN,SI, T0-92	80009	151-0190-00
AlQ202	151-0471-00	200360202907	TRANSISTOR:NPN,SI, T0-92	04713	SPS8619
A1Q202	151-0711-02	202908	TRANSISTOR:NPN, SI, TO-92 (UNITED KINGDOM ONLY)	27014	X42094B
A1Q202	151-0711-02		TRANSISTOR:NPN,SI, TO-92 (U.S.A. \& GUERNSEY)	27014	X42094B
A1Q203	151-0471-00	200360202907	TRANSISTOR:NPN, SI, T0-92	04713	SPS8619
A1Q203	151-0711-02	202908	TRANSISTOR:NPN, SI, TO-92 (UNITED KINGDOM ONLY)	27014	X42094B
A1Q203	151-0711-02		TRANSISTOR:NPN, SI, TO-92 (U.S.A. \& GUERNSEY)	27014	X42094B
A1Q206	151-0221-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0221-00
A1Q207	151-0221-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0221-00
A1Q230	151-0221-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0221-00
A1Q231	151-0221-00		TRANSISTOR:PNP,SI, T0-92	80009	151-0221-00
A1Q254	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A1Q255	151-0190-00		TRANSISTOR:NPN,SI, T0-92	80009	151-0190-00
A1Q256	151-0869-00		TRANSISTOR:NPN, SI, T0-39	TKOEF	2N3866
A1Q257	151-0869-00		TRANSISTOR:NPN, SI, T0-39	TKOEF	2N3866
A1Q283	151-0736-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0736-00
A1Q284	151-0712-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A1Q285	151-0712-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0712-00
AlQ363	151-0711-01		TRANSISTOR:NPN, SI, TO-92	04713	SPS8608M
A1Q365	151-0711-01		TRANSISTOR:NPN, SI, TO-92	04713	SPS8608M
A1Q366	151-0712-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0712-00
A1Q367	151-0712-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A1Q368	151-0712-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A1Q400	151-0712-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A1Q401	151-0712-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A1Q415	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A1Q420	151-0190-00	202908	TRANSISTDR:NPN, SI, T0-92 (UNITED KINGDOM ONLY)	80009	151-0190-00
A1Q420	151-0190-00		TRANSISTOR:NPN,SI, TO-92 (U.S.A. \& GUERNSEY)	80009	151-0190-00
A1Q435	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A10440	151-0188-00		TRANSISTOR:PNP,SI, T0-92	80009	151-0188-00
A1Q465	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A1Q487	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A1Q488	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A1Q489	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A10514	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A1Q535	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A10536	151-0188-00		TRANSISTOR:PNP, SI , T0-92	80009	151-0188-00
A10770	151-0188-00		TRANSISTOR:PNP, SI, TO-92	80009	151-0188-00
A1Q775	151-0347-02		TRANSISTOR:NPN, SI, T0-92	56289	CT7916
A1Q776	151-0350-00		TRANSISTOR:PNP, SI, T0-92	04713	2N5401
A10779	151-0350-00		TRANSISTOR:PNP, SI, T0-92	04713	2N5401
A1Q780	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A1Q785	151-0347-02		TRANSISTOR:NPN, SI, TO-92	56289	CT7916
A10789	151-0350-00		TRANSISTOR:PNP, SI , T0-92	04713	2N5401
A1Q804	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A19817	151-0190-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A1Q825	151-0424-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0424-00
A19829	151-0199-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0199-00
A1Q835	151-0199-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0199-00
A10840	151-0347-02		TRANSISTOR:NPN, SI, TO-92	56289	CT7916
A1Q845	151-0350-00		TRANSISTOR:PNP, SI, TO-92	04713	2N5401
A1Q885	151-0443-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0443-00

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Nane \& Description	Mfr. Code	Mfr. Part No.
A10911	151-0347-02		TRANSISTOR:NPN, SI , T0-92	56289	CT7916
A1Q912	151-0350-00		TRANSISTOR: PNP, SI , T0-92	04713	2N5401
A10913	151-0462-00		TRANSISTOR: PNP, SI, T0-220	80009	151-0462-00
A1Q918	151-0188-00		TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A1Q921	151-0276-01		TRANSISTOR:PNP, SI, T0-92	TK1016	S1423-TPE2
A10923	151-0476-02		TRANSISTOR:SELECTED	80009	151-0476-02
A1Q930	151-0424-00		TRANSISTOR:NPN, SI, TO-92	80009	151-0424-00
A1Q940	151-0347-02		TRANSISTOR:NPN, SI, T0-92	56289	CT7916
A1Q950	151-0462-00		TRANSISTOR:PNP, SI, T0-220	80009	151-0462-00
A1Q960	151-0424-00		TRANSISTOR:NPN, SI, T0-92	80009	151-0424-00
A1Q970	151-0347-02		TRANSISTOR:NPN, SI, T0-92	56289	CT7916
A1Q980	151-0462-00		TRANSISTOR: PNP, SI, T0-220	80009	151-0462-00
A1R100	315-0510-00		RES, FXD, FILM: 51 OHM , 5\%, 0.25W	19701	5043 CX51R00J
AlR101	315-0510-00		RES, FXD, FILM: 51 OHM, 5\%, 0.25W	19701	5043CX51R00
AlR102	321-0155-00		RES, FXD, FILM: 402 OHM, 1\%,0.125W, TC=T0	07716	CEAD402R0F
A1R103	321-0155-00		RES, FXD. FILM: 402 OHM, 1\%,0.125W,TC=TO	07716	CEAD402R0F
A1R104	321-0089-00		RES, FXD, FILM: 82.5 OHM, 1\%, 0.125W, TC=T0	91637	CMF55116G82R50F
A1R105	321-0089-00		RES, FXD, FILM: 82.5 OHM, 1\%, 0.125W, TC=T0	91637	CMF55116G82R50F
A1R106	321-0163-00		RES, FXD, FILM: 487 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD487ROF
A1R107	311-2355-00		RES, VAR, NOMWW: TRMR, 100 OHM, 20\%, 0.5W	K8788	TC10-LV10-100R/A
A1R108	321-0223-00		RES, FXD, FILM $2.05 \mathrm{~K} 0 \mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED2K05F
A1R109	321-0223-00		RES, FXD, FILM:2.05K OHM, 1\%,0.125W, TC=T0	19701	5033ED2K05F
A1R110	321-0199-00		RES, FXD, FILM: $1.15 \mathrm{~K} 0 \mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD11500F
A1R111	321-0199-00		RES, FXD, FILM: $1.15 \mathrm{~K} O \mathrm{H}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD11500F
A1R112	311-2361-00		RES, VAR, NOMWW: TRMR, 10K OHM, 0.5 W	K8788	TC10-LV10-10K/A
AlR114	321-0223-00		RES, FXD, FILM:2.05K OHM, 1\%,0.125W, TC=T0	19701	5033E02K05F
A1R115	321-0223-00		RES, FXD, FILM:2.05K OHM,1\%,0.125W, TC=T0	19701	5033ED2K05F
AlR116	315-0101-00	200360202907	$\begin{aligned} & \text { RES, FXD, FILM: } 100 \text { OHM, } 5 \%, 0.25 W \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	57668	NTR25J-E 100E
A1R117	315-0101-00	200360202907	RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
AlR117	315-0510-00	202908	RES, FXD, FILM: 51 OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	19701	5043CX51R00J
A1R117	315-0510-00		RES, FXD, FILM: 51 OHM, 5\%, 0.25W (U.S.A. \& GUERNSEY)	19701	5043CX51R00
A1R118	315-0821-00		RES, FXD, FILM: 820 OHM, 5\%, 0.25 W	19701	$5043 C \times 820 \mathrm{ROJ}$
AlR119	315-0821-00		RES, FXD, FILM: 820 OHM, 5\%, 0.25W	19701	5043CX820R0J
AlR120	321-0123-00		RES, FXD,FILM: 187 OHM, 1\%,0.125W, TC=T0	07716	CEAD187ROF
AlR121	321-0123-00		RES, FXD,FILM: 187 OHM, 1\%, 0.125W, TC $=$ T0	07716	CEAD187RDF
A1R122	321-0089-00		RES, FXD, FILM:82.5 OHN, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	91637	CMF55116G82R50F
A1R124	315-0472-00		RES, FXD, FILM:4.7K OHM, 5\%, 0.25W	57668	NTR25J-E04K7
A1R125	315-0392-00		RES, FXD, FILM:3.9K OHM, 5\%,0.25W	57668	NTR25]-E03K9
A1R126	315-0162-00		RES, FXD, FILM:1.6K OHM, 5\%,0.25W	19701	5043CXIK600J
AlR127	321-0068-00		RES, FXD, FILM: 49.9 OHM, 0.1\%, 0.125W, TC=T0	91637	CMF55116G49R90F
AlR128	315-0752-00		RES,FXD,FILM:7.5K OHM, 5\%, 0.25 W	57668	NTR25J-E07K5
A1R130	315-0510-00		RES, FXD, FILM: 51 OHM, 5\%, 0.25W	19701	5043CX51R00J
A1R131	315-0510-00		RES, FXD, FILM: 51 OHM, 5\%,0.25	19701	5043CX51R00 J
AlR132	315-0511-00		RES, FXD, FILM: 510 OHM, 5\%, 0.25W	19701	5043CX510ROJ
A1R133	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A1R135	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A1R136	315-0101-00		RES, FXD, FILM: 100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
A1R139	315-0102-00	B010100 E209928	RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JEO1K0
A1R139	315-0102-00	E209929	RES, FXD, FILM:1K OHM, 5\%,0.25W	57668	NTR25JEOIKO
A1R139	315-0222-00	G100809	RES, FXD, FILM:2.2K OHM, 5\%, 0.25W	57668	NTR25J-E02K2
A1R140	311-2364-00	B010100 E209929	RES, VAR, NONWW: TRMR, 4.7K OHM, 0.5 W	K8788	TC10-LV10-4K7/A
A1R142	315-0101-00		RES, FXD,FILM: 100 OHM,5\%,0.25W	57668	NTR25J-E 100E
A1R143	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A1R144	315-0471-00		RES, FXD, FILM: 470 OHM, 5\%, 0.25 W	57668	NTR25J-E470E
A1R145	311-2354-00		RES, VAR, NONWW: TRMR, 4.7K OHM, 0.5 W	K8788	TC10-LH2.5~4K7/A
A1R150	315-0510-00		RES, FXD,FILM: 51 OHM, $5 \%, 0.25 \mathrm{~N}$	19701	5043CX51R00J

Component \%o.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1R151	315-0510-00		RES, FXD,FILM:51 OHM, 5\%,0.25W	19701	5043CX51R00J
A1R152	321-0155-00		RES, FXD, FILM: 402 OHM, 1\%,0.125W, TC=TO	07716	CEAD402R0F
A1R153	321-0155-00		RES, FXD, FILM: 402 OHM, 1\%,0.125W, TC=TO	07716	CEAD402ROF
A1R154	321-0089-00		RES, FXD, FILM $: 82.5$ OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	91637	CMF55116G82R50F
A1R155	321-0089-00		RES, FXD, FILM 82.5 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	91637	CMF55116G82R50F
A1R156	321-0163-00		RES, FXD, FILM: 487 OHM, 1\%, 0.125 W , TC=TO	07716	CEAD487ROF
A1R157	311-2355-00		RES, VAR, NONWW: TRMR, 100 OHM, 20\%, 0.5W	K8788	TC10-LV10-100R/A
A1R158	321-0223-00		RES, FXD, FILM:2.05K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED2K05F
A1R159	321-0223-00		RES, FXD, FILM 2.05 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED2K05F
AlR160	321-0199-00		RES, FXD, FILM: 1.15K OMM, 1\%,0.125W, TC= TO	07716	CEAD11500F
A1R161	321-0199-00		RES, FXD, FILM: 1.15 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD11500F
AlR162	311-2361-00		RES, VAR, NONWW: TRMR,10K OHM, 0.5 W	K8788	TC10-LV10-10K/A
A1R164	321-0223-00		RES, FXD, FILM:2.05K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED2K05F
A1R165	321-0223-00		RES, FXD, FILM:2.05K OHM, 1\%,0.125W, TC $=$ T0	19701	5033ED2K05F
AlR166	315-0101-00	200360202907	RES, FXD, FILM: 100 OHM, 5\%, 0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-E 100E
A1R167	315-0101-00	200360202907	RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
AlR167	315-0510-00	202908	RES, FXD, FILM: 51 OHM,5\%,0.25W (UNITED KINGDOM ONLY)	19701	5043CX51R00J
A1R167	315-0510-00		RES, FXD, FILM: 51 OHM. $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	19701	5043CX51R00.
A1R168	315-0821-00		RES, FXD, FILM: 820 OHM,5\%,0.25W	19701	5043CX820R0J
A1R169	315-0821-00		RES, FXD, FILM: 820 OHM, 5\%,0.25W	19701	5043CX820ROJ
A1R170	321-0123-00		RES, FXD, FILM: 187 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD187ROF
A1R171	321-0123-00		RES, FXD, FILM: 187 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEADI87ROF
A1R172	321-0089-00		RES, FXD, FILM: 82.5 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	91637	CMF55116682R50F
AlR174	315-0472-00		RES, FXD, FILM: 4.7 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E04K7
AlR175	315-0392-00		RES, FXD, FILM:3.9K OHM, 5\%, 0.25W	57668	NTR25J-E03K9
AlR176	315-0162-00		RES, FXD,FILM:1.6K OHM, 5\%, 0.25 W	19701	5043CX1K600J
A1R177	321-0068-00		RES, FXD, FILM:49.9 OHM, 0.1\%,0.125W, TC=TO	91637	CMF55116G49R90F
AlR178	315-0752-00		RES, FXD, FILM: 7.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E07K5
A1R180	315-0510-00		RES, FXD, FILM: 51 OHM, 5\%,0.25W	19701	5043CX51R003
A1R181	315-0510-00		RES, FXD, FILM: 51 OHM, 5\%,0.25W	19701	5043CX51R00J
A1R182	315-0511-00		RES, FXD, FILM 510 OHM, 5\%, 0.25W	19701	5043CX510ROJ
A1R183	315-0101-00		RES, FXD, FILM: 100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
A1R185	315-0101-00		RES, FXD, FILM 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A1R186	315-0101-00		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A1R189	315-0392-00		RES, FXD, FILM:3.9K OHM, 5\%,0.25W	57668	NTR25J-E03K9
A1R192	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%,0.25W	57668	NTR25J-E 100E
A1R193	315-0101-00		RES, FXD, FILM: 100 OHM,5\%,0.25W	57668	NTR25J-E 100E
A1R194	315-0471-00		RES, FXD, FILM: 470 OHM,5\%, 0.25W	57668	NTR25]-E470E
A1R195	311-2354-00		RES, VAR, NONWW: TRMR, 4.7K OHM, 0.5 W	K8788	TC10-LH2.5-4K7/A
AlR202	321-0178-00		RES, FXD, FILM: 698 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD698ROF
A1R203	321-0178-00		RES, FXD, FILM: 698 OHM, 1\%,0.125W, TC=T0	07716	CEAD698R0F
A1R204	321-0089-00		RES, FXD, FILM: 82.5 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	91637	CMF55116G82R50F
AlR206	315-0271-00		RES, FXD, FILM: 270 OHM, 5\%, 0.25W	57668	NTR25J-E270E
A1R207	315-0271-00		RES, FXD,FILM:270 OHM,5\%,0.25W	57668	NTR25J-E270E
A1R212	321-0089-00		RES, FXD, FILM:82.5 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=70$	91637	CMF55116G82R50F
A1R213	321-0089-00		RES, FXD, FILM:82.5 OHM, 1\%, 0.125W, TC=T0	91637	CMF55116G82R50F
A1R215	315-0241-00		RES, FXD, FILM:240 OHM,5\%,0.25W	19701	5043CX240R0]
A1R216	321-0163-00		RES, FXD, FILM: 487 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD487R0F
A1R217	321-0163-00		RES, FXD, FILM 487 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD487R0F
A1R218	321-0109-00		RES, FXD, FILM 133 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEADI33R0F
A1R219	321-0109-00		RES, FXD, FILM: 133 OHM, 1\%, 0.125W, TC=T0	07716	CEAD133R0F
A1R222	321-0318-00		RES, FXD, FILM:20.0K OHM, 1\%,0.125W, TC=T0	19701	5033ED2OKOOF
A1R223	321-0318-00		RES, FXD, FILM: 20.0 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED20K00F
A1R225	315-0752-00	200360207594	RES, FXD, FILM: 7.5 K OHM,5\%,0.25W	57668	NTR25J-E07K5
A1R225	321-0255-00	207595	RES,FXD,FILM:4.42K OHM,1\%,0.125W,TC=TO (UNITED KINGDOM ONLY)	19701	5033ED4K420F

Component No .	Tektronix Part No .	Serial/Asse Effective	ably No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1R335	315-0101-00			RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E 100E
A1R336	321-0089-00			RES, FXD, FILM:82.5 OHM, 1\%,0.125W, TC = T0	91637	CMF55116G82R50F
A1R337	321-0089-00			RES, FXD, FILM: 82.5 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	91637	CMF55116G82R50F
A1R338	311-2365-00			RES, VAR, NOMWW: TRMR, 470 OHM, 0.75 W	K8788	TC10-LV10-470K/A
A1R339	321-0068-00	200360	202907	RES, FXD, FILM: 49.9 OHM, $0.1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	91637	CMF55116G49R90F
A1R339	315-0101-00	202908		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	57668	NTR25J-E 100E
A1R339	315-0101-00			RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	57668	NTR25]-E 100E
AlR340	321-0068-00	200360	202907	RES, FXD, FILM 49.9 OHM, 0.1\%, 0.125w, $\mathrm{TC}=\mathrm{TO}$	91637	CMF55116G49R90F
A1R340	315-0101-00	202908		$\begin{aligned} & \text { RES, FXD, FILM:100 OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	57668	NTR25J-E 100E
A1R340	315-0101-00			RES, FXD, FILM: 100 OHM, 5\%, 0.25 (U.S.A. \& GUERNSEY)	57668	NTR25J-E 100E
AlR343	315-0103-00			RES, FXD, FILM:10K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K003
AlR344	315-0104-00			RES, FXD, FILM: 100 K OHM, 5\%, 0.25W	57668	NTR25J-E100K
A1R345	321-0068-00	200360	202907	RES, FXD, FILM: 49.9 OHM, 0.1\%,0.125W, TC=TO	91637	CMF55116649R90F
AlR345	315-0101-00	202908		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	57668	NTR25J-E 100E
AlR345	315-0101-00			RES, FXD, FILM: 100 OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25]-E 100E
A1R346	321-0068-00	200360	202907	RES, FXD, FILM: 49.9 OHM, 0.1\%, 0.125W, TC $=$ T0	91637	CMF55116G49R90F
A1R346	315-0101-00	202908		RES, FXD, FILM: 100 OHM,5\%,0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-E 100E
A1R346	315-0101-00			RES,FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	57668	NTR25J-E 100E
A1R347	315-0182-00			RES, FXD, FILM:1.8K OHM, 5\%,0.25W	57668	NTR25J-E1K8
A1R348	315-0472-00	200360	203422	RES, FXD, FILM:4.7K OHM, 5\%,0.25W	57668	NTR25J-E04K7
A1R348	315-0512-00	203423		RES, FXD, FILM: 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	57668	NTR25J-E05K1
A1R348	315-0512-00			$\text { RES, FXD, FILM:5.1K OHM, } 5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	57668	NTR25J-E05K1
A1R349	315-0202-00			RES, FXD, FILM: 2 K OHM, 5\%, 0.25W	57668	NTR25J-E 2K
A1R351	315-0202-00			RES, FXD, FILM: 2 K OHM, 5\%, 0.25W	57668	NTR25J-E 2K
A1R352	315-0202-00			RES,FXD, FILM: 2 K OHM, 5\%,0.25W	57668	NTR253-E 2K
A1R353	315-0182-00	202908		$\begin{aligned} & \text { RES, FXD, FILM:1.8K OHN, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	57668	NTR25J-E1K8
A1R353	315-0182-00			RES, FXD, FILM:1.8K 0HM, 5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25J-E1K8
A1R354	315-0103-00	200360	202056	RES, FXD, FILM: 10 K OHM,5\%, 0.25W	19701	5043CX10K00J
A1R354	321-0172-00	202057		$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=TO } \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	19701	5033ED604ROF
A1R354	321-0172-00			$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=TO } \\ & \text { (U.S.A. \& GUERNSEY) } \end{aligned}$	19701	5033ED604ROF
A1R355	315-0101-00			RES, FXD, FILM 100 OHN, 5\%, 0.25W	57668	NTR25J-E 100E
A1R356	315-0101-00			RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A1R357	315-0182-00	200360	202056	RES, FXD, FILM:1.8K OHM, 5\%,0.25W	57668	NTR25J-E1K8
AlR357	321-0093-00	202057		$\begin{aligned} & \text { RES, FXD, FILM: } 90.9 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=TO } \\ & \text { (UNITED KINGOM ONLY) } \end{aligned}$	19701	5043ED90R90F
A1R357	321-0093-00			$\begin{aligned} & \text { RES, FXD, FILM: } 90.9 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=TO } \\ & \text { (U.S.A. \& GUERNSEY) } \end{aligned}$	19701	5043ED90R90F
A1R358	315-0510-00			RES, FXD, FILM: 51 OHM, 5\%,0.25W	19701	5043CX51R00J
A1R359	315-0103-00			RES, FXD, FILM: 10 K OHM,5\%, 0.25W	19701	5043CX10K00J
A1R360	311-2361-00			RES, VAR, NONWW: TPMR, 10K OHM, 0.5 W	K8788	TC10-LV10-10K/A
AlR361	315-0431-00	200360	200756	RES, FXD, FILM: 430 OHM, 5\%, 0.25W	19701	5043CX430ROJ
A1R361	315-0621-00	200757	207594	RES, FXD, FILM: 620 OHN,5\%,0.25W	57668	NTR25J-E620E
A1R361	321-0172-00	207595		$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO} \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	19701	5033ED604ROF
AlR361	315-0621-00	100001	100120	RES, FXD, FILM: 620 OHM, 5\%, 0.25W	57668	NTR25J-E620E
AlR361	321-0172-00	100121		RES, FXD, FILM: $60401 \mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO}$ (GUERNSEY ONLY)	19701	5033ED604ROF

Component Ho.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1R361	321-0172-00			$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=TO } \\ & \text { (U.S.A. ONLY) } \end{aligned}$	19701	5033ED604ROF
A1R362	315-0202-00	200360	202907	RES,FXD, FILM:2K OHM, 5\%,0.25W	57668	NTR25J-E 2K
A1R362	315-0102-00	202908		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$ (UWITED KINGDOM ONLY)	57668	NTR25JE01K0
A1R362	315-0102-00			RES,FXD,FILM:1K OHM, 5\%, 0.25W (U.S.A. \& GUERNSEY)	57668	NTR25JE01K0
AlR363	321-0123-00			RES, FXD, FILM: 187 OHM, 1\%, 0.125W, TC $=$ T0	07716	CEAD187ROF
A1R364	321-0123-00			RES, FXD, FILM: 187 OHM, 1\%, 0.125W, TC=T0	07716	CEAD187ROF
A1R366	321-0068-00			RES, FXD, FILM 49.9 OHM, 0.1\%, 0.125W, TC $=$ TO	91637	CMF55116G49R90F
A1R367	321-0068-00			RES, FXD, FILM: 49.9 OHM, 0.1\%, 0.125W, TC=T0	91637	CMF55116G49R90F
A1R368	315-0331-00			RES, FXD, FILM: 330 OHM, $5 \%, 0.25 \mathrm{~W}$	57568	NTR25J-E330E
A1R369	315-0102-00			RES, FXD, FILM: 1 K OHM, 5\%, 0.25 W	57668	NTR25JE01K0
A1R374	315-0102-00			RES, FXD, FILM: 1 K OHM, 5\%, 0.25W	57668	NTR25JE01K0
AlR375	315-0103-00			RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A1R380	315-0202-00			RES, FXD, FILM: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E 2K
A1R381	315-0103-00	200360	207594	RES, FXD, FILM: 10 K OHM,5\%,0.25W	19701	5043CXIOK00,
AlR381	315-0620-00	207595		RES, FXD, FILM: 62 OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	19701	5043CX63R00J
A1R381	315-0620-00			RES,FXD, FILM: 62 OHM, $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	19701	5043CX63R00J
A1R384	315-0510-00			RES, FXD, FILM: 51 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX51R00J
A1R385	315-0103-00			RES, FXD, FILM:10K OHM,5\%,0.25W	19701	5043CX10K00J
A1R386	315-0101-00			RES, FXD, FILM: $10001 \mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A1R387	315-0101-00			RES, FXD, FILM: 1000 OM, 5\%, 0.25 W	57668	NTR25J-E 100E
AlR388	315-0221-00			RES, FXD, FILM:220 OHM,5\%, 0.25W	57668	NTR25J-E220E
A1R389	315-0202-00			RES, FXD, FILM: 2 K OHM, 5\%,0.25W	57668	NTR25J-E 2K
A1R390	321-0318-00	200360	207594	RES, FXD, FILM:20.0K OHM, 1\%,0.125W, TC=T0	19701	5033ED20K00F
A1R390	315-0752-00	207595		RES, FXD,FILM:7.5K OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	57668	NTR25J-E07K5
AlR390	315-0752-00			RES, FXD, FILM:7.5K OHM,5\%, 0.25W (U.S.A. \& GUERNSEY)	57668	NTR25J-E07K5
AlR391	315-0104-00			RES, FXD, FILM: 100 K OHM, 5\%, 0.25 W	57668	NTR25J-E100K
AlR392	315-0103-00			RES, FXD, FILM: 10 K OHM,5\%,0.25W	19701	5043CX10K00J
AlR393	315-0103-00			RES, FXD, FILM: 10K OHM, 5\%,0.25W	19701	5043CX10K00,
AlR394	315-0103-00	200360	207211	RES, FXD, FILM: 10K OHM,5\%,0.25W	19701	5043CX10K00J
A1R394	315-0202-00	207212		RES,FXD,FILM:2K OHM, 5\%, 0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-E 2K
A1R394	315-0103-00	B010100	B010462	RES, FXD, FILM: 10 K OHM, 5\%, 0.25 W	19701	5043CX10K00.
A1R394	315-0202-00	B010463 100001		$\begin{aligned} & \text { RES, FXD, FILM: } 2 \mathrm{~K} \text { OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (U.S.A. ONLY) } \end{aligned}$	57668	NTR25J-E 2K
A1R394	315-0103-00	100001	100040	RES,FXD, FILM:10K OHM,5\%,0.25W	19701	5043CX10K00.J
A1R394	315-0202-00	100041		$\begin{aligned} & \text { RES, FXD, FILM: 2K OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (GUERNSY ONLY) } \end{aligned}$	57668	NTR25J-E 2K
A1R395	311-2363-00			RES, VAR, NONW : TRMR, 1K OHM, 0.5 W	K8788	TC10-LV10-1K/A
A1R396	315-0182-00			RES, FXD, FILM: 1.8K OHM, 5\%,0.25W	57668	NTR25J-E1K8
A1R397	315-0101-00			RES, PXD, FILM:100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
A1R398	315-0101-00			RES, FXD, FILM: 100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
AlR400	321-0089-00			RES, FXD, FILM:82.5 OHM, 1\%, 0.125w, TC=T0	91637	CMF55116G82R50F
A1R401	321-0089-00			RES, FXD, FILM: $82.50 H M, 1 \%, 0.125 W, T C=T 0$	91637	CMF55116G82R50F
A1R402	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
AlR403	315-0221-00			RES,FXD, FILM:220 OHM,5\%,0.25W	57668	NTR25J-E220E
A1R404	315-0120-00			RES, FXD, FILM:12 OHM, 5\%,0.25W	57668	NTR25J-R12
AlR405	315-0120-00			RES, FXD, FILM: 12 OHM,5\%,0.25W	57668	NTR25J-R12
A1R406	315-0202-00			RES, FXD,FILM:2K OHM,5\%,0.25W	57668	NTR25J-E 2K
A1R407	315-0102-00			RES, FXD, FILM:1K OHM, 5\%,0.25W	57668	NTR25JE01K0
A1R408	315-0202-00			RES, FXD, FILM: 2 K OHM, 5\%, 0.25W	57668	NTR25J-E 2K
A1R409	315-0302-00			RES, FXD, FILM:3K OHM, 5\%, 0.25W	57668	NTR25J-E03K0
AlR410	315-0392-00			RES, FXD, FILM:3.9K OHM, 5\%,0.25W	57668	NTR25J-E03K9
A1R412	315-0103-00			RES, FXD, FILM:10K OHM, 5\%,0.25W	19701	5043CX10K00.]

Companent No.	Tektronix Part No.	Serial/Asse Effective	arbly Ho. Dscont	Name \& Description	Mfr. Code	Hfr. Part No.
A1R413	315-0562-00			RES, FXD, FILM 5.5 GK OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K6
A1R414	315-0103-00			RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A1R415	315-0120-00			RES, FXD, FILM: 12 OHM, 5\%,0.25W	57668	NTR25J-R12
A1R416	315-0184-00	200360	200756	RES, FXD, FILM: 180K OHM, 5\%,0.25W	19701	5043CX180K0J
A1R416	315-0204-00	200757		RES, FXD, FILM:200K OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	19701	5043CX200K0J
A1R416	315-0204-00			RES,FXD, FILM:200K OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	19701	5043CX200K0]
AlR417	315-0562-00			RES, FXD, FILM 5.6 KK OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K6
A1R418	315-0204-00			RES, FXD,FILM:200K OHM, 5\%,0.25W	19701	5043CX200K0J
A1R419	315-0104-00	202908		RES, FXD, FILM:100K OHM,5\%, 0.25 W (UNITED KINGDOM ONLY)	57668	NTR25J-E100K
A1R419	315-0104-00			RES, FXD,FILM:100K OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25]-E100K
A1R420	315-0104-00	202908		RES,FXD, FILM: 100K OHM,5\%,0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-E100K
A1R420	315-0104-00			RES, FXD,FILM: 100 K OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25J-E100K
A1R421	315-0103-00	202908		RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	19701	5043CX10K00J
AlR421	315-0103-00			RES, FXD, FJLM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	19701	5043CX10K00.
AlR422	315-0101-00	200360	200756	RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
AlR422	315-0221-00	200757		RES, FXD, FILM: $2200 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	57668	NTR25J-E220E
AlR422	315-0221-00			RES, FXD, FILM: 220 OHM, $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	57668	NTR25J-E220E
AlR423	315-0101-00	200360	200756	RES, FXD, FILM: 100 OHM, 5\%,0.25W	57668	NTR25J-E 100E
AlR423	315-0221-00	200757		RES, FXD, FILM: 220 OHM, 5\%, 0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-E220E
A1R423	315-0221-00	200757		RES,FXD,FILM:220 OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25]-E220E
A1R424	315-0103-00			RES, FXD, FILM:10K OHM, 5\%,0.25W	19701	5043CX10K00.J
A1R425	315-0101-00			RES, FXD, FILM: 100 OHM,5\%,0.25W	57668	NTR25]-E 100E
A1R427	315-0103-00			RES, FXD, FILM: 10K OHM, 5\%,0.25W	19701	5043CX10K00J
A1R428	315-0243-00			RES, FXD, FILM:24K OHM,5\%,0.25W	57668	NTR25J-E24K0
AlR429	315-0221-00	200360	206385	RES, FXD, FILM: 220 OHM, 5\%,0.25W	57668	NTR25J-E220E
A1R429	315-0510-00	206386		RES, FXD, FILM: 51 DHM, $5 \%, 0,25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	19701	5043CX51R00J
A1R429	315-0221-00	B010100	B010462	RES, FXD, FILM: 220 OHM,5\%,0.25W	57668	NTR25J-E220E
AlR429	315-0510-00	B010463		$\begin{aligned} & \text { RES, FXD. FILM: } 51 \text { OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (U.S.A. ONLY) } \end{aligned}$	19701	5043CX51R00
A1R429	315-0221-00	100001	100010	RES, FXD, FILM: 220 OHM,5\%,0.25W	57668	NTR25J-E220E
AlR429	315-0510-00	100011		$\begin{aligned} & \text { RES, FXD, FILM: } 51 \text { OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (GUERNSY ONLY) } \end{aligned}$	19701	5043CX51R00J
A1R430	315-0204-00			RES, FXD, FILM:200K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX200K0J
A1R432	315-0204-00			RES, FXD, FILM:200K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	50430×200KOJ
A1R433	315-0223-00			RES,FXD, FILM:22K OHM,5\%,0.25W	19701	5043CX22K00, 192U
A1R434	315-0221-00	200360	200756	RES, FXD, FILM:220 OHM, 5\%, 0.25W	57668	NTR25]-E220E
A1R434	315-0391-00	200757		$\begin{aligned} & \text { RES, FXD, FIMM: } 390 \text { OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	57668	NTR251-E390E
A1R434	315-0391-00			RES, FXD, FILM: 390 OHM,5\%, 0.25W (U.S.A. \& GUERNSEY)	57668	NTR25J-E390E
A1R435	321-0123-00	200360	200756	RES, FXD, FILM: 187 OHM, 1\%,0.125W, TC=T0	07716	CEAD187ROF
A1R435	321-0155-00	200757		$\begin{aligned} & \text { RES, FXD, FILM: } 402 \text { OHM, } 1 \%, 0.125 \mathrm{~W} \text {, TC=TO } \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	07716	CEAD402R0F
A1R435	321-0155-00			RES, FXD, FILM:402 OHM,1\%,0.125W, TC=TO (U.S.A. \& GUERNSEY)	07716	CEAD402ROF
A1R436	315-0102-00			RES, FXD, FILM: 1 K OHM,5\%,0.25W	57668	NTR25JE01K0
A1R437	315-0103-00	200360	206385	RES, FXD, FILM:10K OHM,5\%,0.25W	19701	5043CX10K00,
A1R437	315-0752-00	206386		RES,FXD,FILM:7.5K OHM,5\%,0.25W (UNITED KINGDOM ONLY)	57668	NTR25]-E07K5

Camporsent No.	Tektronix Part Mo.	Serial/Asse Effective	mbly No. Dscont	Mane \& Description	Mfr. Code	Mfr. Part No.
				(UNITED KINGDOM ONLY)		
A1R483	321-0158-00			$\text { RES, FXD, FILM: } 432 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=T 0$ (U.S.A. \& GUERNSEY)	07716	CEAD432ROF
A1R485	321-0089-00			RES, FXD, FILM $: 82.5 \mathrm{OHM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	91637	CMF55116G82R50F
A1R486	315-0222-00			RES, FXD, FILM: 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K2
AlR487	315-0103-00			RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00
AlR488	315-0391-00			RES, FXD, FILM: 390 OHM,5\%,0.25W	57668	NTR25J-E390E
A1R489	311-2352-00			RES, VAR, NONWW: TRMR, 220 OHM, 0.5w	K8788	TC10LV2.5220R
A1R490	315-0392-00			RES, FXD, FILM:3.9K OHM, 5\%, 0.25W	57668	NTR25J-E03K9
A1R491	315-0391-00			RES, FXD, FILM: 390 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E390E
AiR492	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R493	315-0103-00			RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00 J
A1R495	315-0752-00			RES, FXD, FILM:7.5K OHM, 5\%, 0.25W	57668	NTR25J-E07K5
A1R496	315-0752-00			RES, FXD, FILM:7.5K OHM, 5\%,0.25W	57668	NTR25J-E07K5
A1R497	315-0471-00			RES, FXD, FILM: 470 OHM, 5\%, 0.25W	57668	NTR25J-E470E
A1R498	315-0431-00	200360	205110	RES, FXD, FILM: 430 OHM,5\%,0.25W	19701	5043CX430ROJ
A1R498	321-0158-00	205111		$\begin{aligned} & \text { RES, FXD, FILM: } 432 \text { OHN, } 1 \%, 0.125 \mathrm{~W}, \text { TC=T0 } \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	07716	CEAD432R0F
A1R498	321-0158-00			RES, FXD, FILM: 432 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=T 0$ (U.S.A. \& GUERNSEY)	07716	CEAD432ROF
A1R500	315-0120-00	200360	202907	RES, FXD,FILM: 12 OHM, 5\%,0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-R12
AIR501	321-0322-00			RES, FXD,FILM:22.1K OHM, 0.1\%,0.125W, TC=T0	19701	5033ED22K10F
A1R502	321-0318-00			RES, FXD, FILM: 20.0 K OHM, 1\%,0.125W, TC=TO	19701	5033ED20K00F
A1R503	321-0318-00			RES, FXD, FILM: 20.0 K OHM, 1\%,0.125w, TC=TO	19701	5033ED20K00F
AlR504	315-0202-00			RES, FXD, FILM: 2K OHM, 5\%, 0.25W	57668	NTR25J-E 2K
A1R505	315-0334-00			RES, FXD, FILM:330K OHM, 5\%, 0.25 W	57668	NTR25J-E 330K
A1R506	315-0202-00			RES, FXD, FILM:2K OHM, 5\%,0.25W	57668	NTR25J-E 2K
A1R508	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R509	315-0102-00	202908		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	57668	NTR25JE01K0
A1R509	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	57668	NTR25JE01K0
A1R510	315-0103-00			RES, FXD, FILM:10K OHM, 5\%, 0.25 W	19701	5043CX10K00 J
AlR511	315-0102-00	200360	202907	RES,FXD,FILM:1K OHM,5\%,0.25W (UNITED KINGOOM ONLY)	57668	NTR25JEOIK0
A1R512	315-0102-00			RES, FXD, FILM: $1 \mathrm{~K} 01 \mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25JEOIKO
A1R513	315-0103-00			RES, FXD, FILM:10K OHM,5\%,0.25W	19701	5043CX10K003
A1R514	315-0621-00	200360	205110	RES.FXD.FILM: 620 OHM,5\%, 0.25W	57668	NTR25J-E620E
AlR514	321-0172-00	205111		$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=T0 } \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	19701	5033ED604ROF
AlR514	321-0172-00			$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO} \\ & \text { (U.S.A. \& GUERNSEY) } \end{aligned}$	19701	5033ED604ROF
AlR515	315-0101-00			RES, FXD, FILM: 100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
AlR516	315-0472-00			RES, FXD, FILM:4.7K OHM, 5\%,0.25W	57668	NTR25J-E04K7
A1R519	315-0512-00			RES, FXD, FILM: 5.1K OHM, 5\%,0.25W	57668	NTR25J-E05K1
AlR520	315-0102-00			RES, FXD,FILM: 1 K OHM, 5\%,0.25W	57668	NTR25JE01K0
AlR521	315-0182-00			RES,FXD,FILM:1.8K OHM, 5\%,0.25W	57668	NTR25J-E1K8
A1R522	315-0102-00			RES, FXD,FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R523	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R524	315-0102-00			RES, FXD, FILM: 1 K OHM, 5\%, 0.25W	57668	NTR25JE01K0
AlR525	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
A1R526	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
AlR530	315-0101-00			RES, FXD, FILM: 100 OHM,5\%,0.25W	57668	NTR25J-E 100E
A1R531	315-0102-00			RES, FXD, FILM: 1 K OHM, 5\%, 0.25W	57668	NTR25JE01KO
A1R532	315-0222-00			RES, FXD, FILM:2.2K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K2
A1R533	315-0511-00			RES, FXD, FILM: 510 OHM, 5\%,0.25W	19701	5043CX510R0J
AlR534	315-0511-00			RES, FXD, FILM: 510 OHM,5\%,0.25W	19701	5043CX510R0J
A1R535	315-0181-00			RES, FXD, FILM: 180 OHM,5\%,0.25W	57668	NTR25J-E180E

Component No.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Nfr. Part No.
A1R536	315-0181-00			RES, FXD, FILM: $1800 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E180E
A1R537	315-0221-00			RES, FXD, FILM:220 OHM, 5\%, 0.25W	57668	NTR25J-E220E
A1R538	315-0512-00			RES, FXD, FILM:5.1K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K1
A1R539	315-0512-00			RES, FXD, FILM:5.1K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K1
A1R540	315-0511-00			RES, FXD, FILM: 510 OHM, 5\%, 0.25W	19701	5043CX510R0J
A1R541	315-0511-00			RES, FXD, FILM: 510 OHM, 5\%, 0.25W	19701	5043CX510ROJ
A1R542	315-0103-00			RES, FXD,FILM:10K OHM,5\%,0.25W	19701	5043CX10K00 J
A1R543	315-0103-00			RES, FXD, FILM:10K OHM, 5\%,0.25W	19701	5043 CX10K00J
A1R544	315-0431-00	200360	205110	RES, FXD, FILM: 430 OHM, 5\%, 0.25 W	19701	5043CX430R0J
A1R544	321-0158-00	205111		$\begin{aligned} & \text { RES, FXD, FILM:432 OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=TO } \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	07716	CEAD432ROF
A1R544	321-0158-00			$\text { RES, FXD, FILM: } 432 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=T 0$ (U.S.A. \& GUERNSEY)	07716	CEAD432R0F
A1R545	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R547	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R548	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R549	315-0621-00	200360	205110	RES, FXD, FILM: 620 OHM,5\%,0.25W	57668	NTR25J-E620E
A1R549	321-0172-00	205111		RES, FXD, FILM: $6040 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO}$ (UNITED KINGDOM ONLY)	19701	5033ED604ROF
A1R549	321-0172-00			$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \text { TC=TO } \\ & \text { (U.S.A. \& GUERNSEY) } \end{aligned}$	19701	5033ED604R0F
A1R550	315-0512-00			RES, FXD, FILM:5.1K OHM, 5\%,0.25W	57668	NTR25J-E05K1
AlR551	315-0182-00			RES, FXD, FILM:1.8K OHM, 5\%, 0.25W	57668	NTR25J-E1K8
A1R552	315-0222-00			RES, FXD, FILM: 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K2
AlR553	315-0511-00			RES, FXD, FILM: 510 OHM,5\%,0.25W	19701	5043CX510ROJ
AlR554	315-0222-00			RES, FXD, FILM: 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K2
AlR555	315-0391-00			RES, FXD. FILM: 390 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E390E
A1R556	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
A1R557	315-0102-00			RES, FXD, FILM: 1 K OHM, 5\%, 0.25W	57668	NTR25JE01K0
AlR560	315-0271-00			RES, FXD, FILM: 270 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E270E
AlR561	315-0512-00			RES, FXD, FILM 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K1
AlR562	315-0392-00			RES, FXD, FILM:3.9K OHM, 5\%, D.25W	57668	NTR25J-E03K9
A1R563	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%, 0.25W	57668	NTR25J-E02K2
A1R564	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R565	315-0103-00			RES, FXD, FILM 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10K00J}$
A1R570	315-0392-00			RES, FXD,FILM:3.9K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E03K9
A1R571	315-0392-00			RES, FXD, FILM:3.9K OHN, 5\%,0.25W	57668	NTR25J-E03K9
A1R572	315-0222-00			RES, FXD,FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
A1R573	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
A1R574	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
A1R576	315-0222-00			RES, FXD, FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
AlR579	315-0221-00			RES, FXD, FILM: 220 OHM,5\%,0.25W	57668	NTR25J-E220E
AlR581	315-0103-00			RES, FXD, FILM:10K OHM, 5\%, 0.25 W	19701	5043CX10K00J
AlR582	321-0361-00			RES, FXD, FILM:56.2K OHM, 1\%,0.125W, TC=T0	07716	CEAD56201F
A1R583	315-0204-00	200360	205963	RES, FXD, FILM:200K OHM, 5\%,0.25W	19701	5043CX200K0J
A1R583	315-0334-00	205964	208549	RES, FXD, FILM:330K OHM, 5\%, 0.25W	57668	NTR25J-E 330K
AlR583	315-0204-00	208550		RES,FXD,FILM:200K OHM,5\%,0.25W (UNITED KINGDOM ONLY)	19701	5043CX200K0J
A1R583	315-0334-00	B010100	B011072	RES, FXD, FILM:330K OHM, 5\%,0.25W	57668	NTR25J-E 330K
A1R583	315-0204-00	B011073		RES,FXD,FILM:200K OHM,5\%,0.25W (U.S.A. ONL.Y)	19701	5043CX200k0J
AlR583	315-0334-00	100001	100227	RES,FXD,FILM: 330K OHM,5\%,0.25W	57668	NTR25J-E 330K
AlR583	315-0204-00	100228		RES, FXD, FILM:200K OHM,5\%,0.25W (GUERNSEY ONLY)	19701	5043c×200k0J
AlR584	315-0334-00			RES, FXD, FILM:330K OHM, 5\%,0.25W	57668	NTR25J-E 330K
A1R585	315-0104-00			RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A1R586	315-0334-00			RES, FXD, FILM:330K OHM, 5\%,0.25w	57668	NTR25J-E 330K
AlR587	315-0104-00			RES, FXD, FILM: 100 K OHM, 5\%, 0.25W	57668	NTR25J-E100K
AlR588	315-0182-00			RES, FXD, FILM: 1.8K OHM, 5\%,0.25W	57668	NTR25]-E1K8
A1R589	321-0318-00			RES, FXD, FILM:20.0K OHM, 1\%,0.125W, TC=T0	19701	5033ED20K00F

Component No.	Tektronix Part No.	Serial/Assenbly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part Mo.
A1R590	321-0205-00		RES, FXD, FILM: $1.33 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED1K330F
AlR764	315-0471-00	B010100 B010299	RES, FXD, FILM: 470 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E470E
A1R764	315-0361-00	B010300	$\begin{aligned} & \text { RES, FXD, FILM: } 360 \text { OHM,5\%,0.25W } \\ & \text { (U.S.A. ONLY) } \end{aligned}$	19701	5043CX360ROJ
A1R764	315-0471-00		RES, FXD, FILM: 470 OHM, $5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM \& GUERNSEY)	57668	NTR25J-E470E
A1R776	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R778	321-0361-00		RES, FXD, FILM: 56.2 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD56201F
A1R779	321-0263-00		RES, FXD, FILM 5.36 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD53600F
A1R780	315-0510-00		RES, FXD, FILM: 51 OHN, 5\%, 0.25W	19701	5043CX51R00J
A1R781	321-0109-00		RES, FXD, FILM: 133 OHY , 1\%, 0.125W, TC= $=$ TO	07716	CEAD133R0F
AlR784	323-0310-00		RES, FXD, FILM: 16.5 K OHM, $1 \%, 0.5 \mathrm{~W}, \mathrm{TC}=$ TO	75042	CECTO-1652F
AlR785	315-0243-00		RES, FXD, FILM: 24 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E24K0
A1R786	321-0182-00		RES, FXD, FILM: 768 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD768ROF
A1R787	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%,0.25W	57668	NTR25]-E 100E
AlR788	321-0205-00		RES, FXD, FILM:1.33K OHM, 1\%,0.125W, TC=T0	19701	5033EDIK330F
AlR789	315-0510-00		RES, FXD, FILM: 51 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX51R00 J
AlR790	315-0510-00		RES, FXD, FILM: 51 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX51R00J
AlR791	321-0158-00		RES, FXD, FILM: 432 OHM, 1\%, 0.125W, TC $=$ T0	07716	CEAD432R0F
AlR792	321-0223-00		RES, FXD, FILM:2.05K OHN, 1\%,0.125W, TC=T0	19701	5033ED2K05F
A1R794	323-0310-00		RES, FXD, FILM: $16.5 \mathrm{~K} \quad \mathrm{HH}, 1 \%, 0.5 \mathrm{~W}, \mathrm{TC}=$ TO	75042	CECTO-1652F
A1R795	315-0243-00		RES, FXD, FILM:24K OHM, 5\%, 0.25W	57668	NTR25J-E24K0
A1R796	321-0201-00		RES, FXD, FILM: 1.21K OHM, 1\%,0.125W, TC=T0	19701	5043ED1K210F
A1R797	315-0101-00		RES, FXD, FILM: 100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
A1R798	321-0205-00		RES, FXD, FILM: 1.33 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033EDIK330F
A1R799	315-0510-00		RES, FXD, FILM: 51 OHM,5\%, 0.25W	19701	5043CX51R00J
AlR804	315-0102-00		RES, FXD, FILM: 1 K OHM, 5\%, 0.25W	57668	NTR25JE01K0
A1R805	315-0562-00		RES, FXD, FILM:5.6K OHM, 5\%, 0.25W	57668	NTR25J-E05K6
AlR806	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
AlR818	315-0302-00		RES, FXD, FILM:3K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E03K0
AlR819	315-0103-00		RES, FXD, FILM:10K OHM,5\%,0.25W	19701	5043CX10K00J
AlR820	315-0362-00		RES, FXD, FILM:3.6K OHM, 5\%, 0.25W	19701	5043CX3K600J
AlR821	315-0103-00		RES,FXD, FILM:10K OHM, 5\%, 0.25W	19701	5043CX10K00
AlR822	321-0361-00		RES, FXD, FILM: 56.2 K OHN, 1\%,0.125W, TC=TO	07716	CEAD56201F
AlR823	315-0103-00		RES, FXD, FILM:10K OHM, 5\%, 0.25W	19701	5043CX10K00]
AlR825	315-0101-00		RES, FXD, FILM:100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
A1R828	321-0318-00		RES, FXD, FILM:20.0K OHM, 1\%,0.125W, TC=TO	19701	5033ED20K00F
AlR830	321-0205-00		RES, FXD, FILM $1.1 .33 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED1K330F
A1R832	321-0223-00		RES, FXD, FILM 2.205 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED2K05F
A1R834	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A1R835	321-0233-00		RES, FXD, FILM:2.61K OHM, 1\%,0.125W, TC=TO	07716	CEAD26100F
A1R836	315-0102-00		RES, FXD, FILM:1K OHM,5\%, 0.25W	57668	NTR25JE01K0
A1R840	315-0511-00		RES, FXD, FILM: 510 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX510R0J
A1R841	321-0322-00		RES, FXD, FILM:22.1K OHM, $0.1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED22K10F
A1R842	315-0241-00		RES, FXD, FILM: 240 OHM, 5\%, 0.25W	19701	5043CX240R0J
A1R844	315-0104-00		RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E100K
A1R845	315-0472-00		RES, FXD, FILM:4.7K OHM, 5\%,0.25W	57668	NTR25J-E04K7
A1R849	315-0102-00		RES, FXD, FILM: 1 K OHM, 5\%, 0.25W	57668	NTR25JE01KO
A1R850	315-0102-00		RES, FXD,FILM:1K OHM, 5\%,0.25W	57668	NTR25JE01K0
A1R851	311-2367-00		RES, VAR, NONWW: TRMR, 22K OHM, 0.5W	K8788	TC10-LV10-22K/A
A1R852	321-0318-00		RES, FXD, FILM:20.0K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED20K00F
A1R853	315-0204-00		RES, FXD, FILM:200K OHM, 5\%, 0.25W	19701	5043CX200K0J
A1R854	315-0472-00		RES, FXD, FILM $4.4 .7 \mathrm{KOM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E04K7
A1R858	315-0511-00		RES, FXD, FILM: $5100 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX510ROJ
A1R860	315-0625-00		RES, FXD, FILM: 6.2 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6255
AlR870	311-2358-00		RES, VAR, NONW : TRMR, 100 K OHM, 0.5 W	K8788	TC10-LV10-100K/A
A1R872	315-0104-00		RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
AlR873	315-0104-00		RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K

Component Mo.	Tektronix Part No.	Serial/Assen Effective	mbly Mo. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A1R874	311-2358-00			RES, VAR, NONWW: TRMR, 100K OHM, 0.5W	K8788	TC10-LV10-100K/A
A1R875	315-0104-00			RES.FXD, FILM: 100 K 0	57668	NTR25J-E100K
A1R877	307-0115-00			RES, FXD, CMPSN: $7.50 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	80009	307-0115-00
A1R885	315-0103-00			RES, FXD, FILM: 10 K 0 OM, $5 \%, 0.25 \mathrm{~W}$	19701	$50436 \times 10 \mathrm{KOOJ}$
A1R886	315-0204-00			RES, FXD, FILM:200K $01+1,5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX200KOJ}$
A1R888	301-0105-00			RES, FXD, FILM: 1 M OHM, $5 \%, 0.50 \mathrm{~W}$	19701	$5053 \mathrm{CX1M0003}$
A1R889	301-0105-00			RES, FXD, FILM:1M OHM, 5\%, 0.50 W	19701	$5053 \mathrm{CX1M0003}$
A1R890	301-0105-00			RES, FXD, FILM:1M OHM, 5\%, 0.50W	19701	5053CXIM000J
A1R891	301-0105-00			RES, FXD, FILM:1M OHM, 5\%, 0.50W	19701	5053CX1M000J
AlR892	301-0105-00	200360	202061	RES, FXD, FILM:1M OHM, 5\%, 0.50 W	19701	5053CXIMOOOJ
A1R892	301-0225-00	202062	203058	RES, FXD, FILM $2.2 \mathrm{MM} \mathrm{OHM,5} \mathrm{\%,0.5W}$	19701	5053CX2M200J
AlR892	301-0105-00	203059		RES, FXD, FILM:1M OHM, $5 \%, 0.50 \mathrm{~W}$ (UNITED KINGDOM ONLY)	19701	5053CXIM000 J
A1R892	301-0105-00			RES, FXD, FILM:1M OHM, 5\%, 0.50W (U.S.A. \& GUERNSEY)	19701	5053C×1M000
A1R894	301-0105-00			RES, FXD, FILM: IM OHM, $5 \%, 0.50 \mathrm{~W}$	19701	5053Cx1m000
A1R898	315-0391-00			RES, FXD, FILM:390 OHM, 5\%, 0.25W	57668	NTR25J-E390E
AlR899	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
AlR900	315-0105-00			RES, FXD, FILM 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CXIMOOOJ
AlR901	315-0103-00			RES, FXD, FILM: 10 K OHM,5\%,0.25W	19701	$5043 C \times 10 \mathrm{KOO} \mathrm{J}$
A1R907	308-0843-00			RES, FXD.WW: 0.2 OHM, $5 \%, 1 / \mathrm{OW}$	91637	RS1A-90-R2J
A1R908	321-0337-00			RES, FXD, FILM 31.6 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD31601F
A1R909	315-0222-00			RES, FXD, FILM: 2.2 K OHM, 5\%,0.25W	57668	NTR25J-E02K2
AlR910	315-0821-00			RES, FXD, FILM: 820 OH, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX820ROJ
A1R911	315-0223-00			RES, FXD, FILM: $22 \mathrm{~K} \mathrm{OH} \mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX22K00J92U
A1R912	315-0752-00			RES, FXD, FILM 7.5 K OHM, 5\%, 0.25W	57668	NTR25J-E07K5
AlR913	321-0318-00			RES, FXD, FILM:20.0K OH, $, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED20K00F
A1R914	315-0105-00			RES, FXD, FILM: $1 \mathrm{M} 0 \mathrm{H}, 5 \%, 0.25 \mathrm{~W}$	19701	5043 Cxim000J
A1R915	315-0103-00			RES, FXD, FILM 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10K00J}$
A1R916	315-0222-00			RES, FXD, FILM 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K2
AlR917	321-0361-00			RES, FXD, FILM 56.2 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD56201F
A1R918	315-0103-00			RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10k00J}$
A1R919	315-0182-00			RES, FXD, FILM: 1.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E1K8
A1R920	315-0510-00			RES, FXD, FILM: 51 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX51R00J
A1R921	315-0101-00			RES, FXD. FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A1R922	315-0103-00			RES, FXD, FILM: $10 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00.
A1R923	315-0471-00			RES, FXD, FILM: 470 OHM, 5\%, 0.25 W	57668	NTR25J-E470E
A1R924	315-0104-00			RES, FXD, FILM: $100 \mathrm{~K} 0+\mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A1R925	315-0204-00			RES, FXD, FILM:200K OHM, 5\%,0.25W	19701	5043CX200KO]
AlR926	315-0273-00			RES, FXD, FILM: 27 K OHM, 5\%, 0.25 W	57668	NTR25J-E27K0
AlR927	321-0322-00			RES, FXD, FILM:22.1K OHM, 0.1\%,0.125W, TC=TO	19701	5033ED22K10F
A1R928	321-0337-00			RES, FXD, FILM $31.6 \mathrm{~K} 0 \mathrm{H}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD31601F
AlR929	321-0318-00			RES, FXO, FILM:20.0K $0+\mathrm{H}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED20K00F
AlR930	315-0104-00			RES, FXD, FILM: 100 K OHM, 5\%,0.25W	57668	NTR25J-E100K
AlR931	315-0471-00			RES, FXD, FILM: 470 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E470E
A1R932	315-0243-00			RES, FXD, FILM: 24 K OHM, 5\%, 0.25W	57668	NTR25J-E24K0
A1R933	311-2364-00			RES, VAR, NONWW: TRMR, 4.7K OHM, 0.5W	K8788	TC10-LV10-4K7/A
AlR934	315-0103-00			RES, FXD, FILM $10 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	$5043 C \times 10 \mathrm{K00J}$
AlR935	315-0103-00			RES, FXD, FILM:10K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \times \times 10 \mathrm{KOOJ}$
A1R936	315-0104-00			RES, FXD, FILM:100K $01 \mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
AlR937	315-0103-00			RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043 ¢10K00J
AlR938	315-0391-00			RES, FXD, FILM: 390 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E390E
A1R939	315-0102-00			RES, FXD, FILM: $1 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R940	315-0104-00			RES, FXD, FILM: $100 \mathrm{~K} 01 \mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A1R941	321-0253-00			RES, FXD, FILM:4.22K OH, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED 4K 220F
A1R942	321-0337-00			RES, FXD, FILM: 31.6 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD31601F
A1R943	315-0243-00			RES, FXD, FILM: 24 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E24K0
A1R344	315-0392-00			RES,FXD,FILM:3.9K OHM, 5\%,0.25W	57668	NTR25J-E03K9

Canponent Mo.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Nalle \& Description	Mfr. Code	Mfr. Part No.
A1R945	315-0103-00		RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A1R946	315-0512-00		RES, FXD, FILM 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K1
A1R952	315-0471-00		RES, FXD, FILM: 470 OHM, 5\%,0.25W	57668	NTR25J-E470E
A1R953	315-0101-00		RES, FXD, FILM: 100 OHM,5\%,0.25W	57668	NTR25J-E 100E
AlR965	315-0103-00		RES, FXD, FILM:10K OHM, 5\%,0.25W	19701	5043CX10K00
AlR966	315-0104-00		RES, FXD, FILM: 100 K OHM, 5\%, 0.25 W	57668	NTR25J-E100K
A1R967	315-0103-00		RES, FXD, FILM: 10 K OHM $, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A1R968	315-0391-00		RES, FXD, FILM:390 OHM, 5\%,0.25W	57668	NTR25J-E390E
A1R969	315-0102-00		RES, FXD,FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A1R975	321-0318-00		RES, FXD, FILM:20.0K OHM, 1\%,0.125W, TC=T0	19701	5033ED2OK00F
A1R976	315-0512-00		RES, FXD, FILM: 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K1
A1R978	315-0512-00		RES, FXD, FILM 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K1
AlR982	315-0471-00		RES, FXD, FILM: 470 OHM, 5\%, 0.25W	57668	NTR25J-E470E
A1R983	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A1RT236	307-0125-00		RES, THERMAL: 500 OHM, 10\%, NTC	15454	1DB501K-220-EC
A17902	120-1634-00	200360207158	TRANSFORMER,RF:SWITCHING, INVERTER	80009	120-1634-00
AlT902	120-1634-01	207159	TRANSFORMER,RF:SWITCHING, INVERTER (UNITED KINGDOM ONLY)	TKOFD	ORDER BY DESCR
AlT902	120-1634-00	100001100119	TRANSFORMER, RF: SWITCHING, INVERTER	80009	120-1634-00
A1T902	120-1634-01	100120	TRANSFORMER,RF:SWITCHING, INVERTER (GUERNSEY ONLY)	TKOFD	ORDER BY DESCR
A1T902	120-1634-00	B010100 B010462	TRANSFORMER,RF:SWITCHING, INVERTER	80009	120-1634-00
AlT902	120-1634-01	B010463	TRANSFORMER,RF:SWITCHING, INVERTER (U.S.A. ONLY)	TKOFD	ORDER BY DESCR
AlU130	156-0534-00		MICROCKT, LINEAR:DUAL DIFF AMPL	02735	CA3102E-98
AlU180	156-0534-00		MICROCKT,LINEAR:DUAL DIFF AMPL	02735	CA3102E-98
A1U225	156-0067-00		MICROCKT,LINEAR:BIPOLAR,OPNL AMPL	80009	156-0067-00
AlU300	156-0349-00		IC,DIGITAL:CMOS,GATES;QUAD 2-INPUT NOR;4001 ,DIP14.3,TUBE (U.S.A. ONLY)	04713	MC14001UBCL
A1U300	156-2988-00		MICROCKT,DGTL:CMOS,QUAD 2 IP NOR (UNITED KINGDOM \& GUERNSEY)	K5856	CD4001BE
A1U304	156-0754-00		MICROCKT,DGTL:DUAL 4-INP NOR GATE (U.S.A. ONLY)	80009	156-0754-00
A1U304	156-2986-00		MICROCKT,DGTL:CMOS,QUAD 4 IP NOR (UNITED KINGDOM \& GUERNSEY)	K5856	CD4002BE
A1U308	156-0524-00		IC,DIGITAL:CMOS,GATES;TRIPLE 3-INPUT NAND;4 023B,DIP14.3,TUBE (U.S.A. ONLY)	02735	CD4023BF
A14308	156-2987-00		MICROCKT,DGTL:CMOS, TRIPLE 3 IP NAND (UNITED KINGDOM \& GUERNSEY)	K5856	CD4023BE
A1U310	156-1349-00		MICROCKT,LINEAR:DUAL INDEP DIFF AMPL (U.S.A. ONLY)	80009	156-1349-00
A1U310	156-2956-00		MICROCKT,LINEAR:DUAL,INDEP PIFF AMPL (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3054
Alu315	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A1U315	156-2902-00		MICROCKT,LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
AlU325	156-0048-00		MICROCKT,LINEAR: 5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
AlU325	156-2902-00		MICROCKT, LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
A1U335	156-1349-00		MICROCKT, LINEAR:DUAL INDEP DIFF AMPL (U.S.A. ONLY)	80009	156-1349-00
AlU335	156-2956-00		MICROCKT,LINEAR:DUAL, INDEP PIFF AMPL (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3054
A1U340	156-1349-00		MICROCKT,LINEAR:DUAL INDEP DIFF AMPL (U.S.A. ONLY)	80009	156-1349-00
AlU340	156-2956-00		MICROCKT,LINEAR:DUAL, INDEP PIFF AMPL (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3054

Camponent Mo.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
AlU370	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A14370	156-2902-00		MICROCKT, LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
A1U380	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A1U380	156-2902-00		MICROCKT, LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
AlU415	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
AlU415	156-2902-00		MICROCKT,LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
AlU425	156-0853-00		MICROCKT, LINEAR:OPNL AMPL,DUAL	80009	156-0853-00
AlU435	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
AlU435	156-2902-00		MICROCKT, LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
A114445	156-0048-00		MICROCKT,LINEAR: 5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A1U445	156-2902-00		MICROCKT, LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
A1U450	156-0853-00		MICROCKT, LINEAR:OPNL AMPL,DUAL	80009	156-0853-00
A14460	156-1349-00		MICROCKT,LINEAR:DUAL INDEP DIFF AMPL (U.S.A. ONLY)	80009	156-1349-00
A1U460	156-2956-00		MICROCKT,LINEAR:DUAL, INDEP PIFF AMPL (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3054
A1U480	156-0205-03		MICROCKT, DGTL: ECL, QUAD 2-INPUT NOR GATE	04713	MC10102 L OR P
A1U500	156-1335-00		MICROCKT,DGTL:LSTTL,DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MV, SCRN	80009	156-1335-00
AlU510	156-0388-03		IC,DIGITAL:LSTTL,FLIP FLOP;DUAL D-TYPE;74LS 74,DIP14.3,TUBE,SCRN	80009	156-0388-03
AlU515	156-0382-02		IC,DIGITAL:LSTTL,GATES;QUAD 2-INPUT NAND;74 LSOO, DIP14.3, TUBE, BURN-IN	80009	156-0382-02
A1U520	156-0205-03		MICROCKT,DGTL: ECL, QUAD 2-INPUT NOR GATE	04713	MC10102 L OR P
A1J530	156-1639-00		IC,DIGITAL:ECL,FLIP FLOP;DUAL MASTER-SLAVE; 10H131,DIP16.3	80009	156-1639-00
A1U537	156-0721-02		MICROCKT,DGTL:QLAD ST 2-INP NAND GATES	80009	156-0721-02
A1U540	156-0388-03		IC,DIGITAL:LSTTL,FLIP FLOP;DUAL D-TYPE;74LS 74,DIP14.3,TUBE,SCRN	80009	156-0388-03
A1U550	156-0205-03		MICROCKT, DGTL:ECL, QLAD 2-INPUT NOR GATE	04713	MC10102 L OR P
A1U560	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A1U560	156-2902-00		MICROCKT,LINEAR: (UNITED KINGDOM \& GUERNSEY)	K5856	CA 3046
A1U570	156-1639-00		IC,DIGITAL:ECL, FLIP FLOP;DUAL MASTER-SLAVE; 10H131,DIP16.3	80009	156-1639-00
A1U580	156-0853-00		MICROCKT, LINEAR:OPNL AMPL,DUAL	80009	156-0853-00
Alu910	156-1627-00		MICROCKT,LINEAR:BIPOLAR, PWM PWR SPLY CONT	12969	UC494ACN
Alu920	156-0853-00		MICROCKT, LINEAR:OPNL AMPL,DUAL	80009	156-0853-00
AlU940	156-1627-00		MICROCKT,LINEAR:BIPOLAR, PWH PWR SPLY CONT	12969	UC494ACN
AlU975	152-0806-00	E200000 E210593	SEMICOND DVC,DI:HV MULTR,4KVAC INPUT,12KVDC OUTPUT	80009	152-0806-00
AlU975	152-1046-00	E210594	SEMICOND DVC,DI:HV MLLTR, 4KVAC INPUT,12KVAC (UNITED KINGDOM ONLY)	14144	MSL8524
A1U975	152-0806-00	G100000 G100749	SEMICOND DVC,DI:HV MULTR,4KVAC INPUT,12KVDC OUTPUT	80009	152-0806-00
A1U975	152-1046-00	G100750	SEMICOND DVC,DI:HV MULTR,4KVAC INPUT,12KVAC (GUERNSEY ONLY)	U4144	MSL8524
A1VR514	152-0166-00		SEMICOND DVC, DI :ZEN, SI, 6.2V,5\%,400MW, DO-7	80009	152-0166-00
A1VR776	152-0149-00		SEMICOND DVC, DI :ZEN, SI, 10V, $5 \%, 0.4 \mathrm{~W}, \mathrm{DO}-7$	04713	1N961B
A1VR792	152-0243-00		SEMICOND DVC, DI :ZEN,SI, 15V,5\%,0.4W, D0-7	14433	Z5412

Carponent No.	Tektronix Part Mo.	Serial/Assenbly Mo. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
AlVR910	152-0147-00		SEMICOND DVC, DI: ZEN, SI, 27V, $5 \%, 0.4 \mathrm{~W}$, D0-7	80009	152-0147-00
AlVR931	152-0317-00		SEMICOND DVC, DI :ZEN, SI, $6.2 \mathrm{~V}, 5 \%, 0.4 \mathrm{~W}$, D0-35	04713	1 N825
AlVR939	152-0278-00		DIODE, ZENER: , ;3V,5\%,400MW;1N4372A,DD-7 OR D $0-35$,TR	80009	152-0278-00
AlvR942	152-0243-00		SEMICOND DVC, DI :ZEN, SI, 15V, 5\%,0.4W, D0-7	14433	25412
AlVR969	152-0278-00		$\begin{aligned} & \text { DIOOE, ZENER: , } 3 V, 5 \%, 400 N \mathrm{~N} ; \text { IN4372A, DO-7 OR D } \\ & 0-35, \text { TR } \end{aligned}$	80009	152-0278-00
A1W30	174-0640-00		CA ASSY, SP, ELEC:4,26 AWG, 135MM L,RIBBON	tKOEM	820265804(135mm)
A1w80	174-0640-00		CA ASSY, SP, ELEC:4, 26 AWG, 135MM L,RIBBON	TKOEM	820265804(135mm)
Alwso	174-0635-00		CA ASSY, SP, ELEC:6,26 AWG, 120MM L, RIBBON	TKOEM	82265806(120mm)
AlW129	131-0566-00		BUS,CONDUCTOR:DLAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
AlW140	176-0231-00	E209929	WIRE, ELECTRICAL:22 AWG, TINNED	80009	176-0231-00
A1W140	176-0231-00	G100809	WIRE, ELECTRICAL:22 AlG, TINNED	80009	176-0231-00
AlW179	131-0566-00		BUS, CONDUCTOR:DUAMY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A1W500	131-0566-00	202908	BUS,CONDUCTOR:DLMYY RES, $0.09400 \times 0.225 \mathrm{~L}$ (UNITED KINGDOM ONLY)	24546	OMA 07
Alw500	131-0566-00		BUS, CONDUCTOR:DLMMY RES, $0.09400 \times 0.225 \mathrm{~L}$ (U.S.A. \& GUERNSEY)	24546	OMA 07
Alw590	195-3407-00		LEAD, ELECTRICAL:26 AlG, 3.0 L,9-3	80009	195-3407-00
AlW701	174-0637-00		CA ASSY, SP, ELEC:6,26 AWG,300MM L,RIBBON	TKOEM	82265806(300mm)
A1W755	174-0640-00		CA ASSY, SP, ELEC:4,26 AWG, 135MM L, RIBBON	TKOEM	820265804(135m)
A1W792	131-0566-00		BUS, CONOUCTOR:OUMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1W893	174-0642-00		CA ASSY, SP, ELEC: 3,26 AWG, IOONM L, RIBBON	TKOEM	82265803(100m)
A1w971	131-0566-00		BUS, CONDUCTOR:DUMYY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
AlW984	131-0566-00		BUS, CONDUCTOR:DLAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1W985	131-0566-00		BUS, CONDUCTOR:DUMYY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A1W987	131-0566-00		BUS, CONDUCTOR:DLMMY RES, 0.094 OD X 0.225 L	24546	OMA 07
A1W989	131-0566-00		BUS, CONDUCTOR:DUMMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A1W991	131-0566-00		BUS, CONDUCTOR:DUMYY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07

Camponent No .	Tektronix Part Mo.	Serial/Asse Effective	mbly No. Dscont.	Mame \& Description	Mfr. Code	Mfr. Part Mo.
A2	670-9936-00	200001	202907	CIRCUIT BD ASSY:ATTENUATOR \& TIMEBASE	80009	670-9936-00
A2	670-9936-05	202908		CIRCUIT BD ASSY:ATTENUATOR \& T/B	80009	670-9936-05
A2ATI	260-2345-00			SWITCH ASSEMBLY:DPDT ,ATTENUATOR	S4239	NOBLE E773-1019E
A2AT51	260-2345-00			SWITCH ASSEMBLY: DPDT, ATTENUATOR	S4239	NOBLE E773-1019E
A2C6	283-0000-00			CAP, FXD, CER DI: $0.001 \mathrm{LF},+100-0 \%, 500 \mathrm{~V}$	59660	831-610-Y5U0102P
A2C7	281-0214-00	200360	206606	CAP, VAR, CER DI:0.6-3PF, 400V (UNITED KINGDOM ONLY)	52763	313613-140
A2C7	281-0214-00	B010100	B010462	CAP, VAR, CER DI: $0.6-3$ PF, 400 V (U.S.A. ONLY)	52763	313613-140
A2C8	281-0812-00			CAP,FXD,CER DI:1000PF,10\%,100V	04222	MA101C102KAA
A2C13	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A2C30	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A2C31	281-0812-00			CAP, FXD, CER DI: 1000PF, 10\%,100V	04222	MA101C102KAA
A2C32	281-0773-00			CAP, FXD, CER DI:0.01UF,10\%,100V	04222	MA201C103KAA
A2C33	281-0773-00			CAP,FXD,CER DI:0.01UF,10\%,100V	04222	MA201C103KAA
A2C35	281-0812-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
A2C38	281-0812-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%$,100V	04222	MA101C102KAA
A2C56	283-0000-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-610-Y540102P
A2C57	281-0214-00	200360	206606	$\begin{aligned} & \text { CAP, VAR, CER DI: } 0.6-3 P F, 400 \mathrm{~V} \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	52763	313613-140
A2C57	281-0214-00	8010100	8010462	CAP, VAR,CER DI:0.6-3PF,400V (U.S.A. ONLY)	52763	313613-140
A2C58	281-0812-00			CAP, FXD,CER DI: 1000 PF, 10%,100V	04222	MA101C102KAA
A2C59	281-0775-01	100752		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A2C59	281-0775-01	210469		CAP, FXD, CER DI:0.14F, 20%, 50 V	04222	SA105E104MAA
A2C63	281-0775-01			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A2C80	281-0775-01			CAP, FXD, CER DI:0.1UF, 20%, 50V	04222	SA105E104MAA
A2C81	281-0812-00			CAP, FXD,CER DI: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
A2C82	281-0773-00			CAP, FXD,CER DI: $0.01 \mathrm{UF}, 10 \% .100 \mathrm{~V}$	04222	MA201C103KAA
A2C83	281-0773-00			CAP, FXD,CER DI:0.01UF,10\%,100V	04222	MA201C103KAA
A2C85	281-0775-01			CAP, FXD,CER DI:0.1UF,20\%, 50V	04222	SA105E104MAA
A2C88	281-0812-00			CAP, FXD,CER DI:1000PF, 10%,100V	04222	MA101C102KAA
A2C93	290-1153-00			CAP, FXD, ELCTLT:47UF,+50-10\%,10V	K8996	030-24479
A2C94	281-0775-01			CAP.FXD,CER DI:0.1UF.20\%,50V	04222	SA105E104MAA
A2C95	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A2C96	290-1153-00			CAP, FXD, ELCTLT: 47 UF, $+50-10 \%$, 10V	K8996	030-24479
A2C97	281-0775-01			CAP, FXD, CER DI: $0.10 \mathrm{~F}, 20 \%$, 50 V	04222	SA105E104MAA
A2C98	281-0775-01			CAP, FXD, CER DI: $0.1 \mathrm{FF}, 20 \%$,50V	04222	SA105E104MAA
A2C701	285-1409-00			CAP, FXD,MLZD: $1 \mathrm{LFF}, 1 \%, 160 \mathrm{~V}$, AXIAL, TUB,MI	TKOED	ORDER BY DESCR
A2C702	285-1408-00			CAP, FXD, MTLZD:10UF. 1%, 250V, AXIAL, TUB,MI	TKOED	ORDER BY DESCR
A2C703	281-0207-00			CAP,VAR, PLASTIC:2-18PF,100V	52769	GXA 18000
A2C704	283-0674-00			CAP, FXD, MICA DI :85PF, 1\%,500V	00853	D155F850F0
A2C705	281-0813-00			CAP, FXD, CER DI: $0.047 \mathrm{VF}, 20 \%, 50 \mathrm{~V}$	05397	C412C473M5V2CA
A2C706	281-0775-01			CAP, FXD, CER DI: $0.10 \mathrm{~F}, 20 \%, 50 \mathrm{~V}$	04222	SA105E104MAA
A2C707	281-0775-01			CAP, FXD, CER DI:0.14F,20\%,50V	04222	SA105E104MAA
A2C708	281-0756-00			CAP, FXD,CER DI:2.2PF,+/-0.5PF,200V	04222	SA102A2R2DAA
A2C709	290-0283-00			CAP, FXD, ELCTLT:0.47UF, 10\%,35V	05397	T320A474K035AS
A2C710	281-0775-01			CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$, 50 V	04222	SA105E104MAA
A2C712	290-1153-00			CAP, FXD, ELCTLT:47UF, $+50-10 \%$, 10 V	K8996	030-24479
A2C713	290-1153-00			CAP, FXD, ELCTLT:47UF, $+50-10 \%$, 10 V	K8996	030-24479
A2C714	281-0776-00			CAP.FXD, CER DI:120PF.5\%, 100 V	20932	401E0100AD121J
A2C715	290-1153-00			CAP, FXD, ELCTLT:47UF, $+50-10 \%$,10	K8996	030-24479
A2C722	281-0775-01			CAP, FXD, CER DI:0.1UF, 20%, 50 V	04222	SA105E104MAA
A2C723	290-0246-00			CAP.FXD, ELCTLT:3.3UF, 10\%, 15V	12954	D3R3EA15K1
A2C724	281-0775-01			CAP, FXD, CER DI: $0.10 \mathrm{~F}, 20 \%, 50 \mathrm{~V}$	04222	SALOSE104MAA
A2C732	281-0809-00	207212		CAP, FXD, CER DI: 200 PF, $5 \%, 100 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	MAIO1A201JAA
A2C732	281-0809-00	8010463		CAP, FXD, CER DI: 200 PF, 5\%, 100V	04222	MA101A201JAA

Campanent No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No .
A2C732	281-0809-00	100041	CAP, FXD,CER DI: 200 PF, 5\%, 100 V (GUERNSEY ONLY)	04222	MA101A201JAA
A2C733	281-0758-00		CAP, FXD,CER DI:15PF, 20\%,100V	04222	SA102A150MAA
A2C746	281-0809-00		CAP, FXD, CER DI:200 PF,5\%,100V	04222	MA101A201JAA
A2C755	281-0809-00		CAP, FXD,CER DI:200 PF, 5\%,100V	04222	MA101A201JAA
A2C767	281-0786-00		CAP, FXD,CER DI:150PF,10\%,100V	04222	MA101A151KAA
A2C773	281-0809-00		CAP, FXD,CER DI:200 PF,5\%,100V	04222	MA101A201JAA
A2C774	281-0775-01		CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A2CR7	152-0324-00		SEMICOND DVC, DI:SW, SI, 35V,0.1A, D0-7	14552	MT5128
A2CR57	152-0324-00		SEMICOND DVC, DI:SW,SI,35V,0.1A, D0-7	14552	MT5128
A2CR747	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V, 150MA,30V, D0-35	03508	DA2527 (1N4152)
A2CR748	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A2CR755	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA,30V, D0-35	03508	DA2527 (1N4152)
A2CR758	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A2CR761	152-0141-02		SEMICOND DVC, DI:SW,SI,30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A2CR762	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A2CR769	152-0141-02		SEMICOND DVC, DI:SW,SI,30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A2CR773	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A2CR774	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V, 150MA,30V, D0-35	03508	DA2527 (1N4152)
A2E90	276-0752-00		CORE, EM: FERRITE	34899	2743001111
A2E91	276-0752-00		CORE, EM: FERRITE	34899	2743001111
A2E92	276-0752-00		CORE, EM: FERRITE	34899	2743001111
A2E93	276-0752-00		CORE, EM: FERRITE	34899	2743001111
A2J7	204-1034-00		CONN BOOY,RCPT:1 X 6,WITH SOLDER TAILS	TKOEM	52011-0610
A2J29	136-0929-00		SKT,PL-IN ELEK:MICROCIRCUIT,14 PIN (U30)	TKOOA	WPT DIR-14
A2J30	204-1033-00		CONN BOOY, RCPT: $1 \times 4, W I T H$ SOLDER TAILS	TKOEM	52011-0410
A2J79	136-0929-00		SKT,PL-IN ELEK:MICROCIRCUIT, 14 PIN (U80)	TKOOA	WPT DIR-14
A2380	204-1033-00		CONN BODY, RCPT: 1×4, WITH SOLDER TAILS	TKOEM	52011-0410
A2J90	204-1034-00		CONN BOOY,RCPT: 1×6,WITH SOLDER TAILS	TKOEM	52011-0610
A2.J701	204-1034-00		CONN BOOY,RCPT: $1 \times 6, W I T H$ SOLDER TAILS	TKOEM	52011-0610
A2J755	204-1033-00		CONN BOOY,RCPT: $1 \times 4 . W I T H$ SOLDER TAILS	TKOEM	52011-0410
A2L93	120-1631-00		COIL, RF: FXD, 210UH	TK00A	ORDER BY DESCR
A2L96	120-1631-00		COIL,RF:FXD,210UH	TK00A	ORDER BY DESCR
A2L712	120-1631-00		COIL, RF:FXD,210UH	TK00A	ORDER BY DESCR
A2L713	120-1631-00		COIL, RF:FXD,210UH	TK00A	ORDER BY DESCR
A2Q13	151-1235-00		TRANSISTOR:JFET, N-CHAN, DUAL HYBRID	K7068	2N5911
A2063	151-1235-00		TRANSISTOR:JFET,N-CHAN,DUAL HYBRID	K7068	2N5911
A2Q701	151-0424-00		TRANSISTOR:NPN, SI, TO-92	80009	151-0424-00
A2Q702	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A2Q704	151-1042-00		SEMICOND DVC SE:FET,SI, T0-92	80009	151-1042-00
A20706	151-0736-00		TRANSISTOR:NPN, SI, TO-92	80009	151-0736-00
A2Q732	151-0190-00		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A2Q736	151-0190-00		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A2Q737	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A2Q747	151-0712-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A2Q748	151-0712-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0712-00
A2Q750	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A2Q759	151-0188-00		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A2Q760	151-0188-00		TRANSISTOR:PNP, SI, TO-92	80009	151-0188-00
A2R3	315-0330-00		RES, FXD, FILM:33 OHM, 5\%,0.25W	19701	5043CX33R00]
A2R5	322-0481-00		RES, FXD, FILM: 1 M OHM, $1 \%, 0.25 \mathrm{~W}$, TC=TO	75042	CEBTO-1004F
A2R6	315-0474-00		RES, FXD, FILM: 470 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX470K0192U
A2R7	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25 W	57668	NTR25J-E47E0
A2R8	315-0104-00		RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A2R9	315-0330-00		RES, FXD, FILM: 33 OHM, 5\%, 0.25W	19701	5043CX33R00J
A2R13	315-0470-00		RES,FXD,FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0

Companent No.	Tektronix Part Mo.	Serial/Assembly No. Effective Dscont	Nanle \& Description	Mfr. Code	Mfr. Part No.
A2R14	315-0200-00		RES, FXD, FILM: 20 OHM, 5\%, 0.25W	19701	5043CX20R00]
A2R15	315-0200-00		RES, FXD, FILM: 20 OHM, 5\%, 0.25W	19701	5043CX20R00J
A2R22	321-0210-00		RES, FXD, FILM: $1.50 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033EDIK50F
A2R23	321-0210-00		RES, FXD, FILM: 1.50 K OHM, 1\%,0.125W, TC $=$ T0	19701	5033EDIK50F
A2R29	321-0068-00		RES, FXD, FILM: 49.9 OHM, $0.1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	91637	CMF55116G49R90F
A2R30	315-0472-00		RES, FXD, FILM 4.7 7K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E04K7
A2R31	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A2R32	315-0472-00		RES, FXD, FILM:4.7K OHM, 5\%, 0.25 W	57668	NTR25J-E04K7
A2R33	311-2368-00		RES, VAR, NONWW: TRMR, 47K OHM, 0.5 W	K8788	TC10-LV10-47K
A2R35	321-0144-00		RES, FXD, FILM: 309 OHM, 1\%,0.125W, TC=TO	07716	CEAD309R0F
A2R36	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%,0.25W	57668	NTR25J-E 100E
A2R37	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A2R38	321-0144-00		RES, FXD, FILM: 309 OHM, 1\%, 0.125W, TC=T0	07716	CEAD309R0F
A2R39	315-0242-00		RES, FXD, FILM:2.4K OHM, 5\%, 0.25W	57668	NTR25J-E02K4
A2R41	321-0154-00		RES, FXD, FILM: 392 OHM, 1\%, 0.125W, TC=T0	07716	CEAD392R0F
A2R42	315-0333-00		RES, FXD, FILM:33K OHM,5\%, 0.25 W	57668	NTR251-E33K0
A2R53	315-0330-00		RES, FXD, FILM: 33 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX33R00J
A2R55	322-0481-00		RES,FXD,FILM: 1 M OHM, $1 \%, 0.25 \mathrm{~W}, \mathrm{TC}=$ T0	75042	CEBTO-1004F
A2R56	315-0474-00		RES, FXD, FILM 470 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX470K0J92U
A2R57	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25W	57668	NTR25J-E47E0
A2R58	315-0104-00		RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A2R59	315-0330-00		RES, FXD, FILM: 33 OHM, 5\%,0.25W	19701	5043CX33R00J
A2R63	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25W	57668	NTR25J-E47E0
A2R64	315-0200-00		RES, FXD, FILM: 20 OHM, 5\%,0.25W	19701	5043CX20R00J
A2R65	315-0200-00		RES, FXD, FILM: 20 OHM, 5\%, 0.25W	19701	5043CX20R00J
A2R72	321-0210-00		RES, FXD, FILM: $1.50 \mathrm{~K} 01 \mathrm{H}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED1K50F
A2R73	321-0210-00		RES, FXD, FILM: $1.50 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED1K50F
A2R78	315-0102-00	202908	RES,FXD,FILM:1K OHM,5\%,0.25W (UNITED KINGDOM ONLY)	57668	NTR25JEO1K0
A2R78	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	57668	NTR25JE01K0
A2R79	321-0068-00		RES, FXD, FILM: 49.9 OHM, 0.1\%,0.125W, TC=T0	91637	CMF55116G49R90F
A2R80	315-0472-00		RES, FXD, FILM:4.7K OHM, 5\%, 0.25W	57668	NTR25J-E04K7
A2R81	315-0101-00		RES,FXD, FILM: 100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
A2R82	315-0472-00		RES, FXD, FILM:4.7K OHM, 5\%, 0.25W	57668	NTR25J-E04K7
A2R83	311-2368-00		RES, VAR, NONWW: TRMR, 47K OHM, 0.5W	K8788	TC10-LV10-47K/A
A2R85	321-0144-00		RES, FXD, FILM:309 OHM, 1\%, 0.125W, TC=T0	07716	CEAD309R0F
A2R86	315-0101-00		RES, FXD, FILM 100 OHM,5\%, 0.25W	57668	NTR25J-E 100E
A2R87	315-0102-00		RES, FXD, FILM:1K OHM, 5\%,0.25W	57668	NTR25JE01K0
A2R88	321-0144-00		RES, FXD, FILM:309 OHM, 1\%, 0.125w, TC=T0	07716	CEAD309R0F
A2R91	321-0154-00		RES, FXD, FILM:392 OHM, 1\%, 0.125w, TC=T0	07716	CEAD392R0F
A2R92	315-0333-00	202908	$\begin{aligned} & \text { RES, FXD, FILM: } 33 \mathrm{~K} \text { OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (UNITED KINGOM ONLY) } \end{aligned}$	57668	NTR25J-E33K0
A2R92	315-0333-00		RES, FXD, FILM:33K OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25J-E33K0
A2R94	315-0333-00	202908	RES,FXD,FILM:33K OHM,5\%,0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-E33K0
A2R94	315-0333-00	202908	RES, FXD, FILM:33K OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25J-E33K0
A2R701	307-0780-01		RES NTWK, FXD, FI: TIMING	80009	307-0780-01
A2R702	322-0519-01		RES, FXD,FILM: 2.49 M OHM, $0.5 \%, 0.25 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CCAD24903D
A2R703	315-0100-00		RES, FXD,FILM: 10 OHM,5\%,0.25W	19701	5043CX10RR00J
A2R704	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A2R705	315-0151-00		RES, FXD, FILM: 150 OHM,5\%,0.25W	57668	NTR25J-E150E
A2R706	321-0318-00		RES, FXD, FILM: 20.0 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED20K00F
A2R707	315-0392-00		RES, FXD, FILM:3.9K OHN, 5\%,0.25W	57668	NTR25J-E03K9
A2R708	315-0201-00		RES, FXD, FILM: 200 OHM,5\%,0.25W	57668	NTR25J-E200E
A2R709	315-0562-00		RES, FXD, FILM:5.6K OHM,5\%,0.25W	57668	NTR25J-E05K6
A2R710	315-0102-00		RES, FXD, FILM: 1K OHM, 5\%, 0.25W	57668	NTR25JE01K0

Component Mo.	Tektronix Part Ito.	Serial/Asse Effective	sently Mo. Dscont	Nane \& Description	Mfr. Code	Mfr. Part No.
A2R711	315-0302-00			RES, FXD, FILM: 3 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E03K0
A2R712	321-0289-00	200360	202141	RES, FXD, FILM $: 10.0 \mathrm{~K} 0 \mathrm{OH}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033EDIOK0F
A2R712	321-0231-00	202142		RES, FXD, FILM:2.49K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=70$ (UNITED KINGDOM ONLY)	19701	5033ED2K49F
A2R712	321-0231-00			RES, FXD, FILM: $2.49 \mathrm{~K} \quad \mathrm{OH}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO}$ (U.S.A. \& GUERNSEY)	19701	5033ED2K49F
A2R713	321-0289-00	200360	202141	RES, FXD, FILM:10.0K OHM, 1\%,0.125W, TC=T0	19701	5033EDIOKOF
A2R713	321-0231-00	202142		RES, FXD, FILM: $2.49 \mathrm{~K} 0+\mathrm{H}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO}$ (UNITED KINGDOM ONLY)	19701	5033ED2K49F
A2R713	321-0231-00			RES, FXD, FILM:2.49K OHM, 1\%,0.125W, TC=TO (U.S.A. \& GUERNSEY)	19701	5033ED2K49F
A2R714	321-0293-00	200360	202141	RES, FXD, FILM: $11.0 \mathrm{~K} 0 \mathrm{OM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD11001F
A2R714	321-0235-00	202142		RES, FXD, FILM:2.74K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO}$ (UNITED KINGDOM ONLY)	07716	CEAD27400F
A2R714	321-0235-00			RES, FXD, FILM:2.74K OHM,1\%,0.125W,TC=T0 (U.S.A. \& GUERNSEY)	07716	CEAD27400F
A2R715	321-0231-00			RES, FXD, FILM:2.49K OHM, 1\%,0.125W, TC=T0	19701	5033ED2K49F
A2R716	321-0225-00			RES, FXD, FILM:2.15K OHM, 1\%,0.125W, TC=70	19701	5033ED2K15F
A2R717	321-0306-00			RES, FXD, FILM:15.0K OHM, 1\%,0.125W, TC=T0	19701	5033ED15J00F
A2R718	321-0306-00			RES, FXD, FILM:15.0K OHM, 1\%, 0.125 W , TC=TO	19701	5033ED15J00F
A2R719	315-0330-00	200360	200756	RES, FXD, FILM: $33 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX33R00J
A2R719	315-0270-00	200757	205763	RES, FXD, FILM: 27 OHM, 5\%, 0.25 W	19701	5043CX27R00,
A2R719	315-0330-00	205764		RES, FXD, FILM: $33 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$ (UNITED KINGDOM ONLY)	19701	5043CX33R00J
A2R719	315-0330-00			RES, FXD, FILM: $330 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$ (U.S.A. \& GUERNSEY)	19701	5043CX33R00J
A2R720	315-0201-00			RES, FXD, FILM: 200 OHM,5\%, 0.25W	57668	NTR25J-E200E
A2R721	311-2356-00			RES, VAR, NONWW: PNL, 470 OHM, $20 \%, 0.2 \mathrm{~W}$	K8996	232250190194
A2R722	311-2361-00			RES, VAR, NOMWW: TRMR, 10 K OHM, 0.5 W	K8788	TC10-LV10-10K/A
A2R723	315-0104-00			RES, FXD, FILM: $100 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A2R730	311-2365-00			RES, VAR, NONWW: TRMR, 470 OHM, 0.75 W	K8788	TC10-LV10-470K/A
A2R731	311-2355-00			RES, VAR, NONWW: TRMR, $1000 \mathrm{OH}, 20 \%$, 0.5 W	K8788	TC10-LV10-100R/A
A2R732	321-0243-00	200360		RES, FXD, FILM:3.32K OHM, 1\%, 0.125W, TC=TO (UNITED KINGDOM ONLY)	19701	5033ED3K32F
A2R732	321-0243-00			RES, FXD, FILM: $3.32 \mathrm{~K} 0 \mid \mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO}$ (U.S.A. \& GUERNSEY)	19701	5033ED3K32F
A2R733	321-0231-00			RES, FXD, FILM:2.49K OHM, 1\%,0.125W, TC=T0	19701	5033ED2K49F
A2R734	315-0272-00			RES, FXD, FILM $2.7 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K7
A2R735	315-0103-00			RES, FXD, FILM $: 10 \mathrm{~K}$ OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A2R736	311-2363-00	200360		RES, VAR, NONWH: TRMR, 1 K OHM, 0.5 W (UNITED KINGDOM ONLY)	K8788	TC10-LV10-1K/A
A2R736	311-2363-00			RES, VAR, NONWU:TPAR, 1K OHM,0.5W (U.S.A. \& GUERNSEY)	K8788	TC10-LVIO-1K/A
A2R737	321-0197-00			RES, FXD, FILM 1.1 .10 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD11000F
A2R738	321-0210-00			RES, FXD, FILM $1.50 \mathrm{~K} 01+1 \%, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED1K50F
A2R739	321-0210-00			RES, FXD, FILM $1.50 \mathrm{~K} 01 \mathrm{H}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033EDIK50F
A2R740	321-0274-00			RES, FXD, FILM: $6.98 \mathrm{~K} 01+\mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5043ED6K980F
A2R741	321-0210-00			RES, FXD, FILM $1.50 \mathrm{~K} 014,1 \%, 0.125 \mathrm{~W}$, TC=T0	19701	5033ED1K50F
A2R742	321-0210-00			RES, FXD, FILM 1.50 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033EDIK50F
A2R743	321-0177-00			RES, FXD, FILM: 681 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD681ROF
A2R744	321-0177-00			RES,FXD, FILM:681 OHM, 1\%, 0.125W, TC=T0	07716	CEAD681ROF
A2R745	321-0177-00			RES, FXD, FILM: 681 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD681ROF
A2R746	315-0472-00			RES, FXD, FILM:4.7K OHM, 5\%, 0.25W	57668	NTR25J-E04K7
A2R747	315-0431-00			RES, FXD, FILM $4330 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX430R0J
A2R748	315-0431-00			RES, FXD, FILM: $430 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX430R0J
A2R749	321-0098-00			RES, FXD, FILM: $102 \mathrm{OH}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEADIORROF
A2R750	321-0318-00			RES, FXD, FILM:20.0K OHM, 1\%,0.125W, TC=T0	19701	5033ED20K00F
A2R751	321-0178-00			RES, FXD, FILM: $6980 \mathrm{OH}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEADG98ROF
A2R752	321-0178-00			RES, FXD, FILM: 698 OHM, 1\%, 0.125W, TC=T0	07716	CEADG98ROF
A2R753	321-0197-00	200360	202056	RES, FXD, FILM: $1.10 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=70$	07716	CEADI1000F

Component Mo.	Tektronix Part No.	Serial/Assembly Mo. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part Mo.
A2R753	321-0178-00	202057	RES, FXD, FILM: 698 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0 (UNITED KINGDOM ONLY)	07716	CEAD698R0F
A2R753	321-0178-00		RES, FXD, FILM: 698 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO (U.S.A. \& GUERNSEY)	07716	CEA0698R0F
A2R754	321-0179-00		RES, FXD, FILM: 715 OHM, 1\%,0.125W, TC=T0	07716	CEAD715R0F
A2R755	315-0132-00		RES, FXD, FILM: 1.3K OHM, 5\%, 0.25W	57668	NTR25J-E01K3
A2R756	315-0132-00		RES, FXD, FILM: 1.3 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E01K3
A2R757	321-0172-00		RES, FXD, FILM: 604 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED604R0F
A2R758	321-0163-00		RES, FXD, FILM: $487 \mathrm{OHM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD487ROF
A2R759	315-0222-00		RES, FXD, FILM:2.2K OHM, 5\%,0.25W	57668	NTR25J-E02K2
A2R760	315-0222-00		RES, FXD, FILM: 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K2
A2R761	321-0225-00		RES, FXD, FILM:2.15K OHM, 1\%,0.125W, TC= $=10$	19701	5033ED2K15F
A2R762	321-0225-00		RES, FXD, FILM:2.15K OHM, 1\%,0.125W, TC=TO	19701	5033ED2K15F
A2R763	321-0216-00		RES, FXD, FILM 1.1 .74 K OHM, 1\%,0.125W, $\mathrm{TC}=70$	07716	CEAD17400F
A2R765	321-0274-00		RES, FXD, FILM: 6.98 K OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5043ED6K980F
A2R766	321-0274-00		RES, FXD, FILM: 6.98 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=10$	19701	5043ED6K980F
A2R767	321-0098-00		RES, FXD, FILM: 102 OHM, 1\%, 0.125W, TC=TO	07716	CEADI02ROF
A2R768	321-0274-00		RES, FXD, FILM: 6.98 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5043ED6K980F
A2R769	321-0318-00		RES, FXD, FILM:20.0K OHM, 1\%,0.125W, TC=T0	19701	5033ED20KDOF
A2R770	321-0242-00		RES, FXD, FILM:3.24K OHM, 1\%,0.125W, TC=TO	19701	5043ED3K240F
A2R771	321-0225-00		RES, FXD, FILM:2.15K OHM, 1\%,0.125W, TC=TO	19701	5033ED2K15F
A2R772	321-0225-00		RES, FXD, FILM:2.15K OHM, 1\%,0.125W, TC $=$ TO	19701	5033ED2K15F
A2R773	321-0178-00		RES, FXD, FILM: 698 OHM, 1\%,0.125W, TC=TO	07716	CEAD698ROF
A2R774	321-0178-00		RES, FXD, FILM: 698 OHM, 1\%, 0.125W, TC=T0	07716	CEAD698ROF
A2R775	311-2365-00	200360202056	RES, VAR, NONWW: TRMR, 470 OHM, 0.75W	K8788	TC10-LV10-470K/A
A2R775	311-2363-00	202057	RES, VAR, NONWW:TRMR, 1 K OHM, 0.5 W (UNITED KTHGGDOM ONLY)	K8788	TC10-LV10-1K/A
A2R775	311-2363-00		RES, VAR, NOAWW: TRMR, 1 K OHM, 0.5 W (U.S.A. \& GUERNSEY)	K8788	TC10-LV10-1K/A
A2R777	311-2355-00		RES, VAK, NONWW: TPMR, 100 OHM, 20\%, 0.5W	K8788	TC10-LV10-100R/A
A2R782	311-2365-00		RES, VAR, NONWW: TRMR, 470 OHM, 0.75W	K8788	TC10-LV10-470K/A
A2S701	260-2289-00		SWITCH,ROTARY: TIMEBASE	43771	685/TEK 23 POS
A2U30	156-0534-00		MICROCKT, LINEAR:DUAL DIFF AMPL	02735	CA3102E-98
A2U80	156-0534-00		MICROCKT,LINEAR:DUAL DIFF AMPL	02735	CA3102E-98
A2U83	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A2483	156-2902-00		MICROCKT,LINEAR: (UNITED KINGDOM ONLY)	K5856	CA 3046
A2U715	156-0067-00		MICROCKT, LINEAR:BIPOLAR,OPNL AMPL	80009	156-0067-00
A2U745	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A2U745	156-2902-00		MICROCKT, LINEAR: (UINITED KINGDOM ONLY)	K5856	CA 3046
A2U755	156-0048-00		MICROCKT,LINEAR:5 XSTR ARRAY (U.S.A. ONLY)	80009	156-0048-00
A2U755	156-2902-00		MICROCKT, LINEAR: (UNITED KINGDOM ONLY)	K5856	CA 3046
A2VR719	152-0744-00		SEMICOND DVC, DI :ZEN,SI, 3.6V,5\%,0.4W, D0-7	80009	152-0744-00
A2W711	131-0566-00		BUS,CONDUCTOR:DLMMY RES 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07

Comporent Mo.	Tektronix Part Mo.	Serial/Asse Effective	embly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A3	670-9940-00	200001	202907	CIRCUIT BD ASSY:FRONT PANEL	80009	670-9940-00
A3	670-9940-05	202908		CIRCUIT BD ASSY:FRONT PANEL	80009	670-9940-05
A3C2	285-1106-00			CAP, FXD, PLASTIC: $0.022 \mathrm{UF}, 20 \%, 600 \mathrm{~V}$	14752	23081 F 223
A3C45	290-1153-00			CAP, FXD, ELCTLT: 47 UF, $+50-10 \%$, 10V	K8996	030-24479
A3C46	290-1153-00			CAP, FXD, ELCTLT: 47 UF, $+50-10 \%$, 10 V	K8996	030-24479
A3C52	285-1106-00			CAP, FXD, PLASTIC:0.022UF,20\%,600V	14752	230B1F223
A3C373	285-1385-00			CAP, FXD, PLASTIC:43PF, 2.5\%,630V	K7779	B31063-A6430-16
A3C376	285-1387-00			CAP, FXD, PLASTIC:0.01UF, $10 \%, 400 \mathrm{~V}$	TKODZ	MKT1-50
A3C377	285-1385-00			CAP, FXD, PLASTIC:43PF, $2.5 \%, 630 \mathrm{~V}$	K7779	B31063-A6430-H6
A3C378	285-1386-00	B010100	E210418	CAP, FXD, PLASTIC:390PF, $2.5 \%, 630 \mathrm{~V}$	$K 7779$	B31063-A6391-H6
A3C378	285-1425-00	E210419		CAP, FXD, PLASTIC:390PF, $2.5 \%, 160 \mathrm{~V}$	K7779	B33063-B1391-H7
A3C378	285-1425-00	G100851		CAP, FXD, PLASTIC:390PF, $2.5 \%, 160 \mathrm{~V}$	K7779	B33063-B1391-H7
A3C383	285-1385-00			CAP, FXD, PLASTIC: 43 PF, $2.5 \%, 630 \mathrm{~V}$	K7779	B31063-A6430-H6
A3C392	281-0815-00			CAP, FXD, CER DI: $0.027 \mathrm{UF}, 20 \%$, 50 V	04222	MA205C273MAA
A3C725	290-1153-00			CAP, FXD, ELC'TLT:47UF,+50-10\%,10V	K8996	030-24479
A3C726	281-0775-01	200758		CAP,FXD,CER DI: $0.14 \mathrm{~F}, 20 \%, 50 \mathrm{~V}$ (UNITED KINGDOM ONLY)	04222	SA105E104MAA
A3C726	281-0775-01			CAP, FXD,CER DI: $0.1 \mathrm{HF}, 20 \%, 50 \mathrm{~V}$ (U.S.A. \& GUERNSEY)	04222	SA105E104MAA
A3CR381	152-0141-02			SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A3CR401	152-0141-02			SEMICOND DVC, DI :SW,SI, 30V,150MA,30V, DO-35	03508	DA2527 (1N4152)
A3CR534	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V, $150 \mathrm{MA}, 30 \mathrm{~V}, \mathrm{DO}-35$	03508	DA2527 (1N4152)
A3CR537	152-0141-02			SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A3CR538	152-0141-02			SEMICOND DVC, DI:SW,SI, 30V,150MA,30V,00-35	03508	DA2527 (1N4152)
A3DS370	150-1187-00			LT EMITIING DIO:GREEN	TK00A	LN31GPHLEXLED5GS
A3DS560	150-1187-00			LT EMITTING DIO:GREEN	TK00A	LN31GPHLEXLED5GS
A31987	---			2 PIN HEADER STRIP		
A3Q370	151-1042-00			SEMICOND UVC SE:FET, SI, T0-צ゙¢	80009	151-1042-00
A3Q725	151-0188-00			TRANSISTOR: PNP, SI, T0-92	80009	151-0188-00
A3R1	315-0470-00			RES, FXD, FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0
A3R2	315-0105-00			RES, FXD, FILM: 1 M , OHM $, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX1M000 J
A3R4	315-0100-00			RES, FXD, FILM: 10 Off1, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10RR00J
A3R45	307-0113-00			RES, FXD, CMPSN:5.1 OHM, 5\%, 0.25W	01121	CB51G5
A3R46	307-0113-00			RES, FXD, CMPSN:5.1 OHM, 5\%,0.25W	01121	CB51G5
A3R51	315-0470-00			RES, FXD, FILM: 47 OHM, 5\%, 0.25 W	57668	NTR25J-E47E0
A3R52	315-0105-00			RES, FXD, FILM: IM OHM, 5\%, 0.25W	19701	5043CX1M000J
A3R54	315-0100-00			RES, FXD, FILM: 10 OHM, 5\%, 0.25	19701	5043CX10RRO0J
A3R84	311-2368-00	202908		RES, VAR, NONW: :TRMR, 47K OHM, 0.5W (UNITED KINGDOM ONLY)	K8788	TC10-LV10-47K/A
A3R84	311-2368-00			RES, VAR, NONWW:TRMR, 47K OHM, 0.5W (U.S.A. \& GUERNSEY)	K8788	TC10-LV10-47K/A
A3R89	315-0242-00	200360	202907	RES, FXD, FILM:2.4K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K4
A3R89	315-0222-00	202908		RES, FXD, FILM:2.2K OHM, 5\%, 0.25W (UNITED KINGDOM ONLY)	57668	NTR25J-E02K2
A3R89	315-0222-00			RES,FXD,FILM:2.2K OHM,5\%,0.25W (U.S.A. \& GUERNSEY)	57668	NTR25J-E02K2
A3R92	315-0333-00	200360	202907	$\begin{aligned} & \text { RES, FXD, FILN: } 33 \mathrm{~K} \text { OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	57668	NTR25J-E33KD
A3R113	321-0251-00			RES, FXD, FILM: 4.02 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED4K020F
A3R123	311-2366-00			RES, VAR, NONWW: PNL, 470 O+M, $20 \%, 0.2 \mathrm{~W}$	K8996	PP17/000HFAQA234
A3R163	321-0251-00			RES, FXD, FILM: 4.02 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED4K020F
A3R173	311-2366-00			RES, VAR, NONWW: PNL, 470 OHM, $20 \%, 0.2 \mathrm{~W}$	K8996	PP17/000HFAQA234
A3R280	311-2362-00			RES, VAR,NONWW: PNL, 4.7K OHM, $20 \%, 0.2 \mathrm{~W}$	K8996	PP17/000HFAOA364
A3R365	315-0621-00	200360	205110	RES,FXD, FILM: 620 OHM, 5\%, 0.25 W	57668	NTR25]-E620E
A3R365	321-0172-00	205111		$\begin{aligned} & \text { RES, FXD, FILM:604 OHM, } 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO} \\ & \text { (UNITED KINGDOM ONLY) } \end{aligned}$	19701	5033ED604ROF
A3R365	321-0172-00			$\begin{aligned} & \text { RES, FXD, FILM: } 604 \text { OHM, } 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO} \\ & \text { (U.S.A. \& GUERNSEY) } \end{aligned}$	19701	5033ED604R0F
A3R370	315-0470-00			RES, FXD, FILM: 47 OHM, 5\%, 0.25W	57658	NTR25]-E47E0

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A3R371	315-0470-00		RES, FXD, FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0
A3R372	315-0392-00		RES, FXD,FILM:3.9K OHM, 5\%, 0.25W	57668	NTR25J-E03K9
A3R373	315-0202-00		RES, FXD, FILM: 2 K OHM, 5\%, 0.25W	57668	NTR25J-E 2K
A3R376	315-0101-00		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E 100E
A3R377	315-0394-00		RES, FXD, FILM: 390 K OHM, 5\%, 0.25 W	57668	NTR25J-E390K
A3R378	315-0433-00		RES, FXD, FILM: 43 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX43K00J}$
A3R379	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25 W	57668	NTR25J-E47E0
A3R382	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25W	57668	NTR25J-E47E0
A3R383	315-0564-00		RES, FXD, FILM: 560K OHM, 5\%, 0.25 W	19701	5043CX560K0J
A3R426	311-2362-00		RES, VAR, NONWW: PNL, 4.7K OHM, 20\%, 0.2W	K8996	PP17/000HFAOA364
A3R511	311-2360-00		RES, VAR,NONWW: PNL, 47K OHM, 20\%,0.2W	K8996	PP17/000HFA0A494
A3R517	315-0682-00		RES, FXD, FILM:6.8K OHM, 5\%, 0.25W	57668	NTR25J-E06K8
A3R518	315-0912-00		RES, FXD,FILM:9.1K OHM, 5\%,0.25W	57668	NTR25J-E09K1
A3R724	315-0751-00		RES, FXD, FILM: 750 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E750E
A3R725	315-0103-00		RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A3R726	311-2366-00		RES, VAR, NONWW: PNL, 470 OHM, $20 \%, 0.2 \mathrm{~W}$	K8996	PP17/000HFAQA234
A3R727	321-0177-00		RES, FXD, FILM: 681 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD681ROF
A3R728	321-0318-00		RES, FXD, FILM: 20.0 K OMM, 1\%,0.125W, TC $=$ TO	19701	5033ED20K00F
A3R729	311-2362-00		RES, VAR, NONW: PNL, 4.7K OHN, 20%, 0.2 W	K8996	PP17/000HFA0A364
A3R800	315-0682-00		RES, FXD, FILM:6,8K OHM, 5\%, 0.25W	57668	NTR25J-E06K8
A3R802	311-2359-00		RES, VAR, NONWW: PNL, 10K OHM,20\%,0.2W	K8996	PP17000HGA0A4110
A3R986	311-2364-00		RES, VAR, NONWW: TRMR, 4.7K OHM, 0.5W	K8788	TC10-LV10-4K7/A
A3R987	315-0201-00		RES, FXD, FILM:200 OHM,5\%,0.25W	57668	NTR25J-E200E
A3S90	260-2291-00		SWITCH,SLIDE:DPDT, 250MA, 100VAC	U3771	607/TK 2 POS
A3S101	260-2293-00		SWITCH, SLIDE: DPDT, 250MA, 100VAC	U3771	607/TEK 3 POS
A3S201	260-2293-00		SWITCH, SLIDF-DPDT, 250MA, 100VAC	U3771	607/TEK 3 POS
A3S380	260-2292-00		SWITCTi, SLIDE: DPDT, 250MA, 100VAC	U3771	607/TEK 4 POS
A35390	260-2290-00		SWITCH, PUSH:1 BUTTON, 1 POLE, MOMENTARY	TKOEA	SKECCAA061A
A3S392	260-2292-00		SWITCH, SLIDE:OPDT, 250MA, 100VAC	43771	607/TEK 4 POS
A3S401	260-2292-00		SWITCH,SLIDE:DPDT, 250MA, 100VAC	43771	607/TEK 4 POS
A3S460	260-2291-00		SWi TCH, SLIDE:DPDT, 250MA, 100VAC	U3771	607/TK 2 POS
A3S505	260-2290-00		SWITCH, PUSH:1 BUTTON, 1 POLE, MOMENTARY	TKOEA	SKECCAA061A
A3S545	260-2293-00		SWITCH, SLIDE:DPDT, 250MA, 100VAC	U3771	607/TEK 3 POS
A3S550	260-2293-00		SWITCH, SLIDE:DPDT, 250MA, 100VAC	U3771	607/TEK 3 POS
A3S555	260-2292-00		SWITCH, SLIDE:DPOT, 250MA, 100VAC	U3771	607/TEK 4 POS
A3S601	260-2293-00		SWITCH, SLIDE:DPDT, 250MA, 100VAC	43771	607/TEK 3 POS
A3S603	260-2293-00		SWITCH, SLIDE:DPDT, 250MA, 100VAC	U3771	607/TEK 3 POS
A3W1	174-0639-00		CA ASSY, SP, ELEC:6,26 AWG, 110MM L, RIBBON	TKOEM	82026-5806(95mm)
A3W2	174-0638-00		CA ASSY,SP, ELEC:6,26 AWG,165MM L,RIBBON	TKOEM	82265806(165mm)
A3W3	174-0639-00		CA ASSY, SP, ELEC:6,26 AWG, 110 MM L,RIBBON	TKOEM	82026-5806(95mm)
A3W4	174-0639-00		CA ASSY, SP, ELEC:6,26 AWG, 110 M L, RIBBON	TKOEM	82026-5806(95mm)
A3W5	174-0639-00		CA ASSY,SP, ELEC:6,26 AWG, 110 MM L,RIBBON	TKOEM	82026-5806(95mm)
A3W6	174-0635-00		CA ASSY, SP, ELEC:6,26 AWG,12OMM L,RIBBON	TKOEM	82265806(120mm)
A3W7	174-0638-00		CA ASSY, SP, ELEC:6,26 AWG,165MM L,RIBBON	TKOEM	82265806(165mm)

Component No.	Tektronix Part No.	Serial/Ass Effective	mbly No. Dscant	Name \& Description	Mfr. Code	Mfr. Part Mo.
A4	670-9939-00	200001	202907	CIRCUIT BD ASSY:MAINS INPUT	80009	670-9939-00
A4	670-9939-05	202908		CIRCUIT BD ASSY:MAIN INLET	80009	670-9939-05
A4C900	290-1158-00			CAP, FXD, ELCTLT: $2200 \mathrm{UF}, 20 \%, 80 \mathrm{~V}$	TKOED	ORDER BY DESCR
A4C903	285-1192-00			CAP, FXD, PPR DI :0.0022 UF, 20%, 250VAC	TK0515	PME271Y510
A4C904	285-1192-00			CAP, FXD, PPR DI:0.0022 UF, 20\%, 250VAC	TK0515	PME271Y510
A4C905	285-1252-00	202908		CAP, FXD, PLASTIC:0.15UF, 10\%, 250VAC (UNITED KINGDOM ONLY)	D5243	F1772-415-2000
A4C905	285-1252-00			CAP, FXD, PLASTIC: $0.15 \mathrm{UF}, 10 \%, 250 \mathrm{VAC}$ (U.S.A. \& GUERNSEY)	05243	F1772-415-2000
A4CR901	152-0066-00			SEMICOND DVC, DI :RECT, SI , 400V,1A, DO-41	05828	GP10G-020
A4CR902	152-0066-00			SEMICOND DVC,DI:RECT, SI, 400V,1A, D0-41	05828	GP10G-020
A4CR903	152-0066-00			SEMICOND DVC,DI:RECT, SI, 400V,1A, D0-41	05828	GP10G-020
A4CR904	152-0066-00			SEMICOND DVC, DI :RECT, SI, 400V,1A, D0-41	05828	GP10G-020
A4F901	159-0032-00			FUSE,CARTRIDGE:3AG, $0.54,250 \mathrm{~V}, \mathrm{SLOW}$ BLOW	71400	MDL $1 / 2$
A4J901	131-3905-00			CONN, RCPT, ELEC: PWR,250VAC, 6A, CKT BD MT	TKODY	L2157
A4.1902	204-1038-00			CONN BODY, PLUG: 1×8 W/O LOCKING EARS	80009	204-1038-00
A4L901	108-1375-00			COIL, RF: FXD, 82UH,1A	TK00A	RL-1218-820K-1A
A4L902	108-1375-00			COIL, RF: FXD, 82UH,1A	TK00A	RL-1218-820K-1A
A4Q900	151-0350-00			TRANSISTOR:PNP, SI, T0-92	04713	2N5401
A4R902	315-0473-00			RES, FXD, FILM: 47 K OHN, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47K0
A4R903	315-0243-00			RES, FXD, FILM: 24 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E24K0
A4R904	315-0562-00			RES,FXD, FILM: 5.6 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K6
A4R905	315-0104-00			RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A4R906	315-0105-00			RES, FXD, FILM: 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX1M000J
A45901	260-1849-05			SWITCH, PUSH:DPDT, 4A, 250VAC, W/BRACKET	31918	NE-15 SERIES
A4S902	260-2116-00			SWITCH,SLIDE:DPDT,10A, 125VAC,LINE SEL	04426	18-000-0019
A4W903	174-0636-00			CA ASSY SP. FLEC:3,26 AWG,150MM L,RIBBON	TKOEM	82265803(150m)

Component No.	Tektronix Part No.	Serial/Asse Effective	bly Mo. Dscont	Nane \& Description		Mfr. Code	Mfr. Part No.
A5	670-9938-00	200001	202907	CIRCUIT BD ASSY:FOCUS	MOUNTING	80009	670-9938-00
A5	670-9938-05	202908		CIRCUIT BD ASSY:FOCUS		80009	670-9938-05
A5R893	311-2357-00			RES,VAR,NONW: PNL, 2.2M	\%, 0.25	TKOOC	ORDER BY DESCR

Component No.	Tektronix Part Mo.	Serial/Assembly Mo. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
DL224	119-2611-00		DELAY LINE, ELEC:ASSEMBLY	80009	119-2611-00
J590	131-3898-00		TERM, FEEDTHRU: $0.658 \mathrm{M} \times 0.75$ DIA, BRS, AU PL	K0491	001-1401-041140P
T901	120-1633-00		TRANSFORMER,RF:TORIOD	K5545	ORDER BY DESCR
v900	154-0907-00		ELECTRON TUBE:CRT, FINISHED	80009	154-0907-00

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.
American National Standard Institute 1430 Broadway
New York, New York 10018

Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors $=$ Values one or greater are in picofarads (pF). Values less than one are in microfarads ($\mu \mathrm{F}$).
Resistors $=$ Ohms (Ω).

The information and special symbols below may appear in this manual.

Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number *(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

(1) (2) and (3) - 1 st, 2nd, and 3rd significant figures
(M) -multiplier
(T)-tolerance
(TC)-temperature coefficient
(T) and/or $\begin{aligned} & \text { on some capacitors code may not be present } \\ & \text { on }\end{aligned}$

COLOR	SIGNIFICANT FIGURES	RESISTORS		CAPACITORS			DIPPED TANTALUM VOLTAGE RATING
		MULTIPLIER	tolerance	MULTIPLIER	TOLERANCE		
					over 10 pF	under 10 pF	
BLACK	0	1	---	1	$\pm 20 \%$	$\pm 2 \mathrm{pF}$	4 VDC
BROWN	1	10	$\pm 1 \%$	10	$\pm 1 \%$	$\pm 0.1 \mathrm{pF}$	6 VDC
RED	2	10^{2} or 100	$\pm 2 \%$	10^{2} or 100	$\pm 2 \%$	---	10 VDC
ORANGE	3	10^{3} or 1 K	$\pm 3 \%$	10^{3} or 1000	$\pm 3 \%$	---	15 VDC
YELLOW	4	10^{4} or 10 K	$\pm 4 \%$	10^{4} or 10,000	+100\% -9\%	---	20 VDC
GREEN	5	10^{5} or 100 K	± 1 \%	10^{5} or 100,000	+5\%	$\pm 0.5 \mathrm{pF}$	25 VDC
blue	6	10^{6} or 1 M	$\pm 1 / 4 \%$	10^{6} or 1,000,000	---	---	35 VDC
VIOLET	7	---	$\pm 1 / 10 \%$	---	----	---	50 VDC
GRAY	8	---	---	10^{-2} or 0.01	+80\% -20\%	$\pm 0.25 \mathrm{pF}$	----
WHITE	9	---	---	10^{-1} or 0.1	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	3 VDC
GOLD	-	10^{-1} or 0.1	$\pm 5 \%$	---	---	---	---
SILVER	-	10^{-2} or 0.01	$\pm 10 \%$	---	----	--	---
NONE	-	----	$\pm 20 \%$	---	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	---

(1861-20A) 2662-48
Figure 9-1. Color codes for resistors and capacitors.

lead configurations and case styles are typical, but may vary due to vendor changes or INSTRUMENT MODIFICATIONS.

Figure 9.2 Semiconductor lead configurations.

1. Locate the Circuit Board lllustration.

a. Identify the Assembly Number of the circuit board that the component is on by using the Circuit Board location illustration in this section or the mechanical parts exploded views at the rear of this manual.
b. In the manual, locate the tabbed foldout page that corresponds with the
Assembly Number of the circuit board. The circuit board assembly num Assembly Number of the circuit board. The circuit board assembly num-
bers and names are printed on the back side of the tabs (facing the rear of the manual).
2. Determine the Circuit Number and Schematic Diagram
a. Compare the circuit board with its illustration. Locate the component you are looking for by area and shape on the illustration to determine its Circuit
b. Scan the lookup table next to the Circuit Board illustration to find the
. Read the SCHEM NUMBER column next to the component's circuit num

Number. Circuit Number of the component. ber to find the Schematic Diagram number

3. Locate the Component on the Schematic Diagram.
a. Locate the tabbed page that corresponds to the Schematic Diagram ber. Schematic diagram numbers and names are printed on the front ber. Schematic diagram numbers and names (taine (facing the front of the manual).

Locate the Assembly Number in the Component Location lookup
next to the schematic diagram next to the schematic diagram. Scan the CIRCUIT NUMBER colum
that table to find the Circuit Number of the component you are lookin that table of find the Circuit Number of the component you are lookin.
in the schematic. in the schematic.

To identify any component mounted on a circuit board and to locate that
nent in the schematic diagram.

1. Determine the Circuit Board lllustration and Component Location.
a. From the schematic diagram, determine the Assembly Number of the circuit board that the component is on. The Assembly Number and Name is boxed and located in a corner of the heavy line marking the circuit board outline in the schematic diagram.
b. Find the Component Location table for the Assembly Number found on the schematic. Scan the CIRCUIT NUMBER column to find the Circuit Number of the component.
c. Look in the BOARD LOCATION column next to the component number and read its circuit board grid coordinates.

Locate the Component on the Circuit Board.
a. In the manual, locate the tabbed page that corresponds to Assembly Number the component is on. Assembly numbers and names for circuit boards are on the back side of the tabs.
b. Using the Circuit Number of the component and its given grid location, find the component in the Circuit Board illustration.
. From the small circuit board location illustration shown next to the circuit board, find the circuit board's location in the instrument.
d. Find the circuit board in the instrument. Compare it with the circuit board illustration in the manual to locate the component on the circuit board

To identify any component in a schenent on its respective circuit board.
2. Determine the Circuit Number and Schematic Diagram.
a. Compare the circuit board with its illustration. Locate the component you are looking for by area and shape on the illustration to determine its Circuit Number.
b. Scan the lookup table next to the Circuit Board illustration to find the Circuit Number of the component.
. Read the SCHEM NUMBER column next to the component's circuit num ber to find the Schematic Diagram number
. Locate the Component on the Schematic Diagram.
a. Locate the tabbed page that corresponds to the Schematic Diagram number. Schematic diagram numbers and name
of the tabs (facing the front of the manual).
b. Locate the Assembly Number in the Component Location lookup table next to the schematic diagram. Scan the CIRCUIT NUMBER column of that table to find the Circuit Number of the component you are looking for
c. In the SCHEM LOCATION column next to the component, read the grid coordinates of the component in the schematic.
d. Using the grid coordinates given, find the component in the schematic iagram

2. Locate the Component on the Circuit Board
a. In the manual, locate the tabbed page that corresponds to Assembly Number the component is on. Assembly numbers and names for circuit boards are on the back side of the tabs.
b. Using the Circuit Number of the component and its given grid location, find the component in the Circuit Board illustration. c. From the small circuir board location ilustration shown next to the circuit
board, find the circuit board's location in the instrument.
d. Find the circuit board in the instrument. Compare it with the circuit board illustration in the manual to locate the component on the circuit board itself.

Figure 9-5. A2—Attenuator board.

A2-ATTENUATOR/TMEBASE BOARD											
CIRCUIT NUMBER	SCHEM NUMBER										
AT1	1	C709	5	J80	1	R30	1	R706	5	R751	5
AT1	6	C710	5	J90	1	R31	1	R707	5	R752	5
AT51	1	C712	5	J 701	4	R32	1	R708	5	R753	5
AT51	6	C713	5	$J 701$	5	R33	1	R709	5	R754	5
		C714	5	J755	5	R35	1	R710	5	R755	5
C6	1	C715	5			R36	1	R711	5	R756	5
C7	1	C722	5	L93	1	R37	1	R712	5	R757	5
C8	1	C723	5	L98	1	R38	1	R713	5	R758	5
C13	1	C724	5	L712	5	R39	1	R714	5	R759	5
C30	1	C733	5	L713	5	R41	1	R715	5	R760	5
C31	1	C746	5			R42	1	R716	5	R761	5
C32	1	C755	5	Q13	1	R53	1	R717	5	R762	5
C33	1	C767	5	063	1	R53	6	R718	5	R763	5
C35	1	$C 773$ $C 774$	5	0701	5	R55	1	R719	5	R765	5
C38	1	C774	5	Q702	5	R56	1	R720	5	R766	5
C58	1			0704	5	R57	1	R721	5	R767	5
C57	1	CR7	1	Q706	5	R58	1	R722	5	R768	5
C59	1	CR57	1	0732	5	R59	1	R723	5	R769	5
C63	1	CR747	5	Q736	5	R63	1	R730	5	R770	5
C80	1	CR748	5	Q737	5	R64	1	R731	5	R771	5
C81	1	CR755	5	Q747	5	R65	1	R732	5	R772	5
C82	1	CR758	5	Q748	5	R72	1	R733	5	R773	5
C83	1	CR761	5	Q750	5	R73	1	R734	5	R774	5
C85	1	CR762	5	Q759	5	R78	1	R735	5	R775	5
C88	1	CR769	5	Q760	5	R79	1	R736	5	R777	5
C93	1	CR773	5			R80	1	R737	5	R782	5
C 94	1	CR774	5	R3	1	R81	1	R738	5		
C95	1			R3	6	R82	1	R739	5	S10	1
C96	1	E91	1	R6	1	R85	1	R741	5	S601	5
C98	1	E92	1	R7	1	R86	1	R742	5		
C701	5	E93	1	R8	1	R87	1	R743	5	U30	1
C702	5			R9	1	R88	1	R744	5	U80	1
C 703	5	J7	1	R13	1	R91	1	R745	5	$\cup 83$	1
C704	5	J7	5	R14	1	R701	5	R746	5	U715	5
C705	5	J7	6	R15	1	R702	5	R747	5	U745	5
C706	5	J29	1	R22	1	R703	5	R748	5	U755	5
C 707	5	J30	1	R23	1	R704	5	R749	5		
C708	5	J79	1	R29	1	R705	5	R750	5	W711	5

TEST WAVEFORM AND VOLTAGE SETUPS

WAVEFORM MEASUREMENTS

On the left-hand pages preceding the schematic diagrams are test waveform illustrations that are intended to aid in troubleshooting the instrument. To test the instrument for these waveforms, make the initial control settings as follows:

Vertical (Both Channels)

POSITION
MODE
VOLTS/DIV
VOLTS/DIV Var
Magnification Input Coupling

Horizontal

POSITION (both)
MODE
SEC/DIV
SEC/DIV Var

Midrange
CH 1, NORM 10 mV
In CAL detent X1 (CAL knob in) GND

Trigger

SOURCE	VERT MODE
COUPLING	DC
MODE	P-P AUTO
SLOPE	Positive
HOLDOFF	Min

DC VOLTAGE MEASUREMENTS

Typical voltage measurements located on the schematic diagrams were obtained with the instrument operating under the conditions specified in the Waveform Measurements setup. Control-setting changes required for specific voltages are indicated on each waveform page. Measurements are referenced to the chassis ground.

RECOMMENDED TEST EQUIPMENT

Test equipment in Table 4-1 in the Performance Check Procedure, Section 4, of this manual meets the required specifications for testing this instrument.

POWER SUPPLY ISOLATION PROCEDURE

Each regulated supply has numerous feed points to external loads through the instrument. Diagram 8, power distribution, is used in conjunction with the schematic diagrams to determine the service jumper or component that may be lifted to isolate loads from the power supply.

If a supply comes up after lifting one of the isolating jumpers, it is very probable that short exists in the circuitry
on that supply line. By lifting jumpers or other components in the supply line farther down the line, the circuit in which a short exists may be located.

Always set the POWER switch to OFF before soldering or unsoldering service jumpers or other components and before attempting to measure component resistance values.

OTHER PARTS

CIRCUIT NUMBER	SCHEM NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM NUMBER	SCHEM LOCATION	CIRCUIT NUMBER	SCHEM NUMBER	SCHEM LOCATION
DL224	2	5K	$J 590$	4	3M	R53	6	3K
						R382	6	7M
J100	1	10	R1	6	1K			
J100	6	1 K	R3	6	2K	T901	7	68
J151	1	5C	R47	1	28			
J151	6	3K	R51	1	5B	V900	7	2 L
J300	6	7M	R51	6	3K			

Figure 9-6. A3-Front Panel board.

A3-FRONT PANEL BOARD							
CIRCUIT NUMBER	SCHEM NUMBER	Cincuit NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
C 2	1	R1	6	R377	6	S390	6
C2	6	R2	1	R378	6	S392	6
C45	6	P2	6	R379	6	S401	6
C46	6	94	1	R382	6	S460	6
C52	1	R4	6	R383	6	S505	4
C52	6	R45	6	R426	3	S505	6
C373	6	R46	6	R426	6	\$545	2
C376	6	R51	1	R511	4	5545	6
C377	6	R51	6	R511	6	S550	2
C378	6	R52	1	R517	4	S550	6
C383	6	R52	6	R517	6	S555	6
C392	6	R54	1	R518	4	S601	4
C725	6	R84	1	R518	6	5601	6
C726	6	R84	6	R724	6	S603	6
		R89	1	R725	6		
CR136	2	R89	6	R726	6	W1	2
CR381	6	R92	1	R727	6	W1	4
CR534	2	R92	6	R728	6	W1	6
CR534	6	R94	1	R729	6	W1	7
CR537	2	R94	6	R800	6	W2	2
CR537	6	R113	2	R800	7	W2	6
CR538	2	R113	6	R802	6	W3	3
CR538	6	R123	2	R802	7	W3	6
		R123	6	F986	6	W4	4
DS370	6	R163	2	R986	7	W4	6
DS560	4	R173	2	R987	6	W4	7
DS560	6	R173	6	R987	7	W5	4
		R280	2			W5	6
J987	6	R280	6	\$90	1	W6	6
J987	7	R365	6	S90	6	W6	7
		R370	6	S101	1	W7	1
0370	6	R371	6	S101	6	W7	6
Q725	6	R372	6	S201	1		
		R373	6	S201	6		
R1	1	R376	6	S380	6		

VERTICAL ATTNEUATOR/PREAMP DIAGRAM 1

Assembly A2											
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATHON	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
AT1	1D	1F	C97	9 D	5F	R5	2E	1F	R59	6G	1E
AT51	5D	1D	C98	90	5E	R6	2F	1F	R63	5G	1E
						R7	2 F	2 F	R64	6G	2E
C6	2 F	1F	CR7	2 F	2 F	R8	1G	1F	R65	7G	2E
C7*	1F	2G	CR57	6F	2E	R9	2 G	1 G	R72	7G	3E
C8	2G	$1 G$				$R 13$	1 G	1 F	R73	7G	3E
C13	1G	IF	E90	8 C	5F	R14	2G	2G	R78	8E	5D
C30	4F	4G	E91	8 C	5E	R15	3G	2 F	R79	7H	3E
C31	4G	3G	E92	9 c	5F	R22	3G	3F	R80	7F	4E
C32	2 L	4F	E93	$9 C$	5E	R23	3G	3F	R81	8 H	$3 E$
C33	4 L	4E				R29	2 H	3F	R82	7F	$4 E$
C35	5 H	4F	J7	8G	4D	R30	4F	4F	R83	8E	5E
C38	5 J	4F	J29	2 H	3 F	R31	4H	3G	R85	8 H	4E
C56	6F	1D	J30	2 L	4G	R32	4F	4G	R86	6H	2E
C57*	6F	2E	J79	6 H	3E	R33	4E	5 F	R87	7 J	4E
C59	5 G	2 D	J80	6 L	4E	R35	4 H	4F	R88	8	4E
C63	5G	1E	$J 90$	8 B	5E	R36	tH	2 F	R91	9 H	4E
C80	7F	4 E				R37	3	5 F			
C81	8G	3E	L93	7 C	5E	R38	4 J	4F	S10	1D	1F
C82	6L	4 D	L96	9 C	5E	R39	4 J	4F	S60	5D	10
C83	8L	4 D				R41	5H	4F			
C85	9 H	4E	Q13A	2G	2 F	R42	5 H	4F	U30	3 H	$3 F$
C88	9	4E	Q138	3G	2 F	R53	6 D	1 D	U80	7 H	3E
C93	80	5F	Q63A	6G	2E	R55	6E	1D	U83A	7H	4F
C94	8D	5 F	Q63B	7G	2E	R56	6F	1 D	U83B	7 J	4F
C95	8 D	5E				R57	$6 F$	2 E	U83C	31	4F
C96	9 C	5 F	R3	2D	1F	R58	5G	1E	U83D	3 J	4F
Partial A2 also shown on diagrams 4,5 and 6.											
Assembly A3											
C2	3B	4 C	f52	68	4D	R94	9G	2 C			
C52	6B	4 C	R54	6B	4 C				W7-1	9 G	30
			R84*	9 F	3 C	S90	9 F	2 C	W7-2	9G	3D
R2	2 B	48	R89	9F	2C	S101	2B	4B	W7-6	8F	3D
R4	2B	4B	R92	9F	2 D	\$201	68	4D			
Partial A3 also shown on diagrams 2, 3, 4, 6 and 7.											
OTHER PARTS											
$J 100$	1C	CHASSIS	$J 151$	50	CHASSIS	R1	1 B	CHASSIS	R51	58	CHASSIS

[^3]

A1-MAIN BOARD

CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER								
C106	2	C504	4	C971	7	CR827	7	Q256	2	R132	2
C107	2	C505	4	C972	7	CR828	7	Q257	2	R133	2
C110	2	C506	4	C 975	7	CR829	7	Q283	2	R135	2
C111	2	C510	4	C976	7	CR840	7	Q284	2	R136	2
C112	2	C511	4	C979	7	CR845	7	Q285	2	R139	2
C114	2	C513	4	C982	7	CR851	7	Q363	3	R140	2
C115	2	C514	4	C 983	7	CR853	7	0365	3	R142	2
C116	2	C515	4	C984	7	CR854	7	Q366	3	R143	2
C124	2	C516	4	C986	7	CR855		Q367	3	R144	2
C125	2	C517	4	C987	7	CR912	7	Q368	3	R145	2
C126	2	C519	4	C988	7	CR915	7	Q400	3	R150	2
C130	2	C520	4	C989	7	CR923	7	Q401	3	R151	2
C133	2	C525	4	C990	7	CR933	7	Q415	3	R152	2
C153	2	C530	4	C991	7	CR953	7	0420	3	R153	2
C156	2	C536	2			CR983	7	Q435	3	R154	2
C157	2	C537	2	CR104	2	CR984	7	Q440	3	R155	2
C160	2	C538	2	CR105	2	CR985	7	Q465	3	R156	2
C164	2	C539	2	CR111	2	CR986	7	Q487	3	R157	2
C165	2	C540	2	CR112	2	CR987	7	Q488	3	R158	2
C174	2	C545	2	CR133	2	CR988	7	Q489	3	R159	2
C175	2	C547	2	CR139	2	CR989	7	Q514	4	R160	2
C176	2	C550	4	CR154	2	CR990	7	Q535	4	R161	2
C180	2	C554	4	CR155	2	CR991	7	0536	4	R162	2
C215	2	C555	4	CR161	2			Q770	5	R164	2
C216	2	C560	4	CR162	2	DS856	7	0775	5	R165	2
C217	2	C561	2	CR183	2	DS858	7	0776	5	R166	2
C220	2	C562	3	CR186	2	DS870	7	0779	5	R167	2
C225	2	C570	4	CR189	2			0780	5	R168	2
C237	2	C571	4	CR300	3	E102	2	Q785	5	R169	2
C239	2	C572	4	CR301	3	E103	2	Q789	5	R170	2
C240	2	C584	4	CR302	3	E152	2	Q804	7	R171	2
C241	2	C587	4	CR319	3	E153	2	Q817	7	8172	2
C242	2	C776	5	CR344	3			Q825	7	R174	2
C250	2	C780	5	CR347	3	J1	2	Q829	7	R175	2
C251	2	C782	5	CR348	3	J1	4	0835	7	R176	2
C255	2	C784	5	CR349	3	J1	6	Q840	7	R177	2
C256	2	C785	5	CR357	3	$J 1$	7	Q845	7	R178	2
C257	2	C789	5	CR369	3	J2	2	Q885	7	R180	2
C258	2	C794	5	CR370	3	J2	3	0911	7	R181	2
C281	2	C795	5	CR417	3	J2	6	0912	7	R182	2
C292	2	C799	5	CR420	3	J3	3	Q913	7	R183	2
C304	3	C805	7	CR421	3	J3	6	Q918	7	R185	2
с305		C824	7	CR431	3	J4	4	Q921	7	R186	2
C310	3	C825	7	CR432	3	J4	6	Q923	7	R189	2
С335	3	C828	7	CR435	3	J4	7	Q930	7	R192	2
C340	3	C832	7	CR438	3	J5	3	0940	7	R193	2
C349	3	C834	7	CR440	3	J5	4	0950	7	R194	2
C351	3	C835	7	CR441	3	J5	6	Q960	7	R195	2
C353	3	C845	7	CR442	3	J6	3	0970	7	R202	2
C369	3	C847	7	CR443	3	J6	6	0980	7	R203	2
C372	3	C849	7	CR444	3	J6	7			R204	2
C380	3	C851	7	CR445	3			R100	2	R206	2
C384	3	C853	7	CR446	3	L910	7	R101	2	R207	2
C387	3	C854	7	CR447	3	L970		R102	2	R212	2
C389	3	C855	7	CR510	4	L986	7	R103	2	R213	2
C396	3 3 3	C871	7	CR511	4	L988	7	R104	2	R215	2
C398	3 3	C875	7	CR513	4	L.990	7	R105	2	R216	2
C400	3	C893	7	CR521	4			R106	2	R217	2
C401	3	C901	7	CR530	4	P900	7	R107	2	R218	2
C408	3	C902	7	CR539	2			R108	2	R219	2
C418	3	C908	7	CR540	4	0102	2	R109	2	R222	2
C430	3	C909	7	CR571	4	Q103	2	R110		R223	2
C431	3	C910	7	CR584	4	Q104	2	R111	2	R225	2
C435	3 3	C912	7	CR588	4	Q105	2	R112	2	R226	2
C439	3	C 913	7	CR589	4	Q114	2	R114	2	R230	2
C451	3	C914	7	CR776	5	0115	2	R115	2	R231	2
C452	3	C915	7	CR780	5	Q152	2	R116	2	R233	2
C455	3	C924	7	CR781	5	Q153	2	R117	2	R234	2
C462	3	C927	7	CR790	5	Q154	2	R118	2	R235	2
C464	3	C932	7	CR791	5	Q155	2	R119	2	R236	2
C471	3 3	C 933	7	CR816	7	Q164	2	R120	2	R239	2
C472	3 3	C939	7	CR817	7	Q165	2	R121	2	R240	2
C473 C 480	3 3	C940	7	CR818	7	Q202	2	R122	2	R241	2
C480	3 3	C941	7	CR819	7	Q203	2	R124	2	R242	2
C481	3 3	C942	7	CR820	7	Q206	2	R125	2	R244	
C489	3 3	C952	7	CR821	7	Q207	2	R126	2	R245	2
C495	3	C953	7	CR822	7	Q230	2	R127	2	R250	2
C496	3	C962	7	CR823	7	Q231	2	R128	2	R251	2
C500	4	C963	7	CR824	7	Q254	2	R130	2	R254	2
C501	4	C970	7	CR825	7	Q255	2	R131	2	R255	2
C503	4										

A1-MAIN BOARD (cont)											
CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
R256	2	R356		R450	3		3	R849	7	RT236	
R257	2	R3557	3	R451	3	R544	2	R849 R850	7	RT236	2
R258	2	R358	3	R452	3 3	R545	2	R851	7	T902	7
R259	2	R359	3	R454	3	R547	2	R852	7		
R261	2	R360	3	R455	3	R548	2	R853	7	TP230	2
R262	5	R361	3	R456	3	R549	2	R854	7	TP380	3
R266	2	R362	3	R457	3	R550	4	R858	7	TP422	3
R267	2	R363	3	R458	3	R551	4	R860	7	TP423	3
R268	2	R364	3	R459	3	R552	4	R870	7	TP530	4
R272	2	R366	3	R460	3	R553	4	R872	7	TP540	2
R273	2	R367	3	R461	3	R554	4	R873	7	TP842	7
R279	2	R368	3	R462	3	R555	4	R874	7	TP972	7
R281	2	R369	3	R463	3	R556	4	R875	7	TP984	7
R282	2	R374	3	R464	3	R557	4	R877	7	TP987	7
R283	2	R375	3	R465	3	R560	4	R885	7	TP989	7
R284	2	R380	3	R466	3	R561	2	R886	7	TP991	7
R285	2	R381	3	R467	3	R562	4	R888	7		
R286	2	R384	3	R468	3	R563	4	R889	7	4130	2
R287	2	R385	3	R469	3	R564	4	R890	7	U180	2
R288	2	R386	3	R470	3	R565	4	R891	7	U225	2
R289	2	R387	3	R471	3	R570	4	R892	7	U300	3
R290	2	R388	3	R472	3	R571	4	R894	7	U304	3
R291	2	R389	3	8473	3	R572	4	R898	7	U308	3
R292	2	R390	3	R475	3	R573	4	R899	7	4310	3
R293	2	R391	3	R477	3	R574	4	R900	7	U315	3
R294	2	R392	3	R478	3	R576	4	R901	7	U325	3
R295	2	R393	3	R480	3	R579	4	R907	7	U335	3
R300	3	R394	3	R481	3	R581	4	R908	7	U340	3
R301	3	R395	3	R482	3	R582	4	R909	7	U370	3
R302	3	R396	3	R483	3	R583	4	R910	7	U380	3
R303	3	R397	3	R485	3	R584	4	R911	7	U415	3
R304	3	R398	3	R486	3	R585	4	K912	7	U425	3
R305	3	R400	3	R487	3	R586	4	R913	7	$\cup 435$	3
R306	3	R401	3	R488	3	R587	4	R914	7	U445	3
R307	3	R402	3	R489	3	R588	4	R915	7	U450	3
R308	3	R403	3	R490	3	R589	4	R916	7	U460	3
R309	3	R404	3	R491	3	R590	4	R917	7	$\cup 480$	3
R310	3	R405	3	R492	3	R764	5	R918	7	U500	4
R311	3	R406	3	R493	3	R776	5	R919	7	U510	4
R312	3	R407	3	R495	3	R778	5	R920	7	U515	4
R313	3	R408	3	R496	3	R779	5	R921	7	U520	4
R314	3	R409	3	R497	3	R780	5	R922	7	U530	4
A315	3	R410	3	R498	3	R781	5	R923	7	U537	2
R316	3	R412	3	R500	4	R784	5	R924	7	U540	2
R317	3	R413	3	R501	4	R785	5	R925	7	U550	4
R318	3	R414	3	R502	4	R786	5	R926	7	U560	4
R319	3	R415	3	R503	4	R787	5	R927	7	U570	4
R320	3	H416	3	R504	4	R788	5	R928	7	U580	4
R321	3	R417	3	R505	4	R789	5	R929	7	U910	7
R322	3	R418	3	R506	4	R790	5	R930	7	$\cup 920$	7
R323	3	R419	3	R508	4	R791	5	R931	7	U940	7
R325	3	R420	3	R509	4	R792	5	R932	7	U975	7
R326	3	R421	3	R510	4	R794	5	R933	7		
R327	3	R422	3	R512	4	R795	5	R934	7	VR514	4
R328	3	R423	3	R513	4	R796	5	R935	7	VR776	5
R329	3	R424	3	R514	4	R797	5	R936	7	VR792	5
R330	3	R425	3	R515	4	R798	5	R937	7	VR910	7
R331	3	R427	3	R516	4	R799	5	R938	7	VR931	7
R332	3	R428	3	R519	4	R804	7	R939	7	VR939	7
R333	3	R429	3	R520	4	R805	7	R940	7	VR942	7
f334	3	R430	3	R521	4	R806	7	R941	7	VR969	7
R335	3	R432	3	R522	4	R818	7	R942	7		
R336	3	R433	3	R523	4	R819	7	R943	7	W30	2
R337	3	R434	3	R524	4	R820	7	R944	7	W80	2
R338	3	R435	3	R525	4	R821	7	R945	7	w90	7
R339	3	R436	3	R526	4	R822	7	R946	7	W140	2
R340	3	R437	3	R530	4	R823	7	R952	7	W590	4
ค343	3	R438	3	R531	4	R825	7	R953	7	W701	4
R344	3	R439	3	R532	4	R828	5	R965	7	W701	7
R345	3	R440	3	R533	4	R830	7	R966	7	W755	5
R346	3	R441	3	R534	4	R832	7	R967	7	W893	7
R347	3	R442	3	R535	4	R834	7	R968	7	W971	7
R348	3	R443	3	R536	4	R835	7	R969	7	W972	7
R349	2	R444	3	R537	4	R836	7	R975	7	W984	7
R351	3	R445	3	R538	2	R840	7	R976	7	W985	7
R352	3	R446	3	R539	2	R841	7	R978	7	W987	7
R353	3	R447	3	R540	2	R842	7	R982	7	W989	7
R354	3	R448	3	R541	2	R844	7	R983	7	W991	7
R355	3	R449	3	R542	3	R845	7				

VERTICAL PREAMP \& OUTPUT AMPLIFIER DIAGRAM 2

Partial A1 also shown on diagrams 3,4, 5, 6 and 7.
*See Parts List for
serial number ranges.

VERTICAL PREAMP \& OUTPUT AMPLIFIER DIAGRAM (CONT)

ASSEMBLY A3											
CIRCUIT NUMBER	SCHEM location	BOARD l.OCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM location	BOARD LOCATION
CR534	6 B	28	R123	2 E	1B	S545	5A	20	W1	2E	4A
CR537	68	28	R163	$9 E$	1 C	S550	7A	28	W2	2M	2 A
CR538	78	2 B	$\begin{aligned} & \text { R173 } \\ & \text { R280 } \end{aligned}$	$\begin{aligned} & 9 E \\ & 2 \mathrm{M} \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \mathrm{C} \end{aligned}$				$\begin{aligned} & \text { W2 } \\ & \text { W2 } \end{aligned}$	5 C 9 E	$\begin{aligned} & 2 A \\ & 2 A \\ & 2 A \end{aligned}$
R113	2 E	18									

Partial A3 also shown on diagrams 1, 3, 4, 6 and 7.

CHASSIS MOUNTED PARTS

CIRCUIT NUMBER	SCHEM LOCATION	BOARD location	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
DL224	5M	CHASSIS									

2225 CONTROL SETTINGS DC VOLTAGES
 AC GND DC GND
 VOLTS/DIV (both) 0.1V
 AC WAVEFORMS
 VERTICAL MODE BOTH, CHOP
 TRIGGER MODE P-P AUTO

ASSEMBLY A1								
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
C304	1 C	2 C	Q368	4G	70	R366	3G	8 D
C305	3 C	2 C	0400	1H	6 D	R367	3 G	8D
C310	8 E	8 C	Q401	2 H	6 E	R368	3G	8D
C335	8H	7 C	Q415	31	9F	R369	5 F	BD
C340	8 B	©	Q420*	10K	10 B	R374	4G	7 D
C349	8 A	9 C	Q435	5 K	8 F	R375	10L	10 C
C351	8 C	9 c	Q440	10N	9 E	R380	5 J	7 E
C353*	4G	8D	Q465	6 P	8 E	R381*	6G	8 D
C369	5 F	8 D	Q487	1M	75	R384	6G	9 E
C372	5G	8 D	Q488	2M	6E	R385	6 H	8 D
C380	${ }^{6} \mathrm{H}$	7E	0489	2M	6F	R386	$6 F$	9 E
C384	6 F	31				A387	6G	9 E
C387	6G	9 F	R300	1 E	20	R388	4 G	8 D
C389	4 H	70	R301	3 D	20	R389	4 G	7 D
C396*	5 H	7 E	R302	1 B	98	R390*	5 H	8 D
C398	7 K	8 E	R303	2 B	10B	R391	${ }^{5 G}$	8 D
C400*	1 H	6 D	R304	2 C	98	R392	$6{ }^{6}$	9 D
C401	1G	$6 E$	R305	28	9 B	R393	${ }_{6}^{6 \mathrm{H}}$	9 D
C408	2G	6 D	R306	1 B	9 B	R394	$6{ }^{6}$	7 E
C418	4L	10E	R307	3 B	110	R395	5 H	7 F
C430	5M	10F	R308	2B	98	R396	5 H	7 E
C431	5 L	10E	R309	2 C	98	R397	7 H	9 D
C435	5K	8 F	R310	3 B	10B	R398	7 J	9 D
C439	BK	8 F	R311	4B	10 B	R400	1 H	6 D
C451	8M	10D	R312	4 B	110	R401	1 H	6 E
C452	8 N	110	R313	48	11B	R402	3 H	6D
C455*	8 P	10 E	R314	4B	10B	R403	3	70
C462	6 S	6A	R315	${ }^{48}$	11B	R404	3 H	6 D
C464	6 6	7B	R316	9 E	8 C	R 405	3 H	70
C471	$7 \mathrm{7R}$	10 E	R317	9 D	78	R406	16	6 D
C472	$7 \mathrm{7R}$	10 E	R318	9 F	7 B	R407	16	6 6
${ }^{\text {C473 }}$	7 R	10 E	R319	9 E	8 C	R408	2 C	60
C480	11 G	7 F	R320	9 F	7 C	R409	2 H	70
C481	1 J	6 E	R321	9 E	88	R410	2 H	70
C489	2M	6 E	R322	9 E	8 C	R412	3L	9 F
C495	2 N	6 F	R323	9 9F	8 C	R413	4K	9 F
C496	2 N	6 F	R325**	7 E	7 C	R414	3K	9 F
C562	1 B	2 F	R326*	7 F	7 C	R415	4L	10E
			R327	7H	8 D	R416*	4M	9 E
CR300	2 E	8 C	R328	7 J	8 F	R417	41	$9 E$
CR301	2 E	7 C	R329	8 F	${ }^{86}$	R418	4 L	10E
CR302	2 E	8 C	R330	8 F	8 C	R419*	10K	108
CR319	8 E	8 C	R331	8G	68	R420*	115	108
CR344	81	7 C	R332	9	68	R421*	10K	10B
CR347	7 C	9 C	R333	9 H	7 C	R422*	5N	10A
CR348	7 C	9 C	R334	81	7 C	R423*	3 N	10A
CR349	7 D	9 c	R335	9	78	R424	6 K	8 E
CR357	98	8 B	8336	9 H	7 C	R425	5 K	8 F
CR369	5F	8 D	R337	9	7 C	R427	5 M	9 E
CR370	5G	90	R338	8 H	6 C	R428	5 L	9 F
CR417	4K	9 E	R339**	$7{ }^{7}$	7 C	R429**	5 M	10F
CR420*	10 L	10 C	R340*	7 J	6 C	R430	5 M	10 F
CR421*	10 K	118	8343	81	$7 \mathrm{7C}$	R432	5 M	$9 E$
CR431	5 L	9 F	R344	75	70	R433	${ }^{6} \mathrm{M}$	9 E
CR432*	10L	11B	R345*	78	8 C	R434**	51	8 F
CR435	5 K	8 F	R346*	7 C	9 C	R435*	5 K	8 F
CR438	5 L	9 F	R347	8 C	9	R436	5	10F
CR440	8 M	11D	R348*	8 B	9 c	R437*	6K	8 E
CR441	8M	11 D	R349	8 B	9 C	R438	5L	10F
CR442	9 M	10 D	R351	8 C	9 D	R439	5 K	8 E
CR443	8M	10 D	R352	${ }^{8 C}$	9 D	R440	10N	7 E
CR444	8 K	100	R353*	4G	8D	R441	10N	9 C
CR445	8 L	100	R354*	9B	8 B	R442	71	10 C
CR446	7.	100	R355	8 B	10 C	R443	71	10 C
CR447	6 N	8 E	R356	8 C	9	R444	72	100
			R357*	98	88	R445	8 L	10 C
J2	1 B	6A	R358	9 C	8 B	R446	8 L	11 C
J3	4R	9A	R359	8 C	9 D	R447	9 M	100
			R360	BD	90	R448	9M	10D
Q363	4F	80	R361*	4 E	8 C	R449	9M	100
Q365	4 F	70	R362*	5 E	90	R450	8 N	10 D
Q366	4 F	8H	R363	4 F	9 D	R451	8 N	10D
Q367	4G	7 D	R364	4F	7 D	R452	9 N	10 D

*See Parts List for
serial number ranges.

TRIGGER DIAGRAM (CONT)

ASSEMBLY A1								
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION
R453	9M	100	TP380	4 J	9F	U340	10D	9 C
R454	8 N	11D	TP422	5 N	10G	U370B	6G	9 D
R455*	8 P	10D	TP423	3 N	9F	U370C	5G	9 D
R456	8 N	110				U3700	6 F	9 D
R457*	7 P	8E	U300A	3D	9 B	U370E	10M	90
R458*	7 P	8E	U300B	2D	98	U380A	5G	7 D
R459*	7 P		U300C	2 C	98	U380B	6 H	7 D
R460	7 P	10E	U300D	1 C	9 B	U380C	5 H	7 D
R461	7 P	10E	U300	10E	9 B	U3800	5G	7 D
R462	65	78	U304A	2 C	GB	U380E	6G	7 D
R463	6 S	78	U304B	3 C	98	U415A	4 K	9 E
R464	6R	7E	U304	10E	98	U4158	3L	9 E
R465	68	8E	U308A	4 C	108	U415C	75	9 EE
R466	$6 \mathrm{6P}$	8 E	U3088	38	10 B	U415D	4 M	9E
R467	6R	10 D	U308C	4 B	10 B	U415E	5M	9E
R468	$6 \mathrm{6P}$	10 D	U308	10F	10 B	U425A	4M	10F
R469	$6 \mathrm{6P}$	$8 \mathrm{8E}$	U310A	8D	8 C	U425B	3L	10F
R470 R471	$6 P$ 78	7E	U310B	8 D	8 C	$\cup 425$	10G	10F
R471 R472	$7 R$ $7 S$	${ }^{10 \mathrm{~F}}$	U310C	8 F	8 C	U435A	5 J	8E
R473	7 S	9F	U310D	8F	8 C	U435B	5 K	8E
R475	7 N	110	U310E	8 FF	8 C	U435C	7 N	8E
R477	9 N	10E	U310	BE	8 C	435 E	7N	8E
R478	9 P	10F	U3158	9 H	78	U445A	8 M	10 C
R480	2 J	6 EF	U315C	9	7 B	U445B	8M	10 C
R481	1 J	6F	U315D	9 H	78	U445C	9M	100
R483**	2 L	7E	U315E	6 S	78	U445D	9L	10 C
R485	12	$7 E$	U325B	9D	8 B	U445E	7L	100
R486	2M	7E	U325C	9 F	8 B	U450A	7 P	100
8487	1M	7 F	U325D	9 C	8 B	$\cup 4503$	8 N	100
R488	1M	6F	U325D	9 F	8 B	U450	10 H	10D
R489	2 L	6 EF	U335A	8 H	7 C	U460A	2G	70
R490	2 N	6 F	U335B	8 H	70	U460B	3G	70
R491	2M	7 F	U335C	8 l	7 C	U460C	2 H	70
R492	1 N	7F	U3350	8 J	7 C	U4600	2 l	70
R493	2N	7F	U335E	8.1	7 C	U460E	3.	7 D
R495	2 N	6 F	U335F	8 H	7 C	U460F	2 H	7 D
R496	2 P	6 F	U335	10D	7 C	U460	10 D	70
R497	2 P	7 F	U340A	7B	90	U480A	2 N	7F
R498*	2 P	7F	U3408	8 C	90	U4808	2 P	7F
8542	1D	2 D	U340C	8C	9 C	U480C	2 J	7F
R543	3 D	20	U340D	7 C	9 C	U4800	1 M	7F
			U340F	7B	90	U480	10F	7F
Partial A1 also shown on diagrams 2, 4, 5, 6 and 7.								
ASSEMBLY A3								
R426	4S	1F	W3	45	4D			
Partial A3 also shown on diagrams 1, 2, 4, 6 and 7.								

*See Parts List for serial number ranges.

Scans by => ARTEK MEDIA © 2003-2005

WAVEFORMS FOR DIAGRAM 4

2225 CONTROL SETTINGS

ASSEMBLY A1											
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$
C500	1」	4 F	11.4	1 C	6 6	R531	5 F	2 F	TP530	7	5 F
C501	78	4 E	J4-1	2 C	9A	R532	6 H	3 F			
C503	7 E	4 F	J4-2	2 C	9A	R533	6.	3 E	U500A	$5 E$	3 F
C504	4 C	10 B	J4-3	4 M	9A	R534	6 K	2 E	U5008	8 E	3F
C505	3 D	3 F	J4-4	4 C	9A	R535	6 K	35	U510A	3 F	2 F
C506	5 E	$3 F$	J4-5	7 M	94	R536	6 K	3 D	U510B	51	2 F
C510	1.	3 F	J5-3	3 C	10a	R537	5 K	3 E	U515A	4L	2G
C511	2 G	5 F	J5-4	3 C	10A	R550	91	3 D	U5158	3 J	2 G
C513	30	5 E	J5.6	8 M	10A	R551	9 H	3 D	U515C	31	2G
C514	31	4G				R552	81	2D	U5150	3 H	2 G
C515	1 K	2 F	0514	41	3G	R553	81	2 E	U520A	6 F	3 D
C516*	31	5 E	0535	5 J	3 E	R554	8 K	4 E	U5208	6 G	3 D
C517	41	3 G	0536	5 K	3 E	R555	1 E	4 E	U520C	7H	3 D
C519	4 E	3G				R556	7H	2 E	U5200	9 E	3 D
C520	1 L	4 D	R500*	5 C	5 E	R557	6 F	2 F	U530A	5G	2 E
C525	9 D	3 D	R501	7 C	4 E	R560	8 K	3 F	U530B	61	25
C530	1L	3 E	R502	78	4E	R562	8L	3 F	U550A	7 J	2 D
C550	1 M	3D	R503	8 B	4E	R563	71	4 F	U5508	71	2 D
C554*	1 D	3 E	R504	5 C	9 B	R564	10	6 D	U550C	6 H	20
C555	2 E	5 E	R505	40	3 F	R565	2E	55	U5500	81	2 D
C560	7 L	5 D	R506	5 E	3 F	R570	5 L	4 E	U560A	7K	35
C570	1 N	3 D	R508	8 F	3 E	R571	6 L	4 E	U5608	7 K	3 E
C571	6L	5 E	R509*	4 H	2G	R572	9 F	3 D	U5600	1 E	3 E
C572	6 L	5 E	R510	3G	4 F	R573	8G	3 D	U560E	7 C	3 E
C584	8 B	5 D	R512	51	2 F	R574	9 G	3 D	U570A	86	2 D
C587	4 J	4 D	R513	2D	4 F	R576	9 H	3 D	U5708	8 H	2 D
			R514*	4G	2 F	R579	7H	2 E	U5804	4K	4 D
CR510	2 G	4F	R515	3 K	2G	R581	9 C	40	U5803	98	4 D
CR511	2G	4F	R516	41	4G	R582	98	4 E			
CR5 13	20	4 F	R519	3 E	3 F	R583*	98	45			
CR521	70	4 E	R520	6 C	3 E	R584	8 C	60	VR514	4 H	2G
CR530*	4D	3 F	R521	7 C	4E	R585	4J	4 D			
CR540	2 E	5 F	R522	7 F	3 E	R586	4k	4 D	W590	3M	10A
CR571	6 L	5 E	R523	7G	4 E	R587	4 K	4 D	W701-2	5 C	$5 E$
CR584	9 C	4D	R524	8 H	2 E	R588	4L	4 D	W701-4	6 C	$5 E$
CR588	4L	40	R525	9 D	3 D	R589	4L	4 D	W701-5	2 F	5 E
CR589	4 L	5D	$\begin{aligned} & \text { R526 } \\ & \text { R530 } \end{aligned}$	$\begin{aligned} & 9 \mathrm{C} \\ & 71 \end{aligned}$	$\begin{aligned} & \text { 3D } \\ & \text { 3E } \end{aligned}$	R590	4L	5 D	W701-6	5M	5 E
Partial A1 also shown on diagrams 2, 3, 5, 6 and 7.											
ASSEMBLY A2											
CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	BOARD location	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{gathered} \text { BOARD } \\ \text { LOCATION } \\ \hline \end{gathered}$
J701-2	5B	2A	J701-4	5 B	2A	J701-5	1F	2 A	J701-6	5M	2A
Partial A2 also shown on diagrams 1,5 and 6.											
ASSEMBLY A3											
CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
DS560	7 N		$\begin{aligned} & \mathrm{S} 505 \\ & \mathrm{~S} 601 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~B} \\ & 1 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 2 F \\ & 2 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { W4-2 } \\ & \text { W4-3 } \end{aligned}$	$\begin{aligned} & 2 \mathrm{C} \\ & 5 \mathrm{M} \end{aligned}$	$\begin{aligned} & 4 E \\ & 4 E \end{aligned}$	W5-4 W5-6	$\begin{aligned} & 3 C \\ & 8 \mathrm{M} \end{aligned}$	$\begin{aligned} & 4 F \\ & 4 F \end{aligned}$
R511	4 B	3G				W4.4	4 C	4 E			
R517	4A	2 F	W1-4	1 C	4 A	W4-5	7 M	4 E			
R518	4A	2 F	W4-1	2 C	4E	W5-3	3 C	4F			
Partial A3 a/so shown on diagrams 1, 2, 3, 6 and 7.											
CHASSIS MOUNTED PARTS											
CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location
J590	3M	CHASSIS									

*See Parts List for
serial number ranges.

WAVEFORMS FOR DIAGRAM 5

 2225 CONTROL SETTINGSDC VOLTAGES
INTENSITY HORIZONTAL MODE SEC/DIV TRIGGER MODE
midrange X1 0.5 ms P-P AUTO

AC WAVEFORMS

VERTICAL MODE	CH1
AC-GND-DC (both)	GND
HORIZONTAL MODE	X1
HOLDOFF	MIN (fully ccw)
TRIGGER MODE	P-P AUTO
TRIGGER LEVEL	midrange
SEC/DIV	$0.5 m s$
HORIZONTAL POSITION midrange	

B

$+1.25 V$
OV
(9)

20

21

(22)

23)

(24)

25

$+6.65 V$
26

XY AMPLIFIER AND HORIZONTAL DIAGRAM

5

ASSEMBLY A1

CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM location	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION
C776	6G	31	CR791	6G	31	R778	75	3 K	R794	7H	$4 \sqrt{ }$
C780	6 H	31				R779	6	4K	R795	7H	4 J
C 782	7H	3 J	0770	5G	31	R780	5 G	31	R796	8 H	31
C784*	6 H	3	0775	6	3	R781	5 H	3 H	R797	8.	4 4
C785	5 H	3B	0776	8G	31	R784	6 H	3	R798	7 J	3 K
C789	5 J	3K	0779	5	3	R785	5 H	31	$R 799$	73	3 K
C794	8 H	$4 \sqrt{ }$	0780	7G	41	R786	$6{ }^{6}$	31	R828	8G	3 H
C795	7H	31	Q785	8	3	R787	6.	3K			
C799	75	3 K	Q789	7J	3	R788	5 J	3 K	VR776	6 G	31
CR776	8G	3 H	R262	7G	3 H	R789 R790	$6 J$ 76	${ }_{41}{ }_{4}$	VR792	7 H	3
CR780	5G	4 H	R764	7G	31	R791	6G	31	W755	5 F	10 G
CR781 CR790	6G 6 G	31 4 H	R776	6G	3 H	R792	7 H	4K	W900	6	4 K

Partial A1 also shown on diagrams 2, 3, 4, 6 and 7.

ASSEMBLY A2

CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION
C701	68	2 A	J90	2 B	5E	R717	8 E	5 C	R760	4	4A
C702	6A	20	J701	68	2 A	R718	8 E	5 C	R761	2 L	5A
C703	4 C	18	J755	2 K	14	R719*	8 E	5 C	R762	2 L	5A
C704	4 C	1 A				R720	6 E	5 C	8763	4L	5 C
c705	4 D	1 A	L712	18	5E	R721	7F	4C	R765	4L	5 C
C706	5 C	1 A	L713	1B	5 E	$R 722$	7E	50	R766	4K	5 C
C707	2 C	5 D				R723	6 E	5 D	R767	4 L	5 C
C708	50	1A	0701	4 B	28	R730	2 H	3A	R768	5L	$5 C$
C709	58	2 B	0702	3 B	4 D	R731	2G	3 A	R769	4 L	5 C
C710	3 D	1A	Q704A	5 C	2 B	R732*	2 C	5D	R770	5L	58
C712	1 C	5 E	Q704B	50	28	R733	20	3 C	R771	6 L	58
C713	1 C	5D	0706	50	1 B	R734	20	4 D	R772	5 L	58
C714	3 F	4 B	0732	2 C	3 C	R735	20	4 C	R773	6 K	${ }^{4 C}$
C715	7 D	50	0736	3 C	3 D	R736*	1 C	50	R774	6M	3 A
C722	68	3 C	Q737	2 E	3 C	R737	1 E	3 C	${ }^{\text {R7775* }}$	4G	3 B
C723	5B	2B	0747	4G	4A	R738	2 E	3 C	R777	${ }^{4}$	5 C
C724	1E	3 C	Q748	4 H	4B	R739	2 F	4 C	R782	2 L	5B
C732*	2 C	5 D	Q750	3G	4B	R740	4D	38			
C733	1 D	3 C	Q759	3	4 A	R741	4E	3 B	S701	8 C	1 C
C746	2 J	3 C	Q760	4 J	48	R742	4 E	3A			
C755	6L	5B				R743	3E	38	4715	8 E	5 C
C767	4L	5 C	R701	6 E	18	R744	3F	3A	U745C	3K	4A
C773	6 K	5 B	R702	6 D	28	R745	4 E	3 B	U745D	3 M	4 A
C774	6K	4B	R703	4 C	2 A	R746	2.	38	U745E	5K	4 A
			R704	3 B	2 A	R747	2 G	3A	U745	4E	4A
C8747	3G	3A	R705	5 D	1 A	R748	2 H	3A	U755A	5M	5A
CR748	3 H	3 B	R706	3 C	50	R749	2 H	3 A	U7558	5M	5A
CR755	6 L	5 B	R707	3 B	50	R750	2 H	38	U755C	2 K	5 A
CR758	3K	5A	R708	3B	3 D	R751	3 G	38	47550	2 M	5A
CR761	3L	5A	R709	3 C	50	R752	3 H	38	U755E	5 K	5A
CR762	3 L	5A	R710	3 D	3 D	R753*	3 H	3 B			
CR769	4L	4 C	R711	3 F	48	R754	4 H	4A	VR719	8 E	8 E
CR773	4K	5 C	R712*	4G	3A	R755	4G	4A			
CR774	4M	5 C	R713*	4F	3B	R758	4 H	4 B	W711	5D	2 A
			R714*	4 F	3B	R757	2 L	5A	W724	4 D	4D
J7	1F	4 D	R715	8D	5 C	R758	2 K	5A	W752	2 B	2B
J7	2 J	4D	R716	70	5 C	R759	31	4A			

Partial A2 also shown on diagrams 1, 4 and 6.
*See Parts List for
serial number ranges.

Scans by $=>$ ARTEK MEDIA © 2003-2005

Figure 9-9. A4-Mains Input board.

A4-MAINS INPUT BOARD							
CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
C900	7	CR904	7	L902	7	R906	7
C903	7						
C904	7	F901	7	Q900	7	S901	7
C905	7					S902	7
		J901	7	R902	7		
CR901	7	J902	7	R903	7	W903	7
CR902	7			R904	7		
CR903	7	L901	7	R905	7		

Figure 9-10. A5-Focus Pot board.

COMPONENT NUMBER EXAMPLE

	$\overbrace{\text { A23 A2 R12 }}^{\text {Component Num }}$	
Assembly Number	Subassembly Number (if used)	Schematic Circuit Number

Chassis-mounted components have no Assembly Numbe prefix-see end of Replaceable Electrical Parts List.

FRONT PANEL DIAGRAM 6

Assembly A1											
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCAIION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMEER	SCHEM LOCATION	BOARD LOCATION
J1 J 2	$1 B$ $2 B$	6A	J3 J4	$\begin{aligned} & 4 B \\ & 5 B \end{aligned}$	$\begin{aligned} & 9 A \\ & 9 A \end{aligned}$	J5	4M	10A	J6	5M	10A
Partial A1 also shown on diagrams 2, 3, 4, 5 and 7.											
Assembly A2											
AT1 AT51	2L	$\begin{aligned} & 1 F \\ & 1 \mathrm{D} \end{aligned}$	J7	78	4 D	R3	2K	1F	R53	3 K	1D

Partial A2 also shown on diagrams 1, 4 and 5.
Assembly A3

C2	21	4 C	Q370A	71	3E	R373	51	3E	S101	$1 . \mathrm{J}$	4 B
C45	3G	3E	Q370B	7 H	3E	R376	91	3 F	S201	3	4 D
C46	3 F	3E	0725	6E	1 D	R377	91	3F	S380	6	3G
C 52	31	4 C				R378	9 H	2E	S390	10	2A
C373	51	3 F	R2	1 J	4B	R379	9 H	2 E	5392	8	$3 F$
С378	7J	4G	A4	11	4B	R382	7.	4 E	S401	5 G	2G
C377	91	2E	R45	3G	$2 E$	R383	7K	4 F	S460	4 E	$1 F$
C378	91	2 F	R46	3 F	3E	R428	4 C	1F	S505	4K	2 F
C383	7K	4E	R52	31	4D	R511	5D	3G	S545	2 H	2 D
C382	7K	2G	R84*	7 C	3 C	R517	5E	2 F	\$550	36	2 B
C725	6 F	2D	R89	6D	20	R518	5 F	2F	S555	4 H	3 F
C726*	7 F	1E	R92	7 C	2 D	R724	$6 F$	20	S601	4 F	2 E
			R94	6C	2 C	R725	6 F	2 D	S603	8 D	4 E
CR381	7H	3E	R113	2 E	18	R726	7F	1 E			
CR534	3G	2B	R123	2 E	18	R727	8 D	2D	W1	1 C	4A
CR537	2G	2B	R173	2 C	1 D	R728	7 E	2 E	W2	2 C	2 A
CR538	2 F	28	R280	3 E	1 C	R729	7E	1E	W3	3 C	4D
			R365*	8G	3A	R800	1 F	2A	W4	5 C	4 E
DS370	8 F	4A	R370	71	3E	R802	1E	1A	w5	4L	4 F
DS560	6D	2 F	R371	6H	2 E				w6	5 L	4 F
			R372	61	2E	590	7 C	2C	W7	7 C	30

Partial A3 also shown on diagrams 1, 2, 3, 4 and 7.

OTHER PARTS

$\begin{aligned} & \mathrm{J} 100 \\ & \mathrm{~J} 151 \end{aligned}$	$1 K$ 3 K	CHASSIS CHASSIS	$\begin{aligned} & \text { J300 } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & 7 M \\ & 1 K \end{aligned}$	CHASSIS CHASSIS	$\begin{aligned} & \text { R3 } \\ & \text { R51 } \end{aligned}$	$\begin{aligned} & 2 K \\ & 3 K \end{aligned}$	CHASSIS CHASSIS	$\begin{aligned} & \text { R53 } \\ & \text { R382 } \end{aligned}$	$3 K$ 74	CHASSIS CHASSIS

*See Parts List for
serial number ranges.

WAVEFORMS FOR DIAGRAM 7

35

POWER SUPPLY, Z-AXIS, \& CRT DIAGRAM 7

ASSEMBLY A1											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	BOARD LOCATION
C805	5 H	5G	CR827	30	3 G	R818	3 C	5 E	R928	7G	10.
C824	4 C	5 F	CR828	3D	3G	R819	2D	5 F	R929	6 F	9 K
C825	3D	3G	CR829	3 E	4G	R820	4 C	$5 E$	R930	6 F	9 K
C828	4 D	3G	CR840	3 F	3 H	R821	3 C	$5 E$	R931	6 G	10.1
C832	2 E	4H	CR845	3 F	3 H	R822	4D	8B	R932	8 E	8 K
C834	4 F	3G	CR851	4 H	7 G	R823	4 D	5 F	R933	7 G	9 J
C835	4F	3 H	CR853	4 H	5 H	R825	30	5 F	R934	8 E	7K
C845	3 F	3 H	CR854	31	51	R830	3 E	4 G	R935	6 H	8 J
C847*	3 F	3 H	CR855	31	51	R832	3 E	4 G	R936	61	9 J
C849 ${ }^{\circ}$	2 F	3 H	CR912	50	10K	R834	4E	3G	R937	61	81
C851*	4 H	7G	CR915	7 E	8 K	R835	4 E	3G	R938	61	$9 J$
C853	5	81	CR923	8 F	10 J	R836	4 E	3G	R939	61	9 J
C854	4)	5H	CR933	8 F	10 K	R840	3 E	3 H	R940	7 F	10K
C855	4 H	51	CR953	51	91	R841	3 E	4 H	R941	8G	8 J
C871*	3M	6 F	CR983	71	9.1	R842	3 F	4 H	R942	6G	8 J
C875*	5M	5G	CR984*	6K	8 H	R844	3 E	3 H	R943	6 H	81
C893	3K	41	CR985*	7 K	8 H	R845	3 E	3 H	R944	8 H	71
C901	5A	7 J	CR986*	7 K	$8{ }^{8}$	R849	2 F	31	R945	8 H	8 J
C902	5A	71	CR987*	7 K	8 H	R850	41	7G	R946	8 H	7 J
c908	8 D	8k	CR988*	8 K	8 H	R851	4H	7G	R952	6	10 H
C909	60	$7 J$	CR989*	8 K	8 H	R852	4 H	7 F	R953	65	91
C910	6 D	$7 . J$	CR990	8 K	9 H	R853	41	71	R965	8 H	8 J
C912	$6 E$	8 K	CR991	9 K	9 H	R854	41	5 H	R966	81	9 J
C913	7E	8 K				R858	31	5 J	R967	71	8 J
C914	8 E	75	DS856	3 H	5 J	R860	3 H	5 J	R968	81	9 J
C915	5D	10 K	DS858	3 H	5 J	R870	3M	6G	R969	81	9 J
C924	8 F	9 K	DS870	4 J	4 J	R872	4M	3 K	R975	3.1	6 H
C927	$6 F$	9 J				R873	4M	2K	R976	4.1	6 J
C932	61	8 J	J1-3	4B	6A	R874	5 M	5 G	R978	4.	5 J
C933	61	8 J	J4-6	4B	9 A	R875	5M	6 F	R982	81	101
C939	7 F	9 K	J6-6	4 B	10A	R877	7 K	51	R983	7 J	9 J
C940	61	9 J				R885	2 G	5 G			
C941	8 H	7 J	L910	55	6K	R886	21	4 H	T902	9 K	91
C942	6 H	71	L970	$5 E$	81	R888	21	4 H			
C952	61	91	L986	7K	8 G	R889	21	4 H	TP842	3G	4 H
C953	6.1	81	L988	8K	9 G	R890	21	4 H	TP972	5 F	8 G
C962	81	8.	1990	8 K	9 G	R891	2 J	41	TP984	6K	7 G
C963	81	8.				R892*	2K	4	TP987	7L	9 G
C970	81	9 9	P900	5 K	5 J	R894	3 K	51	TP989	8 L	9 G
C971	5 E	71				R898	6 D	7 J	TP991	8 C	10 G
C972	6 H	81	0804	3B	5 H	R899	58	10 G			
C975	3 J	5 K	0817	2 C	4 E	R900	5A	81	U910	7 D	8 K
C976	4 J	5 K	0825	3 D	4G	R901	6A	7 J	U920A	7 F	9 K
C979	4 J	5K	0829	3 E	4 H	R907	6 D	7 J	U920B	6 F	9 K
C982	71	9 J	0835	4 E	3 H	R908	8 D	8 K	4940	7H	8.1
C983	73	8 J	0840	3 F	4 H	R909	6 D	75	U975	3.1	6 H
C984	7k	7 H	Q845	3 F	4 H	R910	6 D	81			
C986	7K	8 H	Q885	21	5H	R911	7 E	8 K	VR910	6 D	71
C987	7 L	8 F	Q911	$6 E$	$7 J$	R912	6 E	8 K	VR931	8G	9 K
C988	7 K	8 H	0912	5 E	11 k	R913	7 F	8 K	VR939	61	81
C989	8 L	9 F	0913	5D	11k	8914	70	8 K	VR942	6 H	81
C990	8K	8 H	0918	8 D	7 K	R915	7 F	8 K	VR969	71	8 J
C991	8 L	9 F	0921	6 E	10 J	R916	6 E	10K			
			0923	8 F	11J	R917	8 E	7K	W90	7M	7G
CR816	3 C	4 E	0930	71	9.1	R 918	8 D	$8 \mathrm{8K}$	W701-5	2 B	5 E
CR817	3 C	4E	0940	6 J	10 J	R919	60	10k	W893	2L	41
CR818	3 C	5 E	0950	6 J	11 H	$R 920$	5 D	10k	W971	5 F	4K
CR819	3 C	5 E	0960	81	9.1	R921	6 F	10.5	W972	5F	8 G
CR820	3 C	5 F	0970	8 J	10 J	R922	7 E	8 K	W984	6 K	7G
CR821	3 C	5 E	0980	85	101	R923	8 D	10 J	W985	7 K	4 K
CR822	2 C	2 F				R924	8 F	10K	W987	71	8G
CR823	3 D	4 F	R804	4 B	5G	R925	7 F	9 K	W989	8L	9 G
CR824	3 D	4G	R805	2 C	5 G	R926	7 F	10K	W991	8 L	10 G
CR825	3 E	4 G	R806	4 E	6 H	R927	7G	10K			
Partial A1 also shown on diagrams 2, 3, 4, 5 and 6.											

*See Parts List for
serial number ranges.

ASSEMBLY A3											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
$\begin{aligned} & \mathrm{J} 987 \\ & \text { R800 } \end{aligned}$	2M 3 A	$2 A$ $2 A$	$\begin{aligned} & \text { R802 } \\ & \text { R986 } \\ & \text { R987 } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 2 \mathrm{M} \\ & 2 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1 A \\ & 3 A \\ & 2 A \end{aligned}$	$\begin{aligned} & \text { W1-3 } \\ & \text { W4-6 } \\ & \text { W6-6 } \end{aligned}$	$\begin{aligned} & 4 A \\ & 4 A \\ & 5 A \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 4 \mathrm{E} \\ & 4 \mathrm{~F} \end{aligned}$			
Partial A3 a/so shown on diagrams 1, 2, 3, 4 and 6.											
ASSEMBLY A4											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { BOARD } \\ \text { LOCATION } \\ \hline \end{array}$
c900	5 C	2 D	CR904	6	1 c	1902	88	28	R906	68	D
C903	8 B	3 C									
C904	8 C	30	F901	9 B	1B	0900	5 C	10	5901	8 C	4 C
C905*	88	48					$a r$		S902	7 C	4A
CR901	6 B	1 D	J 901 J 902	$8 B$ 68	2A	$\begin{aligned} & \text { R902 } \\ & \text { R903 } \end{aligned}$	$\begin{aligned} & 6 \mathrm{C} \\ & 5 \mathrm{C} \end{aligned}$	1 l	W903-1	5 C	1 D
CR902	6 C	1 C				R904	5 C	1 D	W903-2	6 C	1 D
CR903	6 B	1 C	1901	8B	3 C	R905	6 B	$1{ }^{10}$	W903-3	58	1 D
ASSEMBLY A5											
CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { BOARD } \\ \text { LOCATION } \\ \hline \end{array}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{array}{\|c} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{array}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$
R893*	2 L	1A									
CHASSIS MOUNTED PARTS											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD Location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{array}{\|l\|} \text { BOARD } \\ \text { LOCATION } \end{array}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { BOARD } \\ \text { LOCATION } \\ \hline \end{array}$
T901	68	CHASSIS	V900	3L	CHASSIS						

*See Parts List for serial number ranges.

2225
6299-08
POWER DISTRIBUTION

Fig. 9-10. A6-Option 07 Inverter board.

COMPONENT NUMBER EXAMPLE

[^4]| ASSEMBLY A6 | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIRCUIT NUMBER | $\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$ | BOARD LOCATION | CIRCUIT
 NUMBER | $\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$ | BOARD LOCATION | CIRCUIT NUMBER | SCHEM LOCATION | $\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$ | CIRCUIT NUMBER | SCHEM LOCATION | BOARD LOCATION |
| Cl | 4 D | 3 E | | | | 05 | 4D | 20 | R17 | 5B | 18 |
| C2 | 4E | 30 | F1 | 18 | 1E | 08 | 1F | 2 C | R18 | 3 C | 10 |
| C3 | 6 F | 2 D | | | | | | | R19 | 58 | 10 |
| C5 | 2 H | 3A | K1 | 3D | 2 E | R1 | 6G | 2 E | R20 | 3 C | 1 B |
| C6 | 2 H | 2 A | K1A | 10 | 2 E | R2 | 6 H | 2D | R21 | 5 C | 18 |
| C7 | 6G | 2 E | K1B | 70 | 2 E | R3 | 6 H | 30 | R22 | 4 C | 18 |
| C8 | 6G | 2 D | K2 | 5 | 1A | R5 | 4 H | 2 D | R23 | 3 D | 2 C |
| C9 | 6 F | 2 E | K2A | 1 J | 1 A | R6 | 5 J | 1 B | R24 | 4 D | 1 c |
| C10 | 4 F | 2 E | K2B | 6 B | 1 A | R7 | 5 H | 2D | | | |
| C11 | 6 F | 2 E | | | | R8 | 1 G | 28 | U1 | 4F | 20 |
| C12 | ${ }^{2 \mathrm{H}}$ | 38 10 | L1 | 2G | 3 C | R9 | 5 F | 2 D | U2 | 4 C | 10 |
| C14 | 5B | 2 C | L2A | 1 E | 3E | R10 | 5H | 2 D | U3 | 2 G | 2 B |
| C15 | 5 C | 1 B | L2B | 7 E | 3E | A11 | 4 E | 1 E | $U 4$ | 28 | 2D |
| C16 | 5 C | 1 B | | | | R12 | 5 F | 2 E | | | |
| | | | 01 | 4H | 3 C | R13 | 2 F | 2 B | VR1 | 2G | 28 |
| CR1 | 2 G | 3 B | Q2 | 4H | 3 C | R14 | 3 F | 2 C | | | |
| CR2 | 1B | 2 E | Q3 | 5 E | 2 E | R15 | 4E | 2 D | W903 | 18 | 2 A |
| CR3 | 6G | 2 D | Q4 | 6 F | 2D | R16 | 3 B | 18 | W903 | 1 J | 2E |
| CHASSIS PARTS | | | | | | | | | | | |
| C 17 | 4A | CHASSIS | C18 | 4A | CHASSIS | J90 | 4A | CHASSIS | | | |

Figure 9-11. A1-Main board adjustment locations.

Figure 9-12. A2—Attenuator/time base adjustment locations.

Figure 9-13. A3—Front Panel board adjustment locations.

Figure 9-14. 2225 Front panel controls, connectors, and indicators.

REPLACEABLE
 MECHANICAL PARTS

PARTS ORDERING INFORMATION

Aeplacement parts are available from or through your loca Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available. and to give you the benefit of the latest circuit improvements developed in our engineering department it is therefore important. when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix. Inc. Field Office or representative will contact you concerning any change in part number

Change information, if any, is located at the rear of this manual

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an ltem Name may sometimes appear as incomplete. For further Item Name identification. the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

12345	Name \& Description
Assembly andior Component	
Attaching parts for Assembly and/or Component END ATTACHING PARTS	
Detail Part of Assembly andor Component	
Attaching parts for Detail Part	
Parts of Detail Part	
Attachi	Detail Part

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right Indented items are part of, and included with, the next higher indentation.

Attaching parts must be purchased separately, unless otherwise specified.

ABEREV/ATMNS							
"	INCH	ELCTRN	ELECTRON	IN	INCH	SE	SINGLE END
$\#$	NUMBER SIZE	ELEC	ELECTPICAL	INCAND	INCANDESCENT	SECT	SECTION
ACTR	ACTUATOA	ELCTLT	ELECTROLYTIC	INSUL	insulator	SEMICOND	SEMICONDUCTOR
ADPTR	ADAPTER	ELEM	ELEMENT	INTL	INTERNAL	SHLD	SHIELD
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LIST	LPHLDR	LAMPHOLDER	SHLDR	SHOULDERED
AL	ALUMINUM	EOPT	EOUIPMENT	MACH	MACHINE	SKT	SOCKET
ASSEM	ASSEMBLED	EXT	EXTERNAL	MECH	MECHANICAL	SL	SLIDE
ASSY	ASSEMBLY	Fil	FILLISTER HEAD	MTG	MOUNTING	SLFLKG	SELF-LOCKING
ATTEN	ATTENUATOR	FLEX	FLEXIBLE	N1P	NIPPLE	SLVG	SLEEVING
AWG	AMERICAN WIRE GAGE	FLH	FLAT HEAD	NON WIRE	NOT WIRE WOUND	SPR	SPRING
BD	BOARD	FLTR	FILTER	OBD	ORDER EY DESCRIPTION	SO	SOUARE
BRKT	BRACKET	FR	FRAME or FRONT	OD	OUTSIDE DIAMETER	SST	STAINLESS STEEL
BRS	BRASS	FSTNR	FASTENER	OVH	OVAL HEAD	STL	STEEL
BRZ	BRONZE	FT	FOOT	PH BRZ	PHOSPHOR BRONZE	SW	SWITCH
BSHG	BUSHING	FXD	FIXED	$P \mathrm{P}$	PLAIN or PLATE	T	TUBE
CAB	CABINET	GSKT	GASKET	PLSTC	PLASTIC	TERM	TERMINAL
CAP	CAPACITOA	HDL	HANDLE	PN	PART NUMBER	THD	THREAD
CER	CERAMIC	HEX	HEXAGON	PNH	PAN HEAD	THK	THICK
CHAS	CHASSIS	HEX HD	HEXAGONAL HEAD	PWR	POWER	TNSN	TENSION
CKT	CIRCUIT	HEX SOC	HEXAGONAL SOCKET	RCPT	AECEPTACLE	TPG	TAPPING
COMP	COMPOSITION	HLCPS	HELICAL COMPRESSION	RES	RESISTOR	TRH	TRUSS HEAD
CONN	CONNECTOR	htext	HELICAL EXTENSION	RGD	RIGID	\checkmark	VOLTAGE
COV	COVER	HV	HIGH VOLTAGE	RLf	RELIEF	VAR	variable
CPLG	COUPLING	IC	integrated circuit	RTNR	RETAINER	W/	WITH
CRT	CATHODE RAY TUBE	ID	INSIDE DIAMETER	SCH	SOCKET HEAD	WSHR	WASHER
DEG	DEGREE	IDENT	IDENTIFICATION	SCOPE	OSCILLOSCOPE	XFMR	TRANSFORMER
DWR	DRAWER	IMPLR	IMPELLER	SCR	SCREW	XSTR	TRANSISTOR

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip Code
01536	TEXTRON INC		ROCKFORD IL 61108
	CAMCAR DIV	1818 CHRISTINA ST	
	SEMS PRODUCTS UNIT		
06383	PANDUIT CORP	17301 RIDGELAND	TINLEY PARK IL 07094-2917
06915	RICHCO PLASTIC CO	5825 N TRIPP AVE	CHICAGO IL 60646-6013
07416	NELSON NAME PLATE CO	3191 CASITAS	LOS ANGELES CA 90039-2410
12327	FREEWAY CORP	9301 ALLEN DR	CLEVELAND OH 44125-4632
13511	AMPHENOL CADRE DIV BUNKER RAMO CORP		LOS gATOS CA
16428	COOPER BELDEN ELECTRONIC WIRE AND CA SUB OF COOPER INDUSTRIES INC	NW N ST	RICHMOND IN 47374
22670	G M NAMEPLATE INC	2040 15TH AVE WEST	SEATTLE WA 98119-2728
70903	COOPER BELDEN ELECTRONICS WIRE AND C SUB OF COOPER INDUSTRIES INC	2000 S BATAVIA AVE	GENEVA IL 60134-3325
78189	ILLINOIS TOOL WORKS INC	ST CHARLES ROAD	ELGIN IL 60120
	SHAKEPROOF DIV		
80009	TEKTRONIX INC	14150 SW KARL BRALN DR PO BOX 500	BEAVERTON OR 97077-0001
83385	MICRODOT MFG INC	3221 W BIG BEAVER RD	TROY MI 48098
	GREER-CENTRAL DIV		
83486	ELCO INDUSTRIES INC	1101 SAMUELSON RD	ROCKFORD IL 61101
86113	MICRODOT MFG INC	149 EMERALD ST	KEENE NH 03431-3628
	CENTRAL SCREW-KEENE DIV		
86928	SEASTROM MFG CO INC	701 SOMORA AVE	GLENDALE CA 91201-2431
93907	TEXTRON INC	600 18TH AVE	ROCKFORD IL 61108-5181
K2504	RS COMPONENTS LTD	P0 B0X 99	CORBY NORTHANTS NN17 9RS ENGLAND
S3109	FELLER	72 Veronica Ave	Summerset NJ 08873
		Unit 4	
S3629	SCHURTER AG H C/O PANEL COMPONENTS CORP	2015 SECOND STREET	BERKELEY CA 94170
TK0174	bADGLEY MFG CO	1620 NE ARGYLE	PORTLAND OR 97211
TK0861	H SCHURTER AG DIST PANEL COMPONENTS	2015 SECOND STREET	BERKELEY CA 94170
TKODA	MET-ETCH (SELKIRK) LTD		SELKIRK TD75DK SCOTLAND
TKOEB	B D TOOLS	237 BULLSMOOR LAND ENFIELD	MIDDX ENGLAND
TKOEC	CARON ENG. SERVICE	10-11 STATION CLOSE	HERTS ENGLAND
		POTTERS BAR	
TKOEH	HARLOW SPRINGS	HARLOW	ESSEX ENGLAND
	$1+2$ ROYDONBURY IND EST		
	THE PINNACLES		
TKOEI	HIBBERTS \& RICHARDS	LANCASTER ROAD	HERTS ENGLAND
	UNIT A	NEW BARNET	
TKOE	IMP WORKS	ESSEX ROAD	HERTS ENGLAND
TKOEL	MOLBRY LTD	HOLLAND WAY	DORSET ENGLAND
		BLANDFORD	
TKOEO	PLANET JIG \& TOOL	BAKER STREET	BUCKS ENGLAND
		HIGH WYCOMBE	
TKOEP	PRINTLINE	5-6 HAROWICK STREET	LONDON ENGLAND
	ORMOND HOUSE		
TKOER	REEVITE IND. MOULDINGS	16 MURDOCK ROAD	OXFORDSHIRE ENGLANO
		BICESTER	
TKOES	SMALL POWER MACHINE CO	BATH ROAD	WILTSHIRE ENGLAND
	INDUSTRIAL ESTATE	CHIPPENHAM	
TKOET	WARTH INTERNATIONAL	CHARLWOODS ROAD	EAST GRINDSTEAD ENGLAND
	CHARLWOODS BUSINESS CENTER		
TKOEX	LUCAS DIIRALITH LTD	VICTORIA ROCHE	CORWALL PL28 8JU ENGLAND
	STATION APPROACH		
TK1326	NORTHWEST FOURSLIDE INC	18224 SW 100TH CT	TUALATIN OR 97062
TK1336	PARSONS MFG CORP	1055 OBRIEN	MENLO PARK CA 94025
TK1694	ROSE CITY LABEL CO	7235 SE LABEL LN	PORTLAND OR 97213
TK1723	MAGNETIC SHIELDS LTD	HEADCORD ROAD	KENT TN 12 ODS ENGLAND
		STAPLEHRST, TONBRIDGE	
TK2165	TRIQUEST CORP	3000 LEWIS AND CLARK HNY	VANCOUNER WA 98661-2999

Fig. 8

Fig. $\&$

Fig. \&

Fig. \& Index No.	Tektronix Part No.	Serial/Assenbly Mo. Effective Dscont	Oty	12345 Name \& Description	Mfr. Code	Mfr. Part Mo.
3-	STANDARD ACCESSORIES					
	-		1	ACCESSORY PKG:TWO P6103 PROBE,W/ACCESS		
	070-6298-01		1	MANLAL, TECH:OPERATORS, 2225	TKOEP	ORDER BY DESCR
-1	161-0104-00		1	CABLE ASSY, PWR, : 3 WIRE, 98.0 L,W/RTANG CONN (UNITED KINGDOM ONLY)	16428	CH8352, FH-8352
	161-0230-01		1	CABLE ASSY,PWR, : 3,18 AWG,92.0 L (U.S.A. ONLY)	80009	161-0230-01
-2	343-0003-00		1	$\begin{aligned} & \text { CLAMP,LOOP:O. } 25 \text { ID,PLASTIC } \\ & \text { (POWER CORD CLAMP) } \end{aligned}$	06915	E4 CLEAR ROIND
-3-4	213-0882-00		1	SCREW, TPG, TR: 6-32 X 0.437 TAPTITE, PNH,STL	83385	ORDER BY DESCR
	210-0803-00		1	WASHER, FLAT: 0.15 ID $\times 0.37500 \times 0.032$, STL	12327	ORDER BY DESCR
	020-0859-00			COMPONENT KIT:EUROPEAN	80009	020-0859-00
	200-2265-00		1	.CAP, FUSEHOLDER: 5×2 OMM FUSES	TK0861	FEK 031.1663
-5	161-0104-06		1	.CABLE ASSY, PWR, : $3 \times 0.75 \mathrm{MM}$ SQ,220V,98.0 L .(OPTION AI ONLY)	S3109	ORDER BY DESCR
	020-0860-00		1	COMPONENT KIT: UNITED KINGDOM	80009	020-0860-00
	200-2265-00		1	.CAP, FUSEHOLDER: 5×2014 FUSES	TK0861	FEK 031.1663
-6	161-0104-07		1	.CABLE ASSY, PWR, : $3 \times 0.75 \mathrm{MM} \mathrm{SQ}, 240 \mathrm{~V}, 98.0 \mathrm{~L}$. (OPTION AZ ONLY)	80009	161-0104-07
	020-0861-00		1	COMPONENT KIT:AUSTRALIAN	80009	020-0861-00
	200-2265-00		1	.CAP, FUSEHDLDER: $5 \times 20 M M$ FUSES	TK0861	FEK 031.1663
-7	161-0104-05		1	.CABLE ASSY, PWR, : 3,18 AWG, 240V, 98.0 L . (OPTION A3 ONLY)	S3109	ORDER BY DESCR
	020-0862-00		1	COMPONENT KIT: NORTH AMERICAN	80009	020-0862-00
	200-2265-00		1	.CAP, FUSEHOLDER: 5×2 OMM FUSES	TK0861	FEK 031.1663
-8	161-0104-08		1	.CABLE ASSY, PWR, :3,18 AMG, 240V,98.0 L (OPTION A4 ONLY)	70903	ORDER BY DESCR
	020-0863-00		1	COMPONENT KIT:SWISS	80009	020-0863-00
	200-2265-00		1	.CAP, FUSEHOLDER: $5 \times 20 \mathrm{MM}$ FUSES	TK0861	FEK 031.1663
-9	161-0167-00		1	.CABLE ASSY, PWR, :3.0 X 0.75,6A,240V,2.5M L . (OPTION A5 ONLY)	80009	161-0167-00
	OPTIONAL ACCESSORIES					
	016-0180-00		1	VISOR,CRT:FOLDING	TK2165	ORDER BY DESCR
	016-0566-00		1	VISOR, CRT:	TK2165	ORDER BY DESCR
	016-0592-00		1	VISOR,CRT:	TK2165	ORDER BY DESCR
	016-0677-02		1	POUCH, ACCESSORY:W/PLATE	TK0174	016-0677-02
	016-0785-00		1	ACCESSORY KIT:MOUNTING. 1107 TO 2200	80009	016-0785-00
	016-0792-01		1	CASE, CARRYING:24.5 $\times 16.5 \times 11.5$	TK1336	ORDER BY DESCR
	016-0819-02		1	ADAPTER,RACK:RACMMOUNT	80009	016-0819-02
	016-0921-00		1	ACCESSORY KIT: 24×1 SIGNAL ADAPTER (OPTION 22 ONLY)	80009	016-0921-00
	020-1514-00		1	ACCESSORY KIT: (OPTION O2)	80009	020-1514-00
	070-6299-00		1	MANUAL, TECH: SERVICE, 2225	80009	070-6299-00
	200-3397-00		1	COVER, SCOPE: FRONT	80009	200-3397-00
	337-2775-01		1	SHLD. IMPLOSION:	80009	337-2775-01

APPENDIX

Table A-1
Magnified Sweep Speeds

SECIDIV Setting	Magnified Sweep Speed (Time/Division)		
	X5	X10	$\times 50$
0.5 s	0.1 s	50 ms	10 ms
0.2 s	40 ms	20 ms	4 ms
0.1 s	20 ms	10 ms	2 ms
50 ms	10 ms	5 ms	1 ms
20 ms	4 ms	2 ms	0.4 ms
10 ms	2 ms	1 ms	0.2 ms
5 ms	1 ms	0.5 ms	0.1 ms
2 ms	0.4 ms	0.2 ms	$40 \mu \mathrm{~s}$
1 ms	0.2 ms	0.1 ms	$20 \mu \mathrm{~s}$
0.5 ms	0.1 ms	$50 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
0.2 ms	$40 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}$	$4 \mu s$
0.1 ms	$20 \mu s$	$10 \mu \mathrm{~s}$	$2 \mu s$
$50 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$20 \mu \mathrm{~s}$	$4 \mu s$	$2 \mu s$	$0.4 \mu \mathrm{~s}$
$10 \mu \mathrm{~s}$	$2 \mu s$	$1 \mu s$	$0.2 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$	$0.1 \mu s$	$0.5 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$
$2 \mu s$	$0.4 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	40 ns
$1 \mu \mathrm{~s}$	$0.2 \mu s$	0.1 ms	20 ns
$0.5 \mu s$	$0.1 \mu \mathrm{~s}$	50 ns	10 ns
$0.2 \mu \mathrm{~s}$	40 ns	20 ns	N/A
0.1 ms	20 ns	10 ns	N/A
. $05 \mu \mathrm{~s}$	10 ns	5 ns	N/A

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

The information contained within the attached pages describe the new Option 07 (dc-to-dc inverter) which is now available for the 2225 instruments.
\qquad

OPTION 07

INTRODUCTION

Option 07 provides a dc-to dc inverter circuit physically located within the power supply compartment of the 2225. The Tektronix Type 2225 Oscilloscope fitted with Option 07 operates from either ac or dc power sources.

The inverter operates from a dc input voltage of +11.8 to +30 volts. A dc voltage monitor circuit continually checks the dc input voltage for proper level. If the input voltage falls below +10.65 volts, the power source will
automatically be disconnected. This is to limit the depth of discharge that the battery power source could be subjected to while supplying power to the 2225 Oscilloscope.

SPECIFICATIONS

The 2225 Option 07 instrument meets all electrical and environmental characteristics stated in tables 1-1 and 1-2. Additional electrical and mechanical characteristics which apply to the dc-dc inverter (Option 07) are listed in the following two tables.

ELECTRICAL SPECIFICATIONS

Characteristics	Performance Requirements
Turn-on Range	+11.8 to 30 V.
Battery Protection Shutdown Limit	$+10.65 \mathrm{~V} \pm 2 \%$.
Rated Inverter Output Power	35 Watts.
Input Protection	Low voltage and reverse polarity.
Output Protection	Short circuit and overload.
Supplu Voltage	Battery Pack or External Supply.
Mains Voltage Operation	Inverter is automatically disconnected from the 2225 preregulator when mains power is applied to the 225 mains input receptacle.

MECHANICAL SPECIFICATIONS

Characteristics	Performance Requirements
Weight	$6.75 \mathrm{~kg}(14.9 \mathrm{lbs})$.
2225 with Option 07 and Power Cord	$9.15 \mathrm{~kg}(20.2 \mathrm{lbs})$.

Page 1 of 11
\qquad
\qquad

DESCRIPTION

OPERATING INSTRUCTIONS

Power Source

Dc Requirement: The Option 07 requires an external dc power source of between +11.0 V and +30 V . Maximum current consumption is 5 Amperes.

Ac Requirement: Operates from 115 volts or 230 volts ac, within the limits specified for the standard 2225 instrument.

Loss of Ground

The 2225 Option 07 is grounded through the dc power cord grounding conductor. Upon loss of the protective ground connection, all accessible conductive parts, including knobs and controls that may appear to be insulated can render electric shock.

CONNECTORS

An additional connector is added to the rear of the Option 07 instrument for use with the supplied dc power cord.

PERFORMANCE CHECK PROCEDURE

This procedure is used to verify proper operation of the dc-to-dc inverter (Option 07) against the requirements listed in the specifications.

Remove the cabinet from the 2225 Oscilloscope. Refer to the cabinet remove and replace instructions located in the Maintenance section of the service manual.

Equipment Required

DC variable power supply with 0 to $30 \mathrm{~V} @ 5 \mathrm{~A}$ integral ammeter

Voltmeter
0.2% accuracy
b. Adjust the range of the voltmeter to measure up to 30 V and connect across the DC supply (observing proper polarity) to measure the applied voltage.
c. Switch both the 2225 oscilloscope and the DC power supply to on. Increase the DC power supply to 10 V . The 2225 oscilloscope should not power up.
e. Slowly increase the DC power supply until the 2225 oscilloscope powers-up.
f. CHECK-voltmeter reads between +11.42 V and +11.86 V .
g. Disconnect the voltmeter from the DC supply. Using the voltmeter, check that all internal power supply voltages of the 2225 Oscilloscope are within limits. Reter to Table 5-2 located in Section 5 of the service manual for test points and voltages.
h. Increase the $D C$ power supply to 30 V .
i. CHECK-that all power supply voltages of the 2225 Oscilloscope remain within their limits.
j. Connect the voltmeter across the DC input of the 2225 Option 07. Slowly reduce the DC power supply to the point that the 2225 Oscilloscope shuts down.
k. CHECK-that the voltmeter reads between +10.44 V and +10.86 V

1. Adjust the DC power supply to 30 V . Note the current being drawn from the supply. Reduce the DC power supply output voltage until the scope shuts down, checking that the current does not exceed 5 Amps at any time. Set the DC power supply to OV output.
m. Turn the power off on the DC power supply and reverse the polarity of the connections to the DC input of the 2225 Option 07 . Switch the DC power supply on again.
n. CHECK-that no current is drawn while increasing the output voltage to 30 V .

Page 2 of 11
o. Turn power off on the DC power supply and reconnect the supply to the 2225 Option 07 observing correct polarity.
p. Turn the DC power supply on and set to 12 V for operation of the 2225 Oscilloscope.
q. Plug the 2225 Oscilloscope's AC Power Cord into a suitable power outlet noting that the Line Voltage Selection switch of the 2225 Oscilloscope is properly set.
r. Note that the current drawn from the DC power supply now drops to zero.
s. Unplug the 2225's AC Power Cord and check that the scope returns to operation from the DC power supply.

NOTE

There is approximately a 10 second switching delay from an AC power source to the DC power supply.

ADJUSTMENT PROCEDURE

There are no adjustments to be made to the 2225 Option 07 dc-to-dc inverter.

THEORY OF OPERATION

The Option 07 dc-to-dc inverter produces a 48 volt dc output voltage which is applied to the 2225 preregulator circuit. The inverter output voltage is held constant over a Line Input dc voltage range of +11 to +30 volts.

Dc Input-The dc input enters via the rear panel dc input plug. Two disc capacitors, C17 and C18, decouple the input to ground.

Protection-The inverter will only operate if K1 is energized. CR1 protects against reverse connection of the dc supply. U4, R18, and R19 generate a reference voltage of 9 V . This reference is divided by R20 and R21, and compared by U2 with a voltage proportional to the input set by R16 and R17. When the + input of U2 drops below the - input, the comparator output voltage falls to near ground and turns off Q5, deactivating K1 and the inverter. Capacitors C13, C14, C15, and C16 provide noise reduction to prevent unwanted switching.

Inverter Circuit-The primary circuit consists of L1, Q1 and Q2 in parallei, and current sense resistors R2 and R3. With Q1 and Q2 switched on, the primary current increases, building up energy in L1. When Q1 and Q2 switch off, this energy is transferred to the secondary in the form of a large voltage pulse. CR1 rectifies the output and capacitors C5, C6, and C12 smooth it to a dc voltage.

Voltage feedback-R8 and VR1 produce a current through U3 for the voltage feedback loop. VR1 improves sensitivity, regulation, and allows wide input voltage variations. U3 provides isolation to the circuit. The voltage at Q6 follows the Vref voltage at pin 8 of U 1 which provides a stable 5 volt reference. This reference voltage is divided by resistors R13, R14, and R15 providing feedback to pin 2 of U1.

Current mode control-This type of feedback regulates the peak inductor current and improves stability. R2 and R3 generate a voltage proportional to the primary current. R1 and R10 form a divider network from the oscillator output, voltage followed by Q4, to the current limit input. This is superimposed on the primary current voltage.

R9 and C3 set the oscillator frequency of U1 to 30 KHz .
Soft Start-With the power switch on, C9 charges up through R12. This gradually turns off Q3 which in turn slowly increases the voltage on pin 1 of U1. The resulting gradual increase in the mark space ratio reduces start up surges.

Input filtering-Due to the large variations in the input current, an input filter is fitted, which comprises of coupled inductor L2, low ESR capacitor C2, and C1.
Product: 2225 SERVICE Date: 8-1-88 Change Reference: C1/0888

OPTIONS

Option 07 is compatible with all currently available instrument options with the exception of option 1R (rackmounting).

ACCESSORIES

In addition to the standard accessories supplied with the 2225, Option 07 is shipped with a dc power cord with integral plug. The color coding of the dc power cord is as follows:
RED. \qquad POSITIVE
PURPLENEGATIVE
GREEN/YELLOW
CHASSIS

OPTIONAL ACCESSORIES

The 1104 Battery Pack is an additional optional accessory available for use with the 2225 Option 07 instrument along with those that can be found in the standard instrument manual.

MAINTENANCE

No additional maintenance is necessary for the 2225 Option 07 instrument other than that specified for the standard 2225 instrument.

REPALCEABLE ELECTRICAL PARTS LIST

Component No.	Tektronix Part No.	Serial/Assenbly No. Effective Dscont	fare \& Description	Mfr. Code	Mfr. Part Mo.
A4DS901	260-2438-00		SWITCH, PUSH: POWER, 4A, 250VAC	80009	260-2438-00
A6	671-0781-00		CIRCUIT BD ASSY:INVERTER	80009	671-0781-00
A6C1	281-0826-00		CAP, FXD, CER DI: $2200 \mathrm{PF}, 10 \%$,100V	20932	401EM100AD222K
A6C2	290-1209-00		CAP, FXD, ELCTLT:470UF,35V, RADIAL LEAD	80009	290-1209-00
A6C3	281-0773-00		CAP, FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A6C5	290-1208-00		CAP,FXD,ELCTLT:220UF,63V,RADIAL LEAD	80009	290-1208-00
A 6 C6	290-1208-00		CAP, FXD, ELCTLT:220UF,63V,RADIAL LEAD	80009	290-1208-00
A6C7	281-0814-00		CAP, FXD, CER DI:100 PF, $10 \%, 100 \mathrm{~V}$	04222	MA101A101KAA
A6C8	281-0775-01		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A6C9	290-0183-00		CAP, FXD, ELCTLT:1UF,10\%,35V	05397	T3228105K035AS
A6C10	281-0775-00		CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	MA205E104MAA
A6C11	281-0775-01		CAP, FXD,CER DI:0.1UF,20\%,50V	04222	SA105E104MA
A6C12	281-0773-00		CAP, FXD,CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A6C13	281-0775-01		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	SA105E104MAA
A6C14	281-0775-01		CAP, FXD, CER DI: $0.1 \mathrm{FF}, 20 \%$, 50 V	04222	SA105E1044AA
A6C15	281-0775-01		CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	SA105E104MAA
A6C16	281-0773-00		CAP, FXD, CER DI:0.01UF, $10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A6CR1	152-0864-00		SEMICOND DVC, DI:RECT,SI,150V, 1A	80009	152-0864-00
A6CR2	152-0141-02		SEMICOND DVC.DI:SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A6CR3	152-0951-00		SEMICOND DVC DI:SCHDTTKY,SI,60V,2.25PF	80009	152-0951-00
A6FI	159-0298-00		FUSE,CARTRIDGE:6A,FAST BLOW	80009	159-0298-00
A6K1	148-0217-00		RELAY, SOL STATE:5A, 24OVAC, 12VDC, 275 OHM	80009	148-0217-00
A6K2	148-0216-00		RELAY, SOL STATE:5A, 240VAC, 48VDC, 4170 OHN	80009	148-0216-00
A6L1	120-1813-00		TRANSFORMER,RF:POT CORE	80009	120-1813-00
A6L?	120-1814-00		TRANSFORMER,RF: TOROID	80009	120-1814-00
A6Q1	151-1136-00		TRANSISTOR:MOSFE, N-CHANNEL,SI, TO-220AB	04713	IRF530
A6Q2	151-1136-00		TRANSISTOR:MOSFE, N-CHANNEL,SI, TO-220AB	04713	IRF530
A6Q3	151-0342-00		TRANSISTOR: PNP, SI , T0-92	07263	S035928
A6Q4	151-0341-00		TRANSISTOR:NPN, SI, TO-106	04713	SPS6919
A605	151-0341-00		TRANSISTOR:NPN,SI, T0-106	04713	SPS6919
A6Q6	151-0341-00		TRANSISTOR:NPN, SI, T0-106	04713	SPS6919
A6R1	313-1472-00		RES, FXD, FILM:4.7K OHM, 5\%, 0.2 W	57668	TR20JE 04K7
A6R2	308-0944-00		RES, FXD,WW: 0.033 OHM, 5\%, 4W	80009	308-0944-00
A6R3	308-0944-00		RES, FXD,WW:0.033 OHM,5\%, 4W	80009	308-0944-00
A6R5	313-1220-00		RES, FXD, FILM: 22 OHM, 5\%,0.2W	57668	TR2OJE22E
A6R6	313-1102-00		RES, FXD, FILM:1K OHM, 5\%, 0.2W	57668	TR2OJE01KO
A6R7	313-1104-00		RES, FXD, FILM: 100 K OHM, 5\%,0.2W	57668	TR20.JE100K
A6R8	313-1331-00		RES, FXD, FILM: 330 OHM,5\%,0.2W	57668	TR20JE 330E
A6R9	313-1512-00		RES, FXD, FILM: 5.1 K OMM, $5 \%, 0.2 \mathrm{~W}$	57668	TR20JE 5K1
A6R10	313-1222-00		RES, FXD, FILM:2.2K OHM, 5\%,0.2W	57668	TR20JE O2K2
A6R11	313-1273-00		RES, FXD, FILM: 27 K OHM,5\%,0.2W	57668	TR20JE 27K
A6R12	313-1104-00		RES, FXD, FILM: 100 K OHM,5\%, 0.2 W	57668	TR20JE100K
A6R13	315-0112-00		RES, FXD, FILM: 1.1K OHM, 5\%,0.25W	19701	5043CX1K100J
A6R14	313-1102-00		RES, FXD, FILM: 1 K O+m, 5\%,0.2W	57668	TR2OJEOIKO
A6R15	313-1202-00		RES, FXD, FILM:2K OHM, 5\%, 0.2W	57668	TR2OJE02KO
A6R16	321-0319-00		RES, FXD, FILM:20.5K OHM, 1\%, 0.125W, TC=T0	19701	5033ED20K50F
A6R17	321-0300-00		RES, FXD, FILM:13.0K OHM, 1\%,0.125w, TC=T0	07716	CEAD13001F
A6R18	321-0132-00		RES, FXD, FILM: 232 OHN, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=70$	19701	5043ED232ROF

Page 5 of 11

Page 7 of 11
\qquad

INVERTER OPTION
ASSEMBLY A6

CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { SOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOAAD } \\ & \text { LOCATION } \end{aligned}$
C1	4 D	3E	K2	5 J	1 A	R11	4E	$1 E$
C2	4E	30	K2A	1 J	1 A	R12	5 F	2 E
C3	6	20	K2日	6 B	1 A	R13	$2 F$	28
C5	2 H	3 A				R14	3 F	2 C
C6	2 H	2A	L1	26	3 C	R15	4E	2 D
C7	6 G	2 E				R16	3B	18
CB	6 G	2 D	L2A	1E	3E	R17	58	18
C9	6F	2 E	L28	7E	3E	R18	3 C	1 C
C10	4F	2 E				R19	58	1 C
C11	$6 F$	2 E	Q1	4H	3 C	R20	3 C	18
C12	2 H	38	02	4H	3 C	R21	5 C	18
C13	6C	1 C	03	5 E	2 E	R22	4C	18
C14	5 B	2 C	04	6 F	20	R23	30	2 C
C15	5 C	18	05	4D	${ }^{2}$	R24	40	1 C
C16	5 C	18	06	$1 F$	2 C			
CR1	2 G	38	R1	6G	2 E	U1 U2	4F	20 10
CR2	1 B	2 E	R2	6H	2 D	U3	2 G	2 B
CR3	6 G	2 D	R3	6 H 4	30 20	U4	$2 B$	20
F1	18	1E	R6	5 J	18	VR1	26	28
			R7	5H	2 D			
K1	30	2 E	RB	${ }^{16}$	28	W903	18	2A
K1A K1B	10 70	2 C	R9 R10	5 F 5 H	20 20	W903	1 J	2E

CHASSIS PARTS

C17	$4 A$	--	C18	$4 A$	--	$J 90$	$4 A$	--

\qquad

REPLACEABLE MECHANICAL PARTS LIST

Fig.

Index No.	Tektronix Part No.	Serial/Assenbly No. Effective Dscont	Oty	12345 Name 8 Description	Mfir. Code	Mfr. Part Mo.
1-1	214-4187-00		1	HEAR SINK ASSY:INVERTER BOARD	80009	214-4187-00
-2	211-0304-00		8	SCR, ASSEM WSHR:4-40 X 0.312, PNH, STL, T9 TORX	01536	ORDER BY DESCR
-3	211-0303-00		4	SCREW,MACHINE:4-40 X 0.25,FLH 100 DEG,STL	TK1543	ORDER BY DESCR
-4	211-0380-00		2	SCREW,MACHINE:4-40 X 0.375, FLH,CD PL, T-9	80009	211-0380-00
-5	211-0712-00		1	SCR,ASSEM WSHR:6-32 X 1.25, PNH,STL, TORX	01536	ORDER BY DESCR
	211-0630-00		4	SCREW,MACHINE:6-32 X 1.12,FLH, 100 DEG,STL	TK0435	ORDER BY DESCR
	213-0875-00		1	SCR,ASSEM WSHR: $6-32 \times 0.5$, TAPTITE, PNH,STL (REPLACES 213-0882-00 ON 2225)	83486	ORDER BY DESCR
	211-0529-00		2	SCREW,MACHINE: 6-32 X 1.250, PNH,STL (REPLACES 211-712-00 ON 2225)	93907	ORDER BY DESCR
-6	210-0994-00		3	WASHER, FLAT $: 0.125$ ID $\times 0.2500 \times 0.022$, STL	86928	A371-283-20
	210-0802-00		2	WASHER, FLAT: 0.15 ID $\times 0.31200 \times 0.032$, STL	12327	ORDER BY DESCR
-7	210-0457-00		1	NUT, PL, ASSEM WA: 6-32 $\times 0.312, S T L$ CD PL	78189	511-061800-00
-8	210-0586-00		4	NUT, PL, ASSEM WA:4-40 $\times 0.25, S T L$ CD PL	78189	211-041800-00
	334-7403-00		1	MARKER, IDENT: MARKED CAUTION (REPLACES 334-6880-00)	80009	334-7403-00
	200-3676-00		1	COVER,REAR: (REPLACES STANDARD COVER)	80009	200-3676-00
-9	342-0804-00		3	INSULATOR, WSHR:5.6 $\mathrm{KM} 00 \times 3.0 \mathrm{MM}$ ID $\times 1.6 \mathrm{MM}$ THK, NYLON	80009	342-0804-00
-10	342-0829-00		3	INSULATOR, PLATE: TRANSISTOR, SIL-PAD	TKOET	ORDER BY DESCR
	384-1099-00		1	EXTENSION SHAFT:1.58 L X 0.187 SQ,PLSTC (REPLACE 384-1575-00 ON 2225)	80009	384-1099-00
	384-1370-00		2	EXTENSION SHAFT:4.68 L.MOLDED PLASTIC (REPALCES 384-1575-00 ON 2225)	80009	384-1370-00
-11	----------		1	CONN, RCPT,ELEC:PWR,MALE,125VDC,7A (SEE 190 REPL)		
	174-1316-00		1	CA ASSY, SP, ELEC:INPPT POSITIVE	80009	174-1316-00
	174-1317-00		1	CA ASSY, SP.ELEC:INPUT NEGITIVE	80009	174-1317-00
	174-1318-00		1	CA ASSY. SP, ELEC:RECTIFIED OUTPUT 48V	80009	174-1318-00
	174-1319-00		1	CA ASSY, SP, ELEC:LINE TRIGGER	80009	174-1319-00
	174-1320-00		1	CA ASSY, SP, ELEC:SWITCH	80009	174-1320-00
	174-1321-00		1	CA ASSY, SP, ELEC:UNREGULATED INPUT 11-30V	80009	174-1321-00
-12	195-3990-00		1	LEAD, ELECTRICAL: 18 AWG,4.5 L,5-4	80009	195-3990-00
	386-5859-00		1	PLATE,RETAINING:POT CORE	80009	386-5859-00
-13	361-1520-00		1	SPACER, THERMAL: INSULATOR POT CORE	80009	361-1520-00
	361-1521-00		1	SPACER, THERMAL: POT CORE MOUNTING	80009	361-1521-00
	276-0525-00		1	CORE, QM: TOROID, FERRITE	01121	T037C351A
	441-1883-00		1	CHASSIS, SCOPE: INNER (REPLACES 441-1571-02 ON 2225)	80009	441-1883-00
	$441-1884-00$ $407-3765-00$		1	CHASSIS, REAR: (REPLACES 441-1753-01 ON 2225)	80009	441-1884-00
	407-3765-00		1	BRACKET,HEAT SK:ALLMINEM (REPLACES 407-3539-00 ON 2225)	80009	407-3765-00
	344-0326-00		1	CLIP, ELECTRICAL:FUSE, BRASS	75915	102071

ACCESSORIES

161-0094-00
1 CABLE ASSY, PWR, :3,18AWG,125V,36.0 L
70903 ORDER BY DESCR

Page 10 of 11

MANUAL CHANGE INFORMATION

Date: 02-02-90 Change Reference: \qquad C4/0290

Product: 2225 SERVICE

SEE BELOW FOR EFFECTIVE SERIAL NUMBERS

Section 7
Change Option 23 to read as follows:
page 7-1.

Option 23

Two P6119 1X-10X Selectable-attenuation Probes are provided in place of the standard P6103 10X Probes.

Change page 7-3

Table 7-2
Optlonal Accessories

Description	Part Number
Attenuator Voltage Probes	
10X Standard	P6103
10X Submininature	P6130
10X Environmental	P 6008
1X-10X Selectable	P 6119
100X High Voltage	P 6009
1000X High Voltage	P 6015

Tektronix: Product: 2225 SERVICE MANUAL	MANUAL CHANGEINFORMATION			
	Date: 6-6-91	Change Reference: Manual Part Number:	M74370	
			070-6299-0	
	DESCRIPTION		Product Group	46

EFFECTIVE SERIAL NUMBER: 704012

Replaceable mechanical parts list changes

Fig \&
Index
No.
Part No.
Qty
NAME \& DESCRIPTION
CHANGE TO:
2-22 213-1065-00
5 SCREW,TPG,TF:3MM \times 8MM, TYPE PLASTIC,PNH,ZINC NI PL,TORX
ADD:
210-0994-00 5 WASHER,FLAT:0.125 ID $\times 0.25$ OD $\times 0.022$ STL CD PL

[^0]: $a_{\text {Performance requirement not checked in manual. }}$

[^1]: ${ }^{a_{\text {Performance requirement }} \text { not checked in manual. }}$

[^2]: ${ }^{a_{\text {Requires }} \text { a TM 500-Series Power Module. }}$

[^3]: *See Parts List for serial number ranges.

[^4]: Chassis-mounted components have no Assembly Number prefix-see end of Replaceable Electrical Parts List.

