Tektronix
 COMMITTED TO EXCELLENCE

7 A22
 DIFFERENTIAL AMPLIFIER

Tektronix. Inc.
P.O. Box 500

Beaverton, Oregon 97077

Copyright © 1969 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK. SCOPE-MOBILE, and are registered trademarks of Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

INSTRUMENT SERIAL NUMBERS

Each instrument has a serial number on a panel insert, tag, or stamped on the chassis. The first number or letter designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

8000000	Tektronix, Inc., Beaverton, Oregon, USA
100000	Tektronix Guernsey, Ltd., Channel Islands
200000	Tektronix United Kingdom, Ltd., London
300000	Sony/Tektronix, Japan
700000	Tektronix Holland, NV. Heerenveen,
	The Netherlands

TABLE OF CONTENTS

Page
Section 1 SPECIFICATION
Introduction 1-1
Electrical Characteristics 1-1
Deflection Factor 1-1
Gain 1-1
Differential Dynamic Range 1-1
DC Offset 1-1
Frequency Response 1.1
Bandwidth Limit 1-1
Recovery Time 1-1
Common-Mode Signal Range 1-1
Common-Mode Rejection Ratio 1-1
Maximum input Voltage 1-3
Input R and C 1-3
Maximum Input Gate Current 1-3
Variabie Balance 1-3
Step Attenuator DC Balance 1.3
Displayed Noise (Tangentially Measured) 1-3
DC Drift $1-3$
Isoiation Between + and Inputs 1.3
Environmental Characteristics 1-3
Altitude 1-3
Transportation 1-3
Physical Characteristics 1-3
Finish 1-3
Dimensions 1-3
Weight 1-3
Section 2 OPERATING INSTRUCTIONS
Introduction 2-1
Front Pane! Controls and Connectors 2-1
Operating Instructions 2-2
First Time Operation 2-2
General Operating Information 2-4
Trace Drift 2.4
Input Gate Current 2-4
Page
Section 2 OPERATING INSTRUCTIONS(cont)
Voltage Measurement 2-4
Signal input Connectors 2-4
High Input Impedance 2-5
Display Polarity 2-5
Deflection Factor 2-5
Bandwidth Selection 2-5
Voltage Comparison Measurements 2-10
Differential Operation 2-10
DC Offset Operation 2-11
Input Overdrive Indicator 2-12
Readout 2-12
Trace Identify 2-13
WARNING

The remaining portion of this Table of Contents lists the servicing instructions. These servicing instructions are for use by qualified personnel only. To avoid electrical shock. do not perform any servicing other than that called out in the operating instructions unless qualified to do so.

Section 3 CIRCUIT DESCRIPTION

Introduction 3-1
Block Diagram Description 3-1
Input Coupling 3-1
input Attenuators 3-1
Preamp 3-1
L F - 3 dB Point 3-1
Output Amplifier 3-2
H F - 3 dB Point 3-2
General Information 3-2
Feedback Amplifiers 3-2
Differential Configuration 3-3
Detailed Circuit Description 3-3
Input Coupling 3-3
Input Attenuators 3-4

TABLE OF CONTENTS (cont)

SECTION 3 CIRCUIT DESCRIPTION (cont) Page
Gate Current Compensation 3-4
Input Amplifier 3-4
X15 Preamp 3-4
DC Balance 3-4
Floating Power Supply 3-5
Common-Mode Rejection 3-5
Cross Neutralization 3-6
Input Overdrive Protection 3-7
DC Offset 3-7
Offset Generator 3-7
Input Overdrive Indicator 3-8
LF-3dB Point Selector 3-9
Output Amplifier 3-9
Gain Switching Amplifier 3-9
Variable Output stage 3-11
Signal Output Amplifier 3-11
Trigger Output Amplifier 3-11
Indicator Oscil!oscope Readout 3-11
Probe Sensing 3-11
Trace Identify 3-11
SECTION 4 MAINTENANCE
Introduction 4-1
Preventive Maintenance 4-1
General 4-1
Cleaning Front Panel 4-1
Cleaning Interior 4-1
Visual Inspection 4-1
Transistor Checks 4-1
Calibration 4-1
Corrective Maintenance 4-1
General 4-1
Obtaining Replacement Parts 4-2
SECTION 4 MAINTENANCE (cont) Page
Special Parts 4-2
Soldering Techniques 4-2
Component Replacement Information 4-3
Troubleshooting 4-5
Introduction 4-5
Indicator Oscilloscope 4-5
Operating Procedure and Control Settings 4-5
Trouble Symptoms 4-5
Visual Inspection 4-5
Calibration Check 4-5
Detailed Troubleshooting 4-5
Test Equipment Recommended 4-6
DC Balance Check 4-6
Troubleshooting by Direct Replacement 4-6
Components Checks 4-6
Transistors 4-6
Diodes 4-8
Resistors 4-8
Capacitors 4-9
Repackaging for Shipment 4-9
SECTION 5 PERFORMANCE CHECK/ CALIBRATION PROCEDURE
Introduction 5-1
Test Equipment Required 5-1
General 5-1
Short Form Procedure 5-2
Performance Check/Calibration Procedure 5-3
General 5-3
Preliminary Procedure 5-3

TABLE OF CONTENTS (cont)

SECTION 5 PERFORMANCE CHECK/ CALIBRATION PROCEDURE (cont)
Page
Check or Adjust5-4
AC Step Atten Balance 5-4
Variable Balance 5-4
Coarse DC Balance 5-4

+ Gate Current Zero 5-5
- Gate Current Zero 5-5
GAIN 5-5
VARIABLE Control Ratio 5-5
VOLTS/DIV Gain Switching 5-5
Isolation between + and - Inputs 5-6
Total DC Offset Range 5-6
C241 +Cross Neutralization 5-7
C141-Cross Neutralization 5-7
C115 X1 + Input Atten Time Constant 5-7
C215 X1 - Input Atten Time Constant 5.7
Input Atten Accuracy 5-8
Input Atten Differential Balance 5-8
+Input Atten Series Conpensation 5-9
-Input Atten Compensation 5-9
-Input Atten Shunt Compensation 5-10
H F -3 dB Point 5-11
SECTION 5 PERFORMANCE CHECK/ CALIBRATION PROCEDURE (cont) Page
L F -3 dB Point 5-11
CMRR 5-12
Input Overdrive Indicator 5-12
Differential Dynamic Range 5-13
(Measured Tangentially) 5-13
Overdrive Recovery Time 5-14
SECTION 6 ELECTRICAL PARTS LIST
Abbreviations and SymbolsParts Ordering InformationIndex of Electrical Pasts ListElectrical Parts List
SECTION 7 DIAGRAMS AND MECHANICAL PARTS ILLUSTRATIONSDiagramsMechanical Parts Illustrations
SECTION 8 MECHANICAL PARTS LISTMechanical Parts List InformationIndex of Mechanical PartsIllustrationsMechanical Parts ListAccessories

Abbreviations and symbols used in this manual are based on or taken directly from IEEE Standard 260 "Standard Symbols for Units", MIL STD-12B and other standards of the electronics industry. Change information, if any, is located at the rear of this manual.

fig. 1-1. Type 7422 Differentiol Araplifior

SECTION I SPECIFICATION

Change information, if any, affecting this section will be found at the rear of the manual.

Introduction

The Type 7A22 Vertical Plug.in is a DC coupled differential amplifier with excellent common-mode rejection chorocteristics and high gain for low level applications.

The DC Offset copobility of the Type 7A22 allows the display of the very small low-frequency signals containing - large DC component, at deflection factors nol possible with AC coupling. The vertical deflection factor range of the Type 7 A 22 is from $10 \mu \mathrm{~V}$ 10 10 V . The high and low frequency -3 dB points con be selected of the front panel, to sef the bandwidth of the instrument. Thus, for low frequency applications the signal-1o-noise ratio con be improved by restricting the bandwidth of the Type 7A22. The bandwidth selection and excellent drift-with-time characteristics provide measurement capabilities in the biomedical, transducer, and other areas which require stable, low deflection foctor, low noise measurements.

The Type 7A22 is designed for use in Tektronix 7000 Series oscilloscopes.

The electrical characteristics described in this section ore valid over the stated environmental range for instruments calibrated at on ambient temperature of $+20^{\circ} \mathrm{C}$ 10 $+30^{\circ} \mathrm{C}$ and ofter a 5 minute wormup unless otherwise noted.

ELECTRICAL CHARACTERISTICS

Chorocteristic	Performance Requirements
Deflection Factor (VOLTS/DIV)	
Goin Ratio Accuracy	Within 2\% with GAIN adjusted of $1 \mathrm{mV} / \mathrm{div}$
VAR (CAL IN) Range	Continuously variable; exiends deflection foctor to al least $25 \mathrm{~V} / \mathrm{div}$
GAIN	Permits adjustment of deflection factor of $1 \mathrm{mV} /$ DIV for all mainframes
Differential Signal Range (DC OFFSET not used) $10 \mu \mathrm{~V} /$ Div to $10 \mathrm{mV} / \mathrm{Div}$	Af least $\pm 1 \mathrm{~V}$
$20 \mathrm{mV} / \mathrm{Div}^{\mathrm{m}} 10$ $0.1 \mathrm{~V} / \mathrm{Div}$	At least $\pm 10 \mathrm{~V}$
0.2 V/Div io I V/Div	At least $\pm 100 \mathrm{~V}$
2 V/Div 10 $10 \mathrm{~V} / \mathrm{Div}$	At least $\pm 1000 \mathrm{~V}$

DC OFFSET COARSE Range from Electrical Zero $10 \mu \mathrm{~V} / \mathrm{Div}$ to $10 \mathrm{mV} /$ Div	At least +1 V to - I V
$\begin{aligned} & 20 \mathrm{mV} \text { io } 0.1 \\ & \text { V/Div } \end{aligned}$	As leost +10 V 10 -10 V
0.2 V 10 I V/Div	At least +100 V to -100 V
2 V 10 $10 \mathrm{~V} / \mathrm{Div}$	At teast +1000 V 10 -1000 V
Frequency Response (8 div Reference) Overall Frequency Response DC (Direct) Coupled Input	DC 10 within 10% of 1 MHz of $-3 \mathrm{~d} 8$
AC (Copocitive) Coupled Inpul Lower Bondwidth Frequency	2 Hz or less
Bondwidth Limit Accurocy HF -3 dB POINT 100 Hz to 1 MHz	9 steps in a 1.3 sequence
Accuracy	Within 10% of selecied frequency
$\begin{aligned} & \text { LF }-3 \mathrm{~dB} \text { POINT } \\ & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	6 steps in o $1-10$ sequence
Accuracy	Within $\mathbf{1 2 \%}$ of selected frequency
Recovery Time	$10 \mu s$ or less to recover to within 0.5% of zero level ofter the removol of a + or - lest input ap. plied for 1 s . Test signal not to exceed Differential Signal Range. Specified aberration (0.5%) based on test signal amplitude
Common Mode Signal $10 \mu \mathrm{~V} /$ Div to $10 \mathrm{mV} / \mathrm{Div}$	At least +10 V and -10 V
20 mV/Div 10 $0.1 \mathrm{~V} / \mathrm{Div}$	At least +100 V and -100 V
0.2 V/Div 10 $10 \mathrm{~V} /$ Div	At least +500 V and -500 V
Common.Mode Rejection Ratio DC (Direct) Coupled	See Verificalion Points on groph, Fig. 1-2.
AC (Copocitive) Coupled	See Verification Points on graph, Fig. 1-2.

Fig. 1-2. CMRR vs. Frequency for signals not exceeding Common Mode Signal Range

ELECYRICAL CHARACTERISTICS (cont)

Characteristic	Performance Requirements
Maximum Input Voltage (each input) DC (Direct) Coupled, $D C+$ Peak AC, AC Component 1 MHz or less	
$10 \mu \mathrm{~V} / \mathrm{Div}$ to 10 $\mathrm{mV} / \mathrm{Div}$	$\pm 15 \mathrm{~V}$
$20 \mathrm{mV} /$ Div to 0.1 V/Div	$\pm 200 \mathrm{~V}$
$\begin{aligned} & .2 \mathrm{~V} / \text { Div to }_{\text {Div }} 10 \mathrm{~V} / \\ & \hline \end{aligned}$	$\pm 500 \mathrm{~V}$
AC (Capacitive) Coupled Input DC Voltage	$\pm 500 \mathrm{~V}$, each input
AC (Capacitive) Coupled Input DC Rejection	At least $4 \times 10^{5}: 1$
Input R and C Resistance	$1 \mathrm{M} \Omega \pm 1 \%$
Capacitance	Approximotely 47.0 pF
R \& C Product	Within $\pm 1 \%$ between all deflection factors
Maximum Input Gate	$+25^{\circ} \mathrm{C} \quad+50^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Current } \\ & 10 \mu \mathrm{~V} / \text { Div } 1010 \mathrm{mV} / \\ & \text { Div } \end{aligned}$	$\pm 20 \mathrm{pA} \pm 100 \mathrm{pA}$ each input $\pm 40 \mathrm{pA} \pm 200 \mathrm{pA}$ Differentially
$20 \mathrm{mV} /$ Div 1010 V Div	$\pm 10 \mathrm{pA} \quad \pm 20 \mathrm{pA}$
Display Shity at $10 \mu \mathrm{~V}$ /Div (AC Coupled)	$\pm 4 \mathrm{div} \pm 20 \mathrm{div}$
Variable Balance	0.2 div or less shift with VARIABLE control lurned from fully cw to fully cew position
Displayed Noise (Tongetially Measured)	$16 \mu \mathrm{~V}$ or 0.1 Div (whichever is greater), $1 \mathrm{MHz} \mathrm{HF}-3 \mathrm{~dB}$ POINT, source resistance 25Ω or less

DC Drif	
Drift with Time (Ambient Temperature and	
Line Voltage Constant) Short Term	$5 \mu \mathrm{~V}$ (P.P) or $0.1 \operatorname{div}$ (whichever is greater) in any minute after 1 hour warmup
Long Term	$10 \mu \mathrm{~V}(\mathrm{P}-\mathrm{P})$ or 0.1 div (whichever is greater) in any hour after 1 hour wormup
Drifl with Ambient Temperature (line Voltage Constant)	$50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or less
Isolation between + and - Inputs $1+$ INPUT to an Open - INPUT, INPUT to an Open + INPUT)	At least 200:1, DC to 1 MHz

ENVIRONMENTAL

PLUG-IN TESTED OUT OF INDICATOR OSCHLOSCOPE

TTEM	CHARACTERISTIC
Altitude Non-operating	To 50,000 feet and $-55^{\circ} \mathrm{C}$
Transportation	Qualified under National Safe Transit Committee test procedure IA, Category II

PHYSICAL

ITEM	CHARACTERISTIC
Finish	Front panel is anodized aluminum
Dimensions	$\simeq 14 \frac{3}{0}$ inch $\mathrm{L} \times 2 \frac{5}{2}$ inch $W \times$ 4% inch H
Weight	$\simeq 25 / 8 \mathrm{lbs}$

SECTION 2

OPERATING INSTRUCTIONS

Change information, if any, affecting this section will be found at the rear of the manual.

Introduction

This section opens with a brief functional description of the front-panel controls, input overdrive lamp, and input connectors. Following the front-panel description is a familiarization procedure and finally a general discussion of the operation of the Type 7A22.

CONTROLS AND CONNECTORS

INPUT OVERDRIVE

VOLTS/DIV

VARIABLE
(CAL IN)

GAIN

POSITION

IDENTIFY

HIGH
frequency
-3 dB POINI

Input overdrive indicator lamp turns on to indicate excessive differential drive to the input amplifier stage. Lights when the differential dynamic range between inpul connectors is exceeded.

Volts per displayed division. Nineteen position switch used to select the calibrated deflection factors.

Two-position switch activated by the VARIABLE knob to select calibrated or uncalibrated deflection factors. At the \mathbb{N} position, the VARIABLE control is inoperative and the deflection factor is calibrated. When pressed and released, the knob moves outward to activate the VARIABLE control for uncalibrated deflection factors. The uncalibrated position provides continuously variable uncalibrated attenvation between the calibrated deflection factors and extends the deflection factor to at least 25 VOLTS/DIV.

Screwdriver odiust control to set the CRT display scale factor to agree with the VOLTS/DIV switch indicolion. Adjusted for proper deflection with the VOLTS/ DIV switch set to the 1 mV position.

The control that vertically positions the trace or display.
Momentary contact, push-button switch, concentric with POSITION. Will cause the trace, representing the output of the Type 7A22, to move o small amount when pressed. Aids in identifying the Type 7A22 trace when multiple traces ore displayed.

Nine position switch to select the opproximote high frequency -3 dB point. The switch positions ore: $100 \mathrm{~Hz}, 300 \mathrm{~Hz}$, $1 \mathrm{kHz}, 3 \mathrm{kHz}, 10 \mathrm{kHz}, 30 \mathrm{kHz}, 100 \mathrm{kHz}$, 300 kHz , ond 1 MHz .

LOW
FREQUENCY
-3 dB POINT

+ INPUT
- INPUT

Fig. 2-1. Signals applied to the +INPUY conneclor produces an uprighi display, while signals opplied to the - INPUT ore inveried.

Eight position switch to select DC coupling or the approximate low frequency -3 dB points. The switch positions ore: DC OFFSET, DC, . $1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, $100 \mathrm{~Hz}, 1 \mathrm{kHz}$, ond 10 kHz .

Signal input connector. Positive input produces deflection upward (see Fig. 2.1)

Signal input connector. Positive input produces deflection downward (see Fig. 2.1).

A miniature illuminated push-button type switch. The buttons ore interlocked so that only one bution may be depressed at one time. When the 'AC' button is depressed the signal is coupled through $0.1 \mu \mathrm{~F}$ to the Input Amplifier and only the varying component of the input signal is amplified.

When the 'DC' button is depressed the signal is coupled directly to the Input Amplifier and the entire input signal, both $A C$ and $D C$, is amplified. When the 'GND' button (or none of the buttonsl is depressed, the signal is coupled through $0.1 \frac{1}{2} \mathrm{~F}$ and through $1 \mathrm{M}!$ to ground. The Amplifier Input is grounded in this condition.

Each push-button is illuminated from behind when the button is depressed.

- AC-GND-DC Same function os the + AC.GND-DC switch but applied to the - INPUT.

IMPORT ANT

The following two controls are operative only when the LOW FREQUENCY -3 dB POINT switch is set to DC or DC OFFSET.

STEP ATTEN Front ponel control for DC balancing DC BAL (DC MODE the amplifier input stage. With no sigONLY)

DC OFFSET
(DC OFFSET
mode only)

RELEASE LATCH nols applied to the input connectors, the control is adjusted for no trace shift as the VOLTS/DIV switch is moved from the 10 mV position to the $10 \mu \mathrm{~V}$ position.
Coarse and fine controls to provide internal offset bias while maintaining the differential capability. Available range of the offset bias depends upon the settings of the VOLTS/DIV switch, and is indicaled by shaded gray bonds (OFFSET RANGE) around the VOLTS/ DIV switch.

Gray rectangular knob near the bottom left of the front panel. Pull out to remove Plug-In from Plug-In comportment.

OPERATING INSTRUCTIONS

First-Time Operation

Steps 1 through 5 in the following procedure ore intended to help place the trace on the screen quickly and prepare the unit for immediate use. Steps 6 through 8 ore used to check the GAIN adjustment. These steps along with those remaining ore intended to demonstrate some of the basic functions of the Type 7A22.

1. Insert the unit into the oscilloscope plug-in comportment.
2. Set the Type 7A22 front-panel controls as follows:

VOLTS/DIV	1 mV
VARIABLE	IN (CAL)
POSITION	Midrange
HIGH FREQUENCY	1 MHz
$\quad-3 \mathrm{~dB}$ POINT	
LOW FREQ -3 dB POINT	DC
AC-GND-DC $1+$ INPUT	GND
AC-GND-DC $1-$ INPUT)	GND
STEP ATTEN DC BAL	Midrange

3. Turn the ascilloscope Intensity control fully counterclockwise and turn the oscilloscope Power ON. Preset the time-base and triggering controls for 0.5 ms sweep rote and automatic triggering.
4. Wait about five minutes for the Type 7A22 and the oscilloscope to worm up.

NOTE

Aboul five minutes is sufficient time for warmup when using the Type 7A22 for short-term DC measurements. For long-term DC measurements using the lower deflection factors, allow at least one hour.
5. Adjust the Intensity control for normal viewing of the trace. The trace should appear near the graticule center.
6. Using the POSITION control, position the trace 2 divisions below graticule center.

CAUTION

If the maximum input voltage roting in the $10 \mu \mathrm{~V}$ to 10 mV range of the VOLTS/DIV switch is exceeded, the inputs are diode-clomped to fixed voltages of approximately +16.5 volts and/or -16.5 volts and damage to the signal source is possible. If the signal source can supply more than 1/16 A of current, the input protective fuse (s) will open. An open input fuse is indicated by the lighting of the INPUT OVERDRIVE indicator with the input coupling switches set to GND.
7. Apply a 4 mV peak-to-peak calibrator signal through o coaxial coble to the + INPUT connector on the Type 7 A22.
8. For DC coupled, single-ended operation, set the + INPUT AC-GND-DC coupling switch to DC. The display should be square waves 4 divisions in amplitude with the bottom of the display at the reference established in step 6.
9. For AC coupled, single-ended operation, reposition the display with the Type 7A22 POSITION control to place the botlom of the display at the graticule center line.
10. Set the + INPUT AC-GND-DC coupling switch to AC and note that the display shifts downward about 2 divisions to its overage level.
11. Disconnect the coaxial coble from the + INPUT connector. Connect o dual input connector to the + INPUT and - INPUT connectors. Connect the coaxial coble from the Calibrator to the dual input connector.
12. For AC coupled differential operation, set the $-I N P U T$ AC-GND-DC coupling switch to AC. The calibrator signal is now coupled to both inputs as a commonmode signal. A straight line display should be observed, since the common-mode is being rejected.

Operational Adjustments

NOTE

Most of the following checks and adjustments may be made ofter a 5 minute warmup; however due to the DC drift of the amplifier during subsequent warmup, the STEP ATIEN DC BAL should be readjusted for each check or adjustment, and a warmup of at least one hour should be allowed before a final adjustment of the STEP ATTEN DC BAL is attempted. Insure that the ascilloscope used in conjunction with the Type 7A22 is correctly calibrated (refer to the ascilloscope manual) and that the calibrated output voltage is correct.

1. AC ATIEN BAL (internal adjustment). When the LOW FREQ -3 dB POINT switch is used to limit the low frequency response of the Type 7A22, the unit employs AC stabilization. This means that when the switch is set to any position except DC or DC OFFSET, the STEP ATTEN DC BAL and DC OFFSET conirols become inoperative. VOLTS/DIV balance is then controlled with the AC ATIEN BAL, on internal adjustment (see Fig. 2-2).

Fig. 2-2. Location of AC ATTEN 8AL control.

When transferring the Type 7A22 from one oscilloscope to another, it may be necessary to perform o minor readjustment of this control, due to normal power supply voriotions between oscilioscopes.

NOTE

An unbalance of up to $30 \mu \mathrm{~V}$ is normal and cannot be reduced by adjusting the AC ATTEN BAL control.
a. With the Type 7A22 inserted into the oscilloscope, remove the teft side panel of the oscilloscope and set the Type 7A22 controls as follows:

VOLTS/DIV	1 mV
AC-GND-DC $\{+$ INPUT $\}$	GND
AC-GND-DC $1-$ INPUT $\}$	GND
LOW FREQ -3 dB POINT	10 Hz
HIGH FREQ -3 dB POINT	100 Hz

b. Using the POSITION control, position the trace to graticule center.
c. Set the VOLTS/DIV switch to $20 \mu \mathrm{~V}$.
d. Adjust the AC ATTEN BAL control, R505, to position the trace to within 1.5 divisions of groicule center. \{See note in step 1).

INTERACTION: If this adjustment is mode out of sequence, steps 2 and 3 must also be performed.
2. VAR BAL R425. (Internal adjustment).
O. Set the Type 7A22 controls as in step 1-0.
b. Position the trace to graticule center with the POSITION control.
c. With the VAR (CAL IN) in the out position, rotate the VARIABLE control from stop to stop. Check for no movement of trace.
d. Adjust R425 for no movement of trace as the VARIABLE control is rotated from stop to stop. \{See Fig. 2-2 for location of adiustment.)
3. STEP ATTEN DC BAL. With zero input voltage ond the LF -3 dB POINT selector of DC, if the STEP ATTEN DC BAL is not properly adiusted the CRT trace will shif! vertically os the VOLTS/DIV switch is rotated throughout its range. The shift is more noticeable at the most sensifive positions.
o. Set the Type 7A22 front-panel controls as follows:

VOLTS/DIV	10 mV
VARIABLE \{CAL IN\}	CAL
POSITION	Midrange
HIGH FREQ -3 dB POINT	1 MHz
LOW FREQ -3 dB POINT	DC
AC-GND-DC $\{+$ INPUT $\}$	GND
AC-GND-DC $\{-\operatorname{INPUT}\}$	GND
STEP ATTEN DC BAL	Midrange

b. Using the Type 7A22 POSITION control, position the CRT trace to the center of the graticule.
c. Set the VOLTS/DIV switch to $10 \mu \mathrm{~V}$.
d. Return the trace to graticule center by adjusting the STEP ATTEN DC BAL control.

NOTE
The adjustment of the STEP ATTEN DC BAL control should be checked periodically during the use of the instrument. If the Type 7A22 is used DC coupled or in significantly varying ambient temperatures in the $10 \mu \mathrm{~V} /$ DIV to $.1 \mathrm{mV} /$ DIV ranges, the STEP ATTEN DC BAL should be checked quite frequently. It is good practice to check this control and readjust, if necessary, before any critical measurement is made under the above conditions.

4. GAIN

o. Perform steps 1 through 8 in the First-Time Operation Procedure.
b. Adjust the GAIN control for exactly 4 divisions of display.

NOTE

Accuracy of this adjustment is dependent upon the voltage accuracy of the calibration source.

GENERAL OPERATING INFORMATION

Trace Drift

The environment in which the Type 7A22 is operated and the inherent characteristics of the Type 7A22 influence trace drift. Iherefore, to determine trace drift for a specific environment refer to the Specification Section. in environment in which the ambient temperature does not vary much (such as an air-conditioned building) the trace drift generally will not exceed $10, \mathrm{CV}$ in one hour.

Input Gate Current

When using the $.1 \mathrm{mV} /$ DIV to $10 \mathrm{KV} / \mathrm{DIV}$ ranges for measurement with an AC coupled input, for DC measurements where the source impedance is high (in excess of (M) the input gate current should be checked and allowed ior, or adjusted to zero. This is particularly desired at high temperatures (above $40^{\circ} \mathrm{C}$). Steps 7 and 8 in the Performance Check/Calibration Procedure describe the check and adjust procedures for setting the gate current to zero.

Voltage Measurement

To obtain accurate DC measurements at maximum sensilivity, it is necessary to ground the inpul and DC balance the amplifier just before making the measurement. This is accomplished by adjusting the STEP ATTEN DC BAL as described under operational adjusiment number 3.

When measuring $D C$ voltages, use the largest deflection factor (10 V/DIV) when first connecting the Type 7A22 to an unknown voltage source. Then, if the deflection is too small to make the measurement, switch to a lower deflection factor. If the input stage is overdriven, a large amount of current might flow into the input. See CAUTION after item 6 of First Time Operation.

Where only the $A C$ component of a signal having both $A C$ and $D C$ components is to be measured, use the AC. GND-DC switches to take advantage of the pre-charging circuit incorporated in the unit. The pre-charging circuit permits the coupting capacitor to charge to the DC source voltage when the AC-GND-DC switch is set to GND. Procedure for using this circuit is as follows:
a. Before connecting the Type 7A22 to a signal containing a DC component, set the AC.GND.DC input coupling switch to GND. Then connect the input to the circuit under test.
b. Allow about one second far the coupling capacitor to charge.
b. Set the input coupling switch to AC. The display will remain on the screen and the AC component can be measured in the usual manner.
d. On completion of the measurement, set the AC.GND. DC switch to GND and short the input connector to ground.

The above procedure should be followed whenever another signal with a different DC level is connected.

CAUTION

If the Type 7A22 is connected to a large DC voltage source without using the pre-charge provision, the peak charging current linto $0.1 \mu \mathrm{~F}$
capacitor) will be limited only by the signal source, and this source may be damaged or destroyed.

When a large DC voltage hos been applied to the Type 7A22 with the input AC coupled, the input coupling capacitor acquires a charge due to dielectric polarization and acts os a low voltage, high impedance voltage saurce with a very slowly decoying output voltage. This can offset subsequent $A C$ coupked measurements at other DC voltages and drive the trace off-screen. A period of at least 10 min utes, with input set to GND, should be allowed to assure reasonable recovery from polarization, and a longer period may be necessary for critical measurements. If the input connectors are shorted to ground the depolarization process will require less time.

Signal Input Connectors

When connecting signals to the +INPUT and --INPUT connectors on the Type 7A22, consider the method of coupling that will be used. Ordinary unshielded test leads can sometimes be used to connect the Type 7A22 to a signal source, particularly when a high level, low-frequency signal is monitored al a low impedance point. However when any of these factors are missing, it becomes increasingly important to use shielded signal cables. In all cases, the signalIransporting leads should be kept as short as practical.
When making single-ended input measurements, be sure to establish a common ground between the device under test and the Type 7A22. The shield of a coaxial cable is normally used for this purpose.
In some cases differential measurements require no common ground', and therefore ore less susceptible to interference by ground loop currents. Some problems with stray magnetic coupling into the signal transporting leads can also be minimized by using a differential rather than single-ended measurement. These considerations are discussed later in this section under Differential Operation.
It is always importont to consider the signal-source loading and resulting change in the source operating characteristics due to the signal-transporting leads ond the input circuit of the Type 7A22. The circuir ot the input connectors can normally be represented by a 1 megohm resistance to ground paralled by 47 pF . A few feet of shielded cable may increase the parallel capacitonce to 100 pF or more. In many cases, the effects of these resistive and capacitive loads may be too great and it may be desirable to minimize them through the use of an attenuator probe.
Attenuator probes not only decrease the resistive and capacitive loading of a signal source, but also extend the measurement range of the Type 7A22 to include substantially higher voltages. Passive attenuator probes having attenuation factors of $10 \times, 100 \times$, and $1000 \times$, as well as other special-purpose types are available through your Tektronix Field Engineer or Field Office.

Some measurement situations require o high-resistance input to the Type 7A22 with very little source loading or sig-

[^0]nol attenuation. In such a situation a passive attenuator probe cannot be used. However, this problem may be solved by using on active probe or the high input impedance provision of the Type 7A22.

High Input Impedance

The high input impedance provision applies only to DC coupled signals which permit the use of 10 mV through 10 $\mu \mathrm{V}$ positions of the VOLTS/DIV switch, (DC coupled). Since no input attenuator is used at these switch positions, the internal gate return resistor alone establishes the 1 megohm input resistance.

The high input impedance is obtained by unsoldering the wire strop (see Fig. 2-3) between the input line and the internal gate return resistance. The signal source must then provide o DC path for the FET gate current.

Fig. 2-3. Location of wire strop belween finput llne ond finlemal gate relum resistor,

The uncompensated gate current is typically less than 100 picoomperes, but may be several times higher depending upon the operating temperature. The signal-source impedance is therefore on important factor since gate current will produce a DC offsel. For example, o 100 picoompere gate current through 10 megohms produces 01 mV offset; this may resuit in a significant error where small voltages ore of concern.

NOTE

When the wire straps are removed, R111 and R211 are disconnected. The deflection factor in the $20 \mathrm{mV} /$ DIV to 10 VIOIV range will be incorrect.

The high-frequency response will also depend upon the signal-source impedance, since various shunt capacitances between the source and the 7A22 input as well as the 47 pF input capacitance, must charge ond discharge through that impedance (see Fig. 2-4).

Display Polarity

Single-ended signals con be applied to either the +INPUT or -INPUT connector. If the + INPUT is chosen, positivegoing changes in the input signal will cause the trace to be deflected upward, and negative-going changes will cause the trace to be deflected downward. If the -INPUT is chosen, input-to-display polarity relationship will be reversed as shown previously in Fig. 2-1.

Deflection Factor

The amount of trace deflection produced by a signal is determined by the signal amplitude, the attenuation factor of the probe, the setting of the VOLTS/DIV switch and the setting of the VARIABLE control. The calibrated deflection factors indicated by the VOLTS/DIV switch apply only when the VARIABLE control is pushed "in" to the CAL IN position.

The range of the VARIABLE control is at least 2.5:1. It provides uncalibrated deflection factors covering the full range between the fixed settings of the VOLTS/DIV switch. The control con be set to extend the deflection factor to at least 25 volis/div.

Noise

To reduce noise and obtain o more usable display when the VOLTS/DIV switch is operated in the $10 \mu \mathrm{~V}, 20 \mu \mathrm{~V}$, and $50 \mu \mathrm{~V}$ positions or when the signal source is noisy, it is sug. gested that the HIGH FREQ - 3 dB POINT selector be set to use the lowest bandwidth setting which does not appreciably distort the desired features of the signal under observation. Refer to Fig. 2-6 for the high frequency rolloff for each setting of the HIGH FREQ -3 dB POINT selector.

Bandwidth Selection

In addition to the differential rejection of unwonted signals, many times on undesired signal con be attenuated by varying the bandwidth of the unit. The LOW FREQ -3 dB POINT and HIGH FREQ -3 dB POINT selectors on the front panel of the 7A22 control the low-frequency and high-frequency -3 dB points of the amplifier. The LOW FREQ -3 dB POINT selector provides low-frequency response to $D C$ or to approximate -3 dB points at $1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 10 kHz . Refer to Fig. 2-5. The HIGH FREQ -3 dB POINT selector controls the high-frequency rolloff from 1 MHz to 100 Hz in a $1-3-10$ sequence. Beyond the -3 dB points the frequency response falls off of 06 dB per octave rate. Refer to Fig. 2-6.

Varying the bandwidth of the Type 7A22 is useful, for example, when dispiaying a low-frequency signal. By reducing the high-frequency response the noise con, in many coses, be considerably reduced without distorting the desired signal (see Fig. 2-7). Likewise, undesired line-frequency signals con be filtered out by restricting the low.frequency response of the unit. When using the LOW FREQ -3 dB POINT and HIGH FREQ -3 dB POINT selectors, core must be token not to distort non-sinusoidal waveforms by overly restricting the amplifier bandwidth.

Fig. 2-4A. 7 A22 CMRR al $10 \mu \mathrm{~V} / \mathrm{Div}$ to $10 \mathrm{mV} /$ Div. Inpuls DC Coupled. Worst-case degradation due to source resistance.

fig. 2-5. TA22 FREQUENCY RESPONSE as a funclion of LF - 3 dB POINT SETTING $\{H F-3$ dB POINT al 1 MHz).

Fig. 2-6. 7422 FREQUENCY RESPONSE as a function of $H F-3 \mathrm{~dB}$ POINT settings (LF -3 dB POINT of DC).

Fig. 2-7. Improving signal-to-naise ralio by selting bandwidth. (A) Lower ~3 dB FREQUENCY selector to DC, UPPER - 3 d8 FREQUENCY 1 MHz . (8) Lower -3 dB FREQUENCY selector io DC, UPPER -3 d8 FREQUENCY, 10 kHz .

Voltage Comparison Measurements

Some applications require a set of deflection factors other than the fixed values provided by the VOLTS/DIV switch. One such application is comparison of signal amplifudes by ratio rather than by absolute voltage.

To accomplish this, apply a reference signal to either input of the Type 7A22. Set the VOLTS/DIV switch and VARIABLE control throughout the subsequent comparisons. The settings of the VOLTS/DIV switch con be changed, however, to accommodate large ratios. In doing so, regard the numbers which designate the switch position as ratio factors rather than voltages.

Differential Operation

Differential voltage measurements are mode by applying the signals to the + INPUT and -INPUT connectors. Then, both AC.GND.DC switches should be set to the some positions: $A C$ or $D C$, depending on the method of signal
coupling desired. When using the Type 7A22 for differential operation, only the voltage difference between the two signals is amplified and displayed on the CRT. Common-mode signals (signals thot ore common in amplitude, frequency and phase) are rejected (see Fig. 2-8).

The Type 7A22 differential input provision may be used to eliminate interfering signals such as AC line-frequency hum. Single-ended measurements often yield unsatisfactory information because of interference resulting from groundloop currents between the oscilloscope and the device under test. In other cases, it may be desirable to eliminate a DC voltage by means other than the use of a DC-blocking capacitor which would limit low-frequency response. These limitations of single-ended measurements are virtually eliminated in differential measurements.

A differential measurement is made by connecting each of the two inputs to selected points in the test circuit. The input to the amplifier will then be the difference in voltage of the two selected points (see Fig. 2-9).

The ability of the Type 7A22 to reject common-mode signals is indicated by the common-mode rejection ratio (CMRR). This ratio is at least 100,000:1 of the input connectors for the lower deflection factors (10 NV to 10 mV per division) when signals between DC and 100 kHz ore DC-coupled to the inputs. To show the significance of this characteristic, assume that a single-ended input signal consists of an unwanted 60 Hz signal at 1 volt P.P plus a desired signal at 1 mV P.P. If an attempt is mode to display the desired signal with the VOLTS/DIV switch set to .2 mV , the 60 Hz signal would produce a deflection equivalent to 5000 div, and thus little useful information about the 1 mV signal could be obtained.

If, however, the same 1 mV signal is monitored differentiolly so that the 60 Hz signal is common-mode at the inputs, no greater than one port in one hundred thousand of the common-mode signal will appear in the display. Thus, the desired signal produces a display amplitude of 5 div with only .05 div of interference due to the common-mode signal.

There ore a number of factors which con degrade commonmode rejection. The principal requirement for maximum rejection is for the common-mode signal to arrive at the input FET gates in presicely the some form. A difference of only 0.01% in the attenuation factors of the input attenuators may reduce the rejection ratio to $10,000: 1$. Likewise, any difference in source impedance at the two points in the source under test will degrade the rejection ratio. Attenuator probes which do not hove on adjustable resistance may reduce the rejection ratio to 100:1 or less.
Outside influences such as electrostaric and magnetic fields con also degrade the performance, particularly when low level signals are involved. Electrostatic interference con be minimized by using shielded signal transporting leads of the same type to the two inputs, and by twisting the leads together throughout most of their length.
Core should be taken to minimize the movement of the signal transporting leads, as any movement of a lead, in the presence of a magnetic field, will tend to induce o signal into that lead. Where an interfering magnetic field cannot be avoided, the pickup loop formed by the two leads should be minimized by toping or twisting them together throughout most of their length. Low.frequency measurements con be similarly protected by using o shielded coble which contains - twisted pair of conductors.

fig. 2.8. Waveforms showing differentiol relection of a common-mode signal. Resulloni wavef orm lel shows ihe difference beiween the iwo signols.

DC Offset Operation

By using the DC OFFSET controls, it is possible to use the Type 7A22 differentiolly in a slide.back made, to observe smoll signal whose DC potentiol difference may be consideroble. The offset is continuously adjustable from +1 V 10 -1 V when the VOLTS/DIV switch is in the $10 \mu \mathrm{~V}$ to 10 mV positions. In the $20 \mathrm{mV}, 50 \mathrm{mV}$ and .1 V positions of the VOLTS/DIV switch, the IV offset is effectively multiplied by the input attenuator to a range of -10 V . Toble $2-1$ summarizes the effective DC offset voltages internally available for all the VOLTS/DIV switch positions. The table also lists the input attenuator that is switched into the amplifier circuit for the various VOLTS/DIV switch positions.

TABLE 2-1

VOITS/DIV selling	OFFSET RANGE	ATTENUATOR in
$10 \mu \mathrm{~V}$ 10 10 mV	$\pm 1 \mathrm{~V}$	$1 \times$
20 mV 10 0.1 V	$\pm 10 \mathrm{~V}$	10 X
0.2 V 10 1 V	$\pm 100 \mathrm{~V}$	$100 \times$
2 V 1010 V	$\pm 1000 \mathrm{~V}$	$1000 \times$

"CAUTION- ± 500 volis is the maximum allowable signol vallage of soch input.

Using the DC OFFSET functions:
Set the Type 7A22 controls as follows:

VOLTS/DIV	10 V
VARIABLE (CAL IN)	CAL
POSITION	Midrange
AC-GND.DC (+ and - INPUT) HF -3 dB POINT	GND
LF -3 dB POINT	DC
STEP ATTEN DC BAL	Adjusted for DC balance

1. Position the trace to graticule center (or some other convenient reference line) using the POSITION control.
2. Connect a coaxial coble from the signal source to the + INPUT.
3. Set the +INPUT AC-GND.DC switch to DC and measure the DC level to be offset.
4. Set the VOLTS/DIV to the largest deflection factor in on offset range which will encomposs the DC level measured in step 3. See Toble 2.1 and front panel color bonds.
5. Set the LF -3 dB POINT selector to DC OFFSET.

Fig. 2.9. Connecling a differential amplifier across a circuil.
6. Use the COARSE ond FINE controls to move the portion of the signol to be observed to the reference line established in step 1.
7. If o different size display is needed, the deflection foctor moy be changed in the some offset ronge.

NOTE

If switching into another offset range, the OFFSET controls will need to be readjusted. If switching into o smaller offset range, check that the avaitable range is suflicient to encompass the DC level present (see steps 3 and 4 abovel.

Input Overdrive Indicator

The INPUT OVERDRIVE indicotor turns on when the signol to the input FETs approaches the differential dynamic range of the amplifier. The 7A22 should not be left connected to o circuit if this light is on, os this moy meon thot o domoging voltage is present.

The INPUT OVERDRIVE indicator serves another important function. If the amplifier is direct-coupled of the input, o DC differential signol could overdrive the input stoge ond couse o reduction in goin. The smoll voltages to be measured will not be distorted, but will be reduced in amplitude. As o result, amplitude measurements mode under such conditions will not be occurote. The Type 7A22 INPUT OVERDRIVE indicator provides on indication thot such o signol is present by lighting before the goin colibrotion changes by 1%.

If the INPUT OVERDRIVE lomp turns on, there are two possible woys to continue:

1. Switch the LF - 3 dB POINT selector to DC OFFSET. DC differential signals moy then be bolonced out os indicated in Toble 2-1.
2. Switch the AC.GND-DC switch to $A C$. DC differentiol signals up to 1000 V (either inpur not to exceed 500 V) moy be removed by using $A C$ coupling at the input. This necessorily limits the low frequency response to 1.6 Hz for 0.16 Hz with o $10 \times$ probe).

The INPUT OVERDRIVE lomp is insensitive to commonmode overdrives, ond it is possible to overload the Type 7A22 without lighting the input overdrive light.
In summary the overdrive indicator will turn on under the following conditions:
o. The input signol exceeds the differential dynamic range of the amplifier (see Section I for toble of dynamic ronges).
b. An input protective fuse is blown. In this case, the light will remain on even il the AC.GND.DC switches ore set to GND.
c. There is o circuit malfunction.

Readout

If the Type 7A22 is to be used in on oscilloscope having readout copabilities, special probes which correct the readout deflection factor for probe attenuation moy be used. Divider probes not hoving the sensing capability may be used with the instrument, but they will not operate the sensing system, and the deflection factor of the plug-in only (as read on the VOLTS/DIV knob) will be displayed.

The +INPUT and -INPUT connectors hove on outer ring which is connected to the readout probe sensing device. This allows the moin-frome readout to display the correst deflecfion factor from the probe tip for any probe ottenuotion. For
example: if a $10 \times$ probe is used it will increase the deflection factor, in the readout display, by a factor of 10 . Then the octuol deflection factor at the probe tip is displayed (see Table 2-2).

NOTE

If only one divider probe lor two prohes with equal divider ratios! is connected, the deflection factor al the probe lip will be displayed; if probes with different dividar ratios ore connected \{e.g., $10 \times$ and $: 00 \times$ i, the readout will display the deflection factor of the sip of the probe with the larger division ratio $1100 \times$).

TABLE 2-2

TYPE 7A22 Plug In	Main-Frame Displayed Readout		
VOLTS/DIV Setting	Probe Atten used $1 \times$	Probe Atten used 10X	Probe Alten used 100 X
. 5 mV	$500 \mu \mathrm{~V}$	5 mV	50 mV
50 mV	50 mV	500 mV	5 V

Trace Idenify. With the oscilloscope turned on and a sweep displayed on the CRT, check for approximately 0.2 div of vertical movement of the trace when the IDENTIFY pushbutton is depressed. The vertical scale factor readout associated with the 7A22 will change to the word IDENTIFY.

NOTE
An incorrect CRT readout will occur in the $10 \mathrm{~V} / \mathrm{div}$ position when using the 100X Readout caded probe (P6009, Tektronix Part No. 010-0264-01). When used in $10 \mathrm{~V} /$ div setting, ieading will show 1 V instead of 3 KV .

SECTION 3
 CIRCUIT DESCRIPTION

Change information, if any, affecting this section will be found at the rear of the manual.

Introduction

A block diagram description covering the general configuration of each circuit in the Type 7A22 is included in this section. Following the block diagram description is a detailed description of each circuit and the functions of specific components.

Simplified drawings ore provided where necessary for easier circuit understanding. Complete schematic diagrams ore included in the Diagrams section. These should be referred to throughout the detailed circuit descripttion.

The values of resistors on the schematics ore in ohms unless otherwise specified. Capacitor values are indicated in the following manner unless otherwise specified: whole numbers indicate that the value is in pF , decimal numbers indicate that the value is in $\mu \mathrm{F}$. For example, 33 pF and 0.1 μ F.

BLOCK DIAGRAM DESCRIPTION Isee Block Diagram Pullout preceding schematics)

Input Coupling

A signal applied to the + or --Input connector passes through the input coupling selector switch to the input attenuator circuit. The signals con be AC coupled, DC coupled or disconnected internally. (See Schematic Diagram Number 1).

Input Attenuators

The input attenuators for the + and -inputs ore identical and ore conventional RC type attenuators. Common resistive elements ore adjustable to facilitate matching the -and + oftenuotors to obtain optimum DC common-mode signal rejection.
The attenuators (Schematic Diagram number 3) ore fre-quency-compensated voltage dividers which provide constant attenuation at all frequencies within the passband of the instrument, while maintaining o constant input time constant ($47 \mu \mathrm{~s}$) for all positions of the VOLTS/DIV switch.

Each ottenuotor contains an adjustable capacitor to provide correct attenuation at high frequencies, and adjustable shunt capacitance to provide correct input capacitance. The attenuators ore used, in conjunction with gain switching in the output amplifier, only in the $20 \mathrm{mV} / \mathrm{DIV}$ through $10 \mathrm{~V} / \mathrm{DIV}$ switch positions. From 10μ V/DIV through $10 \mathrm{mV} / D I V$, only the output amplifier gain switching is used to set the deflection factor.

Preamp

From the input attenuators, the signal is coupled to the preamp. The preamp consists of two identical feedback amplifiers connected in a differential configuration. The overall differential gain is approximately 15.

The supply voltages for the two amplifiers are obtained from o common power supply which is bootstrapped to the input to improve the common-mode rejection ratio of the preamp.

Each input is equipped with on overdrive protection circuil consiting of fuses and clomping diodes. For deflection factors from $10 \mu \mathrm{~V} / \mathrm{DIV}$ through 10 mV /DIV the fuse will open if the current exceeds $1 / 1{ }_{16}$ A (approximately 16.5 volts at the input), preventing damage to the input circuitry.

CAUTION

The input protection circuit clomps the input to o fixed voltage when too large on input signal is applied. In the $10 \mu \mathrm{~V}$ to 10 mV positions there is no resistance through the ATYENUATOR switch. There is a passibility of damage to the signal source, since a very large current surge can flow before the fuse opens.

When the LOW FREQ -3 dB POINT selector is in any position other than DC or DC OFFSET and the Input Coupling switch is in DC, there is no on-screen indication of the DC conditions in the preamp. If the differential dynamic range of the amplifier is exceeded and the amplifier is driven into non-linearity or overdrive, an erronerous display is likely.

An overdrive detector circuit is provided to indicate when the preamp is approaching the limits of its differential dy. namic range. A front-panel indicating lamp lights when over. drive occurs.

An offset generator is provided to balance out any current in the preamp resulting from signals containing differential components. Offset (variable) allows the varying component to be amplified, and at the same time maintains the amplifier differential capabilities.

Low Frequency - 3 dB Point

The push-pull output of the preamp is coupled through a LOW FREQ -3 dB POINT selector. The selector switches the components of the coupling network in each half of the preamp to select the low frequency -3 dB points $(.1 \mathrm{~Hz}, 1 \mathrm{~Hz}$, $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz). The DC position of the selector bypasses the low frequency selection circuitry and direct-couples the preamp to the Output Amplifier.

Output Amplifier

The signal from the LF -3 dB POINT selector is coupled to the gain-switching section of the Ouput Amplifier. This section of the Output Amplifier is a pair of feedback amplifiers similar to that of the preamp. The VOLTS/DIV switch changes the amplifier gain.

Fig. 3-1. Generalized feedback system showing the relation between Inpul and output.

High Frequency -3 dB Point

The HF -3 dB POINT selector switches capacitance acrass the output of the Gain Switching Amplifier to set the high frequency -3 dB point at any of 9 frequencies; $100 \mathrm{~Hz}, 300$ $\mathrm{Hz}, 1 \mathrm{kHz}, 3 \mathrm{kHz}, 10 \mathrm{kHz}, 30 \mathrm{kHz}, 100 \mathrm{kHz}, 300 \mathrm{kHz}$, and 1 MHz . The capacitance used in the 1 MHz position is adjustable to set the bandwidth to normal value.

Positioning of the trace, and VARIABLE VOLTS/DIV, are provided in the stage following the $\mathrm{HF}-3 \mathrm{~dB}$ POINT selector.

Overall amplifier gain is adjusted in the signal output stage of the Output Amplifier by adiusting the common emitter resistance.

GENERAL INFORMATION

Feedback Amplifiers

Since the Type 7A22 utilizes several multi-stage feedback amplifiers, o brief review of feedback systems in general is given.

Fig. 3.1 represents a generalized feedback system in which it is desired to produce an output signal accurately and stably related to the input. The arrangement of Fig. 3-1 causes the modified output to be nearly equal to the input. Any difference between these is detected by the comparator, which produces an error signal equal to the difference, and applies this error to the amplifier, which amplifies the error and feeds bock a correction to reduce the original etror.

Fig. 3-2. Feedback amplifier $\{5$ Ingle-ended version).

The input to the modifier (the system output) is also accurately related to the system input, provided the modifier is constructed of stable components.

Another way of looking at the system is to start at the output and work backward. Specifically, assume on amplifier gain of 10,000 and a feedback modifier which is a $10 \times$ divider. Assume o 10 volt output. The modifier output is 1 volt, and the error signal (output \div gain) is 1 mV , so that the input is 1.001 volts. In this case, the error between the desired output $\{10 \times$ input) of 10.01 volts and the actual output of 10.00 volts is only 10 mV , or 1 port in 1,000 .

In practice the comparator and error amplifier ore often combined in o differential amplifier. A single-ended version of the basic configuration used in the Type 7A22 is illustrated in Fig. 3-2, with the basic blocks of Fig. 3-1 identified. The comparator is FET Q_{1}. Any change in the gate-to-source bias voltage (dictated by the standing current established by R_{1} and the supply voltages) will cause a change in drain current, the change being applied as on error signal to the input of the error amplifier.

The error amplifier consists of grounded emitter stage Q_{2} driving emitter follower Q_{3}. The internal output appears at the emitter of Q_{3} and is fed back to the comparator input via modifier (voltage divider) R_{2}, R_{1}. For this amplifier, the system output, $\mathrm{V}_{\text {os }}$ con be determined by:

$$
V_{o s}=\left(1+\frac{R_{2}}{R_{1}}\right) V_{o m} .
$$

Since $\mathrm{V}_{\text {om }}$ is approximately equal to the input voltage V_{i}, then the system gain, $\frac{V_{i}}{V_{o s}}$, is approximately equol to $1+$ R_{2} R_{1}.

The useful output of the amplifier is the Q_{3} collector signal current i_{3} ', which flows through R, fin addition to the relatively small error current from Q_{i}). $V_{o m}=i_{0} R_{1}$ and since $V_{o m}$ is approximately equal to V_{i}, and i_{0} is approximately equal to i_{0} ' then i_{0} is approximately equal to $\frac{V_{1}}{R_{1}}$. Thus the output current vs. the input voltage depends primarily on the goinsetting resistor, $\mathbf{R}_{\mathbf{1}}$.

An output voltage con also be obtained by passing io through the load resistor, R_{3}. The overall voltage gain is then $\frac{V_{0}}{V_{i}}$, which is approximotely equol to $\frac{R_{3}}{R_{1}}$.

Differential Configuration

If the lower end of R_{1} is connected to the same point in another identical circuit instead of being returned to ground, the result is a differential feedback amplifier with push-pull output, which is the configuration in the Type 7A22. A differential feedback amplifier, such as is used in the $15 \times$ preamp, is shown in Fig. 3-3.

From the previous description, the Q_{10} and $Q_{1 b}$ source voltages $\mathrm{V}_{\text {om }}$ (a and b) follow the input voltages V_{i} and $\mathrm{V}_{i b}$ respectively, hence any differential input voltage, V_{i} will result in a nearly equal source to source voltage V_{0}, $\mathrm{V}_{\text {, }}$ which in turn is due to on output signal current is' $=\begin{aligned} & V_{\text {on }} \\ & R_{1 a}+R_{1 b}\end{aligned}$

fig. 3-3. Feedback amplifier IDifferential configurationl.

$$
=\frac{V_{i}}{R_{1 \mathrm{a}}}+R_{\mathrm{sb}}
$$

Note that FETs hove been used in Q_{3}, rather than NPN bipolors as in Fig. 3-2 to ovoid loss of signal current from the base lead. The operation of the amplifier remains unchanged.

DETAILED CIRCUIT DESCRIPTION

Input Coupling (See Schematic 1)

Input signals applied to the +input connector con be AC coupled or internally disconnected. When the input coupling switch, S101 (see $\times 15$ preamp diagram), is in the DC position, the input signal is coupled directly to the input attenuator. In the AC position, the AC signal is coupled through coupling capacitor ClOI , and the DC component is blocked from the input amplifier. The GND position internally connects the gate of the input amplifier to ground. This provides o ground reference for the amplifier without removing the input leads or otherwise disconnecting the input signal.

Resistor RIO3 allows ClO1 to be precharged in the GND position so that when S101 is switched to the AC position with a high DC level applied, there is no charging current surge into the input of the amplifier. Excessive loading is also avoided for the circuit under test, since the normal im-
pedonce of $1 \mathrm{M} \Omega-47 \mathrm{pF}$ is still seen by the signal source. The -input switch, S201, functions in the some manner as the tinput.

Input Attenuators
 (See Schematic (3))

To produce the vertical deflection factor indicated on the front panel by the VOLTS/DIV switch, the gain of the feedback amplifier in the gain switched amplifier circuit is changed by switching the source resistor (R407) of Q404 A and B (See Schematic 2) for switch positions $10 \mu \mathrm{~V}$ to 10 mV . For switch positions above 10 mV , input attenuators ore switched by S 108 into the input circuit of the Type 7A22, in confunction with the gain switching resistors, R407, to produce the selected deflection factors.

These attenuators ore frequency-compensated voltage dividers. For DC and low frequency signals, they ore primarily resistive dividers (e.g., R108C, R108D) and the voltage attenuation is determined by the resistance ratio in the circuit. The reoctonce of the capacitors in the circuit is so high at the lower frequencies that their effect is negligible. However, at higher frequencies, the reoctonce of the capacitors decreases and the attenuator becomes primarily a capacitive voltage divider (e.g., Cl08C, C108D).

In addition to providing constant attenuation at all frequencies within the bandwidth of the instrument, the input attenuators ore designed to maintain the some input RC characteristics (1 megohm in parallel with 47 pF) for each setting of the VOLTS/DIV switch. Each attenuator contains on adjustable capacitor (e.g. ClOBC) to provide correct attenuation at high frequencies, and on adjustable shunt capacifor to provide correct inpu! capacitance.

Gate Current Compensation

The leakage current associated with the gates of the input FETs may be as high as 100 pA . This 100 pA of leakage current (through 1 megohm to ground, R111 or R211) will produce on offset of $100 \mu \mathrm{~V}$, which at high input sensitivities is not acceptable. To compensate this effect, the gates of the input FETs may be adjusted to zero volts by returning R111, R211 through variable controls R115 and R215 to a slightly negative supply voltage (see Fig. 3-4).

Leakage current associated with the gates of the input FETs and the overdrive protection diodes increases rapidly with temperature, approximately doubling for every $10^{\circ} \mathrm{C}$. To compensate this increase, a temperature sensitive input current balancing network is included, using thermistors as the sensing elements.

As the voltage across R111 and R211 increases due to increasing FET gate current at increased temperatures, an equal voltage change is produced in the thermistor compensating circuit, maintaining the FET gate level at zero volts.

The gate current compensation becomes inoperative if the strops ore removed for high input impedance operation.

Input Amplifier

The input amplifier circuit in the Type 7A22 is mode up of two identical feedback amplifiers connected in a differ-

Fig. 3-4. Gate Current Compensation.
ential configuration with a push-pull output. The power supply voltages (except at the output) for each feedback amplifier ore obtained from a power supply that is bootstrapped to the common-mode input signal. This improves the CMRR of the amplifier. Input overdrive protection is provided in the input circuit to prevent damage to the semiconductors it a large overdrive is inadvertently applied to the input.
Any amplifier of this type, in which the feedback is token to the input element, is likely to exhibit a negative resistance component of impedance at higher frequencies. If the input signal source impedance is inductive with a sufficiently high " Q ", the amplifier could oscillate. C115, R116, R117 and C215, R217 compensate for this negative input resistance.
$\times 15$ Preamp. The feedback amplifiers in the + and inputs ore identical except for circuit numbers, and operate in a coupled differential mode as described previousiy under feedback amplifiers.
in the actual circuit (see Schematic 1) the + feedback amplifier consists of the comparotor Q133A, error amplifier Q144A, Q153, feedback modifier R151, R153 and output load resistor Rl59. R151 is the gain setting resistor for the amplifier, and the approximate gain of the amplifier con be determined by dividing R159 by R151, $\left\{\frac{R_{0}}{R_{i}}\right\}$

Diode CRI 31 is used for temperature compensation of the base-emitter junctions of Q144A and Q144B. This keeps the total voltage across the input stage current-setting resistors R133, R233 constant with temperature. Diode CR144 connected between base-emitter of Q144A, protects the transistor against reverse base-emitter breakdown. C144 and C244 stabilize the circuit at the higher frequencies.

DC Balance. The DC level at the output of Q153, Q253 is balanced by R258, SIEP ATIEN DC BAL. The STEP ATTEN

Fig 3-5. Common-mode Reiection using floating power supply.

DC BAL control changes the current through R257, R259, thereby changing the DC balance. It is used to adjust the difference in potential across the output of the $\times 15$ Preamp (pins Z and W) to zero with the input coupling switches at GND and the LOW FREQ - 3 dB POINT switch set to DC.
With high frequency common-mode signals the wiring stray capacitance of the $\times 15$ preamp con inject undesirable current into the two output lines at high frequencies. C330 is adjusted to equalize these currents, thus extending the frequency range over which useful CMRR can be obtained.

Floating Power Supply. The supply voltages for the $\times 15$ preamp ore obtained from a chain of Zener diode shunt regulatars, VR305, VR320 and VR325 connected in series. Current is supplied by two current sources, Q304 and Q324.

C307, C317 and C325 filter out the Zener noise. C315 increases the bootstrap stability at higher frequencies.

Any common-made changes that occur in the input amplifier, except at the output, ore coupled to the power supply through Q314. Q314 is on emitter follower whose gain is maintained very close to unity by the minimum loading presented to its output by the high collector impedance of Q304 and Q324, thus achieving good bootstrap efficiency.

Common Mode Rejection. One of the primary functions of the $\times 15$ preamp is to reject any common-mode component in the input signals, and amplify only the difference. in the extreme case of the inputs tied together and a common voltage applied, the output of the amplifier is ideally zero, and would actually be zero provided that the characteristics

fig. 3-6. Input cross neuirallzatlon.
of oll corresponding elements on the two sides of the ampli. fies (see Fig. 3-5) were exactly matched. In proctice any mismatch will cause a differential output. Even with perfect matching, there is still a common-mode output current resulting in on undersiroble common-mode signol opplied to the subsequent stages of the omplifier (common mode gain).

The floating power supply eliminates these difficulties and improve the CMR. Suppose the input to the bootstrap amplifier is connected to the junction of R15i and R251 (see Fig. $3-5)$. It can be seen that now the entire power supply and amplifier moves on amount equol to Vcm (ie: follows Vcm) and that no changes in voltage or current levels occur anywhere within the amplifier as a result of Vcm , except for Q153 and Q253 drain to gate voltage. Thus the only mismatch of importance is that of Q153, Q253 amplification
factors, and being in the third stage of the amplifier at o point of relatively large differential signal level, this causes only o small degrodorion in CMR.

At higher frequencies the inevitable stray copocitonces from various points in the $\times 15$ preamp to ground begin to inject significant current into the amplifier as a result of common mode signals. The differential copocitor C330, \{Fig. 3.5 or Schematic (1) connected from a point in the floating power supply to the two output lines, is used to inject adjustable currents into the output. It con be adjusted to equalize the net output currents resulting from high frequency common mode signals and so extend the sange of frequencies over which useful CMRR con be obtained.
Cross Neufralization. The use of o common bootstrap power supply results in on undesirable capacitive coupling
between the two inputs. Consider the effect of applying +1 volt to the +input while keeping the - input at 0 volts (see Fig. 3-6).

The results ore (a) on output current of 4 mA , as shown, and (b) a shift of all supply voltages and several other voltage levels by +0.5 V due to the divider action of R151, R251 operating into the bootstrapped power supply system. Specifically, the drain of Q133B also rises +0.5 V and injects o current $i_{s b}$ through the drain to gate capacitance of Qi338 and into the -input. If there is any impedance between the -input and ground, $i_{1 b}$ will develop o voltage across it winich, being applied to the -input subtracts from the original tinput and causes on erroneous output (see Fig. 3-7).

Note that the output current flowing through R253 causes its output end (Q253 source) to go to -0.6 V . A capacitor, C241, connected from this point to the -input can be adjust to divert $i_{1 b}$ away from the input line ($i_{1 b}$) and so neutralize the effect of $C_{\delta g}$ and reduce the -input current ta zero. R141 and C141 perform a similar function for the tinput.

Input Overdrive Protection. Since the input FETs Q133A and B , being semiconductors con be destroyed by sufficiently large overdrive applied directly to them, some input protection is a necessity. The important components of the protection system used in the Type 7A22 are shown in Fig. 3.8A.

There are iwo different kinds of overdrive associated with the Type 7A22, (a) single-ended overdrive, with one input grounded, and (b) common-mode overdrive, with approximately equal input voltages.
(a) Assume the -input grounded and a steadily increasing voltage on the +input. The chart in Fig. 3.8B indicates the sequence of events: F119 will open if the + signal source can supply $1 / 16 \mathrm{amp}$ of current. If this much current is not present, the +input remains at +16.5 V , with the overdrive current flowing to ground as shown in Fig. 3-8.

Now assume the +input grounded and a steadily increasing - voltage on the -input. The sequence of events is shown in Fig. 3-BC.

Fig. 3-7. Effects of high impedance to ground in the - INPUT.
(b) For common-mode overdrives the clomping sequence is essentially similar, except the $\times 15$ amplifier does not overload, and the current i_{2} does not flow until the input reaches approximately -13 V . The fuse opening current paths ore shown in Fig. 3-8A.

For differential overdrive the action is a combination of the + and - single-ended sequences, with the -input supplying i_{2}. \{In effect a $5 \mathrm{k} \Omega$ resistor is connected across the inputs when the differential voltage reaches 3 V). The fuses will not open until one or both inputs reach +16.5 V or -16.5 V .

DC Offset. The purpose of the DC offset system is 10 allow a differential slideback measurement, i.e.: to buck out small DC components of input signals and allow the amplifier to amplify only the varying components, while keeping the differential capability. This means that when a DC voltage is applied across the inputs, some means must be found to balance out the resultant output current. Fig. 3-9 illustrates how this is done.

Fig. 3-9A shows the standing currents for zero input. Fig. $3-9 \mathrm{~B}$ shows the currents with a 0.25 VDC input applied to the t-input. This would cause on $\mathrm{i}_{0}{ }^{\prime}$ of 1 mA to flow through R151, R251. However, if this 1 mA is supplied as shown by the offset generator, then no net output current results. Both the Q133A and Q133B source currents and the output standing currents, i_{0} ', remain at their zero signal value, 2 mA and 5 mA respectively.

Offset Generator. The offset generator produces the adjustable balanced offset current for use in the $\times 15$ preamp. Due to the wide range of the offset system $\{200,000 \mathrm{div}$ at $10 \mu \mathrm{~V}$ per div) stable components ore used and circuit techniques which minimize drift and noise ore employed in the offset generator. A 10 turn coarse and 1 furn fine OFFSET control is used to obtain adequate resolution at low deflecfion factors.

The functional arrangement of the offset generator is shown in Fig. 3-10. In the reference voltage generator the OFFSET contral, R270, tops on adjustable portion ($\mathrm{V}_{1 \mathrm{~b}}$) of the voltage across the reference Zener VR270, and a fixed voltage ($\mathrm{V}_{\mathrm{t}_{0}}$) is token from the voltage divider formed by R27), R279 (approximately 50% of the reference voltage); thus, the difference voltage $\left(\mathrm{V}_{16}-\mathrm{V}_{14}\right)$ is adjustable over the range of at least -4 V to +4 V .

This odustoble difference voltage is applied to the inputs of a balanced feedback amplifier conceptually similar to that described previously under differential configuration. In amplifier " A ", the feedback action forces the -input voltage (aiso the output voltage) $\mathrm{V}_{2 \mathrm{a}}$ to follow the + input V_{10}. In a similar manner, $\mathrm{V}_{2 \mathrm{~b}}$ follows $\mathrm{V}_{1 b}$ in amplifier " B ". The differential input $\left(V_{10}-V_{10}\right)$ is therefore reproduced across resistors R287, R289. The resultant current, $\frac{V_{2 b}-V_{20}}{R 287+R 289}$, which is "'iorisol", flows through the FET (Q273, Q283) output stages of the amplifier and out their drains to the $\times 15$ preamp.

When the offset is not in use V_{16} is switched to the fixed divider (R273, R277) by the OFFSET ON/OFF switch (port of the LF -3 dB POINT switch). $\mathrm{V}_{1 \text { e }}$ is adjustable over a small range with respect to $\mathrm{V}_{1 b}$ by the COARSE DC BAL control, whose purpose is to adjust out any initial DC unbalance in the $\times 15$ preamp, and to bring its output to zero with zero input.

Fig. 3-8. (A) Overdrive Protection System showing cursenl palhs. (B, C) Sequence of evenls leading lo excessive overdrive.

In the actual circuit, the reference voltage generator is modified by the addition of a FINE OFFSET control (R265), which changes the effective range of the 10 turn COARSE potentiometer by means of two voltage dividers, one connected to each end of the COARSE control. A capacitor filters out Zener noise from the reference voltage.

The feedback amplifiers A and B ore composed of Q264A, Q273 and Q264B, Q283 respectively, with the reference input applied to the emitters of dual transistor Q264 and the feedback to its bases. Current source Q2B4 supplies operating current for the amplifiers.

Input Overdrive Indicator. When the LF -3 dB POINT selector is in a position other than DC, there is no on-screen indication of the DC conditions in the $\times 15$ preamp, and it may be driven into non-linearity or overload by a $D C$ component, leading to erroneous displays. The input overdrive indicator detects this condition and indicates by means of a warning light that the $\times 15$ preamp is approaching the limits of its dynamic range.
The indicator consists of a threshold detector (CR34), CR343, Q344) and a monostable lamp driver (Q334, Q354). In the quiescent state, while no overdrive exists, CR341,

Fig. 3-9. Offset system showing (A) Conditions with zero offsel, $(B) \quad 0.25 \mathrm{~V}$ DC offsel.

CR343, Q344, Q334 and Q354 are all cut off. R341 ond R343 form a voltage divider to set the emitter of the threshold deteclor, Q344, at approximately +32 V .
Now suppose one of the $\times 15$ preamp output lines exceeds +33.4 V; CR341 (or CR343) and Q344 collector current turns on Q334 via R347. Q334 collector current turns on Q354 via R333, and the resulting negative going step at Q354 collector turns on the lamp. This causes current in R349 to turn Q334 on harder. If the overdrive is removed immediately, Q344 turns off. However, the current through C349, R349 keeps Q334, Q354 and the lamp on until C349 is charged to its new volsage (approximately 1 second) and the current through R337 exceeds that in R349, R337. This keeps Q334 off for approximately 1 second, even if Q344 receives another overdrive signal.. Thus for repetitive overdrives, lup to about 10 kHz), the monostable free-runs ond the lamp flashes at approximately o 2 second rote. (Above 10 kHz the high speed $A C$ effectively charges up the stray capacitance and makes the circuit act as if it had a DC overload.) If, however, a DC overload keeps Q344 on, the end of C349 discharge does not furn Q334 off since it is kept on by current through R347. Thus, the lomp stays on until the overdrive is removed.

LF -3 dB POINT Selector. This switch selects the low frequency -3 dB point of the amplifier and has a range of 0.1 Hz to 10 kHz in decade steps. Selection is done by switching the resistor and capacitor of a pair of capacitor couplings in each leg of the amplifier. Fig. 3-11 shows half of the selector, with the switch split up into its functional elements.

For the 100 Hz to 10 kHz positions, Cl 56 is used and resistors R353C, R353B and R353A are switched to the output in the following combinations:

-3 dB frequency	100 Hz	1 kHz	10 kHz
output resistors	R353C	R353 \& R353B	R353C \& R353A

Whenever R353A or R353B is not on the output side of Cl 56 , it is placed across the input, to keep the high frequency load resistance seen by Vin constant.

C353A is switched across Cl56 for the lower 3 ranges, $(0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}$ and 10 Hz) and C156 is shorted out for DC coupling. Resistor R157 odds a small increment in gain when C156 is used to compensate for the loss of gain through the capacitive divider formed by Ci 56 and stray capacitance C_{5}.

When the 0.1 Hz to 10 Hz positions ore in use, C353A may be rapidly pre-charged by switching to the 10 Hz position momentarily.

OUTPUT AMPLIFIER (See Schematic

1

Gain Switching Amplifier

The gain switching amplifier (Q404, Q414, Q424, Q524) is a balanced differential configuration very similar to the $\times 15$ preamp but with a fixed power supply. Goin switching is accomplished by switching R407.

Fig. 3-10. Functional arrangement of the offset generator.

Diodes CR413, CR513 prevent base-emitter reverse breakdown in Q414 under overdrive conditions: CR419, CR519 limit the output current that con flow through Q424, Q524. CR415, CR417 and CR515, CR517 prevent the bases of Q424, Q524 from swinging too for from the emitter, preventing breakdown and ensuring a fast, clean overdrive recovery. The AC STEP ATTEN BAL adjustment (R5O5) in series with the source of Q404B, develops a small adjustable voltage which removes any initial unbalance in the gate-to-source voltages of Q404 $A \& B$. The AC STEP ATTEN BAL also sets the voltage across
gain-setting resistor R407 to zero when the differential input (gote-Io-gote) voltage is zero.

VAR BAL (R425) is used to balance the output currents of Q424 and Q524 with zero input to the amplifier.

The gain switched amplifier hos excellent overdrive characteristics so that the full dynamic range of the input amplifier con be used. It is gain-switched over a range of about $1,000: 1$ with no significant change in bandwidth or any other characteristics.

HF -3 dB POINT 5elector. The HF -3 dB POINT selector simply switches different values of capacitance across the output of the gain-switched stage to set the high frequency -3 dB point of the amplifier. The -3 dB point is adjusted in the 1 MHz position by C 425 .

Variable Output Stage

The variable output stage (Q434, Q534) does not contribute much voltage gain, but it performs a number of other functions. The configuration is a collector loaded, common emitter amplifier with emitter degeneration, the gain (collector signal current vs. input voltage) being determined by the total emitter to emitter resistance. This resistance is adjusted over a 2.5:1 range by the VAR control, R535, which provides a fine control of gain in the uncalibrated position, and interpolates between the steps of the VOLTS/DIV switch.

POSITION control is obtained by feeding adjustable currents into the emitters of Q434, Q534, via resistors R431, R531. This current odds to or subtracts from the signal current developed in the emitter resistors R432, R535, R532, and flows out of the collectors into the signal and trigger output amplifiers.

Signal Output Amplifier

The signal oufput amplifier (Q444, Q544) is a push-pull common emitter configuration with emitter degeneration to improve the stability and linearity of the circuit. The gain of the stage is determined by the total emitter-to-emitter resistance, which is adjustable by GAIN control (R540) to facilitate calibration of the instrument. The gain of the amplifier is set in the 1 mV position of the VOLTS/DIV switch.

R443, R543 equalize the power in Q444, Q544 under dynamic conditions, thereby eliminating thermal distortion. C443, C543 ore high-frequency by-poss capacitors.

Trigger Oufput Amplifier

The trigger output stage (Q454, Q554) is almost identical to the signal output stage, except the stage gain is not adjustable, so that the output, while nominally the some as the signal output level, con in foct hove quite a wide tolerance.

INDICATOR OSCILLOSCOPE READOUT

General

The readout block consists of switching resistors and a probe sensing device. The switching resistors are used to signai to the Indicator Oscilloscope the setting of the VOLTS/ DIV switch. R618A, R618B, and R618G select the number 1, 2, or 5 depending upon the combination that is switched in. R618C, R618D, R618L, and the output of the probe sensing device (Q614) select the decimal point (number of zeroes) again depending on the switched-in resistor combination. R618E, R618F, and R618N select the Volts sub-unit, either m (milli), μ (micro), or no sub-unit. R618H and R618K select

Fig. 3-11. Portiol Low Frequency .-3 dB Point selector for + Input amplifier.
the symbol V (volts). R618J and R618M select the symbol $>$ when the VARIABLE VOLTS/DIV knob is in the uncalibrated position. Refer to the Schematic Diagram of the VOLTS/DIV Switch to find the resistors associated with o particular setfing of the VOLTS/DIV switch.

Probe Sensing

The probe sensing device (Q614) identifies the attenuation of the probe connected to the front panel connector, by sensing the amount of current flowing from the current sink through the probe coding resistance, and adjusts the readout display so that the actual probe tip deflection factor is displayed.

The probe connected to the + (or -) INPUT connector forms a voltage divider with R610 (R620) through CR615 to the -15 V supply. This forward biases CR610 (CR620) allowing current to flow through R630, reducing the bias on Q674. The bias voltage, applied to the base of Q614, is set by the probe coding resistance of the divider probe.

When the -15 V clock pulse is applied to interface connector B33, Q614 is interrogated and its collector currents (detrmined by the base voltage and emitter resistor, R614) is added to the column current through interface connector A37.

With a $1 \times$ probe (or no probe) connected, Q614 is turned off, and the deflection factor, in the readout display, is determined by the setling of the Readout Switch, S407, \{port of the VOLTS/DIV switch) only.

With a $10 \times$ probe connected to the input $(+$ or -), the bias on Q614 will allow 100 ! A of collector current to flow. This increases the deflection factor (in the readout display) by a factor of 10 .

When different-atlenuation divider probes ore connected to the + and - INPUT connectors, the displayed readout will be the probe tip deflection factor of the larger divider. For example: if a $10 \times$ probe is connected to the +INPUT and a $100 \times$ probe is connected to the -INPUT the readout will display the deflection factor at the tip of the $100 \times$ probe. The $100 \times$ probe will set the bias on Q614 to ollow $200 \mu \mathrm{~A}$ of collector current which will increase the deflection factor (in the readout display) by a factor of 100.

This means that the Indicator Oscilloscope displayed readout will give the correct deflection factor from the probe tip, for a single probe or two probes having the same attenuation factor, whereas the VOLTS/DIV knob on the plug-in will display only the plug-in deflection factor.

Trace Identify

The TRACE IDENTIFY button, when pressed, does two things:

1. It causes the trace, representing the output of the Type 7A22, to move a small amount by inserling a $2 k \Omega$ resistor, R622, from ground through CR630 to the junction of R632 and R634. This shunts a small amount of the output current causing the trace to move.
2. Forms a voltage divider from the -15 V supply through R630 and R622, placing the base of Q614 at approximately -1.5 V . This low value of bias will cause Q614 to turn on hard ($1,000 \mu \mathrm{~A}$ collector current) when interface connector 833 is interrogated, erasing the readout display and causing the word "IDENTIFY" to appear.

These two actions aid in identifying the Type 7A22 trace when multiple traces ore displayed. When the IDENTIFY button is released, the readout is restored to its previous display.
For more specific information on the operation of the system, refer to the appropriate Indicator Oscilloscope manual.

SECTION 4

MAINTENANCE

Change information, if any, affecting this section will be found at the rear of the manual.

Introduction

Information which will aid in keeping the Type 7A22 operating at its peak performance is contained in this section. Cleaning, lubricating and visual inspection hints ore included under preventative maintenance. The section on corrective maintenance includes troubleshooting and corrective procedures. Ports identification and soldering techniques ore included where necessary.

PREVENTIVE MAINTENANCE

General

The instrument should be cleaned, inspected and recalibrated ot regular intervals. The recommended interval for overage operating conditions is every 6 months or every 1000 hours of operation, whichever occurs first.

Cleaning the Front Panel

Loose dust may be removed with cloth and o dry point brush. Warer and mild detergents such as Kelite or Spray White may be used.

CAUTION

Avoid the use of chemical agents which might damage the plastics used in this unit. Avoid chemicals such as benzene, toluene, xylene, acetone or similar solvents.

Cleaning the Interior

Cleaning of the interior of the unit should precede calibration, since the cleaning process might alter the setrings of the calibration adjustments.

To clean the interior, use low-velocity compressed air to blow off the accumulated dust. High velocity air streams should be avoided to prevent damage to components.

WARNING

Use on eye-shield when cleaning with pressurized air. Hardened dirt con be removed with o point brush, cotton tipped swab or cloth dampened with o water and mild detergent solution. Avoid the use of chemical cleaning agents that might damage the plastic ports.

Visual Inspection

The unir should be inspected occasionally for such defects as poor connections, broken or damaged circuit boards, improperly seated transistors and heot-damaged parts. The remedy for most visible defects is obvious. However, damage from overheating is usually o symptom of less obvious trouble; and unless the cause is determined before ports ore replaced the damage may be repeated.

Transistor Checks

Periodic preventive maintenance checks on the transistors used in the unit ore not recommended. The circuits within the unit generally provide the most satisfactory means of checking transistors usability. Performance of the circuits is thoroughly checked during recalibration, and substandard transistors will usually be detected at that time.

Calibration

To insure accurate measurements, the Type 7A22 calibrarion should be checked ofter each 1000 hours of operation or every six months if used intermittently. Complete calibration instructions ore contained in Section 5.

The calibrated procedure con be helpful in isolating major troubles in the unit. Moreover, minor troubles not apparent during regular operation may be revealed and corrected during calibration.

CORRECTIVE MAINTENANCE

General

Replacement of some parts in the unit should be done by following a definite procedure. Some procedures, such as soldering and replacing components on the circuit boards, are outlined in this portion of the manual.

[^1]TABLE 4-1

Areas of Repair	Checks and Adjustments Affected	Section 5 Calibration Step
Input Coupling switches and cables Input Attenuators	Input R and C, Attenuator compensation, CMRR, LF response, Goin	$\begin{aligned} & 6,13,14,15,16, \\ & 17,18,19,20, \\ & 21,22 \end{aligned}$
Preamp	$1 \times$ input C, Cross Neutralization, DC BAL, CMRR Com. non-Mode dynamic range, Differentiol dynamic range, Offset range, Noise, Input protection system Goin, 1 MHz freq. response, Overdrive indicator	$\begin{aligned} & 3,6,10,11,12 \\ & 13,14,20,22, \\ & 23,24 \end{aligned}$
$\bar{L}-3 \mathrm{~dB}$ POINT	Goin, LF freq. response, 1 MHz freq. response	6, 20, 21
Overdrive Indicolor	Dynamic range	23, 24
Gain Switched Amp	Gain, Deflection factor tracking, AC Atten Bal, HF -3 dB POINT, 1 MHz freq. response, Overdrive recov. ery Variable Balonce	$\begin{aligned} & 1,2,6,8 \\ & 20,26 \end{aligned}$
Offset Generator	Offset Range, DC Bal, CMRR	3, 10, 22
Output Amplifier	HF - 3 dB POINTS, Var balance, Variable range, Goin	2, 6, 7, 20

Obtaining Replacement Parts

Standard Parts. All electrical and mechanical port replacements for the Type 7A22 con be obtained through your local Tektronix Field Office or representative. However, many of the standard electronic components con be obtained locally in less time than is required to order them from Tektronix, Inc. Before purchasing or ordering replacement parts, check the ports lists for value, tolerance, roting and description.

NOTE

When selecting replacement parts, it is important to remember that the physical size and shape of the component may affect its performance in the instrument, particularly at high frequencies. All replacement parts should be direct replacements unless it is known that a different component will not adversely affect instrument performance.

Special Parts. Some parts ore manufactured or selected by Tektronix to satisfy particular requirements, or ore manufactured for Tektronix to our specifications. These and most
mechanical parts should be ordered through your Tektronix Field Engineer or Field Office. See Parts Ordering Information and Special Notes and Symbols on the page immediately preceding Section 6.

Soldering Techniques

Circuit Boards. Use ordinaty $60 / 40$ solder and a 35 . to 40 -wott pencil type soldering iron on the circuit boards. The tip of the iron should be clean and properly tinned for best heat transfer to the solder joint. A higher wattage soldering iron may separate the etched wiring from the base material.

The following technique should be used to replace a component on the circuit board. Most components can be replaced without removing the board from the unit.

1. Grip the component lead with long-nosed pliers. Touch the soldering iron to the lead at the solder connection. Do not touch the soldering iron tip directly on the board, as it may damage the board.
2. When the solder begins to melt, pull the lead out gently. This should leave a clean hole in the board. If not, the hole can be cleaned by reheating the solder and placing a sharp object, such as a toothpick or pointed tool, into the hole to clean it out.
3. Bend the leads of the new component to fit the holes in the board. Cut the leads of the new component to the same length as those of the old component. Insert the leads into the board until the component is firmly seated against the board, or as positioned originally. If it does not seat properly, heat the joint, and gently press the component into place.
4. Apply the iron and a small omont of solder to the connection to make a firm solder joint. To protect heat-sensitive components, hold the lead between the component body and the solder joint with a pair of long-nose pliers or other heat sink (see Fig. 4-1).
5. Clip the excess lead that protrudes through the board.
6. Clean the area around the soldered connection with flux-remover solvent to maintain good environmental characteristics end appearance. Be careful not to remove information printed on the board.

Fig. 4-1, Removing or replasing component on circuit board.

CAUTION

Silk-screen lettering dissolves when contacted by flux-remover.

Metal Terminals. When soldering metal terminals (interconnecting plug pins, switch terminals, potentiometers, etc.) ordinary $60 / 40$ solder can be used. The soldering iron should have a 40 - to 75 -watt roting with a $1 / 8$ inch wide chisel-shaped tip.

Observe the following precautions when soldering to metal terminals:

1. Apply heat only long enough to make the solder flow freely.
2. Apply only enough solder to form a solid connection; excess solder may impair the function of the part.
3. If a wire extends beyond the solder joint, clip the excess close to the joint.
4. Clean the flux from the soider joint with a flux-remover solvent to maintain good environmental characteristics and appearance.

Specific Component Replacement Information WARNING

Disconnect the instrument from the power source before removing or replacing components.
The pushbutton switches ore not repairable and should be replaced if defective. Components which are mounted on the circuit board associated with the pushbutton switch can be replaced using the normal replacement procedure. See the information under Light-Bulb Replacement for bulb replacement. Use the following procedures to replace the +INPUT and -INPUT pushbutton switches.

1. AC-GND-DC $\{+$ INPUT $\}$ Switch

a. Set the front panel controls as follows:

POSITION	Midrange
STEP ATTEN DC BAL	Midrange
VOLTS/DIV	10 V
HF -3 dB POINT	1 MHz
LF -3 dB POINT	DC OFFSET
DC OFFSET (FINE)	Midrange
DC OFFSET (COARSE)	5 turns from either extreme

b. Remove all front panel knobs.
c. Remove the GND binding post assembly.
d. Remove the nut and washer from the POSITION and DC OFFSEI shafts.
e. Remove the plastic bushing from the VOLTS/DIV shaft.
f. Remove the front panel overiay.
g. Without unsoldering any leads, carefully push the dual DC OFFSET potentiometers out of the front panel and lift them out of the way.
h. Unsolder and unplug the connecting leads from the AC-GND-DC switch.
i. Remove four corner screws and remove the front subpanel.
i. Remove the two screws securing the AC-GND-DC switch to the front sub-panel and remove the switch.
k. Replace by reversing the above procedure.

2. AC-GND-DC (-INPUT) Switch

a. Perform step 1, parts a through f, of Specific Component Replacement.
b. Loosen the setscrew on the collar connecting the GAIN shaft to the pot coupler and pull the shaft out of the front panel.
c. Unsolder and unplug the connecting leads from the AC-GND-DC switch.
d. Remove the four corner screws and remove the front sub-panel.
e. Remove the two screws securing the switch to the front panel.
ł. Remove the switch.
g. Replace by reversing the above procedure.

3. Light-Bulb Replacement, +INPUT and mINPUT Push-Button Switches

Two types of pushbutton switches which hove different light designs are in use. One switch design uses a metal cover over the light bulb(s) on the back of the switch; the other type does not. Either or both types of switches may be used in the 7A22.

To replace light bulbs in the pushbutton switches, use the following procedure:
a. Remove the applicable INPUT switch as described in steps 1 and 2.
b. On switches with the metal cover, remove the screw holding the cover and remove the cover.
c. Clip off the bulb leads near the bulb body.
d. Remove the leads from the circuit board.
e. Remove the excess solder from the circuit board with a vacuum-type desoldering tool.
f. Solder the new bulb to the circuit board (replace cover).
g. Replace the switch in the instrument.

4. Bandwidth Circuit Board

a. Set the LF and HF -3 dB POINT Selectors to either extreme.
b. Loosen the setscrews securing the LF -3 dB POINT shaft to the collar on the cam switch. Pull the shaft forward until it clears the collar.
c. Loosen the setscrews securing the HF - 3 dB POINT shaft to the coliar on the cam switch. Puil the shaft forward until it clears the bandwidth board.
d. Loosen the setscrew securing the GAIN shaft to the collar on R540. Puil the shaft forward until it clears the bandwidth circuit board. Loosen the setscrew securing the collar to R540 and remove the collar.
e. Loosen the four circuit board retaining screws and lift out the Bandwidth Circuit Board.
f. Unclip the leads from solderless connectors A, AN, $A P, A O$, and D.
g. Replace by reversing the above procedure.

CAUTION

Repair of cam-type switches should be undertaken only by experienced personnel. Switch alignment and spring tension of the contacts must be carefully maintained for proper operation of the switch. For assistance in maintenance of the cam-type switches, contact your local Tektronix Field Office or representative.

S. Cam-Type Switches

NOTE

A cam-lype switch repair kit including necessary tools, instructions and replacement contacts is available from Tektronix, Inc. Order Tektronix Part No. 040-0541-00.

The com-type switch consists of o rototing com, which is rotated by o front-panel knob, and o set of contacts mounted on the adjacent circuit board. These switch contacts ore actuated by lobes on the com. The VOLTS/DIV, LF -3 dB POINT and HF -3 dB POINT com-type switches con be disassembled for inspection, cleaning, repair or replacement, as follows:

A. LF -3 dB POINT and $\mathrm{HF}-3 \mathrm{~dB}$ POINT Switches

1. Remove the Bandwidth board as described in step 4.
2. Remove the two screws which hold the metal covers in place. (The front switch on the Bandwidth board is the LF -3 dB POINT Selector and the rear switch is the HF -3 dB POINT Selector). The swifthes are now open for cleaning or inspection.
3. To completely remove either of the Iwo switches from the board, remove the four screws from the bock side of the board) which hold the com assembly to the circuit board.
4. To remove the com from the front support block, remove the retaining ring from the shaft on the front of the switch and slide the com out of the support block. Be careful not to lose the small detent roller (between detent and detent spring).
5. To replace defective switch contacts, unsolder the damaged contact and clean solder from the hole in the circuit board. Position the new contact in the hole in proper alignment relative to the other switch contacts and with the mating area on the circuit boord (alignment tool provided in switch repair kit\}. Solder the new contact into place; be sure that the spring end of the contact hos adequate clearance from the circuit board.
6. To re-install the switch osisembly, reverse the above procedure.

B. VOLTS/DIV Switch

1. Remove the Bandwidth board as described in step 4.
2. Remove the two screws which hold each of the metal switch covers in place.
3. Push the VARIABLE (CAL \mathbb{N}) to the ' \mathbb{N} ' position.
4. Loosen the set screw which secures the VARIABLE shaft to the VARIABLE control assembly.
5. Pulf the VARIABLE shaft through the front of the instrument.
6. Remove the 4 screws (from the rear side of the board) which hold the rear com assembly to the circuit board.
7. Remove the rear com assembly.

To remove the front com-switch assembly, perform the preceding steps and then proceed as follows:

3. Remove the VOLTS/DIV knob.

2. Loosen the $1 / 2$-inch hex bushing nut which secures the front support block.
3. Remove the plastic bushing from front of panel.
4. Remove the retaining ring from the shaft at the front of the switch.
5. Remove the 4 screws which secure the support blocks to the board.
6. Loosen the 2 set screws in the half of the fiexible coupling and remove coupling.
7. Remove the rear support block by carefully lifting the block owoy from the circuit board for enough to clear the alignment projection on the bottom of the block. Carefully slide the rear block toward the rear (off the shaft).
B. Slide the com shaft carefully tkeep cam lobes clear of contacts) out of the front support block and bushing assembly.
8. To re-assemble, reverse the above procedure.

6. Interconnecting Pins

Interconnecting pins ore used on the Type 7A22 to interconnect circuit boards. When interconnection is made at a circuit boord, the pin is soldered into the board. Two lypes of mating connectors ore used for these interconecting pins. If the mating conector is mounted on o plug-on circuit board, a special socket is soldered into the board. If the mating connector is on the end of a lead, an end-lead pin connector (which motes with the interconnecting pin) is used. The following information provides the replacement procedures for the types of interconnecting methods.
A. CIRCUIT-BOARD PINS

NOTE

A pin replacement kit including necessary tools, instructions and replacement pins is available from Teklronix, Inc. Order Tektronix Parl No. 040-0542-00.

To replace a pin which is mounted on o circuit board, first disconnect any pin connectors. Then unsolder the damaged pin and pull it out of the circuit boord with a pair of pliers. Be careful not to damage the wiring on the board with too much heat. Ream out the hole in the circuit board with o 0.031 -inch drill. Then remove the ferrule from the new interconnecting pin and press the new pin into the hole in
the circuit board. Position the pin in the some manner as the old pin. Then, solder the pin on both sides of the circuit board. If the old pin was bent at on angle to mote with a connector, bend the new pin to match the associated pins.

B. CIRCUIT-BOARD PIN SOCKETS

The pin sockets on the circuit boards are soldered to the rear of the board. To replace one of these sockets, first unsolder the pin (use a vacuum-type desoldering tool to remove excess solder). Then straighten the tabs on the socket and remove it from the hole in the circuit board. Place the new socket in the circuit board hole and press the tabs dowir against the board. Solder the tabs of the socket to the circuit board; be careful not to get solder into the socket.

NOTE

The spring tension of the pin sockets ensures a good connection between the circuit board and the pin. This spring tension can be destroyed by using the pin sockets as connecting points for spring-loaded probe tips, alligator clips, etc.

C. END-LEAD PIN CONNECTORS

The pin connectors used to connect the wires to the interconnecting pins are clamped to the ends of the associated leads. To replace damaged end-lead pin connectors, remove the old pin connector from the end of the lead and clamp the replacement connector to the lead.

Some of the pin connectors are grouped together and mounted in a plastic holder; the overall result is that these connectors are removed and re-installed as a multi-pin connector when it is replaced. An arrow is stomped on the circuit board and a matching arrow is molded into the plastic housing of the multi-pin connector. Be sure these arrows are aligned as the multi-pin connector is replaced. If the individuol end-lead pin connectors ore removed from the plastic holder, note the color of the individual wires for replacement.

TROUBLESHOOTING

Introduction

The following information is provided to facilitate troubleshooting of the Type 7A22. Information contained in other sections of this manual should be used along with the following information to aid in locating the defective component. An understanding of the circuit operation is very helpful in locating troubles. See the Circuit Description Section for complete information.

General

If trouble occurs in the Type 7A22, the following procedure is recommended to accomplish rapid and effective repairs.

1. Check that the plug-in unit and the oscilloscope connectors are not damaged, and that the plug-in unit is properly inserted.
2. Inspect the front panels of the Type 7A22 and indicator oscilloscope to be sure that the trouble is not from an incorrect control setting.
3. Insure that the indicator oscilloscope is not at fault by inserting a known-good plug-in unit and checking its operation.
4. Determine all trouble symptoms.
5. Perform a visual inspection of the Type 7A22.
6. Repair or replace obviously defective parts.
7. Troubleshoot the Type 7A22 as necessary.
8. Recalibrate the Type 7A22.

Indicator Oscilloscope

The quickest check of the oscilloscope is to use it with a good plug-in unit, or check the questionable plug-in with onot':er oscilloscope. Refer to the oscilloscope manual to verify proper operation of the oscilloscope.

Operating Procedures and Control Settings

Refer to the Operating Instructions Section of this manual to verify operating procedures and front panel control settings of the Type 7A22.

Trouble Symptoms

The Type 7A22 response to all front panel controls should be observed. The first-time operation in Section 2 or the Performance Check in Section 5 may be used for this purpose. All trouble symptoms should be evaluated and compared against each other. A casualty will often create a combination of symptoms that, when considered together, will pinpoint the trouble.

Visual Inspection

In physically examining the Type 7A22, take special note of the area indicated by evaluation of symptoms. Look for loose or broken connections, improperly seated transistors and burned or otherwise damaged parts. Repair or replace all obviously defective components.

Calibration Check

Troubles con frequently be located and corrected by recalibrating the instrument. Unless the casualty has definitely been isolated to a specific circuit, it is recommended that the calibration procedure contained in Section 5 be performed to provide a logical circuit troubleshooting sequence.

DETAILED TROUBLESHOOTING

General

If the casualty has not been disclosed and corrected through the procedure outlined, o detailed troubleshooting
analysis will have to be performed. The Circuit Description Section, the Schematic Diagrams, and the troubleshooting aids contained in this section are designed to expedite troubleshooting.

The Circuit Description Section provides a fundamental understanding of circuit operation and is referred to the Schematic Diagrams. The Schematic Diagrams contain voltage and resistance values and signal waveforms. The specified operating conditions should be duplicated before making voltage or waveform comparisons.

NOTE

Voltages and waveforms may vary slightly between instruments. Those given in the schematics should be checked against each instrument while it is operating properly. Deviations should be noted on the schematics for later reference.

Test Equipment Recommended for Troubleshooting

The test equipment listed here should suffice for most troubleshooting jobs. Test equipment required for calibration is listed in the Calibration Section.

High Impedance Voltmeter ($20,000 \Omega / \mathrm{V}$ DC or greater) Ohmmeter $(2 \mathrm{~mA}$ or less current on the $\times 1 \mathrm{k} \Omega$ scale) Test Oscilloscope and Probes
Flexible Plug-in Extension Coble
Dynamic Transistor Tester

DC Balance Check

A properly operating oscilloscope will hove its trace centered vertically on the CRT only when the Type 7A22 has a balanced output. The Type 7A22 is a balanced amplifier connected in a differential configuration, with the +INPUT circuit being electrically identical to the -INPUT circuit. With no signal or comparison voltage applied to the FET gates, any point in the +INPUT circuit should hove a potentiol equal to on identical point in the -INPUT circuit.

If the CRT trace is deflected os o result of o Type 7A22 problem, unbalances will exist between the two circuits. The unbalance con be detected by connecting a high impedance voltmeter between identical points in the two circuits.

An aid to this process is to short together the inputs of the stage being checked os shown in this example.

Stage	Devices	Short Together
Signal Output	Q444, Q544	Q444, Q544 bases
Trigger Output	Q454, Q554	Q454, Q554 bases
Variable Stage	Q434, Q534	Q434, Q534 bases
Goin Switching Amplifier	Q404A, Q404B, Q414A, Q414B, Q424, Q524	Front ends of R401 and R501
Input Amplifier		AC.GND.DC switches to GND

If the output balance is checked first and is in error, work toward the front until on unbalance no longer exists. This localizes the trouble to the circuitry between the points which

Fig. 4-2. Transistor junclion-vollage measurements.
ore balanced and the points which ore unbalanced. The individual components must then be checked.

Troubleshooting by Direct Replacement

Semi-conductor failures account for the majority of electronic equipment troubles. The ease of replacing transistors often makes substitution the most practical means of repair. If this method is used, these guide lines should be followed:

Determine that the circuit is safe for the substitute component.
Use only substitute components that ore known to be good.
Remove the plug-in from the oscilloscope before substituting components, to protect both you and the equipment.
Be sure components ore inserted properly.
Check operation ofter each component is replaced.
Return good components to their original sockets.
Check calibration ofter a bod component hos been replaced (see Toble 4-1).

Component Checks

Transistors

The best means of checking o transistor is by using a transistor curve display instrument such as the Tektronix Type 576. If a transistor checker is not readily available, - defective transistor con be located by signal tracing, by making in-circuit voltage checks, by measuring the transistor resistances or by the substitution method previously described.
When troubleshooting using a voltmeter, measure the emitter-to-base and emitter-to-collector voltages to determine whether the voltages ore consisent with normal circuit voltages. Voltages across o transistor vary with the device and its circuit function. Some of these voltages ore predictable. The base-emitter voltage of o conducting germanium transistor will normally be approximately 0.2 V and that of a silicon transistor will normally be approximately 0.6 V . The col-
lector-emitter voltage will vary with the circuit and circuit conditions but it should always exceed 0.5 V . The best way of checking these devices is by connecting a voltmeter across the junction, using a sensitive voltmeter setting (see Fig. 4-2).

An ohmmeter con be used to check o transistor if the ohmmeter's voltage source and current ore kept within safe limits. 1.5 V and 2 mA ore generally acceptable. Selecting the $X 1$ $k \Omega$ scale on most ohmmeters will provide voltage and current below these values.

Toble 4-2 contains the normal values of resistance to expect when making on ohmmeter check of on otherwise unconnected transistor.

Fig. 4-3 shows the transistor base and socket arrangements used in this instrument.

TABLE 4-2
Transistor Resistance Checks

Ohmmeter' Connections	Resistance Reading That Can be Expected Using the $R \times 1 \mathrm{k}$ Range
Emitter-Collector	High readings both ways
Emitter-Bose	High reading one way, low read- ing the other way
Base-Collector	High reading one way, low read- ing the other way

${ }^{1}$ Test prods from the ohmmeter are first connected to the transistor leads and then the lest lead connections are reversed. Thus, the effects of the polarity reversal of the voltage applied from the ohmmeter to the transistor con be observed

Fig. 1.3. Transistor base pin and socket arrangement.

Flg. 4.4. Diode polarity and color code.

Diodes

A diode can be checked for an open or for a short circuit by measuring the resistance between terminals with an ohmmeter set to the $R \times 1 \mathrm{k}$ scale. The diode resistance should be very high in one direction and very low when the meter leads are reversed. Do not check tunnel diodes or back diodes with an ohmmeter.

Some diodes used in the Type 7A22 ore color coded to identify the diode type. The cathode end of each glossencosed diode is indicated by a stripe, a series of stripes or a dot. For mast diades with a series of stripes, the first stripe (either pink or blue) indicates a Tektronix port and the next three stripes indicate the three significant figures of the Tektronix Part Number. Example: a diode color coded blue-brown-gray-green indicates a diode with Tektronix Port No. 152-0185.00. The cathode and anode of a metal-encased diode con be identified by the diode symbol marked on the body. See Fig. 4.4, DIODE POLARITY AND COLOR CODES.

Resistors

The types and accuracies of resistors found in this instrument vary in accordance with the circuit needs. Replacement resistors should be of the some type and must be at least os accurate os those originally contained in the circuit, to maintain the high common-mode rejection ratio. The size, location ond lead length ore often critical because of frequency considerations.

Fig. 4.5. Color code for eslstors and ceramic copacitors.

Compasition, wire-wound and metal film resistors ore used in this unit. The stable metal film resistors may be identified by their light blue or gray body color. If o metal film resistor hos a value indicated by three significant figures and a multiplier, it will be color coded according to the EIA standard resistor color code. If it hos a value of more than three significant figures and o multiplier, the value will be printed on the body of the resistor. For example, a $333 \mathrm{k} \Omega$ resistor will be color coded but a $333.5 \mathrm{k} \Omega$ resistor will hove its value printed on the resistor body. The color code sequence is shown in Fig. 4-5.

Capacitors

A leaky or shorted capacitor con be detected by checking resistance with on ohmmeter using the highest scale that does not exceed the voltage rating of the capacitor. The resistance reading should be high ofter the initial charge of the capacitor. An open capacitor con be detected with a capacitance meter or by checking whether the capacitor passes AC signals.

The copocitonce values of common disc capacitors and small electrolytics ore marked in microforods on the side of the component body. The white ceramic capacitors used in the Type 7A22 ore color coded in picofarads using o modified EIA code (see Fig. 4-5).

Repackaging for Shipment

If the Tektronix instrument is to be shipped to a Tektronix Service Center for service or repais, attach a tag showing: owner (with address) and the name of an individual at your firm that can be contacted, complete instrument serial number and a description of the service required.

Save and re-use the package in which your instrument was shipped. If the original packaging is unfit for use or not available, repackage the instrument as follows:

Surround the instrument with polyethylene sheeting to protect the finish of the instrument. Obtain a carton of corrugated cardboard of the correct carton strength and having inside dimensions of no less than six inches more than the instrument dimensions. Cushion the instrument by tightly packing three inches of dunnage or urethane foam between carton and instrument, on all sides. Seal carton with shipping tape or industrial stapler.

The carton test strength for your instrument is 200 pounds.

SECTION 5
 PERFORMANCE CHECK/ CALIBRATION PROCEDURE

Change information, if any, affecting this section will befound at the rear of the manual.

Introduction

Complete information for performing a Performance Check or Calibration of the 7A22 is contained in this section of the manual. The Equipment Required list is needed both for a Performance Check and for calibrating the 7A22. All waveform photographs, equipment setup pictures, and control settings apply whether the instrument is being calibrated or checked for performance.

To conduct a Performance Check, complete all parts of each step in the following procedure, except the part subtitied ADJUST. To check the performance of the 7A22, it is not necessary to remove the oscilloscope side panel or make any internal adjustments. Adjustments located on the front panel of the 7A22 can be performed when checking the performance of the instrument. If the instrument does not meet the performance requirements given in this procedure, the complete procedure including adjustments should be performed. All performance requirements given in this section correspond to the Specifications given in Section 1.

Calibration ofthe7A22 requires completion of all partsofeach step in the following procedure. Completion of every step in this procedure returns the 7A22 to its original performance standards. To assure accurate meassurements and correct operation. the calibration of the 7A22 should be checked after each 1000 hours of operation; or every six months if used infrequentiy. Before performing a complete calibration. thoroughly clean and inspect this instrument as outlined in the Maintenance section.

TEST EQUIPMENT REQUIRED

General

The following test equipment and accessories (or their equivalent) are required for a complete performance check or calibration of the 7A22. Specifications given are the minimum necessary for accurate performance of this instrument. All tes equipment is assumed to be correctly calibrated and operating within the given specifications. If equipment is substituted, it must meet or exceed the specifications of the recommended equipment.

For the quickest and most accurate calibration or performance check, special Tektronix calibration fixtures are used where necessary. These special calibration fixtures are available through your local Tektronix Field Office or representative.

1. 7000-series oscilloscope, referred to as "oscilloscope" in this procedure, having a probe-power output connector. Tektronix 7704A or 7904 with a 7B50A Time Base can be used for this procedure.
2. Sine-Wave Generator. Output frequency range of 10 Hz through 1.0 MHz ; output amplitude rangefrom 2 V to 20 V peak to peak. Tektronix FG 501 or FG 503 Function Generator recommended. ${ }^{\text {. }}$
3. Standard Amplitude Calibrator. Amplitude accuracy, within 0.25% : signal amplitude, 0.5 mV to 100 V ; output signals, 1 kHz square wave and fast-rise, high amplitude signal of 100 ns or less. Tektronix PG 506 Calibration Generator recommended. ${ }^{3}$
4. DC Power Supply. Adjustable DC output to 1 V. Tektronix PS 501-1 Power Supply recommended."
5. Reed Pulse Generator. Tektronix Calibration Fixture 067-0608-00 is recommended.
6. Coaxial Cable. Impedance, 50 ohms; length 42 inches; connectors, BNC. Two required. Tektronix Part Number 012-0057-01.
7. Dual Input BNC connector. Provides matched signal paths to both 7A22 input connectors. Tektronix Part Number 067-052501.
8. Variable Attenuator. A variable attenuator which has the end terminals of a 100 ohm potentiometer connected from input to ground and the potentiometer divider arm connected to the attenuator output. Tektronix Calibration Fixture 067-0511-00 is recommended.
9. 1000:1 Divider. Tektronix Part Number 067-0529-00 is recommended.
10. Precision Voltage Divider. Provides an output of $0.4 \times$ the PG 506 standard amplitude output. Tektronix Part Number 0150265.00 is recommended.
11. Input RC Normalizer. RC time constant, i megohm x 47 pF; connectors, BNC. Tektronix Part Number 067-0541-00 is recommended.
12. Attenuator. Impédance, 50Ω : ratio, 10:1; connectors, BNC. Two each, Tektronix Part Number 011-0059-02.
13. Plug-in extender. Tektronix Calibration Fixture067-0589. 00.
14. Termination. Impedance. 50Ω. Tektronix Part Number 011-0049-01.
15. BNC Tee Connector. Tektronix Part Number 103-003000.
16. Adapter, GR to BNC Female. Tektronix Patt Number017-0063-00.
17. Adapter. GR to BNC Male. Tektronix Part Number 017-0064-00.
18. Banana plug-jack to banana plug-jack patch cord. Tektronix Part Number 012-0031-00 (red) or 012-0034-00 (black). Three needed.
'Requires a TM 500-serfes power module.

Perlormance Check/Callbratlon-7A22

19. Female to dual banana adapter, BNC. Tektronix Part: Number 103-0090-00.

SHORT-FORM PERFORMANCE CHECK/CALIBRATION PROCEDURE

This short-form procedure is provided to aid in checking the performance or calibration of the 7A22. It may be used as a guide by the experienced operator or calibrator, or it may be reproduced and used as a permanent record of calibration. Since the step numbers and titles used here correspond to those used In the complete procedure, this procedure also serves as an indexto locate a step in the complete procedure. Performance requirements listed here correspond to those given in Section 1.

7A22. Serial No
Calibration Date
Calibrated By

1. Check or Adjust AC Atten Bal (R505)

Trace within 1.5 div of graticule center as VOLTS/ DIV switch is changed from 10 mV to $20 \mu \mathrm{~V}$.
2. Check or Adjust Variable Bal (R425)

Maximum trace shift ± 0.2 div as the VARIABLE (VOLTSIDIV) is rotated stop-to-stop.3. Check or Adjust Coarse DC Bal (R275)

Trace within 0.1 div of graticule center as LF -3 dB POINT selector is changed from 10 kHz to DC.

4. Check or Adjust + INPUT Zero (R115) Maximum trace shift : t 2divasthe + INPUTAC-GND-DC switch is switched from GND to AC.

5. Check or Adjust - INPUT Zero (R215) Maximum trace shift ± 2 div as the-INPUTAC-GND-DC switch is switched from GND to AC.

6. Check or Adjust GAIN (R540)

Correct vertical deflection in the $1 \mathbf{m V}$ position of the VOLTSIDIV switch (front panel adjustment).

7. Check VARIABLE (VOLTSIDIV) control Ratio Display amplitude decreases by a ratio of 2.5:1 when the VARIABLE control (set to the out position) is rotated fully counterclockwise.
8. Check VOLTS/DIV Gain Switching Correct vertical deflection from $10 \mu \mathrm{~V}$ through 10 mV .

9. Check Isolation Between + and INPUTS Trace deflection of 0.5 div or less.10. Check Total DC OFFSET Range Check for minimum offset range of + and -1 volt.
11. Check or Adjust C241-Cross Neutralization With signal connected to +INPUT, switch the -INPUT AC-GND-DC from GND to DC; aberration should not exceed $\pm 1 \%$.
\square 12. Check or Adjust C141-Cross Neutralization With signal connected to - INPUT, switch the +INPUT AC-GND-DC from GND to DC; aberration should not exceed $\pm 1 \%$.
13. Check or Adjust C115--X1 + INPUT Attenuator Time Constant Optimum square wave response.

14. Check or Adjust C215-X1 -INPUT Attenuator Time Constant Optimum square wave response.

15. Check Input Attenuator Accuracy

Correct vertical deflection from 10 mV through 10 V .16. Check or Adjust Attenuator Differential Balance (R108E, R109E, R110E)
Optimum differential balance.
17. Check or Adjust +Input Attenuator Compensation (C108C, C109C. C110C. C108A, C109A, C110A) Op. timum square wave response.
18. Check or Adjust -Input Attenuator Series Compensation to match-- input (C208C. C209C, C210C) Best common-mode signal rejection (minimum spike amplitude).
19. Check or Adjust - Input Attenuator Shunt Compensa* tion (C208A, C209A, C210A)
Optimum flat bottom display.
20. Check or Adjust HF 3 dB POINT (C425) HIGH FREQ - 3 dB POINT bandwidth limit.
21. Check LF-3dB POINT

LOW FREQ - 3 dB POINT bandwidth limit.
22. Check or Adjust CMRR (C330)

CMRR must be equal to or better than the specified requirements at the verification points shown in Section 1. Fig. 1-2 of the manual.
23. Check OVERDRIVE Indicator Indicator turns on at approximately 1 volt.
24. Check Differential Signal Range

No change in sine-wave amplitude when + or -1 volt DC is applied.
25. Check Overall Noise Leve! Tangentially

Less than $16 \mu \mathrm{~V}$ of displayed noise, measured tangentaily.
 26. Check Overdrive Recovery 10 rs or less to recover to within 0.5% of zero level.

PERFORMANCE CHECKICALIBRATION PROCEDURE

General

The following procedure is arranged in a sequence which allows the 7A22 to be calibrated with the least interaction of adjustments and reconnection of equipment. The steps in which adjustments are made are identified by the symbol following the titie. Instrument performance is checked in the "CHECK" part of the step before an adjustment is made. The"ADJUST" part of the step identifies the point at which the actual adjustment is made. Steps tisted in the "INTERACTION" part of the step may be affected by the adjustment just performed. This is particularly helpful when only a partial calibration procedure is performed.

NOTE

To prevent secalibsation of other parts of the instrument when performing a partial calibration, readjust only it the tolerances given in the "CHECK" past of the step are not met. However, when performing a complete calibration, best overall performance is obrained if each adjustment is made to the exact setting even if the "Check" is within the allowable tolerance.

In the following procedure, a test-equipment setup picture is shown for each major group of checks and adjustments. Each step continues from the equipment setup preceding the desired portion. External controls or adjustments of the 7A22 referred to in this procedure are capitalized (e.g.. POSITION). Internal adjustment names are initial capitatized only (e.g.. Variable Bal).

All waveforms shown in this procedure are actual waveform photographs taken with a Tektronix Oscilloscope Camera System. The following procedure uses the equipment listed under Test Equipment Required. If equipment is substituted, control settings or test equipment setup may need to be altered to meet the requirements of the equipment used. Detailed operating instructions for the test equipment are not given in this procedure. If in doubt asto the correct operation of any of the test equipment. refer to the instruction manual for that unit.

It is assumed that performance is checked within a temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ andcalibration $+25^{\circ} \mathrm{C}$, $\pm 5^{\circ} \mathrm{C}$; the tolerances given in this procedure are for this temperature sange. However, it the proceduse is performed at some other temperature, check the applicable tolerances for that temperature range.

Preliminary Procedure

1. If the 7A22 is to be calibrated, insert the plug-in extender intothe oscilloscope and plug the 7A22intothe plug-in extender. If this procedure is a Performance Check only, insert the 7A22 into the oscilloscope plug-in compartment.
2. Connect the oscilloscope power cord to the design center operating voltage for which the oscilloscope is wired.
3. Turn on the oscilloscope POWER switch. Allow at least 20 minutes warmup before checking the instrument to the given accuracy.
4. Preset the 7A22 front panel controls as follows:

VOLTSIDIV	10 mV
VARIABLE	CAL IN
POSITION	Midrange
HIGH FREQ -3 dB POINT	100 Hz
LOW FREO 3 dB POINT	10 kHz
AC-GND-DC (+INPUT)	GND
AC-GND-DC (-INPUT)	GND
STEP ATTEN DC BAL	Midrange
DC OFFSET COARSE	5turnsfromeither extreme
DC OFFSET FINE	Midrange

5. Preset the Time Basefront panel controlsto these settings:

Time/Div	.5 ms
Variable	In \{Calibrated)
Triggering	Auto, AC, int

6. Set the oscilloscope focus and Intensity for best viewing.

NOTE

Calibration of the 7A22 must be performed with the side covers in place. All internal adjustments can be made using the access holes provided in the side covers.

Performance Check/Callbration-7A22

1. Check or Adjust AC Step Atten Bal

a. Center the trace on the crt with the POSITION control,
b. Rotate the VOLTS/DIV switch from 10 mV to the $20 \mu \mathrm{~V}$ position.
c. CHECK - The trace shoutd remain within $\mathbf{1 . 5}$ div of graticule center.
d. ADJUST-AC Step Atten Bal control, R505, (see Fig, 5-1) to position the trace within 1.5 div of graticule center.

2. Check or Adjust Variable Bal

a. Set the 7A22 VOLTS/DIV switch to 10 mV .
b. Position the trace to graticute center with the POSITION control.
c. Rotate the VARIABLE VOLTS/DIV (in the out position) from stop to stop.
d. CHECK - For maximum trace shift not to exceed ± 0.2 div white rotating the VARIABLE control throughout its range.
e. ADJUST-Variable Bal control, R425, (see Fig. 5-1) for no trace shift while rotating the VARIABLE control.

3. Check or Adjust Coarse DC Bal

a. Sel the VARIABLE VOLTSIDIV to the CAL IN position.
b. Position the LOW FREO -3 dB POINT switch to the DC position.
c. CHECK - The trace should be within 0.1 div of graticule center.
d. ADJUST-Coarse DC Bal, R275, (see fig. 5-1) to position the trace lo graticule center.
e. Set the VOLTS/DIV switch to $50 \mu \mathrm{~V}$.
f. CHECK - The trace should be on screen.
g. ADJUST-It the trace is not on screen, start at the position of the VOLTS/DIV switch where an on screen display is obtained and readjust the Coarse DC Bal, working down to the $50 \mu \mathrm{~V}$ position so the end result is an on-screen trace at $50 \mu \mathrm{~V}$.

7 A22 Controls

VOLTSIDIV	$10 \mu \mathrm{~N}$
VARIABLE	CAL. IN
POSITION	Midrange
HIGH FREO -3 dB	100 Hz

POINT

Fig. 5-1. Left side of the 7A22 showing adjustment locallons.

LOW FREQ -3 dB POINT	DC
AC-GND-DC (tINPUT)	GND
AC-GND-DC (-INPUT)	GND
STEP ATTEN DC BAL	Adjust for prop ance (see Oper tion).
Time Base Controls	.5 ms
Time/Div	
Variable (Time/Div)	Cal
Triggering	Auto, AC, Int

4. Check or Adjust + Gate Current Zero

a. Connect a 50Ω termination to the IINPUT connector.
b. Using the POSITION control. position the trace to graticule center.
c. Set the HINPUT AC-GND-DC switch to AC.
d. CHECK-For maximum trace shift within ± 2 div.
e. ADJUST-The + Gate Current Zero control, R115, (see Fig. 5-1), to position the trace to graticule center.
f. CHECK-(only if adjustment has been made). Switch the d-INPUT AC-GND-DC switch to GND and back to AC. There should be no movement of the trace.
g. Set the +INPUT AC-GND-DC switch to GND.

5. Check or Adjust -Gate Current Zero

a. Remove the 50Ω lermination from the + INPUT and connect it to the -INPUT connector.
b. Position the trace to graticule center with the POSITION control.
c. Sel the -INPUT AC-GND-DC switch to AC.
d. CHECK-For maximum trace shift within $\mathbf{1} 2 \mathbf{d i v}$.
e. ADJUST-The-Gate Current Zero control, R215, (see Fig. 5-1), to return the trace to graticule center.

1. CHECK-(only if adjustment has been made). Return the -INPUT AC-GND-DC switch to GND and back to AC. There should be no trace shift.
g. Disconnect the 50Ω termination.
h. Set the -INPUT AC-GND-DC switch to GND.

7A22 Controls

VOLTSIDIV	1 mV
VARIABLE	CAL IN
POSITION	Midrange
HIGH FREQ -3 dB	1 MHz
POINT	
LOW FREQ -3 dB	DC

AC-GND-DC (+INPUT)
AC-GND-DC (INPUT)
STEP ATTEN DC BAL

DC
GND
Adjust for proper DC balance.

6. Check or Adjust GAIN

a. Connect a 5 mV peak-to-peak square wave signal from a standard amplitude calibrator through a 1000:1 divider and a coaxial cable to the +INPUT connector.
b. Set the $1000: 1$ divider to $\times 1$.
c. Align the display with the graticule lines using the POSITION control.
d. CHECK - the display for a vertical amplitude of exactly 5 div.
e. ADJUST-The GAIN control liront panel adjustment R540) for exactly 5 div of display amplitude.

7. Check VARIABLE Control Ratio

a. With the VARIABLE in the OUT position, rotate the control fully counterclockwise.
b. CHECK - The display amplitude shouid be 2 div or less to meet the 2.5:1 ratio requirement.

8. Check VOLTS/DIV Gain Swltching

a. Set the HIGH FREQ -3 dB POINT switch to 3 kHz .
b. Set the LOW FREQ -3 dB POINT switch to 1 Hz .
c. Set the standard amplitude calibrator output to 10 mV .
d. Using the VARIABLE VOLTSIDIV control, adjust the display amplitude to exactly 5 div.
e. Set the Time Base Triggering Source to Line.
f. Position the Time/Div switch to $.1 \mu \mathrm{~s}$.
g. Switch the 1000:1 divider to $\times 1000$.
h. CHECK—The vertical deflection factorfrom $10 \mu \mathrm{~V}$ through $50 \mu \mathrm{~V}$. Table $5 \cdot 1$ is provided as a guide.

TABLE 5-1

	Standard Amplitude Callbrator VOLTSIDIV Switch Position	Ousput Ampllisude	Divisions of Deflection
$10 \mu \mathrm{~V}$.1 V	5	Accuracy
$20 \mu \mathrm{~V}$.2 V	5	$\pm 2 \%$
$50 \mu \mathrm{~V}$.5 V	5	$\pm 2 \%$

i. Return the VARIABLE to the CAL $\mathbb{I N}$ position.
j. Switch the $1000: 1$ divider to the $\times 1$ position.
k. CHECK - The vertical deflection factor from. 1 mVthrough 10 mV using Table 5-2 as a guide.

TABLE 5-2

VOLTS/DIV Swltch Postiton	Standard Amplitude Calibrator Output Amptitude	Divisions of Deflection	Accuracy
. 1 mV	. 5 mV	5	t:2\%
. 2 mV	1 mV	5	$\pm 2 \%$
.5 mV	2 mV	4	$\pm 2 \%$
1 mV	5 mV	5	$\pm 2 \%$
2 mV	10 mV	5	- 2%
5 mV	20 mV	4	$\pm 2 \%$
10 mV	50 mV	5	$\pm 2 \%$

I. Remove the 1000:1 divider from the Standard Amplitude Calibrator signal setup.

7 A22Controls

VOLTSIDIV	1 mV
VARIABLE	CAL IN
POSITION	Midrange
HIGH FREQ -3 dB	1 MHz
\quad POINT	
LOW FREQ-3dB	DC OFFSET
POINT	
AC-GND-DC $(+$ INPUT $)$	DC
AC-GND-DC $(-$ INPUT $)$	GND
STEP ATTEN DC BAL	Adjusted for dc balance

Time Base Controis

Time/Div	1 ms
Variable	Calibrated
Siope	+
Coupling	AC
Source	Int
Mode	Auto

9. Check Isolation Beiween + and -Inputs

a. Set the Standard Amplitude Calibrator for a .1 V square wave.
b. Adjust the DC OFFSET COARSE and FINE controls to position the top of the square wave to the graticule center line.
c. Switch the - AC-GND-DC switch to DC.
d. CHECK-Trace deflection must be 0.5 division or tess.
e. Repeat the above procedure for the-INPUT, checking for trace deflection when switching the +AC-GND-DC switch to DC.
f. Disconnect the Standard Amplitude Calibrator.

10. Check Total DC OFFSET Range

a. Set the 7A22 controls as follows:

VOLTS/DIV	10 mV
AC-GND-DC (+INPUT)	DC
AC-GND-DC (-INPUT)	GND

b. Set the DC Power Supply for an output of 1 voit dc.
c. Connect a female to dual banana adapter and a coaxial cable from the DC Power Supply output to the 7A22 +INPUT connector.
d. Turn the COARSE and FINE OFFSET controls fully counterclockwise.
e. CHECK-The trace can be returned to graticule center. ($\ddagger \vee$ minimum dc offset).
f. Set the +INPUT AC-GND-DC switch to GND.
g. Rotate the FINE and COARSE OFFSET controls clockwise to return the trace to graticule center \{approximateły 5 turns of the COARSE OFFSET control).
h. Disconnect the DC Power Supply.

note

The $\times 10, \times 100, \times 1000$ input attenuators will be checked in step 15. Consequently, the remainder of the OC OFFSET ranges stated in Section 1 will be verified by that step.

7422 Controls

VOLTSIDIV	10 mV
VARIABLE	CAL IN
POSITION	Midrange
HIGH FREQ -3 dB	1 MHz
POINT	
LOW FREQ 3 dB	DC
POINT	
AC-GND-DC (+INPUT)	DC
AC-GND-DC $(-$ INPUT $)$	GND
STEP ATTEN DC BAL	Adjustedforproper balance

Time Base Controls

Time/Div	.5 ms
Variable	In
Triggering	Norm, I Slope. AC, Int

Fig. 5-3. Typical waveform showing (A) Correct adjusiment of Input Attenuator Tlme Constant. (B) and (C) Incorrect adjusiment.
f. INTERACTION-If C215 is adjusted out of sequence, steps 13 and 16 through 19 must also be performed.
g. Disconnect the signal and the RC Normalizer.

15. Check Input Attenuator Accuracy

a. Connect a 50 mV peak-to-peak square-wave signal of standardized amplitude from the Standard Amplitude Calibrator through a coaxial cable to the +INPUT.
b. Set the $1-I N P U T$ AC-GND-DC switch to DC.
c. CHECK-The input attenuators using Table5-3 as a guide.

TABLE 5-3

VOLTS/DIV Switch Position	CAL\{BRATOR Output Peak to Peak	VERTICAL DEFLECT\{ON (Accuracy $\pm 2 \%$)
10 mV	50 mV	$5 \operatorname{div} \pm .1 \mathrm{div}$
20 mV	.1 V	$5 \operatorname{div} \pm .1 \mathrm{div}$
50 mV	.2 V	$4 \operatorname{div} \pm .08 \mathrm{div}$
.1 V	.5 V	$5 \operatorname{div} \pm .1 \mathrm{div}$
2 V	1 V	$5 \operatorname{div} \pm .1 \mathrm{div}$
.5 V	2 V	$4 \operatorname{div} \pm .08 \operatorname{div}$
1 V	5 V	$5 \operatorname{div} \pm .1 \operatorname{div}$
2 V	10 V	$5 \operatorname{div} \pm .1 \mathrm{div}$
5 V	20 V	$4 \operatorname{div} \pm .08 \operatorname{div}$
10 V	50 V	$5 \operatorname{div} \pm .1 \mathrm{div}$

d. Disconnect the signal from the 7A22.

NOTE
(Applies to calibration only)
If there is a spike or fast roffolf of the feading corner of the square wave when checking from 20 mV to 10 V . ignore these. as they will be corrected in step 17.

16. Check or Adjust Input Attenuator Differential Balance

a. Connect a tee connector to the Output connector of the Standard Amplitude Calibrator and a dual connector to the + INPUT and -INPUT connectors of the 7A22.
b. Connect a coaxial cablefrom the tee connector to the dual input connector. Connect a coaxial cable from the connector to the Ext In connector on the oscilloscope.
c. Set the 7A22 controls as follows:

VOLTS/DIV	50 mV
AC-GND-DC $(+$ INPUT $)$	$D C$
AC-GND-DC $(-I N P U T)$	$D C$

d. Set the oscilloscope Triggering Source switch to Ext.
e. Set the Standard Amplitude Calibrator output to 50 V .
f. CHECK—For optimum difterential balance according to the information given in Table 5-4. When properly adjusted, the waveform should appear as shown in Fig. 5-4. Disregard any spikes on the waveform.
g. ADJUST-R108E, R109E and R110E (see Fig. 5-1) for minimum amplitude as shown in Fig. 5-4, using Table 5-4 as a guide.

11. Check or Adjust C241 + Cross Neutralization

a. Set the Standard Amplitude Calibrator for a 50 mV squarewave output and connect to the 7A22 +iNPUT connector.

note

The 7A22 POSITION control and the Time Base horizontal positioning control may not always be mentioned. Use these controls as necessary to position the display for easy viewing.
b. Check-The upper leading corner of the waveform. and note any aberration that occurs while switching the-INPUT AC-GND-DC switch from GND to DC. The waveform should appear similar to the one in Fig. 5-2. The aberration should not exceed :1\%.
c. Set the -INPUT AC-GND-DC switch to DC.
d. ADJUST-C241 (see Fig. 5-1) for best square upper leading corner.
e. INTERACTION-C241 affects the $\times 1$ input capacitance and all other input attenuator adjustments. If C241 is adjustedout of sequence, steps 13,14 and 16 through 18 must also be performed.

12. Check or Adjust C141 - Cross Neutralization

a. Disconnect the signal from the +INPUY connector and connect it to the -INPUT connector.
b. Set the +INPUT AC-GND-DC switch to GND.
c. CHECK- The lower leading corner of the second cycle of the display and note any aberration that occurs while switching the IINPUT AC-GND=DC switch from GND to DC. The bottom leading corner of the waveform should appear similar to the one shown in Fig. 5-2. The aberration should not exceed $\pm 1 \%$.
d. Set the +INPUT AC-GND-DC switch to DC.
e. ADJUST-C141 (see Fig. 5-1) for best square corner.
f. INTERACTION-C141 affects the $\times 1$ input capacitance and all other input attenuator adjustments. If C141 is adjusted out of sequence, steps 13, 14, and 16 through 18 must be performed.
g. Disconnect the coaxial cable from the -INPUT.

13. Check or Adjust C115- $\times 1$ +INPUT Attenuator Time Constant

NOTE

It is important that C141 and C241 be properly adjusted before performing this adjustment. If you have not performed steps 11 and 12. do so at this point.
a. Connect a 47 pF input RC Normalizer to the +INPUT.
b. Connect a coaxial cable from the Standard Amplitude Calibrator to the RC Normalizer.
c. Set the -INPUT AC-GND-DC switch to GND.
d. Set the +INPUT AC-GND-DC switch to DC.
e. Set the Standard Amplitude Calibrator output for high amplitude operation with an output of 0.1 V .

Fig. 5-2. Typical waveform showing (A) Cross neutralization properly adjusted, (B) Incorrectly adjusted.
f. CHECK - The square wave display for flat tops (see Fig. 5-3).
g. ADJUST-CI 15 (see Fig, 5-1) to obtain best square wave response.
h. INTERACTION-If C115 is adjusted out of sequence, steps 14 and 16 through 19 must also be performed.

14. Check or Adjust C215-X1 - INPUT Attenuator Time Constant

a. Disconnect the RC Normalizer from the +INPUT and connect it to the -INPUT.
b. Set the fINPUT AC-GND-DC switch to GND.
c. Set the - INPUT AC-GND-DC switch to DC,
d. CHECK-Each square wave for a flat bottom, using Fig. 5-3 as a guide.
e. ADJUST-C215 (see Fig. 5-1) for best flat bottom squarewave display, as in Fig. 5-3A.

Fig. 5-9. Typlcal display obtained when Input Attenuators are adjusted for optimum differential balance.

TABLE 5-4

vOLTS/DIV Switch Position	Callbrator Output (Peak to Peak)	Check and Adfusi for Null	Input Attenuator
50 mV	50 V	Check/Adjust R108E	
20 mV	50 V	Check	$\times 10$
.1 V	50 V	Check	
.5 V	100 V	Check/Adjust R109E	
.2 V	100 V	Check	$\times 100$
1 V	100 V	Check	
5 V	100 V	Check/Adjust R110E	
2 V	100 V	Check	
10 V	100 V	Check	

h. Set the Standard Amplitude Calibrator for 0.2 V peak-topeak output
i. Disconnect the dual input connector from the 7A22.

Set the 7A22 Controls:

VOLTSIDIV	50 mV
VARIABLE	CALIN
HIGH fREQ 3 dB POINT	1 MHz
LOW FREQ - 3 dB POINT	DC
AC-GND-DC (+ INPUT)	DC
AC-GND-DC (-INPUT)	GND
STEP ATTEN DC BAL	Adjusted for proper dc balance

Set the Time Base Controls:

Time/Div	.5 ms
Variable	In (Cal)
Triggering	Auto, AC, Int

17. Check or Adjust +Input Attenuator Compensation

a. Connect 0.2 V of high amplitude signal from the Standard Amplitude Calibrator through a coaxial cable to the fINPUT of the 7A22.
b. CHECK - The I INPUT Attenuator compensation for good square wave response.
c. ADJUST-The +INPUT Attenuator compensation for best square wave response using Table 5-5 as a guide. Figure 5-1 shows the locations of the adjustments.

TABLE 5-5

CALIBRATOR Output P.p	VOLTS/DIV Switch Position	Check/Adjus! for Optimum		tinput Aftenuator
		Upper Leading Corner	Flas Top	
. 2 V	50 mV	C108C		
. 1 V	20 mV	Check		$\times 10$
. 5 V	. 1 V	Check		
2 V	. 5 V	C109C		
1 V	. 2 V	Check		$\times 100$
5 V	1 V	Check		
20 V	5 V	C110C		
10 V	2 V	Check		$\times 1000$
50 V	10 V	Check		

Connect the 47 pF input RC normalizer between the $\downarrow \cdot I N P U T$ and the coaxial cable.

50 V	5 V		C110A	$\times 1000$
20 V	2 V		Check	
100 V	10 V		Check	
5 V	.5 V		C109A	
2 V	.2 V		Check	$\times 100$
10 V	1 V		Check	
.5 V	50 mV		C108A	
.2 V	20 mV		Check	$\times 10$
1 V	.1 V		Check	

d. INTERACTION - If this step is performed out of sequence, steps 18 and 19 must be periormed.
e. Disconnect the RC normalizer and coaxial cable from the 7A22 and the Standard Amplitude Calibrator.

18. Check or Adjust - Input Attenuator Serles Compensation

a. Connect a tee connector to the Standard Amplitude Calibrator output connector and a dual input connector to the 7 A22 +INPUT and - INPUT connectors. Connect a coaxial cable from the tee connector to the dual input connector. Connect a coaxial cable from the tee connector to the oscilloscope EXT In connector.
b. Set the oscilloscope Triggering Source switch to Ext.
c. Set the Standard Amplitude Calibrator output for 50 V of high amplitude signal.
d. Set the 7A22 controls as follows:

VOLTS/DIV	50 mV
AC-GND-DC (-INPUT)	DC

e. CHECK-The displayed waveform for good commonmode signal rejection (minimum spike amplitude).
f. ADJUST-The -Input attenuator series compensation for best common-mode signal rejection (minimum spike amplitude) using the information given in Table 5-6. Figure 5-5illustrates the typical displays obtained and Fig. 5-1 shows the adjustment locations.

Fig. 5-5. Typical display obtalned with -Input attenuator adjusted for opimum Common-Mode signal refection. (A) C208C adjusied properly (B) C205C adjusted properly.

TABLE 5-6

Callbrator Outpui P-P	VOLTS/DIV Swith Position	Check or Adjust for Min. Splke Amplitude	-Input Attenuator
50 Volts	50 mV	C208C	$\times 10$
	20 mV	Check	
	. 1 V	Check	
100 Volts	. 5 V	C209C	$\times 100$
	. 2 V	Check	
	1 V	Check	
	5 V	C2\%0C	$\times 1000$
	2 V	Check	
	10 V	Check	

g. Disconnect all signal leads.
h. Return the oscilloscope Triggering Source switch to Int.

19. Check or Adjust - Input Attenuator Shunt Compensation

a. Connect a 47 pF RC Normalizer tothe -INPUT ofthe7A22. Connect a coaxial cablefrom the Standard Amplitude Calibratop output connector to the RC Normalizer.
b. Set the Standard Amplitude Calibrator output for . 5 V of high amplitude signal.
c. Set the 7A22 controls as fol!ows:

VOLTS/DIV	50 mV
AC-GND-DC (+INPUT)	GND

d. CHECK-Using Table5-7 as a guide, check the display for a square wave response similar to the display illustrated in Fig. 5•3.
e. ADJUST-C208A, C209A, and C210A (see Fig. 5-1) for best flat bottom on the display, according to the information given in Table 5-7.

Table 5-7

Standard Amplitude Cellbrator Output p.P	VOLTS/DIV Switch Position	Check or Adjust for Opilmum Flat Bottom	-Input Altenuator
.5 Volt	50 mV	C208A	
.2 Volt	20 mV	Check	$\times 10$
1 Volt	.1 V	Check	
5 Volts	.5 V	C209A	
2 Volts	.2 V	Check	$\times 100$
10 Volts	1 V	Check	
50 Volts	5 V	C210A	
20 Volts	2 V	Check	$\times 1000$
100 Volts	10 V	Check	

f. Disconnect the RC normalizer and all coaxial cables.

7 A22 Controls	
POSITION	Midrange
VOLTSIDIV	1 V
VARIABLE	CAL IN
AC-GND-DC (+INPUT)	GND
AC-GND-DC (-INPUT)	GND
LOW FREO -3 dB POINT	DC
HIGH FREQ -3 dB POINT	1 MHz
STEP ATTEN DC BAL	Adjusted for dc balance

20. Check or Adjust HIGH FREQ -3 dB POINT

a. Set the 7A22 +INPUT AC-GND-DC switch to DC and use the oscilloscope controls as necessary for easy viewing of display.
b. Connect a coaxial cable and a 50 -ohm terminator from the Sine-Wave Generator to the 7A22 + INPUT.
c. Set the output frequency of the Sine-Wave Generator to 1 kHz and adjust for a 6 div display on the oscilloscope.
d. Set the Sine-Wave Generator output frequency to 1 MHz .
e. CHECK-The amplitude of the oscilloscope display should be 4.2 div (this is the -3 dB point at 1 MHz). The 4.2 div display requirement must be met at $1 \mathrm{MHz}+$ or -10% (. 9 MHz to 1.1 MHz).
f. ADJUST-With the frequency set to 1 MHz , adjust C425for 4.2 div of display amplitude. See Fig. 5-6 for location of adjustment.
g. CHECK-The remaining positions of the HIGH FREQ 3 dB POINT selector in the same manner as in part e using Table 5-B as a guide.

TABLE 5-8

Sine Wave Generator Output Frequency	HIGH FREO -3 dB POINT Selector Position	Oscilloscope Display Ampiltude	Tolerance $\pm 10 \%$ of Input Freq
300 kHz	300 kHz	4.2 div	$\pm 30 \mathrm{kHz}$
100 kHz	100 kHz	4.2 div	$\pm 10 \mathrm{kHz}$
30 kHz	30 kHz	4.2 div	$\pm 3 \mathrm{kHz}$
10 kHz	10 kHz	4.2 div	$\pm 1 \mathrm{kHz}$
3 kHz	3 kHz	4.2 div	$\pm .3 \mathrm{kHz}$
1 kHz	1 kHz	4.2 div	$\pm .1 \mathrm{kHz}$
300 Hz	300 Hz	4.2 div	$\pm 30 \mathrm{~Hz}$
100 Hz	100 Hz	4.2 div	$\pm 10 \mathrm{~Hz}$

h. Set the HIGH FREQ - 3 dB POINT selector to 1 MHz .

Fig. 5-6. Right side of 7 A22 showing location of adjustments.

21. Check LOW FREQ - 3 dB POINT

a. CHECK-Using Table 5-9 as a guide, check the LOW FREQ - 3 dB POINT in the same manner that was used to check the HIGH FREQ - 3 dB POINT.

TABLE 5-9

	LOW FREO Sine Wave Generator Outpui Freq	POINT Selector Posifion	Oscilloscope Display Amplifude
10 Hz	10 Hz	Bandwidth Tolerance $\pm 12 \%$ of Input Freq	
100 Hz	100 Hz	4.2 div	$\pm 1.2 \mathrm{~Hz}$
1 kHz	1 kHz	4.2 div	$\pm 12 \mathrm{~Hz}$
10 kHz	10 kHz	4.2 div	$\pm 120 \mathrm{~Hz}$

NOTE

The components that are used in the 0.1 Hz and 1 Hz positions of the LOW FREQ - 3 dB POINT selector are also used in the other positions of the selector; therefore, the folerance of the 0.1 Hz and 1 Hz positions are now checked.
b. Set the LOW FREQ -3 dB POINT selector to DC and disconnect all signal connections to the 7A22, Sine-Wave Generator, and Oscilloscope.

7A22 Controls

VOLTS/DIV	5 V
VARIABLE	CAL IN
HIGH FREQ -3 dB	9 MHz
POINT	
LOW FREQ -3 dB POINT	DC
AC-GND-DC (+INPUT)	DC
AC-GND-DC (-INPUT)	GNO
STEP ATTEN DC	Adjusted for proper dc
BAL	balance

Time-Base Controls	
Time/Div	As necessary for easy
	viewing of display
Variable	In (Cal)
Triggering	Auto, AC, lnt

22. Check or Adjust Attenuator Common Mode Rejection

a. Connect a coaxial cable from the Sine-Wave Generator output to the dual input connector.
b. Connect the dual-input connector to the 7A22 + and - INPUTS.
c. Adjust the Sine-Wave Generator Level control for 20 V p-p at 100 kHz .

NOTE
The Sine-Wave Generator output must be maintained at a constant 20 V p-p for all of the CMRR checks.
d. Switch the 7A22 AC-GND-DC (+INPUT) to GND.
e. Switch the 7A22 VOLTS/DIV to 1 mV .
f. Simultaneously switch the 7A22 + and -AC-GND-DC switches to DC.
g. CHECK - The vertical deflection should not exceed 2 div. The 2 div requirement at $0.1 \mathrm{mV} / \mathrm{DIV}$ is equivalent to a CMRR of 100.000:1 (2 div at .1 mV IDIV $=.2 \mathrm{mV} ; 20 \mathrm{~V} \div .2 \mathrm{mV}=100.000$).
h. Adjust C330 (and C144 SN 8080000 and up) for minimum vertical deflection. See Fig. 5-6 for C330 location. C144 is under the plastic cover near Q153 on the left side of the 7A22 (see Fig. $4-$ 6 , page 4-10).

nOTE

These adjustments interact, and a slight readjustment of C330 will be necessary after the cover is replaced over C144.

1. Set the 7A22 VOLIS/DIV to 20 mV .
2. ADJUST - C108C for minimum vertical deffection.
3. ADJJUST-R116 for minimum vertical deflection.
i. CHECK - Using Table 5-10 as a guide, check the CMRR at the remaining attenuator positions.
j. Disconnect all test leads and connectors.

7A22 Controls

VOLTSIDIV	10 mV
VARIABLE	CAL IN
POSITION	Midrange
HIGH FREQ - $\mathbf{3}$ dB	1 MHz
\quad POINT	
LOW FREQ -3 dB	
POINT	DC
AC-GND-DC (+INPUT)	GND
AC-GND-DC (-INPUT	GND
STEP ATTEN DC BAL	Adjusted for dc balance

Time Base Controls

Time/Div	1 ms
Triggering	\uparrow, Auto, AC. Int

23. Check Input OVERDRIVE Indicator

a. Connect a coaxial cable between the Sine-Wave Generator output and the 7A22 +INPUT.
b. Set the Sine-Wave Generator amplitude to minimum and frequency to 1 kHz .
c. Increase the Sine-Wave Generator amplitude until the 7 A22 Input OVERDRIVE indicator lights.
d. CHECK-The sine-wave amplitude, peak to peak, and divide by 2 to find the + or - driving signal amplitude. The overdrive signal should be approximately \uparrow volt
e. Disconnect coaxial cable from +Input

7A22 Controls

VOLTS/DIV	1 mV
VARIABLE	CAL IN
POSITION	Midrange
HF -3 dB POINT	1 MHz
LF-3 dB POINT	10 Hz
AC-GND-DC (+INPUT)	GND
AC-GND-DC (-INPUT)	GND
STEP ATTEN DC BAL	Adjusted for dc balance
Time Base Controls	
Time/Div	T ms
Variable	Calibrated
Slope	+
Coupling	AC
Source	Int
Mode	Auto

TABLE 5-10

Sine-Wave Generator		Type 7 A22			
Amplifude	Frequency	VOLTS/DIV Switch	$+ \text { and - }$ INPUT Switches	Verilcal Deflection (max)	CMRR (min)
20 V p-p	100 kHz	1 mV	AC	1 div	20.000:1
	100 kHz	20 mV	AC	2.2 div	450:1
	100 kHz	20 mV	DC	2 div	500:1
	1 kHz	20 mV	DC	1 div	1,000:1
	1 kHz	20 mV	AC	1.1 div	900:1
	60 Hz	2 mV	AC	5 div	2.000: 1

24. Check Differential Slgnal Range

a. Connect a female to dual banana adapter and a coaxial cable between the DC Power Supply and the 7A22 +INPUT.
b. Set the DC Power Supply for an output of 1 volt dc.
c. Connect a coaxial cable between the Sine-Wave Generator output and the 7A22-INPUT.
d. Switch the - AC-GND-DC switch to DC.
e. Adjust the Sine-Wave Generator amplitude control to give 5 div of 1 kHz display on the crt graticule (if the Sine-Wave Generator minimum amplitude is too large. insert an attenuator between the coaxial cable and the -INPUT).
f. Switch the + AC-GND-DC switch to DC.
g. CHECK-Sine-wave amplitude should not change when dc level from the DC Power Supply is applied.
h. Switch the +AC-GND-DC switch to GND.
i. Reverse the female to dual banana adapter at the DC Power Supply to obtain an output of -DC.
j. Switch the $f-A C-G N D-D C$ switch to DC.
k. CHECK-Sine-wave amplitude should not change when dc level from the DC Power Supply is applied.
I. Disconnect alt test equipment and test leads.

25. Check Overall Noise Level Tangentially

a. Connect a 50Ω termination to the +INPUT connector of the 7A22. Connect two $10 \times$ attenuators to the 50Ω termination.
b. Connect the Precision Voltage Divider to the Standard Amplitude Calibrator. Connect a GR to BNC adapter to the Precision Voltage Divider and connect the variable Altenuator to the GR connector. Connect a GR to BNC adapter to the Variable Attenuator. Connect a coaxial cable from the $10 \times$ attenuators to the Variable Attenuator.
c. Set the standard Amplitude Calibrator for a 4 mV output.
d. Set the 7A22 VOLTS/DIV switch to $10 \mu \mathrm{~V}$.
e. Turn the Variable Attenuator fully clockwise.
f. Set the Time Base Triggering Mode to Auto and Time/Div to $10 \mu \mathrm{~s}$.
g. Turn the Variable Attenuator counterclockwise until the darker band between the two noise bands just disappears (see Fig. 5-7).
h. Set the 7A22 VOLTS/DIV switch to 1 mV and the Time Base Time/Div switch to 1 ms .

Fig. 5-7. Typical display showing (A) two nolse bends and (B) merging nolse bands.
i. Remove the two $10 \times$ attenuators and connect the coaxial cable to the 50Ω termination.
j. Measure the square wave amplitude. Calculate the tangentially measured display noise as follows:

square wave amplitude

The tangentially measured noise should not exceed $16 \mu \mathrm{~V}$.
7A22 Controls
VOLTSIDIV
VARIABLE (VOLTS/DIV)
POSITION

HF 3 dB POINT
LF - 3 dB POINT
AC-GND-DC +INPUT
AC-GND-DC -INPUT
STEP ATTEN DC BAL
.2 V
CAL \mathbb{N}
1 division below graticule center
1 MHz
DC
DC
GND
Adjusted for dc balance

Time Base Controls
Time/Div $2 \mu \mathrm{~s}$
Variable
Level/Slope
Coupling
Source
Mode
Cal in

26. Check Overdrive Recovery Time

a. Connect the Reed Pulse Generator Output to the 7A22 IINPUT.
b. Connect the Reed Pulse Generator power cable to the oscilloscope probe power connector (rear panel).
c. Switch the Reed Pulse Generator Polarity switch to + .
d. Hold down the Reed Pulse Generator Man switch and adjust the Level control to position the trace to the top graticule line (1 volt).
e. Release the Man switch and switch the Time Base Mode to Norm.
f. Set the 7A22 VOLTSIDIV switch to 1 mV .
g. Increase sweep Intensity to maximum (ciockwise).
h. Depress the Reed Pulse Generator Man switch for 1 second.
i. CHECK - The waveform as the Reed Pulse Generator Man switch is released. Readjust the Time Base Level-Slope as necessary for proper triggering. The trace should returnto within 5 mV of the reference (1 division below the graticule center) within 10μ (5 divisions). See Fig. $5-8$ for photograph of typical recovery waveform.
j. Switch the Reed Pulse Generator Polarity switch to -
k. Set the Time Base Level/Siope to t .
I. Decrease sweep Intensity for normal viewing
m. Reset the Time Base Mode to Auto.
n. Position the trace (7A22 POSITION control) to 1 division above graticule center.
o. Reset the Time Base Mode to Norm.
p. Repeat parts g through i (waveform will be inverted from that in step i).
q. Conrect Reed Pulse Generator Output to the 7A22 - INPUT and repeat above procedure.

Fig. 5-8. Typical waveform showing overdive recovery time.

REPLACEABLE

ELECTRICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your focal TekIr onix. Inc. Field Office or reptesentative

Changes to Tektronix insiruments are somelimes made to accommodate improved components as they become available, and to give you the benelit of the latest circuit improvements developed in our engineering department it is therefore important. when ordering parts. to include the following information in your order: Part number, instrument lype or number. serial number, and modification number if applicable.

It a part you have ordered has been replaced with a new or improved part. your \{oca Tektronix. Inc. Field Olfice or representalive wiłl contact you concerning any change in part number

Change information, it any, is located at the rear of this manual

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number
$00 x \quad$ Part removed after thiss serial number

ITEM NAME
In the Parts List, an Item Name is separated trom the descriplion by a colon (:) Because of space limitations, an Item Name may sometimes appear as incomplete. For lurther Item Name idenitfication, the US Federal Cataloging Handbook H6-1 can be utilized where possible

ABBREVIATIONS

ACTR	ACTUATOR	PLSTC	PLASTIC
ASSY	ASSEMBLY	OTZ	OUARTZ
CAP	CAPACITOR	RECP	RECEPTACLE
CER	CERAMIC	RES	RESISTOR
CKT	CIRCUIT	RF	RADIOFREOUENCY
COMP	COMPOSITION	SEL	SELECTED
CONN	CONNECTOR	SEMICOND	SEMICONDUCTOR
ELCTLT	ELECTROLYTIC	SENS	SENSITIVE
ELEC	ELECTRICAL	VAR	VARIARLE
INCAND	INCANDESCENT	WW	WIREWOUND
LED	LIGHTEMITTJNG DIODE	XFMR	TRANSFORMER
NONWIR	NON WIREWOUND	XTAL	CRYSTAL

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State. Zip Code
00213	NYTRONICS COMPONENTS GROUP INC SUBSIDIARY OF NYTRONICS INC	orange st	OARLINGTON SC 29532
00853	SANGOMO MESTON INC SANGAMO CAPACITOR DIV	$\begin{aligned} & \text { SAMGAMO RD } \\ & \text { P O BOX } 128 \end{aligned}$	PICKENS SC 29671
01921	allen-bradley Co	1201 SOUTH ZND ST	MIGHaUkEE MI 53204
02119	SPECTRDL ELECTRONICS CORP SUB OF CARRIER CORP	17070 e gale ave P O B0X 1220	CITY OF INEUSTRY CA 91749
03508	genenal electric co SEI-CONDUCTOR PRODUCTS OEPY	h GENESEE ST	AUBURN NY 13021
04222	AVX CERSMICS DIV OF AVX CORP	19Th aVE South P 0 B0X 867	MYRTLE BEACH SC 29577
04713	mOTOROLA INC SEIICONOUCTHER GROUP	5005 E MCOOMELL RO	PHOENIX AZ 85008
05397	lanion caraioe corp maierials systems DIV	11901 MAOISON AVE	CLEVELANO OH 44101
07263	fairchild canera ano instrment corp SEIICONOUCYOR DIV	464 ELLIS ST	motertain vien ca 94042
07716	TRM INC TRH ELECTRONICS COMPONENTS TRM IRC FIXED RESISTORS/BURLINGTON	2850 mt pleasant ave	BURLINGTON IA 52609
12697	CLAROSTAT MFG CO INC	LOMER MASHINGTON ST	OOVER N\# 03820
12954	MICROSEAI CORP	8700 E THOMAS RO P 0 80X 1390	SCOTTSDALE AZ 85252
14193	CAL-R INC	1601 OLYMPIC BLVO	SANTA MONICA CA 90404
14433	IYT SEIICONOUCTORS DIV		MEST PaIN BEACH FL
145552	MICRO/SEMICO!tOUCTOR CORP	2830 S fairviea ST	SaNTA ANA CA 92704
15818	TELERYME INC TELEMYNE SEAICONDUCTOR	1300 TERRA BELLO AVE	molntain Viek Ca 94043
19396	ILLINOIS TOOL MORKS INC PaKTRON OIVISTON	900 follin tane s E	vieata va 22180
19701	MEPCO/ELECTRO INC a NORTH מMEDICAN PHILIPS CO	P 0 80X 760	MINERAL MELL. 5 TX 76067
22229	SOLITRON DEVICES INC SEAICONOUCTOR GROUP SAN DIEGO OPERS	8808 BaLboa ave	SAN DIEGO CA 92123
24546	CORNING GLASS \%OEKS	550 HIGH ST	BRAOFORD PA 16701
24931	SPECIALTY CONWECTOR CO INC	2620 ENDRESS PIACE $\text { P } 0 \text { Box } 0$	GREEXTOOD IN 46142
27014	NATIONAL SEIICONOUCTOR CORP	2900 SEAICONOUCTOR DR	SANTA CLARA CA 95051
31433	union carside corp ELECTRONICS OIV	P0 80X 5928.	GREENVILLE SC 29606
32997	BOURNS INC TRIKPOT OIV	1200 COLPAPIA AVE	RIVERSIDE CA 92507
33095	SPECTRUM CONTROL INC	8061 AVONLA RD	fairvier Pa 16415
52763	STETTNER ELECTRONICS INC	6135 AIRKAYS BLVO PO BOX 21947	CHATTANOOGA TN 37421
56289	Sprague electric co	87 MARSHALL ST	NORTH AOQMS MP 01247
57668	ROHA CORP	16931 HILLIKEN AVE	IRVINE CA 92713
58854	GTE PRODUCTS CORP LIGHTING PRODUCYS GROUP	60 BOSTON S.T	SALEM 01970
59660	TUSONIX INC	2155 n fopates blvo	TUCSON, ARIZOMA 85705
5982.1	CENTRALOA INC SUB NORTH GMERICAN PHILIPS CORP	7158 MEKCHINT AVE	EL PASO TX 79915
71400	MCGROH-EDISON CO BUSSMA\}熨 MFG DIV	502 EARTH CITY PLAZA P 0 BOX 144.60	ST LOUIS * 63178
71590	GLDEE-LNION INC CENTRALIng EIECTRONICS DIV	$\begin{aligned} & \text { HHY } 20 \text { N } \\ & \text { PO } 00 \times 858 \end{aligned}$	FORT DODCE IA 50501
71744	GENEKAL INSTRUMENT CORP LOAP OIV	4433 N RAVENSHODD AVE	CHICAGO IL 60540
73138	BECKHAN INSTRLMEYTS INC HELIPOT OIV	2500 Haraid blvo	FULLERTON CA 92634
74970	JOHMSON E F CO	299 10TH AVE S \%	Maseca w 56093
75042	3RN INC TRH ELECTRONIC COMPONENTS IRC FIXED RESISTORS PHILGDELPIIIA DIV	401 N bread St	PHILADELPHIA PA 19108
80009	IEKTRONIX INC	$\$ 900$ S K GRIFFITH OR P 080×500.	BEAVERTON OR 9707\%
80294	BOURNS INSTRLMENTS INC	6135 megholia ave	RIVERSIOE CA 92506
91637 TK1036	OALE ELECTRONICS INC E F Jown an Co	P O 80X 609 299 10TH AVE $5 \times$	COLLABUS ME 68609

Component No,	Tektronix Part No,	Serial/A Effectiv	mbly No Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
01	670-1013-00				80009	670-1013-00
A2	670-1014-00	8010100	8029999	CIRCUIT 80 ASSY:MAIN	80009	670-1014-00
02	670-1014-01	8030000	8059999	CIRCUIT 80 ASSY:MAIN	80009	670-1014-01
A2	670-1014-03	8060000	8069999	CIRCUIT 80 ASSY:MAIN	80009	670-1014-03
A2	670-1014-08	8070000	8079999	CIRCUIT 80 ASSY:MAIN	80009	670-1014-04
A2	670-1014-05	8080000	8115479	CIRCUIT 80 ASSY:MAIN	80009	670-1014-05
A2.	670-1014-06	8115480		CIRCUIT 80 ASSY:MAIN	80009	670-1014-06
A3	670-1050-00	8010100	8059999	CIRCUIT 80 ASSY: INPUT COUPLING SH	80009	670-1050-00
Q3	670-1050-01	8060000	8118249	CIRCUIT BO ASSY:INPUT COUPLING SH	80009	670-1050-01
-3	670-1060-02	8118250		CIRCUIT 80 ASSY:INPUT COUPLING SWITCH	80009	670-1050-02
A8	670-1051-00	8010100	8059999	CIRCUIT 80 ASSY:INPUT COUPLING SM	80009	670-1051-00
A8	670-1051-01	8060000	8118249	CIRCUIT 80 ASSY:INPUT COUPLING SH	80009	670-1051-01
A 4	670-1051-02	8118250		CIRCUIT 80 ASSY: INPUT COUPLING SWITCH	80009	670-1051-02
C101	295-0117-00			CAP SET, MATCHED: (2) 0.1UF, MATCHED 0.1\%	80009	295-0117-00
C103	283-0636-00			CAP,FXO,MICA OI:36PF, 1.4\%,100V (FURNISHED AS A MATCHED SET MITH C201)	00853	0155E36060
C108	281-0092-00	8010100	8059999	CAP, VAR,CER OI:9-35PF,200V (C108A)	33095	53-717-001 09-35
C108	281-0131-00	8060000		CAP,VAR,AIR OI:2.4-24.5PF,250V (C100A)	74970	189-0509-075
C108	281-0131-00			CAP,VAR,AIR 0I:2.4-24.5PF,250V (C108C)	74970	189-0509-075
C100	283-0638-00			CAP, FXO,MICA OI:130PF, 12, 100V (C1080)	00853	0155F331F0
C109	281-0092-00	8010100	8059999	CAP,VAR,CER OI:9-35PF,200V (C109a)	33095	53-717-001 09-35
C109	281-0131-00	8060000		CAP,VAR, AIR DI:2.4-24.5PF,250V (C109a)	74970	189-0509-075
C109	281-0081-00			CAP,VAR,AIR OI:1.8-13PF,375VOC (C109C)	74970	189-0506-075
C109	283-0594-00			CAP, FXO,MICA OI:0.001UF,1\%, 100V (C1090)	00853	0151F102F0
C110	281-0092-00	8010100	8059999	CAP,VAR,CER OI:9-35P5,200V (C110a)	33095	53-717-001 09-35
C110	281-0131-00	8060000		CAP,VAR,AIR 01:2.4-24.5PF,250V (C110a)	74970	189-0509-075
C110	281-0079-00			CAP,VAR,AIR OI:1.5-9.1PF,375V (C110C)	74970	189-0504-075
C110	283-0617-00	8010100	8119999	CAP ,FXO,MICA OI:4700PF,10\%,300V (C1100)	00853	0195F472K0
C110	283-0756-00	8120000		CAP,FXO,MICA OI:4700 PF 5\%,300V (C1100)	00853	0195F472J0
C115	281-0092-00	8010100	8059999	CAP, VAR,CER 01:9-35PF,200V	33095	53-717-001 09-35
C115	281-0131-00	8060000		CAP, VAR, AIR 01:2.4-24.5PF,250V	74970	189-0509-075
C141	281-0093-00			CAP, VAR,CER OI:5.5-18PF,350V	59660	$538-01105.5-18$
C144	281-0544-00	8010100	8079999	CAP,FXO,CER OI:5.6PF, +/0.5PF,500V	52763	2ROPLZOO7 270PMO
C144	281-0122-00	8080000		CAP, VAR, CER OI:2.5-9PF, 100 V	59660	518-00022.5-9
C156	283-0594-00		,	CAP,FXD,MICA OI:0.001UF,1\%,100V	00853	0154F102F0
C201	295-0117-00			CAP SET MATCHED: (2) O.1UF, MATCHED 0.1% (FURNISHED AS A MATCHEU SET WITH C103)	80009	295-0117-00
C203	283-2636-00			CAP,FXD,MICA OI:36PF, 1.4\%, 100 V	00853	$0455 \mathrm{E} 360 \mathrm{GO}$
C208	281-0092-00	8010100	8059999	CAP,VAR,CER OI:9-35PF,200V (C2080)	33095	53-717-009 09-35
0208	281-0131-00	8060000		CAP,VAR,AIR DI:2.4-24.5PF,250V (C20BA)	74970	189-0509-075
C208	281-0131-00			CAP,VAR,AIR OI:2.4-24.5PF,250V (C208C)	74970	189-0509-075
C208	283-0638-00			CAP,FXO,MICA OI:130PF,1\%, 100V (C2080)	00853	0155F131FO
C209	281-0092-00	8010100	8059999	CAP,VAR,CER OI:9-35PF,200V (C209A)	33095	53-717-001 09-35

Component No,	Tektronix Part No.	Serial/As Effective	ombly No. Dscont	Name \& Description	Mfr. Code	Mfr. Part No.
C209	281-0131-00	8060000		CAP,VAR, AIR 01:2.4-24.5PF,25OV (C209a)	74970	189-0509-075
C209	281-0081-00			CAP,VAR, AIR 01:1.8-13PF,375VOC (C209C)	74970	189-0506-075
C209	283-0594-00			CAP, FXD, MICA O1:0.001UF, 12, 100 V (C2090)	00857	0151F102F0
C210	281-0092-00	8010100	8059999	CAP,VAR,CER DI:9-35PF,200V (C2100)	33095	53-717-001 09-35
C210	281-0131-00	8060000		CAP,VAR, AIR OI:2.4-24.5PF,250V (C2100)	74970	189-0509-075
C210	281-0079-00			CAP,VAR,AIR DI:1.5-9.1PF,375V (C210C)	74970	189-0504-075
C210	283-0617-00	8010100	8119999	CAP,FXO,MICA 01:4700PF,10\%,300V (C2100)	00853	0195F472x0
C210	283-0756-00	8120000		CAP,FXD,MICA 01:4700 PF 5\%,300V (C2100)	00853	0195F472J0
C215	201-0092-00	8010900	8059999	CAP, VAR,CER DI:9-35PF,200V	33095	53-717-001 09-35
C215	281-0131-00	8060000		CAP, VAR, AIR 01:2.4-24.5PF,250V	74970	189-0509-075
C249	281-0093-00			CAP,VAR,CER DI:5.5-18PF,350V	59660	538-011A5.5-18
C244	281-0544-00			CAP, FXO,CER 01:5.6PF,+10.5PF,500V	52763	2ROPL2007 270840
C256	283-0594-00			CAP, FXD, MICA OI:0.001UF, 17, 100 V	0085	0151F102F0
C264	283-0059-00			CAP,FXD,CER OI:1UF,+80-20\%,50V	31433	C330C105W5RSCA
C283	290-0289-00			CAP, FXD, ELCTLT: 4. TUF, 10\%,35V	05397	T1100475K03505
C307	290-0297-00			CAP, FXD,ELCTLT:39UF,10\%,10V	05397	T1109396K010 5
C315	281-0613-00			CAP, FXD, CER DI:10PF, 17,500V	59650	374-0180C060100F
C317	290-0297-00			CAP, FXD, ELCTLT: 39UF, 10\%, 10V	05397	T1100396K010 ${ }^{\text {a }}$
C325	290-0297-00			CAP ,FXO, ELCTLT: 39UF, 10\%, 10V	05397	T1100396K010,
C329	283-0002-00			CAP,FXD,CER DI:0.01UF,+80-204,500V	59821	010324025UL006
C330	201-0114-00			CAP, VAR, AIR DI:1.3-5.4PF,425V	TK1036	189-0752-075
C349	290-0177-00			CAP, FXO,ELCTLT:1UF,20\%,50V	05397	13200100505005
C353	285-0809-00			CAP, FXD,PLASTIC:1UF,10\%,50V (C353R)	56289	IP65010105K
C353	285-0809-00			CAP,FXO,PLASTIC:1UF,10\%,50V (C3530)	56289	(P65010105K
C353	283-0058-00			CAP,FXD,CER DI:0.027UF, 10\%,100V (C353G)	0422	5R301C273KAA
C443	281-0534-00			CAP,FXO,CER DI:3.3PF,+/-0.25PF,500V	52763	2ROPL2007 3P30CC
${ }_{6} 425$	281-0093-00			CAP, VAR,CER D1:5.5-18PF, 350V	59660	$538-01145.5-18$
C426	281-0528-00			CAP,FXD,CER DI:82PF,+/-8.2PF,500V (C4260)	59650	301-000u20820K
C425	283-0604-00			CAP,FXO,MICA DI:304PF,28,500V (C1280)	0085	0155 309060
C426	283-0594-00			CAP, FXD, MICA OI:0.001UF, 17, 100V (C426C)	00853	0151F102F0
C426	285-0627-00			CAP,FXD,PLASTIC:0.0033UF,5\%,100V (C9260)	07716	TEX44-33251
C426	285-0598-00			CAP,FXD,PLASTIC:0.01UF,5\%,900V (C426E)	19395	OU4909103J
C426	285-0702-00			CAP ,FXD, PLASTIC:0.033UF ,5X, 100V (C426F)	19396	00591/74-46903
C426	285-0703-00			CAP,FXO,PLASTIC:0.1UF,5x,100V (C426G)	19396	104.J01PT605
C426	285-0633-00			CAP,FXD,PLASTIC:0.22UF,10\%,100V (C928H)	56293	19202092
C443	283-0000-00			CAP,FXD, CER D1:0.001UF, +100-02,500V	59650	831-610-Y500102P
C445	283-0092-00			CAP, FXO, CER D1:0.03UF, $+80-202,200 \mathrm{~V}$	59650	845-53425403032
C447	283-0191-00			CAP,FXD, CER DI:0.1UF,20\%,50V	05397	C330C104MSU1CA
C513	281-0534-00			CAP,FXD,CER DI:3.3PF, +1-0.25PF,500V	52763	2ROPL2007 3P30CC
C543	283-0000-00			CAP,FXD, CER DI: 0.001 UF, $+100-08,500 \mathrm{~V}$	59650	831-610-Y500102P
C545	283-0059-00			CAP,FXD,CER 01: 1UF,+80-202,50V	31433	C330C10Scasca
$\begin{aligned} & C 547 \\ & \text { C610 } \end{aligned}$	$\begin{aligned} & 283-0134-00 \\ & 283-0080-00 \end{aligned}$			CAP ,FXD,CER OI:0.4TUF, 80-202,50V CAP, FXO,CER DI:0.022UF,+80-20\%,25V	$\begin{aligned} & 05397 \\ & 58929 \end{aligned}$	$\begin{aligned} & \text { C330C4742501CA } \\ & 200060 E 2232 \end{aligned}$

Component No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Name 8 Description	Mfr. Code	Mfr. Part No.
C620	283-0080-00		CAP, FXD,CER D1:0.022UF, +80-20\%,25V	59821	200U60E2232
C630	283-0080-00		CAP, FXO,CER DI :0.022UF, +80-20\%,25V	59821	200U60E2232
CR119	152-0323-00		SEIICOND DVC, $01: 5 \mathrm{H}, \mathrm{SL}, 35 \mathrm{~V}, 0.1 \mathrm{~S}, 00-7$	14433	WG1518
CR120	152-0323-00		SEIICON OVC, DI:SN, S1,35V,0.10,00-7	14433	WG1518
CR131	152-0141-02		SEIICOND OVC,DI:SM, SI, $30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}, 00-35$	03508	OA2527 (1N9152)
CR144	152-0141-02		SEIICONO DVC, $\mathrm{OL}: 5 \mathrm{SH}, \mathrm{SL}, 30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}, 00-35$	03508	OR2527 (1N4152)
CR219	152-0323-00		SEIICOND OVC, O1:SM, S1,35V,0.12,00-7	14433	WG1518
CR220	152-0323-00		SEIICOND OVC,01:SN, $51,35 \mathrm{~V}, 0.12,00-7$	14433	NG1518
CR244	152-0141-02		SEIICOND DVC,01:SW, SL, 30V,150Mص,30V,00-35	03508	002527 (1N9152)
CR260	152-0141-02		SEIICOND DVC,01:SH,SI, 30V,150MA,30V,00-35	03508	DA2527 (1N4152)
CR309	152-0141-02			03508	002527 (1N4152)
CR341	152-0141-02		SEIICOND DVC,01:SH, SI, 30V,150MA ,30V,00-35	03508	OA2527 (1N4152)
CR343	152-0141-02		SEIICOND OVC, DI:SH, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}, 00-35$	03508	DA2527 (1NQ152)
CR413	152-0141-02		SEIICOND OVC, 01:SH, SI , 30V, 150MA,30V,00-35	03508	002527 (1N4152)
CR415	152-0141-02		SEIICOND OVC,01:SH, $51,30 \mathrm{~V}, 150 \mathrm{~W}, 30 \mathrm{~V}, 00-35$	03508	OA2527 (1N4152)
CR417	152-0141-02		SEIICOND OVC, 01:5M, $51,30 V, 1504 \mathrm{~A}, 30 \mathrm{~V}, 00-35$	03508	002527 (1NQ152)
CR419	152-0141-02		SEIICOND OVC,01:SH, SI , 30V, 150WA, 30V,00-35	03508	002527 (1N4152)
CR513	152-0141-02		SEIICOND OVC,OI:SM, $51,30 \mathrm{~V}, 150 \mathrm{WA,30V,00-35}$	03508	002527 (1N4152)
CR515	152-0141-02		SEIICOND OVC, 01:SW, S1, 30V, 150NA, 30V,00-35	03508	OQ2527 (1N4152)
CR517	152-0141-02		SEIICOND OVC,OI:SH, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}, 00-35$	03508	0 O2527 (1N4152)
CR519	152-0141-02		SEIICOND OVC,01:SH, SI, 30V, 150NA,30V,00-35	03508	042527 (1N4152)
CR610	152-0141-02		SEIICOND OVC, O1:SH, SI, 30V,150Ma,30V,00-35	03508	DA2527 (1N4152)
CR615	152-0141-02		SEIICOND OVC, O1:SM, SI , 30V, 150MA, 30V,00-35	03508	002527 (1N4152)
CR618	152-0141-02		SEIICOR OVC,01:SH, SI, 30V, 1504A, 30V,00-35	03508	0 O2527 (1N4152)
CR620	152-0141-02		SEIICOAD DVC, D1: SM, SI, 30V, $15044,30 \mathrm{~V}, 00-35$	03508	002527 (1N4152)
CR630	152-0141-02		SEMICOND OVC,01:SH, SI, 30V,15044, 30V,00-35	03508	0×2527 (1N4152)
OS101	150-0093-00	80101008039999	IAMP, INCANO:5V,0.06A,6833AS15, NIRE 10	71744	6833AS15
05101	150-0057-01	80400008059999	LAMP,INCANO:5V,0.1150, MIRE L. ${ }^{\text {, ASED }}$ \& SEL	71744	7153 AS 15
05101	$150-3048-01$	8060000	LAMP, INCAND:5V,0.06A, 683, AGED \& SEL	58854	683AS15
OS301	150-3045-00		LAMP,INCANO:10V,0.04A, 21070, MIRE LE00	71744	CH2107
F119	159-0024-00		FUSE, CARTRIDGE:3AC, $0.062 Q, 250 \mathrm{~V}, 0.35 E C$	71400	U68 1/16
F219	159-0024-00		FIISE,CARTRIDGE:3AC,0.062A,250V,0.3SEC	71400	MGB 1/16
J101	131-0679-00	80101008093219	CONH,RCPT, ELEC:BNC, MALE, 3 CONTACT	24931	28JR168-1
J101	131-0679-02	8093220	COMN,RCPT,ELEC:BNC, MALE, 3 CONTACT	24931	28JR270-1
J201	131-0679-00	80101008093219	COAN,RCPT,ELEC:BNC, MALE, 3 CONTACT	24931	28JR168-1
J201	131-0679-02	8093220	CONA,RCPT, ELEC:BNC, MALE, 3 CONTACT	24931	28JR270-1
0133	151-1027-00	80101008099999	TRANSISTOR:FEI, N-CTAN, S1, T0-71	80009	151-1027-00
0133	151-1101-00	81000008118829	TRANSISTOR:FE,N CHMNEL, SJ, T0-71	27014	205555
0133	151-1027-00	8118830	TRANSISTOR:FEI, N-CHAN, SI, T0-71	80009	$151-1027-00$
0144	151-0261-00		TRANSISTOR:PNP, SI, T0-77	04713	50441
0153	151-1028-00		TRANSISTOR:FEI,N-CHAN,SI , TO-5	22229	F2975
0253	151-1028-00		TRANSISTOR:FET,N-CHAN,SI,TO-5	22229	F2975
0284	151-0261-00		TRANSISTOR:PNP, SI, T0-77	04713	50441
0273	151-1028-00		TRANSISTOR:FET,N-CHMN, SI, TO-5	22229	F2975
0283	151-1028-00		TRANSISTOR:FET,N-CNAN,SI, T0-5	22229	F2975
0284	151-0195-00		TRANSISTOR:SELECTED	80009	151-0195-00
0304	151-0260-00		TRANSISTOR:NPW, SI, TO-39	04713	5T1083
0314	151-0220-00		TRONSISTOR:PNP, SI, T0-92	80009	151-0220-00
0324	151-0228-00		TRANSISTOR:PNP, SI , T0-105	07263	521862
0334	151-0228-00		TRANSISTOR:PNP, SI, T0-105	07263	521862
0394	151-0195-00		TRANSISTOR:SELECTED	80009	151-0195-00
0354	151-0195-00		TRANSISTOR:SELECTED	80009	151-0195-00
0404	151-1019-00	80101008069999	TRANSISTOR:FET,N-CHDN, SI , TO-71	15818	SU2235
0404	151-1050-00	8070000	TRANSISTOR:FET, N-CNAN, SI, TO-71	04713	SF01050
0414	151-0261-00		TRQNSISTOR:PNP,SI, T0-77	04713	50441
0424	151-0219-00		TROHSISTOR:PNP, SI , R-124	07263	5022650
0434	151-0219-00		TRANSISTOR:PNP,SI,R-124	07263	5022650
048	151-0219-00		TRONSISTOR:PPW,SI,R-124	07263	5022650
O4S4	151-0219-00		TRANSISTOR:PNP, SI , R-124	07263	5022650

Component No.	Tektronix Part No.	Serial/As Effective	ombly No. Dscont	Name \& Description	Mir. Code	Mfr. Part No.
0524	151-0219-00			TRAWSISTOR:PNP, SI , R-124	07263	5022650
0534	151-0219-00			TRQNSISTOR:PWP, SI, R-124	07263	5022650
0544	151-0219-00			TRQNSISTOR:PWP, SI, R-124	07263	5022650
0554	151-0219-00			TRANSISTOR:PNP, SI, R-124	07263	5022650
0614	151-0254-00	8010100	8116609	TRONSISTOR:OARLINGTON,NPW,SI	03508	X3813118
0614	151-0281-00	8116610		TRANSISTOR:NPN, SI, 400 MILLIMATTS	03508	X16P4039
R103	315-0105-00			RES, FXO, FILM: 1M OHM , 5x, 0.25 H	19701	5043CX1M0003
R108	323-0611-07			RES, FXO,FIIM:900K OHM, O. $12,0.5 \mathrm{~N}, \mathrm{TC}=\mathrm{T} 9$ (R108C)	19701	5053RE9000K08
R108	321-0389-01			RES, FXO,FIUK:110K OFA, $0.5 \%, 0.125 \%$, TC $=$ TO (R1090)	19701	5033R0110K00
R108	311-0609-00			RES, VAR, MCHEJ:TRMR,2K OHM,0.5N (R109E)	32997	3329H-L58-202
R109	323-0614-07			RES,FXO,FIIM:990K OHN, 0.12,0.5N,TC=T9 (R109C)	19701	5053RE990K08
R109	321-0299-00			RES, FXO, FIM: 10.0 K OHM, $12,0.125 \mathrm{~F}, \mathrm{TC}=$ TO (R1090)	19701	5033E010KOF
R109	311-0605-00			RES,VAR, NOAOM: TRMR, 200 OHM, $0.5 \mathbf{N}$ (R109E)	32997	3329H-648-201
R110	323-0623-07			RES,FXO,FIIM:999K OHM, 0.12,0.5K,TC=T9 (R110C)	19701	5053RE999K09
R110	321-0197-00			RES,FXO,FIIM:1.10K OHM,12,0.125\%, TC=TO (R1100)	07716	CEA011000F
R110	311-0609-00			RES,VAR , MONE: TR TRAR,2K OHM,0.5M (R110E)	32997	3329H-L58-202
R110	321-0289-01			RES , FXO, FILW: 10.0 K OHM, $0.5 \%, 0.125 \mathrm{~K}, \mathrm{TC}=\mathrm{TO}$ (R110F)	07716	CEA0100010
R141	323-0481-07			RES , FXO, FIL M: 1 MEG OMAX, $0.12,0.5 \mathrm{M}, \mathrm{TC}=$ T9	19701	5053RETMOOOO
R115	311-0827-00	8010100	8069999	RES, VAR, NOPQAM: TRMR , 250 OHM , 0.51	01121	SV2511
R115	311-1260-00	8070000			32997	3329P-L58-251
R116	311-0635-00				32997	33291-C48-102
R117	321-0210-00			RES, FXO, FIIM: 1.50 K OHM, $12,0.125 \mathrm{~K}, \mathrm{TC}=$ TO	19701	5033@1K50F
R119	315-0510-00			RES,FXO, FILM:51 OfM , 5\%, 0.25%	19701	5043CX51R80
R121	321-0344-00			RES, FXO,FILM: 37.4 K OH4, $12,0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED 37K40F
R123	315-0151-00			RES, FXO, FIIM: 150 OHM, $5 \%, 0.25 N$	57668	NTR25J-E150E
R133	300-0495-00				00213	12405-4500-0.1
R141	315-0512-00				57668	NTRZSN-ED5K1
R145	321-0289-00			RES, FXO, FILH:10.0K OH\% , 1\%, $0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5033ED10K0F
R151	308-0546-00				00213	12405-125-0.1
R153	329-0114-00			RES,FXO, FIM : 150 O1**, 1\%, $0.125 \mathrm{H}, \mathrm{TC}=$ TO	19701	5033E0150ROF
R155	315-0101-00			RES, FXO,FIMM:100 OHE, 5\%, $0.25{ }^{\text {N }}$	57688	NTR25J-E 100E
R157	321-0030-00			RES,FXO,FIIM:20.0 Ois , 1\%, $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	57668	CR814FXE 20 OHM
R159	308-0436-00				00213	12405-2000-0.1
R203	315-0105-00			RES, FXO, FIIM: 1 M OHM, $5 \mathrm{~K}, 0.25 \mathrm{M}$	19701	$5043 \mathrm{CX140000}$
R208	323-0611-07			RES, FXO,FILK:900K OHM, O.12,0.5\%,TC=T9 (R208C)	19701	5053RE9000K09
R200	321-0389-01			RES, FXO, FIUS:110K OHT, $0.5 \%, 0.12$ 2\% ,TC=TO (R2090)	19701	5033R0110MOO
R209	323-0614-07			RES, FXO, FIIM:990K OHW, $0.12,0.5 \mathrm{~K}, \mathrm{TC}=\mathrm{T} 9$ (R209C)	19701	5053RE990K09
R209	321-0289-00			(R2090)	19701	5033E10KOF
R210	323-0623-07			RES, FXO,FIIM:999K OWW, O.12, $0.5 \mathrm{~N}, \mathrm{TC}=\mathrm{T} 9$ (R210C)	19701	5053RE999K08
R210	321-0197-00			RES,FXO, FILN:1.10K OF ${ }^{2}, 1 \%, 0.1251, T C=T O$ (R2100)	07716	CEA011000F
R210	321-0289-01			RES, FXO, FIIM: 10.0 K OHM $, 0.52,0.125 N, \mathrm{TC}=\mathrm{TO}$ (R210F)	07716	CEAO100010
R219	$\begin{aligned} & 323-0481-07 \\ & 311-0827-00 \end{aligned}$	8010100	8069999		19701 01121	$\begin{aligned} & \text { 5053RE 1MOOOB } \\ & \text { SV2511 } \end{aligned}$
R215	311-1260-00	8070000			32997	3329P-158-251

Component No，	Tektronix Part No，	Serial／Assembly No． Effective Dscont	Name \＆Description	Mir． Code	Mfr，Part No．
R217	321－0222－00		RES，FXO，FILM：2．00K OHM，1\％，0．125 $\mathrm{K}, \mathrm{TC}=$ TO	19701	5033E02X00F
R219	315－0510－00		RES，FXD，FILM：51 OHM，5\％，0．25N	19701	5043CX51R00J
0227	315－0562－00		RES，FXD，FIIM：5．6K OH， $5 \%, 0.25 \mathrm{~K}$	57668	NTR25J－E05K6
R233	308－0495－00		RES，FXD，KN： 4.5 K OHN， $0.1 \%, 3 \mathrm{~K}, \mathrm{TC}=10 \mathrm{PPM}$	00213	12405－4500－0．1
R241	315－0512－00		RES，FXD，FIIM：5．1K OHM，5\％，0．25	57668	NTR25N－E05K1
R245	321－0289－00		RES，FXD ，FILM：10．0K OHA，1\％， $0.125 \mathrm{~W}, \mathrm{TC}=$ TO	19701	5033ED10K0F
R251	308－0596－00		RES，FXD，WN： 125 OHA，0．1\％，3 ，TC＝20PPM	00213	12405－125－0．1
R2353	321－0114－00		RES，FXO，FIIM：150 OHA，1\％，0．125 H，TC＝TO	19701	5033En150ROF
R255	315－0101－00		RES，FXD，FIl M： 100 OHA，5\％，0．25M	57668	NTR2SN－E 100E
R256	315－0185－00		RES，FXD，FIIM：1．8M ORW， $5 \%, 0.25 \mathrm{M}$	01121	C81855
R257	321－0030－00		RES，FXD，FIIM：20．0 OHM，1\％，0．125,$~ T C=T O$	57668	CRB14FXE 20 OHM
R258	311－0467－00		RES，VAR，MOHOOS：PNL，100K OHA，O．5M	01121	N77058
R259	308－0436－00		RES，FXD，MA： 2 KK OHA， $0.1 \%, 3 \mathrm{M}, \mathrm{TC}=10 \mathrm{PPM}$ ，	00213	12405－2000－0．1
R261	321－0126－00		RES，FXD，FILM：200 OHM，1\％，0．125N，TC＝TO	19701	5033ED200R0F
R263	321－0385－00		RES，FXO，FIIM：100K OHM，1\％，0．125 $\mathrm{M}, \mathrm{TC}=$ TO	19701	5033ED100K0F
R254	321－0414－00		RES，FXD，FILM：200K OHM，1\％，0．125 $\mathrm{M}, \mathrm{TC}=$ TO	07716	CEAD20002F
0265	311－0887－00		RES，VAR，MANOPT：PNL，50K OHM，10\％， 0.5 N	71590	8，215－003
R267	321－0385－00		RES ，FXD，FIIM：100K OHM，1\％，0．125M，TC＝TO	19701	5033ED100K0F
R269	321－0126－00		RES，FXD，FILM：200 OHA ，1\％，0．125N，TC＝TD	19701	5033m200ROF
R270	311－0889－00		RES，VAR，WM：PNL，5K OHM，1M	02111	162－214
R271	308－0436－00		RES，FXD，MM：2K OHM，0．1\％，3M，TC＝10PPM，	00213	12405－2000－0．1
R273	321－0114－00		RES，FXO，FIIM：150 OHA，1\％， 0.125 M，TC＝TO	19701	5033ED150R0F
R275	311－0532－00		RES，VAR，WN：TRMR，1．5K OHA，1M	75042	100－0000－152
R277	321－0114－00		RES，FXO，FILH：150 OHM，1\％，0．125 H，TC＝TO	19701	5033ED150R0F
R279	308－0436－00		RES，FXO，W⿴囗⿱一一儿丶 ：2X OHM，0．1\％，3M，TC＝10PPM，	00213	12405－2000－0．1
R281	321－0126－00		RES，FXO，FIIM： 200 OHK，1\％， $0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED200ROF
R283	323－0220－00		RES，FXD，FILM：1．91K OHM，1\％，0．5 $\mathrm{N}, \mathrm{TC}=$ TO	19701	5053RD1K900F
R285	321－0423－00		RES，FXD，FILM：249K OMM，1\％，0．125 $\mathrm{H}, \mathrm{TC}=$ TO	19701	5043E0249K0F
R287	308－0633－00		RES，FXO，㛧：475 OHH，0．1\％，3N	00213	12405 475－0．1
R289	308－0633－00		RES，FXO，烟：475 OHM，O．1\％，3M	00213	1240S 975－0．1
R291	321－0423－00		RES，FXD，FIIM： 249 K OHM，1\％，0．125M，TC $=$ TO	19701	5043ED249K0F
R293	323－0214－00		RES，FXD，FIIM：1．65K OHM，1\％，0．5N，TC＝TO	19701	5053RD1K650F
R301	323－0256－00		RES，FXD，FIIM：4．53K OHA，1\％， $0.5 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5053RQ4K530F
R303	317－0511－00		RES，FXO，CXPSN：510 OHM，5\％，0．125	01121	885115
R305	315－0103－00		RES，FXD，FIIM：10K OHM，5\％，0．25\％	19701	5043C×10K00J
R307	315－0103－00		RES，FXD，FILM：10K OHM，5\％，0，25W	19701	5043CX10K00」
R309	315－0512－00		RES，FXD，FILM：5．1K OHA，5\％，0．25	57668	NTR25．1－E05K1
R311	315－0513－00		RES，FXD，FILM：51K OHA，5\％，0．25M	57668	NTR25．1－E51K0
R313	315－0101－00		RES，FXD，FILM：100 OHN，5\％，0．25M	57668	NTR2SJ－E 100E
R315	315－0272－00		RES，FXD，FIIM：2．2K Oim， $5 \%, 0.25 \mathrm{~W}$	57668	NTR25J－E02V2
R323	301－0562－00		RES ，FXD，FIIM：5．6K OHM ，5\％，0．5N	19701	5053CX5K600J
R325	321－0160－00		RES，FXD，FILM：453 OHA，1\％，0．125 $\mathrm{N}, \mathrm{TC}=$ TO	19701	5033＠453R0F
R331	315－0473－00		RES，FXD，FILM：47K OHA ，5\％，0．25M	57668	NTR25J－E47KO
R333	315－0433－00		RES，FXO，FIIM：43K OHA，5\％，0．25 N	19701	5043CX43K00J
R335	321－0184－00		RES，FXD，FIIM：806 OHA，1\％， $0.125 \mathrm{M}, \mathrm{TC}=$ TO	19701	5033E0806R0F
R337	315－0104－00		RES，FXD，FILM：100K OHN，5\％，0．25m	57668	NTR25N－E100K
R341	315－0364－00		RES，FXD，FILM：360K OHM， $5 \%, 0.25 \mathrm{M}$	57668	NTR25J－E360K
R343	315－0363－00		RES，FXD，FILM：36K OHA，5\％，0．25K	57668	NTR25J－E36K0
R345	315－0105－00		RES，FXD，FIIM：1M DHA $5 \%, 0,25 \mathrm{M}$	19701	5043CX14000J
R349	315－0204－00		RES，FXD，FIIM：200K OHA，5\％，0．25M	19701	5043CX200K0J
R351	315－0151－00		RES，FXD，FIIM：150 OHN，5\％， 0.25 M	57668	NTR25J－E150E
R353	321－0303－00		RES，FXD，FIIM：14．0K OHA，1\％，0．125W，TC＝TO （R3530）	07716	CEAO 14001F
R353	321－0408－00		RES，FXD，FIIM：174K OHW，1\％，0．125M，TC＝TO （R3538）	07716	CEA017402F
R353	301－0165－00	80101008119999	$\begin{aligned} & \text { RES, FXD , FIIM:1.6M OHA,5\%,0.5M } \\ & \text { (R353C) } \end{aligned}$	19701	5053C×1M600J
R353	301－0155－00	8120000	RES，FXO，FIIM：1．5M OHM，5\％，0．5M （R353C）	01121	$E 81555$

Component No.	Tektronix Part No.	Serial/A Effectiv	embly No. Dscont	Name 8 Description	MPr. Code	Mfr, Part No
$R 457$	315-0241-00	8090000		RES,FXD,FILM:240 OHW, 5\%,0.25M	19701	5043C×240ROJ
2458	301-0470-00			RES,FXD,FILM:47 OHM,5\%,0.5M	19701	5053CX47R00J
R458	315-0510-00			RES,FXO,FILM:51 OHW , 5\%,0.25M	19701	5043CX51R00J
R 501	315-0202-00			RES,FXO,FIIM:2K OHM, 5\%,0.25M	57668	NTR25J-E 2K
R503	321-0272-00			RES,FXO,FILM:6.65K OMM, 1\%,0.125M, TC $=$ TO	19701	5043E06K650F
R505	311-0839-00	8010100	8099999	RES, VAR, WH:TRMR, 50 OHAN, 0.5 M	80294	3305P-1-500
RS05	311-1258-00	8100000		RES, VAR, MOWN:TRWR, 50 OHM, 0.5 M	32997	3329P-L58-500
R509	321-0343-00			RES,FXD,FILM:36.5K OHM, 1\%,0.125M,TC=TO	07716	CEAD3650 $1 F$
R513	321-0361-00			RES,FXD,FILM:56.2K OHM, 1\%,0.125M, TC $=$ TO	07716	CEROS6201F
RS21	321-0614-00			RES,FXD,FILM:10.1K OHW,1\%,0.125M,TC=TO	19701	5043ED10K10F
8523	315-0101-00			RES, FXD, FILM: 100 OHM, 5\%, 0.25N	57668	NTR2SJ-E 100E
R527	321-0227-00			RES,FXD.FILM:2.26K OHM, 1\%,0.125M,TC=TO	07716	CEAO22600F
R531	321-0334-00			RES,FXD,FIIN:Z9.4K OHW, 1\%,0.125N,TC=TO	07716	CEA029401F
R532	321-0164-00			RES, FXO, FILM:499 OHM, 1\%,0.125M, TC $=$ TO	19701	5033ED499R0F
R533	321-0335-00			RES,FXD,FIM $: 30.1 \mathrm{~K}$ OHW, $9 \%, 0.125 \mathrm{M}, \mathrm{T}=$ TO	57668	RB14FXE30K1
R539	321-0211-00			RES, FXD, FILM:1.54K OHW, 1\%,0.125 $\mathrm{N}, \mathrm{TC}=$ TO	07716	CEA015400F
R235	311-0849-00			RES, VAR, NOWN:TRWR,2K OHW, 0.5 M	01121	n -7789
R2540	311-0702-00			RES, VAR, NDICOH:PNL, 2SO OHM, O.5M	01121	KA1M048S251U2
R591	321-0222-00	8010100	8029999	RES,FXD,FIIM:2.00K $0 \mathrm{~mm}, 1 \%, 0.125 \mathrm{~N}, \mathrm{TC}=$ TO	19701	5033ED2K00F
R581	321-0202-00	8030000		RES, FXO,FILM:1.24X OHM, 1\%,0.125M,TC=TO	24546	Na5501241F
R543	317-0561-00	8010100	0029989	RES, FXO, CMPSN:560 OHW, 5\%,0.125	01121	B85615
R593	317-0391-00	8030000	8089999	RES,FXD, CMPSN:390 OHN,5\%,0.125N	01121	083915
R593	315-0391-00	8090000		RES,FXD,FILH:390 OHN,5\%,0.25N	57668	NTR25J-E390E
DS45	321-0251-00	8010100	8029999	RES,FXD,FII $:$:4.02K OHM, 1\%,0.125N,TC=TO	19701	5033ED4K020F
R545	321-0231-00	8030000		RES, FXD,FIIM:2.49K OHM, 1\%,0.125M, TC=TO	19701	5033@2K49F
R 551	321-0222-00	8010100	8029999	RES, FXD,FIIM:2.00K OHm, 1\%,0.125N, TC $=$ TO	19701	5033ED2K00F
R551	321-0202-00	8030000		RES,FXD,FIIM:1.24K OHW, 1\%,0.125M, TC=TO	24546	NA5501241F
R553	321-0251-00	8010100	8029999	RES, FXD, FILM: 4.02K OHM, 1\%, 0.125N, TC $=$ TO	19701	5033ED4K020F
R553	321-0231-00	8030000		RES,FXD,FIIM:2.49K OHW,1\%,0.125M,TC=TO	19701	5033ED2K49F
R357	317-0241-00	8010100	8089999	RES ,FXD, CMPSN:240 OHN, 5\%,0.125\%	01121	882415
RS57	315-0241-00	8090000		RES,FXD,FIMM:240 OHM ,5\%,0.25M	19701	5043Cx240R0J
R559	315-0510-00			RES,FXD, FIL M:51 OHM, $5 \%, 0.25 M$	19701	5043CX51R00J
R610	321-0223-00			RES,FXD,FIL M:2.05K OHM, 1\%,0.125M, TC=TO	80009	321-0223-00
R614 D618	321-0299-00				19701	5033ED12K70F
R610	315-0154-00			RES,FMO,FILM: 150K OHW,5x,0.25M (R6180)	57668	NTR25J-E1S0K
R618	321-0344-00			RES, FXO,FIIM:37.4K OHW,12,0.125M,TC=TO (R6188)	19701	5033® 37K40F
R618	315-0154-00			RES,FXD,FILH:150K OHW,5\%,0.25M (R618C)	57668	NTR25J-E150K
R618	315-0753-00			RES,FXD,FILM:75K OHW,5\%,0.25K (R6180)	57660	NTR25.-E75K0
R618	315-0753-00			RES,FXD,FIIM:75K OHW,5\%,0.25W (R618E)	57668	NTR25J-E75KO
R618	315-0154-00			RES,FXO,FIIM:150K OHW,5\%,0.25K (R618F)	57668	NTR25J-E150K
R618	315-0753-00			RES,FXX,FILA:75K OHW,5\%,0.25M (R6186)	57668	NTR25N-E75KO
R618	315-0753-00			RES,FXD,FIMA:75K OHW,5\%,0.25K (R618H)	57668	NTR25N-E75K0
R618	315-0123-00			RES, FXD,FILM:12K OHW,5\%,0.25W (R618,)	57668	NTR25-E12K0
R618	321-0344-00			RES,FXD,FILM:37.4K OHM,12,0.125M,TC=TO (R618K)	19701	5033Ш 37K40F
R618	315-0753-00			RES,FXD,FIIM:75K OHW,5\%,0.25K (R618L)	57668	NTR25J-E75K0
R618	315-0154-00			RES,FXD,FIIM:150K OHW,5\%,0.25M (R618M)	57660	NTR25.)-E150K
R618	315-0513-00			RES,FXD,FILW:51K OHW,5\%,0.25M (R6180)	57668	NTR25N-E51KO
R620	321-0223-00			RES,FXD, FIL.W:2.05K OHM, 1\%, 0.125M,TC=TO	80009	321-0223-00
R522	315-0220-00			RES,FXD,FILM:2.2K O9\% ,5\%,0.25M	57668	NTR25-E02K2

Component No.	Tektronix Part No.	Serial/Ass Effective	mbly No. Dscont	Name \& Description	Mfr. Code	Mfr, Part No.
R630	315-0104-00			RES , XXD, FIUN:100K OWR , 52,0.25n	57668	MTR25N-E100K
R632	317-0223-00	8030000	6089999	RES, TXO, CMPSN:22K OHW,5\%,0.125	01121	882235
R632	315-0223-00	B090000			19701	5073C122xDOM924
R634	317-0203-00	8010100	8089999		01121	882035
R634	315-0203-00	8090000		RES,FXO, FIM 20 K OHM, 52,0.253	57668	MTR2SN-E 20K
RT221	307-0189-00			RES, THEMAL:100K OSW, 102,NTC	14193	K10-10002X
RT223	307-0181-00			RES,THEDMAL:100\% OFM,102,NTC	14193	K10-10002K
5101				(PGRT OF A3)		
5108	105-0443-00			aCTR ASSY CAM S:ATTON	00009	105-0413-00
5201	--...- --.			(PART OF AM)		
5359	--.--			(PART OF A1)		
S407	-------			(PART OF A2)		
5426	105-0109-00			ACTVATOR,CAM SM:H.F.-308 SEL	80009	105-0109-00
VR270	152-0212-00			SEAICONO OVC, $01: 201,51.9 V, 52,0.54,00-7$	04713	S250646RL
VR271	152-0405-00			SEIICONO OVE, $01: 2 \mathrm{E}, 51,15 \mathrm{~V}, 5 \%, 9 \mathrm{M}, 10-41$	12954	02841205a
VR305	152-0306-00	8010100	8020999	SENICONO OVC,0I: 2 E1, $51,9.15,5 z, 0.4 \mathrm{M}, 00-7$	12954	1 N 960
VR305	152-0168-00	8030000		SEAICOMO OVC, OL: $20 \mathrm{~N}, 5 \mathrm{SL}, 12 \mathrm{~V}, 5 \mathrm{~L}, 0.4 \mathrm{M}, 00-7630$	14552	T0331689
VR310	152-0405-00			SEIICONO OVC, OL: $2 \mathrm{EN}, 5 \mathrm{SI}, 15 \mathrm{~V}, 5 \mathrm{z}, 1 \mathrm{M}, 10-41$	12954	02891205a
VR320	152-0280-00			SEIICONO OVC, OL:Z®, $51,6.2 \mathrm{~V}, 5 \mathrm{~S}, 0.4 \mathrm{M}, 00-7$	04713	117753a
VR325	152-0212-00			SEIICOO OVC,01:20, SI .9V,5z,0.5N,00-7	04713	S250840RL
VR330	152-0280-00			SEIICOWO OVC,OI:LE, $51,6.2 \mathrm{~V}, 5 \mathrm{~S}, 0.4 \mathrm{M}, 00-7$	04713	117753A

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols and Reference Designators

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors $=$	Values one or greater are in picofarads (pF).
	Values less than one are in microfarads $(\mu \mathrm{F})$.
Resistors $=$	Ohms (Ω).

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.
Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.
The overline on a signal name indicates that the signal performs its intended function when it goes to the low state.
Abbreviations are based on ANSI Y1.1-1972.
Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966	Drafting Practices.
Y14.2, 1973	Line Conventions and Lettering.
Y10.5, 1968	Letter Symbols for Quantities Used in Electrical Science and
	Electrical Engineering.

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.

A	Assembly, separable or repairable (circuit board, etc)	H	Heat dissipating device (heat sink. heat radiator. etc)
AT	Altenuator, fixed or variable	HR	Heater
B	Motor	HY	Hybrid circuit
BT	Battery	J	Connector. stationary portion
C	Capacitor. fixed or variable	K	Relay
CB	Circuit breaker	L	Inductor, fixed or variable
CR	Diode. signal or rectifier	M	Meter
DL	Delay line	P	Connector, movable portion
OS	Indicating device (lamp)	0	Transistor or silicon-controlled
E	Spark Gap. Ferrite bead		rectifier
F	Fuse	R	Resistor. fixed or variable
FL	Filter	RI	Thermistor

S	Switch or contactor
T	Transformer
TC	Thermocouple
TP	Test point
U	Assembly. inseparable or non-repairable V\quad(integrated circuit, etc.)
VR	Voltrone regulator (zener diode, etc.)
W	Wirestrap or cable
Y	Crystal
Z	Phase shifter

The following special symbols may appear on the diagrams:

REPLACEABLE MECHANICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are avaitable from or through your local TekIronix. Inc. Field Oflice or representative.

Changes to Tekironix instruments are sometimes made to accommodate improved components as they become available. and 10 give you the benefit of the latest circuit improvements developed in our engineering department. If is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a pari you have ordered has been replaced with a new or improved part. your local Tektronix. Inc. Field Olfice or representative will contact you concerning any change in part number.

Change information, it any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

x000 Part firstadded at this serial number
00X Part removed after this serial number

FIGURE AND INDEX NUMBERS
liems in this section are seferenced by ligure and index numbers to the illustrations.

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column

12345
Name 8 Description
Assembly andlor Component
Altaching parts for Assembly andlor Component
Detail Part of Assembly andlor Component
Alfaching parts for Detail Part
...••.
Parts of Detail Part
Altaching parts for Parts of Detail Part

Allaching Parts always appear in the same indentation as the item il mounts. while the detail parts are indented to the right. Indented items are part ol, and included with, the next higher indentation. The separation symbol ---•- - indicates the end of aflaching parts.

Allsching paris mustbe purchased separately, unless otherwise spectiled.

ITEM NAME

In the Parts List. an Item Name is separated from the description by a colon (:). Because ol space limitations, an liem Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

ABBREVIATIONS

-	INCH	ELCTRN	ELECTRON	in	INCH	SE	SINGLE ENO
*	NUMBER SIZE	ELEC	ELECTRICAL	INCANO	INCANDESCENT	SECT	SECTION
ACTR	ACTUATOR	ELCTLT	ELECTROLYTIC	INSUL	INSULATOR	SEMICONO	SEMICONDUCTOR
AOPPR	ADAPTER	ELEM	ELEMENT	INTL	INTERNAL	SHLO	SHIELD
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LIST	LPHLOR	LAMPHOLOER	SHLOR	SHOULDERED
AL	ALUMINUM	EOPT	EOUIPMENT	MACH	MACHINE	SKT	SOCKET
ASSEM	ASSEMBLED	EXT	EXTERNAL	MECH	MECHANICAL	SL	SLIDE
ASSY	ASSEMBL.V	FIL	FILLISTER HEAD	MTG	MOUNTING	SLFLKG	SELF.LOCKING
ATTEN	ATTENUATOR	FLEX	FLEXIBLE	NIP	NIPPLE	SLVG	SLEEVING
AWG	AMERICAN WIRE GAGE	FLH	FLATHEAD	NON WIRE	NOT WIRE WOUND	SPR	SPRING
BO	BOARD	FETR	FILTER	OBO	ORDER BY OESCRIPTION	SO	SOUARE
ВАкт	BRACKET	FR	FRAME OP FRONT	OD	OUTSIDE DIAMETER	SST	STAINLESS STEEL
BRS	BRASS	FSTNA	FASTENER	OVH	OVAL HEAD	STL	STEEL
BRZ	BRONZE	FT	FOOT	PHBRZ	PHOSPHOR BRONZE	SW	SWITCH
BSHG	BUSHING	FXO	FIXEO	PL	PLAIN OR PLATE	T	TUBE
CAB	CABINET	GSKT	GASKET	PLSTC	PLASTIC	TERM	TERMINAL
CAP	CAPACITOR	HOL	HANDLE	PN	PART NUMBER	THO	THREAD
CER	CERAMIC	HEX	HEXAGON	PNH	PAN HEAD	THK	THICK
CHAS	CHASSIS	HEX HO	hexagonal heao	OWR	POWER	TNSN	TENSION
CKT	CipCuit	HEX SOC	HEXAGONAL SOCKET	RCPT	RECEPTACLE	TPG	TAPPING
COMP	COMPOSTIION	HLCPS	HELICAL COMPRESSION	RES	RESISTOR	TRH	TRUSS HEAD
CONN	CONNECTOR	HLEXT	HELICAL EXTENSION	RGO	PIGID	v	VOLTAGE
cov	COVER	HV	HIGH VOLTAGE	RLF	RELIEF	VAR	VARIABLE
CPLG	COUPLING	3C	INTEGRATED CIRCUIT	RTNR	RETAINER	W	WITH
CRT	CATHODE RAY TUBE	10	INSIDE DIAMETER	SCH	SOCKET HEAD	WSHR	WASHER
DEG	DEGREE	IOENT	IOENTIFICATION	SCOPE	OSCILLOSCOPE	$X \neq M R$	TRANSFORMER
OWR	DRAWER	IMPLR	IMPELLER	SCR	SCREW	XSTR	TRANSISTOR

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip Code
00779	amp INC	P 0 B0X 3608	HARRISBURG PA 17105
06915	RICHCO PLASTIC CO	5825 N TRIPP AVE	CHICAGO IL 60646
06950	VSI CORP	13001 E TEAPLE AVE	CITY OF IHDUSTRY CA 91746
	SCREACORP OIVISIOW		
12327	freegay Corp	9301 ALLES DR	CLEVELAND OH 44125
22526	do pont e I oe namours ano co inc OU PDNT COHNCTOR SYSTEMS	30 Hanter line	CONP HILL PQ 17019
22599	AMERACE CORP ESMA DIV	$15 \mathrm{RO1}$ bupamk blvo SUITE C	VOW NUYS CA 91419
24546	CORNING GLaSS morks	550 HIGH ST	BRADFORD PA 16701
24931	SPECIALTY COANECTOR CO INC	2620 EDRESS PLACE p 0 box 0	GREEAOOO IM 46142
27238	BRISTOL INOUSTRIES	630 E LaMEERT RO P 0 80X 630	BREA CA 92621
28520	HEYCO WOLOED PROOUCTS	147 MICHIGON AVE P 0 BOX 160	KENILMORTH WN 07033
56878	SPS TECIODLOGIES INC	highlot ave	JExINTOM PA 19046
71785	TRE INC TRO CINCH COFAECTORS	1501 WORSE AVE	EUK GRDVE VILLOGE IL 60007
73743	FISCHER SPECIAL MFG CO	446 MORGON ST	CIMCIMAATI OH 45206
74445	HOLO-KROME CO	31 BROOK ST	MEST HARTFORP CT 06110
76854	OAK SNITCH SYSTEMS INC SUE OF OAK TECHOLOGY INC	1005 MAIN ST	CRYSTAL LAKE IL 60014
77900	SHAKEPROOF OIV OF ILLINOIS TOOL RORKS	SAINT CHARLES RO	EIGIN IL 60120
78189	ILLIMOIS TOOL WDRXES INC SHAKEPROOF DIVISION	St CHarles road	ELGIN IL 60120
$\begin{aligned} & 79136 \\ & 60009 \end{aligned}$	maldes kohinoor inc TEXTRONIX INC	47-16 AUSTEL PLACE 4900 S M GRIFFITH OR 0080×500	LONG ISLOTD CITY NTY 11109 BEAVERTON OR 97077
83385	microoot menfacturing ime GREER-CENTRAL DIV	3221 M OIG BCAVER RD	TROX MI 48099
83486	ELCO IHOUSTRIES INC	1101 Samuenson Ro	ROCKFORD IL 61101
86920	SEASTROW HFF CO IMC	201 SCMORA AVE	GLEDALE Ca 91201
87308	$\begin{aligned} & \text { N L IMOUSTRIES IMC } \\ & \text { N L FASTENERS } \end{aligned}$	$\begin{aligned} & \text { BaRKLEY RO } \\ & \text { P O BOX } 1360 \end{aligned}$	STATESVILLE NC 28677
93907	TEXTRON INC COWEAR OIV	600 18TH AVE	ROCKFORD IL 61101
95987	MECKESSER CO INC	4444 MEST IRVIMG PaRK RO	CHICAGO IL GOEA 9
99934	REPARAATITINC.	6 PaRMELEE STREET	80STON, wh 02118
TK0433	PORTIAND SCREM CO	6520 N Bas In	PORTLCNDO OR 97217
TK0435	LEMS SCREN CO	4114 S PERTA	CHICAGO IL 60609

Fig. 8

index No.	Tektronix Part No.	Serial/Assembly No. Effective Dscont	Qty	12345 Name \& Description	Mfr. Code	Mfr, Part No.
1-1	366-1059-00		1	PUSH BUTTON:GRaY ,0.227 00×0.3	80009	366-1059-00
-2	366-1077-00		1	DVOE:GRAY M/SETSCREM	80009	366-1077-00
	213-0153-00		1	.SETSCREX:5-40 X 0.125, STL	27238	OROER BY OESCR
-3			1	RESISTOR, VAR: (SEE R430 REPL) (atraching parts)		
-4	210-0046-00		1	MASHER,10CK:0.261 10, INTL, 0.018 THK, STL	77900	1214-05-00-0549C
-5	210-0940-00		1	MASHER,FLAT:0.25 ID $\times 0.37500 \times 0.02,5 \mathrm{TL}$	12327	OROER BY OESCR
-6	210-0583-00		1	NUT,PLAIN,HEX:0.25-32 X 0.312,8RS CO PL (ED ATTACHING PARTS)	73743	2X-20319-402
-7	366-0392-02		1	H000:GY, 0.125 to $\times 0.375 \mathrm{H} \times 0.812 \mathrm{H}$	80009	366-0392-02
-8			1	RESISTOR,VAR:(SEE R258 REPL) (attaching parts)		
-9	213-0020-00		1	SETSCREX:6-32 $\times 0.125,5$ SL (ED ATTACHING PARTS)	TK0433	OROER OY OESCR
-10	366-9166-00		1	R000:REd, $0.12710 \times 0.39200 \times 0.4 \mathrm{H}$	80009	366-1166-00
	213-0153-00		1	.SETSCREM:5-40 $\times 0.125,5 \mathrm{TL}$	27238	ORDER BY OESCR
-11	366-1057-00		1	W000:GY, 0.252 ID $\times 0.79600 \times 0.79 \mathrm{H}$	80009	366-1057-00
	213-0153-00		1	.SETSCREM:5-40 \times 0.125, STL	27238	OROER BY OESCR
-12	366-0379-00		1	H009:GRAY, $0.12710 \times 0.500 \times 0.93 \mathrm{H}$	80009	366-0979-00
	213-0153-00		1	.SETSCREM:5-40 X 0.125,STL	27238	OROER BY DESCR
-13	366-0379-00		1	1000:GRAY, $0.12710 \times 0.500 \times 0.93 \mathrm{H}$	80009	366-0379-00
	213-0153-00		1	.SEISCREM:5-40 $\times 0.125 .5 T L$	27238	OROER OY OESCR
-14	366-1084-00		1	H000:GY, $0.0810 \times 0.39200 \times 0.4 \mathrm{H}$	60009	366-1084-00
	213-0725-00		1	.SETSCREA:3-48 \times 0.094, STL	5687	OROER BY OESCR
-15	366-1101-00		1	H009:GY, $0.12710 \times 0.70600 \times 0.6 \mathrm{H}$	80009	366-1101-00
	213-0153-00		1	.SEISCREM:5-40 \times 0.125.STL	27238	OROER BY OESCR
-16			1	RESISTOR,VAR:(SEE R270 REPL) (attaching parts)		
-17	210-0583-00		1	MUT,PLOIN,HEX:0.25-32 \times 0.312,8RS CO PL	73743	2x-20319-402
-18	210-0046-00		1	MASHER, LOCK:0.261 10 ,INTL, 0.018 THK, STL (BD ATTACHIMG PARTS)	77900	1214-05-00-0541¢
-19	426-0474-00		1	MOLNT, RESILIENT:NATURAL ACETAL (ATTACHIMC PARTS)	80009	426-0474-00
-20	211-0111-00		2	SCRET, MACHINE:2-56 X 1.0, PNH,STL	06950	OROER BY OESCR
-21	210-0001-00		2	MASHER,IDCK: 2 INTL, 0.013 THK,STL (BD ATTACHING PARTS)	77900	1202-00-00-0541C
-22	361-0290-00		2	SPACER,SLEEVE: 0.7510×0.092 [0,日RS	76854	3-5152-340
-23	--- ---		1	RESISTOR,VAR: (SEE R265 REPL) (attaching parts)		
-24	210-0583-00		2	MUT,PLIN, HEX:0.25-32 $\times 0.312,8 R S$ CO PL	73743	2x-20319-402
-25	210-0046-00		1	MASHER,LDCK:0. 261 10, INTL, 0.018 THK, STL	77900	1214-05-00-0541C
-26	210-0940-00		,	MASHER,FLAT: $0.2510 \times 0.37500 \times 0.02,5 \mathrm{TL}$ (ED ATTACHIMG PQRTS)	12327	OROER BY OESCR
-27	386-1095-00		1	PLATE,CMPNUT MTG:VAR RESISTOR,STL CO PL	80009	386-1095-00
-28	333-1106-00		1	POKEL, FRONT:	80009	333-1106-00
-29	386-1447-07		1	SIIPPAMEL FROONT:	80009	386-1447-07
-30	348-0031-00		2	GRCHEE, PLASTIC:0.127 I0,GRAY ACETAL	80009	348-0031-00
-31	359-0216-00		1	GROIMET, PLOSTIC:GRAY, ROLND , 0.25710	80009	358-0216-00
-32	358-0378-00	80101008117899	1	8USHING,SLEEVE:0.131 $10 \times 0.1800 \times 0.125 \mathrm{~L}$	80009	358-0378-00
	350-0599-00	8117900	1	QUSHING, SLEEVE: $0.12510 \times 0.2500 \times 0.234$	28520	8-187-125
	129-0053-00		1	POST.8DG, ELEC:5 MAY, UNINSULATED	80009	129-0053-00
-33	200-0103-00		1	.MUT.PLAIN, WAURL: $0.25-28 \times 0.375^{\circ} 00$ ERASS	80009	200-0103-00
-34	355-0507-00		1	.STVO,SHOUIDERED:OINOING POST,GRS NP (ATTACHIMG PARTS)	80009	355-0507-00
-35	210-0046-00		1	WOSHER,LOCK:0.261 10, INTL, 0.018 THK, STL	77900	1214-05-00-0549C
-36	210-0583-00		1	MUT,PIAIN,HEX:0.25-32 X 0.312,日RS CO PL (EV ATTACHING PARTS)	73743	2x-20349-402
-37	131-0679-02		2	COMN.RCPT,ELEC:8NC,MALE, 3 CONTACT (ATtaching parts)	24931	28JR270-1
	210-1039-00		2	MaSHER,LOCK:0. 521 10, INT, 0.025 THK, SST	24939	OROER BY OESCR
	200-0497-00		2	NUT,PIAIN,HEX:0.S-28 X 0.562 HEX,BRS CO PL (E) attaching Parts)	80009	220-0497-00
-38	366-1058-07		1	H00:GRaY, 7022. (attachimo parts)	80009	366-1058-07
-39	214-1095-00		1	PIN,SPRING:0.187 L X $0.09400, S T L, C D$ PL (be attaching parts)	22599	52-022-094-0187
-40	105-0076-02	80101008122379	1	RELEASE BAR,LCH:PLUG-IN UNIT	80009	105-0076-02

Fig. 8

Fig． 8

Index No．	Tektronix Part No．	Serial／Assembly No． Effective Dscont	Qty	12345 Name \＆Description	Mfr． Code	Mfr．Part No．
2－1	384－0255－00		1	EXTENSION SHAFT：5．594 L X 0.125 STEP 00	80009	384－0255－00
－2	384－0306－00		1	EXTOSSION SHAFT： $9.5 \downarrow \times 0.125$ STEP 00.5 SL	80009	384－0306－00
－3	384－0444－00		1	EXTENSION SHAFT：10．730 X X $0.12500 . \mathrm{AL}$	80009	384－0444－00
－4	351－0159－00		1	GUIOE，SHAFT：U／M 0.12500 SHAFT ，OELRIN （attaching parts）	80009	351－0159－00
－5	213－0088－00		1	SCREM，TPG，TF：4－24 X 0．25，TYPE 日，PRN，STL （ENO ÁTTACHING PARTS）	83385	OROER BY OESCR
－6	131－0792－02		2	COMAECTOR，TER ： 18 －20 RNG，CU BE GOLD	80009	131－0792－02
	199－1999－00		1	HIRE SET ELEC：	80009	198－1999－00
－7	131－0622－00		2	．CONTACT，ELEC：28－32 AKG， 8 （ $\%$ CU BE GID PL	22526	4624i－000
－8	352－0198－00		2	．HLOR，TEM COAP： 2 HIRE，BLACK	80009	352－0198－00
－9	131－0740－01		2	．CO\＆dECTOR，TEM：18－20 AWG，CU OE GOLD PL	00779	61942－1
－10	131－0755－01		2	．CONTACT，ELEC：28－32 Ang， 8 C CU GOLD PL，WOO	00779	61943－1
－11	352－0169－00		2		80009	352－0169－00
－12	179－1407－00		1	HIRIMG HAPNESS：MAIN	80009	179－1407－00
－13	131－0707－00		4	．CONTACT，ELEC：22－26 AMG，日RS，CU BE GID PL	22526	47439－000
－14	131－0512－00		27	．CONTACT，ELEC：COFWECTOR，CU EE GOLD PL	00779	61507－1
－15	352－0136－00		1	FISEHOLDER：（2）3AG SPARE （ATTACHING PARTS）	80009	352－0136－00
－16	211－0000－00		2	SCREA，MACHINE：4－40 $\times 0.25$ ，PNH，STL	93907	OROER OY OESCR
－17	210－0586－00		2	WUT，PL，ASSEM MA：4－40 X 0．25．5TL CO PL （DN ATTACHING PARTS）	78189	211－041800－00
－18	200－0902－00		1	COVER，CKT BOARO：OOX PLASTIC （attachimg parts）	80009	200－0902－00
－19	211－0008－00		1	SCREA，MACHINE：4－40 $\times 0.25$ ，PNH，STL （EN ATTACHING PARTS）	93907	OROER BY OESCR
－20	200－0687－01		2	COVER，XSTR：TO－5，ACETAL	80009	200－0687－01
－21			1	RESISTOR，VAR：（SEE RS4O REPL） （attachimg parts）		
－22	407－0554－00		1	ORACKET，CMPNT： PRASS AIBALOY PL	80009	407－0554－00
－23	210－0046－00		1	MASHER，LOCK：0．281 ID，INTL， 0.018 THK，STL	77900	1214－05－00－0541C
－24	210－0583－00		1	NUT，PIAIN，HEX：0．25－32 $\times 0.312,8 R S$ CD PL （Dio aftaching parts）	73743	2X－20319－402
－25	376－0029－00		1	CPLG，SHAFT，RG 0：0．128 IO X $0.31200 . \mathrm{AL}$	80009	376－0029－00
	213－0075－00		2	．．SETSCREN：4－40 \times 0．094，STL	74445	ORDER OY OESCR
－26			1	CKT BOARD ASSY：BAHOHIOTH（SEE A1 REPL） （attachimg parts）		
－27	211－0155－00		4	SCREN，EXT RLV：4－40 X 0．375．PNH，SST，PO2	80009	211－0155－00
－28	210－1140－00		4	MASHER，SHIOR：0．115 10×0.37500 （ED DTTACHING PARTS）	80009	210－1140－00
				CKT BOARD ASSY IMCLUDES：		
－29	351－0155－00		5	．INSULATOR，STOF：CONECTOR，DELRIN	80009	351－0155－00
－30	131－0608－00		5	．TERMIMAL，PIN：0．365 L X 0.025 日RL GLO PL	22526	48283－036
－31	136－0263－01	$8010100 \quad 8010180$	18	．SOCKET，PIN TEM：U／M 0.025 SQ PIN	00779	85861－2
	136－0263－03	8010181 8094559	18	．SOCKEI，PIN TEPM：U／M 0．025 SQ PINS	00779	85864－2
	136－0263－04	8094560	18	．SOCKET，PIN TEPN：U／M 0．025 SQ PIN	22526	75377－001
－32	136－0183－00	80101008121634	3	．SKT，PL－IN ELER：TRANS， 3 CONTACT，PCE MT	80009	136－0183－00
－33	136－0220－00	80101008121634	3	．SKT，PL－IN ELER：TRANSISTOR 3 CONTACT	71785	133－23－11－034
	136－0252－07	8121635	18	．SOCKET，PIN COAW：M／O DIMPLE	22526	75060－012
－34	131－0604－00		24	．CONTACT，ELEC：CKT BO SH，SPR，CU BE	80009	131－0604－00
－35	131－0990－00	8010181	2	．CONTACT，ELEC：GROUNOING，NI BE	80009	131－0840－00
	105－0815－00		1	．ACTR ASSY，CAN 5：\quad ONDAIOTH ．（afraching parts）	80009	105－0415－00
－36	211－0116－00	80101008120999	4	．SCR，ASSEN MSHR：4－40 $\times 0.312$ ，PNH， 8 RS，NP	77900	ORDER AY OESCR
	211－0292－00	8121000	4	．SCR，ASSEK KSHR：4－40 X 0．29，PNH ，日RS NI PL ．（EN ATTACHING PARTS）	78189	51－040445－01
－37	200－0996－00		1	．．COVER，CON SH：16 ELEANONTS （attaching parts）	80009	200－0996－00
－38	211－0022－00		2		TK0435	OROER OY OESCR
－39	210－0001－00		2	．．M SHER，LOCK：${ }^{2} 2$ INTL，0．013 THK，STL ．．（ENO AITACHING PARTS）	77900	1202－00－00－0541c
－40	407－0714－00		1		80009	407－8714－00
－41	214－1128－02		2	．．SPPING，FLAT：0．7 X 0．125，CU BE RED CLR	80009	214－1126－02
－42	214－1127－00		1	．．ROLLER，OETENT： 0.125 OIA $\times 0.125,55 T$	80009	214－1127－00
－43	401－0000－00		1	．．日EARING，CAN SM：FRONT，0．454 DIA CRN ．．（ATtachimg Parts）	80009	401－0058－00
－44	354－0219－00		1	．．RING，RETAINING：EXT，CRESCENT，U／O 0.25 OIA	79136	5103－25－5－20－R

Fig． 8

Index Tektronix Serial／Assembly No．

Index No．	Tektronix Part No．	Serial／Assembly No． Effective Dscont Qty	12345 Name \＆Description	MFr． Code	Mfr，Part No．
2－．（ED ATTACHING PARTS）	．（ED ATTACHINE PARTS）				
－88	131－0604－00	33	．CONTACT，ELEC：CKT BO SN，SPR，CU BE	80009	131－0604－00
－89	131－0600－00	22	．TERNIMAL，PIN：0．365 L X 0.025 BRZ GLD PL	22526	48283－036
－90	214－1190－00	1	．CPLG，SMAFT，RGO：D．12500 TO 0.125 00，QL	80009	214－1190－00
	213－00「5－00	1	．．SETSCREN：4－40 \times 0．094，STL	74445	OROER OY OESCR
$\begin{aligned} & -91 \\ & -92 \end{aligned}$	214－1136－00	1	．ACTUATOR，SL SM：VARIAOLE CAL	00009	214－1136－00
	351－0180－00	1	．GUIDE，SLIOE SM：SNITCH ACTUATOR	800009	351－0180－00
	105－0413－00	1	．ACTR ASSY，CAN S：ATIEN ．（ATTACHING PARTS）	80009	105－0413－00
－93	211－0118－00	4	．SCR，ASSEM WSHR：4－40 X 0．312，PAH，BRS，NP ．（ED ATTACHING PARTS）	77900	ORDER BY OESCR
－98	200－0952－00	1	．．COVER，CAN SM：20 ELENETS ．．（aTtaching parts）	80009	200－0952－00
－95	211－0022－00	2	．．SCREN，MACHINE：2－56 X 0．188，PWH．STL	TK0435	OROER BY OESCR
－96	210－0001－00	1	．．MASHER，LOCK： 2 INTL，0．013 THK，STL	77900	1202－00－00－0541C
－97	210－0259－00	1	．．TERMIMAL，LJG：0．099 IO，LOCKING，日RS CD PL ．．（END ATTACHING PARTS）	80009	210－0259－00
－98	214－1139－02	1	．．SPRING，FLAT：0．885 $\times 0.156$ CU BE GRY CLR	800009	214－1139－02
	214－1139－03	1	．．SPRING，FLAT：0．895 $\times 0.156$ CU BE RED CLR	80009	214－1139－03
－99	214－1127－00	1	．．ROLLER，OETENT：0．125 O1A X $0.125 .5 S T$	80009	214－1127－00
－100	210－0405－00	1	．．MUT，PLAIN，HEX：2－56 X 0．188，日RS CO PL	73743	12157－50
	210－0406－00	2	．．MWT，PLAIN，HEX：4－40 X 0．188，BRS CO PL	73743	12161－50
－102	401－0054－00	1	．．BEARIMG，CAM SK：FRONT ． ．．（ATTACHIMG PARTS）	80009	401－0054－00
－103	354－0219－00	1	．．RING，RETAINING：EXT，CRESCENT，U／O 0.25 DIA ．（DO ATTACHIMC PARTS）	79136	5103－25－5－20－R
－104	105－0110－00	1	．．ACTUATOR，CAN SM：ATT OUATOR	80009	105－0110－00
－105	210－0405－00	1	．．MUT，PLALN，HEX：2－56 X 0．188，8RS CO PL	73743	12157－50
$\begin{aligned} & -106 \\ & -107 \end{aligned}$	210－0906－00	2	．．MWT，PLAIN，HEX：4－40 X 0．188，BRS CD PL	73743	12161－50
	401－0056－00	1	．．BEARINS CAN SM：REAR，0．83 DIA CAM	60009	401－0056－00
	105－0465－00	1	．aCTR ASSY，CAN S：GAIN／REAOOUT ．（ATTACHING PORTS）	80009	105－0465－00
－108	211－0116－00	4	$\text { .SCR,ASSEA WSHR: } 4-40 \times 0.312 \text {, PMA, BRS,NP }$ (DD ATTACHING PORTS)	77900	ORDER BY OESCR
－109	200－0953－00	1	．．COVER，CAN SM：16 ELEMENTS ．．（ATTACHING PARTS）	80009	200－0953－00
－110	211-0022-00	2	．．SCREN，MACHINE：2－56 x 0.188. PM ，STL	TK0435	ORDER BY OESCR
$\begin{aligned} & -111 \\ & -112 \end{aligned}$	210－0001－00	1	．．MASHER，LOCK： 2 INTL，0．013 THK，STL	77900	1202－00－00－0541C
	210－0299－00	1	．．TEPMIMAL，LK：0．099 10，LOCKING，BRS CO PL ．．（DD ATTACHING PARTS）	80009	210－0259－00
－113	214－1139－00	1	．SPRIME，FLAT：0．885 $\times 0.156$ CU BE GID CLR	80009	214-1139-00
	214－1139－03	1	．．SPRING，FLAT：0．885 $\times 0.156$ CU BE RED CLR	80009	214－1139－03
－114	214－1127－00	1	．．ROLLER，OETENT：0．125 DIA X 0．125，SST	80009	214－1127－00
－115	210－0406－00	2	．．MNT，PLALN，HEX：4－40 x 0．188，日RS CD PL	73743	12161－50
$\begin{aligned} & -116 \\ & -117 \end{aligned}$	210－0405－00	1	．．MJT，PLALN，HEX：2－56 X 0．188，BRS CO PL	73743	12157－50
	401－0057－00	1	．．日EARING，CAN SM：FRONT M／O．B3 DIA BSHO ．．（aTTACHING PARTS）	80009	401－0057－00
－118	351－0219－00	1	．．RING，RETAINING：OXT，CRESCENT，U／O 0.25 OLA ．（BN ATTACHING PARTS）	79136	5103－25－S－10－R
－119	105－0111－00	1	．．ACTUATOR，CAN SM：GAIM／REMOOUT	800009	105－0111－00
－120	210－0905－00	1	．．MUT，PLALM，HEX：2－56 \times 0．189，日RS CD PL	73743	12157－50
$\begin{aligned} & -121 \\ & -122 \end{aligned}$	210－406－03	2	．．MNT，PLALN．HEX：4－40 X 0．188，BRS CD PL	73743	12161－50
	401－0056－00	1	．．BEARING，CAM SM：REAR，0．83 DİA CAM	80009	401－0056－00
			STMDAPD ACCESSORIES		
	070－0931－00	1	Meral ，TCH：INSTRUCTION	80009	070－0931－00

MANUAL CHANGE INFORMATION

At Tektronix. we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on foliowing pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

MANUAL CHANGE INFORMATION

Date: _ $2 / 12 / 86$ Change Reference: _ C $6 / 986$

Product:-_7A22
Manual Part No.: 070-0931-00
DESCRIPTION
PG 42

FOR EFFECIIVE SERIAL NLMEERS (SEE BFION)

REPIACEABIE ELECIRICAL. PARIS LISI CHANES

OPANE TO:

A3	670-1051-00	B010100	8059999	CIROTR ED ASSY:INPT COPING SN
A3	670-1051-01	E060000	Bl18249	CIRIIT ED ASSX:'NaU' CUPLING SW
A3	670-1051-02	B118250		CIRUIT BD ASSX:ITNI COIFING SW
A	670-1050-00	B010100	8059999	CIFUITP R ASSY:INHU COHPING SN
A	670-1050-01	ED60000	Bl18249	URUILP BD ASY:INEUT COFLING SN
\cdots	670-1050-02	B118250		CIROIT HD ASSY:INPI' CUPLING SW

THE FOLIOWING OFANES ARE FFFECIIVE FOR ALL SERIAL NMBERS

MECHANICAL PARIS LIST CHANFES
OANE TO:

1-68	342-0212-00	1	INSUIAIIR,FILM,CIROUIT BOAFD MYIAR
2-28	214-1140-00	1	STRING,KIPF,0.251 क) 0.375 L,CIE FNDS,S

[^0]: The DC plus peak AC voliages an the test points with respect is the chassis potential of the Trpe 7422 should be limited to the levels listed in Section I under Maximum Common-mode Input Voltage characteristics. Higher levels wlll degrade the common-mode relection ratio and exceed the input voltage rating of the unlt.

[^1]: Many electrical components ore mounted in a particular way to reduce or control stray capacitance and inductance. When selecting replacement ports, it is important to remember that the physical size and shape of a component may affect its performance at high frequencies. When a repair is mode, calibration and performance of the relevant portions of the circuit should be checked. Refer to Toble 4.1 and to the Performance Check/Calibration procedure in Section 5 and perform the applicable steps.

