IEE 6703

ANALOG INTEGRATED CIRCUITS (I)

Lecture Note

CHUNG-YU WU

Integrated Circuits and Systems Laboratory Department of Electronics Engineering National Chiao Tung University September 2000

IEEE 6703 ANALOG INTEGRATED CIRCUITS (I)

CHUNG-YU WU FALL, 2000

Course Contents:

- 1. Analog MOSFET Device Physics and SPICE Models
- 2. CMOS Process Technology and Layout Rules
- 3. Current Sources and Simple Voltage Sources
- 4. Amplifiers, Level Shifting Circuits, and Output Stages
- 5. Noise Analysis of Analog Amplifiers
- 6. Midband Analysis of Operational Amplifiers (OP AMPs)
- 7. Frequency Response of Analog ICs
- 8. Design Procedures of CMOS OP AMPs
- 9. Special-Purpose CMOS OP AMPs
- 10. Passive Components and MOS Switches
- 11. Bandgap References
- 12. Sample and Hold Circuits

Text Book:

Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000

References:

- 1. David Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, 1997
- 2.Roubik Gregorian, Introduction to CMOS OP AMPs and Comparators, John Wiley & Sons, 1999

- 3. Roubik Gregorian and Gabor C. Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley & Sons, 1987
- 4. Technical Papers

Final Scores:

Will be determined by (1) Homework 20%

- (2) Mid-Term Test 30%
- (3) Final Exam 30%
- (4) Chip Design Project 20% (This Semester)

20% (Next Semester)

Chip Design Schedule:

Presimulation Deadli	ne:	:	Dec.	4,	2000
Layout Deadline		:	Dec.	25,	2000
Post-Simulation Dead	dline	:	Jan.	8,	2001
Tapeout	:				

Lecturer:

CHUNG-YU WU (吳重雨) Office: Engineering Building IV, Room 537 Email: <u>cywu@alab.ee.nctu.edu.tw</u> Web: <u>http://www.ics.ee.nctu.edu.tw/~cywu</u> Telephone: 03-5712121 Ext. 54148

Lecture Hours: 48

Office Hours: Monday CD Friday GH Others by appointment

Teaching Assistants:

(施育全:p8711837@alab.ee.nctu.edu.tw) (周忠昀:p8711581@alab.ee.nctu.edu.tw) Office: Engineering Building IV, Room 307 Integrated Circuits and Systems Laboratory Telephone: 03-5712121 Ext. 54215

Chapter 1 Device Physics and SPICE Models of Analog MOSFETs

§1-1 Device Physics and Operational Principle

Fig.1 Cross-sectional view of a n-channel MOSFET.

Fig.2 I_{DS} - V_{DS} characteristics of long-channel NMOSFET.

Linear Region (Non-saturation Region) :

 $V_{GS} > V_{THO}$ (threshold voltage)

 \Rightarrow electron inversion layer (~200Å) is formed

- \Rightarrow For small V_{DS}, it likes an uniform resistor with length L_{eff}, width W_{eff}, and thickness 200 Å
- \Rightarrow Linear I_{DS}-V_{DS} curve

 $I_{DS} =$ (velocity along channel length) • (charges per unit channel length)

$$= (\mu \frac{\mathbf{v}_{\text{DS}}}{\mathbf{L}_{\text{eff}}}) [C_{\text{OX}} W_{\text{eff}} (V_{\text{GS}} - V_{\text{THO}})] = \mu C_{\text{OX}} \frac{\mathbf{v}_{\text{eff}}}{\mathbf{L}_{\text{eff}}} (V_{\text{GS}} - V_{\text{THO}}) V_{\text{DS}}$$

$$\Rightarrow \text{For slightly larger } V_{\text{DS}},$$

$$I_{\text{DS}} = \left(\mu \frac{V_{\text{DS}}}{L_{\text{eff}}}\right) \left[C_{\text{OX}} W_{\text{eff}} \left(V_{\text{GS}} - V_{\text{THO}} - \frac{1}{2} V_{\text{DS}} \right) \right] = \mu C_{\text{OX}} \frac{W_{\text{eff}}}{L_{\text{eff}}} \left[(V_{\text{GS}} - V_{\text{THO}}) V_{\text{DS}} - \frac{1}{2} V_{\text{DS}}^{2} \right]$$

Saturation Region :

1. Pinched-off saturation in long-channel devices

At $V_{DS} = V_{DSAT} = V_{GS} - V_{THO}$, the channel is pinched off ($V_{GD} = V_{THO}$).

$$I_{DS} = \frac{uC_{ox}}{2} \frac{W_{eff}}{L_{eff}} (V_{GS} - V_{THO})^2$$

When $V_{DS} > V_{DSAT}$, the pinched-off point of V_{DSAT} along the channel is moved toward the source with a distance ΔL from the drain.

 \Rightarrow Within ΔL , the electrons can be very quickly swept toward the drain region. Thus the current is not dependent upon the physical behavior of electrons within ΔL .

$$\Rightarrow I_{DS} = \frac{\mu C_{ox}}{2} \frac{W_{eff}}{L_{eff} - \Delta L} (V_{GS} - V_{THO})^2$$
$$\approx \frac{\mu C_{ox}}{2} \frac{W_{eff}}{L_{eff}} (V_{GS} - V_{THO})^2$$
for $\Delta L \ll L$ (long-channel device)

 \Rightarrow constant current characteristics.

2. Velocity saturation in short-channel devices

In short-channel devices $L_{drawn} < 4\mu m$, velocity saturation occurs before pinched-off.

p - well

$$\overline{\mathbf{v}}_{\text{SAT}} = \mu \frac{\mathbf{V}_{\text{DSAT}}}{\mathbf{L}_{\text{eff}}}$$
$$\mathbf{I}_{\text{DSAT}} = \mu \frac{\mathbf{V}_{\text{DSAT}}}{\mathbf{L}_{\text{eff}}} [\mathbf{C}_{\text{ox}} \mathbf{W}_{\text{eff}} (\mathbf{V}_{\text{GS}} - \mathbf{V}_{\text{THO}} - \frac{1}{2} \mathbf{V}_{\text{DSAT}})]$$

1 - 4 Chung-yu wu

When $V_{\text{DS}} > V_{\text{DSAT}}$, the charges per unit channel length are increased by a

Fig. 3 I_{DS} -V_{DS} characteristics of short-channel NMOSFET

 I_{DS} - V_{GS} characteristics :

Device symbols :

§1-1.1 Threshold Voltage V_{TH}

$$V_{TH} = \phi_{MS} - \frac{Q_{SS}}{C_{OX}} + \phi_{S} + \frac{Q_{B}}{C_{OX}} = V_{FB} + \phi_{S} + \frac{Q_{B}}{C_{OX}} \qquad V_{FB} \equiv \phi_{MS} - \frac{Q_{SS}}{C_{OX}} \qquad V_{TH} :^{+NMOS}_{-PMOS}$$

 $\varphi_{\rm MS}$: gate material to silicon potential barrier

 Q_{SS} : surface charge density (C/cm²)

 $\varphi_{\,s}\,:\,$ surface potential under strong inversion

 $\phi_{\rm S} = 2 \frac{kT}{q} \ln \left(\frac{N_{\rm A}}{n_{\rm i}} \right) \text{ or } 2 \frac{kT}{q} \ln \left(\frac{n_{\rm i}}{N_{\rm D}} \right) \qquad \phi_{\rm S} :_{-\rm PMOS}^{+\rm NMOS}$

 Q_B : bulk charge density (C/m^2) Q_B : $^{+NMOS}_{-PMOS}$ C_{OX} : channel oxide capacitance per unit area

$$C_{OX} = \frac{\varepsilon_{sio_2}}{T_{ox}}$$
 $C_{OX} \approx 0.037 \text{fF}/\mu\text{m}^2 \text{ for } T_{OX} = 100 \text{ Å}$

1 - 6 Chung-yu wu

Gate Material	$\Phi_{ m M}$	is(V)	$\frac{Q_{SS}}{C_{OX}} \begin{bmatrix} N_{D} = 5 \times 10^{14} \text{ cm}^{-3} \\ \dot{t}_{ox} = 100 \text{ A} \end{bmatrix}$	V_{FB}	(V)
	PMOS	NMOS	(V)	PMOS	NMOS
metal	-0.3	-0.85	-0.03	-0.33	-0.88
n ⁺ _polysilicon	-0.25	-0.80	-0.023	-0.273	-0.823
p ⁺ _polysilicon	+0.80	+0.30	-0.023	+0.777	+0.277

$Q_{B} = \sqrt{2 \epsilon_{si} q N_{A} \Phi_{S}}$ for V_{F}	$_{35}=0$, i.e. zero substrate bias
(N_D)	
$Q_{\rm B} = \sqrt{2 \epsilon_{\rm si} q N_{\rm A} (\Phi_{\rm S} - V_{\rm BS})}$	$V_{\scriptscriptstyle BS}$: + forward bias
(N_D)	 reverse bias

$$V_{TH} = V_{THO} + GAMMA \sqrt{\Phi_{s}} \left[\sqrt{1 - V_{BS}} / \Phi_{s} - 1 \right] \qquad V_{THO}: \text{ zero-bias threshold voltage}$$
$$= V_{THO} + GAMMA \left[\sqrt{\Phi_{s} - V_{BS}} - \sqrt{\Phi_{s}} \right] \qquad \in_{si}: \text{permittivity of Si}$$

 $V_{\rm TH} \, \text{and} \, V_{\rm THO}\!: \ +(-)$ for enhancement NMOS (PMOS)

 $GAMMA = \frac{1}{Cox} \sqrt{2 \epsilon_{si} qN_A} \quad GAMMA : body effect factor$

Body Effect , Substrate Bias Effect

:
$$|V_{BS}| \uparrow$$
 forward bias $\Rightarrow V_{TH} \downarrow$

$$|V_{BS}|$$
 \uparrow reverse bias \Rightarrow V_{TH} \uparrow

GAMMA
$$\cong$$
 0.1 to 1.0 GAMMA $\alpha \sqrt{N_A}$

To obtain a large enough $V_{\mbox{\tiny THO}}$ and a small GAMMA

 \Rightarrow implantation for threshold voltage adjustment on a small N_A (N_D) sub. enhancement implant & depletion implant.

§1-1.2 Level 49 BSIM3 Version3 SPICE MOS Model-Threshold Voltage Ref: 1.Star-Hspice Manual, Release 1998.2

2.BSIM3v3.2.2 Manual, http://www-device.eecs.berkeley.edu/~bsim3/get.html

Threshold Voltage Equation

$$\begin{split} V_{th} = V_{th} \log_{ax} + K_{1ax} \cdot \sqrt{\Phi_s} - V_{bsoff} - K_{2ax} V_{bsoff} \\ + K_{1ax} \left(\sqrt{1 + \frac{NIx}{L_{eff}}} - 1 \right) \sqrt{\Phi_s} + \left(K_3 + K_{3b} V_{bsoff} \right) \frac{Tox}{W_{eff} + W_0} \Phi_s \\ - D_{VTOw} \left(exp \left(-D_{VT1w} \frac{W_{eff} \cdot L_{eff}}{2I_{tw}} \right) + 2exp \left(-D_{VT1w} \frac{W_{eff} \cdot L_{eff}}{I_{tw}} \right) \right) V_{bi} - \Phi_s) \\ - D_{VTO} \left(exp \left(-D_{IT1} \frac{L_{eff}}{2I_i} \right) + 2exp \left(-D_{IT1} \frac{L_{eff}}{I_i} \right) \right) V_{bi} - \Phi_s) \\ - \left(exp \left(-D_{sub} \frac{L_{eff}}{2I_{to}} \right) + 2exp \left(-D_{sub} \frac{L_{eff}}{I_{to}} \right) \right) E_{suo} + E_{sub} V_{bsoff} V_{ds} \\ V_{th0ax} = V_{th0} - K_1 \cdot \sqrt{\Phi_s} \\ K_{1ax} = K_1 \cdot \frac{T_{ax}}{T_{axm}} \\ I_{eff} = \sqrt{\varepsilon_{si} X_{dep0} / C_{ax}} \\ I_e = \sqrt{\varepsilon_{si} X_{dep0} / C_{ax}} \left(1 + D_{VT2} V_{bsoff} \right) \\ I_{tw} = \sqrt{\varepsilon_{si} X_{dep0} / C_{ax}} \left(1 + D_{VT2w} V_{bsoff} \right) \\ X_{dep} = \sqrt{\frac{2\varepsilon_{si} (\Phi_s - V_{bsoff})}{qN_{ch}}} \\ X_{dep0} = \sqrt{\frac{2\varepsilon_{si} (\Phi_s - V_{bsoff})}{qN_{ch}}} \\ V_{bsoff} = V_{bc} + 0.5 \left[V_{bs} - V_{bc} - \delta_1 + \sqrt{(V_{bs} - V_{bc} - \delta_1)^2 - 4\delta_1 V_{bc}} \right] \delta_1 = 0.001 V \\ V_{bc} = 0.9 \left(\Phi_s - \frac{K_1^2}{4K_2^2} \right) \\ V_{bi} = v_i \ln \left(\frac{N_{cb} N_{DS}}{n_i^2} \right) \end{split}$$

 N_{DS} =1e20/cm³

where Toxm is the gate oxide thickness at which parameters are extrated with a default value of Tox.

Name	Units	Default	Comments
ΤΟΧ	m	150e-10	Gate oxide thichness
VTHO	V	0.7	Threshold voltage of long channel device at
			$V_{bs}=0$ and small V_{ds} (typically 0.7 for n-
			channel, -0.7 for p-channel)
NSUB	cm ⁻³	6.0e16	Substrate doping concentration
NCH	cm ⁻³	1.7e17	Peak doping concentration near interface
NLX	m	1.74e17	Lateral nonuniform doping along channel
K1	$V^{1/2}$	0.50	First-order body effect coefficient
K2	-	-0.0186	Second-order body effect coefficient
K3	-	80.0	Narrow width effect coefficient
КЗВ	1/V	0	Body width coefficient of narrow width effect
WO	М	2.5e-6	Narrow width effect coefficient
DVT0W	1/m	0	Narrow width coefficient 0, for Vth, at small
			L
DVT1W	1/m	5.3e6	Narrow width coefficient 1, for Vth, at small
			L
DVT2W	1/V	-0.032	Narrow width coefficient 2, for Vth, at small
			L
DVT0	-	2.2	Short channel effect coefficient 0, for Vth
DVT1	-	0.53	Short channel effect coefficient 1, for Vth
DVT2	1/V	-0.032	Short channel effect coefficient 2, for Vth
ETA0	-	0.08	Subthreshold region DIBL (Drain Induced
			Barrier Lowering)coefficient
ETAB	1/V	-0.07	Subthreshold region DIBL coefficient
DSUB	-	DROUT	DIBL coefficient exponent in subthreshold
			region
VBM	V	-3.0	Maximum substrate bias, for Vth calculation

Threshold Voltage Model Parameters :

Other related model parameters: 13 parameter of L_{eff} , W_{eff} , and W_{eff}

Effects on Threshold Voltage

1 Short-Channel effect

 $L_{drawn} \downarrow =>V_{th} \downarrow \because$ effective $Q_B \downarrow$ shared by source-drain junction depletion changes HSPICE Model Parameters:DVT0,DVT1,DVT2

2 Narrow-Channel effect

$$\begin{split} W_{drawn} & \downarrow => V_{th} \uparrow \\ \therefore \text{ effective } Q_B \uparrow \text{ by } \bigtriangleup Q_B \\ \text{ caused by the fringing } \\ \text{ electric field } \end{split}$$

HSPICE Model Parameters:K3, K3B, W0, DVT0W, DVT1W, DVT2W CHUNG-Y

3 DIBL (Drain-Induced Barrier Lowering) effect $V_{DS} \uparrow =>$ electrons in the channel can be induced by the positive voltage at the drain as that at the gate $=> V_{th} \downarrow$

p-well

HSPICE Model Parameters: ETA0, ETAB, DSUB

4 Body effect

HSPICE Model Parameters: NLX, K1, K2, VBM

1-1.3 First-Order MOS $I_{\text{DS}}\text{-}V_{\text{DS}}$ Equations

Linear , non-saturation , or triode region ($V_{DS} < V_{DSAT}$, $V_{GS} > V_{TH}$)

$$I_{DS} = \frac{\mu_{n}C_{ox}}{2} \frac{W_{eff}}{L_{eff}} \left[2V_{DS} (V_{GS} - V_{TH}) - V_{DS}^{2} \right]$$

 μ_n : electron surface mobility

$$\begin{split} L_{eff} &= L_{drawn} - 2dL \\ W_{eff} &= W_{drawn} - 2dW \\ V_{TH} &= V_{THO} - \gamma \left(\sqrt{\Phi_{s} - V_{BS}} - \sqrt{\Phi_{s}} \right) \end{split}$$

Saturation region ($V_{\text{DS}} \!\!> \!\! V_{\text{DSAT}}$, $V_{\text{GS}} \!\!> \!\! V_{\text{TH}}$)

$$I_{DS} = \frac{\mu_{n}C_{ox}}{2} \frac{W_{eff}}{L_{eff}} (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS})$$

 λ : effective Early-Effect factor

$$\frac{1}{10} \mathbf{V}^{-1} \text{ or } \frac{1}{100} \mathbf{V}^{-1}$$
$$\lambda \approx \sqrt{\frac{2\epsilon_{si}}{qN_{SUB}}} \frac{1}{2L\sqrt{V_{DS} - V_{DSAT}}}$$

Saturation region or weak inversion region : $(V_{TH} - V_{off} < V_{GS} < V_{TH})$ CF

$$I_{DS} \cong I_{so} \exp(V_{GS} / nv_{t})[1 - \exp(-V_{DS} / v_{t})]$$

$$I_{so} = \mu_{0} \frac{W_{eff}}{L_{eff}} \sqrt{\frac{q\epsilon_{si}N_{ch}}{2\Phi_{S}}} v_{t}^{2}$$

$$n \cong 1 + \frac{C_{d}}{C_{ox}} = 1 + \frac{1}{C_{ox}} \sqrt{\frac{qN_{sub}\epsilon_{si}}{2(\Phi_{S} - V_{BS})}}$$

1-1.4 Level 49 BSIM3 Version 3 SPICE MOS Model – I_{DS} - V_{DS} Equation

1. Effective (
$$V_{GS}-V_{TH}$$
)= V_{GST}

$$V_{gsteff} = \frac{2nv_{t}ln\left[1 + exp\left(\frac{V_{gs} - V_{th}}{2nv_{t}}\right)\right]}{1 + 2nC_{ox}\sqrt{\frac{2\Phi_{s}}{q\varepsilon_{si}N_{ch}}}exp\left(-\frac{V_{gs} - V_{th} - 2V_{off}}{2nv_{t}}\right)}$$

$$n = 1 + N_{factor} \frac{C_d}{C_{ox}} + \frac{\left(C_{cds} + C_{dscd}V_{ds} + C_{dscb}V_{bseff}\right)\left[exp\left(-D_{VTI}\frac{L_{eff}}{2l_t}\right) + 2exp\left(-D_{VTI}\frac{L_{eff}}{l_t}\right)\right]}{C_{ox}} + \frac{C_{it}}{C_{ox}}$$

$$C_d = \frac{\mathcal{E}_{si}}{X_{dep}}$$

Effective $(V_{GS} - V_{TH})$ Model Parameters

Name	Units	Default	Comments
VOFF	V	-0.08	Offset voltage in subthreshold region
NFACTOR	-	1.0	Subthreshold region swing
CIT	F/m ²	0.0	Interface state capacitance
CDSC	F/m ²	2.4e-4	Drain/source and channel coupling capacitance
CDSCD	F/Vm ²	0	Drain bias sensitivity of CDSC
CDSCB	F/Vm ²	0	Body coefficient for CDSC

Other related model parameters : 20 parameters of V_{th} , and 13 parameters of L_{eff}

, $W_{\rm eff}$, and $W_{\rm eff}$ '

2. Mobility

For mobMod=1 (Default)

$$\mu_{eff} = \frac{\mu_o}{1 + \left(U_a + U_c V_{bseff} \left(\frac{V_{gsteff} + 2V_{th}}{Tox}\right) + U_b \left(\frac{V_{gsteff} + 2V_{th}}{Tox}\right)^2\right)}$$

1 - 11 <u>CHUNG-</u>YU WU

Name Comments Units Default Low field mobility at T=TREF=TNOM U0 $cm^2/V/$ 670 nmos 250nmos sec UA m/V 2.25e-9 First-order mobility degradation coefficient m^2/V^2 UB5.87e-19 Second-order mobility degradation coefficient Body bias sensitivity coefficient of mobility UC1/V -4.65e-11 or -0.0465 -4.65e-11 for MOBMOD=1,2 or, -0.0465 for MOBMOD=3

Other related model parameters \div 20 parameters of V_{th} , 6 parameters of V_{gsteff} , and 13 parameters of L_{eff} , W_{eff} , and W_{eff} '

3.Drain Saturation Voltage

Mobility Model Parameters

For
$$R_{ds} > 0$$
 or $\lambda \neq 1$;
 $V_{dsat} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

$$a = A_{bulk}^{2} W_{eff} v_{sat} C_{ox} R_{DS} + \left(\frac{1}{\lambda} - 1\right) A_{bulk}$$

$$b = -\left[\left(V_{gsteff} + 2v_t \left(\frac{2}{\lambda} - 1\right) + A_{bulk} E_{sat} L_{eff} + 3A_{bulk} \left(V_{gsteff} + 2v_t\right) W_{eff} v_{sat} C_{ox} R_{DS} \right]$$

$$c = \left(V_{gsteff} + 2v_t \right) E_{sat} L_{eff} + 2\left(V_{gsteff} + 2v_t \right)^2 W_{eff} v_{sat} C_{ox} R_{DS}$$

$$\lambda = A_1 V_{gsteff} + A_2$$

For $R_{DS} = 0$ and $\lambda = 1$

$$V_{dsat} = \frac{E_{sat}L_{eff}\left(V_{gsteff} + 2v_{t}\right)}{A_{bulk}E_{sat}L_{eff} + \left(V_{gsteff} + 2v_{t}\right)}$$

$$A_{bulk} = \left[1 + \frac{K_{lox}}{2\sqrt{\Phi_{s} - V_{bseff}}} \left[\frac{A_{0}L_{eff}}{L_{eff} + 2\sqrt{X_{J}X_{dep}}} \left[1 - A_{gs}V_{gsteff}\left[\frac{L_{eff}}{L_{eff} + 2\sqrt{X_{J}X_{dep}}}\right]^{2}\right] + \frac{B_{0}}{W_{eff}}\right]\right] \cdot \frac{1}{1 + KetaV_{bseff}}$$

$$E_{sat} = \frac{2V_{sat}}{\mu_{eff}}$$

1 - 12 Chung-yu wu

Drain Saturation Voltage Model Parameters

Name	Units	Default	Comments
A0	-	1.0	Bulk charge effect coefficient for channel
			length
AGS	1/V	0.0	Gate bias coefficient of Abulk
B0	m	0.0	Bulk charge effect coefficient for channel
B1	m	0.0	Bulk charge effect width offset
KETA	1/V	-0.047	Body-bias coefficient of bulk charge effect
VSAT	msec	8e4	Saturation velocity of carrier at
			T=TREF=TNOM
Al	1/V	0	First nonsaturation factor
A2	-	1.0	Second nonsaturation factor
XJ	m	0.15e-6	Junction depth

Other related model parameters \div 20 V_{th} , $6V_{gsteff}$, 13 L_{eff} , W_{eff} , and W_{eff} ' , and $4R_{DS}$

4.Effective V_{DS}

$$V_{dseff} = V_{dsat} - \frac{1}{2} \left(V_{dsat} - V_{ds} - \delta + \sqrt{(V_{dsat} - V_{ds} - \delta)^2 + 4\delta V_{dsat}} \right)$$

Effective V_{DS} Model Parameter

Name	Units	Default	Comments
DELTA	V	0.01	Effective Vds parameter

Other related model parameters : $9V_{sat}$, $20 V_{th}$, $6V_{gsteff}$, $13 L_{eff}$, W_{eff} , and W_{eff} ', and $4R_{DS}$

5.Drain Current Expression

$$\begin{split} I_{ds} &= \frac{I_{dso(V_{dseff})}}{1 + \frac{R_{ds}I_{dso(V_{dseff})}}{V_{dseff}}} \left(1 + \frac{V_{ds} - V_{dseff}}{V_{A}}\right) \left(1 + \frac{V_{ds} - V_{dseff}}{V_{ASCBE}}\right) \\ I_{dso} &= \frac{W_{eff} \mu_{eff} C_{ox} V_{gsteff} \left(1 - A_{bulk} \frac{V_{dseff}}{2(V_{gsteff} + 2v_{t})}\right) V_{dseff}}{L_{eff} \left[1 + V_{dseff} / (E_{sat}L_{eff})\right]} \\ V_{A} &= V_{Asat} + \left(1 + \frac{P_{vag}V_{gsteff}}{E_{sat}L_{eff}}\right) \left(\frac{1}{V_{ACLM}} + \frac{1}{V_{ADIBLC}}\right)^{-1} \\ V_{ACLM} &= \frac{A_{bulk}E_{sat}L_{eff} + V_{gsteff}}{P_{CLM}A_{bulk}E_{sat}litl} \left(V_{ds} - V_{dseff}\right) \\ V_{ADIBLC} &= \frac{\left(V_{gsteff} + 2v_{t}\right)}{\theta_{rout}\left(1 + P_{DIBLCB}V_{bseff}\right)} \left(1 - \frac{A_{bulk}V_{dsat}}{A_{bulk}V_{dsat} + V_{gsteff} + 2v_{t}}\right) \\ \theta_{rout} &= P_{DIBLC1} \left[\exp\left(-D_{ROUT}\frac{L_{eff}}{2I_{t_0}}\right) + 2\exp\left(-D_{ROUT}\frac{L_{eff}}{I_{t_0}}\right)\right] + P_{DIBLC2} \\ &= \frac{1}{V_{ASCBE}} = \frac{P_{scbe2}}{L_{eff}} \exp\left(\frac{-P_{scbel}litl}{V_{ds} - V_{dseff}}\right) \end{split}$$

$$V_{Asat} = \frac{E_{sat}L_{eff} + V_{dsat} + 2R_{DS}v_{sat}C_{ox}W_{eff}V_{gsteff}\left[1 - \frac{A_{bulk}V_{dsat}}{2(V_{gsteff} + 2v_{t})}\right]}{2/\lambda - 1 + R_{DS}v_{sat}C_{ox}W_{eff}A_{bulk}}$$
$$litl = \sqrt{\frac{\varepsilon_{si}T_{ox}X_{j}}{\varepsilon_{ox}}}$$

Name	Units	Default	Comments
PCLM	-	1.3	Coefficient of channel length modulation
			values ≤ 0 will result in an error message and
			program exit
PDIBLC1	-	0.39	DIBL (Drain Induced Barrier Lowering)
			Effect cofficient 1
PDIBLC2	-	0.0086	DIBL effect coefficient 2
PDIBLCB	1/V	0	Body effect coefficient of DIBL effect
			coefficients
DROUT	-	0.56	Length dependence coefficient of the DIBL
			Correction parameter in Rout
PVAG	-	0	Gate dependence of Early voltage

Other related model parameters : $1V_{dseff}$, $9V_{sat}$, $20~V_{th}$, $6V_{gsteff}$, $13~L_{eff}$, W_{eff} , and W_{eff} , and $4R_{DS}$

6.Substrate Current

$$I_{sub} = \alpha_0 (V_{ds} - V_{dseff}) \exp \left(-\frac{\beta_0}{V_{ds} - V_{dseff}}\right) \frac{I_{ds0}}{1 + \frac{R_{ds}I_{ds0}}{V_{dseff}}} \left(1 + \frac{V_{ds} - V_{dseff}}{V_A}\right)$$

Substrate Current Model Parameters

Name	Units	Default	Comments
ALPHA0	m/V	0	The first parameter of impact ionization current
BETA0	V	30	The second parameter of impact ionization current

Other related model parameters : $1V_{dseff}$, $9V_{sat}$, $20~V_{th}$, $6V_{gsteff}$, $13~L_{eff}$, W_{eff} , and W_{eff} , and $4R_{DS}$

7. Subthreshold Drain Current

$$I_{ds} = I_{so}(1 - \exp(-\frac{V_{ds}}{v_t})) \exp(\frac{V_{gsteff} + |V_{off}|}{nv_t})$$
$$I_{so} = \mu_0 \frac{W_{eff}}{L_{eff}} \sqrt{\frac{q\epsilon_{si}N_{ch}}{2\Phi_s}} v_t^2$$

where $V_{\rm off}$ is the offset voltage which is an important parameters determining the drain current at $V_{\rm gs}\!=\!\!0.$

Related model parameters

VOFF, NFACTOR, CIT, CDSC, CDSCB, CDSCD, ETAO, ETAB, DSUB.

8. Polysilicon Depletion Effect

Polysilicon Depletion Effect Model Parameters

Name	Units	Default	Comments
NGATE	cm ⁻³	infinite	Poly gate doping concentration

9. Effective Channel Length and Width

$$\begin{split} L_{eff} &= L_{drawn} - 2dL \\ W_{eff} &= W_{drawn} - 2dW \\ W'_{eff} &= W_{draw} - 2dW' \\ dW &= dW' + dW_g V_{gsteff} + dW_b \left(\sqrt{\Phi_s - V_{bseff}} - \sqrt{\Phi_s} \right) \\ dW' &= W_{int} + \frac{W_l}{L^{Wln}} + \frac{W_w}{W^{Lwn}} + \frac{W_{wl}}{L^{Wln}W^{Lwn}} \\ L_{eff} &= L_{drawn} - 2dL \\ dL &= L_{int} + \frac{L_l}{L^{Lln}} + \frac{L_w}{W^{Lwn}} + \frac{L_{wl}}{L^{Lln}W^{Lwn}} \end{split}$$

Name	Units	Default	Comments
WINT	m	0.0	Width offset fitting parameter from I-V
			without bias
WLN	-	1.0	Power of length dependence of width offset
WW	m^{WWN}	0.0	Coefficient of width dependence fo width

			offset
WWN	-	1.0	Power of width dependence of width offset
WWL	m^{WWN}	0.0	Coefficient of length and width cross term
	$m^{*}m^{WWN}$		for width offset
DWG	m/V	0.0	Coefficient of Weff's gate dependence
DWB	$M/V^{1/2}$	0.0	Coefficient of Weff's substrate body bias
			dependence
LINT	m	0.0	Length offset fitting parameter from I-V
			Without bias
LL	\mathbf{m}^{LLN}	0.0	Coefficient of length dependence for length
			offset
LLN	-	1.0	Power of length dependence of length offset
LW	m^{LWN}	0.0	coefficient of width dependence for length
			offset
LWN	-	1.0	Power of width dependence of length offset
LWL	m^{LWN}	0.0	Coefficient of length and width cross term for
	m^{LLN}		length offset

Other related model parameters : $6V_{gsteff}$ and $20V_{th}$

10.Source/Drain Resistance

$$R_{dr} = \frac{R_{dre} \left(1 + P_{reg} V_{griegr} + P_{reb} \left(\sqrt{\Phi_s - V_{bregr}} - \sqrt{\Phi_s} \right) \right)}{\left(10^8 W_{eff} \right)^{W_r}}$$

Source/Drain Resistance Model Parameters

Name	Units	Default	Comments
RDSW	ohm • μ m	0.0	Parasitic source drain resistance per unit width
PRWG	1/V	0	Gate bias effect coefficient of RDSW
PRWB	$1/V^{1/2}$	0	Body effect coefficient of RDSW
WR	-	1.0	Width offset from Weff for Rds calculation

11. Temperature Effects

$$\begin{split} V_{d(T)} &= V_{d(Taorn)} + (K_{T1} + K_{12} / L_{cf} + K_{T2} V_{lacf})(T / T_{norm} - 1) \\ \mu_{o(T)} &= \mu_{o(Thorne)} (\frac{T}{T_{norm}})^{the} \\ V_{sat}(T) &= V_{sat}(T_{horne}) - A_T (T / T_{norm} - 1) \\ R_{dire(T)} &= R_{dire(Tnorm)} + P_{t,t} (\frac{T}{T_{norm}} - 1) \\ U_{a(T)} &= U_{a(Tnorm)} + U_{a1} (T / T_{norm} - 1) \\ U_{b(T)} &= U_{b(Tnorm)} + U_{b1} (T / T_{norm} - 1) \\ U_{c(T)} &= U_{c(Tnorm)} + U_{c1} (T / T_{norm} - 1) \\ U_{c(T)} &= U_{c(Tnorm)} + U_{c1} (T / T_{norm} - 1) \\ \end{split}$$

Name	Units	Default	Comments
KT1	V	0.0	Temperature coefficient for Vth
KT1L	m-V	0.0	Temperature coef. for channel length dependence of Vth
KT2	-	0.022	Body bias coefficient of Vth temperature effect
UTE	-	-1.5	Mobility temperature exponent
UA1	m/V	4.31e-9	Temperature coefficient for UA
UB1	$(m/V)^2$	-7.61e-18	Temperature coefficient for UB
UC1	m/V^2	-5.69e-11	Temperature coefficient for UC
AT	m/sec	3.3e4	Temperature coefficient for saturation velocity
PRT	ohm-um	0	Temperature coefficient for RDSW

Temperature Effects Model Parameters

1-1.5 Level 49 BSIM3 Version 3 SPICE MOS Model-MOS Diode Equations

1. I-V model of S/B diode

 $ijth \neq 0$ If $V_{bs} < V_{jsm}$ $I_{bs} = I_{sbs} \left[exp \left(\frac{V_{bs}}{Nv_t} \right) - 1 \right] + G_{min} V_{bs}$

otherwise

$$I_{bs} = ijth + \frac{ijth + I_{sbs}}{NV_t} (V_{bs} - V_{jsm}) + G_{\min}V_{bs}$$

$$V_{jsm} = NV_t \ln\left(\frac{ijth}{I_{sbs}} + 1\right)$$

$$I_{sbs} = A_{S_{eff}}J_s + P_{S_{eff}}J_{SW}$$

$$A_{S_{eff}} = 2 \cdot HDIF \cdot SCALM \cdot WMLT \cdot W_{eff} \text{ (As is not specified)}$$

$$A_{S_{eff}} = M \cdot A_s \cdot WMLT^2 \cdot SCALE^2 \text{ (As is specified)}$$

$$P_{S_{eff}} = 4 \cdot HDIF \cdot SCALM \cdot WMLT \text{ (Ps is not specified)}$$

$$P_{S_{eff}} = M \cdot Ps \cdot SCALE \cdot WMLT$$

$$A_{S_{eff}} : \text{ effective source junction area}$$

 $P_{S_{\rm eff}}\,$: effective source junction perimeter

SCALE (SCALM): scaling for element (model) statement parameters

Temperature effect

$$J_{S}(T) = J_{S}(T_{nom}) \exp\left[\frac{\frac{E_{go}}{v_{t0}} - \frac{E_{g}}{v_{t}} + XTI \cdot \ln\left(\frac{T}{T_{nom}}\right)}{N}\right]$$
$$J_{SW}(T) = J_{SW}(T_{nom}) \exp\left[\frac{\frac{E_{go}}{v_{t0}} - \frac{E_{g}}{v_{t}} + XTI \cdot \ln\left(\frac{T}{T_{nom}}\right)}{N}\right]$$

$$E_{go} = 1.16 - \frac{7.02 \times 10^{-4} T_{nom}^{2}}{T_{nom} + 1108}$$

$$E_g = 1.16 - \frac{7.02 \times 10^{-4} T^2}{T + 1108}$$

2. I-V model of D/B diode

$$\begin{split} & V_{bs} \rightarrow V_{bd} \\ & V_{jsm} \rightarrow V_{jdm} \\ & I_{sbs} \rightarrow I_{sbd} \\ & A_{seff} \rightarrow A_{deff} \\ & P_{seff} \rightarrow P_{deff} \end{split}$$

MOS Diode I-V model parameters

Name	Units	Default	Comments
JS	A/m^2	0.0	Bulk junction saturation current
			(Default deviates from BSIM $3v3=1.0e^{-4}$)
JSW	A/m	0.0	Sidewall bulk junction saturation current
NJ	-	1	Emission coefficient (not used with ACM=3)
XTI	-	3.0	Junction current temperature exponent

MOS Geometry Model Parameters

Name	Unit	Default	Description
HDIF	m	0	Length of heavily doped diffusion, from contact
			to lightly doped region(ACM=2,3 only)

LD	m		Lateral diffusion into channel from source and drain diffusion.
			If LD and XJ are unspecified, LD default=0.0.
			When LD is unspecified, but XJ is specified, LD is calculated from XJ. LD default= $0.75 \cdot XJ$.
			For Level 4 only, lateral diffusion is derived form LD · XJ. LDscaled=LD · SCALM
LDIF	m	0	Length of lightly doped diffusion adjacent to gate(ACM=1,2) LDIFscaled=LDIF · SCALM
WMLT		1	Width diffusion layer shrink reduction factor

§ 1-2 Small-Signal Model of MOSFETs

1 **-** 19 Chung-yu wu

$$\begin{split} & C_{gsov}(C_{gdov})[\cong C_{o} \ L_{D}] = CGSO(CGDO) & \text{CHUNG} \\ & C_{jbs} = C_{j}A_{s} \frac{1}{\left(1 - \frac{V_{BS}}{P_{B}}\right)^{MJ}} + C_{jsw}P_{s} \frac{1}{\left(1 - \frac{V_{BS}}{P_{B}}\right)^{MJSW}} & \text{for } C_{jbd}, V_{BS} \rightarrow V_{BD} \\ & A_{S} \rightarrow A_{D} \\ & V_{BS}: \ + \text{forward bias; } - \text{reverse bias} \\ & C_{sem} = \epsilon_{si}/X_{d} = \epsilon_{si}/\sqrt{2\epsilon_{si}}(\phi_{s} - V_{BS})/qN_{A}} \\ & (N_{D}) \\ & g_{m} \equiv \frac{\partial I_{DS}}{\partial V_{GS}} = 2\sqrt{I_{DS}} \frac{\mu_{n}C_{o}}{2} \frac{W}{L} \quad (\text{sat. region}) \\ & g_{mb} \equiv \frac{\partial I_{DS}}{\partial V_{BS}} \cong \frac{GAMMA \ g_{m}}{2\sqrt{\Phi_{s} - V_{BS}}} = g_{m}\eta \quad (\text{sat. region}) \\ & \text{where } \eta = \frac{GAMMA}{2\sqrt{\Phi_{s} - V_{BS}}} \\ & \frac{1}{r_{ds}} = g_{ds} = \frac{\partial I_{DS}}{\partial V_{DS}} \cong \lambda I_{D} \quad (\text{sat.}) \quad R_{D}, R_{S}: drain/source \ \text{resistance} \end{split}$$

OFFLINEARSATURATION
$$C_{gs}$$
 $C_{gsov}W$ $WC_{gsov} + \frac{1}{2}C_{o}WL$ $WC_{gsov} + \frac{2}{3}C_{o}WL$ C_{gd} $C_{gdov}W$ $WC_{gdov} + \frac{1}{2}C_{o}WL$ WC_{gdov} C_{gb} $0.9C_{o}WL$ 0 $0.1C_{o}WL$ C_{bs} C_{jbs} $C_{jbs} + \frac{1}{2}C_{sem}WL$ $C_{jbs} + \frac{2}{3}C_{sem}WL$ C_{bd} C_{jbd} $C_{jbd} + \frac{1}{2}C_{sem}WL$ C_{jbd}

Exact calculation of C_{gs} , C_{gd} and C_{gb} :

♦ In this figure,
$$|V_{BS}|=0$$
 V does not mean short-circuited substrate and source!

Name	Units	Default	Comments
ACM	-	0	Area calculation method selector (Start- Hspice specific)
CJ	F/m ²	5.79e ⁻⁴	zero-bias bulk junction capacitance (Default deviates from $BSIM3v3 = 5.0e^{-4}$)
CJSW	F/m	0.0	zero-bias sidewall bulk junction capacitance (Default deviates from $BSIM3v3 = 5.0e^{-10}$)

Junction Capacitance Model Parameters

CJSWG	F/m	CJSW	zero-bias gate-edge sidewall bulk junction capacitance (not used with ACM=0-3)
PB	V	1.0	bulk junction contact potential
PBSW	V	1.0	sidewall bulk junction contact potential
MJ	-	0.5	bulk junction grading coefficient
MJSW	-	0.33	sidewall bulk junction grading coefficient
PHP	V	PB	bulk sidewall junction contact potential

Note that ACM=2 (UMC 0.5µm CMOS) invokes the standard Start-Hspice junction model in pg. 15-40 to 15-51, Start-Hspice Manual, Release 1998.2.

For junction parasitic resistance, ACM=2 also uses the equations in pg. 15-40 to 15-51, Start-Hspice Manual, Release 1998.2.

Junction Resistance Model Parameters

Name	Units	Default	Description
RD	ohm/sq	0.0	drain ohmic resistance. This parameter is usually lightly doped regions' sheet resistance for ACM 1.
RDC	ohm	0.0	additional drain resistance due to contact resistance
RS	ohm/sq	0.0	source ohmic resistance. This parameter is usually lightly doped regions' sheet resistance for ACM 1.
RSC	ohm	0.0	additional source resistance due to contact resistance
RSH	ohm/sq	0.0	drain and source diffusion sheet resistance

AC and capacitance model parameter

Name	Units	Default	Comments
CAPMOD	-	0	Selects from BSIM3 versions 3.0 3.1
			3.11(version=3.11 is the HSPICE97.4 equivalent to
			BSIM3v3 version3.1)
XPART	-	1	Charge portioning rate flag(default deviates from
			BSIM3V3=0)
CGSO	F/m	P1(see	Non-LDD region source-gate overlap capacitance
		Note1)	per unit channel length

CGDO	F/m	P2(see	Non-LDD region source-gate overlap capacitance
		Note2)	per unit channel length
CGBO	F/m	0	Gate-bulk overlap capacitance per unit channel
			length
CGS1	F/m	0.0	Lightly doped source-gate overlap region
			capacitance
CGD1	F/m	0.0	Lightly doped source-gate overlap region
			capacitance
CKAPPA	F/m	0.6	Coefficient for lightly doped region overlap
			capacitance fringing field capacitance
CF	F/m	(see note3)	Fringing field capacitance
CLC	М	0.1e-6	Constant term for the short channel model
CLE	-	0.6	Exponential term for the short channel model
DLC	М	LINT	Length offset fitting parameter from CV
DWC	М	WINT	Width offset fitting parameter from CV

The capacitance model equation can be seen from BSIM 3v3.2.2 manual in appendix B.note that capmod=2 and XPART=0 (0/100 charge partition)

§ 1-3 Other HSPICE Model parameter

Model Flags

Name	Units	Default	Comment
VERSION	-	3.11	Selects from BSIM3 version
			3.0,3.1,3.11(version=3.11 is the HSPICE97.4
			equivalent to BSIM3v3 version3.1)
BINFLAG	-	0	Uses wref, lref when set>0.9
NOIMOD	-	1	Berkeley noise modelflag
NLEV	-	0(off)	Star-Hspice noise model flag (non-zero overrides
			NOIMOD)(star-HSPICE specific)
NQSMOD	-	0(off)	NQS Model is not supported in Level49
SFVTFLA	-	1(on)	Spline function for Vth(star-Hspice specific)
G			
VFBFLAG	-	0(off)	UFB selector for CAPMOD=0(star-HSPICE
			specific)

Bin Description Parameter

Name	Units	Default	Comment
LMIN	М	0.0	minimum channel length
LMAX	М	1.0	Maximum channel length
WMIN	М	0.0	minimum channel width
WMAX	М	1.0	Maximum channel width
BINUNIT	-	0	Flicker noise parameter

Process Parameter 5 Noise Parameter 7 NQS Parameter 1

Chapter 2 CMOS Process Technology and Layout

Rule

§ 2 – 1 Typical Submicron CMOS Process Flow

0.5µm SPDM twin-well polycide-gate CMOS technology

Major Process Steps:

- 1. Lightly-doped (15-20 Ω -cm , P) p-type substrate , <100>
- 2. N-well region definition (NW, Mask # 1)
- 3. N-well implantation (phosphorus) Fig. 3-1

Fig. 3-1

- 4. P-well region definition (PW, Mask # 2)
- 5. P-well implantation (Boron) Fig. 3-2

Fig. 3-2

- 6. Well drive-in with 350 Å oxide growth , 1100°C
- 7. Oxide strip.
- 8. Pad oxide growth (200 Å) ± 25 Å, 920 °C
- 9. Si₃N₄ deposition (1500 Å) ± 200 Å , 780 °C
- 10. Field oxide definition (SN, Mask #3)
- 11. Si_3N_4 and pad oxide etch
- 12. Field oxidation (500 Å) , 980 $^{\circ}\mathrm{C}$
- 13. P-field implantation definition (PF, Mask #4)
- 14. P-field implantation (Boron) Fig. 3-3

Fig. 3-3

- 15. Photoresist strip
- 16. Si_3N_4 and pad oxide removal

- 17. Pregate oxide growth (250 Å) and etch away
- 18. Pregate oxide growth (110 Å)
- 19. Threshold adjustment implantation (Boron) Fig. 3-4

- 20. Pregate oxide etching
- 21. Gate oxide growth (85 Å)
- 22. Polysilicon deposition (1500 Å)
- 23. Polysilicon doped with phosphorus (43 Ω/\Box)
- 24. WSi₂ deposition (1250 Å)
- 25. Polysilicon definition (PO, Mask #5)
- 26. Polysilicon etch Fig. 3-5

Fig. 3-5

- 27. NLDD implant definition (NM, Mask #6)
- 28. NLDD implantation (phosphorus and Asenic shallow implant)
- 29. WSi₂ anneal (180 Å)

- 30. PLDD implant definition (PM, Mask #7)
- 31. PLDD implantation (BF_2 shallow implant) Fig. 3-6

Fig. 3-6

- 32. Conformal sidewall spacer oxide deposition (2000 Å) , $700 \,^{\circ}\text{C}$
- 33. Anisotropic sidewall oxide etchback to form spacers
- 34. N⁺ source/drain implant definition (NP, Mask #8)
- 35. N⁺ source/drain implantation (As) Fig. 3-7

Fig. 3-7

- 36. P⁺ source/drain implant definition (PP, Mask #9)
- 37. P^+ source/drain implantation (BF₂)
- Low Temperature Oxide (LTO) Boron Phosphate Silicon Glass (BPSG) deposition (9000 Å doped , 2000 Å undoped)
- 39. Flow, 850 °C

- 40. Contact definition (CO, Mask #10)
- 41. Contact etching
- 42. Annealing Fig. 3-8

- 43. Plug barrier deposition (Ti 400 Å / TiN 1000 Å)
- 44. Barrier annealing
- 45. W Plug deposition 6000 Å
- 46. Metal 1 sputtering (AlCu 4000 Å / TiN 1400 Å)
- 47. Metal 1 definition (M1, Mask #11)
- 48. Metal 1 etching
- 49. Via oxide deposition (2000 Å + 5000 Å + 2000 Å)
- 50. Via hole definition (VI, Mask #12)
- 51. Via hole etching
- 52. Plug barrier2 TiN(1000 Å)
- 53. Plug deposition2 W(6000 Å)
- 54. Metal 2 sputtering [AlCu (18000 Å) / TiN (250 Å)]
- 55. Metal 2 definition (M2, Mask #13)
- 56. Metal 1 etching Fig. 3-9

Fig. 3-9

- 57. Passivation oxide deposition (2000 Å)
- 58. Passivation Si_3N_4 deposition (7000 Å)
- 59. Pad definition (CB, Mask #14)
- 60. Alloy

Total photolithography steps : 14

§ 2 – 2 Typical CMOS layout example

(1) Well Masking -----NW,PW

> N-well (NW) clear

outside: P-well (PW)

dark

 $CO \boxtimes$ shown in the above figure

§ 2-3 Layout Rules for Latchup

Parasitic p-n-p-n (SCR) structure in bulk CMOS :

Lumped equivalent circuit of the parasitic p-n-p-n (SCR) structure :

§ 2-3.1 Layout rule of MOS transistors for I/O parts or large

driver (Based on 0.8µm layout rule)

1. NMOS transistor :

- (1) A P+ base guard ring should surround the NMOS. The P+ base guard ring must be connected to Vss by an unbroken metal line.
- (2) Maximum distance between surrounded P+ base guard ring is 80µm (e)
- (3) Minimum width of the P+ base guard ring is $4\mu m$ (a)

P-substrate
- (4) Maximum distance between N+ source/drain areas and the nearest p-well contact inside the P+ base guard ring must be less than 20μm (d). A butting contact is preferred if the process is allowed.
- (5) N+ collector guard ring coupled with N-well should be placed outside the p-well region. The N+ guard ring must be connected to V_{ss} by an unbroken metal line.
- (6) The minimum width of the N+ collector guard ring is 4μ m(b).
- (7) The minimum space between the P+ base guard ring and the N+ collector guard ring is 8μm(c).
- (8) Minimum space between NMOS N+ collector guard ring and PMOS P+ collector guard ring is 30µm(f).

2. PMOS transistor:

- A N⁺ base guard ring should surround the PMOS. The N⁺ base guard ring must be connected to VDD by an unbroken metal line.
- (2) Maximum distance between the surrounded N⁺ base guard ring is 80µm.(e)
- (3) Minimum width of the N⁺ base guard ring is $4\mu m$ (a)
- (4) Maximum distance between P^+ source/drain areas and the nearest N-well contact inside the N^+ base guard ring must be less than $20\mu m(d)$. A butting contact is preferred if the process is allowed.
- (5) P⁺ collector guard ring should be placed outside the N-well region. The P⁺ collector guard ring should be connected to Vss by an unbroken metal line.

- (6) Minimum width of the P^+ collector guard ring is 4 μ m.
- (7) Minimum space between N⁺ base guard ring and P⁺ collector guard ring is 8μm (c).

§ 2-3.2 Layout rule of internal circuits

- The internal circuit must be separated from I/O transistors with at least a double ring structure (with one N⁺ connected to VDD and one P⁺ connected to Vss).
- (2) It is also recommended that large drivers are surrounded with a double guard ring structure.
- (3) In an N-well (P-well), N-well (P-well) contacts should be used as many as possible. The maximum distance between a P⁺(N⁺) source/drain area and the nearest N-well (P-well) contact is 40μm.

Chapter 3 Current Sources and Simple Voltage Sources

§ 3-1 MOS Simple Current Sources

§ 3-1.1 NMOS Current Sources

1. MOS Widlar current mirror

(M₃) M₁: $V_{GS} = V_{DS} \Rightarrow V_{DS} > V_{GS} - V_{TH}$ Both are sat. M₂: must be kept in the sat. region i.e. $V_{-} > V_{CS} - V_{-}$ or V_{-} or

I.e.
$$V_{out} > V_{GS} - V_{TH}$$
 Of V_{DSAT}
 $I_{out} = I_{DS2} = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_2 (V_{GS2} - V_{TH2})^2 (1 + \lambda_2 V_{out})$
 $I_{DS1} = I_{DS3} = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_1 (V_{GS1} - V_{TH1})^2 (1 + \lambda_1 V_{GS1})$
 $= \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3 (V_{GS3} - V_{TH3})^2 (1 + \lambda_3 V_{GS3})$
M₁ is identical to M₂ $\Rightarrow V_{TH1} = V_{TH2} = V_{TH1}$

 $\lambda_1 = \lambda_2 = \lambda$ $\mu_n C_{ox}$ are the same

$$\frac{I_{out}}{I_{REF}} = \frac{(W/L)_1}{(W/L)_2} \frac{1 + \lambda V_{out}}{1 + \lambda V_{DS}}$$

$$I_{DSI} = I_{DS3} = I_{REF} \text{ is called the reference current .}$$

It can be generated by M₃ or other input circuits.

* If
$$\lambda \to 0 \implies \frac{I_{out}}{I_{REF}} = \frac{(W/L)_2}{(W/L)_1}$$

The output current I_{out} depends only on the geometric ratio. $\Rightarrow I_{out}$ can be a constant current if I_{REF} is a stable current.

 I_{out} is nearly independent of V_{out} if M_2 is sat.

*
$$r_o = r_{ds2} = (\lambda I_{out})^{-1}$$
 $L_2 \uparrow \Longrightarrow r_o \uparrow$

Remember:

Ideal current source:

- (1) I = constant, indep. of the loading and V_{out} (2) $r_o = \infty$.
- * To guarantee matched device characteristics, $L_1 = L_2$ is preferred and long channel devices are used. W_1 and W_2 should be kept large enough to avoid narrow channel effect.

* Can be used in the subthreshold poeration.

2. Cascode MOS Widlar current mirror

- * M_4 and M_2 must be in the saturation region.
- * M_1/M_2 (M_3/M_4) should have matched device characteristics.
- * M_4 and M_2 must be in the sat. region
 - \Rightarrow Large V_{out} is required

 \Rightarrow The voltage swing of the load is limited especially for low

```
V_{DD}
```

* $r_o = r_{ds2} + r_{ds4} + r_{ds2}r_{ds4}(1+\eta_4) g_{m4} \approx g_{m4}r_{ds2}r_{ds4}$ High output resistance (by a factor of $g_{m4}r_{ds4}$) \Rightarrow Long channel is used for M₄ to obtain a large r_{ds4}

*
$$\frac{I_{out}}{I_{REF}} = \frac{(W/L)_2}{(W/L)_1} \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{GS}}$$

The output current is still determined by the bottom mirror.

- * To guarantee $V_{GS} = V_{DS2}$ and matched device characteristics, $(W/L)_2/(W/L)_1 = (W/L)_4/(W/L)_3$ is used and $L_1 = L_2 = L_3 = L_4$ is preferred. Thus $V_{GS3} = V_{GS4}$ and $V_{GS} = V_{DS2}$.
- * Note that M₃ and M₄ have body effect $\Rightarrow V_{GS3}/V_{GS4} \uparrow \text{ and required } Vout \uparrow$ $\Rightarrow (W/L)_3 > (W/L)_1$ $(W/L)_4 > (W/L)_2 \text{ is adopted for compensation.}$
- * The resistance seen from the input circuit is much smaller than $r_0 \Rightarrow$ Inbalance r_0 .
- * Can be used in the subthreshold operation.

3.MOS Wilson current source

$$\frac{I_{out}}{I_{REF}} = \frac{(W/L)_2}{(W/L)_3} \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS3}}$$
$$V_{DS2} = V_{GS}$$
$$V_{DS3} = V_{GS} + V_{GS1}$$
$$V_{DS2} \neq V_{DS3}$$

* Inherent inbalance

$$\Rightarrow \frac{I_{out}}{I_{REF}} \text{ depends on } V_{GS} \text{ and } V_{GSI}$$
$$\Rightarrow \text{ High precision ratio is not obtainable.}$$

$$g_{m1}V_{gs1} - g_{mb1}V_{gs} r_{ds1}$$

$$g_{m3}V_{gs3} - g_{m2}V_{gs2} r_{ds1} r_{ds2} r_{ds2} r_{ds2}$$

$$r_{o} \cong r_{ds1} + r_{ds1} \left[\frac{g_{m1}g_{m3}(r_{ds3} //r_{OREF}) + g_{m1}}{g_{m2} + \frac{1}{r_{ds2}} + g_{mb1}} \right] + \frac{1}{g_{m2} + \frac{1}{r_{ds2}} + g_{mb1}}$$
If $r_{ds2} \gg \frac{1}{g_{m2}}$

$$\Rightarrow r_{o} = \frac{1}{(g_{m2} + \eta_{1}g_{m1})} + r_{dsI} \left\{ 1 + (\frac{g_{m1}}{g_{m2} + \eta_{1}g_{m1}}) [1 + g_{m3}(r_{ds3} // r_{OREF})] \right\}$$

$$\approx g_{m3}(r_{ds3} // r_{OREF}) (\frac{g_{m1}}{g_{m2} + \eta_{1}g_{m1}}) r_{ds1}$$

Assume $g_{m1} = g_{m2} = g_{m3} = g_m$ and $\eta_1 \rightarrow 0$

$$r_{o} \cong \frac{1}{g_{m}} + r_{ds1} [2 + g_{m} (r_{ds3} // r_{OREF})]$$
$$\cong r_{ds1} [g_{m} (r_{ds3} // r_{OREF})]$$

- * The output resistance is nearly the same as that of the cascoded current mirror.
- * Only 3 MOS's are used.
- * Can be operated in the subthreshold region.
- 4. Improved Wilson current source

Set
$$V_{GS1} = V_{GS4} \left[i.e. \frac{(W/L)_1}{(W/L)_4} = \frac{(W/L)_2}{(W/L)_3} \right]$$

$$\frac{I_{out}}{I_{REF}} = \frac{(W/L)_2}{(W/L)_3}$$
 precise ratio.

- * Inherent balance like the cascode current source.
- * High output resistance.
- * 4 MOS's are needed.

*
$$(W/L)_{1}/(W/L)_{4} = (W/L)_{2}/(W/L)_{3} \Rightarrow V_{DS3} = V_{GS2} = V_{GS3}$$

and M3 sat.

3 - 6 Chung-yu wu

- * Better r_o balance between load and I_{REF} nodes.
- * Can be used in the subthreshold operation.
- 5. High-swing cascode current source
 - A. Conventional type :

B. With source-follower level shifter :

 $I_{DSI} = I_{DS3} = \frac{W}{L} \frac{\mu_n C_{ox}}{2} (V_{TH} + \Delta V - V_{TH})^2$ $= \frac{1}{4} \frac{W}{L} \frac{\mu_n C_{ox}}{2} (V_{GS3} - V_{TH})^2$

 $\Rightarrow V_{GS3} = V_{TH} + 2\Delta V$

 \Rightarrow * The swing of load can be V_{DD} -2Δ V.

* $M_{\rm 1}$ and $M_{\rm 2}$ have the same $V_{\rm DS}$ to obtain a precise current ratio.

The generation of
$$V_B$$
:

$$M_5 \equiv M_1 \Rightarrow V_{GS5} = V_{GS1}$$

$$\Rightarrow (W/L)_6 < (W/L)_3$$

$$\Rightarrow V_{GS6} > V_{GS3}$$

$$(W/L)_7 \text{ is large}$$

$$V_{GS7} \cong V_{TH7} > V_{TH1}$$
Choose (W/L)_6 so that

$$V_{GS6} - V_{GS7} \equiv V_{GS3} - V_{TH1}$$

$$M_5 \equiv M_1$$

$$-V_{SS}$$

§ 3-1.2 General Advantages of MOS Current Sources

- 1. Effective current gain $\beta \rightarrow \infty$
 - \Rightarrow No dc loading of slave stages on the master stage

(Unlike the BJT multi-stage current mirrors)

- 2. Current ratio \cong MOS channel geometric ratio
- 3. High packing density
- 4. Iout can be as small as several nA.
 Generally, if Iout <~nA, leakage current dominates the output current
 - \Rightarrow The ratio is not constant anymore.

§ 3-1.3 PMOS/CMOS Current Sources

All NMOS current sources can be converted into PMOS current sources. They can be used in CMOS technology.

Example: Multi-stage PMOS Widlar current

source

* Iout >10 μ A \Rightarrow V_{GS}>V_T and I_D \propto (V_{GS}-V_T)², square law

 \Rightarrow good ratio constancy.

§ 3-2 Supply – Independent Current Sources

§ 3-2.1 CMOS Peaking Current Source

CASE I : Subthreshold operation

In M1 and M3,

$$I_{DO1} = I_{DO3} , V_{DS} \gg v_t$$

$$V_{GS1} = I_{DS1}R + V_{GS3}$$

$$I_{DS1} = \left(\frac{W}{L}\right)_I I_{D0} e^{V_{GS1} / nv_t}$$

$$= \left(\frac{W}{L}\right)_I I_{D0} e^{(I_{DS1}R + V_{GS3}) / nv_t}$$
where $I_{D0} = I_{S0} / (W/L)$

$$I_{out} = I_{D3} = \left(\frac{W}{L}\right)_3 I_{D0} e^{V_{GS3} / nv_t}$$

- * Power supply independent current with output current proportional to v_{t}
- * Choose $I_{REF}=I_{DS1}=I_{DS1opt}$, I_{outmax} can be controlled by R or $(W/L)_3/(W/L)_1$
- * R can be implemented by the n+ source/drain diffusion. It can also be made by adjustable resistors.
- * If $I_{REF}=I_{DS1opt}$ has some inevitable variations, the resultant variations on I_{outmax} is reduced because $\partial I_{out}/\partial I_{DS1}$ arround I_{DS1opt} is very small.
- * Two-stage peaking current sources can be used to further reduce the variations of I_{outmax} . I_{out} can be used to generate I_{DS1opt}
- * Process variation and temperature coefficient (positive) on R should be considered.

CASE II: Saturation operation

$$I_{DS1} = \frac{\mu_{n}C_{ox}}{2} \left(\frac{W}{L}\right)_{1} (V_{GS1} - V_{TH})^{2}$$

$$= \frac{\mu_{n}C_{ox}}{2} \left(\frac{W}{L}\right)_{1} (V_{GS3} + I_{DS1}R - V_{TH})^{2}$$

$$I_{out} = I_{DS3} = \frac{\mu_{n}C_{ox}}{2} \left(\frac{W}{L}\right)_{3} (V_{GS3} - V_{TH})^{2}$$

$$I_{out} = \frac{(W/L)_{3}}{(W/L)_{1}} \frac{(V_{GS3} - V_{TH})^{2}I_{DS1}}{(V_{GS3} - V_{TH} + I_{DS1}R)^{2}}$$

$$\frac{\partial I_{out}}{\partial I_{DS1}} = 0, \frac{\partial^{2}I_{out}}{\partial I_{DS1}^{2}} < 0 \Rightarrow I_{DS1opt} = \frac{V_{GS3} - V_{TH}}{R}$$

$$\Rightarrow I_{outmax} = \frac{(W/L)_{3}}{(W/L)_{1}} \frac{V_{G3} - V_{TH}}{4R} = \frac{(W/L)_{3}}{(W/L)_{1}} \frac{1}{4} I_{DS1opt}$$

* $I_{out max}$ is power supply independent, but not proportional to v_t .

* Other features are the same as those in the subthreshold operations.

§ 3-2.2 CMOS v_t Standard Current Source

M1, M2, M3 and M4 are operated in the subthreshold region.

CASE II:

M3 is in a separated well(special process) with $V_{BS}=0$, $V_{GS3} = V_{GS1} - V_{R}$

$$\Rightarrow V_{R} = nV_{t} \ln \left[\frac{(W_{L})_{3}(W_{L})_{2}}{(W_{L})_{1}(W_{L})_{4}} \right]$$
$$I_{R} = \frac{V_{R}}{R}$$

 $I_{out} = [(W/L)_6/(W/L)_4]I_R$

- * The output current is power-supply independent.
- * Since I_R is small enough, the start-up circuit is not necessary.
- * R may be implemented by n^+ diffusion or adjustable resistors.
- * Process variations on R should be considered.
- * The temperature coefficient of R is usually positive. Thus I_R is not linearly proportional to temperature exactly.
- § 3-2.3 Constant g_m Current Source

All MOS devices are operated in the saturation region

- * The g_{mload} of the load NMOS device is independent of power supply voltages and depends upon R and channel geometric ratio.
- * Both temperature coefficient and process variations of R still affect g_m.
- * R can be tuned to compensate its process variation.
- * R can be realized by switched-capacitor resistors for better accuracy and tunability. However, clocks and capacitors are required.
- * ΔV_{TH} due to the body effect of M₃ causes error in I_{out}.
- * R can be moved to the source of M_4 to avoid the body effect.

: PMOS in 0.5µm CMOS process can have separate n-wells.

- ** Requires start-up circuit to stabilize the circuit as V_{DD}/V_{SS} is powered up. Adding C_{start} is a simple way to perform start-up.
- * Requires careful HSPICE simulation and analysis for the start-up circuit. Transient analysis using the ramp V_{DD} waveform.

§3-3 Simple MOS Voltage Sources (For capacitive loads only)

- * For 0.5 μ m CMOS technology all subtrates are the same ptype semiconductor connected to ground or $-V_{SS}$.
- \Rightarrow Body effect in MN1 and MN2
 - * For PMOS version, separate n-wells can be used.
 - ⇒ No body effect, but larger chip area.

* VDD+VSS > V_{THMN1} +V_{THMN3} +V_{THMN2}

*
$$I_{VDD} = I_{VSS} \propto V_{DD} + V_{SS}$$

- * MN1, MN2, and MN3 may have different channel dimensions.
- * Output resistance $\propto 1/g_m$

(3) NMOS-PMOS combinations

Ideal Voltage Source : (1) Rs = 0

(2) Vout =V = constant independent of current loading.

Chapter 4 CMOS Amplifiers, Level Shifting Circuits, and Output stages

4-1 Active-Load MOS Amplifiers

- 4-1.1 NMOS Amplifiers
 - 1. Simple NMOS common-source amplifier

- * M_1 and M_2 must be always biased in the saturation region.
- * $M_1 \text{ sat} \Rightarrow v_o \ge V_{DSAT1} \le v_1 V_{TH1}$ $M_2 \text{ sat} \Rightarrow V_{DD} - v_o \ge V_{DSAT2} \le V_{GG} - V_{TH2} - v_o$ * $V_{GG} < V_{DD} + V_{TH2} \Longrightarrow V_{GG} < V_{DD}$

Transfer characteristic:

Assume $\lambda \to 0$, $GAMMA \to 0$, and the same $\mu_n C_{ox}$ $\frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_l \left(v_1 + V_{SS} - V_{TH2}\right)^m = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_2 \left(V_{GG} - v_0 - V_{TH2}\right)^m, 1 \le m \le 2$ $\Rightarrow v_0 = V_{GG} - \left(\frac{(W/L)_l}{(W/L)_2}\right)^m \left(v_1 + V_{SS} - V_{TH1}\right) - V_{TH2}$ $V_{ODC} \propto V_{IDC}$ At point A, $v_{IA} = v_{OA} + V_{THI}$

$$\Rightarrow v_{OA} = \frac{\left(V_{GG} - V_{TH2} - \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}V_{SS}\right)}{1 + \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}}$$

The range of v_o in which both MOS are in the saturation region is

$$V_{GG} - V_{TH2} > v_{O} \ge \frac{\left(V_{GG} - V_{TH2} - \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}} V_{SS}\right)}{1 + \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}} \text{ or } V_{DSATI}$$

$$A_{v} \equiv \frac{\partial v_{o}}{\partial v_{I}} = -\left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\overline{m}} , \quad (W/L)_{2} < 1 \text{ for high } A_{v}$$

The range for v_I is

$$-V_{SS} + V_{THI} \le v_{I} \le \frac{\left(V_{GG} - V_{TH2} - \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}V_{SS}\right)}{I + \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}} + V_{THI} \text{ (or } v_{IA}\text{)}$$

Small-signal model:

$$A_{v} \equiv \frac{v_{o}}{v_{I}} = -\frac{g_{mI}}{g_{m2} + g_{mb2}} + \frac{l}{r_{dsI} || r_{ds2}} \approx -\frac{g_{mI}}{g_{m2} + g_{mb2}}$$

if $(g_{m2} + g_{mb2}) >> \frac{1}{r_{ds1} || r_{ds2}}$ $A_{v} = -\frac{g_{m1}}{g_{m2}} \cdot \frac{1}{1 + \eta_{2}} = -\alpha_{2} \frac{g_{m1}}{g_{m2}}$

4 - 3 Chung-yu wu

where
$$\eta_2 = \frac{GAMMA_2}{2\sqrt{V_{BB} + v_0 + \phi_s}}$$
 $\alpha_2 = \frac{1}{1 + \eta_2}$
 $g_m = 2\sqrt{\frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right) \cdot I_{DS}}$ or $m\left(\frac{\mu_n C_{ox}}{2} \cdot \frac{W}{L} \cdot I_{DS}\right)^{\frac{1}{m}}$
 $\Rightarrow A_v = -\alpha_2 \sqrt{\frac{(W/L)_1}{(W/L)_2}}$ or $-\alpha_2 \left[\frac{(W/L)_1}{(W/L)_2}\right]^{\frac{1}{m}}$, $1 < m < 2$
If $\eta_2 << 0$, $\alpha_2 = 1$. $(GAMMA_2 \downarrow, V_{BB} + v_0 \uparrow \Rightarrow \eta_2 \downarrow)$
 $\Rightarrow A_v = -\sqrt{\frac{(W/L)_1}{(W/L)_2}}$ or $\left[-\frac{(W/L)_1}{(W/L)_2}\right]^{\frac{1}{m}}$

* The voltage gain is determined by the geometeric ratio.

Example:
$$(W/L)_1 = 10$$
 $(W/L)_2 = 0.1$ $\alpha_2 = 1$
 $\Rightarrow A_y = -\sqrt{100} = -10$

- * The body effect of M_2 degrades the voltage gain.
- * The dc output voltage is dependent on the input dc bias voltage or equivalently the dc operating current.
- 2. NMOS inverter without V_{GG}

Amplifier range:

$$V_{DD} - V_{TH2} > v_{o} \ge \frac{\left(V_{DD} - V_{TH2} - \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}} V_{SS}\right)}{1 + \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}} \quad \text{or } V_{DSAT1}$$

4 - 4 Chung-yu wu

$$-V_{SS} + V_{THI} \le v_{I} \le \frac{\left(V_{DD} - V_{TH2} - \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}V_{SS}\right)}{I + \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}}} + V_{THI} \text{ or } v_{IA}$$

$$V_{ODC} = V_{DD} - \left(\frac{(W/L)_{I}}{(W/L)_{2}}\right)^{\frac{1}{m}} (V_{IDC} + V_{SS} - V_{THI}) - V_{TH2}$$

* No extra power supply V_{GG} is required.

*
$$A_{v} = -\alpha_{2} \left(\frac{(W/L)_{I}}{(W/L)_{2}} \right)^{\frac{1}{m}} \Rightarrow (W/L)_{2} < I$$
 for high A_{v}

3. Split-Load inverter

Single M₂ \Rightarrow $(W/L)_2 << 1$ very long channel device $C_{gs2} = \frac{2}{3}C_{ox}(L \cdot W)_2 = \frac{2}{3}C_{ox}\frac{W^2}{(W/L)_2}$ $(W/L)_2 << 1 \Rightarrow C_{gs2} \uparrow$ $f_{-3dB} \approx \frac{1}{2\pi \frac{1}{g_{m2}}C_{gs2}} = \frac{3I_{DS}^2}{2\pi \frac{\mu_n C_{ox}}{2}W^2 C_{ox}(V_{GS2} - V_{TH2})^3}$ $I_{DS} \uparrow \Rightarrow f_{-3dB} \uparrow$; $C_{gs2} \uparrow \Rightarrow f_{-3dB} \downarrow$

- 4. NMOS Cascode amplifier If $I_{DSI} = I_{DS2}$ $A_{vI} \equiv \frac{v_{DI}}{v_{I}} = -\alpha_{2} \frac{g_{mI}}{g_{m2}} = -\alpha_{2} \left[\frac{(W/L)_{I}}{(W/L)_{2}} \right]^{1/m}$ If $I_{DSI} = I_{DS3}$ $A_{v} \equiv \frac{v_{O}}{v_{I}} = -\alpha_{3} \frac{g_{mI}}{g_{m3}} = -\alpha_{3} \left[\frac{(W/L)_{I}}{(W/L)_{3}} \right]^{1/m}$ $C_{in} = C_{gsI} + C_{gdI} \left(I + \frac{g_{mI}}{g_{m2}} \right)$ If $g_{mI} = g_{m2}$ $\Rightarrow C_{in} = C_{gsI} + 2C_{gdI}$ $C_{in} \propto g_{mI}/g_{m2}$
 - * Design considerations:
 - (1) $(W/L)_1 = (W/L)_2 \implies g_{m1} = g_{m2}$ (Neglecting the body effect of M₂) Keep C_{in} Small, Miller Effect \downarrow
 - (2) $\left(\frac{W}{L}\right)_{3} \ll \left(\frac{W}{L}\right)_{1} \Rightarrow g_{m3} \ll g_{m1}$, Voltage gain $A_{v} \uparrow$

I

(3) $V_{DS2}(V_{DS1})$ must be large enough to keep $M_2(M_1)$ sat.

- * $g_{m1} < g_{m2} \Rightarrow A_{v1} < l \Rightarrow$ Smaller Miller effect But $(W/L)_1 < (W/L)_2$ is not recommended.
 - : V_{DS1} will become smaller $\Rightarrow M_1$ may not be in the sat. region.
- * $(W/L)_2 > (W/L)_1$, slightly to compensate the body effect of M₂.
- 5. MOS source-couple pair

$$I_{DSI} = \left(\frac{\mu_{n}C_{ox}}{2}\right) \left(\frac{W}{L}\right) \left(V_{GSI} - V_{THI}\right)^{2}$$

$$I_{DS2} = \left(\frac{\mu_{n}C_{ox}}{2}\right) \left(\frac{W}{L}\right) \left(V_{GS2} - V_{TH2}\right)^{2}$$

$$I_{DSI} + I_{DS2} = I_{SS}$$

$$V_{GSI} = V_{II} - V_{S}$$

$$V_{GS2} = V_{I2} - V_{S}$$

$$V_{SS}$$

I

Assume identical devices

i.e.
$$V_{THI} = V_{TH2}, \left(\frac{W}{L}\right)_{I} = \left(\frac{W}{L}\right)_{2} \operatorname{and}\left(\frac{\mu_{n}C_{ox}}{2}\right)_{I} = \left(\frac{\mu_{n}C_{ox}}{2}\right)_{2} = \frac{\mu_{n}C_{ox}}{2}$$
$$\Rightarrow \Delta I_{DS} \equiv I_{DSI} - I_{DS2} = \frac{\mu_{n}C_{OX}}{2}\frac{W}{L}(\Delta V_{I})\sqrt{\frac{2I_{SS}}{\frac{\mu_{n}C_{OX}}{2}\frac{W}{L}} - (\Delta V_{I})^{2}}$$

where $\Delta V_I \equiv V_{II} - V_{I2}$ (input differential voltage)

 $\pm V$ in the linear range,

Larger than that of the emitter-couple pair.

$$G_{m} = \frac{\partial \Delta I_{DS}}{\partial \Delta V_{I}} \bigg|_{\Delta V_{I}=0} = \left(\frac{\mu_{n}C_{OX}}{2}\frac{W}{L}\right) \sqrt{\frac{2I_{SS}}{\frac{\mu_{n}C_{OX}}{2}\frac{W}{L}}} - \left(\Delta V_{I}\right)^{2}} - \frac{\mu_{n}C_{OX}}{2}\left(\frac{W}{L}\right) \Delta V_{I}$$

$$\frac{\Delta V_{I}}{\sqrt{\frac{2I_{SS}}{2}\left(\frac{W}{L}\right)^{2}}} \bigg|_{\Delta V_{I}=0}$$

$$= 2\sqrt{\frac{I_{SS}}{2}\frac{\mu_{n}C_{OX}}{2}\left(\frac{W}{L}\right)} = g_{mI} \text{ or } g_{m2}$$

$$= \sqrt{I_{SS}(\mu_{n}C_{OX})\left(\frac{W}{L}\right)}$$

- * Gm is the differential output transconductance Gm at ΔV_I =0 is the maximum.
- * If operated in the subthreshold region, Gm max = g_{m1} or $g_{m2} = \frac{I_{DS}}{nv_t}$
- 6. NMOS differential stage

DC considerations :

(1) Transfer characteristic : $(W/L)_1=(W/L)_2$ $(W/L)_3=(W/L)_4$ Source-coupled pair M₁ and M₂

$$\Rightarrow \Delta I_{DS} \equiv I_{DSI} - I_{DS2} = \left(\frac{\mu_n C_{ox}}{2} \frac{W}{L}\right)_I (\Delta V_I) \sqrt{\frac{2I_{SS}}{\left(\frac{\mu_n C_{ox}}{2} \frac{W}{L}\right)_I} - (\Delta V_I)^2}$$

where $\Delta V_{I} \equiv V_{II} - V_{I2}$

$$\begin{split} I_{DS3} &= I_{DS1} = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3 \left(V_{DD} - V_{O1} - V_{TH3}\right)^2 \\ I_{DS4} &= I_{DS2} = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3 \left(V_{DD} - V_{O2} - V_{TH4}\right)^2 \\ V_{O1} &= V_{DD} - V_{TH3} - \sqrt{\frac{I_{DS1}}{\frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3}} \quad V_{O2} = V_{DD} - V_{TH4} - \sqrt{\frac{I_{DS2}}{\frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3}} \\ \Delta V_O &= V_{O1} - V_{O2} = V_{TH4} + \sqrt{\frac{I_{DS2}}{\frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3}} - V_{TH3} - \sqrt{\frac{I_{DS1}}{\frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3}} \\ &= \left(V_{TH4} - V_{TH3}\right) + \frac{1}{\sqrt{\frac{\mu_n C_{ox}}{2} \left(\frac{W}{L}\right)_3}} \left(\sqrt{\frac{I_{SS}}{2} - \frac{\Delta I_{DS}}{2}} - \sqrt{\frac{I_{SS}}{2} + \frac{\Delta I_{DS}}{2}}\right) \\ &= f\left(I_{SS}, \Delta V_I\right) \end{split}$$

 $\Rightarrow \Delta V_o$ vs ΔV_I is the voltage transfer characteristic.

(2) Input voltage limits :

Positive maximum common-mode voltage V_{ICM}^{+}

$$V_{ICM}^{+} = V_{OI} + V_{THI} = V_{DD} - V_{THI} - \sqrt{\frac{I_{SS}/2}{(\mu_n C_{ox}/2)(W/L)_3}} + V_{THI}$$

(long-channel device)

 V_{ICM}^{+} such that $V_{O1}^{-}V_{S}^{-}=V_{DSAT1}$ (short-channel device) (M1 and M2 sat.)

Negative maximum common-mode voltage V_{ICM}

M5 must be sat.

$$V_{ICM}^{-} = V_{BIAS} + V_{TH5} + \sqrt{\frac{I_{SS}/2}{(\mu_n C_{ox}/2)(W/L)_1}} + V_{TH1}$$

(long-channel device)

 V_{ICM} such that $V_S + V_{SS} = V_{DSAT5}$ (short-channel device) Positive maximum differential voltage V_{ID}^+

$$V_{ID}^{+} = V_{DD} - V_{TH3} + \sqrt{\frac{I_{SS}}{(\mu_n C_{ox}/2)(W/L)_3}} + V_{TH1}$$
 (long-channel)

device)

 V_{ID}^{+} such that V_{O1} - V_{S} = V_{DSAT1} (short –channel device) (Keep M1 or M2 sat.)

Negative maximum differential voltage V_{ID}

$$V_{ID} = V_{ID}^{+}$$

(3) Input offset voltage

$$\begin{split} V_{OS} &\equiv V_{GS1} - V_{GS2} \Big|_{V = V_{2}} \\ &= \sqrt{\frac{I_{DS1}}{(\mu_{n}C_{ox}/2)_{1}(W/L)_{1}}} + V_{TH1} - \sqrt{\frac{I_{DS2}}{(\mu_{n}C_{ox}/2)_{2}(W/L)_{2}}} - V_{TH2} \\ V_{O1} &= V_{O2} = V_{O} = V_{DD} - V_{TH3} - \sqrt{\frac{I_{DS1}}{(\mu_{n}C_{ox}/2)_{3}(W/L)_{3}}} \\ &= V_{DD} - V_{TH4} - \sqrt{\frac{I_{DS1}}{(\mu_{n}C_{ox}/2)_{4}(W/L)_{4}}} \\ &\Rightarrow \sqrt{I_{DS1}} = \sqrt{(\frac{\mu_{n}C_{ox}/2}{2})_{3}(W/L)_{3}} (V_{DD} - V_{TH3} - V_{O}) \\ &\sqrt{I_{DS2}} = \sqrt{(\frac{\mu_{n}C_{ox}/2}{2})_{4}(W/L)_{4}} (V_{DD} - V_{TH4} - V_{O}) \end{split}$$

$$\Rightarrow V_{OS} = \sqrt{\frac{\left(\frac{\mu_{n}C_{OX}}{2}\right)_{3}\left(\frac{W}{L}\right)_{3}}{\left(\frac{\mu_{n}C_{OX}}{2}\right)_{i}\left(\frac{W}{L}\right)_{i}}} (V_{DD} - V_{O} - V_{TH3}) - \sqrt{\frac{\left(\frac{\mu_{n}C_{OX}}{2}\right)_{i}\left(\frac{W}{L}\right)_{i}}{\left(\frac{\mu_{n}C_{OX}}{2}\right)_{2}\left(\frac{W}{L}\right)_{2}}} (V_{DD} - V_{O} - V_{TH4}) + (V_{TH1} - V_{TH2})$$

Define $\Delta X_2 = X - X_2$ $X_{2} = -X + X_{2}$ $\Rightarrow X_1 = X_{12} + \frac{\Delta X_{12}}{2} \qquad X_2 = X_{12} - \frac{\Delta X_{12}}{2}$ $\Rightarrow V_{OS} = \sqrt{\frac{\left(\frac{\mu_n C_{OX}}{2}\right)_{34} \left(\frac{W}{L}\right)_{34}}{\left(\frac{\mu_n C_{OX}}{2}\right) \left(\frac{W}{L}\right)}} (V_{DD} - V_O - V_{TH 34}) \left[\frac{\Delta \left(\frac{\mu_n C_{OX}}{2}\right)_{34}}{2\left(\frac{\mu_n C_{OX}}{2}\right)} + \frac{\Delta \left(\frac{W}{L}\right)_{34}}{2\left(\frac{W}{L}\right)}\right]$ $-\frac{\Delta \left(\frac{\mu_n C_{OX}}{2}\right)_{l_2}}{2\left(\frac{\mu_n C_{OX}}{2}\right)} - \frac{\Delta \left(\frac{m}{L}\right)_{l_2}}{2\left(\frac{W}{L}\right)} - \frac{\Delta V_{TH34}}{V_{DD} - V_O - V_{TH34}}J + \Delta V_{TH12}$ $= \sqrt{\frac{I_{DS34}}{(\underline{\mu_n C_{ox}})_{1,1}(\underline{W})_{1,2}}} \left| \frac{\Delta(\frac{\mu_n C_{ox}}{2})_{34}}{2(\underline{\mu_n C_{ox}})_{34}} - \frac{\Delta L_{34}}{2L_{34}} + \frac{\Delta W_{34}}{2W_{34}} - \frac{\Delta(\frac{\mu_n C_{ox}}{2})_{12}}{2(\underline{\mu_n C_{ox}})_{12}} - \frac{\Delta W_{12}}{2W_{12}} + \frac{\Delta L_{12}}{2L_{12}} \right|$ $-\sqrt{\frac{\left(\frac{\mu_{n}C_{OX}}{2}\right)_{34}\left(\frac{W}{L}\right)_{34}}{\left(\frac{\mu_{n}C_{OX}}{2}\right)\left(\frac{W}{L}\right)}}\Delta V_{TH\,34} + \Delta V_{TH\,12}}$ $\cong \sqrt{\frac{I_{DS34}}{\left(\frac{\mu_{n}C_{ox}}{2}\right)_{l2}\left(\frac{W}{L}\right)_{l2}}} \left[\frac{\Delta W_{34}}{2W_{34}} + \frac{\Delta L_{l2}}{2L_{l2}}\right] + \Delta V_{TH12} - \sqrt{\frac{\left(\frac{\mu_{n}C_{ox}}{2}\right)_{34}\left(\frac{W}{L}\right)_{34}}{\left(\frac{\mu_{n}C_{ox}}{2}\right)_{l2}\left(\frac{W}{L}\right)_{l2}}} \Delta V_{TH34}$ $=\Delta V_{TH12} + (V_{GS12} - V_{TH12}) \left[\frac{\Delta W_{34}}{2W_{34}} + \frac{\Delta L_{12}}{2L_{12}} \right] - \sqrt{\frac{\left(\frac{W}{L}\right)_{34}}{\left(\frac{W}{L}\right)_{34}}} \Delta V_{TH34}$

* If ΔV_{TH} is large and the differential gain is high,

$$V_{os} \cong \Delta V_{TH12}$$

* If $\frac{\Delta W}{2W}$ and $\frac{\Delta L}{2L}$ is large, keep $V_{GS12} - V_{TH12}$ small
 $\Rightarrow V_{os} \cong (V_{GS} - V_{TH12}) (\frac{\Delta W_{34}}{2W_{34}} + \frac{\Delta L_{12}}{2L_{12}})$

 $V_{os} \propto$ input overdrive voltage

* If operated in the subthreshold region,

$$I_{DS} \propto exp(\frac{V_{GS}}{nv_t})$$

 V_{os} is smaller than that operated in the saturation region. This case is similar to the BJT case. $\because V_{os} \propto \Delta I_{Ds}$)

(3) AC Gain

Differential signal

Common-mode signal

Half-Circuit concept:

$$A_{dm} \equiv \frac{v_{od}}{v_{id}} = -\alpha_3 \frac{g_{m1}}{g_{m3}}$$

4 - 12 Chung-yu wu

Common-mode half-circuit:

- NMOS source follower The voltage gain (midband) is

$$A_{v} = \frac{g_{m1}}{\frac{g_{m1}}{\alpha_{1}} + \frac{1}{r_{ds1}} + \frac{1}{r_{ds2}}} < 1$$

If
$$r_{ds1}, r_{ds1} \gg \frac{\alpha_1}{g_{m1}}$$

 $\Rightarrow A_v \cong \alpha_l < l$, smaller than that of the emitter follower.

8. NMOS differential-input to single-ended converter

4 - 13 Chung-yu wu

$$A_{v} = \frac{N+1}{2} = \frac{\alpha_{3}}{1 + \frac{\alpha_{3}}{g_{m3}}(\frac{1}{r_{ds3}} + \frac{1}{r_{ds4}})} (= \frac{v_{o}}{(v_{i1} - v_{i2})})$$

where $N = \frac{g_{m1}g_{m4}}{g_{m3}(\frac{g_{m1}}{\alpha_{1}} + g_{m2} + \frac{1}{r_{ds1}} + \frac{1}{r_{ds2}})}$
If $M_{2} \equiv M_{4}$, $M_{3} \equiv M_{1}$, $\frac{1}{r_{ds}} << g_{m}$
 $\Rightarrow g_{m2} = g_{m4}$, $g_{m3} = g_{m1}$
 $N \approx \frac{g_{m4}}{g_{m4} + \frac{g_{m3}}{\alpha_{3}}}$
 $A_{v} \approx \alpha_{3} \frac{2g_{m4} + \frac{g_{m3}}{\alpha_{3}}}{2g_{m4} + \frac{2g_{m3}}{\alpha_{3}}} < 1$
 $CMRR = \frac{1+N}{2(1-N)} = \frac{1}{2} + \frac{g_{m4}}{g_{m3}}$

To obtain a large CMRR, $g_{m4} >> \frac{g_{m3}}{\alpha_3}$

$$\Rightarrow A_v \cong \alpha_3 < 1$$

§ 4-1.2 CMOS Amplifier

1. Simple common-source amplifier

M₂ : PMOS current source

 $M_{1} and M_{2} sat. \Rightarrow V_{BIAS} + |V_{TH2}| > v_{o} > v_{I} - V_{TH1} or V_{DD} - |V_{DSAT2}| \ge V_{o} \ge V_{DSAT1} - V_{SS}$

4 - 14 CHUNG-YU WU

$$\begin{aligned} A_{v} &= -g_{m1} \left(r_{ds1} / / r_{ds2} \right) \\ g_{m1} &= \sqrt{2I_{DS1} \mu_{n} C_{ox} \left(\frac{W}{L} \right)_{l}} , r_{ds1} = \frac{1}{\lambda_{1} I_{S-1}} r_{2} = \frac{1}{\lambda_{2} I_{S-2}} \\ \Rightarrow A &= \frac{1}{\sqrt{I_{S-1}}} \left(\frac{1}{\lambda_{1} + \lambda_{2}} \right) \sqrt{2\mu C \left(\frac{W}{L} \right)_{l}} \\ |A_{v}| &\propto \frac{1}{\sqrt{I_{DS1}}} \quad \text{(long-channel devices)} \\ |A_{v}| &\propto \left(I_{DS1} \right)^{-\frac{1}{m}} \quad \text{(short-channel devices)} \\ \text{Output resistance } r_{o} &= r_{ds1} / / r_{ds2} \end{aligned}$$

2. Complementary CMOS common-source amplifier
Assume $V_{TH1} = |V_{TH2}| = V_{TH} \\ \text{If } v_{1} - V_{TH} < v_{o} < v_{1} + V_{TH} \text{ or } V_{DD} - |V_{DSAT2}| \ge v_{o} \ge V_{DSAT1} - \\ \Rightarrow M_{1} \text{ and } M_{2} \text{ are saturated} \end{aligned}$

$$A_{v} = -(g_{m1} + g_{m2})(r_{ds1} / / r_{ds2})$$

$$r_{o} = r_{ds1} // r_{ds2}$$

*Higher gain than the circuit in 1. *Narrow operating range.

- 3. Complementary inverter with level shifter.
 - $$\begin{split} \mathbf{M}_{2} \quad & \text{sat.} \quad \Rightarrow \mathbf{V}_{\mathrm{DD}} \boldsymbol{v}_{\mathrm{I}} \mathbf{V}_{\mathrm{TH}} < \mathbf{V}_{\mathrm{DD}} \boldsymbol{v}_{\mathrm{o}} \\ \mathbf{M}_{1} \quad & \text{sat.} \quad \Rightarrow \boldsymbol{v}_{\mathrm{I}} \mathbf{V}_{\mathrm{SH}} + \mathbf{V}_{\mathrm{ss}} \mathbf{V}_{\mathrm{TH}} < \boldsymbol{v}_{\mathrm{o}} + \mathbf{V}_{\mathrm{SS}} \\ & \Rightarrow \boldsymbol{v}_{\mathrm{I}} \mathbf{V}_{\mathrm{TH}} \mathbf{V}_{\mathrm{SH}} < \boldsymbol{v}_{\mathrm{o}} < \boldsymbol{v}_{\mathrm{I}} + \mathbf{V}_{\mathrm{TH}} \end{split}$$
 - * $r_o = r_{ds1} // r_{ds2}$
 - * The range of $v_{\rm o}$ is increased by $V_{\rm SH}$.
 - * In the short-channel case , $V_{GS1} \downarrow by V_{SH}$, $V_{DSAT1} \downarrow \Rightarrow$ The range is also increased.

4. Cascode amplifier with PMOS current-source load

$$A_{v} = -g_{m1} [r_{ds3} \parallel (\frac{1}{\alpha_{2}} g_{m2} r_{ds1} r_{ds2})]$$

$$\cong -g_{m1} r_{ds3}$$

$$r_{o} = r_{ds3} \parallel (\frac{1}{\alpha_{2}} g_{m2} r_{ds1} r_{ds2})$$

$$\equiv r_{ds3}$$

- * PMOS devices can be used as cascode amplifier whereas NMOS device as current source.
- 5. Cascode amplifier with PMOS cascode current-source load

$$A_{v} = -g_{m1} \left[\left(\frac{1}{\alpha_{3}} g_{m3} r_{ds4} r_{ds3} \right) \| \left(\frac{1}{\alpha_{2}} g_{m2} r_{ds1} r_{ds2} \right) \right]$$

$$\approx -\frac{1}{2\alpha} g_{m1} g_{m} r_{ds}^{2}$$

if $\alpha_{3} = \alpha_{2} = \alpha$
 $g_{m3} = g_{m2} = g_{m}$
 $r_{ds4} = r_{ds3} = r_{ds2} = r_{ds1} = r_{ds}$
 $r_{o} \approx \frac{1}{2\alpha} g_{m} r_{ds}^{2}$

* Larger r_0 and A_v

* Limited output voltage swing

→ High-swing cascode current source is preferred

- 6. Folded cascode amplifier
 - M1: CS amplifier
 - M2: CG amplifier

Optimal operating point:

$$I_{DS1} = I_{DS2} = \frac{I_1}{2} = I_{DS3}$$

 $g_{m1} = g_{m2}$ (to avoid large Miller capacitance at input) $A_v = -g_{m1} \{ r_{ds3} \| [g_{m2}(r_{ds1} \| r_{ds11}) r_{ds2}] \}$ $\cong -g_{m1} r_{ds3}$

- * Nearly the same A_v and r_o can be achieved as the cascode amplifier
- * Less devices in cascode at the input CS amplifier

 \rightarrow M1 can be easily operated in the saturation region

7. Improved cascode amplifier with current injection circuitry

conventional cascode amplifier

$$A_{v} \cong -g_{m1}r_{ds3} \propto \frac{1}{\sqrt{I_{DS}}}$$

 $I_{DS} \downarrow \Rightarrow A_v \uparrow$ until subthreshold

M3: current source as load

M4: current-injection current source

$$\mathbf{A}_{\mathrm{v}} \cong -\mathbf{g}_{\mathrm{m1}} \mathbf{r}_{\mathrm{ds3}} \propto \frac{\sqrt{\mathbf{I}_{\mathrm{DS4}}}}{\sqrt{\mathbf{I}_{\mathrm{DS}}}}$$

To increase $A_v \rightarrow I_{DS4} \uparrow$ and $I_{DS} \downarrow$

* Higher voltage gain and the same r_0

- * Extra device M4 and extra power dissipation
- * Firstly, design the circuit of M1, M2, and M3. Then add M4. Readjust the channel dimensions to keep the dc bias so that all devices are in saturation.

8. Differential amplifier with PMOS load

4 - 16 Chung-yu wu

$$CMRR \equiv \left| \frac{A_{dm}}{A_{cm}} \right| \approx \frac{2g_{m1}}{g_{d5} \cdot \alpha_{1}}$$
$$r_{od} \approx \frac{1}{gm3}$$
$$r_{oc} \approx \frac{1}{gm3}$$

*Matched devices for M_1 / M_2 and M_3 / M_4

*
$$A_{cm} < 1$$
 can be achieved

9. Different amplifier with PMOS current-source load

 $M_{3}, M_{4}: Two slave stages of the current mirror$ => current-source load $A_{dm} \cong -g_{m1} (r_{ds1} \parallel r_{ds3})$

$$A_{cm} \cong -\frac{\alpha_{1}}{2r_{ds5}} (r_{ds3} \parallel g_{m1}r_{ds5}r_{ds1})$$

CMRR $\cong -\frac{2g_{m1}(r_{ds1} \parallel r_{ds3})r_{ds5}}{\alpha_{1}r_{ds3}}$

$$*g_{m1}\uparrow$$
, $r_{ds5}\uparrow => CMRR\uparrow$

*
$$A_{cm} < 1$$
 is preferred => $r_{ds5} > r_{ds3}$

* I_{ss} can be realized by cascode or high-swing cascode current source to increase

$$r_{ds\,5}\left(=\frac{1}{g_{d\,5}}\right)$$

10. Differential amplifier with PMOS current injection circuit

$$r_{ds7} = r_{ds8} >> \frac{1}{gm3} = \frac{1}{gm4}$$

4 - 18 Chung-yu wu

CMRR is the same.

* If M_3 and M_4 are current-source loads , could A_{dm} be increased? Why?

11. Differnetial cascode amplifier

$$v_{o} \equiv v_{o1} - v_{o2}$$
$$v_{I} \equiv v_{I1} - v_{I2}$$
*Higher A_{dm}

- *4 MOS devices stacked $\left(M_1, M_3, I_{SS}, \frac{1}{2}I_{SS}\right)$
- $\Rightarrow V_{DD} + V_{SS}$ might not be enough to maintain all the devices in saturation when low supply voltage is used.

12. Differential Folded cascode amplifier

*To retain the characteristics of cascode amplifier, the optimal design is

$$I_{DD} = I_{SS}$$
$$I_{L} = \frac{1}{2}I_{SS}$$

* Only 3 MOS devices stacked =>low voltage operation is possible

$$*V_{ICM}$$
 \uparrow why?

4 - 19 Chung-yu wu

Μ,

13. CMOS differential-input to single-ended-output converter.

Version I : NMOS input

DC operating point :

It is better to keep $V_{ODC} \cong V_{DD} - V_{GSI}$ for better current-mirror balance.

Common-mode range :

Differential-mode range :

$$V_{Id}^{+} = -V_{Id}^{-} = V_{DD} + V_{THN} - \sqrt{\frac{I_o}{\frac{\mu_p C_{oxp}}{2} \left(\frac{W}{L}\right)_i}} - |V_{THP}|$$

$$v_{in1} = \frac{v_{id}}{2} + v_{ic}$$

$$g_{mi}(v_{in1}^{-}v_{l}) = \frac{-v_{id}}{2} + v_{ic}$$

 \Rightarrow Exact A_{cm} and A_{dm} can be solved.

$$A_{dm} \approx \frac{g_{mi}}{g_{dl} + g_{di}} \qquad A_{cm} \approx -\frac{g_{o}g_{di}}{2g_{ml}(g_{dl} + g_{di})}$$

 $CMRR \equiv \left| \frac{A_{dm}}{A_{cm}} \right| \approx 2 \frac{g_{mi}g_{ml}}{g_{o}g_{di}} \qquad output \quad resistance \ r_{o} \approx \frac{1}{g_{dl} + g_{di}}$

* Longer channel in Ms leads to smaller g_0 and higher CMRR.

* $A_{dm} \propto \frac{1}{\sqrt{I_o}}$ or $(I_o)^{-1/m} \Rightarrow$ higher bias current, lower gain.

* In the weak inversion region, $g_{mi} \propto Io \implies A_{dm} \approx constant$.

* Cascode current source can be used for Io to increase CMRR, but Vicm \downarrow

* This circuit is not a pure symmetric differential circuit. But it can be CHUNG-YU WU approximated by a differential circuit and half -circuit analysis method can be used.

4 - 20

* Signal paths:

$$\begin{aligned} \mathbf{v}_{in1} &: \\ \mathbf{v}_{in1} \rightarrow \mathbf{v}_{gsl} : & \mathbf{A}_{v}' = -\mathbf{g}_{mi} \frac{1}{\mathbf{g}_{ml}} \\ \mathbf{v}_{gsl} \rightarrow \mathbf{v}_{o} : & \mathbf{A}_{v}'' = -\mathbf{g}_{ml} (\mathbf{r}_{dsl} // \mathbf{r}_{dsi}) \\ \Rightarrow & \mathbf{A}_{v} \Big|_{v_{-1}} = \mathbf{A}_{v} \mathbf{A}_{v}'' = \mathbf{g}_{mi} (\mathbf{r}_{dsl} // \mathbf{r}_{dsi}) = \mathbf{A}_{dm} \\ \text{How about } \mathbf{v}_{in1} \rightarrow \mathbf{v}_{1} \rightarrow \mathbf{v}_{o}? \\ \mathbf{v}_{in2} : \\ & \mathbf{v}_{in2} \rightarrow \mathbf{v}_{o} : & \mathbf{A}_{v} \Big|_{vin2} = -\mathbf{g}_{mi} (\mathbf{r}_{dsl} // \mathbf{r}_{dsi}) = |\mathbf{A}_{dm}| \end{aligned}$$

How about $v_{in2} \rightarrow v_1 \rightarrow v_{gsl} \rightarrow v_o$?

The voltage gain of the four signal paths have nearly the same amplitudes. But different signal paths affect the high frequency response.

14. The available amplifier circuits in CMOS trechnology

- 1). NMOS amplifier in 4-1.1
- 2). PMOS amplifier with the same configurations as in 4-1.1
- 3). CMOS amplifiers (NMOS version) in 4-1.2
- 4). PMOS version with the same configurations as in 4-1.2
Comparisons:

1) NMOS(PMOS) amplifiers versus CMOS amplifiers

	single-type MOS amplifier	CMOS amplifier
Voltage gain	Low	High
Output resistance	Low	High
Immunity to process variations	High	Low
Power dissipation	High	Low

2) NMOS amplifier (CMOS amplifier with NMOS version) versus PMOS amplifier (CMOS amplifier with PMOS version)

1.Better frequency response

2.Smaller chip area

3) Differential amplifier versus single-ended-output amplifier

1.Excellent common-mode signal rejection capability

Common-mode signals: external noise, dc voltage due to variations,

power-supply noise, substrate noise.

2.Good for weak signal amplification in noisy environment.

3. Wide applications especially in high-frequency ICs.

4.More component used \rightarrow Higher power dissipation and larger chip area.

5.Matched devices are required \rightarrow Special care is need in layout and process.

6.I/O testing requires special I/O external circuits or equipment.

§4.2 Passive-Load MOS Amplifiers

§4-2.1 Resistive-load MOS amplifiers

1. Resistive-Load MOS amplifier

 $Av = -g_{m1}R$, $r_o \approx R$

- * Low voltage gain and low r_o
- * If R \uparrow , M1 might be in the linear region.
- * Only used for low-gain high-frequency amplifier.
 - ... Parasitic capacitance of R is smaller than that of the current-source active load.
- * Process variations of R might be $\pm 20\%$.

4 - 22 Chung-yu wu

2. Resistive-load MOS phase splitter

$$A_{V1} \equiv \frac{V_{O1}}{V_i} \cong -\alpha_1 \frac{R_1}{R_2}$$
$$A_{V2} \equiv \frac{V_{O2}}{V_i} \cong \frac{\alpha_1 g_{m1} R_2}{g_{m1} R_2 + \alpha_1}$$
$$r_{o1} \cong R_1$$

$$\mathbf{r}_{o2} \cong \mathbf{R}_2 \left\| \frac{1}{\mathbf{g}_m} \right\|$$

*

- $\mathbf{\underline{Q}}_{\underline{\mathbf{v}}}$ can be chosen so that $A_{v_1} = A_{v_2}$
- R1 and R2 can be chosen so that $A_{v_1} = A_{v_2}$ → Phase splitter
- * Process variation effect of R1 and R2 on A_{v1} and A_{v2} is reduced.
- 3. Resistive-load differential amplifier

 I_{ss} can be generated by the constant-gm current source with R_{cogm}

→
$$I_{ss}$$
 or $g_{m1}, g_{m2} \propto \frac{1}{R_{cogm}}$

$$\mathbf{A}_{dm} = -\mathbf{g}_{m1}\mathbf{K} \propto \frac{1}{\mathbf{R}_{cogm}}$$

➔ Process variation of R and temperature coefficient of R can be compensated.

§ 4-2.2 Inductive load MOS amplifier

- 1. LC-tank MOS amplifier
 - * If L is implemented by on-chip inductor, only
 ~GHz RF operation is allowed.
 - * L combined with the parasitic capacitance Cp and the capacitor C to form a LC tank.
 - → Narrow-band amplifier or tuned amplifier.
 - → Bandpass amplifier with frequency selectivity.

2. LC-tank MOS cascode amplifier

*The output LC-tank impedance has a much smaller effect on the input impedance at high frequency due to the isolation effect of M2.

$$V_{\rm ODC} = V_{\rm DD}$$
$$v_{\rm O} > V_{\rm DD}$$

3. MOS differential cascodee amplifier with series LC-tank

$$* V_{O1DC} = V_{O2DC} = V_{DD}$$

*Two LC-tanks are required.

- 4. MOS differential cascode amplifier with parallel LC-tank
 - * Only one LC-tank is used

=>chip area \downarrow

$$*\,\mathrm{V_{O1DC}} = \mathrm{V_{O2DC}} < \mathrm{V_{DD}}$$

*Bandpass amplifier with the maximum differential gain the same as that of the cascode amplifier.

§ 4-3 Level shifting circuits

Purpose: to provide a dc voltage difference between input and output signals so that the dc level of the output signal is acceptable for the next amplifier stage.

: At low frequency operation below several tens MHz, dc blocking capacitors are not effective in blocking the dc voltage and passing the ac signal.

DC blocking capacitor:

At 10MHz, $w \cong 6.3 \times 10^7$ rad/sec

CASE1: If C=10PF,
$$\frac{1}{\text{wc}} = \frac{1}{6.3} \times 10^4 \Omega \cong 1.6 \text{k}\Omega$$

To obtain 1% signal attenuation, we have

$$\left| \frac{v_{o}}{v_{i}} \right| = 0.99 = \sum \frac{1}{2} \frac{\left(\frac{1}{\text{wc}}\right)^{2}}{R^{2}} \approx 0.1$$
$$= R = \left(\frac{1}{\text{wc}}\right) \frac{1}{\sqrt{0.02}} \approx 11.2 \text{k}\Omega$$

The values of R and C are too large and area-consuming. CASE 2: At 1GHz, w= 6.3×10^9 rad/sec

If C=1PF,
$$\frac{1}{\text{wc}} = \frac{100}{6.3} \cong 160\Omega$$

The required R for 1% attenuation is

$$R=7(\frac{1}{wc})=1.12k\Omega$$

The values of R and C are reasonable.

4 - 25 Chung-yu wu

1. Simple level shifting circuit

$$\triangle V_{DC} = V_{GS}$$

- * W/L $\,<\,<\,1$ to obtain a large $\,\bigtriangleup V_{\scriptscriptstyle DC}$
- * Output resistance looking into Vout is very large

$$r_{\scriptscriptstyle O}\!\cong\!\frac{1}{g_{\scriptscriptstyle m}}\quad \because W\!/\!L\!<\!<\!1,\,g_{\scriptscriptstyle m} \hspace{0.1cm}\downarrow =>\!r_{\scriptscriptstyle O} \uparrow$$

* Frequency response could be degraded by such a large r_{0} .

$$r_{o}Cout$$
 \uparrow

2. High-Z level shifting circuit

Frequency response could be degraded.

3. Low-Z level shifting circuit

 $V^{*} = V_{TH2} + V_{GS1}$

$$= V_{TH2} + V_{TH1} + \sqrt{\frac{Ix}{\left(\frac{\mu C_{ox}}{2}\right)_{l}} \left(W/L\right)_{l}}$$

I

$$V_{I} = V^{*} + \sqrt{\frac{I_{I}}{\left(\frac{\mu C_{ox}}{2}\right)_{2}}(W/L)_{2}}$$

$$\because (W/L)_{1} <<1 \text{ and } (W/L)_{2} >>1 =>\text{large enough } V^{*}$$

$$V_{I} \cong V^{*} \text{ independent of } I_{I}$$

$$* V_{I} (\text{dc voltage shift) can be stabilized by choosing a large } (W/L)_{2} \text{ and a stable}$$

$$I_{x}.$$

$$* r_{0} \cong \frac{1}{g_{m2}} \text{ is not large since } (W/L)_{2} >>1.$$

=> Better frequency response.

4. Replica bias circuit

- * Provide a fixed bias voltage $V_{Y} = V_{BIAS}$ at the input node to stablize the preceding stage.
- * Provide a DC voltage shift of $V_{y} V_{x}$
- * The output resistance looking into the OUT node is very small

$$(r_{o} \cong \frac{1}{g_{m_{2A}}} \| \frac{1}{g_{m_{6}}}, (W/L)_{2A}, (W/L)_{6} \gg 1 \implies r_{o} \downarrow)$$

* The matching between $M_1(M_3)$ and $M_{1A}(M_5)$ is very important to stablize V_{Y} .

§ 4-4 MOS Output stages

§ 4-4.1 Requirements

CHUNG-YU WU

- (1) Suitable power and voltage swing to drive an adequate external load equally in both positive and negative directions.
- (2) Acceptably low levels of signal distortion.
- (3) Minimum output impedance.
- (4) Low quiescent power dissipation and maximum efficiency.
- (5) High frequency response.
- (6) Buffering the previous gain stage from C_L or R_L
- § 4-4.2 NMOS (PMOS) Output Stages
 - 1.Source followers (Enhancement device)
 - * Voltage swing:

$$v_{\text{omax}}^{+} = v_{\text{I}} - v_{\text{GS1}}$$
$$= V_{\text{DD}} - V_{\text{TH3}} - v_{\text{GS1}} \text{ (or } V_{\text{TH1}} \text{)}$$
$$(\text{not full level to } V_{\text{DD}} \text{)}$$

$$v_{omax}^{-} = V_{BIAS} - V_{TH2} (M_2 \text{ sat})$$

= - V_{ss} (M₁ off)

*
$$r_0 \cong \frac{1}{g_{m1}}$$

$$+V_{DD}$$

$$+V_{DD}$$

$$+V_{H}$$

$$+V_{H}$$

$$+V_{GS1}$$

Small r_0 Need large $(W/L)_1$ and I_{DS1}

- * The rise time is decreased by the larger $(W/L)_1$
- But the fall time is fixed by I_{DS2}
- =>Unsymmetric driving capability.
- * Provide a dc voltage shift and a voltage gain smaller than 1
- 2. Phase-splitting output driver
 - * voltage swing: (low)

$$v_{0 max}^{+} = V_{DD}^{-} - V_{TH3}^{-} - V_{TH5}^{-}$$

(M2 and M4 are off)

$$v_{omax}^{-} = -V_{SS} - V_{GS1} + V_{TH4}$$
 (M4 sat.)
= $-V_{ss} + V_{DS4} > -V_{SS}$

$$v_{ss} + v_{DS4} - v_{ss}$$

- * Fall time is not limited by the current source.
- * $\mathbf{r}_{o} \approx \left(\frac{1}{g_{m5}}\right) | (\mathbf{r}_{ds4}) \approx \frac{1}{g_{m5}}$

 $+V_{DD}$ 3. NMOS output stage with feedback M3, M4 : output common-source amplifier. M1, M2 : First common-source amplifier M2 : series-shunt negative feedback M_{2} Series-shunt negative feedback \Rightarrow voltage gain \downarrow frequency bandwidth \uparrow output resistance \downarrow

 $A_{v} = \frac{g_{m1}}{g_{m2}} \frac{\alpha_{2} \alpha_{4} g_{m3}}{1 + \left(\frac{\alpha_{2} \alpha_{4} g_{m3}}{g_{m4}} \right)} \quad \text{midfrequency voltage gain}$

If
$$\alpha \rightarrow 1$$
 $A_{v} \equiv \sqrt{\frac{(W_{L})_{1}}{(W_{L})_{2}}} \frac{\sqrt{(W_{L})_{3}}}{1 + \sqrt{(W_{L})_{3}}} \frac{\sqrt{(W_{L})_{4}}}{1 + \sqrt{(W_{L})_{3}}}$

* Larger $g_{m_3} \xrightarrow{g_{m_4}} \Rightarrow r_0 \downarrow, A_o \uparrow$

- * The W/L ratio of M1,M2,M3 and M4 can be suitably designed to satisfy the specifications on (1) voltage gain; (2) output swing; (3) power dissipation; (4) chip area; (5) fast transient; (6) good frequency response.
 - ((5) and (6) involve non-linear analysis)

4 - 29

CHUNG-YU WU

- § 4-4.3 CMOS Output Stages
 - 1.Simple source follower.(NMOS and PMOS) Too larger r_o
 - 2.Class AB puah-pull CMOS output buffer
 - *Capable of low standby power.

e.g.
$$I_{\text{bias}} \cong nA$$

 $I_{\text{out}} \cong <1mA$

*
$$V_{ODC} = \frac{V_{DD} + V_{SS}}{2}$$
 is desired

*Small output voltage swing.

If R_L exists at the output node, the voltage swing is further degraded.

- 3.Emitter-follower output stage.
- * $r_o \downarrow$
- * Q₁ : free BJT in CMOS n-well technology. Voltage swing:

$$v_{0 \text{ max}}^{-} = v_{I} + |V_{BE}|$$
$$= V_{SS} + |V_{BE}| \text{ (if } v_{Im \text{ ax}}^{-} = -V_{SS} \text{)}$$

 $v_{Omax}^{+} = +V_{DD}$ (If Q_1 is off)

* The collector series resistance r_c of Q_1 may degrade the output swing and saturate the transistor.

Chapter 5 Midband Analysis of CMOS Operational Amplifiers (OP AMPs)

§5-1 General Considerations

§5-1.1 General Procedures to analyze an OP AMP IC

- 1. Identify all the biasing circuits (current & voltage).
- 2. Identify all the protection circuits and then take them away.
- 3. Calculate all the operating currents and voltages.
- 4. Trace the signal path and identify the amplifier, buffer, level shifter, and output driver configurations.
- 5. Calculate the midfrequency gain.
- 6. Identify the compensation circuits.
- 7. Calculate the high-frequency response.
- 8. Perform the SPICE simulations to obtain the performance parameters.

§5-1.2 Some important OP AMP Specifications

- 1. Open-loop differential gain $A_d(\omega)$.
- 2. Open-loop common-mode gain $A_c(\omega)$.
- 3. Common-mode rejection ratio (CMRR)

$$CMRR(\omega) \equiv \left| \frac{A_d(\omega)}{A_c(\omega)} \right| = \left[\frac{\partial V_{io}}{\partial V_{ic}} \right|_{V_o=0} \right]^{-1}$$

where V_{io} is the input offset voltage

 V_{ic} is the input common-mode voltage

4. Output swing.

- 5. Unity-gain frequency f_u .
- 6. Upper 3-dB frequency f_{3-dB} .
- 7. Power-supply rejection ratio (PSRR).

$$PSRR^{+}(\omega) \equiv \left| \frac{A_{d}(\omega)}{\frac{\partial V_{o}}{\partial V_{DD}}} \right| = \left[\frac{\partial V_{io}}{\partial V_{DD}}(\omega) \right|_{V_{o}=0} \right]^{-1}$$
$$PSRR^{-}(\omega) \equiv \left| \frac{A_{d}(\omega)}{\frac{\partial V_{o}}{\partial V_{SS}}} \right| = \left[\frac{\partial V_{io}}{\partial V_{SS}}(\omega) \right|_{V_{o}=0} \right]^{-1}$$

8. Slew rate and settling time

Slew rate: Maximun $\frac{d}{dt}v_o$ in an unity-gain close-loop OP Amp with a fixed step input under maximum load.

Settling time: The time required for the OP AMP in an unity-gain closed loop to reach ~% of its final value with a fixed step input under maximum load.

9. Linearity and harmonic distortion

Usually dominated by the output stage.

Closed-loop characteristics.

10. Equivalent input noise and input offset

Usually dominated by the input stage.

§5-1.3 General Block Diagram of an OP AMP

 \beth_{M_4}

Μ,

 I_{ss}

 $-V_{SS}$

 $+V_{DD}$

 M_{3}

 $I \vdash M$

v_I

+ **ó**-

§5-2 One-Stage (Single-Stage) CMOS OP AMPs

§5-2.1 Single-ended-output OP AMPs

- 1. Simple OP AMP
 - * Inverting input: 2Noninverting input: 1
 - * Open-loop voltage gain

- * Open-loop output resistance
 - $r_o = r_{dsP} // r_{dsN}$

Close-loop output resistance

The closed-loop output resistance is independent of the openloop output resistance.

- * The dominate pole is located at the output with the RC time constant $r_o C_L$.
- * $A_d \sim 100$, Power dissipation $\sim \mu W$, $f_u \sim MHz$. Suitable for small-load internal-use applications.

- * Cannot drive heavy load.
- * Output swing: $V_{DD} |V_{DSATP}| \rightarrow -V_{SS} + V_S + V_{DSATN}$
- 2. Telescopic cascode OP AMP with cascode-current-source load
 - * Open-loop voltage gain

 $A_{d} = -g_{mN}(g_{mN}r^{2}_{dSN} // g_{mP}r^{2}_{dSP})$

$$r_o = g_{mN} r^2_{dsN} // g_{mP} r^2_{dsP}$$

Close-loop

$$r_{oc} \cong \frac{1}{g_{mN}}$$

* In the unity-gain feedback, the node 2 is connected to the output node.

$$\Rightarrow$$
 M_2 and M_4 sat.

 $\implies V_{_{o\,min}} = V_{_{BLAS}} - V_{_{TH\,4}},$

$$V_{o max} = V_x + V_{TH 2} = V_{BLAS} - V_{GS4} + V_{TH 2}$$

 \Rightarrow Output swing = $V_{TH_2} - (V_{GS_4} - V_{TH_4}) \le V_{TH_2}$

Too small output swing

Not suitable for unity gain buffer.

* Limit output swing:

$$V_{DD} - \left| V_{DSAT8} \right| - \left| V_{DSAT6} \right| \longrightarrow -V_{SS} + V_S + V_{DSAT2} + V_{DSAT4}$$

3. Telescopic cascode OP AMP with high-swing cascode-currentsource load

- * Higher output swing
- * Not suitable for unity-gain buffer

- 4. Telescopic cascode OP AMP with gain-boosting (or enhancedoutput -impedance) circuit
 - 1) Basic concept
 - * $v_i \rightarrow Av_i \rightarrow i_o = Ag_m v_i$

$$\frac{i_o}{v_i} = Ag_m$$

The transconductance is boosted by *A* times, $A \sim 100$.

*
$$r_i \cong \frac{1}{g_m} \frac{1}{A} \sim 100\Omega - 10\Omega$$

The input resistance is lowered by *A* times.

Suitable for current input because of small r_i .

 \Rightarrow High injection efficiency

Example:

If the output resistance of D is not large, e.g. $r_D = 10 \text{K}\Omega$,

We need $r_i \le 100\Omega$ to obtain $I_i = I_L \frac{10K\Omega}{10K\Omega + r_i} \cong 99\%$ of I_L

 \Rightarrow 99 % injection efficiency and stable photodiode reverse bias V_{BIAS}

*
$$r_o \cong (G_{m_2}r_{ds_1})r_{ds_2} = Ag_{m_2}r_{ds_1}r_{ds_2}$$

The output resistance is boosted by *A* times as compared to the cascode structure without *A*.

No extra cascode device is required

 \Rightarrow The swing is not further degraded.

* Offset voltage problem

 \Rightarrow $v_i = 14$ mV and M_5 is turned on to provide negative feedback.

5 - 7 CHUNG-YU WU

But if $V_{OS} = -5 \text{mV}$

 $\Rightarrow V_{GS5} = 0.9 \text{V}$ smaller than V_{TH5}

 \Rightarrow M_5 is off and the circuit fails.

So suitable systematic offset should be introduced to make sure that $V_{OS} > 0$

* Realization

2) Current mirror with enhanced-output-impedance circuit

A: The Sackinger implementation

* Low swing

*
$$r_o = (g_{m4}r_{ds2}r_{ds1})[g_{m6}(r_{ds6} // r_{OB2})]$$

* Minimum required V_{out} $V_{out} = V_{GS6} + V_{GS4} - V_{TH4}$

*
$$V_{GS6} = V_{GS5} \Rightarrow V_{DS1} = V_{DS2}$$
 precise current ratio

B: High-swing implementation

* Add extra devices M_7 and M_8 to decrease V_{DS1} and V_{DS2} .

*
$$V_{DSI} = V_{GS5} - V_{GS7}$$

 $V_{DS2} = V_{GS6} - V_{GS8}$

* High swing

$$Min V_{out} = V_{GS6} - V_{GS8} + V_{GS4} - V_{TH4}$$

* $I_{out} = KI_{REF}$ $V_{DS1} = V_{DS2} \Rightarrow$ precise ratio

3) OP AMPs

- A: Using the gain-boosting circuit in cascode amplifier
 - * $g_{m3} = g_{m4}$ is increased by A times.
 - * The effective resistance seen by M_1 and M_2 is lowered by A times \Rightarrow The gain is lowered by A

times.

- \Rightarrow Has much less Miller capacitance at the input while keeping M_1 and M_2 saturated.
- * r_o seen by M_3 and M_4 is increased by A times \Rightarrow Gain boosting
- * Realization

Why I_{SS2} ?

The amplifier A is realized by fully differential folded

B: Using the gain-boosting circuits in both cascode amplifier and current-mirror load

5. Folded cascode OP AMP

1) PMOS input

- * Higher power dissipation than the telescopic cascode OP AMP.
- * Higher input equivalent noise and input offset voltage
 - : More devices are involved.

- * Higher V_{ICM} range and higher output swing.
- * Lower voltage gain as compared with the PMOS-input telescopic cascode OP AMP. Why?
- * Lower r_o
- 2) With the gain-boosting circuit

§5-2.2 Fully differential OP AMPs

1. Simple OP AMPs

$$A_{cm \approx} = -\frac{\alpha_{I} r_{dsP}}{2r_{o}}$$
$$CMRR = \frac{\alpha_{I} g_{mN} (r_{dsN} // r_{dsP}) r_{dsP}}{2r_{o}}$$

* Power supply noise gain

$$V_{ivdd}$$

$$V_{ivd}$$

$$V_{ordd}$$

$$V_{ordd}$$

$$M_{1} \stackrel{\frown}{=}$$

$$2r_{o} \stackrel{V_{ivss}}{\swarrow} \stackrel{V_{ovdd}}{\bigvee}$$

$$A_{cvddm} \cong +g_{mP} [r_{dsP} //(g_{mN} 2r_{o})r_{dsN}] [\frac{1}{g_{mP}}r_{oREF} + 1] \cong \frac{r_{dsP}}{r_{oREF}} \cong 1$$

$$A_{cvssm} \cong +(\frac{\frac{1}{g_{mN}}}{2r_{o} + \frac{1}{g_{mN}}}) [g_{mN}(r_{dsN} //r_{dsP})] = \frac{r_{dsN} //r_{dsP}}{2r_{o} + \frac{1}{g_{mN}}}$$

$$PSRR + \equiv \frac{|A_{dm}|}{|A_{cvdm}|} = \frac{g_{mN}(r_{dsN} //r_{dsP})}{g_{mP}r_{dsP}}$$

$$g_{mP} > g_{mN} \quad \text{for large } PSRR +$$

$$PSRR - \equiv \frac{|A_{dm}|}{|A_{cvssm}|} = \frac{g_{mN}(r_{dsN} //r_{dsP})(2r_{o} + \frac{1}{g_{mN}})}{(r_{dsN} //r_{dsP})} \cong 2g_{mN}r_{o}$$

$$PSRR - PSRR + PSRR + PSRR +$$

- PSRR+ for V_{DD} is not high enough.
- * Commond-Mode Feedback (*CMFB*) is required to decrease A_{cm} and increase *CMRR*. With *CMFB* circuit, *PSRR* \uparrow .
- 2. Telescopic cascode OP AMPs with cascode or high-swing cascode current-source load

5 - 13 Chung-yu wu

Output swing	Low	High
PSRR+	?	?
PSRR-	High	High

- 3. Telescopic cascode OP AMPs with gain-boosting cascode amplifier or current-source load
 - * To obtain maximum swings at the output, A_2 must employ an NMOS-input differential pair (high output dc voltage) whereas A_1 an PMOS-input one (Low output dc voltage)
 - * Very high voltage gain

4. Folded cascode OP AMPs with cascode, high-swing cascode, or gain-boosting current-source load

§5-3 General-Purpose Two-Stage CMOS OP AMPs

§5-3.1 Single-ended-output OP AMPs

1. PMOS-input design I

 M_{10} , M_1 : Master stage of PMOS current mirror.

 M_5, M_6, M_9 : Slave stages M_1, M_2, M_3, M_4, M_5 : Differential-input-to-single-ended output converter (input stage)

 M_{8} , M_{9} : CS amplifier with current-source load (gain stage)

 M_{6}, M_{7}, C_{C} : Compensation circuit with source follower.

OP AMP Characteristics :

Open-loop dc gain: 60 ~ 66 dB

CMRR : 60 dB

2. PMOS-input design II

 C_C : Compensation capacitor

R : n+ diffusion resistor

- * First commercial CMOS OP AMP
- * Designed by Motorola in 12-bit ADC.
- 3. NMOS-input design with level-shifted CMOS amplifier

 C_2 : for PSRR (V_{DD}) consideration. C_1 : normal compensation capacitor Reference : IEEE JSSC, vol. sc-14, pp. 961-969, Dec. 1979

* Designed by AMI in PCM voice CODEC.

OP AMP characteristics:

Open-loop gain	: 90 dB	
CMRR	: 73 dB	
PSRR+	: 68 dB	
PSRR-	: 70 dB	
Input offset	: 10 mV (standard deviation)	
	0.4 mV (mean)	

4. Typical characteristics of CMOS 2-stage OP AMPs

Reference : IEEE JSSC, vol. sc-17, pp. 969-982, Dec. 1982Open-loop dc gain $(C_L \text{ only})$: $10^3 \sim 10^4$ (60 dB \sim 80 dB)PSRR: 60 dB \sim 70 dBInput offset: 2 mV (standard deviation)Input common-mode range: within 1V of supplyvoltage.

 Output Transconductance Amplifier (OTA) or current-mirror OP AMP

Reference : IEEE JSSC, vol. sc-19, pp. 349-359, June 1984

$M_{ m _3},M_{ m _5}/M_{ m _4},M_{ m _6}$: PMOS current mirrors	5 - 17
M_{7} , M_{8}	: NMOS current mirror	CHUNG-YU WU
$M_{I}\sim M_{4}$, M_{9}	: Input stage	
$M_5 \sim M_8$: Gain stage	

$$\Delta V_{in}$$
 (input differential voltage) $\Rightarrow \Delta I \Rightarrow K\Delta I \Rightarrow \Delta I_{out} = 2K\Delta I = I_o$

$$G_m \equiv \frac{\Delta I_{out}}{\Delta V_{in}} = g_m K \qquad A_v = G_m (r_{ds6} // r_{ds8})$$

Characteristics :

Open-loop gain : 58 dB

Total dc current ; $4\mu A$

Output load capacitance ; $\sim 10 \text{pF}$

- * DC power dissipation can be decreased.Micropower ICs for low-power applications.
- * Frequency response, slew rate, and output load C_L are limited.
- 6. Modified OTA

* Higher G_m and higher open-loop voltage gain.

 $Gm \cong 2g_{m12}(r_{ds34} || r_{ds12}) g_{m56}$

- * Frequency compensation is required.
- * Designed by Toshiba in C²MOS ADC. *Reference ; IEEE JSSC, vol.sc-13, pp.779-785, Dec. 1978*
- * M_5 (M_7) is matched to M_6 (M_8) => The effect of V_{TH} variations on M_6 and M_8 can be reduced.

§ 5-3.2 Fully differential OP AMPs

1. Simple OP AMP

- * Open-loop gain $A_v \cong g_{m12}(r_{ds12} || r_{ds34}) g_{m56}(r_{ds56} || r_{ds78})$
- * Frequency compensation is required.
- * CMFB is required.

2. High-gain OP AMP

- * Higher gain because of high-swing cascode current-source load.
- * If high-swing cascode current source is not used, the design of M_9 and M_{10} is difficult.

$$\therefore V_{GS910} = V_{DS78} + V_{DS56}$$

3. General comparion

	Gain	Output Swing	Power Dissipation	Speed	Noise
Telescopic	Medium	Medium	Low	Highest	Low
Folded Cascode	Medium	Medium	Medium	High	Medium
Two-stage	High	Highest	Medium	Low	Lowest
Gain-boosted	High	Medium	High	Medium	Medium

§ 5-4 General-Purpose Three-Stage CMOS OP AMPs

1. Using the emitter follower as output stage

Ι;

 M_{6}, M_{9}, C_{C} ; Frequency compensation circuit

 Q_2 ; Protection circuit for Q_1 to avoid the reverse

breakdown of B-E junction diode of Q_{l} .

 Q_{I} , M_{I0} ; Emitter follower as output stage.

* Designed by Westinghouse for analog signal processing.

* Open-loop gain = 60db, power dissipation = 16mW.

M10, M11, C1 : Frequency compensation circuit.C2, C3 : Improving frequency response of Av and PSRR.

§5-5 Common-Mode Feedback (CMFB) Circuits

Purposes : 1.To provide a stable common-mode level to the nodes. 2.To decrease the common-mode gain.

Design Considerations :

- 1.To create a negative feedback path only for common-mode signals. For differential signals, CMFB has no effect on circuit performance.
- 2.To keep power dissipation and chip area of CMFB circuit as low as possible.
- 3.CMFB is not required in single-ended-output OP AMPs. But it can be used to boost CMRR.
- 4.CMFB is required in differential-output OP AMPs.

§5-1.1 CMFB circuits for single-ended-output CMOS OP AMPs

1. Reference : IEEE JSSC, vol. sc-13, pp. 779-785, Dec. 1978

M₈, M₉, M₁₀, M₁₁ : CMFB circuit

$$M_9 \equiv M_{10} \equiv M_4 \equiv M_5$$

- * IN+, IN- $\uparrow \Rightarrow X, Y \uparrow \Rightarrow$ common-mode voltage \uparrow IN+, IN- $\uparrow \Rightarrow B \uparrow \Rightarrow C \uparrow \Rightarrow X, Y \downarrow \Rightarrow$ compensation
- * For differential signals, A and B are ac grounded

 \Rightarrow CMFB circuit has no effect on differential signals.

- * What is the purpose of M_8 ?
- * Designed by Toshiba in C²MOS ADC
- * OP AMP characteristics :

Supply voltage : 5VSupply current : $150\mu A$ Input common-mode range : $+1V \sim +4.5V$ Input offset voltage : $\pm 1mV$ CMRR : 75dBOpen-loop gain : 90dBOutput swing : $0 \sim 5V$

5 - 23 Chung-yu wu

2.Reference: IEEE JSSC, vol. sc-14, pp. 38-46, Feb. 1979

 Q_1 , I_2 , C_c : Frequency compensation circuit M_6 , M_7 , M_9 , M_8 , M_5 : CMFB circuit.

* IN+, IN- $\uparrow \rightarrow X, Y \downarrow \rightarrow \text{common} - \text{mode voltage} \downarrow$

→ A \uparrow → B \downarrow → X, Y \uparrow → compensation.

- * For differential signals, A is ac grounded.
 →No effect on differential signals.
- * Keep $I_{DS6} = I_{DS7} = 25$ and $I_{DS3} = I_{DS4} = 25$
- * Designed by MOSTEK in PCM Codec.

5-5.2 CMFB circuit for differential-output CMOS OP

1. Reference ; IEEE JSSC, vol.sc-18, pp.652-664, Dec.1983

MN3, MN3A: CMFB circuit

*Common-mode signals at $X, Y \uparrow \Rightarrow A \downarrow \Rightarrow B, C \downarrow \Rightarrow X, Y \downarrow$

*For differential signals, A is ac grounded.

*Why MN4 and MN4A?

*Output swing is decreased by MN3 and MN3A.

To reduce the effect, MN3 and MN3A can be operated in the linear region.

*Output CM level is still a function of device parameters.

*Under differential signals , due to I_{DS} nonlinearity , A is not

exactly ac ground \Rightarrow differential characteristics are changed.

2.Reference: IEEE JSSC ,vol.SC-19, pp.912-918, Dec.1984

M13~M20: CMFB circuit

Cascoded common-mode amplifier *For differential signals,nodes A,B,and C are ac grounded.

5 - 26 Chung-yu wu

4. Dynamic CMFB (DCMFB) circuit

Reference: IEEE JSSC, vol. SC-20, pp.1122-1132, Dec.1985 V_{CMO} , ϕ_1 , ϕ_2 , $M_a \sim M_h$: CMFB circuit $M_1 \sim M_6$: current sources associated with CMFB circuit

* DCMFB versus static CMFB

1.Less power dissipation.

- 2.Has no effect on output swing, noise, and speed of the OP AMP.
- 3. ϕ_1 , ϕ_2 nonoverlapping clocks are required.

Chapter 6 Frequency Response of MOS Amplifiers

§6-1 Single-Stage Amplifier

§6-1.1 Source follower

where
$$G_{Leq}\!\!=\!\!g_{ds1}\!+\!g_{ds2}$$
 , $C_{Leq}\!\!=\!\!C_L\!+\!C_{sb1}\!+\!C_{db2}$

* Left-Half-Plane (LHP) pole: fp =
$$\frac{G_{Leq} + g_{m1} / \alpha_1}{2\pi (C_{gs1} + C_{Leq})}$$

LHP zero:
$$fz = \frac{g_{m1}}{2\pi C_{gs1}}$$

In general, fp < fz $C_{Leq} > C_{gs1}$

* If
$$\frac{C_{Leq}}{C_{gs1}} = (\frac{1}{\alpha_1} - 1) + \frac{G_{Leq}}{g_{m1}}$$
, we have

$$fp = fz$$
 and $Av(s) \cong \frac{C_{gsl}}{C_{gsl} + C_{Leq}} \cong 1$ indep. of s.

= >Better high frequency response.

How to achieve this?

Adding an extra capacitor Cx such that
6 - 2 Chung-yu wu

$$Cx+C_{gs1}=C_{Leq}\left[\frac{1}{(\frac{1}{\alpha_{1}}-1)+\frac{G_{Leq}}{g_{m1}}}\right]$$

$$Zi(s) = \frac{Vi(s)}{Ii(s)} = \left[\frac{1}{C_{gs1}s} + \frac{C_{gs1}s + g_{m1}}{C_{gs1}s(G_{Leq} + g_{mb1} + sC_{Leq})}\right] ||(C_{gd1}s)$$

* If $g_{mb1}+G_{Leq} \ll C_{Leq}S$ and C_{gd1} is neglected,

$$\operatorname{Zi}(s) \cong \frac{1}{\operatorname{C}_{gsl} S} + \frac{1}{\operatorname{C}_{Leq} S} + \frac{g_{m1}}{\operatorname{C}_{gsl} \operatorname{C}_{Leq} S^2}$$

-

The input impedance consists of the series connected

 $C_{gs1},\,C_{Leq}\!,$ and the negative resistance

$$\frac{g_{m1}}{C_{gs1}C_{Leq}\omega^2}$$

Thus oscillation is possible.

* If $g_{mb1}+G_{Leq}$ is neglected, the equivalent input capacitances

Cin=Cgd1 Cin
Cin'
$$Cin' \cong C_{Leq} \left(\frac{1}{\frac{C_{Leq}}{C_{gsl}} + 1 + \frac{g_{m1}}{C_{gsl}s}} \right)$$

For large g_{m1} , C_{in} ' < < C_{Leq}

The large load capacitance C_L is well blocked or buffered from the preceding stage.

$$Zo(s) = \frac{Vo(s)}{Io(s)} \Big|_{Vi=0} = \frac{1}{G_{Leq} + g_{mb1} + sC_{Leq} + (sC_{gs1} + g_{m1}) \frac{R_sC_{gd1}s + 1}{R_s(C_{gd1}s + C_{gs1}s) + 1}}$$
* If s = 0, Zo = Ro = $\frac{1}{g_{m1} + g_{mb1}}$
If s _____, Zo'(without C_{Leq}) \cong Rs for Rs < $\frac{1}{G_{Leq} + g_{m1}}$ and C_{gs1}>>C_{gd1}
Since usually Rs > $\frac{1}{g_{m1} + g_{mb1}}$, we have

= > $|Z_0| \propto \omega$ = > Inductive load

L and C_L causes output signal ringing.

* Two source followers in cascade might cause oscillation because

First SF : L in Zo 1 Second SF : -R and Cin Z_{i2}

§6-1.2 Enhancement - load NMOS common-source gain stage

 $G_{Leq} = g_{ds1} + g_{ds2} + g_{m2} + g_{mb2}$

$$C_{Leq} = C_{db1} + C_{gs2} + C_{sb2} + C_L$$

Applying the Miller's theorem, we have

 $C_{in} = C_{gs1} + C_{gd1}(1 + g_{m1}/G_{Leq})$

$$= >Av(s) \cong \frac{G_{s}(sC_{gd1} - g_{m1})}{(sC_{in} + G_{s})[s(C_{Leq} + C_{gd1}) + C_{Leq}]}$$

- * Right-Half-Plane Zero : $Sz = g_{m1}/C_{gd1}$
- * Left-Half-Plane Poles : S_{p1} = G_s/C_{in} (input pole)

$$S_{p2}$$
= - $G_{Leq}/(C_{Leq}+C_{gd1})$ (output pole).

If C_{gd1} and C_{Leq} are small $=>S_{p1}$ is the dominant pole.

* If C_L is large, the dominate pole is $S_{p2} \cong (g_{m2}+g_{mb2})/C_L$

* The input impedance can be approximated by

$$\operatorname{Zin} \cong \frac{1}{\left[C_{gs1} + (1 + g_{m1} \frac{1}{G_{Leq}})C_{gd1}\right]s} \text{ near the upper 3dB frequency.}$$

* The exact Zin is

$$Zin \cong C_{gs1}s \left\| \left| \frac{1 + \frac{1}{G_{Leq}} (C_{gd1} + C_{Leq})s}{C_{gd1s} (1 + g_m \frac{1}{G_{Leq}} + \frac{1}{G_{Leq}} C_{Leq}s)} \right]$$

If $\left| \frac{1}{G_{Leq}} (C_{gd1} + C_{Leq})s \right| <<1$ and $\left| \frac{1}{G_{Leq}} C_{gds1}s \right| < <(1 + gm \frac{1}{G_{Leq}}),$

Zin can be approximated by the previous formula.

6 - 5 Chung-yu wu

§ 6-1.3 Cascode amplifer stage

$$g_{2} = g_{m2} + \frac{1}{r_{ds1}}$$

$$C_{2} = C_{gs1} + (1 + \frac{g_{m1}}{g_{m2}})C_{gd1}$$

$$C_{2} = C_{gd1} + C_{db1} + C_{gs2} + C_{sb2}$$

$$C_{Leq} = C_{L} + C_{gd2} + C_{db2} + C_{sb3} + C_{gs3}$$

$$A_v(s) = \frac{-G_s g_{m2}(sC_{gd1} - g_{m1})}{(sC_1 + G_s)(sC_2 + g_2)(sC_{Leq} + g_{m3})}$$

RHP Zero: $S_z = \frac{g_{m1}}{C_{gd1}}$ LHP Pole : $S_{p1} = -\frac{G_s}{C_1}$; $S_{p2} = -\frac{g_2}{C_2}$; $S_{p3} = \frac{-g_{m3}}{C_{Leq}}$ S_{p1} usually is the dominant pole.

$$\Rightarrow f_{3dB} \cong \frac{|S_{p1}|}{2\pi} = \frac{G_s}{2\pi C_1}$$

* Typically, $g_{m1} = g_{m2}$, then $C_1 = C_{gs1} + 2C_{gd1}$

- $|S_{p1}| << |S_{p2}|$
- S_{p1} is the dominant pole.

Cgd1 rds4||rds1 $\frac{1}{2}g_{m1}V_{id}$ $\frac{1}{2}$ V_{id} Cgs1 CLeq V_{od} $\mathbf{C}_{\mathrm{Leq}} \equiv \mathbf{C}_{\mathrm{L}} + \mathbf{C}_{\mathrm{db4}} + \mathbf{C}_{\mathrm{db1}}$ $+V_{DD}$ +VDD M_4 **M**3 VBIAS **o** Vbias1 ► M4 O $\mathbf{O} \frac{1}{2} V_{od}$ $\frac{1}{2}V_{id}$ **↓** M2 M_1 ר M₁ -Vss -Vss $A_{d} = \frac{V_{od}}{V_{id}} = H(s) = -\frac{g_{m1}}{g_{ds4} + g_{ds1}} \left| \frac{1 - s\frac{C_{gd1}}{g_{m1}}}{1 + (\frac{C_{Leq} + C_{gd1}}{2})s} \right|$ RHP Zero: $f_z = \frac{g_{m1}}{2\pi C_{gdl}}$ $f_z > f_p$ |Ad|60db/Octave LHP Pole: $f_p = \frac{g_{ds4} + g_{ds1}}{2\pi(C_{db4} + C_{db1} + C_L + C_{gd1})}$ $A_0 f_p = \frac{g_{m1}}{2\pi (C_{db4} + C_{db1} + C_L + C_{gd1})}$ f_{u} fu fp

2.Common-mode half circuit:

 $(g_{ds4} + sC_M)V_{oc} + g_{ds1}(V_{oc} - V_s) + g_{m1}(V_{ic} - V_s) + C_{gd1}s(V_{oc} - V_{ic}) = 0$

6 - 8

CHUNG-YU WU

$$g_{ds1}(V_{s} - V_{oc}) + V_{s}(\frac{1}{2r_{ds5}} + \frac{C_{gd5} + C_{db5} + C_{sb1}}{2}s) - g_{m1}(V_{ic} - V_{s}) - C_{gs1}s(V_{ic} - V_{s}) = 0$$
$$V_{s}[\frac{1}{2r_{ds5}} + \frac{1}{2}(C_{gd5} + C_{db5} + C_{sb1})s + C_{gs1}s] = -[g_{ds4} + sC_{M} + sC_{gd1}]V_{oc} + (C_{gs1}s + C_{gd1}s)V_{ic}$$

$$V_{s} = -\frac{[g_{ds4} + sC_{M} + sC_{gd1}]V_{oc} - (C_{gs1}s + C_{gd1}s)V_{ic}}{\left[\frac{1}{2r_{ds5}} + \frac{C_{gd5} + C_{db5} + C_{sb1}}{2}s + C_{gs1}s\right]}$$

Solve the pole-zero position : \Rightarrow 1 RHP zero, 1 LHP zero, 2 LHP poles

§ 6-1.6 CMOS differential-input-to-single-ended output converter

$$\mathbf{V}_{i} = \mathbf{V}_{id} + \mathbf{V}_{ic} \quad \mathbf{V}_{o} = \mathbf{V}_{od} + \mathbf{V}_{oc}$$

* The hail-circuit method cannot be used in the high frequency analysis.

- * Two unequal signal paths to the output
 - \Rightarrow Load path and tail path
 - \Rightarrow Both C_s and C_E appears in the Ad(s) expression.
- * There are two dominate poleo in Ad.

Output pole
$$W_{p1} \cong \frac{g_{ds1} + g_{ds4}}{C_{Leq}}$$

Mirror pole $W_{p2} \cong \frac{g_{m34}}{C_E}$

Tail path:
$$A_1(s) = \frac{A_0}{1 + \frac{s}{W_{pl}}}$$

Load path: $A_2(s) = \frac{A_0}{(1 + \frac{s}{W_{p1}})(1 + \frac{s}{W_{p2}})}$

$$A_{d}(s) = A_{1}(s)A_{s}(s) = \frac{A_{0}(2 + \frac{s}{W_{p2}})}{(1 + \frac{s}{W_{p1}})(1 + \frac{s}{W_{p2}})}$$

LHP zero: $W_{z1} \cong \frac{2g_{m34}}{C_E} = 2W_{p2}$

* Approximate analysis:

The dominant pole of $A_d(s)$ is $S_{p1} = -\frac{g_{ds1} + g_{ds4}}{C_{Leq}}$ (output pole)

$$A_{d}(s) \cong \frac{g_{m1}}{sC_{Leq} + (g_{ds1} + g_{ds4})}$$

6 - 10 Chung-yu wu

The A_c(s) can be written as A_c(s) $\approx -\frac{g_{ds1}}{2g_{m4}} \frac{(\frac{1}{R_0}) + sC_s}{sC_{Leq} + (g_{ds1} + g_{ds4})}$ The dominant pole of A_c(s) is S_{p1} = $-\frac{g_{ds1} + g_{ds4}}{C_{Leq}}$ But the left-half-plane zero is S_{zL} = $-\frac{1}{R_0}(\frac{1}{C_s})$

The CMRR ($\equiv \frac{A_d}{A_c}$) is degradated by 20dB/decade at high frequency. §6-2 Frequency Compensations

Without C_c

$$S_{PI} = -\frac{1}{C_d} (g_{dsl} + g_{dsi}) , \quad S_{P2} = -\frac{1}{C_L} (g_{dsg1} + g_{dsg2})$$

$$H(s) = \frac{v_2}{v_{il} - v_{i2}} + g_{mi}(g_{mg1} + g_{mg2})R_dR_o(1 - \frac{sC_c}{g_{mg1} + g_{mg2}})$$
$$= \frac{1 + s[(C_L + C_c)R_o + (C_c + C_d)R_d + C_c(g_{mg1} + g_{mg2})R_oR_d] + (C_cC_L + C_cC_d + C_dC_L)R_oR_ds^2}{1 + s[(C_cC_L + C_cC_d + C_dC_L)R_oR_ds^2]}$$

How to solve this problem ?

- If $I_{c_c} = (g_{mg_1} + g_{mg_2})V_d$,
 - $I_o = 0$ and $V_2 = 0$

 \Rightarrow A zero is formed.

§6-2.1 Using a unity-gain buffer in the feedback path

- * Isolate node 1 from node 2 to prevent feedforward.
- * Keep the Miller effect unchanged.
- * Source follower can act as a unity gain buffer.

$$g_{mi}V_{d} + \frac{V_{I}}{R_{d}} + C_{d}sV_{I} + (V_{I} - V_{2})C_{c}s = 0 \qquad ------(1)$$

$$\left(g_{mgI} + g_{mg2}\right)V_{I} + \frac{1}{R_{o}}V_{2} + C_{L}sV_{2} = 0 \qquad ------(2)$$

$$H(s) = \frac{V_{2}}{V_{d}}$$

$$= \frac{g_{mi}(g_{mgI} + g_{mg2})}{1 + s[R_{o}C_{c} + R_{d}(C_{d} + C_{c}) + C_{c}(g_{mgI} + g_{mg2})R_{o}R_{d}] + (C_{c}C_{L} + C_{d}C_{L})R_{o}R_{d}s}$$

$$S_{p1} \approx -\frac{1}{(g_{mg1} + g_{mg2})R_{o}R_{d}C_{c}} \quad \text{(unchanged)}$$
$$S_{p2} \approx -\frac{C_{c}(g_{mg1} + g_{mg2})}{CC_{c}+C_{c}C_{c}} \quad \text{RHP Zero has be elim}$$

$$C_{c}C_{L}+C_{d}C_{L}$$

RHP Zero has be eliminated.

Actual Circuits :

* C_{gs1} may introduce a RHP zero. But usually this RHP zero is large.

 C_{gsl} is very small.

*
$$R_{out} \approx \left(\frac{1}{g_{m1}} \left\| \frac{1}{g_{m2}} \right)$$

 $g_{mi}V_d + \frac{V_1}{R_d} + C_d sV_1 + (V_1 - aV_2)\left(\frac{1}{C_c s} + \frac{1}{\frac{1}{R_{out}}} \right)^{-1} = 0$
If $\frac{1}{R_{out}} \ge C_{out} s$

$$\Rightarrow \left(\frac{1}{C_c s} + \frac{1}{\frac{1}{R_{out}} + C_{out} s}\right)^{-1} \approx \frac{C_c s}{C_c R_{out} s + 1}$$

6 - 14 снилд-уи wu

The numerator of $H(s) = \frac{V_2(s)}{V_d(s)}$ is $g_{mi}(g_{mg1} + g_{mg2})(C_c R_{out} s + 1)$

$$\Rightarrow \text{ LHP Zero : } -\frac{l}{C_c R_{out}}$$

If R_{out} is large, LHP Zero may form a pole-zero doublet with S_{p1} or S_{p2} \Rightarrow very slow slew rate !!

If R_{out} is small, too large g_{m1} or g_{m2} is required.

 \Rightarrow (large area ,large power)

 \Rightarrow large C_{out} . Freq. Resp.

- * Somehow difficult to design.
- * Also the power dissipation of the buffer is large. (additional power dissipation)

§6-2.2 Adding Rc in series with Cc.

$$H(s) = \frac{v_2}{v_d}$$
 can be solved.

Low frequency gain : $A_{dm} = g_{mi} (g_{mg1} + g_{mg2}) R_o R_d$

LHP Poles :
$$S_{p_1} \cong \frac{-1}{(g_{mg1} + g_{mg2})R_oR_dC_c}$$
 (unchanged)
 $S_{p_2} \cong -\frac{(g_{mg1} + g_{mg2})C_c}{C_dC_L + C_cC_L + C_dC_c}$ (unchanged)
 $S_{p_3} \cong -\frac{C_dC_c + C_dC_L + C_cC_L}{R_cC_dC_LC_c}$
 $\binom{LHP}{RHP}$ Zero : $S_z = -\frac{g_{mg1} + g_{mg2}}{C_c[R_c(g_{mg1} + g_{mg2}) - 1]}$

1. If $R_c = \frac{1}{g_{mg1} + g_{mg2}}$ or $R_c = \frac{1}{g_{m2}}$ g_{m2} : second-stage transconductance $S_z \to \pm \infty$ No effect on the frequency response of the OP. S_{PI} dominant pole $\Rightarrow A_d(s) \cong \frac{A_{dm}}{\frac{s}{S} + I} = \frac{A_{do}S_{PI}}{s + S_{PI}}$ For $\mathbf{w} >> S_{P_{I}}$ $A_{d}(j\mathbf{w}) = \frac{A_{dm}S_{P_{I}}}{j\mathbf{w}}, |A_{d}(j\mathbf{w})| = \frac{A_{dm}S_{P_{I}}}{\mathbf{w}}$ At \mathbf{w}_{u} , $|A_{d}(j\mathbf{w}_{u})| = 1 \implies \mathbf{w}_{u} = A_{dm}S_{PI} = \frac{g_{mi}}{C}$ Large $C_L \Rightarrow S_{P2} \approx -\frac{g_{mg1} + g_{mg2}}{C}$ For phase margin $45^\circ \sim 60^\circ \Rightarrow \frac{S_{P2}}{W_{u}} \cong 2 \sim 4, \frac{C_c}{C_l} \frac{g_{mgl} + g_{mg2}}{g_{ml}} = 2 \sim 4$ If $\frac{g_{mi}}{g_{mel} + g_{me2}} \cong 2 \sim 4$, $C_L \cong C_c$ stable

$$I_{DS} = \frac{m_{e}C_{ox}}{2} \frac{W}{L} \Big[2(V_{DD} - V_2 - V_{TH}) V_{DS} - V_{DS}^2 \Big] ,$$

$$R_{c} = \left(\frac{\partial I_{DS}}{\partial V_{DS}} \right)^{-1} \bigg|_{V_{DS=0}} = \frac{1}{\frac{m_{e}C_{ox}}{2} \frac{W}{L} \Big[2(V_{DD} - V_2 - V_{TH}) \Big]}$$

6 - 16 Chung-yu wu

 $V_{2} \uparrow V_{TH} \uparrow$ body effect

Design R_c : (1) Design R_c , s.t. $(R_c)_{V_2=0V} = \frac{1}{g_{m2}}(\frac{1}{g_{mg1}+g_{mg2}})$

(2) At $R_c = R_{cmax}$ or R_{cmin} ,

 S_z must be large enough ! Otherwise, frequency performance will be degradated.

1) CMOS Realizations :

Consider the case in *c*.:

$$I_{DSn} = \frac{\mathbf{m}_{n}C_{ox}}{2} \frac{W_{n}}{L_{n}} \left[2(V_{DD} - V_{2} - V_{THn}) W_{DS} - V_{DS}^{2} \right]$$
$$R_{cn} = \frac{1}{\frac{\mathbf{m}_{n}C_{ox}}{2} \frac{W_{n}}{L_{n}} \left[2(V_{DD} - V_{2} - V_{THn}) \right]}$$

$$I_{DSp} = \frac{\mathbf{m}_{p}C_{ax}}{2} \frac{W_{p}}{L_{p}} [2(V_{2} + V_{SS} - V_{THp})V_{DS} - V_{DS}^{2}]$$

$$R_{cp} = \frac{1}{\frac{\mathbf{m}_{p}C_{ax}}{2} \frac{W_{p}}{L_{p}} [2(V_{2} + V_{SS} - V_{THp})]}$$

$$R_{c}^{-1} = (R_{cn} //R_{cp})^{-1} = R_{cn}^{-1} + R_{cp}^{-1}$$

$$= \frac{\mathbf{m}_{p}C_{ax}}{2} \frac{W_{n}}{L_{n}} [2(V_{DD} - V_{2} - V_{THn})] + \frac{\mathbf{m}_{p}C_{ax}}{2} \frac{W_{p}}{L_{p}} [2(V_{2} + V_{SS} - V_{THp})]$$
If $\frac{\mathbf{m}_{n}C_{ax}}{2} \frac{W_{n}}{L_{n}} = \frac{\mathbf{m}_{p}C_{ax}}{2} \frac{W_{p}}{L_{p}} = \mathbf{b}$

$$R_{c}^{-1} = \mathbf{b} [2V_{DD} - 2V_{THn} + 2V_{SS} - 2V_{THp}] \text{ nearly indep. Of } V_{2}$$

$$R_{c}^{-1} |_{V_{2}=0V} = g_{mg1} + g_{mg2}$$

$$R_{cn}^{-1}$$

$$R_{cp}^{-1}$$

$$R_{cp}^{-1}$$

$$V_{2min}$$

$$V_{2max}$$

$$V_{2max}$$

2. If
$$R_c = \frac{1 + (C_d + C_L) / C_c}{g_{mg1} + g_{mg2}}$$

 $S_z = S_{p2}$ and pole-zero cancellation occurs.

 $\Rightarrow S_{p3} >> S_{p1} \Rightarrow A_{dm}S_{p1} < S_{p3} \Rightarrow \text{stable}$

However, if the cancellation is not complete

 \Rightarrow pole-zero doublet occurs ! \Rightarrow slow slew rate.

§6-2.2 Feedforward compensation

 $A_{\nu3}$ is the gain of the source follower

 $z_3 \& z_2$ are generated from the C_{gs} of the source follower.

$$\frac{V_{out}}{V_{in}} = A_{VTOT}(s) = A_{V2}(s) + A_{V3}(s)$$
$$= \left[A_{V2}(0) + A_{V3}(0)\right] \frac{(1 + \frac{s}{z_1})(1 + \frac{s}{z_2})(1 + \frac{s}{z_3})}{(1 + \frac{s}{p_1})(1 + \frac{s}{p_2})(1 + \frac{s}{p_3})}$$

 p_1' : dominant pole

 z_1', z_2', z_3' : LHP Zeros

Design consideration : Any zeros below the unity-gain frequency must be placed as close as possible to their matching poles. This prevents the formation of any doublet !

 $z_1' = p_2$ by adding CB1 and CB2(3.8pF) to control $C_{gs9} + C_{gs11}$

Ref:IEEE JSSC, col SC-14, no.6 pp.1070-1077, DEC.1979 Feedfoward +Miller(direct) Ref:IEEE JSSC, col SC-15, no.6 pp.921-928, DEC.1980 Feedfoward +Unity gain buffer + Miller

§ 6-3 Settling Behavior

Slewing Period (*Ts*): V_o from 0V to V- I_o/g_{ml} under voltage follower connection and worse case loading.(nonlinear operation) Settling Period (T_{SET} - T_s):

 V_o from $(V - I_o/g_{ml})$ to $\pm 0.1\%$ V or $\pm 0.01\%$ V (quasi-linear operation) Settling Time (T_{SET}) : $T_s + (T_{SET} - T_s)$ = slewing period + settling period. § 6-3.1 Single-pole case

Slew rate:

$$SR = \frac{dVo}{dt} /_{max} = \frac{I_o}{C_c}$$
$$\mathbf{w}_u = \frac{g_{mi}}{C_c} \leftarrow \text{single-pole case}$$
$$SR = \frac{I_o \mathbf{w}_u}{g_{mi}} = \mathbf{w}_u \sqrt{\frac{I_o}{2 \frac{uC_{ox}}{2} (\frac{W}{L})_i}}$$

§ 6-3.1 Two-pole case

Ref ; IEEE JSSC vol.SC-17, no.1 pp.74-80, Feb. 1982

$$Ts = -\frac{1}{\mathbf{w}_{I}} ln[1 - \frac{g_{mI}}{I_{o}a_{o}}(V - \frac{I_{o}}{g_{mI}})$$
 Fig.2

approximation : $e^{-\mathbf{w}_l T_s} \cong l - \mathbf{w}_l T_s \implies$ eq.(19) conventional expression After Ts : $V_o = V - I_o/g_{m1}$ Input voltage = $V - (V - I_o/g_{m1}) = I_o/g_{m1}$ => enter the linear (or quasi-linear) region

Feedback Function for unity-gain voltage-follower connection

$$=> A(s) = \frac{a(s)}{1 + a(s)}$$
 eq.(20)-(23)

two poles : $S = -\mathbf{x}\mathbf{w}_n \pm \sqrt{\mathbf{x}^2 - l\mathbf{w}_n}$ eq.(24) $\left[\xi = \frac{\omega_1 + \omega_2}{2\omega_n}\right]$

(double negative real poles)

damping ratio

- $\mathbf{x} = 1$ critically damped
- $\mathbf{x} < 1$ underdamped

(complex conjugate poles)

 $\mathbf{x} > 1$ overdamped

(real and negative pole)

$$\mathbf{x} = \frac{\mathbf{w}_{1} + \mathbf{w}_{2}}{2\mathbf{w}_{n}} \cong \frac{\sqrt{\mathbf{w}_{2}}}{2\sqrt{a_{o}\mathbf{w}_{1}}} = \frac{\sqrt{\mathbf{w}_{2}}}{2\sqrt{\mathbf{w}_{u}}} = \frac{\sqrt{g_{m2}/c_{2}}}{2\sqrt{g_{m1}/c_{c}}} \qquad (C_{C}, C_{2} >> C_{1})$$

6 - 21 Chung-yu wu

- (1) IEEE JSSC, vol. SC-18, pp.389-394, Aug. 1983
- (2) IEEE JSSC, vol. SC-21, pp.478-483, June. 1986

§ 6-4 Slew rate of CMOS OP AMPs

§ 6-4.1 Two-stage OP AMPs

Two poles: $S_{p1}, S_{p2}, |S_{p1}| \ll |S_{p2}|$ If $|S_{p1}| \ll \mathbf{w}_u \ll |S_{p2}|, V_{out}(s) = g_{mi}V_{in}(s)/sCc$ $\frac{V_{out}(jw)}{V_{in}(jw)} = \frac{g_m}{jwCc}$ At $\mathbf{w} = \mathbf{w}_u, \frac{V_{out}}{V_{in}} = 1$ $\Rightarrow \mathbf{w}_u = \frac{g_{mi}}{C_c} \text{ or } C_c = g_{mi}/\mathbf{w}_u$ The slew rate $SR = \frac{dV_{out}}{dt}|_{max} = I_o/C_c = \frac{I_c \mathbf{w}_u}{g_{mi}} = \mathbf{w}_u \sqrt{\frac{I_o}{2uC_{ox}(W/L)i}}$ $\mathbf{w}_u \uparrow, I_o \uparrow, (W/L)_i \downarrow \Rightarrow SR \uparrow$ * $I_o/C_L \ge I_o/C_c \text{ or } C_L \frac{dV_{out}}{dt} \le C_c \frac{dV_{out}}{dt} (= I_o)$

Slew rate enhancement and degradation

(1) Positive step

(2) Negative step

6 - 24 Chung-yu wu

$$v_{out} \cong v_{w}$$

$$\frac{d}{dt}v_{out} = -\frac{I_{o} - i_{w}}{C_{c}} = \frac{dv_{w}}{dt} = -\frac{i_{w}}{C_{w}} \implies i_{w} = \frac{I_{o}C_{w}}{(C_{c} + C_{w})}$$

$$\frac{dv_{out}}{dt} = -\frac{I_o}{C_c + C_w} \quad \text{slew degradation}$$

§ 6-4.2 Single-stage OP AMPs

$$SR = \frac{I_o}{C_i}$$

Different phase margins

 \Rightarrow different settling behavior.

 I_{o} : First-stage bias current

SR of the folded cascode OP AMPs

* If $I_p = I_o$, we can keep M_5 , M_1 and I_o current source in saturation.

The change of V_x is not significant because the gain of the common-source amplifier M_1 is nearly equal to -1. When M_2 is turned on, the recovery time of V_x is very short.

* If $I_p < I_o$, the current source I_o is forced to linear region and $V_s \downarrow V_x \downarrow$. The decrease of V_x is large. Thus the recovery time of V_x when M_2 is turned on is very long, \Rightarrow The settling is slow down.

How to solve this problem?

- (1) Keep $I_p = I_o$ as the optimal design.
- (2) Add clamping devices between V_{DD} and $V_x(V_Y)$

In normal operation, M_{11} and M_{12} are turned off by setting $V_{DD}-V_x < V_{TH11}, V_{TH12}$.

§ 6-5 Power supply rejection ratio (*PSRR*)

§ 6-5.1 Low frequency analysis for integrators

6 - 26 Chung-yu wu

Ref. : IEEE, JSSC, vol.SC-15, pp.929-938, Dec. 1980. * C_{gs}/C_I and C_{gd}/C_I have a strong effect on $PSRR^+$ and $PSRR^-$. * Small $C_I \Rightarrow$ chip area but PSRR.

§ 6-5.2 High frequency analysis for OP AMP's

Ref. : IEEE JSSC, vol. sc-19, pp. 919-925, Dec. 1984.

where $G_{o1} = g_{o4}$ (g_{o2} is connected to the drain of M_5 which is

open-circuited, i.e. $r_{ds5} \rightarrow \infty$)

 $G_{o2} = g_{o6} \quad (r_{ds7} \rightarrow \infty)$ $G_{o1}G_{o2}/(g_{m2}C_c) < g_{m1}/C_c$ \Rightarrow Low-frequency LHP zero degrades the *PSRR*. * To improve *PSRR*, C_c must be decoupled from the gate of M_6 to eliminate the LHP zero .

Chapter 7 Design Procedure of CMOS OP AMPs and Pratical Design Considerations on Noise and Offset

§ 7-1 Typical design procedure of two-stage CMOS OP AMPs

Synthesis or Design : Determine the circuit configuration and its MOS

device dimensions from the specifications.

Flow Diagram :

Specfications

Low frequency gain	\geq 70dB	Phase margin	> 60°
Unity-gain frequency	\geq 2MHz	C_L	10pF
Slew rate	\geq 4V/µs	$V_{DD} = V_{SS}$	5V
CMRR	\geq 80dB		

Device parameters

$\mu C_{ox}/2$	$30\mu A/V^2$	$12\mu A/V^2$
	(NMOS)	(PMOS)
V _{TO}	1.2V	-1V

Procedures :

1. Choose a suitable C_c

Example : choose $C_c = C_L = 10 \text{pF}$

2. According to the phase margin in the specifications, determine the second pole position.

Example : choose $f_T = 2$ MHz

$$|S_{p2}| \cong +\frac{g_{m6}}{C_L} = 3\omega_u \cong 3g_{mi}/C_c$$
$$|S_{p2}| = 3\omega_u \implies \text{Phase margin} > 60^\circ$$

3. Determine the transconductances of the first stage and the second stage.

Example : $g_{m6} = 3g_{mi} = 3\omega_u C_L = 3 \times 2\pi \times 2 \times 10^6 \times 10^{-11}$ $\Rightarrow g_{m6} = 377\mu$ mho $g_{mi} = 125.7\mu$ mho

4. From the slew rate specification, determine the bias currents in the first and the second stages.

Example : $S = \frac{I_o}{C_c} \ge 4 V/\mu s$

Choose $S = 4V/\mu s$, $\Rightarrow I_o = 40\mu A$

The negative-going slew rate is also limited by the Q_7 current source. To reduce or eliminate its effect, S_{ro} is set to 4S.

$$S_{ro} = 2.5S = 10V/\mu s = \frac{I_7}{C_L}$$
$$\Rightarrow I_7 = C_L S_{ro} = 100\mu A$$

5. Use the design rule for reducing the systematic offset voltage to design the transconductance of the load MOSFET's.

Example :
$$\frac{(W/L)_3}{(W/L)_6} = \frac{(W/L)_4}{(W/L)_6} = \frac{I_o/2}{I_7} = \frac{1}{5}$$

 $g_{ml} = g_{m3} = g_{m4} = \sqrt{\frac{(W/L)_3 \cdot I_o/2}{(W/L)_6 \cdot I_7}} g_{m6}$
 $= \frac{I_o/2}{I_7} g_{m6} = \frac{1}{5} g_{m6} \cong 75.4 \mu$ mho

6. Calculate A_{dm} and *CMRR* to verify the design.

Example :
$$A_{dm} = \frac{g_{mi}g_{m6}}{(g_{dl} + g_{di})(g_{d6} + g_{d7})} \cong \frac{g_{mi}g_{m6}}{(\lambda I_o)(2\lambda I_7)}$$
$$\cong 6582 > 76 dB \quad (\lambda = 0.03V^{-1} \text{ for } L \cong 10\mu m)$$
$$CMRR = 2\frac{g_{mi}g_{ml}}{g_{d5}g_{di}} \approx \frac{2g_{mi}g_{ml}}{(\lambda I_o)(\lambda I_o/2)} \approx 26327 \approx 88 dB$$
$$g_{mi} = C_c W_u, I_o = C_c S, g_{m6} = 3W_u C_L, I_7 = S_{ro} C_L$$
$$g_{ml} = I_o g_{m6}/2I_7 = 3C_c SW_u/2S_{ro}$$
$$\Rightarrow A_{dm} \approx \frac{3\omega_u^2}{2\lambda^2 S_{ro} S} \quad ; \quad CMRR \approx \frac{6\omega_u^2}{\lambda^2 S_{ro} S} \approx 4A_{dm}$$

If A_{dm} and *CMRR* could not satisfy the specifications, ω_o , S, and g_{mi} or g_{m6} can be readjusted.

7. Determine the nulling resistor R_c provoded by M_8 .

Example: If $S_z \rightarrow S_{p2}$

$$R_{c} = \frac{1 + (C_{d} + C_{L}) / C_{c}}{g_{m6}} \approx \frac{2}{g_{m6}} \approx 5.3 K\Omega$$

If $S_{z} \rightarrow \infty$
$$R_{c} = \frac{1}{g_{m6}} = 2.65 K\Omega$$

$$R_{c} = \frac{1}{\frac{\mu_{p} C_{ox}}{2} \frac{W_{8}}{L_{8}} [2(V_{SS} + V_{B} - |V_{TH8}|)]}$$

8. Dimension M_5 and M_7 .

W/L can't be too small \Rightarrow too large V_{GS} .

Can't be too large \Rightarrow C_w too large \Rightarrow $CMRR \downarrow$

$$C_L \uparrow \Rightarrow$$
 phase margin \downarrow

7 - 5 Chung-yu wu

Example:
$$\left(\frac{W}{L}\right)_{5} = \frac{I_{o}}{\frac{\mu_{n}C_{ox}}{2}\left(V_{GS5} - V_{TH5}\right)^{2}} \approx 5.33 \quad \left(\frac{\mu_{n}C_{ox}}{2} \approx 30^{\mu A}/V^{2}\right)$$

$$V_{GS5} - V_{TH5} \approx 0.5V)$$

$$\left(\frac{W}{L}\right)_{7} = \frac{I_{7}}{\frac{\mu_{n}C_{ox}}{2}\left(V_{GS7} - V_{TH7}\right)^{2}} \approx 13.33$$

Choose $L_5 = L_7 = 10 \mu m \Rightarrow W_5 = 54 \mu m$, $W_7 = 133 \mu m$

9. Dimension M_1 - M_4 and M_6

Example:
$$g_m \approx 2\sqrt{\frac{\mu C_{ox}}{2}} \left(\frac{W}{L}\right)_D^0$$

 $\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 \approx \frac{8m_i^2}{4\frac{\mu_n C_{ox}}{2}I_o/2} \approx 6.58$
 $(W/L)_3 = (W/L)_4 \approx \frac{g_{ml}^2}{4\frac{\mu_p C_{ox}}{2}\frac{I_o}{2}} \approx 5.92$
 $(W/L)_6 = 5(W/L)_3 \approx 29.6$
Choose $L = 10 \ \mu m$
 $\Rightarrow W_1 = W_2 = 66 \ \mu m \ \ W_3 = W_4 = 60 \ \mu m \ \ W_6 = 300 \ \mu m$

10. Estimate the dc bias voltage.

Example :
$$|V_{GS3}| = |V_{THP3}| + \sqrt{\frac{I_o/2}{\frac{\mu_p C_{ox}}{2}(W/L)_3}} = 1 + \sqrt{\frac{20}{12 \times 6}} \approx 1.527$$

 $\Rightarrow V_A = V_B = V_{DD} - |V_{GS3}| = 3.473V$
 $\frac{I_O}{2} = \frac{\mu_n C_{ox}}{2}(W/L)_1 (-V_C - V_{THn})^2$
 $\Rightarrow V_C = -1.518V$

11. Dimension M_8

Example :
$$2\frac{\mu_p C_{ox}}{2} (W/L)_8 (5+3.473-1) = \frac{1}{R_C}$$

 $\Rightarrow (W/L)_8 \approx 1.052$
choose $W_8 = L_8 = 10 \,\mu m$.
12. Determine V_{BLAS} and dimension M_9 and M_{10}
Example : $V_{GS} = V_{THn} + 0.5V = 1.7V$
 $V_{BLAS} = -V_{SS} + V_{GSS} = -3.3V$
Choose $I_b = 20 \,\mu A$
 $\Rightarrow V_{GS9} = 0 - V_{BLAS} = 3.3V \Rightarrow V_{BLAS} = -3.3V$
 $V_{GS10} = V_{BLAS} + V_{SS} = -1.7V$
 $(W/L)_9 = \frac{I_b}{\frac{\mu_n C_{ox}}{2} (V_{GS9} - V_{THn})^2} \approx 0.1512$
 $(W/L)_{10} = \frac{I_b}{\frac{\mu_n C_{ox}}{2} (V_{GS10} - V_{THn})^2} \approx 0.2667$
Choose $W_9 = 10 \,\mu m$, $L_9 = 66 \,\mu m$ and

$$W_{10} = 27 \, \mu m$$
 , $L_{10} = 10 \, \mu m$.

13. Use SPICE to simulate the overall OP AMP and make the necessary adjustment.

Reference : Reference Book No. 3, (Gregorian and Temes) pp. 222-241.

§7-2 Practical Design Consideration on Noise

§7-2.1 Noise of MOS devices

1) shot noise

- * Due to the fluctuation in the number of carriers crossing a given surface in the conductor in any time interval.
- * If the carrier density is low and the external electric field is high so that the interaction among the carriers are negligible, we have

$$i_{\rm ns}^2 = 2qI(BW)$$

where i_{ns} is the random variation of the current.

I is the average current.

BW is the bandwidth in which the noise is measured.

* When an MOSFET is operated in the saturation region, inversion carrier

density is high. => $\overline{i_{ns}^2}$ is much smaller than that predicted by the formula.

Shot noise is not important.

- * In the subthreshold region, shot noise is higher.
- 2) Thermal noise

* In MO

- * Generated by the random thermal motion of the carriers in a resistor.
- * The mean square of the noise voltage v_{nT} and the noise current i_{nT} are

$$\overline{v_{nT}^{2}} = 4KTR(BW)$$

$$\overline{i_{nT}^{2}} = 4KTG(BW)$$
SFETs, R is the incremental channel resistance.
$$R \neq 0$$

$$R \neq 1$$

If the MOSFET is in the saturation region, $R = \frac{3}{2g_m} = \frac{1}{\frac{2}{3}g_m}$

$$\overline{v_{nT}^2} = \overline{(\frac{i_{nT}}{g_m})^2} = \frac{8}{3} \frac{KT}{g_m} BW$$

* The spectral density $\overline{v_{nT}^2}_{BW}$ is independent of frequency \Rightarrow White noise.

* Circuit models:

 $\overline{v_{nT}^2}$:gate-referred noise voltage source.

*
$$\sqrt{\frac{\overline{v_{nT}^2}}{BW}} = \frac{nV}{\sqrt{H_z}}$$

* When the MOSFET is turned off (R= ∞ , G=0), $\overline{i_{nT}^2}$ is very small.

 \Rightarrow Noiseless open circuit.

3) Flicker $\binom{1}{f}$ noise

- * Generated by the trapping and releasing electrons from the channel caused by the interfacial states.
- * Slow process \Rightarrow important at low frequencies

$$\Rightarrow \frac{1}{f} \text{ noise. Below} \sim KH_z$$

$$* \overline{v_{nf}^2} = \frac{K}{C_{ox}WL} \frac{BW}{f} \qquad \overline{i_{nf}^2} = g_m^2 \overline{v_{nf}^2}$$

* (WL) \uparrow , Cox \uparrow , Temperature \downarrow , density of surface state \downarrow \Rightarrow $\overline{\nu_{\rm nf}^2}$ \downarrow

4) Combined noise

$$i_{\rm n} = \sqrt{\overline{i_{\rm nT}^2 + \overline{i_{\rm nf}^2}}} = \sqrt{(4\text{KTG} + \text{Kg}_{\rm m}^2/(\text{C}_{\rm ox}\text{WLf})]\text{BW}}$$

: independent noise sources.

$$v_{\rm n} = \frac{i_{\rm n}}{g_{\rm m}}$$

§7-2.2 Noise Performance of NMOS Amplifiers

1) Enhancement-load amplifier

$$A_{v_1} = -\alpha_2 \sqrt{\frac{W_1 L_2}{W_2 L_1}}$$
 for e_{n1}

 $A_{v_2} = \alpha_2$ for e_{n_2}

The equivalent input noise voltage

$$e_{n}(IN) = \frac{1}{A_{V1}} \sqrt{(A_{V1}e_{n1})^{2} + (A_{V2}e_{n2})^{2}} V_{2}$$

$$= e_{n1} \sqrt{1 + (\frac{A_{V2}e_{n2}}{A_{V1}e_{n1}})^{2}}$$

$$= \sqrt{\frac{a_{n}}{W_{1}L_{1}}(1 + \frac{L_{1}}{L_{2}})^{2}}$$

 $+V_{DD}$

* $W_1 \uparrow$, $L_2 \uparrow \Rightarrow$ smaller $e_n(IN)$ * There exits an optimal $L_1 = L_2$ * Independent of W_2

§7-2.3 Noise Performance of CMOS Amplifiers

1) CMOS amplifier

$$A_{V1} = -g_{m1}(r_{ds1} || r_{ds2})$$

$$A_{V2} = -g_{m2}(r_{ds1} || r_{ds2})$$

$$g_{m1} = 2\sqrt{\left(\frac{\mu_{n}C_{ox}}{2}\right)_{1}\frac{W_{1}}{L_{1}}I_{D}}$$

$$W_{i} = \sqrt{\frac{e_{n1}}{V_{i}} \frac{W_{1}}{L_{1}}} = \sqrt{\frac{W_{2}}{L_{2}}I_{D}}$$

$$W_{BIAS} = \sqrt{\frac{e_{n2}}{W_{1}L_{1}}} = \sqrt{\frac{a_{n1}}{W_{1}L_{1}}} = \left(1 + \frac{\frac{(\mu_{p}C_{ox}}{2})_{2}a_{n2}}{(\frac{\mu_{n}C_{ox}}{2})_{1}a_{n1}}} + \frac{(L_{1})^{2}}{(\frac{\mu_{n}C_{ox}}{2})_{1}a_{n1}}}\right)^{2}$$

Design considerations for low noise can be found.

2) CMOS differential-input to single-ended converter

* The noise from M_2 and M_4 loads is very important! Example : PMOS : $\left(\frac{\mu C_{ox}}{2}\right)_p = 3\mu A / V^2$

 $a_{np} = 48 \times 10^3 (\mu V \cdot \mu m)^2$ for $20 \text{Hz} \sim 20 \text{KHz}$

NMOS:
$$\left(\frac{\mu C_{ox}}{2}\right)_{N} = 7\mu A / V^{2}$$
$+V_{DD}$

$$a_{nn} = 380 \times 10^{3} (\mu V \cdot \mu m)^{2}$$
 for $20 \text{Hz} \sim 20 \text{KHz}$

* NMOS is much more noisy than PMOS due to much larger $\frac{1}{f}$ noise

Why? 1.higher surface-state density

2.nonuniform trap center distribution (more centers near conduction band)

3. Efficient election trapping and releasing.

Bias current $I_D = 5\mu A$, Gain : $\approx 44 dB$

- Design I: M_1 , M_3 : $500\mu m/5\mu m$ PMOS M_2 , M_4 : $100\mu m/4\mu m$ NMOS $\Rightarrow e_n(IN) = 38\mu V$ 20Hz ~ 20KHz (33.9) Design I: M_1 , M_3 : $500\mu m/5\mu m$ PMOS M_2 , M_4 : $50\mu m/44\mu m$ NMOS $\Rightarrow e_n(IN) = 7.5\mu V$ 20Hz ~ 20KHz (6.9)
- 3) CMOS inverter amplifier

* Larger size WL \Rightarrow smaller noise If $g_{m1} \neq g_{m2}$

* Increase the channel length of the transistor having the highest a_n parameter.

Example : Bias current 100µA

Design I:
$$M_1$$
: $\frac{1000\mu m}{5\mu m}$, $M2$: $\frac{400\mu m}{4\mu m}$
 $\Rightarrow e_n(IN) = 8.1\mu V(7.97\mu V)$ 20Hz ~ 20KHz
Design II: M_1 : $\frac{1000\mu m}{5\mu m}$, $M2$: $\frac{200\mu m}{8\mu m}$
 $\Rightarrow e_n(IN) = 5.9\mu V(5.65\mu V)$ 20Hz ~ 20KHz
Design III: M_1 : $\frac{500\mu m}{10\mu m}$, $M2$: $\frac{400\mu m}{4\mu m}$
 $\Rightarrow e_n(IN) = 10.5\mu V(10.36\mu V)$
* Best noise figure \Rightarrow highest $\frac{W}{L}$ in PMOS

lowest W_L in NMOS

Note : WL for PMOS (NMOS) are the same.

Reference : J.-C. Bertails, JSSC, vol.SC-14, pp.773-776, Aug.1979. Noise spectrum of a typical MOSFET :

§7-2.4 Noise performance of CMOS OP AMPs

1.Midband Analysis

* At low frequency (<1KHz), $\frac{1}{f}$ noise dominates and $|A_d(w)| >>1$

 $\Rightarrow \overline{V_{ns}^{2}}$ has a negligible effect on the OP noise.

+ 0

The input stage dominates the overall noise contribution.

* At high frequency where $|A_d(w)| \approx \frac{g_{m7}}{g_{m6}} >> 1$, ($\because M_6$, M_7 is a level shifter, g_{m6} is small to obtain a large $V_{Gs6} \Rightarrow \frac{g_{m7}}{g_{m6}} >> 1$), the effect of

 $V_{n7}\,$ is comparable to that of $\,V_{n1}\,$ and $\,V_{n2}\,.$ Thus $\,M_7\,$ must be a low-noise device (like PMOS).

The effect of V_{no} is negligible on the total equivalent input noise voltage since the gain of the gain stage is very high.

§7-2.5 High frequency analysis (for white noise)

For CMOS 2-stage OP AMP (without level shifter), the small-signal equivalent circuit is

7 **-** 13 Chung-yu wu

(under unity-gain feedback)

$$\begin{aligned} \frac{V_{out}}{V_{in1}} &= \frac{A_{V}[1 - sC_{c}(\frac{1}{g_{m2}} - R_{z})]}{1 + A_{V} + as + bs^{2} + cs^{3}} \\ \frac{V_{out}}{V_{in2}} &= A_{V2} \frac{\{1 + s[C_{c}(R_{1} + R_{z}) + C_{1}R_{1}] + s^{2}C_{1}C_{c}R_{1}R_{z}\}}{(1 + A_{V}) + as + bs^{2}cs^{3}} \\ \text{when} \quad A_{V} &= A_{V1} + A_{V2} \\ a &= C_{c}[A_{V}(\frac{1}{g_{m1}} - \frac{1}{g_{m2}} + R_{z}) + R_{1} + R_{2} + R_{z}] + C_{1}R_{1} + C_{2}'R_{2} \\ b &= R_{1}R_{2}(C_{1}C_{2}' + C_{1}C_{c} + C_{2}'C_{c}) + R_{z}C_{c}(C_{1}R_{1} + C_{2}'R_{2}) \end{aligned}$$

$$\mathbf{c} = \mathbf{C}_1 \mathbf{C}_2 \mathbf{C}_{\mathbf{c}} \mathbf{R}_1 \mathbf{R}_2 \mathbf{R}_z$$

Usually, $|A_V| \gg 1$, $R_z \ll R_1$, $R_z \ll R_2$, $C_1 \ll C_c$, $C_1 \ll C_L$, and $C_2 \ll C_L$

$$\Rightarrow \text{ LHP Poleo : } P_{1} \approx -\frac{g_{ml}}{C_{c}}; P_{2} \approx -\frac{g_{m2}}{C_{L}}, P_{3} \approx -\frac{1}{C_{1}R_{z}}$$

$$\text{RHP zero } \left(\frac{V_{out1}}{V_{in1}}\right) : z_{1} = [C_{c}\left(\frac{1}{g_{m2}} - R_{z}\right)]^{-1};$$

$$\text{LHP zeros : } -\frac{1}{C_{c}R_{1}} = z_{2}, z_{3} \approx -\frac{1}{C_{1}R_{z}} \quad (z_{3} \Rightarrow \infty)$$

$$\text{If } R_{z} = \frac{1}{g_{m2}} \Rightarrow z_{1} = \infty$$

$$|z_{2}| < |P_{1}| < |P_{2}|$$

$$Z_{2} \approx -\frac{1}{CcR_{1}}$$

$$P_{1} \approx -\frac{g_{m1}}{C_{c}} \quad P_{2} \approx -\frac{g_{m2}}{C_{L}} \quad P_{1} \approx -\frac{g_{m1}}{C_{c}} \quad P_{2} \approx -\frac{g_{m2}}{C_{L}}$$

$$\frac{1}{Av_{1}} \quad P_{1} \approx -\frac{g_{m1}}{C_{c}} \quad P_{2} \approx -\frac{g_{m2}}{C_{L}} \quad P_{1} \approx -\frac{g_{m1}}{C_{c}} \quad P_{2} \approx -\frac{g_{m2}}{C_{L}}$$

The equivalent noise bandwidths are

$$BW_{1} = \frac{g_{m1}}{4C_{c}} \quad (= |P_{1}|/4)$$

$$BW_{2} = \frac{g_{m2}}{4C_{L}} - \frac{g_{m1}}{4C_{c}} \quad (= |P_{2}|/4 - |P_{1}|/4)$$

$$\approx \frac{g_{m2}}{4C_{L}} \quad (Cc \gg CL)$$

$$\overline{V}_{ntot}^{2} = \sum 4KT\gamma_{i} \frac{1}{g_{mi}} (BW_{i})A_{i}, \ \gamma_{i} = cons \tan t (\approx \frac{3}{2})$$

$$(Consider only thermal noise)$$

$$= \frac{A_{V}}{1 + A_{V}} 4KT\gamma_{1} \frac{1}{g_{m1}} (\frac{g_{m1}}{4C_{c}}) + \frac{A_{V2}}{1 + A_{V}} 4KT\gamma_{2} \frac{1}{g_{m2}} (\frac{g_{m2}}{4C_{L}})$$

$$= \frac{A_{v}}{1 + A_{v}} \gamma_{1} \frac{KT}{C_{c}} + \frac{A_{v2}}{1 + A_{v}} \gamma_{2} \frac{KT}{C_{L}}$$

where A_{V2} and A_{V} are average gains between P_1 and P_2 .

- * The total white noise of the OP AMP is inversely proportional to C_c and C_L .
- * Due to the foldover effect in SCF, white noise (thermal noise) becomes important.
- * 1) Clock feedthrough noise; 2) noises coupled from the power supplies, clock, and ground lines, and from the substrate; 3) white noise and flicker noise generated in the switches and OP AMPs are three major noise sources in the switched-capacitor circuits.

§7-2.6 Dynamic range of OP AMPs

 $V_{\mbox{\scriptsize in,max}}$: the maximum input voltage which an OP AMP can handle without

generating an excess amount of nonlinear distortion.

 $V_{\mbox{\scriptsize in,min}}$: the minimum input signal voltage which still does not drown in noise

and distortion.

Dynamic range = $20 \log_{10} \left(\frac{V_{\text{in,max}}}{V_{\text{in,min}}} \right)$

For an open-loop OP AMP,

 \Rightarrow Dynamic range $\approx 30 - 40$ dB.

7 - 15

CHUNG-YU WU

§7-3 Practical Design Consideration on Offset

§7-3.1 Input offset voltage of a CMOS OP AMP

7 **-** 16 Chung-yu wu

$$\Delta I = I_{1A} - I_{1B} = \frac{K_{P3A}}{2} \left(\frac{W}{L} \right)_{3A} (V_{GS3} - V_{TH3A})^2 - \frac{K_{P3B}}{2} \left(\frac{W}{L} \right)_{3B} (V_{GS3} - V_{TH3B})^2$$

$$= \frac{K_P}{2} \frac{W_3}{L_3} (V_{GS3} - V_{TH3})^2 \left(\frac{\Delta K_P}{K_P} + \frac{\Delta W_3}{W_3} - \frac{\Delta L_3}{L_3} - \frac{2\Delta V_{TH3}}{V_{GS3} - V_{TH3}} \right)$$

$$= I_1 \left(\frac{\Delta K_P}{K_P} + \frac{\Delta W_3}{W_3} - \frac{\Delta L_3}{L_3} - \frac{2\Delta V_{TH3}}{V_{GS3} - V_{TH3}} \right)$$

$$\Rightarrow V_{OS} = \Delta V_{TH1} + \left(\frac{2}{K_N} I_1 \frac{L_1}{W_1} \right)^2 \left[\frac{\Delta L_1}{2L_1} - \frac{\Delta W_1}{2W_1} - \frac{\Delta K_N}{2K_N} + \frac{\Delta K_P}{2K_P} + \frac{\Delta W_3}{2W_3} - \frac{\Delta L_3}{2L_3} - \frac{\Delta V_{TH3}}{V_{GS3} - V_{TH3}} \right]$$

$$\equiv \Delta V_{TH1} + \left(V_{GS1} - V_{TH1} \right) \left(\frac{\Delta W_3}{2W_3} + \frac{\Delta L_1}{2L_1} \right) - \left(\frac{K_P}{K_N} \frac{W_3}{W_1} \right)^2 \Delta V_{TH3} \quad (If \quad \frac{\Delta L_3}{2L_3}, \frac{\Delta W_1}{2W_1} \rightarrow 0)$$
2).Systematic offset. $V_{OS} = \frac{V_{Ode}}{A_O}$ where $V_{Ode} \neq 0$ and A_O is the dc gain of the OP AMP.

7-3.2 Low offset design techniques for CMOS OP AMPs

1. Layout techniques to reduce the random offset.

a).linear varation of devices across a row of transistor or a matrix of transistors.

 $\frac{V_{GS1}^{2}}{L_{1A}} + \frac{V_{GS1}^{2}}{L_{1B}} = \frac{V_{GS2}^{2}}{L_{2A}} + \frac{V_{GS2}^{2}}{L_{2B}} \Longrightarrow \frac{V_{GS1}}{V_{GS2}} \cong \sqrt{\frac{1 + KN}{K + N}}$

í/ **- 1**í/

CHUNG-YU WU If K=1 => precision channel length control $\Rightarrow \frac{V_{GS1}}{V_{GS1}} \cong 1 \Rightarrow$ Ordered dimension

$$\operatorname{error} \cong 0 \implies \operatorname{V}_{\operatorname{OS}} \cong 0$$

If K=1.1, N=1.1
$$\rightarrow \frac{V_{GS1}}{V_{GS2}} = 1.0023$$

But for single-pair design (1B, 2B, or 1A, 2A)

$$\frac{V_{GS1}}{V_{GS2}} = \sqrt{K} = \sqrt{1.1} = 1.049 \text{ larger } V_{GS} \text{ error } \Rightarrow \text{ larger } V_{OS}$$

Ref: RCA Review, vol. 39, pp.250-277, June 1978.

- Common-centroid structures to reduce ΔV_{TH} c)
 - IEEE JSSC, vol. SC-13, pp.791-798, Dec. 1978 Ref: IEEE JSSC, vol. SC-16, pp.661-668, Dec. 1981

2.General optimum matching rules to reduce the random offset

- 1. Same structure common-centroid geometries 5.
- 2. Same orientation Same temperature 6.
- 3. Same shape, same size Minimum distance

4.

8. Non minimum size

Same surroundings

Ref.: IEEE JSSC, vol. SC-20, pp.657-665, June 1985

3.Low $V_{GS} - V_{TH1}$ to reduce the dimensional random offset

4.Dimension design to eliminate the systematic offset

$$\frac{(W/L)_{3A}}{(W/L)_5} = \frac{(W/L)_{3B}}{(W/L)_5} = \frac{1}{2} \frac{(W/L)_2}{(W/L)_4} \Rightarrow V_{ode} = 0 \Rightarrow \text{systematic offset} \approx 0$$

7.

To avoid the process-induced variations in channel lengths, we usually choose $L_5 = L_{3A} = L_{3B}$. But this design will enhance the noise contribution from the PMOS M_{3A} , M_{3B} (NMOS M_{3A} , M_{3B} for PMOS-input structure).

 \rightarrow A compromise is required.

- 5.Sample-data techniques to eliminate the offset voltage.
 - IEEE JSSC, p.499, Aug. 1978 Ref.:

IEEE JSSC, vol. SC-10, pp.371-379, Dec. 1975

- IEEE JSSC, vol. SC-20, pp.805-807, June. 1985
- IEEE JSSC, vol. SC-17, pp.1008-1013, Dec. 1986
- IEEE JSSC, vol. SC-16, pp.745-748, Dec. 1981
- IEEE JSSC, pp.837-844, Aug. 1985
- Applications: Zero-offset OP AMPs, High-precision comparators,

Instrumentation amplifiers, High-precision amplifiers,

Switched-capacitor amplifier, Switched-capacitor network.

1) Offset cancellation in OP-AMP-based switched-capacitor(SC) amplifier

(2) Modified SC Amplifier

Step 1: Switch 1 ON, Switch 2 OFF:

Step 2: Switch 2 ON, Switch 1 OFF:

7 - 19 Chung-yu wu

*The charge injection error of the switched S1 cannot be eliminated.

2) Offset cancellation in precision amplifier

$$=100\mu V$$

$$C_{s} \uparrow \varepsilon \downarrow$$

or using the differential outputs rather than the single output to eliminate the common mode voltage ε

- * amplifier with offset voltage memorization
- * residual voltage successive memorization (RSM) amplifier
- * auto-zero design
- * chopper-stablized design
- ☆ capable of reducing the offset voltage by 1~4 order of magnitude

Chapter 8 Advanced Design Techniques and Recent Design Examples of CMOS OP AMPs

§8-1 Advanced Design Techniques of CMOS OP AMPs

§8-1.1 Improved PSRR and frequency compensation

P.6-26
$$\frac{\partial V_{out}}{\partial V_{ss}} \approx \frac{C_{gs}}{C_I} \left[\frac{\partial I_o}{\partial V_{ss}} \frac{1}{2g_{m1}} + \frac{\partial V_{GS1}}{V_{ss}} \right] + \frac{C_{gd}}{C_I} \frac{1}{2g_{m3}} \frac{\partial I_o}{\partial V_{ss}}$$

$$\frac{\partial V_{out}}{\partial V_{DD}} \approx \frac{C_{gd}}{C_I} \left[1 - \frac{\partial I_o}{\partial V_{DD}} \frac{1}{2g_{m3}} \right] + \frac{C_{gs}}{C_I} \frac{1}{2g_{m1}} \frac{\partial I_o}{\partial V_{DD}}$$

Where I_o represents the input stage bias current.

If I_o is independent of V_{ss} and V_{DD}

and the input devices have no body effect.

$$\implies \frac{\partial V_{out}}{\partial V_{ss}} \to 0 \quad \frac{\partial V_{out}}{\partial V_{DD}} \to -\frac{C_{gd}}{C_I}$$

Ref.: IEEE JSSC, vol. SC-15, pp.929-938, Dec. 1980

*Tracking RC compensation

Conceptual circuits :

In the quiescent case ,Vin2=Vos2

If
$$(W/L)_A \approx [(W/L)_B \bullet (W/L)_C \bullet K]^{1/2} \frac{Cc}{Cc+C_L}$$

=> $R_{dsA} \approx \frac{Cc+C_L}{g_{m2}Cc} \approx Rc$

The requires Rc is $Rc = 1/g_{m2}[1 + (C_d + C_L)/C_c] \approx 1/g_{m2}[(C_c + C_L)/C_c]$

Thus LHP zero=LHP pole P2

and P3 becomes the second pole.

The stability considerations,

$$P_{3} \ge A_{do}P_{1}$$

or
$$Cc \ge \sqrt{\frac{g_{m1}}{g_{m2}}c_{1}c_{L}}$$

allows a smaller gm2 and larger C_L

* $R_{dsA} \approx Rc$ indep of temperature, process, and supply variations.

=>Tracking design to make sure that z=P₂

=>No pole-zero doublet problem!

8-3 CHUNG-YU WU

* M17,Cc : Tracking RC compensation.

* M9,M11:Sharing the separate n-well.

* V_{BIAS} is not strictly independent of V_{DD} and V_{SS} .

§8-1.2 Improved frequency compensation technique.Ref.: IEEE JSSC ,vol.sc-18, pp 629-633, Dec.1983

Grounded gate cascode compensation

MB,Cgs7:low pass filter for high frequency noises.

M8,M9,M10:new compensation circuit.

M11~M16:Bias generator.

Conceptual circuits:

Net current in C_c $(C_c \frac{d}{dt}V_o)$ enters the second stage.

The input voltage Vi can't reach the node A

- → * Better PSRR (no low-freq. zero), especially PSRR
 - * Allow larger capacitive loads.
 - * Slight increase in complexity , random offset and noise.

§ 8-1.3 Improved cascode structure

1. To improve gain:

Ref: IEEE JSSC, vol. SC-17, pp. 969-982, Dec. 1982

- * Substantial reduction in input-stage common-mode range.
- * Improved wilson current source is used as the load to improve the balance of the first stage.

- * Inverting mode only. (+ grounded)
- * Capable of high current driving and high voltage gain.
- * Not a differential-amplifier-based OP AMP.

3. Cascoded CMOS OP AMP with high ac PSRR

Ref: (1) IEEE JSSC , vol. SC-19, pp.55-61, Feb. 1984

(2) IEEE JSSC , vol SC-19, pp. 919-925, Dec. 1984

1) Original version

Chrarcteristics:

 $V_{DD}=V_{SS}=2.5V$ Input offset voltage5mVSupply current100ì AOutput voltage range $-V_{SS}\sim V_{DD}$ Input common mode range $-V_{SS}+1.47V \sim V_{DD}$ CMRR @ 1KHz99dBUnity-gain frequency1.0MHzSlew rate1.8 V/ì sec

- * Better input common-mode range.
- * Vic \rightarrow V_{DSN4} \rightarrow I_{DSN4} \rightarrow V_A \rightarrow M_{N8} is turned on \rightarrow V_{out} -V_{SS} voltage spike at V_{out}.
- * The possible spike in the settling period.
- 2) Improved version

- * M_{12} , M_{13} and M_{14} : Let the drain bias currents of M_{10} and M_{11} follow the change of I_{D7} under positive input common mode voltage.
 - \Rightarrow No voltage spike at V_{out}

Also serves as CMFB

- * Better PSRR and input common-mode range.
- * C_c is decoupled from the gate of the driver M_8 .

4.Simple cascoded CMOS OP AMP

Ref.:IEEE JSSC, vol.SC-19, pp.919~925, Dec. 1984

- * Good PSRR
- * Reduced input common range.

⇒ restrict its applications to those which use a virtual ground. 5.Single-stage cascode OTA

Ref.: IEEE JSSC , vol. SC-20 , pp.657~665 , June 1985

 T_9, T_{10} : Cascode structure

- * Output conductance \downarrow without any noise penalty and with only a very small reduction of phase margin.
 - \Rightarrow Gain \uparrow no any compensation is necessary.
- * Maximum output swing \downarrow

§ 8-2 Advanced Design Techniques on High-frequency Non-differential-type CMOS OP AMPs

- 1. Single-ended push-pull CMOS OP AMP
 - *Current-gain-based design

Parameter	Measured Value
DC-Open Circuit Gain	69dB
Unity0Gain Bandwidth	70MHz
Phase Margin	40°
Slew Rate	200V/msec
PSRR (DC ⁺)	68dB
PSRR (DC ⁻)	66dB
Input Offset Voltage	10mV
CMRR (DC)	62dB
Output Voltage Swing	1.5V _P
Output Resistance	3 <i>M</i> Ω
Input Referred Noise (@1KHz)	$0.54 \text{ mV} / \sqrt{Hz}$
DC-Power Dissipation	1.1mWatt

 $V_{DD} = +3V$; $V_{CC} = -3V$; $I_{B1} = 50 \text{ m}$; CL=1pF

TABLE II

Bias Current	Unity-Gain	DC-Open Circuit	DC-Power
	Bandwidth	Voltage Gain	Dissipation
25 m A	50MHz	70dB	0.55mW
50 m A	70MHz	69dB	1.1mW
100 m A	100MHz	66dB	2.2mW

 $V_{DD} = +3V$; $V_{CC} = -3V$; CL=1pF

2.Low output resistance CMOS OP AMP

 $*C_L$ is a compensation capacitor

*For low-resistance load

*Smaller maximum output voltage swing.

 $*I_{B1} = 50 \text{ mA}, C_L = 1 pF$, $f_u = 60 MHz$

§ 8-3 Advanced Design Techniques on High-drive MOS Power or Buffer OP AMPs§ 8-3.1 Efficient Output Stages.

A. CMOS output stage using a biplar emitter follower and a low-threshold PMOS source follower.

B. Complementary class B output stage using compound devices with common-source output MOS.

§ 8-3.2 High-drive power or buffer CMOS OP AMPs

1. Large swing CMOS power amplifier (National Semiconductor)

* Noninverting unity gain amplifier

 $V_{in} \cong V_{out}$

- M_6 provides the negative feedback
- * A_1, M_6 and A_2, M_{6A} form a class AB push-pull output stage.
- * Full swing from $+V_{DD}$ to $-V_{SS}$
- * M_{9}, M_{10}, M_{11} , and M_{12} form a current feedback to stablize the bias current of M_{6} and M_{6A} .

Offset in A_1 , e.g. $V_{inA1}^{-} \uparrow \Rightarrow V_{outA1} \downarrow \Rightarrow I_{DM6} \uparrow$ and $I_{DM9} \uparrow \Rightarrow I_{DM11} \uparrow$ and $I_{DM12} \uparrow \Rightarrow V_{GSM8A} \uparrow$ and $V_{inA2}^{+} \downarrow \Rightarrow V_{out} \uparrow$, i.e. $V_{inA1}^{+} \uparrow \Rightarrow V_{out} \downarrow \Rightarrow V_{inA1}^{-} \downarrow$ (virtual short between + and -) $\Rightarrow V_{inA2}^{-} \downarrow$

througt $M_8 \Rightarrow$ All the bias voltage and current are restored to the normal values and the offset is absorbed by M_{8A} .

Since the current feedback is not unity gain , some current variation in transistors M_6 and M_{6A} still exists.

Large positive common mode range allows M_6 to source large amount of current to the load. (because $V_{in} \cong V_{out}$)

The maximum V_{GS6} which M_1 and M_2 still in the saturation region is

$$V_{GS6 max} = -(V_{DD} - (V_{IN} - V_{GS1} + V_{DSAT1})) = -(V_{CC} - V_{IN} + V_{TH1})$$

$$\Rightarrow V_{TH \, I} \uparrow \Rightarrow V_{GS6 \, max} \uparrow \Rightarrow I_{DM6} \uparrow$$

(1). Threshold implant to increase V_{THO1}

(2). Negative substrate bias $-V_{SS}$ to increase V_{THI}

- * The input stage is not shown in the diagram.
- * M_{16}, M_8, M_{17} form the second stage with C_D the Miller compensation capacitor.
- * If $V_{out} \rightarrow -V_{SS}, V_{DSM5} \rightarrow 0$ and $I_{DSM5} \rightarrow 0$.

 $\Rightarrow M_1, M_2, M_3$ and M_4 are off

- $\Rightarrow M_{3H}$ and M_{4H} are still on to keep $V_{GS6} \cong 0V$.
 - Otherwise, M_6 will be turned on.

Similarly, M_{3HA} and M_{4HA} turn off M_{6A} in the positive voltage swing

* $M_{P3}, M_{N3}, M_{N4}, M_{P4}$ and M_{P5} are output short-circuit protection circuitry. Normally, M_{P5} is off. When $I_{DM6} \cong 60mA$, $I_{DMP3} \uparrow \Rightarrow I_{DMN4} \uparrow \Rightarrow V_{GSMP5} \uparrow$.

 $\Rightarrow I_{DM6}$ is limited to approximately 60 mA.

Table I
POWER AMPLIFIER PREFORMANCE

Parameter	Simulation	Measured
		Results
Power dissipation($\pm 5V$)	7.0mW	5.0mW
$A_{\rm vol}$	82dB	83dB
F _u	500KHz	420KHz
V _{offset}	0.4mV	1mV
PSRR+(dc)	85dB	86dB
(1KHz)	81dB	80dB
PSRR-(dc)	104dB	106dB
(1KHz)	98dB	98dB
THD $V_{IN}=3.3V_p R_L=300\Omega$	0.03%	0.13%(1KHz)
C _L =1000 pF	0.08%	0.32%(4KHz)
V_{IN} =4.0 V_p R _L =15 k Ω	0.05%	0.13%(1KHz)
C _L =200 pF	0.16%	0.20%(4KHz)
$T_{settling} (0.1\%)$	3.0us	<5.0us
Slew rate	0.8V/us	0.6V/us
1/f noise at 1KHz	N/A	130nV/Hz
Broad-band noise	N/A	49nV/Hz
Die area		1500mils ²

MI6	184/9	M8A	481/6
MI7	66/12	M13	66/12
M8	184/6	M9	27/6
M1,M2	36/10	M10	6/22
M3,M4	194/6	M11	14/6
M3H,M4H	16/12	M12	140/6
M5	145/12	MP3	8/6
M6	2647/6	MN3	244/6
MRC	48/10	MP4	43/12
CC	11.0	MN4	12/6
M1A,M2A	88/12	MP5	6/6
M3A,M4A	196/6	MN3A	6/6
M3HA,M4HA	10/12	MP3A	337/6
M5A	229/12	MN4A	24/12
M6A	2420/6	MP4A	20/12
MRF	25/12	MN5A	6/6
CF	10.0		

Maximum loads : 300Ω and 1000pF to ground.

Ref.:IEEE JSSC, vol.SC-18, pp.624-629, Dec.1983

- 2. High-performance CMOS power amplifier (Siemens AG)
 - (1). New input stage : 3 gain stages.

* Cc is connected to the source of M_9 to improve PSRR

* Three poles and one zero :

$$Z = \frac{-2g_{m6}g_{m8}g_{m13}}{C_c g_{m6}g_{m13} + C_1 g_{m8}g_{m12}}$$
LHP.
$$P_1 \cong \frac{-g_{ds10}g_o}{g_{m13}C_c}$$

$$P_2, P_3 \cong \frac{-g_{m8}(C_c + C_o)}{2C_o C_c} \pm j \left[\frac{g_{m8}g_{m13}}{C_o C_1} - \left(\frac{g_{m8}(C_o + C_c)}{2C_o C_c} \right)^2 \right]^{1/2}$$

where

$$g_o \equiv g_{ds12} + g_{ds13}$$

$$C_{O} = C_{L} + C_{db12} + C_{db13}$$

$$C_1 = C_{gs13} + C_{db11} + C_{db9} + C_{gd9}$$

Design guidelines for stability :

 g_{m8} large, $g_{m13} >> g_{m6}$

(2). Output stage

Class AB source follower

- * One pole and one zero at high frequencies.
- * Not full swing

Pseudo source follower

- * The quiescent current in M_1 and M_2 will vary widely with variations in Vos1 and Vos2.
- * Suitable common-mode range of the two amplifiers A_1 and A_2 are required.
- * Large phase shift at high frequencies due to A_1 and $A_2 \Rightarrow$ stability problem.

Combined output stage:

- * M_1 and M_2 are turned off in the quiescent state by building a small offset voltage into A_1 and $A_2 \Rightarrow M_3$ - M_6 control the output quiescent currents.
- * $M_2(M_1)$ sinks (sources) approximately 95% of the required currents.
- * M_1 and M_2 provide a high-frequency feed-forward path.

Still has a smaller swing limited by M_5 , M_6 .

- * $M_{13},\ M_{14}$ and M_{15} form a circuit to turn off M_{15} when $V_{out} < V_{TP13}$ (negative)
- * C_c : compensation.
- * Three poles and one zeros.

$$Z_1 \approx -\frac{g_{m7} + g_{mbs7}}{C_c + C_{gs7}}$$

$$P_1 \approx \frac{-g_L}{C_L + C_C \frac{g_{m15}}{g_{ds6}}}$$

$$P_{2}, P_{3} \approx -\frac{g_{m7}(C_{c} + C_{L})}{2C_{c}C_{L}} \pm j \left[\frac{g_{m7}g_{ds6}(C_{L} + C_{c}\frac{g_{m15}}{g_{ds6}})}{C_{c}C_{L}C_{1}} - \left(\frac{g_{m7}(C_{c} + C_{L})}{2C_{c}C_{L}}\right)^{2} \right]^{\frac{1}{2}} \quad \text{where}$$

$$C_1 = C_{gs9} + C_{db6} + C_{db7} + C_{gd7}$$

NUL1 40	/10	N /T 1
TABLE I	Componen	t Sizes

M 1	400/15	MH1	48/10	ML1	48/6
M2	400/15	MH2	50/10	ML2	50/6
M3	150/10	MH3	500/15	ML3	300/15
M4	150/10	MH4	300/6	ML4	150/5
M5	100/15	MH5	300/6	ML5	100/5
M6	150/10	MH6	200/5	ML6	300/6
M7	150/10	MH7	250/15	ML7	100/15
M8	300/5	MH8	700/6	ML8	400/5
M9	300/5	MH9	15/6	ML9	5/5
M10	300/10	MH10	10/15	ML10	5/15
M11	300/10	MH11	20/15	ML11	15/15
M12	1200/10	Cc1	20pf		
M13	600/10	Cc2	4pf		
M14	200/5	Cc3	4pf		
M15	200/5				
M16	600/6				
M17	600/6				

POWER AMPLIFIER PERFORMANCE SUMMARY

(First	Revision)
--------	-----------

parameter	Measured Results
Supplies	±5V
Open-Loop Gain	93dB
Bandwidth	1.2MHz
Power Dissipation \overline{x}	12.7 mW
ó	1.76mW
Output Swing (R _L =200Ù)	±3.1V
PSRR+ at DC	93dB
1 kHz	91dB
10 kHz	76dB
100 kHz	60dB
PSRR- at DC	102dB
1 kHz	89dB
10 kHz	75dB
100 kHz	53dB
Slew Rate	1.5V/ì s
Input Common Mode Range	+3.3V
	-5.5V
Die Area (5ì m CMOS)	1000 mils^2
Harmonic Distortion (3 kHz)	
$V_{in}=3 V_p R_L=200 \tilde{U}$	
HD2	-73dB
HD3	-78dB

Maximum Loads : 1000pF and 200Ùto ground.

Ref.: IEEE JSSC , vol. sc-20, pp.1200-1205, Dec. 1985.

3. Efficient Unity-gain CMOS buffer for driving large C_L.

TABLE I TRANSISTORS' DIMENSIONS

TRANSISTOR	W (µm)	L (µm)		
MX1, MX5	225	3		
MX2	75	3		
MX3	30	3		
MX4, MX6	90	3		
MR1	6	21		
MA1, MA4	45	3		
MA2, MA3	450	3		
MA5	36	3		
MX7	600	3		
MX8	240	3		

- * M_{R1} has a low W/L and is operated in the linear region
 - \Rightarrow like a linear resistor.
- $* \quad M_{X2} \text{ and } M_{X3} \\$

Quiescent operation:

 $\Leftrightarrow \ M_{X2} \text{ and } M_{X3} \text{ are on.}$

8 - 22

 \Rightarrow Provide a low-impedance level at node A and B. CHUNG-YU WU

The low-order poles created by the Miller cap. of $M_{\!X7}$ and $M_{\!X8}$ can be avoid

* If $V_{in} \ll 0$

 $M_{X3}\mathchar`-M_{X6}$ are turned off and M_{X1} and M_{X2} are on

 \Rightarrow Node A has a high voltage \Rightarrow M_{X7} off.

 $V_B = V_A$ because of $M_{R1} \Rightarrow M_{X8}$ on.

* In the bias circuit, $M_{R2} \leftrightarrow M_{R1}$, $M_{B1} \leftrightarrow M_{X1}$, $M_{B2} \leftrightarrow M_{X2}$, $M_{B3} \leftrightarrow M_{X3}$, $M_{B4} \leftrightarrow M_{X4}$.

In the quiescent case, $V_{GSMX1} \approx V_{GSMX7}$ and $V_{GSMX4} \approx V_{GSMX8}$

- \Rightarrow The current in M_{B1} and M_{B4} controls that in M_{X1} and M_{X4} and M_{X7} and M_{X8}.
- * R_{BIAS} controls the current through M_{B2} and M_{B3} .

 \Rightarrow i.e. the current through M_{X2} and M_{X3} .

Characteristics:

 $3 \,\mu m$ CMOS area: $100 mils^2$.

 $C_L \ge 100 pF$ and $R_L \ge 10 k\Omega$: stable.

C_L=5000pF ⇒ $f \approx 100$ kHz.

PARAMETER	MEASURED VALUE	SPICE		
Supply Voltage	± 2.5 V	± 2.5 V		
Supply Current	285 µA	270 µA		
Voffset	< 10 mV	5 mV		
Voltage Gain	+ 1.00 V/V	+ 1.00 V/V		
F _{3dB} (C _L =100pF)	6 MHz	8 MHz		
Gain Peaking	0.4 dB	0		
R _{oCL}	330 Ω	$270 \ \Omega$		
CMRR	80 dB	84 dB		
Input CM Range	± 1.8 V	± 1.7 V		
SR (CL=5nF)	$\pm 0.9 \text{ V/}\mu\text{s}$	\pm 1.0 V/µs		

TABLE II
BUFFER'S PERFORMANCE

T_{settling} (to 1%) 3.9 µs 4 µs

8 - 23 Chungi yu wu

Input Noise Density		CHUNG-
F = 1 kHz	270 $V/\sqrt{H_Z}$	NA
F = 50 kHz	70 $V / \sqrt{H_Z}$	NA

Ref.: IEEE JSSC, vol. sc-21, pp.464-469, June 1986.

§ 8-4 Advanced Design Techniques on Fully differential type CMOS OP AMPs

1. Low-noise chopper-stabilized OP AMP

Techniques for the reduction of 1/f noise:

1) Use large device geometries.

Possibly too large chip area.

2) Use buried channel devices

Not a standard technology.

3) Transform the noise to a higher frequency range

So that it does not contarninate the signal.

- a. The correlated double sampling (CDS) method
- b. The chopper stabilization method

a. CDS method

 \Rightarrow Noise reduction

b. Chopper stabilization method

* If the chopper frequency is much higher than the signal bandwidth, the 1/f noise in the signal band will be greatly reduced.

Example: Fully differential class AB chopper stabilized OP AMP with DCMFB circuit.

Major advantage of fully differential OP AMPs:

- 1. Improvement of PSRR
- 2. Improvement of dynamic range
- 3. double the output swing
- 4. Reduction on the sensitivity to clock and supply noise.

- 1. Larger area, mainly due to interconnection
- 2. Additional design complexity
- 3. Increase power dissipation.

M43-M46, M47-M54: the input chopper and the output chopper.

M29-M42,	C1-C4 :	DCMFB	circuit
----------	---------	-------	---------

Device	W(um)	L(um)	Device	W(um)	L(um)
M1	25	3	M19	7	3.5
M2	25	3	M20	7	3.5
M3	25	3	M21	17.5	3.5
M4	25	3	M22	17.5	3.5
M5	25	3	M23	7	3.5
M6	25	3	M24	7	3.5

8 - 25 Chung-yu wu

M7	25	3	M25	3.5	3.5
M8	25	3	M26	3.5	3.5

 C_L

M9	10	3.5	M27	3	7
M10	10	3.5	M28	3	7
M11	4	3.5	M29	12	3.5
M12	4	3.5	M30	12	3.5
M13	17.5	3.5	M31	16	3.5
M14	17.5	3.5	M32	18	3.5
M15	7	3.5	M33-M34	7	3
M16	7	3.5	M55	7	3
M17	17.5	3.5	M56	7	3
M18	17.5	3.5			

Ref: IEEE JSSC vol.sc-21, pp.57-64 Feb.1986

2. Fully differential folded cascode amplifier(National Semiconductor)

For internal OP AMPs, high output impedance is O.K.

 \Rightarrow simple 2-stage or single-stage OP AMP.

TWO-STAGE

SINGLE-STAGE

CASCODE

	FOR THE TWO-AND SINGLE-STAGE AMPLIFIERS		
	Dominant	Nondominant	
	pole location	pole location	
Two-stage		<u>g_m</u>	
amplifier	$r_o C_c g_m r_o$	C_L	
One-stage	1	g_m	
amplifier	$r_o C_L g_m r_o$	C_p	

DOMINANT AND NONDOMINANT POLE LOCATIONS FOR THE TWO-AND SINGLE-STAGE AMPLIFIERS

In general, the higher the 2nd pole frequency, the faster the settling response.

 \Rightarrow Single-stage cascode amp. has a faster settling behavior.

CMFB: Common-mode feedback circuitry

3. High-performance micropower fully differential OP AMP.

Simplified schematic of the class AB amplifier:

8 - 27 Chung-yu wu

Active portion of the amplifier for a positive input signal.

Detailed schematic of the entire amplifier without CMFB:

* NMOS dynamically biased current mirror:

If
$$I_9 = I_{30}$$
, $V_{GS9} = V_{GS13} = V_{GS15}$
 $V_{DS13} = V_{GS30} - V_{GS9}$

Set
$$V_{DG13} = -V_{TH} \Longrightarrow V_{GS30} = 2V_{GS9} - V_{TH}$$

Design $\left(\frac{W}{L}\right)_{30}$, such that $V_{GS30} = 2V_{GS9} - V_{TH}$

 $\Rightarrow M_{13}$ is always sat. at the edge of the linear region.

 \Rightarrow Output swing \uparrow

* Dynamic CMFB is used.

AMPLIFIER DEVICE SIZES

DEVICE	Z(µm)	L(µ m)
M1	180	6
M2	180	6
M3	140	6
M4	140	6
M5	150	6
M6	150	6
M7	200	6
M8	200	6
M9	22	10
M10	22	10

M11	29	7
M12	29	7
M13	22	10
M14	29	7
M15	22	6
M16	29	6
M17	29	7
M18	22	10
M19	22	6
M20	29	6
M21	20	9
M22	6	12
M23	28	6
M24	6	14
M25	20	9
M26	6	12
M27	28	6
M30	6	14

AMPLIFIER SPECIFICATIONS

CORE AMPLIFIER SPECIFICATIONS			
(0-5 Volts Supply)			
100 µ W Quiescent	Power Dissipation		
DIFFERENTIAL GAIN >10.000*			
UNITY GAIN FREQUENCY	2 MHz*		
NOISE	140 nV/ \sqrt{Hz} 1KHz 50 nV/ \sqrt{Hz} white		
OUTPUT SWING	0.5 Volts from Supply*		
AREA	$300 mils^2$		

★inferred from filter measurement

Ref: IEEE JSSC, vol. SC-20, pp.1122-1132, Dec. 1985

4. Fully differential class AB OP AMP with CMFB circuit

Characteristics:

Technology	: 5um, P-well CMOS, double-poly cap.		
Open loop gian	: 1180	unity-gain freq	: 10Mhez
CMRR	: 61db	power consumption	n : 2.3mw
Area	: 290 mils ²	power supply	$:\pm 5V$

Ref: IEEE JSSC ,vol.sc-20 , pp.1103-1112 , Ddec,1985

§ 8-5 Recent Design Examples of CMOS OP AMPs

§ 8-5.1 Fast-settling CMOS OP AMP for SC Circuit with 90-dB DC Gain

Reference : IEEE JSSC, vol.25, no.6, pp.1379-1384, Dec 1990.

1.Gain boosting

1) Cascode gain stage with gain enhancement

$$R_{out} = [g_{m2}r_{o2}(A_{add} + 1) + 1]r_{o1} + r_{o2}$$

$$A_{tot} = g_{m1}r_{o1}[g_{m2}r_{o2}(A_{add} + 1) + 1]$$

$$A_{orig} = g_{m1}g_{m2}r_{o1}r_{o2}$$

2) Repetitive implementation of gain enhancement

2.High-frequency behavior

 \boldsymbol{w}_3 : Upper 3-dB frequency of A_{orig}

- w_5 : Unity-gain frequency of A_{tot}
- \boldsymbol{w}_2 : Upper 3-dB frequency of A_{add}
- \boldsymbol{w}_4 : Unity-gain frequency of A_{add}
- \boldsymbol{w}_1 : Upper 3-dB frequency of A_{tot}
- w_5 : Unity-gain frequency of A_{orig}

We want $\omega_5 |_{Aorig} = \omega_5 |_{Atot}$

 $\omega_2 > \omega_1 =>$ The bandwidth is determined by ω_1 , i.e. Rout and Cload.

 $\Rightarrow \omega_4 > \omega_3$

But $\omega_4 < \omega_5$ for easy design of A_{add} .

 A_{add} and M2 forms a close loop with the dominant pole of ω_2 and the second pole at the source of M2, i.e. ω_6

The stability consideration requires $\omega_4 < \omega_6$

 \Rightarrow The safe range of ω_4 is

 $\omega_3 < \omega_4 < \omega_6$

* The repetitive usage of the gain-enhancement techniques yields a decoupling of the op-amp gain and unity-gain frequency fu. That is: gain \uparrow without fu \downarrow .

3.Settling behavior

1. Total output impedance Ztot Ztot= $Z_{load} // Z_{out}$

Z_{load}: impedance of C_{load} Zout: output impedance of the amplifier Zout \cong Zorig (Add+1)

 ω_2 : Upper-3dB freq. Of A_{add}

 \rightarrow the same for Z_{out}

 ω_A : Unity-gain freq. Of A_{add}

For $\boldsymbol{\omega} > \boldsymbol{\omega}_4$, $A_{add} < 1 \rightarrow Z_{out} \rightarrow Z_{orig}$

 \rightarrow A zero is formed at ω_4 for Z_{out}

 $Z_{total} = Z_{load} \parallel Z_{out}$ \Rightarrow A pole-zero doublet is formed around ω_4

 \rightarrow The same doublet of A_{total}

3. Design technique for fast settling

The time constant of the doublet, $\frac{1}{\omega_{_{PZ}}}$, must be smaller than the main close-loop time

constant, $\frac{1}{\beta \omega_{\text{unity}}}$. where β is the feedback factor.

The safe range for the ω_4 .

4. CMOS OP AMP circuit

8 - 34 Chung-yu wu

-VSS

MAIN CHARACTERISTICS OF THE OP AMP

Gain enh.	on	Off
DC-gain	90dB	46dB
Unity-gain freq.	116MHz	120MHz
Load cap.	16pF	16pF
Phase margin	64deg.	63deg
Power cons.	52mW	45mW
Output-swing	4.2V	4.2V
Supply voltage	5.0V	5.0V
Settling time	61.5ns	-
0.1% , $\Delta V_o = 1V$		

§ 8-5.2 1V Rail-to-Rail CMOS OP AMPs

Ref.: IEEE JSSC vol.35, no.1, pp.33-44 Jan. 2000

Typical input stage for rail-to-rail amplifiers
 * Parallel-connected complementary
 * Operating zones for low VDD/VSS differential pairs.

* The input resistance over the entire voltage range is infinite and no loading effect or input current over the previous stage.

Usually mismatches cause negligible input current.

* The symmetrical topology ensures very high CMRR

$$CMRR = \frac{1}{RG_m} \left(\frac{\Delta R}{R} + \frac{\Delta G_m}{G_m}\right)^{-1}$$

where $G_m = \Delta I / \Delta V_{i,cm}$

3. Rail-to-rail very LV CMOS OP AMP with input dynamic level-shifting circuit

MAIN TRANSISTOR ASPECT RATIOS (IN μm) AND ELEMENT VALUES OF THE AMPLIFIER BASED ON COMPLEMENTARY PAIRS

M1A,M1B	400/5	M15	700/2
M2A,M2B	200/5	R1-R4	30 <i>K</i> Ω
M1,M2	400/2	R_{M}	5 ΚΩ
M3,M4	200/2	C_{M}	10pF
M5-M8	400/5	$I_{bn} = I_{bp}$	10μΑ
M9-M12	500/5	I_o	40μΑ

4. Input CM adapter

$$Vx = A[2V_{ref} - (V_{i,p}^{+} + V_{i,p}^{-})]$$
$$= 2A(V_{ref} - V_{i,p,cm})$$
$$I = G_m V_x$$
$$= V_{i,p,cm} \cong V_{ref} + \frac{V_{i,cm}}{2RG_m A}$$
$$V_{i,p,dm} = V_{i,dm}$$

 $V_{i,cm}$ is degraded by A and $V_{i,p,cm} \cong V_{ref}$

Circuit implementation:

5. Very LV CMOS OP AMP with a single differential pair and the input CM adapter.

Main transistor ratios(in µm) and element values of the amplifier based on a single input pair

M1A M1B	1000/6	M6	1600/2
M2A M2B	600/4	M7-M10	300/4
MA1-MA4	50/2	M11	700/2
MA5-MA6	300/4	R1-R2	15KΩ
M2D	150/2	Rм	5ΚΩ
M1,M2	200/2	См	5pF
M3-M5	400/2	Is=Ir/2	10μΑ

6.Measured results

Experimental performance of amplifiers(Vsupply=1V,technology:1.2µm CMOS, C_L=15pF)

Parameter	Dynamic-shifting amp	CM adapater amp
Active die area	0.81mm ²	0.26 mm^2
Ido(supply current)	410uA	208uA
DC gain	87dB	70.5dB
unity-gain frequency	1.9Mhz	2.1Mhz
Phase margin	61°	73°
SR+	0.8V/us	0.9V/us
SR-	1V/us	1.7V/us
THD(<u>0.5Vpp@1kHz</u>)	-54dB	-77dB
THD(<u>0.5Vpp@40kHz</u>	-32dB	-57dB
Vni(@1KHz)	$267 \mathrm{nV}/\sqrt{H_z}$	$359 \mathrm{nV} / \sqrt{Hz}$
Vni(@10KHz)	91 nV/ \sqrt{Hz}	$171 \text{nV}/\sqrt{Hz}$
Vni(@1MHz)	74 nV/ \sqrt{Hz}	82 nV/ \sqrt{Hz}
CMRR	62dB	58dB
PSRR+	-54.4dB	-56.7dB
PSRR-	-52.1dB	-51.5dB

§8-5.3 1.5V High Drive Capability CMOS OP AMP

Ref.: IEEE JSSC vol.34, no.2, pp. 248-252, Feb. 1999

8 - 39

CMR of the conventional NMOS-input differential pair is 0.3-0.5V

2. Output Stage

Input section : M1A-M4A , I_{B1} , I_{B2} Output section: M5A-M6A and M7A-M8A M5A, M8A sat

M6A, M7A off.

For low input levels , M6A and M7A off \rightarrow Class A operation.

For large positive input signals,

 $I_{D1A}=I_{B1} \rightarrow M3A$ and M5A OFF

 $\rightarrow V_A - V_{SS}$

 \rightarrow M_{6A} is turned on to supply most of the output current.

But M7A remains cutoff.

The current of M8A is increased.

For large negative input signals, M_{7A} supplies most of the output current.

 $(W/L)_{5A,8A} \ll (W/L)_{6A,7A}$ for low dc power dissipation and high drive.

3. Overall LV CMOS OP AMP.

Dominant pole : Wp1
$$\approx \frac{1}{r_{o5,7} \{(g_{m8}r_{o8,9})2[g_{m5A,8A}(r_{o5A} || r_{o8A})]\}Cc}$$

Gain-bandwidth product: $W_{GBW} \approx \frac{g_{m1,2}}{C_{c1}}$

Hybrid nested Miller compensation: C_{C1} , C_{C2} , $C_{C3A,B}$ The inner amplifier M_8 , M_9 , M_{1A} ~ M_{8A} contributes the nondominant poles.

* The two-stage OP AMP M₁~M₉ has a gain-bandwidth product of $\frac{g_{m1,2}}{C_{c2}}$

and the gain of $\frac{g_{m1,2}}{sC_{c2}}$ at high frequency. The gain of M₁-M₇ at high frequency is

$$\frac{g_{m1,2}}{sC_{c1}}$$
. Thus the gain of the gain stage M8 and M9 is approximately equal to $\frac{C_{C1}}{C_{C2}}$.

* The open-loop gain of the inner amplifier is

$$A_{in} \cong -\left(\frac{C_{C1}}{C_{C2}}\right) \left(\frac{g_{m1A,2A}}{g_{m3A,4A}}\right) 2g_{m5A,8A}(r_{o5A} \| r_{o8A})$$

Dominant pole : $\mathbf{W}_{P1in} \cong \frac{g_{m3A,4A}}{g_{m5A,8A}(r_{o5A} \parallel r_{o8A})C_{C3A,B}}$

Second pole : $\boldsymbol{W}_{P2in} \cong \frac{2g_{m5A,8A}}{C_L}$

Gain-bandwidth product : $\boldsymbol{W}_{GBWin} \cong 2 \frac{C_{C1}}{C_{C2}} \frac{g_{m1A,2A}}{C_{C3A,B}}$ or the second pole of the whole amplifier

Design consideration :

To obtain a maximally flat Butterworth response without gain peaking, we have the unity-gain frequency equal to one half of the second-pole frequency.

$$\boldsymbol{w}_{GBWin} = \boldsymbol{w}_{uin} = \frac{1}{2} \boldsymbol{w}_{P2in}$$
$$\boldsymbol{w}_{GBW} = \boldsymbol{w}_{u} = \frac{1}{2} \boldsymbol{w}_{uin} = \frac{1}{2} \boldsymbol{w}_{GBWin}$$

Reference : IEEE JSSC, vol.27, pp.1709-1716, Dec. 1992.

Setting $2C_{C3A,B} = C_{C2}$, we have

$$C_{C1} = 2 \frac{g_{m1,2}}{g_{m5A,8A}} C_L$$

$$C_{C2} = 2C_{C3A,B} = \sqrt{2g_{m1,2}g_{m1A,2A}} \cdot \frac{C_L}{g_{m5A,8A}}$$

Component values :

M1,M2,M3,M9,M1A,M2A,M10	60/2
M4,M5,M11,M12,M13	20/2
M6,M7	15/2
M8	90/2
МЗА	5/1.2
M4A	15/1.2
M5A	30/1.2
M7A	120/1.2
M6A	360/1.2
M8A	90/1.2
M14,M16	10/1.2
M15,MC	30/2
C _{C1}	4pF
C _{C2}	6pF
C _{C3A} ,C _{C3B}	2pF
I _{BIAS}	5uA
V _{TH}	0.8V

Experimental results:

Open-Loop Gain	68dB
GBW	1MHz
Phase Margin	65°
Gain Margin	16dB
Settling Time(0.1%), $\Delta V = 200mV$	400ns
Slew Rate	1 V/ µ s
$\underline{\text{THD@1kHz}} V_{out} = 0.5V \text{RL}=500$	-57dB
Closed-Loop Gain=20dB	
PSRR+@1kHz	75dB
PSRR- @1kHz	75dB
CMRR @1kHz	95dB
Offset	< 8mv
Power Dissipation	280 µ W
Die Size	$0.08 mm^2$
Technology	1.2 µ m CMOS
Loading	50pF 500

MEASURED MAIN PERFORMANCE

Chapter 9 Passive Components and Switches

§ 9-1 Resistors

1. Source/Drain diffused resistor

- * Compatible with NMOS and CMOS. metal-gate and Si-gate techniologies.
- * $R = 20 \sim 100 W/$ (100KW max)
- * Temperature Coefficient of Resistance (TCR) = $500 \sim 1500$ ppm/°C.

Voltage Coefficient of Resistance (VCR)=100~500ppm/°C Tolerance=±20% (Absolute)

- * High parasitic capacitance (n⁺-p junction cap.)
 Piezoresistance error. (Because of shallow junction)
- 2. P-well (N-well) diffused resistor (Well or tub resistor)

- * Compatible with CMOS metal-gate or Si-gate technology.
- * R = $1KW \sim 5KW/$

Large VCR

Tolarance= $\pm 40\%$ (absolute)

* Large depth and lateral

spreading \Rightarrow narrow resistors are impossible.

3. Implanted resistor

- * Compatible with NMOS and CMOS, metal-gate and Si-gate technologies.
- * Need an additional masking step.
- * $R > 500W \sim 1000W/$; can be accurately controlled.
- * Higher VCR ; smaller tolerance.
- * Difficult to eliminate the piezoresistance effect.
- * The resistor implant can be combined with the depletion implant.
- 4. Poly-Si resistor

Field oxide

- * Realizable by NMOS and CMOS Si-gate technologies.
- * $R = 30W \sim 200W$ / (doped with the source/drain diffusion)
- * TCR \approx 500~1500 ppm/°C ; Tolerance= \pm 40%

- * Can be trimmed by laser or poly fuse.
- * Fully isolated with smaller parasitic capacitance.
 - ♦ Version I :Poly-I resistor
 - ♦ Version II:Poly-II resistor
- ♦ ♦ Version III :Poly-I and Poly-II distributed RC structure (please see the structure shown in poly to poly capacitor)
- **5.** Switched-capacitor simulated resistor
 - * Realizable by NMOS and CMOS, metal-gate and Sigate technologies.
 - * High frequency operation?

$$i = \frac{V_1 - V_2}{R}$$

 f_c is the clock frequency of \mathbf{f} or $\overline{\mathbf{f}}$

$$i = \frac{C(V_1 - V_2)}{T}$$
, $R = \frac{T}{C} = \frac{1}{f_C \cdot C}$

- 6. Thin-film resistor
 - * Realizable by NMOS and CMOS, metal-gate and Si-gate technologies.
 - * Need additional process steps.
 - * Si-Chromium resistor or Mo resistor.
 - * Laser trimming is possible.
 - * Non-conventional material may be involved.

§ 9-2 Capacitors

1. PN junction capacitor

- * Well known and understood.
- * Nonlinear capacitance with a large VCR.

* Compatible with all MOS technologies.

2. MOS capacitor

- * Realizable only by NMOS and CMOS metal-gate technology.
- * TC=25 ppm/°C Tolerance=±15% VC=25ppm/V
- * Voltage-dependent capacitance accumulation depletion Co (Co⁻¹ Cd⁻¹)⁻¹
- 3. Poly (or metal) to bulk silicon capacitor

- * Realizable by NMOS and CMOS poly-Si-gate (metal-gate) technologies.
- * Need an extra mask to define the heavy n^+ implant as the bottom plate.
- * Can be trimmed by laser on poly-fuse.(Poly-fuse : blown with 10-20mA)
- * Bottom plate pn junction parasitic capacitance ($\approx 15\% 30\%$)
- * VC of the capacitor \approx -10ppm/V

- * TC $\approx 20-50 \text{ ppm/}^{\circ}\text{C}$
- * Tolerance $\approx \pm 15\%$

4. Poly to field implant region capacitor

- * Realizable only by NMOS and CMOS Si-gate technologies with the field implant.
- * Smaller oxide capacitance per unit area Thick field oxide
- * The capacitor's bottom plate must be always connected to the substrate.
- * Low quality dielectric oxide.
- 5. Metal to poly capacitor

- * Realizable by NMOS and CMOS Si-gate technologies.
- * Interdielectric is poly-oxide.
- * Extra mask to define the ploy-oxide pattern.
- * Poly fuse trimming is possible.
- * CVD oxide is not good as capacitor dielectric

hysteresis in Q-V due to dielectric changing and relaxation.

* Realizable by NMOS and CMOS double-poly technologies.

Р

- * VC=100ppm/v TC=100ppm/°C
- * Double-poly
 - \Rightarrow EPROM or $E^2 PROM$ are available
 - \Rightarrow may be applied in trimming
- * The poly2 area may be smaller than the poly-oxide area \Rightarrow small C_{Thick}

```
\frac{1}{1} C_o
```

General Reference: D. J. Allstot and W. C Black, Jr., IEEE Proc. vol-71, pp967-986, 1983.

§ 9-3 Tolerance Considerations.

Resistors : Absolute tolerance $\approx \pm 20\% \sim \pm 40\%$ Matching or ratio tolerance $\approx \pm 0.1\% \sim \pm 10\%$ Capacitors: Absolute tolerance $\approx \pm 15\%$ Matching or ratio tolerance $\approx \pm 0.01\% \sim \pm 1\%$ Resistors :

$$R = Rs \frac{L}{W} , \quad \frac{DR}{R} = \frac{DL}{L} - \frac{DRs}{Rs} \approx \frac{DL}{L} - \frac{DW}{W}$$

If L is large $\Rightarrow \frac{DL}{L} \approx 0 \Rightarrow \frac{DR}{R} \approx \frac{DW}{W}$
$$R = \frac{\overline{r}}{Xt} \frac{L}{W} , \quad \mathbf{S}_{R} = \left[\left(\frac{d\overline{r}}{\overline{r}} \right)^{2} + \left(\frac{dL}{L} \right)^{2} + \left(\frac{dW}{W} \right)^{2} + \left(\frac{dXt}{Xt} \right)^{2} \right]^{1/2}$$
$$= \frac{dW}{W} \quad for \quad long \quad resistor$$

* Long resistor pattern is recommended in precise resistors. Capacitors:

$$C = \frac{\boldsymbol{e}_{sio2}}{t_{ox}} WL \qquad \frac{\boldsymbol{D}C}{C} = \frac{\boldsymbol{D}W}{W} + \frac{\boldsymbol{D}L}{L} + \frac{\boldsymbol{D}\boldsymbol{e}_{sio2}}{\boldsymbol{e}_{sio2}} - \frac{\boldsymbol{D}t_{ox}}{t_{ox}}$$

edge effect Oxide effect

CASE I : Absolute tolerance

 $\frac{DC}{C} = \frac{DW}{W} + \frac{DL}{L}$ (if W and L are small or De_{sio2} and Dtox are neglible)

If W and L are independent with $\boldsymbol{s}_{Dl} = \boldsymbol{s}_{Dw} = \boldsymbol{s}_{l}$

$$\mathbf{s}_{\frac{\mathbf{D}C}{C}} = \mathbf{s}_{l} \sqrt{\frac{l}{W^{2}} + \frac{l}{L^{2}}}$$
 (random variation)

Assume L=W=d, $\boldsymbol{s}_{\frac{\boldsymbol{D}C}{C}} = \frac{\sqrt{2}\sqrt{l}}{d}$ is minimum

$$\Rightarrow \mathbf{s}_{\underline{\mathbf{D}}\underline{C}} \Big|_{square(L=W)} < \mathbf{s}_{\underline{\mathbf{D}}\underline{C}} \Big|_{non-square(W\neq L)}$$

For the same WL ,minimum perimeter leads to minimum telerance.

Circular shape?

CASEII : Ratio or Matching tolerance under geometry random variation

9 - 8 Chung-yu wu

$$\mathbf{a} = \frac{C_{1}}{C_{2}} = \frac{W_{1}L_{1}}{W_{2}L_{2}} , \quad \frac{d\mathbf{a}}{\mathbf{a}} = \frac{dC_{1}}{C_{1}} - \frac{dC_{2}}{C_{2}}$$

$$\mathbf{s}_{\frac{d\mathbf{a}}{\mathbf{a}}} = \sqrt{\mathbf{s}_{\frac{dc_{1}}{c_{1}}}^{2} + \mathbf{s}_{\frac{dc_{2}}{c_{2}}}^{2}} = \mathbf{s}_{1}\sqrt{\frac{1}{L_{1}^{2}} + \frac{1}{W_{1}^{2}} + \frac{1}{L_{2}^{2}} + \frac{1}{W_{2}^{2}}}$$
For W₂=L₂=d, $\mathbf{s}_{\frac{d\mathbf{a}}{\mathbf{a}}} = \frac{\mathbf{s}_{1}}{d}\sqrt{2 + \frac{L_{1}^{2} + W_{1}^{2}}{(\mathbf{a}d)^{2}}}$

$$\Rightarrow \mathbf{s}_{\frac{d\mathbf{a}}{\mathbf{a}}} = 2\frac{\mathbf{s}_{1}}{d} \text{ if } L_{1} = W_{1} = \sqrt{\mathbf{a}}d \qquad (1)$$

square versus square

CASE III : Ratio tolerance under the uniform undercut effect Uniform undercut is not a random variation.

- * Centralized structure to avoid the oxide effect.
- * Dummy capacitor may be omitted to save area.
- * Ratio tolerance can be ± 0.06 %

Similarly, for resistors, we have

* Ratio tolerance can be ± 0.25 %

§ 9-4 The MOS Switch

- 1. The NMOS switch
 - 1) If $V_{\phi} \ge V_1 + V_{THN}$, M_N on $\Rightarrow V_2 = V_1$ full transimission

Example:

$$V_{1}=0V, V_{\phi}=3V \Rightarrow V_{2}=0$$

$$V_{1}=5V, V_{\phi}=8V, V_{TN}=1.5V \Rightarrow V_{2}=5V$$
2) If $V_{1}+V_{THN} > V_{f} > V_{THN}$, M_{N} on
$$V_{2}=V_{f}-V_{THN}$$
Example: $V_{\phi}=5V, V_{I}=5V, V_{THN}=1.5V$ (under substrate bias), $V_{BS}=0V$

$$\Rightarrow V_{2}=3.5V$$

3) If
$$V_f < V_{THN}$$
, M_N off

Node 1 or 2 may be floating

 \Rightarrow V₁ or V₂ will be gradually charged or discharged by the leakage current in MOS or PN junctions.

If $V_f = \partial V$ for a very long time, $V_A \to \partial V$ by the $n^+ p$

junction leakage current \Rightarrow Not allowable in circuit design

 * When the switch is turned on or off, the charging or discharging current is nonlinear ⇒ Nonlinear resistor
 Capacitance feedthrough effect:

error voltage

Example: $C_{gd} \approx 0.02PF$, $C_2 = 2PF$, $V_{DD} = 10V$, error voltage $\approx 0.1V$ Compensation circuit:

2. The PMOS switch

* Can pass high voltage without offset.

Example: $V_{\phi} = 0V$, $V_{DD} = 5V = V_{I}$

 $\Rightarrow V_2 = 5V :: I = source \text{ and } |V_{GS}| = 5V$

* Can't pass low voltage completely.

Example: $V_{\phi} = 0V$, $V_{2i} = 5V$, $V_1 = 0V$, $|V_{TP}| = 1.5V$ $\Rightarrow V_{2f} \approx 1.5V \neq 0V$

3. The CMOS switch

- * Full transmission
- * The clock feedthrough effect can be greatly compensated, if the delay between V_f and $V_{\bar{f}}$ is zero.
- * Nonlinear C_{gs} and C_{gd} and the delay between V_f and $V_{\bar{f}}$ make the compensation of the feedthrough effect quite complicated.

* If
$$V_1 = 5V = V_f, V_{\bar{f}} = 0V, V_{DD} = 5V, V_{TN} = |V_{TP}| = 1.5V$$

 $V_2 = 0V \rightarrow V_2 = 5V - 1.5V = 3.5V$: NMOS and PMOS
 $V_2 = 3.5V \rightarrow V_2 = 5V$: Only PMOS
If $V_1=0V, V_{2i}=5V$
 $V_2 = 5V \rightarrow V_2 = 1.5V$: NMOS and PMOS
 $V_2 = 1.5V \rightarrow V_2 = 0V$: Only NMOS

10 - 1 Chung-yu wu

Chapter 10 CMOS Bandgap References

§10-1 Basic Principles of Bandgap References (BGR)

$$\begin{split} V_{BE(on)} &= mV_{therm} \ln(I_1/I_S) \\ I_S &= qAn_i^{\ 2}\overline{D_n}/Q_B \qquad I_S : \text{Reverse saturation current of a BJT} \\ &= Bn_i^{\ 2}\overline{D} \qquad A : \text{Area of a BJT} \\ &= Bn_i^{\ 2}\overline{Tm} \qquad Q_B : \text{Base minority carrier charges} \\ \text{where } B \text{ and } B \text{ are } \overline{D} : \text{Average diffusivity of carriers} \\ \text{constants, indep. of T.} \\ \hline m &= CT^{-n} \qquad C:\text{Constant, indep. of T.} \\ n:\text{Temp. exponent.} \\ n_i^{\ 2} &= ET^{\ 3} \exp(-V_{GO}/V_{therm}) \qquad E:\text{Constant, indep. of T.} \\ V_{GO} : \text{Energy gap.} \\ \Rightarrow V_{BE(on)} &= mV_{therm} \ln[I_1T^{-g}F \exp(V_{GO}/V_{therm})] \\ F:\text{Constant, indep. of T.} \\ g &= 4 - n \\ I_1 &= GT^{\ a} \quad \text{where } I_1 \text{ is the collector current and} \\ G \quad \text{is a temp.-indep. constant.} \end{split}$$

$$\Rightarrow V_{BE(on)} = V_{GO} - V_{therm}[(\boldsymbol{g} - \boldsymbol{a})\ln T - \ln(FG)]$$

In general, the output voltage V_{out} is a sum of $V_{BE(on)}$, and KV_{therm} with a weighting factor K such that V_{out} is nearly indep. of T.

$$V_{BE(on)} + KV_{therm} = V_{out} = V_{GO} - mV_{therm}(g - a)\ln T + mV_{therm}[K + \ln(FG)].$$
(1)

$$\frac{dV_{out}}{dT}\Big|_{T=T_o} = 0 = \frac{mV_{thermo}}{T_o} [K + \ln(FG)] - \frac{mV_{thermo}}{T_o} (\mathbf{g} - \mathbf{a}) \ln T_o - \frac{mV_{thermo}}{T_o} (\mathbf{g} - \mathbf{a}) + \frac{d}{dT} V_{GO}$$
$$\Rightarrow K + \ln(FG) = (\mathbf{g} - \mathbf{a}) \ln T_o + (\mathbf{g} - \mathbf{a}) - \left(\frac{d}{dT} V_{GO}\right) \cdot \frac{T_o}{mV_{thermo}} \dots (2)$$
Substituting (2) into (1), we have

$$\begin{split} V_{out} &= V_{GO} + mV_{therm}(\boldsymbol{g} - \boldsymbol{a})(1 + \ln\frac{T_o}{T}) - T\frac{d}{dT}V_{GO} \\ V_{GO} &= 1.16 - \frac{7.02 \times 10^{-4} \cdot T^2}{T + 1108} \\ \frac{d}{dT}V_{GO} \bigg|_{T = T_o} &= -\frac{14.04 \times 10^{-4}T_o(T_o + 1108) - 7.02 \times 10^{-4} \cdot T_o^2}{(T_o + 1108)^2} \\ &= -\frac{14.04 \times 10^{-4} \cdot T_o}{T_o + 1108} + \frac{7.02 \times 10^{-4} \cdot T_o^2}{(T_o + 1108)^2} \\ &\Rightarrow V_{out} = mV_{therm}(\boldsymbol{g} - \boldsymbol{a})(1 + \ln\frac{T_o}{T}) + 1.16 - \frac{7.02 \times 10^{-4} \cdot T^2}{T + 1108} - \frac{14.04 \times 10^{-4} \cdot T_o T}{T_o + 1108} + \frac{7.02 \times 10^{-4} \cdot T_o^2}{(T_o + 1108)^2} \end{split}$$

If $\boldsymbol{g} = 3.2, m = 1, \boldsymbol{a} = 1, T_o = 25^o C$

10 - 2 Chung-yu wu

 $\Rightarrow V_{out}(T)\big|_{T=25^{\circ}C} = 1.16 + 2.2(0.0259) - \frac{21.06 \times 10^{-4} (298)^2}{298 + 1108} + \frac{7.02 \times 10^{-4} (298)^2}{(298 + 1108)^2} = 1.093V$

§10-2 Bipolar Bandgap Reference

Widlar bandgap reference
*Feedback element
$$Q_4$$
 is used to force Q_3 on.
* Q_4 also serves as a start-up circuit.
* $V_{out} = I_2 R_2 + V_{BE3}$
 $I_2 = I_3$ if $I_{B2} = I_{B3}$
 $I_3 = \frac{V_{BE1} - V_{BE2}}{R_3} = \frac{1}{R_3} m V_{therm} \left[\ln(\frac{I_1}{I_2}) + \ln(\frac{I_{S2}}{I_{S1}}) \right]$
 $V_{out} = V_{BE3} + \left\{ \frac{R_2}{R_3} m \left[\ln\left(\frac{R_2}{R_1}\right) + \ln\left(\frac{I_{S2}}{I_{S1}}\right) \right] \right\} \cdot V_{therm}$
 $I_1/I_2 = R_2/R_1$ If $V_{BE1} = V_{BE3}$
Adjust R_2/R_3 , R_2/R_1 and I_{S2}/I_{S1} to give a suitable K

And Keep $I \cong I_2$ to obtain $I_{B2} \cong I_{B3}$ and $\frac{I_{S3}}{I_{S1}} = \frac{I_3}{I_1}$ to obtain $V_{BE1} = V_{BE3}$.

10 - 3 Chung-yu wu

§10-3 CMOS Real Bandgap Reference (BGR) §10-3.1 CMOS BGR via BJTs and Resistors

Q1,Q2:Substrage-well-source/drain parasitic vertical BJTs

$$\begin{split} V_{BE} &= mV_{therm} \ln \frac{I_E}{I_S} \\ V_{REF} &= \pm \{V_{BE1} + \frac{R_2}{R_3} V_{therm} (\ln \frac{R_2}{R_1} + \ln \frac{I_{s2}}{I_{s1}}) + V_{OS} [\frac{R_3 + R_2}{R_3}] \} \end{split}$$

Typical design values:

 $I_1=80 \mu A$ I2=8 µ A $R_2 \approx \frac{0.6V}{8\mu A} = 75K$, $R_1 = \frac{R_2}{10} = 7.5K$, $R_3 = \frac{60mV}{8\mu A} = 7.5K$ Large resistance → use well resistors R1,R2,R3: n+/p+ diffusion resistors n+ - poly resistors well resistors

Both transistors are in the active region

Error analysis:

1. Error due to base resis

hisistors are in the active region
alysis:
Error due to base resistances

$$V_{BE1} = V_{therm} \ln \frac{I_1}{I_s} + V_{therm} \ln \frac{1}{1 + \frac{1}{I_1}} + \frac{r_b I_1}{A_{-1}}$$

$$\Delta V_{BE} = V_{therm} \ln A + V_{therm} \ln \frac{I_2}{I_1} + V_{therm} \ln \frac{1 + \frac{1}{I_1}}{I_1 + \frac{1}{I_2}} + r_b (\frac{I_2}{2} - \frac{I_1}{A_{-1}})$$

If \hat{a}_1 , \hat{a}_2 are not large enough or \mathbf{r}_b is too large,

 $\Rightarrow \Delta V_{BE}$ due to \mathbf{r}_{b} and is large.

$$V_{REF} = \pm \{V_{BE1} + V_{OS}(\frac{R_3 + R_2}{R_3}) + \frac{R_2}{R_3}V_{therm}(\ln\frac{R_2}{R_1} + \ln\frac{I_{s2}}{I_{s1}} + \ln\frac{1 + \frac{1}{1}}{1 + \frac{1}{2}}) + \frac{R_2}{R_3}r_b(\frac{I_2}{2} - \frac{I_1}{A_{-1}})\}$$

2

2.Error due to input offset voltage Vos

V_{os}=10mV,
$$V_{OS}(1 + \frac{R_2}{R_3}) \approx 10V_{OS} = 100mV$$

TC error due to

$$V_{OS}: \frac{1}{V_{REF}} \frac{d}{dT} V_{REF} = \frac{(1 + \frac{R_2}{R_1})V_{OS}}{V_{REF}T_0} = \frac{10 \times 10mV}{1.26V \times 300^{\circ} K} = 264 \, ppm \, /^{\circ} C$$

3.Error due to Bias current variation

$$V_{BE1} = V_{therm} \ln \frac{I_1}{I_{S1}} = V_{Threm} \ln \frac{V_{therm} \ln A}{R I_{S1}} \quad (R_3 = R_1)$$

10 - 4 CHUNG-YU WU

$$= V_{therm} \ln \frac{V_{therm} \ln A}{R_1(T_0)I_{S1}} + V_{therm} \ln \frac{R_1(T_0)}{R_1(T)} \qquad I_1 = I_2$$
If R_1 is indep. of $T \Rightarrow V_{BE} = V_{therm} \ln \frac{V_{therm} \ln A}{R_1(T_0)I_{S1}}$
If R_1 depends on $T \Rightarrow V_{BE} = V_{therm} \ln \frac{V_{therm} \ln A}{R_1(T_0)I_{S1}} + V_{therm} \ln \frac{R_1(T_0)}{R_1(T)}$

$$V_{BE} = V_{BE} \Big|_{ideal} - V_{therm} \cdot \left(\frac{1}{R} \frac{dR}{dT}\Big|_{T_0}\right) T - T_0 - V_{therm} \left(\frac{1}{2R} \frac{d^2R}{dT^2}\Big|_{T_0}\right) T - T_0 \Big)^2$$

$$PTAT^2 PTAT PTAT^3 PTAT$$

$$+ V_{therm} \left(\frac{1}{2R^2} \frac{dR}{dT}\Big|_{T_0}\right) T - T_0 \Big)^2 - \dots$$

$$PTAT^3 PTAT$$

If R is only linearly dependent on T, we still have $PTAT^2$ term The $PTAT^2$ term can be cancelled via curvature compensations.

4.TC Error due to Base Resistance

$$\Delta V_{BE} = r_b \frac{I_2}{\boldsymbol{b}_2}$$

TC error = $(1 + \frac{R_2}{R_1}) \frac{r_b I_2}{V_{ref} \boldsymbol{b}_2} \left(\frac{1}{r_b} \frac{dr_b}{dT} + \frac{1}{I_2} \frac{dI_2}{dT} - \frac{1}{\boldsymbol{b}_2} \frac{d\boldsymbol{b}_2}{dT} \right)$

Example: $r_b = 2K\Omega$, TC of $r_b = 1000 ppm / {}^{O}C$, $I_2 = 30mA$, **b** = 150,

TC of
$$\boldsymbol{b} = 7000 \, ppm/^{O} \, C$$

 $\Rightarrow \text{TC} = -8.6 \, ppm/^{O} \, C$

5.Error due to base current

Base current cancellation technique

*To compensate for the different between the collector, emitter, or base current

10 - 6 Chung-yu wu

Ref:1.IEEE J .Solid-State Circuits, vol.SC-18, pp634-640, DEC. 1983
2. IEEE J .Solid-State Circuits, vol.SC-19, pp1014-1021, DEC. 1984
The circuit to obtain V_{REF} from a BGR

5.Low Power Supply Circuit:

*Low driving capability

Power supply limits:

	Low Possible	Voltage $T=25^{\circ}C$
Bandgap reference	PMOS Inputs	NMOS Inputs
Topology		
	$V_{TP} \leq 1.0V$	$V_{TN} \leq 1.0V$
1	1.5v	2.2v
2	1.95v	2.95v
3	1.90v	-
5	2.5v	1.5v

§ 10-3.3 CMOS BGR via lateral Transistor

Ref:IEEE J .Solid-State Circuits, vol. SC-20, pp.1151-1157, DEC. 1985 Structure of a lateral BJT in CMOS:

Voltage reference via LBJT: Conceptual circuit :

A:Current comparatorVCC:Voltage-controlled current sourceG:A negative voltage is applied to cause accumulation.

Advantages:(1)The offset of the amplifier A has a negligible effect on V_{REF} (2)Simple structure.

Purpose of VCC : To provide a current path for $I_{R1} >> I_{B1}, I_{B2}$

10 - 11 Chung-yu wu

* High supply voltage.

* Two source follwers+one emitter follower

in(A) current amp.=>higher current gain

* R2 is trimmable

R4,R3,T3:VCC

R3: To keep T3 from quasi-saturation

R4:To sense the output voltage and transform it into the collector current of T3.

* All resistor are polyresistors

* Low output impedance.

Measured results:

V_{REF} mean :1.2285V ;	standard deviation :150ì V
Minimal supply voltage	2.2V
Supply current	79ì A
Noise spectra	$316nV/\sqrt{Hz}$ (white); $560nV/\sqrt{Hz}(\frac{1}{f},1KHz)$
PSRR(100Hz)	60dB
Load regulation (ÄVout/Iout)	3.6ì V/ì A
Chip area	0.42 mm^2

10 - 12 Chung-yu wu

High PSRR BGR:

* R₁,R₂ may be p-well resistors and PSRR still high.

Experimental results:

Curvature-Compensated BGR:

Ref: IEEE J. Solid-State Circuits, vol. sc-20, pp.1283-1285, Dec. 1985

§10-4 High-Precision Curvature-Compensated CMOS Bandgap Voltage References (BVR)

Ref: Int. J. of Analog ICs and Signal Processing, Kluwer, pp. 207-215, 1992

1. Type A structure

The circuit stricture of the proposed BVR (Type A)

$$V_{out} = V_{BE3} + I_3 R_2 = V_{BE3} + r_3 \frac{R_2}{R_1} (\frac{kT}{q} \ln A^* + \Delta V_{sg})$$

2. Type \overline{A} structure

3. Type B structure

4. Type C structure

The cascode structure of BVR (Type C):

Vsg versus temperature

The simulated output voltages versus temperature in Type A and Type \overline{ABVR}

The Spice simulated output voltages versus temperature in Type C BVR

The measured output voltages versus temperature in the fabricared cascaded-structure BVR(Type C)[3.5 i m CMOS technology , $R_1=1K\dot{U}$ (external), $R_2=25.9K\dot{U}$ (external)]

* Average temperature drift

5.5 ppm/°C $-60 °C \sim +150 °C$ $5V\sim 15V$ * At 25 °C, average voltage drift 25ì V/V Vout=1.1963V ~ 1.1965V $5V \sim 15V$ * 2 mil², 0.8 mW at 5V

§10-5 CMOS Bandgap Reference with Sub-1-V Operation

Ref.: IEEE JSSC, vol.34, pp.670~674, May 1999

Concept: * Convertional BGR $V_{ref} = 1.25V$

Can't be operated below 1V supply.

* The built-in voltage V_f of the diode \rightarrow the current I_{2b}

The thermal voltage $V_{therm} \rightarrow$ the current I_{2a}

 $(I_{2a} + I_{2b})R \rightarrow V_{ref} < 1V$

1.Schematic of the proposed BGR

*The diode is realized by the parasitic $P^+/n - well/P - substract$ BJT as

 $*C_1$ and C_2 are used to stabilized the circuit.

*The control signal PONRST is used to initialize the BGR circuit when the power is turned on.

*
$$R_1 = R_2$$

 $V_a = V_b$
 $I_1 = I_2 = I_3$ and $I_{1a} = I_{2a}$, $I_{1b} = I_{2b}$
 $dV_f = V_{f1} - V_{f2} = V_{therm} \ln(N)$, $N = 100$
 $I_{2a} = \frac{dV_f}{R_3} \propto V_{therm}$
 $I_{2b} = \frac{V_{f1}}{R_2} \propto V_f$
 $I_3 = I_2 = I_{2a} + I_{2b}$
 $V_{ref} = R_4 I_3 = \frac{R_4}{R_2} V_{f1} + \frac{R_4}{R_3} dV_f$

2. Simulated V_{ref} characteristics

 $*V_{ref} = 1.25V$ conventional BGR

$$V_{ref} = 0.84V$$
 proposed BGR

3. Minimum V_{DD}

$$\begin{split} \min \ V_1 &\cong V_s \cong V_b - V_{THI} \cong V_f + \left| V_{THI} \right| \cong V_{DD} + V_{THP} = \min V_{DD} - \left| V_{THP} \right| \\ \Rightarrow \min V_{DD} &= V_f + \left| V_{THI} \right| + \left| V_{THP} \right| \cong 0.8 \sim 1.0V \end{split}$$

4. Measured results:

Voltage drift (average) $\cong 600 \text{ mV}/V$ 2.2V~4V

CH 11 Digital-to-Analog Converters (DACs) in CMOS Technology

§11-1 Introduction

1. Block diagram

(Digital signal processing has better noise immunity than analog signal processing.)

Fig. 11.1 A block diagram of a typical signal processing system

Fig. 11.2 Functional block diagram of a D/A converte

2. Ideal DAC:

Analog output signal Vout = Vref $(b_1 2^{-1} + b_2 2^{-2} + \dots + b_N 2^{-N})$

Vref: analog reference signal

 $b_1 \dots b_N$: N-bit digital data input

The signal change when one LSB changes is $V_{\mbox{\tiny LSB}}$

$$V_{LSB} \equiv \frac{V_{ref}}{2^{N}}$$

If in LSB unit, $1LSB = \frac{1}{2^{N}}$

3. DAC performance specifications

(1) Resolution: The number of distinct analog levels corresponding to the different digital words.

N-bit resolution 2^{N} distinct analog levels.

(2) Offset error:

$$Eoff(DAC) \equiv \frac{V_{out}}{V_{LSB}} \Big|_{0...0} \quad (LSB)$$

(3) Gain error:

$$E_{gain(DAC)} \equiv \left[\frac{V_{out}}{V_{LSB}}\right]_{1...1} - \frac{V_{out}}{V_{LSB}}_{0....0} - (2^{N} - 1) \quad (LSB)$$

(4) Accuracy

```
absolute accuracy: The difference between the expected and actual transfer response. It includes the offset, gain, and linearity errors.
```

relative accuracy: The accuracy after the offset and gain errors have been removed.

 \Rightarrow maximum integrated nonlinearity (INL) error

*Accuracy units: % of full-scale value.

effective number of bits

fraction of an LSB

*12-bit accuracy \Rightarrow all errors < 1 LSB $(\frac{V_{out}}{2^{12}})$

(5) Integral nonlinearity (INL) error

Definition: The deviation of actual transfer response from a straight line.

INL error (best-fit) and INL error (endpoint)

Usually, INL error is referred to as the maximum INL error.

(6) Differential nonlinearity (DNL) error

Definition: The variation in analog step sizes away from 1 LSB. (usually, gain and offset errors have been removed)

(7) Monotonicity: The output signal magnitude always increases as the input digital code increases.

* Maximum DNL error < $0.5 \text{ LSB} \Rightarrow$ monotonicity

* Many monotonic DAC may have a maximum DNL error > 0.5 LSB

* Maximum INL error $< 0.5 \text{ LSB} \Rightarrow$ monotonicity

(8) Settling time

The time it takes for the DAC to settle to within some specified amount of the final value (usually 0.5 LSB)

(9) Sampling rate

The rate at which sample can be continuously converted.

(Typically the sampling rate is equal to the inverse of the settling time)

4. Types of DACs

- (1) Decoder-based DAC
- (2) Binary-weighted DAC
- (3) Thermometer-code DAC
- (4) Hybrid DAC
- (5) Oversampling DAC

11-5 CHUNG-YU WU

§11-2 Decoder-Based DAC

§11-2.1 Resistor-String DAC

1. Conceptual 8-bit resistor-string DAC.

2. Practical realization

 R_0 - R_{15} : To divide V_{REF}^+ to V_{REF}^- into 16 voltage intervals

 $H_0 - H_{15}$

 L_0 - L_{15} : To divide each of those intervals into 16

a - p subintervals

- * To insure maximum uniformity of step size, i.e. linearity, the resistance of the transmission gates should be made as large as possible ⇒ minimal loading.
- * For 8-bit DAC, the error due to loading can be held to less than 1 LSB. if $16R_T > 2^N R_i$ ($R_i = 200\Omega, R_T > 3.2K\Omega$)

8-bit Resistor-String DAC (Multiple Resistor-String DAC)

Subinterval Generation:

* Transmission gate size: $24m/12m \rightarrow 3.2k\Omega = R_T$

- * The raw speed of the DAC is limited by the resistance of transmission gates a-p and the capacitance of the output node, also by the operating speed of the output buffer.
- * $V_{DD} = +5V$, $-V_{SS} = -5V$, Vout : $\pm 2.5V$ Maximum conversion rate 0 full scale : 2.5MHz.

* For 8-bit DAC, the jump in step size can be held to less than 1 LSB if

$$16R_{T} \geq 2^{N}R_{i}. \quad \frac{\Delta R_{i}}{R_{i}} = \frac{R_{i} - \frac{16R_{T}R_{i}}{R_{i} + 16R_{T}}}{R_{i}} = \frac{R_{i}}{R_{i} + 16R_{T}} \leq \frac{1}{2^{N}}$$
$$\Rightarrow 2^{N}R_{i} \leq 16R_{T} \text{ occurs when } L_{i} = 1$$

§11-2.2 Folded Multiple Resistor-String DAC

ISSCC 90 / FRIDAY, FEBRUARY 16, 1990 / CONTINENTAL BALLROOM 5-9 / 9:30 A.M.

FAM 12.2: A 50MHz 10-bit CMOS Digital-to-Analog Converter with 75Ω Buffer

Marcel Pelgrom

Philips Research Laboratories Eindhoven, Netherlands

HIGH-SPEED DIGITAL-TO-ANALOG converters are usually designed with a current cell matrix. For resolutions higher than 8 bits required for new television standards, this approach requires either selection, trimming or calibration in the case of binary decoding, or accurate glitch matching and gradient compensation in CMOS if thermometer decoding is used^{1,2}. Moreover, many current-cell based circuits dump on average half of the current and often require the virtual ground of an external amplifier for optimum linearity with sufficent output drive.

This trimless 10-bit 50MHz D/A converter is based on resistor strings. The voltage dependence and the mutual matching of large-area polysilicon resistors allow the design of a converter with high integral and differential linearity. However, in a single 1024-tap resistor ladder output settling requires such low tap resistors that accurate resistor matching and consequently linearity becomes a problem.

The solution to this problem is the combination of a dual ladder with a matrix organization for the fine ladder, a full decoding scheme, an on-chip 75 output buffer and an additional ladder for the reduction of distortion at high signal frequencies³. Figure 1 shows the ladder structure: the coarse ladder consists of two ladders each with 16 large-area 250 resistors connected anti-parallel to eliminate the first-order resistivity gradient. The coarse ladder determines 16 accurate tap voltages. A 1024-resistor fine ladder is arranged in a 32-by-32 matrix, where every 64th tap is connected to the coarse ladder taps. There are currents in the connections between the ladders only in the case of ladder inequalities. This reduces the effect of contact resistance variance. The current density in the polysilicon is kept constant to avoid field-dependent non-linearities. In operation, the tap voltages of the fine ladder are switched to the 16 output rails of the matrix. The digital input word is decoded by two sets of 5-to-32 decoders followed by two groups of latches, as shown in Figure 2. At every tap an AND gate performs the final decoding. In each transition one switch connects the ladder to the output rails, while another switch disconnects. This scheme minimizes ladder bounce caused by the switches, often observed in schemes where MSB decoding is combined with output rail multiplexing⁴

As the ladder of the D/A converter is designed for 2V unloaded output swing, second-order distortion will occur at high signal frequencies, due to the input-code-dependent switchdrive voltage which causes signal-dependent RC time constants on the output rails. In this circuit, the drive voltage is kept constant by feeding the final AND decoding gates from an additional ladder: (Figures 1, 2). The total ladder configuration can now be fed from the 5V analog power supply. One external capacitor decouples the signal ladders. The clock-feedthrough of the switches gives a linear signal contribution.

The multiplex circuit at the end of the 16 output rails connects only the active rail to the output, keeping the other rails at the corresponding middle tap voltage. This scheme reduces the load capacitance and minimizes the recharging of the matrix output lines. The output buffer is a folded-cascode op amp where the output load is part of the output stage. The on-chip stop resistor allows a feedback path even for frequencies where the bondpad capacitance shorts the circuit output. The measured open-loop gain of the op amp into a 75 Ω and 25pF load is 43dB with a unity gain bandwidth (UGBW) of 75MHz. (Figure 3).

Figures 4 and 5 show examples of performance with 75 Ω and 25pF load. The lower side of the ladder is connected to give 0.1 volt minimum output voltage. The overall de integral linearity curve is shown in Figure 4. The integral linearity was verified by measuring the distortion of low-frequency input signals. The total distortion is less than -60dB.

The 10%-to-90% transition time is 6ns. (Figure 5) The extrapolated settling to within one LSB is about 20ns. The most critical glitch energy occurs for codes where the position is switched from the coarse ladder tap to the 32nd position on the corresponding fine ladder; in code: xxxxx00000 to xxxxx11111. The difference in glitch area is lower than 100psV.

The D/A converter has been tested on computer-synthesized video pictures. Interference tests (9.6MHz input, at 27MHz clock) confirms the linearity specifications. The effect of the additional supply ladder has been measured at 4.433MHz signal frequency and 50MHz clock rate. After the supply ladder is disconnected from the signal ladder and connected to the positive power supply, the total distortion increases by 10dB. At 50MHz clock rate, 125°C and a 13MHz signal frequency the distortion increases to -40dB due to slew-rate limitations. Full-scale transitions have been measured up to a clock frequency of 100MHz, which shows the inherent speed of the ladder network.

Table 1 summarizes the performance. Power dissipation is measured with a full sinewave output signal, which consequently requires half of the top output current. Figure 6 shows a micrograph of the test chip.

³Dingwall, A.G.F. and Zazzu, V., "An 8MHz CMOS Subranging 8-bit A/D Converter", *IEEE J. Solid-State Circuits*, Vol. SC-20. p. 1138-1143; Dec., 1985.

⁴Abrial, A., et al., "A 27MHz D/A Video Processor". IEEE J. Solid-State Circuits, Vol. SC-23, p. 1358-1369; Dec., 1988.

¹Schoeff J.A., "An Inherently Monotonic 12-bit DAC", *IEEE J. Solid-State Circuits*, Vol. SC-14, p. 904-911; Dec., 1979.

²Miki, T., et al., "An 80MHz 8-bit CMOS D/A Converter", IEEE J. Solid-State Circuits, Vol. SC-21, p. 983-988; Dec., 1986.

11-9 CHUNG-YU WU

FIGURE 1-Resistor network for the video D/A.

FIGURE 3-(a) folded cascode op amp circuit used for the buffer; (b) measured open-loop gain and phase on a 75Ω and

251	D.F.	load.	
_	-		

Process	1.6µm CMOS
DC resolution	10-bit
Differential linearity error	<0.1 LSB
Integral linearity error	±0.6 LSB
Clitch energy	100psV
Settling time (1 LSB)	20ns
Rise/Fall time (10%-90%)	6ns
Sample frequency	50MHz
Nominal power supply	5V
Output in 75Ω	1 V
Power consumption (50MHz, 75Ω)	85mW
DACsize	2.5mm2

TABLE 1-Summary.

FIGURE 5, 6 - See page 295

11-10 Chung-yu wu

FIGURE 5-Photographs of the full-scale settling of the output.

FIGURE 6-Micrograph of the die.

FAM 12.2: A 50MHz 10-bit CMOS Digital-to-Analog Converter with 75a Buffer (Continued from page 201)

11-11 Chung-yu wu

§11-3 Binary-Weighted DAC

§11-3.1 Charge-Redistribution DAC

- 1. Multiplying DAC
- * All top plates are connected to the OP AMP input
 - \Rightarrow To reduce substrate noise voltage injection.
- * Switched-induced errors are large.
- * offset cancellation

2. Multiplying DAC with bipolar input

If $bo = 0 \implies$ the signal Vin is positive \Rightarrow the same as 1. If $b_0 = 1 \implies$ the signal Vin is negative. f_1, f_2 positions are exchanged. Vout = -Vin $\sum_{i=1}^n bi2^{-i}$

- 3. General characteristics or features of charge-redistribution DAC:
 - (1) The auto-calibration cycle can be performed to remove the effects of component ratio errors.
 - (2) Good linearity and stability due to good linear capacitors.
 - (3) Too large capacitance ratio is required for high-bit DAC.
 - (4) Suitable for medium-speed DAC with 6-bit resolution or below.

§11-3.2 Weighted-Current-Source DAC (Current-Mode Binary-Weighted DAC)

- 1. Conventional structure
 - * Simple circuit structure without decoding logic.
 - * At the mid-code transition 011---1 10---0, the MSB current source needs to be matched to the sum of all the other current sources to within 0.5 LSB.

 \Rightarrow difficult for large bit number. \Rightarrow not guaranteed monotonic.

- * Low-accuracy matching causes inaccurate bit transition
 ⇒ typical DNL plot as shown
- * The errors caused by the dynamic behavior of the switches, such as charge injection and clock feedthrough, result in glitches which is most severe at the midcode transition, as all switches are switching simultaneously.

 \Rightarrow contains highly nonlinear signal components

 \Rightarrow manifest itself as spurs in the frequency domain.

Conventional Weighted-Current-Source D/A Converter

Improved Structure

The Proposed 10-bit D/A Converter

Reference: IEEE JSSC, PP.635-639, June 1989.

- Using Two-Stage Architecture:
 32 master & 32 slave current sources (Occupied small chip area but cause tight matching requirement among master current sources.)
- 2. Using Threshold-Voltage Compensated Current Sources

to satisify tight matching requirement.

Only need local match &

do not need global match.

Two-Stage Weighted Current Array D/A Converter

$$I_{1} = K (W/L)(Va-Vth_{1})^{2}$$

$$I_{N} = K (W/L)(Va-Vth_{N})^{2}$$

 (Vth_N-Vth_1) may be as large as 80 mV due to the oxide thinning effect.

Conventional switched current source.

$$I_2 = K \frac{W}{L} (Va - Vth_2)^2$$

= $K \frac{W}{L} (V_{R_1} + Vth_c - Vth_2 + \sqrt{\frac{LcIc}{KWc}})^2$

1. $I_2 > > I_C$

2. M_2 and M_C are locally matched

$$\Rightarrow I_2 \cong K \frac{W}{L} V_{R1}$$

Switched current source with threshold-voltage compensation.

Spice Monte-Carlo simulation results for (a) Conventional weighted current sources; (b) current sources with threshold-voltage compensation.

Two-stage weighted-current-source D/A converter with threshold-voltage compensated current sources.

11-19 Chung-yu wu

(a)

(a) The circuit; (b) The SPICE simulated output waveforms of the input driver with high logic-threshold.

Symmetrical layout configuration of each 5-bit current array.

Different layout arrangement for the devices M2 and Mc in each current source: (a) 4-cell unit; (b) 5-cell unit.

Linearity Error	4-Cell Unit(%)	5-Cell Unit(%)
< 1/2 LSB	28.6	21.4
< 1 LSB	82.1	67.9
< 2 LSB	93.9	89.3

Differential and Integral linearity distribution of two kinds of layout methods for each current source.

Characteristics of the D/A converter.

Resolution	10 bits
Differential Nonlinearity	0.21 LSB
Integral Nonlinearity	0.23 LSB
Conversion rate	125 MS/s
Settling Time (±1/2 LSB)	< 8 ns
Rise/Fall time (10-90%)	3 ns
Glitch Energy	40 psV
Power Dissipation	150 mWatts
Supply Voltage	5V
Process	0.8um CMOS
Chip Size (without pads)	1.8mm×1.0mm

SUMMARY

- 1. Using threshold-voltage compensated current sources.
- 2. Two-step weighted current array 32 *master*, *32 slave unit current sources*.
- 3. 10 bits, 125MHz, INL < ± 0.21 LSB, DNL < ± 0.23 LSB, 150mW.
- 4. Few analog components & good performance.

§11-4 Thermometer-Code DAC

1.

Current-mode thermometer-coded DAC; Current-cell-matrix DAC

Therr	nome	eter co	ode (3 bi	t)						
b_2	b_1	b_0	Ċ	\mathbf{l}_6	d_5	d_4	d_3	d_2	d_1	d_0
0	0	0		0	0	0	0	0	0	0
0	0	1	(0	0	0	0	0	0	1
0	1	0	(0	0	0	0	0	1	1
	•						•			
	•						•			
1	1	0		0	1	1	1	1	1	1
1	1	1		1	1	1	1	1	1	1

2. Conceptual circuit of thermometer-coded DAC

Advantages:

- (1) Monotonicity is guaranteed.
- (2) The matching requirement is much relaxed.e.g. 50% matching DNL < 0.5 LSB
- (3) At the midcode transition the glitch is greatly reduced. only 1 LSB current source is switched.
(4) Glitches do not contribute much to nonlinearity.

Glitches \propto switched LSB

 \Rightarrow Glitch/LSB \cong constant

 \Rightarrow Good linearity.

Disadvantage: Area consuming

Every LSB needs a current source, a switch, a decoding circuit, and the binary to thermometer decoder.

3. 8-bit current-mode thermometer-coded DAC

Conceptual architecture

- * The two LSB bits D0 and D1 are fed to two parallel three-stage pipelined latches directly.
- * The six MSB bits are fed to the decoders. (D2, ----, D7)

Segmented decoding structure of the DAC

Decoding scheme:

Column	Row			
D4 D3 D2	D7 D6 D5			
D4+D3+D2 = C1	D7 + D6 + D5 = R1			
D4+D3 = C2	D7 + D6 = R2			
D4+D4D3+D3D2+D4D2 = C3	D7+D7D6+D7D5+D6D5 = R3			
D4 = C4	D7 = R4			
D4D3+D4D2 = C5	D7D6+D7D5 = R5			
D4D3 = C5	D7D6 = R6			
D4D3D2 = C7	D7D6D5 = R7			

Decoding of current-source matrix:

R1	R1+C1	R1+C2	R1+C3	R1+C4	R1+C5	R1+C6	R1+C7
R2	R2+R1C1	R2+R1C2	R2+R1C3	R2+R1C4	R2+R1C5	R2+R1C6	R2+R1C7
R3	R3+R2C1	R3+R2C2	R3+R2C3	R3+R2C4	R3+R2C5	R3+R2C6	R3+R2C7
R4	R4+R3C1	R4+R3C2	R4+R3C3	R4+R3C4	R4+R3C5	R4+R3C6	R4+R3C7
R5	R5+R4C1	R5+R4C2	R5+R4C4	R5+R4C4	R5+R4C5	R5+R4C6	R5+R4C7
R6	R6+R5C1	R6+R5C2	R6+R5C4	R6+R5C4	R6+R5C5	R6+R5C6	R6+R5C7
R7	R7+R6C1	R7+R6C2	R7+R6C4	R7+R6C4	R7+R6C5	R7+R6C6	R7+R6C7
	R7C1	R7C2	R7C3	R7C4	R7C5	R7C6	R7C7

Logic diagram of the segmented row decoder

* Clocked CMOS gates

* Pipelined structure with two stages.

Logic diagram of the segmented column decoder is similar to that of the row decoder.

Current cell circuit

* The third stage of the pipelined circuit.

Symmetrical switching sequence to reduce the gradient effect.

Current source and current switch

4 LSB current source

General characteristics/features of current-mode thermometer-coded DAC:

- (1) No resistor or capacitor are used.
- (2) Require special layout arrangement and complicated switching sequence to reduce the mismatches among current cells in the matrix ⇒ complicated decoder
- (3) Logic circuits and long delay.
- (4) Complicated wiring
- (5) Large chip area \Rightarrow worse matching problem.
- (6) Suitable for high-speed (video) and high-resolution (10-bit) CMOS DAC.

Current switching and better matching than resistors.

§11-5 Hybrid DAC

Combined architecture: Resistor-string + charge-redistribution DAC

Weighted-current-source + current-mode thermometercoded DAC

§11-6 Case study

Ref.: IEEE JSSC, vol.33, PP.1948-1958, Dec.1998

10-bit 500-MS/s CMOS DAC:

Chip area comparison between weighted-current-source DAC and thermometercoded DAC

Area Reouirement for Binary-Weighted AND Thermometer-Coded DAC						
Requirement	Binary Weighted	Thermometer Coded				
INL (10-bit)	$(0.5\sqrt{1024})\mathbf{s} = 16\mathbf{s}$	16 s				
DNL (10-bit)	$\sqrt{1024}\mathbf{s} = 32\mathbf{s}$	S				
Area (INL=0.5-lsb)	$256*A_{unit}$	$256*A_{unit}$				
Area (INL=1-lsb)	$64*A_{unit}$	64*A _{unit}				
Area (DNL=0.5-lsb)	1024*A _{unit}	A_{unit}				

TABLE I

s : standard deviation of current sources.

Aunit: minimum required area to obtain a DNL = 0.5 LSB for the thermometer-coded architecture.

Chip area $\propto \frac{1}{s^2}$

Normalized required chip versus percentage of segmentation and THD versus percentage of segmentation

 \Rightarrow Optimal point

 $A_{digital} = A_{INL} = 1.0 \ lsb$

THD

11-31 Chung-yu wu

Block diagram: 8+2 segmentation

Sinewave spectrum for Fs=300MS/s and Fsig=100MHz . SFDR=60dB

SFDR versus Fsig/Fs

SFDR	Fs(MS/s)	Fsig(MHz)
73dB	100	8
60dB	300	100
51dB	500	240

Summary

0.35µm (1P4M) pure digital CMOS			
0.6mm ²			
500 MSample/s			
2V _{pp} (differential)			
18mA (analog)			
20mA (digital)			
from 3.3V supply			
0.1 LSB			
0.2 LSB			

2. Definition of SFDR (Spurious-Free Dynamic Range)

SFDR: The signal-to-noise ratio when the power of the third-order

intermodulation products equals the noise power.

SFDR = $I_{D1}^* - I_{D3}^* = I_{D1}^* - N_0$ (dB)

I_{D1} curve has a slope=1

 $\Rightarrow \text{SFDR}= A\Big|_{I_{D3=N0}} - A_{N0}\Big|_{I_{D1=N_0}}$

§11-7 Summary

- 1. Kuang K. Chi et al, "A CMOS triple 100-Mbit/s video D/A converter with shift register and color map," *IEEE J. Solid-State Circuits*, Dec. 1986, pp. 989-995.
- T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, "An 80-MHz 8-bit CMOS D/A converter," *IEEE J. solid-State Circuits*, pp. 983-988, Dec. 1986.
- 3. L. Lteham, B.K. Ahuja, K.N. Quader, R.J. Mayer, R.E. Larsen and G.R. Canepa, " A high-performance CMOS 70-MHz palette/DAC," *IEEE J. Soulid-State Circuits*, pp. 1041-1047, Dec. 1987.
- 4. A. Cremonesi, F. Maloberti, and G. Polito, " A 100-MHz CMOS DAC for videographic systems, " *IEEE J. Solid-State Circuits*, June 1989, pp. 635-639.
- 5. N. Kumazawa, N. Fukushima, N. Ono, and N. Sakamoto, "An 8 bit 150 MHz CMOS D/A converter with 2 Vp-p wide range output," 1990 Symposium on

VLSI Circuits, pp. 55-56.

- Marcel Pelgrom, " A 50MHz 10-bit CMOS digital-to-analog converter with 75Ù buffer," Proc. of IEEE International Solid-State Circuits Conference, pp. 200-201, 1990.
- 7. C. A. A. Bastiaansen, D. W. J Greoeneveld, H. J. Schouwenaars, and H. A. H Termeer, " A 10-b 40-MHz 0.8-ì m CMOS current-output D/A converter," *IEEE J. Solid-State Circuits*, pp. 917-921, July 1991.
- 8. J.M. Fourier and P. Senn, " A 130-MHz 8-b CMOS Video DAC for HDTV Applications, "*IEEE J. Solid-State Circuits*, vol. 26, no. 7, pp. 1073-1077, July 1991.
- 9. Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, "A 10-b 70-MS/s CMOS D/A converter, " *IEEE J. Solid-State Circuits*, Apr. 1991, pp. 637-642.
- 10. H. Takakura, M. Yokoyam, and A. Yamaquchi, " A 10 bit 80MHz glitchless CMOS D/A converter, " 1991 *IEEE Custom Integrated Circuits Conference*, pp. 26.5.1-26.5.4.
- 11. D. Reynolds, " A 320 MHz CMOS triple 8-bit DAC with on-chip pll and hardware cursor, "*IEEE J. Solid-State Circuits*, vol. 29, no. 12, pp. 1545-1551 DEC. 1994.
- 12. Shu-Yuan Chin and Chung-Yu Wu, " A 10-b 125-MHz CMOS Digital-to-Analog Converter (DAC) with Threshold-Voltage Compensated Current *Sources*, " *IEEE Journal of Solid Circuits*, vol.29, no. 11, pp. 1374-1380, Nov. 1994.
- Chi-Hung Lin and Klass Bult, "A 10-b, 500-Msample/s CMOS DAC in 0.6 mm²," *IEEE Journal of* Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec. 1998.
- 14. Jose Bastos, Augusto M. Marques, Michel S. J. Steyaert, Willy Sansen, "A 12-Bit Intrinsic Accuracy High-Speed CMOS DAC," *IEEE Journal of Solid-State Circuits*, vol. 33, no. 12, pp. 1959-1969, Dec. 1998.
- 15. Greet A. M. Van der Olas, Jan Vandenbussche, Willy Sansen, Michel S. J. Steyaert, and Georges G. E. Gielen, "A 14-bit Intrinsic Accuracy Q² Random Walk CMOS DAC," *IEEE Journal of Solid-State Circuits*, vol. 34, no. 12, pp.1708-1718, Dec. 1999.
- 16. Alex R. Bugeja, Member, IEEE, Bang-Sup Song, Fellow, IEEE, Patrick L. Rakers, Member, IEEE, and Steven F. Gilling, Member, IEEE "A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance," *IEEE JOURNAL OF SOLID-STATE CIRCUITS*, VOL. 34, NO. 12, DECEMBER 1999.

CH 12 CMOS Analog Comparators

§12-1 General Considerations

Purpose of Comparators: To compare two input voltages and produce a very large output voltage with an appropriate sign to indicate which of the two is large.

Types of MOS Comparators:

A. Differential-input OP AMP

The latch provides a large and fast output signal, whose amplitude and waveform are independent of those of the input signal. Well suited for the logic circuits usually following the latch.

If no latch: -1mV +1mV input = > -5V +5V output

Gain = 5000, 74 dB

If use latch: The output voltage of A must be larger than the combined offset and threshold voltage of the latch, which is about 0.2V

= > Gain = 200

- (1) Static configurations
- (2) Dynamic configurations
- B. Cascaded inverter stages

§12-2 Differential-Input OP AMP Comparators §12-2.1 Static Configurations without Latches

1.

- * High Speed Comparator
- * Open loop gain: ~80dB
- * Output Swing: ±5V
- * Propagation Delay (±10mV Vin): ~1.2µs~2.4µs (15PF Load)
- * Generally, compensation circuit is not needed since there is no feedback connection.
- * Power Dissipation: ~10 mW
- 2. General-purpose comparators
 - * Propagation delay: $(\pm 10 \text{mV}, 15 \text{PF})$ $1.0 \mu \text{s} \sim 2.8 \mu \text{s}$
 - * Power Dissipation: ~ 4mW

3. Comparator with level shift.

- * Open loop gain: 60-80dB
- * Output Swing: +5V 0V
- * Propagation delay (± 10 mV, 15 PF): 1.0 μ s~0.8 μ s

* Power Dissipation: ~1.5mW

4. CMOS Voltage Comparator MC 14574 (Motorola)

* Quad comparators

- * Open loop gain (Iset = $I_0 = 50\mu A$): 96dB
- * Propagation delay: ~1µs
- 5. Fully differential OP-AMP Comparators.

§12-2.2 Dynamic Configurations without Latches.

(1) Dynamic OP-AMP type comparator - Vos + 1=1 C2 C1 **Gain Stage** * Compensated by C_2 +V in -* Vc1=Vin-Vos Vout * offset memorization Vos +Vin C2 2=1 ╢ Gain Stage Vref O Vc1 = Vref-VinC1 * Vc1 Vout * No compensation Vos * offset cancellation 2:nonoverlapping 1, clocks

- * Practically, ϕ_{1a} must go low first in advance of ϕ_1 to avoid the clock feedthrough effect of S_1 by ϕ_1 .
- (2) Dynamic fully differential comparator

- C₁, C₂: Autozeroing capacitors $\phi_1 = 1$ V_{c1} = Vin⁻ - Vs, V_{C2} = Vin⁺ - Vs $\phi_2 = 1$ V_{c1} = Vin⁺ - Vin⁻, V_{C2} = Vin⁻ - Vin⁺ * S₁ and S₂ generate feedthrough voltages at $\widehat{\Phi}$ and $\widehat{\mathbb{B}}$ = > common-mode voltage
- * CMRR can be promoted by using negative common-mode feedback circuit.

§12-2.3 Dynamic Configuration with Latches

Preamplifier-latch combination

$*f_{2}$	1,	S ₅ short	= >	Q_1 , Q_2 , Q_3 , Q_4 and Q_7 are differential amplifier.
$ar{m{f}}_2$	1,	S ₆ short	= >	Q_3 , Q_4 , Q_5 , Q_6 and Q_7 are a bistable latch.

Operating clock waveforms:

§12-3 Cascaded Inverter Stages

(1) Basic Structure

(2) CMOS Cascade Comparator.

*
$$Q_1 \equiv Q_3, Q_2 \equiv Q_4$$

* The speed of the cascaded inverter stages is limited by the RC times constants.

$$R = R_0 = r_{dsp} \| r_{dsn} \sim 100 \,\mathrm{k}\Omega$$
$$C_{in} = C_{gs} + C_{gd}(1 + |\mathbf{A}|) \sim 0.5 \,\mathrm{pF}$$
$$\mathbf{A} \sim 10$$

(b)

- (3) Fast comparators with two amplifiers and a single latch.
 - * Usually, the speed of a latch is faster than that of a amplifier.
 - = > Two amplifiers share one latch.

* Operating clock waveforms

§12-4 CMOS Dynamic Latches for Comparators

1. Direct-coupled latch with differential input signals

- * For single-ended inputs, Vin⁺ or Vin⁻ may be replaced by a threshold voltage or can be generated by self-biasing
- 2. Capacitively coupled latch with autozeroing input

* ϕ_2 1 = > inverters Q₂-Q₅ and Q₃-Q₆ are biased at their optimal points C₃ and C₄ are also precharged such that any asymmetry between the two inverters is compensated by the slightly different bias voltages provided by C₃ and C₄.

= > loop gain of the latch = 1.

* Vin+ < Vin-: V_C H, V_D L. Vin- < Vin+: V_C L, V_D H.

§12-5 Case Studies

1. Differential-Input OP AMP Comparators with Dynamic Latches *Ref. IEEE JSSC, vol. 27, pp. 208-211, Feb. 1992*

- t1~t2: M_{12} ON ($\phi_2 = 1$) M_{10} - M_{11} ON, M_8 - M_9 OFF ($\phi_1 = 0$) Va = Vb, Vc=Va, Q= \overline{Q} Vinp₁ and Vinp₂ settles
- t2~t3: Va \neq Vb established with some regeneration of M₄/M₅, M₁₂ OFF
- t3-t4: $\phi_1 = 1, \phi_2 = 0 = > M_{12} \text{ OFF}, M_{10}, M_{11} \text{ OFF}, M_8, M_9 \text{ ON}$ strong regeneration $= > Vc \neq Va, Va=Vc, Vb=Vd = > Q, \overline{Q}$ established

Performance:

Technology	1.5 um CMOS
Die size	140 x 100 um ²
Power supply	+2.5 / -2.5 V
Input dynamic range	2.5 V
Resolution	8 bits, 1LSB=9.8 mV
Sensitivity	10.6 mV (< 7 bits)
Sampling rate	65MHz
Offset voltage	3.3 mV
Input capacitance	30 fF

CH 13 CMOS Analog to Digital Converters (ADCs)

§13-1 Introduction

1. Functional block diagram of a A/D converter

2. Ideal A/D Converter (ADC)

$$V_{in} \pm V_x = V_{ref}(b_1 2^{-1} + b_2 2^{-2} + \dots + b_N 2^{-N})$$
$$= \frac{V_{ref}}{2^N}(b_1 2^{N-1} + b_2 2^{N-2} + \dots + b_{N-1} 2^1 + b_N 2^0)$$

where V_{in} is the input analog voltage or current

 $V_{\mbox{\tiny ref}}$ is the reference voltage or current

 $\mathbf{b}_1 \dots \mathbf{b}_N$ is the digital output

 V_x is the tolerable input signal range

$$-\frac{1}{2}V_{LSB} \le V_x \le \frac{1}{2}V_{LSB}$$

2-bit ADC:

Input-output transfer curve:

Offset by
$$\frac{1}{2}V_{LSB}$$
 ($\frac{1}{2}LSB$)
 $V_{LSB} = \frac{1}{4}V_{ref} \rightarrow 1 LSB$
 $\frac{V_{LSB}}{V_{ref}} = \frac{1}{4} \rightarrow 1 LSB$

The input voltage or current should remain less than $3/4 V_{ref} + 1/8 V_{ref} = 7/8 V_{ref}$ and greater than 0 - $1/8 V_{ref} = -1/8 V_{ref}$.

Overloaded ADC: When $V_{in} > V_{in}|_{ideal} + V_x$ or $V_{in} < V_{in}|_{ideal} - V_x$, the

quantization error is greater than $1/2 V_{LSB}$.

3. Quantization noise

Quantization error \rightarrow Quantization noise. $V_1 = V_{in} + V_Q$ $V_Q = V_1 - V_{in}$

Quantization noise modeling:

(1) Deterministic approach

$$V_{Q(rms)} = \left[\frac{1}{T} \int_{-T/2}^{T/2} V_Q^2 dt\right]^{1/2} = \left[\frac{1}{T} \int_{-T/2}^{T/2} V_{LSB}^2 (\frac{-t}{T})^2 dt\right]^{1/2}$$
$$= \left[\frac{V_{LSB}^3}{T^3} \left(\frac{t^3}{3} \right|_{-T/2}^{T/2}\right)^{1/2} = \frac{V_{LSB}}{\sqrt{12}}$$

- 4. Signal-to-Noise Ratio (SNR)
- (1) V_{in} is a sawtooth of hight V_{ref} (or a random signal uniformly distribut between 0 and V_{ref})

$$\Rightarrow \text{SNR} = 20 \log \left(\frac{\text{V}_{\text{in}(\text{rms})}}{\text{V}_{\text{Q}(\text{rms})}}\right) = 20 \log \left(\frac{\text{V}_{\text{ref}}/\sqrt{12}}{\text{V}_{\text{LSB}}/\sqrt{12}}\right) = 20 \log 2^{\text{N}} = 6.02 \text{ N dB}$$

(2) V_{in} is a sinusoidal waveform between 0 and V_{ref} .

$$\Rightarrow \text{SNR} = 20\log \frac{V_{\text{in(rms)}}}{V_{\text{Q(rms)}}} = 20\log \frac{V_{\text{ref}}/2\sqrt{2}}{V_{\text{LSB}}/\sqrt{12}} = 20\log \left(\frac{\sqrt{3}}{\sqrt{2}} \times 2^{\text{N}}\right) = 6.02 \text{ N} + 1.76 \text{ dB}$$

The above SNR is the best possible SNR for an N-bit ADC

$$V_{inpp} = V_{ref} (0dB) \rightarrow SNR = 6.02 N + 1.76 dB$$

$$V_{inpp} \Rightarrow -20 dB \rightarrow SNR = (6.02 N+1.76) dB - 20 dB$$

- 5. Performance specifications
 - (1) Missing codes (equivalent to monotonicity in DAC)

Maximum DNL < 0.5 LSB or maximum INL < 0.5 LSB

 \Rightarrow The ADC is guaranted not to have any missing code.

(2) Conversion time

The time taken for the ADC to complete a single measurement including acquisition time of the input signal.

(3) Sampling rate

The speed at which samples can be continuously converted. Typically, the sampling rate is equal to the inverse of the conversion time except in the case of pipelining structure or multiplexing structure.

(4) Sampling-time uncertainty or aperture jitter

Due to the effective sampling time changing from one sampling instance to the next.

Sinusoidal waveform case:

$$V_{\rm in} = \frac{V_{\rm ref}}{2} \sin(2\boldsymbol{p} \, f_{\rm in} t)$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{V}_{\mathrm{in}} \big|_{\mathrm{max}} = \boldsymbol{p} \, \mathbf{f}_{\mathrm{in}} \mathbf{t}$$

zero-crossing point

If $\Delta V < 1 V_{LSB}$ for some sampling-time uncertainty Δt ,

 $\Delta t < \frac{V_{LSB}}{\boldsymbol{p} f_{in} V_{ref}} = \frac{1}{2^{N} \boldsymbol{p} f_{in}}$ examples: 8-bit ADC, 250 MHz $f_{in} \Rightarrow \Delta t < 5 \text{ ps}$ 16-bit ADC, 1 MHz $f_{in} \Rightarrow \Delta t < 5 \text{ ps}$

(5) Dynamic range

Dynamic range \equiv

rms value of the maximum input (output) sinusoidal signal rms value of the output noise plus the distortion when the same sinusoidal is present at the output

It is also called the signal-to-noise-and-distortion ratio (SNDR).

* Can be expressed as effective number of bits using the SNR formula on

p. 13-3.

* Input frequency dependent.

6. Types of ADCs

Low-to-medium speed: (1) Dual-slope or Integrating ADC

- (2) Oversampling ADC
- (3) Successive approximation ADC
- (4) Algorithmic ADC

High speed:

- (1) Flash ADC
- (2) Two-step ADC
- (3) Pipelined ADC
- (4) Interpolating ADC
- (5) Folding ADC
- (6) Time-interleaved ADC

§13-2 Successive-Approximation (SA) ADC's

§13-2.1 Resistor-string SA MOS ADC

Ref. : *IEEE J. Solid-State Circuits, vol. Sc-13, pp.* 785-791, *Dec.* 1978. Conceptual 3-bit unipolar ADC

Typical performance of a 8-bit ADC:

p-type resistor	Resolution	8 bit
$100 \Omega / \square$.	Nonlinearity	$\pm \frac{1}{2}$ LSB
	DNL	$\pm \frac{1}{10}$ LSB
	Conversion time	20 µs
	Input resistance	>1000 MΩ
	Stability (0° - 85°C)	<1/4 LSB

Error Sources:

- 1. Resistor matching accuracy.
 - * Dividing the string into several equal lengths and locating them in close proximity.

2. The reverse bias junction voltage of the diffused resistors causes nonlinearity.

Bit capacity $\uparrow \Rightarrow \Omega / \Box \downarrow$.

- 3. The small on resistance of the switches can decrease the settling time and reduce the feedthrough effect from the gate voltages. Similary, the switch feedthrough only effects the settling time.
- 4. Major error source: The feedthrough in the switch transistor Q_2 .

1 MHz clock \rightarrow 2 mV error.

5. Comparator offset error.

§13-2.2 Charge-Balancing SA MOS ADC

Ref. : IEEE J. Solid-State Circuits, pp. 912-920, Dec. 1979.

* Mixed resistor string and binary-weighed cap.

13-bit ADC with laser-cut programmable Si-Cr fuse PROM's.

Post-process triming	= >	Linearity	1/2 LSB
		Conversion Time	50 µs
		Analog input	- Vss ~ + Vcc
		Clock freq. range	0.1 ~ 3MHz
		Supply voltage	$\pm 4.5 \sim \pm 6.3 V$
		Current drain	5mA

§13-2.3 Charge-Redistribution SA MOS ADC (CRSA ADC)

1. 10-bit CRSA ADC

Ref: IEEE JSSC, vol. SC-10, pp. 371-379, 379-385, Dec.1975.

Operation Procedures

(a) Sample Mode:

(b) Hold Mode:

(c) Redistribution (Approximation) Mode:

$\mathbf{S}_1 \qquad \mathbf{V}_{\mathrm{ref}}$,	$Vx = -Vin + V_{ref}/2$		
If $Vx < 0$,	logic 1 in $MSB(b_4)$,	$Vin > V_{ref} / 2$	
If $Vx > 0$,	b ₄ (MSB)=0,	Vin < V_{ref} /2 and S_1	ground

Final Configuration:

Complete ADC block diagram:

Measured Results:

Resolution	10 bits	Gain error	< 0.05 %
Linearity	$\pm \frac{1}{2}$ LSB	Sample mode acquisition time	2.3µs
Input Voltage	0-10 V	Total conversion time	22.8 µs
Input offset	2mV		

2. 12-bit modified CRSA ADC

Ref.: IEEE J. Solid-State Circuits, vol. sc-14, pp. 920-926, Dec. 1979.

- * SAMPLE
- * HOLD
- * CHOOSE V_{ref}

\mathbf{V}_{in}	Voltage A- B	S _A	S _B	S ₁	S ₂	S ₃	S_4	S ₅
Larger	$\frac{V_{ref}}{4}$	-	2		ON	ON		
Smaller	$\frac{V_{ref}}{2}$	-	1			ON	ON	
	discharge	-	1	ON				
	set-up	2	1			ON	ON	
	redistribution	2	1			ON	ON	

Implement:

16 R, 8 ratioed capacitor, 37 MOS R: S/D diffusion, $18\Omega/\Box$, 16 R= 9000 Ω C: Unit capacitor, 400 μm², 0.1 pF

Measured data:

Resolution	12 Bits	Area	12,000 mil ²
Monotonicity	12 Bits	Power dissipation (15V)	40 mW
Integral Linearity	6 Bits	DNL	$\frac{1}{2}$ LSB
Input. Offset	5 mV	Total conversion time	50µs

Operational Principle:

	S _A	S _B	S_1	S ₂	S ₃	S_4	S ₅	SLK	•••	S _{L2}	S _{L1}	S _x	V _x
Sample	-	V_{in}	ON	OFF	OFF	OFF	OFF	В		В	В	ON	0
Hold	-	1	ON	ON	OFF	OFF	OFF	В		В	В	OFF	-V _{in}
		(0)											
Choose V _{ref}	-	2	OFF	ON	ON	OFF	OFF	В		В	В	OFF	$-V_{\cdot} + \frac{V_{ref}}{V_{ref}}$
		$(V_{ref}/4)$											[•] ^m 4
	-	1	OFF	OFF	ON	ON	OFF	В		В	В	OFF	$-V_{ref}$ $2V_{ref}$
		$(V_{ref}/2)$											• _{in}
	-	2	OFF	OFF	OFF	ON	OFF	В		В	В	OFF	$V = 3V_{ref}$
		$(3V_{ref}/4)$											$-\mathbf{v}_{in} + \underline{4}$
Discharge	-	1	ON	OFF	OFF	OFF	OFF	В		В	В	OFF	$-V_{in}$
		(0)											

											13-12 Chung-yu wu		
Set up	1 (V _{ref})	$\frac{2}{(3V_{ref}/4)}$	OFF	OFF	OFF	ON	ON	В	•••	В	В	OFF	$-V_{in} + \frac{3V_{ref}}{4}$
Redistribution	$-V_{in} + (3/4)V_{ref} < V_x < -V_{in} + V_{ref}$												
	1	2	OFF	OFF	OFF	ON	ON	А		В	В	OFF	$-V_{in} + \frac{3V_{ref}}{4} + \frac{1}{8}V_{ref}$

* The last capacitor C is always connected to B.
§13-3 Dual-Slope (Integrating; Charge-Balancing) MOS ADC's

 $4\frac{1}{2}$ Digit ADC (Modified structure)

Waveforms observed at the node (A):

NOTE: ENCLOSED AREA GREATLY EXPENDED IN TIME AND AMPLITUDE

Operational principles:

1. INT1

2. DE1

3. REST (INT2)

- V : Residual Voltage
- 4. ×10 (INT2)

5. DE2 (The same as DE1), $\Delta V'$: residual voltage

6. INT(ZI)

The final residual voltage $\Delta V'$ is effectively reduced to $\frac{1}{10}$ of the original residual voltage without amplification.

 \Rightarrow accuracy \uparrow

§13-4 Algorithmic ADC

Refs: 1. IEEE ISSCC, Digest of Papers, pp. 96-97, 1977 * 2. IEEE JSSC, vol. 31, no. 8, pp. 1201-1207, Aug. 1996

The conceptual block diagram of the algorithmic A/D converter

- * The speed is limited by the settling time of OP AMPs used to implement the multiplier.
- * For audio ADC applications, it could reach low-power low-voltage operation.
- * Major error sources: (1) Capacitor ratio mismatches if SC circuits are used.
 - (2) Finite-gain error of OP amps.
 - (3) Offset voltage of OP amps.
 - (4) Capacitor feedthrough error by switches if SC

circuits are used.

Complete circuit of the ratio-independent and gain-insensitive algorithmic ADCs

The complete circuit of the A/D converter

Clock waveforms:

Operational principles:

Step 1:

$$Vy(1) \cong \left(2 - \frac{13A + 20}{(A+2)^2} + \frac{13A + 27}{(A+3)^2}\right) Vx(3) - \left(1 - \frac{7A + 8}{(A+2)^2} + \frac{7A + 9}{(A+3)^2}\right) Vref$$

Step 2:

Step 3:

Vx (3) \cong Vin [1-2/(A²+3A+2)]

Step 4:

$$Vy(4) \cong \frac{C5}{C6} (Vx(3) - Vref)(1 + 3/A)$$

Step 5:

Step 6:

Step7:

Fully differential circuits:

The complete fully-differential circuit of the A/D converter

The folded-cascode fully-differential operational amplifier.

Chip photograph of the A/D converter.

A typical plot of the integral nonlinearity.

A typical FFT plot of the A/D converter.

Table IThe Experimental results of the proposed A/D converter.

Resolution	14 bits
Differential nonlinearity	< ± 1/2 LSB
Integral nonlinearity	< ± 1 LSB
Sampling frequency	10 KHz
Gain of op amp	60 dB
Power dissipation	50 mWatts
Supply voltage	± 2.5 V
Process	0.8 µm CMOS
Chip active area	2.1 mm $\times 0.8$ mm

A/D converters Performance	[4.4]	[4.5]	This work
Resolution (bits)	12	8	14
Absolute INL (LSB)	<= 1.5	<= 0.5	<= 1
OP amp dc Gain (dB)	92	84	60
Clock cycles for n bits	бп	3n	7n
Sampling rate (KHz)	8	8	10
Power dissipation (mW)	17	-	50

Table IIComparison of the proposed A/D converter with the
previous ratio-independent A/D converters [4.4]-[4.5].

§13-5 Full Flash (Parallel)

- * Need 2^N-1 comparators for N bits.
- * Need 2^N-1 Resister (R) tapes for N bits.
- * S/H usually combined with comparators. (No op amp is required)
- ? Large no. of analog elements.
- ? Large chip area & power consumption.

VIN

Clock

Full-flash A/D converter

§13-5.1 MOS Flash ADC's

Ref.: IEEE JSSC, vol. sc-14, pp. 926-932, Dec. 1979.

CMOS/SOS 6 bit 20 MHz ADC.

Block diagram of A/D converter chip.

High speed autozeroed CMOS/SOS comparator.

Discrete and distributed reference ladder models

 $C_{comp} \le 0.05 \text{ pF}, R_{TAP} = 20\Omega$ $|Z(w)| / R_{TAP} \ge 50,000 \ (< 10,000, \text{ don't work})$

Reference ladder leading as a function of input voltage (|Z|(W) / RTAP = 500)

Effect of loading ratio on reference ladder output.

Major source of error is the loading of the reference resistor ladder by the comparator bank.

Resistor ladder loading errors are of two types:

- (1) "Transient error" associated with instantaneous ladder loading during a single measurement;
- (2) Long-term "recovery error" associated with errors at a new input level after the ladder has been loaded for a long period by inputs at another level.

If the capacitor bypassing is performed at the externally accessable ladder midpoint tap,

- \Rightarrow transient impedance \downarrow by a factor of more than 4.
- ⇒ Worst-case static loading which can't be bypassed makes recovery errors the significant error source.
- * All the errors considered above are of this type.

Typical 6-bit A/D converter Performance:

Power dissipation at 15 MHz clock, 20 pF/output.

	5V	8V
convert mode	50mW	145mW
Tracking mode	45mW	130mW
3.2V reference	9mW	9mW
Input Cap.	8 pF	8 pF
Recom. V _{ref}	3.2V	6.4V
On-chip Zener Reference	3.2V	6.4V
Input voltage source resistance	75Ω	75Ω
Accuracy 15MHz	$\frac{1}{2}$ LSB	$\frac{1}{2}$ LSB
20MHz		1 LSB
25MHz		1.5 LSB

§13-5.2 7-Bit CMOS Flash ADC for Video Applications

Ref.: IEEE J. Solid-State Circuits, vol. sc-21, pp. 436-440, June, 1986

Overall schematic:

R: Polysilicon resistor, 10 Ω / bit

 $2\mu m$ Poly-gate VLSI CMOS

Overall ship area: $135 \times 142 \text{ mil}^2$

Comparator and the primary latch

Gain: 18dB Bandwidth: 40 MHz Q_{10} , Q_{13} : Operated in linear region with on-chip low-power OP AMP and reference loop.

 \Rightarrow Ro \downarrow , fu \uparrow .

 Q_5, Q_6 : Positive feedback to form latch.

 Q_{11}, Q_{12} : To limit the output swing and enable the comparator to recover much faster from the latched state.

The secondary latch is of the hysteresis type, because

- (1) it can convert the limited logic swing of the primary latch to correct CMOS logic levels.
- (2) it can reduce the amount of hysteresis to ~ 100mV by setting "Latch"

signal to High. Thus the latch always experiences an overdrive of 100 mV.

- \Rightarrow Avoid ambiguous state and increase the resolution time of the comparators.
- \Rightarrow Reduce metastability error probability

Performance characteristics:

7-bit inherently monotonic	
Accuracy: differential and integral	± 0.5 LSB.
Analog bandwidth	: -3dB 42 MHz; $-\frac{1}{2}$ LSB 5 MHz
Maximum sample rate	: > 22 MSPS, 30 MSPS typically
V _{DD}	$: 5V \pm 0.5V$
Input range	: 1.5V~3.5V
Power consumption (25MSPS)	: 350 mW
Temp. range	: - 40° C to + 85° C

§13-5.3 CMOS 20 MS/S (Maga Samples /sec) 7-bit Flash ADC

Ref.: ISSCC 84, PP. 56-57, 315.

Nonsampling amplifier:

* Higher operating. frequency

§13-5.4 Metastability error

Ref.: IEEE JSSC, vol. 31, pp. 1132-1140, Aug. 1996, 7-b 80-MHz flash ADC

Metastability error: occurs in ADCs when undefined comparator outputs pass through the encoder to the converter output bits.

* Can be improved to $< 10^{-12}$ errors/cycle.

§13-6 Two-Step Flash or Subranging ADC

Conventional two-step A/D converter:

Two-step A/D converter with single resister ladder:

Two-Step Flash ADCs or Subranging ADCs with:

- (1) Two Resistor (R) Ladders
 - * Need 2($2^{N/2}$ -1) comparators & R tapes.
 - * Need high-performance op amp.
 - ? Nonlinearity caused by the mismatch of the two resister ladder.
 - ? High-performance op amp is not easy to be achieved (especially for 3 V Vdd).
- (2) Single Resistor Ladder
 - * Need 2^N-1 R tapes.
 - * Need 2($2^{N/2}$ -1) comparators.
 - ? As many R tapes as full flash type.
 - ? No op amp is required.

§13-6.1 Subranging (Two-Step Flash) ADCs

8-bit 50MHz CMOS Subranging ADC with Pipelined Wide-Band S/H Ref.: IEEE JSSC, pp. 1485-1491, Dec. 1989.

Conventional subranging A/D converter:

Trade-offs in Subranging and Flash 8-bit ADC

	Flash	Subranging
Total comparators	256	31
Clock cycles/conversion	1	2
Relative speed	1	0.5
Relative input loading	1	0.12
Relative power dissipation	1	0.2
Relative die size	1	0.4
Typ. Differential Linearity Error	0.4 LSB	0.3 LSB
Typ. Integral Linearity Error	0.7 LSB	0.5 LSB

- * High accuracy is required only for the S/H circuit and the D/A subconverter.
 (S/H is to reduce the effect of signal delay differences in the large-area chip.)
- * Very difficult to develop a high-speed (video) and high-accuracy MOS S/H circuit.

- * The conversion rate degrades. (Pipelined structure may be used)
- * The linearity of the complete converter depends on the accuracy of the gain matching among the first A/D, the D/A, and the second A/D subconverters.

New structure: (4-bit conceptual structure)

Subranging A/D converter using combined DAC/subtraction

technique: (a) block diagram and (b) subranging process

- * Combined DAC/subtraction Technique
- * No current flows through the switches ⇒ No degradation in linearity in DAC
- * Amplifiors's settling time < 2 ns

8bit actual ADC:

Block diagram of 8-bit subranging A/D converter

- * The 2nd ADC has a fifth bit reserved for digital correction of nonlinearity caused by both offset voltages of the second S/H circuit and the subtractor and nonlinear errors in the first A/D subconverter.
- * The two S/H circuits and two A/D subconverters operate in a pipelined manner ⇒ High conversion rate (≥ 2).
- * The resistor string has more than 10-bit accuracy.

Gain Matching

Linearity degration caused by gain mismatches in pipelined S/H

Conventional MOS S/H:

SF:

- * The switch opening time is influenced by input voltages \Rightarrow severe distortion.
- * Poor linearity.

Integrator-type S/H:

- * The same switch closing time.
- * Close loop configuration enhances the linearity.
- * Difficult to obtain a fast-settling speed that ensures 8-bit accuracy.

Imposed by the relatively high output resistance of the amplifier and the clock feedthrough error of the MOS switch.

Conventional MOS S/H: (a) source follower type S/H, (b) waveform of clock ϕ and switch opening time deviation for source follower S/H, and (c) integrator-type S/H

New S/H:

- * Bandwidth-enhanced integrator-type S/H circuit.
- * CMOS transmission gate with dummy transistor (clock feedthrough \downarrow)
- * Compensation

$$C_{C} = \frac{R_{F}}{R_{I}}C_{H}(1 + \frac{R_{SW}}{R_{I}} + \frac{R_{SW}}{R_{F}}) \text{ pole-zero}$$

cancellation. \Rightarrow Bandwidth \uparrow .

Bandwith-enhanced integrator-type S/H

* $C_H=1$ pF, Cc=1.2 pF, $R_F = R_I = 1K\Omega$, $R_{SW} = 100\Omega \Rightarrow 8$ -bit, 50 MHz. $T_{settling} = 12$ ns ~ 8.5 ns for 2V step.

Block diagram of pipelined S/H and subtractor

* The output of the subtractor is set to analog ground by closing the switch for the limiter.

High-speed operational-amplifier circuit diagram

TABLE I Amplifier Characteristics

DC Gain		53 dB
Unity Gain Fre	equency	380 MHz
Phase Margin		60 degree(*)
Settling Time	AMP	5.4 ns(*)
(0.2%)	S/H	8.5 ns(*)
Power Dissipa	tion	83 mW

(*) Simulation

Simulated linearity characteristics for S/H circuits

* Comparators for the second A/D subconverter have an inaccuracy $\leq \frac{1}{4}$ LSB. (3 mV at 3V input) (FS)

* \geq 100 MHz with a 7-8 mW power dissipation.

Timing diagram for pipelined subranging A/D converter

Experimental results:

1 µm CMOS, 5V single power supply, sampling rate 50 MHz.

Effective bits and gain as a function of analog input frequency

TABLE II CHIP PERFORMANCE

Resolution	8b
Conversion rate	50MHz
Effective bits	7.9b (10Msps) 7.3b (30Msps) 6.7b (50Msps)
Effective resolution bandwidth	25MHz
Input bandwidth	55MHz (-0.1dB)
Input capacitance	1.5pF
Power dissipation	600mW (5V power supply)
Chip size	3.2×4.3mm

§13-6.2 10-bit 5-MSPS CMOS Two-Step Flash ADC

Ref.: IEEE JSSC, vol. 24, no. 2, pp. 241-249, Apr. 1989.

1. Classical two-step flash ADC

* Limited by matching between the MSB ADC and DAC transitions

* Limited by op-amp settling time (conversion rate)

- Fig. 2. (a) Classical two-step flash ADC block diagram limited to bipolar technology. Limitations include matching the MSB ADC and DAC transitions otherwise missing codes and nonlinearity may result.
 (b) Timing diagram for the classical two-step flash ADC. Although the four phases are shown as equal length, the subtraction and gain are the slowest. They are limited by op-amp settling time and limit the conversion rate.
- 2. New structure

* No OP amps.

* No gain block

Fig. 3. Prototype subranging ADC block diagram. Notice that there are no op amps. The timing is similar to that in Fig. 2(b). The ADC's and DAC's share components to eliminate matching requirements among them.

3. Circuit implementation

CIRCUIT DESIGN PROBLEMS AND SOLUTIONS	
Problem	Solution
Digital Compatibility	5-V Operation
Power Supply Noise	Fully Differential Circuits
Charge Injection Errors	Fully Differential Circuits
Monotonicity	Cancel Comparator Offset
Fast, High-Gain Comparator	Multistage Comparator

TABLE I

DAC MSB Converter FE R 32 A 320 Latch n Bank R₃₁ a 31 MSBs Compare Sample and 1 Output 0 Binary g Encoder R2 M U R1 х 17 MSBs 4CT 16C 8C 20

* Shared binary weighted capacitor array for the MSB ADC and DAC and the LSB ADC.
⇒ mismatches ↓

Fig. 4. Prototype converter's MSB ADC and DAC. It operates like a standard CMOS flash converter. The 32-C capacitor is used as part of an S/H. It is a 5-bit array used for subranging in the LSB conversion. The DAC and ADC transitions match each other since the same resistor string is used for both.

Fig. 5. Prototype converter's LSB ADC. Thirty-one ADC subsections each preset to codes 00001 through 11111 subdivide the region between V_{r1} and V_{r2} in the LSB's flash decision. The ADC subsections are 5-bit binary-weighted capacitor-array ADC's. The comparators, capacitors, latch bank, and encoder are the same ones used in the MSB ADC.

Fig. 7. Three-stage comparator is capacitor coupled to cancel each stage's offset voltage independently. The gain block is based on a differential pair input and diode-connected load devices that eliminate the need for CMFB that uses area, power, and time.

4. ADC Performance

Summary	
Resolution	10 bits
Conversion Rate	5 Msamples/sec
Maximum DNL	0.6 LSB
Maximum INL (With comp.)	3.0 LSB
Maximum SNR (With comp.)	50 dB
Technology	1.6 µm CMOS
Input Capacitance	50 pF
Power Dissipation	350 mW
Area	54k mils ²

TABLE II PROTOTYPE ADC PERFORMANCE AND SPECIFICATIONS

§13-6.3 The Proposed A/D Converter

- 1. Parallel processing with two 8-bit subconverters. (Time-interleaved ADC)
- 2. Two-step structure with single resister ladder.
- 3. Using 31 dynamic coarse and 15 fine comparators for 3V Vdd design. (No op amps is required)
- 4. 1-bit digital error correction.
- The proposed A/D converter with parallel processing architecture.

• The proposed 8-bit A/D subconverter.

• The timing diagram of a 8-bit A/D subconverter.

• The circuit of the coarse comparator.

• Fine comparator and its clock sequences.

• Intermeshed resistor reference ladder.

• The layouts and their equivalent circuits (a) with and (b) without separated unit resistors.

Experimental Results:

• Chip photograph of the fabricated A/D converter.

• A typical plot of the differential nonlinearity.

• A typical plot of the integral nonlinearity.

• The effective bits versus input frequency characteristics.

Process:	0.8um CMOS
Resolution:	8bits
Differential nonlinearity:	-0.4 to + 0.4 LSB
Integral nonlinearity:	-0.6 to + 1 LSB
SNDR(for 85KHz input):	46.8 dB
Sampling rate:	50 MHz
Input dynamic range:	0.5V to 2.5V
Power supply:	3V
Power dissipation:	100 mW
Active area:	4950 um \times 3790 μm

Table 1 Major characteristics of the A/D converter.

§13-7 Pipelined (Multistage) ADC

- Need m($2^{N/m}$ -1) comparators & R tapes.
- Need m op amps for S/H & subtractors.
- ♦ High-performance op amp is not easy to be achieved (especially for 3V Vdd).

Block diagram of a pipelined A/D converter

Pipelined ADCs §13-7.1 A Pipelined 5-Msps 9-bit ADC

Ref.: IEEE JSSC, vol. 22, no. 6, pp. 954-961, Dec. 1987.

1. General pipelined ADC

Fig. 1. Block diagram of a general pipelined A/D converter.

2. Two-stage pipelined ADC

Fig. 2. Block diagram of a two-stage pipelined A/D converter with offset and gain errors.

3. Prototype

Fig. 5. Block diagram of one stage in the prototype.

Fig. 6. (a) Schematic of S/H amplifier. (b) Timing diagram of a twophase nonoverlapping clock.

Fig. 8. Block diagram of A/D, D/A subsection.

Fig. 9. Connection of comparator with A/D, D/A subsection.

• OP AMP:

Fig. 7. Op-amp schematic.

• Comparators:

Fig. 10. Comparator schematic.

4. Measurement results:

Fig. 13. SNR versus input level.

 TABLE I

 DATA SUMMARY OVER INPUT FREQUENCY VARIATION

 9-bit Resolution; 5-Msample/s Conversion

 Rate; ± 5-V Power Supplies

2 kHz	2 MHz	5.002 MHz
0.5	0.6	0.5
1.0	1.1	1.2
50	50	49
	2 kHz 0.5 1.0 50	2 kHz 2 MHz 0.5 0.6 1.0 1.1 50 50

Technology	3-u CMOS
Resolution	9 bits
Conversion Rate	5 Ms/s
Area*	8500 mils ²
Power Supplies	±5 V
Power Dissipation	180 mW
Input Capacitance	3 pF
Input Offset	< 1 LSB
CM Input Range	±5 V
DC PSRR	50 dB

§13-7.2 A Pipelined 9-Stage Video-Rate ADC

Ref.: IEEE 1991 Custom Integrated Circuits Conference (CICC). pp. 26.4.1-26.4.4

 $DAC + \Sigma + 2 > SHA \Rightarrow MDAC$

Table 1 - ADC Performance: +5 V and 25°C

Technology	0.9-µm CMOS
Resolution	10 bits
Conversion Rate	20 Msamples/s
Area	9.3 mm ²
Power Dissipation	300 mW
Input Offset	10 LSB
DNL	0.6 LSB
INL	1.1 LSB
$SNDR (f_{in} = 100 \text{ kHz})$	56.6 dB
SNDR ($f_{in} = 5 \text{ MHz}$)	54.2 dB
DP	0.15 ° p-p
DG	0.23 % p-p
PSRR (1 kHz)	55 dB
CMRR (5 kHz)	70 dB

§13-7.3 A Single-Ended 12-bit 20 MS/s Self-Calibrating Pipeline ADC

Ref.: IEEE JSSC vol. 33, pp. 1898-1903, Dec. 1998.

Advantages: concurrent processing of analog signals

- \Rightarrow optimal speed and power dissipation
- \Rightarrow high speed and low power

Disadvantage: * Inherent passive component matching problem

 \Rightarrow hard to control and yield \downarrow

 \Rightarrow self-calibration and correction technique

* Latency \Rightarrow acceptable in most applications

- 1. The pipeline architecture
 - * CMOS SC implementation
 - \Rightarrow conversion stage speed
 - ∞ feedback factor
 - \propto (interstage gain)⁻¹
 - \Rightarrow 1-bit/stage for power and speed

optimization.

 \Rightarrow simple calibration.

Fig. 2. Transfer characteristic for the 1-bit converter stage.

* Transfer characteristic:

The output residue voltage Vout

Vout = 2Vin + D Vref

D = +1 for 0 < Vin < Vref

= -1 for -Vref < Vin < 0

- * Digital correction technigue: Very attractive for submicron
 - CMOS (small chip area)

13-62 CHUNG-YU WU

* The "radix = 2" overrange stage

To correct residues up to $\frac{1}{2}$ Vref outside the nominal \pm Vref range for Vin.

Fig. 3. Overrange stage implementation.

Transfer characteristic:

Vout = $2Vin + 2 \cdot D$ Vref

$$D = +1 \qquad \frac{1}{2} \operatorname{Vref} < \operatorname{Vin} < \operatorname{Vref}$$
$$= 0 \qquad -\frac{1}{2} \operatorname{Vref} < \operatorname{Vin} < \frac{1}{2} \operatorname{Vref}$$
$$= -1 \qquad -\operatorname{Vref} < \operatorname{Vin} < -\frac{1}{2} \operatorname{Vref}$$

Fig. 4. Overrange stage transfer characteristic.

Lower feedback gain for the overrange stage \Rightarrow maximum operating frequency \downarrow

* Overall architecture only 3 overrange stages are used for digital correction.

Raw data bits Fig. 5. Architecture of the ADC including three overrange stages.

- 2. Self-calibration and correction algorithm
 - * Starting from the eleventh pipeline stage and working toward the MSB stage. The rest of the stages (12-15) are not calibrated.
 - * For each calibration stage, the calibration consists of
 - (1) forcing an analog input value of 0V (differential)
 - (2) forcing the digital decision to the left and to the right of the transition.

13-63 CHUNG-YU WU

* The calibration coefficient

Memi = code_l - code_h Vout = Vref Code_l=0 Vout = -Vref Code_h=0 \Rightarrow Memi = 2| Δ Vout| \cong | Δ Vin|

one coefficient for regular stage. two coefficients for overrange stage.

All the correction coefficients are stored in 15 registers.

Fig. 6. Principle of digital self-calibration and correction.

* All the digital correction is

performed in 16 bits, and the last 4 LSB's are truncated for the final 12-bit output code.

- * Global offset and full-scale error can be calibrated.
- 3. Implementation of Analog Blocks.
 - * The single-ended to differential input S/H:

Fig. 9. Block diagram of the single-ended to differential input S/H.

* Input common-mode fb amp.

Fig. 10. Error amplifier in the input S/H.

* op amp

(telescopic op amp)

Fig. 8. Opamp circuit diagram, including output common-mode feedback.

4. Measurement results

DNL:

Fig. 12. Typical DNL plot.

INL:

Fig. 13. Typical INL plot.

Spectrum:

Fig. 14. Spectrum for a single-ended 2-Vpp 1-MHz input sine wave.

SNR & THD

Fig. 15. Single-ended dynamic performance versus input frequency (20 Msample/s).

Fig. 16. Single-ended dynamic performance versus clock frequency (fin=1 MHz).

TABLE I SUMMARY OF ADC PERFORMANCE

Sample rate	20 MHz
Resolution	12 bits
INL	0.75 LSB
DNL	0.45 LSB
SNR (Nyquist)	65.4 dB
THD (Nyquist)	-72.6 dB
Power dissipation	250 mW
Noise (rms)	0.36 LSB
Input range	0 to 2V

§13-8 Folding and Interpolating ADC

Ref.: Johns & Martin, Analog IC Design, pp. 516-523.

§13-8.1 Interpolating ADC

* The number of input amplifiers (or comparators as in flash ADC) attached to Vin can be significantly reduced by interpolating between adjacent output of these amplifiers.

A 4-bit interpolating ADC with interpolating factor of 4

* Transfer response of V₁, V_{2a}, V_{2b}, V_{2c}, V₂ vs. Vin: Logic 1 = 5V, Logic 0 = 0VGain of input amplifier = -10 Latch threshold = 2.5V

More reference levels between V_1 and V_2 : V_{2a} , V_{2b} , V_{2c} .

Possible transfer responses for the input-comparator output signals, V_1 and V_2 , and their interpolated signals

- * If V_1 and V_2 are accurately linear between their own thresholds,
 - i.e. 0.25V < Vin < 0.5V
 - \Rightarrow correct crossing points of the latch threshold.
 - \Rightarrow linearity \uparrow .

And the rest of the interpolated signal responses are of secondary importance.

- * For fast operation, the delays of latches must be equalized by adding series resistors.
- * Interpolation can be implemented by R string, current mirrors or capacitors.

Adding series resistors to equalize delay times to the latch comparators

§13-8.2 Folding ADC

A 4-bit folding ADC with a folding rate of 4.

- * The use of a folding architecture to reduce significantly the number of latch comparators (2^N in interpolating ADC).
- * The use of analog preprocessing to determine the LSB set directly.
- * Folding rate = the number of output transitions for a single folding block as
 Vin is swept over its input range.

A folding block with a folding-rate of four. (a) A possible single-ended circuit realization; (b) input-output response.

* 4-bit folding ADC architecture:

MSB 2-bit: flash

LSB 2-bit: folding

- LSB: V₁, V₂, V₃, and V₄ produce a thermometer code for each of the four MSB regions.
- * Examples: Vin: $0 \rightarrow 1/4 \text{ V}$ Thermometer code: 0000, 0001, 0011, 0111, 1111 Vin: $1/4 \text{ V} \rightarrow 1/2 \text{ V}$

Thermometer code: 1110, 1100, 1000, 0000

- * Total number of latches: 8 as compared to 16 in flash ADC.
- * No S/H is required.
- * Folding blocks realized by BJT cross-coupled differential pairs as an example.
- * Large input capacitance seen by Vin.
- * The output signal frequency = input signal frequency \times folding rate
 - \Rightarrow limits the practical folding rate used in high-speed converter.

§13-8.3 Folding and Interpolating ADC

A 4-bit folding A/D converter with a folding rate of four and an interpolate-by-two. (The MSB converter would usually be realized by combining some folding-block signals.)

- * Folding rate: 4; Interpolation: 2
- * $\overline{V_4}$ is a new inverted signal from V_4 .
- * Latch number \downarrow

Input capacitance \downarrow

- * Capable of > 100 MHz operation.
- * Can be implemented in CMOS.

§13-8.4 A 400-Ms/s 6-bit CMOS Folding and Interpolating ADC

Ref.: IEEE JSSC, vol. 33, no. 12, pp. 1932-1938, Dec.1998

- 1. The structure of a folder with differential outputs.
 - * A practical folder has
 - 5 amplifiers.

Fig. 2. (a) In this figure, a simple folder is highlighted. (b) A practical folder has an odd number of amplifiers. (c) The differential outputs are plotted.

- 2. A 3-bit folding converter and its cyclic code:
 - * Folding rate N, full-scale sinusoid
 - \Rightarrow Folded signal frequency

$$\approx \frac{\mathbf{p}}{2} \mathbf{N} \cdot \mathbf{f} \mathbf{r} \mathbf{e} \mathbf{q} \mathbf{u} \mathbf{e} \mathbf{n} \mathbf{c} \mathbf{y}$$

Fig. 3. A more complete diagram of a 3-bit folding converter.

Fig. 4. The figure shows the cyclic code generated by the two comparators. The 2-bit decoded binary value is also shown.

3. The block diagram of the 6-bit converter

Fig. 5 Block diagram of the 6-bit converter

4. The folder structure:

Fig. 6. The folder is made of five two-stage amplifiers. The reference ladder is shared among all the folders.

* Folding rate: 4

Interpolation: 2

- * 16 comparators and 16 folders \rightarrow cyclic thermometer \rightarrow 5 LSBs.
- * 5 amplifiers are used
- * Two stages \rightarrow higher gm.
- * Resistor load \rightarrow better transient performance.
- * Output current mode \rightarrow speed \uparrow .

5. Practical folders:

- Fig. 7 (a) The contribution of the fifth amplifier goes unused.(b) This redundancy is used to reduce the number of preamplifiers
- * Vx1 and Vx2 are fixed voltages generated by a single preamplifier shared by all folders.
- * Power dissipation \downarrow .
- 6. Interpolation with current-mode folder signals

Fig. 9. Interpolation with current-mode folder signals. A current split-infour block is shown on the right.

* The number of folders \downarrow . \Rightarrow 16 \rightarrow 8

- * Problems: (1) It adds an extra node to the signal path, reducing the bandwidth of the folder circuit.
 - (2) It does not work readily at low power supply voltages.

* Improved circuit:

Merge the current division within the folder.

Fig. 10. The folder is modified to include current division. The modified amplifier is on the right. A block diagram for a modified folder is also shown.

- * Fast operation and low-voltage operation.
- 7. Comparator design
 - (1) First stage:

Fig. 12. The comparator core (a) tracking and (b) latching.

- * Current-input voltage-output comparator.
- * Resistor load.

Fig. 13. Output voltage of comparator first stage during tracking and latching.

- * Advantages:
 - (a) Currents are summed to drive the latch (i.e. $Iin_L + Iin_R) \Rightarrow$ The input signal has very little effect after latching begins.
 - (b) Iin_{L} and Iin_{R} always flow from tracking to latching \Rightarrow The folders are little disturbed.

* Need the second-stage buffer and latch.

(2) Second stage:

Fig. 14. Comparator second stage.

(3) Third stage to reduce metastability errors:

Fig. 15. Three comparator stages.

8. Complete ADC block diagram

The sync block: To suppress the delay mismatch between the coarse ADC and the rest of the circuitry (i.e. the fine converter)

Fig. 16. (a) ADC block diagram with detail of coarse ADC. (b) Coarse ADC waveforms

* MSB-Lo and MSB-Hi are offset by $\frac{1}{8}$ Fs at either side of the MSB transition voltage.

* Can tolerate a relative offset of up to $\pm \frac{1}{8}$ Fs.

9. Measurement results:

Fig. 17. FFT for 1-MHz sinusoid sampled at 400 Msample/s (decimated).

TABLE I Performance Summary

Technology	0.5mm BiCMOS (CMOS only)
SNDR (1MHz sine-wave)	33.6dB @ 400Msample/s
n en ser en ser en se ser en en en ser en ser en ser en ser en ser en en ser en ser en ser en ser en ser en se	32.9dB @ 450Msample/s
Supply voltage	3.2V
Power	200mW
Area	0.6µm ²
Input capacitance	1.4pF

Fig. 19. Die photo

§13-9 Summary

13-81 Chung-yu wu

Resolution versus sampling frequency plot of recently reported CMOS video A/D converters

13-82 CHUNG-YU WU

- H. Ondera, T. Tateishi, and K. Tamaru, "A cyclic A/D converter that does not require ratiomatched components," IEEE J. Solid-State Circuits, vol. 23, pp. 152-158, Feb.1988.
- [2] P. W. Li, M. J. Chin, P. R. Gray, and R. Castello, "A ratio-independent algorithmic analog-todigital conversion technique," IEEE J. Solid-state Circuits, vol. SC-19, pp.828-836, Dec. 1984.
- [3] H. S. Lee, " A 12-b 600Ks/s digitally self-calibrated pipelined algorithmic ADC," IEEE J. Solid-Dtate Circuits, vol. 29, no. 4, pp. 509-515, Apr. 1994.
- [4] Shu-Yuan Chin and <u>Chung-Yu Wu</u>, "A ratio-independent and gain insensitive algorithmic analog-to-digital converter," 1993 IEEE International Symp. on Circuits and Systems, Chicago, U.S.A., pp.1200-1203, May 3-6, 1993.
- [5] M. de Wit, K. S. Tan, R. K. Hester, " A low-power 12-b analog-to-digital converter with onchip precision trimming," IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 455-461, Apr. 1993.
- [6] G. Yin, F. Stubbe, and W. Sansen, " A16-b 320-KHz CMOS A/D converter using two-stage thrid-order ΣΔ noise shaping," IEEE J. Solid-State Circuits, vol. 28, no. 6, pp. 640-647, June 1993.
- [7] B. Ginetti, P. G. A. Jespers and A. Vandemeulebroecke, " A CMOS 13-b cyclic RSD A/D converter," J. Solid-State Circuits, vol.27, no. 7, pp.957-964, July 1992.
- [8] H. S. Lee, D. A. Hodeges, and P. R. Gray, " A self calibrating 15-bit CMOS A/D converter," IEEE J. Solid-State Circuits, vol. SC-19, pp.813-819, Dec. 1984.
- [9] T. Ritoniemi et al, " A stereo audio sigma-delta A/D converter," IEEE J. Solid-State Circuits, vol. 29, no. 12, pp.1514-1523, Dec.1994.
- [10] C. S. G. Conroy, D. W. Cline, and P. R. Gray, " An 8-b 85-Ms/s parallel pipeline A/D converter in 1-um CMOS," IEEE J. Solid-State Circuits, vol.28, no. 4, pp.447-454, Apr. 1993.
- [11] Shu-Yuan Chin and Chung-Yu Wu, "A 3 V 8-bit 50-Msample/s A/D Converter," submitted to IEEE J. Solid-State Circuits.
- [12] H. Reyhani and P. quinlan, " A 5V 6-b 80Ms/s BiCMOS flash ADC," IEEE J. Solid-State Circuits, vol. IEEE J. Solid-State Circuits, vol. 29, no. 8, pp.873-878, Aug. 1994.
- [13] M. J. M. Pelgrom, A. C. J. V. Rens, M. Vertreg, and M. B. Dijkstra, "A 25-Ms/s 8-bit CMOS A/D converter for embedded application," IEEE J. Solid-State Circuits, vol.29, no. 8, pp.879-886, Aug. 1994.

- [14] M. Ishikawa and T. Tsukahaara, "An 8-bit 50-Mhz CMOS A/D converter," IEEE J. Solid-State Circuits, vol. 24, no. 12, pp. 1485-1491, Dec. 1989.
- [15] B. Razavi and B. A. Wolley, "A 12-b 5-Msample/s two-step A/D converter," IEEE J. Solid-State Circuits, vol. 29, no. 12, pp.1667-1678, Dec. 1992.
- [16] A. G. F. Dingwall and V. Zazzu, "An 8-MHz CMOS subranging 8-bit A/D converter," IEEE J. Solid-State Circuits, vol. Sc-20, no. 6, pp. 1138-1143, Dec.1985.
- [17] J. Doernberg, P. R. Gray and D. A. Hodges, " A 10-bit 5-Msample/s CMOS two-step flash ADC," IEEE J. Solid-State Circuits, vol. 24, no. 2, pp. 241-249, Apr.1989.
- [18] M. Ito et al., " A 10bit 20 Ms/s 3V supply CMOS A/D converter," IEEE J. Solid-State Circuits, vol. 29, no. 12, pp.1531-1536, Dec. 1994.
- [19] M. Yotsuyanagi, T. Etoh, and K. Hirata, " A 10-b 50-MHz pipelined CMOS A/D converter with S/H," IEEE J. Solid-State Circuits, vol. 28, no. 3, pp. 292-300, Mar. 1993.
- [20] T. B. Cho, P. R. Gray, "A 10 b, 20 Msample/s, 35 mW pipelined A/D converter," IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 166-172, Mar. 1995.
- [21] K. Nakamura, M. Hotta, L. R. Carley, and D. J. Allstos, "An 85 mW, 10b, 40 Msample/s CMOS parallel-pipelined ADC," IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 173-183, Mar. 1995.
- [22] M. Yotsuyanagi et al., "A 2 V, 10 b, 20 Msample/s, mixed-mode subranging CMOS A/D converter," IEEE J. Solid-State Circuits, vol. 30, no. 12, pp.1533-1537, Dec. 1995.
- [23] B. Nauta and A. G. W. Venes, "A 70-Ms/s 110mW 8-b CMOS folding and interpolating A/D converter," IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1302-1308, Dec. 1995.
- [24] P. C. Yu and H. S. Lee, "A 2.5-V, 12-b, 5-Msample/s pipelined CMOS ADC," IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1854-1861, Dec. 1996.
- [25] A. G. W. Venes and R. J. van de Plassche, "An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing," IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1846-1853, Dec. 1996.
- [26] S. Tsukamoto et al., "A CMOS 6-b, 200 Msample/s, 3 V-supply A/D converter for PRML read channel LSI," IEEE J. Solid-State Circuits, vol.31, no. 11, pp. 1831-1836, Nov. 1996.
- [27] R. Roover and M. S. J. Steyert, "A 175 Ms/s, 6 b, 160mW, 3.3 V CMOS A/D converter," IEEE J. Solid-State Circuits, vol.31, no. 7, pp. 938-944, July 1996.
- [28] C. L. Portmann and T. H. Y. Meng, "Power-efficient metastability error reduction in CMOS flash A/D converters," IEEE J. Solid-State Circuits, vol. 31, no. 8, pp. 1132-1140, Aug. 1996.
- [29] M. P. Flynn and D. J. Allstot, "CMOS folding converter with current-mode interpolation," IEEE J. Solid-State Circuits, vol. 31, no. 9, pp. 1248-1257, Sep. 1996.
- [30] D. W. Cline and P. R. Gray, "A power optimized 13-b 5 Msamples/s pipelined analog-todigital converter in 1.2/spl mu/m CMOS," IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 294-303, Mar. 1996.
- [31] M. P. Flynn and B. Sheahan, "A 400-Msample/s, 6-b CMOS folding and interpolating ADC," IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1932-1938, Dec. 1998.
- [32] S. Tsukamoto, W. G. Schofield, and T. Endo, "A CMOS 6-b, 400-Msample/s ADC with error correction," IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1939-1947, Dec. 1998.
- [33] J. M. Ingino and B. A. Wooley, "A continuously calibrated 12-b, 10-Ms/s, 3.3-V A/D converter," IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1920-1931, Dec. 1998.
- [34] I. E. Opris, L. D. Lewicki, and B. C. Wong, "A single-ended 12-bit 20 Msample/s selfcalibrating pipeline A/D converter," IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1898-1903, Dec. 1998.
- [35] H. van der Ploeg and R. Remmers, "A 3.3-V, 10-b, 25-Msample/s two-step ADC in 0.35-um CMOS," IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1803-1811, Dec. 1999.
- [36] B. P. Brandt and J. Lutsky, "A 75-mW, 10-b, 20-MSPS CMOS subranging ADC with 9.5 effective bits at nyquist," IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1788-1795, Dec. 1999.
- [37] I. Mehr and D. Dalton, "A 500-Msample/s, 6-bit nyquist-rate ADC for disk-drive readchannel applications," IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 912-920, Dec. 1999.

CH 14. MOS Switched-Capacitor Filter Design

§14--1 Preliminary Considerations

§14-1.1 Classification of systems and filters

1. Continuous-time, discrete-time, and sampled-data systems

(2) High-Pass(HP)

$$H(s) = \frac{KS^2}{S^2 + (\omega_p / Q_p)S + \omega_p^2}$$

Two complex poles(LHP) Two zeros at S=0

One zeros at S=0

 $\omega_p = \omega_z$

Two complex poles(LHP)

Two imaginary zeros

14-3 CHUNG-YU WU

(7)ALL-Pass (Delay Equalizer)

H(S)=
$$\frac{S^2 - (\omega_p / Q_p)S + \omega_p^2}{S^2 + (\omega_p / Q_p)S + \omega_p^2}$$

Two complex poles (LHP) Two complex zeros (RHP) mirror-imaged

§14-1.2 Sampling Process

§ ideal impulse sampling:

$$\mathbf{S}(t) = \mathbf{S}_{\delta}(t) = \sum_{k=-\infty}^{\infty} S(t - k\tau)$$

 τ : sampling period

$$\mathbf{x}_{\mathsf{d}}(t) = \mathbf{x}(t) \mathbf{S}_{\delta}(t) = \mathbf{x}(t) \sum_{K=-\infty}^{\infty} \delta(t - k\tau) = \sum_{k=-\infty}^{\infty} \mathbf{x}(t) \delta(t - k\tau)$$

impulse sampling

remember: $\int_{-\infty}^{\infty} \delta(t - k\tau) dt = 1$ $\delta(t - k\tau) = 0$ for $t \neq k\tau$

$$=> \mathbf{x}_{\mathrm{d}}(t) = \sum_{k=-\infty}^{\infty} x(k\tau) \delta(t-k\tau)$$

Fourier transformation of S_{δ}(t): S_F(t)= $\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_s t}$ $\omega_s \equiv \frac{2\pi}{\tau}$

Where
$$C_k = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} s(t) e^{jk\omega_s t} dt = \frac{1}{\tau}$$

 $=>x_d(t)=x(t)S_F(t)=\sum_{k=-\infty}^{\infty} C_k x(t)e^{jk\omega_s t}$
 $F[x_d(t)]=F[\sum_{k=-\infty}^{\infty} C_k x(t)e^{jk\omega_s t}]=\sum_{k=-\infty}^{\infty} C_k F[x(t)e^{jk\omega_s t}]$
 $=\sum_{k=-\infty}^{\infty} C_k X(j\omega-jk\omega_s)$ where $F[x(t)]=X(j\omega)$, $k=\pm$ integer

base-band spectrum

Sampling Theorem:

A function x(t) that has a Fourier spectrum X(j ω) such that X(j ω)=0 for $|\omega| \ge \frac{\omega_s}{2}$ is uniquely described by a knowledge of its values at uniformly spaced

time instants, τ instants apart($\tau = 2\pi / w_s$)

 $2\omega_c$: Nyquist rate. Anti-aliasing filter is required. Reconstruction filter is also required to recover x(t).

spec

§ Finite -Pulse Sampling (non-ideal sampling):

$$S_{p}(t) = \sum_{k=-\infty}^{\infty} [u(t - k\tau - \frac{a}{2}) - u(t - k\tau + \frac{a}{2})] \quad a > 0$$

$$C_{k} = \frac{1}{\tau} \int_{-\frac{a}{2}}^{\frac{\tau}{2}} S_{p}(t) \quad e^{-jk\omega_{s}t} dt$$

$$= \frac{1}{\tau} \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-jk\omega_{s}t} dt = \frac{a}{\tau} \frac{Sin(k\omega_{s}a/2)}{k\omega_{s}a/2}$$

$$\tau \quad 2\tau \quad 3\tau \quad 4\tau$$

Now, we have $\sin \alpha / \alpha$ envelope onto X (j ω -jk ω s)

§14-1.3 Z-Transformation

$$\mathbf{x}_{\mathrm{d}}(t) = \sum_{k=-\infty}^{\infty} x(k\tau) \delta(t-k\tau)$$

Laplace Transformation => $X_d(s)=L[x_d(t)]=\sum_{k=-\infty}^{\infty}x(k\tau)e^{-ks\tau}$

Let $z=e^{s\tau}$ => $X(z)=\sum_{k=-\infty}^{\infty}X(k\tau)z^{-k}$ two-sided z-transform $S=j\omega$ $z=e^{j\omega\tau}$ $X(z)=\sum_{k=0}^{\infty}X(k\tau)z^{-k}$ one-sided z-transform

example 1: $x(t)=u(t)=>x(k\tau)=1=>X(z)=\sum_{k=0}^{\infty}Z^{-k}=\frac{1}{1-z^{-1}}|z|>1$ example 2: $x(t) = e^{-at}u(t) = x(k\tau) = e^{-ak\tau} = X(z) = \sum_{k=0}^{\infty} e^{-akz} z^{-k} = \frac{1}{1 - e^{-a\tau} z^{-1}}$ for $|z| > e^{-a\tau}$

For single input/output, linear, time-invariant, sampled data (or discrete-time) system:

$$y(k\tau) + \sum_{n=1}^{N} b_n y[(k-n)\tau] = \sum_{n=0}^{M} a_n x[(k-n)\tau]$$

M.N: non-negative integers

Two cases:(1) $b_n = 0$ for all n => nonrecursive system

M+1 tap transversal filter Finite-Duration Impulse Response(FIR)Filter

(2) $b_n \neq 0$ for $n \ge 1 \implies$ Nth-order recursive system

Infinite Impulse Response(IIR) Filter

z-transform:

$$Y(z)(1+\sum_{n=1}^{N}b_{n}Z^{-n}) = X(z)\sum_{n=0}^{M}a_{n}z^{-n}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{n=0}^{M}a_{n}z^{-n}}{1+\sum_{n=1}^{N}b_{n}z^{-n}} \text{ pulse transfer function}$$

$$= \frac{a_{\circ}(1-\beta_{1}Z^{-1})(1-\beta_{2}Z^{-1})....(1-\beta_{N}Z^{-1})}{(1-\alpha_{1}Z^{-1})(1-\alpha_{2}Z^{-1})....(1-\alpha_{N}Z^{-1})} \qquad Z=\alpha_{i}: \text{ poles}$$

$$z=\beta_{i}: \text{ zeros}$$

Mapping between Z-plane and S-plane:

 $z=e^{s\tau}$ $s=\sigma+j\omega$ => $z=e^{\sigma\tau}e^{j\omega\tau}$ $\tau=\frac{2\pi}{\omega_s}$

For $\omega_s > 2\omega_0$, the base-band response X(j ω) over the range- $-\frac{\omega_s}{2} \le \omega \le \omega_s/2$ is sufficient to determine X(j ω) for all ω .

*
$$-\frac{\omega_s}{2} \le \omega \le \omega_s/2$$
, $-\infty < \sigma < \infty$ => all Z-plane $\angle Z = -\pi \to \pi$
 $-\frac{3\omega_s}{2} \le \omega \le -\frac{\omega_s}{2}$, $-\infty < \sigma < \infty$ => overlap on Z-plane $\angle Z = -3\pi \to -\pi$
 $\frac{\omega_s}{2} \le \omega \le \frac{3\omega_s}{2}$, $-\infty < \sigma < \infty$ => overlap on Z-plane $\angle Z = \pi \to 3\pi$

* $\omega = \omega_1$, $-\infty < \sigma < \infty$ => a straight line from z=0 to z= ∞ with angle $\omega_1 \tau$

* j ω axis => $\sigma = 0 => |z| = 1$ unit circle

* $\sigma > 0$ |z| > 1 for all $\omega \Rightarrow$ RHP \rightarrow outside the |z| = 1 circle

*
$$\sigma < 0$$
 $|z| < 1$ for all $\omega \Rightarrow LHP \rightarrow inside the |z| = 1$ circle

* S=0 z=1 ; $\omega=0 - \infty < \sigma < +\infty =>$ Real Z axis (positive)

The magnitude and phase can be determined graphically in the same way as those determined from the s-plane poles & zeros.

§14-1.4 Sample and Hold Circuit

Zero-order hold or S/H function: $H_{o}(s) = \frac{1 - e^{-s\tau}}{s\tau}$ $H_{o}(j\omega) = e^{-j\omega\tau/2} \frac{\sin(\omega\tau/2)}{\omega\tau/2}$

* The different between $X_r(j\omega) \& X_d(j\omega)$ at $\omega \cong \pm \omega_c$ can be eliminated by setting $\omega_s/\omega_c >> 1$.

§14-2 Switched-Capacitor Network System

General Switched-Capacitor Network (SCN):

ideal capacitors, ideal voltage-controlled-voltage sources (VCVS's), ideal switches & sampled-data voltage inputs.

VCVS: freq. indep. gain amps or infinite gain OP amps.

- * Typically, the sampled-data voltage input is only single, not multiple.
- * The input may be a continuous one.
- * The effects of non-ideal switches, non-ideal OP amps, & non-ideal cap. should be considered as & second order effects.

Block diagram:

Switched-Capacitor Network (Two-phase clock) (can be multi-phase)

General symbols:

* Generally, SCN is time-variant since the network topology is different in the case of ϕ^e and ϕ^o . However, if we separate the input/output sampled-data voltage into one even component and one odd component and separate the whole SCN into one even part and one odd part, then we have two time-invariant networks coupled together. Analysis thus can be performed.

Sampled-Data Waveforms 1. Return-to-zero waveforms

Similarly, we have $V_b(z) = V_b^e(z) + V_b^0(z) = V_b^0(z)$ $V_b^e(z) = 0$

2. Full-clock-period (Full-cycle) sample-and-hold waveforms

$$Vc(z) = V_{c}^{e}(z) + V_{c}^{0}(z)$$
$$V_{c}^{0}(z) = Z^{-\frac{1}{2}} V_{c}^{e}(z) (\because V_{c}^{0}(kT) = V_{c}^{e}[(k-1)T])$$
Similarly, we have $V_{d}(z) = V_{d}^{e}(z) + V_{d}^{0}(z)$

$$V_d^e(z) = Z^{-\frac{1}{2}} V_d^0(z)$$

Full-cycle S/H circuit

§14-3 Filter Design Process

- 1. Specification
 - (1) Low-Pass Filter Specification:

(2) Band-Pass Filter

- 2.Approximation
 - (1) Classical approximation
 - a. Butterworth
 - b. Chebyshev
 - c. Elliptic
 - d. Bessel
 - (2) Modern approximation
- 3.Realization

Two methods:

(1) Realization of the biquad (2^{nd} order filter) and the first-order filter=>cascade

or couple them to form a high-order filter.

(2) Realize H(s) using LC network=>replace L by some integrated-circuit

simulator or simulate the LC network using integrators.

* Low-sensitivity, high-performance

§14-4 SC Integrators via OP AMPS

§14-4.1 SC Inverting Integrator

=>SC simulated positive resistor

Switch realizations:

The inverting SC integrator

Operation: $(1)\phi_0$ phase

"Ideal OP AMP" $V_{out}(T_{n}) = V_{c2}(T_{n}) = V_{out}(T_{n-1}) - \frac{C_{1}}{C_{2}} V_{in}(T_{n})$ $= > \frac{V_{out}(T_{n}) - V_{out}(T_{n-1})}{T} = -\frac{C_{1}}{TC_{2}} V_{in}(T_{n}) = -\frac{1}{R_{1}C_{2}} V_{in}(T_{n})$ $= > \frac{d}{dt} V_{out} = -\frac{1}{R_{1}C_{2}} V_{in} = -\frac{1}{\frac{1}{C_{1}}C_{2}} V_{in} = -\frac{1}{\frac{1}{C_{2}}C_{1}} (\frac{1}{f}) V_{in}$

High-precision integrator time constant $RC = \frac{C_2}{C_1} \frac{1}{f}$

Z-domain Expression:

$$V_{\text{out}}(z) = V_{\text{out}}(z) Z^{-1} - \frac{C_1}{C_2} V_{\text{in}}(z)$$
$$= > H(z) = \frac{V_{out}(z)}{V_{in}(z)} = -\frac{(C_1/C_2)}{(1-Z^{-1})}$$

Backward Euler Transformation: $S \rightarrow \frac{1-Z^{-1}}{T}$

H(S)=
$$-\frac{1}{(C_2/C_1)TS} = -\frac{1}{R_1C_2S}$$

Parasitic-Free structure:

§14-4.2 Non-inverting SC Integrator

Z-domain expression:

$$H(z) = \frac{V_{out}(z)}{V_{in}(z)} = \frac{Z^{-1}(\frac{C_1}{C_2})}{1 - Z^{-1}}$$

Forward Euler Transformation: $S \rightarrow \frac{1-Z^{-1}}{TZ^{-1}}$

$$H(s) = +\frac{1}{(\frac{C_2}{C_1})TS} = +\frac{1}{R_1 C_2 S}$$

• Simpler non-inverting integrator!

§14-5 Fully Differential-Type SC Integrators Using OP AMPs.

- * Better noise rejection
- * Better CMRR and PSRR
- * Better Frequency response
- * Better slew rate
- ** More components (switches, capacitor, OP AMPs)
- ** Thermal noise \uparrow due to the added components and switching operations.
- ** Need common-mode feedback or common-mode bias circuit

§14-6 SC Differentiators Using OP AMPs

Inverting:

$$V_{out}(T_n) = V'_{out}(T_n) = -\frac{C_1}{C} [V_{in}(T_n) - V_{in}(T_{n-1})]$$

$$=>H(z)=-\frac{C_1}{C}(1-Z^{-1})$$

Backward-Euler Transformation: $S \rightarrow \frac{1-Z^{-1}}{T}$

$$H(S) = -S \frac{C_1}{C}T = -S \frac{C_1}{C} \frac{1}{f} = -SRC_1$$
 $R = \frac{1}{cf}$

Noninverting:

Differential-Type SC Differentiator:

Characteristics of SC differentiators:

- 1. Parasitic-free structure.
- 2. No dc instability problem as in SC integrators.
- 3. No high-frequency-noise problem as in continuous-time differentiators.
- 4. Can be used to design filters as SC integrators.

Ref: IEEE JSSC vol.sc-24, pp.177-180, 1989.

§14-7 The Design of SC Biquads (Second-Order Filter)

$$H(S) = \frac{-(K_2 S^2 + K_1 S + K_{\circ})}{S^2 + \frac{\omega_{\circ}}{Q} S + \omega_0^2} = \frac{V_{out}(S)}{V_{in}(S)}$$

§14-7.1 Low-Q SC Biquads

Step 1: Flow diagram generation.

$$S^{2}V_{out} = -[K_{2}S^{2} + K_{1}S + K_{o}] V_{in} - (\omega_{o}\frac{S}{Q} + \omega_{o}^{2}) \bullet V_{out}$$
$$= >V_{out} = -\frac{1}{S}[(K_{1} + K_{2}S)V_{in} + (\frac{W_{\circ}}{Q}) \bullet V_{out} + \omega_{o} \bullet V_{1})$$
$$where V_{1} = \frac{1}{S}[(K_{o}/\omega_{o}) \bullet V_{in} + \omega_{o} \bullet V_{out}]$$

Step2: Active-RC design

Step 3: SCF

Step 4: refinement

Z-domain block diagram (If the accuracy is not good, change to Z-domain diagram)

$$C_{1}" = a_{0}$$

$$C_{1}' = a_{2} - a_{0}$$

$$C_{1} = 1/C_{3} * (a_{0} + a_{1} + a_{2}) = \frac{1}{C_{3}} (2C_{1}" + C_{1}' \pm a_{1})$$

$$C_{4} = b_{2} - 1$$

$$C_{2} * C_{3} = b_{1} + b_{2} + 1$$

$$C_{2} = C_{3}$$

In this diagram, each op-amp and its feedback capacitor (C_A or C_B) is replaced by its voltage-to-charge transfer function.

$$\frac{Q_{out}(z)}{V_{in}(z)} = \frac{-1/Cf}{1-z^{-1}} = \frac{V_{out}(z) \cdot C}{V_{in}(z)}$$

Here Cf is the feedback capacitor.

Similarly,

$C * (1-z^{-1})$	for an unswitched capacitor (e.g. C_1 ")
С	for a non-inverting capacitor (C_1', C_3, C_4)
$-C * z^{-1}$	for an inverting capacitor (C_1, C_2)

From the block diagram, the exact transfer function is

$$\frac{V_{out}(z)}{V_{in}(z)} = -\frac{(C_1' + C_1'')z^2 + (C_1C_3 - C_1' - 2C_1'')z + C_1''}{(1 + C_4)z^2 + (C_2C_3 - C_4 - 2)z + 1}$$

As compared to H(z) specifications, the capacitances can be determined.

H(z) =
$$-\frac{a_2 * z^2 + a_1 * z + a_0}{b_2 * z^2 + b_1 * z + 1}$$

TYPES	COEFFICIENTS
L-P CASE	$C_1'=C_1''=0$ $K_1=K_2=0$ $a_0=a_2=0$
B-P CASE	$C_1 = C_1'' = 0$ $K_0 = K_2 = 0$ $a_0 = 0, a_1 = -a_2$
H-P CASE	$C_1 = C_1' = 0$ $K_0 = K_1 = 0$ $a_0 = a_2 = -\frac{a_1}{2}$
NOTCH CASE	$C_1'=0$ $K_1=0$ $a_{2=}a_0$

§14-7.2 High-Q SC Biquads

$$C_{1} = K_{0} T/\omega_{0} = \left(\frac{K_{0}}{\omega_{0}^{2}}\right) \omega_{o} T = |A_{dc}| \omega_{0} T$$

$$C_{2} \cong C_{3} \cong \omega_{0} T$$

$$C_{4} \cong \frac{1}{Q} \quad \text{(instead of } \frac{Q}{\omega_{0} T}\text{)}$$

$$C_{1}' \cong K_{1}/\omega_{0}$$

$$C_{1}'' \cong K_{2}$$

4. Z-domain block diagram of a high-Q biquad:

$$H(Z) = -\frac{C_1"Z^2 + (C_1C_3 + C_1'C_3 - 2C_1")Z + (C_1"-C_1'C_3)}{Z^2 + (C_2C_3 + C_3C_4 - 2)Z + (1 - C_3C_4)}$$

Choose $C_2=C_3$

Coefficient matching:

$$C_{1}"=\frac{a_{2}}{b_{2}}$$

$$C_{1}'=(C_{1}"-\frac{a_{0}}{b_{2}})/C_{3} = \frac{a_{2}-a_{0}}{b_{2}c_{3}}$$

$$C_{1}=(a_{1}/b_{1}-C_{1}'C_{3}+2C_{1}")/C_{3}=(a_{0}+a_{1}+a_{2})/(b_{2}c_{3})$$

$$C_{4}=(1-\frac{1}{b_{2}})/C_{3}$$

$$C_{3}^{2}=C_{2}^{2}=(b_{1}/b_{2}-C_{3}C_{4}+2)=(b_{1}+b_{2}+1)/b_{2}$$

§14-7.3 Design Examples

Example 1: Low-Q Lowpass SCF Biquad

Example 2: Low-Q Bandpass SCF Biquad

14-26 CHUNG-YU WU

Example 3: High-Q Low-pass SCF Biquad

 φ_2 φ_1 oV_{out} $C_{A}=C_{B}=6.3$ C'₁=2

C₂=1 C₃=1 C₄=1.2

 $H(S) = \frac{2S}{S^2 + 1.2S + 1}$

$$f_{C} = \frac{f_{S}}{2 \bullet \pi \bullet C_{A}}$$

fc: CENTER FRE. fs: SAMPLING FRE.

Frequency response of low-Q Low-pass SCF biquad

Frequency response of High-Q Low-pass SCF biquad

Frequency response of high-Q Band-pass SCF biquad

§14-8 First-Order SCFs

$$H_{a}(s) = -\frac{K_{1}S + K_{0}}{S + \omega_{0}} \qquad H(z) = -\frac{a_{1}z + a_{0}}{b_{1}z + 1}$$

1. Flow diagram

2. Active-RC design

4. Z-domain block diagram

§14-9 Switched-Capacitor Ladder Filters

ωp

Loss response

ω

§14-9.1 Approximate Design of SC Ladder Filters

(1) Third-order low-pass filter without finite transmission zeros

+1

SL,

- 1

SC₃

1/R, Flow diagram -1

+V₃

Due to the approximation made in finding C values, error still exists which may be refined by the z-domain analysis.

(2) Third-order low-pass filter with transmission zeros

$$\omega_{a1} = -\omega_{a2} = \sqrt{\frac{1}{L_2 C_2}}$$

$$-V_1 = \frac{-1}{s(C_1 + C_2)} \left[\frac{V_{in} - V_1}{R_s} + sC_2 V_3 - I_2 \right],$$

$$-I_2 = \frac{-1}{sL_2} [V_1 - V_3],$$

$$+V_3 = \frac{-1}{s(C_2 + C_3)} \left[-sC_2 V_1 - I_2 + \frac{V_3}{R_L} \right]$$

LCR Prototype circuit:

(3) Fourth-order Bandpass filter

** The circuit has a stability problem at dc.

Due to inductor loops!

$$H_{AB} \equiv \frac{V_{B}}{V_{A}} \bigg|_{\text{Circuits below (and B) disconnected}} = \frac{-sL_{1}}{S^{2}L_{1}(C_{1}+C_{2})+SL_{1}/Rs+1}$$

 $\mathbf{H}_{\rm CD} \equiv \frac{\mathbf{V}_{\rm C}}{\mathbf{V}_{\rm D}} \bigg|_{\rm Circuits \, below \, \widehat{\mathbb{O}} \, \rm and \, \widehat{\mathbb{O}} \, \rm disconnected} = \frac{-sL_3}{S^2 L_3 (C_2 + C_3) + SL_3 / R_L + 1}$

When S \rightarrow 0, H_{AB} \rightarrow 0, H_{CD} \rightarrow 0

=> There will be no dc feedback paths around the

center integrator which provides $-I_{2}$.

=> OP AMP will be in the open-circuit status with A $\rightarrow\infty$.

=> Saturation occurs

How to solve this problem?

Don't model the inductor loop currents separately.

 $\begin{array}{c} i.e. \ I_1, \ I_2, \ I_3. \\ Only \ two \ inductive \ currents \ I_{\textcircled{1}} \ and \ I_{\textcircled{3}} \ entering \ nodes \\ \hline \textcircled{1} \ and \ \fbox{3} \ are \ modeled. \end{array}$

=> V_{in} =0 and S→0, I $_{\odot}$ =0 and I $_{\odot}$ =0

=>No any instability at dc.

i.e.

Treat only two inductors as independent inductors.

$$I_{\bigcirc} = I_1 + I_2$$

 $I_{\bigcirc} = I_2 - I_3$

New flow diagram:

$$-\mathbf{V}_{1} = \frac{-1}{s(C_{1} + C_{2})} \left[\frac{V_{in} - V_{1}}{R_{s}} + sC_{2}V_{3} - I_{(1)} \right],$$

$$-\mathbf{I}_{\bigcirc} \triangleq -(I_{1} + I_{2}) = \frac{-1}{sL_{12}} \left[V_{1} - \frac{L_{1}V_{3}}{L_{1} + L_{2}} \right],$$

$$\mathbf{V}_{3} = \frac{-1}{s(C_{2} + C_{3})} \left[-sC_{2}V_{1} - I_{(3)} + \frac{V_{3}}{R_{L}} \right],$$

$$-\mathbf{I}_{\bigcirc} \triangleq \mathbf{I}_{3} - \mathbf{I}_{2} = \frac{-1}{sL_{12}} \left[-V_{3} + \frac{L_{1}V_{1}}{L_{1} + L_{2}} \right],$$

Where $L_{12} \Delta L_1 \| L_2 = L_1 L_2 / (L_1 + L_2)$

SCF:

General Procedures for the approximate design of SC ladder filter

1. A doubly terminated LC two-port is designed from

the SCF specifications can be prewarped using the relation:

$$W_a = \frac{2}{T} \sin(\frac{\omega T}{2})$$

which represents the frequency transformation due to the LDI transformation implicit in the design produce.

Inverting SC integrator + Noninverting SC integrator

$$H(z) = -\frac{(C_1 / C_2)_{inv}}{1 - z^{-1}} \frac{(C_1 / C_2)_{noninv} z}{1 - z^{-1}}$$
$$= \frac{-Kz^{-1}}{(1 - z^{-1})^2} = \frac{-K}{(z^{\frac{1}{2}} - z^{-\frac{1}{2}})^2}$$

Ton $z=e^{j\omega T}$

:

$$=> H(e^{j\omega T}) = \frac{+K}{4\sin^2(\omega T/2)}$$

LDI mapping (Lossless discrete integrator):

$$S_{a} = \frac{1}{2T}(z - z^{-1})$$

If $\frac{T}{2}$ is used $= S_{a} = \frac{1}{T}(z^{\frac{1}{2}} - z^{-\frac{1}{2}})$
 $= S_{a} = \frac{1}{T/2}Sin(\omega \frac{T}{2})$

2. The state equations of the LCR circuit are found. The signs of the voltage and current variables must be chosen such that inverting and noninverting integrators alternate in the implementation. If inductor loops exit, the inductive node currents can be used.

- 4. The block diagram or signal flow graph (SFG) is constructed from the state equations. It is then transformed (directly or via the active-RC circuit) into the SCF.
- 5. If necessary, additional circuit transformations can be performed to improve the response of SCF.

§14-10 Exact Design of SC Ladder Filters

* Ladder synthesis based on the bilinear Sa-to-z transformation

 $\underset{\sim}{\swarrow} S_{a} = \frac{2}{T} \frac{z-1}{z+1}$ (1)j ω_{a} —axis=>unit circle

(2)preserves the flatness of PB and SB

§14-10.1 Third-order SCF (Low-pass with finite transmission zero)

$$\begin{cases} C_{2}'=C_{2}+C_{L2} \\ -C_{L2}=\frac{-T^{2}}{4L_{2}} \end{cases}$$
$$-V_{1}=\frac{-1}{S_{a}(C_{1}+C_{2}')}\left[-\frac{V_{1}+V_{in}}{R_{s}}+s_{a}C_{2}'V_{3}-I_{2}\right],$$
$$-I_{2}=\left[s_{a}C_{L2}-\frac{1}{s_{a}L_{2}}\right]\left[V_{1}-V_{3}\right],$$
$$V_{3}=\frac{-1}{s_{a}(C2'+C3)}\left[-s_{a}C_{2}'V_{1}-I_{2}+\frac{V_{3}}{R_{I}}\right].$$

LCR Prototype Circuit:

Flow diagram

The center block has the transfer function:

H(S_a)=S_aC_{L2}-
$$\frac{1}{S_aL_2}$$
= $\frac{1-S_a^2L_2C_{L2}}{S_aL_2}$ = $-\frac{1-(S_aT/2)^2}{S_aL_2}$

Transformation of the blocks into SC circuits:

- (1) Finding Q-V relations of all blocks and branches in the S_a domain.
- (2) Transforming the Q-V relations into the z-domain.
- (3) Realizing the transformed z-domain equations into SC circuits.

Five different blocks:

(a) The input branch $\frac{1}{Rs}$

$$Q_{in} (S_a) = \frac{1}{R_s} V_{in} \frac{1}{S_a}$$

$$Q_{in} (z) = \frac{T}{2} \frac{z+1}{z-1} \frac{V_{in}(z)}{R_s}$$

$$=> (1-z^{-1})Q_{in} = \frac{T}{2R_s} (1+z^{-1})V_{in}(z)$$

$$\underline{q}_{in}(t_n) - \underline{q}_{in}(t_{n-1}) = \frac{C_s}{2} [V_{in}(t_n) + V_{in}(t_{n-1})]$$

SC realizations:

Optional. To guarantee the charge flow only when $\phi_1=1$

$$\frac{C_{s}}{2}:\frac{C_{s}}{2}[V_{in}(t_{n})-V_{in}(t_{n-1})]$$

Cs: Cs V_{in} (t_{n-1})

* Not stray insensitive. $C_p + C_s \text{ not } C_s$

(b) The feedback branch $\frac{1}{R_s}$, $\frac{1}{R_L}$

$$-\frac{C_s}{2}:-\frac{C_s}{2}[V_{in}(t_n)-V_{in}(t_{n-1})]$$

$$C_s: C_s V_{in}(t_n)$$

$$\downarrow$$

$$\frac{C_s}{2}[V_{in}(t_n)+V_{in}(t_{n-1})]$$

* Stray insensitive.

(c)The branches S_aC

$$\frac{Q}{V} = CS_a \frac{1}{S_a} = C$$

Only a C is required.

(d) The blocks $-\frac{1}{S_a C}$ $\frac{Q}{V} = -C \implies OP$ with a feedback capacitor C. (e) The center block

$$-I_{2} = -\frac{1 - (S_{a}T/2)^{2}}{S_{a}L_{2}} (V_{1}-V_{3})$$

$$Q(S_{a}) = \frac{-I_{2}}{S_{a}} = -\frac{1 - (S_{a}T/2)^{2}}{S_{a}^{2}L_{2}} (V_{1}-V_{3})$$

$$= > \frac{Q(z)}{V_{1}(z) - V_{3}(z)} = -\frac{1 - [(z-1)/(z+1)]^{2}}{(4L_{2}/T^{2})[(z-1)/(z+1)]^{2}} = -\frac{4C_{L2}Z}{(z-1)^{2}}$$

$$\Delta Q(z) = (1 - z^{-1})Q(z) = \frac{4C_{L2}}{z-1} (V_{3} - V_{1})$$

$$\frac{\Delta Q(z)}{V_{3} - V_{1}} = \frac{4C_{L2}z^{-1}}{1 - z^{-1}} = (-Cz^{-1})(\frac{-4C_{L2}/C^{2}}{1 - z^{-1}})(C)$$

Realizations:

The final realization is shown in the next page.

* This circuit is not fully stray insensitive.

* The negative capacitor $-\frac{C_s}{2}$ has been merged into the feedback capacitors C_A and C_B , respectively.

$$C_{A}=C_{1}+C_{2}'-\frac{C_{s}}{2}$$
 $C_{B}=C_{2}'+C_{3}-\frac{C_{s}}{2}$

* Why C_2' , $-C_{L2}$?

To create a block which is realizable by SC circuit.

SCF:

The complete bilinear ladder circuit equivalent to the LCR circuit

§14-10.2 Bandpass LCR filters

-V₂ can be produced as:

Where
$$C_{Li} \equiv \frac{T^2}{4L_i}$$
, $\Gamma i = \frac{1}{L_i}$

First Term:

$$Q_2'(S) = (C_1+C_{L1})V_1+(C_1+C_3+C_{L1}+C_{L3})(-V_2)+(C_3+C_{L3})V_3$$

Can be realized by unswitched capacitors.

Second Term:

$$Q_{2}"(Z) = \left[\left(\frac{T}{2}\frac{z+1}{z-1}\right)^{2} - \frac{T^{2}}{4}\right] \left[\Gamma_{1}V_{1} + (\Gamma_{1}+\Gamma_{2}+\Gamma_{3})(-V_{2}) + \Gamma_{3}V_{3}\right]$$
$$= \frac{T^{2}z^{-1}}{\left(1-z^{-1}\right)^{2}} \left[\Gamma_{1}V_{1} + (\Gamma_{1}+\Gamma_{2}+\Gamma_{3})(-V_{2}) + \Gamma_{3}V_{3}\right]$$

The same as before but now three functions are

superposed together. $(\Delta Q_2"/V_1, \Delta Q_2"/(-V_2), \Delta Q_2"/V_3)$

LC prototype circuit with R_s:

SC realization:

 $\mathbf{c}_6, \mathbf{c}_7$ arbitrary

SC realization:

Z-domain verifications:

Upper OP AMP:

$$C_1(1-z^{-1})V_1+C_3(1-z^{-1})V_3+C_2(1-z^{-1})V_t+C_7V_b=0$$

Lower OP AMP:

$$-C_{4}z^{-1}V_{1} - C_{6}z^{-1}V_{3} - C_{5}z^{-1}V_{t} + C_{8}(1-z^{-1})V_{b} = 0$$

=> $V_{t} = -\frac{N_{1}V_{1} + N_{3}V_{3}}{D}$
 $V_{b} = \frac{z^{-1}(1-z^{-1})[(C_{2}C_{4} - C_{1}C_{5})V_{1} + (C_{2}C_{6} - C_{3}C_{5})V_{3}]}{C_{8}D}$

where

$$N_{1}(z) = C_{1}C_{8}[(1-z^{-1})^{2} + \frac{C_{4}C_{7}}{C_{1}C_{8}}z^{-1}]$$

$$N_{3}(z) = C_{3}C_{8}[(1-z^{-1})^{2} + \frac{C_{6}C_{7}}{C_{3}C_{8}}z^{-1}]$$

$$D(z) = C_{2}C_{8}[(1-z^{-1})^{2} + \frac{C_{5}C_{7}}{C_{2}C_{8}}z^{-1}]$$

* All poles and zeros of the transfer functions V_t/V_1 , V_t/V_3 , V_b/V_1 , and V_b/V_3 are located on the unit circle.

After the bilinear s-to-z transformation,

$$V_{t} = -\frac{\left[(C_{1}C_{8} - C_{4}C_{7}/4)S^{2} + C_{4}C_{7}/T^{2}\right]V_{1} + V_{3}\left[(C_{3}C_{8} - C_{6}C_{7}/4)S^{2} + C_{6}C_{7}/T^{2}\right]}{(C_{2}C_{8} - C_{5}C_{7}/4)S^{2} + C_{5}C_{7}/T^{2}}$$
$$V_{b} = \frac{S(\frac{1}{T} - \frac{S}{2})\left[(C_{2}C_{4} - C_{1}C_{5})V_{1} + (C_{2}C_{6} - C_{3}C_{5})V_{3}\right]}{(C_{2}C_{8} - C_{5}C_{7}/4)S^{2} + C_{5}C_{7}/T^{2}}$$

- * The phase shift between V_t and V_1 , as well as between V_t and V_3 are either 0° or 180° for s=j ω
 - =>The same as for the LC prototype regardless of the

element values Ci.

=>Can simulate a lossless LC with the same low sensitivity.

* It can also simulate the behavior of any LC ladder section which has a T configuration.

§14-10.3 Comparisons

LDI Realizations of Ladder Filters using SC Integrators

- (1) Prewarping is required
- (2) Inductor loop exists

=>Modified design

=>Component sensitivity \uparrow

Bilinear Realizations of Ladder Filters using SC Integrations

- (1) Prewarping is not required.
- (2) Low-pass, band-pass ladder filters are O.K. But they are not fully stray insensitive.
- (3) Can't realize high-pass or band-reject filters.

=> Instability exists.

(4) Some modifications are proposed.But they are not fully stray insensitive.

§14-11 The Scaling of High-Order SCF's.

Why scaling?

(1) Improve the actual performance.(2) Reduce the silicon area

SC filter section.

Let all branches connected to the output terminal of OA_i be modified such that their $\Delta Q/V$ transfer functions F₄, F₅, and F₆ are multiplied by a positive real constant factor k. This can be achieved simply by multiplying all capacitors in these branches by k_i.

Since the input branches and their voltages were left unchanged, the change flowing in the feedback branch is

 $\Delta Q_4(z) = -\Delta Q_1(z) - \Delta Q_2(z) - \Delta Q_3(z)$ remains at its original value.

 $=> V_2'(z)=\Delta Q_4(z)/[k_iF_4(z)]=V_i(z)/k_i$ The new output voltage of OA_i

The old output voltage of OA_i

 $V_i \rightarrow V_i / k_i$ due to scaling.

$$\Delta Q_{5}'=F_{5}'(z)V_{i}'(z)=k_{i}F_{5}(z)\frac{V_{i}(z)}{k_{i}}=F_{5}(z)V_{i}(z)=\Delta Q_{5}(z)$$

Voltage scaling does not change charge flowing from the scaled branch to the rest of the circuit.

=>Only V_i/k_i, all other voltages or changes are not affected.

Optimization of the dynamic range using scaling

$$V_{max}/A_p \ge V_{in, max}$$
 A_p : passband gain.

Op-amp output voltage responses for a low-pass filter.

OA₂ will saturate before OA₅ because $|V_2| > |V_5|$ for $\omega \sim \omega_2$.

Now, we choose
$$V_{in, max} = V_{max}/A_2$$

 $A_2 = |V_{p2}/V_{in}|, A_p = |V_{p5}/V_{in}|$
 $A_2 = A_p |V_{p2}/V_{p5}|$
 $V_{in, max} = \frac{V_{max}}{A_2} = \frac{V_{max}}{A_p} \frac{V_{p5}}{V_{p2}} < \frac{V_{max}}{A_p}$ since $V_{P5}/V_{P2} < 1$

=>Maximum Vin $\downarrow =>$ Dynamic range \downarrow

Reducing V₂ by scaling.

 $V_2'(\omega) = V_2(\omega)/k_2$ $k_2 = V_{P2}/V_{P5}$

 $=>V_2'$ has a peak value of V_{P2}' which is equal to V_{P5} .

Similarly, $k_3=V_{P3}/V_{P5}$. $k_1=V_{P1}/V_{P5}<1$, $k_4=V_{P4}/V_{P5}<1$. It is not good to choose $k_2(k_3) > V_{P2}/V_{P5}(V_{P3}/V_{P5})$ because the noise will be increased.

=> dynamic range \downarrow .

CONCLUSION:

For maximum dynamic range, all op-amp outputs should be scaled such that each (at its own maximum frequency) saturates for the same input voltage level.

Let the transfer functions $F_j(z) \equiv \Delta Q_j / V_j$ of all branches connected to the input terminal of OA_i be multiplied by a positive real constant $M_i \implies C_i \rightarrow mC_i$

$$\Delta Q_n$$
, n=1, 2, 3, 4 $\rightarrow \Delta Q_n$ '=m_i ΔQ_n

$$\mathbf{V}_{i} = \frac{\Delta Q_{4}}{F_{4}} = \frac{m_{i} \Delta Q_{4}}{m_{i} F_{4}} = \frac{\Delta Q_{4}}{F_{4}} = V_{i} \qquad \mathbf{V}_{i} \text{ unchanged!}$$

The output charges ΔQ_5 and ΔQ_6 also remain the same

- =>The above scaling by m_i leaves all op-amp output voltages in the SCF unchanged. Only the charges in the scaled branches get multiplied by m_i.
- =>Effective in reducing the cap. spread and the total capacitance of a SCF.

 $C_{i, \min}$ among all capacitors contained in these four branches is located. =>All capacitors contained in these four branches are multiplied by $m_i=C_{\min}/C_{i,\min}$

- => The smallest capacitance becomes C_{min} and all op-amp voltages remain unaffected.
- * Scaling for optimum dynamic range should be performed first, and scaling for minimum capacitance afterwards.
- 1. Scaling for Maximum Dynamic Range
 - (a) Set $V_{in}(\omega)$ to the largest value for which the output op-amp does not saturate. Record $V_{in}(\omega)$ and $V_{i, \max}$
 - (b) Calculate V_{pi} for all internal op-amp output V_{pi} usually occur near the passband edges.
 - (c) Multiply all capacitors connected or switched to the output terminal of op-amp *i* by $k_i = V_{pi}/V_{i,max}$ where $V_{i,max}$ is the saturation voltage at the output.
 - (d)Repeat for all internal op-amps.
- 2. Scaling for Minimum Capacitance
 - (a) Divide all capacitors in SCF into nonoverlapped sets. Capacitors in the i^{th} set S_i are connected or switched to the input terminal of

op-amp *i*.

- (b) Multiply all capacitors in S_i by $m_i = C_{\min}/C_{i,\min}$.
- (c) Repeat for all sets S_i .
- * Scaling for optimum dynamic range may also reduce the sensitivity to finite op-amp gain effects.

The influence of finite op-amp gain: (a) actual circuits; (b) equivalent circuits.

- 3. The block diagram or signal flow graph (SFG) is constructed from the state equations. It is then transformed (directly or via the active-RC circuit) into the SCF.
- 4. If necessary, additional circuit transformations can be performed to improve the response of SCF.

§14-10 Design Examples on Cascaded SCF and LDI Ladder SCF

§14-10.1 Cascaded SCF

Filter Specification	
Passband:	0 to $f_p=1kHz$
	passband ripple $\alpha_p \le 0.05 dB$
	(Maximum allowable passband gain variation)
Stopband:	$f_s \le 1.5 \text{KHz}$ to $f_c/2$
	Minimum stopband loss $\alpha_{s} \ge 38 dB$
	(Maximum allowable gain value)
Sampling frequency:	$f_c = \frac{1}{T} = 50 \text{KHz}$

Design Procedures:

1.S-domain transfer function H(s) Frequency prewarping

$$\omega_{ap} = \frac{2}{T} \tan \frac{\omega_p T}{2} = 6291.4667 \text{ rad/s}$$

$$\omega_{as} = \frac{2}{T} \tan \frac{\omega_s T}{2}$$

Selectivity parameter

$$k \equiv \frac{\omega_{ap}}{\omega_{as}} \cong 0.6656$$

Elliptic filter is chosen to minimize the filter order.

Results:

$$\hat{H}(S_a) = \left(\frac{0.068}{S_a + 0.78140011}\right) \left(\frac{S^2 a + \hat{\omega}_1^2}{S_a^2 + 0.96934556S_a + \hat{a}_1^2 + \hat{b}_1^2}\right) \\ \left(\frac{S_a^2 + \hat{\omega}_2^2}{S_a^2 - 2\hat{a}_2S_a + \hat{a}_2^2 + \hat{b}_2^2}\right)$$

where \hat{a}_1 =-0.48467278, \hat{b}_1 =0.82815049, \hat{a}_2 =-0.128006731,

$$\hat{b}_2$$
=1.100351473, \hat{w}_1 =1.5514948, \hat{w}_2 =2.32131474

=> filter order=5 $\hat{w}_{ap}=1 \text{ rad/s}, \ \hat{\alpha}_{p}=0.044 \text{ dB}, \ \hat{w}_{as}=1.49448 \text{ rad/s}, \ \hat{\alpha}_{s}=39.57 \text{ dB}, \ \hat{k}=0.669$ => The specifications are satisfied with $\hat{H}_{a}(0)=1$

2. frequency denormalization and z-domain transfer function H(z) Denormalization: $S_a \rightarrow S/\omega_p$

Denormalization:
$$S_a \rightarrow S/\omega_p$$

 $\hat{H}(S_a) \rightarrow H(S)$
 $H(S)=K \frac{(S^2 + \omega_1^2)(S^2 + \omega_2^2)}{(S - a_0)(S^2 - 2a_1s + a_1^2 + b_1^2)(S^2 - 2a_2s + a_2^2 + b_2^2)}$
Where $K=428.247646, \omega_1=9.76117788 \times 10^3, \omega_2=1.46044744 \times 10^4, a_0=-4.91615278 \times 10^3$
 $a_1=-3.04930266 \times 10^3, b_1=5.21028124 \times 10^3$
 $a_2=-805.350086, b_2=6.92282466 \times 10^3$
Bilinear transformation: $S \rightarrow \frac{2}{T} \frac{z-1}{z+1} = 10^5 \frac{z-1}{z+1}$
 $H(s) \rightarrow H(z)$
 $H(z) = (C \frac{z+1}{z+d_o})(\frac{z^2 + C_1z + 1}{z^2 + e_1z + f_1})(\frac{z^2 + C_2z + 1}{z^2 + e_2z + f_2})$
Where $C=3.8719271 \times 10^{-3}, C_1=-1.962247471, C_2=-1.9164654$

Where C=3.8719271×10⁻³, C₁= -1.962247471, C₂= -1.916465445, d_o=-0.906284158, e₁= -1.871739343, f₁=0.88543246, e₂=-1.949416807, f₂=0.968447477.

Check: $|H(e^{j\omega T})|$ satisfies specifications.

3. SC realization

(2)
$$H_1(z) = \frac{z^2 + C_1 z + 1}{(1/f_1)z^2 + (e_1/f_1)z + 1}$$
 $Q_1 = \frac{(a_1^2 + b_1^2)^{/2}}{2|a_1|} \cong 0.$

The SCF is shown on P.14-21.
The component values are:
$$C_1$$
"= a_0 =1,
 C_1 '= a_2 - a_0 =0,
 C_2 = C_3 = $\sqrt{b_1 + b_2 + 1} = \sqrt{(e_1 + 1)/f_1 + 1} \approx 0.12436$,

$$C_1 = (a_0 + a_1 + a_2)/C_3 \cong 0.30358,$$

 $C_4 = b_2 - 1 = 1/f_1 - 1 \cong 0.12939,$
 $C_A = C_B = 1.$

(3) H₂(z) =
$$\frac{z^2 + C_2 z + 1}{(\frac{1}{f_2})z^2 + (e_2/f_2)z + 1}$$
 Q₂ = $\frac{(a_2^2 + b_2^2)^{\frac{1}{2}}}{2|a_2|} \approx 4.33 =>$ High-Q

The SCF is shown on P.14-23.

The component values are: $C_1 = a_2 / b_2 = f_2 \approx 0.96845$ $C_1 = (a_1 - a_0) / b_2 c_3 = 0,$

$$C_2 = C_3 = \sqrt{(1+b_1+b_2)/b_2} = \sqrt{f_2+e_2+1} \cong 0.13795,$$

$$C_1 = (a_0 + a_1 + a_2)/b_2 C_3 = (2 + c_2)f_2/C_3 \equiv 0.58645,$$

 $C_4 = (1-1/b_2)/C_3 = (1-f_2)/C_3 \approx 0.22873.$

(4)Overall SCF

* Ho (low-pass linear section) is placed first

=>High-frequency out-of-band signals and input noise can be attenuated. The antialiasing filter preceding the SCF has a lower requirement.

* H₂ (high-Q section) is placed to the center=>good signal-to-noise ratio

SECTION 2 (HIGH Q)

SECTION 3 (LOW Q)

4. Scaling

1) V_{p1} =occurs at dc where $H_0(1)=-C_S/C_D=-21.345$ (1)We want an overall passband gain of 1. =>Ho(1) \rightarrow -1 $=> C_D = C_S = 2, C_E \cong 19.345, C_1 "20.672, C_2 \cong 12.518$ (Multiplying all capacitors connected or switched to the output node of op-amp A_1 by 21.345) (2)All capacitors at the input node of A_1 should be scaled so that the smallest $(C_{s/2})$ equals 1. (O.K.) 2) Vp₂ (peak output voltage of op-amp A_2) occurs around $f_{p2}=1.10$ kHz (1) $V_{p2} \cong 177.05$ for $V_{in} = 1$ Reducing V_{p1}/V_{in} to 1 $=>C_A$ and C₃ are multiplied by 177.05 $=>C_A \cong 177.05, C_3 \cong 24.424.$ (2) $V_{p3} \approx 180.80$ at 1.07kHz $=>C_B, C_2$, and C₄ are multiplied by 180.80= $>C_B \cong 180.80, C_2 \cong 24.941$, $C_4 \cong 41.354.$ (3) Minimize total capacitance=> C_1 , C_2 , C_4 , and C_A at the input node of op-amp A_2 are scaled to make $C_1=1$ $=>C_1=1, C_2 \cong 1.9926, C_4 \cong 3.3036, C_A \cong 14.144$ (4) Similarly, C_1 "=1, $C_3 \approx 1.1815$, $C_B \approx 8.7466$. (The input of A_3)

3) $Vp_4 \cong 503.57$ and $Vp_5 \cong 230.14$

Thought the same procedures, we have

$$\overline{C_A} \cong 17.666, \overline{C_B} \cong 7.7286$$
$$\overline{C_1} \cong 1.9926, \overline{C_2} = 1$$
$$\overline{C_3} \cong 2.1116, \overline{C_4} = 2$$
$$\overline{C_1''} \cong 6.3085$$

5 Final Design

 C_{min} is chosen as $0.5pF \Rightarrow C=1$ op amp: gain 70dB bandwidth 3 MHz passband sensitivity to capacitance variation $\approx 0.2dB/1\%$

§14-12.2 Bilinear Ladder SCF Design

The same filter specification.
 Elliptic ladder filter is chosen(fifth-order).
 The result is

Normalized component values:

2. Frequency prewarping and denormalization

$$\omega_{\rm ap} \cong \frac{2}{T} \tan \frac{\omega_p T}{2} = 2f_c \tan \frac{\pi f_p}{f_c} \cong 6291.4667 rad / s$$

Multiplying each resistor by z_0 , each inductor by $L_0=z_0/\omega_{ap}$, and

each capacitor by
$$C_0 = \frac{1}{z_0} \omega_{ap}$$
. 50 Ω

Usually choose z_0 =real source and termination resistance $\begin{array}{c} 100\Omega \\ 600\Omega \end{array}$

Here, C₀=1 is chosen =>
$$z_0 = \frac{1}{\omega_{ap}}$$
 and L₀= $\frac{1}{\omega_{ap}^2}$

We have the denormalized element values as:

3. SC realization

Using the exact design technique of SC ladder filter (Section 14-10), the state equations are

$$-\mathbf{V}_{1} = -\frac{1}{sC'_{1}} \left(\frac{1}{R_{s}} (V_{in} - V_{1}) - I_{2} + sC'_{2} V_{3}\right),$$

$$-\mathbf{I}_{2} = -\left(\frac{1}{sL_{2}} - sC_{L2}\right) (\mathbf{V}_{1} - \mathbf{V}_{3}),$$

$$\mathbf{V}_{3} = \frac{1}{sC'_{3}} \left(-I_{2} - sC'_{2} V_{1} - sC_{4} V_{5} + I_{4}\right),$$

I₄=
$$(\frac{1}{sL_4} - sC_{L_4})(V_3 - V_5),$$

-V₅= $\frac{-1}{sC_5}(I_4 + sC_4V_3 - \frac{V_5}{R_L})$

where

$$C_{L2} = \frac{T^2}{4L_2} = 0.003278,$$

$$C'_2 = C_2 + C_{L2} = 0.15695,$$

$$C'_1 = C_1 + C'_2 = 1.01230,$$

$$C_{L4} = \frac{T^2}{4L_4} = 0.0044082,$$

$$C'_4 = C_4 + C_{L4} = 0.46706,$$

$$C'_3 = C_3 + C'_2 + C'_4 = 2.10839,$$

$$C'_5 = C_5 + C'_4 = 1.10408.$$

SCF:

arbitrarily chosen

 $C_{\rm B} = \frac{C^2}{4C_{12}} = \frac{C_{12}}{4} = 0.0008195,$

 $C_{\rm D} = \frac{C'^2}{4C_{L4}} = \frac{C_{L4}}{4} = 0.001102,$

 $C_{\rm E} = C'_{5} - \frac{C_{L}}{2} = 1.041165,$

 $Cs = \frac{T}{R_s} = 0.1258293,$

C_c=C'₃=2.10839,

 $C_{\rm L} = \frac{T}{R_{\rm r}} = 0.12583.$

The signal flow diagram is:

4.Scaling $V_{in}=1V$, we have: $V_{p1} \cong 0.92V$, $C_1 = 1.00000$ C_{05} =1.14172 $A_1: C_A, C_2, C_{21}$, and C_{02} $V_{p2} \cong 34V$, C₀₆=1.52861 $C_2 = 1.83854$ multiplied by Vp₁ $V_{p3} \cong 0.764 V$, $C_3 = 2.00000$ C₀₇=2.02212 A₂: C₃,C₀₁, and C₀₃ $V_{p4} \cong 28.86V$, C_A=13.87171 $C_{08}=1.00000$ multiplied by Vp_2 $C_{01}=1.77112$ $C_E = 8.27441$ $V_{p5} \cong 0.5 V_{2}$ $C_{02}=1.20275$ $C_{\rm D}=14.43078$ $C_{03}=1.00000$ $C_L = 1.00000$ $C_{04}=1.00000$ C₄₁=2.09575 C_B=11.11901 C₄₂=5.67396 C₂₁=1.29480 Cc=14.46156 for dynamic range scaling C₂₂=1.90667 minimum-capacitance scaling: $C_A/C_s/2 = 13.87171$ 5. Final design OP amp: 70dB 3 MHz C_{\min} , =>Passband ripple: 0.06dB minimum stopband loss \approx 39.5dB

Maximum sensitivity: $0.05 dB_{0/0}$

§14-12.3 LDI Ladder SCF Design

1. LCR prototype circuit

Fifth-order elliptic LC ladder filter with the same lowpass specifications.

2. Frequency prewarping and denormalization

 $\omega_{ap} \cong \omega_p$ (for simplicity)

$$z_0 = 1\Omega \Longrightarrow C_0 = \frac{1}{(2\pi 10^3)}F, L_0 = \frac{1}{(2\pi 10^3)}H$$

The denormalized element values:

$$R_s=1\Omega$$
,
 $C_1=136.13318\mu$ F, $C_4=73.633034\mu$ F,
 $C_2=24.45734\mu$ F, $L_4=142.91159\mu$ H,
 $L_2=192.20028\mu$ H, $C_5=101.38488\mu$ H,
 $C_3=236.24641\mu$ F, $R_L=1\Omega$.
 $V_1=\frac{1}{s(C_1+C_2)}(\frac{-V_1+V_{in}}{R_s}+sC_2V_3-I_2),$
 $-I_2=\frac{V_3-V_1}{sL_2},$
 $V_3=-\frac{1}{s(C_2+C_3+C_4)}(-I_2-sC_2V_1-sC_4V_5+I_4),$
 $I_4=\frac{V_3-V_5}{sL_4},$
 $-V_5=-\frac{1}{s(C_4+C_5)}(I_4+sC_4V_3-\frac{V_5}{R_L}).$

3.SCF design

The flow diagram is shown on P.14-? whereas the active-RC circuit is given on P.14-?.

The SCF is shown on P.14-? where T=20µs is chosen and the component values are

C₁+C₂=160.59µF, C₂+C₃+C₄=334.34µF,
C₈=
$$\frac{T}{R_s}$$
=20µF, C₄+C₅=175.018µF,
C= $\frac{T}{1}$ =20µF, C_L= $\frac{T}{R_L}$ =20µf

4.Scaling

Dynamic range scaling with V_{pi} listed: followed by minimum-capacitance scaling for $A_1:Vp_1=0.927$ V at 1.182kHz. for $A_2:Vp_2=1.198$ V at 1.121 kHz. for $A_3:Vp_3=0.857V$ at 1.061 kHz. for $A_4:Vp_4=1.105$ V at 1.061 kHz. for $A_5:Vp_5=0.501$ V at 967 kHz.

SCF:

Element values: $C_1 = 8.03214$, C₃=12.97271, $C_{1A}=1$, $C_{3A}=1.08390$, $C_{1B}=1.07930$, $C_{3B}=1$, C_{1C}=1.29263, C_{3C}=1.02540, C_{1D}=1.13212, C_{3D}=1.66885, C₂=13.42236, C₄=15.76379, C_{2A} =1.08053, C_{4A} =1.71203, $C_{4B}=1,$ $C_{2B}=1$, C₅=8.75121, $C_{5A}=2.20614$, $C_{5B}=1$, C_{5C}=6.29664.

5.Final design

C_{min} Passband ripple: 0.095dB>0.044dB Minimum stopband loss: 40.5dB OP amp: 70dB, 3MHz

Maximum passband sensitivity: 0.08dB/%

§14-13 Nonideal Effects in Switched-Capacitor Filters

1. Switch Turn-On Resistance

The turn-On resistance of a MOSFET can be written as

At t=nT , $V_1(t)=V_1(nT)=V_{in}(nT)(1-e^{-T/2R_1C_1})$

Assume ϕ_1 and ϕ_2 are activated for T/2.

 $\Delta Q (nT + \frac{T}{2}) = C_1 V_1 (nT) (1 - e^{-T/2R_2C_1}) = [V_{out}(nT + T) - V_{out}(nT)]C_2$ Let R₁=R₂=R => H(z)= $\frac{-(1 - e^{-T/2RC_1})^2 C_1/C_2}{z - 1}$ Ideal: H(z)= $-\frac{C_1/C_2}{z - 1}$ Error: $\varepsilon = 1 - (1 - e^{-T/2RC_1})^2 \simeq 2e^{-T/2RC_1}$

Usually $\epsilon < 0.1\%$ (cap. ratio error) is acceptable. $2e^{-T/2RC_1} \le 10^{-4}$ $=> \frac{RC_1}{T} = RC_1 f_c \le \frac{1}{2 \ln 20000} \cong 0.05$ or $RC_1 \le \frac{T}{20} (= \frac{1}{20 fc})$ $f_c = 500 \text{KHz}, C_1 = 5 \text{pF R} \le 20 K\Omega$; $f_c = 100 \text{MHz}, C_1 = 2 \text{pF}, R \le 250\Omega$?

2.Clock Feedthrough Noise

* All switches directly connected to the integrating node generate clock feedthrough noises.

- * All clock feedthrough noises are proportional to the sampling frequency. They may have a dc component.
 - * As soon as the clock feedthrough error voltage does not

saturate the OP AMP, it can be eliminated at the output by reconstruction filters(LPF).

- * The dc component cause offset voltage problems.
- 3. Junction Leakage
 - * Worst-case (100°C or 125°C) leakage at the integrating node: $\sim 10 \text{ nA/mil}^2$ 5µm×5µm junction => 400 pA leakage
 - * $f_{s, max}$ is about 25KHz in this case to avoid significant errors.
 - * The leakage cause dc offset voltages.
- 4. DC offset Voltage of the OP AMP

$$H(e^{j\omega T}) = H_{i}(e^{j\omega T}) \underbrace{\frac{1}{1 + (\frac{1}{A_{o}})(1 + C_{1}/2C_{2}) - j(C_{1}/C_{2})/2A_{o} \tan(\omega T/2)}}_{H_{i}(z) = \frac{-(C_{1}/C_{2})}{z - 1}} F(\omega)$$

$$F(\omega) = \frac{1}{1 - m(\omega) + j\theta(\omega)} m(\omega) = -\frac{1}{A_{o}}(1 + \frac{C_{1}}{2C_{2}}) \theta(\omega) = \frac{C_{1}/C_{2}}{2A_{o} \tan(\omega T/2)}$$

$$\cong \frac{C_{1}/C_{2}}{A_{o}\omega T}$$

$$|F(\omega)| = \frac{1}{\sqrt{(1 - m)^{2} + \theta^{2}}} \underbrace{\cong}_{\theta < < 1} 1 + m \longrightarrow \text{ relative magnitude error}$$

$$\angle F(\omega) = -\tan^{-1}\frac{-\theta}{1 - m} \underbrace{\cong}_{\theta < < 1} \tan^{-1}\theta \cong \theta \longrightarrow \text{ relative phase error}$$

$$\underbrace{\omega T < 1, A_{o} > 1000}_{A_{o}\omega T > > 1} A_{o} > 1000 = > 0.1\%$$

$$\omega \gg \frac{1}{A_o T} = \frac{f_s}{A_o} \qquad \text{Ao>100=>1\%}$$

=> m and θ are very small. $\longrightarrow <0.1\%$ But for $\omega < 2/A_oT$, θ is large.

6. Finite Bandwidth of the OP AMP.

$$A(s) = \frac{-1}{1/A_o + S/\omega_o} \qquad \text{single-pole response}$$

Similarly

$$m(\omega) = -e^{-k^{1}} [1 - K\cos\omega T] \qquad \qquad k = \frac{C_{2}}{C_{1} + C_{2}}$$

$$\theta(\omega) = -e^{-k_1} K \sin \omega T$$
 $k_1 = K \text{ wo } T/2$

If
$$\omega_0 T/2 = \pi \omega_0 / \omega_c >> 1 => m \rightarrow 0, \theta \rightarrow 0.$$

** $\omega_0 \cong 5 \omega_c$ is adequate.

* The unity-gain bandwidth ω_o of the OP AMP should be (at least) five times as large as the clock frequency ω_c .

 ω_o vs ω_c :

(1) Given ω_0 , ω_c should be chosen low enough so that the OP AMPs have enough time to settle.

But ω_c should not be too low, or the noise aliasing effect becomes serious the antialiasing and smoothing filters must be too selective and too complex.

- (2) Given ω_c , ω_o should be just high enough to assure that the stage can settle within each clock phase. Any higher value worsens unnecessarily the noise aliasing effect, and raises the dc power and chip area requirements of the op-amps.
- (3) $A_0=1000$ (60dB), $f_0=10MHz$, $f_{p1}=10KHz$ choose $f_c=2MHz$, and f<40 KHz

Typically
$$f/f_c \cong 48$$
 i.e. $\omega_o T \coloneqq \frac{1}{4}$

- 7. Finite Slew Rate of the OP AMP
 - * The output voltage of the OP AMP must be settled down with the clock active duration.

 $t_{slew} + t_{settle} < T_2$

- * May cause nonlinear distortion.
- 8. Nonzero OP AMP Output Resistance

$$2\mathbf{R}_{0}\left(\frac{C_{1}C_{2}}{C_{1}+C_{2}}+C_{L}\right) \cong T_{1} < \frac{1}{7}T_{\Phi_{2}=1}$$

 C_2 : feedback cap ; C_1 :input cap; C_L : load cap.

9. Overall considerations:

For an integrator settling error of 0.1% or less, we must have

$$\begin{array}{l} A_o \!\geq\! 5000 \\ \omega_o \! / \! \omega_c \! \geq\! 4 \\ T \! / \! R_{on} C_1 \! \geq\! 40 \end{array}$$

- 10. Noise Generated in SC Circuits
 - (1) Clock feedthrough noise
 - (2) Noise coupled directly or capacitive from the power, clock, ground lines, and from the substrate.
(3) Thermal and flicker $\binom{1}{f}$ noise generated in the switches and op-amps.

Thermal and flicker $\binom{1}{f}$ noise:

* Internal sampling and holding=>If $\frac{1}{f}$ noise has no

aliasing=>It can be eliminated.

- * Thermal noise will be sampled and held with the OP AMP as a frequency limiting element.=> ω_0 >> ω_c is not suitable.
- * The circuit noise \downarrow if the circuit cap. \uparrow

CH 15. Continuous-Time Filters in CMOS

§15-1 Categories of continuous-time filter ICs

Amplifier Types		Continuous-Time Filter Types	
Voltage OP AMP A _V	0	(Voltage-mode) Active RC filters	
Current OP AMP A _I	Δ	(Current-mode) Active RC filters	
Finite-gain voltage amp	Δ	(Voltage-mode) Active RC filters	
Finite-gain current amp.	•	(Current-mode) Active RC filters	
Infinite-gain Operational Transconductance		×	
Amp. (OTA) G _m			
Finite-gain OTA or g _m amplifier	0	(Voltage-mode) G _m -C filters	
Infinite-gain Operational Transimpedance			
Amp. R _m		×	
Finite-gain Transimpedance Amp. or R _m amplifier	Δ	(Current-mode) R _m -C filters	
Mixed G _m and R _m Amplifiers		?	
Mixed A _V , A _I , G _m , and R _m Amplifiers		?	
RF amplifier	Δ	Integrated LC filters	

- O : well developed
- Δ : less developed but with great potential
- : much less developed
- \times : not explored
- ? : to be developed with potential

Common characteristics of continuous-time filters:

1. Not parasitic free

=>Greater tolerance in performance.

2. No switches or clocks

=>Lower noise (clock-induced) or simpler circuit.

- 3. Need tuning to accommodate the process variations on
 - filter characteristics if high accuracy is required.

=>Extra overhead and higher cost.

=>Might not be needed if process-independent design is used and reasonable tolerance is allowed.

- 4. Could achieve higher-frequency operation in the VHF or UHF range if finite-gain amplifiers are used.
- 5. Could achieve GHz operation if deep submicron CMOS is used.

§15-2 Gm-C or OTA-C (Operational-Transconductance-Amplifier-C)

Filters

§15-2.2 Basic OTA building blocks

Ref.: IEEE Circuits and Device Magazine, pp.20-32, March 1985.

1. Voltage amplifiers G_m or op amp + resistors.

15-3 CHUNG-YU WU

(c) Feedback amplifier

(e) Buffered amplifier

(d) Noninverting feedback amplifier

(f) Buffered VCVC feedback

- $\frac{V_0}{V_i} = \frac{g_{m_1}}{g_{m_2}}$ $Z_0 = \frac{I}{g_{m_2}}$
- (g) All OTA amplifiers

2.Controlled impedance elements

(f) Impedance multiplier

- (d) Variable Impedance Inverter (VIC) or Gyrator
 * Z_L is a capacitor=> Z_{in} is a inductor=>active inductor.
 * Can be used in voltage-controlled oscillator (VCO)
- (h) FDNR (Frequency Dependent Negative Resistance)

S=j
$$\omega$$
 Z_{in}(j ω)= $-\frac{R}{\omega^2}$
* Gyrator +super inductor.

3. Integrators G_m or OTA + R or C

15-6 CHUNG-YU WU

(b) Adjustable

§15-2.3 Gm-C or OTA-C filters (first-order)

(a) First-order lowpass voltage-controlled filter, fixed dc gain, pole adjustable

(b) Lowpass, fixed pole, adjustable dc gain

(c) Highpass, fixed high-frequency gain, adjustable pole

15-7 CHUNG-YU WU

(d) Shelving equalizer, fixed high-frequency gain, fixed pole, adjustable zero

(e) Shelving equalizer, fixed high-frequency gain, fixed zero, adjustable pole

(f) Lowpass filter, adjustable pole and zero

(g) Shelving equalizer, independently adjustable pole and zero

(h) Lowpass or highpass filter, adjustable zero and pole, fixed ratio or independent adjustment

(i) Phase shifter, adjustable with g_m

§15-2.4 Second-order Gm-Cor OTA-C filters

(a)

15-9 CHUNG-YU WU

Transfer functions for the orquadratic structure (a)						
Circuit Type	Input Conditions	Transfer Function If $g_{m1}=g_{m2}=g_m$		$=g_{m2}=g_m$		
			ω _o	Q (fixed)		
ω₀ Adjustable Lowpass	$V_i = V_A$ V_B and V_C Grounded	$\frac{g_{m1}g_{m2}}{s^2C_1C_2 + SC_1g_{m2} + g_{m1}g_{m2}}$	$\frac{g_{\scriptscriptstyle m}}{\sqrt{C_{\scriptscriptstyle 1}C_{\scriptscriptstyle 2}}}$	$\sqrt{\frac{C2}{C1}}$		
ω _o Adjustable Bandpass	$V_i = V_B$ V_A and V_C Grounded	$\frac{SC_1g_{m2}}{s^2C_1C_2 + SC_1g_{m2} + g_{m1}g_{m2}}$	$\frac{g_m}{\sqrt{C_1 C_2}}$	$\sqrt{\frac{C2}{C1}}$		
ω _o Adjustable Highpass	$V_i = V_C$ V_A and V_B Grounded	$\frac{s^2 C_1 C_2}{s^2 C_1 C_2 + S C_1 g_{m2} + g_{m1} g_{m2}}$	$\frac{g_{m}}{\sqrt{C_{1}C_{2}}}$	$\sqrt{\frac{C2}{C1}}$		
ω₀ Adjustable Notch	$V_i = V_A = V_C$ V_B Grounded	$\frac{s^2 C_1 C_2 + g_{m1} g_{m2}}{s^2 C_1 C_2 + S C_1 g_{m2} + g_{m1} g_{m2}}$	$\frac{g_{m}}{\sqrt{C_{1}C_{2}}}$	$\sqrt{\frac{C2}{C1}}$		

Transfer functions for the biquadratic structure (a)

(b)

- * Can implement lowpass, bandpass, highpass, and notch.
- * If g_{m3} is fixed and $g_{m1}=g_{m2}=g_m$ is adjusted, the poles can be moved in a constant-Q manner.
- * If g_{m3} is adjusted with g_{m1} and g_{m2} fixed, the pole movement in a constant- ω_0 manner.

(c)

$$\begin{array}{c} & & & \\ &$$

- * ω_0 can be adjusted linearly with $g_{m1}=g_{m2}=g_m$ and g_{m3} constant => constant-bandwidth movement.
- * If g_{m1} , g_{m2} , and g_{m3} are adjusted simultaneously, constant-Q pole movement.
- * Interchanging "+" and "-" terminals of g_{m1} and g_{m2} and setting $V_A = V_B = V_C = V_i$, and making $g_{m1} = g_{m2} = g_{m3} = g_m => 2^{nd}$ -order g_m adjustable phase equalizer.

- * The adjustment of the bandpass version with $g_{m1}=g_{m2}=g_m$ will result in a constant bandwidth, constant gain response.
- (e) Elliptic biquadratic filter

* Can be applied to the realization of high-order voltage-controlled elliptic filters.

=>Cascading these second-order blocks with interstage unity-gain buffers.

All g_m's are made equal and adjusted simultaneously.

* The voltage-controlled amplifier of Fig. (g) on p.15-3 can be inserted between x and x'. The transconductance gain of the two OTAs in the

amplifier can be used as the control variable to adjust the ratio of the zero location to pole location.

(g) General biquadratic structure

* when $V_i = V_A = V_B = V_C$, the ω_o and Q for the poles and zeros can be adjusted by g_m 's to any desired value.

§15-2.5 Fully Differential Gm-C or OTA-C Filters

1. General first-order filter

2. General biquadratic filter

$$G_{m3} = \frac{\omega_o (C_B + C_X)}{O}$$

 $G_{m4} = (K_o C_A) / \omega_o$ $G_{m5} = K_1 (C_B + C_X)$

§15-3 CMOS Transconductor or OTA

1. CMOS transconductor using triode transistor

- * G_m can be adjusted by V_{gs9} and scaled by the current mirrors Q_3/Q_7 and Q_4/Q_8 .
- * Q_5/Q_6 are feedback devices to set the drain voltages of Q_1/Q_2 .
- 2. CMOS transconductor using varying bias-triode transistors.

* Q_3 and Q_4 are in the triode region.

*
$$G_{m} = \frac{1}{r_{s1} + r_{s2} + (r_{ds3} \parallel r_{ds4})}$$
 where $r_{ds3} = r_{ds4} = \frac{1}{2K_{3}(V_{GS1} - V_{in})}$
 $r_{s1} = r_{s2} = \frac{1}{g_{m1}} = \frac{1}{2K_{1}(V_{GS1} - V_{in})}$ $V_{GS1} - V_{tn} = \sqrt{\frac{I_{1}}{K_{1}}}$

3. CMOS differential-pair transconductor with floating voltage supply. Conceptual circuit:

$$(i_{D1} - i_{D2}) = 4K_{eq}V_x(v_1 - v_2)$$

Real circuit:

4. CMOS bias-offset cross-coupled transconductor.

§15-4 Design Example of Gm-C or OTA-C Filters

- Ref.: 1. IEEE Trans. Circuits and Systems, pp. 1132-1138, Nov. 1986 2. IEEE JSSC, pp.987-996, Aug. 1988
- 1. CMOS linear transconductance amplifier (CMOS inverter-based complementary differential-pair transconductor)

Experimental results on BP filter:

Fig. 10. Passband detail of the filter performance at $0^{\circ}C$ (lower trace) and at $65^{\circ}C$.

Center frequency 4MHz

TABLE I E_{xperimental} F_{ilter} D_{ata}

Control	Automatic	Manual	
Passband ripple	1 dB	0.5 dB	
Stopband attenuation	>60 dB		
Bandwidth	800 KHz		
S/N in passband	≈40dB	75dB	
Distortion (for 0.5Vpp)	0.5%		
Max. signal level	1.2 V _{pp}		
Frequency control range	1 MHz	1.5 MHz	
Q-control range	40%	unlimited	
Offset (reference inverter)	1mV @ Gain ≈ 50		

§15-5 MOSFET-C Filters

- * MOSFET-C filters are slower than Gm-C filters
 - : Miller integration.
- * Smaller speed
 - The load of op amps is resistive
- * Straightforward design methodology

1. Two-transistor integrators.

(a) Active-RC integrator

 $R_1 \equiv R_{p_1} = R_{n_1}$ $R_2 \equiv R_{p_2} = R_{n_2}$

(b) Two-transistor MOSFET-C integrator

$$V_{\text{diff}} = V_{\text{po}} - V_{\text{no}} = \frac{i_{no} - i_{po}}{SC_1} = \frac{(i_{p1} + i_{p2}) - (i_{n1} + i_{n2})}{SC_1}$$
$$= \frac{1}{SR_1C_1}(V_{p1} - V_{n1}) + \frac{1}{SR_2C_1}(V_{p2} - V_{n2})$$

2.General biquadratic MOSFET-C filter

Active-RC circuit:

MOSFET-C biquadratic filter:

$$H(S) = \frac{V_o(s)}{V_i(s)} = \frac{(\frac{C_1}{C_B})S^2 + (\frac{G_2}{C_B})S + \frac{G_1G_3}{C_AC_B}}{S^2 + (\frac{G_1}{G_B})S + \frac{G_3G_4}{C_AC_B}}$$

3. Four-transistor integrators

 $V_{diff}\!\equiv\!V_{po}\!\!-\!\!V_{no}$

$$=\frac{1}{sr_{DS1}c_{1}}(V_{pi}-V_{ni})+\frac{1}{sr_{DS2}c_{1}}(V_{ni}-V_{pi})$$

where $r_{DS1} = \frac{1}{u_n c_{ox} (\frac{W}{L})_1 (V_{c1} - V_x - V_t)}$ $V_{pi} \sim C_{pi}$

$$r_{\rm DS2} = \frac{1}{u_n c_{ox} (\frac{W}{L})_2 (V_{c2} - V_x - V_t)}$$

All four transistors are matched

$$=> V_{\text{diff}} = \frac{1}{sr_{DS}c_1}(V_{pi} - V_{ni})$$

where $r_{DS} = \frac{1}{u_n c_{ox}(\frac{W}{L})(V_{c1} - V_{c2})}$

CH 16. Oversampling Data Converters

§16-1 Fundamental Concept

§16-1.1 Oversampling without noise shaping

- * e(n) can be approximated as an independent random variable uniformly distributed between $\pm \frac{\Delta}{2}$ where Δ is the difference between two adjacent quantization levels, i.e. V_{LSB}.
- * The quantization noise power $=\frac{\Delta^2}{12} = P_e$
- * The quantization noise power is independent of the sampling frequency f_s .
- * The spectral density of e(n), S_e(f) is white and all its power is within $\pm \frac{J_s}{2}$.

Assume that the input signal is a sinusoidal wave between 0 and $\Delta 2^N$. The signal power P_s is

$$P_{s} = (\frac{\Delta 2^{N}}{2\sqrt{2}})^{2} = \frac{\Delta^{2} 2^{2^{N}}}{8}$$

With H(f), P_s remains the same since the signal's frequency content is below f_o , but the quantization noise power P_e becomes

$$\mathbf{P}_{e} = \int_{-\frac{f_{s}}{2}}^{\frac{f_{s}}{2}} S_{e}^{2}(f) |H(f)|^{2} df = \int_{-f_{o}}^{f_{o}} K_{x}^{2} df = \frac{2f_{o}}{f_{s}} \frac{\Delta^{2}}{12} = \frac{\Delta^{2}}{12} (\frac{1}{OSR})$$

OSR $\uparrow \times 2 \Rightarrow P_e \downarrow \frac{1}{2}$ or -3dB, or 0.5 bits

$$SNR_{max} = 10\log(\frac{P_s}{P_e}) = 10\log(\frac{3}{2}2^{2N}) + 10\log(OSR)$$

 $=6.02N+1.76+10\log(OSR)$

=>SNR enhancement obtained from oversampling: 10log(OSR). SNR improvement of 3 dB/octave or 0.5 bits/octave

3. The advantage of 1-bit D/A converter

- * Oversampling improves the SNR, but it does not improve linearity.
- * Theoretically, 1-bit converter with $f_0=25$ KHz can obtain a 96-dB SNR(16 bits) if the sampling frequency $f_s=54,000$ GHz!
- * The advantage of a 1-bit DAC is that it is inherently linear.

§16-1.2 Oversampling with noise shaping

1. The system architecture of a $\Delta\Sigma$ oversampling ADC is shown in the next page

Oversampling Delta-Sigma Analog-to-Digital Converters:

Signal transfer function $S_{TF}(z) \equiv \frac{Y(z)}{U(z)} = \frac{H(z)}{1+H(z)}$ Noise transfer function $N_{TF}(z) \equiv \frac{Y(z)}{E(z)} = \frac{1}{1+H(z)}$ $=>Y(z)=S_{TF}(z)U(z)+N_{TF}(z)E(z)$ If $|H(z)| \rightarrow \infty$ for $0 < f < f_0 => |S_{TF}(z)| \rightarrow 1$ and $|N_{TF}(z)| \rightarrow 0$ => Quantization noise \downarrow and signal unchanged.

3.First-order noise shaping:

$$H(z) = \frac{z^{-1}}{1 - z^{-1}} \quad (\text{Noniverting Forward-Euler SC integrator})$$

$$=>S_{\text{TF}}(z) = \frac{H(z)}{1 + H(z)} = z^{-1}$$

$$N_{\text{TF}}(z) = \frac{1}{1 + H(z)} = (1 - z^{-1}) \quad z = e^{j\omega T} = e^{j2\pi f/fs}$$

$$N_{\text{TF}}(f) = 1 - e^{-j2\pi f/fs} = \sin\left(\frac{\pi f}{f_s}\right) \times (2j) \times (e^{-j\pi f/fs})$$

$$|N_{\text{TF}}(f)| = 2\sin\left(\frac{\pi f}{f_s}\right)$$

The quantization power noise power over 0 to fo is

 $P_{e} = \int_{-f_{o}}^{f_{o}} S_{e}^{2}(f) |N_{TF}(f)|^{2} df = \int_{-f_{o}}^{f_{o}} (\frac{\Delta^{2}}{12}) \frac{1}{f_{s}} [2\sin(\frac{\pi f}{f_{s}})]^{2} df$

Since $f_0 \ll f_s$, i.e. OSR>>1, $\sin(\frac{\pi f}{f_s}) \cong \frac{\pi f}{f_s}$

$$=> P_{e} \approx (\frac{\Delta^{2}}{12})(\frac{\pi^{2}}{3})(\frac{2f}{f_{s}})^{3} = \frac{\Delta^{2}\pi^{2}}{36}(\frac{1}{OSR})^{3}$$
$$P_{s} = \frac{\Delta^{2}2^{2N}}{8} => SNR_{max} = 10 \log(\frac{P_{s}}{P_{e}}) = 10\log(\frac{3}{2}2^{2N}) + 10\log[\frac{3}{\pi^{2}}(OSR)^{3}]$$

=> SNR_{max}=6.02N+1.76-5.17+30 log(OSR) Double OSR => $SNR_{max} \uparrow by 9dB$ or 1.5bits/octave Without noise shaping: $SNR_{max} \uparrow by 3dB/octave or 0.5bits/octave$.

 $Y=Z^{-1}U+E(1-Z^{-1})$

Block diagram:

Е

SC implementation:

the node A Directly to the node A'.

First-order noise shaping with 2-bit ADC and 2-bit DAC

4. Second-order noise shaping

$$\left|N_{TF}(f)\right| = \left[2\sin\left(\frac{\pi f}{f_s}\right)\right]^2$$

 $\Longrightarrow P_{e} \cong \frac{\Delta^{2} \pi^{4}}{60} (\frac{1}{OSR})^{5}$

SNR_{max}=10log
$$(\frac{P_s}{P_e})$$
=10log $(\frac{3}{2}2^N)$ +10log $(\frac{5}{\pi^4})$ +10log $(OSR)^5$

=6.02N+1.76-12.9+50log(OSR)
OSR×2 =>
$$SNR_{max}$$
 by 15dB/Octave or 2.5 bits/Octave

General formula of SNR_{max} with k-order noise shaping: SNR_{max}=6.02N+1.76-10log($\frac{2k+1}{\pi^4}$) + (2k + 1)10log(OSR) OSR×2=> SNR_{max}↑by 3(2k+1)dB/Octave or 0.5(2k+1)bits/Octave

Noise-shaping transfer functions:

The SC implementation of the second-order $\Delta\Sigma$ modulator is shown in the next page.

- * Single-ended structure
- * Can be converted into fully differential structure for better noise rejection and

linearity.

* The capacitor and switches in the feedback path to OP_2 can be reduced as shown on page 16-5.

SC implementation: Single-Ended type circuit diagram

§16-2 System Architecture of Oversampling $\Delta \Sigma$ ADC

* The decimation process does not result in any loss of information, since the bandwidth of the original signal was assumed to be f_o . The spectral information is spread over $0 \sim \frac{\pi}{6}$ in X_{ep} and $0 \sim \pi$ in X_s .

§16-3 System Architecture of Oversampling $\Delta \Sigma DAC$

1. Architecture

2. Signals and spectra

§16-4 High-Order Modulators

Multi-stAge noise SHaping (MASH) architecture:

To use a cascade-type structure where the overall higher-order modulator is constructed using lower-order ones.

=> The stability could be maintained.

§16-5 Design Considerations

§16-5.1 Limitations on accuracy and linearity

A. Noise

- Thermal noise in resistors, conducing switches, op-amps. Usually aliased by sampling
- 1/f op-amp noise, dc offset
- Supply, ground and substrate noise
- clock feedthrough noise
- clock jitter noise
- quantization noise leakage

- B. Nonlinear effects
 - R&C nonlinearities
 - Amplifier nonlinearities
 - Finite op-amp slew rate
 - Signal-dependent clock feedthrough noise
 - Signal-dependent sampling aperture noise
 - Internal A/D and D/A nonlinearities

Linearity of 1-bit DAC:

- 1. The two output levels somehow become functions of the low-frequency signals=> Linearity limitation
 - Power supply voltage are changed for different low-frequency signals to cause distortion.
 - => must be well-regulated.
 - The clock feedthrough of the input switches is also dependent on the gate voltage and thus the supply voltage.
 - => low-frequency input signal dependent
 - The clock jitter could be a function of the low-frequency input signals.

2. The memory between output levels also causes severe linearity limitation.

Ideal case: $\delta_1 = \delta_2 = 0$, practical case: $\delta_1 \neq \delta_2 \neq 0$

=>Three averages do not lie on a straight line=>Nonlinear.

How to improve this nonlinearity?

- 1. $\delta 1 = -\delta 2$: To match falling and rising signals => Very difficult to achieve.
- 2. The use of memoryless coding scheme, i.e. return-to-zero (RTZ) coding scheme.

 $1 : -1 \rightarrow 1$ and $1 \rightarrow 1$ Every 1 has the same area. $-1 : -1 \rightarrow -1$ Every -1 has the same area.=> Better linearity.

3. Basically, SCF or SC circuits are memoryless if enough time is left for settling on each clock phase.

Idle tones phenomena 1-bit DAC dc level $\frac{1}{3} \Rightarrow y(n) = \{1, 1, -1, 1, 1, -1,\}$ periodic pattern with the power concentrated

periodic pattern with the power concentrated at dc and $\frac{f_s}{3}$. After low-pass filter=> only dc level remains.

CHUNG-YU WU periodic pattern with 16 cycles and some power at dc and $\frac{f_s}{16}$.

=> lowpass filter
=> dc level
$$\frac{3}{8}$$
 and $\frac{f_s}{16}$ tone
($\therefore f_0 = \frac{f_s}{16}$ is assumed and lowpass filter will not attenuate $f_s/16$ signal)

16-13

=> Low-frequency tones cannot be filtered out by the lowpass filter and can lead to annoying tones in the audible range. They exist even in high-order modulators. There tones might be a signal varying over some frequency range in a random-like fashion.

Dithering technique to reduce idle tones.

- To add the dithering signal to the modulator just before its quantizer.
- The dithering signal has a white-noise type spectrum and is a random (psuedo-random) signal.
- The dithering signal breaks up the tones so that they never occur.
- Add about 3-dB extra in-band noise
- Require rechecking the modulator's stability.

§16-6 Advantages and Applications

Advantages of Delta-Sigma Converters:

- Low-Complexity Analog, High-Complexity Digital
- High-Resolution Conversion
- Low-Precision Analog (no trimming)
- Simple Anti-Aliasing Filters
- No Sample & Hold Needed
- Can be Built Completely In CMOS
- Overall Small Chip Area in Fine-Line Technology
- Can be Integrated on Chip With Other DSP Functions
- Ideally Suit for Rates up to and Including Audio Band

Commercial Applications Well-Suited for Delta-Sigma ADC

- Standard Voice Band Telephony 13-bit dynamic range, 8-bit linearity (u/A-Law), 8KHz Sampling rate
- Digital Mobile Radio (same req. as above)

- High-Precision Voice-Band (CCITT V.32 9600-Baud Modems)
 14-15 bit dynamic range, 12-bit linearity, 3-4kHz BW, 9600 Sampling rate
- ISDN Wideband Speech (CCITT G.722)
 13-bit dynamic range, 16kHz Sampling rate
- ISDN U-Interface
 13-bit dynamic range, 80kHz Sampling rate, 160kb/s Transmission Rate
- Audio-Band (CD, DAT; stereo (2))
 16-18-bit (18-20 bit) resolution, 14-16 bit)(15-16bit) linearity, 48kHz
 Sampling Rate
- 5 1/2 Instrumentation A/D Converter
 20 bit resolution, 0.1-10Hz BW with Self-Calibration Circuit
- Integration with Digital Signal Processors
- Ideally Suited for Rates up to and Including Audio Band

A variety of applications from voice-band through audio-band

§16-7 Examples

 2^{nd} -order $\Delta\Sigma$ modulator implemented by fully differential SC circuit.

Delta-Sigma ADC (Second order_1)

Testing Environment:

*Develop design-for-testability ADC and environment

The measured SNR versus input signal level.

CH 17 Phase-Locked Loops (PLLs)

§17-1 General architecture and Operational Principle

1. Applications of PLLs: 1.

- Clock recovery in communication and digital systems.
- Frequency synthesizer used in televisions or wireless communication systems to select different channels.
 Demodulation of EM signals
- 3. Demodulation of FM signals.

Voltage-Controlled Oscillator

If the phase detector is of analog-multiplier type, its output voltage V_{pd} can be written as

 $V_{pd} = K_M V_{in} V_{osc} = K_M E_{in} E_{osc} sin(\omega t) cos(\omega t - \phi_d)$

where ϕ_d is the phase difference between the input signal V_{in} and the output V_{osc} of the VCO.

$$V_{pd} = K_M \frac{E_{in} E_{osc}}{2} [\sin(\phi_d) + \sin(2\omega t - \phi_d)]$$

Since the lowpass filter is to remove the high-frequency (2 ω) term, the signal V_{cntl} is given by

$$V_{cntl} = K_{lp} K_{M} \frac{E_{in} E_{osc}}{2} \sin \phi_{d}$$

$$\approx K_{lp} K_{M} \frac{E_{in} E_{osc}}{2} \phi_{d} = K_{lp} K_{pd} \phi_{d} \qquad \text{where } K_{pd} \equiv K_{M} \frac{E_{in} E_{osc}}{2}$$

The frequency of VCO can be expressed as $\omega_{osc} = K_{osc} V_{cntl} + \omega_{fr}$

where ω_{fr} is the free-running frequency of the VCO with its control voltage $V_{cntl}=0$.

$$=> V_{cntl} = \frac{\omega_{in} - \omega_{f_r}}{K_{osc}}$$

where ω_{in} is the frequency of the input signal, which is equal to the frequency of VCO output when the PLL is in the locked state.

$$\Rightarrow \phi_{d} = \frac{V_{cnll}}{K_{lP}K_{pd}} = \frac{\omega_{in} - \omega_{fr}}{K_{lP}K_{pd}K_{osc}}$$

3.Linearized small-signal analysis

When a PLL is in lock, its dynamic response to input-signal phase and frequency changes can be well approximated by a linear model, as long as these changes are slow and small about their operating point.

A signal-flow graph for the linearized small-signal model of a PLL when in lock:

$$V_{\text{cntl}}(s) = K_{\text{pd}} K_{\text{lp}} H_{\text{lP}}(s) [\phi_{\text{in}}(s) - \phi_{\text{osc}}(s)]$$

$$\phi_{\text{osc}}(s) = K_{\text{osc}}(V_{\text{cntl}}(s)/s) \quad (\because \omega(t) = \frac{d\phi(t)}{dt} \quad \phi(s) = \frac{\omega(s)}{s})$$

 $=> \frac{V_{cntl}(s)}{\phi_{in}(s)} = \frac{SK_{pd}K_{lP}H_{lP}(s)}{S + K_{pd}K_{lP}K_{osc}H_{lP}(s)}$

* General transfer function applicable to almost every PLL.

* Different PLLs => Different $H_{lp}(s)$, K_{pd} , K_{osc} . If a lead-lag lowpass filter is used in $H_{lp}(s)$, we have

$$H_{lp}(s) = \frac{1 + s \tau_z}{1 + s \tau_p} \qquad \tau_z << \tau_p$$

$$=> H(s) \equiv \frac{V_{cntl}(s)}{\phi_{in}(s)} = \frac{\frac{1}{K_{osc}}S(1+s\tau_z)}{1+S(\frac{1}{K_{pd}K_{lp}K_{osc}}+\tau_z) + \frac{s^2\tau_p}{K_{pd}K_{lp}K_{osc}}}$$

* H(s)=0 as s $\rightarrow 0 \Rightarrow \Delta \phi_{in}=0$ leads to $\Delta V_{cntl}=0$
$$\frac{V_{cntl}(s)}{\omega_{in}(s)} = \frac{\frac{1}{K_{osc}}S(1+s\tau_z)}{1+S(\frac{1}{K_{pd}K_{lp}K_{osc}}+\tau_z)+\frac{s^2\tau_p}{K_{pd}K_{lp}K_{osc}}}$$
$$*\frac{V_{cntl}(s)}{\omega_{in}(s)}\Big|_{s=0} = \frac{1}{K_{osc}}$$

The above second-order s-domain transfer functions have ω_o and Q as

$$\omega_{0} = \sqrt{\frac{K_{pd}K_{lp}K_{osc}}{\tau_{p}}} = \frac{K_{pll}}{\sqrt{\tau_{p}}}$$

$$Q = \frac{\sqrt{\tau_{p}}}{\frac{1}{\sqrt{K_{pd}K_{lp}K_{osc}}} + \tau_{Z}\sqrt{K_{pd}K_{lp}K_{osc}}} = \frac{\sqrt{\tau_{p}}}{\frac{1}{K_{pll}} + \tau_{Z}K_{pll}}$$

*
$$Q = \frac{1}{2} \rightarrow \text{ good settling behavior}$$

 $Q = \frac{1}{\sqrt{3}} = 0.577 \rightarrow \text{ maximally flat group delay}$
 $Q = \frac{1}{\sqrt{2}} = 0.707 \rightarrow \text{ maximally flat amplitude response}$
* Usually $Q = \frac{1}{2}$ is recommended in PLLs

In most cases, when $\omega_{o}\!\!<\!\!<\!\!\omega_{fr}\!,$ we have

$$\tau_{Z} \gg \frac{1}{K_{pll}^{2}}$$

$$=> Q \cong \frac{\sqrt{\tau_{P}}}{\tau_{z}K_{pll}} = \frac{1}{\omega_{o}\tau_{z}} = \frac{1}{2}$$

$$=> \tau_{Z} = \frac{2\sqrt{\tau_{P}}}{K_{pll}} = \frac{2}{\omega_{o}}$$

The transient time constant τ_{pll} of the complete loop for small phase or frequency changes can be expressed as

$$\tau_{\rm pll} \cong \frac{1}{\omega_o}$$

Design considerations: 1.Cho

1.Choosing K_{pd} and K_{osc} based on practical considerations 2.Choose τ_p to achieve the desired loop settling time 3.Choose τ_Z to obtain the desired Q of the loop

If
$$\tau_{Z}=0$$
, => Q= $\sqrt{\tau_{P}} K_{pll}$, $\omega_{o}=\frac{K_{pll}^{2}}{Q}=\frac{K_{pd}K_{osc}}{Q}$ (K_{lp}=1)

4. Capture range and acquisition time

Capture range: The maximum difference between the input signals' frequency and the VCO free-running frequency where lock can eventually be attained.

The capture range is on the order of the pole frequency of the lowpass filter.

Acquisition time: The time required to attain lock If the initial difference between the input signal's frequency and the VCO frequency is moderately large, the acquisition time t_{acq} is

$$t_{acq} \cong \frac{Q(\omega_{i_n} - \omega_{osc})^2}{\omega_o^3}$$

* If a PLL is designed to have a narrow loop bandwidth ω_o , t_{acq} can be quite large and lock is attained too slowly.

- Solution: 1. To add a frequency detector that detect when ω_{in} - ω_{osc} is large. Then drive the loop toward lock much more quickly. When ω_{in} - ω_{osc} is small, the frequency detector and the driver are disabled.
 - 2. To design the lowpass filter with a programmable pole frequency ω_o . Initial acquisition: $\omega_o \uparrow$ speed up acquisition. Lock : $\omega_o \downarrow$ increase noise rejection.
 - 3. To sweep the VCO's frequency range during acquisition with the PLL disabled. When $\omega_{osc} \rightarrow \omega_{in}$, sweeping is disabled and PLL is activated.

5. Lock range

Lock range: Once lock is attained, the PLL remains in lock over a range as long as the input signal's frequency ω_{in} changes only slowly. This range is the lock range, which is much larger than the capture range.

$$V_{\text{cntl-max}} = K_{\text{lp}} K_{\text{M}} \frac{E_{in} E_{osc}}{2} = K_{\text{lp}} K_{\text{pd}}$$
$$= \omega_{\text{lck}} = \pm K_{\text{osc}} K_{\text{lp}} K_{\text{pd}}$$

§17-2 Phase Detectors in PLLs

Three categories: 1. Analog phase detectors (PDs) or multipliers:

Rely on the DC component when multiplying two sinusoidal waveforms of the same frequency.

- 2. Sequential circuits (e.g. EXOR and Flip-Flop PDs): Operate on the information contained in the zero-crossings of the input signal to aid acquisition when the loop is out of lock. Also a sequential circuit actually.
- 3. Phase-frequency detector: Provide a frequency sensitive signal to aid acquisition when the loop is out of lock. Also a sequential circuits actually.

§17-2.1 Multiplier PD

$$V_{pd} = K_{M}E_{in}sin(\omega_{1}t+\theta_{1})E_{osc}cos(\omega_{2}t+\theta_{2})$$
$$= K_{M}\frac{E_{in}E_{osc}}{2} \left\{sin[(\omega_{1}-\omega_{2})t+\theta_{1}-\theta_{2}]+sin[(\omega_{1}+\omega_{2})t+\theta_{1}+\theta_{2}]\right\}$$

At phase lock, $\omega_1 = \omega_2$

$$=> V_{pd} = K_M \frac{E_{in} E_{osc}}{2} [\sin(\theta_1 - \theta_2) + \sin(2\omega t + \theta_1 + \theta_2)]$$

After the lowpass filter, we have

$$V_{pd} = K_{lp} K_M \frac{E_{in} E_{osc}}{2} \sin(\theta_1 - \theta_2) = K_M \frac{E_{in} E_{osc}}{2} \sin\theta_d \propto \theta_d \text{ if } \theta_d \text{ is small.}$$

- * The multiplier PD is especially useful in applications where the reference frequency is too high and where the loop bandwidth is sufficiently narrow so that the filtering of the undesired components can be effective.
- * The loop could lock to harmonics of the input signal. =>False lock
- * $\omega_1 = \omega_2$ is required.

§17-2.2 EXOR PD

- * when $A(V_{in})$ and $B(V_{osc})$ are 90° out of phase, the output $V_{pd}(c)$ has $\omega=2\omega_{in}$ and 50% duty cycle. This is a reference point. $V_{pd} \propto \theta_d$ for $0^\circ < \theta_d < 180^\circ$.
- * False lock could occur
- * $\omega_1 = \omega_2$ is required.

§17-2.3 Flip-Flop PD

* The average value of V_{pd} or C has the shape of a saw tooth, with a linear range of a full cycle.

* At the center of the linear range of V_{pd} average, the most important harmonic is situated at the fundamental of the reference frequency as compared to the twice of reference frequency in the EXOR PD.

§17-2.4 Charge-pump PD

- 1. Desirable features: 1. It does not exhibit false lock.
 - 2. V_{in} and V_{osc} are exactly in phase when the loops in lock.
 - 3. The PLL attains lock quickly even when ω_{in} is quite different from $\omega_{fr}.$

Some typical waveforms of a charge-pump PD

2.Small-signal analysis of a charge-pump PLL:

The average charge flow into the lowpass filter is

$$I_{avg} = \frac{\Delta \phi_{in}}{2\pi} I_{ch}$$

$$I_{avg} = K_{pd}(\phi_{in} - \phi_{osc}) = K_{pd} \Delta \phi_{in}$$

$$= K_{pd} = \frac{I_{ch}}{2\pi}$$

For the lowpass filter R, C_1 has a transfer function $H_{lp}(s)$ as

$$H_{lp}(s) = \frac{V_{in}(s)}{I_{avg}(s)} = R + \frac{1}{SC_1} = \frac{1 + SRC_1}{SC_1}$$

Substituting H_{lp}(s) and K_{pd} into the transfer function $\frac{V_{lp}(s)}{\phi_{in}(s)}$,

we have

$$\frac{V_{lp}(s)}{\phi_{ln}(s)} = \frac{1}{K_{osc}} \frac{S(1 + SRC_1)}{1 + SRC_1 + \frac{S^2C_1}{K_{pd}K_{osc}}}$$

$$\Rightarrow \omega_o = \sqrt{\frac{K_{pd}K_{osc}}{C_1}}$$

$$Q = \frac{1}{RC_1\omega_o} = \frac{1}{R\sqrt{C_1K_{pd}K_{osc}}} = \frac{1}{R}\sqrt{\frac{2\pi}{C_1I_{ch}K_{osc}}}$$

3. Design Considerations:

- (1) Choose I_{ch} based on practical consideration like power dissipation and speed.
- (2) ω_o is chosen according to the desired transient settling-time constant τ_{pll} as

$$\omega_{o} = \frac{1}{\tau_{pll}}$$

- (3) C_1 is chosen from the equation of ω_0 whereas R is chosen using the equation of Q. The chosen Q value is slightly less than what is eventually desired. $R\uparrow => Q\downarrow$
- (4) Add C_2 to minimize glitches.

 $C_2 \Rightarrow Q^{\uparrow} \Rightarrow chosen Q$ value is smaller $\Rightarrow Exact Q$.

$$C_{2} \cong \frac{1}{8} \sim \frac{1}{10} \text{ of } C_{1}$$
$$\Longrightarrow H_{lp}(s) \equiv \frac{R}{1 + SRC_{2}} + \frac{1}{SC_{1}}$$

- 4. Phase/Frequency detector (PFD)
 - * The most common sequential phase detector is the PFD.
 - * Asynchronous sequential logic circuit.
 - * 4 NOR-type RS flip-flops.
 - * Can also be realized in NAND gates.

* Basic operating principle:

Assume the PLL is in lock with V_{in} leading V_{osc}

Initial conditions: $P_u=0$, $P_d=0$, $P_{u-dsbl}=0$, $P_{d-dsbl}=0$, Reset=0 $V_{in}=0$, $V_{osc}=0$

inputs: 1001

 $V_{in} \rightarrow 1 => P_u = 1 => Charge pumping starts and <math>V_{lp} \uparrow => \omega_{osc} \uparrow$

 $V_{osc} \rightarrow 1 => \text{Reset nor gate inputs: } 0001 \rightarrow 0000 => \text{Reset } 0 \rightarrow 1$

- => P_u =0 and P_d =0 after one gate-delay; P_d 0→1→0 P_{u-dsbl} =1 and P_{d-dsbl} =1 after two gate-delays.
- => Reset 1→0 after one gate-delay of P_{u-dsbl} →1 and P_{d-dsbl} →1 or after three gate-delays of V_{osc} →1.
- \Rightarrow Keeping P_u=0 and P_d=0 \Rightarrow No charge pumping.
- It is only when $V_{in} \rightarrow 0 = FF3$ is reset and $P_{u-dsbl}=0$
 - $V_{osc} \rightarrow 0 => FF4 \text{ is reset and } P_{d-dsbl}=0$

* The waveforms of a PFD when V_{in} is at a higher frequency than V_{osc} .

 $\omega_{in} > \omega_{osc} \Rightarrow P_u = 1 \Rightarrow$ Charge pumping to increase ω_{osc} until lock is achieved.

* Transfer characteristic of a charge-pumping PFD

§17-3 Loop Filters and Loop Gains

§17-3.1 First-order PLL with zero-order loop filter

Loop gain of the feedback structure with $\phi_{in}(s)$ and $V_{cntl}(s)$

§17-3.2 Second-order PLL with first-order loop-filter

§17-3.3 Third-order PLL with second-order loop filter

To improve the transient characteristics of the PLL, a low-frequency pole ω_a is introduced in the loop filter. => Extra phase shift of 90°.

To compensate the extra phase shift, a compensating zero ω_z must be introduced in order to keep the phase margin high enough. $\log|_{GH(\omega)}|$

$$2^{nd}\text{-order loop filter: } H_{lp}(s) = \frac{(1 + S/\omega_z)}{(1 + S/\omega_p)(1 + S/\omega_a)}$$

$$=> GH(S) = \frac{K_{pd}K_{lp}K_{asc}(1 + S/\omega_z)}{S(1 + S/\omega_p)(1 + S/\omega_a)}$$
Bode plots of GH(S):
$$=> Third\text{-order type-1 PLL}$$

$$\frac{V_{cnd}(s)}{\phi_{ln}(s)} = \frac{S(1 + S/\omega_z)K_{pd}K_{lp}}{S(1 + S/\omega_p)(1 + S/\omega_a) + K_{pd}K_{lp}K_{asc}(1 + S/\omega_z)}$$

$$if \omega_a = 0$$

$$=> Third\text{-order type-2 PLL.}$$

§17-3.4 Third-order type-2 charge-pump PLL

§17-4 Voltage-Controlled Oscillators (VCOs)

Basic VCO specifications/requirements:

1. phase stability:

The output spectrum of the VCO should approximate as good as possible the theoretical Dirac-impulse of a single sine wave, i.e. low phase noise.

The definition of phase noise:

2. Electrical tuning range

The VCO must be able to cover the complete required frequency band of the application, including initial frequency offsets due to process variations.

3. Tuning linearity

To simplify the design of the PLL, the VCO gain K_{osc} should be

constant.

4. Frequency pushing (MHz/V)

The dependency of the center frequency on the power supply voltage.

5. Frequency pulling

The dependence of the center frequency

6. Low cost

§17-4.1 Relaxation oscillator as VCO

- * Multivibrator-based nonlinear oscillator.
- * f_{osc} ~in the order of a few 100 MHz
- * In CMOS, phase noise value of -90dBc/Hz at 500KHz offset. Ref.: IEEE JSSC, vol.23, pp.1386-1393, Dec. 1988.

§17-4.2 Ring oscillator as VCO

- * $T_{osc}=2n \bullet T_d$ n: number of inverters; T_d : one inverter delay.
- * Tuning: varying the current of the inverters.
- * High phase noise: :: switching action introduces a lot of disturbances.
- * Power consumption \uparrow linearly => phase noise \downarrow
- * Typical phase noise:

-94dBc/Hz at 1 MHz offset from a 2.2GHz carrier.

-83dBc/Hz at 100 KHz offset from a 900MHz carrier.

- * Circuit structure
 - 1. Three-stage ring oscillator

2. Differential two-stage ring oscillator

* $f_{osc} MHz \sim GHz$

- Ref.: 1. Proc. of IEEE 1995 Custom Integrated Circuits Conference (CICC), pp.331-334.
 - 2. IEEE JSSC, vol.31, pp.331-334, March 1996.

§17-4.3 LC-oscillator as VCO

- * Typically a 20dB better phase noise obtained over ring and relaxation oscillators.
- * High-speed operation is possible due to the simple working principle.
- * The realization of the inductor is the key point.

Design example: 0.7µm CMOS planar-LC VCO.

- * Constant current => To limit power dissipation
- * M₁ and M₂: To provide a negative resistance for oscillation
- * L₁=L₂=3.2nH planar spiral inductors
- * p^+ n-well junction diodes C_1 and C_2 as varactors for frequency tuning by V_c .
- $C_1 = C_2 \cong 1 pF$
- * Different output voltage.

Chip photograph of the VCO. (Die size $750 \times 750 \ \mu m^2$)

Measurement results:

1. Measured output spectrum for a carrier frequency of 1.81 GHz.

2. Measured phase noise w.r.t. frequency offset

3. Measured frequency tuning characteristics

* At V_c=0.5V, the diode varactors C_1 and C_2 have a larger leakage current => Phase noise \uparrow 3dB.

§17-4.4 Comparisons of Integrated VCOs

Reference	Technology	Freq.	Power	Tuning	Phase noise [dBc/Hz]		Remarks						
	[-]	[GHz]	[mW]	[%]	reported	equiv.*							
Relaxation oscillators													
[Banu JSSC88]	0.75-um CMOS	0.56	50	100	-90 @500kHz	-81	Tuning from 100kHz to1GHz						
[Sneep JSSC90]	3-GHz Bip	0.1	30	100	-118 @1MHz	-90	Tuning from low freq. to 150MHz						
[Dobos CICC94]	9-GHz Bip	0.4	?	100	-110 @1MHz	-92	Tuning from 800kHz to 800MHz; Fast start-up						
Ring oscillators													
[Kwasn	1.2-um CMOS	0.74	6.5	6	- 89 @100kHz	-97	Comparison of 3 designs						
CICC95]													
[Razav JSSC96]	0.5-um CMOS	2.2	NA	NA	-94 @1MHz	-91	Three-stage; differential gain stage						
[vd Tan ISSCC97]	9-GHz BiCMOS	2.0	NA	95	-106 @2MHz	-96	Two-stage CCO; stacked with mixer						
LC-tuned oscillators													
[Nguye JSSC92]	10-GHz Bip	1.8	70	10	-88 @100kHz	-104	High-ohmic substrate; tuning with 2 tanks						
[Based ESSC94]	1-um CMOS	1.0	16	0	-95 @100kHz	-105	Wide metal turns; substrate back-etched						
[Soyue JSSC96a]	12-GHz BiCMOS	2.4	50	0	-92 @100kHz	-110	4-level, extra thick metal; high-ohmic substrate						
[Ali ISSCC96]	25-GHz Bip	0.9	10	N.A.	-101 @100kHz	-110	Complete PLL; planar inductors						

*at 600 kHz offset from a 1.8-GHz carrier

Reference	Technology	Freq.	Power	Tuning	Phase noise [dBc/Hz]		Remarks					
	[-]	[GHz]	[mW]	[%]	reported	equiv.						
LC-tuned oscillators(cont'd)												
[Rofou ISSCC96]	1-um CMOS	0.9	1040	14	-85 @ 100kHz	-95	Front-etched inductors; quadrature signals					
[Soyue JSSC96b]	0.5-um BiCMOS	4.0	12	9	-106 @ 1MHz	-109	Thick metal (2.1 μ m) and field oxide (11 μ m)					
[Razav ISSCC97]	0.6-um CMOS	1.8	15	7	-100 @ 500kHz	-102	Linear tuning; quadrature signals					
[Dauph ISSCC97]	11-GHz BiCMOS	1.5	40	10	-105 @ 100kHz	-119	Hollow rectangular coils standard process					
[Janse ISSCC97]	15-GHz Bip	2.2	43	11	-99 @ 100kHz	-116	High-Q MIS capacitor and varactor					
[Parke CICC97]	0.6-um CMOS	1.6	NA	12	-105 @ 200kHz	-114	Full PLL circuit; capacitor bank for extended tuning					
Presented designs												
[Steya EL94]	6-GHz Bip	1.1	1	0	-75 @ 10kHz	-106	Bonding wire inductor					
[Crani JSSC95]	0.7-um CMOS	1.8	24	5	-115 @ 200kHz	-124	Bonding wire inductor; enhanced LC-tank					
[Crani JSSC97]	0.7-um CMOS	1.8	6	14	-116 @ 600kHz	-116	2-level metal; conductive substrate; standard CMOS					
[Crani CICC97]	0.4-um CMOS	1.8	11	20	-113 @ 200kHz	-122	2-level metal; standard CMOS					

- [Banu JSSC88] M. Banu, "MOS oscillators with multi-decade tuning range and gigahertz maximum speed", *IEEE Journal of Solid-State Circuits*, vol. 23, no. 6, pp. 1386-1393, December 1998.
- [Sneep JSSC90] J. G. Sneep and C. J. M. Verhoeven, "A new low-noise 100-MHz balanced relaxation oscillator", *IEEE Journal of Solid-State Cir cuits*, vol. 25, no. 3, pp. 692-698, June 1990.
- [Dobos CICC94] L. Dobos and B. Jensen, "A versatile monolithic 800-kHz to 800-MHz phase-startable oscillator", in Proc. of the *IEEE 1994 Custom Integrated Circuits Conference*, San Diego, USA, May 1994, pp. 8.4.1-4.
- [Kwasn CICC95] T. Kwasniewski, M. Abou-Seido, A. Bouchet, F. Gaussorgues, and J. Zimmerman, "Inductorless oscillator design for personal communication devices - a 1.2-µm CMOS process case study", in Proc. of the *IEEE 1995 Custom Integrated Circuits Conference*, San Diego, USA, May 1995, pp. 327-330.
- [Razav JSSC96] B. Razavi, "A study of phase noise in CMOS oscillators", IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 331-343, March 1996.
- [vdTan ISSCC97] J. van der Tang and D. Kasperdovitz, "A 0.9-2.2 GHz monolithic quadrature mixer oscillator for direct-conversion satellite receivers", in *ISSCC Digest of Technical Papers*, San Fransisco, USA, February 1997, pp. 88-89.
- [Nguye JSSC92]N. M. Nguyen and R. G. Meyer, "A 1.8-GHz monolithic LC voltage controlled oscillator", *IEEE Journal of Solid-State Circuits*, vol. 27, no. 3, pp. 444-450, March 1992.
- [Based ESSC94]P. Basedau and Q. Huang, "A 1-GHz, 1.5-V monolithic LC oscillator in 1-µm CMOS", in *Proc. of the 1994 European*

Solid-State Circuits Conference, Ulm, September 1994, pp. 172-175.

- [Soyue JSSC96a] M. Soyuer, K. A. Jenkins, J. N. Burghartz, H. A. Ainspan, F. J. Canora, S. Ponnapalli, J. F. Ewen, and W. E. Pence, "A 2.4-GHz silicon bipolar oscillator with integrated resonator", *IEEE Journal of Solid-State Circuits*, vol.31, no.2, pp. 268-270, February 1996.
- [Ali ISSCC96] A. Ali and L. Tham, "A 900-MHz frequency synthesizer with integrated LC voltage-controlled oscillator", in *ISSCC Digest of Technical Papers*, San Fransisco, USA, February 1996, pp. 390-391.
- [Rofou ISSCC96] A. Rofourgan, J. Rael, M. Rofourgan, and A. Abidi, "A 900-MHz CMOS LC-oscillator with quadrature outputs", in *ISSCC Digest of Technical Papers*, San Fransisco, USA, February 1996, pp. 392-393.
- [Soyue JSSC96b] M. Soyuer, K. A. Jenkins, J. N. Burghartz, and M. D. Hulvey, "A 3-V 4-GHz voltage-controlled oscillator with integrated resonator", *IEEE Journal of Solid-State Circuits*, vol. 31, no. 12, pp. 2042-2045, December 1996.
- [Razav ISSCC97] B. Razavi, "A 1.8-GHz CMOS voltage-controlled oscillator", in ISSCC Digest of Technical Papers, San Fransisco, USA, February 1997, pp. 388-389.
- [Dauph ISSCC97] L. Dauphinee, M. Copeland, and P. Schvan, "A balanced 1.5-GHz voltage-controlled oscillator with an integrated LC-resonator", in *ISSCC Digest of Technical Papers*, San Fransisco, USA, February 1997, pp. 390-391
- [Janse ISSCC97] B. Jansen, K. Negus, and D. Lee, "Silicon bipolar VCO family for 1.1 to 2.2 GHz with fully integrated tank and tuning circuits, in *ISSCC Digest of Technical Papers*, San Fransisco, USA, February 1997, pp. 392-393.

- [Parke CICC97] J. Parker and D. Ray, "A low-noise 1.6-ghz CMOS PLL with on-chip loop filter", in Proc. of the IEEE 1997 Custom Integrated Circuits Conference, Santa Clara, USA, May 1997, pp. 407-410.
- [Steya EL94] M. Steyaert and J. Craninckx, "1.1-GHz oscillator using bond-wire inductance", *IEE Electronic Letters*, vol. 30, no. 3, pp. 244-245, 3rd February 1994.
- [Crani JSSC95] J. Craninckx and M. Steyaert, "A 1.8-GHz low-phase-noise voltage controlled oscillator with prescaler", *IEEE Journal of Solid-State Circuits*, vol. 30, no. 12, pp. 1474-1482, December 1995.
- [Crani JSSC97] J. Craninckx and M. Steyaert, "A 1.8-GHz low-phase noise CMOS VCO using optimized hollow inductors", *IEEE Journal of Soild-State Circuits*, vol. 32, no. 4, pp. 736-744, May 1997.
- [Crani CICC97] J. Craninckx and M. Steyaert, "A fully integrated spiral-LC CMOS VCO set with prescaler for GSM and DCS-1800 systems", in Proc. of the IEEE 1997 Custom Integrated Circuits Conference, Santa Clara, USA, May 1997, pp. 403-406.