TECHNICAL MANUAL

CALIBRATION PROCEDURE

FOR

MULTIFUNCTION CALIBRATOR

4808, OPT 10, OPT 20, OPT 30, OPT 40, OPT 50, OPT 70

(DATRON/WAVETEK)

This publication replaces T.O. 33K8-4-1028-1 dated 30 October 2014.

 \bigcirc

<u>Distribution Statement C</u> - Distribution authorized to U. S. Government agencies and their contractors for official use or for administrative or operational purposes only, 30 March 1993. Requests for this document shall be referred to AFMETCAL, 813 Irving-Wick Dr W, Heath, OH 43056-1199.</u>

Destruction Notice - For unclassified, limited documents, destroy by any method that will prevent disclosure of the contents or reconstruction of the document.

Published under Authority of the Secretary of the Air Force

T.O. 33K8-4-1028-1

I OF LET	FECTIVE PAC	JES NOTE:	The portion of the text and ill line in the outer margins of th	ustrations affected by ne page.	the changes is indicated by a v
Date of issue	for original and change	ed pages are:			
Original	0	30 May 20	16		
TOTAL NUMI	BER OF PAGES IN T	HIS PUBLICATI	ON IS 54, CONSISTIN	NG OF THE FOL	LOWING:
Page No.	* Change No.	Page No.	* Change No.	Page No.	* Change No.
Title					
1 - 43 44 Blank	0				
A-1 - A-8	0				

MULTIFUNCTION CALIBRATOR

4808, OPT 10, OPT 20, OPT 30, OPT 40, OPT 50, OPT 60, OPT 70

(DATRON/WAVETEK)

1 CALIBRATION DESCRIPTION:

	Table 1.									
Test Instrument (TI) Characteristics		Perform Specifica		Test Method						
			NOTE							
	The Performance Specifications listed below for the TI show Relative specifications as found in the commercial data and Absolute specifications. The absolute specifications were calculated by combining the uncertainty of the relative specifications found in the commercial data with the uncertainty of the calibration standards listed in Section 2, Equipment Requirements.									
Distortion (OPT 20 and 30))		V, 10 Hz to 1 MHz; 0 V, 10 Hz to 1 MHz	Measured with a Distortion Analyzer						
		second harmonic,	HD, which is predominate excluding noise, which nain specifications:	ly						
		<u>Frequency</u>	Voltage Range	<u>≤%</u>						
		10 to 31 Hz	1 mV thru 100 V rngs	0.1						
		32 Hz to 33 kHz	1 mV thru 100 V rngs	0.04						
		30 to 100 kHz	1 mV thru 10 V rngs	0.1						
		30 to 100 kHz	100 V rng	0.2						
		100 to 330 kHz	1 mV thru 100 V rngs	0.3						
		300 kHz to 1 MHz	1 mV thru 100 V rngs	1						
		10 to 330 Hz	1000 V rng	0.2						
		300 Hz to 33 kHz	1000 V rng	0.1						
		30 to 100 kHz	750 V rng	0.5						

Test Instrument (TI) Characteristics		P Sj	Test Method			
Distortion Wideband	Ran	ge: 0 t	Measured with a Distortion Analyzer and			
(OPT 70)	Acc	uracy:				a Spectrum Analyzer
	THI					1 5
					≤9 X 10 ⁷ ;	
	≤-36	6 dB, v	olt-hertz	z product	>9 X 10 ⁷	
	Spu ≤-4€		requenc	cy Output	ï	
Distortion Transconductance Amplifier		ge: 0 t	o 10 A,	10 Hz to	20 kHz	Measured with a Distortion Analyzer
(OPT 60)		uracy:	Pure T	HD, whi	ch is predomin	
	seco	ond har	monic,	excluding	g noise, which	-
					cifications:	
		2%, 10				
	≤1%	o, 10 to	20 kHz	Z		
Frequency	Ran		Measured with an			
(OPT 20, 30 and 70)		20 an 70: 1	Electronic Counter			
	OPI	/0. 1				
		uracy:	1.2.0			
		120 an	d 30: of setting	~		
	$< \pm 0$.01700	n setting	5		
	OPT	70: *	:1			
	±0.0	01% of	setting			
DC Voltage	Ran	ge:				Compared to a
(OPT 10 and 30)			to 100			Standard DC Voltage
	OPI	30: 0				
	Accuracy: \pm (ppm of output + μ V)					
	OPT 10:	Relat	ive	Absolu	ıte	
	Range:	ppm		ppm	μV	
	100 μV	7	0.5	7.44	0.5	
	1 mV	7	0.5	7.44	0.5	
	10 mV 100 mV	7 7	0.5 0.5	7.44 7.45	0.5 0.5	
	100 mv 1 V	5	0.5 1	7.43 5.59	0.5 1	
	10 V	3	3	3.91	3	
	100 V	5	50	5.59	50	
	OPT 30:					
	1000 V	7	500	7.45	500	

Table 1. (Cont.)

See footnotes at end of Table.

Test Instrument Characteristics	(TI)		erforman pecificatio			Test Method
DC Current (OPT 40)		nge: 0 t	o 1 A ±(ppm of	Measure voltage across a Standard Resistor with a Digital Multimeter		
		-	ative	Abso		
	Range: 100 μA 1 mA 10 mA 100 mA 1 A	ppm 100 40 40 40 100	10 n 100 n 1 μ	ppm 100.6 41.53 41.53 41.53 100.6	100.50 n 1 μ	
DC and AC Current Transconductance Amj (OPT 60)	plifier 0 t	nge: o 10 A, 1				Measure voltage across a DC Current Shunt with a Digital Multimeter
	Ac	-		output + n/		
	Range: 10 ADC		ative n n/μA 500 μA	Absol ppm 155.5	n/µA	
		-	e: 0 to 10 A at 10 Hz to 20 kHz racy: ±(ppm of output + mA)			Measured with an AC Current Shunt and
	Ac	-		-		AC Measurement Standard and compared to a DC
	Frequency 10 Hz to 1 kl 1 to 5 kHz 5 to 10 kHz 10 to 20 kHz	ppm Hz 400 850 220		Absolu ppm 408.05 855.04 2202.4 7200.7	mA 5 1.3 4 1.6 40 6.0	Current Shunt and a Digital Multimeter
AC Current	Ra	nge: 0 t	o 1 A, 10 I	Hz to 5 kHz	Z	Measure voltage across
(OPT 40) Accu		curacy:	aracy: \pm (ppm of output + A)			an AC Current Shunt or known resistance with an AC Measurement
100 µA 1	Iz 0 Hz to 1 kHz to 5 kHz	Relative ppm 150 300	e A 10 n 14 n	Absolute ppm 152.41 301.21	A 10.00 n 14.00 n	Standard and calculate Current
	0 Hz to 1 kHz to 5 kHz	100 200	100 n 100 n	103.58 201.81	100.0 n 100.0 n	
	0 Hz to 1 kHz to 5 kHz	100 200	1μ 1μ	209.07 209.07	1 μ 1 μ	

Table 1. (Cont.)

See footnotes at end of Table.

Test Instrument (TI) Characteristics				Performa Specificat			Test Method	
AC Curr (OPT 40	ent (Cont.)	Ra	ange: () to 1 A, 10) Hz to 5 k	Hz		Measure voltage across an AC Current Shunt
	,	A	ccuracy	y: ±(ppm o	of output +	A)		or known resistance with an AC Measuremen
			Relat	ive	Absolu	ıte		Standard and calculate
	Range	Hz	ppm	А	ppm	А		Current
	100 mA	10 Hz to 1 kHz	100	10 μ * ²	211.36	10 µ	ı	
		1 to 5 kHz	200	10 µ	211.36	10 µ	ı	
	1 A	10 Hz to 1 kHz	300	100 µ	308.33	100	μ	
		1 to 5 kHz	450	140 µ	455.67	140	μ	
AC Volt			ange:					Measured with an AC
(OPT 20	and 30)			0 to 100 V 0 to 1000			7	Measurement Standard
							-	
			ceuracy	y: ±(ppm o	n output +	v)		
	OPT 20			Relative		Absolute		
	Range	Frequency		ppm	V	ppm	V	
	1 mV	10 to 31 Hz		120	5.4 μ	749.67	5.55 μ	
		32 to 330 Hz	-	70	5.4 μ	425.79	5.55 μ	
		300 Hz to 10 kH	Ηz	60	5.4 μ	424.26	5.55 μ	
		10 to 33 kHz		70	5.4 μ	425.79	5.55 μ	
		30 to 100 kHz		300	5.4 µ * ³	1300.00	•	
		100 to 330 kHz		1000	12 μ	2507.99	•	
		300 kHz to 1 M	Hz	2000	72 μ	4031.13	72.44 µ	
	10 mV			120	5.4 μ	224.72	5.55 μ	
		32 to 330 Hz		70	5.4 μ	130.38	5.55 μ	
		300 Hz to 10 kH	Ηz	60	5.4 μ	125.30	5.55 μ	
		10 to 33 kHz		70	5.4 μ	130.38	5.55 μ	
		30 to 100 kHz		300	5.4 μ * ³	506.06	5.95 µ	
		100 to 330 kHz		1000	12 μ		12.65 μ	
		300 kHz to 1 M	Hz	2000	72 μ	2624.88	72.44 µ	
	100 m	V 10 to 31 Hz		120	9μ	147.05	9.12 μ	
		32 to 330 Hz		70	9μ	79.65	9.12 µ	
		300 Hz to 10 kH	Ηz	60	9μ	71.02	9.12 µ	
		10 to 33 kHz		70	9μ	79.65	9.12 µ	
		30 to 100 kHz		300	9μ	340.00	9.34 µ	
		100 to 330 kHz		1000	20 μ	1030.78	•	
		300 kHz to 1 M	Hz	2000	120 µ	2088.06	120 µ	

Table 1. (Cont.)

See footnotes at end of Table.

Test Instrument Characteristics	Performa Specificat				Test Method	
AC Voltage (Cont.) (OPT 20 and 30)): 0 to 100 V): 0 to 1000		Measured with an AC Measurement Standard			
	Accura	cy: ±(ppm o	of output +	V)		
OPT 20		Relative		Absolute		
Range	Frequency	ppm	V	ppm	V	
1 V	10 to 31 Hz	90	30 µ	111.61	30 µ	
	32 to 330 Hz	50	20 µ	55.46	20 µ	
	300 Hz to 33 kHz	40	10 μ	46.65	10 μ	
	30 to 100 kHz	80	20 μ * ³	122.64	20 μ	
	100 to 330 kHz	405	100 µ	435.46	100 µ	
	300 kHz to 1 MHz	2400	400 μ	2473.86	400 μ	
10 V	10 to 31 Hz	90	300 µ	112.20	300 µ	
	32 to 330 Hz	50	200 μ	56.82	200 μ	
	300 Hz to 33 kHz	40	100 µ	48.26	100 µ	
	30 to 100 kHz	80	200 µ * ³	144.78	200 μ	
	100 to 330 kHz	250	1 m	314.01	1 m	
	300 kHz to 1 MHz	1500	5 m	1615.55	5 m	
100 V	10 to 31 Hz	100	3 m	120.93	3 m	
	32 to 330 Hz	60	2 m	67.54	2 m	
	300 Hz to 10 kHz	50	1 m	58.83	1 m	
	10 to 33 kHz	60	1 m	67.54	1 m	
	30 to 100 kHz	120	3 m * ³	170.89	3 m	
	100 to 330 kHz	700	50 m	730.82	50 m	
	300 kHz to 1 MHz	10000	130 m	10012.49	130 m	
OPT 30	T.	Relative	X 7	Absolute		
Range	Frequency	ppm	V 20 m	ppm	mV	
1000 V	10 to 330 Hz	150	20 m	154.74	20 m	
	300 Hz to 3.3 kHz	100	20 m	106.98 145.07	20 m 20 m	
	3 to 33 kHz	140	20 m			
	30 to 100 kHz	1100	40 m	1208.30	40 m	
C Voltage Videband Amplifier	Range:	0 to 3 V, 10	0 Hz to 30	MHz		Measured with an AC Measurement Standard
OPT 70) Amplitude	Accura	cy: *1 ±(%	of output +	-μV)		
		Relativ	/e	Absolute		
Range	Frequency	%	μV		μV	
300 µV to 1		0.55	0.4		1.36	
	30 Hz to 20 kHz	0.5	0.4	0.5018		
	20 + 100 1 II	~ -	<u> </u>	0 51 40	2 52	

20 to 100 kHz

100 to 330 kHz

0.5

0.5

Table 1. (Cont.)

See footnotes at end of Table.

Test Instrument (TI Characteristics		erforma pecificat				Test Method
AC Voltage (Cont.) Wideband Amplifier	Range: 0 t	o 3 V, 10		Measured with an AC Measurement Standard		
(OPT 70) Amplitude	Accuracy:	*1 ±(%	of outpu	$t + \mu V$)		
		Relativ		Absolut		
Range 1 to 10 mV	Frequency 10 to 30 Hz	% 0.34	μV 1	% 0.3405	μV 1.64	
	30 Hz to 20 kHz 20 to 100 kHz	0.29 0.29	1 1	0.2902 0.2917	1.64	
	100 to 330 kHz	0.29	1	0.2917	4.12	
		Relativ	e	Absolut	e	
Range	Frequency	%	μV 10	%	μV	
10 to 100 mV	10 to 30 Hz 30 Hz to 20 kHz	0.33 0.28	10 10	0.3301 0.2800	10.11 10.11	
	20 to 100 kHz	0.28	10	0.2805		
	100 to 330 kHz	0.28	10	0.2811	10.77	
_		Relativ		Absolut		
Range	Frequency	%	μV	%	μV	
100 mV to 1 V	10 to 30 Hz	0.33	100	0.3301	100.0	
	30 Hz to 20 kHz 20 to 100 kHz	0.28 0.28	100 100	0.2800 0.2801	100.0 100.0	
	100 to 330 kHz	0.28	100	0.2805	100.0	
		Relativ	e	Absolut	e	
Range	Frequency	%	μV	%	μV	
1 to 3 V	10 to 30 Hz	0.27	300	0.2701	300.0	
	30 Hz to 20 kHz 20 to 100 kHz	0.22 0.22	300 300	0.2200 0.2201	300.0 300.0	
	100 to 330 kHz	0.22	300	0.2208	300.0	
	300 kHz to 2 MHz	Relativ	e			The following 300 kHz to
	Range	%	μV			30 MHz limits are verified
	$300 \mu V$ to $10 m V$	0.34	3			during Flatness
	10 to 100 mV 100 mV to 1 V	0.34 0.34	10 100			Calibration
	1 to 3 V	0.26	300			
	2 to 10 MHz	Relativ	e			
	Range	%	μV			
	$300 \mu\text{V}$ to 10mV	0.48	3			
	10 to 100 mV 100 mV to 1 V	$\begin{array}{c} 0.48\\ 0.48\end{array}$	10 100			
	1 to 3 V	0.48	300			

Table 1. (Cont.)

See footnotes at end of Table.

Test Instrument (TI Characteristics	Test Instrument (TI)PeCharacteristicsSp					Test Method	
AC Voltage (Cont.) Wideband Amplifier	Range: 0 t	o 3 V, 10	The following 300 kHz to 30 MHz limits are verified				
(OPT 70) Amplitude	Accuracy:	*1 ±(%	of outpu	$(t + \mu V)$		during Flatness Calibration	
	10 to 20 M	Hz	Re	elative		Cultorullon	
	Range		% μV		μV		
	300 µV to	10 mV	0.6		3		
	10 to 100 r		0.6		10		
	100 mV to	1 V	0.6	51	100		
	1 to 3 V		0.4	48 + 300			
	20 to 30 M	Hz	Re	elative			
	Range		%	1	μV		
	300 µV to	10 mV	0.7	76 3	3		
	10 to 100 r		0.7		10		
	100 mV to 1 V				100		
	1 to 3 V		0.6	50 1	300		
AC Voltage Wideband Amplifier	Range: 30	0 kHz to	Compared with an AC Measurement Standard				
(OPT 70) Flatness	Accuracy:	* 1, * 5					
	±(% of out	put + μV					
		Relativ	ve	Absol	ute		
Range	Frequency	%	μV	%	μV		
300 µV to 1 mV	300 kHz to 2 MHz	0.13	3	0.1750) 3.35		
	2 to 10 MHz	0.18	3	0.4744			
	10 to 20 MHz	0.34	3	0.866			
	20 to 30 MHz	0.45	3	2.2766	5 4.24		
		Relativ	'e	Absol	ute		
Range	Frequency	%	μV	%	μV		
1 to 10 mV	300 kHz to 2 MHz	0.12	3	0.183			
	2 to 10 MHz	0.18	3	0.2915			
	10 to 20 MHz	0.34	3	0.4828			
	20 to 30 MHz	0.45	3	1.0830) 3.0		
		Relativ		Absol			
Range	Frequency	%	μV	%	μV		
10 to 100 mV	300 kHz to 2 MHz	0.12	3	0.150			
	2 to 10 MHz	0.18	3	0.3002			
	10 to 20 MHz	0.34	3	0.4502			
	20 to 30 MHz	0.45	3	1.0506	5 3.0		

Table 1. (Cont.)

See footnotes at end of Table.

Test Instrument (TI) Characteristics		erforma pecifica				Test Method
AC Voltage (Cont.) Wideband Amplifier	Range: 30	0 kHz to	Compared with an AC Measurement Standard			
(OPT 70) Flatness	Accuracy:	* 1, * 5				
			/) refere	nced at 1 kF	Ηz	
		Relativ	ve	Absolut	e	
Range	Frequency	%	μV	%	μV	
100 mV to 1 V	300 kHz to 2 MHz	0.12	3	0.1501	3.0	
	2 to 10 MHz	0.18	3	0.3002		
	10 to 20 MHz	0.34	3	0.4502		
	20 to 30 MHz	0.45	3	1.0506	3.0	
		Relativ	ve	Absolut	e	
Range	Frequency	%	μV	%	μV	
1 to 3 V	300 kHz to 2 MHz	0.08	3	0.1501	3.0	
	2 to 10 MHz	0.15	3	0.3002	3.0	
	10 to 20 MHz	0.24	3	0.4502		
	20 to 30 MHz	0.35	3	1.0506	3.0	
Resistance (OPT 50)	Range: 0 to 100 M Ω					Measured with a Resistance Measurement Standard
	Accuracy:	± ppm o	of outpu	t		
				Para 4.11	l	Para 4.11A
	Range	Relativ	ve	Absolute	;	Absolute
	10 Ω	25		25.09		25.50
	100 Ω and 1 k Ω	9		9.25		10.31
	10 kΩ	9		9.24		10.31
	100 kΩ	10		11.03		11.20
	1 MΩ	25		26.93		25.50
	10 MΩ	50		50.99		52.20
	100 MΩ	70		70.71		71.59
	add 20 m Ω for 2 with		and 100			11.07
	add 200 m Ω for 2 with add 2				as	

Table 1. (Cont.)

*1 Specifications apply to the end of the cable and 50 Ω load used for calibration.

 *2 The 100 mAAC rng is down graded to \pm (200 ppm of output + 10 μ A) at 10 Hz to 1 kHz.

*³ The AC Voltage is downgraded as follows:

1 mV rng at 30 to 100 kHz	\pm (500 ppm of output + 5.4 μ V);
10 mV rng at 30 to 100 kHz	\pm (400 ppm of output + 5.4 μ V);
1 V rng at 30 to 100 kHz	$\pm(100 \text{ ppm of output} + 20 \mu \text{V});$
10 V rng at 30 to 100 kHz	\pm (120 ppm of output + 200 μ V);
100 V rng at 30 to 100 kHz	$\pm(140 \text{ ppm of output} + 3 \text{ mV})$

 $^{*4}~$ The Wideband Amplifier Amplitude on 300 μV to 1 mV rng is downgraded to $\pm (0.83\%$ of output + 0.4 $\mu V)$ at 100 to 330 kHz.

*⁵ The Wideband Amplifier Flatness is downgraded as follows:

Output 300 µV to 1 mV	Frequency 300 kHz to 2 MHz 2 to 10 MHz 10 to 20 MHz 20 to 30 MHz	$\pm(\% + \mu V)$ 0.14 + 3 0.4 + 3 0.74 + 3 2.02 + 3
1 to 10 mV	300 kHz to 2 MHz 2 to 10 MHz 10 to 20 MHz 20 to 30 MHz	$\begin{array}{c} 0.15+3\\ 0.25+3\\ 0.41+3\\ 0.93+3 \end{array}$
10 mV to 3 V	300 kHz to 2 MHz 2 to 10 MHz 10 to 20 MHz 20 to 30 MHz	0.13 + 3 0.26 + 3 0.39 + 3 0.91 + 3

Accuracy: \pm (% of output + μ V) referenced at 1 kHz

2 EQUIPMENT REQUIREMENTS:

	Noun	Minimum Use Specifications	Calibration Equipment	Sub- Item
2.1	DISTORTION ANALYZER	Range: 0 to 100% at 20 Hz to 600 kHz	Hewlett-Packard 334A	H-P 8903B
		Accuracy: ±3% FS		
2.2	SPECTRUM ANALYZER	Range: 0 to -60 dB at 100 kHz to 100 MHz	Hewlett-Packard 8563E	
		Accuracy: ±1 dB		
2.3	ELECTRONIC COUNTER	Range: 10 Hz to 28 MHz	Hewlett-Packard 5345A	H-P 53131A
		Accuracy: ±25 ppm		
2.4	NULL DETECTOR	Range: 0 to 1000 V	Fluke 845AB	
		Accuracy: $\pm(2\% FS + 0.1 \mu V)$	64JAD	
2.5	DC REFERENCE STANDARD	Range: 10 V	Fluke 734A/AF	
	STANDARD	Accuracy: *1 AFPSL Certified ±2.5 ppm		

See footnote at end of Equipment Requirements.

T.O. 33K8-4-1028-1

	Noun	Minimum Use Specifications	Calibration Equipment	Sub- Item
	DC REFERENCE DIVIDER	Range: 0.1 to 1000 V Accuracy: * ¹ 10:1 ratio, ±0.2 ppm; 100:1 ratio, ±0.5 ppm, 1 V (TAR 2.63:1); 10 V (TAR 1.68:1); 100 V (TAR 1.61:1); 1000 V (TAR 3.12:1)	Fluke 752A	
	DC VOLTAGE DIVIDER	Range: 0 to 1 ratio Accuracy: * ¹ ±0.2 ppm	Fluke 720A	
	STANDARD RESISTOR	Range: 10Ω to $100 \text{ k}\Omega$ Accuracy: At time of calibration, charted value: $\pm 6 \text{ ppm}, 10 \Omega/\text{step};$ $\pm 5 \text{ ppm}, 100 \Omega$ and $1 \text{ k}\Omega/\text{step},$ (TAR 2.0:1); $\pm 5 \text{ ppm}, 100 \text{ k}\Omega/\text{step}, (TAR 2.2:1)$	ESI SR1060-10, -100, -1k, -100k	
2.9	DC CURRENT SHUNT	Range: 10 ADC Accuracy: ±40 ppm of certified value	Guildline 9211A	Fluke A40B/AF
2.10	DIGITAL MULTIMETER	 Range: 0 to 100 VDC Accuracy: ±8.14 ppm of rdg + 1 ppm of rng on the 1 V rng Transfer Accuracy: ±0.5 ppm of rdg + 0.5 ppm of rng on the 100 mV rng; ±0.3 ppm of rdg + 0.1 ppm of rng on the 1 V rng; ±0.05 ppm of rdg + 0.05 ppm of rng on the 10 V rng; ±0.5 ppm of rdg + 0.1 ppm of rng on the 10 V rng; ±0.5 ppm of rdg + 0.1 ppm of rng on the 1 V rng 	Hewlett-Packard 3458A	Fluke 8508A/01AF

See footnote at end of Equipment Requirements.

Minimum UseNounSpecifications		Calibration Equipment	Sub- Item	
2.11 PARALLEL NETWORK	Range: N/A Accuracy: N/A	ESI PC101		
2.12 SHORTING BARS	Range: N/A Accuracy: N/A	ESI SB103		
2.13 AC CURRENT SHUNT SET	Range: 10 mA to 10 AAC Accuracy: AFPSL Certified: 10 mA AC Shunt: DC to <1 kHz, ±30 ppm of output; 1 to 5 kHz, ±56 ppm of output	Fluke A40B/AF		
	100 mA AC Shunt: DC to <1 kHz, ±40 ppm of output; 1 to 5 kHz, ±64 ppm of output			
	1 AAC Shunt: DC to <1 kHz, ±40 ppm of output; 1 kHz, ±67.0 ppm of output; 5 kHz, ±67.4 ppm of output			
	2 AAC Shunt: DC to <1 kHz, ±40 ppm of output; 1 kHz, ±67 ppm of output; 5 kHz, ±68.3 ppm of output; 10 and 20 kHz, ±70 ppm of output			
	10 AAC Shunt: DC to <1 kHz, ±40 ppm of output; 1 kHz, ±77 ppm of output; 5 kHz, ±87.2 ppm of output; 10 kHz, ±100 ppm of output; 20 kHz, ±100.5 ppm of output			

No	un		um Use ications			Calibration Equipment	Sub- Item
2.14 RESIST (Metal l		Range: 20	0 Ω			As Available	
×	,	AC/DC di	Accuracy: $\pm 1\%$ of value; AC/DC difference negligible due to metal film construction				
2.15 RESIST (Metal l		Range: 21	kΩ			As Available	
()	Accuracy: AC/DC dia to metal fil	fference	negligi			
2.16 AC ME STANE		ENT Range: 0 t 10 Hz to 3		V,		Fluke 5790A	
		Accuracy:	±ppm c	of rdg +	μV		
	Range	Frequency Range	<u>±ppm</u>	μV	TAR		
	2.2 mV	20 to 40 Hz	740	1.3	3.1:1		
	40 Hz to 20 kHz	420	1.3	2.6:1			
		50 to 100 kHz	1200	2.5	2.0:1		
		100 to 300 kHz 500 kHz to 1 MHz	2300 3500	4.0 8.0	2.4:1		
	22 mV	20 to 40 Hz	190	1.3	2.4:1		
		40 Hz to 20 kHz	110	1.3	2.8:1		
		50 to 100 kHz	310	2.5	2.0:1		
		100 to 300 kHz 500 kHz to 1 MHz	810 1700	4.0 8.0	2.1:1 3.9:1		
	220 mV	20 to 40 Hz	85	1.5	2.4:1		
		40 Hz to 20 kHz	38	1.5	3.1:1		
		50 to 100 kHz	160	2.5	2.3:1		
		100 to 300 kHz 500 kHz to 1 MHz	250 600	4.0			
	700 mV .	AC/DC Transfer					
		40 Hz to 20 kHz	27				
	2.2 V	20 to 40 Hz	66		2.2:1		
		40 Hz to 20 kHz	24		2.4:1		
		50 to 100 kHz	71		2.0:1		
		100 to 300 kHz 500 kHz to 1 MHz	160 : 600		3.4:1		
	7 V	20 to 40 Hz	67				
	, ,	40 Hz to 20 kHz	24				
		50 to 100 kHz	81				
		100 to 300 kHz	190				

Noun 2.16 AC MEASUREMENT STANDARD (<i>Cont.</i>)			um Use cations		Calibration Equipment	Sub- Item
		•	nge: 0 to 1000 V, Hz to 30 MHz		Fluke 5790A	
		Accuracy:	±ppm of rdg	$g + \mu V$		
	<u>Range</u>	Frequency Range	<u>±ppm μV</u>	<u>TAR</u>		
	22 V	20 to 40 Hz	67	2.1:1		
		40 Hz to 20 kHz	27	2.9:1		
		50 to 100 kHz	81	2.0:1		
		100 to 300 kHz	190	2.2:1		
		500 kHz to 1 MHz		3.5:1		
	220 V	20 to 40 Hz	68	2.2:1		
	220 V	40 Hz to 20 kHz	31	2.2.1		
		40 HZ to 20 kHZ 50 to 100 kHz	98	2.2.1 2.1:1		
		100 to 300 kHz	210	2.1.1		
	70 V	300 to 500 kHz	410			
	1000 V	40 Hz to 20 kHz	38	3.3:1		
	700 V	50 to 100 kHz	500	2.5:1		
Wideband	2.2	1.2 to 2 MHz	2550	2.0:1		
	2.2 mV		2550			
Flatness		2 to 10 MHz	4050	2.0:1		
		10 to 20 MHz	6000	2.0:1		
		20 to 30 MHz	13500	2.0:1		
	22 mV	1.2 to 2 MHz	1050	2.0:1		
		2 to 10 MHz	1500	2.1:1		
		10 to 20 MHz	2550	2.0:1		
		20 to 30 MHz	5550	2.0:1		
	220 mV	1.2 to 2 MHz	750	2.0:1		
		2 to 10 MHz	1500	2.0:1		
		10 to 20 MHz	2250	2.0:1		
		20 to 30 MHz	5250	2.0:1		
	2.2 V	1.2 to 2 MHz	750	2.0:1		
	<i>2.2</i> •	2 to 10 MHz	1500	2.0:1		
		10 to 20 MHz	2250	2.0:1		
		20 to 30 MHz	5250	2.0.1		
	7 V	1.2 to 2 MHz	750	2.0:1		
	/ v	2 to 10 MHz	1500	2.0.1 2.0:1		
		10 to 20 MHz	2250	2.0:1		
			// 111	/ 11: 1		
		20 to 30 MHz	5250	2.0:1		

Noun	Minimum Use	Calibration	Sub-
	Specifications	Equipment	Item
2.17 RESISTANCE MEASUREMENT SYSTEM	Range: 10Ω to $100 M\Omega$ Relative Uncertainty: * ² 100Ω , 1 k Ω , 10 k Ω , <0.1 ppm of r $100 k\Omega$, <4 ppm of rdg; 1 M Ω , <8 ppm of rdg	Guildline 6625AF dg;	
2.17.1 SOFTWARE	Range: N/A	T.O.	
PACKAGE	Accuracy: N/A	33K8-4-9003-10	
2.17.2 STANDARD RESISTORS	Range: 10Ω thru $1 M\Omega$ Temperature Controlled ±20 m°C Accuracy: AFPSL Certified Values 10Ω thru $1 k\Omega$, ±2.15 ppm of value; $10 k\Omega$, ±2.10 ppm of value; $100 k\Omega$, ±2.4 ppm of value (TAR 2. $1 M\Omega$, ±6 ppm of value (TAR 2.5:1	<i></i>	
2.18 NANO VOLT/	Range: 0 VDC	Agilent	
MICRO OHM METER	Accuracy: N/A	34420A	
2.19 TRANSFER STANDARD * ³	Range: 1 to 100 M Ω Accuracy: charted value: ± 5 ppm, 1 M Ω / STEP; ± 15 ppm, 10 M Ω / STEP	ESI SR1050-1M, -10M At time of calibration	

*1 The RSS values of (2.5), (2.6) and (2.7) are used to calculate (2.6) TARs.

 $*^2$ The RSS values of (2.17) and (2.17.3) are used to calculate (2.17.3) TARS.

*³ Used in Resistance Calibration Alternate Method only.

3 PRELIMINARY OPERATIONS:

3.1 Review and become familiar with the entire procedure before beginning the Calibration Process.

Unless otherwise designated, and prior to beginning the Calibration Process, ensure that all test equipment voltage and/or current outputs are set to zero (0) or turned off, where applicable. Ensure that all equipment switches are set to the proper position before making connections or applying power. If not strictly observed, could result in injury to, or death of, personnel or long term health hazards.

3.2 Connect TI to a 115 V/60 Hz power, set POWER switch to On and allow 2 hours warm-up.

3.3 Connect test equipment to appropriate power source. Set all POWER switches to On and allow warm-up as required by the manufacturer.

3.4 Ensure that AC power is applied to the temperature stabilized Standard Resistors. Manufacturers suggested minimum warm-up time 24 hours.

NOTE

If at any time power is removed from the Standard Resistors for over 1 minute, there is a minimum 1 hour warm-up time for the oven to stabilize.

3.5 Connect the Nano Volt/Micro Ohm Meter to the temperature stabilized Standard Resistors temperature monitor terminals and turn TEMP DEV switch to ON. Using TEMP DEV dial to obtain a DCV null reading on the Nano Volt/Micro Ohm Meter, record temperature offset of the TEMP DEV dial before and after calibration. TEMP DEV dial before and after values should be between -20 to +20 m°C (i.e., on scale).

3.6 Verify the Resistance Measurement System is using the current Software Package T.O. 33K8-4-9003-10 with the most recent version per the AF TO Catalog or equivalent.

3.7 Because the Resistance Measurement System is configured locally, the directories, filenames and Channel locations may vary. Execute tests per individual Resistance Measurement System configuration.

3.8 The TI Resistor (Rx) files may be initially set up using para 4.11.

3.9 Calibrate Resistance Standard(s), required to perform the calibration, (2.8) IAW T.O. 33K8-4-1-1 and (2.19) IAW T.O. 33K8-4-467-1 before use. Accuracies are for 24 hours starting at time of calibration. Standard Resistor Oil Bath stability must remain within ± 1.8 °F (± 1 °C) or laboratory temperature stability must remain within ± 3.6 °F (± 2 °C).

3.10 Perform ACAL on the Digital Multimeter as required.

3.11 Check the CMOS battery replacement date located on the rear of the TI. If the expiration date will occur before the end of the calibration interval, replace the battery IAW the Commercial Data. Update the replacement date when battery is replaced.

3.12 To attain the amplitude accuracy in this procedure, the following is recommended: 24 inch shielded cables for voltage and a 24 inch unshielded cable for current.

NOTE

The cables in step 3.12 are not requirements, merely a qualification of how the specifications in Table 1 may be met. Cables that produce good results are: for AC Voltage is RG 58 C/U, with 29.5 pF/ft capacitance. For AC Current, a single conductor non-shielded type works well. Any cables that allow TI to meet Table 1 specifications are acceptable.

3.13 Due to local conditions, some PMELs may not be able to calibrate TI 100 μ V and 1 mV ranges due to TI display rattle caused by noise. Should this occur, annotate and attach a Limited Certification Label with the range(s) not calibrated.

3.14 Due to lack of Standards, portions of the AC Voltage and all of the WideBand Amplifier has been degraded. Attach a Limited Certification Label and annotate SPECIAL block, see copy of attached performance specifications. Make a copy of the Calibration Procedure Appendix A and submit to the USER with TI.

3.15 If the TI is equipped with OPT 70, a 50 Ω load and cable will be supplied by the owner, attach it to the TI after calibration.

3.16 The TI ↑↓ controls will be referred to as keys. The remaining TI controls will be referred to as switches.

3.17 Use only that portion of the calibration procedure that pertains to TI being calibrated.

4 CALIBRATION PROCESS:

NOTE

Unless otherwise specified, verify the results of each test and take corrective action whenever the test requirement is not met, before proceeding.

4.1 DISTORTION CALIBRATION: (AC Voltage, OPT 20)

4.1.1 Press TI AC Function switch to On and verify REM SENSE is Off.

4.1.2 Connect TI HI and LO terminals to the Distortion Analyzer INPUT terminals, observing polarity.

4.1.3 Press the first TI Output and Frequency Range switches listed in the TI Range Volts and Frequency columns of Table 2.

4.1.4 Adjust TI Output and Frequency keys for the first value listed in the Applied column of Table 2.

4.1.5 Press TI OUTPUT ON + switch to On.

4.1.6 Standardize the Distortion Analyzer for Distortion measurement.

4.1.7 The Distortion Analyzer must indicate within the corresponding value listed in the Limits column of Table 2.

4.1.8 Set TI Frequency Range switch and adjust Frequency keys for each remaining applied value listed in Table 2 which is applicable to the TI Volts setting and repeat steps 4.1.6 and 4.1.7 at each listed frequency.

4.1.9 Press TI OUTPUT OFF switch to Off.

4.1.10 Repeat steps 4.1.3 thru 4.1.9 for each remaining range and applied value listed in Table 2.

TI	Range		
Volts	Frequency	Applied (VAC)	Limits (%) *
10	100Hz	10 @ 20 Hz	≤0.1 (≤-60 dB)
		10 @ 100 Hz	≤0.04 (≤-68 dB)
	1k	10 @ 1 kHz	≤0.04 (≤-68 dB)
	10k	10 @ 10 kHz	≤0.04 (≤-68 dB)
	100k	10 @ 90 kHz	≤0.1 (≤-60 dB)
	1MHz	10 @ 300 kHz	≤0.3 (≤-50.5 dB)
		10 @ 600 kHz	≤1 (≤-40 dB)
100	100Hz	100 @ 20 Hz	≤0.1 (≤-60 dB)
		100 @ 100 Hz	≤0.04 (≤-68 dB)
	100k	100 @ 40 kHz	≤0.2 (≤-54 dB)
		100 @ 90 kHz	≤0.2 (≤-54 dB)
		100 @ 200 kHz	≤0.3 (≤-50.5 dB)

Table 2.

* If any limits are out of specified value, repeat the test using (2.1) Sub Item. The second harmonic must be within the corresponding value listed in the Limits column of Table 2.

4.1.11 Disconnect the Distortion Analyzer from TI.

4.2 DISTORTION CALIBRATION: (Wideband Amplifier, OPT 70)

4.2.1 Verify TI AC Function is On and REM SENSE is Off.

4.2.2 Connect TI Wideband Amplifier OUTPUT connector thru the 50 Ω load and cable supplied with the TI to the Distortion Analyzer INPUT terminals, observing polarity.

4.2.3 Press the first TI Output and Frequency Range switches listed in the TI Range Volts and Frequency columns of Table 3.

4.2.4 Adjust TI Output and Frequency keys for the first value listed in the Applied column of Table 3.

4.2.5 Press TI OUTPUT ON + switch to On.

4.2.6 Standardize the Distortion Analyzer for Distortion measurement.

4.2.7 The Distortion Analyzer must indicate within the corresponding value listed in the Limits column of Table 3.

4.2.8 Set TI Frequency Range switch and adjust Frequency keys for the 30 and 300 kHz applied values listed in Table 3 and repeat steps 4.2.6 and 4.2.7 at each listed frequency.

4.2.9 Press TI OUTPUT OFF switch to Off.

4.2.10 Disconnect the TI Wideband Amplifier OUTPUT from the Distortion Analyzer and connect to the Spectrum Analyzer INPUT (omit the 50 Ω load).

4.2.11 Set TI Frequency Range switch and adjust Frequency keys for the last value listed in the Applied column of Table 3.

4.2.12 Press TI OUTPUT ON + switch to On.

4.2.13 Establish a 0 dB reference on the Spectrum Analyzer and measure the 2nd, 3rd and 4th harmonic.

4.2.14 Determine the difference between the peak of the fundamental signal and the peak of each of the harmonics (this will be a negative number). Calculate THD as follows:

THD % = 100
$$\sqrt{\left(LOG^{-1} \frac{2nd}{20}\right)^2 + \left(LOG^{-1} \frac{3rd}{20}\right)^2 + \left(LOG^{-1} \frac{4th}{20}\right)^2 - - N}$$

Where:THD= Total Harmonic Distortion LOG^{-1} = Antilog2nd, 3rd and 4th= Harmonics in dBc (first three harmonics following the fundamental frequency).

4.2.15 The results of step 4.2.14 must be within the corresponding value listed in the Limits column of Table 3 and the Spurious Frequency Output must be within \leq -46 dB.

Т	I Range		
Volta	0	Applied (VAC)	Limits
10	100Hz	2 @ 20 Hz	≤-40 dB (1%)
	100kHz	2 @ 30 kHz	≤-40 dB (1%)
	1M	2 @ 300 kHz	≤-40 dB (1%)
	30M	2 @ 25 MHz	≤-36 dB (1.58%)

Table 3.

4.2.16 Disconnect the Spectrum Analyzer from TI.

4.3 **DISTORTION CALIBRATION:** (Transconductance Amplifier, OPT 60)

4.3.1 Press TI AC and I Function switches to On and verify REM SENSE is Off.

4.3.2 Connect TI Transconductance Amplifier I+ and I- terminals to the 20 A AC Current Shunt INPUT connector, observing polarity.

4.3.3 Connect the AC Current Shunt OUTPUT connector to the Distortion Analyzer INPUT terminals, observing polarity.

4.3.4 Press the first TI Output and Frequency Range switches listed in the TI Range Amps and Frequency columns of Table 4.

4.3.5 Adjust TI Output and Frequency keys for the first value listed in the Applied column of Table 4.

4.3.6 Press TI OUTPUT ON + switch to On.

4.3.7 Standardize the Distortion Analyzer for Distortion measurement.

4.3.8 The Distortion Analyzer must indicate within the corresponding value listed in the Limits column of Table 4.

4.3.9 Set TI Frequency Range switch and adjust Frequency keys for each remaining value listed in Applied column of Table 4 and repeat steps 4.3.7 and 4.3.8 at each listed frequency.

4.3.10 Press TI OUTPUT OFF switch to Off.

TIR	lange		
Amps	Frequency	Applied (AAC)	Limits (%) *
10A	1k	10 @ 1 kHz	≤0.2 (≤-54 dB)
	10k	10 @ 5 kHz	≤0.2 (≤-54 dB)
	10k	10 @ 10 kHz	≤0.2 (≤-54 dB)
	100k	10 @ 20 kHz	≤1 (≤-40 dB)

Table 4.

* If any limits are out of specified value, repeat the test using (2.1) Sub Item. The second harmonic must be within the corresponding value listed in the Limits column of Table 4.

4.3.11 Disconnect the test setup.

4.4 FREQUENCY CALIBRATION: (AC Voltage, OPT 20; Wideband Amplifier, OPT 70)

- 4.4.1 Connect TI HI and LO terminals to the Electronic Counter Input connector, observing polarity.
- 4.4.2 Press TI AC Function to On and verify I Function is Off.

4.4.3 Press TI Output Range switch 1 and adjust the Output keys for a TI Output display indication of 1 V.

- 4.4.4 Press the first TI Frequency Range switch listed in the TI Range column of Table 5.
- 4.4.5 Adjust TI Frequency keys for the first value listed in the Applied column of Table 5.
- 4.4.6 Press TI OUTPUT ON + switch to On.

4.4.7 Adjust the Electronic Counter controls as necessary for a stable indication.

4.4.8 The Electronic Counter must indicate within the corresponding values listed in the Limits column of Table 5.

4.4.9 Repeat steps 4.4.4 thru 4.4.8 for each remaining range and applied value listed in Table 5.

4.4.10 Press TI OUTPUT OFF switch to Off.

TI Range	Applied (VAC)	Limits (Hz)
100Hz	1 @ 10 Hz	>9.999 to <10.001
	1 @ 330 Hz	>329.967 to <330.033
1k	1 @ 0.30 kHz	>299.97 to <300.03
	1 @ 3.3 kHz	>3.29967 to <3.30033 k
10k	1 @ 3 kHz	>2.9997 to <3.0003 k
	1 @ 33 kHz	>32.9967 to <33.0033 k
100k	1 @ 30 kHz	>29.997 to <30.003 k
	1 @ 200 kHz	>199.98 to <200.02 k
1M	1 @ 0.3 MHz	>299.97 to <300.03 k
	1 @ 1 MHz	>0.9999 to <1.0001 M
Wideband *1	1 @ 10 MHz	9.999 to 10.001 M
	1 @ 28 MHz	27.9972 to 28.0028 M

Table 5.

*¹ Disconnect the Electronic Counter Input from the TI HI and LO terminals and connect through the 50 Ω load and cable supplied with the TI to the TI Wideband Amplifier OUTPUT.

4.4.11 Disconnect the Electronic Counter from TI.

4.5 DC VOLTAGE CALIBRATION: (OPT 10 and 30)

4.5.1 Connect TI HI and LO terminals to the Null Detector INPUT terminals, observing polarity.

4.5.2 Press TI DC Function switch to On.

NOTE

Steps 4.5.4 thru 4.5.10 are performed to minimize offset error and ensure an accurate linearity calibration. The values listed in step 4.5.6 for the 100 μ V and 1 mV ranges are desired but may not be attainable. See step 3.13.

4.5.3 Press TI TEST switch.

4.5.4 Press TI Output Range switch 100μ , FULL RANGE/ZERO switch to ZERO and OUTPUT ON + switch to On.

4.5.5 Increase the Null Detector sensitivity as required and verify the TI Output is about zero as monitored on the Null Detector.

4.5.6 The TI zero output shall be within the following listed values (see step 3.13):

```
100 \muV thru 100 mV rngs \leq 0.5 \muV

1 V rng \leq 1 \muV

10 V rng \leq 3 \muV

100 V rng \leq 50 \muV

1000 V rng \leq 500 \muV
```

4.5.7 Decrease the Null Detector sensitivity.

4.5.8 Press TI OUTPUT OFF switch to Off.

4.5.9 Repeat steps 4.5.4 thru 4.5.8 for the remaining TI Ranges.

4.5.10 Press TI Output Range switch 10 and ensure TI Output display indication is zero.

4.5.11 Press TI OUTPUT ON + switch to On.

4.5.12 Increase the Null Detector sensitivity as required and verify the TI Output is $0 \pm 3 \mu V$.

- 4.5.13 Decrease the Null Detector sensitivity.
- 4.5.14 Press TI OUTPUT OFF switch to Off, OUTPUT ON switch to On and repeat steps 4.5.12 and 4.5.13.

4.5.15 Press TI OUTPUT OFF switch to Off.

4.5.16 Disconnect the Null Detector from TI and connect equipment as shown in Figure 1.

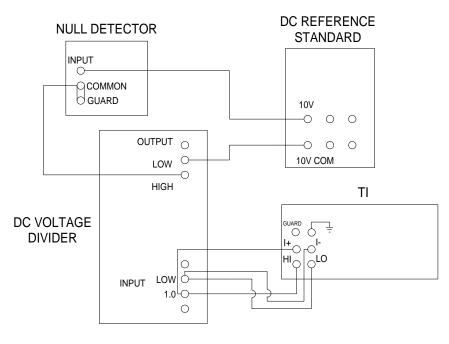
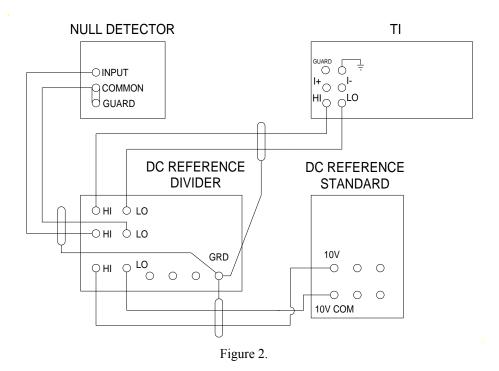


Figure 1.


4.5.17 Divide the certified value of the DC Reference Standard by 19 and set the DC Voltage Divider dials to this value (.5263158, nominal).

4.5.18 Press TI Output Range switch 10 and adjust the Output keys for a TI Output display indication of 19 V.

4.5.19 Press TI OUTPUT ON + switch to On and set TI for REM SENSE to On.

4.5.20 Increase the Null Detector sensitivity as required while adjusting TI Output keys for a null indication on the Null Detector.

- 4.5.21 Decrease the Null Detector sensitivity.
- 4.5.22 The TI Output display must indicate within 18.999923 and 19.000077 V
- 4.5.23 Press TI OUTPUT OFF switch to Off.
- 4.5.24 Reverse the output connections at the DC Reference Standard to change reference to negative.
- 4.5.25 Press TI OUTPUT ON switch to On and repeat steps 4.5.20 thru 4.5.23, observe negative limits.
- 4.5.26 Change the test setup as shown in Figure 2.

4.5.27 Set the DC Reference Divider to the first value listed in the Applied Divider column of Table 6.

4.5.28 Divide the certified value of the DC Reference Standard by the first value listed in the Divide/Multiply By column of Table 6 and record this value.

4.5.29 Press the first TI Output Range switch listed in the TI Range column of Table 6.

4.5.30 Adjust TI Output keys until the TI Output display indicates the value recorded in step 4.5.28.

4.5.31 Press TI OUTPUT ON + switch to On.

4.5.32 Increase the Null Detector sensitivity as required while adjusting TI Output keys for a null indication on the Null Detector.

4.5.33 Decrease the Null Detector sensitivity.

4.5.34 The TI Output display must indicate within the corresponding values listed in the Limits column of Table 6 relative to the value recorded in step 4.5.28.

4.5.35 Press TI OUTPUT OFF switch to Off.

4.5.36 Reverse the output connections at the DC Reference Standard to change reference to negative.

4.5.37 Press TI OUTPUT ON - switch to On and repeat steps 4.5.32 thru 4.5.35, observe negative limits.

4.5.38 Press TI OUTPUT OFF switch to Off.

4.5.39 Reverse the output connections at the DC Reference Standard to change reference to positive.

4.5.40 Repeat steps 4.5.27 thru 4.5.39 (in step 4.5.28, multiply or divide as indicated in Table 6) for each remaining range and applied value listed in Table 6.

Applied	Applied Divide/			its *1
Divider	Multiply By	TI Range	Relative	Nominal (VDC)
0.1 V	÷100	100m	±1.25 μV	(99.99875 to 100.00125 m)
1 V	÷10	1	±6.6 μV	(0.9999934 to 1.0000066)
1 V	÷10	10	$\pm 7~\mu V$	(0.999993 to 1.000007)
10 V	1:1	10	$\pm 42 \ \mu V$	(9.999958 to 10.000042)
100 V	X10	100	±0.61 mV	(99.99939 to 100.00061)
1000 V	X100	1000	±7.9 mV	(999.9921 to 1000.0079)

Table 6.

*1 The values in this columns apply to both positive and negative limits.

4.5.41 Change the test setup as shown in Figure 3.

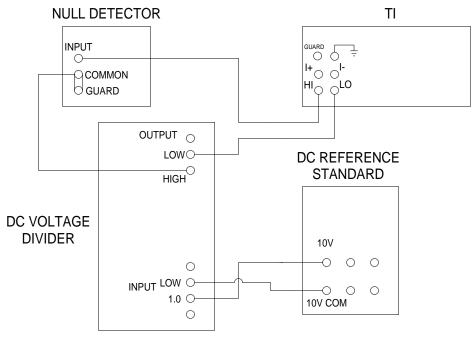


Figure 3.

4.5.42 Set the DC Voltage Divider dials to the first value listed in the Applied Divider column of Table 7.

4.5.43 Repeat steps 4.5.28 thru 4.5.39 substituting Table 7 in place of Table 6.

4.5.44 Repeat steps 4.5.42 and 4.5.43 for each remaining range and applied value listed in Table 7.

Applied		Limits *1			
Divider	Divide By	TI Range	Relative	Nominal (VDC)	
.0000100	100,000	100µ	$\pm 0.50 \ \mu V$	(99.50 to 100.50 µ)	
.0001000	10,000	1m	±0.51 µV	(0.99949 to 1.00051 m)	
.0010000	1,000	10m	±0.57 μV	(9.99943 to 10.00057 m)	

*¹ The values in this columns apply to both positive and negative limits.

4.5.45 Disconnect the test setup.

4.6 DC CURRENT CALIBRATION: (OPT 40)

4.6.1 Connect equipment as shown in Figure 4.

NOTE

Low Thermal leads or 12 gauge wire is recommended for TI Output terminal connections.

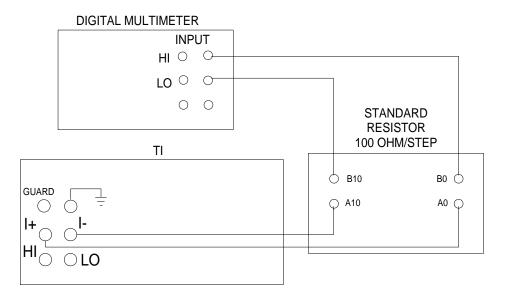


Figure 4.

4.6.2 Set Digital Multimeter to measure VDC on the 1 V range.

NOTE

If required, zero the Digital Multimeter before making measurements.

4.6.3 Press TI DC and I Function switches to On.

4.6.4 Press the first TI Output Range switch listed in the TI Range column of Table 8.

4.6.5 Adjust TI Output keys for the first value listed in the Applied column of Table 8.

4.6.6 Press TI OUTPUT ON + switch to On.

4.6.7 Calculate TI limits as follows: Divide the Digital Multimeter indication by the Standard Resistor certified resistance value.

4.6.8 The results of step 4.6.7 must be within the corresponding values listed in the Limits column of Table 8.

4.6.9 Multiply the Standard Resistor(s) certified resistance value by the corresponding current value listed in the Applied column of Table 8 and note the results.

4.6.10 Adjust TI Output keys until the Digital Multimeter displays the value calculated in step 4.6.9 and record TI Output display indication as TI DCI.

4.6.11 Press TI OUTPUT OFF switch to Off.

4.6.12 Press TI OUTPUT ON - switch to On and repeat steps 4.6.5 and 4.6.7 thru 4.6.11, observe negative limits.

4.6.13 Average the values recorded in step 4.6.10 (ignore polarity) and record the results as TI DCI (\pm avg) for use during AC Current Calibration (a copy of Table 12 may be used as a worksheet if desired).

4.6.14 Repeat steps 4.6.4 thru 4.6.13 for the TI 1m Range and applied value listed in Table 8.

4.6.15 Change Figure 4 Standard Resistor connections for the TI 10m Range listed in Table 8 as follows: TI I+ and I- terminals to the Standard Resistor A0 and C1 terminals, respectively; Standard Resistor B0 and B1 terminals to the Digital Multimeter HI and LO terminals, respectively.

4.6.16 Repeat steps 4.6.4 thru 4.6.13 for the TI 10m Range and applied value listed in Table 8.

TI Range	Applied (ADC)	Standard Resistor	Limits (ADC) *1
100µ	100 µ	A0, A10, B0, B10	99.9877 to 100.0123 μ
1m	1 m	A0, A10, B0, B10	0.999948 to 1.000052 m
10m	10 m	A0, C1, B0, B1	9.99948 to 10.00052 m

Table 8.

*¹ The values in this column apply to both positive and negative limits.

4.6.17 Change the test setup as shown in Figure 5.

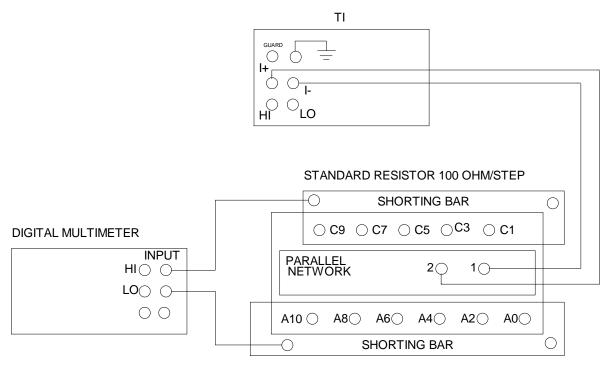


Figure 5.

4.6.18 Repeat steps 4.6.4 thru 4.6.13, substituting Table 9 in place of Table 8, for the TI 100m Range and applied value listed in Table 9.

4.6.19 Replace Standard Resistor 100 Ω /STEP with Standard Resistor 10 Ω /STEP in Figure 5.

4.6.20 Repeat step 4.6.18 for the TI 1 Range and applied value listed in Table 9.

NOTE

Heat build-up in 1 Ω shunt (Standard Resistor) will affect its accuracy. If test exceeds one minute, press TI OUTPUT OFF switch to Off and wait five minutes before repeating test.

Table 9.

TI Ran	ge Applied (ADC)	Limits (ADC) *1
100m	100 m	99.9948 to 100.0052 m
1	1	0.999879 to 1.000121

*¹ The values in this column apply to both positive and negative limits.

4.6.21 Disconnect the test setup.

4.7 DC/AC CURRENT CALIBRATION: (Transconductance Amplifier, OPT 60)

4.7.1 Connect the Digital Multimeter INPUT HI and LO terminals to the DC Current Shunt POTENTIAL and COMMON terminals, observing polarity.

4.7.2 Set Digital Multimeter to measure VDC on the 1 V range.

4.7.3 Connect the DC Current Shunt 10 AMP and INPUT COMMON terminals to the TI Transconductance Amplifier OUTPUT I+ and I- terminals, observing polarity.

4.7.4 Insert the DC Current Shunt Shorting Plugs into the 10 AMPERES holes.

4.7.5 Verify TI DC and I Functions are On.

4.7.6 Press TI Output Range switch 10.

4.7.7 Adjust TI Output keys for the first value listed in the Applied column of Table 10.

4.7.8 Press TI OUTPUT ON + switch to On.

NOTE

Allow sufficient time for Digital Multimeter indication to stabilize before taking reading.

4.7.9 Calculate TI limits as follows: Divide the Digital Multimeter indication by the DC Current Shunt certified resistance value.

4.7.10 The results of step 4.7.9 must be within the corresponding values listed in the Limits column of Table 10.

4.7.11 Press TI OUTPUT OFF switch to Off.

4.7.12 Press TI OUTPUT ON - switch to On to change TI Output to negative and repeat steps 4.7.7 and 4.7.9 thru 4.7.11, observe negative limits.

4.7.13 Repeat steps 4.7.7 thru 4.7.12 for the TI 10 ADC applied value listed in Table 10.

Table	<i>10</i> .
-------	-------------

		Limits *	¢1
TI Range	Applied (ADC)	Relative (ppm)	Nominal (ADC)
10	2	±410.5	(1.99918 to 2.00082)
	10	±206.6	(9.99793 to 10.00207)

*1 The values in these columns apply to both positive and negative limits

4.7.14 Disconnect the test setup.

4.7.15 Using the first shunt value listed in the AC Current Shunt column of Table 11, connect the AC Measurement Standard INPUT 2 HI and LO terminals to the AC Current Shunt OUTPUT, observing polarity.

4.7.16 Press AC Measurement Standard INPUT 2 key.

4.7.17 Using the first shunt value listed in the AC Current Shunt column of Table 11, connect the TI Transconductance Amplifier OUTPUT I+ and I- terminals to the AC Current Shunt INPUT, observing polarity.

4.7.18 Press TI AC and I Function switches to On.

4.7.19 Press TI Output Range switch 10.

4.7.20 Adjust TI Output keys, Frequency Range switch and Frequency keys for the first 1 kHz value listed in the Applied column of Table 11.

4.7.21 Press TI OUTPUT ON + switch to On.

NOTE

Allow sufficient time for AC Measurement Standard indication to stabilize before taking a reading.

4.7.22 Calculate the TI Current as follows: divide the AC Measurement Standard indication by the applicable AC Current Shunt AFPSL Certificate of Calibration Measured Resistance value. Example: with the TI set for 2 AAC at 1 kHz using the 2 AAC Current Shunt (first values in Table 11): AC Measurement Standard indication = 799.93 mV AC, AC Current Shunt value from the Certificate of Calibration = 0.39997352Ω , the Calculated Value for the TI Current is 1.9999574 AAC

4.7.23 The results of step 4.7.22 must be within the corresponding values listed in the Limits column of Table 11.

4.7.24 Repeat steps 4.7.20, 4.7.22 and 4.7.23 for the 5 kHz, 10 kHz and 20 kHz values listed in the Applied column of Table 11 for the 2 A AC Current Shunt.

4.7.25 Press TI OUTPUT OFF switch to Off.

TI Range	AC Current Shunt	Applied (AAC)	Limits (AAC)
10	2 A	2 @ 1 kHz	1.99789 to 2.00211
		2 @ 5 kHz	1.99669 to 2.00331
		2 @ 10 kHz	1.98960 to 2.01040
		2 @ 20 kHz	1.95360 to 2.04640
	10 A	10 @ 1 kHz	9.99462 to 10.00538
		10 @ 5 kHz	9.98985 to 10.01015
		10 @ 10 kHz	9.97198 to 10.02802
		10 @ 20 kHz	9.89599 to 10.10401

Table 11.

4.7.26 Disconnect the test setup.

4.7.27 Repeat steps 4.7.15 through 4.7.26 using the 10 A AC Current Shunt and remaining applied values listed in Table 11.

4.8 AC CURRENT CALIBRATION: (OPT 40)

4.8.1 Connect Resistor (2.14) across the TI I+ and I- terminals.

4.8.2 Connect the AC Measurement Standard INPUT 2 HI and LO terminals to the TI I+ and I- terminals, observing polarity.

4.8.3 Press AC Measurement Standard INPUT 2 key.

4.8.4 Press TI DC and I Function switches to On.

4.8.5 Press the first TI Output Range switch listed in the TI Range column of Table 12.

4.8.6 Adjust TI Output keys until the TI Output display indicates the first TI DCI (\pm avg) (recorded in step 4.6.13) as indicated in Table 12.

4.8.7 Press TI OUTPUT ON + switch to On.

4.8.8 Allow for a stable reading and press the AC Measurement Standard Set Ref softkey.

4.8.9 Press TI OUTPUT OFF switch to Off.

4.8.10 Press TI OUTPUT - switch to On to change TI Output to negative.

4.8.11 Allow for a stable reading and press the AC Measurement Standard Avg Ref softkey.

4.8.12 Set the AC Measurement Standard Control display to show ppm error display.

4.8.13 Press TI OUTPUT OFF switch to Off.

T.O. 33K8-4-1028-1

4.8.14 Press TI AC and I Function switches to On.

4.8.15 Adjust TI Output keys, Frequency Range switch and Frequency keys for the first value listed in the Applied column of Table 12.

4.8.16 Press TI OUTPUT ON + switch to On.

4.8.17 The AC Measurement Standard Error display (ppm difference from average reference) must indicate within the corresponding values listed in the Limits column of Table 12.

4.8.18 Repeat steps 4.8.15 and 4.8.17 for the 5 kHz value listed in the TI Applied column of Table 12 for the TI DCI (±avg) value in which the reference was set.

4.8.19 Press TI OUTPUT OFF switch to Off.

4.8.20 Press the AC Measurement Standard CLEAR REF softkey.

4.8.21 Disconnect Resistor (2.14) from the test setup and repeat step 4.8.1 using Resistor (2.15).

4.8.22 Repeat steps 4.8.4 thru 4.8.20 for each remaining range and applied value listed in Table 12.

Table 12.

	Resistor Shunt	TI Range	TI DCI (±avg)	TI Applied (AAC)	Lin Relative (ppm)	nits Nominal (AAC)
	200 Ω	1m	1 mADC		Refe	rence
				1 m @ 1 kHz	±204	(0.999796 to 1.000204 m)
				1 m @ 5 kHz	±303	(0.999697 to 1.000303 m)
	$2 \ k\Omega$	100µ	100 µADC		Refe	rence
				100 µ @ 1 kHz	±253	(99.9747 to 100.0253 $\mu)$
_				100 µ @ 5 kHz	±442	(99.9559 to 100.0441 µ)

4.8.23 Disconnect test setup.

4.8.24 Using the first shunt value listed in the AC Shunt column of Table 13, connect the AC Measurement Standard INPUT 2 HI and LO terminals to the AC Current Shunt OUTPUT, observing polarity.

4.8.25 Using the first shunt value listed in the AC Shunt Column of Table 13, connect the TI Transconductance Amplifier OUTPUT I+ and I- terminals to the AC Current Shunt INPUT, observing polarity.

4.8.26 Press TI AC and I Function switches to On.

4.8.27 Press the first TI Output Range switch listed in the TI Range column of Table 13.

4.8.28 Adjust TI Output keys, Frequency Range switch and Frequency keys for the first value listed in the TI Applied column of Table 13.

4.8.29 Press TI OUTPUT ON + switch to On.

NOTE

Allow sufficient time for AC Measurement Standard indication to stabilize before taking a reading.

4.8.30 Calculate the TI Current as follows: divide the AC Measurement Standard indication by the applicable AC Current Shunt AFPSL Certificate of Calibration Measured Resistance value. Example: with the TI set for 10 mA AC at 1 kHz using the 10 mA AC Current Shunt (first values in Table 13): AC Measurement Standard indication = 799.94 mV AC, AC Current Shunt value from the Certificate of Calibration = 79.9955490 Ω , the Calculated Value for the TI Current is 9.99980 mA AC

4.8.31 The results of step 4.8.30 must be within the corresponding values listed in the Limits column of Table 13.

4.8.32 Repeat steps 4.8.28, 4.8.30 and 4.8.31 for the 5 kHz value listed in the TI Applied column of Table 13 for the range being calibrated.

4.8.33 Press TI OUTPUT OFF switch to Off.

4.8.34 Disconnect the test setup.

4.8.35 Repeat steps 4.8.24 thru 4.8.34 for each remaining AC Shunt, range and applied value listed in Table 13.

AC Shunt	TI Range	TI Applied (AAC)	Limits (AAC)
10 mA	10m	10 m @ 1 kHz	9.99691 to 10.00309 m
	10111		, , , , , , , , , , , , , , , , , , , ,
		10 m @ 5 kHz	9.99691 to 10.00309 m
100 mA	100m	100 m @ 1 kHz	99.9689 to 100.0311 m
		100 m @ 5 kHz	99.9689 to 100.0311 m
1 A	1	1 @ 1 kHz	0.999592 to 1.000408
		1 @ 5 kHz	0.999404 to 1.000596

Table 13.

4.8.36 Disconnect the test setup.

4.9 AC VOLTAGE CALIBRATION: (OPT 20 and 30)

4.9.1 Connect TI HI and LO terminals to the AC Measurement Standard INPUT 2 HI and LO terminals, observing polarity.

4.9.2 Press TI AC Function switch to On and verify I Function switch is Off.

4.9.3 Press the first TI Output Range switch listed in the TI Range column of Table 14.

4.9.4 Adjust TI Output keys for the first value listed in the Applied (VAC) column of Table 14.

4.9.5 Set TI Frequency Range switch and adjust Frequency keys for the first value listed in the Applied (Hz) column of Table 14.

4.9.6 Press TI OUTPUT ON + switch to On.

NOTE

Due to local conditions, some PMELs may experience high RFI levels causing TI limits to appear out of specification on the mV ranges. Should this occur, press TI ZERO key and monitor the TI output with the Digital Multimeter, note indication. Subtract the Digital Multimeter noted indication from TI limits on the applicable ranges. Do not make any changes to TI calibration factors if the corrected limits are within specification.

4.9.7 The AC Measurement Standard must indicate within the corresponding values listed in the Limits column of Table 14.

4.9.8 Set TI Frequency Range switch and adjust Frequency keys for each remaining value listed in the Applied (Hz) column of Table 14 which is applicable to the TI VAC setting and repeat step 4.9.7 at each listed frequency.

4.9.9 Press TI OUTPUT OFF switch to Off.

4.9.10 Repeat steps 4.9.3 thru 4.9.9 for each remaining range and applied value listed in Table 14.

TI Range	Applied (VAC)	Applied (Hz)	Limits (VAC)
1m	1 m	20	0.9937 to 1.0063 m
		100	0.9940 to 1.0060 m
		9 k	0.9940 to 1.0060 m
		19 k	0.9938 to 1.0062 m
		90 k	0.9927 to 1.0073 m
		200 k	0.9848 to 1.0152 m
		1 M	0.9235 to 1.0765 m
10m	10 m	20	9.9922 to 10.0078 m
		100	9.9931 to 10.0069 m
		9 k	9.9932 to 10.0068 m
		19 k	9.9931 to 10.0069 m
		90 k	9.9890 to 10.0110 m
		200 k	9.9745 to 10.0255 m
		1 M	9.9013 to 10.0987 m

Table 14.

TI Range	Applied (VAC)	Applied (Hz)	Limits (VAC)
100m	100 m	20	99.9762 to 100.0238 m
		100	99.9829 to 100.0171 m
		9 k	99.9838 to 100.0162 m
		19 k	99.9829 to 100.0171 m
		90 k	99.9567 to 100.0433 m
		200 k	99.8765 to 100.1235 m
		1 M	99.6712 to 100.3288 m
1 *1	1	20	0.999858 to 1.000142
		100	0.999925 to 1.000075
		19 k	0.999943 to 1.000057
		90 k	0.999857 to 1.000143
		200 k	0.999465 to 1.000535
		1 M	0.997126 to 1.002874
10	10	20	9.99858 to 10.00142
		100	9.99923 to 10.00077
		19 k	9.99942 to 10.00058
		90 k	9.99835 to 10.00165
		200 k	9.99586 to 10.00414
		1 M	9.97884 to 10.02116
100	100	20	99.9849 to 100.0151
		100	99.9912 to 100.0088
		9 k	99.9931 to 100.0069
		19 k	99.9922 to 100.0078
		90 k	99.9799 to 100.0201
		200 k	99.8769 to 100.1231
	40	500 k	39.4695 to 40.5305

Table 14. (Cont.)

See footnote at end of Table.

TI Range	Applied (VAC)	Applied (Hz)	Limits (VAC)
1000	1000	40	999.825 to 1000.175
		100	999.825 to 1000.175
		2 k	999.873 to 1000.127
		9 k	999.835 to 1000.165
		19 k	999.835 to 1000.165
	700	100 k	699.114 to 700.886

Table 14. (Cont.)

*1 The TI requires calibration on the 1 and 10 V ranges with both 2 and 4 wire configuration. After completing calibration of the 10 V range in 2 wire configuration, set REM SENSE On and connect TI I+ and I- terminals to the AC Measurement Standard INPUT 2 in a 4-wire configuration, observing polarity. Calibrate the 1 V and above ranges.

4.9.11 Disconnect the test setup.

4.10 WIDEBAND AMPLITUDE AND FLATNESS CALIBRATION: (OPT 70)

4.10.1 Connect the TI Wideband Amplifier OUTPUT thru the 50 Ω load and cable supplied with the TI to the AC Measurement Standard INPUT 2 HI and LO terminals, observing polarity.

4.10.2 Verify TI WBV Function switch is On.

4.10.3 Press the first TI Output Range switch listed in the TI Range column of Table 15.

4.10.4 Adjust TI Output keys, Frequency Range switch and Frequency keys for the first value listed in the Applied column of Table 15.

4.10.5 Press TI OUTPUT ON + switch to On.

4.10.6 The AC Measurement Standard must indicate within the corresponding values listed in the Limits column of Table 15.

4.10.7 Press TI OUTPUT OFF switch to Off.

4.10.8 Repeat steps 4.10.3 thru 4.10.7 for each remaining range and applied value listed in Table 15.

Table	15.
-------	-----

TI Range	Applied (VAC)	Limits (VAC)
1m	1 m @ 20 Hz	0.9931 to 1.0069 m
	1 m @ 1 kHz	0.9936 to 1.0064 m *1

See footnote at end of Table.

TI Range	Applied (VAC)	Limits (VAC)
1m	1 m @ 10 kHz	0.9936 to 1.0064 m
	1 m @ 90 kHz	0.9923 to 1.0077 m
	1 m @ 290 kHz	0.9874 to 1.0126 m
10m	10 m @ 20 Hz	9.9643 to 10.0357 m
	10 m @ 1 kHz	9.9693 to 10.0307 m *1
	10 m @ 10 kHz	9.9693 to 10.0307 m
	10 m @ 90 kHz	9.9681 to 10.0319 m
	10 m @ 290 kHz	9.9668 to 10.0342 m
100m	100 m @ 20 Hz	99.6598 to 100.3402 m
	100 m @ 1 kHz	99.7099 to 100.2901 m *1
	100 m @ 10 kHz	99.7099 to 100.2901 m
	100 m @ 90 kHz	99.7092 to 100.2908 m
	100 m @ 290 kHz	99.7081 to 100.2919 m
1	1 @ 20 Hz	0.996599 to 1.003401
	1 @ 1 kHz	0.997100 to 1.002900 *1
	1 @ 10 kHz	0.997100 to 1.002900
	1 @ 90 kHz	0.997099 to 1.002901
	1 @ 290 kHz	0.997095 to 1.002905
10	3 @ 20 Hz	2.99160 to 3.00840
	3 @ 1 kHz	2.99310 to 3.00690 *1
	3 @ 10 kHz	2.99310 to 3.00690
	3 @ 90 kHz	2.99310 to 3.00690
	3 @ 290 kHz	2.99308 to 3.00692

Table 15. (Cont.)

*1 Record AC Measurement Standard indication for future use.

4.10.9 Disconnect the test setup.

4.10.10 Connect the TI Wideband Amplifier OUTPUT using the cable supplied with the TI to the AC Measurement Standard WIDEBAND Input connector (omit the 50 Ω load). Set the AC Measurement Standard to WBND input.

4.10.11 Press the first TI Output Range switch listed in the TI Range column of Table 16.

4.10.12 Adjust TI Output keys for the first value listed in the Applied (VAC) column of Table 16. Continue to adjust TI output to the value recorded in Table 15 for the corresponding range being calibrated.

4.10.13 Set TI Frequency Range switch and adjust Frequency keys for the first value listed in the Applied (Hz) column of Table 16.

4.10.14 Press TI OUTPUT ON + switch to On.

4.10.15 Allow for a stable reading and press the AC Measurement Standard Set Ref softkey and Control display to show % (PCT) error.

4.10.16 Set TI Frequency Range switch and adjust Frequency keys for the next value listed in the Applied (Hz) column of Table 16.

4.10.17 The AC Measurement Standard Error display must indicate within the corresponding values listed in the Limits column of Table 16.

4.10.18 Set TI Frequency Range switch and adjust Frequency keys for each remaining value listed in the Applied (Hz) column of Table 16 which is applicable to the TI VAC setting and repeat step 4.10.17 at each listed frequency.

4.10.19 Press TI OUTPUT OFF switch to Off.

4.10.20 Repeat steps 4.10.11 thru 4.10.19 for each remaining range and applied value listed in Table 16.

			Lim	its
TI Range	Applied (VAC)	Applied (Hz)	(%)	Nominal (VAC)
1m	1 m	1 k	Refe	rence
		1.9 M	±0.510	(0.99490 to 1.00510 m)
		9 M	±0.810	(0.99190 to 1.00810 m)
		19 M	±1.201	(0.98798 to 1.01202 m)
		30 M	±2.701	(0.97299 to 1.02701 m)
10m	10 m	1 k	Refe	rence
		1.9 M	±0.213	(9.9787 to 10.0213 m)
		9 M	±0.322	(9.9678 to 10.0322 m)
		19 M	±0.513	(9.9487 to 10.0513 m)
		30 M	±1.113	(9.8887 to 10.1113 m)

Table 16.

			Limi	
TI Range	Applied (VAC)	Applied (Hz)	(%)	Nominal (VAC)
100m	100 m	1 k	Refer	rence
		1.9 M	±0.153	(99.847 to 100.153 m)
		9 M	±0.303	(99.697 to 100.303 m)
		19 M	±0.453	(99.547 to 100.453 m)
		30 M	±1.054	(98.946 to 101.054 m)
1	1	1 k	Refer	rence
		1.9 M	±0.150	(0.99850 to 1.00150)
		9 M	±0.301	(0.99700 to 1.00300)
		19 M	±0.451	(0.99549 to 1.00451)
		30 M	±1.051	(0.98949 to 1.01051)
10	3	1 k	Refer	rence
		1.9 M	±0.150	(2.99549 to 3.00451)
		9 M	±0.300	(2.99099 to 3.00901)
		19 M	±0.450	(2.98649 to 3.01351)
		30 M	±1.051	(2.96848 to 3.03152)

Table 16. (Cont.)

4.10.21 Disconnect the test setup.

4.11 <u>RESISTANCE CALIBRATION:</u> (OPT 50)

CAUTION

If C1 is connected directly to C2 during the test, the Resistance Measurement System will be damaged! If not strictly observed, could result in damage to, or destruction of, equipment or loss of mission effectiveness.

4.11.1 Connect TI to a Resistance Measurement System unused channel as follows:

TI	Resistance Measurement System
I+	C ₁
HI	P ₁

I-	C ₂
LO	P ₂
Guard	GUARD (rear panel)

4.11.2 Press TI Ω switch to On and the REM SENSE switch to ON.

- 4.11.3 Press the first TI Output Range switch listed in the Rx column of Table 17.
- 4.11.4 Press the TI Output keys to obtain the first value listed in the Rx column of Table 17.
- 4.11.5 Press TI OUTPUT ON + switch to On.
- 4.11.6 Using the Resistance Measurement System Software Package, Select Test Configuration.
- 4.11.7 Assign a Test No. for the following Test Setups.

CAUTION

Do not click on the Start button until finished configuring the Test Configuration window, as the test will execute the test configuration parameters as displayed. If not strictly observed, could result in damage to, or destruction of, equipment or loss of mission effectiveness.

4.11.8 If a TI Resistance file (Rx) file has been previously configured and is available, select Scanner channel No., press Load, select the existing Rx file, press OK (will load the current/voltage stored with the TI Rx file) then proceed to step 4.11.11. Otherwise, continue with step 4.11.9.

4.11.9 Configure a TI Resistance (Rx) file using Resistance Measurement System Bridge Works software and Table 17 as required (Uncertainty not required).

4.11.10 Under Scanner Setup, load the appropriate Rs and Rx files.

NOTE

Review the AFPSL Resistor Profiles to ensure the values are current before using the Standard Resistors.

4.11.11 Configure the following Test Setup parameters:

Rs Channel	Channel for Standard Resistor (Rs) use Ch 18 for 10 Ω , Ch 19 for 100 Ω , Ch 20 for 1 k Ω , Ch 21 for 10 k Ω , Ch 22 for 100 k Ω and Ch 23 for 1 M Ω Rs files
Rx Channel	See step 4.11.1 for Channel Number and use the Rx file.
Mode	See Table 17
Ohms Reference	Rs
Reversal Rate	60 for 10 Ω to 10 k Ω , 90 for 100 k Ω and 120 for 1 to 100 M Ω - Fixed, with Auto Reversal Rate set to Disabled
Mode Control	See Table 17 Mode
Threshold	0.000

Target Deviation	0.1 for 10 Ω to 10 kΩ, 0.2 for 100 kΩ and 0.6 for 1 to 100 MΩ
Sample Window	10
Sample Limit	50

4.11.12 Press Start, select a directory and file name to save test results and press OK/SAVE.

NOTE

Test is over when Stop light goes out.

4.11.13 When test is complete, open the test results file by View, Test Overview, then File Open, select the file name from step 4.11.12, select the File, Data Manager, set Start and Go for the last 10 samples then press OK.

4.11.14 The TI measured Test Mean value must be within the corresponding values listed in the Limits column of Table 17 relative to the TI displayed value.

4.11.15 Repeat steps 4.11.3 through 4.11.14 as required for the remaining test configurations and values listed in Table 17.

Rs (Ω)	$\mathbf{R}\mathbf{x}\left(\Omega\right)$	I/V test	I/V max	Mode	Absolute (ppm)	Limits (Ω)
10	10	10 mA	100 mA	mA in Normal	±25.09	9.999749 to 10.000251
100	100	10 mA	25 mA	mA in Normal	±9.25	99.99907 to 100.00093
1 k	1 k	1 mA	10 mA	mA in Normal	±9.25	0.9999907 to 1.0000093 k
10 k	10 k	0.1 mA	2.5 mA	mA in Normal	±9.24	9.999908 to 10.000092 k
100 k	100 k	0.1 mA	1 mA	mA in Normal	±11.03	99.99890 to 100.00110 k
1 M	1 M	10 V	100 V	V in High	±26.93	0.9999731 to 1.0000269 M
1 M *1	10 M	10 V	100 V	V in High	±50.99	9.999490 to 10.000510 M
1 M *2	100 M	100 V	100 V	V in High	±70.71	99.99293 to 100.00707 M

Table 17.

 $*^1$ Rs to Rx Ratio x10.

 $*^2$ Rs to Rx Ratio x100.

4.11.16 Move test leads from TI I+ and I- connectors to the HI and LO connectors and press TI REMOTE SENSE switch to Off.

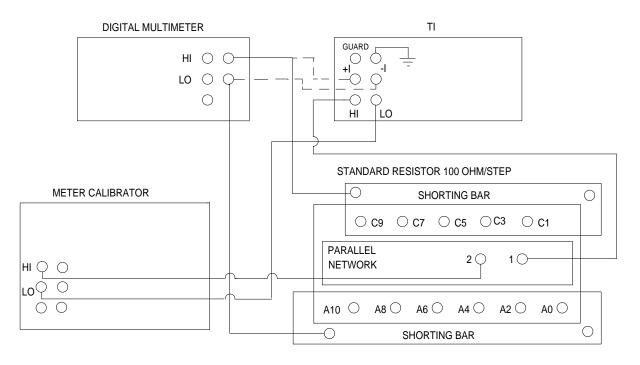
4.11.17 Repeat steps 4.11.3 through 4.11.14 as required for the test configurations and values listed in Table 18.

$\mathbf{Rs}\left(\Omega\right)$	$\mathbf{R}\mathbf{x}\left(\Omega\right)$	I/V test	I/V max	Mode	Absolute (ppm)	Limits (Ω) *
10	10	10 mA	100 mA	mA in Normal	±25.09	9.979749 to 10.020251
100	100	10 mA	25 mA	mA in Normal	± 9.25	99.97908 to 100.02093
1 k	1 k	1 mA	10 mA	mA in Normal	±9.25	0.9997908 to 1.0002093 k
10 k	10 k	0.1 mA	2.5 mA	mA in Normal	±9.24	9.999708 to 10.000292 k
100 k	100 k	0.1 mA	1 mA	mA in Normal	±11.03	99.99870 to 100.00130 k

Table 18.

* TI limits are calculated using the Absolute accuracy and the 2 wire Ω adder.

4.11.18 Disconnect the test setup.


4.11.19 Update the TI 4W and 2W resistance displayed values with the TI 4W and 2W resistance measured Test Mean values per OEM 4808 Users Handbook, section 8.

4.11.20 Set all Power switches to STBY/OFF, disconnect and secure all equipment.

4.11.21 Perform steps 3.13 and 3.14, as required, instructions for use of a Limited Certification Label.

4.11A <u>RESISTANCE CALIBRATION:</u> (OPT 50) (Alternate Method)

4.11A.1 Connect equipment as shown in Figure 1A, solid lines first.

4.11A.2 Set the Digital Multimeter to measure VDC and select autorange.

4.11A.3 Press the TI Ω switch to On and the REM SENSE switch to ON.

4.11A.4 Press the first TI Output Range switch listed in the TI Range column of Table 2A.

4.11A.5 Press the TI Output keys to obtain the first value listed in the TI Applied column of Table 2A.

4.11A.6 Press the OUTPUT ON + switch to On.

4.11A.7 Set the Meter Calibrator controls for the first value listed in the MC Applied column of Table 2A and press the OPR/STBY switch to OPR.

NOTE

Allow sufficient settling time before recording the Digital Multimeter Vs and V1 values.

4.11A.8 Record the Digital Multimeter indication as Vs (100 mV, 1, 10 or 100 V depending on the applied value).

Voltages hazardous to personnel may be encountered when transferring test leads from the Standard Resistor terminals to TI I+ and I- terminals. All necessary precautions during the conduct of this calibration must be observed. If not strictly observed, could result in injury to, or death of, personnel or long term health hazards.

4.11A.9 Transfer the Digital Multimeter leads to the TI I+ and I- terminals (dashed lines in Figure 1A).

4.11A.10 Record the Digital Multimeter indication as V1.

4.11A.11 Press the TI OUTPUT OFF switch to Off.

4.11A.12 Calculate TI actual resistance (R) as follows:

$$R = \frac{V1 \ x \ Rs}{Vs}$$

$$Vs = 4.11A.8$$

$$Rs = Standard Resistor charted value$$

$$V1 = step 4.11A.10$$

R = TI actual resistance

4.11A.13 The TI must indicate within the corresponding values listed in the Limits column of Table 2A relative to the result obtained in step 4.11A.12.

4.11A.14 Refer to Table 2A and Figure 1A, select and connect Standard Resistor for the next range and applied value listed in Table 2A.

4.11A.15 Repeat steps 4.11A.4 thru 4.11A.14 for each remaining range and applied value listed in Table 2A.

TI	TI	MC	Standard	Lim	its
Range	Applied	Applied	Resistor	Absolute (ppm)	Nominal (Ω)
10Ω	10 Ω	10 mA DC	10 Ω, 100 Ω/STEP in parallel	±25.5	(9.999745 10.000255)
$100\Omega *^1$	100 Ω	2 VDC	100 Ω/STEP	±10.3	(99.99897 to 100.00103)
lkΩ	1 kΩ	2 VDC	1 kΩ/ STEP	±10.3	(0.9999897 to 1.0000103 k)
10kΩ	10 kΩ	2 VDC	10 k Ω , 1 k Ω /STEP in series	±10.3	(9.999897 to 10.000103 k)
100kΩ	100 kΩ	20 VDC	100 kΩ/STEP	±11.2	(99.99888 to 100.00112 k)
1MΩ	1 MΩ	20 VDC	1 MQ/STEP $*^2$	±25.5	(0.9999745 to 1.0000255 M
10MΩ	10 MΩ	20 VDC	10 MQ/STEP $*^2$	±52.2	(9.999478 to 10.000522 M)
100MΩ	100 MΩ	200 VDC	100 MΩ, 10 MΩ $*^2$ /STEP in series	±71.6	(99.99284 to 100.00716 M)

*¹ Record the computed resistance. In Figure 1A setup, move test leads from TI I+ and I- connectors to the HI and LO connectors and press TI REMOTE SENSE switch to Off. Compute resistance with this 100 Ω value. The computed resistance must be within ±210.3 ppm of the TI indication. Press TI REMOTE SENSE switch to On and continue with step 4.11A.13.

*² Use Transfer Standard (2.19) and Figure 2A for these values.

Table 2A.

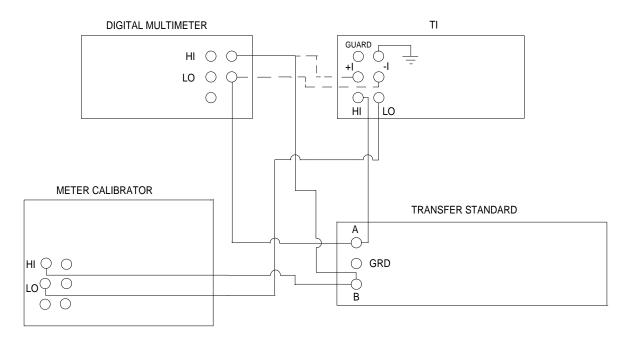


Figure 2A.

4.11A.16 Disconnect the test setup.

4.11A.17 Set all Power switches to STBY/OFF, disconnect and secure all equipment.

4.11A.18 Perform steps 3.13 and 3.14, as required, instructions for use of a Limited Certification Label.

CALIBRATION PERFORMANCE TABLE

Not Required

APPENDIX A

NOTE

The Performance Specifications listed below for the TI are absolute specifications which are calculated by combining the uncertainty of the relative specifications found in the commercial data (operators/instruction manual) with the uncertainty of the Calibration Standards listed in Section 2, Equipment Requirements of 33K series calibration technical order (TO). As opposed to **Relative** specifications which do not include calibration standards uncertainties and other possible uncertainties, **Absolute** specifications are the traceable measurement capabilities (or **calibrated to** specifications) of the TI.

Distortion (OPT 20 and 30)	Range: OPT 20: 0 to 100 V, 10 Hz to 1 MHz; OPT 30: 0 to 1000 V, 10 Hz to 1 MHz				
	Accuracy: Pure THD, excluding noise, which is included in the main specifications: Frequency Voltage Range				
	10 to 31 Hz	1 mV thru 100 V rngs	0.1		
	32 Hz to 33 kHz	1 mV thru 100 V rngs	0.04		
	30 to 100 kHz	1 mV thru 10 V rngs	0.1		
	30 to 100 kHz	100 V rng	0.2		
	100 to 330 kHz	1 mV thru 100 V rngs	0.3		
	300 kHz to 1 MHz	1 mV thru 100 V rngs	1		
	10 to 330 Hz	1000 V rng	0.2		
	300 Hz to 33 kHz	1000 V rng	0.1		
	30 to 100 kHz	750 V rng	0.5		
Distortion	Range: 0 to 3 V, 10 Hz to 30 MHz				
Wideband (OPT 70)	Accuracy: THD: ≤-40 dB, volt-hertz product ≤9 X 10 ⁷ ; ≤-36 dB, volt-hertz product >9 X 10 ⁷				
	Spurious Frequency Output: ≤-46 dB				
Distortion	Range: 0 to 10 A, 10 Hz to 20 kHz				
Transconductance Amplifier (OPT 60)	Accuracy: Pure THD, excluding noise, which is included in the main specifications: $\leq 0.2\%$, 10 Hz to 10 kHz; $\leq 1\%$, 10 to 20 kHz				

Frequency (OPT 20, 30 and 70)	Range: OPT 20 and 30: 10 Hz to 1 MHz; OPT 70: 10 Hz to 30 MHz			
	Accuracy: OPT 20 and 30: <±0.01% of setting			
	OPT 70: ±0.01% of setting	2		
DC Voltage	Range: OPT 10: 0 to 100 V; OPT 30: 0 to 1000 V			
	Accuracy: ±(ppr	n of output +	· μV)	
	OPT 10: Range: 100 μV 1 mV 10 mV 100 mV 1 V 10 V 100 V OPT 30:	Absolute ppm 7.44 7.44 7.45 5.59 3.91 5.59	μV 0.5 0.5 0.5 0.5 1 3 50	
DC Current	1000 V Range: 0 to 1 A	7.45	500	
	Accuracy: ±(ppr	n of output +	n/µA)	
	Range: 100 μA 1 mA 10 mA 100 mA 1 A	Absolute ppm 100.62 41.53 41.53 41.53 100.68	n/μA 2.24 n 10.05 n 100.05 n 1.005 μ 20.02 μ	
DC and AC Current Transconductance Amplifier (OPT 60)	Range: 0 to 10 A, DC;			
· /	Accuracy: ±(ppr	n of output +	n/µA)	
	Range: 10 ADC	Absolute ppm 155.56	n/μA 509.9 μA	

DC and AC Current (*Cont.*) Transconductance Amplifier (OPT 60)

AC Voltage (OPT 20 and 30)

Range: 0 to 10 A, DC;

Accuracy: \pm (ppm of output + n/ μ A)

Range: 0 to 10 A at 10 Hz to 20 kHz

Accuracy: \pm (ppm of output + mA)

	Frequency 10 Hz to 1 kHz 1 to 5 kHz 5 to 10 kHz 10 to 20 kHz	Absolute ppm 408.05 855.04 2202.40 7200.75	mA 1.3 1.6 6.0 32.0
AC Current (OPT 40)	Range: 0 to 1 A,	, 10 Hz to 5 I	кНz

Accuracy: \pm (ppm of output + A)

The 100 mAAC rng Relative Accuracy is down graded to \pm (200 ppm of output + 10 μ A) at 10 Hz to 1 kHz.

Range 100 µA	Hz 10 Hz to 1 kHz 1 to 5 kHz	Absolute ppm 152.41 301.21	A 10.00 n 14.00 n
1 mA	10 Hz to 1 kHz	103.58	100.0 n
	1 to 5 kHz	201.81	100.0 n
10 mA	10 Hz to 1 kHz	209.07	1 μ
	1 to 5 kHz	209.07	1 μ
100 mA	10 Hz to 1 kHz	211.36	10 μ
	1 to 5 kHz	211.36	10 μ
1 A	10 Hz to 1 kHz	308.33	100 μ
	1 to 5 kHz	455.67	140 μ
	Range: OPT 20: 0 to 10	0 V, 10 Hz t	o 1 MHz

OPT 30: 0 to 1000 V, 10 Hz to 1 MHz

Accuracy: \pm (ppm of output + V)

The AC Voltage Relative Accuracy is downgraded as follows:

AC Voltage (Cont.) (OPT 20 and 30)

Range: OPT 20: 0 to 100 V, 10 Hz to 1 MHz OPT 30: 0 to 1000 V, 10 Hz to 1 MHz

Accuracy: \pm (ppm of output + V)

OPT 20	P	Absolute	X 7
Range	Frequency	ppm	V
1 mV	10 to 31 Hz	749.67	5.55 μ
	32 to 330 Hz	425.79	5.55 μ
	300 Hz to 10 kHz	424.26	5.55 μ
	10 to 33 kHz	425.79	5.55 μ
	30 to 100 kHz	1300.00	5.95 µ
	100 to 330 kHz	2507.99	12.65 μ
	300 kHz to 1 MHz	4031.13	72.44 μ
10 mV	10 to 31 Hz	224.72	5.55 µ
10 111 1	32 to 330 Hz	130.38	5.55 μ
	300 Hz to 10 kHz	125.30	5.55 μ 5.55 μ
	10 to 33 kHz		•
		130.38	5.55 μ
	30 to 100 kHz	506.06	5.95 μ
	100 to 330 kHz	1286.90	12.65 μ
	300 kHz to 1 MHz	2624.88	72.44 μ
100 mV	10 to 31 Hz	147.05	9.12 μ
	32 to 330 Hz	79.65	9.12 μ
	300 Hz to 10 kHz	71.02	9.12 μ
	10 to 33 kHz	79.65	9.12 μ
	30 to 100 kHz	340.00	9.34 μ
	100 to 330 kHz	1030.78	20.4 μ
	300 kHz to 1 MHz	2088.06	120 μ
	JOO KITZ tO T WITTZ	2000.00	120 μ
1 V	10 to 31 Hz	111.61	30 µ
	32 to 330 Hz	55.46	20 µ
	300 Hz to 33 kHz	46.65	10 μ
	30 to 100 kHz	122.64	20 μ
	100 to 330 kHz	435.46	100 μ
	300 kHz to 1 MHz	2473.86	400 µ
10 V	10 to 31 Hz	112.20	300 µ
	32 to 330 Hz	56.82	200 μ
	300 Hz to 33 kHz	48.26	100 µ
	30 to 100 kHz	144.78	200 µ
	100 to 330 kHz	314.01	1 m
	300 kHz to 1 MHz	1615.55	5 m
100 V	10 to 31 Hz	120.93	3 m
	32 to 330 Hz	67.54	2 m
	300 Hz to 10 kHz	58.83	1 m
	10 to 33 kHz	67.54	1 m
	30 to 100 kHz	170.89	3 m
	100 to 330 kHz	730.82	50 m
	300 kHz to 1 MHz	10012.49	130 m

AC Voltage (Con (OPT 20 and 30)	C Voltage (Cont.) Range: OPT 20 and 30) OPT 20: 0 to 100 V, 10 Hz to 1 MHz OPT 30: 0 to 1000 V, 10 Hz to 100 kHz			
		Accuracy: ±(ppm of c	output + V)	
	OPT 30 Range 1000 V	Frequency 10 to 330 Hz 300 Hz to 3.3 kHz 3 to 33 kHz 30 to 100 kHz	Absolute ppm 154.74 106.98 145.07 1208.30	V 20 m 20 m 20 m 40 m
AC Voltage Wideband Ampl (OPT 70) Amplit		Range: 0 to 3 V, 10 H Accuracy: ±(% of out		
			Absolute	
	Range	Frequency	%	μV
	300 μV to 1 mV	10 to 30 Hz 30 Hz to 20 kHz 20 to 100 kHz 100 to 330 kHz	0.5550 0.5018 0.5142 0.8613	1.36 1.36 2.53 4.02
	1 to 10 mV	10 to 30 Hz 30 Hz to 20 kHz 20 to 100 kHz 100 to 330 kHz	0.3405 0.2902 0.2917 0.3011	1.64 1.64 2.69 4.12
	10 to 100 mV	10 to 30 Hz 30 Hz to 20 kHz 20 to 100 kHz 100 to 330 kHz	0.3301 0.2800 0.2805 0.2811	10.11 10.11 10.31 10.77
	100 mV to 1 V	10 to 30 Hz 30 Hz to 20 kHz 20 to 100 kHz 100 to 330 kHz	0.3301 0.2800 0.2801 0.2805	100.0 100.0 100.0 100.0
	1 to 3 V	10 to 30 Hz 30 Hz to 20 kHz 20 to 100 kHz 100 to 330 kHz	0.2701 0.2200 0.2201 0.2208	300.0 300.0 300.0 300.0

Range: 0 to 3 V, 10 Hz to 30 MHz

The following 300 kHz to 30 MHz Relative limits are verified during Flatness Calibration

AC Voltage (*Cont.*) Wideband Amplifier (OPT 70) Amplitude

Accuracy: \pm (% of output + μ V) The Wideband Amplifier Amplitude on 300 μ V to 1 mV rng Relative Accuracy is downgraded to \pm (0.83% of output + 0.4 μ V) at 100 to 330 kHz.

Range	300 kHz to 2 MHz 300 μV to 10 mV 10 to 100 mV 100 mV to 1 V 1 to 3 V	Relative % 0.34 0.34 0.34 0.26	μV 3 10 100 300
	2 to 10 MHz Range 300 μV to 10 mV 10 to 100 mV 100 mV to 1 V 1 to 3 V	% 0.48 0.48 0.48 0.35	μV 3 10 100 300
	10 to 20 MHz Range 300 μV to 10 mV 10 to 100 mV 100 mV to 1 V 1 to 3 V	% 0.61 0.61 0.61 0.48	μV 3 10 100 300
	20 to 30 MHz 300 µV to 10 mV 10 to 100 mV 100 mV to 1 V 1 to 3 V	0.76 0.76 0.76 0.60	3 10 100 300
AC Voltage Wideband Amplifier (OPT 70) Flatness			calibration. t 1 kHz

Output	Frequency	\pm (% + μ V)
300 µV to 1 mV	300 kHz to 2 MHz	0.14 + 3
	2 to 10 MHz	0.40 + 3
	10 to 20 MHz	0.74 + 3
	20 to 30 MHz	2.02 + 3

A-6

AC Voltage (*Cont.*) Wideband Amplifier (OPT 70) Flatness

Range: 300 kHz to 30 MHz

Accuracy: Specifications apply to the end of the cable and 50 Ω load used for calibration. $\pm(\% \text{ of output} + \mu V)$ referenced at 1 kHz

The Wideband Amplifier Flatness is downgraded as follows:

Frequency	\pm (% + μ V)
300 kHz to 2 MHz	0.15 + 3
2 to 10 MHz	0.25 + 3
10 to 20 MHz	0.41 + 3
20 to 30 MHz	0.93 + 3
300 kHz to 2 MHz	0.13 + 3
2 to 10 MHz	0.26 + 3
10 to 20 MHz	0.39 + 3
20 to 30 MHz	0.91 + 3
	300 kHz to 2 MHz 2 to 10 MHz 10 to 20 MHz 20 to 30 MHz 300 kHz to 2 MHz 2 to 10 MHz 10 to 20 MHz

		Absolute	
Range	Frequency	%	μV
300 µV to 1 mV	300 kHz to 2 MHz	0.1750	3.35
	2 to 10 MHz	0.4744	3.35
	10 to 20 MHz	0.8661	3.35
	20 to 30 MHz	2.2766	4.24
1 to 10 mV	300 kHz to 2 MHz	0.1831	3.0
	2 to 10 MHz	0.2915	3.0
	10 to 20 MHz	0.4828	3.0
	20 to 30 MHz	1.0830	3.0
10 to 100 mV	300 kHz to 2 MHz	0.1501	3.0
	2 to 10 MHz	0.3002	3.0
	10 to 20 MHz	0.4502	3.0
	20 to 30 MHz	1.0506	3.0
100 mV to 1 V	300 kHz to 2 MHz	0.1501	3.0
	2 to 10 MHz	0.3002	3.0
	10 to 20 MHz	0.4502	3.0
	20 to 30 MHz	1.0506	3.0
1 to 3 V	300 kHz to 2 MHz	0.1501	3.0
	2 to 10 MHz	0.3002	3.0
	10 to 20 MHz	0.4502	3.0
	20 to 30 MHz	1.0506	3.0

Resistance Range: 0 to 100 M Ω

Accuracy: ±ppm of output

	Para 4.11	Para 4.11A
Range	Absolute	Absolute
10Ω	25.09	25.50
100 Ω	9.25	10.32
1 kΩ	9.25	10.31
10 kΩ	9.24	10.31

Resistance (Cont.)

Range: 0 to 100 M Ω

Accuracy: ±ppm of output

	Para 4.11	Para 4.11A
Range	Absolute	Absolute
100 kΩ	11.03	11.20
1 MΩ	26.93	25.50
10 MΩ	50.99	52.20
100 MΩ	70.71	71.59
add 20 m Ω for	2 wire on 10 and	100 Ω rngs;
add 200 m Ω for	or 2 wire on 1 k Ω	thru 100 M Ω rngs