Teltronix

2335 OSCILLOSCOPE

SERVICE

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

2335

OSCILLOSCOPE

SERVICE

INSTRUCTION MANபAL
Tektronix, Inc.
P.O. Box 500
\qquad

Copyright © 1981 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and
 registered trademarks of Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

INSTRUMENT SERIAL NUMBERS

Each instrument has a serial number on a pañel insert, tag, or stamped on the chassis. The first number or letter designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

B000000	Tektronix, Inc., Beaverton, Oregon, USA
100000	Tektronix Guernsey, Ltd., Channel Islands
200000	Tektronix United Kingdom, Ltd., London
300000	Sony/Tektronix, Japan
700000	Tektronix Holland, NV, Heerenveen,
	The Netherlands

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS iii
LIST OF TABLES v
OPERATORS SAFETY SUMMARY vi
SERVICING SAFETY SUMMARY. vii
SECTION 1 SPECIFICATION
INTRODUCTION 1-1
ACCESSORIES. 1-1
AVAILABLE OPTION. 1-1
PERFORMANCE CONDITIONS 1-1
SECTION 2 OPERATING INSTRUCTIONS
2-1
PREPARATION FOR USE
SAFETY CONSIDERATIONS 2-1
LINE VOLTAGE SELECTION 2-1
LINE FUSE 2-1
POWER CORD 2-2
CONTROLS, CONNECTORS, AND INDICATORS. 2-3
POWER AND DISPLAY. 2-3
VERTICAL 2-3
HORIZONTAL. 2-5
A TRIGGER 2-6
REAR PANEL 2-7
OPERATING CONSIDERATIONS 2-8
GRATICULE 2-8
GROUNDING 2-9
SIGNAL CONNECTIONS. 2-9
INPUT COUPLING CAPACITOR PRECHARGING. 2-9
INSTRUMENT COOLING 2-9
OSCILLOSCOPE DISPLAYS. 2-10
INTRODUCTION 2-10
NORMAL SWEEP DISPLAY 2-10
SIGNAL DISPLAY 2-10
MAGNIFIED-SWEEP DISPLAY. 2-11
DELAYED-SWEEP DISPLAY 2-11
DELAYED-SWEEP
MEASUREMENTS 2-11
SINGLE SWEEP DISPLAY 2-11
X-Y DISPLAY 2-12
Page Page
SECTION 3 THEORY OF OPERATION INTRODUCTION 3-1
GENERAL DESCRIPTION. 3-2
DETAILED CIRCUITDESCRIPTION3-5
CHANNEL 1 AND CHANNEL 2
ATTENUATORS 3-5
VERTICAL PREAMPLIFIERS, DIODE GATES, AND DELAY LINE DRIVER 3-6
VERTICAL OUTPUT AMPLIFIER. 3-9
VERTICAL SWITCHING LOGIC AND CHOP BLANKING 3-10
TRIGGER $3-12$
SWEEP 3-16
A AND B TIMING SWITCHES 3-21
HORIZONTAL AMPLIFIER 3-21
CRT CIRCUIT 3-25
LOW-VOLTAGE POWER SUPPLY. 3-29
FAN CIRCUIT 3-31
CALIBRATOR 3-31
SECTION 4 PERFORMANCE CHECK PROCEDURE 4-1
TEST EQUIPMENT REQUIRED 4-1
PERFORMANCE CHECK
INTERVAL 4-1
LIMITS AND TOLERANCES 4-1
SPECIAL FIXTURES 4-1
PREPARATION 4-1
INDEX TO PERFORMANCE CHECK STEPS 4-4
VERTICAL 4-5
TRIGGERING 4-13
HORIZONTAL 4-17
EXTERNAL Z-AXIS AND
CALIBRATOR $4-22$

TABLE OF CONTENTS (cont)

Page Page
CORRECTIVE MAINTENANCE (Cont'd) MAINTENANCE AIDS 6-12
INTERCONNECTIONS 6-12
TRANSISTORS AND INTEGRATED CIRCUITS 6-14
SOLDERING TECHNIQUES 6-14
REMOVAL AND REPLACEMENT INSTRUCTIONS 6-15
Cabinet 6-16
Cathode-Ray Tube 6-16
A15-Vert Out/H.V. Power Supply Circuit Board 6-18
A10-Vert Preamp/L.V. Power Supply Circuit Board 6-19
A11-Negative Regulator Circuit Board $6-20$
A12-Positive Regulator Circuit Board 6-21
A13-Trigger Circuit Board 6-21
A14-Sweep/Horiz Amp Circuit Board 6-21
A18-Probe Comp Circuit Board 6-22
Timing Switch Assembly 6-22
Attenuators 6-26
SELECTABLE COMPONENTS 6-29
REPACKAGING FOR SHIPMENT 6-30
LUBRICATION 6-5
SEMICONDUCTOR CHECKS 6-5
PERIODIC READJUSTMENT 6-5
TROUBLESHOOTING 6-5
INTRODUCTION 6-5
TROUBLESHOOTING AIDS 6-5
TROUBLESHOOTING EQUIPMENT 6-7
TROUBLESHOOTING TECHNIQUES 6-7
CORRECTIVE MAINTENANCE 6-12
INTRODUCTION 6-12
MAINTENANCE PRECAUTIONS 6-12
OBTAINING REPLACEMENT PARTS 6-12
MAINTENANCE AIDS 6-12
SECTION 5 ADJUSTMENT PROCEDURETEST EQUIPMENT REQUIRED5-1
LIMIS AND TOLERANCES5-1
INTERNAL ADJUSTMENTS AND5-2
NDEX TO ADJUSTMENTMAIN POWER SUPPLY5-5
DISPLAY AND ZAXIS5-9
TRIGGERING 5-19
HORIZONTAL5-31
SECTION 6 MAINTENANCE
STATIC-SENSITIVE COMPONENTS 6-1
INTRODUCTION 6-2
GENERAL CARE 6-2
INSPECTION AND CLEANING
SECTION 7 OPTIONS
INTRODUCTION 7-1
OPTION 03 7-1
OPTION 1R 7-1
SECTION 8 REPLACEABLE ELECTRICAL PARTSSECTION 9 DIAGRAMSSECTION 10 REPLACEABLE MECHANICAL PARTS
ACCESSORIES
CHANGE INFORMATION

LIST OF ILLUSTRATIONS

Figure Page
The 2335 Oscilloscope viii
2-1 LINE VOLTAGE SELECTOR switch, line fuse, and power cord 2-2
2-2 Optional power cords 2-2
2-3 Display and power controls and indicators 2-3
2-4 Vertical controls, connectors, and indicators and calibrator output 2-4
2-5 Horizontal controls and indicator 2-5
2-6 Trigger controls, connector, and indicator 2-6
2-7 Rear-panel connectors 2-8
2-8 Graticule measurement markings 2-8
3-1 Basic block diagram of the 2335 Oscilloscope 3-3
3-2 Channel 1 Vertical Attenuator, simplified block diagram. 3-6
3-3 Vertical Preamplifier, Diode Gate, and Delay Line Driver, simplified block diagram 3-7
3-4 Diode Gate biasing for Channel 1 display 3-8
3-5 Simplified illustration of Multiplexer U215 switching operation 3-11
3-6 Trigger circuitry, detailed block diagram $3-13$
3-7 Trigger signal slow path (low frequency) 3-14
3-8 Trigger signal fast path (high frequency) 3-15
3-9 Sweep operation in the A Sweep Mode 3-20
3-10 Sweep circuit waveform relationships 3-21
3-11 Sweep operation in the B Sweep Mode 3-22
3-12 Horizontal Amplifier, detailed block diagram 3-23
3-13 High-Voltage Oscillator wavefrom relationships. 3-25
3-14 DC Restorer circuit, simplified diagram $3-29$
3-15 Foldover circuit action 3-30
3-16 Typical waveforms in the Fan Motor three-stage inverter circuit 3-31
4-1 Test setup for external trigger and jitter checks 4-15
5-1 Areas affected by high-frequency compensation adjustments 5-15
6-1 Multipin connector orientation 6-7
6-2 Attenuator contact pressure check 6-11
6-3 Attenuator contact alignment 6-11
6-4 SEC/DIV switch exploded view 6-23
6-5 Vertical attenuator exploded view 6-27

LIST OF ILLUSTRATIONS (cont)

Figure
9-1 Color codes for resistors and capacitors.
9-2 Semiconductor lead configurations.
9.3 Locating components on schematic diagrams and circuit board illustrations.

9-4 2335 block diagram.
9-5 A19-Attenuator exploded view.
9-6 A11-Negative Regulator, A12-Positive Regulator, and A10-Vertical Preamp/L.V. Power Supply boards.
9-7 A15-Vertical Output/H.V. Power Supply board.
9-8 A13-Trigger board.
9-9 A18-Probe Compensation and A14-Sweep/Horizontal Amplifier boards.
9-10 A16--B Timing and A17-A Timing boards.
9-11 Timing Switch exploded view.

LIST OF TABLES

Table Page
1-1 Electrical Characteristics 1-2
1-2 Environmental Characteristics 1-9
1-3 Physical Characteristics. $1-10$
1-4 Option Electrical Characteristics. $1-10$
2-1 Line Voltage and Fuse Selection. 2-1
2-2 Option 03 Line Voltage and Fuse Selection 2-1
4-1 Test Equipment Required 4-2
4-2 DC Accuracy Limits. 4.7
4-3 Low-Frequency Compensation Setup 4-8
4-4 Switch Combinations for Internal Triggering Checks 4-14
4-5 Settings for Timing Accuracy Checks 4-18
4-6 Settings for Delay Time Accuracy Checks 4-19
5-1 Adjustment Interactions 5-3
5-2 Main Power Supply Tolerances and p-p Ripple 5-6
5-3 Vertical DC Accuracy Checks 5-12
5-4 Switch Combinations for Internal Triggering Checks 5-20
5-5 Settings for Timing Accuracy Checks 5-27
5-6 Settings for Delay Time Accuracy Checks 5-28
5-7 A Trigger Holdoff Time 5-30
6-1 Relative Susceptibility to Static-Discharge Damage 6-1
6-2 External Inspection Checklist 6-3
6-3 Internal Inspection Checklist 6-3
6-4 Suggested Troubleshooting Equipment 6-8
6-5 Maintenance Aids 6-13

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply and do not appear in this summary.

Terms in This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

Terms as Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the markings, or a hazard to property, including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

Symbols in This Manual

This symbol indicates where applicable cautionary or other information is to be found. For maximum input voltage see Table 1-1.

Symbols as Marked on Equipment

DANGER - High voltage.

Protective ground (earth) terminal.
\square ATTENTION - Refer to manual.

Power Source

This product is intended to operate from a power source that does not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power cord. To avoid electrical shock, plug the power cord into a properly wired receptable before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use only a power cord that is in good condition.
For detailed information on power cords and connectors see Figure 2-2.

Use the Proper Fuse

To avoid fire hazard, use only a fuse of the correct type, voltage rating and current rating as specified in the parts list for your product.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without the covers and panels properly installed.

SERVICING SAFETY SUMMARY
 FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections or components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

Power Source

This product is intended to operate from a power source that does not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

The 2335 Oscilloscope.

SPECIFICATION

This section of the manual contains a general description of instrument features, identifies standard accessories, provides option information, and lists the instrument specification.

INTRODUCTION

The TEKTRONIX 2335 Oscilloscope is a rugged, lightweight, dual-channel, $100-\mathrm{MHz}$ instrument having a compact crt that provides a sharply defined trace. Its vertical system supplies calibrated deflection factors from 5 mV per division to 5 V per division. Sensitivity can be increased to at least 2 mV per division by the variable VOLTS/DIV VAR control. Trigger circuits enable stable triggering over the full bandwidth of the vertical system. The horizontal system provides calibrated sweep speeds from 0.5 s per division to 50 ns per division, along with delayed-sweep features, thus accommodating accurate relative-time measurements. A $\times 10$ magnifier circuit extends the maximum sweep speed to 5 ns per division when the SEC/DIV switch is set to 0.05μ s per division.

ACCESSORIES

The instrument is shipped with the following standard accessories:

2 Probe packages
1 Accessory pouch
1 Operators manual
1 Service manual
1 Accessory pouch, zip lock
1 Crt filter, clear plastic
2 1.0-A AGC fast-blow fuses
1 0.5-A AGC fast-blow fuse

For part numbers and further information about accessories, refer to the "Accessories" page at the back of this manual. Your Tektronix representative or local Tektronix Field Office can also provide accessories information.

AVAILABLE OPTION

Option 03 ($100-\mathrm{V} / 200-\mathrm{V}$ Power Transformer) permits operation of the instrument from either a $100-\mathrm{V}$ or a $200-\mathrm{V}$ nominal ac-power-input source at a line frequency from 48 Hz to 440 Hz .

PERFORMANCE CONDITIONS

The following electrical characteristics (Table 1-1) are valid for the 2335 when it has been adjusted at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, has had a warmup period of at least 20 minutes, and is operating at an ambient temperature between $-15^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$ (unless otherwise noted).

Items listed in the "Performance Requirements" column are verifiable qualitative or quantitative limits that may be checked by procedures contained in the "Performance Check" section of the manual (see Section 4), except as noted. Performance check procedures for items listed in the "Supplemental Information" column are not provided; items in this column are either explanatory notes, performance characteristics for which no absolute limits are specified, or characteristics that are impractical to check in routine maintenance.

Environmental characteristics of the 2335 are given in Table 1-2. All environmental tests performed meet the requirements of MIL-T-28800B, Type III, Class 3 equipment, except where otherwise noted.

Physical characteristics of the instrument are listed in Table 1-3, and option electrical characteristics are presented in Table 1-4.

Table 1-1
Electrical Characteristics

Characteristics	Performance Requirements	Supplemental Information
VERTICAL DEFLECTION SYSTEM		
Deflection Factor Range	5 mV per division to 5 V per division in a $1,2,5$ sequence.	
Accuracy	$\pm 3 \%$ on all ranges when VOLTS/DIV is calibrated at 5 mV per division; add 0.05% per ${ }^{\circ} \mathrm{C}$ deviation from $25^{\circ} \mathrm{C}$.	
Uncalibrated (VAR) Range	Continuously variable between VOLTS/ DIV switch settings. Reduces deflection factor at least 2.5 to 1 on all VOLTS/DIV switch settings.	Reduces deflection factor to at least 2 mV per division with VOLTS/DIV switch set to 5 mV .
Frequency Response		6-division reference signal from a $25-\Omega$ source; centered vertically, with VOLTS/DIV VAR control in calibrated detent.
$-15^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	Dc to at least 100 MHz . Reduces to 88 MHz at 2 mV per division. ${ }^{\text {a }}$	
$+40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	Dc to at least $85 \mathrm{MHz}^{\text {a }}$ Reduces to 70 MHz at 2 mV per division. ${ }^{\text {a }}$	
Ac Coupled Lower - 3 dB Point 1X Probe	10 Hz or less. ${ }^{\text {a }}$	
10X Probe	1 Hz or less. ${ }^{\text {a }}$	
Step Response		5-division reference signal, dc coupled at all deflection factors, from a $25-\Omega$ source; centered vertically with VOLTS/DIV VAR control in calibrated detent. BW LIMIT push button must be out for full bandwidth operation.
Rise Time (5 mV per division to $5 \vee$ per division) $-15^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C}$	3.5 ns or less.	Rise time is calculated from the formula: $\text { Rise Time }=\frac{0.35}{\mathrm{BW}(\text { in } \mathrm{MHz})}$
$+40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	4.15 ns or less. ${ }^{\text {a }}$	
Aberrations Positive-Going Step (Excluding ADD Mode)		
5 mV per division to 0.2 V per division	$+3 \%,-3 \%, 3 \%$ p-p or less.	

[^0]Table $1-1$ (cont)

Characteristics	Performance Requirements	Supplemental Information
VERTICAL DEFLECTION SYSTEM (cont)		
Aberrations (cont) Negative-Going Step		Add 2\% to all positive-going step specifications; checked at 5 mV per division.
ADD Mode		Add 4\% to all positive-going step specifications; checked at 5 mV per division.
Position Effect		Total aberrations less than $+5 \%,-5 \%$, $5 \% \mathrm{p}-\mathrm{p}$; checked at 5 mV per division.
Temperature Effect		Add 0.15% per ${ }^{\circ} \mathrm{C}$ deviation to aberrations specifications from $25^{\circ} \mathrm{C}$.
Common-Mode Rejection Ratio	At least 10 to 1 at 50 MHz for commonmode signals of 6 divisions or less.	VAR control adjusted for best CMRR at 10 mV per division at 50 kHz ; checked at 10 mV per division.
Channel 2 Invert Trace Shift	Less than 0.4 division from center screen when switching from normal to inverted.	
Input Gate Current $-15^{\circ} \mathrm{C} \text { to }+30^{\circ} \mathrm{C}$	0.5 nA or less.	0.1-division trace shift when moving Input Coupling switch from GND to $A C$ at 5 mV per division.
$+30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	4.0 nA or less. ${ }^{\text {a }}$	0.8 -division trace shift when moving Input Coupling switch from GND to $A C$ at 5 mV per division.
Attenuator Isolation (CH 1 to CH 2$)$	At least 100 to 1.	With one vertical input set at 0.5 V per division, apply $4-\mathrm{V}$ p-p $25-\mathrm{MHz}$ signal; set the other vertical input to 10 mV per division. Check for less than 4 divisions of signal.
POSITION Control Range	At least +12 and -12 divisions from graticule center.	
Step Attenuator Balance	Less than or equal to 0.2 -division trace shift when rotated from 5 mV per division to 5 V per division.	Double for each $10^{\circ} \mathrm{C}$ deviation from $25^{\circ} \mathrm{C}$.
Chop Frequency	$275 \mathrm{kHz} \pm 30 \%$.	
Input Characteristics Resistance	Input Characteristics	
Capacitance	$20 \mathrm{pF} \pm 10 \%$. ${ }^{\text {a }}$	

[^1]
Scan by Zenith

Specification-2335 Service
Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
	VERTICAL DEFLECTION SYSTEM (cont)	
Maximum Input Voltage		
DC Coupled		
	$400 \mathrm{~V}(\mathrm{dc}+$ peak ac) or	
AC Coupled	500 V p-p ac at 1 kHz or less. ${ }^{\mathrm{a}}$	
	400 V (dc + peak ac) or	
	500 V p-p ac at 1 kHz or less. ${ }^{\text {a }}$	

TRIGGER SYSTEM

Sensitivity		With VOLTS/DIV VAR control in calibrated detent. In EXT $\div 10$, multiply input requirements by 10 .
AC Coupled Signal	0.3 division internal or 50 mV external from 20 Hz to 20 MHz ; increasing to 1.1 divisions internal or 150 mV external at 100 MHz .	
LF REJ Coupled Signal	0.3 division internal or 50 mV external from $50 \mathrm{kHz} \pm 10 \mathrm{kHz}$ to 20 MHz ; increasing to 1.1 divisions internal or 150 mV external at 100 MHz .	Attenuates signals below 50 kHz $\pm 10 \mathrm{kHz}(-3 \mathrm{~dB}$ at 50 kHz$)$.
HF REJ Coupled Signal	0.3 division internal or 50 mV external from $20 \mathrm{~Hz} \pm 4 \mathrm{~Hz}$ to $50 \mathrm{kHz} \pm 10 \mathrm{kHz}$.	Attenuates signals below $20 \mathrm{~Hz} \pm 4 \mathrm{~Hz}$ and above $50 \mathrm{kHz} \pm 10 \mathrm{kHz}(-3 \mathrm{~dB}$ at 20 Hz and 50 kHz).
DC Coupled Signal	0.3 division internal or 50 mV external from dc to 20 MHz ; increasing to 1.1 divisions internal or 150 mV external at 100 MHz .	
Trigger Jitter	0.2 division or less at 5 ns per division (X10 MAG on) with 100 MHz applied and at the rated trigger sensitivity.	VOLTS/DIV VAR control must be in calibrated detent.
External Trigger Inputs Maximum Input Voltage	400 V (dc + peak ac) or $500 \mathrm{Vp-p}$ ac at 1 kHz or less. ${ }^{\text {a }}$	
Input Resistance	$1 \mathrm{M} \Omega \pm 10 \%$. ${ }^{\text {a }}$	
Input Capacitance	$20 \mathrm{pF} \pm 30 \%$. ${ }^{\text {a }}$	
LEVEL Control Range EXT	At least $\pm 1 \mathrm{~V}, 2 \mathrm{Vp-p}$.	
EXT $\div 10$	At least $\pm 10 \mathrm{~V}, 20 \mathrm{Vp-p}.{ }^{\text {a }}$	

[^2]Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information		
$\begin{array}{l}\text { Trigger View } \\ \text { Deflection Factor } \\ \text { EXT }\end{array}$				
EXT $\div 10$	100 mV per division $\pm 40 \%$.	Within 1 division of center screen.	$]$	Centering of Trigger Point
:---				
Bandwidth				
Delay Difference (cont)				
To at least 80 MHz.				

HORIZONTAL DEFLECTION SYSTEM

Sweep Rate Calibrated Range A Sweep	0.5 s per division to $0.05 \mu \mathrm{~s}$ per division in a $1,2,5$ sequence. X10 MAG extends maximum sweep speed to 5 ns per division.		
B Sweep	50 ms per division to $0.05 \mu \mathrm{~s}$ per division in a $1,2,5$ sequence. X10 MAG extends maximum sweep speed to 5 ns per division.		
Accuracy	Unmagnified	Magnified	Accuracy specification applies over the full 10 divisions with X10 MAG on and off. Exclude the first and last 40 ns of the sweep on all sweep speeds with X10 MAG on and off.
$+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$	$\pm 2 \%$	$\pm 3 \%$	
$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$\pm 3 \%^{\text {a }}$	$\pm 4 \%^{\text {a }}$	
Linearity	$\pm 5 \%$.		Over any 2-division portion of the full 10 divisions, displayed at all sweep speeds. Exclude the first and last displayed divisions of the 5 - and 10 -ns per division sweep speeds with $\times 10$ MAG on.
Variable Range (VAR)	Continuously variable between calibrated settings of the SEC/DIV switches.		Extends maximum A Sweep speed to at least 1.25 s per division.
A Sweep Length	10.5 to 11.5 divisions.		Checked at 1 ms per division.

[^3]Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
HORIZONTAL DEFLECTION SYSTEM (cont)		
A Trigger Holdoff (VAR)	At least 2.5 times the minimum holdoff at any sweep speed. ${ }^{\text {a }}$	
Magnifier Registration	± 0.2 division from graticule center (X10 MAG on to X10 MAG off).	
POSITION Control Range	Start of sweep must position to right of graticule center. End of sweep must position to left of graticule center.	Checked at 1 ms per division.
Differential Time Measurement Accuracy $+15^{\circ} \mathrm{C} \text { to }+35^{\circ} \mathrm{C}$	$\pm 0.75 \%+0.015$ major dial division.	Exclude delayed operation when knobs are locked at any sweep speed or when the A SEC/DIV switch is at either 0.1μ s per division or 0.05μ s
$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$\pm 1.5 \%+0.015$ major dial division. ${ }^{\text {a }}$	division on all A Sweep speeds.
Delay Time Jitter	$\pm 0.005 \%$ of 10 times the A SEC/DIV switch setting (less than one part in 20,000) over the full delay time range.	
Calibrated Delay Time	Continuous from $0.05 \mu \mathrm{~s}$ to at least 5 s after start of the delaying sweep.	

X-Y OPERATION

Deflection Factor Range	5 mV per division to 5 V per division in a $1,2,5$ sequence.	No X-axis variable.
Bandwidth		
X-Axis	Dc to at least 2 MHz .	
Y-Axis	Dc to at least 100 MHz .	
Input Characteristics		
Resistance	$1 \mathrm{M} \Omega \pm 2 \%{ }^{\text {a }}$	
Capacitance	$20 \mathrm{pF} \pm 10 \%$. ${ }^{\text {a }}$	
Phase Difference Between X - and Y -Axis Amplifiers	$\leqslant 3^{\circ}$ from dc to 200 kHz .	
Accuracy		
X-Axis		
$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	$\pm 5 \%$ of indicated deflection.	
$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$\pm 8 \%$ of indicated deflection. ${ }^{\text {a }}$	

[^4]Table 1-1 (cont)

Characteristics	Performance Requirements	CALIBRATOR
Supplemental Information		
Waveshape		Positive-going square wave.
Duty Cycle	$0.2 \mathrm{~V} \pm 1 \%$.	$50 \% \pm 10 \%$.
Output Voltage $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	$0.2 \mathrm{~V} \pm 1.5 \% .{ }^{\text {a }}$	
-15° to $+55^{\circ} \mathrm{C}$		$1 \mathrm{kHz} \pm 25 \%$.
Repetition Rate		$200 \Omega \pm 1 \%$.
Output Impedance		

Z-AXIS INPUT

Sensitivity	5 V p-p signal referenced to ground causes noticeable modulation of display at normal intensity.	Positive-going signal decreases intensity; negative-going signal increases intensity.
Usable Frequency Range	Dc to 20 MHz.	
Input Resistance		$10 \mathrm{kS} \pm 6 \%$.
Input Capacitance	$\pm 25 \mathrm{~V}$ (dc + peak ac) dc to 10 MHz, derate above 10 MHz.	
Maximum Input Voltage	V (dc + peak ac) $=\frac{\text { Less than } 15 \mathrm{pF} .}{f(\mathrm{in} \mathrm{MHz})}$	
Input Coupling	Dc.	

POWER SOURCE

Voltage Ranges, AC rms 115 V Nominal	100 V to 132 V.	
230 V Nominal	200 V to $250 \mathrm{~V} .{ }^{\mathrm{a}}$	
Line Frequency	48 Hz to $440 \mathrm{~Hz} .^{\mathrm{a}}$	
Power Consumption Typical	35 W at $115 \mathrm{~V}, 60 \mathrm{~Hz} .^{a}$	Measured at worst-case load and frequency.
Maximum	60 W at $132 \mathrm{~V}, 48 \mathrm{~Hz} .^{\mathrm{a}}$	
VA Maximum	$75 \mathrm{VA} .^{a}$	

[^5]Table 1-1 (cont)

Characteristics	Performance Requirements	CATHODE-RAY TUBE
	Supplemental Information	
Display Area	8-by 10 -divisions with 0.8-centimeter divisions; internal, nonilluminated, rise time graticule. ${ }^{\text {a }}$	
Trace Rotation Range	Adequate to align trace with horizontal graticule lines.	
Standard Phosphor	P31. $^{\text {a }}$	
Raster Distortion Geometry	$18 \mathrm{kV} .^{\text {a }}$	Less than 0.1 division of bowing or tilt, horizontal and vertical.
Nominal Accelerating Voltage		$6.3 \mathrm{Vrms} \pm 0.3 \mathrm{~V} ;$ elevated to Electrode Voltages to Ground Heater Voltage Between CRT Pins 1 and 14

INTERNAL POWER SUPPLIES

Characteristics	Supplemental Information		
	Initial Setting	Maximum p-p Ripple	High-Voltage Oscillator Frequency, p-p Ripple
-5 V	$\pm 1.2 \%$		
+5 V	$\pm 0.9 \%$	1 mV	
+10 V	$\pm 0.7 \%$	1 mV	
+40 V	$\pm 0.9 \%$	1 mV	
+102 V	$\pm 0.2 \%$	1 mV	
High-Voltage Supply Accuracy $\left(+20^{\circ} \mathrm{C}\right.$ to $\left.+30^{\circ} \mathrm{C}\right)$	$\pm 2.5 \%$	1 V	
-1960 V (cathode)	$\pm 1.0 \%$		
+16 kV (anode)	$\pm 4.0 \%$	5 V	

[^6]Table 1-2
Environmental Characteristics

Characteristics	Description
	NOTE
	All of the environmental tests performed meet the requirements of MIL-T-28800B, Type III, Class 3 equipment.
Temperature Operating	$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Table 1-3
Physical Characteristics

Characteristics	Description
Weight With Accessories and Accessory Pounch Without Accessories and Accessory Pouch	
Shipping Weight	
Domestic	8.6 kg (19.0 lb).
Export	$7.7 \mathrm{~kg}(17.0 \mathrm{lb})$.
Height	
With Feet and Pouch	$10.7 \mathrm{~kg}(23.5 \mathrm{lb})$.
Without Pouch	$14.8 \mathrm{~kg}(32.5 \mathrm{lb})$.
Width	$210 \mathrm{~mm}(8.3 \mathrm{in})$.
With Handle	$135 \mathrm{~mm}(5.3 \mathrm{in})$.
Without Handle	$315 \mathrm{~mm}(12.4 \mathrm{in})$.
Depth	
With Front Cover	$274 \mathrm{~mm}(10.8 \mathrm{in})$.
With Handle Extended	$429 \mathrm{~mm}(16.9 \mathrm{in})$.

Table 1-4
Option Electrical Characteristics

Characteristics	Performance Requirements	Supplemental Information
100-V/200-V POWER TRANSFORMER (OPTION 03)		
Voltage Ranges, AC rms 100 V Nominal	90 V to $115 \mathrm{~V}{ }^{\text {a }}$	
200 V Nominal	180 V to $230 \mathrm{~V}{ }^{\text {a }}$	
Line Frequency	48 Hz to $440 \mathrm{~Hz} .^{\text {a }}$	
Power Consumption Typical	35 W at $100 \mathrm{~V}, 60 \mathrm{~Hz}{ }^{\text {a }}$	
Maximum	60 W at $115 \mathrm{~V}, 48 \mathrm{~Hz} .^{\text {a }}$	Measured at worst-case load and frequency.
VA Maximum	$75 \mathrm{VA} .^{\text {a }}$	

[^7]
OPERATING INSTRUCTIONS

This section of the manual provides information on instrument installation and power requirements, and the functions of controls, connectors, and indicators are described. Operating considerations and procedures intended to familiarize the operator with obtaining basic oscilloscope displays are included. For more complete operating information, refer to the 2335 Operators Manual.

PREPARATION FOR USE

SAFETY CONSIDERATIONS

Refer to the Safety Summary at the front of this manual for power source, grounding, and other safety considerations pertaining to the use of the 2335. Before connecting the instrument to a power source, read the following information, then verify that the LINE VOLTAGE SELECTOR switch is properly set for the ac power source being used and that the proper power-input fuse is installed.

CAUTION

This instrument may be damaged if operated with the LINE VOLTAGE SELECTOR switch set for the wrong applied ac power input source voltage or if the wrong line fuse is installed.

LINE VOLTAGE SELECTION

The 2335 operates from either a $115-\mathrm{V}$ or a $230-\mathrm{V}$ nominal ac power input source with a line frequency ranging from 48 Hz to 440 Hz . Before connecting the power cord to a power input source, verify that the LINE VOLTAGE SELECTOR switch, located on the rear panel (see Figure 2-1), is set for the correct nominal ac power input source voltage. To convert the instrument for operation from one line-voltage range to the other, move the LINE VOLTAGE SELECTOR switch to the correct nominal ac source voltage position (see Table 2-1). If your instrument is equipped with Option 03 (100-V/200-V Power Transformer), use Table 2-2. The detachable power cord may have to be changed to match the power source outlet.

Table 2-1
Line Voltage and Fuse Selection

Line Voltage Selector Switch Position	Voltage Range	Fuse Data
115 V Nominal	100 to 132 V	$1.0 \mathrm{~A}, 250 \mathrm{~V}$, Fast-blow
250 V Nominal	200 to 250 V	$0.5 \mathrm{~A}, 250 \mathrm{~V}$, Fast-blow

Table 2-2
Option 03 Line Voltage and Fuse Selection

Line Voltage Selector Switch Position	Voltage Range	Fuse Data
100 V Nominal	90 to 115 V	$1.0 \mathrm{~A}, 250 \mathrm{~V}$, Fast-blow
200 V Nominal	180 to 230 V	$0.5 \mathrm{~A}, 250 \mathrm{~V}$, Fast-blow

LINE FUSE

To verify that the instrument power-input fuse is of proper value for the nominal ac source voltage, perform the following procedure:

1. Press in the fuse holder cap and release it with a slight counterclockwise rotation.

Figure 2-1. LINE VOLTAGE SELECTOR switch, line fuse, and power cord.
2. Pull the cap (with the attached fuse inside) out of the fuse holder.
3. Verify proper fuse value (see Table 2-1 and 2-2).

POWER CORD

This instrument has a detachable, three-wire power cord with a three-contact plug for connection to both the power source and protective ground. Its power cord is secured to the rear panel by a cord-set-securing clamp. The plug protective-ground contact connects (through the powercord protective grounding conductor) to the accessible metal parts of the instrument. For electrical-shock protection, insert this plug into a power source outlet that has a properly grounded protective-ground contact.

Instruments are shipped with the required power cord as ordered by the customer. Available power cord options are illustrated in Figure 2-2. Contact your Tektronix representative or local Tektronix Field Office for additional power-cord information.

Plug Configuration	Usage	Nominal LineVoltage (AC)	Reference Standards	Option \#
	North American $120 \mathrm{~V} /$ 15 A	120 V	$\begin{aligned} & \text { ANSI C73.11 }{ }^{\text {a }} \\ & \text { NEMA 5-15- }{ }^{\circ} \\ & \text { IEC } 83^{\text {C }} \end{aligned}$	Standard
	$\begin{gathered} \text { Universal } \\ \text { Euro } \\ 240 \mathrm{~V} / \\ 10-16 \mathrm{~A} \end{gathered}$	240 V	$\begin{aligned} & \text { CEE (7), II, IV. } \\ & \text { VIId } \\ & \text { IEC } 83^{\mathrm{C}} \end{aligned}$	A1
$\frac{F y}{(g)}$	$\begin{gathered} \text { UK } \\ 240 \mathrm{~V} / \\ 13 \mathrm{~A} \end{gathered}$	240 V	$\begin{array}{\|l\|l} & \begin{array}{l} \text { BS } 1363^{e} \\ \text { IEC } 83^{\circ} \end{array} \end{array}$	A2
	$\begin{aligned} & \text { Australian } \\ & 240 \mathrm{~V} / \\ & 10 \mathrm{~A} \end{aligned}$	240 V	AS C112 ${ }^{\text {f }}$	A3
	North American $240 \mathrm{~V} /$ 15 A	240 V	$\begin{aligned} & \text { ANSI C73.20 }{ }^{\mathrm{a}} \\ & \text { NEMA 6.15-P } \\ & \text { IEC } 83^{\circ} \end{aligned}$	A4
aANSI-American National Standards Institute bNEMA-National Electrical Manufacturer's Association CIEC-International Electrotechnical Commission dCEE-International Commission on Rules for the Approval of Electrical Equipment eBS-British Standards Institution ${ }^{\mathrm{f}} \mathrm{AS}$-Standards Association of Australia 2931-05				

Figure 2-2. Optional power cords.

CONTROLS, CONNECTORS, AND INDICATORS

This part of the manual will familiarize the operator with the location and operation of instrument controls, connectors, and indicators.

POWER AND DISPLAY

Refer to Figure 2-3 for location of items 1 through 8.
(1) POWER Switch-Turns instrument power on and off. Press in for ON; press again for OFF.
(2) FOCUS Control-Adjusts for optimum display definition.
(3) ASTIG Control-Screwdriver control used in conjunction with the FOCUS control to obtain a welldefined display over the entire graticule area. It does not require readjustment during normal operation of the instrument.

Figure 2-3. Display and power controls and indicators.
(4) INTEN Control-Determines the brightness of the crt display (has no effect when BEAM FIND switch is pressed in).
(5) BEAM FIND Switch-When held in, compresses the display to within the graticule area and provides a visible viewing intensity to aid in locating off-screen displays.
(6) TRACE ROTATION Control-Screwdriver control used to align the crt trace with the horizontal graticule lines.
(1) Internal Graticule-Eliminates parallax viewing error between the trace and graticule lines. Rise-time amplitude measurement points are indicated at the left edge of the graticule.
(8) SERIAL and Mod Slots-The SERIAL slot is imprinted with the instrument's serial number. The Mod slot contains the option number that has been installed in the instrument.

VERTICAL

Refer to Figure 2-4 for location of items 9 through 19.
(9) AMPL CAL Connector-Provides a $0.2-\mathrm{V}$, positivegoing square-wave voltage (at approximately 1 kHz) that permits the operator to compensate voltage probes and to check oscilloscope vertical operation. It is not intended to verify time-base calibration.
(10) CH 1 OR X and CH 2 OR Y Connectors-Provide for application of external signals to the inputs of the vertical deflection system or for an X-Y display. In the $X-Y$ mode, the signal connected to the CH 1 OR X connector provides horizontal deflection, and the signal connected to the CH 2 OR Y connector provides vertical deflection.
(11) Input Coupling Switches (AC-GND-DC)-Select the method of coupling input signals to the vertical deflection system.

AC-Input signal is capacitively coupled to the vertical amplifier. The dc component of the
input signal is blocked. Low-frequency limit (-3 db point) is approximately 10 Hz .

GND-The input of the vertical amplifier is grounded to provide a zero (ground) reference voltage display (does not ground the input signal). Allows precharging the input coupling capacitor.

DC-All frequency components of the input signal are coupled to the vertical deflection system.
(12) CH 1 VOLTS/DIV and CH 2 VOLTS/DIV SwitchesSelect the vertical deflection factor in a 1-2-5 sequence. VAR control must be in detent to obtain a calibrated deflection factor.

1X PROBE-Indicates the deflection factor selected when using either a $1 \times$ probe or coaxial cable.

10X PROBE-Indicates the deflection factor selected when using a 10 X probe.
(13) VAR Controls-Provide continuously variable uncalibrated deflection factors between the calibrated settings of the VOLTS/DIV switches when rotated

Figure 2-4. Vertical controls, connectors, and indicators and calibrator output.
clockwise out of the detent position. Channel 1 VOLTS/DIV VAR control is inoperative when X-Y VERTICAL MODE is selected.

UNCAL Indicator-LED illuminates to indicate that either Channel 1 or Channel 2 VOLTS/DIV VAR control is out of calibrated detent (vertical deflection factor is uncalibrated).
(15) VERTICAL MODE Switches-Five push-button switches that select the mode of operation for the vertical amplifier system.

CH 1 -Selects only the Channel 1 input signal for display.

ALT-The display alternates between Channel 1 and Channel 2 vertical input signals. The alternation occurs during retrace at the end of each sweep. This mode is useful for viewing both vertical input signals at sweep speeds from 0.2 ms per division to $0.05 \mu \mathrm{~s}$ per division.

CHOP - The display switches between the Channel 1 and Channel 2 vertical input signals during the sweep. The switching rate is approximately 275 kHz . This mode is useful for viewing both Channel 1 and Channel 2 vertical inputs at sweep speeds from 0.5 ms per division to 0.5 s per division.

ADD-Selects the algebraic sum of the Channel 1 and Channel 2 input signals for display.

CH 2-Selects only the Channel 2 input signal for display.

AUTO-Press in both ALT and CHOP buttons. The A Sweep circuitry automatically selects the most useful switching method (ALT or CHOP) for dual displays.
$\mathrm{X}-\mathrm{Y}$-Press in both CH 1 and CH 2 buttons. The X-signal is applied through the Channel 1 input connector, and the Y -signal is applied through the Channel 2 input connector.

CH 2 INVERT Switch-Inverts Channel 2 display when button is pressed in. Push button must be pressed in a second time to release it and regain a noninverted display.

POSITION Controls-Determine the vertical position of the displays on the crt. When X-Y VERTICAL MODE is selected, the Channel 2 POSITION control
moves the display vertically (Y -axis), and the Horizontal POSITION control moves the display horizontally (X-axis).
(18) BW LIMIT Switch-Limits the bandwidth of the vertical amplifier to approximately 20 MHz when pressed in. Push button must be pressed a second time to release it and regain full $100-\mathrm{MHz}$ bandwidth operation. Provides a method for reducing interference from unwanted high-frequency signals when viewing low-frequency signals.
(19) TRIG VIEW Switch-Press in and hold this push button to display a sample of the signal present in the A Trigger amplifier (for all A TRIGGER SOURCE switch settings except VERT MODE). All other signal displays are removed while the TRIG VIEW push button is held in.

HORIZONTAL

Refer to Figure 2-5 for location of items 20 through 26.
(20) B DELAY TIME POSITION Control-Selects the amount of delay time between the start of the A Sweep and the start of the B Sweep. Delay time is variable from 0.05 times to 10.0 times the A SEC/ DIV switch setting.
(21) A AND B SEC/DIV Switches-Selects the sweep speed for the A and B Sweep generators in a $1-2-5$ sequence. The A SEC/DIV switch sets the time between the B Sweeps (delay time). For calibrated sweep rates, the TIME (PULL) VAR control must be in the calibrated detent (fully clockwise position).

A SEC/DIV-The A Sweep speed is shown between the two black lines on the clear plastic skirt. This switch also selects the delay time (used in conjunction with the B DELAY TIME POSITION control) for delayed sweep operation.

B SEC/DIV-The B Sweep speed is set by pulling the inner knob and rotating it to a setting shown by the white line scribed on the knob. The B Sweep circuit is used for delayed sweep operation only.
(22) TIME (PULL) VAR Control-Provides continuously variable, uncalibrated A Sweep speeds between SEC/ DIV switch settings to at least 2.5 times the calibrated setting (extends slowest sweep speed to at
least 1.25 s per division). To operate this control, pull out the VAR knob and rotate it counterclockwise out of the detent.
(23) UNCAL Indicator LED-Illuminates to indicate that the A Sweep speed is uncalibrated when the TIME (PULL) VAR control is rotated out of the calibrated detent.
(24) HORIZ MODE Switches-Three push-button switches that select the mode of operation for the horizontal deflection system.

A-Horizontal deflection is provided by the A Sweep generator at a sweep speed determined by the setting of the A SEC/DIV switch.

A INTEN-Horizontal deflection is provided by the A Sweep generator at a speed determined by the A SEC/DIV switch. The B Sweep generator provides an intensified zone on the display. The length of the intensified zone is determined by the setting of the B SEC/DIV switch. The location of the intensified zone is determined by the setting of the B DELAY TIME POSITION control.

4115-03

Figure 2-5. Horizontal controls and indicator.

B-Horizontal deflection is provided by the B Sweep generator at a sweep speed determined by the setting of the B SEC/DIV switch. The start of the B Sweep is delayed from the start of the A Sweep by a time determined by the settings of the A SEC/DIV switch and the B DELAY TIME POSITION control.
(25) X10 MAG Switch-When pressed in, increases the displayed sweep speed by a factor of 10. Extends fastest sweep speed to 5 ns per division. Push button must be pressed in a second time to release it and regain the X 1 sweep speed.
(26) POSITION Control-Positions the display horizontally in all modes. Provides both coarse and fine control action. Reverse the direction of rotation to actuate fine positioning feature. When X-Y VERTICAL MODE is selected, the Horizontal POSITION control moves the display horizontally (X-axis).

A TRIGGER

Refer to Figure 2-6 for location of items 27 through 34.
(27) SLOPE Switch-Selects the slope of the signal that triggers the sweep.

+ (plus)-When push button is released out, sweep is triggered from the positive-going slope of the trigger signal.
- (minus)-When push button is pressed in, sweep is triggered from the negative-going slope of the trigger signal.
(28) LEVEL Control-Selects the amplitude point on the trigger signal at which the sweep is triggered. The LEVEL control is usually adjusted for the desired display after trigger SLOPE, COUPLING, and SOURCE switch settings have been selected.
(29) Trigger Mode Switches-Three push-button switches that determine the trigger mode for the A Sweep.

AUTO-Permits triggering on waveforms with repetition rates down to approximately 10 Hz . Sweep free runs and provides a baseline trace either in the absence of an adequate trigger signal or when the repetition rate of the trigger signal is below approximately 10 Hz .

NORM-Sweep is initiated when an adequate trigger signal is applied. In the absence of a trigger signal, no baseline trace will be present.

SGL SWP-Press in the spring-return push button momentarily to arm the A Sweep circuit for a single sweep display. This mode operates the same as NORM, except only one sweep is displayed for each trigger signal. Another single sweep cannot be displayed until the SGL SWP push button is momentarily pressed in again to reset the A Sweep circuit. This mode is useful for displaying and photographing either nonrepetitive signals or signals that cause unstable conventional displays (e.g., signals that vary in amplitude, shape, or time).
(30) TRIG'D-READY Indicator LED-Illuminates when either AUTO or NORM Trigger Mode is selected to indicate that the A Sweep is triggered (TRIG'D). When SGL SWP Trigger Mode is selected, the LED illuminates to indicate that the A Sweep is armed (READY) for a single sweep display.

Figure 2-6. Trigger controls, connector, and indicator.
(31) SOURCE Switch-Determines the source of the trigger signals coupled to the input of the trigger circuit.

VERT MODE-The internal trigger source is determined by the signals selected for display by the VERTICAL MODE switches.

CH 1-The signal applied to the CH 1 input connector is the source of the trigger signal.

CH 2-The signal applied to the CH 2 input connector is the source of the trigger signal.

LINE-Provides a trigger signal from a sample of the ac-power-source waveform. This trigger source is useful when channel input signals are time related (multiple or submultiple) to the frequency of the power-input source voltage.

EXT-Permits triggering on signals applied to the External Trigger Input connector (A EXT).

EXT $\div 10$-External trigger signals are attenuated by a factor of 10 .
(32) A EXT Connector-Provides a means of applying external signals to the trigger circuit.
(33) COUPLING Switch-Determines the method used to couple the trigger signal to the input of the trigger circuit.

AC-Signals above 20 Hz are capacitively coupled, blocking any dc components of the signal. Signals below 20 Hz are attenuated.

LF REJ-Signals are capacitively coupled. The dc component is blocked, and signals below approximately 50 kHz are attenuated. This position is useful for providing a stable display of the high-frequency components of a complex waveform.

HF REJ-Signals are capacitively coupled. The dc component is blocked, and signals below approximately 20 Hz and above approximately 50 kHz are attenuated. This position is useful for providing a stable display of the low-frequency components of a complex waveform.

DC-All components of the signal are coupled to the A Trigger circuitry. This position is useful for displaying low-frequency or low-repetition-rate signals.
(34) TRIG HOLDOFF (PUSH) VAR Control-Provides continuous control of holdoff time between sweeps. This control improves the ability to trigger on aperiodic signals (such as complex digital waveforms) and increases the minimum holdoff time to at least 2.5 times at any sweep speed.

REAR PANEL

Refer to Figure 2-7 for location of items 35 through 36.
(35) GND Connector-Provides direct connection to instrument chassis ground.
(36) EXT Z AXIS INPUT Connector-Provides a means of connecting external signals to the Z-Axis amplifier to intensity modulate the crt display. Applied signals do not affect display waveshape. Signals with fast rise time and fall time provide the most abrupt intensity change. Positive-going signals decrease the intensity, and a $5-\mathrm{V}$ p-p signal will produce noticeable modulation. Z -axis signals must be timerelated to the display to obtain a stable presentation on the crt.

Figure 2-7. Rear-panel connectors.

OPERATING CONSIDERATIONS

This part contains basic operating information and techniques that should be considered before attempting any measurements.

GRATICULE

The graticule is internally marked on the faceplate of the crt to enable accurate measurements without parallax error (see Figure 2-8). It is marked with eight vertical and ten horizontal major divisions. In addition, each major division is divided into five subdivisions. The vertical deflection factors and horizontal timing are calibrated to the graticule so that accurate measurements can be made directly from the crt. Also, percentage marks for the measurement of rise and fall times are located on the left side of the graticule.

Figure 2-8. Graticule measurement markings.

GROUNDING

The most reliable signal measurements are made when the 2335 and the unit under test are connected by a common reference (ground lead) in addition to the signal lead or probe. The probe's ground lead provides the best grounding method for signal interconnection and ensures the maximum amount of signal-lead shielding in the probe cable. A separate ground lead can also be connected from the unit under test to the oscilloscope GND connector located on the rear panel.

SIGNAL CONNECTIONS

Probes

Generally, probes offer the most convenient means of connecting an input signal to the instrument. They are shielded to prevent pickup of electromagnetic interference, and the supplied 10X probe offers a high input impedance that minimizes circuit loading. This allows the circuit under test to operate with a minimum of change from the normal condition of the circuit when measurements are being made.

Coaxial Cables

Cables may also be used to connect signals to the input connectors, but they may have considerable effect on the accuracy of a displayed waveform. To maintain the original frequency characteristics of an applied signal, only highquality, low-loss coaxial cables should be used. Coaxial cables should be terminated at both ends in their characteristic impedance. If this is not possible, use suitable impedance-matching devices.

INPUT COUPLING CAPACITOR PRECHARGING

When the input coupling switch is set to GND, the input signal is connected to ground through the input coupling capacitor in series with an $800-\mathrm{k} \Omega$ resistor to form a precharging network. This network allows the input coupling capacitor to charge to the average dc-voltage level of the signal applied to the probe. Thus, any large voltage
transients that may accidentally be generated will not be applied to the amplifier input when input coupling is switched from GND to AC. The precharging network also provides a measure of protection to the external circuitry by reducing the current levels that can be drawn from the external circuitry during capacitor charging.

The following procedure should be used whenever the probe tip is connected to a signal source having a different dc level than that previously applied, especially if the dclevel difference is more than 10 times the VOLTS/DIV switch setting:

1. Set the AC-GND-DC switch to GND before connecting the probe tip to a signal source.

NOTE

The outer shells of the A EXT,CH 1 OR X, and CH 2 OR Y connectors are attached to the 2335 chassis ground.
2. Touch the probe tip to the oscilloscope chassis ground.
3. Wait several seconds for the input coupling capacitor to discharge.
4. Connect the probe tip to the signal source.
5. Wait several seconds for the input coupling capacitor to charge.
6. Set the AC-GND-DC switch to AC. The display will remain on the screen, and the ac component of the signal can be measured in the normal manner.

INSTRUMENT COOLING

To maintain adequate instrument cooling, the ventilation holes on both sides of the equipment cabinet must remain free of obstructions.

OSCILLOSCOPE DISPLAYS

INTRODUCTION

The procedures in this section will allow you to set up and operate your instrument to obtain the most commonly used oscilloscope displays. Before proceeding with these instructions, verify that the LINE VOLTAGE SELECTOR switch is placed in the proper position and that the correct line fuse is installed for the available ac-power-input source voltage. Refer to the "Preparation for Use" instructions in this section for this information and for procedures relating to ac-power-input source voltage and fuse selection. Verify that the POWER switch is OFF (push button out).

NORMAL SWEEP DISPLAY

First obtain a Normal Sweep Display, using the following procedure.

1. Preset the instrument front-panel controls as follows:

Display

INTEN	Fully counterclockwise (minimum)
ASTIG	Midrange
FOCUS	Midrange

Vertical (both CH 1 and CH 2 if applicable) AC-GND-DC AC
VOLTS/DIV $50 \mathrm{~m}(1 \mathrm{X})$
VOLTS/DIV VAR Calibrated detent (fully counterclockwise)
VERTICAL MODE
CH 2 INVERT
BW LIMIT

POSITION Midrange

Horizontal

A AND B SEC/DIV
TIME (PULL) VAR

HORIZ MODE
X10 MAG
POSITION
B DELAY TIME
POSITION

Locked together at 0.5 ms Pull out the VAR knob and set it to the calibrated detent (fully clockwise), then push in the VAR knob.

Select A

Off (push button out)
Midrange

Dial set to 0 (fully counterclockwise)

Trigger

SLOPE	+ (push button out)
LEVEL	Midrange
Trigger Mode	Select AUTO
COUPLING	AC
SOURCE	VERT MODE
TRIG HOLDOFF (PUSH) VAR	

2. Press in the POWER switch button (ON) and allow the instrument to warm up for 20 minutes.
3. Adjust the INTEN control for desired display brightness.
4. Adjust the Vertical and Horizontal POSITION controls to center the trace on the screen.

SIGNAL DISPLAY

1. Obtain a Normal Sweep Display.
2. Apply a signal to either vertical-channel input connector and set the VERTICAL MODE switch to display the channel used. To display two time-related input signals, use both vertical-channel input connectors and select either ALT or CHOP VERTICAL MODE, depending on the frequency of input signals (or select AUTO VERTICAL MODE, if automatic selection is desired).
3. Adjust the INTEN control for desired display brightness. If the display is not visible with the INTEN control at midrange, press the BEAM FIND push button and hold it in while adjusting the appropriate VOLTS/DIV switch (es) to reduce the vertical display size. Center the compressed display within the graticule area using the Vertical and Horizontal POSITION controls; release the BEAM FIND push button.
4. Adjust the A TRIGGER LEVEL control if necessary to obtain a stable display.
5. Set the appropriate VOLTS/DIV switch(es) and readjust the Vertical and Horizontal POSITION controls to center the display within the graticule area.
6. Set the A SEC/DIV switch for the desired number of cycles of displayed signal. Then adjust the FOCUS control (and ASTIG, if necessary) for the best-defined display.

MAGNIFIED-SWEEP DISPLAY

1. Obtain a Signal Display (see preceding instructions).
2. Adjust the Horizontal POSITION control to move the trace area to be magnified to within the center graticule division of the crt (0.5 division on each side of the center vertical graticule line). Change the A SEC/DIV switch setting as required.
3. Press in the X10 MAG push button (on) and adjust the Horizontal POSITION control for precise positioning of the magnified display.
4. To calculate the magnified sweep speed, divide the A SEC/DIV setting by 10 .

DELAYED-SWEEP DISPLAY

1. Obtain a Signal Display.
2. Select A INTEN HORIZ MODE and set the B SEC/ DIV switch until the intensified zone is the desired length. Adjust the INTEN control as needed to make the intensified zone distinguishable from the remainder of the display.
3. Adjust the B DELAY TIME POSITION control to move the intensified zone to cover that portion of the A trace that is to be displayed on the B trace.
4. Select the B HORIZ MODE. The intensified zone adjusted in steps 2 and 3 is now displayed as the B trace. The delayed sweep speed is indicated by the white stripe on the B SEC/DIV knob.

DELAYED-SWEEP MEASUREMENTS

1. Obtain a Signal Display.

2. Select the A INTEN HORIZ MODE and set the B SEC/DIV switch until the intensified zone is the desired length. Adjust the INTEN control as needed to make the intensified zone distinguishable from the remainder of the display.
3. Adjust the B DELAY TIME POSITION control to move the intensified zone to the first pulse of interest.
4. Select the B HORIZ MODE. Observe the B trace and adjust the B DELAY TIME POSITION control to move the rising portion of the pulse to a convenient vertical reference line.
5. Record the B DELAY TIME POSITION control dial setting.
6. Adjust the B DELAY TIME POSITION control clockwise until the rising portion of the second pulse of interest is positioned to the same vertical reference line selected in step 4.

NOTE

If several pulses are displayed, return to the A INTEN HORIZ MODE to locate the correct pulse. Do not change the setting of the Horizontal POSITION control.
7. Record the B DELAY TIME POSITION control dial setting.
8. Use the following formula to calculate the time difference:
$\begin{aligned} & \text { Time Difference } \\ & \text { (delayed sweep) }\end{aligned}=\left(\begin{array}{cc}\text { second } & \\ \text { first } \\ \text { dial } & - \\ \text { dial } \\ \text { setting } & \\ \text { setting }\end{array}\right)\left(\begin{array}{c}\text { delay time } \\ \text { (A SEC/DIV } \\ \text { switch setting })\end{array}\right)$

SINGLE-SWEEP DISPLAY

1. Obtain a Signal Display. For random signals, set the A TRIGGER LEVEL control to trigger the sweep on a signal that is approximately the same amplitude as the random signal.
2. Press in the A TRIGGER SGL SWP push button momentarily for single-sweep operation. The next trigger pulse will initiate the sweep, and a single trace will be displayed. If no trigger signal is present, the TRIG'DREADY light should illuminate to indicate that the A Sweep Generator circuit is set to initiate a sweep when a trigger signal is received.

Operating Instructions-2335 Service

3. When the single sweep has been triggered and the sweep is completed, the Sweep-Logic circuitry is locked out. Another sweep cannot be generated until the A TRIGGER SGL SWP push button is again pressed in to set the A Sweep Generator to the READY condition.

X-Y DISPLAY

1. Obtain a Normal Sweep Display.
2. Use equal length coaxial cables, or the two supplied 10 X probes, to apply the horizontal signal (X -axis) to the CH 1 OR X input connector and the vertical signal (Y-axis) to the CH 2 OR Y input connector.
3. Select $X-Y$ VERT MODE by simultaneously pressing in the CH 1 and CH 2 push buttons.
4. Advance the INTEN control setting until two dots are displayed. The display can be positioned horizontally with the Horizontal POSITION control and vertically with the Channel 2 POSITION control.

NOTE

The display obtained when sinusoidal signals are applied to the X - and Y-axis is called a Lissajous Figure. This display is commonly used to compare the frequency and phase relationship of two input signals. The frequency relationship of the two input signals determines the pattern seen. The pattern will be stable only if a common divisor exists between the two frequencies.

THEORY OF OPERATION

INTRODUCTION

SECTION ORGANIZATION

This section contains a functional description of the 2335 Oscilloscope circuitry. The discussion begins with an overview of instrument functions and continues with detailed explanations of each major circuit. Reference is made to supporting schematic and block diagrams which will facilitate understanding of the text. These diagrams show interconnections between parts of the circuitry, identify circuit components, list specific component values, and indicate interrelationships with front-panel controls.

The detailed block diagram and the schematic diagrams are located in the tabbed "Diagrams" section at the rear of this manual, while smaller functional diagrams are contained within this section near their respective text. The particular schematic diagram associated with each circuit description is identified in the text, and the diagram number is shown (enclosed within a diamond symbol) on the tab of the appropriate foldout page. For optimum understanding of the circuit being described, refer to both the applicable schematic diagram and the functional block diagram.

INTEGRATED CIRCUIT DESCRIPTIONS

Digital Logic Conventions

Digital logic circuits perform many functions within this instrument. The operation of these circuits is represented by specific logic symbology and terminology. Most logic-function descriptions contained in this manual use the positive-logic convention. Positive logic is a system of notation whereby the more positive of two levels is the TRUE (or 1) state; the more negative level is the FALSE (or 0) state. In the logic descriptions, the TRUE state is referred to as HI , and the FALSE state is referred to as LO. The specific voltages which constitute a HI or a LO state vary between individual devices. For specific device characteristics, refer to the manufacturer's data book.

Linear Devices

The functioning of individual linear integrated circuit devices is described in this section using waveforms or other graphic techniques to illustrate their operation.

GENERAL DESCRIPTION

OVERALL OPERATION

In the following overview of the 2335 Oscilloscope circuitry, refer to the basic block diagram shown in Figure 3-1 and to the detailed block diagram located in the "Diagrams" section of this manual. Each major block in the detailed block diagram represents a major circuit within the instrument. In Figure 3-1, the numbered diamond symbol shown inside each block refers to the appropriate schematic diagram number.

Signals to be displayed on the crt may be applied to either the CH 1 OR X input connector or the CH 2 OR Y input connector. Separate input-coupling and deflectionfactor selections are provided for each input signal. These input signals are attenuated to the selected display amplitude by precision attenuator circuits. Included in the attenuator circuitry is a buffer amplifier used to match impedances between the input high-impedance attenuator and the output low-impedance attenuator. The attenuated input signals are then applied to the Vertical Preamplifier circuit.

Each Vertical Preamplifier input stage is a hybrid circuit that provides signal amplification, variable deflection factor, and a sample of the input signal for use during internal triggering. Succeeding stages of the Vertical Preamplifier provide for vertical positioning of the display and additional gain. In the final stage of the Channel 2 Vertical Preamplifier, additional circuitry is used to provide for the selectable Channel 2 Invert feature. This circuit allows the operator either to invert the Channel 2 signal display as seen on the crt (when CH 2 INVERT is selected) or to subtract the Channel 2 signal from the Channel 1 signal (when ADD VERTICAL MODE is in use).

The outputs of both Vertical Preamplifier circuits are applied to a Diode Gate network that, under control of the Vertical Switching Logic circuitry, selects appropriate channel signals to be passed to the Vertical Output Amplifier. Selected channel signals are applied to the Delay Line via the Delay Line Driver stage. When the TRIG VIEW push button is pressed in, channel signals do not pass through the Diode Gate; instead, the Trig View signal (supplied from the A Trigger Generator) is applied to the Delay Line Driver input.

After passing through the Delay Line, the vertical signal is applied to the Vertical Output Amplifier input stage. Also included at this point is the Bandwidth Limit circuitry that, when BW LIMIT is selected, reduces the upper
frequency-response limit of the vertical deflection system. Three stages of amplification are contained in the input amplifier. The vertical portion of the Beam Find circuitry acts on the third stage of amplification in the integrated circuit. When the Beam Find function is activated (by pressing in the BEAM FIND button), the gain of the amplifier is reduced to limit vertical deflection to within the graticule viewing area. This feature aids the operator in locating off-screen or overscanned displays. The horizontal and intensity portions of the Beam Find circuitry are discussed in the Horizontal and Z-Axis circuit descriptions respectively.

A final hybrid stage in the Vertical Output Amplifier converts the current signal to a voltage signal that is then applied to the crt vertical deflection plates.

The vertical mode of operation is controlled by the Vertical Switching Logic and Chop Blanking circuit. Frontpanel VERTICAL MODE push-button switches determine circuitry operation. Control signals from the Vertical Switching Logic circuit select either the Channel 1 signal or the Channel 2 signal for a single-trace display. When either ALT or CHOP VERTICAL MODE is selected, both channel signals are displayed; these signals are displayed either alternately (one complete sweep per channel) or chopped (one sweep switched between channels at a fixed rate). If ADD VERTICAL MODE is selected, the two channel signals are either algebraically added (when the CH 2 INVERT feature is not activated) or algebraically subtracted (when the CH 2 INVERT button is pressed in).

The Chop Blanking circuit produces a blanking signal which is fed to the input of the Z-Axis Amplifier. This signal blanks the transients that occur when switching between channel signals during the chopped mode of operation. An external Z-Axis signal input is also provided at this point via the EXT Z-AXIS input connector located on the instrument rear panel. External Z-Axis signals are summed with all other Z-Axis input signals to produce the final display intensity.

The Trigger Generator circuit produces an output gate that initiates the triggered A Sweep ramp. Input triggering signals can be obtained from any of the following sources: Channel 1 signal, Channel 2 signal, signal(s) displayed on the crt (VERT MODE), the signal connected to the A EXT TRIGGER input connector, or a signal derived from the ac-power source waveform (LINE). The Trigger Generator circuit contains level, slope, coupling, and source control switches for controlling the circuit operation.

Figure 3-1. Basic block diagram of the $\mathbf{2 3 3 5}$ Oscilloscope.

When the TRIG VIEW switch is activated, the trigger view output signal is supplied to the Trigger View Amplifier circuitry in the Vertical Preamplifier circuit for viewing on the crt.

When activated by the Trigger Generator sweep-gate output, the A Sweep Generator starts an internal linear A Sweep ramp. Either an A Sweep signal, a Crt Unblanking signal, or both, will be produced as determined by the selected HORIZ MODE switch. When either the A or A INTEN HORIZ MODE is selected, both a Sweep signal and an Unblanking signal will be produced. In the B HORIZ MODE, neither an A Sweep output nor an Unblanking signal will be produced, but the A Sweep Generator continues operating to establish the B Sweep delay timing.

The B Sweep Generator starts an internal B Sweep ramp only when the internal A Sweep ramp reaches the level set by the position of the B DELAY TIME POSITION control. Depending on the HORIZ MODE switch selection, the B Sweep Generator produces a choice of: (1) both a B Sweep and a Crt Unblanking signal (B HORIZ MODE), (2) only an Unblanking signal (A INTEN HORIZ MODE), or (3) neither output signal (A HORIZ MODE).

Several sweep functions are controlled by the Sweep Control IC. Among these functions are holdoff timing, trigger mode, and sweep resetting. When AUTO Trigger Mode is selected, absence of an adequate trigger signal for about 100 ms after the end of holdoff causes an Auto $\overline{\text { Gate }}$ signal to the A Sweep Generator. The Auto $\overline{\text { Gate }}$ initiates the A Sweep ramp in lieu of the \bar{A} Gate normally produced by the Trigger Generator. When NORM Trigger Mode is selected, the Auto $\overline{\text { Gate }}$ is not produced, and an A Sweep is generated only if the A Trigger Generator circuit receives an adequate triggering signal. Pushing the SGL SWP push button sets the Sweep Control IC to allow only one sweep after a triggering signal is received. Following the single sweep, a reset is held on the Trigger Generator to disable it until the SGL SWP push button is pressed again.

The A Gate output from the Sweep Control IC is used to produce an Alt Sync signal. This signal synchronizes vertical switching when ALT VERTICAL MODE is used to display both Channel 1 and Channel 2 signals.

Sweep signals from either the A or the B Sweep Generator are amplified by the Horizontal Amplifier circuit to produce horizontal deflection on the crt. When the X-Y display feature is selected (by pressing in both CH 1 and CH 2 VERTICAL MODE push buttons), the A and the B Sweeps are disabled, and the Channel 1 signal is supplied to the Horizontal Amplifier for use as the X -Axis deflection signal. The Y-Axis deflection signal is supplied from the CH 2 OR Y input connector.

The Horizontal Amplifier contains a $\times 10$ magnifier feature that may be selected to increase the displayed sweep rate by a factor of 10 for any A or B SEC/DIV switch setting. The display is magnified from the middle of the trace toward both ends. This feature enables the operator to align the portion of the display to be magnified with the center vertical graticule line prior to pressing the X10 MAG push button; then, when the X10 MAG push button is pressed in, the centered portion remains near the center of the graticule area.

The horizontal portion of the Beam Find circuitry acts to reduce the Horizontal Amplifier gain, limiting the horizontal deflection to within the graticule viewing area.

The Z-Axis Amplifier circuit sets the crt display intensity and blanking levels. Input current(s) supplied from either the A or the B Sweep Generator (unblanking and intensity), the Chop Blanking circuit, and the External Z-Axis input connector are summed in the Z-Axis Amplifier. The resulting signal level determines crt display intensity. The Beam Find circuitry overrides all the other Z-Axis Amplifier input signals to produce a fixed intensity level that is unaffected by the INTENSITY control position.

Included in the CRT circuitry are the High-Voltage Oscillator, the High-Voltage Multiplier, and the HighVoltage Regulator. The regulator controls oscillator drive current to maintain a correct level of high-voltage output. Alternating oscillator current flows through the primary winding of the high-voltage transformer. Transformer secondary windings supply drive current to the HighVoltage Multiplier, the DC Restorer circuit, the $+102-\mathrm{V}$ power supply, the crt heater, and the crt cathode and focus power supply.

The High-Voltage Multiplier, the DC Restorer, and the cathode and focus voltage supply circuits are contained in a sealed high-voltage module. High voltage from the multiplier is supplied directly to the crt anode.

DC restoration is used to raise the dc output level of the Z-Axis Amplifier. This allows the signal to be coupled to the crt intensity grid. Direct coupling of the Z-Axis signal to the intensity grid is not possible due to the elevated voltage on both the crt cathode and grid.

Remaining operating voltages for the 2335 are provided by the Low-Voltage Power Supply. Power is distributed throughout the instrument to supply required circuit operating voltages.

Fan-drive voltage is produced by a three-stage switching circuit. The Fan's speed is determined by both the ambient temperature and the line-voltage level (via the $-5-\mathrm{V}$ unregulated voltage source).

The Amplitude Calibrator circuit provides a square-wave output signal with accurate voltage amplitude. This signal is useful both for checking the instrument vertical calibration and compensating voltage probes.

DETAILED CIRCUIT DESCRIPTION

CHANNEL 1 AND CHANNEL 2 ATTENUATORS

The Vertical Attenuator circuitry is shown on schematic diagram 1. Since the Channel 1 and Channel 2 circuits are nearly identical, only the Channel 1 Attenuator is discussed. A simplified block diagram of the Channel 1 Attenuator circuitry is shown in Figure 3-2.

Input Coupling

Signals applied to the input connector can be ac coupled, dc coupled, or internally disconnected from the attenuator input. When input coupling switch S2 is set to DC, the input signal is coupled directly to the attenuator input via R3. When it is set to AC, the input signal passes through input coupling capacitor C15. The coupling capacitor prevents the dc component of the input signal from passing to the attenuator input. With switch S2 in the GND position, the direct signal path is opened and the input of the attenuator is grounded. The input signal from C15 is connected to ground via R2. Resistor R2 has a high resistance value and is used to allow precharging of input coupling capacitor C15 when the input coupling switch is set to GND. With C15 precharged, the trace will remain within the graticule area of the crt whenever the input coupling switch is moved from GND to AC. The GND position of S2 provides a ground reference without the need to disconnect the applied signal from the input connector.

Input Attenuator

The effective overall deflection factor of each vertical channel is determined by the setting of the associated Channel VOLTS/DIV switch. The basic deflection factor (with no attenuation) of the vertical deflection system is 5 mV per division of crt deflection.

For VOLTS/DIV switch settings above 5 mV , frequencycompensated voltage-divider sections (precision attenuators) are switched into the signal path to produce the vertical deflection factors indicated on the instrument front panel. Each channel has a $2 X$, a $4 X$, and three $10 X$ attenuators which may be selected in various combinations. The selected combination provides constant attenuation for all frequencies within the bandwidth range of the instrument. The vertical attenuators maintain the same input characteristics (1 M Ω and approximately 20 pF) for each setting of the VOLTS/DIV switch.

Each channel attenuator circuit is composed of an input high-impedance attenuator (two divide-by-ten sections), an input buffer amplifier, and a low-impedance output attenuator (divide-by-two, -four, or -ten). The attenuator precision components are located on hybrid ceramic chips.

The high-impedance input attenuator produces minimum circuit loading for the signal applied to the vertical input connector. Each channel's input attenuator divide-by-ten sections may be cascaded to produce an attenuation factor of 100. For VOLTS/DIV switch settings of 5 mV up to 50 mV , the input attenuator is a straight-through signal path with no attenuation of the signal. For $100-\mathrm{mV}$ to $500-\mathrm{mV}$ settings, the signal is attenuated by ten; and for the $1-V, 2-V$, and $5-V$ settings, the signal is attenuated by 100 .

Buffer Amplifier

The Channel 1 output signal from the input attenuator is connected through C900 and R900 to Source Follower Q4A. Resistor R900 provides the input resistance, and resistor R13 (in the attenuator hybrid) acts as a damping resistor. Transistors Q 4 B and Q 10 A provide a constantcurrent source for Q4A.

Figure 3-2. Channel 1 Vertical Attenuator, simplified block diagram.

In the event that excessively high amplitude signals are applied to Source Follower Q4A, succeeding circuitry is protected by CR1, CR2, CR3, and the gate-source junction of O4A (along with CR8) which limit the signal amplitude to a safe level. If excessive negative signal amplitude causes CR1 and CR2 to become forward biased, the $04 A$ gate will be clamped to about -2 V . Excessive positive-signal amplitude will forward bias the gate-source junction of Q4A. As soon as gate current flows in Q4A, the gate voltage will cease increasing. Gate current is limited to a safe value by the high resistance of R900.

Source Follower Q4A drives Emitter Follower Q10B. Attenuator Balance potentiometer R10 (in the Q10A emitter circuit) is used to adjust the emitter-follower output voltage to zero volts with no signal applied.

The low-impedance emitter-follower output drives a $75-\Omega$ hy brid output attenuator.

Output Attenuator

The low-impedance output attenuator is switchable to produce attenuation factors of $1,2,4$, or 10 . Since a portion of R20 (the attenuator voltage divider) remains in the signal path for all attenuation factors, capacitors C15 and C20 compensate the divider network to maintain a $75-\Omega$ output impedance for all VOLTS/DIV switch settings. The signal from the Output Attenuator is fed to the Vertical Preamplifier via a $75-\Omega$ transmission line.

VERTICAL PREAMPLIFIERS, DIODE GATES, AND DELAY LINE DRIVER

Channel 1 and Channel 2 Vertical Preamplifiers are shown on schematic diagram 2. They are identical with the exception of the added inverting feature in the Channel 2 circuitry. Complete Channel 1 circuit operation is described, along with the Channel 2 differences. A simplified block diagram of the Vertical Preamplifier circuitry is shown in Figure 3-3.

Input Preamplifier

Channel 1 Input Preamplifier U30 is a hybrid amplifier circuit that produces a differential output signal from the single-ended input signal. The Channel 1 gain is adjustable via R47 to establish the calibrated deflection factors.

A single-ended trigger output signal, available at U30 pin 16, supplies the Channel 1 internal trigger signal to the Trigger Generator. Positive-going vertical signals produce positive-going output trigger signals, amplified by a voltage gain of six.

The circuit composed of U 41 B and Q 36 eliminates common-mode signals from the differential output signal. Any common-mode signal present appears at the junction of R42 and R43 (connected between U30 pins 13 and 11) and is applied to pin 5 of U41B. Common-mode signals vary the base voltage on Current Source transistor Q36.

Figure 3-3. Vertical Preamplifier, Diode Gate, and Delay Line Driver, simplified block diagram.

Transistor Q36 inverts the common-mode signal and produces negative feedback that cancels the common-mode output signal from U30.

Compensating networks, connected between U30 pins 4 and 6 , provide both high- and low-frequency compensation for square-wave input signals. Variable Balance control R22 is adjustable to reduce trace shift when the VAR VOLTS/DIV control is rotated through its range.

The Variable-gain circuit is composed of VAR GAIN control R902 and FET Q49. This circuit increases the $5-m V$-per-division gain of U30 to obtain a deflection factor of 2 mV per division or less at the fully clockwise rotation of R902. The VAR GAIN control provides continuously variable deflection factors between each calibrated deflection factor setting of the VOLTS/DIV switch.

Gain compensation for U30 over varying ambient temperature is provided by thermistor RT46 and R46.

Channel 1 Positioning

Hybrid circuit U55 provides balanced current sources for producing at least ± 12 divisions of vertical positioning for the displayed signal. POSITION control R903 varies the amount of dc-offset current added to the vertical signal current at U55 pins 2 and 6. The sum of the dc-offset current and the vertical-signal current establishes the vertical position of the crt display. Diodes CR53 and CR54, connected between U55 pins 2 and 6, limit the range of the Channel 1 positioning circuit to prevent it from affecting the horizontal-display position when the X-Y feature is in use. Corresponding diodes are not included in the Channel 2 circuitry.

Channel 1 Common-Base Output Stage

A common-base output stage composed of Q55 and Q57 provides current-summing nodes for the vertical positioning and Channel 1 signal currents. When the TRIG VIEW feature is used, the output of the common-base stage is blocked by a diode gate to prevent the vertical input signal from reaching the Delay Line Driver.

Channel 2 Invert Operation

The Channel 2 common-base output stage is composed of two transistor pairs. In the noninverting mode, transistors Q132 and Q134 are biased on to carry the signal current. When the INVERT push-button switch is pressed in, Q132 and Q134 become biased off; and Q133 and Q135 are biased on. The collectors of Q133 and Q135 are crossconnected to the stage output points; consequently, the Channel 2 signal current becomes inverted.

Diode Gates

Channel 1 Diode Gate is composed of CR55, CR56, CR57, and CR58. The Diode Gate acts as a switch that is controlled by the Vertical Switching Logic circuit. Channel 2 Diode Gate is identical in operation.

CHANNEL 1 DISPLAY ONLY. To display only the Channel 1 signal, the CH 1 Select signal is HI and the CH 2 Select signal is LO. With CH 1 Select HI, diodes CR56 and CR58 are reverse biased (see Figure 3-4). Series diodes CR55 and CR57 are forward biased, and the Channel 1 vertical signal is allowed to pass to the Delay Line Driver. In the Channel 2 Diode Gate (with the CH 2 Select signal LO) CR138 and CR139 are forward biased, and the Channel 2 vertical-signal current is shunted away from series diodes CR132 and CR134. The series diodes are reverse biased, and the Channel 2 signal current is prevented from reaching the Delay Line Driver.

Figure 3-4. Diode Gate biasing for Channel 1 display.

CHANNEL 2 DISPLAY ONLY. When CH 2 VERTICAL MODE is selected, the CH 1 Select signal goes LO and the CH 2 Select signal goes HI. The Channel 1 signal is blocked by the Diode Gate, and the Channel 2 signal reaches the Delay Line Driver.

ADD DISPLAY. Both Diode Gates are biased on to pass the Channel 1 and Channel 2 vertical signals. Both channelsignal currents are summed at the input to the Delay Line Driver to produce the ADD display signal.

ALTERNATE AND CHOPPED DISPLAY. The Diode Gates are switched on and off by the channel select signals from the Vertical Switching Logic circuit. When ALT VERTICAL MODE is selected, the Diode Gates are switched at the end of each trace. For CHOP Vertical Mode, the diode gates are switched at a rate of about 275 kHz . See the "Vertical Switching Logic" discussion for a description of how the channel selection signals are obtained.

TRIG VIEW DISPLAY. While the TRIG VIEW push button is pressed in, both Diode Gates are biased off, and the Trigger View Amplifier (shown in Figure 3-3) is enabled to pass the A Trigger View signal to the Delay Line Driver.

X-Y DISPLAY. Pressing in both the CH 1 and CH 2 VERTICAL MODE push buttons activates the instrument's X-Y display feature. The Channel 1 Diode Gate is held off, and the Channel 2 Diode Gate is biased on. The Channel 2 signal is passed to the Delay Line Driver and ultimately to the crt to provide the Y-Axis display deflection. The X-Axis deflection signal is supplied to the Horizontal Preamplifier from the Channel 1 trigger-signal output of the Channel 1 Vertical Preamplifier (U30).

Delay Line Driver

The Delay Line Driver is arranged as a cascaded, common-emitter, feedback amplifier. Differential inputsignal current is converted to differential voltage at the input to the Delay Line. Feedback elements are R154 (between Q163 emitter and Q153 base in the negativesignal path) and R173 (between Q175 emitter and Q170 base in the positive-signal path).

A circuit composed of U160 and Q149 supplies negative feedback from the common-mode point at the junction of R168 and R176 (in the Delay Line Driver output) to the common-mode point at the junction of R148 and R169 (in the Delay Line Driver input). The negative feedback eliminates common-mode signals from the Delay Line, and it balances both sides of the amplifier when ADD VERTICAL MODE is selected. The resulting output signal level to the Delay Line is then centered at zero volts.

Components R162 and C162, connected between the base of Q163 and the base of Q175, supply high-frequency damping of the Delay Line Driver frequency response.

Vert Mode Trigger Pickoff Amplifier

The trigger signal for the VERT MODE position of the SOURCE switch is obtained from emitter-follower Q182. The Vert Mode Trigger Enable signal (-5 V dc) is applied to the emitter of Q182. This signal is the emittercurrent source for the transistor, and it is supplied from the Vertical Switching Logic circuit (diagram 4). The enabling voltage is removed when the TRIG VIEW push button is pressed in. This action opens the feedback loop that would otherwise occur between the Vert Mode Trigger output and the Trig View input. Diode CR180 provides thermal compensation of the Q182 base-to-emitter junction voltage.

Delay Line

Delay Line DL900 provides about 90 ns of delay in the vertical signal. When using internal triggering (VERT MODE, CH 1, or CH 2) the delay time allows the Sweep Generator circuits sufficient time to initiate a sweep before the vertical signal reaches the crt deflection plates. This feature permits the leading edge of the internal signal that originates the trigger pulse to be displayed.

VERTICAL OUTPUT AMPLIFIER

The Vertical Output Amplifier circuit, shown on schematic diagram 3, provides the final amplification of the vertical deflection signal. This circuit includes the bandwidth limiting components, part of the Beam Find circuitry, an input IC amplifier, and a hybrid-circuit crt driver.

Bandwidth Limiting

The upper-frequency response limit of the Vertical Output Amplifier may be reduced to eliminate high-frequency interference from a lower-frequency signal display. Pressing in the front-panel BW LIMIT switch forward biases a diode bridge composed of CR8, CR9, CR24, and CR25. This action also connects capacitors C8 and C25 to a low impedance ground through the diode bridge.

Proper termination for the Delay Line is provided by R8 and T9 (in the negative-signal side) and by R25 and T24 (in the positive-signal side). The signal is tapped off T9 and T24 at the correct impedance point to match the input impedance of Input Amplifier U43. Resistors R9 and R24 damp the signal slightly to eliminate high-frequency oscillation.

Input Amplifier

Input Amplifier U43 is a three-stage IC amplifier. Frequency compensation for the Delay Line and first amplifier stage is provided by compensating networks connected between U43 pins 12 and 9 . Also connected between these pins is Gain adjustment R44 and Vertical Balance adjustment R18. The Vertical Balance adjustment centers the vertical POSITION control range to obtain equal positive and negative positioning limits.

Compensating components connected between U43 pins 17 and 18 and between U43 pins 3 and 4 provide for thermal compensation of the amplifier. Common-mode signals are balanced by amplifier U58 controlling the third amplifier stage bias current.

The vertical portion of the Beam Find circuit acts on the third amplifier stage. When BEAM FIND switch S900 is pressed in, the amplifier gain is reduced by limiting the current available to the third stage.

Vertical Output Amplifier

Vertical Output Amplifier U54 is a current-driven, common-base, hybrid-circuit amplifier. The signal current from U43 pins 2 and 19 is converted to a crt deflection voltage (nominally 3 V per division of deflection). Approximately 2.5 watts of power is dissipated by this IC, and it must be properly heat sinked when operating.

The parallel coil and resistor components (L913 and L915) at the output pins of U54 compensate the crt deflection-plate capacitance.

VERTICAL SWITCHING LOGIC AND CHOP BLANKING

The Vertical Switching Logic portion of this circuit, shown on schematic diagram 4, controls the channel switching to obtain the appropriate display for each selected VERTICAL MODE switch. During chopped operation, the Chop Blanking portion of the circuit supplies a blanking signal to the Z-Axis Amplifier. When switching between channels, this blanking signal turns off the Z-Axis Amplifier to prevent transients from appearing in the display.

Vertical Mode Selection

The front-panel VERTICAL MODE switches provide the logic levels that control the channel-enabling-signal selection. Dual Multiplexer U215 switches the channel Diode Gates on and off by selecting either the Alt Sync signal or the outputs from flip-flop U211A. The Q and \bar{Q}
output levels from U211A are used for selecting CHOP, ADD, CH 1, or CH 2 VERTICAL MODE.

CHANNEL 1 DISPLAY. When only the CH 1 push button is pressed in, the remaining VERTICAL MODE switches are released. The Reset input of U211A (pin 1) goes LO, and the Set input (pin 4) is pulled HI through pull-up resistor R203. Flip-flop U211A resets, and the $\overline{\mathrm{Q}}$ output (pin 6) goes HI while the Q output (pi.1 5) goes LO. The HI is placed on pin 12 of Multiplexer U215, and the LO is placed on pin 4.

The A and B select inputs of $U 215$ determine the input pins that are switched to the output pins (see Figure 3-5). Input A is a permanent LO, and the B input is controlled by the ALT and CHOP VERTICAL MODE switches. When CH 1 VERTICAL MODE is selected, the U215 B input (pin 2) will be held HI through pull-up resistor R215. With the A input $L O$ and the B input HI , the 1 C 2 input (from the Q output of U211A) will be connected to the 1 Y output (CH 2 Select), and the 2 C 2 input (from the $\overline{\mathrm{Q}}$ output of U211A) will be connected to the 2 Y output (CH 1 Select).

The output state of flip-flop U211A is also determined by the input logic levels set up by the VERTICAL MODE switches. For a Channel 1 display, the Reset input of U211A (pin 1) will be held LO by a ground connected through the CH 1 and CH 2 VERTICAL MODE switches. The $\overline{\mathrm{Q}}$ output will be reset HI , and the Q output will be LO . The HI from U211A pin 6 is applied to U 215 pin 12 (2C2 input) and is connected through U215 to pin 9 (2 Y output). A HI on pin 9 turns on the Channel 1 Diode Gate to allow the Channel 1 signal to pass to the Delay Line Driver. The LO on U211A pin 5 is applied to U215 pin 4 (1C2 input) and is connected through U215 to pin 7 (1 Y output). A LO on pin 7 turns off the Channel 2 Diode Gate.

CHANNEL 2 DISPLAY. When CH 2 VERTICAL MODE switch is pressed in, the condition of Multiplexer U215 remains unchanged from the Channel 1 selection previously discussed. The change occurs in the state of flip-flop U211A. With CH 2 push button pressed in, the Set input of U211A is grounded for a LO, and the Reset input is pulled HI through pull-up resistor R202. The U211A Q output becomes HI , and the $\overline{\mathrm{Q}}$ output becomes LO. The states of the CH 1 Select and CH 2 Select lines are therefore reversed from the Channel 1 display states, and Channel 2 Diode Gate is biased on while the Channel 1 Diode Gate is biased off.

ADD DISPLAY. Again, the condition of Multiplexer U215 does not change from the Channel 1 display state for an ADD display. The Set and Reset inputs of flip-flop

U211A are both switched LO by pressing in the ADD VERTICAL MODE switch, and both the Q and $\overline{\mathrm{Q}}$ outputs of U211A become HI. The CH 1 and CH 2 Select signals from U215 are thus both HI, and both channel Diode Gates are switched on.

CHOP DISPLAY. To obtain the required channel switching and chop blanking for the Chop display, the Chop Clock Oscillator must be enabled. In the circuit composed of U196A, U196B, and Q209, an oscillator circuit (operating at a nominal frequency of 500 kHz) is formed by NAND gate U196A and the associated RC network connected between pins 2 and 3 .

For VERTICAL MODE switch selections other than CHOP, U196A pin 1 is grounded to make it LO. The U196A output at pin 3 is then HI , and C197 charges through CR201 and R201 to make U196A pin 2 HI. At the moment the CHOP VERTICAL MODE switch is pressed in, U196A pin 1 becomes HI , and U196A pin 3 is then switched LC Capacitor C197 begins discharging through parallel resistor R197 toward the LO threshold of U196A. When the LO input threshold is reached, U196A pin 3 is
switched HI to start charging C197 back to the HI threshold. The selected time constants of the charge and discharge paths, along with the threshold switching levels of U196A, produce an asymmetrical Chop Clock pulse that is $\mathrm{HI} 20 \%$ of the time and LO 80% of the time at U196A pin 3.

The Chop Clock signal is applied to U211A pin 3 (Clock input) to switch the flip-flop at the chop rate. Every positive-going transistion clocks the level at U211A pin 2 onto the Q output (pin 5). With the U211A $\overline{\mathrm{Q}}$ output connected to pin 2, each Chop Clock pulse causes the U211A outputs to toggle (change state). Each change of the output state of U211A is connected through Multiplexer U215 to produce the Channel Select signals that drive the Channel Diode Gates. Thus, the Diode Gates are switched on and off at the chop rate to present a dualchannel display.

The Chop Clock signal is also applied to NAND gate U196B pin 4 to drive Chop Blanking Amplifier Q209. Chop blanking is used to prevent display of the switching transients that occur with chopping. During chop operation, U196B pin 5 is held HI by pull-up resistor R196. Positive

Figure 3-5. Simplified illustration of Multiplexer U215 switching operation.
transitions of the Chop Clock signal (corresponding to the channel switching time) switch U196B pin 6 to a LO state. This LO is applied to the base of O209, turning it on. Chop Blanking Amplifier O209 supplies blanking current to the Z-Axis Amplifier (diagram 9) until the Chop Clock signal goes LO again. At that time, U196B pin 6 will switch HI , biasing off O209. The Z-Axis Amplifier then is able to respond to the remaining Z-Axis signals setting the display intensity. Diode CR209 clips any negative portion of the blanking waveform.

ALT DISPLAY. During the time that ALT VERTICAL MODE is selected, the Chop Clock Oscillator is disabled by a fixed LO on pin 1 of NAND gate U196A. Multiplexer U215 is switched by a LO on pin 2 (the B Select input) to select the 1 C 0 and 2 CO inputs ($\overline{\text { Alt Sync }}$ and Alt Sync) to be connected to the 1 Y and 2 Y outputs. The Alt Sync signal is supplied from Q108 in the Sweep circuit (diagram 6) and is inverted by U196C to produce the $\overline{\text { Alt Sync }}$ signal at U215 pin 6. At the end of each sweep, the Alt Sync signal changes state. The change of state (applied through U215 to the CH 1 and CH 2 Select lines) switches the Channel 1 and Channel 2 Diode Gates to alternately allow first one and then the other channel signal to reach the Delay Line Driver.

AUTO ALT/CHOP SELECT. By pressing in both the ALT and CHOP VERTICAL MODE push buttons simultaneously, an automatic Alt/Chop selection circuit is enabled. When in use, the Auto Alt/Chop feature will automatically switch a dual-channel display mode to either ALT or CHOP for the best display presentation. The circuit is composed of Q194 (diagram 4) and a diode-switching network (diagram 6). The diode switches are under control of the A SEC/DIV switch. The A SEC/DIV switch settings from 0.5 s to 0.5 ms will select CHOP (no diode switches on). The remaining switch positions (0.2 ms to $0.05 \mu \mathrm{~s}$) turn on one of the diode switches to produce an Auto Sel signal.

In the ALT selection range, the Auto Sel signal is applied through R195 and the CHOP and ALT VERTICAL MODE switches to bias on Q194. At the collector of Q194, a LO is produced and applied to $\mathbf{U} 215$ pin 2 (B Select input) to switch the Multiplexer to the Alt Sync inputs. This LO is also applied to U196A pin 1 to disable the Chop Clock Oscillator.

When the A SEC/DIV switch is set to any position in the CHOP select range, the Auto Sel signal is removed. Transistor Q194 is biased off, and pull-up resistor R215 places a HI on both U215 pin 2 and U196A pin 1. Multiplexer U215 switches to the Q and $\overline{\mathrm{Q}}$ outputs of U211A, and the Chop Clock Oscillator is enabled for CHOP operation.

TRIG VIEW DISPLAY. Pressing in the front-panel TRIG VIEW push button performs three functions:

1. The $-5-V$ Vert Mode Trig Enable signal is removed from Vert Mode Trigger transistor Q182 (diagram 2). This action disables the pickoff circuit.
2. The ground is removed from the base leads of Trigger View Amplifier transistors Q141 and Q147 (diagram 2). Transistor Q142 is biased on, and diodes CR140 and CR146 are reverse biased. This action allows the A Trig View signal to pass to the Delay Line Driver.
3. A LO is placed on the Set input of U211B, causing pin 9 (O output) to go HI . This action disables both outputs of Multiplexer U215, and both channelselect signals become LO (see Figure 3-5). The Channel 1 and Channel 2 Diode Gates are biased off by the LO signals to prevent either channel signal from passing to the Delay Line Driver.

X-Y DISPLAY. To obtain an X-Y display, both CH 1 and CH 2 VERTICAL MODE push buttons are pressed in simultaneously. A LO is placed on the Set input of U211A by the CH 2 VERTICAL MODE switch, and the Channel 2 Diode Gate is biased on. The Channel 2 signal is then applied to the Vertical Output Amplifier to provide Y -Axis (vertical) crt deflection. The X-Axis deflection signal is supplied by the Channel 1 input signal via the CH 1 Trigger signal output of Channel 1 Vertical Preamplifier U30.

A separate section of VERTICAL MODE switch S194 (see diagram 8) applies an X-Y Enable signal to both the Horizontal Preamplifier (U128 pin 12) and the A Sweep Generator (U43 pin 14, diagram 6). The Horizontal Preamplifier is switched to amplify the X (Channel 1) signal for the X-Axis crt deflection, and the A Sweep Generator is prevented from producing an output sweep signal.

TRIGGER

The Trigger circuitry, shown on schematic diagram 5, is composed of trigger-source and trigger-coupling switching stages, the External Trigger Amplifier, and the A Trigger Generator integrated circuit. Figure 3-6 is a detailed block diagram of the Trigger circuitry.

Trigger Source

The Trigger Generator circuits produce a sweep Gate signal that is used to initiate sweep generation from a choice of five sources of the input trigger signal. SOURCE switches S22A and S22B select trigger signals from the following sources:

VERT MODE: Signals displayed on the crt. Obtained from Vert Mode Trigger Pickoff Q182 following the Delay Line Driver (diagram 2).

CH 1: Channel 1 vertical signals. Obtained from Channel 1 Vertical Preamplifier U30 (diagram 2).

CH 2: Channel 2 vertical signals. Obtained from Channel 2 Vertical Preamplifier U100 (diagram 2).

LINE: Ac-power-source waveform. Obtained from the $5-V$ secondary winding of Power Transformer T900 (diagram 10).

EXT: External trigger signals. Obtained from the signal applied to the A EXT input connector.

EXT $\div 10$: External trigger signals attenuated by a factor of ten.

The EXT and EXT $\div 10$ trigger signals are buffered by an amplifier circuit composed of Q15, Q16, and Q21. Sourcefollower Q15 drives emitter-follower Q21 to buffer the trigger signal and to isolate the Trigger Generator IC from the A EXT input connector.

Figure 3-6. Trigger circuitry, detailed block diagram.

Field-effect transistor Q 16 acts as a constant-current source for $\mathbf{Q 1 5}$ and also provides thermal compensation for the input amplifier. The gate of 015 is protected from accidental application of large-amplitude triggering signals by clamp diodes CR10 and CR14.

A portion of the A COUPLING switch (S67A) selects either $A C$ or DC coupling to apply the external triggering signal to the A External Trigger Amplifier. When set to DC coupling, all components of the input signal are passed in AC coupling, series capacitor C9 is placed in the trigger signal path to block the dc component of the input signal.

Trigger Switching

Input triggering signals to be applied to Trigger Generator U81 are selected by the A Trigger SOURCE switch. The frequency range of the applied signals is determined by the A Trigger COUPLING switch. Signals are applied to the Trigger Generator via two different signal paths: the fast path (high-frequency) connects directly to the trigger input pins of U81; the slow path (low-frequency) connects to U81 pin 19 via the A Trigger SOURCE switch.

SLOW-PATH SWITCHING. Figure 3-7 illustrates the trigger signal slow path. As shown, the A Trigger SOURCE switch is selecting the CH 1 slow-path signal, and the A Trigger COUPLING switch is set for AC coupling. The slow-path signal is fed through C67 when either AC or HF REJ coupling is selected. The DC coupling path is directly connected, and no signal path is established when LF REJ coupling is selected.

It is at this point that dc voltage from the A Trigger LEVEL control (R913) is added to the slow-path trigger signal. The resulting sum is then applied to U81 pin 19, the internal operational amplifier inverting input.

The inverted trigger signal (with the added LEVEL control dc voltage) at U81 pin 20 is applied from the Op Amp output to U 81 pin 9, the Level input. This signal is applied to an internal trigger-level comparator (contained in U81) for use in determining the signal level at which the Gate output signal will be produced.

FAST-PATH SWITCHING. Figure $3-8$ illustrates the trigger signal fast path (high-frequency). The dc and lowfrequency components of the trigger signal are blocked by capacitors (C35, C48, C56, and C63) in series with each signal path. High-frequency components are passed and applied to the U81 trigger inputs (pins 5, 1, 7, and 3).

One of the possible trigger signals is selected as an input signal by a portion of the A Trigger SOURCE switch. This switch controls the Trigger Generator input pins using enabling voltages rather than by directly switching trigger signals. Each signal is applied to a separate internal emitter follower in U81. When 0 V is applied to the input pin (by grounding out the pull-down voltage) the emitter follower associated with that pin will conduct, thus passing the trigger signal applied to that pin. The U81 internal emitter followers are disabled to prevent the signal from passing by applying a negative voltage (about -2 V) through a pulldown resistor.

Figure 3-7. Trigger signal slow path (low frequency).

Trigger input pin 4 is not used to apply a trigger signal, but it is biased on whenever none of the other fast-path inputs are selected. This switching is required because one of the U81 internal emitter followers must be conducting to enable proper operation of the internal trigger-level comparator. Switching of the pin 4 voltage is accomplished by a portion of the A Trigger COUPLING switch.

In Figure 3-8, note that when HF REJ coupling is selected, pin 4 of U81 is enabled by grounding the pulldown voltage. The remaining contacts (AC, LF REJ, and $D C)$ are open, so none of the other fast-path inputs are enabled. The trigger signal used for HF REJ coupling is
obtained from the signal selected by the slow-path A Trigger SOURCE switching.

When the COUPLING switch is set to any other position than HF REJ, piri 4 is disabled by the pull-down voltage applied from R56G. The trigger signal input selected by the A Trigger SOURCE switch is enabled by grounding out the pull-down voltage on the selected trigger input pin via the A Trigger COUPLING switch.

When LINE SOURCE is selected, a slightly different switching path is set up, and pin 4 of $U 81$ will be enabled regardless of the A Trigger COUPLING switch setting. For

Figure 3-8. Trigger signal fast path (high frequency).
the AC, LF REJ, and DC positions, pin 4 is enabled by the ground applied to R56G through the LINE contacts of the A Trigger SOURCE switch. In the HF REJ position, a ground is applied to R56G through the HF REJ contacts of the A Trigger COUPLING switch.

The LINE trigger signal is a low-frequency signal and is applied through slow-path switching to U81 pin 19. All of the fast-path inputs are disabled when LINE SOURCE is selected.

Trigger Generator

The Trigger Generator consists of integrated circuit U81 and associated components. Contained within U81 is the necessary circuitry to generate the Gate output signal (at U81 pin 14) that is used to start the A Sweep Generator (diagram 6).

External control voltages applied to U81 set the trigger level, trigger slope, slope centering, and trigger threshold level.

The A Sweep Gate is generated when the input trigger signal reaches the amplitude determined by the setting of LEVEL control R913. The Gate signal at pin 14 remains HI for the duration of one cycle of the A Sweep. When the A Sweep ends, the A Reset signal at pin 9 of Sweep Control IC U87 (diagram 6) is applied to U81 pin 17 to reset the Trigger Generator IC internal circuitry. The A Reset signal remains on pin 17 until the end of sweep holdoff time (determined by the Sweep Control IC). When the holdoff time has passed, the A Reset signal is removed, and Trigger Generator 481 is enabled to respond to the next triggering signal.

The slope of the input signal that triggers the A Sweep Generator is determined by the setting of SLOPE switch S219. When the SLOPE switch is set to the + (plus) position, the Gate signal output (U81 pin 14) will switch HI only on a positive slope of the input triggering signal. When the SLOPE switch is set to the - (minus) position, the output Gate signal will switch HI only on a negative slope of the input triggering signal.

The A Slope Offset adjustment, R82, balances the U81 internal trigger amplifier so that a Gate signal output occurs at the same level on both the negative and positive slopes of the triggering signal. The A Hyst adjustment, R106, adjusts the built-in hysteresis in the U81 internal threshold comparator to prevent triggering on low-level noise at the Trigger Generator inputs.

Transistors Q89 and Q95 are arranged in a differential amplifier circuit. The Gate signal is inverted, and the dc level is shifted to the correct level for application to the Sweep Control and A Sweep Generator IC (diagram 6). Peak-to-peak amplitude of the $\overline{A G a t e}$ output signal is clamped to about $1.4 \mathrm{~V}(-0.7$ to $+0.7 \mathrm{~V})$ by diodes CR90 and CR91 in the 089 collector circuit.

Transistor 0104 converts the incoming A Reset current signal (from the Sweep Control IC) back into a voltage signal of the correct level for application to the Reset input (pin 17) of Trigger Generator U81.

A differential Trig View signal is available at U81 pins 10 and 11. The Trig View signal is applied to the Trigger View Amplifier (diagram 2). When the front-panel TRIG VIEW switch is pressed in, the Trigger View Amplifier is enabled to pass the Trig View signal on to the Delay Line Driver for display on the crt.

SWEEP

The Sweep circuitry, shown on schematic diagram 6, is composed of the A and B Sweep Generator IC, the Sweep Control IC, the Miller Sweep circuit, and the B DELAY TIME POSITION control circuitry. Logic levels necessary to control the sequence of events associated with sweep generation, both A and B Sweep signals, and crt unblanking signals are produced by the Sweep circuitry.

A and B Sweep Generators

The A and B Sweep Generators produce linear sawtooth voltages which are amplified by the Horizontal Amplifier circuit to produce the crt display horizontal deflection. Both Sweep Generator integrated circuits also produce Z-Axis signals that unblank the crt during the appropriate sweep time and establish the display intensity. The A and B Sweep Generator circuits are contained in two identical 16-pin integrated circuits, U43 and U24 respectively.

The following is a brief description of the function associated with each of the pins of the IC device used for U43 and U24.

Pin 1: Delay Time In (used in the A Sweep Generator IC only). Connects to the B DELAY TIME POSITION control which is used to vary the time between the start of the A Sweep and the start of the Delayed $\overline{\text { Gate output at }}$ pin 16.

Pin 2: Miller Out. Connects to the ramp output signal from the Miller Sweep circuit.

Pin 3: Current Source. Sets the internal operating current levels.

Pin 4: Miller Null Retrace Current. Supplies retrace current and feedback to set the sweep-start voltage on the Miller Sweep circuit.

Pin 5: Sweep Out. The sweep output signal is present on this pin; it is applied to the Horizontal Amplifier circuit. The output can be switched off and on by the logic level on pin 7.

Pin 6: Start Level Current In. Sets current levels that determine the Miller Sweep start voltage.

Pin 7: Sweep Switch In. Enables the sweep output signal at pin 5 . When pin 7 is LO, a sweep output can occur; when HI , the sweep output is disabled and pin 5 is held at -3 V .

Pin 8: $V_{E E}$. Connects to the $-5-\mathrm{V}$ supply.

Pin 9: Ground. Ground connection point for the IC.

Pin 10: Holdoff Start Out. Provides an output pulse to U87 to start the holdoff timing ramp when the sweep ramp reaches its maximum negative level.

Pin 11: Intensity In. Current from Q218, controlled by the front-panel INTEN potentiometer, is supplied to this point to establish the level of unblanking current produced at pin 12.

Pin 12: Crt Unblanking Out. Z-Axis unblanking current supplied from this pin to the Z-Axis Amplifier determines the display intensity during sweep times. During nonsweep times, the crt is blanked by the absence of the unblanking current.

Pin 13: A $\overline{\text { Gate }} \operatorname{In}$. The logic level on this pin is used in conjunction with the logic level on pin 14 (Sweep Disable on U43; Delayed $\overline{\text { Gate }}$ In on U24) to start and stop the sweep. A negative-going gate pulse applied to pin 13 starts the sweep if pin 14 is LO. Also, a negative-going gate pulse applied to pin 14 starts the sweep if pin 13 is LO. In the B Sweep Generator, U24, pin 13 is held permanently LO, and the signal applied to pin 14 controls the sweep start and stop.

Pin 14: Delayed Gate In or Sweep Disable. See "Pin 13" discussion for the use of pin 14 in conjunction with pin 13. In the A Sweep Generator IC, when X-Y VERTICAL MODE is selected, pin 14 (Sweep Disable) is switched HI to prevent any sweep from being generated. Horizontal deflection of the display is accomplished using the signal applied to the CH 1 OR X input connector. In the B Sweep Generator IC, the Delayed Gate produced from pin 16 of the A Sweep Generator IC is applied to this pin to start and stop the B Sweep.

Pin 15: V_{CC}. Connects to the $+5-\mathrm{V}$ supply.

Pin 16: Delayed $\overline{\text { Gate }}$ Out (used in the A Sweep Generator IC only). A Delayed $\overline{\text { Gate }}$ pulse produced at this pin is applied to pin 14 (Delayed $\overline{\text { Gate }} \operatorname{In}$) of the B Sweep Generator IC to control the start and stop of the B Sweep. The delay time between the start of the A Sweep and the generation of the Delayed $\overline{\text { Gate }}$ is determined by the B DELAY TIME POSITION control setting.

B Delay Time Position Circuit

The B DELAY TIME POSITION control, R919, sets a dc level at $U 43$ pin 1 (Delay Time \ln). This de level (between +2 V and -2 V) is compared with the A Sweep ramp level in a delay pickoff comparator contained in U43. When the A Sweep ramp crosses the dc level established by the setting of the B DELAY TIME POSITION control, the Delayed $\overline{\text { Gate }}$ is produced at U43 pin 16.

The amount of delay time between the start of the A Sweep and the start of the Delayed $\overline{\text { Gate output signal }}$ is changed by varying the dc level set by the B DELAY TIME POSITION control.

Operational amplifiers U198A and U198B provide the voltages applied to each end of R919. The two amplifiers are biased to produce stable voltages of +2 V and -2 V respectively when either the A INTEN or B HORIZ MODE is selected.

Pressing in the A HORIZ MODE push button places +5 V on the anode ends of CR195 and CR193. Both amplifiers then become biased to produce outputs of about $-4 V$ to each end of R919, and the delay pickoff comparator within U43 becomes disabled. Consequently, the Delayed $\overline{\text { Gate }}$ is not generated at $U 43$ pin 16, and a B Sweep is not started.

+35-V Regulator

A stable voltage source is required for proper operation of the Miller Sweep circuits. Regulator IC U3 develops the $+34-V$ charging voltage that is applied to the Miller Sweep timing capacitors. The Regulator develops the +34 V from the $+40-\mathrm{V}$ supply.

Miller Sweep Generator

Transistors 080, O81, Q83, and the selected RC timing elements (determined by the A SEC/DIV switch position) make up the A Miller Sweep Generator. Both the A Sweep and B Sweep circuits operate in a similar manner. The A Sweep circuit is discussed to explain circuit operation. Any differences in circuit operation between the A Sweep and the B Sweep are also discussed.

When both pins 13 and 14 of U43 are LO, the minus input of the internal Sweep Start Comparator is pulled LO, and the Comparator output at pin 4 of U 43 becomes a high impedance. Timing capacitor C_{t} then begins to charge toward +32 V through R_{t}. The gate of Q 80 (connected to the junction of C_{t} and R_{t}) begins to go positive as it follows the charge on C_{t}. The resulting increase in current through $\mathbf{Q 8 0}$ decreases the current through $\mathbf{Q 8 1}$ to produce a positive-going voltage rise at the base of Q83. The Q83 collector voltage decreases, and the negative side of C_{t} follows. This action results in a negative-going voltage applied across C_{t} that maintains a constant charging current through C_{t}. The linear charging current produces a linear, rather than exponential, rate of fall to the sawtooth output signal.

The sawtooth output voltage continues to fall until it reaches -2.4 V . At that point, the End-of-Sweep Comparator contained in U43 initiates the Holdoff Start pulse at U43 pin 10. The Holdoff Start pulse starts the sweep holdoff time and resets the A Sweep IC by removing the A $\overline{\text { Gate }}$ from U43 pin 13.

The B Sweep IC (U24) depends on the signal at its Delay $\overline{\text { Gate input (pin 14) and resets only when the } A}$ Sweep ends.

In X-Y VERTICAL MODE, the X-Y Enable signal is applied to U43 pin 14 (Sweep Disable input) to prevent the A Sweep from being generated.

Delay Start potentiometer R74 and B Time potentiometer R10 permit adjustment of the quiescent current levels of Q81 and Q16 in the A and B Sweep circuits respectively. These current levels set the starting points for the sweep output signals.

Sweep Control Integrated Circuit

The Sweep Control integrated circuit is U87. Several functions are performed in this stage, depending on the mode of operation of the instrument. The following list is a brief explanation of the function associated with each pin of the IC.

Pin 1: NORM Mode. When this pin is grounded through the A Trigger Mode switch, S210, the sweep operates in the single-sweep mode. When the ground is removed from this pin (by pressing in the NORM push button), the sweep operates in the repetitive mode.

Pin 2: Single Sweep Reset. Pressing in and releasing the SGL SWP push button prepares the single-sweep circuitry to respond to the next triggering event. The READY LED will illuminate and remain on until a trigger occurs.

Pin 3: Auto Timing. With AUTO Trigger Mode selected, R100 and C100 determine the amount of time between the end of holdoff and the generation of the AUTO Gate when no triggering signal is received. If no triggering signal is received within about 100 ms , the charge on C 100 will be sufficient to place a HI on pin 3, thus causing the Auto $\overline{\text { Gate }}$ signal to occur.

Pin 4: Auto $\overline{\text { Mode }}$. Grounding this pin through Trigger Mode switch S210 enables automatic sweep mode operation.

Pin 5: Logic $\overline{\text { Gate: }}$ The A $\overline{\text { Gate }}$ from the A Trigger Generator is applied here to prevent an Auto $\overline{\text { Gate }}$ from occurring and to control the TRIG'D and READY LED.

Pin 6: Auto $\overline{\text { Gate. When in the automatic sweep mode, }}$ the gate output from this pin triggers the sweep if a trigger signal does not occur within about 100 ms after holdoff ends.

Pin 7: A Gate. The gate provided from this pin synchronizes alternate trace switching in the Vertical Switching Logic circuitry.

Pin 8: Ground connection for the IC.

Pin 9: Holdoff Out. The gate level present here is LO during sweep holdoff time and HI otherwise. This gate is used to reset the Trigger Generator circuitry. While this pin is LO, a triggering signal cannot be generated from the Trigger Generator circuitry.

Pin 10: Holdoff Timing. The RC timing networks selected by the A SEC/DIV switch are connected between this pin and pin 11. The TRIG HOLDOFF (PUSH) VAR control (on diagram 7) may be used to vary the amount of holdoff time from that produced by the fixed holdoff timing components.

Pin 11: Holdoff Ramp. A negative-going holdoff ramp is present on this pin. The slope of the ramp determines the sweep holdoff time.

Pin 12: Holdoff Start. A positive-going end-of-sweep pulse is applied to this pin. The pulse terminates any Sweep Control output gates, starts the holdoff ramp, and initiates the A Reset pulse to the A Trigger Generator.

Pins 13 and 15: Triggered and Ready Light. In NORM or AUTO Trigger Mode, pin 13 illuminates the TRIG'DREADY LED to indicate that a triggered gate has occurred. In SGL SWP Trigger Mode, pin 15 illuminates the TRIG‘DREADY LED to indicate that the Sweep Control IC is prepared to generate a single sweep when a triggering signal occurs.

Pin 14: Light Ground. Provides a ground point for the TRIG‘D-READY LED.

Pin 16: The $+5-V$ supply to the IC.

A Horizontal Mode

When an adequate triggering signal is applied to the A Trigger Generator (U81, diagram 5), a gate signal is produced at U81 pin 14 (see Figures $3-9$ and $3-10$). The gate in inverted and its level shifted by Q 89 to become the $\overline{\text { A Gate signal. This signal is applied via CR87 to U87 pin } 5}$ (the Logic Gate input of the Sweep Control IC) and via CR88 to U43 pin 13 (the A Gate input of the A Sweep Generator IC). In response to the application of \bar{A} Gate, U43 starts a negative-going A Sweep ramp at U43 pin 5.

In Sweep Control IC U87, application of the $\overline{A \text { Gate }}$ signal at pin 5 prevents the generation of an Auto $\overline{\text { Gate }}$ output at pin 6 . Output gates automatically occur at pin 6 in the AUTO Trigger Mode if a triggering signal does not occur within about 100 ms after holdoff has ended.

When the A Sweep ramp reaches a predetermined level (within U43), a Holdoff Start signal is produced at U43 pin 10. Holdoff Start is applied to Sweep Control IC U87 at pin 12 to cause the A Reset signal at U 87 pin 9 to go

HI. The HI A Reset signal is then applied to Trigger Generator U81 at pin 17 via Q104 to reset U81, and the

At that point, Holdoff Start at U43 pin 10 goes LO and is applied to U87 pin 12. With Holdoff Start LO, the negative-going Holdoff ramp at U87 pin 11 starts. When the ramp level reaches about -2 V , the A Reset signal at U87 pin 9 returns LO to remove the reset signal from the Trigger Generator. Trigger Generator U81 is now able to respond to another triggering signal.

The Holdoff ramp at U87 pin 11 stays LO until another triggering signal occurs. When either the $\overline{\mathrm{A} \text { Gate }}$ is generated by U81 or an Auto $\overline{G a t e}$ is generated by U87, the Holdoff ramp is reset HI in preparation for the next Holdoff timing period.

From U87 pin 7, the A Gate signal is used to clock Alt Sync Flip-flop U108. The output pulse from U108 pin 13 (the $\overline{\mathrm{Q}}$ output pin) is applied to the Vertical Switching Logic circuitry to synchronize vertical switching between channel displays when ALT VERTICAL MODE is selected.

When either A or A INTEN HORIZ MODE is selected, U43 pin 7 is held LO to enable the A Sweep output signal at U43 pin 5; and pin 7 of U24 (the B Sweep Generator) is held HI to prevent a B Sweep signal output from occurring. For the A INTEN HORIZ MODE however, the B Crt Unblanking output signal continues to be provided to the Z-Axis Amplifier to intensify the A Sweep during the B Sweep period.

B Horizontal Mode

In the B HORIZ MODE (Figure 3-11), the A Sweep Generator continues to operate much the same as it does in the A HORIZ MODE; but the A Sweep output at U43 pin 5 and the Crt Unblanking output at U43 pin 12 are both disabled to prevent display of the A trace. When the A Sweep ramp within U43 reaches the level set at U43 pin 1 by the B DELAY TIME POSITION control, U24 pin 14 is set LO by the Delayed $\overline{\text { Gate }}$ signal from U43 pin 16. With U24 pin 13 held LO by a fixed ground connection, application of the Delay $\overline{\text { Gate }}$ signal automatically starts the B Sweep ramp running. The crt is unblanked for the duration of the B Sweep by a B Crt Unblanking signal produced at U24 pin 12. When the B Sweep ramp reaches a predetermined level within U24, the Crt Unblanking signal current drops to zero, and the crt becomes blanked again. The B Sweep ramp finishes its rundown but remains LO until the end of the A Sweep time, when it is reset by the removal of the Delayed $\overline{\text { Gate }}$ signal from U24 pin 14 (see Figure 3-10).

Figure 3-9. Sweep operation in the A Sweep Mode.

Figure 3-10. Sweep circuit waveform relationships.

A INTEN Horizontal Mode

In the A INTEN HORIZ MODE, both the A and B Sweep Generators operate, but the B Sweep output at U24 pin 5 is disabled by a HI placed on U24 pin 7 via the HORIZ MODE switch. The B Crt Unblanking signal (produced at U24 pin 12 during the B Sweep time) adds to the A Crt Unblanking signal to produce an intensified zone on the crt display trace.

X-Y Mode

When both CH 1 and CH 2 VERTICAL MODE push buttons are pressed in, the X-Y display is enabled. The X-Y Enable signal is applied to U43 pin 14 to disable both the A and B Sweep outputs to the Horizontal Amplifier. However, the X-Y Enable signal is also supplied to the Intensity inputs of both Sweep Generators to produce a fixed crt unblanking output level to the Z-Axis Amplifier. The X-Y Enable signal is applied to both Sweep Generators at pin 11 (via CR29 and R29 to U43; via CR47 and R47 to U24) so that the crt can be unblanked regardless of the Horizontal Mode selected. Additional intensity signal current from Q218 (required to set the crt display intensity to the desired viewing brightness) is added to the fixed $X-Y$ level via HORIZ MODE switch S218.

A AND B TIMING SWITCHES

The switching circuitry shown in schematic diagram 7 includes the switching contacts and timing components for each position of the A and B SEC/DIV switches. Also shown is the Variable Time and Variable Trigger Holdoff control circuitry. Switch contacts for the holdoff timing are included in diagram 7, but the holdoff timing components are shown in diagram 6.

HORIZONTAL AMPLIFIER

The Horizontal Amplifier circuit, shown on schematic diagram 8, provides the output signals that drive the horizontal crt deflection plates. The signal that is applied to the Horizontal Preamplifier IC (U128) is determined by the HORIZ MODE and VERTICAL MODE switches. Horizontal deflection signals can come from either of the Sweep Generators or from the CH 1 OR X input connector (X-Y display). See Figure 3-12 for a detailed block diagram of the Horizontal Amplifier.

Horizontal Preamplifier

Horizontal Preamplifier IC U128 converts single-ended input signals into the differential output signals necessary for proper crt deflection. Horizontal positioning, magnifier registration, X10 magnification, and X-Axis signal amplification ($X-Y$ mode) are also accomplished in U128.

Figure 3-11. Sweep operation in the B Sweep Mode.

Figure 3-12. Horizontal Amplifier, detailed block diagram.

The following is a brief description of the function associated with each pin of U128.

Pin 1: Magnifier Registration. This pin is used in conjunction with pin 8 to provide for registration adjustment between normal and magnified sweeps. The Horizontal Beam Find voltage is also applied between pins 1 and 8 to reduce the horizontal deflection of a signal to within the graticule area.

Pin 2: Horizontal I (-). Negative differential signal current at this pin is applied to the Horizontal Output Amplifier.

Pin 3: Gain Set. The amplifier gain setting circuitry is connected between this pin and pin 6. Relay K127 is actuated by the front-panel $\times 10$ MAG push button to switch either the X 1 or X 10 gain-setting components into the circuit.

Pin 4: $V_{E E}$. The $-5-V$ supply is applied to the IC at this pin.

Pin 5: Bias. The internal biasing current is supplied to this pin from the $+40-\mathrm{V}$ supply via R149.

Pin 6: Gain Set. This pin is used in conjunction with pin 3 for connection of the amplifier gain-setting components.

Pin 7: Horizontal I (+). Positive differential signal current at this pin is applied to the Horizontal Output Amplifier.

Pin 8: Magnifier Registration. See Pin 1 discussion.

Pin 9: B Sweep. Input pin for the B Sweep signal.

Pin 10: A Sweep. Input pin for the A Sweep signal.

Pin 11: X Signal. Input pin for the X-Axis signal from Channel 1 when the $X-Y$ display feature is in use.

Pin 12: X-Y Mode. Switches the amplifier circuitry to amplify the signal connected to pin 11. A LO on pin 12 is normal for A or B Sweep amplification.

Pin 13: Frequency Compensation. Connects to frequency compensating capacitor C149.

Pin 14: Horizontal Position. Input pin for the Horizontal POSITION control signal.

Pin 15: $V_{C C}$. The $+5-V$ supply is applied to the IC at this pin.

Pin 16: Ground. This pin provides the ground connection point for the IC.

X-Signal Amplifier

A circuit composed of U147 and associated components performs several signal-processing functions on the X-Axis signal prior to its application to the Horizontal Preamplifier.

The X-Axis signal is derived from the CH 1 Trigger signal output of the Channel 1 Vertical Preamplifier (U30,
diagram 2). The CH 1 Trigger signal is thermally compensated in the Channel 1 Preamplifier. Effects of the thermal compensation are eliminated from the X -Axis signal by the RC network composed of R142, C141, and R141. The network also supplies the input impedance for U147.

Horizontal positioning from the Horizontal POSITION control is added to the X-Axis signal via R139. The resulting signal is applied to the inverting input of U147 to establish the correct signal polarity for application to Horizontal Preamplifier U128.

Stage gain of U147 is approximately two and is set by both R146 and the input resistance to U147. Capacitor C146 provides high-frequency compensation for U147. The calibrated X-Axis signal gain is adjustable by $X-Y$ Gain potentiometer R148.

Horizontal Output Amplifier

The Horizontal Output Amplifier circuit consists of two complementary, feedback-amplifier halves. One half amplifies the negative-going current signal from the Horizontal Preamplifier (U128 pin 2), and the other half amplifies the positive-going current signal at U128 pin 7.

The negative-going signal amplifier is composed of Q160, Q167, and Q168; the positive-going signal amplifier is composed of Q174, Q176, and Q181. Transistor Q155 is a constant-voltage source which is common to both input transistors (Q160 and Q174).

Input transistors Q160 and Q174 are common-emitter, inverting amplifiers with low input impedance. The base voltage on the transistors varies only a small amount during the change in signal current. Quiescent base voltages of Q160 and Q174 are held to nearly the same dc level by the action of constant-voltage-source transistor 0155 along with CR160 and CR175.

The inverted signal current at the collectors of Q160 and Q174 drive the emitters of a pair of complementary common-base amplifiers. Transistor pair Q167 and Q168 (driven by Q 160) provides the voltage to the right horizontal deflection plate, and transistor pair Q176 and Q181 (driven by Q174) provides the voltage to the left horizontal deflection plate.

The transistors in a complementary pair (0167 and Q168 in the right side, and Q176 and Q181 in the left side) share a common current path. The pairs are arranged so that the signal current has the opposite effect on the forward biasing of each transistor in the pair.

In the pair of 0167 and Q168, both transistors are forward biased. The incoming positive-going signal reduces the forward bias on Q167 and increases the voltage drop across it. However, a positive-going signal increases the forward bias on Q168, thereby reducing the voltage drop across it. This action continues as the sweep signal rises linearly, and the collector voltage of Q167 and Q168 rises toward the $+102-\mathrm{V}$ supply level. At the end of the sweep, the transition back to the sweep quiescent level is started quickly by the ac-signal coupling through C167 to the emitter of Q168.

The left side transistor pair (O176 and Q181) operates in a manner similar to that described for the right side. Zener diode VR174 in the left side provides the correct bias level for Q176, and C174 is a fast signal path around VR174.

Resistors R163 (in the right side) and R190 (in the left side) dampen the deflection signal slightly to prevent oscillation.

CRT CIRCUIT

The CRT circuit, shown on schematic diagram 9, provides the voltage levels and control circuits for operation of the cathode-ray tube. The circuitry consists of the Z-Axis Amplifier, High-Voltage Oscillator, High-Voltage Regulator, +102-V Low-Voltage Power Supply, HighVoltage Rectifier, High-Voltage Multiplier, and the Crt controls.

High-Voltage Oscillator

Transistors Q161 and Q163 and associated components compose a High-Voltage Oscillator that produces drive for High-Voltage Transformer T167. The frequency of oscillation is determined by the resonant frequency of T167 (approximately 38 kHz). Waveform relationships in the circuit are illustrated in Figure 3-13.

When ac power is applied to the instrument, R176B supplies start-up current to turn on Q178 and Q184. Initially, with zero feedback from the $-1.96-\mathrm{kV}$ supply, both Q178 and Q184 turn on at full conduction. Capacitor C183 becomes positively charged with respect to ground, and the base of Q161 becomes forward biased and begins conducting. As Q161 collector current starts flowing through T168 (pins 1 and 2) and $T 167$ (pins 4 and 5), a positive-feedback voltage is induced in T167 between pins 3 and 6 and in T168 between pins 3 and 4. The sum of the two feedback voltages is applied to the base of Q161 to quickly turn on Q161 at full conduction; drive current is also supplied to the T167 primary winding (pins 4 and 5).

Figure 3-13. High-Voltage Oscillator waveform relationships.

Capacitor C183 is in the base current path for Q161, and due to the base current flow through it, C183 loses its positive charge and becomes negatively charged with respect to ground. The voltage level developed across C183 during this cycle determines the point at which 0161 will turn on during the next resonant cycle.

After the voltage in the T167 feedback winding peaks, it begins to decrease. The base drive to Q161 decreases, and Q161 starts to turn off. At this point, the current through Q161 will start to fall. The feedback voltage across T168 reverses polarity as the magnetic field begins to collapse, and Q161 is rapidly turned off.

The reversed polarity voltage across T168 pins 1 and 2 forward biases CR165 in the base circuit of Q163, and Q163 begins to conduct. This action places the inductance of T168 in parallel with the inductance of T167, and the energy stored in the magnetic field around T168 is coupled to T167 instead of being dissipated as heat in the transformer. Transistor Q163 turns off when the magnetic field of T168 collapses to a point that no longer sustains the base current to Q163.

Transistor Q161 remains off until the magnetic field around T167 reverses again due to the flywheel effect of the resonant transformer. When the feedback voltage induced in T167 at pin 3 becomes positive enough with respect to pin 6 to overcome the negative voltage level retained on C183 from the previous cycle, Q161 will become forward biased again.

The sequence of events just described occurs repetitively as the circuit continues to oscillate.

High-Voltage Regulation

Regulation of the high-voltage supply is controlled by feedback from the $-1.96-\mathrm{kV}$ crt cathode voltage supply. When power is first applied, the feedback signal is zero, and both Q178 and Q184 conduct heavily. As the operating level is reached, the negative feedback applied to the base of Q178 reduces the forward bias on Q178. Current through Q184, used to charge C183 in a positive direction (less negative), is also reduced. Thus Q161 turns on later in the resonant cycle than during start up. Drive current is supplied to High-Voltage Transformer T167 for a shorter time during the resonant cycle, and the amplitude of the sinusoidal oscillation is reduced.

If the crt cathode voltage becomes more negative due to less loading of the high-voltage supply, the charging current to C183 through Q184 is reduced even more to hold the voltage across C183 at a more negative level. The feedback voltage at T167 pin 3 must rise to a higher positive
level to overcome the voltage on C183, and Q161 will turn on later in the resonant cycle. The reduction in oscillation amplitude in T 167 will return the $-1.96-\mathrm{kV}$ supply to the correct operating level. High voltage is thus regulated by controlling the amplitude of the $-1.96-\mathrm{kV}$ supply.

Decoupling components C167 and L167 prevent oscillator current from disturbing the $+40-\mathrm{V}$ unregulated supply.

High-Voltage Over-Voltage Shutdown Circuit

In the event that a high-voltage over-voltage condition occurs, a shutdown circuit composed of Q148, Q155, Q156, and associated components acts to stop drive current to the High-Voltage Transformer.

The $+102-\mathrm{V}$ supply level (developed in the High-Voltage Transformer secondary circuit) is proportional to both the high voltage $(+16 \mathrm{kV})$ and the crt cathode voltage $(-1.96$ kV). An over-voltage condition of the $+102-\mathrm{V}$ supply can therefore be used to sense a high-voltage over-voltage condition.

In the base circuit of Q 148 , the +102 V is divided down by R149 and R150 to provide the Q148 base-bias voltage. Reference diode VR148, in the emitter lead of Q148, holds a voltage level on the emitter that must be exceeded by the base-bias voltage before 0148 can become forward biased. When an over-voltage condition exists, the Q148 base-bias voltage becomes high enough to cause Q 148 to conduct.

Transistor Q155 then becomes forward biased by the voltage drop across R147 (in the 0148 collector circuit). Collector current through Q155 supplies base current to Q148, and both Q148 and Q155 will be latched on. Transistor Q155 also supplies base current to Q156 via R155 to bias Q156 into conduction. With Q156 on, base current to Q161 (main oscillator transistor) is shunted to ground to prevent Q161 from being biased into conduction. Drive current to the High-Voltage Transformer is removed, and the over-voltage condition is eliminated.

To unlatch Q148 and Q155, the instrument power must be turned off.

High-Voltage Circuitry

Secondary windings of High-Voltage Transformer T167 provide crt heater current, source voltage for the $+102-\mathrm{V}$ supply, and three $38-\mathrm{kHz}$ sine-wave voltages: 150 V at terminal $7,980 \mathrm{~V}$ at terminal 8 , and 2700 V at terminal 9.

The three $38-\mathrm{kHz}$ sine-wave voltages are supplied to High-Voltage Module U130. This module houses a highvoltage multiplier (used to produce the $+16-\mathrm{kV}$ crt anode voltage), a dc-restorer circuit (to couple the Z-Axis Amplifier output to the crt intensity grid), and a rectifier and filter circuit used to produce the remaining crt operating voltages (grid bias, focus, cathode voltage, and mesh voltage).

Focus voltage is adjustable over a range of approximately -1400 V to -1700 V by R940, the front-panel FOCUS control. The grid-bias voltage is adjusted (by R140) to set the level at which the Z-Axis Amplifier output voltage blanks the crt display.

CRT Control Circuits

Crt focus is controlled by FOCUS control R940 in conjunction with ASTIG adjustment R945. The ASTIG adjustment varies the voltage level on the astigmatism grid and is used to obtain a well-defined display over the face of the crt. Geometry adjustment R202 varies the voltage level on the horizontal deflection-plate shields to control the overall geometry of the display (minimizes bowing of the display).

Two controls align the trace with the graticule lines. Y-Axis adjustment R203 controls the current through one of the two coils wound on the crt neck and aligns the vertical display components only. Front-panel TRACE ROTATION adjustment R942 controls the current through the other coil. The Trace Rotation coil is located between the crt face and the vertical and horizontal deflection plates, and it affects both the vertical and horizontal display components.

+102-V Supply

A secondary winding of T167 (pin 1 to pin 2) supplies drive to a voltage-doubler circuit composed of C197, C190, CR197, and CR190. Filtering of the $+102-V$ supply is accomplished by L191 and C191. Diode CR191 protects the output load from any negative transients that may occur during turn on or shut down.

Z-Axis Amplifier

The Z-Axis Amplifier controls the crt intensity level via several input signal sources. The effect of these input signals is to either increase or decrease the trace intensity or to completely blank portions of the display.

Unblanking signal current from the Sweep IC (U43 for A Sweep or U24 for B Sweep, diagram 6) is applied through R92 to the emitter of input buffer transistor Q93. Signal current flow in the unblanking signal line ranges from 0 (for
no intensity) to approximately 3 mA (for full intensity). The amplitude of the unblanking signal current is determined by the setting of the front-panel INTEN control (R909, diagram 3).

Input transistor $\mathbf{Q 9 3}$ also acts as a buffer amplifier for two of the remaining Z-Axis Amplifier input signals: chop blanking and external Z-Axis signals.

When the instrument is operating in the Chop mode (switching between CH 1 display and CH 2 display), Chop Blanking Amplifier 0209 (diagram 4) is turned on, and current of opposite polarity to the unblanking signal current is drawn through R92. The unblanking signal current is completely cancelled, and additional current is drawn from the emitter current available to Q93. Less current flows through Q93, and the collector voltage rapidly rises toward the $+40-\mathrm{V}$ supply voltage level. This increase in collector voltage is limited to +4.9 V plus the forward-bias drop across CR94. Diode CR100 becomes reverse biased, and signal current to Q100 is shut off, thereby eliminating chopping switching transients from the display.

External Z-Axis signals are also applied on the chop blanking line via R210 (diagram 4). These signals either add or subtract from the unblanking signal current. The algebraic sum of all the signal current inputs determines the overall trace intensity on the crt.

The BEAM FIND switch (diagram 3) acts on the Z-Axis Amplifier in two ways. First, the unblanking signal current level is raised enough to drive the Q93 emitter positive with respect to the base, and 093 becomes reverse biased. Thus all signal inputs to the Z-Axis Amplifier are overridden. Secondly, the BEAM FIND switch grounds the left end of R91 in the collector circuit of Q93. A fixed level of current flows through R91 into the collector circuit of Q93 and on through CR100 to the base of Q100. This fixed level of current provides a visible trace intensity to aid the operator in locating the trace position regardless of the INTEN control setting.

Signal current from the collector of Q93 is applied via CR100 to the input of a high-speed feedback amplifier at the base of Q100. The feedback amplifier is composed of Q100, Q107, Q114, Q115, and Q116. The feedback path includes gain-controlling resistors R101, R102, and R128, connected between the amplifier output and input at the base of Q100.

The combination of resistor values and the feedback circuit arrangement have the effect of a single $20-\Omega$ feedback resistor. Given the full-intensity input current of 3 mA ,
the total output-voltage swing may be calculated as 60 V ($3 \mathrm{~mA} \times 20 \mathrm{k} \Omega$).

Transistor $\mathbf{Q 1 0 0}$ changes the input signal current to a signal voltage at the bases of Q107 and Q116. Shunt feedback resistor R99 (from the collector to the base of Q100) holds the gain of Q100 low, and there is minimum collector voltage swing.

The remaining portion of the Z-Axis Amplifier is divided into two signal paths: a fast path for the positive-going leading edges of the unblanking signal, and a fast path for the negative-going trailing edges. Transistors 0107 and Q114 provide the positive-going edge amplification. The accoupling capacitor (C108) between Q107 and Q114 produces a rapid turn on of the trace at the high sweep speed.

Emitter follower Q107 feeds Q114, connected as a common-base amplifier. The voltage gain of Q107 is less than 1 , but it has a large current gain. Common-base output transistor Q114 produces the large voltage swing necessary to drive the crt intensity grid.

Transistors Q116 and Q115 provide the fast path for the negative-going edges of the unblanking signal. The direct coupling between Q116 and Q115 enables them to also provide the dc and low-frequency amplification of the unblanking signal.

A clamp circuit composed of CR127, VR123, and C123 limits the Z -Axis positive output voltage to prevent excessive crt intensity. If the output voltage level reaches 82 V , CR127 begins to conduct. Reference diode VR123 then limits the output level to +82 V by shunting additional current to ground. Capacitor C123 bypasses fast crt surges around VR123.

Z-Axis signal voltage is fed to the crt grid-bias circuit via R130 and CR130. The signal is coupled to the crt intensity grid by a dc-restorer circuit that is housed in High-Voltage Module U130.

DC Restorer

The DC Restorer circuit provides crt control-grid bias and couples both dc and low-frequency components of the Z-Axis Amplifier unblanking signal to the crt control grid. This circuit allows the Z-Axis Amplifier output to control the intensity of the crt dispaly. The potential difference between the Z-Axis output and the control grid (about 2 kV) prevents direct signal coupling. Refer to Figure 3-14 during the following circuit description.

Ac drive to the DC Restorer circuit is obtained from pin 7 of T167. The voltage on pin 7 -is approximately 150 V peak at 38 kHz . This sinusoidal voltage is coupled through C136 and R136 into the DC Restorer circuit. Crt Grid Bias adjustment R140 sets the voltage level on the cathode of CR140 to approximately +100 V . When the ac-drive voltage rises to +100 V , CR140 becomes forward biased and clamps the junction of R135, R134, R136, and CR130 to approximately +100 V .

The Z-Axis Amplifier output signal voltage is applied to the DC Restorer via R130 and CR130. The Z-Ax is signal voltage level varies between +10 V and +80 V , depending on the setting of the INTEN control. The ac-drive voltage will hold CR130 reverse biased until the voltage falls below the Z-Axis Amplifier output voltage level. At that point, CR130 becomes forward biased and clamps the junction of CR130, R134, R135, and R136 to the Z-Axis output level. The ac-drive voltage is thus clamped on both the positive and negative peaks to produce an approximate square-wave signal with a positive dc offset level.

The DC Restorer circuit is referenced to the crt cathode voltage inside U130. Capacitor C, connected to pin 6 of U130, initially charges to a level determined by the difference between the Z-Axis Amplifier output level and the cathode reference voltage. The charging path is from the crt cathode, through the DC Restorer components internal to U130 (diode A, resistor E, and capacitor C) to U130 pin 6; then to R134, CR130, and R130 to the Z-Axis Amplifier output. Initially, capacitor D (connected to U130 pin 5) will be charged to approximately the same dc level as on capacitor C.

When the ac-drive voltage starts its positive transition from the lower clamped level (+10 V to +80 V) toward the higher clamped level (+100 V), the charge on capacitor C increases. The additional charge acquired is proportional to the amplitude of the positive transition of the clamped ac-drive voltage.

Abstract

When the clamped ac-drive voltage starts its negative transition from the upper clamped level back to the lower clamped level, diode A becomes reverse biased. Diode B becomes forward biased, and the added charge on capacitor C is transferred to capacitor D through diode B . The added charge that is transferred depends on the setting of the INTEN control, since this control sets the lower clamping level for the ac-drive voltage.

The added charge also determines the control-grid bias voltage with respect to the cathode voltage. If more charge is added to the charge already on capacitor D, the control grid becomes more negative, and less crt writing-beam current flows. Conversely, if less charge is added, the

Figure 3-14. DC Restorer circuit, simplified diagram.
control-grid voltage will become closer to the same amplitude as the cathode voltage, and more crt writingbeam current will flow.

During periods that capacitor C is charging, the crt control-grid voltage is held constant by the long timeconstant discharge path of capacitor D through resistor F. Any charge that is leaked off capacitor D during the positive transitions of the ac-drive voltage will be replaced by capacitor C when the ac-drive voltage makes its negative transitions.

The fast-rise and fast-fall transitions of the unblanking pulses are coupled to the crt control grid through capacitor D to U130 pin 9. The fast-path signal starts the crt writing beam toward the new intensity level. The DC Restorer output level then follows the Z-Axis output voltage level to set the new bias voltage for the crt control grid.

Neon lamps DS196 and DS197 prevent arcing in the crt if the potential on either the control grid or the cathode is lost for any reason.

LOW-VOLTAGE POWER SUPPLY

The Low-Voltage Power Supply circuit, shown on schematic diagram 10, includes five regulated supplies to provide the operating power for this instrument. Regulation provides stable, low-ripple output voltages. Two unregulated output voltages are supplied for circuit applications where regulation is unnecessary.

Power Input

Ac-source power is supplied to the primary of transformer T900 through Line Fuse F900, POWER switch S903, and Line Voltage Selector switch S901. LINE VOLTAGE SELECTOR switch 5901 connects the split primaries of T 900 either in parallel (for 115 V nominal operation) or in series (for $230-\mathrm{V}$ nominal operation). Line Fuse F900 value is selected to provide the protection required for each nominal ac-source voltage. Refer to "Replaceable Electrical Parts" list of this manual for correct fuse values.

Theory of Operation-2335 Service

Secondary Circuits

The following power supplies are series-regulated supplies: $+5 \mathrm{~V},-5 \mathrm{~V},+10 \mathrm{~V},-10 \mathrm{~V}$, and +40 V . Amplifiers U237, U3A, U3B, U8A, and U8B are two-channel, high-gain amplifier cells with differential inputs. These amplifiers monitor variations in the output voltages and supply correction information to the series-regulating transistors. The $+40-\mathrm{V}$ supply is the reference voltage source for the remaining supplies, and its output must be correct to enable the other supplies to operate with in their regulating limits.

Current-limiting circuits provide short-circuit protection for each of the regulated supplies. The following description applies only to the $+40-\mathrm{V}$ current-limiting circuit; the other current-limiting circuits operate in a similar manner.

In the $+40-\mathrm{V}$ supply, Q 239 is normally biased off. Under normal power-supply-loading conditions, the base voltage of 0239 is about +40 V . When additional powersupply loading occurs, the supply current increases, and the voltage drop across R246 (in the emitter circuit of O246) increases. The increasing emitter voltage level is coupled through the base of O 246 to a voltage divider (composed of R244 and R245) thereby causing the base of Q239 to go more positive. If the $+40-\mathrm{V}$ supply is loaded down sufficiently, Q239 will turn on. The collector of Q239 then moves in the negative direction, and Q244 and Q246 begin turning off to limit the output current. Even though the supply is limited, transistor Q246 will continue to conduct current in order to produce enough voltage drop across R246 to keep 0239 biased on. The limited output voltage can be any value between the supply's regulated value and zero, depending on the extra load current it is trying to supply (see Figure 3-15). The current-limiting transistors for the other supplies are as follows:

On the Positive Regulator circuit board (A12):

$\frac{\text { Supply }}{}$	Limiting Transistor
+10 V	Q9
+5 V	016

On the Negative Regulator circuit board (A11):

$\frac{\text { Supply }}{}$	Limiting Transistor
-5 V	09
-10 V	021

conducting. At point B, the supply is directly shorted to ground through a milliammeter.

In the event that a power supply problem occurs, service jumpers (circuit number prefix is W) may be removed to isolate the supply from the load. In this manner, the problem can be narrowed to either a loading condition or a malfunction in the supply involved.

Short-circuit protection for each of the power supplies is also provided by fuses located in each secondary winding of the power transformer.

The unregulated +40 V is supplied to the High-Voltage Oscillator circuit, and the unregulated -5 V is used in the Fan Inverter circuit.

A sample of the ac-voltage waveform (present in the secondary of T900) is provided as the Line Trigger signal from a voltage-divider network composed of R257 and R258 from P714 pin 7 to ground.

Figure 3-15 also illustrates the action of the currentlimiting (foldover) circuit. At point $A, 0239$ begins

Figure 3-15. Foldover circuit action.

FAN CIRCUIT

The Fan motor in this instrument is a three-phase, brushless motor. A three-phase inverter circuit, shown on schematic diagram 8, provides drive to the three motorfield windings.

Fan motor speed is controlled by the emitter voltage of Darlington transistor Q289. As ambient temperature changes, a voltage-dividing network (composed of RT295, R295, and R296) in the base lead of 0289 varies the amount of forward bias on Q289. A temperature increase causes the resistance of thermistor RT295 to decrease, thus increasing the forward bias on O289. The available current supply to each of the three inverter stages increases, causing the switching frequency to increase and drive the Fan motor at a faster speed. Conversely, a temperature decrease will cause the Fan motor to go slower.

The three-phase inverter consists of three basically identical driver sections. However, resistors R265, R273, and R284 in each driver input have different resistance values. Each of these resistors is in parallel with one of three equal-value capacitors: C265, C273, and C284 respectively. These parallel RC combinations produce a slightly different time-constant circuit to each of the three driver circuits to ensure that the start-up sequence is in the correct order for proper direction of Fan rotation.

Only one of the driver sections is on at any one time. Negative feedback to the other sections holds them off during the period of time that the conducting stage is supplying field current to the Fan motor. As the fan rotates, a voltage is induced in its windings. This voltage is fed back to the "off" sections of the inverter. When the feedback voltage reaches the "on" switching level of the next inverter stage to be turned on, the transistor being turned on (Q267, Q281, or Q288) causes a voltage drop on the emitters of the other two transistors on the common supply bus. This voltage drop completes the turn off of the on transistor and holds the remaining transistor off.

Typical collector, base, and emitter waveforms of the operating circuit are illustrated in Figure 3-16.

CALIBRATOR

The Calibrator circuit, shown on schematic diagram 8, produces an accurate $0.2-\mathrm{V}$ peak-to-peak square-wave output that is useful for checking the instrument's vertical deflection accuracy and for compensating voltage probes. This circuit consists of a dual-feedback, astable multivibrator circuit followed by a transistor output amplifier.

Figure 3-16. Typical waveforms in the Fan Motor three-stage inverter circuit.

Multivibrator

The astable multivibrator is composed of U1 and associated components. The basic multivibrator circuit comprises U1D and the parallel arrangement of U1A, U1B, U1C, and U1E. Added components (U1F, R1, and R3) form a second feedback path that eliminates the effect of varying threshold levels found between CMOS devices of the same type. The duty cycle of the symmetrical squarewave signal thus produced is virtually independent of variations in threshold levels.

Theory of Operation-2335 Service

Nominal frequency of oscillation is 1 kHz , and it is determined by the RC time constant of feedback components R6 and C6. The resistance and capacitance value of R6 and C6 are selected to account for stray and input capacitances of the circuit.

A second negative-feedback path around U1D is provided by inverter U1F. The negative-feedback signal is added to the inverted U1F threshold voltage and injected into U1D through R3. The gain of U1F is set to cancel the effect of the U1 threshold level on the duty cycle

Inverters U1A, U1B, U1C, and U1E are connected in parallel to supply the output drive to Q13.

Integrated circuit U1 is a CMOS device and is subject to static discharge damage. See the "Maintenance" section of this manual for handling of static-sensitive components.

Output Amplifier

The square-wave output from the multivibrator switches output transistor Q13 between cutoff and saturation. During the periods that Q13 is cutoff, the highly accurate $+40-\mathrm{V}$ collector-supply voltage is divided down by precision resistors R13, R15, and R17 to produce a 0.2-V peak signal amplitude at the front-panel AMPL CAL output terminal. When transistor Q13 is conducting, the collector voltage (and the AMPL CAL output voltage) drops to near 0 V , thus producing a zero-to-peak calibrator signal of +0.2 V .

PERFORMANCE CHECK PROCEDURE

INTRODUCTION

LIMITS AND TOLERANCES

The "Performance Check Procedure" is used to verify the instrument's Performance Requirements as listed in the "Specification" (Section 1) and to determine the need for readjustment. These checks may also be used as an acceptance test and as a preliminary troubleshooting aid.

This procedure does not check every facet of instrument operation; rather it is concerned with those portions of the 2335 that are essential to measurement accuracy. Removing the instrument's cover is not necessary to perform this procedure. All checks are made using the operatoraccessible front- and rear-panel controls and connectors.

TEST EOUIPMENT REQUIRED

The test equipment listed in Table 4-1 is a complete list of the equipment required to accomplish both the "Performance Check Procedure" in this section and the "Adjustment Procedure" in Section 5. Test equipment specifications described in Table $4-1$ are the minimum necessary to provide accurate results. Therefore, equipment used must meet or exceed the listed specifications. Detailed operating instructions for test equipment are not given in this procedure. If more operating information is required, refer to the appropriate test equipment instruction manual.

When equipment other than that recommended is used, control settings of the test setup may need to be altered. If the exact item of equipment given as an example in Table 4-1 is not available, first check the "Purpose" column to verify use of this item. If it is used for a check that is of little or no importance to your measurement requirements, the item and corresponding steps may be deleted. If the check is important, use the "Minimum Specification" column carefully to determine if any other available test equipment might suffice.

PERFORMANCE CHECK INTERVAL

To ensure instrument accuracy, check its performance after every 2000 hours of operation or once each year, if used infrequently.

The limits and tolerances given in this procedure are valid for an instrument that has been calibrated at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, is operating at an ambient temperature between $-15^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$ (unless otherwise noted), and has had a warm-up period of at least 20 minutes. The stated limits and tolerances are instrument specifications only if they are listed in the "Performance Requirements" column of the "Specification" (Section 1). Tolerances given are applicable to the 2335 and do not include test-equipment error.

SPECIAL FIXTURES

Special fixtures are used only where they simplify the test setup and procedure. These fixtures are available from Tektronix, Inc. and can be ordered by part number through your local Tektronix Field Office or representative.

PREPARATION

Test equipment items 1 through 17 in Table 4-1 are required to accomplish a complete Performance Check. Specific items of equipment required to perform each subsection in this procedure are listed at the beginning of the subsection. The item number shown in parentheses with each piece of equipment refers to the equipment item number presented in Table 4-1.

Before performing this procedure, ensure that the LINE VOLTAGE SELECTOR switch is set for the ac-power-input source voltage being used (see "Preparation for Use" in Section 2). Connect the test equipment and the instrument to be checked to an appropriate ac-power-input source.

This procedure is structured in subsections to permit checking individual sections of the instrument whenever a complete Performance Check is not required. At the beginning of each subsection is a list of all the front-panel control settings required to prepare the instrument for performing Step 1 in that subsection. Each succeeding step within a subsection should then be performed both in the sequence presented and in its entirety to ensure that control-setting changes will be correct for ensuing steps.

Table 4-1
Test Equipment Required

Item No. and Description	Minimum Specification	Purpose	Examples of Suitable Test Equipment
1. Test Oscilloscope with 10 X probe and 1 X probe ($1 \times$ probe is optional accessory)	Bandwidth: dc to 100 MHz . Minimum deflection factor: $5 \mathrm{mV} / \mathrm{div}$. Accuracy: $\pm 3 \%$. Dual trace. Probe: 10X scalefactor switching.	Power supply ripple check. Crt Z-axis compensation. Vertical gain adjustment. Trigger holdoff check.	a. TEKTRONIX 465B Oscilloscope with 2 (included) 10X probes. b. TEKTRONIX P6101 Probe (1X). Part Number 010-6101-03.
2. Calibration Generator	Standard-amplitude accuracy: $\pm 0.25 \%$. Signal amplitude: 2 mV to 50 V . Output signal: $1-\mathrm{kHz}$ square wave. Fast-rise repetition rate: 1 to 100 kHz . Rise time: 1 ns or less. Fastrise signal amplitude: 100 mV to 1 V . Aberrations: $\pm 2 \%$. Flatness: $\pm 0.5 \%$. High. amplitude output: variable to 60 V ; supplying at least 10 mA .	Vertical checks and adjustments. Trigger view checks and adjustments. X-gain adjustment. Z-axis check.	TEKTRONIX PG 506 Calibration Generator. ${ }^{\text {a }}$
3. Sine-Wave Generator	Frequency: 350 kHz to above 100 MHz . Output amplitude: variable from 0.5 to 5.5 V p-p. Output impedance: 50Ω. Reference frequency: 50 to 350 kHz . Amplitude accuracy: constant within 3% of reference frequency as output frequency changes.	Vertical centering checks and adjustments. Bandwidth and isolation checks. Trigger checks and adjustments. X-Y phase difference check. X-Y bandwidth check.	TEKTRONIX SG 503 Leveled Sine-Wave Generator. ${ }^{\text {a }}$
4. Time-Mark Generator	Marker outputs: 2 ns to 0.5 s. Marker accuracy: $\pm 0.1 \%$. Trigger output: 1 ms to $0.1 \mu \mathrm{~s}$, time-coincident with markers.	Crt Y-axis and geometry adjustments. Horizontal timing checks and adjustments.	TEKTRONIX TG 501 TimeMark Generator. ${ }^{\text {a }}$
5. $50-\Omega$ Signal Pickoff	Frequency response: 50 kHz to 100 MHz . Impedance: 50Ω for signal input, signal output, and trigger output.	Trigger checks and adjustments.	TEKTRONIX CT-3 Signal Pickoff. Part Number 017. 0061-00.
6. Cable (2 required)	Impedance: 50Ω. Length: 42 in. Connectors: bnc.	Signal interconnection.	Tektronix Part Number 012-0057-01.
7. Adapter	Connectors: bnc male-tominiature probe tip.	Signal interconnection.	Tektronix Part Number 013-0084-01.
8. Dual-Input Coupler	Connectors: bnc female-to-dual-bnc male.	Vertical checks. Trigger checks and adjustments. X-Y phase check.	Tektronix Part Number 067-0525-01.

${ }^{{ }^{\text {a }} \text { Requires a TM }} \mathbf{5 0 0}$-series power-module mainframe.

Table 4-1 (cont)

Item No. and Description	Minimum Specification	Purpose	Examples of Suitable Test Equipment
9. T-Connector	Connectors: bnc.	Signal interconnection.	Tektronix Part Number 103-0030-00.
10. 10X Attenuator	Ratio: 10X. Impedance: 50Ω. Connectors: bnc.	Vertical compensation. Vertical bandwidth check. Trigger adjustments.	Tektronix Part Number 011-0059-02.
11. 5X Attenuator	Ratio: 5X. Impedance: 50Ω. Connectors: bnc.	Vertical compensation. Trigger adjustments.	Tektronix Part Number 011-0060-02.
12. 2 X Attenuator	Ratio: 2X. Impedance: 50Ω. Connectors: bnc.	Vertical compensation. Trigger adjustments.	Tektronix Part Number 011-0069-02.
13. Termination (2 required)	Impedance: 50Ω. Connectors: bnc.	Signal termination.	Tektronix Part Number 011-0049-01.
14. Precision Cable	Impedance: 50Ω. Length: 36 in. Connectors: bnc.	Signal interconnection.	Tektronix Part Number 012-0482-00.
15. Adapter	Connectors: GR-to-bnc male.	Signal interconnection.	Tektronix Part Number 017-0064-00.
16. Adapter	Connectors: GR-to-bnc female.	Signal interconnection.	Tektronix Part Number 017-0063-00.
17. Low-Frequency Generator	Frequency: 60 Hz to 1 kHz . Output amplitude: variable from 30 mV to 4 V p-p.	Low-frequency trigger checks.	TEKTRONIX FG 502 Function Generator. ${ }^{\text {a }}$
18. Variable Autotransformer	Capable of supplying 1.5 A over a range of 108 to 132 V .	Power-supply regulation check.	General Radio W8WT3VM Variac Autotransformer.
19. Digital Voltmeter	Range: 0 to 140 V . Dc voltage accuracy: $\pm 0.15 \% .4$ 1/2-digit display.	Low-voltage power supply checks and adjustments. Crt grid bias adjustment. Vertical and horizontal centering adjustments.	TEKTRONIX DM 501A Digital Multimeter. ${ }^{\text {a }}$
20. DC Voltmeter	Range: 0 to 2500 V , calibrated to 1% accuracy at -1960 V.	High-voltage power supply check.	Triplett Model 630-NA.
21. Screwdriver	Length: 3-in shaft. Bit size: 3/32 in.	Adjust variable resistors.	Xcelite R-3323.
22. Shorting Strap		Power supply adjustment.	
23. Low-Capacitance Alignment Tool	Length: 1 -in shaft. Bit size: $3 / 32$ in.	Adjust variable capacitors.	J.F.D. Electronics Corp. Adjustment Tool Number 5284.

${ }^{\text {a }}$ Requires a TM 500 -series power-module mainframe .

Performance Check Procedure-2335 Service

INDEX TO PERFORMANCE CHECK STEPS
Vertical Page

1. Check Trace Alignment and Astigmatism 4-5
2. Check ALT Mode Operation 4-5
3. Check CHOP Mode Operation 4-6
4. Check CH 2 INVERT Trace Shift 4-6
5. Check CH 1 Attenuator Balance. 4-6
6. Check CH 2 Attel.uator Balance 4-6
7. Check Vertical POSITION Range and Centering 4-6
8. Check BEAM FIND Operation $4-6$
9. Check CH 1 and CH 2 DC Accuracy 4-7
10. Check CH 1 and CH 2 VOLTS/DIV VAR Range 4-7
11. Check CH 1 and CH 2 Input Gate Current 4.7
12. Check ADD Mode Operation $4-8$
13. Check CH 1 and CH 2 Gain Balance 4.8
14. Check Vertical Low-Frequency Compensation 4-8
15. Check CH 1 and CH 2 VOLTS/DIV Compensation 4-8
16. Check CH 1 and CH 2 Transient Response 4-9
17. Check Signal Isolation 4-9
18. Check CH 1 and CH 2 Bandwidth 4-9
19. Check Trigger View Gain 4-10
20. Check Trigger View Centering 4-10
21. Check Trigger View Low-Frequency Compensation. 4-10
22. Check Trigger View High-Frequency Compensation 4-11
23. Check Trigger View Delay 4-11
24. Check Common-Mode Rejection Ratio 4-11
25. Check Trigger View Bandwidth 4-12
Triggering Page
26. Check A Internal Triggering. 4-13
27. Check A External Triggering and Jitter 4-14
28. Check NORM Triggering Mode Operation 4-16
29. Check SGL SWP Mode Operation 4-16
30. Check A External Trigger Level Range 4-16
Horizontal
31. Check A and B Timing Accuracy and Linearity 4-17
32. Check A SEC/DIV VAR Range 4-18
33. Check Delay Time Linearity 4-18
34. Check Delay Time Accuracy 4-19
35. Check Delay Jitter 4-19
36. Check X10 MAG Registration 4-19
37. Check A Sweep Length 4-20
38. Check A Horizontal POSITION Range $4-20$
39. Check AUTO Recovery 4-20
40. Check A INTEN Operation 4-20
41. Check $X-Y$ Gain 4-20
42. Check $X-Y$ Bandwidth 4-21
43. Check $X-Y$ Phase Differential. 4-21
External Z-Axis and Calibrator
44. Check External Z-Axis Operation 4-22
45. Check AMPL CAL Operation. 4-22

VERTICAL

Equipment Required (see Table 4-1):

10X Probe (part of Item 1)
Calibration Generator (Item 2)
Leveled Sine-Wave Generator (Item 3)
Two 50- Ω BNC Cables (Item 6)
BNC-to-Probe-Tip Adapter (Item 7)
Dual-Input Coupler (Item 8)
BIVC T-Connector (Item 9)

10X Attenuator (Item 10)
5X Attenuator (Item 11)
2X Attenuator (Item 12)
Two $50-\Omega$ BNC Terminations (Item 13)
Precision $50-\Omega$ BNC Cable (Item 14)
Low-Frequency Generator (Item 17)

2335 CONTROL SETTINGS

POWER	ON (button in)
CRT	
INTEN	As required for visible
	trace
FOCUS	Best focused display
Vertical (Both Channels)	
VERTICAL MODE	CH 1
POSITION	Midrange
VOLTS/DIV	5 m
VOLTS/DIV VAR	Calibrated detent
AC-GND-DC	GND
CH 2 INVERT	Normal (button out)
BW LIMIT	Full bandwidth (button
	out)

Trigger
COUPLING
LEVEL
SLOPE
SOURCE
Mode
TRIG HOLDOFF
(PUSH) VAR
Sweep
HORIZ MODE
A and B SEC/DIV
TIME (PULL) VAR
B DELAY TIME
POSITION
X 10 MAG
POSITION

AC
Midrange

+ (button out)
VERT MODE
AUTO
Off (in detent)

A
1 ms (knobs locked)
Pulled out and in calibrated detent

Fully counterclockwise
Off (button out)
Midrange

1. Check Trace Alignment and Astigmatism

a. Position the baseline trace to the center horizontal graticule line.
b. CHECK-Trace is parallel with the center horizontal graticule line. If necessary, readjust the TRACE ROTATION potentiometer (front-panel screwdriver adjustment) to align trace exactly with the center horizontal graticule line.
c. CHECK-All portions of the trace are well defined and uniform over its entire length. If necessary, readjust the ASTIG potentiometer (front-panel screwdriver adjustment).

2. Check ALT Mode Operation

a. Set:

A and B SEC/DIV 50 ms (knobs locked)
VERTICAL MODE
ALT
A TRIGGER SOURCE
EXT
b. Use the CH 1 and CH 2 Vertical POSITION controls to separate the two traces about 2 divisions apart.
c. CHECK-Sweep alternates in all positions of the A and B SEC/DIV switch.

NOTE

At sweep speeds of 2 ms per division or faster, the trace alternations occur too rapidly to be seen.

3. Check CHOP Mode Operation

a. Set:

A and B SEC/DIV	$1 \mu \mathrm{~s}$
VERTICAL MODE	CHOP
A TRIGGER SOURCE	VERT MODE

b. Use the CH 1 and CH 2 Vertical POSITION controls to separate the two traces about 4 divisions apart.
c. Adjust the A TRIGGER LEVEL control for a stable display of the CHOP frequency.
d. CHECK-Period of one cycle is 2.8 to $5.2 \mu \mathrm{~S}$ (approximately 4 horizontal divisions).

4. Check CH 2 INVERT Trace Shift

a. Select CH 2 VERTICAL MODE.
b. Position the trace to the center horizontal graticule line.
c. Press in the CH 2 INVERT push button.
d. CHECK-Trace shift is 0.4 division or less when switching between normal (button out) and invert (button in).
e. Return the CH 2 INVERT push button to normal (button out).

5. Check CH 1 Attenuator Balance

a. Set:

VERTICAL MODE

CH 1

CH 1 VOLTS/DIV
0.1

CH 1 AC-GND-DC
A and B SEC/DIV
DC
1 ms
b. Position the trace to the center horizontal graticule line.
c. Set CH 1 VOLTS/DIV to 50 m .
d. CHECK—For 0.2 division or less trace shift from the center horizontal graticule line.

6. Check CH 2 Attenuator Balance

a. Set:

VERTICAL MODE
CH 2
CH 2 VOLTS/DIV
0.1

CH 2 AC-GND-DC
DC
b. Position the trace to the center horizontal graticule line.
c. Set CH 2 VOLTS/DIV to 50 m .
d. CHECK-For 0.2 division or less trace shift from the center horizontal graticule line.

7. Check Vertical POSITION Range and Centering

a. Set:
$\begin{array}{ll}\text { CH } 1 \text { VOLTS/DIV } & 10 \mathrm{~m} \\ \text { A TRIGGER LEVEL } & \text { Fully clockwise }\end{array}$
b. Connect the leveled sine-wave generator output to the CH 2 OR Y input via a precision $50-\Omega$ cable and a $50-\Omega$ termination. Set the generator frequency to 50 kHz and adjust the output for a vertical display of 4.8 divisions.
c. Set CH 2 VOLTS/DIV to 10 m .
d. CHECK-Top of display can be positioned down to the center horizontal graticule line and bottom of the display can be positioned up to the center horizontal graticule line.
e. Move the signal to the $\mathrm{CH} 1 \mathrm{OR} \times$ input.
f. Select CH 1 VERTICAL MODE.
g. Repeat part d for CH 1.

8. Check BEAM FIND Operation

a. Push in and hold the BEAM FIND push button.
b. CHECK-Compressed display is visible regardless of the settings of the following controls:

CH 1 POSITION
INTEN
Horizontal POSITION
c. Return both the Horizontal POSITION and the INTEN controls to midrange.
d. Set CH 1 AC-GND-DC switch to GND.
e. While still holding in the BEAM FIND button, vertically position the trace to the center horizontal graticule line.
f. Release the BEAM FIND button.
g. CHECK -Trace remains in the graticule area.
h. Return $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC and disconnect the test equipment.
9. Check CH 1 and CH 2 DC Accuracy
a. Set CH 1 VOLTS/DIV to 5 m .
b. Connect a $20-\mathrm{mV}$ standard-amplitude signal to the CH 1 OR X input connector via a $50-\Omega$ cable. Do not use a termination.
c. $\mathrm{CHECK}-\mathrm{CH} 1 \mathrm{dc}$ accuracy is within the limits (Vertical Deflection) given in Table 4-2.
d. Repeat part c for each CH 1 VOLTS/DIV switch setting and corresponding standard-amplitude signal in Table 4-2.
e. Select CH 2 VERTICAL MODE and set CH 2 VOLTS/DIV switch to 5.
f. Move the signal to the CH 2 OR Y input connector.
g. CHECK-CH 2 dc accuracy is within the limits given in Table 4-2.
h. Repeat part g for each CH 2 VOLTS/DIV switch setting and corresponding standard-amplitude signal in Table 4-2. For greater efficiency, reverse the order of checks (from bottom to top).

Table 4-2
DC Accuracy Limits

VOLTS/DIV Switch Setting	Standard Amplitude Signal	Vertical Deflection (Divisions)	3\% Accuracy (Divisions)
5 m	20 mV	4	3.88 to 4.12
10 m	50 mV	5	4.85 to 5.15
20 m	0.1 V	5	4.85 to 5.15
50 m	0.2 V	4	3.88 to 4.12
0.1	0.5 V	5	4.85 to 5.15
0.2	1.0 V	5	4.85 to 5.15
0.5	2.0 V	4	3.88 to 4.12
1	5.0 V	5	4.85 to 5.15
2	10.0 V	5	4.85 to 5.15
5	20.0 V	4	3.88 to 4.12

10. Check CH 1 and CH 2 VOLTS/DIV VAR Range

a. Set:

VOLTS/DIV (both)	5 m
AC-GND-DC (both)	DC

b. Change the generator output to 10 mV .
c. CHECK--Display increases to at least 5 divisions when the CH 2 VOLTS/DIV VAR control is rotated to its extreme clockwise rotation.
d. Move the signal to the CH 1 OR X input connector and select CH 1 VERTICAL MODE.
e. CHECK-Repeat part c using the CH 1 VOLTS/DIV VAR control.
f. Return both VOLTS/DIV VAR controls to their calibrated detents and disconnect the input signal.

11. Check CH 1 and CH 2 Input Gate Current

a. Set both CH 1 and CH 2 AC-GND-DC switches to GND.
b. CHECK-For 0.5 nA or less (0.1 division or less) vertical shift in display while switching CH 1 AC-GND-DC switch from GND to AC.
c. Select CH 2 VERTICAL MODE.
d. CHECK-For 0.5 nA or less (0.1 division or less) vertical shift in display while switching CH 2 AC-GND-DC switch from GND to AC.

12. Check ADD Mode Operation

a. Set:

$$
\begin{array}{ll}
\text { AC-GND-DC (both) } & \text { DC } \\
\text { VERTICAL MODE } & \text { ADD }
\end{array}
$$

b. Connect a $10-\mathrm{mV}$ standard-amplitude signal to both the CH 1 and CH 2 input connectors via a $50-\Omega$ cable and a dual-input coupler.
c. CHECK-Displayed signal is approximately 4 divisions in amplitude.

13. Check CH 1 and CH 2 Gain Balance

a. Press in CH 2 INVERT push button.
b. CHECK-Displayed vertical amplitude is approximately zero division.
c. Return the CH 2 INVERT push button to normal (button out) and disconnect the test equipment.

14. Check Vertical Low-Frequency Compensation

a. Set:

$$
\begin{array}{ll}
\text { VERTICAL MODE } & \text { CH } 1 \\
\text { A and B SEC/DIV } & 0.2 \mathrm{~ms} \text { (knobs locked) } \\
\text { VOLTS/DIV (both) } & 10 \mathrm{~m}
\end{array}
$$

b. Connect a $1-\mathrm{kHz}$ fast-rise, positive-going, square-wave signal to the CH 1 OR X input connector via a $50-\Omega$ cable, a $10 X$ attenuator, and a $50-\Omega$ termination.
c. Adjust generator output to obtain a 5 -division display. Adjust the A TRIGGER LEVEL control for a stable triggered display.
d. CHECK-Rolloff or overshoot is within $3 \% ~(\pm 0.15$ division) at each of the generator frequencies and corresponding SEC/DIV switch settings listed in Table 4-3.
e. Move the signal to the CH 2 OR Y input connector and select CH 2 VERTICAL MODE.
f. CHECK-Repeat part d for CH 2.
g. Disconnect the input signal.

Table 4-3
Low-Frequency Compensation Setup

Calibration Generator Frequency	SEC/DIV Switch Setting
1 kHz	0.2 ms
10 kHz	$20 \mu \mathrm{~s}$
100 kHz	$2 \mu \mathrm{~s}$

15. Check CH 1 and CH 2 VOLTS/DIV Compensation

a. Set both A and B SEC/DIV to 0.2 ms (knobs locked).
b. Connect a 10 X probe to the CH 2 OR Y input.
c. Connect a $1-\mathrm{kHz}$ high-amplitude, square-wave signal through a $2 \mathrm{X}, 5 \mathrm{X}$, or $10 \mathrm{X} 50-\Omega$ attenuator (depending on generator output amplitude) to a $50-\Omega$ termination that is connected to a bnc-to-probe-tip adapter. Insert the probe tip into the probe-tip adapter.
d. Adjust the generator output and select attenuators as necessary to obtain a 5 -division display.
e. Adjust probe compensation for the best flat-top waveform.

NOTE
Do not readjust probe compensation during the remainder of this step.
f. CHECK-Rolloff or overshoot of the waveform is within 3% (± 0.15 division) at all settings of the VOLTS/ DIV switch between 5 m and 5 . Add or remove attenuators and/or termination as required and adjust the generator output amplitude as necessary to maintain a 5 -division display at each VOLTS/DIV switch setting.
g. Move the test setup to the CH 1 OR X input connector and select CH 1 VERTICAL MODE.
h. Repeat part for CH 1.
i. Disconnect the test setup.

16. Check CH 1 and CH 2 Transient Response

a. Set:

VERTICAL MODE	CH 2
A and B SEC/DIV	$0.5 \mu \mathrm{~s}$ (knobs locked)
VOLTS/DIV (both)	5 m
A TRIGGER SLOPE	+ (button out)

b. Connect a $100-\mathrm{kHz}$ fast-rise, positive-going squarewave signal via a $50-\Omega$ cable, a 10 X attenuator, and a $50-\Omega$ termination to the CH 2 OR Y input connector. Set the generator output for a 5 -division vertical display.
c. Vertically center the display using the CH 2 POSITION control.
d. CHECK-Flat-top waveform is within 3% (4.85 to 5.15 divisions).
e. Repeat parts c and d for each of the following CH 2 VOLTS/DIV switch settings: $10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}, 0.1$ and 0.2 . Adjust the generator output and select attenuators as necessary to maintain a 5 -division display at each VOLTS/ DIV switch setting.
f. Disconnect the test signal from the CH 2 OR Y input connector. Re-connect the 10X attenuator (if previously removed) and reduce the generator amplitude to minimum.
g. Set VERTICAL MODE to CH 1 and connect the test signal to the CH 1 OR X input connector. Set the generator output amplitude for a 5 -division vertical display.
h. Vertically center the display using the CH 1 POSITION control.
i. CHECK—Repeat parts d and e for CH 1.
j. Disconnect the test setup.

17. Check Signal Isolation

a. Set:

CH 1 VOLTS/DIV	0.5
CH 2 VOLTS/DIV	10 m
VERTICAL MODE	CH 1
AC-GND-DC (both)	DC
A TRIGGER SOURCE	VERT MODE

b. Connect a $25-\mathrm{MHz}$ leveled sine-wave signal to the CH 1 OR X input connector via a precision $50-\Omega$ cable and a $50-\Omega$ termination.
c. Adjust generator for an 8-division vertical display.
d. Select CH 2 VERTICAL MODE.
e. CHECK-Display amplitude is 4 divisions or less.
f. Move the test setup to the CH 2 OR Y input connector.
g. Set:

CH 1 VOLTS/DIV	10 m
CH 2 VOLTS/D!V	0.5
VERTICAL MODE	CH 1

h. CHECK-Display amplitude is 4 divisions or less.
i. Disconnect the test setup.
18. Check CH 1 and CH 2 Bandwidth
a. Set:

A and B SEC/DIV	0.2 ms (knobs locked)
A TRIGGER LEVEL	Fully clockwise
CH 1 VOLTS/DIV	5 m

b. Connect a $50-\mathrm{kHz}$ leveled sine-wave signal to the CH 1 OR X input connector via a precision $50-\Omega$ cable, a $10 X$ attenuator, and a $50-\Omega$ termination.
c. Set generator output for a vertical display of 5 divisions; then change its output frequency to 100 MHz .
d. CHECK-Display amplitude is 3.5 divisions or greater.

NOTE

Attempting to check the VOLTS/DIV settings beyond 0.5 will exceed the power-handling capability at the $50-\Omega$ termination and the output power of the recommended calibration equipment.
e. Repeat parts c and d for all CH 1 VOLTS/DIV switch settings from 5 m to 0.5 . Adjust generator output amplitude and either add or remove attenuators as necessary to maintain a 5 -division, $50-\mathrm{kHz}$ reference-signal display.
f. Move the leveled sine-wave signal to the $\mathrm{CH} 2 \mathrm{OR} Y$ input connector and select CH 2 VERTICAL MODE.
g. Repeat parts c and d for all CH 2 VOLTS/DIV switch settings from 0.5 to 5 m . Adjust the generator output and either add or remove attenuators as needed to maintain a 5 -division, $50-\mathrm{kHz}$ reference-signal display.
h. Disconnect the test setup.

19. Check Trigger View Gain

a. Set:

A and B SEC/DIV	0.2 ms (knobs locked)
A TRIGGER COUPLING	DC
A TRIGGER SOURCE	EXT
A TRIGGER LEVEL	Midrange

b. Connect a $0.2-\mathrm{V}$ standard-amplitude signal to the A EXT input connector via a $50-\Omega$ cable. Use no termination.
c. While holding in the TRIG VIEW push button, use the A TRIGGER LEVEL control to vertically center the displayed signal.
d. CHECK-Display signal amplitude is 2 divisions $\pm 40 \%$ (1.2 divisions to 2.8 divisions) while holding in the TRIG VIEW push button.
e. Set the A TRIGGER SOURCE switch to EXT $\div 10$ and change the generator output to 2 V . While holding in the TRIG VIEW push button, use the A TRIGGER LEVEL control to vertically center the displayed signal.
f. CHECK-Display signal amplitude is 2 divisions $\pm 40 \%$ (1.2 divisions to 2.8 divisions) while holding in the TRIG VIEW push button.
g. Disconnect the test signal.

20. Check Trigger View Centering

a. Set the A TRIGGER SOURCE switch to EXT.
b. Connect a $1-\mathrm{kHz}$ sine-wave signal to the A EXT input connector via a $50-\Omega$ cable. Use no termination.
c. While holding in the TRIG VIEW push button, set the generator output to obtain a 4 -division vertical display and use the A TRIGGER LEVEL control to vertically center the displayed signal.
d. CHECK—Start of sweep is within ± 1 vertical division of the center horizontal graticule line.
e. Disconnect the test signal.

21. Check Trigger View Low-Frequency Compensation

a. Set:

```
A and B SEC/DIV
A TRIGGER SLOPE
0.1 ms (knobs locked)
                                + (button out)
```

b. Connect a $1-\mathrm{kHz}$ high-amplitude, square-wave signal to the A EXT input connector via a $50-\Omega$ cable, a $10 X$ attenuator, and a $50-\Omega$ termination.
c. While holding in the TRIG VIEW push button, set the generator output for a 4 -division vertical display and use the A TRIGGER LEVEL control to vertically center the displayed signal.
d. CHECK-Square-wave leading edge has less than 20% rolloff or overshoot (3.2 to 4.8 divisions), while holding in the TRIG VIEW push button.
e. Set the A TRIGGER SOURCE switch to EXT $\div 10$.
f. While holding in the TRIG VIEW push button, adjust the generator output for a signal display of 4 vertical divisions and use the A TRIGGER LEVEL control to vertically center the displayed signal.
g. CHECK-Square-wave leading edge has less than 20% rolloff or overshoot (3.2 to 4.8 divisions) while holding in the TRIG VIEW push button.
h. Disconnect the test signal.

22. Check Trigger View High-Frequency Compensation

a. Set:

A TRIGGER SOURCE
EXT
A and B SEC/DIV
$0.2 \mu \mathrm{~s}$ (knobs locked)
b. Connect a $100-\mathrm{kHz}$ fast-rise, positive-going, squarewave signal to the A EXT input connector via a $50-\Omega$ cable and a $50-\Omega$ termination.
c. While holding in the TRIG VIEW push button, adjust the generator output for a signal display of 2 vertical divisions and use the A TRIGGER LEVEL control to vertically center the displayed signal.
d. CHECK—Square-wave front-corner overshoot or rolloff is less than 20% (1.6 to 2.4 divisions) while holding in the TRIG VIEW push button.
e. Disconnect the test setup.

23. Check Trigger View Delay

a. Set:

VERTICAL MODE	CH 2
A and B SEC/DIV	$0.05 \mu \mathrm{~s}$
X10 MAG	On (button in)
A TRIGGER COUPLING	AC
A TRIGGER SLOPE	+ (button out)
A TRIGGER LEVEL	Midrange
A TRIGGER SOURCE	EXT
CH 2 VOLTS/DIV	0.1

b. Connect a $100-\mathrm{kHz}$ fast-rise, positive-going squarewave signal via a $50-\Omega$ cable, a $50-\Omega$ termination, and a dualinput coupler to the CH 2 OR Y and A EXT input connectors.
c. Use the CH 2 POSITION control to vertically center the trace on the graticule and use the Horizontal POSITION control to center the rising portion of the signal on the center vertical graticule line.
d. While holding in the TRIG VIEW push button, adjust the generator output for a 5 -division vertical display of the Trigger View signal.
e. Adjust the CH 2 VOLTS/DIV and VAR controls to match the amplitude of the displayed signal to the amplitude of the Trigger View signal.
f. While holding in the TRIG VIEW push button, use the A TRIGGER LEVEL control to vertically center the Trigger View display. Use the CH 2 POSITION control to vertically center the CH 2 display.
g. CHECK-Time difference between the CH 2 and Trigger View signals (by alternately pressing in the TRIG VIEW push button and releasing it) is $3 \mathrm{~ns} \pm 2 \mathrm{~ns}$ (0.2 to 1 horizontal graticule division or less).
h. Disconnect the test setup.

24. Check Common-Mode Rejection Ratio

a. Set:

VOLTS/DIV (both)	10 m
AC-GND-DC (both)	DC
A TRIGGER SOURCE	VERT MODE
CH 2 INVERT	Inverted (button in)

b. Connect a $50-\mathrm{MHz}$, leveled sine-wave signal to the CH 1 OR X and the CH 2 OR Y input connectors via a precision $50-\Omega$ cable, a $10 X$ attenuator, a $50-\Omega$ termination, and a dual-input coupler.
c. Set the generator amplitude for a 6-division display.
d. Select ADD VERTICAL MODE.
e. CHECK-Display amplitude is 0.6 division or less.
f. If the check in part e meets the requirement, skip to part m. If it does not, continue with part g.
g. Set VERTICAL MODE to display CH 1.
h. Change the generator frequency to 50 kHz and adjust the output to obtain a 6 -division display.
i. Set VERTICAL MODE to ADD.
j. Adjust CH 2 VOLTS/DIV VAR for minimum display amplitude (best CMRR).
k. Change the generator frequency to 50 MHz .
I. CHECK-Display amplitude is $\mathbf{0 . 6}$ division or less.
m. Press the CH 2 INVERT button to release it and disconnect the test setup.
25. Check Trigger View Bandwidth
a. Set:

VERTICAL MODE	CH 1
X 10 MAG	Off (button out)
A and B SEC/DIV	$50 \mu \mathrm{~s}$
A TRIGGER SOURCE	EXT

b. Connect a $50-\mathrm{kHz}$ leveled sine-wave signal to the A EXT input connector via a precision $50-\Omega$ cable and a $50-\Omega$ termination.
c. Press in the TRIG VIEW push button and adjust the generator output for a 4-division vertical display. Vertically center the display using the A TRIGGER LEVEL control.
d. Set the generator output frequency to 80 MHz .
e. CHECK-For a display amplitude of 2.8 divisions or more with the TRIG VIEW button held in.
f. Disconnect the test setup.

TRIGGERING

Equipment Required (see Table 4-1):

Leveled Sine-Wave Generator (Item 3)
$50-\Omega$ Signal Pickoff (Item 5)
Two 50- Ω Cables (Item 6)
Dual-Input Coupler (Item 8)
10X Attenuator (Item 10)

Two 50- Ω Terminations (Item 13)
$50-\Omega$ Precision Cable (Item 14)
GR-to-BNC Male Adapter (Item 15)
GR-to-BNC Female Adapter (Item 16)
Low-Frequency Generator (Item 17)

2335 CONTROL SETTINGS

POWER

ON (button in)

CRT	
INTEN	As required for visible
frace	
FOCUS	Best focused display
Vertical (Both Channels)	
VERTICAL MODE	CH 2
POSITION	Midrange
VOLTS/DIV	$10 m$
VOLTS/DIV VAR	Calibrated detent
AC-GND-DC	DC
CH 2 INVERT	Normal (button out)
BW LIMIT	Full bandwidth
	(button out)

Trigger

COUPLING	AC
LEVEL	Midrange
SLOPE	+ (button out)
SOURCE	CH 2
Mode TRIG HOLDOFF (PUSH) VAR	AUTO
	Off (in detent)

Sweep

HORIZ MODE	A
A and B SEC/DIV	5 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in calibrated detent
B DELAY TIME	
POSITION	Fully counterclockwise
X1O MAG	Off (button out)
POSITION	Midrange

1. Check A Internal Triggering

a. Connect the low-frequency sine-wave generator to the CH 1 OR X and the CH 2 OR Y input connectors via a $50-\Omega$ cable and a dual-input coupler.
b. Set the generator output for a $60-\mathrm{Hz}$, 6 -division vertical display; then set the CH 1 and CH 2 VOLTS/DIV switches to 0.2 to obtain a 0.3 -division vertical signal display.
c. CHECK-Stable display can be obtained, and the TRIG'D LED is illuminated by adjusting the A TRIGGER LEVEL control with each of the switch combinations listed in Table 4-4, except for LF REJ coupling.
d. CHECK-A stable display cannot be obtained in LF REJ coupling with a $60-\mathrm{Hz}$ input signal.
e. Disconnect the low-frequency generator from the instrument.
f. Connect a leveled sine-wave generator to the CH 1 OR X and the CH 2 OR Y input connectors via a precision $50-\Omega$ cable, a $50-\Omega$ termination, and a dual-input coupler.
g. Set:

VERT MODE CH 1
A and B SEC/DIV $\quad 0.05 \mu \mathrm{~s}$
CH 1 VOLTS/DIV
10 mV
h. Adjust the leveled sine-wave generator for a $20-\mathrm{MHz}$, 6 -division vertical display.
i. Set the CH 1 VOLTS/DIV switch back to 0.2 to obtain a 0.3 -division vertical display.

Performance Check Procedure-2335 Service

j. CHECK-Stable display can be obtained, and the TRIG'D LED is illuminated by adjusting the A TRIGGER LEVEL control with each of the switch combinations listed in Table 4-4, except for HF REJ coupling.
k. CHECK-A stable display cannot be obtained in HF REJ coupling with a $20-\mathrm{MHz}$ input signal.
I. Press in the $\times 10$ MAG push button and set the generator output for a $100-\mathrm{MHz}, 1.1$-division display.
m. CHECK-Stable display can be obtained, and the TRIG'D LED is illuminated by adjusting the A TRIGGER LEVEL control with each of the switch combinations listed in Table 4-4, except for HF REJ coupling.
n. CHECK-A Stable display cannot be obtained in HF REJ coupling with a $100-\mathrm{MHz}$ input signal.
o. Disconnect the test setup from the instrument.

Table 4-4
Switch Combinations for Internal Triggering Checks

TRIGGER COUPLING	TRIGGER SOURCE	$\begin{aligned} & \text { TRIGGER } \\ & \text { SLOPE } \end{aligned}$
AC	$\mathrm{CH} 2$ CH 1 VERT MODE	
DC	$\begin{gathered} \text { VERT MODE } \\ \text { CH } 1 \\ \text { CH } 2 \end{gathered}$	
$\begin{aligned} & \text { LF REJ } \\ & (60 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} \text { CH } 2 \\ \text { CH } 1 \\ \text { VERT MODE } \end{gathered}$	$\begin{aligned} & + \text { and - } \\ & + \text { and - } \\ & + \text { and - } \end{aligned}$
$\begin{aligned} & \text { HF REJ } \\ & (20 \mathrm{MHz} \text { and } \\ & 100 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & \text { VERT MODE } \\ & \text { CH } 1 \\ & \text { CH } 2 \end{aligned}$	+ and + and + and -

2. Check A External Triggering and Jitter
a. Set:

> A and B SEC/DIV
> A TRIGGER SOURCE
> A TRIGGER COUPLING
> A TRIGGER SLOPE VERTICAL MODE VOLTS/DIV (both) X10 MAG

$20 \mu \mathrm{~s}$

VERT MODE
AC

+ (button out)
CH 2
10 m
OFF (button out)
b. Connect the test equipment as shown in Figure 4-1.
c. Set the leveled sine-wave generator output for a $50-\mathrm{kHz}, 5$-division display.
d. Set:

A TRIGGER SOURCE VERTICAL MODE

EXT $\div 10$
CH 1
e. Remove the 10X attenuator from the test setup and connect the CT-3 THRU SIG OUT connector to the A EXT input connector.
f. CHECK-Stable triggering can be obtained and the TRIG‘D LED illuminates by adjusting the A TRIGGER LEVEL control in all the following A TRIGGER COUPLING switch positions: AC, DC, LF REJ, and HF REJ (for both + and - SLOPE at each setting).
g. Adjust the output of the leveled sine-wave generator to 20 MHz and set the A SEC/DIV switch to $0.05 \mu \mathrm{~s}$.
h. CHECK-Stable triggering can be obtained and the TRIG‘D LED illuminates by adjusting the A TRIGGER LEVEL control in all the following A TRIGGER COUPLING switch positions: AC, DC, LF REJ (for both + and - SLOPE at each setting).
i. CHECK-No triggering occurs with the A TRIGGER COUPLING switch set to HF REJ and with SLOPE at either + or - .
j. Set the A TRIGGER SOURCE switch to EXT.
k. Reinsert the 10X attenuator in series with the CT-3 THRU SIG OUT connector.
I. CHECK-Stable triggering can be obtained and the TRIG'D LED illuminates by adjusting the A TRIGGER LEVEL control in all the following A TRIGGER COUPLING switch positions: AC, DC, LF REJ (for both + and - SLOPE at each setting).
m. CHECK-No triggering occurs with the A TRIGGER COUPLING switch set to HF REJ and with SLOPE at either + or -.

Figure 4-1. Test setup for external trigger and jitter checks.
n. Set:

VERTICAL MODE CH 2
VOLTS/DIV (both) 50 m
A TRIGGER SOURCE CH 2
A TRIGGER COUPLING
AC
o. Connect the CT-3 THRU SIG OUT connector to the CH 2 OR Y input connector.
p. Set the leveled sine-wave generator output for a $50-\mathrm{kHz}$, 3-division display.
q. Adjust the generator output to $100-\mathrm{MHz}$ and move the CT-3 THRU SIG OUT connector to the A EXT input connector.
r. Set:

VERTICAL MODE	CH 1
A TRIGGER SOURCE	EXT
X10 MAG	On (button in)

s. CHECK-Stable triggering can be obtained and TRIG‘D LED illuminates by adjusting the A TRIGGER

LEVEL control in all the following A TRIGGER COUPLING switch positions: AC, DC, LF REJ (for both + and - SLOPE at each setting!.
t. CHECK-No triggering occurs with the A TRIGGER COUPLING switch set to HF REJ and with SLOPE at either + or - .
u. Set A TRIGGER COUPLING to AC and adjust A TRIGGER LEVEL control for a stable display.
v. CHECK-For less than 0.2 division of jitter at leading edge of the waveform.
w. Set:

A TRIGGER SOURCE
EXT $\div 10$
x. Remove the 10X attenuator from the test setup.
y. CHECK-Repeat parts sthrough v.

3. Check NORM Triggering Mode Operation

a. Set the A TRIGGER SOURCE switch to VERT MODE.
b. Adjust the A TRIGGER LEVEL control for a stable display.
c. Set the A TRIGGER Mode to NORM.
d. CHECK-Stable display is visible.
e. Set $C H 1$ AC-GND-DC switch to GND.
f. CHECK-For no visible display.

4. Check SGL SWP Mode Operation

a. Set:

CH 1 AC-GND-DC
$\times 10$ MAG
A and B SEC/DIV

DC

Off (button out) $20 \mu \mathrm{~s}$
b. Adjust the output of the leveled sine-wave generator for a $50-\mathrm{kHz}, 2$-division vertical display.
c. Adjust the A TRIGGER LEVEL control until the display just triggers.
d. Set the CH 1 AC-GND-DC switch to GND.
e. Press in the SGL SWP push button. The READY LED should illuminate and remain on.
f. Set CH 1 AC-GND-DC switch to DC.
g. CHECK-READY LED goes out and a single sweep occurs.

NOTE

The INTEN control may require adjustment to observe the single-sweep trace.
h. Press in the SGL SWP push button several times.
i. CHECK—Single-sweep trace occurs, and READY LED illuminates briefly every time the SGL SWP push button is pressed in and released.
j. Disconnect the test setup.

5. Check A External Trigger Level Range

a. Set:

CH 1 VOLTS/DIV	0.5
TRIGGER SLOPE	+
TRIGGER SOURCE	EXT
A TRIGGER Mode	AUTO

b. Connect a $50-\mathrm{kHz}$ sine-wave signal to the CH 1 OR X and A EXT input connectors via a precision $50-\Omega$ cable, a $50-\Omega$ termination, and a dual-input coupler.
c. Set the generator output for a 4 -division vertical display.
d. CHECK-Display is triggered along the entire positive slope of the waveform as the A TRIGGER LEVEL control is rotated.
e. CHECK-Display is not triggered (free runs) at either extreme of rotation.
f. Set the A TRIGGER SLOPE switch to -.
g. CHECK-Display is triggered along the entire negative slope of the waveform as the ATRIGGER LEVEL control is rotated.
h. CHECK-Display is not triggered (free runs) at either extreme of rotation.
i. Disconnect the test setup.

HORIZONTAL

Equipment Required (see Table 4-1):

Calibration Generator (Item 2)
Leveled Sine-Wave Generator (Item 3)
Time-Mark Generator (Item 4) $50-\Omega$ Cable (Item 6)

> Dual-Input Coupler (Item 8)
> $50-\Omega$ Termination (Item 13)
> Precision Cable (Item 14)
> Low-Frequency Generator (Item 17)

2335 CONTROL SETTINGS

POWER

CRT
INTEN

FOCUS

Vertical (Both Channels)
VERTICAL MODE
POSITION
VOLTS/DIV
VOLTS/DIV VAR
AC-GND-DC
CH 2 INVERT
BW LIMIT

Trigger
COUPLING
LEVEL
SLOPE
SOURCE
Mode
TRIG HOLDOFF
(PUSH) VAR

Sweep

HORIZ MODE	A
A and B SEC/DIV	1 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in calibrated detent
B DELAY TIME	Fully counterclockwise
POSITION	Off (button out)
X10 MAG	Midrange
POSITION	

1. Check A and B Timing Accuracy and Linearity

a. Connect 1 -ms time markers to the CH 1 OR X input connector via a $50-\Omega$ cable and a $50-\Omega$ termination.
b. Use the CH 1 POSITION control to move the display baseline just below the graticule viewing area and adjust the A TRIGGER LEVEL control for a stable, triggered display.
c. Set the A SEC/DIV switch to 0.05μ s and select $50-\mathrm{ns}$ time markers.
d. Use the Horizontal POSITION control to align the first time marker with the first vertical graticule line (extreme left vertical line).
e. CHECK-The (unmagnified) timing accuracy is within 2% (0.2 division) at the 11 th time marker and linearity is within 5\% (0.1 division) over any 2 -division portion of the graticule. When checking accuracy, exclude the first and last 40 ns of the sweep.
f. Repeat part e for the remaining SEC/DIV switch settings and time-mark generator (Normal) settings given in Table 4-5. Readjust the A TRIGGER LEVEL and Horizontal POSITION controls as necessary.

NOTE

For SECIDIV switch settings from 50 ms to 0.5 s , observe only the time-marker tips at the 1st and 11th graticule lines while adjusting the Horizontal POSITION control and checking the timing accuracy.
g. Press in the $\times 10 \mathrm{MAG}$ push button.
h. CHECK-The (magnified) timing accuracy and linearity using the SEC/DIV switch settings and the time-mark generator (X 10 MAG) settings given in Table 4-5. At each setting combination, timing must be accurate within 3% (0.3 division) at the 11 th time marker. When checking accuracy, exclude the first and last 40 ns of the sweep. Linearity must be within 5% (0.1 division) over any 2-division portion of the graticule. When checking linearity, exclude the first- and last-displayed divisions for A and B SEC/DIV switch positions of $0.05 \mu \mathrm{~s}$ and $0.1 \mu \mathrm{~s}$.
i. Set:

HORIZ MODE	B
B SEC/DIV	$0.05 \mu \mathrm{~s}$
A SEC/DIV	$0.1 \mu \mathrm{~s}$
A TRIGGER LEVEL	Triggered A Sweep
X10 MAG	Off (button out)

j. Select 50 -ns time markers.
k. Repeat parts d through h for the B Sweep.

2. Check A SEC/DIV VAR Range

a. Set:

HORIZ MODE
A and B SEC/DIV
CH 1 AC-GND-DC

A

2 ms (knobs locked)
DC
b. Select 5 -ms time markers.
c. Adjust the INTEN control for best viewing level. Use the Horizontal POSITION control to align the first time marker with the extreme left graticule line.
d. CHECK-One time marker per division can be displayed by pulling out and rotating the TIME (PULL) VAR control.
e. Return the TIME (PULL) VAR control to its calibrated detent.

3. Check Delay Time Linearity

a. Set:

A SEC/DIV	1 ms
B SEC/DIV	$10 \mu \mathrm{~s}$
HORIZ MODE	B
B DELAY TIME POSITION	

Table 4-5
Settings for Timing Accuracy Checks

$\begin{array}{c}\text { A and B } \\ \text { SEC/DIV } \\ \text { Switch Setting }\end{array}$	Time-Mark Generator Output	
	Normal	X10 MAG
$0.1 \mu \mathrm{~s}$	50 ns	5 ns
$0.2 \mu \mathrm{~s}$		
$0.5 \mu \mathrm{~s}$		

${ }^{\text {a }}$ For SEC/DIV switch settings siower than 5 ms set the A TRIGGER Mode to NORM.
b. Select 1-ms time markers.
c. Rotate the B DELAY TIME POSITION control to set the rising edge of the nearest time marker to the center vertical graticule line. Note the dial setting.
d. Rotate the B DELAY TIME POSITION dial to 2.00 and then set the nearest time marker to the center vertical graticule line. Note the dial setting.
e. CHECK-Difference in dial settings between parts c and d is 1.000 ± 0.023 (0.977 to 1.023), with ambient temperature within the range of $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. If the ambient temperature is outside this range, but between $-15^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$, the difference should not exceed 1.00 ± 0.03 (0.97 to 1.03).
f. Rotate the B DELAY TIME POSITION control to set every succeeding time marker to coincide with the center vertical graticule line and note the dial reading for each.
g. CHECK—Difference of dial readings between any two adjacent time markers is $1.000 \pm 0.023(0.977$ to 1.023$)$, see part e for ambient temperature qualification.

4. Check Delay Time Accuracy

a. Set:

A SEC/DIV	$0.2 \mu \mathrm{~s}$
B SEC/DIV	$0.05 \mu \mathrm{~s}$

b. Select $0.1-\mu$ s time markers.

NOTE

Exclude B DELAY TIME POSITION control dial readings below 0.25 (000 to 0.25) for all delay time measurements.
c. Set the B DELAY TIME POSITION control to 1.00 . Adjust the Horizontal POSITION control so that the top of one displayed time marker crosses the center vertical graticule line. If the top of the time marker at the beginning of the sweep is not visible, use the second time marker.
d. Without changing the Horizontal POSITION control setting, set the B DELAY TIME POSITION dial setting to 9.00. Slightly readjust the B DELAY TIME POSITION control to align the top of the displayed time marker with the center vertical graticule line.
e. CHECK-The B DELAY TIME POSITION dial setting is 9.00 ± 0.08 (8.92 to 9.08).
f. CHECK-Repeat parts c through e for each of the settings listed in Table 4-6.

5. Check Delay Jitter

a. Set:

B DELAY TIME POSITION	9.00
A SEC/DIV	1 ms
B SEC/DIV	$0.5 \mu \mathrm{~s}$

b. Select 1-ms time markers.
c. Verify that the A TRIGGER SLOPE switch is set to + (button out). Slightly readjust the B DELAY TIME POSITION dial to position a time marker within the graticule area.

Table 4-6
Settings for Delay Time Accuracy Checks

A SEC/DIV Switch Setting	B SEC/DIV Switch Setting	Time-Mark Generator Output
$0.5 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$
$1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$2 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
$10 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
$20 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$
0.1 ms	$10 \mu \mathrm{~s}$	0.1 ms
0.2 ms	$10 \mu \mathrm{~s}$	0.1 ms
0.5 ms	$50 \mu \mathrm{~s}$	0.5 ms
1 ms	0.1 ms	1 ms
2 ms	0.1 ms	1 ms
5 ms	0.5 ms	5 ms
$10 \mathrm{~ms}^{\text {a }}$	1 ms	10 ms
$20 \mathrm{~ms}^{\text {a }}$	1 ms	10 ms
$50 \mathrm{~ms}^{\text {a }}$	5 ms	50 ms
$0.1 \mathrm{~s}^{\text {a }}$	10 ms	0.1 s
$0.2 \mathrm{~s}^{\text {a }}$	10 ms	0.1 s
$0.5 \mathrm{~s}^{\text {a }}$	50 ms	0.5 s

${ }^{\text {a }}$ For SEC/DIV switch settings greater than 5 ms , set the A TRIGGER Mode to NORM.
d. CHECK—Jitter on the leading edge of the time marker does not exceed 1 division. Disregard slow drift.
e. Set the B DELAY TIME POSITION dial to 1.00 .
f. CHECK-Repeat parts c and d.

6. Check $\times 10$ MAG Registration

a. Set:

VOLTS/DIV (both)	0.2
X10 MAG	ON (button in)
A and B SEC/DIV	1 ms
HORIZ MODE	A

b. Use the CH 1 POSITION control to position the bottom of the display on the bottom horizontal graticule line.
c. Use the Horizontal POSITION control to align the first time marker with the center vertical graticule line.
c. Adjust the A TRIGGER LEVEL control for a stable triggered display.
d. Select 0.5 s time markers.
e. CHECK-Display cannot be triggered (free runs).
f. Disconnect the test setup.

10. Check A INTEN Operation

a. Set:

B DELAY TIME POSITION	0.00
HORIZ MODE	A INTEN

b. Use the Horizontal POSITION control to align the trace with the extreme left vertical graticule line.
c. CHECK-The intensified portion of the trace decreases one division as the B DELAY TIME POSITION dial is rotated to each whole number (1.00 through 10.00).
d. Set the B DELAY TIME POSITION dial to 0.00 .

9. Check AUTO Recovery

a. Set:

A and B SEC/DIV	0.2 ms (knobs locked)
HORIZ MODE	A
POSITION (Horizontal)	Midrange
A TRIGGER Mode	AUTO

b. Select 0.1-ms time markers.
11. Check X-Y Gain
a. Set:

A and B SEC/DIV $\quad 1 \mathrm{~ms}$ (knobs locked)
VERTICAL MODE X-Y
VOLTS/DIV (both) 10 m
$\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ DC
CH 2 AC-GND-DC GND HORIZ MODE X10 MAG

A
Off (button out)
b. Connect a $50-\mathrm{mV}$ standard-amplitude signal from the calibration generator to the CH 1 OR X input connector via a $50-\Omega$ cable.
c. CHECK-For a display of 5 divisions ± 0.25 division (4.75 to 5.25 divisions).
d. Disconnect the test setup.

12. Check $X-Y$ Bandwidth

a. Connect a 50 kHz leveled sine-wave signal via a precision $50-\Omega$ cable, and a $50-\Omega$ termination to the CH 1 OR X input connector.
b. Set the generator for a 6-division horizontal display.
c. Without changing the generator amplitude, adjust generator output frequency to 2 MHz .
d. CHECK-Display is at least 4.2 divisions in length.
e. Disconnect the test equipment from the instrument.

13. Check X-Y Phase Differential

a. Set both VOLTS/DIV switches to 10 mV .
b. Connect a $200-\mathrm{kHz}$ sine-wave signal to the CH 1 OR X and the CH 2 OR Y input connectors via a $50-\Omega$ cable, a $50-\Omega$ termination, and a dual-input coupler.
c. Adjust the generator output amplitude for 6 divisions of horizontal deflection.
d. Set the $\mathrm{CH} 2 \mathrm{AC}-G N D-D C$ switch to $D C$.
e. Vertically center the display using the channel 2 POSITION control, and horizontally center the display using the horizontal POSITION control.
f. CHECK-Opening is 0.3 division or less, measured horizontally.
g. Disconnect the test setup.

EXTERNAL Z-AXIS AND CALIBRATOR

Equipment Required (see Table 4-1):

Calibration Generator (Item 2)
Two 50- Ω Cables (Item 6)

T-Connector (Item 9)

2335 CONTROL SETTINGS

POWER ON (button in)

CRT
INTEN

FOCUS

Vertical (Both Channels)
VERTICAL MODE
POSITION
VOLTS/DIV
VOLTS/DIV VAR
AC-GND-DC
CH 2 INVERT
BW LIMIT

Trigger
COUPLING
LEVEL
SLOPE
SOURCE
Mode
TRIG HOLDOFF (PUSH)

Sweep

HORIZ MODE	A
A and B SEC/DIV	2 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in calibrated detent
B DELAY TIME	
POSITION	Fully counterclockwise
X10 MAG	Off (button out)
POSITION	Midrange

1. Check External Z-Axis Operation

a. Connect a 5-V standard-amplitude, square-wave signal to the CH 2 OR Y input connector and to the EXT Z-AXIS input connector (located on the rear panel) via a $50-\Omega \mathrm{T}$-connector and two $50-\Omega$ cables.
b. CHECK-For noticeable intensity modulation of the trace when the INTEN control is set for normal-viewing brightness. Adjust the TIME (PULL) VAR control, if necessary, to observe the modulation. Return the TIME (PULL) VAR control to the calibrated detent.
c. Disconnect the test setup.

2. Check AMPL CAL Operation

a. Set:

CH 1 VOLTS/DIV
5 m
A and B SEC/DIV $\quad 1 \mathrm{~ms}$ (knobs locked)
b. Connect the 10X probe (supplied with the 2335) to the CH 1 OR X input connector. Remove the probe tip and insert the probe into the AMPL CAL connector.
c. CHECK-For a 4-division vertical display of the AMPL CAL square-wave signal (square-wave period is typically 1 ms , within 25%).
d. Disconnect all test equipment.

ADJUSTMENT PROCEDURE

INTRODUCTION

IMPORTANT—PLEASE READ BEFORE USING THIS PROCEDURE

The "Adjustment Procedure" is used to return the instrument to conformance with its "Performance Requirements" as listed in the "Specification" (Section 1). These adjustments should be performed only after the checks in the "Performance Check Procedure" (Section 4) have indicated a need for adjustment of the instrument.

TEST EQUIPMENT REQUIRED

The test equipment listed in Table $4-1$ is a complete list of the equipment required to accomplish both the "Adjustment Procedure" in this section and the "Performance Check Procedure" in Section 4. Test equipment specifications described in Table 4.1 are the minimum necessary to provide accurate results. Therefore, equipment used must meet or exceed the listed specifications. Detailed operating instructions for test equipment are not given in this procedure. If more operating information is required, refer to the appropriate test equipment instruction manual.

When equipment other than that recommended is used, control settings of the test setup may need to be altered. If the exact item of equipment given as an example in Table 4-1 is not available, first check the "Purpose" column to verify use of this item. If it is used for a check or adjustment that is of little or no importance to your measurement requirements, the item and corresponding steps may be deleted. If the check or adjustment is important, use the "Minimum Specification" column to determine if any other available test equipment might suffice.

LIMITS AND TOLERANCES

The limits and tolerances stated in this procedure are instrument specifications only if they are listed in the "Performance Requirements" column of the "Specification" (Section 1). Tolerances given are applicable only to the instrument undergoing adjustment and do not include test equipment error. Adjustment of the instrument must be accomplished at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$, and the instrument must have had a warm-up period of at least 20 minutes.

PARTIAL PROCEDURES

This procedure is structured in subsections to permit adjustment of individual sections of the instrument (except the Power Supply) whenever a complete readjustment is not required. For example, if only the Vertical section fails to meet the Performance Requirements (or has had repairs made or components replaced), it can be readjusted with little or no effect on other sections of the instrument. However, if the Power Supply section has undergone repairs or adjustments that change the absolute value of any of the supply voltages, a complete readjustment of the instrument may be required.

At the beginning of each subsection is a list of all the front-panel control settings required to prepare the instrument for performing Step 1 in that subsection. Each succeeding step within a subsection should then be performed both in the sequence presented and in its entirety to ensure that control settings will be correct for ensuing steps.

INTERNAL ADJUSTMENTS AND ADJUSTMENT INTERACTION

Do not preset any internal controls or change the $+40-\mathrm{V}$ Power-Supply adjustment, since that will typically necessitate a complete readjustment of the instrument, when only a partial readjustment might otherwise be required. To avoid unnecessary readjustment, change an internal control setting only when a Performance Characteristic cannot be met with the original setting. When it is necessary to change the setting of any internal control, always check Table 5-1 for possible interacting adjustments that might be required.

The use of Table 5-1 is particularly important if only a partial procedure is performed or if a circuit requires readjustment due to a component replacement. To use this table, first find the adjustment that was made (extreme left column). Then move to the right, across the row, until you come to a darkened square. From the darkened square, move up the table and check the accuracy of the adjustment found at the heading of that column. Readjust if necessary.

Specific interactions are called out within certain adjustment steps to indicate that the adjustments must be repeated until no further improvement is noted.

PREPARATION FOR ADJUSTMENT

It is necessary to remove the instrument cabinet to perform the Adjustment Procedure. See the "Cabinet" removal instructions located in the "Maintenance" section of the manual.

Before performing this procedure, ensure that the LINE VOLTAGE SELECTOR switch is set for the ac-power-input source voltage being used (see "Preparation for Use" in Section 2). This procedure is written for the instrument to be operated from a $115-\mathrm{V}$ ac-power-input source. Operating from other input-source voltages will require setting the LINE VOLTAGE SELECTOR switch to the appropriate setting for the available ac-power-input source.

All test equipment items described in Table 4-1 are required to accomplish a complete Adjustment Procedure. The specific items of equipment needed to perform each subsection in this procedure are listed at the beginning of the subsection. The item number shown in parentheses with each piece of equipment refers to the equipment item number presented in Table 4-1.

Connect the test equipment to an appropriate ac-powerinput source and connect the 2335 to a variable autotransformer (Item 18 in Table 4-1) that is set for 115 V ac . Apply power and allow a 20-minute warm-up period before commencing any adjustments.

Display

The most accurate display adjustments are made with a stable, well-focused, low-intensity display. Unless otherwise noted, adjust the INTEN, ASTIG, FOCUS, and TRIGGER LEVEL controls as needed to view the display.

Step and Part Titles

Where possible in this procedure, instrument performance is checked before an adjustment is made. Steps containing both checks and adjustments are titled "Check/ Adjust." Those steps with only checks are titled "Check."

If a part is titled "CHECK/ADJUST," first perform a check to determine whether the instrument meets the requirement. If it does, the adjustment is not required.

Table 5-1
Adjustment Interactions

INDEX TO ADJUSTMENT PROCEDURE

Main Power Supply Page

1. Check/Adjust Power Supply DC Levels, Regulation, and Ripple (R231) 5-5
2. Check High-Voltage Overdrive 5-6
Display and Z-Axis
3. Check/Adjust CRT Grid Bias (R140) 5-7
4. Check/Adjust Trace Alignment 5-7
5. Check/Adjust Y-Axis Alignment (R203) 5-8
6. Check/Adjust Geometry (R202). 5-8
7. Check/Adjust Z-Axis Compensation (C101 and C128). $5-8$
Vertical
8. Check Input Coupling Switches 5-9
9. Check ALT Mode Operation 5-10
10. Check CHOP Mode Operation 5-10
11. Check AUTO Vertical Mode Operation 5-10
12. Check BEAM FIND Operation. 5-10
13. Check/Adjust CH 1 VOLTS/DIV VAR Balance (R22) and UNCAL LED 5-11
14. Check/Adjust CH 1 Attenuator Balance (R10) 5-11
15. Check/Adjust CH 2 VOLTS/DIV VAR Balance (R83) and UNCAL LED 5-11
16. Check/Adjust CH 2 Attenuator Balance (R74) 5-11
17. Check/Adjust CH 1 Vertical Output Gain R44) 5-12
18. Check/Adjust CH 2 Vertical Balance (R18) 5-12
19. Check/Adjust CH 1 and CH 2 Vertical Gain (R47 and R114) 5-12
20. Check CH 1 and CH 2 VOLTS/DIV VAR Range 5-13
21. Check CH 1 and CH 2 Input Gate Current 5-13
22. Check ADD Mode Operation 5-13
23. Check Compression and Expansion. 5-13
24. Check Low-Frequency Transient Response. 5-13
25. Check/Adjust CH 1 and CH 2 Low-Frequency Compensation (R66, R73, R31, and R92) 5-14
26. Check/Adjust Vertical Output High-Frequency Compensation (R29, R32, R33, and C36) and CH 1 and CH 2 Preamplifier High-Frequency Compensation (R33, C33, R95, and C95) 5-14
27. Check CH 1 and CH 2 Transient Response 5-15
28. Check Bandwidth 5-15
29. Check Trigger View Gain 5-16
30. Check Trigger View Centering $.5-16$
Vertical (cont) Page
31. Check Trigger View Low-Frequency Compensation $.5-16$
32. Check Trigger View High-Frequency Compensation 5-17
33. Check Trigger View Delay 5-17
34. Check Channel Isolation 5-17
35. Check Common-Mode Rejection Ratio 5-18
36. Check Bandwidth Limit Operation 5-18
Triggering
37. Adjust A Trigger Slope Offset (R82) and Hysteresis (R106) 5-19
38. Adjust Vert Mode DC Level (R29) 5-20
39. Check Low-Frequency and High-Frequency Internal Triggering. 5-20
40. Check/Adjust A External Trigger DC Level (R41) 5-21
41. Check NORM Triggering Mode Operation 5-22
42. Check SGL SWP Mode Operation 5-22
43. Check Line Triggers 5-22
44. Check Trigger Level Range 5-22
Horizontal
45. Check A INTEN Operation 5-24
46. Check B DELAY TIME POSITION Linearity 5-24
47. Adjust A Sweep Start and Sweep Stop (R74 and R6) 5-25
48. Check Delay Jitter 5-25
49. Check/Adjust X1 and X10 Horizontal Gain (R126 and R127) 5-25
50. Check/Adjust X10 MAG Registration (R134) 5-26
51. Check/Adjust B Time (R10) 5-26
52. Check A and B Timing Accuracy and Linearity 5-26
53. Adjust A and B Timing Accuracy and Linearity (C84, C22, C161, and C187) 5-27
54. Check Delay Time Accuracy 5-28
55. Check A and B Sweep Length $5-28$
56. Check A SEC/DIV VAR Range 5-29
57. Check A and B Sweep Horizontal POSITION Range 5-29
58. Check AUTO Recovery 5-29
59. Check/Adjust X-Y Gain (R148) 5-30
60. Check $X-Y$ Phasing and Bandwidth 5-30
61. Check A Trigger Holdoff. 5-30
External Z-Axis and Calibrator
62. Check External Z-Axis Operation 5-31
63. Check AMPL CAL Operation. 5-32

MAIN POWER SUPPLY

Equipment Required (see Table 4-1):
Test Oscilloscope with 1X Probe (Item 1)
Variable Autotransformer (Item 18)
Digital Voltmeter (Item 19)

Screwdriver (Item 21)
Shorting Strap (Item 22)

See ADJUSTMENT LOCATIONS 1 and ADJUSTMENT LOCATIONS 4
at the back of this manual for test point and adjustment locations.

2335 CONTROL SETTINGS

LINE VOLTAGE
SELECTOR
POWER

CRT

INTEN

FOCUS

Vertical (Both Channels)
VERTICAL MODE
POSITION
VOLTS/DIV
VOLTS/DIV VAR
AC-GND-DC
CH 2 INVERT
BW LIMIT

Trigger

COUPLING	AC
LEVEL	As required for stable display + (button out)
SLOPE	VERT MODE
SOURCE	AUTO
Mode TRIG HOLDOFF (PUSH) VAR	Off (in detent)

Sweep

HORIZ MODE	A
A and B SEC/DIV	1 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in
	calibrated detent
B DELAY TIME	
POSITION	Fully counterclockwise
X10 MAG	Off (button out)
POSITION	Midrange

1. Check/Adjust Power Supply DC Levels, Regulation, and Ripple (R231)

NOTE
Review the information at the beginning of this section before starting this step.
a. Connect the digital voltmeter low lead to chassis ground and connect the volts lead to the first test point listed in Table 5-2.
b. CHECK-Voltage reading is within the range given in Table 5-2.
c. Repeat parts a and b for each test point in Table 5-2.
d. If all voltages are within tolerance, skip to part g. If they are not, continue with part e.

NOTE

Adjustment of the $+40-\mathrm{V}$ Power Supply may require a complete readjustment of the instrument. Do not adjust the $+40-V$ Power Supply if it is within tolerance, unless a complete adjustment procedure is to be performed.

Table 5-2
Main Power Supply Tolerances and p-p Ripple

Power Supply	Test Point (+ Lead)	Reading	Tolerance	Typical p-p Ripple
+40 V	TP247	+39.92 to +40.08	$\pm 0.2 \%$	1 mV
+10 V	TP252	+9.91 to +10.09	$\pm 0.9 \%$	1 mV
-10 V	TP265	-9.88 to -10.12	$\pm 1.2 \%$	1 mV
+5 V	TP255	+4.97 to +5.04	$\pm 0.7 \%$	1 mV
-5 V	TP264	-4.95 to -5.05	$\pm 0.9 \%$	1 mV
+102 V	TP320	+99.4 to +104.6	$\pm 2.5 \%$	1 V

e. Connect the digital voltmeter low lead to chassis ground and connect the volts lead to TP247.
f. ADJUST $-+40-\mathrm{V}$ Supply (R231) for +40 V and again CHECK all power supply dc levels according to Table 5-2.
g. Disconnect the voltmeter.
h. Set test oscilloscope controls as follows:

A and B Sec/Div	5 ms
Ac-Gnd-Dc (both)	Ac
Trigger controls	As required for a stable
	display

i. Connect the test oscilloscope to the first test point given in Table 5-2 via a 1X probe and cascaded gain on the oscilloscope. This will obtain the necessary vertical resolution for measuring ripple amplitude.
j. CHECK—Ripple amplitude of the dc supply while varying the autotransformer output voltage between 100 V and 132 V . Ripple amplitude should be within the typical value given in Table 5-2.

k. Repeat part j for each test point in Table 5-2.

I. Return the autotransformer output voltage to 115 V and disconnect the test setup.

2. Check High-Voltage Overdrive

a. Connect the digital voltmeter low lead to chassis ground and connect the volts lead to TP320 (+102 V supply). Set the autotransformer to zero output.
b. Connect a shorting strap between TP184 and TP185.
c. CHECK—While slowly increasing the autotransformer output, that the voltage level increases to $112 \mathrm{~V} \pm 4 \mathrm{~V}$, then drops to approximately 13 V . Note that a buzzing sound is heard just before the voltage drops. Reset the autotransformer for a 115 V output.
d. Set POWER switch to OFF, remove the shorting strap, and disconnect the voltmeter. Set POWER switch to ON.

DISPLAY AND Z-AXIS

Equipment Required (see Table 4-1):
Test Oscilloscope with 10X Probe (Item 1)
Time-Mark Generator (Item 4)
50Ω BNC Cable (Item 6)
$50-\Omega$ BNC Termination (Item 13)

Digital Voltmeter (Item 19)
Screwdriver (Item 21)
Low-Capacitance Alignment Tool (Item 23)

See ADJUSTMENT LOCATIONS 4 at the back of this manual for test point and adjustment locations.

2335 CONTROL SETTINGS

LINE VOLTAGE SELECTOR POWER

CRT

INTEN
FOCUS

Vertical (Both Channels)

POSITION
VOLTS/DIV
VOLTS/DIV VAR
AC-GIND-DC
CH 2 INVERT
BW LIMIT

115 V
ON (button in)

As required for visible trace Best focused display

X-Y (CH 1 and CH 2 buttons in)
Midrange
5 m
Calibrated detent

GND

Normal (button out)
Full bandwidth (button out)

Sweep

HORIZ MODE	A
A and B SEC/DIV	1 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in calibrated detent
B DELAY TIME	Fully counterclockwise
POSITION	Off (button out)
X10 MAG	Midrange
POSITION	

1. Check/Adjust CRT Grid Bias (R140)

a. Connect the digital voltmeter low lead to chassis ground and the volts lead to TP130.
b. Set the INTEN control for a digital voltmeter reading of +20 V .
c. CHECK-Display for a well-defined, low-intensity dot. Adjust the FOCUS and ASTIG controls as necessary.
d. ADJUST-CRT Grid Bias (R140) for a dot, then back off the control until the dot is just visible.

Trigger
COUPLING
LEVEL
SLOPE
SOURCE
Mode
TRIG HOLDOFF
(PUSH) VAR

AC
As required for stable display

+ (button out)
VERT MODE
AUTO
Off (in detent)
e. Disconnect the test setup.

2. Check/Adjust Trace Alignment

a. Set:

VERTICAL MODE	CH 1
A and B SEC/DIV	0.5 ms
INTEN	As required for visible
	trace

b. Use the CH 1 POSITION control to move the trace to the center horizontal graticule line.
c. CHECK-Trace is parallel with the center horizontal graticule line.
d. ADJUST-TRACE ROTATION control (front-panel screwdriver adjustment) to align the trace parallel with the center horizontal graticule line.

3. Check/Adjust Y-Axis Alignment (R203)

a. Set:

VERTICAL MODE	$\mathrm{X}-\mathrm{Y}(\mathrm{CH} 1$ and CH 2 buttons in $)$
CH 2 AC-GND-DC	DC
CH 2 VOLTS/DIV	0.1
CH 2 POSITION	Fully counterclockwise

b. Connect $0.5-\mathrm{ms}$ time markers from the time-mark generator to the CH 2 OR Y input connector via a $50-\Omega$ cable and a $50-\Omega$ termination.
c. Use the Horizontal POSITION control to move the display to the center vertical graticule line.
d. CHECK-Display for 0.1 division of tilt or less when compared to the center vertical graticule line.
e. ADJUST-Y-Axis Alignment (R203) to align the display parallel with the center vertical graticule line.
i. INTERACTION-TRACE ROTATION adjustment. Repeat Steps 2 and 3 for best display alignment.

4. Check/Adjust Geometry (R202)

a. Set:

```
VERTICAL MODE CH }
A TRIGGER SOURCE CH }
A TRIGGER LEVEL For a stable display
```

b. CHECK-Display for 0.1 division or less of bowing of the time markers across the graticule area from top to bottom.
c. ADJUST-Geometry (R202) for minimum bowing of the time markers across the graticule area (especially at the left and right vertical graticule lines).
d. INTERACTION-Y-Axis Alignment adjustment. Repeat Steps 3 and 4 for best display alignment.
e. Disconnect the test setup from the instrument.

5. Check/Adjust Z-Axis Compensation (C101 and C128)
 a. Set:

VERTICAL MODE	CH 1
A and B SEC/DIV	$0.05 \mu \mathrm{~s}$
A TRIGGER LEVEL	Fully clockwise

b. Set test oscilloscope controls as follows:

Volts/Div	0.2 V (with 10X probe)
A and B Sec/Div	$0.1 \mu \mathrm{~s}$
Ac-Gnd-Dc (both)	Dc
Trigger controls	As required for a stable display

c. Connect the 10 X probe from the test oscilloscope to TP127 and connect the probe ground clip to TP92 (GND 2).
d. Adjust the 2335 INTEN control for a 5 -division ($5-\mathrm{V}$) vertical display (on the test oscilloscope) of the unblanking gate.
e. ADJUST-Z-Axis Compensation (C101), using a lowcapacitance alignment tool, for the best square front corner on the unblanking pulse displayed on the test oscilloscope. Also adjust C 128 for the best flat top just after the front corner.
f. CHECK-The p-p aberration is less than $\pm 5 \%$ (0.25 division).
g. Disconnect the test equipment from the instrument.

VERTICAL

Equipment Required (see Table 4-1):
Test Oscilloscope with 10X Probe (Item 1)
Calibration Generator (Item 2)
Leveled Sine-Wave Generator (Item 3)
Two 50- Ω BNC Cables (Item 6)
Bnc-to-Probe-Tip Adapter (Item 7)
Dual-Input Coupler (Item 8)
10X Attenuator (Item 10)
5X Attenuator (Item 11)

2X Attenuator (Item 12)
Two 50- Ω BNC Terminations (Item 13)
Precision $50-\Omega$ BNC Cable (Item 14)
Low-Frequency Generator (Item 17)
Digital Voltmeter (Item 19)
Screwdriver (Item 21)
Low-Capacitance Alignment Tool (Item 23)
Bnc-Female-to-Coaxial-Cable-Connector Adapter (Item 24)

See ADJUSTMENT LOCATIONS 1 and ADJUSTMENT LOCATIONS 4 at the back of this
manual for test point and adjustment locations.

2335 CONTROL SETTINGS

LINE VOLTAGE	
SELECTOR	115 V
POWER	ON (button in)
CRT	
INTEN	As required for visible
	trace
FOCUS	Best focused display
Vertical (Both Channels)	
VERTICAL MODE	CH 1
POSITION	Midrange
VOLTS/DIV	5 m
VOLTS/DIV VAR	Calibrated detent
AC-GND-DC	DC
CH 2 INVERT	Normal (button out)
BW LIMIT	Full bandwidth
	(button out)

Trigger

```
COUPLING
LEVEL
SLOPE
SOURCE
Mode
TRIG HOLDOFF
(PUSH) VAR
```


AC

As required for stable display

+ (button out)
VERT MODE
AUTO

Off (in detent)

Sweep

HORIZ MODE	A
A and B SEC/DIV	1 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in calibrated detent
B DELAY TIME	
POSITION	Fully counterclockwise
X10 MAG	Off (button out)
POSITION	Midrange

1. Check Input Coupling Switches

a. Connect a $20-\mathrm{mV}$, standard-amplitude square-wave signal to the CH 1 OR X input connector via a $50-\Omega$ cable.
b. Position the bottom of the display to the center horizontal graticule line and set the CH 1 AC-GND-DC switch to GND.
c. CHECK-Trace is at the center horizontal graticule line with no vertical deflection.
d. Set the CH 1 AC-GND-DC switch to AC.
e. CHECK-Display is centered about the center horizontal graticule line.
f. Set VERTICAL MODE to CH 2 and move the test signal to the CH 2 OR Y input connector.

Adjustment Procedure-2335 Service

g. Position the bottom of the display to the center horizontal graticule line.
h. Set the $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to GND.
i. CHECK-Trace is at the center horizontal graticule line with no vertical deflection.
j. Disconnect the test equipment from the instrument.

2. Check ALT Mode Operation

a. Set:

A and B SEC/DIV
50 ms (knobs locked)
VERTICAL MODE
A TRIGGER LEVEL
ALT
Fully clockwise
b. Position CH 1 and CH 2 traces about 2 divisions apart.
c. CHECK-Sweeps alternate for all A SEC/DIV switch settings.

NOTE

At sweep speeds of 2 ms per division or faster, the trace alternations occur rapidly and cannot be observed.
d. Set HORIZ MODE to B and repeat part c for the B sweeps.

3. Check CHOP Mode Operation

a. Set:

```
A and B SEC/DIV 1 
VERTICAL MODE CHOP
AC-GND-DC (both) GND
A TRIGGER Mode AUTO
A TRIGGER COUPLING AC
A TRIGGER SOURCE VERTMODE
```

b. Position the CH 1 and CH 2 traces about 4 divisions apart and adjust the A TRIGGER LEVEL control for a stable display.
c. CHECK-Vertical switching transients are completely blanked between horizontal chopped segments for normal viewing intensity.
d. CHECK - Period of one cycle is 2.8 to $5.2 \mu \mathrm{~s}$ (approximately 4 horizontal divisions).
e. Rotate the A TRIGGER LEVEL control fully clockwise.
f. CHECK-Two traces are visible for all B SEC/DIV switch settings.
g. Set HORIZ MODE to A and repeat part f for the A sweeps.

4. Check AUTO Vertical Mode Operation

a. Set:

VERTICAL MODE
 A and B SEC/DIV
 AUTO (ALT and CHOP buttons in) 0.2 ms

b. Set test oscilloscope controls as follows:

Volts/Div	1 V (with 10X probe)
Time/Div	0.5 ms
Ac-Gnd-Dc	Dc
Trigger controls	As required for a stable
	display

c. Connect a 10 X probe from the test oscilloscope to TP61 (CH 1 1).
d. Verify that the display is a square-wave signal with a period of approximately 4.8 ms .
e. Set the A and B SEC/DIV controls to 0.5 ms .
f. CHECK—CH 1 display on the test oscilloscope becomes a square-wave signal with a period of approximately $4 \mu \mathrm{~s}$ (adjust the test oscilloscope Time/Div control as necessary to view the signal).
g. Disconnect the test equipment from the instrument.

5. Check BEAM FIND Operation

a. Push in and hold the BEAM FIND push button.
b. CHECK-Display remains entirely in the graticule area regardless of the settings of the Vertical and Hori-
zontal POSITION controls, with the X10 MAG push button both in and out.
c. CHECK-Trace intensity remains constant and visible regardless of the INTEN control setting.
d. Set VERTICAL MODE to CH 1 and center the CH 1 trace both vertically and horizontally while holding in the BEAM FIND push button.
e. Release the BEAM FIND button.
f. CHECK-Trace remains within the graticule area.

6. Check/Adjust CH 1 Attenuator Balance (R10)

a. Set:

CH 1 VOLTS/DIV
0.1

CH 1 AC-GND-DC
A and B SEC/DIV
DC
1 ms (knobs locked)
b. Position the trace to the center horizontal graticule line.
c. Set the CH 1 VOLTS/DIV control to 50 m .

NOTE

CH 1 Attenuator Balance (R10) is adjusted while the CH 1 VOLTS/DIV control is set to 0.1.
d. CHECK/ADJUST-CH 1 Attenuator Balance (R10) for no discernable trace shift from the center horizontal graticule line when the CH 1 VOLTS/DIV control is switched between 0.1 and 50 m .

7. Check/Adjust CH 1 VOLTS/DIV VAR Balance (R22) and UNCAL LED

a. Set:

A and B SEC/DIV	$\mathbf{1} \mathrm{ms}$
VOLTS/DIV (both)	10 m
CH 1 AC-GND-DC	GND

b. Position the trace to the center horizontal graticule line.
c. Rotate the CH 1 VOLTS/DIV VAR control clockwise out of its calibrated detent.
d. CHECK-UNCAL LED is illuminated.
e. CHECK/ADJUST-CH 1 Var Balance (R22) for no discernable trace shift when rotating the VOLTS/DIV VAR control from fully counterclockwise to fully clockwise.
f. Return the CH 1 VOLTS/DIV VAR control to its calibrated detent (fully counterclockwise).

8. Check/Adjust CH 2 Attenuator Balance (R74)

a. Set:

$$
\begin{array}{ll}
\text { CH } 2 \text { VOLTS/DIV } & 0.1 \\
\text { CH } 2 \text { AC-GND-DC } & \text { DC }
\end{array}
$$

b. Position the trace to the center horizontal graticule line.
c. Set the CH 2 VOLTS/DIV control to 50 m .

NOTE
CH 2 Attenuator Balance (R74) is adjusted while the CH 2 VOLTS/DIV control is set to 0.1.
d. CHECK/ADJUST-CH 2 Attenuator Balance (R74) for no discernable trace shift from the center horizontal graticule line when the CH 2 VOLTS/DIV control is switched between 0.1 and 50 m .

9. Check/Adjust CH 2 VOLTS/DIV VAR Balance (R83) and UNCAL LED

a. Set:

VERTICAL MODE	CH 2
VOLTS/DIV (both)	10 m
CH 2 AC-GND-DC	GND

b. Position the trace to the center horizontal graticule line.
c. Rotate the CH 2 VOLTS/DIV VAR control clockwise out of its calibrated detent.
d. CHECK-UNCAL LED is illuminated.
e. CHECK/ADJUST-CH 2 Var Balance (R83) for no discernable trace shift when rotating the CH 2 VOLTS/DIV VAR control from fully counterclockwise to fully clockwise.
f. Return the CH 2 VOLTS/DIV VAR control to its calibrated detent (fully counterclockwise).

10. Check/Adjust Vertical Output Gain (R44)

a. Connect the digital voltmeter leads between TP156 and TP176, set voltmeter scale to 200 mV and adjust the CH 2 Vertical POSITION control for a voltmeter indication of 0 V .
b. Adjust Vertical Balance (R18) to position the trace on the center horizontal graticule line.
c. Adjust the CH 2 Vertical POSITION control for a voltmeter indication of 150 mV .
d. ADJUST-Vertical Output Gain (R44) to position the trace 2 divisions above the center horizontal graticule line.

NOTE

If the trace does not reach exactly 2 full divisions above the center horizontal graticule line, set R44 to maximum or minimum to position the trace as closely as possible to 2 divisions above the center horizontal graticule line.
e. Disconnect the test equipment from the instrument.

11. Check/Adjust Vertical Balance (R18)

a. Set the CH 2 AC-GND-DC switch to GND.
b. Rotate the channel 2 POSITION control while alternately pressing in and releasing the CH 2 INVERT button until a point is reached where there is no trace movement.
c. CHECK/ADJUST—Vertical Balance (R18) to vertically position the trace within ± 0.4 divisions of the center horizontal graticule line.
d. Repeat parts b and c as necessary.
12. Check/Adjust CH 1 and CH 2 Vertical Gain (R47 and R114)
a. Set:
$\begin{array}{ll}\text { VOLTS/DIV (both) } & 5 \mathrm{~m} \\ \text { AC-GND-DC (both) } & \text { DC } \\ \text { CH } 2 \text { INVERT } & \text { Normal (button out) }\end{array}$
b. Connect a $20-\mathrm{mV}$, standard-amplitude square-wave signal to the CH 2 OR Y input connector via a $50-\Omega$ cable.
c. CHECK/ADJUST-CH 2 Vertical Gain (R114) for a display amplitude of 4 divisions $\pm 3 \%$ (3.88 to 4.12 divisions).
d. CHECK-Dc accuracies are within display limits at each CH 2 VOLTS/DIV switch setting and standardamplitude signal as listed in Table 5-3.
e. Set VERTICAL MODE to CH 1.
f. Move the input signal to the CH 1 OR X input connector.
g. CHECK/ADJUST-CH 1 Vertical Gain (R47) for display amplitude of 4 divisions $\pm 3 \%$ (3.88 to 4.12 divisions).
h. CHECK-Dc accuracies are within display limits at each CH 1 VOLTS/DIV switch setting and standardamplitude signal as listed in Table 5-3.
i. Set the standard-amplitude generator output for a $10-\mathrm{mV}$ signal.

Table 5-3
Vertical DC Accuracy Checks

VOLTS/DIV Switch Setting	Standard Amplitude Signal	Deflection for 3\% Accuracy (divisions)	Display Limits (divisions)
10 m	50 mV	5	4.85 to 5.15
20 m	0.1 V	5	4.85 to 5.15
50 m	0.2 V	4	3.88 to 4.12
0.1	0.5 V	5	4.85 to 5.15
0.2	1 V	5	4.85 to 5.15
0.5	2 V	4	3.88 to 4.12
1	5 V	5	4.85 to 5.15
2	10 V	5	4.85 to 5.15
5	20 V	4	3.88 to 4.12

13. Check CH 1 and CH 2 VOLTS/DIV VAR Range
 a. Set:
 VOLTS/DIV (both) $\quad 5 \mathrm{~m}$
 AC-GND-DC (both) DC

b. Rotate the CH 1 VOLTS/DIV VAR control fully clockwise.
c. CHECK-Display increases to 5 divisions or more in amplitude.
d. Move the test signal to the CH 2 OR X input connector and set VERTICAL MODE to CH 2.
e. Rotate the CH 2 VOLTS/DIV VAR control fully clockwise.
f. CHECK-Display increases to 5 divisions or more in amplitude.
g. Return both VAR controls to their calibrated detents.
h. Disconnect the test equipment from the instrument.

14. Check CH 1 and CH 2 Input Gate Current

a. Set both AC-GND-DC switches to GND.
b. CHECK-For 0.5 nA or less (0.1 division or less) vertical shift in display while alternating the CH 2 AC -GNDDC switch between AC and GND.
c. Set VERTICAL MODE to CH 1.
d. CHECK-For 0.5 nA or less (0.1 division or less) vertical shift in display while alternating the CH 1 AC-GNDDC switch between AC and GND.

15. Check ADD Mode Operation

a. Set:
VERTICAL MODE ADD

AC-GND-DC (both) DC
b. Connect a $10-\mathrm{mV}$, standard-amplitude square-wave signal to botn CH 1 ORX and CH 2 OR Y input connectors via a $50-\Omega$ cable and a dual-input coupler.
c. CHECK-Display amplitude is 4 divisions $\pm 3 \%$ (3.88 to 4.12 divisions).

16. Check Compression and Expansion

a. Set:

$$
\begin{array}{ll}
\text { CH } 2 \text { AC-GND-DC } & \text { GND } \\
\text { VERTICAL MODE } & \text { CH } 1
\end{array}
$$

b. Adjust the CH 1 VOLTS/DIV VAR control (if necessary) for an exact 2 -division vertical display centered within the graticule area.
c. Position the top of the display to the top graticule line.
d. CHECK-For display compression or expansion of 0.1 division or less.
e. Position the bottom of the display to the bottom graticule line.
f. CHECK-For display compression or expansion of 0.1 division or less.
g. Return the CH 1 VOLTS/DIV VAR control to its calibrated detent.
h. Disconnect the test setup from the instrument.
17. Check/Adjust CH 1 and CH 2 Low-Frequency Transient Response and Compensation (R66, R73, R31 and R92)
a. Set:

VERTICAL MODE	CHOP
AC-GND-DC (both)	DC
VOLTS/DIV (both)	5 m
A TRIGGER SOURCE	CH 1
A SEC/DIV	1 ms
A TRIGGER LEVEL	For a stable display

b. Connect a $1-\mathrm{kHz}$ signal from the square-wave generator's fast-rise, positive-going output via a precision $50-\Omega$ cable, a X10 attenuator, and a $50-\Omega$ termination to the CH 1 OR X input connector.
c. Adjust the generator output to obtain a 5-division vertical display.
d. Position the CH 2 trace on the center horizontal graticule line, center the CH 1 display, and adjust the A TRIGGER LEVEL control for a stable display.
e. CHECK—Display overshoot or rounding is within $\pm 3 \%$ (4.85 to 5.15 divisions) for each CH 1 VOLTS/DIV switch setting from 5 m to 0.2 and waveform flatness is within $\pm 2 \%$ (0.1 division) at all settings. Adjust the generator output and/or remove the attenuator as necessary to maintain a 5 -division vertical display throughout this step. If not within tolerance proceed to part f; if within tolerance skip to part j .
f. Set CH 1 and CH 2 VOLTS/DIV to 10 m and adjust the generator output for a 5 -division vertical display.
g. Repeat part d.
h. ADJUST-Low-frequency Compensation (R66 and R73) for no vertical deflection on the CH 2 trace.
i. ADJUST-Low-frequency Compensation (R31) for the best flat-top square wave on the CH 1 display.
j. Set generator output to minimum amplitude and move the test signal to the CH 2 OR Y input connector.
k. Set:

VOLTS/DIV (CH 2)

$$
5 \mathrm{~m}
$$

VERTICAL MODE
CH 2
A TRIGGER MODE
CH 2
A TRIGGER LEVEL
For a stable display
n. ADJUST-Low-frequency compensation (R92) for the best flat-top square wave on the CH 2 display.
o. Repeat all of Step 17 as necessary, then proceed to Step 18.

18. Check/Adjust CH 1 and CH 220 Pf Compensation (C1 and C62 on A10 Board)

a. Reduce generator output to minimum and reinstall the attenuator.
b. Set:

VERTICAL MODE	CH 2
VOLTS/DIV (both)	10 m
A TRIGGER SOURCE	VERT MODE
A TRIGGER LEVEL	For a stable display

c. Adjust generator output for a 5-division vertical display and set A TRIGGER LEVEL for a stable display.
d. Note shape of displayed waveform.
e. Set CH 2 VOLTS/DIV to .1 and readjust generator output for a 5 -division vertical display (remove attenuator if necessary).
f. CHECK—Displayed waveform shape matches that noted in part d. If so skip to part h, if not proceed to part g.
g. ADJUST-C62 for waveform shape to match the waveform noted in part d.
h. Set CH 2 VOLTS/DIV to .2 and set generator for a 5division display. Check that waveform shape matches that noted in part d. If not, repeat ail of Steps 17 and 18. (If still not correct a circuit malfunction is indicated).
i. Set generator for minimum output.
j. Move the test signal to the CH 1 or X input connector.
k. Set VERTICAL MODE to CH 1.
I. Repeat parts c through e for channel 1.
m. CHECK—Displayed waveform shape matches the waveform noted in part d for channel 1. If so, skip to Step 19, if not, proceed to part n.
n. ADJUST-C1 for waveform shape to match the waveform noted in part d for channel 1.
o. Repeat part h for channel 1.
19. Check/Adjust Vertical Output High-Frequency Compensation (R29, R32, C33, C36, R39 and C39) and CH 1 and CH 2 Preamplifier High-Frequency Compensation (R33, C33, C58, R95, and C95)
a. Set:

VERTICAL MODE	CH 2
VOLTS/DIV (both)	10 m
A TRIGGER SOURCE	VERT MODE
A SEC/DIV	$1 \mu \mathrm{~s}$
BW LIMIT	Full Bandwidth (button out)

b. Set generator for minimum output amplitude and connect a fast-rise, positive-going 100 kHz signal from the square-wave generator output via a precision $50-\Omega$ cable, a 10X attenuator and a $50-\Omega$ termination to the CH 2 OR Y input connector.
c. Adjust the generator output for a 5-division vertical signal display.
d. CHECK-Flat-top display aberrations are within $\pm 3 \%$ (4.85 to 5.15 divisions). See Figure 5-1 for a typical display.
e. ADJUST-Vertical Output Amplifier HF Compensation (R29, R32, and C33) for the best flat-top display (see Figure 5-1).
f. Set the A SEC/DIV switch to $2 \mu \mathrm{~s}$.
g. ADJUST-Vertical Output Amplifier HF Compensation (C36) for the best flat-top display (see Figure 5-1).
h. Set the A SEC/DIV switch to $0.5 \mu \mathrm{~s}$.
i. ADJUST-CH 2 Preamp HF Compensation (R95 and C95) and Vertical Output Amplifier HF Compensation (R39 and C39) for best front corner (see Figure 5-1).
j. Set VERTICAL MODE to CH 1 and move the test signal to the CH 1 OR X input connector.
k. ADJUST-CH 1 Preamp HF Compensation (R33, C33 and C58) for best front corner (see Figure 5-1).

note

C58 is located just to the right of Q57 (see ADJUSTMENT LOCATIONS 1 and Figure 9-6).
I. INTERACTION-lt may be necessary to compromise the Vertical Output Amplifier and CH 1 Preamp adjustments made in part k to obtain the best high-frequency match between CH 1 and CH 2.

Figure 5-1. Areas affected by high-frequency compensation adjustments.

20. Check CH 1 and CH 2 Transient Response

a. Set:

$$
\begin{array}{ll}
\text { VERTICAL MODE } & \mathrm{CH} 1 \\
\text { VOLTS/DIV (both) } & 5 \mathrm{~m}
\end{array}
$$

b. Set the generator output for a 5-division vertical display.
c. Vertically center the display using the CH 1 POSITION control.
d. CHECK—Flat-top waveform is within $\pm 3 \%$ (4.85 to 5.15 divisions).
e. Position the top of the display to the bottom horizontal graticule line.
f. CHECK_Flat-top waveform is within $\pm 5 \%$ (4.75 to 5.25 divisions).
g. Repeat parts c and d for each of the following CH 1 VOLTS/DIV switch settings; $10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}, 0.1$ and 0.2 . Adjust the generator output and select attenuators as necessary to maintain a 5 -division display at each VOLTS/DIV switch setting.
h. Set VERTICAL MODE to CH 2 and move the test signal to the CH 2 OR Y input connector.
i. Repeat parts b through g for CH 2.
j. Set:

VOLTS/DIV (both) 5 m
A TRIGGER SLOPE \quad-(button in)
k. Connect a 100 kHz fast-rise, negative-going squarewave signal from the generator via a precision $50-\Omega$ cable, a 10X attenuator and a $50-\Omega$ termination to the CH 2 OR Y input connector, and adjust the generator output for a 5 division vertical display.
I. Vertically center the display using the CH 2 POSITION control.
m . CHECK_Flat-bottom waveform is within $\pm 5 \%$ (4.75 to 5.25 divisions).
n. Position the bottom of the display to the top horizontal graticule line.
o. CHECK—Flat-bottom waveform is within $\pm 7 \%$ (4.65 to 5.35 divisions).
p. Set VERTICAL MODE to CH 1 and move the test signal to the CH 1 OR X input connector.

q. Repeat parts I through o for CH 1.

r. Disconnect the test equipment from the instrument.

21. Check Bandwidth

a. Set:

> VERTICAL MODE
> A SEC/DIV
> TRIGGER SLOPE

CH 1

0.2 ms

+ (button out)
b. Connect the leveled sine-wave generator referencesignal frequency (50 kHz) via a precision $50-\Omega$ cable, a 10 X attenuator, and a $50-\Omega$ termination to the CH 1 OR X input connector.
c. Adjust the generator output for a 5 -division vertical display of the generator reference-signal frequency.
d. Set the generator frequency to 100 MHz ; do not readjust the generator output amplitude.
e. CHECK-Display amplitude is 3.5 divisions or more.
f. Repeat parts c, d, and e of this step for the following positions of the CH 1 VOLTS/DIV switch: 5 m through 1.
g. Set VERTICAL MODE to CH 2 and move the test signal to the CH 2 OR Y input connector.
h. Repeat parts c, d, and e for the following positions of the CH 2 VOLTS/DIV switch: 5 m through 1.
i. Disconnect the test equipment from the instrument.

22. Check Trigger View Gain

a. Set:

$$
\begin{array}{ll}
\text { A TRIGGER SOURCE } & \text { EXT } \\
\text { A TRIGGER LEVEL } & \text { Midrange }
\end{array}
$$

b. Connect a $0.2-\mathrm{V}$ standard-amplitude signal to the A EXT input connector via a $50-\Omega$ cable. Use no termination.
c. Hold in the TRIG VIEW push button and use the A TRIGGER LEVEL control to vertically center the display.
d. CHECK-Displayed signal amplitude is 2 divisions $\pm 40 \%$ (1.2 divisions to 2.8 divisions) while holding in the TRIG VIEW push button.
e. Set the A TRIGGER SOURCE switch to EXT $\div 10$ and change the generator output to 2 V .
f. CHECK-Repeat parts c and d.
g. Disconnect the test equipment from the instrument.

23. Check Trigger View Centering

a. Set the A TRIGGER SOURCE switch to EXT.
b. Connect a $1-\mathrm{kHz}$, low-frequency sine-wave signal to the A EXT input connector via a $50-\Omega$ cable. Use no termination.
c. Hold in the TRIG VIEW push button and set the generator output to obtain a 4-division vertical display. Use the A TRIGGER LEVEL control to vertically center the display.
d. CHECK—Start of sweep is within ± 1 vertical division of the center horizontal graticule line.
e. Disconnect the test equipment from the instrument.

24. Check Trigger View Low-Frequency Compensation

a. Set:

A and B SEC/DIV	0.1 ms (knobs locked)
A TRIGGER SLOPE	+ (button out)
A TRIG COUPLING	DC

b. Connect a $1-\mathrm{kHz}$, high-amplitude square-wave signal to the A EXT input connector via a $50-\Omega$ cable, a 2 X attenuator, and a $50-\Omega$ termination.
c. Hold in the TRIG VIEW push button and set the generator output for a 4-division vertical display. Use the A TRIGGER LEVEL control to vertically center the display.
d. CHECK-Square-wave leading-edge rolloff or overshoot is $\pm 20 \%$ or less (3.2 to 4.8 divisions) while holding in the TRIG VIEW push button.
e. Set the A TRIGGER SOURCE switch to EXT $\div 10$.
f. CHECK-Repeat parts c and d.
g. Disconnect the test equipment from the instrument.

25. Check Trigger View High-Frequency Compensation

a. Set:

A TRIGGER SOURCE
EXT
A and B SEC/DIV
$0.2 \mu \mathrm{~s}$ (knobs locked)
b. Connect a $100-\mathrm{kHz}$ fast-rise, positive-going squarewave signal to the A EXT input connector via a $50-\Omega$ cable and a $50-\Omega$ termination.
c. Hold in the TRIG VIEW push button and adjust the generator output for a signal display of 4 vertical divisions. Use the A TRIGGER LEVEL control to vertically center the display.
d. CHECK-Square-wave front-corner overshoot or rolloff is $\pm 20 \%$ or less (3.2 to 4.8 divisions) while holding in the TRIG VIEW push button.
e. Disconnect the test equipment from the instrument.

26. Check Trigger View Delay

a. Set:

VERTICAL MODE	CH 2
A and B SEC/DIV	$0.05 \mu \mathrm{~s}$
X10 MAG	On (button in)
A TRIGGER COUPLING	AC
A TRIGGER SLOPE	+ (button out)
A TRIGGER LEVEL	Midrange
A TRIGGER SOURCE	EXT
CH 2 VOLTS/DIV	0.1

b. Connect a $100-\mathrm{kHz}$ fast-rise, positive-going squarewave signal via a $50-\Omega$ cable, a $50-\Omega$ termination and a dualinput coupler to the CH 2 OR Y input connector and the A EXT connector.
c. Use the CH 2 POSITION control to vertically center the trace on the graticule and use the Horizontal POSITION control to center the rising portion of the signal on the center vertical graticule line.
d. Hold in the TRIG VIEW push button and adjust the generator output for a 5 -division vertical display of the Trigger View signal. Vertically center the display using the A TRIGGER LEVEL control.
e. Release the TRIG VIEW push button and adjust the CH 2 VOLTS/DIV and VAR controls to match the amplitude of the displayed signal to the amplitude of the Trigger View signal. Vertically center the CH 2 display usirig the CH 2 POSITION control.
f. CHECK-Time difference between the CH 2 and Trigger View signals (by alternately pressing in the TRIG VIEW push button and releasing it) is $3 \mathrm{~ns} \pm 2 \mathrm{~ns}$ (0.2 to 1 horizontal graticule division).
g. Disconnect the test equipment from the instrument.

27. Check Channel Isolation

a. Set:

CH 1 VOLTS/DIV	10 m
CH 2 VOLTS/DIV	0.5
AC-GND-DC (both)	DC

b. Connect a $25-\mathrm{MHz}$ leveled sine-wave signal via a $50-\Omega$ cable and a $50-\Omega$ termination to the CH 2 OR Y input.
c. Adjust the generator amplitude for an 8-division vertical display.
d. Set:

VERTICAL MODE	CH 1
A TRIGGER SOURCE	CH 2
A TRIGGER LEVEL	As required for stable display

e. CHECK-CH 1 display amplitude is 4 divisions or less.
f. Move the test signal to the CH 1 OR X input connector.
g. Set:

CH 1 VOLTS/DIV	0.5
CH 2 VOLTS/DIV	10 m
VERTICAL MODE	CH 2
A TRIGGER SOURCE	CH 1
A TRIGGER LEVEL	As required for stable display

h. CHECK-CH 2 display amplitude is 4 divisions or less.
i. Disconnect the test equipment from the instrument.

28. Check Common-Mode Rejection Ratio

a. Set:

VOLTS/DIV (both)	10 m
A TRIGGER SOURCE	VERT MODE
CH 2 INVERT	Inverted (button in)

b. Connect a $20-\mathrm{MHz}$ leveled sine-wave signal via a precision $50-\Omega$ cable, a $10 \times$ attenuator, a $50-\Omega$ termination, and a dual-input coupler to the CH 1 OR X and the CH 2 OR Y input connectors.
c. Set the generator amplitude for a 6 -division vertical display.
d. Set VERTICAL MODE to ADD.
e. CHECK-ADD display amplitude is 0.6 division or less.
f. Press the CH 2 INVERT button to release it, then disconnect the test equipment from the instrument.

29. Check Bandwidth Limit Operation

a. Set:

BW LIMIT
VERTICAL MODE

Limited bandwidth (button in) CH 1
b. Connect the leveled sine-wave generator's referencefrequency signal via a precision $50-\Omega$ cable and a $50-\Omega$ termination to the CH 1 OR X input connector.
c. Set the generator output amplitude for a 6-division vertical display.
d. Increase the generator output frequency until the display decreases to 4.2 vertical divisions.
e. CHECK—Generator output frequency is set to $20 \mathrm{mHz}, \pm 5 \mathrm{MHz}$.
f. Disconnect the test equipment from the instrument.

TRIGGERING

Equipment Required (see Table 4-1):
Leveled Sine-Wave Generator (Item 3)
$50-\Omega$ Signal Pickoff (Item 5)
Two $50-\Omega$ BNC Cables (Item 6)
Dual-Input Coupler (Item 8)
10X Attenuator (Item 10)
Two $50-\Omega$ BNC Terminations (Item 13)

Precision 50- Ω BNC Cable (Item 14)
GR-to-BNC-Male Adapter (Item 15)
GR-to-BNC-Female Adapter (Item 16)
Low-Frequency Generator (Item 17)
Screwdriver (Item 21)
Low-Capacitance Alignment Tool (Item 23)

See
ADJUSTMENT LOCATIONS 2 at the back of this manual for test point and adjustment locations.

2335 CONTROL SETTINGS

LINE VOLTAGE
SELECTOR 115 V
POWER ON (button in)

CRT	
INTEN	As required for visible display Best focused display
FOCUS	
Vertical (Both Channels)	
VERTICAL MODE	CH 1
POSITION	Midrange
VOLTS/DIV	10 m
VOLTS/DIV VAR	Calibrated detent
AC-GND-DC	DC
INVERT	Normal (button out)
BW LIMIT	Full bandwidth
	(button out)

Trigger

COUPLING

LEVEL
SLOPE
SOURCE
A TRIGGER
TRIG HOLDOFF
(PUSH) VAR

Sweep

HORIZ MODE
A and B SEC/DIV
TIME (PULL) VAR
B DELAY TIME
POSITION
X10 MAG
POSITION

AC
As required for stable display

+ (button out)
CH 1
AUTO
Off (in detent)

A

20μ s (knobs locked)
Pulled out and in calibrated detent

Fully counterclockwise Off (button out) Midrange

1. Adjust A Trigger Slope Offset (R82) and Hysteresis (R106)

a. Connect a leveled sine-wave generator via a precision $50-\Omega$ cable and a $50-\Omega$ termination to the CH 1 OR X input connector.
b. Set the leveled sine-wave generator for a $50-\mathrm{kHz}$ 4-division display, then switch the CH 1 VOLTS/DIV control to 0.2 .
c. Rotate Hysteresis adjustment R106 fully counterclockwise, then adjust the A TRIGGER LEVEL control for a stable display.
d. Set the CH 1 VOLTS/DIV switch to 0.5 .
e. ADJUST--Hysteresis (R106) clockwise just until any setting of the A TRIGGER LEVEL control will not obtain a stable display of a 0.08 -division vertical signal.
f. Set the CH 1 VOLTS/DIV switch to 0.2 and check that adjusting the A TRIGGER LEVEL control will obtain a stable display on a 0.2 -division vertical signal.
g. Repeat parts e through funtil a stable display can be obtained with a 0.2 -division signal, but not with a 0.08 -division signal.
h. Set the CH 1 VOLTS/DIV switch to 10 m and set the A SEC/DIV switch to $10 \mu \mathrm{~s}$.
i. ADJUST-A Trigger Slope Offset (R82) so that the display triggers at the same point on the waveform for both the + (plus) and - (minus) SLOPE switch positions.
j. Repeat parts e through i until no improvement is noted.

2. Adjust Vert Mode DC Level (R29)

a. Set the A TRIGGER SOURCE switch to VERT MODE.
b. Obtain a stable display using the A TRIGGER LEVEL control.
c. Set the A TRIGGER COUPLING switch to DC and the A TRIGGER Mode to AUTO.
d. Center the display vertically, using the CH 1 POSITION control.
e. ADJUST-Vert Mode DC Level (R29) for a stable triggered display which starts at the same position on the waveform as in part b.
f. Disconnect the test equipment from the instrument.

3. Check Low-Frequency and High-Frequency Internal Triggering

a. Set the A and B SEC/DIV switches to 5 ms .
b. Connect the low-frequency sine-wave generator via a $50-\Omega$ cable and a dual-input coupler to the CH 1 OR X and the CH 2 OR Y input connectors.
c. Set the generator output for a $60-\mathrm{Hz}$ 6-division display, then set both the CH 1 and CH 2 VOLTS/DIV switches to 0.2 to obtain a 0.3 -division vertical display.
d. CHECK-Stable triggering can be obtained, and the TRIG'D LED is illuminated by adjusting the A TRIGGER LEVEL control with each of the switch combinations listed in Table 5-4, except for LF RE.J coupling.
e. CHECK-Stable display cannot be obtained in LF REJ coupling with a $60-\mathrm{Hz}$ input signal.
f. Disconnect the generator from the instrument.
g. Connect a $20-\mathrm{MHz}$ leveled sine-wave signal via a precision $50-\Omega$ cable, a $50-\Omega$ termination, and a dual-input coupler to the CH 1 OR X and the CH 2 OR Y input connectors.

Table 5-4
Switch Combinations for Internal Triggering Checks

TRIGGER COUPLING	TRIGGER SOURCE	TRIGGER SLOPE
AC	$\mathrm{CH} 2$ $\text { CH } 1$ VERT MODE	
DC	$\begin{aligned} & \text { VERT MODE } \\ & \text { CH } 1 \\ & \text { CH } 2 \end{aligned}$	
$\begin{aligned} & \text { LF REJ } \\ & (60 \mathrm{~Hz}) \end{aligned}$	CH 2 CH 1 VERT MODE	
$\begin{aligned} & \text { HF REJ } \\ & (20 \mathrm{MHz} \text { and } \\ & 100 \mathrm{MHz}) \end{aligned}$	$\begin{aligned} & \text { VERT MODE } \\ & \text { CH } 1 \\ & \mathrm{CH} 2 \end{aligned}$	

h. Set the A and B SEC/DIV switches to $0.05 \mu \mathrm{~s}$ and set the CH 1 VOLTS/DIV switch to 10 mV . Adjust the generator for a 6 -division vertical display.
i. Set the CH 1 VOLTS/DIV switch to 0.2 to obtain a 0.3 -division vertical display.
j. CHECK-Stable triggering can be obtained, and the TRIG'D LED is illuminated by adjusting the A TRIGGER LEVEL control with each of the switch combinations listed in Table 5-4, except for HF REJ coupling.
k. CHECK-Stable display cannot be obtained in HF REJ coupling with a $20-\mathrm{MHz}$ input signal.
I. Press in the $\times 10$ MAG push button and set the generator output for a $100-\mathrm{MHz}, 1.1$-division display.
m. CHECK-Repeat part j .
n. CHECK-Stable display cannot be obtained in HF REJ coupling with a $100-\mathrm{MHz}$ input signal.
o. Disconnect the test equipment from the instrument.

4. Check/Adjust A External Trigger DC Level (R41)

a. Set:

HORIZ MODE A
VOLTS/DIV (both) $\quad 10 \mathrm{~m}$
AC-GND-DC (both) DC
A TRIGGER SOURCE
A TRIGGER COUPLING
VERT MODE
VERTICAL MODE
AC
A and B SEC/DIV
X10 MAG
I. CHECK-Stable display cannot be obtained in HF REJ coupling for either + or - SLOPE.
m. Set the A TRIGGER SOURCE switch to EXT.
n. Reinstall the 10X attenuator (removed in part h) into the test setup.
o. CHECK-Repeat parts k and I .
p. Set:

VERTICAL MODE	CH 2
VOLTS/DIV (both)	50 m
A TRIGGER SOURCE	CH 2

q. Move the test signal from the A EXT input connector to the CH 2 OR Y input connector and set the generator output frequency to 50 kHz .
r. Adjust the leveled sine-wave generator output for a $50-\mathrm{kHz} 3$-division vertical display. Then set the generator output frequency to 100 MHz . Do not readjust the generator output amplitude.
s. Move the test signal from the CH 2 OR Y input connector back to the A EXT input connector.
t. Set:

VERTICAL MODE	CH 1
A TRIGGER SOURCE	EXT
X10 MAG	On (button in)

u. CHECK-Repeat parts k and I .
v. Set the A TRIGGER COUPLING switch to $A C$ and adjust the A TRIGGER LEVEL control for a stable display.
w. CHECK-For less than 0.2 division of jitter at the waveform rising edge.
x. Set A TRIGGER SOURCE to EXT $\div 10$.
y. Remove the 10 X attenuator from the test setup.
z. CHECK-Repeat parts k and I .

5. Check NORM Triggering Mode Operation

a. Set the A TRIGGER SOURCE switch to VERT MODE.
b. Adjust the A TRIGGER LEVEL control for a stable display.
c. Set A TRIGGER Mode to NORM.
d. CHECK-For a visible, stable display.
e. Set the CH 1 AC-GND-DC switch to GND.
f. CHECK-For no visible display.
6. CHECK SGL SWP Mode Operation a. Set:

CH 1 AC-GND-DC
DC
X10 MAG
A and B SEC/DIV
Off (button out) $20 \mu \mathrm{~S}$
b. Adjust the leveled sine-wave generator output for a $50 \mathrm{kHz}, 2$-division vertical display.
c. Adjust the A TRIGGER LEVEL control until the display just triggers.
d. Set the CH 1 AC-GND-DC switch to GND.
e. Press in the SGL SWP push button. The READY LED should illuminate and remain on.
f. Set the $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC .
g. CHECK-READY LED goes out, and a single sweep occurs.

NOTE

The INTEN control may require adjustment to observe the single-sweep trace.
h. Press in the SGL SWP push button several times.
i. CHECK-Single-sweep trace occurs, and READY LED illuminates briefly every time the SGL SWP push button is pressed in.
j. Disconnect the test equipment from the instrument.

7. Check Line Triggers

a. Set:

A TRIGGER Mode	AUTO
CH 1 VOLTS/DIV	5
A TRIGGER SOURCE	LINE
A TRIGGER SLOPE	+ (button out)
A SEC/DIV	5 ms
CH 1 AC-GND-DC	DC

b. Connect a 10 X probe to the CH 1 OR X input connector and connect the probe tip to a line-frequency source.
c. Set the CH 1 VOLTS/DIV switch to obtain a display within the graticule area.
d. CHECK-A stable display can be obtained by adjusting the A TRIGGER LEVEL control, with the A TRIGGER SLOPE switch set to either + or -.
e. Disconnect the 10X probe from the line frequency and from the instrument.

8. Check Trigger Level Range

a. Set:

CH 1 VOLTS/DIV	0.5
A TRIGGER SLOPE	+ (button out)
A TRIGGER COUPLING	DC
A TRIGGER SOURCE	EXT

b. Connect a leveled sine-wave reference-frequency signal via a precision $50-\Omega$ cable, a $50-\Omega$ termination, and a dual-input coupler to the CH 1 OR X and the A EXT input connectors.
c. Set the generator output for a 4-division vertical display centered on the graticule.
d. CHECK-Stable display can be obtained on the top (positive part) of the waveform.
e. CHECK-For a free-running display when the A TRIGGER LEVEL control is rotated fully clockwise.
f. Set the A TRIGGER SLOPE switch to - (button in).
g. CHECK-Stable display can be obtained on the bottom (negative part) of the waveform.
h. CHECK-For a free-running display when the A TRIGGER LEVEL control is rotated fully counterclockwise.
i. Disconnect the test equipment from the instrument.

HORIZONTAL

Equipment Required (see Table 4-1):
Test Oscilloscope with 10X Probe (Item 1)
Calibration Generator (Item 2)
Leveled Sine-Wave Generator (Item 3)
Time-Mark Generator (Item 4)
$50-\Omega$ BNC Cable (Item 6)
Dual-Input Coupler (Item 8)

$50-\Omega$ BNC Termination (Item 13)
Precision 50- Ω BNC Cable (Item 14)
Low-Frequency Generator (Item 17)
Screwdriver (Item 21)
Low-Capacitance Alignment Tool (Item 23)

See ADJUSTMENT LOCATIONS 3 at the back of this manual for test point and adjustment locations.

2335 CONTROL SETTINGS

LINE VOLTAGE SELECTOR

115 V
POWER
ON (button in)

Sweep

HORIZ MODE	A INTEN
A and B SEC/DIV	1 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in calibrated detent
B DELAY TIME	
POSITION	Fully counterclockwise
X10 MAG	Off (button out)
POSITION	Midrange

1. Check A INTEN Operation

a. Vertically center the trace using the CH 1 POSITION control.
b. Use the Horizontal POSITION control to align the start of the trace with the first (extreme left) vertical graticule line.
c. CHECK-Intensified portion of the trace decreases one graticule division as the B DELAY TIME POSITION dial is rotated to each whole number (from 1.00 to 10.00).
2. Check B DELAY TIME POSITION Linearity
a. Set:

HORIZ MODE	B
B SEC/DIV	$10 \mu \mathrm{~s}$
B DELAY TIME	
POSITION	1.00

b. Connect 1 -ms time markers from the time-mark generator via a $50-\Omega$ cable and a $50-\Omega$ termination to the CH 1 OR X input connector.
c. Rotate the B DELAY TIME POSITION control to set the rising edge of the nearest time marker to the center vertical graticule line. Note the dial setting.
d. Set the B DELAY TIME POSIT ${ }^{\circ}$ ION dial to 2.00 and align the rising edge of the nearest time marker to the center vertical graticule line. Note the dial setting.
e. CHECK-Difference in dial settings between parts c and d is 1.000 ± 0.023 (0.977 to 1.023), with ambient temperature within the range of $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. If the ambient temperature is outside this range, but between $-15^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$, the difference should not exceed 1.00 ± 0.03 (0.97 to 1.03).
f. Rotate the B DELAY TIME POSITION control to set every adjacent time marker to coincide with the center vertical graticule line and note the dial reading for each.
g. CHECK-Difference of dial reading between any two adjacent time markers is within the tolerances given in part e.

3. Adjust A Sweep Start and Sweep Stop (R74 and R6)

a. Set:

HORIZ MODE B DELAY TIME POSITION

A INTEN 1.00
b. ADJUST-Sweep Start (R74) so the intensified zone begins at the second time marker.
c. Set the HORIZ MODE to B.
d. ADJUST--Sweep Start (R74) so the rising edge of the time marker is aligned with the beginning of the sweep.
e. Set the HORIZ MODE to A INTEN and rotate the B DELAY TIME POSITION dial to 9.00 .
f. ADJUST-Sweep Stop (R6) so the intensified zone begins at the 10th time marker.
g. Set the HORIZ MODE to B.
h. ADJUST-Sweep Stop (R6) so the rising edge of the time marker is aligned with the beginning of the sweep.
i. INTERACTION-Between Sweep Start and Sweep Stop. Rotate the B DELAY TIME POSITION control between 1.00 and 9.00 and repeat the adjustments in parts d and h (R74 at 1.00 and $R 6$ at 9.00) until no further improvement is noted.

4. Check Delay Jitter

a. Set:

B DELAY TIME	
POSITION	9.00
A SEC/DIV	1 ms
B SEC/DIV	$0.5 \mu \mathrm{~s}$

b. Select 1-ms time markers from the time-mark generator.
c. Verify that the A TRIGGER SLOPE switch is set to + (button out). Slightly readjust the B DELAY TIME POSITION control to position a time marker within the graticule area.
d. CHECK-Jitter on the leading edge of the time marker does not exceed 1 division. Disregard slow drift.
e. Set the B DELAY TIME POSITION dial to 1.00 .
f. CHECK-Repeat parts c and d.

5. Check/Adjust X1 and X10 Horizontal Gain (R126 and R127)

a. Set the HORIZ MODE to A.
b. Use the Horizontal POSITION control to align the first time marker with the first vertical graticule line (extreme left edge).
c. CHECK-For 1 time marker per division across the full 10 divisions (within 0.2 division at the 11th time marker).
d. ADJUST-X1 Gain (R126) for exactly 1 time marker per division.
e. Press in the $\times 10$ MAG push button and select 0.1 -ms time markers from the time-mark generator.
f. Use the Horizontal POSITION to align the nearest time marker with the first vertical graticule line.
g. CHECK-For 1 time marker per division across the full 10 divisions (within 0.3 division at the 11th time marker).
h. ADJUST-X10 Gain (R127) for exactly 1 time marker per division.

6. Check/Adjust X10 MAG Registration (R134)

a. Position the time-marker baseline to the bottom horizontal graticule line using the CH 1 POSITION control.
b. Select $1-\mathrm{ms}$ time markers and use the Horizontal POSITION control to position the displayed time marker to the center vertical graticule line.
c. Release the X10 MAG push button.
d. CHECK-Time marker remains centered within ± 0.2 division of the center vertical graticule line.
e. Use the Horizontal POSITION control to position the trace while switching between $\times 10$ MAG on and X10 MAG off (do not press the button until it latches, only until the display is magnified). Position the trace horizontally until no shift is observed between the center unmagnified time marker and the magnified time marker.
f. ADJUST-Mag Registration (R134) to align the center unmagnified time marker with the center vertical graticule line.

7. Check/Adjust B Time (R10)

a. Set:

X 10 MAG
TRIGGER MODE
A and B SEC/DIV
CH 1 AC-GND-DC
On (button in)
AUTO
1 ms (knobs locked) GND
b. Use the CH 1 POSITION control to vertically center the trace and use the Horizontal POSITION control to align the start of the A Sweep with the center vertical graticule line.
c. Set the HORIZ MODE to B.
d. CHECK-The B Sweep starts at the center vertical graticule line.
e. ADJUST-B Time (R10) to move the start of the B Sweep to the center vertical graticule line.

8. Check A and B Timing Accuracy and Linearity

a. Set:

A and B SEC/DIV	$0.05 \mu \mathrm{~s}$ (knobs locked)
HORIZ MODE	A
CH 1 AC-GND-DC	DC
X10 MAG	Off (button out)

b. Select 50 -ns time markers from the time-mark generator.
c. Adjust the A TRIGGER LEVEL control for a stable display and vertically center the display using the CH 1 POSITION control.
d. Use the Horizontal POSITION control to align the first time-marker with the first vertical graticule line.
e. CHECK-The SEC/DIV timing accuracy is within 2% $(0.2$ division at the 11 th time marker) and linearity is within 5% (0.1 division between any 2 -division portion of the graticule).
f. CHECK—Using the SEC/DIV switch and time-mark generator settings given in Table 5-5, verify timing accuracy and linearity for the SEC/DIV switch settings up to $2 \mu \mathrm{~s}$. Readjust the A TRIGGER LEVEL and Horizontal POSITION control as necessary. If the accuracy and linearity checks up to $2 \mu \mathrm{~s}$ per division meet the performance requirements, continue with the remaining SEC/DIV switch settings. If they do not, perform the adjustment procedure of Step 9, then, perform Step 8 again to verify the adjustments.

NOTE

For the A SEC/DIV settings from 50 ms to 0.5 s per division, watch the time-marker tips only at the 1 st and 11th graticule lines while adjusting the Horizontal POSITION control and checking the timing accuracy.
g. Press in the $\times 10$ MAG push button.

Table 5-5
Settings for Timing Accuracy Checks

A and B	Time-Mark Generator Output	
Switch Setting	Normal	X10 MAG
$0.05 \mu \mathrm{~s}$	50 ns	5 ns
$0.1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	10 ns
$0.2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	20 ns
$0.5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	50 ns
$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$
$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$
$10 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$20 \mu s$	$20 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$
0.1 ms	0.1 ms	$10 \mu \mathrm{~s}$
0.2 ms	0.2 ms	$20 \mu \mathrm{~s}$
0.5 ms	0.5 ms	$50 \mu \mathrm{~s}$
1 ms	1 ms	0.1 ms
2 ms	2 ms	0.2 ms
5 ms	5 ms	0.5 ms
$10 \mathrm{~ms}^{\text {a }}$	10 ms	1 ms
$20 \mathrm{~ms}^{\text {a }}$	20 ms	2 ms
$50 \mathrm{~ms}^{\text {a }}$	50 ms	5 ms
	eep Only	
$0.1 \mathrm{~s}^{\text {a }}$	0.1 s	10 ms
$0.2 \mathrm{~s}^{\text {a }}$	0.2 s	20 ms
$0.5 \mathrm{~s}^{\text {a }}$	0.5 s	50 ms

${ }^{\text {a }}$ For SEC/DIV switch settings slower than 5 ms set the A TRIGGER Mode to NORM.
h. CHECK-The A Magnified timing accuracy and linearity using the SEC/DIV switch settings and the timemark generator settings given in Table 5-5 under the " $\times 10$ MAG" column. At each setting combination, timing must be accurate within 3% (0.3 division at the 11 th time marker). When checking accuracy, exclude the first and last 40 ns of the sweep. Linearity must be within 5\% (0.1 division) over any 2 -division portion of the graticule. When checking linearity, exclude the first- and last-displayed divisions for the A and B SEC/DIV switch positions of $0.05 \mu \mathrm{~s}$ and $0.1 \mu \mathrm{~s}$.
i. Set:

HORIZ MODE	B
B SEC/DIV	$0.05 \mu \mathrm{~s}$
A SEC/DIV	$0.1 \mu \mathrm{~s}$
X10 MAG	Off (button out)

j. Select 50 -ns time markers from the time-mark generator and adjust the A TRIGGER LEVEL control (if necessary) for a stable display.
k. CHECK-Repeat the checks of parts e and for the B Sweep.
I. Press in the $\times 10$ MAG push button.
m. CHECK-Repeat the checks of part h for the B Magnified timing.
n . If the accuracy and linearity checks of this step meet the performance requirements, skip to Step 10. If they do not, continue procedure with Step 9.

9. Adjust the A and B Timing Accuracy and Linearity (C84, C22, C161, and C187)

a. Set:

HORIZ MODE	A
A SEC/DIV	$1 \mu \mathrm{~s}$
B SEC/DIV	$0.05 \mu \mathrm{~s}$
X10 MAG	Off (button out)

b. Select $1-\mu \mathrm{s}$ time markers from the time-mark generator and use the Horizontal POSITION control to align the first time marker with the first vertical graticule line.
c. ADJUST-A Sweep High-Speed Timing (C84) to obtain 1 time marker per division across the graticule area.
d. Set HORIZ MODE to A INTEN and rotate the B DELAY TIME POSITION control clockwise to position the intensified zone on the second time marker.
e. Set HORIZ MODE to B.
f. Using the B DELAY TIME POSITION control, position the time marker to the center vertical graticule line and note the dial reading.
g. Rotate the B DELAY TIME POSITION dial to read 8.00 plus the reading noted in part f. (For example, if the dial reading in part f is 0.78 , rotate the B DELAY TIME POSITION dial to 8.78.)
h. ADJUST-A Sweep High-Speed Timing (C84) to align the displayed time marker with the center vertical graticule line.
i. Set HORIZ MODE to A INTEN and repeat parts d through h as necessary until no further improvement is noted.
j. Set the HORIZ MODE to B, set the B SEC/DIV switch to $0.2 \mu \mathrm{~s}$, and select $0.2-\mu \mathrm{s}$ time markers from the time-marker generator.
k. ADJUST-B Sweep High-Speed Timing (C22) for one time marker per division.

1. Set:

A SEC/DIV	$0.05 \mu \mathrm{~s}$
HORIZ MODE	A
VOLTS/DIV (CH 1)	0.1
X10 MAG	On (button in)

m . Select $10-\mathrm{ns}$ time markers from the time-mark generator.

NOTE

In the next part, keep the adjustment screws for C161 and C187 as close to the same length as possible.
n. ADJUST--5-ns Timing (C161 and C187 alternately) for one time marker every two divisions over the center 10 divisions of the magnified sweep.
o. Repeat Steps 8 and 9 as necessary until all timing ranges are within tolerance.

10. Check Delay Time Accuracy

a. Set:

$$
\begin{array}{ll}
\text { A SEC/DIV } & 0.2 \mu \mathrm{~s} \\
\text { B SEC/DIV } & 0.05 \mu \mathrm{~s}
\end{array}
$$

b. Select the $0.1-\mu \mathrm{s}$ time markers from the time-mark generator.
c. Set the B DELAY TIME POSITION dial to 1.00 . Adjust the Horizontal POSITION control so that the top of one displayed time marker crosses the center vertical graticule line. If the top of the time marker at the beginning of the sweep is not visible, use the second time marker.
d. Without changing the Horizontal POSITION control setting, set the B DELAY TIME POSITION dial to 9.00 . Slightly readjust the B DELAY TIME POSITION control to align the top of the displayed time marker with the center vertical graticule line.
e. CHECK-The B DELAY TIME POSITION dial setting is 9.00 ± 0.08 (8.92 to 9.08).
f. CHECK-Repeat parts c through e for each of the settings listed in Table 5-6.

Table 5-6
Settings for Delay Time Accuracy Checks

A SEC/DIV Switch Setting	B SEC/DIV Switch Setting	Time-Mark Generator Output
$0.2 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$
$0.5 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$
$1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
$2 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	
$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$ $5 \mu \mathrm{~s}$
$10 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
$20 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$
0.1 ms	$10 \mu \mathrm{~s}$	0.1 ms
0.2 ms	$10 \mu \mathrm{~s}$	0.1 ms
0.5 ms	$50 \mu \mathrm{~s}$	0.5 ms
1 ms	0.1 ms	1 ms
2 ms	0.1 ms	1 ms
5 ms	0.5 ms	5 ms
10 ms	1 ms	10 ms
20 ms	1 ms	10 ms
50 ms	5 ms	50 ms
$0.1 \mathrm{~s}^{\mathrm{a}}$	10 ms	0.1 s
$0.2 \mathrm{~s}^{\mathrm{a}}$	10 ms	0.1 s
$0.5 \mathrm{~s}^{\mathrm{a}}$	50 ms	0.5 s

[^8]
11. Check A and B Sweep Length

a. Set:

A and B SEC/DIV 1 ms (knobs locked)
TRIGGER SOURCE VERTMODE B DELAY TIME
POSITION
Fully counterclockwise
b. Select 1-ms time markers from the time-mark generator.
c. Use the Horizontal POSITION control to position the second time marker to the first vertical graticule line.
d. CHECK-Horizontal trace extends at least 0.5 division, but not more than 1.5 divisions, past the 11th time marker. Use the Horizontal POSITION control to position the trace farther to the left if necessary.
e. Set:

A SEC/DIV	2 ms
B SEC/DIV	1 ms
HORIZ MODE	B

f. Use the B DELAY TIME POSITION control to align the nearest time marker with the first vertical graticule line.
g. CHECK-Repeat part d for the B Sweep.

12. Check A SEC/DIV VAR Range

a. Set:

HORIZ MODE
A and B SEC/DIV
TIME (PULL) VAR

A

2 ms (knobs locked)
Pulled out and in calibrated detent
b. Select $5-\mathrm{ms}$ time markers from the time-mark generator.
c. Use the Horizontal POSITION control to align the first time marker with the first vertical graticule line.
d. CHECK-At least one time marker per division can be obtained by rotating the TIME (PULL) VAR control counterclockwise.
e. Return the TIME (PULL) VAR control to its calibrated detent.

13. Check A and B Sweep Horizontal POSITION

 Rangea. Set the A and B SEC/DIV switches to 1 ms and rotate the Horizontal POSITION control fully counterclockwise.
b. CHECK-Sweep ends to the left of the center vertical graticule line.
c. Rotate the Horizontal POSITION control fully clockwise.
d. CHECK-Sweep begins to the right of the center vertical graticule line.
e. Set:

HORIZ MODE
B
Horizontal POSITION
Fully counterclockwise
f. CHECK-Repeat parts b through d for the B Sweep.
g. Press in the $\times 10$ MAG push button.
h. Rotate the Horizontal POSITION control counterclockwise to position a time marker to the second vertical graticule line. If you go past with the first time marker, continue counterclockwise to the next.
i. Gently rotate the Horizontal POSITION control clockwise until the coarse position potentiometer is engaged and stop. Note the trace starting point on the graticule.
j. CHECK - Trace begins 4 to 9 divisions to the right of the second vertical graticule line.

14. Check AUTO Recovery

a. Set:

A and B SEC/DIV	1 ms (knobs locked)
HORIZ MODE	A
Horizontal POSITION	Midrange
A TRIGGER Mode	AUTO
X10 MAG	Off (button out)

b. Select 0.1 -s time markers from the time-mark generator and adjust the A TRIGGER LEVEL control for a stable display.
c. Select 0.5-s time markers.
d. CHECK-Display cannot be triggered (free runs).
e. Disconnect the test equipment from the instrument.

15. Check/Adjust X-Y Gain (R148)

a. Set:

A and B SEC/DIV
VERTICAL MODE
VOLTS/DIV (both)
CH 1 AC-GND-DC
CH 2 AC-GND-DC HORIZ MODE
$\times 10 \mathrm{MAG}$

1 ms (knobs locked)
$X-Y$ (both CH 1 and CH 2 buttons in)
10 m
DC
GND
A
Off (button out)
b. Connect a $50-\mathrm{mV}$ standard-amplitude signal from the calibration generator to the CH 1 OR X input connector via a $50-\Omega$ cable.
c. CHECK-Spacing between the two dots is 5 divisions ± 0.25 division (4.75 to 5.25 divisions).
d. ADJUST-X-Y Gain (R148) for a 5-division horizontal spacing between the dots.
e. Disconnect the test equipment from the instrument.

16. Check X-Y Phasing and Bandwidth

a. Connect a $50-\mathrm{kHz}$ leveled sine-wave signal via a precision $50-\Omega$ cable, a $50-\Omega$ termination, and a dual-input coupler to the CH 1 OR X and the CH 2 OR Y input connectors.
b. Set the generator output amplitude to obtain a 6 -division horizontal display.
c. Adjust the generator output frequency to 2 MHz ; do not change the generator output amplitude control setting.
d. CHECK-For 4.2 divisions or more horizontal deflection at 2 MHz .
e. Disconnect the leveled sine-wave generator from the test setup and connect a low-frequency sine-wave generator. Set the generator frequency to 100 Hz , both VOLTS/DIV switches to 0.2 , and adjust the output amplitude for 6 divisions of horizontal deflection.
f. Set the CH 2 AC-GND-DC switch to DC.
g. Vertically center the display using the CH 2 POSITION control.
h. Change the generator output frequency to 200 kHz .
i. CHECK-For a horizontal ellipse opening of 0.3 divisions or less.
j. Disconnect the test equipment from the instrument.

17. Check A Trigger Holdoff

a. Connect the test oscilloscope 10X probe tip to TP55 and connect the probe ground lead to TP194.
b. Set test oscilloscope controls initially as follows:

Volts/Div	2 V
Sec/Div	$1 \mu \mathrm{~s}$
Trig Mode	Norm

c. Set VERT MODE to CH 1 and A TRIGGER SOURCE to EXT.
d. CHECK-Trigger holdoff time corresponds approximately to the times listed in Table 5-7 for each range of A SEC/DIV switch settings. Trigger holdoff is defined as the $+2-\mathrm{V}$ level of the sweep waveform after recovery but before it starts a negative-going ramp. Set test oscilloscope $\mathrm{Sec} /$ Div control as required to make the time measurements.

Table 5-7
A Trigger Holdoff Time

A SEC/DIV Switch Settings	Approximate Holdoff Time
$0.05 \mu \mathrm{~s}$ to $0.2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
$0.5 \mu \mathrm{~s}$ to $2 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$
$5 \mu \mathrm{~s}$ to $20 \mu \mathrm{~s}$	$13 \mu \mathrm{~s}$
$50 \mu \mathrm{~s}$ to 0.2 ms	$175 \mu \mathrm{~s}$
0.5 ms to 2 ms	1.3 ms
5 ms to 20 ms	8 ms
50 ms to 0.5 s	50 ms

e. Set A SEC/DIV to .5 ms and rotate VAR TRIG HOLDOFF fully counterclockwise.
f. CHECK—That holdoff time increases by a factor of at least 2.5.

EXTERNAL Z-AXIS AND CALIBRATOR

Equipment Required (see Table 4-1):

Calibration Generator (Item 2) Leveled Sine-Wave Generator (Item 3) Two 50- Ω BNC Cables (Item 6) BNC T-Connector (Item 9)

Two 50- Ω BNC Terminations (Item 13)
Digital Voltmeter (Item 19)
Shorting Strap (Item 22)

2335 CONTROL SETTINGS

LINE VOLTAGE
SELECTOR
POWER

CRT
INTEN

FOCUS

115 V
ON (button in)

As required for visible trace
Best focused display

Vertical (Both Channels)

VERTICAL MODE
POSITION
VOLTS/DIV
VOLTS/DIV VAR
AC-GND-DC
CH 2 INVERT BW LIMIT

Trigger

COUPLING
LEVEL

SLOPE
SOURCE
Mode
TRIG HOLDOFF (PUSH) VAR

CH 1

Midrange
2
Calibrated detent
DC
Normal (button out)
Full bandwidth (button out)

Sweep	
HORIZ MODE	A
A and B SEC/DIV	2 ms (knobs locked)
TIME (PULL) VAR	Pulled out and in calibrated detent
B DELAY TIME	Fully counterclockwise
POSITION	Off (button out)
X10 MAG	Midrange
POSITION	

1. Check External Z-Axis Operation

a. Connect a $5-\mathrm{V}$ standard-amplitude square-wave signal to the CH 1 OR X input connector and the EXT Z-AXIS input connector (located on the rear panel) via a $50-\Omega$ T-connector and two $50-\Omega$ cables.
b. CHECK-For noticeable intensity modulation of the trace when the INTEN control is set for normal-viewing brightness. Adjust the TIME (PULL) VAR control, if necessary, to observe the modulation. Return the TIME (PULL) VAR control to the calibrated detent.
c. Disconnect the test setup.
d. Set the A SEC/DIV switch to $0.05 \mu \mathrm{~s}$.
e. Connect a $5-\mathrm{V}, 20-\mathrm{MHz}$ leveled sine-wave signal to the CH 1 OR X input connector and the EXT Z-AXIS input connector via a $50-\Omega$ T-connector, two $50-\Omega$ cables, and two $50-\Omega$ terminations.
f. CHECK -Repeat part b.
g. Disconnect the test equipment from the instrument.

2. Check AMPL CAL Operation

a. Set:

CH 1 VOLTS/DIV A and B SEC/DIV
 10 m 1 ms (knobs locked)

b. Connect the 10X probe (supplied with the 2335) to the CH 1 OR X input connector. Remove the probe tip and insert the probe into the AMPL CAL connector.
c. CHECK-For a 2 -division vertical display of the AMPL CAL square-wave signal with a period of $1 \mathrm{~ms} \pm 25 \%$ (0.75 to 1.25 ms).
d. Connect the digital voltmeter LO lead to chassis ground and connect the HI lead to the AMPL CAL connector center pin.
e. Connect a shorting strap between TP10 and TP12.
f. CHECK-AMPL CAL output voltage is $200 \mathrm{mV} \pm 1 \%$ (198 to 202 mV).
g. Disconnect all test equipment from the instrument.

MAINTENANCE

This section of the manual contains information for conducting preventive maintenance, troubleshooting, and corrective maintenance on the 2335 Oscilloscope.

STATIC-SENSITIVE COMPONENTS

The following precautions are applicable when performing any maintenance involving internal access to the instrument.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by their bodies, never by their leads.

Table 6-1
Relative Susceptibility to
Static-Discharge Damage

Semiconductor Classes	Relative Susceptibility Levels
MOS or CMOS microcircuits or discretes, or linear microcircuits with MOS inputs	
ECL	1
Schottky signal diodes	2
Schottky TTL	3
High-frequency bipolar transistors	5
JFET	6
Linear microcircuits	7
Low-power Schottky TTL	8
TTL	9

[^9]| $1=100$ to 500 V | $4=500 \mathrm{~V}$ | $7=400$ to 1000 V (est) |
| :--- | :--- | :--- |
| $2=200$ to 500 V | $5=400$ to 600 V | $8=900 \mathrm{~V}$ |
| $3=250 \mathrm{~V}$ | $6=600$ to 800 V | $9=1200 \mathrm{~V}$ |

7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work-surface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only approved antistatic, vacuum-type desoldering tools for component removal.

PREVENTIVE MAINTENANCE

INTRODUCTION

Preventive maintenance consists of cleaning, visual inspection, lubrication, and checking instrument performance. When accomplished regularly, it may prevent instrument malfunction and enhance instrument reliability. The severity of the environment in which the instrument is used determines the required frequency of maintenance. An appropriate time to accomplish preventive maintenance is just before instrument adjustment.

GENERAL CARE

The cabinet minimizes accumulation of dust inside the instrument and should normally be in place when operating the 2335 . The lid provides both dust and damage protection for the front panel and crt face, and it should be closed whenever the instrument is stored or is being transported.

INSPECTION AND CLEANING

The 2335 should be visually inspected and cleaned as often as operating conditions require. Accumulation of dirt in the instrument can cause overheating and component breakdown. Dirt on components acts as an insulating blanket, preventing efficient heat dissipation. It also provides an electrical conduction path that could result in instrument failure, especially under high-humidity conditions.

Avoid the use of chemical cleaning agents which might damage the plastics used in this instrument. Use a nonresidue-type cleaner, preferably isopropyl alcohol, denatured ethyl alcohol, or a solution of 1\% mild detergent with 99% water. Before using any other type of cleaner, consult your Tektronix Service Center or representative.

Exterior

INSPECTION. Inspect the external portions of the instrument for damage, wear, and missing parts; use Table 6-2 as a guide. Instruments that appear to have been dropped or otherwise abused should be checked thoroughly to verify correct operation and performance. Deficiencies found that could cause personal injury or could lead to further damage to the instrument should be repaired immediately.

To prevent getting moisture inside the instrument during external cleaning, use only enough liquid to dampen the cloth or applicator.

CLEANING. Loose dust on the outside of the instrument can be removed with a soft cloth or small soft-bristle brush. The brush is particularly useful for dislodging dirt on and around the controls and connectors. Dirt that remains can be removed with a soft cloth dampened in a mild detergent-and-water solution. Do not use abrasive cleaners.

Two plastic light filters, one blue and one clear, are provided with the oscilloscope. Clean the light filters and the crt face with a soft lint-free cloth dampened with either denatured alcohol or a mild detergent-and-water solution.

Interior

To gain access to internal portions of the instrument for inspection and cleaning, refer to the "Removal and Replacement Instructions" in the "Corrective Maintenance" part of this section.

INSPECTION. Inspect the internal portions of the 2335 for damage and wear, using Table 6-3 as a guide. Deficiencies found should be repaired immediately. The

Table 6-2
External Inspection Checklist

Item	Inspect For	Repair Action
Cabinet, Lid, Front Panel	Cracks, scratches, deformations, and damaged hardware or gaskets.	Touch up paint scratches and replace defective parts.
Front-panel Controls	Missing, damaged, or loose knobs, buttons, and controls.	Repair or replace missing or defective items.
Connectors	Broken shells, cracked insulation, and deformed contacts. Dirt in connectors.	Replace defective parts. Clean or wash out dirt.
Carrying Handle	Correct operation.	Replace defective parts.
Accessories	Missing items or parts of items, bent pins, broken or frayed cables, and damaged	Replace damaged or missing items, frayed cables, and defective parts.

Table 6-3
Internal Inspection Checklist

Item	Inspect For	Repair Action
Circuit Boards	Loose, broken, or corroded solder connections. Burned circuit boards. Burned, broken, or cracked circuit-run plating.	Clean solder corrosion with an eraser and flush with isopropyl alcohol. Resolder defective connections. Determine cause of burned items and repair. Repair defective circuit runs.
Resistors	Burned, cracked, broken, or blistered.	Replace defective resistors. Check for cause of burned component and repair as necessary.
Solder Connections	Cold solder or rosin joints.	Resolder joint and clean with isopropyl alcohol.

corrective procedure for most visible defects is obvious; however, particular care must be taken if heat-damaged components are found. Overheating usually indicates other trouble in the instrument; therefore, it is important that the cause of overheating be corrected to prevent recurrence of the damage.

If any electrical component is replaced, conduct a Performance Check for the affected circuit and for other closely related circuits (see Section 4). If repair or replacement work is done on any of the power supplies, conduct a complete Performance Check and, if so indicated, an instrument readjustment (see Sections 4 and 5).

To prevent damage from electrical arcing, ensure that circuit boards and components are dry before applying power to the instrument.

CLEANING. To clean the interior, blow off dust with dry, low-pressure air (approximately 9 psi). Remove any remaining dust with a soft brush or a cloth dampened with a solution of mild detergent and water. A cotton-tipped applicator is useful for cleaning in narrow spaces and on circuit boards.

If these methods do not remove all the dust or dirt, the instrument may be spray washed using a solution of 5% mild detergent and 95% water as follows:

1. Gain access to the parts to be cleaned by removing easily accessible shields and panels.
2. Spray wash dirty parts with the detergent-and-water solution; then use clean water to thoroughly rinse them.
3. Dry all parts with low-pressure air.

NOTE

Refer to "Switch Contacts" (next paragraph) prior to performing step 4.
4. Clean switch contacts with Isopropanol or Fotocol and wait for 60 seconds. Then dry with low-pressure air.
5. Dry all components and assemblies in an oven or compartment using low-temperature $\left(125^{\circ} \mathrm{F}\right.$ to $\left.150^{\circ} \mathrm{F}\right)$ circulating air.
6. Lubricate the circuit-board-mounted switch contacts for the A and B SEC/DIV switches and the TRIGGER COUPLING and SOURCE switches. Use only a light film of No-Noise lubricant.

SWITCH CONTACTS. Most of the switches in the 2335 are circuit-board mounted with cam-actuated contacts. Care must be exercised to preserve the high-frequency characteristics of these switches. Switch maintenance is seldom necessary, but if it is required, use the following cleaning methods and observe the stated precautions.
The A and B SECIDIV and the TRIGGER
COUPLING and SOURCE switches are factory
lubricated with No-Noise spray cleaner. If dis-
assembly, repair, or cleaning of these switches is
necessary, do not overlubricate them before
reassembly. Only lubricate the contact surfaces
on the circuit board with a very light film of No-
Noise cleaner lor one with similar characteristics).

1. Clean switch contacts only with isopropyl alcohol or denatured ethyl alcohol, especially in the area of the vertical attenuator boards.
2. Apply the cleaning solution with a camel-hair brush. Do not use cotton-tipped applicators, since they tend to snag on contacts and could possibly cause damage. Strands of cotton caught by the contacts may cause intermittent electrical contact.

Some film deposits may not be completely removed by the preceding procedure. For these cases, use an Eberhard Fabre "Pink Pearl" eraser to gently remove remaining film from switch contacts. Do not use typewriter or fiberglass erasers, since they are too abrasive and will remove excessive amounts of the gold plating. After removing film with an eraser, clean the contacts again with alcohol and a soft brush to assure removal of all contamination.

LUBRICATION

The fan motor and most of the potentiometers used in the 2335 are permanently sealed and generally do not require periodic lubrication. The switches used in the 2335, both cam- and lever-type, are installed with proper lubrication applied where necessary and will rarely require any. additional lubrication. A regular periodic lubrication program for the instrument is not recommended.

SEMICONDUCTOR CHECKS

Periodic checks of the transistors and other semiconductors in the oscilloscope are not recommended. The best check of semiconductor performance is actual operation in the instrument.

PERIODIC READJUSTMENT

To ensure accurate measurements, check the performance of this instrument after every 2000 hours of operation, or if used infrequently, once each year. In addition, replacement of components may necessitate readjustment of the affected circuits.

Complete Performance Check and Adjustment instructions are given in Sections 4 and 5. The Performance Check Procedure can also be helpful in localizing certain trouble in the instrument. In some cases, minor troubles may be revealed or corrected by readjustment. If only a partial adjustment is performed, see the interaction chart, Table 5-1, for possible interactions with circuits not adjusted.

TROUBLESHOOTING

INTRODUCTION

Preventive maintenance performed on a regular basis should reveal most potential problems before an instrument malfunctions. However, should troubleshooting be required, the following information is provided to facilitate location of a fault. In addition, the material presented in the "Theory of Operation" and "Diagrams" sections of this manual may be helpful while troubleshooting.

TROUBLESHOOTING AIDS

Schematic Diagrams

Complete schematic diagrams are located on tabbed foldout pages in the "Diagrams" section. The portions of circuitry that are mounted on each circuit board are enclosed within heavy black lines. Also within the black lines, near either the top or the bottom edge, are the assembly number and name of the circuit board.

Component numbers and electrical values of components in this instrument are shown on the schematic diagrams. Refer to the first page of the "Diagrams" section for definitions of the reference designators and symbols used to identify components. Important voltages and waveform reference numbers (enclosed in hexagonal-shaped boxes) are also shown on each diagram. Waveform illustrations are located adjacent to their respective schematic diagram, and the physical location of each waveform test point is shown on the appropriate circuit board illustration.

Circuit Board Illustrations

Circuit board illustrations (showing the physical location of each component) are provided for use in conjunction with each schematic diagram. Each board illustration is found in the "Diagrams" section on the back of a foldout page, preceding the schematic diagram(s) to which it relates. If more than one schematic diagram is associated with a particular circuit board, the board illustration is located on a left-hand page that precedes the diagram with which the board is first associated.

Waveform test-point locations are also identified on the circuit board illustration by hexagonal-outlined numbers that correspond to the waveform numbers appearing on both the schematic diagram and the waveform illustration.

Circuit Board Locations

The location of a circuit board within the instrument is shown on the foldout page along with the circuit board illustration.

Circuit Board Interconnection Diagram

A circuit board interconnection diagram is provided in the "Diagrams" section to aid in tracing a signal path or power source between boards. The entire oscilloscope is illustrated, with plug and jack numbers shown along with associated pin numbers. The off-board components are also shown, and the schematic diagram numbers on which components are located are identified.

Power Distribution Diagram

A Power Distribution diagram is also provided in the "Diagrams" section to aid in troubleshooting power-supply problems. This diagram shows service jumpers used to remove power from the various circuit boards. Excessive loading on a power supply by a circuit board can be isolated to the faulty board by disconnecting appropriate service jumpers.

Grid Coordinate System

Each schematic diagram and circuit board illustration has a grid border along its left and top edges. A table located adjacent to each schematic diagram lists the grid coordinates of each component shown on that diagram. To aid in physically locating a component on the circuit board, this table also lists the grid coordinates of each component on the circuit board illustration.

Adjacent to each circuit board illustration is an alphanumeric listing of every component mounted on that board. A second column in this listing identifies the schematic diagram in which each component can be found. These component-locator tables are especially useful when more than one schematic diagram is associated with a particular circuit board.

Troubleshooting Charts

The troubleshooting charts contained in the "Diagrams" section are to be used as an aid in locating malfunctioning circuitry. To use the charts, begin with the Troubleshooting Index. This index chart will help identify a particular problem area and will direct you to other appropriate charts for further troubleshooing of that area.

Note that some troubleshooting-procedure boxes on each chart contain numbers along their lower edges. These numbers identify the applicable schematic diagram(s) and circuit board illustration(s) to be used when performing the action specified in the box (see Troubleshooting Index chart, General Notes). The diagram and illustration identified at the start of a troubleshooting path remain applicable to downstream steps in the path until a different diagram or illustration is specified.

Both General and Specific notes may be called out in the troubleshooting-procedure boxes. These notes are located on the inner panels of the foldout pages. Specific Notes contain procedures or additional information to be used in performing the particular troubleshooting step called for in that box. General Notes contain information that pertains to the overall troubleshooting procedure.

Some malfunctions, especially those involving multiple simultaneous failures, may require more elaborate troubleshooting approaches with references to circuit descriptions in the "Theory of Operation" section of this manual.

Component Color Coding

Information regarding color codes and markings of resistors and capacitors is located in the color-coding illustration (Figure 9-1) at the beginning of the "Diagrams" section.

RESISTOR COLOR CODE. Resistors used in this instrument are carbon-film, composition, or precision metal-film types. They are color coded with the EIA color code; however, some metal-film resistors may have the value printed on the body. The color code is interpreted starting with the stripe that is nearest to one end of the resistor. Composition resistors have four stripes; these represent two significant figures, a multiplier, and a tolerance value. Metal-film resistors have five stripes which represent three significant figures, a multiplier, and a tolerance value.

CAPACITOR MARKINGS. Capacitance values of common disc capacitors and small electrolytics are marked on the side of the capacitor body. White ceramic capacitors are color coded in picofarads, using a modified EIA code.

Dipped tantalum capacitors are color coded in microfarads. The color dot indicates both the positive lead and the voltage rating. Since these capacitors are easily destroyed by reversed or excessive voltage, be careful to observe the polarity and voltage rating.

DIODE COLOR CODE. The cathode end of each glassencased diode is indicated by either a stripe, a series of stripes, or a dot. For most silicon or germanium diodes marked with a series of stripes, the color combination of the stripes identifies three digits of the Tektronix Part Number, using the resistor color-code system (e.g., a diode having either a pink or a blue stripe at the cathode end, then a brown-gray-green stripe combination, indicates Tektronix Part Number 152-0185-00). The cathode and anode ends of a metal-encased diode can be identified by the diode symbol marked on its body.

Semiconductor Lead Configurations

Figure 9-2 in the "Diagrams" section shows the lead configurations for semiconductor devices used in the instrument. These lead configurations and case styles are typical of those available at completion of the design of the instrument. Vendor changes and performance improvement changes may result in changes in case styles or lead
configurations. If the device in question does not appear to match the configuration in Figure 9-2, examine the associated circuitry or consult a semiconductor manufacturer's data sheet.

Multipin Connectors

Multipin connector orientation is indicated by two triangles: one on the holder and one on the circuit board. Slot numbers are usually molded into the holder. When a connection is made to circuit-board pins, ensure that the triangle on the holder and the triangle on the circuit board are aligned with each other (see Figure 6-1).

Figure 6-1. Multipin connector orientation.

TROUBLESHOOTING EQUIPMENT

The equipment listed in Table 6-4 and in Table 4-1, or equivalent equipment, may be useful when troubleshooting this instrument.

TROUBLESHOOTING TECHNIQUES

The following procedure is arranged in an order that enables checking simple trouble possibilities before requiring more extensive troubleshooting. The first four checks ensure proper control settings, connections, operation, and adjustment. If the trouble is not located by these checks, the remaining steps will aid in locating the defective component. When the defective component is located, replace it, using the appropriate replacement procedure given under "Corrective Maintenance" in this section.

Before using any test equipment to make measurements on static-sensitive, current-sensitive, or voltagesensitive components or assemblies, ensure that any voltage or current supplied by the test equipment does not exceed the limits of the component to be tested.

1. Check Control Settings

Incorrect control settings can give a false indication of instrument malfunction. If there is any question about the correct function or operation of any control, refer to either the "Operating Instructions" (Section 2) in this manual or to the 2335 Operators Manual.

2. Check Associated Equipment

Before proceeding, ensure that any equipment used with the 2335 is operating correctly. Verify that input signals are properly connected and that the interconnecting cables are not defective. Check the power input source voltages.

3. Visual Check

Perform a visual inspection. This check may reveal broken connections or wires, damaged components, semiconductors not firmly mounted, damaged circuit boards, or other clues.

4. Check Instrument Performance and Adjustment

Check the performance of either those circuits where trouble appears to exist or the entire instrument. The apparent trouble may be the result of misadjustment. Complete performance check and adjustment instructions are given in Sections 4 and 5 of this manual.

5. Isolate Trouble to a Circuit

To isolate problems to a particular area, use the trouble symptom to help identify the circuit in which the trouble is located. Refer to the troubleshooting charts in the "Diagrams" section as an aid in locating a faulty circuit.

When trouble symptoms appear in more than one circuit, first check the power supplies; then check the affected circuits by taking voltage and waveform readings. Check first for the correct output voltage of each individual supply. These voltages are measured between the powersupply test points and ground (see schematic diagrams 9 and 10 and associated circuit board illustrations in the "Diagrams" section). If power-supply voltages and ripple are within the listed ranges, the supply can be assumed to

Table 6-4
Suggested Troubleshooting Equipment

Equipment	Minimum Specification	Usage	Examples
1. Test Oscilloscope with 10X Voltage Probe	Frequency response: dc to 100 MHz . Deflection factor: 50 mV to $50 \mathrm{~V} / \mathrm{div}$. A $10 \mathrm{X}, 10-\mathrm{M} \Omega$ probe should be used to reduce circuit loading.	Check operating waveforms.	TEKTRONIX 465B Oscilloscope with included P6105 Probes.
2. Signal Generator	Repetition rate: 250 kHz to 100 MHz with 50 kHz reference.	Check bandwidth.	TEKTRONIX SG 503 Signal Generator. ${ }^{\text {a }}$
3. Calibration Generator	Rise time: 1 ns or less. Output amplitude: 0 to 10 V .	Check rise time and gain.	TEKTRONIX PG 506 Calibration Generator. ${ }^{\text {a }}$
4. Digital Multimeter	Voltmeter: input impedance, $10 \mathrm{M} \Omega$; range, 0 to 200 V dc; voltage accuracy, within 0.15%; display, $41 / 2$ digits. Ohmmeter: 0 to $20 \mathrm{M} \Omega$. Test probes should be insulated to prevent accidental shorting.	Measure voltages and resistances.	TEKTRONIX DM 501A Digital Multimeter. ${ }^{\text {a }}$
5. Variable Autotransformer	Variable ac output from 0 to 140 V, 1.2 A. Equipped with 3 -wire power cord, plug, and receptacle.	Vary input line voltage when troubleshooting power supply.	General Radio W8MT3VM or W10MT3W Metered Variac Autotransformer.
6. Semiconductor Tester	Dynamic-type tester. Measure reverse breakdown voltages up to at least 400 V .	Test semiconductors.	TEKTRONIX 576 Curve Tracer.

${ }^{\text {a }}$ Requires a TM 500-Series power module.
be working correctly. If they are outside the range, the supply may be either misadjusted or operating incorrectly.

If the trouble has been isolated to a power supply, follow the troubleshooting chart for that supply. The Low-Voltage Power Supply levels are interdependent. All the low-voltage supplies depend on the $+40-\mathrm{V}$ supply for a reference. If more than one of the low-voltage supplies appears defective, repair them in the following order: $+40 \mathrm{~V},+10 \mathrm{~V},+5 \mathrm{~V},-10 \mathrm{~V},-5 \mathrm{~V}$, then +102 V . To adjust the $+40-\mathrm{V}$ Power Supply, refer to the "Adjustment Procedure" (Section 5).

A defective component elsewhere in the instrument can create the appearance of a power-supply problem and may also affect the operation of other circuits.

6. Check Circuit Board Interconnections

After the trouble has been isolated to a particular circuit, again check for loose or broken connections, improperly seated semiconductors, and heat-damaged components.

7. Check Voltages and Waveforms

Often the defective component can be located by checking the appropriate voltage or waveform in the circuit. Typical voltages are listed on the schematic diagrams. Waveforms are shown adjacent to the diagrams, and waveform test points are indicated on the schematic and circuit board illustrations by a hexagonal-outlined number.

NOTE

Voltages and waveforms given on the schematic diagrams are not absolute and may vary slightly between instruments. To establish operating conditions similar to those used to obtain these readings, see the voltage and waveform setup conditions in the "Diagrams" section for the preliminary equipment setup. Note the recommended test equipment, front-panel control settings, voltage and waveform conditions, and cable-connection instructions. The oscilloscope control settings required to obtain the given waveforms and voltages are located adjacent to the waveform diagrams. Changes to the control settings from the preliminary setup, other than those given, are usually not required.

8. Check Individual Components

The following procedures describe methods of checking individual components. Two-lead components that are soldered in place are most accurately checked by first disconnecting one end from the circuit board. This isolates the measurement from the effects of surrounding circuitry. See Figure 9-1 for value identification or Figure 9-2 for semiconductor lead configuration.

WARNING

To avoid electric shock, always disconnect the instrument from the power input source before removing or replacing components.

CAUTION

When checking semiconductors, observe the staticsensitivity precautions located at the beginning of this section.

TRANSISTORS. A good check of transistor operation is actual performance under operating conditions. A transistor can most effectively be checked by substituting a known good component. However, be sure that circuit conditions are not such that a replacement transistor might also be damaged. If substitute transistors are not available, use a dynamic tester. Static-type testers are not recommended, since they do not check operation under simulated operating conditions.

When troubleshooting transistors in the circuit with a voltmeter, measure both the emitter-to-base and emitter-to-collector voltages to determine whether they are consistant with normal circuit voltages. Voltages across a transistor may vary with the type of device and its circuit function.

Some of these voltages are predictable. The emitter-to-base voltage for a conducting silicon transistor will normally range from 0.6 to 0.8 V , and the emitter-tobase voltage for a conducting germanium transistor ranges from 0.2 to 0.4 V . The emitter-to-collector voltage for a saturated transistor is about 0.2 V . Because these values are small, the best way to check them is by connecting a sensitive voltmeter across the junction rather than comparing two voltages taken with respect to ground. If the former method is used, both leads of the voltmeter must be isolated from ground.

If values less than these are obtained, either the device is shorted or no current is flowing in the external circuit. If values exceed the emitter-to-base values given, either the junction is reverse biased or the device is defective. Voltages exceeding those given for typical emitter-to-collector values could indicate either a nonsaturated device operating normally or a defective (open-circuited) transistor. If the device is conducting, voltage will be developed across the resistors in series with it; if it is open, no voltage will be developed across the resistors in series with it, unless current is being supplied by a parallel path.

$$
\begin{aligned}
& \text { When checking emitter-to-base junctions, do not use } \\
& \text { an ohmmeter range that has a high internal current. } \\
& \text { High current can damage the transistor. Reverse } \\
& \text { biasing the emitter-to-base junction with a high } \\
& \text { current may degrade the transistor's current-transfer } \\
& \text { ratio (Beta). }
\end{aligned}
$$

A transistor emitter-to-base junction also can be checked for an open or shorted condition by measuring the resistance between terminals with an ohmmeter set to a range having a low internal source current, such as the $R \times 1 \mathrm{k} \Omega$ range. The junction resistance should be very high in one direction and very low when the meter leads are reversed.

When troubleshooting a field-eftect transistor, the voltage across its elements can be checked in the same manner as previously described for other transistors. However, remember that in the normal depletion mode of operation, the gate-to-source junction is reverse biased; in the enhanced mode, the junction is forward biased.

INTEGRATED CIRCUITS. An integrated circuit (IC) can be checked with a voltmeter, test oscilloscope, or by direct substitution. A good understanding of circuit operation is essential to troubleshooting a circuit having an IC. Use care when checking voltages and waveforms around the IC so that adjacent leads are not shorted
together. An IC test clip provides a convenient means of clipping a test probe to an IC.

CAUTION

When checking a diode, do not use an ohmmeter scale that has a high internal current. High current can damage a diode. Checks on diodes can be performed in much the same manner as on transistor emitter-to-base junctions. Do not check tunnel diodes or back diodes with an ohmmeter; use a dynamic tester, such as the TEKTRONIX 576 Curve Tracer.

DIODES. A diode can be checked for either an open or a shorted condition by measuring the resistance between terminals with an ohmmeter set to a range having a low internal source current, such as the $R \times 1 \mathrm{k} \Omega$ range. The diode resistance should be very high in one direction and very low when the meter leads are reversed.

Silicon diodes should have 0.6 to 0.8 V across their junctions when conducting. Higher readings indicate that they are either reverse biased or defective, depending on polarity.

RESISTORS. Check resistors with an ohmmeter. Refer to the "Replaceable Electrical Parts" list for the tolerances of resistors used in this instrument. A resistor normally does not require replacement unless its measured value varies widely from its specified value and tolerance.

INDUCTORS. Check for open inductors by checking continuity with an ohmmeter. Shorted or partially shorted inductors can usually be found by checking the waveform response when high-frequency signals are passed through the circuit.

CAPACITORS. A leaky or shorted capacitor can best be detected by checking resistance with an ohmmeter set to one of the highest ranges. Do not exceed the voltage rating of the capacitor. The resistance reading should be high after the capacitor is charged to the output voltage of the ohmmeter. An open capacitor can be detected with a capacitance meter or by checking whether the capacitor passes ac signals.

ATTENUATORS. The thick-film attenuators are best checked by substitution. If only one channel of the 2335 is not operating properly and there is reason to believe the attenuator is defective, replace the suspected attenuator with the attenuator from the other channel and recheck
instrument operation. If proper operation results, either order a new attenuator or replace the defective contact set or hybrid circuit in the malfunctioning attenuator as described in the "Removal and Replacement Instructions" of this section.

Improper contact pressure on a contact pad can either cause or contribute to attenuator switch failure. Contact pressure can be determined by visually inspecting cam-to-contact-arm height and contact-arm shape. Sometimes a previously defective switch contact will operate satisfactorily after it is installed on either a new or freshly cleaned hybrid circuit board. Make visual inspections of switch contacts by rotating the switch shaft and observing all contacts in both their open and closed positions. Also check that the contacts are correctly aligned with each other. Refer to Figure 6-2 and Figure 6-3.

When a contact is open, its lobe should ride on the cam. A gap means either a defective contact arm or excessive cam clearance. Contact-to-pad gaps should be even. Variations may indicate defective contacts or actuator problems.

As a contact closes, contact should be made while the contact lobe is still on the cam ramp (before the logic lobe is over the contact lobe). Excessive cam clearance or a defective contact arm can cause improper contact closure. All contact fingers on any arm should touch the pads at the same time. If they do not, either the contact arm or the fingers are defective.

When contacts are closed, their fingers should be centered squarely on their respective pads. If they are not, either the contact arms or fingers are defective. If the cam does not supply sufficient pressure on the arm to produce good finger-to-pad contact, an intermittent connection can result. This condition can be produced by either a defective contact arm or actuator problems.

9. Repair and Adjust the Circuit

If any defective parts are located, follow the replacement procedures given under "Corrective Maintenance" in this section. After any electrical component has been replaced, the performance for that particular circuit should be checked, as well as the performance of other closely related circuits. Since the power supplies affect all circuits, performance of the entire instrument should be checked if work has been done in the power supplies or if the power transformer has been replaced. Readjustment of the affected circuitry may be necessary. Refer to the "Performance Check" and "Adjustment Procedure" (Sections 4 and 5) and to Table 5-1 (Adjustment Interactions).

Figure 6-2. Attenuator contact pressure check.

Figure 6-3. Attenuator contact alignment.

CORRECTIVE MAINTENANCE

INTRODUCTION

Corrective maintenance consists of component replacement and instrument repair. This part of the manual describes special techniques and procedures required to replace components in this instrument. If it is necessary to ship your instrument to a Tektronix Service Center for repair or service, refer to the "Instrument Repackaging Instructions" at the end of this section.

MAINTENANCE PRECAUTIONS

To reduce the possibility of personal injury or instrument damage, observe the following precautions.

1. Disconnect the instrument from the ac power input source before removing or installing components.
2. Use care not to interconnect instrument grounds which may be at different potentials (cross grounding).
3. When soldering on circuit boards or small insulated wires, use only a 15 -watt, pencil-type soldering iron.

OBTAINING REPLACEMENT PARTS

Most electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, many of the standard electronic components can usually be obtained from a local commercial source. Before purchasing or ordering a part from a source other than Tektronix, Inc., please check the "Replaceable Electrical Parts" list for the proper value, rating, tolerance, and description.

NOTE

Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade instrument performance.

Special Parts

In addition to the standard electronic components, some special parts are used in the 2335 . These components are manufactured or selected by Tektronix, Inc. to meet specific performance requirements, or are manufactured for Tektronix, Inc. in accordance with our specifications.

The various manufacturers can be identified by referring to the "Cross Index-Manufacturer's Code Number to Manufacturer" at the beginning of the "Replaceable Electrical Parts" list. Most of the mechanical parts used in this instrument were manufactured by Tektronix, Inc. Order all special parts directly from your local Tektronix Field Office or representative.

Ordering Parts

When ordering replacement parts from Tektronix, Inc., be sure to include all of the following information:

1. Instrument type (include modification or option numbers).
2. Instrument serial number.
3. A description of the part (if electrical, include its component number).
4. Tektronix part number.

MAINTENANCE AIDS

The maintenance aids listed in Table 6-5 include items required for performing most of the maintenance procedures in this instrument. Equivalent products may be substituted for the examples given, provided their characteristics are similar.

INTERCONNECTIONS

Two methods of interconnection are used in this instrument to connect the circuit boards with other boards and components. When the interconnection is made with a coaxial cable, a special end-lead connector plugs into a socket on the board. Other interconnections are made with pins soldered onto the board. Several types of mating connectors are used for these interconnecting pins. The following information provides the replacement procedures for the various interconnecting methods.

Coaxial-Type End-Lead Connectors

Replacement of the coaxial-type end-lead connectors requires special tools and techniques; only maintenance personnel familiar with the specialized techniques should attempt replacement of these connectors. It is recommended that the cable or wiring harness and connector be replaced as a unit. For cable or wiring harness part numbers, see the "Replaceable Mechanical Parts" list. An

Table 6-5
Maintenance Aids

Description	Specifications	Usage	Example
1. Soldering Iron	15 to 25 W.	General soldering and unsoldering.	Antex Precision Model C.
2. Phillips Screwdrivers	\#1 tip, \#2 tip.	Assembly and disassembly.	Xcelite Models X108 and X102.
3. Flat-bit Screwdriver	3-inch shaft, 3/32-inch bit.	Assembly and disassembly.	Xcelite Model R3323.
4. Torque Screwdriver	3 inch-pounds.	Assembly of crt and SEC/ DIV and VOLTS/DIV switches.	Sturtevant-Richmont Torque Products Model PM-5 Roto- Torq.
5. Nutdrivers	$3 / 16$ inch, $1 / 4$ inch.	Assembly and disassembly.	Xcelite \#6 and \#8.

alternative solution is to refer the replacement of the defective connector to your local Tektronix Field Office or representative.

End-Lead Pin Connectors

Pin connectors used to connect the wires to the interconnecting pins are factory assembled. They consist of machine-inserted pin connectors mounted in plastic holders. If the connectors are faulty, the entire wire assembly should be replaced.

Multipin Connectors

When pin connectors are grouped together and mounted in a plastic holder, they are removed, reinstalled, or replaced as a unit. If any individual wire or connector in the assembly is faulty, the entire cable assembly should be replaced. To provide correct orientation of this multipin connector when it is reconnected to its mating pins, an arrow is stamped on the circuit board, and a matching arrow is molded into the plastic housing of the multipin connector. Be sure these arrows are aligned with each other when the multipin connector is reinstalled.

TRANSISTORS AND INTEGRATED CIRCUITS

Transistors and integrated circuits should not be replaced unless they are actually defective. If removed from their sockets or unsoldered from the circuit board during routine maintenance, return them to their original sockets or board locations. Unnecessary replacement or transposing of semiconductor devices may affect the adjustment of the instrument. When a semiconductor is replaced, check the performance of any instrument circuit that may be affected.

Any replacement component should be of the original type or a direct replacement. Bend transistor leads to fit their circuit board holes and cut the leads to the same length as the original component. See Figure 9-2 for leadconfiguration illustrations.

To remove socketed dual-in-line packaged (DIP) integrated circuits, pull slowly and evenly on both ends of the device. Avoid disengaging one end of the integrated circuit from the socket before the other, since this may damage the pins.

To remove a soldered DIP IC, do not heat adjacent conductors consecutively. Apply heat to pins at alternate sides and ends of the IC as solder is removed. Allow a moment for the circuit board to cool before proceeding to the next pin.

The heat-sink-mounted power supply transistors are insulated from the heat sink. In addition, a heat-sink compound is used to increase heat transfer capabilities. Reinstall the insulators and replace the heat-sink compound when replacing these transistors. The compound should be applied to both sides of the insulators and should be applied to the bottom side of the transistor where it comes in contact with the insulator.

NOTE

After replacing a power transistor, check that the collector is not shorted to the heat sink before applying power to the instrument.

SOLDERING TECHNIQUES

The reliability and accuracy of this instrument can be maintained only if proper soldering techniques are used to remove or replace parts. General soldering techniques, which apply to maintenance of any precision electronic equipment, should be used when working on this instrument.

WARNING

To avoid an electric-shock hazard, observe the following precautions before attempting any soldering: turn the instrument off, disconnect it from the ac power source, and allow approximately three minutes for the power-supply capacitors to discharge.

Use rosin-core wire solder containing 63% tin and 37% lead. Contact your local Tektronix Field Office or representative to obtain the names of approved solder types.

When soldering on circuit boards or small insulated wires, use only a 15 -watt, pencil-type soldering iron. A higher wattage soldering iron can cause etched circuit conductors to separate from the board base material and melt the insulation on small wires. Always keep the soldering-iron tip properly tinned to ensure best heat transfer from the iron tip to the solder joint. To protect heatsensitive components, either hold the component lead with long-nose pliers or place a heat block between the component body and the solder joint. Apply only enough solder to make a firm joint. After soldering, clean the area around the solder connection with an approved fluxremoving solvent (such as isopropyl alcohol) and allow it to air dry.

Circuit boards in this instrument may have as many as three conductive layers. Conductive paths between the top and bottom board layers may connect to one or more inner layers. If any inner-layer conductive path becomes broken due to poor soldering practices, the board becomes unusable and must be replaced. Damage of this nature can void the instrument warranty.

CAUTION

Only an experienced maintenance person, proficient in the use of vacuum-type desoldering equipment, should attempt repair of any circuit board in this instrument. The following multilayer board assemblies are particularly susceptible to heat damage: A13-Trigger, A16-B Timing Switch, and A17-A Timing Switch.

Desoldering parts from multilayer circuit boards is especially critical. Many of the integrated circuits are static sensitive and can be damaged by a static charge that can be generated by some types of solder extractors. Perform work involving static-sensitive devices only at a static-free work station while wearing a grounded antistatic wrist strap and use only an antistatic vacuum-type solder extractor approved by a Tektronix Service Center.

Attempts to unsolder, remove, and resolder leads from the component side of a circuit board may cause damage to the reverse side of the circuit board.

The following techniques should be used to replace a component on any of the circuit boards:

1. Touch the vacuum desoldering tool to the lead at the solder connection. Never place the iron directly on the board; doing this may damage the board.

NOTE

Some components are difficult to remove from the circuit board due to a bend placed in each lead during machine insertion of the component. The purpose of the bent leads is to hold the component in place during a solder-flow manufacturing process that solders all the components at once. To make removal of machine-inserted components easier, straighten the component leads on the reverse side of the circuit board with a small screwdriver or pliers. It may be necessary to remove the circuit board to gain access to the component leads on the reverse side of the circuit board. Circuit-board removal and reinstallation procedures are discussed later in this section.
2. When removing a multipin component, especially an IC, do not heat adjacent pins consecutively. Apply heat to pins at alternate sides and ends of the IC as solder is removed. Allow a moment for the circuit board to cool before proceeding to the next pin.

Excessive heat can cause the etched circuit conductors to separate from the circuit board. Never allow the solder extractor tip to remain at one place on the board for more than three seconds. Solder wick, spring-actuated or squeeze-bulb solder suckers, and heat blocks for desoldering multipin components) must not be used. Damage caused by poor soldering techniques can void the instrument warranty.
3. Bend the leads of the replacement component to fit the holes in the circuit board. If the component is replaced while the board is installed in the instrument, cut the leads so they protrude only a small amount through the reverse side of the circuit board. Excess lead length may cause shorting to other conductive parts.
4. Insert the leads into the holes of the board so that the replacement component is positioned the same as the original component. Most components should be firmly seated against the circuit board.

Do not allow either solder or flux to flow beneath etched circuit board switches. The etched switch contacts on the circuit board are an integral part of the switch, and intermittent operation can occur if the contacts become contaminated.
5. Touch the soldering iron to the connection and apply enough solder to make a firm solder joint. Do not move the component while the solder hardens.
6. Cut off any excess lead protruding through the circuit board (if not clipped to size in step 3).
7. Clean the area around the solder connection with an approved flux-removing solvent. Be careful not to remove any of the printed information from the circuit board.

When soldering to the ceramic strips in the instrument, a slightly larger soldering iron can be used. It is recommended that a solder containing about 3% silver be used when soldering to these strips to avoid destroying the bond to the ceramic material. This bond can be broken by repeated use of ordinary tin-lead solder or by the application of too much heat; however, occasional use of ordinary solder will not break the bond, provided excessive heat is not applied.

If it becomes necessary to solder in the general area of any of the high-frequency contacts of this instrument, clean the contacts immediately upon completion of soldering. Refer to the "Switch Contacts" paragraph in the "Preventive Maintenance" part of this section for the recommended cleaners and procedures.

REMOVAL AND REPLACEMENT INSTRUCTIONS

WARNING

To avoid electric shock, disconnect the instrument from the power input source before removing or replacing any component or assembly.

The exploded view drawings in the "Replaceable Mechanical Parts" list may be helpful during the removal
and reinstallation of individual components or subassemblies. Circuit board and component locations are shown in the "Diagrams" section.

Read these instructions completely before attempting any corrective maintenance.

Cabinet

Removal and reinstallation of the instrument cabinet is accomplished by the following steps:

1. Remove one Phillips-head screw holding the powercord securing clamp. Remove the clamp and disconnect the power cord.
2. Remove two Phillips-head retaining screws from the rear of the cabinet assembly (one near each of the bottom feet).
3. Loosen six Phillips-head retaining screws on the rim band around the front panel (three across the top and three across the bottom).
4. Close and latch the lid, place the cabinet handle against the bottom of the cabinet, and set the instrument face down on a flat surface.
5. Carefully lift up on the cabinet until the ground lug, ac-power-input jack, and fuse holder are free of the perforations in the rear of the cabinet, then slide the cabinet up off of the instrument chassis.

To reinstall the cabinet:
6. Place the instrument face down on a flat surface (with the lid latched).
7. Align the cabinet to allow the ground lug, ac-powerinput jack, and fuse holder to pass through the perforation in the rear of the cabinet and carefully slide the cabinet down over the instrument chassis to its original position.
8. Open the lid and tighten six retaining screws around the rim band (loosened in step 3).
9. Reinstall two Phillips-head screws (removed in step 2).
10. Reconnect the power cord and reinstall the securing clamp and screw removed in step 1.

NOTE

For all of the following procedures, the cabinet must first be removed in accordance with the foregoing removal and replacement instructions.

Cathode-Ray Tube

WARNING

Use care when handling a crt. Breaking the crt can cause high-velocity scattering of glass fragments. Protective clothing and safety glasses should be worn. Avoid striking the crt on any object which might cause it to crack or implode. When storing a crt, either place it in a protective carton or set it face down on a smooth surface in a protected location with a soft mat under the faceplate.

Removal and replacement of the crt is accomplished by the following steps:

1. Disconnect P768 from the Vert Out/H.V. Power Supply circuit board.
2. Use long-nose pliers to disconnect the two vertical deflection connectors from the pins on the neck of the crt (these wires come from the Vert Out/H.V. Power Supply circuit board). Pull straight out on these connectors to prevent placing strain on the metal-to-glass seal. Note wire colors and positions for reinstallation reference.
3. Raise the front of the instrument and disconnect the two horizontal deflection pin connectors from the neck of the crt (these wires come from the Sweep/Horiz Amp circuit board). Pull straight out on these connectors to prevent placing strain on the metal-to-glass seal. Note wire color and location for reinstallation reference.

WARNING

The crt anode and the output terminal of the HighVoltage Multiplier will retain a high-voltage charge after the instrument is turned off. To avoid electrical shock, ground both the output terminal and the crt high-voltage lead to the main instrument chassis.
4. Disconnect the crt anode lead from the High-Voltage Vultiplier lead by carefully pulling the anode plug out of the jack. Discharge the plug tip to the chassis.
5. Disconnect the socket from the base of the crt, gripping the tabs on the socket cover to pull it free.
6. Disconnect the Delay Line electrical connector from J878 on the Vert Out/H.V. Power Supply circuit board.
7. Pull the Delay Line cable free from the two retaining clips on the Vert Out/H.V. Power Supply circuit board.
8. Remove three Phillips-head screws retaining the Delay Line assembly.
9. Lift the Delay Line assembly up and set it on top of the Vert Preamp/L.V Power Supply circuit board.
10. Remove the Phillips-head screw retaining the ground lug to the bottom rear of the crt shield.
11. Support the crt with one hand and use a $1 / 8$-inch Allen wrench to loosen one of four set screws (located at each corner of the crt face), counting the turns, until the tip of the screw is flush with its mounting tab. Then loosen the remaining three set screws the same number of turns as the first one.

NOTE

It may be necessary to remove some of the rear panel screws in the area of the crt and to pull back slightly on the rear chassis panel when performing the next step.
12. Slide the crt and the surrounding metal shield back and lift them out of the instrument. The implosion shield will remain in the front casting. Note the alignment of the graticule for reinstallation reference.
13. Remove the metal mask and EMI gasket from around the front of the crt.
14. Remove the metal shield from the crt by sliding the shield to the rear. Exercise care not to damage the high-voltage lead, neck pins, and cable connecting to the two coils.

NOTE

It may be necessary to remove the rubber grommet from the metal shield before sliding the shield off of the crt.

To install a replacement crt:
15. Insert the crt into its metal shield (removed in step 14), passing the high-voltage lead and the cable connected to the two coils through the appropriate holes in the shield. Reinstall the rubber grommet, if it was previously removed.

The EMI gasket must be installed correctly to ensure both a proper ground to the shield and a cushion for the front of the crt.
16. Set the metal mask (removed in step 13) on a flat surface with its back edges facing upward.
17. Drape the EMI gasket over the edges of the mask so that the gasket material is partially inside and partially outside the mask.
18. Press the front of the crt into the mask.
19. Verify that the EMI gasket makes even contact with the mask and the crt shield on all four sides when viewed from the rear.
20. Verify that the EMI gasket also makes even contact between the mask and the front of the crt on all four sides when viewed from the front (graticule).
21. Carefully place the assembled crt and mask into the instrument, ensuring that the index guide and graticule are aligned as noted in step 12.
22. Support the crt with one hand and use a $1 / 8$-inch Allen wrench to alternately tighten each of the four retaining screws about one to two turns less than counted in step 11. Then use a torque screwdriver to alternately torque each screw to 1.5 ft -pounds.
23. Align the index slot of the crt socket with the index guide on the crt base and press the socket firmly into place.

WARNING

The High-Voltage Multiplier can again build up a high-voltage charge after it is first discharged to ground. To avoid electrical shock, ground its output terminal to the main instrument chassis before reconnecting the crt anode lead.
24. Reconnect the crt anode-lead plug to the jack from the High-Voltage Multiplier.
25. Reinstall the screw securing the ground lug to the crt shield (removed in step 10).
26. Reinstall the Delay Line assembly (removed in step 9), using three retaining screws (removed in step 8).
27. Press the Delay Line cable into its two retaining clips on the Vert Out/H.V. Power Supply circuit board.
28. Reconnect the Delay Line electrical connector to J878 (disconnected in step 6).
29. Raise the front of the instrument and use long-nose pliers to reconnect the two horizontal deflection pin connectors (from the Sweep/Horiz Amp circuit board) to the neck of the crt at the positions noted in step 3.
30. Reconnect the two vertical deflection pin connectors (from the Vert Out/H.V. Power Supply circuit board) to the neck of the crt at the positions noted in step 2.
31. Reconnect P768 (disconnected in step 1) to the Vert Out/H.V. Power Supply circuit board.

A15-Vert Out/H.V. Power Supply Circuit Board

Removal and reinstallation of the Vert Out/H.V. Power Supply circuit board is accomplished by the following steps:

1. Use a $1 / 16$-inch Allen wrench to loosen the set screw on the FOCUS control knob. Note its position for reinstallation reference and remove the knob from the instrument.
2. Use a $5 / 16$-inch open-end wrench to remove the retaining nut from the FOCUS control shaft and push the control shaft through the front panel until it hangs free.
3. Disconnect P763, P759, and P765 at the front edge of the circuit board.
4. Disconnect the Delay Line electrical connector from J878.
5. Pull the Delay Line cable free from the two retaining clips on the circuit board.
6. Disconnect P756, P768, and P758 at the rear of the circuit board.
7. Disconnect the socket from the base of the crt, gripping the tabs on the socket cover to pull it free.
8. Use long-nose pliers to disconnect the two vertical deflection pin connectors from the neck of the crt (these wires come from the Vert Out/H.V. Power Supply circuit board). Pull straight out on these connectors to prevent placing strain on the metal-to-glass seal. Note their positions for reinstallation reference.
9. Remove five Phillips-head screws retaining the circuit board (four around the outer edges and one near the center of the board).
10. Remove the Vert Out/H.V. Power Supply circuit board from the instrument, taking care not to damage L913 and L915.

To reinstall the Vert Out/H.V. Power Supply circuit board:
11. Carefully reposition the board into place, taking care not to damage L913 and L915.
12. Reinstall five retaining screws (removed in step 9).
13. Use long-nose pliers to reconnect the two vertical deflection pin connectors to the neck of the crt at the positions noted in step 8.
14. Align the index slot of the crt socket with the index guide on the crt base and press the socket firmly into place.
15. Press the Delay Line cable into its two retaining clips.
16. Reconnect $P 756, P 768$, and $P 758$ at the rear of the circuit board (disconnected in step 6).
17. Reconnect the Delay Line electrical connector to J878 (disconnected in step 4).
18. Reconnect $P 763, P 759$, and $P 765$ at the front edge of the circuit board (disconnected in step 3).
19. Insert the FOCUS control shaft through the front panel and reinstall the retaining nut (removed in step 2).
20. Reinstall the FOCUS control knob, noting its position in step 1, and tighten the set screw.

A10-Vert Preamp/L.V. Power Supply Circuit Board

Removal and reinstallation of the Vert Preamp/L.V. Power Supply circuit board is accomplished by the follow. ing steps:

1. Use a $1 / 16$-inch Allen wrench to loosen both VOLTS/. DIV VAR control-knob set screws. Note their positions for reinstallation reference and remove the knobs.
2. Pull both VOLTS/DIV control knobs from their shafts, noting their positions for reinstallation references.
3. Disconnect P703 and P704, located near the middle of the circuit board. These lead to the CH 1 and CH 2 POSITION controls respectively.
4. Disconnect P733 from the Trigger circuit board (from the LEVEL control) and remove its rubber grommet from the slot in the edge of the Vert Preamp/L.V. Power Supply circuit board.
5. Disconnect P730 and P732 from the Trigger circuit board.
6. Disconnect the two miniature coaxial connectors (P830 for Channel 1 and P831 for Channel 2) from the Trigger circuit board. Note the color and location of each for reinstallation reference.
7. Disconnect the following connectors from the Vert Preamp/L.V. Power Supply circuit board, noting their locations for reinstallation reference:
a. P710 (from the Vert Out/H.V. Power Supply circuit board).
b. P714 (from the transformer).
c. P702 (from the EXT Z AXIS connector).

Exercise care not to damage the center conductors of the miniature coaxial connectors while performing the next step.
8. Tip the instrument up, exposing the bottom, and use long-nose pliers to disconnect the miniature coaxial connectors from the CH 1 and CH 2 input bnc connectors.
9. Remove two Phillips-head screws retaining the attenuators (one for each attenuator).
10. Remove the following nine Phillips-head retaining screws from the Vert Preamp/L.V. Power Supply circuit board and the preamplifier circuit shield:
a. One near each end of the Negative Regulator board (A11).
b. Two connecting the preamplifier circuit shield to the front casting (do not remove the four screws securing the hexagonal standoffs).
c. One on the edge of the board, adjacent to Q194.
d. Two under the preamplifier circuit shield.
e. One toward the rear of the circuit board, adjacent to U215 and to which the grounding lug is attached.
f. One toward the rear of the circuit board, located between C225 and C250.
11. Gently lift up on the rear of the Vert Preamp/L.V. Power Supply circuit board to disengage it from the pins of P808 on the Trigger circuit board.
12. With the rear of the circuit board raised approximately one inch, use long-nose pliers to disconnect the Delay Line electrical connector from the bottom of the board. Use a screwdriver to carefully pry the Delay Line cable from its retaining clip.
13. Remove the Vert Preamp/L.V. Power Supply circuit board from the instrument by lifting the rear of the board and pulling it toward the rear of the instrument.

NOTE

The attenuators are now accessible for servicing. Their contacts are factory lubricated. If preventivemaintenance cleaning is to be performed, lubricate the switch contacts after cleaning with a thin film of No-Noise lubricant, or the equivalent. Lubricate only the gold-plated contact surfaces of the hybrid circuit boards, not the cam-switch assembly. Attenuator disassembly and reassembly instructions are presented later in this section of the manual.

Power-supply pass transistors Q246, 0253, Q264, Q252, and 0256 are mounted on a heat sink. Thermal-transfer compound is used on the insulator between each transistor and the heat sink. If any of these transistors are replaced, be sure to replace both the insulator and the thermal-transfer compound.

To reinstall the Vert Preamp/L.V. Power Supply circuit board:
14. Press the Delay Line cable back into its retaining clip and reconnect its electrical connector (disconnected in step 12).
15. Position the Vert Preamp/L.V. Power Supply circuit board into the instrument, aligning all the extension shafts with their respective holes in the front panel and aligning the pins of J 808 with connector P808. Carefully press P808 onto the pins of J 808 until the board is firmly seated.
16. Reinstall nine Phillips-head screws (removed in Step 10).

Exercise care not to damage the center conductors of the miniature coaxial connectors while performing the next step.
17. Place the instrument on its side, exposing the rear of the input bnc connectors, and use long-nose pliers to insert the miniature coaxial connectors into the CH 1 and CH 2 input bnc connectors.
18. Reinstall two Phillips-head screws retaining the attenuators (removed in step 9).
19. Place the instrument right side up and reconnect the following cables and connectors (disconnected in steps $7,6,5,4$, and 3).
a. P702 (from the EXT Z AXIS connector).
b. P714 (from the transformer).
c. P710 (from the Vert Out/H.V. Power Supply circuit board).
d. P830 (for Channel 1) and P831 (for Channel 2) (from the Trigger circuit board).
e. P730 and P732 (from the Trigger circuit board).
f. P733 (from the Trigger circuit board). Reinstall the rubber grommet removed in step 4.
g. P703 and P704 (from the CH 1 and CH 2 POSITION controls respectively).
20. Reinstall both VOLTS/DIV control knobs onto their shafts in the positions noted in step 2.
21. Reinstall both VOLTS/DIV VAR control knobs in the positions noted in step 1 and tighten their set screws.

A11-Negative Regulator Circuit Board

Removal and replacement of the Negative Regulator circuit board is accomplished by the following steps:

The following procedure destroys the circuit board being removed. Perform this procedure only if a new board is available for replacement.

1. Cut five pins at J 803 and six pins at J 804 on the Vert Preamp/L.V. Power Supply circuit board and remove the Negative Regulator circuit board.
2. Use a vacuum-type desoldering tool to clean the 11 pin holes.
3. Insert the pins of P803 and P804 into the appropriate holes on the Vert Preamp/L.V. Power Supply circuit board. Hold the Negative Regulator board in place and solder the 11 pins.

A12-Positive Regulator Circuit Board

Removal and replacement of the Positive Regulator circuit board is accomplished by the following steps:

CAUTION

The following procedure destroys the circuit board being removed. Perform this procedure only if a new board is available for replacement.

1. Note board orientation and cut four pins at J801 and four pins at J802 on the Vert Preamp/L.V. Power Supply circuit board and remove the Positive Regulator circuit board.
2. Use a vacuum-type desoldering tool to clean the 8 pin holes.
3. Orient the replacement Positive Regulator board as noted in step 1 and insert the pins of the replacement Positive Regulator circuit board into the appropriate holes on the Vert Preamp/L.V. Power Supply circuit board. Hold the Positive Regulator board in place and solder the 8 pins.

A13-Trigger Circuit Board

Removal and reinstallation of the Trigger circuit board is accomplished by the following steps:

1. Disconnect the following connectors and cables from the Trigger circuit board (note colors and locations for reinstallation reference):
a. P733 (from the LEVEL control).
b. Two miniature coaxial connectors, J 830 and J831. Note their color and position for reinstallation reference.
c. P732 (from the Vert Preamp/L.V. Power Supply circuit board).
d. Miniature coaxial connector P829 (from the Sweep) Horiz Amp circuit board).
2. Loosen, but do not completely remove, nine Phillipshead screws retaining the Vert Preamp/L.V. Power Supply circuit board.
3. Remove four Phillips-head screws retaining the Trigger circuit board.
4. Gently pry up on the rear of the Vert Preamp/L.V. Power Supply circuit board until the top edge-connector receptacle of J 808 disengages from P808 pins on the Trigger circuit board. Then gently pull the Trigger circuit board away from the instrument until the bottom edgeconnector pins of P840, on the Sweep/Horiz Amp circuit board, disengage from J840.
5. Remove the Trigger circuit board from the instrument, taking care not to damage the COUPLING and SOURCE switch control levers and the pins of P808 and P840.

To reinstall the Trigger circuit board:
6. Position the board into place, inserting the COUPLING and SOURCE switch levers into their respective slots in the front panel and aligning the pins of P808 with J808 and the pins of P840 with J840.
7. Gently press J 840 (on the Trigger board) onto the pins of P840 (on the Sweep/Horiz Amp board); then press J808 (on the Vert Preamp/L.V. Power Supply board) onto the pins of P808 (on the Trigger board).
8. Reinstall four Phillips-head screws (removed in step 3).
9. Tighten nine screws on the Vert Preamp/L.V. Power Supply circuit board (loosened in step 2).
10. Reconnect the five cables and connectors that were disconnected in step 1.

A14-Sweep/Horiz Amp Circuit Board

Removal and reinstallation of the Sweep/Horiz Amp circuit board is accomplished by the following steps:

1. Place the instrument on its side so that the Sweep/ Horiz Amp circuit board is accessible and disconnect the following cables and connectors from the board:
a. P842 (from the Trigger circuit board).
b. P745 (from the Vert Out/H.V. Power Supply circuit board).
c. P750 (from the B DELAY TIME POSITION control).
2. Remove four Phillips-head screws retaining the Sweep/Horiz Amp circuit board.
3. Gently pull the circuit board away from the instrument until connectors J 871 and J 876 (from the A and B Timing Switch circuit boards) are disengaged.

To reinstall the Sweep/Horiz Amp circuit board:
4. Position the board into place, aligning J871 and J876 with pins P871 and P876 on the A and B Timing Switch circuit boards.
5. Press gently on the Sweep/Horiz Amp circuit board until P871 and P876 are fully engaged with J871 and J876.
6. Reinstall four Phillips-head screws (removed in step 2).
7. Reconnect the three cables and connectors that were disconnected in step 1.

A18-Probe Comp Circuit Board

Removal and reinstallation of the Probe Comp circuit board is accomplished by the following steps:

1. Disconnect P753 (leading from the AMPL CAL connector).
2. Remove two Phillips-head screws retaining the Probe Comp circuit board and remove the board from the instrument. Note its orientation for reinstallation reference.

To reinstall the Probe Comp circuit board:
3. Orient the board as noted in step 2 and reinstall two Phillips-head screws (removed in step 2).
4. Reconnect P753 (disconnected in step 1).

Timing Switch Assembly

The Timing Switch assembly is a unit consisting of the A and B Timing switches, the VAR potentiometer, the A Timing Switch circuit board (A17), and the B Timing Switch circuit board (A16). Replacing a complete Timing Switch assembly with a new or rebuilt unit is the recommended procedure. However, should it become necessary to disassemble and repair the assembly, replacement parts (as well as complete replacement units) can be ordered from your local Tektronix Field Office or representative.

The following procedure not only describes removal and replacement of the Timing Switch assembly as a
complete unit, but also explains how to disassemble and reassemble the unit to facilitate repair and cleaning. Both Figure 6-4 and the exploded view drawings in the "Replaceable Mechanical Parts" list (Section 10) are useful in performing switch disassembly and reassembly.

It is recommended that this procedure be read completely before starting any disassembly.

1. Remove the Vert Preamp/L.V. Power Supply circuit board using the procedure previously described in this part of the manual.
2. Rotate the A and B SEC/DIV switch fully counterclockwise.
3. Use a 0.050 -inch Allen wrench to loosen the set screw on the SEC/DIV VAR control knob. Note its position for reinstallation reference and remove the knob.
4. Use a $1 / 16$-inch Allen wrench to loosen the set screws on the control knobs for the A and B SEC/DIV switches. Note their positions for reinstallation reference and remove the knobs.
5. Use a 7/16-inch open-end wrench to remove the retaining nut for the control-shaft housing of the A and B SEC/DIV switches. Note its position for reinstallation reference.
6. Pull up on the Timing Switch assembly until the pins on the A and B Timing Switch circuit boards disengage from connectors J871 and J876 on the Sweep/Horiz Amp circuit board.
7. Continue lifting up on the Timing Switch assembly while guiding it to the rear of the instrument until the assembly is clear.

NOTE

As this point resistors, capacitors, diodes and transistors may be replaced on the Timing Switch circuit boards without further disassembly. After replacing circuit-board components, proceed to step 50 for reinstallation instructions.
8. If mechanical or electrical components of the Timing Switch assembly are to be replaced, proceed to step 9. If the entire assembly is to be replaced, proceed to step 50.

Figure 6-4. SEC/DIV switch exploded view.
9. Disconnect P774 from the A Timing Switch circuit board, A17.

NOTE

In steps 10 through 48, the capital letters enclosed within parentheses refer to the like-lettered components in Figure 6-4.

Before each component is removed, note its position and/or orientation for reinstallation reference. To facilitate reassembly, it is recommended that all parts be laid out in the order in which they are removed.

Steps 10 through 14 are necessary only if the potentiometer (A) requires replacement.
10. Remove the mounting screw from the potentiometer (A).
11. Rotate the extension shaft (V) counterclockwise until the set screws in the coupling (C) line up with the slot in the clear plastic mounting bracket.
12. Use a 0.050 -inch Allen wrench to loosen the rearmost set screw in the coupling (C).
13. Unscrew the potentiometer from its mounting bracket (B).
14. If only the potentiometer is being replaced, proceed to step 45.

The knurled rotary shaft (U) is spring loaded and must be held in place while performing steps 15 through 21 to prevent possible damage to the electrical contacts. Two of the ways that this can be accomplished are: (1) placing the shaft in a vise, or (2) temporarily reinstalling the VAR knob and gripping it to hold the shaft in place.
15. Remove three Phillips-head screws (D) retaining the mounting bracket (B).
16. Pull the coupling (C), with extension shaft (V) attached, out through the rear of the assembly.
17. Remove the rear bearing (E).

CAUTION

Contact holders are mechanically, but not electrically, interchangeable.

Do not touch switch contacts and their corresponding circuit-board runs with your hands. This will avoid contamination, preserve high-frequency characteristics, and avoid possible damage.
18. Remove the rear contact holder (F).
19. Remove the B Timing Switch circuit board (G).
20. Remove the detent (I) along with the front contact holder (H). Separate them both from the B Timing Switch circuit board and from each other.
21. Gradually release the knurled rotary shaft (U) from the tension of the helical spring (K). Remove the VAR knob (if it was reinstalled for holding), then remove the shaft through the rear of the assembly.
22. Remove three Phillips-head screws (T) while holding both the front bearing (S) and the center bearing housing (J) between your thumb and forefinger.
23. Remove the center bearing housing (J).

NOTE

Steps 24 through 26 should be performed only if the rotor, stop, and/or retaining spring parts are worn and require replacement. Otherwise proceed to step 27.
24. Remove rotor (N), stop (M), and retaining spring (L) together.
25. Carefully remove the retaining spring (stretch it as little as possible) from the rotor.
26. Remove the stop (M) from the rotor.
27. Remove the front bearing housing (S).
28. Remove the rear contact holder (O).
29. Remove the rotary shaft with detent (R) and the front contact holder (Q).
30. Separate the front contact holder from the rotary shaft.

NOTE

During reassembly, if any cleaning has been done or if the switch assembly was previously difficult to rotate, lubricate the points indicated by a triangle symbol on Figure 6-4 with a very small amount of Versilube (or equivalent) silicone grease. All places indicated may not require lubrication. A general guide is to lubricate only the mechanical parts that rub together. See "Switch Contacts" in the "Preventive Maintenance" part of this section.

To reassemble the Timing Switch assembly (refer to Figure 6-4):
31. Install the front contact holder (Q) on the rotary shaft (R).
32. Reinstall the rotary shaft (R), with contact holder (Q), facing the component side of the A Timing Switch circuit board (P).
33. Reinstall the front bearing housing (S).
34. Reinstall the stop (M) and retaining spring (L) on the rotor (N).
35. Reinstall the rotor assembly.
36. Reinstall the center bearing housing (J) and front bearing (S); hold them in place with your thumb and forefinger.
37. Reinstall the three screws (T) removed in step 22.

The knurled rotary shaft (U) is spring loaded. To prevent possible damage to the electrical contacts, it must be held in place while performing steps 38 through 44 (see CAUTION preceding step 15).
38. Reinstall the knurled rotary shaft (U), with helical spring (K), through the rear of the assembly.
39. Reinsert detent (I) into front contact holder (H) and insert them both into the center bearing housing (J).
40. Reinstall the B Timing Switch circuit board, A16.
41. Reinstall the rear contact holder (F).
42. Reinstall the rear bearing (E).
43. Reinstall the extension shaft (V), with coupling (C), through the rear of the assembly.
44. Reinstall bracket (B) using the three Phillips-head screws (D).
45. If applicable, screw the replacement potentiometer (A) into the rear of the mounting bracket (B) while inserting its shaft into the coupling (C).
46. Rotate the extension shaft (V) to align the rearmost set screw on coupling (C) with the slot in the clear plastic bracket (B).
47. Tighten the set screw using a 0.050 -inch Allen wrench.
48. Rotate the Potentiometer (A) clockwise to its proper orientation and reinstall its mounting screw.
49. Reconnect P774 to the A Timing Switch circuit board, A17.
50. Position the Timing Switch assembly into the instrument by first inserting the control shaft (with housing) through the front panel.
51. Align the edge-connector pins of the A and B Timing Switch circuit boards with connectors J 871 and J876 on the Sweep/Horiz Amp circuit board and press them firmly into place.
52. Reinstall the control-shaft housing for the A and B SEC/DIV switches at the position noted in step 5 and tighten the retaining nut with a $7 / 16$-inch open-end wrench.

Maintenance-2335 Service

53. Reinstall the control knobs for the A and B SEC/ DIV switches in the positions noted in step 4 and tighten the set screws with a $1 / 16$-inch Allen wrench.
54. Reinstall the VAR control knob in the position noted in step 3 and tighten its set screw with a 0.050 -inch Allen wrench.
55. Reinstall the Vert Preamp/L.V. Power Supply circuit board using the procedure previously described.

Attenuators

Replacing a complete Attenuator assembly with a new or rebuilt unit is the recommended procedure. However, should it become necessary to disassemble and repair an Attenuator, replacement parts (as well as complete replacement units) can be ordered from your local Tektronix Field Office or representative.

The following procedure not only describes removal and reinstallation of an Attenuator as a complete unit, but also explains how to disassemble and reassemble the unit to facilitate repair and cleaning. Both Figure 6-5 and the exploded view drawing in the "Replaceable Mechanical Parts" list (Section 10) are useful when performing attenuator disassembly and reassembly.

It is recommended that this procedure be read completely before starting any disassembly.

1. Remove the Vert Preamp/L.V. Power Supply circuit board using the procedure previously described in this part of the manual.
2. Disconnect the following connectors from the Vert Preamp/L.V. Power Supply circuit board:
a. J700 (from the rear of the Channel 1 Attenuator).
b. J705 (from the rear of the Channel 2 Attenuator).
3. Unsolder the wire connecting the two potentiometers at the rear of the attenuators and unsolder the wire from the Channel 2 potentiometer which leads to J712 on the Vert Preamp/L.V. Power Supply circuit board. Note wire color and location for reinstallation reference.

Abstract

CAUTION caurion If the Channel 1 Attenuator is to be replaced or repaired, the Channel 2 Attenuator must first be removed. Attempting to unsolder the resistorcapacitor network from the Channel 1 Attenuator without first removing the Channel 2 Attenuator can result in heat damage to both attenuators.

NOTE

In the remainder of this procedure, the capital letters enclosed within parentheses refer to the likelettered components in Figure 6-5.
4. Unsolder the resistor-capacitor network (adjacent to the Channel 2 Attenuator) from the shielded hybrid circuit board (E) in the Channel 2 Attenuator assembly.
5. On the component side of the circuit board, use a $3 / 16$-inch nutdriver to remove the two hexagonal standoffs retaining the Channel 2 Attenuator.
6. Gently pull the Channel 2 Attenuator straight away from the circuit board to avoid damaging the rear hybrid circuit module (M) that plugs into the circuit board.
7. Repeat steps 4 through 6 for the Channel 1 Attenuator, if it is to be removed.
8. If a replacement Attenuator assembly is to be installed as a complete unit, proceed to step 45.

NOTE

Steps 9 through 44 describe how to disassemble and reassemble an attenuator to accomplish replacement of one or more of the following parts: shielded hybrid (E) and its associated contact sets, rear hybrid (M) and its associated contact sets, and the potentiometer (U).

Before any component is removed during disassembly, carefully note its position and/or orientation for reinstallation reference. To facilitate reassembly, it is recommended that all parts be laid out in the order in which they are removed.
9. If the shielded hybrid (E) or its associated contact sets require replacement, proceed to step 10. To replace the rear hybrid (M) or its associated contact sets, go to step 16. To replace the potentiometer (U), go to step 21.

Figure 6-5. Vertical attenuator exploded view.
10. Remove the two screws (A) and the upper retainer plate (B).
11. Remove the two screws (C) and the lower retainer plate (D).

Prior to performing the next step, note the exact location and orientation of the shielded hybrid (E) to prevent damage during reinstallation.
12. Unsolder the shielded hybrid (two places) from the ground contact (J) and remove the shielded hybrid.
13. Remove the outer contact set (F); it has five contacts and a ground tab.
14. Remove the inner contact set (G); it has four contacts and a ground tab.
15. If no other components are to be replaced, proceed to step 39 for reinstallation instructions.

NOTE

To ensure proper grounding after reinstallation, note the positioning of the ground contact spring against the shaft before removing it in the next step.
16. Remove the screw (H) and ground contact spring (I). Unsolder the ground contact (J) in two places and remove it (if not previously unsoldered in step 12).
17. Remove the side retaining plate (L).
18. Remove the rear hybrid (M). Note its exact location and orientation to prevent damage during reinstallation.
19. Remove both the left contact set (N) and the right contact set (O).
20. If no other components are to be replaced, proceed to step 32 for reinstallation instructions.
21. Use a 0.050 -inch Allen wrench and loosen, but do not remove, the two set screws on the coupling (P) which are nearest to the potentiometer (U).
22. Remove the screw (Q) and remove the bracket (R), with the potentiometer attached, from the Attenuator cam-switch assembly.
23. Use a $5 / 16$-inch open-end wrench to remove the nut (S) and the lockwasher (T) retaining the potentiometer.
24. Remove the potentiometer (U) from the bracket.
25. Unsolder the wires connected to the potentiometer, noting their color and location for reinstallation reference.
26. To install a replacement potentiometer, resolder the wires (removed in step 25) at the locations noted.
27. Insert the potentiometer into the bracket (R) and orient it as noted in step 24.
28. Reinstall the nut and lockwasher (removed in step 23).
29. Mount the bracket (R) to the cam-switch assembly with the screw (Q) removed in step 22. Use a torque screwdriver to tighten it to 3 inch-pounds.
30. Use a 0.050 -inch Allen wrench to tighten the two set screws (loosened in step 21) on the coupling (P).
31. If no other parts require reassembly, proceed to step 45.
32. To reinstall the rear hybrid (M) and its associated contact sets, first insert the left contact set (N) into the cam-switch assembly. Then insert the right contact set (O). Position them both as noted in step 19.
33. Place the rear hybrid (M) in the exact location and orientation noted in step 18.
34. Place the side retaining plate (L) over the hybrid.
35. Place the ground contact (J) over the side retaining plate. Insert the ground contact spring (I) through the hole in the ground contact so that the end of the spring is against the same side of the shaft.
36. Reinstall the screw (H) removed in step 16; use a torque screwdriver to tighten it to 3 inch-pounds.
37. Check contact pressure and alignment (refer to Figure 6-2 and Figure 6-3).
38. If no other components are to be reinstalled, proceed to step 44.
39. To reinstall the shielded hybrid (E), insert the inner contact set (G) into the cam-switch assembly. Then insert the outer contact set (F). Position them as noted in steps 14 and 13.
40. Reinstall the shielded hybrid (E) at the exact location and orientation noted in step 12.
41. Reinstall the lower retaining plate (D) with the two screws (C) removed in step 11. Use a torque screwdriver to tighten the screws to 3 inch-pounds.
42. Reinstall the upper retaining plate (B) with the two screws (A) removed in step 10. Use a torque screwdriver to tighten the screws to 3 inch-pounds.
43. Check contact pressure and alignment (refer to Figure 6-2 and Figure 6-3).
44. Solder the ground contact (J) to the shielded hybrid (E) in two places.
45. Reinstall the Channel 1 Attenuator (if applicable) by carefully plugging the pins of the rear hybrid (M) into the Vert Preamp/L.V. Power Supply circuit board.

NOTE

The hexagonal standoffs removed in step 5 have different external thread lengths. The standoff having the shorter external thread length is to be reinstalled only at the front edge of the Vert Preamp/L.V. Power Supply circuit board.
46. Use a $3 / 16$-inch nutdriver to reinstall the two hexagonal standoffs securing the Channel 1 Attenuator (if removed in step 5).
47. Resolder the resistor-capacitor network lead (unsoldered in step 4) to the shielded hybrid (E) on the Channel 1 Attenuator (if applicable).
48. Repeat steps 45 through 47 for the Channel 2 Attenuator.
49. Resolder the wire connecting the two potentiometers and resolder the wire leading to J 712 (unsoldered in step 3).
50. Reconnect the following connectors to the Vert Preamp/L.V. Power Supply circuit board (disconnected in step 2):
a. J 700 (from the Channel 1 Attenuator).
b. J 705 (from the Channel 2 Attenuator).
51. Reinstall the Vert Preamp/L.V. Power Supply circuit board.

SELECTABLE COMPONENTS

A10R50

A10R122 If U55 or U125 is replaced, the position pots may no longer have sufficient range (+ and - 12 div), in which case R50 or R122 respectively will need to be removed by clipping the leads.

A13R11 If the transient response is too large for the Ext. Trig. View when in $\div 10$ mode, R11 may be changed to a higher value. The nominal value is 43Ω and selected values are: $51 \Omega, 62 \Omega, 75 \Omega$, or 91Ω which are all $0.125 \mathrm{~W} 5 \%$ resistors.

REPACKAGING FOR SHIPMENT

If the Tektronix instrument is to be shipped to a Tektronix Service Center for service or repair, attach a tag showing: owner (with address) and the name of an individual at your firm that can be contacted. Include complete instrument serial number and a description of the service required.

Save and re-use the package in which your instrument was shipped. If the original packaging is unfit for use or not available, repackage the instrument as follows:

Surround the instrument with polyethylene sheeting to protect the finish of the instrument. Obtain a carton of corrugated cardboard of the correct carton strength and having inside dimensions of no less than six inches more than the instrument dimensions. Cushion the instrument by tightly packing three inches of dunnage or urethane foam between carton and instrument, on all sides. Seal carton with shipping tape or industrial stapler.

The carton test strength for your instrument is 275 pounds.

OPTIONS

INTRODUCTION

There are presently two options available for the 2335. This section provides a brief description of the available options and indicates, if necessary, where more detailed information can be found.

OPTION 03

Option 03 (100-V/200-V Power Transformer) permits operation of the instrument from either a $100-\mathrm{V}$ or a $200-\mathrm{V}$ nominal ac-power-input source at a line frequency from 48 Hz to 440 Hz . This option does not affect the basic instrument operating and servicing information presented in this manual.

OPTION 1R

Option 1R (Rackadapted) is designed to enable mounting of the TEKTRONIX Oscilloscope 2335 into a standard 19 -inch equipment rack. Proper installation of the adapted oscilloscope will allow the instrument to meet all electrical and environmental characteristics stated in both its Service Manual and its Operators Manual. Instructions for adapting and mounting are supplied with the Rackmounting Kit.

REPLACEABLE ELECTRICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix. Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available. and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important. when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix. Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS

Abbreviations conform to American National Standard Y1.1.

COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:
Example a.
component number

Read: Resistor 1234 of Assembly 23

Example b.

Oniy the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly $A 1$ with its subassemblies and parts, precedes assembly $A 2$ with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

NAME \& DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number.

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip Code
01002	GENERAL ELECTRIC CO CAPACITOR PRODUCTS DEPT	JOHN ST	HudSON FALLS NY 12839
01121	ALLEN-BRADLEY CO	1201 SOUTH 2ND ST	MILWAUKEE WI 53204
01295	TEXAS INSTRUMENTS INC SEMICONDUCTOR GROLIP	13500 N CENTRAL EXPRESSWAY P 0 BOX 225012 M/S 49	DALLAS TX 75265
02111	SPECTROL ELECTRONICS CORP SUB OF CARRIER CORP	17070 E GALE AVE POBOX 1220	CITY OF INDUSTRY CA 91749
02114	AMPEREX ELECTRONIC CORP FERROXCUBE DIV	5083 KINGS HWY	SAUGERTIES NY 12477
02735	RCA CORP SOLID STATE DIVISION	ROUTE 202	SOMERVILLE NJ 08876
03508	general electric co SEMI-CONDUCTOR PROOUCTS DEPT	W GENESEE ST	AUBURN NY 13021
04099	CAPCO INC	FORESIGHT INDUSTRIAL PARK P O BOX 2164	GRAND JUNCTION CO 81501
04222	AVX CERAMICS DIV OF AVX CORP	19TH AVE SOITH P 0 BOX 867	MYRTLE BEACH SC 29577
04713	MOTOROLA INC SEMICONDUCTOR GROUP	5005 E MCDOWELL RD	Phoenix Az 85008
05347	ULTRONIX INC	461 N 22 ND ST	GRAND JUNCTION CO 81501
05397	UNION CARBIDE CORP MATERIALS SYSTEMS DIV	11901 MADISON AVE	CLEVELAND OH 44101
05828	GENERAL INSTRLMENT CORP GOVERNMENT SYSTEMS DIV	600 W JOHN ST	HICKSVILLE NY 11802
07263	FAIRCHILD CAMERA AND INSTRLMENT CORP SEMICONOUCTOR DIV	464 ELLIS ST	MOUNTAIN VIEW CA 94042
07716	TRW INC TRW ELECTRONICS COMPONENTS TRW IRC FIXED RESISTORS/BURLINGTON	2850 MT PLEASANT AVE	BURLINGTON IA 52601
12697	CLAROSTAT MFG CO INC	LOWER WASHINGTON ST	DOVER NH 03820
12954	MICROSEMI CORP	8700 E THOMAS RD P 0 BOX 1390	SCOTTSDALE AZ 85252
13050	POTTER CO	HWY 51 N	WESSON MS 39191
14193	CAL-R INC	1601 OLYMPIC BLVD	SANTA MONICA CA 90404
14433	ITT SEMICONDUCTORS DIV		WEST PALM BEACH FL
14552	MICRO/SEMICONOUCTOR CORP	2830 S FAIRVIEW ST	SANTA ANA CA 92704
14752	ELECTRO CUBE INC	1710 S DEL MAR AVE	SAN GABRIEL CA 91776
14936	GENERAL INSTRUMENT CORP DISCRETE SEMI CONDUCTOR DIV	600 W JOHN ST	HICKSVILLE NY 11802
15238	ITT SEMICONDUCTORS A DIVISION OF INTERNATIONAL TELEPHONE AND TELEGRAPH CORP	$\begin{aligned} & 500 \text { BROADWAY } \\ & \text { P } 0 \text { BOX } 168 \end{aligned}$	LAWRENCE MA 01841
15454	AMETEK INC RODAN DIV	2905 BLUE STAR ST	ANAHEIM CA 92806
15513	DATA DISPLAY PRODUCTS	303 N OAK ST	LOS ANGELES CA 90302
15636	ELEC-TROL INC	26477 N GOLDEN VALLEY RD	SAUGUS CA 91350
17856	SILICONIX INC	2201 LAURELWOOD RD	SANTA CLARA CA 95054
18324	SIGNETICS CORP	811 E ARQUES	SUNNYVALE CA 94086
19396	ILLINOIS TOOL WORKS INC PAKTRON DIVISION	900 FOLLIN LANE S E	VIENNA VA 22180
19701	MEPCO/ELECTRA INC A NORTH AMERICAN PHILIPS CO	P 0 B0X 760	MINERAL WELLS TX 76067
22526	DU PONT E I DE NEMOURS AND CO INC DU PONT CONNECTOR SYSTEMS	30 HUNTER LANE	CAMP HILL PA 17011
24546	CORNING GLASS WORKS	550 HIGH ST	BRADFORD PA 16701
27014	NATIONAL SEMICONDLCTOR CORP	2900 SEMICONDUCTOR DR	SANTA CLARA CA 95051
28733	CERAMIC MAGNETICS INC	87 FAIRFIELD RD	FAIRFIELD NJ 07006
31433	UNION CARBIDE CORP ELECTRONICS DIV	PO BOX 5928	GREENVILLE SC 29606
31918	ITT SCHADOW INC	8081 WALLACE RD	EDEN PRAIRIE MN 55343
32997	$\begin{aligned} & \text { BOURNS INC } \\ & \text { TRIMPOT DIV } \end{aligned}$	1200 COLLMBIA AVE	RIVERSIDE CA 92507
33095	SPECTRUM CONTROL INC	8061 AVONIA RD	FAIRVIEW PA 16415
50434	HEWLETT-PACKARD CO OPTOELECTRONICS DIV	640 PAGE MILL RD	PALO ALTO CA 94304
51642	CENTRE ENGINEERING INC	2820 E COLLEGE AVE	State College pa 16801

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr.

Code	Manufacturer	Address	City, State, Zip Code
51984	nec america inc	2741 PROSPERITY AVE	fairfax VA 22031
52763	STETTNER ELECTRONICS INC	6135 AIRWAYS BLVD PO BOX 21947	CHATTANOOGA TN 37421
54473	MATSUSHITA ELECTRIC CORP OF AMERICA	ONE PANASONIC WAY	SECAUCUS NJ 07094
55801	COMPENSATED DEVICES INC	166 TREMONT ST	MELROSE MA 02176
56289	SPRAGUE ELECTRIC CO	87 MARSHALL ST	NORTH ADAMS MA 01247
56699	MEPCO/ELECTRA INC	6071 ST ANDREWS RD	COLLMMBIA SC 29210
57668	ROHM CORP	16931 MILLIKEN AVE	IRVINE CA 92713
58224	XENELL CORP	HWY 77 S POBOX 726	WYNEEWOD OK 73098
59660	TUSONIX INC	2155 N FORBES BLVD	TUCSON, ARIZONA 85705
59821	CENTRALAB INC	7158 MERCHANT AVE	EL PASO TX 79915
71400	SUB NORTH AMERICAN PHILIPS CORP BUSSMANN MFG CO MCGRAW EDISION CO	114 OLD STATE RD PO BOX 14460	ST LOUIS MO 63178
72619	DIALIGHT DIV AMPEREX ELECTRONIC CORP	203 HARRISON PL	BROOKLYN NY 11237
72982	ERIE TECHNOLOGICAL PROOUCTS INC	645 W 11 TH ST	ERIE PA 16512
73138	BECMMAN INSTRIMENTS INC HELIPOT DIV	2500 HARBCR BLVD	FULLERTON CA 92634
74970	JOHNSON E F CO	29910 TH AVE S W	WASECA MN 56093
75042	INTERNATIONAL RESISTIVE CO INC	401 N BROAD ST	PHILADELPHIA PA 19108
76493	BELL INDUSTRIES INC MILLER J W DIV	19070 REYES AVE P 0 B0X 5825	COMPTON CA 90224
80009	TEKTRONIX INC	4900 S W GRIFFITH DR P 0 BOX 500	BEAVERTON OR 97077
82104	STANDARD GRIGSBY CO., DIV. OF SUN CHEMICAL CORPORATION	920 RATHBONE AVENUE	AURORA, IL 60507
82330	WICMMAN CORP THE	10325 CAPITAL AVE	OAK PARK MI 48237
91637	DALE ELECTRONICS INC	P 0 80X 609	COLLMBUS NE 68601
S0167	FUJITSU LTD		TOKYO JAPAN
S4431	MURATA MFG CO LTD	16 KAIDEN NISHIJM CHO	NAGAOKAYO KYOTO JAPAN
TK0146	BUEHLER PRODUCTS INC	PO BOX A, HIGHWAY 70	EAST KINSTON NC 28501
TK0271	COMPONENT CONCEPTS INC	3229 PINE ST	EVERETT WA 98201
TK0935	MARQUARDT SWITCHES INC	MARQUARDT 67 ALBANY ST	CAZENOVIA NY 13035
TK0946	SAN-O INDUSTRIAL CORP	170 WILBUR PL	BAHEMIA, LONG ISLAND NY 11716
TK1345	ZMAN AND ASSOCIATES	$7633 \mathrm{~S} \mathrm{1807H}$	KENT WA 98032
TK2042	ZMAN \& ASSOCIATES	7633 S0. 180TH	KENT, WA 98032

Camponent No.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10	670-6526-00	B010100	B013097	CIRCUIT BD ASSY:VERT PREAMP/LV POWER	80009	670-6526-00
A10	670-6526-01	8013098		CIRCUIT BD ASSY:VERT PREAMP/LV	80009	670-6526-01
A11	670-6532-00			CIRCUIT BD ASSY:NEGATIVE REG	80009	670-6532-00
A12	670-6533-00			CIRCUIT BD ASSY:POSITIVE REG	80009	670-6533-00
Al3	670-6527-00			CIRCUIT BD ASSY:A TRIGGER	80009	670-6527-00
A14	670-6824-00			CIRCUIT BD ASSY:SWEEP/HORIZONTAL AMPLIFIER	80009	670-6824-00
A15	670-6529-00	8010100	B013053	CIRCUIT BD ASSY:VERT OUT/HV POWER	80009	670-6529-00
Al5	670-6529-01	B013054		CIRCUIT BD ASSY:VERT OUT/HV POWER	80009	670-6529-01
A16	670-6531-00			CIRCUIT BD ASSY:B TIMING SWITCH	80009	670-6531-00
A17	670-6530-00			CIRCUIT BD ASSY:A TIMING SWITCH	80009	670-6530-00
A18	670-6589-00			CIRCUIT BD ASSY:PROBE COMPENSATOR	80009	670-6589-00
A19	119-1193-00			ATTENUATOR, VAR:5NV TO 5V, IMEG OHM HYBRID	80009	119-1193-00

Camponent No.	Tektronix Part No.	Serial/Ass Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
Al0	670-6526-00	8010100	B013097	CIRCUIT BD ASSY:VERT PREAMP/LV POWER	80009	670-6526-00
A10	670-6526-01	B013098		CIRCUIT BD ASSY:VERT PREAMP/LV	80009	670-6526-01
A10C1	281-0151-00			CAP, VAR, CER DI:1-3PF, 100 V	59660	518000 A 1.03
Al0C3	281-0786-00			CAP, FXD, CER DI: 150PF, 10%, 100V	04222	MA101A151KAA
A10C6	281-0862-00			CAP, FXD, CER DI:0.001UF, $+80-20 \%$, 100V	04222	MA101CIOZMAA
A10C7	281-0862-00			CAP, FXD, CER DI:0.001UF, $+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C10	281-0862-00			CAP, FXD, CER DI : $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C11	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C102MAA
A10C12	281-0862-00			CAP, FXD, CER DI:0.001UF, $+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C14	290-0523-00			CAP, FXD, ELCTLT:2.2UF, 20%, 20V	05397	T368A225M020AS
A10C15	283-0140-00			CAP.FXD,CER DI:4.7PF,+/-0.25PF,50V	72982	8101E003A479C
A10C16	281-0786-00			CAP, FXD, CER DI: 150PF, 10%,100V	04222	MA101A151KAA
A10c20	283-0140-00			CAP,FXD, CER DI:4.7PF, +/-0.25PF,50V	72982	8101E003A479C
A10C27	281-0815-00	B010100	B011249	CAP, FXD, CER DI: $0.027 \mathrm{UF}, 20 \%$, 50V	04222	MA205C273MAA
A10C27	281-0772-00	B011250		CAP, FXD, CER DI:4700PF, 10\%, 100 V	04222	MA201C472KAA
A10C30	283-0164-00			CAP, FXD, CER DI: $2.2 \mathrm{UF}, 20 \%, 25 \mathrm{~V}$	04222	SR402E225MAA
A10C31	283-0339-00			CAP, FXD,CER DI: $0.22 \mathrm{UF}, 10 \%$,50V	05397	C330C224K5R5CA
A10C33	281-0158-00			CAP, VAR, CER DI:7-45PF, 25 V	59660	518-006 G 7-45
A10C52	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C102MAA
A10C53	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C54	281-0862-00			CAP, FXD, CER OI:0.001UF, $+80-20 \%$, 100V	04222	MA101C10ZMAA
A10C55	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C102MAA
A10C56	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C10ZMAA
A10C57	281-0862-00	8012485		CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C58	281-0151-00			CAP, VAR, CER DI:1-3PF, 100 V	59660	518000 A 1.03
A10C62	281-0151-00			CAP, VAR, CER DI:1-3PF, 100 V	59660	518000 A 1.03
A10C67	281-0786-00			CAP, FXD, CER DI:150PF, 10%,100V	04222	MA101A151KAA
A10C75	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C76	281-0786-00			CAP, FXD,CER DI:150PF, 10%, 100V	04222	MA101A151KAA
A10C77	283-0140-00			CAP, FXD, CER DI: $4.7 \mathrm{PF},+/-0.25 \mathrm{PF}, 50 \mathrm{~V}$	72982	8101E003A479C
A10C81	283-0140-00			CAP, FXD, CER DI:4.7PF, $+/-0.25 \mathrm{PF}, 50 \mathrm{~V}$	72982	8101E003A479C
A10C88	281-0815-00	8010100	B011249	CAP, FXD, CER DI: $0.027 \mathrm{UF}, 20 \%$, 50V	04222	MA205C273MAA
A10C88	281-0772-00	B011250		CAP, FXD,CER DI:4700PF, 10\%, 100 V	04222	MA201C472KAA
A10C89	283-0164-00			CAP, FXD, CER DI: $2.2 \mathrm{UF}, 20 \%$,25V	04222	SR402E225MAA
A10C92	283-0339-00			CAP, FXD,CER DI:0.22UF,10\%,50V	05397	C330C224K5R5CA
A10C95	281-0158-00			CAP, VAR,CER DI:7-45PF,25V	59660	518-006 G 7-45
A10C120	281-0862-00			CAP,FXD,CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C121	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C10ZMAA
A10C124	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C102MAA
A10C125	281-0862-00			CAP, FXD, CER DI:0.001UF, $+80-20 \%$, 100V	04222	MA101C10ZMAA
A10C126	281-0862-00			CAP, FXD, CER DI:0.001UF, $+80-20 \%$, 100V	04222	MA101C10ZMAA
A10C133	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C10ZMAA
A10C134	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C135	281-0862-00			CAP, FXD,CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C10MAA
A10C143	290-0524-00			CAP, FXD, ELCTLT:4.7UF,20\%, 10V	05397	T368A475M010AZ
A10C145	290-0523-00			CAP, FXD, ELCTLT:2.2UF, 20\%, 20V	05397	T368A225M020AS
A10C147	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C150	290-0524-00			CAP, FXD, ELCTLT:4.7UF,20\%,10V	05397	T368A475M010AZ
A10C160	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C100MAA
A10C162	281-0615-00	B010100	B012484	CAP,FXD,CER DI:3.9PF, +/-0.5PF,200V	52763	2 2RDPLZ007 3P900C
A10C162	281-0810-00	B012485		CAP, FXD, CER DI :5.6PF, $+/-0.5 \mathrm{PF}, 100 \mathrm{~V}$	04222	MA101A5R6DAA
A10C181	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A10C182	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101CIOZMAA
A10C183	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%$, 100V	04222	MA101C10ZMAA
A10C197	283-0051-00			CAP, FXD, CER DI : $0.0033 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	04222	SR301A332JAA
A10C224	290-0524-00			CAP, FXD, ELCTLT:4.7UF, 20\%, 10V	05397	T368A475M010AZ
A10C225	290-0915-00			CAP, FXD, ELCTLT:440UF.+50-10\%, 100V	56289	390×1281
A10C226	281-0773-00	B010100	B014024	CAP, FXD,CER DI:0.01UF, $10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA

Camponent No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10C226	283-0189-00	B014025	CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%, 400 \mathrm{~V}$	51642	500400×5R 104M
A10C231	281-0814-00	8010100 B011249	CAP, FXD, CER DI:100 PF, 10\%, 100 V	04222	MA101A101KAA
A10C232	290-0573-00		CAP, FXD, ELCTLT: $2.7 \mathrm{UF}, 20 \%$, 50 V	05397	T3688275M050AS
A10C237	281-0813-00		CAP, FXD, CER DI: 0.047 UF, 20%, 50 V	05397	C412C473M5V2CA
A10C238	281-0773-00		CAP, FXD, CER DI: $0.01 \mathrm{UF}, 10 \%$, 100 V	04222	MA201C103KAA
A10C246	290-0768-00		CAP, FXD, ELCTLT: 10UF, +50-10\%, 100VDC	54473	ECE-A100V10L
A10C248	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C249	281-0775-00		CAP, FXD,CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C250	290-0913-00		CAP, FXD, ELCTLT: $3200 \mathrm{UF},+75-10 \%$,25V	56289	39DX1207
Al0C251	290-0913-00		CAP, FXD, ELCTLT: $3200 \mathrm{UF},+75-10 \%, 25 \mathrm{~V}$	56289	390×1207
A10C252	290-0770-00		CAP, FXD, ELCTLT: 100UF, +50-10\%, 25VDC	54473	ECE-A25V100L
A10C253	290-0770-00		CAP, FXD, ELCTLT: $100 \mathrm{UF},+50-10 \%$, 25VDC	54473	ECE-A25V100L
A10C257	281-0775-00		CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A10C258	281-0775-00		CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	MA205E104MAA
A10C259	290-0914-00		CAP, FXD, ELCTLT: 6200UF, $+75 \%-10 \%$, 15V	56289	390×1210
A10C260	290-0914-00		CAP, FXD, ELCTLT: 6200UF, $+75 \%-10 \%$, 15V	56289	390×1210
A10C264	290-0770-00		CAP, FXD, ELCTLT: 100UF, +50-10\%, 25VDC	54473	ECE-A25V100L
A10C265	290-0770-00		CAP, FXD, ELCTLT: 100UF, $+50-10 \%$, 25VDC	54473	ECE-A25V100L
A10CR1	152-0323-00		SEMICOND DVC.DI:SW, SI, 35V,0.1A, D0-7	14433	WG1518
AIOCR2	152-0323-00		SEMICOND DVC, DI:SW, SI, 35V,0.1A, DO-7	14433	WG1518
AIOCR3	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR8	152-0141-02		SEMICOND DVC.DI:SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR53	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V,00-35	03508	DA2527 (1N4152)
A10CR54	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR55	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A10CR56	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, 00-35	03508	DA2527 (1N4152)
A10CR57	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR58	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A10CR62	119-1429-00		COMPONENT ASSY: (2)DIOEES	80009	119-1429-00
A10CR63	119-1429-00		COMPONENT ASSY: (2)DIOOES	80009	119-1429-00
A10CR64	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR69	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR132	152-0141-02		SEMICOND DVC,DI:SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR134	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, $00-35$	03508	DA2527 (1N4152)
A10CR138	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V,00-35	03508	DA2527 (1N4152)
A10CR139	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR140	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
AlOCR142	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, ${ }^{\text {d }}$-35	03508	DA2527 (1N4152)
A10CR146	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
AIOCR149	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A10CR180	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A10CR201	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR209	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR225	152-0488-00		SEMICOND DVC, DI:RECT,SI, 200V,0.5A	04713	SDA317
A10CR237	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A10CR239	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A10CR250	152-0462-00		SEMICOND DVC,DI:RECT, SI, 200V,2.5A	14936	KBU4D
A10CR259	152-0462-00		SEMICOND DVC,DI:RECT,SI, 200V,2.5A	14936	KBU4D
AIOE6	276-0532-00		SHLD BEAD, ELEK:FERRITE	02114	56-590-65/4A6
AIOE7	276-0532-00		SHLD BEAD, ELEK: FERRITE	02114	56-590-65/4A6
AlOE11	276-0532-00		SHLD BEAD, ELEK: FERRITE	02114	56-590-65/4A6
A10E12	276-0532-00		SHLD BEAD, ELEK: FERRITE	02114	56-590-65/4A6
A10E55	276-0543-00	B013739	SHLD BEAD, ELEK: FERRITE	80009	276-0543-00
A10E57	276-0543-00	B013739	SHLD BEAD, ELEK: FERRITE	80009	276-0543-00
A10E132	276-0543-00	B013739	SHLD BEAD, ELEK:FERRITE	80009	276-0543-00
A10E134	276-0543-00	B013739	SHLD BEAD, ELEK: FERRITE	80009	276-0543-00
A10F225	159-0185-00		FUSE, CARTRIDGE:5.2 $\times 201 \mathrm{MM}, 0.75 \mathrm{~A}, 125 \mathrm{~V}$	TK0946	TSC-750MA
A10F250	159-0184-00		FUSE,CARTRIDGE:5.2 $\times 20 \mathrm{MH}, 1.25 \mathrm{~A}, 125 \mathrm{~V}$	TK0946	TSC 1.25

Component No.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10F251	159-0184-00			FUSE, CARTRIDGE: $5.2 \times 20 \mathrm{MM}, 1.25 \mathrm{~A}, 125 \mathrm{~V}$	TK0946	TSC 1.25
A10F257	159-0186-00			FUSE, CARTRIDGE: $5.2 \times 20 \mathrm{MM}, 1.5 \mathrm{~A}, 125 \mathrm{~V}$	TK0946	TSC 1.5
A10F259	159-0186-00			FUSE, CARTRIDGE: $5.2 \times 20 \mathrm{MM}, 1.5 \mathrm{~A}, 125 \mathrm{~V}$	TK0946	TSC 1.5
A10L6	119-1486-00			COMPONENT ASSY:SHIELDING BEAD ELECTRICAL	80009	119-1486-00
A10L7	119-1486-00			COMPONENT ASSY:SHIELDING BEAD ELECTRICAL	80009	119-1486-00
A10L11	119-1486-00			COMPÓNĖNT ASSY:SHIELDING BEAD ELECTRICAL	80009	119-1486-00
A10L12	119-1486-00			COMPONENT ASSY:SHIELDING BEAD ELECTRICAL	80009	119-1486-00
A10L132	108-0557-00	B010100	B010397	COIL,RF:FIXED, 35NH	TK1345	108-0557-00
A10L134	108-0557-00	8010100	8010397	COIL, RF: FIXED, 35NH	TK1345	108-0557-00
A1004	151-1090-04			TRANSISTOR: FE, DUAL, N-CHANNEL, SI, TO-99	17856	ON1882
A10010	151-0725-00			TRANSISTOR: NPN,MATCHED PAIR	04713	SRF502-1
A10036	151-0712-00			TRANSISTOR:PNP, SI, T0-92	04713	SPS8223
A10049	151-1124-00			TRANSISTOR:JFE, N-CHAN, SI, SEL, T0-92	17856	J-2400
A10055	151-0712-00			TRANSISTOR: PNP, SI, T0-92	04713	SPS8223
A10057	151-0712-00			TRANSISTOR: PNP, SI, T0-92	04713	SPS8223
A10068	151-1090-04			TRANSISTOR: FE, DLAL, N-CHANNEL, SI, TO-99	17856	DN1882
A10074	151-0725-00			TRANSISTOR: NPN,MATCHED PAIR	04713	SRF502-1
A100106	151-0712-00			TRANSISTOR: PNP, SI, T0-92	04713	SPS8223
A100119	151-1124-00			TRANSISTOR: JFE, N-CHAN, SI, SEL, T0-92	17856	J-2400
A100132	151-0712-00			TRANSISTOR: PNP, SI, TO-92	04713	SPS8223
A100133	151-0712-00			TRANSISTOR: PNP, SI, T0-92	04713	SPS8223
A100134	151-0712-00			TRANSISTOR: PNP, SI, T0-92	04713	SPS8223
A100135	151-0712-00			TRANSISTOR: PNP, SI, TD-92	04713	SPS8223
A100141	151-0711-00			TRANSISTOR:NPN, SI, T0-92B	80009	151-0711-00
A100142	151-0190-05	8010100	B014526	TRANSISTOR: SELECTED 2 N3904	80009	151-0190-05
A100142	151-0190-00	B014527		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A100147	151-0711-00			TRANSISTOR: NPN, SI, T0-92B	80009	151-0711-00
A100149	151-0190-05	8010100	B014526	TRANSISTOR:SELECTED 2 N3904	80009	151-0190-05
A100149	151-0190-00	8014527		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A100153	151-0369-00			TRANSISTOR:PNP, SI, X-55	04713	SPS8273
A100163	151-0472-00			TRANSISTOR:NPN, SI, T0-92	51984	NE41632B
A100170	151-0369-00			TRANSISTOR: PNP, SI, X-55	04713	SPS8273
A100175	151-0472-00			TRANSISTOR:NPN, SI, T0-92	51984	NE41632B
A100182	151-0711-00			TRANSISTOR:NPN,SI, TO-92B	80009	151-0711-00
A100194	151-0190-05	B010100	B014526	TRANSISTOR: SELECTED 2N3904	80009	151-0190-05
A100194	151-0190-00	B014527		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A100209	151-0199-02			TRANSISTOR:PNP,SI, T0-92	80009	151-0199-02
A100218	151-0190-05	B010100	8014526	TRANSISTOR:SELECTED 2N3904	80009	151-0190-05
A100218	151-0190-00	B014527		TRANSISTOR: NPN, SI, TO-92	80009	151-0190-00
A100239	151-0347-01			TRANSISTOR: SELECTED	TK0271	151-0347-01
Al00244	151-0347-01			TRANSISTOR:SELECTED	TK0271	151-0347-01
A100246	151-0476-00	B010100	B011669	TRANSISTOR:NPN,SI, TO-220AB	02735	68430
A100246	151-0476-01	8011670		TRANSISTOR:	TK0271	ORDER BY DESCR
A100252	151-0323-00	B010100	8011669	TRANSISTOR:SELECTED	04713	SJE916
A100252	151-0323-02	B011670		TRANSISTOR: SCREENED	TK0271	151-0323-02
A100253	151-0323-00	8010100	8011669	TRANSISTOR: SELECTED	04713	SJE916
A100253	151-0223-03	B011670		TRANSISTOR: NPN, SI	80009	151-0223-03
A100264	151-0324-00	B010100	8011669	TRANSISTOR: SELECTED	04713	SJE915
A100264	151-0324-02	8011670		TRANSISTOR: SCREENED	TK0271	151-0324-02
A100265	151-0324-00	B010100	B011669	TRANSISTOR: SELECTED	04713	SJE915
A100265	151-0324-02	B011670		TRANSISTOR: SCREENED	TK0271	151-0324-02
A10R1	315-0471-00			RES, FXD, FILM $4700 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E470E
A10R2	315-0103-00			RES, FXD, FILM $10 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10K00J}$
A10R3	315-0101-00			RES, FXD, FILM $1000 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A10R4	317-0160-00			RES, FXD, CMPSN: 16 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1605
A10R7	307-0109-00			RES, FXD, CMPSN: 8.2 OHM, $5 \%, 0.25 \mathrm{~W}$	80009	307-0109-00
A10R8	317-0201-00			RES, FXD, CMPSN: 200 OHM, 5\%, 0.125	01121	BB2015
A10R9	317-0240-00			RES, FXD, CMPSN: 24 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2405

Component No.	Tektronix Part No.	Serial/Assem Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10R10	311-2098-00			RES, VAR, NONWW: TRMR, 100 OHM, 10\%, 0.5W	32997	3386M-T07-101
A10R11	315-0152-00			RES, FXD, FILM: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E01K5
A10R13	315-0160-00	B010100	8013229	RES, FXD, FILM: 16 OHM, 5\%, 0.25W	19701	5043CX16R00J
A10R13	317-0160-00	B013230		RES, FXD, CMPSN: 16 OHM, 5\%,0.125W	01121	8B1605
A10R14	315-0100-00			RES, FXD, FILM: 10 OHM, 5\%, 0.25W	19701	5043CX10RROOJ
A10R15	315-0132-00			RES, FXD, FILM: $1.3 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E01K3
A10R16	315-0361-00			RES, FXD, FILM 360 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX360ROJ
A10R21	321-0173-00			RES, FXD, FILM: 619 OHM, 1\%, 0.125W, TC=T0	07716	CEAD619ROF
A10R22	311-0643-00			RES, VAR, NONW: TRMR, 50 OHM, 0.5 W	32997	3329H-L58-500
A10R23	321-0099-00			RES, FXD, FILM: 1050 OM, 1\%, 0.125W, TC=T0	07716	CEADIO5ROF
A10R24	321-0099-00			RES, FXD, FILM: $1050 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEADIO5ROF
A10R27	315-0431-00			RES, FXD, FILM: 430 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX430R0J
A10R28	321-0099-00			RES, FXD, FILM: 105 OHM, 1\%, 0.125W, TC=T0	07716	CEADIO5ROF
A10R29	321-0099-00			RES, FXD, FILM: 105 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEADI05ROF
A10R30	315-0561-00	B010100	B014024	RES, FXD, FILM $5660 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX560ROJ
A10R30	315-0821-00	B014025		RES, FXD, FILM $: 820$ OHM, 5\%,0.25W	19701	5043CX820ROJ
A10R31	311-0609-00			RES, VAR, NOMWW: TRMR, $2 \mathrm{~K} 0 \mathrm{HM}, 0.5 \mathrm{~W}$	32997	3329H-L58-202
A10R33	311-0643-00			RES,VAR, NONW:TRMR, 50 OHM, 0.5 W	32997	3329H-L58-500
A10R34	321-0050-00			RES, FXD, FILM: 32.4 OHM, 1\%, 0.125W, TC=T0	91637	CMF55116G32R40F
A10R36	315-0130-00			RES, FXD, FILM: 13 OHM, 5\%,0.25W	01121	CB1305
A10R37	315-0103-00			RES, FXD, FILM 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10K00J}$
A10R42	315-0332-00			RES, FXD, FILM $3.3 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E03K3
A10R43	315-0332-00			RES, FXD, FILM:3.3K OHM, 5\%, 0.25W	57668	NTR25J-E03K3
A10R45	317-0331-00	B011455		RES, FXD, CMPSN: 330 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB3315
A10R46	317-0272-00	B010100	B011454	RES, FXD, CMPSN: $2.7 \mathrm{~K} 01 \mathrm{M}, 5 \%, 0.125 \mathrm{~W}$	01121	BB2725
A10R46	317-0911-00	8011455		RES, FXD, CMPSN: 910 OHM, 5\%, 0.125W	01121	B89115
A10R47	311-0978-00	B010100	B011454	RES, VAR, NONWW: TRMR, 250 OHM, 0.5 W	73138	82PR250-37C
A10R47	311-0634-00	B011455		RES, VAR, NONWW: TRMR, 500 OHM, 0.5 W	32997	3329H-L.58-501
A10R48	317-0301-00	B010100	B011454	RES, FXD, CMPSN: 300 OHM, 5\%, 0.125W	01121	8B3015
A10R48	317-0331-00	B011455		RES, FXD, CMPSN: 330 OHM, 5\%, 0.125W	01121	B83315
A10R49	315-0104-00			RES, FXD, FILM: $100 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A10R50	315-0152-00	B010300		RES, FXD, FILM $=1.5 \mathrm{~K} 01 \mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E01K5
A10R53	315-0822-00			RES, FXD,FILM: 8.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX8K200J
A10R54	315-0750-00			RES, FXD, FILM: 75 OHM, 5\%, 0.25 W	57668	NTR25J-E75E0
A10R56	321-0266-00			RES, FXD, FILM: 5.76 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED5K760F
A10R57	315-0390-00			RES, FXD, FILM: 39 OHM, 5\%,0.25W	57668	NTR25J-E39E0
A10R58	317-0221-00	8010100	B010517	RES, FXD, CMPSN: 220 OHM, 5\%, 0.125	01121	BB2215
A10R58	317-0301-00	B010518		RES, FXD, CMPSN: 300 OHM, 5\%, 0.125	01121	BB3015
A10R60	321-0251-00			RES, FXD, FILM:4.02K OHF, 1\%,0.125W, TC=T0	19701	5033EDAK020F
A10R61	315-0470-00			RES, FXD, FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0
A10R62	315-0471-00			RES, FXD, FILM: 470 OHM, 5\%,0.25W	57668	NTR25J-E470E
A10R63	315-0103-00			RES, FXD. FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 C \times 10 \mathrm{K00} 3$
A10R67	315-0101-00			RES, FXD, FILM $: 100$ OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
Al0R68	317-0160-00			RES, FXD, CMPSN: 16 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1605
A10R69	317-0201-00			RES, FXD, CMPSN: $2000 \mathrm{HH}, 5 \%, 0.125 \mathrm{~W}$	01121	B82015
A10R70	317-0240-00			RES, FXD, CMPSN: 24 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2405
A10R72	307-0109-00			RES, FXD, CMPSN: 8.2 OHM, $5 \%, 0.25 \mathrm{~W}$	80009	307-0109-00
A10R73	315-0152-00			RES, FXD, FILM: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E01K5
A10R74	311-2098-00			RES, VAR, NONWW:TRMR, $100 \mathrm{OHM}, 10 \%, 0.5 \mathrm{~W}$	32997	3386M-T07-101
A10R75	315-0100-00			RES, FXD, FILM: 10 OHM, 5\%, 0.25	19701	5043 CX10RROOJ
A10R76	315-0361-00			RES, FXD, FILM: 360 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 C \times 360 R 0 \mathrm{~J}$
A10R77	315-0132-00			RES, FXD, FILM: $1.3 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25i-E01K3
Al0R78	315-0160-00	B010100	B013229	RES, FXD, FILM: 16 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX16R00 J
A10R78	317-0160-00	B013230		RES, FXD, CMPSN: 16 OHM, 5\%, 0.125W	01121	881605
A10R82	321-0173-00			RES, FXD, FILM: 619 OHM, 1\%, 0.125W, TC=TO	07716	CEAD619ROF
A10R83	311-0643-00			RES, VAR, NONWW: TRMR, 50 OHM, 0.5 W	32997	3329H-L58-500
Al0R84	321-0099-00			RES, FXD, FILM: 1050 OHM, 1\%, 0.125W, TC=T0	07716	CEAD105ROF
A10R85	321-0099-00			RES, FXD, FILM $1050 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD105R0F

Camponent No.	Tektronix Part No.	Serial/Assenbly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10R182	315-0271-00		RES, FXD, FILM $: 270$ OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E270E
AIDR183	315-0132-00		RES, FXD, FILM: 1.3 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E01K3
A10R184	315-0911-00		RES, FXD, FILM:910 OHM, 5\%, 0.25W	57668	NTR25J-E910E
AlOR185	315-0752-00		RES, FXD, FILM: $7.5 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25u-E07K5
AlOR186	315-0112-00		RES, FXD, FILM $: 1.1 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043C×1K100J
A10R187	315-0620-00		RES, FXD, FILM: 62 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX63R00J
AlOR188	315-0362-00		RES, FXD, FILM:3.6K OHM, 5\%,0.25W	19701	5043CX3K6003
A10R189	315-0750-00		RES, FXD, FILM: 75 OHM, 5\%, 0.25W	57668	NTR25]-E75E0
AlOR190	315-0202-00		RES, FXD. FILM:2K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 2K
A10R193	315-0271-00		RES, FXD, FILM $2700 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E270E
A10R194	315-0103-00		RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10K003}$
A10R195	315-0393-00		RES, FXD, FILM $39 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E39K0
A10R196	315-0103-00		RES, FXD, FILM:10K OHM , 5\%, 0.25W	19701	5043CX10K00,
A10R197	315-0561-00		RES, FXD, FILM: 560 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX560ROJ
A10R201	315-0101-00		RES, FXD, FILM: $1000 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A10R202	315-0103-00		RES, FXD, FILM: 10K OHM, 5\%, 0.25W	19701	5043 CX10K00J
A10R203	315-0103-00		RES, FXD, FILM:10K OHM, 5\%,0.25W	19701	5043 CX10K00J
A10R208	315-0472-00		RES, FXD, FILM:4.7K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E04K7
A10R209	315-0821-00		RES, FXD, FILM: $8200 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	19701	$5043 C \times 820 R 03$
A10R210	315-0103-00		RES,FXD, FILM:10K OHM, 5\%,0.25W	19701	$5043 \mathrm{CX10K00J}$
A10R211	315-0103-00		RES, FXD, FILM: 10 K OHM $, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A10R215	315-0103-00		RES, FXD, FILM:10K OHM, 5\%,0.25W	19701	5043C×10K00J
A10R216	321-0318-00		RES, FXD, FILM $20.0 \mathrm{~K} 0 \mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED20K00F
A10R217	315-0101-00		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A10R218	321-0218-00		RES, FXX, FILM $1.82 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033EDIK82F
A10R219	315-0682-00		RES, FXD, FILM $6.8 \mathrm{KK} 0 \mathrm{MM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E06K8
A10R222	315-0392-00		RES, FXD, FILM 3.9 KOHM , $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E03k9
A10R223	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JEO1K0
A10R224	307-0113-00		RES, FXD, CMPSN: 5.1 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB51G5
A10R225	315-0513-00		RES, FXD, FILM: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E51K0
A10R227	315-0102-00	B012060	RES, FXD, FILM: 1 K 0 OMM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A10R229	303-0472-00		RES, FXD, CMPSN:4.7K OHM, 5\%,1W	01121	G84725
A10R230	321-0293-03		RES, FXD, FILM: $11.0 \mathrm{~K} 0 \mathrm{H}, 0.25 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{T} 2$	24546	NC55C1102C
A10R231	311-2101-00		RES, VAR, NONWW: TPMR, 2 ZK OHM, $10 \%, 0.5 \mathrm{~W}$	32997	3386M-T07-202
A10R232	321-0966-03		RES, FXD, FILM:40K OHM, $0.25 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T2	19701	5033RC40K00C
A10R236	303-0472-00		RES, FXD, CMPSN: 4.7 K OHM, 5%, 1 W	01121	G84725
A10R237	315-0912-00		RES, FXD, FILM: $9.1 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E09K1
A10R238	315-0511-00		RES, FXD, FILM: 510 OHM, 5\%, 0.25W	19701	5043CX510ROJ
A10R239	315-0472-00		RES,FXD,FILM:4.7K OHM, 5\%,0.25W	57668	NTR25J-E04K7
A10R243	315-0204-00		RES, FXD, FILM:200K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX200KOJ
AlOR244	321-0174-00		RES, FXD, FILM: 634 OHM, 1\%, 0.125W, TC=TO	07716	CEAD634ROF
A10R245	321-0337-00		RES, FXD, FILM: 31.6 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD31601F
A10R246	308-0739-00		RES, FXD, WW: $4 \mathrm{OHM}, 1 \%$, 3 W	05347	MS3-4R00F
A10R250	315-0103-00		RES, FXD, FILM: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10K00J}$
A10R251	315-0103-00		RES, FXD, FILM:10K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	$5043 \mathrm{CX10KOOJ}$
A1CR252	308-0703-00		RES, FXD, WW: 1.8 OHM, 5%, 2 W	75042	BWH 1.8 OHM 5\%
A10R253	308-0677-00		RES, FXD, WW: $10 \mathrm{HM}, 5 \%, 2 \mathrm{~W}$	75042	ORDER BY DESC
A10R257	315-0393-00		RES, FXD, FILM: 39 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E39K0
A10R258	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A10R259	315-0272-00		RES, FXD,FILM:2.7K OHM, 5\%, 0.25 W	57668	NTR25J-E02K7
A10R260	315-0272-00		RES, FXD, FILM: 2.7 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR251-E02K7
A10R264	308-0677-00		RES, FXD, WW: 1 OHM, $5 \%, 2 \mathrm{~W}$	75042	ORDER BY DESC
A10R265	308-0703-00		RES, FXD, WW: $1.80 \mathrm{OH}, 5 \%, 2 \mathrm{~W}$	75042	BWH 1.8 OHM 5\%
AlORT46	307-0477-00		RES, THERMAL: 1 K OHM, 10\%, $5 \mathrm{MW} / \mathrm{DEG}$ C	14193	2321
AIORT115	307-0477-00		RES, THERMAL: 1 K OHM, 10%, 6 M $/$ /DEG C	14193	2 J 21
A10S134	260-1771-00		SWITCH, PUSH:1 BUTTON, 2 POLE, SLOPE	31918	ORDER BY DESCR
A10S189	260-2019-00	8010100 B010924	SWITCH,PUSH: 2 BUTTON, 2 POLE, VERT MODE (INCLUDES S211)	59821	ORDER BY DESCR

Camponent No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A10W252	131-0566-00		BUS, CONDUCTOR:OUMAY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A10W253	131-0566-00		BUS, CONDUCTOR:DLMMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A10W255	131-0566-00		BUS, CONDUCTOR:DLMMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A10W263	131-0566-00		BUS, CONDUCTOR: DUMMY RES, 0.094 OD X 0.225 L	24546	OMA 07
A10W264	131-0566-00		BUS, CONDUCTOR:DLMAY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A10w265	131-0566-00		BUS, CONDUCTOR:DLMMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07

Component No.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A13	670-6527-00			CIRCUIT BD ASSY:A TRIGGER	80009	670-6527-00
A13C2	281-0874-00			CAP, FXD, CER DI: $10 \mathrm{PF}, 5 \%, 500 \mathrm{~V}$	04222	MA407A100JAA
A13C3	281-0874-00			CAP, FXD, CER DI:10PF,5\%,500V	04222	MA407A100JAA
Al3C4	281-0873-00	B010100	B012349	CAP, FXD, CER DI:2.2PF,5\%,500V	04222	MA107A2R2DAA
A13C4	281-0547-00	8012350		CAP, FXD, CER DI: $2.7 \mathrm{PFF},+/-0.25 \mathrm{PF}, 500 \mathrm{~V}$	52763	2RDPLZ007 2P70CC
A13C8	281-0872-00	B010100	8012349	CAP, FXD,CER DI: 91 PF, $5 \%, 100 \mathrm{~V}$	04222	MC101A910]
A13C8	281-0814-00	8012350		CAP, FXD, CER DI: $100 \mathrm{PF}, 10 \%$,100V	04222	MA101A101KAA
A13C9	283-0414-00			CAP, FXD, CER DI: $0.022 \mathrm{UF}, 20 \%, 500 \mathrm{~V}$	51642	300-500x7R223M
A13C15	281-0775-00			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	MA205E104MAA
A13C21	281-0775-00			CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$, 50V	04222	MA205E104MAA
A13C27	281-0775-00			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	MAZ05E104MAA
A13C35	281-0812-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA101C102KAA
A13C36	281-0775-00			CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$, 50 V	04222	MA205E104MAA
A13C48	281-0812-00			CAP, FXD, CER DI: $1000 \mathrm{PF}, 10 \%$,100V	04222	MA101C102KAA
A13C56	281-0812-00			CAP, FXD, CER DI: 1000 PF, 10%,100V	04222	MA101C102KAA
A13C63	281-0812-00			CAP, FXD, CER DI: 1000 PF, 10%, 100V	04222	MA101C102KAA
A13C67	290-0245-00			CAP, FXD, ELCTLT:1.5UF, 10\%, 10 V	31433	T110A155K010AS
A13C70	281-0775-00			CAP, FXD, CER DI: $0.1 \mathrm{FF}, 20 \%$, 50 V	04222	MA205E104MAA
Al3C74	281-0797-00			CAP, FXD, CER DI: $15 \mathrm{PF}, 10 \%$, 100 V	04222	MA106A150KAA
A13C77	281-0812-00			CAP, FXD, CER DI: 1000 PF, 10\%, 100V	04222	MA101C102KAA
A13C80	119-1484-00	B010953		COMPONENT ASSY:CAPACITOR/RESISTOR	80009	119-1484-00
A13C81	281-0775-00			CAP, FXD, CER DI :0.1UF, 20%, 50 V	04222	MA205E104MAA
Al3C82	281-0775-00			CAP,FXD,CER DI :0.1UF,20\%,50V	04222	MA205E104MAA
A13C91	281-0775-00			CAP, FXD, CER DI :0.1UF,20\%,50V	04222	MA205E104MAA
A13C106	281-0775-00			CAP, FXD, CER DI:0.1UF, 20%, 50 V	04222	MA205E104MAA
A13C114	281-0775-00			CAP, FXD,CER DI: $0.1 \mathrm{UF}, 20 \%$,50V	04222	MA205E104MAA
A13C170	281-0775-00			CAP, FXD, CER DI: $0.14 \mathrm{~F}, 20 \%$,50V	04222	MA205E104MAA
A13C171	281-0775-00			CAP, FXD, CER DI:0.1UF, 20%, 50 V	04222	MA205E104MAA
A13CR10	152-0141-02			SEMICOND DVC, DI:SW,SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
Al3CR14	152-0141-02			SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, $00-35$	03508	DA2527 (1N4152)
Al3CR15	152-0141-02			SEMICOND DVC, DI:SW,SI,30V,150MA,30V,00-35	03508	DA2527 (1N4152)
A13CR90	152-0322-00			SEMICOND DVC, DI: SCHOTTKY,SI, 15V, DO-35	50434	5082-2672
Al3CR91	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
Al3015	151-1042-00			SEMICOND DVC SE:FET,SI,TO-92	04713	SPF627M2
A13016				(PART OF Al3015)		
Al3021	151-0188-03	B010100	B014526	TRANSISTOR: SELECTED	80009	151-0188-03
A13Q21	151-0188-00	B014527		TRANSISTOR:PNP, SI, TO-92	80009	151-0188-00
A13089	151-0199-02			TRANSISTOR:PNP, SI, T0-92	80009	151-0199-02
A13095	151-0199-02			TRANSISTOR:PNP, SI, TO-92	80009	151-0199-02
A130104	151-0190-05	B010100	8014526	TRANSISTOR:SELECTED 2N3904	80009	151-0190-05
A130104	151-0190-00	B014527		TRANSISTOR:NPN, SI, T0-92	80009	151-0190-00
A13R2	315-0105-00			RES, FXD, FILM: 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX1m000
Al3R3	315-0514-00			RES, FXD, FILM:510K $01+\mathrm{M}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX510K0]
A13R4	315-0335-00			RES, FXD, FILM $3.3 \mathrm{M} 01 \mathrm{Hm}, 5 \%, 0.25 \mathrm{~W}$	01121	CB3355
Al3R7	315-0220-00			RES, FXD, FILM:22 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX22R00J
Al3R8	315-0913-00			RES, FXD, FILM:91K OHM, 5\%, 0.25W	19701	5043CX91K00J
Al3R10	315-0470-00			RES, FXD, FILM:47 OHM, 5\%,0.25W	57668	NTR25J-E47E0
A13R11	317-0430-00	B010100	B012349	RES, FXD, CMPSN: 43 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	B84305
A13R11	317-0620-00	8012350		RES, FXD, CMPSN: 62 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	B86205
A13R14	315-0105-00			RES, FXD, FILM: 1 M OHM, 5\%, 0.25W	19701	5043Cx1m000]
A13R15	315-0470-00			RES, FXD, FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0
A13R16	315-0101-00			RES, FXD, FILM: $100 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A13R20	315-0470-00			RES, FXD, FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0
A13R21	315-0102-00			RES, FXD, FILM: $1 \mathrm{~K} 0 \mathrm{HW}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE0IK0
Al3R22	315-0103-00			RES, FXD, FILM:10K OHM, 5\%,0.25W	. 19701	5043CX10K003
Al3R23	321-0289-00			RES, FXD, FILM: 10.0 K OHM, 1\%, 0.125 W, TC=T0	19701	5033ED10KOF
A13R24	307-0113-00			RES, FXD,CMPSN:5.1 OHM, 5\%,0.25W	01121	CB51G5
A13R27	315-0104-00			RES, FXD, FILM $100 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-EIOOK

Camponent No.	Tektronix Part No.	Serial/Asse Effective	bly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A14C290	290-0488-00	B013567		CAP, FXD, ELCTLT:2.2UF, 10\%, 20V	05397	T322B225K020AS
A14C340	281-0765-00			CAP, FXD, CER DI: $100 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	04222	MA101A101JAA
A14C343	281-0820-00			CAP, FXD, CER DI:680 PF, 10\%,50V	04222	MA105C651KAA
A14C345	281-0773-00			CAF, FXD, CER DI : $0.01 \mathrm{LFF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A14C347	290-0188-00			CAP, FXD, ELCTLT:0.1UF,10\%,35V	05397	T322A104K035AS
A14C349	290-0283-00			CAP, FXD, ELCTLT: $0.47 \mathrm{CF}, 10 \%$, 35 V	05397	T320A474K035AS
A14C351	290-0246-00			CAP, FXD, ELCTLT: 3.3 UF, 10\%,15V	12954	D3R3EA15K1
A14C355	281-0765-00			CAP, FXD, CER DI:100PF,5\%,100V	04222	MA101A101JAA
A14CR21	152-0141-02			SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR28	152-0141-02			SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR29	152-0141-02			SEMICOND DVC, DI :SW,SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR47	152-0141-02			SEMICOND DVC, DI :SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR83	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR87	152-0141-02			SEMICOND DVC, OI :SW,SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR88	152-0141-02			SEMICOND DVC,DI:SW,SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR111	152-0141-02			SEMICOND DVC, OI :SW, SI, 30V, 150MA, 30V, $00-35$	03508	DA2527 (1N4152)
A14CR128	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V, 00-35	03508	DA2527 (1N4152)
A14CR133	152-0141-02			SEMICOND DVC, DI :SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR135	152-0141-02			SEMICOND DVC, DI:SW,SI,30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR160	152-0141-02			SEMICOND DVC, DI:SW, SI, 3OV, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR161	152-0141-02			SEMICOND DVC, DI: SW, SI, 3OV, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR175	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR193	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR195	152-0141-02			SEMICOND DVC, DI :SW,SI, 3OV,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR199	152-0141-02			SEMICOND DVC, DI:SW,SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR200	152-0141-02			SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, 00-35	03508	DA2527 (1N4152)
A14CR301	152-0141-02			SEMICOND DVC,DI:SW,SI, 30V,150MA,30V, DO-35	03508	DA2527 (1N4152)
A14CR302	152-0141-02			SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR303	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V, 150MA , 30V, D0-35	03508	DA2527 (1N4152)
A14CR340	152-0141-02			SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR341	152-0141-02			SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR342	152-0141-02			SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, $00-35$	03508	DA2527 (1N4152)
A14CR343	152-0141-02			SEMICOND DVC,DI:SW, SI, 30V,150MA,30V, DO-35	03508	DA2527 (1N4152)
A14CR344	152-0141-02			SEMICOND DVC,DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR345	152-0141-02			SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V,00-35	03508	DA2527 (1N4152)
A14CR346	152-0141-02			SEMICOND DVC, DI :SW,SI, 30V,150MA, 30V,DO-35	03508	OA2527 (1N4152)
A14CR347	152-0141-02			SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, DO-35	03508	DA2527 (1N4152)
A14CR348	152-0141-02			SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, $00-35$	03508	DA2527 (1N4152)
A14CR349	152-0141-02			SEMICOND DVC, DI :SW,SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR350	152-0141-02			SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A14CR351	152-0141-02			SEMICOND DVC, DI :SW, SI, 3OV, 150MA, 30V, $00-35$	03508	DA2527 (1N4152)
A14CR353	152-0141-02			SEMICOND DVC,DI:SW, SI, 30V,150MA, 30V, $00-35$	03508	DA2527 (1N4152)
A14E36	276-0507-00			SHLD BEAD, ELEK:FERRITE	02114	56-590-65B/3B
A14E54	276-0507-00			SHLD BEAD, ELEK:FERRITE	02114	56-590-658/38
A14E85	276-0507-00			SHLD BEAD, ELEK:FERRITE	02114	56-590-658/3B
A14K127	148-0076-00			RLY, REED: FRM A , 250MA, 100V, COIL, $5 \mathrm{~V}, 500 \mathrm{OHM}$	15636	R4060-1
A14L36	119-1487-00			COMPONENT ASSY:SHIELDING BEAD ELECTRICAL	80009	119-1487-00
A14L54	119-1487-00			COMPONENT ASSY:SHIELDING BEAD ELECTRICAL	80009	119-1487-00
A14016	151-1042-00			SEMICOND DVC SE:FET,SI, TO-92	04713	SPF627M2
A14Q20				(PART OF A14Q16)		
A14Q21	151-0188-03	8010100	8014526	TRANSISTOR:SELECTED	80009	151-0188-03
A14Q21	151-0188-00	8014527		TRANSISTOR: PNP, SI, TO-92	80009	151-0188-00
A14Q24	151-0190-05	B010100	B014526	TRANSISTOR:SELECTED 2N3904	80009	151-0190-05
A14Q24	151-0190-00	B014527		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A14028	151-0188-03	B010100	B014526	TRANSISTOR:SELECTED	80009	151-0188-03
A14Q28	151-0188-00	8014527		TRANSISTOR:PNP, SI, T0-92	80009	151-0188-00
A14080	151-1042-00			SEMICOND DVC SE:FET,SI, $0-92$	04713	SPF627M2

Camponent No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr . Code	Mfr. Part No.
A14R74	311-1943-00		RES, VAR, NONWW: TRMR, 10K OHM, $10 \%, 0.5 \mathrm{~W}$	02111	64W103T611
A14R75	315-0203-00		RES, FXD, FILM:20K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 20K
A14R76	315-0203-00		RES, FXD, FILM: 20 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 20K
A14R77	315-0334-00		RES, FXD, FILM:330K OHM, 5\%,0.25W	57668	NTR25J-E 330K
A14R81	315-0183-00		RES, FXD, FILM:18K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX18K00J
A14R82	315-0272-00		RES, FXD, FILM 2.7 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E02K7
A14R83	315-0220-00		RES, FXD, FILM: 22 OHM, 5\%, 0.25W	19701	5043CX22R00J
A14R85	317-0220-00		RES, FXD, CMPSN: 22 OHM, 5\%, 0.125W	01121	BB2205
A14R88	315-0122-00		RES, FXD, FILM: 1.2K OHM, 5\%, 0.25 W	57668	NTR25J-E01K2
A14R89	315-0104-00		RES, FXD, FILM: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A14R90	315-0474-00		RES, FXD, FILM:470K OHM,5\%,0.25W	19701	5043CX470K0J92U
A14R100	315-0624-00		RES, FXD,FILM:620K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX620K0J
A14R104	315-0682-00		RES, FXD, FILM: 6.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E06K8
A14R105	315-0621-00	B010100 B010904	RES, FXD, FILM: 620 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E620E
A14R105	315-0241-00	B010905	RES, FXD, FILM: 240 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX240ROJ
A14R106	315-0302-00		RES, FXD, FILM:3K OHM, 5\%, 0.25 W	57668	NTR25J-E03K0
A14R107	315-0102-00		RES, FXO, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A14R108	315-0472-00		RES, FXD,FILM:4.7K OHM, 5\%, 0.25W	57668	NTR25J-E04K7
A14R109	315-0102-00		RES, FXD,FILM:1K OHM, 5\%, 0.25W	57668	NTR25JE01K0
A14R110	315-0100-00		RES, FXD,FILM: 10 OHM, 5\%, 0.25W	19701	5043CX10RROOJ
A14R111	315-0202-00		RES, FXD,FILM:2K OHM, 5\%, 0.25W	57668	NTR25J-E 2K
A14R112	315-0242-00		RES, FXD, FILM:2.4K OHM, 5\%, 0.25W	57668	NTR25J-E02K4
A14R124	321-0108-00		RES, FXD, FILM: 130 OHM 1\%,0.125W, TC=T0	07716	CEAD13000F
A14R125	321-0213-00		RES, FXD, FILM: $1.62 \mathrm{~K} O H M, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD16200F
A14R126	311-2100-00		RES, VAR, NONWW: TRMR, 1 K OHM, $10 \%, 0.5 \mathrm{~W}$	32997	3386M-TO7-102
Al4R127	311-0622-00		RES, VAR, NONWW: TRMR, 100 OHM, 0.5 W	32997	3329H-L58-101
A14R128	307-0106-00		RES, FXD, CMPSN: 4.7 OHM, 5\%, 0.25W	01121	CB 47G5
A14R132	315-0182-00		RES, FXD, FILM: 1.8K OHM, 5\%, 0.25W	57668	NTR25J-E1K8
Al4R133	321-0307-00		RES, FXD, FILM: 15.4 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5043ED15K40F
A14R134	311-1137-00		RES, VAR, NONWN: TRMR, 5K OHM, 0.5W	01121	E2C502
Al4R140	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A14R141	315-0753-00		RES, FXD, FILM: 75 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E75K0
A14R142	321-0222-07		RES, FXD, FILM 2.2 K OHM, $0.1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T9	19701	5033RE2K000B
A14R146	321-0268-00		RES, FXD, FILM: 6.04 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5043ED6K040F
A14R147	315-0103-00		RES, FXD, FILM:10K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX10K00J
A14R148	311-2099-00		RES, VAR, NONWW: TRMR, 500 OHM, $10 \%, 0.5 \mathrm{~W}$	32997	3386M-T07-501
A14R149	321-0337-00		RES, FXD, FILM:31.6K OHM, 1\%,0.125W, TC=TO	07716	CEAD31601F
A14R153	307-0106-00		RES, FXD, CMPSN:4.7 OHM,5\%,0.25W	01121	CB 47G5
A14R154	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25W	57668	NTR25J-E47E0
A14R155	321-0260-00		RES, FXD, FILM: 4.99 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED4K990F
A14R156	321-0306-00		RES, FXD, FILM:15.0K OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED15J00F
Al4R160	315-0431-00		RES, FXD, FILM: 430 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX430R0J
A14R161	323-0312-00		RES, FXD, FILM: 17.4 K OHM, $1 \%, 0.5 \mathrm{~W}, \mathrm{TC}=$ TO	91637	MFF1226G17401F
A14R163	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%,0.25W	57668	NTR25J-E47E0
A14R167	301-0223-00		RES, FXD. FILM: 22 K OHM, $5 \%, 0.5 \mathrm{~W}$	19701	5053CX22K00J
A14R168	321-0189-00		RES, FXD, FILM: $909 \mathrm{OHM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T2	19701	5033ED909R0F
A14R169	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%,0.25W	57668	NTR25J-E47E0
A14R170	315-0562-00		RES, FXD, FILM:5.6K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K6
A14R173	315-0470-00		RES, FXD, FILM: 47 OHM, 5\%, 0.25W	57668	NTR25J-E47E0
A14R174	315-0241-00		RES, FXD, FILM: 240 OHM, 5\%, 0.25W	19701	5043CX240R0J
A14R175	315-0431-00		RES, FXD, FILM: 430 O1M, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX430R0J
A14R176	315-0681-00		RES, FXD, FILM: 680 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E680E
A14R180	301-0223-00		RES, FXD, FILM: 22 K OHM, $5 \%, 0.5 \mathrm{~W}$	19701	5053CX22K00J
A14R181	321-0189-00		RES, FXD, FILM:909 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{T} 2$	19701	5033ED909R0F
A14R182	315-0470-00		RES, FXD, FILM: 47 OIM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0
A14R183	315-0913-00		RES, FXD, FILM: 91 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX91K00J
AI4R187	323-0312-00		RES, FXD, FILM: 17.4 K OHM, $1 \%, 0.5 \mathrm{~W}, \mathrm{TC}=$ TO	91637	MFF1226G17401F
A14R190	315-0470-00		RES, FXD, FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0

Camponent No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part Ho.
A14R194	321-0432-00		RES, FXD, FILM 309 K OHM, 1\%, 0.125W, TC=TO	07716	CEAD30902F
A14R195	315-0622-00		RES,FXD, FILM: $6.2 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX6K200J
A14R196	321-0309-00		RES, FXD, FILM: $16.2 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED16K20F
A14R197	321-0309-00		RES, FXD, FILM: 16.2 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED16K20F
A14R198	321-0306-00		RES, FXD, FILM: $15.0 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED15J00F
A14R199	315-0475-00		RES, FXD, FILM:4.7M OHM, 5\%, 0.25W	01121	C34755
A14R201	315-0471-00		RES, FXD, FILM 470 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E470E
A14R264	315-0223-00		RES, FXD, FILM:22K 0HM, 5\%,0.25W	19701	5043CX22K00J92U
A14R265	315-0333-00		RES, FXD, FILM: 33 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E33K0
A14R266	315-0104-00		RES, FXD, FILM: $100 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A14R267	315-0881-00		RES, FXD, FILM: $680 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E680E
A14R271	315-0163-00		RES, FXD, FILM: $16 \mathrm{~K} 0 \mathrm{Hm}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 16K
A14R272	315-0223-00		RES, FXD, FILM:22K OHM, 5\%, 0.25W	19701	5043CX22K00.192U
A14R273	315-0393-00		RES, FXD, FILM $39 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E39K0
A14R274	315-0104-00		RES, FXD, FILM: 100 K 0 OM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A14R281	315-0681-00		RES, FXD, FILM: 680 OHM, 5\%, 0.25W	57668	NTR25J-E680E
A14R282	315-0163-00		RES, FXD, FILM $16 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 16K
A14R283	315-0223-00		RES, FXD, FILM:22K OHM, 5\%, 0.25W	19701	5043C×22K00J92U
A14R284	315-0473-00		RES, FXD, FILM:47K OHM, 5\%, 0.25W	57668	NTR25J-E47K0
A14R287	315-0104-00		RES, FXD, FILM:100K OHM, $5 \%, 0.25 \mathrm{~W}$	57658	NTR25J-E100K
A14R288	315-0681-00		RES, FXD, FILM: 680 OHM, 5\%, 0.25W	57668	NTR25J-E680E
A14R289	315-0151-00		RES, FXD, FILM 150 OHM, 5\%, 0.25W	57668	NTR25J-E150E
A14R290	315-0163-00		RES, FXD, FILM 16 K OHM, 5\%, 0.25W	57668	NTR25J-E 16K
A14R294	321-0291-00		RES, FXD, FILM: $10.5 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033EDIOK50F
A14R295	315-0203-00		RES, FXD, FILM:20K OHM, 5\%, 0.25 W	57668	NTR25J-E 20K
A14R296	321-0260-00		RES, FXD, FILM $4.99 \mathrm{~K} O \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5033ED4K990F
A14R340	315-0273-00		RES, FXD, FILM: $27 \mathrm{~K} 0 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E27K0
A14R343	315-0333-00		RES, FXD, FILM:33K OHM, 5\%,0.25W	57668	NTR25J-E33K0
A14R345	315-0333-00		RES, FXD, FILM: 33 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E33K0
A14R347	315-0333-00		RES, FXD, FILM:33K OHM, 5\%,0.25W	57668	NTR25J-E33K0
A14R349	315-0333-00		RES, FXD, FILM 33 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E33K0
A14R350	315-0431-00		RES, FXD, FILM: 430 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX430R0J
A14R351	315-0333-00		RES, FXD, FILM:33K OHM, 5\%,0.25W	57668	NTR25J-E33K0
A14R353	315-0562-00		RES, FXD, FILM 5.5 KK OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E05K6
A14R355	315-0154-00		RES, FXD, FILM:150K OHM, 5\% , 0.25 W	57668	NTR25J-E150K
A14RT295	307-0124-00		RES, THERMAL: 5 K OHM, 10%, NTC	15454	1DC502K-220-EC
A14U3	156-0053-00		MICROCKT, LINEAR:VOLTAGE REGULATOR	07263	SL21721
A14U24	155-0123-00		MICROCKT,LINEAR:A \& B SWEEP/PICKOFF	80009	155-0123-00
A14U87	155-0122-00		MICROCKT, DGTL:A \& B LOGIC	80009	155-0122-00
A14U108	156-0387-02	B010100 B015820	MICROCKT, DGTL:DUAL J-K FF,SCRN	04713	SN74LS73NDS
A14U108	156-0387-00	B015821	MICROCKT, DGTL:DUAL J-K FLIP-FLOP	01295	SN74LS73 N OR J
A14U128	155-0124-00		MICROCKT,LINEAR:HORIZ PREAMP	80009	155-0124-00
A14U147	156-1338-00		MICROCKT,LINEAR:OPERATIONAL AMPLIFIER	01295	NE5534P
A14U198	156-0158-03	8010100 8014526	MICROCKT,LINEAR:DUAL OPNL AMPL,CHK	80009	156-0158-03
A14U198	156-0158-04	B014527	MICROCKT, LINEAR:DUAL OPNL AMPL	01295	MC1458.JG
A14VR111	152-0149-00		SEMICOND DVC, DI :ZEN, SI, 10V, 5\%, 0.4W, D0-7	15238	Z5406
A14VR174	152-0217-00		SEMICOND DVC, DI: ZEN, SI, 8. $2 \mathrm{~V}, 5 \%, 0.4 \mathrm{~W}, \mathrm{DO}-7$	04713	SZG20
A14W5	131-0566-00		BUS,CONDUCTOR:DLMMY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A14W7	131-0566-00		BUS, CONDUCTOR:DLAMY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
Al4W8	131-0566-00		BUS, CONDUCTOR: DLMMY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A14W85	131-0566-00		BUS, CONOUCTOR: DLMMY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
A14W109	131-0566-00		BUS,CONOUCTOR:DUMYY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont		Name \& Description	Mfr. Code	Mfr. Part Mo.
A15	670-6529-00	B010100	8013053	CIRCUIT BD ASSY:VERT OUT/HV POWER	80009	670-6529-00
A15	670-6529-01	B013054		CIRCUIT BD ASSY:VERT OUT/AN POWER	80009	670-6529-01
A15Cl	290-0522-00			CAP, FXD, ELCTLT: $1 \mathrm{UF}, 20 \%$, 50V	05397	T368A105M050AZ
A15C3	290-0523-00			CAP, FXD, ELCTLT: $2.2 \cup \mathrm{~F}, 20 \%$, 20 V	05397	T368A225M020AS
A15C5	290-0524-00			CAP, FXD, ELCTLT:4.7UF, 20%, 10 V	05397	T368A475M010AZ
A15C8	281-0809-00			CAP, FXD,CER DI: $200 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	04222	MA101A201JAA
A15C10	281-0773-00			CAP, FXD,CER DI:0.01UF, 10\%,100V	04222	MA201C103KAA
A15C18	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	04222	MA101C102MAA
A15C25	281-0809-00			CAP,FXD,CER DI:200 PF,5\%,100V	04222	MA101A201JAA
A15C26	281-0862-00			CAP, FXD, CER DI: 0.001 UF, $+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A15C29	283-0330-00			CAP, FXD, CER DI:100PF,5\%,50V	05397	C320C101J5R5CA
A15C32	283-0115-00			CAP, FXD,CER DI:47PF,5\%,200V	59821	2DDT60K470.
A15C33	281-0123-00			CAP, VAR, CER DI :5-25PF, 100 V	59660	518-00045-25
A15C36	281-0167-00			CAP, VAR, CER DI:9-45PF, 200V	33095	53-717-001 09-45
A15C39	281-0123-00			CAP, VAR, CER DI:5-25PF,100V	59660	518-000A5-25
A15C54	281-0862-00			CAP, FXD, CER DI: $0.001 \mathrm{VF},+80-20 \%$, 100V	04222	MA101C10ZMAA
A15C57	281-0862-00			CAP, FXD, CER DI : $0.001 \mathrm{UF},+80-20 \%$, 100 V	04222	MA101C10ZMAA
A15C58	281-0770-00			CAP,FXD,CER DI: $1000 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$	04222	MA101C102MAA
A15C66	281-0774-00			CAP, FXD, CER DI: $0.022 \mathrm{MFD}, 20 \%, 100 \mathrm{~V}$	04222	MA201E223MAA
A15C73	281-0772-00			CAP, FXD, CER DI: $4700 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C472KAA
A15C80	281-0862-00			CAP, FXD, CER DI: 0.001 UF, $+80-20 \%, 100 \mathrm{~V}$	04222	MA101C10ZMAA
A15C86	281-0775-00			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	MA205E104MAA
A15C87	281-0775-00			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	MA205E104MAA
A15C94	281-0775-00			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A15C100	281-0775-00			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	MA205E104MAA
A15C101	281-0138-00			CAP, VAR, PLASTIC:0.4-1.2PF,600V	74970	273-0001-007
A15C108	285-1062-00			CAP, FXD, PLASTIC: $0.005 \mathrm{UF}, 1 \%, 200 \mathrm{~V}$	19396	502F02PP460
A15C109	281-0775-00			CAP, FXD, CER DI $0.14 \mathrm{~F}, 20 \%$, 50 V	04222	MA205E104MAA
A15C110	281-0775-00			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MA205E104MAA
A15C116	281-0775-00			CAP, FXD, CER DI:0.1UF,20\%,50V	04222	MAZ05E104MAA
A15C121	281-0773-00			CAP, FXD,CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A15C122	285-1101-00			CAP, FXD, PLASTIC: $0.022 \mathrm{UF}, 10 \%$, 200V	19396	223K02PT485
A15C123	281-0783-00			CAP, FXD, CER DI: 0.1 UF $20 \%, 100 \mathrm{~V}$	04222	MA401C104MAA
A15C128	281-0151-00			CAP, VAR, CER DI:1-3PF,100V	59660	518000 A 1.03
A15C136	281-0760-00			CAP, FXD, CER DI:22PF, 10\%,500V	04222	MA107A220KAA
A15C140	285-1099-00			CAP, FXD, PLASTIC:0.047UF, $20 \% .200 \mathrm{~V}$	19396	473M02PT605
A15C148	281-0773-00			CAP, FXD, CER DI : 0.01 UF, $10 \%, 100 \mathrm{~V}$	04222	MA201C103KAA
A15C150	283-0177-00			CAP, FXD, CER DI: $1 \mathrm{UF},+80-20 \%$, 25V	04222	SR302E105ZAATR
A15C156	281-0876-00			CAP, FXD,CER DI:5.6PF,+/-0.5PF,500WDC	04222	MA106A569D
A15C167	290-0939-00	B010100	B014561	CAP, FXD, ELCTLT: 10UF, $+100-10 \%$, 100 V	56289	$6720106 \mathrm{H1OOCG} 2 \mathrm{C}$
A15C167	290-0939-01	B014562		CAP, FXD, ELCTLT: 10UF, +100-10\%, 100V	56699	348180100V100.JDB
A15C168	281-0783-00			CAP, FXD, CER DI:0.1 UF 20\%, 100 V	04222	MA401C104MAA
A15C174	283-0167-00			CAP,FXD,CER DI: $0.1 \mathrm{UF}, 10 \%$, 100	04222	3430-100C-104K
A15C175	285-1040-00			CAP, FXD, PLASTIC: $1200 \mathrm{PF}, 10 \%, 4000 \mathrm{~V}$	04099	TEK-17A
A15C182	281-0775-00			CAP. FXD, CER DI:0.1UF, 20%, 50V	04222	MA205E104MAA
A15C183	285-1119-00			CAP, FXD, PLASTIC: $0.082 \mathrm{UF}, 10 \%, 200 \mathrm{~V}$	19396	PP680C823K
A15C185	281-0775-00			CAP, FXD, CER DI:0.1UF,20\%, 50 V	04222	MA205E104MAA
A15C190	285-0892-00			CAP,FXD, PLASTIC:0.22LF, 10%, 200V	14752	650B1C224K
A15C191	290-0159-00			CAP, FXD, ELCTLT: $2 \mathrm{UF},+50-10 \%$, 150V	56289	30D205F1508B2
A15C196	285-1040-00			CAP, FXD, PLASTIC: $1200 \mathrm{PF}, 10 \%$; 4000 V	04099	TEK-17A
A15C197	285-0892-00			CAP,FXD, PLASTIC:0.22UF, 10%, 200V	14752	65081 C 224 K
A15C202	285-1101-00			CAP, FXD, PLASTIC: $0.022 \mathrm{UF}, 10 \%$, 200 V	19396	223K02PT485
A15C205	281-0773-00			CAP, FXD, CER DI: $0.01 \mathrm{~F}, 10 \%, 100 \mathrm{~V}$	04222	MA201C103kAA
A15C209	285-1101-00			CAP, FXD, PLASTIC:0.022UF, $10 \%, 200 \mathrm{~V}$	19396	223K02PT485
A15C210	281-0773-00			CAP, FXD, CER DI: $0.01 \mathrm{LF}, 10 \%$, 100 V	04222	MA201C103KAA
A15C211	281-0783-00			CAP, FXD, CER DI:0.1 UF 20\%,100V	04222	MA401C104MAA
A15C298	285-1095-00			CAP, FXD, PLASTIC: $0.0033 \mathrm{UF}, 10 \%, 600 \mathrm{~V}$	19396	332K06PP481
A15CR8	152-0141-02			SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)

Camponent No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A15CR9	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V, 150MA, 30V, 00-35	03508	DA2527 (1N4152)
A15CR24	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (N 4152)
A15CR25	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A15CR91	152-0141-02		SEMICOND DVC, DI: SW, SI, 30V. 150MA, 30V, D0-35	03508	DA2527 (1N4152)
A15CR92	152-0061-00		SEMICOND OVC, DI : SW, SI, 175V, 0.1A, D0-35	07263	FDH2161
A15CR94	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V,D0-35	03508	DA2527 (1N4152)
A15CR100	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 ((N4152)
A15CR123	152-0061-00		SEMICOND DVC, DI :SW, SI, 175V, 0, 1A, D0-35	07263	FDH2161
A15CR127	152-0061-00		SEMICOND DVC, DI: SW, SI, 175V,0.1A, D0-35	07263	FDH2161
A15CR130	152-0061-00		SEMICOND DVC, DI :SW, SI, 175V,0.1A, D0-35	07263	FDH2161
A15CR140	152-0061-00		SEMICOND DVC, DI: SW, SI, 175V,0.1A, D0-35	07263	FDH2161
A15CR148	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA,30V,D0-35	03508	DA2527 (1N4152)
A15CR154	152-0061-00		SEMICOND DVC, DI:SW, SI, 175V, 0.1A, D0-35	07263	FDH2161
A15CR156	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A15CR157	152-0107-04		SEMICOND DVC, DI: RECT, SI, 400V, 400MA	14936	GPD-011
A15CR161	152-0061-00		SEMICOND DVC, DI:SW, SI, 175V, $0.1 \mathrm{~A}, \mathrm{DO}-35$	07263	FDH2161
A15CR163	152-0141-02		SEMICOND DVC, DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A15CR165	152-0107-04		SEMICOND DVC, DI: RECT,SI,400V,400MA	14936	GPD-011
A15CR167	152-0398-00		SEMICOND DVC, DI:RECT,SI, 200V,1A	04713	SR3609RL
A15CR168	152-0061-00		SEMICOND DVC, DI:SW,SI, 175V, 0.14, D0-35	07263	FDH2161
A15CR174	152-0141-02		SEMICOND DVC,DI:SW,SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
A15CR175	152-0141-02		SEMICOND DVC, DI:SW, SI, 30V, 150MA, 30V, DO-35	03508	DA2527 (1N4152)
A15CR177	152-0141-02		SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, $00-35$	03508	DA2527 (1N4152)
A15CR190	152-0061-00		SEMICOND DVC, DI:SW, SI, 175V,0.1A, D0-35	07263	FDH2161
A15CR191	152-0066-00		SEMICOND DVC,DI:RECT,SI,400V,1A, D0-41	05828	GP10G-020
A15CR197	152-0061-00		SEMICOND DVC,DI:SW,SI, 175V, 0.1A, DO-35	07263	FDH2161
A15DS195	150-0030-00		LAMP, GLOW:60-90V MAX , 0.7 MA, A28-T, WIRE LEADS	58224	A2B-T
A15DS196	150-0030-00		LAMP,GLOW:60-90V MAX, 0.7 MA, A28-T, WIRE LEADS	58224	A2B-T
A15DS197	150-0030-00		LAMP, GLOW: 60-90V MAX, 0.7 MA, A28-T, WIRE LEADS	58224	A28-T
A15E53	276-0569-00	B013054	CORE, EM: TOROID, FERRITE	28733	T1 20606-C2050
A15E55	276-0569-00	B013054	CORE, EM:TOROID, FERRITE		T1 20606-C2050
A15F89	159-0183-00		FUSE, CARTRIDGE: $5.2 \times 20 M 14,0.25 \mathrm{~A}, 125 \mathrm{~V}$	TK0946	TSC-250MA
A15L54	108-0440-00		COIL, RF:FIXED, 8UH	80009	108-0440-00
A15L167	108-0237-00		COIL, RF:FIXED, 80UH	TK2042	ORDER BY DESCR
A15L191	108-0691-00		COIL, RF: FIXED, 1.8MH	76493	02279
A15093	151-0192-03	B010100 B014526	TRANSISTOR: SELECTED	80009	151-0192-03
A15093	151-0192-00	B014527	TRANSISTOR:SELECTED	04713	SPS8801
A150100	151-0188-03	B010100 B014526	TRANSISTOR:SELECTED	80009	151-0188-03
A150100	151-0188-00	8014527	TRANSISTOR:PNP, SI, TO-92	80009	151-0188-00
A150107	151-0190-05	B010100 B014526	TRANSISTOR: SELECTED 2N3904	80009	151-0190-05
A150107	151-0190-00	B014527	TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A150114	151-0350-01		TRANSISTOR: PNP, SI, SELECTED	80009	151-0350-01
A150115	151-0347-01		TRANSISTOR:SELECTED	TK0271	151-0347-01
A150116	151-0199-02	B010100 B014526	TRANSISTOR:PNP, SI, TO-92	80009	151-0199-02
A150116	151-0199-00	B014527	TRANSISTOR:PNP, SI, T0-92	27014	ST65057
A150148	151-0347-01		TRANSISTOR:SELECTED	TK0271	151-0347-01
A15Q155	151-0350-01		TRANSISTOR: PNP, SI, SELECTED	80009	151-0350-01
A15Q156	151-0190-05	8010100 B014526	TRANSISTOR:SELECTED 2N3904	80009	151-0190-05
A15Q156	151-0190-00	B014527	TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A150161	151-0701-00		TRANSISTOR:NPN, SI, TO-220	S0167	2SC2527G
A150163	151-0364-00		TRANSISTOR:PNP, SI, X-51C	03508	X43CR181
A150178	151-0126-01	80101008014526	TRANSISTOR: SELECTED	80009	151-0126-01
A150178	151-0126-00	B014527	TRANSISTOR:NPN, SI, TO-18	04713	ST1046
A150184	151-0188-03	B010100 B014526	TRANSISTOR:SELECTED	80009	151-0188-03
A150184	151-0188-00	B014527	TRANSISTOR:PNP, SI, TO-92	80009	151-0188-00
A15R8 A15R9 A15R10	$\begin{aligned} & 321-0086-00 \\ & 317-0200-00 \\ & 315-0220-00 \end{aligned}$		RES, FXD, FILM: $76.8 \mathrm{OH}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=\mathrm{TO}$ RES, FXD,CMPSN: 22 OHM, $5 \%, 0.125 \mathrm{~W}$ RES, FXD, FILM: 22 OHM, $5 \%, 0.25 \mathrm{~W}$	$\begin{aligned} & 91637 \\ & 01121 \\ & 19701 \end{aligned}$	CMF55116G76R8OF BB2205 5043CX22ROOJ

Replaceable Electrical Parts - 2335 Service

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A15R17	315-0111-00		RES, FXD, FILM: 110 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E110E
Al5R18	311-2082-00		RES, VAR, NONWW: TRMR, 200 OHM, 10\%, 0.5W	32997	3386X-T04-201
Al5R22	321-0134-00		RES, FXD, FILM: 243 OHM, 1\%, 0.125W, TC = TO	19701	5043ED243R0F
A15R23	321-0134-00		RES, FXD, FILM: 243 OHM, 1\%, 0.125W, TC=TO	19701	5043ED243R0F
A15R24	317-0220-00		RES, FXD, CMPSN: 22 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2205
A15R25	321-0086-00		RES, FXD, FILM: 76.8 OHM, 1\%,0.125W, TC= $=0$	91637	CMF55116G76R80F
Al5R26	315-0111-00		RES, FXD, FILM: 110 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E110E
Al5R29	311-1560-00		RES, VAR, NONWW: TPMR, 5 K OHM, 0.5 W	32997	3352T-1-502
A15R30	315-0471-00		RES, FXD, FILM: 470 OHM, 5\%, 0.25W	57668	NTR25J-E470E
A15R31	315-0101-00		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
Al5R32	311-1564-00		RES, VAR, NONWW: TRMR, 500 OHM, 0.5 W	32997	3352T-CK5501
Al5R37	315-0181-00		RES, FXD, FILM: 180 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E180E
A15R38	315-0181-00		RES, FXD, FILM: 180 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E180E
Al5R39	311-0605-00		RES, VAR, NONWW:TPMR, 200 OHM, 0.5 W	32997	3329H-G48-201
Al5R43	321-0106-00		RES, FXD, FILM: 124 OHM 1\%, 0.125W, TC= 50	07716	CEAD124R0F
Al5R44	311-0643-00		RES, VAR, NONWW: TRMR, 50 OHM, 0.5 W	32997	3329H-L58-500
Al5R50	321-0157-00		RES, FXD, FILM: 422 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD422R0F
A15R51	321-0083-00		RES, FXD, FILM: $71.5 \mathrm{OHM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD71R50F
Al5R52	321-0083-00		RES, FXD, FILM: 71.5 OHM, 1\%, $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD71R50F
Al5R53	321-0157-00		RES, FXD, FILM: 422 OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD422R0F
A15R57	315-0470-00		RES, FXD, FILM: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47E0
Al5R58	315-0331-00		RES, FXD, FILM:330 OHM,5\%,0.25W	57668	NTR25J-E330E
A15R59	315-0203-00		RES, FXD, FILM: 20 K OHM,5\%, 0.25 W	57668	NTR25J-E 20K
A15R60	315-0203-00		RES, FXD, FILM: 20 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 20K
A15R64	315-0203-00		RES, FXD, FILM:20K OHM, 5\%, 0.25 W	57668	NTR25]-E 20K
A15R65	315-0203-00		RES, FXD, FILM:20K OHM, 5\%,0.25W	57668	NTR25J-E 20K
A15R66	311-1560-00		RES, VAR, NONWW: TRMR, 5 K OHM, 0.5 W	32997	3352T-1-502
Al5R67	315-0391-00		RES, FXD, FILM: 390 OHM, 5\%, 0.25W	57668	NTR25J-E390E
Al5R71	322-0147-00		RES, FXD, FILM: 332 OHM, 1\%, 0.25W, TC=T0	24546	NA6003320F
Al5R72	322-0147-00		RES, FXD, FILM: $332 \mathrm{OH}, 1 \%, 0.25 \mathrm{~W}, \mathrm{TC}=$ TO	24546	NA6003320F
Al5R73	311-1561-00		RES, VAR, NONWW: TRMR, 2.5 K OHM, 0.5W	32997	3352T-DY7-252
A15R74	315-0391-00		RES, FXD, FILM: 390 OHM, 5\%, 0.25W	57668	NTR25J-E390E
A15R75	322-0147-00		RES, FXD, FILM: 332 OHM, 1\%, 0.25W, TC=T0	24546	NA6003320F
A15R78	322-0147-00		RES, FXD, FILM: 332 OHM, 1\%, 0.25W, TC=TO	24546	NA60023320F
A15R79	315-0221-00		RES, FXD, FILM: 220 OHM,5\%,0.25W	57668	NTR25J-E220E
Al5R80	307-0105-00		RES, FXD, CMPSN:3.9 OHM, 5\%,0.25W	01121	CB 3965
A15R85	315-0100-00		RES, FXD, FIIM: 10 OHM, 5\%,0.25W	19701	5043 CX10RR00J
A15R86	315-0100-00		RES, FXD, FILM: 10 OHM, 5\%, 0.25W	19701	5043CX10RR00J
Al5R87	315-0100-00		RES, FXD, FILM: 10 OHM, 5\%, 0.25W	19701	5043CX10RR00J
A15R90	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
Al5R91	315-0511-00		RES, FXD, FILM: 510 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX510R0J
A15R92	315-0240-00		RES, FXD, FILM: 24 OHM, 5\%,0.25W	57668	NTR25J-E24E0
A15R93	321-0227-00		RES, FXD, FILM:2.26K OHM, 1\%,0.125W, TC $=$ TO	01121	RNK2261F
A15R94	322-0287-00		RES, FXD, FILM:9.53K OHM $1 \%, 0.25 \mathrm{~W}, \mathrm{TC}=$ TO	24546	NA60D9531F
Al5R99	321-0258-00		RES, FXD, FILM:4.75K OHM, 1\%,0.125W, TC=TO	19701	5033ED4K750F
A15R100	321-0030-00		RES, FXD, FILM $: 20.0$ OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	57668	CRB14FXE 20 OHM
A15R101	321-0286-00		RES, FXD, FILM: $9.31 \mathrm{~K} 0 \mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5043ED9K310F
Al5R102	321-0294-00		RES, FXD, FILM: 11.3 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	19701	5043ED11K30F
A15R106	321-0144-00		RES, FXD, FILM: 309 OHM, 1\%, 0.125W, TC= $=$ T0	07716	CEAD309R0F
A15R107	315-0122-00		RES, FXD, FILM:1.2K OHM, 5\%, 0.25W	57668	NTR25J-E01K2
A15R108	315-0330-00		RES, FXD, FILM: 33 OHM, 5\%,0.25W	19701	5043CX33R00]
A15R109	315-0331-00		RES, FXD, FILM:330 OHM, 5\%, 0.25W	57668	NTR25J-E330E
A15R113	315-0162-00		RES, FXD, FILM:1.6K OHM, 5\%, 0.25W	19701	5043CX1K600J
A15R114	301-0273-00		RES, FXD, FILM:27K OHM,5\%,0.5W	19701	$5053 \mathrm{CX27K00J}$
A15R115	315-0200-00		RES, FXD, FILM: 20 OHM, 5\%,0.25W	19701	5043CX20R00]
A15R116	315-0331-00		RES, FXD,FILM:330 OHM, 5\%, 0.25W	57668	NTR25J-E330E
A15R120	315-0513-00		RES, FXD, FILM: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E51K0
A15R121	315-0113-00		RES, FXD, FILM:11K OHM, 5\%, 0.25 W	19701	5043CX11K00J

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A15R122	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A15R123	315-0103-00		RES, FXD, FILM:10K OHM, 5\%,0.25W	19701	5043CX10K00,
A15R127	315-0101-00		RES, FXD, FILM: 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A15R128	321-0277-00		RES, FXD, FILM $7.50 \mathrm{~K} 01 \mathrm{M}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	24546	NA55D7501F
A15R130	315-0102-03		RES, FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A15R134	315-0103-03		RES, FXD, CMPSN: $10 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	80009	315-0103-03
A15R135	315-0102-03		RES, FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A15R136	315-0224-01		RES, FXD, CMPSN: $220 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB2245
A15R140	311-1164-00		RES, VAR, NOMW:TRMR, 50K OHM, 0.5 W	01121	E2C503
A15R147	315-0203-00		RES. FXD, FILM 20 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 20K
A15R148	315-0203-00		RES, FXD, FILM:20K OHM, 5\%,0.25W	57688	NTR25J-E 20K
A15R149	321-0982-00		RES, FXD, FILM:450K OHM, 1\%, 0.125w, TC=T0	07716	CEAD45002F
A15R150	321-0756-00		RES, FXD, FILM: 50 K OHM, 1\%, 0.125 W , TC=TO	24546	NA55D5002F
A15R154	315-0473-00		RES, FXD, FILM: 47 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E47K0
A15R155	315-0622-00		RES, FXD, FILM $6.2 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX6K200,
A15R156	315-0102-00		RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A15R157	315-0101-00		RES, FXD, FILM: $1000 \mathrm{OM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A15R161	315-0120-00		RES, FXD, FILM: 12 OHM, 5\%, 0.25W	57668	NTR251-R12
A15R163	315-0101-00		RES, FXD, FILM 100 OHM, 5\%, 0.25W	57668	NTR25J-E 100E
A15R168	315-0511-00		RES, FXD, FILM: 510 OHM, 5\%, 0.25 W	19701	5043CX510R0J
A15R176	307-0687-00		RES NTWK, FXD, FI:HIGH VOLTAGE DIVIDER	80009	307-0687-00
A15R177	315-0393-00		RES, FXD, FILM 39 K OHM, $5 \%, 0.25 \mathrm{~W}$	57688	NTR25J-E39K0
A15R178	315-0474-00		RES, FXD, FILM 470 K 0 HM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX470K0, 92 U
A15R182	315-0123-00		RES, FXD, FILM: 12 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E12K0
A15R183	315-0101-00		RES, FXD, FILM: 1000 OHM, 5\%, 0.25 W	57668	NTR25J-E 100E
A15R184	315-0101-00		RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR251-E 100E
A15R185	315-0822-00		RES, FXD, FILM $8.2 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX8K200J
A15R191	315-0101-00		RES, FXD, FILM: $100 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A15R192	308-0703-00	B013054 B013122	RES, FXD, WW: 1.8 OHM, 5\%, 2 W	75042	BWH 1.8 OHM 5\%
A15R202	311-1148-00		RES, VAR, NONW : TRMR, $100 \mathrm{~K} 0 \mathrm{HM}, 0.5 \mathrm{~W}$	32997	3386M-T07-104
A15R203	311-1137-00		RES, VAR, NONWW: TPMR, 5K OHM 0 O. 5 W	01121	E2C502
A15R204	315-0623-00		RES, FXD, FILM: $62 \mathrm{~K} 0 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	19701	5043CX62K00J
A15R205	315-0104-00		RES, FXD, FILM $100 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E100K
A15R210	315-0101-00		RES, FXD, FILM: $1000 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR253-E 100E
A15R211	315-0101-00		RES, FXD, FILM $1000 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A15R931	315-0102-00		RES, FXD, FILM: $1 \mathrm{~K} 0 \mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
A15R940	311-2118-00		RES, VAR, NONWW: PNL, 5M OHM, 20\%, 0.5W	12697	CM41759
A15T9	108-0570-00		COIL, RF:FIXED, 75NH	TK2042	ORDER BY DESCR
A15T24	108-0570-00		COIL,RF:FIXED, 75NH	TK2042	ORDER BY DESCR
A151167	120-1311-00		XFMR, PWR, STU:HIGH VOLTAGE	80009	120-1311-00
A151168	108-1066-00		COIL, RF:FIXED, 95UH	TK1345	ORDER BY DESCR
A15TP92	214-0579-00		TERM, TEST POINT:BRS CD PL	80009	214-0579-00
A15U43	155-0218-00		MICROCKT,LINEAR:VERTICAL OUTPUT AMPL,20 DIP	80009	155-0218-00
A15U54	155-0219-00		MICROCKT,LINEAR:VERTICAL OUTPUT DR,SOT PKG	80009	155-0219-00
A15U58	156-0067-12		MICROCKT, LINEAR:OPERATIONAL AMPLIFIER	01295	UA741CJg
A151130	152-0767-00		SEMICOND DVC, DI:HV MULTR, SI, 5400V PP INP	\$4431	MSL 8510
A15VR51	152-0395-00		SEMICOND DVC, DI:ZEN, SI, 4.3V,5\%,0.4W	04713	SZG35009K18
A15VR123	152-0749-00		SEMICOND DVC, DI:ZEN, SI, 82V, $5 \%, 5 \mathrm{~F}, \mathrm{~A}$-LEE	04713	SZP40096
A15VR140	152-0284-00		SEMICOND DVC, DI: 2 EN, SI, 47V, $5 \%, 0.4 \mathrm{~W}$, D0-7	12954	1N977B
A15VR148	152-0514-00		SEMICOND DVC,DI:ZEN, SI, 10V, 1\%,0.4W, D0-7	04713	SZG15RL
A15VR155	152-0166-00		SEMICOND DVC,DI:ZEN,SI, 6.2V,5\%,0.4W, D0-7	04713	SZ11738RL
Al5VR198	152-0247-00		SEMICOND DVC, DI:ZEN,SI, 150V, 5\%, 0.4W, D0-7	04713	SZG275KIRL
A15W1	131-0566-00		BUS, CONDUCTOR:DUMY RES, 0.094 OD $\times 0.225 \mathrm{~L}$	24546	OMA 07
Al5W163	131-0566-00		BUS, CONDUCTOR:DUMYY RES, $0.09400 \times 0.225 \mathrm{~L}$	24546	OMA 07
A15W209	131-0566-00		BUS,CONDUCTOR:DUMY RES, $0.094 \mathrm{DD} \times 0.225 \mathrm{~L}$	24546	OMA 07

Camponent No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name \& Description	$\begin{aligned} & \text { Mfr. } \\ & \text { Code } \end{aligned}$	Mfr. Part No.
A16	670-6531-00		CIRCUIT BD ASSY:B TIMING SWITCH	80009	670-6531-00
Al6C1	295-0193-00		CAP SET,MATCHED:10UF,IUF,0.0099UF, 900PF	80009	295-0193-00
A16C2	---------		(FURNISHED AS A MATCHED SET WITH A1GC1)		
A16C3	----------		(FURNISHED AS A MATCHED SET WITH Al6C1)		
A16C4	----- -----		(FURNISHED AS A MATCHED SET WITH AIGC1)		
A16R1	307-0693-00		RES NTWK, FXD, FI:TIMING	80009	307-0693-00
A16R2	315-0332-00		RES, FXD, FILM: $3.3 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E03K3
A16R3	315-0472-00		RES, FXD, FILM: 4.7 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E04K7
A16R4	315-0752-00		RES, FXD, FILM: 7.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E07K5
A16R5	315-0153-00		RES, FXD, FILM 15 K OHM, 5\%, 0.25W	19701	5043CX15K00J
A16R6	315-0273-00		RES, FXD, FILM: $27 \mathrm{~K} 0 \mathrm{OM}, 5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E27K0
A16R7	315-0563-00		RES, FXD, FILM 56 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX56K00J

Component No.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A17	870-6530-00			CIRCUIT BD ASSY:A TIMING SWITCH	80009	670-6530-00
A17C1	---------			(FURNISHED AS A MATCHED SET WITH AlGC1)		
A17C2	----------			(FURNISHED AS A MATCHED SET WITH A16C1)		
A17C3	----------			(FURNISHED AS A MATCHED SET WITH AlEC1)		
A17Q10	151-0190-05	B010100	B014526	TRANSISTOR:SELECTED 2N3904	80009	151-0190-05
A17Q10	151-0190-00	B014527		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A17R1	307-0693-00			RES NTWK, FXD,FI:TIMING (AI7R1A,B,C,D,E,F,G)	80009	307-0693-00
A17R2	315-0332-00			RES, FXD, FILM:3.3K 0 HM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25]-E03K3
A17R3	315-0472-00			RES, FXD, FILM: 4.7 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E04K7
A17R4	315-0752-00			RES, FXD, FILM: 7.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E07K5
A17R5	315-0153-00			RES, FXD, FILM 15 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX15K00J
A17R6	315-0273-00			RES, FXD, FILM:27K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E27K0
A17R7 Al7R10	$315-0563-00$ $315-0621-00$			RES, FXD, FILM: $56 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$ RES, FXD, FILM: $620 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	$\begin{aligned} & 19701 \\ & 57668 \end{aligned}$	5043CX56K00J NTR25J-E620E

Component No.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Nane \& Description	Mfr. Code	Mfr. Part No.
A18	670-6589-00			CIRCUIT BD ASSY:PROBE COMPENSATOR	80009	670-6589-00
A18C6	285-1100-00			CAP, FXD, PLASTIC:0.022UF, 5\%, 200V	19396	223J02PT485
A18C12	290-0164-00			CAP, FXD, ELCTLT: $1 \mathrm{UF},+50-10 \%, 150 \mathrm{~V}$	56289	5000105F150BA2R2
A18C20	281-0775-00			CAP, FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	04222	MAZ05E104MAA
A18Q13	151-0190-05	B010100	8014526	TRANSISTOR:SELECTED 2N3904	80009	151-0190-05
A18Q13	151-0190-00	B014527		TRANSISTOR:NPN, SI, TO-92	80009	151-0190-00
A18R1	321-0358-00			RES, FXD, FILM: 52.3 K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T0	07716	CEAD52301F
A18R2	321-0323-00			RES, FXD, FILM:22.6K OHM, 1\%,0.125W, TC=T0	07716	CEAD22601F
A18R3	321-0323-00			RES, FXD, FILM:22.6K OHM, 1\%,0.125W, TC=T0	07716	CEAD22601F
A18R4	315-0563-00			RES, FXD, FILM: 56 K OHM, 5%, 0.25 W	19701	5043CX56K00J
A18R6	321-0358-00			RES, FXD, FILM $: 52.3 \mathrm{~K} 0 \mathrm{H}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	07716	CEAD52301F
A18R10	315-0103-00			RES, FXD, FILM:10K OHM, 5\%, 0.25W	19701	5043CX10K00J
A18R12	315-0100-00			RES, FXD, FILM: 10 OHM, 5\%, 0.25W	19701	5043CX10RR00J
A18R13	321-1289-07			RES, FXD, FILM: $10.1 \mathrm{~K} 0 \mathrm{M}, 0.1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T9	19701	5033RE10K10B
A18R15	321-0685-07			RES, FXD, FILM: 30 K OHM, $0.1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T9	07716	CEAE30001B
A18R17	321-0829-07			RES, FXD, FILM: $202 \mathrm{OHM}, 0.1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ T9	19701	5033RE202ROB
A18R20	315-0101-00			RES, FXD, FILM: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J-E 100E
A18U1	156-0494-02	B010100	8010299	MICROCKT,DGTL:HEX INV/BUFF, SELECTED	02735	CD4049UBFX
A18U1	156-0494-02	B010300	8017274	MICROCKT, DGTL:HEX INV/BUFF, SELECTED	02735	CD4049UBFX
Al8U1	156-0494-00	B017275		MICROCKT, DGTL:HEX INVERTER	02735	CD4049UBF

Component No.	Tektronix Part No.	Serial/Assenbly No. Effective Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
A19	119-1193-00		ATTENUATOR, VAR: $5 M \mathrm{TV}$ TO 5V,1MEG OHM HYBRID	80009	119-1193-00
A19R20	307-0692-00		RES NTWK, FXD, FI:LOW Z ATTENUATOR	80009	307-0692-00
A19R30	307-0682-00		RES NTHK, FXD, FI:ATTENUATOR	80009	307-0682-00
A19R902	311-2089-00		RES, VAR, NONWW: PNL, IOK OHM, 20\%,0.5W (CHANNEL 1 ONLY)	01121	$20 M 156$
A19R906	311-2089-00		RES, VAR,NONWW: PNL, 10K OHM, 20\%,0.5W (CHANNEL 2 ONLY)	01121	20M156
Al9S1	263-1188-00		SW CAM ACTR AS:ATTENLATOR (FURN AS A SET W/A19S2)	80009	263-1188-00
A19S2	-------		(FURN AS A SET W/A19S1)		

Camponent No.	Tektronix Part No.	Serial/Asse Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
B924	119-0830-02			FAN, TUBEAXIAL: $12 \mathrm{VOC}, 2.4 \mathrm{~W}, 5250 \mathrm{RPM}, 31 \mathrm{CFM}$	TK0146	69.11.55
C900	283-0000-00			CAP, FXD, CER DI:0.001UF, $+100-0 \%$, 500 V	59660	831-610-Y5U0102P
C901	283-0000-00			CAP, FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%$, 500 V	59660	831-610-Y5U0102P
C911	281-0876-00			CAP, FXD, CER DI: $5.6 \mathrm{PF},+/-0.5 \mathrm{PF}, 500 \mathrm{WDC}$	04222	MA106A569D
CR931	152-0141-02			SEMICOND DVC, DI: SW, SI, 30V,150MA, 30V, D0-35	03508	DA2527 (1N4152)
CR932	152-0141-02			SEMICOND DVC, DI :SW, SI, 30V, 150MA, 30V, D0-35	03508	DA2527 (1N4152)
DL900	119-1309-00			DELAY LINE, ELEC:92NS, 750 OM	80009	119-1309-00
DS900	150-1054-01			LT EMITIING DIO:GREEN, 560NM, 4OMA MAX	72619	558-0201-802
DS902	150-1093-01			LT EMITIING DIO:RED, 655NM 50MA MAX	15513	P205W8-R1-N-CS24
DS910	150-1093-00			LT EMITTING dIO:RED, 655NM 50MA MAX	15513	SP830330
F900	159-0022-00			FUSE, CARTRIDGE:3AG, 1A, 250V.MEDIUM BLOW	71400	AGC-CW-1
F900	159-0182-00	B010100	B014440	FUSE, CARTRIDGE: $5 \times 2041,0.5 A, 250 \mathrm{~V}$, FAST BLOW (OPTION A1,A2 \& A3 ONLY)	82330	19200.5 A
F900	159-0025-00	B014441		FUSE, CARTRIDGE:3AG, $0.5 \mathrm{~A}, 250 \mathrm{~V}, 0.25 \mathrm{SEC}$	71400	AGC-CW-1/2
F900	159-0025-00			FUSE, CARTRIDGE: 3AG, $0.5 \mathrm{~A}, 250 \mathrm{~V}, 0.25 \mathrm{SEC}$ (OPTION A4 ONLY)	71400	AGC-CW-1/2
FL900	119-1359-00	B010100	B015629	FILTER,RFI:3A, 115/250VAC, 50/60HZ	13050	61063
FL900	119-2360-00	B015630		FILTER, RFI : 3A, $50-60 \mathrm{HZ}, 115-250 \mathrm{~V}$	80009	119-2360-00
$L 913$	119-1366-00			COMPONENT ASSY:RF COIL W/CONNECTOR	80009	119-1366-00
L915	108-0967-00			COIL, RF:FIXED, 280NH	80009	108-0967-00
R900	315-0474-00			RES, FXD, FILM: 470 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX470K0J92U
R901	315-0474-00			RES, FXD, FILM: 470 K OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX470K0J92U
$\mathrm{R903}$	311-2121-00			RES, VAR,NONWW: PNL, 500 OHM, 10\%, 0.5W	01121	WA1G040S501UZ
R904	321-0227-00			RES, FXD, FILM: $2.26 \mathrm{~K} O \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	01121	RNK2261F
R905	321-0227-00			RES, FXO, FILM:2.26K OHM, $1 \%, 0.125 \mathrm{~W}, \mathrm{TC}=$ TO	01121	RNK2261F
R907	311-2121-00			RES, VAR, NONWW: PNL, $5000 \mathrm{HM}, 10 \%, 0.5 \mathrm{~W}$	01121	WA1G040S501UZ
R909	311-2123-00			RES, VAR, NOMW: PNL, 5K OHM, 20\%, 0.5W	01121	209904
R911	315-0270-00			RES, FXD, FILM: 27 OHM, $5 \%, 0.25 \mathrm{~W}$	19701	5043CX27R003
R913	311-2120-00			RES, VAR, NONWN: PNL, 20K OHM , 20\%, 0.5W	01121	WALG 040S 203MZ
R918	311-2142-00			RES, VAR, WW: 10K OHM, 5\%, 2W, 10 TLRN	02111	534-7213
R930	311-2091-00			RES, VAR, NONWW: PNL, 10K OHM, 20\%, 0.5W	01121	22M553
R931	315-0102-00			RES, FXD, FILM: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	57668	NTR25JE01K0
R935	311-2117-00			RES, VAR, NONWW:DUAL, PNL, 10K $\times 2.5 \mathrm{~K} 0 \mathrm{HM}, 20 \%$	12697	CM41783
R942	311-2119-00			RES, VAR, NONWW:PNL, 5K OHM, 20\%, 0.5 W	01121	WA4G032S502MZ
R945	311-2122-00			RES, VAR, NONWW: PNL, 100K OHM, $20 \%, 0.5 \mathrm{~W}$	12697	CM41785
S900	----------			(FURNISHED AS PART OF R909)		
S901	260-1967-00			SWITCH,SLIDE:DPDT 5A/250V 10A/125V MKD (STANDARD ONLY)	TK0935	4021.0512
5901	260-1967-02			SWITCH,SLIDE:DPDT,5A,250V (OPTION 03 ONLY)	80009	260-1967-02
5903	260-2047-00			SWITCH, PUSH:DPST, 4A, 250V	31918	600983
T900	120-1314-00			XFMR,PWR,STPDN: LF	80009	120-1314-00
v940	154-0832-00			ELECTRON TUBE:CRT, T2330	80009	154-0832-00

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966
Y14.2, 1973
Y10.5, 1968

Drafting Practices.
Line Conventions and Lettering. Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.

American National Standard Institute 1430 Broadway
New York, New York 10018

Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:
Capacitors $=$ Values one or greater are in picofarads (pF). Values less than one are in microfarads ($\mu \mathrm{F}$).
Resistors $=$ Ohms (Ω).

The information and special symbols below may appear in this manual.

Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number *(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

(1)(2) and (3) -1 st, 2nd, and 3rd significant figures
(1)
(T)
($)$
(T)-tolerance
(P) -polarity and voltage rating
(T) and/or $\begin{gathered}\text { an some capacitors } \\ \text { on }\end{gathered}$ color may not be present

COLOR	$\begin{gathered} \text { SIGNIFICANT } \\ \text { FIGURES } \end{gathered}$	RESISTORS		CAPACITORS			DIPPED TANTALUM RATING
		MULTIPLIER	tolerance	MULTIPLIER	tolerance		
					over 10 pF	under 10 pF	
BLACK	0	1	---	1	$\pm 20 \%$	$\pm 2 \mathrm{pF}$	4 VDC
BROWN	1	10	$\pm 1 \%$	10	$\pm 1 \%$	± 0.1 pF	6 VDC
RED	2	10^{2} or 100	$\pm 2 \%$	10^{2} or 100	$\pm 2 \%$	---	10 VDC
ORANGE	3	10^{3} or 1 K	$\pm 3 \%$	10^{3} or 1000	$\pm 3 \%$	--	15 VDC
Yellow	4	10^{4} or 10 K	+4\%	10^{4} or 10,000	+100\% -9\%	----	20 VDC
Green	5	10^{5} or 100 K	$\pm 1 / 2 \%$	10^{5} or 100,000	+5\%	$\pm 0.5 \mathrm{pF}$	25 VDC
blue	6	10^{6} or 1 M	$\pm 14 \%$	10^{6} or 1,000,000	---	---	35 VDC
VIoLET	7	---	$\pm 1 / 10 \%$	---	---	---	50 VDC
gray	8	---	---	10^{-2} or 0.01	+80\% - 20%	$\pm 0.25 \mathrm{pF}$	---.
WHITE	9	---	---	10^{-1} or 0.1	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	3 VDC
GOLD	-	10^{-1} or 0.1	$\pm 5 \%$	---	---	---	---
SILVER	-	10^{-2} or 0.01	$\pm 10 \%$	---	---	---	---
NONE	-	---	$\pm 20 \%$	-	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	---

1861-20A

INDEX

ـ___ integrated circuits

5. Locate the Component on the Circuit Board
a. In the manual, locate and pull out the tabbed page whose circuit board. This information is on the back side of circuit
tabs.
b. Using the Circuit Number and grid coordinates, locate the component on the Circuit Board Illustration.

In the circuit board location illustration, det
location of the circuit board in the instrumen
d. Find the circuit board in the instrument and compare in with its illustration in the manual to locate the desired
component on the board.

In the instrument identify the Assembly Number of the circuit board in question. The Assembly Number is usually printed on the upper left corner of the circuit board on the In the manual locate and pull out tabbed page whose title
corresponds with the Assembly Number of the circuit corresponds with the Assembly Number of the circuit
board. Circuit board assembly numbers and board nomenclature are printed on the back side of the tabs (facing the rear of the manual).

Determine the Circuit Number

a. Compare the circuit board with its illustration and locate the desired component by area and shape on the illustra
b. Scan the table adjacent to the Circuit Board Illustration and find the circuit Number of the desired component
c. Determine the Schematic Diagram Number in which th Determine
component is located

A6 CRT BOARD

Location
Number of the circuit board on which the the Assembly mounted. This information is boxed andlocated in a corner of the heavy line that distinguishes the board outline.
b. Scan the Component Location Table for the Assembly Number just determined and find the Circuit Number of the desired component.
der the bOARD LOCATION co coordinates for the desired component

[^10]

CHASSIS MOUNTED PARTS

CIRCUIT NUMBER	SCHEM NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$
B924	8	7 N	J914	1	2A	R911	5	2 A
			J915	1	7A	R913	5	1 J
C900	1	2G	J920	4	7E	R918	6	8H
C901	1	7G	J935	5	2A	$R 930$	7	2D
C911	5	2A	J954	8	8F	R931	7	1E
						R935A	8	3A
CR931	7	2E	L913	3	3 J	R935B	8	3A
CR932	7	2E	L915	3	4 J	R940	9	4J
						R942	9	1 N
DL. 900	2	5N	P708	2	8 E	R945	9	4N
			P800	2	4E			
DS195	9	6J	P830	5	6B	S900	3	5A
DS196	9	5.	P831	5	6 B	S901	10	3B
DS197	9	5.				S902	2	3G
DS900	6	4C	R900	1	2G	S903	10	5 B
DS902	7	1 F	R901	1	7G	S906	2	6G
DS910	2	4E	R902	2	3G	5930	7	3F
			R903	2	3G	S934	7	1 E
F900	10	68	R904	2	3G			
			R905	2	7G	T900	10	18
FL900	10	6A	R906	2	7G			
			R907	2	7G			
$\checkmark 900$	10	6B	R909	3	6 A			

TEST WAVEFORM AND VOLTAGE SETUPS

On the left-hand pages preceding the schematic diagrams are illustrations of test waveforms that are intended to aid in onnect the initial test setup as specified in these setup instructions.

RECOMMENDED TEST EQUIPMENT

Item	Specification	Example
Test Oscilloscope with 10X probe and 1 X probe (1X probe is optional accessory).	Frequency response: Dc to 100 MHz Deflection factor: 50 mV to $50 \mathrm{~V} /$ div (to $5 \mathrm{~V} /$ div with 1 X probe). Input impedance: $1 \mathrm{M} \Omega, 20 \mathrm{pF}$.	a. TEKTRONIX 465B Oscilloscope with two (included) 10X probes. b. TEKTRONIX P6101 Probe (1X), Part Number 010-6101-03.
Calibration Generator	Standard-amplitude accuracy $\pm 0.3 \%$. Signal amplitude: at least 50 mV . Output signal: Square wave. Repetition rate: 1 to 100 kHz . Rise Time: 1 ns or less.	TEKTRONIX PG 506 Calibration Generator. ${ }^{\text {a }}$
Dual-input Coupler	Connectors: Bnc female-to-dualbnc male.	Tektronix Part Number 067-0525-01
Cable	Impedance: 50Ω. Connectors: bnc. Length: 42 in.	Tektronix Part Number 012-0057-01.
Digital Multimeter (for dc voltages up to 1 kV)	Range: 0 to 1 kV . Input impedance: $10 \mathrm{M} \Omega$.	TEKTRONIX DM 501A Digital Multimeter.
DC Voltmeter (for dc voltages above 1 kV)	Range: 0 to 1500 V . Input impedance: $20 \mathrm{k} \Omega / \mathrm{V}$.	Triplett Model 630NA

${ }^{\text {a }}$ Requires TM 500 power-module mainframe

2335 INITIAL CONTROL SETTINGS

NOTE

Changes to 2335 initial control settings
applicable to specific waveforms or sets of waveforms are identified near the top of the
page on which the waveforms are located.

Vertical (Both Channels, if applicable)

BW LIMIT	Full bandwidth (button out) VERTICAL MODE Set to channel being measured; change setting as indicated for specific waveforms
CH 2 INVERT	Off (button out)
VOLTS/DIV	10 mV
VAR	Calibrated detent
AC-GND-DC	DC
POSITION	As required to center the baseline trace

Horizontal

POSITION
X10 MAG
HORIZ MODE
A and $B \operatorname{SEC} / D I V$
VAR
B DELAY TIME
POSITION

Trigger

SLOPE	+ (button out)
LEVEL	Midrange
Mode	AUTO
COUPLING	DC
SOURCE	VERT MODE

TEST OSCILLOSCOPE INITIAL CONTROL SETTINGS

NOTE

Changes to test oscilloscope initial control settings applicable to specific waveforms are

All controls as needed for best display, except as follows: Volts/Division (Channel 1) As specified on each
Ac-Gnd-Dc (Channel 1) D
Position (Channel 1) Midrange
Vertical Mode
Time/Division
Trigger Mode
Source
Coupling
oupling
Slope
Level

Midrange
Off (button out)
A
5 ms
Calibrated detent
Fully counterclockwise

相
auto

VERT MODE

CALIBRATION GENERATOR INITIAL CONTROL SETTINGS

Std Ampl-Fast Rise-High Ampl	Std Ampl
Period	0.1 ms
Pulse Amplitude	50 mV

INITIAL TEST SETUP

On the 2335, align the Channel 1 and Channel baseline traces with the center horizontal graticule line For waveforms on schematic diagrams 1, 2, 3, and 5 , connect a $50-\mathrm{mV}$ pp standard-amplitude square-wave signal to the $2335 \mathrm{CH} 1 \mathrm{OR} X$ and CH 2 OR Y inpu connectors via a dual input coupler and $50-\Omega$ cable. A diagrams 4 and 6 through 10. Connect a $10 X$ probe to the test oscilloscope Channel 1 input.

If applicable, make control-setting changes to the tes oscilloscope as indicated on each specific waveform. I applicable, make control setting changes to the 2335 as indicated near the top of the waveform illustration page
Apply the probe tip to the component lead or test poin Apply the probe tip to the component lead or test poin
indicated on both the schematic diagram and the circuit board illustration associated with that schematic. The waveforms illustrated are typical for troubleshooting purposes only.

DC VOLTAGE MEASUREMENTS

Typical voltage measurements were obtained with the 2335 operating under the conditions specified in the preceding setups, with control-setting changes noted on with reference to chassis ground and are rounded to the nearest $\pm 5 \%$.

TEST WAVEFORMS FOR DIAGRAM < 1\rangle

CH \& CH ATTENUATORS DIAGRAM

*See Parts List for serial number ranges.

A10-VERT PREAMP/L.V. POWER SUPPLY BOARD

CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
C1	1	C265	10	P712	2	R45	2	R153	2	R258	10
C3	1	CR1	1	P713	2	R46	2	R154	2	R259	10
C6	2	CR2	1	P714	10	R47	2	R155	2	R260	10
C7	2	CR3	1	P715	8	R48	2	R156	2	R264	10
C10	1	CR8	1	P716	8	R49	2	R160	2	R265	10
C11	2	CR53	2	04	1	R50	2	R161	2	RT46	
C12	2	CR54	2	010	1	R53	2	R162	2	RT1 15	2
C14	1	CR55	2	036	${ }^{2}$	R54	2	R163	2	S134	2
C15	1	CR56	2	049	2	R56	2	R167	2	S190	8
C16	1	CR57	2	055	2	R57	2	R168	2	S194	4
C20	1	CR58	2	057	2	R58	2	R169	2	S194	8
C27	2	CR62	1	068	1	R60	2	R170	2	S210	6
C30	2	CR63	1	074	1	R61	2	R173	2	S211	3
C31	2	CR64	1	0106	2	R62	1	R174	2	S211	4
C33	2	CR69		0119	2	R63	1	R175	2	S218	6
C52	2	CR132	2	0132	2	R67	1	R176	2	S219	5
C53	2	CR134	2	0133	2	R68	1	R180	2	TP1	1
C54	2	CR138	2	Q134	2	R69	1	R181	2	TP30	2
C55	2	CR139	2	Q135	2	R70	1	R182	2	TP61	2
C56	2	CR140	2	0141	2	R72	1	R183	2	TP62	2
C 57	2	CR142	2	Q142	2	R73	1	R184	8	TP139	2
C58	2	CR146	2	0147	2	R74	1	R185	8	TP156	2
C62	1	CR149	2	0149	2	R75	1	R186	8	TP176	2
C67	1	CR180	2	0153	2	R76	1	R187	2	TP247	10
C75	1	CR201	4	Q163	2	R77	1	R188	2	TP252	10
C76	1	CR209	4	Q170	2	R78	1	R189	2	TP254	10
C77	1	CR225	10	Q175	2	R82	2	R190	8	TP255	10
C81	1	CR237	10	0182	2	R83	2	R193	2	TP264	10
C88	2	CR239	10	Q194	4	R84	2	8194	4	TP265	10
C89	2	CR250	10	0209	4	R85	2	R195	4	TP266	10
C92	2	CR259	10	0218	6	R88	2	R196	4	U30	2
C95	2	E6	2	0239	10	R89	2	R197	4	$\cup 41$	2
C120	2	E7	2	0244	10	R 90	2	R201	4	U55	2
C121	2	E11	2	0246	10	R91	2	R202	4	U100	2
C124	2	E12	2	0252	10	R92	2	R203	4	U125	2
C125	2	E55	2	0253	10	R95	2	R208	4	U160	2
C126	2	E57	2	0264	10	$R 96$	2	R209	4	U196	4
C133	2	E132	2	0265	10	R106	2	R210	4	U211	4
C134	2	E134	2	R1	1	R107	2	R211	4	U215	4
C135	2	F225	10	R2	1	R112	2	R215	4	U237	10
C143	2	F250	10	R3	1	R113	2	R216	6	VR229	10
C145	2	F251	10	R4	1	R114	2	R217	6	VR236	10
C147	2	F257	10	R7	1	R115	2	R218	6	VR238	10
C150	2	F259	10	R8	1	R116	2	R219	6	VR246	10
C160	2	J708	2	R9	1	R118	2	R222	6	VR252	10
C162	2	J800	2	R10	1	R119	2	R223	6	VR253	10
C181	2	J801	10	R11	1	R120	2	R224	4	VR264	10
C182	2	$J 802$	10	R13	1	R121	2	R225	10	VR265	10
C183	2	J803	10	R14	1	R122	2	R227	10	W1	,
C197	4	J804	10	R15	1	R126	2	R229	10	W2	1
C224	4	$J 806$	1	R16	1	R127	2	R230	10	W143	2
C225	10	J807	1	R21	2	R128	2	R231	10	W146	2
C226	10	J808	4	R22	2	R132	2	R232	10	W211	4
C231	10	J808	5	R23	2	R133	2	R236	10	W215	4
C232	10	J808	6	R24	2	R134	2	R237	10	W244	10
C237	10	J808	8	R27	2	R135	2	R238	10	W246	10
C238	10	J808	10	R28	2	R139		R239	10	W247	10
C246	10	$J 877$	2	R29	2	R140	2	R243	10	W248	10
C248	10	L132	2	R30	2	$R 141$	2	R244	10	W251	10
C249	10	L134	2	R31	2	R142	2	R245	10	W252	10
C250	10	P700	2	R33	2	R145	2	R246	10	W253	10
C251	10	P702	4	R34	2	R146	2	R250	10	W255	10
C252	10	P703	2	R36	2	R147	2	R251	10	W263	10
C253	10	P704	2	R37	2	R148	2	R252	10	W264	10
C257	10	P705	2	R42	2	R149	2	R253	10	W265	10
C258	10	P706	2	R43	2			R257	10		
C259	10	P710	3								
C260	10	P710	4								
C264	10	$\begin{aligned} & \text { P710 } \\ & \text { P710 } \end{aligned}$	$\begin{gathered} 6 \\ 10 \end{gathered}$								

ALL COMPONENTS MOUNTED ON A11-NEGATIVE REGULATOR AND A12-POSITIVE REGULATOR CIRCUIT BOARDS ARE SHOWN

TEST WAVEFORMS FOR DIAGRAM < 2\rangle

(8) 18

94
4.4V

(CONT)

TEST WAVEFORMS FOR DIAGRAM $\langle\boldsymbol{2}$ (CONT)

14

15

16

OV

4116-82

（＊） $\begin{gathered}\text { Static Sensitive Devices } \\ \text { Se Mintenance Section }\end{gathered}$

A15－VERT OUTPUT／H．V．POWER SUPPLY BOARD

CIRCUIT NUMBER	SCHEM NUMBER								
${ }^{\text {c }}$	${ }^{3}$	${ }^{\text {c } 174}$	${ }^{9}$	${ }^{\text {CR191 }}$	9	${ }^{\text {226 }}$	${ }^{3}$	R100	9
c3 c5 c	9	C175	9	${ }_{\substack{\text { ch197 } \\ \text { E53 }}}^{\text {ciel }}$	${ }_{3}$	${ }_{\text {R }}^{\text {R29 }}$	3 3	R101 $R 102$	9
${ }^{\text {c8 }}$	3	${ }^{\text {c183 }}$	9	${ }^{\text {E55 }}$	3	${ }^{\text {R31 }}$	3^{3}	${ }^{2106}$	9
c10	3	${ }^{\mathrm{C} 185}$		${ }_{1898}$	9	${ }_{\text {R33 }}^{\text {R37 }}$	3	${ }_{\substack{\text { R107 } \\ \text { R108 }}}$	9
${ }^{118}$	${ }_{3}^{3}$	C190 C191 c	9	${ }_{\text {L54 }} \mathrm{j878}$	${ }_{3}$	${ }_{\text {R38 }}^{\text {R33 }}$	3_{3}^{3}	R108 $\mathrm{R109}$	9
c25	${ }_{3}^{3}$	C191 C196	9	${ }_{\text {L167 }}$	$\stackrel{3}{9}$		${ }_{3}$	${ }_{\text {R113 }}$	9
c29	3	C197	9	1191	9	${ }^{84}$	3	R114	9
${ }^{\text {c32 }}$	3_{3}	${ }^{C 198}$	9	${ }^{\text {P7566 }}$	3	${ }_{8}^{844}$	3	R115	9
${ }_{\text {c }}$ c33	${ }^{3}$	C202	9	${ }_{\text {P7566 }}$	9	${ }_{\text {R }}^{\text {R50 }}$	3_{3}^{3}	限1168	9
c39 c39 	${ }_{3}$	C209	9	${ }^{\text {P7758 }}$	9	${ }_{852}$	3	${ }^{2121}$	9
c54 c57 c5	${ }_{3}^{3}$	${ }_{\text {C211 }}^{\text {C210 }}$	9	${ }_{\text {P7599 }}^{\text {P7761 }}$	${ }^{3}$	${ }_{\substack{\text { R53 } \\ \text { R57 }}}$	3 3	员122	9
c58	3	CR8	3	P763	9	${ }^{258}$	3	8127	9
c66	3 3	${ }_{\text {cR24 }}^{\text {ch9 }}$	3 3	${ }_{\text {P768 }}^{\text {P765 }}$	9	${ }_{\substack{\text { R599 } \\ \text { R60 }}}^{\text {R }}$	${ }_{3}^{3}$		9
${ }_{680}$	3	${ }_{\text {CR225 }}$	3	${ }_{0}$	9	${ }_{\text {R64 }}$	3	${ }_{\text {R134 }}$	9
c86	9	с月91	9	0100	9	R65	3	R135	9
${ }^{887}$	9	CR92	9	0107	9	${ }^{\text {R66 }}$	3	R136	9
cis	9	${ }_{\text {cher }}^{\text {cha4 }}$	9	0114 0115 0115	9	${ }_{\text {R71 }}^{\text {R67 }}$	${ }_{3}^{3}$	${ }_{\text {R }}^{\text {R140 }}$	9
c101	9	${ }^{\text {CR123 }}$	9	$0: 16$	9	${ }^{\text {R72 }}$	3	${ }^{2148}$	9
${ }^{\text {c108 }}$	9	${ }^{\text {cr127 }}$	9	${ }^{0148}$	9	873	3	R149	9
${ }_{\text {cliog }}$	9	cente	${ }_{9}^{9}$	－	${ }_{9}$	R74	${ }_{3}^{3}$	${ }_{\substack{\text { R15 } \\ \text { R15 }}}$	9
${ }_{6} 116$	9	${ }^{\text {CR148 }}$	9	0161	9	R78	3	R155	9
C122	9	chercR154 cris6	${ }_{9}^{9}$	${ }^{0163}$	9	${ }_{\text {R80 }}^{\text {R79 }}$	3 3	${ }_{\text {R157 }}^{\text {R156 }}$	9
${ }^{123}$	9	${ }^{\text {CR157 }}$	9	0184	9	${ }^{885}$	9	${ }^{\text {R161 }}$	9
${ }^{C 128}$	9	CR161	9	${ }_{\text {R98 }}^{\text {R8 }}$	${ }_{3}^{3}$	R86 ${ }_{\text {R87 }}$	9	${ }_{\substack{\text { R163 } \\ \text { R168 }}}^{1}$	9
c136 $C 140$ $C 1$	9	${ }_{\text {CR165 }}$	9	${ }_{810}$	3	${ }_{\text {R90 }}$	3	${ }_{\text {R176 }}$	9
C148	9	${ }_{\text {CR1167 }}$	9	817	3	R91	9	8177	9
${ }^{C 150}$	9	${ }^{\text {CR168 }}$	9	${ }^{\text {R18 }}$	3_{3}	${ }^{\text {R92 }}$	9	${ }^{\text {R178 }}$	9
${ }_{\substack{\text { c156 } \\ C 157}}$	9	${ }_{\text {chind }}^{\text {CR175 }}$	9	${ }_{\text {R23 }}$	${ }_{3}^{3}$	${ }_{\text {R994 }}^{\text {R93 }}$	9		9
C168	9	C－${ }_{\text {CR177 }}^{\text {CR190 }}$	${ }_{9}^{9}$	$\begin{aligned} & \mathrm{R} 24 \\ & \mathrm{R} 25 \end{aligned}$	${ }_{3}^{3}$	R99	9	${ }^{\text {R184 }}$	9

CIRCUIT NUMBER	$\begin{array}{\|l\|l\|} \hline \text { SCHEM } \\ \text { NUMBER } \end{array}$
${ }^{\text {R185 }}$	9
${ }_{\text {R }}^{\text {R192 }}$	9
${ }_{8}^{8202}$	9
${ }_{\text {R203 }}$	9
R204 R205	9
R210	9
$\stackrel{8211}{ }$	9
T24	${ }_{3}$
1167	9
（1168	${ }^{9}$
TP92	9
TP127	9
${ }^{\text {TP } 130}$	9
${ }_{\text {TP }}$ T48	9
${ }_{\text {TP1 }}$	9
TP185	9
${ }_{\text {UP320 }}$	9
U54	3
U58	3
± 130	9
VFF5123	${ }_{9}$
ve140	9
VR148	9
Vfis	9
w1	${ }^{3}$
w88	9
$\underset{W}{\text { W209 }}$	9

TEST WAVEFORMS FOR DIAGRAM 3

For waveforms 25 through 28, center the 2335 trace about the center horizontal graticule line.

24

2526

9 V

2728

OV

4116 -83

VERTICAL OUTPUT AMPLIFIER DIAGRAM

ASSEMBLY A10								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{gathered} \text { BOARD } \\ \text { LOCATION } \end{gathered}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
P710	2B	3M	S211B	1A	51			
Partial A10 also shown on diagrams 1, 2, 4, 5, 6, 8 and 10.								
ASSEMBLY A15								
CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{array}{\|l\|} \text { BOARD } \\ \text { LOCATION } \end{array}$
C1	21	2 H	P756	8B	1 H	R59	5 F	2 H
C8	3 C	2 J	P758	8 C	4 G	R60	6 E	4 H
C10	2G	3 H	P759	6 B	2 K	R64	6 F	2 H
C18	3D	21				R65	7F	3H
C25	4 C	4 J	R8	2C	21	R66	5 E	2 H
C26	2 C	2 J	R9	2D	21	R67	6E	2 H
C29	4 E	4 J	R10	2G	3H	R71	5 E	21
C32	3 E	41	R17	40	$4 J$	R72	6 E	2 H
C33	3 E	4	R18	3E	21	R73	6 E	41
C36	3 F	3 J	R22	3 E	21	R74	7 E	4 H
С39	3 F	3 J	R23	4 E	2 J	R75	6 E	4 H
C54	41	3 H	R24	50	41	R78	7E	4 H
C57	6G	3H	R25	5 C	41	879	7 D	4 H
C58	5 F	2 H	R26	2 C	2 J	R80	7D	4 H
C66	5 E	21	R29	3 E	41	R90	7 C	4 H
C73	6 E	41	R30	3 E	41			
C80	7 D	4.5	R31	4 E	4.1	T9	2 C	21
CR8	3 C	3 J	832	3 E	4 J	T24	5 C	41
CR9	3 C	3 J	R37	3 F	21			
CR24	4 C	3 J	R38	4 F	31	TP25	5 C	41
CR25	4 C	3 J	R39	4 F	3 J			
			R43	4G	31	U43	1H	31
E53*	31	2 H	R44	3 F	3 J	U54	41	3 H
E55*	41	3 H	R50	2 H	21	U58	5F	2 H
	3 C	3 K	R51	2 H	31			
$J 878$	4 C	3 K	$R 52$	3 H	31	VR51	21	21
L54	31	2 H	R53	3H	${ }_{31}^{4}$	W1	21	2 H
P756	28	1H	R58	5 F	3 H			
Partial A15 also shown on diagram 9.								
CHASSIS MOUNTED PARTS								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
$\begin{aligned} & \text { LR913 } \\ & \text { LR915 } \end{aligned}$	$\begin{aligned} & 3 \mathrm{~J} \\ & 4 \mathrm{~J} \end{aligned}$	CHASSIS CHASSIS	$\begin{aligned} & \text { R909 } \\ & \text { S900 } \end{aligned}$	64 54	CHASSIS chassis			

*See Parts List for serial number ranges.

TEST WAVEFORMS FOR DIAGRAM < 4

For waveforms 29, 30, 32, 33, and 34, set the 2335 VERTICAL MODE to CHOP. For waveforms 31, 35. and 36, set the 2335 VERTICAL MODE to ALT and the SEC/DIV to .5 ms .

30

31

32

$3 3 \longdiv { 3 4 }$

OV

4116-84

VERT SWITCHING LOGIC \& CHOP BLANKING DIAGRAM

ASSEMBLY A10					
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
C197 C224 CR201 CR209 J808 P702 P710 Q194 Q209 R194 R195 R196 R197 R201 R202 R203	6 E 7B 6E 7G 1 H 7F 7K 2C 6G 2C 7C 6D 6D 6E 3F 3F	3K 3L 3L. 3M 91 3M 3M 3B 3L 5B 5B 3L 3K 3L 3J. 3J	R208 R209 R210 R211 R215 R224 R227* S194 S211A U196A U196B U196C U196D U211A U211B U215 W211 W215	6G 6G 7G 4H 2F 7B 4G 4A 5F $6 E$ 6F 2H 5E 3F 5H 11 5 H 21	3L 3L 3M 4.J 3J 4. 4I 4B 51 3L 3L 3L 3L 3K 3K 3J 41 31
Partial 410 also shown on diagrams 1, 2, 3, 5, 6, 8 and 10.					
ASSEMBLY A13					
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
J840	1G	31	P808	1 H	11
Partial A13 also shown on diagrams 5, 6 and 8.					
ASSEMBLY A14					
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
P840	1 G	6A			
Partial A14 also shown on diagrams 6, 7 and 8.					
CHASSIS MOUNTED PARTS					
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
J920	7E	CHASSIS			

*See Parts List for serial number ranges.

CiRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM	CIRCUIT NUMBER	SCHEM NUMBER
c2	5	crgo	5	R10	5	R82	5
C4	${ }_{5}^{5}$	CR91 J830	5	${ }_{\text {R14 }}^{\text {R11 }}$	5	${ }_{\text {R84 }}^{\text {R83 }}$	5
${ }^{\text {c8 }}$	5_{5}^{5}	J831	${ }_{4}^{5}$	${ }^{\text {R15 }}$	${ }_{5}^{5}$	${ }^{\text {R88 }}$	${ }_{5}^{5}$
c9 c15	5	j340	${ }_{5}^{4}$		5 5	${ }^{\text {R990 }}$	5
${ }^{2} 21$	5	J840	6	R21	5	R91	5
C27 c25 c35	5	j840 P730	${ }_{5}^{8}$	R22 R23	5	${ }_{\text {R96 }}$	5
${ }_{\text {c }}$	5	P732	5	R24	5	R103	5
($\begin{gathered}\text { c48 } \\ \text { c56 }\end{gathered}$	5 5	- ${ }_{\text {P733 }}$	5 6	R27 R28	5 5	${ }_{\text {R104 }}^{\text {R106 }}$	5 5
c63	5	${ }^{\text {P8088 }}$	4	${ }^{2} 29$	5	${ }_{8107}$	5
	5 5	¢	5 6		5 5	R111	5
${ }^{\text {c74 }}$	$\stackrel{5}{5}$	${ }^{\text {P8008 }}$	${ }_{5}^{8}$		5_{5}^{5}	${ }_{\substack{\text { R113 } \\ \mathrm{R} 114 \\ \hline 14 \\ \hline}}$	5
c77 cro	5 5		5	${ }_{\text {R }}^{\text {R37 }}$	$\stackrel{5}{5}$		5
C81	5	021	5	R.41	5	R119	5
${ }^{\text {c82 }}$	${ }_{5}^{5}$	O89	${ }_{5}^{5}$	${ }_{\text {R }}$	$\stackrel{5}{5}$	${ }_{\text {R167 }} \mathrm{R} 218$	${ }_{5}^{8}$
${ }_{c}^{\text {c91 }}$	$\stackrel{5}{5}$		5	${ }_{\substack{\text { R67 } \\ \text { R67 }}}$	5	S67	5
${ }^{\text {c114 }}$	5	${ }^{\text {R2 }}$	5	R70	5	${ }^{\text {TP488 }}$	5
${ }_{c} 1780$	${ }_{6}^{6}$	${ }_{\text {R3 }}$	5	R74 R75	5	¢ ${ }_{\text {TP566 }}^{\text {TP59 }}$	5
CR10	${ }_{5}^{5}$	${ }_{\text {R7 }}^{\text {R }}$	5	${ }_{\text {R77 }} 87$	5	${ }_{\text {TP61 }}$	5
CR14	5	R88	5	R77 R80	5 5 5	${ }_{\text {U81 }}{ }^{\text {P62 }}$	5
				R81	5		

(*) $\begin{aligned} & \text { Static Sensitive Devices } \\ & \text { See Mantenanace Section }\end{aligned}$
6.
ov

39
ov

TEST WAVEFORMS FOR DIAGRAM 5

ugh 43, Connect a 1X probe to the test oscilloscope External Trigger input and set the test vitch to External. Apply the tip of the 1X probe to TP56 and set the 2335 SEC/DIV to . 2 ms .

40

42

41

43

ASSEMBLY A10								
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
5808	1 J	91	S219	1 J	$8 B$			

Partial A10 also shown on diagrams 1, 2, 3, 4, 6, 8 and 10.

ASSEMBLY A13								
Circuit NUMBER	SCHEM LOCATION	BOARD location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
C2	2B	3 B	089	3 L	1 C	R560	7 F	2E
C3	2B	38	095	3 L	1 D	R61	70	2E
C4	3B	3 C	0104	5M	2D	R67	2 J	3D
C8	38	3 C				R70	21	3D
C9	3 C	1B	R2	2B	3 B	R74	3 J	2D
C15	2 E	2 C	R3	2B	3 B	R75	2 J	3 D
C21	3E	2 C	R4	3B	3 C	R76	3J	1E
C27	4F	2 H	R7	3 B	4 C	R77	3.	1 E
C35	3E	2 E	R8	38	3 C	R80*	7 J	2 E
C36	2E	1 H	R9	3 C	1 B	R81	2 J	2 D
C48	6 E	3 E	R10	2 D	2 C	R82	2 L	21
C56	6 E	2 E	R11*	3B	3 B	R83	3k	3 E
C63	7 F	2E	R14	3 C	2B	R84	3 K	2D
C67	41	2B	R15	2 D	2 C	R88	3K	2D
C70	21	3D	R16	3 D	2 C	R89	3L	1 C
C74	2 J	3D	R20	3D	3 C	R90	4L	1 C
C77	3 J	1 E	R21	2E	2 C	R91	4L	2 B
C80	7 J	2 E	R22	5 E	1K	R95	3M	1D
C81	2K	2 D	R23	4 E	2 E	$R 96$	3M	1 D
C82	2K	2D	R24	2E	2D	R103	5 N	3 C
C91	4L	1 C	R27	4 F	2 H	R104	4 M	3 C
C106	6K	2D	R28	4 F	2 H	R106	5 L	2 H
C114	7K	3E	R29	4 F	2 H	R107	6 L	1 H
			R30	4 E	3E	R111	25	3 E
CR10	2D	2 C	R34	4E	1E	R112	6 L	1E
CR14	2D	2 C	R35	2 E	2E	R113	6M	1 D
CR15	2D	2 C	R36	2 E	2 H	R114	7 J	3 E
CR90	4L	1 C	R37	2 F	2 H	R118	7 L	1 E
CR91	4L	1 C	841	2 F	21	R119	7M	1 D
			R56A	8 E	2E	S22A	1 C	1 A
J830	6 B	1F	R56B	6 E	2 E	S22B	1 G	1A
J831	6 B	$3 F$	R56C	$7 E$	2 E	S67A	1 C	2A
$J 840$	5 N	31	R56D	7 F	2 E	S67B	11	2A
			R56E	7F	2 E			
P730	6 N	1 C	R56F	7E	2 E	TP48	6D	3 F
P732	6 B	2 F	R56G	8 H	2E	TP56	6 D	1F
P733	11	3 C	R56H	75	2 E	TP59	2D	2 B
P808	2 J	11	R561	71	2E	TP61	6D	2 F
P808	58	11	R56J	8 E	2E	TP62	70	2K
			R56K	6 E	2E			
015	2D	2 C	R56L	7 E	2 E	481	5 J	2E
016	30	2 C	R56M	8 F	2 E			
021	3E	2 D	R56N	6F	2E			
Partial A13 also shown on diagrams 4, 6 and 8.								
CHASSIS MOUNTED PARTS								
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
	2A	CHASSIS	$\begin{aligned} & \text { P830 } \\ & \text { P831 } \end{aligned}$	$\begin{aligned} & \text { 6B } \\ & 6 B \end{aligned}$	CHASSIS CHASSIS	R911 R913	$\begin{aligned} & 2 A \\ & 1, \end{aligned}$	CHASSIS CHASSIS
J935	2A	CHASSIS						

*See Parts List for serial number ranges.

A14-SWEEP/HORIZ AMP BOARD

CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER	CIRCUIT NUMBER	SCHEM NUMBER
C1	6	C 273	8	E36	6	R20	6	R132	8	R281	8
C2	6	C281	8	E54	6	R21	6	R133	8	R282	8
C6	6	C282	8	E85	6	R23	6	R134	8	R283	8
C15	6	C284	8	J871	6	R24	6	R135	8	R284	8
C19	6	C288	8	J871	7	R25	6	R139	8	R287	8
C 20	6	C 290	8	J876	6	R26	6	R140	8	R288	8
C21	6	C340	6	J876	7	R27	6	R141	8	R289	8
C 22	6	C343	6	K127	8	R28	6	R142	8	R290	8
C23	6	C345	6	P741	8	R29	6	R146	8	R294	8
C54	6	C347	6	P745	6	R30	6	R147	8	R295	8
C68	6	C349	6	P745	8	R34	6	R148	8	R296	8
C76	6	C351	6	P747	8	R35	6	R149	8	R340	6
C80	6	C355	6	P750	6	R36	6	R153	8	R343	6
C82	6	CR21	6	P840	4	R37	6	R154	8	R345	6
C83	6	CR28	6	P840	6	R38	6	R155	8	R347	6
C84	6	CR29	6	P840	8	R41	6	R156	8	R349	6
C87	6	CR45	6	Q16	6	R42	6	R160	8	R350	6
C89	6	CR47	6	Q20	6	R43	6	R161	8	R351	6
C90	6	CR83	6	Q21	6	R47	6	R163	8	R353	6
C100	6	CR87	6	024	6	R54	6	R167	8	R355	6
C108	6	CR88	6	028	6	R55	6	R168	8	RT295	8
C128	8	CR111	8	Q80	6	R68	6	R169	8	TP2	6
C140	8	CR128	8	081	6	R73	6	R170	8	TP3	6
C141	8	CR133	8	083	6	R74	6	R173	8	TP27	6
C145	8	CR135	8	Q108	6	R75	6	R174	8	TP49	6
C146	8	CR160	8	Q111	8	R76	6	R175	8	TP55	6
C147	8	CR161	8	Q155	8	R77	6	R176	8	TP86	6
C148	8	CR175	8	Q160	8	R81	6	R180	8	TP87	6
C149	8	CR193	6	Q167	8	R82	6	R181	8	TP89	6
C153	8	CR195	6	Q168	8	R83	6	R182	8	TP106	6
C155	8	CR199	6	Q174	8	R85	6	R183	8	TP127	8
C459	8	CR200	6	Q176	8	R88	6	R187	8	TP190	8
C160	8	CR300	6	Q181	8	R89	6	R190	8	TP194	6
C161	8	CR301	6	Q267	8	R90	6	R193	6	U3	6
C167	8	CR302	6	Q271	8	R100	6	R194	6	U24	6
C169	8	CR303	6	0281	8	R104	6	R195	6	U43	6
C173	8	CR340	6	Q282	8	R105	6	R196	6	U87	6
C174	8	CR341	6	Q288	8	R106	6	R197	6	U108	6
C180	8	CR342	6	Q289	8	R107	6	R198	6	U128	8
C182	8	CR343	6	Q290	8	8108	6	R199	6	U147	8
C187	8	CR344	6	R1	6	R109	6	R201	6	U198	6
C190	8	CR345	6	R3	6	R110	8	R264	8	VR111	8
C194	6	CR346	6	$R 4$	6	R111	8	R265	8	VR174	8
C197	6	CR347	6	R6	6	R112	8	R266	8	W5	6
C200	6	CR348	6	R8	6	R124	8	R267	8	W6	6
C202	6	CR349	6	R10	6	R125	8	R271	8	W7	6
C265	8	CR350	6	R14	6	R126	8	R272	8	W8	6
C266	8	CR351	6	R15	6	R127	8	R273	8	W85	6
C267	8	CR353	6	$\begin{aligned} & \text { R16 } \\ & \text { R17 } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	R128	8	R274	8	W109	6

TEST WAVEFORMS FOR DIAGRAM < 6

For waveforms 44 through 51, set 2335 SEC/DIV to . 1 ms . For waveforms 50 and 51, set 2335 HORIZ MODE to B.

47

			V	$\frac{1}{1}$		Ins		
	. . .	\ldots	\cdots		\cdots	\cdots
∞			1		I			
	++1	H+1				+++	+1	+1+
-				\ddagger				
1			\cdots
				年				

51

SWEEP DIAGRAM

ASSEMBLY A10											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
$\begin{aligned} & \mathrm{J} 808 \\ & \mathrm{~J} 808 \end{aligned}$	$\begin{aligned} & 2 \mathrm{C} \\ & 5 \mathrm{C} \end{aligned}$	9191	0218	68	68	R218	6B	78	S210$\mathbf{S 2 1 8}$	$\begin{aligned} & 3 A \\ & 5 B \end{aligned}$	8878
						R219	6A	6A			
			R216	6A	6B	R222	6B	78			
P710	6A	3M	R217	6A	6 B	R223	78	7B			

Partial A10 also shown on diagrams 1, 2, 3, 4, 5, 8 and 10.

ASSEMBLY A13

CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{array}{\|c\|} \text { BOARD } \\ \text { LOCATION } \end{array}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location
$\begin{aligned} & \text { C170 } \\ & \text { C171 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} \\ & 6 \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 H \\ & 1 H \end{aligned}$	$\begin{aligned} & \mathrm{J} 840 \\ & \mathrm{~J} 840 \end{aligned}$	$\begin{aligned} & 1 \mathrm{D} \\ & 5 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3 \mid \\ & 3 \mid \end{aligned}$	P742 P808 P808	$\begin{aligned} & 4 \mathrm{C} \\ & 2 \mathrm{C} \\ & 5 \mathrm{C} \end{aligned}$	$\begin{aligned} & 4 \mathrm{E} \\ & 11 \\ & 11 \end{aligned}$			

Partial A13 also shown on diagrams 4.5 and 8.

TABLE (CONT)

SWEEP DIAGRAM

ASSEMBLY A14											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD location	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
Cl	81	6 F	CR301	4G	9 D	R10	8 J	6 C	R193	8 F	8G
C2	71	8 F	CR302	4G	8 E	R14	8K	6 C	R194	7 F	9G
C6	8.	7 F	CR303	4G	8 E	R15	8K	5 C	R195	7 F	8G
C15	8 K	5 C	CR340	4F	8 C	R16	8K	5 C	R196	8 G	8 G
C19	7L	6 D	CR341	4G	8 D	R17	7K	7 C	R197	8 G	8 G
C20	8L	7 C	CR342	4G	8D	R20	8L	5 C	R198	7G	9 F
C21	7 L	7 D	CR343	4 F	8 C	R21	7L	7D	R199	9 F	8 E
C22	8 L	7 C	CR344	4G	8 D	R23	8 N	6 D	R201	8 H	8 F
C23	9 N	6D	CR345	4 F	8 C	R24	8L	6 C	R340	4 F	8 C
C54	3N	7E	CR346	4G	8 E	R25	8L	6 C	R343	4F	8 C
C68	2N	7 D	CR347	4F	8 C	R26	7 L	6 D	R345	4 F	8 C
C76	4 J	7 F	CR348	4G	9 D	R27	8 N	6D	R347	4F	9 C
C80	3L	7 E	CR349	4F	8 C	R28	5M	7 C	R349	4 F	9 C
C82	3 L	8D	CR350	5G	8 E	R29	6 K	78	R350	5E	8 B
C83	2 L	6 E	CR351	5 F	8 C	R30	5K	6 B	R351	5 F	9 C
C84	3 L	8D	CR353	$3 F$	8 C	R34	5K	7A	R353	3 F	8D
C87	2 E	8B				R35	6 K	6 B	R355	5F	9 C
C89	4 L	6 F	E36	7 N	5 C	R36	6L	6 B			
c90	3D	9A	E54	3 N	6 E	R37	6K	6A	TP2	7	6G
C100	4D	9 B	E85	3L	7E	R38	5K	7E	TP3	7K	8 F
C108	3 E	78	J871	9 K	7 C	R41	4 K	6 E	TP27	8N	6D
C194	8 F	9 F	J876	1K	8D	R42	5 N	7 D	TP49	5M	7 C
C197	9G	8 F	J876	3H	8 D	R43	4 N	7 D	TP55	3 N	6 D
C200	9G	8 F				R47	6 L	6B	TP86	2 F	7 C
C202	81	8 F	P745	7 F	7 G	R54	3N	7 F	TP87	1F	7 C
C340	4 F	8 B	P745	7 N	7G	R55	3 N	6 D	TP89	3 E	8 B
C343	4 F	8 B	P750	7H	9 F	R68	2 N	7 D	TP106	3D	9 B
C345	4F	8B	P750	8 H	9 F	R73	3.5	7E	TP194	9 G	9 E
C347	4 F	9 B	P840	10	6A	R74	3J	7E			
C349	4 F	9 B	P840	50	6A	R75	3 J	8 E	U3	71	7F
C351	5 F	9 B				R76	4 J	7 E	U24	6M	6 C
C355	4E	8 C	016	8 K	5D	R77	3K	7 E	U43	3 N	70
			020	8L	6D	R81	3K	7 E	487	5 D	88
CR21	7 L	6D	021	7L	6D	R82	3 K	7E	U108	3 F	78
CR28	6 N	6 B	024	8M	6 C	R83	2 L	6 E	U198A	7G	8 F
CR29	6K	68	028	6M	6 B	R85	2 L	7E	U198B	9 G	8 F
CR45	7N	7F	080	3L	8 E	R88	1 F	7 D			
CR47	6 L	6 B	081	3 K	8 E	R89	2D	9 A	W5	9 E	7G
CR83	3 L	7 E	083	3 L	7E	R90	2 D	8A	W6	9 E	7G
CR87	2 D	8A	0108	3G	6 B	R100	4D	9 B	W7	8D	7G
CR88	1 E	8B				R104	4D	6 A	W8	8D	7G
CR193	8 F	8G	R1	81	7 F	R105*	4D	6A	W85	4K	5 F
CR195	7F	8G	R3	7 J	7G	R106	30	9 C	W109	2G	6 A
CR199	9 F	9 E	R4	7 J	7 F	R107	3D	8 B			
CR200	9 F	9 E	R6	81	6 F	R108	3G	6 B			
CR300	3G	9 D	R8	8 J	6 F	R109	2G	6 B			
Partial A14 also shown on diagrams 4, 7 and 8.											
CHASSIS MOUNTED PARTS											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
DS900	4 C	CHASSIS	R918	8 H	CHASSIS						

2335 Service

ALL COMPONENTS MOUNTED ON A16-B TIMING AND A17-A TIMING CIRCUIT BOARDS ARE SHOWN IN SCHEMATIC diagram \rangle

A \& B TIMING SWITCHES DIAGRAM

ASSEMBLY A14								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location
$\begin{aligned} & \text { J871 } \\ & \text { J871 } \\ & \text { J871 } \end{aligned}$	$\begin{aligned} & 2 K \\ & 3 \mathrm{~N} \\ & 8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 7 C \\ & \text { 7C } \\ & 7 \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{J} 871 \\ & \mathrm{~J} 876 \\ & \mathrm{~J} 876 \end{aligned}$	$\begin{aligned} & 9 \mathrm{~N} \\ & 1 \mathrm{H} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7 C \\ & 8 D \\ & 8 D \end{aligned}$	$\begin{aligned} & J 876 \\ & J 876 \end{aligned}$	$\begin{aligned} & 3 \mathrm{H} \\ & 8 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 8D } \\ & \text { 8D } \end{aligned}$
Partial A14 also shown on diagrams 4, 6 and 8.								
ASSEMBLY A16								
CIRCUIT NUMBER	SCHEM location	BOARD LOCATION	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	BOARD Location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C1	5 K	2 C	R1A	9L	2 C	R3	4 N	1 A
C2	6 K	2 B	R1B	9 L	2 C	R4	4 N	1 A
C3	8 K	2 A	R1C	9 L	2 C	85	4 N	2A
			R1D	9 L	2 C	R6	4 N	2A
P871	2K	3A	R1E	8L	2 C	R7	4 N	2A
P871	3 N	3A	R1F	8L	2 C			
P871	8K	3 A	R1G	8L	2 C	S1	3K	2 C
P871	9 N	3A	R2	3 N	1A			
ASSEMBLY A17								
CIRCUIT NUMBER	SCHF:M LOCAMON	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM OCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C1	5 E :	6 D	P876	8A	6 C	R2	60	4D
C2	68	6 E				R3	60	4D
C3	78	5B	010	1 G	4A	R4	70	4 D
C4	88	5B				R5	8 E	5 D
			R1A	3 C	50	R6	8 E	5 D
P774	1 F	5A	R1B	3 C	50	R7	8 E	5D
P774	30	5A	R1C	4 C	50	R10	1F	4 B
P775	1 F	4 C	R1D	4 C	5 D			
P876	1 G	6 C	R1E	4 C	50	S1	3 D	5 E
P876	3 A	6 C	R1F	4 C	50			
P876	3G	6 C	R1G	5C	5 D			
CHASSIS MOUNTED PARTS								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{gathered}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION
CR931	2E	CHASSIS	R930	2 D	CHASSIS	S934	1E	CHASSIS
CR932	2E	CHASSIS	R931	1E	CHASSIS			
DS902	1 F	CHASSIS	5930	3F	CHASSIS			

test waveforms for diagram <8

For waveforms 55 and 56, set 2335 SEC/DIV to 1 ms .

HORIZONTAL, PROBE COMP AND FAN DIAGRAM

ASSEMBLY A10											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
J808 $J 808$ P715	$\begin{aligned} & 1 B \\ & 5 B \\ & 3 A \end{aligned}$	91 91 6 E	P716 R184 R185	3A $3 B$ 3B	6D 6 D 6D	$\begin{aligned} & \mathrm{R} 186 \\ & \mathrm{R} 190 \\ & \mathrm{~S} 190 \end{aligned}$	$\begin{aligned} & 3 B \\ & 1 B \\ & 1 B \end{aligned}$	$\begin{aligned} & 6 \mathrm{D} \\ & 7 \mathrm{C} \\ & 78 \end{aligned}$	S194	2B	4B
Partial A10 also shown on diagrams 1, 2, 3, 4, 5, 6 and 10.											
ASSEMBLY 113											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
$\begin{aligned} & \mathrm{J} 840 \\ & \mathrm{~J} 840 \\ & \mathrm{~J} 840 \end{aligned}$	$\begin{aligned} & 1 D \\ & 4 D \\ & 6 B \end{aligned}$	$\begin{aligned} & 31 \\ & 31 \\ & 31 \end{aligned}$	J840 P808	9 N 1C	31 11	$\begin{aligned} & \text { P808 } \\ & \text { P808 } \end{aligned}$	$\begin{aligned} & 5 B \\ & 9 N \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	R167	4 C	1E
Partial A13 also shown on diagrams 4, 5 and 6.											

TABLE (CONT)

HORIZONTAL, PROBE COMP AND FAN DIAGRAM

ASSEMBLY A14											
CIRCUIT NUMBER	SCHEM LOCATION	BOARD Location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \end{gathered}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C128	1 F	5 D	CR160	4H	3H	R125	2 F	5E	R187	61	51
C140	4E	5D	CR161	3 H	4G	R126	2 F	4E	R190	6K	51
C141	4D	58	CR175	4 H	4H	R127	3 G	6 E	R264	81	4B
C145	4 E	5 C				R128	1F	50	R265	81	3 C
C146	4 E	5 C	K127	2G	6 E	R132	3D	7G	R266	91	3 B
C147	5 E	5 C				R133	3E	5E	R267	91	3 B
C148	5 E	5 C	P741	7B	9G	R134	3 E	5 F	R271	81	4 C
C149	6 E	5D	P745	3 D	7G	R135	3 E	6 F	R272	8 J	4 C
C153	6 F	5 E	P745	4 N	7G	R139	4D	5B	R273	8 J	3E
C155	4 H	3G	P747	7N	4 B	R140	4 D	4 C	R274	9 J	4E
C159	4 H	4 H	P840	10	6 6	R141	4 D	58	R281	9 J	3 D
C160	3 H	4 H	P840	4 D	6A	R142	4 D	5B	R282	8 K	3D
C161	21	4G	P840	6 B	6A	R146	4 E	5 C	R283	8 K	4 E
C167	3 J	5G	P840	8M	6A	R147	5D	5 C	R284	8 K	3 F
C169	4 K	5 H				R148	5 E	4 C	R287	9 K	3 F
C173	5 H	4 H	0111	1G	58	R149	5 E	4 E	R288	9 L	4 F
C174	51	41	Q155	4 H	3 H	R153	6 F	5D	R289	8M	4B
Cl 80	5 J	5 H	0160	3H	4G	R154	3G	6 E	R290	8 L	3 E
C182	5 K	51	0167	3 J	4G	R155	4G	3G	R294	8M	4A
C187	71	4 H	0168	3K	5G	R156	4G	3 H	R295	6 M	4A
C190	4 L	5 H	0174	6 H	4 H	R160	3H	4 H	R296	6M	4A
C265	81	3B	0176	6 J	4 H	R161	21	5G			
C266	81	4 C	0181	5 K	5 H	R163	3 K	5G	RT295	6M	3A
C267	91	4 B	0267	91	4B	R167	3 J	5G			
C273	8 J	3D	0271	9 J	4A	R168	4 K	5G	TP127	2G	5 E
C281	8 J	4 D	0281	9 K	4D	R169	3K	5 H	TP190	5 L	5 H
C282	9 K	3 C	0282	9 K	4D	R170	4L	5G			
C284	8L	$3 F$	0288	9 L	4F	$R 173$	5G	5 E	U128	4 F	50
C288	8L	4F	0289	7 L	3A	R174	6 H	41	U147	5E	5C
C290	9L	4E	0290	9 L	4E	R175 R176	5 H $6 . J$	$\begin{aligned} & 41 \\ & 41 \end{aligned}$	VR111	1E	5 B
CR111	1G	6 F	R110	1 G	5 B	R180	5 J	5 H	VR174	61	41
CR128	2E	5D	R111	1E	6 B	R181	5 K	5 H			
CR133	3E	5 F	R112	2 E	5 B	R182	5 K	51			
CR135	3E	6 F	R124	3G	5E	R183	5K	5G			
Partial A14 also shown on diagrams 4,6 and 7.											
ASSEMBLY 118											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CIRCUIT } \\ & \text { NUMBER } \end{aligned}$	$\begin{gathered} \text { SCHEM } \\ \text { LOCATION } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \\ & \hline \end{aligned}$
C6	9 C	2 C	R1	9 A	2 B	R15	8 E	2 C	U18	9 C	2B
C12	8 E	1 C	R2	9A	2 B	R17	8 E	2 D	U1C	8 C	2B
C20	8 C	2B	R3	9 B	2A	R20	8 B	1D	U1D	9 C	2B
			R4	9 B	2A				U1E	9 C	28
P753	78	1 D	R6	9 C	2 C	TP10	8 D	2D	U1F	9 A	2B
P754	8 F	2 C	R10	8 D	2 C	TP12	8D	2D			
			R12	8 E	1 C						
013	8 E	1 C	R13	8 E	2 C	U1A	9 C	2B			
CHASSIS MOUNTED PARTS											
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD location	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
B924	7N	CHASSIS	J954	8 F	CHASSIS	$\begin{aligned} & \text { R935A } \\ & \text { R935B } \end{aligned}$	$\begin{aligned} & 3 A \\ & 3 A \end{aligned}$	CHASSIS CHASSIS			

TEST WAVEFORMS FOR DIAGRAM < 9

59

60

HIGH VOLTAGE \& CRT DIAGRAM

ASSEMBLY A15								
CIRCUIT NUMBER	$\begin{array}{\|c\|} \text { SCHEM } \\ \text { LOCATION } \end{array}$	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
C3	1 B	4 H	CR191	71	4 E	R128	3G	3 F
C5	2A	2 H	CR197	7H	5B	R130	3G	3 E
C86	2B	3 F				R134	4G	5 E
C87	2B	2 F	F89	58	2G	R135	4 G	5D
C94	2 C	4G				R136	4G	5 C
C100	2D	$4 F$	L167	50	3 C	R140	4 E	5 H
C101	4D	3F	L191	71	5D	R147	6 B	3D
C108	2E	4E				R148	78	3 D
C109	1E	4E	P756	3A	1H	R149	78	4 D
C110	1D	4E	P756	4A	1H	R150	78	4 C
C116	3 E	4F	P758	1A	4G	R154	7 C	4D
C121	2 F	3 E	P758	4A	4G	R155	7 C	4D
C122	1F	30	P758	7N	4G	R156	70	4A
C123	2G	3E	P761	2 J	2 C	R157	6 E	3A
C128	3 F	3 F	P761	2 L	2 C	R161	6E	3B
C136	5G	4 C	P761	3L	2 C	R163	6D	3 B
C140	4 F	5 E	P763	1 N	1 K	R168	5 D	2A
C148	7A	4C	P765	3N	3 K	R176A	3 J	2 C
C150	7 B	4 C	P768	1L	1K	R176B	91	2 C
C156	7 D	3A	P768	2 L	1K	R176C	9 J	2 C
C167	5 D	4B				R176D	4 J	2 C
C168	5 C	3D	093	3 B	4 F	8177	9 H	1 C
C174	91	2B	0100	3D	4F	R178	8 H	1 C
C175	9 J	2 C	0107	1 D	4 E	R182	9 H	18
C182	9 H	18	0114	2 E	3E	R183	9 F	18
C183	9 F	38	0115	3 E	3 F	R184	8 G	1 C
C185	9G	1 B	0116	3 E	4F	R185	9G	1 B
C190	7 H	4B	0148	7A	4D	R191	7 N	5G
C191	71	4 C	0155	6 C	4D	R192*	7 K	5 C
C196	4 J	3 D	0156	7 E	3A	R202	2M	1 E
C197	7 G	4B	Q161	6 E	3A	R203	2M	2K
C198	2 J	2 C	0163	6C	2B	R204	3M	10
C202	2M	2D	0178	9 H	1 C	R205	3M	1 D
C205	3M	1D	0184	96	1 B	R210	4M	20
C209	4M	3 C				R211	4M	1 D
C210	4M	2 D	R85	1B	2 F	T167	5 F	4 B
C211	5M	2 C	R86	18	2F	T168	$6 E$	2B
CR91	2 B	4G	R91	2 B	4 K	TP92	3B	3G
CR92	3B	2G	R92	3B	4G	TP127	2G	3F
CR94	3 C	4F	R93	3B	4G	TP130	2 G	3 E
CR100	3 C	4F	$\mathrm{R94}$	2B	5G	TP148	8A	3 C
CR123	2F	3 E	R99	3D	3G	TP161	60	3A
CR127	2 F	3 E	R 100	20	3G	TP184	8G	18
CR130	4G	4D	R101	4D	3 F	TP185	9 G	18
CR140	4 F	5D	R102	3D	2 F	TP320	7 L	4D
CR148	78	3 C	R106	3D	3 F			
CR154	78	4D	R107	2D	4 E	4130	1G	4D
CR156	7E	4A	R108	2 E	4 E			
CR157	6E	3A	R109	1D	4F	VR123	2G	2 E
CR161	6 E	3A	R113	2 E	3E	VR140	4 F	5 F
CR163	60	3B	R114	2 E	4 E	VR148	78	3 C
CR165	6C	2A	R115	3E	4F	VR155	6 C	3D
CR167	5 C	3B	R116	3E	4 F	VR198	2 J	2B
CR168	5 C	2A	R 120	2 F	3 E			
CR174	91	1 B	R 121	2 F	3 E	W88	4 B	4G
CR175	91	1 C	R122	1F	4D	W163	6 D	3 B
CR177	9 H	1 C	R123	2 F	3 E	W209	4 N	1 C
CR190	7H	5B	R127	2G	3E			
Partial A15 also shown on diagram 3.								
CHASSIS MOUNTED PARTS								
CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	BOARD LOCATION	CIRCUIT NUMBER	$\begin{aligned} & \text { SCHEM } \\ & \text { LOCATION } \end{aligned}$	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
DS195	6 J	CHASSIS	R940	4	CHASSIS	v940	1K	CHASSIS
DS196	5 J	CHASSIS	R942	1 N	CHASSIS			
DS197	5 J	CHASSIS	R945	4 N	CHASSIS			

*See Parts List for serial number ranges.

POWER SUPPLY ISOLATION PROCEDURE

Each regulated supply has numerous feed points to external loads throughout the instrument. The power distribution diagram is used in conjunction with the schematic diagrams to determine those loads that can be isolated by removing service jumpers and those that cannot.

The power distribution diagram is divided into circuit boards. Each power supply feed to a circuit board is indicated by the schematic diagram number on which the voltage appears. The schematic diagram grid location of a service jumper or component is given adjacent to the component number on the power distribution diagram.

If a power supply comes up after lifting a service jumper or other component to isolate a circuit, it is very probable that the problem is in that circuit. This can sometimes, however, lead to erroneous conclusions. A supply may pass through one circuit to another circuit. For instance, the $+5 \mathrm{~V}_{\mathrm{B}}$ supply goes through both the CH 1 and CH 2 VERT MODE switches (for XY MODE), across the A13 Trigger board from P808-11 to J84021, and onto the A14 Sweep/Horiz Amp board. It is no longer identified as +5 V B, but is now labeled XY Enable. The XY Enable signal appears on both diagram 8 and on diagram 6 . Watch for this type of condition when trying to localize a loading problem.

Typical resistance values to ground from the regulated supplies output as measured at the supply test points are:

+40 V	$4 \mathrm{~K} \Omega$ at TP247
+10 V	210Ω at TP252
+5 V	110Ω at TP255
-10 V	400Ω at TP265
-5 V	160Ω at TP264

Resistance values significantly lower may indicate shorted components in the load. Values will vary between instruments.

Always set the POWER switch to OFF before soldering or unsoldering service jumpers or other components and before attempting to measure component resistance values.

A10 VERTICAL PREAMP/LOW VOLTAGE POWER SUPPLY

GENERAL NOTES

A. Always set POWER switch to OFF before swopping, removing, or replacing components, and before connecting or disconnecting leads or cables.
B. When analyzing circuit malfunctions, consider sockets and cables as possible causes of faslure.
C. Note that some troubleshootingprocedure boxes on each chart contain numbers in their botiom corners. These are the numbers of the applicable circuit diagram(s) and circuit board illustrations(s) (see figure) Numbers shown at the start of a troubleshooting path remain opplicable to downstream procedure boxes in the path until the procedure specifies o different diagram and/or bllustrafion.

SPECIFIC NOTES

1. Set the anstrument front-panel controls intitally os follows

TRIG SOURCE VERT MODE
TRIG SLOPE
TRIG MODE
VAR TIME
A AND B SEC/DIV
HORIZ MODE
CH 1 VOLTS/DIV
CH 1 AC-GND-DC
VERTICAL MODE
VERTICAL POSITION
HORIZONTAL POSITION XID MAG
INTENSITY
B DELAY TIME POSITION

AUTO
In detent
1 ms
A
D. 1 V

DC
CH 1
Midrange
Midronge
OFF
Mıdronge Fully CCW

GENERAL NOTES

A. Always set POWER switch to OFF before swapping, removing, or replacing components, and before connecting or disconnecting leads or cobles.
B. When analyzing circuit malfunctions, consider sockets and cables as possible causes of fallure.
(1)

SPECIFIC NOTES

1. Verify the power supplies at the following test points

CIRCUIT BOARD
SUPPLY TEST POINT AND FIGURE NO.
+4 VV TP247 A10 (9-6)
+10 V TP252 A10 (9-6)
+5 V TP255 A10 (9-6)
$-10 V$ TP265 A10 (9-6)
$-5 V \quad$ TP262 A10 (9-6)
+102 V TP32D A15 (9-7)

Power supply isolation procedure is described adjacent to the Power Distribution diagram in this manual
2. Set the instrument front-panel controls initially os follows:

TRIG SOURCE VERT MODE TRIG SLOPE TRIG MODE var time
A AND B SEC/DIV HORIZ MODE
CH 1 VOLTS/DIV
CH 1 AC-CND-DC VERTICAL MODE VERTICAL POSITION HORIZONTAL POSITION XIV MAG INTENSITY
b delay time position

GENERAL NOTES

A. Always set POWER switch to OFF before swapping, removing, or replacing components, and before connecting or disconnecting leads or cables.
B. When analyzing circuit malfunctions, consider sockets and cables as possible causes of failure
(2)
 CHART 2

GENERAL NOTES

1. Alwoys set Power switch to OFF before swapping, removing
or replacing components, and before connecting or
disconnecting leads or cables.
B. When analyzing circuit
malfunctions, consider socket of fallure.

SPECIFIC NOTE
A HV probe is required to measure the voltage on pins $1,2,3,4$, and 14 of the crt socket. Voltage on these pin 1 s In excess of -1 kV . Nominal vo
for the crit socket voltages are:

1r. Voltage
$\tilde{z}-1960 \mathrm{~V}$
$\tilde{z}-1960 \mathrm{~V}$
$\tilde{z}-2035 \mathrm{~V}$
-1410V $10-1680 \mathrm{~V}$
$z-1410 \mathrm{~V}$
NC
$\tilde{z}-9.9 \mathrm{~V}$
$\tilde{z}+25 \mathrm{~V}$
$\tilde{z}-9.9 \mathrm{~V}$
$\tilde{\tilde{z}}+25 \mathrm{~V}$
$\tilde{z}+48 \mathrm{~V}$
$\tilde{z}+40 V$
$\tilde{z}^{-150 V}$
$\tilde{z}+92 v$
$\tilde{z}+13 v$
NC
NC
$\tilde{z}-1960 \mathrm{~V}$

GENERAL NOTES

A. Always set POWER switch to OFF before swapping, removing or replacing components, and disconnecting leads or cables.
B. When analyzing circuit malfunctions, consider sockets and cables as possible causes of fallure.

disconnecting leods
B. When analyzing circuit
molfunctions, consider sockets and cobles as possible causes of follure.

VERTICAL TROUBLESHOOTING
CHART 5

SPECIFIC NOTES
Verify the power supplies at the following test suint
SUPPLY TEST POINT CIRCUIT BOARD $+48 V$ TPR247 AND FIGURE

+40V	TP247	110 (9-6)
+10V	TP252	110 (9-6)
V	TP255	A10 (9-6)
-10V	TP265	110 (9-6)
-5V	TP262	A10 (9-6)
+102V	TP32¢	115 (9

Power supply isolation procedur Is described adjacent to the Power
ter int
2. Set the instrument front-pane controls initially os follows TRIG SOURCE TRIG SLOPE TRIG MODE
VAR TIME
A AND B SEC/DTV HORIZ MODE CH 1 VOLTS/DIV
CH 1 AC-GND-DC VERTICAL MODE ORIZONTAL POSITIO $\times 10 \mathrm{MAG}$
INTENSTTY INTENSITY
delay TIME POSItion
vert mode
$\stackrel{+}{\text { AUTO }}$
In deten $\underset{1 \mathrm{~ms}}{\text { in }}$
1 ms
0.1 V

OC
CH
C

CH 1
Midrange
Midrange
OFF OFF
Madrange
Fully CCW

general notes

A. Always set POWER switch to OFF before swapping, removing or replacing components, and
before connecting or disconnecting leads
B. When analyzing circuit
malfunctions, consider socket and cables as possible causes of fallure.

SPECIFIC NOTE

1. Set the instrument front-ponel
controls initially as follows
TRIG SOURCE VERT MODE
TRIG SLOPE TRIG MODE
VAR TIME
A AND B SEC/DIV
HORIZ MODE
CH 1 VOLTSTDIV
CH AC-CND-DC
VERTICAL POSITION
HORIZONTA
IZONTAL POSIT
$\times 10$ MAG
INTENSITY INTENSITY
b delay time position
AUTO
In detent
ims
dit

- A. Av CH ${ }^{\mathrm{CL}}$ Midrange Midrang
OFF Midrange
Fully CCW

GENERAL NOTES

A. Always set Power switch to Off before swapping, removing or replacing components, and disconnecting leads or cables.
B. When analyzing circuit
malfunctions, consider sockets of fallure.
(7)

B. When anolyzing circuit sockets of failure.

SPECIFIC NOTE

1. Set the insirument front-ponel
tris imitially as follows TRIG SLOPE TRIG MODE
VAR TIME
VAR TIME
AND B SEC/DIV
HORIZ MODE
$\begin{array}{lll}\mathrm{CH} & 1 \text { VOLTS/DIV } \\ \mathrm{CH} & \text { AC-GND-DC }\end{array}$
CH AC-CND-DC
VERTICAL MODE
VERTICAL POSITION INTAL POSITION $\times 16$ MAG
INTENSITY B DELAY TIME POSITION

GENERAL NOTES
A. Always set POWER swlitch to OFF before swapping, removing replacing components, and efore connecting or isconnecting leads or cables. B. When analyzing circuit \dagger and cables as possible causes of follure.

SPECIFIC NOTES

 Verify the power supplies at the following test points SUPPLY TEST POINT CIRCUIT BOARD $\begin{array}{ll} \\ +40 V & \text { TPR247 AND FIGURE NO } \\ +1 \text { NV }\end{array}$
Power supply isolation procedure is described adjacent to the Power Disiribution diagram in this manual
2. Set the instrument front-panel controls initially os follows

TRIC MODE
VAR TIME
VAR TIME
A AND B SEC/DIV
HORIZ MODE
HORIZ MODE
CH 1 VOTSSDI
CH 1 AC-GND-DC
VERTICAL MODE
VERTICAL POSITION ORIZONTAL POSITIO $\times 10$ MAG
INTENSIT
INTENSITY
D delay Time POSition
VERT MODE
AUTO
In detent
$\stackrel{1 \mathrm{~ms}}{A}$
 CH 1
Midrange Midrange
Midrange OFF
Midronge
Fully CCW

GENERAL NOTES

A. Always set Power switch to

OFF before swapping, removing or replacing components, and before connecting of
When onalyzing circuit
mal functions, consider socket ond cables os possible causes of follure.
(9)

GENERAL NOTES
A. Aiways set POWER switch to OFF before swapping, removing or replacing componer before connecting or
disconnecting leads
When analyzing circu malfunctions, consider sockets and cables as possible couses f follure

A. Alwors se 1 POWER switch
to OFF before swapling,
removing; or replacing components and before
connecting or connecting or
disconnecting leads or
cables.
B. When analyzin
B. When anolyzing
circuit mol funct 1 malfunctir
cons der
sockets and sockets and
cables os cables os
possible causes of
fallure. fallure.
C. The power
isolation
procedure is
described
odjacent
the Power
The Power
Distribution
diagram in
this manual

+10V AND +5V POWER SUPPLY TROUBLESHOOTING CHART 11

A. Alwoys se \dagger to OFF before
swopp ing, swapping)
removing, or replocing components and be fore
connecting or disconnecting
leads or leads or
B. When analyzing
B. When onalyzing
circuit mal functions, ons ider consider
sockets and
cobles os cables os
possible possible
couses of ouses of
foulure.
C. The pow

The pow
supply
isolat
isolotion procedur is
described described
adjacent to adjocent to
the Power
the Power
Disiribution
diairem in
diagram in
this manual

GENERAL NOTES
A. Always set to OFF before
swopp ing swapping,
removing ; or replacing components
and before and be fore
connec 1 ing or disconnecting
leads or leads or
cooles.
cables.
When onalyzing
circuit
irlat mal funct consider sockets and
cables as possible couses
fallure.
The power supply isolation procedure is
described procer bed
dadjocent to adjacent to
ite Power The power diagram in this manual

REPLACEABLE MECHANICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available. and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number. serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part. your local Tektronix. Inc. Fieid Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.
$12345 \quad$ Name \& Description
Assembly andior Component
Attaching parts for Assembly andior Component
.... . . .
Detail Part of Assembly andlor Component
Attaching parts for Detail Part

$$
\ldots \cdot-
$$

Parts of Detall Part
Attaching parts for Parts of Detail Part

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. indented items are part of, and included with, the next higher indentation. The separation symbol-...... indicates the end of attaching parts.

Altaching parts must be purchased separately, unless otherwise specified.

ABBREVIATIONS

	INCH	ELCTAN	ELECTRON	IN	INCH	SE	SINGLE END
\#	NUMBEA SIZE	ELEC	ELECTRICAL	INCAND	INCANDESCENT	SECT	SECTION
ACTA	ACTUATOR	ELCTLT	ELECTROLYTIC	INSUL	INSULATOR	SEMICOND	SEMICONDUCTOR
ADPTR	ADAPTER	ELEM	ELEMENT	INTL	INTERNAL	SHLD	SHIELD
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LIST	LPHLDR	LAMPHOLDER	SHLDR	Shouldered
AL	ALUMINUM	EQPT	EQUIPMENT	MACH	MACHINE	SKT	SOCKET
ASSEM	ASSEMBLED	EXT	EXTERNAL	MECH	MECHANICAL	SL	SLIDE
ASSY	ASSEMBLY	FIL	FHLISTER HEAD	MTG	MOUNTING	SLFLKG	SELF-LOCKING
ATTEN	ATTENUATOR	FLEX	FLEXIBLE	NIP	NIPPLE	SLVG	SLEEVING
AWG	AMERICAN WIRE GAGE	FLH	FLAT HEAD	NON WIRE	NOT WIRE WOUND	SPR	SPRING
80	BOARD	FLTR	FILTER	O80	ORDEA BY DESCRIPTION	SO	SQUARE
BRKT	BRACKET	FR	FRAME or FRONT	OD	OUTSIDE DIAMETER	SST	STAINLESS STEEL
BRS	BRASS	FSTNR	FASTENER	OVH	OVAL HEAD	STL	STEEL
8R2	BRONZE	FT	FOOT	PH BRZ	PHOSPHOR BRONZE	SW	SWITCH
BSHG	BUSHING	FXD	FIXED	PL	PLAIN or PLATE	T	tube
CAB	CABINET	GSKT	GASKET	PLSTC	PLASTIC	TERM	TERMINAL
CAP	CAPACITOR	HOL	HANDLE	PN	PART NUMBER	THO	THREAD
CER	CERAMIC	HEX	HEXAGON	PNH	PAN HEAD	THK	THICK
CHAS	CHASSIS	HEX HD	HEXAGONAL HEAD	PWR	POWER	TNSN	TENSION
CKT	CIRCUIT	HEX SOC	HEXAGONAL SOCKET	ACPT	RECEPTACLE	TPG	TAPPING
COMP	COMPOSITION	HLCPS	HELICAL COMPRESSION	RES	RESISTOR	TRH	TRUSS HEAD
CONN	CONNECTOR	HLEXT	HELICAL EXTENSION	AGD	RIGID	\checkmark	VOLTAGE
cov	COVER	HV	High Voltage	RLF	RELIEF	VAR	VARIABLE
CPLG	COUPLING	1 C	INTEGRATED CIPCUIT	RTNR	RETAINER	W/	WITH
CRT	CATHODE RAY TUBE	1 D	INSIDE DIAMETER	SCH	SOCKET HEAD	WSHR	WASHER
DEG	DEGREE	IDENT	IDENTIFICATION	SCOPE	OSCILLOSCOPE	XFMR	TRANSFORMER
DWR	DRAWER	IMPLR	IMPELLER	SCR	SCREW	XSTR	TRANSISTOR

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip Code
$\begin{aligned} & 00779 \\ & 01536 \end{aligned}$	AMP INC	P 0 BOX 3608	HARRISBURG PA 17105
	TEXTRON INC		ROCKFORD IL 61108
	CAMCAR DIV	1818 CHRISTINA ST	
	SEMS PRODUCTS UNIT		
02114	AMPEREX ELECTRONIC CORP	5083 KINGS HWY	SAUGERTIES NY 12477
	FERROXCUBE DIV		
02735	RCA CORP	ROUTE 202	SOMERVILLE NJ 08876
	SOLID STATE DIVISION		
05006	20TH CENTURY PLASTICS INC	3628 CRENSHAW BLVD	LOS ANGELES CA 90015
05129	Kilo engineering co	2015 D	LA VERNE CA 91750
06915	RICHCO PLASTIC CO	5825 N TRIPP AVE	CHICAGO IL 60646
07416	NELSON NAME PLATE CO	3191 CASITAS	LOS ANGELES CA 90039
09922	BURNDY CORP	RICHARDS AVE	NORWALK CT 06852
11897	PLASTIGLIDE MFG CORP	2701 W EL SEGUNDO BLVD	HAWTHORNE CA 90250
12327	FREEWAY CORP	9301 ALLEN DR	CLEVELAND OH 44125
13511	AMPHENOL CADRE DIV BUNKER RAMO CORP		LOS GATOS CA
13556	TRW CINCH CONNECTORS NULINE FACILITY	8821 SCIENCE CENTER DRIVE	NEWHOPE MN 55428
16428	belden Corp	2200 US HWY 27 SOUTH	RICHMOND IN 47374
	ELECTRONIC DIV	P 0 BOX 1980	
22526	DU PONT E I DE NEMOURS AND CO INC DU PONT CONNECTOR SYSTEMS	30 HUNTER LANE	CAMP HILL PA 17011
22670	G M NAMEPLATE INC	2040 15TH AVE WEST	SEATTLE WA 98119
23740	AMUNEAL MFG CORP	4737 DARRAH	PHILADELPHIA PA 19124
24931	SPECIALTY CONNECTOR CO INC	2620 ENDRESS PLACE POBOXD	GREENWOOD IN 46142
27264	MOLEX INC	2222 WELLINGTON COURT	LISLE IL 60532
	CORPORATE HQ		
31918	ITT SCHADOW INC	8081 WALLACE RD	EDEN PRAIRIE MN 55343
59730	THONAS AND BETTS CORP	HWY 218 S	IONA CITY IA 522240
70485	ATLANTIC INDIA RUBBER WORKS INC	571 W POLK ST	CHICAGO IL 60607
70903	BELDEN CORP	2000 S batavia AVE	GENEVA IL 60134
71159	BRISTOL SOCKET SCREW CO		WATERBURY CT
71279	MIDLAND-ROSS CORP CAMBION DIV	ONE ALEWIFE PLACE	CAMBRIDGE MA 02138
71400	BUSSMANN MFG CO	114 OLD STATE RD	ST LOUIS M0 63178
	MCGRAW EDISION CO	PO BOX 14460	
73743	FISCHER SPECIAL MFG CO	446 MORGAN ST	CINCINNATI OH 45206
75915	LITTELFUSE INC	800 E NORTHWEST HWY	DES PLAINES IL 60016
77900	SHAKEPROOF	SAINT CHARLES RD	ELGIN IL 60120
	DIV OF ILLINOIS TOOL WORKS		
78189	ILLINOIS TOOL WORKS INC	ST CHARLES ROAD	ELGIN IL 60120
	SHAKEPROOF DIVISION		
79807	WROUGHT WASHER MFG. CO.	2100 S. 0 BAY ST.	MILWALKEE, WI 53207
80009	TEKTRONIX INC	4900 S W GRIFFITH DR P 0 BOX 500	BEAVERTON OR 97077
80033	MICRODOT MANUFACTLRING INC	1345 MIAMI ST	TOLEDO OH 43605
	PRESTOLE EVERLOCK DIV	P O B0X 278	
82330	WICKMAN CORP THE	10325 CAPITAL AVE	OAK PARK MI 48237
83385	MICRODOT MANUFACTURING INC GREER-CENTRAL DIV	3221 W BIG BEAVER RD	TROY MI 48098
83486	ELCO INDUSTRIES INC	1101 SAMUELSCN RD	ROCKFORD IL 61101
84830	LEE SPRING CO INC	30 MAIN ST	BROOKLYN NY 11201
86928	SEASTROM MFG CO INC	701 SONORA AVE	GLENDALE CA 91201
88245	LITTON SYSTEMS INC USECD DIV	13536 SATICOY ST	VAN NUYS CA 91409
93907	TEXTRON INC	60018 TH AVE	ROCKFORD IL 61101
	CAMCAR DIV		
97193	DUDEK AND BOCK SPRING MFG CO	5100 W ROOSEVELT RD	CHICAGO IL 60650
53109	FELLER ASA ADOLF AG C/O PANEL COMPONENTS CORP	355 TESCONI CIRCLE	SANTA ROSA CA 95401
S3629	SCHURTER AG H C/O PANEL COMPONENTS CORP	2015 SECOND STREET	BERKELEY CA 94170
TK0392	NORTHWEST FASTENER SALES INC	7923 SW CIRRUS DRIVE	BEAVERTON OR 97005
TK0433	PORTLAND SCREW CO	6520 N BASIN	PORTLAND OR 97217
TK0435	LEWIS SCREW CO	4114 S PEORIA	CHICAGO IL 60609

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr.			
Code	Manufacturer	Address	City, State, Zip Code
TK0858	STAUFFER SUPPLY CO	105 SE TAYLOR	PORTLAND OR 97214
TK0061	H SCHURTER AG DIST PANEL COMPONENTS	2015 SECCND STREET	BERKELEY CA 94170
TK1326	NORTHWEST FOURSLIDE INC	5858 WILLOW LANE	LAKE OSWEGO OR 97034
TK1373	PATELEC-CEM (ITALY)	10156 TORINO	VAICENTALLO 62/45S ITALY
TK1483	TEKA PRODUCTS INC	45 SALEM ST	PROVIDENCE RI O2907
TK1544	COMPUTER CONNECTIONS	2427 PRATT AVE	HAYWARD CA 94544

Fig. 8

$\begin{aligned} & \text { Index } \\ & \text { No. } \end{aligned}$	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Oty	12345 Name \& Description	Mfr. Code	Mfr. Part No.
1 -	644-0672-00		1	FRONT COV ASSY:PROTECTION	80009	644-0672-00
-1	348-0706-00		2	.BUMPER, PLASTIC: FRONT COVER ATTACHING PARTS	80009	348-0706-00
-2	211-0244-00		2	.SCR,ASSEM WSHR:4-40 X 0.312,PNH STL END ATTACHING PARTS	TK0858	211-0244-00
-3	105-0905-00		2	. STRIKE, CATCH: INSERT, ALLMINUM	80009	105-0905-00
-4	390-0841-02		1	.COVER, PROT:FRONT ATTACHING PARTS	80009	390-0841-02
-5	211-0661-00		4	.SCR,ASSEM WSHR:4-40 $\times 0.25$, PNH, STL, POZ END ATTACHING PARTS	01536	821-01655-024
-6	386-4588-00		1	. PANEL, LID: ATTACHING PARTS	80009	386-4588-00
-7	$\begin{aligned} & 211-0007-00 \\ & 211-0661-00 \end{aligned}$	$\begin{array}{ll} \begin{array}{l} \text { B010100 } \\ \text { B013485 } \end{array} & \text { B013484 } \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$.SCREW,MACHINE:4-40 X 0.188, PNH,STL .SCR,ASSEM WSHR:4-40 X 0.25, PAH,STL, POZ END ATTACHING PARTS	$\begin{aligned} & \text { TK0435 } \\ & 01536 \end{aligned}$	ORDER BY DESCR 821-01655-024
-8	105-0870-00		1	LATCH, CABINET:TOP RIGHT ATTACHING PARTS	80009	105-0870-00
-9	211-0087-01		1	.SCREW,MACHINE:2-56 X 0.188,FLH, 82 DEG,STL END ATTACHING PARTS	TK0435	ORDER BY DESCR
-10	105-0871-00		1	. LATCH, CABINET:TOP LEFT ATTACHING PARTS	80009	105-0871-00
-11	211-0087-01		1	.SCREW,MACHINE:2-56 X 0.188,FLH, 82 DEG,STL END ATTACHING PARTS	TK0435	ORDER BY DESCR
-12	214-3163-00		2	. ACTUATOR,LATCH:CABINET TOP,ABS	80009	214-3163-00
-13	101-0057-00		1	. TRIM, COVER:HINGE,ARS	80009	101-0057-00
-14	214-3071-00		1	.PIN,HINGE:9.45 L X 0.0937 DIA,SST	80009	214-3071-00
-15	101-0056-00		1	.TRIM,FRONT PNL:HINGE,ABS ATTACHING PARTS	80009	101-0056-00
-16	211-0097-00		6	.SCREW,MACHINE:4-40 $\times 0.312$, PNH, STL END ATTACHING PARTS	TK0435	ORDER BY DESCR
-17	367-0296-01		1	HANDLE,CARRYING:W/GRIP AND INDEX ATTACHING PARTS	80009	367-0296-01
-18	212-0144-00		2	SCREN,TPG,TF:8-16 X 0.562 L, PLASTITE END ATTACHING PARTS	93907	225-38131-012
-19	214-0536-01		1	SPRING,HLCPS:0.342-0.826 OD $\times 0.531$ L,CONIC AL,CLOSED ENDS,MUSIC WIRE CD PL	80009	214-0536-01
-20	334-3839-00		1	MARKER, IDENT:MARKED 2335	07416	58600-000
-21	200-2654-00		2	COVER, LATCH:FOOT PAD, DELRIN ATTACHING PARTS	80009	200-2654-00
-22	211-0313-00		2	SCR,ASSEM WSHR:4-40 X 0.5, PNH,STL CD PL, POZ END ATTACHING PARTS	78189	ORDER BY DESCR
-23	386-4676-00		2	PLATE, REINF: LATCH, CRS	80009	386-4676-00
-24	105-0902-00		2	LATCH, COVER: FOOT, ALLMINLM	80009	105-0902-00
-25	214-1035-00		2	SPRING, HLCPS: 0.3 OD X 0.265 L,OPEN ENDS, MLW	84830	LC-0260-4 SS
-26	214-3251-00		2	SPRING, GROUND:CU BE ATTACHING PARTS	80009	214-3251-00
-27	211-0105-00		2	SCREW,MACHINE:4-40 $\times 0.188$, FLH. 100 DEG END ATTACHING PARTS	TK0435	ORDER BY DESCR
-28	352-0630-00		2	HOLDER, LATCH:ABS	80009	352-0630-00
-29	212-0008-00		4	SCREW, MACHINE:8-32 $\times 0.5$, PNH,STL	83385	ORDER BY DESCR
-30	348-0681-00		2	FOOT, SCOPE: REAR, BLK POLYURETHANE ATTACHING PARTS	80009	348-0681-00
-31	211-0578-00		4	SCREW, MACHINE: $6-32 \times 0.438$, PNH, STL END ATTACHING PARTS	TK0435	ORDER BY DESCR
-32	334-4151-00		1	MARKER, IDENT:MKD CAUTION, FUSE DATA	80009	334-4151-00
	334-4151-02		,	MARKER, IDENT:MKD CAUTION, FUSE DATA (GUERNSEY INSTRUMENTS ONLY)	80009	334-4151-02
-33	334-4152-00		1	Marker, IDENT:MID CAUTION, LINE VOLTAGE SELEC TOR	07416	ORDER BY DESCR
-34	343-0896-00		1	CLAMP, CABLE:POWER,SST ATTACHING PARTS	80009	343-0896-00
-35	211-0510-00		1	SCREW, MACHINE: $6-32 \times 0.375$, PNH, STL END ATTACHING PARTS	83385	ORDER BY DESCR
-36	348-0675-00		1	CABINET REAR: ATTACHING PARTS	80009	348-0675-00
-37	$211-0507-00$ $437-0274-02$		2 1	SCREW,MACHINE: $6-32 \times 0.312$, PNH,STL END ATTACHING PARTS CABINET, SCOPE:	833850	ORDER BY DESCR $437-0274-02$

Fig. \&

Index	Tektronix Part No.	Serial/Assenbly No. Effective	Dscont	Oty	12345	Name \& Description	Mfr.
$1-38$	$437-0274-01$		1	CABINET, SCOPE:	Code	Mfr. Part No.	
	$437-0274-05$		1	CABINET, SCOPE:	80009	$437-0274-01$	
				(OPTION O3 ONLY)	80009	$437-0274-05$	

Fig. $\&$

| $\begin{array}{ll}\text { Index } & \text { Tektronix } \\ \text { No. } & \text { Part No. }\end{array} \begin{array}{c}\text { Serial/Assembly No. } \\ \text { Effective } \\ \text { Dscont }\end{array}$ |
| :--- | :--- | :--- |

No.	Part No.	Effective	Dscont	Oty
$2-1$	$366-1059-00$		1	

-2	$366-1879-01$	1
-3	$213-0020-00$	1
$-366-1866-01$	5	

PUSH BUTTON:GRAY, 0.22700×0.3
KNOB:GRAY $0.500 \times 0.531 \mathrm{H}$ PLSTC
.SETSCREW: 6-32 X 0.125, STL
KNOB:GY, VAR,0.127 ID X $0.500 \times 0.54 \mathrm{H}$
KNOB:RED,VAR, 0.127 ID $\times 0.39200 \times 0.466 \mathrm{H}$
.SETSCREW:5-40 X 0.094, STL
KNOB:W/SKIRT
KNOB: RED, VAR, $0.083 \mathrm{ID} \times 0.450 \mathrm{D} \times 0.389 \mathrm{H}$
.SETSCREW:4-40 X 0.125,STL
KNOB:GRAY,TIME DIV, $0.2 \times 0.574 \times 0.65$
KNOB:GRAY, TIME/DIV
COLLET,SW' SHAFT: 0.125 ID $\times 0.34 \mathrm{~L}, \mathrm{AL}$ ATTACHING PARTS
NUT, PLAIN, HEX:10-32 X 0.25 HEX, BRS NP
WASHER,SPR TNSN: 0.195 ID X 0.328 OD END ATTACHING PARTS
INSERT,KNOB:0.38 ID X $0.5800 \times 0.645, \mathrm{AL} \quad 80009$ 377-0524-01
COLLET,SW SHAFT:0.25 ID X 0.7 L,AL 80009 214-3159-00
ATTACHING PARTS
NUT.PLAIN, HEX: $0.375-32 \times 0.5$, BRS CD PL 73743 3145-402 END ATTACHING PARTS
BUSHING, SHAFT:0.25 ID,PLASTIC
DIAL,CONTROL:10 TURNS W/O BRAKE
PANEL, FRONT:
SHLD, IMPLOSION:
RETAINER, SHIELD: IMPLOSION
TRIM, FRONT PNL:SPACER,ABS,BLACK ATTACHING PARTS
SCREW, MACHINE: 4-40 $\times 0.25$, FLH, 100 DEG,STL END ATTACHING PARTS
SHLD GSKT, ELEK:SOLID TYPE,26.0 L
SHLD GSKT, ELEK:SILICON SPONGE,27.5 L
RESISTOR, VAR: (SEE R942 REPL) ATTACHING PARTS
NUT, PLAIN, HEX: 0.25×0.312 HEX, AL
WASHER, LOCK: 0.261 ID, INTL, 0.018 THK, STL
BSHG,MACH THD:0.25-32 $\times 0.159$ ID,BRS END ATTACHING PARTS
RESISTOR, VAR:(SEE R909 REPL)
WASHER, FLAT: 0.25 IO $\times 0.37500 \times 0.02$, STL
SPACER, POST:1.275 L.0.25-32 INT/EXT
ATTACHING PARTS
NUT, PLAIN,HEX: $0.25-40 \times 0.312$ BRS CD PL
END ATTACHING PARTS
RESISTOR, VAR: (SEE RG45 REPL) ATTACHING PARTS
NUT, PLAIN, HEX: $0.25 \times 0.312 \mathrm{HEX}, \mathrm{AL}$ WASHER, LOCK:0.261 ID, INTL, 0.018 THK, STL BSHG,MACH THD:0.25-32 $\times 0.159$ ID,BRS END ATTACHING PARTS
COVER,VAR RES:
RESISTOR, VAR: (SEE R940 REPL)
ATTACHING PARTS
NUT,PLAIN,HEX:0.25-40 $\times 0.312$ BRS CD PL $\quad 73743 \quad 20224-402$
END ATTACHING PARTS
SETSCREW: 0.25-28 X 0.625 L STL
FRAME,PUSH BTN:SILVER GRAY PLSTC
RESISTOR, VAR: (SEE R903,907 REPL) ATTACHING PARTS
NUT, PLAIN, HEX:0.25-40 X 0.312 BRS CD PL
TERMINAL,LUG:0.26 ID, LOCKING,BRS TINNED END ATTACHING PARTS
1 RESISTOR, VAR: (SEE R935 REPL) ATTACHING PARTS
1 NUT,SLV:0.719 L W/8-32 THD THRU,AL 80009 210-0462-00
CONN END ATTACHING PARTS
1 CONN, RCPT,ELEC:PROBE TIP

Mfr.
Code Mfr. Part No.
80009 366-1059-00
80009 366-1879-01
TK0433 ORDER BY DESCR
80009 366-1866-01
80009 366-1031-02
71159 ORDER BY DESCR
80009 366-1831-01
80009 366-1857-00
TK0392 ORDER BY DESCR
80009 366-1881-00
80009 366-0664-00
80009 214-3158-00
73743 ORDER BY DESCR
79807 ORDER BY DESCR

80009 358-0647-00
05129 771-S-1
22670 32248-000
80009 337-2760-00
80009 343-0892-00
80009 101-0059-00
TK0435 ORDER BY DESCR
80009 348-0671-00
80009 348-0671-01

80009 220-0510-00
77900 1214-05-00-0541C
80009 358-0409-00

12327 ORDER BY DESCR
80009 129-0846-00
73743 20224-402

80009 220-0510-00
77900 1214-05-00-0541C
80009 358-0409-00
80009 200-2631-00

80009 213-0878-00
80009 426-1072-00

73743 20224-402
86928 ORDER BY DESCR

80009 131-1315-01
24931 ORDER BY DESCR

Fig. \&
Index
No.
2-44
-45
-46
-47
-48

-49	$220-0495-00$
-50	$358-0652-00$
-51	$131-0955-00$
-52	$210-0255-00$

-53 386-4479-01

-54	$211-0661-00$
-55	$211-0101-00$
-56	$210-0586-00$

-57	$366-1767-00$
-58	$384-1574-00$
-59	-

- 6

-61	$337-2796-00$
-62	$337-2797-\infty$
-63	$211-0661-00$
-64	$344-0250-\infty$
-65	$211-0661-00$

-66

441-1531-00
-67

211-0313-00

-68	200-2507-00		
-69	346-0175-00		
-70	175-1993-01		
-71	131-2571-00		
-72	380-0634-00		
-73	380-0628-00		
-74	352-0584-00		
-75	337-2896-00		
-76	348-0705-00		
-77	210-0202-00	8010100	8010517
	210-0201-00	$B 010518$	
-78	211-0116-00		
-79	210-0586-00		
-80	337-2894-00		
	342-0615-00	8012295	
-81	384-1570-00		
-82	-----		
-83	211-0661-00		
-84	672-0919-00	$B 010100$	B015928
	672-0919-01	B015929	
-85	361-1042-00		

Fig. \&
Index
Index
No.
No .
2-86 $211-0661-00$

-88	$211-0020-0$
-89	$210-0004-00$

$\begin{array}{ll}-90 & 378-0164-00 \\ -91 & 361-1123-00 \\ -92 & 255-0581-00 \\ -93 & -1-1530-01 \\ -94 & 200-2645-00 \\ -95 & 352-0629-00 \\ -96 & 407-2542-00 \\ -97 & 211-0661-00 \\ -98 & 210-0202-00 \\ -99 & 210-0457-00\end{array}$
-100 361-1042-00
-101 211-0661-00
$\begin{array}{ll}-102 & 255-0334-00 \\ -103 & 131-0955-00\end{array}$
-104 129-0855-00 213-0048-00 213-0299-00

8010100
B010975
8010100
B014440
200-2264-00 B014441
$\begin{array}{ll}-107 & 337-2901-00 \\ -108\end{array}$
$\begin{array}{rr}-109 & 211-0014-00 \\ & 166-0107-00\end{array}$
-110
-111 211-0661-0
-112 355-0227-00
-113 210-0455-00
-114 210-0046-00
-115 200-0103-00
-116 441-1529-00
-117 211-0661-00
Serial/Assembly No.

Effective Dscont Qty 12345 Name \& Description SCR, ASSEM WSHR:4-40 X 0.25, PNH, STL END ATTACHING PARTS FAN, TUBEAXIAL: (SEE B924 REPL) ATTACHING PARTS
SCREW,MACHINE:4-40 X 1.125, PNH,STL TK0435 ORDER BY DESCR WASHER, LOCK:\#4 INTL, 0.015 THK, STL 77900 1204-00-00-0541C

END ATtaCHING PARTS
SHROUD, FAN:
SPACER, FAN: PLASTIC
PLASTIC CHANNEL: 0.156×0.156, POLYETHYLENE CHASSIS, SCOPE:RIGHT
TRANSFORMER: (SEE TSOO REPL)
COV,LINE V SEL:PLASTIC, BLACK
HOLDER, XFMR:PLASTIC
BRACKET,XFMR:ALUMINUM
ATTACHING PARTS
4 SCR,ASSEM WSHR:4-40 $\times 0.25$, PNH, STL, POZ END ATTACHING PARTS
2 TERMINAL,LUG:0.146 ID,LOCKING,BRZ TIN PL END ATTACHING PARTS
2 NUT,PL,ASSEM WA:6-32 X 0.312.STL CD PL END ATTACHING PARTS
2 SPACER,CKT BD:BRASS $\quad 80009$ 361-1042-00 ATTACHING PARTS
SCR,ASSEM WSHR:4-40 X 0.25, PNH,STL, POZ
END ATTACHING PARTS
AR PLASTIC CHANNEL: $12.75 \times 0.175 \times 0.155$, NYLON CONN, RCPT, ELEC:BNC,FEMALE SPACER,POST: $0.675 \mathrm{~L}, 0.375$ INT ONE END,AL
.SETSCREW: $4-40 \times 0.125$, STL
.SETSCREW:4-40 X 0.125, STL
BODY, FUSEHOLDER: 3 AG \& $5 \times$ ZOMM FUSES
CAP, FUSEHOLDER: 5×2 OMM FUSES
(OPTIONS A1, A2,A3 ONLY)
1 CAP,FUSEHOLDER:3AG FUSES
(OPTIONS A1, A2, A3 ONLY)
1 SHIELD,ELEC:LINE FILTER
1 FILTER,RFI: (SEE FL900 REPL) ATTACHING PARTS
2 SCREW,MACHINE:4-40 $\times 0.5$, PNH, ST
2 SPACER,SLEEVE:O.219 L X 0.18 ID,AL END ATTACHING PARTS
1 SWITCH, SLIDE: (SEE S901 REPL) ATTACHING PARTS
2 SCR,ASSEM WSHR: 4-40 $\times 0.25$, PNH,STL, POZ END ATTACHING PARTS
1 STUD,BDG POST:0.25-28 $\times 1.11$ L,BRASS ATTACHING PARTS
NUT, PLAIN,HEX: $0.25-28 \times 0.375$, BRS NP 73743 3089-402 WASHER, LOCK:0.261 ID, INTL, 0.018 THK, STL 77900 1214-05-00-0541C END ATTACHING PARTS
1 NUT,PLAIN,KNURL:0.25-28×0.375"00 BRASS
1 CHASSIS, SCOPE: REAR ATtaCHINg PARTS
4 SCR, ASSEM WSHR:4-40 $\times 0.25$, PNH, STL, POZ END ATTACHING PARTS

Mfr.
Code Mfr. Part No.
01536 821-01655-024

80009 378-0164-00
80009 361-1123-00
80009 255-0581-00
80009 441-1530-01
80009 200-2645-00
80009 352-0629-00
80009 407-2542-00
01536 821-01655-024
86928 A-373-158-2
78189 511-061800-00

01536 821-01655-024
11897 122-37-2500
13511 31-279
80009 129-0855-00
TK0392 ORDER BY DESCR
TKO433 ORDER BY DESCR
TK0861 0311653 (FEU)
TK0861 FEK 031.1663
S3629 FEK 0311666
80009 337-2901-00

TK0435 ORDER BY DESCR
80009 166-0107-00

01536 821-01655-024
80009 355-0227-00

80009 200-0103-00
80009 441-1529-00
01536 821-01655-024

Fig. $\&$
Index
No.
Tektronix Serial/Assembly No.

3-1
-2 211-0661-00 Part No. Effective Dscont Oty 12345 Nane \& Description

1

-3	$131-0608-00$
-4	$214-0579-00$
-5	-
-6	$211-0661-00$

-7	$136-0252-07$
-8	$131-0608-00$
-9	$214-0579-00$
-10	$136-0499-10$
-11	$136-0499-06$
-12	$136-0260-02$
	$136-0260-02$
	$136-0729-00$
-13	$131-0787-00$
	$276-0507-00$
-14	$-\cdots-\cdots$
-15	$211-0661-00$

$-16 \quad 131-0787-\infty$
-17 136-0499-14
-18 136-0499-10
$\begin{array}{rr}-19 & 136-0252-07 \\ 136-0252-07\end{array}$
B010100 B011729
$\begin{array}{ll}B 010100 & B 010904 \\ 8010905 & B 012582\end{array}$
$\begin{array}{ll}B 010100 & B 010904 \\ B 010905 & B 012582\end{array}$
BO
8010100 B011729
12
17
13
2
1
4
2
2
34
3
2
1
$-20 \quad 131-1003-00$
-21 214-0579-00
-22 131-0608-00
-23
$-24 \quad 211-0240-00$
-25 210-0551-00
-26 351-0448-01
$-27 \quad 214-1126-02$
-28 214-1127-00
-29 214-3061-01
-30 351-0448-01
-31 214-1127-00
$\begin{array}{ll}-32 & 214-1126-02 \\ -33 & 214-3060-01\end{array}$
-33 214-3060-01
-35 211-0661-00
211-0101-00
-36 211-0313-00

-37	$343-0088-00$
-38	$131-0589-\infty$
-39	$131-1857-00$
	$131-0608-00$
	$131-0589-00$
-40	$136-0388-00$
-41	$344-0286-00$
-42	$344-0329-00$
-43	$124-0092-00$

Fig. 8

Index	Tektronix	Serial/Assenbly No.
	Part No.	Effective

No.	Part No.	Effective	Oscont
$3-44$	$361-0007-00$		
-45	$214-0579-\infty$	B010100	B014485
-46	$337-2757-00$		
-47	$348-0031-01$		
-48	$129-0425-00$		
-49	$211-0661-\infty$		

Fig. 8

Index No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Oty	12345 Name \& Description
3-88	343-0951-00		5	.RETAINER,CAP. : 0.039 MUSIC WIRE CONN,RCPT,ELEC:CIRCUIT BD, 14 CONTACTS CONN,RCPT, ELEC:CKT BD, $1 \times 10,0.1$ SPCNG,TIN CLIP, ELECTRICAL:FUSE,SPR BRS SOCKET,PIN TERM:U/W 0.04 DIA PINS CKT BOARD ASSY:NEGATIVE REG(SEE All REPL) TERMINAL, PIN: 0.64 L X 0.025 SQ PH BRZ .CKT BOARD ASSY:POSITIVE REG(SEE A12 REPL) TERMINAL, PIN: $0.64 \mathrm{~L} \times 0.025$ SQ PH BRZ PUSH BUTTON:DIRTY GRAY, 0.134 SQ X 0.480 H EXTENSION SHAFT:0.95 INCH LONG EXTENSION SHAFT:7.402 X 0.187,BLK,PLSTC SHIELD, ELEC:CIRCUIT BCARD ATTACHING PARTS SCREW,MACHINE:4-40 X 0.25,FLH, 100 DEG,STL END ATTACHING PARTS TERMINAL,LUG:0.146 ID,LOCKING,BRZ TIN PL TERMINAL,LUG:0.12 ID,LOCKING,BRZ TIN PL ATtACHING PARTS SCR,ASSEM WSHR:4-40 X 0.25, PNH,STL, POZ END ATTACHING PARTS CA ASSY,SP, ELEC: 8,26 AWG, 11.0 L,RIBBON .GROMMET, PLASTIC: NATURAL,OBLONG 0.36×0.5 .HLDR, TERM CONN: 3 WIRE,BLACK .HLDR, TERM CONN: 5 WIRE,BLACK .HLDR, TERM CONN: 8 WIRE,BLACK CA ASSY, SP, ELEC: 6,22 AWG, 9.50 L, RIBBON CA ASSY, SP, ELEC: 6,22 AWG,9.5 L,RIBBON .HLDR,TERM CONN: 7 WIRE,BLACK CA ASSY, SP, ELEC: 9,26 AWG, 4.50 L,RIBBON .HLDR, TERM CONN:9 WIRE, BLACK CA ASSY,SP, ELEC:4.26 AWG, 4.25 L,RIBBON .HLDR, TERM CONN: 4 WIRE,BLACK LEAD, ELECTRICAL: 26 AWG,5.0 L,9-N .HLDR, TERM CONN: 1 WIRE,BLACK CA ASSY, SP, ELEC: 3,26 AWG,3.0 L,RIBBON .HLDR, TERM CONN: 3 WIRE, BLACK CA ASSY,SP, ELEC: 3,22 AWG, 3.25 L,RIBBON .HLDR,TERM CONN:5 WIRE,BLACK CA ASSY,SP, ELEC: 3,26 AWG, 4.75 L,RIBBON GROMMET, RUBBER:BLACK, ROUND,0.125 ID HLDR, TERM CONN: 3 WIRE,BLACK CA ASSY,SP, ELEC: 6,26 AWG, 3.0 RIBBON .HLDR, TERM CONN: 6 WIRE,BLACK CA ASSY,SP, ELEC: 4,18 AWG, $20.0 \mathrm{~L}, 8-\mathrm{N}$ TERMINAL,LUG:\#8,RING,SOLDERLESS,CU TIN PL BRAID,WIRE: 24 STRANDS 36 AWG, TINNED COPPER CABLE ASSY,RF:50 OHM COAX,8.0 L,9-1 CA ASSY, SP, ELEC:6,26 AWG,8.0 L,RIBBON WIRE SET, ELEC: CA ASSY,SP, ELEC: 3,22 AWG,3.0 L,RIBBON CA ASSY,SP, ELEC:2,26 AWG,6.0 L,RIBBON CA ASSY,SP, ELEC:2,26 AWG,5.0 L,RIBBON .HLDR,TERM CONN:2 WIRE,BLACK CA ASSY,SP, ELEC:6,26 AWG,8.0 L,RIBBON
-89	136-0499-14		1	
-90	136-0499-10		1	
-91	344-0286-00		1	
-92	136-0388-00		2	
-93			1	
-94	131-0787-00		11	
-95			1	
-96	131-0787-00		8	
-97	366-2013-00		16	
-98	384-1136-00		2	
-99	384-1626-00		2	
-100	337-2784-00		1	
-101	211-0101-00		2	
-102	$\begin{aligned} & 210-0202-00 \\ & 210-0201-00 \end{aligned}$	$\begin{aligned} & 3010100 \\ & \text { B010518 } \end{aligned}$		
-103	211-0661-00		1	
-104	175-3579-00		1	
	348-0667-00		1	
	352-0161-00		,	
	352-0163-00		,	
	352-0166-00		1	
-105	175-3580-00	80101008015122	1	
	175-3580-01		1	
	352-0165-00		2	
-106	175-3581-00		1	
	352-0167-00		2	
-107	175-3584-00		1	
	352-0162-00		1	
-108	195-2013-00			
	352-0171-00		1	
-109	175-4150-00		1	
	352-0161-00		2	
-110	175-3575-00		1	
	352-0163-00		1	
-111	175-3710-00		1	
	348-0002-00		1	
	352-0161-00		1	
-112	175-3713-00		1	
	352-0164-00		1	
-113	175-3585-00		1	
	210-0307-00		1	
-114	176-0045-00		AR	
	175-2640-00		2	
	175-5180-00		1	
	198-2915-00		1	
	175-3578-00		1	
	175-3709-00		2	
	175-2854-00		1	
	352-0169-00		2	
	175-3582-00		1	

Mfr.
Code Mfr. Part No.
97193 ORDER BY DESCR
00779 4-380949-4
00779 4-380949-0
75915102074
712794503704010300
22526 47359-000
22526 47359-000
80009 366-2013-00
80009 384-1136-00
80009 384-1626-00
80009 337-2784-00
TKO435 ORDER BY DESCR
86928 A-373-158-2
86928 A373-157-2
01536 821-01655-024
80009 175-3579-00
80009 348-0667-00
80009 352-0161-00
80009 352-0163-00
80009 352-0166-00
80009 175-3580-00
TK1544 175358001
80009 352-0165-00
80009 175-3581-00
80009 352-0167-00
80009 175-3584-00
80009 352-0162-00
80009 195-2013-00
80009 352-0171-00
80009 175-4150-00
80009 352-0161-00
80009 175-3575-00
80009 352-0163-00
80009 175-3710-00
70485 54-G-26006
80009 352-0161-00
80009 175-3713-00
80009 352-0164-00
80009 175-3585-00
09922 BA14E-8M
70903 5112R424/36
80009 175-2640-00
80009 175-5180-00
80009 198-2915-00
80009 175-3578-00
80009 175-3709-00
80009 175-2854-00
80009 352-0169-00
80009 175-3582-00

Fig. \&
Index
No.
Tektronix Serial/Assembly No.

No.	Part No.	Effective	Dscont	Oty	12345
$4-$	$-\cdots--$			Name \& Description	

-1	$384-1570-00$		
-2	$214-3063-00$		
-3	$-131-2661-00$	8010100	8010417
-4	$131-2617$		
-5	$211-0198-00$	8010100	8010417
-6	$210-1002-00$	8010100	$B 010417$
	$211-0121-00$	8010418	
-7	$131-2472-01$		
-8	$386-4358-01$		
-9	$211-0207-00$	8010100	$B 010904$

(SUB-PART OF 672-0918-00)
.SHAFT, DRIVE:VAR RES, 5.125 L, 0.123 OD 80009 384-1570-00
.LEVER, SWITCH:0.6 DIA, AC/GND/DC 80009 214-3063-00
. SWITCH, CAM: (SEE S1, S2 REPL)
..CONTACT,ELEC:GROIND BRASS 80009 131-2661-00 ATtACHING PARTS
. .SCREW,MACHINE:4-40 X 0.438,PNH,STL
..WASHER, FLAT: $0.12510 \times 0.2500 \times 0.022$
TK0435 ORDER BY DESCR
86928 5714-147-20N
TK0435 ORDER BY DESCR
SCR,ASSEM WSHR:4-40 X 0.438, PNH, BRS END ATTACHING PARTS
. .CONTACT,ELEC:GROUND W/NUT BLOCK 80009 131-2472-01
..PLATE,RETAINING:SIDE,PLASTIC 80009 386-4358-01 attaching parts
.. SCR, ASSEM WSHR: $4-40 \times 0.312$, PNH,STL
..SCR,ASSEM WSHR:4-40 $\times 0.312$, PNH, STL
. . SCR,ASSEM WSHR:4-40 $\times 0.438$, PNH, BRS END ATTACHING PARTS
..PLATE,RETAINING:LOWER,PLASTIC 80009 386-4357-01 ATTACHING PARTS
..SCR,ASSEM WSHR:4-40 $\times 0.438$, PNH,BRS TKO435 ORDER BY DESCR END ATTACHING PARTS
..RESISTOR,NTWK: (SEE R20 REPL)
..CONT ASSY, ELEC: 2 CONTACTS
.. CONT ASSY, ELEC: 2 CONTACTS
. . PLATE,RETAINING:UPPER,PLASTIC ATTACHING PARTS
. .SCR,ASSEM WSHR: $4-40 \times 0.438$, PNH, BRS END ATTACHING PARTS
.. RESISTOR,NTWK: (SEE R30 REPL)
.. CONT ASSY, ELEC: 5 CONTACTS
..CONT ASSY, ELEC: 4 CONTACTS
.CPLG,SHAFT, FLEX: 0.127 ID $\times 0.375$ OD, DELRIN
.BRACKET, CMPNT:VARIABLE RESISTOR,AL
ATTACHING PARTS
.SCREW, MACHINE: $4-40 \times 0.25$, FLH, 100 DEG,STL TKO435 ORDER BY DESCR
END ATTACHING PARTS
.RESISTOR,VAR: (SEE R902,R906 REPL) ATTACHING PARTS
.NUT,PLAIN,HEX:0.25-32 X 0.312,BRS CD PL 73743 2X-20319-402 WASHER,LOCK:0.261 ID, INTL, 0.018 THK, STL 77900 1214-05-00-0541C END ATTACHING PARTS
.CA ASSY, SP, ELEC: 2,26 AWG, 3.0 L, RIBBON 80009 175-3850-00
..HLDR, TERM CONN: 2 WIRE,BROWN 80009 352-0169-01
WASHER, FLAT:0.125 ID $\times 0.2500 \times 0.022, S T L \quad 86928$ A371-283-20

Fig. \& Index No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont		Oty	12345 Nare \& Description	Mfr. Code	Mfr. Part No.
5-	672-0919-00	8010100 8015929	B015928	1	CIRCUIT BD ASSY:TIMING SWITCH CIRCUIT BD ASSY:TIMING SW	$\begin{aligned} & 80009 \\ & 80009 \end{aligned}$	$\begin{aligned} & 672-0919-00 \\ & 672-0919-01 \end{aligned}$
	672-0919-01	8015929		1	CIRCUIT BD ASSY:TIMING SW BEARING RTRY SW.FRONT 0.375 DIA	$\begin{aligned} & 80009 \\ & 80009 \end{aligned}$	$\begin{aligned} & 672-0919-01 \\ & 401-0340-00 \end{aligned}$
-1	401-0340-01			1	.BEARING,RTRY SW:FRONT,0.375 DIA ATTACHING PARTS	80009	401-0340-01
-2	213-0759-00			3	.SCREW, TPG, TF: 2-28 × 0.437,PNH, STL END ATTACHING PARTS	83807	ORDER BY DESCR
-3	214-1127-00			2	.ROLLER, DETENT:0.125 DIA $\times 0.125$, SST	80009	214-1127-00
-4	214-1126-01			2	.SPRING, FLAT:0.7 \times 0.125,CU BE GRN CLR	80009	214-1126-01
-5	384-1573-01	8010100	B015928	1	.SHAFT, ROTARY SW:W/DETENT,8.61 L X 0.12500	80009	384-1573-01
	384-1573-03	8015929		1	.SHAFT,ROTARY SW:W/DETENT,8.6 L X 0.12500 (B SWEEP)	80009	384-1573-03
-6	384-1616-00			1	.EXTENSION SHAFT:9.375 L X 0.081 OD,ST . (VARIABLE)	80009	384-1616-00
-7	384-1572-01			1	SHAFT,ROTARY SW:TIME DIV,28/24 POSITION . (A SWEEP)	80009	384-1572-01
-8	352-0457-28			1	.HOLDER, CONTACT: PANCAKE SW, 2 CONT, GRAY PC	80009	352-0457-28
-9	-			1	.CKT BOARD ASSY:A TIMING SW((SEE A17 REPL)		
-10	131-0608-00			8	..TERMINAL, PIN: 0.365 L $\times 0.025$ BRZ GLD PL	22526	48283-036
-11	131-0787-00			20	..TERMINAL, PIN: 0.64 L X 0.025 SQ PH BRZ	22526	47359-000
-12	352-0457-26			1	.HOLDER, CONTACT: PANCAKE SW, 4 CONT,GRAY PC	80009	352-0457-26
-13	401-0345-01			1	.ROTOR, ELEC SW:PULL/TURN	80009	401-0345-01
-14	105-0694-01			1	.STOP, RTRY SW:	80009	105-0694-01
-15	354-0550-00			1	.RING,RETAINING: EXT, U/0 0.44 OD SHAFT	80009	354-0550-00
-16	214-1352-00			1	.SPRING, HLCPS: 0.200×0.5 L,CLE,MUSIC WIRE	TK0488	CCS-B-08765
-17	401-0406-00			1	. BEARING, RTRY SW: INTERMEDIATE	80009	401-0406-00
-18	214-1127-00			2	.ROLLER, DETENT: 0.125 DIA $\times 0.125$, SST	80009	214-1127-00
-19	214-1126-01			2	.SPRING, FLAT:0.7 $\times 0.125$, CU BE GRN CLR	80009	214-1126-01
-20	214-3062-00			,	.DETENT, RTRY SW: 24 POSITION	80009	214-3062-00
-21	352-0457-29			1	.HOLDER, CONFACT: PANCAKE SW, 3 CONT, GRAY PC	80009	352-0457-29
-22	--------			1	.CKT BOARD ASSY:B TIMING SW(SEE A16 REPL)		
-23	131-0787-00			6	..TERMINAL, PIN: $0.64 \mathrm{~L} \times 0.025 \mathrm{SQ}$ PH 8RZ	22526	47359-000
-24	352-0457-27			1	.HOLDER, CONTACT:PANCAKE SW, 1 CONT,GRAY PC	80009	352-0457-27
-25	401-0341-02			1	.BEARING,RTRY SW:REAR,0.315 ID	80009	401-0341-02
-26	376-0039-00	8010100	B010869	1	.CPLG,SHAFT,RGD:0.082 \& $0.128 \mathrm{ID,AL}$	80009	376-0039-00
	376-0050-00	B010870		1	.CPLG, SHAFT,FLEX:0.081 \& 0.127 ID, PP	80009	376-0050-00
-27	407-2102-00			,	.BRACKET,ELEC SW:TIMING,ALLMINUM ATTACHING PARTS	80009	407-2102-00
-28 -29	213-0772-00			3 1	.SCREW, TPG, TF: $2-28 \times 0.5$, PLASTITE, PNH,STL END ATTACHING PARTS .RESISTOR, VAR: (SEE R930 REPL)	83486	ORDER BY DESCR

[^0]: ${ }^{\text {a }}$ Performance Requirement not checked in manual.

[^1]: ${ }^{\text {a }}$ Performance Requirement not checked in manual.

[^2]: ${ }^{\text {a }}$ Performance requirement not checked in manual.

[^3]: ${ }^{a}$ Performance Requirement not checked in manual.

[^4]: ${ }^{\text {a }}$ Performance Requirement not checked in manual.

[^5]: ${ }^{\text {a }}$ Performance Requirement not checked in manual.

[^6]: ${ }^{\text {a Performance Requirement not checked in manual. }}$

[^7]: ${ }^{\text {a }}$ Performance Requirement not checked in manual.

[^8]: ${ }^{a}$ For SEC/DIV switch settings greater than 5 ms , set the A TRIGGER Mode to NORM.

[^9]: ${ }^{\mathrm{a}}$ Voltage equivalent for levels (voltage discharged from a 100 pF capacitor through a resistance of 100Ω):

[^10]: Figure 9-3. Locating components on schematic diagrams and circuit board illustrations.

