WT1ロロロFட Impedance Meter Communication Interface CSER＇S IIIIUIL

Thank you for purchasing the YOKOGAWA WT1600FC Impedance Meter.
This Communication Interface User's Manual describes the functions of the GP-IB, serial, and Ethernet interfaces and commands. To ensure correct use, please read this manual thoroughly before beginning operation.
After reading the manual, keep it in a convenient location for quick reference whenever a question arises during operation.
The following two manuals, including this one, are provided as manuals for the WT1600FC. Read them along with this manual.

Manual Title	Manual No.	Description
WT1600FC Impedance Meter	IM 760151-01E	Explains all functions and procedures of the WT1600FC excluding the communication functions.
User's Manual		This CD-R. Explains the communication functions of the GP-IB, serial, and Ethernet interfaces.
WT1600FC Impedance Meter	IM 760151-17E	
Communication Interface		
User's Manual		

Notes

Trademarks

- The contents of this manual are subject to change without prior notice as a result of continuing improvements to the instrument's performance and functions.
- Every effort has been made in the preparation of this manual to ensure the accuracy of its contents. However, should you have any questions or find any errors, please contact your nearest YOKOGAWA dealer.
- Copying or reproducing all or any part of the contents of this manual without the permission of Yokogawa Electric Corporation is strictly prohibited.
- MS-DOS or Visual Basic is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
- Adobe, Adobe Acrobat, and PostScript are trademarks or registered trademarks of Adobe Systems Incorporated.
- For purposes of this manual, the TM and ${ }^{\circledR}$ symbols do not accompany their respective trademark names or registered trademark names.
- Other company and product names are trademarks or registered trademarks of their respective companies.

Revisions

- 1st Edition: July, 2003

How to Use This Manual

Structure of the Manual

This User's Manual consists of the following sections:

Chapter 1 GP-IB Interface

Describes the functions and specifications of the GP-IB interface.

Chapter 2 Serial Interface

Describes the functions and specifications of the serial interface.
Chapter 3 Ethernet Interface
Describes the functions and specifications of the Ethernet interface.

Chapter 4 Before Programming

Describes the syntax used to transmit commands.

Chapter 5 Using Communication Commands

Describes all the commands one by one.

Chapter 6 Status Reports

Describes the status byte, various registers, queues, and other information.

Chapter 7 Sample Program

 Introduces a sample program written in Visual Basic using a Windows PC (the GP-IB board that is used is AT-GPIB/TNT IEEE-488.2 by National Instruments).
Appendix

Describes reference material such as an ASCII character code table.
Index Index of contents.

Conventions Used in This Manual

Symbols Used for Notes and Keys

Type	Symbol	Description	
Unit	k	$1000 \quad$ Example: 100 kHz	
	K	$1024 \quad$ Example: 459 KB (file data size)	
Note	Note	Calls attention to information that is important for proper operation of 	the instrument.
Key	Communication	Refers to a soft key displayed on the screen.	

Symbols Used in the Syntax Descriptions

Symbols which are used in the syntax descriptions in Chapter 5 are shown below. These symbols are referred to as BNF (Backus-Naur Form) symbols. For details on the data, see pages 4-5 and 4-6.

Symbol	Description	Example	Example of Input
$<>$	Defined value	ELEMent $\langle\mathrm{x}\rangle\langle\mathrm{x}\rangle=1$ to 5	->ELEMENT2
$\}$	One of the options in $\}$ is selected.	HCOPy: $\{T I F F \mid$ BMP $\} ?$	$->$ HCOPY:TIFF?
\mid	Exclusive OR		
[]	Can be omitted	CURSor $[:$ TYPE $]$	->CURSor

Contents

\qquad
Chapter 1 Overview of the GP-IB Interface
1.1 Names of the Parts and Their Functions .. 1-1
1.2 Connecting the GP-IB Cable .. 1-2
1.3 GP-IB Interface Functions ..1-3
1.4 GP-IB Interface Specifications .. 1-4
1.5 Setting the Address .. 1-5
1.6 Response to Interface Messages ... 1-6

Chapter 2 Overview of the Serial Interface
2.1 Names of the Parts and Their Functions .. 2-1
2.2 Serial Interface Functions and Specifications ... 2-2
2.3 Connecting the Serial Interface Cable ... 2-3
2.4 Handshaking .. 2-5
2.5 Matching the Data Format .. 2-7
2.6 Setting Serial Communications ... 2-8

Chapter 3 Overview of the Ethernet Interface
3.1 Names of the Parts and Their Functions ... 3-1
3.2 Ethernet Interface Functions and Specifications ... 3-2
3.3 Setting the Ethernet Control ... 3-4

Chapter 4 Before Programming
4.1 Messages .. 4-1
4.2 Commands ... 4-3
4.3 Response .. 4-5
4.4 Data .. 4-5
4.5 Synchronization with the Controller ... 4-7

Commands
5.1 Command List.. 5-1
5.2 COMMunicate Group ... 5-12
5.3 CURSor Group ...5-15
5.4 DISPlay Group .. 5-18
5.5 FILE Group .. 5-28
5.6 HCOPy Group.. 5-33
5.7 HOLD Group ... 5-37
5.8 IMAGe Group ... 5-38
5.9 IMPedance Group .. 5-39
5.10 INPut Group .. 5-46
5.11 INTEGrate Group ...5-56
5.12 MEASure Group ... 5-60
5.13 NUMeric group .. 5-65
5.14 RATE Group ... 5-71
5.15 STATus Group ... 5-72
5.16 STORe Group ... 5-74
5.17 SYSTem Group ... 5-79
5.18 WAVeform Group .. 5-82
5.19 WSETup (Wave SETup) Group .. 5-84
5.20 Common Command Group .. 5-87
Chapter 6 Status Report
6.1 Overview of the Status Report 6-1
6.2 Status Byte 6-2
6.3 Standard Event Register 6-3
6.4 Extended Event Register 6-4
6.5 Output Queue and Error Queue 6-5
Chapter 7 Sample Program
7.1 Before Programming 7-1
7.2 Sample Program Image 7-2
7.3 Initialization, Error, and Functions for Execution. 7-3
7.4 Output of Power Measurement Data 7-6
7.5 Output of Impedance Measurement Data 7-10
7.6 Output of Waveform Data (ASCII Format) 7-14
7.7 Output of Waveform Data (FLOAT Format) 7-17
Appendix
Appendix 1 ASCII Character Code App-1
Appendix 2 Error Messages App-2
Appendix 3 Overview of IEEE 488.2-1987 App-4
Index

1.1 Names of the Parts and Their Functions

Front Panel

Rear Panel

GP-IB connector
Used to connect a controller (personal computer etc.) using a GP-IB cable. For information on how to connect the GP-IB cable, refer to the following page. (selected at the time of purchase)

1.2 Connecting the GP-IB Cable

GP-IB Cable

The GP-IB connector on the side panel of the WT1600FC is a 24 -pin connector that conforms to IEEE Standard 488-1978. Use a GP-IB cable that also conforms to IEEE Standard 488-1978.

Connection Method

Connect the GP-IB cable as shown below.

Connection Precautions

- Be sure to tighten the screws on the GP-IB cable connector firmly.
- The instrument can be connected to more than one item of equipment (e.g. a personal computer) if more than one GP-IB cable is used. However, it is not possible to connect more than 15 items of equipment (including the controller) to a single bus.
- If you connect the instrument to more than one item of equipment, make sure that a different address is used for each item.
- Each connecting cable must be 2 m or less in length.
- The total length of all the cables must not exceed 20 m .
- While communications are in progress, more than two-thirds of the connected equipment items must be turned ON.
- When connecting more than one item of equipment, connect them so that the connection route forms a star or linear configuration. Loop or parallel wiring is not allowed.

CAUTION
Be sure to switch off power to both your PC and the oscilloscope before connecting or disconnecting cables. Failure to switch power off may cause internal circuit failure or improper operation.

1.3 GP-IB Interface Functions

GP-IB Interface Functions

Listener function

- Allows you to make the settings which you can make using the panel keys on the instrument, except for the power ON/OFF and GP-IB communications settings.
- Receives commands from a controller requesting output of set-up and waveform data.
Also receives status report commands.

Talker function

- Outputs set-up and waveform data.

Note

\qquad
The talk-only, listen-only and controller functions are not available on this instrument.

Switching between Remote and Local Modes

When switched from Local to Remote Mode

Remote mode is activated when a REN (Remote Enable) message is received from a controller while local mode is active.

- REMOTE is displayed on.
- All front panel keys except the LOCAL can no longer be operated any more.
- Settings entered in local mode are retained.

When switched from Remote to Local Mode

Pressing the LOCAL in remote mode puts the instrument in local mode. However, this is not possible if Local Lockout has been set by the controller (page 1-6).

- The REMOTE indicator is turned off.
- All front panel keys are operative.
- Settings entered in remote mode are retained.

1.4 GP-IB Interface Specifications

GP-IB Interface Specifications

Electrical and mechanical specifications : Conforms to IEEE Standard 488-1978.

Interface functions
Protocol
Code
Mode
Address setting

Remote mode clear
: Refer to the table below.
: Conforms to IEEE Standard 488.2-1987.
: ISO (ASCII) code
: Addressable mode
: Addresses 0 to 30 can be selected from the GP-IB setting screen, displayed when you press the MISC.
: Remote mode can be cleared by pressing the LOCAL. However, this is not possible if Local Lockout has been set by the controller.

Interface functions

Function	Subset Name	Description
Source handshaking	SH1	Full source handshaking capability
Acceptor handshaking	AH1	Full acceptor handshaking capability
Talker	T6	Basic talker capability, serial polling, untalk on MLA (My Listen Address), no talk-only capability
Listener	L4	Basic listener capability, unlisten on MTA (My Talk Address), no listen-only capability
Service request	SR1	Full service request capability
Remote local	RL1	Full remote/local capability
Parallel poll	PP0	No parallel polling capability
Device clear	DT1	Full device clear capability
Device trigger	C0	Device trigger capability
Controller	E1	No controller function
Electrical characteristic	Open collector	

1.5 Setting the Address

Keys

1. Press MISC to display the Misc menu.
2. Press the Communication soft key.
3. Press the Comm Device soft key to display the GP-IB menu.
4. Turn the jog shuttle to set the address.

Explanation
Carry out the following settings when using a controller to set information that can be specified through key operation on the WT1600FC or when outputting setting parameters or output waveform display data to the controller.

Setting the Address

Set the address of the WT1600FC within the following range for the addressable mode.
0 to 30
Each device that can be connected via GP-IB has a unique address within the GP-IB system. This address is used to distinguish the device from others. Therefore, when you connect the WT1600FC to a PC, for example, make sure to assign a unique address to the WT1600FC.

Note

Do not change the address while the controller or other devices are using the GP-IB system.

1.6 Response to Interface Messages

Response to Interface Messages

Response to a uni-line message
IFC (Interface Clear)
Clears the talker and listener. Stops output if data is being output.
REN (Remote Enable)
Switches between remote and local modes.
IDY (Identify) is not supported.

Response to a multi-line message (address command)

GTL (Go To Local)

Switches to local mode.
SDC (Selected Device Clear)
Clears the program message (command) which is currently being output. Also clears the output queue (page 6-5).
*OPC and *OPC? will be disabled if they are currently being executed.
*WAI and COMMunicate:WAIT will be stopped immediately.
GET (Group Execute Trigger)
Operates in the sameway as the TRG command.

PPC (Parallel Poll Configure) and TCT (Take Control) are not supported

Response to a multi-line message (universal command)

LLO (Local Lockout)
Invalidates the LOCAL on the front panel to disable switching to local mode.
DCL (Device Clear)
Same as SDC

SPE (Serial Poll Enable)

Sets the talker function to serial poll mode for all equipment connected to the communications bus. The controller performs polling on equipment sequentially.

SPD (Serial Poll Disable)

Clears serial poll mode as the talker function for all equipment connected to the communications bus.

PPU (Parallel Poll Unconfigure) is not supported.

What is an Interface Message?

An interface message is also called an interface command or bus command, and is issued by the controller. Interface messages are classified as follows.

Uni-line messages

Messages are transferred through a single control line. The following three types of uni-line message are available.
IFC (Interface Clear)
REN (Remote Enable)
IDY (Identify)

Multi-line message

Eight data lines are used to transmit a message. Multi-line messages are classified as follows.

Address commands

Valid when the equipment is designated as a listener or a talker. The following five address commands are available.

Commands valid for equipment designated as a listener
GTL (Go To Local)
SDC (Selected Device Clear)
PPC (Parallel Poll Configure)
GET (Group Execute Trigger)

Command valid for equipment designated as a talker
TCT (Take Control)

Universal commands

Valid for any item of equipment, irrespective of whether the item is designated as a listener or a talker. The following five universal commands are available.
LLO (Local Lockout)
DCL (Device Clear)
PPU(Parallel Poll Unconfigure)
SPE (Serial Poll Enable)
SPD (Serial Poll Disable)

In addition to the above commands, a listener address, talker address on secondary command can be sent in an interface message.

Messages marked with a " \star " are interface messages supported by the WT1600FC

Note

Differences between SDC and DCL
The SDC command is an address command and requires that both the talker and listener be designated; however DCL is a universal command and does not require that the talker and listener be designated. Therefore, SDC is used for particular items of equipment, while DCL can be used for any equipment connected to the communications bus.

2.1 Names of the Parts and Their Functions

Front Panel

Rear Panel

Serial (RS-232) connector
Complies with EIA-574 Standard (EIA-232 (RS-232) Standard for 9 pin) Used to connect a controller (personal computer etc.) using a serial cable. (selected at the time of purchase)

2.2 Serial Interface Functions and Specifications

Receiving Function

It is possible to make the same settings via the serial interface as can be made using the front panel keys.
Measured/computed data, panel set-up information and error codes can be received.

Sending Function

Measured/computed data can be output.
Panel set-up information and the status byte can be output.
Error codes which have occurred can be output.

Serial Interface Specifications

Electrical characteristics: Complies with EIA-574 Standard (EIA-232 (RS-232) Standard for 9 pin)
Connection : Point-to-point
Communications : Full-duplex
Synchronization : Start-stop system
Baud rate : 1200, 2400, 4800, 9600, 19200
Start bit : 1 bit (fixed)
Data Length : 7 or 8 bits
Parity : Even, odd or no parity
Stop Bit : 1 or 2 bits
Connector : DELC-J9PAF-13L6 (JAE or equivalent)
Hardware handshaking : User can select whether CA or CB signals will always be True, or will be used for control.
Software Handshaking : User can select whether to control only transmission or both transmission and reception using X-on and X-off signals.
X-on (ASCII 11H) X-off (ASCII 13H)
Receive : 256 bytes

Switching between Remote and Local Modes

When switched from Local to Remote Mode

Remote mode is activated when the "сомMunicate: REMote ON" command is received form a controller while local mode is active.

- REMOTE is displayed on.
- All front panel keys except the LOCAL can no longer be operated any more.
- Settings entered in local mode are retained.

When switched from Remote to Local Mode

Pressing the LOCAL in remote mode puts the instrument in local mode. However, this is not possible of Local Lockout (when the "COMMunicate:LOCKout ON" command is received) has been set by the controller (page 1-6).
Local mode is activated when the "COMMunicate: REMote OFF" command regardless of Local Lockout.

- The REMOTE indicator is turned off.
- All front panel keys are operative.
- Settings entered in remote mode are retained.

2.3 Connecting the Serial Interface Cable

When connecting this instrument to a computer, make sure that the handshaking method, data transmission rate and data format selected for the instrument match those selected for the computer.
For details, refer to the following pages. Also make sure that the correct interface cable is used.

Connector and Signal Names

2. RD (Received Data) : Data received from personal computer Signal direction...Input
3. SD (Send Data) : Data transmitted to a personal computer Signal direction...Output
5. SG (Signal Ground) : Ground for signals
7. RS (Request to Send) : Signal used for handshaking when receiving data from a personal computer Signal direction...Output
8. CS (Clear to Send) : Signal used for handshaking when transmitting data to a personal computer Signal direction...Input
Pin Nos. 1, 4, 6 and 9 are not used.

9-25 Pin Connector

The number between brackets refer to the pin Nos. of the 25 -pin connector.

Signal Direction

The figure below shows the direction of the signals used by the Serial interface.

2.3 Connecting the Serial Interface Cable

Table of Serial Standard Signals and their

Pin No. (9-pin connector)	Abbreviation			Description
	Serial (RS-232)	CCITT	JIS	
$\mathbf{5}$	AB (GND)	102	SG	Signal ground
$\mathbf{3}$	BA (TXD)	103	SD	Transmitted data
$\mathbf{2}$	BB (RXD)	104	RD	Received data
$\mathbf{7}$	CA (RTS)	105	RS	Request to send
$\mathbf{8}$	CB (CTS)	106	CS	Clear to send

Signal line connection example
The pin numbers shown are that of 9-pin connectors.
In general, use a cross cable.

2.4 Handshaking

To use an serial interface for transferring data between this instrument and a computer, it is necessary to use certain procedures by mutual agreement to ensure the proper transfer of data. These procedures are called "handshaking." Various handshaking systems are available depending on the computer to be used; the same handshaking system must be used for both the computer and this instrument.
This instrument allows you to choose any handshaking mode from the following four modes.

Handshake format Descriptions $\rightarrow \bigcirc$

Handshake Method		Data Sending Control (control method when sending data to a computer)			Data Receiving Control (control method when receiving data from a computer)		
		Software Handshake	Hardware Handshake	No handshake	Software Handshake	Hardware Handshake	No handshake
		Sending stops when X-off is received, and sending is resumed when X -on is received.	Sending stops when $\mathrm{CB}(\mathrm{CTS})$ is False, and sending is resumed when CB is True.		X -off is sent when received data buffer becomes 3/4full, and X -on is sent when the received data buffer is only 1/4-full.	CA (RTS) is set to False when received data buffer is only $3 / 4$-full, and is set to True when received data buffer is only $1 / 4$-full.	
	The menu of this instrument						
OFF-OFF	NO-NO			\bigcirc			\bigcirc
XON-XON	XON-XON	\bigcirc			\bigcirc		
XON-RS	XON-RTS	\bigcirc				\bigcirc	
CS-RS	CTS-RTS		\bigcirc			\bigcirc	

1 OFF-OFF

Transmission data control

There is no handshake status between the instrument and host computer. The X-OFF and $\mathrm{X}-\mathrm{ON}$ signal from the host computer is processed as data, and the CS signal is ignored.

Reception data control

There is no handshake status between the recorder and host computer. When the recorder reception buffer becomes full, the excess data is discarded. RS = True (fixed)

2 XON-XON

Transmission data control

A software handshake status is established between the instrument and host computer. The instrument will stop a data transmission when an X-OFF signal is received from the host computer, and will resume transmission when the next X-ON signal is received. A CS signal from the host computer is ignored.

Reception data control

A software handshake status is established between the instrument and host computer. When the instruments reception buffer vacancy reaches 64bytes, the XOFF signal will be sent to the host computer. When the reception buffer vacancy reaches 192 bytes, the X-ON signal will be sent. RS = True (fixed)

3 XON-RS

Transmission data control

A software handshake status is established between the instrument and host computer. The instrument will stop a data transmission when an X-OFF signal is received from the host computer, and will resume transmission when the next X-ON signal is received. A CS signal from the host computer is ignored.

Reception data control

A hardware handshake status is established between the instrument and host computer. When the instruments reception buffer vacancy reaches 64bytes, an "RS = False" status will be established. When the reception buffer vacancy reaches 192 bytes, an "RS = True" status will be established.

4 CS-RS

Transmission data control

A software handshake status is established between the instrument and host computer. The instrument will stop a data transmission if a "CS = False" status is established, and will resume the transmission when a "CS = True" status is established. The X-OFF and X-ON signals from the host computer are processed as data.

Reception data control

A hardware handshake status is established between the instrument and host computer. When the instruments reception buffer vacancy reaches 64bytes, an "RS = False" status will be established. When the reception buffer vacancy reaches 192 bytes, an "RS = True" status will be established.

Precautions Regarding Data Receiving Control

When handshaking is used to control the reception of data, data may still be sent from the computer even if the free space in the receive buffer drops below 64 bytes. In this case, after the receive buffer becomes full, the excess data will be lost, whether handshaking is in effect or not. Data storage to the buffer will begin again when there is free space in the buffer.

After reception of data stops, data continues to be passed to the internal program. Reception of data starts again when the free space in the buffer increases to 192 bytes.

Whether handshaking is in use or not, if the buffer becomes full, any additional data received is no longer stored and is lost.

Data Receiving Control using Handshaking

Note

It is necessary to create a host computer program which prevents the buffers of both the instrument and the computer from becoming full.

2.5 Matching the Data Format

The serial interface of this instrument performs communications using start-stop synchronization. In start-stop synchronization, one character is transmitted at a time. Each character consists of a start bit, data bits, a parity bit and a stop bit. Refer to the figure below.

2.6 Setting Serial Communications

Keys

Procedure

Displaying the Serial Communication (RS-232) Menu

1. Press MISC to display the Misc menu.
2. Press the Communication soft key.
3. Press the Comm Device soft key to display the RS-232 menu.

Selecting the Baud Rate, Data Format, and Other Parameters

4. Press the Baud Rate, Format, Rx-Tx (handshaking method), and Terminator soft keys and select each item.

Explanation

Carry out the following settings when using a controller to set information that can be specified through key operation on the WT1600FC or when outputting setting parameters or output waveform data to the controller.

Selecting the Baud Rate

Select the baud rate from the following.
1200, 2400, 4800, 9600, and 19200

Selecting the Data Format

Select the combination of data length, parity, and stop bit from the following.
8-NO-1, 7-EVEN-1, 7-ODD-1, and 7-NO-2

Selecting the Handshaking Method

Select the transmit data control and receive data control from the following. NO-NO, XON-XON, XON-RTS, and CTS-RTS

Selecting the Terminator

Select the terminator from the following. The menu of the WT1600FC selects the terminator that is used when transmitting data from the WT1600FC. Use "Lf" or "Cr+Lf" for the terminator when receiving the data on the WT1600FC.
Cr , Lf, and $\mathrm{Cr}+\mathrm{Lf}$

3.1 Names of the Parts and Their Functions

Front Panel

Rear Panel

Ethernet Interface connector

(10Base-T port)
For connecting the controller (PC) to the network, or for making a one-to-one connection (specify when ordering)
See section 11.1 in user's manual IM760151-01E

3.2 Ethernet Interface Functions and Specifications

You can use a PC to control the WT1600FC using Ethernet communications. Details about specific functions and how to enter settings are provided below.

Receiving Function

You can specify the same settings as those specified by front panel key operations. Receives output requests for measured and computed data, setting parameters of the panel, and error codes.

Sending Function

Outputs measured and computed data.
Outputs panel setup parameters and the status byte.
Outputs error codes that have occurred.

Ethernet Interface Specifications

Electrical and mechanical specifications: Conforms to IEEE 802.3.
Number of simultaneous connections: 1
Port number: 10001/tcp
For other specifications, see section 15.13, "Ethernet Interface (Option)" in the WT1600FC Digital Power Meter User's Manual (IM760151-01E).

Switching between Remote and Local Mode

When Switched from Local to Remote Mode

Remote mode is activated when the :COMMunicate: REMote ON command is received from a controller while local mode is active.

- The REMOTE indicator is turned ON.
- All keys except the LOCAL key are disabled.
- Settings entered in local mode are retained even when switching to remote mode.

When Switched from Remote to Local Mode

Pressing LOCAL in remote mode puts the instrument in local mode. However, this is not possible when the : СоMMunicate: REMote ON command is received from the PC while Local Lockout mode is active. Local mode is activated when the : COMMunicate: REMote OFF command is received regardless of Local Lockout.

- The REMOTE indicator is turned OFF.
- Key operations are enabled.
- Settings entered in remote mode are retained even when switching to local mode.

Note

The Ethernet interface cannot be used simultaneously with other communication interfaces (GPIB, or serial (RS-232)).

User Verification Function

You must enter the user name and password to access the WT1600FC from a PC using the Ethernet interface. The user name and password for accessing the WT1600FC can be specified in the User Account screen under the MISC menu. For details, see "Setting the Ethernet Control" below.

Connecting the WT1600FC and the PC

For the procedure for connecting the WT1600FC to a PC, see section 11.1 in the user's manual IM760151-01E.

3.3 Setting the Ethernet Control

Keys

Procedure

Selecting the Communications Interface to Be Used for Controlling the WT

1. Press MISC to display the Misc menu.
2. Press the Communication soft key to display the Comm menu.
3. Press the Comm Device soft key to display the Comm Device menu.
4. Press the Network soft key. The Ethernet interface is selected as the interface for controlling the WT1600FC.

For Suffix Code -C1 (GP-IB)

For Suffix Code -C2 (Serial)

Note

Only the communication interface selected under Device can be used. The WT1600FC will not accept commands that are sent to other unselected communication interfaces.

Setting the User Name and Password

5. Press the User Account soft key to display the User Account dialog box.

Note

When the FTP server function is specified (see section 11.6 of user's manual IM760151-01E), the user account and password are entered separately. It is recommended that you use the same settings as for the FTP server.
6. Turn the jog shuttle to select User Name.
7. Press SELECT to display the keyboard.
8. Use the keyboard to enter the user name.

For instructions on keyboard operations, see section 3.8 in the user's manual IM760151-01E.
9. Turn the jog shuttle to select Password. The password setting is entered twice.
10. Press SELECT to display the keyboard.
11. Use the keyboard to enter the password. Password is not required if the login name is anonymous.
For instructions on keyboard operations, see section 3.8 in the user's manual IM760151-01E.

Setting the Timeout Time

12. Turn the jog shuttle to select Time Out.
13. Press SELECT to display the timeout time selection box.
14. Turn the jog shuttle to set the timeout time.

For instructions on jog shuttle operations, see section 3.8 in the user's manual IM760151-01E.
15. Press SELECT or ESC to close the box.

Entering TCP/IP Settings

You must enter TCP/IP settings to control the WT1600FC from a PC using the Ethernet interface. For instructions on entering settings, see section 11.2 in the user's manual IM760151-01E.

Explanation

You can control the WT1600FC from a PC using the Ethernet interface. To enable this function, YOKOGAWA's dedicated software must have been installed on the PC in addition to entering the settings described above.

Free Software

FcEvaluation version 1.01 or later.
The program can be downloaded from the following URL.
http://www.yokogawa.co.jp/Measurement/F-SOFT/

Setting the User Name

- Enter the user name to allow access to the WT1600FC.
- Enter up to 15 characters.
- The characters that can be used are 0-9, A-Z, \%, _, () (parenthesis), - (minus sign).
- If you specify anonymous, the WT1600FC can be accessed from the outside (PC) without a password.

Setting the Password

- Enter the password for the user name to allow access to the WT1600FC.
- Enter up to 15 characters.
- The characters that can be used are 0-9, A-Z, \%, _, () (parenthesis), - (minus sign).
- If the user name is set to anonymous, the WT1600FC can be accessed from the outside (PC) without a password.
- The password setting is entered twice.

Setting the Timeout Time

The WT1600FC closes the connection to the network if there is no access for a certain period of time (timeout time).

The available settings are 0 to 3600 s , or Infinite. The default value is Infinite.

Note

To apply new settings, the WT1600FC must be power cycled.

4.1 Messages

Blocks of message data are transferred between the controller and this instrument during communications. Messages sent from the controller to this instrument are called program messages, and messages sent back from this instrument to the controller are called response messages.
If a program message contains a message unit, i.e. a command which requests a response, this instrument returns a response message. A single response message is always returned in reply to a program message.

Program Messages

The format of a program message is shown below.

<Program message unit>

A program message consists of one or more program message units; each unit corresponds to one command. This instrument executes commands one by one according to the order in which they are received.
Program message units are delimited by a ";". For a description of the format of the program message unit, refer to the explanation given further below.

Example

<PMT>

PMT is a terminator used to terminate each program message. The following three types of terminator are available.
NL (New Line) : Same as LF (Line Feed). ASCII code " $O A H$ " is used.
${ }^{\wedge}$ END $\quad:$ END message defined in IEEE488.1. (EOI signal)
(The data byte sent with an END message will be the final item of the program message unit.)
NL^END : NL with an END message attached (NL is not included in the program message unit.)

Program message unit format

The format of a program message unit is shown below.

<Program header>

A program header is used to indicate the command type. For details, refer to page 4-3.

<Program data>

If certain conditions are required for the execution of a command, program data must be added. Program data must be separated from the header by a space (ASCII code "20H"). If multiple items of program data are included, they must be separated by a "," (comma). For details, refer to page 4-5.

Example

Response Messages

The format of a response message is shown below.

<Response message units>

A response message consists of one or more response message units: each response message unit corresponds to one response.
Response message units are delimited by a ";". For the response message format, refer to the next page.

Example

<RMT>
RMT is the terminator used for every response message. Only one type of response message is available; NL^END.

Response message unit format

The format of a program message unit is shown below.

<Response header>

A response header sometimes precedes the response data. Response data must be separated from the header by a space. For details, refer to page 4-4.

<Response data>

Response data is used to define a response. If multiple items of response data are used, they must be separated by a "," (comma). For details, refer to page 4-5.

Example $\underbrace{100.00 \mathrm{E}-03<\text { RMT }>}$

If a program message contains more than one query, responses are made in the same order as the queries. Normally, each query returns only one response message unit, but there are some queries which return more than one response message unit. The first response message unit always responds to the first query, but it is not always true that the ' n ' th unit always responds to the ' n ' th query. Therefore, if you want to make sure that a response is made to each query, the program message must be divided up into individual messages.

Points to Note concerning Message Transmission

- It is always possible to send a program message if the previous message which was sent did not contain any queries.
- If the previous message contained a query, it is not possible to send another program message until a response message has been received. An error will occur if a program message is sent before a response message has been received in its entirety. A response message which has not been received will be discarded.
- If an attempt is made by the controller to receive a response message, even if there it no response message, an error will occur. An error will also occur if the controller makes an attempt to receive a response message before transmission of a program message has been completed.
- If a program message of more than one unit is sent and some of the units are incomplete, this instrument receives program message units which the instrument thinks complete and attempts to execute them. However, these attempts may not always be successful and a response may not always be returned, even if the program message contains queries.

Deadlock

This instrument has a buffer memory in which both program and response messages of 1024 bytes or more can be stored. (The number of bytes available will vary depending on the operating state of the instrument.) If the transmission and reception buffer memories become full at the same time, the instrument will not be able to continue the communication operation. This state is called deadlock. In this case, operation can be resumed by discarding the response message.
No dead lock will occur, if the size of the program message including the PMT is kept below 1024 bytes. Furthermore, no deadlock will occur if the program message does not contain a query.

4.2 Commands

There are three types of command (program header) which can be sent from the controller to this instrument. They differ in the format of their program headers.

They are

- Common command header
- Compound header
- Simple header

Common Command Header

Commands defined in IEEE 488.2-1987 are called common commands. The header format of a common command is shown below. An asterisk (*) must always be attached to the beginning of a command.

An example of a common command *CLS

Compound Header

Commands designed to be used only with this instrument are classified and arranged in a hierarchy according to their function. The format of a compound header is illustrated below. A colon (:) must be used when specifying a lower-level header.

An example of a compound header :DIAPlay:FORMat

Simple Header

These commands (headers) are functionally independent of each other and are not arranged hierarchically. The format of a simple header is shown below.

An example of a simple header
: HOLD

Note

A mnemonic is a character string made up of alphanumeric characters.

When Concatenating Commands Command Group

A command group is a group of commands which have the same compound header. A command group may contain sub-groups.

Example Commands relating to the display of impedance measurement
: DISPlay:IMPedance?
:DISPlay:IMPedance:TYPE
:DISPlay:IMPedance:OBJect
:DISPlay:IMPedance:ICURsor

When Concatenating Commands of the Same Group

This instrument stores the hierarchical level of the command which is currently being executed, and performs analysis on the assumption that the next command to be sent will also belong to the same level. Therefore, it is possible to omit the header if the commands belong to the same group.

Example :DISPlay:IMPedance:TYPE ZR_ZI; OBJect 5<PMT>

When Concatenating Commands of Different Groups

A colon (:) must be included before the header of a command, if the command does not belong to the same group as the preceding command.

```
Example :DISPlay:IMPedance:TYPE ZR_ZI;:
    DISPlay:FORMat NUMeric<PMT>
```


When Concatenating Simple Headers

When you type in a simple header after another command, you must include a colon (:) before the simple header.

Example :DISPlay:IMPedance:TYPE ZR_ZI;: HOLD ON<PMT>

When Concatenating Common Commands

Common commands defined in IEEE 488.2-1987 are independent of hierarchical level. Thus, it is not necessary to add a colon (:) before a common command.

Example :DISPlay:IMPedance: TYPE ZR_ZI;*CLS;OBJect 5<PMT>

4.2 Commands

When Separating Commands with <PMT>

If a terminator is used to separate two commands, each command is a separate message. Therefore, the common header must be typed in for each command even when commands of the same command group are being concatenated.

Example :DISPlay:IMPedance: TYPE ZR_ZI<PMT>:DISPlay: IMPedance:OBJect 5<PMT>

Upper-level Query

An upper-level query is a compound header to which a question mark is appended. Execution of an upperlevel query allows all a group's settings to be output at once. Some query groups comprising more than three hierarchical levels can output all their lower level settings.

```
Example :DISPlay[:NUMeric]:
    IMPedance?<PMT> ->
    :DISPLAY:NUMERIC:IMPEDANCE:
    TYPE ZR_ZI;OBJECT 5;
    ICURSOR 1<RMT>
```

In reply to a query, a response can be returned as a program message to this instrument. Transmitting a response can restore the settings made when the query was executed. However, some upper-level queries will not return set-up data which is not currently in use. Note that not all a group's information will necessarily be sent out as a response.

Header Interpretation Rules

This instrument interprets the header received according to the following rules.

- Mnemonics are not case sensitive.

Example

"CURSor" can also be written as "cursor" or
"Cursor".

- The lower-case part of a header can be omitted.

Example
"CURSor" can also be written as "CURSO" or "CURS".

- If the header ends with a question mark, the command is a query. It is not possible to omit the question mark.
Example
"CURSor?" cannot be abbreviated to anything shorter than "CURS?".
- If the " x " at the end of a mnemonic is omitted, it is assumed to be " 1 ".
Example
If "ELEMent<x>" is written as "ELEM", this represents "ELEMent1".

4.3 Response

On receiving a query from the controller, this instrument returns a response message to the controller. A response message is sent in one of the following two forms.

- Response consisting of a header and data If the query can be used as a program message without any change, a command header is attached to the query, which is then returned.
Example :DISPlay:FORMat?<PMT> ->
:DISPLAY:FORMAT WAVE<RMT>
- Response consisting of data only If the query cannot be used as a program message unless changes are made to it (i.e. it is a query-only command), no header is attached and only the data is returned. Some query-only cmands can be returned after a header is attached to them.
Example [:INPut]:POVer?<PMT> -> 0<RMT>

When returning a response without a header

It is possible to remove the header from a response consisting of a header and data. The "СОMMunicate: HEADer" command is used to do this.

Abbreviated form

Normally, the lower-case part is removed from a response header before the response is returned to the controller. Naturally, the full form of the header can also be used. For this, the "Communicate:VErbose" command is used. The part enclosed by [] is also omitted in the abbreviated form.

4.4 Data

Data

A data section comes after the header. A space must be included between the header and the data. The data contains conditions and values. Data is classified as below.

Data	Description
<Decimal>	Value expressed as a decimal number (Example: Set the PT ratio. -> [:INPUt]:SCALing:PT:ELEMent1 100)
<Voltage><Current> <Time><Frequency>	Physical value (Example: Set the voltage range. -> [:INPUt]:VOLTage:RANGE:ELEMent1 100V)
<Register>	Register value expressed as either binary, octal, decimal or hexadecimal (Example: Extended event register value -> STATUS:EESE \#HFE)
<Character data>	Specified character string (mnemonic). Can be selected from \{ \} (Example: Select the trigger mode. $\text { -> WSETup:TRIGger:MODE \{AUTO\|NORMal\}) }$
<Boolean>	Indicates ON/OFF. Set to ON, OFF or value (Example: Turn ON data hold. -> : HOLD ON)
$<$ Character string da	Arbitrary character string (Example: User-defined function -> MEASure:FUNCtion1:EXPRession "URMS(E1)")
<Filename>	Gives the name of a file. (Example: Name of file to be saved -> FILE:SAVE:WAVE[:EXECute] "CASE1")
<Block data>	Arbitrary 8-bit data (Example: Response to acquired waveform data -> \#40012ABCDEFGHIJKL)

<Decimal>

<Decimal> indicates a value expressed as a decimal number, as shown in the table below. Decimal values are given in the NR form specified in ANSI X3. 421975.

| Symbol | Description | Example |
| :--- | :--- | :--- | :--- |
| <NR1> | Integer | $125-1-1000$ |
| <NR2> | Fixed point number | $125.0-.90 \quad+001$. |
| <NR3> | Floating point number | $125.0 \mathrm{E}+0-9 \mathrm{E}-1 \quad+.1 \mathrm{E} 4$ |
| <NRf> | Any of the forms <NR1> to <NR3> is allowed. | |

Decimal values which are sent from the controller to this instrument can be sent in any of the forms to <NR3>. In this case, <NRf> appears.
For response messages which are returned from this instrument to the controller, the form (<NR1> to <NR3> to be used) is determined by the query. The same form is used, irrespective of whether the value is large or small.
In the case of <NR3>, the " + " after the " E " can be omitted, but the "-" cannot.
If a value outside the setting range is entered, the value will be normalized so that it is just inside the range.
If the value has more than the significant number of digits, the value will be rounded.

<Voltage>, <Current>, <Time>, <Frequency>

<Voltage>, <Current>, <Time> and <Frequency> indicate decimal values which have physical significance. <Multiplier> or <Unit> can be attached to <NRf>. They can be entered in any of the following forms.

Form	Example
<NRf><Multiplier><Unit>	5 MV
<NRf><Unit>	$5 \mathrm{E}-3 \mathrm{~V}$
<NRf><Multiplier>	5 M
<NRf>	$5 \mathrm{E}-3$

<Multiplier>

Multipliers which can be used are shown below.

Symbol	Word	Description
EX	Exa	10^{18}
PE	Peta	10^{15}
T	Tera	10^{12}
G	Giga	10^{9}
MA	Mega	10^{6}
K	Kilo	10^{3}
M	Mili	10^{-3}
U	Micro	10^{-6}
N	Nano	10^{-9}
P	Pico	10^{-12}
F	Femto	10^{-15}

<Unit>

Units which can be used are shown below.

Symbol	Word	Description
V	Volt	Voltage
A	Ampere	Current
S	Second	Time
HZ	Hertz	Frequency
MHz	Megahertz	Frequency

<Multiplier> and <Unit> are not case sensitive.
" U " is used to indicate " μ ".
"MA" is used for Mega (M) to distinguish it from Mili, except for in the case of Megahertz, which is expressed as "MHZ". Hence, it is not permissible to use " M " (Mili) for Hertz.

If both <Multiplier> and <Unit> are omitted, the default unit will be used.

Response messages are always expressed in <NR3> form. Neither <Multiplier> nor <Unit> is used, therefore the default unit is used.

<Register>

<Register> indicates an integer, and can be expressed in hexadecimal, octal or binary as well as a decimal number. <Register> is used when each bit of a value has a particular meaning. <Register> is expressed in one of the following forms.

Form	Example
<NR $>$	1
\#H<Hexadecimal value made up of the digits 0 to 9, and A to $\mathrm{F}>$	\#H0F
\#Q<Octal value made up of the digits 0 to $7>$	\#Q777
\#B<Binary value made up of the digits 0 and 1>	\#B001100

<Register> is not case sensitive.
Response messages are always expressed as <NR1>.

<Character Data>

<Character data> is a specified string of character data (a mnemonic). It is mainly used to indicate options, and is chosen from the character strings given in $\}$. For interpretation rules, refer to "Header Interpretation Rules" on page 4-4.

Form	Example
\{AUTO \mid NORMal $\}$	AUTO

As with a header, the "COMMunicate: VERBose" command can be used to return a response message in its full form. Alternatively, the abbreviated form can be used.
The "COMMunicate: HEADer" command does not affect <character data>.

<Boolean>

<Boolean> is data which indicates ON or OFF, and is expressed in one of the following forms.

Form	Example
$\{$ ON \mid OFF $\mid<$ NRf $>\}$	ON OFF 10

When <Boolean> is expressed in <NRf> form, OFF is selected if the rounded integer value is " 0 " and ON is selected if the rounded integer is "Not 0 ".
A response message is always " 1 " if the value is ON and " 0 " if it is OFF.

<Character String Data>

<Character string data> is not a specified character string like <Character data>. It is an arbitrary character string. A character string must be enclosed in single quotation marks (') or double quotation marks (").

Form	Example
<Character string data>	"ABC" "IEEE488.2-1987"

Response messages are always enclosed in double quotation marks.

If a character string contains a double quotation mark ("), the double quotation mark will be replaced by two concatenated double quotation marks (" "). This rule also applies to a single quotation mark within a character string.
<Character string data> is an arbitrary character string, therefore this instrument assumes that the remaining program message units are part of the character string if no single (') or double quotation mark (") is encountered. As a result, no error will be detected if a quotation mark is omitted.

<Filename>

Gives the name of a file. The format is as follows.

Form	Example		
$\{<$ NRf $>\mid<$ Character data $>\mid<$ Character string $\rangle\}$	1	CASE	"CASE"

If you input an <NRf> value, the system converts the value (after rounding to the nearest integer) to the corresponding 8 -character ASCII string. (If you set the value to 1 , the name becomes " 00000001 ".) Note that negative values are not allowed.
If you enter a <character data> or <character string> argument that is longer than eight characters, only the first eight characters are used.
Response messages always return filenames as <character string> arguments.

<Block data>

<Block data> is arbitrary 8-bit data. <Block data> is only used for response messages. Response messages are expressed in the following form.
Form Example
\#N<N-digit decimal value><Data byte string> \#40012ABCDEFGHIJKL

\#N

Indicates that the data is <Block data>. " N " is an ASCII character string number (digits) which indicates the number of data bytes that follow.

<N-digits decimal value>

Indicates the number of bytes of data. (Example:
$0012=12$ bytes)

<Data byte string>

The actual data. (Example: ABCDEFGHIJKL)
Data is comprised of 8 -bit values (0 to 255). This means that the ASCII code " 0 AH", which stands for "NL", can also be a code used for data. Hence, care must be taken when programming the controller.

4.5 Synchronization with the Controller

Overlap Commands and Sequential Commands

There are two kinds of command; overlap commands and sequential commands. Execution of an overlap command may start before execution of the previously sent command is completed.
The INPut: VOLTage: RANge: ELEMent1 command, for example, is a sequential command. Assume that you set a new voltage range value and immediately request return of the new value, as follows:
:INPut:VOLTage:RANGe;ELEMent1 100V; ELEMent? < PMT>
In this case, the response always returns the newest setting (" 100 V "). This is because it always completes processing of the current sequential command before moving on to the next command.
In contrast, assume that you begin a file load and then immediately query the voltage range value:
:FILE:LOAD:SETup "FILE1";:INPut:VOLTage: RANGe:ELEMent1?
Because "FILE: LOAD: SETup" is an overlapped command, the WT1600FC will advance to the ": INPut:VOLTage:RANGe:ELEMent1?" command before it finishes the load. The returned voltage range value will not show the newest setting, but will rather show the setting in use before the setup was changed. Obviously, use of overlapped commands may in some cases produce inappropriate results. Where necessary, you can avoid such problems as described below.

Synchronization with an Overlap Command Using the *WAI command

The *WAI command causes the commands which follow it to wait until an overlap command has been executed.
Example
:COMMunicate:OPSE \#H0040;:FILE:LOAD:
SETup "FILE1";*WAI;:INPut:VOLTage:RANGe: ELEMent1?<PMT>
The "COMMunicate: OPSE" command is used to designate which commands are to be subject to the *WAI command. In the above example, only auto setup is designated.
Since a *WAI command is executed just before
": INPut:VOLTage:RANGe:ELEMent?",
": INPut:VOLTage:RANGE:ELEMent1?" will not be executed until auto set-up has been completed.

Using the COMMunicate:OVERlap command

The "COMMunicate : OVERlap" command is used to enable or disable overlap operation.
Example
: COMMunicate:OVERlap \#HFFBF;:FILE:LOAD:
SETup "FILE1";:INPut:VOLTage:RANGe: ELEMent1?<PMT>
The "COMMunicate: OVERlap \#HFFBF" command disables overlapped operation of the medium access command, while enabling all other overlap-type operations. The oscilloscope will therefore handle "FILE:LOAD:SETup" s a sequential command, ensuring that the ": INPut: VOLTage: RANGe: ELEMent1?" command (in the above example) will not execute until file loading is completed.

Using the *OPC command

The *OPC command causes the OPC bit (bit 0) of the standard event register (page 6-3) to be set to " 1 " when an overlap operation has been completed. Example
:COMMunicate:OPSE \#H0040;*ESE 1;
*ESR?;*SRE 32;:FILE:LOAD:SETUp "FILE1";
*OPC<PMT>
(Response to *ESR? is decoded.)
(Service request is awaited.)
:INPut:VOLTage:RANGe:ELEMent1?<PMT> The "COMMunicate: OPSE" command is used to designate which commands are to be subject to the *OPC command. In the above example, only medium access commands are designated.
*ESE 1 and *SRE 32 stipulate that a service request is generated only when the OPC bit is set to " 1 ". *ESR? is used to clear the standard event register. In the above example,
": INPut: VOLTage:RANGe:ELEMent1?" will not be executed until a service request is generated.

Using the *OPC? query

The *OPC? query generates a response when an overlap operation has been completed.
Example
:COMMunicate:OPSE \#H0040;:FILE:LOAD:
SETup "FILE1";*OPC?<PMT>
(Response to *OPC? is decoded.)
:INPut:VOLTage:RANGe:ELEMent?<PMT>
The "COMMunicate: OPSE" command is used to designate which commands are to be subject to the *OPC? command. In the above example, only medium access commands are designated.
Since *OPC? does not generate a response until an overlap operation is completed, file loading will have been completed when a response to *OPC? is read.

Note

Most commands are sequential commands. Commands used in
Chapter 5 are sequential commands unless otherwise specified.

Synchronization with Non-Overlap Commands

Even for sequential commands, synchronization is sometimes required to correctly query the measured data.
If you wish to query the newest numeric data on every time measured data is updated, for example, sending the ": NUMeric [:NORMal]:VALue?" command at an arbitrary timing can cause data that is the same as the previous data to be received. This is because the WT1600FC returns the current measured data regardless of whether the measured data has been updated since the previous query.
In this case, the following method must be used to synchronize with the end of the updating of the measured data.

Using STATus:CONDition? query

The "STATus: CONDition?" query is used to query the contents of the condition register (page 6-4). You can determine whether the measured data is being updated by reading bit 0 of the condition register. If bit 0 of the condition register is " 1 ," the measured data is being updated. If it is " 0 ," the measured data can be queried.

Using the extended event register

Changes in the condition register are reflected in the extended event register (page 6-4).

Example
:STATus:FILTer1 FALL;:STATus:EESE 1;
EESR?;*SRE 8<PMT>
(Read the response to :STATus:EESR?)
LOOP
(Wait for a service request)
:NUMeric [:NORMal]:VALue?<PMT>
(Read the response to : NUMeric [:NORMal]:
VALue?)
:STATUS:EESR?<PMT>
(Read the response to :STATus:EESR?)
(Return to LOOP)

The "STATUS:FILTer1 FALL" command sets the transition filter such that Bit 0 (FILTer1) of the Extended Event Register sets to 1 when Bit 0 of the Condition Register changes from 1 to 0 .
"STATus:EESE 1 " is a command used only to reflect the status of bit 0 of the extended event register in the status byte.
"STATus:EESR?" is used to clear the extended event register.
The "*SRE 8" command is used to generate a service request caused solely by the extended event register. ": NUMeric [:NORMal] :VALue?" will not be executed until a service request is generated.

Using the COMMunicate:WAIT command
The "COMMunicate:WAIT" command halts communications until a specific event is generated.

Example
:STATus:FILTer1 FALL;:STATus:
EESR?<PMT>
(Read the response to :STATus:EESR?)
LOOP
COMMunicate:WAIT 1<PMT>
:NUMeric [:NORMal]:VALue?<PMT>
(Read the response to : NuMeric [:NORMal]:
value?)
:STATus:EESR?<PMT>
(Read the response to :STATus:EESR?)
(Return to LOOP)

For a description of "STATus:FILTer1 FALL" and "STATus:EESR?", refer to "Using the extended event register" on this page.
is halted until bit 0 of the extended event register is set to " 1 ".
The ": NuMeric [: NORMal]:VALue?" command will not be executed until bit 0 of the extended event register is set to " 1 ".

Chapter 5 Commands

5.1 Command List

Command	Function	Page
COMMunicate Group		
: СоMMunicate?	Queries all settings related to communications.	5-12
: COMMunicate: HEADer	Sets whether or not to be added a header to the response to a query or queries the current setting.	5-12
:COMMunicate:LOCKout	Sets or clears local lockout.	5-12
: COMMunicate:OPSE	Sets the overlap command that is to be used by the *OPC, *OPC?, and *WAI commands or queries the current setting.	5-13
:COMMunicate:OPSR?	Queries the operation pending status register.	5-13
:COMMunicate:OVERlap	Sets the commands that will operate as overlap commands or queries the current setting.	5-13
:COMMunicate: REMote	Sets remote or local.	5-13
:COMMunicate: STATus?	Queries line-specific status.	5-13
:COMMunicate:VERBose	Sets the response messages to full form or abbreviated form or queries the current setting.	5-13
:COMMunicate:WAIT	Waits for a specified extended event.	5-13
:COMMunicate:WAIT?	Creates the response that is returned when the specified event occurs.	5-14
CURSor Group		
:CURSor?	Queries all settings related to the cursor measurement.	5-16
:CURSor:TRENd?	Queries all settings related to the cursor measurement on the trend.	5-16
:CURSor:TRENd:POSition<x>	Sets the cursor position on the trend or queries the current setting.	5-16
:CURSor:TRENd[:STATe]	Turns ON/OFF the cursor display on the trend or queries the current setting.	5-16
:CURSor:TRENd:TRACe<x>	Sets the cursor target on the trend or queries the current setting.	5-16
:CURSor: TRENd: $\{\mathrm{X}<\mathrm{X}>\|\mathrm{Y}<\mathrm{X}>\| \mathrm{DY}\}$?	Queries the cursor measurement value on the trend.	5-16
:CURSor:WAVE?	Queries all settings related to the cursor measurement on the waveform display.	5-16
:CURSor: WAVE: PATH	Sets the cursor path on the waveform display or queries the current setting.	5-16
:CURSor:WAVE:POSition<x>	Sets the cursor position on the waveform display or queries the current setting.	5-16
: CURSor: WAVE [:STATe]	Turns ON/OFF the cursor display on the waveform display or queries the current setting.	5-17
:CURSor:WAVE:TRACe<x>	Sets the cursor target on the waveform display or queries the current setting.	5-17
:CURSor:WAVE: $\{\mathrm{X}<\mathrm{x}>\mid$ DX \mid PERDt $\|\mathrm{Y}<\mathrm{x}>\|$ DY $\}$?		
	Queries the cursor measurement value on the waveform display.	5-17
DISPlay Group		
:DISPlay?	Queries all settings related to the screen display.	5-21
:DISPlay:FORMat	Sets the display format or queries the current setting.	5-21
:DISPlay:NUMeric?	Queries all settings related to the numeric display.	5-21
:DISPlay[:NUMeric]:IMPedance?	Queries all settings related to the numeric display for impedance measurement.	5-21
:DISPlay [:NUMeric]:IMPedance:ICURsor		
	Sets the cursor position on the numeric display for impedance measurement or queries the current setting.	5-21
:DISPlay[:NUMeric]:IMPedance:OBJect		
	Sets the numeric display element for impedance measurement or queries the current setting.	5-21
:DISPlay [:NUMeric]:IMPedance:TYPE		
	Sets the numeric display item for impedance measurement or queries the current setting.	5-22
:DISPlay [:NUMeric]: NORMal?	Queries all settings related to the numeric display for power measurement.	5-22
:DISPlay[:NUMeric]:NORMal:FCURsor		
	Sets the cursor position on the numeric display (all display) for power measurement or queries the current setting.	5-22

Command	Function	Page	
:DISPlay[:NUMeric]:NORMal:IAMount			
	Sets the numeric display format for power measurement or queries the current setting.	5-22	
:DISPlay[:NUMeric]: NORMal:ICURsor			
	Sets the cursor position on the numeric display (split display) for power measurement or queries the current setting.	5-22	
:DISPlay[:NUMeric]: NORMal:ITEM<x>			
	Sets the numeric display item for power measurement or queries the current setting.	5-23	
:DISPlay [:NUMeric]: NORMal:PRESet	Presets the display order pattern of numeric display items for power measurement.	5-23	
:DISPlay:TRENd?	Queries all settings related to the trend.	5-23	
:DISPlay:TRENd:ALL	Collectively turns ON/OFF all trends.	5-23	
:DISPlay:TRENd:FORMat	Sets the display format of the trend or queries the current setting.	5-23	
:DISPlay:TRENd:NORMal?	Queries all settings related to all the trends for power measurement.	5-24	
:DISPlay:TRENd: NORMal:ITEM<x>?	Queries all settings related to the trend for power measurement.	5-24	
: DISPlay:TRENd: NORMal:ITEM<x> [:FUNCtion]			
	Sets the trend item for power measurement or queries the current setting.	5-24	
:DISPlay:TRENd: NORMal:ITEM<x>:SCALing?			
	Queries all settings related to the scaling of the trend for power measurement.	5-24	
: DISPlay:TRENd:NORMal:ITEM<x>:SCALing:MODE			
	Sets the scaling of the trend for power measurement or queries the current setting.	5-24	
:DISPlay:TRENd: NORMal:ITEM<x>: SCALing:VALue			
	Sets the upper and lower limits of manual scaling of the trend for power measurement or queries the current setting.	5-24	
:DISPlay:TRENd:PDIV	Sets the horizontal axis (Point/div) of the trend or queries the current setting.	5-25	
:DISPlay:TRENd:RESTart	Restarts the trend.	5-25	
:DISPlay:TRENd[:SAMPling]	Turns ON/OFF the trend waveform sampling or queries the current setting.	5-25	
: DISPlay:TRENd:TDIV	Sets the horizontal axis (T/div) of the trend for power measurement or queries the current setting.	5-25	
:DISPlay:TRENd:T<x>	Turns ON/OFF the trend or queries the current setting.	5-25	
:DISPlay:WAVE?	Queries all settings related to the waveform display.	5-25	
:DISPlay:WAVE:ALL	Collectively turns ON/OFF all waveform displays.	5-26	
: DISPlay:WAVE:FORMat	Sets the display format of the waveform or queries the current setting.	5-26	
:DISPlay:WAVE:GRATicule	Sets the graticule (grid) type or queries the current setting.	5-26	
:DISPlay:WAVE:INTerpolate	Sets the interpolation method of the waveform or queries the current setting.	5-26	
:DISPlay:WAVE:MAPPing?	Queries all settings related to the waveform mapping to the split screen.	5-26	
: DISPlay:WAVE:MAPPing [: MODE]	Sets the waveform mapping method for the split screen or queries the current setting.	5-26	
:DISPlay:WAVE:MAPPing: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>$ \}			
	Sets the waveform mapping to the split screen or queries the current setting.	5-26	
:DISPlay:WAVE:SVALue	Turns ON/OFF the scale value display or queries the current setting.	5-27	
: DISPlay:WAVE:TLABel	Turns ON/OFF the waveform labels or queries the current setting.	5-27	
:DISPlay:WAVE: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>\}$	Turns ON/OFF the waveform display or queries the current setting.	5-27	
FILE Group			
: FILE?	Queries all settings related to the file operation.	5-26	
:FILE:CDIRectory	Changes the current directory.	5-26	
:FILE: DELete:IMAGe: $\{$ TIFF\|BMP	PSCRipt $\}$		
	Deletes the screen image data file.	5-26	
:FILE:DELete:NUMeric: \{ASCii\|FLOat \}			
	Deletes the numeric data file.	5-26	
:FILE:DELete:SETup	Deletes the setup parameter file.	5-29	
:FILE: DELete:WAVE: \{BINary\|ASCii	FLOat \}		
	Deletes the waveform display data file.	5-29	
:FILE:DRIVe	Sets the target drive.	5-29	

Command	Function	Page		
:FILE:FORMat	Executes the floppy disk format.	5-29		
: FILE: FREE?	Queries the free space on the target drive.	5-29		
:FILE:LOAD:ABORt	Aborts file loading.	5-29		
:FILE:LOAD:FGWave	Loads the pattern waveform file of the load current for impedance measurement.	5-30		
:FILE:LOAD: SETup	Loads the setup parameter file.	5-30		
:FILE:MDIRectory	Creates the directory.	5-30		
: FILE: PATH?	Queries the absolute path of the current directory.	5-30		
:FILE:SAVE?	Queries all settings related to the saving of files.	5-30		
:FILE:SAVE:ABORt	Aborts file saving.	5-30		
:FILE:SAVE:ANAMing	Sets whether to automatically name the files to be saved or queries the current setting.	5-30		
:FILE:SAVE: ComMent	Sets the comment to be added to the file to be saved or queries the current setting.	5-30		
:FILE:SAVE: NUMeric?	Queries all settings related to the saving of numeric data files.	5-30		
:FILE:SAVE:NUMeric [:EXECute]	Saves the numeric data file.	5-30		
:FILE:SAVE:NUMeric:NORMal?	Queries all settings related to the saving of numeric data files for power measurement.	5-31		
:FILE:SAVE: NUMeric: NORMal:ALL	Collectively turns ON/OFF the output of all elements and functions when saving the numeric data file during power measurement.	5-31		
:FILE:SAVE:NUMeric: NORMal: \{ELEMent<x>\|SIGMA	SIGMB	SIGMC \}		
	Turns ON/OFF the output of the \{element $\|\Sigma \mathrm{A}\| \Sigma \mathrm{B} \mid \Sigma \mathrm{C}\}$ when saving the numeric data list to a file during power measurement or queries the current setting.	5-31		
:FILE:SAVE:NUMeric:NORMal:PRESet<x>				
	Presets the output ON/OFF pattern of the element and function when saving the numeric data to a file during power measurement.	5-31		
:FILE:SAVE: NUMeric: NORMal: <pow	measurement function>			
	Turns ON/OFF the output of the function when saving the numeric data file during power measurement or queries the current setting.	5-31		
:FILE:SAVE:NUMeric:TYPE	Sets the format of the numeric data to be saved or queries the current setting.	5-32		
:FILE:SAVE:SETup [EXECute]	Executes the saving of the setup parameter file.	5-32		
:FILE:SAVE:WAVE?	Queries all settings related to the saving of waveform display data files.	5-32		
:FILE:SAVE:WAVE[: EXECute]	Executes the saving of the waveform display data file.	5-32		
:FILE:SAVE:WAVE:TRACe	Sets the waveform to be saved to a file or queries the current setting.	5-32		
:FILE:SAVE:WAVE:TYPE	Sets the format of the waveform display data to be saved or queries the current setting.	5-32		
HCOPy Group				
: HCOPY?	Queries all settings related to the output of screen image data.	5-34		
: HCOPy:ABORt	Aborts screen image data output and paper feeding.	5-34		
: HCOPY : BMP?	Queries all settings related to the BMP format.	5-34		
: HCOPy: BMP:COLor	Sets the color tone for the BMP format or queries the current setting.	5-34		
: HCOPY: BMP: COMPression	Sets the data compression for the BMP format or queries the current setting.	5-34		
: HCOPY: COMMent	Sets the comment displayed at the bottom of the screen or queries the current setting.	5-35		
: HCOPy:DIRection	Sets the output destination of the screen image data or queries the current setting.	5-35		
: HCOPY: EXECute	Executes the screen image data output.	5-35		
: HCOPy : FORMat	Sets the file format of the screen image data to be saved or queries the current setting.	5-35		
: HCOPY : PRINter?	Queries all settings related to the built-in printer output.	5-35		
: HCOPy:PRINter: DLISt?	Queries all settings related to the printing of the numeric data list using the built-in printer.	5-35		
:HCOPy:PRINter:DLISt[:EXECute]	Executes the printing of the numeric data list using the built-in printer.	5-35		
: HCOPY:PRINter:DLISt:INFOrmatio	Sets whether or not to add setup parameters when printing the numeric data list using the built-in printer or queries the current setting.	5-35		

Command	Function	Page		
:HCOPY:PRINter:DLISt:NORMal?	Queries all settings related to the printing of the numeric data list for power measurement.	5-35		
:HCOPY:PRINter:DLISt:NORMal:ALL	Collectively turns ON/OFF the output of all elements and functions when printing the numeric data list using the built-in printer during power measurement.	5-36		
: HCOPy:PRINter: DLISt:NORMal: \{ELEMent<x>\|SIGMA	SIGMB	SIGMC \}		
	Turns ON/OFF the output of the $\{$ element $\|\Sigma \mathrm{A}\| \Sigma \mathrm{B} \mid \Sigma \mathrm{C}\}$ when printing the numeric data list on using the built-in printer during power measurement or queries the current setting.	5-36		
: HCOPy:PRINter:DLISt: NORMal:PRESet<x>				
	Presets the output ON/OFF pattern of the element and function when printing the numeric data list using the built-in printer during power measurement.	5-36		
:HCOPy:PRINter:DLISt:NORMal:<power measurement function>				
	Turns ON/OFF the output of the function when printing the numeric data list using the built-in printer during power measurement or queries the current setting.	5-36		
: HCOPY: PRINter:FEED	Executes paper feeding of the built-in printer.	5-36		
: HCOPy: SAVE?	Queries all settings related to saving the file.	5-36		
: HCOPY: SAVE:ANAMing	Sets whether to automatically name the files to be saved or queries the current setting.	5-36		
: HCOPy : SAVE: COMMent	Sets the comment to be added to the file to be saved or queries the current setting.	5-36		
: HCOPY: SAVE:NAME	Sets the name of the file to be saved or queries the current setting.	5-37		
: HCOPY:TIFF?	Queries all settings related to the TIFF format.	5-37		
: HCOPy:TIFF:COLor	Sets the color tone for the TIFF format or queries the current setting.	5-37		
HOLD Group				
: HOLD	Sets the output data (display, communications, etc.) hold or queries the current setting.	5-37		
IMAGe Group				
: IMAGe?	Queries all settings related to the output of screen image data.	5-38		
: IMAGe: COLor	Sets the color tone of the screen image data to be output or queries the current setting.	5-38		
: IMAGe: FORMat	Sets the output format of the screen image data or queries the current setting.	5-38		
: IMAGe: SEND?	Queries the screen image data.	5-38		
IMPedance Group				
: IMPedance?	Queries all settings related to impedance measurements.	5-41		
: IMPedance: CURRent:MRANge?	Queries the present current range.	5-41		
: IMPedance: DCControl?	Queries all settings related to the DC load current.	5-41		
:IMPedance:DCControl:DETaile?	Queries all settings related to the detailed settings of the DC load current.	5-41		
: IMPedance: DCControl: DETaile: HOLD				
	Sets the action taken by the WT1600FC (handling of the control signal to the			
	DC electronic load device) when hold is activated or queries the current setting.	5-42		
: IMPedance:DCControl: DETaile:LIMit				
	Sets the range of the DC load current or queries the current setting.	5-42		
: IMPedance:DCControl:DETaile:RATio				
	Sets the current value per volt of the control signal to the DC electronic load device or queries the current setting.	5-42		
: IMPedance: DCControl: OFFSet	Sets the current value of the DC load current or queries the current setting.	5-42		
: IMPedance: DCControl: OUTPut	Turns ON/OFF the DC load current or queries the current setting.	5-42		
: IMPedance:MEASure?	Queries all settings related to impedance measurements.	5-42		
: IMPedance:MEASure:ANALysis?	Sets the type of impedance measurement mode or queries the current setting.	5-42		
: IMPedance: MEASure: ARRay?	Queries the array information of the loaded pattern file.	5-42		
: IMPedance:MEASure:TYPE	Sets the FFT window width of impedance measurements or queries the current setting.	5-42		

Command	Function	Page
: IMPedance[:STATe]	Turns ON/OFF the impedance measurement mode or queries the current setting.	5-43
: IMPedance:SUPerpose?	Queries all settings related to the load current for impedance measurements.	5-43
: IMPedance: SUPerpose: AMPLitude	Sets the amplitude of the load current for impedance measurements or queries the current setting.	5-43
: IMPedance:SUPerpose: DETaile?	Queries all settings related to the detailed settings of the load current for impedance measurements.	5-43
: IMPedance: SUPerpose:DETaile:HOLD		
	Sets the action taken by the WT1600FC (handling of the control signal to the impedance measurement electronic load device) when hold is activated or queries the current setting.	5-43
: IMPedance:SUPerpose:DETaile:LIMit		
	Sets the range of the load current for impedance measurements or queries the current setting.	5-43
: IMPedance:SUPerpose:DETaile:RATio		
	Sets the current value per volt of the control signal to the impedance measurement electronic load device or queries the current setting.	5-43
: IMPedance:SUPerpose: DETaile:WAVeform		
	Sets the waveform of the load current for impedance measurements or queries the current setting.	5-43
: IMPedance: SUPerpose:FREQuency?	Queries all settings related to the frequency of the load current for impedance measurements.	5-43
: IMPedance:SUPerpose: FREQuency: RANGe		
	Sets the frequency range of the load current for impedance measurements or queries the current setting.	5-44
: IMPedance: SUPerpose:FREQuency : VALue		
	Sets the frequency of the load current for impedance measurements or queries the current setting.	5-44
: IMPedance: SUPerpose: OFFSet	Sets the magnitude of the DC component of the load current for impedance measurements or queries the current setting.	5-44
: IMPedance: SUPerpose: OUTPut?	Queries all settings related to the output of the load current for impedance measurements.	5-44
: IMPedance: SUPerpose: OUTPut [:STATe]		
	Turns ON/OFF the load current for impedance measurements or queries the current setting.	5-44
: IMPedance: SUPerpose: OUTPut:TYPE	Sets the output type of the load current for impedance measurements or queries the current setting.	5-44
: IMPedance: VOLTage?	Queries all settings related to the voltage sensing input of impedance measurements.	5-44
:IMPedance:VOLTage:ESTimate?	Queries the impedance estimates of all impedance measurement elements.	5-44
: IMPedance:VOLTage:ESTimate[:ALL]		
	Sets the impedance estimates of all impedance measurement elements collectively.	5-44
: IMPedance:VOLTage: ESTimate: ELEMent<x>		
	Sets the impedance estimate of the impedance measurement element or queries the current setting.	5-45
:IMPedance:VOLTage:INITialize	Sets the voltage range to the initial range.	5-45
:IMPedance:VOLTage:MRANge?	Queries the present voltage measurement range.	5-45
: IMPedance:VOLTage:RANGe?	Queries the voltage range mode of all impedance measurement elements.	5-45
: IMPedance:VOLTage: RANGe[: ALL]	Sets the voltage range mode of all impedance measurement elements collectively.	5-45
: IMPedance:VOLTage: RANGe: ELEMent<x>		
	Sets the voltage range mode of the impedance measurement element or queries the current setting.	5-45

Command	Function	Page
:IMPedance:VOLTage:TERMinal?	Queries the voltage input terminal of all impedance measurement elements.	5-45
: IMPedance:VOLTage:TERMinal [:ALL]		
	Sets the voltage input terminals of all impedance measurement elements collectively.	5-45
: IMPedance:VOLTage:TERMinal:ELEMent<x>		
	Sets the voltage input terminal of the impedance measurement element or queries the current setting.	5-45
INPut Group		
: INPut?	Queries all settings related to the input element.	5-48
[:INPut]: CURRent?	Queries all settings related to the current measurement.	5-48
[: INPut]: CURRent:AUTO[:ALL]	Collectively turns ON/OFF the current auto range of all power measurement elements.	5-48
[: INPut]: CURRent:AUTO: ELEMent<x>	Turns ON/OFF the current auto range of the power measurement element or queries the current setting.	5-49
[: INPut]: CURRent:MRANge?	Queries the present current measurement range.	5-49
[: INPut]: CURRent:RANGe?	Queries the current ranges of all power measurement elements.	5-49
[:INPut]: CURRent:RANGe[:ALL]	Collectively sets the current ranges of all power measurement elements.	5-49
[: INPut]: CURRent:RANGe:ELEMent<x>		

	Sets the current range of the power measurement element or queries the current setting.	5-50
[:INPut]: CURRent: SRATio?	Queries the current sensor scaling constants of all power measurement elements.	5-50
[: INPut]: CURRent: SRATio[:ALL]	Collectively sets the current sensor scaling constants of all power measurement elements.	5-50
[: INPut]: CURRent:SRATio:ELEMent<x>		
	Sets the current sensor scaling constant of the power measurement element or queries the current setting.	5-50
[:INPut]:CURRent:TERMinal?	Queries the current measurement terminal of all power measurement elements.	5-50
[:INPut]: CURRent:TERMinal [:ALL]	Collectively sets the current measurement terminals of all power measurement elements.	5-50
[: INPut]: CURRent:TERMinal:ELEMent<x>		
	Sets the current measurement terminal of the power measurement element or queries the current setting.	5-51
[:INPut]:FILTer?	Queries all settings related to the filter.	5-51
[:INPut]:FILTer:LINE?	Queries the line filter settings of all elements.	5-51
[:INPut]:FILTer [:LINE][:ALL]	Collectively sets the line filters of all elements.	5-51
[:INPut]:FILTer [:LINE]:ELEMent<x>		
	Sets the line filter of the element or queries the current setting.	5-51
[:INPut]:FILTer:ZCRoss?	Queries the zero-crossing filter settings of all power measurement elements.	5-51
[:INPut]:FILTer:ZCRoss[:ALL]	Collectively sets the zero-crossing filters of all power measurement elements.	5-51
:INPut]:FILTer:ZCRoss:ELEMent		

Sets the zero-crossing filter of the power measurement element or queriesthe current setting.5-51
[: INPut]:MODUle? Queries the input element type. 5-52
[:INPut]:NULL Turns ON/OFF the NULL function or queries the current setting. 5-52
[:INPut]: POVer? Queries the peak over information. 5-52
[:INPut]:SCALing? Queries all settings related to scaling. 5-52
[:INPut]:SCALing:\{PT|CT|SFACtor $\}$?
Queries the scaling constant of all elements. 5-52
[:INPut]:SCALing: \{PT|CT|SFACtor $\}$ [:ALL]
Collectively sets the scaling constants of all elements. 5-52
[: INPut]:SCALing: $\{\mathrm{PT}|\mathrm{CT}|$ SFACtor $\}:$ ELEMent<x>Sets the scaling constant of the element or queries the current setting.5-52

Command	Function	Page
[:INPut]:SCALing:STATe?	Queries the scaling ON/OFF states of all elements.	5-53
[:INPut]:SCALing [:STATe][:ALL]	Collectively turns ON/OFF the scaling of all elements.	5-53
[:INPut]: SCALing[:STATe]: ELEMent<x>		
	Turns ON/OFF the scaling of the element or queries the current setting.	5-53
[:INPut]:SYNChronize?	Queries the synchronization source of all power measurement elements.	5-53
[:INPut]:SYNChronize[:ALL]	Collectively sets the synchronization source of all power measurement elements.	5-53
[:INPut]:SYNChronize:ELEMent<x>	Sets the synchronization source of the power measurement element or queries the current setting.	5-53
[: INPut]:VOLTage?	Queries all settings related to the voltage measurement.	5-53
[: INPut]: VOLTage: AUTO [ALL]	Collectively turns ON/OFF the voltage auto range of all power measurement elements.	5-53
[: INPut]: VOLTage:AUTO: ELEMent<x>	Turns ON/OFF the voltage auto range of the power measurement element or queries the current setting.	5-54
[:INPut]:VOLTage:MRANge?	Queries the present voltage measurement range.	5-54
[:INPut]:VOLTage:RANGe?	Queries the voltage ranges of all power measurement elements.	5-54
[:INPut]:VOLTage:RANGe[:ALL]	Collectively sets the voltage ranges of all power measurement elements.	5-54
[:INPut]:VOLTage:RANGe:ELEMent<x>		
	Sets the voltage range of the power measurement element or queries the current setting.	5-54
[:INPut]:WIRing	Sets the wiring system or queries the current setting.	5-55
INTEGrate Group		
: INTEGrate?	Queries all settings related to the integration.	5-57
:INTEGrate:ACAL	Turns ON/OFF the auto calibration or queries the current setting.	5-57
: INTEGrate: CURRent?	Queries the current mode of the current integration of all power measurement elements.	5-57
: INTEGrate: CURRent[:ALL]	Collectively sets the current mode of the current integration of all power measurement elements.	5-57
: INTEGrate: CuRRent: ELEMent<x>	Sets the current mode of the current integration of the power measurement element or queries the current setting.	5-57
:INTEGrate: INDependent	Turns ON/OFF the individual element integration or queries the current setting.	5-57
: INTEGrate:MODE	Sets the integration mode or queries the current setting.	5-57
: INTEGrate:RESet	Resets the integrated value.	5-58
: INTEGrate:RTIMe<x>?	Queries the integration start and stop times for real-time integration mode.	5-58
:INTEGrate: RTIMe<x>: \{STARt\|END $\}$	Sets the integration \{start \|stop\} time for real-time integration mode or queries the current setting.	5-58
:INTEGrate:STARt	Starts the integration.	5-59
: INTEGrate:STATe?	Queries the integration condition.	5-59
: INTEGrate:STOP	Stops the integration.	5-59
:INTEGrate:TIMer<x>	Sets the integration timer time or queries the current setting.	5-59
MEASure Group		
:MEASure?	Queries all settings related to the measurement.	5-61
:MEASure:AVERaging?	Queries all settings related to averaging.	5-61
: MEASure:AVERaging: COUNt	Sets the averaging coefficient for power measurement or queries the current setting.	5-61
:MEASure:AVERaging [STATe]	Turns ON/OFF averaging or queries the current setting.	5-61
:MEASure:AVERaging:TYPE	Sets the averaging type for power measurement or queries the current setting.	5-62
:MEASure: DMeasure?	Queries all settings related to the delta computation.	5-62
:MEASure: DMeasure: OBJect	Sets the delta computation target or queries the current setting.	5-62
:MEASure: DMeasure:TYPE	Sets the delta computation mode or queries the current setting.	5-62
:MEASure: FREQuency?	Queries all settings related to frequency measurement.	5-62
:MEASure:FREQuency: ITEM	Sets the frequency measurement item or queries the current setting.	5-63

NUMeric Group

: NUMeric?
: NUMeric:IMPedance?
:NUMeric:IMPedance:ARRay
:NUMeric:IMPedance:CLEar : NUMeric:IMPedance:ITEM<x>
: NUMeric:IMPedance: NUMber
: NUMeric:IMPedance:PRESet
:NUMeric:IMPedance:VALue?
:NUMeric:NORMal?
:NUMeric[:NORMal]:CLEar
:NUMeric[:NORMal]:ITEM<x>
: NUMeric [:NORMal]: NUMber
:NUMeric [:NORMal]:PRESet
: NUMeric [:NORMal]:VALue?

RATE Group

: RATE

STATus Group

:STATus?
:STATus:CONDition?
:STATus:EESE
:STATus:EESR?
:STATus:ERRor?
:STATus:FILTer<x>
:STATus: QENable

Function	Page
Queries all settings related to user-defined functions.	$5-63$
Sets the equation of the user-defined function or queries the current setting.	$5-63$
Enables (ON) or Disables (OFF) the user-defined function or queries	
the current setting.	$5-63$

Sets the unit to be added to the computation result of the user-defined function or queries the current setting. 5-63
Turns ON/OFF the MAX HOLD function or queries the current setting. 5-63
Queries all settings related to the calculation of Pc (Corrected Power). 5-64
Sets the equation used to calculate Pc (Corrected Power) or queries the current setting. 5-64
Sets the parameter used to calculate Pc (Corrected Power) or queries the current setting. 5-64
Sets the display format of the phase difference or queries the current setting. 5-64
Sets the equation used to calculate S (reactive power) or queries the current setting. 5-64
Queries all settings related to the numeric data output. 5-66
Sets the format of the numeric data that is transmitted by ": NUMeric: \{NORMal|HARMonics|LIST:VALue?" or queries the current setting. 5-66
Queries all settings related to the numeric data output for impedance measurement. 5-66
Sets the number of data points (the number of arrays) when outputting an array-type function or queries the current setting. 5-66
Clears the numeric data output items for impedance measurement. 5-66
Sets the numeric data output items for impedance measurement or queries the current setting. 5-67
Sets the number of items of the numeric data that is transmitted by ": NUMeric: IMPedance: VALue?" or queries the current setting. 5-67
Presets the pattern of the numeric data output items for impedance measurement. 5-67
Queries the numeric data for impedance measurement. 5-67
Queries all settings related to the numeric data output for power measurement. 5-67
Clears the numeric data output item for power measurement. 5-68
Sets the numeric data output items for power measurement or queries the current setting. 5-68
Sets the number of the numeric data that is transmitted by
": NUMeric: NORMal:VALue?" or queries the current setting. 5-68
Presets the output item pattern of numeric data for power measurement. 5-68
Queries the numeric data for power measurement. 5-68

Sets the data update rate for power measurement or queries the current setting.

5-71
Sets the data update rate for power measurement or queries the current setting. 5-71
Queries all settings related to the communication status function. 5-72
Queries the contents of the condition register. 5-72
Sets the extended event enable register or queries the current setting. 5-72
Queries the content of the extended event register and clears the register. 5-72
Queries the error code and message information (top of the error queue). 5-73
Sets the transition filter or queries the current setting. 5-73
Sets whether or not to store messages other than errors to the error queue (ON/OFF) or queries the current setting. 5-73

Command
:STATus: QMESsage
: STATus:SPOLI?
STORe Group
: STORe?
: STORe:COUNt
:STORe:DIRection
:STORe:FILE?
: STORe:FILE:ANAMing
:STORe:FILE:COMMent
:STORe:FILE: NAME
:STORe:INTerval
:STORe:ITEM
:STORe:MEMory:CONVert:ABORt
:STORe:MEMory:CONVert:EXECute
:STORe:MEMory:INITialize
:STORe:MODE
:STORe:NUMeric?
:STORe:NUMeric: NORMal?
:STORe:NUMeric:NORMal:ALL

Function	Page
Sets whether or not to attach message information to the response to the	
"STATuS: ERRor?" query (ON/OFF) or queries the current setting.	$5-73$
Executes the serial polling.	$5-73$

Queries all settings related to store and recall. 5-75
Sets the store count or queries the current setting. 5-75
Sets the store destination or queries the current setting. \quad 5-75
Queries all settings related to the saving of the stored data to a file. 5-75
Sets whether to automatically name the files when saving the stored data
or queries the current setting.
Sets the comment to be added to the file when saving the stored data or queries the current setting.

5-75
Sets the name of the file when saving the stored data or queries the
current setting.
Sets the store interval or queries the current setting. $\quad 5-76$
Sets the items to be stored or queries the current setting. $\quad 5-76$
Abort converting the stored data from the memory to the file. 5-76
Executes the converting of the stored data from the memory to the file. $\quad 5-76$
Executes the initialization of the storage memory. $\quad 5-76$
Sets the data storage/recall or queries the current setting. 5-76
Queries all settings related to the storage of numeric data. 5-77
Queries all settings related to the storage of the numeric data for power
measurement.
Collectively turns ON/OFF the output of all elements and functions when storing the numeric data during power measurement.

5-77
:STORe: NUMeric: NORMal: \{ELEMent<x>|SIGMA|SIGMB|SIGMC\}
Turns ON/OFF the output of the $\{$ element $|\Sigma \mathrm{A}| \Sigma \mathrm{B} \mid \Sigma \mathrm{C}\}$ when storing the numeric data list during power measurement or queries the current setting. 5-77
$\begin{array}{ll}: \text { STORe: NUMeric: NORMal:PRESet<x> } & \begin{array}{l}\text { Presets the output ON/OFF pattern of the element and function when } \\ \\ \text { storing the numeric data during power measurement. }\end{array}\end{array}$
:STORe:NUMeric:NORMal:<power measurement function>
Turns ON/OFF the output of the function when storing the numeric data during power measurement or queries the current setting.

5-77
:STORe:RECall
:STORe:RTIMe?
Sets the data number to be recalled or queries the current setting.
5-78
:STORe:RTIMe: \{STARt|END \}
:STORe: SMODe
: STORe: STARt
:STORe:STOP
Queries the store start and stop date/time for real-time store mode.
Sets the store \{start| stop\} date/time for real-time store mode or queries the current setting.
$\begin{array}{ll}\text { Sets the store mode or queries the current setting. } & 5-78\end{array}$
Starts the data store operation. 5-78
Stops the data store operation. \quad 5-78
Queries all settings related to the storage of waveform display data. 5-78
Collectively turns ON/OFF the output of all waveforms when storing waveform display data.

5-78
Turns ON/OFF the output of the waveform when storing the waveform display data or queries the current setting.

SYSTem Group

:SYSTem?
:SYSTem:DATE
:SYSTem:LANGuage
: SYSTem:LCD?
:SYSTem:LCD:BRIGhtness
:SYSTem:LCD:COLor?
:SYSTem:LCD: COLor:GRAPh?
Queries all settings related to the system.
Sets the date or queries the current setting. 5-79
Sets the message language or queries the current setting. 5-80
Queries all settings related to the LCD monitor. $5-80$
Sets the brightness of the LCD monitor or queries the current setting. 5-80
Queries all settings related to the display colors of the LCD monitor. $5-80$
Queries all settings related to the display colors of the graphic items. $5-80$

Command	Function	Page			
:SYSTem:LCD: COLor:GRAPh: \{BACKground\|GRATicule	CURSor	U<x>\|I<x>\}			
	Sets the display color of the \{background \|graticule	cursor	voltage waveform	current waveform\} or queries the current setting.	5-80
:SYSTem:LCD:COLor:GRAPh:MODE	Sets the display color mode of the graphic items or queries the current setting.	5-80			
:SYSTem:LCD: COLor:TEXT?	Queries all settings related to the display colors of the text items.	5-80			
:SYSTem:LCD: COLor:TEXT: \{LET	BACKground\|BOX	SUB \mid SELected \}			
	Sets the display color of the $\{$ text(Menu Fore) \|menu background (Menu Back)	selected menu (Select Box)	pop-up menu (Sub Menu)	selected key (Selected Key)\} or queries the current setting.	5-81
:SYSTem:LCD:COLor:TEXT:MODE	Sets the display color mode of the text items or queries the current setting.	5-81			
:SYSTem:SCSI?	Queries all settings related to the SCSI-ID.	5-81			
:SYSTem:SCSI:HDMotor	Turns ON/OFF the motor of the internal hard disk or queries the current setting.	5-81			
:SYSTem:SCSI:INITialize	Executes the initialization of SCSI related parameters.	5-81			
:SYSTem:SCSI:INTernalid	Set the SCSI-ID of the internal hard disk or queries the current settings.	5-81			
:SYSTem:SCSI:OWNid	Set the SCSI-ID of the WT1600FC or queries the current settings.	5-81			
:SYSTem:TIME	Sets the time or queries the current setting.	5-81			
WAVeform Group					
:WAVeform?	Queries all information about the waveform display data.	5-82			
:WAVeform: BYTeorder	Sets the output byte order of the waveform display data (FLOAT format) that is transmitted by ": WAVeform : SEND?" or queries the current setting.	5-82			
:WAVeform: END	Sets the output end point of the waveform display data that is transmitted by ":WAVeform: SEND?" or queries the current setting.	5-82			
:WAVeform: FORMat	Sets the format of the waveform display data that is transmitted by ": WAVeform: SEND?" or queries the current setting.	5-83			
:WAVeform:LENGth?	Queries the total number of points of the waveform specified by ":WAVeform:TRACe".	5-83			
:WAVeform:SEND?	Queries the waveform display data specified by ": WAVeform: TRACe".	5-83			
:WAVeform:SRATe?	Queries the sample rate of the retrieved waveform.	5-83			
:WAVeform:STARt	Sets the output start point of the waveform display data that is transmitted by ":WAVeform: SEND?" or queries the current setting.	5-83			
:WAVeform:TRACe	Sets the target waveform for the commands in the WAVeform group or queries the current setting.	5-83			
:WAVeform:TRIGger?	Queries the trigger position of the retrieved waveform.	5-83			
WSETup (Wave SETup) Group					
:WSETup?	Queries all settings related to the waveform observation.	5-85			
:WSETup:POSition?	Queries all settings related to the vertical position (GND position) of the waveform.	5-85			
:WSETup: POSition: \{UALL\|IALL\}	Collectively sets the vertical position (level of the center position) of the waveform \{voltage \|current\} of all power measurement elements.	5-85			
:WSETup: POSition: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>$ \}	Sets the vertical position (level of the center position) of the waveform \{voltage\|current\} of the element or queries the current setting.	5-85			
:WSETup [:SAMPling]	Turns ON/OFF the waveform sampling or queries the current setting.	5-85			
:WSETup:TDIV	Sets the Time/div value of the waveform or queries the current setting.	5-85			
:WSETup:TRIGger?	Queries all settings related to the trigger.	5-85			
:WSETup:TRIGger:LEVel	Sets the trigger level or queries the current setting.	5-85			
:WSETup:TRIGger:MODE	Sets the trigger mode or queries the current setting.	5-85			
:WSETup:TRIGger:SLOPe	Sets the trigger slope or queries the current setting.	5-85			
:WSETup:TRIGger: SOURce	Sets the trigger source or queries the current setting.	5-86			
:WSETup:VZoom?	Queries all settings related to the vertical zoom factor of the waveform.	5-86			
:WSETup:VZoom: \{UALL \| IALL \}	Collectively sets the vertical zoom factor of the waveform \{voltage\|current\} of all power measurement elements.	5-86			
:WSETup:VZoom: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>$ \}	Sets the vertical zoom factor of the waveform \{voltage\|current \} of the power measurement element or queries the current setting.	5-86			

Command	Function	Page
Common Command Group		
*CAL?	Executes zero calibration (zero level compensation, same operation as pressing CAL (SHIFT+MEASURE)) and queries the result.	5-87
*CLS	Clears the standard event register, extended event register, and error queue.	5-87
*ESE	Sets the standard event enable register or queries the current setting.	5-87
*ESR?	Queries the standard event register.	5-88
*IDN?	Queries the instrument model.	5-88
*OPC	Sets a " 1 " to bit 0 (OPC bit) of the standard event register upon the completion of the specified overlap command.	5-88
	The register is cleared when the value rounded to an integer is a non-zero value.	5-88
*OPC?	ASCII code " 1 " is returned when the specified overlap command is completed when OPC? is transmitted.	5-88
*OPT?	Queries the installed options.	5-88
*PSC	Sets whether or not to clear the registers at power on or queries the current setting.	5-88
*RST	Executes the initialization of settings.	5-88
*SRE	Sets the service request enable register or queries the current setting.	5-89
*STB?	Queries the status byte register.	5-89
*TRG	Executes the same operation as when SINGLE (SHIFT+HOLD) is pressed.	5-89
*TST?	Performs a self-test and queries the result.	5-89
*WAI	Holds the subsequent command until the completion of the specified overlap operation.	5-89

5.2 COMMunicate Group

The commands in this group deal with communications.
There are no front panel keys that correspond to the commands in this group.

: COMMunicate?

Function Queries all settings related to communications.
Syntax : СомMunicate?
Example :COMMUNICATE? -> :COMMUNICATE:
HEADER 1;OPSE 96;OVERLAP 96; VERBOSE 1

: COMMunicate: HEADer

Function Sets whether to add a header to the response to a query (example DISPLAY: FORMAT NUMERIC) or not add the header (example NUMERIC).
Syntax :COMMunicate:HEADer \{<Boolean>\} : COMMunicate: HEADer?
Example :COMMUNICATE:HEADER ON : COMMUNICATE: HEADER? -> :COMMUNICATE:HEADER 1

: COMMunicate:LOCKout

Function Sets or clears local lockout.
Syntax :COMMunicate:LOCKout \{<Boolean>\}
: COMMunicate:LOCKout?
Example :COMMUNICATE:LOCKOUT ON :COMMUNICATE:LOCKOUT? -> :COMMUNICATE:LOCKOUT 1
Description This is a command specific to the serial (RS232) interface. An interface message is available for the GP-IB interface.

: COMMunicate:OPSE (Operation Pending	
Function	Sets the overlap command that is to used by the *OPC, *OPC?, and *WAI commands or queries the current setting.
Syntax	: COMMunicate: OPSE <Register> : COMMunicate:OPSE? <Register> $=0$ to 65535, See the figure for the
	: COMMunicate:WAIT? command.
Example	```:COMMUNICATE:OPSE 65535 :COMMUNICATE:OPSE? -> :COMMUNICATE: OPSE 96```
Description	In the above example, all bits are set to 1 to make all overlap commands applicable. However, bits fixed to 0 are not set to 1 . Thus, the response to the query indicates 1 for bits 5 and 6 only.
: COMMunicate : OPSR?	
(Operation	(Pending Status Register)
Function	Queries the value of the operation pending status register.
Syntax	: COMMunicate: OPSR?
Example	: COMMUNICATE:OPSR?
Description	For details on the operation pending status register, see the figure for the : COMMunicate:WAIT? command.
: COMMunicate: OVERlap	
Function	Sets the commands that will operate as overlap commands or queries the current setting.
Syntax	:COMMunicate:OVERlap <Register> : COMMunicate: OVERlap? <Register> = 0 to 65535, See the figure for the
	: COMMunicate: WAIT? command.
Example	:COMMUNICATE:OVERLAP 65535 :COMMUNICATE:OVERLAP? -> :COMMUNICATE:OVERLAP 96
Description - In the above example, all bits are set to 1 to make all overlap commands applicable. However, bits fixed to 0 are not set to 1 . Thus, the response to the query indicates 1 for bits 5 and 6 only. - For the description regarding how to synchronize the program using COMMunicate: OVERlap, see page 4-8. - In the above example, bits 5 and 6 are set to 1 to make all overlap commands applicable (see the figure for the : COMMunicate: WAIT? command).	

Status Enable register)
Function Sets the overlap command that is to used by the *OPC, *OPC?, and *WAI commands or queries the current setting.
Syntax : COMMunicate:OPSE <Register> : COMMunicate:OPSE? <Register> = 0 to 65535, See the figure for : COMMunicate:WAIT? command.
Example :COMMUNICATE:OPSE 65535 :COMMUNICATE:OPSE? -> :COMMUNICATE: OPSE 96 make all overlap commands applicable. However, bits fixed to 0 are not set to 1. Thus and 6 only.
(Operation Pending Status Register)
Function Queries the value of the operation pending

Syntax :COMMunicate:OPSR?
Example :COMMUNICATE:OPSR? -> 0
Description For details on the operation pending status register, see the figure for the :COMMunicate:WAIT? command.

COMMnicate:OVERlap

commands or queries the current setting. :COMMunicate:OVERlap?
<Register> = 0 to 65535, See the figure for : COMMunicate:WAIT? command. COMMUNICATE:OVERLAP? -> :COMMUNICATE:OVERLAP 96
above example, all bits are set to 1 However, bits fixed to 0 are not set to 1 . Thus, the response to the query indicates 1 for bits 5 and 6 only.
he description regarding how to menize the program using

In the above example, bits 5 and 6 are set to 1 to make all overlap commands applicable : COMMunicate:WAIT? command).

: COMMunicate: REMote

Function Sets remote or local. ON is remote mode.
Syntax :COMMunicate:REMote \{<Boolean>\} :COMMunicate:REMote?
Example :COMMUNICATE:REMOTE ON :COMMUNICATE:REMOTE? -> :COMMUNICATE:REMOTE 1

Description This is a command specific to the serial (RS232) interface. An interface message is available for the GP-IB interface.

: COMMunicate:STATus?

Function Queries line-specific status.
Syntax :COMMunicate:STATus?
Example :COMMUNICATE:STATUS? -> :COMMUNICATE:STATUS 0
Description The meaning of each status bit is as follows:

Bit	GP-IB	RS-232
0	Unrecoverable transmission error	Parity error
1	Always 0	Framing error
2	Always 0	Break character detected
3 to	Always 0	Always 0

The status bit is set when the corresponding cause occurs and cleared when it is read.

: COMMunicate: VERBose

Function Sets whether to return the response to a query using full spelling (example DISPLAY: FORMAT NUMERIC) or using abbreviation (example DISP:FORM NUM).
Syntax :COMMunicate:VERBose \{<Boolean>\} : COMMunicate:VERBose?
Example :COMMUNICATE:VERBOSE ON :COMMUNICATE:VERBOSE? -> :COMMUNICATE:VERBOSE 1

: COMMunicate: WAIT

Function Waits for one of the specified extended events to occur.
Syntax : COMMunicate:WAIT <Register> <Register> = 0 to 65535 (extended event register, see page 6-4.)
Example :COMMUNICATE:WAIT 1
Description For the description regarding how to synchronize the program using COMMunicate : WAIT, see page 4-9.

5.2 COMMunicate Group

:COMMunicate:WAIT?

Function Creates the response that is returned when the specified event occurs.
Syntax :COMMunicate:WAIT? <Register> <Register>= 0 to 65535 (extended event register, see page 6-4.)
Example :COMMUNICATE:WAIT? 65535 -> 1
Operation pending status register/overlap enable register
 When bit 5 (PRN) $=1$:
Built-in printer operation and network printer operation not complete
When bit 6 (ACS) = 1 :
Access to the medium not complete.

5.3 CURSor Group

The commands in this group deal with cursor measurements. You can make the same settings and inquiries as when CURSOR (SHIFT+WAVE) on the front panel is used.
However, the commands in this group are invalid on models that are only equipped with impedance measurement elements.

: CURSor?	
Function	Queries all settings related to cursor measurements.
Syntax	: CURSor?
Example	```:CURSOR? -> :CURSOR:WAVE:STATE 0; TRACE1 U1;TRACE2 I1;PATH MAX; POSITION1 2.0E-03; POSITION2 8.OE-03;:CURSOR:TREND: STATE 0;TRACE1 1;TRACE2 2; POSITION1 6;POSITION2 54```
: CURSor : TRENd?	
Function	Queries all settings related to the cursor measurement on the trend.
Syntax	: CURSor: TRENd?
Example	:CURSOR:TREND? -> :CURSOR:TREND:STATE 1;TRACE1 1; TRACE2 2;POSITION1 6;POSITION2 54
: CURSor: TRENd : POSition<x>	
Function	Sets the cursor position on the trend or queries the current setting.
Syntax	```:CURSor:TRENd:POSition<x> {<NRf>} :CURSor:TRENd:POSition<x>? <x> = 1, 2 <NRf> = 0 to 500```
Example	```:CURSOR:TREND:POSITION1 10 :CURSOR:TREND:POSITION1? -> :CURSOR:TREND:POSITION1 10```
: CURSor: TRENd [: STATe]	
Function	Turns ON/OFF the cursor display on the trend or queries the current setting.
Syntax	:CURSor:TRENd[:STATe] \{<Boolean>\} : CURSor:TRENd:STATe?
Example	```:CURSOR:TREND:STATE ON :CURSOR:TREND:STATE? -> :CURSOR: TREND:STATE 1```
: CURSor: TRENd: TRACe<x>	
Function	Sets the cursor target on the trend or queries the current setting.
Syntax	```:CURSor:TRENd:TRACe<x> {<NRf>} :CURSor:TRENd:TRACe<x>? <x> = 1, 2 <NRf> = 1 to 16```
Example	```:CURSOR:TREND:TRACE1 1 :CURSOR:TREND:TRACE1? -> :CURSOR: TREND:TRACE1 1```

: CURSor : TRENd: $\{\mathrm{X}<\mathrm{x}>|\mathrm{Y}<\mathrm{x}>| \mathrm{DY}\}$?

Function Queries the cursor measurement value on the trend.
Syntax : CURSor:TRENd: $\{\mathrm{X}<\mathrm{x}>|\mathrm{Y}<\mathrm{X}>| \mathrm{DY}\}$?
$X<x>=$ Trend time string of the cursor position
($\mathrm{X} 1=\mathrm{D}+\mathrm{X} 2=\mathrm{Dx}$)
$Y<x>=Y$-axis value of the cursor position
$(\mathrm{Y} 1=\mathrm{Y}+, \mathrm{Y} 2=\mathrm{Yx})$
$D Y=Y$-axis value between cursors (ΔY)
$<x>=1,2$
Example :CURSOR:TREND:X1? -> "2003/04/01
12:34:56"
:CURSOR:TREND:Y1? -> 78.628E+00
Description If the cursor display is not turned ON on the trend, the following results.
For $\mathrm{X}\langle\mathrm{x}>$: "****/**/****:**:**" is returned.
For $Y<x>$ and DY: "NAN (Not A Number)" is returned.

: CURSor:WAVE?

Function Queries all settings related to the cursor measurement on the waveform display.
Syntax :CURSor:WAVE?
Example :CURSOR:WAVE? -> :CURSOR:WAVE:
STATE 1;TRACE1 U1;TRACE2 I1;
PATH MAX;POSITION1 2.0E-03;
POSITION2 8.0E-03

: CURSOr : WAVE : PATH

Function	Sets the cursor path on the waveform display or queries the current setting.	
Syntax	: CURSor:WAVE: PATH \{MAX\|MIN	MID\}
	: CURSor:WAVE: PATH?	
Example	:CURSOR:WAVE:PATH MAX	
	:CURSOR:WAVE:PATH? -> : CURSOR:WAVE:	
	PATH MAX	

:CURSor:WAVE:POSition<x>

Function Sets the cursor position on the waveform display or queries the current setting.
Syntax :CURSor:WAVE:POSition<x> \{<Time>\}
:CURSor:WAVE:POSition<x>?
$<x>=1,2$
<Time> $=0$ to 5.00 s
Example :CURSOR:WAVE:POSITION1 2MS
:CURSOR:WAVE:POSITION1? -> :CURSOR: WAVE:POSITION1 2.0E-03
Description The selectable range and resolution of <Time> is determined by the Time/div value of the waveform (:WSETup:TDIV).

:CURSor:WAVE [:STATe]

Function Turns ON/OFF the cursor display on the waveform display or queries the current setting.
Syntax :CURSor:WAVE[:STATe] \{<Boolean>\} :CURSOR:WAVE:STATe?
Example :CURSOR:WAVE:STATE ON :CURSOR:WAVE:STATE? -> :CURSOR: WAVE:STATE 1

:CURSor:WAVE:TRACe<x>

Function Sets the cursor target on the waveform display or queries the current setting.
Syntax :CURSor:WAVE:TRACe $<x>\{U<x>\mid I<x>\}$:CURSor:WAVE:TRACe<x>?
$<x>$ of TRACe<x> $=1$ and 2
$\langle x\rangle$ of $U\langle x\rangle,|<x\rangle=1$ to 4 (power measurement element)
Example :CURSOR:WAVE:TRACE1 U1 :CURSOR:WAVE:TRACE1? -> :CURSOR:WAVE:TRACE1 U1
: CURSor : WAVE : $\{\mathrm{X}<\mathrm{X}>|\mathrm{DX}|$ PERDt $|\mathrm{Y}<\mathrm{x}>| \mathrm{DY}\}$?
Function Queries the cursor measurement value on the waveform display.
Syntax : CURSor:WAVE: $\{\mathrm{X}<\mathrm{x}>|\mathrm{DX}|$ PERDt $|\mathrm{Y}<\mathrm{X}>|$ DY\}?
$X<x>=X$-axis value of the cursor position ($\mathrm{X} 1=\mathrm{X}+\mathrm{X} 2=\mathrm{Xx}$)
$D X=X$-axis value between cursors (ΔX) PERDt $=1 / \Delta T(1 / \Delta X)$ value between cursors $Y<x\rangle=Y$-axis value of the cursor position $(\mathrm{Y} 1=\mathrm{Y}+, \mathrm{Y} 2=\mathrm{Yx})$
$D Y=Y$-axis value between cursors (ΔY) $<x>=1,2$
Example :CURSOR:WAVE:Y1? -> 78.628E+00
Description If the cursor display is not turned ON in the waveform display, "NAN (Not A Number)" is returned.

5.4 DISPlay Group

The commands in this group deal with the screen display.
You can make the same settings and inquiries as when DISPLAY on the front panel is used.

5.4 DISPlay Group

: DISPlay?

Function	Queries all settings related to the screen display.
Syntax	: DISPlay?
Example	- Example in which the display format (:DISPlay:FORMat) is set to "NWAVe" :DISPLAY? -> :DISPLAY: FORMAT NWAVE; (Response to ":DISPlay:NUMeric?" with the first ":DISPLAY:" section removed); (the response to ": DISPlay:WAVE?")

: DISPlay: FORMat

Function Sets the display format or queries the current setting.
Syntax :DISPlay:FORMat \{NUMeric|WAVE| TRENd|NWAVe|NTRend|WTRend\}
: DISPlay:FORMat?
NUMeric = Displays only the numeric values.
WAVE = Displays only the waveforms.
TRENd = Trend
NWAVe = Displays both the numeric values and the waveforms.
NTrend = Displays both the numeric values and the trends.
WTRend = Displays both the waveforms and the trends.
Example :DISPLAY:FORMAT NUMERIC
: DISPLAY:FORMAT? -> :DISPLAY: FORMAT NUMERIC
Description • This command is valid only during power measurement. A dedicated impedance measurement display is shown during impedance measurement, regardless of this setting.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay: NUMeric?

Function	Queries all settings related to the numeric display.
Syntax	: DISPlay: NUMeric?
Example	- During power measurement (:IMPedance [:STATe] is set to "OFF(0)") :DISPLAY:NUMERIC? -> (same as the response to ": DISPlay [:NUMeric]:NORMal?") - During impedance measurement (: IMPedance[:STATe] is set to "ON(1)") :DISPLAY:NUMERIC? -> (same as the response to ": DISPlay [:NUMeric]:IMPedance?")

Description • This command is valid only during power measurement. A dedicated impedance measurement display is shown during impedance measurement, regardless of this setting.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay [: NUMeric]: IMPedance?

Function Queries all settings related to the numeric display for impedance measurement.
Syntax :DISPlay[:NUMeric]:IMPedance?
Example :DISPLAY:NUMERIC:IMPEDANCE? -> :DISPLAY:NUMERIC:IMPEDANCE: TYPE ZR_ZI;OBJECT 5;ICURSOR 1

: DISPlay [: NUMeric]: IMPedance: ICURsor

Function Sets the cursor position on the numeric display for impedance measurement or queries the current setting.
Syntax :DISPlay[:NUMeric]:IMPedance: ICURsor $\{<\mathrm{NRf}>\}$
:DISPlay[:NUMeric]:IMPedance: ICURsor?

$$
\text { <NRf> }=1 \text { to } 100
$$

Example :DISPLAY:NUMERIC:IMPEDANCE: ICURSOR 1 : DISPLAY: NUMERIC: IMPEDANCE: ICURSOR? -> :DISPLAY:NUMERIC: IMPEDANCE:ICURSOR 1
Description Specify the cursor position in terms of the item number.

: DISPlay [: NUMeric] : IMPedance: OBJect

Function Sets the numeric display element for impedance measurement or queries the current setting.
Syntax :DISPlay[:NUMeric]:IMPedance: OBJect \{<NRf>\}
:DISPlay[:NUMeric]:IMPedance: obJect?
<NRf> = 1 to 5 (impedance measurement element)
Example :DISPLAY:NUMERIC:IMPEDANCE:OBJECT 5 : DISPLAY: NUMERIC: IMPEDANCE: OBJECT?
-> :DISPLAY:NUMERIC:IMPEDANCE: OBJECT 5

: DISPlay [: NUMeric] : IMPedance:TYPE

Function Sets the numeric display format for impedance measurement or queries the current setting.
Syntax :DISPlay[:NUMeric]:IMPedance: TYPE \{ZR_ZI|U_I|Z_PHI\} :DISPlay[:NUMeric]:IMPedance:TYPE?
Example :DISPLAY:NUMERIC:IMPEDANCE: TYPE ZR_ZI :DISPLAY:NUMERIC:IMPEDANCE:TYPE? -> :DISPLAY:NUMERIC:IMPEDANCE: TYPE ZR_ZI
: DISPlay [: NUMeric] : NORMal?
Function Queries all settings related to the numeric display for power measurement.
Syntax :DISPlay[:NUMeric]:NORMal?
Example - Example in which the display format of numeric values (:DISPlay [:NUMeric] : NORMal: IAMount) is set to " $<$ NRf $>$ (split display)"
:DISPLAY:NUMERIC:NORMAL? ->
:DISPLAY: NUMERIC:NORMAL:
IAMOUNT 4;ITEM1 URMS,1;
ITEM2 UMN, 1; ITEM3
UDC,1;...(omitted)
...;ITEM100 NONE;ICURSOR 1

- Example in which the display format of numeric values (:DISPlay [:NUMeric] : NORMal: IAMount) is set to "ALL (all display)"
:DISPLAY:NUMERIC:NORMAL? -> :DISPLAY:NUMERIC:NORMAL: IAMOUNT ALL;FCURSOR URMS
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
: DISPlay [: NUMeric]: NORMal : FCURsor
Function Sets the cursor position on the numeric display (all display) for power measurement or queries the current setting.
Syntax :DISPlay[:NUMeric]:NORMal: FCURsor \{<Function>\}
:DISPlay[:NUMeric]:NORMal:FCURsor? <Function> = \{URMS | UMN |UDC \mid UAC \mid IRMS \mid
...\} (See the function selection list (1).")
Example :DISPLAY:NUMERIC:NORMAL: FCURSOR URMS :DISPLAY:NUMERIC:NORMAL:FCURSOR? -> : DISPLAY: NUMERIC: NORMAL: FCURSOR URMS

Description - Specify the cursor position in terms of the function.

- This command is valid when the display format of numeric values (:DISPlay[:NUMeric] : NORMal : IAMount) is set to "ALL (all display)."
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay [: NUMeric] : NORMal: IAMount

Function Sets the numeric display format for power measurement or queries the current setting.
Syntax :DISPlay[:NUMeric]:NORMal:
IAMount $\{<\mathrm{NRf}>\mid$ ALL $\}$
: DISPlay[:NUMeric]: NORMal:IAMount? <NRf> $=4,8,16,42$, or 78

Example :DISPLAY:NUMERIC:NORMAL:IAMOUNT 4 :DISPLAY:NUMERIC:NORMAL:IAMOUNT? -> :DISPLAY:NUMERIC:NORMAL:IAMOUNT 4
Description - The contents of the measured data that are displayed are as follows depending on the setting of the numeric display format. <NRf>: Numeric display items are displayed in order by the item number.(<NRf> expresses the number of items that is displayed on a single screen.) ALL: All power measurement functions are displayed in order by element.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay [:NUMeric] : NORMal : ICURsor

Function Sets the cursor position on the numeric display (split display) for power measurement or queries the current setting.
Syntax :DISPlay[:NUMeric]:NORMal: ICURsor $\{<\mathrm{NRf} \mathrm{P}\}$
:DISPlay[:NUMeric]:NORMal:ICURsor? <NRf> = 1 to 100
Example :DISPLAY:NUMERIC:NORMAL:ICURSOR 1 :DISPLAY:NUMERIC:NORMAL:ICURSOR? -> :DISPLAY:NUMERIC:NORMAL:ICURSOR 1
Description - Specify the cursor position in terms of the item number.

- This command is valid when the display format of numeric values (: DISPlay[:NUMeric] :NORMal: IAMount) is set to "<NRf> (split display)."
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay [:NUMeric] : NORMal:ITEM<x>

Function Sets the numeric display item for power measurement or queries the current setting.

Syntax :DISPlay[:NUMeric]:NORMal:ITEM<x> \{NONE|<Function>,<Element>\} :DISPlay[:NUMeric]:NORMal:ITEM<x>? <x> = 1 to 100 (item number) NONE = No display item <Function> = \{URMS|UMN|UDC|UAC|IRMS |
\ldots...\} (See the function selection list (1).") <Element> = $\{<$ NRf $>|S I G M A| S I G M B \mid S I G M C\}$ (<NRf> $=1$ to 4 (power measurement element))
Example :DISPLAY:NUMERIC:NORMAL: ITEM1 URMS,1 :DISPLAY:NUMERIC:NORMAL:ITEM1? -> :DISPLAY:NUMERIC:NORMAL: ITEM1 URMS, 1

Description - This command is valid when the display format of numeric values
(:DISPlay[:NUMeric] : NoRMal: IAMount) is set to "<NRf> (split display)."

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay [: NUMeric] : NORMal: PRESet

Function Presets the display order pattern of numeric display items for power measurement.

Syntax :DISPlay[:NUMeric]:NORMal: PRESet \{<NRf>\} <NRf> $=1$ to 4 (pattern number)
Example :DISPLAY:NUMERIC:NORMAL:PRESET 1
Description - Regardless of what value (1 to 4) is specified for <NRf>, the display pattern (order) of the numeric display items will be the same as the display order when Reset List Exec of the Display setting menu, which is displayed on the WT1600FC screen, is executed. For details on the order of displayed items when reset is executed, see the WT1600FC User's Manual (IM760151-01E).

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay:TRENd?

Function Queries all settings related to the trend.
Syntax :DISPlay:TRENd?
Example :DISPLAY:TREND? -> :DISPLAY:TREND:
SAMPLING 1;T1 1;T2 1;T3 1;T4 1;
T5 1;T6 1;T7 1;T8 1;T9 0;T10 0;
T11 0;T12 0;T13 0;T14 0;T15 0; T16 0;FORMAT SINGLE;TDIV 0,0,3; NORMAL:ITEM1:FUNCTION URMS,1; SCALING:MODE AUTO;VALUE 100.00E+00, -100.00E+00;:DISPLAY:TREND:NORMAL: ITEM2:FUNCTION IRMS, $1 ;$ SCALING: MODE AUTO;VALUE $100.00 \mathrm{E}+00$, -100.00E+00; ...(omitted)...; :DISPLAY:TREND:NORMAL:ITEM16: FUNCTION FU, 2 ;SCALING: MODE AUTO;VALUE 100.00E+00, $-100.00 \mathrm{E}+00$

Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay:TRENd: ALL

Function Collectively turns ON/OFF all trends.
Syntax :DISPlay:TRENd:ALL \{<Boolean>\}
Example :DISPLAY:TREND:ALL ON
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay:TRENd: FORMat

Function Sets the display format of the trend or queries the current setting.
Syntax :DISPlay:TRENd:FORMat \{SINGle|DUAL| TRIad|QUAD $\}$
:DISPlay:TRENd:FORMat?
Example :DISPLAY:TREND:FORMAT SINGLE :DISPLAY:TREND:FORMAT? -> :DISPLAY:TREND:FORMAT SINGLE
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay: TRENd : NORMal?

Function Queries all settings related to all the trends for power measurement.
Syntax :DISPlay:TRENd:NORMal?
Example :DISPLAY:TREND:NORMAL? -> :DISPLAY:TREND: NORMAL:ITEM1: FUNCTION URMS,1;SCALING:MODE AUTO; VALUE 100.00E+00,-100.00E+00;: DISPLAY:TREND: NORMAL: ITEM2: FUNCTION IRMS,1;SCALING:MODE AUTO; VALUE 100.00E+00,-100.00E+00;... (omitted)...; :DISPLAY:TREND: NORMAL: ITEM16:FUNCTION FU,2;SCALING: MODE AUTO;VALUE 100.00E+00, $-100.00 \mathrm{E}+00$
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay:TRENd: NORMal:ITEM<x>?

Function Queries all settings related to the trend for power measurement.
Syntax :DISPlay:TRENd:NORMal:ITEM<x>? <x> = 1 to 16 (item number)
Example :DISPLAY:TREND:NORMAL:ITEM1? -> : DISPLAY:TREND:NORMAL:ITEM1: FUNCTION URMS,1;SCALING:MODE AUTO; VALUE $100.00 \mathrm{E}+00,-100.00 \mathrm{E}+00$
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
: DISPlay:TRENd : NORMal:ITEM<x>[:FUNCtion]
Function Sets the trend item for power measurement or queries the current setting.
Syntax :DISPlay:TRENd:NORMal:ITEM<x> [:FUNCtion] \{NONE|<Function>, <Element>\}
: DISPlay:TRENd:NORMal:ITEM<x>: FUNCtion?
$<x>=1$ to 16 (item number)
NONE = No display item
<Function> = \{URMS | UMN | UDC | UAC | IRMS |
...\} (See the function selection list (1).") <Element> = $\{<$ NRf $>|S I G M A| S I G M B \mid S I G M C\}(<$ NRf $>=1$ to 4) (power measurement element)

Example :DISPLAY:TREND:NORMAL:ITEM1: FUNCTION URMS,1 : DISPLAY:TREND: NORMAL: ITEM1: FUNCTION? -> :DISPLAY:TREND: NORMAL: ITEM1:FUNCTION URMS,1

Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
: DISPlay:TRENd : NORMal: ITEM<x>:SCALing?
Function Queries all settings related to the scaling of the trend for power measurement.
Syntax :DISPlay:TRENd:NORMal:ITEM<x>: SCALing? $<x>=1$ to 16 (item number)
Example :DISPLAY:TREND:NORMAL:ITEM1: SCALING? -> :DISPLAY:TREND:NORMAL: ITEM1:SCALING:MODE AUTO; VALUE 100.00E+00,-100.00E+00
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
: DISPlay:TRENd: NORMal:ITEM<x>:SCALing:

MODE

Function Sets the scaling mode of the trend for power measurement or queries the current setting.
Syntax :DISPlay:TRENd:NORMal:ITEM<x>: SCALing:MODE \{AUTO|MANual\} :DISPlay:TRENd:NORMal:ITEM<x>: SCALing: MODE? $<x>=1$ to 16 (item number)
Example :DISPLAY:TREND:NORMAL:ITEM1: SCALING:MODE AUTO : DISPLAY:TREND: NORMAL:ITEM1: SCALING:MODE? -> :DISPLAY:TREND: NORMAL:ITEM1:SCALING:MODE AUTO
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay:TRENd: NORMal:ITEM<x>:SCALing:

VALue

Function Sets the upper and lower limits of manual scaling of the trend for power measurement or queries the current setting.
Syntax :DISPlay:TRENd:NORMal:ITEM<X>: SCALing:VALue $\{<\mathrm{NRf}>,<\mathrm{NRf}>\}$: DISPlay:TRENd:NORMal:ITEM<x>: SCALing: VALue? $<x>=1$ to 16 (item number) <NRf> $=-9.9999 \mathrm{E}+30$ to $9.9999 \mathrm{E}+30$
Example :DISPLAY:TREND:NORMAL:ITEM1: SCALING:VALUE 100,-100 : DISPLAY:TREND: NORMAL:ITEM1: SCALING:VALUE? -> : DISPLAY:TREND: NORMAL: ITEM1: SCALING:VALUE 100.00E+00, $-100.00 \mathrm{E}+00$

Description - Set the upper limit and then the lower limit.

- This command is valid when the scaling mode of the trend
(:DISPlay:TRENd:NORMal:ITEM<X>: SCALing: MODE) is set to "MANual."
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay:TRENd: PDIV

Function Sets the horizontal axis (Point/div) of the trend or queries the current setting.
Syntax :DISPlay:TRENd:PDIV \{<NRf>\} :DISPlay:TRENd:PDIV? <NRf> $=1,2,5,10,20,50,100,200$, or 500
Example :DISPLAY:TREND:PDIV 50 :DISPLAY:TREND:PDIV? -> :DISPLAY: TREND:PDIV 50

Description - This command is valid when waveform sampling (:WSETup [:SAMPling]) is set to ON during power measurement.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay:TRENd: RESTart

Function Restarts the trend.
Syntax :DISPlay:TRENd:RESTart
Example :DISPLAY:TREND:RESTART
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay:TRENd [:SAMPling]

Function Turns ON/OFF the trend waveform sampling or queries the current setting.

Syntax :DISPlay:TRENd: [:SAMPling] \{<Boolean>\} :DISPlay:TRENd:[:SAMPling]?
Example :DISPLAY:TREND:SAMPLING ON :DISPLAY:TREND:SAMPLING? -> :DISPLAY:TREND:SAMPLING 1
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay: TRENd:TDIV

Function Sets the horizontal axis (T/div) of the trend for power measurement or queries the current setting.
Syntax :DISPlay:TRENd:TDIV \{<NRf>,<NRf>, <NRf>\}
:DISPlay:TRENd:TDIV?
$\{<N R f>,<N R f>,<N R f>\}=0,0,3$ to 24, 0, 0
1 st $<$ NRf $>=1,3,6,12$, or 24 (hour)
2nd <NRf> $=2,3,6,10$, or 30 (minute)
3 rd <NRf> $=3,6,10$, or $30 \quad$ (second)
Example :DISPLAY:TREND:TDIV 0,0,3 :DISPLAY:TREND:TDIV? -> :DISPLAY: TREND:TDIV 0,0,3
Description - Set the three <NRf>'s so that one <NRf> is a non-zero value and the other two are zeroes.

- This command is valid when waveform sampling (:WSETup [:SAMPling]) is set to OFF.

This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:DISPlay:TRENd:T<x>

Function Turns ON/OFF the trend or queries the current setting.
Syntax :DISPlay:TRENd:T<x> \{<Boolean>\} :DISPlay:TRENd:T<x>?
<x> = 1 to 16 (item number)
Example :DISPLAY:TREND:T1 ON :DISPLAY:TREND:T1? -> :DISPLAY:TREND:T1 1
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay:WAVE?

Function Queries all settings related to the waveform display.
Syntax :DISPlay:WAVE?
Example :DISPLAY:WAVE? -> :DISPLAY:WAVE: U1 1;U2 1;U3 1;U4 1;I1 1;I2 1;I3 1; I4 1;FORMAT SINGLE; INTERPOLATE LINE;GRATICULE GRID; SVALUE 1;TLABEL 0;MAPPING:MODE AUTO
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay : WAVE : ALL

Function	Collectively turns ON/OFF all waveform displays.
Syntax	: DISPlay:WAVE:ALL \{<Boolean>\}
Example	: DISPLAY:WAVE:ALL ON
Description	This command is invalid on models that are only equipped with impedance measurement measurement.

: DISPlay: WAVE: FORMat

Function Sets the display format of the waveform or queries the current setting.
Syntax :DISPlay:WAVE:FORMat \{SINGle|DUAL| TRIad|QUAD\} : DISPlay:WAVE:FORMat?
Example :DISPLAY:WAVE:FORMAT SINGLE :DISPLAY:WAVE:FORMAT? -> :DISPLAY: WAVE:FORMAT SINGLE
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay : WAVE : GRATicule

Function Sets the graticule (grid) type or queries the current setting.
Syntax :DISPlay:WAVE:GRATicule \{GRID| FRAMe|CROSshair\} : DISPlay:WAVE:GRATicule?
Example :DISPLAY:WAVE:GRATICULE GRID :DISPLAY:WAVE:GRATICULE? -> :DISPLAY:WAVE:GRATICULE GRID
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay: WAVE: INTerpolate

Function Sets the interpolation method of the waveform or queries the current setting.
Syntax :DISPlay:WAVE:INTerpolate \{OFF| LINE \} : DISPlay:WAVE:INTerpolate?
Example :DISPLAY:WAVE:INTERPOLATE LINE :DISPLAY:WAVE:INTERPOLATE? -> :DISPLAY:WAVE:INTERPOLATE LINE
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay : WAVE : MAPPing?

Function Queries all settings related to the waveform mapping to the split screen.
Syntax :DISPlay:WAVE:MAPPing?
Example :DISPLAY:WAVE:MAPPING? -> :DISPLAY: WAVE:MAPPING:MODE USER;U1 0;U2 1; U3 2;U4 3;I1 0;I2 1;I3 2;I4 3
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: DISPlay: WAVE:MAPPing [: MODE]

Function Sets the waveform mapping method for the split screen or queries the current setting.
Syntax :DISPlay:WAVE:MAPPing[:MODE] \{AUTO| FIXed|USER\} :DISPlay:WAVE:MAPPing:MODE?
Example :DISPLAY:WAVE:MAPPING:MODE AUTO : DISPLAY:WAVE:MAPPING:MODE? -> :DISPLAY:WAVE:MAPPING:MODE AUTO
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
: DISPlay : WAVE : MAPPing: $\{\mathbf{U}\langle\mathrm{x}>| \mathrm{I}<\mathrm{x}>\mathrm{\}}\}$
Function Sets the mapping of the \{voltage |current\} waveform to the split screen or queries the current setting.
Syntax :DISPlay:WAVE:MAPPing: $\{\mathrm{U}\langle\mathrm{x}\rangle|\mathrm{I}<\mathrm{x}\rangle\}$ \{<NRf>\}
:DISPlay:WAVE:MAPPing: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>\}$?
$<x>=1$ to 4 (power measurement element)
<NRf> = 0 to 3
Example :DISPLAY:WAVE:MAPPING:U1 0
:DISPLAY:WAVE:MAPPING:U1? ->
:DISPLAY:WAVE:MAPPING:U1 0
Description - This command is valid when the waveform mapping method (:DISPlay:WAVE: MAPPing [: MODE]) is set to "USER."

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

UAC	Uac	
IRMS	Irms	
IMN	Imean	
IDC	Idc	
IAC	lac	
P	P	
S	S	
Q	Q	
LAMBda	λ	
PHI	ϕ	
FU	FreqU	(fU)
FI	Freql	(fl)
UPPeak	U+peak	(U+pk)
UMPeak	U-peak	(U-pk)
IPPeak	I+peak	(l+pk)
IMPeak	I-peak	(l-pk)
CFU	CfU	
CFI	Cfl	
FFU	Ffu	
FFI	Ffl	
Z	Z	
RS	Rs	
XS	Xs	
RP	Rp	
XP	Xp	
PC	Pc	
TIME	I-Time	
WH	Wp	
WHP	Wp+	
WHM	Wp-	
AH	q	
AHP	q+	
AHM	q-	
ETA	η	
SETA	$1 / n$	
F1	F1	
F2	F2	
F3	F3	
F4	F4	
DURMS	$\Delta \mathrm{Urms}$	
DUMN	Δ Umean	
DUDC	$\Delta \mathrm{Udc}$	
DUAC	Δ Uac	
DIRMS	$\Delta \mathrm{lrms}$	
DIMN	Δ Imean	
DIDC	sldc	
DIAC	dlac	

5.5 FILE Group

The commands in this group deal with file operations.
You can make the same settings and inquiries as when FILE on the front panel is used.

: FILE?

Function Queries all settings related to the file operation.
Syntax :FILE?
Example :FILE? -> (Same as the response to ":FILE:SAVE?")

: FILE: CDIRectory

Function Changes the current directory.
Syntax :FILE:CDIRectory \{<Filename>\} <Filename> = Directory name
Example :FILE:CDIRECTORY "IMAGE"
Description Specify ".." to move up to the parent directory.
: FILE : DELete: IMAGe: \{TIFF|BMP|PSCRipt \}
Function Deletes the screen image data file.
Syntax :FILE:DELete:IMAGe:\{TIFF|BMP| PSCRipt\} \{<Filename>\}
Example :FILE:DELETE:IMAGE:TIFF "IMAGE1"
Description Specify the file name without the extension.
: FILE : DELete: NUMeric: \{ASCii|FLOat \}
Function Deletes the numeric data file.
Syntax :FILE:DELete:NUMeric: \{ASCii|FLOat \}
\{<Filename>\}
Example :FILE:DELETE:NUMERIC:ASCII "NUM1"
Description Specify the file name without the extension.

: FILE: DELete:SETup

Function Deletes the setup parameter file.
Syntax :FILE:DELete:SETup \{<Filename>\}
Example :FILE:DELETE:SETUP "SETUP1"
Description Specify the file name without the extension.
: FILE : DELete : WAVE : \{BINary|ASCii|FLOat \}
Function Deletes the waveform display data file.
Syntax :FILE:DELete:WAVE:\{BINary|ASCii| FLOat $\}$ \{<Filename>\}
Example :FILE:DELETE:WAVE:BINARY "WAVE1"
Description Specify the file name without the extension.

: FILE: DRIVe

Function Sets the target drive.
Syntax :FILE:DRIVe
\{FD0|SCSI, <NRf>[, <NRf>]|ND0\}
FD0 = Floppy disk
SCSI = SCSI device
1st <NRf> = SCSI address (0 to 7)
2nd <NRf> = Partition (0 to 9)
NDO = Network drive
Example :FILE:DRIVE FDO
Description If the drive does not contain partitions, omit the 2nd <NRf>.

: FILE: FORMat

Function Executes the floppy disk format.
Syntax :FILE:FORMat \{HD14\}
Example :FILE:FORMAT HD14

: FILE: FREE?

Function Queries the free disk space (bytes) on the drive.
Syntax :FILE:FREE?
Example :FILE:FREE? -> 163840

: FILE : LOAD : ABORt

Function	Aborts file loading.
Syntax	:FILE: LOAD: ABORt
Example	:FILE: LOAD: ABORT

: FILE: LOAD: FGWave

Function Loads the pattern waveform file of the load current for impedance measurement.
Syntax :FILE:LOAD:FGWave \{<Filename>\}
Example :FILE:LOAD:FGWAVE "FGWAVE1"
Description Specify the file name without the extension.

: FILE: LOAD : SETUp

Function Loads the setup parameter file.

Syntax :FILE:LOAD:SETup \{<Filename>\} Example :FILE:LOAD:SETUP "SETUP1"
Description - Specify the file name without the extension.

- This command is an overlap command.

: FILE: MDIRectory

Function	Creates the directory.
Syntax	:FILE:MDIRectory \{<Filename>\}
	<Filename> = Directory name
Example	:FILE:MDIRECTORY "TEST"
: FILE P ${ }^{\text {P }}$	TH?
Function	Queries the absolute path of the current directory.
Syntax	:FILE: PATH?
Example	:FILE:PATH? -> "FDO<X>IMAGE"

: FILE : SAVE?

Function Queries all settings related to the saving of files.
Syntax :FILE:SAVE?

Example :FILE:SAVE? -> :FILE:SAVE: ANAMING 1;COMMENT " ";WAVE: TYPE BINARY;:FILE:SAVE:NUMERIC: TYPE ASCII; NORMAL:ELEMENT1 1; ELEMENT2 0;ELEMENT3 0;ELEMENT4 0; SIGMA 0;SIGMB 0;SIGMC 0;URMS 1; UMN 1;UDC 1;UAC 1;IRMS 1;IMN 1; IDC 1;IAC 1;P 1;S 1;Q 1;LAMBDA 1; PHI 1;FU 1;FI 1;UPPEAK 1;UMPEAK 1; IPPEAK 1;IMPEAK 1;CFU 1;CFI 1; FFU 1;FFI 1;Z 1;RS 1; XS 1;RP 1; XP 1;PC 1 ;TIME 0 ;WH 0 ;WHP 0 ;WHM 0 ; AH 0 ;AHP 0 ;AHM 0 ;ETA 0 ;SETA 0 ;F1 0 ; F2 0;F3 0;F4 0;DURMS 0;DUMN 0; DUDC 0;DUAC 0;DIRMS 0;DIMN 0; DIDC 0;DIAC 0

: FILE : SAVE : ABORt

Function Aborts file saving.
Syntax :FILE:SAVE:ABORt
Example :FILE:SAVE:ABORT

: FILE: SAVE : ANAMing

Function Sets whether to automatically name the files to be saved or queries the current setting.
Syntax :FILE:SAVE:ANAMing \{<Boolean>\}
: FILE:SAVE:ANAMing?
Example :FILE:SAVE:ANAMING ON :FILE:SAVE:ANAMING? -> :FILE:SAVE: ANAMING 1

: FILE: SAVE : COMMent

Function Sets the comment to be added to the file to be saved or queries the current setting.
Syntax :FILE:SAVE:COMMent \{<String>\}
: FILE:SAVE:COMMent?
<String> = Up to 30 characters
Example :FILE:SAVE:COMMENT "CASE1" :FILE:SAVE:COMMENT? -> :FILE:SAVE: COMMENT "CASE1"

: FILE:SAVE: NUMeric?

Function Queries all settings related to the saving of numeric data files.
Syntax :FILE:SAVE:NUMeric?
Example :FILE:SAVE:NUMERIC? -> :FILE:SAVE:NUMERIC:TYPE ASCII; NORMAL:ELEMENT1 1;2ELEMENT2 0; ELEMENT3 0;ELEMENT4 0;SIGMA 0; SIGMB 0;SIGMC 0;URMS 1;UMN 1;UDC 1; UAC 1;IRMS 1;IMN 1;IDC 1;IAC 1; P 1 ; S 1;Q 1;LAMBDA 1;PHI 1;FU 1;FI 1; UPPEAK 1;UMPEAK 1;IPPEAK 1 ; IMPEAK 1;CFU 1;CFI 1;FFU 1;FFI 1; Z 1;RS 1; XS 1;RP 1;XP 1; PC 1; TIME 0 ;WH 0 ;WHP 0 ;WHM 0 ;AH 0 ;AHP 0 ; AHM 0;ETA 0;SETA 0;F1 0;F2 0;F3 0; F4 0;DURMS 0;DUMN 0;DUDC 0;DUAC 0; DIRMS 0;DIMN 0;DIDC 0;DIAC 0
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE: SAVE: NUMeric [:EXECute]

Function Saves the numeric data to a file.
Syntax :FILE:SAVE:NUMeric
[:EXECute] \{<Filename>\}
Example :FILE:SAVE:NUMERIC:EXECUTE "NUM1"
Description - Specify the file name without the extension.

- This command is an overlap command.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE: SAVE : NUMeric: NORMal?

Function	Queries all settings related to the saving of numeric data files for power measurement.
Syntax	:FILE:SAVE:NUMeric:NORMal?
Example	:FILE:SAVE:NUMERIC:NORMAL? ->
	:FILE:SAVE:NUMERIC:NORMAL:
	ELEMENT1 1;ELEMENT2 0;ELEMENT3 0;
	ELEMENT4 0;SIGMA 0;SIGMB 0;SIGMC 0;
	URMS 1;UMN 1;UDC 1;UAC 1;IRMS 1;
	IMN 1;IDC 1;IAC 1; P 1;S 1;Q 1;
	LAMBDA 1;PHI 1;FU 1;FI 1;UPPEAK 1;
	UMPEAK 1;IPPEAK 1;IMPEAK 1;CFU 1;
	CFI 1;FFU 1;FFI 1; Z 1;RS 1; XS 1;
	RP 1; XP 1;PC 1;TIME 0;WH 0;WHP 0;
	WHM 0;AH 0;AHP 0;AHM 0;ETA 0;
	SETA 0;F1 0;F2 0;F3 0;F4 0;DURMS 0;
	DUMN 0;DUDC 0;DUAC 0;DIRMS 0;
	DIMN 0;DIDC 0;DIAC 0
Description	This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE: SAVE : NUMeric: NORMal : ALL

Function	Collectively turns ON/OFF the output of all power measurement elements and functions when saving the numeric data file during power
	measurement.
Syntax	:FILE:SAVE: NUMeric: NORMal:
ALL \{<Boolean>\}	

: FILE : SAVE : NUMeric: NORMal : \{ELEMent<x>| SIGMA|SIGMB|SIGMC $\}$

Function	Turns ON/OFF the output of the \{power measurement element $\|\Sigma \mathrm{A}\| \Sigma \mathrm{B} \mid \Sigma \mathrm{C}\}$ when saving the numeric data to a file during power measurement or queries the current setting.		
Syntax	:FILE:SAVE:NUMeric:NORMal:		
	\{ELEMent<x>\|SIGMA	SIGMB	
	SIGMC\} \{<Boolean>\}		
	:FILE:SAVE:NUMeric:NORMal:		
	\{ELEMent<x>\|SIGMA	SIGMB	SIGMC\}?
	$<x>=1$ to 4 (power measurement element)		
Example	:FILE:SAVE:NUMERIC:NORMAL:		
	ELEMENT1 ON		
	:FILE:SAVE:NUMERIC:NORMAL:		
	ELEMENT1? -> :FILE:SAVE:NUMERIC:		
	NORMAL:ELEMENT1 1		

Description - The command and query using ":FILE:SAVE:NUMeric:NORMal: SIGMB" is valid on models with two or more power measurement elements.

- The command and query using ":FILE:SAVE: NUMeric:NORMal: SIGMC" is valid on models with three or more power measurement elements.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE:SAVE : NUMeric: NORMal:PRESet<x>

Function Presets the output ON/OFF pattern of the power measurement element and function when saving the numeric data to a file during power measurement.
Syntax :FILE:SAVE:NUMeric:NORMal:PRESet<x> <x> = 1 to 2 (preset pattern number)
Example :FILE:SAVE:NUMERIC:NORMAL:PRESET1
Description - For details on the output pattern when preset is executed, see the WT1600FC User's Manual (IM760151-01E).

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE: SAVE: NUMeric: NORMal:<power

measurement function>

Function Turns ON/OFF the output of the function when saving the numeric data file during power measurement or queries the current setting.
Syntax :FILE:SAVE:NUMeric:NORMal:<power measurement function> \{<Boolean>\} :FILE:SAVE:NUMeric:NORMal:<power measurement function>?
<Power measurement function>= \{URMS|UMN|
UDC \mid UAC \mid IRMS $\mid \ldots$. . (See the function selection list (1) of "DISPlay group.")
Example :FILE:SAVE:NUMERIC:NORMAL:URMS ON :FILE:SAVE:NUMERIC:NORMAL:URMS? -> :FILE:SAVE:NUMERIC:NORMAL:URMS 1
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

5.5 FILE Group

: FILE:SAVE: NUMeric:TYPE

Function Sets the format of the numeric data to be saved or queries the current setting.
Syntax :FILE:SAVE:NUMeric:TYPE \{ASCii| FLOat $\}$:FILE:SAVE:NUMeric:TYPE?
Example :FILE:SAVE:NUMERIC:TYPE ASCII :FILE:SAVE:NUMERIC:TYPE? -> :FILE:SAVE:NUMERIC:TYPE ASCII
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE: SAVE: SETup [:EXECute]

Function Saves of the setup parameter file.
Syntax :FILE:SAVE:SETup [:EXECute] \{<Filename>\}
Example :FILE:SAVE:SETUP:EXECUTE "SETUP1"
Description - Specify the file name without the extension.

- This command is an overlap command.

: FILE: SAVE:WAVE?

Function Queries all settings related to the saving of waveform display data files.
Syntax :FILE:SAVE:WAVE?
Example :FILE:SAVE:WAVE? -> :FILE:SAVE: WAVE:TYPE BINARY
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE:SAVE: WAVE [: EXECute]

Function Executes the saving of the waveform display data file.
Syntax :FILE:SAVE:WAVE
[:EXECute] \{<Filename>\}
Example :FILE:SAVE:WAVE:EXECUTE "WAVE1"
Description - Specify the file name without the extension.

- This command is an overlap command.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: FILE: SAVE : WAVE: TRACe

Function Sets the waveform to be saved to a file or queries the current setting.
Syntax :FILE:SAVE:WAVE:TRACe $\{U<x>\mid I<x>\}$
:FILE:SAVE:WAVE:TRACe?
$<x>=1$ to 4 (power measurement element)
Example :FILE:SAVE:WAVE:TRACE U1
:FILE:SAVE:WAVE:TRACE? ->
:FILE:SAVE:WAVE:TRACE U1

Description - This command is valid when the format of the waveform display data to be saved (:FILE: SAVE : WAVE:TYPE) is "FLOat." When it is \{BINary|ASCii\}, all waveforms of which the display is turned ON are saved.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:FILE:SAVE:WAVE:TYPE

Function Sets the format of the waveform display data to be saved or queries the current setting.
Syntax :FILE:SAVE:WAVE:TYPE \{BINary|ASCii| FLOat $\}$
:FILE:SAVE:WAVE:TYPE?
Example :FILE:SAVE:WAVE:TYPE BINARY :FILE:SAVE:WAVE:TYPE? -> :FILE:SAVE:WAVE:TYPE BINARY
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

5.6 HCOPy Group

The commands in this group deal with the output of screen image data to the built-in printer (option) and other destinations.

You can make the same settings and inquiries as when COPY and MENU (SHIFT+COPY) on the front panel is used.

: HCOPy?
Function Queries all settings related to the output of screen image data.
Syntax : HCOPy?
Example :HCOPY? -> : HCOPY:
DIRECTION PRINTER;PRINTER:DLIST: INFORMATION 1;NORMAL:ELEMENT1 1; ELEMENT2 0;ELEMENT3 0;ELEMENT4 0; SIGMA 0;SIGMB 0;SIGMC 0;URMS 1; UMN 1;UDC 1;UAC 1;IRMS 1;IMN 1; IDC 1;IAC 1;P 1;S 1;Q 1;LAMBDA 1; PHI 1;FU 1;FI 1;UPPEAK 1;UMPEAK 1; IPPEAK 1;IMPEAK 1;CFU 1;CFI 1; FFU 1;FFI 1;Z 1;RS 1;XS 1;RP 1; XP 1;PC 1 ;TIME 0 ;WH 0 ;WHP 0 ;WHM 0 ; AH 0 ; AHP $0 ;$ AHM 0 ;ETA $0 ;$ SETA $0 ; F 10$; F2 0;F3 0;F4 0;DURMS 0;DUMN 0; DUDC 0;DUAC 0;DIRMS 0;DIMN 0; DIDC 0;DIAC 0;:HCOPY: COMMENT "THIS IS TEST."

: HCOPY:ABORt

Function Aborts screen image data output and paper feeding.
Syntax : HCOPy:ABORt
Example : HCOPY:ABORT

: HCOPY: BMP ?

Function Queries all settings related to the BMP format.
Syntax : HCOPy:BMP?
Example : HCOPY:BMP? -> :HCOPY:BMP: COLOR COLOR; COMPRESSION 0

: HCOPy : BMP : COLOr

Function Sets the color tone for the BMP format or queries the current setting.
Syntax :HCOPy:BMP:COLor \{OFF|COLor| REVerse\}
: HCOPy: BMP:COLor?
Example :HCOPY:BMP:COLOR COLOR
: HCOPY: BMP:COLOR? ->
: HCOPY: BMP:COLOR COLOR
: HCOPY: BMP : COMPression
Function Sets whether to compress the data in BMP format or queries the current setting.
Syntax : HCOPy:BMP:COMPression \{<Boolean>\} : HCOPy:BMP:COMPression?
Example :HCOPY:BMP:COMPRESSION OFF : HCOPY:BMP:COMPRESSION? -> :HCOPY: BMP:COMPRESSION 0
Description This command is valid when the color tone (: HCOPy:BMP:COLor) is set to \{COLor| REVerse\}.

: HCOPy: COMMent

Function Sets the comment displayed at the bottom of the screen or queries the current setting.
Syntax : HCOPy:COMMent \{<String>\} : HCOPY: COMMent?
<String > = 25 characters or less (However, only the first 20 characters are displayed.)
Example :HCOPY:COMMENT "THIS IS TEST." : HCOPY:COMMENT? -> : HCOPY: COMMENT "THIS IS TEST."
Description Only the characters and symbols displayed on the keyboard on the screen can be used.

: HCOPY: DIRection

Function Sets the output destination of the screen image data or queries the current setting.
Syntax :HCOPy:DIRection \{PRINter|FILE NETPrint\} : HCOPy:DIRection?
Example :HCOPY:DIRECTION PRINTER : HCOPY:DIRECTION? -> :HCOPY: DIRECTION PRINTER
Description - \{PRINTer\} is valid only when the built-in printer (/B5 option) is installed.

- \{NETPrint \} is valid only when the Ethernet interface (/C10 option) is installed.

: HCOPy : EXECute

$\begin{array}{ll}\text { Function } & \text { Executes the screen image data output. } \\ \text { Syntax } & \text { : HCOPY:EXECute } \\ \text { Example } & \text { : HCOPY:EXECUTE } \\ \text { Description } & \text { This command is an overlap command. }\end{array}$

: HCOPY : FORMat

Function Sets the file format of the screen image data to be saved or queries the current setting.
Syntax : HCOPy:FORMat \{TIFF|BMP|PSCRipt \} : HCOPy:FORMat?
Example : HCOPY:FORMAT TIFF : HCOPY:FORMAT? -> :HCOPY: FORMAT TIFF
Description This command is meaningless if the data output destination (: HCOPY:DIRection) is set to "PRINter."

: HCOPY: PRINter?

Function Queries all settings related to the built-in printer output.
Syntax : HCOPy:PRINter?
Example :HCOPY:PRINTER? -> (Same as the response to ": HCOPy: PRINter: DLISt?")

: HCOPy : PRINter: DLISt?

Function Queries all settings related to the printing of the numeric data list using the built-in printer.
Syntax : HCOPy:PRINter:DLISt?
Example :HCOPY:PRINTER:DLIST? -> : HCOPY:PRINTER:DLIST:INFORMATION 1; NORMAL:ELEMENT1 1;ELEMENT2 0; ELEMENT3 0;ELEMENT4 0;SIGMA 0; SIGMB 0;SIGMC 0;URMS 1;UMN 1;UDC 1; UAC 1;IRMS 1;IMN 1;IDC 1;IAC 1; P 1; S 1;Q 1;LAMBDA 1;PHI 1;FU 1;FI 1; UPPEAK 1;UMPEAK 1;IPPEAK 1; IMPEAK 1;CFU 1;CFI 1;FFU 1;FFI 1; Z 1;RS 1; XS 1;RP 1; XP 1; PC 1; TIME 0 ;WH 0 ;WHP 0 ;WHM 0 ; AH $0 ;$ AHP 0 ; AHM 0;ETA $0 ;$ SETA $0 ; F 10 ; F 20 ; F 30 ;$ F4 0;DURMS 0;DUMN 0;DUDC 0;DUAC 0; DIRMS 0;DIMN 0;DIDC 0;DIAC 0

: HCOPy: PRINter: DLISt [: EXECute]

Function Prints of the numeric data list using the built-in printer.
Syntax :HCOPY:PRINter:DLISt[:EXECute]
Example :HCOPY:PRINTER:DLIST:EXECUTE
Description This command is an overlap command.

: HCOPY: PRINter: DLISt: INFOrmation

Function Sets whether or not to add setup parameters when printing the numeric data list using the built-in printer or queries the current setting.
Syntax :HCOPy:PRINter:DLISt: INFOrmation \{<Boolean>\} : HCOPy:PRINter:DLISt:INFOrmation?
Example :HCOPY:PRINTER:DLIST:INFORMATION ON : HCOPY: PRINTER:DLIST:INFORMATION?
-> : HCOPY:PRINTER:DLIST: INFORMATION 1

: HCOPY: PRINter: DLISt: NORMal?

Function Queries all settings related to the printing of the numeric data list for power measurement.
Syntax :HCOPy:PRINter:DLISt:NORMal?
Example :HCOPY:PRINTER:DLIST:NORMAL? -> : HCOPY:PRINTER:DLIST:NORMAL: ELEMENT1 1;ELEMENT2 0;ELEMENT3 0; ELEMENT4 0;SIGMA 0;SIGMB 0;SIGMC 0; URMS 1;UMN 1;UDC 1;UAC 1;IRMS 1; IMN 1;IDC 1;IAC 1; P 1;S 1;Q 1; LAMBDA 1;PHI 1;FU 1;FI 1;UPPEAK 1; UMPEAK 1;IPPEAK 1;IMPEAK 1;CFU 1; CFI 1;FFU 1;FFI 1; Z 1;RS 1; XS 1; RP 1;XP 1;PC 1;TIME 0;WH 0;WHP 0; WHM 0 ;AH 0 ;AHP 0 ;AHM 0 ;ETA 0 ; SETA 0;F1 0;F2 0;F3 0;F4 0;DURMS 0; DUMN 0;DUDC 0;DUAC 0;DIRMS 0; DIMN 0;DIDC 0;DIAC 0

```
:HCOPY:PRINter:DLISt:NORMal:ALL
Function Collectively turns ON/OFF the output of all
        power measurement elements and functions
        when printing the numeric data list using the
        built-in printer during power measurement.
Syntax :HCOPy:PRINter:DLISt:NORMal:
        ALL {<Boolean>}
Example :HCOPY:PRINTER:DLIST:NORMAL:ALL ON
: HCOPy : PRINter : DLISt : NORMal : {ELEMent<x> |
SIGMA|SIGMB|SIGMC}
Function Turns ON/OFF the output of the {power
        measurement element |\SigmaA|\SigmaB|\SigmaC} when
        printing the numeric data list using the built-in
        printer during power measurement or queries
        the current setting.
Syntax :HCOPy:PRINter:DLISt:NORMal:
        {ELEMent<x>|SIGMA|SIGMB|SIGMC}
        {<Boolean>}
        :HCOPy:PRINter:DLISt:NORMal:
        {ELEMent<x>|SIGMA|SIGMB|SIGMC}?
        <x> = 1 to 4 (power measurement element)
Example :HCOPY:PRINTER:DLIST:NORMAL:
        ELEMENT1 ON
        :HCOPY:PRINTER:DLIST:NORMAL:
        ELEMENT1? -> :HCOPY:PRINTER:DLIST:
        NORMAL:ELEMENT1 1
Description - The command and query using
            ":HCOPY:PRINter:DLISt:NORMal:
            SIGMB" is valid on models with two or more
            power measurement elements.
        - The command and query using
            ":HCOPY:PRINter:DLISt:NORMal:
            SIGMC" is valid on models with three or more
            power measurement elements.
                : HCOPY : PRINter : DLISt : NORMal : PRESet<x>
Function Presets the output ON/OFF pattern of the power
        measurement element and function when
        printing the numeric data list using the built-in
        printer during power measurement.
Syntax :HCOPy:PRINter:DLISt:NORMal:
        PRESet<x>
        <x> = 1 to 2 (preset pattern number)
Example :HCOPY:PRINTER:DLIST:NORMAL:PRESET1
Description For details on the print pattern when preset is
        executed, see the WT1600FC User's Manual
        (IM760151-01E).
```

Function	Collectively turns ON/OFF the output of all power measurement elements and functions
	when printing the numeric data list using the
built-in printer during power measurement.	
Syntax	$:$ HCOPy:PRINter:DLISt: NORMal:
	ALL $\{<$ Boolean>\}
Example	$:$ HCOPY:PRINTER:DLIST: NORMAL:ALL ON

Function Turns ON/OFF the output of the \{power measurement element $|\Sigma A| \Sigma B \mid \Sigma C\}$ when printing the numeric data list using the built-in printer during power measurement or queries he current setting.
Syntax :HCOPy:PRINter:DLISt:NORMal: \{ELEMent<x>|SIGMA|SIGMB|SIGMC\} \{<Boolean>\}
: HCOPy:PRINter:DLISt:NORMal: \{ELEMent<x>|SIGMA|SIGMB|SIGMC\}? $\langle x\rangle=1$ to 4 (power measurement element)

Example :HCOPY:PRINTER:DLIST:NORMAL: ELEMENT1 ON : HCOPY:PRINTER:DLIST:NORMAL: ELEMENT1? -> :HCOPY:PRINTER:DLIST: NORMAL:ELEMENT1 1
Description - The command and query using ": HCOPy:PRINter:DLISt:NORMal: SIGMB" is valid on models with two or more power measurement elements.
The command and query using SIGMC" is valid on models with three or more power measurement elements.
: HCOPY: PRINter : DLISt : NORMal : PRESet<x>
Function Presets the output ON/OFF pattern of the power measurement element and function when printing the numeric data list using the built-in printer during power measurement.
Syntax :HCOPy:PRINter:DLISt:NORMal: PRESet<x>
$<x>=1$ to 2 (preset pattern number)
Example :HCOPY:PRINTER:DLIST:NORMAL:PRESET1
Description For details on the print pattern when preset is executed, see the WT1600FC User's Manual (IM760151-01E).
: HCOPY: PRINter: DLISt: NORMal:<power
measurement function>
Function Turns ON/OFF the output of the function when printing the numeric data list using the built-in printer during power measurement or queries the current setting.
Syntax :HCOPy:PRINter:DLISt:NORMal:<power measurement function> \{<Boolean>\} : HCOPy:PRINter:DLISt:NORMal:<power measurement function>? <Power measurement function>= \{URMS|UMN|
UDC \mid UAC \mid IRMS $\mid \ldots$. . (See the function selection list (1) of "DISPlay group.")
Example :HCOPY:PRINTER:DLIST:NORMAL:URMS ON : HCOPY: PRINTER:DLIST:NORMAL:URMS? -> :HCOPY:PRINTER:DLIST:NORMAL: URMS 1

: HCOPY: PRINter : FEED

Function Executes paper feeding of the built-in printer.
Syntax : HCOPy:PRINter:FEED
Example : HCOPY:PRINTER FEED
Description This command is an overlap command.

: HCOPY: SAVE?

Function Queries all settings related to saving the file.
Syntax :HCOPy:SAVE?
Example :HCOPY:SAVE? -> :HCOPY:SAVE:
ANAMING 1;NAME "DATA1";
COMMENT "CASE1"

: HCOPY : SAVE : ANAMing

Function Sets whether to automatically name the files to be saved or queries the current setting.
Syntax : HCOPy:SAVE:ANAMing \{<Boolean>\} : HCOPY: SAVE: ANAMing?
Example :HCOPY:SAVE:ANAMING ON :HCOPY:SAVE:ANAMING? -> :HCOPY: SAVE:ANAMING 1

: HCOPY : SAVE : COMMent

Function Sets the comment to be added to the file to be saved or queries the current setting.
Syntax : HCOPy:SAVE:COMMent \{<String>\} : HCOPy:SAVE:COMMent? <String> = Up to 25 characters
Example :HCOPY:SAVE:COMMENT "CASE1" : HCOPY: SAVE:COMMENT? -> : HCOPY:SAVE:COMMENT "CASE1"
Description • Only the characters and symbols displayed on the keyboard on the screen can be used.

- This command is valid when the data output destination (: HCOPy:DIRection) is set to "FILE."

: HCOPY : SAVE : NAME

Function Sets the name of the file to be saved or queries the current setting.
Syntax : HCOPy:SAVE:NAME \{<Filename>\} : HCOPY: SAVE: NAME?
Example : HCOPY:SAVE:NAME "DATA1" : HCOPY:SAVE:NAME? -> :HCOPY:SAVE:NAME "DATA1"
Description - The save destination of the screen data is specified using:

- the ": FILE: DRIVe" command for the drive.
- the ": FILE:CDIRectory" command for the directory. The save destination path can be queried using the ": FILE: PATH?" command.
- Specify the file name without the extension.

: HCOPY: TIFF?

Function Queries all settings related to the TIFF format.
Syntax : HCOPy:TIFF?
Example :HCOPY:TIFF? -> :HCOPY:TIFF: COLOR COLOR

: HCOPY: TIFF: COLor

Function Sets the color tone for the TIFF format or queries the current setting.
Syntax : HCOPy:TIFF:COLor \{OFF|COLor| REVerse\}
: HCOPY:TIFF:COLor?
Example :HCOPY:TIFF:COLOR COLOR :HCOPY:TIFF:COLOR? -> :HCOPY:TIFF: COLOR COLOR

The commands in this group deal with the hold function of output data.
You can make the same settings and inquiries as when HOLD on the front panel is used.

: HOLD
Function Sets the output data (display, communications, etc.) hold or queries the current setting.
Syntax : HOLD \{<Boolean>\}
: HOLD?
Example : HOLD OFF
: HOLD? -> : HOLD 0

5.8 IMAGe Group

The commands in this group deal with the output of screen image data.
There are no front panel keys that correspond to the commands in this group.

: IMAGe?

Function Queries all settings related to the output of screen image data.
Syntax :IMAGe?
Example :IMAGE? -> :IMAGE:FORMAT TIFF; COLOR OFF

: IMAGe: COLOr

Function Sets the color tone of the screen image data to be output or queries the current setting.
Syntax :IMAGe:COLor \{OFF|COLor|REVerse\} : IMAGe:COLor?
Example :IMAGE:COLOR OFF :IMAGE:COLOR? -> :IMAGE:COLOR OFF

: IMAGe : FORMat

Function Sets the output format of the screen image data or queries the current setting.
Syntax :IMAGe:FORMat \{TIFF|BMP\} : IMAGe:FORMat?
Example :IMAGE:FORMAT TIFF :IMAGE:FORMAT? -> :IMAGE: FORMAT TIFF

: IMAGe: SEND?

Function Queries the screen image data.
Syntax :IMAGe:SEND?
Example :IMAGE:SEND? -> \#6(number of bytes, 6 digits)(series of data bytes)
Description - The number of bytes of <Block data> is $\{2+6$ + number of data points +1 (delimiter) $\}$.

- For details on <Block data>, see page 4-7.

5.9 IMPedance Group

The commands in this group deal with impedance measurements.
You can make the same settings and inquiries as when IMPEDANCE and DC CONTROL (SHIFT+IMPEDANCE) on the front panel is used.

: IMPedance:CURRent:MRANge? (Measured RANge)

Function Queries the current range with respect to the current measured value.
Syntax :IMPedance:CURRent:MRANge? \{<NRf>\} <NRf> = 1 to 5 (impedance measurement element)
Example (Example when impedance measurement elements (Z5) are available in 2 and 3) :IMPEDANCE:CURRENT:MRANGE? 2
-> $5.000 \mathrm{E}+00$
:IMPEDANCE: CURRENT:MRANGE?
-> $5.000 \mathrm{E}+00,5.000 \mathrm{E}+00$

```
: IMPedance:DCControl:DETaile:HOLD
Function Sets the action taken by the WT1600FC (handling of the control signal to the DC electronic load device) when hold is activated or queries the current setting.
Syntax :IMPedance:DCControl:DETaile: HOLD \{NORMal|OFF\} : IMPedance:DCControl:DETaile:HOLD?
Example :IMPEDANCE:DCCONTROL:DETAILE: HOLD NORMAL
: IMPEDANCE: DCCONTROL:DETAILE : HOLD?
-> :IMPEDANCE:DCCONTROL:DETAILE: HOLD NORMAL
: IMPedance: DCControl :DETaile:LIMit
Function Sets the range of the DC load current or queries the current setting.
Syntax :IMPedance:DCControl:DETaile: LIMit \(\{<\mathrm{NRf}>,<\mathrm{NRf}>\}\)
:IMPedance:DCControl:DETaile:LIMit? <NRf> = -1000.000 to \(1000.000(\mathrm{~A})\)
Example :IMPEDANCE:DCCONTROL:DETAILE: LIMIT 1000,-1000 : IMPEDANCE: DCCONTROL:DETAILE:LIMIT? -> :IMPEDANCE:DCCONTROL:DETAILE: LIMIT 1000.000,-1000.000
Description Set the upper limit and then the lower limit.
```

: IMPedance : DCControl : DETaile: RATio
Function Sets the current value per volt of the control signal to the DC electronic load device or queries the current setting.
Syntax :IMPedance: DCControl:DETaile: RATio \{<NRf>\} : IMPedance: DCControl:DETaile:RATio? <NRf> $=0.001$ to 1000.000
Example :IMPEDANCE:DCCONTROL:DETAILE: RATIO 1
:IMPEDANCE: DCCONTROL:DETAILE:RATIO? -> :IMPEDANCE:DCCONTROL:DETAILE: RATIO 1.000

: IMPedance : DCControl : OFFSet

Function Sets the current value of the DC load current or queries the current setting.
Syntax :IMPedance:DCControl:OFFSet $\{<\mathrm{NRf}\rangle$ \} : IMPedance: DCControl: OFFSet? <NRf> $=-1000.000$ to $1000.000(\mathrm{~A})$
Example :IMPEDANCE:DCCONTROL:OFFSET 0 :IMPEDANCE:DCCONTROL:OFFSET? -> :IMPEDANCE:DCCONTROL:OFFSET 0.000
: IMPedance : DCControl: OUTPut

Function	Turns ON/OFF the DC load current or queries the current setting.
Syntax	: IMPedance: DCControl:
	OUTPut \{<Boolean>\}
	: IMPedance: DCControl: OUTPut?
Example	:IMPEDANCE:DCCONTROL:OUTPUT ON
	:IMPEDANCE:DCCONTROL:OUTPUT? ->
	:IMPEDANCE:DCCONTROL:OUTPUT 1

: IMPedance : MEASure?

Function Queries all settings related to impedance measurements.
Syntax :IMPedance:MEASure?
Example :IMPEDANCE:MEASURE? -> :IMPEDANCE:MEASURE:TYPE STABLE

: IMPedance: MEASure: ANALysis?

Function Sets the type of impedance measurement mode or queries the current setting.
Syntax :IMPedance:MEASure:ANALysis?
Example :IMPEDANCE:MEASURE:ANALYSIS? -> NORMAL
Description - The details of the response are as follows: NORMal: Normal mode WIDE: Wideband mode

- For the details on the mode, see the WT1600FC User's Manual (IM760151-01E).

: IMPedance : MEASure : ARRay?

Function Queries the array information of the loaded pattern file.
Syntax :IMPedance:MEASure:ARRay? \{<NRf>\} <NRf> = 1 to 100 (array number)
Example :IMPEDANCE:MEASURE:ARRAY? 1 -> 1 :IMPEDANCE:MEASURE:ARRAY? -> $1,2,5,10,-1,-1, \ldots$
Description - Outputs the order of the specified array number.

- If the parameter is omitted, the orders of array numbers 1 to 100 are output sequentially (comma separated).

: IMPedance: MEASure:TYPE

Function Sets the FFT window width of impedance measurements or queries the current setting.
Syntax :IMPedance:MEASure:TYPE \{STABle| MIDDle|FAST\}
: IMPedance: MEASure:TYPE?
Example :IMPEDANCE:MEASURE:TYPE STABLE
:IMPEDANCE:MEASURE:TYPE? -> :IMPEDANCE:MEASURE:TYPE STABLE

: IMPedance [:STATe]

Function Turns ON/OFF the impedance measurement mode or queries the current setting.

Syntax :IMPedance[:STATe] \{<Boolean>\}
: IMPedance:STATe?
Example :IMPEDANCE:STATE ON
:IMPEDANCE:STATE? ->
:IMPEDANCE:STATE 1
: IMPedance: SUPerpose?
Function Queries all settings related to the load current for impedance measurements.
Syntax :IMPedance: SUPerpose?
Example :IMPEDANCE:SUPERPOSE? -> :IMPEDANCE:SUPERPOSE:OUTPUT: STATE 0;TYPE DC;:IMPEDANCE: SUPERPOSE:FREQUENCY:RANGE HZ; VALUE 1.0002;:IMPEDANCE:SUPERPOSE: OFFSET 0.000;AMPLITUDE 0.000; DETAILE:RATIO 1.000;LIMIT 1000.000, -1000.000;HOLD NORMAL;WAVEFORM SINE
: IMPedance: SUPerpose: AMPLitude
Function Sets the amplitude of the load current for impedance measurements or queries the current setting.
Syntax :IMPedance:SUPerpose: AMPLitude \{<NRf>\} :IMPedance:SUPerpose:AMPLitude? <NRf> $=0.000$ to 2000.000(App)
Example :IMPEDANCE:SUPERPOSE:AMPLITUDE 0 :IMPEDANCE:SUPERPOSE:AMPLITUDE? -> :IMPEDANCE:SUPERPOSE: AMPLITUDE 0.000
: IMPedance : SUPerpose: DETaile?
Function Queries all settings related to the detailed settings of the load current for impedance measurements.
Syntax :IMPedance:SUPerpose:DETaile?
Example :IMPEDANCE:SUPERPOSE:DETAILE? -> :IMPEDANCE:SUPERPOSE:DETAILE: RATIO 1.000;LIMIT 1000.000, -1000.000; HOLD NORMAL; WAVEFORM SINE
: IMPedance : SUPerpose : DETaile: HOLD
Function Sets the action taken by the WT1600FC (handling of the control signal to the impedance measurement electronic load device) when hold is activated or queries the current setting.
Syntax :IMPedance:SUPerpose:DETaile: HOLD \{NORMal|OFF|AC_OFF\} :IMPedance:SUPerpose:DETaile:HOLD?

Example :IMPEDANCE:SUPERPOSE:DETAILE: HOLD NORMAL : IMPEDANCE:SUPERPOSE:DETAILE:HOLD? -> :IMPEDANCE:SUPERPOSE:DETAILE: HOLD NORMAL

Function	Sets the range of the load current for impedance measurements or queries the current setting.
Syntax	:IMPedance:SUPerpose:DETaile:
	LIMit \{<NRf>,<NRf>\}
	:IMPedance:SUPerpose: DETaile:LIMit?
	<NRf> = -1000.000 to 1000.000(A)
Example	: IMPEDANCE: SUPERPOSE: DETAILE:
	LIMIT 1000,-1000
	: IMPEDANCE: SUPERPOSE: DETAILE:LIMIT?
	-> :IMPEDANCE:SUPERPOSE:DETAILE:
	LIMIT 1000.000,-1000.000
Description	Set the upper limit and then the lower limit.

: IMPedance : SUPerpose : DETaile: RATio
Function Sets the current value per volt of the control signal to the impedance measurement electronic load device or queries the current setting.

Syntax :IMPedance:SUPerpose:DETaile: RATio \{<NRf>\} :IMPedance:SUPerpose:DETaile:RATio? <NRf> $=0.001$ to 1000.000
Example :IMPEDANCE:SUPERPOSE:DETAILE: RATIO 1
:IMPEDANCE:SUPERPOSE:DETAILE:RATIO? -> :IMPEDANCE:SUPERPOSE:DETAILE: RATIO 1.000
: IMPedance : SUPerpose: DETaile: WAVeform
Function Sets the waveform of the load current for impedance measurements or queries the current setting.
Syntax :IMPedance:SUPerpose:DETaile: WAVeform \{SINE|PATTern\}
:IMPedance:SUPerpose:DETaile: WAVeform?

Example :IMPEDANCE:SUPERPOSE:DETAILE: WAVEFORM SINE
: IMPEDANCE: SUPERPOSE:DETAILE: WAVEFORM? -> :IMPEDANCE:SUPERPOSE: DETAILE: WAVEFORM SINE
: IMPedance: SUPerpose: FREQuency?
Function Queries all settings related to the frequency of the load current for impedance measurements.
Syntax :IMPedance:SUPerpose:FREQuency?
Example :IMPEDANCE:SUPERPOSE:FREQUENCY? -> :IMPEDANCE:SUPERPOSE:FREQUENCY: RANGE HZ;VALUE 100.00

: IMPedance : SUPerpose : FREQuency : RANGe

Function Sets the frequency range of the load current for impedance measurements or queries the current setting.
Syntax :IMPedance:SUPerpose:FREQuency: RANGe \{MHZ|HZ|KHZ\}
: IMPedance: SUPerpose: FREQuency: RANGe?
Example :IMPEDANCE:SUPERPOSE:FREQUENCY: RANGE HZ
: IMPEDANCE: SUPERPOSE: FREQUENCY: RANGE? -> :IMPEDANCE:SUPERPOSE: FREQUENCY:RANGE HZ
: IMPedance : SUPerpose : FREQuency : VALue
Function Sets the frequency of the load current for impedance measurements or queries the current setting.
Syntax :IMPedance:SUPerpose:FREQuency: VALue $\{<\mathrm{NRf}>\}$
:IMPedance: SUPerpose:FREQuency: VALue?
<NRf> $=0.9313$ to $891.28(\mathrm{mHz})$ (when frequency range $=\mathrm{mHz}$) <NRf> $=1.0002$ to $992.06(\mathrm{~Hz})$ (when frequency range $=\mathrm{Hz}$) <NRf> = 1.1161 to $50.000(\mathrm{kHz})$ (when frequency range $=\mathrm{kHz}$)
Example :IMPEDANCE:SUPERPOSE:FREQUENCY: VALUE 1.0002
: IMPEDANCE: SUPERPOSE:FREQUENCY: VALUE? -> :IMPEDANCE:SUPERPOSE: FREQUENCY:VALUE 1.0002

: IMPedance : SUPerpose: OFFSet

Function Sets the magnitude of the DC component of the load current for impedance measurements or queries the current setting.
Syntax :IMPedance:SUPerpose:OFFSet $\{<$ NRf $>\}$: IMPedance: SUPerpose: OFFSet? <NRf> $=-1000.000$ to $1000.000(\mathrm{~A})$
Example :IMPEDANCE:SUPERPOSE:OFFSET 0 :IMPEDANCE:SUPERPOSE:OFFSET? -> :IMPEDANCE:SUPERPOSE:OFFSET 0.000
: IMPedance : SUPerpose : OUTPut?
Function Queries all settings related to the output of the load current for impedance measurements.
Syntax :IMPedance:SUPerpose:OUTPut?
Example :IMPEDANCE:SUPERPOSE:OUTPUT? -> : IMPEDANCE: SUPERPOSE: OUTPUT: STATE 0;TYPE DC
: IMPedance : SUPerpose: OUTPut [: STATe]
Function Turns ON/OFF the load current for impedance measurements or queries the current setting.
Syntax :IMPedance:SUPerpose: OUTPut[: STATe] \{<Boolean>\}
: IMPedance:SUPerpose:OUTPut:STATe?
Example :IMPEDANCE:SUPERPOSE:OUTPUT: STATE ON
: IMPEDANCE: SUPERPOSE: OUTPUT:STATE? -> :IMPEDANCE:SUPERPOSE:OUTPUT: STATE 1
: IMPedance : SUPerpose: OUTPut : TYPE
Function Sets the output type of the load current for impedance measurements or queries the current setting.
Syntax :IMPedance:SUPerpose:OUTPut: TYPE \{ACDC|DC\}
: IMPedance: SUPerpose: OUTPut:TYPE?
Example :IMPEDANCE:SUPERPOSE:OUTPUT:TYPE DC
: IMPEDANCE: SUPERPOSE: OUTPUT:TYPE?
-> :IMPEDANCE:SUPERPOSE:OUTPUT: TYPE DC
: IMPedance: VOLTage?
Function Queries all settings related to the voltage sensing input of impedance measurements.
Syntax :IMPedance:VOLTage?
Example :IMPEDANCE:VOLTAGE? -> :IMPEDANCE: VOLTAGE:TERMINAL:ELEMENT5 HIGH;: IMPEDANCE:VOLTAGE:ESTIMATE: ELEMENT5 0.0010;:IMPEDANCE:VOLTAGE: RANGE:ELEMENT5 AUTO

: IMPedance : VOLTage: ESTimate?

Function	Queries the impedance estimates of all impedance measurement elements.
Syntax	$:$ IMPedance:VOLTage:ESTimate?
Example	$:$ IMPEDANCE:VOLTAGE:ESTIMATE? ->
	:IMPEDANCE:VOLTAGE:ESTIMATE:
	ELEMENT5 0.0010

: IMPedance: VOLTage: ESTimate [: ALL]

Function Sets the impedance estimates of all impedance measurement elements collectively.
Syntax :IMPedance:VOLTage:ESTimate[: ALL] \{<NRf>\} <NRf> $=0.0001$ to $10000.0000(\Omega)$
Example :IMPEDANCE:VOLTAGE:ESTIMATE: ALL 0.001

: IMPedance : VOLTage: ESTimate: ELEMent<x>

Function	Sets the impedance estimate of the impedance measurement element or queries the current setting.
Syntax	:IMPedance:VOLTage:ESTimate:
	ELEMent<x> \{<NRf>\}
	:IMPedance:VOLTage:ESTimate:
	ELEMent<x>?
	<NRf> = 1 to 5 (impedance measurement element)
	<NRf> $=0.0001$ to $10000.0000(\Omega)$
Example	: IMPEDANCE:VOLTAGE:ESTIMATE:
	ELEMENT5 0.001
	:IMPEDANCE:VOLTAGE:ESTIMATE:
	ELEMENT5? -> :IMPEDANCE:VOLTAGE:
	ESTIMATE:ELEMENT5 0.0010

: IMPedance: VOLTage: INITialize
Function Sets the voltage range to the initial range.
Syntax :IMPedance:VOLTage:INITialize
Example :IMPEDANCE:VOLTAGE:INITIALIZE
: IMPedance : VOLTage: MRANge? (Measured RANge)
Function Queries the voltage range with respect to the present measured value.
Syntax :IMPedance:VOLTage:MRANge? \{<NRf>\} <NRf> = 1 to 5 (impedance measurement element)
Example (Example when impedance measurement elements (Terminal=High) are available in 2 and 3) :IMPEDANCE:VOLTAGE:MRANGE? 2 -> 150.0E-03
:IMPEDANCE:VOLTAGE:MRANGE? -> 150.0E-03,150.0E-03

Description - Returns the measurement range displayed on the right side of the screen.

- If the parameter is omitted, the measurement ranges of all built-in impedance measurement elements are output in order from the smallest element number.

: IMPedance: VOLTage: RANGe?

Function Queries the voltage range mode of all impedance measurement elements.
Syntax :IMPedance:VOLTage:RANGe?
Example :IMPEDANCE:VOLTAGE:RANGE? -> :IMPEDANCE:VOLTAGE:RANGE: ELEMENT5 AUTO
: IMPedance : VOLTage: RANGe [: ALL]
Function Sets the voltage range mode of all impedance measurement elements collectively.
Syntax :IMPedance:VOLTage:RANGe[: ALL] \{AUTO|FIX\}
Example :IMPEDANCE:VOLTAGE:RANGE:ALL AUTO
: IMPedance : VOLTage : RANGe: ELEMent<x>
Function Sets the voltage range mode of the impedance measurement element or queries the current setting.
Syntax :IMPedance:VOLTage: RANGe: ELEMent<x> \{AUTO|FIX\}
:IMPedance:VOLTage:RANGe: ELEMent<x>?
<NRf> = 1 to 5 (impedance measurement element)
Example :IMPEDANCE:VOLTAGE:RANGE: ELEMENT5 AUTO
: IMPEDANCE:VOLTAGE:RANGE: ELEMENT5? -> :IMPEDANCE:VOLTAGE: RANGE:ELEMENT5 AUTO
: IMPedance: VOLTage: TERMinal?
Function Queries the voltage input terminal of all impedance measurement elements.
Syntax :IMPedance:VOLTage:TERMinal?
Example :IMPEDANCE:VOLTAGE:TERMINAL? -> :IMPEDANCE:VOLTAGE:TERMINAL: ELEMENT5 HIGH
: IMPedance : VOLTage : TERMinal [: ALL]
Function Sets the voltage input terminals of all impedance measurement elements collectively.
Syntax :IMPedance:VOLTage:TERMinal[:
ALL] \{HIGH|LOW\}
Example :IMPEDANCE:VOLTAGE:TERMINAL:ALL HIGH
: IMPedance: VOLTage:TERMinal:ELEMent<x>
Function Sets the voltage input terminal of the impedance measurement element or queries the current setting.
Syntax :IMPedance:VOLTage:TERMinal: ELEMent<x> \{HIGH|LOW\}
:IMPedance:VOLTage:TERMinal: ELEMent<x>?
<NRf> = 1 to 5 (impedance measurement element)
Example :IMPEDANCE:VOLTAGE:TERMINAL: ELEMENT5 HIGH
:IMPEDANCE:VOLTAGE:TERMINAL: ELEMENT5? -> :IMPEDANCE:VOLTAGE: TERMINAL:ELEMENT5 HIGH

5.10 INPut Group

The commands in this group deal with the measurement condition of the input element.
You can make the same settings and inquiries as when RANGE, SCALING, WIRING, FILTER, SYNC SRC, and NULL(SHIFT+MISC) of the INPUT group on the front panel are used.

Function Queries all settings related to the input element.
Syntax :INPut?
Example :INPUT? -> :INPUT:
WIRING P1W2,P1W2,P1W2;VOLTAGE:
RANGE:ELEMENT1 1.0000E+03;
ELEMENT2 $1.0000 \mathrm{E}+03$;
ELEMENT3 1.0000E+03;
ELEMENT4 1.0000E+03;:INPUT:CURRENT: TERMINAL:ELEMENT1 DIRECT; ELEMENT2 DIRECT;ELEMENT3 DIRECT; ELEMENT4 DIRECT;:INPUT:CURRENT: RANGE:ELEMENT1 5.00E+00;
ELEMENT2 5.00E+00;
ELEMENT3 5.00E+00;
ELEMENT4 5.00E+00;:INPUT:CURRENT: SRATIO:ELEMENT1 10.0000; ELEMENT2 10.0000;ELEMENT3 10.0000; ELEMENT4 10.0000;:INPUT:FILTER: LINE:ELEMENT1 OFF;ELEMENT2 OFF; ELEMENT3 OFF;ELEMENT4 OFF; ELEMENT5 OFF;:INPUT:FILTER:ZCROSS: ELEMENT1 OFF;ELEMENT2 OFF; ELEMENT3 OFF;ELEMENT4 OFF;:INPUT: SCALING:STATE:ELEMENT1 0; ELEMENT2 0;ELEMENT3 0;ELEMENT4 0; ELEMENT5 0;:INPUT:SCALING:PT: ELEMENT1 1.0000;ELEMENT2 1.0000; ELEMENT3 1.0000;ELEMENT4 1.0000; ELEMENT5 1.0000;:INPUT:SCALING:CT: ELEMENT1 1.0000;ELEMENT2 1.0000; ELEMENT3 1.0000;ELEMENT4 1.0000; ELEMENT5 1.0000;:INPUT:SCALING: SFACTOR:ELEMENT1 1.0000; ELEMENT2 1.0000;ELEMENT3 1.0000; ELEMENT4 1.0000;:INPUT:SYNCHRONIZE: ELEMENT1 I1;ELEMENT2 I2; ELEMENT3 I3;ELEMENT4 I4:INPUT: NULL 0

[: INPut]: CURRent?

Function Queries all settings related to the current measurement.

Syntax [:INPut]:CURRent?
Example :INPUT:CURRENT? -> :INPUT:CURRENT: TERMINAL:ELEMENT1 DIRECT; ELEMENT2 DIRECT;ELEMENT3 DIRECT; ELEMENT4 DIRECT;:INPUT:CURRENT: RANGE:ELEMENT1 5.00E+00; ELEMENT2 5.00E+00; ELEMENT3 5.00E+00; ELEMENT4 5.00E+00;:INPUT:CURRENT: SRATIO:ELEMENT1 10.0000; ELEMENT2 10.0000;ELEMENT3 10.0000; ELEMENT4 10.0000;
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]: CURRent : AUTO [: ALL]

Function Collectively turns ON/OFF the current auto range of all power measurement elements.

Syntax [:INPut]:CURRent:AUTO [:ALL] \{<Boolean>\}
Example :INPUT:CURRENT:AUTO:ALL ON
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]:CURRent:AUTO: ELEMent<x>

Function	Turns ON/OFF the current auto range of the power measurement element or queries the current setting.
Syntax	[: INPut]: CURRent:AUTO:
	ELEMent<x> \{<Boolean>\}
	[: INPut]: CURRent:AUTO: ELEMent<x>?
	<x> = 1 to 4 (power measurement element)
Example	:INPUT:CURRENT:AUTO:ELEMENT1 ON
	: INPUT: CURRENT:AUTO:ELEMENT1?
	:INPUT:CURRENT:AUTO:ELEMENT1 1

Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]:CURRent:MRANge? (Measured

RANge)

Function	Queries the current range with respect to the present measured value.
Syntax	[:INPut]:CURRent:MRANge? \{<NRf>\} <NRf> = 1 to 4 (power measurement element)
Example	:INPUT:CURRENT:MRANGE? 1 ->
	$5.00 \mathrm{E}+00$
	:INPUT:CURRENT:MRANGE? ->
	$5.00 \mathrm{E}+00,5.00 \mathrm{E}+00,5.00 \mathrm{E}+00,5.00 \mathrm{E}+00$

Description - Returns the measurement range displayed on the right side of the screen. The present measurement range can be retrieved even when set to auto range.

- If the parameter is omitted, the measurement ranges of all built-in power measurement elements are output in order starting with element 1.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut] : CURRent : RANGe?

Function Queries the current ranges of all power measurement elements.
Syntax [:INPut]:CURRent:RANGe?
Example :INPUT:CURRENT:RANGE? -> :INPUT: CURRENT:RANGE:ELEMENT1 5.00E+00; ELEMENT2 5.00E+00; ELEMENT3 5.00E+00; ELEMENT4 $5.00 \mathrm{E}+00$
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
[: INPut] : CURRent: RANGe [: ALL]
Function Collectively sets the current ranges of all power measurement elements.
Syntax [:INPut]:CURRent:RANGe
[:ALL] \{<Voltage>|<Current>|AUTO\}

- For a 5-A input element <Current> = 10, 20, 50, 100, 200, 500 (mA), 1, 2, or 5 (A) (when TERMinal = DIRect) <Voltage> = 50, 100, 250, $500(\mathrm{mV}), 1,2.5$, 5 , or $10(\mathrm{~V}) \quad$ (when TERMinal $=$ SENSor) AUTO = Auto range
- For a 50-A input element <Current> = 1, 2, 5, 10, 20, or 50 (A) (when TERMinal = DIRect) <Voltage> = 50, 100, 250, $500(\mathrm{mV}), 1,2.5$, 5 , or $10(\mathrm{~V}) \quad$ (when TERMinal $=$ SENSor) AUTO = Auto range
Example :INPUT:CURRENT:RANGE:ALL 5A
Description - The selectable range is determined by the input element type (5A/50A) of element 1 and the current measurement terminal setting ([:INPut]: CURRent:TERMinal:ELEMent1). Therefore, only the elements that are set to the same input element type and current measurement terminal setting as element 1 are set.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

```
[ :INPut]:CURRent:RANGe:ELEMent<x>
Function Sets the current range of the power
        measurement element or queries the current
    setting.
Syntax [:INPut]:CURRent:RANGe:
    ELEMent<x>
    {<Current>|<Voltage>|AUTO}
    [:INPut]:CURRent:RANGe:ELEMent<x>?
    <x> = 1 to 4 (power measurement element)
    - For a 5-A input element
        <Current > = 10, 20, 50, 100, 200, 500 (mA),
        1, 2, or 5 (A) (when TERMinal = DIRect)
        <Voltage > = 50, 100, 250, 500 (mV), 1, 2.5,
        5, or 10 (V) (when TERMinal = SENSor)
        AUTO = Auto range
        - For a 50-A input element
        <Current> = 1, 2, 5, 10, 20, or 50 (A)
        (when TERMinal = DIRect)
        <Voltage> = 50, 100, 250, 500 (mV), 1, 2.5,
        5, or 10 (V) (when TERMinal = SENSor)
        AUTO = Auto range
Example :INPUT:CURRENT:RANGE:ELEMENT1 5A
        :INPUT:CURRENT:RANGE:ELEMENT1? ->
        :INPUT:CURRENT:RANGE:
        ELEMENT1 5.00E+00
Description - The selectable range is determined by the
        input element type (5A/50A) of the target
        element and the current measurement
        terminal setting ([:INPut]:
        CURRent:TERMinal:ELEMent<x>).
    - Specifying "Auto" with this command is
        equivalent to setting
        "[:INPut]:CURRent:AUTO:
        ELEMent<x>" to "ON."
    - This command is invalid on models that are
        only equipped with impedance measurement
        elements, since the mode is fixed to
        impedance measurement.
```


[: INPut]:CURRent: SRATio?

Function Queries the current sensor scaling constants of all power measurement elements.
Syntax [:INPut]:CURRent:SRATio?
Example :INPUT:CURRENT:SRATIO? -> :INPUT: CURRENT:SRATIO:ELEMENT1 10.0000; ELEMENT2 10.0000;ELEMENT3 10.0000; ELEMENT4 10.0000
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]: CURRent:SRATio[:ALL]

Function Collectively sets the current sensor scaling constants of all power measurement elements.

Syntax [:INPut]:CURRent:SRATio [:ALL] \{<NRf>\}
<NRf> $=0.0001$ to 99999.9999
Example :INPUT:CURRENT:SRATIO:ALL 10
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
[: INPut] : CURRent : SRATio: ELEMent<x>
Function Sets the current sensor scaling constant of the power measurement element or queries the current setting.
Syntax [:INPut]:CURRent:SRATio: ELEMent<x> \{<NRf>\} [:INPut]: CURRent:SRATio:ELEMent<x>? <x> = 1 to 4 (power measurement element) <NRf> $=0.0001$ to 99999.9999
Example :INPUT:CURRENT:SRATIO:ELEMENT1 10 :INPUT:CURRENT:SRATIO:ELEMENT1? -> : INPUT:CURRENT:SRATIO: ELEMENT1 10.0000
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]:CURRent: TERMinal?

Function Queries the current measurement terminal of all power measurement elements.
Syntax [:INPut]:CURRent:TERMinal?
Example :INPUT:CURRENT:TERMINAL? -> :INPUT: CURRENT:TERMINAL:ELEMENT1 DIRECT; ELEMENT2 DIRECT;ELEMENT3 DIRECT; ELEMENT4 DIRECT
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
[: INPut]: CURRent: TERMinal [: ALL]
Function Collectively sets the current measurement terminals of all power measurement elements.
Syntax [:INPut]:CURRent:TERMinal
[:ALL] \{DIRect|SENSor\}
DIRect $=$ Direct input
SENSor = Current sensor input
Example :INPUT:CURRENT:TERMINAL:ALL DIRECT
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]:CURRent:TERMinal:ELEMent<x>

Function Sets the current measurement terminal of the power measurement element or queries the current setting.
Syntax [:INPut]:CURRent:TERMinal: ELEMent<x> \{DIRect|SENSor\} [:INPut]:CURRent:TERMinal: ELEMent<x>? <x> = 1 to 4 (power measurement element) DIRect $=$ Direct input SENSor = Current sensor input
Example :INPUT:CURRENT:TERMINAL: ELEMENT1 DIRECT : INPUT:CURRENT:TERMINAL:ELEMENT1? -> :INPUT:CURRENT:TERMINAL: ELEMENT1 DIRECT
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]: FILTer?

Function Queries all settings related to the filter.
Syntax [:INPut]:FILTer?
Example :INPUT:FILTER? -> :INPUT:FILTER: LINE:ELEMENT1 OFF;ELEMENT2 OFF; ELEMENT3 OFF;ELEMENT4 OFF; ELEMENT5 OFF;:INPUT:FILTER: ZCROSS:ELEMENT1 OFF;ELEMENT2 OFF; ELEMENT3 OFF;ELEMENT4 OFF

[:INPut]:FILTer:LINE?

Function Queries the line filter settings of all elements.
Syntax [:INPut]:FILTer:LINE?
Example :INPUT:FILTER:LINE? -> :INPUT: FILTER:LINE:ELEMENT1 OFF; ELEMENT2 OFF;ELEMENT3 OFF; ELEMENT4 OFF;ELEMENT5 OFF
[: INPut]: FILTer [: LINE] [: ALL]
Function Collectively sets the line filters of all elements.
Syntax [:INPut]:FILTer[:LINE][:ALL]
\{OFF|<Frequency>\}
OFF = Line filter OFF
<Frequency> = $500 \mathrm{~Hz}, 5.5 \mathrm{kHz}$ (line filter ON, cutoff frequency)
Example :INPUT:FILTER:LINE:ALL OFF
Description Line filters of all power measurement elements are collectively set. To set the line filter on impedance measurement elements, use the
"[:INPut]:FILTer[:LINE]: ELEMent< $x>$ " command. This command can be used only on models that are equipped with power measurement elements.

[: INPut]: FILTer [:LINE]: ELEMent<x>

Function Sets the line filter of the element or queries the current setting.

Syntax [:INPut]:FILTer[:LINE]:
ELEMent<x> \{OFF|<Frequency>\}
[:INPut]:FILTer[:LINE]:ELEMent<x>?
$<x>=1$ to 5 (element)
OFF = Line filter OFF
<Frequency> = $500 \mathrm{~Hz}, 5.5 \mathrm{kHz}$ (line filter ON, cutoff frequency)
Example :INPUT:FILTER:LINE:ELEMENT1 OFF
:INPUT:FILTER:LINE:ELEMENT1? ->
:INPUT:FILTER:LINE:ELEMENT1 OFF
[: INPut]: FILTer: ZCRoss?
Function Queries the zero-crossing filter settings of all power measurement elements.
Syntax [:INPut]:FILTer:ZCRoss?
Example :INPUT:FILTER:ZCROSS? ->
:INPUT:FILTER:ZCROSS:ELEMENT1 OFF;
ELEMENT2 OFF;ELEMENT3 OFF; ELEMENT4 OFF
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]: FILTer: ZCRoss [: ALL]

Function Collectively sets the zero-crossing filters of all power measurement elements.
Syntax [:INPut]:FILTer:ZCRoss[:ALL]
\{OFF|<Frequency>\}
OFF = zero-crossing filter OFF
<Frequency> = 500 Hz (zero-crossing filter ON, cutoff frequency)
Example :INPUT:FILTER:ZCROSS:ALL OFF
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]: FILTer: ZCRoss: ELEMent<x>

Function Sets the zero-crossing filter of the power measurement element or queries the current setting.
Syntax [:INPut]:FILTer:ZCRoss:
ELEMent<x> \{OFF|<Frequency>\}
[:INPut]:FILTer:ZCRoss:ELEMent<x>? $\langle x\rangle=1$ to 4 (power measurement element) OFF = zero-crossing filter OFF <Frequency> = 500 Hz (zero-crossing filter ON, cutoff frequency)
Example :INPUT:FILTER:ZCROSS:ELEMENT1 OFF :INPUT:FILTER:ZCROSS:ELEMENT1? -> :INPUT:FILTER:ZCROSS:ELEMENT1 OFF
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]: MODUle?

Function Queries the input element type.
Syntax [:INPut]:MODUle? \{<NRf>\}
[:INPut]:MODUle?
<NRf> = 1 to 6 (element)
Example :INPUT:MODULE? 1 -> 5
:INPUT:MODULE? -> 5,5,5,5,z5,0
Description - The response information is as follows: $5=5-\mathrm{A}$ input element for power measurement $50=50-A$ input element for power measurement Z5 = 5-A input element for impedance measurement
Z20 = 20-A input element for impedance measurement
$0=$ No input element

- If the parameter is omitted, the input element types of all elements are output in order starting with element 1.

[:INPut]: NULL

Function	Turns ON/OFF the NULL function or queries the current setting.
Syntax	[:INPut]:NULL \{<Boolean>\}
	[:INPut]: NULL?
Example	:INPUT:NULL ON
	:INPUT:NULL? -> :INPUT:NULL 1

[:INPut]:POVer?

Function Queries the peak over information.
Syntax [:INPut]:POVer?
Example :INPUT:POVER? -> 0
Description - The peak over information of each element is mapped as shown below. For the response, a sum of decimal values of each bit is returned.

- If the response is " 16 ," for example, peak over is occurring at U3.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[: INPut]: SCALing?

Function Queries all settings related to scaling.
Syntax [:INPut]:SCALing?
Example :INPUT:SCALING? -> :INPUT:SCALING: STATE:ELEMENT1 0;ELEMENT2 0; ELEMENT3 0;ELEMENT4 0;ELEMENT5 0;: INPUT:SCALING:PT:ELEMENT1 1.0000; ELEMENT2 1.0000;ELEMENT3 1.0000; ELEMENT4 1.0000;ELEMENT5 1.0000;: INPUT:SCALING:CT:ELEMENT1 1.0000; ELEMENT2 1.0000;ELEMENT3 1.0000; ELEMENT4 1.0000;ELEMENT5 1.0000;: INPUT:SCALING:SFACTOR:
ELEMENT1 1.0000;ELEMENT2 1.0000; ELEMENT3 1.0000;ELEMENT4 1.0000

Function	Queries the \{Voltage \|Current	Power\} scaling constants of all elements.			
Syntax	[: INPut]: SCALing: $\{$ PT\|CT	SFACtor $\}$?			
Example	:INPUT:SCALING:PT? -> :I				
	SCALING:PT:ELEMENT1 1.0000;				
	ELEMENT2 1.0000;ELEMENT3 1.0000;				
	ELEMENT4 1.0000;ELEMENT5 1.0000				
Description	The [:INPut]:SCALing:SFACtor. . commands are invalid on models that are only equipped with impedance measurement elements.				
[: INPut]	: SCALing : PPT\|CT	SFACtor $\}$ [: ALL]			
Function	Collectively sets the \{Voltage\|Current	Power\} scaling constants of all elements.			
Syntax	```[:INPut]:SCALing:{PT\|CT	SFACtor} [:ALL] {<NRf>} <NRf> = 0.0001 to 99999.9999```			
Example	: INPUT: SCALING: PT:ALL				
Description	- The "[:INPut]:SCALing: $\{\mathrm{PT} \mid \mathrm{CT}\}[$:ALL $]$ " command collectively sets the scaling constants on all power measurement elements. To set the scaling constants on impedance measurement elements, use the "[:INPut]:SCALing: $\{\mathrm{PT} \mid C T\}:$ ELEMent $<x>"$ command. This command can be used only on models that are equipped with power measurement elements. - The [:INPut]:SCALing:SFACtor.. commands are invalid on models that are only equipped with impedance measurement elements.				
[: INPut]	CALing : $\{P \mathrm{PT}\|\mathrm{CT}\|$ SFACtor $\}$:				
ELEMent<x					
Function	Sets the \{Voltage \| Current	Power\} scaling constants of the element or queries the current setting.			
Syntax	```[:INPut]:SCALing:{PT\|CT	SFACtor}: ELEMent<x> {<NRf>} [:INPut]:SCALing:{PT	CT	SFACtor}: ELEMent<x>? - For [:INPut]:SCALing:{PT	CT}: ELEMent<x> <x> = 1 to 5 (element) - For [:INPut]:SCALing:{SFACtor}: ELEMent<x> <x> = 1 to 4 (power measurement element) <NRf> = 0.0001 to 99999.9999```
Example	:INPUT:SCALING:PT:ELEMENT1 1 :INPUT:SCALING:PT:ELEMENT1? -> :INPUT:SCALING:PT:ELEMENT1 1.0000				
Description	The [:INPut]:SCALing:SFACtor. . commands are invalid on models that are only equipped with impedance measurement elements.				

Function Queries the \{Voltage|Current|Power\} scaling constants of all elements.
Syntax [:INPut]:SCALing:\{PT|CT|SFACtor\}?
Example :INPUT:SCALING:PT? -> :INPUT: SCALING:PT:ELEMENT1 1.0000; ELEMENT2 1.0000;ELEMENT3 1.0000; ELEMENT4 1.0000;ELEMENT5 1.0000 are invalid on models that are only equipped with impedance measurement elements.
[: INPut] : SCALing: \{PT|CT|SFACtor \} [:ALL]
Function Collectively sets the \{Voltage|Current|Power\} scaling constants of all elements.
Syntax [:INPut]:SCALing: \{PT|CT|SFACtor $\}$ [:ALL] \{<NRf>\}
<NRf> $=0.0001$ to 99999.9999
Example :INPUT:SCALING:PT:ALL 1
Description • The
"[:INPut]:SCALing: \{PT|CT\}[:ALL]"
command collectively sets the scaling constants on all power measurement elements. To set the scaling constants on impedance measurement elements, use the [:INPut]:SCALing: \{PT|CT\}:ELEMent<x> on models that are equipped with power measurement elements.
The [:INPut]: SCALing: SFACtor.. commands are invaid on models that are only equipped with impedance measurement elements.

[: INPut]:SCALing: \{PT|CT|SFACtor $\}$:

Function Sets the \{Voltage |Current|Power\} scaling constants of the element or queries the current setting.

ELEMent<x> \{<NRf>\}

ELEMent<x>?

- For [:INPut]:SCALing: $\{\mathrm{PT} \mid \mathrm{CT}\}:$ ELEMent<x>
- For [:INPut]: SCALing: \{SFACtor\} : ELEMent<x> $<x>=1$ to 4 (power measurement element) <NRf> $=0.0001$ to 99999.9999
Example :INPUT:SCALING:PT:ELEMENT1 1
:INPUT:SCALING:PT:ELEMENT1? ->
:INPUT:SCALING:PT:ELEMENT1 1.0000
are invalid on models that are only equipped with impedance measurement elements.

Function	Queries the scaling ON/OFF states of all elements.
Syntax	[:INPut]:SCALing:STATe?
Example	```:INPUT:SCALING:STATE? -> :INPUT: SCALING:STATE:ELEMENT1 0; ELEMENT2 0;ELEMENT3 0;ELEMENT4 0; ELEMENT5 0```
[: INPut]	SCALing [: STATe][:ALL]
Function	Collectively turns ON/OFF the scaling of all elements.
Syntax	[:INPut]:SCALing[:STATe] [:ALL] \{<Boolean>\}
Example	:INPUT:SCALING:STATE:AL
Description	Scaling of all power measurement elements are collectively set. To set the scaling on impedance measurement elements, use the "[:INPut]:SCALing[:STATe]: ELEMent<x>" command. This command can be used only on models that are equipped with power measurement elements.
[:INPut]	: SCALIng [: STATe] : ELEMent<x>
Function	Turns ON/OFF the scaling of the element or queries the current setting.
Syntax	[:INPut]:SCALing[:STATe]: ELEMent<x> \{<Boolean>\} [:INPut]:SCALing[:STATe]: ELEMent<x>? $<x>=1$ to 5 (element)
Example	:INPUT:SCALING:STATE:ELEMENT1 OFF :INPUT:SCALING:STATE:ELEMENT1? -> :INPUT:SCALING:STATE:ELEMENT1 0
[:INPut]:	SYNChronize?
Function	Queries the synchronization source of all power measurement elements.
Syntax	[:INPut]:SYNChronize?
Example	```INPUT:SYNCHRONIZE? -> :INPUT: SYNCHRONIZE:ELEMENT1 I1; ELEMENT2 I2;ELEMENT3 I3; ELEMENT4 I4```
Description	This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]:SYNChronize[:ALL]

Function Collectively sets the synchronization source of all power measurement elements.
Syntax [:INPut]:SYNChronize[:ALL] \{U<x>| I<x>|NONE $\}$
$<x>=1$ to 4 (power measurement element)
NONE = No synchronization source
Example :INPUT:SYNCHRONIZE:ALL I1
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]:SYNChronize:ELEMent<x>

Function Sets the synchronization source of the power measurement element or queries the current setting.
Syntax [:INPut]:SYNChronize: ELEMent< $x>\{U<x>|I<x>| N O N E\}$
[:INPut]:SYNChronize:ELEMent<x>? $\langle x\rangle=1$ to 4 (power measurement element) NONE = No synchronization source
Example :INPUT:SYNCHRONIZE:ELEMENT1 I1 :INPUT:SYNCHRONIZE:ELEMENT1? -> :INPUT:SYNCHRONIZE:ELEMENT1 I1

Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]: VOLTage?

Function Queries all settings related to the voltage measurement.
Syntax [:INPut]:VOLTage?
Example :INPUT:VOLTAGE? -> :INPUT:VOLTAGE: RANGE:ELEMENT1 1.0000E+03;
ELEMENT2 1.0000E+03;
ELEMENT3 1.0000E+03; ELEMENT4 1.0000E+03;
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]: VOLTage: AUTO[: ALL]

Function Collectively turns ON/OFF the voltage auto range of all power measurement elements.
Syntax [:INPut]:VOLTage:AUTO [:ALL] \{<Boolean>\}
Example :INPUT:VOLTAGE:AUTO:ALL ON
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut] : VOLTage: AUTO: ELEMent<x>

Function Turns ON/OFF the voltage auto range of the power measurement element or queries the current setting.
Syntax [:INPut]:VOLTage:AUTO: ELEMent<x> \{<Boolean>\} [:INPut]:VOLTage:AUTO: ELEMent<x>? $<x>=1$ to 4 (power measurement element)
Example :INPUT:VOLTAGE:AUTO:ELEMENT1 ON :INPUT:VOLTAGE:AUTO:ELEMENT1? -> :INPUT:VOLTAGE:AUTO:ELEMENT1 1
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]: VOLTage:MRANge? (Measured RANge)

Function	Queries the voltage range with respect to the present measured value.
Syntax	[:INPut]:VOLTage:MRANge? \{<NRf>\} <NRf> = 1 to 4 (power measurement element)
Example	:INPUT:VOLTAGE:MRANGE? 1 ->
	$1.0000 \mathrm{E}+03$
	:INPUT:VOLTAGE:MRANGE? ->
	$1.0000 \mathrm{E}+03,1.0000 \mathrm{E}+03$,
	$1.0000 \mathrm{E}+03,1.0000 \mathrm{E}+03$

Description - Returns the measurement range displayed on the right side of the screen. The present measurement range can be retrieved even when auto range is ON.

- If the parameter is omitted, the measurement ranges of all built-in power measurement elements are output in order starting with element 1.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]: VOLTage: RANGe?

Function Queries the voltage ranges of all power measurement elements.
Syntax [:INPut]:VOLTage:RANGe?
Example :INPUT:VOLTAGE:RANGE? -> :INPUT: VOLTAGE:RANGE:ELEMENT1 1.0000E+03; ELEMENT2 $1.0000 \mathrm{E}+03$; ELEMENT3 $1.0000 \mathrm{E}+03$; ELEMENT4 $1.0000 \mathrm{E}+03$
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[: INPut]: VOLTage: RANGe [: ALL]

Function Collectively sets the voltage range of all power measurement elements.
Syntax [:INPut]:VOLTage:RANGe[:ALL] \{<Voltage>|AUTO\}
<Voltage> $=1.5,3,6,10,15,30,60,100$,
$150,300,600$, or 1000 (V)
AUTO = Auto range
Example :INPUT:VOLTAGE:RANGE:ALL 1000V
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
[: INPut] : VOLTage: RANGe: ELEMent<x>
Function Sets the voltage range of the power measurement element or queries the current setting.
Syntax [:INPut]:VOLTage:RANGe:
ELEMent<x> \{<Voltage>|AUTO\}
[: INPut]: VOLTage:RANGe:ELEMent<x>?
$<x>=1$ to 4 (power measurement element)
<Voltage> $=1.5,3,6,10,15,30,60,100$,
$150,300,600$, or 1000 (V)
AUTO = Auto range
Example :INPUT:VOLTAGE:RANGE:ELEMENT1 1000V
:INPUT:VOLTAGE:RANGE:ELEMENT1? ->
: INPUT:VOLTAGE: RANGE:
ELEMENT1 1.0000E+03
Description • Specifying "Auto" with this command is equivalent to setting
"[:INPut]:VOLTage:AUTO:
ELEMent<x>" to "ON."

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

[:INPut]:WIRing

Function Sets the wiring system or queries the current setting.
Syntax [:INPut]:WIRing \{(P1W2|P1W3|P3W3| P3W4|V3A3) [, (P1W2|P1W3|P3W3|P3W4| V3A3|NONE)] [, (P1W2 | P1W3|P3W3|P3W4| V3A3|NONE)]\} [:INPut]:WIRing? P1W2 = Single-phase, two-wire system P1W3 = Single-phase, three-wire system P3W3 $=$ Three-phase, three-wire system P3W4 = Three-phase, four-wire system V3A3 $=$ Three voltage, three current system NONE = No wiring
Example :INPUT:WIRING P1W2,P1W2,P1W2 :INPUT:WIRING? -> :INPUT: WIRING P1W2,P1W2,P1W2
Description - Set the wiring systems in the order $\Sigma \mathrm{A}, ~ \Sigma \mathrm{~B}$, and ΣC.

- If the combination does not allow setting of ΣB or ΣC, it can be omitted.
- Certain combinations of wiring systems are not selectable depending on the model type. For the combinations of wiring systems, see the WT1600FC User's Manual (IM760151-01E).
- On models with a single power measurement element, $\Sigma \mathrm{A}$ is fixed to P1W2. $\Sigma \mathrm{B}$ and $\Sigma \mathrm{C}$ cannot be specified.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

5.11 INTEGrate Group

The commands in this group deal with integration.
Excluding a section of the commands, you can make the same settings and inquiries as when START, STOP, RESET (SHIFT+STOP), and INTEG SET(SHIFT+START) of the INTEGRATOR group on the front panel are used. The commands in this group are invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

INTEGrate?

Function Queries all settings related to the integration.
Syntax :INTEGrate?

Example - Example during normal integration mode with individual element integration set to OFF :INTEGRATE? -> :INTEGRATE: MODE NORMAL;CURRENT:ELEMENT1 RMS; ELEMENT2 RMS;ELEMENT3 RMS; ELEMENT4 RMS;:INTEGRATE:ACAL 0; INDEPENDENT 0;TIMER1 1,0,0

- Example during real-time normal integration mode with individual element integration set to OFF
:INTEGRATE? -> :INTEGRATE: MODE RNORMAL;CURRENT: ELEMENT1 RMS;ELEMENT2 RMS; ELEMENT3 RMS;ELEMENT4 RMS;: INTEGRATE:ACAL 0 ;INDEPENDENT 0 ; TIMER1 1,0,0;RTIME1:
START 2001,1,1,0,0,0;
END 2001,1,1,1,0,0
- Example during normal integration mode with individual power measurement element integration set to ON
:INTEGRATE? -> :INTEGRATE: MODE NORMAL;CURRENT:ELEMENT1 RMS; ELEMENT2 RMS;ELEMENT3 RMS; ELEMENT4 RMS;:INTEGRATE:ACAL 0; INDEPENDENT 1;TIMER1 1,0,0; TIMER2 1,0,0;TIMER3 1,0,0; TIMER4 1,0,0
- Example during real-time normal integration mode with individual power measurement element integration set to ON :INTEGRATE? -> :INTEGRATE: MODE RNORMAL;CURRENT: ELEMENT1 RMS;ELEMENT2 RMS; ELEMENT3 RMS;ELEMENT4 RMS;: INTEGRATE:ACAL 0;INDEPENDENT 1; TIMER1 1,0,0;TIMER2 1,0,0; TIMER3 1,0,0;TIMER4 1,0,0; RTIME1:START 2001,1,1,0,0,0; END 2001,1,1,1,0,0;:INTEGRATE: RTIME2:START 2001,1,1,0,0,0; END 2001,1,1,1,0,0;:INTEGRATE: RTIME3:START 2001,1,1,0,0,0; END 2001,1,1,1,0,0;:INTEGRATE: RTIME4:START 2001,1,1,0,0,0; END 2001,1,1,1,0,0

: INTEGrate: ACAL

$\left.\begin{array}{ll}\text { Function } & \begin{array}{l}\text { Turns ON/OFF the auto calibration or queries } \\ \text { the current setting. }\end{array} \\ \text { Syntax } & : \text { INTEGrate }: \text { ACAL }\{<\text { Boolean>\} }\end{array}\right\}$ ACAL 0
: INTEGrate: CURRent?

Function	Queries the current mode of the current integration of all power measurement elements.
Syntax	: INTEGrate: CURRent?
Example	:INTEGRATE:CURRENT? -> :INTEGRATE:
	CURRENT : ELEMENT1 RMS; ELEMENT2 RMS;
	ELEMENT3 RMS;ELEMENT4 RMS

: INTEGrate: CURRent [: ALL]

Function	Collectively sets the current mode of the current integration of all power measurement elements.	
Syntax	:INTEGrate:CURRent[:ALL] \{RMS\|MEAN	
	DC \mid AC $\}$	
Example	:INTEGRATE:CURRENT:ALL RMS	

: INTEGrate: CURRent: ELEMent<x>

Function Sets the current mode of the current integration of the power measurement element or queries the current setting.
Syntax :INTEGrate:CURRent:ELEMent<x> \{RMS| MEAN \mid DC \mid AC $\}$
:INTEGrate:CURRent:ELEMent<x>? $<x>=1$ to 4 (power measurement element)
Example :INTEGRATE:CURRENT:ELEMENT1 RMS :INTEGRATE:CURRENT:ELEMENT1? -> :INTEGRATE:CURRENT:ELEMENT1 RMS

Description The WT1600FC operates according to the current mode of the current integration of each element regardless of whether the individual power measurement element integration (:INTEGrate: INDependent) is ON.

: INTEGrate: INDependent

Function	Turns ON/OFF the individual power measurement element integration or queries the current setting.
Syntax	:INTEGrate:INDependent \{<Boolean>\}
	: INTEGrate:INDependent?
Example	:INTEGRATE:INDEPENDENT OFF
	:INTEGRATE:INDEPENDENT? ->
	:INTEGRATE:INDEPENDENT 0

: INTEGrate: MODE

Function Sets the integration mode or queries the current setting.
Syntax :INTEGrate:MODE \{NORMal|CONTinuous| RNORmal|RCONtinuous $\}$
: INTEGrate: MODE?
NORMal = Normal integration mode
CONTinuous = Continuous integration mode RNORmal = Real-time normal integration mode RCONtinuous = Real-time continuous integration mode
Example :INTEGRATE:MODE NORMAL
:INTEGRATE:MODE? -> :INTEGRATE: MODE NORMAL

: INTEGrate:RESet

Function Resets the integrated value.
Syntax :INTEGrate:RESet \{<NRf>,<NRf>, <NRf>, <NRf>\}
<NRf> = 1 to 4 (power measurement element that is stopped)
Example - Example in which the individual power measurement element integration (: INTEGrate : INDependent) is "ON (1)" : INTEGRATE: RESET
(Stop all power measurement elements) :INTEGRATE:RESET 1,2,3 (Specify power measurement elements and stop)

- Example in which the individual power measurement element integration (: INTEGrate: INDependent) is "OFF (0)" : INTEGRATE:RESET
(Stop all power measurement elements)
Description - When the individual power measurement element integration (:INTEGrate: INDependent) is "ON (1)," you can specify up to 4 power measurement elements to be started as parameters. However, this method is possible only through communications.
There are no front panel keys that correspond to this method. Omitting parameters is equivalent to specifying all power measurement elements.
- When the individual power measurement element integration (:INTEGrate: INDependent) is "OFF (0)," you cannot specify parameters. If you do, an error occurs.

:INTEGrate:RTIMe<x>?

Function Queries the integration start and stop times for real-time integration mode.

Syntax :INTEGrate:RTIMe<x>? $<x>=1$ to 4 (power measurement element)
Example :INTEGRATE:RTIME1? -> :INTEGRATE: RTIME1:START 2001,1,1,0,0,0; END 2001,1,1,1,0,0
Description When the individual power measurement element integration (: INTEGrate: INDependent) is "OFF (0)," the integration operates according to the integration start/stop time of power measurement element 1. Queries to other elements results in error.

: INTEGrate : RTIMe<x>: \{STARt|END\}

Function Sets the integration \{start|stop\} time for realtime integration mode or queries the current setting.
Syntax :INTEGrate:RTIMe<x>:\{STARt|END\}
$\{<N R f>,<N R f>,<N R f>,<N R f>,<N R f>$,
<NRf>\}
:INTEGrate:RTIMe<x>:\{STARt|END\}?
$<x>=1$ to 4 (power measurement element)
\{<NRf>, <NRf>, <NRf>, <NRf>, <NRf>,
$<\operatorname{NRf}>\}=2001,1,1,0,0,0$ to 2099, 12, 31, 23,
59, 59
1st <NRf> = 2001 to 2099 (year)
2nd <NRf> = 1 to 12 (month)
$3 \mathrm{rd}<\mathrm{NRf}>=1$ to 31 (day)
4th $<$ NRf $>=0$ to 23 (hour)
5th <NRf> $=0$ to 59 (minute)
6th <NRf> $=0$ to 59 (second)
Example :INTEGRATE:RTIME1:
START 2001,1,1,0,0,0
:INTEGRATE:RTIME1:START? ->
: INTEGRATE: RTIME1:
START 2001,1,1,0,0,0
Description When the individual power measurement element integration (:INTEGrate: INDependent) is "OFF (0)," the integration operates according to the integration start/stop time of power measurement element 1.
Commands and queries to other elements result in error.

: INTEGrate:STARt

Function Starts integration.
Syntax : INTEGrate:STARt \{<NRf>,<NRf>, <NRf>,<NRf>\}
<NRf> = 1 to 4 (power measurement element that is stopped)
Example - Example in which the individual power measurement element integration (: INTEGrate : INDependent) is "ON (1)" : INTEGRATE:START (Stop all power measurement elements) :INTEGRATE:START 1,2,3 (Specify power measurement elements and stop)

- Example in which the individual power measurement element integration (: INTEGrate : INDependent) is "OFF (0)" : INTEGRATE:START
(Stop all power measurement elements)
Description - When the individual power measurement element integration (:INTEGrate: INDependent) is "ON (1)," you can specify up to 4 power measurement elements to be started as parameters. However, this method is possible only through communications. There are no front panel keys that correspond to this method. Omitting parameters is equivalent to specifying all power measurement elements.
- When the individual power measurement element integration (: INTEGrate: INDependent) is "OFF (0)," you cannot specify parameters. If you do, an error occurs.

: INTEGrate: STATE?

Function Queries the integration condition.
Syntax :INTEGrate:STATe? \{<NRf>\}
<NRf> = 1 to 4 (power measurement element to be queried)
Example : INTEGRATE:STATE? 1 -> RESET (Query the specified power measurement element) :INTEGRATE:STATE? -> RESET, RESET, RESET, RESET
(Query all power measurement elements)
Description - The response information is as follows:
RESet = Integration reset READy = Waiting (real-time integration mode) STARt = Integration in progress STOP = Integration stop ERRor = Abnormal integration termination (integration overflow, power failure) TIMeup = Integration stop due to integration timer time

- If the parameter is omitted, the query is made on the condition of all built-in power measurement elements. If a power measurement element that is not built in is specified as a parameter, an error occurs.

: INTEGrate:STOP

Function Stops integration.
Syntax :INTEGrate:STOP \{<NRf>,<NRf>, <NRf>, <NRf>\}
<NRf> = 1 to 4 (power measurement element that is stopped)
Example - Example in which the individual power measurement element integration
(:INTEGrate:
INDependent) is "ON (1)"
: INTEGRATE:STOP
(Stop all power measurement elements)
:INTEGRATE:STOP 1,2,3
(Specify power measurement elements and stop)

- Example in which the individual power measurement element integration (:INTEGrate:
InDependent) is "OFF (0)"
: INTEGRATE:STOP
(Stop all power measurement elements)
Description • When the individual power measurement element integration (: INTEGrate: INDependent) is "ON (1)," you can specify up to 4 power measurement elements to be started as parameters. However, this method is possible only through communications.
There are no front panel keys that correspond to this method. Omitting parameters is equivalent to specifying all power measurement elements.
- When the individual power measurement element integration (: INTEGrate: INDependent) is "OFF (0)," you cannot specify parameters. If you do, an error occurs.

: INTEGrate: TIMer<x>

Function Sets the integration timer time or queries the current setting.
Syntax : INTEGrate:TIMer<x> \{<NRf>,<NRf>, <NRf>\}
: INTEGrate:TIMer $<x>$?
$<x>=1$ to 4 (power measurement element)
$\{<\mathrm{NRf}>,<\mathrm{NRf}>,<\mathrm{NRf}\rangle\}=0,0,0$ to 10000, 0, 0
1st $<$ NRf $>=0$ to 10000 (hour)
2nd <NRf> $=0$ to 59 (minute)
3rd <NRf> $=0$ to $59 \quad$ (second)
Example :INTEGRATE:TIMER1 1,0,0
:INTEGRATE:TIMER1? -> :INTEGRATE:
TIMER1 $1,0,0$
Description When the individual power measurement element integration (:INTEGrate: INDependent) is "OFF (0)," the integration operates according to the integration start time of power measurement element 1. Commands and queries to other elements result in error.

5.12 MEASure Group

The commands in this group deal with measurements.
You can make the same settings and inquiries as when MEASURE, AVG, and MAX HOLD (SHIFT+LOCAL) on the front panel is used.

Function Queries all settings related to the measurement.
Syntax :MEASure?
Example - Example for power measurement :MEASURE? -> :MEASURE:AVERAGING: STATE 0;TYPE EXPONENT;COUNT 2;: MEASURE:FREQUENCY:ITEM U1,I1,U2;: MEASURE:FUNCTION1:STATE 0; EXPRESSION "URMS(E1)";UNIT "V";: MEASURE:FUNCTION2:STATE 0; EXPRESSION "IRMS(E1)";UNIT "A";: MEASURE:FUNCTION3:STATE 0; EXPRESSION "UPPK(E1)"; UNIT "V";: MEASURE:FUNCTION4:STATE 0; EXPRESSION "IPPK(E1)";UNIT "A";: MEASURE: DMEASURE:OBJECT SIGMA; TYPE OFF;:MEASURE:SFORMULA RMS; PC:IEC 1976;P1 0.5000;P2 0.5000;: MEASURE:PHASE 180;MHOLD 0

- For impedance measurement :MEASURE? -> :MEASURE:AVERAGING: STATE 0

: MEASure : AVERaging?

Function Queries all settings related to averaging.
Syntax :MEASure:AVERaging?
Example - Example for power measurement :MEASURE:AVERAGING? -> :MEASURE: AVERAGING:STATE 1;TYPE EXPONENT; COUNT 2

- For impedance measurement :MEASURE:AVERAGING? -> :MEASURE: AVERAGING:STATE 1

Function Sets the averaging coefficient for power measurement or queries the current setting.
Syntax :MEASure:AVERaging:COUNt \{<NRf>\}
: MEASure:AVERaging: COUNt?
<NRf> = 2, 4, 8, 16, 32, or 64
(when TYPE = EXPonent)
<NRf> = 8, 16, 32, 64, 128, or 256 (when TYPE = LINear)
Example :MEASURE:AVERAGING:COUNT 2 :MEASURE:AVERAGING:COUNT? -> :MEASURE:AVERAGING:COUNT 2
Description - This command is valid only during power measurement. (It cannot be used during impedance measurement.)

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
- For details on the averaging coefficient (attenuation constant) during impedance measurement, see the WT1600FC User's Manual (IM760151-01E).

: MEASure:AVERaging [:STATe]

Function Turns ON/OFF averaging or queries the current setting.
Syntax :MEASure:AVERaging [:STATe] \{<Boolean>\} :MEASure:AVERaging:STATe?
Example :MEASURE:AVERAGING:STATE ON :MEASURE:AVERAGING:STATE? -> :MEASURE:AVERAGING:STATE 1
Description The averaging for impedance measurement can only be turned ON/OFF. For details on the averaging during impedance measurement, see the WT1600FC User's Manual (IM760151-01E).

: MEASure: AVERaging: TYPE

Function Sets the averaging type for power measurement or queries the current setting.
Syntax :MEASure:AVERaging:TYPE \{EXPonent| LINear $\}$: MEASure:AVERaging:TYPE?
Example :MEASURE:AVERAGING:TYPE EXPONENT :MEASURE:AVERAGING:TYPE? -> :MEASURE:AVERAGING:TYPE EXPONENT
Description - This command is valid only during power measurement. (It cannot be used during impedance measurement.)

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
- For details on the averaging type during impedance measurement, see the WT1600FC User's Manual (IM760151-01E).

: MEASure: DMeasure?

Function	Queries all settings related to the delta computation.
Syntax	:MEASure: DMeasure?
Example	:MEASURE: DMEASURE? -> :MEASURE :
	DMEASURE: OBJECT SIGMA;TYPE OFF

Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
: MEASure: DMeasure: OBJect
Function Sets the delta computation target or queries the current setting.
Syntax :MEASure: DMeasure:OBJect \{SIGMA| SIGMB|SIGMC $\}$
:MEASure:DMeasure:OBJect?

$$
\text { SIGMA }=\Sigma \mathrm{A}
$$

SIGMB $=\Sigma$ B (selectable with two or more power measurement elements)
SIGMC $=\Sigma \mathrm{C}$ (selectable with three or more power measurement elements)
Example :MEASURE:DMEASURE:OBJECT SIGMA :MEASURE: DMEASURE:OBJECT? -> :MEASURE:DMEASURE:OBJECT SIGMA
Description • This command is valid only during power measurement.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
: MEASure: DMeasure: TYPE
Function Sets the delta computation mode or queries the current setting.
Syntax :MEASure:DMeasure:TYPE \{OFF| P3W3_V3A3|DT_ST|ST_DT\}
: MEASure: DMeasure:TYPE?
Example :MEASURE:DMEASURE:TYPE OFF :MEASURE: DMEASURE:TYPE? -> :MEASURE:DMEASURE:TYPE OFF
Description - This command is valid only during power measurement.
- The selections are as follows: OFF = Not perform delta computation P3W3_V3A3 $=3$ P3W $->3 V 3 A$ conversion DT_ST = Delta -> Star conversion ST_DT = Star -> Delta conversion
- Some of the selections may not be possible depending on the wiring system of the specified delta computation target (: MEASure: DMeasure: OBJect).
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: FREQuency?

Function Queries all settings related to frequency measurement.
Syntax :MEASure:FREQuency?
Example :MEASURE:FREQUENCY? -> :MEASURE: FREQUENCY:ITEM U1,I1,U2
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: FREQuency : ITEM

Function	Sets the frequency measurement item or queries the current setting.
Syntax	:MEASure:FREQuency:ITEM \{(U<x>\|
	$I<x>\mid$ NONE $)[,(U<x>\|I<x>\| N O N E)]$
	[, (U<x>\|I<x>\|NONE)]\}
	:MEASure:FREQuency:ITEM?
	<x> = 1 to 4 (power measurement element)
Example	:MEASURE:FREQUENCY:ITEM U1,I1,U2
	:MEASURE:FREQUENCY:ITEM? ->
	: MEASURE:FREQUENCY:ITEM U1,I1,U2

Description - This command is valid only during power measurement.

- You can specify up to three frequency measurement items.
- If you are not specifying the frequency measurement item, select "NONE." The 2nd and 3rd parameters can be omitted.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

:MEASure: FUNCtion<x>?

Function Queries all settings related to user-defined functions.

Syntax :MEASure:FUNCtion<x>?
<X> = 1 to 4
Example :MEASURE:FUNCTION1? -> :MEASURE:FUNCTION1:STATE 1; EXPRESSION "URMS(E1)"; UNIT "V"
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: FUNCtion<x>: EXPRession

Function Sets the equation of the user-defined function or queries the current setting.
Syntax :MEASure:FUNCtion<x>:EXPRession \{<String>\}
:MEASure:FUNCtion<x>:EXPRession?
$\langle x\rangle=1$ to 4
<String> = Up to 50 characters
Example :MEASURE:FUNCTION1:
EXPRESSION "URMS(E1)"
:MEASURE:FUNCTION1:EXPRESSION? -> : MEASURE: FUNCTION1: EXPRESSION "URMS(E1)"
Description - This command is valid only during power measurement.

- Only the characters and symbols displayed on the keyboard on the screen can be used.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.
:MEASure: FUNCtion<x>[:STATe]

Function	Enables (ON) or Disables (OFF) the userdefined function or queries the current setting.
Syntax	: MEASure: FUNCtion<x>
	[:STATe] \{<Boolean>\}
	:MEASure:FUNCtion<x>:STATe?
	<x> = 1 to 4
Example	:MEASURE:FUNCTION1:STATE ON
	:MEASURE:FUNCTION1:STATE? ->
	:MEASURE:FUNCTION1:STATE 1
Description	- This command is valid only during power measurement.
	- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure : FUNCtion<x>: UNIT

Function Sets the unit to be added to the computation result of the user-defined function or queries the current setting.

Syntax :MEASure:FUNCtion<x>:UNIT
\{<String>\}
:MEASure:FUNCtion<x>:UNIT?
<x> = 1 to 4
<String> = Up to 8 characters
Example :MEASURE:FUNCTION1:UNIT "V" :MEASURE:FUNCTION1:UNIT? -> :MEASURE:FUNCTION1:UNIT "V"
Description • This command is valid only during power measurement.

- Only the characters and symbols displayed on the keyboard on the screen can be used.
- This command does not affect the computation result.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: MHOLd

Function Turns ON/OFF the MAX HOLD function or queries the current setting.
Syntax :MEASure:MHOLd \{<Boolean>\} :MEASure: MHOLd?
Example :MEASURE:MHOLD ON :MEASURE:MHOLD? -> :MEASURE:MHOLD 1
Description - This command is valid only during power measurement.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: PC?

Function Queries all settings related to the calculation of Pc (Corrected Power).
Syntax :MEASure:PC?
Example :MEASURE:PC? -> :MEASURE:PC: IEC 1976;P1 0.5000;P2 0.5000
Description This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: PC:IEC

Function Sets the equation used to calculate Pc (Corrected Power) or queries the current setting.
Syntax :MEASure:PC:IEC $\{<$ NRf $>\}$: MEASure: PC: IEC? <NRf> = 1976, 1993
Example :MEASURE:PC:IEC 1976 :MEASURE:PC:IEC? -> :MEASURE:PC: IEC 1976
Description • This command is valid only during power measurement.

- Specify the year when the equation used to calculate the Pc was issued by IEC76-1.
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASURe: PC: P<x>

Function Sets the parameter used to calculate Pc (Corrected Power) or queries the current setting.
Syntax :MEASure:PC:P<x> \{<NRf>\} : MEASure: PC: $P<x>$?
$\langle x\rangle=1,2$
<NRf> $=0.0000$ to 9.9999
Example :MEASURE:PC:P1 0.5 :MEASURE:PC:P1? -> :MEASURE:PC: P1 0.5000
Description • This command is valid only during power measurement.

- This parameter is used when the ": MEASure: PC: IEC" setting is set to "1976(IEC76-1(1976))."
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: PHASe

Function Sets the display format of the phase difference or queries the current setting.
Syntax :MEASure:PHASe \{<NRf>\}
: MEASure: PHASe?
<NRf> = 180, 360
Example :MEASURE:PHASE 180 :MEASURE:PHASE? -> :MEASURE: PHASE 180
Description - This command is valid only during power measurement.

- Displays the phase using ± 0 to 180° (Lead/ Lag) for " $180^{\text {" }}$ and 0 to 360° for " 360 ."
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: MEASure: SFORmula

Function Sets the equation used to calculate S (reactive power) or queries the current setting.
Syntax :MEASure:SFORmula \{RMS|MEAN|DC| MRMS $\}$
: MEASure:SFORmula?
Example :MEASURE:SFORMULA RMS :MEASURE:SFORMULA? -> :MEASURE: SFORMULA RMS
Description - This command is valid only during power measurement.

- The correspondence between the selections and equations is as follows.
RMS : S = Urms * Irms
MEAN : $S=$ Umean * Imean
DC : S = Udc * Idc
MRMS : S = Umean * Irms
- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

5.13 NUMeric group

The commands in this group deal with numeric data.
There are no front panel keys that correspond to the commands in this group.

: NUMeric?

Function Queries all settings related to the numeric data output.
Syntax :NUMeric?
Example - Example for power measurement :NUMERIC? -> :NUMERIC: FORMAT ASCII;NORMAL: NUMBER 15; ITEM1 URMS,1;ITEM2 UMN,1; ITEM3 UDC,1;ITEM4 UAC,1; ITEM5 IRMS, $1 ;$ ITEM6 IMN, $1 ;$ Item 7 IDC,1; 1 TEM8 IAC,1; ITEM9 P,1;ITEM10 S,1;ITEM11 Q,1; ITEM12 LAMBDA, $1 ;$ ITEM13 PHI,1; ITEM14 FU,1;ITEM15 FI,1

- For impedance measurement :NUMERIC? -> :NUMERIC: FORMAT ASCII;IMPEDANCE:NUMBER 6; ARRAY 1;ITEM1 BU,4;ITEM2 BI,4; ITEM3 BP,4;ITEM4 FREQ;ITEM5 ZR,5; ITEM6 ZI,5

: NUMeric: FORMat

Function Sets the format of the numeric data that is transmitted by
": NUMeric: \{NORMal|IMPedance\}: VALue?" or queries the current setting.
Syntax :NUMeric:FORMat \{ASCii|FLOat\} : NuMeric:FORMat?
Example :NUMERIC:FORMAT ASCII : NUMERIC:FORMAT? -> :NUMERIC: FORMAT ASCII
Description - The format of the numeric data that is output varies depending on the
": NUMeric:FORMat" setting as follows.
(1) When "ASCii" is specified The physical value is output in the <NR3> format. (<NR1> format only for the elapsed time of integration (TIME)) The data of each item is delimited by a comma.
(2) When "FLOat" is specified

A 6-byte header (example " $\# 40060$ ") is added in front of the numeric data block. The physical value in IEEE singleprecision floating point (4-byte) format follows the header.
The byte order of the data of each item is MSB First.

- For the format of the individual numeric data, see "Numeric Data Format" at the end of this group (section).

: NUMeric:IMPedance?

Function Queries all settings related to the numeric data output for impedance measurement.

Syntax :NUMeric:IMPedance?

Example : NUMERIC:IMPEDANCE? ->
:NUMERIC:IMPEDANCE:NUMBER 6;
ARRAY 1;ITEM1 BU,4;ITEM2 BI,4;
ITEM3 BP,4;ITEM4 FREQ;ITEM5 ZR,5;
ITEM6 ZI,5
Description For the values of
": NUMeric: IMPedance:ITEM<x>," the numeric data output items for the amount specified by ": NUMeric: IMPedance: number" are output.

: NUMeric: IMPedance: ARRay

Function Of the numeric data output using
": NUMeric:IMPedance:VALue?," sets the number of data points (the number of arrays) when outputting an array-type function* or queries the current setting.
(* Array-type function $=\{\mathrm{ZR}|\mathrm{ZI}| \mathrm{Z}|\mathrm{PHI}| \mathrm{U} \mid$
I | FREQ $\}$)
Syntax :NUMeric:IMPedance:ARRay \{<NRf>\}
: NUMeric:IMPedance:ARRay?
<NRf> = 1 to 100
Example :NUMERIC:IMPEDANCE:ARRAY 1
: NUMERIC:IMPEDANCE:ARRAY? ->
: NUMERIC: IMPEDANCE:ARRAY 1
Description • ": NUMeric:IMPedance:
VALue?" outputs the numeric data from 1 to the specified value in order for a single arraytype function according to this setting.

- By default, the number of output data (the number of arrays) is set to "1."

: NUMeric: IMPedance:CLEar

Function Clears the numeric data output item (sets "NONE") for impedance measurement.
Syntax :NUMeric:IMPedance:CLEar
\{ALL|<NRf>[, <NRf>] \}
ALL = Clear all items
1 st <NRf> = 1 to 16 (Item number to start clearing)
2nd <NRf> = 1 to 16 (Item number to end clearing)
Example : NUMERIC:IMPEDANCE:CLEAR ALL
Description If the $2 \mathrm{nd}<\mathrm{NRf}>$ is omitted, the output items from the start clear number to the last item (16) are cleared.

: NUMeric:IMPedance:ITEM<x>

Function	Sets the numeric data output items for power measurement or queries the current setting.							
Syntax	: NUMeric: IMPedance:ITEM<x>							
	\{NONE\|<Function>[,<Element>]\}							
	: NUMeric: IMPedance:ITEM<x>?							
	<x> = 1 to 16 (item number)							
	NONE = No output item							
	<Function> =							
	\{BU\|BI	BP	ZR	ZI	Z	PHI	U	
	I \mid FREQ $\}$							
	<Element> = \{<NRf>\}(<NRf> = 1 to 5)							
Example	:NUMERIC:IMPEDANCE:ITEM1 BU,4							
	: NUMERIC:IMPEDANCE:ITEM1? ->							
	:NUMERIC:IMPEDANCE:ITEM1 BU, 4							
Description	- The details of the item specified by							
	<Function> are indicated below.							
	$\mathrm{BU}=$ Voltage $\mathrm{U}(\mathrm{dc})$ of the battery power measurement element (display: Battery Voltage)							
	$\mathrm{BI}=$ Current $\mathrm{I}(\mathrm{dc})$ of the battery power measurement element (display: Battery							
	Current)							
	$\mathrm{BP}=$ Power $\mathrm{P}(\mathrm{dc})$ of the battery power measurement element (display: Battery							
	Power)							
	ZR = Real part of the circuit impedance (display: Z')							
	$\mathrm{ZI}=$ Imaginary part of the circuit impedance (display: Z")							
	$Z=$ Absolute value of the circuit impedance (display: $\|Z\|$)							
	$\mathrm{PHI}=$ Phase difference (display: Φ)							
	$\mathrm{U}=\mathrm{Voltage}$ of the impedance measurement element (display: U)							
	I = Current of the impedance measurement element (display: I)							
	FREQ = Frequency (display: Freq)							

- If <Function> is set to FREQ, <Element> can be omitted.

: NUMeric: IMPedance: NUMber

Function Sets the number of items of the numeric data that is output by
": NUMeric:IMPedance:VALue?" or queries the current setting.
Syntax :NUMeric:IMPedance:NUMber \{<NRf>\} : NUMeric:IMPedance: NUMber? <NRf> = 1 to 16

Example :NUMERIC:IMPEDANCE:NUMBER 6 : NUMERIC:IMPEDANCE: NUMBER? -> :NUMERIC:IMPEDANCE:NUMBER 6
Description • ":NUMeric:IMPedance:
VALue?" outputs the numeric data from 1 to the specified value in order according to this setting.

- By default, the number of items of numeric data is set to "6."

: NUMeric:IMPedance: PRESet

Function Presets the output item pattern of numeric data for impedance measurement.

Syntax :NUMeric:IMPedance:PRESet \{<NRf>\}
<NRf> = 1 to 4 (preset pattern number)
Example :NUMERIC:IMPEDANCE:PRESET 1
Description - For details on the output items that are preset, see "(2) Preset Pattern of Output Items of Impedance Measurement Numeric Data."

- By default, output items of "Pattern 2" is selected.

: NUMeric: IMPedance: VALue?

Function Queries the numeric data for impedance measurement.

Syntax :NUMeric:IMPedance:VALue?
Example - Example in which ": NUMeric: FORMat" is set to "ASCii"
: NUMERIC:IMPEDANCE:VALUE? ->
104.75E+00,105.02E+00,-
$0.38 \mathrm{E}+00, \ldots$ (omitted). . , 49.868E+00

- Example in which ": NuMeric: FORMat" is set to "FLOat"
: NUMERIC:IMPEDANCE:VALUE? -> \#4(Number of bytes, 4 digits)(Series of data bytes)
Description - Outputs the numeric data of items numbers in order from 1 to
: NUMeric: IMPedance: NUMber.
- For an array-type function
($\{\mathrm{ZR}|\mathrm{ZI}| \mathrm{Z}|\mathrm{PHI}| \mathrm{U}|\mathrm{I}|$ FREQ $\}$), numeric data of the number of arrays are output in order from 1 to :NUMeric:IMPedance:ARRay for a single item.
- For the format of the individual numeric data that is output, see "Numeric Data Format" at the end of this group (section).

: NUMeric: NORMal?

Function Queries all settings related to the numeric data output for power measurement.
Syntax :NUMeric:NORMal?
Example :NUMERIC:NORMAL? -> :NUMERIC:
NORMAL: NUMBER 15;ITEM1 URMS,1;
ITEM2 UMN,1;ITEM3 UDC,1;
ITEM4 UAC,1;ITEM5 IRMS,1;
ITEM6 IMN,1;ITEM7 IDC,1;
ITEM8 IAC,1; ITEM9 P,1;ITEM10 S,1;
ITEM11 Q,1;ITEM12 LAMBDA,1;
ITEM13 PHI,1;ITEM14 FU,1; ITEM15 FI,1
Description For the values of
": NUMeric [: NORMal]:ITEM<x>," the numeric data output items for the amount specified by ": NUMeric [: NORMal]: number" are output.

```
: NUMeric[:NORMal] : CLEar
Function Clears the numeric data output item (sets
    "NONE") for power measurement
Syntax :NUMeric[:NORMal]:CLEar {ALL|<NRf>
        [,<NRf>]}
        ALL = Clear all items
        1st <NRf> = 1 to 255 (Item number to start
        clearing)
        2nd <NRf> = 1 to 255 (Item number to end
        clearing)
Example :NUMERIC:NORMAL:CLEAR ALL
Description If the 2nd <NRf> is omitted, the output items
        from the start clear number to the last item (255)
        are cleared
: NUMeric[ : NORMal] : ITEM<x>
Function Sets the numeric data output items for power
        measurement or queries the current setting.
Syntax :NUMeric[:NORMal]:ITEM<x> {NONE|
        <Function>,<Element>}
        :NUMeric[:NORMal]:ITEM<x>?
        <x> = 1 to 255 (item number)
        NONE = No output item
        <Function> = {URMS | UMN |UDC | UAC | IRMS |
        ...}(See the function selection list (1) of
        "DISPlay group.")
        <Element> =
        {<NRf>|SIGMA|SIGMB|SIGMC}(<NRf> = 1 to
        4) (power measurement element)
Example :NUMERIC:NORMAL:ITEM1 URMS,1
        :NUMERIC:NORMAL:ITEM1? -> :NUMERIC:
        NORMAL:ITEM1 URMS,1
:NUMeric[[ NORMal]:NUMber
Function Sets the number of the numeric data that is
        transmitted by ": NUMeric:NORMal:VALue?"
        or queries the current setting.
Syntax :NUMeric[:NORMal]:NUMber {<NRf>|
        ALL }
        :NUMeric[:NORMal]:NUMber?
        <NRf> = 1 to 255 (ALL)
Example :NUMERIC:NORMAL:NUMBER 15
        :NUMERIC:NORMAL:NUMBER ->
        :NUMERIC:NORMAL:NUMBER 15
Description - If the parameter is omitted for the
        ":NUMeric:NORMal:VALue?" command,
        the numeric data from 1 to (the specified
        value) is output in order.
        - By default, the number of numeric data is set
        to "15."
```

: NUMeric [: NORMal]: PRESet
Function Presets the output item pattern of numeric data for power measurement.
Syntax :NUMeric[:NORMal]:PRESet \{<NRf>\}
<NRf> = 1 to 4 (preset pattern number)
Example :NUMERIC:NORMAL:PRESET 1
Description • For details on the output items that are preset, see "(1) Preset Pattern of Output Items of Power Measurement Numeric Data."

- By default, output items of "Pattern 2" is selected.
: NUMeric [: NORMal]: VALue?
Function Queries the numeric data for power measurement.
Syntax : NuMeric [:NORMal]:VALue? \{<NRf>\} <NRf> = 1 to 255 (item number)
Example - Example when <NRf> is specified :NUMERIC:NORMAL:VALUE? 1 -> $104.75 \mathrm{E}+00$
- Example when <NRf> is omitted : NUMERIC:NORMAL:VALUE? -> $104.75 \mathrm{E}+00,105.02 \mathrm{E}+00,-0.38 \mathrm{E}+00$, ..(omitted).., 49.868E+00
- Example in which ": NuMeric: FORMat" is set to "Float"
:NUMERIC:NORMAL:VALUE? -> \#4(Number of bytes, 4 digits)(Series of data bytes)
Description - If <NRf> is specified, only the numeric data of the item number is output.
- If <NRf> is omitted, the numeric data of item numbers from 1 to ": NUMeric: [: NORMal]: NUMber" is output in order.
- For the format of the individual numeric data that is output, see "Numeric Data Format" at the end of this group (section).

* Numeric Data Format

(1) Normal Data

- Phase difference ϕ (PHI) of a power measurement element in 180° (Lead/Lag) display ASCII: "D/G" + <NR3> format (mantissa: maximum significant digits $=5$, exponent: 2 digits, example: G90.00E+00)
FLOAT: IEEE single-precision floating point (4-byte) format
- Σ of the power value (P, S, Q, PC)
- Integrated value (WH, WHP, WHM, AH, AHP, AHM)
ASCII: <NR3> format (mantissa: maximum significant digits $=6$, exponent: 2 digits, example: [-]123.456E+00) FLOAT: IEEE single-precision floating point (4-byte) format
- Elapsed time of integration (TIME)

ASCII: <NR1> format in units of seconds
(example: for 1 hour ($1: 00: 00$), 3600)
FLOAT: IEEE single-precision floating point
(4-byte) format in units of seconds (example:
for 1 hour (1:00:00), 0×45610000)

- No items (NONE)

ASCII: "NAN" (Not A Number)
FLOAT: 0x7E951BEE(9.91E+37)

- Other than above

ASCII: <NR3> format (mantissa: maximum significant digits $=5$, exponent: 2 digits, example: $[-] 123.45 \mathrm{E}+00$)
FLOAT: IEEE single-precision floating point (4-byte) format
(2) Error Data

- Data does not exist (display: "---------")

ASCII: "NAN" (Not A Number)
FLOAT: 0x7E951BEE(9.91E+37)

- Over the range (display: "---O L---")
- Overflow (display: "---O F---")
- Data over (display:" Error ")

ASCII: "INF" (INFinity)
FLOAT: 0x7E94F56A(9.9E+37)

* List of Numeric Data Output Items That Are Preset

The list of function names used in the commands and the corresponding function names used on the screen menu of the WT1600FC is given in the Function Selection List in the DISPlay group.

Note

The List of Numeric Data Output Items That Are Preset indicates the measurement function and element that are assigned to each item number (ITEM<x>). Items that are not set to be measured are displayed or output in the same fashion as when the data does not exist. For example, if frequency FI of the current of element 2 is not set to be measured, the output of item number ITEM19 is the same as the output when the data does not exist (NAN for ASCII).
(1) Preset Pattern of Output Items of Power Measurement Numeric Data
Applicable command
":NUMeric [:NORMal]:PRESet"

- Pattern 1

ITEM<x>	<Function>,	<Element>
1	URMS,	1
2	IRMS,	1
3	P,	1
4	S,	1
5	Q,	1
6	LAMBda,	1
7	PHI,	1
8	FU,	1
9	FI,	1
10	NONE	
$11-19$	URMS to FI,	2
20	NONE	
$21-29$	URMS to FI,	3
30	NONE	
$31-39$	URMS to FI,	4
40	NONE	
$41-49$	URMS to FI,	5
50	NONE	
5		

* Description of <Element>

Impedance = Impedance measurement element (smallest number if multiple elements exist) Battery = Battery power measurement element (Only the single power measurement element adjacent to the impedance measurement element)

5.14 RATE Group

The commands in this group deal with the data update rate.
You can make the same settings and inquiries as when UPDATE RATE on the front panel is used.

: RATE
Function Sets the data update rate for power measurement or queries the current setting.
Syntax : RATE \{<Time>\}
: RATE?
<Time> = 50, 100, 200, 500 (ms), 1, 2, 5 (s)
Example : RATE 200MS
:RATE? -> :RATE 200.0E-03
Description - This command is valid only during power measurement. It cannot be used during impedance measurement.

- This command is invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

5.15 STATus Group

The commands in the STATus group are used to make settings and inquiries related to the status report. There are no front panel keys that correspond to the commands in this group.
For details on the status report, see chapter 6.

: STATus?

Function Queries all settings related to the communication status function.
Syntax :STATus?
Example :STATUS? -> :STATUS:EESE 0;FILTER1 NEVER;FILTER2 NEVER;FILTER3 NEVER; FILTER4 NEVER;FILTER5 NEVER; FILTER6 NEVER;FILTER7 NEVER; FILTER8 NEVER;FILTER9 NEVER; FILTER10 NEVER;FILTER11 NEVER; FILTER12 NEVER;FILTER13 NEVER; FILTER14 NEVER;FILTER15 NEVER; FILTER16 NEVER;QENABLE 0;QMESSAGE 1

:STATus:CONDition?

Function Queries the contents of the condition register.
Syntax :STATus:CONDition?
Example :STATUS:CONDITION? -> 16
Description For the description regarding how to synchronize the program using : STATus: CONDition, see page 4-8.

: STATus: EESE

(Extended Event Status Enable register)
Function Sets the extended event enable register or queries the current setting.
Syntax :STATus:EESE <Register>
:STATus:EESE?
<Register> $=0$ to 65535
Example :STATUS:EESE \#B0000000000000000
:STATUS:EESE? -> :STATUS:EESE 0
:STATus:EESR?
(Extended Event Status Register)
Function Queries the content of the extended event register and clears the register.
Syntax :STATus:EESR?
Example :STATUS:EESR? -> 0

:STATuS:ERRor?

Function Queries the error code and message information (top of the error queue).
Syntax :STATus:ERRor?
Example :STATUS:ERROR? ->
113, "Underfined Header"
Description • When there is no error, "0, "No error"" is returned.

- The message cannot be returned in Japanese.
- You can specify whether or not to add the message using the "STATus: QMESsage" command.

:STATus:FILTer<x>

Function Sets the transition filter or queries the current setting.
Syntax :STATus:FILTer<x> \{RISE|FALL|BOTH| NEVer $\}$
:STATus:FILTer<x>?
$\langle x\rangle=1$ to 16
Example :STATUS:FILTER2 RISE :STATUS:FILTER2? -> :STATUS: FILTER2 RISE
Description Specify how each bit of the condition register is to change to set the event. If "RISE" is specified, the event is set when the bit changes from "0" to "1."

: STATus: QENable

Function Sets whether or not to store messages other than errors to the error queue (ON/OFF) or queries the current setting.
Syntax :STATus:QENable \{<Boolean>\} :STATus: QENable?
Example :STATUS:QENABLE ON :STATUS:QENABLE? -> :STATUS: QENABLE 1

: STATus: QMESsage

Function Sets whether or not to attach message information to the response to the "STATus: ERRor?" query (ON/OFF) or queries the current setting.
Syntax :STATus: QMESsage \{<Boolean>\} :STATus: QMESsage?
Example :STATUS:QMESSAGE ON :STATUS:QMESSAGE? -> :STATUS: QMESSAGE 1
:STATus:SPOLI? (Serial Poll)
Function Executes serial polling.
Syntax :STATus:SPOLl?
Example :STATUS:SPOLL? -> :STATUS:SPOLL 0
Description This is a command specific to the serial (RS-
232) interface. An interface message is available for the GP-IB interface.

5.16 STORe Group

The commands in this group deal with store and recall.
You can make the same settings and inquiries as when STORE and STORE SET (SHIFT+STORE) on the front panel is used.
The commands in this group are invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: STORe?
Function Queries all settings related to store and recall.
Syntax :STORe?
Example :STORE? -> STORE:MODE STORE; DIRECTION MEMORY;SMODE MANUAL; COUNT 100;INTERVAL 0,0,0; ITEM NUMERIC; NUMERIC:NORMAL: ELEMENT1 1;ELEMENT2 0;ELEMENT3 0; ELEMENT4 $0 ;$ SIGMA $0 ;$ SIGMB $0 ;$ SIGMC 0 ; URMS 1;UMN 1;UDC 1;UAC 1;IRMS 1; IMN 1;IDC 1;IAC 1; P 1;S 1;Q 1; LAMBDA 1;PHI 1;FU 1;FI 1;UPPEAK 1; UMPEAK 1;IPPEAK 1;IMPEAK 1;CFU 1; CFI 1;FFU 1;FFI 1;Z 1;RS 1;XS 1; RP 1;XP 1;PC 1;TIME 0;WH 0;WHP 0; WHM 0;AH 0;AHP 0;AHM 0;ETA 0; SETA 0;F1 0;F2 0;F3 0;F4 0;DURMS 0; DUMN 0;DUDC 0;DUAC 0;DIRMS 0; DIMN 0;DIDC 0;DIAC 0

: STORe: COUNt

Function Sets the store count or queries the current setting.
Syntax :STORe:COUNt $\{<\mathrm{NRf}>\}$
:STORe:COUNt?
<NRf> = 1 to 999999
Example :STORE:COUNT 100
:STORE:COUNT? -> :STORE:COUNT 100

:STORe: DIRection

Function Sets the store destination or queries the current setting.
Syntax :STORe:DIRection \{MEMory|FILE\} :STORe:DIRection?
Example :STORE:DIRECTION MEMORY :STORE:DIRECTION? -> :STORE: IRECTION MEMORY
:STORe:FILE
Function Queries all settings related to the saving of the stored data
Syntax :STORe:FILE?
Example :STORE:FILE? -> :STORE:FILE: ANAMING 1;NAME "DATA1"; COMMENT "CASE1"

: STORe: FILE: ANAMing

Function Sets whether to automatically name the files when saving stored data to files or queries the current setting.
Syntax :STORe:FILE:ANAMing \{<Boolean>\} :STORe:FILE:ANAMing?

Example :STORE:FILE:ANAMING ON :STORE:FILE:ANAMING? -> :STORE: FILE:ANAMING 1
: STORe: FILE: COMMent
Function Sets the comment to be added to the file when saving the stored data or queries the current setting.
Syntax :STORe:FILE:COMMent \{<String>\} :STORe:FILE:COMMent? <String> = Up to 25 characters

Example :STORE:FILE:COMMENT "CASE1" :STORE:FILE:COMMENT? -> :STORE:FILE:COMMENT "CASE1"

:STORe:FILE:NAME

Function Sets the name of the file when saving the stored data or queries the current setting.
Syntax :STORe:FILE:NAME \{<Filename>\} :STORe:FILE: NAME?
Example :STORE:FILE:NAME "DATA1" :STORE:FILE:NAME? -> :STORE:FILE: nAme "DATA1"

Description The save destination of the stored data is specified using:

- the ":FILE: DRIVe" command for the drive.
- the ":FILE: CDIRectory" command for the directory.
The save destination path can be queried using the ": FILE: PATH?" command.

: STORe: INTerval

Function	Sets the store interval or queries the current setting.
Syntax	: STORe:INTerval \{<NRf>,<NRf>,<NRf>\}
	: STORe:INTerval?
	1st <NRf> $=0$ to 99 (hour)
	2nd <NRf> $=0$ to 59 (minute)
	$3 \mathrm{rd}<\mathrm{NRf}>=1$ to 59 (second)
Example	:STORE:INTERVAL $0,0,0$
	:STORE:INTERVAL? -> :STORE:
	INTERVAL 0,0,0

: STORe:ITEM

Function Sets the items to be stored or queries the current setting.
Syntax :STORe:ITEM \{NUMeric|WAVE|NWAVe\} :STORe:ITEM?
NUMeric = Store only the numeric values.
WAVE = Store only the waveforms.
NWAVe = Store both the numeric values and the waveforms.
Example :STORE:ITEM NUMERIC :STORE:ITEM? -> :STORE:ITEM NUMERIC

: STORe: MEMOry : CONVert: ABORt

Function Abort converting the stored data from the memory to the file.
Syntax :STORe:MEMOry:CONVert:ABORt
Example :STORE:MEMORY:CONVERT:ABORT

: STORe : MEMory : CONVert : EXECute

Function Executes the converting of the stored data from the memory to the file.
Syntax :STORe:MEMory:CONVert:EXECute
Example :STORE:MEMORY:CONVERT:EXECUTE
Description - The convert destination file is set using the ":STORe:FILE: ..." command.

- When file conversion is executed, the WT1600FC accesses the file twice. To confirm the completion of the file conversion, use the "COMMUNICATE:WAIT 64 " command (checks the change in bit 6 (ACS) of the condition register) and check the completion of the file access of the WT1600FC twice. An example is indicated below.
"STATUS:EESR?"
(Clear the extended event register)
"STORE: MEMORY:CONVERT:EXECUTE"
(Start the file conversion)
"COMMUNICATE:WAIT 64"
(Wait for the conversion to finish, the first time) "STATUS:EESR?"
(Clear the extended event register) "COMMUNICATE:WAIT 64"
(Wait for the conversion to finish, the second time) "STATUS:EESR?"
(Clear the extended event register)

:STORe:MEMOry:INITialize

Function Executes the initialization of the storage memory.
Syntax :STORe:MEMory:INITialize
Example :STORE:MEMORY:INITIALIZE
: STORE : MODE
Function Sets the data storage/recall or queries the current setting.
Syntax :STORe:MODE \{STORe|RECall\}
: STORe:MODE?
Example :STORE:MODE STORE
:STORE:MODE? -> :STORE:MODE STORE

Function	Queries all settings related to the storage of numeric data.
Syntax	: STORe: NUMeric?
Example	:STORE:NUMERIC? -> :STORE:NUMERIC:
	NORMAL:ELEMENT1 1;ELEMENT2 0;
	ELEMENT3 0;ELEMENT4 0;SIGMA 0;
	SIGMB 0;SIGMC 0;URMS 1;UMN 1;UDC 1;
	UAC 1;IRMS 1;IMN 1;IDC 1;IAC 1; ${ }^{\text {P }} 1$;
	S 1;Q 1;LAMBDA 1; PHI 1;FU 1;FI 1;
	UPPEAK 1;UMPEAK 1;IPPEAK 1;
	IMPEAK 1; CFU 1;CFI 1;FFU 1;FFI 1;
	Z 1;RS 1; XS 1;RP 1; XP 1; PC 1;
	TIME 0;WH 0;WHP 0;WHM 0;AH 0;AHP 0;
	AHM 0;ETA 0;SETA 0;F1 0;F2 0;F3 0;
	F4 0;DURMS 0;DUMN 0;DUDC 0;DUAC 0;
	DIRMS 0;DIMN 0;DIDC 0;DIAC 0

: STORe: NUMeric: NORMal?

Function Queries all settings related to the storage of the numeric data for power measurement.
Syntax :STORe:NUMeric:NORMal?

Example :STORE:NUMERIC:NORMAL? -> :STORE: NUMERIC:NORMAL:ELEMENT1 1; ELEMENT2 0;ELEMENT3 0;ELEMENT4 0; SIGMA 0;SIGMB 0;SIGMC 0;URMS 1; UMN 1;UDC 1;UAC 1;IRMS 1;IMN 1; IDC 1;IAC 1;P 1;S 1;Q 1;LAMBDA 1; PHI 1;FU 1;FI 1;UPPEAK 1;UMPEAK 1; IPPEAK 1;IMPEAK 1;CFU 1;CFI 1; FFU 1;FFI 1;Z 1;RS 1;XS 1;RP 1; XP 1;PC 1;TIME 0;WH 0;WHP 0;WHM 0; AH 0;AHP 0;AHM 0;ETA 0;SETA 0;F1 0; F2 0;F3 0;F4 0;DURMS 0;DUMN 0; DUDC 0;DUAC 0;DIRMS 0;DIMN 0; DIDC 0;DIAC 0
: STORe: NUMeric: NORMal: ALL
Function Collectively turns ON/OFF the output of all power measurement elements and functions when storing the numeric data during power measurement.
Syntax :STORe:NUMeric:NORMal: ALL \{<Boolean>\}
Example :STORE:NUMERIC:NORMAL:ALL ON

: STORe: NUMeric: NORMal : \{ELEMent<x>|SIGMA SIGMB|SIGMC\}

Function Turns ON/OFF the output of the \{power measurement element $|\Sigma \mathrm{A}| \Sigma \mathrm{B} \mid \Sigma \mathrm{C}\}$ when storing the numeric data during power measurement or queries the current setting. Syntax :STORe:NUMeric:NORMal:\{ELEMent<x>| SIGMA|SIGMB|SIGMC\} \{<Boolean>\} :STORe:NUMeric:NORMal:\{ELEMent<x>| SIGMA|SIGMB|SIGMC\}?
<x> = 1 to 4 (power measurement element)
Example :STORE:NUMERIC:NORMAL:ELEMENT1 ON :STORE:NUMERIC:NORMAL:ELEMENT1? -> :STORE:NUMERIC:NORMAL:ELEMENT1 1
Description - The command and query using ": STORE: NUMeric: NORMal:SIGMB" is valid on models with two or more power measurement elements.

- The command and query using
": STORE: NUMeric: NORMal:SIGMC" is valid on models with three or more power measurement elements.

:STORe: NUMeric: NORMal:PRESet<x>

Function Presets the output ON/OFF pattern of the power measurement element and function when storing the numeric data during power measurement.
Syntax :STORe:NUMeric:NORMal:PRESet<x> <x> = 1 to 2 (preset pattern number)
Example :STORE:NUMERIC:NORMAL:PRESET1
Description For details on the storage pattern when preset is executed, see the WT1600FC User's Manual (IM760151-01E).
:STORe:NUMeric:NORMal:<power measurement function>
Function Turns ON/OFF the output of the function when storing the numeric data during power measurement or queries the current setting.
Syntax :STORe:NUMeric:NORMal:<power measurement function> \{<Boolean>\} :STORe:NUMeric:NORMal:<power measurement function>?
<Power measurement function>= \{URMS|UMN|
UDC | UAC | IRMS | . . . \} (See the function selection list (1) of "DISPlay group.")
Example :STORE:NUMERIC:NORMAL:URMS ON :STORE:NUMERIC:NORMAL:URMS? -> :STORE:NUMERIC:NORMAL:URMS 1

: STORe: RECall		
Function	Sets the data number to be recalled or queries the current setting.	
Syntax	:STORe:RECall \{<NRf>\}	
	:STORe:RECall?	
	<NRf> = 1 to 999999	
Example	:STORE:RECALL 1	
	:STORE:RECALL? -> :STORE:RECALL 1	
: STORe: RTIMe?		
Function	Queries the store start and stop date/time for real-time store mode.	
Syntax	:STORe:RTIMe?	
Example	:STORE:RTIME? -> :STORE:RTIME:START	
	2001,1,1,0,0,0;END 2001,1,1,1,0,0	
: STORe: RTIM : \{STARt\|END \}		
Function	Sets the store \{start\|stop\} date/time for realtime store mode or queries the current setting.	
Syntax	:STORe:RTIMe: \{STARt\|END\} \{<NRf>,	
	<NRf>, <NRf>, <NRf>, <NRf>, <NRf>\}	
	:STORe:RTIMe: \{STARt\|END\}?	
	\{<NRf>, <NRf>, <NRf>, <NRf>, <NRf>,	
	$<\mathrm{NRf}>\}=2001,1,1,0,0,0$ to 2099, 12, 31, 23,	
	59, 59	
	1st <NRf> = 2001 to 2099 (year)	
	2 nd <NRf> $=1$ to 12 (month)	
	$3 \mathrm{rd}<\mathrm{NRf}>=1$ to 31 (day)	
	4th <NRf> $=0$ to 23 (hour)	
	5th <NRf> $=0$ to 59 (minute)	
	6th <NRf> $=0$ to 59 (second)	
Example	:STORE:RTIME:START 2001,1,1,0,0,0	
	:STORE:RTIME:START? -> :STORE:	
	RTIME:START 2001,1,1,0,0,0	
: STORe: SMOD		
Function	Sets the store mode or queries the current setting.	
Syntax	:STORe:SMODe \{MANual\|RTIMe	
	INTEGrate\}	
	:STORe:SMODe?	
	MANual = Manual store mode	
	RTIMe = Real-time store mode	
	INTEGrate = Integration synchronization store mode	
Example	:STORE:SMODE MANUAL	
	:STORE: SMODE? -> :STORE:	
	SMODE MANUAL	
: STORe : STARt		
Function	Starts the data store operation.	
Syntax	: STORe:STARt	
Example	:STORE:START	
Description	When ": STORe : SMODe" is set to MANual, the store operation is executed. When set to \{RTIMe\|INTEGrate\} the WT1600FC enters	

the store wait state.

: STORe:STOP

Function Stops the data store operation.
Syntax :STORe:STOP
Example :STORE:STOP

: STORe: WAVE?

Function Queries all settings related to the storage of waveform display data.
Syntax :STORe:WAVE?
Example :STORE:WAVE? -> :STORE:WAVE:U1 1; U2 0;U3 0;U4 0;I1 1;I2 0;I3 0;I4 0

: STORe: WAVE : ALL

Function Collectively turns ON/OFF the output of all waveforms when storing waveform display data.
Syntax :STORe:WAVE:ALL \{<Boolean>\}
Example :STORE:WAVE:ALL ON
: STORe: WAVE: $\{U<x>\mid I<x>\}$
Function Turns ON/OFF the output of the waveform when storing the waveform display data or queries the current setting.
Syntax :STORe:WAVE: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>\}$ \} \{<Boolean>\} :STORe:WAVE: $\{U<x>\mid I<x>\}$?
$<x>=1$ to 4 (power measurement element)
Example :STORE:WAVE:U1 ON :STORE:WAVE:U1? -> :STORE:WAVE:U1 1

5.17 SYSTem Group

The commands in this group deal with the system.
You can make the same settings and inquiries as when MISC on the front panel is used.


```
:SYSTem:LANGuage
Function Sets the message language or queries the
    current setting.
Syntax :SYSTem:LANGuage {JAPANese|ENGLish}
        :SYSTem:LANGuage?
Example :SYSTEM:LANGUAGE ENGLISH
        :SYSTEM:LANGUAGE? -> :SYSTEM:
        LANGUAGE ENGLISH
```


: SYSTem: LCD?

```
Function Queries all settings related to the LCD monitor.
Syntax :SYSTem:LCD?
Example :SYSTEM:LCD? -> :SYSTEM:LCD: BRIGHTNESS 2;COLOR:GRAPH: MODE DEFAULT;:SYSTEM:LCD:COLOR: TEXT:MODE PRESET1
```


: SYSTem: LCD: BRIGhtness

```
Function Sets the brightness of the LCD monitor or queries the current setting.
Syntax :SYSTem:LCD:BRIGhtness \{<NRf>\} :SYSTem:LCD:BRIGhtness? <NRf> = -1 to 3
Example :SYSTEM:LCD:BRIGHTNESS 2 :SYSTEM:LCD:BRIGHTNESS? -> :SYSTEM: LCD:BRIGHTNESS 2
```


:SYSTem: LCD : COLor?

```
Function Queries all settings related to the display colors of the LCD monitor.
Syntax :SYSTem:LCD:COLor?
Example :SYSTEM:LCD:COLOR? -> :SYSTEM:LCD: COLOR:GRAPH:MODE DEFAULT;:SYSTEM: LCD:COLOR:TEXT:MODE PRESET1
```


: SYSTem: LCD: COLor : GRAPh?

```
Function Queries all settings related to the display colors of the graphic items.
Syntax :SYSTem:LCD:COLor: GRAPh?
Example :SYSTEM:LCD:COLOR:GRAPH? -> :SYSTEM:LCD:COLOR:GRAPH:MODE USER; BACKGROUND 0,0,0;GRATICULE 6,6,6; CURSOR 7,7,7;U1 7,7,0;U2 7,0,7; U3 7,0,0;U4 0,4,7;I1 0,7,0; I2 0,7,7;I3 7,4,0;I4 5,5,5
```

```
:SYSTem:LCD :COLor:GRAPh: {BACKground|
GRATicule|CURSor||<x> | I<x>}
Function Sets the display color of the {background|
        graticule|cursor|voltage waveform|
        current waveform} or queries the current
        setting.
Syntax :SYSTem:LCD:COLor:GRAPh:
        {BACKground|GRATicule|CURSor|U<x> |
        I<x>} {<NRf>,<NRf>,<NRf>}
        :SYSTem:LCD:COLOr:GRAPh:
        {BACKground|GRATicule|CURSor|U<x>|
        I<x>} ?
        <x> = 1 to 4 (power measurement element)
        <NRf> = 0 to 7
Example :SYSTEM:LCD:COLOR:GRAPH:
        BACKGROUND 0,0,0
        :SYSTEM:LCD:COLOR:GRAPH:
        BACKGROUND? -> :SYSTEM:LCD:COLOR:
        GRAPH:BACKGROUND 0,0,0
Description Set the color in the order R,G, and B.
        This command is valid when the display color
        mode of graphic items (:SYSTem:LCD:COLor:
        GRAPh:MODE) is set to "USER."
```


: SYSTem: LCD: COLor: GRAPh: MODE

```
Function Sets the display color mode of the graphic items or queries the current setting.
Syntax :SYSTem:LCD:COLor:GRAPh: MODE \{DEFault|USER\} :SYSTem:LCD:COLor:GRAPh:MODE?
Example :SYSTEM:LCD:COLOR:GRAPH: MODE DEFAULT :SYSTEM:LCD:COLOR:GRAPH:MODE? -> :SYSTEM:LCD:COLOR: GRAPH: MODE DEFAULT
```


:SYSTem:LCD:COLor:TEXT?

```
Function Queries all settings related to the display colors of the text items.
Syntax :SYSTem:LCD:COLor:TEXT?
Example :SYSTEM:LCD:COLOR:TEXT? -> :SYSTEM: LCD: COLOR:TEXT:MODE USER;
LETTER 7,7,7;BACKGROUND 2,2,6; BOX 0,0,7;SUB 3,3,3;SELECTED 0,4,7
```

BACKground\|BOX	SUB	SELected\}			
Function	Sets the display color of the \{text (Menu Fore)\|menu background (Menu Back)	selected menu (Select Box)	pop-up menu (Sub Menu)	selected key (Selected Key) \} or queries the current setting.	
Syntax	:SYSTem:LCD:COLor:TEXT: \{LETTer\| BACKground\|BOX	SUB	 SELected\} \{<NRf>,<NRf>,<NRf>\} :SYSTem:LCD:COLor:TEXT:\{LETTer\| BACKground\|BOX	SUB	SELected\}? <NRf> = 0 to 7
Example	```:SYSTEM:LCD:COLOR:TEXT:LETTER 7,7,7 :SYSTEM:LCD:COLOR:TEXT:LETTER? -> :SYSTEM:LCD:COLOR:TEXT:LETTER 7,7,7```				
Description	Set the color in the order R, G, and B. This command is valid when the display color mode of text items (:SYSTem:LCD:COLor:TEXT:MODE) is set to "USER."				
:SYSTem:	CD : COLOr : TEXT : MODE				
Function	Sets the display color mode of the text items or queries the current setting.				
Syntax	```:SYSTem:LCD:COLor:TEXT: MODE {PRESet<x>\|USER} :SYSTem:LCD:COLor:TEXT:MODE? <x> = 1 to 3```				
Example	```:SYSTEM:LCD:COLOR:TEXT:MODE PRESET1 :SYSTEM:LCD:COLOR:TEXT:MODE? -> :SYSTEM:LCD:COLOR:TEXT:MODE PRESET1```				
: SYSTem: SCSI?					
Function Syntax	Queries all settings related to the SCSI-ID. :SYSTem:SCSI?				
Example	:SYSTEM:SCSI? -> :SYSTEM:SCSI: OWNID 6;INTERNALID 4;HDMOTOR 1				
Description	An error occurs if the SCSI interface (option) is not installed.				
:SYSTem: SCSI : HDMotor					
Function	Turns ON/OFF the motor of the internal hard disk or queries the current setting.				
Syntax	:SYSTem:SCSI:HDMotor \{<Boolean>\} :SYSTem:SCSI:HDMotor?				
Example	:SYSTEM:SCSI:HDMOTOR ON :SYSTEM:SCSI:HDMOTOR? -> :SYSTEM: SCSI:HDMOTOR 1				
Description	An error occurs if the SCSI interface (option) is not installed.				

:SYSTem:SCSI:INITialize
Function Executes the initialization of SCSI related parameters.
Syntax :SYSTem:SCSI:INITialize
Example :SYSTEM:SCSI:INITIALIZE
Description • An error occurs if the SCSI interface (option) is not installed.

- If you changed the SCSI-ID of the WT1600FC using the ": SYSTem:SCSI:OWNid" command, make sure to issue this command.

: SYSTem:SCSI : INTernalid

Function Set the SCSI-ID of the internal hard disk or queries the current settings.

Syntax :SYSTem:SCSI:INTernalid \{<NRf>\} :SYSTem:SCSI:INTernalid? <NRf> = 4 (fixed)
Example :SYSTEM:SCSI:INTERNALID 4 :SYSTEM:SCSI:INTERNALID? -> :SYSTEM:SCSI:INTERNALID 4
Description An error occurs if the SCSI interface (option) is not installed.

:SYSTem: SCSI : OWNid

Function Set the SCSI-ID of the WT1600FC or queries the current settings.
Syntax :SYSTem:SCSI:OWNid \{<NRf>\} :SYSTem:SCSI:OWNid? <NRf> $=0$ to 7
Example :SYSTEM:SCSI:OWNID 6 :SYSTEM:SCSI:OWNID? -> :SYSTEM: SCSI:OWNID 6
Description An error occurs if the SCSI interface (option) is not installed.

: SYSTem:TIME

Function Sets the time or queries the current setting.
Syntax :SYSTem:TIME \{<String>\} :SYSTem:TIME?
<String> = "HH:MM:SS" (HH = hour, MM = minute, SS = second)
Example :SYSTEM:TIME "14:30:00" :SYSTEM:TIME? -> "14:30:00"

5.18 WAVeform Group

The commands in this group deal with the output of the retrieved waveform display data. There are no front panel keys that correspond to the commands in this group.

:WAVeform?

Function	Queries all information about the waveform display data.
Syntax	:WAVeform?
Example	:WAVEFORM? -> :WAVEFORM:TRACE U1;
	FORMAT ASCII;START 0;END 1001

:WAVeform: BYTeorder

Function Sets the output byte order of the waveform display data (FLOAT format) that is transmitted by ":WAVeform: SEND?" or queries the current setting.
Syntax :WAVeform:BYTeorder \{LSBFirst| MSBFirst $\}$
:WAVeform: BYTeorder?
Example :WAVEFORM:BYTEORDER LSBFIRST :WAVEFORM:BYTEORDER? -> :WAVEFORM: BYTEORDER LSBFIRST
Description This value is valid when ":WAVeform:FORMat" is set to "\{FLOat \}."

:WAVeform: END

Function Sets the output end point of the waveform display data that is transmitted by
":WAVeform: SEND?" or queries the current setting.
Syntax :WAVeform:END $\{<$ NRf $>\}$
:WAVeform: END?
<NRf> to 0 to (total number of data points - 1)
Example :WAVEFORM:END 1001
:WAVEFORM:END? -> :WAVEFORM:
END 1001
Description The ":WAVeform:LENGth?" command can be used to query the (total number of data points).

:WAVeform: FORMat

Function Sets the format of the waveform display data that is transmitted by ":WAVeform: SEND?" or queries the current setting.
Syntax :WAVeform:FORMat \{ASCii|FLOat \} :WAVeform:FORMat?
Example :WAVEFORM:FORMAT FLOAT :WAVEFORM:FORMAT? -> :WAVEFORM: FORMAT FLOAT
Description For the differences in the waveform display data output due to the format setting, see the description for ":WAVeform:SEND?."

: WAVeform:LENGth?

Function Queries the total number of points of the waveform specified by ":WAVeform:TRACe".
Syntax :WAVeform:LENGth?
Example :WAVEFORM:LENGTH? -> 1002
Description The number of data points is fixed. "1002" is always returned.

:WAVeform : SEND?

Function Queries the waveform display data specified by ":WAVeform:TRACe".
Syntax :WAVeform:SEND?
Example - When ":WAVeform:FORMat" is set to \{ASCii\}
:WAVEFORM:SEND? -> <NR3>,<NR3>,
...

- When ": WAVeform: FORMat" is set to \{FLOAt $\}$
:WAVEFORM:SEND? -> \#4 (number of bytes, 4 digits) (series of data bytes)
Description The format of the waveform display data that is output varies depending on the
":WAVeform: FORMat" setting as follows.
(1)When "ASCii" is specified

The physical value is output in the <NR3> format. The data of each point is delimited by a comma.
(2)When "FLOat" is specified

The physical value is output in IEEE singleprecision floating point (4-bytes) format. The output byte order of the data of each point follows the order that is set using the ":WAVeform:BYTeorder" command.

:WAVeform: SRATe?

Function Queries the sample rate of the retrieved waveform.
Syntax :WAVeform:SRATe?
Example :WAVEFORM:SRATE? -> 200.000E+03

:WAVeform:STARt

Function Sets the output start point of the waveform display data that is transmitted by
":WAVeform:SEND?" or queries the current setting.
Syntax :WAVeform:STARt $\{<$ NRf $>\}$
:WAVeform:STARt?
<NRf> to 0 to (total number of data points - 1)
Example :WAVEFORM:START 0
:WAVEFORM:START? -> :WAVEFORM:
START 0
Description The ":WAVeform:LENGth?" command can be used to query the (total number of data points).

:WAVeform:TRACe

Function Sets the target waveform for the WAVeform: SEND and WAVeform:LENGth commands or queries the current setting.
Syntax :WAVeform:TRACe $\{U<x>\mid I<x>\}$:WAVeform:TRACe?
$<x>=1$ to 4 (power measurement element)
Example :WAVEFORM:TRACE U1 :WAVEFORM:TRACE? -> :WAVEFORM: TRACE U1

:WAVeform:TRIGger?

Function Queries the trigger position of the retrieved waveform.
Syntax :WAVeform:TRIGger?
Example :WAVEFORM:TRIGGER? -> 0
Description Since the trigger position is always at the beginning of the waveform display data, " 0 " is returned.

5.19 WSETup (Wave SETup) Group

The commands in this group deal with waveform observation.
You can make the same settings and inquiries as when WAVE on the front panel is used.
The commands in this group are invalid on models that are only equipped with impedance measurement elements, since the mode is fixed to impedance measurement.

: WSETup: POSition: \{UALL|IALL\}
Function Collectively sets the vertical position (level of the center position) of the waveform \{voltage|current\} of all elements.
yyntax :WSETup:POSition:\{UALL|
IALL\} \{<NRf>\} <NRf> $=-130.000$ to 130.000 (\%)
: WSETup : POSition : $\{U<x>\mid I<x>\}$
:WSETup [:SAMPling]
Function Turns ON/OFF the waveform sampling or queries the current setting.
Syntax :WSETup [:SAMPling] \{<Boolean>\} :WSETup:SAMPling? SAMPLING 1

: WSETup:TDIV

Function Sets the Time/div value of the waveform or queries the current setting.
Syntax :WSETup:TDIV \{<Time>\}
:WSETUP:TDIV?
<Time> $=0.5,1,2,5,10,20,50,100,200,500$
(ms)
Example :WSETUP:TDIV 0.5MS
:WSETUP:TDIV? -> :WSETUP: TDIV 500.0E-06
Description The specifiable Time/div value is up to $1 / 10$ of the data update rate (: RATE).

: WSETup: TRIGger?

Function Queries all settings related to the trigger.
Syntax :WSETup:TRIGger?
Example :WSETUP:TRIGGER? -> :WSETUP:TRIGGER:MODE AUTO; SOURCE U1;SLOPE RISE;LEVEL 0.0

:WSETup:TRIGger:LEVel

Function Sets the trigger level or queries the current setting.
Syntax :WSETup:TRIGger:LEVel \{<NRf>\} :WSETup:TRIGger:LEVel? <NRf> = -100.0 to 100.0 (\%) (The resolution is $0.1(\%))$
Example :WSETUP:TRIGGER:LEVEL 0 :WSETUP:TRIGGER:LEVEL? -> :WSETUP: TRIGGER:LEVEL 0.0
Description Set the value in terms of a percentage of the full scale value displayed on the screen.

: WSETup:TRIGger: MODE

Function Sets the trigger mode or queries the current setting.
Syntax :WSETup:TRIGger:MODE \{AUTO|NORMal\} :WSETup:TRIGger:MODE?
Example :WSETUP:TRIGGER:MODE AUTO :WSETUP:TRIGGER:MODE? -> :WSETUP: TRIGGER:MODE AUTO

: WSETup:TRIGger:SLOPe

Function Sets the trigger slope or queries the current setting.
Syntax :WSETup:TRIGger:SLOPe \{RISE|FALL| BOTH $\}$
:WSETup:TRIGger:SLOPe?
Example :WSETUP:TRIGGER:SLOPE RISE :WSETUP:TRIGGER:SLOPE? -> :WSETUP: TRIGGER:SLOPE RISE

5.19 WSETup (Wave SETup) Group

:WSETup:TRIGger:SOURce

Function Sets the trigger source or queries the current setting.
Syntax :WSETup:TRIGger:SOURce $\{U<x>\mid I<x>\}$:WSETUP:TRIGger:SOURce? <x> = 1 to 4 (power measurement element)
Example :WSETUP:TRIGGER:SOURCE U1 :WSETUP:TRIGGER:SOURCE? -> :WSETUP: TRIGGER:SOURCE U1

:WSETup:VZoom?

Function Queries all settings related to the vertical zoom factor of the waveform.
Syntax :WSETup:VZoom?
Example :WSETUP:VZOOM? -> :WSETUP:VZOOM:
U1 1.00; U2 1.00;U3 1.00;U4 1.00;

I1 1.00;I2 1.00;I3 1.00;I4 1.00;

:WSETup: VZoom: \{UALL|IALL\}

Function Collectively sets the vertical zoom factor of the waveform \{voltage|current\} of all power measurement elements.
Syntax :WSETup:VZoom:\{UALL|IALL\} \{<NRf>\} <NRf> = 0.1 to 100 (see the WT1600FC User's Manual (IM760151-01E)
Example :WSETUP:VZOOM:UALL 1
:WSETup:VZoom: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>\}$
Function Sets the vertical zoom factor of the waveform \{voltage|current\} of the power measurement element or queries the current setting.
Syntax :WSETup:VZoom: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>\}$ \{<NRf>\} :WSETup:VZoom: $\{\mathrm{U}<\mathrm{x}>\mid \mathrm{I}<\mathrm{x}>\}$? <x> = 1 to 6 <NRf> = 0.1 to 100 (see the WT1600FC User's Manual (IM760151-01E)
Example :WSETUP:VZOOM:U1 1 :WSETUP:VZOOM:U1? -> :WSETUP:VZOOM: U1 1.00

5.20 Common Command Group

The commands in the common group are defined in the IEEE488.2-1987 and are independent of the instrument's functions. There are no front panel keys that correspond to the commands in this group.

*CAL? (CALibrate)

Function Executes zero calibration (zero level compensation, same operation as pressing CAL (SHIFT+MEASURE)) and queries the result.
Syntax *CAL?
Example *CAL? -> 0
Description If the calibration terminates normally, "0" is returned. If abnormality is detected, " 1 " is returned.

*CLS (CLear Status)

Function Clears the standard event register, extended event register, and error queue.

Syntax *CLS
Example *CLS
Description - If the *CLS command is located immediately after the program message terminator, the output queue is also cleared.

- For details on the register and queue, see chapter 6.
*ESE
(standard Event Status Enable register)
Function Sets the standard event enable register or queries the current setting.
Syntax *ESE \{<NRf>\}
*ESE?
<NRf> = 0 to 255
Example *ESE 251
*ESE? -> 251
Description - Specify the value as a sum of decimal values of each bit.
- For example, specifying "*ESE 251 " will cause the standard enable register to be set to "11111011." In this case, bit 2 of the standard event register is disabled which means that bit 5 (ESB) of the status byte register is not set to " 1 ," even if a "query error" occurs.
- The default value is "*ESE 0 " (all bits disabled).
- A query using *ESE? will not clear the contents of the standard event enable register.
- For details on the standard event enable register, see page 6-3.

*ESR? (standard Event Status Register)

Function Queries the standard event register and clears the register.
Syntax *ESR?
Example *ESR? -> 32
Description • A sum of decimal values of each bit is returned.

- You can check what type of events occurred when an SRQ is generated.
- For example, if a value of " 32 " is returned, this indicates that the standard event register is set to "00100000." In this case, you can see that the SRQ occurred due to a "command syntax error."
- A query using *ESR? will clear the contents of the standard event register.
- For details on the standard event register, see page 6-3.

*IDN? (IDeNtify)

Function Queries the instrument model.
Syntax *IDN?

Example *IDN? ->
YOKOGAWA, 760151-0401, 0,F1.01
Description The information is returned in the following form: <Manufacturer>,<Model>,<Serial No.>,<Firmware version>In actuality, <Serial No.> is not returned (always 0).
*OPC (OPeration Complete)
Function Sets a "1" to bit 0 (OPC bit) of the standard event register bit upon the completion of the specified overlap command.

Syntax *OPC
Example *OPC
Description - For the description regarding how to synchronize the program using *OPC, see page 4-8.

- The "COMMunicate: OPSE" command is used to specify the overlap command.
- If *OPC is not the last command of the message, the operation is not guaranteed.
*OPC? (OPeration Complete)
Function If the specified overlap command is completed, ASCII code " 1 " is returned.
Syntax *OPC?
Example *OPC? -> 1
Description - For the description regarding how to synchronize the program using *OPC, see page 4-8.
- The "COMMunicate : OPSE" command is used to specify the overlap command.
- If *OPC? is not the last command of the message, the operation is not guaranteed.

*OPT? (OPTion)

Function Queries the installed options.
Syntax *OPT?
Example *OPT? -> B5,DA,MTR,C10
Description - The presence or absence of the built-in printer (/B5), DA output (/DA), motor evaluation function (/MTR), SCSI interface (/ C7), or Ethernet+SCSI+built-in HDD (/C10) is returned.

- If none of the options is installed, an ASCII code " 0 " is returned.
- The "*OPT?" query must be the last query of the program message. An error occurs if there is a query after this query.
*PSC (Power-on Status Clear)
Function Sets whether or not to clear the registers below at power up or queries the current setting. The register is cleared when the value rounded to an integer is a non-zero value.
- Standard event enable register
- Extended event enable register
- Transition filter

Syntax *PSC $\{<\mathrm{NRf}>\}$
*PSC?
<NRf> = 0(not clear), non-zero (clear)
Example *PSC 1
*PSC? -> 1
Description For details on the registers, see chapter 6.

*RST (ReSeT)

Function Initializes the settings.
Syntax *RST
Example *RST
Description • Also clears *OPC and *OPC? commands that have been sent earlier.

- All settings except communication settings are reset to factory default values.

*SRE (Service Request Enable register)

Function Sets the service request enable register or queries the current setting.
Syntax
SRE <NRf>
*SRE?
<NRf> = 0 to 255
Example *SRE 239
*SRE? -> 175 (since the bit 6 (MSS) setting is ignored)
Description - Specify the value as a sum of decimal values of each bit.

- For example, specifying "*SRE 239" will cause the service request enable register to be set to "11101111." In this case, bit 4 of the service request enable register is disabled which means that bit 4 (MAV) of the status byte register is not set to " 1 ," even if "the output queue is not empty."
- Bit 6 (MSS) of the status byte register is the MSS bit itself, and therefore, it is ignored.
- The default value is "*SRE 0 " (all bits disabled).
- A query using *SRE? will not clear the contents of the service request enable register.
- For details on the service request enable register, see page 6-2.

*STB? (STatus Byte)

Function Queries the status byte register.
Syntax *STB?
Example *STB? -> 4
Description - The sum of the bits is returned as a decimal value.

- Since the register is read without executing serial polling, bit 6 is a MSS bit not RQS.
- For example, if a value of " 4 " is returned, this indicates that the status byte register is set to "00000100." In this case, you can see that "the error queue is not empty" (an error occurred).
- A query using *STB? will not clear the contents of the status byte register.
- For details on the status byte register, see page 6-2.

*TRG (TRiGger)

Function Executes the same operation as when SINGLE (SHIFT+HOLD) is pressed.
Syntax *TRG
Example *TRG
Description The multi-line message GET (Group Execute Trigger) also performs the same operation as this command.
*TST? (TeST)
Function Performs a self-test and queries the result.
Syntax *TST?
Example *TST? -> 0
Description - The self-test involves internal memory tests.

- " 0 " is returned if the self-test is successful, " 1 " if it is not.

*WAI (WAIt)

Function Holds the subsequent command until the completion of the specified overlap operation.
Syntax *WAI
Example *WAI
Description - For the description regarding how to synchronize the program using *WAI, see page 4-7.

- The "COMMunicate : OPSE" command is used to specify the overlap command.

6.1 Overview of the Status Report

The figure below shows the status report which is read by a serial poll. This is an extended version of the one specified in IEEE 488.2-1987.

Overview of Registers and Queues			
Name	Function	Writing	Reading
Status byte		-	Serial poll (RQS), *STB? (MSS)
Service request enable register	Masks status byte.	*SRE	*SRE?
Standard event register	Change in device status	-	*ESR?
Standard event enable register	Masks standard event register	*ESE	*ESE?
Extended event register	Change in device status	-	STATus:EESR?
Extended event enable register	Masks standard event register	STATus:EESE	STATus:EESE?
Condition register	Current instrument status	-	STATus:
Transit filter	Extended event occurrence conditions	FILTer<x>	FILTer<x>?
Output queue	Stores response message All executable queues to a query.		CONDition?
Error queue	Stores error Nos.		
and messages.	-	STATus:ERRor?	

Registers and Queues which Affect the Status Byte
Registers which affect each bit of the status byte are shown below.
Standard event register : Sets bit 5 (ESB) of status byte to " 1 " or " 0 ".
Output queue : Sets bit 4 (MAV) of status byte to " 1 " or " 0 ".
Extended event register: Sets bit 3 (EES) of status byte to " 1 " or " 0 ".
Error queue : Sets bit 2 (EAV) of status byte to " 1 " or "0".

Enable Registers

Registers which mask a bit so that the bit does not affect the status byte, even if the bit is set to " 1 ", are shown below.
Status byte
: Masks bits using the service request enable register.
Standard event register : Masks bits using the standard event enable register.
Extended event register: Masks bits using the extended event enable register.

Writing/Reading from Registers

The *ESE command is used to set bits in the standard event enable register to " 1 " or " 0 ", and the *ESR? query is used to check whether bits in that register are set to " 1 " or " 0 ". For details of these commands, refer to Chapter 5.

6.2 Status Byte

\section*{Overview of Status Byte RQS
 | 7 | 6 | ESBIMAVEES | EAV | 1 |
| :--- | :--- | :--- | :--- | :--- | MSS}

Bits 0,1 and 7
Not used (always "0")

Bit 2 EAV (Error Available)

Set to " 1 " when the error queue is not empty, i.e. when an error occurs. For details, refer to page 6-5.

Bit 3 EES (Extended Event Summary Bit)

Sets to "1" when the logical AND of an Extended Event Register bit and the corresponding Enable Register bit is equal to " 1 ."-that is, when an event takes place in the instrument. Refer to page 6-4.

Bit 4 MAV (Message Available)

Set to " 1 " when the output queue is not empty, i.e. when there is data which is to be output when an query is made. Refer to page 6-5.

Bit 5 ESB (Event Summary Bit)

Set to " 1 " when the logical AND of the standard event register and the corresponding enable register is " 1 ", i.e. when an event takes place in the instrument. Refer to page 6-3.

Bit 6 RQS (Request Status)/MSS (Master Summary Status)

Sets to " 1 " when the logical AND of any one of the Status Byte bits (other than bit 6) and the corresponding Service Request Enable Register bit becomes " 1 "-that is, when the instrument is requesting service from the controller. RQS is set to " 1 " when MSS changes from " 0 " to " 1 ", and is cleared when a serial poll is performed or when MSS changes to " 0 ".

Bit Masking

To mask a bit in the status byte so that it does not cause an SRQ, set the corresponding bit of the service request enable register to " 0 ".
For example, to mask bit 2 (EAV) so that no service will be requested, even if an error occurs, set bit 2 of the service request enable register to " 0 ". This can be done using the *SRE command. To query whether each bit of the service request enable register is " 1 " or " 0 ", use *SRE?. For details of the *SRE command, refer to Chapter 5.

Operation of the Status Byte

A service request is issued when bit 6 of the status byte becomes " 1 ". Bit 6 becomes " 1 " when any of the other bits becomes " 1 " (or when the corresponding bit in the service request enable register becomes " 1 "). For example, if an event occurs causing the logical AND of any one bit in the standard event register and the corresponding bit of the enable register to become " 1 ," bit 5 (ESB) is set to " 1 ." In this case, if bit 5 of the service request enable register is " 1 ", bit 6 (MSS) will be set to " 1 ", thus requesting service from the controller.
It is also possible to check what type of event has occurred by reading the contents of the status byte.

Reading from the Status Byte

The following two methods are provided for reading the status byte.

- Inquiry using the *STB? query

Making an query using the *STB? query sets bit 6 to MSS. This causes the MSS to be read. After completion of the read-out, none of the bits in the status byte will be cleared.

- Serial poll

Execution of a serial poll changes bit 6 to RQS. This causes RQS to be read. After completion of the read-out, only RQS is cleared. Using a serial poll, it is not possible to read MSS.

Clearing the Status Byte

No method is provided for forcibly clearing all the bits in the status byte. Bits which are cleared are shown below.

- When an query is made using the *STB? query No bit is cleared.
- When a serial poll is performed

Only the RQS bit is cleared.

- When the *CLS command is received

When the *CLS command is received, the status byte itself is not cleared, but the contents of the standard event register (which affects the bits in the status byte) are cleared. As a result, the corresponding bits in the status byte are cleared, except bit 4 (MAV), since the output queue cannot be emptied by the *CLS command. However, the output queue will also be cleared if the *CLS command is received just after a program message terminator.

6.3 Standard Event Register

Overview of the Standard Event Register

7	6	5	4	3	2	1	0

PONURQCMEEXEDDEQYERQCOPC

Bit 7 PON (Power ON)

Bit 7 PON (Power ON) Set to " 1 " when power is turned ON
Bit 6 URQ (User Request)
Not used (always "0")
Bit 5 CME (Command Error)
Set to " 1 " when the command syntax is incorrect.
Examples: Incorrectly spelled command name; received string data that have spelling errors or that are not in the selection.
Bit 4 EXE (Execution Error)
Set to " 1 " when the command syntax is correct but the command cannot be executed in the current state.
Examples: Parameters are outside the setting range: received a command that has a parameter that is outside the range or a command that deals with an option that is not installed.

Bit 3 DDE (Device Dependent Error)

Set to " 1 " when execution of the command is not possible due to an internal problem in the instrument that is not a command error or an execution error.
Example: The circuit breaker is reset.

Bit 2 QYE (Query Error)

Set to " 1 " if the output queue is empty or if the data is missing even after a query has been sent.
Examples: No response data; data is lost due to an overflow in the output queue.

Bit 1 RQC (Request Control)

Not used (always "0")

Bit 0 OPC (Operation Complete)

Set to " 1 " when the operation designated by the *OPC command has been completed. Refer to Chapter 5.

Bit Masking

To mask a bit in the standard event register so that it does not cause bit 5 (ESB) of the status byte to change, set the corresponding bit in the standard event enable register to " 0 ".
For example, to mask bit 2 (QYE) so that ESB will not be set to " 1 ", even if a query error occurs, set bit 2 of the standard event enable register to " 0 ". This can be done using the *ESE command. To inquire whether each bit of the standard event enable register is " 1 " or " 0 ", use the *ESE?. For details of the *ESE command, refer to Chapter 5.

Operation of the Standard Event Register

The standard event register is provided for eight different kinds of event which can occur inside the instrument. Bit 5 (ESB) of the status byte is set to " 1 " when any of the bits in this register becomes " 1 " (or when the corresponding bit of the standard event enable register becomes " 1 ").
Examples

1. A query error occurs.
2. Bit 2 (QYE) is set to " 1 ".
3. Bit 5 (ESB) of the status byte is set to " 1 " if bit 2 of the standard event enable register is " 1 ".
It is also possible to check what type of event has occurred inside the instrument by reading the contents of the standard event register.

Reading from the Standard Event Register

The contents of the standard event register can be read by the *ESR command. After completion of the read-out, the register will be cleared.

Clearing the Standard Event Register

iThe standard event register is cleared in the following three cases.

- When the contents of the standard event register are read using *ESR?
- When the *CLS command is received
- When power is turned ON again

6.4 Extended Event Register

Reading the extended event register tells you whether changes in the condition register (reflecting internal conditions) have occurred. A filter can be applied which allows you to decide which events are reported to the extended event register.

The meaning of each bit of the condition register is as follows.

Bit 0	UPD (Updating)	Set to " 1 " when the measured data is being updated. The falling edge of UPD ($1->0$) signifies the end of the updating.
Bit 1	ITG (Integrate Busy)	Set to " 1 " while integration is in progress.
Bit 2	ITM (Integrate Timer Busy)	Set to " 1 " while the integration timer is running.
Bit 3	SRB (Store/Recall Busy)	Set to " 1 " while storing or recalling data.
Bit 4	FOV (Frequency Over)	Set to " 1 " when the frequency is in error.
Bit 5	PRN (Printing)	Set to " 1 " while the internal printer is in operation or data is being output to the external printer (Centronics or network printer).
Bit 6	ACS (Accessing)	Set to " 1 " while the floppy disk, internal hard disk, or external disk drive (SCSI or network device) is being accessed.
Bit 8	OVR1 (Element1 Measured Data Over)	Set to " 1 " when the voltage or current of element 1 is over the range.
Bit 9	OVR2 (Element2 Measured Data Over)	Set to " 1 " when the voltage or current of element 2 is over the range.
Bit 10	OVR3 (Element3 Measured Data Over)	Set to " 1 " when the voltage or current of element 3 is over the range.
Bit 11	OVR4 (Element4 Measured Data Over)	Set to " 1 " when the voltage or current of element 4 is over the range.
Bit 12	OVR5 (Element5 Measured Data Over)	Set to " 1 " when the voltage or current of element 5 is over the range.
Bit 15	POV (ElementX Input Peak Over)	Set to " 1 " when peak over is detected in any of the elements.

The filter is applied to each bit of the condition register separately, and can be selected from the following. Note that the numbering of the bits used in the filter setting differs from the actual bit number (1 to 16 vs. 0 to 15).

Rise	The bit of the extended event register becomes " 1 " when the bit of the condition register changes from " 0 " to " 1 ".
Fall	The bit of the extended event register becomes " 1 " when the bit of the condition register changes from " 1 " to " 0 ".
Both	The bit of the extended event register becomes " 1 " when the bit of the condition register changes from " 0 " to " 1 ", or from " 1 " to " 0 ".
Never	The bit of the extended event register is disabled and always " 0 ".

6.5 Output Queue and Error Queue

Overview of the Output Queue

The output queue is provided to store response messages to queries. For example, when the WAVeform: SEND? query is sent to request output of the acquired waveform, the response data will be stored in the output queue until it is read out.
The example below shows that data is stored record by record in the output queue, and is read out oldest item first, newest item last. The output queue is emptied in the following cases (in addition to when read-out is performed).

- When a new message is received from the controller
- When dead lock occurs (page 4-2)
- When a device clear command (DCL or SDC) is received
- When power is turned ON again

The output queue cannot be emptied using the *CLS command. To see whether the output queue is empty or not, check bit 4 (MAV) of the status byte.

Overview of the Error Queue

The error queue stores the error No. and message when an error occurs. For example, if the controller sends an incorrect program message, the number, "113, "Undefined header"", and the error message are stored in the error queue, when the error is displayed.
The contents of the error queue can be read using the STATus:ERRor? query. As with the output queue, messages are read oldest first, newest last (refer to the previous page).
If the error queue becomes full, the final message will be replaced by message
"350, "Queue overflow"".

The error queue is emptied in the following cases (in addition to when read-out is performed).

- When the *CLS command is received
- When power is turned ON again

To see whether the error queue is empty or not, check bit 2 (EAV) of the status byte.

7.1 Before Programming

System Requirements

Computer: Windows PC
Programming language: Visual Basic Ver 5.0 Professional Edition or later.
GP-IB board: AT-GP-IB/TNT IEEE-488.2 by National Instruments.

Settings on Visual Basic

Standard modules used: Niglobal.bas
Vbib-32.bas

Setting the WT1600FC

GP-IB

The sample programs given in this chapter use a GP-IB address of 1 for the WT1600FC.
Set the GP-IB address to 1 according to the procedures on page 1-5.

7.2 Sample Program Image

7.3 Initialization, Error, and Functions for Execution

```
Option Explicit
Dim StartFlag As Integer
Dim addr As Integer
Dim addr As Integer 
Dim Dev As Integer
Dim term As String
Dim Query(1100) As String
Dim Dummy As Integer
Private Function InitGpib() As Integer
    Dim eos As Integer
    Dim eot As Integer
    Dim brd As Integer
    Dim sts As Integer
    eos = &HCOA
    eot = 1
    term = Chr(10)
    Timeout = T10s
    brd = ilfind("GPIB0")
    If (brd < 0) Then
        Call DisplayGPIBError(brd, "ilfind")
        InitGpib = 1
        Exit Function
    End If
    Dev = ildev(0, addr, 0, Timeout, eot, eos)
    If (Dev < 0) Then
        Call DisplayGPIBError(Dev, "ildev")
        InitGpib = 1
        Exit Function
    End If
    sts = ilsic(brd)
'Set IFC
```

'Start Flag 'GPIB Address
‘Timeout

- Device ID(GPIB)
'Terminator
'Query String
'EOS
'EOI
‘GPIB Board ID
'Terminator $=$ LF
'EOI = Enable
'Timeout $=10 \mathrm{~s}$

```
sts \(=\) ilsic(brd)
Call DisplayGPIBError(sts, "ilsic")
InitGpib \(=1\)
Exit Function
End If
InitGpib \(=0\)
End Function
Private Sub DisplayGPIBError(ByVal sts As Integer, ByVal msg As String)
Dim wrn As String
Dim ers As String
Dim ern As Integer
If (sts And TIMO) Then wrn \(=\) "Time out" + Chr(13)
Else
wrn \(=" \prime\)
End If
If (sts And EERR) Then
ern = iberr
If (ern = EDVR) Then
ers = "EDVR:System error"
ElseIf (ern = ECIC) Then
ers = "ECIC:Function requires GPIB board to be CIC"
ElseIf (ern = ENOL) Then
ers = "ENOL:No Listeners on the GPIB"
ElseIf (ern = EADR) Then
ers = "EADR:GPIB board not addressed correctly"
ElseIf (ern = EARG) Then
ers = "EARG:Invalid argument to function call"
ElseIf (ern = ESAC) Then
ers = "ESAC:GPIB board not System Controller as required"
ElseIf (ern = EABO) Then
ers = "EABO:I/O operation aborted(timeout)"
ElseIf (ern = ENEB) Then
ers = "ENEB: Nonexistent GPIB board"
ElseIf (ern = EDMA) Then
ers = "EDMA:DMA error"
ElseIf (ern = EOIP) Then
ers = "EOIP:I/O operation started before previous operation completed"
ElseIf (ern = ECAP) Then
ers = "ECAP:No capability for intended operation"
ElseIf (ern = EFSO) Then
ers = "EFSO:File system operation error"
ElseIf (ern = EBUS) Then
ers = "EBUS:GPIB bus error"
ElseIf (ern = ESTB) Then
ers = "ESTB:Serial poll status byte queue overflow"
ElseIf (ern = ESRQ) Then
ers = "ESRQ:SRQ remains asserted"
```

```
ElseIf (ern = ETAB) Then
                rs = "ETAB:The return buffer is full"
ElseIf (ern = ELCK) Then
                ers = "ELCK:Address or board is locked"
Else
                ers = ""
                End If
    Else
        ers = ""
    End If
    MsgBox ("Status No." + Str(sts) + Chr(13) + wrn + "Error No. " + Str(ern) + Chr(13)
+ ers + Chr(13) + msg), vbExclamation, "Error!"
    Call ibonl(Dev, 0)
    Dev = -1
End Sub
Private Sub Command1 Click()
    Dim sts As Integēer
    If (StartFlag = 1) Then
        Exit Sub
    End If
    StartFlag = 1
    Text1.Text = "START"
    List1.Clear
    Dummy = DoEvents()
    sts = GpibPower
                                    `Run Samplel(GPIB) Get Numeric Data
(Power)
    If (sts = 0) Then
        Text1.Text = "END"
    Else
        Text1.Text = "ERROR"
    End If
    StartFlag = 0
End Sub
Private Sub Command2_Click()
    Dim sts As Integer
    If (StartFlag = 1) Then
        Exit Sub
    End If
    StartFlag = 1
    Text1.Text = "START"
    List1.Clear
    Dummy = DoEvents()
    sts = GpibImpedance 'Run Sample2(GPIB) Get Numeric Data
(Impedance)
    If (sts = 0) Then
        Text1.Text = "END"
    Else
        Text1.Text = "ERROR"
    End If
    StartFlag = 0
End Sub
Private Sub Command3_Click()
    Dim sts As Integēr
    If (StartFlag = 1) Then
        Exit Sub
    End If
    StartFlag = 1
    StartFlag = 1
    Text1.Text =
    List1.Clear 
    sts = GpibWaveAscii 'Run Sample3(GPIB) Get Waveform data
(ASCII)
    If (sts = 0) Then
        Text1.Text = "END"
    Else
        Text1.Text = "ERROR"
    End If
    StartFlag = 0
End Sub
Private Sub Command4_Click()
    Dim sts As Integèr
        f (StartFlag = 1) Then
        Exit Sub
    End If
    StartFlag = 1
    Text1.Text = "START"
    List1.Clear
```

Dummy = DoEvents()
sts = GpibWaveFloat 'Run Sample4(GPIB) Get Waveform data (FLOAT)

If (sts $=0$) Then
Text1.Text $=$ "END"
Else
Text1.Text $=" E R R O R "$
End If
StartFlag $=0$
End Sub
Private Sub Command5_Click()
Dim sts As Integer
If (StartFlag = 1) Then Exit Sub
End If
StartFlag = 1
Text1. Text $=$ "START"
List1.Clear
List1.AddItem "NOT MAKE"
Text1.Text $=$ "END"
StartFlag $=0$
End Sub
Private Sub Command6 Click()
Dim sts As Integē
If (StartFlag $=1$) Then Exit Sub
End If
StartFlag = 1
Text1.Text $=$ "START"
List1.Clear
List1.AddItem "NOT MAKE"
Text1.Text = "END"
StartFlag $=0$
End Sub
Private Sub Form_Load()
StartFlag $=\overline{0}$
StartFlag
Dev $=-1$
'Clear Start Flag
Dev $=-1$
addr $=1$
'Clear device id
Command1.Caption $=$ "Sample1(GPIB)" + Chr (13) + "Get Power Data"
Command2.Caption $=$ "Sample2(GPIB)" + Chr(13) + "Get Impedance Data"
Command3.Caption $=$ "Sample3(GPIB)" + Chr(13) + "Get Wave Data(ASCII)"
Command4.Caption $=$ "Sample4(GPIB)" + Chr(13) + "Get Wave Data(FLOAT)"
Text1.Text = ""
End Sub

7.4 Output of Power Measurement Data


```
Sample1(GPIB) Get Power Data
Private Function GpibPower() As Integer
    Dim msg As String
    Dim qry As String
    Dim sts As Integer
    Dim item As Integer
    Dim comma As Integer
    Dim length As Integer
    Dim cnt As Integer
    term = Chr$(10)
    term = Chr$(10)
    qry = Space$(900)
    List1.AddItem "Now Initializing. Wait a moment."
    Dummy = DoEvents()
    sts = InitGpib
    If (sts <> 0) Then
        GpibPower = 1
        Exit Function
    End If
    Initialize the settings
    msg = "*RST" + term 'Initialize the settings
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    Set the measurement condition
    msg = "VOLTAGE:RANGE 100V" + term 'Voltage range = 100V
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    f (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    msg = "CURRENT:RANGE 1A" + term "Current range = 1A
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    msg = "RATE 500MS" + term
    sts = ilwrt(Dev, msg, Len(msg))
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    Set the numeric data output items
    ASCII format, Preset pattern1, Number of data = 60
    msg = "NUMERIC:FORMAT ASCII;NORMAL:PRESET 1;NUMBER 60" + term
    sts = ilwrt(Dev, msg, Len(msg))
    Send Command
    sts = ilwrt(Dev,
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    'Set the transition filter used to detect the completion of the data updating
    msg = "STATUS:FILTER1 FALL" + term 'Falling edge of bit0(UPD)
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts< < ) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    nd If
    'Clear the extended event register (Read and trash the response)
    msg = "STATUS:EESR?" + term
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    sts = ilrd(Dev, qry, Len(qry)) 'Receive Query
    If (sts < 0) Then
```

```
    Call DisplayGPIBError(sts, msg)
    GpibPower = 1
    Exit Function
    End If
    List1.Clear
    'Read and display the numeric data (It is repeated }10\mathrm{ times in this program)
    For cnt = 1 To 10
        'Wait for the completion of the data updating
        msg = "COMMUNICATE:WAIT 1" + term
        sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
        If (sts < 0) Then
            Call DisplayGPIBError(sts, msg)
            GpibPower = 1
            Exit Function
        End If
        'Clear the extended event register (Read and trash the response)
        msg = "STATUS:EESR?" + term
        sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
        If (sts < 0) Then
            Call DisplayGPIBError(sts, msg)
            GpibPower = 1
            Exit Function
    End If
    sts = ilrd(Dev, qry, Len(qry)) 'Receive Query
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    'Read out numeric data
    msg = "NUMERIC:NORMAL:VALUE?" + term 
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibPower = 1
        Exit Function
    End If
    sts = ilrd(Dev, qry, Len(qry)) 'Receive Query
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
            GpibPower = 1
            Exit Function
    End If
    'Extract items that are separated by commas(,) from the received data
    List1.AddItem "Measurement - " + CStr(cnt)
    List1.ListIndex = List1.ListIndex + 1
    For item = 1 To 60
        length = Len(qry)
        comma = InStr(qry, ",")
        If (comma = 0) Then comma = InStr(qry, term)
        Query(item) = Left(qry, comma - 1)
            If item < 10 Then
                List1.AddItem " " + CStr(item) + " " + Query(item)
            Else
            List1.AddItem CStr(item) + " " + Query(item)
            End If
            qry = Mid(qry, comma + 1)
            List1.ListIndex = List1.ListIndex + 1
    Next item
    List1.AddItem ""
    List1.ListIndex = List1.ListIndex + 1
    qry = Space$(900)
    Dummy = DoEvents()
    Next cnt
    List1.AddItem " All end"
    List1.ListIndex = List1.ListIndex + 1
    Call ibonl(Dev, 0)
    GpibPower = 0
End Function
```


7.5 Output of Impedance Measurement Data


```
Sample2(GPIB) Get Impedance Data
Private Function GpibImpedance() As Integer
    Dim msg As String
    Dim qry As String
    Dim sts As Integer
    Dim wait As Integer
    Dim item As Integer
    Dim comma As Integer
    Dim length As Integer
    As Intege
    Dim cnt As Integer
    term = Chr$(10)
    'Command buffer
    'Query buffer
    msg = Space$(100)
    qry = Space$(1200)
    List1.AddItem "Now Initializing. Wait a moment."
    Dummy = DoEvents()
    sts = InitGpib
    If (sts <> 0) Then
        GpibImpedance = 1
        Exit Function
    End If
    'Initialize the settings
    msg = "*RST" + term 'Initialize the settings
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    'Set the measurment condition
    Mode = impedance mode
    msg = "IMPEDANCE:STATE ON" + term _ Send Command
    sts = ilwrt(Dev, msg, Len(msg))
        'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    'Superpose Output Ratio = 0.3, Hold Action = Normal
    msg = "IMPEDANCE:SUPERPOSE:DETAILE:RATIO 0.3;HOLD NORMAL" + term
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    'Superpose DC Offset = 1.000, Superpose AC Amp = 1.000
    msg = "IMPEDANCE:SUPERPOSE:OFFSET 1;AMPLITUDE 1" + term
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    'Frequency Range = Hz, Frequency Value = 10
    msg = "IMPEDANCE:SUPERPOSE:FREQUENCY:RANGE HZ;VALUE 10" + term
    sts = ilwrt(Dev, msg, Len(msg))
    If (sts < O) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    'Hold On
    msg = "HOLD ON" + term
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    'Superpose Output Type = AC/DC, Superpose Output = ON
    msg = "IMPEDANCE:SUPERPOSE:OUTPUT:TYPE ACDC;STATE ON" + term
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    ‘Initialize voltage range
    msg = "IMPEDANCE:VOLTAGE:INITIALIZE" + term 'Send Command
    sts = ilwrt(Dev, msg, Len(msg))
    sts = ilwrt(Dev,
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
```

'Preset pattern1, Number of data $=3$, Number of data of array function $=1$
msg = "NUMERIC:IMPEDANCE:PRESET 1;NUMBER 3;ARRAY 1" + term
sts = ilwrt(Dev, msg, Len(msg))
Send Command
If (sts < 0) Then
Call DisplayGPIBError (sts, msg)
GpibImpedance $=1$
Exit Function
End If
'Set the transition filter used to detect the completion of the data updating
msg = "STATUS:FILTER1 FALL" + term 'Falling edge of bit0(UPD)
sts $=$ ilwrt(Dev, msg, Len(msg))
, Send Command
If (sts < 0) Then
Call DisplayGPIBError (sts, msg)
GpibImpedance $=1$
Exit Function
End If
'Clear the extended event register (Read and trash the response)
$\mathrm{msg}=$ "STATUS:EESR?" + term
sts $=$ ilwrt(Dev, msg, Len(msg)) 'Send Command
If (sts < 0) Then
Call DisplayGPIBError(sts, msg) GpibImpedance $=1$ Exit Function
End If
sts $=$ ilrd(Dev, qry, Len(qry)) 'Receive Query
If (sts < 0) Then Call DisplayGPIBError (sts, msg) GpibImpedance $=1$ Exit Function
End If
List1.Clear
'Read and display the numeric data (It is repeated 5 times in this program) For cnt $=1$ To 5

```
        msg = "*TRG" + term 'Single trigger
```

 sts \(=\) ilwrt(Dev, msg, Len(msg)) 'Send Command
 If (sts < 0) Then
 Call DisplayGPIBError(sts, msg)
 GpibImpedance \(=1\)
 Exit Function
 End If
 'Wait for the completion of the data updating
 msg \(=\) "COMMUNICATE:WAIT \(1 "+\) term
 sts \(=\) ilwrt(Dev, msg, Len(msg)) 'Send Command
 If (sts < 0) Then
 Call DisplayGPIBError(sts, msg)
 GpibImpedance \(=1\)
 Exit Function
 End If
 'Clear the extended event register (Read and trash the response)
 msg = "STATUS:EESR?" + term
 sts \(=\) ilwrt(Dev, msg, Len(msg)) 'Send Command
 If (sts < 0) Then
 Call DisplayGPIBError(sts, msg)
 GpibImpedance \(=1\)
 Exit Function
 End If
 sts = ilrd(Dev, qry, Len(qry)) 'Receive Query
 If (sts < 0) Then
 Call DisplayGPIBError(sts, msg)
 GpibImpedance \(=1\)
 Exit Function
 End If
 'Read out numeric data
 msg = "NUMERIC:IMPEDANCE:VALUE?" + term
 sts \(=\) ilwrt(Dev, msg, Len(msg)) 'Send Command
 If (sts < 0) Then
 Call DisplayGPIBError(sts, msg)
 GpibImpedance \(=1\)
 GpibImpedance
 End If
 sts = ilrd(Dev, qry, Len(qry)) 'Receive Query
 If (sts < 0) Then
 Call DisplayGPIBError (sts, msg)
 GpibImpedance \(=1\)
 Exit Function
 End If
 'Extract items that are separated by commas(,) from the received data
 List1.AddItem "Measurement - " + CStr(cnt)
 List1.ListIndex = List1.ListIndex + 1
 For item \(=1\) To 3
 length \(=\) Len(qry)
 comma \(=\) InStr (qry, ",")
 If \((\) comma \(=0)\) Then comma \(=\) InStr \((q r y\), term)
 Query (item) \(=\) Left (qry, comma - 1)
 If (item = 1) Then
 List1.AddItem "Freq : " + Query(item)
    ```
            ElseIf (item = 2) Then
                List1.AddItem "Z' : " + Query(item)
            Else
            List1.AddItem "Z', : " + Query(item)
            End If
            qry = Mid(qry, comma + 1)
            List1.ListIndex = List1.ListIndex + 1
    Next item
    'Change Frequency
    If cnt = 1 Then
    msg = "IMPEDANCE:SUPERPOSE:FREQUENCY:VALUE 20" + term 'Frequency Value
= 20
    ElseIf cnt = 2 Then
    msg = "IMPEDANCE:SUPERPOSE:FREQUENCY:VALUE 50" + term 'Frequency Value
    ElseIf cnt = 3 Then
            msg = "IMPEDANCE:SUPERPOSE:FREQUENCY:VALUE 100" + term 'Frequency Value
        Else
            msg = "IMPEDANCE:SUPERPOSE:FREQUENCY:VALUE 200" + term 'Frequency Value
= 200
        End If
        sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
        If (sts < 0) Then
            Call DisplayGPIBError(sts, msg)
            GpibImpedance = 1
            Exit Function
        End If
        List1.AddItem ""
        List1.ListIndex = List1.ListIndex + 1
        qry = Space$(900)
        Dummy = DoEvents()
    Next cnt
    List1.AddItem " All end"
    Listl.ListIndex = List1.ListIndex + 1
    msg = "IMPEDANCE:SUPERPOSE:OUTPUT:STATE OFF" + term
        'Send Command
    sts = ilwrt(Dev, msg, Len(msg))
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    msg = "HOLD OFF" + term 'Hold Off
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibImpedance = 1
        Exit Function
    End If
    Call ibonl(Dev, 0)
    GpibImpedance = 0
End Function
```


7.6 Output of Waveform Data (ASCII Format)


```
Sample3(GPIB) Get Wave Data (ASCII)
Private Function GpibWaveAscii() As Integer
    Dim msg As String
    Dim qry As String
    Dim sts As Integer
    Dim wait As Integer
    Dim pntl As Integer
    Dim num As Integer
    Dim i As Integer
    Dim j As Integer
    Dim k As Integer
    Dim comma As Integer
    term = Chr$(10)
    msg = Space$(100)
    qry = Space$(200)
    ts = InitGpib 'Initialize GPIB
    If (sts <> 0) Then
        GpibWaveAscii = 1
        Exit Function
    End If
    Initialize the settings
    msg = "*RST" + term 'Initialize the settings
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveAscii = 1
        Exit Function
    End If
    'Set the measurment condition
    msg = "VOLTAGE:RANGE:ELEMENT1 100V" + term "Voltage range = 100V
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveAscii = 1
        Exit Function
    End If
    msg = "WSETUP:TDIV 10MS" + term
    sts = ilwrt(Dev, msg, Len(msg))
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveAscii = 1
        Exit Function
    End If
    msg = "WSETUP:SAMPLING ON" + term "Wave sampling start
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveAscii = 1
        Exit Function
    End If
    'Set the transition filter used to detect the completion of the data updating
    msg = "STATUS:FILTER1 FALL" + term 'Falling edge of bit0(UPD)
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveAscii = 1
        Exit Function
    End If
    'Wait until waveform measure is stable (2 samples in this program)
    For wait = 1 To 2
        `Clear the extended event register (Read and trash the response)
        msg = "STATUS:EESR?" + term
        sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
        If (sts < 0) Then
            Call DisplayGPIBError(sts, msg)
            GpibWaveAscii = 1
            Exit Function
        End If
        sts = ilrd(Dev, qry, Len(qry)) 'Receive Query
        If (sts < 0) Then
            Call DisplayGPIBError(sts, msg)
            GpibWaveAscii = 1
            Exit Function
        End If
        'Wait for the completion of the data updating
        msg = "COMMUNICATE:WAIT 1" + term
        sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
        If (sts < 0) Then
```

```
    Call DisplayGPIBError(sts, msg)
    GpibWaveAscii = 1
    Exit Function
    End If
    Next wait
    'Set conditions for reading the waveform
    'ASCII format, Trace = U1
    msg = "WAVEFORM:TRACE U1;FORMAT ASCII" + term
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveAscii = 1
        Exit Function
    End If
    'Read and display the waveform data
    pntl = 1002
    num = 0
    For i = 0 To pntl Step 10
    'Read in the waveform data 10 data points at a time
    msg = "WAVEFORM:START" + Str(i) + ";END" + Str(i + 9) + ";SEND?" + term
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
            GpibWaveAscii = 1
            Exit Function
        End If
        sts = ilrd(Dev, qry, Len(qry)) 'Receive Query
        If (sts < 0) Then
            Call DisplayGPIBError(sts, msg)
            GpibWaveAscii = 1
            Exit Function
        End If
        k = 1
        'Extract items that are separated by commas(,) from the received data
        For j = 0 To 9
            comma = InStr(k, qry, ",")
            If (comma = 0) Then comma = InStr(k, qry, term)
            num = num + 1
            Query(num) = Mid(qry, k, (comma - k))
            If (num < 10) Then
                List1.AddItem " " + CStr(num) + " " + Query(num)
            ElseIf (num < 100) Then
                List1.AddItem " " + CStr(num) + " " + Query(num)
            ElseIf (num < 1000) Then
                List1.AddItem " " + CStr(num) + " " + Query(num)
            Else
                List1.AddItem CStr(num) + " " + Query(num)
            End If
            k = comma + 1
            List1.ListIndex = List1.ListIndex + 1
            If (num >= pntl) Then Exit For
            Next j
            qry = Space$(200)
            Dummy = DoEvents()
    Next i
    Call ibonl(Dev, 0)
    GpibWaveAscii = 0
End Function
```


7.7 Output of Waveform Data (FLOAT Format)

A: When a 4-byte data is split into 2 two-byte data, one of the two-byte data is " 0×00 ??".
B: When a 4-byte data is split into 2 two-byte data, one of the two-byte data is " 0×0 ???".


```
Sample4(GPIB) Get Wave Data (FLOAT)
Private Function GpibWaveFloat() As Integer
    Dim msg As String
    Dim qry As String
    Dim wait As Integer
    Dim eos As Integer
    Dim w As String
    Dim a(8) As String
    Dim b(8) As String
    Dim buf As String
    Dim all As String
    Dim allb As String
    Dim stre As String
    Dim sts As Integer
    Dim pntl As Integer
    Dim i As Integer
    Dim j As Integer
    Dim k As Integer
    Dim l As Integer
    Dim m As Integer
    Dim valu As Integer
    Dim vale As Integer
    Dim bufv(2007) As Integer
    Dim valf As Single
    Dim flo As Single
    Dim flo As Single 'terminator
    msg = Space$(100)
    qry = Space$(200)
    sts = InitGpib 'Initialize GPIB
    If (sts <> 0) Then
        GpibWaveFloat = 1
        Exit Function
    End If
    'Initialize the settings
    msg = "*RST" + term 'Initialize the settings
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        Call DisplayGPIBEr
        GpibWaveFloat
    End If
    'Set the measurment condition
    msg = "VOLTAGE:RANGE:ELEMENT1 100V" + term "Voltage range = 100V
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
        sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveFloat = 1
        Exit Function
    End If
    msg = "WSETUP:TDIV 10MS" + term 'Time/div = 10ms
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveFloat = 1
        Exit Function
    End If
    msg = "WSETUP:SAMPLING ON" + term "Wave sampling start
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        Call DisplayGPIBEr
        GpibWaveFloat =
    End If
    Set the transition filter used to detect the completion of the data updating
    msg = "STATUS:FILTER1 FALL" + term 'Falling edge of bit0(UPD)
    sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
    sts = ilwrt(Dev, msg, Len(msg))
    If (sts < 0) Then
        Call DisplayGPIBError(sts, msg)
        GpibWaveFloat = 1
        Exit Function
    End If
    'Wait until waveform measure is stable (2 samples in this program)
    For wait = 1 To 2
        'Clear the extended event register (Read and trash the response)
        msg = "STATUS:EESR?" + term
        sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
        If (sts < 0) Then
            Call DisplayGPIBError(sts, msg)
```

GpibWaveFloat = 1
xit Function
End If
sts = ilrd(Dev, qry, Len(qry)) ‘Receive Query
If (sts < 0) Then
Call DisplayGPIBError(sts, msg)
GpibWaveFloat $=1$
Exit Function
End If
'Wait for the completion of the data updating
msg = "COMMUNICATE:WAIT 1" + term
sts $=$ ilwrt(Dev, msg, Len(msg))
'Send Command
If (sts < 0) Then
Call DisplayGPIBError(sts, msg)
GpibWaveFloat = 1
Exit Function
End If
Next wait
'Set conditions for reading the waveform
'FLOAT(MSB first) format, Trace = U1
msg = "WAVEFORM:TRACE U1;FORMAT FLOAT;BYTEORDER MSBFIRST" + term
sts = ilwrt(Dev, msg, Len(msg)) 'Send Command
If (sts < 0) Then
Call DisplayGPIBError(sts, msg)
GpibWaveFloat $=1$
Exit Function
End If
'Read and display the waveform data
eos $=0$
sts $=$ ileos(Dev, eos) 'Terminator $=$ None(for Binary Data)
If (sts < 0) Then
Call DisplayGPIBError(sts, "ileos")
GpibWaveFloat =
Exit Function
End If
Read in the waveform data
pntl $=1002$
msg = "WAVEFORM:START 0;END 1001;SEND?" + term
sts $=$ ilwrt(Dev, msg, Len(msg))
'Send Command
If (sts < 0) Then
Call DisplayGPIBError(sts, msg)
GpibWaveFloat = 1
Exit Function
End If
sts = ilrdi(Dev, bufv(), 6 + 1002 * 4 + 1) 'Receive Query(Integer data)
If (sts < 0) Then
Call DisplayGPIBError (sts, msg)
GpibWaveFloat = 1
Exit Function
End If
eos $=\& H C O A$
sts = ileos(Dev, eos) ‘Terminator = LF
If (sts < 0) Then
Call DisplayGPIBError(sts, "ileos")
GpibWaveFloat $=$
Exit Function
End If
For i $=1$ To pntl
buf = ""
For $\mathrm{j}=1$ To 2
If Left(Right("00" + Hex\$(bufv((i * 2) + j)), 4), 2) = "00" Then buf = buf + Right("00" + Hex\$(bufv((i * 2) + j)), 4)
ElseIf Left(Right ("0" + Hex\$(bufv((i*2) + j)), 4), 1) = "0" Then buf = buf + Right("0" + Hex\$(bufv((i * 2) + j)), 4)
Else
buf = buf + Hex\$(bufv(2 + ((i - 1) * 2) + j))
End If
Next j
all $=$ Mid(buf, 3, 2) $+\operatorname{Mid}(b u f, 1,2)+\operatorname{Mid}(b u f, 7,2)+M i d(b u f, 5,2)$
For $\mathrm{k}=1$ To 8
a(k) $=$ Mid\$(all, k, 1)
If $a(k)=" 0 "$ Then $b(k)=" 0000 "$
If $a(k)=" 1 "$ Then $b(k)=" 0001 "$
If $a(k)=" 2 "$ Then $b(k)=" 0010 "$
If $a(k)=" 3 "$ Then $b(k)=" 0011 "$
If $a(k)=" 4 "$ Then $b(k)=" 0100 "$
If $a(k)=" 5 "$ Then $b(k)=" 0101 "$
If $a(k)=" 6 "$ Then $b(k)=" 0110 "$
If $a(k)=" 7 "$ Then $b(k)=" 0111 "$
If $a(k)=" 8 "$ Then $b(k)=" 1000 "$
If $a(k)=" 9 "$ Then $b(k)=" 1001 "$
If $a(k)=" A "$ Then $b(k)=" 1010 "$
If $a(k)=" B "$ Then $b(k)=" 1011 "$
If $a(k)=" C "$ Then $b(k)=" 1100 "$
If $a(k)=$ "D" Then $b(k)=" 1101 "$

```
            If a(k) = "E" Then b(k) = "1110"
            If a(k) = "F" Then b(k) = "1111"
        Next k
        allb=b(1) +b(2) +b(3) +b(4) +b(5) +b(6) +b(7) +b(8)
        vale = 0
        valf = 0
        valu = Val(Left$(allb, 1))
        stre = Mid$(allb, 2, 8)
        For l = 0 To 7
            vale = vale + (2 ^ l) * Val(Mid$(stre, (8 - l), 1))
        Next l
        w = Mid$(allb, 10, 23)
        For m = 1 To 23
            valf = valf + (2 ^ (-m)) * Val(Mid$(w, m, 1))
        Next m
        If (vale = 0) Then valf = O Else: valf = valf + 
        flo = ((-1) ^ valu) * (2 ^ (vale - 127)) * valf
        If i < 10 Then
            List1.AddItem CStr(i) + " " + CStr(flo)
        ElseIf i < 100 Then
            List1.AddItem CStr(i) + " " + CStr(flo)
        ElseIf i < 1000 Then
            List1.AddItem CStr(i) + " " + CStr(flo)
        Else
            List1.AddItem CStr(i) + " " + CStr(flo)
        End If
        List1.ListIndex = List1.ListIndex + 1
        qry = Space$(200)
        Dummy = DoEvents()
    Next i
    Call ibonl(Dev, O)
    GpibWaveFloat = 0
End Function
```


Appendix 1 ASCII Character Code

ASCII character codes are given

Example

Appendix 2 Error Messages

Error messages related to communications are given below.

- The instrument allows error messages to be displayed in either Japanese or English, however, they are shown only in English when they are displayed on a personal computer.
- When servicing is required, contact your nearest YOKOGAWA dealer.
- Only error messages relating to communications are given. For other error messages, refer to the User's Manual IM 760151-01E.

Errors in communication command (100 to 199)

| Code | Message | Action | Reference Page |
| :---: | :---: | :---: | :---: |
| 102 | Syntax error | Incorrect syntax. | Chapter 4, 5 |
| 103 | Invalid separator | Insert a comma between data items to separate them. | 4-1 |
| 104 | Data type error | Refer to pages 4-5 to 4-6 and enter using the correct data format. | 4-5 to 4-6 |
| 108 | Parameter not allowed | Check the number of parameters. | 4-5, Chapter 5 |
| 109 | Missing parameter | Enter required parameters. | 4-5, Chapter 5 |
| 111 | Header separator error | Insert a space between header and data to separate them. | 4-1 |
| 112 | Program mnemonic too long | Check the mnemonic (a character string consisting of letters and numbers). | Chapter 5 |
| 113 | Undefined header | Check the header. | Chapter 5 |
| 114 | Header suffix out of range | Check the header. | Chapter 5 |
| 120 | Numeric data error | Numeric value must be entered for <NRf> format. | 4-5 |
| 123 | Exponent too large | Use a smaller exponent for <NR3> format. | 4-5, Chapter 5 |
| 124 | Too many digits | Limit the number of digits to 255 or less. | 4-5, Chapter 5 |
| 128 | Numeric data not allowed | Enter in a format other than <NRf> format. | 4-5, Chapter 5 |
| 131 | Invalid suffix | Check the unit for <Voltage>, <Time> and <Frequency>. | 4-5 |
| 134 | Suffix too long | Check the units for <Voltage>, <Time> and <Frequency>. | 4-5 |
| 138 | Suffix not allowed | No units are allowed other than <Voltage>, <Time> | 4-5 |
| | | and <Frequency>. | |
| 141 | Invalid character data | Enter one of the character strings in $\{\ldots .\|\ldots\| \ldots\}$. | Chapter 5 |
| 144 | Character data too long | Check the character strings in $\{\ldots \mid \ldots\}$. | Chapter 5 |
| 148 | Character data not allowed | Enter in a format other than in $\{\ldots \mid \ldots\}$. | Chapter 5 |
| 150 | String data error | <Character string> must be enclosed by double quotation | 4-6 |
| | | marks or single quotation marks. | |
| 151 | Invalid string data | <Character string> is too long or contains characters | Chapter 5 |
| | | which cannot be used. | |
| 158 | String data not allowed | Enter in a data format other than <Character string>. | Chapter 5 |
| 161 | Invalid block data | <Block data> is not allowed. | 4-6, Chapter 5 |
| 168 | Block data not allowed | <Block data> is not allowed. | 4-6, Chapter 5 |
| 171 | Invalid expression | Equation is not allowed. | Chapter 5 |
| 178 | Expression data not allowed | Equation is not allowed. | Chapter 5 |
| 181 | Invalid outside macro definition | Does not conform to the macro function specified in IEEE488.2. | - |

Error in communications execution (200 to 299)

| Code | Message | Action | Reference Page |
| :--- | :--- | :--- | :--- |
| 221 | Setting conflict | Check the relevant setting. | Chapter 5 |
| 222 | Data out of range | Check the setting range. | Chapter 5 |
| 223 | Too much data | Check the data byte length. | Chapter 5 |
| 224 | Illegal parameter value | Check the setting range. | Chapter 5 |
| 241 | Hardware missing | Check availability of options. | - |
| 260 | Expression error | Equation is not allowed. | - |
| 270 | Macro error | Does not conform to the macro function specified in IEEE488.2. - | |
| 272 | Macro execution error | Does not conform to the macro function specified in IEEE488.2. - | |
| 273 | Illegal macro label | Does not conform to the macro function specified in IEEE488.2. - | |
| 275 | Macro definition too long | Does not conform to the macro function specified in IEEEE488.2. - | |
| 276 | Macro recursion error | Does not conform to the macro function specified in IEEE488.2. - | |
| 277 | Macro redefinition not allowed | Does not conform to the macro function specified in IEEE488.2. - | |
| 278 | Macro header not found | Does not conform to the macro function specified in IEEE488.2. - | |

Error in communications Query (400 to 499)

| Code | Message | Action | Reference Page |
| :--- | :--- | :--- | :--- |
| 410 | Query INTERRUPTED | Check transmission/reception order. | $4-2$ |
| 420 | Query UNTERMINATED | Check transmission/reception order. | $4-2$ |
| 430 | Query DEADLOCKED | Limit the length of the program message including
 <PMT> to 1024 bytes or less. | $4-2$ |
| 440 | Query UNTERMINATED after
 indefinite response | Do not enter any query after *IDN? and *OPT?. | - |

Error in System Operation (912 to 914)

| Code | Message | Action | Reference Page |
| :--- | :--- | :--- | :--- |
| 912 | Fatal error in Communications-
 driver | Servicing is required. | - |

Warning

| Code | Message | Action | Reference Page |
| :--- | :--- | :--- | :---: |
| 5 | $*$ OPC /? exists in message | Place the *OPC or *OPC? at the end of the program message. | - |

Other errors (350 and 390)

| Code | Message | Action | Reference Page |
| :--- | :--- | :--- | :--- |
| 350 | Queue overflow | Read the error queue. Code 350 occurs when the error queue
 is full up. This message is output only for the STATus: ERRor?
 query and is not displayed on the screen. | $6-5$ |
| 390 | Overrun error
 (only Serial(RS-232)) | Execute with a lower baud rate. | - |

Note

Code 350 indicates overflow of error queue. This code is returned as a response to the "STATus : ERRor?" query; it does not appear on the screen.

Appendix 3 Overview of IEEE 488.2-1987

The GP-IB interface provided with WT1600FC conforms to IEEE 488.2-1987. This standard requires the following 23 points be stated in this document. This Appendix describes these points.

1 Subsets supported by IEEE 488.1 interface functions
Refer to Section 1.4 "GP-IB Interface Specifications".

2 Operation of device when the device is assigned to an address other than addresses 0 to 30 .
The WT1600FC does not allow assignment to an address other than 0 to 30 .

3 Reaction when the user changes the address
The current address is changed when a new address is set using the MISC key. The newly set address is valid until another new address is set.

4 Device set-up at power ON. Commands which can be used at power ON
Basically, the previous settings (i.e. the settings which were valid when power was turned OFF) are valid. All commands are available at power ON.

5 Message transmission options
a Input buffer size 1024 bytes
b Queries which return multiple response messages Refer to Chapter 5, "Command List".
c Queries which generate response data during analysis of the syntax Every query generates a response data when analysis of the syntax is completed.
d Queries which generate response data during reception No query generates response data when the query is received by the controller.
e Commands consisting of parameters which restrict one other Refer to Chapter 5, "Command List".

6 Options included in command function elements and composite header elements
Refer to Chapters 4 and 5.

7 Buffer size which affects transmission of block data
During transmission of block data, the output queue is extended according to the size of the data blocks.

8 List of program data elements which can be used in equations, and nesting limit No equations can be used.

9 Syntax of response to queries
Refer to the description of the commands given in Chapter 5.

10 Communications between devices which do not follow the response syntax
No communications between devices.

```
11 Size of data block of response data
                            1 to 308922 bytes
12 List of supported common commands
                            Refer to Section 5.20 "Common Command Group".
1 3 \text { Condition of device when calibration is successfully completed}
                            Same as the one under which measurements are performed
1 4 \text { Maximum length of block data which can be used for definition of *DDT trigger macro}
    Not supported
1 5 \text { Maximum length of macro label used in definition of macro, maximum length of block data which can be used for}
    definition of macro, processing when recursion is used in definition of macro
                            Macro functions are not supported.
16 Response to *IDN?
    Refer to Section 5.20 "Common Command Group".
17 Size of storage area for protected user data for PUD and *PUD?
    *PUD and *PUD? are not supported.
18 Length of *RDT and *RDT? resource name
    *RDT and *RDT? are not supported.
19 Change in status due to *RST, *LRN?, *RCL and *SAV
    *RST
    Refer to Section 5.20 "Common Command Group".
    *LRN?, *RCL, *SAV
    These commands are not supported.
20 Execution range of self-test using the *TST?
    All the memory tests (for each internal memory) given in the Self Test menu displayed
    using the MISC can be executed.
21 Structure of extended return status
    Refer to Chapter 6.
22 To find out whether each command is performed in parallel or sequentially
    Refer to Section 4.5 "Synchronization with the Controller" and to Chapter 5.
2 3 \text { Description of execution of each command}
    Refer to Chapter 5 of this manual and to the User's Manual IM 760151-01E.
```


Index

Symbols

A

abbreviated form 4-5
absolute path 5-30
address 1-5
address commands 1-7
ASCII character codes App-1
auto calibration 5-57
auto range 5-48, 5-53
averaging 5-61

B

baud rate 2-2, 2-9
bit masking 6-2, 6-3
block data 4-7
BMP format 5-34
boolean 4-6
brightness 5-80
built-in printer, printing on 5-35
byte order, of output 5-82
C
calibration 5-87
CCITT 2-4
character data 4-6
color tone 5-34, 5-37
command list 5-1
commands 5-1
comment 5-30, 5-36, 5-75
common command group 5-87
common command header 4-3
COMMunicate group 5-12
Communication 1-5, 2-8
communication status 5-72
compound header 4-3
compression 5-34
computer 7-1
condition register 5-72, 6-4
connection 3-3
connector 2-3
control signal 5-42, 5-43
controller, synchronization with 4-7
convert 5-76
CS-RS 2-6
current directory 5-29
current measurement 5-48
current mode 5-57
current range 5-41, 5-49
current sensor input 5-50
cursor display 5-16, 5-17
CURSor group 5-15
cursor measurements 5-16
cursor path 5-16
cursor position 5-16
cursor target 5-16, 5-17
cutoff frequency 5-51
D
data 4-5
data byte string 4-7
data format 2-7
data length 2-2, 2-9
data number 5-78
data update rate 5-71
data with physical significance 4-6
date 5-79
DC component 5-44
DC load current 5-41
DCL 1-6
deadlock 4-2
default 5-88
delete 5-29
Delta -> Star conversion 5-62
delta computation 5-62
direct input 5-50
directory 5-30
display color 5-80
display color mode 5-80
display format 5-21, 5-26
DISPlay group 5-18

E

enable registers 6-2
error messages App-2
error queue 5-87, 6-2, 6-5
Ethernet control, setting 3-4
Ethernet interface 3-2
extended event enable register 5-72
extended event register $5-13,5-72,5-87,6-4$
F
factory default 5-88
FFT window width 5-42
FILE group 5-28
file name $5-30,5-36,5-75$
file operation 5-29
file, saving of 5-30
filename 4-7
filter 6-4
floppy disk format 5-29
Format 2-8
free disk space 5-29
free software 3-6
frequency measurement 5-62
frequency range 5-44
front panel 1-1, 2-1, 3-1
function selection (<function>) list 5-27
G
GET 1-6
GP-IB cable 1-2
GP-IB connector 1-1
GP-IB interface functions 1-3
GP-IB interface specifications 1-4
graticule 5-26
GTL 1-6
H
handshaking 2-5, 2-9
hard disk 5-81
hardware handshaking 2-2
HCOPy group 5-33
header 4-1
header, interpretation of 4-4
hold 5-42, 5-43
HOLD group 5-37
horizontal axis (T/div) (of trend) 5-25
I
IDY 1-6
IFC 1-6
IMAGe Group 5-38
impedance estimate 5-44
IMPedance group 5-39
impedance measurement, load current for 5-43
individual element integration 5-57
initialization 5-76
input element 5-48
input element type 5-52
INPut group 5-46
instrument model 5-88
INTEGrate group 5-56
integration mode 5-57
integration, starting of 5-59
integration, stopping of 5-59
integration timer 5-59
interface messages 1-6
internal hard disk, motor of 5-81
interpolation method 5-26
interpretation rules 4-4
L
language 5-80
LCD monitor 5-80
line filter 5-51
listener function 1-3
LLO 1-6
load 5-30
load current, amplitude of 5-43
load current, current value of 5-42
load current, frequency of 5-43, 5-44
load current, turning ON/OFF of 5-42, 5-44
load current, waveform of 5-43
LOCAL key 1-1, 2-1
local lockout 5-12

M

manual, conventions used in ii
mask 6-2, 6-3
MAX HOLD 5-63
MEASure group 5-60
measurement mode, type of 5-42
message 5-80
message language 5-80
MISC 1-5, 2-8
MISC key 1-1, 2-1
multi-line message 1-7
multiplier 4-6
N
names of the parts 1-1, 2-1
NL^END 4-1
normal integration mode 5-57
NULL function 5-52
numeric data format 5-69
numeric data output 5-66
numeric display 5-21
numeric display format 5-22
NUMeric group 5-65

0

OFF-OFF 2-5
operation pending status register 5-13
options 5-88
output byte order 5-82
output format 5-38
output queue 6-2, 6-5
output type 5-44
overlap commands 4-7, 5-13
overlap enable register 5-14
P
paper feeding 5-36
parity 2-2, 2-9
password 3-5, 3-6
Pc (Corrected Power) 5-64
peak over 5-52
phase difference 5-64
PMT 4-1
polling 5-73
preset pattern 5-70
program data 4-1
program header 4-1
program messages 4-1
protocol 1-4
Q
query 4-4
queue 6-5
queues 6-2

R

range mode 5-45
RATE group 5-71
reactive power 5-64
real-time normal integration mode 5-57
real-time store mode 5-78
rear panel 1-1, 2-1, 3-1
recall 5-75
receive 2-2
receive buffer 2-6
receiving function 2-2, 3-2
register 4-6
registers 6-2
registers, clearing of 5-88
REMOTE indicator 1-1, 2-1
remote mode 5-13
remote/local switching 3-2
REN 1-6
response 4-5
response data 4-2
response header 4-2
response messages 4-1
restart 5-25
RMT 4-1
RS-232 2-4
Rx-Tx 2-8

S

sample program image 7-2
sample programs 7-1
sample rate 5-83
scale value display 5-27
scaling 5-52
scaling constant 5-50
screen display 5-21
screen image 5-34
SCSI-ID 5-81
SDC 1-6
SDC and DCL, differences between 1-7
self-test 5-89
sending function 2-2, 3-2
sequential commands 4-7
serial (RS-232) connector 2-1
serial communications 2-8
serial interface specifications 2-2
serial polling 5-73, 6-3
serial standard signals 2-4
service request enable register 5-89
setting the address 1-5
signal names 2-3
simple header 4-3
SINGLE 5-89
size of data block of response data App-5
software Handshaking 2-2
SPD 1-6
SPE 1-6
split screen 5-26
standard event enable register 5-87
standard event register 5-87, 6-3
Star -> Delta conversion 5-62
status bit 5-13
status byte 6-2
status byte register 5-89
STATus group 5-72
status register 5-14
status report 6-1
stop bit 2-9
storage memory 5-76
store 5-75
store count 5-75
store destination 5-75
STORe group 5-74
store interval 5-76
store mode 5-78
string data 4-6
symbol ii
synchronization 4-7
synchronization source 5-53
syntax, symbols used in ii
system 5-79
SYSTem group 5-79

Index

T
talker function 1-3
target drive 5-29
TCP/IP 3-5
terminator 2-9
TIFF format 5-37
time 5-81
Time/div 5-85
timeout time 3-5, 3-6
transition filter 5-73, 6-4
trend 5-24
trigger 5-85

U

uni-line messages 1-6
unit 4-6
universal commands 1-7
upper-level query 4-4
user name 3-5, 3-6
user verification function 3-3
user-defined functions 5-63
V
vertical position 5-85
vertical zoom 5-86
Visual Basic 7-1
voltage input terminal 5-45
voltage measurement 5-53
voltage range 5-45, 5-54
voltage sensing input 5-44
W
waveform display 5-25, 5-82
waveform display data 5-82
WAVeform group 5-82, 5-83
waveform label display 5-27
waveform mapping method 5-26
waveform observation 5-85
waveform sampling 5-85
waveform, total number of data points 5-83
wiring system 5-55
WSETup group 5-84
X
XON-RS 2-6
XON-XON 2-5
Z
zero calibration 5-87zero-crossing filter5-51
zoom 5-86
zoom factor 5-86
Command List
*CAL? 5-87
*CLS 5-87
*ESE 5-87
ESR? 5-88
*IDN? 5-88
OPC 5-88
OPC? 5-88
OPT? 5-88
*PSC 5-88
*RST 5-88
*SRE 5-89
*STB? 5-89
*TRG 5-89
TST? 5-89
WAI 5-89
COMMunicate:HEADer 5-12
COMMunicate:LOCKout 5-12
COMMunicate:OPSE 5-13
COMMunicate:OPSR? 5-13
COMMunicate:OVERlap 5-13
COMMunicate:REMote 5-13
COMMunicate:STATus? 5-13
COMMunicate:VERBose 5-13
COMMunicate:WAIT 5-13
COMMunicate:WAIT? 5-14
COMMunicate? 5-12
CURSor:TRENd 5-16
CURSor:TRENd:POSition<x> 5-16
CURSor:TRENd:TRACe<x> 5-16
CURSor:TRENd? 5-16
CURSor:TRENd[:STATe] 5-16
CURSor:WAVE: 5-17
CURSor:WAVE:PATH 5-16
CURSor:WAVE:POSition<x> 5-16
CURSor:WAVE:TRACe<x> 5-17
CURSor:WAVE? 5-16
CURSor:WAVE[:STATe] 5-17
CURSor? 5-16
DISPlay:FORMat 5-21
DISPlay:NUMeric? 5-21
DISPlay:TRENd:ALL 5-23
DISPlay:TRENd:FORMat 5-23
DISPlay:TRENd:NORMal:ITEM<x>:SCALing:MODE 5-24
DISPlay:TRENd:NORMal:ITEM<x>:SCALing:VALue 5-24
DISPlay:TRENd:NORMal:ITEM<x>:SCALing? 5-24
DISPlay:TRENd:NORMal:ITEM<x>? 5-24
DISPlay:TRENd:NORMal:ITEM $<x>$ [:FUNCtion] 5-24
DISPlay:TRENd:NORMal? 5-24
DISPlay:TRENd:PDIV 5-25
DISPlay:TRENd:RESTart 5-25
:DISPlay:TRENd:T<x> 5-25
:DISPlay:TRENd:TDIV 5-25
:DISPlay:TRENd? 5-23
:DISPlay:TRENd[:SAMPling] 5-25
:DISPlay:WAVE 5-27
:DISPlay:WAVE:ALL 5-26
:DISPlay:WAVE:FORMat 5-26
DISPlay:WAVE:GRATicule 5-26
:DISPlay:WAVE:INTerpolate 5-26
:DISPlay:WAVE:MAPPing: 5-26
:DISPlay:WAVE:MAPPing? 5-26
:DISPlay:WAVE:MAPPing[:MODE] 5-26
:DISPlay:WAVE:SVALue 5-27
:DISPlay:WAVE:TLABel 5-27
:DISPlay:WAVE? 5-25
:DISPlay? 5-21
:DISPlay[:NUMeric]:IMPedance:ICURsor 5-21
:DISPlay[:NUMeric]:IMPedance:OBJect 5-21
:DISPlay[:NUMeric]:IMPedance:TYPE 5-22
:DISPlay[:NUMeric]:IMPedance? 5-21
:DISPlay[:NUMeric]:NORMal:FCURsor 5-22
:DISPlay[:NUMeric]:NORMal:IAMount 5-22
:DISPlay[:NUMeric]:NORMal:ICURsor 5-22
:DISPlay[:NUMeric]:NORMal:ITEM<x> 5-23
:DISPlay[:NUMeric]:NORMal:PRESet 5-23
:DISPlay[:NUMeric]:NORMal? -22
:FILE:CDIRectory 5-29
:FILE:DELete:IMAGe: 5-29
:FILE:DELete:NUMeric: 5-29
:FILE:DELete:SETup 5-29
:FILE:DELete:WAVE: 5-29
:FILE:DRIVe 5-29
:FILE:FORMat 5-29
:FILE:FREE? 5-29
:FILE:LOAD:ABORt 5-29
:FILE:LOAD:FGWave 5-30
:FILE:LOAD:SETup 5-30
:FILE:MDIRectory 5-30
:FILE:PATH? 5-30
:FILE:SAVE:ABORt 5-30
:FILE:SAVE:ANAMing 5-30
:FILE:SAVE:COMMent 5-30
:FILE:SAVE:NUMeric:NORMal: 5-31
:FILE:SAVE:NUMeric:NORMal:ALL 5-31
:FILE:SAVE:NUMeric:NORMal:PRESet<x> 5-31
:FILE:SAVE:NUMeric:NORMal? 5-31
-FILE:SAVE:NUMeric:TYPE 5-32
:FILE:SAVE:NUMeric? 5-30
:FILE:SAVE:NUMeric[:EXECute] 5-30
:FILE:SAVE:SETup[:EXECute] 5-32
:FILE:SAVE:WAVE:TRACe 5-32
:FILE:SAVE:WAVE:TYPE 5-32
:FILE:SAVE:WAVE? 5-32
:FILE:SAVE:WAVE[:EXECute] -32
:FILE:SAVE? 5-30
:FILE? 5-29
:HCOPy:ABORt 5-34
HCOPy:BMP:COLor 5-34
:HCOPy:BMP:COMPression 5-34
:HCOPy:BMP? 5-34
:HCOPy:COMMent 5-34
:HCOPy:DIRection 5-35
HCOPy:EXECute 5-35
HCOPy:FORMat 5-35
:HCOPy:PRINter:DLISt:INFOrmation 5-35
:HCOPy:PRINter:DLISt:NORMal: 5-36
:HCOPy:PRINter:DLISt:NORMal:ALL 5-36
:HCOPy:PRINter:DLISt:NORMal:PRESet<x> 5-36
HCOPy:PRINter:DLISt:NORMal? 5-35
:HCOPy:PRINter:DLISt? 5-35
:HCOPy:PRINter:DLISt[:EXECute] 5-35
:HCOPy:PRINter:FEED 5-36
:HCOPy:PRINter? 5-35
:HCOPy:SAVE:ANAMing 5-36
HCOPy:SAVE:COMMent 5-36
:HCOPy:SAVE:NAME 5-37
:HCOPy:SAVE? 5-36
:HCOPy:TIFF:COLor 5-37
:HCOPy:TIFF? 5-37
HCOPy? 5-34
HOLD 5-37
:IMAGe:COLor 5-38
:IMAGe:FORMat 5-38
IMAGe:SEND? 5-38
IMAGe? 5-38
IMPedance:CURRent:MRANge? 5-41
IMPedance:DCControl:DETaile:HOLD 5-42
IMPedance:DCControl:DETaile:LIMit 5-42
IMPedance:DCControl:DETaile:RATio 5-42
IMPedance:DCControl:DETaile? 5-41
IMPedance:DCControl:OFFSet 5-42
IMPedance:DCControl:OUTPut 5-42
:IMPedance:DCControl? 5-41
:IMPedance:MEASure:ANALysis? 5-42
IMPedance:MEASure:ARRay? 5-42
IMPedance:MEASure:TYPE 5-42
IMPedance:MEASure? 5-42
MPedance:SUPerpose:AMPLitude 5-43
IMPedance:SUPerpose:DETaile:HOLD 5-43
IMPedance:SUPerpose:DETaile:LIMit 5-43
IMPedance:SUPerpose:DETaile:RATio 5-43
IMPedance:SUPerpose:DETaile:WAVeform 5-43
IMPedance:SUPerpose:DETaile? 5-43
IMPedance:SUPerpose:FREQuency:RANGe 5-44
IMPedance:SUPerpose:FREQuency:VALue 5-44
IMPedance:SUPerpose:FREQuency? 5-43
IMPedance:SUPerpose:OFFSet 5-44
:IMPedance:SUPerpose:OUTPut:TYPE 5-44
:IMPedance:SUPerpose:OUTPut? 5-44
IMPedance:SUPerpose:OUTPut[:STATe] 5-44
:IMPedance:SUPerpose? 5-43
:IMPedance:VOLTage:ESTimate:ELEMent<x> 5-45
:IMPedance:VOLTage:ESTimate? 5-44
IMPedance:VOLTage:ESTimate[:ALL] 5-44
IMPedance:VOLTage:INITialize 5-45
:IMPedance:VOLTage:MRANge? 5-45
:IMPedance:VOLTage:RANGe:ELEMent<x> 5-45
:IMPedance:VOLTage:RANGe? 5-45
IMPedance:VOLTage:RANGe[:ALL] 5-45
IMPedance:VOLTage:TERMinal:ELEMent<x> 5-45
:IMPedance:VOLTage:TERMinal? 5-45
IMPedance:VOLTage:TERMinal[:ALL] 5-45
:IMPedance:VOLTage? 5-44
IMPedance? 5-41
:IMPedance[:STATe] 5-43
:INPut? 5-48
:INTEGrate:ACAL 5-57
:INTEGrate:CURRent:ELEMent<x> 5-57
:INTEGrate:CURRent? 5-57
:INTEGrate:CURRent[:ALL] 5-57
INTEGrate:INDependent 5-57
INTEGrate:MODE 5-57
:INTEGrate:RESet 5-58
:INTEGrate:RTIMe<x>: 5-58
:INTEGrate:RTIMe<x>? 5-58
:INTEGrate:STARt 5-59
INTEGrate:STATe? 5-59
:INTEGrate:STOP 5-59
:INTEGrate:TIMer<x> 5-59
:INTEGrate? 5-57
:MEASure:AVERaging:COUNt 5-61
MEASure:AVERaging:TYPE 5-62
:MEASure:AVERaging? 5-61
MEASure:AVERaging[:STATe] 5-61
:MEASure:DMeasure:OBJect 5-62
:MEASure:DMeasure:TYPE 5-62
:MEASure:DMeasure? 5-62
:MEASure:FREQuency:ITEM 5-63
:MEASure:FREQuency? 5-62
:MEASure:FUNCtion<x>:EXPRession 5-63
:MEASure:FUNCtion<x>:UNIT 5-63
:MEASure:FUNCtion<x>? 5-63
MEASure:FUNCtion<x>[:STATe] 5-63
:MEASure:MHOLd 5-63
MEASure:PC:IEC 5-64
:MEASure:PC:P<x> 5-64
:MEASure:PC? 5-64
:MEASure:PHASe 5-64
:MEASure:SFORmula 5-64
:MEASure? 5-61
:NUMeric:FORMa 5-66
:NUMeric:IMPedance:ARRay 5-66
:NUMeric:IMPedance:CLEar 5-66
:NUMeric:IMPedance:ITEM<x> 5-67
NUMeric:IMPedance:NUMber 5-67
:NUMeric:IMPedance:PRESet 5-67
NUMeric:IMPedance:VALue? 5-67
:NUMeric:IMPedance? 5-66
:NUMeric:NORMal? 5-67
NUMeric? 5-66
NUMeric[:NORMal]:CLEar 5-68
NUMeric[:NORMal]:ITEM<x> 5-68
NUMeric[:NORMal]:NUMber 5-68
NUMeric[:NORMal]:PRESet 5-68
:NUMeric[:NORMal]:VALue? 5-68
RATE 5-71
STATus:CONDition? 5-72
STATus:EESE 5-72
STATus:EESR? 5-72
STATus:ERRor? 5-73
STATus:FILTer<x> 5-73
STATus:QENable 5-73
STATus:QMESsage 5-73
STATus:SPOLI? 5-73
STATus? 5-72
STORe:COUNt 5-75
STORe:DIRection 5-75
STORe:FILE:ANAMing 5-75
STORe:FILE:COMMent 5-75
STORe:FILE:NAME 5-76
STORe:FILE? 5-75
STORe:INTerval 5-76
STORe:ITEM 5-76
sTORe:MEMory:CONVert:ABORt 5-76
:STORe:MEMory:CONVert:EXECute 5-76
STORe:MEMory:INITialize 5-76
STORe:MODE 5-76
STORe:NUMeric:NORMal: 5-77
STORe:NUMeric:NORMal:ALL 5-77
sTORe:NUMeric:NORMal:PRESet<x> 5-77
STORe:NUMeric:NORMal? 5-77
STORe:NUMeric? 5-77
STORe:RECall 5-78
STORe:RTIMe: 5-78
STORe:RTIMe? 5-78
STORe:SMODe 5-78
STORe:STARt 5-78
STORe:STOP 5-78
sTORe:WAVE 5-78
STORe:WAVE:ALL 5-78
STORe:WAVE? 5-78
STORe? 5-75
SYSTem:DATE 5-79
SYSTem:LANGuage 5-80
SYSTem:LCD:BRIGhtness 5-80
SYSTem:LCD:COLor:GRAPh 5-80
SYSTem:LCD:COLor:GRAPh:MODE 5-80
SYSTem:LCD:COLor:GRAPh? 5-80
SYSTem:LCD:COLor:TEXT 5-81
SYSTem:LCD:COLor:TEXT:MODE 5-81
SYSTem:LCD:COLor:TEXT? 5-80
SYSTem:LCD:COLor? 5-80
SYSTem:LCD? 5-80
SYSTem:SCSI:HDMotor 5-81
SYSTem:SCSI:INITialize 5-81
:SYSTem:SCSI:INTernalid 5-81
:SYSTem:SCSI:OWNid 5-81
:SYSTem:SCSI? 5-81
:SYSTem:TIME 5-81
:SYSTem? 5-79
:WAVeform:BYTeorder 5-82
:WAVeform:END 5-82
:WAVeform:FORMat 5-83
:WAVeform:LENGth? -83
:WAVeform:SEND? 5-83
:WAVeform:SRATe? 5-83
:WAVeform:STARt 5-83
:WAVeform:TRACe 5-83
:WAVeform:TRIGger? -83
:WAVeform? 5-82
:WSETup:POSition: 5-85
:WSETup:POSition? 5-85
:WSETup:TDIV 5-85
:WSETup:TRIGger:LEVel 5-85
:WSETup:TRIGger:MODE 5-85
:WSETup:TRIGger:SLOPe 5-85
:WSETup:TRIGger:SOURce 5-86
:WSETup:TRIGger? 5-85
:WSETup:VZoom 5-86
:WSETup:VZoom? 5-86
:WSETup? -85
:WSETup[:SAMPling] 5-85
[:INPut]:CURRent:AUTO:ELEMent<x> 5-49
[:INPut]:CURRent:AUTO[:ALL] 5-48
[:INPut]:CURRent:MRANge? 5-49
[:INPut]:CURRent:RANGe:ELEMent<x> 5-50
[:INPut]:CURRent:RANGe? 5-49
[:INPut]:CURRent:RANGe[:ALL] 5-49
[:INPut]:CURRent:SRATio:ELEMent<x> 5-50
[:INPut]:CURRent:SRATio? 5-50
[:INPut]:CURRent:SRATio[:ALL] 5-50
[:INPut]:CURRent:TERMinal:ELEMent<x> 5-51
[:INPut]:CURRent:TERMinal? 5-50
[:INPut]:CURRent:TERMinal[:ALL] 5-50
[:INPut]:CURRent? 5-48
[:INPut]:FILTer:LINE? 5-51
[:INPut]:FILTer:ZCRoss:ELEMent<x> 5-5
[:INPut]:FILTer:ZCRoss? 5-51
[:INPut]:FILTer:ZCRoss[:ALL] 5-51
[:INPut]:FILTer? 5-51
[:INPut]:FILTer[:LINE]:ELEMent<x> 5-51
[:INPut]:FILTer[:LINE][:ALL] 5-5
[:INPut]:MODUle? 5-52
[:INPut]:NULL -52
[:INPut]:POVer? 5-52
[:INPut]:SCALing: 5-52
[:INPut]:SCALing:STATe? 5-53
[:INPut]:SCALing? 5-52
[:INPut]:SCALing[:STATe]:ELEMent<x> -53
[:INPut]:SCALing[:STATe][:ALL] 5-53
[:INPut]:SYNChronize:ELEMent<x> 5-53
[:INPut]:SYNChronize? 5-53
[:INPut]:SYNChronize[:ALL] 5-53
[:INPut]:VOLTage:AUTO:ELEMent<x> 5-54
[:INPut]:VOLTage:AUTO[:ALL] 5-53
[:INPut]:VOLTage:MRANge? 5-54
[:INPut]:VOLTage:RANGe:ELEMent<x> 5-54
[:INPut]:VOLTage:RANGe? 5-54
[:INPut]:VOLTage:RANGe[:ALL] 5-54
[:INPut]:VOLTage? 5-53
[:INPut]:WIRing 5-55

