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I. Introduction

The need for calibration arises frequently in the use 
of strain gage instrumentation. Periodic calibration is 
required, of course, to assure the accuracy and/or linearity 
of the instrument itself. More often, calibration is necessary 
to scale the instrument sensitivity (by adjusting gage factor 
or gain) in order that the registered output correspond 
conveniently and accurately to some predetermined input. 
An example of the latter situation occurs when a strain 
gage installation is remote from the instrument, with 
measurable signal attenuation due to leadwire resistance. 
In this case, calibration is used to adjust the sensitivity 
of the instrument so that it properly registers the strain 
signal produced by the gage. Calibration is also used to set 
the output of any auxiliary indicating or recording device 
(oscillograph, computer display, etc.) to a convenient scale 
factor in terms of the applied strain.

There are basically two methods of calibration available 
— direct and indirect. With direct calibration, a precisely 
known mechanical input is applied to the sensing elements 
of the measurement system, and the instrument output is 
compared to this for verification or adjustment purposes. 
For example, in the case of transducer instrumentation, an 
accurately known load (pressure, torque, displacement, etc.) 
is applied to the transducer, and the instrument sensitivity 
is adjusted as necessary to register the corresponding 
output. Direct calibration of instrument systems in this 
fashion is highly desirable, but is not ordinarily feasible 
for the typical stress analysis laboratory because of the 
special equipment and facilities required for its valid 
implementa tion. The more practical and widely used 
approach to either instrument verification or scaling is by 
indirect calibration; that is, by applying a simulated strain 
gage output to the input terminals of the instrument. It is 
assumed throughout this Tech Note that the input to the 
instrument is always through a Wheatstone bridge circuit 
as a highly sensitive means of detecting the small resistance 
changes which characterize strain gages. The behavior 
of a strain gage can then be simulated by increasing or 
decreasing the resistance of a bridge arm.

As a rule, strain gage simulation by increasing the resistance 
of a bridge arm is not very practical because of the small 
resistance changes involved. Accurate calibration would 
require inserting a small, ultra-precise resistor in series with 

the gage. Furthermore, the electrical contacts for inserting 
the resistor can introduce a significant uncertainty in 
the resistance change. On the other hand, decreasing 
the resistance of a bridge arm by shunting with a larger 
resistor offers a simple, potentially accurate means of 
simulating the action of a strain gage. This method, known 
as shunt calibration, places no particularly severe tolerance 
requirements on the shunting resistor, and is relatively 
insensitive to modest variations in contact resistance. It is 
also more versatile in application and generally simpler to 
implement.

Because of its numerous advantages, shunt calibration is 
the normal procedure for verifying or setting the output 
of a strain gage instrument relative to a predetermined 
mechanical input at the sensor. The subject matter of this 
Tech Note encompasses a variety of commonly occurring 
bridge circuit arrangements and shunt-calibration 
procedures. In all cases, it should be noted, the assumptions 
are made that the excitation for the bridge circuit is 
provided by a constant-voltage power supply,1 and that 
the input impedance of any instrument applied across the 
output terminals of the bridge circuit is effectively infinite. 
The latter condition is approximately representative of 
most modern strain-measurement instruments in which 
the bridge output is “balanced” by injecting an equal and 
opposite voltage developed in a separate network. It is 
also assumed that there are no auxiliary resistors (such 
as those commonly used in transducers for temperature 
compensation, span adjustment, etc.) in either the bridge 
circuit proper or in the circuitry supplying bridge power.

Although simple in concept, shunt calibration is actually 
much more complex than is generally appreciated. The 
full potential of this technique for accurate instrument 
calibration can be realized only by careful consideration 
of the errors which can occur when the method is misused. 
Of primary concern are: (1) the choice of the bridge arm 
to be shunted, along with the placement of the shunt 
connections in the bridge circuit; (2) calculation of the 
proper shunt resistance to simulate a prescribed strain 
level or to produce a prescribed instrument output; and 
(3) Wheatstone bridge nonlinearity (when calibrating at 
high strain levels). Because of the foregoing, different 

1  In general, the principles employed here are equally applicable to 
constant-current systems, but the shunt-calibration relationships will 
differ where nonlinearity considerations are involved.
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shunt-calibration relationships are sometimes required for 
different sets of circumstances. It is particularly important 
to distinguish between two modes of shunt calibration which 
are referred to in this Tech Note, somewhat arbitrarily, as 
instrument scaling and instrument verification.

In what is described as instrument scaling, the reference 
is to the use of shunt calibration for simulating the strain 
gage circuit output which would occur during an actual test 
program when a particular gage in the circuit is subjected to a 
predetermined strain. The scaling is normally accomplished 
by adjusting the gain or gage-factor control of the 
instrument in use until the indicated strain corresponds 
to the simulated strain. The procedure is widely used to 
provide automatic correction for any signal attenuation 
due to leadwire resistance. In the case of half- and full-
bridge circuits, it can also be employed to adjust the 
instrument scale factor to indicate the surface strain under 
a single gage, rather than some multiple thereof. When 
shunt calibration is used for instrument scaling, as defined 
here, the procedure is not directly related to verifying the 
accuracy or linearity of the instrument itself.

By instrument verification, in this context, is meant the 
process of using shunt calibration to synthesize an input 
signal to the instrument which should, for a perfectly 
accurate and linear instrument, produce a predetermined 
output indication. If the shunt calibration is performed 
properly, and the output indication deviates from the correct 
value, then the error is due to the instrument. In such cases, 
the instrument may require repair or adjustment of internal 
trimmers, followed by recalibration against a standard 
such as the our Model 1550A Calibrator. Thus, shunt 
calibration for instrument verification is concerned only 
with the instrument itself; not with temporary adjustments 
in gain or gage factor, made to conveniently account for a 
particular set of external circuit conditions.

It is always necessary to maintain the distinction between 
instrument scaling and verification, both in selecting a 
calibration resistor and in interpreting the result of shunting. 
There are also several other factors to be considered in 
shunt calibration, some of which are especially important 
in scaling applications. The relationships needed to 
calculate calibration resistors for commonly occurring 
cases are given in the remaining sections of the Tech Note 
as follows:

Section Content

II. Basic Shunt Calibration  
Derivation of fundamental shunt-calibration 
equations.

III. Instrument Scaling for Small Strains  
 Simple quarter-bridge circuit downscale, upscale 
calibration. Half- and full-bridge circuits.

IV. Wheatstone Bridge Nonlinearity  
 Basic considerations. Effects on strain measurement 
and shunt calibration.

V. Instrument Scaling for Large Strains 
 Quarter-bridge circuit — downscale, upscale 
calibration. Half- and full-bridge circuits.

VI. Instrument Verification  
Small strains. Large strains.

VII. Accuracy Considerations  
Maximum error. Probable error.

For a wide range of practical applications, Sections II, 
III, and VI should provide the necessary information 
and relationships for routine shunt calibration at modest 
strain levels. When large strains are involved, however, 
reference should be made to Sections IV and V. Limitations 
on the accuracy of shunt calibration are investigated in 
Section VII. The Appendix to this Tech Note contains a 
logic diagram illustrating the criteria to be considered in 
selecting the appropriate shunt-calibration relationship for 
a particular application.

II. Basic Shunt Calibration

Illustrated in Figure 1 is the Wheatstone bridge circuit in 
its simplest form. With the bridge excitation provided by 
the constant voltage E, the output voltage is always equal 
to the voltage difference between points A and B.
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Or, in more convenient, nondimensional form:
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It is evident from the form of Equation (1a) that the output 
depends only on the resistance ratios R1/R2 and R4/R3, rather 
than on the individual resistances. Furthermore, when  
R1/R2 = R4/R3, the output is zero and the bridge is described 
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as resistively balanced. Whether the bridge is balanced or 
unbalanced, Equation (1a) permits calculating the change 
in output voltage due to decreasing any one of the arm 
resistances by shunting. The equation also demonstrates 
that the sign of the change depends on which arm is shunted.  
For example, decreasing R1/R2 by shunting R1, or 
increasing R4/R3 by shunting R3 will cause a negative 
change in output. Correspondingly, a positive change in 
output is produced by shunting R2 or R4 (increasing R1/R2 
and decreasing R4/R3, respectively).

Equation (1a) is perfectly general in application to 
constant-voltage Wheatstone bridges, regardless of the 
values of R1, R2, R3 and R4. In conventional strain gage 
instrumentation, however, at least two of the bridge arms 
normally have the same (nominal) resistance; and all four 
arms are often the same. For simplicity in presentation, 

without a significant sacrifice in generality, the latter 
case, known as the “equal-arm bridge”, is assumed in the 
following, and pictured in Figure 2. The diagram shows 
a single active gage, represented by R1, and an associated 
calibration resistor, RC, for shunting across the gage to 
produce an output signal simulating strain. The bridge 
is assumed to be in an initial state of resistive balance; 
and all leadwire resistances are assumed negligibly small 
for this introductory development of shunt-calibration 
theory. Methods of accounting for leadwire resistance (or 
eliminating its effects) are given in Section III.

When the calibration resistor is shunted across R1, the 
resistance of the bridge arm becomes R1 RC /(R1 + RC), and 
the change in arm resistance is:

            
∆R R R

R R
RC

C
= −1

1
1+  

(2)

Or,

           

∆R
R

R
R RC1

1

1
= −

+   
(3)

Reexpressing the unit resistance change in terms of strain 
yields a relationship between the simulated strain and the 
shunt resistance required to produce it. The result is usually 
written here in the form RC = f(εs), but the simulated strain 
for a particular shunt resistance can always be calculated 
by inverting the relationship.

The unit resistance change in the gage is related to 
strain through the definition of the gage factor, FG (see  
Footnote 2).

 

           

∆R
R

F
G

G= ε
  

(4)

where:

             RG =  the nominal resistance of the strain gage  
(e.g., 120 ohms, 350 ohms, etc.). 

Combining Eqs. (3) and (4), and replacing R1 by RG, since 
there is no other resistance in the bridge arm,

         
F

R
R RG s

G

G C
ε = −

+

Or,

             
εS G

G G C

R
F R R

= −
+( )  

(5)

where:   εs =  strain (compressive) simulated by shunting  
RG with RC. Solving for RC,

Figure 1 – Basic Wheatstone bridge circuit.

Figure 2 – Shunt calibration of single active gage. 2  In this Tech Note, the symbol FG represents the gage factor of the 
strain gage, while FI denotes the setting of the gage factor control on 
a strain indicator.
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(6)

Since the simulated strain in this mode of shunt calibration 
is always negative, it is common practice in the strain gage 
field to omit the minus sign in front of the first term in 
Equation (6), and write it as:
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G S
G= − = −

ε ε µ

x 061

( )  
(7)

where: εs(µ) = simulated strain, in microstrain units.

When substituting into Equation (7), the user must 
always remember to substitute the numerical value of the 
compressive strain, without the sign.

The relationships represented by Equations (5) through (7) 
are quite general, and accurately simulate the behavior of 

a strain gage for any magnitude of compressive strain. For 
convenient reference, Table 1 lists the appropriate shunt-
calibration resistors for simulating strains up to 10000µε 
in 120-, 350-, and 1000-ohm gage circuits, based on a gage 
factor of 2.000. Precision resistors (±0.02%) in these and 
other values are available from Micro-Measurements, and 
are described in our Strain Gage Accessories Data Book. 
If the gage factor is other than 2.000, or if a nonstandard 
calibration resistor is employed, the simulated strain 
magnitude will vary accordingly. The true magnitude of 
simulated strain can always be calculated by substituting 
the exact values of FG and RC into Equation (5). 

While Equations (5) through (7) provide for accurately 
simulating strain gage response at any compressive strain 
level (as long as the gage factor remains constant), this may 
not be sufficient for some calibration applications. It is 
always necessary to consider the effects of the Wheatstone 
bridge circuit through which the instrument receives its 
input signal from the strain gage. If the nondimensional 
output voltage of the bridge (εo/E) were exactly proportional 
to the unit resistance change ΔR/RG, a perfectly accurate 
instrument should register a strain equal to the simulated 
strain (at the same gage factor). In fact, however, the 
Wheatstone bridge circuit is slightly nonlinear when a 
resistance change occurs in only one of the arms (see 
Reference 1: Our Tech Note TN-507). Because of this, 
the instrument will register a strain which differs from 
the simulated (or actual) strain by the amount of the 

Table 1 – Shunt Calibration Resistors

GAGE
CIRCUIT

RESISTANCE
IN OHMS

EQUIVALENT
MICROSTRAIN3

120-OHM

599 880
119 880
59 880
29 880
19 880
14 880
11 880

5880

100
500

1000
2000
3000
4000
5000

10 000

350-OHM

349 650
174 650
87 150
57 983
43 400
34 650
17 150

500
1000
2000
3000
4000
5000

10 000

1000-OHM

999 000
499 000
249 000
165 666
124 000
99 000
49 000

500
1000
2000
3000
4000
5000

10 000

3  The “Equivalent Microstrain” column gives the true compressive 
strain, in a quarter-bridge circuit, simulated by shunting each calibra-
tion resistor across an active strain gage arm of the exact indicated 
resistance. These values are based on a circuit gage factor setting of 
2.000.

Small versus Large Strain
With respect to shunt calibration, at least, the 
distinction between small and large strains is purely 
relative. Somewhat like beauty, it resides primarily in 
the eye of the beholder — or the stress analyst.

Errors due to Wheatstone bridge nonlinearity vary 
with the circuit arrangement, and with the sign and 
magnitude of the simulated strain. As shown in TN-507, 
the percentage error in each case is approximately 
proportional to the strain. Thus, if the error at a 
particular strain level is small enough relative to the 
required test precision that it can be ignored, the 
strain can be treated as small. If not, the strain is 
large, and the nonlinearity must be accounted for to 
calibrate with sufficient accuracy.

Since the nonlinearity error at 2000µε is normally less 
than 0.5%, that level has been taken arbitrarily as the 
upper limit of small strain for the purposes of this 
Tech Note. The reader should, of course, establish his 
or her own small/ large criterion, depending on the 
error magnitude compared to the required precision. 
The accuracy of the shunt calibration precedure itself 
(see Section VII) should be considered when making 
such a judgment.

http://www.micro-measurements.com
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nonlinearity error introduced in the bridge circuit. As a 
rule of thumb, the nonlinearity error in this case, expressed 
in percent, is about equal to the strain, in percent. Thus, at 
low strain levels (below, say, 2000µε, or 0.2% — see inset), 
the difference between the simulated and registered strain 
magnitudes may not be detectable. For accurate shunt 
calibration at higher strain levels, or for precise evaluation 
of instrument linearity, different shunt-calibration 
relationships may be required. Treatment of nonlinearity 
considerations is given in Section IV of this Tech Note.

The procedures described up to this point have referred 
only to instrument calibration for compressive strains. 
This seems natural enough, since shunting always 
produces a decrease in the arm resistance, corresponding 
to compression. There are occasions, however, when 
upscale (tension) calibration is more convenient or 
otherwise preferable. The easiest and most accurate way to 
accomplish this is still by shunt calibration.

Figure 3 illustrates the simple Wheatstone bridge circuit 
again, but with the calibration resistor positioned to shunt 
the adjacent bridge arm. R2 (usually referred to as the 
“dummy” in a quarter-bridge circuit). As demonstrated by 
Equation (1a), a decrease in the resistance of the adjacent 
arm will produce a bridge output opposite in sign to that 
obtained by shunting R1, causing the instrument to register 
a tensile strain. Thus, a simulated compressive strain (εSC2) 
in R2, generated by shunting that arm, can be interpreted as 
a simulated tensile strain (εST1) in R1. The special subscript 
notation is temporarily introduced here because the two 
simulated strains are not exactly equal in magnitude. For 
calibration at low strain levels, the difference in magnitude 
between εST1 and εSC2 is small enough that the relationships 
given in Equations (5) through (7) are sufficiently accurate 

for most practical applications. The error in the simulated 
tensile strain, in percent, is approximately equal to the 
gage factor times the strain, in percent.

The foregoing error arises because shunting R2 to produce 
a simulated compressive strain in that arm, and then 
interpreting the instrument output as due to a simulated 
tensile strain in R1, involves effectively a two-fold 
simulation which is twice as sensitive to Wheatstone bridge 
nonlinearity. Accounting for the nonlinearity, as shown in 
Sections IV and V, permits developing a shunt-calibration 
relationship for precisely simulating tensile strains of any 
magnitude.

III. Instrument Scaling for Small Strains

Ver y com monly, when making pract ica l stra in 
measurements under typical test conditions, at least one 
active bridge arm is sufficiently remote from the instrument 
that the leadwire resistance is no longer negligible. 
Under these circumstances, the strain gage instrument is 
“desensitized”; and the registered strain will be lower than 
the gage strain to an extent depending on the amount of 
leadwire resistance. In a three-wire quarter-bridge circuit, 
for instance, the signal will be attenuated by the factor 
RG /(RG + RL), where RL is the resistance of one leadwire 
in series with the gage. The usual way of correcting for 
leadwire desensitization is by shunt calibration — that is, 
by simulating a predetermined strain in the gage, and then 
adjusting the gage factor or gain of the instrument until it 
registers the same strain.

This section includes a variety of application examples 
involving quarter-, half-, and full-bridge strain gage 
circuits. In all cases treated here, it is assumed that strain 
levels are small enough relative to the user’s permissible 
error limits that Wheatstone bridge nonlinearity can 
be neglected. Generalized relationships incorporating 
nonlinearity effects are given in subsequent sections.

Quarter-Bridge Circuit

Figure 4 illustrates a representative situation in which 
an active gage, in a three-wire circuit, is remote from the 
instrument and connected to it by leadwires of resistance 
RL. If all leadwire resistances are nominally equal, then  
R1 = RL + RG and R2 = RL + RG; i.e., the same amount of 
leadwire resistance is in series with both the active gage 
and the dummy. There is also leadwire resistance in the 
bridge output connection to the S– instrument terminal. 
The latter resistance has no effect, however, since the input 
impedance of the instrument applied across the output 
terminals of the bridge circuit is taken to be infinite. Thus, 
no current flows through the instrument leads.

Figure 3 – Upscale (tensile) calibration  
by shunting adjacent bridge arm.
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To calibrate in compression, the active gage is shunted 
by a calibration resistor calculated from Equation (7) or 
selected from Table 1 for the specified strain magnitude. 
After adjusting the sensitivity of the instrument to register 
the calibration strain, the effect of the leadwire resistance 
is eliminated from all subsequent strain measurements.

Unless additional leadwires are used (as demonstrated in 
Figure 6), simulated compressive strain by directly shunting 
the remote active gage is usually difficult to implement in 
practice. Since the purpose of shunt calibration in this case 
is simply to scale the instrument sensitivity as a means 
of compensating for leadwire resistance, either upscale 
or downscale calibration is equally suitable. Thus, it is 
generally more convenient to shunt the adjacent dummy 
arm as shown in Figure 4, because this can be done right 
at the instrument terminals. It should be apparent from 
the figure that the calibration resistor must be connected 
directly across the dummy to produce the desired result. 
Gage strain cannot be accurately simulated by shunting 

from S– to P– (or from S– to P+). After shunting the 
dummy with a calibration resistor selected to simulate the 
appropriate strain, the instrument sensitivity is adjusted to 
register the same strain. At low strain levels, the result is 
effectively the same as if the calibration had been performed 
by shunting the active gage.

Half-Bridge Circuit

In many stress analysis applications it is necessary (or 
at least advantageous) to employ two co-acting gages, 
connected at adjacent arms in the bridge circuit, to 
produce the required strain signal. A common example 
of this occurs when a second gage is installed on an 
unstressed specimen of the test material (and maintained 
in the same thermal environment as the test object) to 
provide temperature compensation for the active gage. 
In the special case of a purely uniaxial stress state, with 
the principal stress directions known, both gages can 
be mounted adjacent to each other, directly on the test 
part. One gage is aligned with the applied stress, and 
the other is installed in the perpendicular direction to 
sense the Poisson strain. This arrangement provides an 
augmented bridge output, along with excellent temperature 
compensation. Similar opportunities are offered by a beam 
in bending. One gage is mounted along the longitudinal 
centerline of the convex surface, with a mating gage at the 
corresponding point on the concave surface. When the 
two gages are connected as adjacent arms in the bridge 
circuit, and assuming uniform temperature through the 
thickness of the beam, the bridge output is doubled while 
maintaining temperature compensation.

All of the foregoing are examples of half-bridge circuits, 
since one-half of the Wheatstone bridge is external to 
the instrument. Aside from differences in the quality of 
the achievable temperature compensation, they differ 
principally in their degrees of signal increase. The factor 
of signal augmentation is usually expressed in terms of the 
“number of active gages”, N. When the gage in the adjacent 
bridge arm senses no applied strain, but serves solely for 
temperature compensation, N = 1. With two perpendicular 
gages, aligned along the principal axes in a uniaxial stress 
field, N = 1 + ν, where ν is the Poisson’s ratio of the test 
material. In the case of the beam, with gages on opposing 
surfaces, N = 2, since the gages sense equal and opposite 
strains, and the bridge output is doubled.

When N is greater than unity, it is obviously necessary to 
adjust the instrument sensitivity by the factor 1/N if the 
instrument is to directly register the actual surface strain 
sensed by the primary active gage. Furthermore, if the 
gage installations are at a distance from the instrument, 
additional adjustment of the sensitivity (in the opposite 
direction) is required to compensate for the signal loss 
due to leadwire resistance. Shunt calibration can correct 

Figure 4 – Quarter-bridge circuit with active  
gage remote from instrument.
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for both effects simultaneously, and permit adjusting 
instrument sensitivity to register the correct surface strain 
at the primary active gage.

Figure 5a illustrates a typical half-bridge circuit, with the 
gages located away from the instrument, and with shunt 
resistors for downscale (D) and upscale (U) calibration. 

Figures 5b and 5c show the physical and circuit arrange-
ments for N = 1 + ν and N = 2, respectively. The procedure 
for calibration is the same as for the quarter-bridge circuit. 
That is, a calibration resistor of the appropriate size is 
shunted across the gage, and the instrument sensitivity is 
adjusted to register the simulated strain.

Figure 5 – Shunt calibration of 
external half-bridge circuits.

5a – Basic circuit.

5b – Uniform uniaxial stress: N = 1 + ν 5c – Bending beam: N = 2
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Confusion sometimes arises, however, in correlating the 
registered strain with the simulated strain (and with the 
calibration resistor) when N is greater than unity. The 
simplest way of handling this is to generalize Equation (7) 
so that it includes the number of active gages, Thus,

            

R
R

F N
RC

G

G S
G= −x 0

x x

61
ε µ( )  

(8)

To calibrate, the strain gage is shunted with a resistor 
calculated from Equation (8) and the instrument sensitivity 
adjusted to register εs(µ). The result is the same, except 
for the sign of the instrument output, no matter which of 
the two adjacent-arm gages in Figure 5 is shunted. After 
calibration, the instrument output will correspond to the 
surface strain at the primary active gage. This procedure 
accounts for both the signal increase (when N > 1) and the 
leadwire desensitization.

When the gage installations are more than a few steps away 
from the instrument, it is usually inconvenient to connect 
a shunt-calibration resistor directly across the gage as 
shown in Figure 5. For such cases, remote shunt calibration 
is a common practice. Figure 6 illustrates a half-bridge 
circuit with the calibration resistor positioned at the 
instrument. In this example, three extra leadwires and a 
switch permit connecting the shunt across either arm of 
the half bridge. Since shunt resistors are characteristically 
in the thousands of ohms, the resis tances of the calibration 
leadwires, although shown in the figure, can usually be 
neglected in the strain simulation calculations. Equation 

(8) is then directly applicable to remote shunt calibration. 
If the leadwire resistance is large enough so that 100 x RL/
RC is greater than about 1/10 of the required calibration 
precision (expressed in percent), Equation (8) can be 
modified as follows to calculate the correct calibration 
resistance:

               

R
R

F N
R RC

G

G S
G L= − −

( )

x 0
x x

61
2

ε µ  

(9)

In Equation (9), RL represents the resistance of one leadwire 
between the calibration resistor and gage.

Full-Bridge Circuits

In strain-measurement (stress analysis) applications for 
which the half bridge is suitable, the output signal can be 
doubled by installing a full bridge, with four active strain 
gages on the test object. A representative circuit, including 
two supplementary leadwires for remote shunt calibration, 
is shown in Figure 7a. In practice, the calibration leadwires 
can be connected across any arm of the bridge, and will 
always produce the same signal magnitude, but the sign 
of the signal depends on which arm is shunted. It will 
be noticed, in the case of the full-bridge circuit, that the 
leadwire resistance is now in the bridge power and output 
leads rather than in the bridge arms. With the assumption 
of infinite impedance at the bridge output, the resistance 
in the latter leads has no effect. However, the resistance in 
the power leads reduces the voltage applied to the bridge 
proper, and attenuates the output signal accordingly.

6 – Remote shunt calibration 
of external half-bridge.
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7 – Remote shunt calibration of 
external full-bridge circuit.

7a – General circuit 
arrangement. Calibration 
resistor can be shunted across 
any arm. Note that internal half-
bridge is disconnected from 
output circuit for full-bridge  
operation.

7b – Bending beam, with Poisson gage  
orientation: N = 2(1 + ν)

7c – Uniform uniaxial stress, with Poisson gage  
orientation: N = 2(1 + ν)
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Three widely used full-bridge circuit arrangements are 
shown in Figures 7b, 7c, and 7d. In the first two of these, for 
bending and direct stress, respectively, the number of active 
gages is expressed by N = 2(1 + ν). This value is substituted 
into Equation (8) or Equation (9) when calculating the 
calibration resistor to simulate a surface strain of εS. 
The physical arrangement of the gages is the same in 
both cases; but, as indicated by the equivalent-circuit 
diagrams, the gages are positioned differently in the bridge 

circuit to produce the desired signal in each instance. For 
applications involving pure bending or torsion, the bridge 
output signal can be increased further with the gage and 
circuit configurations illustrated in Figure 7d. Since all 
four gages are fully active in these examples, N = 4 for 
substitution into Equations (8) or (9).

In general, the shunt-calibration relationships appearing 
in this section are limited in application to the simulation 
of low strain magnitudes, since nonlinearity effects in 
the Wheatstone bridge circuit have been ignored. The 
equations given here are intended primarily for scaling 
the output of an instrument to register the same strain 
magnitude that it would if the selected gage were subjected 
to an actual strain equal to the simulated strain. This mode 
of shunt calibration offers a simple, convenient means for 
eliminating the effects of leadwire desensitization and 
accounting for more than one active gage (N > 1) in the 
bridge circuit.

For calibration at strain levels higher than about 2000µε, 
or for precise evaluation of instrument accuracy, 
it is ordinarily necessary to incorporate the effects of 
Wheatstone bridge nonlinearity in the shunt-calibration 
relationships. Nonlinearity considerations are treated in 
Section IV, and application examples given in Section V.

IV. Wheatstone Bridge Nonlinearity

As described in TN-507, the common practice with modern 
strain gage instruments is to operate the Wheatstone bridge 
circuit in a resistively unbalanced mode during strain 
measurement. In some instruments, the resulting bridge 
output voltage is read directly as a measure of the strain-
induced resistance change(s) in one or more of the bridge 
arms. In others, the bridge output signal is “unbalanced” 
(nulled) by injecting an equal and opposite voltage from  
a separate circuit which is powered by an equal supply  
voltage.

The cause of the nonlinear behavior (when it occurs) can 
be demonstrated by reexamining Equation (1a), with 
reference to Figure 1. The bridge output voltage under any 
initial condition can be expressed as:

  

e
E

R
R R

R
R R

O



 =

+
−

+1

1

1 2

4

4 3  
(10)

Considering, for the moment, resistance changes, in R1 
and R2 (composing the right-handed branch of the bridge 
circuit), the output voltage after such changes is:
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E

R R
R R R R

R
R R

O



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+ + +
−
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1 1
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∆
∆ ∆

 
(11)

7d – Bending or torsion: N = 4.

http://www.micro-measurements.com


T
E

C
H

 N
O

T
E

For technical questions, contact
micro-measurements@vishaypg.com

TN-514
Micro-Measurements

Document Number: 11064
Revision: 01-Feb-2013

www.micro-measurements.com
141

Shunt Calibration of Strain Gage Instrumentation

The change in the output signal from the bridge (or the 
nulling voltage) is then:

∆ ∆e
E

e
E

e
E

R R
R R

O O O



 = 



 − 



 = +

+2 1

1 1

1 22 1 2

1

1 2+ +
−

+∆ ∆R R
R

R R

     (12)

In the usual case, however, R1 = R2 = RG , the nominal 
strain gage resistance. After making this substitution, and 
reducing,
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(13)

For the quarter-bridge circuit with only a single active 
gage (R1), ΔR2 = 0 and:
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∆
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R
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R
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(14)

 
Or, introducing the relationship from Equation (4),

     
∆ e

E
F
F

O G

G





 =

+
ε

ε4 2   
(15)

It is evident from Equations (14) and (15) that in a quarter-
bridge circuit the output is a nonlinear function of the 
resistance change and the strain — due to the presence 
of the second term in the denominator. The nonlinearity 
reflects the fact that as the gage resistance changes, the 
current through R1 and R2 also changes, in the opposite 
direction of the resistance change. For typical working 
strain levels, the quantity 2FGε in Equation (15) is very 
small compared to 4, and the nonlinearity can usually 
be ignored. When measuring large strains, or when the 
greatest precision is required, the indicated strain must be 
corrected for the nonlinearity. With MM Systems 5000, 
6000 and 7000, the correction can be made automatically, 
and at all strain levels.

Returning to the more general expression for the output 
of a half-bridge [Equation (13)], it can be seen that the 
nonlinearity terms in the denominator can be eliminated 
only by setting ΔR2 = ΔR1. Then, with the resistance 
changes in R1 and R2 numerically equal, but opposite in 
sign, Equation (13) reduces to the linear expression:

 

     
∆

∆ ∆
e
E

R
R

R
RO G G



 = =

2

4 2

1 1

 

(16)

Thus, when the separate resistance changes in R1 and 
R2 are such that the total series resistance is unchanged, 
the current through R1 and R2 remains constant, and the 
bridge output is proportional to the resistance change. 
A common application of this condition occurs when a 
beam in bending is instrumented with a strain gage on the 
convex side and another, mounted directly opposite, on the 
concave side. The strains sensed by the two gages are then 
equal in magnitude and opposite in sign (ε2 = –ε1). If the two 
gages are connected in a half-bridge circuit, as in Figure 5c, 
the conditions required for Equation (16) are satisfied, and 
the bridge output, expressed in strain units, is:

     
∆ e

E
FO G



 = ε

2     
where |ε | represents the absolute value 
of strain in either gage. (17)

This demonstration has dealt with only bridge arms R1 and 
R2 in Figure 1, but it applies equally to arms R3 and R4. The 
principle can be generalized as follows: any combination of 
strains and resultant resistance changes in two series bridge 
arms (R1 and R2, or R3 and R4) which causes the current in 
that branch of the bridge circuit to change will introduce 
nonlinearity into the output. Relationships giving the 
nonlinearity errors for a variety of commonly used circuit 
arrangements are given in TN-507.

With the foregoing principle in mind, we are now in 
a position to consider the effect of Wheatstone bridge 
nonlinearity on shunt calibration. It should first be noted 
that, in normal practice, only one arm of the bridge is 
shunted at a time; and it is never possible, by shunting, to 
produce equal and opposite resistance changes in R1 and 
R2 , or in R3 and R4. Thus, the shunt-calibration procedure 
always results in nonlinear, quarter-bridge operation 
— regardless of how the bridge circuit functions during 
actual strain measurement. In Figure 5c, for instance, the 
bridge output during strain measurement is proportional 
to the surface strain, as indicated by Equation (17). When 
either gage is shunted by a calibration resistor, however, 
the output is nonlinearly related to the simulated strain 
according to Equation (15). As a result, shunting, say, RG1 
in Figure 5c does not exactly simulate, in terms of bridge 
output voltage, the behavior of the gage during strain 
measurement.

As noted earlier, the effect of the nonlinearity is small 
when the strains (actual or simulated) are small. For such 
cases, the relationships given in Section III are adequate 
to permit calculating the shunt resistor size to simulate a 
given strain magnitude. Because of this, it is preferable to 
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perform instrument scaling at modest strain levels where 
the nonlinearity error is negligible.

When instrument scaling is done at higher strain levels, it 
is generally necessary to use special relationships, given 
in Section V, to precisely simulate gage behavior by shunt 
calibration. There is one notable exception to the latter 
statement, however. The bridge output due to shunting 
a single gage is indistinguishable from that of a quarter-
bridge circuit with the gage strained in compression. For 
this special (but common) case, the simulation is exact at 
all compressive strain levels because the nonlinearity due 
to shunting is the same as that caused by compressive strain 
in the gage. As shown in the Appendix, Equations (5) to (7) 
are thus appropriate for compressive scaling of quarter-
bridge circuits at any level of strain.4 The same is true, of 
course, for external half- and full-bridge circuits where 
there is only a single active gage, with the remaining bridge 
arms used for compensation and/or bridge-completion 
purposes.

Both Sections III and V are limited in scope to the subject 
of instrument scaling by gage simulation. Shunt calibration 
for instrument verification is treated separately in Section 
VI. For scaling applications, the size of the shunt-
calibration resistor is selected so that the bridge output 
voltage is the same for both simulated and actual strains 
of the same magnitude. Therefore, when the Wheatstone 
bridge arrangement is intrinsically nonlinear (as in Figure 
5b, for instance), and the strain level is high, the instrument 
indication is accurate only at the simulated strain level. 
Subsequent correction may be needed if the instrument is 
to accurately register smaller or larger strains.

V. Instrument Scaling for Large Strains

It was demonstrated in the preceding section that 
Wheatstone bridge nonlinearity must generally be 
considered when shunt calibration is used for instrument 
scaling at high strain levels. Under such conditions, errors 
in gage simulation arise whenever the nonlinearity which 
is inherent in shunt calibration differs from that during 
actual strain measurement. The relationships given in this 
section for quarter-, half-, and full-bridge circuits provide 
for precisely simulating the strain gage output at any level of 
strain, low or high.5 Thus, the instrument scaling will also 
be precise when the gain or gage factor control is adjusted 
to register the simulated strain. It must be kept in mind, 
however, that if the strain-measuring circuit arrangement 
is nonlinear (as in Figures 4, 5b and 7c), precise scaling is 
achieved only at the simulated strain level. At any other 
level of strain, some degree of error will be present due to 
the nonlinearity.

Quarter-Bridge Circuit

The quarter-bridge circuit, with a single active gage, 
is widely used in experimental stress analysis. When 
instrument scaling is done by connecting a shunt-
calibration resistor directly across the gage, the simulation 
of compressive strain is exact at all strain levels. This is 
true because the nonlinearity in shunt calibration is the 
same as that during strain measurement. For such cases, 
the proper shunt-calibration resistor to simulate a given 
strain magnitude can be obtained directly from Table 
1, or calculated from Equation (7) of Section II. After 
instrument scaling, the indicated strain will be correct at 
the magnitude of the calibration strain, but slightly in error 
at other strain levels because of the nonlinearity. For most 
practical applications, the corrected strain at any different 
strain level can be calculated from:

                      
ε ε

ε ε
=

+ −( )
2

2



FG S  
(18)

where:     ε = corrected strain 
   εS = calibration strain 
     ε̃ = indicated strain 
   FG = gage factor of strain gage

Since the effect of leadwire resistance on bridge circuit 
nonlinearity is normally very small, terms involving RL have 
been omitted from Equation (18). If the leadwire resistance 
is a significant fraction of the gage resistance, however, 
Equation (18) tends to overcorrect for the nonlinearity. In 
such cases, the following complete relationship can be used 
to obtain more accurate correction:
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(18a)

 
Shunting the dummy arm of the bridge (see Figure 4) 
produces an upscale signal, and can be used to simulate a 
tensile strain in the active gage. For the simulation to be 
exact, however, a special shunt-calibration relationship is 
required, because the nonlinearity in tension is different 
from that in compression. If the active gage were subjected 
to an actual tensile strain, the resistance of the right-hand 
branch of the bridge in Figure 4 would rise, and the current 
would decrease correspondingly. However, when the 

4  Since the nonlinearity due to a resistance increase is different than 
for a decrease, precise simulation of a high tensile strain requires a 
special relationship, as demonstrated in Section V.

5  The subject relationships are “precise” or “exact” with respect to the 
specified parameters such as RG, RC, and FG. The effects of toler-
ances on these quantities are discussed in Section VII, “Accuracy 
Considerations”.
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dummy arm of the bridge is shunted, the resistance of the 
branch decreases, and the current rises. This difference can 
be accounted for by calculating the calibration resistor so 
that the bridge output voltage due to shunting the dummy is 
the same as that for a preselected tensile calibration strain in 
the active gage. The procedure for doing so is demonstrated 
by the following derivation where, for the sake of simplicity, 
the effect of leadwire resistance is temporarily ignored  
(RL = 0).

Equation (14) in Section IV gives the output voltage from 
a resistance change in the active gage (R1). The negative of 
the same relationship applies to a change in the dummy 
arm, R2. Thus,
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(20)

The unit resistance change in the active gage due to a 
simulated tensile strain εST1 is:

                 

∆R
R

F
G

G ST
1

1= ε

Therefore,
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On the other hand, the resistance change in the dummy, 
R2, is produced by shunting with a calibration resistor,  
RC. From Equation (3),
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Substituting into Equation (20),
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Equating the two expressions for output voltage,
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And, solving for RC,
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(23)

For the majority of routine applications, any desired 
tensile strain in the active gage can be simulated quite 
accurately by shunting the dummy gage with the calibration 
resistor specified by Equation (23). This relationship can be 
compared to Equation (7) to see the difference between 
simulating tensile and compressive strains in the active 
gage. After scaling for a given simulated tensile strain, the 
instrument indication will be correspondingly accurate for 
only that tensile strain magnitude. Measurements at other 
strain levels (tension or compression) can be corrected, if 
necessary, with Equation (18) or (18a).

In extreme cases, when the simulated strain is very large, 
and the leadwire resistance is not a negligible fraction of 
the gage resistance, slightly greater accuracy in tensile 
strain simulation can be achieved by incorporating the 
leadwire resistance in the derivation of Equation (23). The 
complete expression for the calibration resistor becomes:
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(23a)

The second term in Equation (23a) can never be greater 
in magnitude than RG; and, for typical strain levels, is 
negligible compared to the first term — irrespective of 
the leadwire resistance. Thus Equation (23) is normally 
the appropriate relationship for the shunt resistor used 
in upscale calibration. The small error associated with 
Equation (23) is plotted in Figure 8 as a guide to the 
very rare circumstances when Equation (23a) might be 
necessary.

Figure 8 – Percent error from using Equation 
(23) instead of Equation (23a). FG = 2.0.
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It is worth noting, for quarter-bridge circuits, that scaling 
the instrument by shunting the internal dummy gage (which 
is usually a stable precision resistor) can offer distinct 
advantages in calibration accuracy. It is common practice, 
for instance, to calculate or select the value of the shunt- 
calibration resistor on the basis of the nominal gage 
resistance. But the resistance of the installed gage 
generally differs from the nominal, due both to its initial 
resistance tolerance and to a further change in resistance 
during installation. When this occurs, and the active 
gage is shunted for compression scaling, the simulated 
magnitude is in error accordingly. The extent of the error 
can be approximated by the method given in Section VII, 
“Accuracy Considerations”.

One technique for avoiding most of the error due to 
deviation in the gage resistance is to temporarily replace 
the active gage in the bridge circuit with a precision 
resistor equal to the nominal resistance of the gage. The 
instrument is then scaled (in compression) by shunting the 
fixed resistor with a calibration resistor calculated from 
Equation (7). After scaling, the active gage is reconnected 
to the bridge circuit. It is usually much more convenient, 
however, and about equally accurate, to scale in the 
tension direction by simply shunting the internal dummy 
with a resistor calculated from Equation (23). When the 
leadwire resistance is negligible, this procedure is exact, 
and independent of the installed gage resistance. Even 
with modest leadwire resistance (say, less than RG /10), 
the error due to a few ohms of gage resistance deviation is 
small enough to be ignored. In case of doubt, the installed 
gage resistance should be measured. If the resistance is 
significantly beyond the manufacturer’s tolerance, one of 
the two foregoing procedures should always be used for 
shunt calibration.

Half-Bridge Circuits

When measuring the maximum principal strain in a 
known uniaxial stress state, a simple means for assuring 
effective temperature compensation is to mount a second 
gage adjacent and perpendicular to the primary gage, and 
connect the two gages in a half-bridge circuit as shown in 
Figure 5b. Such an arrangement is said to have N = 1 + ν 
active gages, since the bridge output is increased by that 
factor. The circuit behavior is nonlinear, however, because 
the resistance changes in the two active gages are not equal 
and opposite.

It is assumed in the following that RG1 in Figure 5b 
represents the primary gage, and that the object is to scale 
the instrument to register the test-surface strain under that 
gage. Whether shunting RG1 to simulate compression in 
the primary gage, or shunting RG2 to simulate tension, the 
nonlinearity during scaling is different from that during 
actual strain measurement. Thus, two different shunt-

calibration relationships are required for precise strain 
simulation, as in the case of the quarter-bridge circuit. 
These relationships are developed in the same manner as 
before; that is, by enforcing the condition that the bridge 
output voltage be identical, whether scaling to a simulated 
strain level or measuring the same surface strain with the 
primary gage.

To simulate a compressive surface strain, εSC1, by shunting 
RG1 in Figure 5b, the calibration resistor is calculated  
from:
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And, for a simulated tensile strain, εST1, generated by 
shunting RG 2.
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When substituting into Equations (24) and (25), the 
signs of the simulated strains must always be carried, 
of course. Also, it is apparent that leadwire resistance, 
if present, affects the nonlinear behavior, and must be 
known to permit exact simulation. Since the expressions 
are relatively insensitive to the quantity RL/RG, precision 
measurement of the leadwire resistance is not ordinarily 
required. After scaling the instrument at a simulated 
strain, εS, the registered strain is precisely correct for only 
that same magnitude. When necessary, the corrected strain 
at any level can be calculated from:
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(26)

The notation in Equation (26) is the same as in Equation 
(18) for the quarter-bridge circuit.

Another half-bridge application of interest is illustrated in 
Figure 5c, where directly opposed strain gages are installed 
on the convex and concave sides of a rectangular-cross-
section beam in bending. In this instance, the strains in 
RG1 and RG2 are always equal and opposite, if only bending 
occurs. As a result, the bridge behavior during strain 
measurement is linear; and, after scaling at a particular 
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strain level, remains equally precise at all other strain 
magnitudes. Instrument scaling by shunt calibration is a 
nonlinear procedure, however, because there is a resistance 
change in only a single bridge arm. The simplest approach 
is to perform the scaling at a modest strain level where the 
error due to calibration nonlinearity is negligible. After 
scaling with Equation (8), the instrument will register any 
other strain with the same relative precision.

If scaling at a high strain level is necessary, the calibration 
resistor can be calculated as follows to provide exact 
simulation of a surface strain, εS in RG1 (when accompanied 
by the strain –εS in RG2):
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where: |εS| = absolute value of calibration strain.

Equation (27) is suitable for either upscale or downscale 
shunt calibration. If the leadwire resistance is negligible, 
the relationship reduces to:
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G S
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ε 2

 
(28)

Because the bridge output voltage varies linearly with 
strain when actual strains are being measured, no further 
correction is required.

Full-Bridge Circuits

When feasible, use of the full-bridge circuit offers several 
advantages, including a better signal-to-noise ratio. Typical 
applications are: beams in bending, shafts in torsion, 
and axially loaded columns and tension links. Although 
the simple examples described here do not incorporate 
the circuit refinements characteristic of commercial 
transducers, it is common practice to infer the magnitudes 
of mechanical variables such as bending moment, torque, 
and force from the full-bridge strain measurement.

Three representative full-bridge arrangements, illustrated 
in Figures 7b, 7c, and 7d, are treated here. The circuits in 
Figures 7b and 7d (for bending and torsion) have essentially 
the same characteristics, and can be grouped together for 
shunt-calibration purposes. In each of these circuits, the 
bridge output voltage varies linearly with strain, since 
equal and opposite resistance changes occur in arms 1 and 
2, and in arms 3 and 4. The nonlinearity of shunt calibration 
must be accounted for, however, to achieve exact strain 

stimulation at large strains. The proper calibration resistor 
to simulate a given surface strain (e.g., the longitudinal 
strain, in the case of the beam) can be calculated from the 
following:

R
R

NF
R

R
R

R
R

C
G

G S
G

L

G

L

G

= −
+

+




















ε

1 3

2 1 2







 
(29)

Once calibrated according to Equation (29), an accurate 
instrument will register the correct strain at any other 
strain magnitude. As in the case of the half-bridge circuit, 
the leadwire resistance is present in the calibration 
relationship, but does not need to be known with high 
precision.

The arrangement shown in Figure 7c, for a centrally loaded 
column or tension member, is somewhat more complex. 
It can be seen from the figure that the bridge currents 
change with applied strain, and thus the output voltage is 
a nonlinear function of strain even before calibrating with 
a shunt resistor. Because the nonlinearity is different in 
tension and compression, separate calibration equations 
are required as follows:

To simulate compression in RG1,

R
R
F

R

R
R

C
G

G SC
G

L

G= −
+( ) −

+( ) +




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−

2 1

3 1 1 2 2

1ν ε

ν ν

44 1 1 2+( ) +




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



















ν R
R
L

G  

(30)

 
And, for tension in RG1,

R
R
F

R

R
R

C
G

G ST
G

L

G=
+( ) −

+( ) +




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−

2 1

3 1 1 2 2

4 11ν ε

ν

++( ) +




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



















ν 1 2
R
R
L

G  

(31)

Equations (30) and (31) provide for correctly simulating 
the longitudinal surface strain in compression and tension, 
respectively, at any strain magnitude. In common with 
the corresponding half bridge (Figure 5b), the instrument 
indication at the calibration strain level is precise, but 
operation at a different strain level will introduce a small 
error due to bridge-circuit nonlinearity. When necessary, 
the corrected strain can be calculated from [see Equation 
(18) for notation]:
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ε
ε

ν ε
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2 1 2 1
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R
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L

G

L

G
G S



ε( )
 

(32)

VI. Instrument Verification

The shunt-calibration procedures described in Sections 
III and V are intended specifically for instrument scaling 
purposes; that is, for adjusting the instrument output to 
match a given simulated surface strain. They are not directly 
related to the question of verifying the linearity and/or 
absolute accuracy of a strain-measuring instrument. It is 
implicitly assumed in the preceding sections of this each 
Tech Note that the instrument involved is perfectly linear 
in its response characteristics and, if direct-indicating, is 
perfectly accurate. In practice, however, it is necessary 
to periodically verify the accuracy of the instrument by 
calibration; and methods for accomplishing this are given 
here.6

By far the most reliably accurate means for instrument 
verification is through the use of a laboratory-standard 
calibrator such as our Model 1550A. This instrument, 
which incorporates true tension and compression strain 
simulation, provides precision calibration of strain 
indicators to an accuracy of 0.025 percent. It also eliminates 
errors due to the tolerances on the strain gage and shunt 
resistances. The calibrator is equipped with three decades 
of switches, which permit rapid calibration in small steps 
over a very wide strain range (to ~100000με).

Whether verification of the strain indicator is to be done 
with a precision calibrator or by shunt calibration, it is 
important that the procedure be unaffected by leadwire 
resistance. When verifying instrument accuracy with 
the Model 1550A, for instance, the calibrator should 
be connected to the strain indicator with short leads of 
generous wire size. Similarly, with shunt calibration, the 
leadwire resistance in the shunted bridge arm should be 
negligibly small. This can be accomplished, for calibration 
purposes, by connecting an installed strain gage or a stable 
precision resistor directly across the active gage terminals 
of the strain indicator. Either the active or dummy arm 
of the bridge circuit can then be shunted to produce, 
correspondingly, a downscale or upscale calibration signal. 
If the active arm is a strain gage, and is to be shunted, the 
installed resistance of the gage must be known accurately.

An alternative approach, which eliminates the effect of 
leadwire resistance, is to shunt one arm of the internal 
half-bridge commonly found in conventional strain gage 

instruments. This procedure requires, of course, that 
the resistances of the internal bridge arms be known. 
In addition, it requires that the internal half-bridge be 
isolated from any balance circuitry which may be present, 
or that the effects of such circuitry be incorporated in the 
shunt-calibration calculations. In any case, the instruction 
manual and circuit diagram for the instrument should be 
consulted before attempting to calibrate by shunting the 
internal half-bridge.

The calibration relationship for instrument verification 
is based on different reasoning than it is for instrument 
scaling. In scaling applications (Sections III and V), the 
calibration resistor is calculated to develop the same 
bridge output voltage that would occur when a strain gage 
of specified gage factor is subjected to a given strain. The 
instrument gage factor or gain control is then adjusted to 
register the simulated strain. The effects of signal loss due to 
leadwire resistance, or signal increase form multiple active 
gages, are thus compensated for. With this technique, the 
final setting of the gage-factor or gain control is determined 
only by the external circuit parameters; and, in the case of 
a strain indicator, for example, the resulting gage factor 
setting of the instrument would normally be quite different 
from that of the strain gage.

In contrast, when calibrating for instrument verification 
purposes, the instrument gage factor or gain is ordinarily 
preset to some convenient value. The verif ication 
relationship is then written to express the registered strain 
(in a perfectly accurate instrument) as a function of the 
shunt resistor used to synthesize the strain signal. It will 
be seen that the gage factor of the strain gage itself is not 
involved in this process. Nor are other external circuit 
parameters, except the initial resistance of the shunted 
bridge arm, which is usually the nominal resistance of a 
strain gage.

In an ideal instrument, the registered strain is related to the 
bridge output voltage by:

                   
εI OC

e
E

= x
 

(33)

where: ε1 =  strain magnitude indicated or registered 
by the ideal instrument.

 C =  instrument constant — at a fixed setting 
of the gain or gage-factor control.

But the bridge output caused by a unit resistance change 
in one arm can be expressed as:

                  

e
E

R
R

R
R

O G

G

= ±
+

∆

∆
4 2

 

(34)
6  As used in this section only, the term "calibration" thus refers  

exclusively to the process of instrument verification for linearity  
or accuracy.
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In Equation (34), the choice of sign depends on which arm 
is being shunted. Referring to Figure 1, the sign is positive 
for R1 or R3, and negative for R2 or R4. The unit resistance 
change in shunt calibration is always negative, however, 
and is calculated from Equation (3):

                

∆R
R

R
R RG

G

G C
= −

+

Substituting into Equation (34), and simplifying,

            
  

eO

E
= 

RG

4RC + 2RG

 

(35)

Thus, the bridge output is negative when shunting R1 or 
R3, and positive for R2 or R4.

Substituting Equation (35) into Equation (33),

                
eI = C  x 

RG

4RC + 2RG

Or, in general, when shunting any arm of initial resistance 
RG,

             
εI G

C G
C

R
R R

=
+

x
4 2  

(36)

And,

           
R

C R RG

I

G
C x= −

4 2ε
 

(37)

where:  |εI | = absolute value of registered strain (ideal).

In the case of a strain indicator with a gage-factor control, 
the instrument is designed so that C = 4/FI, where FI is the 
instrument gage factor setting. Then,

           
R

R
F

RG

I I

G
C x

= −
ε 2

 
(38)

When one arm of the bridge is shunted by a calibration 
resistor calculated from Equation (38), the instrument 
should indicate the synthesized strain, εI. Failure to do so 
by more than the tolerances on RG and RC is indicative of 
instrument error.

Instead of a strain indicator, the instrumentation may 
consist of a signal-conditioning amplifier. This type of 
instrument is normally equipped with a gain control rather 
than a gage-factor control. Its output is simply a voltage 
which can then be supplied to an oscillograph or other 
device for recording. In the ideal instrument, the voltage 
at any gain setting should be strictly proportional to the 
bridge output signal. Thus, corresponding to Equation 
(33),

                        
V C

e
E
O=

 
(39)

The object of calibration in this instance is to verify the 
instrument linearity; that is, to test whether C is, in fact, 
constant. Calibration is accomplished by comparing the 
measured instrument output voltage to the bridge output 
signal at a series of different signal levels. Substituting 
Equation (35) into Equation (39),

                        
  
V = C  x 

RG

4RC + 2RG

Or, in general,

   

V

R
R R

C
G

C G4 2+






=

  

(40)

After shunting one arm of the bridge with a calibration 
resistor, RC, the instrument output voltage is measured, 
and the constant, C, calculated from Equation (39). This 
operation is repeated at two or more different signal levels 
by successively shunting with appropriate calibration 
resistors. If the instrument is linear, variations in the 
calculated value of the instrument constant should not be 
greater than the tolerances on the parameters in Equation 
(40).

VII. Accuracy Consideration

As described in the preceding sections, shunt calibration 
can be used for either system scaling or instrument 
verification purposes. In both cases, the greatest attainable 
accuracy with the procedure is limited by errors (deviations 
from the nominal or assumed value) in the variables which 
enter into the calibration calculations. The error sensitivity 
of the method can be demonstrated most easily with a 
generalized form of the basic shunt-calibration relationship 
[see Equations (3), (4) and (5)].

Let R1 in Equation (3) represent the actual resistance of the 
strain gage, after installation. The factor RG in Equation 
(4) is replaced by a numerical constant, C, to emphasize the 
fact that the nominal resistance of the gage is not changed 
by gage installation. Then, the relationships in Equations 
(3) and (4) can be reexpressed as:

                      
∆R R

R RC
=

+
1
2

1  
(3a)

 
                      ∆R CFG= ε  (4a)
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Combining Equations (3a) and (4a), and solving for the 
simulated strain,

                      
εS

G C

R
CF R R

=
+( )

1
2

1

 
(41)

The total differential of the simulated strain can be 
written:

                      
d

R
R

R
R

F
FS

S S

C
C

S

G
Gε ε ε ε= ∂

∂
∂ + ∂

∂
∂ + ∂

∂
∂

1
1

After performing the partial differentiations and dividing 
through by εS = R1

2/CFG (R1 + RC),
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(42)

For small deviations, the differentials can be replaced by 
finite differences, or:

∆ ∆ ∆ε
ε
S

S

C

C

C
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R R
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R
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− ∆

 
(43)

When multiplied by 100, Equation (43) gives the percent 
error in the simulated strain as a function of the errors or 
deviations in R1 (the actual gage resistance), RC, and FG. 
Since RC is ordinarily very large compared to R1, it can 
be seen that the percent error in simulated strain is about 
twice that in the gage resistance, and is approximately 
equal to that in the calibration resistor and gage factor 
(although the signs may differ). In practice, the errors in R1, 
RC, and FG vary independently over their respective ranges 
of tolerance or uncertainty. Thus, they may tend to be self-
canceling on some occasions; and, at other times, may be 
additive. The worst-case errors in simulated strain occur 
when ΔR1 is positive while ΔRC and ΔFG are negative, and 
vice versa. These conditions can be combined into a single 
expression by employing the absolute values of the errors:

∆

∆

ε
ε
S

S

C

C

C

C

R R
R R

R
R

R
R R

MAX

=

+
+







+
+




1

1

1

1 1

2


+∆ ∆R

R
F
F

C

C

G

G  
(44)

Equation (44) permits calculating the extreme error in 
simulated strain from the extreme errors in the other 
variables. Practically, however, the extreme errors in RG, 
RC, and FG would occur only rarely at the same time, and 
with the required combination of signs, to be fully additive. 
A better measure of the approximate uncertainty (expected 
error range) in εS as a function of the uncertainties or 
tolerances on the other three quantities can be obtained  

by an adaptation from the theory of error propagation. The 
latter theory is not strictly applicable in this case because 
the individual error distributions are unknown, are 
probably different from one another, and may otherwise 
violate statistical requirements of the method. However, if 
the uncertainties in each variable represent about the same 
number of standard deviations, the following expression 
should give a more realistic estimate of the uncertainty in 
εS than Equation (44):

U

R R
R R

UR
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R
R R

S
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C

C
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ε
ε

=

+
+


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
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1

2
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2

1

2
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
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



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+




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2 2

(45)

where: 
U
X
X = percent uncertainty in variable X.

As a numerical example, assume that a 350-ohm gage with 
a gage factor of 2.0 is to be shunted to simulate a strain of 
2000με. From Equation (7).

             
RC = − =350 x 10

2.0 x 2000
350 87150ohms

6

   

This calibration resistor can be found in Table 1; and, 
if supplied by Micro-Measurements, has a resistance 
tolerance of ±0.01%. Assume also that the selected gage 
type has tolerances on its gage factor and resistance of 
±1% and ±0.3%, respectively. Since the gage resistance 
may have been shifted during installation, however, the 
uncertainty in the installed resistance should normally 
be taken somewhat larger — say, to be conservative, ±1%. 
Substituting into Equation (45),

U S

S

ε
ε

= ( ) ( ) + ( ) ( ) +1 996 0 996 12 2 2 2. . .x 1.0 x 0.01 00 2 232( ) = ± . %

Equations (44) and (45) will be found helpful guides in 
estimating the precision of shunt calibration. They can 
also serve in judging whether use of the large-strain 
relationships in Section V is warranted under any given 
set of circumstances. Thus, if the intrinsic uncertainty in 
shunt calibration is many times greater than the refinement 
obtained by considering large-strain effects, the simpler 
relationships in Section III may as well be employed.

When necessary, the overall uncertainty can be reduced 
somewhat by accurately measuring the installed gage 
resistance and employing this value in the shunt-calibration 
equations. Or, alternatively, the effect of resistance deviat-
ion in the gage can be largely eliminated by the methods 
described in Section V for quarter-bridge calibration.
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