Tektronix
 COMMITTED TO EXCELLENCE

DC5009

\equiv

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

INSTRUCTIDN MANUAL

TEK INTER-OFFICE COMMUNICATION

GIDEP permit request

In response to the request to grant permission to the Government Industry Exchange Program (GPDEP) to reproduce Tektronix operator, service and instruction manuals. Tektronix, Inc. hereby grants such permisaion for distribution of such documents to any GIDEP user that is a full participant In the Metrology Data Interchange Data Base of GIDEP provided that all coples of the original work include the entire copyright notice and ownership statement exactly as it appears in the original, together with the Legend "Reproduced with permission."

This peralssion has been approved by the Inteliectual Froperty committee of rektronix, and a copy of this memo may be provided to GIDEP to provide the requested permission.

$1 m p$
\qquad

All references to the SA 501 in this manual now apply to the 067-1090-00 Signature Analyzer.

Date: 11-25-81
\qquad Change Reference: \qquad
C4/1181
Product: DC 5009 Manual Part No.: \qquad DESCRIPTION

CHANGE TO:
Fig. 8-5 SETUP CONDITIONS
Change SA CLOCK TP 1302 to a falling edge (\square^{\prime}).

Fig. 8-6 SETUP CONDITIONS
Change SA CLOCK TP 1302 to a rising edge (\quad).

Tektronix
COMMITITO TO EXEEUENCE
Date: \qquad 1-15-82 Change Reference: \qquad C5/182

Product:
DC 5009 UNIVERSAL COUNTER/TIMER Manual Part No.:

070-3888-00

DESCRIPTION

EFF ALL SN
TEXT CHANGES
Page 1-3 Table 1-2, ELECTRICAL CHARACTERISTICS
Characteristic: Trigger Levels, Accuracy
CHANGE: Supplemental Information to read:
$\pm 45 \mathrm{mV} \pm 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referenced to $25^{\circ} \mathrm{C}$. (Typical)
$\left[\pm 15 \mathrm{mV} \pm 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right.$ at front panel connectors.]
Actual triggering voltage is subject to changes
in input signal to noise ratio and risetime.
See resolution and accuracy statements.

Page 1-4 Table l-2 (cont)
Characteristic: Trigger Levels (cont)
Trigger Level Output Accuracy
CHANGE: Performance Requirements to read:
Within $\pm 30 \mathrm{mV}$ of internal DC . . .
Page 4-4 4. Check the CHANNEL A TRIGGER LEVEL Output Accuracy; $\pm 10 \mathrm{mV}$ of Internal DC Trigger Level Voltage

CHANGE: $\pm 10 \mathrm{mV}$ to read: $\pm 30 \mathrm{mV}$

Page 4-5
g. CHECK—that the digital multimeter readout indicates between -.010 and +.010 V .

CIANGE: $\quad-.010$ and +.010 V to read: -.030 and +.030 V

Page 4-5 i. CHECK-that the digital multimeter readout indicates between -.010 and +.010 V .

CHANGE: $\quad-.010$ and +.010 V to read: -.030 and +.030 V MANUAL CHANGE INFORMATION

Date: \qquad 10-19-81 Change Reference: \qquad
Product: DC 509 and DC 5009
Manual Part No.: \qquad see below

DESCRIPTION

DC 509 (070-3464-00)
DC 5009 (070-3888-00)
EFF SN B020408 (DC 509 and DC 5009)
TEXT CORRECTIONS
Page 3-11 Change the second paragraph for Reax Interface Signals to read:
The measurement $\overline{\text { CATE }}$ signal to the rear interface is via P1410-4 (J1410-4). The microprocessor interprets the reset input from Ul321F to pin 33 of Ul332 as the electrical equivalent of the front panel MEASUREMENT RESET pushbutton.

Page 5-8 (DC 509)
Page 5-9 (0C 5009)
Fig. 5-9

Change: Measurement
To Read: Measurement Gate Out

Gate Out

Page 5-9 (DC 509)
Pin 28B
Page 5-10 (DC 5009)
CHANGE TO READ:

> Pin 28B. Measurement Gate out--This line is in the low state during the current measurement process and is capable of driving one LS TTL load. The gate duration is dependent on the input signal. frequency and the AVERAGES selected.

Product
\qquad

Tektronix

MANUAL CHANGE INFORMATION

Date: 3-23-82
Change Reference: M45587 REV
Product: DC5009 UNIVERSAL COUNTER/TIMER Manual Part No.: 070-3888-00

REPLACEABLE ELECTRICAL PARTS AND SCHEMATIC CHANGES
CHANGE TO:

Al6	$670-6855-01$	DIGITAL BOARD
Al6R1203	$315-0433-00$	RES.,FXD, CMPSN: 43K OHM, 5\%, 0.25W
ADD:		
A16R1204	$315-0104-00$	RES, FXD, CMPSN: $100 \mathrm{~K} O H M, 5 \%, 0.25 \mathrm{~W}$

DIAGRAM \forall MICROPROCESSOR, CONTROL LOGIC AND MMMORY - Partial

Product: DC5009 UNIVERSAL COUNTER/TIMERDate: 3-23-82

DESCRIPTION

CHANGE TO:

```
A14 670-6797-01
A14R1301 315-0433-00 RES.,PXD, CMPSN: 43K OHM,5%,0.25W
```

ADD:
A1 14 R1305 315-0104-00 RES.,FXD, C.4PSN: 100 K OHM, 5\%. 0.25W

DIAGRAM

Page 2 of 2

Tektronix
 COMMITTED TO EXCELLENCE

MANUAL CHANGE INFORMATION

Date: \qquad 11/5/82 Change Reference: M46267 REV Product: DC 509/DC 5009, DC 509 Opt 01/DC 5009 Opt 01 Manual Part No.: See Below

DESCRIPTION

EFF SN: DC 509 (070-3464-00)

> B021580 (Std.)/B021610 (Opt. 01) B02.1130 (Std.)/B021250 (Opt. 01)

DC 5009 (070-3888-00)

REPLACEABLE ELECTRICAL PARTS \& SCHEMATIC CHANGES

CHANGE TO:
A12
670-6795-02
CKT BOARD ASSY: ANALOG (Standard Only)
A 12
670-6854-02
CKT BOARD ASSY: ANALOG (Option 01 Only)

REMOVE:

A1?C1503
281-0786-00
151-0190-00
315-0103-00
315-0393-00
315-0512-00
315-0102-00
315-0102-00
315-0332-00
156-1126-00

CAP.,FXD,CER DI: 150PF, 10\%,100V TRANSISTOR: SILICON,NPN RES., FXD, CMPSN: 10K OHM, $5 \%, 0.25 \mathrm{~W}$ RES.,FXD, CMPSN: 39K OHM,5\%,0.25W
RES.,FXD,CMPSN: 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$
RES.,FXD,CMPSN: 1K OHM,5\%,0.25W
RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$
RES.,FXD, CMPSN: 3.3K OHM,5\%,0.25W
MICROCIRCUIT,LI: VOLTAGE COMPARATOR

ADI):
176-0122-00 WIRE,ELECTRICAL: 22 AWG BARE

PARTIAL DIAGRAM
TIME BASE, 100 MHz PLL \& NOISE GENERATOR

Page 1 of 1

Tektronix
 CONMTTTED TO EXCELUENCE

MANUAL CHANGE INFORMATION
Date: 3-29-83 Change Reference: $\quad \mathrm{M} 49902$ (REV)
Product:
DC 5009
Manual Part No.: $070-3888-00$
DESCRIPTION
EFFT. SN: BO30000
REASON FOR CHANGE: TO assure compatibility with the DP 501, improve GPIB operating characteristics, and stabilize the display over the full operating temperature range for the instrument.

REPLACEABLE ELECTRICAL PARTS \& SCHEMATIC CHANGES

CHANGE:
A1. 4
Al2 (Std)
FROM:
TO:
FROM:
TO:
AI2(Opt OL) FROM:
TO:
A16

A14R1301
A14R1305
A1401102
A14U1201

A16CR1221 FROM:
A1601312
FROM:

TO: 152-0322-00
670-6797-01
670-6797-03
670-6795-02
670-6795-03
670-6854-02
670-6854-03
$\begin{array}{ll}\text { TO: } & 670-6855-01 \\ \text { T0-6855-02 }\end{array}$
315-0433-00
315-0333-00
315-0104-00
315-0753-00
FROM: 160-1091-00
TO: 160-1091-02
$\begin{array}{ll}\text { FROM: } & 160-1092-00 \\ \text { TO: } & 160-1092-02\end{array}$
$\begin{array}{ll}\text { FROM: } & 160-1076-01 \\ \text { TO: } & 160-1076-02\end{array}$

CKT BOARD ASSY: GPIB
CKT BOARD ASSY: GPIB
CKT BOARD ASSY: ANALOG
CKT BOARD ASSY: ANALOG
CKT BOARD ASSY: ANAIOG
CKT BOARD ASSY: ANALOG
CKT BOARD ASSY: DIGITAI
CKI BOARD ASSY: DIGITAL
RES, FXD, CMPSN: $43 \mathrm{~K}, 0.25 \mathrm{~W}, 5 \%$
RES, FXD, CMPSN: $33 \mathrm{~K}, 0.25 \mathrm{~W}, 5 \%$
RES, FXD, CMPSN : $100 \mathrm{~K}, 0.25 \mathrm{~W}, 5 \%$ (REF: : N45537)
RES, FXD, CMPSN: 75K,0.25W,5\%
MICROCIRCUIT,DI: 4096×8 MROM, PRGM
MICROCIRCUIT,DI: 4096×8 MROM, PRGM
MICROCIRCUIT,DI: 4096×8 MROM,PRGM
MICROCIRCUIT,DI: 4096×8 MROM,PRGM
SEMICOND DEVICE: GBRMANIUM,15V,40MA
SEMICOND DEVICE: SIG,SCHOTTKY
MICROCIRCUIT,DI: 4096×8 MROM,PRGM
MICROCIRCUIT,DI: 4096×8 MROM,PRGM

ADD: TO THE AI2 CKT BOARD:
214-0982-00 CONTACT, BLEC: GROUNDING (See Illustration Pg.4)
A14 is the GPIB BOARD and is shown on Diagram A1401102, A14R1301, and A14R1305.
 , the location of Al401201,

122 is the ANALOG BOARD shown on DLagram shield has been installed.

Page 1 of 7
\qquad DC 5009 \qquad 15 Feb. 1983 \qquad 49902

DESCRIPTION

A16 is the DIGITAL BOARD show on Diagram 7 , the location of A1601312 and A16CR1221.

KERNEL SIGNATURE ANALYSIS
Add Table 5-3 to Page 5-15 of the DC 5009 Manual (070-3888-00).

Table 5-3
Signature Versions

The internal signatures as shown in Fig. 8-5, Fig 8-6, \& Fig. 8-7 are not affected by these changes.

Change the caption under the KRRNEL SIGNATURE ANALISIS (DIGITAL BOARD) to read: Fig. 8-8A. Kernel signature analysis (Digital board). F 0.1 Version.

Add the following Kernel Signature Analysis charts to the DC 5009 Manual.

Product: DC 5009
Date: 15 Feb. 1983 Change Reference: M 49902

Product: DC 5009
Date: $\mathbf{1 5}$ Feb. 1983_Change Reference: $M 49902$

DESCRIPTION

DC 5009
Version F 1.2

+5V SIGMTURE - 7550

KERNEL SIGNATURE ANALYSIS (CPIB EOARD).

Product: DC 5009

:

Product: DC 5009, DC 5009-01 Date: 15 Feb. 1983 Change Reference: M 49902

DESCRIPTION

TEXT CHANGES

Page 4-1 Left hand colum, paragraph two:
FROM: To ensure instrument accuracy, check the calibration overy 2000 hours of operation or at a minimum of every six months if used infrequently.

TD: To ensure instrument accuracy, eheck the calibration ove ery 2000 hours of operation or at minimul of once every yoar if used infrequently.

Page 1-3 Table 1-2, HAECTRICAL CHARACTERISTICS
Characteristic: Trigger Levels, Accuracy, Suplenental Information
HROM: $\quad \mathbf{\#}_{15 \mathrm{mV}} \quad \pm 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referenced to $25^{\circ} \mathrm{C}$. (Iypical)

 Actual triggering voltage is subject to changes in input signal to noibe ratio and risetime. See resolution and accurncy statements. Date: 15 Feb. 1983 Change Reference: M 49902

DESCRIPTION

Al2 ANALOG BOARD CHANGES

REASON FOR CHANGE: To make Events B during A and Ratio B / A work properly when CH B input irequency is below approximately 200 Hz .

REPLACEABLE ELECTRICAL PARTS \& SCHEMATIC CHANGES

```
ADD:
```

 A12R1426 315-0122-00 RES,FXD, CMPSN: \(1.2 \mathrm{~K}, 5 \%, 0.25 \mathrm{~W}\)
 AI2RI427 315-0511-00 RES,FXD,CMPSN: 510 OHM, \(5 \%, 0.25 \mathrm{~W}\)
 R1426 (1.2K resistor) is installed between Pin 3 of 01421 and the lower end of RI 433 (another 1. 2 K resistor). See partial schematic below.

R1427 (510 Ohm resistor) is installed from Pin 3 of 01421 and the upper end of C1441 (a 0.1 cap off the base of Q2433). See partial schematic below.

PARTIAL SCHEMATIC
GATING, ARMING, \& SYNCHRONIZERS:

Tektronix
 COMNTTED TO EXGELLENCE

MANUAL CHANGE INFORMATION

Product. DC5009 UNIVERSAL COUNTER/TIMER
$8-25-83$
Change Reference:
M45763 Manual Part No.: O70-3888m00

DESCRIPTION
 PG 76

EFFECTIVE SERIAL NUMBER: BO41720, (BO41760 for Option OL) CHANGE TO: (New mechanical package)

A16	$670-6855-04$	CKT BOARD ASSY: DIGITAL
Al2	$670-6795-05$	CKT BOARD ASSY: ANALOG (STANDASD)
A12	$670-6854-05$	CKT BOARD ASSY: ANALOG (OPTION OL)

The following items refer to the Replaceable Mechanical Parts List;
Fig \& Part No.
Index No.
1-1,1-2 337-3039-00
1-12 366-1851-01
1-21 105-0866-00
1-23 105-0865-00
1-19 333-1857-00
$1-31$ 337-3135-00
1-32 386-4910-00
1-98 426-0725-24
1-99 426-0724-25
-(2) 105-0932-00

* (2) 210-0201-00
* (1) 211-0025-00
*(3) 211-0101.00
*(1) 214-3143-00
*(2) 214-3364-00
SHIELD,ELEC: SIDE
KNOB, LATCH
LATCH,RETAINING: PLUGG-IN
EAR,LATCH: ZZLEASE
PANEL, FRONT,ASSY: DC5009
SHIELD, ELEC: SUB-FANEL
SUPPORT,FRAME: REAR
FRAME,SECT: TOP
FRAME,SECT: BOTTOM
IATCH,FANEL: SIDE
TERM,LUG:0.12 ID,LOCKING
SCREW: $4-40 \times 0.375 \mathrm{~L}$
SCREW: $4-40 \times 0.250 \mathrm{~L}$
SPRING: LATCH
FASTNER,IATCH: SIDE
* New item.

Tektronix
COMMNTTED TO EXCEU ENCE
Product: DC5009 UNIVERSAL COUNTER/TIMER
DESCRIPTION
PG 76

CHANGE TO:
A14 670-6797-04 CKT BOARD ASSY: GPIB
The new 670-6797-04 is identical to the 670-6797-03 except it does not include Ullo2 (160-1091-02) or Ul201 (160-1092-02). These parts must be ordered separately.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS . iv iv

OPERATORS SAFETY SUMMARY

OPERATORS SAFETY SUMMARY v v
SERVICE SAFETY SUMMARY.
SERVICE SAFETY SUMMARY. vii vii
Section 1 SPECIFICATION
Instrument Description 1-1
IEEE 488 (GPIB) Function Capability 1.1
Instrument Options 1-2
Standard Accessories 1-2
Performance Conditions 1-2
Electrical Characteristics 1-3
Miscellaneous 1.9
Environmental 1.9
Physical Characteristics $1-10$Section 2 OPERATING INSTRUCTIONSINTRODUCTION
preparation for use $2=1$
Front Panel Display, Controls, and
Connectors 2-3
OPERATORS FAMILIARIZATION $2-6$
INTRODUCTION 2-6
INPUT CONSIDERATIONS 2-7
MEASUREMENT CONSIDER ATIONS 2-7
MEASUREMENT EXAMPLES 2-10
PROGRAMMING 2-15
INTRODUCTION 2-15
COMMANDS $2-17$
FUNCTIONAL COMMAND LIST 2-17
DETAILED COMMAND LIST 2-19
MESSAGES AND
COMMUNICATION PROTOCOL 2-38
STATUS AND ERROR
REPORTING. $2-42$
SENDING INTERFACE CONTROL MESSAGES 2-44
EXAMPLE PROGRAMS $2-44$
PROGRAMMING HINTS $2-45$2-1

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNAL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING other than that contained in operating instructions unless you are qualified to DO 50.

Section 3 THEORY OF OPERATION

BLOCK DIAGRAM DESCRIPTION 3-1
Introduction 3-1
Channel A and Channel B Amplifiers. 3-1
Trigger Level and D-A Converters 3.1
Gating, Arming and Synchronizers 3-1
Time Base, 100 MHz PLL,
and Noise Generator 3-1
CH A and CH B Accumulators 3-2
Control Logic, and Memory. 3-2
Front Panel Keyboard and
Display Drive 3-2
Display 3-2
Power Supplies 3-2
GPIB Microprocessor, Memory, and Controler 3-2
DETAILED CIRCUIT DESCRIPTION 3-3
CH A and CH B Amplifiers and Relay Control 3-3
Gating, Arming, and
Synchronizers 3-3
$\mathrm{CH} A$ and CH 3-7
Trigger Level Control and D-A Converters 3-7
Time Base, 100 MHz PLL and Noise Generator 3-8
Control Logic and
Memory 3-8
Front Panel Keyboard and Display Drive 3.11
Display 3-12
Power Supplies $3-12$
GPIB Microprocessor, Memory, and Controller 3-13

TABLE OF CONTENTS (cont)

Page Page
PERFORMANCE CHECK PROCEDURE 4-1
Introduction 4-1
Calibration Interval 4-1
Services Available 4-1
Test Equipment Required 4-1
Preliminary Control Settings 4-3
Check Oscillator Frequency(Standard)4-3
Check Time Base Oscillator Frequency (Option 01) 4-3
Check Trigger Level Range 4-3
Check Channel A Trigger Level Output Accuracy $4-4$
Check Channel B Trigger Level Output Accuracy 4-5
Check Input Sensitivity
(DC \& AC; 56.6 mV ; 100 MHz) 4-5
Check Auto-Trigger Sensitivity 4-6
Check Input Sensitivity
(DC \& AC; 113 mV ; 135 MHz) 4-6
Check Input Sensitivity
(DC \& AC; 56.6 mV ; 10 Hz) 4-7
Check Arming Input
Pulse Response 4-9
Check Input Impedance. 4-10
Check Input Capacitance 4-10
Check Probe CompensationFunction4-11
Check Minimum Input
Pulse Width 4-12
Check Width A Range 4-13
Check Channel Delay Mismatch 4-14
Check EVENTS B DUR A
Minimum Response 4-14
Check the GPIB Bus Through the Controller 4-14
REAR INTERFACE CHECKS 4.15
Check CHANNEL A andCHANNEL B Rear Interface Input
Frequency Range 4-15
ADJUSTMENT PROCEDURE 4-17
Introduction 4-17
Test Equipment Required 4-17
Preliminary Control Settings 4-17
Section 4 CALIBRATION (cont)
Preparation 4-17
Adjust R1301, +3.2 V ADJ. 4-17
Check the -12 V Supply
Accuracy 4-17
Adjust Standard Timebase Accuracy, C1602 4-17
Adjust Optional Timebase
Accuracy, Y1531 4-18
Adjust R1102, CH A 4-18
Adjust CH B DAC GAIN, R1211 $4-18$
Adjust R1317, CHANNEL A OFS 4-19
Adjust R1323, CHANNEL B OFS 4-19
Section 5 MAINTENANCE
Static-Sensitive Components 5-1
Test Equipment 5-1
Circuit Board Removal and
Replacement 5-1
Switch Maintenance 5-2
Front Panel Latch Removal 5-2
Magnetic Latch Relays 5-2
Cleaning Instructions 5-4
Obtaining Replacement Parts. 5-4
Ordering Parts 5-4
Soldering Techniques 5-5
Interconnecting Pins 5-5
Square Pin Assemblies. 5-5
Circuit Board Pins and Ferrules 5-5
Dual Entry Circuit Board Pin Sockets. 5-6
Bottom Entry Circuit Board Pin Sockets. 5-6
Multipin Connectors 5-6
REAR INTERFACE CONNECTORS 5-8
Introduction 5-8
Functions Available at Rear Connector (P1625) 5-8
GPIB Rear Interface Connector (P1001) 5-10
Functions Available atGPIB Connector.5-10

TABLE OF CONTENTS (cont)

PageSection 5 MAINTENANCE (cont)GPIB SWITCH5-10
Setting the Address Switches 5-10
Setting the Input/Output MessageTerminator Switch5-11
DIAGNOSTICS $5-12$
Introduction. 5-12
Equiprnent Required 5-12
Adjustment and Test Point
Locations 5-12
Self Test. 5-12
TEST Function 5-13
TROUBLESHOOTING. 5-13
SIGNATURE ANALYSIS 5-13
Introduction. 5-13
Internal Signature Analysis 5-13
Kernel Signature Analysis 5-13
Section 6 OPTIONSOPTION 016-1
Section 7 REPLACEABLE ELECTRICAL PARTSSection 8 DIAGRAMS AND ILLUSTRATIONSSection 9 REPLACEABLE MECHANICAL PARTS

LIST OF ILLUSTRATIONS

Fig.
No. Page
DC 5009 Universal Counter/Timer viii
2-1 Plug-in installation and removal 2-2
2-2 DC 5009 front panel display, controls, andconnectors2-4
2-3 Advantages in signal attenuation 2-8
2-4 Typical triggering levels and sources of trig- gering errors $2-9$
2-5 Measurement examples for FREQUENCY Aor PERIOD A. 2-10
2-6
Measurement examples for WIDTH A andTIME A \rightarrow B2-11
2.7 Measurement example for synchronous in- put signals 2-11
2-8
Measurement example, TIME $A \rightarrow B$ using the ARM input 2-12
2-9 Examples of arming 2-14
2-10 Quick Command List 2-16
2-11 ASCII and IEEE 488 (GPIB) Code Chart . . 2-394-1 Check setup for Performance Check steps 3and 11 . 4-4
$4-2$
Check setup for Performance Check steps 4and 54-4
4-3 Check setup for Performance Check steps 6, 7 , and 8 4-5
4-4 Check setup for Performance Check 4-8
Fig.
No. Page4-5 Check setup for Performance Checkstep 10 . $4-9$4-6 Check setup for Performance Checkstep 144-12
4-7 Check setup for Performance Check steps16 and 174-14
5-1 Screw locations for GPIB circuit board re-moval and digital circuit board removal ... 5-2Partial right view of instrument with cover re-moved (pictoral).5-3
5-3
Method of removing magnetic latch relay ar-mature5-4
5-4 Typical square pin assembly. 5-5
5-5 Exploded view of circuit board pin and ferrule 5-6
5-6 5-6$5-7$
5-8 Orientation and disassembly of multipin con- nector 5-75-9
Rear interface connector assignments 5-9$5-10$
GPIB rear interface connector assignments 5-10
5-11 Bus address and message terminator switch $5-10$
Kernel Signature Analysis connections. 5-14

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

TERMS

In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property including the equipment itself.

DANGEF indicates a personal injury hazard immediately accessible as one reads the marking.

SYMBOLS

In This Manual

This symbol indicates where applicable cautionary or other information is to be found.

As Marked on Equipment

4. DANGER - High voltage.

Protective ground (earth) terminal.

ATTENTION - refer to manual.

Power Source

This product is intended to operate from a power module connected to a power source that will not apply more than 250 volts rms between the supply conductors or between either supply condyctor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power module power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power module power cord is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controis that may appear to be insulating) can render an electric shock.

Use the Proper Fuse

To avoid fire hazard, use only the fuse of correct type, voltage rating and current rating as specified in the parts list for your product.

Refer fuse replacement to qualified service personnel.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Operate Without Covers

To avoit personal injury, do not operate this product without covers or panels installed. Do not apply power to the plug-in via a plug-in extender.

SERVICE SAFETY SUMMARY FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When servicing With Power On

Dangerous voltages may exist at several points in this product. To avoid personal injury, do not touch exposed connections and components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

Power Source

This product is intended to operate in a power module connected to a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

DC 5009 Programmable Universal Counter/Timer.

SPECIFICATION

Instrument Description

The DC 5009 is a one-wide, Universal Counter/Timer plug-in. It features reciprocal frequency, period, events B during A and Totalize measurements to 135 MHz , time interval and widths features 10 ns single-shot resolution, for timing measurements. For repetitive timing measurements, averaging and pseudo-random time base modulation circuitry provides increased accuracy over a wide range of input signals.

The DC 5009 provides trigger level outputs at both the front panel and rear interface for increased measurement convenience. Shaped outputs and an arming input are individually available at either the front panel or the rear interface. Both Channel A and Channel B may also be sourced from either the front panel or the rear interface using the front panel switch or remote control.

IEEE 488 (GPIB) Function Capability

The DC 5009 is programmable via the digital interface specified in IEEE Standard 488-1978. "Standard Digital Interface for Programmable instrumentation" In this manual, the interface is commonly called the General Purpose Interface Bus (GPIB).

The standard is published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, New York 10017.

NOTE

Bus drivers are open collectors.

The IEEE standard identifies the interface function repertoire of an instrument on the GPIB in terms of interface function subsets. The subsets are defined in the standard. The subsets that apply to the DC 5009 are listed in Table 1-1.

The DC 5009 is GPIB programmable and allows any manually selectable function or mode to be operated over the GPIB bus, including all input conditioning controls. After the DC 5009 is set to the remote state by a system controller, its operating modes and settings can be set and read by programming mnemonics sent to it in ASCll code over the bus. The instrument's settings may also be read while in the local state. The DC 5009 connects to the bus through a GPIB-compatible connector on the TM 5000-Series power module.

Table 1-1
IEEE 488 (GPIB) INTERFACE FUNCTION SUBSETS

Specification-DC 5009

Measurement results are displayed in an eight-digit LED readout, with the decimal point automatically positioned. The displayed count overflow is indicated by a flashing display. The counter also uses three digits of the seven-segment LED display to indicate internal or operating error codes and two digits for external signal probe compensation results.

The DC 5009 can be equipped with an optional, oven controlled, 10 MHz crystal oscillator to obtain a highly stable and precise internal time base.

This instrument is listed with Underwriters Laboratories Inc. under UL Standard 1244 (Electrical and Electronic Measuring and Testing Equipment).

Instrument Options

Option 01 replaces the internal 10 MHz time base (clock) circuit with a self-contained proportional temperature controlled oven oscillator for increased accuracy and stability.

Standard Accessories

1 Instruction Manual
1 Reference Guide
1 Cable assembly, bnc-to-tip jack

NOTE

Refer to the tabbed Accessories page at the rear of this manual for more information.

Performance Conditions

The limits stated in the Performance Requirements columns of the following tables are valid only if the DC 5009 has been calibrated at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$ and is operating at an ambient temperature between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$, unless otherwise stated.

Information given in the Supplemental Information and Description columns of Tables 1-2 through 1-5 is provided for user information only and should not be interpreted as Performance Check requirements.

The DC 5009 must be operated or stored in an environment whose limits are described under Environmental Characteristics.

Allow at least 20 minutes warm-up time for operation to specified accuracy, 60 minutes after storage in a high humidity environment.

Table 1-2
ELECTRICAL CHARACTERISTICS

Characteristics	Performance Requirements	Supplemental Information

CHANNEL A and CHANNEL B INPUTS
7) $\mathrm{X1}$ Attenuation
nut Frequency Range
Front Panel (Ext)
 DC Coupled

		See Function
	$>0 \mathrm{~Hz}$ to $\geqslant f_{\text {FUNCTION }}$	
$A C$ Coupled	$\leqslant 10 \mathrm{~Hz}$ to $\geqslant f_{\text {FUNCTION }}$	
	$>0 \mathrm{~Hz}$ to $\geqslant 50 \mathrm{MHz}$	
10 Hz to $\geqslant 50 \mathrm{MHz}$		

Table 1-2 (cont)

| Characteristics | Performance Requirements | Supplemental Information |
| :---: | :---: | :---: | :---: |

CHANNEL A and CHANNEL B INPUTS (cont)

Trigger Levels (cont) Trigger Level Output Accuracy	± 30 Within $\pm 10 \mathrm{mV}$ of internal dc trigger level voltage. (Actual triggering voltage is subject to changes in input signal-to-noise ratio and risetime.) See resolution and accuracy statements	
Maximum Input Voltage Front Panel X1		$V_{p k} \leqslant 200$ $V_{p-\mathrm{p}}^{\mathrm{pk}} \leqslant 400$, dc to 50 kHz $v_{\text {p-p }}^{p-p} \leqslant 20 / \mathrm{f} \mathrm{MHz} 50 \mathrm{kHz}$ to 1.33 MHz $V_{p-p}^{p-p} \leqslant 151.33 \mathrm{MHz}$ to 150 MHz
X5		$\mathrm{V}_{\mathrm{pk}} \leqslant 200$ $v_{p-p}^{p} \leqslant 400 \mathrm{dc}$ to 5 MHz $\mathrm{V}^{\mathrm{p}-\mathrm{p}} \leqslant 2000 / \mathrm{fMHz} 5 \mathrm{MHz}$ to 80 MHz $v_{p-p}^{p-p} \leqslant 25,80 \mathrm{MHz}$ to 150 MHz
Rear Interface $\mathrm{X} 1, \mathrm{X} 5$		$\mathrm{V}_{\mathrm{pk}} 3.6 \mathrm{~V}$
Input Impedance Front Panel X1, X5	$1 \mathrm{M} \Omega \pm 2 \%, \leqslant 30 \mathrm{pF}$	$\begin{aligned} & \left(-13 \mathrm{~V} \leqslant \mathrm{~V}_{\text {in }} \leqslant+13 \mathrm{~V}, \mathrm{X} 1\right)\left(-65 \leqslant \mathrm{~V}_{\text {in }}\right. \\ & \leqslant+65 \mathrm{~V}, \mathrm{X} 5) \end{aligned}$
Rear interface $\mathrm{X} 1, \mathrm{X} 5$	$50 \Omega \pm 10 \%$ @ dc	
Slope	Independently selectable. $(+)$ for counting positive pulses. (-) for counting negative pulses	

ARMING INPUT, SHAPED OUTPUTS

Arming Input		Arming is not recommended for Channel A frequencies $\geqslant 70 \mathrm{MHz}$
Pulse Response	Pulse width $\leqslant 100 \mathrm{~ns}\left(\mathrm{~V}_{\mathrm{H}} \geqslant 2.4, \mathrm{~V}_{\mathrm{L}} \leqslant 0.4\right)$	Armed when $\mathrm{V}_{\text {in }} \geqslant 2.4$. Disarmed when $V^{\text {in }} \leqslant 0.4 \mathrm{~V}$. I_{in}, low $\approx 3.2 \mathrm{~mA}$ (2 standard TTL loads)
Maximum Safe Input Voltage	$\mathrm{V}_{\mathrm{pk}} \leqslant 10 \mathrm{~V}$	
Shaped Outputs Delay from front panel input		13 ns typically
Amplitude	0 to $\geqslant+0.3 \mathrm{~V}$ from 50Ω ground referenced source	
Risetime		3 ns into 50Ω (typical)

Table 1-2 (cont)

| Characteristics | Performance Requirements | Supplemental Information |
| :---: | :---: | :---: | FUNCTIONS

FREQUENCY A Range	$\leqslant 100 \mu \mathrm{~Hz}$ to $\geqslant 135 \mathrm{MHz}$	
Resolution		\pm LSD $\pm 1.4 \times$ Trigger Jitter Error/NX (Freq A)
Accuracy		Resolution \pm (Timebase Error X Frequency)

PERIOD A Range	$\leqslant 7.40$ ns to $\geqslant 3.05$ hours	
Repetition Rate	$\geqslant 135 \mathrm{MHz}$	
Clock Period Counted		10 ns
Resolution		\pm LSD $\pm 1.4 \times$ Trigger Jitter Error/N
Accuracy		$\begin{aligned} & \text { Resolution } \pm \text { (Timebase Error X } \\ & \text { Period A) } \end{aligned}$
RATIO B/A Range	10^{-7} to 10^{8}	Averaged by A
Frequency Range CH A CH B	$\begin{aligned} & \geqslant 0 \text { to } \geqslant 135 \mathrm{MHz} \\ & \geqslant 0 \text { to } \geqslant 125 \mathrm{MHz} \end{aligned}$	
Resolution		\pm LSD $\pm 1.4 \times$ B Trigger Jitter Error X

Specification-DC 5009

Table 1-2 (cont)

Characteristics	Performance Requirements	Supplemental Information
FUNCTIONS (cont)		
EVENTS B DUR A		Averaged by A
Range	10^{-7} to 10^{8}	
Maximum B Frequency	125 MHz	
Minimum A Pulse Width	15 ns (10 ns typical)	
Minimum Time Between A Pulses	15 ns	
Minimum Time Between A Start Edge and first B Event	$15 \mathrm{~ns} \mathrm{(7} \mathrm{~ns} \mathrm{typical)}$	
Resolution		\pm LSD $+($ FREQ B/ $/ \mathrm{N})[\pm$ Trigger Jitter Error (A Start Edge) \pm Trigger Jitter Error (A Stop Edge)]
Accuracy		Resolution + FREQ B (Stop Slew Rate Error - Start Slew Rate Error)
WIDTH A Range	$\leqslant 15 \mathrm{~ns}$ (10 ns typical) to $\geqslant 3.05$ hours	
Resolution		$\begin{aligned} & \pm \text { LSD }+(\pm \text { Start Trigger Jitter Error } \\ & \pm \text { Stop Trigger Jitter Error }) / \sqrt{\mathrm{N}} \end{aligned}$
Accuracy		Resolution \pm (Timebase Error X Width) + (Stop Slew Rate Error - Start Slew Rate Error) $\pm 5 \mathrm{~ns}$ (2 ns typical)
Clock Period Counted		10 ns
Minimum Dead Time Between Pulses	15 ns (10 ns typical)	
Time Manual Range	0 to 3.05 hours	Electronic Stopwatch-accumulates time from Start until Stop
Resolution	\pm LSD	
Accuracy	\pm Resolution \pm (Timebase Error X TIME)	
LSD	100 ms	
TOTALIZE A Range	0 to $2^{40}\left(1.09 \times 10^{12}\right)$ Counts	Accumulates A events from Start to Stop
Repetition Rate	>0 to $\geqslant 135 \mathrm{MHz}$	
Display Scaling	Displayed Result $=$ A EVENTS/N Where N $=1,10,10^{2}$ to 10^{8} selected by the AVERAGES control. In AUTO, $N=1$	Allows totalizing to more than 8 digits of display. While totalizing, the display may be shifted to display LSD's without affecting the measurement in progress.

Table 1-2 (cont)

Characteristics	Performance Requirements	Supplemental Information

FUNCTIONS (cont)

TOTALIZE A (cont) Probe Comp	Displays 0 or 1 for each channel 0 -Under Compensated 1-Over Compensated	Requires external square wave signal of $\approx 2 \mathrm{~V}$ amplitude at the counter input. Frequency should be $\approx 1 \mathrm{kHz}$
Accuracy		Instrument set to X 1 attenuation \leqslant Probe Atten. $\times 50 \mathrm{mV} \times 100(\%) / \mathrm{V}_{\text {in }}$ at Probe Accuracy (2.5% nominal for X5 probe with 10 V p-p at the probe.

Resolution and Accuracy
Definitions

Trigger Jitter Error (Seconds RMS) $=$
$\frac{\left.\sqrt{ }\left[\left(\mathrm{e}_{\mathrm{nt}}\right)^{2}+\left(\mathrm{e}_{\mathrm{n} 2}\right)^{2}\right)\right](\mathrm{V} \mathrm{rms})}{\text { Input I Slew Rate } \operatorname{lat} \text { Trigger point (V/S) }}$
Where $e_{n 1}=120 \mu \mathrm{~V}$ rms typical Counter Input Noise
$e_{n 2}=V$ rms Noise Voltage of Input signal at Trigger Point measured with a 150 MHz bandwidth.
11
Slew Rate Error $($ Seconds $)=$

Requires external square wave signal of $\approx 2 \mathrm{~V}$ amplitude at the counter input. Frequency should be $\approx 1 \mathrm{kHz}$

Instrument set to X 1 attenuation \leqslant Probe Atten. X 50 mV X $100(\%) / V_{\text {in }}$ at Probe with 10 V p-p at the probe.
. $\mathrm{N}=$ Number of Averages
The minimum number of averages is selected by the
AVERAGES control in decade steps from 1 to 10^{8}. At
Channel A repetition rates above approximately
250 Hz the actual number of averages will be:
$N \approx$ [FREQ A $(\mathrm{Hz}) \times 4 \mathrm{mSec}]+$ AVERAGES setting
$N=$ AVERAGES setting (below 250 Hz)
In the AUTO mode the counter measures with a fixed mea-
surement time of about 300 ms .
$N($ auto $) \approx$ FREQ A $(\mathrm{Hz}) \times 0.3$ seconds.
N is always $\geqslant 1$.
LSD: (Rounded up the nearest decade)

```
FREQUENCY A
\((\text { Freq A) })^{2} /\left(\mathrm{NX} 10^{8}\right)\)
```

PERIOD A
$10 \mathrm{~ns} / \mathrm{N}$
RATIO B/A Freq A/(Freq B $\times N$)
TIME $A \rightarrow B$
$10 \mathrm{~ns} / \sqrt{\mathrm{N}}$
WIDTH A
$10 \mathrm{~ns} / \sqrt{\mathrm{N}}$
EVENTS B DUR A
Period B $\times($ EVENTS B DUR $A) /($ Width $A X V N)$
Time Base Error is the sum of all errors specified for the time base used.

Specification-DC 5009
Table 1-2 (cont)

Characteristics	Performance Requirements	Supplemental Information
MEASUREMENT TIMING		
Minimum Display Time		100 ms (typical)
Auto Averages Measurement Time		300 ms (typical)
GPIB Data Output Rate		≈ 10 readings $/ \mathrm{sec}$ max
GPIB Shipping Address		Address 18, EOI only
INTERNAL TIME BASES		
Standard Time Base Frequency (at calibration)	$10 \mathrm{MHz} \pm 1 \times 10^{-7}$	
Error Terms Temperature Stability $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$	$\leqslant 5 \times 10^{-6}$	
Aging	$\leqslant 1 \times 10^{-6} /$ year	
Adjustment Resolution	$\pm 1 \times 10^{-7}$ or better	
Option 01 Time Base Frequency (at calibration)	$10 \mathrm{MHz} \pm 2 \times 10^{-8}$	With proportional oven
Error Terms Temperature Stability $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$	$\pm 2 \times 10^{-7}$ after warm up	
Warmup Time	Within $\pm 2 \times 10^{-7}$ of final frequency in less than 10 minutes when cold started at $25^{\circ} \mathrm{C}$ ambient.	
Aging At time of shipping	$1 \times 10^{-8} /$ day maximum	
After 30 days of continuous operation	$4 \times 10^{-8} /$ week maximum	
After 60 days of continuous operation	$1 \times 10^{-6} /$ year maximum	
Short Term Stability		$\leqslant 1 \times 10^{-9} \mathrm{rms}$ based on 60 consecutive second measurements
Adjustment Resolution	$\pm 2 \times 10^{-8}$ or better	
Adjustment Range		Sufficient for 8 years of aging

Table 1-3 MISCELLANEOUS

Characteristics	Description
Typical Consumption at $25^{\circ} \mathrm{C}$ and nominal ac line voltage	TM 5000 Series Power Modules
DC 5009	$\approx 11.9 \mathrm{~W}$
Option 01	$\approx 14.8 \mathrm{~W}$
Recommended Calibration Interval	2000 hours or 6 months whichever occurs first

Table 1-4
ENVIRONMENTAL ${ }^{\text {a }}$

Characteristics	Descrip	
Temperature Operating Non-operating	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$	Meets MIL-T-28800B, class 5
Humidity	$\begin{aligned} & 95 \% \mathrm{HF}, 0^{\circ} \mathrm{C} \text { to } 30^{\circ} \mathrm{C} \\ & 75 \% \mathrm{HF} \text { to } 40^{\circ} \mathrm{C} \\ & 45 \% \mathrm{HF} \text { to } 50^{\circ} \mathrm{C} \end{aligned}$	Exceeds MIL-T-28800B, class 5
Altitude Operating Non-operating	$\begin{aligned} & 4.6 \mathrm{Km}(15,000 \mathrm{ft} .) \\ & 15 \mathrm{Km}(50,000 \mathrm{ft} .) \end{aligned}$	Exceeds MIL-T-28800B, class 5
Vibration	$0.38 \mathrm{~mm}\left(0.015^{\prime \prime}\right)$ peak-to-peak, 5 Hz to $55 \mathrm{~Hz}, 75$ minutes	Meets MIL-T-28800B, class 5, when installed in qualified power modules ${ }^{\text {b }}$
Shock	30 g 's ($1 / 2$ sine) 11 ms duration, 3 shocks in each direction ${ }^{\text {d }}$ along 3 major axes, 18 total shocks	Meets MIL-T-28800B, class 5 when installed in qualified power modules ${ }^{\text {b }}$
Bench Handling ${ }^{\text {c }}$	12 drops from $45^{\circ}, 4^{\prime \prime}$ or equilibrium whichever occurs first	Meets MIL-T-28800B, class 5, when installed in qualified power modules ${ }^{\text {b }}$
Transportation ${ }^{\text {c }}$	Qualified under National Safe Transit Asso 1A-B-1 and 1A-B-2	ciation Preshipment Test Procedures
$E M C^{\ominus}$	Within limits of F.C.C. regullations, Part 15 MIL-461A tests RE01, RE02, CE01, CE03 exceptions ${ }^{\dagger}$ Unused plug-in compartments must be cov	Subpart J, Class A; VDE 0871 and RS01, RS03, CS01, and CS02, with ered with a blank plug-in
Electrical Discharge	20 kV maximum charge applied to instrum	nt case
${ }^{\text {a }}$ With power module.		
${ }^{\text {b }}$ Refer to TM 5000 power module specifications.		
${ }^{\text {c }}$ Without power module.		
${ }^{\text {d }}$ Requires retainer clip in plug-in exit direction.		
${ }^{\text {e }}$ System performance subject to exceptions of power module or other individual plug-ins.		

Table 1-5
PHYSICAL CHARACTERISTICS

Characteristics	Description
Finish	Plastic-aluminum laminate front panel. Anodized aluminum chassis
Net Weight	
DC 5009	$2 \mathrm{lbs} ., 6 \mathrm{oz}$
Option 01	$2 \mathrm{lbs} ., 10 \mathrm{oz}$
Maximum Overall Dimensions	
Height Width Length	$\approx 126.0 \mathrm{~mm}(4.96$ inches $)$
Enclosure Type and Style per MIL-T-28800B	$66.8 \mathrm{~mm}(2.63$ inches $)$
Type	$296.6 \mathrm{~mm}(11.68$ inches)
Style	III

OPERATING INSTRUCTIONS

FRONT PANEL OPERATION

INTRODUCTION

First Time Inspection

Inspect the instrument for visible damage (dents, scratches. etc.). Keep the original shipping container and packing material for future use. If the instrument is damaged, notify the carrier and the nearest Tektronix Ser. vice Center or representative.

Repackaging for Shipment

Should it become necessary to return the instrument to a Tektronix Service Center for service or repair, attach a tag to the instrument showing the owner (with address) and the name of the individual to be contacted, complete instrument serial number, option number, and a description of the service required.

If the original container and packaging material is unfit for use or not available, repackage the instrument as follows:

1. Obtain a carton of corruggated cardboard having inside dimensions no less than six inches more than the instrument dimensions; this will allow for cushioning. The shipping carton test strength for your instrument is 200 pounds.
2. Surround the instrument with polyethylene sheeting to protect the finish.
3. Cushion the instrument on all sides by tightly packing dunnage or urethane foam between carton and instrument, allowing three inches on all sides.
4. Seal the carton with shipping tape or industrial staples.
5. Mark the shipping carton "FRAGILE INSTRUMENT" to indicate special handling.

Operating and Non-Operating Environments

The instrument may be operated, stored, or shipped within the environmental limits stated in the Specification section of this manual. However, the counter should be protected at all times from temperature extremes which can cause condensation to occur within the instrument.

PREPARATION FOR USE

Rear Interface Considerations

A slot between pins 21 and 22 on the rear connector identifies this instrument as a member of the TM 5000 counter family. If you desire to use your counter to build a system, insert a family barrier key (Tektronix Part No. 214-1593-02) in the corresponding position of the selected power module jack in order to prevent plug-ins belonging to a different family from being used in that compartment of the power module.

WARNING

To avoid electric shock, disconnect the power module power cord before inserting the family barrier key in the power module jack. Refer the barrier key insertion to qualified service personnel.

The DC 5009 has the following rear interface input and output features:

```
CH A and CH B Inputs
Trigger Level Outputs (CH A and CHB)
Shaped Outputs (CH A and CH B)
Measurement Gate Output
Arming Input
10 MHz Clock Output
External Clock lnput (1, 5, 10 MHz)
Prescaler Function
Reset Input
```


Operating Instructions-DC 5009

NOTE

Rear interface information will be found in the Maintenance section of this manual. Refer the interface connections to qualified service personnel.

Installation and Removal

The DC 5009 can only be used in the TM 5000-Series power modules.

NOTE

Refer to the Operator's Safety Summary in the front of this manual before installing this instrument in the power module.

Refer to the power module instruction manual and make sure that the line selector block is positioned correctly for the line voltage in use. Check the counter and the power module for the proper fuses. Be certain that the power plug for the power module has the proper grounding conductor.

To prevent damage to the instrument, turn the power module off before installation or removal from the power module. Do not use excessive force to install or remove the instrument from the power module.

Check to see that the plastic barrier keys on the interconncting jack of the selected power module compartment match the cutouts in the rear interface connector for the counter. If they do not match, do not insert the counter until the reason is investigated.

The plastic lockouts (see Fig. 2-1) prevent programmable instruments from being used in the TM 500-Series (manual instruments) Power Module.

If the cutouts and barrier keys match, align the chassis of the counter with the upper and lower guides of the selected compartment. See Fig. 2-1. Insert the counter into the compartment and press firmly to seat the rear interface connector. Apply power by operating the POWER switch on the power module.

Fig. 2-1. Plug-in installation and removal.

To remove the counter from the power module, turn off the POWER switch, pull the release latch knob (located in the lower left front corner) until the interconnecting jack disengages. Pull the counter straight out of the power module compartment.

FRONT PANEL DISPLAY, CONTROLS, AND CONNECTORS

Display

The display contains eight seven-segment LEDs and six annunciators. All measurement results are displayed with the best possible resolution. The readout (result) for the measurement is always displayed in a right-hand justified format with the decimal point automatically positioned. Displayed count overflow is indicated by a flashing display.

Four of the annunciators are used to indicate the units of measurements: $\mathrm{Hz} / \mathrm{SEC}$ for Hertz or seconds, $\mathrm{kHz} / \mathrm{mSEC}$ for kilohertz or milliseconds, $\mathrm{MHz} / \mu \mathrm{SEC}$ for megahertz or microseconds, and $\mathrm{GHz} / \mathrm{nSEC}$ for gigahertz or nanoseconds.

The GATE annunciator, when illuminated, indicates that the counter is in the process of accurnulating counts for the measurement. The REMOTE annunciator indicates the instrument is in a remotely-programmed state, when illuminated. The settings may be different from the front panel switches.

In addition to displaying the measurement results, the counter uses a three-digit, seven-segment LED display to indicate internal or operating error codes, and two digits to report the results of compensating an external signal probe. See Self Test Display and Probe Compensation.

Controls and Connectors

The following information is a brief functional description of the front panel controls and connectors. These items are referenced by number (see Fig. 2-2) and described as follows:

FUNCTION-a lever switch used to select the following measurement and special purpose functions for the counter:

FREQUENCY Measures CHANNEL A signal periA od and converts result to frequency units.

PERIOD A Measures CHANNEL A signal period and displays answer in units of time.

RATIO B/A Measures and displays the ratio of signal events occurring on Channel B to the signal events occurring on Channel A . The decimal point is appropriately located for the selected number of averages chosen for the Channel A signal.

TIME A \rightarrow B Measures the time interval between the triggering event on Channel A to the succeeding triggering event on Channel B and displays answer in units of time.

WIDTH A Measures the time interval between the triggering point on the leading edge of a pulse applied to Channel A to the corresponding triggering point on the trailing edge of the same pulse. Polarity of the leading edge is selected by the CHANNEL A SLOPE pushbutton. Answer displayed in units of time.
EVENTS B Counts and displays the number of DUR A triggering events (pulses) applied to Channel B during a preselected gating interval applied to Channel A. Polarity of the leading edge of the Channel A gating interval selected by the CHANNEL A SLOPE pushbutton.

TIME MAN- A stop watch function. Measures UAL and displays the time interval (to the nearest one-tenth of a second) between two successive depressions of the MEASUREMENT STOP/ START pushbutton. Time count may be reset to zero and restarted immediately by pressing and then releasing the RESET pushbutton while in the start mode.

TOTALIZE A This mode of operation is essentially the same as TIME MANUAL, except that the events counted are the triggering events (pulses) on Channel A rather than the internal clock. For this function the position of the AVERAGES lever switch can be used as a power-of-ten scaling factor, effectively increasing the number of displayable digits.

PROBE
COMP

A probe compensation function. This function allows the operator to use the counter display to adjust

note

The 1 position of the AVEFAGES switch is used for single-shot measurements (measurement for the selected FUNCTION is averaged for at least one event). The AVERAGES switch has no affect in the TIME MANUAL, PROBE COMP, and TEST functions.

MEASUREMENT RESET-wholding this pushbutton in aborts the current measurement process for all selected functions and causes all digits in the display to read 8.8.8.8.8.8.8.8. All six annunciators are also illuminated. When this pushbutton is released, a new measurement process is initiated for the selected FUNCTION and operating conditions. If a TIME MANUAL or TOTALIZE A measurement has been stopped by the MEASUREMENT STOP/START pushbutton, pressing MEASUREMENT RESET causes the previous measurement to be reset to zero, but does not start a new measurement.

MEASUREMENT STOP/START—used to start and stop the measurement process for all operating modes except the TEST and PROBE COMP functions. The current measurement process is aborted for the STOP mode (GATE annunciator not illuminated) and a new measurement process generated for the START mode (GATE annunciator on). The STOP mode does not reset the accumulated count. Changing the FUNCTION switch while in the STOP mode causes the counter to enter the START mode.

ARM-a tip jack input normally at a TTL high level. When set to a TTL. low state the counter is prevented from making a measurement until the input goes to a TTL high state.
(6) \perp-arming input ground. tip jack connected to chassis (frame) ground.

AUTO TRIG-used to automatically set the triggering levels of both channels to their mid point values; (maximum value + minimum value) $/ 2$. The levels are set each time the AUTO TRIG button is pressed after having been released (out). When released (out), the triggering levels are returned to the values set by each individual LEVEL control.

LEVEL—controls used to adjust the triggering level for Channel A and Channel B.

EXT INPUTS-bnc connectors for Channel A and Channel B input signals.

CHANNEL A SLOPE, SOURCE, ATTEN, and COUPL-pushbuttons that select the positive (+) or negative $(-)$ SLOPE of the input signal, the front panel (EXT) or rear interface (INT) input SOURCE, atteriuation (ATTEN, X1 or X5), and the ac or dc coupling (COUPL) modes for the Channel A input amplifier.

CHANNEL B SLOPE, SOURCE, ATTEN, and COUPL-pushbuttons that select the positive (+) or negative (-) SLOPE of the input signal, the front panel (EXT) or rear interface (INT) input SOURCE, attenuation (ATTEN, X1 or X5), and the ac or dc coupling (COUPL) modes for the Channel B input amplifier.

SHAPED OUT (A, B, with COM)-tip jack outputs that provide an exact replica of the internal signals being used for the measurement. Used as an aid to proper triggering on complex waveforms. COM tip jack connected to chassis.
(13) TRIG LEVEL (A, B)-tip jack outputs that provide the $d c$ levels from Channel A and Channel B that correspond to the actual internal triggering levels set by the LEVEL controls. Use SHAPED OUT COM as ground.
(14) INST ID-when pressed, displays the current GPIB address. A decimal point displayed with the address indicates the message terminator switch is set to LF/EOI. Refer to the Maintenance section for further details. The INST ID switch may also assert an SRQ through the USEREQ command.

OPERATORS FAMILIARIZATION

INTRODUCTION

General Operating Characteristics

The DC 5009 is a universal counter based on a microprocessor system. The counter is capable of eight measurement functions with full eight-digit resolution, plus two specialized functions; probe compensations (PROBE COMP) and self-test (TEST).

The microprocessor system automatically sets the measurement gate interval, performs the necessary calculations on the acquired data, and causes the result to be displayed with the best possible resolution for the selected measurement FUNCTION, number of averages (AVERAGES), and operating conditions.

Self Test Display

When power is applied, one of the error codes listed in Table 2-1 may appear in the display window if the counter fails its self-test routine. Refer the error code condition to qualified service personnel.

NOTE

At power up, a signal with a large dc offset voltage connected to the input terminals for either channel
may cause the entire input signal to be outside the triggering level range. If this condition exists, an error code may be displayed. Disconnect all inputs or reduce the offset and reapply power. This error condition can also be caused by low level ARM input signal during power up.

Table 2-1
POWERUP AND TEST FUNCTION ERROR CODES

Displayed Error Code	Error Condition
000	No error, passed self-test routine. Displayed while in JEST function
320 through 326	Channel A failure
330 through 336	Channel B failure
340	RAM test failure (power up only)
361	ROM placement (location) error
381	ROM checksum error.

NOTE

Refer error code conditions to qualified service personnel.

INPUT CONSIDERATIONS

Maximum Safe Input Voltage Limits

Be caretu with high-frequency, high-amplitude signals (above 80 MHz). The front panel maximum sate input voltage at these high frequencies is 25 V , peak-topeak.

Connecting External and Internal Signal Sources

The DC 5009 can be used to measure input signals to either channel from the front panel or the rear interface. Pushing a SOURCE switch selects the rear interface input (INT). The SLOPE, ATTEN, and COUPL pushbuttons are effective in conditioning the signal from either source.

If a high impedance signal probe is to be used between the front panel bnc connectors and the measurement source, use a probe capable of compensating for the input capacitance of the counter (less than 30 pF). A high impedance probe such as the TEKTRONIX P6125, is recommended for all digital logic applications.

The counter retains the last reading when the input signal source is disconnected. Reconnecting the signal source causes the counter to update its display with new data. This feature is especially convenient when using a probe in crowded circuits.

MEASUREMENT CONSIDERATIONS

Input Coupling, Noise, and Attenuation

You can use either the ac coupling (AC COUPL) or dc coupling (DC COUPL) mode to couple the input signal to the

CH A or CH B input amplifiers. If the signal to be measured is riding on a de level, its amplitude limits may not fall within the triggering level range. The AC COUPL mode should be used for repetitive signals having a fixed frequency and a constant duty cycle when they are riding on a large dc level. SLOPE selection is relatively unimportant when measuring sine-wave frequencies.

If the signal duty cycle changes during a measurement, the triggering point will shift, possibly causing erroneous results. Use the DC COUPL mode for low frequency ac signals without large de offset, signals with a low duty cycle, and during time interval measurements.

Noise may be coupled to the input amplifiers along with the signal to be measured. Noise may originate from the operating environment, the signal source, or be caused by improper connections. If the noise is of sufficient amplitude, it can result in inaccurate measurements due to false triggering. Using an external attenuator may solve the problem. See Fig. 2-3.

The input dynamic range specification describes the largest amplitude signal with a risetime or falltime less than about 5 ns that will not cause ringing and distortion internal to the counter. This is primarily of concern in TIME A $-B$ when measuring rise or fall times. Ringing may cause mistriggering near the positive or negative peaks of the signal.

The minimum signal amplitudes are defined by the input sensitivity requirements for the AC COUPL and DC COUPL modes (see Specification section). Proper use of the ATTEN (attenuation) controls will ensure operation within the maximum limits; $\pm 3.2 \mathrm{~V}$ for X 1 ATTEN, $\pm 16 \mathrm{~V}$ for X5 ATTEN.

Triggering the Counter

The de triggering level is determined by the SLOPE and LEVEL controls, or by the AUTO TRIG switch concentric with the CHANNEL A LEVEL control.

The manual LEVEL controls are used to adjust the triggering hysteresis window continuously up or down through a $\pm 3.2 \mathrm{~V}$ range. The hysteresis window is typically 20 mV (peak-to-peak) for low frequency signals, 40 mV (peak-topeak) for high frequency signals. The + and.- areas designated for the LEVEL controls provide only a coarse indication of the trigger level setting. To determine a more accurate trigger level, measure (or use the LEVEL controls to set) the internal dc level at the TRIG LEVEL output tip jacks.

Operating Instructions-DC 5009

$3464-04$

Fig. 2-3. Advantages in signal attenuation.

NOTE

The actual triggering level is subject to changes in the input signal-to-noise ratio, duty cycle changes (AC COUPL) and risetime.

When the AUTO TRIG mode is depressed (in), the microprocessor performs a software routine to determine the maximum and minimum peak voltage values of the input signal and automatically sets the triggering levels for both channels to the midpoint (median) value. These values are maintained until the AUTO TRIG button is depressed again (out-manual level control) or depressed twice (in) to initiate another AUTO TRIG. The AUTO TRIG mode is useful when making pulse width measurements (WIDTH A function) at the 50% level, or when the triggering level is not critical, as is usually the case in FREQUENCY A, PERIOD A, RATIO B / A, and TOTALIZE A.

The use of AUTO TRIG does not reduce the need to consider input noise amplitudes, coupling modes, and attenuation factors. Large amounts of overshoot and ringing of the input signal may cause erroneous measurements due to an undesirable level setting. The median value of the input signal may be measured at the TRIG LEVEL outputs. For midpoint settings, the low frequency limit for the AUTO TRIG mode is 20 Hz . Below 20 Hz , the automatic triggering level will still be set, but not necessarily at the midpoint.

Figure 2-4 illustrates typical trigger level settings and shows the importance of setting trigger levels properly in order to avoid errors due to input signal risetimes (falltimes). or where the transition times of the start and stop pulses are different, or just slow. Observation of the SHAPED OUT
signals on an oscilloscope while setting the trigger levels can aid in reducing trigger errors.

NOTE

The ARM input signal must be high when the AUTO TRIG routine is being executed.

Reducing Measurement Errors

As an aid in reducing measurement errors, keep in mind the following factors:

- Use the proper ATTEN controls and high impedance attenuator type probes when measuring signals from high impedance circuits.
- Consider trigger errors caused by input signals with slow rise or falltimes.
- Average the measurement over a larger number of cycles of the input signal (greater number of AVERAGES).
- Maintain the counter environment at a constant temperature.
- Apply a $1 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz external time reference standard (NBS) to the rear interface inputs.
- Recalibrate, if necessary.

Fig. 2-4. Typical triggering levels and sources of triggering errors.

MEASUREMENT EXAMPLES

Frequency A and Period A

When the counter is in either the FREQUENCY A or PERIOD A modes, it always measures the period of the Channel A input signal. For FREQUENCY A, the microprocessor computes the frequency as

$$
f=\frac{1}{T}(T=\text { period })
$$

and displays the answer in frequency units. For PERIOD A, the answer is displayed in units of time. See Fig. 2-5 for measurement examples.

Ratio B/A

In RATIO B/A mode, the counter measures the number of events on both channels during the time it takes to accumulate the selected number of Channel A events (averaged by A events). The total number of Channel B events is then divided by the total number of Channel A events and the answer displayed without units of time or frequency.

The ratio range is from 10^{-7} to 10^{8}. Applying the higher frequency to Channel B produces a ratio greater than one; applying the lower frequency to Channel B produces a ratio less than one. For best resolution with large ratios, apply the higher frequency signal to Channel B.

Width \mathbf{A} and Time $\mathbf{A} \rightarrow \mathbf{B}$ (Time Interval)

Figure 2-6 illustrates measurements for the WIDTH A and TIME $\mathrm{A} \rightarrow \mathrm{B}$ functions. The WIDTH A function measures the time interval between the first selected positive or negative edge (\pm SLOPE) of the waveform applied to Channel A and the next opposite polarity edge.

The TIME $A \rightarrow B$ function measures the time interval between the first selected edge (\pm SLOPE) of an event on Channel A to the first selected edge (\pm SLOPE) of an event on Channel B. The measurement can be averaged (AVERAGES) by the selected number of Channel A events because there is one Channel B event per Channel A event.

When either the WIDTH A or TIME $A \rightarrow B$ functions are activated, an internal pseudo-random noise generator is enabled that phase modulates the internal 10 ns time base, allowing the counter to properly average input signals that are synchronous with its time base. See Fig. 2-7.

In Fig. 2-7 the time interval (15 ns , WIDTH A) cannot be measured accurately with a non-modulated time base or by making a single-shot measurement. The pseudo-random phase-modulated clock causes the counter to count one clock pulse one-half of the time and two clock pulses onehalf of the time. For example, if ten widths were averaged, the total time for the count is at least 150 ns . Ten averages yields 15 counts (5 counts +10 counts). Dividing the total count by the number of averages gives an answer of 1.5 counts, or 15 ns .

Fig. 2-5. Measurement examples for FREQUENCY A or PERIOD A.

Fig. 2-6. Measurement examples for WIDTH A and TIME $A \rightarrow B$.

Events B During A

The EVENTS B DUR A function is basically the same as WIDTH A, except that the counter counts the selected number of positive-going or negative-going events (\pm SLOPE, Channel B) occurring during a selected positive or negative pulse width occurring on Channel A (\pm SLOPE, Channel A). The internal time base is not counted for this function. See Fig. 2-8 for a measurement example. The Channel B events are averaged over the selected number (AVERAGES) of Channel A pulse widths.

Time Manual

The TIME MANUAL function measures and displays the time interval (to the closest one-tenth of a second) between the first and second depressions of the MEASUREMENT STOP/START pushbutton. The time count can be reset to zero and restarted by pressing and then releasing the RESET pushbutton. The AVGS switch has no effect in the TIME MANUAL mode.

Totalize A

The TOTALIZE A function is basically the same as TIME MANUAL, except that, instead of counting the internal time base pulses, the counter counts the total number of Channel A events occurring between two successive depressions of the MEASUREMENT STOP/START pushbutton and the AVERAGES switch is active in this mode. The AVERAGES switch operates as a power-of-ten scaling indicator (allows totalizing to more than eight digits). For example, with a 1 MHz input signal and the AVERAGES switch set to 10^{6}, the least significant digit represents 10^{6} counts and will increment at one count per second $\left(10^{6} \mathrm{~Hz} / 10^{6}=1 \mathrm{~Hz}\right)$.

Probe Compensation

The PROBE COMP function allows the operator to compensate an external probe for the input capacitance of the counter without an oscilloscope.

This function requires an external square-wave signal of approximately 500 Hz to 1 kHz and an amplitude of approximately 2 V times the probe attenuation factor (for 2.5 percent accuracy). For example, a 5 X high impedance probe would require about 10 V amplitude for this accuracy. The larger the signal the more accurate the compensation will

Fig. 2-7. Measurement example for synchronous input signals.

Fig. 2-8. Measurement example, $\boldsymbol{T I M E} \mathbf{A} \rightarrow B$ using the ARM input.
be, providing that the positive peak value of the input to the counter is less than 3 V .

With a probe connected to either CHANNEL A or CHANNEL B input and the ATTEN switch set to X1 with the square-wave signal applied, perform the following steps:

NOTE

The most significant digit (far left) is for CHANNEL A, the least significant digit (far right) is for CHANNEL B. The GATE light will flash, indicating the rate at which the input is checked for compensation.

1. Insert adjustment tool in the probe compensation adjustment slot.
2. Select the PROBE COMP function and press RESET.
3. Slowly rotate (approximately 90° per 5 seconds) the probe compensation adjustment in either direction until the display for the channel being compensated changes to a " 1 ". If the adjustment has not been rotated at least 180°, continue rotating the adjustment until the display changes to a " 0 " and then to a " 1 ".
4. Reverse direction of rotation and again slowly turn the adjustment until the display just changes to a " 0 ".
5. Reverse direction again until the display goes to a " 1 " (only a few degrees of rotation will be required).
6. Once again reverse the direction of rotation and very slowly turn the adjustment until the display just changes to a " 0 " (only a few degrees will be required). At this point the probe will be compensated.

If at any point in the procedure the display should remain a " 1 " for more than one complete rotation, press the RESET and start again. This may be caused by one of several problems.

- The adjustment is rotated too fast or with a jerking motion.
- The applied signal has too much low frequency noise (amplitude jitter).
- The connection to the probe is intermittent.

NOTE

If at any time the display alternates between 0 and 1 without the compensation adjustment being varied, slightly change the amplitude of the square-wave input signal and repeat the procedure.

Test Function

A 000 display for the TEST function is an indication that the microprocessor has checked the read-only memory, the internal serial data path, the integrity of its internal counter chain (accumulators) and, as a by-product, the operation of the digital-to-analog converter and input amplifier circuits.

The random-access memory space (RAM) is not checked during this self-test; the RAM is checked only at power up.

NOTE

If the CHANNEL A or CHANNEL B inputs are connected, the input signals peak must be within the triggering level range of the counter. An arming (ARM) signal, if connected, must also be at a high TTL level.

The GATE annunciator flashes each time the complete test routine is successfully completed. If one of the tests fails, the GATE annunciator will stop flashing and a threedigit error code will be displayed. The test routine is halted at this point and will not continue until the RESET is depressed. This provides a memory for intermittent problem
troubleshooting.

NOTE

Refer all front panel error code conditions to qualified service personnel.

Arming (ARM Input)

Arming provides a means by which single events or sets of events can be selected for measurement within a complex analog or digital signal.

The ARM input requires TTL signal levels. With no signal attached the ARM input is normally pulled high and is thus continuously armed. When the ARM input is pulled low, the counter is prevented from starting a measurement. Arming may be used in all measurement functions with the exception of TIME MANUAL, PROBE COMP, and TEST. In these three functions the ARM signal must be high.

The ARM signal must be high when the active start edge of an event occurs. It must then remain high as long as
successive events are to be included in the measurement. The ARM signal must then be low before another active start edge occurs.

When operating in the FREQUENCY A, PERIOD A, or RAT!O B/A functions and a single armed "burst" does not satisfy the averages condition, the displayed resolution will be greater than the actual measurement resolution. This occurs because the display is formatted for the standard single ± 1 count error in each measurement; whereas with arming, there will be instead a ± 1 count for each burst. For example, if the input repetition rate is 1 kHz and the arming signal selects 10 periods to measure with the AVERAGES control set for 10^{2}, the 10 "bursts" of 10 each will be included in each measurement. See Fig. 2-9 for examples of arming for each of the major measurement functions.

PROGRAMMING

Introduction

This section of the manual provides information for programming the DC 5009 by remote control via the lEEE-488 General Purpose Interface Bus (GPIB). The following information assumes the reader is knowledgeable in GPIB communication and has some exposure to programming controtlers. Message protocol over the GPIB is specified and described in the IEEE Standard 488-1978, "Standard Digital Interface for Programmable Instrumentation ${ }^{n 1}$ All GPIB references in this manual refer to the IEEE-488 GPIB. T'M 5000 instruments are designed to communicate with any GPIB-compatible controller that sends and receives ASCll messages (commands) over the GPIB. These commands program the instrument or request information from the instrument.

Commands for TM 5000 programmable instruments are designed for compatibility among instrument types. The same command is used in different instruments to control similar functions, In addition, commands are specified in mnemonics related to the functions they implement. For exampie, the command INIT initializes instrument settings to their power-up states. For further ease of programming, command mnemonics match those on the front panel in most cases.

Instrument commands are presented in three formats:

[^0] neers, Inc., 345 East 47th \$treet, New York, N.Y., 10017.

- A front panel illustration--showing command relationships to front panel operation (see Fig. 2-10).
- Functional Command List-a list divided into functional groups with brief descriptions.
- Detailed Command List-an alphabetical listing of commands with complete descriptions.

TM 5000 programmable instruments connect to the GPIB through a TM 5000 power module. Refer to the Operating Instructions section of this manual for information on installing the instrument in the power module. Also review this section to become familiar with front-panel and internally selectable instrument functions. The GPIB primary address for this instrument may be internally changed by qualified service personnel. The DC 5009 is shipped with the address set to decimal 18. The message terminator may also be internally selected by qualified service personnel. Message terminators are discussed in Messages and Communication Protocol (in this section). TM 5000 instruments are shipped with this terminator set to EOI ONLY. Refer qualified service personnel to the Maintenance section of this manual for locations and setting information. Pressing the INST ID button causes the instrument to display its selected GPIB primary address; the far right decimal point lights if the selected message terminator is LF/EOI.

Fig. 2-10. Quick Command List.

COMMANDS

The instrument is controlled by the front panel or via commands received from the controller. These commands are of three types:

Setting commands-montrol instrument settings.

Query-output commands-ask for data.

Operational commands-cause a particular action.

The instrument responds to and executes all commands when in the remote state. When in the local state, setting and operational commands generate errors since instrument functions are under front panel control; only queryoutput commands are executed.

Each command begins with a header-a word that describes the function implemented. Many commands require an argument following the header, a word or number which specifies the desired state for the function.

CAUTION

Using fewer characters than the abbreviated header or argument should be done with caution since erronedus results or damage could result if this data is sent to the wrong instrument.

FUNCTIONAL COMMAND LIST

INSTRUMENT COMMANDS

Function Commands

EVE bA	-Counts Channel B during Channel A pulse width
FREQ A	- Measures frequency of input signal on Channel A
FUNC?	-Query returns current instrument function
PER A	-Measures period of Channel A signal
PROB A\&B	-Enables probe compensation
RAT B/A	--Measures ratio of B events to A even
TIME, AB	-Measures time from A event to B eve
TMAN	---Manual timing function (stop watch)
TOT \wedge	-rotalizes Channel A events
WIO A	-Measures pulse width of Channel A signal

Measurement Control

AVE or AVGS - Sets number of measurements averaged
AVE? or
AVGS? -Query returns AVE *num>: (-1 for AUTO Averages)

FPTR - Enables control of trigger levels by front panel knobs
RDY? \quad Query returns RDY 1 for new data ready or RDY 0 for new data not ready
RES -Resets counters, restarts current measurement
-Starts TMANual, STOPped, or TOTalize measurement
STOP
-Stops any measurement except TEST or PROBECOMP

Input/Output Control
ATT 1 or $5 \quad-1 \times$ or $5 \times$ Attenuation
ATT? -Query returns ATT <num>
AUTO \quad-Sets trigger level to signal mid-point (both channels)
CHA A or -Selects channel for succeeding input CHA B settings
CHA?
COU AC
or DC
COU?
LEV
—Query returns CHA A or CHA B
-Sets input coupling mode
-Query returns COU AC or COU DC
-Sets selected channel trigger level. Num range $=+3.200$ to $-3.175\left(\mathrm{X}_{1}\right)$ or +16.00 to -15.875 (X5)

Operating Instructions-DC 5009

LEV?	-Query returns trigger level setting of selected channel. LEV 9999 indicates front panel control
MAX?	-Query returns last AUTOtrig maximum peak voltage
MIN?	-Query returns last AUTOtrig minimum peak voltage
PRE ON	-Enables prescaler and internal scaling
PRE OFF	-Disables prescaler and internal scaling
PRE?	-Query returns PRE ON or PRE OFF
SEND	-Obtains and formats new measurement results
SLO POS	-Triggers on positive slope
SLO NEG	-riggers on negative slope
SLO?	-Query returns SLO NEG or SLO POS
SOUR RE	Selects rear interface as signal source
SOUR FRO	-.Selects front panel connector as signal source
SOUR?	-Query returns SOUR REAR or SOUR

System Commands

DT GATE	- $<$ GET> controls Start and Stop
DT TRIG	- <GET> performs RESET
DT OFF	-Disables Device Trigger
DT?	-Query returns DT TRIG, DT OFF, or DT GATE
ERR?	-Returns error code for most recent event reported by serial poll when RQS is ON; with RQS OFF it returns the highest priority status

ID? --Query returns instrument type and firmware versions
INIT $\quad-$ Sets to current front panel settings and power-on parameters
SET? -Query returns current instrument settings
TEST \quad-Tests ROM, $1 / 0$, accumulator

Status Commands

OPC ON	-Enables assertion of SRQ on OPERATION COMPLETE
OPC OFF	-Disables SRQ on OPERATION COMPLETE
OPC?	-Query returns OPC ON or OPC OFF
OVER ON	-Enables asserting of SRQ on counter overflow
OVER OFF	-Disables SRQ on counter overflow
OVER?	-Query returns OVER ON or OVER OFF
RQS ON	-Enables SRQ assertion
RQS OFF	—Disables SRQ assertion and clears SRQ
RQS?	-Query returns RQS ON or RQS OFF
USER ON	-Enables asserting of SRQ when INST ID button is pushed
USER OFF	-Disables asserting of $\$ R Q$ when INST ID is pushed
USER?	-Query returns USER ON or USER OFF

DETAILED COMMAND LIST

ATTENUATION

Type:
Setting or Query

Setting Syntax

AYY : number: $:$

Examples:

A'TY 999999
ATT 5.00001
ATTENUATION 1

Query Syntax:
ATT?

Query Response:

ATT 1;
ATT 5:

For information on selecting channels see discussion of the CHANNEL command

AUTOTRIG

Type:

Operational

Syntax:

AUTO
AUTOTRIG

Discussion:

The AUTOTRIG command causes the DC 5009 to automatically set the trigger levels for both channels to the midpoints of the input signals. The maximum and minimum peak values are saved and may be read out of the instrument using the MAX? and MIN? queries.

Any previously set trigger levels are replaced by the new values and front panel control of trigger levels is disabled. If the input signals are outside the range of the DC 5009, the AUTO trigger levels may not be at the midpoints.

Time required for the AUTOTRIG operation to complete is dependent on both Channel A and Channel B amplitudes and frequencies. Worst case time is approximately 2.5 seconds.

The following command sequence causes an AUTO TRIGGER to be performed and the resulting trigger levels to be output when the AUTOTRIG completes:

AUTO;CH A;LEV?;CH B;LEV?

AVERAGES

Type:

Setting or Query

Setting Syntax:

AVE <number $>$
or
AVGS \&number

Examples:

AVE -1
AVGS 1.E+2
AVERAGES 100

Query Syntax:

AVE? or AVGS?

Query Response:

> AVE $-1 ;$
> AVE $1 . E+4 ;$

Discussion:

The AVERAGES command sets the minimum number of events to be counted on Channel A before calculating measurement results. Valid znumber's arguments are:

反number> ≈ 0 - Sets DC 5009 to "auto-averages" mode. In "auto-averages", the instrument accumulates counts for $\approx, 3$ seconds.

When in "auto-averages" query returns AVE -1

```
&number> = 1, 1.E+1, 1.E+2, 1.E+3, 1.E+4,
``` \(1 . E+5,1 . E+6,1 . E+7,1 . E+8\)

The argument <number> is first rounded to the nearest power of ten. If the resulting value is not one of the above valid values, the averages setting is left unchanged and an execution error (ERR 205) is issued.

The AVERAGES setting is also used to scale the displayed results for TOTALIZE measurements. Results output to the IEEE-488 bus, however, are not scaled.

\section*{CHANNEL (CHANNEL SELECT)}

Type:
Setting or Query

\section*{Setting Syntax:}

CHA \(\left\{\begin{array}{l}A \\ B\end{array}\right\}\)

\section*{Examples:}

CHANNEL A
CHA B

\section*{Query Syntax:}

CHA?

Query Response:
CHA A;
CHA B;

\section*{Discussion:}

The CHANNEL command selects the channel that the subsequent input setting commands affect. The input settings commands are SLOPE, SOURCE, ATTENUATION, COUPLING, and LEVEL. Valid arguments are:

A - Channel \(A\) is affected by input setting commands.
\(B\) - Channel \(B\) is affected by input setting commands. On power-up the initial setting is CHA A.

\section*{COUPLING}

Type:
Setting or Query

Setting Syntax:
\(\operatorname{COU}\{A C\}\)

Examples:
COUPL AC
COU DC

\section*{Query Syntax:}

COU?

Query Response:
COU AC; COU DC:

Discussion:
The COUPLING command sets the input signal coupling to AC or DC . Valid arguments are:
\(A C\) - Select ac coupling for input signal.
DC -- Select dc coupling for input signal.

When switching from \(D C\) Coupling to \(A C\) Coupling or when the dc level of an input signal changes and the signal is ac coupled, the following settling times are required:

> X1 probe connected -1.0 seconds
> X5 probe connected - 2.5 seconds
> X10 probe connected -5.0 seconds

The above times specify the time until the Coupling capacitor is charged to within \(1 \%\) of its final value and assumes the source has a very low impedance.

For information on selecting channels see discussion of the CHANNEL command.
-

\section*{DT (DEVICE TRIGGER)}

Type:
Setting or Query

\section*{Setting Syntax:}

DT \(\left\{\begin{array}{c}\text { GATE } \\ \text { TRIG } \\ \text { OFF }\end{array}\right\}\)

\section*{Examples:}

DT GATE
DT TRIG
DT OFF

\section*{Query Syntax:}

DT?

\section*{Query Response:}

DT GATE
DT TRIG
DT OFF

\section*{Discussion:}

The DT command controis the instrument's response to the GROUP EXECUTE TRIGGER <GET> interface message. The valid arguments are:

GATE -In this Device Trigger mode, \(\quad \mathrm{GET} \geqslant\) controls the STARTing and STOPping of the measurement. If measurement is STOPped, <GET> will START measurement. When STARTed, <GET:- will STOP measurement.

TRIG -In this Device Trigger mode, <GET causes a measurement RESET to be performed. If the measurement is already STARTed, this causes it to be reset and restarted. If the measurement is currently STOPped, this causes a single measurement to be initiated.

OFF \(\quad\) In this mode \(a<G E T>\) causes instrument to issue an execution error (ERR 206).

The power on initial setting is DT OFF.

\section*{ERROR}

\section*{Type:}

Query

\section*{Syntax:}

ERR?
ERROR?

\section*{Response:}

ERR <numbers;

\section*{Discussion:}

The ERROR query is used to obtain information about the status of the instrument.

If RQS is ON, the ERROR query returns an event code <number> describing why the RQS bit was set in the last Status Byte reported by the instrument. The event code is then reset to 0 .

If RQS is OFF, the ERROR query returns an event code snumber describing the highest priority condition currently pending in the instrument. This event code is then cleared and another ERROR query will return the event code for the next highest priority condition pending.

\section*{EVENTS (EVENTS B DURING A)}

\section*{Type:}

Operational

\section*{Syntax:}

EVE BA (argument is optional)

\section*{Examples:}

EVENTS BA
EVE

\section*{Discussion:}

The EVENTS command sets up the DC 5009 to measure the total number of events occurring on Channel \(B\) during the pulse width of the input signal on Channel \(A\).
\(a\)

Type:
Operational

Syntax:
FREQ A (argument is optional)

\section*{Examples:}

FREQUENCY A
FREQ

\section*{Discussion:}

The FREQUENCY command sets up the DC 5009 to measure the frequency of the input signal on Channel \(A\).

FUNCTION

Type:
Query

\section*{Syntax:}

FUNC?
FUNCTION?

\section*{Response:}
\(\left\{\begin{array}{l}\text { EVE BA; } \\ \text { FREQ A; } \\ \text { PER A; } \\ \text { RAT B/A; } \\ \text { TIME AB; } \\ \text { TMAN; } \\ \text { TOT A; } \\ \text { WID A; } \\ \text { PROB A\&B; } \\ \text { TEST; }\end{array}\right\}\)

\section*{Discussion:}

The FUNCTION query returns one of the responses shown above. The response indicates the measurement function currently selected.

\section*{IDENTIFY}

\section*{Type:}

Query

\section*{Syntax:}

ID?
IDENTIFY?

\section*{Response:}

ID TEK/DC5009,V79.1,Fx.y;

\section*{Discussion:}

The IDENTIFY query returns the above response where:
TEK/DC 5009 -Identifies the instrument type.
V79.1 -Identifies the version of Tektronix Codes and Format Standard to which the instrument conforms.

Fx.y -Identifies the firmware version of the instrument, where x.y is a decimal number.

The INIT command does not generate a Power on SRQ nor does it put the instrument in LOCAL mode as a normal Power on does.

LEVEL (TRIGGER LEVEL)

Type:
Setting or Query

\section*{Setting Syntax:}

LEVEL <number>

\section*{Examples:}

LEVEL - 1.025
LEV 0.005
LEV 7.5
Query Syntax:
LEV?
Query Response:

LEVEL - 1.025 ;
LEVEL 0.000;
LEVEL 9999;

\section*{Discussion:}

The LEVEL command sets the trigger level of the previously selected channel to the value specified. The value is expressed in volts and has a range of -3.175 to 3.2 when in X 1 attenuation and \(-\mathbf{- 1 5 . 8 7 5}\) to 16.0 when in X5 attenuation. The resolution is 0.025 for X 1 attenuation and 0.125 for X5 attenuation.

The value is rounded to the nearest step and if this is not within the range of the DC 5009 the trigger level is left unchanged and an execution error (ERR 205) is issued.

The "LEV 9999;" is returned by the LEV? when the trigger level is being controlled by the front panel controls. For example, the following command sequence will return "LEV 9999:":
```

FPTRIG;LEV?

```

At all other times the trigger voltage level is returned.

Channel \(A\) and Channel \(B\) trigger levels are either both under program control (AUTO or LEV) or both under front panel control (FPTRIG).

If the trigger levels were under front panel control (FPTRIG), the LEV command causes the trigger level of the unselected channel to go to its last programmed value.

For information on selecting Channels, see discussion of the CHANNEL command.

LEVEL (TRIGGER LEVEL)

Operating Instructions-DC 5009

\section*{MAXIMUM}

\section*{Type: \\ Query}

\section*{Syntax:}

MAX?
MAXIMUM?

\section*{Response:}

MAX snumber>;

\section*{Discussion:}

The MAX? query returns a value indicating the maximum input signal voltage measured during the last autotrigger cycle. If the signal has changed and/or the input signal conditioning has changed since the last autotrigger, another AUTOTRIG is required to obtain the new MAX values.

\section*{MINIMUM}

Type:
Query

Syntax:
MIN?

\section*{Response:}

MIN \(\leqslant\) number \(>\)

\section*{Discussion:}

The MINIMUM? query returns a value indicating the minimum input signal voltage for the selected channel measured during the last autotrigger. If the signal has changed and/or the signal conditioning has changed since the last autotrigger, another AUTOTRIG is required to obtain the new MIN values.

\section*{OPC (OPERATION COMPLETE)}

Type:
Setting or Query

\section*{Setting Syntax:}

\author{
OPC \(\{O N \mid\) \\ IOFF
}

\section*{Examples:}

OPC ON
OPC OFF

\section*{Query Syntax:}

OPC?

\section*{Query Response:}

OPC ON:
OPC OFF;

\section*{Discussion:}

The OPC command controls the asserting of SRQ when a measurement is completed. This command allows a controller to start a measurement, and then process some other task while waiting for an SRQ to inform it that measurement data is ready.

When \(O P C\) is \(O N\) and a measurement completes, \(S R Q\) is asserted and remains asserted until the status is read via a serial poll or until a device clear is performed. Operation Complete is indicated by a Status Byte of 66 or 82 and an ERROR query response of ERR 402.

For more Status Byte and ERROR information, see "Error and Status Reporting".

The Power on initial setting is OPC OFF.

\section*{OVERFLOW}

Type:
Setting or Query
Setting Syntax:
OVER \(\{\) ON \(\}\) IOFF
Examples:
OVER ON
OVERFLOW OFF
Query Syntax:
OVER?
Query Response:
OVER ON:
OVER OFF:

\section*{Discussion:}

The OVERFLOW command controls the asserting of SRQ when the internal counting capacity of the DC 5009 is exceeded. This command allows the controller to detect and to respond to overflow conditions.

When making measurements, the DC 5009 uses two in w ternal 40-bit counters, one for Channel A and one for Channel B.

For EVENTS, FREQUENCY, PERIOD, RATIO, TIME, or WIDTH measurements, OVERFLOW usually indictes that one of the input channels is not set up properly.

For TMANUAL and TOTALIZE measurements, OVERFLOW can easily be used by the controller to extend the range of the measurement. When making TMANUAL measurements, an OVERFLOW indicates that the Channel B counter has counted \(2^{40}\) internal time base pulses (\(\approx 10995.1\) seconds). When making TOTALIZE measurements, an OVERFLOW indicates that the Channel A counter has counted \(2^{40}\left(=1.1 \times 10^{12}\right)\) on the Channel \(A\) input. For both TMANUAL and TOTALIZE, the measurement result is reset and the measurement continues after an overfilow is detected.

PROBECOMP and TEST measurements do not generate overflow conditions.

When OVERFLOW is \(O N\) and the instrument's internal capacity is exceeded SRQ is asserted and remains asserted until the status is read via a serial poll or until a device clear is performed. Channel \(A\) overflow is indicated by a Status Byte of 193 or 209 and an ERROR query response of ERR 711. Chamel \(B\) overflow is indicated by a Status Byte of 194 or 210 and an ERROR query response of ERR 712.

The Power on initial state is OVER OFF.

\section*{PERIOD}

\section*{Type:}

Operational

\section*{Syntax:}

PER A (argument is optional)

\section*{Example:}

PERIOD A
PER

\section*{Discussion:}

The PERIOD command sets up the DC 5009 to measure the period of the input signal on Channel \(A\).

\section*{PRESCALE}

\section*{Type:}

Setting or Query

Setting Syntax:
PRE \(\{O N\))
(OFF

\section*{Examples:}

PRESCALE ON
PRE OFF

\section*{Query Syntax:}

PRE? (Query form)

Query Response:
PRE ON;
PRE OFF;

\section*{Discussion:}

The PRESCALE command multiplies the Channel A count by 16 before calculating FREQUENCY, PERIOD, RATIO, and TOTALIZE. This command should be used when a divide by 16 prescaler is attached to Channel \(A\), otherwise erroneous measurements will result. Valid arguments are:

ON -The Channel A input is multiplied by 16 before calculating results.

OFF -The Channel \(A\) input is not scaled before the results are calculated.

When the PRESCALE command is used and a compatible precaler is not connected to the DC 5009 an execution warning (ERR 604) is issued.

The Power on initial setting is PRE OFF.

PROBECOMP (PROBE COMPENSATION)

Type:
Operational

Syntax:
PROBE A\&B (argument is optional)

Examples:
PROBECOMP A\&B
PROB

\section*{Discussion:}

The PROBE COMP command sets up the DC 5009 to provide information which can be used to help compensate probes.

This function generates 2 -digit results. The most significant digit is the result for Channel \(A\) and the least significant digit is the result for Channel B .

For more information see description of Probe Compensation in this manual

\section*{RATIO}

Type:
Operational

\section*{Syntax:}

RAT B/A

\section*{Examples:}

RATIO B/A
RAT

\section*{Discussion:}

The RATIO command sets up the DC 5009 to measure the Ratio of events on Channel B to the events on Channel \(A\).

\section*{RDY (DATA READY)}

\section*{Type: \\ Query}

Syntax:
RDY?

\section*{Response:}

RDY 0:
ROY 1 ;

\section*{Discussion:}

The RDY query returns "data ready" status. If the value returned is 0 , measurement data is not currently available. If the value returned is 1 , measurement data is available.

When measurement data is not available and the DC 5009 is "talked" by the controller, the instrument responds in one of two ways. If "talked" after receiving the SEND command and data is not ready, the DC 5009 waits for data to become ready and then sends it. If "talked" and the instrument has not received the SEND command and data is not ready, the DC 5009 responds by sending \(\mathrm{FF}_{16}\) (all data lines asserted).

Data becomes ready when a measurement is completed. It remains ready until the data is read out of the instrument or until an instrument setting, except averages, is changed. Data Ready is also cleared by a RESET.

\section*{RESET}

\section*{Type:}

Operational

Syntax:
RES
RESET

\section*{Discussion:}

The RESET command resets the instrument's count chains and initiates a new measurement. For FREQUENCY, PERIOD, RATIO, TIME, WIDTH, or EVENTS measurements, a single result is determined if the measurement had been "STOPped" before the RESET. For PROBECOMP measurement, RESET clears current compensation status and restarts compensation process. For TEST measurement, RESET clears any existing error result and restarts TEST process.

\section*{SEND}

Type:
Output

\section*{Syntax:}

SEND

\section*{Output Examples:}
\begin{tabular}{ll}
\(45.13755019 \mathrm{E}+6 ;\) & (Frequency) \\
\(3.0018 \mathrm{E}-6 ;\) & (Period) \\
\(01 ;\) & (Probecomp) \\
\(395 ;\) & (Test) \\
\(1977249 . ;\) & (Totalize)
\end{tabular}

\section*{Discussion}

The SEND command formats available data for output. Data is available when a completed measurement result has not previously been output. If no data is available the SEND command causes the DC 5009 to wait for the current measurement to complete and then formats the result.

Type:
Setting or Query

Setting Syntax:
RQS \(\left\{\begin{array}{l}\text { ON } \\ \text { I }\end{array}\right.\)
|OFF)

Examples:
ROS ON ROS OFF

ROS?

Query Response:
ROSON;

\section*{RQS OFF: \\ \(11 \%\) Discussion:}

The Power on initial setting is "ROS ON".

\section*{Query Syntax:}

\section*{RQS (REQUEST FOR SERVICE)}

Operating Instructions-DC 5009

\section*{SETTINGS}

Type:
Query

Syntax:
SET?
SETtings?

\section*{Response:}
<function>; CHA A;ATT <num>;COU xx;SLO \(x x_{i}\) SOUR \(x x\);LEV <num>;CHA B; ATT <num>;COU xx;SLO \(x x\);SOUR \(x x\) :LEV <num>;AVE <num>;OPC

\section*{Discussion:}

The SETTINGS query returns the current settings of the instrument.

The SETTINGS query response may then be used at a later time to reset the instrument back to those settings.

\section*{SLOPE}

Type:
Setting or Query

Setting Syntax:
SLO|NEG\}
|POS|

\section*{Examples:}

SLO POSITIVE
SLOPE POS
SLOPE NEGATIVE
SLO NEG

Query Syntax:
SLO?

\section*{Query Response:}

> SLO POS:

SLO NEG;

\section*{Discussion:}

The SLOPE command sets the input trigger for the selected channel to the specified slope. The valid arguments are:

NEG -Input will trigger on negative going edge.
POS -mput will trigger on positive going edge.

For information on selecting channels see discussion of the CHANNEL command.

\section*{SOURCE}

\section*{START}

Type:
Operational

Syntax:
START

\section*{Discussion:}

The START command starts a TMANUAL or TOTALIZE measurement. For EVENTS, FREQUENCY, PERIOD, RATIO, TIME, or WIDTH measurements, START restarts measurement if STOPped.

\section*{STOP}

\section*{Type:}

Operational

\section*{Syntax:}

STOP

\section*{Discussion:}

The STOP command stops all measurements except TEST and PROBECOMP. The STOP command is ignored when TEST or PROBECOMP measurements are being made.

When FREQUENCY, PERIOD, RATIO, TIME, WIDTH, or EVENTS measurements are STOPped, the measurement in process is aborted

When TMANUAL or TOTALIZE measurements are STOPped, the current result is retained and the measurement can be restarted from the point where stopped.

\section*{TEST}

Type:
Operational

Syntax:
TEST

\section*{Discussion:}

The TEST command sets up the instrument to perform repetitive self tests. The tests performed are the ROM tests, Serial I/O Hardware Test, and the Counter Hardware Integrity Test.

The tests performed by the TEST command are the same as those tests performed during the power-on self test sequence, with the exception of the instrument RAM tests. The RAM tests are only performed during Power on.

If a failure is detected by any of the tests, the test sequence is halted. The sequence is restarted when the instrument executes another TEST command or a RESET command.

The results of each TEST sequence are made available to be output by the instrument. A result of 0 indicates that no failures were detected. If a failure is detected, the value generated for output is the same as the error code that is displayed for Power on self test failures.

See section on "Error and Status Reporting".

\section*{TIME (TIME A TO B)}

Type:
Operational

\section*{Syntax:}

TIME AB (argument is optional)

\section*{Examples:}

TIME
TIME AB

\section*{Discussion:}

The YIME command sets up the DC 5009 to measure the time interval from the first occurrence of an event on Channel \(A\) to the occurrence of the first succeeding event on Channel B.

\section*{TOTALIZE}

Type:
Operational

\section*{Syntax:}

TOT A (argument is optional)

\section*{Examples:}
totalize a
TOT

\section*{Discussion:}

This command sets up the DC 5009 to measure the total number of events occurring on Channel \(A\). The measurement is started by the "START" command and stopped by the "STOP" command. If in "DT GATE" mode, TOTALIZE operation is started and stopped alternately using the Group Execute Trigger \&GET> interface message.

See discussions of START, STOP, and DT commands.

See discussion of <GET> in IEEE Sending Interface Control Messages section of manual.

\section*{USEREQ (USER REQUEST)}

\section*{Type:}

Setting or Query

\section*{Setting Syntax:}

USER \(\left\{\begin{array}{c}\text { ON } \\ \text { OFF }\end{array}\right\}\)

\section*{Examples:}

USER ON
USEREQ OFF

\section*{Query Syntax:}

USER?

Query Response:
USER ON;
USER OFF;

\section*{Discussion:}

The USEREQ command controls the asserting of SRQ when the front panel INST ID button is pushed. This provides a communication capability between the instrument and a controller that can be initiated from the front panet of the instrument.

When USER is ON and the INST iD button is pushed, \(S R Q\) is asserted and remains asserted until the status is read via a serial poll or until a device clear is performed. The User Request is indicated by a Status Byte of 67 or 83 and an ERROR query response of ERR 403.

The Power on initial setting is USER OFF.

\section*{Examples:}

WIDTH A
WID

\section*{Discussion:}

This command sets up the DC 5009 to measure the pulse width of the input signal on Channel \(A\). The slope setting of Channel \(A\) determines whether positive going pulse width or negative pulse width is measured.

\section*{Operating instructions-mD 5009}

\section*{Programming Guide}

A programming guide for Tektronix controllers, such as the 4052 Graphic Computing System, is available. This guide contains programming instructions, tips, and example programs for use with this instrument. Ask your Tektronix Sales Engineer for a copy or order the GPIB Programming Guide, part number 070-3985-00.

\section*{MESSAGES AND COMMUNICATION PROTOCOL}

\section*{Command Separator}

A message consists of one command or a series of commands, followed by a message terminator. Messages consisting of multiple commands must have the commands separated by semicolons. A semicolon at the end of a message is optional. For example, each line below is a message.
```

INIT
TEST;INIT:RQS ON;USER OFF;ID?:SET?
TEST:

```

\section*{Message Terminator}

Messages may be terminated with EOI or the ASCII line feed (LF) character. Some controllers assert EOI concurrently with the last data byte; others use only the LF character as a terminator. The instrument can be internally set to accept either terminator. With EOI ONLY selected as the terminator, the instrument interprets a data byte received with EOO asserted as the end of the input message; it also asserts EOI concurrently with the last byte of the output message. With the LF/EOI setting, the instrument interprets the LF character without EOI asserted (or any data byte received with EOI asserted) as the end of an input message; it transmits carriage return (CR) followed by line feed (the LF with EOI asserted) to terminate output messages. Refer service personnel to the Maintenance section of the manual for information on setting the message terminator. TM 5000 instruments are shipped with EOI ONLY selected.

\section*{Formatting A Message}

Commands sent to TM 5000 instruments must have the proper format (syntax) to be understood; however, this format is flexible and many variations are acceptable. The following describes this format and the acceptable variations.

The instruments expect all commands to be encoded in ASCil; however, they accept both upper and lower case ASCII characters. All data output is in upper case (see Fig. 2-11).

As previously discussed, a command consists of a header followed, if necessary, by arguments. A command with arguments must have a header delimiter which is the space character SP between the header and the argument.
\[
\operatorname{ROS}_{8 p} \mathrm{ON}
\]

If extra formatting characters SP, CR, and LF (the LF cannot be used for format in the LF/EOI terminator mode) are added between the header delimiter and the argument, they are ignored by the instrument. (SP) (CR) and (LF) are shown as subscripts in the following examples:
```

Example 1: $\mathrm{RQS}_{\mathrm{Sp}} \mathrm{ON}$;
Example 2: $\mathrm{RQS}_{\mathrm{SP}} \mathrm{SP}^{\mathrm{ON}}$;
Example 3: $\operatorname{RQS}_{\text {SP CRLF } S P \text { SP }} O N$

```

In the command list, some headers and arguments are listed in two forms, a full-length version and an abbreviated version. The instrument accepts any header or argument containing at least the characters listed in the short form; any characters added to the abbreviated version must be those given in the full-length version. For documentation of programs, the user may add alpha characters to the fulllength version. Alpha characters may also be added to a query header, provided the question mark is at the end.
```

USER?
USERE?
USEREQ?
USEREQUEST?

```

Multiple arguments are separated by a comma; however, the instrument will also accept a space or spaces as a delimiter.
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
\(2 \mathrm{sp}^{3}\)
\(2{ }_{\text {, }}^{5}{ }^{3}\)

ASCII \& IEEE 488 (GPIB) CODE CHART

Fig. 2-11. ASCII and IEEE 488 (GPIB) code chart.

\section*{NOTE}

In the last example, the space is treated as a format character because it follows the comma (the argument delimiter).

\section*{Number Formats}

The instrument accepts the following kinds of numbers for any of the numeric arguments.
- Signed or unsigned integers (including +0 and -0). Unsigned integers are interpreted as positive. Examples: \(+1,2,-1,-10\)
- Signed or unsigned decimal numbers. Unsigned decimal numbers are interpreted to be positive. Examples: \(-3.2,+5.0,1.2\)
- Floating point numbers expressed in scientific notation. Examples: \(+1.0 \mathrm{E}-2,1.0 \mathrm{E}-2,0.01 \mathrm{E}+0\)

\section*{Rounding of Numeric Arguments}

The instrument rounds numeric arguments to the nearest unit of resolution and then checks for out-of-range conditions.

\section*{Message Protocol}

As the instrument receives a message it is stored in the Input Buffer, processed, and executed. Processing a message consists of decoding commands, detecting delimiters, and checking syntax. For setting commands, the instrument then stores the indicated changes in the Pending Settings Buffer. If an error is detected during processing the instrument asserts \(S R Q\), ignores the remainder of the message, and resets the Pending Settings Buffer. Resetting the Pending Settings Buffer avoids undesirable states which could occur if some Setting Commands are executed while others in the same message are not.

Executing a message consists of performing the actions specified by its command(s). For setting commands, this involves updating the instrument settings and recording these updates in the Current Settings Buffer. The setting commands are executed in groups-that is, a series of setting commands is processed and recorded in the Pending Settings Buffer before execution takes place. This allows the user to specify a new instrument state without having to consider whether a particular sequence would be valid. Execution of the settings occurs when the instrument processes the message terminator, a query-output command, or an operational command in a message.

When the instrument processes a query-output command in a message, it executes any preceding setting com-
mands to update the state of the instrument. It then executes the query-output command by retrieving the appropriate data and putting it in the Output Buffer. Then, processing and execution continue for the remainder of the message. The data is sent to the controller when the instrument is made a talker.

When the instrument processes an operational command in a message, it executes any preceding setting commands before executing the operational command..

\section*{Multiple Messages}

The Input Buffer has finite capacity and a single message may be long enough to fill it. In this case, a portion of the message is processed before the instrument accepts additional input. During command processing the instrument holds off additional data (by asserting NRFD) until space is available in the buffer.

When space is available, the instrument can accept a second message before the first has been processed. However, it holds off additional messages with NRFD until it completes processing the first.

After the instrument executes a query-output command in a message, it holds the response in its Output Buffer until the controller makes the instrument a talker. If the instrument receives a new message before all of the output from the previous message is read it clears the Output Buffer before executing the new message. This prevents the controller from getting unwanted data from old messages.

One other situation may cause the instrument to delete output. The execution of a long message might cause both the Input and Output buffers to become full. When this occurs, the instrument cannot finish executing the message because it is waiting for the controller to read the data it has generated; but the controller cannnot read the data because it is waiting to finish sending its message. Because the instrument's Input buffer is full and it is holding off the rest of the controllers message with NRFD, the system is hung up with the controller and instrument waiting for each other. When the instrument detects this condition, it generates an error, asserts SRQ and deletes the data in the Output buffer. This action allows the controller to transmit the rest of the message and informs the controller that the message was executed and that the output was deleted.

A TM 5000 instrument can be made a talker without having received a message which specifies what it should output. In this case, acquisition instruments (counters and multipliers) return a measurement if one is ready. If no measurement is ready, they return a single byte message with all
bits equal to 1 (with message terminator); other TM 5000 instruments will return only this message.

\section*{Instrument Response to IEEE-488 Interface Messages}

Interface messages and their effects on the instrument's interface functions are defined in IEEE Standard 488-1978. Abbreviations from the standard are used in this discussion which describes the effects of interface messages on instrument operation.

UNL——Unlisten
UNT—Untalk
When the UNL command is received, the instrument's listener function goes to its idle state (unaddressed). In the idle state, the instrument will not accept instrument commands from the GPIB.

The talker function goes to its idle state when the instrument receives the UNT command. In this state, the instrument cannot output data via the GPIB.

The ADDRESSED light is off when both the talker and listener functions are idle. If the instrument is either talk addressed or listen addressed, the light is on.

\section*{IFC-Interface Clear}

This uniline message has the same effect as both the UNT and UNL messages. The front panel ADDRESSED light is off.

\section*{DCL-Device Clear}

The Device Clear message reinitializes communication between the instrument and controller. In response to DCL, the instrument clears any input and output messages and any unexecuted settings in the Pending Settings Buffer. Also cleared are any errors or events waiting to be reported, except the power-on event. If the SRQ "ne is asserted for any reason other than power-or, when DCL is received the SRQ is unasserted.

\section*{SDC-Selected Device Clear}

This message performs the same function as DCL; however, only instruments that are listen addressed respond to SOC.

\section*{GET-Group Execute Trigger}

The instrument responds to GET only if it is listen addressed and the instrument device trigger function has been
enabled by the Device Trigger command (DT). The GET message is ignored and an SRQ generated if the DT function is disabled (DT OFF), the instrument is in the local state, or if a message is being processed when GET is received.

\section*{SPE—Serial Poll Enable \\ SPD-Serial Poll Disable}

The SPE message enables the instrument to output serial poll status bytes when it is talk addressed. The SPD message switches the instrument back to its normal operation of sending the data from the Output Buffer.

\section*{MLA—My Listen Address \\ MTA-My Talk Address}

The primary listen and talk addresses are established by the instruments GPIB address (internally set). The current setting of the GPIB address is displayed on the front panel when the ID button is pressed.

\section*{LLO-Local Lockout}

In response to \(L L O\), the instrument goes to a lockout state-from LOCS to LWLS or from REMS to RWLS.

\section*{REN—Remote Enable}

If REN is true, the instrument goes to a remote state (from LOCS to REMS or from LWLS to RWLS) when its listen address is received. REN false causes a transition from any state to LOCS; the instrument stays in LOCS as long as REN is false.

A REN transition may occur after message processing has begun. In this case execution of the message being processed is not affected by a transition.

\section*{GTL-Go To Local}

Only instruments that are listen addressed respond to GTL by going to a local state. Remote-tomocal transitions caused by GTL do not affect the execution of the message being processed when GTL was received.

\section*{Remote-Local Operation}

The preceding discussion of interface messages describes the state transitions caused by GTL and REN. Most front panel controls cause a transition from REMS to LOCS by asserting a message called return-to-local (rt). This tranm sition may occur during message execution; but in contrast to GTL and REN transitions, a transition initiated by rt/ does affect message execution. In this case, the instrument generates an error if there are any unexecuted setting or operational commands. Front panel controls that only change

\section*{Operating Instructions-DC 5009}
the display (like ID) do not affect the remote-local states-only front panel controis, except trigger level controls, that change settings assert rtl . The rt message remains asserted while muitiple keystroke settings are entered; and it is unasserted after processing the front panel control change. Since \(r t /\) prevents transitions to REMS, the instrument unasserts itl if a multiple button sequence is not completed in a reasonable length of time (approximately 5 to 10 seconds).

The instrument maintains a record of its settings in the Current Settings Buffer and new settings from the front panel or the controller update these recorded settings.

\section*{Local State (LOCS)}
in LOCS, instrument settings are controlled by the operator via front panel controls. When in LOCS, only bus commands that do not change instrument settings are executed (query-output commands); all other bus commands (setting and operational) generate an error since their functions are under front panel control.

\section*{Local With Lockout State (LWLS)}

The instrument operates the same as it does in LOCS. except that \(r t /\) will not inhibit a transition to remote.

\section*{Remote State (REMS)}

In this state, the instrument executes all instrument commands. Changing a front panel control, except trigger level controls, generates an \(n t l\) and causes the instrument to return to local (LOCS).

\section*{STATUS AND ERROR REPORTING}

Through the Service Request function (defined in the IEEE-488 Standard), the instrument may alert the controller that it needs service. This service request is also a means of indicating that an event (a change in status or an error) has occurred. To service a request the controller pertorms a Serial Poll; in response the instrument returns a Status Byte (STB) which indicates whether it was requesting service or not. The STB can also provide a limited amount of information about the request. The format of the information encoded in the STB is given in Table 2-2. When data bit 8 is set, the STB conveys Device Status information which is indicated by bits 1 through 4 .

Table 2-2

Because the STB conveys limited information about an event, the events are divided into classes; the Status Byte reports the class. The classes of events are defined as follows:

COMMAND Indicates the instrument has received a ERROR command which it cannot understand.

EXECUTION Indicates that the instrument has received ERROR a command that it cannot execute. This is caused by arguments out of range or settings that conflict.

INTERNAL Indicates that the instrument has detected ERROR a hardware condition or firmware problem that prevents operation.

SYSTEM
Events that are common to instruments in EVENTS a system (e.g., Power on, User Request, etc.).

EXECUTION The instrument is operating but the user WARNING should be aware of potential problems.

INTERNAL Internal warning indicates that the instruWARNING

DEVICE
Status

The instrument can provide additional information about many of the events, particularly the errors reported in the Status Byte. After determining that the instrument requested service (by examining the STB) the controller may request the additional information by sending an error query (EFRF?). In response, the instrument returns a code which defines the event. These codes are described in Table 2-3.

Table 2-3
BUS ERROR CODES AND SERIAL POLL RESPONSE
\begin{tabular}{|c|c|c|}
\hline Description & Error Query Response & \begin{tabular}{l}
Serial Poll \({ }^{\text {a }}\) \\
(Decimal)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Command Errors} \\
\hline Command header error & 101 & 97 \\
\hline Header delimiter error & 102 & 97 \\
\hline Command argument error & 103 & 97 \\
\hline Argument delimiter error & 104 & 97 \\
\hline Nonnumeric argument (numeric expected) & 105 & 97 \\
\hline Missing argument & 106 & 97 \\
\hline Invalid message unit delimiter & 107 & 97 \\
\hline \multicolumn{3}{|l|}{Execution Errors} \\
\hline Command not executable in Local & 201 & 98 \\
\hline Settings lost due to "rtl" & 202 & 98 \\
\hline l/O buffers full, output dumped & 203 & 98 \\
\hline Argument out of range & 205 & 98 \\
\hline Group execute trigger ignored & 206 & 98 \\
\hline \multicolumn{3}{|l|}{Internal Efrors} \\
\hline Interrupt fault & 301 & 99 \\
\hline System error & 302 & 99 \\
\hline \multicolumn{3}{|l|}{System Events} \\
\hline Power on \({ }^{\text {b }}\) & 401 & 65 \\
\hline Operation Complete & 402 & 66 \\
\hline User request & 403 & 67 \\
\hline \multicolumn{3}{|l|}{Device Warnings} \\
\hline Charinel A \(50 \Omega 2\) protect & 602 & 66 \\
\hline Channel B \(50 \Omega\) protect & 603 & 66 \\
\hline No prescaler & 604 & 102 \\
\hline \multicolumn{3}{|l|}{Device Dependent Events} \\
\hline Channel A overflow & 711 & 193 \\
\hline Channel B overflow & 712 & 194 \\
\hline No Errors or Events & 0 & 0 \\
\hline
\end{tabular}
af the instrument is busy, it returns a number which is \(\mathbf{1 6}\) higher than the number shown.
"See Table 2-2 for example.

If there is more than one event to be reported, the instrument continues to assert SRQ until it reports all ovents. Each event is automatically cleared when it is reported via Serial Poll. The Device Clear (DCL) interface message may be used to clear all events except Power On.

Commands are provided to control the reporting of some individual events and to disable all service requests. For example, the User Request command (USEREQ) provides individual control over the reporting of the user request event which occurs when the front panel ID button is pressed. The Requests for Service command (RQS) controls whether the instrument reports any events with SRQ.

RQS OFF inhibits all SRQ's (except Power-on event) so in this mode the ERR? query allows the controller to find out about events without first performing a Serial Poll. With ROS OFF, the controller may send the ERR? query at any time and the instrument returns an event waiting to be reported. The controller can clear all events by sending the error query until a zero (0) code is returned, or clear all events except Power-on through the DCL interface message.

With RQS OFF the controller may perform a Serial Poll, but the Status Byte only contains Device Dependent Status information. With RQS ON, the STB contains the class of the event and a subsequent error reported in the STB.

Table 2-4
FRONT PANEL ERROR CODES
\begin{tabular}{l|c}
\hline Serial I/O Fault & 313 \\
\hline \begin{tabular}{l}
Channel A \\
Counter Integrity
\end{tabular} & \(320-326\) \\
\hline \begin{tabular}{l}
Channel B \\
Counter Integrity
\end{tabular} & \(330-336\) \\
\hline System RAM Error U1332 & 340 \\
\hline System RAM Error U1210 & 343 \\
\hline ROM placement error U1312 & 361 \\
\hline ROM placement error U1102 & 374 \\
\hline ROM Placement error U1201 & 375 \\
\hline ROM checksum error U1312 & 381 \\
\hline ROM check\$um error U1102 & 394 \\
\hline ROM checksum error U1201 & 395 \\
\hline
\end{tabular}

\section*{Operating Instructions-DC 5009}

\section*{SENDING INTERFACE CONTROL MESSAGES}

Bus communications are performed through use of the controller input and output statements. ASCll commands are transmitted using the PRINT statements. The DC 5009 is factory set to address 18 .

PRINT @18:"SET?;"
ASCll replies are received by the controller using input statements.

INPUT @ 18:A\$

Bus interface control messages are sent as low level commands through the use of WBYTE and RBYTE controller commands. For the following commands \(A=32\) plus the instrument address and \(\mathrm{B}=64\) plus the instrument address.
```

Listen
Unlisten
Talk
Untalk
Unlisten-untalk
Device clear (DCL)
Selective device clear (SDC)
Go to local (GTL)
Remote with lockout
Local lockout of instruments
Group execute trigger (GET)

```

WBYTE @ A:
WBYTE @ 63:
WBYTE @ B:
WBYTE @ \(95:\)
WBYTE @ 63, 95:
WBYTE @ 20:
WBYTE @ A. 4:
WBYTE @ A, \(1:\)
WBYTE @ A, 17, 63:
WBYTE @ 17:
WBYTE @ A. 8:

These commands are for the Tektronix 4050-series controllers and representative for other controliers.

If there is more than one event to be reported, the instrument continues to assert SRO until it reports all events. Each event is automatically cleared when it is reported via Serial Poll. The Device Clear (DCL) interface message may be used to clear all events except Power on.

Commands are provided to control the reporting of some individual events and to disable all service requests. For example, the User Request command (USEREQ) provides individual control over the reporting of the user request event which occurs when the front panel ID button is pressed. The Request for Service command (RQS) controls whether the instrument reports any events with SRQ .

\section*{POWER ON SETTINGS}

At power on, the FUNCTION, AVERAGES, SLOPE, SOURCE, ATTENUATION, and COUPLING settings are set to the state of the front-panel controls. If the AUTO TRIG button is \(\operatorname{IN}\) and Auto trigger is performed, the trigger levels
are set under control of the front-panel LEVEL knobs. The other instrument settings are initialized as indicated in Table 2-5.

Table 2-5
POWER ON SETTINGS
\begin{tabular}{c|c}
\hline Header & Argument \\
\hline \hline CHA & A \\
\hline OPC & OFF \\
\hline OVER & OFF \\
\hline PRE & OFF \\
\hline DT & OFF \\
\hline USER & OFF \\
\hline RQS & ON \\
\hline
\end{tabular}

The INIT command performs a power-on initialization of the instrument's settings.

The INIT command does not generate a power-on SRQ nor does it put the instrument in LOCAL mode as a normal power-on does.

\section*{EXAMPLE PROGRAMS}

\section*{TALKER LISTENER PROGRAMS}

This sample program allows a user to send any of the commands listed in the Functional Command List to receive the data generated.

Talker Listener Program For 4050-Series Controllers
```

100 REM DCS009 YALKEK/LYSTENER FROGRAM
110 REM DCS009 PRIMARY ADDRESS :I 18
120 INIT
150 ON SRQ THEN 260
140 DIM A*(200)
1SO PRINT "ENTER MESSAGE(S): ";
160 INFUT C\$
170 PRINT Q18:C*
180 REM CHECK FOR QUERIES
190 IF POS(Ct,"?",1)<>0 THEH 220
200 REM CHECK FOR 'SERD'
210 IF POS(C*,"SEND",1)=0 THEN 150
220 REN INFUT FROM DEUICE
230 INPUT E18:A%
240 PRINT AS
250 00 TO 150
260 KEM SERIAL FOLL KOUTINE
2 7 0 ~ P O L L ~ X , Y : 1 B ~
280 FRINT "STATUS EYTE: ";Y
290 RETURM

```

This sample program allows a user to send any of the commands listed in the Functional Command List to receive the data generated．

Talker Listener Program For 4040－Series Controllers
```

100 KEM DCEOO9 TALKER/LISTENER FROGRAM
10世 KEM DCEOOF FRKIMARY ADDKESS = 18
110 OF'EH \#1:"GF'IE(F'KI=18,EOM=<>):"
11% ON SRO THER GOSUE 190
120 ENAELE SKG
12G DIM A* TO (170)
130 FRIINT "ENTER COMMAYD(S) / QUEFY "
13G INFUT C\$
140 IF C$w"EX" THEN GOTO 185
145 FFINT H1:C%
1FO REM CHECK FOK QUEFIES
1出岁 IF FOS(C*,"7",1)《>0 THEN GOTO 170
160 IF" POS(C$;"SEND",1)\#0 THEN GOTO 130
165 REM INFUUT FFOM DEVICE
170 INFUUT HI:A\$
17点 FFIMNT A\$
180 GOTO 130
185 STOF
190 FOLL SE,F,S,18
195 FRIHY "SKQ SEEN, STATUS BYTE:",SE
200 RETURTK

```

\section*{PROGRAMMING HINTS}

The purpose of this section of the manual is to show how to program the DC 5009 to perform some basic measure－ ment functions and how to take advantage of some of its special programming features．

The following examples are given in 4050－Series BASIC． The implementation details vary from controller to controller．

\section*{Changing Input Channel Settings}

Before a meaningful measurement can be made，the in－ put signal conditioning settingsmust be set properly．The following example firt sets up the channel \(A\) input signal
conditioning．Next the trigger levels are automatically set to their midpoints using the AUTO command and the AVE－-1 command sets up the instrument to make measurements at a rate of approximately 3 per second．Finally，the DC 5009 is instructed to make FREQ（frequency）measurements．
```

100 FKINT EIE:"CHA M;SLO FOS;SOU FRO"
110 FRINT EIS:"COU DC:ATG d;AUTO"
120 PRTNY 1018:"AVE -1:FREO:SEND"
120 INFUT ES8:K
140 FELNT "FKEO = ";R
150 END

```

\section*{Operating instructions－DC 5009}

\section*{Making Single Measurements}

Single measurements may be made using either of the two methods shown in the following examples．To make a single measurement，the instrument is first set to＂STOP＂ mode．A＂RESET＂then causes a single measurement to be made and then the measurement process is again stopped． The first example shows how to make a single TIME interval measurement using STOP and RESET．
```

300 PRINT f18:"AVE 1;TIME;"
310 PRINT G18:"STOP;NESET:SEND"
320 INFUT 618:R
33O FRINT "YLME LNTERUAL = ";R
340 END

```

The next example shows how to use Group Execute Trigger＜GET＞in place of the RESET，to make single measurements．To use＜GET＞，the instrument＇s Device Trigger Function must first be enabled using the DT TRIG command．Again，the instrtument must be set to＂STOP＂ mode before the＜GET＞causes a＂RESET＂and a single measurement to be made．

200 FKINT EI8：＂DT TRIGBAVE 1；TIME＂
210 FRINT \(810: "\) Stop＂
220 WEYTE O50，8：
230 REM＂ 50 IS ADDRESS（ \(18+32\) ）
240 KEM＂ 8 ＂IS 〈GET＞IEEE＂488
250 FRINT G10：＂GEND＂
260 INFUT G12：K
270 PRENT＂TIME INTERUAL \(=": \%\)
280 END

\section*{Reading Results}

There are two basic ways of obtaining measurement data from the DC 5009．The first method shown below uses the SEND command to request a measurement result from the instrument．If a measurement result is available，the DC 5009 will respond immediately when＂talked＂，otherwise it will wait until a result is avallable before responding．

500 FRINT 区18：＂FREQ：SEND＂
510 INPUT G1B：A
520 FRINT＂FREQ＝＂；A
530 END

The other method that may be used to obtain measure－ ment data involves just＂talking＂the DC 5009 and then reading the results．If a result is available，＂talking＂the in－ strument causes the result to be output．If a result is not avaliable，it causes the instrument to output an FF（hex）byte instead．The following example shows how to read out data by just＂talking＂the instrument and checking for FF （hex）．

600 FFINT G18：＂FREQ＂
610 INPUT Q1日：A\＄
620 JF \(\operatorname{LEN}(A \$)=0\) THEN 610
630 PRINT＂FREQ \(=" ; A \$\)
640 END

Both the RDY？and OPC commands can be used to de－ termine when measurement data is available to be read out． Data ready status can be queried using the RDY？query command，as in the following example．
```

400 FRINT e土8:"FERIOD"
410 PRINT TES:"RDY?"
420 INFUT E18:R
430 IF R=0 THEN 410
440 FRINT G18:"SEND"
4%O INFUT W18:A
460 FRINT "FERKIOD = "; 人
470 END

```

The following example shows how the OPC command allows the Service Request（ SRQ ）and the Status Byte re－ sponse（STB）to be used to signal data ready．
```

1OG FEM USING OFC LNTERRUFT
110 REM ANO STATUS EYTE TO
120 NEM STGNAL, DATA FEADF
130 A =0
140 FKINT GI8:"FEKNOFCOON;"
150 ON SRQ THEN 220
160 WAJT
\$% IF A=0 THEN 160
180 FRINT GXE:"SEND;"
190 INFUT G13:E
2OO FKINT "FEKIOD ="; %
210 ENB
2人0 FOLL D,S;10
230 IF 5% %6 OR S=82 THEN 260
240 FFINT "SKQ OCEURED, STATUS =";S
250 60 10 270
260 A\#j
270 RETURN

```

\section*{Making Time Interval Measurement}

The following example sets up the instrument to measure the time interval between two TTL level signals connected to the channel \(A\) and channel \(B\) inputs using \(X 5\) probes．
300 PRINT EI8：＂CHA A；SLO FOS；SOU EXT＂
310 PRINT Q18：＂ATT 1：COU DC；LEU ．275＂
320 PRINT EI8：＂CHA R；SLO FOS；SOU EXT＂
330 PRINT \(018: " A T T\) 1：COU DC：LEU ．275＂
340 FRINT G18：＂AVE 1；TIME；SEND＂
350 INPUT E18：T
360 PRINT＂TIME A TO \(\mathrm{B}=\mathrm{"} ; \mathrm{T}\)
370 END

Again, only those input channel settings not already at the desired states would have to be programmed.

\section*{Risetime and Slew Rate Measurements}

Risetime, Falltime and Slew Rate measurements can be made using a combination of commands. First the \(10 \%\) and \(90 \%\) points must be calculated from the MIN? and MAX? query responses after an AUTOTRIG. To determine Fisetime, the LEV command is then used to set the channel A trigger level to the \(10 \%\) point and the channel B trigger level to the \(90 \%\) poiint. The TIME function is then used to measure the time difference between the \(10 \%\) and \(90 \%\) points. Falltime measurements can be made similarly. Slew Rates can easily be determined once the \(10 \%\) and \(90 \%\) points and the Risetime have been measured. The following example measures both Risetime and Slew Rete. This example assures that the same signal is connected properly to both channels \(A\) and \(B\) and that the signal falls entirely within the range of the instrument.
```

40O KEM KISETIME AND SLEN KATE
40 PRINT QI8:"CHA A:SLO POS:CHA B;SLO POS"
420 FRINY E18:"AUTO;MIN?;MAX?;"
430 FRINT E18:"MIN?:MAX?;CHA A;MIN?:MAX?"
440 INFUT E18:B1,E2,A1,A2
450 A0=A1+(A2-A1)*0.1
460 AG=A2-(A2-A1)*0.1
470 B9=82-(B2-B1)*0.1
480 FRRINT E18:"CHA AILEV ";AO
490 FRINT G18:"CHA B;LEV ";B9
500 FRINT E18:"TIME;SEND"
510 INFUT P18:R
520 S= (A9-A0)/R
530 PRINT "RISETIME = ";R
ち40 FRINT "SLEW KATE = ";S
550 ENO

```

\section*{Phase Measurement}

A combination of PERIOD and TIME measurements can be used to make Phase measurements. The following example determines the phase difference between the chamel \(A\) and channel \(B\) signals by first measuring the PERIOD of one signal and then using the TIME function to measure the time difference between the two signals. The Phase angle is then computed using these two measurements. This example assumies that the appropriate signals are connected to input channels \(A\) and \(B\) and assumes that the trigger levels are set correctly.
```

100 REM PHASE MEASUREMENT
110 PRINT QLB:"CHA A;SLO POS;CHA E;SLO FOS"
120 PRINT @18:"PER:SEND"
130 INPUT E18:F
140 PRINT Q18:"TIME:SEND:"
150 INPUT @18:Y
160 P=T/P*360
170 FKINT "THE FHASE IS "%F
180 END

```

\section*{Duty Cycle Measurement}

Duty Cycle measurements can easily be made using a combination of WIDTH and PERIOD measurements. The following example determines the Duty Cycle of the positive going pulse of the Input signal. This example assumes the trigger level is already set to the desired value.
```

200 REM DUTY CYCLE MEASUREMENT
210 PRINT PIB:"CHA A;SLO POS;WIO:SEND"
220 INPUT G18:W
230 PRINT \&18:"FER;SEND;"
240 INPUT E18:P
250 PRINT "THE DUTY CYCLE IS ";W/P
260 END

```

\section*{Using INST ID Button}

Communication between the controller and an instrument operator can be accomplished using the INST IO button and the USER command. The following example allows a front panel operator to compensate probes and then inform the controller that the PROBECOMP is complete. As shown, the probes can be compensated and INST ID button used even while the rest of the front panel controls are locked out.
```

100 KEM USJNG ID EUTTON
110 FRJNT "COMFENEATE FFOEES -- ";
L2O FFDNT "FUSH INST XD BHEN DONE"
2O FRJNT E10:"USER ON:FROEE"
440 WEY|E dexy;
150 FEEM 1% 1S EFIE LLO GOMMAND
16O ON SKU THEN 220
170 % =0
180 WAIT
190 JF J=0 THEN 180
200 FRINT "COMFENGATION DONE"
210 END
22] FOLI D,5:18
230 IF 5% }67\mathrm{ OR S=6% THEN =60
240 FRRNT "SRG OCCURED, STATUS:":S
250 60 70 200
260 ERJNT "JNST YD EUTTON SENSED"
2%0 [= = %
ZGO KETURN

```

The INST ID button can also be used to inform the controller that the instrument has been set up properly to measure the input signals. Once informed, the controller can then "learn" the current instrument settings, using the SET? query command, and save the set-up for later use.
```

300 REM LEARN GETTSNBS
31[J FRINT "SET UF THE XNSTRUMENT"'*;
320 FRINT "FUSM INGT TD WHEN DONE"
330 DTM A\${215)
340 T=0
35G FKINT EJG:"USER ON"
360 ON SRU THEN 430
370 WAJT
380 IF I=0 THEN 370
390 PKINT ES8:"SET%"
400 TNFUT 自名:A\#
410 PRINT "GETTING ETORED"
420 END
4 3 0 ~ F O L L ~ D , S : 1 8 ~
440 [F S=67 OR S\#03 THEN 470
450 FRTNT "ERG OCCURED, STATUS"";S
460 60 TO 480
470 J==1
4B0 RETURN

```

\section*{Extending Range Using Overflow}

OVERFLOW occurs when the internal 40－bit capacity of the counter is exceeded．By detecting these occurrences of OVERFLOW，the range of TMANUAL and TOTALIZE mea－ surements may be extended．

The following example monitors a TOTALIZE measure－ ment watching for the count to reach \(1.0 \mathrm{E}+13\) ，approxi－ mately 10 times the counting capacity of the DC 5009．This is done by counting occurrences of OVERFLOW and using this count to extend the precision of the result．
```

100 KEM EXTENDING RANGE USING
110 REM OVERFLOW - TOTALIZE A
120 C=0
130 FRINT EI8:"OUER ONITOT;START"
140 ON SRO THEN 250
150 FKINT G18:"SEND"
160 INPUT G18:A
170 K=A+C%1.099511628E+12
180 IF R<1.0E+13 THEN 150
190 FRINT "RESULT 1S ";k
200 END
250 fOLL D,5;18
260 IF S=193 OK S=209 THEN 290
270 FRKNT "SRG OCCURED, STATUS=";S
230 RETURN
290 C=C+1
300 RETUKN

```

The next example monitors a TMANUAL measurement： to determine when 10 hours have elapsed．Since 10 hours is equivalent to 36,000 seconds，it exceeds the 10995.1 sec－ ond counting capacity of the DC 5009．By counting the oc－ currences of OVERFLOW，the precision can be extended to count this amount of time．

400 KEM EXTENDING KANGE USING
410 REM OUERFLOW ．．－TIME MANUAL
\(420 \mathrm{C}=0\)
430 FRINT E18：＂OUER ON：TMAN：START＂
440 ON SKQ THEN 250
450 FKINT Z18：＂SEND＂
460 INPUT E18：A
\(470 \mathrm{k}=\mathrm{A}+\mathrm{C}\) 天10995．1162778
480 IF R 366000 THEN 450
440 FRLNT＂RESULT 15 ＂JR
500 ENO
550 FOLL D，SJ18
560 If Sme194 OR S＝210 THEN 590
\＃70 FRINT＂GK日 OCLURED，STATUS＝＂：
580 RETURN
540 E＝C +1
6UU RETURN

Additional assistance in developing specific application oriented software is available in the following Tektronix manuals．
（1）070－3985－00－＿GPIB Programming Guide．This man－ ual is specifically written for applications of this instru－ ment in IEEE－488 systems．It contains programming instructions，tips and some specific example programs．
（2）070－2270－00－＿4051 GPIB Hardware Support Man－ ual．This manual gives an indepth discussion of IEEE－ 488 bus operation，explanations of bus timing details and early bus interface circuitry．
（3）070－2058－01－－Programming In BASIC
（4）070－2059－01－Graphic Programming In BASIC
（5）51／00－700 4／0—4050 Series Programming Tips
（6）070－2380－01－4907 File Manager Operators manual
（7）070－2128－00－4924 Users manual
(8) 070-1940-01-4050 Series Graphic System Operators manual
(9) 070-2056-01-4050 Series Graphic System Reference manual
(10) 070-3918-00-4041 Operators manual
(11) 061-2546-00-4041 Programming Reference manual

1
1
1
1
1
1
1

\section*{WARNING}

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO. REFER TO OPERATORS SAFETY SUMMARY AND SERVICE SAFETY SUMMARY PRIOR TO PERFORMING ANY SERVICE.

\section*{THEORY OF OPERATION}

\section*{BLOCK DIAGRAM DESCRIPTION}

\section*{Introduction}

Reter to the Block Diagram illustration located in the foldout pages at the rear of this manual during the following discussion.

\section*{Channel A and Channel B Amplifiers}

The functional blocks for the Channel A and Channel B Amplifiers are essentially identical. Each channel amplifier circuit contains three magnetic latching relays that control the selection of the front panel or rear interface input signats, the ac or dc coupling modes, and the \(\times 1\) or \(\times 5\) attenuation factor. The data for these relays are sent from the microprocessor via data shifted through serial to parallel shift registers in these functional blocks. The trigger slope selection data is also latched in these same registers. The slope selection circuits are located on schematic 3 .

Each amplifier channel contains an input differential amplifier, two cascode amplifiers, and Schrnitt trigger circuits that provides the hysteresis window for the overall amplifier. The outputs of the Schmitt circuits are buffered before application to the slope selection gates.

The +5 V power for both input channels is regulated by a three terminal regulator that uses the interchannel shield for a heat sirk.

\section*{Trigger Level and D-A Converters}

This functional clock contains triggering level controls and digital-to-analog converters for Channel \(A\) and Channel B. The microprocessor, depending on the mode, selects the setting of the front panel triggering LEVEL controls or the outputs of the D-A Converters to be applied to the input differential amplifier circuits located on schematics 1 and 2 .

\section*{Gating, Arming and Synchronizers}

After slope selection, the signals to be measured are routed through the proper logic gates for the operating mode selected. These gates are enabled (or disabled) via latched data in a serial to parallel shift register located in this functional block.

The \(A\) and B SHAPED OUT signals originate in this block and provide exact replicas of the signals that the counter is measuring. These outputs provide a \(50 \$ 2\) output impedance capable of driving a \(50 \Omega\) load.

The counter has what is sometimes called a "ratio architecture". That is, events are always accumulated in one count chain, called Accumulator A, and a time related or Channel \(B\) event count is accumulated in another counter chain, called Accumulator B. The microprocessor actually controls the measurement interval, which is always asynchronous with the input signals. The Synchronizers in this functional block guarantee that the accumulators always see a whole number of pulses of input signals or a whole number of pulses from the internal time base that is being counted.

The arming input (ARM) from the front panel or rear interface is also applied to this block where it is logically ANDed with the measurement GATE generated by the microprocessor.

\section*{Time Base, 100 MHz PLL, and Noise Generator}

This block contains the 10 MHz crystal controlled time base, a 100 MHz PLL (phase locked loop) and a pseudorandom noise generator that is activated for time intervai averaging measurements.

The D-A Converters are driven by 8-bit parallel words latched in two serial-to-parallel shift registers in this functional block.

The 100 MHz PLL circuit contains a frequency and phase comparator, a filter circuit, a Varactor diode for 100 MHz tuning, and a divide by 100 feedback loop.

\section*{Theory of Operation-DC 5009}

\section*{CH A and CHB Accumulators}

The Channel A signal is divided or counted by two ECL binary stages, six TTL binary stages, and then by four binary stages in a single CMOS counter. The CARRY A output from the CMOS counter is then applied to a microprocessor peripheral device on schematic 7 , where the signal is counted by another 16 binary stages internal to that device.

The CH B Accumulator is similar to the \(\mathrm{CH} A\) Accumulator with two ECL binary stages, six TTL binary stages, followed by 16 binary stages in two CMOS counters. The CARRY B signal is also applied to the microprocessor peripheral device on schematic 7. Both accumulator circuits have ECL to TTL translator circuits where required.

The outputs of these counters are applied to the parallel inputs of five parallel to serial shift registers (two for CH A and three for CH B). To obtain the binary count accumulated in these counters, the microprocessor asserts the Serial Read Latch Line at least once for every measurement interval.

\section*{Control Logic, and Memory}

The microprocessor located on the GPIB board controls the measurement gate interval, generates the relay strobe signal, and by using address decoding circuits enables the shift registers, display strobe circuits, and the data buffer for the front panel settings.

This functional block has a microprocessor peripheral device containing a \(128 \times 8\) static RAM, a 16 -bit programmable counter, an 8-bit serial data channel, bidirectional data lines, and interrupt inputs. Program memory space is provided by'a \(4096 \times 8\) ROM device.

\section*{Front Panel Keyboard and Display Drive}

The key element in this functional block is a ten-state decade counter that provides the time slot decoding for scanning the front panel pushbuttons and other controls. The counter also provides the multiplexing functions for the seven-segment LED display and annunciators. information
is presented to the display by latching six bits of data from the microprocessor parallel data bus. Four bits of the latched data are then decoded from binary coded decimal to sever-segment information. The remaining two bits are used to drive the annunciators and decimal points.

\section*{Display}

The display consists of eight seven-segment LEDs and six annunicators. The time slot lines generated by the tenstate decade counter drives the cathodes of the seven-segment LEDs and scans the annunciators. The anodes of the seven-segment LEDs are connected to a buffer circuit through current limiting resistors.

\section*{Power Supplies}

The +12 Vdc supply is derived from the +26 V raw dc from the power module. The -12 V regulated supply is derived from the -26 V raw dc from the power module. The +5 V regulated supply is derived from the +8 V raw de from the power module. These supplies are individually protected by their own fuses. The +3.2 V supply is derived from the +12 V regulated supply, whilie the +2.7 V supply is derived from the +5 V regulated supply. The +3.2 V supply operates as the reference for the -12 V supply and the digital-to-analog converters.

\section*{GPIB Microprocessor, Memory, and Controller}

The GPIB consists mainly of a microprocessor, two ROM's, one RAM, and a GPIB controller chip. An address switch is also available to set the listen and talk addresses for the DC 5009. In the DC 5009, the GPIB board connects to the digital board and is used to communicate with the IEEE 488 Digital Interface.

The microprocessor uses a serial data loop, an 8-bit parallel data bus, and a 16 -bit address bus to communicate with the instrument functions. The microprocessor fetches instructions from memory via the parallel data path, decodes the desired operation, and executes the instruction. The activities of the microprocessor occur in cycles generated by its own 1 MHz system clock.

\section*{DETAILED CIRCUIT DESCRIPTION}
\(\mathrm{CH} A\) and CH B Amplifiers and Relay

\section*{NOTE}

Since the \(\mathrm{CH} B\) Amplifier and Relay Control circuit is essentially identical to the CH A Amplifier and Relay Control circuit, this description discusses the theory of operation for the CH A Amplifier and Relay Control circuit with the associated circuit component for the equivalent Channel B circuit in parenthesis.

The input signal enters the instrument either from the front panel bnc connector J 500 (J 510) or from the rear interface input conmection P1625-16A (P1625-17B). The external or internal signal source is selected by K1031 (K1041). When the internal signal source is selected, the microprocessor also activates K1621 (K1622).

The AC COUPL or DC COUPL mode is selected by K1032 (K1042), while the \(\times 1\) or \(\times 5\) ATTEN modes are selected by K1033 (K1043). The \(\times 5\) attenuation network includes R1023 (R1043), R1131 (R1141) and their compensating capacitors, C1022 (C1042) and C1031 (C1043)

The input differential amplifier stage Q1121 (Q1141) is a matched dual DMOS FET with high input impedance and low offset between the triggering level and signal input gate terminals. Transistor Q1122 (Q1142) and associated components operate as a current source, providing good common mode rejection for the differential amplifier stage.

The +5 V drain supply for the input differential stage in both channets is obtained from a three terminal regulator, U500. This regulator uses the interchannel shield for a heat sink.

Input protection for the DMOS FET differential amplifier is provided by CR1121 (CR1131), CR1123 (CR1141), CR1124 (CR1142), and CR1122 (CR1132). These diodes clamp the input signal amplitude to about +13 V and 13 V .

The first cascode amplifier stage consisting of Q1223 (Q1241), Q1221 (Q1233), Q1222 (Q1234), and Q1224 (Q1242), and associated components provides a gain of about three. The second cascode stage, Q1225 (Q1235),

Q1226 (Q1243), Q1228 (Q1245), Q1227 (Q1244), and associated components provides a gain of about three and drives the Schmitt trigger circuit consisting of Q1232 (Q1248), Q1229 (Q1247), and associated components. The Schmitt trigger circuit sets the hysteresis window for the overall input amplifier. The ECL line receiver, U1331B (U1331C), operates as a buffer between the Schmitt trigger and the slope selection circuits on schematic 3.

The input relays for each channel are the magnetic-latching type. They are set to their proper positions by the binary data latched in the serial to parallel shift register U1101 (U1111). The parallel data from these registers is buffered by U1110 (U1112), a Darlington driver integrated circuit. The most significant bit (pin 11) from the shift registers determines the triggering slope for each channel.

The relay strobe circuit for both channels consists of 01101. Q1102, Q1103, and associated components. The relay strobe signal is programmed by the microprocessor. The strobe signal generated at the collector of Q1103 is a positive pulse of about 7 V , and strobes all of the relays simultaneously. However, the state of only one relay is changed with each strobe event. The feedback connection from R1103 and R1104 to the emitter of Q1101 operates to regulate the pulse amplitude under all supply conditions. Diode CR1211 prevents the strobe pulse from going more negative than about 0.6 V .

\section*{Gating, Arming, and Synchronizers}

Transistors Q1411 and Q1412 form a differential comparator. The base of Q1411 is at approximately 3.5 V ; set by the voltage divider network, R1413 and R1414. The base of Q1412 is biased by R1404, R1403 and R1415, with R1403 providing positive feedback to generate the hystersis at the arming input. Diode CR1401 and the measurement gate buffer, Q1401, are in a conducting state before the measurement gate signal on J1410-2 goes negative. The wiredOR junction at the emitter of Q1401 must be low during the measurement interval. If the arming input signal on the base of Q1411 is held low the wired-OR junction is held high, preventing the counter from making a measurement.

Setting the counter up to accept the arming signal via the rear interface requires only that qualified service personnel reverse the connections of P1402 and P1403.

Both the inverted and non-inverted forms of the input signals from the Channel \(A\) and Channel \(B\) amplifiers are available; Channel A signals at the emitters of Q1331 and

\section*{Theory of Operation-DC 5009}

Q1332, Channel B signals at the emitters of Q1333 and Q1334. Only one of the two transistors for each channel is active at any one time, depending on the selected slope; Q1332 and Q1333 for positive slope selection, Q1331 and Q1334 for negative slope selection.

After slope selection, the signals are buffered by U1332A and U1331A, and then level shifted by common base amplifiers, Q1442 and Q1441, before application to the front panel shaped outputs via J540 and J560, or to the rear interface via P1625-23A and P1625-24B.

The microprocessor determines the measurement gate interval on pin 12 of U1332B. Integrated circuits, U1421A and U1421B, operate as Synchronizers to ensure that the accumulator gates, U1332C and U1431C, open and close at the proper time for the desired measurement. Synchronizing the accumulator gates with the signals to be counted ensures that the accumulators will contain a count corresponding to a whole number of input and time base pulses. The signals to be counted clock the Synchronizers on pins 6 (U1421A) and 11 (U1421B).

Before each measurement is initiated by the microprocessor U1421A and U1421B are set by the MR (master reset) pulse on J1410-1; U1332C and U1431C are disabled by the high levels on pins 2 and 15 of the Synchronizers.

For those modes that use the CH A Amplifier with positive slope triggering, negative-going edges are generated on pin 2 of U1331A. Pin 14 of shift register U1411 is latched high for all operating modes except the time interval modes (TIME A \(\rightarrow\) B, WIDTH A, and EVENTS B DUR A). With pin 14 of U1411 high Q1343 and U1431B are enabled. The CH

A signal is then inverted by U1431B and clocks U1421A on pin 6. The CH A complement signal also appears on pin 6 of U1431B.

\section*{NOTE}

Transistors Q1342, Q1344, Q1341, Q1423, Q1422, Q1421, and Q1343 operate as switches to route the \(\mathrm{CH} \mathrm{A}, \mathrm{CH}\) B , and 100 MHz time base signals through the proper logic gates for the selected front panel FUNCTION. Transistor Q1344 is used to disable U1431A. See Table 3-1.

FREQUENCY A and PERIOD A. If the gate signal from the microprocessor and the arming signal on pin 11 of U1332B are both low, a low is set on the D input (pin 7) of U1421A. This low is transferred to pin 2 on the first CH A edge that clocks U1421A after the measurement gate started. The low on pin 2 enables the second synchronizer, U1421B, and the CH A Accumulator gate, U1332C. With U1332C enabled the next negative edge of the CH A signal is allowed to pass through U1332C in its inverted form and be counted by the first binary stage of the \(\mathrm{CH} A\) Accumulator on schematic 4 .

For the FREQUENCY A and PERIOD A functions, pin 7 of shift register U1411 is latched high. This turns on Q1422, allowing the 100 MHz time base signal to clock U1421B on pin 11. The first time base edge to clock U1421B after U1421A changed state sets a low on pin 10 of U1431C and turns on Q1433, enabling the CH B Accumulator gate and indicating that a measurement cycle is in progress. The next negative edge of the 100 MHz time base signal then passes through U1431C in its inverted form and counted by the first binary stage of the CHB Accumulator (schematic 4).

Table 3-1
Signal routing switching logic
(\(\mathrm{X}=\) Saturated, Blank \(=\) Off \()\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Function & Q1342 & \[
\begin{aligned}
& \text { Emitter } \\
& \text { Q1344 }
\end{aligned}
\] & Q1341 & Q1423 & 01422 & 01421 & Q1343 \\
\hline FREQUENCY A & & High & & & \(X\) & & \(X\) \\
\hline PERIOD A & & High & & & \(x\) & & \(x\) \\
\hline RATIO B/A & & High & & \(x\) & & & \(\chi\) \\
\hline TIME A - B & & Low & X & & \(X\) & \(x\) & \\
\hline WIDTH A & \(\chi\) & Low & & & \(X\) & \(X\) & \\
\hline EVENTS B DUR A & \(X\) & Low & & \(X\) & & X & \\
\hline TIME MANUAL & & High & & & \(x\) & & X \\
\hline TOTALIZE A & & High & & \(X\) & & & \(X\) \\
\hline COMP & & High & & \(X\) & & & \(x\) \\
\hline TEST & & High & & \(\chi\) & & & X \\
\hline
\end{tabular}

After the Synchronizers and accumulator gates have been enabled, all succeeding input pulses are counted by the CH A Accumulator and all succeeding time base pulses are counted by the CHB Accumblator.

The counting process continues until the selected number of averages have been satisfied or the time out period while in the AUTO mode has been satisfied. At this point the gate signal from the microprocessor goes high, setting the D input (pin 7) of U1421A high. The next positive edge of the input signal then clocks U1421A and pin 2 goes high, disabsing \(\cup 1421 \mathrm{~B}\) and U 1332 C . The next 100 MHz time base edge then clocks U1421B, disabling U1431C and turning off Q1433 to tell the microprocessor that the measurement cycle has ended.

When the measurement cycle has ended. the microprocessor reads the total counts in both accumulators. The CH A Accumulator contains the number of events or periods and the CH B Accumulator contains the number of time base clock pulses counted over the same interval. The microprocessor divides the number of events in the \(\mathrm{CH} A\) Accumulator by the total time in the CH B Accumulator to obtain the frequency (FREQUENCY A) or divides the total tirree in the CH B Accumulator by the number of events in the \(\mathrm{CH} A\) Accumulator to obtain the period, or time per CH \(A\) event (PERIOD A).

Ratio B/A. The RATIO B/A mode is the same as FREQUENCY A and PERIOD A, except that instead of counting 100 MHz time base pulses, Q1422 is disabled by a low on pin 7 of shift register U1411 and Q1423 is enabled for the CH B signal to clock U1421B. The counts are accumulated over the time intervaldetermined by the number of averages selected. The RATIO B/A result is then calculated by dividing the number of CH B events by the number of \(\mathrm{CH} A\) events.

TIME A \(\rightarrow\) B. For the TIME \(A \rightarrow B\) function, Q1343 is disabled: Q1421. Q1422, Q1341, and U1431B are enabled. The first CH A pulse slope is selected, passes through U1332A and applied to pin 6 of U1431B. The Synchronizers have been set by the MR (master reset) pulse and the CH A pulse clocks U1421A on pin 6.

A soon as the gate signal from the microprocessor sets pin 11 of U1332 B low, the next CH A clock edge to U1421A transfers the low on pin 7 to pin 2 and sets pin 3 high. The high on pin 3 passes through Q1421, disables U1431B, and prevents U1421A from being clocked by succeeding CH A pulses. The Q output of U1421A (pin 2), being low, enables U1431A and allows the first succeeding CH B pulse edge to clock U1421A, setting pin 2 high and pin 3 low, again. Pin 3 going low with the CH B edge, also enables U1431B again for the next CH A edge to clock U1421A.

\section*{Theory of Operation-DC 5009}

During the period of time that pin 2 of U 1421 A is low, U1421B is enabled. The 100 MHz time base clock pulses are synchronized and gated by U1421B and U1431C, and then counted by the binary stages in the C H B Accumulator.

Since Q1343 is off, U1332C is enabled with a low on pin 12 and each TIME A \(\rightarrow\) B interval appears as a negative pulse on pin 13. This negative time interval is converted to a positive time interval pulse by \(\mathbf{U 1 3 3 2 \mathrm { C }}\) and then counted by the binary stages in \(\mathrm{CH} A\) Accumulator. Thus, for each TMME \(\mathrm{A} \rightarrow \mathrm{B}\) interval, a count is accumulated in the \(\mathrm{CH} A\) Accumulator and during each of these intervals the 100 MHz clock pulses are accumulated in the CHB Accurnulator.

The microprocessor is continually reading the counts (accumulated time intervals) in the CH A Accumulator. When the selected number of averages (\(10^{\mathrm{N}}\)) or the measurement time in the AUTO mode (approximately 0.3 seconds) has been sat|sfied, the microprocessor sets the gate signal on pin 11 of U1332B to a high level. The next CH B pulse clocks a high through U1421A to pin 10 of U1421B and disables U1431A. The next 100 MHz clock pulse then toggles U1421B, disabling U1431C and allowing the collector of Q1433 to go low. This tells the microprocessor that the measurement cycle has been completed. The microprocessor then makes a final reading of both accumulators, divides the total time by the number of intervals, and updates the display during the next measurement cycle.

WIDTH A. The WIDTH A function is essentially the same as the TIME \(A \rightarrow B\) except that Q1341 is disabled and Q1342 is enabled. This then allows the leading edge of the pulse width to be measured, to be applied to pin 6 of U1431B and the trailing edge to be applied to pin 5 of U1431A.

The Synchronizers (U1421A and U1421B) and the accumulator gates (U1332C and U1431C) function exactly like they did in TIME \(A \rightarrow B\). The pulse widths are regenerated on pin 2 of U1421A and during each of the negative pulse intervals, U1421B and U1431C are enabled so that the 100 MHz clock pulses (via Q1422) can be counted by the CH B Accumulator. Also, each regenerated pulse is passed through U 1332 C and counted by the CH A Accumulator. Again, when the averages conditions have been satisfied the microprocessor stops the measurement gate, reads both the accumulators, and divides the total time by the number of regenerated time intervals to obtain the average pulse width.

EVENTS B DUR A. The EVENTS B DUR A function is the same as WIDTH A except that instead of counting 100 MHz clock pulses via Q1422, the instrument is counting CH B events during the selected CH A pulse width via

Q1423. To do this, Q1342, Q1423, and Q1421 are enabled. The leading and trailing edges of the CH A pulse are again applied to pin 6 of U1431B and pin 5 of U1431A.

The CH B signal passes through Q1423 to clock the second sychronizer, U1421B. When the gate signal on pin 12 of U1332B goes low, the Synchronizers and accumulator gates function exactly as they did in WIDTH A (and described for TIME A \(\rightarrow\) B). With U1332C enabled on pin 12 the CH A pulse widths are counted in the CH A Accumulator while the CH B events are counted in the CH B Accumulator. In EVENTS B DUR A the instrument is counting CH B events during \(\mathrm{CH} A\) pulse widths and averaging by the selected number of CH A events.

When the selected or AUTO averages condition has been satisfied, the gate signal on pin 11 of U1332B goes high, the next CH A trailing edge disables U1421A (pin 2 high), and the succeeding CH B edge sets a low on pin 14 of U1421B, completing the measurement cycie.
time manual and totalize a. For the time manUAL and TOTALIZE A functions, the microprocessor asserts the gate signal on pin 11 of U1332B when the START/STOP pushbutton on the front panel is depressed to start the measurement. The gate is unasserted (set high) when the pushbutton is depressed to stop the measurement.

For TIME MANUAL Q1344, Q1422, and Q1343 are enabled. Immediately after asserting the gate signal the microprocessor momentarily changes the CH A Level on pin 14 of U1321D from its current setting to -3.175 V to +3.2 V and then back again to its original setting. This provides an artificial CH A signal that enables U1421A and allows the 100 MHz clock signal count to be accumulated in the CH B Accumulator. The accumulation continues until the measurement is stopped, at which time the microprocessor unasserts the gate signal and provides another trigger level change to disable U1421A and stop the accumulation of time base clock count. The results in the CH B Accumulator is then directly displayed with the proper annunciator illuminated.

For TOTALIZE A Q1344, Q1343, and Q1423 are enabled. When the gate signal is asserted, CH A events are counted (totalize) in the CH A Accumulator until the measurement is stopped. In this case, the microprocessor does not read the CH B Accumulator, only the CH A Accumulator counts are displayed. Display scaling is accomplished by the microprocessor using the position of the AVERAGES switch to select the desired scaling factor (power-of-ten). Time or frequency units are not displayed for this function.

PROBE COMP and TEST, For the PROBE COMP function, the operator applies probe compensating signals to either Channel \(A\) or Channel \(B\). For either of these modes, the counter is set up (internally) in RATIO B/A. This allows the Channet A or Channel B signals to pass straight through to the accumulators. For the TEST function the microprocessor generates artificial signals by programming the digital-to-analog converters (schematic 5) through their full range. The outputs of the digital-to-analog converters are applied as trigger level changes to the differential amplifier circuits in the CH A and CHB Amplifiers (schematic 1).

\section*{NOTE}

A complete description of the seff test function is described in the Maintenance section. Front panel procedures for the PROBE COMP function are found in the Operating Instructions.

\section*{CH A and CH B Accumulators}

Before each measurement is initiated by the microprocessor, the MR (master reset) signal is asserted via pin 26 of U1332 on schematic 7 . This reset signal is inverted by U1202E and U1202F and level shifted by Q1201 to provide an ECL compatible reset signal to the Synchronizers on schematic 3 , and to provide both ECL and TTL compatible reset signals for all of the count stages in the \(\mathrm{CH} A\) and CH B Accumulators.

The CH A Accumulator signal clocks U1221A on pin 6 while the CH B Accumulator signal clocks U1221B on pin 11. The first two binary stages for each accumulator are ECL stages, U1221A and U1211A for the CH A Accumulator, U1221B and U1211B for the CH B Accumulator. The next two binary stages for each count chain are TTL; CH A U1201A and U1113A, CH B - U1201B and U1113B. Transistors Q1213, Q1211, Q1221, and Q1212 operate as ECL to TTL translators.

The individual TTL binary stages for each accumulator are then followed by TTL 4-bit counters, U1112A and U1112B, and then by CMOS 4-bit counters, U1111A and U1111B. The CH B Accumulator has an additional 12-bit CMOS counter, U1012. The CH A Accumulator also has an additional 16-bit counter internal to U1332 on schematic 7 . This arrangement provides a total of 28 hardwired bits for the CH A Accumulator and 24 hardwired bits for the CH B Accumulator. Since each accumulator requires 40 bits, the \(\mathrm{CH} A\) Accumulator has 12 bits supplied by a firmware counter and the CH B Accumulator has 16 bits supplied by a firmware counter.

Five parallel-to-serial shift registers, U1102, U1101, U1103, U1011, and U1002, are used by the microprocessor
to read out the contents of the \(\mathrm{CH} A\) and CH B Accumulators. When the parallel/serial control line (pin 9 of each register) is low. data is shifted through the registers synchronously with the positive transition of the serial clock signat (pin 10). When pin 9 is pulsed high to read these registers, data is put into the registers asynchronously with the clock. The serial data path is further described under Control Logic and Memory (schematic 7).

\section*{Trigger Level Control and D-A Converters}

This circuit contains two digital-to-analog converters: U1201 for Channel A and U1211 for Channel B. The converters are used by the microprocessor for the COMP and TEST functions, and for the AUTO TRIG mode. The converters are driven by 8 -pit words latched in two serial to parallel shift registers, U1202 and U1212. The output currents of U1201 and U1211 are converted to voltage levels by R1203 and R1214. Output current is differentially shared between pins 2 and 4 on each converter. Output current can vary between 0 and -2 mA , corresponding to +3.2 V and -3.175 V trigger levels, respectively.

The outputs of the front panel trigger level controls, R500 and R510, are attenuated by voltage dividers, R1303-R1302 and R1306-R1309. The attenuated levels from the front panel controls and the voltage outputs from the converters are then applied to a CMOS analog switch, \(U 1311\).

The microprocessor, depending on the mode, selects either the outputs from the converters or the front panel controls. Output selection is determined by bits 6 and 7 latched in shift register U 1411 located on schematic 3. These bits turn on or turn off Q1312 and Q1311; both transistors are never on at the same time. For example, if the base of Q1311 is low while the base of Q1312 is high, the microprocessor has selected the converter outputs to be applied to the inputs of the unity-gain operational amplifiers, U1321A and U1321B. The buffered trigger levels are isolated by R1322 and R1321 and then applied to the front panel via \(\mathrm{J} 580(\mathrm{~J} 570)\) and the rear interface outputs, pins 22A and 22B.

Operational amplifiers U1321D and U1321C, with their associated components, operate as summing amplifiers, providing adjustable offset levels that compensate for the offset voltages in the \(\mathrm{CH} A\) and CH B Amplifier circuits.

The adjustable reference voltage (+3.2 V) circuit for both converters is located on schematic 10 . With this reference voltage set properly, the gain of the converters is adjusted by potentiometers R1102 and R1211.

\section*{Theory of Operation-DC 5009}

\section*{Time Base, 100 MHz PLL and Noise Generator}

The 10 MHz standard time base consists of a 10 MHz crystal, Y1601, along with a Colpitts oscillator circuit, Q1611 and associated components. The frequency of the standard time base is adjusted by C1602.

The Option 01 high stability time base consists of a self contained, oven controlled 10 MHz oscillator, Y1531. This time base is adjusted via a hole in the rear of the case (accessed through the instrument back plate).

The 18 V input to this time base is derived from the fused +26 V source in the power module and regulated by a three terminal regulator circuit, U1601 and associated components. If the Option 01 time base is installed, the components for the standard time base circuit are removed from the board.

The 10 MHz output from either of the internal time bases or from an external source \((1,5,10 \mathrm{MHz})\) is applied to the base of Q1612. Diode CR1611 allows C1612 to discharge during the negative portions of the input signal. The buffered signal at the collector of Q1612 can be either 1 MHz , 5 MHz , or 10 MHz . If the input signal frequency is 1 MHz , jumper P1511 is placed between pins 4 and 5 of J1511 to apply the signal to the base of Q 1502 . A 5 MHz input signal requires that U1611A divide by five and P1511 must then be placed between pins 2 and 3 or pins 3 and 4 of J1511. A 10 MHz time base signal requires that U1611A divide by five, U1611B divide by two, and P1511 be placed between pins 1 and 2 of J1511. The signal to the base of Q1502 must, in all cases, be 1 MHz .

Emitter follower Q1502 and associated components operate as a single-pole filter, generating a sawtooth signal at the negative input terminal of comparator U1501. For the TIME \(A \rightarrow B\), WIDTH A, and EVENTS B DUR A functions, the base of Q150t is set low via pin 14 of shift register U1411 (schematic 3). For those functions, the noise generator U 1502 is enabled by applying \(+5 \vee\) to the \(V_{\mathrm{os}}\) input (pin 4). The output from U1502 will then be \(\mathrm{a}-12 \mathrm{~V}\) to +5 V signal with a pseudo-random edge distribution. This signal is then attenuated by R1504 and applied to the positive input terminal of U1501.

For the previously mentioned functions, U 1501 operates as a phase modulator circuit. The output of U1501 will be a 1 MHz signal with the negative edges phase modulated by the noise signal generated by U1502. For the remaining functions Q1501 is turned off, U1502 is disabled, and U1501 operates only as a buffer stage.

Integrated circuit U1522 operates as a frequency/phase comparator circuit, comparing the divided down 1 MHz
feedback signal on pin 3 with the 1 MHz time base reference signal on pin 1. The output of the phase comparator (pins 5 and 10) consists of a series of positive-going or negativegoing pulses. These pulses are integrated (smoothed) by the filter circuit consisting of U1521B and associated components. The output of U1521B is then amplified and inverted by operational amplifier U1521A. The output of U1521A is a de tevel applied to the voltage-controlled capacitor diode (Varactor), CR1521.

Integrated circuit U1523A, along with CR1521 and associated components, operate as a 100 MHz , Varactor tuned, voltage-controlled oscillator circuit. The 100 MHz output from U1523A is fed back via C1523 and then divided down to a 1 MHz signal on pin 2 of U1524 for comparison with the 1 MHz time base reference. The 100 MHz signal is buffered by U1523B before entering the gating logic on schematic 3.

\section*{Control Logic and Memory}

Introduction. The DC 5009 is a GPIB programmable digital counter based on a microcomputer system. The microprocessor, U1301 (located on the GPIB board, A14), controis the internal operations of the DC 5009 .

The read only memory (ROM), U1312, has instructions (bit patterns) called firmware. This firmware controls, through the microprocessor, the various operations of the instruction to be performed.

Integrated circuit U1332 contains a random access memory (RAM) space that provides a maximum of 128 locations (addresses) which the microprocessor uses to temporarily store 8-bit data bytes. This data is not permanent and will be destroyed whenever the instrument power is turned off. When power is applied, the RAM data occurs as random bits and is therefore meaningless. During instrument operation, the microprocessor writes data into the RAM at various addresses for later recall and use.

When a command is received, the microprocessor performs a routine called an "instruction fetch", where one or more successive data bytes from the program memory are loaded into the microprocessor. The instrument word is then decoded, and U1301 generates the machine states and control logic signals necessary to execute the command.

Power Up Reset Cycle. When the instrument is powered up, comparator U1222 (and associated components) operates as a delay/comparator circuit to provide a pulse to reset the microprocessor to its reset vector address location.

Pin 1 of U1222 is held low for approximately 1.5 seconds. During this time all of the internal registers of U1332 (except the 16 -bit counter and serial shift register) are cleared to logic zero. This action places all of the bidirectional input/output lines of U1332 in the input state and disables the internal shift register, timer input (pin 37), and the interrupt output (pin 4). Also, during the low leve period of the microprocessor reset signal, the writing of data to or from U1301 is inhibited.

When the positive edge is detected on pin 40 of U1301, the internal mask interrupt flag will be set and the ricroprocessor will load its internal program counter from the reset vector address listed in Table 3-2. This is the start location for program control.

Table 3-2
DC 5009 INTERRUPT VECTORS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Vector Address} & \multirow[t]{2}{*}{Type of interrupt} \\
\hline High Byte & Low Byte & \\
\hline \$1FFC & \$1FFD & Power Up Reset \\
\hline \$1FFE & \$1FFF & Interrupt Request (U1332) \\
\hline
\end{tabular}

\section*{NOTE}

Dollar sign (\$) means that address code is in hexidecimal notation.

Interrupt Vector (IRO). Integrated circuit U1332 has two internal registers for interrupt control, an interrupt enable register and interrupt flag register. Corresponding bits in these registers are logically ANDed to set an interrupt request pending flag. When U1332 detects the pending flag bit, it asserts pin 4 as a low output, generating an interrupt request to the microprocessor.

When a low level is set on pin 4 of U1332, the microprocessor completes the current instruction before recognizing the interrupt request and examining its own interrupt mask flag bit. If the interrupt mask flag bit is not set, the microprocessor starts an interrupt routine. The contents of its program counter and status register are temporarily stored in RAM, the interrupt mask flag bit will be set to prevent further interrupts, and the program counter will then be loaded with the high and low bytes of the interrupt vector address listed in Table 3-2. This is the start location for the interrupt routine for \(\cup 1332\).

There are three possible reasons why 01332 sets an in terrupt pending flag, two external events and one internal event. The two external events are: a negative edge detected on pin 36 (Carry B signal) or a negative edge detected on pin 37 (Front Panel Interrupt Clock); the one internal event occurs when the 16-bit counter (U1332) overflows.

Address Decoding. The microprocessor addresses U1312, U1332, and U1333 when communicating with the instrument functions. Table 3-3 lists the hexadecimal address ranges for these devices.

Table 3-3
DC 5009 MEMORY ADDRESS RANGES
\begin{tabular}{c|l}
\hline \begin{tabular}{c}
Hexadecimal \\
Address Range
\end{tabular} & \multicolumn{1}{c}{ Comments } \\
\hline \hline\(\$ 1000-\$ 1 \mathrm{FFF}\) & \(\mathrm{U} 1312(4 \mathrm{~K} \times 8 \mathrm{ROM})\) \\
\(\$ 0000-\$ 007 \mathrm{~F}\) & or \\
\(\$ 0100-\$ 017 \mathrm{~F}\) & \(\mathrm{U} 332(128 \times 8 \mathrm{RAM})\) \\
\(\$ 0080-\$ 0087\) & \begin{tabular}{l}
U1333 (Front Panel, \\
Display, Serial Data \\
Latches \()\)
\end{tabular} \\
\hline
\end{tabular}

Memory \$elect decoder U1331 and inverter U1321A, along with address bits A12 and A7, operate to select the proper memory device during program control. See Table 3-4.

Table 3-4 MEMORY SELECT CODE
\begin{tabular}{c|c|l}
\hline \multicolumn{2}{c|}{ Address Bits } & \multirow{2}{*}{ Device Selected } \\
\cline { 1 - 2 } A12 & A7 & \\
\hline 0 & 0 & RAM (U1332), Input/Output \\
\hline 0 & 1 & U1333 \\
\hline 1 & \(0 / 1\) & ROM (U1312) \\
\hline
\end{tabular}

The input/output sections internal to U1332 are accessed by the microprocessor using address bits A0 through A3 for specific control of the internal functions. See Table \$-5.

Theory of Operation-DC 5009
Table 3-5
ADDRESS CODE FOR U1332
(\$0700-\$070F)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Address Bits} & \multirow[t]{2}{*}{Internal Functions} \\
\hline A3 & A2 & A1 & AO & \\
\hline 0 & 0 & 0 & 0 & Port A \\
\hline 0 & 0 & 0 & 1 & Port 8 \\
\hline 0 & 1 & 0 & 0 & Read Lower Counter/Write Lower Latch \\
\hline 0 & 1 & 0 & 1 & Read Upper Counter/Write Upper Latch and Download \\
\hline 0 & 1 & 1 & 0 & Write Lower Latch \\
\hline 0 & 1 & 1 & 1 & Write Upper Latch \\
\hline 1 & 0 & 0 & 0 & Serial Data Register \\
\hline 1 & 0 & 0 & 1 & Interrupt Flag Register \\
\hline 1 & 0 & 1 & 0 & Interrupt Enable Register \\
\hline 1 & 0 & 1 & 1 & Auxiliary Control Register \\
\hline 1 & 1 & 0 & 0 & Peripheral Control Register \\
\hline 1 & 1 & 0 & 1 & Data Direction Register-mPort A \\
\hline 1 & 1 & 1 & 0 & Data Direction Register-Port B \\
\hline
\end{tabular}

\section*{note}

Due to the complexity of the internal functions associated with U1332, a detailed description of this device will not be attempted in this manual. If more detailed information is needed, refer to the manufacturer's data sheets.

Serial Data Path. The serial data path is shown on the block diagram. Serial data is written, via pins 38 and 40 of U1332, to five serial to parallel shift registers located on the Analog circuit board (A12 assembly). This is done when the microprocessor sets the instruments internal circuits for the desired function. These registers are, in sequence:
\[
\begin{array}{ll}
A 12-U 1202 & 5 \\
A 12-U 1212 & 5 \\
A 12-U 1101 & 1 \\
A 12-U 1111 & 2 \\
A 12-U 1411 & 3
\end{array}
\]

The serial data output from A12-U1411 then goes, via P1310-6 (schematic 4) to five parallel to serial shift registers (\(\mathrm{CH} A\) and CH B Accumulators) located on the Digital circuit board (A16 assembly). Serial data is shifted through these reglsters and returned to the microprocessor via the data buffer U1322B. Serial data is read from the following parallel to serial shift registers:
\[
\begin{array}{ll}
\text { A16-WU1101 } & 4 \\
\text { A16-U1102 } & 4 \\
\text { A16-U1002 } & 4 \\
\text { A16-U1011 } & 4 \\
\text { A16-U1103 } & 4
\end{array}
\]

Pin 40 of U1332 serves both as an input and output for serial data. When the microprocessor is in the serial write mode, pin 40 is configured as an output and bytes of information are loaded into the internal serial data registers of U1332. They are then shifted out serially to the shift registers on the A12 assembly (Analog board). During the writing of serial data the three-state data buffer, U1322B, is disabled with a high level on pin 15, preventing the serial data input from contending with the serial data output via J1310-1. The microprocessor addresses U1333, causing a negative pulse on pin 11 (Serial Write Latch) to latch the serial data in the serial to parallel shift registers.

When the microprocessor is reading the serial data from the CH A and CH B Accumulators, pin 15 of U1322B is set low at the same time pin 40 of U1332 is configured as an input. The serial data is then read in as five consecutive bytes. During this time pin 13 of U1322B is held high, preventing the serial data being read from reaching the Analog board via J1310-1. The microprocessor addresses U1333 and uses pin 10 (Serial Read Latch) to latch data during the serial read process.

Front Panel Interrupt Clock. The front panel keyboard and displays are interrupt driven by the timing circuit consisting of U1321B, U1321C, and associated components. This circuit operates at about 1.1 kHz . The negative edges of the signal on pin 37 of U1332 interrupt the microprocessor, telling it to update the display and search for a new key push or control setting. The microprocessor addresses U1333 and uses pins 12, 13, 14, and 15 during this process.

Power Up Sequence. After the microprocessor and peripheral device \(U 1332\) have been reset at power up, the DC 5009 microprocessor generates the following sequence of events.
t. Loads a 0 in the most significant bit position of the front panel display.
2. Tests the RAM, starting at address \(\$ 0000\). If a RAM failure is found, error code 340 will be displayed. The RAM
on the GPIB board is similarly tested, starting at address \$С000.
3. Tests the three ROMs for byte location and determines the checksum. If a ROM error is found, error code 361 or 381 will be displayed.
4. Checks the logic state on pin 35 of U1332 to see if the instrument is in the signature analysis (SA) test mode. The SA test mode is indicated if P1331 is disconnected from J1331. If the SA mode is not indicated, the interrupt registers in U 1332 are enabled.
5. Initializes peripheral device U1332.
6. Performs a serial input/output test. If an error is found, error code 313 will be displayed.
7. Sets up the hardware to determine the state of the front panel, loads the serial to parallel shift registers, and generates the relay strobe signals via pin 32 of U1332 and Q1301.
8. Performs the counter chain (\(\mathrm{CH} A\) and CHB Accumulators) integrity test. If this test fails, an error code, (320 through 326 for CH A or 330 through 336 for CH B) will be displayed.
9. Starts the measurement cycle by pulsing the master reset line (pin 26 of U1332).
10. After the master reset pulse, the measurement gate on pin 29 of U1332 is started. During the measurement gate interval, the microprocessor is continually reading the contents of the CH A Accumulator for a count that is greater than or equal to the number of averages indicated by the front panel AVERAGES switch. When that count is reached, the measurement gate is unasserted and the microprocessor waits for the signal on pin 28 of U1332 to go low, indicating the end of the measurement cycle. The accumulators are then read again for their final count and a new measurement cycle is started after the result is calculated and the display is updated.

Rear Interface Signals. The Prescale line for U1332 (pin 27) operates as an input that indicates to the microprocessor the presence of an external prescaling counter. When an external prescaler is used, the microprocessor multiplies the Channel A accumulated counts by 16 before the display is updated.

\section*{Theory of Operation-DC 5009}

The measurement \(\overline{\text { GATE }}\) signal to the rear interface is via P1410-4 (J1410-4). The microprocessor interprets the reset input from U1321F to pin 33 of U1332 as the electrical equivalent of the front panel MEASUREMENT RESET pushbutton.

\begin{abstract}
NOTE
Complete data for all of the rear interface signals are given in the Maintenance section of this manual.
\end{abstract}

\section*{Front Panel Keyboard and Display Drive}

The microprocessor uses four control lines and the 8 -bit data bus to communicate with the Front Panel and Display Drive circuits. The four control lines (Display Latch Enable, TS Clock, TS Reset (TSRST), and Keyboard Read Enable) are all derived from \(\cup 1333\) located on schematic 7.

The interrupt signal from the Front Panel Clock (Timer) circuit to U 1332 (\$chematic 7, previously discussed) occurs approximately once every \(900 \mu \mathrm{~s}\). Each interrupt causes the microprocessor to start a software routine for servicing the Front Panel Keyboard and Display Drive circuitry.

Each digit and annunciator in the display, each position of the FUNCTION and AVERAGES switches, and each control or pushbutton is assigned a time slot period approximately equal to the period between successive interrupts. The time slots, TS0 through TS9, are generated by U 1432 , a decade counter with 10 decode decimal outputs. The counter provides time slot decoding for scanning the front panel controls and multiplexing the seven-segment LEDs and the annunicators located on schematic 9 .

Each interrupt signal causes the microprocessor to clock U1432 with a negative pulse of about 500 ns on pin 14, advancing the count to the next time slot. Immediately after clocking U1432 the microprocessor updates the digit assoclated with that time slot by sending data to U1431, which contains six D-type flip-flops. Data is latched in U1431 when pin 9 goes low and transfers to the outputs on the positive edge of the Display Latch Enable signal. The BCD output of U1431 is then decoded to seven-segment information by U1421. The seven-segment information is buffered by display driver U1411 to activate the desired segments of an LED in the display. The display drive power supply filter is a pi-network consisting of C1402, L1401, and C1403. This filter circuit prevents display noise pulses from disturbing the sensitive instrument circuits. Data bits D4 and D5 on the internal data bus are also latched in U1431 and directly buffered by Q1432 and Q1431 to drive the decimal point and annunicator displays.

\section*{Theory of Operation-DC 5009}

After updating the display, the microprocessor asserts the Keyboard Read Enable signal on pin 1 of data buffer U1322A and reads data bits D0 through D3 to determine the status of the front panel pushbuttons and the AUTO TRIG switch (D2 and D3) associated with that particular time slot. At the same time the microprocessor proceeds to check the status of the FUNCTION and AVERAGES switches (\(\$ 1511\) and \(\$ 1512\)) via data bits D0 and D1.

After updating the display and checking the front panel status, the microprocessor returns to the routine of resetting the input circuits (if necessary), monitoring the measurement cycle, or collecting the data for the selected function. This continues until the next front panel interrupt signal occurs, when it again clocks U1432 for the next time slot and repeats the above procedure.

\section*{Display 9}

The eight digits in the display are seven-segment, common cathode LEDs; DS1002 is the most significant digit and DS1305 is the least significant digit. Time slots TS0 through TS7 are connected to the cathodes (pin 6) of each LED, while the anodes of the individual segments are connected to common lines (a through dp) and driven by the display drive buffer through P1411 (J1411). The microprocessor sends all 1's (DO-D3) for the sever-segment information when leading zero suppression is indicated. All 1 's are decoded by U1421 (schematic 8) as a blank.

To illuminate the proper annunciator or indicator in the display, the microprocessor sets pin 1 of P1412 (J1412) high only during the time slot (TS2 through TS5) that corresponds to the displayed units of measurement or indicator.

The illumination interval of the GATE light (CR1012) during time slot TS1, is only approximately equal to the actual measurement gate interval. The GATE light is turned on and then off only to tell the operator that the counter has been triggered and that the microprocessor has completed the functional measurement for the selected number of averages.

\section*{Power Supplies}

The +12 V supply is derived from the unregulated +26 Vdc power in power module. The +12 V supply is regulated by a three terminal regulator, U1641. The -12 V supply is derived from the unregulated -26 Vdc power in the power module, while the +5 V supply is derived from the unregulated +8 Vdc power. The three supplies are short-circuit protected and reverse polarity protected by F1541, CR1641, F1542, CR1621, F1641, CR1421, respectively. The +12 V supply provides power for the -12 V , +5 V and +3.2 V regulator circuits.

The +5 V regulator circuit consists of U1531 and associated components. Load current for this supply passes through R1435, the current limiting resistor, and the npn series-pass transistor in the power module. The +5 V supply is regulated within design limits by varying the voltage on the base of the npn series-pass transistor via pin 10 of U1531. Should the load current exceed about 2 A , the voltage drop across R1435 becomes great enough to limit the current. The over-current voltage is sensed between pins 2 and 3 of U1531 and reduces the base-to-emitter voltage of the npn series-pass transistor. Feedback signals for voltage regulation of the +5 V supply occur on pin 5 of U1531 with C1531 providing frequency compensation.

The voltage at junction of the R1308 and R1307 is regulated to about 9.4 V by the operational amplifier circuit consisting of U1401A, Zener diode VR1301, and R1305. The +3.2 V at the junction of R1307 and R1304 is adjusted by R1301 and applied through unity-gain buffer U1401B to serve as a reference for the -12 V supply and the digital-toanalog converters, U1201 and U1211, on schematic 5. The -12 V supply is referenced to a +3.2 V source via the voltage divider network consisting of R1541 and R1542.

The -12 V supply consists of error amplifier Q1445 and Q1444, error signal amplifier Q1531, current limit sense amplifier Q1443, and associated components. The reference voltage on the base of Q1445 is about 0 V and diode CR1422 provides temperature compensation for the error amplifier circuit. This supply is regulated within design limits by varying the voltage on the base of the pnp series-pass transistor in the power module via the collector of Q1531. Should the load current through R1534 exceed approximately 220 mA, Q1443 increases conduction, the bases of Q1445 and Q1531 go more negative, and the base of the pnp series-pass transistor goes more positive; thereby reducing the load current below the design limit.

The +2.7 V supply, located on the Digital circuit board (A16 assembly), is used as a terminating supply for all of the pull-down resistors located in the ECL circuits on schematics 3 and 4. The +2.7 V supply is derived from the +5 V supply on the Analog circuit board (A12 assembly) and consists of error amplifier Q1002, amplifier stage Q1001, emitter-follower output stage Q1003, and associated components.

This is a temperature compensated supply that tracks the ECL output levels and maintains essentially constant current through the ECL terminations. Temperature compensation is obtained by connecting Q1002 as a commonbase error amplifier whose offset voltage (base-emitter drop) approximates the ECL output level temperature coefficient.

\section*{GPIB Microprocessor, Memory, and Controller}

The GPIB circuit board (A14 assembly), with the microprocessor U1301, controis the operating system for the instrument.

Two ROMs (U1102, U1201), one RAM (U1210), and a TMS 9914 GPIB controller chip (U1101) are used to communicate with the IEEE 488 Digital Interface providing hexadecimal addresses C000 through FFFF to the memory.

The microprocessor recognizes, accepts, and decodes commands (key-pushes and control settings) from the front panel logic circuits on schematic 8 and sets the operating parameters in response to these commands.

The microprocessor is an 8-bit parallel processor with an 8 -bit data bus (D0-D7, pins 26 through 33), and a 16 -bit address bus, A0-A15 (pins 9 through 20 and pins 22 through 25). The data bus is bidirectional; the address bus is not. The address bus is used by the microprocessor to address the other internal functions of the instrument. The 16 address lines provide up to 65,000 discrete addresses, commonly referred to as 64 kilobytes of memory. Basically, any device addressed by the microprocessor is considered to be a memory device.

SYSTEM CLOCK. The microprocessor contains a single phase internal clock generator (U1301, pins 37 and 39) whose \(1 \mu \mathrm{~s}\) period (approximately) is controlled by inverter U1312D and the RC feedback network consisting of R1301 and C1302. An instruction cycle consisting of two to twelve machine cycles is required to fetch and execute the instruction words or data from memory. A machine cycle is defined as the interval between two successive negative-going transitions of the system clock. The number of machine cycles required depends on the instruction and addressing modes used for the microprocessor.

\section*{note}

Due to the complexity of the internal operation of a microprocessor, a detailed description of U1301 will not be attempted in this manual. If more detailed information is needed, refer to the manufacturer's data sheet.

Logic gate U1313B, along with address bit A15, is used to enable or disable the proper memory space during the communication process. When pin 15 of U1313B and pin 6 of U 1311 are low (A15 -- 0), the microprocessor is using the low memory space on the Digital board to communicate
with the instrument's internal functions. When A15 is high (w. 1), the upper memory space on the GPIB board is used to communicate with other instruments on the IEEE 488 Digital Interface. Logic chip U1311 operates as a three-line to four-line decoder to select the proper memory spaces that have starting addresses of \(0000, \mathrm{D} 000\), E000, and F000 (see Table 3-6). The memory devices associated with these addresses are indicated as such on the schematic. The interrupt vector addresses for U1301 are FFFA through FFFF.

The GPIB controller chip, U1101, performs the interface functions between the microprocessor and other devices on the bus. Due to its internal architecture, it relieves the microprocessor from the task of maintaining the protocol as defined in the IEEE 488-1978 standard. The handshake process is handled automatically within U1101.

The GPIB output lines, pins 22 through 29 and 31 through 38 on U1101, are connected to the IEEE 488 bus via transceivers U1001 and U1002. The direction of data flow is controlled by the talk enable (TE, pin 21) and CONTROLLER (pin 30) outputs generated on U1101. Since the IEEE 488 controller function is not implemented in the DC 5009, pin 30 is always false (high). The TE line will be high for talk, low for listen. The TE and CONTROLLER outputs are routed within U1001 and U1002 so that the internal buffers for particular lines are controlled as required. Transistor Q1101 operates as an output buffer for the TE signal. Pins 9 and 10 on P1001 are not connected to the IEEE 488 Digital Interface; they are reserved for future use.

Communication between the microprocessor and U1101 is carried out with thirteen internal, memory-mapped registers in U1101. Fourteen internal registers are available, but one register (parallel poll) is not used. A microprocessor read operation passes control data back to U1301, while the write operation passes status information or measurement data to the IEEE 488 bus.

The three least significant address bits (A0, A1, A2) connected to pins 6,7 , and 8 of \(\cup 1101\) determine the particular register selected. The high order address bits (A15, A14. A13, A12) are decoded by U1311, U1312C, U1313A, and the system clock to cause pin 3 of U1101 to go low for a read or write operation on an internal register. Reading and writing to the same location will not access the same register within U1101, since they are "read only" or "write only" registers. When reading a register internal to U1101, the microprocessor sets pins 4 and 5 high; when writing to a register, piris 4 and 5 are set low.

Each device on the IEEE 488 interface is given a five-bit address (A1-A5) enabling it to be addressed as a talker or listener. The DC 5009 address and end-of-message termi-

\section*{Theory of Operation-DC 5009}
nator (TC) is set on \(\$ 1210\) before power-up. For more details, refer to the GPIB switch discussion in the Maintenance section. As part of the system initialization procedure, the microprocessor enables \(\ 1310\), reads the address that was set and stores it in an internal register of Uit101. When U1101 detects the DC 5009 talk or listen address on the interface, it responds by entering the required addressed state and generating an interrupt signal (IRQ, pin 9) to the microprocessor. Interrupts to the microprocessor from U1101 are generated by the following:
- A data byte has been received (byte input).
- U1101 is ready to accept the next (or first) data byte for output.
- EOI has occurred with ATN \(=0\).
- Interface Clear (IFC) has been received.
- A remoteflocal state change has occurred.
- A Group Execute Trigger command (GET) has been received.
- An Unidentified Universal command has occurred.
- An Unidentified Addressed command has occurred.
- Device Clear Active State (DCAS) has occurred.
- A Serial Poll Active State (SPAS) has occurred with data bit 7 set in the serial poll register.

\section*{NOTE}

For more complete and specific detalls concerning the internal registers and architecture for U1101, refer to the manufacturer's literature for the TMS 9914 (Texas instruments, inc.).

Table 3-6
DC 5009 MEMORY ADDRESS RANGES
\begin{tabular}{c|c}
\hline \begin{tabular}{c}
Hexadecimal \\
Address Range
\end{tabular} & Comments \\
\hline \hline\(\$ C 000-\$ \mathrm{COFF}\) & U1210 (256 \(\times 8\) RAM) \\
\hline\(\$ 0000-\$\) D008 & U1101 (GPIB chip) \\
\hline\(\$ E 000-\$ E F F F\) & U1102 (4K \(\times 8\) ROM) \\
\hline\(\$ F 000-\$\) FFFF & \(U 1201(4 \mathrm{~K} \times 8 \mathrm{ROM})\) \\
\hline
\end{tabular}

\section*{NOTE}

Dollar sign (\$) means that address code is in hexadecimal notation.

\section*{CALIBRATION}

\section*{PERFORMANCE CHECK PROCEDURE}

\section*{Introduction}

This procedure checks the electrical performance requirernents as listed in the Specification section in this manual. Perform the Adjustment Procedure if the instrument fails to meet these checks. In some cases, recalibration may not correct the discrepancy; circuit troubleshooting is then indicated. Also, use this procedure to determine acceptability of pertormance in an incoming inspection facility.

\section*{Calibration Interval}

To ensure instrument aceuracy, check the calibration every 2000 hours of operation or at a minimum of every six months if used infrequently.

\section*{Services Available}

Tektronix, Inc, provides complete instrument repair and adjustment at local fied service centers and at the factory
service center. Contact your local Tektronix field office or representative for further information.

\section*{Test Equipment Required}

The test equipment (or equivalent) listed in Table 4-1 is suggested to perform the Performance Check and Adjustment Procedure.

Table 4-1
LIST OF TEST EQUIPMENT REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|}
\hline Description & \begin{tabular}{l}
Performance \\
Requirements
\end{tabular} & Perform. Check & Adjust. Proc. & Example \\
\hline Power Module & & X & X & TEKTRONIX TM 5000-Series \\
\hline Oscilloscope Mainframe & De to 250 MHz bandwidth & x & & TEKTRONIX 7704A 7904 \\
\hline \begin{tabular}{l}
Vertical \\
Plug̣-In
\end{tabular} & Bandwidth, de to 200 MHz & X & & TEKTRONIX 7A16A \(\quad\) A 76 \\
\hline Horizontal Plug-In & Fastest sweep rate 10 ns & X & & TEKTRONIX 7B80 \(\quad 739\) \\
\hline Leveled Sinewave Generator & Calibrated amplitude
\[
\therefore 135 \mathrm{MHz}
\] & X & & TEKTRONIX SG 503 \\
\hline Pulse Generator & Risetime <1 ns & X & & TEKTRONIX PG 502 \\
\hline Function Generator & Range, Sinewave 10 Hz to 1 MHz ; Offset +7.5 V level & & X & TEKTRONIX FG 501A \\
\hline Digital Multimeter & 4-1/2 digits, 0.5\% & & X & TEKTRONIX DM 501A \\
\hline
\end{tabular}

Calibration-DC 5009
Performance Check Procedure
Table 4-1 (cont)
\begin{tabular}{|c|c|c|c|c|}
\hline Description & Performance Requirements & Perfiorm. Check & Adjust. Proc. & Example \\
\hline 1 MHz Frequency Stnd & \(1 \mathrm{MHz} \pm 1 \times 10^{-9}\) & & X & Receiver SPECTRACOM Corp. Type 8161 \\
\hline \(50 \Omega\) Feedthrough Termination (3 ea.) & Bnc connectors & \(x\) & X & Tektronix Part No. 011-0049-01 \\
\hline Coaxial cable, \(50 \Omega\) Precision 36 inch (2 ea.) & Bnc connectors & X & x & Tektronix Part No.
012-0482-00 \\
\hline Adapter, bnc Female to Dual Banana & & & X & Tektronix Part No.
\[
103-0090-00
\] \\
\hline Cable Assembly RF (bnc-to-tip jack connector) & \(50 \Omega\) coaxial cable & & X & Tektronix Part No.
175-3765-01 \\
\hline \(50 \Omega, 10 \times\) Attenuator & Bnc connectors & & X & Tektronix Part No. 011-0059-02 \\
\hline Flexible Extender & & & X & Tektronix Part No. 067-0645-02 \\
\hline Power Divider GR & & X & & Tektronix Part No. 017-0082-00 \\
\hline GR to bnc Female adapter (3 ea:) & & X & & Tektronix Part No. 017-0063-00 \\
\hline Adapter, bnc T & & X & & Tektronix Part No.
103-0030-00 \\
\hline Probe, 10× & & \(x\) & & TEKTRONIX P6048 \\
\hline Probe tip ground cover & & x & & Tektronix Part No. 166-0404-01 \\
\hline Probe, \(5 \times\) & & X & & TEKTRONIX P6125 \\
\hline Controller & GPIB compatible & & X & TEKTRONIX 4050-Series or TEKTRONIX 4041 \\
\hline RC Normalizer & 30 pf & x & & Tektronix Part No. 067-0552-00 \\
\hline
\end{tabular}

\section*{1. Check Oscillator Frequency (Standard time} base)

\section*{NOTE}

The timebase accuracy is a function of temperature and time. The temperature stability for the standard time base is \(1.5 \mathrm{ppm}\left(0^{\circ} \mathrm{C}\right.\) to \(\left.50^{\circ} \mathrm{C}\right)\) with an aging rate of \(\pm 1 \mathrm{ppm} / \mathrm{year}\).

After one year of operation (since the time base was calibrated), the 1 MHz frequency standard should read \(1.0000000,16.0 \mathrm{ppm}\) for any temperature between \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\). The \(\pm 6.0\) ppm are determined by \(\pm 5 \mathrm{ppm}\) due to temperature; +1 ppm due to aging; and +1 count to synchronization error. After this check is completed, the user should determine if a time base re-calibration is required.

\section*{Performance Check Procedure}
a. Connect a coaxial cable from the 1 MHz frequency standard output to the DC 5009 CHANNEL A EXT INPUT.
b. Adjust the DC 5009 CHANNEL A LEVEL control for a stable readout on the DC 5009 display.

\begin{abstract}
c. CHECK—that the DC 5009 readout is within 999.99399 kHz and \(1.0000061 \mathrm{MHz}(\pm 6.0 \mathrm{ppm}, \pm 1\) count).
\end{abstract}
2. Check Time Base Oscillator Frequency (Option 01)

\section*{NOTE}

The temperature stability for the Option 01 time base is \(0.2 \mathrm{ppm}\left(0^{\circ} \mathrm{C}\right.\) to \(\left.50^{\circ} \mathrm{C}\right)\) with an aging rate of \(\pm 1 \mathrm{ppm} /\) year and \(\pm 1\) count.
a. Connect a coaxial cable from the 1 MHz frequency standard output to the DC 5009 CHANNEL A EXT INPUT.
b. Adjust the DC 5009 CHANNEL A LEVEL control for a stable display readout.
c. CHECK-that the DC 5009 readout is within 999.99879 kHz and 1.0000013 MHz .
d. Remove all cable connections from the DC 5009 .

\section*{3. Check Trigger Level Range, \(\geqslant \pm 3.2 \mathrm{~V}\)}

Refer to Fig. 4-1 check setup and preliminary control settings with the following exceptions.

DC 5009
AVERAGES \begin{tabular}{r}
AUTO \\
\\
Digital Multimeter
\end{tabular}
\begin{tabular}{ll}
INPUT & EXT (out) \\
RANGE/FUNCTION & 20 V
\end{tabular}
a. Connect a coaxial cable from the DC 5009 A TRIG LEVEL (black lead to COM) using a cable assembly RF (bnc-to-tip jack connector) to the digital multimeter LOW and VOLTS/8 input connectors using a bnc female-to-dual banana adapter.

Calibration-mC 5009
Performance Check Procedure

Fig. 4-1. Check setup for Performance Check steps 3 and 11.
b. Adjust the DC 5009 CHANNEL A LEVEL control to clockwise and counterclockwise positions and note the digital multimeter display readout.
c. CHECK-that the digital multimeter readout indicates \(>+3.2 \mathrm{~V}\) (clockwise) and \(<-3.2 \mathrm{~V}\) (counterclockwise).
d. Repeat above steps with tip jack connected to B TRIG LEVEL, adjusting the CHANNEL B LEVEL control to check the CHANNEL B Trigger Level Range.
e. Remove the digital multimeter cable connections.

\section*{4. Check the CHANNEL A TRIGGER LEVEL}

\section*{Output Accuracy; \(\pm 1 / \mathrm{mV}\) of Internal DC Trigger Level Voltage \(\pm 30\)}

Refer to Fig. 4-2 check setup and preliminary control settings, with the following exceptions.

\section*{Function Generator}
\begin{tabular}{ll}
OdB & in \\
(triangle) & in \\
OFFSET & out \\
AMPL & cW \\
FREQUENCY Hz & 10 \\
MULTIPLIER & \(10^{4}\) \\
FREERUN & in
\end{tabular}

DC 5009
FUNCTION
PERIOD A

Fig. 4-2. Check setup for Performance Check steps 4 and 5.
a. Connect a coaxial cable with a \(10 \times\) attenuator and \(50 \Omega\) termination to a bnc-to-dual banana adapter. Connect this adapter to the digital multimeter LOW and VOLTS/ \(\Omega\) jacks (observe polarity). Connect the other cable end to the function generator OUTPUT connector.
b. Adjust the function generator OFFSET control until the digital multimeter readout indicates 0.000 V .
c. Move the coaxial cable with the \(10 \times\) attenuator and \(50 \Omega\) termination from the digital multimeter to the DC 5009 CHANNEL A EXT INPUT. Then connect a bnc-to-tip jack connector from the digital multimeter bnc-to-dual banana adapter to the DC 5009 A TRIG LEVEL output. Adjust the DC 5009 CHANNEL A LEVEL control for a stable display readout.
d. Adjust the function generator FREQUENCY Hz dial until the DC 5009 readout indicates \(10.00 \mathrm{XXX} \mu \mathrm{S}\) (the last three digits are unimportant for the check).
e. Set the DC 5009 FUNCTION switch to WIDTH A.
f. Adjust the DC 5009 CHANNEL A LEVEL control until the DC 5009 readout indicates \(5.00 \mathrm{XXXX} \mu \mathrm{S}\) (the last four digits are unimportant for the check).

\section*{Performance Check Procedure}
g. CHECK—that the digital multimeter readout indicates between …
\[
\because, 030 \mathrm{cmd} \cdot 4.030
\]
5. Check the CHANNEL B TRIGGER LEVEL Output Accuracy

Refer to Fig. \(4-2\) check setup for the following.
a. Move the DC 5009 A TRIG LEVEL output connection to the B TRIG LEVEL.
b. Move the DC 5009 CHANNEL. A EXT INPUT cable connection to the CHANNEL B EXT INPUT.
c. Adjust the DC 5009 CHANNEL B TRIG LEVEL control until the digital multimeter display readout indicates 0.000 V .
f. Adjust the DC 5009 CHANNEL B LEVEL control until the DC 5009 readout indicates \(5.00 \mathrm{XXXX} \mu \mathrm{S}\) (the last four digits are unimportant for the check).
g. Move the coaxial cable from the B SHAPED OUT to the B TRIG LEVEL.
h. Move the other end from CHANNEL A EXT Input to the bnc-to-banana adapter on the digital multimeter.
i. CHECK-that the digital multimeter readout indicates between - - dr0 and + dob \(V\).
\[
-.030 \text { and }+.030 \mathrm{~V}
\]

Remove the cable connections.
6. Check the Input Sensitivity: \(\times 1\) Attenuation, DC and AC Coupled; \(\mathbf{5 6 . 6} \mathbf{~ m V}\) to \(\geqslant 100 \mathrm{MHz}\)

Refer to Fig. 4-3 check setup and preliminary control settings with the following exceptions.
d. Move the DC 5009 B TRIG LEVEL connection to the B SHAPED OUT and the cable end from the digital multimeter connected bnc-to-banana adapter to the DC 5009 CHANNEL A EXT INPUT.
e. Adjust the CHANNEL A LEVEL control for a stable display.

DC 5009
\begin{tabular}{ll}
AVERAGES & AUTO \\
CHANNEL A & \\
LEVEL & midrange \\
COUPL & DC (out) \\
\begin{tabular}{c}
CHANNEL B \\
LEVEL
\end{tabular} & midrange
\end{tabular}

(3464-13) 388e-06

Fig. 4-3. Check setup for Performance Check steps 6, 7, and 8.

Calibration-DC 5009
Performance Check Procedure
\begin{tabular}{ll}
& Horizontal Plug-in \\
TIME/DIV & 20 ns \\
VARIABLE (CAL IN) & in
\end{tabular}

Sinewave Generator
FREQUENCY RANGE 50-100
(MHz)
OUTPUT AMPLITUDE 0.57
FREQUENCY VARIABLE 100
AMPLITUDE MULTIPLIER X. 1
a. Connect a coaxial cable from the DC5009 A SHAPED OUT (black lead to COM) using a bnc-to-tip jack connector through a \(50 \Omega\) termination to the vertical plug-in INPUT.
b. Connect a coaxial cable with a \(50 \Omega\) termination to the DC 5009 CHANNEL A EXT INPUT. Connect the unterminated cable end to the sinewave generator OUTPUT connector.
c. Adjust the DC 5009 CHANNEL A LEVEL control for a stable display readout on both the DC 5009 and oscilloscope. The crt display is a sinewave.
d. CHECK-that the DC 5009 readout indicates approximately 100 MHz .
e. Change the CHANNEL A COUPL switch to \(A C\) and check that the DC 5009 display still reads approximately 100.
f. Remove the DC 5009 CHANNEL A EXT INPUT cable connection and connect to the CHANNEL. B EXT INPUT.
g. Change the DC 5009 FUNCTION switch to the RATIO B/A position.
h. Move the DC 5009 A SHAPED OUT connection to the B SHAPED OUT.
i. Connect a coaxial cable from the 1 MHz frequency standard output to the DC 5009 CHANNEL A EXT INPUT.
j. Adjust the DC 5009 CHANNEL B LEVEL control for a stable display on both the DC 5009 and the oscilloscope.
k. CHECK-wthat the DC 5009 readout indicates approximately 100 MHz .
I. Change the CHANNEL A COUPL switch to \(A C\) and check that the DC 5009 display still reads approximately 100 MHz .
7. Check the Auto-Trigger Sensitivity: \(\leq \mathbf{1 2 5} \mathbf{~ m V}\) p-p Times Attenuator, \(\geqslant 100 \mathbf{~ M H z}\)

Refer to Fig. 4-3 check setup.
a. Set the sinewave generator OUTPUT AMPLITUDE control to 1.25 .
b. Depress the DC 5009 AUTO TRIG switch (in).
c. CHECK—that the DC 5009 readout indicates approximately 100 MHz .
d. Remove the 1 MHz frequency standard output from the DC 5009 CHANNEL A EXT INPUT connector.
e. Set the DC 5009 FUNCTION switch to FREQUENGY A and move the \(50 \Omega\) termination and coaxial cable from the CHANNEL B EXT INPUT to the CHANNEL A EXT INPUT.
f. Depress the DC 5009 AUTO TRIG switch twice (out to in) for new trigger.
g. CHECK-that the DC 5009 readout indicates approximately 100 MHz .
8. Check the Input Sensitivity: \(\times 1 / \times 5\) Attenuation, DC and AC Coupled; \(\mathbf{1 1 3} \mathbf{~ m V}\) to 135 MHz

Refer to Fig. 4-3 check setup.
a. Change the sinewave generator OUTPUT AMPLITUDE control to 1.13 and set the FREOUENCY RANGE \((\mathrm{MHz})\) switch to \(100-250\). Rotate the FREQUENCY VARIABLE control to 135.
b. Move the DC 5009 B SHAPED OUT connection to the A SHAPED OUT.
c. Adjust the DC 5009 CHANNEL A LEVEL control for a stable display readout on both the oscilloscope and DC 5009. The ort display may be used as a guide for triggering.
d. CHECK-that the DC 5009 readout indicates approximately 135 MHz .
e. Change the sinewave genenerator OUTPUT AMPLITUDE control to .565 and the AMPLITUDE MULTIPLIER to \(\times 1\). Set the DC 5009 CHANNEL A ATTEN switch to \(\times 5\) (in).
f. Adjust the DC 5009 CHANNEL A LEVEL control for a stable readout on the DC 5009 display.
g. CHECK-that the DC 5009 readout indicates approximately 135 MHz .
h. Press the DC 5009 CHANNEL A COUPL switch to \(A C\) (in) and adjust the CHANNEL A LEVEL control for a stable readout on the DC 5009 display.
i. CHECK—that the DC 5009 display readout indicates approximately 135 MHz .
j. Move the DC 5009 CHANNEL A EXT INPUT cable connection to the CHANNEL B EXT INPUT, and the A SHAPED OUT connection to the B SHAPED OUT.
k. Set the DC 5009 FUNCTION switch to the \(\backslash\) RATIO B/A position.
1. Reconnect the 1 MHz frequency standard signal to the DC 5009 CHANNEL A EXT INPUT.
m. Set the DC 5009 CHANNEL A ATTEN switch to \(\times 1\) (out) and the CHANNEL B ATTEN switch to \(\times 5\) (in).
n. Adjust the sinewave generator FREQUENCY VARIABLE control for a 125 MHz readout,
0. Adjust the DC 5009 CHANNEL B LEVEL control for a stable readout on the DC 5009 display.
P. CHECK-that the DC 5009 readout indicates approximately 125.
q. Set the DC 5009 CHANNEL B ATTEN switch to \(\times 1\) (out) and switch the sinewave generator AMPLITUDE MULTIPLIER to \(\times .1\). Set the OUTPUT AMPLITUDE control to 1.13.
r. Adjust the DC 5009 CHANNEL B LEVEL control for a stable display readout.
s. CHECK—that the DC 5009 readout indicates ap proximately 125.
t. Change the DC 5009 CHANNEL B COUPL switch to AC (in) and adjust the CHANNEL B LEVEL control for a stable display readout.
4. CHECK-that the DC 5009 readout indicates approximately 125.
v. Remove the frequency standard signal from the DC 5009 CHANNEL A EXT INPUT.

\section*{9. Check the Input Sensitivity: \(\times 1\) Attenuation, DC and AC Coupled; 56.6 mV at \(\leqslant 10 \mathrm{~Hz}\)}

Refer to Fig, 4-4 check setup and the preliminary control settings with the following exceptions.

\section*{Function Generator}
\begin{tabular}{lc}
Frequency Hz & \(10, \mathrm{l}\) \\
MULTIPLIER & 1 \\
OFFSET & in, cW \\
-20 dB & in \\
& Vertical Plug-In \\
VOLTS/DIV & 10 mV \\
& Horizontal Plug-In \\
TRIGGERING & \\
MODE & NORM \\
COUPLING & DC
\end{tabular}
a. Set the CHANNEL A and CHANNEL B COUPL switches to DC (OUt).
b. Connect a coaxial cable with a \(10 \times\) attenuator in series with a \(50 \Omega\) termination from the vertical plugnin INPUT to the function generator OUTPUT.
c. Adjust the function generator AMPL control to 56 mV (5-1/2 major vertical graticule divisions).

Calibration-DC 5009
Performance Check Procedure

Fig. 4-4. Check setup for Performance Check step 9.
d. Move the terminated cable end from the vertical amplifier INPUT and connect it to the DC 5009 CHANNEL A EXT INPUT.
e. Set the vertical amplifier VOLTS/DIV switch to . 1 .
f. Move the \(B\) SHAPED OUT connection to the \(A\) SHAPED OUT and connect the other cable end to the vertical amplifier INPUT.
g. Adjust the DC 5009 CHANNEL A LEVEL control for a stable readout on the DC 5009 using the oscilloscope cot display as a gulde.
h. CHECK-that the DC 5009 readout indicates approximately 10 Hz .
i. CHECK..that the A SHAPED OUT signal is \(\equiv \equiv 0.3 \mathrm{~V}\) peak to peak.
j. Set the \(D C 5009\) CHANNEL \(A\) COUPL switch to \(A C\) (in).

\footnotetext{
k. Pull the function generator OFFSET control out.
}
I. CHECK—that the DC 5009 readout indicates approximately 10 Hz . (The CHANNEL A LEVEL control may need to be adjusted slightly.)
m. Remove the DC 5009 CHANNEL A EXT INPUT connection and connect to the CHANNEL B EXT INPUT.
n. Move the DC 5009 A SHAPED OUT connection to the B SHAPED OUT.
o. Connect the 1 MHz frequency standard to the DC 5009 CHANNEL A EXT INPUT.
p. Adjust the CHANNEL A LEVEL control for a stable display of approximately 1 MHz .
q. Set the DC 5009 FUNCTION switch to RATIO B/A.
r. Push the function generator OFFSET control In (off).
5. Adjust the CHANNEL. B LEVEL control for a stable readout on the DC 5009 using the oscilloscope crt as a guide.

\section*{Pertormance Check Procedure}
t. Set the DC 5009 AVERAGES switch to \(10^{6}\).
u. CHECK-that the DC 5009 readout indicates approximately 0.000010 .
v. CHECK-that the B SHAPED OUT signal is \(\because=0.3 \mathrm{~V}\) peak to peak.
w. Set the DC 5009 CHANNEL B COUPL switch to ac (in). (The CHANNEL B LEVEL control may have to be adjusted stightly.)
\(x\). Pull the function generator OFFSET control OUT (on).
y. CHECK—that the DC 5009 readout still indicates 0.000010 . (The CHANNEL B LEVEL control may have to be adjusted slightly.)
10. Check the Arming Input Pulse Response; Pulse Width \(\equiv:=100 \mathrm{~ns}\) (\({ }^{\mathrm{V}} \mathrm{H} \equiv 2.4\), \({ }^{\mathrm{V} L} \equiv 0.4\))

Refer to Fig. 4-5 check setup and use the following control settings.
\begin{tabular}{ll}
PULSE DURATION & SQUAREWAVE \\
PERIOD & \(.1 \mu \mathrm{~s}\) \\
BACK TERM (PULL) & in
\end{tabular}

Horizontal Plug-In
TIME/DIV
50 ns
a. Change the vertical plug-in VOLTS/DIV switch to 1 and adjust the POSITION control to center the trace on the ort graticule.
b. Connect the pulse generator OUTPUT to the vertical plug-in INPUT using a coaxial cable with 50 s2 termination.
c. Adjust the pulse generator PERIOD VARIABLE COntrol for a 200 ns period on the crt.
d. Adjust the pulse generator OUTPUT controls for a low level of 0.4 V and a high level of 2.4 V .
e. Disconnect the vertical plug-in INPUT cable connection.
f. Set the sinewave generator FREQUENCY RANGE \((\mathrm{MHz})\) switch to \(50-100\) and the FREQUENCY VARIABLE
```

PERIOD
BACK TERM (PULL)

```

SQUAREWAVE
. 1 S
in

AVERAGES
DC 5009
AUTO

\section*{Pulse Generator}

Calibration-DC 5009

\section*{Performance Check Procedure}
control for a display readout of 70.0. Set the OUTPUT AMPLITUDE control to 1.25 .
g. Connect a coaxial cable with a \(50 \Omega\) termination from the sinewave generator OUTPUT to the DC 5009 CHANNEL A EXT INPUT.
h. Depress the DC 5009 AUTO TRIG switch (in).
i. Connect a tip jack-to-bnc connector from the DC 5009 ARM input to a \(50 \Omega\) termination to the pulse generator OUTPUT connector.
j. CHECK—that the DC 5009 readout indicates approximatery 70.00000 with the display GATE light blinking.
k. Disconnect the pulse generator OUTPUT cable connection with \(50 \Omega\) termination still attached to the bnc end.
I. CHECK—that the DC 5009 readout indicates approximately 70 MHz and the display GATE light not blinking (but may be lit).
m. Remove all cable connections.
11. Check Input Impedance (\(1 \mathrm{M} \mathbf{\Omega} \pm \mathbf{2 \%}\))

Refer to Fig. 4-1 check setup and use the following control settings.

\section*{DM 501A}
\begin{tabular}{ll}
\(2000 \mathrm{k} \Omega\) & in \\
INPUT & EXT \\
\(\mathrm{k} \Omega\) & in
\end{tabular}
a. Connect a coaxial cable with a female-to-dual banana adapter from the digital multimeter LOW and VOLTS/ \(/ \Omega\) input connectors to the DC 5009 CHANNEL A EXT INPUT.
b. CHECK-that the digital multimeter readout indicates between 980.0 and \(1020.0(\mathrm{k} \Omega)\).
c. Change the DC 5009 CHANNEL A EXT INPUT connection to the CHANNEL B EXT INPUT.
d. CHECK-that the digital multimeter readout indicates between 980.0 and \(1020.0(\mathrm{k} \Omega)\).
e. Remove the connections.
12. Check Input Capacitance, \(\leqslant 30 \mathrm{pF}\)

\section*{WARNING}

The check procedure in steps 12a through 12j require qualified personnel only.
```

CAUTION

```

Install the probe tip ground cover (insulating sleeve) to prevent surrounding component damage.

Refer to the Adjustment locations (in pullout pages) and use the preliminary control settings with the following exceptions.
\begin{tabular}{lc|}
& Horizontal Plug-In \\
TIME/DIV & \(100 \mu \mathrm{~S}\) \\
& Vertical Plug-in \\
VOLTS/DIV & 2 V \\
COUPLING & AC \\
& DC 5009 \\
AVERAGES & AUTO \\
CHANNEL A & cow \\
and CHANNEL B LEVEL & \\
AUTO TRIG & out \\
& Function Generator \\
FREQUENCY Hz & 1 \\
MULTIPLIER & \(10^{3}\) \\
FUNCTION & 7 (squarewave) \\
OFFSET & OFF (in) \\
OUTPUT & midrange
\end{tabular}
a. Turn off the power. Then pull the DC 5009 from the power module and remove the right side cover.
b. Connect the DC 5009 to the power module using the flexible plug-in extender and turn on the power.
c. Connect the test probe to the vertical plug-in INPUT connector. Make certain the test probe is compensated to the oscilloscope.
d. Connect a coaxial cable with a \(50 \Omega\) termination and 30 pF normalizer from the function generator OUTPUT to the DC 5009 CHANNEL A EXT INPUT.
e. Carefully connect the test probe tip to the junction of transistor Q1122 collector, located on the Analog board.
f. Adjust the function generator OUTPUT control for approximately 1 V peak-to-peak squarewave on the crt display.
g. CHECK-that the displayed squarewave is over compensated (over-peaked).
h. Remove the DC 5009 CHANNEL A EXT INPUT connection and connect to the CHANNEL B EXT INPUT.
i. Remove the test probe tip from transistor Q1122 and connect to the junction of transistor Q1142 collector, also located on the Analog board.
i. Repeat steps 12 f and 12 g .

\section*{13. Check Probe Compensation Function}

Reter to the Adjustment Locations (in pullout pages) and use the following control settings.

\section*{WARNING}

OFFSET

COUPLING
AC
a. Disconnect the DC 5009 CHANNEL B EXT INPUT connection and remove the 30 pF normalizer and the \(50 \Omega\) termination. Reconnect this cable to the vertical plug-in INPUT.
b. Adjust the function generator OUTPUT control for approximately 10 V peak-to-peak.

Calibration-DC 5009
Performance Check Procedure
c. Remove the coaxial cable from the function generator.
d. Connect the instrument probe to the DC 5009 CHAN NEL A EXT INPUT. Attach the probe tip to the function generator OUTPUT using the probe tip-to-bnc connector.
e. Set the DC 5009 FUNCTION switch to PROBE COMP, insert the adjustment tool in the probe compensation adjustment slot, and press RESET.
f. Slowly rotate (approximately 90 degrees per 5 seconds) the probe compensation adjustment in either direction until the display for the channel being used changes to a "1", If the adjustment has not been rotated at least \(180^{\circ}\), continue rotating the adjustment until the display changes to a " 0 " and then to a " 1 ".

\section*{NOTE}

The MSD digit (far left) is for Channel A, the LSD digit (far right) is for Channel B. The GATE light will flash, indicating the rate at which the input is checked for compensation.
g. Reverse direction of rotation and again slowly turn the probe adjustment until the display changes to a " 0 ".
h. Reverse direction of probe adjustment again until the display goes to a "1" (only a few degrees will be required).
i. Once again reverse direction of probe adjustment and very slowly turn the adjustment until the display just changes to a " 0 ". At this point the probe will be compensated.

\section*{NOTE}

If at any point in the procedure the display should remain a "1" for more than one complete rotation of the probe adjustment, press the DC 5009 RESET button and repeat steps 13 f through 13 i. If at any time the display alternates between " 0 " and " 1 " without the probe adjustment being varied, slightly change the input signal amplitude and repeat this procedure.
j. Change the DC 5009 FUNCTION switch to FREQUENCY A (or any function except PROBE COMP or TEST).

Calibration-DC 5009

\section*{Performance Check Procedure}
k. Connect the test probe to the vertical plug-in INPUT connector and carefully connect the probe tip to the collector of transistor Q1122, located on the Analog board (or transistor Q1142 collector, if Channel B is used).
I. Change the vertical plug-in VOLTS/DIV switch to 100 mV .
m. CHECK-that the displayed waveform overshoot (aberration on positive going edge) is \(\leqslant 50 \mathrm{mV}\) (approxim mately \(1 / 2\) major graticule division).
n. Remove the probe connection from the DC 5009 CHANNEL A EXT INPUT and connect to the CHANNEL B EXT INPUT.
o. Repeat steps 13 e through 13 i .
p. Remove the test probe tip from transistor Q1122.
q. Repeat steps 13 j and 13 k .
r. Remove the probe and cable connections.
14. Check the Minimum Input Pulse Width (3 ns @ 115 mV peak to peak)

Refer to Fig. 4-6 check setup and the following control settings.

Pulse Generator
\begin{tabular}{ll}
PULSE DURATION & \(\approx 2 \mathrm{~ns}\) \\
PERIOD & \(\approx 4 \mathrm{~ns}\) \\
VARIABLE & cw \\
OUTPUT (VOLTS) & \\
LOW LEVEL & 0 \\
HIGH LEVEL & 2 \\
BACK TERM (PULL) & out \\
COMPLEMENT & NORM (out)
\end{tabular}

DC 5009
FUNCTION
FREQUENCY A
AUTO
CHANNEL A and
CHANNEL B
LEVEL midrange
SLOPE, ATTEN, COUPL (al
SOURCE out)

\section*{Vertical Plug-In}
VOLTS/DIV
BANDWIDTTH
POLARITY
AC-GND-DC
POSITION
50 mV
FULL
\(+U P\)
DC
trace centered

Horizontal Plug-In

\author{
TRIGGERING \\ MODE \\ COUPLING source \\ POSITION TIME/DIV VARIABLE MAG
}
```

P-P AUTO
AC
INT
as desired
20ns
in $\times 10$ (out)

```
a. Connect a coaxial cable with a \(10 \times\) attenuator and a \(50 \Omega\) termination from the pulse generator OUTPUT connector to the vertical plug-in INPUT connector.
b. Adjust the pulse generator LOW LEVEL control to position the displayed bottom of the waveform on the crt center graticule line.
c. Adjust the pulse generator HIGH LEVEL control until the crt displayed waveform is 2.3 major graticule divisions nigh.
d. Adjust the pulse generator PERIOD VARIABLE control until the crt displayed waveform indicates a period of 4.0 major tivisions.
e. Adjust the pulse generator PULSE DURATION VARIABLE until the crt displayed positive pulse width is 1.5 major divisions.
f. Move the vertrical plug-in INPUT cable connection to the DC 5009 CHANNEL A EXT INPUT.
g. Adjust the DC 5009 CHANNEL A LEVEL control for a stable readout.
h. CHECK- that the DC 5009 display readout indicates approximately \(125.00000(\mathrm{MHz})\).
i. Disconnect the DC 5009 CHANNEL A EXT INPUT and connect to the CHANNEL B EXT INPUT.
j. Connect the 1 MHz Frequency Standard signal to the DC 5009 CHANNEL A EXT INPUT. Adjust the DC 5009 CHANNEL A LEVEL control for a stable display of approximately 1 MHz .
k. Set the DC 5009 FUNCTION switch to RAT!O B/A position.
I. Adjust the DC 5009 CHANNEL B LEVEL control for a stable readout.
m. CHECK—that the DC 5009 display readout indicates approximately 125.00000 .
n. Remove all connections.
15. Check Width A Range (\(\leqslant 15 \mathrm{~ns}\)) and Minimum Dead Time (\(\leqslant 15 \mathrm{~ns}\))

Refer to Fig. 4-6 check setup and the following control settings.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Puise Generator} \\
\hline pulse duration & 5 ns \\
\hline PERIOD & 10 ns \\
\hline \multicolumn{2}{|c|}{DC 5009} \\
\hline FUNCTION & WIDTH A \\
\hline CHANNEL A and & \\
\hline CHANNEL B & \\
\hline LEVEL & midrange \\
\hline \multicolumn{2}{|r|}{Vertical Plug-In} \\
\hline VOLTS/DIV & . 2 V \\
\hline \multicolumn{2}{|r|}{Horizontal Plug-in} \\
\hline TIME/DIV & 5 ns \\
\hline
\end{tabular}
a. Connect a coaxial cable with a \(50 \Omega\) termination from the pulse generator OUTPUT to the vertical plug-in INPUT.
b. Adjust the pulse generator OUTPUT (VOLTS) LOW LEVEL and HIGH LEVEL controls for a 1 V peak-to-peak ort displayed pulse (referenced to ground).
c. Adjust the pulse generator PERIOD and PULSE DURATION controls for a crt displayed squarewave with a 30 ns period.

\section*{Calibration-DC 5009}

\section*{Performance Check Procedure}
d. Move the vertical plug-in INPUT connection to the DC 5009 CHANNEL A EXT INPUT.
e. Depress the DC 5009 AUTO TRIG switch.
f. CHECK—that the DC 5009 display readout indicates approximately 15.00 (ns).
g. Remove all connections.

\section*{16. Check Channel Delay Mismatch (\(\leqslant 2 \mathrm{~ns}\))}

Refer to Fig. 4-7 check setup for the following.
a. Connect a coaxial cable from the pulse generator OUTPUT to one port of a \(50 \Omega\) power divider (using the GR-to-bnc adapter).
b. Connect two short equal length coaxial cables to the remaining ports (2) of the power divider (using the GR-tobnc adapter).
c. Connect one of these cables with a \(50 \Omega\) termination to the DC 5009 CHANNEL A EXT INPUT. Connect the other cable with a \(50 \Omega\) termination to the CHANNEL B EXT INPUT.

Fig. 4-7. Check setup for Performance Check steps 16 and 17.
d. Set the DC 5009 FUNCTION switch to TIME \(A \rightarrow B\) and depress the AUTO TRIG twice (out then in).
e. Note the DC 5009 display readout.
f. Set the DC 5009 FUNCTION switch to PERIOD A.
g. Note the DC 5009 readout.
h. CHECK-that the difference between the two readings is leps than 2 ns.

\section*{17. Check EVENTS B DUR A Minimum Response (15 ns)}

Refer to Fig. 4-7 check setup.
a. Set the DC 5009 FUNCTION switch to EVENTS B DUR A.
b. Set the DC 5009 CHANNEL B SLOPE switch to (in).
c. Depress the DC 5009 AUTO TRIG switch twice (out then in).
d. CHECK—that the DC 5009 display readout indicates 1.000 .
18. Check the GPIB Bus Through the Controller

Refer to Talker/Listener sample programs in the Operating Instructions.
a. Connect the controller to the TM 5000 power module.
b. Run the sample program for your selected controller using only queries.
c. CHECK - the DC 5009 display readout for returned query data.

This procedure requires the removal of the power module top cover. Coaxial cable (\(50 \Omega\)) interfacing is required between the power module and DC 5009 . Good high frequency connection techniques are also required.

\section*{WARNING}

When instruments are operated with covers removed, DO NOT touch exposed connections or components. This procedure is to be completed by qualified technical personnel onty.

\section*{19. Check CHANNEL A and CHANNEL B Rear Interface Input Frequency Range (\(\geqslant 50 \mathrm{MHz}\), DC and \(A C\)) and input Impedance (\(50 \Omega \pm 10 \%\) @ DC)}

A signal source capable of \(\equiv 50 \mathrm{MHz}\) frequency with an amplitude of \(\approx 20 \mathrm{mV}\) rms, 56 mV peak-to-peak and a 1 MHz frequency standard is required for this check.
a. Turn off the power module.
b. Remove the top cover from the power module, exposing the interface connectors (refer to the Maintenance Section in the power module instruction manual).
c. Using an appropriate length \(50 \Omega\) coaxial cable (no connectors), attach one end of the cable center conductor to pin 16A of the DC 5009 rear interface connector. Attach the shielded conductor (same cable end) to pin 17A of the rear interface connector.
d. Attach the other cable end (center conductor and shield) to the appropriate output connections on the signal generator. Set the generator for 56 mV peak to peak at 50 MHz .
e. Set the DC 5009 FUNCTION switch to FREQUENCY A. AVERAGES switch to AUTO, and the CHANNEL A SOURCE switch to INT (in).
f. Connect the tip jack-to-bnc cable from the DC 5009 A SHAPED OUT (black lead to COM) to the vertical plug-in INPUT.
g. Adjust the DC 5009 CHANNEL A LEVEL control for a stable display on the DC 5009 and oscilloscope crt.

\footnotetext{
h. CHECK—that the DC 5009 readout indicates approximately \(50(\mathrm{MHz})\).
}
i. Change the CHANNEL A COUPL switch to AC (in) and check that the display readout remains approximately 50 (MHz).
j. Move the signal generator cable connections to the digital multimeter LOW and VOLTS \(/ \Omega\) input connectors.
k. Set the digital multimeter INPUT switch to EXT and press the \(200 \Omega\) switch in. Make sure the \(k \Omega\) switch is in.
1. CHECK-that the digital multimeter readout indicates between 45 and 55 (\(\Omega\)).
m. Detach the coaxial cable center conductor from pin 16A and attach to pin 17B of the DC 5009 rear interface connector. Detach the shield conductor from pin 17A and attach to pin 16B of the interface connector.
n. CHECK—that the digital multimeter readout indicates between 45 and \(55(\Omega)\).
o. Move the digital multimeter connections back to the signal generator.
p. Connect the 1 MHz frequency standard to the DC 5009 pin 16A (shield to pin 17A) and adjust the CHANNEL A LEVEL control for a stable display on both the DC 5009 and oscilloscope crt.
q. Change the DC 5009 FUNCTION switch to RATIO B/A, and the CHANNEL B SOURCE switch to INT (in).
r. Move the DC 5009 A SHAPED OUT conriection to the B SHAPED OUT.
s. Adjust the DC 5009 CHANNEL B LEVEL control for a stable display readout.

\section*{Calibration-DC 5009}

\section*{Performance Check Procedure}
t. CHECK—that the DC 5009 readout indicates approximately 50 .
u. Change the DC 5009 CHANNEL A COUPL switch to AC (in) and check that the display readout still indicates approximately 50 .
v. Remove the cable connections.

This completes the Performance Check.

\section*{ADJUSTMENT PROCEDURE}

\section*{Introduction}

Use this Adjustment Procedure to restore the DC 5009 to original performance requirements. This Adjustment Procedure need not be performed unless the instrument fails to meet the Performance Requirements of the electrical characteristics listed in the Specification section, or if the Performance Check procedure cannot be completed satisfactorily. If the instrument has undergone repairs, the Adjustment Procedure is recommended. Allow thirty minutes warmup time for operation to specified accuracy (sixty minutes atter storage in a high humidity environment).

Satisfactory completion of all adjustment steps in this procedure assures that the instrument will meet the Performance Requirements.

\section*{Test Equipment Required}

The test equipment (or equivalent) listed in Table 4-1 is required for adjustment of the DC 5009. Specifications given for the test equipment are the minimum necessary for accurate adjustment. All test equipment is assumed to be correctly calibrated and operating within specifications.

If other test equipment is substituted, the calibration setup may need to be altered to meet the requirements of the equipment used.

Preliminary Control Settings

DC 5009
\begin{tabular}{ll}
FUNCTION & FREQUENCY A \\
AVERAGES & \(10^{6}\) \\
AUTO TRIG & OUt \\
CHANNEL A & \\
SLOPE & + (out) \\
ATTEN & \(\times 1\) (out) \\
SOURCE & EXT (out) \\
COUPL & AC (in) \\
CHANNEL B & \\
SLOPE & + (out) \\
ATTEN & \(X 1\) (out) \\
SOURCE & EXT (out) \\
COUPL & AC (in)
\end{tabular}

\section*{Preparation}

Access to the internal adjustments is achieved most easily when the DC 5009 is connected to the power module
with a flexible plug-in extender. Remove the right side cover of the DC 5009 to reach the adjustments on the Analog board. Refer to the Adjustment Locations and Setups in the pullout pages at the rear of this manual.

\section*{NOTE}

Make adjustments at an ambient temperature be. tween \(+20^{\circ} \mathrm{C}\) and \(+30^{\circ} \mathrm{C}\).

\section*{1. Adjust R1301, +3.2 V ADJ}
a. Set the digital multimeter to the 20 V de range.
b. Connect the digital multimeter LOW test lead to the DC 5009 COM tip jack connector. Connect the VOLTS/ \(\Omega\) test lead to TP1341, located on the Analog board.
c. ADJUST-_R1301 until the digitel multimeter readout indicates 3.200 volts.
d. Remove the VOLTS/R test lead from TP1341.

\section*{2. Check the - 12 V Supply Accuracy}
a. Connect the digital multimeter VOLTS/S test lead to TP1631, located on the Analog board.
b. CHECK-that the digital multimeter readout indicates between -11.400 V and -12.600 V .
c. Remove all test leads from the DC 5009 .

\section*{3. Adjust the Standard Timebase Accuracy, C1602, OSC ADJ}
a. Connect a coaxial cable from the 1 MHz frequency standard to the DC 5009 CHANNEL A EXT INPUT.
b. Set the DC 5009 CHANNEL A LEVEL control for a stable readout.
c. ADJUST-C1602 until the DC 5009 readout indicates between 999.99990 and 1.0000001 MHz .

Callbration-DC 5009
Adjustment Procedure

\section*{NOTE}

This sets the DC 5009 oscillator within 1 part in \(10^{7}\). It will take approximately 1 second for the display to updete.
4. Adjust the Optional Timebase Accuracy, Y1531

\section*{NOTE}

The Option 01 timebase adjustment is made through an access hole in the back of the oven timebase. Y1531 is located on the back side of the Analog board.
a. Connect a coaxial cable from the 1 MHz frequency standard to the DC 5009 CHANNEL A EXT Input.
b. Set the DC 5009 CHANNEL A LEVEL control for a stable readout.
c. ADJUST-Y1531 until the DC 5009 readout indicates 1.0000000 .
d. Change the DC 5009 FUNCTION switch to PERIOD A.
e. ADJUST-Y1531 until the DC 5009 readout indicates 999.99998 or 999.99999 .
f. Remove the cable connections from the DC 5009 .

\section*{5. Adjust R1102, CH A DAC GAIN}

\section*{NOTE}

Refer to Fig. 8-2 in the foldout section for adjustment setup. Use the following control settings.

DC 5009
```

CHANNEL A
COUPL
CHANNEL B
COUPL

$$
\begin{aligned}
& D C \text { (out) } \\
& D C \text { (out) }
\end{aligned}
$$

```

\section*{Function Generator}
\begin{tabular}{ll}
0 dB & in \\
OFFSET & out (cw) \\
AMPL & ccw \\
FREQUENCY Hz & 10 \\
MULTIPLIER & \(10^{4}\) \\
\(\sim\) (TRIANGLE) & (in)
\end{tabular}
a. Connect an RF cable assembly (bnc-to-tip jack connector) from the DC 5009 A TRIG LEVEL (black lead to COM) to the digital multimeter LOW and VOLTS/ \(/ \Omega\) connectors using a bnc female-to-dual banana adapter.
b. Connect a coaxial cable from the DC 5009 CHANNEL A EXT INPUT connector to the function generator OUTPUT connector. This provides a de offset level greater than +5 V to the input of the DC 5009 .
c. Press the DC 5009 AUTO TRIG switch (in).
d. ADJUST-R1102 for a digital multimeter readout of -3.175 V .

\section*{6. Adjust the CH B DAC GAIN, R1211}

\section*{NOTE}

Refer to Fig. 8 -2 in the foldout section for adjustment setup.
a. Disconnect the DC 5009 CHANNEL A cable connection and connect to the CHANNEL B connector.
b. Move the A TRIG LEVEL connection to the B TRIG LEVEL connector.
c. Press the DC 5009 AUTO TRIG switch (out), then press it again (in).
d. ADJUST-R1211 for a digital multimeter readout of -3.175 V .
e. Remove the digital multimeter cable connections from the DC 5009 .

\section*{7. Adjust R1317, CHANNEL A OFS}

\section*{NOTE}

Refer to Fig. 8-3 in the foldout section for adjustment setup. Use the following control settings.

\section*{Function Generator}
```

OFFSET
0 dB
MULTIPLIER
FREQUENCY Hz
AMPL.

```

\author{
FUNCTION AUTO TRIG
}
```

    out (centered)
    (in)
    104
    10,
    cW
    ```

\section*{DC 5009}
```

PERIOD A out

```
a. Connect a coaxial cable from the function generator OUTPUT with a 10 X attenuator and \(50 \Omega\) termination to the digital multimeter LOW and VOLTS/Az input jacks using a bnc-to-dual banana adapter.
b. Rotate the function generator OFFSET control until the digital multimeter display readout indicates 0.000 V .
c. Move the coaxial cable with the 10X attenuator and \(50 \Omega 2\) termination from the digital multimeter to the DC 5009 CHANNEL A EXT INPUT. Then connect a coaxial cable from the digital multimeter bnc-to-dual banana adapter to the DC 5009 A TRIG LEVEL using a bnc-to-tip jack connector.
d. Rotate the DC 5009 CHANNEL A LEVEL control until the digital multimeter display readout indicates 0.000 V .
e. Rotate the function generator FREQUENCY Hz dial until the DC 5009 display readout indicates \(10.00 \mathrm{XXX} \mu \mathrm{s}\) (the last three digits are negligible).
f. Set the DC 5009 FUNCTION switch to WIDTH A.
g. ADJUST-R1317 until the DC 5009 display readout indicates \(5.00, \pm .01 \mu \mathrm{~s}\).

\section*{8. Adjust R1323, CHANNEL B OFS}

NOTE
Refer to Fig. 8 -3 in the foldout section for adjustment setup.
a. Retain the function generator settings and move the DC 5009 CHANNEL A EXT INPUT cable connection to the CHANNEL B EXT INPUT.
b. Move the DC 5009 A TRIG LEVEL connection to the B TRIG LEVEL output.
c. Rotate the DC 5009 CHANNEL B LEVEL control until the digital multimeter display readout indicates 0.000 V .
d. Move the DC 5009 B TRIG LEVEL connection to the B SHAPED OUT and remove the cable end from the bnc-tobanana adapter on the digital multimeter and connect to the DC 5009 CHANNEL A EXT INPUT.
e. Adjust the DC 5009 CHANNEL A LEVEL control for a stable display readout.
f. ADJUST-R1323 until the DC 5009 display readout indicates \(5.00, \pm .01 \mu \mathrm{~s}\).
g. Remove all cable connections and replace the DC 5009 side cover. This completes the Adjustment Procedure.

\section*{MAINTENANCE}

\section*{Static-Sensitive Components}

\section*{CAUTION}

Static discharge may damage semiconductor components in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. See Table 5-1 for relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments.

Observe the following precautions to avoid damage:
1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers, on a metal rail, or on conductive foam. Label any package that contains staticsensitive assemblies or components.
3. Discharge the static voltage from your body by wearing a wrist strap while handling these components. Servicing static-sensitive assemblies or components should be performed only at a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by the body, never by the leads.
7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work surface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only special antistatic suction type or wick type desoldering tools.

\section*{Test Equipment}

Before using any test equipment to make measurements on static-sensitive components or assemblies, be certain that any voltage or current supplied by the test equipment does not exceed the limits of the component to be tested.

Table 5-1
relative susceptibility to STATIC DISCHARGE DAMAGE
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Semiconductor Classes }
\end{tabular} \(\left.\begin{array}{c}\text { Relative } \\
\text { Susceptibility } \\
\text { Levels }\end{array}\right]\)
\({ }^{\text {a }}\) Voltage equivalent for levels:
\(1=100\) to \(500 \mathrm{~V} 4=500 \mathrm{~V} \quad 7=400\) to 1000 V (est.)
\(2=200\) to \(500 \mathrm{~V} 5=400\) to \(600 \mathrm{~V} \quad 8=900 \mathrm{~V}\)
\(3=250 \mathrm{~V} \quad 6=600\) to \(800 \mathrm{~V} \quad 9=1200 \mathrm{~V}\)
(Voltage discharged from a 100 pF capacitor through a resistance of \(100 \Omega\).)

\section*{Circuit Board Removal and Replacement}
1. Remove the snap-on side covers.
2. Remove the GPIB board from the Digital board by removing the small screw attaching the GPIB board to the rear cover and by removing the two screws located as shown (A \& B) in Fig. 5-1.
3. Carefully separate the GPIB board from the Digital board. Do not overstress or bend the interconnecting pins.
4. Remove the rear cover which is secured by two phillips screws (top of cover) and two \(3 / 16\) inch hex bullet connectors (bottom cover).
5. Remove the relay hold-down screws.
6. Remove the front cover by unsoldering the four Analog board connections from the front panel input connectors. (See Fig. 5-2.) Remove the front panel display lens by reieasing the two plastic tabs (as seen from the top front panel) that secure the lens to the front panel. Be careful not to overstress the plastic tabs. The lens rotates out from the top. With lens removed, locate the two corner screws securing the display board and remove. Remove the four front panel corner screws, securing the panel to the top and bottom covers. Carefully pull the front panel cover away, clearing the panel pushbuttons and levers.
7. Remove the two connectors, from J 1301 and \(\$ 1303\) located on the Analog board (back side). (See Fig. 5-2.)
8. Remove the five screws that secure the Digital board to the Analog board. (See Fig. 5-1.)

Fig. 5-1. Screw locations for GPIB circuit board removal and Digital circuit board removal.
9. Separate the Digital board from the Analog board using care not to overstress or bend the interconnecting jack pins.
10. To replace the boards, reverse the order of the above procedure.

\section*{Switch Maintenance}

After separating the two boards, the front panel lever switches may be removed by removing the three screws attaching each lever switch to the circuit board. Use care when removing or assembling the lever switches to the circuit boards to prevent bending the contact fingers. When reassembling, carefully align the screw holes on the switch cover with the board. Place the switch cover on the board in the proper position before inserting the screws.

To remove the front panel pushbutton switches, refer to Fig. 5-2. Pull to remove the extension shafts. Carefully bend the plastic tab back and raise the rear of the switch clear of the tab.

To clean the board and switch contacts, use a lubricated contact cleaner such as, No Noise Contact Restorer \({ }^{1}\). However DO NOT USE THIS CLEANER on the magnetic latching relays (refer to proper cleaning procedure).

\section*{Front Panel Latch Removal}

To replace the latch, remove the screw under the pull tab. Carefully pry up the pull tab from the latch assembly.

\section*{Magnetic Latch Relays}

To prevent damage to these relays, do not remove them from the Analog circuit board unless absolutely necessary. If the relay contacts become noisy or the relay fails to operate, remove the relay from the circuit board.

Clean the circuit board contacts with a small brush and isopropyl alcohol. Do not use any solvent that may attack polycarbonates such as hydrocarbon chlorides, ketones, esters, etc. Do not use a cotton swab as small cotton filaments may remain on the contact area.

Clean the contact fingers on the relay armature by lightly brushing the contacts with a brush dipped in isopropyl alcohol.

\footnotetext{
\({ }^{1}\) Electronic Chemical Corporation, 813 Communipaw Avenue, Jersey City, N.J. 07304
}

Fig. 5-2. Partial right view of instrument with cover removed (pictoral).

To remove the relay armature from the relay, obtain a wire or tool with a diameter less than 0.040 inch, such as a paperclip. Before removing the armature, mark the orientation of the armature to the housing. Orientation is important for proper operation. Place the tool in the slot on the side of the housing and gently lift the relay armature. (See Fig. 5-3.)

Clean the interior of the relay, around the pole pieces, with isopropyl alcohol. The interior of the relay must be com-
pletely dry before reinstalling the armature. Use air to dry excess alcohol from the housing. Make sure that the relays are perpendicular to the board before replacing the cover.

\section*{NOTE}

Do not spray contact cleaners of any type on the relays or the board contacts. Any foreign material, including hibricants, can cause faulty operation.

Fig. 5-3. Method of removing magnetic latch relay armature.

\section*{Cleaning Instructions}

This instrument should be cleaned as often as operating conditions require. Accumulation of dirt on components acts as an insulating blanket and prevents efficient heat dissipation that can cause overheating and component breakdown.

Avoid the use of chemical cleaning agents that might leave a film or damage the plastic material used in this instrument. Use a nonresidue type of cleaner; preferably, isopropyl alcohol or totally denatured ethyl alcohol. Before using any other type of cleaner, consult your Tektronix Service Center or representative.

Exterior. Loose dust accumulated on the front panel can be removed with a soft cloth or a small brush. Dirt that remains can be removed with a soft cloth dampened with a mild detergent and water solution. Abrasive cleaners should not be used.

Interior. Dust in the interior of the instrument should be removed occasionally, due to its electrical conductivity under high humidity conditions. The best way to clean the interior is to blow off the accumulated dust with dry, low pressure air then use a soft brush. If further cleaning is required, use a mild detergent and water solution, flushing well with clean water.

\section*{CAUTION}

Do not clean the circuit board with water, air, or any solvent, unless the pushbutton switches and relays are removed first. Any dirt forced or carried under the contacts can cause intermittent operation. Circuit boards and components must be dry before applying power to prevent damage from electrical arcing.

Drying can be accomplished with dry, low-pressure air or by placing in an oven at \(40^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) for approximately four hours.

After making minor board repairs, cleaning is best accomplished by carefully flaking or chipping the solder flux from the repaired area.

Isopropyl alcohol can be used to clean major repairs to the circuit board; however, flush the board well with clean, isopropyl alcohol. Make certain that resin or dirt is carefully removed from the board.

\section*{Obtaining Replacement Parts}

Electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, many of the standard electronic components can be obtained from a local commercial source. Before purchasing or ordering parts from a source other than Tektronix, Inc., check the Replaceable Electrical Parts list for the proper value, rating, tolerance, and description.

\section*{Ordering Parts}

When ordering replacement parts from Tektronix, inc., it is important to include all of the following information.
1. Instrument type (include modification or option numbers).
2. Instrument serial number,
3. A description of the part (if electrical, include the component number).
4. Tektronix part number.

\section*{Soldering Techniques}

To avoid electric shock hazard, disconnect the instrument from the power source before soldering.

The reliability and accuracy of this instrument can be maintained only if proper soldering techniques are used when repairing or replacing parts. General soldering techniques which apply to maintenance of any precision electronic equipment should be used when working on this instrument. Use only 60/40 rosin-core, electronic grade solder. The choice of soldering iron is determined by the repair to be made.

The Analog and Digital circuit boards in the DC 5009 are multilayer type boards with conductive paths laminated between the top and bottom board layers. All soldering on these boards should be done with extreme care to prevent breaking the connections to this conductive path. Only experienced maintenance pers sonnel should attempt to repair these boards. Do not allow solder or solder flux to flow under printed circuit board switches. The printed circuit board is part of the switch contacts; intermittent switch operation can occur if the contacts are contaminated.

When soldering on circuit boards or small wiring, use only a 15 watt, pencil type soldering iron. A higher wattage soldering iron can cause the etched circuit wiring to separate from the board base material and melt the insulation from small wiring. Always keep the soldering iron tip properly tinned to ensure the best heat transfer to the solder joint. Apply only enough heat to remove the component or to make a good solder joint. To protect heat sensitive components, hold the component lead with a pair of long-nose pliers between the component body and the solder joint. Use a solder removing wick to remove excess solder from connections or to clean circuit board pads.

To remove in-line integrated circuits use an extracting tool. This tool is available from Tektronix, Inc.; order Tektronix Part Number 003-0619-00. If an extracting tool is not available, use care to avoid damaging the pins. Pull slowly and evenly on both ends of the integrated circuit. Try to avoid disengaging one end before the other end.

\section*{Interconnecting Pins}

Several methods of interconnection, including square pin and circuit board pin and ferrule are used to electrically connect the circuit boards with the other boards and components.

Several types of mating connectors are used for these interconnecting pins. If the mating connector is mounted on a plug-on circuit board, special sockets are soldered into the board. If the mating connector is on the end of a lead, an end-lead pin cornector is used. This connector mates with the interconnecting pin. The following information provides the removal and replacement procedure for the various interconnecting methods.

\section*{Square Pin Assemblies}

See Fig. 5-4. These pins are of various lengths. They are attached to each other with a plastic strip. To remove them simply unsolder from the circuit board.

2971-08

Fig. 5-4. Typical square pin assembly.

\section*{Circuit Board Pins and Ferrules}

See Fig. 5-5. A circuit board pin replacement kit (including necessary tools, instructions, and replacement pins with attached ferrules) is available from Tektronix, Inc.; order Tektronix Part Number 040-0542-00. Replacing circuit board pins on multilayer boards is not recommended. (The multilayer boards in this instrument are listed under Soldering Techniques in this section.)

Maintenance-DC 5009

Fig. 5-5. Exploded view of circuit board pin and ferrule.

To replace a damaged pin, first disconnect any pin connectors. Then unsolder the damaged pin and puil it from the board with a pair of pliers, leaving the ferrule in the circuit board, if possible. If the ferrule remains in the circuit board, remove the spare ferrule from the replacement pin and press the new pin into the hole in the circuit board, If the ferrule is removed with the damaged pin, clean out the hole using a solder removing wick and a scribe. Then press the replacement pin, with attached spare ferrule, into the circuit board.

Position the replacement pin in the same manner as the original. Solder the pin to the circuit board on each side of the board. If the original pin was bent at an angle to mate with a connector, carefully bend the new pin to the same angle. Replace the pin connector.

\section*{Dual Entry Circuit Board Pin Sockets}

The pin sockets on the circuit boards are soldered to the back of the board. See Fig. 5-6. To remove or replace one of

\(2971-09\)

Fig. 5-6. Dual entry circuit board pin socket.
the tabs on the socket and remove the socket from thi board.

Place the new socket in the circuit board hole and pres: the tabs down against the board. Solder the tabs of thi socket to the circuit board. Be careful not to get solder in side the socket.

\section*{NOTE}

The spring tension of the pin sockets ensure a good connection between the circuit board and the pin. This spring tension can be destroyed by using the pin sockets as a connecting point for spring loaded probe tips, alligator clips, etc.

\section*{Bottom Entry Circuit Board Pin Sockets}

To remove or replace these sockets unsolder the pins from the circuit board. Use a vacuum or other type desoldering tool to remove excess solder. Use caution to prevent circuit board damage. See Fig. 5-7.

\section*{Multipin Connectors}

The pin connectors used to connect the wires to the interconnecting pins are clamped to the ends of the wires To replace damaged multipin connectors, remove the of pin connector from the holder. Do this by inserting a scribe between the connector and the holder and prying the con-

If the individual end lead pin connectors are removed from the plastic holder, note the order of the individual wires for correct replacement in the holder, For proper replacement see Fig. 54.

Fig. 5-8. Orientation and disassembly of multipin connectors.

Fig. 5-7. Bottom entry circuit board pin socket.

\section*{REAR INTERFACE CONNECTOR}

\section*{Introduction}

Refer to Fig. 5-9 for the following.

A slot between pins 21 and 22 on the rear connector identifies this instrument as a member of the TM 5000 counter family. insert a barrier in the corresponding position of the power module jack to prevent noncompatible plug-ins from being used in that compartment. Consult the power module manual for further information.

\section*{Functions Available at Rear Connector (P1625)}

Pin 14A. External Clock Input-This input allows an external 1,5 , or 10 MHz frequency standard to be used in place of the internal timebase. The input is ac coupled and has a \(1 \mathrm{k} \Omega\) input resistance. The peak-to-peak input voltage required is \(¥ 3 \mathrm{~V}\).

Pin 148. Prescale-...When this available line is held low, the counter automatically adjusts the displayed answer for use with a divide-by-16 prescaler in FREQUENCY A, PERIOD A, RATIO B/'A, and TOTALIZE A modes (\(\approx 1\) TTL load).

Pin 15A. 10 MHz Clock Out Ground-This terminal is the ground return for the clock input-output signals.
Pin 15B. \(\quad 10 \mathrm{MHz}\) Clock Out-This available output line will drive one TTL load. This line is not intended to drive large capacitance loads and cable length should be kept to a minimum.

Pin 16A. CH A Input-This is the Channel A input connection when the front panel CHANNEL A SOURCE switch is in the INT position. This input is terminated in \(50 \Omega\) with a maximum input of 3.6 V peak (10 V rms, sinewave).

Pin 16B. CHB Input Ground-This terminal is the ground return for the rear interface Channel B input.
Pin 17A. CH A Input Ground-This terminal is the ground return for the rear interface Channel \(A\) input.

Pin 17B. CH B Input-This is the Channel B input connection when the front panel CHANNEL B SOURCE switch is in the INT position. This input is terminated in \(50 \Omega\) with a maximum input of 3.6 V peak (10 V rms, sinewave).

Pin 22A. Trigger Level Out CH A-The voltage at this connection follows the Channel \(A\) front panel
trigger LEVEL' control. The signal level is approximately \(\pm 3.2 \mathrm{~V}\).

Pin 22B. Trigger Level Out CH B-The voltage at this connection follows the Channel B front panel trigger LEVEL control. The signal level is approximately \(\pm 3.2 \mathrm{~V}\).

Pin 23A. Shaped Out, CH A—This terminal provides a replica of the internal signals being used for the measurement; used as an aid to proper triggering on complex waveforms. This signal, when routed to the rear interface, is not available at the front panel. This routing may be accomplişhed by interchanging P1341 (J1341) and P1441 (J1441). See the Analog board in the pullout pages.

Pin 23B. Shaped Out, CH A Ground-This terminal is the ground return for the rear interface shaped out Channel A signal.
Pin 24A. Shaped Out, CH B Ground-This terminal is the ground return for the rear interface shaped out Channel B signal.

Pin 24B. Shaped Out, CH B -This terminal provides a replica of the internal signals being used for the measurement; used as an aid to proper triggering on complex waveforms. This signal, when routed to the rear interface, is not available at the front panel. This routing may be accomplished by interchanging connectors P1442 (J 1442) and P1443 (J1443). See the Analog board in the pullout pages.
Pin 26A. Reset Input-When this line is set low, the current measurement process is aborted for all selected functions and causes all digits in the display to read 8.8 .8 .8 .8 .8 .8 .8 . All six annunciators are also illuminated. When this line is set high, a new measurement process is initiated for the selected FUNCTION and operating conditions. (CMOS \(\mathrm{V}_{\mathrm{IL}} \xi_{1} 1.5 \mathrm{~V}\) and \({ }^{{ }^{V} \mathrm{H}} \geqslant 3.5 \mathrm{~V}\) with a minimum pulse width of approximately 10 ms .)

Pin 27A. Arming Input-This terminal is normally at a TTL high level. When pulled to a TTL low state with a TTL signal or transistor collector, the counter is prevented from making a measurement until the input goes to a TTL high state. When this input is routed to the rear interface it is not available at the front panel. (\({ }^{\mathrm{V}} \mathrm{H} \cong 2.4 \mathrm{~V},{ }^{\mathrm{V} L} \leqq 0.4 \mathrm{~V}\) approximately 2 TLL loads). This routing may be accomplished by

Fig. 5-9. Rear interface connector assignments.
interchanging connectors P1402 (J1402) and P1403 (J1403). See the Analog board in the pullout pages.

Pin 28A. Arming Input Ground-This terminal is the ground return for the rear interface arming input signal.
Pin 28B. Measurement Gate Out-This line is in the high state during the current measurement process and is capable of driving one LS TTL load. The gate duration is dependent on the input signal frequency and the AVERAGES selected.

\section*{GPIB Rear Interface Connector (P1001)}

Refer to Fig. 5-10 for the following.

Functions Available at GPIB CONNECTOR (located on the GPIB board, A14)
Pins 1 GPIB data bus lines-Digital data input-output through lines (one through eight).
8
Pin 11 EOI - End or Identify.
Pin 12 IFC - Interface Clear.
Pin 13 DAV - Data Valid.
Pin 14 SRQ - Service Request.
Pin 15 NRFD - Not Ready For Data.
Pin 16 ATN - Attention.
Pin 17 NDAC — Not Data Accepted.
Pin 18 REN — Remote Enable.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Output or \\
Input
\end{tabular} & PIN & PIN & \begin{tabular}{c}
Output or \\
Input
\end{tabular} \\
\hline Dl01 & 1 & 2 & DI05 \\
\hline D102 & 3 & 4 & DIO6 \\
\hline D103 & 5 & 6 & Dl07 \\
\hline D104 & 7 & 8 & DIO8 \\
\hline CE & 9 & 10 & TE \\
\hline EOI & 11 & 12 & IFC \\
\hline DAV & 13 & 14 & SRQ \\
\hline NRFD & 15 & 16 & ATN \\
\hline NDAC & 17 & 18 & REN \\
\hline NC & 19 & 20 & NC \\
\hline
\end{tabular}
\({ }^{\mathbf{a}}{ }^{\text {Not uged in DCgiops. }}\)

Fig. 5-10. GPIB rear interface connector assignments.

\section*{GPIB SWITCH}

\section*{Setting the Address Switches}

A single bank of six switches is located on the GPIB circuit board. See Fig. 5-11.

Five of these switches (A5 through A1) set the desired value of the lower five bits of the listen and talk addresses for the DC 5009. The decimal value of these switches is called the instrument's primary address (see Table 5-2).

The DC 5009 microprocessor reads these switches at each power-up event and displays the primary address in the front panel display window each time the INST ID push button is pressed. If the termination switch is set to EOI/LF (logic 1), the GPIB address is displayed with a decimal point. If it is set to EOI ONLY (logic 0) the GPIB address number is displayed.

Fig. 5-11. Bus address and message terminator switches.

The address byte sent by the controller is actually eight bits wide. Bits 5 through 1 are for the primary address set according to Table 5-2, while bits 7 and 6 determine whether the byte is a listen address (\(32+\) primary address) or a talk address (\(64+\) primary address). Secondary address bytes (where bits 7 and 6 are both a logical 1) are not used by the DC 5009, so they are ignored. The DC 5009 is factory set to primary address 18.

Before power-up, set switches A5 through A1 as desired. Do not set primary address 0 when using

TEKTRONIX 4050-Series controllers. They reserve primary address 0 for themselves. Setting the primary address to 31 logically removes the DC 5009 from the GPIB. It does not respond to any GPIB addresses or commands, and remains both unlistened (UNL) and untalked (UNT).

Table 5-2
IEEE 488 (GPIB) PRIMARY ADDRESSES

Setting the input/Output Message Terminator Switch

The top switch (number 1), illustrated in Fig. 5-11, is used to select the terminator of messages on the bus, If LF/EOI is selected, the DC 5009 interprets either the line feed (LF) character or the assertion of EOI concurrently with a data byte as the end of an input message string. If EOI ONLY is selected, the DC 5009 interprets the byte sent with EOI asserted as the end of an input message string.

This switch also selects the output message terminator from the DC 5009. If set to LF/EOI, the DC 5009 adds the carriage return (CR) and line feed (LF) characters, with EOI asserted along with LF, after the last byte in the output message string. If set to EOI ONLY, the DC 5009 asserts EOI concurrently with the last byte of the output message string.

\section*{DIAGNOSTICS}

\section*{Introduction}

The following information is intended to aid in the diagnosis and repair of a malfunctioning instrument. With signature analysis checks and other troubleshooting data, the qualified service personnel will be able to verify proper operation or detect malfunction in this instrument.

All of the instrument faults may not be isolated by this information or indicated by the instrument's built-in self test features. The service personnel should then refer to the Theory of Operation section, in this manual for a better understanding of the circuit details.

\section*{Equipment Required}

The recommended diagnostic tests require the following equipment or equivalent.

Data analyzer. TEKTRONIX type SA 501 or type 308 Data Analyzer (for signature analysis)

Digital counter. TEKTRONIX type DC 503A (for timebase frequency checks)

Digital multimeter. TEKTRONIX type DM 501A (for checking power supplies)

Also refer to the equipment list in the Calibration section of this manual for suggestions on oscilloscope systerns, probes, adapters, terminations and other equipment that may be useful for troubleshooting purposes.

\section*{Adjustment and Test Point Locations}

When locating adjustable components and test points, refer to the Adjustment and Setups Location in the pullout pages of this manual.

\section*{Self Test}

The DC 5009 has two modes of self test. The automatic test sequence at Power On and the TEST function selected by the front panel FUNCTION switch.

The automatic test sequence at Power On (Power On Self Test) is initiated each time the power is applied to the instrument. The microprocessor sequences through special data patterns to test the operation of the circuits in the instrument. At power on, after the microprocessor reset line has been released, the following sequence of events takes place:
1. The display (time slot generator, schematic 8) is reset to the most significant digit (digit to extreme left) and a 0 readout is displayed.
2. The RAM in the address range 0000 to 007 F hexidecimal is tested first. By writing a known bit pattern into the RAM and reading it back, each byte in the RAM is verified. If any byte does not verify, the RAM test error code is displayed on the front panel and the test sequence stops. The patterns written are FF, AA, 55, 00 (hexidecimal) in succession leaving the RAM cleared when the test is finished. If this test is not successfully completed, the proper error code is displayed and the self test sequence stops. The RAM on the GPIB board is similarly tested at C000 to C00F (hexadecimal).
3. Next, the ROM's are checked. The three ROM's are each checked in turn for both placement and also checksums. The check order is \(\$ 1000\) to \(\$ 17 \mathrm{FF}\), \(\$\) EFFF, and \$F000 to \$FFFF. If any of these tests fail, the Power On self test sequence is stopped and the proper error code is displayed.
4. Next, the automatic test sequence sets the instruments gating to the RATIO B/A function and sets the con trol of the trigger levels to the digital-to-analog converters (D/A converters). If the digital board jumper connection. P1331, is disconnected, the instrument is ready to enter the internal signature analysis mode. This mode will be described later.
5. The serial 1/O data loop is checked next, by writing out a data pattern to the serial-to-paralley shift registers. The data pattern is read back through the parallel-to-serial shift registers. If the data is correct, the Power On sequence continues. If the data is not correct, the error code for this test is displayed and the test sequence stops. This test checks the shift registers and the data path, including the serial clock but does not check the input or output stages of the shift registers or the latch control lines. Troubleshooting of the serial I/O loop is best accomplished using signature analysis.
6. The next test is the counter integrity test. This test first resets the instrument's Channel A and Channel B accumulators by pulsing the MR (master reset) line. It then checks each of the tested counter stages to verify that all bits are reset. If any bits are not reset, the proper error code is displayed and the test sequence stops. Next, the GATE signal, schermatic 7 is asserted. The instrument then inputs counts to the accumulators. These counts are generated by changing the trigger levels for both Channel \(A\) and Channel
\(B\) using the \(D / A\) converters. The D/A converter level changes (cycles) from its current setting to +3.2 V then to -3.175 and back to +3.2 V . This cycle represents one count if the Channel A and Channel B input voltages are within this voltage range and the ARM signal, schematic 3 is in the high state.

After each cycle or set of cycles, the accumulators are read and checked to see if the proper count has been reached. If the proper count has not been accumulated, the error code for that accumulator stage is displayed and the self test sequence stops.

\section*{NOTE}

The signal path starts at the D/A converters and the cycle must pass through the amplifiers, gating, and the accumulators.
7. If the counter integrity test fails for any of the described reasons, control of the triggering levels is returned to the front panel LEVEL controls. This allows qualified service personnel to manually change these levels while troubleshooting the amplifiers. The gating, schematic 3 , remains in the RATIO B/A function and by applying a signal to the appropriate channel input, the service personnel can trace this signal through the amplifier, gating, and accumulator circuits. Also refer to Table 8-2 in the pullout pages.

\section*{TEST Function}

The TEST function is similar to the Power On Self Test sequence with two exceptions. The RAM test is not executed, preventing the instrument's settings from being lost while in the TEST function. The signature analysis mode cannot be entered (even if the digital board jumper connection, P1331 is removed).

\section*{TROUBLESHOOTING}

The following is a general troubleshooting procedure to use when the instrument malfunctions.

First, verify that the instrument is properly connected to the appropriate power module and that this power module is operable. Then refer to Fig. 8-4, General Troubleshooting Flowchart, in the pullout pages. This flowchart is a guide for qualified service personnel to locate various areas of circuitry, depending on the instrument symptoms. It may also refer the service personnel to the following signature analysis procedure.

\section*{SIGNATURE ANALYSIS}

\section*{Introduction}

The DC 5009 was designed to provide two signature analysis methods. Internal signature analysis-this is a microprocessor driven pattern generator contained in the ROM. This method will only work when the mictoprocessor and its associated ROM, RAM, and connections (kernel) are functional.

Kernel signature analysis-this requires the use of an external kernel test service kit (Tektronix part number 067-1007-00). This method allows qualified service personnel to test and isolate problems in the kernel of the instrument.

\section*{Internal Signature Analysis}

The internal signature analysis mode is entered at power on when jumper connection P1331, located on the Digital board, has been removed. This mode will not operate if the instrument fails the power on RAM test. Refer to Figs. 8-5, \(8-6\), and 8.7 in the pullout pages, for the internal signatures setup information for each circuit board.

In the internal signature analysis mode, the serial loop and display circuitry are most easily diagnosed. The START, STOP, and CLOCK edge polarities must be properly set as shown on the appropriate signature diagram. When the instrument is in this mode, all segments and annunciators in the display are lighted.

\section*{Kernel Signature Analysis}

The Digital board microprocessor, U1311, is removed (observing proper static handling procedures) before making the kernel test.

The kernel signature analysis mode is used to diagnose problems that prevent the microprocessor kernel circuitry from functioning properly. It is used with a signature analyzer to verity signatures in the kernel circuitry.

Make certain the power module power is off when connecting this service kit to the instrument. To make the DC 5009 kernel board connections, the GPIB board (A14) must first be removed (refer to Circuit Boards Removal and

\section*{Maintenance-DC 5009}

Replacement). Then, connect J1002 and J1003 of the Kernel Test board to J 1210 and J 1211 on the instrument Digital board (A16), respectively, using the cables and square pin adapters provided with the kit. Make sure that the cables do not get twisted. The GPIB board is attached to the Kernel Test board as shown in Fig. 5-12. Connect the START, STOP, CLOCK, and GROUND connections of the analyzer to the test points as indicated on the appropriate Kernel Signature (Fig. 8-8 and Fig. 8 -9) in the pullout pages. Also make sure that the START, STOP, and CLOCK polarities have been properly selected on the analyzer.

In troubleshooting the kernel, the following information may be helpful.

Microprocessor kernel problems in the DC 5009 can be isolated to either the GPIB board (A14) or the Digital board (A16). This may be accomplished by first removing the GPIB board from the instrument. Then, insert the microprocessor (see the Electrical Parts list for U1311) in the U1311 ic socket on the Digital board. If the problem remains, check the Digital board. Troubleshoot the Digital board with the

Fig. 5-12. Kernel Signature Analysis connections.

Kernel Test board and signature analyzer, as shown in Fig. 8-8. If the instrument operates properly, the problem is most likely on the GPIB board. Troubleshoot the GPIB board for kernel problems using the previously described kernel test and referring to Fig. 8-9.

The Kernel Test Service Kit may also be used to extend the GPIB board from the Digital board to troubleshoot components on the Digital board. This may be done by using just the cables and square pin adapters provided in the kit.

Two physically adjacent points having the same signature. whether one or both are incorrect, may indicate they are shorted together.

A point with 0000 signature is grounded, or in a low state. A point with the +5 V signature (noted on each signature diagram) may be opened or the driving node may be stuck in the high state.

When the malfunction has been identified and corrected, carefully re-insert the Digital board microprocessor, making certain that pin 1 is properly oriented and all pins insert in the socket properly, DQ NOT FORCE the pins,

\section*{OPTIONS}

Your instrument may be equipped with one or more instrument options or optional accessories. A brief description of each instrument option is given below. For further information on instrument options or optional accessories, see your Tektronix Catalog or contact your Tektronix Fied Office. If additional options are made available for this instrument, they may be described in a Change Information insert at the back of this manual or in this section.

\section*{OPTION 01}

Replaces the standard 10 MHz oscillator with a self contained, proportional temperature controlled oven oscillator for increased accuracy and stability. Information relative to Option 01 can be found on schematic 6 , and in the Specification, Calibration, and Theory of Operation sections.

\section*{REPLACEABLE ELECTRICAL PARTS}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{LIST OF ASSEMBLIES}

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

\section*{CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER}

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

\section*{ABBREVIATIONS}

Abbreviations conform to American National Standard Y1.1.

\section*{COMPONENT NUMBER (column one of the Electrical Parts List)}

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:
Example a.

Read: Resistor 1234 of Assembly 23

Read: Resistor 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

\section*{SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)}

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

\section*{NAME \& DESCRIPTION (column five of the Electrical Parts List)}

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

\section*{MFR. CODE (column six of the Electrical Parts List)}

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

MFR. PART NUMEER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number.

Replaceable Electrical Parts-DC 5009

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER
\begin{tabular}{|c|c|c|c|}
\hline Mfr. Code & Manufacturer & Address & City, State, Zip \\
\hline 00010 & G \& E MICROCIRCUITS & 2000 W 14TH STREET & TEMPE, AZ 85281 \\
\hline 00779 & AMP, INC. & P о box 3608 & HARRISBURG, PA 17105 \\
\hline 01121 & ALLEN-BRADLEY COMPANY & 1201 2ND STREET SOUTH & MLLWAUKEE, WI 53204 \\
\hline 01295 & teXas instruments, inc., semiconductor GROUP & P O BOX 5012 , 13500 N CENTRAL EXPRESSWAY & DALLAS, TX 75222 \\
\hline 03508 & GENERAL ELECTRIC COMPANY, SEMI-CONDUCTOR PRODUCTS DEPARTMENT & ELECTRONICS PARK & SYRACUSE, NY 13201 \\
\hline 04222 & AVX CERAMICS, DIVISION OF AVX CORP. & P O BoX 867, 19TH AVE. SOUTH & MYRTLA BEACH, SC 29577 \\
\hline 04713 & MOTOROLA, INC., SEMICONDUCTOR PROD. DIV. & 5005 E MCDOWELL RD, PO BOX 20923 & PHOENIX, AZ 85036 \\
\hline 07263 & fairchild semiconducror, a div. of fairchild camera and instrument corp. & 464 ELLLS STREET & MOUNTAIN VIEW, CA 94042 \\
\hline 12697 & Clarostat mpg. CO., INC. & LOWER WASHINGTON STREET & DOVER, NH 03820 \\
\hline 13511 & amphenol cardre div., bunker ramo corp. & & LOS GATOS, CA 95030 \\
\hline 14433 & ITT SEMICONDUCTORS & \[
\begin{aligned}
& 330: \text { ELECTRONICS WAY } \\
& \text { P } 0 \text { BOX } 3049
\end{aligned}
\] & WEST PALM BEACH, FL 33402 \\
\hline 15238 & ITT SEMICONDUCTORS, A DIVISION OF INTER NATIONAL TEGRPYONE AND TELEGRAPH CORP. & P.O. BOX 168, 500 BROADWAY & LAWRENCE, MA 01841 \\
\hline 18324 & SIGNETICS CORP. & 811 E. ARQUES & SUNNYVALE, CA 94086 \\
\hline 22526 & BERG ELECTRONICS, INC. & YOUK EXPRESSWAY & NEW CUMBERLAND, PA 17070 \\
\hline 24546 & CORNING GLASS WORKS, ELECTRONIC COMPONENTS DIVISION & 550 high Street & BRADFORD, PA 16701 \\
\hline 27014 & NATLONAL SEMICONDUCTOR CORP. & 2900 SEMICONDUCTOR DR. & SANTA CLARA, CA 95051 \\
\hline 33096 & COLORADO CRYSTAL CORPORATION & 2303 W 8TH STREET & LOVELAND, CO 80537 \\
\hline 34576 & rockwell international corp. ELECTRONIC DEVICES DIVISION & 3310 MIRALBMA AVE. & ANAHEIM, CA 92803 \\
\hline 50434 & HEWLETT-PACKARD COMPANY & 640 Page mill road & PALO ALTO, CA 94304 \\
\hline 51984 & NEC AMERICA INC. RADIO AND TRANSMISSION DIV. & 2990 TELESTAR CT. SUITE 212 & FALLS CHURCH, VA 22042 \\
\hline 55210 & gettig eng. and mFg. COMPANY & PO BOX 85, OFF ROUTE 45 & SPRING MILLS, PA 16875 \\
\hline 55576 & SYNERTEX & 3050 CORONAOO DR & SANTA CLARA, CA 95051 \\
\hline 55680 & NICHICON/AMERICA/CORP . & 6435 N PROESEL AVENUE & CHICAGO, IL 60645 \\
\hline 56289 & Sprague electric co. & 87 Marshall st. & NORTH ADAMS, MA 01247 \\
\hline 59660 & TUSONIX INC. & 2155 N FORBES BLVD & TUCSON, AZ 85705 \\
\hline 71279 & CAMBRIDGE THERMIONIC CORP. & 445 CONCORD AVE. & CAMBRIDGE, MA 02138 \\
\hline 71400 & BUSSMAN MFG., DIVISION OF MCGRAWEDISON CO. & 2536 W. UNIVERSITY ST. & ST. LOULS, MO 63107 \\
\hline 72982 & erie technologrcal products, inc. & 644 W. 12TH ST. & ERIE, PA 16512 \\
\hline 73138 & beckman instruments, inc., helipot div. & 2500 HARBOR BLVD. & FULLERTON, CA 92634 \\
\hline 74970 & JOHNSON, E. F., CO. & 299 10TH AVE. S. W. & WASECA, MN 56093 \\
\hline 80009 & TEKTRONIX, INC. & P 0 box 500 & BEAVERTON, OR 97077 \\
\hline 91637 & DALE ELECTRONICS, INC. & P. O. BOX 609 & COLUMBUS, NE 68601 \\
\hline 95348 & GORDOS CORPORATION & 250 Glenwood avenue & BLOOMFIELD, N.J 07003 \\
\hline
\end{tabular}

Replaceable Electrical Parts-DC 5009

\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Nui \\
\hline A12C1523 & 281-0773-00 & & CAP., FXD, CER DI: \(0.01 \mathrm{UF}, 10 \%\), 100 V & 04222 & 6c70-1C103 \\
\hline A12C1525 & 283-0024-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF},+80-20 \%, 50 \mathrm{~V}\) & 72982 & 8121N08325 \\
\hline A12C1526 & 281-0773-00 & & CAP., FXD, CER DI: 0.01 UF, \(10 \%, 100 \mathrm{~V}\) & 04222 & GC70-1C103 \\
\hline A12C1531 & 281-0770-00 & & CAP., FXD, CER DI: \(0.001 \mathrm{UF}, 20 \%, 100 \mathrm{~V}\) & 72982 & 8035D9AADX \\
\hline A12C1541 & 281-0773-00 & & CAP.,FXD, CER DI:0.01UF, \(10 \%\), 100V & 04222 & 6C70-1C103 \\
\hline A12C1542 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF,20\%,50V & 04222 & SA205E104M \\
\hline A12C1601 & 281-0775-00 & & CAP. FXX , CER DI: \(0.10 \mathrm{~F}, 20 \%\), 50 V & 04222 & SA205E104M \\
\hline A12C1602 & 281-0153-00 & & CAP.,VAR, AIR DI: \(1.7-10 \mathrm{PF}, 250 \mathrm{~V}\) & 74970 & 187-0106-0 \\
\hline & & & (Standard only) & & \\
\hline A12C1603 & 281-0564-00 & & \[
\begin{aligned}
& \text { CAP., FXD, CER DI: } 24 \mathrm{PF}, 5 \%, 500 \mathrm{~V} \\
& \text { (STANDARD ONLY) }
\end{aligned}
\] & 59660 & 301-000C0G \\
\hline A12C1604 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%\), 50 V & 04222 & Sa205E104M \\
\hline A12C1605 & 281-0630-00 & & CAP., FXD, CER DI : \(390 \mathrm{PF}, 5 \%\), 500 V & 72982 & 630000Y5D3 \\
\hline & & & (STANDARD ONLY) & & \\
\hline A12C1611 & 281-0630-00 & & CAP., FXD, CER DI: 390PF, 5\%,500V (STANDARD ONLY) & 72982 & 630000Y5D3 \\
\hline A12C1612 & 281-0773-00 & & CAP., FXD, CER DI: \(0.01 \mathrm{OF}, 10 \%\), 100 V & 04222 & GC70-1C103 \\
\hline A12C1621 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{l}=, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104M \\
\hline A12C1622 & 290-0804-00 & & CAP., FXD , ELCTLT: \(100 \mathrm{~F},+50-10 \%, 25 \mathrm{~V}\) & 55680 & 25ulalov-T \\
\hline A12C1641 & 281-0775-00 & & CAP., FXD , CER DI: \(0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104M \\
\hline A12C1642 & 283-0220-00 & & CAP., FXD, CER DI: \(0.01 \mathrm{UF}, 20 \%\),50V & 72982 & 8121N075x7 \\
\hline A12C1643 & 283-0220-00 & & CAP., FXD, CER DI: \(0.010 \mathrm{~F}, 20 \%\), 50V & 72982 & 8121N075X7 \\
\hline A12CR1121 & 152-0246-00 & & SEMICOND DEVICE:SW, SI, \(40 \mathrm{~V}, 200 \mathrm{MA}\) & 03508 & DE140 \\
\hline A12CR1122 & 152-0246-00 & & SEMICOND DEVICE:SW, SI, 40v, 200MA & 03508 & DE140 \\
\hline A12CR1123 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30v,150MA & 01295 & 1N4152R \\
\hline A12CR1124 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A12CR1131 & 152-0246-00 & & SEMICOND DEVICE:SW, SI, \(40 \mathrm{~V}, 200 \mathrm{MA}\) & 03508 & DE140 \\
\hline A12CRI132 & 152-0246-00 & & SEMICOND DEVICE:SW, SI, 40v, 200MA & 03508 & DE140 \\
\hline A12CR1141 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30v,150MA & 01295 & 1N4152R \\
\hline A12CR1142 & 152-0141-02 & & SEMICOND DEvice: SIlicon, 30v,150MA & 01295 & 1N4152R \\
\hline A12CR1211 & 152-0066-00 & & SEMICOND DEVICE:SILICON,400V,750MA & 14433 & LG4016 \\
\hline A12CR1224 & 150-1036-00 & & LAMP, LED: RED, 3.0V,40MA & 01295 & TIL 209A \\
\hline A12CR1244 & 150-1036-00 & & LAMP, LED: RED, 3.0V,40MA & 01295 & TIL 209A \\
\hline A12CR1401 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30v, 150MA & 01295 & 1N4152R \\
\hline A12CR1411 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A12CR1412 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V, 150 MA & 01295 & 1N4152R \\
\hline A12CR1421 & 152-0066-00 & & SEMICOND DEVICE:SILICON, \(400 \mathrm{~V}, 750 \mathrm{MA}\) & 14433 & LG4016 \\
\hline A12CR1422 & 152-0322-00 & & SEMICOND DEvice: SIlicon, 15v, Hot Carrier & 50434 & 5082-2672 \\
\hline A12CR1442 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30v,150MA & 01295 & 1N4152R \\
\hline A12CR1521 & 152-0269-00 & & SEMICOND DEvice: SILICON, VAR VCAP., \(4 \mathrm{~V}, 33 \mathrm{PF}\) & 04713 & SMV1263 \\
\hline A12CR1541 & 152-0141-02 & & SEMICOND DEvice: SILICON, 30V, 150 MA & 01295 & 1N4152R \\
\hline A12CR1611 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V, 150 MA & 01295 & 1/4452R \\
\hline A12CR1621 & 152-0066-00 & & SEMICOND DEVICE:SILICON, \(400 \mathrm{~V}, 750 \mathrm{MA}\) & 14433 & L.64016 \\
\hline A12CR1641 & 152-0066-00 & & SEMICOND DEVICE:SILICON, 400 V , 750 MA & 14433 & LG4016 \\
\hline A12F1541 & 159-0025-00 & & FUSE, CARTRIDGE: 3AG, \(0.5 \mathrm{~A}, 250 \mathrm{~V}\), FAST-BLOW & 71400 & AGC \(1 / 2\) \\
\hline A12F1542 & 159-0025-00 & & FUSE, CARTRIDGE: 3AG, \(0.5 \mathrm{5a}, 250 \mathrm{~V}\), FAST-BLOW & 71400 & AGC \(1 / 2\) \\
\hline A12F1641 & 159-0015-00 & & FUSE, CARTRIDGE: \(3 \mathrm{AG}, 3 \mathrm{~A}, 250 \mathrm{~V}, 0.65 \mathrm{SEC}\) & 71400 & AGC 3 \\
\hline A12J1010 & 131-1934-00 & & TERM. SET, PIN: \(1 \times 36,0.1 \mathrm{CTR}, 0.9 \mathrm{~L}\) & 22526 & 65539-001 \\
\hline A12J1031 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} X 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1041 & 131-0608-00 & & terminal, Pin: \(0.365 \mathrm{~L} \times 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1301 & 131-0608-00 & & \(\underset{\substack{\text { TERMINAL } \\ \text { (nTv }}}{\text { PIN: } 0.365 ~ L ~ X ~} 0.025 \mathrm{PH}\) BRZ GOLD & 22526 & 47357 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & \[
\begin{gathered}
\mathrm{Mfr} \\
\text { Code }
\end{gathered}
\] & Mfr Part Number \\
\hline A12J1310 & 131-1934-00 & & TERM. SET, PIN: \(1 \times 36,0.1\) CTR, 0.9 L & 22526 & 65539-001 \\
\hline A12J1331 & 131-0608-00 & & TERMINAL, PIN:0.365 L X 0.025 PH BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1341 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} X 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1402 & 131-0608-00 & & TERMINAL,PIN: \(0.365 \mathrm{~L} \times 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1403 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} X 0.025\) PH BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1410 & 131-1934-00 & & TERM. SET, PIN: \(1 \times 36,0.1\) CTR, 0.9 L & 22526 & 65539-001 \\
\hline A12J1411 & 131-0608-00 & & terminal, pin: \(0.365 \mathrm{~L} X 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1420 & 131-1634-00 & & CONTACT ASSY, EL: (31)0.025 SQ X 0.825 L & 22526 & 65311-4 \\
\hline A12J1421 & 131-1634-00 & & CONTACT ASSY, EL: (31)0.025 SQ X 0.825 L & 22526 & 65311-4 \\
\hline A12J1441 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} X 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1442 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} X 0.025 \mathrm{PH}\) BRZ GOLD & 22526 & 47357 \\
\hline A12J1443 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} \times 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1501 & 131-0608-00 & & TERMINAL, PIN: 0.365 L X 0.025 PH BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1511 & 131-0608-00 & & TERMINAL,PIN: \(0.365 \mathrm{~L} X 0.025\) PH BRZ GOLD (QTY 5) & 22526 & 47357 \\
\hline A12J1521 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} X 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline Al2J1522 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} \times 0.025\) PH BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1621 & 131-0608-00 & & terminal, Pin: 0.365 L X 0.025 PH BRZ GOLD (QTY 3) & 22526 & 47357 \\
\hline A12J1622 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} \times 0.025 \mathrm{PH}\) BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12J1623 & 131-0608-00 & & TERMINAL, PIN: \(0.365 \mathrm{~L} X 0.025\) PH BRZ GOLD (QTY 2) & 22526 & 47357 \\
\hline A12K1031 & 148-0128-00 & & RELAY, ARMATURE: 1 FORM X \& 1 FORM Y, 8VDC & 80009 & 148-0128-00 \\
\hline A12K1032 & 148-0128-00 & & RELAY, ARMATURE: 1 FORM \(X \& 1\) FORM Y, 8 VDC & 80009 & 148-0128-00 \\
\hline A12K1033 & 148-0128-00 & & RELAY, ARMATURE: 1 FORM X \& 1 FORM Y, 8 VDC & 80009 & 148-0128-00 \\
\hline A12K1041 & 148-0128-00 & & RELAY, ARMATURE: 1 FORM X \& 1 FORM Y, 8 VDC & 80009 & 148-0128-00 \\
\hline A12K1042 & 148-0128-00 & & RELAY, ARMATURE: 1 FORM X \& 1 FORM Y,8VDC & 80009 & 148-0128-00 \\
\hline A12K1043 & 148-0128-00 & & RELAY, ARMATURE: 1 FORM X \& 1 FORM Y, 8 VDC & 80009 & 148-0128-00 \\
\hline A12K1621 & 148-0076-00 & & RELAY, REED: 1 FORM A, 5v, \(0.25 \mathrm{~A}, 100 \mathrm{~V}\) & 95348 & F81-1447 \\
\hline A12K1622 & 148-0076-00 & & RELAY, REED: 1 FORM A, 5V, \(0.25 \mathrm{~A}, 100 \mathrm{~V}\) & 95348 & F81-1447 \\
\hline A12L1331 & 120-0382-00 & & XFMR, TOROID: 14 TURNS, SINGLE & 80009 & 120-0382-00 \\
\hline A12L1333 & 120-0382-00 & & XFMR, TOROLD: 14 TURNS, SINGLE & 80009 & 120-0382-00 \\
\hline A12L1521 & 108-0643-00 & & COIL, RF: FIXED, 54 NH & 80009 & 108-0643-00 \\
\hline A12Q1101 & 151-0190-00 & & TRANSISTOR: SILICON, NPN & 07263 & 5032677 \\
\hline \({ }^{\text {A1201102 }}\) & 151-0188-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS6868K \\
\hline A12Q1103 & 151-0335-00 & & TRANS ISTOR: SILICON, PNP & 04713 & SJE917 \\
\hline A12Q1121 & 151-1117-00 & & TRANSISTOR:FE DUAL, N-CHANNEL, SI & 80009 & 151-1117-00 \\
\hline A12Q1122 & 151-0427-00 & & TRANSISTOR: SILICON, NPN & 80009 & 151-0427-00 \\
\hline A12Q1141 & 151-1117-00 & & TRANSISTOR:FE DUAL, \({ }^{\text {--Channel, }}\) SI & 80009 & 151-1117-00 \\
\hline A12Q1142 & 151-0427-00 & & TRANSISTOR: SILICON, NPN & 80009 & 151-0427-00 \\
\hline & 151-0367-00 & & TRANSISTOR : SILICON, NPN, SEL FROM 3571 TP & 01295 & SKA6516 \\
\hline A1201222 & 151-0333-00 & & TRANSISTOR: SILICON, NPN, SEL FROM MPS918 & 04713 & SPS1752 \\
\hline A12Q1223 & 151-0367-00 & & TRANSISTOR: SILICON, NPN, SEL FROM 3571 PP & 01295 & SKA6516 \\
\hline A12Q1224 & 151-0333-00 & & TRANSISTOR: SILICON, NPN, SEL FROM MPS918 & 04713 & SPS1752 \\
\hline A12Q1225 & 151~0369-00 & & TRANSISTOR: SILICON, PNP & 01295 & SKA6664 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline A12Q1226 & 151-0369-00 & & TRANSISTOR:SILICON, PNP & 01295 & SKA6664 \\
\hline A12Q1227 & 151-0221-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS246 \\
\hline A12Q1228 & 151-0221-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS 246 \\
\hline Al2Q1229 & 151-0367-00 & & TRANSISTOR: SILICON, NPN, SEL FROM 3571 TP & 01295 & SKA6516 \\
\hline A12Q1231 & 151-0427-00 & & TRANSISTOR: SILICON, NPN & 80009 & 151-0427-00 \\
\hline A12Q1232 & 151-0367-00 & & TRANSISTOR:SILICON, NPN, SEL FROM 3571TP & 01295 & SKA6516 \\
\hline A12Q1233 & 151-0367-00 & & TRANSISTOR:SLLICON, NPN, SEL FROM 3571TP & 01295 & SKA6516 \\
\hline A12Q1234 & 151-0333-00 & & TRANSISTOR:SILICON, NPN, SEL FROM MPS918 & 04713 & SPS1752 \\
\hline A12Q1235 & 151-0369-00 & & TRANSISTOR: SILICON, PNP & 01295 & SKA6664 \\
\hline A12Q1241 & 151-0367-00 & & TRANSISTOR:SILICON, NPN, SEL FROM 3571TP & 01295 & SKA6516 \\
\hline A1201242 & 151-0333-00 & & TRANSISTOR: SILICON, NPN, SEL FROM MPS918 & 04713 & SPS1752 \\
\hline Al 2Q1243 & 151-0369-00 & & TRANS ISTOR: SILICON, PNP & 01295 & SKA6664 \\
\hline A12Q1244 & 151-0221-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS246 \\
\hline A12Q1245 & 151-0221-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS246 \\
\hline A12Q1246 & 151-0427-00 & & TRANSISTOR: SILICON, NPN & 80009 & 151-0427-00 \\
\hline Al 2 Q1247 & 151-0367-00 & & TRANSISTOR: SILICON, NPN, SEL FROM 3571TP & 01295 & SKA6516 \\
\hline A12Q1248 & 151-0367-00 & & TRANSISTOR:SILICON,NPN, SEL FROM 3571TP & 01295 & SKA6516 \\
\hline A12Q1311 & 151-0188-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS6868K \\
\hline Al2Q1312 & 151-0188-00 & & TRANSISTOR:SILICON, PNP & 04713 & SPS6868K \\
\hline Al2Q1331 & 151-0220-00 & & TRANSISTOR: SILICON, PNP & 07263 & 5036228 \\
\hline Al2Q1332 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & 5036228 \\
\hline A12Q1333 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & S036228 \\
\hline Al2Q1334 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & S036228 \\
\hline Al2Q1341 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & S036228 \\
\hline A12Q1342 & 151-0220-00 & & TRANSISTOR: SILICON, PNP & 07263 & 5036228 \\
\hline A12Q1343 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & S036228 \\
\hline A12Q1344 & 151-0190-00 & & TRANSISTOR:SILICON,NPN & 07263 & S032677 \\
\hline A12Q1401 & 151-0190-00 & & TRANSISTOR: SILICON, NPN & 07263 & S032677 \\
\hline A12Q1411 & 151-0190-00 & & TRANSISTOR: SILICON, NPN & 07263 & S032677 \\
\hline A12Q1412 & 151-0190-00 & & TRANSISTOR: SILICON, NPN & 07263 & S03.2677 \\
\hline A12Q1421 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & 5036228 \\
\hline A12Q1422 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & S036228 \\
\hline A12Q1423 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & S036228 \\
\hline A12Q1433 & 151-0221-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS246 \\
\hline A12Q1441 & 151-0221-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS 246 \\
\hline A12Q1442 & 151-0221-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS 246 \\
\hline A12Q1443 & 151-0432-00 & & TRANSISTOR:SILICON,NPN & 80009 & 151-0432-00 \\
\hline A12Q1444 & 151-0453-00 & & TRANSISTOR:SILICON, PNP & 80009 & 151-0453-00 \\
\hline A12Q1445 & 151-0453-00 & & TRANSISTOR: SILICON, PNP & 80009 & 151-0453-00 \\
\hline A12Q1501 & 151-0188-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS6868K \\
\hline A12Q1502 & 151-0190-00 & & TRANSISTOR:SILICON,NPN & 07263 & S032677 \\
\hline Al2Q1531 & 151-0302-00 & & TRANSISTOR:SILICON, NPN & 07263 & S038487 \\
\hline Al2Q1611 & 151-0190-00 & & TRANSISTOR:SILICON,NPN (STANDARD ONLY) & 07263 & S032677 \\
\hline A12Q1612 & 151-0190-00 & & TRANSISTOR:SILICON, NPN & 07263 & S032677 \\
\hline A12R1022 & 315-0102-00 & & RES., FXD, CMPSN: 1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1025 \\
\hline A12R1023 & 321-0891-00 & & RES., FXD, FILM:800K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G80002F \\
\hline Al2R1024 & 317-0910-00 & & RES., FXD, CMPSN:91 ОНM, 5\%,0.125W & 01121 & BB9105 \\
\hline A12R1030 & 315-0200-00 & & RES. , FXD, CMPSN: 20 OHM, 5\%,0.25W & 01121 & CB2005 \\
\hline A12R1031 & 315-0510-00 & & RES., FXD, CMPSN: 51 OHM,5\%,0.25W & 01121 & CB5105 \\
\hline A12R1032 & 317-0510-00 & & RES., FXD, CMPSN: 51 OHM, 5\%,0.125W & 01121 & BB5105 \\
\hline A12R1039 & 317-0910-00 & & RES., FXD, CMPSN: 91 OHM , 5\%,0.125W & 01121 & BB9105 \\
\hline A12R1040 & 315-0200-00 & & RES. , FXD, CMPSN: 20 OHM, 5\%, 0.25W & 01121 & CB2005 \\
\hline Al2R1041 & 315-0102-00 & & RES. , FXD, CMPSN: 1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1025 \\
\hline A12R1042 & 315-0510-00 & & RES. , FXD, CMPSN: 51 OHM, 5\%,0.25W & 01121 & CB5105 \\
\hline A12R1043 & 321-0891-00 & & RES.,FXD,FILM:800K OHM, 1\%,0.125W & 91637 & MFF1816G80002F \\
\hline A12R1045 & 317-0510-00 & & RES., FXD, CMPSN: 51 OHM, 5\%,0.125W & 01121 & BB5105 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Numb \\
\hline A12R1102 & 311-1236-00 & & RES., VAR, NONWIR: 250 OHM, \(10 \%, 0.50 \mathrm{~W}\) & 73138 & 72-22-0 \\
\hline A12R1103 & 315-0431-00 & & RES., FXD, CMPSN: 430 OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB4315 \\
\hline A12R1104 & 315-0301-00 & & RES. , FXD, CMPSN: 300 OHM, 5\%,0.25 H & 01121 & CB3015 \\
\hline A12R1105 & 315-0121-00 & & RES., FXD, CMPSN: 120 OHM, 5\%,0.25W & 01121 & CB1215 \\
\hline A12R1106 & 315-0512-00 & & RES., FXD, CMPSN: \(5.1 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5125 \\
\hline A12R1121 & 321-0481-00 & & RES.,FXD,FILM:1M OHM, 1\%,0.125W & 24546 & NA4D1004F \\
\hline A12R1122 & 315-0154-00 & & RES.,FXD, CMPSN: 150 K OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1545 \\
\hline A12R1123 & 315-0680-00 & & RES., FXD, CMPSN: 68 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB6805 \\
\hline A12R1124 & 315-0820-00 & & RES., FXD, CMPSN: 82 OHM, 5\%,0.25W & 01121 & CB8205 \\
\hline A12R1125 & 315-0820-00 & & RES., FXD, CMPSN: 82 OHM, 5\%, 0.25 W & 01121 & CB8205 \\
\hline Al2R1126 & 315-0513-00 & & RES.,FXD, CMPSN: 51 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5135 \\
\hline A12R1127 & 315-0561-00 & & RES., FXD , CMPSN: 560 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5615 \\
\hline A12R1131 & 321-0618-00 & & RES.,FXD,FILM:250K OHM, 1\%,0.125W & 91637 & MFF1816G2500: \\
\hline Al2R1132 & 315-0751-00 & & RES., FXD, CMPSN: 750 OHM, 5\%,0.25W & 01121 & CB7515 \\
\hline A12R1133 & 315-0162-00 & & RES., FXD, CMPSN: 1.6 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1625 \\
\hline A12R1134 & 315-0301-00 & & RES. , FXD, CMPSN: 300 OHM , 5\%,0.25W & 01121 & CB3015 \\
\hline A12R1135 & 315-0101-00 & & RES. , FXD, CMPSN: 100 OHM, 5\%,0.25W & 01121 & CB1015 \\
\hline A12RII36 & 315-0201-00 & & RES. , FXD, CMPSN: 200 OHM, 5\%,0.25W & 01121 & CB2015 \\
\hline A12R1137 & 315-0513-00 & & RES., FXD, CMPSN: 51 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5135 \\
\hline A12R1139 & 315-0820-00 & & RES., FXD, CMPSN: 82 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB8205 \\
\hline A12R1140 & 315-0101-00 & & RES., FXD, CMPSN: 100 OHM, 5\%, 0.25W & 01121 & CB1015 \\
\hline Al 2R1141 & 321-0618-00 & & RES.,FXD,FILM: 250 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G2500: \\
\hline A12R1142 & 321-0481-00 & & RES.,FXD,FILM: 1 M OHM, \(1 \%, 0.125 \mathrm{~W}\) & 24546 & NA4D1004F \\
\hline A12R1143 & 315-0154-00 & & RES., FXD, CMPSN: 150 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1545 \\
\hline A12R1144 & 315-0680-00 & & RES. , FXD, CMPSN: 68 OHM, 5\%,0.25W & 01121 & CB6805 \\
\hline A12R1145 & 315-0820-00 & & RES. , FXD, CMPSN: 82 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB8205 \\
\hline A12R1146 & 315-0301-00 & & RES., FXD, CMPSN: 300 OHM, 5\%,0.25W & 01121 & CB3015 \\
\hline A12R1147 & 315-0561-00 & & RES.,FXD, CMPSN: 560 OHM, 5\%,0.25W & 01121 & CB5615 \\
\hline A12R1148 & 315-0751-00 & & RES., FXD, CMPSN: 750 OHM, 5\%,0.25W & 01121 & CB7515 \\
\hline A12R1149 & 315-0162-00 & & RES.,FXD, CMPSN: 1.6 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1625 \\
\hline A12R1201 & 321-0210-00 & & RES., FXD, FILM: 1.5 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G1500 \\
\hline Al2R1202 & 321-0214-00 & & RES., FXD, FILM: 1.65 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G1650 \\
\hline Al2R1203 & 321-0242-00 & & RES.,FXD, FILM: 3.24 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G3240 \\
\hline Al2R1211 & 311-1236-00 & & RES., VAR, NONWIR: 250 OHM, 10\%, 0.50W & 73138 & 72-22-0 \\
\hline A12R1212 & 321-0210-00 & & RES.,FXD,FILM:1.5K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G15006 \\
\hline A12R1213 & 321-0214-00 & & RES.,FXD, FILM: 1.65 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G1650 \\
\hline A12R1214 & 321-0242-00 & & RES.,FXD, FILM: 3.24K OHM, 1\%,0.125W & 91637 & MFF1816G3240(\\
\hline A12R1220 & 315-0121-00 & & RES., FXD, CMPSN: 120 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1215 \\
\hline A12R1221. & 315-0130-00 & & RES.,FXD, CMPSN: 13 OHM, 5\%,0.25W & 01121 & CB1305 \\
\hline A12R1222 & 315-0130-00 & & RES., FXD, CMPSN: 13 OHM, 5\%,0.25W & 01121 & CB1305 \\
\hline Al2R1223 & 315-0200~00 & & RES. , FXD, CMPSN: 20 OHM, 5\%, 0.25 W & 01121 & CB2005 \\
\hline A12R1224 & 315-0200-00 & & RES., FXD, CMPSN: 20 OHM, 5\%,0.25W & 01121 & CB2005 \\
\hline A12R1225 & 315-0200-00 & & RES. , FXD, CMPSN: 20 OHM, 5\%,0.25W & 01121 & CB2005 \\
\hline A12R1226 & 315-0111-00 & & RES.,FXD, CMPSN: 110 OHM, 5\%,0.25W & 01121 & CB1115 \\
\hline A12R1227 & 315-0681-00 & & RES., FXD, CMPSN: 680 ОНM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB6815 \\
\hline A12R1228 & 315-0680-00 & & RES., FXD, CMPSN: 68 OHM, 5\%, 0.25 W & 01121 & CB6805 \\
\hline A12R1229 & 315-0680-00 & & RES. , FXD, CMPSN: 68 OHM, 5\%,0.25W & 01121 & CB6805 \\
\hline A12R1231 & 315-0101-00 & & RES.,FXD, CMPSN: 100 OHM, 5\%, 0.25W & 01121 & CB1015 \\
\hline A12R1232 & 315-0302-00 & & RES., FXD, CMPSN: 3K OHM, 5\%, 0.25 W & 01121 & CB3025 \\
\hline A12R1233 & 315-0821-00 & & RES., FXD, CMPSN: 820 OHM, 5\%, 0.25 W & 01121 & CB8215 \\
\hline A12R1234 & 315-0510-00 & & RES., FXD, CMPSN: 51 OHM,5\%,0.25W & 01121 & CB5105 \\
\hline A12R1235 & 315-0131-00 & & RES. ,FXD, CMPSN: 130 OHM, 5\%,0.25W & 01121 & CB1315 \\
\hline Al2R1236 & 315-0101-00 & & RES. , FXD, CMPSN: 100 OHM \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1015 \\
\hline A12R1237 & 315-0680-00 & & RES., FXD, CMPSN: 68 OHM, 5\%,0.25W & 01121 & CB6805 \\
\hline A12R1238 & 315-0680-00 & & RES., FXD, CMPSN: 68 OHM, 5\%, \(0,25 \mathrm{~W}\) & 01121 & CB6805 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mir Part Nu \\
\hline A19R1241 & 315-0201-00 & & RES., FXD, CMPSN: 200 OHM, 5\%, 0.25W & 01121 & CB2015 \\
\hline A12R1242 & 315-0101-00 & & RES. , FXD, CMPSN: 100 OHM, 5\%, 0.25W & 01121 & CB1015 \\
\hline A) 2R1243 & 315-0200-00 & & RES.,FXD, CMPSN: 20 OHM, 5\%,0.25W & 01121 & CB2005 \\
\hline A12R1244 & 315-0200-00 & & RES., FXD, CMPSN: 20 OHM, 5\%, 0.25W & 01121 & CB2005 \\
\hline A)2R1245 & 315-0200-00 & & RES., FXD, CMPSN: 20 OHM, 5\%,0.25W & 01121 & CB2005 \\
\hline Al.2R1246 & 315-0111-00 & & RES., FXD, CMPSN: 110 OHM , 5\%, 0.25 W & 01121 & CB1115 \\
\hline A12R1247 & 315-0681-00 & & RES., FXD, CMPSN: 680 OHM , 5\%,0.25W & 01121 & CB6815 \\
\hline AI2R1248 & 315-0302-00 & & RES., FXD, CMPSN: 3K OHM , \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3025 \\
\hline Al 2R1249 & 315-0130-00 & & RES., FXD, CMPSN: 13 OHM, 5\%, 0.25W & 01121 & CB1305 \\
\hline A12R1301 & 311-1248-00 & & RES., VAR, NONWIR: 500 OHM, \(10 \%, 0.50 \mathrm{~W}\) & 73138 & 72-23-0 \\
\hline Al2R1302 & 315-0332-00 & & RES., FXD, CMPSN: 3.3 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & св. 3325 \\
\hline Al2R1303 & 315~0752-00 & & RES., FXD, CMPSN: 7.5 K OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB7525 \\
\hline Al2R1304 & 321-0238-00 & & RES.,FXD, FILM: 2.94 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G29 \\
\hline A12R1305 & 321-0158-00 & & RES.,FXD, FILM: 432 OHM, 1\%,0.125W & 91637 & MFF1816G43 \\
\hline A12R1306 & 315-0752-00 & & RES.,FXD, CMPSN: 7.5 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB7525 \\
\hline Al2R1307 & 321-0269-00 & & RES.,FXD, FILM:6.19K OHM, 1\%,0.125W & 91637 & MFF1816G61 \\
\hline A12R1308 & 315-0331-00 & & RES., FXD, CMPSN: 330 OHM , 5\%,0.25W & 01121 & CB3315 \\
\hline A12R1309 & 315-0332-00 & & RES., FXD, CMPSN: 3.3K OHM, 5\%, 0.25 W & 01121 & CB3325 \\
\hline A 12 R 1311 & 321-0481-00 & & RES., FXD, FILM: 1 M OHM, \(1 \%, 0.125 \mathrm{~W}\) & 24546 & NA4D1004F \\
\hline A12R1312 & 321-0281-00 & & RES.,FXD, FILM 8.25 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G82 \\
\hline A12R1313 & 315-0103-00 & & RES.,FXD, CMPSN: 10 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline Al2R1314 & 315-0103-00 & & RES., FXD, CMPSN: 10 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A12R1315 & 315-0103-00 & & RES., FXD, CMPSN: 10K OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline Al 2R1316 & 315-0103-00 & & RES., FXD, CMPSN: 10K OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A12R1317 & 311-1245-00 & & RES., VAR, NONWIR: 10 K OHM, \(10 \%, 0.50 \mathrm{~W}\) & 73138 & 72-28-0 \\
\hline Al2R1318 & 321-0481-00 & & RES.,FXD,FILM: 1 M OHM, \(1 \%, 0.125 \mathrm{~W}\) & 24546 & NA4D1004F \\
\hline Al 2 R1319 & 321-0281-00 & & RES.,FXD, FILM:8.25K OHM, 1\%,0.125W & 91637 & MFF1816G82 \\
\hline Al2R1321 & 315-0103-00 & & RES., FXD, CMPSN: 10K OHM , \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A12R1322 & 315-0103-00 & & RES. , FXD, CMPSN: 10 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A12R1323 & 311-1245-00 & & RES., VAR, NONWIR: 10 K OHM, \(10 \%, 0.50 \mathrm{~W}\) & 73138 & 72-28 \({ }^{-0}\) \\
\hline Al2R1324 & 321-0481-00 & & RES., FXD, FILM:1M OHM, \(1 \%, 0.125 \mathrm{~W}\) & 24546 & NA4D1004F \\
\hline A12R1325 & 321-0281-00 & & RES., FXD, FILM: 8.25K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G82 \\
\hline Al2R1326 & 321-0481-00 & & RES., FXD, FILM: 1 M OHM, \(1 \%, 0.125 \mathrm{~W}\) & 24546 & NA4D1004F \\
\hline A12R1327 & 321-0281-00 & & RES., FXD, FILM : 8. 25 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G82 \\
\hline A12R1328 & 315-0510-00 & & RES., FXD, CMPSN: 51 OHM, 5\%,0.25W & 01121 & CB5105 \\
\hline A12R1329 & 315-0101-00 & & RES., FXD, CMPSN: 100 OHM, 5\%,0.25W & 01121 & CB1015 \\
\hline A12R1332 & 315-0131-00 & & RES. , FXD, CMPSN: 130 OHM, 5\%,0.25W & 01121 & CB1315 \\
\hline A12R1333 & 315-0122-00 & & RES., FXD, CMPSN: 1.2 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1225 \\
\hline Al2R1335 & 307-0707-00 & & RES., NTWK, FXD FI: \(4,4.7 \mathrm{~K}\) OHM, \(2 \%, 0.2 \mathrm{~W}\) & 01121 & 208B472 \\
\hline Al2R1338 & 315-0511-00 & & RES., FXD, CMPSN: 510 OHM, 5\%,0.25W & 01121 & CB5115 \\
\hline A12R1341 & 315-0510-00 & & RES., FXD, CMPSN:51 OHM, 5\%,0.25W & 01121 & CB5105 \\
\hline Al2R1342 & 315-0131-00 & & RES., FXD, CMPSN: 130 OHM, 5\%,0.25W & 01121 & CB1315 \\
\hline A12R1343 & 315-0101-00 & & RES., FXD, CMPSN: 100 OHM, 5\%,0.25W & 01121 & CB1015 \\
\hline A12R1344 & 315-0101-00 & & RES. , FXD, CMPSN: 100 OHM, 5\%, 0.25 W & 01121 & CB1015 \\
\hline A12R1345 & 315-0122-00 & & RES.,FXD, CMPSN: 1.2 K OHM, 5\%,0.25W & 01121 & CB1225 \\
\hline A12R1346 & 315-0510-00 & & RES., FXD, CMPSN: 51 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5105 \\
\hline Al2R1347 & 315-0511-00 & & RES. , FXD, CMPSN: 510 OHM, 5\%,0.25W & 01121 & CE5115 \\
\hline Al2R1348 & 315-0131-00 & & RES , , FXD , CMPSN: 130 OHM , 5\% , 0.25W & 01121 & CB1315 \\
\hline A12R1349 & 315-0121-00 & & RES. , FXD, CMPSN: 120 OHM, 5\%,0.25W & 01121 & CB1215 \\
\hline A12R1401 & 315-0512-00 & & RES.,FXD, CMPSN:5.1K OHM, 5\%,0.25W & 01121 & CB5125 \\
\hline Al2R1402 & 315-0512-00 & & RES., FXD, CMPSN: 5.1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5125 \\
\hline A12R1403 & 315-0112-00 & & RES.,FXD, CMPSN: 1.1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1125 \\
\hline Al2R1404 & 315-0181-00 & & RES., FXD, CMPSN: 180 OHM, 5\%, 0.25 W & 01121 & CB1815 \\
\hline Al2R1411 & 315-0512-00 & & RES., FXD, CMPSN:5.1K OHM, 5\%,0.25W & 01121 & CB5125 \\
\hline A12R1412 & 315-0511~00 & & RES. , FXD, CMPSN: 510 OHM, 5\%,0.25W & 01121 & CB5115 \\
\hline A12R1413 & 315-0122-00 & & RES.,FXD,CMPSN: 1.2 K OHM, 5\%,0.25W & 01121 & CB1225 \\
\hline Al2R1414 & 315-0511-00 & & RES. . FXD. CMPSN: 510 OHM. 5\%.0.25W & 01121 & CB5115 \\
\hline
\end{tabular}

Replaceable Electrical Parts-DC 5009

\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & \begin{tabular}{l}
Mfr \\
Code
\end{tabular} & Mir Part Number \\
\hline A12R1611 & 315-0102-00 & & RES.,FXD,CMPSN: 1K OHM,5\%,0.25W (STANDARD ONLY) & 01121 & CB1025 \\
\hline Al2R1612 & 315-0511-00 & & RES, , FXD, CMPSN: 510 OHM, 5\%, 0.25W & 01121 & CB5115 \\
\hline Al2R1613 & 315-0102-00 & & RES., FXD, CMPSN: 1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1025 \\
\hline A12S1010 & 263-0033-01 & & SWITCH PB ASSY: 1 MOMENTARY, 7.5MM & 80009 & 263-0033-01 \\
\hline A12S1011 & 263-0033-01 & & SWITCH Pb ASSY: 1 MOMENTARY, 7.5MM & 80009 & 263-0033-01 \\
\hline A12S1012 & 263-0033-01 & & SWITCH Pb ASSY: 1 MOMENTARY, 7.5 MM & 80009 & 263-0033-01 \\
\hline Al2TP1341 & 214-0579-00 & & TERM, TEST POINT:BRS CD PL & 80009 & 214-0579-00 \\
\hline A12TP1410 & 214-0579-00 & & TERM, TEST POINT:BRS CD PL & 80009 & 214-0579~00 \\
\hline A12TP1411 & 214-0579-00 & & TERM, TEST POINT:BRS CD PL & 80009 & 214-0579-00 \\
\hline A12TP1431 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline A12TP1510 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline Al2TP1520 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline A12TP1621 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline A12TP1631 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline A12TP1632 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline A120500 & 156-1263-00 & & MICROCIRCUIT, LI: VOLTAGE REGULATOR & 27014 & LM341P-5.0TB \\
\hline Al201101 & 156-0796-00 & & MICROCIRCUIT, DI: 8 STG SHF \& STORE BUS RGTR & 80009 & 156-0796-00 \\
\hline A1201110 & 156-1245-00 & & MICROCIRCUIT, LI: 7 XSTR, HV/HIGH CUR & 04713 & MC1413FDS \\
\hline Al201111 & 156-0796-00 & & microcircuit, di: 8 STG SHF \& Store bus rgtr & 80009 & 156-0796-00 \\
\hline A1201112 & 156-1245-00 & & MICROCIRCUIT, LI: 7 XSTR, HV/HIGH CUR & 04713 & MCl413PDS \\
\hline Al2U1201 & 156-1255-00 & & MICROCIRCUIT,LI:D/A CONVERTER & 04713 & DAC-08HQ \\
\hline Al2U1202 & 156-0796-00 & & microcircuit, di: 8 STG ShF \& STORE BUS RGTR & 80009 & 156-0796-00 \\
\hline A1201211 & 156-1255-00 & & MICROCIRCUIT,LI:D/A CONVERTER & 04713 & DAC-08HQ \\
\hline A1201212 & 156-0796-00 & & MICROCIRCUIT, DI: 8 STG SHF \& STORE BUS RGTR & 80009 & 156-0796-00 \\
\hline A1201311 & 156-0644-00 & & MICROCIRCUIT, DI: QUAD BILATERAL SWITCH & 80009 & 156-0644-00 \\
\hline A1201321 & 156-1200-00 & & MICROCIRCUIT, LI: OPERATIONAL AMPL & 01295 & TL074CN \\
\hline A1201322 & 156-0494-00 & & MICROCIRCUIT, DI: hex Inverter/buFFer & 80009 & 156-0494-00 \\
\hline Al2U1331 & 156-0369-00 & & MICROCIRCUIT, DI: TRIPLE LINE RECEIVER & 80009 & 156-0369-00 \\
\hline A12U1332 & 156-0182-00 & & MICROCIRCUIT, DI: TRIPLE 2-3-2 INPUT GATE & 80009 & 156-0182-00 \\
\hline Al2U1401 & 156-1191-00 & & MICROCIRCUIT, LI: DUAL BI-FET OP-AMPL, 8 DIP & 01295 & TL072ACP \\
\hline A1201411 & 156-0796-00 & & Microcircuit, di: 8 STG ShF \& Store bus rgtr & 80009 & 156-0796-00 \\
\hline A1201421 & 156-0880-00 & & MICROCIRCUIT, di:dual d master slave ff & 80009 & 156-0880-00 \\
\hline A1201431 & 156-0205-00 & & microcircuir, di: quad 2-INPUT NOR Gate & 04713 & MC10102 (P OR \(\mathrm{t}_{4}\)) \\
\hline A12U1433 & 156-1263-00 & & Microcircuit, li: Voltage regulator & 27014 & LM341P-5.0TB \\
\hline Al2U1501 & 156-1126-00 & & MICROCIRCUIT, LI : VOLTAGE COMPARATOR & 51984 & UPC311C \\
\hline A1201502 & 156-1433-00 & & microcircuit, di: Noise source & 27014 & MM5837N \\
\hline A12U1521 & 156-0158-00 & & MICROCIRCUIT, LI: DUAL OPERATIONAL AMPLIFIER & 18324 & MC1458N \\
\hline A1201522 & 156-0124-00 & & MICROCIRCUIT, DI: SGL FREQ/PHASE DETECTOR & 80009 & 156-0124-00 \\
\hline A12U1523 & 156-0182-00 & & microcircuit, di: Triple 2-3-2 input gate & 80009 & 156-0182-00 \\
\hline A1201524 & 156-1248-00 & & MICROCIRCUIT, DI: PRESCALER/DIVIDE BY 100 & 80009 & 156-1248-00 \\
\hline A12U1531 & 156-0071-00 & & microcircuit, li: voltage regulator & 04713 & MC1723CL \\
\hline Al2U1601 & 156-1161-00 & & MICROCIRCUIT,LI: VOLTAGE REGULATOR (OPTION OL ONLY) & 27014 & LM317T \\
\hline A12U1611 & 156-0079-00 & & MICROCIRCUIT, DI: DECADE COUNTER,TTL & 80009 & 156-0079-00 \\
\hline Al2U1641 & 156-0285-02 & & MICROCIRCUIT, LI: VOLTAGE REGULATOR & 27014 & LM340T-12 \\
\hline Al2VR1301 & 152-0317-00 & & SEMICOND DEVICE:ZENER,0.25W,6.2V,5\% & 04713 & SZG20012 \\
\hline Al2VR1302 & 152-0647-00 & & SEMICOND DEVICE:ZENER, \(0.4 \mathrm{~W}, 6.8 \mathrm{~V}, 5 \%\) & 04713 & SZg35014K3 \\
\hline A12VR1321 & 152-0278-00 & & SEMICOND DEVICE:ZENER, \(0.4 \mathrm{~W}, 3 \mathrm{~V}, 5 \mathrm{~F}\) & 04713 & SZG35009K20 \\
\hline Al2VR1341 & 152-0278-00 & & SEMICOND DEVICE:ZENER, \(0.4 \mathrm{~W}, 3 \mathrm{~V}, 5 \%\) & 04713 & SZG35009K20 \\
\hline A12W1220 & 131-0566-00 & & BUS CONDUCTOR: DUMMY RES, \(2.375,22\) AWG & 55210 & L-2007-1 \\
\hline Al2W1230 & 131-0566-00 & & BUS CONDUCTOR: DUMMY RES, 2.375,22 AWG & 55210 & L-2007-1 \\
\hline A12Y1531 & 119-0894-01 & & \begin{tabular}{l}
OSCILLATOR, RF: \(10 \mathrm{MHZ}, 18 \mathrm{~V}\) \\
(OPTION 01 ONLY)
\end{tabular} & 80009 & 119-0894-01 \\
\hline Al2Y1601 & 158-0129-00 & & XTAL UNXT, QTZ: \(10 \mathrm{MHZ}, 0.001 \%\), PARALLEL (STANDARD ONLY) & 33096 & PB1109 \\
\hline
\end{tabular}

\section*{Replaceable Electrical Parts-DC 5009}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mir Part Numbe \\
\hline A14 & 670-6797-00 & & CKT BOARD ASSY:GPIB & 80009 & 670-6797-00 \\
\hline A14C1001 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, 20\%,50V & 04222 & SA205E104MAA \\
\hline A14C1002 & 281-0775-00 & & CAP., FRD, CER DI: 0.1 l , \(20 \%\), 50 V & 04222 & Sa205E104Mas \\
\hline A14C110 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%\), 50V & 04222 & Sa205E104MAA \\
\hline A14C1201 & 281-0.715-00 & & CAP., FXD, CER DL: \(0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104MAA \\
\hline A14C1202 & 281-0775-00 & & CAP., FXD, CER DI: 0.1 l , \(20 \%\), 50 V & 04222 & SA205E104MAA \\
\hline A14C1210 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, 20\%,50v & 04222 & SA205E104MAA \\
\hline A14C1301 & 281-0775-00 & & CAP., FXD, CER Di:0.1UF, \(20 \%\), 50 V & 04222 & SA205E104MAA \\
\hline A14C1302 & 281-0811-00 & & CAP., FXD, CER DI:10PF, \(10 \%\), 100V & 72982 & 8035D2AADC1G1 \\
\hline A14C1310 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%\), 50V & 04222 & SA205E104MAA \\
\hline A14C1311 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, \(20 \%\), 50 V & 04222 & SA205E104MAA \\
\hline A14Q1101 & 151-0190-00 & & TRANSISTOR: SILICON, NPN & 07263 & S032677 \\
\hline A14R1101 & 315-0103-00 & & RES., FXD, CMPSN: 10K OHM, 5\%,0.25 & 01121 & CB1035 \\
\hline A14R1210 & 307-0597-00 & & RES NTWK, FXD, Fi: \(7,6.8 \mathrm{~K}\) 0HM, \(2 \%, 1.0 \mathrm{~W}\) & 01121 & 208A682 \\
\hline A14R1301 & 315-0303-00 & & RES., FXD , CMPSN: 30 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3035 \\
\hline A14S1210 & 260-1589-00 & & SWITCH, PUSH: (6)SPST, 0.1A, 5V & 00779 & 435166-4 \\
\hline A14U1001 & 156-1414*00 & & microcircuit, di: OCTAL GPib XCVR data bus & 01295 & SN75160 \\
\hline A14U1002 & 156-1415-00 & & microctrcuit, di:OCtal grib xcve mig bus & 01295 & SN75161 \\
\hline A1401101 & 156-1444-00 & & microcircuit, di:grib adapter & 01295 & TMS9914 (N OR \\
\hline A14U1102 & 160-1091-00 & & MICROCIRCUIT, DI:4096 X 8 MROM, , PRGM & 55576 & SYP2333 \\
\hline A14U1201 & 160-1092-00 & & MICROCIRCUIT, DI: \(4096 \times 8\) MROM, PRGM & 55576 & SYP2333 \\
\hline A14U1210 & 156-1484-00 & & microcircuit, di: \(256 \times 8\) SCRM & 000 ID & 35392 C \\
\hline A14U1301 & 156-1425-00 & & MICROCIRCUIT, DI:MICROPORCESSOR, 8 BIT & 55576 & SYP6502 \\
\hline A14U1310 & 156-0649-00 & & microcircuit,di; 3 state hex. non invt bfr & 80009 & 156-0649-00 \\
\hline A1401311 & 156-0569-00 & & MICROCIRCUIT, DI: BCD COUNTER & 27014 & DM74LS190 \\
\hline A14U1312 & 156-0382-00 & & microcircuit, di: Quad 2-input nand gate & 01295 & SN74LS00(N OR \\
\hline A14U1313 & 156-0382-00 & & microcircuit, di:quad 2-input nand gate & 01295 & SN74LS00(N O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component No. & Tektronix Part No. \\
\hline A16 & 670-6855-00 \\
\hline Al6C1001 & 281-0773-00 \\
\hline A16C1002 & 281-0775-00 \\
\hline A \(16 \mathrm{Cl101}\) & 281-0775-00 \\
\hline Al6C1102 & 281-0775-00 \\
\hline A16C1111 & 281-0775-00 \\
\hline A 16C1201 & 281-0775-00 \\
\hline A16Cl 202 & 281-0757-00 \\
\hline A16Cl211 & 281-0775-00 \\
\hline A16C1221 & 281-0775-00 \\
\hline A16C1231 & 281-0775-00 \\
\hline A16C1232 & 281-0773-00 \\
\hline A16C1233 & 290-0535-00 \\
\hline A16C1301 & 281-0775-00 \\
\hline A16C1311 & 281-0775-00 \\
\hline A16C1331 & 281-0775-00 \\
\hline A16C140x & 281-0775-00 \\
\hline A16C1402 & 290-0755-00 \\
\hline A16C1403 & 290-0755-00 \\
\hline A16C1411 & 281-0775-00 \\
\hline A16C1412 & 281-0775-00 \\
\hline A16C1420 & 281-0775-00 \\
\hline A16C1421 & 281-0775-00 \\
\hline A16C1422 & 281-0775-00 \\
\hline A16C1431 & 281-0775-00 \\
\hline Al6C150: & 281-0775-00 \\
\hline Al6CR1201 & 152-0141-02 \\
\hline A16CRI 22.1 & 152-0071-00 \\
\hline Al6CR1222 & 152-0141-02 \\
\hline Al6CR1431 & 152-0141-02 \\
\hline A16CR1432 & 152-0141-02 \\
\hline A16CR1433 & 152-0141-02 \\
\hline A16CR1501 & 152-0141-02 \\
\hline Al6CR1502 & 152-0141-02 \\
\hline A16CR1503 & 152-0141-02 \\
\hline A16CR1521 & 152-0141-02 \\
\hline A16CR1522 & 152-0141-02 \\
\hline A16CR1523 & 152-0141-02 \\
\hline A16CR1524 & 152-0141-02 \\
\hline A16CR1531 & 152-0141-02 \\
\hline A16CR1532 & 152-0141-02 \\
\hline A16.11210 & 131-1934-00 \\
\hline A16J1211 & 131-1934-00 \\
\hline A16J1331 & 131-1857-00 \\
\hline Al6J1411 & 131-1857-00 \\
\hline A16J1412 & 131-1857-00 \\
\hline A16J1413 & 131-1857-00 \\
\hline A16J1431 & 131-1857-00 \\
\hline A16L1401 & 108-0422-00 \\
\hline A16Q1001 & 151-0342-00 \\
\hline A16Q1002 & 151-0341-00 \\
\hline A16Q1003 & 151-0462-00 \\
\hline A16Q1201 & 151-0188-00 \\
\hline A16Q1211 & 151-0220-00 \\
\hline A16QI212 & 151-0220-00 \\
\hline A16Q1213 & 151-0220-00 \\
\hline Al601991 & 151-n90n-nn \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mir Part Nı \\
\hline A16 & 670-6855-00 & & CKT BOARD ASSY: DIGITAL & 80009 & 670-6855-- \\
\hline Al6C1001 & 281-0773-00 & & CAP., FXD, CER DI:0.01UF, \(10 \%, 100 \mathrm{~V}\) & 04222 & GC70-1C10 \\
\hline A16C1002 & 281-0775-00 & & CAP.,FXD, CER DY:0.1UF, 20\%,50V & 04222 & SA205E104 \\
\hline Al6C1101 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, \(20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104 \\
\hline Al6Cl102 & 281-0775-00 & & CAP., FXD, CER DI: 0.1 l & 04222 & SA205E104 \\
\hline A16CI111 & 281-0775-00 & & CAP., FXD, CER DI: 0.1 l , \(20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104 \\
\hline Al6C1201 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, 20\%, 50V & 04222 & SA205E104 \\
\hline A16Cl 202 & 281-0757-00 & & CAP., FXD, CER DI: \(10 \mathrm{PF}, 20 \%, 100 \mathrm{~V}\) & 72982 & 8035-D-CO \\
\hline A16C1211 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, \(20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104 \\
\hline A16C1221 & 281-0775-00 & & CAP , , FXD, CER DT: \(0.1 \mathrm{lUF}, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104: \\
\hline A16C1231 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%\), 50 V & 04222 & SA205E104: \\
\hline A16C1232 & 281-0773-00 & & CAP., FXD, CER DI: \(0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}\) & 04222 & GC70-1C10 \\
\hline A16C1233 & 290-0535-00 & & CAP. , FXD, ELCTLT: 33UF, 20\%, 10V & 56289 & 1960336×0 \\
\hline A16C1301 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, \(20 \%\), 50 V & 04222 & SA205E104] \\
\hline A16C1311 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, 20\%, 50V & 04222 & SA205E104] \\
\hline A16C1331 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104 \\
\hline A16C1401 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104] \\
\hline A16C1402 & 290-0755-00 & & CAP., FXD, ELCTLT: \(100 \mathrm{UF},+50-10 \%, 10 \mathrm{~V}\) & 56289 & 502D223 \\
\hline A16C1403 & 290-0755-00 & & CAP., FXD, ELCTLT: \(100 \mathrm{UF},+50-10 \%, 10 \mathrm{~V}\) & 56289 & 502D223 \\
\hline A16C1411 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, \(20 \%\), 50 V & 04222 & SA205E1041 \\
\hline A16C1412 & 281-0775-00 & & CAP., FXD, CER DI:0.1UF, 20\%, 50V & 04222 & SA205E104l \\
\hline A16C1420 & 281-0775-00 & & CAP., FXD, CER DI: \(0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E1041 \\
\hline Al6C1421 & 281-0775-00 & & CAP, , FXD, CER DI: \(0,1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 04222 & SA205E1041 \\
\hline A16C1422 & 281-0775-00 & & CAP., FXD, CER DI: 0.1 l , \(20 \%, 50 \mathrm{~V}\) & 04222 & SA205E1041 \\
\hline A16C1431 & 281-0775-00 & & CAP., FXD, CER DI: 0.1 l , \(20 \%, 50 \mathrm{~V}\) & 04222 & SA205E1041 \\
\hline A16C150] & 281-0775-00 & & CAP., FXD, CER DI: 0.1 l , \(20 \%, 50 \mathrm{~V}\) & 04222 & SA205E104? \\
\hline A16CR1201 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline Alf6R122.1 & 152-0071-00 & & SEMICOND DEVICE: GERMANIUM, \(15 \mathrm{~V}, 40 \mathrm{MA}\) & 15238 & G865 \\
\hline A16CR1222 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V, 150 MA & 01295 & 1N4152R \\
\hline Al6CR1431 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V, 150MA & 01295 & 1N4152R \\
\hline A16CR1432 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V, 150MA & 01295 & 1N41.52R \\
\hline A16CR1433 & 152-0141-02 & & SEMICOND DEVICE: SILITCON, 30V, 150MA & 01295 & 1N4152R \\
\hline A16CR1501 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A16CR1502 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A16CR1503 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30v,150MA & 01295 & 1N4152k \\
\hline A16CR1521 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A16CR1522 & 152-0141-02 & & SEMICOND DEVICE:SILICON, 30V,150MA & 01295 & 1N4.52R \\
\hline A16CR1523 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A16CR1524 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A16CR1531 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A16CR1532 & 152-0141-02 & & SEMICOND DEVICE: SILICON, 30V,150MA & 01295 & 1N4152R \\
\hline A16. 1210 & 131-1934-00 & & TERM. SET, PIN: \(1 \times 36,0.1 \mathrm{CTR}, 0.9 \mathrm{~L}\) & 22526 & 65539-001 \\
\hline A16J1211 & 131-1934-00 & & TERM. SET, PIN: \(1 \times 36,0.1 \mathrm{CTR}, 0.9 \mathrm{~L}\) & 22526 & 65539-001 \\
\hline A16J1331 & 131-1857-00 & & TERM. SET, PIN: 36/0.025 SQ PIN, ON 0.1 CTRS & 22526 & 65500136 \\
\hline Al6J1411 & 131-1857-00 & & TERM. SET, PIN: 36/0.025 SQ PIN, ON 0.1 CTRS & 22526 & 65500136 \\
\hline A16J 1412 & 131-1857-00 & & TERM. SET, PIN: 36/0.025 SQ PIN, ON 0.1 CTRS & 22526 & 65500136 \\
\hline A16J1413 & 131-1857-00 & & TERM. SET, PIN: 36/0.025 SQ PIN, ON 0.1 CTRS & 22526 & 65500136 \\
\hline Al6J1431 & 131-1857-00 & & TERM. SET, PIN: \(36 / 0.025\) SQ PIN, ON 0.1 CTRS & 22526 & 65500136 \\
\hline Al6L1401 & 108-0422-00 & & COIL, RF:FIXED, 82UH & 80009 & 108-0422-0 \\
\hline A16Q1001 & 151-0342-00 & & TRANSISTOR:SILICON, PNP & 07263 & S035928 \\
\hline Al6Q1002 & 151-0341-00 & & TRANSISTOR:SILICON, NPN & 07263 & S040065 \\
\hline Al6Q1003 & 151-0462-00 & & TRANSISTOR: SILICON, PNP & 04713 & TIP30G \\
\hline A16Q1201 & 151-0188-00 & & TRANSISTOR: SILICON, PNP & 04713 & SPS6868K \\
\hline A16Q1211 & 151-0220-00 & & TRANSISTOR: SILICON, PNP & 07263 & S036228 \\
\hline A16Q1212 & 151-0220-00 & & TRANSISTOR: SILICON, PNP & 07263 & 5036228 \\
\hline Al6Q1213 & 151-0220-00 & & TRANSISTOR:SILICON, PNP & 07263 & S036228 \\
\hline Al6019\% & 151-n99n-กก & & tranctetmd.etttimn did & ก736\% & cnagors \\
\hline
\end{tabular}

Replaceable Electrical Parts_-DC 5009
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mfr Part Number \\
\hline Al6Q1301 & 151-0190-00 & & TRANSISTOR:SILICON,NPN & 07263 & S032677 \\
\hline A16Q1421 & 151-0223-00 & & TRANSISTOR:SILICON, NPN & 04713 & SPS8026 \\
\hline A16Q1431 & 151-0302-00 & & TRANSISTOR: SILICON, NPN & 07263 & S038487 \\
\hline A16Q1432 & 151-0302-00 & & TRANSISTOR: SILICON, NPN & 07263 & S038487 \\
\hline Al6R1001 & 315-0681-00 & & RES. , FXD, CMPSN: 680 OHM, 5\%,0.25W & 01121 & CB6815 \\
\hline A16R1002 & 315-0361-00 & & RES., FXD, CMPSN: 360 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3615 \\
\hline A16R1003 & 315-0511-00 & & RES. , FXD , CMPSN: 510 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5115 \\
\hline A16R1011 & 315-0751-00 & & RES., FXU, CMPSN: 750 OHM, 5\%,0.25W & 01121 & CB7515 \\
\hline Al6R1012 & 307-0108-00 & & RES. , FXD, CMPSN: 6.8 OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB68G5 \\
\hline A16R1013 & 315-0201-00 & & RES. , FXD, CMPSN: 200 OHM, 5\%,0.25W & 01121 & CB2015 \\
\hline Al6R1101 & 307-0540-00 & & RES, NTWK, FXD, FI: (5) 1K OHM, 10\%,0.7W & 01121 & 206A102 \\
\hline A16R1102 & 315-0511-00 & & RES., FXD, CMPSN: 510 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5115 \\
\hline Al6R1111 & 315-0512-00 & & RES., FXD, CMPSN: 5.1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5125 \\
\hline A16R1112 & 307-0540-00 & & RES, NTWK, FXD, FI: (5) 1 K OHM, \(10 \%, 0.7 \mathrm{~W}\) & 01121 & 206 Al 102 \\
\hline Al6R1201 & 315-0512-00 & & RES.,FXD, CMPSN: 5.1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & C85125 \\
\hline A16R1202 & 315-0512-00 & & RES., FXD, CMPSN: 5.1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5125 \\
\hline Al6R1203 & 315-0303-00 & & RES. \(5 \mathrm{FXD}, \mathrm{CMPSN}: 30 \mathrm{~K}\) OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB3035 \\
\hline Al6R1211 & 315-0910-00 & & RES., FXD,CMPSN: 91 OHM, 5\%,0.25W & 01121 & CB9105 \\
\hline A16R1212 & 315-0910-00 & & RES., FXD, CMPSN: 91 OHM, 5\%,0.25W & 01121 & C89105 \\
\hline A16R1213 & 315-0220-00 & & RES., FXD, CMPSN: 22 OHM, 5\%,0.25W & 01121 & CB2205 \\
\hline A16R1214 & 315-0220-00 & & RES., FXD, CMPSN: 22 OHM, 5\%,0.25W & 01121 & CB2205 \\
\hline Al6R1215 & 315-0512-00 & & RES.,FXD,CMPSN: 5.1K OHM,5\%,0.25W & 01121 & CB5125 \\
\hline Al6R1221 & 315-0512-00 & & RES., FXD, CMPSN: \(5.1 \mathrm{~K} 0 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5125 \\
\hline A16R1222 & 315-0512-00 & & RES., FXD, CMPSN: 5.1K ОНM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & C85125 \\
\hline A16R1223 & 315-0512-00 & & RES. , PXD, CMPSN: 5.1K OHM , 5\%,0.25W & 01121 & CB5125 \\
\hline Al6R1224 & 315-0151-00 & & RES. , FXD, CMPSN: 150 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1515 \\
\hline A16R1225 & 315-0151-00 & & RES. , FXD, CMPSN: 150 OHM , 5\%,0.25W & 01121 & CB1515 \\
\hline A16R1226 & 315-0104-00 & & RES., FXD, CMPSN: 100 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1045 \\
\hline A16R1227 & 315-0393-00 & & RES. , FXD, CMPSN: 39K OHM , 5\%, 0.25 W & 01121 & CB3935 \\
\hline A16R1230 & 315-0272-00 & & RES., FXD, CMPSN: 2.7 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2725 \\
\hline Al6R1231 & 315-0151-00 & & RES. , FXD , CMPSN: 150 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1515 \\
\hline Al6R1232 & 315-0151-00 & & RES., PXD, CMPSN: 150 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1515 \\
\hline A16R1233 & 315-0103-00 & & RES., FXD, CMPSN:10K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A16R1234 & 315-0105-00 & & RES., FXD, CMPSN: 1 M OHM, 5\%,0.25W & 01121 & CB1055 \\
\hline Al6R1235 & 315-0102-00 & & RES.,FXD,CMPSN: 1 K OHM, 5\%,0.25W & 01121 & CB1025 \\
\hline A16R1236 & 321-0311-00 & & RES., FXD, FILM: 16,9K OHM, 1\%,0.125W & 91637 & MFF1816G16901F \\
\hline Al6R1237 & 321-0318-00 & & RES., FXD, FILM: 20 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G20001F \\
\hline A16R1238 & 321-0318-00 & & RES., FXD, FILM: 20 K OHM, \(1 \%, 0.125 \mathrm{~W}\) & 91637 & MFF1816G20001F \\
\hline A16R1239 & 321-0318-00 & & RES.,FXD, FILM:20K OHM, 1\%,0.125W & 91637 & MFF1816G20001F \\
\hline A16R1301 & 315-0101-00 & & RES. , FXD, CMPSN: 100 OHM, 5\%, 0. 25 W & 01121 & CB1015 \\
\hline A16R1302 & 315-0512-00 & & RES., FXD, CMPSN:5.1K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5125 \\
\hline Al6R1303 & 315-0512-00 & & RES., FXD , CMPSN: 5.1K OHM, 5\%,0.25W & 01121 & CB5125 \\
\hline Al6R1304 & 315-0512-00 & & RES., FXD, CMPSN: 5.1K OHM, 5\%,0.25W & 01121 & CB5125 \\
\hline Al6R1305 & 315-0104-00 & & RES., TXD, CMPSN: 100 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1045 \\
\hline Al6R1311 & 315-0302-00 & & RES., FXD, CMPSN: 3R OHM, 5\%,0.25W & 01121 & CB3025 \\
\hline Al6R1321 & 315-0104-00 & & RES., FXD, CMPSN: 100 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1045 \\
\hline A16R1322 & 315-0103-00 & & RES., FXD, CMPSN: 10 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A16R1323 & 315-0302-00 & & RES., EXD, CMPSN: 3 K OHM , 5\%,0.25W & 01121 & CB3025 \\
\hline A16R1331 & 315-0302-00 & & RES., FXD, CMPSN: 3K OHM, 5\%, 0.25W & 01121 & CB3025 \\
\hline A16R1402 & 315-0150-00 & & RES., FXD, CMPSN: 15 OHM, 5\%,0.25W & 01121 & CB1505 \\
\hline A16R1403 & 315-0150-00 & & RES., FXD, CMPSN: 15 OHM, 5\%, 0.25 W & 01121 & CB1505 \\
\hline A16R1404 & 315-0150-00 & & RES., FXD, GMPSN: 15 OHM, 5\%,0.25W & 01121 & CB1505 \\
\hline A16R1405 & 315-0150-00 & & RES., FXD, CMPSN: 15 OHM, 5\%,0.25W & 01121 & CB1505 \\
\hline Al6R1411 & 315-0150-00 & & RES., FXD, CMPSN: 15 OHM, 5\%,0.25W & 01121 & CB1505 \\
\hline A16R1412 & 315-0150-00 & & RES., FXD, CMPSN: 15 OHM, 5\%,0.25W & 01121 & CB1505 \\
\hline A16R1413 & 315-0150-00 & & RES., FXD, CMPSN: 15 OHM, 5\%, 0.25 W & 01121 & CB1505 \\
\hline A16RI421 & 315-0512-00 & & RES.,FXD, CMPSN: 5.1K OHM,5\%,0.25W & 01121 & CB5I25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & \[
\begin{aligned}
& \text { Tektronix } \\
& \text { Part No. }
\end{aligned}
\] & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Name \& Description & Mfr Code & Mir Part Number \\
\hline AI6R1431 & 315-0470-00 & & RES., FXD, CMPSN: 47 OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB4705 \\
\hline A16R1432 & 315-0150-00 & & RES., FXD, CMPSN: \(150 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1505 \\
\hline A16R1433 & 315-0242-00 & & RES . , FXD, CMPSN: 2.4 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2425 \\
\hline Al6R1434 & 315-0242-00 & & RES . , FXD, CMPSN: 2.4 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB2425 \\
\hline A16R1435 & 315-0512-00 & & RES., FXD, CMPSN: 5.1 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB51 25 \\
\hline A16R1/36 & 315-0103-00 & & RES., FXD, CMPSN: 10 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1035 \\
\hline A16R1437 & 315-0104-00 & & RES . , FXD , CMPSN: 100 K OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1045 \\
\hline A16R1438 & 315-0512-00 & & RES , FXD , CMPSN: 5.1 K OHM \(, 5 \%, 0.25 \mathrm{~W}\) & 01121 & CB5125 \\
\hline A16R1531 & 315-0104-00 & & RES.,FXD, CMPSN: 100 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1045 \\
\hline A16R1532 & 315-0104-00 & & RES . , FXD, CMPSN: 100 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1045 \\
\hline A16R1533 & 315-0104-00 & & RES., FXD, CMPSN: 100 K OHM, \(5 \%, 0.25 \mathrm{~W}\) & 01121 & CB1045 \\
\hline Al6S1511 & 263-0081-00 & & SW LEVER ASSY:FUNCTION SELECTOR & 80009 & 263-0081-00 \\
\hline A16S1512 & 263-0082-00 & & SW LEVER ASSY: FUNCTION SELECTOR & 80009 & 263-0082-00 \\
\hline Al6S1521 & 263-0010-01 & & SWITCH PB ASSY: 1 PUSH,7.5 MM, 1 CONTACT & 80009 & 263-0010-01 \\
\hline A16S1522 & 263-0010-01 & & SWITCH PB ASSY: 1 PUSH,7.5 MM, 1 CONTACT & 80009 & 263-0010-01 \\
\hline A16S1523 & 263-0010-01 & & SWITCH PB ASSY: 1 PUSH,7.5 MM, 1 CONTACT & 80009 & 263-0010-01 \\
\hline A16S1524 & 263-0010-01 & & SWITCH PB ASSY: 1 PUSH,7.5 MM, 1 CONTACT & 80009 & 263-0010-01 \\
\hline A16S1531 & 263-0010-01 & & SWLTCH PB ASSY:1 PUSH,7.5 MM, 1 CONTACT & 80009 & 263-0010-01 \\
\hline A16S 1532 & 263-0010-01 & & SWITCH PB ASSY: 1 PUSH,7.5 MM, 1 CONTACT & 80009 & 263-0010-01 \\
\hline A16S1533 & 263-0010-01 & & SWITCH PB ASSY: 1 PUSH,7.5 MM, 1 CONTACT & 80009 & 263-0010-01 \\
\hline A16S1534 & 263-0010-01 & & SWITCH PB ASSY:1 PUSH, \(7.5 \mathrm{MM}, 1 \mathrm{CONTACT}\) & 80009 & 263-0010-01 \\
\hline A16TP1301 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline A16TP1302 & 214-0579-00 & & TERM, TEST POLNT: BRS CD PL & 80009 & 214-0579-00 \\
\hline A16TP1310 & 214-0579-00 & & TERM, TEST POINT: BRS CD PL & 80009 & 214-0579-00 \\
\hline AI 601002 & 156-0576-01 & & MICROCIRCUIT, DI: 8 BIT PRL INP/SER OUT & 80009 & 156-0576-01 \\
\hline A16U1011 & 156-0576-01 & & MICROCIRCUIT, DI: 8 BIT PRL INP/SER OUT & 80009 & 156-0576-01 \\
\hline A16U1012 & 156-0545-01 & & MICROCIRCUIT, DI: 12 BIT BINARYCNTR, SCRN & 04713 & MC14040BCLD \\
\hline Al6U1101 & 156-0576-01 & & MICROCIRCUIT, DI: 8 BIT PRL INP/SER OUT & 80009 & 156-0576-01 \\
\hline Al 601102 & 156-0576-01 & & MICROCIRCUYT, DI: 8 BIT PRL INP/SER OUT & 80009 & 156-0576-01 \\
\hline Al6U1103 & 156-0576-01 & & MICROCIRCUIT, DI: 8 BIT PRL INP/SER OUT & 80009 & 156-0576-01 \\
\hline A16U1111 & 156-0579-02 & & MICROCIRCUIT, DI: DUAL 4 BIT BIN COUNTER, SEL & 80009 & 1.56-0579-02 \\
\hline Al6U1112 & 156-1172-01 & & MICROCIRCUIT, DI: DUAL 4 BIT CNTR, BURN IN & 01295 & SN74LS393 \\
\hline A16U1113 & 156-0388-02 & & MICROCIRCUIT, DI: DL D FLIP-FLOP, CHK & 80009 & 156-0388-02 \\
\hline A16U1201 & 156-0331-03 & & MICROCIRCUIT, DI: DUAL D TYPE POS EDGE TRIG & 80009 & 156-0331-03 \\
\hline A16U1202 & 156-0385-01 & & MICROCIRCUIT, DI: HEX. INVERTER & 80009 & 156-0385-01 \\
\hline Al6U1211 & 156-0230-01 & & MICROCIRCUIT, DI: DUAL D MA-SLAVE FF, SEL & 80009 & 156-0230-01 \\
\hline A16U1221 & 156-0880-02 & & MICROCIRCUIT, DI: DUAL D MASTERSLAVE FF & 04713 & SC22689P231 \\
\hline A.16U1222 & 156-1225-01 & & MICROCIRCUIT, LI: DUAL COMPARATOR, SCREENED & 27014 & LM393N/AT \\
\hline A1601312 & 160-1076-01 & & MICROCIRCUIT, DI: \(4096 \times 8\) EPROM, PRGM & 80009 & 160-1076-01 \\
\hline A16U1321 & 156-0494-00 & & MICROCIRCUIT, DI: HEX INVERTER/BUFFER & 80009 & 156-0494-00 \\
\hline Al6U1322 & 156-0649-00 & & MICROCIRCUIT, DI: 3 STATE HEX. NON INVT BFR & 80009 & 156-0649-00 \\
\hline A1601331 & 156-0469-00 & & MICROCIRCUTT, DI: 3-LINE TO 8-LINE DECODER & 01295 & SN74LS138N \\
\hline A16U1332 & 156-1530-00 & & MICROCIRCUIT, DI: RAM AND I/O CNTR, PROTO & 34576 & R6531P098 \\
\hline A1601333 & 156-0469-00 & & MICROCIRCUIT, DI: 3-LINE TO 8-LINE DECODER & 01295 & SN74LS138N \\
\hline A16U1411 & 156-1190-00 & & MICROCIRCUIT, DI: 7 XSTR, CA 3082 & 80009 & 156-1190-00 \\
\hline A16U1412 & 156-1407-00 & & MICROCIRCUIT, DI:MOS-TO-LED 8-DIGIT DRIVER & 80009 & 156-1407-00 \\
\hline A16U1421 & 156-0795-00 & & MICROCIRCUIT, DI: BCD 7-SEG LCHDCDR/DRVR & 04713 & MC14511BCL \\
\hline A16U1431 & 156-0391-00 & & MICROCIRCUIT, DI: HEX LATCH WITH CLEAR & 04713 & \(74 \mathrm{LSI74}\) (N OR J) \\
\hline A16U1432 & 156-0799-00 & & MICROCIRCUIT, DI: DECADE CNTR/DTV & 80009 & 156-0799-00 \\
\hline Al6VR1301 & 152-0195-00 & & SEMICOND DEVICE:ZENER,0.4W,5.1V,5\% & 04713 & S211755 \\
\hline
\end{tabular}

\section*{Replaceable Electrical Parts—DC 5009}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Model No. Eff Dscont & Name \& Description & Mfr Code & Mir Part Numbe \\
\hline & & & CHASSIS PARTS & & \\
\hline J500 & 131-0955-00 & & CONN, RCPT, ELEC: BNC, FEMALE & 13511 & 31-279 \\
\hline J510 & 131-0955-00 & & CONN, RCPT, ELEC; BNC, FEMALE & 13511 & 31-279 \\
\hline J520 & 136-0387-00 & & JACK, TIP:GRAY & 71279 & 450-4352-01-0: \\
\hline J530 & 136-0387-00 & & JACK, TIP: GRAY & 71279 & 450-4352-01-0. \\
\hline J540 & 136-0387-00 & & JACK, TIP: GRAY & 71279 & 450-4352-01-0: \\
\hline J550 & 136-0387-00 & & JACK, TIP: GRAY & 71279 & 450-4352-01-0. \\
\hline J560 & 136-0387-00 & & Jack, TIP: GRAY & 71279 & 450-4352-01-0: \\
\hline J570 & 136-0387-00 & & JACK,TIP:GRAY & 71279 & 450-4352-01-0: \\
\hline J580 & 136-0387-00 & & JACK, TIP:GRAY & 71279 & 450-4352-01-0. \\
\hline R500 & 311-2105-00 & & RES. , VAR, NONWW: PNL, 10 K OHM, \(10 \%, 0.5 \mathrm{~W}\) & 12697 & CM41776 \\
\hline R510 & 311-2095-00 & & (FURNISHED AS A UNIT WITH S500) & 12697 & SERIES 388 \\
\hline S500 & --- & & (fuRNISHED AS A UNIT WITh R500) & & \\
\hline
\end{tabular}

\section*{DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS}

\section*{Symbols}

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used Electrical Science and Electri Engineering.

\section*{American National Standard Institute 1430 Broadway}

New York, New York 10018

\section*{Component Values}

Electrical components shown on the diagrams are the following units unless noted otherwise:

Capacitors \(=\) Values one or greater are in picofarads (\(p\) Values less than one are in microfarads \((\mu \mathrm{F})\).
Resistors \(=\) Ohms \((\Omega)\).

\section*{The information and special symbols below may appear in this manual.}

\section*{Assembly Numbers and Grid Coordinates}

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number *(see following illustration for constructing a component number).

The schematic diagram and circuit board compon location illustration have grids. A lookup table with grid coordinates is provided for ease of locating component. Only the components illustrated on the fac diagram are listed in the lookup table. When more th one schematic diagram is used to ill ustrate the circuitry a circuit board, the circuit board illustration may o appear opposite the first diagram on which it was lustrated; the lookup table will list the diagram numbe| other diagrams that the circuitry of the circuit bo: appears on.

\[
\begin{aligned}
& \text { Fig } 8-1,8-2 \div 8-3 \\
& \text { Snt. 10F2 }
\end{aligned}
\]

NOTE: OPTION 1 OSC ADJ Y1531 located on reverse side of board.

Fig. 8-1. Analog Board (A12).

Fig. 8-1, \(8-2 \div 8-3\)
STMENT LOCATIONS AND SETUPS

Fig. 8-2. Adjustment setup for steps 5 and 6 .

Fig. 8-3. Adjustment setup for steps 7 and 8.

Ag. 8-4. General troubleshooting flow chart.

Table 8-1
GENERAL PROBLEMS
\begin{tabular}{|c|c|}
\hline PROBLEM & SUSPECT CIRCUITRY \\
\hline Measurements are stable but not accurate. & Time base oscillator (+18 V supply for Opt. 1), buffer-Q1612. divider-U1611, or Phase Locked Loop Components. \\
\hline Does not trigger properly (may be indicated by incorrect shaped outputs). & Dual DMOS in amplifier -1) (2) ; +12 V , \(-12 \mathrm{~V}<6 ; 5 \mathrm{~V}_{2}\) supplies 1.) : amplifier components (1), 2े \\
\hline Input conditioning does not function properly. & \[
\begin{aligned}
& \text { Switch }\langle 8 / \text { Relays }\langle 1,\langle 2\rangle \text { : Relay } \\
& \text { Drivers }\langle\stackrel{\rightharpoonup}{4},\langle\hat{2} ; \text { U1332-4 }
\end{aligned}
\] \\
\hline Display does not function properly. & Display Circuitry \(\langle 8\rangle\), see INTERNAL SIGNATURE ANALYSIS FIg. \(8-5\) (DIGITAL). \\
\hline Auto Trigger does not function properly. & \begin{tabular}{l}
+3.2 V supply (10) ; D/A converters-U1201, \\
U1211 5 : Serial-to-Parallel shift registers-U1202, U1212 < 5 : Input amplifiers <1> , <2 ; Analog switch—U1311 : buffers-U1321〈5.
\end{tabular} \\
\hline Measurements with low frequency input signal are not stable. & ENO signal \(\qquad\) suspect Q1433. U1421B, (3): U1332 ; Schmitt triggers, amplifiers \(\square\) -1). (2) \\
\hline Gate light always on. No measurement completed. & \\
\hline
\end{tabular}

Table 8-2
COUNTER INTEGRITY ERRORS
\begin{tabular}{|c|c|}
\hline ERROR CODE & SUSPECT CIRCUITRY \\
\hline 320 & \begin{tabular}{l}
1. Check that Input signal is within Trigger Level range, or no input. \\
2. Make sure ARM input is high (3) \\
3. Check MR and \(\overline{M R}\) lines \(\langle 4\rangle\) \\
4. Check CH A DAC <5 \\
5. Check CH A AMP \\
6. Check Gating (3) \\
7. Check Input to Accumulator \\
8. Suspect U1221A \\
9. Suspect U1102 4 4
\end{tabular} \\
\hline 321 & \begin{tabular}{l}
1. Suspect U1211A \\
2. Suspect U1102
\end{tabular} \\
\hline 322 & \(\left.\begin{array}{ll}\text { 1. } & \text { Suspect Level Shifter Q1211 } \\ \text { 2. } & \text { Suspect U1201A } \\ \text { 3. } & \text { Suspect U1102 }\end{array}\right\}\langle 4\rangle\) \\
\hline 323 & \begin{tabular}{l}
1. Suspect U1113A \\
2. Suspect U1102
\end{tabular} \\
\hline 324 & \(\left.\begin{array}{ll}\text { 1. } & \text { Suspect U1112A } \\ \text { 2. } & \text { Suspect U1102 } \\ \text { 3. } & \text { Suspect U1101 }\end{array}\right\}\langle 4\rangle\) \\
\hline 325 & \begin{tabular}{l}
1. Suspect U1111A \\
2. Suspect U1101
\end{tabular} \\
\hline 326 & 1. Suspect U1332 7 > \\
\hline 330 & \begin{tabular}{l}
1. Check CH B DAC \\
2. Check CH B AMP \\
3. Check Gating \\
4. Check Input to Accumulator \\
5. Suspect U1221B \\
6. Suspect U1103
\end{tabular} \\
\hline 331 & \begin{tabular}{l}
1. Suspect U1211B \\
2. Suspect U1103
\end{tabular} \\
\hline 332 & \(\left.\begin{array}{ll}\text { 1. } & \text { Suspect Level Shifter Q1212 } \\ \text { 2. } & \text { Suspect U1201B } \\ \text { 3. } & \text { Suspect U1103 }\end{array}\right\}\) \\
\hline 333 & \begin{tabular}{l}
1. Suspect U1113B \\
2. Suspect U1103
\end{tabular} \\
\hline 334 & \begin{tabular}{l}
1. Suspect U1112B \\
2. Suspect U1103
\end{tabular} \\
\hline 335 & \begin{tabular}{l}
1. Suspect U1111B \\
2. Suspect U1011
\end{tabular} \\
\hline 336 & \begin{tabular}{l}
1. Suspect U1012 \\
2. Suspect U1002
\end{tabular} \\
\hline
\end{tabular}

Fig. 8-5
\(5 n+10 F 3\)

Fig. 8-5. Internal signature analysis "A" (L)
```

Fig. 8-5
sht. 20f3

```

ignature analysis "A" (Digital board).

\section*{SETUP CONDITIONS Internal Signatures (Digital Board)}

NOTE
All front panel switches in out position.
FUNCTION switch set to FREQUENCY A. AVERAGES switch set to AUTO.
\[
\text { Fig. } 8-6
\]

\section*{SETUP CONDITIONS}

Internal Signatures (Digital Board)

Fig. 8-6
shit 20 of 3

Fig. 8-6. Internal signature analysis "B"
```

Fig. 8-6
sht. 30 F 3

```


\footnotetext{
rnal signature analysis "B" (Digital board).
}

Fig. 8-7
\(\sin t .2073\)

sit. Bots

\title{
SETUP CONDITIONS Internal Signatures (Analog Board)
}

\section*{Fig. \(8-8\) shy. low} DC 5009

\section*{SETUP CONDITIONS}

\section*{Kernel Test Signatures (Digital Board)}

\section*{SA CLOCK \(\square\) (\(\varphi 2\) on digital board) \\ SA START \\ SA STOP -5 \\ GROUND IP 1310 (digital board)}

NOTE
All front panel switches in out position. FUNCTION switch set to FREQUENCY A. AVERAGES switch set to AUTO.

Fig. 8-8. Kernel signature analysis (

Fig. 8-8
sht. 3073

+5 V Signature \(=755 \mathrm{U}\)
Fig. 8-9. Kernel signature analysis (GPIB board).

Fig. \(8-9\)
she. 20f3

\section*{ \\ \\ }

+5 V Signature \(=755 \mathrm{U}\)
\(3889-22\)
Fig. 8-9. Kernel signature analysis (GPIB board).

\section*{SETUP CONDITIONS}

\section*{Kernel Test Signatures (Digital Board)}
\begin{tabular}{|c|c|}
\hline SA CLOCK & TP1302 digital board \\
\hline SA START & TP1000 kernel test board \\
\hline SA STOP & TP1000 kernel test board \\
\hline GROUND & TP1310 (digital board) \\
\hline
\end{tabular}

NOTE
All front panel switches in out position. FUNCTION switch set to FREQUENCY A. AVERAGES switch set to AUTO.

DC 5009

\section*{BLLOCK DiAgeam} Sht 20 of 2

SERIAL CLOCK, SERIAL WRITE LATCH

1-01-8.8!

207 S\&y
```

Fig.8-10
sht.dof2

```

\section*{OCATION GRID}

\title{
Table 8-3 \\ COMPONENT REFERENCE CHART (see Fig. 8-10)
}

Channel A Amplifiers \&ंRelay Control \(\uparrow\) Sht.lofa

Channel A Amplifiers; Relay Control
Shit. 2 of 2
J | K \| L | M

Fig. \(8-11\) sht.10F2

\section*{PARTS LOCATION G}

Fig. 8-11. Digital board (A16).

COMPONENT NUMBER EXAMPLE

Fig. \(8-11\)
sht. \(20 f 2\)

\section*{RTS LOCATION GRID}

Fig. 8-11. Digital board (A16).

Table 8-4
COMPONENT REFERENCE CHART (see Fig. 8-10)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{P/O A12 ASSY} & \multicolumn{4}{|l|}{CHANNEL. B AMPLIFIERS AND RELAY CONTROL 2} \\
\hline CIRCUIT NUMBER & SCHEMATIC LOCATION & BOARD LOCATION & CIRCUIT NUMBER & SCHEMATIC LOCATION & \[
\begin{aligned}
& \text { BOARD } \\
& \text { LOCATION }
\end{aligned}
\] \\
\hline C1041 & F6 & B5 & R1041 & E7 & B5 \\
\hline C1042 & F5 & B5 & R1042 & D7 & A6 \\
\hline C1043 & F7 & A6 & R1043 & F6 & C5 \\
\hline C1133 & K6 & D5 & R1045 & H7 & B6 \\
\hline C1141 & H6 & C5 & R1137 & K6 & D5 \\
\hline C1142 & J4 & E5 & R1139 & K4 & D5 \\
\hline C1143 & J8 & D6 & R1140 & J7 & D6 \\
\hline C1144 & H7 & D6 & R1141 & F7 & C5 \\
\hline C1233 & M4 & F5 & R1142 & H6 & C5 \\
\hline C1241 & L5 & E6 & R1143 & H6 & C5 \\
\hline C1242 & K3 & E6 & R1144 & J6 & C5 \\
\hline C1243 & K4 & E6 & R1145 & J4 & D5 \\
\hline C1245 & M5 & F6 & R1146 & J8 & D6 \\
\hline C1341 & L6 & G5 & R1147 & J7 & D6 \\
\hline C1345 & M8 & F6 & R1148 & H8 & D6 \\
\hline C1347 & M8 & H5 & R1149 & H7 & D6 \\
\hline & & & R1237 & L4 & E5 \\
\hline CR1131 & J5 & D5 & R1238 & K4 & E5 \\
\hline CR1132 & d7 & D5 & R1239 & 64 & F5 \\
\hline CR1141 & J6 & D5 & R1239 & M4 & F5 \\
\hline CR1142 & J6 & D5 & R1240 & M5 & F6 \\
\hline CR1244 & L3 & F5 & R1241 & L8 & E6 \\
\hline & & & R1242 & K8 & E6 \\
\hline J1041 & & A6 & R1243 & L6 & E6 \\
\hline J1522 & C7 & 14 & R1244 & K6 & E6 \\
\hline & & & R1245 & K5 & E6 \\
\hline K1041 & D6 & A6 & R1246 & K4 & E6 \\
\hline K1042 & E6 & A6 & R1247 & K4 & E6 \\
\hline K1043 & F6 & A6 & R1248 & K4 & E6 \\
\hline K1622 & B6 & L4 & R1249 & M4 & F5 \\
\hline & & & R1341 & M5 & F6 \\
\hline P1041 & C7 & A6 & R1342 & M5 & F6 \\
\hline P1522 & C7 & 14 & R1343 & M7 & F6 \\
\hline P1625 & B7 & N3 & R1344 & M6 & G5 \\
\hline & & & R1345 & M7 & F6 \\
\hline Q1141 & J6 & D5 & R1346 & 17 & G6 \\
\hline Q1142 & J7 & D6 & R1347 & M7 & G6 \\
\hline 01233 & L5 & E5 & R1348 & M6 & G6 \\
\hline Q1234 & L4 & E5 & R1349
\(\mathbf{R 1 5 2 6}\) & M3 & F5 \\
\hline Q1235 & 4 & F5 & R1526 & B7 & K3 \\
\hline Q1241 & K5 & E5 & & & \\
\hline 01242 & K4 & E5 & U1111
U 1112 & E2 & D2 \\
\hline O1243 & M4 & F5 & U1331 & M6 & G5 \\
\hline Q1245 & L5 & F5 & & & \\
\hline 01246 & L8 & E6 & VR1341 & L7 & G6 \\
\hline Q1247 & M7 & F5 & & 14 & F5 \\
\hline Q1248 & M7 & F6 & W1230 & 4 & F5 \\
\hline \[
\begin{aligned}
& \text { R1039 } \\
& \text { R1040 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { F5 } \\
& \text { C6 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B5} \\
& \mathrm{A5}
\end{aligned}
\] & \(J 510\) W510 & \[
\begin{aligned}
& \text { A6 } \\
& \text { C7 }
\end{aligned}
\] & Chassis Chassis \\
\hline \multicolumn{6}{|c|}{P/O A12 ASSY also shown on} \\
\hline
\end{tabular}

Channel B Amplifiers צ́ Relay Control
\[
\text { She. } 20 \text { of } 2
\]

H | J | K | L | M

(2) Static Sensitive Devices COMPONENT NUMBER EXAMPLE

ese nz
CHANNEL B AMPLIFIERS \& RELAY CONTROL

\section*{PARTS LOCATION GRID}

Fig. 8-12. Display board (A10).

\title{
Table 8-5 COMPONENT REFERENCE CHART (see Fig. 8-10)
}

\section*{Gating, Arming, ؟ Synchronizers}

Sht. lof 2

\section*{PARTS LOCATION GRID}

Fig. 8-13. GPIB board (A14)
(3) Static Sensitive Devices

See Maintenance Section

COMPONENT NUMBER EXAMPLE

Chassis.mourted components have na Assembly Number pelix-see end of Replaceabie Electrical Parts List
```

Fig.8-13
Sht.20f 2

```

\section*{PARTS LOCATION GRID}

Fig. 8-13. GPIB board (A14)

\section*{Table 8-6 COMPONENT REFERENCE CHART \\ (see Fig. 8-11)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{P/O A16 ASSY} & \multicolumn{3}{|l|}{CH A AND CH B ACCUMULATORS 4} \\
\hline \begin{tabular}{l}
CIRCUIT \\
NUMBER
\end{tabular} & SCHEMATIC LOCATION & \[
\begin{aligned}
& \text { BOARD } \\
& \text { LOCATION }
\end{aligned}
\] & CIRCUIT NUMBER & SCHEMATIC LOCATION & \[
\begin{aligned}
& \text { BQARD } \\
& \text { LOCATION }
\end{aligned}
\] \\
\hline C1002 & M8 & B1 & R1211 & F4 & E3 \\
\hline C111t & M8 & D3 & R1212 & E8 & E3 \\
\hline C1201 & M8 & E2 & R1213 & E2 & E3 \\
\hline C1211 & L8 & F3 & R1214 & E8 & E3 \\
\hline C1221 & L8 & E4 & R1215 & C4 & E3 \\
\hline C1231 & B1 & E5 & R1221 & C2 & E3 \\
\hline CR1201 & B2 & F2 & R1222 & D7 & E4 \\
\hline & & & R1223 & C6 & E4 \\
\hline P1310 & B6 & F1 & R1224 & C2 & E4 \\
\hline P1410 & B3 & D1 & R1225 & C8 & E4 \\
\hline P1420 & B1 & D4 & R1231 & B2 & E5 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { P1420 } \\
& \text { P1421 }
\end{aligned}
\]} & B2 & D4 & R1232 & A8 & E5 \\
\hline & A8 & D4 & & & \\
\hline & & & U1002 & M6 & B2 \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { Q1201 } \\
& \text { Q1211 } \\
& \text { Q1212 } \\
& 01213 \\
& \mathbf{Q 1 2 2 1}
\end{aligned}
\]} & B2 & F1 & U1011 & K6 & B3 \\
\hline & E2 & E3 & U1012 & L7 & B3 \\
\hline & E8 & E3 & U1101 & K5 & C2 \\
\hline & C3 & E3 & U1102 & G5 & D2 \\
\hline & D7 & E4 & U1103 & H6 & D2 \\
\hline & & & U1111 & L3 & C3 \\
\hline \multirow[t]{2}{*}{R1101
R1102} & K4 & C1 & U1112 & J2 & D3 \\
\hline & M8 & D1 & U1113 & G2 & D3 \\
\hline R1111 & G1 & D3 & U1201 & F2 & E2 \\
\hline R1112 & H7 & D3 & U1202 & F4 & F2 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { R1201 } \\
& \text { R1202 }
\end{aligned}
\]} & B2 & F1 & U1211 & D2 & F3 \\
\hline & B3 & F1 & U1221 & C2 & E4 \\
\hline & P/O A16 & SY also sh & \[
\langle 7\rangle\langle 8
\] & & \\
\hline
\end{tabular}

CH:CH B ACCUMULATORS
Sht.lof 2

\section*{Table 8-7 \\ COMPONENT REFERENCE CHART (see Fig. 8-10)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{P/O A12 ASSY} & \multicolumn{4}{|l|}{TRIGGER LEVEL CONTROL AND D-A CONVERTERS < 5} \\
\hline CIRCUIT NUMBER & SCHEMATIC LOCATION & \begin{tabular}{l}
BOARD \\
LOCATION
\end{tabular} & \begin{tabular}{l}
CIRCUIT \\
NUMBER
\end{tabular} & \begin{tabular}{l}
SCHEMATIC \\
LOCATION
\end{tabular} & \begin{tabular}{l}
BOARD \\
LOCATION
\end{tabular} \\
\hline C1201 & E3 & E1 & R1313 & K5 & G2 \\
\hline C1202 & E4 & E1 & R1314, & \({ }^{5}\) & G2 \\
\hline C1211 & E4 & E2 & R1315 & J5 & G2 \\
\hline C1212 & E7 & E3 & R1316 & H5 & G2 \\
\hline & & & R1317 & L1 & H2 \\
\hline J1301 & F8 & F1 & R1318 & L1 & H2 \\
\hline \(J 1303\) & F8 & G1 & R1319 & L2 & H2 \\
\hline J1310 & B2 & G1 & R1321 & L3 & H2 \\
\hline J1310 & B6 & G1 & R1322 & L2 & H2 \\
\hline J1411 & M4 & H3 & R1323 & L3 & G3 \\
\hline P1301 & F8 & F1 & R1325 & M3 & G3 \\
\hline P1303 & F8 & G1 & R1326 & L3 & G3 \\
\hline P1411 & M4 & H3 & R1327 & L3 & G3 \\
\hline P1625 & M4 & N3 & & & \\
\hline & & & U1201 & F2 & F1 \\
\hline Q1311 & \[
\begin{aligned}
& K 5 \\
& \mathbf{J 5}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{G 2} \\
& \mathbf{G 2}
\end{aligned}
\] & U1202 & F2 & F2 \\
\hline & & & \(\cup 1212\) & D6 & F3 \\
\hline R1102 & D1 & D1 & U1311 & H3 & G3 \\
\hline R1201 & E1 & E1 & U1321 & K2 & H3 \\
\hline R1202 & E2 & E1 & U1321 & M1 & \({ }^{\text {H3 }}\) \\
\hline R1203 & G1 & E1 & U1322 & B7 & H3 \\
\hline R1211 & D4 & E2 & 2 & & \\
\hline R1212 & E4 & E3 & VR1302 & G6 & G2 \\
\hline R1214 & G2 & E3 & J570 & N4 & Chassis \\
\hline \({ }_{\text {R1302 }}\) & F88 & G2 & \begin{tabular}{l}
J580 \\
\hline 859
\end{tabular} & N4 & Chassis \\
\hline R1306 & G8 & G1 & P600 & E8 & Chassis \\
\hline R1309 & G8 & G2 & R500 & \({ }_{\text {D8 }}\) & Chassis \\
\hline R1311
R1312 & L2 & G2 & R510 & D8 & Chassis \\
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{P/O A12 ASSY also shown on}} \\
\hline & & & & & \\
\hline
\end{tabular}

Trigger Level Control and D-A Converters
Sht.10f2

COMPONENT REFERENCE CHART (see Fig. 8-10)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{P/O A12 ASSY} & \multicolumn{4}{|l|}{TIME BASE, 100 MHz PLL AND NOISE GENERATOR 6} \\
\hline CIRCUIT NUMBER & SCHEMATIC LOCATION & BOARD LOCATION & CIRCUIT NUMBER & SCHEMATIC LOCATION & BOARD LOCATION \\
\hline C1501 & M6 & K1 & R1505 & E3 & K2 \\
\hline C1503 & C4 & K2 & R1510 & c3 & K2 \\
\hline C1504 & E1 & K2 & R1510 & C4 & K2 \\
\hline C1511 & F3 & K2 & R1511 & H2 & J2 \\
\hline C1512 & J2 & J2 & F1512 & J3 & J2 \\
\hline C1521 & L3 & J3 & R1513 & K3 & J2 \\
\hline C1522 & L6 & J3 & R1514 & H3 & J2 \\
\hline C1523 & L4 & J4 & R1515 & \({ }^{\text {H3 }}\) & J3 \\
\hline C1525 & K4 & K3 & R1516 & K3 & J3 \\
\hline \({ }^{\text {C1526 }}\) & J4 & K4 & R1517 & D3 & K2 \\
\hline C1601t \({ }^{\text {c }}\) & F8 & L1 & R1518 & C4 & K2 \\
\hline C1602tt & C7 & L1 & R1519 & C3 & K2 \\
\hline C1603tt & C7 & L2 & R1521 & H3 & K3 \\
\hline C1604tt & D6 & L2 & R1522 & M4 & K4 \\
\hline C1605tt & D7 & L2 & R1528 & M3 & J4 \\
\hline C1611t & D7 & L2 & R1601 \(\dagger \dagger\) & C7 & L2 \\
\hline C1612 & B6 & L3 & R1602 \(\dagger \dagger\) & C7 & L2 \\
\hline C1621 \(\dagger\) & J8 & L4 & R1603 & H8 & L2 \\
\hline & & & R1604 & H8 & L2 \\
\hline CR1422 & L2 & J3 & R1605 \(\dagger \dagger\) & D7 & L2 \\
\hline CR1521 & L3 & J3 & R1611t \(\dagger\) & D8 & L2 \\
\hline CR1611 & C5 & \({ }^{1} 3\) & R1612 & C5 & L3 \\
\hline \(J 1511\) & A3 & K3 & R1613 & C6 & 1.3 \\
\hline J1621 & A6 & M3 & TP1410 & K2 & 12 \\
\hline L1521 & L3 & J4 & TP1510 & F3 & K2 \\
\hline P1511 & A3 & K3 & TP1520 & H4 & \(\stackrel{L 3}{+3}\) \\
\hline P1621 & \({ }_{\text {A }}\) & M3 & TP1621 & & \\
\hline P1625 & B5 & N3 & U1501 & D3 & K1 \\
\hline & & & U1502 & D1 & K1 \\
\hline Q1501 & C1 & K2 & U1521 & K3 & J3 \\
\hline Q1502 & C3 & K2 & \(\cup 1522\) & F3 & K3 \\
\hline Q1611t \(\dagger\) & D7 & M2 & U1523 & L3 & J4 \\
\hline Q1612 & C6 & L3 & U1524 & J4 & K4 \\
\hline R1501 & E3 & J2 & U16011 & H7
D5 & L1 \\
\hline R1502 & C1 & J2 & & & \\
\hline R1503 & E3 & J2 & Y1531t* & & \\
\hline R1504 & D2 & K2 & Y1601tt & B7 & L1 \\
\hline \multicolumn{6}{|c|}{P/O A12 ASSY also shown on \(\langle 1\rangle\langle 2\rangle\langle 3\rangle\langle 5\rangle\langle 7\rangle\langle 8\rangle\langle 10\)} \\
\hline
\end{tabular}
\(\dagger \dagger\) Deiete for Option 01.
\(\dagger\) Add for Option 01,
* Component located on back of board.

Time Base, 100 MHz PLL है Nolse Generator sht. lof 2

Time Base, 100 MHz ML 个 Noise Generator (6)
shot. 20 F 2
H | J | K | L | M

PHAGE LOCKED LOOP

SEE PARTS LIST FOR EA VALUES AND SERIAL NL RANGES OF PARTS OUT OR DEPICTED IN GREY.
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & \(+12 V\) & \(+5 V\) & \(45 V\) & ONO & \(-12 V\) \\
\hline \(1 \pi 105\) & & & 1,16 & 0 & \\
\hline 1458 & & & 8 & & 4 \\
\hline 4844 & & 14 & & 7 & \\
\hline \(7489 \hbar\) & & 9 & & 18 & \\
\hline LM313 & 8 & & & 1 & 4 \\
\hline
\end{tabular}

Chassis mounted components have n pretix-see end of Replaceable Elea

\section*{Table 8-9 \\ COMPONENT REFERENCE CHART (see Fig. 8-10 and Fig. 8-11)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{P/O A16 ASSY} & \multicolumn{4}{|l|}{MICROPROCESSOR, CONTROL LOGIC AND MEMORY} \\
\hline \begin{tabular}{l}
CIRCUIT \\
NUMBER
\end{tabular} & SCHEMATIC LOCATION & BOARD LOCATION & CIRCUIT NUMBER & SCHEMATIC LOCATION & \[
\begin{aligned}
& \text { BOARD } \\
& \text { LOCATION }
\end{aligned}
\] \\
\hline C1202 & D8 & F2 & R1230 & A5 & F5 \\
\hline C1232 & B3 & F5 & R1233 & C7 & E5 \\
\hline C1233 & A8 & F5 & R1234 & B8 & E5 \\
\hline C1301 & D8 & G2 & R1235 & B8 & E5 \\
\hline C1311 & D3 & H4 & R1236 & B7 & E5 \\
\hline C1331 & H7 & H6 & R1237 & B8 & E5 \\
\hline C1401 & K4 & 11 & R1238 & A8 & E5 \\
\hline & & & R1239 & A8 & E5 \\
\hline CR1221 & F1 & F4 & R1301 & H3 & G2 \\
\hline CR1222 & H1 & F4 & R1302 & H3 & H1 \\
\hline & & & R1303 & F3 & H1 \\
\hline \(J 1210\) & M8 & F3 & R1304 & F4 & H1 \\
\hline J1210 & M3 & F3 & R1305 & F3 & G2 \\
\hline J1211 & M7 & F3 & R1311 & F2 & H3 \\
\hline \(J 1211\) & M8 & F3 & A1321 & H1 & G4 \\
\hline J1310 & K3 & G1 & R1322 & H1 & G4 \\
\hline J1310 & K1 & G1 & R1323 & D6 & G4 \\
\hline J1331 & J4 & H5 & R1331 & F4 & H5 \\
\hline J1410 & K2 & J1 & R1435 & M2 & J6 \\
\hline P1010 & J4 & K1 & TP1301 & F2 & H1 \\
\hline P1310 & \(\sqrt{2}\) & F1 & TP1302 & F5 & H2 \\
\hline P1310 & J1 & F1 & & & \\
\hline P1310 & M8 & F1 & U1202 & F2 & F2 \\
\hline P1331 & J4 & H5 & U1222 & B8 & F4 \\
\hline P1410 & J2 & D1 & U1311 & E7 & G3 \\
\hline P1410 & J3 & D1 & U1312 & K5 & H2 \\
\hline P1625 & K3 & M3 & U1321 & H8 & G4 \\
\hline P1625 & K1 & M3 & U1321 & E8 & G4 \\
\hline Q1301 & H4 & H1 & U1322 & C2 & H4 \\
\hline Q1301 & H4 & H1 & U1331 & B5 & G5 \\
\hline R1203 & D8 & F2 & U1332
U1333 & D2 & H5
H5 \\
\hline R1204 & D9 & F3 & U1333 & H7 & H5 \\
\hline R1226 & B3 & F5 & VR1301 & F3 & G1 \\
\hline R1227 & B3 & F5 & & & \\
\hline \multicolumn{6}{|c|}{P/O A16 ASSY also shown on} \\
\hline
\end{tabular}

\section*{Control Logic Memory 8 Sha. 20fo}
\(|\mathrm{H}| \mathrm{J}|\mathrm{K}||L| M\)

PTO AlE DIGITAL BOARD
SEE PARTS LIST FOR EARLIER values and serial number ranges of parts outlined OR DEPICTED IN GREY.
51310-5
Static Sensitive Devices See Maintenance Section

Chassis -mounted components have no Assembly Number prefix -see end oi Replaceable Electrical Parts List.

Table 8-10
COMPONENT REFERENCE CHART
(see Fig. 8-10 and Fig. 8-11)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{P/O A16 ASSY} & \multicolumn{4}{|l|}{FRONT PANEL, KEYBOARD AND DISPLAY DRIVE <8>} \\
\hline CIRCUIT NUMBER & SCHEMATIC LOCATION & BOARD LOCATION & Circuit NUMBER & SCHEMATIC LOCATION & \[
\begin{aligned}
& \text { BOARD } \\
& \text { LOCATION }
\end{aligned}
\] \\
\hline C1411 & E2 & 12 & A1404 & \(J 1\) & 12 \\
\hline C1412 & D6 & J2 & R1405 & J2 & 12 \\
\hline C1420 & D2 & 14 & R1411 & J2 & 12 \\
\hline C1421 & 84 & J4 & R1412 & J2 & 12 \\
\hline C1422 & 81 & \({ }^{J 5}\) & R1413 & J2 & 12 \\
\hline C1431 & B1 & 15 & R1421 & B5 & J4 \\
\hline CR1431 & 06 & J5 & R1432 & J3 & J5 \\
\hline CR1432 & C6 & J5 & R1433 & F3 & J5 \\
\hline CR1433 & \({ }^{0} 6\) & J5 & R1434 & F3 & J5 \\
\hline CR1501 & E6 & K2 & R1436 & K6 & J6 \\
\hline CR1502 & H7 & K2 & R1437 & K7 & J6 \\
\hline CR1503 & F7 & K2 & R1438 & B5 & J5 \\
\hline CR1521 & C6 & K4 & R1531 & K6 & L6 \\
\hline CR1522 & B6 & K4 & R1532 & K5 & \({ }^{16}\) \\
\hline CR1523 & K7 & K4 & R1533 & K5 & L6 \\
\hline CR1524 & 86 & K4 & & & \\
\hline CR1531 & D6 & K6 & 51511 & H5 & L3 \\
\hline CR1532 & J7 & K6 & S1512*** & \({ }^{35}\) & L3 \\
\hline J1411 & J1 & 12 & S1522 & 87 & K5 \\
\hline J1412 & M4 & J2 & S1523* & C7 & L4 \\
\hline J1413 & M6 & J3 & S1524* & C8 & L5 \\
\hline J1431 & K7 & J6 & S1531 & D8 & K5 \\
\hline & F7 & & S1532. & D8 & K5 \\
\hline P1411 & 11 & 12 & S1534* & E8 & L5 \\
\hline P1412 & M4 & J2 & & & \\
\hline P1413 & M6 & J3 & U1322 & L5 & H4 \\
\hline P1431 & K7 & J6 & U1411 & F1 & 13 \\
\hline & & & \(\cup 1412\) & E5 & J3 \\
\hline Q1421 & 85 & J4 & U1421 & D2 & 14 \\
\hline Q1431
Q 1432 & H3
\(H\) & \({ }^{J 5}\) & U1431
\(\mathbf{U 1 4 3 2}\) & \({ }_{\text {C5 }}\) & \({ }^{15}\) \\
\hline & & & & & \\
\hline \[
\begin{aligned}
& R 1402 \\
& \text { R1403 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{J} 1 \\
& \mathrm{~J}
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& 12
\end{aligned}
\] & \$500 & 58 & Chassis \\
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{P/O A16 ASSY also shown on \(\langle 4\rangle\langle 7\rangle\) (10)}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{P/O A12 ASSY} & \multicolumn{4}{|l|}{FRONT PANEL, KEYBOARD AND DISPLAY DRIVE <8)} \\
\hline J1010 & F7 & c1 & & & \\
\hline S1010
S1011 & H8
\(\mathrm{H8}\) & \({ }^{83}\) & & & \\
\hline S1012 & F7 & B3 & & & \\
\hline
\end{tabular}

Component located on back of board

\section*{Table 8-11 \\ COMPONENT REFERENCE CHART (see Fig. 8-12)}

\section*{Display \\ shit. 20 F 2}

*
Static Sensitive Devices See Maintenance Section

COMPONENT NUMBER EXAMPLE

14 DISPLAY BOARD

\(\langle 9\rangle_{\text {Is }}\) (see Fig. 8-10 and Fig. 8-11)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{P/O A12 ASSY} & \multicolumn{2}{|l|}{POWER SUPPLIES <10} \\
\hline CIRCUIT NUMBER & SCHEMATIC LOCATION & BOARD LOCATION & \begin{tabular}{l}
CIRCUIT \\
NUMBER
\end{tabular} & SCHEMATIC LOCATION & BOARD LOCATION \\
\hline C1301 & B7 & H1 & R1301 & D7 & G1 \\
\hline C1531 & C4 & K5 & R1304 & D7 & G1 \\
\hline C1541 & F8 & K6 & R1305 & C6 & G1 \\
\hline C1542 & C2 & K6 & R1307 & D6 & H1 \\
\hline C1622 & K8 & L4 & R1308 & D5 & H2 \\
\hline C1641 & D2 & M5 & R1434 & F6 & 15 \\
\hline C1642 & F4 & M5 & R1435 & F3 & J5 \\
\hline C1643 & B3 & M6 & R1445 & H7 & 16 \\
\hline & & & R1446 & H7 & 56 \\
\hline CR1421 & H3 & J3 & R1531 & J7 & K5 \\
\hline CR1442 & H6 & J5 & R1532 & K7 & K5 \\
\hline CR1541 & \(\mathrm{Cl}_{1}\) & K6 & R1534 & H8 & J5 \\
\hline CR1621 & L 8 & M4 & R1535 & H8 & J5 \\
\hline CR1641 & D1 & L6 & R1541 & E6 & J6 \\
\hline & & & R1542 & E7 & J6 \\
\hline F1541 & B1 & K5 & R1543 & E4 & J6 \\
\hline F1542 & B8 & K6 & R1544 & F8 & K6 \\
\hline F1641 & B3 & M5 & R1545
R1547 & B4 & K 6
K 6 \\
\hline J1410 & \(J 2\) & J1 & R1548 & C2 & L. 6 \\
\hline & & & TP1341 & E6 & H6 \\
\hline P1625 & B8 & N3 & TP1411 & B5 & 13 \\
\hline P1625 & B3 & N3 & TP1431 & H3 & J4 \\
\hline P1625 & U8 & N3 & TP1631 & L8 & L4 \\
\hline P1625 & B5 & N3 & TP1632 & D1 & L5 \\
\hline P1625 & B1 & N3 & U1401 & C6 & 11 \\
\hline & & & U1433 & C2 & 15 \\
\hline Q1443 & H8 & \(J 5\) & U1531 & D4 & K5 \\
\hline Q1444 & F6 & J6 & U164 1 & C1 & L6 \\
\hline Q1531 & J7 & J4 & VR1301 & C5 & H1 \\
\hline \multicolumn{6}{|c|}{P/O A12 ASSY also shown of} \\
\hline \multicolumn{2}{|l|}{P/O A16 ASSY} & & & \multicolumn{2}{|l|}{POWER SUPPLIES <10} \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
C1001 \\
C1101 \\
C1102 \\
C1402 \\
C1403 \\
C1501
\end{tabular}} & K5 & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { A2 } \\
& \text { C1 } \\
& \text { D1 } \\
& \mathrm{J} 1 \\
& \mathrm{~J} 2 \\
& \mathrm{~K} 1
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Q1001 } \\
& \text { Q1002 } \\
& \text { Q1003 }
\end{aligned}
\]} & \multirow[t]{2}{*}{K5

\(\mathbf{J 5}\)
\(\mathbf{K} 5\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { A1 } \\
& \text { B1 }
\end{aligned}
\]
B2} \\
\hline & 45 & & & & \\
\hline & K2 & & & K5 & \\
\hline & K3 & & \multirow[t]{2}{*}{R1001
R1002} & J4 & A2 \\
\hline & 13 & & & J5 & \multirow[t]{2}{*}{A2} \\
\hline & 4 & & R1002
R1003 & J5 & \\
\hline \multirow[t]{2}{*}{L1401} & L3 & \multirow[t]{2}{*}{J2} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { R1011 } \\
& \text { R1012 } \\
& \text { R1013 }
\end{aligned}
\]} & J5 & A2 \\
\hline & L & & & K6 & A2 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { P1410 } \\
& \text { P1410 }
\end{aligned}
\]} & K2 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { D1 } \\
& \text { D1 }
\end{aligned}
\]} & & K6 & A2 \\
\hline & L5 & & TP1310 & K2 & H3 \\
\hline \multicolumn{6}{|c|}{P/O A16 ASSY also shown on} \\
\hline
\end{tabular}

Power supplies
\[
5 h+10 F 2
\]
\(\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{D}| \mathrm{E}|\mathrm{F}| \mathrm{H} \mid\)

Power Supplies Sit. 20f2

©
Static Sensitive Devi See Maintenance Secti COMPONENT NUMBER EXA

\title{
Table 8-13 \\ COMPONENT REFERENCE CHART (see Fig. 8-13)
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{P/O A14 ASSY} & \multicolumn{2}{|r|}{GPIB BOARD \({ }^{\text {11 }}\)} \\
\hline CIRCUIT NUMBER & SCHEMATIC location & \[
\begin{aligned}
& \text { BOARD } \\
& \text { LOCATION }
\end{aligned}
\] & CIRCUIT NUMBER & SCHEMATIC LOCATION & BOARD LOCATION \\
\hline C1001 & L5 & B2 & R1101 & K7 & D3 \\
\hline C1002 & K8 & B3 & R1210 & E5 & F5 \\
\hline C1110 & 17 & C3 & R1301 & D4 & G2 \\
\hline C1201 & H1 & D1 & R1305 & C4 & G2 \\
\hline C1202 & 11 & F1 & & & \\
\hline C1210 & G7 & F4 & S1210 & D6 & F5 \\
\hline C1301 & E2 & G1 & & & \\
\hline C1302 & D4 & G2 & U1001 & K5 & C2 \\
\hline C \({ }_{\text {c }} 1310\) & L3 & G4 & U1002 & K8 & C3 \\
\hline C1311 & L2 & G5 & U1101 & 16 & C2 \\
\hline & & & U1102 & H1 & D2 \\
\hline P1210 & B1 & \({ }_{\text {A3 }}\) & U1201 & J1 & F2 \\
\hline P1210 & B2 & G3 & U1301 & D1 & F3 \\
\hline P1210 & B4 & G3 & & G6 & F5 \\
\hline \({ }^{P} 1211\) & \({ }^{85}\) & \({ }_{4}\) & U1311 & E8 & G5 \\
\hline P1211 & B6 & H3 & 41312 & G9 & G5 \\
\hline P1211 & B7 & H3 & U1313 & F8 & G6 \\
\hline Q1101 & K7 & D3 & & & \\
\hline
\end{tabular}

GPIB Microprocessor, Memory \& Controller (II)
Sht.loF 2

GPIB Microprocessor, Memory \& Controller She 20 OF

SEE PARTS LIST FOR EARLIER VALUES AND SERIAL NUMBER RANGES OF PARTS OUTLINED OR DEPICTED IN GREY.

\section*{REPLACEABLE MECHANICAL PARTS}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become avaitable, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{SPECIAL NOTES AND SYMBOLS}
x000 Part first added at this serial number
00X Part removed after this serial number

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

\section*{INDENTATION SYSTEM}

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

12345 Name \& Description
Assembly and/or Component
Attaching parts for Assembly and/or Component
- - * - .

Detail Part of Assembly and/or Component
Attaching parts for Detail Part
- . * - -

Parts of Detail Part
Attaching parts for Parts of Detail Part
. . * * - -

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol---* - - indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specifled.

\section*{ITE:M NAME}

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

\section*{ABBREVIATIONS}
\begin{tabular}{ll}
& \\
\(\#\) & INCH \\
\# & NUMBER SIZE \\
ACTR & ACTUATOR \\
ADPTR & ADAPTER \\
AI.IGN & ALIGNMENT \\
AL & ALUMINUM \\
ASSEM & ASSEMBLED \\
ASSY & ASSEMBLY \\
ATTEN & ATTENUATOR \\
AWG & AMERICAN WIRE GAGE \\
BD & BOARD \\
BAKT & BRACKET \\
BAS & BRASS \\
BRZ & BRONZE \\
BSHG & BUSHING \\
CAB & CABINET \\
CAP & CAPACITOR \\
CER & CEFAMIC \\
CHAS & CHASSIS \\
CKT & CIRCUIT \\
COMP & COMPOSITION \\
CONN & CONNECTOR \\
COV & COVER \\
CPLG & COUPLING \\
CRT & CATHOOE RAY TUBE \\
OEG & DEGREE \\
DWH & DRAWER
\end{tabular}
\begin{tabular}{ll}
ELCTRN & ELECTRON \\
ELEC & ELECTRICAL \\
ELCTLT & ELECTROLYTIC \\
ELEM & ELEMENT \\
EPL & ELECTRICAL PARTS LIST \\
EOPT & EQUIPMENT \\
EXT & EXTERNAL \\
FIL & FILLISTER HEAD \\
FLEX & FLEXIBLE \\
FLLH & FLAT HEAD \\
FLTR & FILTER \\
FR & FRAME OY FRONT \\
FSTNR & FASTENER \\
FT & FOOT \\
FXD & FIXED \\
GSKT & GASKET \\
HDL & HANDLE \\
HEX & HEXAGON \\
HEXHD & HEXAGONAL HEAD \\
HEX SOC & HEXAGONAL SOCKET \\
HLCPS & HELICAL COMPRESSION \\
HLEXT & HELICAL EXTENSION \\
HV & HIGHVOLTAGE \\
IC & INTEGRATED CIRCUIT \\
ID & INSIOE DIAMETER \\
IOENT & IOENTIFICATION \\
IMPLR & IAPELLER
\end{tabular}
\begin{tabular}{ll}
IN & INCH \\
INCAND & INSANDESCENT \\
INSUL & INSULATOR \\
INTL & INTERNAL \\
LPHLDA & LAMPHOLDER \\
MACH & MACHINE \\
MECH & MECHANICAL \\
MTG & MOUNTING \\
NIP & NIPPLE \\
NON WIRE & NOT WIRE WOUND \\
OBD & ORDER BY DESCRIPTION \\
OD & OUTSIDE DIAMETER \\
OVH & OVAL HEAD \\
PH BRZ & PHOSPHOR BRONZE \\
PL & PLAIN OrPLATE \\
PLSTC & PLASTIC \\
PN & PART NUMBER \\
PNH & PAN HEAD \\
PWR & POWER \\
RCPT & RECEPTACLE \\
RES & RESISTOR \\
GGD & AIGID \\
RLF & RELIEF \\
RTNR & RETAINER \\
SCH & SOCKET HEAD \\
SCOPE & OSCILLOSCOPE \\
SCR & SCREW
\end{tabular}
\begin{tabular}{ll}
SE & \multicolumn{1}{l}{ SINGLE END } \\
SECT & SECTION \\
SEMICOND SEMICONDUCTOR \\
SHLD & SHIELD \\
SHLOR & SHOULDERED \\
SKT & SOCKET \\
SL & SLIDE \\
SLFLKG & SELFLOCKING \\
SLVG & SLEEVING \\
SPR & SPRING \\
SQ & SQUARE \\
SST & STAINLESS STEEL \\
STL & STEEL \\
SW & SWITCH \\
T & TUBE \\
TERM & TERMINAL \\
THO & THREAD \\
THK & THICK \\
TNSN & TENSION \\
TPG & TAPPING \\
TRH & TRUSS HEAD \\
V & VOLTAGE \\
VAR & VARIABLE \\
WI & WITH \\
WSHR & WASHER \\
XFMR & TRANSFORMEA \\
XSTR & TRANSISTOR
\end{tabular}

\section*{Replaceable Mechanical Parts-DC 5009}

CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code
Manufacturer

000BB
000BK
00779
01536
07707
22526
31223
71785
73743
73803

78189
79807
80009
83385
85471
93907

BERQUIST COMPANY
STAUFFER SUPPLY AMP, INC.
CAMCAR DIV OF TEXTRON INC. SEMS products unit
usm Corp., usm fastener div.
berg electrontcs, inc.
micro plastics, inc.
TRW, CINCH CONNECTORS
FISCHER SPECIAL MFG. CO.
texas instruments, inc., metallurgical materials dyv.
ILLINOIS TOOL WORKS, INC.
SHAKEPROOF DIVISION wrought washer mpg. co. tektronix, inc.
CENTRAL SCREW CO.
BOYD, A. B., CO.
TEXTRON INC. CAMCAR DIV

4350 WEST 78 TH
105 se taylor
P 0 BOX 3608
1818 Christina st.
510 RIVER RD.
youk expressway
20821 DEARBORN STREET
1501 morse avenue
446 MORGAN ST.
34 Forest street
St. Charles road
2100 S . 0 bay St. P 0 BOX 500
2530 CRESCENT DR.
2527 grant avenue 600 18TH AVE

MINNEAPOLIS, MN 55435
PORTLAND, OR 97214
HARRISBURG, PA 17105
ROCKFORD, IL 61108
SHELTON, CT 06484
NEW CUMBERLAND, PA 17070
CHATSWORTH, CA 91311
ELK GROVE VILLAGE, IL 60007
CINCINNATI, OH 45206

ATTLEBORO, MA 02703
ELGIN, IL 60120
MILWAUKEE, WI 53207
BEAVERTON, OR 97077
BROADVIEW, IL 60153
SAN LEANDRO, CA 94579
ROCKFORD, IL 61101

Fig. \&
\begin{tabular}{llllllll}
Index & Tektronix & Serial/Model No. & & & & & Mfr \\
No. & Part No. & Eff & Oscont & Qty 12345 & Name \& Description & Code & Mfr Part Number \\
\hline
\end{tabular}

Fig. 8
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Index \\
No
\end{tabular} & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Qty & 12345 Name \& Description & Mfr Code & Mfr Part NuI \\
\hline 1-79 & ---..- ---- & & 1 & \begin{tabular}{l}
. OSCIALLATOR, RF: (SEE A12Y1531 REPL) \\
. (OPTION Ol ONLY) \\
(ATTACHING PARTS)
\end{tabular} & & \\
\hline -80 & 211-0097-00 & & 2 & \begin{tabular}{l}
. SCREW, MACHINE:4-40 X 0.312 INCH, PNH STL \\
. (OPTION Ol ONLY)
\end{tabular} & 83385 & OBD \\
\hline -81 & 361-0548-00 & & & \begin{tabular}{l}
. SPACER,RING:0.125 ID X 0.25 OD X 0.110 ID \\
. (OPTION 01 ONLY)
\end{tabular} & 80009 & 361-0548-00 \\
\hline -82 & ----------- & & 1 & . CONTACT ASSY, EL: (SEE A12J1420,J1421 REPL) & & \\
\hline -83 & & & 1 & . TERM. SET, PIN: (SEE A12J1010,J1310, J1410 REPL) & & \\
\hline -84 & 384-0617-00 & & 2 & \begin{tabular}{l}
SPACER, POST: 0.375 L X 0.25 HEX \\
(attaching parts)
\end{tabular} & 80009 & 384-0617-00 \\
\hline -85 & 211-0008-00 & & 2 & SCREW,MACHINE:4-40 X 0.250, PNH,STL,CD PL & 83385 & OBD \\
\hline -86 & ----- ----- & & 1 & CKT board assy: Digital (see al6 repl) (attaching parts) & & \\
\hline -87 & 211-0008-00 & & 5 & SCREW, MACHINE:4-40 X 0.250, PNH, STL, CD PL & 83385 & OBD \\
\hline -88 & 129-0315-00 & & 5 & SPACER, POST:0.45 L, 4-40 THRU THD & 80009 & 129-0315-00 \\
\hline & ------ --.-- & & - & CKT board assy includes: & & \\
\hline -89 & -------------- & & & \begin{tabular}{l}
. SWITCH PB ASSY:(SEE A16S1521, S1522, S1523, \\
- S1524,S1531,S1532,S1533,S1534 REPL)
\end{tabular} & & \\
\hline -90 & 343-0495-04 & & 2 & . CLIP, SLTTCH: FRONT, 7.5 MM,4 UNIT (attaching parts) & 80009 & 343-0495-04 \\
\hline -91 & 210-3050-00 & & 8 & . EyElet, Metallic:0.218 L X 0.059 OD,bRS & 07707 & SE-27 \\
\hline -92 & 343-0499-04 & B010100 b010279 & 2 & . CLIP, SWITCH: REAR, 7. SMM \(\times 4\) UNIT & 80009 & 343-0499-04 \\
\hline & 343-0499-13 & B010280 & 2 & . CLIP, SWITCH: 7.5 MM X 4 UNIT (attaching parts) & 80009 & 343-0499-13 \\
\hline -93 & 210-3050-00 & & 8 & . EYELET,METALLIC:0.218 L X 0.059 od, bRS & 07707 & SE-27 \\
\hline -94 & ---------- & & 1 & . SW Lever Assy: (SEe Al6S1511 Repl) (attaching parts) & & \\
\hline -95 & 213-0872-00 & & 3 & . SCREW,TPG,TF: 2-28 X 0.75,TYPE 2, PNH & 93907 & OBD \\
\hline -96 & ---.--- ----- & & 1 & . SW Lever assy; (SEE A16S1512 Repl) & & \\
\hline -97 & 136-0260-02 & & 8 & . SkT,PL-IN ELEK:MICROCIRCUIT, 16 dip,Low CLE & 71785 & 133-51-92-00 \\
\hline -98 & 136-0670-00 & & 1 & . SKT, PL-IN ELEK:MICROCKT, 18 PIN,LOW PROFILE & 73803 & C59002-18 \\
\hline -99 & 136-0578-00 & & 1 & . SKT, PL-IN ELEK:MICROCKT, 24 PIN,LOW PROFILE & 73803 & C 59002-24 \\
\hline -100 & ---------- & & & \begin{tabular}{l}
. TERM. SET,PIN:(SEE A16J1331,J1411,J1412, \\
. J1413,J1431 REPL)
\end{tabular} & & \\
\hline -101 & 136-0263-04 & & 4 & . SOCKET, PIN TERM:FOR 0.025 INCH SQUARE PIN & 22526 & 75377-001 \\
\hline -102 & ---------- & & 1 & . TERM. SET, PIN: (SEE A16J1210, J1211 REPL) & & \\
\hline -103 & 136-0499-06 & & 2 & - CONN, RCPT, ELEC: CIRCUIT Bd, 6 Contacts & 00779 & 3-380949-6 \\
\hline -104 & 136-0499-08 & & 1 & - CONNECTOR, RCPT, : 8 CONTACT & 00779 & 30380949-8 \\
\hline -105 & --..-- --.... & & & \begin{tabular}{l}
. TERM, TEST POINT: (SEE A16TP1301,TP1302, \\
- TP1 303 REPL)
\end{tabular} & & \\
\hline -106 & 136-0694-00 & & 1 & - SRT, PL-TN ELEK:MICROCIRCUIT, 28 Contact & 73803 & CS9002-28 \\
\hline -107 & 136-0623-00 & & 1 & . SOCKET, PLUG-IN:40 DIP,LOW PROFILE & 73803 & CS9002-40 \\
\hline -108 & 131-0993-07 & & 1 & . LINK, TERM. CONNE: 2 WIRE VIOLET & 00779 & 530153-7 \\
\hline -109 & 342-0355-00 & & 1 & INSULATOR, PLATE:TRANSISTOR, SILICONE RUBBER (OPTION 01 ONLY) & 000вв & 7403-09FR-51 \\
\hline -110 & 214-1061-00 & & 1 & SPRING, GROUND: FLAT & 80009 & 214-1061-00 \\
\hline -111 & 214-3089-00 & & 2 & LOCKOUT, PLUG-IN: PLASTIC & 80009 & 214-3089-00 \\
\hline -112 & 426-1763-00 & & 1 & FR SECT, plug-in : TOP & 80009 & 426-1763-00 \\
\hline -113 & 426-0724-01 & & 1 & FR SECT, PLUG-IN: BOTTOM & 80009 & 426-0724-01 \\
\hline
\end{tabular}

Fig. \&
Index Tektronix Serial/Model No
No. Part No. Eff Dscont Qty 12345 Name \& Description \(\quad\) Code \(\quad\) Mtr Part Number

\section*{WIRE ASSEMBLIES}
\begin{tabular}{|c|}
\hline 175-323 \\
\hline 352-0169-00 \\
\hline 175-323 \\
\hline 352-016 \\
\hline 175-3238-00 \\
\hline 04 \\
\hline 175-3232-00 \\
\hline 352-0169 \\
\hline 175-3227-00 \\
\hline 352-0161-02 \\
\hline 175-2623-00 \\
\hline 352-0169-00 \\
\hline 175-3228-00 \\
\hline 352-0161-03 \\
\hline 352-0161-02 \\
\hline 175-3229-00 \\
\hline 352-0165-03 \\
\hline 175-3235-00 \\
\hline 352-016 \\
\hline 175-3240-00 \\
\hline 352-0169-06 \\
\hline 175-3230-00 \\
\hline 352-0166-04 \\
\hline 175-3231-00 \\
\hline 352-0166-05 \\
\hline 175-3234-00 \\
\hline 352-0169-01 \\
\hline 175-3236-00 \\
\hline 352-0169-02 \\
\hline 175-3237-00 \\
\hline 352-0169~03 \\
\hline 175-3433-00 \\
\hline 2-0 \\
\hline
\end{tabular}

CABLE ASSY,RF:50 OHM COAX,12.0 L, \(9-\mathrm{N}\)
- (FROM J520,J530 TO Al2J1402)

1 . HLDR,TERM CONN: 2 WIRE BLACK
CABLE ASSY,RF:50 OHM COAX,14.0 L,9-5
(FROM J540 TO A12J1341)
. CONN BODY, PL, EL: 2 WIRE GREEN
CABLE ASSY, RF; 50 OHM COAX, \(14,0 \mathrm{~L}, 9-4\)
(FROM J560 TO Al2J1442)
. CONN BODY, PL, EL: 2 WIRE YELLOW
CABLE ASSY, SP, ELEC: 2,26 AWG, 12.0 L, RIBBON
(FROM J570, J580 TO Al2J1411)
. HLDR TERM CONN: 2 WIRE, BROWN
CA ASSY, SP, ELEC: 3,26 AWG, 6.0 L, RIBBON
(FROM R500/S500 TO Al2J1301)
2 . CONN BODY, PL, EL: 3 WIRE RED
1 CA ASSY, SP, ELEC: 2,26 AWG,3.0 L
(FROM R500/S500 TO Al6J1431)
- HLDR,TERM CONN: 2 WIRE BLACK

CA ASSX, SP, ELEC:3,26 AWG,7.0 L,RIBBON
(FROM R510 T0 Al2J1303)
- CONN BODY, PL, EL: 3 WIRE ORANGE
- CONN BODY,PL,EL: 3 WIRE RED

CA ASSY, SP, ELEC: 7, 26 AWG, 3.5 L, RLBBON (FROM AlOJ1012 TO Al6J1412)
- CONN BODY,PL,EL: 7 WIRE ORANGE

CABLE ASSY,RF:50 OHM COAX, \(10.0 \mathrm{~L}, 9-0\) (FROM Al0J1031 TO Al2J1521)
. HLDR, TERM CONN: 2 WIRE BLACK
CABLE ASSY, RF: 50 OHM COAX, \(10.0 \mathrm{~L}, 9-6\)
(FROM AlOJ1041 T0 Al2J1522)
- CONN BODY,PL,EL: 2 WIRE BLUE

CA ASSY, SP, ELEC: 8,26 AWG, 4.0 L, RIBBON (FROM A10J1101 TO Al6J1411)
- CONN BODY, PL, EL: 8 WIRE YELLOW

CA ASSY, SP, ELEC: 8, 26 AWG, 3.5 L, RIBBON (FROM AlOJll02 TO Al6J1413)
. CONN BODY,PL,EL: 8 WIRE GREEN
CABLE ASSY,RF:50 OHM COAX, \(3.5 \mathrm{~L}, 9-1\)
(FROM Al2J1403 TO Al2J1501)
. HLDR TERM CONN: 2 WIRE, BROWN
CABLE ASSY, RF: 50 OHM COAX, \(7.5 \mathrm{~L}, 9-2\)
(FROM Al2J1441 TO Al2J1622)
. CONN BODY, PL, EL: 2 WIRE RED
CABLE ASSY,RF; 50 OHM COAX,6.0 L,9-3
(FROM Al2J1443 TO Al2J1623)
. CONN BODY, PL, EL: 2 WIRE ORANGE
CA ASSY, SP, ELEC: 2,26 AWG,3.0 L,RIBBON
(FROM A12J1621 TO A12U500) SUBPART OF A12
. CONN BODY,PL,EL:3 WIRE BLUE

80009 175-3233-00
80009 352-0169-00
80009 175-3239-00
80009 352-0169-05
80009 175-3238-00
80009 352-0169-04
80009 175-3232-00
80009 352-0169-01
80009 175-3227-00
80009 352-0161-02
80009 175-2623-00
80009 352-0169-00
80009 175-3228-00
\(\begin{array}{ll}80009 & 352-0161-03 \\ 80009 & 352-0161-02\end{array}\)
80009 352-0161-02
80009 175-3229-00
80009 352-0165-03
80009 175-3235~00

80009 352-0169-00
80009 175-3240-00
80009 352-0169-06
80009 175-3230-00
80009 352-0166-04
80009 175-3231-00
80009 352-0166-05
80009 175-3234-00
80009 352-0169-01
80009 175-3236-00
80009 352-0169-00
80009 175-3237-00
80009 352-0169-03
80009 175-3433-00
80009 352-0161-06

Fig. \(/\) Exploded Shy. 20 Fa

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fig. \& Index No. & Tektronix Part No. & \begin{tabular}{l}
Serial/Model No. \\
Eff Dscont
\end{tabular} & Qty & 12345 & Name \& Description & \[
\begin{aligned}
& \text { Mfr } \\
& \text { Code }
\end{aligned}
\] & Mfr Part Nun \\
\hline & 070-3888- & & 1 & manual, tec & ction & 80009 & 070-3888-00 \\
\hline & 175-3765-0 & & & Cable ass & HM COAX,48.0 L, 8 -n & 80009 & 175-3765-01 \\
\hline & 070-3560- & & 1 & MANUAL, TEC & NCE GUIDE & 80009 & 070-3560-00 \\
\hline
\end{tabular}```

[^0]: ${ }^{1}$ Published by the Institute of Elecrical and Electronies Engi*

