Programmer Manual

Tektronix
/

AWG2000 Series
Arbitrary Waveform Generators

070-8657-50

www.tektronix.com

Copyright© Tektronix Japan, Ltd. All rights reserved.
Copyright© Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes
that in all previously published material. Specifications and price change privileges reserved.

Tektronix Japan, Ltd., 5-9-31 Kitashinagawa, Shinagawa—ku, Tokyo 141-0001 Japan
Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

WARRANTY

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year
from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either
will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the
defective product.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the
warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for
packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid.
Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the
Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any
other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate
maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting
from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair
damage resulting from improper use or connection to incompatible equipment; or c) to service a product that has been
modified or integrated with other products when the effect of such modification or integration increases the time or
difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY
OTHER WARRANTIES, EXPRESSED OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND
EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX
AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Table of Contents
Preface iX
Getting Started
OV IV W . . ettt 1-1
Choosing an Interface 1-2
Installing for GPIB Communication ot 1-3
Installing for RS-232-C Communicatian 1-6
Confirmation of GPIB Settingsot 1-10
OPErAtION . .« . vttt e e 1-12

Syntax and Commands

Command Syntaxiit i e 2-1
Command NOtatioN. 2-1
Program and Response MeSSageso v v 2-1
Command and Query STruCtuLe oo 2-2
Character ENncodingo 2-2
Syntactic Delimiters 2-3
WhiIte SPacCe.o 2-3
Special Characters. 2-3
ATQUMENES . . 2-4
Header 2-6
Concatenating Commandso 2-8
QUEIY RESPONSES . . . o ot 2-9
Other General Command Conventions., 2-10
Syntax Diagrams. 2-10
Command GroUPSo oot 2-13
Commands Grouped by Function. 2-13
Command “Quick Reference’. 2-14
Command SUMMANESottt e 2-16
Command DesCriptions. oo 2-27
ABSTOUCh . ..o 2-27
ALLEV? 2-30
AUTOSEEP: DEFINE(?). . o oo e e e 2-30
AL 2:32
CH1:OPERation(?) (AWG2005/20/21).o vt 2-33
CHX> 2 o 2-35
CHX> AMPLItUAE(?). . e e e e 2-36
CHXZIFILT () . v v vttt e e e e e 2-37
CH<x>:MARKERLEVEL1? (AWG2040/41)« 2-38
CH<x>:MARKERLEVEL1:HIGH(?) (AWG2040/41).t 2-39
CH<x>:MARKERLEVEL1:LOW(?) (AWG2040/41). 2-39
CH<x>:MARKERLEVEL2? (AWG2040/41)o 2-40
CH<x>:MARKERLEVEL2:HIGH(?) (AWG2040/41). 2-41
CH<x>:MARKERLEVEL2:LOW(?) (AWG2040/41). 2-42
CHX>I0OFFSet (2) . v vt e 2-42
CH<x>TRACK? (AWG2005/20/21) . . .« oot e e e e 2-43

AWG2000 Series Programmer Manual i

Table of Contents

CH<x>TRACK:AMPLitude(?) (AWG2005/20/21) oo 2-44
CH<x>:TRACK:OFFSet(?) (AWG2005/20/21)« oo 2-45
CHX>IWAVETOrM (2) . . 2-46
CLO K ? . et e 2-47
CLOCK:CH2? (AWG2020/21) . . . o ettt e e e e e e e e 2-47
CLOCKk:CH2:DIVider(?) (AWG2020/21). . . . oo et i 2-48
CLOCK:IFREQUENCY(?) « v v vt e e e e e e e e e 2-48
CLOCK:SOURCE(?) v vttt et e e e e e e 2-49
CLOCk:SWEep:DEFIine(?) (AWG2005).ottt 2-50
CLOCkK:SWEep:DWELI(?) (AWG2005). oo oot e 2-51
CLOCk:SWEep:FREQuency? (AWG2005). v oot 2-52
CLOCk:SWEep:FREQuency:STARt(?) (AWG2005)t 2-52
CLOCk:SWEep:FREQuency:STOP(?) (AWG2005)covvivent. 2-53
CLOCkK:SWEep:MODE(?) (AWG2005) oot e 2-54
CLOCK:SWEep:STATe(?) (AWG2005)o oot e 2-55
CLOCK:SWEep:TIME(?) (AWG2005) oottt e 2-56
CLOCK:SWEep:TYPE(?) (AWG2005). . . . o oot i 2-57
LS o 2:58
CONFigure(?) (AWG2005) . . . vt e e e e e 2-58
CURVE (2) ot e 2-59
DAT A () ot 2-60
DATADESTINGtON (2) . . .ottt e 2-61
DATAIENCDG (2) .« oottt e e e e e 2-61
DATA I SOURCE ()« o vt it e e e e 2-62
DATAIWIDTR (2) ot 2-63
DATE () ottt 2-64
DEBUG? . .o 2-65
DEBUQGISNOOD? . . . ottt e 2-65
DEBUQ:SNOOP:DELAY?. . .o ot e 2-66
DEBUQ:SNOOP:DELAY:TIME (?). . . o oo e 2-66
DEBUQG:SNOOR:STATE (2) . o o i i e e e e e e 2-67
DESE (2) « vttt 2-69
DI A G ? o 2-69
DIAGIRESUI? . . o 2-71
DIAG:ISELECE (2). « oottt e 2-71
DIAG: S TATE ot 2-72
DISK . 2-73
DISKICDIRECIOIY . . . ottt et e e e e e e e e 2-74
DISK:DIRECIONY 2. . o ettt 2-74
DISKIFORMAL?. . . .ot 2-75
DISKIFORMaALSTATE. . . oo e 2-75
DISKIFORMAt:TYPE (2) . o o oottt e e e 2-76
DISKIMDIRECIOIY . . . oottt 2-77
DISPIaY ? . 2-77
DISPlay:BRIGHhtNESS (?) . . .t 2-78
DISPIay:CATalOg?.ot 2-79
DISPlay:CATalog:ORDEr (2) . . . o ot 2-80
DISPIaY:CLOCK (2). « v v ottt 2-81
DISPlay:MENU? 2-82
DISPlay:MENU:SETUD?ot e e e 2-83
DISPlay:MENU:SETUp:FORMat (?)o oo e 2-83
DISPIay:MESSAge (?) . .« o oot e 2-84
DISPlay:MESSage:SHOW (2) . . .o oo e 2-85

AWG2000 Series Programmer Manual

Table of Contents

EQUALION:COMPIlE (2) . .o e 2-86
EQUALION:COMPIIE:STATE (?) . o o et e 2-87
EQUALION:DEFINE(?) . . . oo 2-89
EQUALION:WPROINES (2). . . o oot e e 2-90
ESE (2) . ottt 2-91
B S R . L 2-92
EVENT 2. 2-92
BV SO 2-93
BV O Y 2. o 2-93
FACTOY . . 2-94
FG . o 2:94
FG i CHSX> 2 o 2-95
FG:CH<x>AMPLItude (?). oo e 2-96
FGICHSX>IOFFSE (?). . ottt 2-97
FG:CH<X>POLArtY (2). . oottt e e e e e 2-98
FGiCHSX> SHAPE (?) . . o oo e e e 2-99
FGIFREQUENCY (2). . o v ottt e e e 2-101
FGiSTATE (). ot i 2-101
HCOPY (7). o et 2-102
HCOPY DA T A ? o 2-103
HCOPY:FORMAL (?) . . . v oot e 2-104
HCOPY PORT (2) . ottt e e e e 2-105
HEADEI (2) .« ottt 2-105
HWSequencer? (AWG2041).ottt e e e e 2-106
HWSequencer:INSTalled? (AWG2041).t 2-107
HWSequencer:-MODE(?) (AWG2041).ottt 2-108
D 2:109
DN ? o 2-109
LOCK(?) o vttt 2-110
RN 2-111
MARKEI DATA(?) - o oot 2-112
MARKERSX> AOFF 2-113
MARKERSX>POINU(?) . . .ot e 2-114
MEMOY 2 2-115
MEMOrY:CATalog? . . o oo et e 2-116
MEMory:CATalog:ALL? 2-117
MEMOry:CATalog:AST 2. . o o e 2-118
MEMory:CATalog:EQU? 2-118
MEMory:CATalog:CLK? (AWG2005).ot 2-119
MEMory:CATalog:CLK? (AWG2005). oo e 2-120
MEMory:CATalog:SEQ?. 2-121
MEMory:CATalog:WEM? e 2-121
MEMOry:COMMENt(?) . . . oot 2-122
MEMOIY:COPY . . 2-123
MEMOrY:DELEte 2-123
MEMOrY:FREE? 2-124
MEMoOry:FREE:ALL? 2-125
MEMOIY:LOCK(?) . o oot 2-125
MEMory:RENamMe. 2-126
MMEMOIY 2 2:127
MMEMOry:ALOAd? . . .o 2-128
MMEMory:ALOad:MSIS(?)o 2-129
MMEMOry:ALOAd: STATE(?) . . o et e 2-130

AWG2000 Series Programmer Manual iii

Table of Contents

MMEMOry:CATalog? . . . oo 2-131
MMEMory:CATalog:ALL? 2-132
MMEMOry:CATalog:AST 2 . . o o e 2-133
MMEMory:CATalog:EQU?. o 2-133
MMEMOory:CATalog:SEQ?. . . . o ot 2-134
MMEMory:CATalog:WEM? e 2-135
MMEMory:DELete 2-135
MMEMOIY:FREE?. . . . 2-136
MMEMoOry:FREE:ALL? 2-137
MMEMOIY:LOAD . . . 2:137
MMEMOIY:LOCK(?) . . vt e e 2-138
MMEMOIY:MSIS(?) . ..o 2-139
MMEMory:REName. 2-140
MMEMOIY:SAVE . . o 2-140
MODE(?) . o et 2-141
O () vttt 2-:143
O P T 2 2-144
OUT PUL? .o 2:144
OUT PUL CHSX> 2. o e 2-145
OUTPut:CH<x>:STATe(?) (AWG2005/20/21). oo 2-146
OUTPut:CHL:INVerted? (AWG2040/41) oo oo 2-147
OUTPut:CH1:INVerted:STATe(?) (AWG2040/41).o, 2-147
OUTPut:CHL:NORMal? (AWG2040/41) oo 2-148
OUTPut:CH1:NORMal:STATe(?) (AWG2040/41).o 2-149
OUTPUt:SYNC(?) (AWG2020/21) . . . o vttt e e e 2-150
P S (2] vt 2:151
RS T o 2-152
RUNNING(?) . o oot e 2-152
SECUIE . oo 2:153
SELRCAl? . o o 2-153
SELFCal:RESULL? . ..o 2-154
SELFCal:SELECH(?). . . . v oo 2-155
SELFCAlSTATE . . .o 2-156
SEQUENCE:IDEFINE(?) . v e 2-156
SEQUeNce:EXPANd. e 2-157
PO RE(?) vt 2-:158
ST AR . . 2-159
ST B . o o 2-160
ST O 2-160
TIME(?) .« 2-161
TR G o 2-161
TRIGOEI ? . oo 2-:162
TRIGger:IMPedance(?) (AWG2020/21/40/41). oo 2-162
TRIGQErLEVEI(?) . . o 2-163
TRIGQErNPOLArtY(?) . . oot 2-164
TRIGQENSLOPE(?) .« oot 2-164
T ST e 2-165
UNLOCK . .ot 2-166
UPTimMe 2. . o 2:166
VERBOSE(?). . ottt 2-167
AN AL 2-168
WAV M ? 2-168
WM P 2. 2-169

AWG2000 Series Programmer Manual

Table of Contents

Status and Events

Examples

WEMPTIEBIT_NR(?). . o oo e e e 2-170
WEMPTIE:BN_FMT(?). . ot e e 2-170
WEMPIe: BYT __ NR(?). ..ot e e 2-171
WEMPTIE BY T _OR(?) . vt e e 2-172
WEMPTIe:CRVCHK(?). . vt e e 2-173
WEMPTIE ENCDG(?). « o v oottt e e e e e e 2-174
WEMPTIEINR _PT () . oo e e e e 2-174
WEMPTIE P T _FMT(2) e vt e e e e 2-175
WEMPTIe PT _OFF(?) . oo e e e e e e 2-176
WEMPTIEXINCR(?). . oottt e e e e 2-177
WEMPTIE XUNIT(?) . o o e e e e 2-177
WEMPTIE: XZERO(?) . . vt e e e 2-178
WEMPIEYMULT(?) . o o vt e e e e e e e e e e e e 2-179
WEMPTIE Y OFF (). . o e e e 2-179
WEMPTIE YUNIT(?) . o oot e e e e 2-180
WFEMPTIEYZERO(?) . . o v v e e e e e e e e e e e e e 2-181
WEMPTIEWFID(?). .« o v v e e e e e e e e e e e e 2-181
Retrieving Response Messages. 2-183
Waveform Transfer. e 2-184
Statusand Event Reporting. 3-1
REgiStErS . . o 3-1
QUEBUES. . o ot e 3-5
Processing SEQUENCE.ottt 3-6
I/O Status and Event SCreen. 3-8
MESSAQES . . . o oot 3-9
Execution Synchronization. e 3-19
FWAL COMMaANG. . ..o 3-19
Synchronization Using the *OPC Command 3-19
The *OPC QUEIY. . . . oottt e e e 3-20
Programming Examples 4-1
Compiling the Example Programst e e 4-1
Executing the Example Programst 4-3
Example 1: Waveform Transfer #1. 4-6
Example 2: Waveform Transfer #2. 4-21
Example 3: Equation Transferand SettingUp. 4-29
Example 4: Interactive Communication. i 4-40
SUPPOIt FUNCHIONS.o e e 4-55

AWG2000 Series Programmer Manual v

Table of Contents

Appendices

Glossary & Index

vi

Appendix A: Character Charts A-1
Appendix B: Reserved Words B-1
Appendix C: Interface Specification C-1
Interface FUNCLIONS. Cc-1
INterface MESSAgES. . . . o oot c-2
Appendix D: Factory Initialization Settings D-1
GloSSarY ... Glossary-1
INdEX . Index—-1

AWG2000 Series Programmer Manual

Table of Contents

List of Figures

Figure 1-1: Functional Layers in GPIB System. 1-1
Figure 1-2: GPIB Connector i 1-3
Figure 1-3: GPIB System Configurations. 1-4
Figure 1-4: GPIB Parameter Settings. 1-6
Figure 1-5: RS-232-C Point-to-Point Connection. 1-6
Figure 1-6: RS-232-C PoOrt.o 1-7
Figure 1-7: Pin Assignments of 9-Pin and 25-Pin

D-Type Shell Connector. i 1-8
Figure 1-8: Typical RS-232-C Cable Wiring Requirements. 1-8
Figure 1-9: RS-232-C Parameter Settings. 1-10
Figure 1-10: Confirmation of GPIB Settings 1-11
Figure 1-11: GPIB and RS-232-C Status Line. 1-12
Figure 2-1: Command and Query Structure Flowchart 2-2
Figure 2-2: Typical Syntax Diagrams 2-11
Figure 2-3: ABSTouch Arguments and Associated Controls. 2-29
Figure 2-4: GPIB: Retrieving Response Messages 2-183
Figure 2-5: RS-232-C: Retrieving Response Messages 2-183
Figure 2-6: Source and Destination. 2-185
Figure 3-1: The Standard Event Status (SESR) 3-2
Figure 3-2: The Status Byte Register (SBR) 3-3
Figure 3-3: The Device Event Status Enable Register (DESER). . . 3-4
Figure 3-4: The Event Status Enable Register (ESER)........... 3-4
Figure 3-5: The Service Request Enable Register (SRER). 3-5
Figure 3-6: Status and Event Handling Process Overview. 3-7
Figure 3-7: Status and Event Screen i 3-8

AWG2000 Series Programmer Manual vii

Table of Contents

List of Tables

Table 1-1: GPIB and RS-232-C Comparison. 1-2
Table 2-1: BNF Symbols and Meanings. 2-1
Table 2-2: Decimal Numeric Notation 2-4
Table 2-3: Header in Query Responses. 2-9
Table 2-4: Function Groups in the Command Set. 2-13
Table 2-5: Calibration and Diagnostic Commands. 2-16
Table 2-6: Display Commands 2-16
Table 2-7: FG Commands 2-17
Table 2-8: Hardcopy Commands oo, 2-17
Table 2-9: Memory Commands. 2-18
Table 2-10: Mode Commandsttt 2-19
Table 2-11: Output Commands 2-20
Table 2-12: Setup Commands. 2-21
Table 2-13: Status and Event Commands. 2-23
Table 2-14: Synchronization Commands. 2-23
Table 2-15: System Commands., 2-23
Table 2-16: Waveform Commandst 2-25
Table 3-1: SESR Bit Functions 3-2
Table 3-2: SBR Bit Functions 3-3
Table 3-3: Definition of EventCodes 3-9
Table 3-4: Normal Condition i 3-10
Table 3-5: Command Errors (CMEBIit:5) 3-10
Table 3-6: Execution Errors (EXEBIit:4) 3-12
Table 3-7: Execution Errors (EXEBIit:4) 3-13
Table 3-8: System Event and Query Errors. 3-14
Table 3-9: Warnings (EXE Bit:4) 3-14
Table 3-10: Internal Warnings (DDEBIit:3) 3-15
Table 3-11: Device-Dependent Command Execution Errors. 3-15
Table 3-12: Extended Device Specific Errors 3-17
Table A-1: The AWG2000 Character Set. A-1
Table A-2: ASCII & GPIB Code Chart A-2
Table C-1: GPIB Interface Function Implementation C-1
Table C-2: GPIB Interface Messages. C-2
Table D-1: Factory Initialized Settings D-1

viii AWG2000 Series Programmer Manual

Y A
Preface

This is the Programmer Manual for the AWG2000 Series Arbitrary Waveform
Generators. This manual provides information on operating these instruments
using General Purpose Interface Bus (GPIB) interface and RS-232-C interface.

Related Manuals
Other documentation for the waveform generators includes:

® The User Manual that describes the operation of the Arbitrary Waveform
Generator that was supplied as a standard accessory with the instrument.

m The Service Manual (optional accessory) provides information for maintain-
ing and servicing the Arbitrary Waveform Generator.

AWG2000 Series Programmer Manual ix

Preface

X AWG2000 Series Programmer Manual

./
Getting Started

Overview

The Arbitrary Waveform Generator has two interfaces for remote operation — the
GPIB interface and the RS-232-C interface. All menu controlled and front-panel
controlled functions, except the ON/STBY function, the edit function, and the
GPIB and RS-232-C parameter setup functions, can be controlled through the
GPIB or the RS-232-C interface using the programming command set (see
Section 3).

The GPIB interface conforms to ANSI/IEEE Std 488.1-1987, which specifies the
hardware interface, its basic functional protocol, and a set of interface messages
(codes) that control the interface functions. This instrument also conforms to
ANSI/IEEE Std 488.2-1987 which specifies Codes, Formats, Protocols, and
Common Commands to support the system application. The functional layers of
the GPIB system are shown in Figure 1-1.

BUS
AT :'__I__T__I_:;"

Device-specific Messages

]]]]] :
Common Commands and Queries | |
[[[I [[I I
1 1 1 1		
Syntax and Data Structures		
[[[[
Lo
.
L
I o |

I

| L L |
: Remote INTFC Messages :
| |

|
|
|
cl sl a | | Al c
L1 "1~ L_____|.

| b
_|
< System Componentx -> <— System Componenty -»
Specified | |ggE 48,2 | IEEE 488.1 | \eEg ags2 | Specified
by Standard | Standard | Standard by
Device | | | | Device

A: Interface Function Layer

B: Message Communication Function Layer
C: Common System Function Layer

D: Device Function Layer

Figure 1-1: Functional Layers in GPIB System

The RS-232-C interface, which was established by the Electronic Industries
Association (EIA), provides a common basis of communication between devices

AWG2000 Series Programmer Manual 11

Getting Started

Programmer Manual
Contents

Choosing an Interface

that exchange data. This interface has long been used on terminals, modems,
printers, and other devices. The RS-232-C interface that the waveform generator
provides also uses most of the same Codes, Formats, Protocols, and Common
Commands as are used with the GPIB interface (ANSI/IEEE Std 488.2-1987).

Getting Startedlescribes how to connect and set up for remote operation.

Syntax and Commandegfine the command syntax and processing conven-
tions and describes each command in the waveform generator command set.

m Status and Eventxplain the status information and event messages
reported by the waveform generator.

m Examplesiescribe how to compile, link, and use the example programs
provided on the floppy disk included with this manual. These programs also
serve as examples of how you can program the waveform generator to do
certain tasks (waveform transmission, for example).

m Appendicegollect various topics of use to the programmer.

B Glossary and Indegontains a glossary of common terms and an index to
this manual.

Your system hardware may let you choose which interface to use with your
system; if so, you should consider the comparative advantages and disadvantages
of each interface. For example, the GPIB interface is an eight-bit parallel bus and
therefore it offers high-speed data transfers and multiple instrument control. In
contrast, the RS-232-C interface is a slower serial data bus for single instrument
control, but it is easy to connect to and can be used with a low-cost controller.
Table 1-1 compares the GPIB and RS-232-C interface.

Table 1-1: GPIB and RS-232-C Comparison

Operating Attribute GPIB RS-232-C
Cable ANSI/IEEE Std 488 9-wire (DCE)
Data flow control Hardware, 3-wire handshake | Flagging: soft (XON/XOFF),
hard (DTR/CTS)
Data format 8-bit parallel 8-bit serial
Interface control Operator low-level control None
message
Interface messages Most ANSI/IEEE Std 488 Device clear via ASCII break

signal

AWG2000 Series Programmer Manual

Getting Started

Table 1-1: GPIB and RS-232-C Comparison (Cont.)

Operating Attribute

GPIB

RS-232-C

Interrupts reported

Service requests
status and event code

Status and event code
(no service requests)

Message termination

Hardware EOI, software LF, or

Software CR, LF, or CR and

(Receive) both LF
Message termination Hardware EOI, and software | Software LF
(Transmit) LF
Timing Asynchronous Asynchronous
Transmission path length <2 meters between devices; | <15 meters
<20 meters total cabling for
GPIB system
Speed 200 Kbytes/sec 19,200 bits/sec
System environment Multiple devices (<15) Single terminal (point to point

connection)

Installing for GPIB Communication

With the power off, connect a GPIB cable from the GPIB controller to the
ANSI/IEEE Std 488 port (GPIB) connector on the rear panel of the waveform
generator (see Figure 1-2).

——

-l

GPIB Connector

CH2

MARKER 1 0UT SYNG 1 0UT

O
= T

CH2

1
—_

Figure 1-2: GPIB Connector

AWG2000 Series Programmer Manual

1-3

Getting Started

For example, when using an MS-DOS compatible controller, connect the GPIB
cable between the National Instrument PC2A GPIB board and the waveform
generator GPIB connector.

Instruments can be connected to the GPIB in linear or star configurations or in a
combination of both configurations. A linear hookup is one where a GPIB cable
is used to string one device to a second, and then another GPIB cable is used to
string from a second to a third, and so on until all devices in the system are
connected. A star setup is one where one end of all the GPIB cables in the
system are attached to one device. Refer to Figure 1-3 for these GPIB system
configurations.

Star Configuration

Linear Configuration

e T T IR g

Combination of Star and Linear Configurations

Figure 1-3: GPIB System Configurations
Restrictions Consider the following rules when distributing instruments on the GPIB:

1. No more than 15 total devices (including the controller) can be included on a
signal bus.

1-4 AWG2000 Series Programmer Manual

Getting Started

2. In order to maintain the electrical characteristics of the bus, one device load
must be connected for every two meters of cable (most often, each device
represents one device load to the bus).

3. The total cable length (cumulative) must not exceed 20 meters.

4. At least two-thirds of the device loads must be powered on.

Setting the GPIB To access the GPIB parameters, proceed as follows:

Parameters . .
Press the UTILITY button in the MENU column to the right of the screen.

The UTILITY menu appears above the bottom menu buttons.

2. Press the GPIB bottom menu button to display the GPIB side menu (see
Figure 1-4). The GPIB side menu displays the following items:

m Talk/Listen, Address. Sets the communication mode to Talk/Listen, and
sets the primary communication address of the waveform generator. The
address range is 0 to 30.

m Off Bus. Logically disconnects the waveform generator from GPIB
system.

m Talk only. Sets the communication mode to Talk Only to output
hardcopy.

NOTE. The waveform generator accepts as a terminator either the software LF
(Line Feed), sent as the last data byte, or the hardware EOI, with the EOI line
asserted concurrently with the last data byte sent.

3. Press the Talk/Listen, Address side menu button to set the communication
mode to Talk/Listen and also to assign the rotary knob to select an address.
Turn the rotary knob clockwise or counterclockwise to change the address.

4. Press Misc bottom menu button, and press Config... side menu button to
display Config submenu.

5. Press the Remote Port side menu button one or two times until the GPIB
item highlights to select the GPIB interface as a remote interface port.

After these parameters are set, the GPIB interface is ready to operate and the
GPIB indicator is highlighted in the status line on the screen (see Figure 1-11 on
page 1-12).

To take the waveform generator off bus without disconnecting from the GPIB
system, display the GPIB side menu as just described, but press the Off Bus side
menu button to take the waveform generator off bus.

AWG2000 Series Programmer Manual 1-5

Getting Started

GPIB Continuous mode Master|Stopped

IEEE $1d. 488.2-1987 CF:01.1CT CPIE
The Function Subsets: SH1, aH1, T5, L4, SR1, RL1, PP, DC1, DT1, CO, E2
) Talk/Listen
Address
1

Waveform
Transfer

GPIB Talk/Listen —
= |§| Talk Only
= AW 62005 ()
. Off Bus
RS232C

To change the Remote Port, use the Misc/Config menu.

ERN=N - WERECEE-

Disk NYRam RS232C |Date Time Misc
Figure 1-4: GPIB Parameter Settings

¥

Diag/Cal

Installing for RS-232-C Communication

Connect an RS-232-C cable from the computer terminal to the RS-232-C
connector on the rear panel of the waveform generator. Use a configuration based
on the settings for the data flow control (flagging).

The RS-232-C provides a point-to-point connected communication interface
between devices (see Figure 1-5). The waveform generator can transmit and
receive the same message serially over the RS-232-C interface as it can in
parallel over the GPIB interface.

Controller

_

Figure 1-5: RS-232-C Point-to-Point Connection

AWG2000

11
\

1-6 AWG2000 Series Programmer Manual

Getting Started

Several connectors are used with the RS-232-C interface: a DTE device uses a
standard 25-pin male D-type shell connector; a DCE device uses a standard
25-pin female D-type shell connector. Some recent computers implement the
RS-232-C interface using 9-pin D-type connector.

This waveform generator uses a standard 9-pin D-type shell connector, provided
on the rear panel (see Figure 1-6), along with a 9-pin male to 25-pin male
conversion cable. Figure 1-7 on page 1-8 shows both 9-pin and 25 pin
connectors with their pin number assignments.

-
RS-232-C (= =
Conﬁgitor e

|EEE 5TD 488 PORT

CLOCKOUT ~ MARKER 2 OUT

]
ollE=

CH-1 ey Vi)
D
MARKER 2 QUT
oz @
NA N
2Vp-p FROM 500 _—
—
CLOCKIN
Ty Van
A

MARKER 1 0UT

AM
CH-2 CH-2 CH-1
2vpp 2vpp 1ok
a 5V MAX

«D—H» ;;;;;; a NS Fons

Figure 1-6: RS-232-C Port

This waveform generator is designed as DCE device. You may connect it up to
15 meters (50 feet) from a DTE device using a straight-through male-to-female
cable. However, if the other device is instead configured as a DCE device, you
will need a special adapter or null-modem cable for local DCE-to-DCE
communications. Refer to the wiring examples in the Figure 1-8 for the proper
signal connections between devices.

NOTE. In this waveform generator, only TxD, RxD, DTR, CTS pins and Signal Ground
are available.

AWG2000 Series Programmer Manual 1-7

Getting Started

9-PIN D-SHELL 25-PIN D-SHELL

Receive Data (RxD) 3 ®
Transmit Data (TxD) 2 15. ®
Data Terminal Ready (DTR) 20
Signal Ground 7

Clear to Send (CTS) 5

© O B~ W

NOTE: TxD, RxD, DTR, CTS and Ground lines are only available \‘/
in the waveform generator.

Figure 1-7: Pin Assignments of 9-Pin and 25-Pin D-Type Shell Connector

Pin Pin Pin Pin
2 2 2 2
3 3 3 >< 3
4 4 4 4
5 5 5 5
8 8 8 8
9-pin DCE to 9-pin DTE 9-pin DCE to 9-pin DCE

Pin Pin Pin Pin
2 2 2
3 >< 3 3
4 4 X

5 7 5 X 5
8 20 8 x 7

20
9-pin DCE to 25-pin DTE 9-pin DCE to 25-pin DCE
NOTE: When using software flow control, the CTS-DTR lines do not need to be connected.

Figure 1-8: Typical RS-232-C Cable Wiring Requirements

1-8 AWG2000 Series Programmer Manual

Getting Started

Setting the RS-232 To set the RS-232-C parameters, do the following steps:

Parameters . .
Press the UTILITY button in the MENU column to the right of the screen.

The Utility menu appears above the bottom menu buttons.

2. Press the RS-232-C bottom menu button to display the RS-232-C side menu
(see Figure 1-9). You may set the following parameters:

m Baud Rate. Sets the data transmission rate. You can set rates of 300, 600,
1200, 2400, 4800, 9600, or 19200 baud.

m Data Bits. Sets the data bit length for each character. You can set lengths
of either 7 or 8 bits.

m Parity. Sets the error check bit for each character. You can set the error
bit for either None, Even, or Odd parity.

m Stop Bits. Sets the number of stop bits sent after each character. You can
set 1 or 2 stop bits.

® Flagging. Sets the method of controlling the flow of data between
devices. You can set the data flow methods Hard (DTR/CTS), Soft
(XON/XOFF), or None.

3. Press, in turn, each parameter-labeled button in the menu. While any
individual parameter is selected, turn the rotary knob in either direction to
change the setting for the selected parameter.

4. Press Misc bottom menu button, and press Config... side menu button to
display Config submenu.

5. Press the Remote Port side menu button one or two times until the RS-232-C
item highlights to select the RS-232-C as a remote interface port.

After these parameters are set, the RS-232-C interface is ready to operate and the
RS-232-C indicator is highlighted in the status line on the screen. (The status
line is shown in Figure 1-11 on page 1-12.)

AWG2000 Series Programmer Manual 1-9

Getting Started

RS232C Continuous mode Master|Stopped
Baudrate Data Rits Parity Stop Bits Flagging RS232C
300 7 Hohe Hohe
o0 | —_ | saudate
;ﬁgg 0dd Hard 9600
4800 | —
Data Bits
3
Parity
GPIB Talk/Listen
Nohe
= —
=
AWG2005 O Stop Bits
S 1
RS232C _—
Flagging
. . None
To change the Remote Port, use the Misc/Config menu.
™] - @ cal %
Disk NYRam GPIB iwpRPIel Date Time Misc Diag/Cal

Figure 1-9: RS-232-C Parameter Settings

Confirmation of GPIB Settings

Settings for the GPIB interface can be confirmed by displaying the Status menu
(see Figure 1-10). To display the System GPIB/RS-232-C Status menu, perform
the following steps.

1. Press the UTILITY button in the MENU column to the right of the screen.
The Utility menu appears above at the bottom of the screen.

2. Press the Misc bottom menu button to display the Misc side menu.
3. Press Status... side menu button to display Status side menu.

4. Press System side menu button to display System submenu (See Fig-
ure 1-10).

The status of the following parameters can be confirmed in this screen:
m Address: the current setting of the GPIB primary address

m Configure: the current setting of the communication mode

1-10 AWG2000 Series Programmer Manual

Getting Started

m PSC: the current setting of PSC (Power-on Status Clear). For more
details, refer to the description of *PSC common command on
page 2-151 irSection 2Syntax and Commands

m Header: the current setting for header response, where 1 indicates
response enabled and 0 indicates response disabled. For more details,
refer toQuery Responsem page 2-9 ipection 2Syntax and Com-
mands.

® \erbose: the current setting for header response length, where 1 indicates

a long response is set and 0 a short response. For more detalils, refer to
Query Responseam page 2-9 or the VERBose command, both in
Section 2Syntax and Commands.

m Data: the current settings of parameters related to waveform transfers.
For more details, refer to the DATA:SOURce, DATA:DESTination, and
DATA:ENCDG descriptions irBection 2, Syntax and Commands.

m Debug: the current setting for debugging parameters. For more details,
refer to the DEBug description Bection 2.

GPIB Continuous mode Master|Stopped
Model AWG2005
Yersion Fv:1.00
CPU Board SRAM 512K Bytes, DRAM 40 Bytes
FPP Board Not installed
Clock Board Mot installed
CH1 Installed [Analog Output]
CH2 Installed [Analog Qutput]
CH3 Mot installed
CH4 Mot installed
GPIB/RS232C
Address 1
GPIB / RS-232-C Status [()Zsogflguratlon Talk/Llsten
Header 1
Yerbose 1
Data source "CH1"
Destination "GPIB.WFM"
Encdg Rpbinary
width 2
Debug Shoop 0, Delay 0.2s
Up Time 0.733 hours
]] @
Disk NV Ram GPIB RS232C |Date Time

Figure 1-10: Confirmation of GPIB Settings

AWG2000 Series Programmer Manual

¥

Go Back

Diag/Cal

1-11

Getting Started

Operation

With the waveform generator rear-panel principal power switch turned on, turn
on front-panel ON/STBY switch to obtain a screen display.

At power up, you can use either the front-panel controls or the remote interfaces
as you require without any local or remote control switching required.

Figure 1-11 shows the status line on the screen. The indicators in the GPIB and
RS232C status area are highlighted when the following events occur:

m GPIB. Highlights when you select the GPIB interface as a remote interface.

m RS232C. Highlights when you select the RS-232-C interface as a remote
interface.

® SRQ. Highlights when the waveform generator issues an SRQ to a external
controller over the GPIB.

m L OCK. Highlights when the waveform generator locks its front-panel
controls in response to a command.

GPIB & RS-232-C Sub Area

A

4 A
Status ————» GPIB SR LOCK |Continuous mode Master Running @

" CH1 waveform
/A .jf_IN HESY 55 Sequence
Through | [1.0007] | [0.000 o

Period: 50.00us GAUSS_P. WFM
Points: 1000

Hormal Max: 0.5000%/560
Min: -0.5000Y/50< CH2

L

20, BONMHZ

[Through| [T.600V] [0.0007]

Period: -----
Points: -—---
| | Max: -----
Min: -—-—-——-
_ Display
waveform CH1 : . il
Clock Operation Filter |Aamplitude| Offset

Figure 1-11: GPIB and RS-232-C Status Line

1-12 AWG2000 Series Programmer Manual

./
Command Syntax

Command Notation

A large set of commands can be used to control the operations and functions of
the waveform generator from an external controller. This section describes the
syntax and communication rules for using these commands to operate the
waveform generator.

The command syntax is in extended BNF (Backus-Naur Form) notation. The
extended BNF symbols used in the command set are shown in the following
table.

Table 2-1: BNF Symbols and Meanings

Symbol Meaning

< > Indicates a defined element

Delimits Exclusive OR elements

Delimits a group of elements one of which the programmer must select

|

{}

[] Delimits an optional element that the programmer may omit
[]

Delimits an optional element that the programmer may omit or may repeat one
or more times

1= Indicates that the left member is defined as shown by the the right member

Program and Response Messages

Programs created or placed in an external controller are transferred to the
waveform generator as a program message. A program message is a sequence of
zero or more program message units delimited by the program message unit
delimiter, the semicolon (;).

A program message unit is a set command or query command. The waveform
generator performs a function or changes a setting or mode when it receives a set
command; when it receives a query command, it returns measurement data,
settings, status codes and/or status messages. The waveform generator transfers
these response messages to the external controller.

AWG2000 Series Programmer Manual 2-1

Command Syntax

Command and Query Structure

Character Encoding

Commands are either set commands or query commands (usually just called
commands and queries in this manual). Most commands have both a set form
and query form. The query form of a command is the same as the set form,
except that the query form ends with a question mark.

Figure 2-1 shows a flowchart of the structure of the commands and queries. The
structure of the header is described in detadéaderon page 2-6.

Command
M)
N
Argument Command
I\
Header CC
Mnemonic
@ Argument Query
O
Q Query
Header M)
? s
Mnemonic O_ \
Argument Query
Command
M
N\
Argument Command

Figure 2-1: Command and Query Structure Flowchart

The program can be described using the American Standard Code for Informa-
tion Interchange (ASCII) character encoding.

This seven-bit ASCII code is used for the majority of syntactic elements and
semantic definitions. In special cases, an eight-bit ASCII Code is allowed in the
arbitrary block arguments described on page 2-5. The ASCII code character set
table is found in Appendix A.

AWG2000 Series Programmer Manual

Command Syntax

Syntactic Delimiters

White Space

Special Characters

Syntactic elements in a program message unit are delimited (differentiated) with
colons, white space, commas, or semicolons.

Colon (:). Typically delimits the compound command header.

MMEMORY : ALOAD:MSIS, OUTPUT:CH1:STATE

White Space. Typically delimits command/query headers from the argument.

DIAG:SELECT ALL
MODE BURST, 4000

DIAG:SELECT andMODE are the command headers, ahtd andBURST, 4000 are
the arguments.

Comma (;). Typically delimits between multiple arguments. In the above
example, a comma delimits the multiple argum@&tRST and4000.

Semicolon (;). Typically delimits between multiple commands (or multiple
program message units). For more information about using the semicolon, refer
to Concatenating Commands page 2-8.

White space, which is used to delimit certain syntactic elements in a command,

is defined in the waveform generator as a single ASCll-encoded byte in the range
ASCII 0-32 (decimal). This range consists of the standard ASCII characters
exclusively except for ASCII 10, which is the Line Feed (LF) or New Line (NL)
character.

The Line Feed (LF) character or the New Line (NL) character (ASCII 10) and all
characters in the range of ASCII 127-255 are defined as special characters. These
characters are used in arbitrary block arguments only; using these characters in
other parts of any command yields unpredictable results.

AWG2000 Series Programmer Manual 2-3

Command Syntax

Arguments

Decimal Numeric

Unit and Sl Prefix

In a command or query, one or more arguments follow the command header. The
argument, sometimes called program data, is a quantity, quality, restriction, or
limit associated with the command or query header. Depending on the command
or query header given, the argument is one of the following types:

m Decimal Numeric
m String
m Arbitrary Block

The waveform generator defines a decimal numeric argument as one expressed in
one of three numeric representations — NR1, NR2, or NR3. This definition
complies with that found in ANSI/IEEE Std 488.2-1987. Any commands that
use arguments in any of the the first three notations can use a fourth notation
NRf (for Numerical Representation flexible) The four formats are shown in
Table 2-2.

Table 2-2: Decimal Numeric Notation

Type Format Examples
NR1 implicit-point (integer) 1,43, -2, +10,-20
NR2 explicit-point unscaled 1,2,+23.5,-0.15
(fixed point)
NR3 explicit-point scaled (floating point) 1E+2, +3.36E-2, -1.02E+3
NRf numeric representation-flexible; any of | 1, +23.5, -1.02E+3
NR1, NR2, and NR3 may be used

As just implied, you can use NRf notation for arguments in your programs for
any commands that this manual lists as using any of NR1, NR2, or NR3 notation
in its arguments. Be aware, however, that query response will still be in the
format specified in the command. For example, if the command description is
:DESE <NR1>, you can substitute NR2 or NR3 when using the command in a
program. However, if you use the queBESE?, the waveform generator will
respond in the format <NR1> to match the command description in this manual.

If the decimal numeric argument refers to a voltage, frequency, or percentage,
you can express it using Sl units instead of in the scaled explicit point input
value format <NR3>. (Sl units are units that conform to the Systeme Internation-
al d’Unites standard.) For example, you can use the input format 200mV or
1.0MHz instead of 200.0E-3 or 1.0E+6, respectively, to specify voltage or
frequency.

AWG2000 Series Programmer Manual

Command Syntax

String

Arbitrary Block

You can omit the unit, but you must include the Sl unit prefix. You can use either
upper or lowercase units.

V or v for voltage
Hz, HZ, or hz for frequency
PCT, PCt, PcT, Pct, pct, pCT, or pcT, for % (percentage)

The SI prefixes, which must be included, are shown below. Note that either
lower or upper case prefixes can be used.

Sl Prefix! m/M k/IK m/M /G
Corresponding Power 10-3 108 108 109

1 Note that the prefix m/M indicates 10-3 when the decimal numeric argument denotes
voltage, but 106 when it denotes frequency.

String, sometimes referred to as a string literal, a literal, or just a string, is
defined as a series of characters enclosed by double quotation marks (") as in:

"This is a string constant" or "0 .. 127"

To include a double quoted character in the string, insert an additional double
guote character ahead of the double quote character in the string. For example,
the string:

serial number "B010000"
would be defined as:
"serial number ""B010000"""

Single quotation marks (*) can also be used instead of double quotation marks.
For instance:

'serial number ''B010000'"''

String constants may be of any length up to the memory limits of the instrument
in which the message is parsed.

An arbitrary block argument is defined as:

#<byte count digit><byte count>[<contiguous eight-bit data
byte>]...

or:

#<contiguous eight-bit data byte]... <terminator>

AWG2000 Series Programmer Manual 2-5

Command Syntax

Header

2-6

Header Mnemonic

Channel and Marker
Representation

Header Structure

where:

<byte count digit>::=a nonzero digit in the range ASCII 1-9 that defines the
number of digits (bytes) in thebyte count> field.

<byte count>::= any number of digits in the range ASCII 0-9 that define how
many bytes are in thecontiguous 8-bit data byte> field.

<contiguous 8-bit data byte>:=a<byte count>number of 8-bit bytes in
the range ASCII 0-255 that define the message. Each byte defines one character.

<terminator>::= a software LF followed by a hardware EOI. For example,

#16ABAZLT<LF><&EQI>
#0EHTGNILEDOM<LF><&EQOI>

The header mnemonic represents a header node or a header subfunction. The
command or query header comprises one or more header mnemonics that are
delimited with the colon (3).

In a command or query, a channel and a marker can be specified with the header
mnemonics CH<x> and MARKER<x>, respectively. CH<x> can be either CH1,
for channel 1, or CH2, for channel 2. Similarly, MARKER<x> can be either
MARKER1 or MARKERZ2. The CH2 and MARKER2 header mnemonics can be
used only when the channel 2 option is installed.

Commands and queries can be structured into six basic forms.
® Simple command header

m Simple query header

m Compound command header

m Compound query header

m Common command header

m Common query header

Figure 2-1 on page 2-2 shows the syntax for all possible structures, and each of
the six basic forms are explained below.

AWG2000 Series Programmer Manual

Command Syntax

Simple Command Header. A command that contains only one header mnemonic.
It may also contain one or more arguments. Its message format is:

[:]<Header Mnemonic> [<Argument>[,<Argument>]...]
such as:

START
or
STOP

Simple Query Header. A command that contains only one header mnemonic
followed by a question mark (?). Its message format is:

[:]<Header Mnemonic>? [<Argument>[,<Argument>]...]
such as:

MEMORY?
or
TRIGGER?

Compound Command Header. A command that contains multiple header
mnemonics plus argument(s). Its message format is:

[:]<Header Mnemonic>[:<Header Mnemonic>]...
[<Argument>[,<Argument>]...]

such as:

OUTPUT:CH1:STATE ON
or
DISK:FORMAT:TYPE HD1

Compound Query Header. A command that contains multiple header mnemonics
followed by a question mark (?). Its message format is:

[[]J<Header Mnemonic>[:<Header Mnemonic>]...?
[<Argument>[,<Argument>]...]

such as:

DISK:DIRECTORY?
or
MEMORY : CATALOG:ALL?

AWG2000 Series Programmer Manual 2-7

Command Syntax

Common Command Header. A command that precedes its header mnemonic with
an asterisk (*). Its message format is:

<Header Mnemonic> [<Argument>[,<Argument>]...]
such as:
*RST

The common commands are defined by IEEE Std 488.2 and are common to all
devices which support IEEE Std 488.2 on the GPIB bus.

Common Query Header. A command that precedes its header mnemonic with an
asterisk (*) and follows it with a question mark (?). Its message format is:

<Header Mnemonic>? [<Argument>[,<Argument>]...]
such as:
*IDN?

The common commands are defined by IEEE Std 488.2 and are common to all
devices which support the IEEE Std 488.2 on the GPIB bus.

Concatenating Commands

Most of the compound command headers are in a tree structure. The tree
structure of an example command is diagrammed below. Note that the top of the
structure always begins with a colon (3).

FG:
I
I I I I

CH1 CH2 FREQ STATE..

AMPLITUDE OFFSET POLARITY SHAPE ... AMPLITUDE OFFSET POLARITY SHAPE ..

The following example of a compound command combines four headers
delimited by semicolons:

:FG:CH1:AMPLITUDE 3.5; :FG:CH1:0FFSET 1.5;
:FG:CH1:POLARITY INVERTED; :FG:CH1:SHAPE SQUARE

You must include the complete path in each header when there is no common
complete path to the start of the tree structure (the colon). However, note that
part of each header in the above example has a commonFgatii1l. You may

2-8 AWG2000 Series Programmer Manual

Command Syntax

shorten compound command structures with such headers. For example, the
command above may be rewritten as follows.

:FG:CH1:AMPLITUDE 3.5; OFFSET 1.5; POLARITY INVERT; SHAPE
SQUARE

Note that the mnemonic$G and:CH1 are assumed from the first header by the
headers that follow. The following command descriptions are valid examples of
commands shortened using the principle just described. (Note that the insertion
of common command§RE) between headers does not prevent the headers that
follow from assuming the earlier header mnemonics.)

:FG:CH1:AMPLITUDE 3.5; OFFSET 1.5; :FG:CHZ2:AMPLITUDE 3.5;
OFFSET 1.5

:FG:STATE ON; CH1:SHAPE SQUARE; POLARITY INVERTED

:FG:CH1:AMPLITUDE 3.5; *SRE; OFFSET 1.5;
POLARITY INVERTED; SHAPE SQUARE

The following examples have been shortened incorrectly and cause errors.
:FG:CH1:AMPLITUDE 5.0; FG:CH2:AMPLITUDE 5.0
:FG:CH1:SHAPE SQU; CHZ2:SHAPE SQUARE
:FG:CH1:AMPLITUDE 5.0; STATE ON

Query Responses

The query causes the waveform generator to return information about its status
or settings. A few queries also initiate an operation action before returning
information; for instance, the *CAL? query runs a calibration.

If the programmer has enabled headers to be returned with query responses, the
waveform generator formats a query response like the equivalent set-command
header followed by its argument(s). When headers are turned off for query
responses, only the values are returned. Table 2-3 shows the difference in query
responses.

Table 2-3: Header in Query Responses

Query Header On Header Off
FG:CH1:AMPLITUDE? :FG:CH1:AMPLITUDE 5.000 V 5.000 V
DIAG:SELECT? :DIAG:SELECT WMEMORY WMEMORY

AWG2000 Series Programmer Manual 29

Command Syntax

Use the commaniEADER ON when you want the header returned along with the
information. You can save such a response and send it back as a set-command
later. UseHEADER OFF when you want only the information back.

Other General Command Conventions

Upper and Lower Case

Abbreviation

Syntax Diagrams

2-10

The instrument accepts upper, lower, or mixed case alphabetic messages. The
following three commands are recognized as identical.

HEADER ON
or

header on
or

header On

Any header, argument, or reserved word that is sent to the waveform generator
can be abbreviated. The minimum required spelling is shown in upper case
throughout the subsecti@@ommand Groupbeginning on page 2-13. The
commandCLOCk:SOURce INTernal can be rewritten in either of the following
forms.

CLOCK:SOURCE INTERNAL
or
CLOC:SOUR INT

The syntax of each command and query is explained by syntax diagrams as well
as the BNF notation. Figure 2-2 shows some typical syntax diagram structures.
The syntax diagrams are described by the following symbols and notation.

m Oval symbols contain literal elements such as a command or query header
and a nonquoted string argument. Command name, query name, and
nonquoted string argument are abbreviated.

m Circle symbols contain separators or special symbols such as (3), (,), and (?).
B Box symbols contain the defined element.

B Arrow symbols connect elements to show the paths that can be taken through
the diagram and, thereby, the order in which the elements can be sentin a
command structure.

m Parallel paths show that one and only one of the paths must be taken in the
command. (See the top diagram of Figure 2-2.)

AWG2000 Series Programmer Manual

Command Syntax

B A loop around an element(s) shows the element can be repeated. (See the
middle diagram.)

m A path around a group of elements shows that those elements are optional.
(See bottom diagram.)

NOTE. The unit and Sl prefix that can be added to decimal numeric arguments
are not described in the syntax diagram. Beés and Sl Prefixon page 2-4.

=)

Figure 2-2: Typical Syntax Diagrams

AWG2000 Series Programmer Manual 2-11

Command Syntax

2-12 AWG2000 Series Programmer Manual

-/ |
Command Groups

This subsection describes the organization of the AWG2000 Series Arbitrary
Waveform Generator command set into functional groups. (See subsection
Command Descriptionsn page 2-27 for a complete description of each
command in alphabetical order.)

Throughout this section, the parenthesized question symbol (?) follows the
command header to indicate that both a command and query form are included
for the command.

Commands Grouped by Function

Table 2-4 lists the 12 functional groups into which the waveform generator
commands are classified.

Table 2-4: Function Groups in the Command Set

Group Functions Controlled

Calibration and Control calibration and self-test diagnostics according to selected

Diagnostic routines

Display Control functions assigned to keys and knob, including adjusting
intensity

FG Select standard waveform functions for output and set parameters
related to such waveforms. (Function generator mode.)

Hardcopy Control start/stop of hardcopy operation, select port and its output
format

Memory Control floppy disk, internal memory, and mass memory
operations

Mode Control operating mode and set trigger parameters

Output Turn output waveform on and off and select the sync signal
position

Setup Select clock source and its parameters

Status and Event Set and query the registers and queues of the reporting system

Synchronization Control operation complete and pending command execution

System Control miscellaneous instrument functions such as data and time,
local lockout, query response forms, and instrument ID

Waveform Control transfer of waveforms

AWG2000 Series Programmer Manual

2-13

Command Groups

Command “Quick Reference”

The following two pages list all the commands in each functional group and can
be copied for use as a quick reference. The minimum accepted character string
for each command is in upper case.

Calibration and Diagnostic Commands MEMory:CATalog:ALL?
SELFcal:SELect (?) MEMory:CATalog:AST?
SELFcal:STATe MEMory:CATalog:CLK?
SELFcal:RESUIt? MEMory:CATalog:EQU?
SELFcal? MEMory:CATalog:SEQ?
*CAL? MEMory:CATalog:WFM?
DIAG:SELect (?) MEMory:CATalog?
DIAG:STATe MEMory:FREE:ALL?
DIAG:RESUIt? MEMory:FREE?

DIAG? MEMory?
*TST? MMEMory:LOAD

Display Commands MMEMory:LOAD
ABSTouch MMEMory:DELete

. MMEMory:MSIS Y]
DISPlay:BRIGhtness (?) MMEMorv:REName
DISPlay:CATalog? MMEMor:
: ; ory:SAVE
DISPlay:CATalog:ORDer (?) MMEMorv:LOCK 0
: y: (?)
DISPlay:MENU:SETUp? yALHaGSIATe ?)
y p MMEMory:ALOad?
DISPlay:MENU? . .
: MMEMory:CATalog:ALL?
DISPlay:MESSage (?) . .
DISPlay:MESSage:SHOW) MMEMory:CATalog:AST?
DISPIay'?) ’ MMEMory:CATalog:CLK?
‘ MMEMory:CATalog:EQU?

FG Commands MMEMory:CATalog:SEQ?
FG:CH<x>:AMPLitude (? MMEMory:CATalog:WFM?
FG:CH<x>:0FFSet U] MMEMory:CATalog?

FG:CH<x>:POLarity (?) MMEMory:FRE:ALL?

FG:CH<x>:SHAPe (7 MMEMory:FREE?

FG:CH<x>? MMEMory?

Eg;gﬁfguency EZ; Mode Commands

FG? CONFigure (?

’ MODE ™

Hardcopy RUNNing?

HCOPy U] STARt

HCOPy:DATA? STOP

HCOPy:FORMat ?) TRIGger:IMPedance (?

HCOPy:PORT ™ TRIGger:LEVel Y]

Memory Commands ﬁ:ggg‘z&ope ?

DISK:FORMat:TYPE U] *TRG ’

DISK:FORMat?

DISK:FORMat:STATe Output Commands

DISK:CDIRectory OUTPut:CH<x>:STATe]
DISK:DIRectory? OUTPut:CH<x>?

DISK:MDIRectory OUTPut:CH1:NORMal:STATe ?
DISK? OUTPut:CH1:INVerted?STATe U]
MEMory:COPY OUTPut:CH1:INVerted?

MEMory:DELete OUTPut:CH1:NORMal?

MEMory:COMMent (?) OUTPut:SYNC

MEMory:LOCk ?) OUTPut?

2-14

AWG2000 Series Programmer Manual

Command Groups

Setup Commands
CLOCK:FREQuency
CLOCK:SOURce
CLOCk:SWEep:DEFine
CLOCk:SWEep:DWELI

CLOCk:SWEep:FREQuency:STARt
CLOCk:SWEep:FREQuency:STOP

CLOCk:SWEep:FREQuency?
CLOCk:SWEep:MODE
CLOCk:SWEep:STATe
CLOCk:SWEep:TIME
CLOCk:SWEep:TYPE
CLOCk:SWEep
CLOCK:CH2:DIVider
CLOCK:CH2?

CLOCK?

CH1:0OPERation
CH<x>:AMPLitude
CH<x>:FILTer
[CH1]MARKERLEVEL1:LOW
[CH1]MARKERLEVEL1:HIGH
[CH1IMARKERLEVEL2:LOW
[CH1IMARKERLEVEL2:HIGH
[CH1IMARKERLEVEL1?
[CH1]MARKERLEVEL2?
CH<x>:0OFFSet
CH<x>:TRACk:AMPLitude
CH<x>:TRACk:OFFSet
CH<x>:TRACK?
CH<x>:WAVeform

CH<x>?

Status and Event Commands
ALLEV?
*CLS
DESE
*ESE
*ESR?
EVENT?
EVMsg?
EVQty?
*PSC
*SRE
*STB?

Synchronization Commands
*OPC
*WAI

System Commands
DATE
DEBug:SNOop:STATe
DEBug:SNOop:DELAy:TIME
DEBug:SNOop:DELAy?
DEBug:SNOop?
DEBug:

AWG2000 Series Programmer Manual

)
)
()
()
)

)
)
()
)
)

)
@

)
)

)

)
)
@

FACTory

HEADer
HWSequencer?
HWSequencer:INSTalled?
HWSequencer:MODE
ID?

*IDN?

LOCk

*LRN?

*OPT?

*RST

SECUre

TIME

UPTime?

UNLock

VERBose

Waveform Commands

AUTOStep:DEFine
CURVe
DATA:DESTination
DATA:ENCDG
DATA:SOURce
DATA:WIDTh
EQUAtion:COMPile:STATe
DATA
EQUAtion:COMPile
EQUAtion:DEFine
EQUAtion:WPOQints
MARKER<x>:AOFF
MARKer<x>:POINt
MARKer:AOFF
MARKER:DATA
MARKer:POINt
SEQUence:DEFine
SEQUence:EXPANd
WAVFrm?
WFMPre:ENCDG
WFMPre:BN_FMT
WFMPre:BYT_NR
WFMPre:BIT_NR
WFMPre:BYT_OR
WFMPre:CRVCHK
WFMPre:WFID
WFMPre:NR_PT
WFMPre:PT_FMT
WFMPre:XUNIT
WFMPre:XINCR
WFMPre:PT_OFF
WFMPre:XZERO
WFMPre:YUNIT
WFMPre:XMULT
WFMPre:YZERO
WFMPre:YOFF
WFMPre?

()

)

?

(?)

2-15

Command Groups

Command Summaries

Calibration and Diagnostic
Commands

Display Commands

2-16

Tables 2-5 through 2-16 describe each command in each of the 11 functional

groups.

The Calibration and Diagnostic commands perform calibration and self-test

diagnostic routines.

Table 2-5: Calibration and Diagnostic Commands

Header Description

*CAL? Perform calibration

DIAG? Query all current settings related to self test
DIAG:RESUTt? Query self-test result

DIAG:SELect(?) Select self-test routine

DIAG:STATe

Perform self test

SELFcal?

Query all current settings related to calibration

SELFcal:RESUTt?

Query calibration result

SELFcal:SELect(?)

Select calibration routine

SELFcal:STATe

Perform calibration

*TST?

Perform self test

The Display commands mimic manipulation of front-panel controls and set

screen intensity.

Table 2-6: Display Commands

Header

Description

ABSTouch

Perform the function corresponding to the
front-panel control selected

DISPlay:BRIGhtness(?)

Set brightness of screen

DISPlay?

Query settings made with display group commands

DISPTay:CATalog?

Query the condition of displaying catalog

DISPlay:CATalog:0RDer(?)

Select the order of displaying files for catalog

DISPlay:CLOCk(?) Set date and time
DISPlay:MENU:SETUp:FORMat (?) Set displaying format
DISPlay:MENU:SETUp? Query displaying format
DISPlay:MENU? Query displaying format

AWG2000 Series Programmer Manual

Command Groups

Table 2-6: Display Commands (Cont.)

Header Description
DISPlay:MESSage(?) Select on and off of displaying the message
DISPTay:MESSage:SHOW(?) Display message

FG Commands The FG (Function Generator) commands set the parameters, such as peak-to-
peak voltage range, offset, polarity, shape, and frequency, for the waveform
functions that the waveform generator outputs. They also turn the FG mode on or
off. (FG mode outputs standard function waveforms, such as sine, square, and
triangle waves.)

Table 2-7: FG Commands

Header Description

FG? Query all current settings related to the FG mode

FG:CH<x>? Query all current settings related to FG mode for
the specified channel

FG:CH<x>:AMPLitude(?) Set the peak-to-peak voltage of the function
waveform

FG:CH<x>:0FFSet(?) Set the offset voltage of the function waveform

FG:CH<x>:POLarity(?) Select the polarity of the function waveform

FG:CH<x>:SHAPe(?) Select the function or type of waveform (square
wave, sine wave, efc.)

FG:FREQuency(?) Set the frequency of the function waveform

FG:STATe(?) Turn the function generator mode on or off

Hardcopy Commands Hardcopy commands control start and stop for hardcopy operation, and select
port and its outputting format.

Table 2-8: Hardcopy Commands

Header Description

HCOPy (?) Control start/stop of hardcopy
HCOPy :DATA? Query the image data of hardcopy
HCOPy : FORMat (?) Select output format of hardcopy
HCOPy : PORT(?) Select output port of hardcopy

AWG2000 Series Programmer Manual 2-17

Command Groups

2-18

Memory Commands

The Memory commands perform operations on the storage media within the
waveform generator, such as formatting its floppy disk, renaming a file in its
internal memory, or returning information about a file in its mass memory. Keep
in mind the following points when reading about those commands in Table 2-9.

® The memory commands operate on the waveform generator floppy disk,
internal memory, and mass memory storage media using the root mnemonics
DISK, MEMory, andMMEMory respectively.

B Mass memory is either the waveform generator floppy ds&K) or its
nonvolatile memoryNVRAM), according to which of these media you select.
TheMMEMory commands listed in the table operate on whichever of these
storage media you select usiMi¢EMory :MSIS.

Table 2-9: Memory Commands

Header Description
DISK? Query all the current settings related to floppy disk
DISK:CDIRectory Change the current working directory
DISK:DIRectory? Query the current working directory
DISK:FORMat? Query the selected format type
DISK:FORMat:TYPE(?) Select the type of floppy disk format
DISK:FORMat:STATe Start formatting
DISK:MDIRectory Create a new directory
MEMory? Query information on all files and the size of the
used and unused memory
MEMory:CATalog? Query information on all files
MEMory:CATalog:ALL? Query information on all files
MEMory:CATalog:AST? Query information on all auto step files
MEMory:CATalog:CLK? Query information on all clock sweep files
(AWG2005)
MEMory:CATalog:EQU? Query information on all equation files
MEMory:CATalog:SEQ? Query information on all sequence files
MEMory:CATalog:WFM? Query information on all waveform files
MEMory : COMMent (?) Write a comment into a file in internal memory
MEMory : COPY Copy a file in internal memory
MEMory:DELete Delete a file
MEMory:FREE? Query the size of the used and unused memory
MEMory: FREE:ALL? Query the size of the used and unused memory
MEMory:LOCk(?) Lock a file

AWG2000 Series Programmer Manual

Command Groups

Table 2-9: Memory Commands (Cont.)

Header Description

MEMory : REName Rename a file

MMEMory? Query information on all files, used size and
unused size, and status of auto-load settings

MMEMory :ALOad? Query all current settings related to auto-load

MMEMory :ALOad :MSIS(?) Select mass memory for auto-load

MMEMory:ALOad:STATe(?) Define whether auto-load is enabled

MMEMory:CATalog? Query information on all files

MMEMory:CATalog:ALL? Query information on all files

MMEMory:CATalog:AST? Query information on all auto-step files

MMEMory:CATalog:CLK? Query information on all clock sweep files

(AWG2005)

MMEMory:CATalog:EQU? Query information on all equation files

MMEMory:CATalog:SEQ? Query information on all sequence files

MMEMory:CATalog:WFM? Query information on all waveform files

MMEMory:DELete Delete file in mass memory

MMEMory : FREE? Query used size and unused size

MMEMory: FREE:ALL? Query used size and unused size

MMEMory : LOAD Load files in mass memory to the internal memory

MMEMory: LOCk (?) Set the lock attribute of a file

MMEMory :MSIS(?) Select the current mass memory, DISK or NVRAM

MMEMory : REName Rename file

MMEMory : SAVE Save a file(s) in internal memory into current mass
memory

Mode Commands The Mode commands select the manner in which waveforms are output, such as
continuously or in bursts of a certain number of waveform cycles. These
commands also generate triggering events for waveforms and set trigger
parameters, such as impedance, level, polarity and slope.

Table 2-10: Mode Commands

Header Description

CONFigure(?) Select system configuration
(AWG2005)

MODE (?) Select waveform output mode

AWG2000 Series Programmer Manual 2-19

Command Groups

2-20

Output Commands

Table 2-10: Mode Commands (Cont.)

Header Description

RUNNing? Query whether a waveform is currently being
generated

STARt Start the waveform output by generating a
triggering event

STOP Stop waveform from being output and initialize for
output of another waveform

*TRG Generate the triggering event (equivalent to STARt)

TRIGger? Query all current trigger-related settings

TRIGger:IMPedance(?) Select the impedance presented to the the external

(AWG2020/21/40/41) trigger signal

TRIGger:LEVel(?)

Set the level on the external trigger signal that
generates the triggering event

TRIGger:POLarity(?)

Set the polarity of external signal that generates a
triggering event

TRIGger:SLOPe(?)

Select the slope of external signal that generates a
triggering event

The Output commands turn the output waveform on or off, select the waveform
output channel, and select the position on the waveform at which an external
sync signal is generated. In Table 2-0Hsx> refers to the waveform output
channel, wherex> represents related channel number.

Table 2-11: Output Commands

Header

Description

OUTPut:CH<x>:STATe(?)

Turn the output on or off

OUTPut:CH<x>?

Query whether the waveform is turned on or not

OUTPut :CH1:NORMal : STATe(?)
(ANG2040/41)

Turn the output on or off

OUTPut:CH1:
INVerted:STATe(?)
(AWG2040/41)

Turn the output on or off

OUTPut:CH1:INVerted ?
(AWG2040/41)

Turn the output on or off

OUTPut:CH1:NORMal ?
(AWG2040,/41)

Turn the output on or off

AWG2000 Series Programmer Manual

Command Groups

Setup Commands

Table 2-11: Output Commands (Cont.)

Header Description

OUTPut:SYNC(?) Select position where the sync signal is generated
(AWG2020/21)

OUTPut? Query all the current settings related to output

The Setup commands are used to set parameters for the clock, such as clock source
and frequency, and for the waveform output channel, such as the waveform
amplitude or its cutoff frequency. In Table 2-LBsx> refers to the waveform

output channel, wherex> represents related channel number.

Table 2-12: Setup Commands

Header Description

CH1:0PERation(?) Set the mathematical operation between channels
(AWG2005/20/21) 1and2

CH<x>? Query all current settings for the CH<x> waveform

CH<x>:AMPLitude(?)

Set full scale voltage for the CH<x> waveform

CH<x>:FILTer(?)

Select frequency cut-off filter for the CH<x>wave-
form

[CHI]MARKERLEVELL: LOW(?)
(ANG2040/41)

Set low level for marker 1

[CHL]MARKERLVEL1:HIGH(?)
(ANG2040/41)

Set high level for marker 1

[CH1]MARKERLEVEL2: LOW(?)
(AWG2040,/41)

Set low level for marker 2

[CH1]MARKERLVEL2:HIGH(?)
(AWG2040/41)

Set high level for marker 2

[CH1IMARKERLEVEL1? Query level setting for marker 1
(AWG2040/41)
[CH1]MARKERLEVEL2? Query level setting for marker 2
(AWG2040/41)

CH<x>:0FFSet (?)

Set offset voltage for the CH<x>waveform

CH<x>:TRACk : AMPLi tude(?)

Set tracking for voltage range

(AWG2005/20/21)

CH<x>:TRACk:0FFSet (?) Set tracking for offset voltage
(AWG2005/20/21)

CH<x>:TRACk? Query all settings for all tracking
(AWG2005/20/21)

CH<x>:WAVeform(?)

Specify the CH<x> waveform or sequence

AWG2000 Series Programmer Manual

2-21

Command Groups

Table 2-12: Setup Commands (Cont.)

Header Description

CLOCk? Query all current settings related to clock
CLOCk:CH2? Query all current settings related to clock for
(AWG2020/21) channel 2

CLOCk:CH2:DIVider(?) Set divide ratio to divider

(AWG2020/21)

CLOCk:FREQuency(?)

Set source clock frequency

CLOCk:SOURce(?)

Select clock source

CLOCk:SWEep:DEFine(?)
(AWG2005)

Data transfer and writing files for clock sweep

CLOCK: SWEep:DWELT(?)
(AWG2005)

Set dwell value for clock sweep

CLOCk:SWEep:
FREQuency:STARt (?)
(AWG2005)

Set start frequency for clock sweep

CLOCk:SWEep:
FREQuency:STOP(?)
(AWG2005)

Set stop frequency for clock sweep

CLOCk:SWEep:FREQuency?
(AWG2005)

Query start/stop frequency for clock sweep

CLOCk : SWEep:MODE(?)
(AWG2005)

Set mode for clock sweep

CLOCK:SWEep:STATe(?)
(AWG2005)

Turn on or off for clock sweep

CLOCk:SWEep: TIME(?)
(AWG2005)

Set time for clock sweep

CLOCk:SWEep:TYPE(?)
(AWG2005)

Select type for clock sweep

CLOCK:SWEep(?)
(AWG2005)

Query all settings for clock sweep

Status and Event
Commands

The Status and Event commands are used by the external controller to set and
guery the registers and queues of the waveform generator event and status
reporting system. These commands let the external controller coordinate
operation between the waveform generator and other devices on the bus. For the
registers and queues described in Table 2-13, refer to the status and event
reporting system described in Section 4.

2-22 AWG2000 Series Programmer Manual

Command Groups

Table 2-13: Status and Event Commands

Header Description

ALLEv? Dequeue all events from Event Queue
*CLS Clear SESR, SBR and Event Queue
DESE(?) Set and query DESER

*ESE(?) Set and query ESER

*ESR? Query SESR

EVENT? Dequeue event from Event Queue
EVMsg? Dequeue event from Event Queue
EVQty? Query number of event on Event Queue
*PSC(?) Set power-on status clear flag
*SRE(?) Set and query SRER

*STB? Query SBR

Synchronization = The Synchronization commands are used by the external controller to prevent
Commands communication to the waveform generator from interfering with commands or
other operations that the waveform generator is currently executing.

Table 2-14: Synchronization Commands

Header

Description

*0PC(?)

Generate or return the operation complete message

*WAI

Hold off all commands until all pending operations
complete

System Commands The System commands control elements are related to the operating system of
the waveform generator, such as setting date and time and locking or unlocking

the front-panel controls. They also reset the system and return system-related

information.

Table 2-15: System Commands

Header

Description

DATE(?)

Set date

DEBug:SNOop:STATe(?)

Turn on or off for debugging

DEBug:SNOop:DELAy: TIME(?)

Set delay time for debugging

DEBug:SNOop:DELAy?

Query delay time for debugging

AWG2000 Series Programmer Manual

2-23

Command Groups

Table 2-15: System Commands (Cont.)

Header Description

DEBug:SNOop? Query all settings for debugging

DEBug? Query all settings for debugging

FACTory Reset all settings to defaults

HEADer (?) Allow or suppress the return of the control header in
response messages

HWSequencer? Query the installation state and on/off state of the

(AWG2041) hardware sequencer.

HWSequencer:INSTalled?
(AWG2041)

Query the state of the hardware sequencer
installation.

HWSequencer:MODE(?)
(AWG2041)

Set the hardware sequencer mode.

ID? Query ID information about the waveform generator

*IDN? Query ID information about the waveform generator

LOCk(?) Lock or unlock local control using the front-panel
controls

*LRN? Query all settings of the waveform generator

*OPT? Query which options are implemented for this
waveform generator

*RST Reset this waveform generator

SECUre Clear memory to reset it to factory shipping settings

TIME(?) Set the waveform generator time

UPTime? Query the elapsed time since power on

UNLock Unlock (allow) local control using the front-panel
controls

VERBose(?) Select short or long response headers

Waveform Commands The Waveform commands control the transfer of, and parameters related to the
transfer of, waveform-related information between the waveform generator and
an external controller. This information includes unscaled waveform data, the
waveform preamble that specifies how to reconstruct the waveform data,
equations defining waveforms, and formats for transferring waveforms. Consider

the following points when using waveform commands.

m Waveform data transferred includes only raw, binary-formatted data. The
preamble contains the data-encoding format, waveform scale, etc., that allow
a scaled waveform to be obtained.

2-24 AWG2000 Series Programmer Manual

Command Groups

® The CURVe command or query transfers the unscaled waveform, marker,
and sequence data.

® The WAVFrm command or query transfers both the waveform and the
preamble.

m The WFMPre commands and queries set up the waveform preamble.

m The DATA commands and queries specify the format and location of the
waveform and marker data.

m EQUAtion commands define, compile, and otherwise control the conversion
of an equation expression into a waveform.

Table 2-16: Waveform Commands

Header

Description

AUTOStep:DEFine(?)

Send the auto step data associated with the
specified channel to a file in the waveform
generator

CURVe(?) Transmit waveform between the external controller
and the waveform generator
DATA(?) Query all current settings related to the waveform

or marker data to be transferred

DATA:DESTination(?)

Define the destination to which the waveform is to
be transferred

DATA:ENCDG(?)

Select the waveform data transfer format

DATA:SOURce(?)

Designate the source from which waveform is
transferred

DATA:WIDTh(?)

Set the number of bytes per wavefrom point

EQUAtion:COMPile(?)

Compile the equation expression

EQUAtion:COMPiTle:STATe(?)

Compile the equation files

EQUAtion:DEFine(?)

Write the equation expression into a file

EQUAtion:WPOints(?)

Write a specified number of waveform points

MARKer:AOFF

Reset all marker data

MARKer:DATA(?)

Transmit marker data between the external
controller and the waveform generator

MARKer:POINt(?)

Set marker data for specified point

MARKER<x>:AOFF

Set all markers to off

MARKER<x>:POINt(?)

Set the marker to the specified point

SEQUence:DEFine(?)

Write a sequence to a file

SEQUence:EXPANnd

Break the sequence into waveform data to generate
waveform files

AWG2000 Series Programmer Manual

2-25

Command Groups

2-26

Table 2-16: Waveform Commands (Cont.)

Header Description

WAVFrm? Transmit the waveform preamble and waveform
from the waveform generator to external controller

WFMPre:BIT_NR(?) Specify the bits of precision per byte

WFMPre:BN_FMT(?) Specify the binary data format

WFMPre:BYT OR(?) Specify the byte order

WFMPre:BYT NR(?) Specify the data field width for each binary data
point

WFMPre: CRVCHK(?) Specify the error check method

WFMPre:ENCDG(?) Set waveform data encoding

WFMPre:NR_PT(?) Set the number of waveform data points

WFMPre:PT _FMT(?) Define format of data

WFMPre:PT_OFF(?) Define the X-axis point offset value

WFMPre:WFID(?) Set comment and additional information

WFMPre:XINCR(?) Define the X-axis increment value

WFMPre: XUNIT(?) Define the X-axis data unit type

WFMPre:XZERO(?) Define the X-axis origin offset value

WFMPre: YMULT (?) Define the Y-axis data multiplier value

WFMPre:YOFF(?) Define the Y-axis offset value

WFMPre: YUNIT(?) Define the Y-axis data unit type

WFMPre:YZERO(?) Define the Y-axis origin offset value

WFMPre? Query all the current preamble settings

AWG2000 Series Programmer Manual

-/ |
Command Descriptions

This subsection lists each command and query in the AWG2000 Series Arbitrary
Waveform Generators command set alphabetically. Each command entry
includes its command description and command group, its related commands (if
any), its syntax, and its arguments. Each entry also includes one or more usage
examples.

This subsection fully spells out headers, mnemonics, and arguments with the
minimal spelling shown in upper case. For example, to use the abbreviated
version of the AUTOStep:DEFine command, just type AUTOS:DEF.

The symbol (?) follows the command header of those commands that can be
used as either a command or a query; the symbol ? follows those commands that
can only be a query; if neither symbol follows the command, it can only be used
as a command.

ABSTouch

The ABSTouch command performs the same action that actuating the corre-
sponding front-panel key, button, or knob would do.

Group DISPLAY
Related Commands DISPlay? DISPlay:BRIGhtness

Syntax ABSTouch {BOTTOM1 | BOTTOM2 | BOTTOM3 | BOTTOM4 | BOTTOMS |
BOTTOMS6 | BOTTOMY7 | SIDE1 | SIDE2 | SIDE3 | SIDE4 | SIDE5 | CLEarme-
nu | SETUp | MODE | EDIT | LOADSave | UTILity | FG | CURSor | VALue |
LEFTarrow | RIGHtarrow | KNOBLeft | KNOBRight | ZERo | ONE | TWO |
THREe | FOUR | | FIVe | SIX | SEVen | EIGHt | NINe | POINt | A | MINUs | B |
HZ|SEC|V|C|KHZ|MS|MV|D|MHZ|US|E|NS|GHz(AWG2040/41)
| F | DELete | ENTer | HARDcopy(AWG2005/21/40/41) | INFo | MANual |
CH1(AWG2005/20/21) | CH1Normal(AWG2040/41) | CH1In-
verted(AWG2040/41) | CH2(AWG2005/20/21) | CH3(AWG2005) |
CH4(AWG2005)}

AWG2000 Series Programmer Manual 2-27

Command Descriptions

.
.
.
-—

BOTTOM1

i

BOTTOM2 LEFTarrow

—(_2BsTouch)}—»| <SPACE> | <—»{ BOTTOM3 }——— RIGHLarrow

KH

[

BOTTOM4 KNOBLeft

BOTTOM5 KNOBRight MS

BOTTOM6 ZERG Mv

BOTTOM7

=

dlill

@]

.

=

H

[

SIDE1l TWO

c
w0

SIDE2 THREe

SIDE3 FOUR

=
w0

SIDE4 FIVe

il

SIDES Hz

CLEarmenu SEVen

SETUp EIGHt DELete

MODE NINe ENTer

EDIT POINt INFo

LOADSave HARDcopy

UTILity MINUs MANual

CH1 Normal

)

HITHRIL

G

CH1 Inverted

W”W'"W'H“

dllkidd

CURSor HZ

VALue SEC CH1

CH

w

ﬂ

CH

CH4

2-28 AWG2000 Series Programmer Manual

Command Descriptions

Arguments Sending any of the arguments that are shown in Figure 2-3 is the equivalent of
operating a front panel control. The control operated is the one that the argument
points to in Figure 2-3. Sending an argument corresponding to a front-panel
button is the same as pressing that button once; if the argument sent corresponds
to a knob, it is the same as rotating the knob clockwise or counterclockwise by

%5 of a turn.
LEFTarrow RIGHTarrow KNOBLeft
\CURSor \ VALue / KNOBRight
[Tekironix AWG2020 ArsiTRARY WAVEFORM GENERATOR } ‘\‘ \ 1 [/ f
SETU g P—
(r ~) MODE TR (= HARDcopy
- TR oy
Tl Side EDIT |~ &
2] side2 LOADSave
OA/)) g
j% ggei UTILity \E Ll o2 CH3
T V% FG = T e Pl CH4
%J,/ Side 5 Blsssg L
|\ (ocHL “ o ocm‘/U ocm‘/T
N J
T 1 1 1 1 1 1 1 /&|_—~ CLEarmenu T T
=) @\‘Q‘Q‘Q‘Q‘Q,@ @J CH1 CH2// guy
—
Bottom1 ~ Bottom 7 SEVen EIGHt NINe
FOUR FIVe SIX @-E-E KHZ/MS/MV

ONE TWO THREe y
o[PO

Hz/slV ENTER

"‘Ec‘b@@c?o

POINt / MINUs HZ/SEC/V
NORMal INVerted

Figure 2-3: ABSTouch Arguments and Associated Controls

Examples @ ABSTOUCH SETUP
displays the same setup menu that is displayed by pressing the front-panel button
SETUP in the MENU column on the front panel.

AWG2000 Series Programmer Manual 2-29

Command Descriptions

ALLEv?

The ALLEv? query dequeues all event codes and their corresponding event
messages. Use the *ESR? query to make events available for dequeuing using
ALLEvV? query.

Group STATUS and EVENT
Related Commands *CLS, DESE, *ESE, *ESR?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?

Syntax ALLEv?

@
Arguments None

Responses [:ALLEV]<event code>,."<event message:second message>", <event
code>,"<event message:second message>"]...

Examples ALLEV?
might return the string
‘ALLEV 113,"Undefined header; unrecognized command — FG:CH1:AMP”;
420, "Query UNTERMINATED".

AUTOStep:DEFine(?)

The AUTOStep:DEFine command sends auto-step data for the specified channel
to a specified file internal to the waveform generator. The AUTOStep:DEFine?
query returns the auto-step data for the specified channel from the specified file
internal to the waveform generator.

Group WAVEFORM
Related Commands

Syntax AWG2005/20/21
AUTOStep:DEFine <File Name>, {CH1 | CH2 | CH3 (AWG2005) |
CH4 (AWG2005)}, <Autostep Data Block>

2-30 AWG2000 Series Programmer Manual

Command Descriptions

AUTOStep:DEFine? <File Name>, {CH1 | CH2 | CH3 (AWG2005)
| CH4 (AWG2005)}

AUTOSTep)

<SPACE>|—»{ <File Name> }—@—g

<SPACE>}—>| <File Name>

<Auto Step Data Block>

AWG2040/41
AUTOStep:DEFine <File Name>[,CH1],<Autostep Data Block>
AUTOStep DEFine? <File Name>[,CH1]

AUTOSTep)

<SPACE>}—»{ <File Name> }—TQ—— CH1 (.)—={<Auto Step Data Block> F—
<SPACE>}—»{ <File Name> }—T—Q—»@ [J

Arguments <File Name>::=<string>
which is the name of the file to which the auto-step data is transmitted.

CH1, CH2, CH3, CH4
which designates channel 1, channel 2, cannel 3, channel 4 respectively.

Auto-step data can be specified by ASCII code as follows.
Each auto-step is followed by comma (,), and is separated by Line Feed (LF) code.

Waveform or sequence file name <waveform>, clock source <clock source>,
internal clock frequency <clock>, operation mode <operation>
(AWG2005/20/21), frequency cut-off filter <filter>, output voltage range
<amplitude>, offset voltage <offset>, marker 1 high level <mark 1H>
(AWG2040/41), marker 1 low level <mark 1L> (AWG2040/41), marker 2 high
level <mark 2H> (AWG2040/41), marker 2 low level <mark 2L>
(AWG2040/41)

AWG2000 Series Programmer Manual 2-31

Command Descriptions

AWG2020/21 accepts the format which separates only waveform or sequence file
name <saveform> by Line Feed (LF) code..

<wavefor>::=<string>
<clock>::=<NR3>[<unit1>]
<operation>::={INTernal | EXTernal}

<filter>::= {THROUGH | THR | THRU | 500KHZ | K500 | IMHZ | M1 | 2MHZ |
M2 | 5SMHZ | M5 | 10MHZ | M10 | 20MHZ | M20 | 50MHZ | M50 | 100MHZ |
M100}

<amplitude>::=<NR2>[<unit2>]
<offset>::=<NR2>[<unit2>]
<mark1H>::=<NR2>[<unit2>]
<marklL>::=<NR2>[<unit2>]
<mark2H>::=<NR2>[<unit2>]
<mark2L>::=<NR2>[<unit2>]
<unitl>:=[{Hz | KHz | MHz | GHz}]
<unit2>:=[{V | mV}]

AWG2005/20/21

#3109WAVEO1.WFM, INTERNAL, 10.00000E+06, NORMAL, THROUGH,
1.000, 0.000 <LF >WAVEO02.WFM, 2.00000E+06, NORMAL, THROUGH,
2.000, 0.000

AWG2040/41

#3135WAVEO1.WFM, INTERNAL, 1.000000E+09, 10MHZ, 1.000, 0.000, 2.0,
0.0, 2.0, 0.0 <LF> WAVEO02.WFM, INTERNAL, 1.000000E+09, THROUGH,
1.000, 0.000, 2.0, 0.0, 2.0, 0.0

Examples @ AUTOSTEP:DEFINE "AUTOS01.AST”, CH1, #287WAVE01.WFM, 10MHZ,
NORMAL, THRU, 1.000, 0.000 <LF> WAVE02.WFM, 2.00000E+06,
NORMAL, THRU, 2.000, 0.000

sets the AWG2020 to transfer the auto-step data to a file AUTOSOL1.AST on
channel 1.

*CAL?

The *CAL? common query performs an internal calibration and returns status
that indicates whether the waveform generator completes the self calibration
without error. If an error is detected during calibration, execution immediately
stops and an error code is returned.

2-32 AWG2000 Series Programmer Manual

Command Descriptions

Group
Related Commands

Syntax

Arguments

Responses

Examples

CH1:0PERation (?)
(AWG2005/20/21)

Group

Related Commands

NOTE. Up to 15 seconds are required to complete the internal calibration.
During this time, the waveform generator does not respond to any commands or
queries issued.

CALIBRATION and DIAGNOSTIC
SELFcal:RESUIt, SELFcal:SELect, SELFcal:STATe

*CAL?

(—rcar y—(2)
None

<Result>
where <Result>::=<NR1>, which is one of following decimal integers:

0 terminated without error.
200 detected errors in the clock unit (AWG2020/21).
600 detected errors in the setup-related unit.
800 detected errors in the trigger unit (AWG2005).

*CAL?
performs an internal calibration and returns the results (for example, it might
return 0, which indicates the calibration terminated without any detected errors).

The CH1:OPERation command selects an operator that mathematically modifies
the waveform on channel 1. The CH1:OPERation? query returns the currently
selected operation.

SETUP

CH<x>:AMPLitude, CH<x>:FILTer, CH<x>:0OFFSet, CH<x>:TRACK:AMPLI-
tude, CH<x>:TRACK:OFFSet, CH<x>:WAVeform

AWG2000 Series Programmer Manual 2-33

Command Descriptions

Syntax CH1:OPERation {NORMal | ADD | AM | EADD(AWG2005) | EAM}
CH1:0PERation?

NORMal

CH1 ° OPERation <SPACE>

H (2t)
. EADD '

»(?)
AN
Arguments The choices are tabulated below.
Argument Description
NORMal Applies no operation to the channel 1
ADD Adds the output of channel 2 to the channel 1 and turns off the output

of channel 2. The formula below describes the output voltage Vout(t)
that appears on the channel 1 connector at time t.

Vout(t)=Vch1(t)+Vch2(t)+Voffset : ch1

AM Multiplies channel 1 by the output of channel 2 and turns off the output
of channel 2. The formula below describes the output voltage Vout(t)
that appears on the channel 1 connector at time t.

Vout(t)=Vch1(t) * Vch2+Voffset : chi

EADD The voltage added to EXTADD is added to channel 1 and output
without change.
EAM Multiplies channel 1 by the external signal applied through the external

BNC connector. The formula below describes the output voltage Vout(t)
that appears on the channel 1 connector at time t.

Vout(t)=Veh1(t) * (Vext(t)+1)/2+Voffset : ch1

* The terms Vchl(t), Vch2(t), and Vext(t) express respectively the
channel 1, channel 2, and external input signal voltages before
processing at time t. Voffset:chl and Voffset:ch2 express the settings
of the channel 1 and channel 2 offset voltages.

2-34 AWG2000 Series Programmer Manual

Command Descriptions

NOTE. It is possible for the voltage output from channel 1 to exceed the
maximum output voltage (1Q.Y for the AWG2005 and 5.Q,y for the
AWG2020/21) when calculating waveforms. Since the waveforms of such output
voltages are likely to be distorted, care should be used in specifying waveform
calculations.

Examples :CH1:.OPERATION ADD
selects ADD mode.

CH<x>?

The CH<x>? query returns all current waveform output settings for the specified
channel.

Group SETUP

Related Commands CH<x>:AMPLitude, CH<x>:FILTer, CH<x>:OFFSet, CH1:OPERation,
CH<x>:TRACK:AMPLitude, CH<x>:TRACK:OFFSet, CH<x>:WAVeform

Syntax CH<x>?

—(CH > <x> |—>@—>

Arguments None

Responses Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. Semmples

Examples :CH1?
might return

AWG2005/20/21
:CH1L:WAVEFORM "WAVEO1.WFM”;,OPERATION NORMAL;FILTER
THRU;AMPLITUDE 1.000;,0FFSET 0.000

AWG2040/41
:CH1:.WAVEFORM"WAVEO1.WFM”;FILTER THRU;AMPLITUDE
1.000;0FFSET 0.000;MARKERLEVEL1:HIGH 2.0;LOW 0.0;: H:-MARKER-

AWG2000 Series Programmer Manual 2-35

Command Descriptions

LEVEL2:HIGH 2.0;
LOW 0.0

CH<x>:AMPLitude (?)

The CH<x>:AMPLitude command sets maximum full scale voltage for the
waveform output at the specified channel. The CH<x>:AMPLitude? query
returns the maximum voltage currently set.

Group SETUP

Related Commands CH<x>:FILTer, CH<x>:OFFSet, CH1:OPERation, CH<x>:TRACK:AMPLi-
tude, CH<x>:TRACK:OFFSet, CH<x>:WAVeform

Syntax AWG2005/20/21
CH<x>:AMPLitude <Amplitude>
CH<x>:AMPLitude?

—(_c1) <x) <SPACE>|—>|<Amplitude>T—>

)
A\

AWG2040/41
[CH1:]JAMPLitude <Amplitude>
[CH1:]JAMPLitude?

) AMPLitude)—T-—{<SPACE>}—>-{ <Amplitude> T_>
i 5

Arguments <Amplitude>::=<NR2>[<unit>]
where <NR2> has a range of 0.050 V to 10,000 V (AWG2005), 0.050 V to
5.000 V (AWG20/21), 0.020 V to 2.000 V (AWG2040/41) in steps of 0.001 V
and <unit>::={V | mV}, for volts or millivolts.

Examples :CH1:AMPLITUDE 230.0mV
sets the amplitude of the channel 1 waveform to 230 mV.

2-36 AWG2000 Series Programmer Manual

Command Descriptions

CH<x>:FILTer (?)

The CH<x>:FILTer command selects one of four low pass filters (or selects no
filter). The CH<x>:FILTer? query returns the name of the currently selected
filter.

Group SETUP

Related Commands CH<x>:AMPLitude, CH<x>:0OFFSet, CH<x>:OPERation,
CH<x>:TRACK:AMPLitude, CH<x>:TRACK:OFFSet, CH<x>:WAVeform

Syntax AWG2005/20/21
CH<x>:FILTer {THRu |K500(AWG2005) | M1 | M2(AWG2005) | M5
M20(AWG2020/21) | M50(AWG2020/21)}

CH<x>:FILTer?

THRu
K500

—(CH r—{ <x> |—>®—>(FILTer)}—~| <sPACE> —<—»(M1 Y

M

M
M10
M20
M50

© II

AWG2040/41
[CH1:]FILTer {M10 | M20 | M50 | M100}
[CH1:]FILTer?

AWG2000 Series Programmer Manual 2-37

Command Descriptions

Arguments

Examples

CH1 o FILTer <SPACE>

THRu OFF (no filter is used)
K500 500 kHz (AWG2005)

M1 1 MHz (AWG2005/20/21)

M2 2 MHz (AWG2005)

M5 5 MHz (AWG2005/20/21)
M10 10 MHz (AWG2040/41)

M20 20 MHz (AWG2020/21/40/41)
M50 50 MHz (AWG2020/21/40/41)

M100 100 MHz (AWG2040/41)

:CH1:FILTER M20
selects a low-pass filter that rolls off frequencies above a 20 MHz cut off
frequency.

CH<x>:MARKERLEVEL1?

(AWG2040/41)

Group

Related Commands

Syntax

Arguments

2-38

The CH<x>:MARKERLEVEL1? query returns the currently specified marker 1
marker levels.

SETUP

CH<x>:MARKERLEVEL1:HIGH,CH<x>:MARKERLEVEL1:LOW

[CH1:]MARKERLEVEL1?

CH1) MARKERLEVELl)—»@—»

None

AWG2000 Series Programmer Manual

Command Descriptions

Responses

Examples

See Examples

CH1:MARKERLEVEL1?
might return :CH1:MARKERLEVEL1:HIGH 2.0;LOW 0.0

CH<x>:MARKERLEVEL1:HIGH (?)

(AWG2040/41)

Group
Related Commands

Syntax

Arguments

Examples

The CH<x>:MARKERLEVEL1:HIGH command sets the higivél for marker 1.
The CH<x>:MARKERLEVEL1:HIGH? query returns the currently specified
high level for marker 1.

SETUP

CH<x>:MARKERLEVEL1:LOW

[CH1]MARKERLEVEL1:HIGH <Level>
[CH1:]MARKERLEVEL1:HIGH?

'I CHI II[MARKERLEVELl

<SPACE>}——>| <Level> |~

()
&

<Level>::=<NR2>[<unit>]

where <NR2> is a decimal number that combined with [<unit>] specifies a value
in the range —1.9 V to 2.0 V in steps of 0.1 V, and [<unit>]::= {V|mV}, for volt

or millivolt.

(Note that the high level must be larger than the low level.)

:CH1:MARKERLEVEL1:HIGH 1.0
sets the marker 1 high level to 1 V.

CH<x>:MARKERLEVEL1:LOW (?)

(AWG2040/41)

The CH<x>:MARKERLEVEL1:LOW command sets the low level for marker 1.

AWG2000 Series Programmer Manual 2-39

Command Descriptions

Group
Related Commands

Syntax

Arguments

Examples

The CH<x>:MARKERLEVEL1:LOW? query returns the currently specified
low level for marker 1.

SETUP
CH<x>:MARKERLEVEL1:HIGH

[CH1:]JMARKERLEVEL1:LOW <Level>
[CH1:]MARKERLEVEL1:LOW?

EET -
CHL : MARKERLEVELL 0 LOW

<SPACE>|——>{ <Level> }—\
o
©
<Level>::=<NR2>[<unit>]

where <NR2> is a decimal humber that combined with [<unit>] specifies a value
in the range —1.9 V to 2.0 V in steps of 0.1 V, and [<unit>]::= {V|mV}, for volt
or millivolt.

:CH1:MARKERLEVEL1:LOW 0.5
sets the marker 1 low level to 0.5 V.

CH<x>:MARKERLEVEL2?

(AWG2040/41)

Group
Related Commands

Syntax

2-40

The CH<x>:MARKERLEVEL2? query returns the currently specified marker 2
marker levels.

SETUP

CH<x>:MARKERLEVELZ2:HIGH, CH<x>:MARKERLEVEL2:LOW

[CH1:]MARKERLEVEL2?

AWG2000 Series Programmer Manual

Command Descriptions

Arguments

Responses

Examples

CH1) MARKERLEVELZ)—»@—»

None

See Examples

CH1:MARKERLEVEL2?
might return :CH1:MARKERLEVEL2:HIGH 2.0;LOW 0.0

CH<x>:MARKERLEVEL2:HIGH (?)

(AWG2040/41)

Group
Related Commands

Syntax

Arguments

Examples

The CH<x>:MARKERLEVELZ2:HIGH command sets the high level for marker 2.
The CH<x>:MARKERLEVELZ2:HIGH? query returns the currently specified

high level for marker 2.
SETUP

CH<x>:MARKERLEVELZ2:LOW

[CH1:]MARKERLEVELZ2:HIGH <Level>
[CH1:]MARKERLEVEL2:HIGH?

(CHI1) : MARKERLEVEL2 o HIGH

<SPACE>|—>{ <Level> }—\
)
)
<Level>::=<NR2>[<unit>]

where <NR2> is a decimal number that combined with [<unit>] specifies a value
in the range —1.9 V to 2.0 V in steps of 0.1 V, and [<unit>]::= {V|mV}, for volt

or millivolt.

(Note that the high level must be larger than the low level.)

:CH1:MARKERLEVEL2:HIGH 1.0
sets the marker 2 high level to 1 V.

AWG2000 Series Programmer Manual 2-41

Command Descriptions

CH<x>:MARKERLEVEL2:LOW (?)

(AWG2040/41)

Group
Related Commands

Syntax

Arguments

Examples

CH<x>:0FFSet (?)

Group

Related Commands

2-42

The CH<x>:MARKERLEVEL2:LOW command sets the low level for marker 2.
The CH<x>:MARKERLEVEL2:LOW? query returns the currently specified low

level for marker 2.
SETUP

CH<x>:MARKERLEVELZ2:HIGH

[CH1:]MARKERLEVEL2:LOW <Level>
[CH1:]MARKERLEVEL2:LOW?

ll CH1 .I[MARKERLEVEL2 0 LOW

<SPACE>|——>{ <Level> }—\
)
&
<Level>::=<NR2>[<unit>]

where <NR2> is a decimal number that combined with [<unit>] specifies a value
in the range —1.9 V to 2.0 V in steps of 0.1 V, and [<unit>]::= {V|mV}, for volt

or millivolt.

(Note that the high level must be larger than the low level.)

:CH1:MARKERLEVEL2:LOW 1.5
sets the marker 2 low level to 1.5 V.

The CH<x>:0OFFSet command sets the offset voltage of waveforms output from
the specified channel. The CH<x>:0FFSet? query returns the offset voltage
currently set.

SETUP

CH<x>:AMPLitude, CH<x>:FILTer, CH<1>:0OPERation,
CH<x>:TRACK:AMPLitude, CH<x>:TRACK:OFFSet, CH<x>:WAVeform

AWG2000 Series Programmer Manual

Command Descriptions

Syntax AWG2005/20/21
CH<x>:0OFFSet <Offset>
CH<x>:0OFFSet?

—(CH r— <x> |—>®—>(OFFSet <SPACE> |—>|<offset>T—>

o
&/

AWG2040/41
[CH1:] OFFSet <Offset>
[CH1:] OFFSet ?

) OFFSet)T—{<SPACE>}—>{ <Offset> T_>
7o)
&

Arguments <Offset>::=<NR2>[<unit>]
where <NR2> has a range of —5.000 V to 5.000 V (AWG2005), —2.500 V to
2.500 V (AWG2020) in steps of 0.005 V, and —1.000 V to 1.000 V in steps of
0.001 V (AWG2040/41) and <unit>::={V | mV}

Examples :CH1:OFFSET 50.0mV
sets the offset voltage of channel 1 to 50 mV.

CH<x>:TRACKk?
(AWG2005/20/21)

The CH<x>:TRACK? query returns all amplitude and offset linkage settings for
the specified channel.
Note that only CH2, CH3, and CH4 are valid header mnemonics.

Group SETUP

Related Commands CH<x>:TRACk:AMPLitude, CH<x>:TRACk:OFFSet

Syntax CH<x>:TRACKk?

AWG2000 Series Programmer Manual 2-43

Command Descriptions

—([% ()= TRACK D)—>(?)

Arguments None
Responses See Examples

Examples = CH2:TRACK?
might return :CH2: TRACK:AMPLITUDE OFF;OFFSET OFF

CH<x>:TRACk:AMPLitude (?)
(AWG2005/20/21)

The CH<x>:TRACk:AMPLitude command sets the amplitude linkage for the
channel specified in the header.

The CH<x>:TRACkK:AMPLitude? query returns the amplitude linkage for the
channel specified in the header from the settings.
Note that only CH2, CH3, and CH4 are valid header mnemonics.

Group SETUP

Related Commands CH<x>:TRACk?, CH<x>:TRACk:OFFSet

Syntax CH<x>:TRACk:AMPLitude {CH1 | OFF}
CH<x>:TRACk:AMPLitude?

—(CH —{ <X 0 AMPLitude

(-)y—=(AWPLitude
-®
Arguments CH1

links the specified channel to the channel 1 voltage range.

OFF
does not use the amplitude linkage function.

244 AWG2000 Series Programmer Manual

Command Descriptions

Examples

CH2:TRACK:AMPLITUDE CH1
links the channel 2 voltage range to the channel 1 voltage range.

CH<x>:TRACk:OFFSet (?)

(AWG2005/20/21)

Group
Related Commands

Syntax

Arguments

Examples

The CH<x>:TRACk:OFFSet command sets the offset linkage for the channel
specified in the header.

The CH<x>:TRACk:OFFSet? query returns the offset linkage for the channel
specified in the header from the settings.

Note that only CH2, CH3, and CH4 are valid header mnemonics.

SETUP

CH<x>:TRACKk?, CH<x>:TRACk:AMPLitude

CH<x>:TRACK:OFFSet {CH1 | OFF}
CH<x>:TRACK:OFFSet?

—~(CH [% ()= TRACK —=(?)—>(OFFSal)

CHl
OFF ?—
CH1

links the specified channel to the channel 1 voltage range.

OFF
does not use the offset linkage function.

:CH2:TRACK:OFFSET CH1
links the channel 2 voltage range to the channel 1 voltage range.

AWG2000 Series Programmer Manual 2-45

Command Descriptions

CH<x>:WAVeform (?)

The CH<x>:WAVeform command selects a waveform or a sequence for output
on the specified channel. The CH<x>:WAVeform? query returns the currently
specified waveform or sequence file on the specified channel.

If the dual channel option (Option 02) is not installed, CH1 is only valid header
mnemonic.

Group SETUP

Related Commands CH<x>:AMPLitude, CH<x>:FILTer, CH<x>:OFFSet, CH<x>:TRACk:AMPLi-
tude, CH<x>:TRACk:OFFSet, CH<1>:0OPERation

Syntax AWG2005
CH<x>:WAVeform <File Name>

CH<x>:WAVeform?
—(CH > <x> ° <SPACE> [s <File Name>}T—>
»(2)
N
AWG2040/41
[CH1:]WAVeform <File name>
[CH1:]WAVeform?

) WAVeform >T <SPACE>]—»{ <File name> T—»
©,

Arguments <File Name>::=<string>
where <string> is a waveform file name or sequence file name.

Examples :CH1:WAVEFORM "SQUARE.WFM”
selects the waveform in the waveform file SQUARE.WFM as the waveform
output on channel 1.

2-46 AWG2000 Series Programmer Manual

Command Descriptions

CLOCK?

Group
Related Commands

Syntax

Arguments

Examples

CLOCKk:CH2?
(AWG2020/21)

Group
Related Commands

Syntax

Arguments

Examples

The CLOCKk? query returns all clock settings.
SETUP
CLOCk:FREQuency, CLOCk:SOURce, CLOCk:CH2:DIVider, CLOCK:SWEep

CLOCK?

(crock)—(2)

None

:CLOCK?
might return CLOCK:FREQUENCY 1.000E+08; SOURCE INTERNAL,;
CH2 DIVIDER 1

The CLOCk:CH2? query returns all clock settings currently set for channel 2.
This command is effective only when the dual channel option (Option 02) is
installed.

SETUP
CLOCk:CH2:DIVider

CLOCk:CH2?
© cx? ®

None

:CLOCK:CH2?
might return CLOCK:CH2:DIVIDER 1

AWG2000 Series Programmer Manual 2-47

Command Descriptions

CLOCk:CH2:DIVider (?)
(AWG2020/21)

The CLOCk:CH2:DIVider command sets the ratio for the clock divider. The
divided clock frequency is the channel 2 clock frequency. The CLOCk:CH2:DI-
Vider? query returns the divide ratio currently set.

This command is effective only when the dual channel option (Option 02) is
installed.
Group SETUP

Related Commands CLOCk?, CLOCk:FREQuency, CLOCk:SOURce

Syntax CLOCk:CH2:DIVider <Divide Ratio>
CLOCK:CH2:DIVider?

(ctock)—(:)y—(cuz (s)—("pivider)

<SPACE> || <Divide Ratio>|]
)
G
Arguments <Divide Ratio>::=<NR1>

where <NR1> has a range from 1 &,J<NR1> must be a power of 2).

Examples :CLOCK:CH2:DIVIDER 256
sets the divide ratio to 25642

:CLOCK:CH2:DIVIDER?
might return CLOCK:CH2:DIVIDER 256

CLOCk:FREQuency (?)

The CLOCk:FREQuency command sets source clock frequency. The
CLOCk:FREQuency? query returns the frequency currently set.
This command is effective only when the internal clock source is selected.

Group SETUP

2-48 AWG2000 Series Programmer Manual

Command Descriptions

Related Commands

Syntax

Arguments

Examples

CLOCk:SOURce (?)

Group
Related Commands

Syntax

CLOCk:SOURce, CLOCKk:CH2:DIVider

CLOCk:FREQuency <Frequency>
CLOCk:FREQuency?

FREQuency)T <SPACE> || <Frequency> T—»
»(2)

<Frequency>::=<NR3>[<unit>]

where <NR3> is a decimal number that combines with [<unit>] to have a range
of 10.00E-3~ 20.00E+6Hz (AWG2005), 10-0250.0E+6Hz (AWG2020/21),
1.000000E+3~1.024000E+9Hz (AWG2040/41), and[<unit>]::={HZ | KHZ |
MHZ | GHz(AWG2040/41)}, for hertz, kilohertz, megahertz or gigahertz.

:CLOCK:SOURCE INTERNAL; FREQUENCY 245.0KHZ
selects internal clock as a clock source and sets the frequency to 245 kHz.

The CLOCk:SOURce command selects clock source. The CLOCK:SOURce?
query returns the currently selected clock source.

SETUP

CLOCKk?, CLOCk:FREQuency, CLOCk:CH2:DIVider, CLOCk:SWEep:STATe

CLOCk:SOURCce {INTernal | EXTernal}

CLOCK:SOURce?
(+) SOURCe <SPACE> -

©

AWG2000 Series Programmer Manual 2-49

Command Descriptions

Arguments INTernal
use the internal clock source.

EXTernal
use the external clock source supplied through the external connector.

Examples :CLOCK:SOURCE EXTERNAL
selects the external clock source.

CLOCk:SWEep:DEFine (?)
(AWG2005)

The CLOCK:SWEep:DEFine command writes the arbitrary clock sweep data in
a specified file.

The CLOCK:SWEep:DEFine? query returns the arbitrary clock seep data written

in a specified file.

This command is effective only when Option 05 (clock sweep) is installed.
Group SETUP

Related Commands CLOCk:SWEep:DWEL1, CLOCk:SWEep:TYPE

Syntax CLOCk:SWEep:DEFine <Clock Sweep File>,<Clock Sweep Block Data>
CLOCk:SWEeep:DEFine? <Clock Sweep File>

(CLock (") SWEep)—»(*)—=(_ DEFine_)

<SPACE>|>{ <Clock Sweep File> }—®—>{<Clock Sweep Block Data> }\

N\
-®

Arguments <Clock Sweep File>::=<string> Clock sweep file
<Clock Sweep Block Data>::=<Arbitrary Block> Clock sweep data

Clock sweep data is specified in dwell time <dwell> followed by frequency
<clock> and hold-bit <event> in every step in binary.

<dwell><clock(1)><event (1)><clock
(2)><event(2)>...<clock(N)><event(N)>

2-50 AWG2000 Series Programmer Manual

Command Descriptions

<dwell>::=double precision floating point
<clock>::=double precision floating point

<event>::=16-bit interger without sign

Examples :CLOCK:SWEEP:DEFINE "SWEEP.CLK”, #510008...
specifies the 1000—step clock sweep data in the clock sweep file SWEEP.CLK.

CLOCk:SWEep:DWELI (2)
(AWG2005)

The CLOCk:SWEep:DWELI command sets the length of the period for which a
single frequency is output when the clock sweep type is “arbitrary”.

The CLOCk:SWEep:DWELI? query returns the length of the period for which a

single frequency is output.

This command is effective only when the Option 05 (clock sweep) is installed.
Group SETUP

Related Commands CLOCk:SWEep:TYPE

Syntax CLOCk:SWEep:DWELI <Time>
CLOCk:SWEep:DWELI?

(CLOCK)>{(>)—>(__SWEep)—»{()—=(__DWEL)

<SPACE>]—>{ <Time>
Arguments <Time>::=<NR3>[<unit>]

where <NR3> combined with [<unit>] specifies a time in the range tb
65.535 ms, and [<unit>] ::={s|ms}, for seconds, milliseconds, or microse-
conds.

Examples :CLOCK:SWEEP:DWELI 1MS
specifies the output of a single frequency for a period of 1 ms.

AWG2000 Series Programmer Manual 2-51

Command Descriptions

CLOCk:SWEep:FREQuency?
(AWG2005)

The CLOCk:SWEep:FREQuency? query returns the clock sweep start and stop
frequencies.

This command is effective only when the Option 05 (clock sweep) is installed.
Group SETUP

Related Commands CLOCk:SWEep:FREQuency:STARt,CLOCk:SWEep:FREQuency:STOP,
CLOCK:SWEep:TYPE

Syntax CLOCk:SWEep:FREQuency?
)) (2—
Arguments None
Responses See Examples

Examples @ CLOCK:SWEep:FREQuency?
might return :CLOCK:SWEEP:FREQUENCY:START 1.00000E+06;STOP
20.0000E+06

CLOCk:SWEep:FREQuency:STARt (?)
(AWG2005)

The CLOCk:SWEep:FREQuency:STARt command sets the clock sweep start
frequency.

The CLOCk:SWEep:FREQuency:STARt? query returns the clock sweep start
frequency.
This command is effective only when the Option 05 (clock sweep) is installed.

Group SETUP

Related Commands CLOCk:SWEep:FREQuency?, CLOCk:SWEep:FREQuency:STOP,
CLOCK:SWEep:TYPE

2-52 AWG2000 Series Programmer Manual

Command Descriptions

Syntax CLOCk:SWEep:FREQuency:STARt <Frequency>
CLOCk:SWEep:FREQuency:STARt?

(CLock ()= SWEep >) FREQuency (1)~ STARL)

<SPACE>}»| <Frequency>

Arguments <Frequency>::=<NR3>[<unit>]
where <NR3> combined with [<unit>] specifies a value in the range 0.01 Hz to
20.0000 MHz, and <unit>::={Hz|KHz|MHZz}, for hertz, kilohertz or megahertz.

Examples :CLOCK:SWEEP:FREQUENCY:START 1000
sets the clock sweep start frequency.

CLOCk:SWEep:FREQuency:STOP (?)
(AWG2005)

The CLOCk:SWEep:FREQuency:STOP command sets the clock sweep stop
frequency.

The CLOCk:SWEep:FREQuency:STOP? query returns the clock sweep stop
frequency.
This command is effective only when the Option 05 (clock sweep) is installed.

Group SETUP

Related Commands CLOCk:SWEep:FREQuency?, CLOCk:SWEep:FREQuency:STARt,
CLOCKk:SWEep:TYPE

Syntax CLOCk:SWEep:FREQuency:STOP <Frequency>
CLOCk:SWEep:FREQuency:STOP?

AWG2000 Series Programmer Manual 2-53

Command Descriptions

(CLock () SWEep)-»(:)—>(FREQuency)1)—~(__SToP)

<SPACE>|»| <Frequency> }ﬁ
@
Arguments <Frequency>::=<NR3>[<unit>]

where <NR3> combined with [<unit>] specifies a value in the range 0.01 Hz to
20.0000 MHz, and <unit>::={Hz|KHz|MHZz}, for hertz, kilohertz or megahertz.

Examples :CLOCK:SWEEP:FREQUENCY:STOP 20KHZ
sets the clock sweep stop frequency.

CLOCk:SWEep:MODE (?)
(AWG2005)

The CLOCk:SWEep:MODE command sets the sweep mode.
The CLOCk:SWEep:MODE? query returns the currently specified sweep mode.

This command is effective only when the Option 05 (clock sweep) is installed.
Group SETUP
Related Commands CLOCk:SWEep:STAte,MODE

Syntax CLOCk:SWEep:MODE { SCONTinuous| SGATed| STRIGGEREd}
CLOCK:SWEep:MODE?

(__CLoCk)—>(:)>(__ SWeep)>(:)>(_ MODE)

- SCONTinuous .
._STRIGGERE;'

2-54 AWG2000 Series Programmer Manual

Command Descriptions

Arguments SCONTinuous
sets the sweep mode to Continuous mode. In Continuous mode, the sweep
operation is performed continuously.

SGATed
sets the sweep mode to Gated mode. In Gated mode, the sweep operation is
performed only when the gate signal is valid.

STRIGGEREd
sets the sweep mode to Triggered mode. In Triggered mode, the sweep operation
is performed each time a trigger occurs.

Examples :CLOCK:SWEEP:MODE SGATE
sets the sweep mode to Gated mode.

CLOCk:SWEep:STATe (?)
(AWG2005)

The CLOCK:SWEep:STATe command turns the clock sweep on or off.
The CLOCK:SWEep:STATe? query returns whether or not the clock sweep is on.

This command is effective only when the Option 05 (clock sweep) is installed.
Group SETUP
Related Commands CLOCk:SOURce,MODE

Syntax CLOCk:SWEep:STATe {ON | OFF | <NR1>}
CLOCk:SWEep:STATe?

(CLock (1)—>(_SWEep (2)—>(_STATe)

Arguments ON or nonzero value
turns the clock sweep mode on.

AWG2000 Series Programmer Manual 2-55

Command Descriptions

Responses

Examples

OFF or zero value
turns the clock sweep off.

1 clock sweep is currently turned on.
0 clock sweep is currently turned off.

:CLOCK:SWEEP:STATE ON
turns the clock sweep on.

CLOCKk:SWEep:TIME (?)

(AWG2005)

Group
Related Commands

Syntax

Arguments

2-56

The CLOCk:SWEep:TIME command sets the length of the period from the start
to the end of the sweep.

The CLOCk:SWEep:TIME? query returns the length of the period from the start
to the end of the sweep.

This command is effective only when the Option 05 (clock sweep) is installed.
SETUP

CLOCK:SWEep:TYPE

CLOCk:SWEep:TIME <Time>
CLOCK:SWEep:TIME?

(CLOCK)>{(*)—(__SWEep))—=(_TME)

<Time>

)
&

<Time>::=<NR3>[<unit>]
where <NR3> combined with [<unit>] specifies a time in the range 1 ms to
65.535 s, and [<unit>]::= {s|msd}, for seconds, milliseconds, or microseconds.

AWG2000 Series Programmer Manual

Command Descriptions

Examples :CLOCK:SWEEP:TIME 5MS
sets the length of the period from the start to the end of the sweep to 5 ms.

CLOCk:SWEep:TYPE (?)
(AWG2005)

The CLOCk:SWEep:TYPE command sets the clock sweep type.
The CLOCk:SWEep:TYPE? query returns the clock sweep type.

This command is effective only when the Option 05 (clock sweep) is installed.
Group SETUP

Related Commands CLOCk:SWEep:DWELI, CLOCk:SWEep:FREQuency:STARt,
CLOCK:SWEep:FREQuency:STOP, CLOCk:SWEep:TIME

Syntax CLOCk:SWEep:TYPE {ARBitrary[,<File Name>] | LINear | LOGarithmic}
CLOCK:SWEep:TYPE?

(CLOCK)>{(>)>=(__SWEep)»()—~(_TYPE_)

<File Name>

ARBitrary

LINear

LOGarithmic

N
&

Arguments <File>::= <string> Clock sweep file (.CLK)

ARBitrary
sweeps with the frequency varying according to the contents of the clock sweep
file. If the clock sweep file is not specified, the previously specified file is used.

LINear
sweeps with the frequency varying linearly.

LOGarithmic
sweeps with the frequency varying logarithmically.

AWG2000 Series Programmer Manual 2-57

Command Descriptions

Examples

*CLS

Group
Related Commands

Syntax

Examples

CONFigure (?)
(AWG2005)

Group
Related Commands

Syntax

2-58

:CLOCK:SWEEP:TYPE ARBITRARY,"CLKSWEEP.CLK"
sets the clock sweep type to ARBitrary.

The *CLS common command clears SESR (Standard Event Status Register), the
SBR (Status Byte Register) and the Event Queue, which are used in the
waveform generator status and event reporting system. For more details, refer to
Section 3Status and Events

STATUS and EVENT

DESE, *ESE, *ESR?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?

*CLS
*CLS

clears the SESR, the SBR, and the Event Queue.

The CONFigure command controls the I/O of control and clock signals when an
AWG2005 is operated in parallel.

The CONFigure? query returns the operating mode when an AWG2005 is
operated in parallel.
MODE

MODE,CLOCk:SOURce

CONFigure {MASTer | SLAVe}
CONFigure?

AWG2000 Series Programmer Manual

Command Descriptions

MASTer

CONFigure

2
&

Arguments MASTer
this waveform generator supplies control and clock signals to the slave
AWG2005 operating in parallel.

SLAVe
this waveform generator receives control and clock signals from the master
AWG2005 operating in parallel.

Examples CONFIGURE?
might return :CONFIGURE MASTER

CURVe (?)

The CURVe command transmits unscaled, binary-formatted waveform data from
an external controller to the location inside the waveform generator specified
with the DATA:DESTination command.

The CURVe? query transmits unscaled data for a waveform in binary format to
the external controller from the source located inside the waveform generator
specified with the DATA:SOURce command.

The unscalled waveform data can be converted to the waveform data of an
absolute scall using preamble information.

Group WAVEFORM

Related Commands WAVFrm?, WFMPre?, DATA:SOURce, DATA:DESTination, DATA:ENCDG,
DATA:WIDTH

Syntax CURVe <Block Data>
CURVe?

AWG2000 Series Programmer Manual 2-59

Command Descriptions

Arguments

Examples

DATA (2)

Group
Related Commands

Syntax

Arguments

Examples

2-60

CURVe <SPACE> P»|<Waveform Block Data>T—>
»(2)
N

<Block Data>::=<Arbitrary Data>
where <arbitrary data> is the unscaled waveform data in binary format.

:CURVE #3256...
transmits an unscaled waveform to the waveform generator. The block data
element #3256 indicates that 256 bytes of binary data are to be transmitted.

The DATA command restores all currently specified settings related to waveform
or marker transfer to their default values.

The DATA? query returns all settings related to the data command currently in
effect for waveform or marker transfer.

WAVEFORM

DATA:DESTination, DATA:ENCDG, DATA:SOURce, DATA:WIDTh

DATA INIT
DATA?

DATA <SPACE>
INIT

restores all currently specified settings related to waveform or marker transfer to
their default values.

DATA?
might return :DATA:DESTINATION "GPIB.WFM";ENCDG RPBINARY;
SOURCE"CH1";WIDTH

AWG2000 Series Programmer Manual

Command Descriptions

DATA:DESTination (2)

The DATA:DESTination command specifies the destination inside the waveform
generator to which the waveform or the marker data is transmitted and stored
using CURVe:DATA or MARKer:DATA command.

The DATA:DESTination? query returns the destination currently specified.
Group WAVEFORM

Related Commands CURVe, MARKER<x>:AOFF, MARKER<x>:POINt, MARKer:DATA

Syntax DATA:DESTination <Waveform File>
DATA:DESTination?

DATA () DESTination)T-{ <SPACE> |-»{<Waveform File>|—»

»7)
&

Arguments <Waveform File>::=<string>
where <string> must be the name of a waveform file to be transferred into the
internal memory of the waveform generator. If the waveform file name specified
already exists in internal memory, the file is overwritten. Also, if the overwritten
file contains a waveform currently loaded and output on a channel, transmitting
the new waveform replaces the current waveform at the channel output as well as
in the file.

Examples :DATA:DESTINATION "WAVE_EXT.WFM”
specifies the waveform file: WAVE_EXT.WFM as a destination.

DATA:ENCDG (?)

The DATA:ENCDG command sets the encoding format for the waveform
transferred using the CURVe command or WAVFrm command when the data
width is 2 bytes.

The DATA:ENCDG? query returns the waveform encoding format currently set.

Group WAVEFORM

AWG2000 Series Programmer Manual 2-61

Command Descriptions

Related Commands

Syntax

Arguments

Examples

DATA:SOURce (2)

2-62

Group

Related Commands

CURVe, WAVFrm?, WFMPre:ENCDG, WFMPre:BYT_OR, WFMPre:BIT_NR,
DATA:WIDTH

DATA:ENCDG {RPBinary | SRPbinary}
DATA:ENCDG?

<SPACE>

. RPBinary I

SRPbinary

()
Y

RPBinary
specifies positive integer data point representation with the most significant byte
transferred first.

SRPbinary
specifies positive integer data point representation with the least significant byte
transferred first.

The data transfer time byte order can also be specified using the
WFMPre:BYT_OR command. When both this command and the
WFMPre:BYT_OR command are used, the most recently issued, i.e., the last,
command takes effect. For example, if the byte order is set to high order byte
first using this command (DATA:ENCDG RPBinary), and then a
WFMPre:BYT_OR LSB command is executed, the setting will be changed so
that the low order byte is transmitted first.

:DATA:ENCDG RPBINARY
specifies the format RPBinary, which is described uAdgumentsabove

The DATA:SOURce command specifies the waveform generator source (channel
or waveform file) from which the waveform is transmitted to an external
controller using the CURVe? query.

The DATA:SOURce? query returns the source that is currently specified.
WAVEFORM

CURVe?

AWG2000 Series Programmer Manual

Command Descriptions

Syntax DATA:SOURce {"CH1” | "CH2"(AWG2005/20/21) | "CH3"(AWG2005) |
"CH4”(AWG2005) | <Waveform File>}DATA:SOURce?

SOURce <SPACE>

Arguments <Waveform File>::=<string>
where the string is "CH1”, "CH2", "CH3", or "CH4” for asociated channels
respectively, or is the name of a waveform file located in internal memory. No
other source strings are allowed.

Examples :DATA:SOURCE "CH1”
specifies channel 1 as a source.

DATA:WIDTh (2)

The DATA:WIDTh command sets the number of bytes per data point during
waveform data transfer.

The DATA:WIDTh? query returns the number of bytes per data point during
waveform data transfer.
Group WAVEFORM

Related Commands DATA:ENCDG, WFMPre:BIT_NR, WFMPre:BYT_NR, WFMPre:BIT_OR

Syntax DATA:WIDTh <Width>
DATA:WIDTh?

AWG2000 Series Programmer Manual 2-63

Command Descriptions

Arguments

Examples

DATE (2)

2-64

Group
Related Commands

Syntax

Arguments

DATA) WIdTh <SPACE>]—{ <Width> T_,

)
&

<Width>::=<NR1>

where <NR1> is a decimal number with a value of either 1 or 2.

The data width during data transfers can also be set by the WFMPre:BYT_NR
command. When both this command and the WFMPre:BYT_NR command are
issued, the most recently issued, i.e., the last, command takes effect. For
example, if the data width is set to 1 using this command (DATA:WIDTH 1),
and then a WFMPre:BYT_NR 2 command is executed, the data width will be
two bytes.

:DATA:WIDTH 1
sets the number of bytes per data point during waveform data transfers to be one
byte.

The DATE command sets the date for the waveform generator operating system.
The DATE? query returns the date currently set.

SYSTEM
TIME

DATE <Year—Month—-Day>
DATE?

—(DATE T <SPACE> [—»{ <Year-Month-Day> T—~
»(?)
Y

<Year-Month-Day>::=<string>
where the string must be in the format“YYYY-MM-DD"and the string elements
are:

YYYY the year expressed in 4-digits
MM the month (1 to 12)
DD the day (01 to 31 or to the last DD available for the month)

AWG2000 Series Programmer Manual

Command Descriptions

Examples :DATE "1993-11-11"
sets the date.

DEBug?

The DEBug? query returns all current settings for the remote command
debugging function.
This query is equivalent to the DEBug:SNOop? query.

Group SYSTEM

Related Commands DEBug:SNOop?, DEBug:SNOop:DELAy:TIME, DEBug:SNOop:STATe
Syntax DEBug?
©
Arguments None

Responses See Examples

Examples DEBUG?
might return :DEBUG:SNOOP:STATE 0; DELAY:TIME 0.2

DEBug:SNOop?
The DEBug:SNOop? query returns all current settings for the remote command
debugging function.
This query is equivalent to the DEBug? query.
Group SYSTEM

Related Commands DEBug?, DEBug:SNOop:DELAy:TIME, DEBug:SNOop:STATe

Syntax DEBug:SNOop?

AWG2000 Series Programmer Manual 2-65

Command Descriptions

Arguments

Responses

Examples

) ©,
None
See Examples

DEBUG:SNOOP?
might return :DEBUG:SNOOP:STATE 0; DELAY:TIME 0.2

DEBug:SNOop:DELAy?

Group
Related Commands

Syntax

Arguments

Responses

Examples

The DEBug:SNOop:DELAy? query returns the display time for commands in a
sequence of commands that are connected by semicolons.

This query is equivalent to the DEBug:SNOop:DELAy:TIME? query.
SYSTEM
DEBug?, DEBug:SNOop?, DEBug:SNOop:DELAy:TIME?, DEBug:SNOop:STATe
DEBug:SNOop:DELAy?

)) ©
None

[:DEBUG:SNOOP:DELAY]<Delay time>
where <Delay time>::=<NR2>

DEBUG:SNOOP:DELAY?
might return :DEBUG:SNOOP:DELAY:TIME 0.2

DEBug:SNOop:DELAy:TIME (?)

2-66

The DEBug:SNOop:DELAy:TIME command sets the display time for com-
mands in a sequence of commands that are connected by semicolons.

The DEBug:SNOop:DELAyY:TIME? query returns the display time for com-
mands in a sequence of commands that are connected by semicolons.

AWG2000 Series Programmer Manual

Command Descriptions

Group SYSTEM
Related Commands DEBug?, DEBug:SNOop?, DEBug:SNOop:DELAy?, DEBug:SNOop:STATe

Syntax DEBug:SNOop:DELAy:TIME <Time>
DEBug:SNOop:DELAyY:TIME?

(DEBug >(1)=(_SNOop)-»(*)= DELAY ()= TME

<SPACE> <Time>

)
&

Arguments <Time>::=<NR2>[<unit>]
where <NR2> combined with [<unit>] specifies a time in the range 0.0 s to
10.0 s in steps of 0.1 s, and [<unit>]::={s|ns$| for seconds, milliseconds, or
microseconds.

Examples :DEBUG:SNOOP:DELAY:TIME 0.5
sets the command display time to 0.5 seconds.

DEBug:SNOop:STATe (?)

The DEBug:SNOop:STATe command sets and clears the remote command
debugging function.

The DEBuUg:SNOop:STATe? query returns the currently specified state of the
remote command debugging function.

The debugging function displays messages input from the remote interface in the
CRT screen message area. If commands are connected by semicolons, each
message is displayed for the time specified with the DE-
Bug:SNOop:DELAy:TIME command.

The display format is as follows.
Control codes — "<code decimal display>", e.g. LF is displayed as "<10>".

Alphanumerics and symbols — "<code ASCII display>", e.g., "A” is displayed
aS HA”.

Message termination — "<PMT>"

AWG2000 Series Programmer Manual 2-67

Command Descriptions

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-68

Interface messages — "<DCL>" and "<GET>". Others are displayed as "<code
decimal display>".

Block data — "#0”

Any data other than one of the above — "<code decimal display>", e.g. a code
value of 80 (hexadecimal) would be displayed as <128>.
SYSTEM

DEBug?, DEBug:SNOop?, DEBug:SNOop:DELAy?, DEBug:SNOop:TIME

DEBug:SNOop:STATe {ON | OFF | <NR1>}
DEBug:SNOopp:STATe?

(—DEBug (")->(__SNOop)-»(?)—~(_STATe)

<SPACE> OFF
©,
ON or nonzero value
enables the debugging function.
OFF or zero value
clears the debugging function.
1 the debugging function is currently set.
0 the debugging function is currently cleared.

:DEBUG:SNOOP:STATE ON
enables the debugging function.

AWG2000 Series Programmer Manual

Command Descriptions

DESE (?)

The DESE command sets the bits of the DESER (Device Event Status Enable
Register) used in the status and event reporting system of the waveform
generator. The DESE? query returns the contents of the DESER. Refer to
Section 3Status and Evenfsr more information about DESE.

The power-on default for the DESER is to set all bits to 1 if the power-on status
flag is TRUE. If this flag is set to FALSE, the DESER maintains its current
value through a power cycle.

Group STATUS and EVENT
Related Commands *CLS, *ESE, *ESR?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?

Syntax DESE <Bit Value>
DESE?

DESE <SPACE> —»|<Bit Value>T—>
ol)
2/

Arguments <Bit Value>::=<NR1>
where <NR1> is a decimal integer, which must range from 0 to 255, that sets the
DESER bits to its binary equivalent.

Examples :DESE 177
sets the DESER to 177 (binary 10110001), which sets the PON, CME, EXE and
OPC bits.

:DESE?
might return :DESE 176, which indicates that the DESER contains the binary
number 10110000.

DIAG?

The DIAG? query returns the selected self-test routine(s), runs the routine, and
returns the results.

Group CALIBRATION and DIAGNOSTIC

AWG2000 Series Programmer Manual 2-69

Command Descriptions

Related Commands DIAG:SELect, DIAG:STATe, DIAG:RESUIt?
Syntax DIAG?
©
Arguments None

Responses :‘DIAG:SELECT <Self-test Routine>; [RESULT],<Result>[,<Result>]...
<Self-test Routine>::= <label>
where <labelxs one of following routines:

ALL all routines

CPU CPU unit check routine

LOCk clock unit check routine

DISPlay display unit check routine

FPP floating point processor unit check routine

FPANel front panel control unit check routine

SETUp setup related unit check routine

TRIGger TRIGGER unit test routine (AWG2005/40/41)
WMEMory waveform memory check routine.

and where <Result>::=<NR1> is one of following responses in AWG2005/40/41

instruments:
0 terminated without error
100 detected an error in the CPU unit
200 detected an error in the clock unit
300 detected an error in the display unit
400 detected an error in the floating point processor unit
500 detected an error in the front panel unit
600 detected an error in the setup-related unit
700 detected an error in the waveform memory

NOTE. The AWG2000 Series Arbitrary Waveform Generators do not respond to
any commands or queries issued during Self Test.

Examples DIAG?
might return :DIAG:SELECT ALL;RESULT 0.

2-70 AWG2000 Series Programmer Manual

Command Descriptions

DIAG:RESUIt?

The DIAG:RESUIt? query returns results of self-test execution.
Group CALIBRATION and DIAGNOSTIC
Related Commands DIAG:SELect, DIAG:STATe

Syntax DIAG:RESUIt?

®, ©,
Arguments None

Responses :DIAG:RESULT<Result>[,<Result>]...
<Result>::=<NR1>
where<NR1>is one of following values:

0 terminated without error
100 detected an error in the cpu unit
200 detected an error in the clock unit
300 detected an error in the display unit
400 detected an error in the floating point processor unit
500 detected an error in the front panel unit
600 detected an error in the setup-related unit
700 detected an error in the waveform memory
800 detected an error in the trigger unit

Examples DIAG:RESULT?
might return :DIAG:RESULT 200

DIAG:SELect (?)

The DIAG:SELect command selects the self test routine. The DIAG:SELect?
query returns currently selected routine. The DIAG:STATe command executes
the routine.

Group CALIBRATION and DIAGNOSTIC

Related Commands DIAG:STATe, DIAG:RESULt?

AWG2000 Series Programmer Manual 2-71

Command Descriptions

Syntax

Arguments

DIAG:STATe

2-72

Examples

DIAG:SELect { ALL | CPU | CLOCK | DISPlay | FFP | FPANel | SETup |
TRIGger (AWG2005/40/41) | WMEMory }
DIAG:SELect?

ALL

CPU

<SPACE> [<—{__ cLock)—)—L>
)
N ;f'-)\ J

N
ALL checks all routines that follow
CPU checks the CPU unit
CLOCk checks the clock unit
DISPlay checks the display unit
FPP checks the floating point processor unit
FPANel checks the front panel control unit
SETUp checks the unit for setup
TRIGger TRIGGER unit test routine (AWG2005/40/41)
WMEMory checks the waveform memory
:‘DIAG:SELECT CPU ; STATE EXECUTE

executes the CPU self-test routine.

The DIAG:STATe command executes the self-test routine(s) selected with the
DIAG:SELect command. If an error is detected during execution, the routine that
detected the error terminates. If all of the self-test routines are selected using the
DIAG:SELect command, self-testing continues with execution of the next
self-test routine.

AWG2000 Series Programmer Manual

Command Descriptions

Group
Related Commands

Syntax

Arguments

Examples

DISK?

Group
Related Commands

Syntax

Arguments

Responses

Examples

CALIBRATION and DIAGNOSTIC

DIAG:SELect, DIAG:RESUIt?

DIAG:STATe EXECute

(Coiac)—(3)

STATe

r—>{ <space> —(_EXEcute)}—»

EXECute
Performs the self-test using the selected routine.

:DIAG:SELECT ALL ; STATE EXECUTE ; RESULT?
executes all of the self-test routines. After all self-test routines finish, the results
of the self tests are returned.

The DISK? query returns all settings currently set for floppy disk operation.

MEMORY

DISK:CDIRectory?, DISK:DIRectory?, DISK:MDIRectory

DISK?
(?)
None

Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. Besmples

:DISK?
might return :DISK:FORMAT:TYPE HD3

AWG2000 Series Programmer Manual 2-713

Command Descriptions

DISK:CDIRectory

Group
Related Commands

Syntax

Arguments

Examples

DISK:DIRectory?

Group
Related Commands

Syntax

Arguments

Examples

2-74

The DISK:CDIRectory command changes current working directory.

MEMORY

DISK:DIRectory?, DISK:MDIRectory

DISK:CDIRectory <Directory Path>

(DISK —=()

CDIRectory ——»{ <SPACE>}——s <Directory Path>

<Directory Path>::=<string>
where <string> is the nhame of the new current working directory.

:DISK:CDIRECTORY "\FG\WORK3"
changes the current working directory to \FG\WORKS.

The DISK:DIRectory? query returns current working directory path.
MEMORY
DISK:CDIRectory, DISK:MDIRectory

DISK:DIRectory?

(—oisk »—»(: —>(DiRectory }—»(?)
None

:DISK:DIRECTORY?
might return :DISK:CDIRECTORY "\FG\WORK3”

AWG2000 Series Programmer Manual

Command Descriptions

DISK:FORMat?

The DISK:FORMat? query returns currently selected format type for formatting
new floppy disks.

Group MEMORY
Related Commands DISK:FORMat:TYPE, DISK:FORMat:STATe

Syntax DISK:FORMat?

(pisk (s)—(ForMat _)—(2)

Arguments None

Responses Following format types are returned:

DD1 2DD, 720 KB, for IBM PC and TOSHIBA J3100
DD2 2DD, 640 KB, for NEC PC-9800

HD1 2HD, 1.232 MB, for NEC PC-9800

HD2 2HD, 1.200 MB, for TOSHIBA J3100

HD3 2HD, 1.440 MB, IBM PC

For details on each of these formats, refer to DISK:FORMat: TYPE command
(page 2-76).

Examples :FORMAT:TYPE?
might return :DISK:FORMAT:TYPE HD3

DISK:FORMat:STATe

The DISK:FORMat:STATe command formats a floppy disk in the waveform
generator disk drive, using the format type selected with the DISK:FOR-
Mat:TYPE command.

Group MEMORY
Related Commands DISK:FORMat:TYPE

Syntax DISK:FORMat:STATe EXECute

AWG2000 Series Programmer Manual 2-75

Command Descriptions

® O STaTe)—»{ <SPACE> | —>[<EXECutes | >

Arguments EXECute
initiates a floppy disk format.

Examples :DISK:FORMAT:TYPE DD1 ;STATE EXECUTE
formats a floppy disk for IBM PC 2DD.

DISK:FORMat:TYPE (?)

The DISK:FORMat: TYPE command selects the format type the waveform
generator uses when formatting floppy disk in its disk drive. (Use the
DISK:FORMat:STATe command to format a disk.)

The DISK:FORMat: TYPE? query returns currently selected format type.
Group MEMORY

Related Commands DISK:FORMat:STATe

Syntax DISK:FORMat:TYPE {DD1 | DD2 | HD1 | HD2 | HD3}
DISK:FORMat:TYPE?

© () TYPE)}~ <SPACE> |—~—»(___ DD1)}
DD2
HD2
\ =® J

Arguments You can select from the following formats:

2-76 AWG2000 Series Programmer Manual

Command Descriptions

Examples

DISK:MDIRectory

Group
Related Commands

Syntax

Arguments

Examples

DISPlay?

Group

Arguments Descriptions

DD1 2DD, 720 KB, 80 tracks, 9 sectors/track, 512 bytes/sector. Format for IBM
PC 2DD and Toshiba J3100 2DD.

DD2 2DD, 640 KB, 80 tracks, 8 sectors/track, 512 bytes/sector. Format for NEC
PC-9800 2DD.

HD1 2HD, 1.232 MB, 77 tracks, 15 sectors/track, 1,024 bytes/sector. Format for
NEC PC-9800 2HD.

HD2 2HD, 1.200 MB, 80 tracks, 15 sectors/track, 512 bytes/sector. Format for
Toshiba J3100 2HD.

HD3 2HD, 1.440 MB, 80 tracks, 18 sectors/track, 512 bytes/sector. Format for

IBM PC 2HD.

:DISK:FORMAT:TYPE HD3 ;STATE EXECUTE
formats a floppy disk for IBM PC 2HD.

The DISK:MDIRectory command creates a new directory.

MEMORY

DISK:CDIRectory, DISK:DIRectory?

DISK:MDIRectory <Directory Path>

{ DISK)

=" J

@ (_MDIRectory »—»{ <SPACE>}——>{ <Directory Path> —s

<Directory Path>::=<string>
where <string> is the complete path of the new directory.

:DISK:MDIRECTORY "WORK4”
creates the new directory WORKA4 in current working directory.

The DISPlay? query returns all the settings set using the display commands.

DISPLAY

AWG2000 Series Programmer Manual

2-7117

Command Descriptions

Related Commands

Syntax

Arguments

Responses

Examples

None

DISPlay?

(ot —()—

None

Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. Besmples

DISPLAY?

might return :DISPLAY:BRIGHTNESS 75;CATALOG:ORDER NAMEL1;DIS-
PLAY: CLOCK O;MENU:SETUP:FORMAT GRAPHICS;DISPLAY:MES-
SAGE:SHOW””

DISPlay:BRIGhtness (?)

Group
Related Commands

Syntax

Arguments

2-78

The DISPlay:BRIGhtness command adjusts the brightness of the screen as a
percentage of full intensity; the DISPlay:BRIGhtness? query returns the current
brightness setting as a percentage of full intensity.

DISPLAY
DISPlay?

DISPlay:BRIGhtness <Percentage>
DISPlay:BRIGhtness?

DISPlay () BRIGhtness)T <SPACE> |—{<Percentage> T—»
2
L

<Percentage>::=<NR1>[<unit>]
where <NR1> is a integer ranging from 0 to 100%, in 1% steps 1%,
and <unit> is PCT for percent.

AWG2000 Series Programmer Manual

Command Descriptions

Examples :DISPLAY:BRIGHTNESS 80
sets screen brightness to 80% of maximum intensity.

DISPlay:CATalog?

The DISPlay:CATalog? query returns the catalog display sorting conditions.

This query is equivalent to the DISPlay:CATalog:ORDer? query.
Group DISPLAY
Related Commands DISPlay:CATalog:ORDer
Syntax DISPlay:CATalog?
) ©
Arguments None

Responses [:DISPLAY:CATALOG:ORDER]<Catalog order>
where <catalog order> is one of following arguments:

NAME1
orders the display according to the ASCII collating sequence of the file names
(Name).

NAME2
orders the display in the reverse order of the NAMEL order.

TIME1
orders the display with more recent (Date and Time) files first.

TIME2
orders the display with older (Date and Time) files first.

TYPEL
orders the display according to the ASCII collating sequence of the file
extensions (Type).

TYPE2

orders the display according to the ASCII collating sequence of the file extensions
(Type) and also according to the ASCII collating sequence of the file names
(Name).

AWG2000 Series Programmer Manual 2-79

Command Descriptions

TYPE3
orders the display according to the ASCII collating sequence of the file
extensions (Type) and also with more recent (Date and Time) files first.

TYPE4
orders the display according to the ASCII collating sequence of the file
extensions (Type) and also with older (Date and Time) files first.

Examples DISPLAY:CATALOG?
might return :DISPLAY:CATALOG:ORDER NAMEL1

DISPlay:CATalog:ORDer (?)

The DISPlay:CATalog:ORDer command sets the catalog display sorting
conditions.

The DISPlay:CATalog:ORDer? query returns the currently specified catalog
display sorting conditions.
Group DISPLAY
Related Commands DISPlay:CATalog?
Syntax DISPlay:CATalog:ORDer

{NAME1 | NAME2 | TIME1 | TIME2 | TYPE1 |TYPE2 | TYPE3 | TYPE4}
DISPlay:CATalog:ORDer?

2-80 AWG2000 Series Programmer Manual

Command Descriptions

o ()= _ORDer _)~»[<SPACE>}s—=(__NAWEL)=

©

Arguments NAME1
orders the display according to the ASCII collating sequence of the file names
(Name).

NAME2
orders the display in the reverse order of the NAMEL order.

TIME1
orders the display with more recent (Date and Time) files first.

TIME2
orders the display with older (Date and Time) files first.

TYPEL
orders the display according to the ASCII collating sequence of the file
extensions (Type).

TYPE2

orders the display according to the ASCII collating sequence of the file extensions
(Type) and also according to the ASCII collating sequence of the file names
(Name).

TYPE3
orders the display according to the ASCII collating sequence of the file
extensions (Type) and also with more recent (Date and Time) files first.

TYPE4
orders the display according to the ASCII collating sequence of the file
extensions (Type) and also with older (Date and Time) files first.

Examples :DISPLAY:CATALOG:ORDER TIME1
sets the catalog display to be in the order of more recent (Date and Time) files
displayed first.

AWG2000 Series Programmer Manual 2-81

Command Descriptions

DISPlay:CLOCK (2)

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-82

The DISPlay:CLOCk command sets whether or not the data and time are
displayed.

The DISPlay:CLOCk? query returns whether or not the data and time are
displayed.
DISPLAY

None

DISPlay:CLOCk {ON | OFF | <NR1>}
DISPlay:CLOCKk?

DISPlay

)
&

ON or nonzero value
sets the waveform generator to display the date and time.

OFF or zero value
sets the waveform generator to not display the date and time.

1 Date and time is currently displayed.
0 Date and time is currently not displayed.

:DISPLAY:CLOCK ON
sets the waveform generator to display the date and time.

AWG2000 Series Programmer Manual

Command Descriptions

DISPlay:MENU?

Group
Related Commands

Syntax

Arguments

Responses

Examples

The DISPlay:MENU? query returns the SETUP menu display format.
This query is equivalent to the DISPlay:MENU:SETUp:FORMat? query.

DISPLAY

DISPlay:MENU:SETUp:FORMat

DISPlay:MENU?

DISPlay 0 MENU

©

None

[:DISPLAY:MENU:SETUP:FORMAT]<Menu format>
where <Menu format> is one of the following:

GRAPHICS Graphics display mode is used for the SETUP menu.
TEXT Text display mode is used for the SETUP menu.

DISPLAY:MENU?
would return :DISPLAY:MENU:SETUP:FORMAT TEXT if text display mode
was used for the SETUP menu.

DISPlay:MENU:SETUp?

Group

Related Commands

Syntax

The DISPlay:MENU:SETUp? query returns the SETUP menu display format.
This query is equivalent to the DISPlay:MENU:SETUp:FORMat? query.

DISPLAY

DISPlay:MENU:SETUp:FORMat

DISPlay:MENU:SETUp?

AWG2000 Series Programmer Manual 2-83

Command Descriptions

(CDISPlay (2)—=(__WENU ()~ _SETUp (%)

Arguments None

Responses [:DISPLAY:MENU:SETUP:FORMAT]|<Menu format>
where <Menu format> is one of the following:

GRAPHICS Graphics display mode is used for the SETUP menu.
TEXT Text display mode is used for the SETUP menu.

Examples DISPLAY:MENU:SETUP?
would return :DISPLAY:MENU:SETUP:FORMAT GRAPHICS if graphics
display mode was used for the SETUP menu.

DISPlay:MENU:SETUp:FORMat (?)

The DISPlay:MENU:SETUp:FORMat command sets the SETUP menu display
format.

The DISPlay:MENU:SETUp:FORMat? query returns the SETUP menu display
format.
Group DISPLAY

Related Commands DISPlay:MENU?, DISPlay:MENU:SETUp?

Syntax DISPlay:MENU:SETUp:FORMat {GRAPhics | TEXT}
DISPlay:MENU:SETUp:FORMat?

(CDisPlay)»(:)>(__ MENU)—»(:) SETUp)—(:)—>(_ FORMat)

GRAPhics
. TEXT l

©,

Arguments GRAPhics Graphics display mode is used for the SETUP menu.
TEXT Text display mode is used for the SETUP menu.

2-84 AWG2000 Series Programmer Manual

Command Descriptions

Examples

DISPlay:MESSage (?)

Group
Related Commands

Syntax

Arguments

Examples

:DISPLAY:MENU:SETUP:FORMAT TEXT
sets the SETUP menu display format to text display mode.

The DISPlay:MESSage command clears (erases) the message displayed in the
message area.

The DISPlay:MESSage? query returns the message displayed in the message
area.
DISPLAY

DISPlay:MESSage:SHOW

DISPlay:MESSage CLEar
DISPlay:MESSage?

DISPlay ° MESSage <SPACE> CLEar

)
&

CLEar
clears (erases) the message displayed in the message area.

:DISPLAY:MESSAGE CLEAR
clears (erases) the message displayed in the message area.

DISPlay:MESSage:SHOW (?)

Group

Related Commands

The DISPlay:MESSage:SHOW command displays the message displayed in the
message area.

The DISPlay:MESSage:SHOW? query returns the message displayed in the
message area.

DISPLAY

DISPlay:MESSage

AWG2000 Series Programmer Manual 2-85

Command Descriptions

Syntax DISPlay:MESSage:SHOW <Message>
DISPlay:MESSage:SHOW?

DISPlay) MESSage) SHOW

L{—-{ <SPACE>}—>{<Message> }—}_V
[N
G/

Arguments <Message>::=<string>

where <string> is a message of up to 60 characters.

Examples :DISPLAY:MESSAGE:SHOW "TEST No.1"
displays the message "TEST No.1” in the message area.

EQUAtion:COMPile (2)

The EQUAtion:COMPile command compiles the specified equation file into a
waveform file.

The EQUALtion:COMPIile? determines whether or not an equation file compila-
tion is in progress.
This command is equivalent to the EQUALtion:COMPIile:STATe command.
Group WAVEFORM
Related Commands EQUAtion:COMPile:STATe
Syntax EQUAtion:COMPile {[EXECute, | ON, | <NR1>]<Equation File>| ABORt |

OFF | <NR1>}
EQUAtion:COMPile?

2-86 AWG2000 Series Programmer Manual

Command Descriptions

EQUALtion 0 COMPile

l EXECute l
<Equation File> [—

ABORt

~(OFF)

\—>-| <NR1>

)
&

Arguments <Equation File>::=<string>
<Equation File> must be an internal memory equation file. The waveform data
that is created as a result of the compilation is stored in a waveform file. The
base name of the waveform file is the same as the base name of the equation file.

EXECute
compiles the specified equation file.

ON or nonzero value
compiles the specified equation file.

ABORt
forcibly terminates the currently executing compilation.

OFF or zero value
forcibly terminates the currently executing compilation.

Responses [[EQUATION:COMPILE] 1,<Equation File>
Compilation in progress

[(EQUATION:COMPILE] O
No compilation in progress

Examples :EQUATION:COMPILE ON, "EXP_SAMP.EQU”
compiles the equation file “EXP_SAMP.EQU” and stores the generated
waveform data in the file “EXP_SAMP.WFM”.

AWG2000 Series Programmer Manual 2-87

Command Descriptions

EQUAtion:COMPile:STATe (?)

2-88

Group
Related Commands

Syntax

Arguments

The EQUALtion:COMPIile:STATe command compiles the specified equation file
into a waveform file.

The EQUALtion:COMPIle:STATe? determines whether or not an equation file
compilation is in progress.

WAVEFORM

EQUALtion:COMPile

EQUALtion:COMPile:STATe {[EXECute, | ON, | <NR1>,] <Equation File> |
ABORt | OFF | <NR1>}

EQUAtion:COMPile:STATe?

EQUATIon ° COMPile ° STATe

. EXECute I
<Equation File> >

»(ABORt) J

= OFF)

[R |

=3

U

<Equation File>::=<string>

<Equation File> must be an internal memory equation file. The waveform data
that is created as a result of the compilation is stored in a waveform file. The

base name of the waveform file is the same as the base name of the equation file.

EXECute
compiles the specified equation file.

ON or nonzero value
compiles the specified equation file.

ABORt
forcibly terminates the currently executing compilation.

AWG2000 Series Programmer Manual

Command Descriptions

OFF or zero value
forcibly terminates the currently executing compilation.

Responses [EQUATION:COMPILE:STATE]1,<Equation File>
Compilation in progress

[:EQUATION:COMPILE:STATE]O
No compilation in progress

Examples :EQUATION:COMPILE:STATE EXECUTE,"EXP_SAMP.EQU”
compiles the equation file “EXP_SAMP.EQU” and stores the generated
waveform data in the file “EXP_SAMP.WFM".

EQUAtion:DEFine(?)

The EQUAtion:DEFine command writes an equation expression into the
specified equation file. The EQUAtion:DEFine? query returns the equation
expression that is stored in the specified equation file.

Group WAVEFORM
Related Commands EQUAtion:COMPile:STATe, EQUAtion:WPOQints

Syntax EQUAtion:DEFine <Equation File>, <Equation Expression>
EQUAtion:DEFine? <Equation File>

EQUAtion)

<SPACE>}——| <Equation File> }—»@—»‘ <Equation Expression> }?—
<SPACE>}——s{ <Equation File> |

Arguments <Equation File>::=<string>
where <string> must be the name of an equation file to be stored in internal
memory.

<Equation Expression>::=<Arbitrary Data>
where the <Arbitrary Data> for the equation expression must be written in
ASCII code with each expression separated by a Line Feed (LF) code as follows.

AWG2000 Series Programmer Manual 2-89

Command Descriptions

EQUAtion:WPOints (?)

2-90

Examples

Group
Related Commands

Syntax

Arguments

Number of characters Separator (LF)

' o

#241range(0,5ms)<LF>sin(x)<LF>v/2<LF>max(sin(x/2),0.5
N

'

Byte count digit Four equation expressions
separated by LF codes

Equation file can be compiled to waveform file using EQUAtion:COM-
Pile:STATe. EQUAtion:WPOints command sets the number of waveform points
(use after compile) for equation file.

:EQUATION:DEFINE "EXP_SAMP.EQU”, #241range(0.5ms)
<LF>sin(x)<LF>v/2<LF>max(sin ...

writes an equation expression into the equation file EXP_SAMP.EQU.

The EQUAtion:WPOQints command specifies the number of waveform points,
from the equation file, to be written to the waveform file when an equation file is
compiled. The EQUAtion:WPQints? query returns the number of waveform
points set to be written to the equation file.

WAVEFORM
EQUALtion:COMPile:STATe, EQUAtion:DEFine

EQUAtion:WPQint <Equation File>, <Number of Points>
EQUAtion:WPQints? <Equation File>

EQUAtion ° WPOints

<SPACE> [<Equation File>|—>@—>| <Number of Points> |j

<SPACE> [—{ <Equation File> |

<Equation File>::=<string>

where <string> must be the name of an equation file in internal memory.
Equation file can be compiled to waveform file using EQUAtion:COM-
Pile:STATe.

AWG2000 Series Programmer Manual

Command Descriptions

Examples

*ESE (?)

Group
Related Commands

Syntax

Arguments

Examples

<Number of Points>::=<NR1>
where <NR1> must be in the range of 1 to 32768 (32 K)

'EQUATION:WPOINTS "EXP_SAMP.EQU", 1000
specifies 1000 as a number of waveform points to be written to the file
EXP_SAMP.EQU.

The *ESE common command sets the bits of the ESER (Event Status Enable
Register) used in the status and events reporting system of the waveform
generator. The *ESE? query returns the contents of the ESER. Refer to Section 3
Status and Eventsr more information about the ESER.

If the power on status flag is TRUE, the power-on default for the ESER is to
reset all bits to zero. If this flag is set to FALSE, the ESER bits do not change
value during the power-on cycle.

STATUS and EVENT
*CLS, DESE, *ESR?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?

*ESE <Bit Value>
*ESE?

<SPACE> [—»{<Bit value> [
o 2) J
2/

<Bit Value>::=<NR1>
where <NR1> is a decimal integer that ranges from 0 to 255. The ESER bits will
be set to the binary equivalent of the decimal integer sent.

*ESE 177
sets the ESER to 177 (binary 10110001), which sets the PON, CME, EXE and
OPC bits.

*ESE?
might return 176,which indicates that the ESER contains the binary number
11010000.

AWG2000 Series Programmer Manual 2-91

Command Descriptions

*ESR?

The *ESR? common query returns the contents of SESR (Standard Event Status
Register) used in the status and events reporting system. Refer to Section 3
Status and Eventsr more information about *ESR? or SESR.

Group STATUS and EVENT
Related Commands *CLS, DESE, *ESE?, EVENT?, EVMsg?, EVQty?, *SRE, *STB?
Syntax *ESR?
Q
Arguments None

Examples *ESR?
might return 181, which indicates that the SESR contains the binary number
10110101.

EVENT?

The EVENT? query dequeues the event code of the event that has been in the
Event Queue the longest out of all available events. Use the *ESR? query to
make the events available for dequeuing using EVENT?. Refer to Section 3
Status and Events.

Group STATUS and EVENT
Related Commands *CLS, DESE, *ESE, *ESR?, EVMsg?, EVQty?, *SRE, *STB?
Syntax EVENT?

e ()

Arguments None

2-92 AWG2000 Series Programmer Manual

Command Descriptions

Examples EVENT?
might return :EVENT 113

EVMsg?

The EVMsg? query dequeues the event code and event message of the event that
has been in the Event Queue the longest out of all available events. Use the
*ESR? query to make the events available for dequeuing using EVMsg? For

more details, refer to SectiorS3atus and Events.

Group STATUS and EVENT
Related Commands *CLS, DESE, *ESE, *ESR?, EVENT?, EVQty?, *SRE, *STB?
Syntax EVMsg?
Q
Arguments None

Examples :EVMSG?
might return :EVMSG 420,"Query UNTERMINATED”.

EVQty?
The EVQty? query returns the number of events currently stacked in the Event
Queue. If no event is being queued, 0 is returned.
Group STATUS and EVENT
Related Commands *CLS, DESE, *ESE, *ESR, EVMsg?, EVENT?, *SRE, *STB?
Syntax EVQty?

ey >—®

Arguments None

AWG2000 Series Programmer Manual 2-93

Command Descriptions

Examples :EVOQty?
might return :EVQTY 5.

FACTory

The FACTory command resets the waveform generator to its factory default
settings and purges all stored settings. (See Appendix D, page D-1, for a list of
the factory settings.)

Group SYSTEM
Related Commands *RST, SECUre
Syntax FACTory
Arguments None

Examples :FACTORY
resets the waveform generator to its factory default settings.

The FG? query returns all settings currently set with the FG (Function Genera-
tor) commands.

Group FG
Related Commands None

Syntax FG?

Arguments None

2-94 AWG2000 Series Programmer Manual

Command Descriptions

Responses

Examples

FG:CH<x>?

Group

Related Commands

Syntax

Arguments

Responses

Examples

Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. Bemmples

FG?

might return the following response:

‘FG:STATE O;FREQUENCY 2.500E+06;CH1:AMPLITUDE 1.000;

OFFSET 0.000;POLARITY NORMAL;SHAPE SINUSOID;:FG:CH2:AMPLI-
TUDE 1.000;0FFSET 0.000;POLARITY NORMAL;SHAPE SINUSOID

The FG:CH<x>? query returns all current settings of the function waveform
parameters for the specified channel.

FG

FG:CH<x>:AMPLitude, FG:CH<x>:0FFSet, FG:CH<x>:POLarity,
FG:CH<x>:SHAPe

FG:CH<x>?

= 0 F_) -~

None

Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. Besmples

‘FG:CH1?
might return :FG:CH1:AMPLITUDE 1.000;0FFSET 0.000;POLARITY
NORMAL; SHAPE SINUSOID

AWG2000 Series Programmer Manual 2-95

Command Descriptions

FG:CH<x>:AMPLitude (?)

The FG:CH<x>:AMPLitude command adjusts peak-to-peak voltage of the
function waveform on the selected channel. The FG:CH<x>:AMPLitude? query
returns peak-to-peak voltage currently set.

Group FG
Related Commands FG:CH<x>:0OFFSet, FG:CH<x>:POLarity, FG:CH<x>:SHAPe, FG:CH<x>?

Syntax AWG2005/20/21
FG:CH<x>:AMPLitude <Amplitude>
FG:CH<x>:AMPLitude?

® s O 10
{ f—ﬂ <SPACE> —<amplitude>)
o F
AWG2040/41

FG[:CH1]:AMPLitude <Amplitude>
FG[:CH1]:AMPLitude?

<SPACE>|—»[<Amplitude> |
® i
)
&

Arguments <Amplitude>::=<NR2>[<unit>]
where <NR2> is a decimal number to specify an amplitude that must range from
0.05 V to 10.000 V (AWG2005), 0.05 V to 5.000 V (AWG2020/21), 0.020 V to
2.000 V (AWG2040/41), in steps of 0.001 V, and optionally add <unit>::={V |
mV}, for volts or millivolts.

Examples :FG:CH1:AMPL 100.0mV
sets peak-to-peak voltage to 100 mV.

2-96 AWG2000 Series Programmer Manual

Command Descriptions

FG:CH<x>:0FFSet (?)

The FG:CH<x>:0OFFSet command adjusts offset voltage of the function
waveform on the selected channel. The FG:CH<x>:0OFFSet? query returns offset
voltage currently set.

Group FG

Related Commands FG:CH<x>:AMPLitude, FG:CH<x>:POLarity, FG:CH<x>:SHAPe,
FG:CH<x>?

Syntax AWG2005/20/21
FG:CH<x>:0OFFSet <Offset>
FG:CH<x>:0OFFSet?

(:) CcH] <x> |—>®—>(OFFSet <SPACE> |—>|<Offset>7—>

(?)
N

AWG2040/41
FG[:CH1]:OFFSet <Offset>
FG[:CH1]:OFFSet?

<SPACE>| »| <Offset>
O —
=)
2

Arguments <Offset>::=<NR2>[<unit>]
where <NR2> is a decimal number that combines with [<unit>] to specify an
offset that must range from —5.000 V to 5.000 V (AWG2005), —2.500 V to
2.500 V (AWG2020/21), in steps of 0.005 V, and —1.000 V to 1.000 V, in steps
of 0.001 V (AWG2040/41), and <unit>::={V | mV}, for volts or millivolts.

Examples :FG:CH1:0FFS 50.0mV
sets offset voltage at channel 1 to 50.0 mV.

AWG2000 Series Programmer Manual 2-97

Command Descriptions

FG:CH<x>:POLarity (?)

Group
Related Commands

Syntax

2?2

Arguments

Examples

2-98

The FG:CH<x>:POLarity command sets polarity of the function waveform on
the selected channel. The FG:CH<x>:POLarity? query returns polarity currently
set.

FG

FG:CH<x>:AMPLitude, FG:CH<x>:0FFSet, FG:CH<x>:SHAPe, FG:CH<x>?

AWG2005/20/21
FG:CH<x>:POLarity {NORMal | INVerted}
FG:CH<x>:POLarity?

POLarity

AWG2040/41
FG[:CH1]:POLarity {NORMal | INVerted}
FG[:CH1]:POLarity?

NORMal

i INVerted
POLarity

NORMal
sets waveform to normal polarity.

INVerted
sets waveform to inverted polarity.

‘FG:CH1:POLARITY INVERTED
inverts the waveform.

AWG2000 Series Programmer Manual

Command Descriptions

FG:CH<x>:SHAPe (?)
The FG:CH<x>:SHAPe command selects a standard function waveform (as
opposed to a waveform file), and turns it on for display in the specified channel.
The waveform generator displays the function waveform using its current
parameters settings for the channel.
The FG:CH<x>:SHAPe? query returns the currently selected standard function
waveform.

Group FG

Related Commands FG:CH<x>:AMPLitude, FG:CH<x>:POLarity, FG:CH<x>:0FFSet,
FG:CH<x>?

Syntax AWG2005/20/21
FG:CH<x>:SHAPe {SINusoid | PULSe[,<P-duty>] | RAMP | SQUare |
TRlangle}

FG:CH<x>:SHAPe?

Cre >—() cH) <% O GETND

-

~—»(SINusoid)} ~
—{ <SPACE> | <—»(__ PULSe)

a4
~
Y

(Ozr=auty]
N RAMP } o

| SQUare } /
~—»(TRIangle } -

\ ;/9\ J
%

AWG2000 Series Programmer Manual 2-99

Command Descriptions

AWG2040/41
FG[:CH1]:SHAPe
FG[:CH1]:SHAPe?

CF6 () CHL_)—»(.)—(__SHAPe)

SINusoid

(O-f<P=duy> |

SQUare

TRlangle

Arguments SINusoid
selects a sine wave function waveform.

PULSe
selects a pulse function waveform, with its duty cycle defined as a percentage of
the pulse function waveform period as follows:

<P-duty>::=<NR1>[<unit>]
where <NR1> has a range of 0 to 100, in steps of 1, and
<unit>::=PCT

RAMP
selects a ramp function waveform

SQUare
selects a square wave function waveform

TRlangle
selects a triangle function waveform

Examples :FG:CH1:SHAPE PULSE, 40
selects pulse function waveform and sets duty cycle to 40%.

2-100 AWG2000 Series Programmer Manual

Command Descriptions

FG:FREQuency (?)

Group
Related Commands

Syntax

Arguments

Examples

FG:STATe (2)

Group
Related Commands

Syntax

The FG:FREQuency command adjusts the frequency of the function waveform
on selected channels. The FG:FREQuency? query returns the frequency currently
set.

FG

FG:STATe, FG?

FG:FREQuency <Frequency>
FG:FREQuency?

() FREQuency <SPACE> |—{ <Frequency> T—»

»(2)
N

<Frequency>::=<NR3>[<unit>]

where <NR3> is a decimal number to specify a frequency that must range from
1.000 Hz to 200.0 KHz (AWG2005), 1.000 Hz to 2.500 MHz (AWG2020/21),
1.000000 Hz to 10.00000 MHz (AWG2040/41), and optionally add
<unit>::={HZ | KHZ | MHZ}, for hertz, kilohertz, and megahertz respectively.

‘FG:FREQ 1.2MHZ
sets the waveform frequency to 1.2 MHz.

The FG:STATe command turns the FG (Function Generator) mode on or off. The
FG:STATe? query returns status indicating whether the waveform generator is set
to the function generator mode.

FG

FG?

FG:STATe {ON | OFF | <NR1>}
FG:STATe?

AWG2000 Series Programmer Manual 2-101

Command Descriptions

-.
_

(D—~(smaze <seacE>

Arguments ON or nonzero value
turns the FG mode on.

OFF or zero value
turns the FG mode off.

Responses 1 FG mode is currently turned on.
0 FG mode is currently turned off.

Examples :FG:STATE 1
turns the FG mode on.

HCOPy (?)

The HCOPy command starts or terminates hard copy output from the specified
output port.

The HCOPy? query returns all currently specified hard copy settings.

NOTE. This command is not compatible with the ANSI/IEEE Std 488.2-1987
standard.

Group HARDCOPY
Related Commands HCOPy:FORMat,HCOPy:PORT,HCOPy:DATA?

Syntax HCOPy {STARt | ABORt | <NR1>}
HCOPy?

2-102 AWG2000 Series Programmer Manual

Command Descriptions

STARt

—(__ HCOPy <SPACE>

©,

Arguments STARt or nonzero value
starts hard copy output.

ABORt or zero value
stops hard copy output.

Examples :HCOPY START
starts hard copy output on the specified output destination.

NOTE. During the execution of a HCOPy START command, use the *WAI
command to confirm the completion of the first hard copy before starting the
next hard copy output.

HCOPy:DATA?

The HCOPy:DATA? query outputs the hard copy data to the output queue.
However, note that this command has no effect on (and is not affected by) the
hard copy output port setting.

Group HARDCOPY
Related Commands HCOPy,HCOPy:PORT

Syntax HCOPy:DATA?

HCOPy o DATA

©

Examples :HCOPY:DATA?
outputs hard copy data to the output queue.

AWG2000 Series Programmer Manual 2-103

Command Descriptions

HCOPy:FORMat (?)
The HCOPy:FORMat command sets the hard copy output format.
The HCOPy:FORMat? query returns the currently specified hard copy output

format.
Group HARDCOPY

Related Commands HCOPy

Syntax HCOPy:FORMAT {BMP | EPSOn | EPSMono | THINKjet | TIFF}
HCOPy:FORMAT?

HCOPy ° FORMAT <SPACE>

EPSMono
THINKjet

Arguments BMP
the Windows monochrome file format.

EPSOn
the format used by 9-pin and 24-pin dot matrix printers in ESC/P graphics mode.

EPSMono
the encapsulated Postscript format monochrome image file format.

THINKjet
the format used by HP inkjet printers.

TIFF
the TIFF format.

Examples :HCOPY:FORMAT TIFF
sets the waveform generator to output hard copy in the TIFF format.

2-104 AWG2000 Series Programmer Manual

Command Descriptions

HCOPy:PORT (?)
The HCOPy:PORT command sets the hard copy output port.
The HCOPy:PORT? query returns the currently specified hard copy output port.

Group HARDCOPY

Related Commands HCOPy

Syntax HCOPYy:PORT {DISK | GPIB | RS232c}
HCOPy:PORT?

. DISK .
‘ GPIB '
RS232C

®

Arguments DISK
outputs to a file on the floppy disk.

GPIB
outputs to the GPIB port.

RS232c
outputs to the RS-232C port.

Examples :HCOPY:PORT DISK
sets the hard copy output to be to a file on the floppy disk.

HEADer (2)

The HEADer command enables or disables the command header responses to all
queries except IEEE Std 488.2 common commands. The HEADer? query returns
the status indicating whether the command header responses are enabled or not.

Group SYSTEM

Related Commands VERBose

AWG2000 Series Programmer Manual 2-105

Command Descriptions

Syntax

Arguments

Responses

Examples

HWSequencer?
(AWG2041)

Group
Related Commands

Syntax

2-106

HEADer {ON | OFF | <NR1>}
HEADer?

—(

HEADer <SPACE>

ON or nonzero value
enables the command header responses.

OFF or zero value
disables the command header responses.

1 command header responses are currently enabled.
0 command header responses are currently disabled.
‘HEADER OFF

disables the command header responses.

‘HEADER?
might return 1 which indicates command headers are currently enabled for return
in query responses.

The HWSequencer? query returns whether or not the instrument is equiped with
a hardware sequencer, and the instrument is currently using the hardware
sequencer function.

SYSTEM
HWSequencer:MODE, HWSequencer: MODE?, HWSequencer:INSTalled?
HWSequencer?

HWSequence e

AWG2000 Series Programmer Manual

Command Descriptions

Arguments None

Responses [[HWSEQUENCER:INSTALLED] <Installed State>;[MODE] <Mode State>
where
<Installed State>::={1|0}
1 The instrument is equiped with a hardware sequencer.
0 The instrument is not equiped with a hardware sequencer.
<Mode State>::={1|0}
1 The instrument is using the hardware sequencer function.
0 The instrument is not using the hardware sequencer function.

Examples :HWSequencer?
returns :HWSEQUENCER:INSTALLED 1;MODE 0

HWSequencer:INSTalled?
(AWG2041)

The HWSequencer:INSTalled? query returns whether or not the instrument is
equiped with a hardware sequencer.

Group SYSTEM
Related Commands HWSequencer:-MODE, HWSequencer: MODE?
Syntax HWSequencer:INSTalled?
) ©
Arguments None

Responses [:HWSEQUENCER:INSTALLED] <Installed State>
where
<Installed State>::={1|0}
1 The instrument is equiped with a hardware sequencer.
0 The instrument is not equiped with a hardware sequencer.

Examples :HWSequncer:INSTalled?
returns :HWSEQUENCER:INSTALLED 1

AWG2000 Series Programmer Manual 2-107

Command Descriptions

HWSequencer:MODE (?)

(AWG2041)

Group
Related Commands

Syntax

The HWSequencer:MODE command sets whether or not the hardware sequencer
function is available. When the instrument is not equiped with a hardware
sequencer, this command has no effect. After changing the setting, the instru-
ment initiates a reboot.

The HWSequencer:MODE? query returns whether or not the hardware sequencer
function is currently available. When the instrument is not equiped with a
hardware sequencer, the system returns O (zero).

NOTE. When you change the hardware sequencer mode, the files in the catalog
memory of the instrument are lost. Before changing the hardware sequencer
mode, save the files that you do not want to loose in the instrument’s nonvolatile
memory or a floppy disk.

SYSTEM

HWSequencer?, HWSequencer:INSTalled?

HWSequencer:MODE {ON | OFF | <NR1>}
HWSequencer:MODE?

Arguments

Responses

Examples

2-108

<SPACE> OFF
&
ON or nonzero value Set the instrument to use the hardware sequencer.
OFF or zero value Set the instrument to not use the hardware sequencer.

[:HWSEQUENCER:MODE] <Mode State>
where <Mode State>::={1|0}
1 The instrument is using the hardware sequencer mode.
0 The instrument is not using the hardware sequencer mode.

‘HWSequencer:MODE ON
sets the hardware sequencer mode to on.

AWG2000 Series Programmer Manual

Command Descriptions

ID?

Group
Related Commands

Syntax

Arguments

Responses

Examples

*IDN?

Group
Related Commands

Syntax

Arguments

AWG2000 Series Programmer Manual

The ID? query returns the ID information of the waveform generator.
SYSTEM
*IDN?

ID?

GEETEED =0
None

ID <Manufacturer>/<Model>, <Firmware Level>

where

<Manufacturer>::=SONY_TEK,

<Model>::=AWG2005 | AWG2020 | AWG2021 | AWG2040 | AWG2041
<Firmware Level>::=CF:<Code and Format Version>, and
FV:<Firmware Version>.

:ID?
returns SONY_TEK/AWG2020,CF:91.1CT,FV:1.00

The *IDN? common query returns the ID information of the waveform generator.

SYSTEM
ID?
*IDN?
®

None

2-109

Command Descriptions

Responses <Manufacturer>, <Model>, <Serial Number>, <Firmware Level>
where
<Manufacturer>::=SONY/TEK
<Model>::=AWG2005 | AWG2020 | AWG2021 | AWG2040 | AWG2041
<Serial Number>::=0
<Firmware Level>::=CF:<Code and Format Versipn>
<sp>FV:<Firmware Versionzand
<sp>:..= Space

Examples *IDN?
might return SONY/TEK,AWG2020,0,CF:91.1CT FV:1.00

LOCk (?)

The LOCk command enables or disables all front panel buttons and knob except
the ON/STBY button.

The LOCK? query returns status indicating whether the buttons and the knob are
locked or not.

These waveform generators do not switch between remote control and local
control modes, but rather allow simultaneous setting from an external controller
and from the front panel. Use this command to lock the functions of the front
panel buttons and knobs to disable front panel operations during operation from
an external controller or during external controller software execution.

Group SYSTEM
Related Commands UNLock

Syntax LOCk {ALL | NONe}
LOCk?

ALL
—{(_ LOCk <SPACE> -

()
&/

2-110 AWG2000 Series Programmer Manual

Command Descriptions

Arguments ALL
disables the front panel buttons and the knob except the ON/STBY button.

NONe
enables the front panel buttons and the knob.

Examples :LOCK ALL
disables the front panel buttons and the knob.

*LRN?

The *LRN? common query returns all current settings for the waveform

generator. The settings returned are in the format of a sequence of commands. If
you save this query response, you can send it back later as a command sequence
to reestablish the saved settings.

Group SYSTEM
Related Commands
Syntax *LRN?
©
Arguments None

Responses Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. Semmples

Examples *LRN?
might return the following response.
‘HEADER 1;:VERBOSE 1;:DIAG:SELECT ALL;:SELFCAL:SELECT
ALL;:DISPLAY:BRIGHTNESS 70;CATALOG:ORDER NAMEL;:DIS-
PLAY:CLOCK 0;MENU:SETUP:FORMAT GRAPHICS;:DISPLAY:MES-
SAGE:SHOW™;:FG:STATE 0;FREQUENCY
10.00000E+06;CH1:AMPLITUDE 1.000;0FFSET 0.000;POLARITY NOR-
MAL; SHAPE SINUSOID;:HCOPY:FORMAT BMP;PORT DISK;:DISK:FOR-
MAT:TYPE HD3;:MMEMORY:MSIS DISK;ALOAD:MSIS DISK;STATE
0;:MODE CONTINUOUS; :TRIGGER:IMPEDANCE HIGH;LEVEL 1.4;PO-
LARITY POSITIVE;SLOPE POSITIVE;:CH1:WAVEFORM ™;FILTER
THRU;AMPLITUDE 1.000;0FFSET 0.000;MARKERLEVEL1:HIGH

AWG2000 Series Programmer Manual 2-111

Command Descriptions

2.0;LOW 0.0;:CH1:MARKERLEVELZ2:HIGH 2.0;LOW 0.0;:CLOC:FRE-
QUENCY 1.000000E+09;SOURCE INTERNAL;:OUTPUT :CH1:NOR-
MAL:STATE 0;:OUTPUT:CH1:INVERTED:STATE 0;:DEBUG:SNOOP:
STATE O;DELAY-TIME 0.2;:DATA:DESTINATION "GPIB.WFM";ENCDG
RPBINARY;SOURCE "CH1";WIDTH 2

MARKer:DATA (?)

The MARKer:DATA command writes marker data to the file specified with the
DATA:DESTination command.

The MARKer:DATA? query returns marker data written in the file specified with
the DATA:SOURce command.

Group WAVEFORM

Related Commands MARKER<x>:AOFF, MARKER<x>:POINt, DATA:DESTination,
DATA:SOURce

Syntax MARKer:DATA <Marker Data Block>
MARKer:DATA?

<SPACE>}—»[<Marker Data Block>
MARKer 0 DATA
()
N

Arguments <Marker Data Block>::=<Arbitrary Block>
The format of a <Marker Data Block> is as follows:

#<x><yyy><marker(1l)><marker(2)><marker(3)>....<marker(n)>

Here <yyy> is the number of bytes in the (ASCII format) marker data that
follows, and <x> is the number of digits in <yyy>. The marker data items
<marker(i)> consist of a single byte in which only the lower 2 bits are valid.
These bits take on the values shown in the following table. The upper 6 bits must

be set to O.
Binary Data Descriptions
0 Turn off marker 1 and marker 2
1 Turn on marker 2 and turn off marker 1

2-112 AWG2000 Series Programmer Manual

Command Descriptions

Examples

MARKER<x>:AOFF

Group
Related Commands

Syntax

Arguments

Examples

Binary Data Descriptions
2 Turn on marker 1 and turn off marker 2
3 Turn on marker 1 and marker 2

Marker 2 in the table above is only used with models AWG2020, AWG2021,
AWG2040, and AWG2041.

This command sets all the marker data in a single operation. Use the MARK-
ER<x>:POINt command to set sections of the marker data.

‘MARKER:DATA #41000
sets marker data.

The MARKER<x>:AOFF command resets all markers in the file specified by
the DATA:DESTination command.

WAVEFORM

MARKER<x>:POINt, MARKer:DATA, DATA:DESTination

AWG2020/21/40/41
MARKER<x>:AOFF

— e e ()

AWG2005
MARKER[1]:AOFF

&o

None

:DATA:DESTINATION "WAVEO1.WFM";:MARKER1:AOFF
resets all channel 1 markers in the file: WAVEO1.WFM.

AWG2000 Series Programmer Manual 2-113

Command Descriptions

MARKER<x>:POINt (?)

The MARKER<x>:POINt command sets or resets the marker of the channel
specified at the data position specified in the file specified using the DATA:DES-
Tination command.

The MARKER<x>:POINt? query returns marker data state at the specified data

position of the channel specified in the file specified using the DATA:SOURce
command.

Group WAVEFORM
Related Commands = MARKER<x>:AOFF, MARKer:DATA, DATA:DESTination, DATA:SOURce

Syntax AWG2020/21/40/41
MARKER<x>:POINt <Data Position>, {OFF | ON | <NR1>}
MARKER<x>:POINt? <Data Position>

—(MARK > 3G O
ER

H
H

<SPACE>}——{ <Data Position> ’ <SPACE>

<SPACE>}——»{ <Data Position> |

AWG2005
MARKER[1]:POINt <Data Position>, {ON | OFF | <NR1>}
MARKERI[1]:POINt?

CHARKER Dy =(D——~(O—~C PO D)

<SPACE>|—»{ <Data Position>

)
&)

2-114 AWG2000 Series Programmer Manual

Command Descriptions

Arguments <Data Position>::=<NR1>, ON, or OFF
where <NR1> is a decimal integer, ON or nonzero sets a marker at <Data
Position>, and OFF or zero value resets a marker at <Data Position>.

Use the MARKer:DATA command to set all the marker data in a single
operation.

Responses = AWG2020/21/40/41
[:MARKER{1 | 2]POINT]<Data Position,{0|1}

AWG2005
[:MARKER[1]:POINT]<Data Position>{0|1}

Examples :DATA:DESTINATION "WAVEO1.WFM";:MARKER1:POINT 2001, ON
sets marker at 208'hata point in channel 1 in the file WAVEO1.WFM.

:DATA:SOURce "WAVE02.WFM”;:MARKER1:POINT? 1400
might return :MARKER1:POINT 1400,1

MEMory?

The MEMory? query returns file-specific information on all files in the internal
memory, and used size and unused size of the internal memory. This query is
equivalent to sending the MEMory:CATalog:ALL? followed by the
MEMory:FREE:ALL? queries.

Group MEMORY
Related Commands MEMory:CATalog:ALL?, MEMory:FREE:ALL?

Syntax MEMory?

©,
Arguments None

Responses :MEMORY:CATALOG:ALL<File Entry>[,<File Entry>]...;
:MEMORY:FREE:ALL<Unused Size>, <Used Size>
where
<File Entry>::=<File Name>, <File Size>, <Time Stamp>

AWG2000 Series Programmer Manual 2-115

Command Descriptions

Examples

MEMory:CATalog?

2-116

Group
Related Commands

Syntax

Arguments

Responses

<File Name>::=<string>
<File Size>::=<NR1>
<Time Stamp>::=<string>
<Unused Size>::=<NRZ1xand
<Used Size>::=<NR1>

:MEMORY?

might return the following response.

‘MEMORY:CATALOG:ALL "AUTOSTEP.AST”,142,"93-11-11
16:49""EQUATION.EQU”,296,793-11-11 16:54","SE-
QUENCE.SEQ”",960,"93-11-11 16:48","WAVE2.WFM”", 2948,7923-11-11
16:47","WAVEFORM.WFM”, 2948,"93—-11-11 16:47";MEMORY:FREE:ALL
1696220,28500

The MEMory:CATalog? query returns file-related information about all files in
the internal memory. This query is equivalent to the MEMory:CATalog:ALL?

query.
MEMORY
MEMory:CATalog:ALL?, MEMory?

MEMory:CATalog?

(MEMory)—»(:)—(_caTalog ()

None

:MEMORY:CATALOG:ALL<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

The files with extersions of .BMP, .EPS, .EQA, .ESC, .ISF, .TIF, .TJ, .WFB, and
\WVN on the floppy disk can be referenced only by MMEMory:CATalog?,
MMEMory?, and MMEMory:CATalog:ALL? query.

AWG2000 Series Programmer Manual

Command Descriptions

Examples

:MEMORY:CATALOG?

might return the following response:

:MEMORY:CATALOG:ALL "AUTOSTEP.AST”,142,"93-11-11
16:49""EQUATION.EQU”,296,793-11-11 16:54","SE-
QUENCE.SEQ”,960,"93-11-11 16:48","WAVE2.WFM”,2948, "93-11-11
16:47","WAVEFORM.WFM”,2948,"93-11-11 16:47"

MEMory:CATalog:ALL?

Group

Related Commands

Syntax

Arguments

Responses

Examples

The MEMory:CATalog:ALL? query returns file-related information about all
files in the internal memory.

MEMORY

MEMory:CATalog?, MEMory:CATalog:AST?, MEMory:CATalog:CLK?,
MEMory:CATalog:EQU?, MEMory:CATalog:SEQ?, MEMory:CATalog:WFM?,
MEMory?

MEMory:CATalog:ALL?

(meMory)»—»(:)—»(_catalog »—»(:)—»(_ air. _)—»(2)
None

[:MEMORY:CATALOG:ALL]J<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>
<File Name>::=<string>

<File Size>::=<NR1>and

<Time Stamp>::=<string>

The files with extensions of .BMP, .EPS, .EQA, .ESC, .ISF, .TIF, .TJ, WFB, and
.WVN on the floppy disk can be referenced only by MMEMory:CATalog:ALL?,
MMEMory?, and MMEMory:CATalog? query.

:MEMORY:CATALOG:ALL?

might return the following response.

:CATALOG:ALL "AUTOSTEP.AST”,142,

"93-11-11 16:49","EQUATION.EQU",296,"93-11-11 16:54",
"SEQUENCE.SEQ",960,793-11-11 16:48","WAVE2.WFM"”,2948,
"93-11-11 16:47","WAVEFORM.WFM"”,2948,"93-11-11 16:47"

AWG2000 Series Programmer Manual 2-117

Command Descriptions

MEMory:CATalog:AST?

Group
Related Commands

Syntax

Arguments

Responses

Examples

The MEMory:CATalog:AST? query returns file-related information about all
auto step files in the internal memory of the waveform generator.

MEMORY
MEMory:CATalog:ALL?, MEMory?

MEMory:CATalog:AST?

(meMory)»—»(:)—»(_catalog »—»(:)—»(__ ast _)—»(2)
None

:MEMORY:CATALOG:AST<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

‘MEMORY:CATALOG:AST?
might return :MEMORY:CATALOG:AST "AUTOSTEP.AST",142,"93-11-11
16:49”

MEMory:CATalog:EQU?

Group
Related Commands

Syntax

2-118

The MEMory:CATalog:EQU? query returns file-related information about all
equation files in the internal memory of the waveform generator.

MEMORY

MEMory:CATalog:ALL?, MEMory?

MEMory:CATalog:EQU?

AWG2000 Series Programmer Manual

Command Descriptions

)) ©,
Arguments None

Responses :MEMORY:CATALOG:EQU<File Entry>[,<File Entry>]...
where
<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,
<File Size>::=<NR1>, and
<Time Stamp>::=<string>.

Examples :MEMORY:CATALOG:EQU?
might return :MEMORY:CATALOG:EQU "EQUATION.EQU”,
296,"93-11-11 16:54"

MEMory:CATalog:CLK?
(AWG2005)

The MEMory:CATalog:CLK? query returns file-specific information about all
clock sweep files in the internal memory.

Group MEMORY
Related Commands MEMory:CATalog:ALL?, MEMory?
Syntax MEMory:CATalog:CLK?
)) ©,
Arguments None

Responses [MEMORY:CATALOG:CLK]<File Entry>[,<File Entry>]...
where
<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,
<File Size>::=<NR1>, and
<Time Stamp>::=<string>.

AWG2000 Series Programmer Manual 2-119

Command Descriptions

Examples

MEMORY:CATALOG:CLK?
might return :MEMORY:CATALOG:CLK
"CLKSWEEP.CLK”,10876,"93-10-10 12:53”

MEMory:CATalog:CLK?

(AWG2005)

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-120

The MMEMory:CATalog:CLK? query returns file-specific information about all
clock sweep files in the current mass memory.

MEMORY
MMEMory:MSIS, MMEMory:CATalog:ALL?, MMEMory?
MMEMory:CATalog:CLK?

)) ©,

None

[:MMEMORY:CATALOG:CLK]<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

:MMEMORY:CATALOG:CLK?
might return :MMEMORY:CATALOG:CLK
"CLKSWEEP.CLK”,10876,"93—09-28 12:53"

AWG2000 Series Programmer Manual

Command Descriptions

MEMory:CATalog:SEQ?

The MEMory:CATalog:SEQ? query returns file information on all sequence files
in the internal memory of the waveform generator.

Group MEMORY
Related Commands = MEMory:CATalog:ALL?, MEMory?

Syntax MEMory:CATalog:SEQ?

)) ©,
Arguments None

Responses :MEMORY:CATALOG:SEQ<File Entry>[,<File Entry>]...
where
<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,
<File Size>::=<NR1>, and
<Time Stamp>::=<string>.

Examples ‘MEMORY:CATALOG:SEQ?
might return :MEMORY:CATALOG:SEQ "SEQUENCE.SEQ",960,"93-11-11
16:48"

MEMory:CATalog:WFM?

The MEMory:CATalog:WFM? query returns file-specific information about all
waveform files in the internal memory of the waveform generator.

Group MEMORY
Related Commands = MEMory:CATalog:ALL?, MEMory?

Syntax MEMory:CATalog:WFM?

AWG2000 Series Programmer Manual 2-121

Command Descriptions

)) ©,
Arguments None

Responses :MEMORY:CATALOG:WFM<File Entry>[,<File Entry>]...
where
<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,
<File Size>::=<NR1>, and
<Time Stamp>::=<string>.

Examples :MEMORY:CATALOG:WFM?
might return the following response:
:MEMORY:CATALOG:WFM "WAVE2.WFM”,2948,"92—-04-23 16:47","WA-
VEFORM.WFM”, 2948,"93-11-11 16:47"

MEMory:COMMent (?)

The MEMory:COMMent command writes a comment into the comment column
of the specified file in the internal memory of the waveform generator. The
MEMory:COMMent? query returns comments in the comment column of the
specified file. A comment cannot be written to a file that is locked using the
MEMory:LOCk command.

Group MEMORY
Related Commands MEMory:COPY, MEMory:DELete, MEMory:REName, MEMory:LOCk

Syntax MEMory:COMMent <File Name>, <Comment>
MEMory:COMMent? <File Name>

MEMory (:) COMMent

<SPACE> —><File Name>) 0

<SPACE> [—"<File Name>]

Arguments <File Name>::=<string>
where <string> is the name of the file to which to write the comment.

2-122 AWG2000 Series Programmer Manual

Command Descriptions

Examples

MEMory:COPY

Group
Related Commands

Syntax

<Comment>::=<string>
where <string> is a comment of up to 24 characters.

:MEMORY:COMMENT "TDS_REF.WFM”, "COPIED FROM TDS REF.”
writes the comment into the file TDS_REF.WFM.

The MEMory:COPY command copies a file in internal memory. If the destina-
tion file <To-file> does not exist, it will be created. If the destination file already
exists, it will be overwritten. (Files locked using the MEMory:LOCk command
cannot be overwritten by MEMory:COPY.)

MEMORY

MEMory:DELete, MEMory:REName, MEMory:COMMent

MEMory:COPY <From-file>, <To—file>

(WEMOY —>(?)

COPY)—»{ <SPACE>}—>{_<From file> |—»(, }—{ <SPACE>}—»[<Tofile> |—»

Arguments

Examples

MEMory:DELete

Group

Related Commands

<From-file>::=<string>
where <string> is the source file name.

<To-file>::=<string>
where <string> is the destination file name.

:MEMORY:COPY "TDS_REF.WFM”, "AWGCH1.WFM”
copies the file TDS_REF.WFM to the file AWGCH1.WFM.

The MEMory:DELete command deletes a file in the internal memory. A file
locked with the MEMory:LOCk command cannot be deleted.

MEMORY

MEMory:COPY, MEMory:REName, MEMory:COMMent

AWG2000 Series Programmer Manual 2-123

Command Descriptions

Syntax

Arguments

Examples

MEMory:FREE?

Group
Related Commands

Syntax

Arguments

Responses

Examples

2-124

MEMory:DELete {All | <File Name>}

ALL
MMEMory (+) DELete)—»| <SPACE> _

<File Name>::=<string>
where <string> is either the name of the file to be deleted or ALL when every
file in internal memory is to be deleted.

:MEMORY:DELETE "AWGCH2.WFM”"
deletes the file AWGCH2.WFM from internal memory.

The MEMory:FREE? query returns used size and unused size of the internal
memory. This query is equivalent to the MEMory:FREE:ALL? query.

MEMORY
MEMory:FREE:ALL?, MEMory?

MEMory:FREE?

(CmeMory)—»(:)—(_FrEE)—>(2)

None

:MEMORY:FREE:ALL<Unused Size>, <Used Size>
where

<Unused Size>::=<NR1zand

<Used Size>::=<NR1>

:MEMORY:FREE?
might return :MMEMORY:FREE:ALL 1696220,28500

AWG2000 Series Programmer Manual

Command Descriptions

MEMory:FREE:ALL?

Group
Related Commands

Syntax

Arguments

Responses

Examples

MEMory:LOCk(?)

Group

Related Commands

The MEMory:FREE:ALL? query returns used size and unused size of the
internal memory. This query is equivalent to the MEMory:FREE? query.

MEMORY
MEMory:FREE?, MEMory?

MEMory:FREE:ALL?

(meMory)»—»(:)—»(_rree (i)—»(_atr. _)—»(2)
None

‘MEMORY:FREE:ALL<Unused Size>, <Used Size>
where

<Unused Size>::=<NR1> and

<Used Size>::=<NR1>.

‘MEMORY:FREE:ALL?
might return :MEMORY:FREE:ALL 1696220,28500.

The MEMory:LOCk command locks or unlocks a file in the internal memory;
the MEMory:LOCK? query returns status indicating whether a file is locked or
not. The following operations can not be performed on a locked file:

m File deletion using MEMory:DELete
m File overwriting using MEMory:COPY or load operations
m Commenting of files using MEMory:COMMent

® File renaming using MEMory:REName
MEMORY

MEMory:DELete, MEMory:COPY, MEMory:REName, MEMory:COMMent

AWG2000 Series Programmer Manual 2-125

Command Descriptions

Syntax MEMory:LOCk <File Name>, {ON | OFF | <NR1>}
MEMory:LOCK? <File Name>

MEMory

<SPACE>|—>{ <File Name> () <SPACE>

<SPACE>}—{ <File Name>- |

Arguments <File Name>::=<string>
where <string> is the name of the file to be locked or unlocked,
ON or a nonzero value (locks the file), and
OFF or zero value (unlocks the file).

Examples :MEMORY:LOCK "RAMP_W1.WFM", 1
locks the file RAMP_W1.WFM.

MEMory:REName

The MEMory:REName command changes the name of a file located in the
internal memory of the waveform generator. A file that is locked using the
MEMory:LOCk command cannot be renamed.

Group MEMORY
Related Commands ~ MEMory:COPY, MEMory:DELete, MEMory:COMMent, MEMory:LOCk

Syntax MEMory:REName <From-filename>, <To-filename>

MEMory —»@—»(REName)—s{ <SPACE>|——>{ <From fiIename>\—>®—>§ <SPACE>}——>{ <To filename>}—

Arguments <From-filename>::=<string>
where <string> is the name of the file before it is renamed.

<To-filename>::=<string>
where <string> is the name of the file after it is renamed.

The file extensions in both files must be same. Specifying different extensions in
both files causes an error.

2-126 AWG2000 Series Programmer Manual

Command Descriptions

Examples :MEMORY:RENAME "TDS_REF.WFM","”AWGCH2.WFM"
renames the file TDS_REF.WFM to AWGCH2.WFM.

MMEMory?

The MMEMory? query returns all information, including autoload settings, used
size, and unused sized, of all files in current mass memory. This query is
equivalent to the MMEMory:ALOad? query, followed by MMEMory:MSIS?
query, followed by the MMEMory:CATalog:ALL? query, followed by the
MMEMory:FREE:ALL? query.

Group MEMORY

Related Commands MMEMory:ALOad?, MMEMory:MSIS, MMEMory:CATalog:ALL?,
MMEMory:FREE:ALL?

Syntax MMEMory?

©,
Arguments None

Responses :MMEMORY:MSIS <Current Mass Memory>;CATALOG:ALL<File Entry>
[,<File Entry>]...;;MMEMORY:ALOAD:MSIS<AutoLoad Mass Memory>;
STATE<AutoLoad State>;:MMEMORY:FREE:ALL<Unused Size>, <Used
Size>
where
<Current Mass Memory>::={DISK|NVRAM},
<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,
<File Size>::=<NR1>,
<Time Stamp>::=<string>,
<AutoLoad Mass Memory>::={DISK|NVRAM},
<AutoLoad State>::={0|1},
<Unused Size>::=<NR1>, and
<Used Size>::=<NR1>.

The files with extensions of .BMP, .EPS, .EQA, .ESC, .ISF, .TIF, .TJ, .WFB,
and .WVN on the floppy disk can be referenced only by MMEMory? query,
MMEMory:CATalog? query, and MMEMory:ACTalog:ALL? query.

AWG2000 Series Programmer Manual 2-127

Command Descriptions

Examples :MMEMORY?
might return the following response
:MMEMORY:MSIS DISK;CATALOG:ALL "AUTOSTEP.AST",142,"93-11-11
16:49”,"EQUATION.EQU",296,"93-11-11 16:54","SEQUENCE.SEQ”,
960,"93-11-11 16:48","WAVE2.WFM”,2948,"93-11-11 16:47”,
"WAVEFORM.WFM”, 2948,"93-11-11 16:47;:MMEMORY:ALOAD:MSIS
DISK; STATE 0;:MMEMORY:FREE:ALL 801792,672760

MMEMory:ALOad?

The MMEMory:ALOad? query returns status indicating whether an auto load is
done at power up and which storage media, the floppy disk or NVRAM, is
currently set to be loaded from. This query is equivalent to the MMEMo-
ry:ALOad:STATe? query.

Group MEMORY
Related Commands MMEMory:ALOad:MSIS, MMEMory:ALOad:STATe

Syntax MMEMory:ALOad?

) ©,
Arguments None

Responses MMEMORY:ALOAD:MSIS<AutoLoad Mass Memory>;STATE<AutoLoad>
where
<AutoLoad Mass Memory>::={DISK|NVRAM},
<AutoLoad>::={0|1},
1 indicates the waveform generator is set to auto load at power up, and
0 indicates the waveform generator is set to not auto load at power up.

Examples :MMEMORY:ALOAD?
might return :MMEMORY:ALOAD:MSIS DISK;STATE 1

2-128 AWG2000 Series Programmer Manual

Command Descriptions

MMEMory:ALOad:MSIS (?)

Group
Related Commands

Syntax

Arguments

Examples

The MMEMory:ALOad:MSIS command designates the internal NVRAM or the
floppy disk drive of the waveform generator to be the current mass memory. The
current mass memory is the storage media from which files are loaded into
internal memory when the auto load function is performed.

The MMEMory:ALOad:MSIS? query returns the storage type, NVRAM or
DISK, currently selected as a mass memory for doing auto loads.
MEMORY

MMEMory:ALOad:STATe, MMEMory:ALOad?

MMEMory:ALOad:MSIS {NVRam | DISK}
MMEMory:ALOad:MSIS?

(CmvEMory)—»(:)—(_ar0ad)—»(:)—=(__msis)

.'
DISK

<SPACE>

> 2)
i\
NVRam
selects nonvolatile RAM.
DISK
selects floppy disk.

When DISK is specified as a mass memory, files in the directory of
“AWG2005”, \AWG2020", \AWG2021", “\AWG2040" or “\AWG2041" are
loaded.

NOTE. When the files are loaded from the floppy disk to the internal memory, the
file names with extension of .ISF, WFB, .WVN, and .EQA are converted to those
of WFM, .WFM, .WFM, and EQU.

:MMEMORY:ALOAD:MSIS DISK
selects the floppy disk drive as a mass memory.

AWG2000 Series Programmer Manual 2-129

Command Descriptions

MMEMory:ALOad:STATe (2)

The MMEMory:ALOad:STATe command defines whether the auto load function
is performed at power up. The MMEMory:ALOad:STATe? query returns status
indicating whether the auto load function is performed or not at power up.

Group MEMORY
Related Commands MMEMory:ALOad:MSIS, MMEMory:ALOad?

Syntax MMEMory:ALOad:STATe {ON | OFF | <NR1>}
MMEMory:ALOad:STATe?

(Cmmmory y—»(:)—(__2L0ad)—»(:)—=(_ smate)

<SPACE>

Arguments ON
or a nonzero value sets the instrument so as to perform the auto load at power up.

OFF
or a zero valueesets the instrument so as not to perform the auto load at power
up.
Responses 1 auto loading is currently enabled.
0 the auto loading is currently disabled.

Examples :MMEMORY:ALOAD:STATE 1
sets the instrument so auto loading is performed upon power up.

2-130 AWG2000 Series Programmer Manual

Command Descriptions

MMEMory:CATalog?

The MMEMory:CATalog? query returns file-specific information about all files
in the current mass memory. This query is equivalent to the MMEMory:CATa-
log:ALL? query.

Group MEMORY
Related Commands MMEMory:MSIS, MMEMory:CATalog:ALL?, MMEMory?

Syntax MMEMory:CATalog?

) ©,
Arguments None

Responses :MMEMORY:CATALOG:ALL<File Entry>[,<File Entry>]...
where
<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,
<File Size>::=<NR1>, and
<Time Stamp>::=<string>.

The files with extensions of .BMP, .EPS, .EQA, .ESC, .ISF, .TIF, .TJ, WFB, and
\WVN on the floppy disk can be referenced only by MMEMory? query,
MMEMory:CATalog? query, and MMEMory:ACTalog:ALL? query.

Examples :MMEMORY:CATALOG?
might return the following response.
MMEMORY:CATALOG:ALL "AUTOSTEP.AST”,142,"93-11-11
16:49","EQUATION.EQU",296,"93—-11-11 16:54","SE-
QUENCE.SEQ",960,"93-11-11 16:48","WAVE2.WFM",2948,
"93-11-11 16:47","WAVEFORM.WFM",2948,"93-11-11 16:47”

AWG2000 Series Programmer Manual 2-131

Command Descriptions

MMEMory:CATalog:ALL?

Group

Related Commands

Syntax

Arguments

Responses

Examples

2-132

The MMEMory:CATalog:ALL? query returns file-specific information about all
the files in the current mass memory.

MEMORY

MMEMory:MSIS, MMEMory:CATalog?, MMEMory:CATalog:AST?,
MMEMory:CATalog:CLK?, MMEMory:CATalog:EQU?, MMEMory:CATa-
log:SEQ?, MMEMory:CATalog:WFM?, MMEMory?

MMEMory:CATalog:ALL?

(CmeMory)»—»(: —»(_caTalog »—»(: —»(_ arr.)—(2)
None

:MMEMORY:CATALOG:ALL<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

The files of extensions of .BMP, .EPS, .EQA, .ESC, .ISF, .TIF, .TJ, .WFB, and
.WVN on the floppy disk can be referenced only by MMEMory:CATalog:ALL?
query, MMEMory? query, and MMEMory:CATalog? query.

:MMEMORY:CATALOG:ALL?

might return the following response;
:MMEMORY:CATALOG:ALL "AUTOSTEP.AST",142,793-11-11
16:49""EQUATION.EQU",296,"93—-11-11 16:54",
"SEQUENCE.SEQ",960,"93-11-11 16:48","WAVE2.WFM",2948,
"93-11-11 16:47""WAVEFORM.WFM”,2948,"93-11-11 16:47"

AWG2000 Series Programmer Manual

Command Descriptions

MMEMory:CATalog:AST?

Group
Related Commands

Syntax

Arguments

Responses

Examples

The MMEMory:CATalog:AST? query returns file-specific information about all
the auto step files in the current mass memory.

MEMORY
MMEMory:MSIS, MMEMory:CATalog:ALL?, MMEMory?

MMEMory:CATalog:AST?

(CmeMory)»—»(: —»(_catalog —»(:)—»(__ ast _)—(2)
None

:MMEMORY:CATALOG:AST<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

:MMEMORY:CATALOG:AST?
might return :MMEMORY:CATALOG:AST "AUTOSTEP.AST",142,793-11-11
16:49".

MMEMory:CATalog:EQU?

Group
Related Commands

Syntax

The MMEMory:CATalog:EQU? query returns file-specific information about all
files in the current mass memory.

MEMORY

MMEMory:MSIS, MMEMory:CATalog:ALL?, MMEMory?

MMEMory:CATalog:EQU?

AWG2000 Series Programmer Manual 2-133

Command Descriptions

Arguments

Responses

Examples

(CmeMory)»—»(: —»(_catalog »—»(: —»(__ EQU)—(2)
None

:MMEMORY:CATALOG:EQU<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>

:MMEMORY:CATALOG:EQU?
might return :MMEMORY:CATALOG:EQU "EQUATION.
EQU”,296,"93-11-11 16:54"

MMEMory:CATalog:SEQ?

2-134

Group
Related Commands

Syntax

Arguments

Responses

The MMEMory:CATalog:SEQ? query returns file-specific information about all
sequence files in the current mass memory.

MEMORY
MMEMory:MSIS, MMEMory:CATalog:ALL?, MMEMory?

MMEMory:CATalog:SEQ?

(CmeMory)»—»(: —»(_catalog »—»(: —»(__ seo)—»(2)
None

:MMEMORY:CATALOG:SEQ<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

AWG2000 Series Programmer Manual

Command Descriptions

Examples

‘MMEMORY:CATALOG:SEQ?
might return :MMEMORY:CATALOG:SEQ "SEQUENCE.SEQ”", 960,
"93-11-11 16:48”

MMEMory:CATalog:WFM?

Group
Related Commands

Syntax

Arguments

Responses

Examples

MMEMory:DELete

Group

Related Commands

The MMEMory:CATalog:WFM? query returns file-specific information about all
waveform files in the current mass memory.

MEMORY
MMEMory:MSIS, MMEMory:CATalog:ALL?, MMEMory?

MMEMory:CATalog:WFM?

wiErory () catatog () ©

None

:MMEMORY:CATALOG:WFM<File Entry>[,<File Entry>]...
where

<File Entry>::=<File Name>, <File Size>, <Time Stamp>,
<File Name>::=<string>,

<File Size>::=<NR1>, and

<Time Stamp>::=<string>.

:MMEMORY:CATALOG:WFM?

might return the following response:

:MMEMORY:CATALOG:WFM "WAVE2.WFM",2948,"93—-11-11 16:47","WA-
VEFORM.WFM”,2948,"93-11-11 16:47"

The MMEMory:DELete command deletes a file in the current mass memory. A
file locked with the MMEMory:LOCk command cannot be deleted.

MEMORY

MMEMory:REName, MMEMory:MSIS, MMEMory

AWG2000 Series Programmer Manual 2-135

Command Descriptions

Syntax MMEMory:DELete {All | <File Name>}

ALL
MMEMory (:) DELete)—»| <SPACE> “

Arguments <File Name>::=<string>
where <string> is the name of the file to be deleted or the word ALL to delete all
of the files in current mass memory.

Examples ‘MMEMORY:DELETE "AWG2.WFM”
deletes the file AWG2.WFM.

MMEMory:FREE?

The MMEMory:FREE? query returns used size and unused size of the mass
memory. This query is equivalent to the MMEMory:FREE:ALL? query.

Group MEMORY
Related Commands MMEMory:MSIS, MMEMory:FREE:ALL?, MMEMory?

Syntax MMEMory:FREE?

) ©,
Arguments None

Responses ‘MMEMORY:FREE:ALL<Unused Size>, <Used Size>
where
<Unused Size>::=<NR1> and
<Used Size>::=<NR1>.

Examples :MMEMORY:FREE?
might return :MMEMORY:FREE:ALL 1696220,28500

2-136 AWG2000 Series Programmer Manual

Command Descriptions

MMEMory:FREE:ALL?

The MMEMory:FREE:ALL? query returns used size and unused size of the
mass memory.

Group MEMORY
Related Commands MMEMory:MSIS, MMEMory:FREE?, MMEMory?

Syntax MMEMory:FREE:ALL?

)) ©,
Arguments None

Responses :MMEMORY:FREE:ALL<Unused Size>, <Used Size>
where
<Unused Size>::=<NR1> and
<Used Size>::=<NR1>.

Examples :MMEMORY:FREE:ALL?
might return :MMEMORY:FREE:ALL 801792,672760

MMEMory:LOAD

The MMEMory:LOAD command loads the file(s) in the current mass memory
into internal memory. If the file to be loaded does not exist in internal memory, it
will be created. If a file with the same file name already exists in internal
memory, it will be overwritten unless it has been locked.

When the files are loaded from the floppy disk to the internal memory, the file
names with extension of .ISF, .WFB, .WVN, and .EQA are converted to those of
WFM, .WFM, .WFM, and .EQU.

Group MEMORY
Related Commands = MMEMory:MSIS, MMEMory:SAVE

Syntax MMEMory:LOAD {<File Name> | ALL}

AWG2000 Series Programmer Manual 2-137

Command Descriptions

VRO)= [OAD)—»{ <SPACES _
ALL

Arguments <File Name>::=<string>
where <string> is the name of the file to be loaded or the wordtélldad all
of files in the current mass memory.

Examples :MMEMORY:LOAD ALL
loads all files in the current mass memory into the internal memory

MMEMory:LOCK (?)

The MMEMory:LOCk command locks or unlocks a file in the current mass
memory; the MEMory:LOCK? query returns status indicating whether a file is
locked or not. The following operations can not be performed on a locked file:

m File deletion using MMEMory:DELete
m File overwriting using MMEMory:COPY or MMEMory:LOAD
® Commenting of files

®m File renaming using MMEMory:REName
Group MEMORY

Related Commands = MMEMory:DELete, MMEMory:LOAD, MMEMory:REName, MMEMo-
ry:MSIS

Syntax MMEMory:LOCk <File Name>, {ON | OFF | <NR1>}
MMEMory:LOCK? <File Name>

<SPACE>}—>{ <File Name> () <SPACE>

<SPACE>}——>{ <File Name>- |

2-138 AWG2000 Series Programmer Manual

Command Descriptions

Arguments <File Name>::=<string>
where <File Name> is the name of the file to be locked or unlocked,
ON or any nonzero value for <NR1> locks the file, and
OFF or a zero value for <NR1> unlocks the file.

Responses 0 the file is not locked
1 the file is locked

Examples :MMEMORY:LOCK "SINE_W1.WFM”, 1
locks the file SINE_W1.WFM.

MMEMory:MSIS(?)

The MMEMory:MSIS command designates the internal NVRAM or the floppy
disk of the waveform generator to be the current mass memory. The MMEMo-
ry:MSIS? query returns the type of current mass memory that is selected.

Group MEMORY

Related Commands MMEMory:MSIS, MMEMory:CATalog?, MMEMory:CATalog:AST?,
MMEMory:CATalog:EQU?, MMEMory:CATalog:SEQ?, MMEMory:CATa-
log:WFM?, MMEMory?

Syntax MMEMory:MSIS {NVRam | DISK}
MMEMory:MSIS?

MMEMoTy (+) MSIS <SPACE> “
DISK
ol)
O/

Arguments NVRam
selects non volatile RAM.

DISK
selects the floppy disk.

When DISK is selected as a current mass memory, you can change the current
working directory using the DISK:CDIRectory command.

AWG2000 Series Programmer Manual 2-139

Command Descriptions

Examples

MMEMory:REName

Group
Related Commands

Syntax

:MMEMORY:MSIS DISK;:DISK:CDIRECTORY "\SAMPLE1"
selects DISK as a current mass memory and makes \SAMPLEZ1 the current
working directory.

The MMEMory:REName command changes the name of a file in the current
mass memory. A file that is locked using the MMEMory:LOCk command
cannot be renamed.

MEMORY

MMEMory:DELete, MMEMory:MSIS, MMEMory:LOCk

MMEMory:REName <From-filename>, <To-filename>

—»@—»(REName)—s{ <SPACE>|—>{ <From filename>\—>®—>{ <SPACE>}——>{ <To filename>}—»

Mory
Arguments
Examples
MMEMory:SAVE
Group

2-140

<From-filename>::=<string>
where <string> is the name of the fitebechanged.

<To-filename>::=<string>
where <string> is the name of the fdéer it ischanged.

The file extensions of both files must be same. Specifying a different file
extension for the files causes an error.

:MMEMORY:RENAME "TDS_REF.WFM”, "AWGCH2.WFM"
renames the file TDS_REF.WMF to AWGCH2.WFM.

The MMEMory:SAVE command saves files stored in the internal memory into
the current mass memory. If the file to be saved does not exist in mass memory,
it will be created. If a file with the same file name already exists in mass
memory, it will be overwritten unless it has been locked.

MEMORY

AWG2000 Series Programmer Manual

Command Descriptions

Related Commands MMEMory:LOAD, MMEMory:MSIS

Syntax MMEMory:SAVE {<File Name>[,<ASCli>] | ALL}

© savE [<seace>

<Fe Nare> TO*

Arguments <File Name>::=<string>
where <string> is either the name of the file in internal memory to be saved or
the word ALL, when all files in internal memory are to be saved in current mass
memory. ASCIi saves the content of an equation file converted to ASCII code.
Effective only when the <File Name> is a equation file ((EQU) and at the same
time, current mass memory is DISK. The saved file has a extension of .EQA.

Examples :MMEMORY:SAVE ALL
saves all files in the internal memory into the current mass memory.

MODE (?)

TheMODEommand selects the mode used to output a waveform or sequence.
The MODE®uery returns the current selected mode.
Group MODE

Related Commands STARt, STOP, *TRG

Syntax MODE {CONTinuous | ASTEp [,<Autostep File>[,CONTinuous | ,
STEP](AWG2005/40/41)] | BURSt [,<Count>](AWG2020/21/40/41) | GATed
SLAVe (AWG2040/41) | TRIGGEREd | WADVance [,CONTinuous |
,STEP](AWG2005)}

AWG2000 Series Programmer Manual 2-141

Command Descriptions

MODE?

—»(CONTinuous)
—>(_ MODE)~»>{ <SPACE>}<—(_ ASTEp)

2-142

1.-C>_{ <Autostep File> |

~(_BURSL)
O

N GATed)

> SLAVe)

~(TRIGGEREQ)

~—{(WADVance)

~

o)\

i\,
Arguments Arguments Descriptions

CONTinuous Sets the continuous mode which continuously outputs waveform or
sequence.

ASTep Sets the auto step mode which outputs one cycle of a waveform or
step of a sequence per trigger. For example, this mode advances
one step per trigger of a sequence stored in an auto-step file.
<Autostep File>::=<string>
The optional argument can be added in the AWG2005/40/41.
CONTinuous Perform the steps continuously.

STEP Perform the step once.

BURSt Sets the burst mode which outputs <Count>waveform cycles or

(AWG2020/21/40/41) sequence steps for each trigger.
<Count>::=<NR21>burst count (range: 1 to 65535)

GATed Sets the gated mode which continuously outputs waveforms or
sequences as long as the trigger remains enabled. The trigger
remains effective as long as any of the following events occur:

m the TRIGGER MANUAL button remains pressed

m avalid external gate signal remains input

m a STARt*TRG command has been executed but a STOP
command has not yet been issued

SLAVe Sets the slave mode which enable the slaved AWG’s to operate as

(AWG2040/41) the master AWG’s.

The slaved AWG’s synchronize with the trigger, gate, and stop signal
generation in the master AWG’s.

AWG2000 Series Programmer Manual

Command Descriptions

Examples

*OPC (2)

Group

Related Commands

Syntax

Arguments

Examples

Arguments Descriptions

TRIGGEREd Sets the triggered mode, which outputs one waveform cycle or
sequence step for each trigger.

WADVance Sets the waveform advance mode which continuously outputs one
step of a sequence, as when advancing one step for each trigger.
The optional argument can be added in the AWG2005.
CONTinuous Outputs the waveforms continuously.

STEP Outputs the waveform once.

:MODE BURST, 200
sets output for burst mode with 200 waveform cycles.

The *OPC common command generates the operation complete message by
setting bit 0 in the SESR (Standard Event Status Register), when all pending
operations are finished.

The *OPC? query returns a “1” ASCII character when all pending operations are
finished.

The following table lists the commands that generate an operation complete
massage.

Command Operation
EQUALtion:COMPile:STATe EXECute Equation compile
HCOPy STARt Hardcopy output

SYNCHRONIZATION

*WAI

*OPC
OPC?

—> *OPC 1 (>

None

EQUATION:COMPILE:STATE EXECUTE,"SAMPLE.EQU”;*OPC
might wait for the completion of equation compile.

AWG2000 Series Programmer Manual 2-143

Command Descriptions

*OPT?

Group

Related Commands

OUTPut?

2-144

Syntax

Arguments

Responses

Examples

Group

HCOPY:PORT DISK;HCOPY START;*OPC
might wait for the completion of hardcopy.

The *OPT common query returns the implemented options of the waveform
generator.

SYSTEM
None

*OPT?

(xoer)—>(2)

None

<Option>[,<Option>]...

where

@) indicates no option,

CH2 indicates the option 02 (2 channel output) (AWG2020/21),

CH3/4 indicates the option 02 (4 channel output) (AWG2005),

DDO indicates the option 03 (Digital data out) (AWG2020/21/40/41),
indicates the option 04 (Digital data out) (AWG2005/21),

SWP indicates the option 05 (Clock sweep) (AWG2005),

FPP indicates the option 09 (Floating point processor), and

aM indicates the option 01 (4MB word waveform memory)
(AWG2040/41)

*OPT?

might return CH2, FPP to indicate that the 2 channel and floating point processor
options are installed in the instrument.

The OUTPut? query returns all settings which can be set with the OUTPUT
commands.

OUTPUT

AWG2000 Series Programmer Manual

Command Descriptions

Related Commands

Syntax

Arguments

Responses

Examples

OUTPut:CH<x>?

Group
Related Commands

Syntax

Arguments

Responses

AWG2000 Series Programmer Manual

All output commands

OUTPut?

(Coureut)—(2)

None

Returns the settings as a sequence of commands, suitable for sending as set
commands later to restore a setup. Bemmples

:OUTPUT?
might returnOUTPUT:CHL1:STATE 0;:OUTPUT:CH2:STATE 0;:0UT-
PUT:SYNC END

The OUTPut:CH<x>? query returns status indicating whether the output has
been turned on or not.

In case of the AWG2040/41, CH1 is only valid header mnemonic.

OUTPUT

OUTPUuUt:CH<x>:STATe

OUTPut:CH<x>?

(oureut)—() cH

None

1 the output is currently turned on.
0 the output is currently turned off.

ON/OFF of the output changes the relay connected to output on the front panel,
and is enabled by OUTPut:CH<x>:STATt. OUTPut:CH<x> checks the status of
the relay, and has a same operation as OUTPut:CH<x>:STATt? query.

2-145

Command Descriptions

Examples

OUTPut:CH<x>:STATe (?)

(AWG2005/20/21)

Group

Related Commands

Syntax

Arguments

Responses

Examples

2-146

:OUTPUT:CH1?
might returnOUTPUT:CH1:STATE 1(AWG2005/20/21), or OUTPUT: CH1:IN-
VERTED:STATE1;OUTPUT:CH1:NORMAL:STATE1(AWG2040/41)

The OUTPut:CH<x>:STATe command turns waveform output on or off for the
specified channel. The OUTPut:CH<x>:STATe? query returns status indicating
whether the output is turned on or not.

OUTPUT

OUTPut:CH<x>?, OUTPut:CH1:NORMal:STATe, OUTPut:CH1:IN-
Verted:STATe

OUTPut:CH<x>:STATe {ON | OFF | <NR1>}
OUTPut:CH<x>:STATe?

CoutPt () cH o6 ()~ _stATe O

ON
or any nonzero value for <NR1> turns the output on.

OFF
or any zero value turns output off.

ON/OFF of the output changes the relay connected to output on the front panel.

1 the output is currently turned on.
0 the output is currently turned off.

:OUTPUT:CHL1.STATE 1
turns on the channel 1 output.

AWG2000 Series Programmer Manual

Command Descriptions

OUTPut:CH1:INVerted?

(AWG2040/41)

Group
Related Commands

Syntax

Arguments

Responses

Examples

TheOUTPut:CH1:INVerted? query returns whether or not the inverting output is
on.

OUTPUT
OUTPut:CH1:INVerted:STATe
OUTPut:CHI1:INVerted?

(COUTPE () CHL (> > 1WVerted —»(?)

None

[:OUTPUT:CH1:INVERTED:STATE]<State>

where
1 The inverting output is currently turned on.
0 The inverting output is currently turned off.

where<State>: :=<NR1> is one of following responses:

:OUTPUT:CH1:INVERTED?
gueries whether the inverting output is on.

OUTPut:CH1:INVerted:STATe (?)

(AWG2040/41)

Group

Related Commands

TheOUTPut:CH1:INVerted:STATe command sets the inverting output to be
either on or off.

TheOUTPut:CH1:INVerted:STATe? query returns whether or not the inverting
output is on.

OUTPUT

OUTPut:CH1:NORMal:STATe, OUTPut:CH1:INVerted?

AWG2000 Series Programmer Manual 2-147

Command Descriptions

Syntax OUTPut:CH1:INVerted:STATe {ON | OFF | <NR1>}
OUTPut:CH1:INVerted:STATe?

(CoutPut () CHL)—>(:)—>(INVerted)—(:)—>(_ STATe)

Arguments ON or nonzero value
turns the inverting output on.

OFF or zero value
turns the inverting output off.

Responses 1 The inverting output is currently on.
0 The inverting output is currently off.

Examples :OUTPUT:CH1:INVERTED:STATE ON
turns the inverting output on.

OUTPut:CH1:NORMal?
(AWG2040/41)

TheOUTPut:CH1:NORMal? query returns whether or not the noninverting output
is on.

Group OUTPUT
Related Commands OUTPut:CH1:NORMal:STATe
Syntax OUTPut:CH1:NORMal?

(OUTPEE () CHL (> —=(_ NORMal —»(?)

2-148 AWG2000 Series Programmer Manual

Command Descriptions

Arguments None

Responses [:0UTPUT:CH1:NORMAL:STATE]<State>
where<State>: :=<NR1> is one of following responses:

1 Noninverting output is currently turned on.
0 Noninverting output is currently turned off.

Examples :QUTPUT:CH1:NORMAL?
queries whether the noninverting output is on.

OUTPut:CH1:NORMal:STATe (?)
(AWG2040/41)

TheOUTPut:CH1:NORMal:STATe command sets the noninverting output to be
either on or off.

TheOUTPut:CH1:NORMal:STATe? query returns whether or not the noninverting
output is on.
This command is equivalent to tbéTPut:CH1:STATe command.

Group OUTPUT

Related Commands OUTPut:CH1:INVerted:STATe, OUTPut:CH1:NORMal?

Syntax OUTPut:CH1:NORMal:STATe {ON | OFF | <NR1>}
OUTPut:CH1:NORMal:STATe?

ouTPuE D~(0) (O~ NoRMal (7
<SPACE> OFF
20

AWG2000 Series Programmer Manual 2-149

Command Descriptions

Arguments ON or nonzero value
turns the noninverting output on.

OFF or zero value
turns the noninverting output off.

Responses 1 The noninverting output is currently on.
0 The noninverting output is currently off.

Examples :OUTPUT : NORMAL : STATE ON
turns the noninverting output on.

OUTPut:SYNC (?)
(AWG2020/21)

TheOUTPut:SYNC command selects at what point on the waveform the sync
signal is generated and output at the SYNC connector on the front panel. The
OUTPut:SYNC? query returns the currently selected position.

Group OUTPUT
Related Commands

Syntax OUTPut:SYNC {START | END}
OUTPut:SYNC?

OUTPut <SPACE>

. STARt I
END

©

Arguments START
generates a sync signal when a waveform is triggered.

END
generates a sync signal at the end of a waveform.

Examples :OUTPUT:SYNC END
sets the sync signal to output at the end of a waveform.

2-150 AWG2000 Series Programmer Manual

Command Descriptions

*PSC (?)

Group
Related Commands

Syntax

Arguments

Responses

Examples

The*PSC common command controls the automatic power-on clearing of the
ESER (Event Status Enable Register), the SRER (Service Request Enable
Register), and DESER (Device Event Status Enable Register). These registers
are used in the status and event reporting system.

The*PSC? common query returns status of the power-on status clear flag.
STATUS and EVENT

DESE, *ESE, FACTory, *SRE

*PSC <Power-0On Status Clear>
*PSC?

—(___*PsC T <SPACE> |[—»{<Power-On Status Clear> }T—v
o)
AL/

<Power-0On Status Clear>::=<NR1>
where<NR1> is a decimal integer that must range from —32767 to 32767, the
value of which determines whether power on clearing occurs as follows:

Zero value sets the power-on status clear flag to FALSE. When this flag is
set FALSE, the values of the DESER, the SESR, and the ESER
are restored at power on. With these values restored, the
instrument can assert SRQ after powering on.

Nonzero value sets the power-on status clear flag to TRUE. When this flag is
set TRUE, all the bits in the DESER are set and are reset in the
SESR and ESER. This action prevents the instrument from
asserting any SRQs after powering on.

1 the power-on status clear flag is currently set to TRUE.
0 the power-on status clear flag is currently set to FALSE.
*PSC 1

sets the power-on status flag to TRUE.

*PSC?
might return 0 to indicate that the power-on status clear flag is currently set to
FALSE.

AWG2000 Series Programmer Manual 2-151

Command Descriptions

*RST

The*RST common command resets this waveform generator to the default state
(default values are listed in Appendix D).

Group SYSTEM
Related Commands FACTory, SECUre
Syntax *RST
Arguments None

Examples *RST
resets the instrument.

RUNNing (?)
TheRUNNing? query returns status that indicates whether a waveform is being
output or not.
Group MODE
Related Commands STARt, STOP
Syntax RUNNing?
©

Arguments None

Responses 1 a waveform or a sequence is being output.
0 nothing is being output.

2-152 AWG2000 Series Programmer Manual

Command Descriptions

Examples

SECUre

Group
Related Commands

Syntax

Examples

SELFcal?

Group
Related Commands

Syntax

Arguments

:RUNNING?
might return:RUNNING 1.

TheSECUre command initializes all internal memory and internal nonvolatile
memory and resets the waveform generator to its factory default settings.

SYSTEM
*RST, FACTory
SECUre

SECUre

:SECURE
initializes all internal memory and internal nonvolatile memory and resets the
waveform generator to its factory default settings.

TheSELFcal? query runs the selected calibration routine(s) and returns the
results of its execution.

CALIBRATION and DIAGNOSTIC
SELFcal:SELect, SELFcal:STATe, SELFcal:RESUTt?
SELFcal?

®

None

AWG2000 Series Programmer Manual 2-153

Command Descriptions

Responses

Examples

SELFcal:RESULt?

2-154

Group
Related Commands

Syntax

Arguments

Responses

:SELFCAL:SELECT<CaTlibration Routine>;RESULT
<Result>[,<Result>]...
where<Calibration Routine>::= one of following arguments:

ALL is all routines below
CLOCk is the clock unit calibration routine (AWG2020/21)
SETUp is the setup-related unit calibration routine

TRIGger is the trigger unit calibration routine (AWG2005)

and where <Result>::=<NR1> is one of following responses:

0 terminated without error
200 detected errors in the clock unit (AWG2020/21)
600 detected errors in the setup-related unit
800 detected errors in the trigger unit (AWG2005)
:SELFCAL?

might return: SELFCAL:SELECT ALL;RESULT 0

TheSELFcal:RESU1t? query returns results of calibration execution.
CALIBRATION and DIAGNOSTIC
SELFcal:SELect, SELFcal:STATe

SELFcal:RESUTt?
(CsetFcal)—»(:)—»(__rEsuit)»—»(2)
None

:SELFCAL:RESULT<Result>[,<Result>]...
where<Result>::=<NR1> is one of following values.

0 terminated without error.
200 detected errors in the clock unit. (AWG2020/21)
600 detected errors in the setup-related unit.
800 detected errors in the trigger unit (AWG2005/20/21)

AWG2000 Series Programmer Manual

Command Descriptions

Examples :SELFCAL:RESULT?
gueries the result of executing a calibration.

SELFcal:SELect (?)

TheSELFcal:SELect command selects the calibration routine(s). Jtie -
cal:SELect? query returns the currently selected routine.

Group CALIBRATION and DIAGNOSTIC
Related Commands SELFcal:STATe, SELFcal:RESUTt?

Syntax SELFcal:SELect {ALL | CLOCK(AWG2020/21)| SETUp |

TRIGger(AWG2005/20/21)
=%

. SETUp l
TRIGger

SELFcal:SELect?

<SPACE>

SELFcal

)

Y
Arguments ALL calibrates all (both units listed below)
CLOCk calibrates the clock unit (AWG2020/21)
SETUp calibrates the unit related to instrument setup

TRIGger calibrates the trigger unit (AWG2005/20/21)

Examples :SELFCAL:SELECT CLOCK ;STATE EXECUTE
selects the clock for calibration and then calibrates it.

AWG2000 Series Programmer Manual 2-155

Command Descriptions

SELFcal:STATe

Group
Related Commands

Syntax

Arguments

Examples

SEQUence:DEFine (?)

Group
Related Commands

Syntax

2-156

TheSELFcal:STATe command executes the calibration routine(s) selected with
theSELFcal:SELect command. If an error is detected during execution, the
routine that detected the error stops immediately. If ALL (for all routines) is
selected with th8ELFcal:SELect command, self-calibration continues at the
next routine.

CALIBRATION and DIAGNOSTIC

SELFcal:SELect, SELFcal:RESult?

SELFcal:STATe EXECute

() staTe)—»{ <space> [—>(__EXECute)}—»

EXECute
performs calibration on selected routine.

+SELFCAL:SELECT ALL; STATE EXECUTE; RESULT?
executes all calibration routines. After calibration is finished, the results are
returned.

TheSEQUence:DEFine command writes sequence data to the specified file. The
SEQUence:DEFine? query returns sequence data that is written in the specified
file.

WAVEFORM

None

SEQUence:DEFine <Sequence File>, <Sequence Block Data>
SEQUence:DEFine? <Sequence File>

AWG2000 Series Programmer Manual

Command Descriptions

sEovence ()

Arguments

Number of characters

<SPACE> [—{<Sequence File)l—b@—ﬂ <Sequence Block Data:|'j

<SPACE> |—>| <Sequence File1'>

<Sequence File>::=<string>
<Sequence Block Data>::=<Arbitrary Block>

where<Sequence Block Data> must be written in ASCII code and each
sequence is separated by Line Feed (LF) code. The file name and repetition
number are separated by a comma.

Separator (LF)

#255WAVEO1.WFM, 10<LF>WAVEO2.WFM, 10<LF>WAVEO3.WFM, 10<LF>WAVEO04.WFM, 10

N

J

Byte count digit
Examples
SEQUence:EXPAnd
Group

Related Commands

Syntax

N

Line feeds separate sequences
Commas separate file names from repetition numbers

:SEQUENCE:DEFINE "SQWAVE.SEQ",
#255WAVEOL . WFM, 10<LF>WAVEQOZ .WFM, 10<LF>WAVEO
3.WFM,10<LF>WAVEQ4.WFM, 10

writes sequence data to the file SQWAVE.SEQ.

TheSEQUence: EXP and command expands the sequences recorded in the
specified sequence file into waveform data and creates a waveform file.

WAVEFORM

SEQUence:DEFine

SEQUence:EXPAnd <Sequence File>[,<Waveform File>]

AWG2000 Series Programmer Manual 2-157

Command Descriptions

Arguments

Examples

*SRE (?)

2-158

Group

Related Commands

SEQUence) EXPANd <SPACE>}——>{ <Sequence File> }—}

<Waveform File>

<Sequence File>::=<string>
<Waveform File>::=<string>

The sequence and the waveform files are files in internal memory. If the
waveform file specification is omitted a waveform file with the same base name
as the sequence file and the extension "WFM” is created. An error is flagged if a
waveform file with the same file name as the waveform file to be created already
exists.

The number of waveform points in the expanded waveform file is the sum of the
products of the iteration count and the number of points in each waveform file
specified in the sequence.

In the following example the sequence file SQWAVE.SEQ is expanded into a
waveform file. Here, the generated file is SQWAVE.WFM.

:SEQUENCE : EXPAND "SQWAVE.SEQ"
In the next example, the waveform file is created as the file SQWAVEO1.WFM.
:SEQUENCE : EXPAND "SQWAVE.SEQ", "SQWAVEO1.WFM"

The*SRE common command sets the bits of the SRER (Service Request Enable
Register). ThéSRE? common query returns the contents of SRER.

The power-on default for the SRER is all bits reset if the power-on status flag is
TRUE. If this flag is set to FALSE, the SRER maintains its value through a
power cycle.

STATUS and EVENT

*CLS, DESE, *ESE, *ESR?, EVENT?, EVMsg?, EVQty?, *STB?

AWG2000 Series Programmer Manual

Command Descriptions

Syntax

Arguments

Examples

STARt

Group
Related Commands

Syntax

Arguments

Examples

AWG2000 Series Programmer Manual

*SRE <Bit Value>

*SRE?
>0)
N

<Bit Value>::=<NR1>
where the argument must be decimal number from 0 to 255. The SRER bits are
set in binary bit according to the decimal number.

*SRE 48

sets the SRER to 48 (binary 00110000), which sets the ESB and MAV bits.

*SRE?
might return32 which indicates that the SRER contains the binary number
00100000.

TheSTARt command generates a trigger event to start the output of a waveform
or a sequence.

MODE

RUNNing?, STOP, *TRG

STARt

STARt

None

:START
generates a trigger event.

2-159

Command Descriptions

*STB?

Group
Related Commands

Syntax

Arguments

Responses

Examples

STOP

Group
Related Commands

Syntax

Arguments

2-160

The*STB? common query returns the value of the SBR (Status Byte Register).
At this time, bit 6 of the SBR is read as a MSS (Master Status Summary) bit.
Refer to Section S$tatus and Eventfor more details on the SBR.

STATUS and EVENT
*CLS, DESE, *ESE, *ESR, EVENT?, EVMsg?, EVQty?, *SRE
*STB?
(2)
None

<NR1>
which is a decimal number.

*STB?
might return96, which indicates that the SBR contains the binary number
01100000.

TheSTOP command terminates waveform output. When the modetiset to
continuous, it also resets the sequence pointer to output the waveform from the
top of the sequence with next trigger event.

MODE

RUNNing?, STARt, *TRG

STOP
None

AWG2000 Series Programmer Manual

Command Descriptions

Examples

TIME (?)

Group
Related Commands

Syntax

Arguments

Examples

*TRG

Group
Related Commands

Syntax

:STOP
stops the output of a waveform.

TheTIME command sets the time. TREME? query returns the time.
SYSTEM
DATE

TIME <Hours:Minutes:Seconds>
TIME?

—(_TIME T <SPACE>}——s{ <Hours:Minutes:Seconds> T—
()
20

<Hours:Minutes:Seconds>: :=<string>
where<string> is in the format'HH:MM:SS", with the elements given as
follows.

HH the hour in 24-hour format (0 to 23)
MM the minutes (0 to 59)
SS the seconds (0 to 59)

:TIME "11:23:58"
sets the time.

The*TRG common command generates trigger event. This command is
equivalent to th6 TARt command.

MODE

RUNNing?, STARt, STOP

*TRG

AWG2000 Series Programmer Manual 2-161

Command Descriptions

Arguments

Examples

TRIGger?

Group
Related Commands

Syntax

Arguments

Examples

None
*TRG

generates trigger event.

TheTRIGger? query returns all of the currently specified settings related to the
trigger function.

MODE
RUNNing?, STARt, STOP
TRIGger?

(Cmisger —(2)
None

: TRIGGER?
might return: TRIGGER: IMPEDANCE HIGH;LEVEL 1.400;
POLARITY POSITIVE;SLOPE POSITIVE

TRIGger:IMPedance (?)

(AWG2020/21/40/41)

Group

Related Commands

2-162

TheTRIGger: IMPedance command selects high impedance (@Mor low
impedance (5@ for the external trigger input connector.
TheTRIGger:IMPedance? query returns currently selected impedance.

MODE

TRIGger:LEVel, TRIGger:POLarity, TRIGger:SLOPe

AWG2000 Series Programmer Manual

Command Descriptions

Syntax

Arguments

Examples

TRIGger:LEVel (?)

Group
Related Commands

Syntax

Arguments

Examples

TRIGger:IMPedance {HIGH (AWG2020/21/40/41)| LOW}
TRIGger:IMPedance?

HIGH
TRIGger (+) IMPedance <SPACE> _
LOW

()
N

HIGH
selects high impedance: 1M

LOW
selects low impedance: 5D

:TRIGGER: IMPEDANCE LOW
selects low impedance.

TheTRIGger:LEVel command sets the level on the external trigger at which the
trigger event is generated. ThRIGger:LEVel? query returns the level currently
set.

MODE

TRIGger:IMPedance, TRIGger:POLarity, TRIGger:SLOPe

TRIGger:LEVel <Level>
TRIGger:LEVel?

TRIGger ° LEVel <SPACE> |—>| <Level> T—V

(?)
(N

<Level>::=<NR2>[<unit>]
where<unit>::={V | mV} with a range of -5.0 Vt0 5.0 V, in 0.1 V steps.

:TRIGGER:LEVEL 200mV
sets the level to 200 mV.

AWG2000 Series Programmer Manual 2-163

Command Descriptions

TRIGger:POLarity (?)

TheTRIGger:POLarity command selects polarity of the external trigger signal
which generates the trigger event. TiR&Gger:POLarity? query returns the
currently selected polarity.

The polarity parameter is valid only when the mode is set to gated mode.
Group MODE

Related Commands TRIGger:IMPedance, TRIGger:LEVel, TRIGger:SLOPe

Syntax TRIGger:POLarity {POSitive | NEGative}
TRIGger:POLarity?

TRIGger (+) POLarity <SPACE>

POSitive
ll

EGative

Arguments POSitive
selects positive polarity.

NEGative
selects negative polarity.

Examples :TRIGGER:POLARITY NEGATIVE
selects negative polarity.

TRIGger:SLOpe (?)
TheTRIGger:SLOpe command selects the rising or falling edge of the external

signal which generates the trigger event. TRiEGger:SLOPe? query returns
status indicating which slope is currently selected.

The slope parameter is valid only when the mode is set to other than gated or
continuous mode.

Group MODE

Related Commands TRIGger:IMPedance, TRIGger:LEVel, TRIGger:POLarity

2-164 AWG2000 Series Programmer Manual

Command Descriptions

Syntax TRIGger:SLOPe {POSitive | NEGative}
TRIGger:SLOPe?

TRIGger (+) SLOPe <SPACE>

POSitive

EGative

Arguments POSitive
selects rising edge.

NEGative
selects falling edge.

Examples :TRIGGER:SLOPE POSITIVE
selects rising edge for trigger.

*TST?

The*TST? common query performs the self test and returns the results. If an
error is detected during self test, execution is immediately stopped. This

command takes up to 90 seconds to run the self test, and the waveform generator

will not respond to any commands and queries while it runs.
Group CALIBRATION and DIAGNOSTIC
Related Commands DIAG:SELect, DIAG:STATe, DIAG:RESUTt?
Syntax *TST?
©
Arguments None
Responses <Result>

where<Result>::=<NR1> and<NR1> is one of following arguments.

0 Terminated without error.
100 Detected an error in the CPU unit.

AWG2000 Series Programmer Manual 2-165

Command Descriptions

Examples

UNLock

Group
Related Commands

Syntax

Arguments

Examples

UPTime?

2-166

Group

Related Commands

200 Detected an error in the clock unit.

300 Detected an error in the display unit.

400 Detected an error in the floating point processor unit.
500 Detected an error in the front panel unit.

600 Detected an error in the setup-related unit.

700 Detected an error in the waveform memory.

800 Detected an error in the trigger unit.

*TST?
might return200 to indicate that errors were detected in the CLOCK unit.

TheUNLock command enables all front panel buttons and knob. This command
is equivalent to the comman@Ck NONe.

SYSTEM

UNLOCK ALL

—(__UNLock)}—»| <space> |—»(_ ALL)}—»

ALL
enables the front panel buttons and knob.

:UNLOCk ALL
enables the front panel buttons and knob.

TheUPTIme? query returns the time elapsed since the waveform generator was
powered on.

SYSTEM

None

AWG2000 Series Programmer Manual

Command Descriptions

Syntax
Arguments

Examples

VERBose (?)

Group
Related Commands

Syntax

Arguments

Responses

UPTime?
None

:UPTIME 7.016
indicates the instrument has been powered on for 7.016 hours.

TheVERBose command selects the long headers or the short headers to be
returned with response messages. Longer response headers enhance readability
for other programmers; shorter response headers provide faster bus transfer
speed.

SYSTEM
HEADer

VERBose {ON | OFF | <NR1>}
VERBose?

—(__VERBose <SPACE>
»(7)
N

ON or nonzero value
selects long response header.

OFF or zero value
selects short response header.

Responses are decimal numbeiR({>) and are defined as follows.

1 Long header is currently selected.
0 Short header is currently selected.

AWG2000 Series Programmer Manual 2-167

Command Descriptions

Examples :VERBOSE ON
sets long header for query responses.

:VERBOSE?
might return: VERBOSE 1, which indicates that the long response header is
currently selected.

*WAI

The*WAI common command prevents the waveform generator from executing
any further commands or queries until all pending operations are completed.

Group SYNCHRONIZATION
Related Commands *0PC
Syntax *WAI
Arguments None
Responses None

Examples *WAI
prevents the execution of any commands or queries until all pending operations
complete.

WAVFrm?

TheWAVFrm? query transmits waveform preamble and waveform. This query is
equivalent to th@FMPre? query, followed by th€URVe? query.

Group WAVEFORM
Related Commands CURVe?, DATA:SOURce, DATA: ENCDG, WFMPre?

Syntax WAVFrm?

2-168 AWG2000 Series Programmer Manual

Command Descriptions

Arguments

Responses

Examples

WFMPre?

Group
Related Commands

Syntax

Arguments

Responses

Examples

(Cwavemn)—(2)
None

Returns the settings as a sequence of commands, suitable for sending as set
commands to restore a setup (see Examples).

:WAVFRM?

might return the following response.

:WFMPRE:ENCDG BIN;BN_FMT RP;BYT _NR 2;BIT NR 12;BYT OR MSB;CRVCHK
NONE;WFID "WAVEFORM.WFM, 1000 points, clock: 100.0MHz, amplitude:
1.000V, offset: 0.000V";NR_PT 1000;PT_FMT Y;XUNIT "S"; XINCR
1.0000E-08;PT_OFF 0;XZERO 0.000;YUNIT "V";YMULT 2.442E-04; YZERO
0.000;YOFF 2.047E+03;:CURVE #42000<DAB><DAB> ... <DAB>

TheWFMPre? query returns all settings for the waveform preamble. The preamble
information refered to by this query are for the informatiorDfa : SOURce
(waveform source).

WAVEFORM
All WFEMPRE subgroup commandATA: SOURce

WFMPre?

(Cimere)—(2)
None

Returns the settings as a sequence of commands, suitable for sending as set
commands to restore a setup (see Examples).

:WFMPRE?

might return as follows:

:WFMPRE:ENCDG BIN;BN_FMT RP;BYT _NR 2;BIT NR 12;BYT OR MSB;CRVCHK
NONE;WFID "WAVEFORM.WFM, 1000 points, clock: 100.0MHz, amplitude:
1.000V, offset: 0.000V";NR_PT 1000;PT_FMT Y;XUNIT "S"; XINCR

AWG2000 Series Programmer Manual 2-169

Command Descriptions

WFMPre:BIT_NR (2)

Group

Related Commands

Syntax

Arguments

Examples

WFMPre:BN_FMT (2)

Group
Related Commands

Syntax

2-170

1.0000E-08;PT_OFF 0;XZERO 0.000;YUNIT "V";YMULT 2.442E-04; YZERO
0.000;YOFF 2.047E+03

TheWFMPre:BIT_NR command specifies the number of bits of precision for each
binary data point. TheéFMPre:BIT NR? query returns the bits of precision
currently specified.

WAVEFORM

WFMPre:BN_FMT, WFMPre:BYT NR, WFMPre:PT FMT, WFMPre:BYT OR,
WFMPre:ENCDG, DATA: ENCDG, DATA:WIDTh

WFMPre:BIT_NR <Bit Precision>
WFMPre:BIT NR?

WEMPre (:) BIT NR)T-{ <SPACE> |-»{<Bit Precision> }T-»
D
N\

<Bit Precision>::=<NRI1>
where the bit precision must be set to 8 for the 1 byte data width, while 12 for
the 2 byte. Any argument other than 8 or 12 (default) is ignored.

:WFMPRE:BIT_NR?
might return:WFMPRE:BIT_NR 12.

TheWFMPre:BN_FMT command specifies format of binary data. The
WFMPre:BN_FMT? query returns the binary data format currently specified.

WAVEFORM
WFMPre:BYT NR, WFMPre:BIT NR, WFMPre:BYT OR, WFMPre:ENCDG, DATA: ENCDG

WFMPre:BN_FMT {RP | RI | FP}
WFMPre:BN_FMT?

AWG2000 Series Programmer Manual

Command Descriptions

Arguments

Examples

WEMPre:BYT _NR (?)

Group

Related Commands

Syntax

Arguments

(+) BN_FMT <SPACE>
»(2)
Y
RP

binary unsigned integer code.

RI
binary integer code.

FP
single precision binary floating code.

The choice other than the RP (default) is ignored on input in this argument.

:WFMPRE:BN_FMT?
might return:WFMPRE : BN_FMT RP

TheWFMPre:BYT_NR command specifies data field width (byte length) for each
binary data point. TheéFMPre:BYT NR? query returns the data field width
currently specified.

WAVEFORM

WFMPre:BN_FMT, WFMPre:BIT NR, WFMPre:BYT OR, WFMPre:ENCDG,
DATA:ENCDG, DATA:WIDTh

WFMPre:BYT NR <Field Width>
WFMPre:BYT NR?

WFMPre (:) BYT NR)T-{ <SPACE> *{<Field width> T-»
©

<Field Width>::=<NR1>
The field width must be 2 or 1. When transferring the data, the data width can

AWG2000 Series Programmer Manual 2-171

Command Descriptions

WFMPre:BYT OR (?)

2-172

Examples

Group

Related Commands

Syntax

Arguments

also be specified using tB&TA:WIDTh command. When both this command and
theDATA:WIDTh command are used, the most recently issued, i.e., the last,
command takes effect. For example, if the byte width is set to 1 using this
command(WFMPre:BYT NR1), and then &ATA:WIDTh2 command is executed,
the setting will be changed so that the data width of 2 bytes is transmitted.

WFMPRE:BYT_NR
might return:WFMPRE:BYT_NR 2.

TheWFMPre:BYT_OR command specifies which byte of the binary data is send
first when the data field width of the binary data is defined to be 2-byte. The
WFMPre:BYT OR? query returns the binary data byte order currently specified.

WAVEFORM

WFMPre:BN_FMT, WFMPre:BYT_NR, WFMPre:BIT_NR, WFMPre:ENCDG,
DATA:ENCDG, DATA:WIDTh

WFMPre:BYT OR {MSB | LSB}
WFMPre:BYT_OR?

<SPACE>

()
Y

MSB
sends upper byte first, then lower byte for each data word.

LSB
sends lower byte first, then upper byte for each data word.

The data transfer time byte order can also be specified usiDgTheENCDG
command. When both this command andDhiBA : ENCDG command are used,

the most recently issued, i.e., the last, command takes effect. For example, if the
byte order is set to low order byte first using this comm@iftdPre:BYT OR

LSB), and then aDATA:ENCDG RPBinary command is executed, the setting will

be changed so that the high order byte is transmitted first.

AWG2000 Series Programmer Manual

Command Descriptions

Examples

WFMPre:CRVCHK (?)

Group
Related Commands

Syntax

Arguments

Examples

:WFMPRE:BYT_OR?
might return:WFMPRE:BYT OR MSB.

TheWFMPre:CRVCHK command specifies the error check method for binary data.
TheWFMPre:CRVCHK? query returns the error check method currently in effect.

WAVEFORM

WFRPre:ENCDG, DATA:ENCDG

WFMPre:CRVCHK {NONe | CHKSMO | CRC16}
WFMPre: CRVCHK?

WFMPre o CRVCHK <SPACE>

While the following arguments may be used, all arguments exceliiNer
(default) is ignored.

NONe
no error checking. All binary block data represent data.

CHKSMO
last byte of the binary data is a checksum defined as the two’s complement of the
modulo 256 sum of the preceding binary data bytes and ASCII count bytes.

CRC16
last two bytes represent the 16-bit cyclic redundancy check code.

:WFMPRE : CRVCHK?
might return: WFMPRE : CRVCHK NONE.

AWG2000 Series Programmer Manual 2-173

Command Descriptions

WFMPre:ENCDG (?)

Group
Related Commands

Syntax

Arguments

Examples

WEMPre:NR_PT (?)

Group

Related Commands

2-174

TheWFMPre: ENCDG command sets the encoding type for the waveform trans-
mitted with theCURVe command. Th&FMPre:ENCDG? query returns the
encoding type currently set.

WAVEFORM

DATA:ENCDG

WFMPre:ENCDG {BIN | ASC}
WFMPre:ENCDG?

WFMPre <SPACE>

()
Y

While the following arguments may be used, any arguments exceit\for
(default) is ignored. The choice other than the BIN (default) is ignored on input
in this argument.

BIN
specifies binary encoding type.

ASC
specifies ASCII encoding type.

:WFMPre:ENCDG?
might return: WFMPRE : ENCDG BIN.

TheWFMPre:NR_PT command sets the size of the waveform in terms of sets of
points. TheWFMPre:NR_PT? query returns the waveform size currently set.

WAVEFORM

DATA:SOURce, DATA:DESTination

AWG2000 Series Programmer Manual

Command Descriptions

Syntax

Arguments

Examples

WEMPre:PT_FMT (?)

Group

Related Commands

Syntax

Arguments

WFMPre:NR_PT <Data Size>
WFMPre:NR_PT?

WEFMPre () NR_PT)T-{ <SPACE> | <Data Size> |

-(3)
O/

<Data Size>::=<NR1>
where<NR1> is ignhored. The waveform generator sets the size of the waveform
automatically and, therefore, ignores any value enteredDéda Size>.)

WFMPre:NR_PT?
might return:WFMPRE:NR_PT 131072.

TheWFMPre:PT_FMT command selects the data point format of the waveform.
TheWFMPre:PT_FMT? query returns the data point format currently selected.

WAVEFORM

WFMPre:PT_OFF, WFMPre:XINCR, WFMPre: XMULT, WFMPre: XZERO, WFMPre : XOFF,
WFMPre: YMULT, WFMPre: YZERO, WFMPre: YOFF

WFMPre:PT FMT {Y | XY | YZ | XYZ | ENV}
WFMPre:PT_FMT?

II

X

WFMPre e PT_FMT <SPACE> <— Y7

H
<
™~

While any of the following arguments may be transmitted to the waveform
generator, it only recognizes the Y (default) argument. All others are ignored.

AWG2000 Series Programmer Manual 2-175

Command Descriptions

Y

explicitly transmits Y values, absolute X and Y component values are calculated
for each data point using the the transmission sequence yn, yn+1, yn+2 ...
where

Xn = <XZERO-value> + <XINCR-value> (n - <PT OFF-value>)

and

Yn = <YZERO-value> + <YMULT-value> (yn - <YOFF-value>).

XY
explicitly transmits XY values.

YZ
explicitly transmits YZ values.

XYz
explicitly transmits XYZ values.

ENV
transmits two y values for each point: maximum and minimum.

Examples :WFMPRE:PT_FMT?
might return:WFMPRE: PT_FMT Y.

WEMPre:PT_OFF (2)

TheWFMPre:PT_OFF command defines the X axis point offset value. The
WFMPre:PT_OFF? query returns the X axis point offset value currently set.

Group WAVEFORM
Related Commands WFMPre:PT FMT, WFMPre:XINCR, WFMPre:XZERO

Syntax ~ WFMPre:PT_OFF <PT OFF-value>
WFMPre:PT_OFF?

WFMPre (:) PT OFF)T-(<SPACE> |»{<PT OFF—value> |—»

o)
N\

Arguments <PT OFF-value>::=<NR1>
where<NR1> is a decimal integer. The waveform generator ignores all input for
<NR1> except for zero, the default.

2-176 AWG2000 Series Programmer Manual

Command Descriptions

Examples

WEMPre:XINCR (?)

Group
Related Commands

Syntax

Arguments

Examples

WEMPre:XUNIT (?)

Group

Related Commands

:WFMPRE:PT_OFF?
might return:WFMPRE: PT_OFF 0.

TheWFMPre: XINCR command defines the X axis increment value. The
WFMPre:XINCR? query returns the X axis increment value.

This increment value is effective for the destination of the waveform file defined
by DATA:DESTination command.
WAVEFORM

WFMPre:PT_FMT, WFMPre:PT_OFF, WFMPre: XZERO

WFMPre:XINCR <XINCR-value>
WFMPre:XINCR?

WFMPre (:) XINCR)T-{ <SPACE> -] <XINCR-value> }T-»
D
2/

<XINCR-value>::=<NR3>

where<NR3> is a decimal number that ranges from 5E-8 seconds to 1E-1
seconds (AWG2005), 4E-9 seconds to 1E-1 seconds (AWG2020/21),
9.7646E-10 seconds to 1E-3 seconds (AWG2040/41).

:WFMPRE : XINCR 0.01
sets the X axis increment value to 0.01 second.

TheWFMPre:XUNIT command defines the appropriate representation of the data
unit for the X axis. Th&FMPre:XUNIT? query returns the representation for the
X axis data unit currently defined.

WAVEFORM

WFMPre:PT_OFF, WFMPRe: XINCR, WFMPre: XZERO

AWG2000 Series Programmer Manual 2177

Command Descriptions

Syntax

Arguments

Examples

WFMPre:XZERO (?)

Group
Related Commands

Syntax

Arguments

Examples

2-178

WFMPre:XUNIT <Unit String>
WFMPre: XUNIT?

(wrere)—>(:)

XUNIT)T-(<SPACE> [-» <Unit string>T->
»(?)
N

<Unit String>::=<string>

where <string> is either the default S, for second, or is ignored by the waveform

generator.

:WFMPRE:XUNIT?
might return: WFMPRE : XUNIT "S".

TheWFMPre:XZERO command defines the X axis origin value.
TheWFMPre:XZERO? query returns the X axis origin value currently defined.

WAVEFORM

WFMPre:PT_OFF, WFMPre:XUNIT, WFMPre: XINCR

WFMPre:XZERO <XZERO-value>
WFMPre: XZERO?

(wrmere)}—(2)

XZERO)T-(<SPACE> |—>|<XZERO—value>T
»{2)
N\
<XZERO-value>::=<NR2>

where<NR1> is either the default value 0.0, or is ignored by the waveform
generator.

:WFMPRE : XZERQ?
might return:WFMPRE: PT_OFF 0.0.

AWG2000 Series Programmer Manual

Command Descriptions

WEMPre:YMULT (?)

Group

Related Commands

Syntax

Arguments

Examples

WFMPre:YOFF (?)

Group
Related Commands

Syntax

TheWFMPre: YMULT command defines multiplier value of the data for the Y axis.
TheWFMPre:YMULT? query returns the Y axis multiplier value currently defined.

This value is effective for destination of the waveform file define@AJy: DES-
Tination command. And referring to the multiplier value is performed for the
source of the waveform file defined b§TA:SOURce command.

WAVEFORM

WFMPre:YOFF, WFMPre:YZERO, WFMPre: YUNIT, DATA:DESTination,
DATA:SOURce

WFMPre:YMULT <YMULT-value>
WFMPre: YMULT?

WEMPre (:) YMULT)T-{ <SPACE> |—>|<YMULT—value>T
D
N\

<YMULT-value>::=<NR3>

:WFMPRE: YMULT 0.0012
sets the multiplier value to 0.0012 V.

TheWFMPre:YOFF command defines the Y axis offset value.
TheWFMPre:YOFF? query returns the Y axis offset value currently defined.

WAVEFORM
WFMPre:YMULT, WFMPre:YZERO, WFMPre: YUNIT

WFMPre:YOFF <YOFF-value>
WFMPre:YOFF?

AWG2000 Series Programmer Manual 2-179

Command Descriptions

Arguments

Examples

WEMPre:YUNIT (?)

Group
Related Commands

Syntax

Arguments

Examples

2-180

WFMPTre (:) YOFF)T-{ <SPACE> —»{ <yOFF—value> T
D
2/

<YOFF-value>::=<NR3>
where<NR3> is either the default value 127 in 1 byte data width or 2047 in 2
byte data width, or is ignored by the waveform generator.

:WFMPRE: YOFF?
might return: WFMPRE : YOFF 2.047E+03

TheWFMPre:YUNIT command defines the appropriate representation of the data
unit for the Y axis. Th&FMPre:YUNIT? query returns the representation for the
Y axis data unit currently defined.

WAVEFORM
WFMPre: YMULT, WFMPre: YZERO, WFMPre: YOFF

WFMPre:YUNIT <Unit String>
WFMPre:YUNIT?

WEMPre (:) YUNIT)T-{ <SPACE> |—»{<Unit String>7—>
)
N\

<Unit String>::=<string>
where<string> is either the default V for voltage or is ignored by the waveform
generator.

:WFMPRE:YUNIT?
might return: WFMPRE : YUNIT "V".

AWG2000 Series Programmer Manual

Command Descriptions

WEMPre:YZERO (?)

Group

Related Commands

Syntax

Arguments

Examples

WEMPre:WFID (?)

Group

Related Commands

TheWFMPre:YZERO command defines the Y axis origin value.
TheWFMPre:YZERO? query returns the Y axis origin value currently defined.

This value is effective for the destination of the waveform file defined by
DATA:DESTination command. And referring to the origin value is performed for
the source of the waveform file defined IyTA: SOURce command.

WAVEFORM

WFMPre:PT_OFF, WFMPre: YMULT, WFMPre: YUNIT, WFMPre: YOFF,
DATA:DESTination, DATA:SOURce

WFMPre:YZERO <YZERO-value>
WFMPre:YZERO?

WEMPre (:) YZERO)T-{ <SPACE> |—>|<YZERO—value>T
D
N\

<YZERO-value>::=<NR2>

where<NR2> is a decimal number that ranges from —5.000 to 5.000 in steps
0.005 (AWG2005), —2.500 to 2.500 in steps 0.005 (AWG2020/21), and —1.000
to 1.000 in steps 0.001 (AWG2040/41). The unit volts is assumed.

:WFMPRE:YZERO 0.225
sets the Y axis origin value to 0.225 V.

TheWFMPre:WFID command sets comment and/or additional information as a
waveform ID for the waveform preamble.

WAVEFORM

AWG2000 Series Programmer Manual 2-181

Command Descriptions

Syntax WFMPre:WFID <Waveform ID>
WFMPre:WFID?

(:) WFID)T-{ <SPACE> —»{<Waveform ID> T
o)
%

Arguments <Waveform ID> is automatically set by the waveform generator, and arguments
are ignored on input.

Examples :WFMPRE:WFID?
might return the following response.
:WFMPRE:WFID "WAVEFORM.WFM, 1000 points, clock: 100.0MHz,ampli-
tude: 1.000V, offset: 0.000V"

2-182 AWG2000 Series Programmer Manual

./ |
Retrieving Response Messages

The method used for retrieving response messages differs depending on whether
a GPIB interface or an RS-232-C interface is used. Figures 2-4 and 2-5 give an
overview of these methods.

Controller AWG2000 Series Waveform Generator
Query
Command execution
- controller
— Queuing
Retrieve operation
Output Output queue
queue controller
- Response message
Figure 2-4: GPIB: Retrieving Response Messages
Controller AWG2000 Series Waveform Generator
Query
Command execution
_ controller
— Output
Output buffer
_ Response message

Figure 2-5: RS-232-C: Retrieving Response Messages

AWG2000 Series Programmer Manual 2-183

Retrieving Response Messages

Figure 2-4 shows the response message retrieval operation when a GPIB
interface is used. When a query command is sent from the external controller the
waveform generator puts the response message for the query on the output
gueue. This response message cannot be retrieved unless the user performs a
retrieval operation through the external controller. The response message
retrieval operation is performed using the awgRead() support function in the
programming examples in Section 4. See “Example 4” and “Support Functions”
in Section 4 for more information on this retrieval operation.

If there is a response message queued in the output queue and another query
command is sent from the external controller before a retrieval operation for the
earlier message is performed, the waveform generator will delete the queued
response message and put the response message for the more recently sent query
command in the output queue.

The SBR (status byte register) MAV bit can be used to check the response
message queuing state. See Section 3, “Status and Events”, for more information
on the output queue, SBR, and control methods.

Figure 2-5 shows the response message retrieval operation when an RS-232-C
interface is used. When a query command is sent from the external controller, the
waveform generator immediately sends the response message to the external
controller through an output buffer. As a result, when either a dumb terminal or a
terminal emulator program running on a PC is used as the external controller, the
response message will be displayed on the CRT immediately after the query
command is typed in.

Unlike the GPIB interface, if an RS-232-C interface is used, response messages
will never be deleted even if query commands are sent one after another.

Waveform Transfer

The waveform transfer function transfers waveforms between the waveform
generator and an external controller. This function can be used to store wave-
forms created by the waveform generator in the external controller so that those
waveforms can then be transferred to another unit, or to return to the waveform
generator modified waveforms or waveforms that were created on the external
controller.

Waveform transfer is performed under the Tektronix Std. Codes and Formats
waveform format specifications. The following part describes the waveform
transfer method between these waveform generators and external controllers.

These waveform generators are also equipped with direct waveform transfer
functions to transfer waveforms directly with Tektronix digital oscilloscopes and
other units using a GPIB interface. See the user manual for each waveform
generator for details on the use of these functions.

2-184 AWG2000 Series Programmer Manual

Retrieving Response Messages

Note that these waveform generators can also transfer equations and marker data
with an external controller. See the EQUAtion:DEFine command description for
details on equation transfer, and the MARKer:DATA command description for
details on marker data transfer.

Source and Destination The source and destination are specified prior to waveform transfer.

“Source” refers to the waveform transfer source when waveforms or marker data
are transferred from the waveform generator to the external controller. Wave-
forms and marker data that the waveform generator can transfer to external
equipment are limited to data loaded in waveform memory and data that is stored
in waveform files in internal memory. Use the DATA:SOURce command to
specify the source.

“Destination” refers to the destination for the waveform transfer when wave-
forms or marker data are transferred from the external controller to the waveform
generator. The transfer destination must be a waveform file in internal memory.
If the specified waveform file is not in internal memory, a new file is created. On
the other hand if that file already exists it will be overwritten. Use the
DATA:DESTIination command to specify the destination.

AWG2000 Series

Controller Destination:

CURVE #42048<wave(1)><wave(2)>... Set by the
DATA:DESTination
command.

— CURVE? Source:
Set by the

DATA:SOURCe
command.

#2048<wave(1)><wave(2)>...

Figure 2-6: Source and Destination

Preamble and Curve A transferred waveform consists of a preamble and a curve. The preamble
consists of data including the size, scale, and format of the curve data, and
supplementary data such as the waveform ID and units. The curve expresses the
data that is to be stored in waveform memory as a sequence of unscaled
waveform data. Complete scaled data can be derived from this unscaled data and
the data in the preamble.

A curve is sent to the external controller from the waveform generator by the
CURVE? query command as an arbitrary block format response message as
shown below. (Note that the response header is turned off in this case.) Inversely,

AWG2000 Series Programmer Manual 2-185

Retrieving Response Messages

2-186

unscaled waveform data can be transferred from the external controller to the
waveform generator by specifying an arbitrary block in the format shown below
as the argument to the CURVE command.

Header
<4—— Waveform data sequence
Data length <yyy> = n x 2 bytes
#<x><yyy> <wave(1)><wave(2)><wave(3)> ... <wave(n)>

« Transfer direction

Here <yyy> is the byte count (in ASCII format) of the waveform data sequence
that follows, <x> is the number of digits in <yyy> (in ASCII format), and
<wave(i)> is the ith waveform datum. The ith data point (X(i), Y(i)) is converted
to scaled waveform data according to the following formulas.

X(i)= i _<XINCR-value>
Y(i)= <YZERO-value>+(<wave(i)>-<YOFF-value>)_ <YMULT-value>

The <XINCR-value>, <YZERO-value>, <YOFF-value>, and <YMULT-value>

are data that is included in the preamble as shown in the table below. When
reading out waveform data this data can be retrieved from the waveform
generator by using query commands. Inversely, when transferring waveform data
to the waveform generator, this data can be set in the waveform generator using
commands. However, note that the <YOFF-value> can only be set to 2047 when
the data width is two or 127 when the data width is one.

Parameter Command Meaning

<XINCR-value> WFMPre : XINCR X-axis data point increment

<YZERO-value> WFMPre : YZERO Y-axis origin offset

<YOFF-value> WFMPre : YOFF Y-axis data point offset
(2047 or 127)

<YMULT-value> WFMPre : YMULT Y-axis data point multiplier

Each data point <wave(i)> is transferred as an unsigned integer code of two
bytes with 12 valid data bits (when the data width is two bytes or one byte with
eight valid data bits when the data width is one byte. When data is transferred in
the two byte width, the byte order (which of the upper and lower bytes is
transferred first) can be specified using either the WFMPre:BYT_OR command
or the DATA:ENCDG command.

Byte order specification allows data to be stored more easily in memory by
specifying the appropriate order depending on whether the external controller
CPU uses a Little-Endian or Big-Endian addressing scheme. For example, if an

AWG2000 Series Programmer Manual

Retrieving Response Messages

NEC PC-9800 series or an IBM-PC compatible is used as the external controller,
set data to be transferred with the low order byte first. See the detailed command
descriptions for more information.

The X-axis and Y-axis are represented as time (S) and voltage (V) respectively.
Note that the transferred waveform data format and related information
(preamble) can be set and queried by the commands in the WAVEFORM
command groups that have WFMPre as their root header mnemonic.

Data Transfer Procedures The following two sections show examples of procedures for transferring
waveforms from the waveform generator to an external controller and from an
external controller to the waveform generator.

Transfer from the Waveform Generator to an External Controller.
1. Specify the source.
DATA : SOURCE “CH1”

This command specifies the waveform loaded in channel one. The following
command specifies a waveform file.

DATA : SOURCE “SAMPLE-1.WFM”

2. Specify the waveform data points, data width, and byte order. The following
command specifies a data width of two and that the low order byte be
transferred first.

DATA : WIDTH 2 ; ENCDG SRPBINARY

Use RPBINARY in place of SRPBINARY to specify high order byte first
transfers. This specification can also be performed using the
WFMPRE:BYT_OR command.

3. Turn off the response header.
HEADER OFF

4. Read in the next preamble data, convert it to binary format, and then store it
in memory. (See step 7.)

a. Read the number of data items <NR_PT>.
WFMPRE : NR_PT?

b. Read the Y-axis origin offset <YZERO-value>.
WFMPRE : YZERO?

AWG2000 Series Programmer Manual 2-187

Retrieving Response Messages

5.

c. Read the Y-axis data point multiplier <YMULT-value>.
WFMPRE : YMULT?

d. Read the X-axis data point increment value <XINCR-value>.
WFMPRE : XINCR?

Specify the start of the waveform data transfer.

CURVE?

Read the waveform data from the output queue. Note that when an
RS-232-C interface is used the waveform data will be transferred immediate-
ly since there is no output queue.

a. Read the arbitrary block header section.

b. Read the waveform data into an array. Since the waveform data consists
of <NR_PT> data items, a one dimensional array of <NR_PT> items
each the size of the data width will be required as data memory.

When the data width setting is two, the byte order of the data points
must be determined according to the CPU used in the external controller.
However, we recommend using the technique in which data is read one
byte at a time and then reconstructed into two byte objects to avoid
being dependent on the CPU type.

Convert the data to scaled waveform data. Convert the ith data point (X(i),
Y(i)) according to the following formulas. Note that wave(i) is the ith
element in the unscaled waveform data.

X(i)=i _<XINCR-value>
Y (i)=(wave(i)-<YOFF-value>)_<YMULT-value>

Restore the response header state to on.

HEADER ON

This completes the transfer of a waveform file from the waveform generator to
the external controller.

Transfer from an External Controller to the Waveform Generator.

1.

2.

2-188

Set the destination.
DATA : DESTINATION “SAMPLE-1.WFM”

This command specifies the waveform file “SAMPLE-1.WFM” in internal
memory as the destination.

Specify the data width and byte order for the waveform data points.

AWG2000 Series Programmer Manual

Retrieving Response Messages

DATA: WIDTH 2 ; ENCDG SRPBINARY

This command specifies transfer with a data width of 2 and with the low
order byte first. To transfer the high order byte first specify RPBINARY in
stead of SRPBINARY. The WFMPRE:BYT_OR command can also be used
for this specification.

3. Set up the preamble data.
a. Set the Y-axis origin offset <YZERO-value>.
Example: WFMPRE : YZERO 0.0
b. Setthe Y-axis data point multiplier <YMULT-value>.
Example: WFMPRE : YMULT 4.8E-04
c. Setthe X-axis data point increment <XINCR-value>.
Example: WFMPRE : XINCR 5.0E-9

A default value will be used for any preamble data that is not set. (If a
waveform file that exists in internal memory is specified when setting the
source in step 1, the preamble data recorded in that file will be used as the
default values.)

4. Transfer the waveform data.
CURVE #42048<wave(1l)><wave(2) ... <wave(1024)>

This completes the transfer of a waveform file from the external controller to the
waveform generator.

AWG2000 Series Programmer Manual 2-189

Retrieving Response Messages

2-190 AWG2000 Series Programmer Manual

./
Status and Event Reporting

Registers

Status Registers

This section describes how the AWG2000 Series Arbitrary Waveform Generator
reports its status and internal events for both the GPIB and RS-232-C interfaces.
It describes the elements that comprise the status and events reporting system
and explains how status and events are handled.

The status and event reporting system reports certain significant events that
occur within the waveform generator. It is made up of five registers plus two
queues. Four of the registers and one of the queues are compatible with IEEE Std
488.2-1987; the other register and queue are specific to Tektronix.

The registers fall into two functional groups:

B Status registers which store information about the status of waveform
generator. They include the Standard Event Status Register (SESR) and the
Status Byte Register (SBR).

m Enable register&hich determine whether certain events are reported to the
Status Registers and the Event Queue. They include the Device Event Status
Enable Register (DESER), the Event Status Enable Register (ESER), and the
Service Request Enable Register (SRER).

The Standard Event Status Register (SESR) and the Status Byte Register (SBR)
record certain types of events that may occur while the waveform generator is in
use. |IEEE Std 488.2-1987 defines these registers.

Each bit in a Status Register records a particular type of event, such as an
execution error or service request. When an event of a given type occurs, the
waveform generator sets the bit that represents that type of event to a value of
one. (You can disable bits so that they ignore events and remain at zero. See the
Enable Registers section on page 3-4.) Reading the status registers tells you
what types of events have occurred.

The Standard Event Status Register (SESR). The SESR, shown in Figure 3-1,

records eight types of events that can occur within the waveform generator. Use
the *ESR? query to read the SESR register. Reading the register clears the bits of
the register, so that the register can accumulate information about new events.

AWG2000 Series Programmer Manual 3-1

Status and Event Reporting

PON | URQ | CME | EXE | DDE | QYE | RQC | OPC

Figure 3-1: The Standard Event Status (SESR)

Table 3-1: SESR Bit Functions

Bit Function
7 (MSB) PON (Power On). Indicates that the waveform generator was powered on.
6 URQ (User Request). Indicates an event occurred and because of that event

the waveform generator needs attention from the operator.

5 CME (Command Error). Indicates that an error occurred while the waveform
generator was parsing a command or query. Command error messages are
listed in Table 3-5 on page 3-10.

4 EXE (Execution Error). Indicates that an error occurred while the waveform
generator was executing a command or query. An execution error occurs for
either of the following reasons:

m Avalue designated for the argument is out of the range allowed by the
waveform generator, is not valid for the command, or is incorrect in
some other sense.

m Execution took place improperly under conditions different from those
which should have been requested.

Execution error messages are listed in Table 3-6 on page 3-12.

3 DDE (Device Dependent Error). Indicates that a device-specific error
occurred. Device error messages are listed in Table 3-7 on page 3-13.

2 QYE (Query Error). Indicates that an error occurred upon attempting to read
the output queue. Such an error occurs for one of the following two reasons.

m An attempt was made to retrieve a message from the output queue
even through it is empty or pending.

m Output queue message was cleared while it was being retrieved from
the output queue.

1 RQC (Request Control).The waveform generator does not use this bit.
Request Control (RQC) is used to show that an instrument has requested to
transfer bus control back to the controller. (This is the usage prescribed by
the IEEE Std. 488.1.)

0 (LSB) OPC (Operation Complete). Indicates that the operation is complete. This
bit is set when all pending operations complete following a *OPC command.

3-2 AWG2000 Series Programmer Manual

Status and Event Reporting

The Status Byte Register (SBR). shown in Figure 3-2, records whether output is
available in the Output Queue, whether the waveform generator requests service,
and whether the SESR has recorded any events.

Use a Serial Poll or theSTB? query to read the contents of the SBR. The bits in
the SBR are set and cleared depending on the contents of the SESR, the Event
Status Enable Register (ESER), and the Output Queue. When you use a Serial
Poll to obtain the SBR, bit 6 is the RQS bit. When you us&3hg&? query to

obtain the SBR, bit 6 is the MSS bit. Reading the SBR does not clear the bits,
including the MSS bit.

6

7 RQS |5 4 3 2 1 0

— 16 ESB | MAV| — — — —
MSS

Figure 3-2: The Status Byte Register (SBR)

Table 3-2: SBR Bit Functions

Bit Function
7 (MSB) Not used. (Must be set to zero for waveform generator operation.
6 The RQS (Request Service) bit, when obtained from a serial poll. Shows

that the waveform generator requests service from the GPIB controller (that
is, the SRQ line is asserted on the GPIB). This bit is cleared when the serial
poll completes.

6 The MSS (Master Status Summary) bit, when obtained from *STB? query.
Summarizes the ESB and MAV bits in the SBR. (In other words, that status
is present and enabled in the SESR or a message is available at the Output
Queue or both.)

5 The ESB (Event Status Bit). Shows that status is enabled and present in the
SESR.!

4 The MAV (Message Available) bit . Shows that output is available in the
Output Queue.

3-0 Not used. (Must be set to zero for waveform generator operation.

1" When operating over the RS-232-C interface, you can read the contents of the SBR
using the *STB? query. However, this bit (ESB) is the only SBR bit of any signifi-
cance to RS-232-C operation.

AWG2000 Series Programmer Manual 3-3

Status and Event Reporting

Enable Registers You use the DESER (Device Event Status Enable Register), the ESER (Event
Status Enable Register), and the SRER (Service Request Enable Register) to
select which events are reported to the Status Registers and the Event Queue.
Each of these Enable Registers acts as a filter to a Status Register (the DESER
also acts as a filter to the Event Queue) and can allow or prevent information
from being recorded in the register or queue.

Each bit in an Enable Register corresponds to a bit in the Status Register it
controls. In order for an event to be reported to its bit in the Status Register, the
corresponding bit in the Enable Register must be set to one. If the bit in the
Enable Register is set to zero, the event is not recorded.

Various commands set the bits in the Enable Registers. The Enable Registers and
the commands used to set them are described below.

The Device Event Status Enable Register (DESER). Shown in Figure 3-3. This

register controls which events of those shown are reported to the SESR and the
Event Queue. The bits in the DESER correspond to those in the SESR, as was
described earlier.

Use theDESE command to enable and disable the bits in the DESER. Use the
DESE? query to read the DESER.

PON | URQ | CME | EXE | DDE | QYE | RQC | OPC

Figure 3-3: The Device Event Status Enable Register (DESER)

The Event Status Enable Register (ESER). Shown in Figure 3-4. It controls which
events of those shown are allowed to be summarized by the Event Status Bit
(ESB) in the SBR.

Use the*ESE command to set the bits in the ESER. Use*8%? query to read
it.

PON | URQ | CME | EXE | DDE | QYE | RQC | OPC

Figure 3-4: The Event Status Enable Register (ESER)

The Service Request Enable Resgister (SRER). Shown in Figure 3-5. It controls
which bits in the SBR generate a Service Request and are summarized by the
Master Status Summary (MSS) bit.

3-4 AWG2000 Series Programmer Manual

Status and Event Reporting

Use the*SRE command to set the SRER. Use tRRE? query to read it. The
RQS bit remains set to one until either the Status Byte Register is read with a
Serial Poll or the MSS bit changes back to a zero.

— | — |EsB|mav| — | — | — | —

Figure 3-5: The Service Request Enable Register (SRER)

Queues

The status and event reporting system contains two queues, the Event Queue and
the Output Queue. The Event Queue which is used when operating with either

the GPIB and RS-232-C interface, while the Output Queue is used only when
operating over the GPIB interface. (Instead of using an output queue, an output
buffer buffers query-response messages for immediate transfer to the data
transmission line for RS-232-C operation.)

Output Queue The Output Queue is a FIFO (First In First Out) queue that hold response
messages while until they are requested. When a message is put in the queue, the
MAV bit of the Status Byte Register (SBR) is set.

The Output Queue empties each time the waveform generator receives a new
command or query. Therefore the controller must read the output queue before it
sends the next command or query command or it will lose responses to earlier
queries. If a command or query command is given without taking it out, an error
results and the Output Queue is emptied.

Event Queue The Event Queue is a FIFO queue which can hold up to 20 waveform generator-
generated events. When the number of events exceeds 20"tbec?
is replaced by the event code 350, “Queue overflow”.

To read out from the Event Queue, do the following steps.

1. Send *ESR7o read out the contents of SESR. When the contents of SESR
are read out, SESR is cleared allowing you to take out events from the Event
Queue.

2. Send one of the following queries:

m ALLEv? To read out and returns all events made availabfe$8/?.
Returns both the event code and message text.

m EVENT? To read out and return the oldest event of those made available
by *ESR?. Returns only the event code.

AWG2000 Series Programmer Manual 3-5

Status and Event Reporting

Processing Sequence

3-6

m EVMsg? To read out and return the oldest event of those made available
by *ESR?. Returns both the event code and message text.

Reading the SESR erases any events that were made available by preSRGus
reads, but that were not read from the Event Queue. Events that occur after an
ESR? read are put in the Event Queue but are not available&8Rt is used
again.

Figure 3-6 shows the status and event processing flow.

1. An event occurs, which causes the DESR to be checked. Based on the state
of the DESR, the following actions occur:

m [f the control bit for that event is set in the DESER, the SESR bit that
corresponds to this event becomes set to 1.

® The set control bit lets the event be placed into the Event Queue. Placing
the event in the Event Queue sets the MAV bit in the SBR to one.

m |f the control bit for that event is also set in the ESER, the ESB bit of
SBR becomes set also.

2. When either bit of SBR has been set to 1 and the corresponding control bit
of SRER is also set, the MSS bit of SBR becomes set and a service request
is generated for use with GPIB interface operation.

As noted earlier, the RS-232-C interface does not use the output queue;
therefore, the MAV bit would not become set in the sequence just described.
Rather, response messages are sent to the output buffer for immediately transfer
to the external controller on the output line. Message transfer is automatic and it
iS not necessary to use commands to retrieve these messages.

AWG2000 Series Programmer Manual

Status and Event Reporting

Device Events

;

Device Event Status Enable Register
set with :DESE read with : DESE?

Service
Request
Generation

PON | URQ| CME| EXE | DDE | QYE | RQC| OPC
7 6 5 4 3 2 1 0
Standard Event Status Register read and clear Event
with *ESR? clear with *CLS Queue
[PonT ura] cmE] ExE [DDE[QYE| RACT OPC—>{ -
& CODE
< 3 CODE
Logic | N D) v CODE
OR |_] Ve
- \& Y
< f& v
< (8 p
- & X Output
== \&D y Queue
) CP
< &
7 6 5 4 3 2 1 0 -
ClelsTalal 2T 1T0] (=
Standard Event Status Enable Register set BYTE
with *ESR? clear with *CLS
Queue not empty
Status Byte Register read with serial poll or
l *STB? clear with *CLS
e 2 T e
-« I - MSS ESB | MAV| - - - -
[
I
~—©
)
< (s
< & /
OR | ® ‘,
< & A
< f&)
= (8 p
- (&)
< ®
: C&P
— 7 >l 5 | 4| 3] 2] 1] o]
Service Request Enable Register set with
*SRE? clear with *SRE
Figure 3-6: Status and Event Handling Process Overview
3-7

AWG2000 Series Programmer Manual

Status and Event Reporting

1/0 Status and Event Screen

Figure 3-7 shows the contents of GPIB status and event reporting system
displayed on the screen. Use the following procedure to display the status and
event screen.

1.

2.
3.
4.

Press the UTILITY button in the MENU column to the right of the screen.
The UTILITY button menu appears above the bottom menu buttons.

Press the Misc bottom menu button to display the Misc side menu.

Press the Status... side button to display the status submenu.

Press the I/O side button to display the I/O submenu.

The status and event screen displays the registers: DESER, SESR, ESER, SBR
and SRER. Each of these registers is displayed with the decimal equivalent of its
contents shown in brackets. Events which can be dequeued are indicated in the
Avail column of the Events Queue part of the display. All events currently in the
queue are indicated as pending in the Pend column of the display.

GPIB Continuous mode Master|Stopped
{ Event) Misc
DESER s [255] E’:I'I“ ml'fe‘:l‘;
| PON | URQ | CME | EXE | DDE | GYE | RQC | OPC |
|
SESR [8]
POH | URQ | CME | EXE | DDE | QYE | RQC | OPC
ESER U [o]
PON | URQ | CME | EXE | DDE | QYE | RQC | OPC
—J { Output Queue)
SER l I [el
L ESE | M&AY | - - - -
M55 Go Back
SRER U [o]
- - | ESE | M&aY| - - - -
g
]) @ Q@
Disk NYRam GPIB R5232C |Date Time Diag/Cal

Figure 3-7: Status and Event Screen

3-8

AWG2000 Series Programmer Manual

./
Messages

Tables 3-3 through 3-12 list the status and event messages used in the GPIB/
RS-232-C status and event reporting system. You use the *ESR? query to make
the messages available for dequeuing; you useEtHeNT?, EVMsg?, andALLEv?
queries to dequeue and return the messages. The messages return as follows:

m The:EVENT? query command returns the event code only. When using
these query commands, use the *ESR? query to make the events available
for return.

m TheEVMsg?, andALLEv? queries return both the event code and event
message in the following format:

<event code>, “<event message ; secondary message>"

Most messages returned have both an event message, followed by a semicolon
(;), and a second message which contains more detailed information. Although
these secondary messages are not listed in this manual, you canby#sdhe
andALLEv? queries to display them.

Table 3-3 lists the definition of event codes.

Table 3-3: Definition of Event Codes

Event Code
Event Class Ranges Descriptions
No Events 0-1 No event nor status
Reserved 2-99 (unused)
Command Errors 100-199 Command errors
Execution Errors 200-299 Command execution errors
Device-Specific Errors 300-399 Internal device errors
(Hardware errors)
Query Errors 400-499 System event and query errors
Execution Warnings 500-599 Execution warnings
Internal Warnings 600-699 Internal warnings
Reserved 700-1999 (unused)
Extended Execution Errors 2000-2999 Device dependent command execution
errors
Extended 3000-3999 Device dependent device errors
Device-Specific Errors
Reserved 4000- (unused)

AWG2000 Series Programmer Manual 3-9

Messages

Table 3-4 lists the message when the system has no events nor status to report.
These have no associated SESR bit.

Table 3-4: Normal Condition

Code Description

0 No events to report — queue empty

1 No events to report — new events pending *ESR?

Table 3-5 lists the error messages generated due to improper command syntax. In
this case, check that the command is properly formed and that it follows the
syntax.

Table 3-5: Command Errors (CME Bit:5)

Code Description

100 Command error

101 Invalid character

102 Syntax error

103 Invalid separator

104 Data type error

105 GET not allowed

106 Invalid program data separator
108 Parameter not allowed

109 Missing parameter

110 Command header error
111 Header separator error
112 Program mnemonic too long
113 Undefined header

114 Header suffix out of range
118 Query not allowed

120 Numeric data error

121 Invalid character in number
123 Exponent too large

124 Too many digits

128 Numeric data not allowed
130 Suffix error

3-10 AWG2000 Series Programmer Manual

Messages

Table 3-5: Command Errors (CME Bit:5) (Cont.)

Code Description

131 Invalid suffix

134 Suffix too large

138 Suffix not allowed

140 Character data error

141 Invalid character data

144 Character data too long

148 Character data not allowed
150 String data error

151 Invalid string data

152 String data too long

158 String data not allowed

160 Block data error

161 Invalid block data

168 Block data not allowed

170 Expression error

171 Invalid expression

178 Expression data not allowed
180 Macro error

181 Invalid outside macro definition
183 Invalid inside macro definition
184 Macro parameter error

AWG2000 Series Programmer Manual

3-11

Messages

3-12

Table 3-6 lists the execution errors that are detected during execution of a
command.

Table 3-6: Execution Errors (EXE Bit:4)

Code Description

200 Execution error

201 Invalid while in local
202 Settings lost due to RTL
203 Invalid password

210 Trigger error

211 Trigger ignored

212 Armed ignored

213 Init ignored

214 Trigger deadlock

215 ARM deadlock

220 Parameter error

221 Settings conflict

222 Data out of range
223 Too much data

224 lllegal parameter value
225 Parameter under range
226 Parameter over range
227 Parameter rounded
230 Data corrupt or stale
231 Data questionable
240 Hardware error

241 Hardware missing
250 Mass storage error
251 Missing mass storage
252 Missing media

253 Corrupt media

254 Media full

255 Directory full

256 File name not found
257 File name error

AWG2000 Series Programmer Manual

Messages

Table 3-6: Execution Errors (EXE Bit:4) (Cont.)

Code Description

258 Media protected

260 Expression error

261 Math error in expression
262 Expression syntax error
263 Expression execution error
270 Macro error

271 Macro syntax

272 Macro execution error
273 lllegal macro label

274 Macro parameter error
275 Macro definition too long
276 Macro recursion error
277 Macro redefinition not allowed
278 Macro header not found
280 Program error

281 Cannot create program
282 lllegal program name

283 lllegal variable name

284 Program currently running
285 Program syntax error

286 Program run time error

Table 3-7 lists the internal errors that can occur during operation of the waveform
generator. These errors may indicate that the waveform generator needs repair.

Table 3-7: Execution Errors (EXE Bit:4)

Code Description

300 Device-specific error
310 System error

311 Memory error

312 PUD memory lost

313 Calibration memory lost

AWG2000 Series Programmer Manual 3-13

Messages

Table 3-7: Execution Errors (EXE Bit:4) (Cont.)

Code Description

314 Save/recall memory lost

315 Configuration memory lost

330 Self-test failed

350 Queue overflow (does not affect the DDE bit)

Table 3-8 lists the system event messages. These messages are generated when-
ever certain system conditions occur.

Table 3-8: System Event and Query Errors

Code Description

401 Power on

402 Operation complete

403 User request

404 Power fail

405 Request control

410 Query INTERRUPTED

420 Query UNTERMINATED

430 Query DEADLOCKED

440 Query UNTERMINATED after indefinite response

Table 3-9 lists warning messages that do not interrupt the flow of com-
mand execution. These messages warn you that you may get unexpected results.

Table 3-9: Warnings (EXE Bit:4)

Code Description

500 Execution warning

3-14 AWG2000 Series Programmer Manual

Messages

Table 3-10 lists internal errors that indicate an internal fault in the waveform
generator.

Table 3-10: Internal Warnings (DDE Bit:3)

Code Description

600 Internal warning

610 Data not multiple of 32 points

Table 3-11 lists status messages that are specific to the waveform generator.
These messages appear when a operation starts, ends, or is in process. These
messages have no associated SESR bit.

Table 3-11: Device-Dependent Command Execution Errors

Code Description
2000 File error

2001 Directory not empty

2002 Too many files
2003 File locked
2004 File already exists

2005 File already opened
2006 Invalid file type
2007 File type mismatch

2008 Internal memory full
2009 Invalid file format
2010 Comment error

2012 Invalid data in comment string
2020 Waveform error

2021 Waveform request is invalid
2022 Too much curve data

2024 Curve data byte count error

2025 Waveform load error

2026 Internal waveform memory full
2027 Waveform size invalid

2028 Missing waveform data

2030 Marker error

AWG2000 Series Programmer Manual 3-15

Messages

3-16

Table 3-11: Device-Dependent Command Execution Errors (Cont.)

Code Description

2031 Marker request is invalid
2032 Too much marker data
2040 Equation error

2042 Too much equations

2043 Equation too long

2044 Invalid equation syntax
2046 Equation compile error
2050 Sequence error

2052 Too much sequence data
2053 Invalid sequence repeat count
2054 Invalid sequence syntax
2055 Sequence load error

2056 Internal sequence memory full
2057 Recursive sequence

2058 Sequence in sub-sequence
2059 Sequence incomplete

2060 Autostep error

2062 Too much autostep data
2063 Invalid autostep data

2064 Invalid autostep syntax
2070 Data error

2071 Invalid data syntax

2072 Invalid data value

2080 Time error

2081 Invalid time syntax

2082 Invalid time value

2090 Message error

2100 Hardcopy error

2101 Hardcopy busy

2102 Hardcopy timeout error
2110 Clock sweep error

2112 Too much clock sweep data
2113 Internal clock sweep memory full

AWG2000 Series Programmer Manual

Messages

Table 3-11: Device-Dependent Command Execution Errors (Cont.)

Code Description

2114 Clock sweep size invalid
2115 Invalid clock sweep dwell
2116 Invalid clock sweep frequency

2120 PLL lock timeout

Table 3-12 lists device error messages that are specific to the device.

Table 3-12: Extended Device Specific Errors

Code Description
3001 RS-232-C input buffer overflow

AWG2000 Series Programmer Manual 3-17

Messages

3-18 AWG2000 Series Programmer Manual

./
Execution Synchronization

The GPIB commands used in these waveform generators are designed to be
executed in the order in which they are sent from the external controller.
However, since certain commands require a certain amount of time for their
execution to complete, these waveform generators are designed to allow the
execution of the command that is sent next at the same time. With these types of
commands there are cases where the waveform generator must wait for the
execution of the first command to complete before executing the next command.

The following commands allow the simultaneous execution of other commands
before their execution has completed.

EQUAtion : COMPile[: STATe EXECute,]<Equation File>
HCOPy STARt

These waveform generators provide the following commands for performing
synchronization control.

*WAI
*OPC
*OPC?

*WAI Command

In general, the *WAI command is the simplest method for execution synchro-
nization. All that is required is to send a *WAI command before sending the next
command as shown in the following example.

: EQUATION : COMPILE : STATE EXECUTE
“SAMPL.EQU” ; *WAI ;: CH1 : WAVEFORM “SAMPL.WFM”

Synchronization Using the *OPC Command

The *OPC command sets the OPC bit in the SESR (standard event status
register) when all pending processing has completed. This command allows the
most effective execution completion monitoring to be performed when used
together with serial poling or the service request function. As shown in the
following example, essentially identical processing sequences can be achieved
by either method.

AWG2000 Series Programmer Manual 3-19

Execution Synchronization

The *OPC Query

3-20

Enable the corresponding status register

:DESE 1
*ESE 1

*SRE 0 (If serial polling is used)
Or:
*SRE 32 (If the service request function is used)

For example, use the following commands to start the compilation of an equation
file and then wait for the compilation to complete.

: EQUATION : COMPILE “SAMPL.EQU” ; *OPC

(This either waits while the serial poll function is 0, or waits for a service
request to occur.)

Now use the following command to load the waveform file generated by the
compilation into channel 1.

: CH1 : WAVEFORM “SAMPL.WFM”

See “Programming Example 3” in Section 4 for more explicit details on the use
of this technique.

The *OPC? query returns the ASCII code for “1” as the response if all pending
processing has completed. Execution completion monitoring can be performed as
shown in the example below using this query.

For example, use the following commands to start the compilation of an equation
file and then wait for the compilation to complete.

: EQUATION : COMPILE “SAMPL.EQU” ; *OPC?

(Now, wait for a “1” to be returned as the response. Note that when a GPIB
interface is used, a timeout may occur before the data is written into the
queue while waiting to data from the output queue.)

Now use the following command to load the waveform file generated by the
compilation into channel 1.

: CH1 : WAVEFORM “SAMPL.WFM”

AWG2000 Series Programmer Manual

-/ |
Programming Examples

This section describes the example programs that illustrate methods that you can
use to control the Arbitrary Waveform Generator over the GPIB interface. The
floppy disk supplied with the waveform generator contains source lists for these
programs written in Microsoft QuickC 2.0 and Microsoft Quick BASIC 4.5.

The programs run on PC compatible system equipped with a National Instru-
ments GPIB board and associated drivers.

All the Microsoft example programs assume that the GPIB system recognizes the
instrument as DEV1 and the PC (external controller) as GPIBO.

The example software includes:

getwfm This program transfers a waveform and its preamble from the
waveform generator to a file or displays the waveform in a
scaled format.

putwfm This program transfers a waveform to the waveform generator.

equset This program sends equation expression data to the waveform
generator, instructs the waveform generator to compile it into a
waveform, then sets up the waveform generator so it outputs the
compiled waveform from the CH1 output connector. This
program demonstrates the use of the *OPC and serial poll
synchronization method to determine when the compile
completes in order to go on to next step.

intrv This program demonstrates interactive communication between
the external controller and the waveform generator (QuickC

only).

Compiling the Example Programs

The floppy diskGPIB Programming Example®ntains the programs just
described written in Microsoft QuickC 2.0 or Quick BASIC 4.5. Source program
files and the MAKE file are placed in the directory of that disk. All files in the
directory should be copied to a directory on the hard disk.

To create the executable program files, perform following steps:
In case of QuickC

1. Install QuickC. Select the SMALL memory model. Be sure to set up your
path so DOS can access the directory where QuickC is installed.

AWG2000 Series Programmer Manual 4-1

Programming Examples

Install the National Instruments PC2/PC2A GPIB board and drivers.
Remember to identify the GPIB device as DEV1. This identifier is defined
using the IBCONF.EXE program.

Copy the files from the supplied floppy disk to your hard disk. A special
directory should be created to store them. For example, if you wish to store
the example programs in hard disk C and you have placed/@&2000

Series GPIB Programming Examplgisk in floppy drive B, switch to drive

C and type:

mkdir examples
cd examples
copy B:\C*.* .

For this installation, the files: DECL.H and MCIBS.OBJ must be copied
from your National Instruments PC2/PC2A GPIB drivers directory to this
directory. Assuming you have installed these drivers in gpib-pc, you would

type:
copy \gpib-pc\decl.h .
copy \gpib-pc\mcibs.obj .
To compile and link all sample programs, simply type:

nmake /F samp.mak

In case of Quick BASIC

1.

Install Quick BASIC. Be sure to set up your path so DOS can access the
directory where Quick BASIC is installed.

Install the National Instruments PC2/PC2A GPIB board and drivers.
Remember to indentify the GPIB device as DEV 1. This identifier is defined
using the IBCONF. EXE program.

Copy the files from the supplied floppy disk to your hard disk. A special
directory should be created to store them. For example, if you wish to store
the example programs in hard disk C and you have placed the GPIB
Programming Examples disk in floppy drive B, switch to drive C and type :

mkdir example
cd example

copy B:\basic*.*.

AWG2000 Series Programmer Manual

Programming Examples

4. For this installation, the files GPIB. OBJ and GPDECL. BAS must be
copied from your National Instruments PC2/PC2A GPIB drivers directory to
this directory.

copy \gpib—pc\gbasic\gbib.obj .
copy \ghib—pc\gbasic\gpdecl.bas .
And copy the files from Quick BASIC directory.
copy \gpib—pc\bin\bc.exe .
copy \gpib—pc\bin\link.exe .
copy \gpib—pc\lib\bcom45.lib .
5. To compile and link all sample program, simply type:

makeexe.bat

Executing the Example Programs

The programs can be executed as described below.

Getwfm This command reads a waveform from the waveform generator and stores it with
preamble into file, or it displays it in a scaled format. To run the getwfm program

type:
getwfm <source> [<out-file>]
where:

<source> is either the number of the waveform generator channel or the
name of a source waveform file in the internal memory of the waveform
generator. In either case, it is the source from which the waveform data is
transferred.

<out-file> is the name of a file in which the binary unscaled waveform data
and the preamble are to be stored. If no <out-file> is specified, the waveform
data displayed on the default video output device in scaled format.

The waveform data in the file can be returned to the waveform generator using
putwfm command.

Putwfm This command sends the waveform to the waveform generator. To run the
putwfm program, type:

putwfm <destination> <waveform-file>

AWG2000 Series Programmer Manual 4-3

Programming Examples

Equset

Intrv

where

<destination> is the waveform file in the internal memory of the waveform
generator to which the waveform data is to be transferred.

<waveform-file> is a file storing waveform data and preamble previously
obtained using the getwfm command.

This command sends equation expression data to the waveform generator, then
has the waveform generator compile it and output it. To run the equset program,

type:
equset

The equation expression data is contained in the C source program, which
transfers it to the AWG2000 and gives it the file name EQUSAMPL.EQU. (If a
file with this name already exists, the command is not executed; you must
remove that file from the AWG2000 before you can execute equset.)

The synchronization method is used to hold off further operation until the
compile operation is complete, which may take about 35 seconds. Compilation
of the data creates the waveform file EQUSAMPL.WFM.

The waveform file is set to CH1 with the amplitude 5.0 V, frequency 25 MHz,
and output in triggered mode.

This command sets up interactive communication between the external controller
and the AWG2000. To run the intrv program, type:

Intrv
which in turn displays the prompt:
AWG2020 >>

This interactive prompt indicates the program is waiting for you to type a
command. The following sorts of commands can be entered in response to this
prompt:

GPIB commands. Il commands and queries defined in this programmers manual
can be used. The response message to the query is immediately output on the
standard output device.

AWG2000 Series Programmer Manual

Programming Examples

Built-in commands. The following commands are built in to the intrv program.

help

view

exec

status

resets

Displays this message.

Displays the contents of the file in the external controller, which
is specified by an argument. To use this command type view
<path-name>.

Reads command lines from the file specified by an argument
instead of the standard input. When the EOF (end of file) is
detected, command lines are read from the standard input again.
To use, type exec <description-file>.

Reads the status byte from the AWG2000.

Resets the registers in the event and status reporting system to
the default values established for this program. This command
must be used after you change the value of those registers using
GPIB commands such as :DESE, *ESE, etc.

Redirection. The >,<, and >> redirection operators can be combined with file
names and used in commands to redirect the standard input or output.

< file name

> file name

>>file name

Uses the contents of file name as the standard input to the
preceding command. If this redirection command is not preceded
by a command, the contents of the file are directly transferred to
the AWG2000.

Writes to file name as the standard output device, creating that
file if it does not exist. If the file file name does already exist,
the redirected standard output overwrites it, erasing its previous
contents.

Writes to file name as the standard output, creating that file if it
does not exist. If the file file name already exists, its contents are
not overwritten; instead, the standard output is added to the end
of the existing contents.

Last command. The !! operator can be entered in a command line to reference a
previous command. When typed in the current command line, the contents of the
command line last entered replaces the !! operator.

AWG2000 Series Programmer Manual

4-5

Programming Examples

Example 1: Waveform Transfer #1

The first example illustrates a simple waveform transfer from the instrument
to the external controller.

In case of QuickC

/*

* getwfm.c — a simple waveform transfer program that converts to

* scaled waveform in ASCII format, or save raw waveform and preamble
* to a file in the external controller.

*/

include <stdio.h>

include <stdlib.h>

include "decl.h”

include "exit.h”

#define MAX_DATA2 4000
#define MAX_DATA (MAX_DATA2 / 2)

define CMD_LEN 80
define LEN12 12
define FILE_OUT 1
define STD_OUT -1

typedef float FLOAT;
typedef double DOUBLE;
typedef long LONG;
typedef short SHORT;

void checkarg();
char *awgWR();

SHORT wfm[MAX_DATA + 1]; [* Array for raw awg input */
LONG nr_pt; /* Preamble: number of data points */
LONG pt_off; [* Preamble: point offset */

FLOAT vyoff; /* Preamble: Y offset */

FLOAT ymult; [* Preamble: Y multiple */

FLOAT xincr; /* Preamble: X increment */

char xunit[LEN12 + 1]; [* Preamble: X unit representation */
char yunitfLEN12 + 1]; [* Preamble: Y unit representation */
char *outfile; /* Output file descriptor *

char *source; /* Source from which a waveform is transferred */

int fflag=STD_OUT,

main(argc, argv)
int argc;
char *argvl[];

4-6 AWG2000 Series Programmer Manual

Programming Examples

{
printf("\n\n");
printf"GETWFM — simple waveform transfer program.\n”);
printf("Copyright (c) Tektronix Japan, Ltd. ”);
printf(” All Rights Reserved.\n\n");
checkarg(argc, argv); /* Check arguments and open output device */
open_dev(); /* Find GPIB devices */
SrcSetup(); /* Define source in the instrument */
if (fflag == STD_OUT)
ReadandStdout(); /* Get waveform and convert to
scaled waveform */
else
ReadandFileout(); /* Get waveform and preamble, and
then save into a file */
close_dev();
}
/*
* Check if the arguments are valid.
*/
void checkarg(argc, argv)
int argc;
char *argvl[];
{
/*
* Check command line argument count.
*/

if ((argc < 2) || (argc > 3){
fprintf(stderr, "usage: getwfm <source> [<out-file>]\n");
fprintf(stderr, "twhere:\n");
fprintf(stderr, "\t\t<source>\t\tis the source channel or”);
fprintf(stderr, " file to read\n”);
fprintf(stderr, "\t\t[<outfile>]\tis the optional save”);
fprintf(stderr, " output file\n");
exit(1);

/*
* Check for valid source channel, or waveform file name.
*/

AWG2000 Series Programmer Manual

47

Programming Examples

source = argv[1];
if (strcmp(argv[1], "CH3") I= 0 && strcmp(argv[l], "CH4") I= 0 &&
wfmfile(argv[1]) != 0)

{
fprintf(stderr, "ERROR: Invalid Source: \"%s\":", argv[1]);
fprintf(stderr, ” No Waveform Acquired\n”);
exit(1);
}
/*
* Open output file if specified otherwise use stdout.
*/
if (argc == 3)
{
outfile = argv[2];
fflag = FILE_OUT;
}
}
/*
* Check the file extension is ".wfm’.
*/

wimfile(name)
char *name;

{

int dlen = strlen(name);

if (dlen <4 || dlen > 12)
return —1;
if (strcemp(&name[dlen — 4], "WFM”) == 0 ||
strcemp(&name[dlen — 4], ".wfm”) == 0)
return O;
return —1,;

}

/-k

* Define source in the instrument, and set encoding format and byte order.

*

* WARNING — This program assumes a CPU with little Indian so that the

* byte order in waveform transfer is set to LSB with :\WFMPRE:BYT_OR command.
* |f the CPU with big Indian is used, byte order must be set to MSB.

*/

4-8 AWG2000 Series Programmer Manual

Programming Examples

SrcSetup()

{
char cmd[CMD_LEN + 1];
sprintf(cmd, ":DATA:SOURCE \"%s\";ENCDG RPBINARY;:WIDTH2",

source);
if (awgWrite(cmd) < 0)
{
gpiberr("Write Error: Unable to Setup waveform parameters”);
exit(1);
}
}
/*
* Read preamble and waveform, then save them into a file.
*/
ReadandFileout()
{
if (awgWrite("HEADER ON”) < 0)
{
gpiberr("Write Error: Unable to turn header on\n”);
exit(1);
}
if (awgWrite(":WAVFRM?”) < 0)
{
gpiberr("Write Error: Unable to write :WAVFRM? query”);
exit(1);
}
if (WrtGtoF(outfile) < 0)
{
gpiberr("Read Error/File Open Error:”);
exit(1);
}
}
/-k

* Read waveform data and convert to scaled waveform.
*

* The waveform is formatted as #<x><yyy><data> where
* <x> is the number of y bytes; for example if yyy = 500, then

* x=3

* <yyy>is the number of bytes to transfer;

* if width is 1 then all bytes on bus are single data
* points; if width is 2 then bytes on bus are

AWG2000 Series Programmer Manual 4-9

Programming Examples

*

*

2-byte pairs; this program uses width of 2

<data> is the curve data

*/

*/

*/
*/

nr_pt = atol(awgWR("WFMPRE:NR_PT?”, cmd, CMD_LEN));

ymult = atof(awgWR("WFMPRE:YMULT?”, cmd, CMD_LEN));

pt_off = atol(@wgWR("WFMPRE:PT_OFF?", cmd, CMD_LEN));

*

ReadandStdout()

{
char cmd[CMD_LEN + 1];
LONG llen; /* data size
LONG i /* loop index
int dlen; [* size
int c;
int i /* loop index

/-k

* Get some parameters in preamble.

*/
if (awgWrite(:HEADER OFF”) < 0)
{

gpiberr("Write Error: Unable to turn header off\n”);
exit(1);

}
yoff = atof(awgWR("WFMPRE:YOFF?”, cmd, CMD_LEN));
xincr = atof(awgWR("WFMPRE:XINCR?”, cmd, CMD_LEN));
awgWR("WFMPRE:XUNIT?”, xunit, LEN12);
awgWR("WFMPRE:YUNIT?”, yunit, LEN12);

/*

* Read the header information in <Arbitrary Block>.
* The header includes #<x><yyy>.

*/

4-10

if (awgWrite(":CURVE?”) < 0)

{
gpiberr("Write Error: CURVE?");
exit(1);

}

awgRead(cmd, 1); /* Read the '# symbol

*/

awgRead(cmd, 1); /* Read string length of num bytes to transfer */
¢ = atoi(cmd); [* Convert string to integer
awgRead(cmd, c); /* Read string containing number of bytes

to transfer

llen = Idiv(atol(cmd), 2L).quot; /* Two bytes per one data point

*/

*/

*/

AWG2000 Series Programmer Manual

Programming Examples

/~k
* Read the raw waveform data, process waveform data
*/
fprintf(stdout, "%s,%s,\"%s\", max. number of data point (%ld)\n”,
Xunit, yunit, source, nr_pt);
for (li=0; li <llen;)
{
if (awgRead(wfm, MAX_DATA2) < 0)
{
gpiberr("Read Error: WAVEFORM");
exit(1);
}
/*

* Output scaled x, y values in (Sec, Volts)
* Time[li] = (li— PT_OFF) * XINCR
*\Volts[li] = (point value — YOFF) * YMULT

*
dlen =ibcnt / 2; /* Two bytes per one data point */
for(i = 0; i < dlen; i++)
{
fprintf(stdout, "%.2e,%.2e\n\r",
(FLOAT)(li — pt_off)*(FLOAT)(xincr),
(FLOAT)(((FLOAT)wfm[i] — (FLOAT)yoff) * ymult));
li++;
}
}
/*
* Cleanup
*/
if (awgWrite(":HEADER ON") < 0)
{
gpiberr("Write Error: Unable to turn header on\n”);
exit(1);
}
fprintf(stdout, "\n");
fprintf(stdout, "Waveform from %s successfully transferred'\n”, source);
return O;
}

AWG2000 Series Programmer Manual 4-11

Programming Examples

/~k
* Write GPIB query, and immediately read the response.
*/

char *awgWR(cmd, resp, cnt)
char *cmd, *resp;
int cnt;
{
if (awgWrite(cmd) < 0)
{
gpiberr("Write Error: WFMPRE?”);
exit(1);
}
if (awgRead(resp, cnt) < 0)
{
gpiberr("Read Error: WFMPRE");
exit(1);
}
resplibcnt —=1] ="\0’; /* Replace \n’ at the end of response
with "\0". */
return resp;

}
In case of Quick BASIC

DECLARE SUB GPIB2ASC (DEV%, FLNAMES$)

DECLARE SUB GPIB2ISF (DEV%, FLNAMES$)

DECLARE SUB CHKSTAT (DEV%, ESR%, EVENTS$)
DECLARE SUB FINDDEV (KEYNAMES$, DEV%)

DECLARE SUB EXTOPT (OPTION$, SOURCES, FLNAMES$)
DECLARE FUNCTION DISKERRS ()

'$INCLUDE: '"QBDECL.BAS’

PRINT

PRINT "GETWFM Ver.1.0”

PRINT” Sample Progarm for AWG2000 series”

PRINT ” Copyright(C) Tektronix Japan, Ltd. All rights reserved. ”

PRINT ” No warranty.”

'Check COMMAND Arguments and extract source & filename
OPTION$ = COMMAND$
CALL EXTOPT(OPTIONS$, SOURCES$, FLNAMES)

'GPIB address search

4-12 AWG2000 Series Programmer Manual

Programming Examples

KEYNAMES$ = "SONY/TEK,AWG2"
CALL FINDDEV(KEYNAMES$, DEV%)
PRINT KEYNAMES$

IF DEV% = 0 THEN BEEP: END

'Check DATA source

WRT$ = "HEADER ON;:DATA:SOURCE " + SOURCES$ + ";WFMPRE?"
CALL IBWRT(DEV%, WRT$)
RD$ = SPACES$(500): CALL IBRD(DEV%, RD$)
IF INSTR(RD$, "WFID”) = 0 THEN
BEEP
PRINT "ERROR. ”; SOURCES; " data is none.”
END
END IF

'Set DATA ENCDG to SRPBINARY. It's a signed integer and transfer the LSB data fi'rst.

CALL IBWRT(DEV%, "data:encdg srpbin;width 2")

'Choose saved data type with extention.
IF INSTR(FLNAMES, ".CSV”) OR INSTR(FLNAMES$, "CONS:") THEN
CALL GPIB2ASC(DEV%, FLNAMES)
ELSE
CALL GPIB2ISF(DEV%, FLNAMES$)
END IF

'Check GPIB Status.

DO
CALL CHKSTAT(DEV%, ESR%, EVENTS$)
IF ESR% <> 0 THEN
BEEP
PRINT "Worning.”
PRINT EVENT$
END IF
LOOP UNTIL ESR% =0

END

'ERROR Trap routine.

ERRHANDLER:

AWG2000 Series Programmer Manual 4-13

Programming Examples

BEEP
PRINT "ERROR. ”; DISKERR$
END

END

End of Main procedure
SUB CHKSTAT (DEV%, ESR%, EVENTS$)

CALL IBRSP(DEV%, sta%)
CALL IBWRT(DEV%, "*esr?”)
RD$ = SPACE$(16)

CALL IBRD(DEV%, RD$)
ESR% = VAL(RD$)

CALL IBWRT(DEV%, "allev?”)

RD$ = SPACE$(500)

CALL IBRD(DEV%, RD$)

EVENT$ = LEFT$(RD$, IBCNT% — 1)

END SUB

FUNCTION DISKERR$
SELECT CASE ERR

CASE 54

DISKERR$ = "Bad file mode”
CASE 64

DISKERR$ = "Bad file name”
CASE 52

DISKERR$ = "Bad name or number”
CASE 25

DISKERRS$ = "Device fault”
CASE 57

DISKERRS$ = "Device /O error”
CASE 24

DISKERR$ = "Device timeout”
CASE 68

DISKERR$ = "Device unavailable”
CASE 61

DISKERRS$ = "Disk full”
CASE 72

DISKERR$ = "Disk-media error”
CASE 71

DISKERRS$ = "Disk not ready”
CASE 53

DISKERR$ = "File not found”

4-14 AWG2000 Series Programmer Manual

Programming Examples

CASE 62

DISKERR$ = "Input past end of file”
CASE 76

DISKERR$ = "Path not found”
CASE 75

DISKERR$ = "Path/File sccess error”
CASE 70

DISKERR$ = "Permission denied”
CASE 67

DISKERR$ = "Too many files”
CASE ELSE

DISKERRS$ = "???”
END SELECT

END FUNCTION

SUB EXTOPT (OPTION$, SOURCES$, FLNAMES$)

IF OPTIONS$ =" THEN GOTO DISPUSAGE
OPTION$ = OPTIONS + "

SOURCES$ ="

FLNAMES$ ="

"Extract string between spaces.
FOR 1% = 1 TO LEN(OPTIONS$)
A$ = MID$(OPTIONS, 1%, 1)
IF A$ ="" THEN EXIT FOR
SOURCE$ = SOURCES$ + A$
NEXT 1%

FOR J% = 1% + 1 TO LEN(OPTIONS)
A$ = MID$(OPTIONS, J%, 1)
IF A$ =”” THEN EXIT FOR
FLNAMES = FLNAMES + A$
NEXT J%

‘clean up DATA source.
IF FLNAMES$ =" THEN FLNAMES$ = "CONS:”
IF SOURCES$ = "CH1” THEN EXIT SUB
IF SOURCES$ = "CH2” THEN EXIT SUB
IF INSTR(SOURCES, ".WFM”) THEN EXIT SUB
BEEP
PRINT ”"Invalid argument.”

AWG2000 Series Programmer Manual

4-15

Programming Examples

DISPUSAGE:
PRINT
PRINT "Usage:GETWFM <source> [<filename>]"
PRINT
PRINT ” <source>:Waveform data to transfer”
PRINT ” CH1/CH2/Wafeform file.”
PRINT ” Wafeform file have a . WFM’ extention.”
PRINT
PRINT " [<filename>]:Output filename”
PRINT ” If no spec, dislay on the screen.”
PRINT ” Specially .CSV’ extention is given, convert to the ascii”
PRINT ” data for spread sheet software.”
END
END SUB

SUB FINDDEV (KEYNAMES$, DEV%)

CALL IBFIND("GPIBO”, BD%)

IF BD% < 0 THEN
KEYNAME$ = "GPIBO’ not found.”
DEV% =0
EXIT SUB

END IF

CALL IBFIND("DEV1", DEV%)

IF DEV% <= 0 THEN
KEYNAME$ = "DEV1' not found, Please run IBCONF and define.”
DEV% =0
EXIT SUB

END IF

CALL IBSRE(BD%, 0)

CALL IBSRE(BD%, 1)

V% = 11: CALL IBTMO(DEV%, V%)
AD% =0

'GPIB Address Search

DO
CALL IBPAD(DEV%, AD%)
CALL IBWRT(DEV%, "*IDN?")
IF IBSTA% AND &H8000 THEN
AD% = AD% + 1
ELSE
id$ = SPACE$(100): CALL IBRD(DEV%, id$)

4-16 AWG2000 Series Programmer Manual

Programming Examples

IF INSTR(id$, UCASE$(KEYNAMES$)) THEN
EXIT DO
ELSE
AD% = AD% + 1
CALL IBCLR(DEV%)
END IF
END IF
IF 30 < AD% THEN
KEYNAMES = "Specified instrument not found.”
DEV% =0
EXIT SUB
END IF
LOOP

V% = 13: CALL IBTMO(DEV%, V%)
KEYNAMES = LEFT$(id$, IBCNT% — 1) + ” (GPIB Address =" + STR$(AD%) +)"

CALL IBWRT(DEV%, ":DESE 255;*CLS”")
END SUB
SUB GPIB2ASC (DEV%, FLNAMES)

'Request to send the waveform data.

CALL IBWRT(DEV%, "CURVE?")

'Read the waveform data

'The waveform data is formatted as #<x><yyy><data><newline> where

’ <x> is the number of bytes of <yyy>, for example if yyy = 500, then x = 3.

: <yyy> is the number of bytes to transfer inclulude checksum.

’ (The AWG don’t send cheksum.)

’ The resolution in the AWG2000 is 12 bits/point, then the number of bytes at
’ one point data is two. The Length of waveform data is the harf of yyy.

' <data> is the curve data.

’ <newline> End of data block.(=0AH(linefeed character))

RD$ = SPACE$(1) 'define buffer to 1 byte

DO
CALL IBRD(DEV%, RD$) 'read and discard until '# symbol
LOOP UNTIL RD$ ="#"

CALL IBRD(DEV%, RD$) read <x>
RD$ = SPACES$(VAL(RDS$)) 'set buffer to x bytes
CALL IBRD(DEV%, RD$) read <yyy>

AWG2000 Series Programmer Manual 4-17

Programming Examples

BYTCNT& = VAL(RD$) ‘get the number of bytes to transfer
'Define an arrey for raw data. It's the twe bytes signed integer arrey.
'The length of the arrey is the harf of total bytes count.

NRPT& = BYTCNT& / 2

‘Limit the data length to 32k bytes.

IF 32767 <= NRPT& THEN
BEEP
PRINT "Data length is too long. Set to till 32k words.”
DO
CALL CHKSTAT(DEV%, ESR%, EVENTS$)
LOOP UNTIL ESR% =0
END
END IF

NRPT% = NRPT&
BYTCNT% = BYTCNT&

DIM WFM%(NRPT% — 1) 'Option base is 0.

'Read the waveform data at two bytes pair by IBRDI.
CALL IBRDI(DEV%, WFM%(), BYTCNT%)
IF IBSTA% < 0 THEN
BEEP
PRINT "Error on Reaf waveform data.”
END
END IF

'Read the End charctor
RD$ = SPACES$(2)
CALL IBRD(DEV%, RD$)

'Read Scale data and Convert the raw data to voltae value.
CALL IBWRT(DEV%, ":HEADER OFF;:WFMPRE:YOFF?")
RD$ = SPACE$(40)

CALL IBRD(DEV%, RD$)
YOFF! = VAL(RD$)

4-18 AWG2000 Series Programmer Manual

Programming Examples

CALL IBWRT(DEV%, "WFMPRE:YZERO?")
RD$ = SPACE$(40)

CALL IBRD(DEV%, RD$)

YZERO! = VAL(RD$)

CALL IBWRT(DEV%, "WFMPRE:YMULT?”)
RD$ = SPACE$(40)

CALL IBRD(DEV%, RD$)

YMULT! = VAL(RDS$)

CALL IBWRT(DEV%, "WFMPRE:XINCR?")
RD$ = SPACE$(40)

CALL IBRD(DEV%, RD$)

XINCR! = VAL(RD$)

CALL IBWRT(DEV%, "WFMPRE:PT_OFF?")
RD$ = SPACE$(40)

CALL IBRD(DEV%, RD$)

PTOFF! = VAL(RD$)

X axsis unit, Y axsis unit, date, time

ON ERROR GOTO ERRHANDLER

OPEN FLNAME$ FOR OUTPUT AS #1
WRITE #1, "sec”, "Volts”, DATES$, TIME$
'Scaling method
’ Time[i] = (i— PT_OFF) * XINCR
’ \olts[i] = (point value — YOFF) * YMULT + YZERO
FOR 1% =0 TO NRPT% - 1
TTT! = (1% — PTOFF!) * XINCR!
VOLTS! = (WFM%(1%) — YOFF!) * YMULT! + YZERO!
PRINT #1, TTT!; ")”; VOLTS!
NEXT 1%
CLOSE #1

ON ERROR GOTO 0O
PRINT NRPT%; "points data is written to”; FLNAME$

END SUB

AWG2000 Series Programmer Manual 4-19

Programming Examples

SUB GPIB2ISF (DEV%, FLNAMES$)

'Request to send Preamble and waveorm data

CALL IBWRT(DEV%, "WAVFRM?")
'Read the waveform data and write to file.
"The IBRDF transfer from GPIB to file directory.

'more file error check.(because IBRDF can’t check the disk cache)
ON ERROR GOTO ERRHANDLER
OPEN FLNAME$ FOR OUTPUT AS #1
CLOSE #1

CALL IBRDF(DEV%, FLNAMES)
IF IBSTA% AND &H8000 THEN
BEEP
PRINT "Error on writing data.”
END
ELSE
PRINT IBCNTL&; "bytes data is written to ”; FLNAME$
END IF

ON ERROR GOTO 0
END SUB

4-20 AWG2000 Series Programmer Manual

Programming Examples

Example 2: Waveform Transfer #2

The second example illustrates a simple waveform transfer from the external
controller to the instrument.

In case of QuickC

/*

* putwfm.c — a simple waveform transfer program that restores waveform
* to the instrument. The waveform must be one obtained with getwfm

* program.

*/

include <stdio.h>

include "decl.h”

include "exit.h”

void checkarg();

char *infile; /* Output file descriptor */
char *destination; /* Destination from which a waveform is transferred */

main(argc, argv)

int argc;
char *argvl[];
{

printf("\n\n");

printf"PUTWFM — simple waveform transfer program.\n”);
printf("Copyright (c) Tektronix Japan, Ltd. ”);

printf(” All Rights Reserved.\n\n");

checkarg(argc, argv); /* Check if arguments are valid. */
open_dev(); /* Find GPIB devices */
DestSetup(); /* Define destination in the instrument */
FtoGPIBwrite(); /* Read preamble and waveform, and
write them to the instrument. */

close_dev();

}

/*

* Check if the arguments are valid.

*/

void checkarg(argc, argv)

int argc;

char *argvl[];

{

AWG2000 Series Programmer Manual 4-21

Programming Examples

/~k
* Check command line argument count.
*
if(argc != 3)
{
fprintf(stderr, "usage: putwfm <destination> <in—file>\n");
fprintf(stderr, "\twhere:\n");
fprintf(stderr, "\t\t<destination>\t\tis the destination”);
fprintf(stderr, ” waveform file to be written\n”);
fprintf(stderr, "\t\t<in—file>\tis the input file\n”);
exit(1);
}
/*
* Check for valid destination.
*/
destination = argv[1];
if(wfmfile(argv[1]) != 0)
{
fprintf(stderr, "ERROR: Invalid Destination: \"%s\":", argv[1]);
exit(1);
}
infile = argv[2];
}
/-k
* Check if the file extension is ".wfm’.
*

wimfile(name)
char *name;

{
int dlen = strlen(name);
if (dlen <4 || dlen > 12)
return —1;
if (strcmp(&name[dlen — 4], " WFM”) == 0 ||
strcmp(&name[dlen — 4], ".wfm”) == 0)
return O;
return -1,
}
/*
* Define destination to be written in the instrument.
*/

4-22 AWG2000 Series Programmer Manual

Programming Examples

DestSetup()

{
char cmd[100];

sprintf(cmd, ":DATA:DESTINATION \"%s\"", destination);
if(awgWrite(cmd) < 0)
{
gpiberr("Write Error: Unable to Setup waveform parameters”);
exit(1);

}

/*

* Read waveform and preamble from a file, and then write them
* to the instrument.

*/

FtoGPIBwrite()

{
if (WrtFtoG(infile) < 0)
{
gpiberr("Read Error/File Open Error:”);
exit(1);
}
}

In case of Quick BASIC

DECLARE SUB CHKSTAT (DEV%, ESR%, EVENTS$)

DECLARE SUB FINDDEV (KEYNAMES$, DEV%)

DECLARE SUB EXTOPT (OPTIONS$, FLNAMES, DESTINATIONS$)
DECLARE FUNCTION DISKERRS ()

DECLARE SUB ISF2GPIB (DEV%, FLNAME$)

'$INCLUDE: '"QBDECL.BAS’

PRINT

PRINT "PUTWFM Ver.1.0 "

PRINT ” Sample Program for AWG2000 series”

PRINT” Copyright(C) Tektronix Japan, Ltd. All rights reserved. ”
PRINT ” No warranty.”

'Check COMMAND Arguments and extract source & filename
OPTIONS$ = COMMAND$
CALL EXTOPT(OPTIONS, FLNAMES$, DESTINATIONS$)

'GPIB Adress search

AWG2000 Series Programmer Manual

4-23

Programming Examples

KEYNAMES$ = "SONY/TEK,AWG2"
CALL FINDDEV(KEYNAMES$, DEV%)
PRINT KEYNAMES$

IF DEV% = 0 THEN BEEP: END

'Check file name.

WRT$ = ":DATA:DESTINATION " + DESTINATIONS +

CALL IBWRT(DEV%, WRTS$)
CALL CHKSTAT(DEV%, ESR%, EVENTS$)
IF ESR% <> 0 THEN
BEEP
PRINT "Error on file name.”
PRINT EVENT$
END
END IF

'Data transfer.

CALL ISF2GPIB(DEV%, FLNAME$)

'Check GPIB Status

DO
CALL CHKSTAT(DEV%, ESR%, EVENTS$)
IF ESR% <> 0 THEN
BEEP
PRINT "Worning.”
PRINT EVENTS$
END IF
LOOP UNTIL ESR% =0

END

'ERROR Trap routine

ERRHANDLER:
BEEP
PRINT "ERROR. "; DISKERR$
END

END

4-24

End of Main procedure

AWG2000 Series Programmer Manual

Programming Examples

SUB CHKSTAT (DEV%, ESR%, EVENTS$)

CALL IBRSP(DEV%, sta%)
CALL IBWRT(DEV%, "*esr?”)
RD$ = SPACES$(16)

CALL IBRD(DEV%, RD$)
ESR% = VAL(RD$)

CALL IBWRT(DEV%, "allev?”)

RD$ = SPACE$(500)

CALL IBRD(DEV%, RD$)

EVENT$ = LEFT$(RD$, IBCNT% — 1)

END SUB

FUNCTION DISKERR$
SELECT CASE ERR
CASE 54
DISKERR$ = "Bad file mode”
CASE 64
DISKERR$ = "Bad file name”
CASE 52

DISKERR$ = "Bad name or number”

CASE 25

DISKERRS$ = "Device fault”
CASE 57

DISKERRS$ = "Device /O error”
CASE 24

DISKERR$ = "Device timeout”
CASE 68

DISKERR$ = "Device unavailable”
CASE 61

DISKERRS$ = "Disk full”
CASE 72

DISKERR$ = "Disk-media error”
CASE 71

DISKERR$ = "Disk not ready”
CASE 53

DISKERR$ = "File not found”
CASE 62

DISKERR$ = "Input past end of file”

CASE 76
DISKERR$ = "Path not found”
CASE 75

DISKERR$ = "Path/File sccess error”

AWG2000 Series Programmer Manual

4-25

Programming Examples

CASE 70
DISKERR$ = "Permission denied”
CASE 67
DISKERR$ = "Too many files”
CASE ELSE
DISKERRS$ = "??7?”
END SELECT
END FUNCTION

SUB EXTOPT (OPTIONS$, FLNAMES$, DESTINATIONS$)

IF OPTIONS$ =™ THEN GOTO DISPUSAGE
OPTION$ = OPTIONS$ + "

FLNAMES$ ="

DESTINATIONS ="

'Extract string between spaces.
FOR 1% = 1 TO LEN(OPTIONS)
A$ = MID$(OPTIONS, 1%, 1)
IF A$ =""THEN EXIT FOR
DESTINATIONS = DESTINATIONS + A$
NEXT 1%

FOR J% = 1% + 1 TO LEN(OPTIONS)
A$ = MID$(OPTIONS, J%, 1)
IF A$ =" ” THEN EXIT FOR
FLNAMES = FLNAMES + A$

NEXT J%

'Check arguments

IF INSTR(DESTINATIONS, ".WFM") AND FLNAME$ <> " THEN EXIT SUB

BEEP
PRINT ”"Invalid argument.”
DISPUSAGE:
PRINT
PRINT "Usage:PUTWFM <destination> <filename>"
PRINT
PRINT " <destination>:Waveform filename to distination”
PRINT” extention is ."WFM"
PRINT
PRINT " <filename>:Waveform file to transfer”
PRINT ” must be instument specified format.”

4-26 AWG2000 Series Programmer Manual

Programming Examples

PRINT

PRINT " This program read the waveform file form disk and send to the AWG2000.”
PRINT " If same as <destination> is already exist in the memory of the AWG2000,”
PRINT " and if the file isn't locked, It's overwrited.”

END
END SUB
SUB FINDDEV (KEYNAMES$, DEV%)

CALL IBFIND("GPIBO”, BD%)

IF BD% < 0 THEN
KEYNAME$ = "GPIBO’ not found.”
DEV% =0
EXIT SUB

END IF

CALL IBFIND("DEV1”, DEV%)

IF DEV% <=0 THEN
KEYNAME$ = "DEV1' not found.”
DEV% =0
EXIT SUB

END IF

CALL IBSRE(BD%, 0)

CALL IBSRE(BD%, 1)

V% = 11: CALL IBTMO(DEV%, V%)
AD% =0

'GPIB Address search

DO
CALL IBPAD(DEV%, AD%)
CALL IBWRT(DEV%, "*IDN?”)
IF IBSTA% AND &H8000 THEN
AD% = AD% + 1
ELSE
id$ = SPACES$(100): CALL IBRD(DEV%, id$)
IF INSTR(id$, UCASES$(KEYNAMES)) THEN
EXIT DO
ELSE
AD% = AD% + 1
CALL IBCLR(DEV%)
END IF

AWG2000 Series Programmer Manual 4-27

Programming Examples

END IF
IF 30 < AD% THEN
KEYNAMES$ = "Specified instrument not found.”
DEV% =0
EXIT SUB
END IF
LOOP

V% = 13: CALL IBTMO(DEV%, V%)
KEYNAMES = LEFT$(id$, IBCNT% — 1) +” (GPIB Address =" + STR$(AD%) + ")’
CALL IBWRT(DEV%, ":DESE 255;*CLS")

END SUB
SUB ISF2GPIB (DEV%, FLNAMES$)

'Read waveform from file and transfer to GPIB.
'The IBWRTF function transfer from file to GPIB directry
'No problem on binary file.

'more file error check
ON ERROR GOTO ERRHANDLER
OPEN FLNAMES$ FOR INPUT AS #1
CLOSE #1

CALL IBWRTF(DEV%, FLNAMES)
IF IBSTA% < 0 THEN
BEEP
PRINT "Error when transfer data.”
END
ELSE
PRINT FLNAMES; "is tarnsfered (at”; IBCNTL&; "bytes).”
END IF

ON ERROR GOTO 0
END SUB

4-28 AWG2000 Series Programmer Manual

Programming Examples

Example 3: Equation Transfer and Setting Up

The third example illustrates how to transfer and compile equation data, how
to synchronize its termination, how to setup and turn on the output.

In case of QuickC

/*

* equset.c — equation data processing program that writes and compiles
* equation data, sets the instrument up, and turns the output on.

*/

include <stdio.h>

include <stdlib.h>

include "decl.h”
include "exit.h”
define CMD_LEN 100

typedef long LONG;
LONG wpoints = 8000;

char *equfile = "equsampl.equ”; /* Equation file to be created */
char *wfmfile = "equsampl.wfm”; /* Waveform file to be created */
char *equation = [* Equation data */

"range(0,50ms)\n\
K0=100e-3\n\

K1=63.3e-9\n\

K2=K0*K1\n\

K3=10e-3\n\
exp(—t/K3)*sin(1/sqrt(K2)*t)\n\
range(51ms,100ms)\n\
exp(—t/K3)*sin(1/sqrt(K2)*t)\n\
range(101ms,150ms)\n\
exp(—t/K3)*sin(1/sqrt(K2)*t)\n\
range(151ms,200ms)\n\
exp(—t/K3)*sin(1/sqrt(K2)*t)\n\
range(201ms,250ms)\n\
exp(—t/K3)*sin(1/sqrt(K2)*t)\n\
norm()\n”;

main()

{
char cmd[CMD_LEN + 1];

open_dev(); /* Find GPIB devices */

AWG2000 Series Programmer Manual 4-29

Programming Examples

printf("\n\n");

printfCEQUSET — equation data processing program.\n”);
printf("Copyright (c) Tektronix Japan, Ltd. ");

printf(” All Rights Reserved.\n\n");

printf("Start processing ...\n\n");
printf("Lock front panel controls\n”);
awgWrite(":LOCK ALL");

/~k
* Process equation data
*/
WriteCompEqu(); /* Write equation data and number of waveform
points and compile */
WaveOutput(); /* Setup for output and turns output on */
/*
* Clean up
*/
printf("Recover front panel controls\n\n”);
awgWrite(":LOCK NONE");
close_dev();
}
/~k
* Write equation data and number of waveform points and compile
*/
WriteCompEqu()
{
int I /* Size */
char cmd[CMD_LEN + 1]; /* Command buffer */
awgWrite("ABSTOUCH EDIT”); /* Display EDIT screen */
/*
* Check whether the file exists
*/
if (awgWrite("*CLS ;:DESE 255 ;*ESE 16 ;*SRE 0”) < 0)
{ [* Set for serial poll */
gpiberr("Write Error:”);
exit(3);
}

sprintf(cmd, " MEMORY:LOCK? \"%s\"", equfile);
if (awgWrite(cmd) < 0)

4-30 AWG2000 Series Programmer Manual

Programming Examples

{
gpiberr("Write Error:\n”);
exit(3);
}
if (!(serialp() & 0x20)) /* Check ESB bit in SRB */
{
awgtmo(T1s); /* Wait further 100us */
awgwait(TIMO | SRQI | RQS | END);
awgtmo(T10s); /* Reset to 10s */
if (!(serialp() & 0x20))
{
fprintf(stderr,
"Equation file (%s) already exists\n”, equfile);
exit(3);
}
}
/-k
* Write Equation Data
*/
if (awgWrite("*CLS ;:DESE 255 ;*ESE 1 ;*SRE 0”) < 0)
{ [* Set for serial poll */
gpiberr("Write Error:");
exit(3);
}

printf("Write equation data\n”);
| = strlen(equation);
eotcont(0); /* Turns off sending terminator */
sprintf(cmd, ":EQUATION:DEFINE \"%s\", #%d%d",
equfile, DigitCount((LONG)I), I);
if (awgWrite(cmd) < 0)

{
gpiberr("Equation Definition Error:”);
exit(3);
}
eotcont(1); /* Turns on sending terminator */
if (awgWrite(equation) < 0)
{
gpiberr("Equation Definition Error:”);
exit(3);
}

AWG2000 Series Programmer Manual 4-31

Programming Examples

/*
* Write number of waveform points
*
printf("Write number of waveform points\n”);
sprintf(cmd, ":EQUATION:WPOINTS \"%s\",%Id", equfile, wpoints);
if (awgWrite(cmd) < 0)
{
gpiberr("Waveform Point Write Error:”);
exit(3);
}
/-k
* Compile
*/
printf("Start compiling...\n");
sprintf(cmd, ":EQUATION:COMPILE \"%s\" ;*OPC”, equfile);
if (awgWrite(cmd) < 0)
{
gpiberr("Equation Compile Command Write Error:”);
exit(3);
}
/*
* Wait termination by checking status byte.
*/
printf("Wait its termination\n\n”);
while (Iserialp()) /* Keep looping while serial_poll =0 */
awgWrite(":DESE 255 ;*ESE 0 ;*SRE 0”); /* Set back */
}
/*
* Set the instrument up for output, and turns output on.
*/
WaveOutput()
{
int I [* Size */
char cmd[CMD_LEN + 1]; /* Command buffer */
awgWrite("ABSTOUCH SETUP"); /* Display SETUP screen */

awgWrite(":OUTPUT:CHL1:STATE OFF"); /* Turns output off */

4-32 AWG2000 Series Programmer Manual

Programming Examples

/~k
* Set waveform to CH1
*/
printf("Set waveform file (%s) to CH1\n", wimfile);
sprintf(cmd, "CH1:WAVEFORM \"%s\"", wfmfile);
if (awgWrite(cmd) < 0)
{
gpiberr("Write Error:");
exit(4);
}
/*
* Set mode to triggered
*/
printf("Set mode to triggered\n”);
if (awgWrite("MODE TRIGGERED”) < 0)
{
gpiberr("Write Error:");
exit(4);
}
/-k
* Set output parameters and ready to start output by trigger
*
printf("Set amplitude to 2.0V, and frequency to 20MHz\n\n");
if (awgWrite(":CH1:AMPLITUDE 2.0V") <0 ||
awgWrite(":CLOCK:FREQUENCY 20MHz") <0 ||
awgWrite(":OUTPUT:CH1:STATE ON”) < 0)
{
gpiberr("Write Error:”);
exit(4);
}
}
/~k
* Count digits
*/
DigitCount(n)
LONG n;
{
int cc=1;

AWG2000 Series Programmer Manual 4-33

Programming Examples

while (n = Idiv(n, 10L).quot)
CC++;
return cc;

}
In case of Quick BASIC

DECLARE SUB WAVEOUTPUT (DEV%, WFMFILES$)

DECLARE SUB WRITECOMPEQU (DEV%, WPOINTS&, EQUFILES, EQUATIONS)
DECLARE SUB CHKSTAT (DEV%, ESR%, EVENTS$)

DECLARE SUB FINDDEV (KEYNAMES$, DEV%)

'$INCLUDE: 'QBDECL.BAS’

PRINT

PRINT "EQUSET Ver.1.0 "

PRINT " Sample Program for AWG2000 series”

PRINT” Copyright(C) Tektronix Japan, Ltd. All rights reserved. ”
PRINT " No warranty.”

'Define equation data and file names

WPOINTS& = 8000 'number of waveform points
EQUFILES$ = "EQUSAMPL.EQU” ’'Equation file to created
WFMFILE$ = EQUFILE$ 'Waveform file to Created
MID$(WFMFILES$, INSTR(WFMFILES, ".EQU")) = ".WFM”
EQUATIONS =" 'Equation data

EQUATIONS = EQUATIONS + "range(0,50ms)” + CHR$(10)
EQUATIONS = EQUATIONS$ + "K0=100e-3" + CHR$(10)

EQUATIONS = EQUATIONS + "K1=63.3e—-9" + CHR$(10)

EQUATIONS = EQUATIONS + "K2=K0*K1" + CHR$(10)

EQUATIONS = EQUATIONS + "K3=10e-3" + CHR$(10)

EQUATIONS = EQUATIONS + "exp(=t/K3)*sin(1/sqrt(K2)*t)” + CHR$(10)
EQUATION$ = EQUATIONS + "range(51ms,100ms)” + CHR$(10)
EQUATIONS$ = EQUATIONS + "exp(-t/K3)*sin(1/sqrt(K2)*t)” + CHR$(10)
EQUATIONS = EQUATIONS + "range(101ms,150ms)” + CHR$(10)
EQUATIONS = EQUATIONS + "exp(—t/K3)*sin(1/sqrt(K2)*t)” + CHR$(10)
EQUATIONS = EQUATIONS + "range(151ms,200ms)” + CHR$(10)
EQUATIONS = EQUATIONS + "exp(-t/K3)*sin(1/sqrt(K2)*t)” + CHR$(10)
EQUATIONS = EQUATIONS + "range(201ms,250ms)” + CHR$(10)
EQUATIONS$ = EQUATIONS + "exp(-t/K3)*sin(1/sqrt(K2)*t)” + CHR$(10)
EQUATIONS = EQUATIONS + "norm()”

'Search GPIB Address

KEYNAME$ = "SONY/TEK,AWG2”

4-34 AWG2000 Series Programmer Manual

Programming Examples

CALL FINDDEV(KEYNAMES$, DEV%)
PRINT KEYNAMES$
IF DEV% = 0 THEN BEEP: END

'Lock the front pannel controls
PRINT "Processing...”
PRINT "Lock front pannel controls.”
CALL IBWRT(DEV%, ":LOCK ALL”")

"Write the equation data and number of points and compile

CALL WRITECOMPEQU(DEV%, WPOINTS&, EQUFILE$, EQUATIONS)

'Setup fot output and turns output on

CALL WAVEOUTPUT(DEV%, WFMFILES)

'Check GPIB Status

DO
CALL CHKSTAT(DEV%, ESR%, EVENTS$)
IF ESR% <> 0 THEN
BEEP
PRINT "Worning.”
PRINT EVENTS$
END IF
LOOP UNTIL ESR% =0

'UNLock front pannel controls
PRINT "Recover front panel controls.”
CALL IBWRT(DEV%, ":LOCK NONE")
END

End of Main procedure
SUB CHKSTAT (DEV%, ESR%, EVENTS$)

CALL IBRSP(DEV%, STB%)
CALL IBWRT(DEV%, "*ESR?")
RD$ = SPACE$(16)

CALL IBRD(DEV%, RD$)
ESR% = VAL(RD$)

AWG2000 Series Programmer Manual 4-35

Programming Examples

CALL IBWRT(DEV%, "ALLEV?")
RD$ = SPACE$(500)

CALL IBRD(DEV%, RD$)

EVENT$ = LEFT$(RD$, IBCNT% — 1)

END SUB

SUB FINDDEV (KEYNAMES$, DEV%)

CALL IBFIND("GPIB0O”, BD%)

IF BD% < 0 THEN
KEYNAME$ = "GPIBO’ not found.”
DEV% =0
EXIT SUB

END IF

CALL IBFIND("DEV1", DEV%)

IF DEV% <=0 THEN
KEYNAMES$ = "DEV1' not found, Please run IBCONF and define.”
DEV% =0
EXIT SUB

END IF

CALL IBSRE(BD%, 0)

CALL IBSRE(BD%, 1)

'GPIB Address search

V% = 11: CALL IBTMO(DEV%, V%)
AD% =0
DO
CALL IBPAD(DEV%, AD%)
CALL IBWRT(DEV%, "*IDN?”)
IF IBSTA% AND &H8000 THEN
AD% = AD% + 1
ELSE
ID$ = SPACE$(100): CALL IBRD(DEV%, ID$)
IF INSTR(ID$, UCASES$(KEYNAMES)) THEN
EXIT DO
ELSE
AD% = AD% + 1
CALL IBCLR(DEV%)
END IF
END IF
IF 30 < AD% THEN

4-36 AWG2000 Series Programmer Manual

Programming Examples

KEYNAMES$ = "Specified instrument not found.”
DEV% =0
EXIT SUB
END IF
LOOP

V% = 13: CALL IBTMO(DEV%, V%)
KEYNAMES = LEFT$(ID$, IBCNT% — 1) +” (GPIB Address =" + STR$(AD%) +)"
CALL IBWRT(DEV%, ":DESE 255;*CLS")

END SUB
SUB WAVEOUTPUT (DEV%, WFMFILES)

'‘Dispaly SETUP screen to see the operation

CALL IBWRT(DEV%, "ABSTOUCH SETUP”)

"Turns output off

CALL IBWRT(DEV%, "OUTPUT:CH1:STATE OFF”")

'Set waveform file to CH1
PRINT "Set the "; WFMFILE$; ” to CH1.”
WRT$ = "CH1:WAVEFORM ™ + WEMFILES$ + ™™
CALL IBWRT(DEV%, WRTS$)

'Set mode to triggered
PRINT "Set mode to triggered.”
CALL IBWRT(DEV%, "MODE TRIGGERED")

'Set output parameters and turns output on

PRINT "Set amplitude to 2.0V, and frequency to 20MHz.”
CALL IBWRT(DEV%, "CH1:AMPLITUDE 2.0V”)

CALL IBWRT(DEV%, "CLOCK:FREQUENCY 20MHz")
CALL IBWRT(DEV%, "OUTPUT:CH1:STATE ON")

END SUB
SUB WRITECOMPEQU (DEV%, WPOINTS&, EQUFILE$, EQUATIONS)

'Check file name to transfer

AWG2000 Series Programmer Manual 4-37

Programming Examples

CALL IBWRT(DEV%, "ABSTOUCH EDIT”)'Display EDIT screen to see operation

CALL IBWRT(DEV%, ""MEMORY:CATALOG:EQU?")
RD$ = SPACE$(5000)
CALL IBRD(DEV%, RD$)
IF INSTR(RD$, UCASES$(EQUFILES)) THEN
BEEP
PRINT EQUFILES; "is already exist.”
INPUT "overwrite(y/[n])”; SURE$
IF UCASE$(SURE$) <> "Y” THEN
CALL IBWRT(DEV%, "UNLOCK ALL")
END
END IF
END IF

"Write the equation data
EQULENGTHS = LTRIM$(RTRIM$(STR$(LEN(EQUATIONS))))
DIGCOUNTS$ ="#" + LTRIM$(RTRIM$(STR$(LEN(EQULENGTHS)))) + EQULENGTH$
WRTS$ = :EQUATION:DEFINE " + EQUFILE$ + ™,” + DIGCOUNT$ + EQUATION$
CALL IBWRT(DEV%, WRTS$)
CALL CHKSTAT(DEV%, ESR%, EVENTS$)
IF ESR% <> 0 THEN
BEEP
PRINT "Error on write the equation data.”
PRINT EVENT$
CALL IBWRT(DEV%, "UNLOCK ALL")
END
END IF

"Write the number of points
WRTS$ = "EQUATION:WPOINTS ™ + EQUFILES$ + ™,” + STR$(WPOINTS&)
CALL IBWRT(DEV%, WRTS$)
CALL CHKSTAT(DEV%, ESR%, EVENTS)
IF ESR% <> 0 THEN
BEEP
PRINT "Error on write the number of points.”
PRINT EVENTS$
CALL IBWRT(DEV%, "UNLOCK ALL")
END
END IF

'Set the event report resisters to know the operation complete

4-38 AWG2000 Series Programmer Manual

Programming Examples

'Not use the SRQ and check by serial polling.

CALL IBWRT(DEV%, ":DESE 255;*ESE 1;*SRE 0;*CLS")

‘Compile
PRINT "Compile in progress...”
WRT$ = "EQUATION:COMPILE " + EQUFILES$ + ";*OPC”
CALL IBWRT(DEV%, WRT$)

"Wait to the operation complete
DO
CALL IBRSP(DEV%, STB%)
LOOP UNTIL STB%

'Check the standard event status resister, if it's 1, that's OK but...

CALL CHKSTAT(DEV%, ESR%, EVENT$)
IF ESR% <> 1 AND ESR% <> 0 THEN
BEEP
PRINT "Error at Compiling.”
PRINT EVENT$
CALL IBWRT(DEV%, "UNLOCK ALL")
END
END IF

END SUB

AWG2000 Series Programmer Manual

4-39

Programming Examples

Example 4: Interactive Communication

The fourth example illustrates interactive communication method between

the external controller and the instrument. In this program, sending

GPIB commands, reading from the output queue, controlling event/status, and
etc. are shown.

In case of QuickC

/*
*intrv.c — interactive communication program between the external
* controller and the instrument.

*/
include <stdio.h>
include "decl.h”

define MAX_BUF 128
define MAX_ARG 10
define FILE_LEN 15
define RDO 0

define RD1 1

define RD2 2

define RD3 3

define ON 1

define OFF -1

define ERROR -1
define NORMAL 1
define QUERY s

define NOQUERY ‘N’
extern int iostatus; /* Same as ibsta */

void viewfile();

void execfile();

void helpmessg();
void process();

void bnull();

void redirect();

void chkstatus();

void ReadOutputbuf();
char *getfile();

int argc;

char *argv[MAX_ ARG];

char readbuf[MAX_BUF + 1];
char replace[MAX_BUF + 1];

4-40 AWG2000 Series Programmer Manual

Programming Examples

char assmble[MAX_BUF + 1];
char stack[MAX_ BUF + 1];

FILE *ifd; * Input file descriptor */
FILE *ofd; /* Output file descriptor */
char *rfile;
int rflag; /*>:RD1, >>:RD2, <:RD3, none: RDO */
int ropnum;
int sflag;
main()
{
open_dev(); /* Fing GPIB devices */

printf("\n\n”);

printf("INTRV — interactive communication program.\n”);
printf("Copyright (c) Tektronix Japan, Ltd. ");

printf(” All Rights Reserved.\n”);

printf("Type ’help’ to display help messages.\n”);
printf("Type 'q’ or 'quit’ to exit from the program.\n\n”);

printf("Start interactive communication\n\n”);

process(); /* Communication process */
close_dev();

/*
* Communication process.

*

*/

void process()

{
/*
* Initialize
*/
stack[0] = "\0’;
replace[0] = "\0’;
ofd = stdout; /* Output to standard output */
ifd = stdin; /* Input from standard input */
resets(1); [* Set enable registers */

/*

* Start interactive communication

*/

AWG2000 Series Programmer Manual 4-41

Programming Examples

for (;;)
{
chkstatus(); /* Check status byte, and dequeue events
if exists */
tcerider(); /* Reset ofd to stdout */

/*
* Get and parse command line
*/

inputline();

/*
* Terminate interactive process
*/

if (stremp(argv[0], "q") == O || strcmp(argv[0], "quit”) == 0)
break; /* Terminate interactive process */

/*
* Redirect
*/

if (rflag == RD1 || rflag == RD2)
redirect();

/*
* Execute built-in command
*/

if (strcmp(argv[0], "exec”) == 0)
execfile(argc, argv[1]);
else if (strcmp(argv([0], "view") == 0)
viewfile(argc, argv[1]);
else if (strcmp(argv[0], "help”) == 0)
helpmessg(argc);
else if (strcmp(argv[0], "status”) == 0)
statusbyte(argc);
else if (strcmp(argv[0], "resetes”) == 0)
resetes(argc);
/*
* Transmit GPIB command or query. If transmitting a query, the output

* queue is immediately read.
*/

4-42 AWG2000 Series Programmer Manual

Programming Examples

else if (argc > 0)

{
if (rflag == RD3)
{
fprintf(stderr,
"syntax error: (%s)\n”, assmble);
}
else if (strcmp(assmble, "?”) == 0)
{
ReadOutputbuf();
}
else
{
if (awgWrite(assmble) < 0)
{
gpiberr("Write Error:™);
continue;
}
if (chkquery(assmble) == QUERY)
ReadOutputbuf();
}
}
else if (rfflag == RD3)
{
WrtFtoG(rfile);
}
}
}
/*

* Input command line is parsed and stored into following memory.
* *argv[] —command and arguments delimited by space.

* argc - divided count.

assemble — concatenation of *argv([].

rflag —'>",’>>"’<’, or none.

rfile — input or output file to be redirected.

If the string '!!" exists in command line, it is replaced with
previous command line.

*
*
*
*
*
*

*/

inputline()

{

int i /* loop index */

AWG2000 Series Programmer Manual 4-43

Programming Examples

for (;;)
{
printf("AWG2020 >> "),
if (fgets(readbuf, MAX_BUF, ifd) == NULL) /* Read one line */
{
if (ifd == stdin)
{
fprintf(stderr, "Detected system error:”);
fprintf(stderr, "restart the program\n”);
exit (1);
}
fclose(ifd);
ifd = stdin;
continue;
}
if (ifd != stdin)
printf("%s”, readbuf);
chkreplace(readbuf);
setarg(replace); /* Parse input line */
if (I(argc < 1 && rflag == RDOQ)) /* Check input */
break;

}

assmble[0] ="\0’;
for (i=0;i<argc; i++) /* Assemble line */
{

strcat(assmble, argv][i]);

if ((i+1) < argc)

strcat(assmble, " ”);

}
strcpy(stack, assmble);
if (rflag !'= RDO)

{
strcat(stack, " ");
strcat(stack, (rflag == RD1)?">":(rflag == RD2)?">>":"<");
strcat(stack, " ");
strcat(stack, rfile);
}
}
/*
* Check 'II’ and replace if exists
*/

4-44 AWG2000 Series Programmer Manual

Programming Examples

chkreplace(s)

char *s;

{
char *p = stack;
char *r =replace;

int cc=0; /* flag: replaced or not */
/-k
* replace !! with previous input line
*/
while (*s)
{
if (strncmp(s, "!1”, 2) == 0)
{
for (p = stack; *p;)
*r++ = *p++;
S++; s++; p= stack;
CC++;
}
else
*r++ = *S++;
}
*r="\0’;
if (cc!=0)
printf("%s”, replace);
}
/*
* Check if "?" is included in input line
*/
chkquery(s)
char *s;
{
for (; *s; s++)
if (*s =="7")
return QUERY; /* May be query or query is
included in a line */
return NOQUERY; [* Set command(s) only
}
/*

* Read from output queue, and write stdin or file
*/

AWG2000 Series Programmer Manual

*/

4-45

Programming Examples

void ReadOutputbuf()

{
FILE *tfd,
char *p;
char sc; [* Store one character */
int i [* Loop index */
/*
* Check MAV bit in SBR
*/
if (!(serialp() & 0x10))
{
awgtmo(T1s); [* Wait further 100us */
awgwait(TIMO | SRQI | RQS | END);
awgtmo(T10s); /* Reset to 10s */
if (!(serialp() & 0x10))
{
fprintf(stderr,
"Nothing to take out in Output Queue!\n");
return;
}
}
/*
* Take out
*/
if (rflag == RD1 || rflag == RD2)
{
for (;;)
{
if (awgRead(readbuf, MAX_BUF) < 0)
{
gpiberr("Read Error:”);
break;
}
for (p = readbuf, i = 0; i < ibcnt; i++)
putc(*p++, ofd);
if (iostatus & (ERR | TIMO | END))
break;
}
}
else /* Read Output Queue, Print to stdout */
{
4-46

AWG2000 Series Programmer Manual

Programming Examples

sc=""
for (;;)
{
if (awgRead(readbuf, MAX_BUF) < 0)
{
gpiberr("Read Error:”);
break;
}
for (p = readbuf, i = 0; i < ibcnt; i++, p++)
{
it (p ==")
{
SC =*p;
}
else
{
if *p==""&& sc==")
putc('\n’, ofd);
elseif (sc==")
putc(sc, ofd);
putc(*p, ofd);
SC = *p;
}
}
if (iostatus & (ERR | TIMO | END))
break;
}
}
}
/-k
* Parse command line
*/
setarg(str)
char *str;
{

char *s=str;
char *p =str;

sflag = OFF;
rflag = RDO;

argc = 0;

for (; *s; s++)

{

AWG2000 Series Programmer Manual 4-47

Programming Examples

4-48

switch ((int)*s)

{

case’’:

sflag = OFF;
bnull(p, s);
break;

case’\n’:

sflag = OFF,;
bnull(p, s);
—S;

break;

case >':

ropnum = argc — 1;

bnull(p, s);
if (*(s+1) ==">")
{
rflag = RD2,;
*++s ="\0’;
}

else

{

}

sflag = OFF;

s = getfile(++s);
S—,

break;

rflag = RD1,

case < :

ropnum = argc — 1;

bnull(p, s);

if (*(s+1) =='<)
*++5 ="\0";

rflag = RD3;

sflag = OFF;

s = getfile(++s);

S—,

break;

default :

if (sflag == OFF)

{
sflag = ON;

argvlargc] =p = s;

++argc;

AWG2000 Series Programmer Manual

Programming Examples

}
}
}
/*
* Put \O’ at the end of the command and arguments
*/

void bnull(p, s)

char *p,*s;
{
*s— ="\0’;
for ; p<s;s—)
{
if(*s=="")
*s ="\0;
else
return;
}
}
/*
* Extract file name placed after '<’, ’>’, or '>>’,
*/

char *getfile(s)

char *s;

{
for (; *s ==""; s++)
rfile = s;

for ((*s && *s 1="\n" && *s I= "’ && *s |=">' && *s 1= '<’; s++)

*s ="\0’,

return ++s;
/*
* 'view’ built-in command.
*/

void viewfile(n, name)
int n;
char *name;

AWG2000 Series Programmer Manual 4-49

Programming Examples

}
/-k

FILE *tfd,

int c;

if (n!=2)

{
fprintf(stderr, "usage: view file—name\n”);
return;

}

if ((tfd = fopen(name, "r")) == NULL)

{
fprintf(stderr, "can’t open file (%s)\n”, name);
return;

}

while ((c = getc(tfd)) |= EOF)
putc(c, ofd);
fclose(tfd);

* 'exec’ built-in command.

*/
void
int
char

{

4-50

execfile(n, name)
n;
*name;

FILE *tfd;

if (n!=2)

{
fprintf(stderr, "usage: exec file—name\n”);
return;

}

if ((tfd = fopen(name, "r")) == NULL)

{
fprintf(stderr, "can’t open file (%s)\n”, name);
return;

}
ifd = tfd;

AWG2000 Series Programmer Manual

Programming Examples

/~k
* 'status’ built-in command
*/
statusbyte(n)
int n;
{
if (n!=1)
fprintf(stderr, "Arguments are neglected!'\n\n");
fprintf(ofd, "Status byte: (%X)h\n”, serialp());
}
static char hmessg[] = {"\n\
/*
**help’ built-in command.
*/
void helpmessg(n)
int n;
{
char *p =hmessg;
if (n!=1)
{
fprintf(stderr, "Arguments are neglected!'\n\n");
}
while (*p)
putc(*p++, ofd);
}
/~k
*’resetes’ built-in command
*/
resetes(n)
int n;
{
if (n!=1)
fprintf(stderr, "Arguments are neglected!'\n\n");
if (awgWrite("*CLS;:DESE 59;*ESE 58;*SRE 48") < 0)
{
gpiberr("Write Error: can’t set enable registers”);
}
}

AWG2000 Series Programmer Manual

4-51

Programming Examples

/~k
* Read event queue if event is being stacked.

*

*’\n’ is placed after event code and event message.

*/
void chkstatus()
{
int ccount =0;
int i
char *p;
/*
* Check ESB bit in SBR
*/
if (!(serialp() & 0x20))
{
awgtmo(T1s); /* Wait further 100us */
awgwait(TIMO | SRQI | RQS | END);
awgtmo(T10s); /* Reset to 10s */
if (!(serialp() & 0x20))
return;
}
/*
* Prepare to Take out
*/
if (awgWrite("HEADER OFF;*ESR?”) < 0 || awgWrite(":ALLEV?") < 0)
{
gpiberr("Write Error:");
return;
}
/*
* Read Event Queue
*/
for (;;)
{
if (awgRead(readbuf, MAX BUF) < 0)
{
gpiberr("Read Error:”);
break;
}

4-52 AWG2000 Series Programmer Manual

Programming Examples

for (p = readbuf, i = 0; i < ibent; i++, p++)

{
putc(*p, ofd);
if (*p =="," && ccount == 1)
{
putc('\n’, ofd);
ccount = 0;
}
elseif *p==",)
ccount++;
}
if (iostatus & (ERR | TIMO | END))
break;
}
if (awgWrite("HEADER ON”) < 0)
{
gpiberr("Write Error:");
return;
}
}
/-k
* Open file for output.
*/
void redirect()
{
FILE *tfd; [* temporary file descriptor */
if (rflag == RD1)
{
if ((tfd = fopen(rfile, "w")) == NULL)
{
fprintf(stderr, "can’t open file (%s)\n”, rfile);
return;
}
}
else if (rfflag == RD2)
{
if ((tfd = fopen(rfile, "a”)) == NULL)
{
fprintf(stderr, "can’t open file (%s)\n”, rfile);
return;
}
}

AWG2000 Series Programmer Manual 4-53

Programming Examples

ofd = tfd;
}
/*
* Close file after redirection.
*/
tcerider()
{
if (ofd != stdout)
{
fclose(ofd);
ofd = stdout;
}
}
4-54

AWG2000 Series Programmer Manual

Programming Examples

Support Functions

The examples in this section use the support functions listed below.

/*

*awglib.c — libraries of GPIB interfaces.

*/

include "decl.h”

int awgdeyv; * gpib descriptor of AWG */
int extcdev; [* gpib descriptor of GPIBO */
int iostatus; /* save a value of ibsta */

/*

* Find GPIB devices

*/

open_dev()

{

/*

* Assign unique identifiers to the device DEV1 and to the board GPIBO,
* store them in the variables “awgdev” and “extcdev”, respectively, and
* check for errors. If DEV1 or GPIBO is not defined, ibfind returns —1.

*/
if((awgdev = ibfind("DEV1")) < 0 || (extcdev = ibfind("GPI1B0")) < 0)
{
gpiberr("Ibfind Error: Unable to find device/board!”);
exit(0);
}
/*
* Clear the device and check for errors.
*/
if(ibclr(awgdev) < 0O || ibsre(extcdev, 0) < 0)
{
gpiberr("ibclr/ibsre Error: Unable to clear device/board!”);
exit(0);
}
/*

* Set up the Device Event Status Enable Register, Event Status Enable
* Register, and Service Request Enable Register to enable status

* events.

*/

AWG2000 Series Programmer Manual 4-55

Programming Examples

if (awgWrite("DESE 255”) < 0 || awgWrite("ESE 255”) <0 ||
awgWrite("*SRE 48") < 0)

{
gpiberr("GPIBWRITE Error: Unable to Initialize Device!”);
exit(0);
}
}
close_dev()
{
}
/*

* Read into the string from the device and wait for the
* read to finish.

*/
awgRead(resp, cnt)
char *resp;

int cnt;

{

/*

* Set the timeout for 10 seconds, send the command, and
* wait for the scope to finish processing the command.
*/

ibtmo(awgdev, T10s);
ibrd(awgdev, resp, cnt);
jostatus = ibsta;
resplibcnt] = \0’;

/*
* If ibwrt was successful, wait for completion.
*/
if(ibsta >=0)
ibwait(awgdev, CMPL);

return ibsta;

}
/*
* Send the contents of the string to the device and wait

* for the write to finish.
*/

4-56 AWG2000 Series Programmer Manual

Programming Examples

awgWrite(cmd)
char *cmd;
{

int cnt = strlen(cmd);

/*
* Set the timeout for 10 seconds, send the command
* wait for the instrument to finish processing the command.

*/

ibtmo(awgdev, T10s);

ibwrt (awgdev, cmd, cnt);
/*
* If ibwrt was successful, wait for completion.
*/

if(ibsta >=0)

ibwait(awgdev, CMPL);

return ibsta;
}
/*
* Read from GPIB device, and Write into a file.
*/
WrtGtoF(name)
char *name;
{

return ibrdf(awgdev, name);
}
/*
* Read from a file, and write into GPIB device.
*/
WrtFtoG(name)
char *name;
{

return ibwrtf(awgdev, name);
}
/*

* Get status byte.
*/

AWG2000 Series Programmer Manual 4-57

Programming Examples

serialp()

{

char serial_poll = 0;

ibrsp(awgdeyv, &serial_poll);
return serial_poll & Oxff;

}
/*
* Set time out
*/
awgtmo(tm)
int tm;
{
ibtmo(awgdeyv, tm);
}
/*
* Wait
*/
awgwait(wt)
int wit;
{
ibwait(awgdev, wt);
}
/*
* EQI control
*/
eotcont(status)
{
ibeot(awgdeyv, status);
}
/-k

* gpiberr.c — display error from defined error codes based on what
* is contained in ibsta. This routine would notify you that an IB

* call failed.

*/

#include "decl.h”

#include <stdio.h>

4-58 AWG2000 Series Programmer Manual

Programming Examples

void gpiberr(msg)

char *msg;

{
fprintf(stderr, "%s\n”, msg);
fprintf(stderr, "ibsta=(%X)h <", ibsta);

if (ibsta & ERR) fprintf(stderr, ” ERR");

if (ibsta & TIMO) fprintf(stderr, ” TIMO");
if (ibsta & END) fprintf(stderr, ” END”);

if (ibsta & SRQI) fprintf(stderr, ” SRQI”);
if (ibsta & RQS) fprintf(stderr, ” RQS");

if (ibsta & CMPL) fprintf(stderr, ” CMPL");
if (ibsta & LOK) fprintf(stderr, ” LOK");

if (ibsta & REM) fprintf(stderr, " REM”);

if (ibsta & CIC) fprintf(stderr, " CIC");

if (ibsta & ATN) fprintf(stderr, ” ATN");

if (ibsta & TACS) fprintf(stderr, ” TACS");
if (ibsta & LACS) fprintf(stderr, ” LACS");
if (ibsta & DTAS) fprintf(stderr, ” DTAS");
if (ibsta & DCAS) fprintf(stderr, ” DCAS”);
fprintf(stderr, " >\n");

fprintf(stderr, "iberr= %d”, iberr);

if (iberr == EDVR) fprintf(stderr, ” EDVR <DOS Error>\n");

if (iberr == ECIC) fprintf(stderr, ” ECIC <Not CIC>\n");

if (iberr == ENOL) fprintf(stderr, ” ENOL <No Listener>\n");

if (iberr == EADR) fprintf(stderr, ” EADR <Address error>\n");

if (iberr == EARG) fprintf(stderr, ” EARG <Invalid argument>\n");
if (iberr == ESAC) fprintf(stderr, ” ESAC <Not Sys Ctrlr>\n");

if (iberr == EABO) fprintf(stderr, ” EABO <Op. aborted>\n");

if (iberr == ENEB) fprintf(stderr, ” ENEB <No GPIB board>\n");
if (iberr == EOIP) fprintf(stderr, ” EOIP <Async I/O in prg>\n");

if (iberr == ECAP) fprintf(stderr, ” ECAP <No capability>\n"); if (iberr == EFSO) fprintf(stderr, ”

EFSO <File sys. error>\n");
if (iberr == EBUS) fprintf(stderr, " EBUS <Command error>\n");
if (iberr == ESTB) fprintf(stderr, ” ESTB <Status byte lost>\n");
if (iberr == ESRQ) fprintf(stderr, ” ESRQ <SRQ stuck on>\n");

/-k
if (iberr == ETAB) fprintf(stderr, ” ETAB <Table Overflow>\n");
*/

}

AWG2000 Series Programmer Manual

4-59

Programming Examples

/*

* exit.h

*/

define exit(x) {awgWrite(":HEADER ON;:UNLOCK ALL”");exit(x);}

4-60 AWG2000 Series Programmer Manual

-/
Appendix A: Character Charts

Table A-1: The AWG2000 Character Set

0 1 2 3 4 5 6 7
0 NUL space 0 @ P ‘ p
0 16 32 48 64 80 96 112
1 Q ! 1 A Q a q
1 17 33 49 65 81 97 13
2) A ” 2 B R b r
18 34 50 66 82 98 114
3 # 3 C S c s
3 19 35 51 67 83 99 115
4 $ 4 D T d t
4 20 36 52 68 84 100 116
5 % 5 E U e u
5 21 37 53 69 85 101 17
6 n & 6 F v f v
6 22 38 54 70 86 102 18
7 ‘ ’ 7 G w g w
7 23 39 55 7 87 103 19
8 — (8 H X h X
8 24 40 56 72 88 104 120
9 HT) 9 | Y i y
9 - 2 M 57 73 89 105 121
A LF (00) * : J Z j z
10 26 42 58 74 90 106 122
B ESC + ; K [k {
1 27 43 59 75 91 107 123
c < L \ I
:|: 12 28 ’ 44 60 76 92 108 I 124
D CR # — = M] m }
13 29 45 61 77 93 109 125
E ~ . > N " n -
14 30 46 62 78 94 110 126
F ° | ? 0 _ o rubout
15 31 47 63 79 95 11 127

AWG2000 Series Programmer Manual A-1

Appendix A: Character Charts

Table A-2: ASCIl & GPIB Code Chart

B7 0 0 0 0 1 1 1 1
B6 0 0 1 0 0 1 1
B5 0 1 0 1 0 1 0 1
BITS NUMBERS
B4 B3 B2 Bi CONTROL SYMBOLS UPPER CASE LOWER CASE
0 20 40 LAO | 60 LA16 | 100 TAO | 120 TA16 | 140 SA0 | 160 SA16
00 00 NUL DLE SP @ P \ p
0 0] 10 16 | 20 32 | 30 48 | 40 64 | 50 80 | 60 % | 70 12
1 GTL | 21 LLo | 41 LA1 | 61 LA17 | 101 TA1 | 121 TA17 | 141 SA1 | 161 SA17
0001 SOH DC1 ! A a q
1 1] 17 | 21 33 | 31 49 | 41 65 | 51 81 | 61 97 | 7 13
2 22 42 LA2 | 62 LA18 | 102 TA2 | 122 TA18 | 142 sA2 | 162 SA18
0010 STX DC2 " B R b r
2 2 | 12 18 | 22 34 | 32 50 | 42 66 | 52 82 | 62 98 | 72 114
3 23 43 LA3 | 63 LA19 | 103 TA3 | 123 TA19 | 143 SA3 | 163 SA19
00 11 ETX DC3 # C S c s
3 3|13 19 | 23 35 | 33 51 | 43 67 | 53 83 | 63 9 |73 115
4 spc | 24 DCL | 44 LA4 | 64 LA20 | 104 A4 | 124 TA20 | 144 sA4 | 164 SA20
0100 EOT DC4 $ D T d t
4 4|14 20 | 24 36 | 34 52 | 44 68 | 54 84 | 64 100 | 74 116
5 PPC | 25 PPU | 45 LA5 | 65 LA21 | 105 5 | 125 TA21 | 145 SA5 | 165 SA21
0101 ENQ NAK % E U e u
5 5115 21 | 25 37 | 35 53 | 45 69 | 55 85 | 65 101 | 75 17
6 26 46 LA6 | 66 LA22 | 106 A6 | 126 TA22 | 146 SA6 | 166 SA22
0110 ACK SYN & F Vv f v
6 6| 16 22 | 2 38 | 36 54 | 46 70 | 56 86 | 66 102 | 76 118
7 27 47 LA7 | 67 LA23 | 107 TA7 | 127 TA23 | 147 SA7 | 167 SA23
0111 BEL ETB ! G w g w
7 7|17 23 | 27 39 | a7 55 | 47 71 | 57 87 | 67 108 | 77 119
10 GET | 30 SPE | 50 LAs | 70 LA24 | 110 TA8 | 130 TA24 | 150 sA8 | 170 SA24
1000 BS CAN (H X h X
8 8|18 24 | 28 40 | 38 56 | 48 72 | 58 88 | 68 104 | 78 120
11 TcT | 31 SPD | 51 LAg | 7 LA2s | 111 TA9 | 131 TA25 | 151 sA9 | 171 SA25
1001 HT EM) I Y i y
9 9| 19 2% | 29 41 | 39 57 | 49 73 | 59 89 | 69 105 | 79 121
12 32 52 LAt0 | 72 LA26 | 112 TA10 | 132 TA26 | 152 SA10 | 172 SA26
1010 LF SUB * J Y4 j z
A 10 | 1A 2% | 2A 42 | 3A 58 | 4A 74 | 5A 90 | 6A 106 | 7A 122
13 33 53 LAt | 73 LA27 | 113 TA11 | 133 TA27 | 153 SA1l | 173 SA27
1011 vT ESC + K [k {
B 1] 1B 27 | 2B 43 | 3B 59 | 4B 75 | 5B 91 | 6B 107 | 78 123
14 34 54 LA12 | 74 LA28 | 114 TA12 | 134 TA28 | 154 SA12 | 174 SA28
1100 FF FS y L \ | :
c 12 | 1 28 | 2c 4 | 3C 60 | 4C 76 | 5C 92 | 6C 108 | 7C 124
15 35 55 LA13 | 75 LA29 | 115 TA13 | 135 TA29 | 155 SA13 | 175 SA29
1101 CR GS - M | m }
D 13 | 1D 29 | 2D 45 | 3D 61 | 4D 77 | 5D 93 | 6D 109 | 70 125
16 36 56 LA14 | 76 LA30 | 116 A4 | 136 TA30 [156 sa1s [176 sA30
1110 SO RS . N n
E 14 | 1E 30 | 2E 46 | 3E 62 | 4E 78 | 5E 94 | 6E 10 | 7€ 126
17 37 57 LAt5 | 77 UNL | 117 TA15 | 137 UNT | 157 SA15 | 177
1111 Sl us | 0 - 0 RU[?E?-UT
F 15 | 1F 3 | oF a7 | oF 63 | 4F 79 | 5F 95 | 6F 1M1 (EY .,
ADDRESSED UNIVERSAL LISTEN TALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OR COMMANDS
KEY oot —s PPC=— GPIB code (with ATN asserted) Tektronix
ENQ <——— ASCII character REF: ANSI STD X3.4-1977
hex —>1 5 5-<— decimal IEEE STD 488.1-1987
ISO STD 646-2973
A-2

AWG2000 Series Programmer Manual

./
Appendix B: Reserved Words

The words in the following list are reserved words for use with the
AWG2000 Series Arbitrary Waveform Generator.

*CAL
*CLS
*ESE
*ESR
*IDN

*LRN
*OPC
*OPT
*PSC
*RST
*SRE
*STB
*TRG
*TST

*WAI
ABSTouch
ALL
ALLEv
ALOad
AMPLitude
AOFF
AST
AUTOStep
BIT_NR
BN_FMT
BRIGhtness
BYT _NR
BYT OR
CATalog
CDIRectory
CH<x>
CH1

CH2

CLK
CLOCk
COMMent

AWG2000 Series Programmer Manual

COMPile
CONFigure
COPY
CRVCHK
CURVe
DATA
DATE
DEBug
DEFine
DELAy
DELete
DESE
DESTination
DIAG
DIRectory
DISK
DISPlay
DIVider
DWEL
ENCDG
EQU
EQUATion
EQUAtion
EVENT
EVMsg
EVQty
EXPAnd
FACTory
FG

FlLTer
FORMat
FREE
FREQuency
HCOPy
HEADer
HIGH

ID
IMPedance
INVerted
LEVel
LOAD
LOCk

LOW
MARKer
MARKER<x>
MARKERLEVEL1
MARKERLEVEL2
MDIRectory
MEMory
MENU
MESSage
MMEMory
MODE
MSIS
NORMal
NR_PT
OFFSet
OPERation
ORDer
OUTPut
POINt
POLarity
PORT
PT_FMT
PT_OFF
REName
RESULt
RESUIt
RUNNing
SAVE
SECUre
SELect

SELFcal
SEQ
SEQUence
SETUp
SHAPe
SHOW
SLOpe
SNOop
SOURce
STARt
STATe
STOP
SWEep
SYNC
TIME
TRACK
TRIGger
TYPE
UNLock
UPTime
VERBose
WAVeform
WAVFrm
WFID
WFM
WFMPre
WIDTh
WPOQints
XINCR
XUNIT
XZERO
YMULT
YOFF
YUNIT
YZERO

B-1

Appendix B: Reserved Words

B-2 AWG2000 Series Programmer Manual

./ |
Appendix C: Interface Specification

This appendix lists and describes the GPIB functions and messages that the
AWG2000 Series Arbitrary Waveform Generator implements.

Interface Functions

Table C-1 shows which GPIB interface functions are implemented in this
instrument. Following the table is a brief description of each function.

Table C-1: GPIB Interface Function Implementation

Implemented
Interface Function Subset Capability
Acceptor Handshake (AH) AH1 Complete
Source Handshake (SH) SH1 Complete
Listener (L) L4 Basic Listener
Unaddress if my talk address (MTA)
No talk only mode
Talker (T) T5 Basic Talker, Serial Poll
Unaddress if my-listen-address (MLA)
Device Clear (DC) DC1 Complete
Remote/Local (RL) RL1 Complete
Service Request (SR) SR1 Complete
Parallel Poll (PP) PPO None
Device Trigger (DT) DT1 Complete
Controller (C) Co None
Electrical Interface E2 Three-state driver

m Accepter Handshake (AHAllows a listening device to help coordinate the
the proper reception of data. The AH function holds off initiation or
termination of a data transfer until the listening device is ready to receive the
next data byte.

m Source Handshake (SH). Allows a talking device to help coordinate the
proper transfer of data. The SH function controls the initiation and termina-
tion of the transfer of data bytes.

AWG2000 Series Programmer Manual C-1

Appendix C: Interface Specification

m Listener (L). Allows a device to receive device-dependent data over the
interface. This capability exists only when the device is addressed to listen.
This function uses a one-byte address.

m Talker (T). Allows a device to send device-dependent data over the interface.
This capability exists only when the device is addressed to talk. The function
uses a one-byte address.

m Device Clear (DC). Allows a device to be cleared or initialized, either
individually or as part of a group of devices.

m Remote/Local (RL). Allows a device to select between two sources for
operating control. This function determines whether input information from
the front panel controls (local) or GPIB commands (remote) control the
waveform generator.

m Service Request (SR). Allows a device to request service from the controller.

m Controller (C). Allows a device with the capability to send the device
address, universal commands, and addressed commands to other device over
the interface to do so.

m Electrical Interface (E) Identifies the type of the electrical interface. The
notation E1 indicates the electrical interface uses open collector drivers,
while E2 indicates the electrical interface uses three-state drivers.

Interface Messages

Table C-2 lists the GPIB Universal and Addressed commands that the
AWG2000 Series Arbitrary Waveform Generator implements. A brief description
of each function follows the table.

Table C-2: GPIB Interface Messages

Interface Message Implemented
Device Clear (DC) Yes

Local Lockout (LLO) Yes

Serial Poll Disable (SPD) Yes

Serial Poll Enable (SPE) Yes

Parallel Poll Unconfigure (PPU) No

Go To Local (GTL) Yes

Selected Device Clear (SDC) Yes

Group Execute Trigger (GET) Yes

C-2 AWG2000 Series Programmer Manual

Appendix C: Interface Specification

Table C-2: GPIB Interface Messages (Cont.)

Interface Message Implemented
Take Control (TCT) No
Parallel Poll Configure (PPC) No

m Device Clear (DCL). Clears (initializes) all devices on the bus that have a
device clear function, whether the controller has addressed them or not.

m | ocal Lockout (LLO). Disables the return to local function.

m Serial Poll Enable (SPE). Puts all devices on the bus, that have a service
request function, into the serial poll enabled state. In this state, each device
sends the controller its status byte, instead of the its normal output, after the
device receives its talk address on the data lines. This function may be used
to determine which device sent a service request.

m Serial Poll Disable (SPD). Changes all devices on the bus from the serial
poll state to the normal operating state.

m Go To Local (GTL). Causes the listen-addressed device to switch from
remote to local (front-panel) control.

m Select Device Clear (SDC). Clears or initializes all listen-addressed devices.

m Group Execute Trigger (GET). Triggers all applicable devices and causes
them to initiate their programmed actions.

m Take Control (TCT).Allows controller in charge to pass control of the bus to
another controller on the bus.

m Parallel Poll Configure (PPC). Causes the listen-addressed device to respond
to the secondary commands Parallel Poll Enable (PPE) and Parallel Poll
Disable (PPD), which are placed on the bus following the PPC command.
PPE enables a device with parallel poll capability to respond on a particular
data line. PPD disables the device from responding to the parallel poll.

AWG2000 Series Programmer Manual C-3

Appendix C: Interface Specification

C-4 AWG2000 Series Programmer Manual

./ |
Appendix D: Factory Initialization Settings

The following table lists the commands affected by a factory initialization and
their factory initialization settings.

Table D-1: Factory Initialized Settings

Header Default Settings
Calibration & Diagnostic Commands

DIAG:SELect ALL
SELFcal:SELect ALL

Display Commands

DISPTay:BRIGhtness 70
DISPTlay:CATalog:0ORDER NAME 1
DISPlay:CLOCk 0
DISPT1ay:MENU:SETUP:FORMat GRAPHICS
DISP1ay:MESSAGE:SHOW GRAPHICS

FG Commands

FG:CH<x>:AMPLitude 1.000
FG:CH<x>:0FFSet 0.000
FG:CH<x>:POLarity NORMAL
FG:CH<x>:SHAPe SINUSOID
FG:STATe 0
FG:FREQuency 2.500E+06 (AWG2020/21)

200.0E+3 (AWG2005)
/200.000E+03 (AWG2005 opt.05)
/10.00000E+6 (AWG2040)

Hardcopy Commands

HCOPy: FORMat BMP
HCOPy : PORT DISK
Memory Commands

DISK:FORMat:TYPE HD3
MMEMory :MSIS DISK
MMEMory :ALOad:MSIS DISK
MMEMory :ALOad:STATe 0

AWG2000 Series Programmer Manual D-1

Appendix :Factory Initialization Settings

Table D-1: Factory Initialized Settings (Cont.)

Header Default Settings
Mode Commands

CONFigure MASTER (AWG2005)
MODE CONTINUQOUS
TRIGger:IMPedance HIGH
TRIGger:LEVel 1.4
TRIGger:POLarity POSITIVE
TRIGger:SLOPe POSITIVE

Output Commands

OUTPut:CH<x>:STATe 0(AWG2005/20/21)
OUTPut:CH1:INVerted:STATE 0(AWG2040)
OUTPut:CH1:NORMal:STATE 0(AWG2040)
OUTPut:SYNC END

Setup Commands

CLOCk:FREQuency 100.0E+06

(AWG2020/21) /10.00E+06 (AWG2005)
/10.00000E+06 (AWG2005 opt.05)
/1.000000E+09 (AWG2040)

CLOCk:SOURce INTERNAL
CLOCk:CH2:DIVider 1(AWG2020/21)
CLOCk : SWEep : DWELT 1.000E-03 (AWG2005 opt.05)
CLOCk : SWEep:MODE SCONTINUOUS (AWG2005 opt.05)
CLOCk:SWEep:STATe 0 (AWG2005 opt.05)
CLOCk:SWEep:TIME 1.000E+00 (AWG2005 opt.05)
CLOCk: SWEep:TYPE LINEAR(AWG2005 opt.05)
CLOCk: SWEep: FREQuency:STARt 1.00000E+06 (AWG2005 opt.05)
CLOCk:SWEep: FREQuency:STOP 20.0000E+06

(AWG2005 opt.05)
CH1:MARKERLEVEL1:HIGH 2.0(AWG2040)
CH1:MARKERLEVEL1:LOW 0.0(AWG2040)
CH1:MARKERLEVEL2:HIGH 2.0(AWG2040)
CH1:MARKERLEVEL2:LOW 0.0(AWG2040)
CH:OPERation NORMAL (AWG2005,/20/21)
CH<x>:AMPLitude 1.000
CH<x>:FILTer THRU

D-2 AWG2000 Series Programmer Manual

Appendix :Factory Initialization Settings

Table D-1: Factory Initialized Settings (Cont.)

Header Default Settings
CH<x>:0FFSet 0.000
CH<x>:TRACk:AMPL1i tude OFF (AWG2005)
CH<x>:TRACk:0FFSet OFF (AWG2005)
CH<x>:WAVeform e

Status & Event Commands

DESE 256

*ESE 0

*PSC 1

*SRE 0

System Commands

DEBug:SNOop:STATe 0
DEBug:SNOop:DELAy: TIME 0.2

HEADer 1

VERBose 1

Waveform Commands

DATA:DESTination "GPIB.WFM"
DATA:ENCDG RPBINARY
DATA:SOURce "CH1"
DATA:WIDTh 2

WFMPre: ENCDG BIN
WFMPre:BN_FMT RP
WFMPre:BYT NR 2
WFMPre:BIT_NR 12
WFMPre:BYT OR MSB

WFMPre: CRVCHK NONE

AWG2000 Series Programmer Manual

D-3

Appendix :Factory Initialization Settings

D-4 AWG2000 Series Programmer Manual

./ |
Glossary

ASCII
Acronym for the American Standard Code for Information Interchange.
Controllers transmit commands to the instrument using ASCII character
encoding.

Address
A 7-bit code that identifies an instrument on the communication bus. The
instrument must have a unique address for the controller to recognize and
transmit commands to it.

BNF (Backus-Naur Form)
A standard notation system for command syntax diagrams. The syntax
diagrams in this manual use BNF notation.

Controller
A computer or other device that sends commands to and accepts responses
from the digitizing oscilloscope.

EQOI
A mnemonic referring to the control line “End or Identify” on the GPIB
interface bus. One of the two possible end-of-message terminators.

EOM
A generic acronym referring to the end-of-message terminator. The
end-of-message terminator can be either an EOI or the ASCII code for line
feed (LF).

GPIB
Acronym for General Purpose Interface Bus, the common name for the
communications interface system defined in IEEE Std 488.

IEEE
Acronym for the Institute for Electrical and Electronic Engineers.

QuickC
A computer language (distributed by Microsoft) that is based on C.

AWG2000 Series Programmer Manual Glossary-1

Glossary

Glossary-2 AWG2000 Series Programmer Manual

Index
A

ABSTouch, 2-27

ALLEv?, 2-30

ASCII, code and character charts, A—1
AUTOStep:DEFine, 2-30

Backus-Naur-Form, 2-1

C

CAL?, 2-32
Calibration and diagnostic commands
*CAL?, 2-32
*TST?, 2-165
DIAG?, 2-69
DIAG:RESUIt?, 2-71
DIAG:SELect?, 2-71
DIAG:STATe?, 2-72
SELFcal?, 2-153
SELFcal:RESULt?, 2-154
SELFcal:SELect, 2-155
SELFcal:STATe, 2-156
CH<x>?, 2-35
CH<x>:AMPLitude?, 2-36
CH<x>:FILTer, 2-37
CH<x>:0OFFSet, 2-42
CH<x>:WAVeform, 2-46
CH1:0PERation, 2-33
Characters, ASCII chart, A-1
CLOCK?, 2-47
CLOCK:CH2, 2-47, 2-58
CLOCKk:CH2:DlVider, 2-48
CLOCkK:FREQuency, 2-48
CLOCKk:SOURCce, 2-49
Command
BNF notation, 2-1
Structure of, 2-2
Syntax, 2-1, 2-27
Command errors, 3-10
Commands, words reserved for, B-1
CURVWe, 2-59

AWG2000 Series Programmer Manual

D

DATA:DESTination, 2-61
DATA:ENCDG, 2-61
DATA:SOURce, 2-62
DATE, 2-64
Default Settings, D-1
Description

GPIB, 1-1

RS-232-C, 1-1
DESE, 2-69
DESE command, 3-4
DESER register, 3-4
DIAG?, 2-69
DIAG:RESUIt?, 2-71
DIAG:SELect?, 2-71
DIAG:STATe?, 2-72
DISK?, 2-73
DISK:CDIRectory, 2-74
DISK:DIRectory, 2-74
DISK:FORMat?, 2-75
DISK:FORMat:STATe, 2-75
DISK:FORMat:TYPE, 2-76
DISK:MDIRectory, 2-77
Display commands

ABSTouch, 2-27

DISPlay?, 2-77

DISPlay:BRIGhtness, 2-78
DISPlay?, 2-77
DISPlay:BRIGhtness, 2-78

E

Enable Registers, Defined, 3-1, 3-4
EQUAtion:DEFine, 2-89
EQUAtion:WPQints, 2-90
Error, No events, 3-10
Error Messages, Listed;9
*ESE, 2-91, 3-4

ESER register, 3-4
*ESR?, 2-92

*ESR? query, 3-1

Event handling, 3-1
Event Queue, 3-5

Index-1

Index

EVENT?, 2-92

EVMsg?, 2-93

EVQty?, 2-93

Execution Errors, 3-12, 3-13
Execution errors, 3-15, 3-17
Execution warning, 3-14

F

FACTory, 2-94
Factory Initialization, D—1
FG commands
FG?, 2-94
FG:CH<x>?, 2-95
FG:CH<x>:AMPlitude, 2-96
FG:CH<x>:.0OFFSet, 2-97
FG:CH<x>:POLarity, 2-98
FG:CH<x>:SHAPe, 2-99
FG:FREQuency, 2-101
FG:STATe, 2-101
FG?, 2-94
FG:CH<x>?, 2-95
FG:CH<x>:AMPLitude, 2-96
FG:CH<x>:0OFFSet, 2-97
FG:CH<x>:POLarity, 2-98
FG:CH<x>:SHAPe, 2-99
FG:FREQuency, 2-101
FG:STATe, 2-101

G

GPIB
Compared to the RS-232-C, 1-2
Connector, 1-3
Description of, 1-1
Displaying status of, 1-10
Function Layers, 1-1
Installation, 1-3
Installation restrictions, 1-4
interface functionsC—1
interface messageS;-2
Setting parameters for, 1-5
Standard conformed to, 1-1
Status screen, 1-11
System configurations, 1-4
GPIB and RS-232-C, Status Line, 1-12

H

HEADer, 2-105

Index-2

ID?, 2-109
*IDN?, 2-109
Internal warnings, 3-15

L

LOCK, 2-110
*LRN?, 2-111

MARKer:DATA, 2-112
MARKER<x>:AOFF, 2-113
MARKER<x>:POINt, 2-114
Memory commands
DISK?, 2-73
DISK:CDIRectory, 2-74
DISK:DIRectory, 2-74
DISK:FORMat?, 2-75
DISK:FORMat:STATe, 2-75
DISK:FORMat:TYPE, 2-76
DISK:MDIRectory, 2-77
MEMory?, 2-115
MEMory:CATalog?, 2-116
MEMory:CATalog:ALL?, 2-117
MEMory:CATalog:AST?, 2-118
MEMory:CATalog:EQU?, 2-118
MEMory:CATalog:SEQ?, 2-121
MEMory:CATalog:WFM?, 2-121
MEMory:COMMent, 2-122
MEMory:COPY, 2-123
MEMory:DELete, 2-123
MEMory:FREE?, 2-124
MEMory:FREE:ALL?, 2-125
MEMory:LOCk, 2-125
MEMory:REName, 2-126
MMEMory?, 2-127
MMEMory:ALOad?, 2-128
MMEMory:ALOad:MSIS, 2-129
MMEMory:ALOad:STATe, 2-130
MMEMory:CATalog?, 2-131
MMEMory:CATalog:ALL?, 2-132
MMEMory:CATalog:AST?, 2-133
MMEMory:CATalog:EQU?, 2-133
MMEMory:CATalog:SEQ?, 2-134
MMEMory:CATalog:WFM?, 2-135
MMEMory:DELete, 2-135
MMEMory:FREE?, 2-136

AWG2000 Series Programmer Manual

Index

MMEMory:FREE:ALL?, 2-137

MMEMory:LOAD, 2-137

MMEMory:LOCk, 2-138

MMEMory:MSIS, 2-139

MMEMory:REName, 2-140

MMEMory:SAVE, 2-140
MEMory?, 2-115
MEMory:CATalog?, 2-116
MEMory:CATalog:ALL?, 2-117
MEMory:CATalog:ALL:AST?, 2-118
MEMory:CATalog:ALL:EQU?, 2-118
MEMory:CATalog:SEQ?, 2-121
MEMory:CATalog:WFM?, 2-121
MEMory:COMMent, 2-122
MEMory:COPY, 2-123
MEMory:DELete, 2-123
MEMory:FREE?, 2-124
MEMory:FREE:ALL?, 2-125
MEMory:LOCKk, 2-125
MEMory:REName, 2-126
Message, Handling, 3-1
Messages

Error, 3-9

Event,3-9
MMEMory?, 2-127
MMEMory:ALOad?, 2-128
MMEMory:ALOad:MSIS, 2-129
MMEMory:ALOad:STATe, 2-130
MMEMory:CATalog?, 2-131
MMEMory:CATalog:ALL?, 2-132
MMEMory:CATalog:AST?, 2-133
MMEMory:CATalog:EQU?, 2-133
MMEMory:CATalog:SEQ?, 2-134
MMEMory:CATalog:WFM?, 2-135
MMEMory:DELete, 2-135
MMEMory:FREE?, 2-136
MMEMory:FREE:ALL?, 2-137
MMEMory:LOAD, 2-137
MMEMory:LOCk, 2-138
MMEMory:MSIS, 2-139
MMEMory:REName, 2-140
MMEMory:SAVE, 2-140
MODE, 2-141
Mode commands

*TRG, 2-161

MODE, 2-141

RUNNing, 2-152

STARt, 2-159

STOP, 2-160

TRIGger?, 2-162

TRIGger:IMPedance, 2-162

TRIGger:LEVel, 2-163

TRIGger:POLarity, 2-164

AWG2000 Series Programmer Manual

TRIGger:SLOpe, 2-164

0]

*OPC, 2-143
*OPT, 2-144
Output commands
OUTPut?, 2-144
OUTPut:CH<x>?, 2-145
OUTPut:CH<x>:STATe, 2-146
OUTPuUt:CH<x>:SYNC, 2-150
Output Queue, 3-5
OUTPut?, 2-144
OUTPut:CH<x>?, 2-145
OUTPut:CH<x>:STATe, 2-146
OUTPuUt:CH<x>:SYNC, 2-150

P

Program

to create a waveform, 4-4

to retrieve a waveform, 4-3

to send a waveform, 4-3

to set up interactive communication, 4-4
Programming Examples, 4-1
*PSC, 2-151

Q

Query, Structure of, 2-2
Queue

Event, 3-5

Output, 3-5

R

Register
DESER, 3-4
ESER, 3-4
SESR, 3-1
SRER, 3-4
Registers, Status, 3-1
Reserved words, B—1
RS-232-C
Cable wiring, 1-8
Common connectors for, 1-7
Compared to the GPIB, 1-2
Connector location, 1-7
Connector pin assignments, 1-8
Description of, 1-1
Installation, 1-6

Index-3

Index

Setting Parameters of, 1-9
*RST, 2-152
RUNNIing, 2-152

S

SELFcal?, 2-153
SELFcal:RESULt?, 2-154
SELFcal:SELect, 2-155
SELFcal:STATe, 2-156
SEQUence:DEFine, 2-156
Serial poll, 3-3
SESR register, 3-1
Setup commands
CH<x>?, 2-35
CH<x>:AMPLitude, 2-36
CH<x>:FILTer, 2-37
CH<x>:0OFFSet, 2-42
CH<x>:WAVeform, 2-46
CH1:0PERation, 2-33
CLOCK?, 2-47
CLOCk:CH2?, 2-47, 2-58
CLOCKk:CH2:DlVider, 2-48
CLOCK:FREQuency, 2-48
CLOCKk:SOURCce, 2-49
*SRE, 2-158
*SRE command, 3-5
SRER register, 3-4
STARt, 2-159
Status, 3-1
of GPIB, 1-10
Status and error commands
DESE, 3-4
*ESE, 3-4
*ESR?, 3-1
*SRE, 3-5
*STB?, 3-3
Status and event
*PSC, 2-151
*SRE, 2-158
*STB?, 2-160
Status and event commands
*ESE, 2-91
*ESR?, 2-92
ALLEv?, 2-30
DESE, 2-69
EVENT?, 2-92
EVMsg?, 2-93
EVQty?, 2-93
Status and events
displaying on screen, 3-8
processing of, 3-6

Index-4

Status Registers, Defined, 3-1
*STB?, 2-160
*STB? query, 3-3
STOP, 2-160
Synchronization commands
*OPC, 2-143
*WAI, 2-168
System
*RST, 2-152
TIME, 2-161
System commands
*IDN?, 2-109
*LRN?, 2-111
*OPT, 2-144
DATE, 2-64
FACTory, 2-94
HEADer, 2-105
ID?, 2-109
LOCk, 2-110
UNLock, 2-166
UPTime, 2-166
VERBoOse, 2-167
System events, 3-14

T

TIME, 2-161

*TRG, 2-161

TRIGger?, 2-162
TRIGger:IMPedance, 2-162
TRIGger:LEVel, 2-163
TRIGger:POLarity, 2-164
TRIGger:SLOpe, 2-164
*TST?, 2-165

U

UNLock, 2-166
UPTime, 2-166

vV

VERBose, 2-167

w

*WAI, 2-168

Waveform
a program to create, 4-4
a program to retrieve, 4-3

AWG2000 Series Programmer Manual

Index

a program to send;3
Waveform commands
AUTOStep:DEFine, 2-30
CURVe, 2-59
DATA:DESTination, 2-61
DATA:ENCDG, 2-61
DATA:SOURCce, 2-62
EQUAtion:DEFine, 2-89
EQUALtion:WPQints, 2-90
MARKer:DATA, 2-112
MARKER<x>:AOFF, 2-113
MARKER<x>:POINt, 2-114
SELFcal:STATe, 2-156
WAVFrm?, 2-168
WFMPre?, 2-169
WFMPre:BIT_NR, 2-170
WFMPre:BN_FMT, 2-170
WFMPre:BYT_NR, 2-171
WFMPre:BYT_OR, 2-172
WFMPre:CRVCHK, 2-173
WFMPre:ENCDG, 2-174
WFMPre:NR_PT, 2-174
WFMPre:PT_FMT, 2-175
WFMPre:PT_OFF, 2-176
WFMPre:WFID, 2-181
WFMPre:XINCR, 2-177
WFMPre:XUNIT, 2-177
WFMPre:XZERO, 2-178
WFMPre:YMULT, 2-179
WFMPre:YOFF, 2-179
WFMPre:YUNIT, 2-180
WFMPre:YZERO, 2-181
WAVFrm?, 2-168
WFMPre?, 2-169
WFMPre:BIT_NR, 2-170
WFMPre:BN_FMT, 2-170
WFMPre:BYT_NR, 2-171
WFMPre:BYT_OR, 2-172
WFMPre:CRVCHK, 2-173
WFMPre:ENCDG, 2-174
WFMPre:NR_PT, 2-174
WFMPre:PT_FMT, 2-175
WFMPre:PT_OFF, 2-176
WFMPre:WFID, 2-181
WFMPre:XINCR, 2-177
WFMPre:XUNIT, 2-177
WFMPre:XZERO, 2-178
WFMPre:YMULT, 2-179
WFMPre:YOFF, 2-179
WFMPre:YUNIT, 2-180
WFMPre:YZERO, 2-181
Where to find other information, ix

AWG2000 Series Programmer Manual

A

ABSTouch, 2-27

ALLEv?, 2-30

ASCII, code and character charts, A-1
AUTOStep:DEFine, 2-30

Backus-Naur-Form, 2-1

C

CAL?, 2-32
Calibration and diagnostic commands
*CAL?, 2-32
*TST?, 2-165
DIAG?, 2-71
DIAG:RESUIt?, 2-72
DIAG:SELect?, 2-73
DIAG:STATe?, 2-74
SELFcal?, 2-153
SELFcal:RESULt?, 2-154
SELFcal:SELect, 2—-155
SELFcal:STATe, 2-155
CH<x>?, 2-35
CH<x>:AMPLitude?, 2-36
CH<x>:FILTer, 2-37
CH<x>:0FFSet, 2-43
CH<x>:WAVeform, 2-47
CH1:0PERation, 2—-33
Characters, ASCII chart, A-1
CLOCKk?, 2-48
CLOCKk:CH2, 2-48, 2-59
CLOCKk:CH2:DlVider, 2-49
CLOCK:FREQuency, 2-49
CLOCk:SOURCce, 2-50
Command
BNF notation, 2—-1
Structure of, 2-2
Syntax, 2-1, 2-27
Command errors, 3—-10
Commands, words reserved for, B-1
CURVg, 2-61

D

DATA:DESTination, 2—62
DATA:ENCDG, 2-63
DATA:SOURce, 2—-64

Index-5

Index

DATE, 2-65
Default Settings, D—1
Description
GPIB, 1-1
RS-232-C, 1-1
DESE, 2-70
DESE command, 3-4
DESER register, 3-4
DIAG?, 2-71
DIAG:RESUIt?, 2-72
DIAG:SELect?, 2-73
DIAG:STATe?, 2-74
DISK?, 2-75
DISK:CDIRectory, 2—75
DISK:DIRectory, 2—76
DISK:FORMat?, 2—-76
DISK:FORMat:STATe, 2—-77
DISK:FORMat:TYPE, 2-78
DISK:MDIRectory, 2—79
Display commands
ABSTouch, 2-27
DISPlay?, 2-79
DISPlay:BRIGhtness, 2—80
DISPlay?, 2-79
DISPlay:BRIGhtness, 2—80

E

Enable Registers, Defined, 3-1, 3—4
EQUAtion:DEFine, 2-91
EQUALtion:WPOQints, 2-92
Error, No events, 3-10

Error Messages, Listed;-9
*ESE, 2-93, 3-4

ESER register, 3-4

*ESR?, 2-94

*ESR? query, 3-1

Event handling, 3-1

Event Queue, 3-5

EVENT?, 2-94

EVMsg?, 2-95

EVQty?, 2-95

Execution Errors, 3—-12, 3-13
Execution errors, 3—-15, 3-17
Execution warning, 3—14

F

FACTory, 2-96
Factory Initialization, D—1

Index-6

FG commands
FG?, 2-96
FG:CH<x>?, 2-97
FG:CH<x>:AMPlitude, 2-98
FG:CH<x>:0OFFSet, 2-99
FG:CH<x>:POLarity, 2-100
FG:CH<x>:SHAPe, 2-101
FG:FREQuency, 2-103
FG:STATe, 2-103
FG?, 2-96
FG:CH<x>?, 2-97
FG:CH<x>:AMPLitude, 2-98
FG:CH<x>:0OFFSet, 2-99
FG:CH<x>:POLarity, 2-100
FG:CH<x>:SHAPe, 2-101
FG:FREQuency, 2-103
FG:STATe, 2-103

G

GPIB
Compared to the RS-232-C, 1-2
Connector, 1-4
Description of, 1-1
Displaying status of, 1-11
Function Layers, 1-1
Installation, 1-3
Installation restrictions, 1-5
interface functionsC—1
interface messageS;-2
Setting parameters for, 1-6
Standard conformed to, 1-1
Status screen, 1-12
System configurations, 1-5
GPIB and RS-232-C, Status Line, 1-13

H

HEADer, 2-107

ID?, 2-108
*IDN?, 2-109
Internal warnings, 3—-15

L

LOCK, 2-110

AWG2000 Series Programmer Manual

Index

*LRN?, 2-111

MARKer:DATA, 2-112
MARKER<x>:AOFF, 2-113
MARKER<x>:POINt, 2-113
Memory commands
DISK?, 2-75
DISK:CDIRectory, 2-75
DISK:DIRectory, 2—76
DISK:FORMat?, 2-76
DISK:FORMat:STATe, 2-77
DISK:FORMat:TYPE, 2-78
DISK:MDIRectory, 2—79
MEMory?, 2-115
MEMory:CATalog?, 2-116
MEMory:CATalog:ALL?, 2-117
MEMory:CATalog:AST?, 2-118
MEMory:CATalog:EQU?, 2-118
MEMory:CATalog:SEQ?, 2-121
MEMory:CATalog:WFM?, 2-121
MEMory:COMMent, 2—-122
MEMory:COPY, 2-123
MEMory:DELete, 2-123
MEMory:FREE?, 2-124
MEMory:FREE:ALL?, 2-125
MEMory:LOCk, 2-125
MEMory:REName, 2-126
MMEMory?, 2-127
MMEMory:ALOad?, 2-128
MMEMory:ALOad:MSIS, 2-129
MMEMory:ALOad:STATe, 2-130
MMEMory:CATalog?, 2-131
MMEMory:CATalog:ALL?, 2-132
MMEMory:CATalog:AST?, 2-133
MMEMory:CATalog:EQU?, 2-133
MMEMory:CATalog:SEQ?, 2-134
MMEMory:CATalog:WFM?, 2—-135
MMEMory:DELete, 2-135
MMEMory:FREE?, 2—-136
MMEMory:FREE:ALL?, 2-137
MMEMory:LOAD, 2-137
MMEMory:LOCKk, 2—-138
MMEMory:MSIS, 2-139
MMEMory:REName, 2-140
MMEMory:SAVE, 2-140
MEMory?, 2-115
MEMory:CATalog?, 2-116
MEMory:CATalog:ALL?, 2-117
MEMory:CATalog:ALL:AST?, 2-118
MEMory:CATalog:ALL:EQU?, 2-118

AWG2000 Series Programmer Manual

MEMory:CATalog:SEQ?, 2-121
MEMory:CATalog:WFM?, 2-121
MEMory:COMMent, 2-122
MEMory:COPY, 2-123
MEMory:DELete, 2-123
MEMory:FREE?, 2-124
MEMory:FREE:ALL?, 2-125
MEMory:LOCk, 2-125
MEMory:REName, 2-126
Message, Handling, 3—1
Messages

Error, 3-9

Event,3-9
MMEMory?, 2-127
MMEMory:ALOad?, 2-128
MMEMory:ALOad:MSIS, 2—-129
MMEMory:ALOad:STATe, 2-130
MMEMory:CATalog?, 2-131
MMEMory:CATalog:ALL?, 2-132
MMEMory:CATalog:AST?, 2-133
MMEMory:CATalog:EQU?, 2—133
MMEMory:CATalog:SEQ?, 2-134
MMEMory:CATalog:WFM?, 2—-135
MMEMory:DELete, 2-135
MMEMory:FREE?, 2—-136
MMEMory:FREE:ALL?, 2-137
MMEMory:LOAD, 2-137
MMEMory:LOCk, 2-138
MMEMory:MSIS, 2-139
MMEMory:REName, 2—-140
MMEMory:SAVE, 2-140
MODE, 2-141
Mode commands

*TRG, 2-161

MODE, 2-141

RUNNing, 2-152

STARt, 2-159

STOP, 2-160

TRIGger?, 2-162

TRIGger:IMPedance, 2—-162

TRIGger:LEVel, 2-163

TRIGger:POLarity, 2-164

TRIGger:SLOpe, 2-164

0

*OPC, 2-143

*OPT, 2-144

Output commands
OUTPut?, 2-144
OUTPut:CH<x>?, 2-145
OUTPut:CH<x>:STATe, 2-146

Index-7

Index

OUTPut:CH<x>:SYNC, 2-150
Output Queue, 3-5
OUTPut?, 2-144
OUTPUut:CH<x>?, 2-145
OUTPut:CH<x>:STATe, 2-146
OUTPut:CH<x>:SYNC, 2-150

P

Program

to create a waveforrd—4

to retrieve a waveforni—3

to send a wavefornd—3

to set up interactive communicatiah;4
Programming Exampled-1
*PSC, 2-151

Q

Query, Structure of, 2—-2
Queue

Event, 3-5

Output, 3-5

R

Register
DESER, 34
ESER, 3-4
SESR, 3-1
SRER, 3-4
Registers, Status, 3—1
Reserved words, B-1
RS-232-C
Cable wiring, 1-9
Common connectors for, 1-8
Compared to the GPIB, 1-2
Connector location, 1-8
Connector pin assignments, 1-9
Description of, 1-1
Installation, 1-7
Setting Parameters of, 1-10
*RST, 2-152
RUNNing, 2-152

S

SELFcal?, 2-153
SELFcal:RESULt?, 2-154
SELFcal:SELect, 2—-155
SELFcal:STATe, 2—-155

Index-8

SEQUence:DEFine, 2-156
Serial poll, 3-3
SESR register, 3-1
Setup commands
CH<x>?, 2-35
CH<x>:AMPLitude, 2-36
CH<x>:FILTer, 2-37
CH<x>:0OFFSet, 2-43
CH<x>:WAVeform, 2—-47
CH1:0OPERation, 2-33
CLOCK?, 2-48
CLOCK:CH2?, 2-48, 2-59
CLOCk:CH2:DIVider, 2—-49
CLOCK:FREQuency, 2-49
CLOCK:SOURCce, 2-50
*SRE, 2-158
*SRE command, 3-5
SRER register, 3-4
STARt, 2-159
Status, 3—-1
of GPIB, 1-11
Status and error commands
DESE, 3-4
*ESE, 3-4
*ESR?, 3-1
*SRE, 3-5
*STB?, 3-3
Status and event
*PSC, 2-151
*SRE, 2-158
*STB?, 2-160
Status and Event Commands, ALLEv?, 2-30
Status and event commands
*ESE, 2-93
*ESR?, 2-94
DESE, 2-70
EVENT?, 2-94
EVMsg?, 2-95
EVQty?, 2-95
Status and events
displaying on screen, 3-8
processing of, 3—6
Status Registers, Defined, 3—1
*STB?, 2-160
*STB? query, 3-3
STOP, 2-160
Synchronization commands
*OPC, 2-143
*WAI, 2-168
System
*RST, 2-152
TIME, 2-161

AWG2000 Series Programmer Manual

Index

System commands
*IDN?, 2-109
*LRN?, 2-111
*OPT, 2-144
DATE, 2-65
FACTory, 2-96
HEADer, 2-107
ID?, 2-108
LOCk, 2-110
UNLock, 2-166
UPTime, 2-167
VERBoOse, 2-167

System events, 3-14

-

TIME, 2-161

*TRG, 2-161

TRIGger?, 2-162
TRIGger:IMPedance, 2—-162
TRIGger:LEVel, 2-163
TRIGger:POLarity, 2-164
TRIGger:SLOpe, 2-164
*TST?, 2-165

U

UNLock, 2-166
UPTime, 2-167

vV

VERBose, 2-167

w

*WAI, 2-168

Waveform
a program to creatd:-4
a program to retrievé—3
a program to send-3

Waveform commands
AUTOStep:DEFine, 2-30
CURVe, 2-61
DATA:DESTination, 2—62

AWG2000 Series Programmer Manual

DATA:ENCDG, 2-63
DATA:SOURce, 2-64
EQUAtion:DEFine, 2-91
EQUAtion:WPOQints, 2-92
MARKer:DATA, 2-112
MARKER<x>:AOFF, 2-113
MARKER<x>:POINt, 2-113
SELFcal:STATe, 2-156
WAVFrm?, 2—-169
WFMPre?, 2-169
WFMPre:BIT_NR, 2-170
WFMPre:BN_FMT, 2-171
WFMPre:BYT_NR, 2-171
WFMPre:BYT_OR, 2-172
WFMPre:CRVCHK, 2-173
WFMPre:ENCDG, 2-174
WFMPre:NR_PT, 2-175
WFMPre:PT_FMT, 2-176
WFMPre:PT_OFF, 2-177
WFMPre:WFID, 2-182
WFMPre:XINCR, 2-177
WFEMPre:XUNIT, 2-178
WFMPre:XZERO, 2-179
WFMPre:YMULT, 2-179
WFMPre:YOFF, 2-180
WFMPre:YUNIT, 2-181
WFMPre:YZERO, 2-181
WAVFrm?, 2-169
WFMPre?, 2-169
WFMPre:BIT_NR, 2-170
WFMPre:BN_FMT, 2-171
WFMPre:BYT_NR, 2-171
WFMPre:BYT_OR, 2-172
WFMPre:CRVCHK, 2-173
WFMPre:ENCDG, 2-174
WFMPre:NR_PT, 2-175
WFMPre:PT_FMT, 2-176
WFMPre:PT_OFF, 2-177
WFMPre:WFID, 2-182
WFMPre:XINCR, 2-177
WFMPre:XUNIT, 2-178
WFMPre:XZERO, 2-179
WFMPre:YMULT, 2-179
WFMPre:YOFF, 2-180
WFMPre:YUNIT, 2-181
WFMPre:YZERO, 2-181
Where to find other information, v

Index-9

Index

Index-10 AWG2000 Series Programmer Manual

	TitlePage
	Table of Contents
	Getting Started
	Syntax and Commands
	Status and Event Reporting
	Examples
	Appendices
	Appendix A:Character Charts
	Appendix B: Reserved Words
	Appendix C: Interface Specification
	Appendix D: Factory Initialization Settings

	Glossary
	Index

