

1-800-9HV-POWER +1 631-471-4444 CSD@ULTRAVOLT.COM

HIGH VOLTAGE MODULES • PRECISION HV POWER SUPPLIES • HV AMPLIFIERS • MICROSIZE/MICROPOWER HV • HV SYSTEMS • TEST FIXTURES

TABLE OF CONTENTS

Quick Select Chart

SINGLE OUTPUT HIGH VOLTAGE POWER SUPPLIES

AA Series	Reduced-size product line with enhanced features!
A Series	High-voltage bias from 0 to 62V through 0 to 6kV @ 0 to 4W, 20W & 30W 8
C Series	Fast-rise / low-overshoot capacitor charging, HV amp, or DC Bias $\ldots\ldots\ldots\ldots$ 10 0 to 125V through 0 to 6kV @ 0 to 20W & 30W
High Power C Series	Fast-rise / low-overshoot capacitor charging, HV amp, or DC Bias
High Power 8C-30C Series	Fast-rise / low-overshoot capacitor charging, HV amp, or DC Bias $\ldots\ldots\ldots\ldots$ 14 0 to 8kV through 0 to 30kV @ 0 to 60 and 125W
10A-25A Series	High-voltage bias from 0 to 10kV through 0 to 25kV @ 0 to 4W, 15W & 30W 17
30A-40A Series	High-voltage bias from 0 to 30kV through 0 to 40kV @ 0 to 4W, 15W & 30W 20

PRECISION E Series Precision high-voltage module 0 to 15kV@4W, 15/20W, and 30W... . . 23 10PPM temperature coefficient & <10PPM ripple XS Series Extra-small high-voltage bias from 0 to 100V @ 100mW..... Volume is only 0.08in³ High-voltage bias from 0 to 500V @ 0 to 100mW 27 **US** Series Volume is only 0.35in³ **V** Series Small-footprint high-voltage bias from 0 to 600V through 0 to 1.5kV @ up to 1W 29 Volume is only 0.84in³ **M** Series Compact low profile high-voltage bias from 0 to 600V through 0 to 1.5kV @ up to 1W . . 31 Volume is only 1.00in³ **D** Series Volume starting at 2.22in³

CP Series

0 to 1kV through 0 to 15kV @ 10W of output power

Failure to operate UltraVolt High Voltage Power Supplies correctly and to follow all operating instructions may create an electrical shock hazard, which can result in personal injury or loss of life, and/or damage to equipment or other property.

MULTI-OUTPUT HIGH VOLTAGE MODULES

Safety and compliance information along with warranty & repair policy71

QUICK SELECT CHART - HIGH VOLTAGE MODULES

Model Number	Output Voltage (kV)	100 mW (mA)
0.1XS5	0 to 0.1	1
0.2US5	0 to 0.2	.500
0.2US12		.500
0.3US5	0 to 0.3	.330
0.3US12		.330
0.4US5	0 to 0.4	.250
0.4US12		.250
0.5US5	0 to 0.5	.200
0.5US12		.200

	MICF	ROSIZE SI	NGLE C)UTPU ⁻	t Moe	DULES
Model Number	Model Number	Output Voltage (kV)	500 mW (mA)	880 mW (mA)	1 Watt (mA)	
0.6V12	0.6M12	0 to 0.6	.830			
0.6V15	0.6M15			1.33]
0.6V24	0.6M24				1.66	
1V12	1M12	0 to 1.0	.500			
1V15	1M15			.800		
1V24	1M24				1.00	
1.25V12	1.25M12	0 to 1.25	.400			
1.25V15	1.25M15			.640		
1.25V24	1.25M24				.800	
1.5V12	1.5M12	0 to 1.5	.330			
1.5V15	1.5M15			.530		
1.5V24	1.5M24				.660]

Model Number	Output Voltage (kV)	1 Watt (mA)	2 Watt (mA)	4 Watt (mA)	6 Watt (mA)
1D15	0 to 1	1	2	4	6
1D24		1	2	4	6
2D15	0 to 2	.500	1	2	3
2D24		.500	1	2	3
4D15	0 to 4	.250	.500	1	1.5
4D24		.250	.500	1	1.5
6D15	0 to 6	.166	.333	.666	1
6D24		.166	.333	.666	1

	STANDARD SINGLE OUTPUT MODULES																		
Model	Number	Output Voltage (kV)	4 Watt (mA)	20 Watt (mA)	30 Watt (mA)	60 Watt (mA)	125 Watt (mA)	250 Watt (mA)	PCB Mount Plastic Case	Chassis Mount Metal Case	Model Number	Output Voltage (kV)	4 Watt (mA)	15 Watt (mA)	30 Watt (mA)	60 Watt (mA)	125 Watt (mA)	PCB Mount Plastic Case	Chassis Mount Metal Case
1/16A12	1/16AA12	0 to .062	64						STD		8C24	0 to 8				7.5	15.5		STD
1/16A24	1/16AA24			320	480				STD		10A24			5	3			STD	
1/1	6C24			320	480				STD		10C24					6	12.5		STD
1/8A12	1/8AA12	0 to .125	32	1		1			STD		10E24	0 to 10	.400	1.5	3	1			STD
1/8A24	1/8AA24			160	240				STD		12C24	0 to 12				5	10		STD
1/8	3C24			160	240]			STD		15A12	0 to 15	.260]		STD	
1/8	3C24					480	1000	2000		STD	15A24			1	2			STD	
1/4A12	1/4AA12	0 to .250	16						STD		15C24					4	8.3		STD
1/4A24	1/4AA24			80	120				STD		15E24		.267	1	2				STD
1/4	IC24			80	120	1			STD		20A12	0 to 20	.200			1		STD	
1/4	IC24					240	500	1000		STD	20A24			.750	1.5			STD	
1/2A12	1/2AA12	0 to .500	8	1		1			STD		20C24					3	6.25		STD
1/2A24	1/2AA24			40	60				STD		25A12	0 to 25	.160					STD	
1/2	2C24			40	60	1			STD		25A24			.600	1.2	1		STD	
1/2	2C24					120	250	500		STD	25C24					2.4	5		STD
1A12	1AA12	0 to 1	4	1		1			STD		30A12	0 to 30	.133			1		STD	
1A24	1AA24			20	30				STD		30A24			.500	1			STD	
10	C24			20	30				STD		30C24					2	4.17		STD
10	C24					60	125	250		STD	35A12	0 to 35	.110					STD	
11	E24		4	20	30	1				STD	35A24			.420	.840	1		STD	
2A12	2AA12	0 to 2	2						STD		40A12	0 to 40	.100					STD	
2A24	2AA24			10	15	1			STD		40A24			.375	.750	1		STD	
20	C24			10	15				STD										
20	C24					30	62	125		STD									
21	E24		2	10	15					STD									
4A12	4AA12	0 to 4	1						STD										
4A24	4AA24			5	7.5			İ	STD										
40	C24			5	7.5				STD										
40	C24					15	31	62		STD									
41	E24		1	5	7.5					STD									
6A12	6AA12	0 to 6	.660						STD										
6A24	6AA24			3.3	5				STD										
60	C24			3.3	5				STD										
60	C24					10	21	41		STD									
61	E24		.667	3.3	5					STD									

Making High Voltage Easier!

Specifications subject to change without notice.

©2010, UltraVolt Inc. All rights reserved.

QUICK SELECT CHART - SPECIALTY PRODUCTS

	HIGH VOLTAGE AMPLIFIERS						
Model	Output Voltage	Features					
1HVA	0 to 1kV, 0 to ±1kV	Unipolar or Bipolar Precision HV Amplifier					
2HVA	0 to 2kV, 0 to ±2kV	Unipolar or Bipolar Precision HV Amplifier					
4HVA	0 to 4kV, 0 to ±4kV	Unipolar or Bipolar Precision HV Amplifier					
5HVA	0 to ±5kV	Bipolar Precision HV Amplifier					
6HVA	0 to 6kV	Unipolar Precision HV Amplifier					
10HVA	0 to 10kV	Unipolar Precision HV Amplifier					

	CONSTANT POWER HIGH VOLTAGE						
Model	Output Voltage	Features					
1CP	0 to 1kV	Constant 10W from 0.1kV to 1kV					
2CP	0 to 2kV	Constant 10W from 0.2kV to 2kV					
4CP	0 to 4kV	Constant 10W from 0.4kV to 4kV					
6CP	0 to 6kV	Constant 10W from 0.6kV to 6kV					
10CP	0 to 10kV	Constant 10W from 1kV to 10kV					
15CP	0 to 15kV	Constant 10W from 1.5kV to 15kV					

	BIPOLAR HVPS					
Model	Output Voltage	Output Power	Features			
1/8C to 6C	0 to ±125V to 0 to ±6kV	NP-125 & NP-250	Independently controllable dual outputs			

FILAMENT SUPPLIES				
Model	Features			
FIL-5V-3A	Output load regulation is <0.5% in constant voltage mode, no load to full load; <0.05% in constant current mode, short circuit to full load. Output line regulation is <0.01% in CV or CC mode (+21.6VDC to +26.4VDC). Accuracy ±0.1% & linearity error of <0.01%.			

ISOLATED LOW VOLTAGE POWER SUPPLIES						
Model	Floating Output Voltage	Features				
15FL12	+12VDC, -12VDC, +5VDC	Floating Low Voltage Power Supply & Analog/Digital Controls				
15FL24	+24VDC, -12VDC, +5VDC	Floating Low Voltage Power Supply & Analog/Digital Controls				
15EFL12	+12VDC, +15VDC, -15VDC, +5.1VDC	Enhanced Floating Low Voltage Power Supply & Analog/Digital Controls				
15EFL24	+24VDC, +15VDC, -15VDC, +5.1VDC	Enhanced Floating Low Voltage Power Supply & Analog/Digital Controls				

	TEST FIXTURES					
Model	Features					
40TF-DCD	Precision 10,000:1 divider, ±1%, ±25PPM per °C, voltage coefficient is <1% per 40kV. DC Loading is 1 GigΩ.					
40TF-ACV&DCD	1:1 AC viewing capacitor, 35Hz to 10Mhz (Monitor 10Hz to 20Mhz), 1mV to 75V Pk, 1000:1 DC divider, ±2%, ±100 PPM per °C. DC Loading is 2 GigΩ. Capacitive loading is < 50pF					
40TF-CDCD&CLOAD	Compensated 1,000:1 DC Divider, ±2%, ±100 PPM per °C, showing Trise, Tfall, overshoot & settling over a bandwidth of 35Hz to 10Mhz (Monitor 10Hz to 20MHz), 300pF capacitive load, DC Loading is 1 GigΩ.					

	HIGH VOLTAGE SYSTEMS							
Model	Model	Features						
HV-RACK-1-250	HV-RACK-4-250							
HV-RACK-2-250	HV-RACK-4-500	19" Rack with 1 to 4 channels of meters & controls.						
HV-RACK-2-500	HV-RACK-4-750	Individual CV/CC controls & limits. Floating channel configuration available. Wide selection of HV output connectors. Available with USB Interface and Labview drivers. Configurable product to meet project-specific needs.						
HV-RACK-3-250	HV-RACK-4-1000							
HV-RACK-3-500								
HV-RACK-3-750								
Mo	odel	Features						
MMS-EB		Provides Beam, Filament, Suppressor, Extractor, and Lens bias supplies. Precision control & monitoring, Low ripple & noise, tight stability. Convection cooled design for mounting near the source. Integral HV cables to reduce cost and increase reliability.Configurable product to meet product-specific needs.						
Model	Model	Features						
BT-2-XXXX	BT-10-XXXX	Compact high voltage AC-DC bench-top power supply with adjustable output voltage.						
BT-4-XXXX	BT-RS-XXXX	Single positive or negative output. Available in either analog or digital. Universal input 85-264VAC. Configurable with microsize/micropower product line (XS_US_V_M_or_D_Series)						
BT-5-XXXX	BT-USB-XXXX	"When ordering, XXXX in the model number should be replaced by the selected UltraVolt HV power supply part number.						
		Rev. A 6/10						

Making High Voltage Easier!

1800 Ocean Avenue, Ronkonkoma, NY 11779 Phone: 1-631-471-4444 Fax: 1-631-471-4696 www.ultravolt.com

AA SERIES High Voltage Biasing Supply

The AA Series of high-voltage regulated DC-DC converters addresses the needs of the miniature PCB-mount regulated high voltage power supply user. Designed and built utilizing state-of-the-art power-conversion topology, these units feature surface-mount technology and encapsulation techniques that provide high reliability and performance. <u>Typical applications</u> for the AA Series include the following: bias supplies, detectors, piezos, amplifiers, and photomultiplier tubes (PMT).

- 22% smaller than standard A Series
- 8 models from 0 to 62V through 0 to 6kV
- 4, 20 or 30 watts of output power
- Maximum lout capability down to 0 Volts
- Wide input voltage range

- Indefinite output short-circuit protection
- Output current & voltage monitors
- Fixed-frequency, low-stored-energy design
- >1,250,000 hour MTBF @65°C
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

PARAMETER	CONDITIONS												MO	DELS	5											UNITS
INPUT							12	2V											24	4V						
Voltage Range	Full Power						+ 11	to 16											+ 23	to 30						VDC
Voltage Range	Derated Power Range						+ 9	to 32											+9	to 32						VDC
Current	Standby / Disable						<	30							< 30											mA
Current	No Load, Max Eout						<	100											<	90		mA				
Current	Max Load, Max Eout						~	400											~ 1	350						mA
AC Ripple Current	Nominal Input, Full Load						<	80											<	80						mA p-p
OUTPUT		1	/16A	A	1	/8A/	4	1	/4A	A	· ·	1/2A	A		1AA	۱. ۱	2	2AA			4AA			6A/	١	
Voltage Range	Nominal Input		0 to 62	2	() to 12	5	() to 25	0		0 to 50	0	0	to 1,0	00	0 to	o 2,00)0	0	to 4,00	00	(to 6,0	00	VDC
Nominal Input Voltage / M	odel	12	24	24	12	24	24	12	24	24	12	24	24	12	24	24	12	24	24	12	24	24	12	24	24	VDC
Power	Nominal Input, Max Eout	4	20	30	4	20	30	4	20	30	4	20	30	4	20	30	4	20	30	4	20	30	4	20	30	Watts
Current	lout Entire Output Voltage Range	64	320	480	32	160	240	16	80	120	8	40	60	4	20	30	2	10	15	1	5	7.5	0.67	3.3	5	mA
Current Scale Factor	Full Load	42.67	969.7	960	11.64	237	258	3.27	70.48	72.7	.79	17.78	17.65	.37	4.60	4.62 .	192	1.52	1.52	.090	.752	.76	.066	.490	.50	mA/V
Voltage Monitor Scaling						10:1	± 2%	5 into 1	OMΩ					100:1 ± 2% into 10MΩ												-
Ripple	Full Load, Max Eout	0.03	0.06	0.15	0.03	0.038	0.038	0.023	0.04	0.05	0.01	0.01	0.011	0.026	0.048	0.073 (.01 0	0.011	0.046	0.042	0.050	0.07	0 0.03	50.024	0.046	%V p-p
Dynamic Load Regulation	½ to Full Load, Max Eout per .1mA	<.12	<.12	<.12	<.12	<.12	<.12	<.20	<.20	<.20) <.50	<.50	<.50	<1.0	<1.0	<1.0	2.0	<2.0	<2.0	<4.0	<4.0	<4.0	0 < 6.0	<6.0	<6.0	V pk
Line Regulation	Nom. Input, Max Eout, Full Power												< 0.	01 %												VDC
Static Load Regulation	No Load to Full Load, Max Eout		< 0.01%														VDC									
Stability	30 Min. warmup, per 8 hr/ per day		< 0.01% / < 0.02%															VDC								
PROGRAMMING	& CONTROLS											ŀ	ALL 1	ΓΥΡΕ	S											
Input Impedance	Nominal Input							+	- Outpu	ut Moo	dels 1.	LMΩ to	GND,	- Outp	ut Mod	els 1.1M	Ω to +	+5 Vre	ef							MΩ
Adjust Resistance	Typical Potentiometer Values								10K	to 100	OK (Pot	across	s Vref.	& Sign	al GNE), Wiper	o Adji	ust)								Ω
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - Out		+4.64 VDC for +0utput or +0.36 for -0utput = Nominal Eout															-								
Output Voltage & Impedance	r=+25°C		+ 5.00VDC \pm 2%, Zout = 464 $\Omega \pm$ 1%															-								
Enable/Disable									0 t	to +0.	.5 Disa	ble, +2	2.4 to 3	32 Ena	ble (De	efault =	Enable	e)								VDC
ENVIRONMENTA	L											ŀ	ALL 1	ГҮРЕ	S											
Operating	Full Load, Max Eout, Case Temp.												-40 t	0 +65												°C
Coefficient	Over the Specified Temperature												±	:50												PPM/°C
Thermal Shock	Mil-Std 810, Method 503-4, Proc. I		-40 to +65												°C											
Storage	Non-Operating, Case Temp.		-55 to +105											°C												
Humidity	All Conditions, Standard Package											0 to 9	5% no	n-cond	lensing	Į –										-
Altitude	Standard Package, All Conditions					Sea	a Leve	l throu	gh Vac	cuum	(Vacuu	m may	requi	re -P1	or -S1	options,	conta	ct fac	tory fo	or deta	ils)					-
Shock	Mil-Std-810, Method 516.5, Proc. IV												2	20												G's
Vibration	Mil-Std-810, Method 514.5, Fig.514.5C-3												1	10			_									G's

Specifications subject to change without notice.

AA SERIES High Voltage Biasing Supply

STANDARD CASE

CONNECTIONS								
PIN	FUNCTION							
1	Input-Power Ground Return							
2	Positive Power Input							
3	Iout Monitor							
4	Enable/Disable							
5	Signal Ground Return							
6	Remote Adjust Input							
7	+5VDC Reference Output							
8	HV Ground Return							
9	Eout Monitor							
10 & 11	HV Output							

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100kΩ, .01uF / 50V (Max) on all models except -M, -C, and -M-E configurations which are 0Ω.

PROUDLY

MADE IN THE USA

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948

SIZE

Volume 3.34in³ (54.8 cc) Weight 4.0oz (114g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole location ±0.025" (0.64)

NOTES

20W and 30W versions are an additional 0.062" (1.57) in height. -M equipped units are an additional 0.030" (0.76) for all dimensions. Contact UltraVolt's Customer Service Department for drawings of models equipped with -E or -H options.

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

	ORDERING INFORMATION	
	0 to 62 VDC Output	1/16AA
	0 to 125 VDC Output	1/8AA
	0 to 250 VDC Output	1/4AA
Tupo	0 to 500 VDC Output	1/2AA
Туре	0 to 1,000 VDC Output	1AA
	0 to 2,000 VDC Output	2AA
	0 to 4,000 VDC Output	4AA
	0 to 6,000 VDC Output	6AA
Input	12VDC Nominal	12
Input	24VDC Nominal	24
Polarity	Positive Output	-P
Foldrity	Negative Output	-N
	Watts Output (12 V Only)	4
Power	Watts Output (24 V Only)	20
	Watts Output (24 V Only)	30
Casa	Plastic Case - Diallyl Phthalate	(Standard)
Case	'Eared' Chassis Mounting Plate	-Е
Heat Sink	.400" High (sized to fit case)	-H
Shield	Six-sided Mu-Metal Shield	-M
Temp. Coefficient	25PPM Temperature Coefficient	-25PPM

Popular accessories ordered with this product include CONN-KIT and BR-18 mounting bracket kit.

A SERIES High Voltage Biasing Supply

The A Series of high-voltage regulated DC-DC converters addresses the needs of the miniature PCB-mount regulated high voltage power supply user. Designed and built utilizing state-of-the-art power-conversion topology, these units feature surface-mount technology and encapsulation techniques that provide high reliability and performance. <u>Typical applications</u> for the A Series include the following: bias supplies, electrostatic detectors, mass spectrometry, and photomultiplier tubes (PMTs).

- 8 models from 0 to 62V through 0 to 6kV
- 4, 20 or 30 watts of output power
- Maximum lout capability down to 0 Volts
- Wide input voltage range
- Available with Ripple Stripper $^{\ensuremath{\mathbb{R}}}$ Filter (-F Option)

• Indefinite output short-circuit protection

- Output current monitor
- Fixed-frequency, low-stored-energy design
- >430,000 hour MTBF @65°C
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

N. OCE

PARAMETER	CONDITIONS	MODELS UNI												UNITS												
INPUT							1	12V											24	V						
Voltage Range	Full Power						+ 1	11 to 16											+ 23 1	to 30						VDC
Voltage Range	Derated Power Range		+ 9 to 32												+ 9 t	o 32						VDC				
Current	Standby / Disable							< 30							< 30											mA
Current	No Load, Max Eout						<	< 100											< 5	90						mA
Current	Max Load, Max Eout						~	~ 400							~ 1350											mA
AC Ripple Current	Nominal Input, Full Load							< 80							< 80											mA p-p
OUTPUT		1	/16/	Ą		1/8A	4		1/4A	4		1/2 <i>A</i>	4		1A			2A			4A			6A		
Voltage Range	Nominal Input		0 to 62	2		0 to 12	5	(0 to 250			0 to 500			to 1,00	00	0 to 2,000				to 4,00	00	0 to 6,000			VDC
Nominal Input Voltage		12	24	24	12	24	24	1 12	24	24	4 12	24	24	12	24	24	2	24	24	12	24	24	12	24	24	VDC
Power	Nominal Input, Max Eout	4	20	30) 4	20	30) 4	20	30) 4	20	30	4	20	30	4	20	30	4	20	30	4	20	30	Watts
Current	lout Entire Output Voltage Range	64	320	48	0 32	160	24(0 16	80	120	0 8	40	60	4	20	30	2	10	15	1	5	7.5	0.67	3.3	5	mA
Current Monitor Scaling	Full Load	TBD	TBD	TB	D 438.4	1860.5	2891	1.5 213.3	1000	1481	1.5 123.1	506.3	740.7	55.56	243.9	400 31	.75	129.9	211.3	16.4	66.7	85.2	2 12.9	48.5	56.8	mA/V
Voltage Monitor Scaling	With -Y5 option					10:1	± 2	2% into 1	LOMΩ					100:1 ± 2% into 10MΩ												-
Ripple	Full Load, Max Eout	.02	.03	.0	5 .013	.015	.01	.6 .01	.04	.04	.001	.02	.017	.038	.071	.15 .)1	.05	.065	.019	.057	.022	2 .018	.073	.112	%V p-p
Ripple with -F-M Option*	Full Load, Max Eout, 300pF bypass Cap	.002	.004	.00	6 .0048	.0056	.00	6 .0052	.0028	.00	05 .001	.0138	.001	6 .001	.0008	.002 .0)07.	.0038	.004	.0004	.0088	.002	6.0003	.0012	.004	%V p-p
Dynamic Load Regulation	½ to Full Load, Max Eout per .1mA	<.12	<.12	<.1	.2 <.12	<.12	<.1	2 <.20	<.20	<.2	20 <.50	<.50	<.50) <1.0	<1.0	<1.0 <	2.0	<2.0	<2.0	<4.0	<4.0	<4.	0 < 6.0	<6.0	<6.0	V pk
Line Regulation	Nom. Input, Max Eout, Full Power												< 0	.01 %												
Static Load Regulation	No Load to Full Load, Max Eout												< (0.01%												VDC
Stability	30 Min. warmup, per 8 hr/ per day											< 0.	.01%	/ < 0.	< 0.02%										VDC	
PROGRAMMING	& CONTROLS											A	ALL 1	TYPE	S											
Input Impedance	Nominal Input							+	• Outpu	ut Mo	odels 1.1	MΩ to	GND,	- Outp	ut Mod	els 1.1M	2 to ·	+5 Vr	ef							MΩ
Adjust Resistance	Typical Potentiometer Values								10K 1	to 10	OK (Pot	across	s Vref.	& Sign	nal GND), Wiper t	o Adj	just)								Ω
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - 0ut								+4.6	4 VD	OC for +C)utput	or +0).36 for	-Outpu	ut = Norr	inal	Eout								-
Output Voltage & Impedanc	e T=+25°C										+ 5.00	VDC ±	± 2%,	Zout =	= 464Ω	±1%										-
Enable/Disable	·								0 t	:0 +0).5 Disab	ole, +2	2.4 to	32 Ena	ble (De	fault = I	nabl	le)								VDC
ENVIRONMENTA	L					S	TAI	NDAF	٢D									·25P	PM	OPT	ION					
Operating	Full Load, Max Eout, Case Temp.						-40) to +65											+10 to	+45						°C
Coefficient	Over the Specified Temperature							±50						1					+2	5						PPM/°C
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II												-40	to +65												°C
Storage	Non-Operating, Case Temp.												-55 t	o +105	i											°C
Humidity	All Conditions, Standard Package											0 to 9:	5% no	on-cond	lensing	[-
Altitude	Standard Package, All Conditions					Sea	Leve	el throug	gh Vaci	uum	(Vacuun	n may	requi	re -P1 (or -S1 (options, o	onta	act fac	tory fo	r deta	ils.)					-
Shock	Mil-Std-810, Method 516.5, Proc. IV										20) (Star	ndard)	, 40 (-(C Optio	n)										G's
Vibration	Mil-Std-810, Method 514.5, Fig.14.5C-3										10) (Star	ndard)	, 20 (-(C Optio	n)										G's

*Note: For additional information on the reduced ripple option, see -F Option datasheet.

Making High Voltage Easier!®

©2010, UltraVolt Inc.

All rights reserved.

A SERIES High Voltage Biasing Supply

STANDARD CASE

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948 with -C Option: Aluminum Alloy 5052-H32, Finish: MIL-A-8625 Type II (Anodizing)

SIZE

Volume 4.30in³ (70.5cc), w/ -C Option: 8.00in³ (131.1cc) Weight 5.0oz (142g), w/ -C Option: 10.0oz (284g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole location ±0.025" (0.64)

NOTES

E -74 -7.94 - 7.99.95

20W and 30W versions are an additional 0.062" (1.57) in height. -M equipped units are an additional 0.030" (0.76) for each dimension. Contact UltraVolt's Customer Service Department for drawings of models equipped with -E or -H options.

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

	ORDERING INFORMATION	
	0 to 62 VDC Output	1/16A
	0 to 125 VDC Output	1/8A
	0 to 250 VDC Output	1/4A
Tupo	0 to 500 VDC Output	1/2A
туре	0 to 1,000 VDC Output	1A
	0 to 2,000 VDC Output	2A
	0 to 4,000 VDC Output	4A
	0 to 6,000 VDC Output	6A
Input	12VDC Nominal	12
Input	24VDC Nominal	24
Polarity	Positive Output	-P
Tolanty	Negative Output	-N
	Watts Output (12 V Only)	4
Power	Watts Output (24 V Only)	20
	Watts Output (24 V Only)	30
	Plastic Case - Diallyl Phthalate	(Standard)
Case	'Eared' Chassis Mounting Plate	-E
	RF-Tight Aluminum Case	-C
Heat Sink	.400" High (sized to fit case)	-H
Ripple Stripper®	Integral Output Filter*	-F
Shield	Six-sided Mu-Metal Shield	-M
Voltage Monitor	Optional Eout Monitor	-Y5
lout Monitor Boost	Boosted lout Monitor Signal Level	-Y10
Temp. Coefficient	25PPM Temperature Coefficient	-25PPM

*Note: For additional information on the reduced ripple option, see -F Option datasheet

Non-RoHS compliant units are available. Please contact the factory for more information.

MADE IN THE USA

CONNECTIONS								
PIN	FUNCTION							
1	Input-Power Ground Return							
2	Positive Power Input							
3	lout Monitor							
4	Enable/Disable							
5	Signal Ground Return							
6	Remote Adjust Input							
7	+5VDC Reference Output							
8	HV Ground Return							
9	HV Ground Return or Eout Monitor (-Y5)							
10 & 11	HV Output							

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100k Ω , .01uF / 50V (Max) on all models except -M, -C, and -M-E configurations which are 0Ω .

Popular accessories ordered with this product include CONN-KIT and BR-1 mounting bracket kit.

C SERIES High Voltage Cap-Charging Supply

The C Series of high-voltage regulated DC-DC converters are designed for fast rise-time/charging applications utilizing stateof-the-art power conversion topology. Surface-mount technology and encapsulation techniques provide high reliability and low cost. See Application Note 10 for more charging information. <u>Typical applications</u> for the C Series include the following: capcharging, pulsed power, test equipment, mass spectrometry and automated test equipment (ATE).

- 8 models from 0 to 62 Volts through 0 to 6kV
- 20 or 30 watts of output power
- Maximum lout capability down to 0 Volts
- Maximum lout during charge/rise time
- Indefinite output short-circuit protection

- Very fast rise with very low overshoot
- Output voltage and current monitors
- >400,000 hour MTBF @65°C
- Fixed-frequency, low-stored-energy design

• UL, cUL, CE, IEC-60950-1, and Demko Recognized

, ... OCE

PARAMETER	CONDITIONS						-		MOI	DELS							-	UNITS
INPUT			ALL TYPES															
Voltage Range	Full Power								+ 23	to 30								VDC
Voltage Range	Derated Power Range								+ 9 1	:o 32								VDC
Current	Standby / Disable								<	30								mA
Current	No Load, Max Eout								<	90								mA
Current	Max Load, Max Eout							20)W: 950,	30W: 14	25							mA
AC Ripple Current	Nominal Input, Full Load								<	80								mА р-р
OUTPUT		1/1	1/16C 1/8C 1/4C 1/2C 1C 2C 4C 6C															
Voltage Range	Nominal Input	0 t	0 to 62 0 to 125 0 to 250 0 to 500 0 to 1,000 0 to 2,000 0 to 4,000 0 to 6,000												VDC			
Power	Nominal Input, Max Eout	20	0 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30												30	Watts		
Current	lout, Entire Output Voltage Range	320	480	160	240	80	120	40	60	20	30	10	15	5	7.5	3.3	5	mA
Current Scale Factor	Full Load	TBD	TBD	2540	4210	1096	2000	1142	1667	307	476	159	259	94	112	51	86	mA/V
Voltage Monitor Scaling			100:1 ± 2% into 10MΩ												-			
Ripple	Full Load, Max Eout, Cload ≥0.5uF	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	V p-р
Overshoot	C Load, O Eout to Full Eout	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 4.0	< 4.0	< 6.0	< 6.0	V pk
Rise Time	Max lout, Various C Loads & Eout								Figu	re A								-
Storage Capacitance	Internal	TBD	TBD	0.50	0.50	0.15	0.15	0.16	0.16	0.033	0.018	0.009	0.009	0.010	0.010	0.0064	0.0064	uF
Line Regulation	Nom. Input, Max Eout, Full Power								< 0.0)1 %								VDC
Static Load Regulation	No Load to Full Load, Max Eout								< 0.	01%								VDC
Stability	30 Min. warmup, per 8 hr/ per day							<	: 0.01%	< 0.02	%							VDC
PROGRAMMING	& CONTROLS								ALL T	YPES								
Input Impedance	Nominal Input					+ 0u	tput Mod	els 1.1MΩ	to GND, -	Output M	Nodels 1.1	.MΩ to +5	5 Vref					MΩ
Adjust Resistance	Typical Potentiometer Values					10	OK to 100	K (Pot acr	oss Vref. (& Signal (GND, Wipe	er to Adjus	st)					Ω
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - 0ut					+	4.64 VDC	for +Outp	out or +0.	36 for -01	utput = N	ominal Ec	out					-
Output Voltage & Impedance	T=+25°C							+ 5.00VD	C ± 2%, 2	Zout = 46	64Ω ± 1%							-
Enable/Disable							0 to +0.5	i Disable,	+2.4 to 3	2 Enable	(Default =	= Enable)						VDC
ENVIRONMENTAL					STAN	DARD						-2	5PPM	OPTIC	DN			
Operating	Full Load, Max Eout, Case Temp.				-40 to	o +65							+10 t	0 +45				°C
Coefficient	Over the Specified Temperature				±	50							±	25				PPM/°C
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II								-40 to) +65								°C
Storage	Non-Operating, Case Temp.								-55 to	+105								°C
Humidity	All Conditions, Standard Package							0 to	95% nor	n-condens	sing							-
Altitude	Standard Package, All Conditions	Sea Level through Vacuum (Vacuum may require -P1 or -S1 options, contact factory for details) -											-					
Shock	Mil-Std-810, Method 516.5, Proc. IV							20 (S	tandard),	40 (-C 0	ption)							G's
Vibration	Mil-Std-810, Method 514.5, Fig.514.5C-3							10 (S	tandard),	20 (-C 0	ption)							G's
C = uF	C	= uF					(C = uF						Spe	cifications	subject to	change wit	hout notice.
V = Volts	- CXV V	= kV		0			`	V = kV		г	I			C = uF		. (C x E ²	
I = mA T = mS	$I = \frac{1}{1}$ Is F	= mA = Hz	1 :	= U X \	/ X F			F = MA		г= (CxV			$E^2 = kV$ J = Ws		J=	2	

Figure A - Rise Time Formulas

Making High Voltage Easier!®

©2010, UltraVolt Inc. All rights reserved.

C SERIES High Voltage Cap-Charging

1.050 [36.])

*0.770 [19.6]

9.000 [0,0] ¢

???;

0.900/0.00

*+ ^{3,3}00 / 81,37 4

14.5

,db

,Ô

5.100 [94.0]

^{3,}200 (81,3)

PLASTIC CASE

^{,0,00}^{,0,0},0,0,0,0,0</sup>

METAL CASE

(30⁸) Ð

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948 With -C option, Aluminum box, Chem film per MIL-A-8625 Type II (Anodizing)

SIZE

Volume 4.30in³ (70.5cc), w/ -C Option: 8.00in³ (131.1cc) Weight 5.0oz (142g), w/ -C Option: 10.0oz (284g)

TOLERANCE

Overall ±0.050" (1.27), Pin to Pin ±0.015" (0.38), Mounting hole location ±0.025" (0.64) (Plastic case) Overall ±0.025" (0.64), Pin to Pin ±0.015" (0.38), Hole to Hole location $\pm 0.025"$ (0.64) (Metal case)

NOTES

, 14 3.91 (99.31)

0.780 [9:1]

,70^{,1}

(30⁵⁾

ŝ

20W and 30W versions are an additional 0.062" (1.57) in height. -M equipped units are an additional 0.030" (0.76) for each dimension. Contact UltraVolt's Customer Service Department for drawings of models equipped with -E or -H options.

> Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

	ORDERING INFORMATION	
	0 to 62 VDC Main Output	1/16C
	0 to 125 VDC Main Output	1/8C
	0 to 250 VDC Main Output	1/4C
Turne	0 to 500 VDC Main Output	1/2C
Туре	0 to 1,000 VDC Main Output	10
	0 to 2,000 VDC Main Output	20
	0 to 4,000 VDC Main Output	40
	0 to 6,000 VDC Main Output	6C
Input	24VDC Nominal (20W & 30W)	24
Delerity	Positive Output	-P
Foldrity	Negative Output	-N
Dowor	Watts Output	20
Fower	Watts Output	30
	Plastic Case - Diallyl Phthalate	(Standard)
Case	'Eared' Heatsink Plate (plastic case)	-E
	RF-Tight Aluminum Case	-C
Heatsink	.400" High (sized to fit case)	-H
Shield	Six-sided Mu-Metal Shield	-M
Temp. Coefficient	25PPM Temperature Coefficient	-25PPM

Contact the factory for boosted current monitor options.

Popular accessories ordered with this product include CONN-KIT and BR-1 mounting bracket kit.

[25

A 1.35 [34.3]

Non-RoHS compliant units are available. Please contact the COMPLIANT factory for more information.

⁴, ⁴²⁴ ^{0,4}³, ¹,1,9

MADE IN THE USA

CONNECTIONS								
PIN	FUNCTION							
1	Input-Power Ground Return							
2	Positive Power Input							
3	lout Monitor							
4	Enable/Disable							
5	Signal Ground Return							
6	Remote Adjust Input							
7	+5VDC Reference Output							
8	HV Ground Return							
9	Eout Monitor							
10 & 11	HV Output							

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100kΩ, .01uF / 50V (Max) on all models except -M, -C, and -M-E configurations which are 0Ω.

HIGH POWER C SERIES High Voltage Cap-Charging Supply

This High Power line of high-voltage regulated DC to DC converters is an extension of the C Series, directly addressing the high power density needs of >30 watt applications. High Power C units provide up to 60/125/250 watts. This high power density is especially suited to high-energy systems with large capacitances, fast repetition rates, or high continuous-DC-power requirements. See Application Note 10 for more charging information. Typical applications for the High Power C Series include the following: laser, cap-charging, pulsed power, pulse generator, and test equipment.

- 7 models from 0 to 125 Volts through 0 to 6kV
- 60, 125, or 250 watts of output power
- Maximum lout capability down to 0 Volts
- Maximum lout during charge/rise time
- Output short-circuit protection
- Very fast rise with very low overshoot

- High efficiency
- High power to voltage density
- Very low profile
- >200,000 hour MTBF @65°C
- Fixed-frequency, low-stored-energy design
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

PARAMETER	CONDITIONS																						UNITS
INPUT			ALL TYPES																				
Voltage Range	Full Power										+	23 to 3	30										VDC
Voltage Range	Derated Power Range										+	11 to 3	32										VDC
Current	Standby / Disable											< 75											mA
Current	Max Load, Max Eout									60W: 3	.3, 12	5W: 6.9	, 250V	V: 13.8									A
Current	No Load, Max Eout			1/8C to 1C: < 500, 2C to 6C: < 500											mA								
AC Ripple Current	Nominal Input, Full Load		< 250												mA p-p								
OUTPUT			1/8C 1/4C 1/2C 1C 2C 4C 6C																				
Voltage Range	Nominal Input	(0 to 125 0 to 250 0 to 500 0 to 1,000 0 to 2,000 0 to 4,000 0 to 6,000												VDC								
Power	Nominal Input, Max Eout	60	125	250	60	125	250	60	125	250	60	125	250	60	125	250	60	125	250	60	125	250	Watts
Current	lout, Entire Output Voltage Range	480	1000	2000	240	500	1000	120	250	500	60	125	250	30	62	125	15	31	62	10	21	42	mA
Current Scale Factor	Full Load	400	833	1667	200	417	833	109	208	417	50	114	227	26	52	104	11.5	26	52	6.2	17.7	35	mA/V
Voltage Monitor Scaling			100:1 ±2% into 10MΩ												-								
Ripple	Full Load, Max Eout		< 1.0			< 1.0			< 1.0			< 1.0			< 1.0			< 1.0)		< 1.)	%V р-р
Overshoot	C Load, 0 Eout to Full Eout		< 5			< 1			< 1			< 1			< 1			< 1			< 1		%V pk
Rise Time	Max lout, Various C Loads & Eout										F	igure /	ł										-
Storage Capacitance	Internal	0.66	0.66	1.80	0.20	0.20	1.80	0.094	0.094	0.85	0.036	0.036	0.038	0.019	0.019	0.038	3 0.013	8 0.013	0.026	0.013	0.01	3 0.02	6 uF
Line Regulation	Nom. Input, Max Eout, Full Power											< 0.1%	, ,										VDC
Static Load Regulation	No Load to Full Load, Max Eout											< 0.1%											VDC
Stability	30 Min. warmup, per 8 hr/ per day										< 0.01	% / <	0.02%										VDC
PROGRAMMING	& CONTROLS										ALI	_ TYI	PES										
Input Impedance	Nominal Input						+ 0ı	utput N	<i>l</i> odels	1.1MΩ	to GN	D, - Ou	itput N	lodels	1.1MΩ	to +5	5 Vref						MΩ
Adjust Resistance	Typical Potentiometer Values						1	OK to 1	100K (F	Pot acr	oss Vr	ef. & S	ignal G	ND, W	iper to	Adjus	st)						Ω
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - 0ut						+	4.64 V	/DC for	+0utp	out or ·	+0.36	for -Ou	tput =	Nomi	nal Eo	out						-
Output Voltage & Impedance	T=+25°C								+ 5	5.00VD	C ± 19	%, Zou	t = 46	4Ω ± 1	۱%								-
Enable/Disable								0 to -	⊦0.8 Di	sable,	+2.4 1	to 32 E	nable	(Defau	lt = Er	nable)							VDC
ENVIRONMENTAI											ALI	_ TYI	PES										
Operating	Full Load, Max Eout, Case Temp.										-4	0 to +	65										0°
Coefficient	Over the Specified Temperature											±50											PPM/°C
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II										-4	0 to +	65										°C
Storage	Non-Operating, Case Temp.										-5	5 to +1	05										°C
Humidity	All Conditions, Standard Package									0 to	95%	non-co	ondens	ing									-
Altitude	Standard Package, All Conditions				Sea Le	evel th	rough	Vacuur	m (Vac	uum m	ay req	uire -P	1 or -S	51 opti	ons, co	ntact	factor	y for d	etails.)				-
Shock	Mil-Std-810, Method 516.5, Proc. IV	20											G's										
Vibration	Mil-Std-810, Method 514.5, Fig.514.5C-3											10											G's
C = uF	C = uF								C =	uF						Sp	pecific	ation	s are s	subjec	t to (chang	e without notice.
V = Volts	$C \times V$ $V = kV$			• · · ·	/	-			V =	kV		F	-	Ι				C =	uF			. (X E ²
I = mA I: T = mS	$=$ $\frac{1}{1}$ I = mA F = H ₇		=	υx١	V X F				l = 1 E =	mA Hz		F	$=\overline{C}$	хV				E ² =	= kV Ws			= -	2
. =	1 - 112								. –	- 14								5 –	110				

Making High Voltage Easier!®

Note: Specifications are valid from 10% of nominal output to

100% of nomnal output.

- Output current & voltage monitors

HIGH POWER C SERIES

High Voltage Cap-Charging Supply

CONNECTIONS										
PIN	FUNCTION									
1 & 8	Input Power Ground Return									
2&9	Positive Power Input									
3	Iout Monitor									
4	Enable/Disable									
5	Signal Ground Return									
6	Remote Adjust Input									
7	+5VDC Reference Output									
10, 11, 12, & 13	N/C									
14	Eout Monitor									
15 & 16	HV Ground Return									
17 & 18	HV Output									

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100kΩ, .01uF / 50V (Max).

HIGH POWER PIN CONNECTIONS (250 WATT UNITS)												
PIN FUNCTION												
2, 9, & 10	N/C											
19 & 20 Positive Power Input												
21 & 22 Input Power Ground Return												

Non-RoHS compliant units are available. Please contact the **COMPLIANT** factory for more information.

	0 to 125 VDC Output	1/8C
	0 to 250 VDC Output	1/4C
	0 to 500 VDC Output	1/2C
Туре	0 to 1,000 VDC Output	1C
	0 to 2,000 VDC Output	2C
	0 to 4,000 VDC Output	4C
	0 to 6,000 VDC Output	6C
Input	24VDC Nominal	24
Polarity	Positive Output	-P
rolaniy	Negative Output	-N
	60 Watts Output	60
Power	125 Watts Output	125
	250 Watts Output	250
Casa	Plastic Case - Diallyl Phthalate	(Standard)
Case	'Eared' Chassis Mounting Plate	-E
Heat Sink	.400" High (sized to fit case)	-H
PCB Support	(5 or 7) 0.187" standoffs on top cover	-Z11

Popular accessories ordered with this product include CONN-KIT-HP250, CONN-KIT-HP and the BR-8 mounting bracket kit.

Rev. T 10/10

HIGH POWER 8C-30C SERIES 8kV to 30kV High Voltage Cap-Charging Supplies

This High Power line of high-voltage regulated DC to DC converters is an extension of the C Series, directly addressing the high power density needs of >30 watt applications. High Power 8C - 30C units provide up to 60/125 watts. This high power density is especially suited to high-energy systems with large capacitances, fast repetition rates, or high continuous-DC-power requirements. See Application Note 10 for more changing information. <u>Typical applications</u> for the High Power 8C-30C Series include the following: laser, capcharger, pulse generators, Q-switch, and TDR test equipment.

- 7 models from 0 to 8kV through 0 to 30kV
- 60 or 125 watts of output power
- Maximum lout capability down to 0 Volts
- Maximum lout during charge/rise time
- Output short-circuit protectionVery fast rise with very low overshoot

- High efficiency
- High power to voltage density
- Very low profile
- Output current & voltage monitors
- >200,000 hour MTBF @65°C
- Fixed-frequency, low-stored-energy design
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

PARAMETER	CONDITIONS											UNITS				
INPUT			ALL TYPES													
Voltage Range	Full Power							+ 23	to 30							VDC
Voltage Range	Derated Power Range							+ 11	to 30							VDC
Current	Standby / Disable							<	40							mA
Current	No Load, Max Eout					8	C to 150	< 500,	20C to 2	5C < 60	00					mA
Current	Max Load, Max Eout							60W: 3,	125W: 6							A
AC Ripple Current	Nominal Input, Full Load							<	50							mA p-p
OUTPUT		8	C	1(C	12	2C	15	5C	2	0C	2!	5C	3)C	
Voltage Range	Nominal Input	0 to	8,000	0 to 1	0,000	0 to 1	0 to 12,000		5,000	0 to 2	20,000	0 to 2	5,000	0 to 30,000		VDC
Power	Nominal Input, Max Eout	60	125	60	125	60	125	60	125	60	125	60	125	60	125	Watts
Current	lout, Entire Output Voltage Range	7.5	15.5	6	12.5	5	10.5	4	8.3	3	6.25	2.4	5	2	4.17	mA
Current Scale Factor	Full Load	4.7	14.2	4.1	10.9	4.0	7.4	4.0	7.5	.65	.653	.65	.650	.65	.642	mA/V
Voltage Monitor Scaling							100	0:1 ± 25	% into 10	DMΩ						-
Internal Capacitance	Capacitance / 95% Decay (50Meg Load)	2800	0/700	2000)/575	2000	/650	2000	/650	160	0/240	1600)/240	160	0/240	pF/mS
Ripple	Full Load, Max Eout		$< 1.0 (Cload \ge 0.05 uF)$ $< 1.0 (Cload \ge 0.01 uF)$									V р-р				
Rise Time	Max lout, Various C Loads & Eout		Figure A										-			
Storage Capacitance	Internal	2800	2800	2000	2000	2000	2000	2000	2000	782	1182	710	1110	710	1110	pF
Overshoot	C Load, O Eout to Full Eout	< 0.1 %											V pk			
Line Regulation	Nom. Input, Max Eout, Full Power	< 0.01 %											VDC			
Static Load Regulation	No Load to Full Load, Max Eout	< 0.01%										VDC				
Stability	30 Min. warmup, per 8 hr/ per day	< 0.01% / < 0.02%										VDC				
PROGRAMMING & C	CONTROLS							ALL 1	YPES							
Input Impedance	Nominal Input				+ Outpu	t Models	1.1MΩ	to GND, ·	• Output	Models	1.1MΩ to	+5 Vref				MΩ
Adjust Resistance	Typical Potentiometer Values				10K 1	to 100K	Pot acro	ss Vref.	& Signal	GND, W	iper to Ac	djust)				Ω
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - 0ut				+4.6	4 VDC fo	r +Outpı	ıt or +0.	36 for -C	utput =	Nominal	l Eout				-
Output Voltage & Impedance	T=+25°C					+	5.00VDC	± 2%,	Zout = 4	64Ω ± 1	1%					-
Enable/Disable		0 to +0.5 Disable, +2.4 to 32 Enable (Default = Enable)												VDC		
ENVIRONMENTAL								ALL 1	YPES							
Humidity	All Conditions, Standard Package						0 to	95% no	1-conder	ising						-
Coefficient	Over the Specified Temperature							±	50							PPM/°C
Thermal Shock	Mil-Std-810, Method 503-4, Proc. II							-40 t	o +65							°C
Storage	Non-Operating, Case Temp.							-55 to	+105							°C
Humidity	All Conditions, Standard Package	0 to 95% non-condensing										-				
Altitude	Standard Package, All Conditions	Sea Level through 70,000									ft					
Shock	Mil-Std-810, Method 516.5, Proc. IV	20										G's				
Vibration	Mil-Std-810, Method 514.5, Fig.514.5C-3	10											G's			
C = uF	C = uF					C =	uF				Spee	cificatio	ns subj	ect to o	hange	without notice
V = Volts	$C \times V$ $V = kV$, \ / ., F	-		V =	kV		F_	Ι			C = 1	uF	-	C x E ²
I = MA $I = T = mS$	I = MA	i = C X	(VXF	-		= F	mA Hz		' - (CxV			$E^2 = 1 = 1$	KV Ns		$J = \frac{1}{2}$

ULTRAVOLT.

Figure A - Rise Time Formulas NOTES: Capacitance must include HVPS internal Capacitance 14

HIGH POWER 8C-30C SERIES

8kV to 30kV High Voltage Cap-Charging Supplies

pin information) and 3D models are available online.

CONSTRUCTION

Epoxy-filled Aluminum Box Chem film per MIL-A-8625 Type II (Anodizing)

SIZE

Volume 38.7 in³ (634cc) Weight 2.6 lbs. (1.18kg)

TOLERANCE

Overall ±0.025" (0.64) Pin to Pin ±0.015" (0.38) Hole to hole location $\pm 0.025"$ (0.64)

PINS

Gold-plated 0.025 (0.64) sq. The center of the pins and mounting holes are located from the center of pin 1 Pins 1 thru 14 spacing 0.100 (2.54) x 0.200 (5.08) on center, height from cover 0.280 (7.11) min Pins 15 and 16 spacing 0.100 (2.54) on center, height from cover 0.450 (11.43) min

HV OUTPUT CONNECTION

Unit requires an LGH flying lead connector for proper operation: 8C to 15C = CA-20KV-1000 20C to 30C = CA-40KV-1000

CONNECTIONS										
PIN	FUNCTION									
1 & 8	Input-Power Ground Return									
2&9	Positive Power Input									
3	lout Monitor									
4	Enable/Disable									
5	Signal Ground Return									
6	Remote Adjust Input									
7	+5VDC Reference Output									
10, 11, 12, & 13	N/C									
14	Eout Monitor									
15 & 16	HV Ground Return									

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100kΩ, .01uF / 500V (Max).

	ORDERING INFORMATION	
	0 to 8,000 VDC Output	8C
	0 to 10,000 VDC Output	100
	0 to 12,000 VDC Output	120
Туре	0 to 15,000 VDC Output	15C
	0 to 20,000 VDC Output	200
	0 to 25,000 VDC Output	25C
	0 to 30,000 VDC Output	30C
Input	24VDC Nominal	24
Delerity	Positive Output	-P
Polarity	Negative Output	-N
Daviar	60 Watts Output	60
Power	125 Watts Output	125
Heat Sink	.400" High (sized to fit case)	-H
PCB Support	(5) 0.187" standoffs on top cover	-Z11

Non-RoHS compliant units are available. Please contact the **COMPLIANT** factory for more information.

Popular accessories ordered with this product include CONN-KIT-HP, BR-7 and BR-8 mounting bracket kits and our full range of high voltage output connectors (see Accessories & Connectors datasheet).

10A-25A SERIES 10kV to 25kV High Voltage Biasing Supplies

The 10A-25A Series of regulated, high-voltage DC-DC converters are an extension of the A Series, directly addressing the needs of the miniature PCB or chassis-mount ≥10kV application. Designed and built utilizing state-of-the-art power conversion topology, these units feature surface-mount technology and encapsulation techniques providing high reliability and low cost. <u>Typical applications</u> for the 10A-25A Series include the following: electrophoresis, mass spectroscopy, electron microscopes, plasma and cathode ray tubes (CRT).

- 0 to 10kV, 15kV, 20kV, or 25kV output
- 4, 15 or 30 watts of output power
- Maximum lout capability down to 0 Volts
- Wide input voltage range
- Indefinite output short-circuit protection

- Output current & voltage monitors
- Fixed-frequency, low-stored-energy design
- >450,000 hour MTBF @65°C
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

PARAMETER	CONDITIONS		MODELS											UNITS	
INPUT		12V						24V							
Voltage Range	Full Power			+ 11	to 16					+ 23	to 30			VDC	
Voltage Range	Derated Power Range			+ 9	to 32				VDC						
Current	Standby / Disable			<	30				mA						
Current	No Load, Max Eout		10A <	: 0.20, 15A	/20A/25A <	< 0.25		10A	A						
Current	Max Load, Max Eout			~ {	500				mA						
AC Ripple Current	Nominal Input, Full Load			<	80					<	80			mA p-p	
OUTPUT			10A			15A			20A			25A			
Voltage Range	Nominal Input		0 to 10,000)		0 to 15,000)	(0 to 20,000)		0 to 25,000)	VDC	
Nominal Input Voltage		12	24	24	12	24	24	12 24 24 12 24 2				24	VDC		
Power	Nominal Input, Max Eout	4	15	30	4	15	30	4	15	30	4	15	30	Watts	
Current	lout Entire Output Voltage Range	0.40	1.5	3.0	0.26	1.0	2.0	0.20	0.75	1.5	0.16	0.60	1.2	mA	
Current Scale Factor	Full Load	0.167	0.184	0.381	0.158	0.181	0.378	0.152	0.178	0.184	0.145	0.175	0.183	mA/V	
Voltage Monitor Scaling	1000:1 ± 2% into 10MΩ												-		
Ripple	Full Load, Max Eout, 300pF bypass Cap.	0.012	0.039	0.076	0.024	0.043	0.080	0.020	0.031	0.080	0.020	0.080	0.051	%V p-p	
Ripple with -F-M Option	Full Load, Max Eout, 300pF bypass Cap.	0.008	0.034	0.072	0.021	0.028	0.073	0.010	0.018	0.039	0.010	0.040	0.040	%V p-p	
Dynamic Load Regulation	½ to Full Load, Max Eout per 0.1mA	<5.0	<5.0	<5.0	<7.5	<7.5	<7.5	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	V pk	
Line Regulation	Nom. Input, Max Eout, Full Power	< 0.01 %								VDC					
Static Load Regulation	No Load to Full Load, Max Eout						< 0.	01%						VDC	
Stability	30 Min. warmup, per 8 hr/ per day						< 0.01%	/ < 0.02%						VDC	
PROGRAMMING & CC	ONTROLS	ALL TYPES													
Input Impedance	Nominal Input			+	Output Mo	dels 1.1M	Ω to GND,	- Output M	odels 1.1M	Ω to +5 Vr	ef			MΩ	
Adjust Resistance	Typical Potentiometer Values				10K to 10	OK (Pot ac	ross Vref.	& Signal G	ND, Wiper	to Adjust)				Ω	
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - 0ut				+4.64 VD	C for +Out	tput or +0.	36 for -Out	tput = Non	ninal Eout				-	
Output Voltage & Impedance	T=+25°C					+ 5.00V	DC ± 2%,	Zout = 464	lΩ ± 1%					-	
Enable/Disable					0 to +0).5 Disable	, +2.4 to 3	2 Enable (Default =	Enable)				VDC	
ENVIRONMENTAL				STAN	DARD					-25	PPM				
Operating	Full Load, Max Eout, Case Temp.			-40 to	o +65					+10 t	0 +45			°C	
Coefficient	Over the Specified Temperature			±	50					±	25			PPM/°C	
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II						-40 t	0 +65						°C	
Storage	Non-Operating, Case Temp.						-55 to	+105						°C	
Humidity	All Conditions, Standard Package					0	to 95% no	n-condensi	ng					-	
Altitude	Standard Package, All Conditions		Sea L	evel throug	h Vacuum	(Vacuum	may requir	e -P1 or -S	1 options,	contact fac	ctory for de	tails.)		-	
Shock	Mil-Std-810, Method 516.5, Proc. IV					20 (Standard),	40 (-C Op	tion)					G's	
Vibration	Mil-Std-810, Method 514.5, Fig.514.5C-3					10 (Standard),	20 (-C Op	tion)					G's	

Making High Voltage Easier!®

©2010, UltraVolt Inc.

All rights reserved.

Specifications subject to change without notice.

10A-25A SERIES 10kV to 25kV High Voltage Biasing Supplies

10A SERIES STANDARD CASE

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948 with -C Option: Aluminum Alloy 5052-H32, Finish: MIL-A-8625 Type II (Anodizing)

SIZE

Volume:

10A: 4.90 in³ (80.31cc), w/-C Option 8.80 in³ (144.23cc) 15A: 6.35 in³ (104.08cc), w/-C Option 11.00 in³ (180.29cc) 20A: 8.55 in³ (140.13cc), w/-C Option 14.40 in³ (236.02cc) 25A: 11.70 in³ (191.76cc), w/-C Option 20.00 in³ (327.80cc) Weight:

10A: 6.00 oz (170.10g), w/-C Option 11.50 oz (326.02g) 15A: 8.00 oz (226.80g), w/-C Option 14.00 oz (396.89g) 20A: 11.00 oz (311.84g), w/-C Option 19.00 oz (538.64g) 25A: 15.00 oz (452.24g), w/-C Option 22.00 oz (623.69g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole locations ±0.025" (0.64)

NOTES

Standard case length, width, and height specs are $\pm 0.050"$ (1.27) -C Option case length, width and height specs are $\pm 0.025"$ (0.635) 15W and 30W versions are an additional 0.070" (1.78) in height. -M equipped units are an additional 0.030" (0.76) for each dimension. Contact UV Customer Service for drawings of models equipped with -E, -C, or -H options.

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

	CONNECTIONS								
PIN	FUNCTION								
1	Input-Power Ground Return								
2	Positive Power Input								
3	lout Monitor								
4	Enable/Disable								
5	Signal Ground Return								
6	Remote Adjust Input								
7	+5VDC Reference Output								
8	HV Ground Return								
9	Eout Monitor								

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100k Ω , .01uF / 50V (Max) on all models except -M, -C, and -M-E configurations which are 0 Ω .

COMPLIANT

Non-RoHS compliant units are available. Please contact the factory for more information.

	ORDERING INFORMATION	
	0 to 10,000 VDC Output	10A
Turne	0 to 15,000 VDC Output	15A
туре	0 to 20,000 VDC Output	20A
	0 to 25,000 VDC Output	25A
Innut	12VDC Nominal (4W only)	12
input	24VDC Nominal (15W and 30W only)	24
Delevitu	Positive Output	-P
Polarity	Negative Output	-N
	Watts Output (12 V Only)	4
Power	Watts Output (24 V Only)	20
	Watts Output (24 V Only)	30
	Plastic Case - Diallyl Phthalate	(Standard)
Case	'Eared' Chassis Mounting Plate (Plastic Case)	-E
	RF-Tight Aluminum Enclosure	-C
Heat Sink	.400" High (sized to fit case)	-H
Shield	Six-sided Mu-Metal Shield	-M
Ripple Stripper [®]	Integral Output Filter (See -F Option Data Sheet) and Mu-Metal	-F -M
	Shielded Flying Lead	-AS
Lead Options	Protected Flying Lead	-AP
	Terminated Flying Lead (Contact Customer Service)	-ATxx
Temp. Coefficient	25PPM Temperature Coefficient	-25PPM

Popular accessories ordered with this product include CONN-KIT, BR-2, BR-3, and BR-5 mounting bracket kits, and our full range of high voltage output connectors (see Accessories & Connectors datasheet).

30A-40A SERIES 30kV to 40kV High Voltage Biasing Supplies

The 30A-40A Series of regulated, high-voltage DC-DC converters are an extension of the A Series, directly addressing the needs of the miniature PCB or chassis-mount ≥30kV application. Designed and built utilizing state-of-the-art power conversion topology, these units feature surface-mount technology and encapsulation techniques providing high reliability and low cost. <u>Typical applications</u> for the 30A-40A Series include the following: electrostatic discharge testers, plasma, electrostatic, x-ray, and wire testers.

- 0 to 30kV, 35kV or 40kV output
- 4, 15 or 30 watts of output power
- Maximum lout capability down to 0 Volts
- Wide input voltage range
- Indefinite output short-circuit protection

- Output current & voltage monitors
- Fixed-frequency, low-stored-energy design
- >400,000 hour MTBF @65°C
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

PARAMETER	CONDITIONS	MODELS									UNITS				
INPUT				12V					24V						
Voltage Range	Full Power		+	11 to 16					+ 23 to 3	30		VDC			
Voltage Range	Derated Power Range	+ 9 to 32						VDC							
Current	Standby / Disable	< 30						mA							
Current	No Load, Max Eout	3	30A < 0.25, 35	5A < 0.35, 40A	< 0.38			A							
Current	Max Load, Max Eout			~ 800					~1800						
AC Ripple Current	Nominal Input, Full Load			< 80				mA p-p							
OUTPUT			30A 35A 40A						40A						
Voltage Range	Nominal Input		0 to 30,000			0 to 35	5,000			0 to 40,000		VDC			
Nominal Input Voltage / Model		12	24	24	12	24	24 24 12 24 24					VDC			
Power	Nominal Input, Max Eout	4	15	30	4	15	5	30	4	15	30	Watts			
Current	lout Entire Output Voltage Range	0.13	0.50	1.0	0.11	0.4	2	0.86	0.10	0.37	0.75	mA			
Current Scale Factor	Full Load	.140	.173	.181	.158	.17	'9	.184	.077	.089	.092	mA/V			
Voltage Monitor Scaling	1000:1 ± 2% into 10MΩ										-				
Ripple	Full Load, Max Eout, 300pF bypass Cap.	0.021	0.039	0.048	0.016	0.03	34	0.040	0.030	0.060	0.064	%V р-р			
Ripple with -F-M Option	Full Load, Max Eout, 300pF bypass Cap.	0.025	0.028	0.058	0.025	0.04	40	0.075	0.007	0.025	0.053	%V p-p			
Dynamic Load Regulation	½ to Full Load, Max Eout per 0.1mA	<10.0	<10.0	<10.0	<10.0	<10	0.0	<10.0	<10.0	<10.0	<10.0	V pk			
Line Regulation	Nom. Input, Max Eout, Full Power	< 0.01 %								VDC					
Static Load Regulation	No Load to Full Load, Max Eout					< 0.0)1%					VDC			
Stability	30 Min. warmup, per 8 hr/ per day				< 0	.01% /	< 0.0	2%				VDC			
PROGRAMMING & CC	ONTROLS				ļ	ALL T	YPES	5							
Input Impedance	Nominal Input			+ Output Mo	dels 1.1MΩ to	GND, -	Output	t Models 1.1M	Ω to +5 Vref			MΩ			
Adjust Resistance	Typical Potentiometer Values			10K to 10	OK (Pot across	s Vref. &	k Signa	I GND, Wiper	to Adjust)			Ω			
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - 0ut			+4.64 VD	C for +Output	or +0.3	36 for -	Output = Non	ninal Eout			-			
Output Voltage & Impedance	T=+25°C				+ 5.00VDC :	± 2%, Z	out =	464Ω ± 1%				-			
Enable/Disable				0 to +0	.5 Disable, +2	2.4 to 32	2 Enab	e (Default =	Enable)			VDC			
ENVIRONMENTAL			STA	NDARD					-25PPI	М					
Operating	Full Load, Max Eout, Case Temp.		-4	0 to +65					+10 to +	45		°C			
Coefficient	Over the Specified Temperature			± 50					± 25			PPM/°C			
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II	-40 to +65								°C					
Storage	Non-Operating, Case Temp.					-55 to	+105					°C			
Humidity	All Conditions, Standard Package				0 to 9	5% non	-conde	nsing				-			
Altitude	Standard Package, All Conditions		Sea Level thr	ough Vacuum	(Vacuum may	require	-P1 or	-S1 options,	contact factor	y for details.)		-			
Shock	Mil-Std-810, Method 516.5, Proc. IV				20 (Sta	ndard), 4	40 (-C	Option)				G's			
Vibration	Mil-Std-810, Method 514,5, Fig.514,5C-3	10 (Standard), 20 (-C Option)									G's				

Making High Voltage Easier!®

Specifications subject to change without notice.

30A-40A SERIES 30kV to 40kV High Voltage Biasing Supplies

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948 with -C Option: Aluminum Alloy 5052-H32, Finish: MIL-A-8625 Type II (Anodizing)

SIZE

Volume:

30A/35A: 12.66 in³ (207.46cc), w/-C Option 20.00 in³ (327.80cc) 40A: 17.92 in³ (293.66cc), w/-C Option 27.00 in³ (442.53cc) Weight:

30A/35A: 15.00 oz (425.24g), w/-C Option 22.00 oz (623.69g) 40A: 21.00 oz (595.34g), w/-C Option 30.00 oz (850.49g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole locations ±0.025" (0.64)

NOTES

-M equipped units are an additional 0.030" (0.76) for each dimension. Contact UV Customer Service for drawings of models equipped with -E , -C, or -H options.

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

	CONNECTIONS								
PIN	FUNCTION								
1	Input-Power Ground Return								
2	Positive Power Input								
3	lout Monitor								
4	Enable/Disable								
5	Signal Ground Return								
6	Remote Adjust Input								
7	+5VDC Reference Output								
8	HV Ground Return								
9	Eout Monitor								

All grounds joined internally. Power-supply mounting points isolated from internal grounds by $>100k\Omega$, .01uF / 50V (Max) on all models except -M, -C, and -M-E configurations which are 0Ω .

COMPLIANT

available. Please contact the factory for more information.

	ORDERING INFORMATION	
	0 to 30,000 VDC Output	30A
Туре	0 to 35,000 VDC Output	35A
	0 to 40,000 VDC Output	40A
Input	12VDC Nominal (4W only)	12
Input	24VDC Nominal (15W and 30W only)	24
Delerity	Positive Output	-P
Polarity	Negative Output	-N
	Watts Output (12 V Only)	4
Power	Watts Output (24 V Only)	15
	Watts Output (24 V Only)	30
	Plastic Case - Diallyl Phthalate	(Standard)
Case	'Eared' Heatsink Plate (Plastic Case)	-E
	RF-Tight Aluminum Enclosure	-C
Heatsink	.400" High (sized to fit case)	-H
Shield	Six-sided Mu-Metal Shield	-М
Ripple Stripper [®]	Integral Output Filter (See -F Option Data Sheet) and Mu-Metal	-F -M
	Shielded Flying Lead	-AS
Lead Options	Protected Flying Lead	-AP
	Terminated Flying Lead (Contact Customer Service)	-ATxx
Temp. Coefficient	25PPM Temperature Coefficient	-25PPM

Popular accessories ordered with this product include CONN-KIT, BR-5 and BR-9 mounting bracket kits, and our full range of high voltage output connectors (see Accessories & Connectors datasheet).

E SERIES Precision High Voltage Power Supply

The E Series of precision high-voltage power supplies has very low ripple, excellent linearity, and very stable temperature characteristics. Models in this series are offered with a 10ppm temperature coefficient and reference. The control and monitoring functions are available on a standard DB15 female connector.

<u>Typical applications</u> for the E Series include the following: mass spectrometry, electron beams, ion beams, and contraband detection.

- Precision output voltage from 0 to 1kV thru 0 to 15kV
- 4, 15/20, or 30 watts of output power
- Maximum lout capability down to 0 Volts
- Current regulation standard

- Wide input voltage range
- Output current monitor
- 10ppm temperature coefficient and reference
- PPM level ripple
- PPM level regulation and stability

PARAMETER	CONDITIONS		MODELS												UNITS					
INPUT									A	ALL 1	TYPE	S								
Voltage Range	Full Power									+ 23	to 30									VDC
Current	Standby / Disable									<	50									mA
Current	No Load, Max Eout									<	325									mA
Current	Full Load, Max Eout									2	.5									A
AC Ripple Current	Nominal Input, Full Load									<	10									mA p-p
OUTPUT			1E			2E			4E			6E			10E			15E		
Voltage Range	Nominal Input	0	to 1,00)0	0	to 2,00	00		0 to 4,00	0	C	to 6,0	00	0 to 10,000			0 to 15,000			VDC
Nominal Input Voltage / Model		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	VDC
Power	Nominal Input, Max Eout	4	20	30	4	20	30	4	20	30	4	20	30	4	15	30	4	15	30	Watts
Current	lout Entire Output Voltage Range	4	20	30	2	10	15	1	5	7.5	0.67	3.3	5	0.4	1.5	3	0.26	1	2	mA
Voltage Monitor	Normal Operating Conditions	0 to 10 ±0.5%												VDC						
Current Monitor	Normal Operating Conditions	0 to 10 ±0.1%											VDC							
Ripple	Full Load, Max Eout	< 10 </td <td colspan="11">$\leq 10 \hspace{0.2cm} \leq 10 \hspace{0.2cm}$</td> <td>PPM</td>	$\leq 10 \hspace{0.2cm} \leq 10 \hspace{0.2cm} $											PPM						
Line Regulation	Nom. Input, Max Eout, Full Power		< 10ppm											VDC						
Static Load Regulation	No Load to Full Load, Max Eout	< 10ppm												VDC						
Stability	30 Min. warmup, per 8 hr/ per day	< 10ppm										VDC								
PROGRAMMING & CO	NTROLS								ļ	ALL 1	IYPE	S								
Input Impedance	Nominal Input									1	0									MΩ
Adjust Accuracy & Adjust Linearity	10% to 100%	0.5%														%				
Adjust Voltage	Differential									0 to	+10									VDC
Output Voltage	T= +25°C, Initial Value								+	10.00	± 0.05	%								VDC
Max Source Current	T= +25°C										1									mA
Output Impedance	Normal Operating Conditions					В	Buffered	l, Iow	impedan	ce, 2m	nA max	for sou	rce/sin	k currer	nt					-
Enable/Disable							0 to +	1 Disa	able, +2.	5 to 1	5 Enab	e (Defa	ult = E	nable)						VDC
ENVIRONMENTAL									ļ	ALL 1	IYPE	S								
Operating	Full Load, Max Eout, Case Temp.									+10 t	to +45									°C
Temperature Coefficient	Over the Specified Temperature									±	10									PPM/°C
Thermal Shock	Mil-Std 810, Method 504, Class 2									-40 t	0 +65									°C
Storage	Non-Operating, Case Temp.									-55 to	+105									°C
Humidity	All Conditions, Standard Package								0 to 9	5% no	n-cond	ensing								-
Altitude	Standard Package, All Conditions								Sea L	evel th	rough 1	0,000								ft
Shock	Mil-Std-810, Method 516, Proc. 4									2	20									G's
Vibration	Mil-Std-810, Method 514, Fig. 514-3									1	0									G's

Specifications subject to change without notice.

E SERIES Precision High Voltage Power Supply

CONSTRUCTION

Material: Aluminum Alloy 5052-H32 Finish: Anodize MIL-A-8625E Blue

SIZE

Volume 34.29 in³ (561.9cc) Weight 2.4lbs (1.1kg)

TOLERANCE

 $\begin{array}{l} \mbox{Overall} \pm 0.030" \ (1.27) \\ \mbox{Pin to Pin} \pm 0.015" \ (0.38) \\ \mbox{Mounting Hole Location} \pm 0.025" \ (0.64) \end{array}$

CONNECTIONS

D-Sub 15 Pin Female HV Connector, LGH1/2L HV Return, #6-32 x 0.437 Long Threaded Post

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

RoHS	
COMPLIANT	

Non-RoHS compliant units are available. Please contact the factory for more information. CE CHUS IEC-60950-1

(D)

GEN 3 E SERIES INPUT CONNECTOR PINOUT AND FUNCTIONS			
PIN	DESCRIPTION	FUNCTION	
1	Reference Voltage	(+)10.00V precision reference	
2	Voltage Programming -	0 to 10 volts to program full output voltage	
3	Voltage Programming +	Programming input is differential between pins 2 and 3	
4	Voltage Monitor	0 to +10 volts represents 0 to full output voltage	
5	Voltage Mode Indicator	Open drain active low when in voltage control	
6	Signal Ground	Reference all control signals here	
7	Input Power	. 22 to . 201/	
8	Input Power	+23 10 +300	
9	Power Ground	Input Dower Deturn	
10	Power Ground		
11	Enable	TTL high to enable, low to disable, default is OFF	
12	Current Monitor	0 to +10 volts represents 0 to full output current	
13	Current Programming	0 to +10 volts sets current from 0 to full rated output current	
14	Current Mode Indicator	Open drain active low when in current control	
15	Signal Ground	Reference all control signals here	

NOTE: Use stud next to High Voltage output connector as HV Return, a secure ground connection here is critical to safety and proper operation.

ORDERING INFORMATION 0 to 1,000 VDC Output 1E 0 to 2,000 VDC Output 2E 0 to 4,000 VDC Output 4E Туре 0 to 6,000 VDC Output 6E 0 to 10,000 VDC Output 10E 0 to 15,000 VDC Output 15E Positive Output -P Input Negative Output -N 4 Watts Power Output 4 Power 15/20 Watts Power Output 15/20 30 Watts Power Output 30 Performance 10ppm Line Regulation, Load -10PPM Regulation, Stability, and Temp. Co. Level LGH (Standard) 5kV, SHV Type -SHV-5KV Connectors 10kV, BNC Type -BNC-10KV 20kV, BNC Type -BNC-20KV

Popular accessories ordered with this product include our full range of high voltage output connectors (see Accessories & Connectors data sheet).

Rev. D 8/10

XS SERIES Extra-small High Voltage Biasing Supply

The XS Series of extra-small high-voltage power supplies is the smallest **regulated** DC-DC high-voltage power supply for applications that require a bias voltage ranging from 0 to 100V. At only 0.08in³ (1.3cc), these modules are ideal for use in sizecritical applications.

- Output from 0 to 100V
- 100 milliwatts of output power
- Tight line/load regulation
- Output current limit protection
- 5 Volts DC Input
- Extra-small and lightweight
- PCB flat mounting
- Temperature coefficient < 50ppm/°C
- Low ripple (<50mV peak to peak)
- Low noise due to metal shielding

Typical applications for the XS Series include the following:

Thin-film

Avalanche Photo Diodes (APD)

Bias Supplies

Silicon Photomultipliers (SiPM)

Multi-pixel Photon Counter (MPPC)

Please contact UltraVolt's customer service department for an analysis of your requirements.

Ultrasonic

PARAMETER	SPECIFICATION
Input voltage Vin (pins 1 & 2)	5VDC ± 0.5 VDC (recommended) maximum: 12Vdc (reverse: -0.2V)
Input current	For OV output voltage: <1.6mA For 100V, no load: < 3mA At full output voltage, full load: <50mA
HV output Vout (pin 4)	0 to 100V programmable
Polarity	Fixed positive or negative
HV setting (pin 3)	Via external voltage source 0/2.5V Accuracy: ±2% at full scale
Max. output current lout	1mA nominal
Load voltage regulation	$\pm 0.01\%$ of full output voltage for no load to full load
Line voltage regulation	$\pm 0.01\%$ of full output voltage over specified input voltage range
Residual ripple	< 50mV peak-to-peak – ripple can be reduced to less than 10mV by adding an external 100nF small CMS capacitor
Temperature coefficient	<50ppm/°C
Output HV monitoring	Not available on this product
Output reference voltage	Not available on this product
HV power ON/OFF	Not available on this product
Operating temperature	-10°C to +50°C
Storage temperature	-10°C to +70°C
Safeguards	 Output current internally limited Soft start feature: low overshoot
Shielding	Ground return is to metal enclosure

All rights reserved.

Specifications subject to change without notice.

XS SERIES Extra-small High Voltage Biasing Supply

CONSTRUCTION

Tin steel plate, thickness 0.02" (0.5) Insulation: fully potted in an epoxy resin

SIZE

Volume: 0.081in³ (1.331cc) Weight: 0.176oz (5g)

TOLERANCE

Overall ±0.0039" (0.1) Pin to Pin ±0.0039" (0.1) Tabs location ±0.0079" (0.2)

PINS

Gold Plated 0.025" (0.63) sq. Length > 0.079" (2) Spacing 0.1" (2.54)

CONNECTIONS		
PIN	FUNCTION	
1	Positive Power Input	
2	Ground Return	
3	Remote Adjust Input	
4	HV Output	

Note: Mounting tabs must be connected to ground.

Non-RoHS compliant units are available. Please contact the factory for more information.

ORDERING INFORMATION		
Туре	0 to 100 VDC Output	0.1XS
Input	5VDC Nominal	5
Power	Watts Output	0.1
Case	Tin Steel Case	(Standard)
Polarity	Positive Output	-P
	Negative Output	-N

Popular accessories ordered with this product include the PCB-CONN-XS.

US SERIES Microsize, Micropower High Voltage Power Supply

At only 0.35in³ (5.75cc), the highly-compact microsize US Series is specially designed to meet the needs of design engineers working with commercial, military, industrial, and research applications. These modules allow customers with critical size requirements access to voltages up to 500V.

- 4 models from 0 to 200V, 300V, 400V, or 500V
- 100 milliwatts of output power
- Tight line/load regulation
- Arc and short circuit protection
- 5, 12, or 15 Volts DC Input
- TTL enable/disable
- Miniature and lightweight
- PCB flat mounting
- Temperature coefficient of 50ppm/°C
- Optional flying lead for HV output

- Low ripple (<20mV peak to peak)
- Low noise due to metal shielding
- 2.5V reference

Typical applications for the US Series include the following:

Bias Supplies		
Avalanche Photo Diodes (APD)		
Silicon Photomultipliers (SiPM)		

Fiber-optic Telecommunications Particle Physics Laser Range Finders

Please contact UltraVolt's customer service department for an analysis of your requirements.

PARAMETER	SPECIFICATION			
Input voltage Vin (pins 1 & 2)	5VDC ± 0.5 VDC or 12 to 15VDC ± 0.5 VDC, according to type			
	Inhibition mode: <5mA at full output voltage, full load:			
Input current	<65mA for the 200V model	<60mA for the 300V model	<55mA for the 400V model	<50mA for the 500V model
Polarity	Fixed positive or nega	tive		
HV setting (pin 3)	Via external potentiometer, minimum resistance 10k Ω or Via external voltage source 0/2.5V $\pm0.5\%$ at full scale, and input impedance >1M Ω			
Load voltage regulation	±0.01% of full output	t voltage for no load to f	ull load	
Line voltage regulation	±0.01% of full output	t voltage over specified i	input voltage range	
Residual ripple	<pre><20mV peak-to-peak <5mV peak-to-peak a</pre>	at full output voltage a at 200V and 200µA	nd current	
Temperature coefficient	<50ppm/°C			
Output HV monitoring (pin 2)	0/2.5V signal Accuracy : ±0.2% Output impedance : 1	kΩ		
Output reference voltage (pin 4 - optional)	2.5V ±0.5%, TC:50pp Max. output current :	m/°C, 1mA		
HV power ON/OFF (pin 5)	ON: 0 volt, connected to ground OFF: not connected Open collector compatible			
Operating temperature	-10°C to +50°C			
Storage temperature	-40°C to +70°C			
Safeguards	Output current interna Soft start feature: the	ally limited start is guaranteed wit	h no overshoot	

Making High Voltage Easier!®

©2010, UltraVolt Inc.

All rights reserved.

US SERIES

Microsize, Micropower High Voltage Power Supply

CONSTRUCTION

Tin steel plate, thickness 0.02" (0.5) Insulation: fully potted in an epoxy resin

SIZE

Volume: 0.351in³ (5.750cc) Weight: 0.459oz (13g)

TOLERANCE

Overall ±0.0039" (0.1) Pin to Pin ±0.0039" (0.1) Case to Pin ±0.0197" (0.5)

NOTES

Pin length > 0.078" (2), spacing 0.1" (2.54) Optional lead: coaxial cable (RG178), diameter = 0.079" (2), length = 19.685" (500)

CONNECTIONS		
PIN	FUNCTION	
1	Positive Power Input	
2	Power Ground	
3	Remote Adjust Input	
4	+2.5VDC Reference Output	
5	Enable/Disable	
6	Eout Monitor	
7	HV Output	

Note: Mounting tabs must be connected to ground.

Rev. A 6/10

Non-RoHS compliant units are available. Please contact the factory for more information.

	ORDERING INFORMA	ATION
Turne	0 to 200 VDC Output	0.2US
	0 to 300 VDC Output	0.3US
Type	0 to 400 VDC Output	0.4US
	0 to 500 VDC Output	0.5US
	5VDC Nominal	5
Input	12VDC Nominal	12
	15VDC Nominal	15
Power	Watts Output	0.1
Case	Tin Steel Case	(Standard)
Polarity	Positive Output	-P
	Negative Output	-N
Option	Output voltage lead wire	-WS

Popular accessories ordered with this product include the PCB-CONN-US.

V SERIES Vertical, Microsize High Voltage Biasing Supply

The vertical, microsize V Series is the ideal solution for applications that require a bias voltage ranging from 0 to 1500V and very small current, at only 0.84in³ (13.8cc). With a footprint under 1in² (2.54cm²), these modules are perfect for applications with limited board space.

- 4 models from 0 to 600V, 1000V, 1250V, or 1500V
- 1 watt of output power
- Tight line/load regulation
- Arc and continuous short circuit protection
- Self restoring output voltage
- 12, 15 or 24 Volts DC Input
- Low cost
- Miniature and lightweight
- 5V reference
- Voltage monitoring
- Low ripple (0.01% peak to peak)
- Optional flying lead for HV output

Typical applications for the V Series include the following:

Bias Supplies

Avalanche Photo Diodes (APD)

Photomultiplier Tubes (PMT)

Please contact UltraVolt's customer service department for an analysis of your requirements.

Scanning Electron Microscopes (SEM)

PARAMETER	SPECIFICATION
Input voltage Vin (pins 1 & 2)	12VDC ± 0.5 Vdc or 15VDC ± 0.5 VDC or 24VDC ± 1 VDC, According to type
Input current	At no load: 15mA At full load: from 65mA to 100mA
Polarity	Fixed positive and fixed negative
HV setting (pins 3, 4 & 5)	Via external potentiometer, minimum resistance $10 k\Omega$ or Via external voltage source $~0/$ SV $\pm 0.5\%$ at full scale, and input impedance >1M\Omega
Load voltage regulation	$\pm 0.01\%$ of full output voltage for no load to full load
Line voltage regulation	$\pm 0.01\%$ of full output voltage over specified input voltage range
Residual ripple	Between 10mV and 50mV peak-to-peak at full load
Temperature coefficient	100 ppm/°C for the maximum output voltage after starting and over temperature range 0 to 50° C
Output HV monitoring (pin 6)	+1V/1kV max. or -1V/-1kV max. according to model polarity Output impedance = 200k\Omega $\pm 1\%$
Output reference voltage (pin 5)	5V ±0.5%, TC:50ppm/°C, max. output current:1mA
Operating temperature	0°C to +50°C
Storage temperature	-20°C to +70°C
Safeguards	Arc and short circuit protection
Options	 Flying wire for HV output instead of pin 7 Suitable for use with an external potentiometer

©2010. UltraVolt Inc.

All rights reserved.

V SERIES Vertical, Microsize High Voltage Biasing Supply

FLYING LEAD OPTION

CONNECTIONS		
PIN	FUNCTION	
1	Positive Power Input	
2	Power Ground	
3	Signal Ground	
4	Remote Adjust Input	
5	+5VDC Reference Output	
6	Eout Monitor	
7	HV Output	

Note: Mounting tabs must be connected to ground.

Non-RoHS compliant units are available. Please contact the factory for more information.

Making High Voltage Easier!®

CONSTRUCTION

Tin steel plate, thickness 0.02" (0.5) Insulation: fully potted in an epoxy resin

SIZE

Volume: 0.84in³ (13.8cc) Weight: 1.23oz (35g)

TOLERANCE

Overall ±0.0039" (0.1) Pin to Pin ±0.0039" (0.1) Tabs location ±0.0118" (0.3)

NOTES

0.018" (0.46) round pins, length: 0.12" (3), spacing: 0.1" (2.54) PCB mounting through 4 mounting tabs: Length: 0.2" (5), width: 0.059" (1.5), thickness: 0.02" (0.5) Optional flying lead for HV output: Coaxial cable (RG178), diameter = 0.079" (2) length = 19.685" (500)

ORDERING INFORMATION		
T	0 to 600 VDC Output	0.6V
	0 to 1,000 VDC Output	1V
Гуре	0 to 1,250 VDC Output	1.25V
	0 to 1,500 VDC Output	1.5V
	12VDC Nominal	12
Input	15VDC Nominal	15
	24VDC Nominal	24
	Watts Output	0.5
Power	Watts Output	0.8
	Watts Output	1
Case	Tin Steel Case	(Standard)
Polarity	Positive Output	-P
	Negative Output	-N
Option	Flying Lead for HV Output	-WS

Popular accessories ordered with this product include the PCB-CONN-M/V.

M SERIES Miniature, Microsize High Voltage Biasing Supply

The miniature, microsize M Series is the ideal solution for applications that need a biasing voltage ranging from 0 to 1500V and very small current, at only 1.00in³ (16.4cc). At less than 0.5in (12.7mm) in height, these modules are ideal for low profile applications.

- 4 models from 0 to 600V, 1000V, 1250V, or 1500V
- 1 watt of output power
- Tight line/load regulation
- Arc and continuous short circuit protection
- Self restoring output voltage
- 12, 15 or 24 Volts DC Input
- Low cost
- Miniature and lightweight
- 5V reference
- Voltage monitoring
- Low ripple (0.01% peak to peak)
- Optional flying lead for HV output

Typical applications for the M Series include the following:

Bias Supplies

Electrostatic chuck (E-chuck)

Avalanche Photo Diodes (APD)

Photomultiplier Tubes (PMT)

Please contact UltraVolt's customer service department for an analysis of your requirements.

PARAMETER	SPECIFICATION
Input voltage Vin (pins 1 & 2)	12VDC ± 0.5 VDC or 15VDC ± 0.5 VDC or 24VDC ± 1 VDC, according to type
Input current	At no load: 15mA At full load: from 65mA to 100mA
Polarity	Fixed positive and fixed negative
HV setting (pins 3, 4 & 5)	Via external potentiometer, minimum resistance 10k Ω or Via external voltage source 0/5V ±0.5% at full scale, and input impedance >1M Ω
Load voltage regulation	$\pm 0.01\%$ of full output voltage for no load to full load
Line voltage regulation	$\pm 0.01\%$ of full output voltage over specified input voltage range
Residual ripple	Between 10mV and 40mV peak-to-peak at full load
Temperature coefficient	100ppm/°C for the maximum output voltage after starting and over temperature range 0 to 50°C
Output HV monitoring (pin 6)	+1V/1kV max. or -1V/-1kV max. according to model polarity output impedance = 200k\Omega $\pm 1\%$
Output reference voltage (pin 5)	5V ±0.5%, TC:50ppm/°C, max. output current: 1mA
Operating temperature	-40°C to +50°C
Storage temperature	-40°C to +70°C
Safeguards	Arc and short circuit protection
Options	 Flying wire for HV output instead of pin 7 Suitable for use with an external potentiometer

Making High Voltage Easier!®

Specifications subject to change without notice.

M SERIES Miniature, Microsize High Voltage Biasing Supply

FLYING LEAD OPTION

CONNECTIONS			
PIN	FUNCTION		
1	Positive Power Input		
2	Power Ground		
3	Signal Ground		
4	Remote Adjust Input		
5	+5VDC Reference Output		
6	Eout Monitor		
7	HV Output		

Note: mounting tabs must be connected to ground.

Rev. A 6/10

Non-RoHS compliant units are available. Please contact the factory for more information.

CONSTRUCTION

Tin steel plate, thickness 0.02" (0.5) Insulation: fully potted in an epoxy resin

SIZE

Volume: 1.00in³ (16.4cc) Weight: 1.23oz (35g)

TOLERANCE

Overall ±0.0039" (0.1) Pin to Pin ±0.0039" (0.1) Tabs location ±0.0118" (0.3)

NOTES

0.018" (0.46) round pins, length: 0.12" (3), spacing: 0.1" (2.54) PCB mounting through 4 mounting tabs: Length: 0.2" (5), width: 0.059" (1.5), thickness: 0.02" (0.5) Optional flying lead for HV output: Coaxial cable (RG178), diameter = 0.079" (2), length = 19.685" (500)

ORDERING INFORMATION				
Turne	0 to 600 VDC Output	0.6M		
	0 to 1,000 VDC Output	1M		
Туре	0 to 1,250 VDC Output	1.25M		
	0 to 1,500 VDC Output	1.5M		
	12VDC Nominal	12		
Input	15VDC Nominal	15		
	24VDC Nominal	24		
	Watts Output	0.5		
Power	Watts Output	0.8		
	Watts Output	1		
Case	Tin Steel Case	(Standard)		
Delerity	Positive Output	-P		
Polarity	Negative Output	-N		
Option	Output Voltage Lead Wire	-WS		

Popular accessories ordered with this product include the PCB-CONN-M/V.

D SERIES Microsize High Voltage Biasing Supply

The D Series of high voltage power supplies is designed to meet the needs of customers with low-profile applications. These ultra-compact modules are adapted to controlling photo detectors that require high-bias voltages and currents. D Series PCB-mount high-voltage power supplies feature a lightweight design, state-of-the-art surface-mount technology, and fivesided metal enclosures.

- 4 models from 0 to 1kV through 0 to 6kV
- 1, 2, 4 or 6 watts of output power
- 15 or 24 Volts DC Input
- Low profile and lightweight
- PCB flat mounting
- Adjustable from 0 to full output
- Tight line/load regulation
- Output current limit protection
- Low ripple (<0.02% peak to peak)
- Buffered voltage and current monitoring

<u>Typical applications</u> for the D Series include:

Avalanche Photo Diodes (APD) Electrostatic Chuck (E-chuck) E-Beam Lithography and Welding Focused Ion Beam (FIB) Gas Chromatography Geiger Muller Tubes (GM Tubes) General Laboratory High Voltage Testing Image Intensifiers (II) Insulator Testing Lithography Microchannel Plates (MCP) Photodiodes (PD) Photomultiplier Tubes (PMT) Scanning Electron Microscopes Spectrometer

Please contact UltraVolt's customer service department for an analysis of your requirements.

PARAMETERS	SPECIFICATIONS			
Input voltage Vin (pins 2 & 3)	15VDC \pm 1.5VDC or 24VDC \pm 2VDC, according to type			
Input current	example for a 15VDC, output 6000V, 1mA model: inhibition mode: 27mA at no load & HV = 6000V 46mA, at full load < 630mA			
HV output Vout (pin 8)	0 to 1000V through 0 to 6000V according to type			
Polarity	fixed positive or negative			
Programming (pins 4 & 6)	via external voltage source 0 to +5V $\pm 0.1\%$ at full scale, and input impedance = 94k Ω			
Max. output current lout	limited to 110% of nominal current			
Load voltage regulation	$\pm 0.01\%$ of full output voltage for no load to full load			
Line voltage regulation	$\pm 0.01\%$ of full output voltage over specified input voltage range			
Residual ripple	< 0.02% peak-to-peak at full load			
Temperature coefficient	100ppm/°C			
Output HV monitoring (pin 7) {still operating in inhibition mode}	analog 0 to +5V buffered output signal, accuracy $\pm 0.2\%$ output impedance = $1k\Omega$ temperature coefficient: 50ppm/°C for < 4kV units. 100ppm/°C for 6kV units			
Output current monitoring (pin 5) {still operating in inhibition mode}	analog 0 to +5V buffered output signal, accuracy $\pm 2\%$ output impedance = $1k\Omega$ temperature coefficient: 100ppm/°C			
Enable/Disable (pin 1)	to disable (opened remote interlock) or enable (closed remote interlock)			
Operating temperature	-10°C to +50°C			
Storage temperature	-10°C to +70°C			
Safeguards	 protected against reverse Vin auto inhibition if Tcase > 75°C Soft start feature : the start is guaranteed with no overshoot HV setting internally limited to 5.3V 			

D SERIES Microsize High Voltage Biasing Supply

1-4KV, 1-4W

1-4KV, 6W AND 1-6KV, 1-6W

CONNECTIONS		
PIN	FUNCTION	
1	Enable/Disable	
2	Power Ground	
3	Positive Power Input	
4	Signal Ground	
5	lout Monitor	
6	Remote Adjust Input	
7	Eout Monitor	
8	HV Output	

Rev. A 6/10

Non-RoHS compliant units are available. Please contact the factory for more information.

ULTRAVOLT.

Making High Voltage Easier!®

CONSTRUCTION

Tin Steel Plate, thickness 0.5mm Insulation: fully potted in an epoxy resin

SIZE

Volume: 1-4kV, 1-4W: 8.55 in³ (140.13cc) 1-4kV, 6W and 1-6kV, 1-6W: 11.70 in³ (191.76cc) Weight: 1-4kV, 1-4W: 2.54 oz (72g)

1-4kV, 6W and 1-6kV, 1-6W: 3.00 oz (85g)

TOLERANCE

Overall $\pm 0.0118"$ (0.3) Pin to pin $\pm 0.0039"$ (0.1) Case to pin $\pm 0.0591"$ (1.5)

NOTES

Standard case length, width, and height specs are $\pm 0.050"~(1.27)$ Pin length > 0.24" (6), spacing 0.1" (2.54)

	ORDERING INFORMATION					
	0 to 1,000 VDC Output	1D				
Tupo	0 to 2,000 VDC Output	2D				
Туре	0 to 4,000 VDC Output	4D				
	0 to 6,000 VDC Output	6D				
Innut	15VDC Nominal	15				
Input	24VDC Nominal	24				
	Watts Output	1				
Dower	Watts Output	2				
Power	Watts Output	4				
	Watts Output	6				
Case	se Tin Steel Case (Sta					
Polarity	Positive Output	-P				
	Negative Output	-N				

CP SERIES Constant Power High Voltage Supply

The CP series of high-voltage regulated DC-DC converters is optimized for "tri-mode" operation in bias applications, charging applications, and pulsed power applications and provides excellent line and load regulation, dynamic response, and stability. The CP Series operates in constant-voltage, constant-current, or constant-power modes and features buffered current, voltage, and power monitors. <u>Typical applications</u> for these modules include strike-and-run, plasma, and electrophoresis.

- 6 models from 0 to 1kV through 0 to 15kV
- 10W maximum output power level
- 0 to +10V remote programming for all modes
- +10V compensated reference

- Tight line and load regulation
- Operates in constant-voltage, constant-current, or constant-power modes

PARAMETER	CONDITIONS	MODELS UN				UNITS		
INPUT		ALL TYPES						
Voltage Range	Full Power	+24 ± 10%				VDC		
Current	Standby / Disable	< 70			mA			
Current	Full Load, Max Eout	< 925			mA			
Current	No Load, Max Eout	< 375				mA		
AC Ripple Current	Nominal Input, Full Load			<	: 30			mA p-p
OUTPUT		1CP	2CP	4CP	6CP	10CP	15CP	
Voltage Range		0 to 1,000	0 to 2,000	0 to 4,000	0 to 6,000	0 to 10,000	0 to 15,000	VDC
Power	Nominal Input, Max Eout				10			W
Current	lout Max	100	50	25	16.7	10	6.7	mA
Ripple	Full load, Max Vout	TBD	TBD	TBD	TBD	50	55	V р-р
Ripple	Full load, Max lout	TBD	TBD	TBD	TBD	60	55	V р-р
Line Regulation	Vin Min to Vin Max, Max Eout	< 0.01 %				VDC		
Load Regulation	No Load to Full Load, Max Eout			< 0	.01%			VDC
PROGRAMMING & CONTROLS		ALL TYPES						
Input Impedance	t Impedance Normal Operating Conditions, All Inputs				10			MΩ
Enable/Disable		0 to +2 Disable, +3 to 10 Enable (Default = Enable)					VDC	
Output Voltage	T=+25°C, Initial Value	$10.5 \pm 0.2\%$			VDC			
Output Impedance	T=+25°C	Buffered, low impedance, 3mA max			-			
Stability	Over Full Temperature	5			PPM/°C			
ENVIRONMENTAL				ALL -	TYPES			
Operating	Full Load, Max Eout, Case Temp.	-40 to +65			°C			
Coefficient	Over the Specified Temperature	±100				PPM/°C		
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II	-40 to +65				°C		
Storage	Non-Operating, Case Temp.	-55 to +105				°C		
Humidity	All Conditions, Standard Package	0 to 95% non-condensing			-			
Altitude	Standard Package, All Conditions	Sea Level through Vacuum (Vacuum may require -P1 or -S1 options, contact factory for details.)			-			
Shock	Mil-Std-810, Method 516.5, Proc. IV	20			G's			
Vibration	Mil-Std-810, Method 514.5, Fig.14.5C-3	10			G's			

Specifications subject to change without notice.

©2010, UltraVolt Inc. All rights reserved.

CP SERIES Constant Power High Voltage Supply

CONSTRUCTION

Epoxy-filled Aluminum Alloy Box, Anodized Gold

SIZE

Volume 17.5in³ (286.77 cc) Weight 1.4lb (0.64kg)

TOLERANCE

PLIANT

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole location ±0.025" (0.64)

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

Non-RoHS compliant units are available. Please contact the factory for more information.

CP SERIES PIN ASSIGNMENTS AND FUNCTIONS			
PIN	FUNCTION	DESCRIPTION	
1	Power Ground	Input Power Return	
2	Input Power	Input Power (+24V ± 10%)	
3	Current Monitor	0 to 10V is equal to 0 to full rated output current	
4	Enable	High to enable, low to disable, default or open is enabled	
5	Signal Ground	Monitor and Programming Return, return the monitor and programming circuitry to this pin	
6	Voltage Programming	0 to 10V programs 0 to full rated output voltage	
7	Reference Voltage	10.5V precision voltage reference	
8	Power Ground	Input Power Return	
9	Input Power	Input Power (+24V \pm 10%)	
10	N/C		
11	Current Mode Indicator	Open drain indicator, active (pulled low) when unit is in current regulation	
12	Voltage Mode Indicator	Open drain indicator, active (pulled low) when unit is in voltage regulation	
13	Current Programming	0 to 10V programs 0 to full rated output current	
14	Voltage Monitor	0 to 10V is equal to 0 to full rated output voltage	
15, 16, 17, & 18	N/C		
19	Power Mode Indicator	Open drain indicator, active (pulled low) when unit is in power regulation	
20	Power Monitor	0 to 10V is equal to 0 to full rated power	
21	Power Programming	0 to 10V programs 0 to full rated output power	

ORDERING INFORMATION 0 to 1,000 VDC Output 1CP 0 to 2,000 VDC Output 2CP 0 to 4,000 VDC Output 4CP Type 0 to 6,000 VDC Output 6CP 0 to 10,000 VDC Output 10CP 0 to 15,000 VDC Output 15CP Input 24VDC Nominal 24 Positive Output -P Polarity Negative Output -N Power 10 Watt Output 10

Popular accessories ordered with this product include CONN-KIT-CP and our full range of high voltage output connectors (see Accessories & Connectors datasheet).

DUAL OUTPUT AUX SERIES High Voltage Biasing Supply

The AUX Series accessory provides a second fixed HV output in addition to the adjustable main high-voltage power-supply output. This second output is set for a specific fixed voltage at the factory. The AUX output is achieved by adding a daughter board inside either 1/16A to 6A or 1/16C to 6C high-voltage power supplies.

This AUX board is encapsulated with the main high voltage power supply. All of the advantages of the base power supply remain. <u>Typical applications</u> include the following: Bipolar outputs, ionization/strike, trigger coils, pulse generator or amplifiers, tube elements such as G1, G2, cathode, and spark gap initiator.

- Adds a second + or HV output
- Fixed regulated output
- Encapsulated with A or C Series HVPS
- Creates a 4.9 in³ dual-output supply

HIGH VOLTAGE AUX OUTPUT

The AUX output is a non-isolated, unipolar output. Positive or negative output must be specified. The polarity of this AUX is not dependent on the polarity of the base HVPS.

Full capability is available over an input range of 12 to 15VDC $\pm 10\%$ for 4W units and 24 to 28VDC $\pm 5\%$ for 20W/30W units. The AUX fixed output is fully functional when the main output voltage is adjusted from 100% to 75%. As the main output is adjusted from 75% to 50% the AUX output current is reduced from 100% to 0%. The manufactured tolerance on the fixed output is $\pm 5\%$. Line regulation error is < 0.1%; load regulation error is < 0.1% per 100uA. The output has a temperature co-efficient of $\pm 0.11\%$ per °C.

- Fixed-frequency, low-stored-energy design
- High power density
- Output short-circuit protected
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

Fixed outputs available are:

47V	@	2mA	450V	@	1mA
94V	@	2mA	600V	@	1mA
141V	@	2mA	750V	@	1mA
188V	@	2mA	900V	@	1mA
235V	@	2mA	1050V	@	1mA
282V	@	2mA			
329V	@	2mA			

Note: Specified AUX output should be <40% of the main output.

The AUX HV output connection is via an additional pair of standard .025in (0.635mm) square IDC pins. These pins can be used for PCB mounting or direct wiring. High voltage connector and cable options are available.

CONSTRUCTION

Epoxy-filled DAP box, certified to ASTM-D-5948 Plastic box

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole location ±0.025" (0.64)

NOTES

20W and 30W versions are an additional 0.062" (1.57) in height. -M equipped units are an additional 0.030" (0.76) for each dimension.

Contact UltraVolt's Customer Service Department for drawings of models equipped with -E or -H options.

Specifications subject to change without notice.

DUAL OUTPUT AUX SERIES

High Voltage Biasing Supply

PROUDLY

CONNECTIONS					
PIN	FUNCTION				
1	Input-Power Ground Return				
2	Positive Power Input				
3	lout Monitor				
4	Enable/Disable				
5	Signal Ground Return				
6	Remote Adjust Input				
7	+5VDC Reference Output				
8	HV Ground Return				
9	HV Ground Return or Eout Monitor (-Y5 only)				
10 & 11	HV Output				
12 & 13	AUX HV Output				

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100k Ω , .01uF / 50V (Max) on all models except -M, -C, and -M-E configurations which are 0 Ω .

	ORDERING INFORMATION	
Туре	0 to 62 VDC Main Output	1/16AUX or 1/16CAUX
	0 to 125 VDC Main Output	1/8AUX or 1/8CAUX
	0 to 250 VDC Main Output	1/4AUX or 1/4CAUX
	0 to 500 VDC Main Output	1/2AUX or 1/2CAUX
	0 to 1,000 VDC Main Output	1AUX or 1CAUX
	0 to 2,000 VDC Main Output	2AUX or 2CAUX
	0 to 4,000 VDC Main Output	4AUX or 4CAUX
	0 to 6,000 VDC Main Output	6AUX or 6CAUX
ALLY Output	2mA @ 47, 94, 141, 188, 235, 282, 329	10.07
AUX Output	1mA @ 450, 600, 750, 900, 1050	
Delevitu	Positive Output	-P
Polarity	Negative Output	-N
	Watts Output (12 V Only)	4
Power	Watts Output (24 V Only)	20
	Watts Output (24 V Only)	30
0	Plastic Case - Diallyl Phthalate	(Standard)
Case	'Eared' Heatsink Plate (plastic case)	-Е
	RF-Tight Aluminum Case	-C
Heat Sink	.400" High (sized to fit case)	-H
Shield	Six-sided Mu-Metal Shield	-M
Voltage Monitor	Optional Eout Monitor (A Series only)	-Y5
*Ontional basatad	ourrent monitor quailable. Contact the factor	. fau maawa alataila

*Optional boosted current monitor available. Contact the factory for more details.

Popular accessories ordered with this product include CONN-KIT-F and $\mathsf{BR-1}$ mounting bracket kit.

Rev. L 6/10

TRIPLE OUTPUT AUX SERIES High Voltage Biasing Supply

The AUX Series accessory provides second and third adjustable positive HV outputs in addition to the adjustable main positive high-voltage power supply output. The AUX outputs are set for a specific voltage range at the factory. One output is referred to as the Focus, one as the Grid. The AUX is achieved by adding a daughter board inside the 10A-35A high-voltage power supply. This AUX board is encapsulated with the main high-voltage power supply in a special taller enclosure to accommodate the height of the adjust pots. <u>Typical applications</u> are: CRT Raster Display, X-Y CRT Display, and E Beam Bias.

- Adds Focus and Grid outputs
- Encapsulated within 10A-35A Series
- Adjustable regulated outputs
- Creates a 6.5 in³ triple output supply

HIGH VOLTAGE AUX OUTPUTS

The AUX outputs are non-isolated, positive, unipolar outputs. Full capability is available over an input range of 12 to 15VDC $\pm 10\%$ for 4W units and 24 to 28VDC $\pm 5\%$ for 15W/30W units. The Focus AUX output voltage is fully functional when the main output is within the range specified on the ordering information table. The manufactured tolerance on the output voltage range provided is $\pm 5\%$. Line regulation error is <0.1%. Load regulation error is 0.5V per uA. The outputs have a temperature co-efficient of +0.11% per °C. Each AUX output has a current capability of 0 to ± 25 uA, contact factory for higher current. Each AUX output can be adjusted using an internal single-turn potentiometer. The potentiometer adjusts from a factory-set voltage down to 450VDC lower.

- Fixed-frequency, low-stored-energy design
- High power density
- Indefinite output short-circuit protection
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

Specific outputs available are:

Standard TC:	Compensated TC:
300V	$500V \pm 200PPM$
450V	$650V \pm 408PPM$
600V	800V ± 537PPM
750V	$950V \pm 626PPM$
900V	$1100V \pm 690PPM$
1050V	

The AUX Grid HV output is via pin 10 on an additional pair of standard .025in (0.635mm) square IDC pins. These pins can be used for PCB mounting or direct wiring. The AUX Focus HV output is via an 18" long flying lead. High voltage connector and cable options are available.

Specifications subject to change without notice.

TRIPLE OUTPUT AUX SERIES

High Voltage Biasing Supply

ULTRAVOLT®

Phone: 1-631-471-4444 Fax: 1-631-471-4696 www.ultravolt.com

BIPOLAR HIGH POWER C SERIES Dual-Output High Voltage Power Supply

The Bipolar C Series line of regulated DC-to-DC high-voltage converters is an extension of the High Power C Series. Bipolar C Series units contain a pair of + and - standard-product, 60-watt or 125-watt High Power C Series assemblies, providing a total of 125 watts or 250 watts. By encapsulating a module pair within one case, the cost of testing, potting, burn-in, and system integration is reduced.

The \pm HV output pair is packaged in UltraVolt's 4.5" x 8" x 1.1" standard case. This high power density is especially suited to high-energy pulsers, amplifiers, and discharge devices with large capacitance, fast repetition rates, or high current loads. See Application Note 10 for more charging information. <u>Typical applications</u> for the Bipolar C Series include the following: cap-charging, pulsed power, ultrasound, amplifiers, and pulse generators.

- 7 models from 0 to ± 125 Volts through 0 to ± 6 kV
- 125 or 250 watts of total output power
- Dual, independently controlled outputs
- Output current & voltage monitors
- High efficiency

- Maximum lout capability down to 0 Volts
- Low profile
- · Fast Trise with very low overshoot
- High power to voltage density
- >200,000 hour MTBF @65°C
- Output short-circuit protection
- Fixed-frequency, low-stored-energy design
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

PARAMETER	CONDITIONS															UNITS
INPUT								ALL	TYPES	S						
Voltage Range	Full Power							+ 23	to 30							VDC
Voltage Range	Derated Power Range							+ 11	to 32							VDC
Current	Standby / Disable							<	40							mA
Current	Max Load, Max Eout							125W: 3,	250W: 6							A
Current	No Load, Max Eout		1/8C to 1C: < 600, 2C to 6C: < 1000								mA					
AC Ripple Current	Nominal Input, Full Load		< 50						mA p-p							
OUTPUT		1/8	1/8C 1/4C 1/2C 1C 2C 4C 6C			C										
Voltage Range	Nominal Input	0 to :	±125	0 to :	±250	0 to :	±500	0 to ±	1,000	0 to ±	2,000	0 to ±	4,000	0 to ±6,000		VDC
Power	Nominal Input, Max Eout	125	250	125	250	125	250	125	250	125	250	125	250	125	250	Watts
Current	lout, Entire Output Voltage Range	1000	2000	500	1000	250	500	125	250	62	125	31	62	21	42	mA
Current Scale Factor	Full Load	833	1667	417	833	208	417	114	227	52	104	26	52	17.7	35	mA/V
Voltage Monitor Scaling	·						1	00:1 ±2%	into 10M	Ω						-
Ripple	Full Load, Max Eout, Cload ≥0.5uF	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0				<]	l.0	V p-p								
Rise Time	Max lout, Various C Loads & Eout							Figu	ire A							-
Storage Capacitance	Internal	0.90	0.90	0.90	0.90	0.43	0.43	0.019	0.019	0.019	0.019	0.013	0.013	0.013	0.013	uF
Overshoot	C Load, O Eout to Full Eout	<	1V	<	1V	<	1V	<	1V	<	1V	<	1V	<	1V	V pk
Line Regulation	Nom. Input, Max Eout, Full Power							< 0.	01%							VDC
Static Load Regulation	No Load to Full Load, Max Eout							< 0.	01%							VDC
Stability	30 Min. warmup, per 8 hr/ per day							< 0.01% /	/ < 0.02%	, ,						VDC
ENVIROMENTAL								ALL T	YPES							
Input Impedance	Nominal Input	+ Output Models $1.1 M\Omega$ to GND, - Output Models $1.1 M\Omega$ to +5 Vref								MΩ						
Adjust Resistance	Typical Potentiometer Values				1	0K to 100	K (Pot acr	oss Vref. a	& Signal G	GND, Wipe	r to Adjust	t)				Ω
Adjust Logic	0 to +5 for +0ut, +5 to 0 for - 0ut				+	4.64 VDC	for +Outp	out or +0.	36 for -Ou	itput = No	minal Eou	ut				-
Output Voltage & Impedance	T=+25°C						+ 5.00VD	C ± 2%, 2	Zout = 46	4Ω ± 1%						-
Enable/Disable		0 to +0.5 Disable, +2.4 to 32 Enable (Default = Enable)								-						
TEMPERATURE &	HUMIDITY							ALL T	YPES							
Operating	Full Load, Max Eout, Case Temp.							-40 to) +65							°C
Coefficient	Over the Specified Temperature							±	50							PPM/°C
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II							-40 to	0 +65							°C
Storage	Non-Operating, Case Temp.							-55 to	+105							°C
Humidity	All Conditions, Standard Package						0 to	o 95% nor	n-condens	ing						-
Altitude	Standard Package, All Conditions			Sea Leve	through	Vacuum (\	/acuum m	ay require	e -P1 or -S	S1 options	, contact	factory for	details.)			-
Shock	Mil-Std-810, Method 516.5, Proc. IV							2	0							G's
Vibration	Mil-Std-810, Method 514.5, Fig.514.5C-3							1	0							G's

Making High Voltage Easier!®

©2010, UltraVolt Inc. All rights reserved.

Specifications subject to change without notice.

BIPOLAR HIGH POWER C SERIES

Dual-Output High Voltage Power Supply

Weight 2.45lbs (1.1kg)

Epoxy-filled Aluminum Box Chem film per MIL-A-8625 Type II (Anodizing)

+ HVPS CONNECTIONS	- HVPS CONNECTIONS
1 & 8 - Input Power Ground Return	1 & 8 - Input Power Ground Return
3 - Iout Monitor	3 - Iout Monitor
4 - Enable/Disable	4 - Enable/Disable
5 - Signal Ground Return	5 - Signal Ground Return
6 - Remote Adjust Input	6 - Remote Adjust Input
7 - +5 VDC Reference Output	7 - +5 VDC Reference Output
2, 9, & 10 - Positive Power Input	2, 9, & 10 - Positive Power Input
11, 12, & 13 - N/C	11, 12, & 13 - N/C
14 - Eout Monitor	14 - Eout Monitor
15 & 16 - HV Ground Return	15 & 16 - HV Ground Return
17 & 18 - HV Output	17 & 18 - HV Output
All grounds joined internally. Power	All grounds joined internally. Power

supply mounting points isolated from internal grounds by $>100k\Omega$, .01uF / 50V (Max)

COMPLIANT

Non-RoHS compliant units are available. Please contact the

factory for more information.

supply mounting points isolated

from internal grounds by >100k Ω ,

- HVPS CONNECTIONS

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

	ORDERING INFORMATION	
	0 to 125 VDC Output	1/8C
	0 to 250 VDC Output	1/4C
	0 to 500 VDC Output	1/2C
Туре	0 to 1,000 VDC Output	10
	0 to 2,000 VDC Output	20
	0 to 4,000 VDC Output	40
	0 to 6,000 VDC Output	6C
Input	24VDC Nominal	24
Polarity	Negative & Positive Output	-NP
Dower	125 Watts Output	125 (60Wx2)
Power	250 Watts Output	250 (125Wx2)
Heat Sink	.400" High (sized to fit case)	-H
PCB Support	(7) 0.187" Standoffs on top cover	-Z11

Pin to Pin ±0.015" (0.38)

Hole to hole location $\pm 0.025"$ (0.64)

Example: 1/2C24-NP125(60Wx2) -Voltage 🛛 Type Model Total Output Power Input Polarity

Popular accessories ordered with this product include CONN-KIT-HP, and BR-7 and BR-8 mounting bracket kits.

Making High Voltage Easier!®

.01uF / 50V (Max)

Rev. K 8/10

HVA SERIES Precision High-Voltage Amplifier

The HVA Series of DC-to-DC high-voltage power supplies operates a precision filter/divider & linear HV switch to produce a High-Voltage Amplifier (HVA). These modules provide a high-resolution, programmable, high-voltage DC to greater than 1 kHz output. The HVA Series is optimized for bias applications while providing excellent line regulation, load regulation, dynamic response, and stability. The HVA Series can both source and sink current! <u>Typical applications</u> for this series include the following: electrostatic chuck, pockel cells, mass spectrometry, and electron microscopes.

- Can both source and sink current
- PPM level line & load regulation
- Bipolar models available at 0 to 5kV
- Differential precision 0 to 10VDC control input
- Precision voltage and current monitors

- Unipolar models available at 0 to 10kV
- 25ppm temperature coefficient
- Operates in DC, reversible, and amplifier modes
- Fast slew rate (40V/µs)
- High bandwidth

PARAMETER	CONDITIONS		MODELS						
INPUT				ALL T	YPES				
Voltage Range	Full Power			24VDC	± 10%			VDC	
Current	Standby / Disable		<70 unipolar, <105 bipolar						
Current	Full Load, Max Eout			<4	20			mA	
Current	No Load, Max Eout			<4	00			mA	
OUTPUT*		1kV/±1kV	2kV/±2kV	4kV/±4kV	±5kV	6kV	10kV		
Power	Nominal Input, Max Eout	0.25	0.5	1	1	1	1	W	
Current	lout Entire Voltage Range	250	250	250	200	167	100	uA	
Ripple	Full Load, Max Eout	0.05	0.05	0.05	0.03	0.03	0.01	%V pp	
Voltage Monitor	Normal Operating Conditions			0 to 10	± 0.5%			VDC	
Current Monitor	Normal Operating Conditions			0 to 10	± 0.1%			VDC	
Line Regulation	Vin Min to Vin Max, Max Eout			<0	.01			%	
Load Regulation	No Load to Full Load, Max Eout			<0	.01			%	
PROGRAMMING & C	CONTROLS		ALL TYPES						
Input Impedance	Normal Operating Conditions			1	0			MΩ	
Adjust Voltage	Differential			0 to	+10			VDC	
Enable/Disable			0 to +1 Disable, +2.5 to +15 Enable (Default = Enable)						
Output Voltage	$T = +25^{\circ}C$, Initial Value			+10.00 :	± 0.05%			VDC	
Max Source Current	$T = +25^{\circ}C$				1			mA	

*Units listed without polarity can be ordered as positive (+) or negative (-). Units listed as (\pm) are bipolar.

Specifications subject to change without notice.

HVA SERIES Precision High-Voltage Amplifier

Sample "HVA" Series Waveforms:

ULTRAVOLT®

1800 Ocean Avenue, Ronkonkoma, NY 11779 Phone: 1-631-471-4444 Fax: 1-631-471-4696 www.ultravolt.com

HVA SERIES

Precision High-Voltage Amplifier

Volume 28.58 in³ (468.34cc) Weight 1.5 lbs. (0.68kg)

CONNECTIONS

D-Sub 15 Pin Female HV Connector, LGH1/2L HV Return, #6-32 x 0.437 Long Threaded Post

Non-RoHS compliant units are available. Please contact the factory for more information.

	UV-HVA INPUT CONNECTOR PINOUT FUNCTIONS						
PIN	DESCRIPTION	FUNCTION					
1	Reference Voltage	+10.00V precision reference					
2	Voltage Programming -	0 to +10V or 0 to -10V to program full output voltage,					
3	Voltage Programming +	between pins 2 and 3.					
4	Voltage Monitor	0 to $\pm 10V$ represents 0 to \pm full output voltage					
5	N/C	No connection					
6	Signal Ground	Reference all control signals here					
7	Input Power	24V Input Dowor					
8	Input Power	+24v Input Power					
9	Power Ground						
10	Power Ground						
11	Enable	TTL high to enable, low to disable, default is OFF					
12	Current Monitor	0 to $\pm 10V$ represents 0 to \pm full output current					
13	Current Limit Adjust	0 to +10V sets current limit from 0 to full rated output current					
14	N/C	No connection					
15	Signal Ground	Reference all control signals here					

	0 to 1,000 VDC Output	1HVA
Туре	0 to 2,000 VDC Output	2HVA
	0 to 4,000 VDC Output	4HVA
	0 to 5,000 VDC Output (Bipolar Only)	5HVA
	0 to 6,000 VDC Output (Unipolar Only)	6HVA
	0 to 10,000 VDC Output (Unipolar Only)	10HVA
Input	24VDC Nominal	24
	Positive Output	-P
Polarity	Negative Output	-N
	Bipolar Output	-BP
Power	1 Watt Output	1
	LGH	Standard
Connections	5kV SHV Type	-SHV-5kV
	10kV, BNC Type	-BNC-10kV

Popular accessories ordered with this product include our full range of high voltage output connectors (see Accessories & Connectors datasheet).

Rev. C 9/10

HV RACK[®] SERIES Rack Mount High Voltage Power System

The HV Rack power system is a fully featured, configurable chassis, enabling end users to select and to specify the UltraVolt high-voltage power supply (HVPS) operating in each channel from UltraVolt's catalog of more than 600 models. This combination provides accurate control and measurement of high-voltage power supply and HV system performance.

- 1 to 4 configurable high-voltage output channels
- Voltage ranges from 0 to 62VDC through 40kV
- 4 to 250 watts per channel, up to 1000 watts total
- Independent control & monitoring of each channel

- Voltage and Current meters for each channel
- Constant current / Constant voltage auto-crossover
- Pre-set before & during bias capability
- PLC Analog/Digital Remote operation capability

PARAMETER	CONDITIONS	MODELS					
AC INPUT		HV RACK X-250	HV RACK X-500	HV RACK X-750	HV RACK X-1000		
Voltage	Full Power, Autoswitching	115/230VAC, 50/60Hz	115/230VAC, 50/60Hz	230VAC, 50/60Hz	230VAC, 50/60Hz		
Power	120VAC, Max Eout , Full Load	375W	750W	N/A	N/A		
Power	240VAC, Max Eout , Full Load	375W	750W	1125W	1500W		
REMOTE CONTROL			ALL M	ODELS			
Enable	All Channels		TTL high to enable, low to di	sable (DEFAULT IS DISABLE)			
V Control	All Channels		0V to 4.64V = 0V to 100%	HV out (5V = 108% HV out)			
HV Monitor	All Channels		0V to 4.64V = 0V out to 100	% V out (5V = 108% V out)			
I Control	All Channels		0V to 4.64V = 0A to 10	00% lo (5V = 108% lo)			
I Monitor	All Channels		0V to 4.64V = 0A to 10	00% lo (5V = 108% lo)			
Reference Out	All Channels		5V precision voltage referen	ce returned to signal ground			
LVPS Out	One Signal, PTC Fused		+15V±10%,	, 0 to 100mA			
Power Ground	One Signal		Return of	LVPS Out			
Global Disable	One Signal	TTL signal	disables all Channels, low to en	able, high to disable (DEFAULT	IS ENABLE)		
OUTPUT METERS		TYPE OF	CHANNEL	TOLER	ANCE		
Voltage	4½ Digit Red LED	A	11	1% Fu	1% Full Scale		
Current	3½ Digit Blue LED	A	11	5%/1%	Full Scale		
TEMPERATURE			ALL M	ODELS			
Operating	Full Load, Max Eout, Case Temp.		+10°C t	o +45°C			
Storage	Non-Operating, Case Temp.		-40°C to	o +85°C			
		Exte	nded temperature operation is a	vailable, please contact the fac	tory.		
ALTITUDE			ALL M	ODELS			
Operating	Standard Package		0 to 10	,000 ft			
Storage	Standard Package		0 to 50	,000 ft			
HUMIDITY			ALL M	ODELS			
Operating	Standard Package		0 to 95% nor	n-condensing			
Storage	Standard Package		0 to 95% nor	n-condensing			
PACKAGING			ALL M	ODELS			
Chassis Length	Not including mounting feet		18.5in (4	69.9mm)			
Chassis Width	Not including mounting feet		17.0in (4	31.8mm)			
Chassis Height	Not including mounting feet		5.0in (12	27.0mm)			
Front Panel Length	Not including handles or controls	19.0in (482.6mm)					
Front Panel Width	Not including handles or controls	0.125in (3.18mm)					
Front Panel Height	Not including handles or controls		5.25in (3U o	r 133.35mm)			
Weight	Overall (configuration dependent)		~ 30 lbs	(11.2kg)			
Weight	Shipping (configuration dependent)	~ 40 lbs (14.93kg)					

Making High Voltage Easier!®

Specifications subject to change without notice.

HV RACK[®] SERIES Rack Mount High Voltage Power System

FIGURE B: FRONT PANEL

FIGURE C: REAR PANEL (EXAMPLE)

STANDARD HV CONNECTOR:

• Alden B110YX10 (one per channel)

CURRENTLY AVAILABLE OPTIONS:

- USB Interface (USB-HV-RACK)
- Floating/Isolated Channels
- SHV Connectors
- Amp Connectors
- Fischer Connectors
- Alden Connectors
- Caton Connectors
- Parker Medical Connectors
- Removable Mounting Feet
- Mounting Slides

Rev. H 8/10

ĥ	li –		
M	ADE IN	THE	USA

	ORDERING INFORMATION
TYPE:	DESCRIPTION:
HV Rack-1-250	19" HV Rack with (1) set of meters & controls with 300 watts of LV power configured for: One UltraVolt HVPS 250W max output.
HV Rack-2-250	19" HV Rack with (2) sets of meters & controls with 300 watts of LV power configured for: Two UV HVPS 250W max combined output.
HV Rack-2-500	19" HV Rack with (2) sets of meters & controls with 600 watts of LV power configured for: Two UV HVPS 500W max combined output.
HV Rack-3-250	19" HV Rack with (3) sets of meters & controls with 300 watts of LV power configured for: Three UV HVPS 250W max combined output.
HV Rack-3-500	19" HV Rack with (3) sets of meters & controls with 600 watts of LV power configured for: Three UV HVPS 500W max combined output.
HV Rack-3-750	19" HV Rack with (3) sets of meters & controls with 900 watts of LV power configured for: Three UV HVPS 750W max combined output.
HV Rack-4-250	19" HV Rack with (4) sets of meters & controls with 300 watts of LV power configured for: Four UV HVPS 250W max combined output.
HV Rack-4-500	19" HV Rack with (4) sets of meters & controls with 600 watts of LV power configured for: Four UV HVPS 500W max combined output.
HV Rack-4-750	19" HV Rack with (4) sets of meters & controls with 900 watts of LV power configured for: Four UV HVPS 750W max combined output.
HV Rack-4-1000	19" HV Rack with (4) sets of meters & controls with 1200 watts of LV power configured for: Four UV HVPS 1000W max combined output.
The entire HV Rack installed. The followir	system's part number must include the complete part number of each UltraVolt HVPS to be ng are examples of complete HV Rack system part numbers:

HV Rack-1-250: A=1C24-P125

HV Rack-2-250: A=15C25-P125, B=10A24-N30-F-M

HV Rack-3-250: A=30A24-N30-F-M, B=10A24-P15-F-M, C=2A12-P4-F-M

HV Rack-4-1000: A=1C24-P250, B=1C24-N250, C=1/2C24-P250, D=1/2C24-N250

The sum of the output power capability of the modules cannot exceed the total rack power capability.

BT SERIES AC-DC High Voltage Bench-top Power System

The compact, high-voltage BT Series of AC-DC bench-top high voltage power systems with adjustable output voltage offers stand-alone and remote operation modes. For stand-alone operation, the power system is fitted with front panel controls. For remote operation, it can be configured with analog controls or digital controls such as a serial interface supporting a RS232/RS485 serial port.

The BT Series houses a high-voltage power supply from UltraVolt's line of microsize/micropower products.

- Configurable from 0 to 100V through 0 to 6kV
- 100mW to 6W of output power
- Universal 85-264VAC input
- Bench-top configuration
- Single positive or negative output

- A wide range of outputs
- Current and/or voltage monitoring
- Available in either analog or digital versions
- Protection against overload, short circuit and arc

PARAMETERS	SPECIFICATIONS
Input voltage	Universal 85-264 VAC
ON/OFF controls	Switch on rear panel
Output voltage	0 to 100V through 0 to 6kV, depending on model
Output power	0 to 100mW through 0 to 6W, depending on model
Polarity	Positive or negative, depending on model
Load voltage regulation	\pm 0.01% of full output voltage for no load to full load
Max. output current	Limited to 110% of nominal current
Load voltage regulation	$\pm 0.01\%$ of full output voltage for no load to full load
Line voltage regulation	\pm 0.01% of full output voltage over specified input voltage range
Temperature coefficient	100ppm/°C or better, depending on model
Safeguards	Screw plug for grounding on rear panel

PARAMETERS	LOCAL MODE MONITORING	REMOTE MODE SF	PECIFICATIONS
Local / remote mode	via front panel controls	DIGITAL VERSION	ANALOG VERSION
Voltage setting		• via RS 232	via analog signals on SUBD9 connector on rear panel

PARAMETERS	LOCAL MODE MONITORING	REMOTE MODE SP	ECIFICATIONS
Output voltage monitoring	on LCD display on front panel	DIGITAL VERSION	ANALOG VERSION
Output current monitoring (only available with some models)		• via RS 232	via analog signals on SUBD9 connector on rear panel

Specifications subject to change without notice.

BT SERIES AC-DC High Voltage Bench-top Power System

CONSTRUCTION

High quality ABS material Insulation: fully potted in an epoxy resin

SIZE

Dimensions:

7.83 L x 6.2 W x 2.9 H in (199.0 L x 157.5 W x 62.2 H mm) With feet extended - rises 10°, height of entire unit with feet is 4.0in (101.6mm)

NOTES

IEC 320 type AC connector fuse (500mA) on rear panel Secured HV BNC connector on rear panel For further electrical specifications, please refer to the corresponding microsize product data sheet that will be housed in the BT Series box.

BT SERIES AC-DC High Voltage Bench-top Power System

I/O CONNECTIONS ON REMOTE CONNECTORS					
DIGITAL RS-232 SUBD9 (ACCORDING TO STANDARD EIA232 DATA COMMUNICATION EQUIPMENT (DCE) STANDARD)			ANALOG REMOTE SUB	D9	
	Data exchange:	1. NC		Digital ground :	1. D_GND
SOCKET L	(transmit data)	2. TX	SOCKET L	Inhibition input :	2. HV_ON/OFF
	(receive data)	3. RX	DB9 FEMALE	Current monitoring :	3. HVM_C
	4. NC 5. GND Flow Control: (clear to send) 7. CTS	4. NC		Voltage monitoring :	4. HVM_V
		5. GND		Reference :	5. REF
			Remote mode :	6. LOCAL/DIST	
4 0 0 8 5 0 0 9		7. CTS			7. NC
	(request to send)	8. RTS		Analog ground :	8. A_GND
		9. NC	, ito	Voltage control input :	9. HVC_V
	Shielding:	SH. Shield]	Shielding:	SH. Shield

ORDERING INFORMATION				
Model Series name		BT		
Input	85-264VAC	(Standard)		
Reference, Control.	2.5 VDC	2		
Monitoring	4 VDC	4		
(valid only for the	5 VDC	5		
analog version)	10 VDC	10		
Remote interface (valid only for the digital version)	RS232	RS		
HV Power Supply Model	Configurable with microsize/micropower product line (XS, US, V, M, & D Series)	See product datasheets for part numbers		

Non-RoHS compliant units are available. Please contact the factory for more information.

FL SERIES Floating Hot Deck LVPS With Isolated Digital and Analog I/O

The FL Series of floating-hot-deck, low-voltage power supplies offers an integrated solution for systems requiring LV power & controls with high-voltage isolation. Combining a highly isolated, DC-to-DC, multi-output low-voltage power supply (LVPS) with an advanced isolated digital & analog I/O topology, the FL sub-system provides both power and controls to floating-hot-deck circuitry. This solution, when combined with one or more UV HVPS or other circuitry, can provide high-performance solutions for applications such as:

Floating/Stacked Ion or E-Beam Biases Floating Pulsers & Gated Grids Floating High Side Current Monitors Floating Filament Bias Floating Capacitance Meters Floating Leakage Testers

Please contact UltraVolt's customer service department for an analysis of your requirements.

- Isolated up to 15kV
- DC leakage current of <10nA
- AC leakage capacitance of <40pF
- 3 regulated floating LV power outputs
- Isolated digital I/O to and from floating hot deck
- Isolated analog I/O to and from floating hot deck
- UL, cUL, IEC-60950-1, and Demko Recognized

Making High Voltage Easier!®

Specifications subject to change without notice.

©2010, UltraVolt Inc. All rights reserved.

FL SERIES Floating Hot Deck LVPS With Isolated Digital and Analog I/O

PARAMETER	CONDITIONS	MOD	ELS	UNITS
INPUT POWER:		12V MODELS	24V MODELS	
Voltage Range	Full Power	+12 ± 5%	+24 ± 5%	VDC
Voltage Range	Derated Power Range	+10.8 to +16	+21.6 to +30	VDC
Current	Standby (Disabled)	< 90	< 50	mA
Current	No Load	< 0.15	< 0.15	A
Current	Max Load		< 1.40	A
AC Ripple Current	Nominal Input. Full Load	< 80	< 100	mA p-p
LOCAL CONTROLS' REFERENC	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	ALL T	YPFS	1 6 6
Output Voltage	$T = \pm 25^{\circ}$ C Initial value	+5.1.+	- 1%	VDC
	$T = \pm 25^{\circ}$ C	161 +	1%	0
Stability Over full temperature range		01)	mV/°C
			VDEC	1111/ 0
Dower events on	Open er e veltage eheve TIL high	ALL	n 22	VDC
Power supply off	Creunded or a voltage below TTL law		U JZ	
	Grounded, of a voltage below TTL low			
INPUT / OUTPUT ISOLATION:		12V MODELS	24V MODELS	
Isolation Voltage		15	15	KV .
Leakage Current	All inputs to all outputs	< 10 std, < 100 "-E"	< 10 std, < 100 "-E"	nA
Leakage Capacitance	All inputs to all outputs	< 40 std, < 50 "-E"	< 50 std or "-E"	p⊦
ISOLATED POWER OUTPUTS:		15FL12-12W	15FL24-24W	- i
Output #1 Power	Nominal input, max lout	12	24	W
Output #1 Voltage	Nominal input voltage range	+12 ± 2%	+24 ± 2%	VDC
Output #1 Current	Minimum to Maximum	0 to 1	0 to 1	A
Output #1 Line Regulation	Nominal input range, full load	< 0.1%	< 0.1%	VDC
Output #1 Load Regulation	No load to full load	< 0.1%	< 0.1%	VDC
Output #1 Ripple	Full load	< 2%	< 1%	V р-р
Output #2 Voltage	Nominal input voltage range	-15 ± 1	-15 ± 1	VDC
Output #2 Current	Minimum > Maximum	0 to 10	0 to 10	mA
Output #2 Line Regulation	Nominal input range, full load	< 0.1%	< 0.1%	VDC
Output #2 Load Regulation	No load to full load	< 2%	< 2%	VDC
Output #2 Ripple	Full load	< 2%	< 2%	V р-р
Output #3 Voltage	Nominal input voltage range	+5.6 ± 5%	+5.6 ± 5%	VDC
Output #3 Current	Minimum > Maximum	0 to 10	0 to 10	mA
Output #3 Line Regulation	Nominal input range, full load	< 1 %	< 1 %	VDC
Output #3 Load Regulation	No load to full load	< 1 %	< 1 %	VDC
Output #3 Ripple	Full load	< 1 %	< 1 %	V р-р
ISOLATED CONTROLS: TTL CH	ANNEL "UP"	ALL TYPES WITH	"-I/O" OPTION	
Local input	Source voltage, sink current	10MΩ internal p <1V low, >	ull up to +15V 2.5V high	VDC
Isolated output	Inverted & buffered TTL	Open collector with inter Can sink 1	nal 1kΩ pull up to +5V OmA max	VDC
Baud Rate	Varying duty cycle	DC to :	>300	kHz
ISOLATED CONTROLS: ANALC	DG CHANNEL "UP"	ALL TYPES WITH	"-I/O" OPTION	
Local input voltage	Range	0 to -	+ 5	VDC
Local input impedance		10 M	leg	Ω
Isolated output voltage	Range	0 to -	+ 5	VDC
Isolated output impedance		Buffered low	impedance	-
Initial offset error		<±	1%	mV
Gain error	Full scale	<±	2%	VDC
Linearity error	0 to full scale	< ±	1%	VDC
Stability	30 min. warm-up, per 8 hrs / per dav	< 0.01% /	< 0.02%	VDC
Temperature Coefficient	0 to +55°C	<±	50	ppm/°C
Bandwidth Symmetric or asymmetric signal		DC to 30 (-3dB	point is 47 Hz)	Hz

'-RB' ISOLATED CONTROLS: TTL CHANNEL "DOWN"					
PARAMETER	CONDITIONS	ALL TYPES WITH	"-I/O-R/B" OPTION	UNITS	
Isolated 'Hot Deck' Input	Source voltage, sink current	10MΩ internal pull up to +15V <1V low, >2.5V high		VDC	
Local output	Inverted & Buffered TTL	ed & Buffered TTL Open collector with internal 1kΩ pull up to +5V Can sink 10mA max		VDC	
Bandwidth	Varying duty cycle	DC to >300		kHz	
ISOLATED CONTROLS: ANA	LOG CHANNELS #1 & #2 "DOWN"				
PARAMETER	CONDITIONS	ALL TYPES WITH	"-I/O-R/B" OPTION	UNITS	
Isolated 'Hot Deck' +Input	Range	0 to +5, 0 to +10 with	<pre>>+15VDC input power</pre>	VDC	
Isolated 'Hot Deck' -Input	Range	0 to -5, 0 to -10 with	>+15VDC input power	VDC	
Isolated 'Hot Deck' + or - Input impedance	Signal source	> 10 Meg		Ω	
Local output +voltage	Range	0 to +5, 0 to +10 with >+15VDC input power		VDC	
Local output -voltage	Range	0 to -5, 0 to -10 with >+15VDC input power		VDC	
Local output impedance	Signal source	Buffered low impedance		Ω	
Initial offset error	Signal source	< ± 5		mVDC	
Gain error	Full scale	< ± 1%		VDC	
Linearity error	0 to full scale	± >	= 1%	VDC	
Stability	30 min. warm-up, per 8 hrs / per day	< 0.01%	/ < 0.02%	VDC	
Temperature Coefficient	-20 °C to +55 °C	< :	± 50	ppm/°C	
Bandwidth	Symmetric or asymmetric signal	DC to 30 (-3d	B point is 47Hz)	Hz	
TEMPERATURE:	CONDITIONS	ALL 1	YPES		
Operating	Full load, case measurement	-20 te	o +55	°C	
Storage	Non-operating, case measurement	-55 t	0 +85	°C	
Thermal shock	Mil-Std-810, Method 503-4, Proc. II	-20 t	o +55	٥°	
ALTITUDE:		ALL TYPES			
Operating	All operating conditions	Sea level to Vacuum (Vacuum may require -F	P1 or -S1 options, contact factory for details.)		
Storage	Non-operating	Sea level to Vacuum (Vacuum may require -F	P1 or -S1 options, contact factory for details.)		
SHOCK & VIBRATION:		STANDARD	- R/B OPTION		
Shock	Mil-Std-810, Method 516.5, Proc IV	20	20	G's	
Vibration	Mil-Std-810, Method 514.5, Fig. 514.5C-3	10	10	G's	

FL SERIES Floating Hot Deck LVPS With Isolated Digital and Analog I/O

LOCAL CONNECTIONS

Analog Up/ HVPS Remote Programming Input (-I/O Only)

ADDITIONAL LOCAL CONNECTIONS (-R/B OPTION)

+lout monitor output (Analog Down Channel 1)

-lout monitor output (Analog Down Channel 1)

+Eout monitor output (Analog Down Channel 2)

-Eout monitor output (Analog Down Channel 2)

ORDERING INFORMATION

(1) Digital Up Channel & (1) Analog Up Channel

(1) Digital Down Channel & (2) Analog Down Channels

15FL

12

24

-12W

-24W

-1/0

-R/B

Standard

-M

-E

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948

SIZE

Volume: Standard: 10 in³ (163.9cc) -R/B Option: 11.1 in³ (182cc) Weight: Standard: 12.0 oz (340.2g) -R/B Option: 13.3 oz (377.1g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole locations ±0.025" (0.64)

NOTES

24-watt versions are an additional 0.062" (1.57) in height. -M equipped units are an additional 0.030" (0.76) in height. Contact UV Customer Service for drawings of models equipped with -E options.

ROHS

Non-RoHS compliant units are available. Please contact the factory for more information.

	ISOLATED/LEGATING CONNECTIONS
PIN	FUNCTION
8	Floating PWR Ground Return
9	Floating +12VDC or +24VDC Output
10	Floating -15VDC Output
11	Floating TTL Up/HVPS Enable/Disable (-I/O Only)
12	Floating Signal Ground Return
13	Floating Analog Up/HVPS Remote Programming Input (-I/O Only)
14	Floating +5.6V Reference Output
	ADDITIONAL ISOLATED CONNECTIONS (-R/B ONLY)
PIN	ADDITIONAL ISOLATED CONNECTIONS (-R/B ONLY) FUNCTION
PIN 1	ADDITIONAL ISOLATED CONNECTIONS (-R/B ONLY) FUNCTION Floating +lout monitor input (Analog Down Channel 1)
PIN 1 2	ADDITIONAL ISOLATED CONNECTIONS (-R/B ONLY) FUNCTION Floating +lout monitor input (Analog Down Channel 1) Floating -lout monitor input (Analog Down Channel 1)
PIN 1 2 3	ADDITIONAL ISOLATED CONNECTIONS (-R/B ONLY) FUNCTION Floating +lout monitor input (Analog Down Channel 1) Floating -lout monitor input (Analog Down Channel 1) Floating +Eout monitor input (Analog Down Channel 2)
PIN 1 2 3 4	ADDITIONAL ISOLATED CONNECTIONS (-R/B ONLY) FUNCTION Floating +lout monitor input (Analog Down Channel 1) Floating -lout monitor input (Analog Down Channel 1) Floating +Eout monitor input (Analog Down Channel 2) Floating -Eout monitor input (Analog Down Channel 2)
PIN 1 2 3 4 5 & 6	ADDITIONAL ISOLATED CONNECTIONS (-R/B ONLY) FUNCTION Floating +lout monitor input (Analog Down Channel 1) Floating -lout monitor input (Analog Down Channel 1) Floating +Eout monitor input (Analog Down Channel 2) Floating -Eout monitor input (Analog Down Channel 2) N/C (reserved for future use)

Example: 15FL12-12W-I/O

PIN FUNCTION

Input Power Ground Return

LVPS Enable/Disable Input

TTL Up/HVPS Enable/Disable (-I/O Only)

Positive Power Input

Signal Ground Return

+5V Reference Output

N/C (reserved for future use)

15kV Isolation

12VDC Nominal

24VDC Nominal

TTL output (Digital Down Channel 1)

Watts Output (12 V Only)

Watts Output (24 V Only)

Partial Mu-Metal Shield

Plastic Case - Diallyl Phthalate

'Eared' Chassis Mounting Plate

FUNCTION

1

2

3

4

5

6

PIN

8 9

10

11

12 & 13

14

Туре

Power

Options

Case

Input Voltage

EFL SERIES Enhanced Floating Hot Deck LVPS With Isolated Digital and Analog I/O

The EFL Series of floating-hot-deck, low-voltage power supplies offers an integrated solution for systems requiring LV power & controls with high-voltage isolation. Combining a highly isolated, DC-to-DC, multi-output low-voltage power supply (LVPS) with an advanced isolated digital & analog I/O topology, the EFL sub-system provides both power and controls to floating-hot-deck circuitry. This solution, when combined with one or more UV HVPS or other circuitry, can provide high-performance solutions for applications such as:

Floating/Stacked Ion or E-Beam Biases Floating Pulsers & Gated Grids Floating High Side Current Monitors Floating Filament Bias Floating Capacitance Meters Floating Leakage Testers

- Precision analog control
- \bullet Linearity of ±0.05% and accuracy of ±0.2%
- 10ppm temperature coefficient
- Isolated up to 15kV
- DC leakage current of <10nA
- 4 regulated floating LV power outputs
- Isolated digital and analog I/O to and from floating hot deck

NORMAL, HALF QUIET, AND QUIET MODES:

All EFLs feature a mode control. Three different models, Normal, Half-Quiet, and Quiet, are selectable via the voltage level at the mode pin. A voltage between -1.0V and +0.8V keeps the unit in Normal mode; the up and down analog channels follow their inputs. If the mode feature is not used, the mode pin must be grounded for the EFL to operate properly.

A voltage more negative than -4.00V places the EFL in Half-Quiet mode. The up channels do not respond to changes in their inputs in Half-Quiet mode.

A voltage greater than +3.75V and less than +5.0V places the EFL in Quiet mode. In Quiet mode, the up and down channels do not respond to changes in their inputs.

The voltage level at the mode pin must not exceed +5.0V at any time. Please contact UltraVolt's customer service department for an analysis of your requirements.

Note: If a voltage >0.8V is applied to the mode pin, it must source less than 400uA.

Specifications subject to change without notice.

EFL SERIES

Enhanced Floating Hot Deck LVPS With Isolated Digital and Analog I/O

PARAMETER	CONDITIONS	MODELS		UNITS	
INPUT POWER	'	12W MODELS	24W MODELS	36W MODELS	
Voltage Range	Full Power	+12 ± 5%	+24 ± 10%	+24 ± 10%	VDC
Current	Standby (Disabled)	< 150	< 100	< 100	mA
Current	No Load	< 0.50	< 0.50	< 0.50	A
Current	Max Load	< 2.50	< 2.30	< 3.00	A
AC Ripple Current	Nominal Input, Full Load	< 50	< 50	< 50	mA p-p
LOCAL CONTROLS: REFEREN	NCE		ALL TYPES		
Output Voltage	T = +25°C, Initial value		+5.1 ± 1%		VDC
Output Impedance	T = +25°C		464 ± 1%		Ω
Stability	Over full temperature range		0.2		mV/°C
LOCAL CONTROLS: LVPS EN	IABLE / DISABLE		ALL TYPES		
Power supply on	Open, or a voltage above TTL high		+2.4 to 5		VDC
Power supply off	Grounded, or a voltage below TTL low	0 to	+ 0.7 \pm 0.2 (Isink 1mA minin	num)	VDC
INPUT / OUTPUT ISOLATION	J:		ALL TYPES		
Isolation Voltage	Continuous		15		kV
Leakage Current	All inputs to all outputs		< 10		nA
Leakage Capacitance	All inputs to all outputs		< 40 std, < 50 "-E"		pF
ISOLATED POWER OUTPUTS	5:	15EFL12-12W	15EFL24-24W	15EFL24-36W	
Output #1 Power	Nominal input, max lout	12	24	36	W
Output #1 Voltage	Nominal input voltage range	+12 ± 1%	+24 ± 1%	+24 ± 1%	VDC
Output #1 Current	Minimum to Maximum	0 to 1	0 to 1	0 to 1.5	A
Output #1 Line Regulation	Nominal input range, full load	< 0.1 %	< 0.1 %	< 0.1 %	VDC
Output #1 Load Regulation	No load to full load	< 0.1 %	< 0.25 %	< 0.25 %	VDC
Output #1 Ripple	Full load	< 2.5 %	< 1.5 %	< 1.5 %	V p-p
Output #2 & #4 Voltage	Nominal input voltage range	±15 ± 2 %	±15 ± 2 %	±15 ± 2 %	VDC
Output #2 & #4 Current	Minimum to Maximum	0 to 50	0 to 50	0 to 50	mA
Output #2 & #4 Line Regulation	Nominal input range, full load	< 0.1 %	< 0.3 %	< 0.3 %	VDC
Output #2 & #4 Load Regulation	No load to full load	< 5 %	< 1 %	< 1 %	VDC
Output #2 & #4 Ripple	Full load	< 2.5 %	< 2.5 %	< 2.5 %	V p-р
Output #3 Voltage	Nominal input voltage range	$+5.1 \pm 1\%$	$+5.1 \pm 1\%$	+5.1 ± 1%	VDC
Output #3 Current	Minimum to Maximum	500	500	500	mA
Output #3 Line Regulation	Nominal input range, full load	< 1 %	< 1 %	< 1 %	VDC
Output #3 Load Regulation	No load to full load	<1%	< 1 %	< 1 %	VDC
Output #3 Ripple	Full load	< 4 %	< 4 %	< 4 %	V p-р
ISOLATED CONTROLS: TTL (CHANNEL "UP"	1	ALL TYPES		1
Local input	Source voltage, sink current	1	$0 \le 0.5$ (Isink 3mA minimum) ≥ 2.4 (300uA or open collector	ır)	VDC
Isolated output	Inverted & buffered TTL	1 ≥ 2.4,	0 \leq 0.4 \pm (Sources 0.8 mA, Sin	nks 3 mA)	VDC
Baud Rate	Duty cycle		< 15		ms
ISOLATED CONTROLS: ANA	LOG CHANNEL "UP"	12V MODELS	24V M	ODELS	
Local input voltage	Range	0 to + 5	0 to	+ 10	VDC
Isolated output voltage	Range	0 to + 5 0 to + 10		VDC	
Local input impedance		20.0 K			Ω
Initial offset error			< ± 2		mV
Gain error	Full scale		< ± 0.2 %		VDC
Linearity error	Full scale		< ± 0.05 %		VDC
Stability	30 min. warm-up, per 8 hrs / per day	<u> </u>	< 0.02%		VDC
Temperature Coefficient	0 to +55 °C	ļ	< ± 10		ppm/°C
I Bandwidth	Symmetric or asymmetric signal	1	DC to 1		I H7

EFL SERIES

Enhanced Floating Hot Deck LVPS With Isolated Digital and Analog I/O

'-RB' ISOLATED CONTROLS: TTL CHANNEL "DOWN"				
PARAMETER	CONDITIONS	ALL TYPES	UNITS	
Isolated 'Hot Deck' Input	Source voltage, sink current	$0 \le 0.5$ (Isink 1mA Minimum) $1 \ge 2.4$ (300uA or open collector)	VDC	
Local output	Inverted & Buffered TTL	1 > 2.4 (Sources 0.8mA) 0 < 0.4 (Sinks 10mA)	VDC	
Propagation Delay	Duty cycle	< 15	ms	
ISOLATED CONTROLS:	ANALOG CHANNELS #1 & #2	"DOWN"		
PARAMETER	CONDITIONS	ALL TYPES	UNITS	
Isolated 'Hot Deck' +Input	Range	0 to +5 for 12V and 0 to +10 for 24V	VDC	
Isolated 'Hot Deck' -Input	Range	0 to -5 for 12V and 0 to -10 for 24V	VDC	
Isolated 'Hot Deck' + or - Input impedance	Signal source	> 10	MΩ	
Local output +voltage	Range	0 to +5 for 12V and 0 to +10 for 24V	VDC	
Local output -voltage	Range	0 to -5 for 12V and 0 to -10 for 24V	VDC	
Initial offset error	Signal source	< ± 2	mVDC	
Gain error	Full scale	< ± .2%	VDC	
Linearity error	Full scale	< ± .05%	VDC	
Stability	30 min. warm-up, per 8 hrs / per day	< 0.01% / < 0.02%	VDC	
Temperature Coefficient	-20 °C to +55 °C	< ± 10	ppm/°C	
Bandwidth	Symmetric or asymmetric signal	DC to 4	Hz	
TEMPERATURE:	CONDITIONS	ALL TYPES		
Operating	Full load, case measurement	-20 to +55	۵°	
Storage	Non-operating, case measurement	-55 to +85	С°	
Thermal shock	Mil-Std-810, Method 503-4, Proc. II	-20 to +55	С°	
ALTITUDE:		ALL TYPES		
Operating	All operating conditions	Sea level to Vacuum (Vacuum may require -P1 or -S1 options, contact factory for details.)		
Storage	Non-operating	Sea level to Vacuum (Vacuum may require -P1 or -S1 options, contact factory for details.)		
SHOCK & VIBRATION:		ALL TYPES		
Shock	Mil-Std-810, Method 516.5, Proc IV	20	G's	
Vibration	Mil-Std-810, Method 514.5, Fig. 514.5C-3	10	G's	

EFL SERIES

Enhanced Floating Hot Deck LVPS With Isolated Digital and Analog I/O

CONSTR	UCTION
--------	--------

Epoxy-filled DAP box certified to ASTM-D-5948

SIZE

Volume: All Types: 11.1 in³ (182cc)

Weight: All Types: 13.3 oz (377.1g)

TOLERANCE

Overall $\pm 0.050"$ (1.27) Pin to Pin $\pm 0.015"$ (0.38) Mounting hole locations $\pm 0.025"$ (0.64)

NOTES

24-watt and 36-watt versions are an additional 0.062"
(1.57) in height.
-M equipped units are an additional 0.030" (0.76) in height.
Contact UV Customer Service for drawings of models equipped with -E options.

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

LOCAL CONNECTIONS				
PIN	FUNCTION			
1	Input Power Ground Return			
2	Positive Power Input			
3	LVPS Enable/Disable/Sync In			
4	TTL Up			
5	Signal Ground Return			
6	Analog Up Channel 1			
7	+5V Reference Output			
8	Analog Down Channel 1, +			
9	Analog Down Channel 1, -			
10	Analog Down Channel 2, +			
11	Analog Down Channel 2, -			
12	Analog Up Channel 2			
13	Mode			
14	TTL Output (Inverted Digital Down Channel 1)			

ORDERING INFORMATION 15kV Isolation 15EFL Туре 12VDC Nominal 12 Input Voltage 24VDC Nominal 24 Watts Output (12 V Only) -12W -24W Power Watts Output (24 V Only) Watts Output (24 V Only) -36W (1) Digital Up Channel & (2) Analog Up Channels -1/0 Standard Features (1) Digital Down Channel & (2) Analog Down Channels -R/B Partial Mu-Metal Shield -M Options Plastic Case - Diallyl Phthalate Standard Case 'Eared' Chassis Mounting Plate -E

Example: 15EFL12-12W-I/O-R/B

Rev. D 10/10

FIL SERIES Precision Filament Supply

The FIL Series is a non-isolated precision filament supply. This line of regulated DC-DC converters addresses the needs of the high precision and high stability power supply user. Designed and built utilizing a state-of-the-art power-conversion topology, these units feature surface-mount technology and encapsulation techniques that provide high reliability and low cost. The FIL Series supply allows users to properly operate the filament to maximize performance and extend its life. <u>Typical applications</u> for this series include precision filaments for mass spectrometry, electron beams, and test equipment.

- High precision and high stability
- 15PPM temperature coefficient
- 0 to 5VDC
- 0 to 3 Amps of current
- Maximum lout capability down to 0 Volts
- Programmable voltage and current controls

- Indefinite output short-circuit protection
- Buffered output current & voltage monitors

.RL-DCE

- Excellent linearity & accuracy of control
- Current mode and voltage mode indicator
- Synchronizable

PARAMETER	CONDITIONS	MODELS	UNITS
INPUT		ALL TYPES	
Operating Range	All Conditions	+24 ± 10	VDC
Current	Full Load Output	900mA Typical	mA
OUTPUT		ALL TYPES	
Voltage Range	Nominal Input	0 to 5	VDC
DC Current Range	Nominal Input	0 to 3	Amps
Voltage Range	Derated	0 to 5.7	VDC
DC Current Range	Derated	0 to 3.3	Amps
Voltage Monitor Scaling	Full Load	10	VDC
Current Monitor Scaling	Full Load	10	VDC
PROGRAMMING & CONTROLS		ALL TYPES	
Input Impedance	Nominal Input	+ Output Models 10MΩ to GND	MΩ
Adjust Resistance	Typical Potentiometer Values	10K to 100K (Pot across Vref. & Signal GND, Wiper to Adjust)	Ω
Adjust Voltage	Referenced to signal ground	0 to +10 VDC	VDC
Accuracy	In current control	±0.1%	Amps
Offset	Voltage control	0.04%	VDC
Offset	Current control	0.001%	Amps
Output Voltage	T=+25°C, Initial Value	$+10.0V \pm 0.05\%$	VDC
Enable/Disable		0 to $+0.5$ Disable, $+2.4$ to 10 Enable (Default = Enable)	VDC
ENVIRONMENTAL		ALL TYPES	
Operating	Full Load, Max Eout, Case Temp.	+10 to +45	°C
Coefficient	Over the Specified Temperature	≤ 15	PPM/°C
Thermal Shock	Mil-Std 810, Method 503-4, Proc. II	-40 to +65	°C
Storage	Non-Operating, Case Temp.	-55 to +85	°C
Altitude	Standard Package, All Conditions	Sea Level through Vacuum (Vacuum may require -P1 or -S1 options, contact factory for details.)	-
Shock	Mil-Std-810, Method 516.5, Proc. IV	20	G's
Vibration	Mil-Std-810, Method 514.5, Fig.514.5C-3	10	G's

Specifications subject to change without notice.

©2010, UltraVolt Inc.

All rights reserved.

FIL SERIES Precision Filament Supply

. , 100

[1]_{.8]}

*0.⁹⁰⁰

[22.9]

CONNECTIONS

Input-Power Ground

Positive Power Input lout Monitor

Voltage Programming

+10.0V Reference Output

Enable/Disable

Signal Ground

Imode Indicator

Vmode Indicator

Vout Monitor

Fil Output (-)

Fil Output (+)

Center Tap

Current Programming

Sync In

FUNCTION

39⁵.

ŝ

PIN

1&8

2&9

3

4

5

6

7

10

11

12

13

14, 17, & 18

15 & 16

19 & 20

21 & 22

All grounds joined internally.

INPUT/OUTPUT WIRING DIAGRAM

The filament power supply load should be connected between the FIL(+) output and the FIL(-) output, load current should not flow through the center tap, which is common with the (+)24V return. The FIL(-) or FIL(+) outputs should not be grounded.

*:100/179.4

÷8 5.38

#+ 3,660 [9].9].*

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948

SIZE

Volume: 6.35 in³ (104cc) Weight: 6.75 oz (191g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole locations ±0.025" (0.64)

NOTES

-M equipped units are an additional 0.030" (0.76) in height. Contact UV Customer Service for drawings of models equipped with -E or -H options.

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

Non-RoHS compliant units are available. Please contact the factory for more information.

ORDERING INFORMATION			
Туре	0 to 5 VDC Output	FIL-5V	
Current	Current Output (0 to 3A)	-3A	
Case	'Eared' Chassis Mounting Plate	-Е	
Heat Sink	.400" High (sized to fit case)	-H	
Shield	Six-sided Mu-Metal Shield	-M	

	1
	/
ULTRAVOLT	R

TF SERIES High Voltage Test Fixture

The TF Series product line is designed to support the need to make accurate measurements of high-voltage power supply (HVPS) & HV system performance. These reduced-size HV test fixture devices can be used for research and development, incoming inspection, production testing, field testing, or calibration. Each TF Series device, when coupled with a conventional meter or oscilloscope, is a stand-alone test fixture optimized for a specific HV testing function. The TF Series is engineered to support accurate measurement of ripple, noise, pulses, absolute DC, DC stability, DC line regulation, DC load regulation, etc.

- Make accurate HV in-line measurements
- View and measure AC ripple & noise on DC HV
- Measure absolute HV DC to 0.25% @ 25 PPM stability
- View and measure Trise, Tfall, overshoot & settling time
- Measure & monitor signals from 35Hz to 10MHz
- View signals from DC to 20MHz
- View and measure AC mV on DC kV
- PLC Analog/Digital Remote operation capability

KEY FEATURES:

The UltraVolt TF Series models all feature dual Alden B110YX10 HV connectors. These connectors facilitate in-line measurements as well as un-terminated measurements. Internal ARC limiting / softening resistors are present for safety. All TF models have the HV ground return connection isolated from the chassis ground connection by 100 kW and clamped by a protection device.

SPECIFICATIONS:

All specifications are subject to change without notice. UltraVolt will enhance specifications whenever possible, through continuous product and process improvement efforts. Customers are not contacted when changes are made unless they have arranged for configuration control with UltraVolt's customer service department ("CSD") through the "-Q" suffix program. Only the most significant items will be noted on UltraVolt's web site, in the product change notice section.

ALTITUDE, HUMIDITY & TEMPERATURE:

The TF Series operating performance is guaranteed between sea level and 10,000ft., in non-condensing relative humidity up to 95%, and between temperatures of -40°C to +65°C. Storage temperature range is -55°C to +105°C.

TF SERIES MODELS:

⚠

"Precision Divider": 40TF-DCD

A 40kV rated HV Test Fixture that features a precision 10,000:1 DC divider ("DCD") with a full scale accuracy of \pm 1%, a temperature stability of better than \pm 25 ppm per °C, and a voltage coefficient of < 1% per 40,000 volts. DC Loading is 1 GigW. Capacitive loading is < 10pF.

Fig. A - Frequency Response (Precision Divider)

Fig. B - Electrical Connections (Precision Divider)

WARNING! A shock hazard exists when the chassis ground or the HV return ground is not properly connected!

⋒

TF SERIES High Voltage Test Fixture

"Ripple & Voltage Monitor": 40TF-ACV&DCD

A 40kV rated HV Test Fixture that features a 1:1 AC viewing (ACV) capacitor (V_{AC} =95% of V_{AC} input ±5%) providing a bandwidth of 35Hz to 10MHz (Monitor 10Hz to 20MHz) over a signal range of 1mV to 75V Pk, along with a 1,000:1 DC divider ("DCD") with a full scale accuracy of ±2% and a temperature stability of better than ±100 ppm per °C. DC Loading is 2 GigW. Capacitive loading is < 50pF.

Note: It is recommended that the oscilloscope be set for 20MHz BW limit. Fig. C - Bandwidth & Equivalent Circuit (Ripple & Voltage Monitor)

Fig. D - Electrical Connections (Ripple & Voltage Monitor)

WARNING! A shock hazard exists when the chassis ground or the HV return ground is not properly connected!

"Compensated Divider": 40TF-CDCD&CLOAD

⚠

A 40kV rated HV Test Fixture that features a compensated 1,000:1 Compensated DC Divider ("CDCD") capable of showing T_{rise} , T_{fall} , overshoot & settling over a bandwidth of DC to 2MHz. The unit also functions as a 300pF capacitive load ("CLOAD"). DC Loading is 1 GigW. DC full-scale accuracy is $\pm 2\%$ with temperature stability of better than ± 100 ppm per °C.

Note: It is recommended that the oscilloscope be set for 20MHz BW limit. Fig. E - Bandwidth & Equivalent Circuit (Compensated Divider)

Fig. F - Electrical Connections (Compensated Divider)

WARNING! A shock hazard exists when the chassis ground or the HV return ground is not properly connected!

⚠

Making High Voltage Easier!®

⚠

⚠

CONSTRUCTION

Aluminum Box Anodize Gold

SIZE

Volume 27.75in³ (454.74cc) Weight 1.65Lbs. (748.43g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38)

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

Non-RoHS compliant units are available. Please contact the **COMPLIANT** factory for more information.

ORDERING INFORMATION			
ТҮРЕ	DESCRIPTION		
40TF-DCD	Precision divider		
40TF-ACV&DCD	Ripple and voltage monitor		
40TF-CDCD&CLOAD	Compensated divider		

Popular accessories ordered with this product include our full range of high voltage output connectors (see Accessories & Connectors datasheet).

ULTRAVOLT PRODUCT OPTIONS

-H: HEAT SINK

For PCB-mounted A and C Series plastic package units in extended temperature environments.

-E: "EARED" MOUNTING PLATE

For chassis mounting any A or C Series plastic package unit. Requires additional length, but no additional width.

BR-18: BRACKET KIT For chassis mounting any AA Series plastic package unit. Requires additional width, but no additional length.

-M: SIX-SIDED MU-METAL SHIELD

Six-sided wrap-around feature is compatible with all accessories. At frequencies from 1Hz through 600Hz, this option will reduce radiated RFI & EMI emissions by 4-5 orders of magnitude.

-C: RF-TIGHT ALUMINUM ENCLOSURE

For ruggedized PCB or chassis mounting of any A or C Series unit. At frequencies greater than 500kHz, this option will reduce radiated RFI emissions 2-3 orders of magnitude.

BR-1 & BR-2: BRACKET KITS

For chassis mounting any A or C Series plastic package unit. Requires additional width, but no additional length.

BR-7 & BR-8: BRACKET KITS For chassis mounting High Power C Series units.

USB-HV-RACK

USB control for an HV ${\rm Rack}^{\circledast}$ system. Enables users to control and monitor an HV Rack system via a PC.

Specifications subject to change without notice.

LOW VOLTAGE CONNECTORS & KITS

CONN-KIT-FL

Wire Harness Kit for FL Series Units AMP#2-87499-3 Qty 2, #1-87309-4 Qty 15

CONN-KIT-HP250

Wire Harness Kit for 250W C Series Units AMP#2-87456-2 Qty 1, #87499-3 Qty 2, #1-87309-4 Qty 18, #1-480702-0 Qty 1, #350705-1 Qty 4

CONN-KIT-HP Wire Harness Kit for 60W/125W C Series Units AMP#2-87456-2 Qty 1, #87499-3 Qty 2, #1-87309-4 Qty 18

CONN-KIT-F Wire Harness for -F Equipped Units AMP#2-87499-3 Qty 1, #87499-3 Qty 3, #1-87309-4 Qty 14

Making High Voltage Easier!®

PCB-CONN-F PCB-Mount Connector Kit Allows HVPS to be mounted after PCB assembly. AMP#534998-1 Qty 3, #1-535541-1 Qty 1

PCB-Mount Connector Kit Allows HVPS to be mounted after PCB assembly. AMP#534998-1 Qty 2, #1-535541-1 Qty 1

PCB-CONN-HP PCB-Mount Connector Kit AMP#1-534998-3 Qty 1, #534998-1 Qty 2, #1-480702-0 Qty 1, #350705-1 Qty 4

Wire Harness for A and C Series Units AMP#2-87499-3 Qty 1, #87499-3 Qty 2, #1-87309-4 Qty 12

HIGH VOLTAGE CONNECTORS & CABLES

Industry Standard Connectors & Cables

UV Option Part #: -AT20 UV Connector Part #: CN-20KV-1000 Manufacturer: Alden Manufacturer Part #: A000.140 Mates to: CA-15KV-1000

UV Option Part #: -AT21 UV Connector Part #: CN-30KV-1000 Manufacturer: Alden Manufacturer Part #: F800.165 Mates to: CA-30KV-1001 or CN-35KV-1000

UV Option Part #: -AT23 UV Connector Part #: CN-35KV-1001 Manufacturer: Alden Manufacturer Part #: F800.187 Mates to: CA-30KV-1001 or CN-35KV-1000

UV Option Part #: -AT22 UV Connector Part #: CN-40KV-1000 Manufacturer: Alden Manufacturer Part #: B200.200 Mates to: CA-40KV-1002

UV Option Part #: -AT24 UV Connector Part #: CN-35KV-1000 Manufacturer: Alden Manufacturer Part #: F311-1 Mates to: CA-30KV-1000 or CN-35KV-1001

UV Cable Assembly Part #: CA-40KV-1002 Manufacturer: Alden Manufacturer Part #: B110YX10 Mates to: CN-40KV-1000

UV Cable Assembly Part #: CA-30KV-1001 Manufacturer: Alden Manufacturer Part #: F404B9 Mates to: CN-30KV-1000 or CN-35KV-1001

UV Cable Assembly Part #: CA-15KV-1000 Manufacturer: Alden Manufacturer Part #: A400B Mates to: CN-20KV-1000

UV Option Part #: -AT50 UV Connector Part #: CN-30KV-1001 Manufacturer: Caton Manufacturer Part #: 14203-LX Mates to: N/A

-AP Option Anode Lead Protective Wrap: Expandable, non-fraying, braided sleeving over HV flying lead

-AS Option Anode Lead Shield: Braided shield over HV flying lead

O	

UV Option Part #: -AT6 UV Connector Part #: LR-1000 Manufacturer: Amp or Jetron Manufacturer Part #: 8-34142-1 Mates to: #6 stud

HIGH VOLTAGE CONNECTORS & CABLES

MILSPEC/Ruggedized High Altitude Connectors

UV Option Part #: -AT10 UV Connector Part #: CN-10KV-1000 Manufacturer: Amp or Jetron Manufacturer Part #: LGH1/2 Mates to: CA-17205-L4

UV Option Part #: -AT11 UV Connector Part #: CN-15KV-1000 Manufacturer: Amp or Jetron Manufacturer Part #: LGH1/2L Mates to: CA-15KV-1001

UV Option Part #: -AT12 UV Connector Part #: CN-20KV-1001 Manufacturer: Amp or Jetron Manufacturer Part #: LGH1 Mates to: CA-20KV-1001 or CA-20KV-1000

UV Option Part #: -AT13 UV Connector Part #: CN-25KV-1000 Manufacturer: Amp or Jetron Manufacturer Part #: LGH1L Mates to: CA-25KV-1000

UV Option Part #: -AT14 UV Connector Part #: CN-30KV-1002 Manufacturer: Amp or Jetron Manufacturer Part #: LGH2 Mates to: CA-30KV-1002CA-30KV-1002

UV Option Part #: -AT15 UV Connector Part #: CN-40KV-1002 Manufacturer: Amp or Jetron Manufacturer Part #: LGH3 Mates to: CA-40KV-1000 or CA-40KV-1006

UV Option Part #: -AT16 UV Connector Part #: CN-50KV-1000 Manufacturer: Amp or Jetron Manufacturer Part #: LGH4 Mates to: CA-50KV-1000 or CA-50KV-1002

UV Cable Assembly Part #: CA-17205-L4 Manufacturer: Jetron Manufacturer Part #: 57-119-3 Mates to: CN-10KV-1000

UV Cable Assembly Part #: CA-20KV-1000 Manufacturer: Jetron Manufacturer Part #: 56-185-14 Mates to: CN-20KV-1001

UV Cable Assembly Part #: CA-25KV-1000 Manufacturer: Jetron Manufacturer Part #: 56-335-2 Mates to: CN-25KV-1000

UV Cable Assembly Part #: CA-40KV-1000 Manufacturer: Jetron Manufacturer Part #: 56-158 Mates to: CN-40KV-1002

UV Cable Assembly Part #: CA-50KV-1000 Manufacturer: Jetron Manufacturer Part #: 56-155 Mates to: CN-50KV-1000

Rev.

M 6/10

-F OPTION Ripple Stripper® Output Filter

The -F Option Ripple Stripper[®] Output Filter features a ripplereduction circuit added internally to 62V through 6kV A Series high-voltage power supply modules prior to encapsulation at the factory.

While adding a minimum of output capacitance and output impedance, output ripple is reduced >10 times! Output voltage regulation remains at <0.01% no load to full load. Also included is an Output Voltage Monitor. For greater performance the optional, wrap-around Mu-Metal shield should be used. The Ripple Stripper[®] accessory is also available on the 10A-25A Series and 30A-40A Series. Please see the corresponding data sheets for specifications.

- Ripple Stripper[®] Output Filter
- Ultra-low output ripple
- Output voltage monitor
- Encapsulated with A Series power supplies
- Fixed-frequency, low-stored-energy design
- >400,000 Hrs MTBF @ 65°C
- UL, cUL, CE, IEC-60950-1, and Demko Recognized

HIGH VOLTAGE OUTPUT

Square .025in (0.635mm) pins are used for high-voltage output and high-voltage return. These pins can be used for PCB mounting or for direct wiring. High voltage connector and cable options are available.

OUTPUT VOLTAGE MONITOR

The -F Option features a 100:1 voltage monitor on pins 12 and 13 referenced to Signal Ground pin 5. The monitor output impedance is calibrated for use with a 10 Meg Ω input impedance meter. Units 2kV or higher have a 100 Meg Ω /1.1 Meg Ω divider; units below 2kV use a 10 Meg Ω /102k divider. Overall accuracy is \pm 2.5% with a temperature coefficient of \pm 200 ppm per °C.

For applications requiring a different scale factor, such as an ADC compatible design, an external resistor may be added in parallel with the output.

OUTPUT CURRENT MONITOR

lout Monitor Scale Factors for -F Option units are:

MODEL W/ -F OPTION	4 WATT	20 WATT	30 WATT
1/16A with -F	-	-	-
1/8A with -F	438.4mA/V	1860mA/V	2891.6mA/V
1/4A with -F	213.3mA/V	1000mA/V	1481.5mA/V
1/2A with -F	123mA/V	506mA/V	740.7mA/V
1A with -F	55.6mA/V	243.9mA/V	400mA/V
2A with -F	31.7mA/V	129.9mA/V	211.3mA/V
4A with -F	15.6mA/V	66.7mA/V	85.2mA/V
6A with -F	11.3mA/V	48.5mA/V	56.8mA/V

*Contact the factory for boosted current monitor options.

Typical applications include scanning electron microscopes (SEM), photomultiplier tubes (PMT), particle accelerators and channel electron multipliers.

HIGH VOLTAGE OUTPUT RIPPLE LEVELS

The -F Option strips the typical output ripple on A Series high-voltage power supplies down to:

MODEL	VOLTAGE	POWER	WITH -F	WITH -F-M	50% LOWER THAN -F-M RIPPLE W/ EXT. CAP
1/16A12	62V	4W	<0.002%	<0.002%	.5uF / Metal Film
1/16A24	62V	20W	<0.003%	<0.004%	.5uF / Metal Film
1/16A24	62V	30W	<0.006%	<0.006%	.5uF / Metal Film
1/8A12	125V	4W	<0.002%	<0.0048%	.5uF / Metal Film
1/8A24	125V	20W	<0.008%	<0.0056%	.5uF / Metal Film
1/8A24	125V	30W	<0.006%	<0.006%	.5uF / Metal Film
1/4A12	250V	4W	<0.0012%	<0.0052%	.047uF / Metal Film
1/4A24	250V	20W	<0.004%	<0.0028%	.047uF / Metal Film
1/4A24	250V	30W	<0.0032%	<0.005%	.047uF / Metal Film
1/2A12	500V	4W	<0.0006%	<0.001%	.022uF / Metal Film
1/2A24	500V	20W	<0.002%	<0.0138%	.022uF / Metal Film
1/2A24	500V	30W	<0.025%	<0.0016%	.022uF / Metal Film
1A12	1kV	4W	<0.0010%	<0.0010%	.05uF / Metal Film
1A24	1kV	20W	<0.0010%	<0.0008%	.05uF / Metal Film
1A24	1kV	30W	<0.003%	<0.002%	.05uF / Metal Film
2A12	2kV	4W	<0.0036%	<0.0007%	4700pF/X7R
2A24	2kV	20W	<0.0063%	<0.0038%	4700pF/X7R
2A24	2kV	30W	<0.015%	<0.004%	4700pF/X7R
4A12	4kV	4W	<0.0063%	<0.0004%	1500pF/X7R
4A24	4kV	20W	<0.0051%	<0.0088%	1500pF/X7R
4A24	4kV	30W	<0.0094%	<0.0026%	1500pF/X7R
6A12	6kV	4W	<0.0135%	<0.0003%	1500pF/X7R
6A24	6kV	20W	< 0.0086%	<0.0012%	1500pF/X7R
6A24	6kV	30W	<0.02%	<0.004%	1500pF/X7R

Specifications subject to change without notice.

-F OPTION Ripple Stripper[®] Output Filter

CONNECTIONS PIN FUNCTION Input Power Ground Return 1 2 Positive Power Input 3 lout Monitor 4 Enable/Disable 5 Signal Ground Return Remote Adjust Input 6 7 +5VDC Reference Output HV Ground Return 8&9 10 & 11 HV Output 12 & 13 Eout Monitor

All grounds joined internally. Power-supply mounting points isolated from internal grounds by >100kQ, .01uF / 50V (Max) on all models except -M, -C, and -M-E configurations which are 0Ω.

CONSTRUCTION

Epoxy-filled DAP box certified to ASTM-D-5948 with -C Option: Aluminum Alloy 5052-H32, Finish: MIL-A-8625 Type II (Anodizing)

SIZE

Volume 4.30in³ (70.5 cc), w/ -C Option: 8.00in³ (131.1 cc) Weight 5.0oz (142g), w/ -C Option: 10.0oz (284g)

TOLERANCE

Overall ±0.050" (1.27) Pin to Pin ±0.015" (0.38) Mounting hole location ±0.025" (0.64)

NOTES

20W and 30W versions are an additional 0.062" (1.57) in height. -M equipped units are an additional 0.030" (0.76) for each dimension.

Contact UltraVolt's Customer Service Department for drawings of models equipped with -E or -H options.

Downloadable drawings (complete with mounting & pin information) and 3D models are available online.

Non-RoHS compliant units are available. Please contact the factory for more information.

MADE IN THE USA

	ORDERING INFORMATION	
Accessory	Ripple Stripper [®] Output Filter	-F
Case	Plastic Case - Diallyl Phthalate	(Standard)
	"Eared" Chassis Mounting Plate	-Е
	RF-Tight Aluminum Case	-C
Heat Sink	.400" High (sized to fit case)	-H
Shield	Six-sided Mu-Metal Shield	-M
Output Termination	Optional unshielded flying lead	-W

*Optional boosted current monitor available. Contact the factory for more details.

Example: 1/2A12-P4-F-M-C **Ripple Stripper®**

Output Filter

Option (Case)

Option (Mu-Metal Shield)

Popular accessories ordered with this product include CONN-KIT-F and BR-2 mounting bracket kit.

Rev. A 9/10

SAFETY AND COMPLIANCES

Certifications & Standards

CE CHIUS D ROHS

IEC 60950-1, IEC 6110-1, EN 60950-1, IPC-A-610, J-STD-001

MIL-I-45208, MIL-Q-9858, MIL-STD-45662, ASTM B488, AMS 2422, IPC-2221, IPC-2222, IPC-2615, IPC-4101, IPC-4562, IPC-6012, IPC-9252, IPC-A-600, IPC-CM-770, IPC-D-325, IPC-SM-782, IPC-SM-840, J-STD-003, and MIL-STD-1686

WARRANTY AND REPAIR POLICY

UltraVolt understands working in high voltage with new applications and new staff is sometimes unpredictable and can lead to damaged hardware. To support our customers' efforts, UltraVolt established a policy noting if a customer manages to cause one of our units to fail, UltraVolt will repair/replace the first unit accidentally damaged at no charge. If additional units are damaged during the warranty period, UltraVolt will provide replacements at half price. This is just another way UltraVolt is "Making High Voltage Easier!"®

ULTRAVOLT, INC. WARRANTY

Warranty: The Seller warrants all goods supplied hereunder will conform to any sample approved by the parties and will be the kind described herein or in any specification, performance requirement, or drawing approved by the Seller, and will be of merchantable quality and free from defects in material or workmanship under normal use and prescribed maintenance for a period of one (1) year from the date of shipment. To the extent the Buyer does not furnish the Seller with written specifications, the goods will be manufactured in accordance with the standards recommended by the IPC-Association Connecting Electronics Industries. This warranty shall not apply to any goods delivered hereunder that have been damaged or subjected to alteration nor shall it apply to negligible treatment after delivery or to any defects attributed to artwork or drawings furnished by the Buyer. Also, unless specifically stated, the warranty does not extend to the electrical performance of any assemblies or subassemblies to which the goods furnished hereunder are affixed, but restricted to the electrical continuity properties of such goods.

The Seller's only obligation for breach of this warranty shall be the repair or replacement, without charge, of any goods or parts thereof that within such one (1) year period is proven to the Seller's satisfaction to have been defective, provided (1) the Buyer shall have notified the Seller of the defect within such one (1) year period and (2) the Seller shall have the option of requiring the return of the defective material or goods at the Buyer's expense to establish the claim provided; however, the Seller will bear any transportation costs incurred in repairing or replacing any goods that are shown to be defective during the warranty period. The cost of any repairs made by the Seller to goods no longer covered by this warranty shall be borne by the Buyer. The Buyer must contact the UltraVolt Customer Service Department prior to the return of any material(s) to obtain an RMA number which will be used to track the material. Material found to be out of warranty will be repaired or replaced at the Seller's discretion based on quantity (please contact the Customer Service Department for more information). The Seller shall in no event be liable for the Buyer's manufacturing costs, lost profits, good will, or any other special, consequential, incidental, or other damages resulting from a breach of the foregoing warranty. There are no other warranties expressed or implied (including the warranty of merchantability) that extend beyond the warranty set forth herein or that extend beyond the description of the goods contained herein.

Making High Voltage Easier!®

Specifications subject to change without notice.

©2010, UltraVolt Inc. All rights reserved.

Aerosol Monitor • Aircraft Simulator Display • Avalanche Photo Diode (APD) • Arc Lamps • Automated Test Equipment (ATE) • Atomic Force Microscopes • Avionics Displays • Bar Code Scanners • Beam Deflection • Bomb Detectors • Burn-in systems • Capacitor Charging • Cable Testers • Cable Thumpers • CAT Scan • Cellular Electropartition • Cellular Electrophoresis • Chemical Analyzer • Channel Electron Multipliers (CEM) • Cold Cathode Lamp • Contraband Detectors • Corona Generators • Cosmic Radiation Monitor • Cathode Ray Tube (CRT) • DC Bus Supply • Deflection Amplifier • Deflection Plates • Deformable Mirror Control • Deposition Systems • Detectors • Detonators • Deuterium Lamp • E-Beam Lithography • E-Beam Welding • EL Lighting • Electro Cauterization • Electro Optics • Electron Microscope • Electrophoresis • Electrorheology • Electrostatic Chucks • Electrostatic Lenses • Electrostatic Painting • Electrostatic Precipitators • Electrostatic Printing • Energy Analyzer • ESD Testing • Femptosecond Lasers • Field Emission Display • Filaments • Film

Recorders • Flashlamps • Flir • Gas • Gas Chromatography • Gene Splicing • • Gravity Meter • Hi Pot Testing • Hollow Ignitors • Image Intensifiers • Imaging • ULTRAVOLT Infrared Camera • Ink Jet Printing • Ion

Discharge Devices • Gas Discharge Tubes Geophysical Tools • Geiger Mueller Tubes Cathode Lamps • HV Amplifiers • HVD •

Beams • Ion Implanters • Ion Microscopes • Ion Mills • Ionization Chamber • Ionization Sensor • Ionizers • Interferometers • Klystron • Lasers • Laser Diode • Laser Disabsorption • Laser Measurement Systems • Laser Range Finder • Laser Scalpel • LCD Back Light • Leak Detector • Leakage Testing • Machine Vision System • Magnetron • Magnetic Quadruple Mass Spectrometer • TOF Mass Spectrometers • Medical Displays • Medical Imagers • Mercury Vapor Lamp • Microchannel Plates • Microwave Switches • Motor Testers • Monochromator • Neutron Generators • Non Destructive Testing • NMR Imaging • Nuclear Medical Imager • Ordinance Triggers • Ozone Analyzer • Ozone Generators • Particle Analyzer • PCB Testers • PFN • Photo Diodes • Phototubes • Plasma • Plasma Welding • Photo Multiplier Tubes (PMT) • Pockell Cell • Pollution Monitors • Powder Coating • Proton Beam • Protein Analyzer • Proportional Counters • Pulse Generators • Pulsed Power • PZT Activators • Q-Switch • Radar • Radiation Monitor • Residual Gas Analyzers • RF Amps • Ring Laser Gyro • Sample Transporter • Scanning Electron Microscopes • Scanning Tunneling Microscope • Security Systems • Signal Tracers • Sit Tubes • Sonar • Spectrometer • Spectrophotometers • Sputtering • Static Control Systems • Streak Camera • Surge Generators • Thyrotrons • Time Domain Resolvers • Time of Flight Mass Spectrometer • Transducers • Transient Generator • Traveling Wave Tube (TWT) • Ultrasonic • Ultrasonic Imaging • Ultrasonic Measurement • UV Lamp