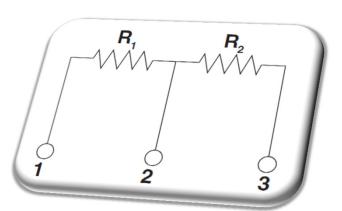


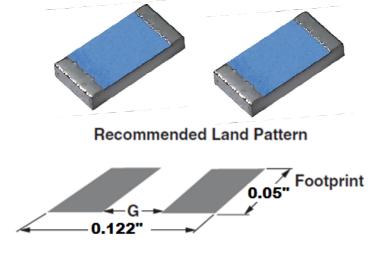
Advantages of Precision Resistance Networks for use in Sensitive Applications

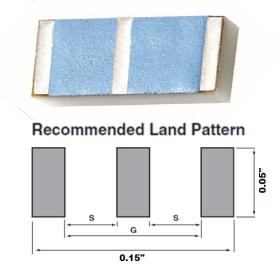
Advantages of Network vs. Discrete Resistors

- Space Saving Features
- Lot Uniformity
- Tracking Features
- Existing Reliable Technologies "Known Good Die"
- Long Term Stability Advantages
- Cost Savings


Space Saving Benefits of Networks

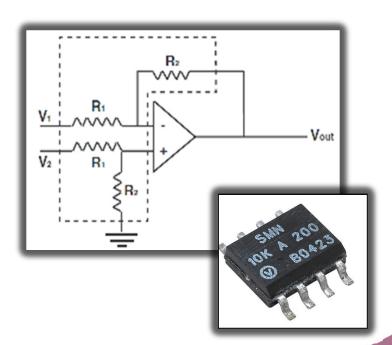
- Can combine multiple terminals in a common node
- Reduces redundant features (substrate, molding..etc)
- Reduces complexity of PCB or hybrid design


VS



Space Saving Benefits of Networks cont. (building a divider)

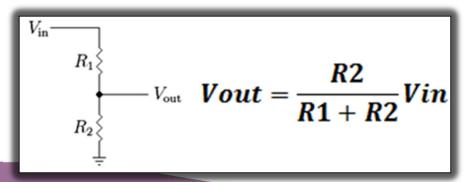
- Two 0805 chip resistors
- Total Mounting Area (not counting traces) =
 0.0122 inches²


- One 1505 size Divider
- Total Mounting Area =
 0.0075 inches²
- ~39% space savings

Lot Uniformity

- Resistors that meet a performance specification may not be identical
- Single Lot Date Codes are only applicable to a single line item!
- Various constructions of MIL-PRF-55342— May all be the same Part #
 - Tantalum Nitride
 - Ruthenium Oxide
 - Nickel Chromium

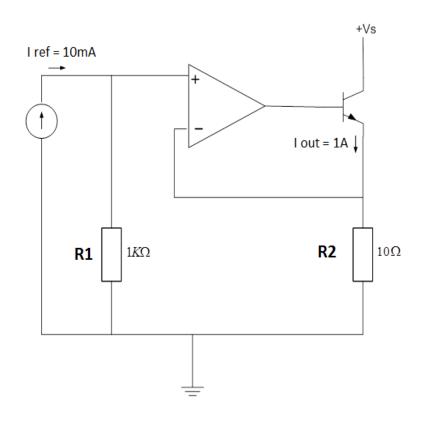
Only a network or an SCD will guarantee uniform construction


Tracking Benefits of Network Resistors

Temperature Coefficient (TCR)

- Defines drift with varying ambient temperature
- Ideally both resistors have identical TCR
- Relevant primarily in low power applications

Power Coefficient (PCR)


- Defines drift with applied power
- Best performance may not require matched but not identical PCR
- Relevant in power applications and also non-unity gain ratio's

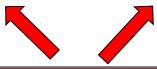

Tracking Benefits of Network Resistors cont.

Perfectly Matched Discrete Resistors

Suppose $\Theta_j = 9^{\circ}\text{C} / \text{W}$ TCR Tracking = 0 ppm/°C (perfect) Absolute TCR = 5 ppm/°C

Then:

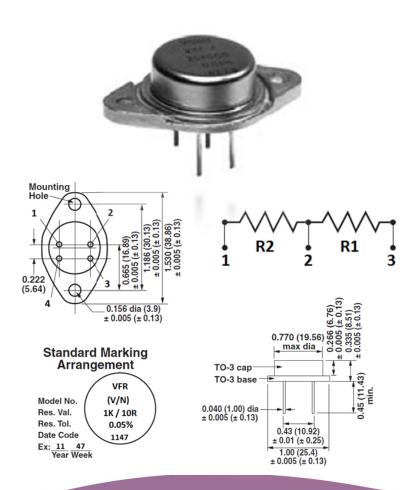
P = 10W


P = 10mW

 $\Delta T = +90^{\circ}C$

 $\Delta T = +0.09^{\circ} C$

 $\Delta R = 450 ppm$


 $\Delta R = 0.45$ ppm

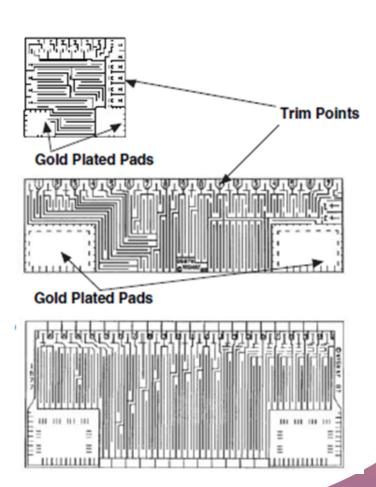
The ratio is not maintained despite perfect tracking!

Tracking Benefits of Network Resistors cont. The Network Solution

Two Resistors in the Same Package or on the Same Substrate Experience More Uniform Thermal Conditions:

$$\Delta T_{R1} \approx \Delta T_{R2}$$

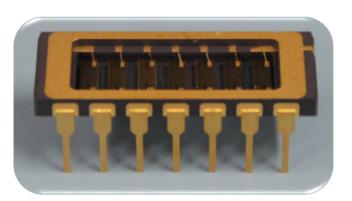
and thereby:

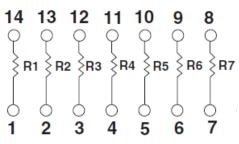

$$\Delta R_1 \approx \Delta R_2$$

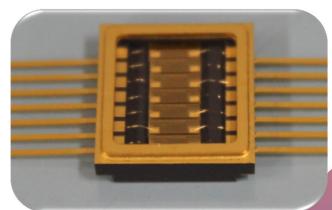
The ratio is maintained!

"Known Good Die"

- Resistor Networks May Be Constructed Using Existing Reliable Technologies
- Keeping the same materials and processes
- Qualification by similarity
- Expanding the utility gained from a successful qualification program

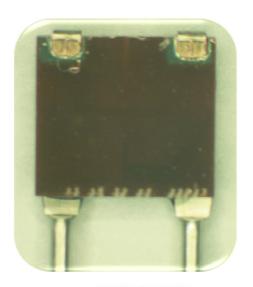




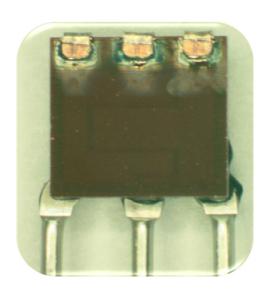

"Known Good Die" cont.

- Hermetically Sealed
- 14 pin Through-hole DIP
- Qualified in accordance with MIL-PRF-83401 char C schematic A
- 5ppm/°C TCR Tracking

- Hermetically Sealed
- 14 pin Surface Mount Flat Pack
- 0.5 ppm/°C TCR Tracking
- Any Schematic



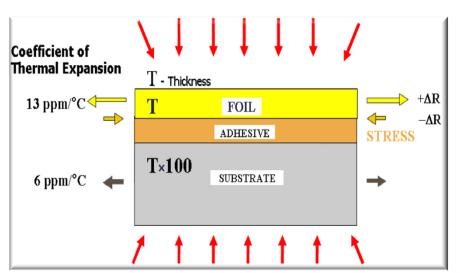
"Known Good Die" cont.


Discrete Component

- Qualified in accordance with MIL-PRF-55182/9
- 4ppm/C TCR Tracking (two 2ppm/C discretes)

Integrated Divider

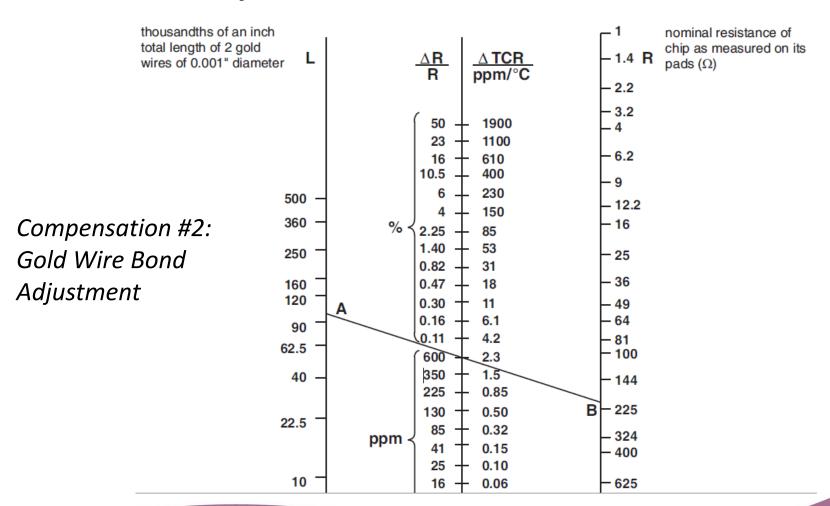
- Same case size
- 0.5 ppm/C TCR Tracking
- Any combination of values



New Network Technologies Hybrid Network Resistors with lower TCR

- New process developed for wire-bonding ultra low TCR resistors
- For use with commonly available gold and aluminum wire bonding processes
- Several compensation techniques to achieve lowest possible equivalent TCR

Compensation #1: Foil Construction



New Network Technologies

Hybrid Network Resistors with lower TCR

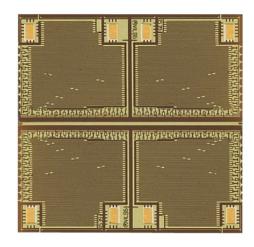
New Network Technologies

Hybrid Network Resistors with lower TCR

What's New about this Technology?

±2 ppm/°C Absolute TCR

±0.5ppm/°C TCR Tracking


Multiple Sizes & Configurations

Gold or Aluminum wire bondable

Operation up to +240°C

Recently qualified new materials allow for improved specifications over existing hybrid die.

Load Life & Long Term Drift Tracking

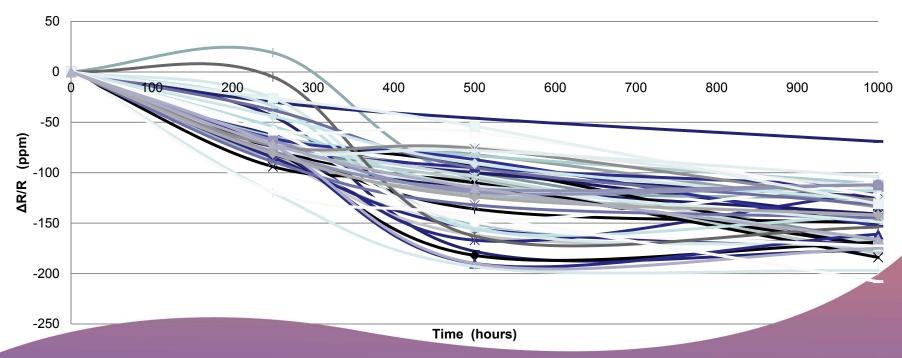
- Purpose:
 - To analyze the drift trend of discrete versus network components
 - Compare statistical deviation of parts within one lot
- Compare like resistive elements under similar conditions
 - MIL-PRF-83401 and MIL-PRF-55182 Foil Resistor Elements
 - 1000 hours of load life QPL maintenance Data
 - Full Rated Power, 75% duty cycle

Vishay Foil Resistors

Load Life & Long Term Drift Tracking Data Summary

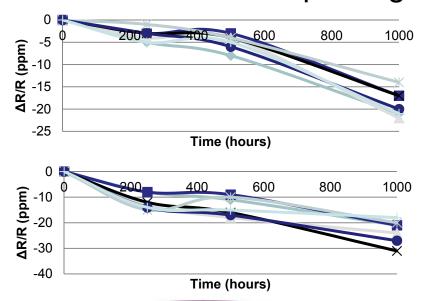
Long term stability of resistance ratios are improved when a specific technology is packed in a network configuration

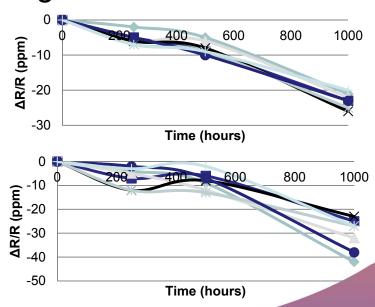
Load Life Test Results after 1,000 hours		Network Resistors MIL-PRF-83401 style
Date Code	Qty of Resistors	Average 10 Lot Deviations (ppm)
0714*	10 Networks of 7 Isolated Resistors	4.50745
0741	10 Networks of 7 Isolated Resistors	12.193
0814	10 Networks of 7 Isolated Resistors	9.3634
1014	10 Networks of 7 Isolated Resistors	4.9174
	280	7.745313
	Total Qty	Weighted Average Standard Deviation


Load Life Test Results after 1,000 hours		Discrete Resistors MIL-PRF-55182 style
Date Code	Oty of Resistors	1σ Lot Deviation (ppm)
0606	48	35.09
0736	48	34.419
0828	48	29.921
0910*	48	28.684
0937	24	24.571
1001	24	11.869
	240	29.2668
	Total Qty	Weighted Average Standard Deviation

Smaller deviation between resistors in a lot

Load Life & Long Term Drift Tracking MIL-PRF-55182/9 Discrete Typical Results


- Date Code 0910 $\sigma = 28.684$ ppm
- 48 pieces tested over 1000 hours
- Resistors manufactured in a single lot tend to drift together



Load Life & Long Term Drift Tracking MIL-PRF-83401 Network Typical Results

- Date Code 0714 Average: σ =4.5075 ppm
- Four 7-resistor networks shown (28 resistors total)
- Resistors manufactured in a single lot tend to drift together
- Resistors within a package drift together**

Cost Benefits of Networks

- One resistance network of 7 resistors is often less costly than 7 discrete resistors
- In cases of multiple resistance values, fewer part numbers and inventory are required when a single network is specified
- Cost of qualifying one network may be less than the cost of generically qualifying a range of many resistances
- PCB Design may be simplified, assembly costs reduced



Conclusions

- Resistance networks and dividers reduce the required space on PCB's and optimize usable area in hybrid cavities
- Manufacturing uniformity is guaranteed when specifying networks
- Resistance networks may be produced using existing reliable technology
- Short term drift error can be reduced by using resistance networks
- Long term drift error can be reduced by using resistance networks
- Cost Savings are realized by specifying resistance networks

Vishay Foil Resistors

For further information please contact our Application Engineering department at:

foil@vishaypg.com

